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Preface to theFifthEnglishEdition

This �fth edition is based on the fourth English edition ������ and corresponds to the improved sixth
German edition ������� It contains all the chapters of the both mentioned editions� but in a renewed
revised and extendet form�

So in the work at hand� the classical areas of Engineering Mathematics required for current practice are
presented� such as 	Arithmetic
� 	Functions
� 	Geometry
� 	Linear Algebra
� 	Algebra and Discrete
Mathematics
� �including 	Logic
� 	Set Theory
� 	Classical Algebraic Structures
� 	Finite Fields
�
	Elementary Number Theory
� 
Cryptology
� 	Universal Algebra
� 	Boolean Algebra and Swich Al�
gebra
� 	Algorithms of Graph Theory
� 	Fuzzy Logic
�� 	Di�erentiation
� 	Integral Calculus
� 	Dif�
ferential Equations
� 	Calculus of Variations
� 	Linear Integral Equations
� 	Functional Analysis
�
	Vector Analysis and Vector Fields
� 	Function Theory
� 	Integral Transformations
� 	Probability
Theory and Mathematical Statistics
�

Fields of mathematics that have gained importance with regards to the increasing mathematical mod�
eling and penetration of technical and scienti�c processes also receive special attention� Included
amongst these chapters are 	Stochastic Processes and Stochastic Chains
 as well as 	Calculus of Er�
rors
� 	Dynamical Systems and Chaos
� 	Optimization
� 	Numerical Analysis
� 	Using the Com�
puter
 and 	Computer Algebra Systems
�

The chapter � containing a large number of useful tables for practical work has been completed by
adding tables with the physical units of the International System of Units �SI��

Dresden� February ����

Prof� Dr� Gerhard Musiol Prof� Dr� Heiner M�uhlig

FromthePreface to theFourthEnglishEdition

The 	Handbook of Mathematics
 by the mathematician� I� N� Bronshtein and the engineer� K� A�
Semendyayev was designed for engineers and students of technical universities� It appeared for the
�rst time in Russian and was widely distributed both as a reference book and as a text book for colleges
and universities� It was later translated into German and the many editions have made it a permanent
�xture in German�speaking countries� where generations of engineers� natural scientists and others in
technical training or already working with applications of mathematics have used it�

On behalf of the publishing house Harri Deutsch� a revision and a substantially enlarged edition was
prepared in ��� by Gerhard Musiol and Heiner M�uhlig� with the goal of giving 
Bronshtein
 the mod�
ern practical coverage requested by numerous students� university teachers and practitioners� The
original style successfully used by the authors has been maintained� It can be characterized as 	short�
easily understandable� comfortable to use� but featuring mathematical accuracy �at a level of detail
consistent with the needs of engineers�
�� Since ����� the revised and extended �fth German edition of
the revision has been on the market� Acknowledging the success that 	Bronstein
 has experienced in

the German�speaking countries� Springer�Verlag Heidelberg�Germany is publishing a fourth English
edition� which corresponds to the improved and extended �fth German edition�

The book is enhanced with over a thousand complementary illustrations and many tables� Special
functions� series expansions� inde�nite� de�nite and elliptic integrals as well as integral transformations

�See Preface to the First Russian Edition



VI

and statistical distributions are supplied in an extensive appendix of tables�

In order to make the reference book more e�ective� clarity and fast access through a clear structure
were the goals� especially through visual clues as well as by a detailed technical index and colored tabs�

An extended bibliography also directs users to further resources�

We would like to cordially thank all readers and professional colleagues who helped us with their valu�
able statements� remarks and suggestions on the German edition of the book during the revision pro�
cess� Special thanks go to Mrs� Professor Dr� Gabriela Sz�ep �Budapest�� who made this English debut
version possible� Furthermore our thanks go to the co�authors for the critical treatment of their chap�
ters�

Dresden� June ����

Prof� Dr� Gerhard Musiol Prof� Dr� Heiner M�uhlig

Co�authors

Some chapters and sections originated through a cooperation with the co�authors�

Chapter or Section Co�author

Spherical Trigonometry ������������ Dr� H� Nickel �� Dresden
Spherical Curves ��������� Prof� L� Marsolek� Berlin
Logic ����� Set Theory ������ Classic Algebraic
Structures ������ Applications of Groups� Rings
and Fields� Vektor Spaces �besides ������ ��������
Universal Algebra ������ Boolean Algebra
and Switch Algebra ����� Dr� J� Brunner� Dresden
Groups Representations� Applications of
Groups ������� ���������������� Prof� Dr� R� Reif� Dresden
Elementary Number Theory ������ Cryptology
������ Graphs ����� Prof� Dr� U� Baumann� Dresden
Fuzzy�Logic ����� Prof� Dr� A� Grauel� Soest
Non�Linear Partial Di�erential Equations�
Solitonen ������� Prof� Dr� P� Ziesche� Dresden
Linear Integral Equations ���
Optimization ���� Dr� I� Steinert� D�usseldorf
Functional Analyzis ���� Prof� Dr� M� Weber� Dresden
Elliptic Functions ����� Dr� N� M� Fleischer �� Moscow
Dynamical Systems and Chaos ���� Prof� Dr� V� Reitmann� Dresden�

St� Petersburg
Computer Algebra Systems ������� ���� Prof� Dr� G� Flach� Dresden
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����� Numbers

������� Natural� Integer� and Rational Numbers

�� De�nitions and Notation
The positive and negative integers� fractions� and zero are together called the rational numbers� In
relation to these we use the following notation �see ����� �� p� �����

� Set of natural numbers� IN�f�� � �� �� � � �g�
� Set of integers� Z� f� � � ������ �� � �� � � �g�
� Set of rational numbers� Q� fxjx �

p

q
with p � Z� q � Z and q �� �g �

The notion of natural numbers arose from enumeration and ordering� The natural numbers are also
called the non�negative integers�

�� Properties of the Set of Rational Numbers
� The set of rational numbers is in�nite�
� The set is ordered� i�e�� for any two di�erent given numbers a and b we can tell which is the smaller
one�
� The set is dense everywhere� i�e�� between any two di�erent rational numbers a and b �a � b� there
is at least one rational number c �a � c � b�� Consequently� there is an in�nite number of other rational
numbers between any two di�erent rational numbers�

�� Arithmetical Operations
The arithmetical operations �addition� subtraction� multiplication and division� can be performed with
any two rational numbers� and the result is a rational number� The only exception is division by zero�
which is not possible� The operation written in the form a � � is meaningless because it does not have
any result� If a �� �� then there is no rational number b such that b �� � a could be ful�lled� and if a � �
then b can be any of the rational numbers� The frequently occurring formula a � � �� �in�nity� does
not mean that the division is possible� it is only the notation for the statement� If the denominator
approaches zero and� e�g�� the numerator does not� then the absolute value �magnitude� of the quotient
exceeds any �nite limit�

�� Decimal Fractions� Continued Fractions
Every rational number a can be represented as a terminating or periodically in�nite decimal fraction
or as a �nite continued fraction �see ����� p� ���

�� Geometric Representation
If we �x an origin �the zeropoint� �� a positive direction �orientation�� and the unit of length l �measuring
rule� see also ����� p� �� and �Fig ���� then every rational number a corresponds to a certain point
on this line� This point has the coordinate a� and it is a so�called rational point� The line is called the
numerical axis� Because the set of rational numbers is dense everywhere� between two rational points
there are in�nitely many further rational points�
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������� Irrational and Transcendental Numbers
The set of rational numbers is not satisfactory for calculus� Even though it is dense everywhere� it
does not cover the whole numerical axis� For example if we rotate the diagonal AB of the unit square
around A so that B goes into the point K� then K does not have any rational coordinate �Fig ����
The introduction of irrational numbers allows us to assign a number to every point of the numerical
axis�
In textbooks we can �nd exact de�nitions for irrational numbers� e�g�� by nests of intervals� For this
survey it is enough to note that the irrational numbers take all the non�rational points of the numerical
axis and every irrational number corresponds to a point of the axis� and that every irrational number
can be represented as a non�periodic in�nite decimal fraction�
First of all� the non�integer real roots of the algebraic equation

xn � an��xn�� � � � �� a�x � a� � � �n � � integer� integer coe�cients�� ��a�

belong to the irrational numbers� These roots are called algebraic irrationals�

A� The simplest examples of algebraic irrationals are the real roots of the equation xn � a � �� as
numbers of the form n

p
a � if they are not rational�

B� �
p

� � ��� � � � � �
p

� � ���� � � � are algebraic irrationals�

The irrational numbers which are not algebraic irrationals are called transcendental�

A� � � ������ � � � e � ������ � � � are transcendental numbers�

B� The decimal logarithm of the integers� except the numbers of the form �n� are transcendental�

The non�integer roots of the quadratic equation

x� � a�x � a� � � �a�� a� integers� ��b�

are called quadratic irrationals� They have the form �a � b
p

D��c �a� b� c integers� c �� �� D � ��
square�free number��

The division of a line segment a in the ratio of the golden section x�a � �a� x��x �see �������� ��

p� ��� leads to the quadratic equation x� � x �  � �� if a � � The solution x � �
p

� � ��� is a

quadratic irrational� It contains the irrational number
p

� �

������� Real Numbers
Rational and irrational numbers together form the set of real numbers� which is denoted by IR�

�� Most Important Properties
The set of real numbers has the following important properties �see also ���� �� p� �� It is�
� Finite�
� Ordered�
� Dense everywhere�
� Closed� i�e�� every point of the numerical axis corresponds to a real number� This statement does
not hold for the rational numbers�

�� Arithmetical Operations
Arithmetical operations can be performed with any two real numbers and the result is a real number�
too� The only exception is division by zero �see ���� �� p� �� Raising to a power and also its
inverse operation can be performed among real numbers� so it is possible to take an arbitrary root of
any positive number� every positive real number has a logarithm for an arbitrary positive basis� except
that  cannot be a basis�

A further generalization of the notion of numbers leads us to the concept of complex numbers �see ���
p� ����

�� Interval of Numbers
A connected set of real numbers with endpoints a and b is called an interval of numbers with endpoints
a and b� where a � b and a is allowed to be �� and b is allowed to be ��� If the endpoint itself does
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not belong to the interval� then this end of the interval is open� in the opposite case it is closed�
We de�ne an interval by its endpoints a and b� putting them in braces� We use a bracket for a closed
end of the interval and a parenthesis for an open one� We distinguish between open intervals �a� b��
half�open �half�closed� intervals  a� b� or �a� b! and closed intervals  a� b!� according to whether none of
the endpoints� one of the endpoints or both endpoints belong to it� respectively� We frequently meet
the notation !a� b instead of �a� b� for open intervals� and analogously  a� b instead of  a� b�� In the case
of graphical representations� we denote the open end of the interval by a round arrow head� the closed
one by a �lled point�

������� Continued Fractions

Continued fractions are nested fractions� by which rational and irrational numbers can be represented
and approximated even better than by decimal representation �see ������ p� ��� and A and B
on p� ���

�� Rational Numbers
The continued fraction of a rational number is
�nite� For a positive rational number which is
greater than  it has the form ����� We abbrevi�

ate it by the symbol
p

q
�  a�� a�� a�� � � � � an! with

ak 	  �k � � �� � � � � n��

p

q
� a� �



a� �


a� �


�� � �


an�� �


an

� ����

The numbers ak are calculated with the help of the Euclidean algorithm�

p

q
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q

�
� �

r�
q
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�
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�� Irrational Numbers

Continued fractions of irrational numbers do not break o�� We call them in�nite continued fractions
with  a�� a�� a�� � � �!�

If some numbers ak are repeated in an in�nite continued fraction� then this fraction is called a periodic
continued fraction or recurring chain fraction� Every periodic continued fraction represents a quadratic
irrationality� and conversely� every quadratic irrationality has a representation in the form of a periodic
continued fraction�

The number
p

� � ������ � � � is a quadratic irrationality and it has the periodic continued fraction

representation
p

� �  � �� �� �� � � �!�
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�� Aproximation of Real Numbers
If � �  a�� a�� a�� � � �! is an arbitrary real number� then every �nite continued fraction

�k �  a�� a�� a�� � � � � ak! �
p

q
����

represents an approximation of � � The continued fraction �k is called the k�th approximant of � � It
can be calculated by the recursive formula

�k �
pk
qk

�
akpk�� � pk��
akqk�� � qk��

�k 	 � p�� � � p� � a�� q�� � �� q� � �� ����

According to the Liouville approximation theorem� the following estimat holds�

j�� �kj � j�� pk
qk
j � 

q�k
� ����

Furthermore� it can be shown that the approximants approach the real number � with increasing ac�
curacy alternatively from above and from below� The approximants converge to � especially fast if the
numbers ai �i � � �� � � � � k� in ���� have large values� Consequently� the convergence is worst for the
numbers  � � � � � �!�

A� From the decimal presentation of� the continued fraction representation � �  �� �� �� � ���� � � �!
follows with the help of ���a�����e�� The corresponding approximants ���� with the estimat accord�

ing to ���� are� �� �
��

�
with j� � ��j � 

��

 � � ���� �� �

���

��
with j� � ��j � 

���

 � � ����

�� �
���

�
with j� � ��j � 

��

 � � ���� The actual errors are much smaller� They are less than

�� ���� for ��� ��� ���� for �� and ��� ���� for �� � The approximants ��� �� and �� represent better
approximations for � than the decimal representation with the corresponding number of digits�

B� The formula of the golden section x�a � �a � x��x �see ����� p� �� �������� �� p� �� and
�������� �� p� ���� can be represented by the following two continued fractions� x � a � � � � � �! and

x �
a

�
� �

p
�� �

a

�
� �  �� �� �� �� � � �!�� The approximant �� delivers in the �rst case an accuracy of

���� a� in the second case of ����� �� a�

������� Commensurability
We call two numbers a and b commensurable� i�e�� measurable by the same number� if both are an
integer multiple of a third number c� From a � mc� b � nc �m�n � Z� it follows that

a

b
� x �x rational�� ����

Otherwise a and b are incommensurable�

A� In a pentagon the sides and diagonals are incommensurable segments �see A in �������
p� ���� Today we consider that it was Hippasos from Metapontum ���� BC� who discovered irra�
tional numbers by this example�

B� The length of a side and a diagonal of a square are incommensurable because their ratio is the

irrational number
p

� �

C� The lengths of the golden section �see ����� p� � and �������� ��p� ��� are incommensurable�

because their ratio contains the irrational number
p

� �

����� Methods for Proof
Mostly we use three types of proofs�
� direct proof�
� indirect proof�
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� proof by �mathematical or arithmetical� induction�
We also talk about constructive proof�

������� Direct Proof
We start with a theorem which is already proved �premise p� and we derive the truth of the theorem we
want to prove �conclusion q�� The logical steps we mostly use for our conclusions are implication and
equivalence�

�� Direct Proof by Implication
The implication p � q means that the truth of the conclusion follows from the truth of the premise
�see 	 Implication 
 in the truth table� ���� p� �����

Prove the inequality
a � b

�
	
p
ab for a � �� b � �� The premise is the well�known binomial formula

�a � b�� � a� � �ab � b�� It follows by subtracting �ab that �a � b�� � �ab � �a� b�� 	 �� we certainly
obtain the statement from this inequality if we restrict our investigations only to the positive square
roots because of a � � and b � ��

�� Direct Proof by Equivalence
The proof will be delivered by verifying an equivalent statement� In practice it means that all the
arithmetical operations which we use for changing p into q must be uniquely invertible�

Prove the inequality  � a � a� � � � �� an �


� a
for � � a � �

Multiplying by � a we obtain� � a � a� a� � a� � a� � � � �� an � an�� � � an�� � �
This last inequality is true because of the assumption � � an�� � � and the inequality we started from
also holds because all the arithmetical operations we used are uniquely invertible�

������� Indirect Proof or Proof by Contradiction
To prove the statement q we start from its negation "q� and from "q we arrive at a false statement r� i�e��
"q � r �see also ���� �� p� ����� In this case "q must be false� because using the implication a false
assumption can result only in a false conclusion �see truth table ���� p� ����� If "q is false q must be
true�

Prove that the number
p

� is irrational� Suppose�
p

� is rational� Then the equality
p

� �
a

b
holds

for some integers a� b and b �� �� We can assume that the numbers a� b are coprime numbers� i�e�� they

do not have any common divisor� We get �
p

��� � � �
a�

b�
or a� � �b�� therefore� a� is an even number�

and this is possible only if a � �n is an even number� We deduce that a� � �n� � �b� holds� and
hence b must be an even number� too� It is obviously a contradiction to the assumption that a and b
are coprime�

������� Mathematical Induction
With this method� we prove theorems or formulas depending on natural numbers n� The principle of
mathematical induction is the following� If the statement is valid for a natural number n�� and if from
the validity of the statement for a natural number n 	 n� the validity of the statement follows for n��
then the statement is valid for every natural number n 	 n�� According to these� the steps of the proof
are�

� Basis of the Induction� We show that the statement is valid for n � n�� Mostly we can choose
n� � �

� Induction Hypothesis� We suppose n is an integer such that the statement is valid �premise p��

� Induction Conclusion� We formulate the proposition for n �  �conclusion q��

� Proof of the Implication� p� q�

We call steps � and � together the induction step or logical deduction from n to n � �
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Prove the formula sn �


 � � �


� � � �


� � � � � � �� 

n�n � �
�

n

n � 
�

The steps of the proof by induction are�

� n �  � s� �


 � � �


 � 
is obviously true�

� Suppose sn �


 � � �


� � � �


� � � � � � �� 

n�n � �
�

n

n � 
holds for an n 	 �

� Supposing � we have to show� sn�� �
n � 

n � �
�

� The proof� sn�� �


 � � �


� � � �


� � � � � � �� 

n�n � �
�



�n � ��n � ��
� sn �



�n � ��n � ��
�

n

n � 
�



�n � ��n � ��
�

n� � �n � 

�n � ��n � ��
�

�n � ��

�n � ��n � ��
�

n � 

n � �
�

������� Constructive Proof
In approximation theory� for instance� the proof of an existence theorem usually follows a constructive
process� i�e�� the steps of the proof give a method of calculation for a result which satis�es the proposi�
tions of the existence theorem�

The existence of a third�degree interpolation�spline function �see ������ �� p� ��� can be proved
in the following way� We show that the calculation of the coe�cients of a spline satisfying the require�
ments of the existence theorem results in a tridiagonal linear equation system� which has a unique
solution �see ������ �� p� �����

����� Sums andProducts
������� Sums

�� De�nition
To brie�y denote a sum we use the summation sign

P
�

a� � a� � � � � � an �
nX
k��

ak� ����

With this notation we denote the sum of n summands ak �k � � �� � � � � n�� We call k the running index
or summation variable�

�� Rules of Calculation
� Sum of Summands Equal to Each Other � i�e�� ak � a for k � � �� � � � � n�

nX
k��

ak � na� ���a�

� Multiplication by a Constant Factor
nX
k��

cak � c
nX
k��

ak� ���b�

� Separating a Sum
nX
k��

ak �
mX
k��

ak �
nX

k�m��

ak � � m � n�� ���c�

� Addition of Sums with the Same Length
nX
k��

�ak � bk � ck � � � �� �
nX
k��

ak �
nX
k��

bk �
nX
k��

ck � � � � � ���d�
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� Renumbering

nX
k��

ak �
m�n��X
k�m

ak�m���
nX

k�m

ak �
n�m�lX
k�l

ak�m�l� ���e�

� Exchange the Order of Summation in Double Sums
nX
i��

mX
k��

aik �
mX
k��

nX
i��

aik� ���f�

������� Products

�� De�nition
The abbreviated notation for a product is the product sign

Q
�

a�a� � � � an �
nY
k��

ak� ����

With this notation we denote a product of n factors ak �k � � �� � � � � n�� where k is called the running
index�

�� Rules of Calculation

� Product of Coincident Factors � i�e�� ak � a for k � � �� � � � � n�
nY
k��

ak � an� ��a�

� Factor out a Constant Factor
nY
k��

�cak� � cn
nY
k��

ak� ��b�

� Separating into Partial Products
nY
k��

ak �
mY
k��

ak
nY

k�m��

ak � � m � n�� ��c�

� Product of Products
nY
k��

akbkck � � � �
nY
k��

ak
nY
k��

bk
nY
k��

ck � � � � ��d�

� Renumbering

nY
k��

ak �
m�n��Y
k�m

ak�m���
nY

k�m

ak �
n�m�lY
k�l

ak�m�l� ��e�

� Exchange the Order of Multiplication in Double Products
nY
i��

mY
k��

aik �
mY
k��

nY
i��

aik� ��f�

����� Powers� Roots� and Logarithms

������� Powers
The notation ax is used for the algebraic operation of raising to a power� The number a is called the
base� x is called the exponent or power� and ax is called the power� Powers are de�ned as in Table ���
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For the allowed values of bases and exponents we have the following
Rules of Calculation�

ax ay � ax�y� ax � ay �
ax

ay
� ax�y� ����

ax bx � �a b�x� ax � bx �
ax

bx
�
�
a

b

�x
� ����

�ax�y � �ay�x � ax y� ����

ax � ex ln a �a � ��� ����

Here ln a is the natural logarithm of a where e � ������������ � � � is the base� Special powers are

���n �
�

�� if n even�
�� if n odd�

� ���a� a� �  for any a �� � � ���b�

Table � De�nition of powers

base a exponent x power ax

� 

arbitrary real� �� � n � � �� �� � � � an � a � a � a � � � � � a� �z �
n factors

�a to the power n�

n � �������� � � � an �


a�n

rational�
p

q
a
p
q � q

p
ap

positive real �p� q integer� q � �� �q�th root of a to the power p�

irrational�

lim
k��

pk
qk

lim
k��

a
pk
qk

� positive �

������� Roots
According to Table �� the n�th root of a positive number a is the positive number denoted by

n
p

a �a � �� real� n � �� integer�� ���a�

We call this operation taking of the root or extraction of the root� and a is called the radicand� n is called
the radical or index�
The solution of the equation

xn � a �a real or complex � n � � � integer� ���b�

is often denoted by x � n
p
a� But we must not be confused� In this relation this notation denotes all

the solutions of the equation� i�e�� it represents n di�erent values xk �k � � �� � � � � n�� In the cace of
negative or complex values they are to be determined by ����b� �see ������� p� ����

The equation x� � � has two real solutions� namely ���

The equation x� � �� has three roots among the complex numbers� x� � �i
p

�� x� � �� and x� �

� i
p

� � but only one among the reals�
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������� Logarithms

�� De�nition
The logarithm u of a positive number x � � to the base b � �� b �� � is the exponent of the power
which has the value x with b in the base� We denote it by u � logb x� Consequently the equation

bu � x ���a� yields logb x � u ���b�

and conversely the second one yields the �rst one� In particular we have

logb  � �� logb b � � logb � �
��� for b � �

�� for b � �
���c�

The logarithm of negative numbers can be de�ned only among the complex numbers�
To take the logarithm of a given number means to �nd its logarithm� We take the logarithm of an
expression when we transform it like ���a� ��b�� The determination of a number or an expression
from its logarithm is called raising to a power�

�� Some Properties of the Logarithm
a� Every positive number has a logarithm to any positive base� except the base b � �

b� For x � � and y � � the followingRules of Calculation are valid for any b �which is allowed to be
a base��

log �xy� � log x � log y� log

�
x

y

�
� log x� log y� ���a�

logxn � n logx� in particular log n
p
x �



n
logx � ���b�

With ���a� ��b� we can calculate the logarithm of products and fractions as sums or di�erences of
logarithms�

Take the logarithm of the expression
�x� �
p
y

�zu�
� log

�x� �
p

y

�zu�
� log

�
�x� �
p
y
	
� log ��zu��

� log � � � logx �


�
log y � log �� log z � � logu�

Often the reverse transformation is required� i�e�� we have to rewrite an expression containing loga�
rithms of di�erent amounts into one� which is the logarithm of one expression�

log � � � logx �


�
log y � log �� log z � � logu � log

�x� �
p

y

�zu�
�

c� Logarithms to di�erent bases are proportional� i�e�� the logarithm to a base a can be change into a
logarithm to the base b by multiplication�

loga x � M logb x where M � loga b �


logb a
� �����

We call M the modulus of the transformation�

������� Special Logarithms
� The logarithm to the base � is called the decimal or Briggsian logarithm� We write

log�� x � lg x and log �x��� � � � log x is valid� ����

� The logarithm to the base e is called the natural or Neperian logarithm� We write

loge x � lnx� �����

The modulus of transformation to change from the natural logarithm into the decimal is

M � log e �


ln �
� ����������� � �����
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and to change from the decimal into the natural one it is

M� �


M
� ln � � ������������ � �����

� The logarithm to base � is called the binary logarithm� We write

log� x � ldx or log� x � lbx� �����

� We can �nd the values of the decimal and natural logarithm in logarithm tables� Some time ago
the logarithm was used for numerical calculation of powers� and it often made numerical multiplication
and division easier� Mostly the decimal logarithm was used� Today pocket calculators and personal
computers make these calculations�
Every number given in decimal form �so every real number�� which is called in this relation the antilog�
can be written in the form

x � #x�k with  � #x � � ����a�

by factoring out an appropriate power of ten� �k with integer k� This form is called the half�logarithmic
representation� Here #x is given by the sequence of �gures of x� and �k is the order of magnitude of x�
Then for the logarithm we have

logx � k � log #x with � � log #x � � i�e�� log #x � �� � � � � ����b�

Here k is the so�called characteristic and the sequence of �gures behind the decimal point of log #x is
called the the mantissa� The mantissa can be found in logarithm tables�

lg ��� � ������ the characteristic is �� the mantissa is ���� If we multiply or divide this number
by �n� for example ������� ����� ����� ������� its logarithms have the same mantissa� here ���� but
di�erent characteristics� That is why the mantissas are given in logarithm tables� In order to get the
mantissa of a number x �rst we have to move the decimal point right or left to get a number between
 and �� and the characteristic of the antilog x is determined by how many digits k the decimal point
was moved�

� Slide rule Beside the logarithm� the slide rule was of important practical help in numerical calcu�
lations� The slide rule works by the principle of the form ���a�� so we multiply and divide by adding
and subtracting numbers� On the slide rule the scale�segments are denoted according to the logarithm
values� so multiplication and division can be performed as addition or subtraction �see Scale and Graph
Papers ����� p� ���

����� Algebraic Expressions

������� De�nitions

�� Algebraic Expression
One or more algebraic quantities� such as numbers or symbols� are called an algebraic expression or
term if they are connected by the symbols� � � � � � � � �

p
� etc�� as well as by di�erent types of braces

for �xing the order of operations�

�� Identity
is an equality relation between two algebraic expressions if for arbitrary values of the symbols in them
the equality holds�

�� Equation
is an equality relation between two algebraic expressions if the equality holds only for a few values of
the symbols� For instance an equality relation

F �x� � f�x� �����

between two functions with the same independent variable is considered as an equationwith one variable
if it holds only for certain values of the variable� If the equality is valid for every value of x� we call it
an identity� or we say that the equality holds identically� and we write F �x� � f�x��
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�� Identical Transformations
are performed in order to change an algebraic expression into another one if the two expression are
identically equal� Our goal is to have another form� e�g�� to get a shorter form or a more convenient
form for further calculations� We often want to have the expression in a form which is especially good
for solving an equation� or taking the logarithm� or for calculating the derivative or integral of it� etc�

������� Algebraic Expressions in Detail

�� Principal Quantities
We call principal quantities the literal symbols occurring in algebraic expressions� according to which
the expression is classi�ed� They must be �xed in any single case� In the case of functions� the in�
dependent variables are the principal quantities� The other quantities not given by numbers are the
parameters of the expression� In some expressions the parameters are called coe�cients�

We talk about coe�cients� e�g�� in the cases of polynomials� Fourier series� and linear di�erential
equations� etc�

An expression belongs to a certain class� depending on which kind of operations are performed on the
principal quantities� Usually� we use the last letters of the alphabet x� y� z� u� v� � � � to denote the
principal quantities and the �rst letters a� b� c� � � � for parameters� The letters m� n� p� � � � are usually
used for positive integer parameter values� for instance for indices in summations or in iterations�

�� Integral Rational Expressions
are expressions which contain only addition� subtraction� and multiplication of the principal quantities�
The term also means powers of them with non�negative integer exponents�

�� Rational Expressions
contain also division by principal quantities� i�e�� division by integral rational expressions� so principal
quantities can have negative integers in the exponent�

�� Irrational Expressions
contain roots� i�e�� non�integer rational powers of integral rational or rational expressions with respect
to their principal quantities� of course�

�� Transcendental Expressions
contain exponential� logarithmic or trigonometric expressions of the principal quantities� i�e�� there
can be irrational numbers in the exponent of an expression of principal quantities� or an expression
of principal quantities can be in the exponent� or in the argument of a trigonometric or logarithmic
expression�

����� Integral Rational Expressions

������� Representation in Polynomial Form
Every integral rational expression can be changed into polynomial form by elementary transformations�
as in addition� subtraction� and multiplication of monomials and polynomials�

��a� � �a�x� x����a� � �ax� � �a�x� � �a�x� � �ax��� �a� � �a�x� � �ax��
� ��a� � �a�x� �a�x� � �a�x � �a�x� � �ax� � a�x� � �a�x� � �ax� � a� � �a�x� � �ax�

� ��a� � �a�x� � �a�x� � �ax��

������� Factorizing a Polynomial
Often we can decompose a polynomial into a product of monomials and polynomials� To do so� we can
use factoring out� grouping� special formulas� and special properties of equations�

A� Factoring out� �ax�y � �bx�y� � �cx� � �x���ay � �bxy� � �cx���

B� Grouping� �x� � xy � y� � �xz � �yz � �x� � �xy � �xy � y� � �xz � �yz � �x��x � y��
y��x � y�� �z��x � y� � ��x � y���x� y � �z��

C� Using of properties of equations �see also ������ p� ���� P �x� � x	 � �x� � �x� � �x� � �x��

a� Factoring out x�� b� Realizing that �� �  and �� � � are the roots of the equation P �x� � �
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and dividing P �x� by x��x � ��x � � � x� � x� we get the quotient x� � �x � �� We can no longer
decompose this expression into real factors because p � ��� q � �� p���� q � �� so �nally we have the
decomposition� x	 � �x� � �x� � �x� � �x� � x��x� ��x � ��x� � �x � ���

������� Special Formulas

�x� y�� � x� � �xy � y�� �����

�x � y � z�� � x� � y� � z� � �xy � �xz � �yz� �����

�x � y � z � � � �� t � u�� � x� � y� � z� � � � �� t� � u� �

��xy � �xz � � � �� �xu � �yz � � � �� �yu � � � �� �tu� �����

�x� y�� � x� � �x�y � �xy� � y�� ����

We calculate the expression �x� y�n by the binomial formula �see ����a������a���

�x � y��x� y� � x� � y�� �����

xn � yn

x� y
� xn�� � xn��y � � � �� xyn�� � yn��� �for integer n� and n � �� �����

xn � yn

x � y
� xn�� � xn��y � � � � � xyn�� � yn�� �for odd n� and n � �� �����

xn � yn

x � y
� xn�� � xn��y � � � �� xyn�� � yn�� �for even n� and n � �� �����

������� Binomial Theorem

�� Power of an Algebraic Sum of Two Summands �First Binomial Formula	
The formula

�a � b�n � an � nan��b �
n�n� �

�$
an��b� �

n�n� ��n� ��

�$
an��b�

� � � �� n�n� � � � � �n�m � �

m$
an�mbm � � � �� nabn�� � bn ����a�

is called the binomial theorem� where a and b are real or complex values and n � � �� � � � � Using the
binomial coe�cients delivers a shorter and more convenient notation�

�a� b�n �

�
n

�

�
an �

�
n



�
an��b�

�
n

�

�
an��b� �

�
n

�

�
an��b� � � � ��

�
n

n� 

�
abn�� �

�
n

n

�
bn����b�

or

�a � b�n �
nX
k��

�
n

k

�
an�kbk� ����c�

�� Power of an Algebraic Di
erence �Second Binomial Formula	

�a� b�n � an � nan��b �
n�n� �

�$
an��b� � n�n� ��n� ��

�$
an��b�

� � � �� ���m
n�n� � � � � �n�m � �

m$
an�mbm � � � �� ���nbn ����a�

or

�a� b�n �
nX
k��

�
n

k

�
���kan�kbk� ����b�
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�� Binomial Coe�cients
The de�nition is for non�negative and integer n and k��

n

k

�
�

n$

�n� k�$k$
�� � k � n�� ����a�

where n$ is the product of the positive integers from  to n� and it is called n factorial�

n$ �  � � � � � � � � � n� and by de�nition �$ � � ����b�

We can easily see the binomial coe�cients from the Pascal triangle inTable ��� The �rst and the last
number is equal to one in every row� every other coe�cient is the sum of the numbers standing on left
and on right in the row above it�

Simple calculations verify the following formulas��
n

k

�
�

�
n

n� k

�
�

n$

k$�n� k�$
� ����a�

�
n

�

�
� �

�
n



�
� n�

�
n

n

�
� � ����b�

�
n � 

k � 

�
�

�
n

k

�
�

�
n� 

k

�
�

�
n� �

k

�
� � � ��

�
k

k

�
� ����c�

�
n � 

k

�
�

n � 

n� k � 

�
n

k

�
� ����d�

�
n

k � 

�
�

n� k

k � 

�
n

k

�
� ����e�

�
n � 

k � 

�
�

�
n

k � 

�
�

�
n

k

�
� ����f�

Table �� Pascal�s triangle

n Coe�cients

� 
  
�  � 
�  � � 
�  � � � 
�  � � � � 
�  � � �� � � 

�

��
�

�

� ��
�



� ��
�

�

� ��
�

�

� ��
�

�

� ��
�

�

� ��
�

�

�
��� � � � � � � � � � � � � � � � � �

For an arbitrary real value � �� � IR� and a non�negative integer k one can de�ne the binomial coe��

cient

�
�

k

�
�

�
�

k

�
�

���� ���� �� � � � ��� k � �

k$
for integer k and k 	 �

�
�

�

�
� � �����

���
�

�

�
�
��

�
���

�
� ����

�
� ��

�$
� � �

�
�
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�� Properties of the Binomial Coe�cients
� The binomial coe�cients increase until the middle of the binomial formula ����b�� then decrease�
� The binomial coe�cients are equal for the terms standing in symmetric positions with respect to
the start and the end of the expression�
� The sum of the binomial coe�cients in the binomial formula of degree n is equal to �n �
� The sum of the coe�cients at the odd positions is equal to the sum of the coe�cients at the even
positions�

�� Binomial Series
The formula ����a� of the binomial theorem can also be extended for negative and fraction exponents�
If jbj � a� then �a � b�n has a convergent in�nite series �see also ���� p� ����

�a � b�n � an � nan��b �
n�n� �

�$
an��b� �

n�n� ��n� ��

�$
an��b� � � � � � ����

������� Determination of the Greatest CommonDivisor of Two
Polynomials

It is possible that two polynomials P �x� of degree n and Q�x� of degree m with n 	 m have a common
polynomial factor� which contains x� The least common multiple of these factors is the greatest common
divisor of the polynomials�

P �x� � �x � ���x � ���x � �� � Q�x� � �x � ��x � ���x � ��� the greates common devisor is
�x� ��x� ���

If P �x� and Q�x� do not have any common polynomial factor� we call them relatively prime or coprime�
In this case� their greatest common divisor is a constant�

The greatest common divisor of two polynomials P �x� and Q�x� can be determined by the Euclidean
algorithm without decomposing them into factors�
� Division of P �x� by Q�x� � R��x� results in the quotient T��x� and the remainder R��x��

P �x� � Q�x�T��x� � R��x� � ����a�

� Division of Q�x� by R��x� results in the quotient T��x� and the remainder R��x��

Q�x� � R��x�T��x� � R��x�� ����b�

� Division of R��x� by R��x� results in T��x� and R��x�� etc� The greatest common divisor of the
two polynomials is the last non�zero remainder Rk�x�� This method is known from the arithmetic of
natural numbers �see ����� p� ���

We determine the greatest common divisor� for instance� when we solve equations� and we want to
separate the roots with higher multiplicity� and when we apply the Sturm method �see ������� ��
p� ����

����� Rational Expressions

����	�� Reducing to the Simplest Form
Every rational expression can be written in the form of a quotient of two coprime polynomials� To
do this� we need only elementary transformations such as addition� subtraction� multiplication and
division of polynomials and fractions and simpli�cation of fractions�

Find the most simple form of
�x �

�x � y

z

x
�
x� �



z�

� � y� �
x � z

z
�

��xz � �x � y�z�

�x�z� � x�z
�
�y�z � x � z

z
�

�xz� � �xz� � yz� � �x�z� � x���y�z � x � z�

x�z� � xz
�
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�xz� � �xz� � yz� � x�y�z� � xy�z � x�z� � x� � x�z� � xz

x�z� � xz
�

����	�� Determination of the Integral Rational Part
A quotient of two polynomials with the same variablex is a proper fraction if the degree of the numerator
is less than the degree of the denominator� In the opposite case� we call it an improper fraction� Every
improper fraction can be decomposed into a sum of a proper fraction and a polynomial by dividing the
numerator by the denominator� i�e�� separating the integral rational part�

Determine the integral rational part of R�x� �
�x� � �ax� � ��a�x� � ��a�x � �a�

x� � �ax � �a�
�

��x���ax����a�x����a�x ��a�� � �x� � �ax � �a�� � �x� � �ax � �a� �
��a�x� �a�

x� � �ax� �a�
�x�� �ax�� �a�x�

� �ax���a�x����a�x
� �ax�� �a�x���a�x

�a�x���a�x ��a�

�a�x���a�x ��a�

� �a�x� �a�� R�x� � �x� � �ax � �a� �
��a�x� �a�

x� � �ax � �a�
�

The integral rational part of a rational functionR�x� is considered to be as an asymptotic approximation
for R�x� because for large values of jxj� the value of the proper fraction part tends to zero� and R�x�
behaves as its polynomial part�

����	�� Decomposition into Partial Fractions
Every proper fraction

R�x� �
P �x�

Q�x�
�

anx
n � an��xn�� � � � �� a�x � a�

bmxm � bm��xm�� � � � �� b�x � b�
�n � m� �����

can be decomposed uniquely into a sum of partial fractions� In ����� the coe�cients a�� a�� � � � � an� b��
b�� � � � � bm are arbitrary real or complex numbers� we can suppose that bm �  � otherwise we can divide
the numerator and the denominator by it� The partial fractions have the form

A

�x� ��k
� ����a�

Dx � E

�x� � px � q�l
with

�
p

�

��
� q � � � ����b�

If we restrict our investigation to real numbers� the following four cases� � �� � and � can occur� If we
consider complex numbers we have only two cases� cases  and �� In the complex case� every fraction
R�x� can be decomposed into a sum of fractions having the form ����a�� where A and � are complex
numbers� We will use it when we solve linear di�erential equations�

�� Decomposition into Partial Fractions� Case �
Suppose the equation Q�x� � � for the polynomial Q�x� in the denominator has m di�erent simple
roots ���� � ��m � Then the decomposition has the form

P �x�

Q�x�
�

anx
n � � � �� a�

�x� ����x� ��� � � � �x� �m�
�

A�

x� ��
�

A�

x� ��
� � � �� Am

x� �m
����a�

with coe�cients

A� �
P ����

Q�����
� A� �

P ����

Q�����
� � � � � Am �

P ��m�

Q���m�
� ����b�

where in the denominator we have the substitution values of the derivative
dQ

dx
for x � ��� x � ��� � � � �
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A�
�x� � x � 

x� � x
�

A

x
�

B

x� 
�

C

x � 
� �� � � � �� � � and �� � ��

P �x� � �x� � x �  � Q��x� � �x� �  � A �
P ���

Q����
� �� B �

P ��

Q���
� � and C �

P ���

Q����
� ��

P �x�

Q�x�
� �

x
�

�

x� 
�

�

x � 
�

Another possibility to determine the coe�cients A�� A�� � � � � Am is called the method of comparing
coe�cients or method of undetermined coe�cients� In the following cases we have to use this method�

B�
�x� � x � 

x� � x
�

A

x
�

B

x� 
�

C

x � 
�

A�x� � � � Bx�x � � � Cx�x� �

x�x� � �
�

The coe�cients of the corresponding powers of x must be equal on the two sides of the equality� so we
obtain the equations � � A � B � C� � � B � C�  � �A� which have the same solution for A� B
and C as in example A�

�� Decomposition into Partial Fractions� Case �
Suppose the polynomial Q�x� in the denominator can be decomposed into a product of powers of linear
factors� in the real case this means that the equation Q�x� � � has m real roots counted by multiplicity�
Then the decomposition has the form

P �x�

Q�x�
�

anx
n � an��xn�� � � � �� a�

�x� ���k��x� ���k� � � � �x� �i�ki
�

A�

x� ��
�

A�

�x� ����
� � � �� Ak�

�x� ���k�

�
B�

x� ��

�
B�

�x� ����
� � � �� Bk�

�x� ���k�
� � � �� Lki

�x� �i�ki
� �����

x � 

x�x� ��
�

A�

x
�

B�

x� 
�

B�

�x� ��
�

B�

�x� ��
� The coe�cients A�� B�� B�� B� can be determined

by the method of comparing coe�cients�

�� Decomposition into Partial Fractions� Case �
If the equation Q�x� � � for a polynomial with real coe�cients in the denominator also has complex
roots but only with multiplicity one� then the decomposition has the form

P �x�

Q�x�
�

anx
n � an��xn�� � � � �� a�

�x� ���k��x� ���k� � � � �x� � p�x � q���x� � p�x � q�� � � �

�
A�

x� ��
�

A�

�x� ����
� � � �� Dx � E

x� � p�x � q�
�

Fx � G

x� � p�x � q�
� � � � � �����

The quadratic denominator x��px�q arises from the fact that if a polynomial with real coe�cients has
a complex root� the complex conjugate of this root is also a root� and they have the same multiplicity�

�x� � �

�x� � x � ��x � �
�

A

x � 
�

Dx � E

x� � x � 
� The coe�cients A� D� E can be determined by the

method of comparing coe�cients�

�� Decomposition into Partial Fractions� Case �
Analogously� if the real equation Q�x� � � for the polynomial of the denominator has complex roots
with a higher multiplicity� we decompose the fraction into the form

P �x�

Q�x�
�

anx
n � an��xn�� � � � �� a�

�x� ���k��x� ���k� � � � �x� � p�x � q��l��x� � p�x � q��l� � � �

�
A�

x� ��
�

A�

�x� ����
� � � �� D�x � E�

x� � p�x � q�
�

D�x � E�

�x� � p�x � q���
� � � �



��� Elementary Rules for Calculations ��

�
Dl�x � El�

�x� � p�x � q��l�
�

F�x � G�

x� � p�x � q�
� � � �� Fl�x � Gl�

�x� � p�x � q��l�
� � � � � �����

�x� � �x � �

�x� ���x� � x � ��
�

A

x� �
�

D�x � E�

x� � x � 
�

D�x � E�

�x� � x � ��
� The coe�cients A� D�� E�� D�� E� will

be determined by the method of comparing coe�cients�

����	�� Transformations of Proportions
The equality

a

b
�

c

d
����a� yields ad � bc�

a

c
�

b

d
�

d

b
�

c

a
�

b

a
�

d

c
����b�

and furthermore
a� b

b
�

c� d

d
�

a� b

a
�

c� d

c
�

a� c

c
�

b� d

d
�

a � b

a� b
�

c � d

c� d
� ����c�

From the equalities of the proportions

a�
b�

�
a�
b�

� � � � � an
bn

����a� it follows that
a� � a� � � � �� an
b� � b� � � � �� bn

�
a�
b�

� ����b�

����	 Irrational Expressions
Every irrational expression can be written in a simpler form by � simplifying the exponent� �� taking
out terms from the radical sign and �� moving the irrationality into the numerator�
� Simplify the Exponent We can simplify the exponent if the radicand can be factorized and the
index of the radical and the exponents in the radicand have a common factor� We divide the index of
the radical and the exponents by their greatest common divisor�

�

q
��x�� � �x�� � x��� � �

q
�� � x����x� �� � �

q
�x��x� � �

� Moving the Irrationality There are di�erent ways to move the irrationality into the numerator�

A�

s
x

�y
�

s
�xy

�y�
�

p
�xy

�y
� B� �

s
x

�yz�
� �

s
�xy�z

�y�z�
�

�
p

�xy�z

�yz
�

C�


x �
p
y

�
x�py�

x �
p
y
	 �

x�py
	 �

x�py

x� � y
�

D�


x � �
p
y

�
x� � x �

p
y � �
p
y��

x � �
p
y
	 �

x� � x �
p
y � �
p
y�
	 �

x� � x �
p
y � �
p
y�

x� � y
�

� Simplest Forms of Powers and Radicals Also powers and radicals can be transformed into
the simplest form�

A� �

vuut �x	

�
p

��px��
�

vuut �x�

�
p

��px��
�

�x
p
xp

��px
�

�x
p
x�
p

� �
p
x�

�� x
�

�x
p

�x � �x�

�� x
�

B�
�p

x � �
p
x� � �

p
x� � ��

p
x�
	 �p

x� �
p
x � �
p
x� ��

p
x�
	

� �x����x����x����x������x����x����

x����x����� � x�x��	�x����x������x��	�x�x������x������x����x������x�x��	�x������x������
x��	�x � x����x������x����� �x��� � �

p
x�� ��

p
x��� ��

p
x�� � �

p
x� � x�����x��	�x��� �x���� �

�
p
x� �� �

p
x� �

p
x �
p
x��



�� �� Arithmetic

��� Finite Series

����� De
nition of a Finite Series
The sum

sn � a� � a� � a� � � � �� an �
nX
i��

ai� ����

is called a �nite series� The summands ai �i � �� � �� � � � � n� are given by certain formulas� they are
numbers� and they are the terms of the series�

����� Arithmetic Series

�� Arithmetic Series of First Order
is a �nite series where the terms form an arithmetic sequence� i�e�� the di�erence of two terms standing
after each other is a constant�

%ai � ai�� � ai � d � const holds� so ai � a� � id� ����a�

With these we have�

sn � a� � �a� � d� � �a� � �d� � � � �� �a� � nd� ����b�

sn �
a� � an

�
�n � � �

n � 

�
��a� � nd�� ����c�

�� Arithmetic Series of k�th Order
is a �nite series� where the k�th di�erences %kai of the sequence a�� a�� a�� � � � �an are constants� The
di�erences of higher order are calculated by the formula

%�ai � %���ai�� �%���ai �
 � �� �� � � � � k�� ����a�

It is convenient to calculate them from the di�erence schema �also di�erence table or triangle schema��

a�
%a�

a� %�a�
%a� %�a�

a� %�a�
� � � %ka�

%a� %�a�

a� %�a�
� � � %ka�

� � �
���

���
��� %na�

���
��� %kan�k � � �

%�an�� � � �

%�an��
%an��

an

����b�

The following formulas hold for the terms and the sum�

ai � a� �

�
i



�
%a� �

�
i

�

�
%�a� � � � ��

�
i

k

�
%ka� �i � � �� � � � � n�� ����c�

sn �

�
n � 



�
a� �

�
n � 

�

�
%a� �

�
n � 

�

�
%�a� � � � ��

�
n � 

k � 

�
%ka�� ����d�



��� Finite Series �


����� Geometric Series
The sum ���� is called a geometric series� if the terms form a geometric sequence� i�e�� the ratio of two
successive terms is a constant�

ai��
ai

� q � const holds� so ai � a�q
i� ����a�

With these we have

sn � a� � a�q � a�q
� � � � �� a�q

n � a�
qn�� � 

q � 
for q �� � ����b�

sn � �n � �a� for q � � ����c�

If n� �see ������ �� p� ����� then we get an in�nite geometric series� which has a limit if jqj � �
and it is

s �
a�

� q
� ����d�

����� Special Finite Series

 � � � � � � � �� �n� � � n �
n�n � �

�
� �����

p � �p � � � �p � �� � � � �� �p � n� �
�n � ���p � n�

�
� �����

 � � � � � � � �� ��n� �� � ��n� � � n� � �����

� � � � � � � � �� ��n� �� � �n � n�n � � � �����

� � �� � �� � � � �� �n� �� � n� �
n�n � ���n � �

�
� �����

� � �� � �� � � � �� �n� �� � n� �
n��n � ��

�
� �����

� � �� � �� � � � �� ��n� �� �
n��n� � �

�
� ����

� � �� � �� � � � �� ��n� �� � n���n� � � � �����

� � �� � �� � � � �� n� �
n�n � ���n � ���n� � �n� �

��
� �����

 � �x � �x� � � � �� nxn�� �
� �n � �xn � nxn��

�� x��
�x �� � � �����

����� MeanValues
�See also ������� �� p� ��� and ���� p� ����

������� ArithmeticMean or Arithmetic Average
The arithmetic mean of the n quantities a�� a�� � � � � an is the expression

xA �
a� � a� � � � �� an

n
�



n

nX
k��

ak � ����a�

For two values a and b we have�

xA �
a � b

�
� ����b�



�� �� Arithmetic

The values a � xA and b form an arithmetic sequence�

������� GeometricMean or Geometric Average
The geometric mean of n positive quantities a�� a�� � � � � an is the expression

xG � n
p
a�a� � � � an �

�
nY
k��

ak

� �
n

� ����a�

For two values a and b we have

xG �
p
ab � ����b�

a b

xG.

a�

xG

b
a

.

b�

Figure ��

The values a � xG and b form a geometric sequence�
If a and b are given line segments� then we can get

a segment with length xG �
p
ab with the help of

one of the constructions shown in Fig ��a or in
Fig ��b�
A special case of the geometric mean is when we
want to divide a line segment according to the
golden section �see �������� �� p� ����

������� HarmonicMean
The harmonic mean of n quantities a�� a�� � � � � an is the expression

xH �





n
�



a�
�



a�
� � � �� 

an
�
���

�

�


n

nX
k��



ak

��
� ����a�

For two values a and b we have

xH �




�

�


a
�



b

����
� xH �

�ab

a � b
� ����b�

������� QuadraticMean
The quadratic mean of n quantities a�� a��� � � � an is the expression

xQ �

s


n
�a�� � a�� � � � �� an�� �

vuut

n

nX
k��

a�k � ����a�

For two values a and b� we have

xQ �

s
a� � b�

�
� ����b�

The quadratic mean is important in the theory of observational error �see ���� p� �����

������� Relations Between theMeans of TwoPositive Values

For xA �
a � b

�
� xG �

p
ab � xH �

�ab

a � b
� xQ �

s
a� � b�

�
we have

� if a � b� then

a � xH � xG � xA � xQ � b � ����a�

� if a � b� then

a � xA � xG � xH � xQ � b � ����b�



��	 Business Mathematics ��

��� BusinessMathematics
Business calculations are based on the use of arithmetic and geometric series� on formulas ����a��
����c� and ����a������d�� However these applications in banking are so varied and special that a
special discipline has developed using speci�c terminology� So business arithmetic is not con�ned only
to the calculation of the principal by compound interest or the calculation of annuities� It also includes
the calculation of interest� repayments� amortization� calculation of instalment payments� annuities�
depreciation� e�ective interest yield and the yield on investment� Basic concepts and formulas for cal�
culations are discussed below� For studying business mathematics in detail� you will have to consult
the specialist literature on the subject�

Actuarial mathematics and risk theory use the methods of probability theory and mathematical statis�
tics� and they represent a separate discipline� so we do not discuss them here�

����� Calculation of Interest or Percentage

�� Percentage or Interest

The expression p percent of K means
p

��
K� where K denotes the principal in business mathematics�

The symbol for percent is &� i�e�� we have the equalities

p& �
p

��
or & � ���� �����

�� Increment

If K is raised by p&� we get the increased value

'K � K
�

 �
p

��

�
� ����

Relating the incrementK
p

��
to the new value 'K� then the proportionK

p

��
� 'K � 'p � ��� 'K contains

'p �
p � ��

�� � p
�����

percent of increment�

If an article has a value of � ��� and a �& extra charge is added� the �nal value is� ���� This price

contains 'p �
� � ��

�
� ���� percent increment for the user�

�� Discount or Reduction

If we reduce the value K by p& rebate� we get the reduced value

'K � K
�

� p

��

�
� �����

If we compare the reduction K
p

��
to the new value 'K� then we realize

'p �
p � ��

��� p
�����

percent of rebate�

If an article has a value � ���� and they give a �& discount� it will be sold for � ���� This price

contains 'p �
� � ��

��
� � percent rebate for the buyer�



�� �� Arithmetic

����� Calculation of Compound Interest

������� Interest

Interest is either payment for the use of a loan or it is a revenue realized from a receivable� For a principal
K� placed for a whole period of interest �usually one year��

K
p

��
�����

interest is paid at the end of the period of interest� Here p is the rate of interest for the period of interest�
and we say that p& interest is paid for the principal K�

������� Compound Interest

Compound interest is computed on the principal and on any interest earned that has not been paid or
withdrawn� It is the return on the principal for two or more time periods� The interest of the principal
increased by interest is called compound interest�
We discuss di�erent cases depending on how the principal is changing�

�� Single Deposit
Compounded annually the principal K increases after n years up to the �nal value Kn� At the end of
the n�th year this value is�

Kn � K
�

 �
p

��

�n
� �����

For briefer notation we substitute  �
p

��
� q and we call q the accumulation factor or growth factor�

Interest may be compounded for any period of time� annually� half�annually� monthly� daily� and so on�
If we divide the year into m equal interest periods the interest will be added to the principal K at the

end of every period� Then the interest is K
p

��m
for one interest period� and the principal increases

after n years with m interest period up to the value

Km�n � K
�

 �
p

��m

�m�n
� �����

The quantity
�

 �
p

��

�
is known as the nominal rate� and

�
 �

p

��m

�m
as the e�ective rate�

A principal of � ����� with a nominal interest ���& annually� increases within � years a� com�
pounded annually to K	 � ����� � ������	 � � �������� b� compounded monthly to K�� � ����� �
�� �������� � � �������

�� Regular Deposits
Suppose we deposit the same amount E in equal intervals� Such an interval must be equal to an interest
period� We can deposit at the beginning of the interval� or at the end of the interval� At the end of the
n�th interest period we have the balance Kn�

a� Depositing at the Beginning�

Kn � Eq
qn � 

q � 
� ����a�

b� Depositing at the End�

Kn � E
qn � 

q � 
� ����b�

�� Depositing in the Course of the Year
A year or an interest period is divided into m equal parts� At the beginning or at the end of each of
these time periods the same amount E is deposited and bears interest until the end of the year� In this
way� after one year we have the balance K��



��	 Business Mathematics ��

a� Depositing at the Beginning�

K� � E

�
m �

�m � �p

���


� ����a�

b� Depositing at the End�

K� � E

�
m �

�m� �p

���


� ����b�

In the second year the total K� bears interest� and further deposits and interests are added like in the
�rst year� so after n years the balance Kn for midterm deposits and yearly interest payment is�

a� Depositing at the Beginning�

Kn � E

�
m �

�m � �p

���


qn � 

q � 
� ����a�

b� Depositing at the End�

Kn � E

�
m �

�m� �p

���


qn � 

q � 
� ����b�

At a yearly rate of interest p � ���& a depositor deposits � ��� at the end of every month� After
how many years will it reach the balance � ��� ���(

From ����b�� for instance� from ��� ��� � ���


� �

 � ���
���

�
� ����n � 

�����
� follows the answer� n �

����� years�

����� AmortizationCalculus

������� Amortization
Amortization is the repayment of credits� Our assumptions�
� For a debt S the debtor is charged at p& interest at the end of an interest period�
� After N interest period the debt is completely repaid�

The charge of the debtor consists of interest and principal repayment for every interest period� If the
interest period is one year� the amount to be paid during the whole year is called an annuity�

There are di�erent possibilities for a debtor� For instance� the repayments can be made at the interest
date� or meanwhile� the amount of repayment can be di�erent time by time� or it can be constant during
the whole term�

������� Equal Principal Repayments
The amortization instalments are paid during the year� but no midterm compound interest is calcu�
lated� We use the following notation�
� S debt �interest payment at the end of a period with p&��

� T �
S

mN
principal repayment �T � const��

� m number of repayments during one interest period�
� N number of interest periods until the debt is fully repaid�
Besides the principal repayments the debtor also has to pay the interest charges�

a� InterestZn for then�th Interest Period�

Zn �
p S

��



� 

N

�
n� m � 

�m

��
� ���a�

b� Total Interest Z to be Paid for a Debt
S�mN Times� DuringN Interest Periods
with an Interest Rate p� �

Z �
NX
n��

Zn �
p S

��



N � 

�
�

m � 

�m

�
� ���b�

A debt of � �� ��� has a yearly interest rate of �&� The prin�
cipal repayment of � ��� for �� months should be paid at the
end of the months� How much is the actual interest at the end of
each year( The interest for every year is calculated by ���a� with
S � ������ p � �� N � � and m � �� They are enumerated in
the annexed table�

� year� Z� � � ����
�� year� Z� � � ����
�� year� Z� � � ����
�� year� Z� � � ���
�� year� Z� � � ���

Z � � ����



�� �� Arithmetic

The total interest can be calculated also by ���b� as Z �
� � �����

��



�� 

�
�

�

��

�
� � � ����

������� Equal Annuities

For equal principal repayments T �
S

mN
the interest payable decreases over the course of time �see

the previous example�� In contrast to this� in the case of equal annuities the same amount is repaid
for every interest period� A constant annuity A containing the principal repayment and the interest is
repaid� i�e�� the charge of the debtor is constant during the whole period of repayment�
With the notation
� S debt �interest payment of p& at the end of a period��
� A annuity for every interest period �A const��
� a one instalment paid m times per interest period �a const��

� q �  �
p

��
the accumulation factor�

after n interest periods the remaining outstanding debt Sn is�

Sn � S qn � a

�
m �

�m� �p

���


qn � 

q � 
� �����

Here the term Sqn denotes the value of the debt S after n interest periods with compound interest
�see ������� The second term in ����� gives the value of the midterm repayments a with compound
interest �see ����b� with E � a�� For the annuity�

A � a

�
m �

�m� �p

���


� �����

Here paying A once means the same as paying a m times� From ����� it follows that A 	 ma� Because
after N interest periods the debt must be completely repaid� from ����� for SN � � considering �����
we get�

A � S qN
q � 

qN � 
� S

q � 

� q�N
� �����

To solve a problem of business mathematics we can express� from ������ any of the quantities A� S� q
or N if the others are known�

A� A loan of � �� ��� bears �& interest per year� and is to be repaid over � years in equal instalments�
How much is the yearly annuity A and the monthly instalment a( From ����� and ����� we get�

A � �� ���
����

� 

����

� � � ������� a �
�������

� �
 � �
���

� � �������

B� A loan ofS �� �� ��� is to be repaid during N � � years in equal annuities with an interest rate
of ���&� At the end of every year � ���� extra repayment must be made� How much will the monthly

instalment be( For the annuity A per year according to ����� we get A � �� ���
�����

� 

����


�

� � ������� Because A consists of � monthly instalments a� and because of the� ���� extra payment

at the end of the year� from ����� A � a


� �

 � ���
���

�
� ���� � � ������ follows� so the monthly

charge is a � � �������
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����� AnnuityCalculations

������� Annuities
If a series of payments is made regularly at the same time intervals� in equal or varying amounts� at the
beginning or at the end of the interval� we call it annuity payments� We distinguish�

a� Payments on an Account The periodic payments� called rents� are paid on an account and bear
compound interest� We use the formulas of �����

b� Receipt of Payments The payments of rent are made from capital bearing compound interest�
We use the formulas of the annuity calculations in ����� where the annuities are called rents� If no more
than the actual interest is paid as a rent� we call it a perpetual annuity�

Rent payments �deposits and payo�s� can be made at the interest terms� or at shorter intervals during
the period of interest� i�e� in the course of the year�

������� Future Amount of an Ordinary Annuity
The date of the interest calculations and the payments should coincide� The interest is calculated at
p& compound interest� and the payments �rents� on the account are always the same� R� The future
value of the ordinary annuity Rn� i�e�� the amount to which the regular deposits increase after n periods
amounts to�

Rn � R
qn � 

q � 
with q �  �

p

��
� �����

The present value of an ordinary annuityR� is the amount which should be paid at the beginning of the
�rst interest period �one time� to reach the �nal value Rn with compound interest during n periods�

R� �
Rn

qn
with q �  �

p

��
� �����

A man claims � ���� at the end of every year for � years from a �rm� Before the �rst payment
the �rm declares bankruptcy� Only the present value of the ordinary annuity R� can be asked from the
administration of the bankrupt�s estate� With an interest of �& per year the man gets�

R� �


qn
R

qn � 

q � 
� R

� q�n

q � 
� ����

� ������

����
� � �� �������

������� Balance after n Annuity Payments
For ordinary annuity payments capital K is at our disposal bearing p& interest� After every interest
period an amount r is paid� The balance Kn after n interest periods� i�e�� after n rent payments� is�

Kn � Kqn � Rn � Kqn � r
qn � 

q � 
with q �  �

p

��
� ����a�

Conclusions from ����a��

r � K
p

��
����b� Consequently Kn � K holds� so the capital does not change� This

is the case of perpetual annuity�

r � K
p

��
����c� The capital will be completely used up after N rent payments�

From ����a� it follows for KN � ��

K �
r

qN
qN � 

q � 
� ����d�

If midterm interest is calculated and midterm rents are paid� and the original interest period is divided
into m equal intervals� then in the formulas ����������a� n is replaced by mn and accordingly q �

 �
p

��
by q �  �

p

��m
�
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What amount must be deposited monthly at the end of the month for �� years� from which a rent of
� ���� should be paid monthly for �� years� and the interest period is one month with an interest rate
of ���&�
From ����d� we get for n � �� � � � ��� the sum K which is necessary for the required payments�

K �
����

�������
������� � 

�����
� � ��� ����� The necessary monthly deposits R are given by ������

R��� � ��� ���� � R
������� � 

�����
� i�e�� R � � ������

����� Depreciation

�� Methods of Depreciation
Depreciation is the term most often used to indicate that assets have declined in service potential in a
given year either due to obsolescence or physical factors� Depreciation is a method whereby the original
�cost� value at the beginning of the reporting year is reduced to the residual value at year�end� We use
the following concepts�
�A depreciation base�
�N useful life �given in years��
�Rn residual value after n years �n � N��
�an �n � � �� � � � � N� depreciation rate in the n�th year�
The methods of depreciation di�er from each other depending on the amortization rate�
� straight�line method� i�e�� equal yearly rates�
� decreasing�charge method� i�e�� decreasing yearly rates�

�� Straight�LineMethod
The yearly depreciations are constant� i�e�� for amortization rates an and the remaining value Rn after
n years we have�

an �
A� RN

N
� a� ����� Rn � A� n

A�RN

N
�n � � �� � � � � N�� �����

If we substitute RN � �� then the value of the given thing is reduced to zero after N years� i�e�� it is
totally depreciated�

The purchase price of a machine is A �� �� ���� In � years it should be depreciated to a value R� �
� � ����

Year Depreciation Depreciation Residual Cumulated depr� in &
base expense value of the depr� base

 �� ��� ���� �� ��� ���
� �� ��� ���� �� ��� ���
� �� ��� ���� �� ��� ����
� �� ��� ���� � ��� ����
� � ��� ���� � ��� ����

With linear depreciation ac�
cording to ����� and �����
we have the annexed amor�
tization schedule�
It shows that the percent�
age of accumulated depreci�
ation with respect to the ac�
tual initial value is increas�
ing�

�� Arithmetically Declining Balance Depreciation
In this case the depreciation is not constant� It is decreasing yearly by the same amount d� by the
so�called multiple� For depreciation in the n�th year we have�

an � a� � �n� �d �n � �� �� � � � � N � � a� and d are given�� �����

Considering the equality A� RN �
NP
n��

an from the previous equation it follows that�

d �
� Na� � �A�RN �!

N�N � �
� ����
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For d � � we get the special case of straight�line depreciation� If d � �� it follows from ���� that

a� �
A� RN

N
� a� �����

where a is the depreciation rate for straight�line depreciation� The �rst depreciation rate a� of the
arithmetically�declining balance depreciation must satisfy the following inequality�

A� RN

N
� a� � �

A� RN

N
� �����

A machine of � �� ��� purchase price is to be depreciated to the value � � ��� within � years by
arithmetically declining depreciation� In the �rst year � � ��� should be depreciated�

Year Depretiation Depreciation Residual Depreciation in &
base expense value of depr� base

 �� ��� � ��� �� ��� ����
� �� ���  ��� �� ��� ����
� �� ��� � ��� � ��� ����
� � ��� � ���  ��� ����
�  ���  ��� � ��� ��

The annexed depreci�
ation schedule is cal�
culated by the given
formulas� and it shows
that with the excep�
tion of the last rate the
percentage of depreci�
ation is fairly equal�

�� Digital Declining Balance Depreciation
Digital depreciation is a special case of arithmetically declining depreciation� Here it is required that
the last depreciation rate aN should be equal to the multiple d� From aN � d it follows that

d �
��A�RN �

N�N � �
� ����a� a� � Nd� a� � �N � �d� � � � � aN � d� ����b�

The purchase price of a machine is � A � �� ���� This machine is to be depreciated in � years to
the value R� � � � ��� by digital depreciation�

Year Depreciation Depreciation Residual Depreciation in &
base expense value of the depr� base

 �� ��� a� � �d � � ��� �� ��� ����
� �� ��� a� � �d � � ��� �� ��� ���
� �� ��� a� � �d � � �� � ��� ����
� � ��� a� � �d � � ��� � ��� ����
� � ��� a� � d � � ��� � ��� ��

The annexed depreciation
schedule� calculated by the
given formulas� shows that
the percentage of the de�
preciation is fairly equal�

�� Geometrically Declining Balance Depreciation
Consider geometrically declining depreciation where p& of the actual value is depreciated every year�
For the residual value Rn after n years we have�

Rn � A
�

� p

��

�n
�n � � �� � � �� � �����

Usually A �the acquisition cost� is given� The useful life of the asset is N years long� If from the quan�
tities RN � p and N � two is given� the third one can be calculated by the formula ������

A� A machine with a purchase value � �� ��� is to be geometrically depreciated yearly by �&�
After how many years will its value drop below � � ��� for the �rst time( Based on ������ we get that

N �
ln�� ������ ����

ln�� ���
� ���� years�

B� For a purchase price ofA �� ��� the residual valueRn should be represented forn � � �� � � � � �
years by a� straight�line� b� arithmetically declining� c� geometrically declining depreciation� The re�
sults are shown in Fig ���
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� Depreciation with Di
erent Types of
Deprecation
Since in the case of geometrically declining deprecia�
tion the residual value cannot become equal to zero for
a �niten� it is reasonable after a certain time� e�g�� after
m years� to switch over to straight�line depreciation�
We determine m so that from this time on the geomet�
rically declining depreciation rate is smaller than the
straight�line depreciation rate� From this requirement
it follows that�

m � N � ��

p
� �����

Here m is the last year of geometrically declining de�
preciation and N is the last year of linear depreciation
when the residual value becomes zero�

A machine with a purchase value of � �� ��� is to be depreciated to zero within � years� for m
years by geometrically declining depreciation with �& of the residual value� then with the straight�

line method� From ����� we get m � �� ��

�
� ����� i�e�� after m � � years it is reasonable to switch

over to straight�line depreciation�

��� Inequalities

����� Pure Inequalities
������� De�nitions

�� Inequalities
Inequalities are comparisons of two real algebraic expressions represented by one of the following signs�

Type I � �	greater
� Type II � �	smaller
�
Type III �� �	not equal
� Type IIIa �� �	greater or smaller
�
Type IV 	 �	greater or equal
� Type IVa �� �	not smaller
�
Type V � �	smaller or equal
� Type Va �� �	not greater
�

The notation III and IIIa� IV and IVa� and V and Va have the same meaning� so they can be replaced
by each other� The notation III can also be used for those types of quantities for which the notions of
	greater
 or 	smaller
 cannot be de�ned� for instance for complex numbers or vectors� but in this case
it cannot be replaced by IIIa�

�� Identical Inequalities� Inequalities of the Same and of the Opposite Sense�
Equivalent Inequalities

� Identical Inequalities are valid for arbitrary values of the letters contained in them�
� Inequalities of the Same Sense belong to the same type from the �rst two� i�e�� both belong to
type I or both belong to type II�
� Inequalities of the Opposite Sense belong to di�erent types of the �rst two� i�e�� one to type
I� the other to type II�
� Equivalent Inequalities are inequalities if they are valid exactly for the same values of the un�
knowns contained in them�

�� Solution of Inequalities
Similarly to equalities� inequalities can contain unknown quantities which are usually denoted by the
last letters of the alphabet� The solution of an inequality or a system of inequalities means the determi�
nation of the limits for the unknowns between which they can change� keeping the inequality or system



��
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of inequalities true�

We can look for the solutions of any kind of inequality� mostly we have to solve pure inequalities of type
I and II�

������� Properties of Inequalities of Type I and II
� Change the Sense of the Inequality

If a � b holds� then b � a is valid� ����a�

if a � b holds� then b � a is valid� ����b�

� Transitivity

If a � b and b � c hold� then a � c is valid� ����a�

if a � b and b � c hold� then a � c is valid� ����b�

� Addition and Subtraction of a Quantity

If a � b holds� then a� c � b� c is valid� ����a�

if a � b holds� then a� c � b� c is valid� ����b�

By adding or subtracting the same amount to the both sides of inequality� the sense of the inequality
does not change�

� Addition of Inequalities

If a � b and c � d hold� then a � c � b � d is valid� ����a�

if a � b and c � d hold� then a � c � b � d is valid� ����b�

Two inequalities of the same sense can be added�

� Subtraction of Inequalities

If a � b and c � d hold� then a� c � b� d is valid� ���a�

if a � b and c � d hold� then a� c � b� d is valid� ���b�

Inequalities of the opposite sense can be subtracted� the result keeps the sense of the �rst inequality�
Subtracting inequalities of the same sense is not allowed�

� Multiplication and Division of an Inequality by a Quantity

If a � b and c � � hold� then ac � bc and
a

c
�

b

c
are valid� ����a�

if a � b and c � � hold� then ac � bc and
a

c
�

b

c
are valid� ����b�

if a � b and c � � hold� then ac � bc and
a

c
�

b

c
are valid� ����c�

if a � b and c � � hold� then ac � bc and
a

c
�

b

c
are valid� ����d�

Multiplication or division of both sides of an inequality by a positive value does not change the sense
of the inequality� Multiplication or division by a negative value changes the sense of the inequality�
� Inequalities and Reciprocal Values

If � � a � b or a � b � � hold� then


a
�



b
is valid� �����
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����� Special Inequalities

������� Triangle Inequality for Real Numbers

For arbitrary real numbers a� b� a�� a�� � � � � an� there are the inequalities

ja � bj � jaj� jbj � ja� � a� � � � �� anj � ja�j� ja�j� � � �� janj � �����

The absolute value of the sum of two or more real numbers is less than or equal to the sum of their
absolute values� The equality holds only if the summands have the same sign�

������� Triangle Inequality for Complex Numbers

For n complex numbers z�� z�� � � � � zn � C�����
nX
k��

zk

����� � jz� � z� � � � �� znj � jz�j� jz�j� � � �� jznj �
nX
k��

jzkj� �����

������� Inequalities forAbsoluteValues ofDi
erences ofReal andComplex
Numbers

For arbitrary real numbers a� b � IR� there are the inequalities

jaj � jbj � ja� bj � jaj� jbj� �����

The absolute value of the di�erence of two real numbers is less than or equal to the sum of their absolute
values� but greater than or equal to the di�erence of their absolute values� For two arbitrary complex
numbers z�� z� � C

jjz�j � jz�jj � jz� � z�j � jz�j� jz�j � �����

������� Inequality for Arithmetic andGeometricMeans
a� � a� � � � �� an

n
	 n
p
a�a� � � �an for ai � � � �����

The arithmetic mean of n positive numbers is greater than or equal to their geometric mean� Equality
holds only if all the n numbers are equal�

������� Inequality for Arithmetic and QuadraticMeans����a� � a� � � � �� an
n

���� �
s

a�� � a�� � � � �� an�

n
� �����

The absolute value of the arithmetic mean of numbers is less than or equal to their quadratic mean�

������� Inequalities for Di
erentMeans of Real Numbers

For the harmonic� geometric� arithmetic� and quadratic means of two positive real numbers a and b
with a � b the following inequalities hold �see also ������� p� ����

a � xH � xG � xA � xQ � b� ���a�

Here

xA �
a � b

�
� xG �

p
ab � xH �

�ab

a � b
� xQ �

s
a� � b�

�
� ���b�

������	 Bernoulli�s Inequality

For every real number a 	 � and integer n 	  holds

� � a�n 	  � n a � ���
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The equality holds only for n �  � or a � ��

������� Binomial Inequality

For arbitrary real numbers a� b � IR� we have

ja bj � 

�
�a� � b�� � ����

������ Cauchy�Schwarz Inequality

The Cauchy�Schwarz inequality holds for arbitrary real numbers ai� bj � IR �

ja�b� � a�b� � � � �� anbnj �
q
a�� � a�� � � � �� an�

q
b�

� � b�
� � � � �� bn

� ���a�

or

�a�b� � a�b� � � � �� anbn�� � �a�
� � a�

� � � � �� an
���b�

� � b�
� � � � �� bn

��� ���b�

For two �nite sequences of n real numbers� the sum of the pairwise products is less than or equal to
the product of the square roots of the sums of the squares of these numbers� Equality holds only if
a� � b� � a� � b� � � � � � an � bn�
If n � � and fa�� a�� a�g and fb�� b�� b�g are considered as vectors in a Cartesian coordinate system�
then the Cauchy�Schwarz inequality means that the absolute value of the scalar product of two vectors
is less than or equal to the product of absolute values of these vectors� If n � �� then this statement
can be extended for vectors in n�dimensional Euclidean space�
Considering that for complex numbers jzj� � z�z �z� is the complex conjugate of z�� the inequality
���b� is valid also for arbitrary complex numbers zi� wj � C�
�z�w� � z�w� � � � �� znwn���z�w� � z�w� � � � �� znwn�
� �z�

�z� � z�
�z� � � � �� zn

�zn��w�
�w� � w�

�w� � � � �� wn
�wn��

An analogous statement is the Cauchy�Schwarz inequality for convergent in�nite series and for certain
integrals�� �X

n��

anbn

��
�
� �X
n��

an
�

�� �X
n��

bn
�

�
� ����

�Z b

a
f�x� ��x� dx

�
�
�Z b

a
 f�x�!� dx

� �Z b

a
 ��x�!� dx

�
� ����

�������� Chebyshev Inequality

If a�� a�� � � � � an� b�� b�� � � � � bn are real positive numbers� then we have the following inequalities��
a� � a� � � � �� an

n

� �
b� � b� � � � �� bn

n

�
� a�b� � a�b� � � � �� anbn

n
���a�

for a� � a� � � � � � an and b� � b� � � � � � bn�

or a� 	 a� 	 � � � 	 an and b� 	 b� 	 � � � 	 bn�

and �
a� � a� � � � �� an

n

� �
b� � b� � � � �� bn

n

�
	 a�b� � a�b� � � � �� anbn

n
���b�

for a� � a� � � � � � an and b� 	 b� 	 � � � 	 bn�

For two �nite sequences withn positive numbers� the product of the arithmetic means of these sequences
is less than or equal to the aritmetic mean of the pairwise products if both sequences are increasing or
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both are decreasing� but the inequality is valid in the opposite sense if one of the sequences is increasing
and the other one is decreasing�

�������� Generalized Chebyshev Inequality
If a�� a�� � � � � an� b�� b�� � � � � bn are real positive numbers� then we have the inequalities

k

s
a�k � a�k � � � �� ank

n

k

s
b�
k � b�

k � � � �� bn
k

n
� k

s
�a�b��k � �a�b��k � � � �� �anbn�k

n
���a�

for a� � a� � � � � � an and b� � b� � � � � � bn
or a� 	 a� 	 � � � 	 an and b� 	 b� 	 � � � 	 bn

and

k

s
a�k � a�k � � � �� ank

n

k

s
b�
k � b�

k � � � �� bn
k

n
	 k

s
�a�b��k � �a�b��k � � � �� �anbn�k

n
���b�

for a� � a� � � � � � an and b� 	 b� 	 � � � 	 bn�

�������� H�older Inequality

� H�older Inequality for Series If p and q are two real numbers such that


p
�



q
�  holds� and

x�� x�� � � � � xn and y�� y�� � � � � yn are arbitrary �n complex numbers� then we have�

nX
k��

jxkykj �
�

nX
k��

jxkjp
 �
p
�

nX
k��

jykjq
 �
q

� ���a�

This inequality is also valid for countable in�nite pairs of numbers�

�X
k��

jxkykj �
� �X
k��

jxkjp
 �
p
� �X
k��

jykjq
 �
q

� ���b�

where from the convergence of the series on the right�hand side the convergence of the left�hand side
follows�

� H�older Inequality for Integrals If f�x� and g�x� are two measurable functions on the measure
space �X�A� �� �see ������ p� ����� then we have�

Z
X

jf�x�g�x�jd� �
��Z
X

jf�x�jp d�

�� �
p
��Z
X

jg�x�jq d�
�� �
q

� ���c�

�������� Minkowski Inequality

� Minkowski Inequality for Series If p 	  holds� and fxkgk��k�� and fykg�k�� with xk� yk � C are
two sequences of numbers� then we have�� �X

k��

jxk � ykjp
 �
p

�
� �X
k��

jxkjp
 �
p

�

� �X
k��

jykjp
 �
p

� ���a�

� Minkowski Inequality for Integrals If f�x� and g�x� are two measurable functions on the
measure space �X�A� �� �see ������ p� ����� then we have���Z

X

jf�x� � g�x�jpd�
�� �
p

�
��Z
X

jf�x�jpd�
�� �
p

�

��Z
X

jg�x�jpd�
�� �
p

� ���b�
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����� Solution of Linear andQuadratic Inequalities

������� General Remarks
During the solution of an inequality we transform it into an equivalent inequality� Similarly to the
solution of an equation we can add the same expression to both sides� formally� it may seem that we bring
a summand from one side to the other� changing its sign� Furthermore one can multiply or divide both
sides of an inequality by a non�zero expression� where the inequality keeps its sense if this expression
has a positive value� and changes its sense if this expression has a negative value� An inequality of �rst
degree can always be transformed into the form

ax � b� �����

The simplest form of an inequality of second degree is

x� � m ���a� or x� � m ���b�

and in the general case it has the form

ax� � bx � c � � ����a� or ax� � bx � c � �� ����b�

������� Linear Inequalities
Inequalities of �rst degree have the solution

x �
b

a
for a � � ����a� and x �

b

a
for a � �� ����b�

�x � � � �x � � �x� �x � � �� ��x � ��� x �
�

�
�

������� Quadratic Inequalities
Inequalities of second degree in the form

x� � m ����a� and x� � m ����b�

have solutions

a� x� � m � For m 	 � the solution is x �
p
m and x � �pm �jxj � pm�� ����a�

for m � � the inequality holds identically� ����b�

b� x� � m � For m � � the solution is �pm � x � �
p
m �jxj � pm�� ����a�

for m � � there is no solution� ����b�

������� General Case for Inequalities of SecondDegree

ax� � bx � c � � ����a� or ax� � bx � c � �� ����b�

We divide the inequality by a� If a � � then the sense of the inequality changes� but in any case it will
have the form

x� � px � q � � ����c� or x� � px � q � �� ����d�

By completing the square it follows that�
x �

p

�

��
�
�
p

�

��
� q ����e� or

�
x �

p

�

��
�
�
p

�

��
� q� ����f�

Denoting x �
p

�
by z and

�
p

�

��
� q by m� we obtain the inequality
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z� � m ����a� or z� � m� ����b�

Solving these inequalities� we get the values for x�

A� ��x� � �x� �� � �� x� � �x � � � ��
�
x� �

�

��
�

�

�
� ��

�
� x� �

�
�

�

�
�

��

�
�

�

�
� x �

�

�
�

�

�
�

The solution is � � x � ��

B� x� � �x � � � �� �x � ��� � ��� The inequality holds identically�

C� ��x� � �x� �� � ��
�
x� �

�

��
�

�

�
� x� �

�
�

�

�
and x� �

�
� ��

�
�

The solution intervals are x � � and x � ��

��� ComplexNumbers

����� Imaginary andComplexNumbers
������� Imaginary Unit
The imaginary unit is denoted by i� which represents a number di�erent from any real number� and
whose square is equal to �� In electronics� instead of i the letter j is usually used to avoid accidently
confusing it with the intensity of current� also denoted by i� The introduction of the imaginary unit leads
to the generalization of the notion of numbers to the complex numbers� which play a very important role
in algebra and analysis� The complex numbers have several interpretations in geometry and physics�

������� Complex Numbers
The algebraic form of a complex number is

z � a � i b� ����a�

When a and b take all possible real values� we get all possible complex numbers z� The number a is the
real part� the number b is the imaginary part of the number z�

a � Re�z�� b � Im�z�� ����b�

For b � � we have z � a� so the real numbers form a subset of the complex numbers� For a � � we have
z � i b� which is a 	pure imaginary number
�
The set of complex numbers is denoted by C �

Remark� Functions w � f�z� with complex variable z � x � i y will be discussed in function theory
�see ��� p� �� ���

����� GeometricRepresentation
������� Vector Representation
Similarly to the representation of the real numbers on the numerical axis� the complex numbers can
be represented as points in the plane� the so�called Gaussian number plane� A number z � a � i b
is represented by the point whose abscissa is a and ordinate is b �Fig ���� The real numbers are
on the axis of abscissae which is also called the real axis� the pure imaginary numbers are on the axis
of ordinates which is also called the imaginary axis� On this plane every point is given uniquely by
its position vector or radius vector �see ������ �� p� ���� so every complex number corresponds to
a vector which starts at the origin and is directed to the point de�ned by the complex number� So�
complex numbers can be represented as points or as vectors �Fig ����

������� Equality of Complex Numbers
Two complex numbers are equal by de�nition if their real parts and imaginary parts are equal to each
other� From a geometric viewpoint� two complex numbers are equal if the position vectors correspond�



��� Complex Numbers ��

ing to them are equal� In the opposite case the complex numbers are not equal� The notions 	greater

and 	smaller
 are meaningless for complex numbers�

0 real axis

imag. axis

a

b
z=a+b i

y

x

Figure ��

z

real axis0

imag. axis

x

y
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real axis0

z
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ρ

y
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ϕ
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������� Trigonometric Form of Complex Numbers
The form

z � a � i b ����a�

is called the algebraic form of the complex number� When polar coordinates are used� we get the
trigonometric form of the complex numbers �Fig ����

z � ��cos� � i sin��� ����b�

The length of the position vector of a point � � jzj is called the absolute value or the magnitude of the
complex number � the angle �� given in radian measure� is called the argument of the complex number
and is denoted by arg z�

� � jzj� � � arg z �  � �k� with � � � ��� �� �  � ��� k � ������� � � � � ����c�

We call � the principal value of the complex number�
The relations between � � � and a � b for a point are the same as between the Cartesian and polar
coordinates of a point �see �������� p� ���

a � � cos�� ���a� b � � sin�� ���b� � �
p
a� � b�� ���c�

� �

�����������
arccos

a

�
for b 	 �� � � ��

� arccos
a

�
for b � �� � � ��

unde�ned for � � �

���d�

� �

���������������������������������

arctan
b

a
for a � ��

�
�

�
for a � �� b � ��

��

�
for a � �� b � ��

arctan
b

a
� � for a � �� b 	 ��

arctan
b

a
� � for a � �� b � ��

���e�

The complex number z � � has absolute value equal to zero� its argument arg � is unde�ned�

������� Exponential Form of a Complex Number
We call the representation

z � �ei� ����a�

the exponential form of the complex number� where � is the magnitude and � is the argument� The
Euler relation is the formula

ei� � cos� � i sin� � ����b�
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We represent a complex number in three forms�

a� z �  � i
p

� �algebraic form�� b� z � �
�

cos
�

�
� i sin

�

�

�
�trigonometric form��

c� z � � ei
�
� �exponential form�� considering the principal value of it�

If we do not restrict ourselves only to the principal value� we have

d� z � �i
p

� � � exp


i
�
�

�
� �k�

��
� �



cos
�
�

�
� �k�

�
� i sin

�
�

�
� �k�

��
�k � ������� � � �� �

������� Conjugate Complex Numbers
Two complex numbers z and z� are called conjugate complex numbers if their real parts are equal and
their imaginary parts di�er only in sign�

Re�z�� � Re�z� � Im�z�� � �Im�z� � ����a�

The geometric interpretation of points corresponding to the conjugate complex numbers are points
symmetric with respect to the real axis� Conjugate complex numbers have the same absolute value�
their arguments di�er only in sign�

z � a � i b � ��cos� � i sin�� � �ei�� ����b�

z� � a� i b � ��cos�� i sin�� � �e�i�� ����c�

Instead of z� one often uses the notation z for the conjugate of z�

����� CalculationwithComplexNumbers

������� Addition and Subtraction
Addition and subtraction of two or more complex numbers given in algebraic form is de�ned by the
formula

z� � z� � z� � � � � � �a� � i b�� � �a� � i b��� �a� � i b�� � � � �
� �a� � a� � a� � � � �� � i �b� � b� � b� � � � �� � �����

We make the calculations in the same way as we do by the usual binomials� As a geometric interpreta�
tion of addition and subtraction we consider the addition and subtraction of the corresponding vectors
�Fig ���� For these we use the usual rules for vector calculations �see ������ p� ���� For z and z��
z � z� is always real� and z � z� is pure imaginary�

real axis0

imag. axis

z3

z2

z +z1 2z1

z +z z1 2 3�

�z3

y

x

Figure ��
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imag. axisy
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������� Multiplication
The multiplication of two complex numbers z� and z� given in algebraic form is de�ned by the following
formula

z�z� � �a� � i b���a� � i b�� � �a�a� � b�b�� � i �a�b� � b�a�� � ����a�

For numbers given in trigonometric form we have

z�z� �  ���cos �� � i sin���! ���cos�� � i sin���!

� ���� cos��� � ��� � i sin��� � ���!� ����b�
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i�e�� the absolute value of the product is equal to the product of the absolute values of the factors� and
the argument of the product is equal to the sum of the arguments of the factors� The exponential form
of the product is

z�z� � ����e
i�������� ����c�

The geometric interpretation of the product of two complex numbers z� and z� is a vector such that we
rotate the vector corresponding to z� by the argument of z� clockwise or counterclockwise according to
the sign of this argument� and the length of the vector will be stretched by jz�j� The product z�z� can
also be represented with similar triangles �Fig �
�� The multiplication of a complex number z by i
means a rotation by ��� and the absolute value does not change �Fig ����� For z and z��

zz� � �� � jzj� � a� � b�� �����

������� Division
Division is de�ned as the inverse operation of multiplication� For complex numbers given in algebraic
form� we have

z�
z�

�
a� � i b�
a� � i b�

�
a�a� � b�b�

a�� � b�
� � i

a�b� � a�b�

a�� � b�
� � ����a�

For complex numbers given in trigonometric form we have

z�
z�

�
���cos �� � i sin���

���cos �� � i sin���
�

��
��

 cos��� � ��� � i sin��� � ���! � ����b�

i�e�� the absolute value of the quotient is equal to the ratio of the absolute values of the dividend and
the divisor� the argument of the quotient is equal to the di�erence of the arguments�
For the exponential form we get

z�
z�

�
��
��

ei�������� ����c�

In the geometric representation we get the vector corresponding to z��z� if we rotate the vector repre�
senting z� by � arg z�� then we make a contraction by jz�j�
Remark� Division by zero is impossible�

������� General Rules for the Basic Operations
As we can observe we can make our calculations with complex numbers z � a � i b in the same way as
we do with binomials� only we have to consider that i � � �� We know how to divide binomials by a
real number� So� on division of a complex number by a complex number� �rst we clear the denominator
from the imaginary part of the divisor� and we multiply the numerator and the denominator of the
fraction by the complex conjugate of the divisor� This is possible because

�a � i b��a� i b� � a� � b� �����

is a real number�

��� �i ��� � �i ��

 � �i
�

� � �i

�i
�

��� �i ��� �i � ���

 � �i
�

�� � �i �i

�i i
�
����� �i ��� � �i �

 � �i
�

�� �i

�
�
������ ��i ��� �i �

� � �i ��� �i �
�

�� �i

�
�
������� ��i �

�
�

�� �i

�
�



�
�����i � � ������i �

������� Taking Powers of Complex Numbers
The n�th power of a complex number could be calculated using the binomial formula� but it would be
very inconvenient� For practical reasons we use the trigonometric form and the so�called de Moivre
formula�

 ��cos� � i sin��!n � �n�cosn� � i sinn�� � ����a�
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i�e�� the absolute value is raised to the n�th power� and the argument is multiplied by n� In particular�
we have�

i � � �� i � � �i � i � � � ����b� in general i �n�k � i k � ����c�

������� Taking of the n�th Root of a Complex Number
Taking of the n�th root is the inverse operation of taking powers� For z � ��cos��i sin�� the notation

z��n � n
p
z with n � �� integer� ����a�

is the shorthand notation for the n di�erent values

k � n
p
�

�
cos

� � �k�

n
� i sin

� � �k�

n

�
�

�k � �� � �� � � � � n� �� ����b�

While addition� subtraction� multiplication� division� and tak�
ing a power with integer exponent have unique results� taking
of the n�th root has n di�erent solutions k�
The geometric interpretations of the points k are the vertices
of a regular n�gon whose center is at the origin� In Fig ���
the six values of �

p
z are represented�
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��� Algebraic andTranscendentalEquations

����� TransformingAlgebraic Equations toNormal Form
������� De�nition
The variable x in the equality

F �x� � f�x� ����

is called the unknown if the equality is valid only for certain values x�� x�� � � � � xn of the variable� and
these values are called the solutions or the roots of the equation� Two equations are considered equiv�
alent if they have exactly the same roots�
An equation is called an algebraic equation if the functions F �x� and f�x� are algebraic� i�e�� they are
rational or irrational expressions� of course one of them can be constant� Every algebraic equation can
be transformed into normal form

P �x� � anx
n � an��xn�� � � � �� a�x � a� � � �����

by algebraic transformations� The roots of the original equation occur among the roots of the normal
form� but under certain circumstances some are super�uous� The leading coe�cient an is frequently
transformed to the value �
The exponent n is called the degree of the equation�

Determine the normal form of the equation
x�  �

p
x� � �

��x� ��
�  �

x� �

x
� The transformations

step by step are�

x�x �  �
p
x� � �� � �x�x � �� � ��x� ���x� ��� x� � x � x

p
x� � � � �x� � �x � �x� � �x �

�� x
p
x� � � � �x����x��� x��x���� � ��x�����x� ����x�����x����� ��x�����x� �

���x� � ���x � ��� � �� The result is an equation of fourth degree in normal form�

������� System of nAlgebraic Equations
Every system of algebraic equations can be transformed to normal form� i�e�� into a system of polynomial
equations�
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P��x� y� z� � � �� � � � P��x� y� z� � � �� � � � � � � � Pn�x� y� z� � � �� � � � �����

The Pi �i � � �� � � � � n� are polynomials in x� y� z� � � � �

Determine the normal form of the equation system� �
xp
y

�


z
� ��

x� 

y � 
�
p
z � �� xy � z �

The normal form is� � x�z� � y � � � �� x� � �x � � y�z � �yz � z � �� �� xy � z � ��

������� Super�uousRoots
It can happen that after transformation of an algebraic equation into normal form P �x� � �� it has
solutions which are not solutions of the original equation� This happens in two cases�
� Disappearing Denominator If an equation has the form of a fraction

P �x�

Q�x�
� � ����a�

with polynomials P �x� and Q�x�� then we get the normal form by multiplying by the denominator�

P �x� � �� ����b�

The roots of ����b� are the same as those of the original equation ����a�� except if a root x � � of
the equation P �x� � � is also a root of the equation Q�x� � �� In this case we should simplify �rst by
the term x� �� actually by �x� ��k� Anyway if we perform a so�called non�identical transformation�
we still have to substitute the roots we get into the original equation �see also ������ p� ����

A�
x�

x� 
�



x� 
or

x� � 

x� 
� � ��� If we do not simplify by x� � then the root x� �  satis�es

the equation x� �  � �� but it does not satisfy ��� because it makes the denominator zero�

B�
x� � �x� � �x� 

x� � �x � 
� � ���� If we do not simplify by the term �x � ��� the equation does not

have any root� because �x� �� � � has the root x� � � but the denominator is also zero here� After
simpli�cation� ��� has a simple root x � �
� Irrational Equations If in the equation we also have an unknown in the radicand� then it is
possible that the normal form of the equation has roots which do not satisfy the original equation�
Consequently every solution we get from the normal form must be substituted into the original equation
in order to check whether it satis�es it or not�p

x � � �  � �x or
p
x � � � �x � � ��� x � � � ��x � �� or �x� � �x � � � � ���� The

solutions of ��� are x� � �� x� � ����� The solution x� satis�es ��� but the solution x� does not�

����� Equations ofDegree atMost Four

������� Equations of Degree One �Linear Equations�
� Normal Form

ax � b � � � �����

� Number of Solutions There is a unique solution

x� � � b

a
� �����

������� Equations of Degree Two �Quadratic Equations�
� Normal Form

ax� � bx � c � � ����a�

or divided by a�

x� � px � q � � � ����b�
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� Number of Real Solutions of a Real Equation Depending on the sign of the discriminant

D � �ac� b� or D � q � p�

�
� �����

we have�
� for D � �� there are two real solutions �two real roots��
� for D � �� there is one real solution �two coincident roots��
� for D � �� there is no real solution �two complex roots��

� Properties of the Roots of a Quadratic Equation If x� and x� are the roots of the quadratic
equation ����a� or ����b�� then the following equalities hold�

x� � x� � � b

a
� �p � x� � x� �

c

a
� q � �����

� Solution of Quadratic Equations

Method �� Factorization of

ax� � bx � c � a�x� ���x� �� ����a� or x� � px � q � �x� ���x� �� � ����b�

if it is successful� immediately gives the roots

x� � � � x� � � � ����

x� � x� � � �� x� � x� � � �x � ���x� �� � x� � ��� x� � ��

Method �� Using the solution formula
a� for ����a� the solutions are

x��� �
�b�pb� � �ac

�a
����a� or x��� �

� b

�
�
vuut� b

�

��
� ac

a
� ����b�

where we use the second formula if b is an even integer�
b� for ����b� the solutions are

x��� � �p

�
�
s

p�

�
� q � �����

������� Equations of Degree Three �Cubic Equations�

� Normal Form

ax� � bx� � cx � d � � ����a�

or after dividing by a and substituting y � x �
b

�a
we have

y� � �py � �q � � or in reduced form y� � p�y � q� � � � ����b�

where

q� � �q �
�b�

��a�
� bc

�a�
�

d

a
and p� � �p �

�ac� b�

�a�
� ����c�

� Number of Real Solutions Depending on the sign of the discriminant

D � q� � p� �����

we have �
� for D � �� one real solution �one real and two complex roots��
� for D � �� three real solutions �three di�erent real roots��
� for D � �� one real solution �one real root with multiplicity three� in the case p � q � �� or two real
solutions �a single and a double real root� in the case p� � �q� �� ��
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� Properties of the Roots of a Cubic Equation If x� � x�� and x� are the roots of the cubic
equation ����a�� then the following equalities hold�

x� � x� � x� � � b

a
�



x�
�



x�
�



x�
� � c

d
� x�x�x� � �d

a
� �����

� Solution of a Cubic Equation

Method �� If it is possible to decompose the left�hand side into a product of linear terms

ax� � bx� � cx � d � a�x� ���x� ���x� �� ����a�

we immediately get the roots

x� � � � x� � � � x� � � � ����b�

x� � x� � �x � �� x� � x� � �x � x�x � ���x� ��� x� � �� x� � ��� x� � ��

Method �� Using the Formula of Cardano� By substituting y � u � v the equation ����b� has the
form

u� � v� � �u � v���uv � �p� � �q � �� ����a�

This equation is obviously satis�ed if

u� � v� � ��q and uv � �p ����b�

hold� If we write ����b� in the form

u� � v� � ��q � u�v� � �p� � ����c�

then we have two unknowns u� and v�� and we know their sum and product� Therefore using Vieta�s
root theorem �see ������ �� p� ��� the solutions of the quadratic equation

w� � �u� � v��w � u�v� � w� � �qw � p� � � ����d�

can be calculated� We get

w� � u� � �q �
q
q� � p� � w� � v� � �q �

q
q� � p� � ����e�

so for the solution y of ����b� the Cardano formula results in

y � u � v �
�

r
�q �

q
q� � p� �

�

r
�q �

q
q� � p� � ����f�

Because the third root of a complex number means three di�erent numbers �see ����b� on p� ��� we
could have nine di�erent cases� but because of uv � �p� the solutions are reduced to the following
three�

y� � u� � v� �if possible� consider the real third roots u� and v� such that u�v� � �p�� ����g�

y� � u�

�
�

�
�

i

�

p
�
�

� v�

�
�

�
� i

�

p
�
�

� ����h�

y� � u�

�
�

�
� i

�

p
�
�

� v�

�
�

�
�

i

�

p
�
�

� ����i�

y� � �y � � � � with p � �� q �  and q� � p� � � and u � �
p� � � � �

p
� � ������

v � �
p�� � � �

p�� � ������� The real root is y� � u � v � �������� the complex roots are

y��� � �

�
�u � v�� i

p
�

�
�u� v� � ������ i � �������

Method �� If we have a real equation� we can use the auxiliary values given inTable ��� With p from
����b� we substitute

r � �
q
jpj � �����
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where the sign of r is the same as the sign of q� With this� usingTable ��� we can determine the value
of the auxiliary variable � and with it we can tell the roots y�� y� and y� depending on the signs of p
and D � q� � p��

Table �� Auxiliary values for the solution of equations of degree three

p � �
p � �

q� � p� � � q� � p� � �

cos� �
q

r�
cosh� �

q

r�
sinh� �

q

r�

y� � ��r cos
�

�
y� � ��r cosh

�

�
y� � ��r sinh

�

�

y� � ��r cos

�
��� � �

�

�
y� � r cosh

�

�
� i
p
� r sinh

�

�
y� � r sinh

�

�
� i
p
� r cosh

�

�

y� � ��r cos

�
��� �

�

�

�
y� � r cosh

�

�
� i
p
� r sinh

�

�
y� � r sinh

�

�
� i
p
� r cosh

�

�

y� � �y � � � �� p � ��� q � �� q� � p� � �� r �
p

�� cos� �
�

�
p

�
� ������� � � �������

y� � ��
p

� cos ������ � ������ y� � �
p

� cos���� � ������� � ������ y� � �
p

� cos���� � ������� �
������
Checking� y� � y� � y� � ���� which can be considered � for the accuracy of our calculations�

Method �� Numeric approximate solution� see ����� p� ���� numeric approximate solution by the
help of a nomogram� see ���� p� ���

������� Equations of Degree Four
� Normal Form

ax� � bx� � cx� � dx � e � �� �����

If all the coe�cients are real� this equation has � or � or � real solutions�
� Special Forms If b � d � � hold� then we can calculate the roots of

ax� � cx� � e � � �biquadratic equation� ���a�

by the formulas

x������� � �py� y �
�c�pc� � �ae

�a
� ���b�

For a � e and b � d� the roots of the equation

ax� � bx� � cx� � bx � a � � ���c�

can be calculated by the formulas

x������� �
y �py� � �

�
� y �

�b�pb� � �ac � �a�

�a
� ���d�

� Solution of a General Equation of Degree Four

Method �� If we can somehow factorize the left�hand side of the equation

ax� � bx� � cx� � dx � e � � � a�x� ���x� ���x� ���x� 	� ����a�

then the roots can be immediately determined�

x� � � � x� � � � x� � � � x� � 	� ����b�

x� � �x� � x� � �x � �� x�x� � ��x� �� � x�x� ��x � ��x� ���
x� � �� x� � � x� � �� x� � ��
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Method �� The roots of the equation ����a� for a �  coincide with the roots of the equation

x� � �b � A�
x

�
�

�
y �

by � d

A

�
� �� ����a�

where A � �p�y � b� � �c and y is one of the real roots of the equation of third degree

�y� � �cy� � ��bd� �e�y � e��c� b��� d� � � ����b�

with B �
b�

�
� bc

�
�d �� �� The case B � � gives by the help of the substitution x � u� b

�
a biquadratic

equation of the form ���a��
Method �� Approximate solution� see ����� p� ����

������� Equations of Higher Degree
It is impossible to give a formula or a �nite sequence of formulas which produce the roots of an equation
of degree �ve or higher�

����� Equations ofDegree n

������� General Properties of Algebraic Equations

�� Roots
The left�hand side of the equation

xn � an��xn�� � � � � � a� � � ����a�

is a polynomial Pn�x� of degree n� and a solution of ����a� is a root of the polynomial Pn�x�� If � is
a root of the polynomial� then Pn�x� is divisible by �x� ��� Generally

Pn�x� � �x� ��Pn���x� � Pn���� ����b�

Here Pn���x� is a polynomial of degree n� � If Pn�x� is divisible by �x� ��k� but it is not divisible by
�x� ��k�� then � is called a root of order k of the equation Pn�x� � �� In this case � is a common root
of the polynomial Pn�x� and its derivatives to order �k � ��

�� Fundamental Theorem of Algebra
Every equation of degree n whose coe�cients are real or complex numbers has n real or complex roots�
where the roots of higher order are counted by their multiplicity� If we denote the roots of P �x� by
�� �� �� � � � and they have multiplicity k� l�m� � � �� then the product representation of the polynomial is

P �x� � �x� ��k�x� ��l�x� ��m � � � � ����a�

The solution of the equation P �x� � � can be simpli�ed if we can reduce the equation to another
one� which has the same roots� but only with multiplicity one� In order to get this� we decompose the
polynomial into a product of two factors

P �x� � Q�x�T �x�� ����b�

such that

T �x� � �x� ��k���x� ��l�� � � � � Q�x� � �x� ���x� �� � � � � ����c�

Because the roots of the polynomial P �x� with higher multiplicity are the roots of its derivative P ��x��
too� T �x� is the greatest common denominator of the polynomial P �x� and its derivative P ��x� �see
������ p���� If we divide P �x� by T �x� we get the polynomial Q�x� which has all the roots of P �x� �
and each root occurs with multiplicity one�

�� Theorem of Vieta About Roots
The relations between the n roots x�� x�� � � � � xn and the coe�cients of the equation ����a� are�

x� � x� � � � � � xn �
nX
i��

xi � �an���
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x�x� � x�x� � � � � � xn��xn �
nX

i�j��
i�j

xixj � an���

x�x�x� � x�x�x� � � � � � xn��xn��xn �
nX

i�j�k��
i�j�k

xixjxk � �an��� �����

� � �

x�x� � � � xn � ���na��

������� Equations with Real Coe�cients

�� Complex Roots
Polynomial equations with real coe�cients can also have complex roots but only pairwise conjugate
complex numbers� i�e�� if � � a � i b is a root� then � � a � i b is also a root� and it has the same

multiplicity� The expressions p � ��� � �� � ��a and q � �� � a� � b� satisfy
�
p

�

��
� q � �� and

we have

�x� ���x� �� � x� � px � q� �����

If we substitute the product corresponding to ����� for every pair of factors in ����a�� then we get
a decomposition of the polynomial with real coe�cients with real factors�

P �x� � �x� ���
k��x� ���

k� � � � �x� �l�
kl

�x� � p�x � q��
m��x� � p�x � q��

m� � � � �x� � prx � qr�
mr � �����

Here ��� ��� � � � � �l are the l real roots of the polynomial P �x�� It also has r pairs of conjugate complex
roots� which are the roots of the quadratic factors x� � pix� qi �i � � �� � � � � r�� The numbers �j �j �

� �� � � � � l�� pi and qi �i � � �� � � � � r� are real and the inequality
�
pi
�

��
� qi � � holds�

�� Number of Roots of an Equation with Real Coe�cients
It follows from ����� that every equation of odd degree has at least one real root� We can determine
the number of further real roots of ����a� between two arbitrary real numbers a � b� in the following
way�

a� Separate the Multiple Roots� First we separate the multiple roots of P �x� � �� so we get an
equation which has all the roots of the original equation� but only with multiplicity one� Then we can
continue to produce the form mentioned in the fundamental theorem�
For practical reasons it is a good idea to start with the determination of the Sturm chain �the Sturm
functions� by the Sturmmethod� This is almost the same as the Euclidean algorithm for determining the
greatest common denominator� but we obtain some further information from it� If Pm is not a constant
then P �x� has multiple roots� which must be separated� In the following we can suppose P �x� � � is
an equation without multiple roots�

b� Creating the Sequence of Sturm Functions�

P �x�� P ��x�� P��x�� P��x�� � � � � Pm � const� �����

Here P �x� is the left�hand side of the equation� P ��x� is the �rst derivative of P �x�� P��x� is the re�
mainder on division of P �x� by P ��x�� but with the opposite sign� P��x� is the remainder on division of
P ��x� by P��x� similarly with the opposite sign� etc�� Pm � const is the last non�zero remainder� but
it must be a constant� otherwise P �x� and P ��x� have common denominators� and P �x� has multiple
roots� In order to simplify the calculations we can multiply the remainders by positive numbers� it does
not a�ect our conclusions�

c� Theorem of Sturm� If A is the number of changes in sign� i�e� the number of changes from 	�

to 	�
 and vice versa� in the sequence ����� for x � a� and B is the number of changes in sign in the
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sequence ����� for x � b� then the di�erence A� B is equal to the number of real roots of P �x� � �
in the interval  a� b!� If in the sequence some numbers are equal to zero� at counting we leave them out�

Determine the number of roots of the equation x���x���x�� � � in the interval  �� �!� The calcula�
tion by the Sturm functions are� P �x� � x���x���x��� P ��x� � �x���x��� P��x� � �x���x���
P��x� � ��x � ���� P� � �� Substituting x � � results in the sequence ��������������� with
two changes in sign� substituting x � � results in ���������������� with one change in sign� so
A� B � ��  � � i�e�� between � and � there is one root�

d� Descartes Rule� The number of positive roots of the equation P �x� � � is not greater than the
number of changes of sign in the sequence of coe�cients of the polynomialP �x�� and these two numbers
can di�er from each other only by an even number�

What can we tell about the roots of the equation x� � �x� � x� � �x �  � � ( The coe�cients in
the equation have signs � � � � � � � � � � i�e�� there are three changes of sign� By the rule of Descartes
the equation has either three or one roots� Because on replacing x by �x the roots of the equation
change their signs� and on replacing x by x � h the roots are shifted by h� we can estimate the number
of negative roots� or the roots greater than h with the rule of Descartes� In our example replacing x by
�x we get x�� �x��x�� �x�  � �� i�e�� the equation has one negative root� Replacing x by x�  we
have x� � �x� � x� � �x � � � �� i�e�� every positive root of the equation �one or three� is smaller
than �

�� Solution of Equations of Degree n
Usually we can get only approximate solutions for equations of degree higher than four� In practice� we
look only for approximate solutions also in the case of equations of degree three or four� It is possible
to give approximate solutions for all the roots� including the complex roots of an algebraic equation
of degree n by the Brodetsky�Smeal method� For the calculations to determine certain real roots of
an algebraic equation we can use the general numerical procedures for non�linear equations �see ���
p� ����� In order to determine complex roots we can use the Bairstow method�

����� ReducingTranscendentalEquationstoAlgebraicEquations
������� De�nition
An equation F �x� � f�x� is transcendental if at least one of the functions F �x� or f�x� is not algebraic�

A� �x � �x�� � �x� B� � log� ��x� �� log� ��x � � � �� C� � cosh x � sinhx � ��

D� �x�� � �x�� � �x��� E� sinx � cos� x� 

�
� F� x cos x � sinx�

In some cases it is possible to reduce the solution of a transcendental equation to the solution of an
algebraic equation� for instance by appropriate substitutions� In general� transcendental equations can
be solved only approximately� Next we discuss some special equations which can be reduced to algebraic
equations�

������� Exponential Equations
Exponential equations can be reduced to algebraic equations in the following two cases� if the unknown
x or a polynomial P �x� is only in the exponent of some quantities a� b� c� � � � �

a� If the powers aP��x�� bP��x�� � � � are connected by multiplication or division� then we can take the
logarithm on an arbitrary base�

�x � �x�� � �x� x log � � �x� �� log � � x log �� x �
� log �

log �� log � � log �
�

b� If a� b� c� � � � are integer �or rational� powers of the same number k� i�e�� a � kn� b � km� c � kl� � � � �
hold� then by substituting y � kx we get an algebraic equation for y� and after solving it we have the

solution x �
log y

log k
�
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�x�� � �x�� � �x�� �
�x

�
�

��x

��
� ��x

�
� Substitution of y � �x results in y� � �y� � ��y � � and

y� � �� y� � �� � y� � �� �x� � �� �x� � ��� �x� � �� so x� � � follows� There are no further real roots�

������� Logarithmic Equations
Logarithmic equations can be reduced to algebraic equations in the following two cases� if the unknown
x or a polynomial P �x� only is under the logarithm sign�

a� If the equation contains only the logarithm of the same expression� then we can introduce this as a
new unknown� and we can solve the equation with respect to it� The original unknown can be deter�
mined by using the logarithm�

m loga P �x�!� � n � a
q

 loga P �x�!� � b� The substitution y � loga P �x� results in the equation

my� � n � a
p

y� � b � After solving for y we get the solution for x from the equation P �x� � ay�

b� If the equation is a linear combination of logarithms of polynomials of x� on the same base a� with in�
teger coe�cients m� n� � � �� i�e�� it has the form m loga P��x� �n loga P��x� � � � � � �� then the left�hand
side can be written as the logarithm of one rational expression� �The original equation may contain
rational coe�cients and rational expressions under the logarithm� or logarithms with di�erent bases�
if the bases are rational powers of each other��

� log� ��x� � � log���x � � � � � log�
��x� ��

�x � 
� log� �

��x� ��

�x � 
� � x� � � � x� � �� Sub�

stituting x� � � in the original equation we get negative values in the logarithm� i�e�� this logarithm is
a complex value� so there exists no real solution�

������� Trigonometric Equations
Trigonometric equations can be reduced to algebraic equations if the unknown x or the expression nx�a
with integer n is only in the argument of the trigonometric functions� After using the trigonometric
formulas the equation will contain only one unique function containing x� and after replacing it by y
we get an algebraic equation� The solution for x is obtained from the solutions for y� naturally taking
the multi�valuedness of the solution into consideration�

sinx � cos� x � 

�
or sinx �  � sin� x � 

�
� Substituting y � sinx we get y� � y � �

�
� � and

y� �


�
� y� � ��

�
� The result y� gives no real solution� because j sinxj �  for all real x� from y� �



�

we have x �
�

�
� �k� and x �

��

�
� �k� with k � � �� �� � � � �

������� Equations with Hyperbolic Functions
Equations with hyperbolic functions can be reduced to algebraic equations if the unknown x is only
in the argument of the hyperbolic functions� We can rewrite the hyperbolic functions as exponential

expressions� then substitute y � ex and


y
� e�x� so we get an algebraic equation for y � After solving

this we have the solution x � ln y �

� coshx � sinh x���
��ex � e�x�

�
�

ex � e�x

�
��� ex��e�x�� � � � y�

�

y
�� � �� y���y�� � ��

y��� �
��p��

�
� x� � ln

� �
p

��

�

 ���� � x� � ln

��p��

�

 ������ �



��

� Functions

��� Notion of Functions
����� De
nition of a Function

������� Function
If x and y are two variable quantities� and if there is a rule which assigns a unique value of y to a given
value of x� then we call y a function of x� and we use the notation

y � f�x�� ����

The variable x is called the independent variable or the argument of the function y� The values of x�
to which a value of y is assigned� form the domain D of the function f�x�� The variable y is called the
dependent variable� the values of y form the rangeW of the function f�x� � Functions can be represented
by the points �x� y� as curves� or graphs of the function�

������� Real Functions
If both the domain and the range contain only real numbers we call the function y � f�x� a real function
of a real variable�

A� y � x� with D � �� � x ��� W � � � y ���

B� y �
p
x with D � � � x ��� W � � � y ���

������� Functions of Several Variables
If the variable y depends on several independent variables x�� x�� � � � � xn� then we use the notation

y � f�x�� x�� � � � � xn� �����

as a function of several variables �see ���� p� ���

������� Complex Functions
If the dependent and independent variables are complex numbers w and z respectively� then w � f�z�
means a complex function of a complex variable� �see ��� p� ���� Complex�valued functions w�x� are
called complex functions even if they have real arguments x �

������� Further Functions
In di�erent �elds of mathematics� for instance in vector analysis and in vector �eld theory �see ���
p� ����� we also consider other types of functions whose arguments and values are de�ned as follows�

� The arguments are real � the function values are vectors�

A� Vector functions �see ���� p� �����
B� Parameter representations of curves �see ������ p� �����

� The arguments are vectors � the function values are real numbers�

Scalar �elds �see ����� p� �����

� The arguments are vectors � the function values are vectors�

A� Vector �elds �see ����� p� ����� B� Parametric representations or vector forms of surfaces
�see ������ p� �����

������� Functionals
If a real number is assigned to every function x � x�t� of a given class of functions� then it is called a
functional�

A� If x�t� is a given function which is integrable on  a� b!� then f�x� �
Z b

a
x�t� dt is a linear functional

de�ned on the set of continuous functions x integrable on  a� b! �see ���� p� ����
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B� Integral expressions in variational problems �see ��� p� �����

������	 Functions andMappings
Suppose there are given two non�empty sets X and Y � A mapping� which is denoted by

f � X  Y� �����

is a rule� by which we assign a uniquely de�ned element y of Y to every element x of X� The element y
is called the image of x� and we write y � f�x�� The set Y is called the image space or range of f � the
set X is called the original space or domain of f �

A� If both the original and the image spaces are subsets of real numbers� i�e�� X � D � IR and
Y � W � IR holds� then ����� de�nes a real function y � f�x� of the real variable x�

B� If f is a matrix A � �aij� �i � � �� � � � � m� j � � �� � � � � n� of type �m�n� and X � IRn and
Y � IRm� then ����� de�nes a mapping from IRn into IRm� The rule ����� is given by the following
system of m linear equations�

y � Ax or

y� � a��x� � a��x� � � � � � a�nxn
y� � a��x� � a��x� � � � � � a�nxn
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
ym � am�x� � am�x� � � � � � amnxn

�

i�e� Ax means the product of the matrix A and the vector x�

Remarks�
� The notion of mapping is a generalization of the notion of function� So� some mappings are some�
times called functions�

� The important properties of mappings can be found in ������ � p� ����

� A mapping� which assigns to every element from an abstract space X a unique element usually from
a di�erent abstract space Y � is called an operator� Here an abstract space usually means a function
space� since the most important spaces in applications consist of functions� Abstract spaces are for in�
stance linear spaces �see vector spaces ������ p� ���� metric spaces �see ���� p� ���� and normed spaces
�see ���� p� ���

����� Methods forDe
ning aReal Function

������� De�ning a Function
A function can be de�ned in several di�erent ways� for instance by a table of values� by graphical rep�
resentation� i�e�� by a curve� by a formula� which is called an analytic expression� or piece by piece with
di�erent formulas� Only such values of the independent variable can belong to the domain of an analytic
expression for which the function makes sense� i�e�� it takes a unique� �nite real value� If the domain is
not otherwise de�ned� we consider the domain as the maximal set for which the de�nition makes sense�

������� Analytic Representation of a Function
Usually we use the following three forms�

� Explicit Form�

y � f�x�� �����

y �
p

� x�� � � x � � y 	 �� Here the graph is the upper half of the unit circle centered at
the origin�

� Implicit Form�

F �x� y� � �� �����

in the case when there is a unique y which satis�es this equation� or we have to tell which solution is
considered to be the substitution value of the function�
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x� � y� �  � �� � � x � �� y 	 �� Here the graph is again the upper half of the unit circle
centered at the origin� We remark that x� � y� �  � � itself does not de�ne a real function�
� Parametric Form�

x � ��t�� y � ��t�� �����

The corresponding values of x and y are given as functions of an auxiliary variable t� which is called a
parameter� The functions ��t� and ��t� must have the same domain� This representation de�nes a real
function only if x � ��t� de�nes a one�to�one correspondence between x and t�

x � ��t�� y � ��t� with ��t� � cos t and ��t� � sin t� � � t � �� Here the graph is again the
upper half of the unit circle centered at the origin�

Remark� Functions given in parametric form sometimes do not have any explicit or implicitparameter�
free equation�

x � t � � sin t � ��t�� y � t� cos t � ��t��

Examples for Functions Given Piece by Piece�
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a) b)

Figure ��

A� y � E�x� � int�x� �  x! � n for
n � x � n �  � n integer�
The function E�x� or int�x� �read 	integer
part of x
� means the greatest integer less
than or equal to x�

B� The function y � frac�x� � x�  x!
�read 	fractional part of x
� gives the di�er�
ence of x and  x! �Fig ��b�� Fig ��a�b
shows the corresponding graphical repre�
sentations� where the arrow�heads mean
that the endpoints do not belong to the
curves�
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a) b)

Figure ���

C� y �
�

x for x � ��
x� for x 	 ��

�Fig ��a��

D� y � sign�x� �

���
� for x � ��

� for x � ��
� for x � ��

�Fig ��b�� By sign�x� �read 	signum
x
�� we denote the sign function�

����� CertainTypes of Functions

������� Monotone Functions
If a function satis�es the relations

f�x�� 	 f�x�� or f�x�� � f�x��� ����a�

for arbitrary arguments x� and x� with x� � x� in its do�
main� then it is called monotonically increasing or mo�
notonically decreasing �Fig ��a�b��

y

0 xx1 x2

y

0 xx1 x2

a) b)

Figure ���

If one of the above relations ����a� does not hold for every x in the domain of the function� but it is
valid� e�g�� in an interval or on a half�axis� then the function is said to be monotonic in this domain�
Functions satisfying the relations

f�x�� � f�x�� or f�x�� � f�x��� �����
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i�e�� when the equality never holds in ����a�� are called strictly monotonically increasing or strictly mono�
tonically decreasing� In Fig ��a there is a representation of a strictly monotonically increasing func�
tion� in Fig ��b there is the graph of a monotonically decreasing function being constant between x�
and x��

y � e�x is strictly monotonically decreasing� y � lnx is strictly monotonically increasing�

������� Bounded Functions
A function is said to be bounded above if there is a number �called an upper bound� such that the values
of the function never exceed it� A function is called bounded below if there is a number �called a lower
bound� such that the values of the function are never less than this number� If a function is bounded
above and below� we simply call it bounded� �If a function has one upper bound� obviously it has an
in�nite number of upper bounds� all numbers greater than this one� It can be proven that among the
upper bounds there is always a smallest� the so�called least upper bound� Similar statements are valid
for lower bounds��

A� y � � x� is bounded above �y � �� B� y � ex is bounded below �y � ���

C� y � sinx is bounded �� � y � ��� D� y �
�

 � x�
is bounded �� � y � ���

������� Even Functions
Even functions �Fig ��a� satisfy the relation

f��x� � f�x�� ����a�

If D is the domain of f � then

�x � D�� ��x � D� ����b�

should hold�

A� y � cos x� B� y � x� � �x� � �

������� Odd Functions

0 x

y y

x0
a) b)

Figure ���

Odd functions �Fig ��b� satisfy the relation

f��x� � �f�x�� ����a�

If D is the domain of f � then

�x � D�� ��x � D� ����b�

should hold�

A� y � sin x� B� y � x� � x�

������� Representation with Even andOdd Functions
If for the domain D of a function f the condition 	from x � D it follows that �x � D
 holds� then f
can be written as a sum of an even function g and an odd function u�

f�x� � g�x� � u�x� with g�x� �


�
 f�x� � f��x�! � u�x� �



�
 f�x�� f��x�! � �����

f�x� � ex �


�

�
ex � e�x

	
�



�

�
ex � e�x

	
� cosh x � sinh x �see ����� p� ����

������� Periodic Functions
Periodic functions satisfy the relation

f�x � T � � f�x�� T const� T �� �� ����

Obviously� if the above equality holds for some T � it holds for
any integer multiple of T � The smallest positive number T sat�
isfying the relation is called the period �Fig ����

y
T

T x0

Figure ���
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������	 Inverse Functions
If the function y � f�x� is a one�to�one function� i�e�� if x�� x� � D and x� �� x�� then f�x�� �� f�x���
then there is a function y � ��x� such that for every pair of values �a� b� satisfying the equality b � f�a��
the equality a � ��b� will be valid� and for every pair of values for which a � ��b� holds� b � f�a� will
be valid� The functions

y � ��x� and y � f�x� �����

are inverse functions of each other� Obviously� every strictly monotonic function has an inverse func�
tion�

The graph of an inverse function y � ��x� is obtained by re�ection of the graph of y � f�x� with
respect to the line y � x �Fig ����
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Examples of Inverse Functions�

A� y � f�x� � x� with D � x 	 �� W � y 	 ��
y � ��x� �

p
x with D � x 	 �� W � y 	 ��

B� y � f�x� � ex with D � �� � x ��� W � y � ��
y � ��x� � lnx with D � x � �� W � �� � y ���

C� y � f�x� � sin x with D � ���� � x � ���� W � � � y � �
y � ��x� � arcsin x with D � � � x � � W � ���� � y � ����

In order to get the explicit form of the inverse function of y � f�x� we exchange x and y in the expression�
then from the equation x � f�y� we express y� so we have y � ��x�� The representations y � f�x� and
x � ��y� are equivalent� Therefore� we have two important formulas

f���y�� � y and ��f�x�� � x� �����

����� Limits of Functions

������� De�nition of the Limit of a Function
The function y � f�x� has the limit A at x � a

lim
x�a

f�x� � A or f�x� A for x a� �����

if as x approaches the value a in�nitely closely� the value of f�x� approaches the value A in�nitely
closely� The function f�x� does not have to be de�ned at a� and even if de�ned� it does not matter
whether f�a� is equal to A�

Precise De�nition� The limit ����� exists� if for any given positive number � there is a positive
number � such that for every x �� a belonging to the domain and satisfying the inequality

jx� aj � �� ����a�
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the inequality

jf�x�� Aj � � ����b�

holds eventually with the expection of the point a �Fig ����
If a is an endpoint of a connected region� then the inequality
jx� aj � � is reduced either to a� � � x or to x � a � ��

������� De�nition by Limit of Sequences �see
������ p� ���	
A function f�x� has the limit A at x � a if for every sequence

y

x0 a

A

A+�

A−�

a−� a+�

Figure ���

x�� x�� � � � � xn� � � � of the values of x from the domain and converging to a �but being not equal to a�� the
sequence of the corresponding values of the function f�x��� f�x��� � � � � f�xn�� � � � converges to A�

������� CauchyCondition for Convergence
A necessary and su�cient condition for a function f�x� to have a limit at x � a is that for any two
values x� �� a and x� �� a belonging to the domain and being close enough to a� the values f�x�� and
f�x�� are also close enough to each other�
Precise De�nition� A necessary and su�cient condition for a function f�x� to have a limit at x � a
is that for any given positive number � there is a positive number � such that for arbitrary values x�
and x� belonging to the domain and satisfying the inequalities

� � jx� � aj � � and � � jx� � aj � �� ����a�

the inequality

jf�x��� f�x��j � � ����b�

holds�

������� In�nity as a Limit of a Function
The symbol

lim
x�a
jf�x�j �� �����

means that as x approaches a� the absolute value jf�x�j does not have an upper bound� and the closer
we are to a� the larger is its greatest lower bound�
Precise De�nition� The equality ����� holds if for any given positive number K there is a positive
number � such that for any x �� a from the interval

a� � � x � a � � ����a�

the corresponding value of jf�x�j is larger than K�

jf�x�j � K � ����b�

If all the values of f�x� in the interval

a� � � x � a � � ����c�

are positive� we write

lim
x�a

f�x� � ��� ����d�

if they are negative� we write

lim
x�a

f�x� � ��� ����e�

������� Left�Hand andRight�Hand Limit of a Function
A function f�x� has a left�hand limit A� at x � a� if as x tends to a from the left� the value f�x� tends
to A��

A� � lim
x�a��

f�x� � f�a� ��� ����a�
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Similarly� a function has a right�hand limit A� if as x tends to a from the right� the value f�x� tends to
A��

A� � lim
x�a��

f�x� � f�a � ��� ����b�

The equality lim
x�a

f�x� � A is valid only if the left�hand and

right�hand limits exist� and they are equal�

A� � A� � A� ����c�

The function f�x� �


 � e
�

x��
tends to di�erent values from

the left and from the right forx � f���� � � f���� � �
�Fig ����
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������� Limit of a Function as xTends to In�nity

Case a� A number

A � lim
x��� f�x� �����a�

is called the limit of a function f�x� as x  ��� if for any given positive number � there is a number
N � � such that for every x � N � the corresponding value f�x� is in the interval A�� � f�x� � A�� �
Analogously

A � lim
x��� f�x� �����b�

is the limit of a function f�x� as x �� if for any given positive number � there is a positive number
N � � such that for any x � �N the corresponding value of f�x� is in the interval A�� � f�x� � A���

A� lim
x���

x � 

x
� � B� lim

x���
x � 

x
� � C� lim

x��� ex � ��

Case b� Assume that for any positive number K� there is a positive number N such that if x � N or
x � �N then the absolute value of the function is larger then K� In this case we write

lim
x��� jf�x�j �� or lim

x��� jf�x�j ��� �����c�

A� lim
x���

x� � 

x�
� ��� B� lim

x���
x� � 

x�
� ���

C� lim
x���

� x�

x�
� ��� D� lim

x���
� x�

x�
� ���

������	 Theorems About Limits of Functions

� Limit of a Constant Function The limit of a constant function is the constant itself�

lim
x�a

A � A� �����

� Limit of a Sum or a Di	erence If among a �nite number of functions each has a limit� then the
limit of their sum or di�erence is equal to the sum or di�erence of their limits �if this last expression
does not contain�����

lim
x�a

 f�x� � ��x�� ��x�! � lim
x�a

f�x� � lim
x�a

��x�� lim
x�a

��x� � ������

� Limit of Products If among a �nite number of functions each has a limit� then the limit of their
product is equal to the product of their limits �if this last expression does not contain a � � � type��

lim
x�a

 f�x���x���x�! �


lim
x�a

f�x�
� 


lim
x�a

��x�
� 


lim
x�a

��x�
�
� ������
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� Limit of a Quotient The limit of the quotient of two functions is equal to the quotient of their
limits� in the case when both limits exist and the limit of the denominator is not equal to zero �and this
last expression is not an��� type��

lim
x�a

f�x�

��x�
�

lim
x�a

f�x�

lim
x�a

��x�
� ������

Also if the denominator is equal to zero� we can usually tell if the limit exists or not� checking the sign
of the denominator �the indeterminate form is ����� Similarly� we can calculate the limit of a power by
taking a suitable power of the limit �if it is not a ��� �� or�� type��

� Pinching If the values of a function f�x� lie between the values of the functions ��x� and ��x��
i�e�� ��x� � f�x� � ��x�� and if lim

x�a
��x� � A and lim

x�a
��x� � A hold� then f�x� has a limit� too� and

lim
x�a

f�x� � A� ������

������� Calculation of Limits
The calculation of the value of a limit can be made by using the following transformations and the
theorems of �������

�� Suitable Transformations
We transform the expression into a form such that we can tell the limit� There are several types of
recommended transformations in di�erent cases� we show three of them�

A� lim
x��

x� � 

x� 
� lim

x��
�x� � x � � � ��

B� lim
x��

p
 � x� 

x
� lim

x��

�
p

 � x� ��
p

 � x � �

x�
p

 � x � �
� lim

x��

p
 � x � 

�


�
�

C� lim
x��

sin �x

x
� lim

x��

��sin �x�

�x
� � lim

�x��

sin �x

�x
� � � Here we refer to the well�known theorem

lim
���

sin�

�
� �

�� Bernoulli�l�Hospital Rule

In the case of indeterminate forms like
�

�
�
�
� � � � � � � � � � �� � �� � �� one often applies the

Bernoullil�Hospital rule �usually called l�Hospital rule for short��
Suppose lim

x�a
��x� � � and lim

x�a
��x� � � or lim

x�a
��x� � � and lim

x�a
��x� � �� and suppose that there

is an interval containing a such that the functions ��x� and ��x� are de�ned and di�erentiable in this

interval except perhaps at a� and ���x� �� � in this interval� and lim
x�a

���x�

���x�
exists� Then

lim
x�a

f�x� � lim
x�a

��x�

��x�
� lim

x�a

���x�

���x�
� ������

Remark� If the limit of the ratio of the derivatives does not exist� it does not mean that the original
limit does not exist� Maybe it does� but we cannot tell this using l�Hospital�s rule�

If lim
x�a

���x�

���x�
is still an indeterminate form� and the numerator and denominator satisfy the assumptions

of the above theorem� we can again use l�Hospital�s rule�

Case a� Indeterminate Forms
�

�
or
�
� � We use the theorem after checking if the conditions are

ful�lled�
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lim
x��

ln sin �x

ln sinx
� lim

x��

� cos �x

sin �x
cos x

sinx

� lim
x��

� tanx

tan �x
� lim

x��

�

cos�x
�

cos��x

� lim
x��

cos��x

cos�x
� �

Case b� Indeterminate Form � � �� If we have f�x� � ��x���x� and lim
x�a

��x� � � and

lim
x�a

��x� �� � than in order to use l�Hospital�s rule for lim
x�a

f�x� we transform it into one of the forms

lim
x�a

��x�


��x�

or lim
x�a

��x�


��x�

� so we reduce it to an indeterminate form
�

�
or
�
� like in case a��

lim
x����

�� � �x� tanx � lim
x����

� � �x

cotx
� lim

x����

��

� 

sin�x

� � �

Case c� IndeterminateForm���� If f�x� � ��x����x� and lim
x�a

��x� �� and lim
x�a

��x� �� �

then we can transform this expression into the form
�

�
or
�
� usually in several di�erent ways� for instance

as �� � �

�


�
� 

�

��


��
� Then we proceed as in case a��

lim
x��

�
x

x� 
� 

lnx

�
� lim

x��

�
x lnx� x � 

x lnx� lnx

�
�

�

�
� Applying l�Hospital rule twice we get

lim
x��

�
x lnx� x � 

x lnx� lnx

�
� lim

x��

�BB� lnx

lnx � � 

x

�CCA � lim
x��

�BB�


x


x
�



x�

�CCA �


�
�

Case d� Indeterminate Forms �� � �� � ��� If f�x� � ��x���x� and lim
x�a

��x� � � and lim
x�a

��x� �

�� then we �rst �nd the limit A of ln f�x� � ��x� ln��x�� which has the form � � � �case b��� then we
can �nd the value eA�

The procedures in the cases�� and � are similar�

lim
x��

xx � X� lnxx � x lnx� lim
x��

x lnx � lim
x��

lnx

x��
� lim

x��
��x� � �� i�e�� A � lnX � ��

so X � � and �nally lim
x��

xx � �

�� Taylor Expansion

Besides l�Hospital�s rule the expansion of functions of indeterminate form into Taylor series can be
applied �see ������� p� �����

lim
x��

x� sinx

x�
� lim

x��

x�
�
x� x�

�$
�

x�

�$
� � � �

�
x�

� lim
x��

�


�$
� x�

�$
� � � �

�
�



�
�

������ Order ofMagnitude of Functions and LandauOrder Symbols

Comparing two functions� we often consider their mutual behavior with respect to a certain argument
x � a� It is also convenient to compare the order of magnitude of the functions�

� A function f�x� tends to in�nity with a higher order than a function g�x� at a if the quotient

�����f�x�

g�x�

�����
and the absolute values of f�x� exceed any limit as x tends to a�
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� A function f�x� tends to zero with a higher order than a function g�x� at a if the absolute values of

f�x�� g�x� and the quotient
f�x�

g�x�
tends to zero as x tends to a�

� Two functions f�x� and g�x� tend to zero or to in�nity by the same order �or order of magnitude�

at a if � � m �

�����f�x�

g�x�

����� � M holds for the absolute value of their quotient as x tends to a� where M is

a �nite number�

� Landau Order Symbols The mutual behavior of two functions at a point x � a can be described
by the Landau order symbols O �	big O
�� or o �	small o
� as follows� If x a then

f�x� � O�g�x�� means that lim
x�a

f�x�

g�x�
� A �� �� A � const� �����a�

and

f�x� � o�g�x�� means that lim
x�a

f�x�

g�x�
� �� �����b�

where a � �� is also possible� The Landau order symbols have meaning only if we assume the x tends
to a given a�

A� sin x � O�x� for x  � � because with f�x� � sin x and g�x� � x we have� lim
x��

sinx

x
�  �� ��

i�e�� sin x behaves like x in the neighborhood of x � ��

B� For f�x� � � cos x and g�x� � sin x the function f�x� vanishes with a higher order than g�x��

lim
x��

�����f�x�

g�x�

����� � lim
x��

����� cos x

sin x

���� � �� i�e�� � cos x � o�sinx� for x ��

C� f�x� and g�x� vanish by the same order for f�x� � � cos x� g�x� � x� �

lim
x��

�����f�x�

g�x�

����� � lim
x��

����� cos x

x�

���� �


�
� i�e�� � cos x � O�x�� for x ��

� Polynomial The order of magnitude of polynomials at �� can be expressed by their degree� So
the function f�x� � x has order � a polynomial of degree n �  has an order higher by one than a
polynomial of degree n�

� Exponential Function The exponential function tends to in�nity more quickly than any high
power xn �n is a �xed positive number��

lim
x��

���� exxn
���� ��� �����a�

The proof follows by applying l�Hospital�s rule for a natural number n�

lim
x��

ex

xn
� lim

x��
ex

nxn��
� � � � � lim

x��
ex

n$
��� �����b�

� Logarithmic Function The logarithm tends to in�nity more slowly than any small positive power
x� �� is a �xed positive number��

lim
x��

����� log x

x�

����� � �� ������

The proof is with the help of l�Hospital�s rule�



��� Notion of Functions ��

����� Continuity of a Function

������� Notion of Continuity andDiscontinuity

Most functions occurring in practice are continuous� i�e�� for small
changes of the argument x a continuous function y�x� changes
also only a little� The graphical representation of such a func�
tion results in a continuous curve� If the curve is broken at some
points� the corresponding function is discontinuous� and the val�
ues of the arguments where the breaks are� are the points of dis�
continuity� Fig �
 shows the curve of a function� which is piece�
wise continuous� The points of discontinuity are A� B� C� D� E� F
and G � The arrow�heads show that the endpoints do not belong
to the curve�

������� De�nition of Continuity
A function y � f�x� is called continuous at the point x � a if

y

x0 A
B

C D E F G

Figure ���

� f�x� is de�ned at a�
� the limit lim

x�a
f�x� exists and is equal to f�a��

This is exactly the case if for an arbitrary � � � there is a 	��� � � such that

jf�x�� f�a�j � � for every x with jx� aj � 	 ������

holds�
We also talk about one�sided �left� or right�hand sided� continuity� if instead of lim

x�a
f�x� � f�a� we

consider only the one�sided limit lim
x�a�� f�x� or lim

x�a��
f�x� and this is equal to the substitution value

f�a��

If a function is continuous for every x in a given interval froma to b� then the function is called continuous
in this interval� which can be open� half�open� or closed �see ����� �� p� ��� If a function is de�ned
and continuous at every point of the numerical axis� it is said to be continuous everywhere�
A function has a point of discontinuity at x � a� which is an interior point or an endpoint of its domain�
if the function is not de�ned here� or f�a� is not equal to the limit lim

x�a
f�x�� or the limit does not exist�

If the function is de�ned only on one side of x � a� e�g�� �
p
x for x � � and arccos x for x �  � then it

is not a point of discontinuity but it is a termination�
A function f�x� is called piecewise continuous� if it is continuous at every point of an interval except at
a �nite number of points� and at these points it has �nite jumps�

������� Most Frequent Types of Discontinuities

�� Values of the Function Tend to In�nity
The most frequent discontinuity is if the function tends to �� �points B� C� and E in Fig �
��

A� f�x� � tan x� f
�
�

�
� �
�

� ��� f
�
�

�
� �
�

� ��� The type of discontinuity �see Fig ����

p� ��� is the same as at E in Fig �
� For the meaning of the symbols f�a� ��� f�a � �� see �������
p� ���

B� f�x� �


�x� ��
� f�� �� � ��� f� � �� � ��� The type of discontinuity is the same as at

the point B in Fig �
�

C� f�x� � e
�

x�� � f� � �� � �� f� � �� � �� The type of discontinuity is the same as at C in
Fig �
� with the di�erence that this function f�x� is not de�ned at x � �



�� �� Functions

�� Finite Jump
Passing through x � a the function f�x� jumps from a �nite value to another �nite value �like at the
points A� F � G in Fig �
� p� ���� The value of the function f�x� for x � a may not be de�ned here�
as at point G� or it can coincide with f�a � �� or with f�a � �� �point F �� or it can be di�erent from
f�a� �� and f�a � �� �point A��

A� f�x� �


 � e
�

x��
� f�� �� � � f� � �� � � �Fig ��� p� ����

B� f�x� � E�x� �Fig ��c� p� ��� f�n� �� � n� � f�n � �� � n �n integer��

C� f�x� � lim
n��



 � x�n
� f�� �� � � f� � �� � �� f�� �



�
�

�� Removable Discontinuity
If it happens that lim

x�a
f�x� exists� i�e�� f�a � �� � f�a � ��� but either the function is not de�ned for

x � a or f�a� �� lim
x�a

f�x� �point D in Fig �
� p� ���� this type of discontinuity is called removable�

because de�ning f�a� � lim
x�a

f�x� the function becomes continuous here� We add only one point to

the curve� or we change the place only of one point at D� The di�erent indeterminate expressions for
x � a� which have a �nite limit examined by l�Hospital�s rule or with other methods� are examples of
removable discontinuities�

f�x� �

p
 � x� 

x
is an undetermined

�

�
expression for x � �� but lim

x��
f�x� �



�
� the function

f�x� �

���������������

p
 � x� 

x
for x �� �



�
for x � �

is continuous�

������� Continuity andDiscontinuity of Elementary Functions
The elementary functions are continuous on their domains� the points of discontinuity do not belong
to their domain� We have the following theorems�
� Polynomials are continuous everywhere�

� Rational Functions
P �x�

Q�x�
with polynomials P �x� and Q�x� are continuous everywhere except

the points x� where Q�x� � �� If at x � a� Q�a� � � and P �a� �� �� the function tends to �� on
both sides of a� we call this point a pole� The function also has a pole if P �a� � �� but a is a root of
the denominator with higher multiplicity than for the numerator �see ������ �� p� ���� Otherwise the
discontinuity is removable�
� Irrational Functions Roots of polynomials are continuous for every x in their domain� At the end
of the domain they can terminate by a �nite value if the radicand changes its sign� Roots of rational
functions are discontinuous for such values of x where the radicand is discontinuous�
� Trigonometric Functions The functions sinx and cos x are continuous everywhere� tanx and

sec x have in�nite jumps at the points x �
��n � ��

�
� the functions cot x and cosec x have in�nite

jumps at the points x � n� �n integer��
� Inverse Trigonometric Functions The functions arctanx and arccot x are continuous every�
where� arcsin x and arccos x terminate at the end of their domain because of � � x � �� and they
are continuous here from one side�
� Exponential Functions ex or ax with a � � They are continuous everywhere�



��� Notion of Functions �


� Logarithmic Function log xwith Arbitrary Positive Base The function is continuous for all
positive x and terminates at x � � because of lim

x���
log x � �� by a right�sided limit�

� Composite Elementary Functions The continuity is to be checked for every point x of every
elementary function containing in the composition �see also continuity of composite functions in �������
�� p� ����

Find the points of discontinuity of the function y �
e

�
x��

x sin �
p

� x
� The exponent



x� �
has an

in�nite jump at x � �� for x � � also e
�

x�� has an in�nite jump�
�
e

�
x��
�
x����

� ��
�
e

�
x��
�
x����

���

The function y has a �nite denominator at x � �� Consequently� at x � � there is an in�nite jump of
the same type as at point C in Fig �
� p� ���

For x � � the denominator is also zero� just like for the values of x� for which sin �
p

� x is equal to

zero� These last ones correspond to the roots of the equation �
p

� x � n� or x � � n���� where n
is an arbitrary integer� The numerator is not equal to zero for these numbers� so at the points x � ��
x � � x �  � ��� x �  � ���� x �  � ����� � � � the function has the same type of discontinuity as
the point E in Fig �
� p� ���

������� Properties of Continuous Functions

�� Continuity of Sum� Di
erence� Product and Quotient of Continuous Functions
If f�x� and g�x� are continuous on the interval  a� b!� then f�x�� g�x� � f�x� g�x� are also continuous�

and if g�x� �� � on this interval� then
f�x�

g�x�
is also continuous�

�� Continuity of Composite Functions y � f�u�x�	
If u�x� is continuous at x � a and f�u� is continuous at u � u�a� then the composite function y �
f�u�x�� is continuous at x � a� and

lim
x�a

f�u�x�� � f
�

lim
x�a

u�x�
�

� f�u�a�� �����

is valid� This means that a continuous function of a continuous function is also continuous�

Remark� The converse sentence is not valid� It is possible that the composite function of discontinuous
functions is continuous�

�� Bolzano Theorem
If a function f�x� is continuous on a �nite closed interval  a� b!� and f�a� and f�b� have di�erent signs�
then f�x� has at least one root in this interval� i�e�� there exists at least one interior point of this interval
c such that�

f�c� � � with a � c � b� ������

The geometric interpretation of this statement is that the graph of a continuous function can go from
one side of the x�axis to the other side only if the curve has an intersection point with the x�axis�

�� Intermediate Value Theorem
If a function f�x� is continuous on a connected domain� and at two points a and b of this domain� where
a � b� it has di�erent values A and B� i�e��

f�a� � A� f�b� � B� A �� B� �����a�

then for any value C between A and B there is at least one point c between a and b such that

f�c� � C� �a � c � b� A � C � B or A � C � B�� �����b�

In other words� The function f�x� takes every value between A and B on the interval �a� b� at least
once� Or� The continuous image of an interval is an interval�



�� �� Functions

�� Existence of an Inverse Function
If a one�to�one function is continuous on an inter�
val� it is strictly monotone on this interval�
If a function f�x� is continuous on a connected do�
main I� and it is strictly monotone increasing or de�
creasing� then for this f�x� there also exists a con�
tinuous� strictly monotone increasing or decreas�
ing inverse function ��x� �see also ������� p� ���
which is de�ned on domain II given by the substi�
tution values of f�x� �Fig �����

y

0 x

�
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)

f(x)

II

I

y

0 x
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f(x)

�(x)

a) b)

Figure ���

Remark� In order to make sure that the inverse function of f�x� is continuous� f�x� must be continuous
on an interval� If we suppose only that the function is strictly monotonic on an interval� and continuous
at an interior point c� and f�c� � C� then the inverse function exists� but may be not continuous at C�

� Theorem About the Boundedness of a Function
If a function f�x� is continuous on a �nite� closed interval  a� b! then it is bounded on this interval� i�e��
there exist two numbers m and M such that

m � f�x� �M for a � x � b � ������

�� Weierstrass Theorem
If the function f�x� is continuous on the �nite� closed interval  a� b! then f�x� has an absolute maximum
M and an absolute minimum m� i�e�� there exists in this interval at least one point c and at least one
point d such that for all x with a � x � b�

m � f�d� � f�x� � f�c� � M� ������

The di�erence between the greatest and smallest value of a continuous function is called its variation
in the given interval� The notion of variation can be extended to the case when the function does not
have any greatest or smallest value�

��� ElementaryFunctions
Elementary functions are de�ned by formulas containing a �nite number of operations on the indepen�
dent variable and constants� The operations are the four basic arithmetical operations� taking powers
and roots� the use of an exponential or a logarithm function� or the use of trigonometric functions or
inverse trigonometric functions� We distinguish algebraic and transcendental elementary functions�
As another type of function� we can de�ne the non�elementary functions �see for instance ������ p� �����

����� Algebraic Functions
In an algebraic function the argument x and the function y are connected by an algebraic equation� It
has the form

p��x� � p��x�y � p��x�y� � � � � � pn�x�yn � � ������

where p�� p��� � � � pn are polynomials in x�

�xy� � �xy � x� �  � � � i�e�� p��x� � x� �  � p��x� � ��x � p��x� � � � p��x� � �x �

If it is possible to solve an algebraic equation ������ for y� then we have one of the following types of
the simplest algebraic functions�

������� Polynomials
We perform only addition� subtraction and multiplication on the argument x�

y � anx
n � an��xn�� � � � � � a�� ������

In particular we distinguish y � a as a constant� y � ax � b as a linear function� and y � ax� � bx � c
as a quadratic function�



��� Elementary Functions ��

������� Rational Functions

A rational function can always be written in the form of the ratio of two polynomials�

y �
anx

n � an��xn�� � � � � � a�
bmxm � bm��xm�� � � � � � b�

� �����a�

The special case

y �
ax � b

cx � d
�����b�

is called a homographic or linear fractional function�

������� Irrational Functions

Besides the operations enumerated for rational functions� the argument x also occurs under the radical
sign�

A� y �
p

�x � � � B� y � �

q
�x� � �

p
x �

����� Transcendental Functions

Transcendental functions cannot be given by an algebraic equation like ������� We introduce the sim�
plest elementary transcendental functions in the following�

������� Exponential Functions

The variable x or an algebraic function of x is in the exponent of a constant base �see ����� p� ���

A� y � ex� B� y � ax� C� y � ��x
���x�

������� Logarithmic Functions

The function is the logarithm with a constant base of the variable x or an algebraic function of x �see
������ p� ���

A� y � lnx � B� y � lg x � C� y � log���x
� � �x� �

������� Trigonometric Functions

The variable x or an algebraic function of x occurs under the symbols sin� cos� tan� cot� sec� cosec �see
���� p� ����

A� y � sin x� B� y � cos��x � ��� C� y � tan
p
x�

In general� the argument of a trigonometric function is not only an angle or a circular arc as in the
geometric de�nition� but an arbitrary quantity� The trigonometric functions can be de�ned in a purely
analytic way without any geometry� For instance we can represent them by an expansion in a series�

or� e�g�� the sin function as the solution of the di�erential equation
d�y

dx�
� y � � with the initial values

y � � and
dy

dx
�  at x � �� The numerical value of the argument of the trigonometric function is equal

to the arc in units of radians� When we deal with trigonometric functions� the argument is considered
to be given in radian measure�

������� Inverse Trigonometric Functions

The variable x or an algebraic function of x is in the argument of the inverse trigonometric functions
�see ���� p� ��� arcsin� arccos� etc�



�� �� Functions

A� y � arcsin x� B� y � arccos
p

� x �

������� Hyperbolic Functions
�see ���� p� ����

������� Inverse Hyperbolic Functions
�see ���� p� ���

����� Composite Functions
Composite functions are all possible compositions of the above algebraic and transcendental functions�
i�e�� if a function has another function as an argument�

A� y � ln sin x� B� y �
lnx �

p
arcsinx

x� � �ex
�

Such composition of a �nite number of elementary functions again yields an elementary function� The
examples C in the previous types of functions are also composite functions�

��� Polynomials

����� Linear Function
The graph of the linear function

y � ax � b ������

�polynomial of degree � is a line �Fig ���a��
For a � � the function is monotone increasing� for a � � it is monotone decreasing� for a � � it is a

polynomial of degree zero� i�e�� it is a constant function� The intercepts are at A

�
� b

a
� �

�
and B��� b�

�for details see �������� �� p� ���� With b � � we have direct proportionality

y � ax� ������

graphically it is a line running through the origin �Fig ���b��
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����� Quadratic Polynomial
The polynomial of second degree

y � ax� � bx � c �����

�quadratic polynomial� de�nes a parabola with a vertical axis of symmetry at x � � b

�a
�Fig �����

For a � � the function is �rst decreasing� it has a minimum� then it is increasing again� For a � � �rst



��	 Polynomials ��

it is increasing� it has a maximum� then it is decreasing again� The intersection points A�� A� with the

x�axis� if any� are at

��b�pb� � �ac

�a
� �

�
� the intersection point B with the y�axis is at ��� c�� The

extremum point of the curve is at C

�
� b

�a
�

�ac� b�

�a

�
�for more details about the parabola see ��������

p� �����
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����� Cubic Polynomials
The polynomial of third degree

y � ax� � bx� � cx � d ������

de�nes a cubic parabola �Fig ���a�b�c�� Both the shape of the curve and the behavior of the function
depend on a and the discriminant % � �ac � b�� If % 	 � holds �Fig ���a�b�� then for a � � the
function is monotonically increasing� and for a � � it is decreasing� If % � � the function has exactly
one local minimum and one local maximum �Fig ���c�� For a � � the value of the function rises from
�� until the maximum� then falls until the minimum� then it rises again to ��� for a � � the value
of the function falls from �� until the minimum� then rises until the maximum� then it falls again to
��� The intersection points with the x�axis are at the values of the real roots of ������ for y � �� The
function can have one� two �then there is a point where the x�axis is the tangent line of the curve� or
three real roots� A�� A� and A�� The intersection point with the y�axis is at B��� d�� the extreme points

of the curve C and D� if any� are at

�
�b�p�%

�a
�
d � �b� � �abc� ��ac� �b��

p�%

��a�

�
�

The in�ection point which is also the center of symmetry of the curve is at E

�
� b

�a
�

�b� � �abc

��a�
� d

�
�

At this point the tangent line has the slope tan� �

�
dy

dx

�
E

�
%

�a
�

����� Polynomials of n�thDegree
The integral rational function of n�th degree

y � anx
n � an��xn�� � � � � � a�x � a� ������

de�nes a curve of n�th degree or n�th order �see �������� �� p� ��� of parabolic type �Fig �����

Case �� n odd� For an � � the value of y changes continuously from �� to ��� and for an � �
from �� to ��� The curve can intersect or contact the x�axis up to n times� and there is at least one
intersection point �for the solution of an equation of n�th degree see ������ p� �� and ����� p� �����
The function ������ has none or an even number up to n �  of extreme values� where minima and
maxima occur alternately� the number of in�ection points is odd and is between  and n � �� There
are no asymptotes or singularities�

Case �� n even� For an � � the value of y changes continuously from �� through its minimum
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until �� and for an � � from�� through its maximum until��� The curve can intersect or contact
the x�axis up to n times� but it is also possible that it never does that� The number of extrema is odd�
and maxima and minima alternate� the number of in�ection points is even� and it can also be zero�
There are no asymptotes or singularities�
If we want to sketch the graph of a function� it is recommended �rst to determine the extreme points�
the in�ection points� the values of the �rst derivative at these points� then to sketch the tangent lines
at these points� and �nally to connect these points continuously�

����� Parabola of n�thDegree
The graph of the function

y � axn ������

where n � �� integer� is a parabola of n�th degree� or of n�th order �Fig �����

� Special Case a� �� The curve y � xn goes through the point ��� �� and �� � and contacts or
intersects the x�axis at the origin� For even n we have a curve symmetric with respect to the y�axis�
and with a minimum at the origin� For odd n the curve is symmetric with respect to the origin� and it
has an in�ection point there� There is no asymptote�

� General Case a �� �� We get the curve of y � axn from the curve of y � xn by stretching the
ordinates by the factor jaj� For a � � we re�ect y � jajxn with respect to the x�axis�

��� Rational Functions
����� SpecialFractionalLinearFunction�InverseProportionality

The graph of the function

y �
a

x
������

is an equilateral hyperbola� whose asymptotes are the coordinate axes �Fig ����� The point of dis�
continuity is at x � � with y � ��� If a � � holds� then the function is strictly monotone decreasing
in the interval ���� �� with values from � to�� and also strictly monotone decreasing in the interval
������ with values from �� to � �curve in the �rst and third quadrants�� If a � �� then the func�
tion is increasing in the interval ��� � �� with values from � to �� and also increasing in the interval
������ with values from �� to � �dotted curve in the second and fourth quadrants�� The vertices A
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and B are at
�
�
q
jaj��

q
jaj
	

and
�
�
q
jaj��

q
jaj
	

with the same sign for a � � and with di�erent sign

for a � �� There are no extrema �for more details about hyperbolas see �������� p� �����
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����� Linear Fractional Function
The graph of the function

y �
a�x � b�
a�x � b�

������

is an equilateral hyperbola� whose asymptotes are parallel to the coordinate axes �Fig �����

The center is at C

�
� b�

a�
�
a�
a�

�
� The parameter a in the equality ������ corresponds here to � %

a��

with % �

�����a�a� b�b�
����� � The vertices of the hyperbola A and B are at

���b� �
q
j%j

a�
�
a� �

q
j%j

a�

�A and

���b� �
q
j%j

a�
�

a� �
q
j%j

a�

�A� where for % � � we take the same signs� for % � � di�erent ones� The

point of discontinuity is at x � � b�
a�

� For % � � the values of the function are decreasing from
a�
a�

to

�� and from �� to
a�
a�

� For % � � the values of the function are increasing from
a�
a�

to �� and from

�� to
a�
a�

� There is no extremum�

����� Curves of ThirdDegree� Type I
The graph of the function

y � a �
b

x
�

c

x�

�
�

ax� � bx � c

x�

�
�b �� �� c �� �� ������

�Fig ���� is a curve of third degree �type I�� It has two asymptotes x � � and y � a and it has two
branches� One of them corresponds to the monotone changing of y while it takes its values between a
and �� or��� the other branch goes through three characteristic points� the intersection point with

the asymptote y � a at A
�
�c

b
� a
�

� an extreme point at B

�
��c

b
� a� b�

�c

�
and an in�ection point at

C

�
��c

b
� a� �b�

�c

�
� The positions of the branches depend on the signs of b and c� and there are four

cases �Fig ����� The intersection points D� E with the x�axis� if any� are at

��b�pb� � �ac

�a
� �

�
�



�� �� Functions

their number can be two� one �the x�axis is a tangent line� or none� depending on whether b� � �ac �
�� � � or � � holds�

For b � � the function ������ becomes the function y � a �
c

x�
�see �Fig ���� the reciprocal power��

and for c � � it becomes the homographic function y �
ax � b

x
� as a special case of �������
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����� Curves of ThirdDegree� Type II

The graph of the function

y �


ax� � bx � c
������

is a curve of third degree �type II� which is symmetric about the vertical line x � � b

�a
and the x�axis is

its asymptote �Fig ��
�� because lim
x��� y � �� Its shape depends on the signs of a and % � �ac� b��

From the two cases a � � and a � � we consider only the �rst one� because re�ecting the curve of

y �


��a�x� � bx � c
with respect to the x�axis we get the second one�

Case a� � � �� The function is positive and continuous for arbitrary values of x and it is increasing

on the interval ��� �� b

�a
�� Here it takes its maximum�

�a

%
� then it is decreasing again in the interval

�� b

�a
���� The extreme point A of the curve is at

�
� b

�a
�

�a

%

�
� the in�ection points B and C are at�

� b

�a
�
p

%

�a
p

�
�

�a

%

�
� and for the corresponding slopes of the tangent lines �angular coe�cients � we



��
 Rational Functions ��

get tan� � �a�
�

�

%

����
�Fig ��
a��

Case b� � � �� The function is positive for arbitrary values of x� its value rises from � to ��� at

x � � b

�a
� x� it has a point of discontinuity �a pole�� where lim

x�x�
y � ��� Then its value falls from

here back to � �Fig ��
b��

Case c� � � �� The value of y rises from � to ��� at the point of discontinuity it jumps to ���
and rises to the maximum� then falls back to ��� at the other point of discontinuity it jumps to ���

then it falls to �� The extreme point A of the curve is at

�
� b

�a
�

�a

%

�
� The points of discontinuity are

at x �
�b�p�%

�a
�Fig ��
c��
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����� Curves of ThirdDegree� Type III
The graph of the function

y �
x

ax� � bx � c
������

is a curve of third degree �type III� which goes through the origin� and has the x�axis �Fig ���� as an
asymptote� The behavior of the function depends on the signs of a and of % � �ac� b�� and for % � �
also on the signs of the roots � and � of the equation ax� � bx � c � �� and for % � � also on the sign
of b� From the two cases� a � � and a � �� we consider only the �rst one because re�ecting the curve

of y �
x

��a�x� � bx� c
with respect to the x�axis we get the second one�

Case a� � � �� The function is continuous everywhere� its value falls from � to the minimum� then
rises to the maximum� then falls again to ��

The extreme points of the curve� A and B� are at
�
�
r

c

a
�
�b� �

p
ac

%

�
� there are three in�ection

points �Fig ���a��

Case b� � � �� The behavior of the function depends on the sign of b� so we have two cases� In both

cases there is a point of discontinuity at x � � b

�a
� both curves have one in�ection point�

� b � �� The value of the function falls from � to��� the function has a point of discontinuity� then the
value of the function rises from�� to the maximum� then decreases to � �Fig ���b��� The extreme

point A of the curve is at A

�
�

r
c

a
�



�
p
ac � b

�
�
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� b � �� The value of the function falls from � to the minimum� then rises to ��� running through the
origin� then the function has a point of discontinuity� then the value of the function falls from �� to �

�Fig ���b��� The extreme point A of the curve is at A

�
�
r

c

a
�� 

�
p
ac� b

�
�

Case c� � � �� The function has two points of discontinuity� at x � � and x � �� its behavior
depends on the signs of � and ��

� The signs of � and � are di�erent� The value of the function falls from � to ��� jumps up to ���
then falls again from �� to��� running through the origin� then jumps again up to �� � then it falls
tending to � �Fig ���c��� The function has no extremum�

� The signs of � and � are both negative� The value of the function falls from � to ��� jumps up
to �� � from here it goes through a minimum up to �� again� jumps down to �� � then rises to a
maximum� then falls tending to � �Fig ���c���
The extremum points A and B can be calculated with the same formula as in case a� of ������

� The signs of � and � are both positive� The value of the function falls from � until the minimum� then
rises to ��� jumps down to ��� then it rises to the maximum� then it falls again to ��� then jumps
up to �� and then it tends to � �Fig ���c���
The extremum points A and B can be calculated by the same formula as in case a� of ������
In all three cases the curve has one in�ection point�

����� Reciprocal Powers

The graph of the function

y �
a

xn
� ax�n �n � �� integer� ������



��� Irrational Functions �
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is a curve of hyperbolic type with the coordinate axes as asymptotes� The point of discontinuity is at
x � � �Fig �����

Case a� For a � � and for even n the value of the function rises from � to ��� then it falls tending
to �� and it is always positive� For odd n it falls from � to��� it jumps up to ��� then it falls tending
to ��

Case b� For a � � and for even n the value of the function falls from � to��� then it tends to �� and
it is always negative� For odd n it rises from � up to ��� jumps down to ��� then it tends to ��
The function does not have any extremum� The larger n is� the quicker the curve approaches the x�axis�
and the slower it approaches the y�axis� For even n the curve is symmetric with respect to the y�axis�
for odd n it is centrosymmetric and its center of symmetry is the origin� The Fig ��� shows the cases
n � � and n � � for a � �

��� Irrational Functions

����� SquareRoot of a LinearBinomial
The union of the curve of the two functions

y � �pax � b �����

is a parabola with the x�axis as the symmetry axis� The vertex A is at

�
� b

a
� �

�
� the semifocal chord

�see �������� p� ���� is p �
a

�
� The domain of the function and the shape of the curve depend on the

sign of a �Fig ���� �for more details about the parabola see �������� p� �����

����� SquareRoot of aQuadratic Polynomial
The union of the graphs of the two functions

y � �
p

ax� � bx � c ������

is for a � � an ellipse� for a � � a hyperbola �Fig ����� One of the two symmetry axes is the x�axis�

the other one is the line x � � b

�a
�

The vertices A�C and B�D are at

�
�b�p�%

�a
� �

�
and

��� b

�a
��
s

%

�a

�A� where % � �ac� b��

The domain of the function and the shape of the curve depend on the signs of a and % �Fig �����
For a � � and % � � the function has only imaginary values� so no curve exists �for more details about
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the ellipse and hyperbola see �������� p� �� and �������� p� �����

����� Power Function

We discuss the power function

y � axk � ax�m�n �m� n integer� positive� coprime� ������

for k � � and for k � � �Fig ����� We restrict our investigation for the case a � � because for a �� 
the curve di�ers from the curve of y � xk only by a stretching in the direction of y�axis by a factor jaj�
and for a negative a also by a re�ection to the x�axis�
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Figure ����

Case a� k � �� y � xm�n� The shape of the curve is represented in four characteristic cases
depending on the numbers m and n in Fig ���� The curve goes through the points ��� �� and �� ��
For k �  the x�axis is a tangent line of the curve at the origin �Fig ���d�� for k �  the y�axis is a
tangent line also at the origin�Fig ���a�b�c�� For even n we may consider the union of the graph of
functions y � �xk� it has two branches symmetric to the x�axis �Fig ���a�d�� for even m the curve
is symmetric to the y�axis �Fig ���c�� If m and n are both odd� the curve is symmetric with respect
to the origin �Fig ���b�� So the curves can have a vertex� a cusp or an in�ection point at the origin
�Fig ����� None of them has any asymptote�

Case b� k � �� y � x�m�n� The shape of the curve is represented in three characteristic cases
depending on m and n in Fig ���� The curve is a hyperbolic type curve� where the asymptotes
coincide with the coordinate axes �Fig ����� The point of discontinuity is at x � �� The greater jkj
is the quicker the curve approaches the x�axis� and the slower it approaches the y�axis� The symmetry
properties of the curves are the same as above for k � �� they depend on whether m and n are even or



��� Exponential Functions and Logarithmic Functions ��
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odd� There is no extreme value�

��� Exponential Functions andLogarithmicFunctions

����� Exponential Functions
The graphical representation of the function

y � ax � ebx �a � �� b � ln a� ������

is the exponential curve �Fig ����� For a � e we have the natural exponential curve

y � ex� ������

The function has only positive values� Its domain is the interval �������� For a � � i�e�� for b � ��
the function is strictly monotone increasing and takes its values from � until �� For a � � i�e�� for
b � �� it is strictly monotone decreasing� its value falls from� until �� The larger jbj is� the greater is
the speed of growth and decay� The curve goes through the point ��� � and approaches asymptotically
the x�axis� for b � � on the right and for b � � on the left� and more quickly for greater values of jbj�
The function y � a�x �

�


a

�x
increases for a �  and decreases for a � �
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����� Logarithmic Functions
The function

y � log ax �a � �� a �� � ������

de�nes the logarithmic curve �Fig ����� the curve is the re�ection of the exponential curve with
respect to the line y � x� For a � e we have the curve of the natural logarithm

y � lnx� ������



�� �� Functions

The real logarithmic function is de�ned only for x � �� For a �  it is strictly monotone increasing and
takes its values from�� to ��� for a �  it is strictly monotone decreasing� and takes its values from
�� to ��� and the greater j lnaj is� the quicker the growth and decay� The curve goes through the
point �� �� and approaches asymptotically the y�axis� for a �  down� for a �  up� and again more
quickly for larger values of j lnaj�

����� Error Curve
The function

y � e��ax�� ������

gives the error curve �Gauss error distribution curve� �Fig ����� Since the function is even� the y�
axis is the symmetry axis of the curve and the larger jaj is� the quicker it approaches asymptotically
the x�axis� It takes its maximum at zero� and it is equal to one� so the extreme point A of the curve is

at ��� �� the in�ection points of the curve B�C are at

�
� 

a
p

�
�

p
e

�
�

The angles of slopes of the tangent lines are here tan� � �a
q

��e �

A very important application of the error curve ������ is
the description of the normal distribution properties of the
observational error �see ������� p� ������
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����� Exponential Sum
The function

y � aebx � cedx ������

y y2

y1A

0 x
sign a=sign c
sign b=sign d

b,d<0

b,d>0

a�

y

C
A

y2

y1

0 x
sign a = sign c
sign b = sign d

b�

y
y1

y2

x0
B

A
C

D

sign a = sign c
sign b = sign d

c�

y y2

xB0A
D y1

sign a= sign c
sign b= sign d

d�

Figure ����

is represented in Fig ��
 for the characteristic sign relations� We get the result adding the ordinates
of the curves� i�e�� the summands are y� � aebx and y� � cedx� The function is continuous� If none
of the numbers a� b� c� d is equal to �� the curve has one of the four forms represented in Fig ��
�
Depending on the signs of the parameters it is possible that we have to re�ect the graph in a coordinate
axis�

The intersection points A and B with the y�axis and with the x�axis are at y � a � c� and at x �



d� b
ln
�
�a

c

�
respectively� the extremum is at x �



d� b
ln

�
�ab

cd

�
�point C�� and the in�ection



��� Exponential Functions and Logarithmic Functions ��

point is at x �


d� b
ln

�
�ab�

cd�

�
�point D�� in the case when they exist�

Case a� The parameters a and c� and b and d have the same signs� The function does not change its
sign� it is strictly monotone� its value is changing from � to �� or to �� or it is changing from ��
or from �� to �� There is no in�ection point� The asymptote is the x�axis �Fig ��
a��

Case b� The parameters a and c have the same sign� b and d have di�erent signs� The function does
not change its sign and either comes from �� and arrives at �� and has a minimum or comes from
��� goes to �� and has a maximum� There is no in�ection point �Fig ��
b��

Case c� The parameters a and c have di�erent signs� b and d have the same signs� The function has
one extremum and it is strictly monotone before and after� It changes its sign once� Its value changes
whether from � until the extremum� then goes to �� or �� or it comes �rst from �� or ��� takes
the extremum� then approaches �� The x�axis is an asymptote� the extreme point of the curve is at C
and the in�ection point at D �Fig ��
c��
Case d�The parameters a and c and also b and d have di�erent signs� The function is strictly monotone�
its value rises from �� to �� or it falls from �� to ��� It has an in�ection point D �Fig ��
d��
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Figure ����

����� GeneralizedError Function
The curve of the function

y � aebx�cx
�

� �ae� b�

�c� �ec�x � b
�c

�� �����

can be considered as the generalization of the error function ������� it results in a symmetric curve with

respect to the vertical line x � � b

�c
� it has no intersection point with the x�axis� and the intersection

point D with the y�axis is at ��� a� �Fig ���a�b��

The shape of the curve depends on the signs of a and c� Here we discuss only the case a � �� because
we get the curve for a � � by re�ecting it in the x�axis�

Case a� c � �� The value of the function falls from �� until the minimum� and then rises again to

��� It is always positive� The extreme point A of the curve is at

�
� b

�c
� ae� b�

�c

�
and it corresponds

to the minimum of the function� there is no in�ection point or asymptote �Fig ���a��

Case b� c � �� The x�axis is the asymptote� The extreme point A of the curve is at

�
� b

�c
� ae�

b�

�c

�
and it corresponds to the maximum of the function� The in�ection points B and C are at
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��b�p��c

�c
� ae

��b���c�
�c

�
�Fig ���b��

����� Product of Power andExponential Functions
We discuss the function

y � axbecx ������

only in the case a � �� because in the case a � � we get the curve by re�ecting it in the x�axis� For
a non�integer b the function is de�ned only for x � �� and for an integer b the shape of the curve for
negative x can be deduced also from the following cases �Fig �����
Fig ��� shows how the curve behaves for arbitrary parameters�
For b � � the curve passes through the origin� The tangent line at this point for b �  is the x�axis� for
b �  the line y � x� for � � b �  the y�axis� For b � � the y�axis is an asymptote� For c � � the
function is increasing and exceeds any value� for c � � it tends asymptotically to �� For di�erent signs

of b and c the function has an extremum at x � �b

c
�point A on the curve�� The curve has either no or

one or two in�ection points at x � �b�pb

c
�points C and D see Fig ���c�e�f�g��
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��� TrigonometricFunctions 	Functions ofAngles


����� BasicNotion

��	���� De�nition and Representation

�� De�nition
The trigonometric functions are introduced by geometric means� So in their de�nition and also in their
arguments we use degree or radian measure �see ������ p� ����

�� Sine
The standard sine function

y � sin x ������



��� Trigonometric Functions �Functions of Angles� ��

is a continuous curve with period T � �� �see Fig ���a��
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The intersection points B�� B�� B��� B�� B���� � � � with Bk � �k�� �� �k � ������� � � �� of the stan�
dard sine curve and the x�axis are the in�ection points of the curve� Here the angle of slope of the tan�

gent line with the x axis is ��

�
� The extreme points of the curve are at C�� C�� C��� C�� C��� � � � with

Ck �
�
�k � �

�
��� ���k

	
�k � ������� � � ��� For every value of the function y there is � � y � �

The general sine function

y � A sin�x � ��� ������

with an amplitude jAj� frequency � and phase shift �� is represented in Fig ���b�

Comparing the standard and the general sine curve �Fig ���b� we see that in the general case
the curve is stretched in the direction of y by a factor jAj� in the direction of x it is compressed by

a factor



� and it is shifted to the left by a segment

��


� The period is T �

��


� The intersec�

tion points with the x�axis are Bk �

�
k� � ��


� �

�
�k � ������� � � ��� Extreme values are Ck ��BB�

�
k �



�

�
� � ��


� ���kA

�CCA �k � ������� � � ���

�� Cosine
The standard cosine function

y � cos x � sin�x �
�

�
� ������

is represented in Fig ����

The intersection points with the x�axis
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B�� B�� � � � � Bk �
��

k �


�

�
�� �

�
�k � ����� � � �� are also the in�ection points� The angle of slope

of the tangent line is ��

�
�

The extreme points are C�� C�� � � �� Ck � �k�� ���k� �k � ������� � � ���

The general cosine function

y � A cos�x � ��� �����a�

can be transformed into the form

y � A sin
�
x � �� �

�

�

�
� �����b�

i�e�� the general sine function shifted left by � � ����



�� �� Functions

�� Tangent
The tangent function

y � tan x ������

has period T � � and the asymptotes are x �
�
k �



�

�
� �k � ������� � � �� �Fig ����� The

function is monotone increasing in the intervals
�
��

�
� k���

�

�
� k�

�
�k � ������� � � �� and takes

values from�� to ��� The curve has intersection points with the x�axis at A�� A�� A��� A�� A��� � � ��
Ak � �k�� �� �k � ������� � � ��� these points are the in�ection points and the angle of slope of the

tangent line is
�

�
�
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�� Cotangent
The cotangent function

y � cot x � � tan
�
x �

�

�

�
������

has a graph which is the tangent curve re�ected with respect to the x�axis and shifted to the left by
�

�
�Fig ����� The asymptotes are x � k� �k � ������� � � ��� Between � and � the function is

monotone decreasing and takes its values from �� until ��� the function has period T � �� The

intersection points with the x�axis are at A�� A�� A��� A�� A��� � � � with Ak �
��

k �


�

�
�� �

�
�k �

������� � � ��� they are the in�ection points of the curve and here the angle of the tangent line is ��

�
�

� Secant
The secant function

y � sec x �


cos x
������

has period T � ��� the asymptotes are x �
�
k �



�

�
� �k � ������� � � ��� and obviously jyj 	 

holds� The extreme points corresponding to the maxima of the function are A�� A�� A��� � � � with
Ak � ���k � ����� �k � ������� � � ��� the extreme points corresponding to the minima of the
function are B�� B�� B��� � � � with Bk � ��k���� �k � ������� � � �� �Fig �����

�� Cosecant
The cosecant function

y � cosec x �


sinx
������
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has a graph which is the graph of the secant shifted to the right

by x �
�

�
� The asymptotes are x � k� �k � ������� � � ��� The

extreme points corresponding to the maxima of the function are

A�� A�� A��� � � � with Ak �

�
�k � �

�
���

�
�k � ������� � � ��

and the the points corresponding to the minima of the function
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are B�� B�� B��� � � � with Bk �

�
�k � 

�
���

�
�k � ������� � � �� �Fig �����

��	���� Range and Behavior of the Functions
�� Angle Domain � � x � ����

The six trigonometric functions are represented together in Fig ��� in all the four quadrants for a
complete domain of angles from �� to ���� or for a complete domain of radians from � to ���
InTable �� there is a review of the domain and the range of these functions� The signs of the functions
depend on the quadrant where the argument is taken from� and these are reviewed in Table ���

Table �� Domain and range of trigonometric functions

Domain Range Domain Range

� � sin x �  x �� ��k � �
�

�
�� � tan x ���� � x ��

�
� � cos x �  x �� k� �� � cot x ��

�k � ������� � � ��

�� Function Values for Some Special Arguments
See Table ���

�� Arbitrary Angle
Because the trigonometric functions are periodic �period ���� or ����� the determination of their val�
ues for an arbitrary argument x can be reduced by the following rules�
Argument x � ���� or x � ����� If the angle is greater than ���� or greater than ���� then we
reduce it for a value �� for which � � � � ���� or � � � � ��� holds� in the following way �n integer��

sin����� � n � �� � sin� � ����� cos����� � n � �� � cos� � ������

tan���� � n � �� � tan� � ������ cot���� � n � �� � cot� � ������



�� �� Functions

Table ��� Signs of trigonometric functions

Quadrant Angle sin cos tan cot sec csc

I from �� to ��� � � � � � �
II from ��� to ��� � � � � � �
III from ��� to ���� � � � � � �
IV from ���� to ���� � � � � � �

Table ��� Values of trigonometric functions for ��� ���� ���� ��� and ����

Angle Radian sin cos tan cot sec csc

�� � �  � ��  ��
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Table ��� Reduction formulas and quadrant relations of trigonometric functions

Function x � ��� � � x � ��� � � x � ���� � � x � ���� � �

sinx � cos� � sin� � cos � � sin�
cos x � sin� � cos� � sin� � cos�
tanx � cot� � tan� � cot� � tan�
cotx � tan� � cot� � tan� � cot�

Argumentx � �� If the argument is negative� then we reduce the calculation of functions for positive
argument�

sin���� � � sin� � ������ cos���� � cos� � ������

tan���� � � tan� � ������ cot���� � � cot� � ������

Argument x for 
�� � x � ����� If ��� � x � ���� holds� then we reduce the arguments for
an acute angle � by the reduction formulas given in Table ��� The relations between the values of
the functions belonging to the arguments which di�er from each other by ���� ��� or ���� or which
complete each other to ���� ��� or ���� are called quadrant relations�
The �rst and second columns of Table �� give the complementary angle formulas� and the �rst and
third ones give the supplementary angle formulas� Because x � ��� � � is the complementary angle
�see ������ p� ��� of �� we call the relations

cos� � sinx � sin���� � �� � �����a� sin� � cos x � cos���� � �� �����b�

complementary angle formulas�
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For � � x � ��� the relations between the trigonometric functions for supplementary angles �see
������ p� ���

sin� � sinx � sin���� � �� � �����a� � cos� � cos x � cos���� � �� �����b�

are called supplementary angle formulas� Argument x for �� � x � 
��� We used to get the values
of trigonometric functions for acute angles ��� � x � ���� from tables� but today we use calculators�

sin������� � � sin ���� � � sin����� � � � ����� � � sin ���� � � cos �� � ��������

�� Angles in RadianMeasure

The arguments given in radian measure� i�e�� in units of radians� can be easily converted by formula
����� �see ������ p� ����

����� Important Formulas for Trigonometric Functions

Remark� Trigonometric functions with complex argument z are discussed in ������ p� ����

��	���� Relations Between the Trigonometric Functions of the SameAngle
�Addition Theorems�

sin� � � cos� � � � �����

sec� �� tan� � � � ������

cosec� �� cot� � � � ������

sin� � cosec � � � ������

cos � � sec � � � ������

tan� � cot� � � ������

sin�

cos�
� tan�� ������

cos�

sin�
� cot�� ������

Some important relations are summarized in Table �� in order to create an easy survey� The square
roots are always considered with the sign which corresponds to the quadrant where the argument is�

��	���� Trigonometric Functions of the Sum andDi
erence of TwoAngles

sin����� � sin� cos ��cos � sin �������� cos����� � cos� cos ��sin� sin��������

tan��� �� �
tan�� tan �

� tan� tan �
� ����� cot��� �� �

cot� cot � � 

cot� � cot�
� ������

sin�� � � � �� � sin� cos � cos � � cos� sin � cos �

� cos� cos � sin � � sin� sin� sin �� ������

cos�� � � � �� � cos� cos � cos � � sin� sin� cos �

� sin� cos � sin � � cos� sin� sin �� ������

��	���� Trigonometric Functions of an IntegerMultiple of anAngle

sin �� � � sin� cos�� ������

sin �� � � sin�� � sin� �� ������

cos �� � cos� �� sin� �� ������

cos �� � � cos� �� � cos�� ������

sin �� � � cos� � sin�� � cos� sin�� ������ cos �� � � cos� �� � cos� � � � ������
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Table ��� Relations between the trigonometric functions of the same argument in the interval � � � �
�

�

� sin� cos� tan� cot�

sin� � p
� cos� �

tan�p
 � tan� �

p
 � cot� �

cos�
p

� sin� � � p
 � tan� �

cot�p
 � cot� �

tan�
sin�p

� sin� �

p
� cos� �

cos�
� 

cot�

cot�

p
� sin� �

sin�

cos�p
� cos� �



tan�
�

tan �� �
� tan�

� tan� �
� �����

tan �� �
� tan�� tan� �

� � tan� �
� ������

tan �� �
� tan�� � tan� �

� � tan� � � tan� ��
������

cot �� �
cot� �� 

� cot�
� ������

cot �� �
cot� �� � cot�

� cot� �� 
� ������

cot �� �
cot� �� � cot� � � 

� cot� �� � cot�
� ������

For larger values of n in order to gain a formula for sinn� and cosn� we use the de Moivre formula�

Using the binomial coe�cients

�
n

m

�
�see ������ p� �� we get�

cosn� � i sinn� �
nX
k��

�
n

k

�
ik cosn�k � sink � � �cos� � i sin��n

� cosn � � in cosn�� � sin�

�
�
n

�

�
cosn�� � sin� �� i

�
n

�

�
cosn�� � sin� � �

�
n

�

�
cosn�� � sin� � � � � � � ������

therefore� we get

cosn� � cosn ��
�
n

�

�
cosn�� � sin� � �

�
n

�

�
cosn�� � sin� ��

�
n

�

�
cosn�	 � sin	 � � � � � �

������

sinn� � n cosn�� � sin��
�
n

�

�
cosn�� � sin� � �

�
n

�

�
cosn�� � sin� �� � � � � ������

��	���� Trigonometric Functions of Half�Angles

In the following formulas the sign of the square root must be chosen positive or negative� according to
the quadrant where the half�angle is�
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sin
�

�
�

s


�
�� cos��� ����� cos

�

�
�

s


�
� � cos��� ����

tan
�

�
�

s
� cos�

 � cos�
�

� cos�

sin�
�

sin�

 � cos�
� �����

cot
�

�
�

s
 � cos�

� cos�
�

 � cos�

sin�
�

sin�

� cos �
� �����

��	���� Sum andDi
erence of TwoTrigonometric Functions

sin� � sin� � � sin
� � �

�
cos

�� �

�
� ����� sin�� sin� � � cos

� � �

�
sin

�� �

�
� �����

cos�� cos � � � cos
� � �

�
cos

�� �

�
������ cos�� cos � � �� sin

� � �

�
sin

�� �

�
� �����

tan�� tan� �
sin��� ��

cos� cos �
� ����� cot�� cot � � �sin��� ��

sin� sin�
� �����

tan� � cot � �
cos��� ��

cos� sin �
� ������ cot�� tan� �

cos�� � ��

sin� cos �
� �����

��	���� Products of Trigonometric Functions

sin� sin � �


�
 cos��� ��� cos�� � ��!� ������

cos� cos � �


�
 cos��� �� � cos�� � ��!� ������

sin� cos � �


�
 sin��� �� � sin�� � ��!� ������

sin� sin � sin � �


�
 sin�� � � � �� � sin�� � � � ��

� sin�� � �� ��� sin�� � � � ��!� ������

sin� cos � cos � �


�
 sin�� � � � ��� sin�� � � � ��

� sin�� � �� �� � sin�� � � � ��!� ������

sin� sin � cos � �


�
 � cos�� � � � �� � cos�� � � � ��

� cos�� � �� ��� cos�� � � � ��!� ������

cos� cos � cos � �


�
 cos�� � � � �� � cos�� � � � ��

� cos�� � �� �� � cos�� � � � ��!� ������
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��	���	 Powers of Trigonometric Functions

sin� � �


�
�� cos ���� ������ cos� � �



�
� � cos ���� ������

sin� � �


�
�� sin�� sin ���� ����� cos� � �



�
�cos �� � � cos��� ������

sin� � �


�
�cos ��� � cos �� � ��� ������ cos� � �



�
�cos �� � � cos �� � ��� ������

For large values of n we can express sinn � and cosn � � from the formulas for cos n� and sinn� on page
���

����� Description ofOscillations
��	���� Formulation of the Problem
In engineering and physics we often meet quantities depending on time and given in the form

u � A sin�t � ��� ������

We call also them sinusoidal quantities� Their dependence on time results in a harmonic oscillation�
The graphical representation of ������ results in a general sine curve� as shown in Fig ��
�
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The general sine curve di�ers from the simple sine curve y � sin x�

a� by the amplitude A� i�e�� the greatest distance between its points and the time axis t�

b� by the period T �
��


� which corresponds to the wavelength �with  as the frequency of the oscilla�

tion� which is called the angular or radial frequency in wave theory��

c� by the initial phase or phase shift by the initial angle � �� ��

The quantity u�t� can also be written in the form

u � a sint � b cos t� ������

Here for a and b we have A �
p

a� � b� and tan� �
b

a
� We can represent the amounts a� b� A and � as

sides and angle of a right triangle �Fig �����

��	���� Superposition of Oscillations
In the simplest case we call a superposition of oscillations the addition of two oscillations with the same
frequency� It results again in a harmonic oscillation with the same frequency�

A� sin�t � ��� � A� sin�t � ��� � A sin�t � �� �����a�

with

A �
q
A�

� � A�
� � �A�A� cos��� � ���� tan� �

A� sin�� � A� sin��

A� cos�� � A� cos��
� �����b�
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where the quantities A and � can be determined
by a vector diagram �Fig ���a��
Also a linear combination of several sine functions
with the same frequency again yields a general
sine function �harmonic oscillation� with the same
frequency�X
i

ciAi sin�t � �i� � A sin�t � ��� �����c�

��	���� Vector Diagram for Oscilla�
tions
The general sine function ������ ����� can be
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Figure ���
represented easily by the polar coordinates � � A�� and by the Cartesian coordinates x � a� y � b �see
������� p� ��� in a plane� The sum of two such quantities then behaves as the sum of two summand
vectors �Fig ���a�� Similarly the sum of several vectors results in a linear combination of several
general sine functions� We call this representation a vector diagram�
The quantity u for a given time t can be determined from the vector diagram with the help of Fig
���a� First we put the time axis OP �t� through the origin O� which rotates clockwise around O
by a constant angular velocity � At start t � � the axes y and t coincide� Then at any time t the
projection ON of the vector �u onto the time axis is equal to the absolute value of the general sine
function u � A sin�t � ��� For time t � � the value u� � A sin� is the projection onto the y�axis
�Fig ���b��

��	���� Damping of Oscillations
The function y � Ae�ax sin�x � ��� �a� x � �� ������
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results in a curve of a damped oscillation
�Fig �����
The oscillation proceeds along the x�axis�
while the curve asymptotically approaches
the x�axis� The sine curve is enclosed by the
exponential curves y � �Ae�ax� and it con�
tacts them in the points

A�� A�� � � � � Ak �

�BB�
�
k �



�

�
� � ��


�

���kA exp

�BB��a

�
k �



�

�
� � ��



�CCA
�CCA�

The intersection points with the coordinate axes are B � ��� A sin���� C�� C�� � � � � Ck �

�
k� � ��


� �

�
�

The extrema D� � D�� � � � are at x �
k� � �� � �


� and the in�ection points E�� E�� � � � are at x �

k� � �� � ��


with tan� �



a
�

The logarithmic decrement of the damping is 	 � ln

����� yi
yi��

����� � a
�


� where yi and yi�� are the ordinates

of two consecutive extrema�
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��� InverseTrigonometric Functions
We call the inverse of trigonometric functions also cyclometric functions� Because only a one�to�one
function can have an inverse� we have to restrict the domain of the trigonometric functions to an interval
such that the considered function should be a one�to�one function on it� There are in�nitely many such
intervals� and for each we can de�ne an inverse� We will distinguish them by the index k according to
the corresponding interval� Obviously the trigonometric functions are monotonic in these intervals�
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��	�� De
nition of the InverseTrigonometric Functions
First we discuss the inverse of the sine function �Fig ����� The usual notation for it is arc sine x�

or arcsin x� The domain of y � sinx will split into monotonic intervals k� � �

�
� x � k� �

�

�
with

k � ������� � � � � Re�ecting the curve of y � sin x in the line y � x we get the curves of the inverse
functions �placed above each other�

y � arck sinx with the domain and ranges �����a�

� � x � � and k� � �

�
� y � k� �

�

�
� where k � ������� � � � � �����b�

The form y � arck sinx has the same meaning as x � sin y� Similarly� we can get the other inverse
trigonometric functions which are represented in Fig �������� The domains and ranges of the
inverse functions can be found in Table ���

��	�� Reduction to thePrincipalValue

If we restrict the domain of the trigonometric func�
tions to the intervals which belong to the index � in
the de�nitions above� we call it the principal value of
the function and in several textbooks a capital letter is
used for the notation� e�g�� Sin x� Similarly� the inverse
trigonometric functions for k � � have the so�called
principal value� which is written without the index k�
for instance arcsinx � arc� sinx� In Fig ��� the
principal values of the inverse functions are presented�

Remark� Calculators give the principal value of these
inverses� We can get the values of di�erent inverses
from the principal value by the following formulas�

arck sin x � k� � ���k arcsinx� ������
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arck cos x �
�

�k � �� � arccos x �k odd��
k� � arccos x �k even��

�����

arck tan x � k� � arctanx� ������

arck cot x � k� � arccotx� ������

A� arcsin � � � � arck sin � � k��

B� arccot  �
�

�
� arck cot  �

�

�
� k��

C � arccos


�
�

�

�
� arck cos



�
�

���
��

�
� �k � �� for odd k�

�

�
� k� for even k�

Table ��� Domains and ranges of the inverses of trigonometric functions

Trigonometric
Inverse function Domain Range function with the

same meaning

arc sine
y � arck sinx

�
�� � x � � k� � �

�
� y � k� �

�

�
x � sin y

arc cosine
y � arck cos x

�
�� � x � � k� � y � �k � ��� x � cos y

arc tangent
y � arck tan x

�
�� � x �� k� � �

�
� y � k� �

�

�
x � tan y

arc cotangent
y � arck cot x

�
�� � x �� k� � y � �k � ��� x � cot y

k � �������� � � � 	 For k � � we get the principal value of the inverse functions

which is usually written without an index
 e	g	
 arcsinx � arc� sinx	

��	�� Relations Between thePrincipalValues

arcsinx �
�

�
� arccos x � arctan

xp
� x�

�

�� arccos
p

� x� �� � x � ���

arccos
p

� x� �� � x � ��
������

arccos x �
�

�
� arcsin x � arccot

xp
� x�

�

�
� � arcsin

p
� x� �� �  � x � ���

arcsin
p

� x� �� � x � ��
������

arctanx �
�

�
� arccotx � arcsin

xp
 � x�

� ������

arctanx �

�������
arccot



x
� � �x � ��

arccot


x
�x � ��

�

���������
� arccos

p
 � x�

�x � �� �

arccos
p

 � x�
�x 	 ���

������

arccot x �
�

�
� arctanx � arccos

xp
 � x�

� ������
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arccot x �

�������
arctan



x
� � �x � ��

arctan


x
�x � ��

�

���������
� � arcsin

p
 � x�

�x � ���

arcsin
p

 � x�
�x 	 ���

������

��	�� Formulas forNegativeArguments

arcsin��x� � � arcsinx� ������

arctan��x� � � arctan x� �����

arccos��x� � � � arccos x� ������

arccot��x� � � � arccot x� ������

��	�� SumandDi�erence of arcsin x and arcsin y

arcsinx � arcsin y � arcsin
�
x
q

� y� � y
p

� x�
�

�xy � � or x� � y� � �� �����a�

� � � arcsin
�
x
q

� y� � y
p

� x�
�

�x � �� y � �� x� � y� � �� �����b�

� �� � arcsin
�
x
q

� y� � y
p

� x�
�

�x � �� y � �� x� � y� � �� �����c�

arcsinx� arcsin y � arcsin
�
x
q

� y� � y
p

� x�
�

�xy 	 � oder x� � y� � �� �����a�

� � � arcsin
�
x
q

� y� � y
p

� x�
�

�x � �� y � �� x� � y� � �� �����b�

� �� � arcsin
�
x
q

� y� � y
p

� x�
�

�x � �� y � �� x� � y� � �� �����c�

��	�� SumandDi�erence of arccosx and arccos y

arccos x � arccos y � arccos
�
xy �

p
� x�

q
� y�

�
�x � y 	 ��� �����a�

� �� � arccos
�
xy �p� x�

q
� y�

�
�x � y � ��� �����b�

arccos x� arccos y � � arccos
�
xy �

p
� x�

q
� y�

�
�x 	 y�� �����a�

� arccos
�
xy �

p
� x�

q
� y�

�
�x � y�� �����b�

��	�� SumandDi�erence of arctan x and arctan y

arctanx � arctan y � arctan
x � y

� xy
�xy � �� �����a�

� � � arctan
x � y

� xy
�x � �� xy � �� �����b�

� �� � arctan
x � y

� xy
�x � �� xy � �� �����c�

arctanx� arctan y � arctan
x� y

 � xy
�xy � ��� �����a�
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� � � arctan
x� y

 � xy
�x � �� xy � ��� �����b�

� �� � arctan
x� y

 � xy
�x � �� xy � ��� �����c�

��	�	 SpecialRelations for arcsinx� arccosx� arctanx

� arcsinx � arcsin
�
�x
p

� x�
	 �

jxj � p
�

�
� �����a�

� � � arcsin
�
�x
p

� x�
	 �

p
�

� x � 

�
� �����b�

� �� � arcsin
�
�x
p

� x�
	 �

� � x � � p
�

�
� �����c�

� arccosx � arccos��x� � � �� � x � �� ����a�

� �� � arccos��x� � � �� � x � ��� ����b�

� arctanx � arctan
�x

� x�
�jxj � �� �����a�

� � � arctan
�x

� x�
�x � �� �����b�

� �� � arctan
�x

� x�
�x � ��� �����c�

cos�n arccos x� � Tn�x� �n 	 �� ������

where n 	  can also be a fractional number and Tn�x� is given by the equation

Tn�x� �

�
x �
p
x� � 

	n
�
�
x�px� � 

	n
�

� ������

For any integer n� Tn�x� is a polynomial of x �a Chebyshev polynomial�� To study the properties of the
Chebyshev polynomials see ������ p� ����

��� Hyperbolic Functions

����� De
nition ofHyperbolic Functions
Hyperbolic sine� hyperbolic cosine and hyperbolic tangent are de�ned by the following formulas�

sinhx �
ex � e�x

�
� ������

cosh x �
ex � e�x

�
� ������

tanh x �
ex � e�x

ex � e�x
� ������

The geometric de�nition in Chapter � Geometry �see ������� p� ��� is an analogy to the trigonometric
functions�
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Hyperbolic cotangent� hyperbolic secant and hyperbolic cosecant are de�ned as reciprocal values of the
above hyperbolic functions�

coth x �


tanh x
�

ex � e�x

ex � e�x
� ������

sech x �


cosh x
�

�

ex � e�x
� ������

cosech x �


sinhx
�

�

ex � e�x
� ������

The shapes of curves of hyperbolic functions are shown in Fig ��������
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����� GraphicalRepresentation of theHyperbolic Functions
������ Hyperbolic Sine
y � sinh x ������ is an odd strictly monotone increasing function between �� and �� �Fig ��
��
The origin is its symmetry center� the in�ection point� and here the angle of slope of the tangent line is

� �
�

�
� There is no asymptote�

������ Hyperbolic Cosine
y � cosh x ������ is an even function� it is strictly monotone decreasing for x � � from �� to � and
for x � � it is strictly monotone increasing from  until �� �Fig ����� The minimum is at x � �
and it is equal to  �point A��� ��� it has no asymptote� The curve is symmetric with respect to the

y�axis and it always stays above the curve of the quadratic parabola y � �
x�

�
�the broken�line curve��

Because the function demonstrate a catenary curve� we call the curve a catenoid �see ����� p� ����

������ Hyperbolic Tangent
y � tanh x ������ is an odd function� for �� � x � �� strictly monotone increasing from� to �
�Fig ����� The origin is the center of symmetry� and the in�ection point� and here the angle of slope



��� Hyperbolic Functions �


of the tangent line is � �
�

�
� The asymptotes are the lines y � ��

y
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������ Hyperbolic Cotangent
y � coth x ������ is an odd function which is not continuous at x � � �Fig ����� It is strictly
monotone decreasing in the interval �� � x � � and it takes its values from � until �� � in the
interval � � x � �� it is also strictly monotone decreasing with values from �� to � � It has no
in�ection point� no extreme value� The asymptotes are the lines x � � and y � � �

����� Important Formulas for theHyperbolic Functions
We have similar relations between the hyperbolic functions as between trigonometric functions� We
can show the validity of the following formulas directly from the de�nitions of hyperbolic functions� or
if we consider the de�nitions and relations of these functions also for complex arguments� from �������
�������� we can calculate them from the formulas known for trigonometric functions�

������ Hyperbolic Functions of One Variable

cosh� x� sinh� x � � ����� coth� x� cosech� x � � ������

sech� x � tanh� x � � ������ tanh x � coth x � � ������

sinh x

cosh x
� tanh x� ������

cosh x

sinh x
� coth x� ������

������ Expressing a Hyperbolic Function by Another One with the
Same Argument

The corresponding formulas are collected in Table ��� so we can have a better survey�

������ Formulas for Negative Arguments

sinh��x� � � sinh x� ������

tanh��x� � � tanh x� ������

cosh��x� � cosh x� ������

coth��x� � � coth x� ������

������ HyperbolicFunctions of theSumandDi
erence ofTwoArguments
�Addition Theorems�

sinh�x� y� � sinh x cosh y � cosh x sinh y� �����

cosh�x� y� � cosh x cosh y � sinhx sinh y� ������
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Table ��� Relations between two hyperbolic functions with the same arguments for x � �

sinh x cosh x tanh x coth x

sinh x �
q

cosh� x� 
tanh xq

� tanh� x

q
coth� x� 

cosh x
q

sinh� x �  � q
� tanh� x

coth xq
coth� x� 

tanh x
sinh xq

sinh� x � 

q
cosh� x� 

cosh x
� 

coth x

coth x

q
sinh� x � 

sinh x

cosh xq
cosh� x� 



tanh x
�

tanh�x� y� �
tanh x� tanh y

� tanh x tanh y
� ������ coth�x� y� �

� coth x coth y

coth x� coth y
� ������

������ Hyperbolic Functions of Double Arguments

sinh �x � � sinhx cosh x� ������

cosh �x � sinh� x � cosh� x� ������

tanh �x �
� tanhx

 � tanh� x
� ������

coth �x �
 � coth� x

� cothx
� ������

������ DeMoivre Formula for Hyperbolic Functions
�cosh x� sinh x�n � cosh nx� sinhnx� ������

�����	 Hyperbolic Functions of Half�Argument

sinh
x

�
� �

s


�
�cosh x� � � ������ cosh

x

�
�

s


�
�cosh x � � � �����

The sign of the square root in ������ is positive for x � � and negative for x � ��

tanh
x

�
�

cosh x� 

sinhx
�

sinh x

cosh x � 
� ������ coth

x

�
�

sinhx

cosh x� 
�

cosh x � 

sinh x
� ������

������ Sum andDi
erence of Hyperbolic Functions

sinhx� sinh y � � sinh
x� y

�
cosh

x� y

�
� ������

cosh x � cosh y � � cosh
x � y

�
cosh

x� y

�
� ������

cosh x� cosh y � � sinh
x � y

�
sinh

x� y

�
� ������
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�

tanh x� tanh y �
sinh�x� y�

cosh x cosh y
� ������

����� Relation Between Hyperbolic and Trigonometric Functions with
Complex Arguments z

sin z � �i sinh iz� ������

cos z � cosh iz� ������

tan z � �i tanh iz� �������

cot z � i coth iz� ������

sinh z � �i sin iz� �������

cosh z � cos iz� �������

tanh z � �i tan iz� �������

coth z � i cot iz� �������

Every relation between hyperbolic functions� which contains x or ax but not ax�b� can be derived from
the corresponding trigonometric relation with the substitution i sinhx for sin� and cosh x for cos��

A� cos� � � sin� � � � cosh� x � i� sinh� x �  or cosh� x� sinh� x � �

B� sin �� � � sin� cos�� i sinh �x � �i sinhx cosh x or sinh �x � � sinhx cosh x�

��� AreaFunctions
������ De
nitions
The area functions are the inverse functions of the hyperbolic functions� i�e�� the inverse hyperbolic
functions� The functions sinhx � tanh x� and coth x are strictly monotone� so they have unique inverses
without any restriction� the function cosh x has two monotonic intervals so we can consider two inverse
functions� The name area refers to the fact that the geometric de�nition of the functions is the area of
certain hyperbolic sectors �see ������� p� ���

�������� Area Sine
The function y � Arsinh x �������

�Fig ���� is an odd� strictly monotone increasing function� with domain and range given in Ta�
ble ��� It is equivalent to the expression x � sinh y � The origin is the center of symmetry and the

in�ection point of the curve� where the angle of slope of the tangent line is � �
�

�
�

�������� Area Cosine
The functions y � Arcosh x and y � �Arcosh x �������

�Fig ���� or x � cosh y have the domain and range given in Table ��� they are de�ned only for
x 	 � The function curve starts at the point A�� �� with a vertical tangent line and the function
increases or decreases strictly monotonically respectively�
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Table ��� Domains and ranges of the area functions

Hyperbolic function
Area function Domain Range with same meaning

area sine
y � Arsinh x �� � x �� �� � y �� x � sinh y

area cosine
y � Arcosh x � � y ��
y � �Arcosh x  � x �� �� � y � � x � cosh y

area tangent
y � Artanh x jxj�  �� � y �� x � tanh y

area cotangent
y � Arcoth x jxj�  �� � y � � x � coth y

� � y ��

y
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�������� Area Tangent
The function y � Artanh x �������

�Fig ���� or x � tanh y is an odd function� de�ned only for jxj � � with domain and range given in
Table ��� The origin is the center of symmetry and also the in�ection point of the curve� and here the

angle of slope of the tangent line is � �
�

�
� The asymptotes are vertical� their equations are x � ��

�������� Area Cotangent
The function y � Arcoth x �������

�Fig ���� or x � coth y is an odd function� de�ned only for jxj � � with domain and range given in
Table ��� In the interval�� � x � � the function is strictly monotone decreasing from � until���
in the interval  � x � �� it is strictly monotone decreasing from �� to �� It has three asymptotes�
their equations are y � � and x � ��

������ DeterminationofAreaFunctionsUsingNaturalLogarithm
From the de�nition of hyperbolic functions ��������������� see ����� p� ��� we can express the area
functions with the logarithm function�

Arsinhx � ln �x �
p
x� � � � ������

Arcosh x � ln �x �
p
x� � � � ln

�


x�px� � 

�
�x 	 �� �����



���� Curves of Order Three �Cubic Curves� 
�

Artanh x �


�
ln

 � x

� x
�jxj � �� ������ Arcoth x �



�
ln

x � 

x� 
�jxj � �� ������

������ RelationsBetweenDi�erentArea Functions

Arsinhx � �signx� Arcosh
p
x� �  � Artanh

xp
x� � 

� Arcoth

p
x� � 

x
� ������

Arcosh x � �signx� Arsinh
p
x� �  � �signx� Artanh

p
x� � 

x

� �signx� Arcoth
xp

x� � 
� ������

Artanh x � �signx� Arsinh
xp

� x�
� �signx� Arcoth



x

� �signx� Arcosh
p

� x�
�jxj � �� ������

Arcoth x � Artanh


x
� �signx� Arsinh

p
x� � 

� �sign x� Arcosh
jxjp
x� � 

�jxj � �� ������

������ SumandDi�erence ofArea Functions

Arsinhx� Arsinh y � Arsinh
�
x
q

 � y� � y
p

 � x�
�
� ������

Arcosh x� Arcosh y � Arcosh
�
xy �

q
�x� � ��y� � �

�
� ������

Artanh x� Artanh y � Artanh
x� y

� xy
� �������

������ Formulas forNegativeArguments

Arsinh��x� � �Arsinh x� ������

Artanh��x� � �Artanh x� ������� Arcoth��x� � �Arcoth x� �������

The functions Arsinh�Artanh and Arcoth are odd functions� and Arcosh ����� is not de�ned for
arguments x � �

���� Curves ofOrderThree 	CubicCurves

A curve is called an algebraic curve of order n if it can be written in the form of a polynomical equation
F �x� y� � � of two variables where the left�hand side is a poynomial expression of degree n�

The cardioid with equation �x� � y���x� � y�� �ax��a�y� � � �a � �� �see ������ p� ��� is a curve
of order four� The well�known conic sections �see �������� p� ���� result in curves of order two�

������ SemicubicParabola
The equation y � ax��� �a � �� x 	 �� ������a�
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or in parametric form x � t�� y � at� �a � �� �� � t ��� ������b�

gives the semicubic parabola �Fig ����� It has a cuspidal point at the origin� it has no asymptote�

The curvature K �
�ap

x�� � �a�x����
takes all the values between� and �� The arclength of the curve

between the origin and the point P �x� y� is L �


��a�
 �� � �a�x���� � �!�
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������ Witch ofAgnesi

The equation y �
a�

a� � x�
�a � �� �� � x ��� ������a�

determines the curve represented in Fig ���� the witch of Agnesi� It has an asymptote with the

equation y � �� it has an extreme point at A��� a�� where the radius of curvature is r �
a

�
� The in�ection

points B and C are at

�
� ap

�
�

�a

�

�
� where the angles of slope of the tangent lines are tan� � ��

p
�

�
�

The area of the region between the curve and its asymptote is equal to S � �a�� The witch of Agnesi
������a� is a special case of the Lorentz or Breit�Wigner curve

y �
a

b� � �x� c��
�a � ��� ������b�

The Fourier transform of the damped oscillation is the Lorentz or Breit�Wigner curve �see �������
p� ����

������ Cartesian Folium �FoliumofDescartes

The equation x� � y� � �axy �a � �� or ������a�

in parametric form x �
�at

 � t�
� y �

�at�

 � t�
with

t � tan�� P�x �a � ���� � t � � and �  � t ��� ������b�

gives the Cartesian folium curve represented in Fig ��
� The origin is a double point because the
curve passes through it twice� and here both coordinate axes are tangent lines� At the origin the radius

of curvature for both branches of the curve is r �
�a

�
� The equation of the asymptote is x� y � a � ��

The vertex A has the coordinates A
�

�

�
a�

�

�
a
�

� The area of the loop is S� �
�a�

�
� The area S� between
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�

the curve and the asymptote has the same value�

������ Cissoid

The equation y� �
x�

a� x
�a � ��� ������a�

or in parametric form x �
at�

 � t�
� y �

at�

 � t�
with

t � tan�� P�x �a � ���� � t ��� ������b�

or with polar coordinates � �
a sin� �

cos�
�a � �� ������c�

�Fig ���� describes the locus of the points P for which

�P � MQ �������

is valid� Here M is the second intersection point of the line �P with the drawn circle of radius
a

�
� and

Q is the intersection point of the line �P with the asymptote x � a� The area between the curve and

the asymptote is equal to S �
�

�
�a��

y

0 x
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M
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a
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������ Strophoide

Strophoide is the locus of the points P� and P�� which are on an arbitrary half�line starting at A �A is
on the negative x�axis� and for which the equalities

MP � � MP � � �M �������

are valid� Here M is the intersection point with the y�axis �Fig ����� The equation of the strophoide
in Cartesian� and in polar coordinates� and in parametric form is�

y� � x�
�
a � x

a� x

�
�a � ��� ������a� � � �a

cos ��

cos�
�a � ��� ������b�

x � a
t� � 

t� � 
� y � at

t� � 

t� � 
with t � tan�� P�x �a � ���� � t ���� ������c�

The origin is a double point with tangent lines y � �x� The asymptote has the equation x � a� The

vertex is A��a� ��� The area of the loop is S� � �a� � 

�
�a�� and the area between the curve and the
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asymptote is S� � �a� �


�
�a��

���� Curves ofOrderFour 	Quartics


������ Conchoid ofNicomedes
The Conchoid of Nicomedes �Fig ���� is the locus of the points P � for which

�P � �M � l ������

holds� where M is the intersection point of the line between �P� and �P� with the asymptote x � a�
The 	�
 sign belongs to the outer branch of the curve� the 	�
 sign belongs to the inner one� The
equations for the conchoid of Nicomedes are the following in Cartesian coordinates� in parametric form
and in polar coordinates�

�x� a���x� � y��� l�x� � � �a � �� l � ��� ������a�

x � a � l cos�� y � a tan� � l sin�

�right branch�� �

�
� � �

�

�
� left branch�

�

�
� � �

��

�
�� ������b�

� �
a

cos �
� l �	�
 sign� right branch� 	�
 sign� left branch�� ������c�

� Right Branch� The asymptote is x � a� The vertex A is at �a � l� ��� the in�ection points B� C
have as x�coordinate the greatest root of the equation x� � �a�x � �a�a� � l�� � �� The area between
the right branch and the asymptote is S �� �
� Left Branch� The asymptote is x � a � The vertex D is at �a � l� �� � The origin is a singular
point� whose type depends on a and l�

Case a� For l � a it is an isolated point �Fig ���a�� The curve has two further in�ection points E
and F � whose abscissa is the second greatest root of the equation x� � �a�x � �a�a� � l�� � ��

Case b� For l � a the origin is a double point �Fig ���b�� The curve has a maximum and a minimum

value at x � a� �
p
al� � At the origin the slopes of the tangent lines are tan� �

�pl� � a�

a
� Here the

radius of curvature is r� �
l
p
l� � a�

�a
�

Case c� For l � a the origin is a cuspidal point �Fig ���c��

������ General Conchoid
The conchoid of Nicomedes is a special case of the general conchoid� We get the conchoid of a given
curve if we elongate the length of the position vector of every point by a given constant segment �l�
If we consider a curve in a polar coordinate system with an equation � � f���� the equation of its
conchoid is

� � f���� l� �������

So� the conchoid of Nicomedes is the conchoid of the line�

������ Pascal�s Lima�con
The conchoid of a circle is called the Pascal lima�con �Fig ���� if in ������ the origin is on the perime�
ter of the circle� which is a further special case of the general conchoid �see ������ p� ���� The equations
in the Cartesian and in the polar coordinate systems and in parametric form are the following �see also
������c�� p� ����

�x� � y� � ax�� � l��x� � y�� �a � �� l � ��� ������a�
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� � a cos� � l �a � �� l � ��� ������b�

x � a cos� � � l cos�� y � a cos� sin� � l sin� �a � �� l � �� � � � � ��� ������c�

with a as the diameter of the circle� The vertices A�B are at �a� l� ��� The shape of the curve depends
on the quantities a and l� as we can see in Fig ��� and ����

a� Extreme Points and In�ection Points� For a � l the curve has four extreme points C� D� E� F �

for a � l it has two� they are at

�
cos� �

�l �pl� � �a�

�a

�
� For a � l � �a there exist two in�ection

points G and H at

�
cos � � ��a� � l�

�al

�
�

b� Double Tangent� For l � �a� at the points I and K at

�
� l�

�a
�� l
p

�a� � l�

�a

�
there is a double

tangent�

c� Singular Points� The origin is a singular point� For a � l it is an isolated point� for a � l it is a
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double point and the slopes of the tangent lines are tan� � �
p
a� � l�

l
� here the radius of curvature

is r� �


�

p
a� � l� � For a � l the origin is a cuspidal point� then we call the curve a cardioid �see also

������ p� ���

The area of the lima�con is S �
�a�

�
� �l�� where in the case a � l �Fig ���c� the area of the inside

loop is counted twice�

������ Cardioid
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Figure ����

The cardioid �Fig ���� can be de�ned in two di�erent ways� as�

� Special case of the Pascal lima�con with

�P � �M � a� �������

where a is the diameter of the circle�

� Special case of the epicycloid with the same diameter a for the
�xed and for the moving circle �see ������ p� ��� The equation is

�x� � y��� � �ax�x� � y�� � a�y� �a � ��� ������a�

and the parametric form� and the equation in polar coordinates are�

x � a cos�� � cos��� y � a sin�� � cos��

�a � �� � � � � ���� ������b�

� � a� � cos�� �a � ��� ������c�

The origin is a cuspidal point� The vertex A is at ��a� ��� extreme points C and D are at cos� �


�
with

coordinates

�
�

�
a ���

p
�

�
a

�
� The area is S �

�

�
�a�� i�e�� six times the area of a circle with diameter a�

The length of the curve is L � �a�

������ CassinianCurve
The locus of the points P � for which the product of the distances from two �xed points F� and F�

with coordinates �c� �� and ��c� �� resp�� is equal to a constant a� �� �� is called a Cassinian curve
�Fig �����

F�P � F�P � a�� �������

The equations in Cartesian and polar coordinates are�

�x� � y��� � �c��x� � y�� � a� � c�� �a � �� c � ��� ������a�

�� � c� cos ���
q
c� cos� �� � �a� � c�� �a � �� c � ��� ������b�

The shape of the curve depends on the quantities a and c �

Case a � c
p
�� For a � c

p
� the curve is an oval whose shape resembles an ellipse �Fig ���a��

The intersection points A�C with the x�axis are ��pa� � c� � ��� the intersection points B�D with the

y�axis are ��� �pa� � c���

Case a � c
p
�� For a � c

p
� the curve is of the same type with A�C �� c

p
� � �� and B�D ����c��

where the curvature at the points B and D is equal to �� i�e�� there is a narrow contact with the lines
y � �c�
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Case c � a � c
p
�� For c � a � c

p
� the curve is a pressed oval �Fig ���b�� The intersection

points with the axes are the same as in the case a � c
p

�� also the extreme points B�D� while there are

further extreme points E� G� K� I at

�
�
p

�c� � a�

�c
� �a�

�c

�
and there are four in�ection points P � L�

M � N at

���
s



�
�m� n� � �

s


�
�m � n�

�A with n �
a� � c�

�c�
and m �

s
a� � c�

�
�

Case a � c� For a � c we have the lemniscate�

Case a � c� For a � c there are two ovals �Fig ���c�� The intersection points A�C and P�Q

with the x�axis are at � � pa� � c� � �� and � � pc� � a�� ��� The extreme points E� G� K� I are

at

�
�
p

�c� � a�

�c
� �a�

�c

�
� The radius of curvature is r �

�a���

c� � a� � ���
� where � satis�es the polar

coordinate representation�

������ Lemniscate

The lemniscate �Fig ���� is the special case a � c of the Cassinian curve satisfying the condition

F�P � F�P �

�
F�F�

�

��
� �������

where the �xed points F�� F� are at ��a� ��� The equation
in Cartesian coordinates is

�x� � y��� � �a��x� � y�� � � �a � �� ������a�

and in polar coordinates

� � a
q

� cos �� �a � ��� ������b�

The origin is a double point and an in�ection point at the
same time� where the tangents are y � �x�

y

0 x
A

P
EG

C

K I

a
F1F2

Figure ����

The intersection points A and C with the x�axis are at �� a
p

�� �� � the extreme points of the curve E�

G� K� I are at

�
�a
p

�

�
� �a

�

�
� The polar angle at these points is � � ��

�
� The radius of curvature is
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r �
�a�

��
and the area of every loop is S � a� �

���� Cycloids

������ Common �Standard Cycloid
The cycloid is a curve which is described by a point of the perimeter of a circle while the circle rolls
along a line without sliding �Fig ����� The equation of the usual cycloid written in parametric form
is the following�

x � a�t� sin t�� y � a�� cos t� with �a � �� �� � t ���� �����a�

where a is the radius of the circle and t is the angle �� PC�B in radian measure� In Cartesian coordinates
we have�

x �
q
y��a� y� � a arccos

a� y

a
�a � ��� �����b�

The curve is periodic with period �O� � ��a� At �� O�� O�� � � �� Ok � ��k�a� �� we have cusps� the ver�

xO2O1

P C1

0

C

y

t

B

A1 A22a

3 aππa
4 aπ2 aπ

Figure ����

tices are at Ak � ���k � ��a� �a��
The arclength of �P is
L � �a sin��t���� the length of one
arch is L�A�O� � �a� The area of one
arch is S � ��a�� The radius of cur�
vature is r � �a sin �

�
t � at the vertices

rA � �a� The evolute of a cycloid �see
������� p� ���� is a congruent cycloid�
which is denoted in Fig ��� by the
broken line�

������ Prolate andCurtate Cycloids or Trochoids
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Prolate and curtate cycloids or tro�
choids are curves described by a point�
which is inside or outside of a cir�
cle� �xed on a half�line starting from
the center of the circle� while the cir�
cle rolls along a line without sliding�
�Fig �����
The equation of the trochoid in para�
metric form is

x � a�t� � sin t�� ������a�

y � a�� � cos t�� ������b�

where a is the radius of the circle� t is
the angle �� PC�M � and �a � C�P �
In the case � �  we have the prolate
cycloid and for � �  the curtate one�
The period of the curve is �O� � ��a�
the maximum points are at A�� A�� � � ��
Ak � ���k � ��a� � � ��a�� the min�
imum points are at B�� B�� B�� � � ��
Bk � ��k�a� �� ��a��



���	 Cycloids ���

The prolate cycloid has double points at D�� D�� D�� � � �� Dk �

�
�k�a � a

�
�

q
�� � t��

��
� where t�

is the smallest positive root of the equation t � � sin t�

The curtate cycloid has in�ection points at E�� E�� � � �� Ek �

�
a
�
arccos �� �

p
� ��

	
� a �� ���

�
�

We calculate the length of one cycle by the integral L � a
Z ��

�

p
 � �� � �� cos t dt� The shaded area

in Fig ��� is S � �a��� � ����

For the radius of curvature we have r � a
� � �� � �� cos t����

��cos t� ��
� which has at the maxima the value

rA � �a
� � ���

�
and at the minima the value rB � a

�� ���

�
�

������ Epicycloid
A curve is called an epicycloid� if it is described by a point of the perimeter of a circle while this circle
rolls along the outside of another circle without sliding �Fig ��
�� The equation of the epicycloid in
parametric form is

x � �A � a� cos�� a cos
A � a

a
� � y � �A � a� sin�� a sin

A � a

a
� ��� � � �����������

where A is the radius of the �xed circle� a is the radius of the rolling one� and � is the angle �� C�x� The

shape of the curve depends on the quotient m �
A

a
�

For m �  we get the cardioid�
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Casem integer� For an integer m the curve consists of m identically shaped branches surrounding the

�xed curve �Fig ��
a�� The cusps A�� A�� � � � � Am are at

�
� � A� � �

�k�

m
�k � �� � � � � � m��

�
�

the vertices B�� B��� � � � Bm are at

�
� � A � �a� � �

��

m

�
k �



�

��
�

Casem a rational fraction� If m is a non�integer rational number� the identically shaped branches
follow each other around the �xed circle� overlapping the previous ones� until the moving point P re�
turns back to the starting�point after a �nite number of circuits �Fig ��
b��
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Casem an irrational� For an irrational m the number of round trips is in�nite� the point P never
returns to the starting�point�

The length of one branch is LA�B�A� �
��A � a�

m
� For an integer m the total length of the closed curve

is Ltotal � ��A � a�� The area of the sector A�B�A�A� �without the sector of the �xed circle� is S �

�a�
�

�A � �a

A

�
� The radius of curvature is r �

�a�A � a�

�a � A
sin

A�

�a
� at the vertices rB �

�a�A � a�

�a � A
�

������ Hypocycloid andAstroid

A curve is called a hypocycloid if it is described by a point of the perimeter of a circle� while this circle
rolls along the inside of another circle without sliding �Fig ����� The equation of the hypocycloid�
the coordinates of the vertices� the cusps� the formulas for the arclength� the area� and the radius of
curvature are similar to the corresponding formulas for the epicycloid� only we have to replace 	�a
 by
	�a
� The number of cusps for integer� rational or irrational m is the same as for the epicycloid �now
m �  holds��

Casem � �� For m � � the curve is actually the diameter of the �xed circle�

Casem � �� For m � � the hypocycloid has three branches �Fig ���a� with the equation�

x � a�� cos� � cos ���� y � a�� sin�� sin ���� ������a�

We have� Ltotal � �a� Stotal � ��a��

Casem � �� For m � � �Fig ���b� the hypocycloid has four branches� and it is called an astroid
�or asteroid�� Its equation in Cartesian coordinates and in parametric form is�

x��� � y��� � A���� ������b� x � A cos� �� y � A sin� � �� � � � ��� ������c�

We have� Ltotal � ��a � �A� Stotal �
�

�
�A��

������ Prolate andCurtate Epicycloid andHypocycloid

The prolate and curtate epicycloid and the prolate and curtate hypocycloid� which are also called the
epitrochoid and hypotrochoid� are curves �Fig ��� andFig ���� described by a point� which is inside
or outside of a circle� �xed on a half�line starting at the center of the circle� while the circle rolls around
the outside �epitrochoid� or the inside �hypotrochoid� of another circle� without sliding�
The equation of the epitrochoid in parametric form is

x � �A � a� cos�� �a cos
�
A � a

a
�
�
� y � �A � a� sin�� �a sin

�
A � a

a
�
�
� ������a�
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where A is the radius of the �xed circle and a is the radius of the rolling one� For the hypocycloid we
have to replace 	�a
 by 	�a
� For �a � CP one of the inequalities � �  or � �  is valid� depending
on whether we have the prolate or the curtate curve�

For A � �a� and for arbitrary � ��  the hypocycloid with equation

x � a� � �� cos� � y � a�� �� sin� �� � � � ��� ������b�

describes an ellipse with semi�axes a� � �� and a�� ��� For A � a we have the Pascal lima�con �see
also ������ p� ����

x � a�� cos�� � cos ���� y � a�� sin�� � sin ���� ������c�

Remark� For the Pascal lima�con on ������ p� �� the quantity denoted by a there is denoted by ��a
here� and the l there is the diameter �a here� Furthermore the coordinate system is di�erent�

���� Spirals

������ ArchimedeanSpiral
An Archimedean spiral is a curve �Fig ���� described by a point which is moving with constant speed
v on a ray� while this ray rotates around the origin at a constant angular velocity � The equation of
the Archimedean spiral in polar coordinates is

� � a�� a �
v


�a � ���� � � ��� � �������
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The curve has two branches in a symmetric position with respect to the y�axis� Every ray �K intersects

the curve at the points �� A�� A��� � � �An�� � � � their distance is AiAi�� � ��a� The arclength
�
�P is

L �
a

�

�
�
q
�� �  � Arsinh�

�
� where for large � the expression

�L

a��
tends to � The area of the

sector P��P� is S �
a�

�
���

� � ��
��� The radius of curvature is r � a

��� � ����

�� � �
and at the origin

r� �
a

�
�

������ Hyperbolic Spiral
The equation of the hyperbolic spiral in polar coordinates is

� �
a

�
�a � �� �� � � � �� � � � ��� � �������

The curve of the hyperbolic spiral �Fig ���� has two branches in a symmetric position with respect
to the y�axis� The line y � a is the asymptote for both branches� and the origin is an asymptotic

point� The area of the sector P��P� is S �
a�

�

�


��
� 

��

�
� and lim

����S �
a�

���
is valid� The radius of

curvature is r �
a

�

�p
 � ��

�

��
�

������ Logarithmic Spiral
The logarithmic spiral is a curve �Fig ���� which intersects all the rays starting at the origin � at the
same angle �� The equation of the logarithmic spiral in polar coordinates is

� � aek� �a � �� �� � � ��� � �������

where k � cot� � The origin is the asymptotic point of the curve� The arclength
�

P�P� is L �p
 � k�

k
��� � ��� � the limit of the arclength

�
�P calculated from the origin is L� �

p
 � k�

k
�� The

radius of curvature is r �
p

 � k�� � L�k�

Special case of a circle� For � �
�

�
we have k � �� and the curve is a circle�

������ Evolvent of theCircle
The evolvent of the circle is a curve �Fig ���� which is described by the endpoint of a string while

we roll it o� a circle� and we always keep it tight� so that
�
AB� BP � The equation of the evolvent of the



���� Various Other Curves ���

circle is in parametric form

x � a cos � � a� sin�� y � a sin�� a� cos�� �������

where a is the radius of the circle� and � � �� B�x� The curve has two branches in symmetric position
with respect to the x�axis� It has a cusp at A�a� ��� and the intersection points with the x�axis are at

x �
a

cos��

� where �� are the roots of the equation tan� � �� The arclength of
�
AP is L �



�
a��� The

radius of curvature is r � a� �
p

�aL � the centre of curvature B is on the circle� i�e�� the circle is the
evolute of the curve�
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������ Clothoid

The clothoid �alsoCornu�s spiral� is a curve �Fig ���� such that at every point the radius of curvature
is inversely proportional to the arclength between the origin and the considered point�

r �
a�

s
�a � �� � ������a�

The equation of the clothoid in parametric form is

x � a
p

�

tZ
�

cos
�t�

�
dt� y � a

p
�

tZ
�

sin
�t�

�
dt with t �

s

a
p
�
� s �

�
�P � ������b�

The integrals cannot be expressed in terms of elementary functions� but for any given value of the pa�
rameter t � t�� t�� � � � it is possible to calculate them by numerical integration �see ���� p� ����� so we
can draw the clothoid pointwise� About calculations with a computer see the literature�

The curve is centrosymmetric with respect to the origin� which is also the in�ection point� At the in�ec�
tion point the x�axis is the tangent line� At A and B the curve has asymptotic points with coordinates�

�
a
p
�

�
��

a
p
�

�

�
and

�
�a
p
�

�
��a

p
�

�

�
� The clothoid is applied� for instance in road construction�

where the transition between a line and a circular arc is made by a clothoid segment�

���� VariousOtherCurves

������ CatenaryCurve

The catenary curve is a curve wich has the shape of a homogeneous� �exible but inextensible heavy
chain hung at both ends �Fig ���� represented by a continuous line� The equation of the catenary
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curve is

y � a cosh
x

a
� a

ex�a � e�x�a

�
�a � ��� ������

The parameter a determines the vertex A at ��� a�� The curve is symmetric to the y�axis� and is always

higher than the parabola y � a �
x�

�a
� which is represented by the broken line in Fig ���� The

arclength of
�
AP is L � a sinh

x

a
� a

ex�a � e�x�a

�
� The area of the region �APM has the value S �

aL � a� sinh
x

a
� The radius of curvature is r �

y�

a
� a cosh�

x

a
� a �

L�

a
�

y

x
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The catenary curve is the evolute of the tractrix �see ������� p� ����� so the tractrix is the evolvent �see
������� p� ���� of the catenary curve with vertex A at ��� a��

������ Tractrix
The tractrix �the thick line in Fig ��
� is a curve such that the length of the segment PM of the
tangent line between the point of contact P and the intersection point with a given straight line� here
the x�axis� is a constant a� If we fasten one end of an inextensible string of length a to a material pointP �
and we drag the other end along a straight line� here the x�axis� then P draws a tractrix� The equation
of the tractrix is

x � aArcosh
a

y
�
q
a� � y� � a ln

a�pa� � y�

y
�
q
a� � y� �a � ��� �������

The x�axis is the asymptote� The point A at ��� a� is a cusp� The curve is symmetric with respect to

the y�axis� The arclength of
�
AP is L � a ln

a

y
� For increasing arclength L the di�erence L � x tends

to the value a� � ln �� 
 �����a� where x is the abscissa of the point P � The radius of curvature is

r � a cot
x

y
� The radius of curvature PC and the segment PE � b are inversely proportional� rb � a� �

The evolute �see ������� p� ���� of the tractrix� i�e�� the geometric locus of the centers of circles of
curvature C� is the catenary curve ������� represented by the dotted line in Fig ��
�

���� Determination of Empirical Curves

������ Procedure

�������� Curve�Shape Comparison
If we have only empirical data for a function y � f�x�� we can get an approximate formula in two steps�
First we choose a formula for an approximation which contains free parameters� Then we calculate the
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values of the parameters� If we do not have any theoretical description for the type of formula� then we
�rst choose the approximate formula which is the simplest among the possible functions� comparing
their curves with the curve of empirical data� Estimation of similiarity by eye can be deceptive� There�
fore� after the choice of an approximate formula� and before the determination of the parameters� we
have to check whether it is appropriate�

�������� Recti�cation
Supposing there is a de�nite relation between x and y we determine� for the chosen approximate for�
mula� two functions X � ��x� y� and Y � ��x� y� such that a linear relation of the form

Y � AX � B �������

holds� where A and B are constant� If we calculate the corresponding X and Y values for the given x and
y values� and we consider their graphical representation� it is easy to check if they are approximately
on a straight line� or not� Then we can decide whether the chosen formula is appropriate�

A� If the approximate formula is y �
x

ax � b
� then we can substitute X � x� Y �

x

y
� and we get

Y � aX � b� Another possible substitution is X �


x
� Y �



y
� Then we get Y � a � bX�

B� See semilogarithmic paper� ������� p� ��

C� See double logarithmic paper� �������� p� ��

In order to decide whether empirical data satisfy a linear relation Y � AX � B or not� we can use
linear regression or correlation �see ������ p� ����� The reduction of a functional relationship to a
linear relation is called recti�cation� Examples of recti�cation of some formulas are given in ������
p� ��� and for an example discussed in detail� see in ���� p� ��

�������� Determination of Parameters
The most important and most accurate method of determining the parameters is the least squares
method �see �������� p� ���� In several cases� however� even simpler methods can be used with success�
for instance the mean value method�

�� Mean ValueMethod
In the mean value method we use the linear dependence of 	recti�ed
 variables X and Y � i�e�� Y �
AX � B as follows� We divide the conditional equations Yi � AXi � B for the given values Yi� Xi into
two groups� which have the same size� or approximately the same size� By adding the equations in the
groups we get two equations� from which we can determine A and B� Then replacing X and Y by the
original variables x and y again� we get the connection between x and y� which is what we were looking
for�
If we have not determined all the parameters� we have to apply the mean value method again with a
recti�cation by other amounts X and Y �see for instance ������ ������� p� ���
Recti�cation and the mean value method are used above all when certain parameters occur in non�linear
relations in an approximate formula� as for instance in ������b�� ������c��

�� Least Squares Method
When certain parameters occur in non�linear relations in the approximation formula� the least squares
method usually leads to a non�linear �tting problem� Their solution needs a lot of numerical calculation
and also a good initial approximation� These approximations can be determined by the recti�cation
and mean value method�

������ Useful Empirical Formulas
In this paragraph we discuss some of the simplest cases of empirical functional dependence� and we
also represent the corresponding graphs� Each �gure shows several curves corresponding to di�erent
parameter values involved in the formula� We discuss the in�uence of the parameters upon the forms
of the curves�
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For the choice of the appropriate function� we usually consider only part of the corresponding graph�
which is used for the reproduction of the empirical data� Therefore� e�g�� we should not think that the
formula y � ax� � bx � c is suitable only in the case when the empirical data have a maximum or
minimum�

�������� Power Functions

�� Type y � axb�
Typical shapes of curve for di�erent values of the exponent b

y � axb ������a�

are shown inFig ���� The curves for di�erent values of the exponent are also represented inFigs ����
���� ���� ��� and Fig ���� The functions are discussed on pages ��� �� and �� for the formula
������ as a parabola of order n� formula ������ as a reciprocal proportionality and formula ������ as a
reciprocal power function� The recti�cation is made by taking the logarithm

X � logx� Y � log y � Y � log a � bX� ������b�

�� Type y � axb � c�
The formula

y � axb � c ������a�

produces the same curve as in ������a�� but it is shifted by c in the direction of y �Fig ����� If b is
given� we use the recti�cation�

X � xb� Y � y � Y � aX � c� ������b�

If b is not known� �rst we determine c then we rectify

X � logx � Y � log�y � c� � Y � log a � bX � ������c�

In order to determine c� we choose two arbitrary abscissae x�� x� and a third one� x� �
p
x�x�� and the

corresponding ordinates y�� y�� y�� and we assume c �
y�y� � y�

�

y� � y� � �y�
� After we have determined a and

b� we can correct the value of c� it can be chosen as the average of the amounts y � axb�

y

0 x

Figure ����

y

0 x

Figure ���

�������� Exponential Functions

�� Type y � aebx�
The characteristic shapes of the curves of the function

y � aebx ������a�

are shown in Fig ���� The discussion of the exponential function ������ and its graph �Fig ���� is
presented in ���� on p� �� We rectify

X � x� Y � log y � Y � log a � b log e �X� ������b�
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�� Type y � aebx � c�
The formula

y � aebx � c ������a�

produce the same curve as ������a�� but it is shifted by c in the direction of y �Fig ����� First we
determine c then we rectify by logarithm�

Y � log�y � c�� X � x � Y � log a � b log e �X� ������b�

In order to determine cwe choose two arbitrary abscissae x�� x� and x� �
x� � x�

�
and the corresponding

ordinates y�� y�� y�� and we assume c �
y�y� � y�

�

y� � y� � �y�
� After the determination of a and b we can correct

c� it can be chosen as the average of the amounts y � aebx�

�������� Quadratic Polynomial
Possible shapes of curves of the quadratic polynomial

y � ax� � bx � c ������a�

are shown inFig ���� For the discussion of quadratic polynomials ����� and their curves �Fig ����
see ������ p� ��� Usually we determine the coe�cients a� b and c by the least squares method� but also
in this case we can rectify� Choosing an arbitrary point of data �x�� y�� we rectify

X � x� Y �
y � y�
x� x�

� Y � �b � ax�� � aX� ������b�

If the given x values form an arithmetical sequence with a di�erence h� we rectify

Y � %y� X � x � Y � �bh � ah�� � �ahX� ������c�

In both cases we get c from the equationX
y � a

X
x� � b

X
x � nc ������d�

after the determination of a and b� where n is the number of the given x values� for which the sum is
calculated�

�������� Rational Linear Function
The rational linear function

y �
ax � b

cx � d
������a�
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is discussed in ����� with ������ and graphical representation Fig ��� �see p� ����
Choosing an arbitrary data point �x�� y�� we rectify

Y �
x� x�
y � y�

� X � x � Y � A � BX� ������b�

After determining the values A and B we write the relation in the form ������c�� Sometimes the sug�
gested forms are as ������d��

y � y� �
x� x�
A � Bx

� ������c� y �
x

cx � d
or y �



cx � d
� ������d�

Then in the �rst case we rectify X �


x
and Y �



y
or X � x and Y �

x

y
and in the second case X � x

and Y �


y
�

�������� Square Root of a Quadratic Polynomial
Several possible shapes of curves of the equation

y� � ax� � bx � c �������

are shown in Fig ���� The discussion of the function ������ and its graph �Fig ���� is on p� ���
If we introduce the new variable Y � y�� the problem is reduced to the case of the quadratic polynomial
in �������� p� ���

y

0 x

Figure ����

y

0 x

Figure ����

�������� General Error Curve
The typical shapes of curves of the functions

y � aebx�cx
�

or log y � log a � bx log e � cx� log e ������

are shown in Fig ���� The discussion of the function with equation ����� and its graph �Fig ����
is on p� ���
If we introduce the new variable Y � log y� the problem is reduced to the case of the quadratic poly�
nomial in �������� p� ���

�������	 Curve of Order Three� Type II
The possible shapes of graphs of the function

y �


ax� � bx � c
�������

are represented in Fig ���� The discussion of the function with equation ������ and with graphs
�Fig ��
� is on p� ���
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If we introduce the new variable Y �


y
� the problem is reduced to the case of the quadratic polynomial

in �������� p� ���
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�������� Curve of Order Three� Type III
Typical shapes of curves of functions of the type

y �
x

ax� � bx � c
�������

are represented in Fig ���� The discussion of the function with equation ������ and with graphs
�Fig ���� is on p� ���

Introducing the new variable Y �
x

y
we reduce the problem to the case of the quadratic polynomial in

�������� p� ���

������� Curve of Order Three� Type I
Typical shapes of curves of functions of the type

y � a �
b

x
�

c

x�
�������

are represented in Fig ��
� The discussion of the function with equation ������ and with graphs
�Fig ���� is on p� ���

Introducing the new variable X �


x
we reduce the problem to the case of the quadratic polynomial in

�������� p� ���
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y
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��������� Product of Power and Exponential Functions
Typical shapes of curves of functions of the type

y � axbecx ������a�

are represented in Fig �
�� The discussion of the function with equation ������ and with graphs
�Fig ���� is on p� ���
If the empirical values of x form an arithmetical sequence with di�erence h� we rectify

Y � % log y� X � % log x � Y � hc log e � bX� ������b�

Here % log y and % log x denote the di�erence of two subsequent values of log y and log x respectively�
If the x values form a geometric sequence with quotient q� then we rectify

X � x� Y � % log y � Y � b log q � c�q � �X log e� ������c�

After b and c are determined we take the logarithm of the given equation� and calculate the value of
log a like in ������d��
If the given x values do not form a geometric sequence� but we can choose pairs of two values of x such
that their quotient q is the same constant� then the recti�cation is the same as in the case of a geometric
sequence of x values with the substitution Y � %� log y� Here %� log y denotes the di�erence of the two
values of log y whose corresponding x values result in the constant quotient q �see �������� p� ���

��������� Exponential Sum
Typical shapes of curves of the exponential sum

y � aebx � cedx ������a�

are represented in Fig �
�� The discussion of the function with equation ������ and with graphs
�Fig ��
� is on p� ���
If the values of x form an arithmetical sequence with di�erence h� and y� y�� y� are any three consecutive
values of the given function� then we rectify

Y �
y�
y

� X �
y�
y

� Y � �ebh � edh�X � ebh � edh� ������b�

After we have determined b and d by this equation� we rectify again�

Y � ye�dx� X � e�b�d�x � Y � aX � c� ������c�

��������� Numerical Example
Find an empirical formula to describe the relation between x and y if their values are given inTable �
�

Table ��� For the approximate determination of an empirically given function relation

x y
x

y
�
x

y
lg x lg y � lg x � lg y � � lg y yerr

�	� �	�� �	�� �	��� ��	��� �	�� �	��� ���� ���� �	��
�	� �	�� �	��� �	��� ��	��� �	�� �	��� ������ ������ �	�
�	� �	�� �	��� �	��� ��	�� �	�� �	�� ������ ������ �	��
�	� �	� �	�� �	�� ��	��� �	�� �	��� ����� ������ �	�
�	 �	�� �	��� �	��� ��	��� �	��� �	��� ������ ������ �	��
�	� �	�� �	�� �	��� ��	��� �	�� �	��� ������ ���� �	��
�	� �	�� �	��� �	��� ��	� ������ �	�� ������ � �	��
�	� �	�� �	��� �	��� ��	��� ������ �	�� ������ � �	��
�	� �	�� �	��� �	�� ��	��� ������ �	��� ������ � �	��
�	� �	�� �	�� �	�� �	��� ������ �	��� ������ � �	��
�	� �	�� �	�� ��	�� �	��� ���� �	��� ������ � �	��
�	� �	�� ��	� � �	��� ������ � � � �	��
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Choice of the ApproximationFunction� Comparing the graph prepared from the given data �Fig
�
�� with the curves discussed before� we see that formulas ������� or ������a� with curves inFig ���
and Fig �
� can �t our case�

Determination of Parameters� Using the formula ������� we have to rectify %
x

y
and x� The cal�

culation shows� however� the relationship between x and %
x

y
is far from linear� To verify whether the

formula ������a� is suitable we plot the graph of the relation between % log x and % log y for h � �� 
in Fig �
�� and also between %� log y and x for q � � in Fig �
�� In both cases the points �t a
straight line well enough� so the formula y � axbecx can be used�
In order to determine the constants a� b and c� we seek a linear relation between x and %� log y by the
method of mean values� Adding the conditional equations %� log y � b log � � cx log e in groups of
three equations each� we obtain

������ � �����b � ������c � ������ � �����b � �����c�

and we get b � ���� and c � ������� To determine a� we add the equations of the form log y �
log a � b log x � c log e � x� which yields ������ � � loga � ����� � ������ so from log a � �����
a � ��� follows� The values of y calculated from the formula y � ���x��		e������x are given in the last
column of Table �
� they are denoted by yerr as an approximation of y� The error sum of squares is
�������
If we use the parameters determined by this recti�cation as initial values for the iterative solution of
the non�linear least squares problem �see �������� p� ����

P��
i�� yi � axbie

cxi!� � min$� we get a �
������ ���� b � ���� ���� c � ������ ��� with the very small error sum of squares ����� ����
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���� Scales andGraphPaper

������ Scales
The base of a scale is a function y � f�x�� We construct a scale from this function so that on a curve�
for instance on a line� we measure the substitution values of y as an arclength� but we mark them as
the values of the argument x� We can consider a scale as a one�dimensional representation of a table of
values�
The scale equation for the function y � f�x� is�

y � l f�x�� f�x��!� �������

We �x the starting point x� of the scale� We choose the scale factor l� because for a concrete scale we
have only one given scale length�

A Logarithmic Scale� For l � � cm and x� �  the scale equation is
y � � lg x� lg ! � � lgx �in cm�� For the table of values

x  � � � � � � � � �
y � lgx � ���� ���� ���� ���� ���� ���� ���� ���� 

we get the scale shown in Fig �
��

1 2 3 4 5 6 107 8 9

Figure ����

B Slide Rule� The most important application of the logarithmic scale� from a historical view�
point� was the slide rule� Here� for instance� multiplication and division were performed with the help
of two identically calibrated logarithmic scales� which can be shifted along each other�
From Fig �
� we can read� y� � y� � y�� i�e�� lg x� � lg x� � lg x� � lgx�x�� hence x� � x� � x�� y� �

y� � y�� i�e�� lg x� � lg x� � lg x� � lg
x�
x�

� so x� �
x�
x�

�
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C Volume Scale� We mark by a scale the lateral surface of a conical shaped jar� a �ller� so that
the volume could be read from it� The data of the �ller are� Height H � � cm� diameter D � � cm�

With the help of Fig �
�a we get the scale equation as follows� Volume V �


�
r��h� apothem s �

p
h� � r� � tan� �

r

h
�

D��

H
�



�
� From these h � �r� s � r

p
� � V �

�

�
p

���
follows� so the

scale equation is s �

p
�

�
p
�

�
p
V 
 ���

�
p
V � With the help of the following table of values we get the

calibration of the �ller as in the �gure�
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V � �� �� �� ��� ��� ��� ���
s � ���� ���� ��� ���� ��� ���� ����

������ GraphPaper
The most useful graph paper is prepared so that the axes of a right�angle coordinate system are cali�
brated by the scale equations

x � l� g�u�� g�u��!� y � l� f�v�� f�v��!� �������

Here l� and l� are the scale factors� u� and v� are the initial points of the scale�

���	���� Semilogarithmic Paper
If the x�axis has an equidistant subdivision� and the y�axis has a logarithmic one� then we talk about
semilogarithmic paper or about a semilogarithmic coordinate system�

Scale Equations�

x � l� u� u�! �linear scale�� y � l� lg v � lg v�! �logarithmic scale�� �������

The Fig �
� shows an example of semilogarithmic paper�

Representation ofExponentialFunctions� On semilogarithmicpaper the graph of the exponential
function

y � �e	x ��� � const� ������a�

is a straight line �see recti�cation in ������ ������ p� ���� We can use this property in the following
way� If the measuring points� introduced on semilogarithmic paper� lie approximately on a line� we
can suppose a relation between the variables as in ������a�� With this line� estimated by eye� we can
determine the approximate values of � and �� Considering two points P��x�� y�� and P��x�� y�� from
this line we get

� �
ln y� � ln y�

x� � x�
and� e�g�� � � y�e

	x�� ������b�
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���	���� Double Logarithmic Paper
If both axes of a right�anglex� y coordinate system are calibrated with respect to the logarithm function�
then we talk about double logarithmic paper or loglog paper or a double logarithmic coordinate system�

Scale Equations� The scale equations are

x � l� lg u� lg u�!� y � l� lg v � lg v�!� ������
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where l�� l� are the scale factors and u�� v� are the initial points�

Representation of Power Functions �see ���� p ���� Log�log paper has a similar arrangement
to semilogarithmic paper� but the x�axis also has a logarithmic subdivision� In this coordinate system
the graph of the power function

y � �x	 ��� � const� �������

is a straight line �see recti�cation of a power function in ������ ������ p� ���� This property can
be used in the same way as in the case of semilogarithmic paper�

���	���� Graph Paper with a Reciprocal Scale
The subdivisions of the scales on the coordinate axes follow from ������ for the function of inverse
proportionality �see ����� p� ����

Scale Equations� We have

x � l� u� u�!� y � l�



a

v
� a

v�

�
�a const�� �������

where l� and l� are the scale factors� and u�� v� are the starting points�

Concentration in a Chemical Reaction� For a chemical reaction we denote the concentration
by c � c�t�� where t denotes time� and measuring c� we have the following results�

t�min � � �� ��
c � ���mol�l ���� ��� ���� ����

We suppose that we have a reaction of second order� i�e�� the relation should be

c�t� �
c�

 � c�kt
�c�� k const�� �������

Taking the reciprocal value of both sides� we get


c
�



c�
�kt� i�e�� ������� can be represented as a line� if

the corresponding graph paper has a reciprocal subdivision on the y�axis and a linear one on the x�axis�

The scale equation for the y�axis is� e�g�� y � � � 

v
cm�

It is obvious from the corresponding Fig �

 that the measuring points lie approximately on a line�
i�e�� the supposed relation ������� is acceptable�
From these points we can determine the approximate values of both parameters k �reaction rate� and
c� �initial concentration�� We choose two points� e�g�� P���� �� and P����� ��� and we get�

k �
�c� � �c�

t� � t�

 ������ c� 
 �� � ����

���	���� Remark
There are several other possibilities for constructing and using graph paper� Although today in most
cases we have high�capacity computers to analyse empirical data and measurement results� in everyday
laboratory practice� when we have only a few data� graph paper is used quite often to show the func�
tional relations and approximate parameter values needed as initial data for applied numerical methods
�see the non�linear least squares method in �������� p� �����



���� Functions of Several Variables ���

���� Functions of SeveralVariables
���	�� De
nition andRepresentation

�������� Representation of Functions of Several Variables
A variable value u is called a function of n independent variables x�� x�� � � � �xn� if for given values of the
independent variables� u is a uniquely de�ned value� Depending on how many variable we have� two�
three� or n� we write

u � f�x� y� � u � f�x� y� z� � u � f�x�� x�� � � � � xn� � �������

If we substitute given numbers for the n independent variables� we get a value system of the variables�
which can be considered as a point of n�dimensional space� The single independent variables are called
arguments� sometimes the entire n�tuple together is called the argument of the function�

Examples of Values of Functions�

A� u � f�x� y� � xy� has for the value system x � �� y � � the value f��� �� � � � �� � ��
B� u � f�x� y� z� t� � x ln�y � zt� takes for the value system x � �� y � �� z � �� t �  the value

f��� �� �� � � � ln��� � � � � ��

�������� Geometric Representation of Functions of Several Variables

�� Representation of the Value System of the Variables
The value system of an argument of two variables x and y can be represented as a point of the plane
given by Cartesian coordinates x and y� A value system of three variables x� y� z corresponds to a point
given by the coordinates x� y� z in a three�dimensional Cartesian coordinate system� Systems of four
or more coordinates cannot be represented obviously in our three�dimensional imagination�

Similarly to the three�dimensional case we consider the system of n variables x�� x��� � � �xn as a point
of the n�dimensional space given by Cartesian coordinates x�� x��� � � �xn� In the above example B� the
four variables de�ne a point in four�dimensional space� with coordinates x � �� y � �� z � � and t � �

u

0
x

yx

y

u

P

Figure ����

�� Representation of the Function u � f�x� y� of Two
Variables
a� A function of two independent variables can be represented by a
surface in three�dimensional space� similarly to the graph representa�
tion of functions of one variable �Fig ����� see also ������ p� ����� If
we consider the values of the independent variables of the domain as
the �rst two coordinates� and the value of the function u � f�x� y� as
the third coordinate of a point in a Cartesian coordinate system� these
points form a surface in three�dimensional space�

Examples of Surfaces of Functions�

A� u � � x

�
� y

�
represents a plane �Fig ����a� see also �������� p� ����

B� u �
x�

�
�

y�

�
represents an elliptic paraboloid �Fig ����b� see also �������� �� p� �����

C� u �
q

�� x� � y� represents a hemisphere with r � � �Fig ����c��

b� The shape of the surface of the function u � f�x� y� can be pictured with the help of intersection
curves� which we get by intersecting the surface parallel to th coordinate planes� The intersection curves
u � const are called level curves or niveau lines�

In Fig ����b�c the level curves are concentric circles �not denoted in the �gure��

Remark� A function with an argument of three or more variables cannot be represented in three�
dimensional space� Similarly to surfaces in three�dimensional space we introduce the notion of a hy�
persurface in n�dimensional space�
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���	�� Di�erentDomains in thePlane

�������� Domain of a Function
The domain of de�nition of a function �or domain of a function� is the set of the system of values or
points which can be taken by the variables of the argument of the function� The domains de�ned this
way can be very di�erent� Mostly they are bounded or unbounded connected sets of points� Depend�
ing on whether the boundary belongs to the domain or not� the domain is closed or open� An open�
connected set of points is called a domain� If the boundary belongs to the domain� we call it a closed
domain� if it does not� sometimes we call it an open domain�

�������� Two�Dimensional Domains
Fig ���� shows the simplest cases of connected sets of points of two variables and their notation� Do�
mains are represented here as the shaded part� closed domains� i�e�� domains whose boundary belongs to
them� are bounded by thick curves in the �gures� open domains are bounded by dotted curves� Includ�
ing the entire plane there are only simply connected domains or simply connected regions in Fig �����

0 x

y
entire plane

0 x

y unbounded
closed
domain

y

x0

unbounded
open domain

0 x

y bounded
closed
domain

0 x

y bounded
open domain

a) b) c)

d) e)

Figure ����

�������� Three orMultidimensional Domains
These are handled similarly to the two�dimensional case� It concerns also the distinction between sim�
ply and multiply connected domains� Functions of more than three variables will be geometrically
represented in the corresponding n�dimensional space�
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�������� Methods to Determine a Function

� De�nition by Table of Values Functions of several variables can be de�ned by a table of values�
An example of functions of two independent variables are the tables of values of elliptic integrals �see
���� p� ���� The values of the independent variables are denoted on the top and on the left�hand side
of the table� The required substitution value of the function is in the intersection of the corresponding
row and column� We call it a table with double entry�

� De�nition by Formulas Functions of several variables can be de�ned by one or more formulas�

A� u � xy��
B� u � x ln�y � zt��

C� u �

�������
x � y for x 	 � � y 	 ��
x� y for x 	 � � y � ��
�x � y for x � � � y 	 ��
�x� y for x � � � y � ��

� Domain of a Function Given by One Formula In the analysis we deal with functions mostly
de�ned by formulas� Here the union of all value systems for which the analytical expression has a
meaning is considered to be the domain� i�e�� for which the expression has a unique� �nite� real value�
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Examples for Domains�

A� u � x� � y�� The domain is the entire plane�

B� u �
p

�� x� � y�
� The domain consists of all value systems x� y� satisfying the inequality

x� � y� � �� Geometrically this domain is the interior of the circle in Fig ����a� an open domain�

C� u � arcsin�x � y�� The domain consists of all value systems x� y� satisfying the inequality� �
x�y � �� i�e�� the domain of the function is a closed domain� the stripe between the two parallel lines
in Fig ����b�

D� u � arcsin��x � � �
p

� y� �
p
y � ln z� The domain consists of the value system x� y� z�

satisfying the inequalities � � x � � � � y � � z � �� i�e�� it consists of the points lying above a
square with side�length  shown in Fig ����c�
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If from the interior of the considered part of the plane a point or a
bounded� simply connected point set is missing� as shown inFig �����
we call it a doubly�connected domain or doubly�connected region� Multi�
ply connected domains are represented in Fig ����� A non�connected
region is shown in Fig �����

�������� VariousWays to De�ne a Function
Functions of several variables can be de�ned in di�erent ways� just as
functions of one variable�

�� Explicit Representation
A function is given or de�ned in an explicit way if its value �the dependent variable� can be expressed
by the independent variables�

u � f�x�� x�� � � � � xn� � �������

�� Implicit Representation
A function is given or de�ned in an implicit way if the relation between its value and the independent
variables is given in the form�

F �x�� x�� � � � � xn� u� � � � �������

if there is a unique value of u satisfying this equality�

�� Parametric Representation
A function is given in parametric form if the n arguments and the function are de�ned by n new vari�
ables� the parameters� in an explicit way� supposing there is a one�to�one correspondence between the
parameters and the arguments� For a two�variable function� for instance

x � ��r� s� � y � ��r� s� � u � ��r� s� � ������a�

and for a three�variable function

x � ��r� s� t� � y � ��r� s� t� � z � ��r� s� t� � u � ��r� s� t� ������b�

etc�

�� Homogeneous Functions
A function f�x�� x�� � � � � xn� of several variables is called a homogeneous function if the relation

f��x�� �x�� � � � � �xn� � �mf�x�� x�� � � � � xn� �������

holds for arbitrary �� The number m is the degree of homogeneity�

A� For u�x� y� � x� � �xy � y� � x

s
xy �

x�

y
� the degree of homogeneity is m � � �
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B� For u�x� y� �
x � z

�x� �y
� the degree of homogeneity is m � � �

�������� Dependence of Functions

�� Special Case of Two Functions
Two functions of two variables u � f�x� y� and v � ��x� y� � with the same domain� are called dependent
functions if one of them can be expressed as a function of the other one u � F �v�� For every point of
the domain of the functions the identity

f�x� y� � F ���x� y�� or ��f� �� � � �������

holds� If there is no such function F ��� or ��f� �� � we call them independent functions�

u�x� y� � �x��y��� � v �
p
x� � y� are de�ned everywhere� and they are dependent� because u � v�

holds�

�� General Case of Several Functions
Similarly to the case of two functions� we call the m functions u�� u��� � � � um of n variables x�� x��� � � �
xn in their common domain dependent if one of them can be expressed as a function of the others� i�e��
if for every point of the region the identity

ui � f�u�� u�� � � � � ui��� ui��� � � � � um� or ��u�� u�� � � � � um� � � ������

is valid� If there is no such functional relationship� they are independent functions�

The functions u � x� �x� � � � ��xn� v � x�
� �x�

� � � � ��xn
� and w � x�x� �x�x� � � � ��x�xn �

x�x� � � � �� xn��xn are dependent because v � u� � �w holds�

�� Analytical Conditions for Independence
Suppose every partial derivative mentioned in the following exists� Two functions u � f�x� y� and
v � ��x� y� are independent on a domain if their functional determinant or Jacobian determinant����������

�f

�x

�f

�y
��

�x

��

�y

����������
� short

D�f� ��

D�x� y�
or

D�u� v�

D�x� y�
� ������a�

is not identically zero here� Analo�
gously� in the case of n functions of
n variables u� � f��x�� � � � � xn�� � � � �
un � fn�x�� � � � � xn��

������������������
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�xn
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���
���
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���
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�x�
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�x�
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�xn

������������������
� D�f�� f�� � � � � fn�

D�x�� x�� � � � � xn�
�� � �������b�

If the number m of the func�
tions u�� u�� � � � � um is smaller
than the number of variables
x�� x�� � � � � xn� these functions
are independent if at least one
subdeterminant of order m of
the matrix ������c� is not iden�
tically zero��BBBBBBBBBBBB�

�u�
�x�

�u�
�x�

� � �
�u�
�xn

�u�
�x�

�u�
�x�

� � �
�u�
�xn

���
���

���
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�x�
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�x�

� � �
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�xn

�CCCCCCCCCCCCA
� ������c�

The number of independent func�
tions is equal to the rank r of the ma�
trix ������c� �see ����� �� p� �����
Here these functions are indepen�
dent� whose derivatives are the ele�
ments of the non�vanishing determi�
nant of order r� If m � n holds� then
among the givenm functions at most
n can be independent�
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���	�� Limits
�������� De�nition
A function of two variables u � f�x� y� has a limit A at x � a� y � b if when x and y are arbitrarily
close to a and b� respectively� then the value of the function f�x� y� approaches arbitrarily closely the
value A� Then we write�

lim
x�a
y�b

f�x� y� � A � �������

The function may not be de�ned at �a� b�� or if it is de�ned here� may not have the value A�
y

x

P

0

b

aa−� a+�

b−�

b+�

Figure ����

�������� Exact De�nition
A function of two variables u � f�x� y� has a limit A � lim

x�a
y�b

f�x� y� if for

arbitrary positive � there is a positive � such that �Fig �����

jf�x� y�� Aj � � ������a�

holds for every point �x� y� of the square

jx� aj � �� jy � bj � � � ������b�

�������� Generalization for Several Variables
a� The notion of limit of a function of several variables can be de�ned analogously to the case of two
variables�

b� We get criteria for the existence of a limit of a function of several variables by generalization of the
criterion for functions of one variable� i�e�� by reducing to the limit of a sequence just as in the Cauchy
condition for convergence �see ������� p� ����

�������� Iterated Limit
If for a function of two variables f�x� y� we determine �rst the limit for x  a� i�e�� lim

x�a
f�x� y� for

constant y� then for the function we obtain� which is now a function only of y� we determine the limit
for y  b� the resulting number

B � lim
y�b

�
lim
x�a

f�x� y�
�

������a�

is called an iterated limit� Changing the order of calculations we get the limit

C � lim
x�a

�
lim
y�b

f�x� y�
�
� ������b�

In general B �� C holds� even if both limits exist�

For the function f�x� y� �
x� � y� � x� � y�

x� � y�
for x  �� y  � we get the iterated limits B � �

and C � ��

If the function f�x� y� has a limit A � lim
x�a
y�b

f�x� y�� and both B and C exist� then B � C � A is valid�

The existence of B and C does not follow from the existence of A� From the equality of the limitsB � C
the existence of the limit A does not follow�

���	�� Continuity
A function of two variables f�x� y� is continuous at x � a � y � b � i�e�� at the point �a� b�� if � the point
�a� b� belongs to the domain of the function and �� the limit for x a� y  b exists and is equal to the
substitution value� i�e��

lim
x�a
y�b

f�x� y� � f�a� b�� �������
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Otherwise the function has a discontinuity at x � a� y � b� If a function is de�ned and continuous at
every point of a connected domain� it is called continuous on this domain� We can de�ne the continuity
of functions of more than two variables similarly�

���	�� Properties of Continuous Functions

�������� Theorem on Zeros of Bolzano
If a function f�x� y� is de�ned and continuous in a connected domain� and at two points �x�� y�� and
�x�� y�� of this domain the substitution values have di�erent signs� then there exists at least one point
�x�� y�� in this domain such that f�x� y� is equal to zero there�

f�x�� y�� � �� if f�x�� y�� � � and f�x�� y�� � � � �������

�������� Intermediate Value Theorem
If a function f�x� y� is de�ned and continuous in a connected domain� and at two points �x�� y�� and
�x�� y�� it has di�erent substitution values A � f�x�� y�� and B � f�x�� y��� then for an arbitrary value
C between A and B there is at least one point �x�� y�� such that�

f�x�� y�� � C� A � C � B or B � C � A � �������

�������� TheoremAbout the Boundedness of a Function
If a function f�x� y� is continuous on a bounded and closed domain� it is bounded in this domain� i�e��
there are two numbers m and M such that for every point �x� y� in this domain�

m � f�x� y� �M� �������

�������� Weierstrass Theorem �About the Existence ofMaximum and
Minimum�

If a function f�x� y� is continuous on a bounded and closed domain� then it takes its maximum and
minimum here� i�e�� there is at least one point �x�� y�� such that all the values f�x� y� in this domain are
less than or equal to the value f�x�� y��� and there is at least one point �x��� y��� such that all the values
f�x� y� in this domain are greater than or equal to f�x��� y���� For any point �x� y� of this domain

f�x�� y�� 	 f�x� y� 	 f�x��� y��� �������

is valid�

���� Nomography

������ Nomograms
Nomograms are graphical representations of a functional correspondence between three or more vari�
ables� From the nomogram� the corresponding values of the variables of a given formula � the key
formula � in a given domain of the variables can be immediately read directly� Important examples of
nomograms are net charts and alignment charts�
Nomograms are still used in laboratories� even in the computer age� for instance to get approximate
values or starting guesses for iterations�

������ NetCharts
If we want to represent a correspondence between the variables given by the equation

F �x� y� z� � � ������

�or in many cases explicitly by z � f�x� y��� then the variables can be considered as coordinates in
space� The equation ������ de�nes a surface which can be visualized on two�dimensional paper by its
level curves �see ������� p� ��� Here� a family of curves is assigned to each variable� These curves
form a net� The variables x and y are represented by lines parallel to the axis� the variable z is repre�
sented by the family of level curves�
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Ohm�s law is U � R � I� The voltage U can be represented by its level curves depending on two vari�
ables� If R and I are chosen as Cartesian coordinates� then the equation U � const for every constant
corresponds to a hyperbola �Fig ������ By looking at the �gure one can tell the corresponding value
of U for every pair of values R and I � and also I corresponding to every R�U � and also R correspond�
ing to every I and U � Of course� we always have to restrict our investigation to the domain which is
interpreted� In Fig ���� we have � � R � � � � � I � � and � � U � �� �
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Remarks�

� By changing the calibration� the nomogram can be used for other domains� If we need the domain�
for instance in �Fig ����� the domain � � I �  � but R should remain the same� then the hyperbolas
of U are marked by U�� �

� By application of scales �see ����� p� �� it is possible to transform nomograms with complicated
curves into straight�line nomograms� Using uniform scales on the x and y axis� every equation of the
form

x��z� � y��z� � ��z� � � �������

can be represented by a nomogram consisting of straight lines� If function scales x � f�z�� and y �
g�z�� are used� then the equation of the form

f�z����z�� � g�z����z�� � ��z�� � � �������

has a representation for the variables z�� z� and z� as two families of curves parallel to the axis and an
arbitrary family of straight lines�

By applying a logarithmic scale �see ����� p� ��� Ohm�s law can be represented by a straight�line
nomogram� Taking the logarithm of R � I � U gives logR � log I � logU � Substituting x � logR
and y � log I results in x � y � logU � i�e�� a special form of �������� The corresponding nomogram is
shown in Fig ���
�

������ AlignmentCharts
A graphical representation of a relation between three variables z�� z� and z� can be given by assigning
a scale �see ����� p� �� to each variable� The zi scale has the equation

xi � �i�zi�� yi � �i�zi� �i � � �� ��� �������



���� Nomography ���

The functions �i and �i are chosen in such a manner that the values of the three variables z�� z� and
z� satisfying the nomogram equation should lie on a straight line� To satisfy this condition� the area of
the triangle� given by the points �x�� y��� �x�� y�� and �x�� y�� � must be zero �see ������� on p� ���� i�e��������

x� y� 
x� y� 
x� y� 

������ �

������
���z�� ���z�� 
���z�� ���z�� 
���z�� ���z�� 

������ � � �������

must hold� Every relation between three variables z�� z� and z� � which can be transformed into the
form �������� can be represented by an alignment nomogram �
Next� we give the description of some important special cases of ��������

������� AlignmentChartswithThreeStraight�LineScalesThroughaPoint

If the zero point is chosen for the common point of the lines having the three scales z�� z� or z� � then
������� has the form������

���z�� m����z�� 
���z�� m����z�� 
���z�� m����z�� 

������ � � � �������

since the equation of a line passing through the origin has the equation y � mx � Evaluating the
determinant �������� we get

m� �m�

���z��
�

m� �m�

���z��
�

m� �m�

���z��
� � ������a�

or

C�

���z��
�

C�

���z��
�

C�

���z��
� � with C� � C� � C� � � � ������b�

Here C�� C� and C� are constants�

The equation


a
�



b
�

�

f
is a special case of ������b� and it is an important relation� for instance in

optics or for the parallel connection of resistances� The corresponding alignment nomogram consists
of three uniformly scaled lines�

������� Alignment Charts with Two Parallel andOne Inclined
Straight�Line Scales

One of the scales is put on the y�axis� the other one on another line parallel to it at a distance d� The
third scale is put on a line y � mx� In this case ������� has the form������

� ���z�� 
d ���z�� 

���z�� m���z�� 

������ � �� �������

Evaluation of the determinant by the �rst column yields

d �m���z��� ���z��� � ���z�� ����z��� ���z��� � �� ������a�

Consequently�

���z��
���z��� d

���z��
� ����z���md� � � oder f�z�� � g�z��� h�z�� � �� ������b�

It is often useful to introduce measure scales E� and E� of the form

E�f�z��
E�

E�
g�z��� E�h�z�� � �� ������c�



��� �� Functions

Then� ���z�� �
d

� E�

E�
g�z��

holds� The relation E� � E� can be chosen so that the third scale is pulled

near a certain point or it is gathered� If we substitute m � �� then E�h�z�� � ���z�� and in this case�
the line of the third scale passes through both the starting points of the �rst and of the second scale�
Consequently� these two scales must be placed with a scale division in opposite directions� while the
third one will be between them�

The relation between the Cartesian coordinats x and y of a point in the x� y plane and the corre�
sponding angle � in polar coordinates is�

y� � x� tan� � � �������

The corresponding nomogram is shown in Fig ����� The scale division is the same for the scales of x
and y but they are oriented in opposite directions� In order to get a better intersection with the third
scale between them� their initial points are shifted by a suitable amount� The intersection points of the
third scale with the �rst or with the second one are marked by � � � or � � ��� respectively�

x � � y � ��� � delivers � 
 ����� �
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������� Alignment Charts with Two Parallel Straight Lines and a
Curved Scale

If one of the straight�line scales is placed on the y�axis and the other one is placed at a distance d from
it� then equation ������� has the form������

� ���z�� 
d ���z�� 

���z�� ���z�� 

������ � � � ������

Consequently�

���z�� � ���z��
���z��

d� ���z��
� d

���z��

d� ���z��
� �� ������a�

If we choose the scale E� for the �rst scale and E� for the second one� then ������a� is transformed into

E�f�z�� � E�g�z��
E�

E�
h�z�� � E�k�z�� � �� ������b�



���� Nomography ���

where ���z�� � E�f�z�� � ���z�� � E�g�z�� and

���z�� �
dE�h�z��

E� � E�h�z��
and ���z�� � � E�E�k�z��

E� � E�h�z��
������c�

holds�

The reduced third�degree equation z� � p�z � q� � � �see ������� p� ��� is of the form ������b��
After the substitutions E� � E� �  and f�z�� � q� � g�z�� � p� � h�z�� � z � the formulas to calculate

the coordinates of the curved scale are x � ���z� �
d � z
 � z

and y � ���z� � � z�

 � z
�

In Fig ���� the curved scale is shown only for positive values of z � The negative values one gets by
replacing z by �z and by the determination of the positive roots from the equation z� � p�z � q� � ��
The complex roots u� iv can also be determined by nomograms� Denoting the real root� which always
exists� by z� � then the real part of the complex root is u � �z��� � and the imaginary part v can be

determined from the equation �u� � v� � p� �
�

�
z�� � v� � p� � ��

y� � �y � � � �� i�e�� p� � �� q� � ��� One reads z� 
 ���

������ NetCharts forMoreThanThreeVariables
To construct a chart for formulas containing more than three variables� the expression is to decompose
by the help of auxiliary variables into several formulas� each containing only three variables� Here� every
auxiliary variable must be contained in exactly two of the new equations� Each of these equations is to
be represented by an alignment chart so that the common auxiliary variable has the same scale�



��� 	� Geometry

� Geometry

��� PlaneGeometry

����� BasicNotation

������� Point� Line� Ray� Segment

�� Point and Line
Points and straight lines are not de�ned in today�s mathematics� We determine the relations between
them only by axioms� We can imagine a line as a trace of a point moving in a plane along the shortest
route between two di�erent points without changing its direction�

A point is the intersection of two lines�

�� Closed Half�Line or Ray� and Segment
A ray is the set of points of a line which are exactly on one side of a given point O� including this point
O� We can imagine a ray as the trace of a point which starts at O and moves along the line without
changing its direction� like a beam of light after its emission until it is not led out of its way�

A segmentAB is the set of points of a line lying between two given points A and B of this line� including
the points A and B� The segment is the shortest connection between the two points A and B in a

plane� The direction class of a segment is denoted by an arrowhead
��
AB� or its direction starts at the

�rst mentioned point A� and ends at the second B�

�� Parallel and Orthogonal Lines
Parallel lines run in the same direction� they have no common points� i�e�� they do not move o� and do
not approach each other� and they do not have any intersection point� The parallelism of two lines g
and g� is denoted by gjjg� �
Orthogonal lines form a right angle at their intersection� i�e�� they are perpendicular to each other�
Orthogonality and parallelism are mutual positions of two lines�

������� Angle

α

B

a

b

A
S

Figure ��

�� Notion of Angle
An angle is de�ned by two rays a and b starting at the same point S� so they can
be transformed into each other by a rotation �Fig ���� If A is a point on the
ray a and B is on the ray b� then the angle in the direction given in Fig �� is
denoted by the symbols �a� b� or by �� ASB� or by a Greek letter� The point S is
called the vertex� the rays a and b are called sides or legs of the angle�

In mathematics� we call an angle positive or negative depending on the rotation being counterclockwise
or clockwise respectively� It is important to distinguish the angle �� ASB from the angle �� BSA� Actu�
ally� �� ASB � ��� BSA �� � �� ASB � ���� and �� ASB � ������� BSA ���� � �� ASB � �����
holds�

Remark� In geodesy the positive direction of rotation is de�ned by the clockwise direction �see �������
p� ����

�� Names of Angles
Angles have di�erent names according to the di�erent positions of their legs� The names given in Ta�
ble �� are used for angles � in the interval � � � � ���� �see also Fig ����

������� Angle Between Two Intersecting Lines
At the intersection point of two lines g�� g� there are four angles �� �� �� 	 �Fig ���� We distinguish
adjacent angles� vertex angles� complementary angles� and supplementary angles�
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Table �� Names of angles in degree and radian measure

Names of angles Degree Radian Names of angles Degree Radian

round �full� angle �� � ���� � � �� right angle �� � ��� � � ���
convex angle �� � ��� � � � � �� acute angle �� � �� � ��� �� � � � ���
straight angle � � ��� � � � obtuse angle ��� � � � ��� ��� � � � �

S

acute angle

S

right
angle

S

obtuse
angle

S

straight
angle

S

convex
angle

S

round (full)
angle

Figure ���

� Adjacent Angles are neighboring angles at the intersection point of two lines with a common
vertex S� and with a common leg� both non�common legs are on the same line� they are rays starting
from S but in opposite directions� so adjacent angles sum to ����

In Fig �� the pairs ��� ��� ��� ��� ��� 	� and ��� 	� are adjacent an�
gles�
� Vertex Angles are the angles at the intersection point of two
lines� opposite to each other� having the same vertex S but no common
leg� and being equal� They sum to ��� by the same adjacent angle�

In Fig �� ��� �� and ��� 	� are vertex angles�



�

�
�

g1

g2

Figure ���

� Complementary Angles are two angles summing to ����
� Supplementary Angles are two angles summing to ����

In Fig �� the pairs of angles ��� �� or ��� 	� are supplementary angles�

������� Pairs of Angles with Intersecting Parallels
Intersecting two parallel lines p�� p� by a third one g� we get eight angles
�Fig ���� Besides the adjacent and vertex angles with the same ver�
tex S we distinguish alternate angles� opposite angles� and corresponding
�exterior�interior� angles with di�erent vertices�
� AlternateAngles have the same size� They are on the opposite sides
of the intersecting line g and of the parallel lines p�� p�� The legs of alternate
angles are in pairs oppositely oriented�

In Fig �� the pairs of angles ���� ���� ���� 	��� ���� ���� and �	�� ��� are
alternate angles�

β1

δ1

α1γ1

g

p1

p2

β2

δ2

α2
γ2

Figure ���

� Corresponding or Exterior�Interior Angles have the same size� They are on the same sides
of the intersecting line g and of the parallel lines p�� p�� The legs of corresponding angles are oriented
in pairs in the same direction�

In Fig �� the pairs of angles ���� ���� ���� ���� ���� ���� and �	�� 	�� are corresponding angles�
� Opposite Angles are on the same side of the intersecting line g but on di�erent sides of the
parallel lines p�� p�� They sum to ���� One pair of legs has the same orientation� the other one is
oppositely oriented�

In Fig ��� e�g�� the pairs of angles ���� 	��� ���� ���� ���� ���� and �	�� ��� are opposite angles�
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������� AnglesMeasured in Degrees and in Radians
In geometry� the measurement of angles is based on the division of the full angle into ��� equal parts
or ���� �degrees�� This is called measure in degrees� Further division of degrees is not a decimal one�
it is sexagesimal� � � ��� �minute� or sexagesimal minute�� � � ���� �second� or sexagesimal second��
For grade measure see �������� p� �� and the remark below�
Besides measure in degrees we use radian measure to de�ne the size of an angle� The size of the central
angle � of an arbitrary circle �Fig ��a� is given as the ratio of the corresponding arclength l and the
radius of the circle r�

� �
l

r
� ����

The unit of radian measure is the radian �rad�� i�e�� the central
angle belonging to an arc with length equal to the radius� In
the table you will �nd approximate conversion values�

 rad � ��� �� ������ � ���������
� � ������� rad�
� � ������� rad�
�� � �������� rad�

If the measure of the angle is �� in degrees and � in radian measure� then for conversion we have�

�� � �� � ���
�

�
� � �

��

�
�

�

���
�� with � �

���

�
� �����

In particular� ���� 	
� �� � ��� 	

� � � ��� 	
� ��� � ���� 	

� ����� etc� Formulas ����� refer to decimal
fractions and in the following examples we show how to make calculations with minutes and seconds�

A� Conversion of an angle given in degrees into radian measure�
��� ��� ���� � �� � ������� � �� � ������� � �� � �������� � ������� rad �

B� Conversion of an angle given in radians into degrees�
����� rad � ��� � ������� � �� � ������� � � � �������� � ���� ��� �����
We have the result from�

������������� � ��� � ������
�������������� � �� � ��������
����������������� � ��
We usually omit the notation rad if it is obvious from the text that the number refers to the radian
measure of an angle�

Remark� In geodesy a full angle is divided into ��� equal parts� called grades� This is called measure
in grades� A right angle is �� gon� A gon is divided into ��� mgon�
On calculators the notation DEG is used for degree� GRAD for grade� and RAD for radian� For con�
version between the di�erent measures see Table ��� on p� ���

����� Geometrical De
nition of Circular andHyperbolic
Functions

������� De�nition of Circular or Trigonometric Functions

�� De�nitionby theUnitCircle
The trigonometric functions of an an�
gle � are de�ned for both the unit circle
with radius R �  and the acute angles
of a right�angled triangle �Fig ��a�b�
with the help of the adjacent side b�
opposite side a� and hypotenuse c� In
the unit circle we measure the angle be�
tween a �xed radius OA �with length �

and a moving radius OC counterclock�
wise �positive direction��

E F

D
C

AB

III

III IV

0
� c a

b�
a) b)

Figure ���
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sine � sin� � BC �
a

c
� ����� cosine � cos� � OB �

b

c
� �����

tangent � tan� � AD �
a

b
� ����� cotangent � cot� � EF �

b

a
� �����

secant � sec � � OD �
c

b
� ����� cosecant � csc � � OF �

c

a
� �����

�� Signs of Trigonometric Functions
Depending in which quadrant of the unit circle �Fig ��a� the moving radius OC is� the functions
have well�de�ned signs which can be taken from Table �� �p� ����

�� De�nition of Trigonometric Functions by Area of Circular Sectors

The functions sin�� cos�� tan� are de�ned
by the segments BC� OB� AD of the unit cir�
cle with R �  �Fig ���� where the argu�
ment is the central angle � � �� AOC� For
this de�nition we could use the area x of the
sector COK� which is denoted in Fig �� by
the shaded area� With the central angle ��

measured in radians� we get x �


�
R��� � �

for the area with R � � Therefore� we have
the same equations for sinx � BC � cos x �
OB � tanx � AD as in ����� ���� �����
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x
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������� De�nitions of the Hyperbolic Functions
In analogy with the de�nition of trigonometric functions in ����� ���� ���� we can consider the area of a
sector considering the equation x� � y� �  of a hyperbola �only the right branch in Fig ��� instead
of the equation x� � y� � � Denoting by x the area of COK� the shaded area in Fig ��� the de�ning
equations of the hyperbolic functions are�

sinhx � BC � ����� cosh x � OB � ����� tanh x � AD � ����

Calculating the area x by integration and expressing the results in terms of BC� OB� and AD we get

x � ln�BC �

q
BC

�
� � � ln�OB �

q
OB

� � � �


�
ln

 � AD

� AD
� �����

and so� from now on� we can express the hyperbolic functions in terms of exponential functions�

BC �
ex � e�x

�
� sinh x � ����a� OB �

ex � e�x

�
� cosh x � ����b�

AD �
ex � e�x

ex � e�x
� tanh x � ����c�

These equations represent the most popular de�nition of the hyperbolic functions�

����� PlaneTriangles

������� Statements about Plane Triangles

� The Sum of Two Sides of a plane triangle is greater than the third one �Fig ����

b � c � a � �����
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� The Sum of the Angles of a plane triangle is

� � � � � � ��� � �����

� Unique Determination of Triangles A triangle is uniquely determined by the following data�
� by three sides or
� by two sides and the angle between them or
� by one side and the two angles on it�
If two sides and the angle opposite one of them are given� then they de�ne two� one or no triangle �see
the third basic problem in Table ��� ����
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h

Figure ���
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� Median of a Triangle is a line connecting a vertex of the triangle with the midpoint of the
opposite side� The medians of the triangle intersect each other at one point� at the center of gravity of
the triangle �Fig ����� which divides them in the ratio � �  counting from the vertex�
� Bisector of a Triangle is a line which divides one of the interior angles into two equal parts�
The bisectors intersect each other at one point�
� Incircle is the circle inscribed in a triangle� i�e�� all the sides are tangents of the circle� Its center
is the intersection point of the bisectors �Fig �
�� The radius of the inscribed circle is called the
apothem or the short radius�

� Circumcircle is the circle drawn around a triangle� i�e�� passing
through the vertices of the triangle �Fig ����� Its center is the inter�
section point of the three right bisectors of the triangle�
� Altitude of a Triangle is the perpendicular line that starts at a
vertex and is perpendicular to the opposite side� The altitudes intersect
each other at one point� the orthocenter�

 Isosceles Triangle In an isosceles triangle two sides have equal
length� The altitude� median� and bisector of the third side coincide� For a
triangle the equality of any two of these sides is enough to make it isosceles�

R

Figure ��

�� Equilateral Triangle In an equilateral triangle with a � b � c the centers of the incircle and
the circumcircle� the center of gravity� and the orthocenter coincide�
�� Median is a line connecting two midpoints of sides of a triangle� it is parallel to the third side
and has the half of length as that side�
�� Right�AngledTriangle is a triangle that has a right angle �an angle of ���� �Fig ����� p� ��

������� Symmetry

�� Central Symmetry
A plane �gure is called centrosymmetric if by a rotation of the plane by ��� around the central point
or the center of symmetry S it exactly covers itself �Fig ����� Because the size and shape of the
�gure do not change during this transformation� we call it a congruent mapping� Also the sense class
or orientation class of the plane �gure remains the same �Fig ����� Because of the same sense class
we call such �gures directly congruent�
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The orientation of a �gure means the traverse of the boundary of a �gure in a direction� positive direc�
tion� hence counterclockwise� negative direction� hence clockwise �Fig ���� Fig �����
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�� Axial Symmetry
A plane �gure is called axially symmetric if the corresponding points cover each other after a rotation in
space by ��� around a line g �Fig ����� The corresponding points have the same distance from the
axis g� the axis of symmetry� The orientation of the �gure is reversed for axial symmetry with respect to
the line g� Therefore� we call such �gures indirectly congruent� We call this transformation a re�ection
in g� Because the size and the shape of the �gures do not change� we also call it indirect congruent
mapping� The orientation class of the plane �gure is reversed under this transformation �Fig �����

Remark� For space �gures we have analogous statements�

�� Congruent Triangles� Congruence Theorems
a� Congruence� We call plane �gures congruent if their size and shape coincide� Congruent �gures
can be transformed into a position of superimposition by the following three transformations� by trans�
lation� rotation� and re�ection� and combinations of these�
We distinguish between directly congruent �gures and indirectly congruent �gures� Directly congruent
�gures can be transformed into a covering position by translation and rotation� Because the indirectly
congruent �gures have a reversed sense class� an axially symmetric transformation with respect to a
line is also needed to transform them into a covering position�

Axially symmetric �gures are indirectly congruent� To transform them into each other we need all
three transformations�

b� Laws of Congruence� We give the conditions for triangles to be congruent in the following theo�
rems� Two triangles are congruent if they coincide for�
� three sides �SSS� or
� two sides and the angle between them �SAS�� or
� one side and the interior angles on this side �ASA�� or
� two sides and the interior angle being opposite to the longer one �SSA��

�� Similar Triangles� Similarity Theorems
We call plane �gures similar if they have the same shape without having the same size� For similar
�gures there is a one�to�one mapping between their points such that every angle in one �gure is the
same as the corresponding angle in the other �gure� An equivalent de�nition is the following� In similar
�gures the length of segments corresponding to each other are proportional�

a� Similarity of �gures requires either the equality of all the corresponding angles or the equality of
the ratio of all corresponding segments�

b� Area The areas of similar plane �gures are proportional to the square of the ratio of corresponding
linear elements such as sides� altitudes� diagonals� etc�

c� Laws of Similarity For triangles we have the following laws of similarity� Triangles are similar if
they coincide for�
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� two ratios of sides�
� two interior angles�
� the ratio of two sides and the interior angle between them�
� the ratio of two sides and the interior angle opposite of the longer one�

Because in the laws of similarity only the equality of ratios of sides is required and not the equality of
length of sides� therefore the laws of similarity require less than the corresponding laws of congruence�

�� Intercept Theorems
The intercept theorems are a consequence of the
laws of similarity of a triangle�
� First intercept theorem If two rays start�
ing at the same point S are intersected by two par�
allels p�� p�� then the segments of one of the rays
�Fig ���a� have the same ratio as the correspond�
ing segments on the other one������SP�

SQ�

����� �

�����SP�

SQ�

����� � �����

Consequently� every segment on one of the rays is
proportional to the corresponding segment on the
other ray�

S

P2
Q2

P1 Q1

p1 p2 p1 p2

S

P2

Q2
P1

Q1

a) b)

Figure ���

� Second Intercept Theorem If two rays starting at the same point S are intersected by two par�
allels p�� p� � then the segments of the parallels have the same ratio as the corresponding segments on
the rays �Fig ���a�������SP�

SQ�

����� �

����� P�P�

Q�Q�

����� or

�����SP�

SQ�

����� �

����� P�P�

Q�Q�

����� � �����

The intercept theorems are also valid in the case of intersecting lines at the point S� if the point S is
between the parallels �Fig ���b��

����� PlaneQuadrangles

������� Parallelogram
A quadrangle is called a parallelogram �Fig ���� if it has the following properties�

� the sides opposite to each other have the same length�
� the sides opposite to each other are parallel�
� the diagonals intersect each other at their midpoints�
� the angles opposite to each other are equal�

If we suppose only one of the previous properties for a quadrangle� or we suppose the equality and the
parallelism of one pair of opposite sides� then all the other properties follow from it�
The relations between diagonals� sides� and area are the following�

d�� � d�� � ��a� � b��� ����� h � b sin�� ����� S � ah� ������

b d 1
d

2

a

h

α

Figure ���

d b

a

Figure ���

d

a

a

Figure ���
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������� Rectangle and Square
A parallelogram is a rectangle �Fig ����� if it has�
� only right angles� or
� the diagonals have the same length�
Only one of these properties is enough� because either of them follows from the other� It is su�cient
to show that one angle of the parallelogram is a right angle� then all the angles are right angles� If a
quadrangle has four right angles� it is a rectangle�
The perimeter U and the area S of a rectangle are�

U � ��a � b�� ����a� S � ab� ����b�

If a � b holds �Fig ����� the rectangle is called a square� and we have the formulas

d � a
p

� 
 ���a� ������ a � d

p
�

�

 �����d� ������ S � a� �

d�

�
� ������

������� Rhombus
A rhombus �Fig ���� is a parallelogram in which
� all the sides have the same length� or
� the diagonals are perpendicular to each other� or
� the diagonals are bisectors of the angles of the parallelogram�
Any of the previous properties is enough alone� all the others follow from it� We have�

d� � �a cos
�

�
� ������ d� � �a sin

�

�
� ������ d�� � d�� � �a�� ������

S � ah � a� sin� �
d�d�

�
� ������

������� Trapezoid
A quadrangle is called trapezoid if it has two parallel sides �Fig ��
�� The parallel sides are called
bases� With the notation a and b for the bases� h for the altitude and m for the median of the trapezoid
which connects the midpoints of the two non�parallel sides we have

m �
a � b

�
� ������ S �

�a � b�h

�
� mh� ������ hS �

h�a � �b�

��a � b�
� �����

The centroid is on the connecting segment of the midpoints of the parallel basis a and b� at a distance hS
����� from the base a� For the calculation of the coordinates of the centroid by integration see ��������
p� ����

For an isosceles trapezoid with d � c we get

S � �a� c cos ��c sin� � �b � c cos ��c sin � � ������

a

α
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d 1 hd
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Figure ���
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������� General Quadrangle
The general quadrangle has no parallel sides� i�e�� all four sides are of di�erent length� If the diagonals
lie fully inside the quadrangle� it is convex� otherwise concave� The general quadrangle is divisible by
two diagonals d�� d� in two triangles �Fig����� Therefore� in every quadrangle the sum of the interior
angles is � � ��� � �����

�X
i��

�i � ����� ������

The length of the segment m connecting the midpoints of the diagonals �Fig ���� is given by

a� � b� � c� � d� � d�� � d�� � �m�� ������

The area of the general quadrangle is

S �


�
d�d� sin�� ������

������� InscribedQuadrangle
A quadrangle which can be circumscribed by a circumcircle is called an inscribed quadrangle and its
sides are chords of this circle �Fig���a�� A quadrangle is an inscribed quadrangle if and only if the
sums of its opposite angles are ����

� � � � � � 	 � ���� ������

Ptolemy�s theorem is valid for the insribed quadrangle�

ac � bd � d�d�� ������

d b

c

a

r

a
b

c

d
�



��
d

1

d 2

R

a) b)

Figure ���

The radius of the circumcircle of an inscribed quadrangle is

R �


�S

q
�ab � cd��ac � bd��ad � cb� � ������

The diagonals can be calculated by the formulas

d� �

s
�ac � bd��ab � cd�

ad � bc
� �����a�

d� �

s
�ac � bd��ad � bc�

ab � cd
� �����b�

The area can be expressed in terms of the half�perimeter of the quadrangle s �


�
�a � b � c � d��

S �
q

�s� a��s� b��s� c��s� d� � ������

If the inscribed quadrangle is also a circumscribing quadrangle �see Fig ��� and �������� then

S �
p
abcd � �����

������	 Circumscribing Quadrangle
If a quadrangle has an inscribed circle �Fig ���b�� then it is called a circumscribing quadrangle� and
the sides are tangents to the circle� A quadrangle has an inscribed circle if and only if the sum of the
lengths of the opposite sides are equal� and this sum is also equal to the half�perimeter s�

s �


�
�a � b � c � d� � a � c � b � d� ������

The area of the circumscribing quadrangle is

S � �a � c�r � �b � d�r� ������
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where r is the radius of the inscribed circle�

����� Polygons in thePlane

������� General Polygon
A closed plane �gure bounded by straight�line segments as its sides� can be decomposed into n � �
triangles �Fig ����� The sums of the exterior angles �i� and of the interior angles �i� and the number
of diagonals D are

nX
i��

�i � ����� ������
nX
i��

�i � ����n� ��� ������ D �
n�n� ��

�
� ������

�i

i

Figure ����

R
r

an

n

�n

�n
�n

a�

R

r M

b�

Figure ����

������� Regular Convex Polygons
Regular convex polygons �Fig ���� have n equal sides and n equal angles� The intersection point of
the mid�perpendiculars of the sides is the center M of the inscribed and of the circumscribed circle with
radii r and R� respectively� The sides of these polygons are tangents to the inscribed circle and chords
of the the circumcircle� They form a circumscribing polygon or tangent polygon for the inscribed circle
and a inscribed polygon in the circumcircle� The decomposition of a regular convex n�gon �regular
convex polygon� results in n isosceles congruent triangles around the center M �

Central Angle �n �
����

n
� ������ Base Angle �n �

�
� �

n

�
� ���� ������

Exterior Angle �n �
����

n
� ������ Interior Angle �n � ��� � �n� ������

Circumcircle Radius R �
an

� sin
���

n

� R� � r� �


�
a�n � �����

Inscribed Circle Radius r �
an
�

cot
���

n
� R cos

���

n
� ������

Side Length an � �
p
R� � r� � �R sin

�n
�

� �r tan
�n
�

� ������

Perimeter U � nan � ������

Side Length of the �n�gon a�n � R

vuut
�� �

s
�

�
an
�R

��
� an � a�n

vuut��
�
a��n
R�

�
� ������

Area of the n�gon Sn �


�
nanr � nr� tan

�n
�

�


�
nR� sin�n �



�
na�n cot

�n
�

� ������
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Area of the �n�gon S�n �
nR�

p
�

vuut
�

s
�S�

n

n�R�
� Sn � S�n

s
� S�

�n

n�R�
� ������

������� SomeRegular Convex Polygons
The properties of some regular convex polygons are collected in Table ���

The pentagon and the pentagram deserve special attention since it is presumed that Hippasos of Meta�
pontum �ca� ��� BC� recognized irrational numbers by the properties of these polygons �see �����
p� ��� We discuss them in an example�

The diagonals of a regular pentagon Fig ��� form an inscribed pen�
tagram� Its sides enclose a regular pentagon again� In a regular pentagon�
the proportion of a diagonal and a side is equal to the proportion of a side
and the diagonal minus side� a� � a� � a� � �a� � a�� � a� � a� � where
a� � a� � a��
If we consider smaller and smaller nested pentagons with a� � a��a�� a� �
a� � a�� � � � and a� � a�� a� � a�� a� � a� � � � � we get a� � a� � a� � a� �
a� � a� � a� � a� � � � � � The Euclidean algorithm for a� and a� never
breaks o�� since a� �  � a� � a�� a� �  � a� � a�� a� �  � a� � a�� � � � �
hence qn �  � The side a� and diagonal a� of the regular pentagon are
incommensurable� The continued fraction determined by a� � a� is iden�
tical to the golden section �see ����� �� B� p� ��� i�e�� it results in an
irrational number�

A

B

C D

E
a0

a1

Figure ����

����� TheCircle andRelated Shapes

������� Circle
The circle is the locus of the points in a plane which are at the same given distance from a given point�
the center of the circle� The distance itself� and also the line segment connecting the center with any
point of the circle� is called the radius� The circumference or periphery of the circle encloses the area
of the circle� Every line passing through two points of the circle is called a chord� Lines having exactly
one common point with the circle are called tangent lines or tangents of the circle�

Chord Theorem �Fig ���� AC � AD � AB � AE � r� �m�� ������

Secant Theorem �Fig ���� AB � AE � AC � AD � m� � r�� ������

Secant�Tangent Theorem �Fig ���� AT
�

� AB � AE � AC � AD � m� � r�� ������

Perimeter U � ��r 
 �� ���r� U � �d 
 �� ��d� U � �
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B

C

A

T
α β

ϕ
0

r

Figure ����

C

E
D

A

0
m

B
γr

Figure ����

E

T

D

C

B m

A

β α

r

0

Figure ����



	�� Plane Geometry ��


Table ��� Properties of some regular polygons

an R r Sn

��gon a� � R
p

� � �r
p

� �
a�
�

p
� � �r �

�

�
h �

a�
�

p
� �

R

�
�



�
h �

a��
�

p
� �

�R�

�

p
�

h �
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�

p
� �

�

�
R � �r�

p
�

��gon a� �
R

�

q
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p
� �
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�

q
�� � �

p
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�

q
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� �
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�

q
�� � �
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�
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q
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p
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p
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R
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p

� � � �
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�
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p
�
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q

�� �
p

�
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�

�
r
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� �
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�
r
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R

�

p
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�

p
� �

�R�

�

p
�

� �r�
p

�

��gon a
 � R
q
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a

�

q
� � �

p
� �

a

�

�
p

� � � � �a�
�
p

� � �

� �r�
p

�� � � r
q

�� �
p

� �
R

�

q
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p
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p

�

� �r��
p

�� �

��gon a�� �
R

�
�
p
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a��
�

�
p

� � � �
a��
�

q
� � �

p
� �

�a���
�

q
� � �

p
�

�
�r

�

q
��� �

p
� �

r

�

q
��� �

p
� �

R

�

q
� � �

p
� �

�R�

�

q
�� �

p
�

� �r�
q

��� �
p

�

Area S � �r� 
 �� ��r�� S �
�d�

�

 �� ���d�� S �

Ud

�
� ������

Radius r �
U

��

 ����U� ������ Diameter d � �r � �

s
S

�

 ���

p
S � ������

For the following formulas with angles see the de�nition of the angle in ������ p� ���

Angle of Circumference �Fig ���� � �


�

�
BC�



�
�� B�C �



�
� � �����a�

A Special Case is the Theorem of Thales �see p� �� � � ���� i�e� � � ��� � �����b�

Angle Between a Chord and a Tangent �Fig ���� � �


�

�
AC�



�
�� C�A � ������

Interior Angle �Fig ���� � �


�
�
�
CB �

�
ED� �



�
��� B�C � �� E�D�� ������

Exterior Angle �Fig ���� � �


�
�
�
DE � �

BC� �


�
��� E�C � �� C�B�� ������
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Angle Between Secant and Tangent �Fig ���� � �


�
�
�
TE� �

TB� �


�
��� T�E ��� B�T ��������

Escribed Angle �Fig ���� D and E are arbitrary points on the arcs to the left and to the right��

� �


�
�

�
BDC � �

CEB� �


�
��� B�C � �� C�B�

�


�
����� � �� C�B � �� C�B� � ��� � �� C�B � ������

������� Circular Segment andCircular Sector
De�ning quantities� Radius r and central angle � �Fig ��
�� The amounts to determine are�

Chord a � �
p

�hr � h� � �r sin
�

�
� �����

Central Angle � � � arcsin
a

�r
�measured in degrees�� ������

Height of the Circular Segment h � r �
s
r� � a�

�
� r

�
� cos

�

�

�
�

a

�
tan

�

�
� ������

Arc Length l �
��r�

���

 ������r�� l 
 �b� a

�
or l 


s
a� �

�

�
h� � ������

B

C

AαE
D 0

Figure ����
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Figure ����
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Area of the Sector S �
�r��

���

 �������r��� ������

Area of Circular Segment S �
r�

�

�
��

��
� sin�

�
�



�
 lr � a�r � h�!� S 
 h

�
��a � �b�� ������

������� Annulus
De�ning quantities of an annulus� Exterior radius R� interior radius r and central angle � �Fig �����

Exterior Diameter D � �R� ������ Interior Diameter d � � r� ������

Mean Radius � �
R � r

�
� ������ Breadth of the Annulus 	 � R� r� ������

Area of the Annulus S � ��R� � r�� �
�

�
�D� � d�� � �� � 	� �����

Area of an Annulus Sector for a Central Angle � �shaded area in Fig ����

S� �
��

���

�
R� � r�

	
�

��

���

�
D� � d�

	
�

��

��
� 	� ������
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��� PlaneTrigonometry

����� Triangles

������� Calculations in Right�Angled Triangles in the Plane

�� Basic Formulas
Notation �Fig �����
c hypotenuse� a� b other sides� or legs of the right angle� � and �
the angles opposite to the sides a and b respectively� h altitude�
p� q hypotenuse segments� S area�

Sum of Angles � � � � � � ��� with � � ���� ������

Calculation of Sides a � c sin� � c cos �

� b tan� � b cot �� ������

Pythagoras Theorem a� � b� � c�� ������

ba

h

90o

�

qp
c

Figure ���

Thales Theorem The vertex angles of all triangles in a semicir�
cle with hypotenuse as the base are right angles� i�e�� all angles
at circumference in this semicircle are right angles �see Fig ���
and �����b�� p� ����

Euclidean Theorems h� � p q� a� � p c� b� � q c� ������

Area S �
ab

�
�

a�

�
tan � �

c�

�
sin ��� ������

.
.

.

Figure ����

�� Calculation of Sides and Angles of a Right�Angled Triangle in the Plane
In a right�angled triangle among the
six de�ning quantities �three angles
�� �� � and the sides opposite to them
a� b� c� which are not all independent� of
course�� one angle� in Fig ��� the an�
gle � � is given as ����
A plane triangle can be determined by
three de�ning quantities but these can�
not be given arbitrarily �see ������
p� ���� So� in the case of a right�angled
triangle only two more quantities can be
given� The remaining three quantities
can be determined from Table �� and
����� and �������

Table ��� De�ning quantities of a right�angled triangle
in the plane

Given Calculation of the other quantities

e�g� a� � � � ��� � � b � a cot� c �
a

sin�

e�g� b� � � � ��� � � a � b tan� c �
b

cos�

e�g� c� � � � ��� � � a � c sin� b � c cos�

e�g� a� b
a

b
� tan� c �

a

sin�
� � ��� � �

������� Calculations in General Triangles in the Plane

�� Basic Formulas
Notation �Fig ����� a� b� c sides� �� �� � the angles opposite to them� S area� R radius of the circum�

circle� r radius of the incircle� s �
a � b � c

�
half of the perimeter�

Cyclic Permutation

Because an oblique triangle has no distinguishing side or angle� from every formula containing the sides
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and angles we can get two further formulas by cyclic permutation the sides and angles according to
Fig ����

From
a

b
�

sin�

sin �
�sine law� we get by cyclic permutation�

b

c
�

sin �

sin �
�

c

a
�

sin �

sin�
�

Sine Law
a

sin�
�

b

sin�
�

c

sin �
� �R � ������

Projection Rule �see Fig ���� c � a cos � � b cos� � ������

Cosine Law or Pythagoras Theorem in General Triangles c� � a� � b� � �ab cos � � ������

Mollweide Equations

�a � b� sin
�

�
� c cos

�
�� �

�

�
� ����a� �a� b� cos

�

�
� c sin

�
�� �

�

�
� ����b�

Tangent Law
a � b

a� b
�

tan
� � �

�

tan
�� �

�

� ������

Half�Angle Formulas tan
�

�
�

vuut�s� b� �s� c�

s �s� a�
� ������

Tangent Formula tan� �
a sin�

c� a cos �
�

a sin �

b� a cos �
� ������

Additional Relations

sin
�

�
�

s
�s� b��s� c�

bc
� �����a� cos

�

�
�

s
s�s� a�

bc
� �����b�

Height Corresponding to the Side a ha � b sin � � c sin� � ������

Median of the Side a ma �


�

p
b� � c� � �bc cos� � ������

Bisector of the Angle � l� �
�bc cos

�

�
b � c

� ������

Radius of the Circumcircle R �
a

� sin�
�

b

� sin�
�

c

� sin�
� ������
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Radius of the Incircle r �

s
�s� a��s� b��s� c�

s
� s tan

�

�
tan

�

�
tan

�

�
������

� �R sin
�

�
sin

�

�
sin

�

�
� �����

Area S �


�
ab sin � � �R� sin� sin � sin � � r s �

q
s�s� a��s� b��s� c� � ������

The formula S �
q
s�s� a��s� b��s� c� is called Heron�s formula�

�� Calculation of Sides� Angles� and Area in General Triangles
According to the congruence theorems �see ������� p� ��� a triangle is determined by three independent
quantities� among which there must be at least one side�

From here we get the four so�called basic problems� If from the six de�ning quantities �three angles
�� �� � and the sides opposite to them a� b� c� three independent quantities are given� we can calculate
the remaining three with the equations in Table ��� p� ���
In contrast to spherical trigonometry �see the second basic problem� Table �
� p� ��� in a plane
triangle there is no way to get any side only from the angles�

����� Geodesic Applications

������� Geodetic Coordinates
In geometry we usually use a right�handed coordinate system to determine points �Fig ������ In
contrast with this� in geodesy left�handed coordinate systems are used�

�� Geodetic Rectangular Coordinates
In a plane left�handed rectangular coordinate system �Fig ���� the x�axis of abscissae is shown up�
ward� the y�axis of ordinates is shown to the right� A point P has coordinates yP � xP � The orientation
of the x�axis follows from practical reasons� When measuring long distances� for which we mostly use
the Soldner� or the Gauss�Krueger coordinate systems �see ������� p� ���� the positive x�axis points
to grid North� the y�axis oriented to the right points to East� The enumeration of the quadrants follows
a clockwise direction in contrast with the usual practice in geometry �Fig ���� Fig �����

If besides the position of a point in the plane we also consider its altitude� we can use a three�dimensional
left�handed rectangular coordinate system �y� x� z�� where the z�axis points to the zenith �Fig �����
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�� Geodetic Polar Coordinates
In the left�handed plane polar coordinate system of geodesy �Fig ���� a point P is given by the
directional �azimuthal� angle t between the axis of abscissae and the line segment s� and by the length of
the line segment s between the point and the origin �called the pole�� In geodesy the positive orientation
of an angle is the clockwise direction�
To determine the altitude we use the zenith distance � or the vertical angle respectively the angle of tilt
�� In Fig ��� we can see that in a three�dimensional rectangular left�handed coordinate system �see
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Table ��� De�ning quantities of a general triangle� basic problems

Given Formulas for calculating the other quantities

�  side and �
angles �a� �� ��

� � ��� � �� �� b �
a sin�

sin�
�

c �
a sin �

sin�
� S �



�
a b sin � �

�� � sides and the
angle between
them �a� b� ��

tan
�� �

�
�

a� b

a � b
cot

�

�
�

� � �

�
� ��� � 

�
� �

� and � come from � � � and �� ��

c �
a sin �

sin�
� S �



�
a b sin � �

�� � sides and the
angle opposite
one of them
�a� b� ��

sin � �
b sin�

a
�

If a 	 b holds� then � � ��� and is uniquely determined� If
a � b holds� the following cases occur�

� � has two values for b sin� � a ��� � ��� � ����

�� � has exactly one value ����� for b sin� � a�

�� For b sin� � a there is no such triangle�

� � ��� � �� � ��� c �
a sin �

sin�
� S �



�
a b sin ��

�� � sides �a� b� c� r �

s
�s� a��s� b��s� c�

s
�

tan
�

�
�

r

s� a
� tan

�

�
�

r

s� b
� tan

�

�
�

r

s� c
�

S � r s �
q
s �s� a��s� b��s� c� �

also left and right�handed coordinate systems ������� p� ����� the zenith distance is measured between
the zenith axis z and the line segment s� the angle of tilt between the line segment s and its perpendicular
projection on the y� x plane�

�� Scale
In cartography the scale factor M is the ratio of a segment sK� in a coordinate system K� with respect
to the corresponding segment sK� in another coordinate system K� �
� Conversion of Segments With m as a modulus or scale and N as an index for the nature and K
as the index of the map we have�

M �  � m � sK � sN � �����a�

For two segments sK�� sK� with di�erent moduli m�� m� we get�

sK� � sK� � m� � m�� �����b�

� Conversion of Areas If the areas are calculated according to the formulas FK � aKbK � FN �
aNbN � we have�

FN � FKm� � �����a�

For two areas F�� F� with di�erent moduli m�� m� �

FK� � FK� � m�
� � m�

�� �����b�
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������� Angles in Geodesy

�� Grade or Gon Division
In geodesy� in contrast to mathematics �see ������ p� ��� we use grade or gon as a unit for angles� The
perigon or full angle corresponds here to ��� grade or gon� The conversion between degrees and gons
can be performed by the formulas in Table ���

Table ��� Conversion between Degrees and Gons

 Full angle � ���� � �� rad � ��� gon

 right angle � ��� �
�

�
rad � �� gon

 gon �
�

���
rad � ��� mgon

�� Directional Angle
The directional angle t at a point P gives the direction of an oriented line segment with respect to a
line passing through the point P parallel to the x�axis �see point A and the directional angle tAB in
Fig ��
�� Because the measuring of angles in geodesy is made in a clockwise direction �Fig ����
Fig ����� the quadrants are enumerated in the opposite order to the right�handed Cartesian coordi�
nate system of plane trigonometry �Table ���� The formulas of plane trigonometry are valid without
change�

Table ��� Directional angle in a segment with correct sign for arctan

Quadrant I II III IV

Sign of numerator � � � �

%y

%x
tan � � tan � � tan � � tan � �

Directional angle t t� gon t� � ��� gon t� � ��� gon t� � ��� gon

�� Coordinate Transformations
� CalculationofPolarCoordinates fromRectangularCoordinates For two pointsA�yA� xA�
and B�yB� xB� in a right�handed coordinate system �Fig ��
� with the segment sAB oriented from
A to B and the directional angle tAB� tBC the following formulas are valid�

yB � yA
xB � xA

�
%yAB
%xAB

� �����a� sAB �
q

%y�AB � %x�AB � �����b�

tan tAB �
%yAB
%xAB

� �����c� tBA � tAB � ��� gon� �����d�

The quadrant of the angle t depends on the sign of %yAB and %xAB� If using a calculator
%y

%x
is punched

in with the correct signs for %y and %x� then we get an angle t� by pressing the arctan button to which
we have to add the gon�values given in Table �� according to the corresponding quadrant�

� Calculation of Rectangular Coordinates fromDistances and Angles In a rectangular co�
ordinate system we have to determine the coordinates of a point C by measuring in a local polar system
�Fig �����

Given� yA� xA� yB� xB� Measured� �� sBC � Find� yC � xC �
Solution�
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tan tAB �
%yAB
%xAB

� �����a� tBC � tAB � �� ��� gon � �����b�

yC � yB � sBC sin tBC � �����c� xC � xB � sBC cos tBC � �����d�

If we also measure sAB� then we consider the ratio of the locally measured distance and the distance
computed from the coordinates by the scale factor q� where q must be very close to �

q �
calculated distance

measured distance
�

q
%y�AB � %x�AB

sAB
� �����a�

yC � yB � sBCq sin tBC � �����b� xC � xB � sBCq cos tBC � �����c�
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� Coordinate TransformationBetween TwoRectangular Coordinate Systems In order to
locate a given point on a country�map we have to transform the local system y�� x� into the system y� x of
coordinates of the map �Fig ����� The system y�� x� is rotated into y� x by an angle � and is translated
parallel by y�� x�� The directional angles in the system y�� x� are denoted by �� The coordinates of A and
B are given in both systems and the coordinates of a point C in the x�� y��system� The transformation
is given by the following relations�

sAB �
q

%y�AB � %x�AB � �����a� s�AB �
q

%y��AB � %x��AB � �����b�

q �
sAB
s�AB

� �����c� � � tAB � �AB� �����d�

tan tAB �
%yAB
%xAB

� �����e� tan�AB �
%y�AB
%x�AB

� �����f�

y� � yA� qxA sin�� qyA cos�� �����g� x� � xA�qyA sin��qxA cos�� �����h�

yC � yA � q sin��x�C � x�A� � q cos ��y�C � y�A�� �����i�

xC � xA � q cos��x�C � x�a�� q sin��y�C � y�A�� �����j�

Remark� The following two formulas can be used as a check�

yC � yA�qs�AC sin����AC�� �����k� xC � xA�qs�AC cos����AC�� �����l�

If the segment AB is on the x��axis� the formulas reduce to
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a �
%yAB
y�B

� q sin�� �����a� b �
%xAB
x�B

� q cos�� �����b�

yC � yA � ax�C � by�C � �����c� xC � xA � bx�C � ay�C � �����d�

y�C � %yACb�%xACa� �����e� x�C � %xACb � %yACa� �����f�
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������� Applications in Surveying
The determination of the coordinates of a point N to be �xed by triangulation is a frequent measuring
problem in geodesy� The methods of solving it are intersection� three�point resection� arc intersection�
free stationing and traversing� We do not discuss the last two methods here�

�� Intersection
� Intersection of Two Oriented Lines or �rst fundamental problem of triangulation� To deter�
mine a point N by two given points A and B with the help of a triangle ABN �Fig �����

Given� yA� xA� yB� xB� Measured� �� �� if it is possible also � or � � ��� gon �� � ��
Find� yN � xN �
Solution�

tan tAB �
%yAB
%xAB

� ����a�

sAB �
q

%y�AB � %x�AB � j%yAB sin tABj� j%xAB cos tABj � ����b�

sBN � sAB
sin�

sin �
� sAB

sin�

sin �� � ��
� ����c� sAN � sAB

sin�

sin �
� sAB

sin�

sin �� � ��
� ����d�

tAN � tAB � �� ����e� tBN � tBA � � � tAB � � � ��� gon�����f�

yN � yA � sAN sin tAN � yB � sBN sin tBN � ����g�

yN � xA � sAN cos tAN � xB � sBN cos tBN � ����h�

� Intersection Problem for Non�VisibleB If the point B cannot be seen from A� we determine
the directional angles tAN and tBN with respect to reference directions to other visible points D and E
whose coordinates are known �Fig �����
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Given� yA� xA� yB� xB� yD� xD� yE� xE� Measured� 	 in A� � in B� and if it is possible� also � �
Find� yN � xN �
Solution� We reduce it to the �rst fundamental problem� calculating tan tAB � according to ����b�
and�

tan tAD �
%yAD
%xAD

� ���a� tan tBE �
%yEB
%xEB

� ���b�

tAN � tAD � 	� ���c� tBN � tBE � �� ���d�

� � tAB � tAN � ���e� � � tBN � tBA� ���f�

tan tAN �
%yNA
%xNA

� ���g� tan tBN �
%yNB
%xNB

� ���h�

xN �
%yBA � xA sin tAN � xB tan tBN

tan tAN � tan tBN
� ���i� yN � yB � �xN � xB� tan tBN � ���j�

�� Three�Point Resection

� Snellius Problem of Three�Point Resection or to determine a point N by three given points
A�B�C� also called the second fundamental problem of triangulation �Fig �����

Given� yA� xA� yB� xB� yC� xC � Measured� 	�� 	� in N � Find� yN � xN �
Solution�

tan tAC �
%yAC
%xAC

� ����a� tan tBC �
%yBC
%xBC

� ����b�

a �
%yAC
sin tAC

�
%xAC
cos tAC

� ����c� b �
%yBC
sin tBC

�
%xBC
sin tBC

� ����d�

� � tCA � tCB � tAC � tBC � ����e�

� � �

�
� ��� � � � 	� � 	�

�
� ����f� tan� �

a sin 	�
b sin 	�

� ����g�

tan
�� �

�
� tan

� � �

�
cot���� � �� �����h� sAN �

a

sin 	�
sin�	� � ��� ����i�
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sBN �
b

sin 	�
sin�	� � ��� ����j� sCN �

a

sin 	�
sin� �

b

sin 	�
sin� � ����k�

xN � xA � sAN cos tAN � xB � sBN cos tBN � ����l�

yN � yA � sAN sin tAN � yB � sBN sin tBN � ����m�

� Three�Point Resection by Cassini

Given� yA� xA� yB� xB� yC� xC � Measured� 	�� 	� in N � Find� yN � xN �

For this method we use two reference points P and Q� which are on the reference circles passing through
A�C� P and B�C�Q so that both are on a line containing N �Fig ����� The centers of the circles H�

and H� are at the intersection points of the midperpendicular of AC and of BC with the segments PC
and QC � We have the angles 	�� 	� measured at N also at P and Q �angles of circumference��
Solution�

yP � yA � �xC � xA� cot 	�� ����a� xP � xA � �yC � yA� cot 	�� ����b�

yQ � yB � �xB � xC� cot 	�� ����c� xQ � xB � �yB � yC� cot 	�� ����d�

tPQ �
%yPQ
%xPQ

� ����e� xN � xP �
yC � yP � �xC � xP � cot tPQ

tan tPQ � cot tPQ
� ����f�

yN � yP � �xN � xP � tan tPQ �tan tPQ � cot tPQ�� ����g�

yN � yC � �xN � xC� cot tPQ �cot tPQ � tan tPQ�� ����h�

Dangerous Circle� When choosing the points we have to ensure they do not lie on one circle� because
then there is no solution� we talk about a so�called dangerous circle� If the points are close to a circle�
the method is nolonger accurate�

A C

B

QP

H1
H2tPQ

ϕ ψ

x

y

N

δ1 δ2

Figure ����

x
N

BsBN

sAN

sAB

tBAtAB
tAN

y
y
A

tBN

α

β

Figure ����

�� Arc Intersection
We get the required point N as the intersection point of the two arcs around the two points A and B
with known coordinates and with measured radii sAN and sBN �Fig ����� We calculate the unknown
length sAB and the angle from the now already known three sides of the triangle ABN � A second solu�
tion � not discussed here � starts from the decomposition of the general triangle into two right�angled
triangles�

Given� yA� xA � yB� xB� Measured� sAN � sBN � Find� sAB� yN � xN �
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Solution�

sAB �
q

%y�AB � %x�AB � ����a� tan tAB �
%yAB
%xAB

� ����b�

tBA � tAB � ��� gon� ����c�

cos� �
s�AC � s�AB � s�BN

�sANsAB
� ����d� cos � �

s�BC � s�AB � s�AN
�sBCsAB

� ����e�

tAC � tAB � �� ����f� tBC � tBA � �� ����g�

yC � yA � sAN sin tAC � ����h� xN � xA � sAC cos tAN � ����i�

yC � yB � sBN sin tBN � ����j� xN � xB � sBN cos tBN � ����k�

��� Stereometry

����� Lines andPlanes in Space
� Two Lines Two lines in the same plane have either one or no common point� In the second case
they are parallel� If there is no plane such that it contains both lines� they are skew lines� The angle
between two skew lines is de�ned by the angle between two lines parallel to them and passing through
a common point �Fig ����� The distance between two skew lines is de�ned by the segment which
is perpendicular to both of them� �There is always a unique transversal line which is perpendicular to
both skew lines and intersects them� too��
� Two Planes Two planes intersect each other in a line or they have no common point� In this
second case they are parallel� If two planes are perpendicular to the same line or if both are parallel to
every intersecting pair of lines in the other� the planes are parallel�

Figure ����
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� Line and Plane A line can be incident to a plane� it can have one or no common point with the
plane� In this last case it is parallel to the plane� The angle between a line and a plane is measured by
the angle between the line and its orthogonal projection on the plane �Fig ����� If this projection
is only a point� i�e�� if the line is perpendicular to two di�erent intersecting lines in the plane� then the
line is perpendicular or orthogonal to the plane�

����� Edge� Corner� SolidAngle
� Edge or dihedral angle is a �gure formed by two in�nite half�planes starting at the same line
�Fig��
�� In everyday terminology the word edge is used for the intersection line of the two half�
planes� As a measure of edges� we use the edge�angle ABC� the angle between two half�lines lying in
the half�planes and being perpendicular to the intersection line DE at a point B�
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� Corner or polyhedral angle �ABCDE �Fig ���� is a �gure formed by several planes� the lateral
faces� which go through a common point� the vertex �� and intersect each other at the lines �A� �B� � � � �
Two lines which bound the same lateral face form a plane angle� while neighboring faces form a dihedral
angle�
Polyhedra are equal to each other� i�e�� they are congruent� if they are superposable� For this the cor�
responding elements� i�e�� the edges and plane angles at the vertex must be coincident� If the corre�
sponding elements at the vertex are equal� but they have an opposite order of sequence� the corners are
not superposable� and we call them symmetric corners� because we can bring them into a symmetric
position as shown in Fig ����
A convex polyhedral angle lies completely on one side of each of its faces�
The sum of the plane angles A�B � B�C � � � � � E�A �Fig ���� is less than ���� for every convex
polyhedron�

� Trihedral Angles are congruent if they coincide in the following elements�
� in two faces and the corresponding dihedral angle�
� in one face and both dihedral angles belonging to it�
� in three corresponding faces in the same order of sequence�
� in three corresponding dihedral angles in the same order of sequence�

� SolidAngle A pencil of rays starting from the same point �and intersecting a closed curve� forms
a solid angle in space �Fig ����� It is denoted by ) and calculated by the equality

) �
S

r�
� ����a�

Here S means the piece of the spherical surface cut out by the solid angle from a sphere whose radius
is r� and whose center is at the vertex of the solid angle� The unit of solid angle is the steradian �sr��
We have�

 sr �
 m�

 m�
� ����b�

i�e�� a solid angle of  sr cuts out a surface area of  m� of the unit sphere �r �  m��

A� The full solid angle is ) � ��r��r� � ���

B� A cone with a vertex angle �also called an apex angle� � � ��� de�nes�determines� a solid angle
) � ��r��� cos�������r� � �� where we have used the formula for a spherical cap �������
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����� Polyeder or Polyhedron
In this paragraph we use the following notation� V volume� S total surface� M lateral area� h altitude�
AG base area�

� Polyhedron is a solid bounded by plane polygons�

� Prism �Fig ���� is a polyhedron with two congruent bases� and having parallelograms as ad�
ditional faces� A right prism has edges perpendicular to the base� a regular prism is a right prism with
a regular polygon as the base� For the prism� we have�
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V � AGh� ����� M � p l� ����� S � M � �AG� �����

Here p is the perimeter of the section perpendicular to the edges� and l is the length of the edges� If
the edges are still parallel to each other but the bases are not� the lateral faces are trapezoids� If the
bases of a triangular prism are not parallel to each other� we can calculate its volume by the formula
�Fig �����

V �
�a � b � c�Q

�
� �����

where Q is a perpendicular cut� a� b� and c are the lengths of the parallel edges� If the bases of the prism
are not parallel� then its volume is

V � l Q� ������

where l is the length of the line segment BC connecting the centers of gravity of the bases� and Q is the
cross�cut perpendicular to this line�
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� Parallelepiped is a prism with parallelograms as bases �Fig ����� i�e�� it is bounded by six
parallelograms� In a parallelepiped all the four body diagonals intersect each other at the same point�
at their midpoint�

� Rectangular Parallelepiped or block is a right parallelepiped with rectangles as bases� In a
block �Fig ���� the body diagonals have the same length� If a� b� and c are the edge lengths of the
block and d is the length of the diagonal� then we have�

d � � a� � b � � c�� ����� V � a b c� ������ S � ��a b � b c � c a�� ������

� Cube �or regular hexahedron� is a block with equal edge lengths� a � b � c �

d � � � a�� ������ V � a�� ������ S � � a�� ������

� Pyramid �Fig ���� is a polyhedron whose base is a polygon and its lateral faces are triangles
with a common point� the vertex� A pyramid is called right if the foot of the perpendicular from the
vertex to the base AG is at the midpoint of the base� It is called regular if it is right and the base is a
regular polygon �Fig ����� and n faced if the base is an n�gon� Together with the base the pyramid
has �n � � faces� We have�

V �
AG h

�
� ������

For the regular pyramid

M �


�
phs ������

with p as the perimeter of the base and hs as the altitude of a face�

� Frustum of a Pyramid or truncated pyramid is a pyramid whose vertex is cut away by a plane
parallel to the base �Fig ���� Fig ��
�� Denoting by S� the altitude of the pyramid� i�e�� the
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perpendicular from the vertex to the base� we have�

SA�

A�A
�

SB�

B�B
�

SC�

C�C
� � � � �

S��
���

� ������

Area ABCDEF

Area A�B�C�D�E�F�
�

�
S�

S��

��
� ������

If AD and AG are the upper and lower bases� resp�� h is the altitude of the truncated pyramid� i�e�� the
distance between the bases� and aD and aG are corresponding sides of the bases� then

V �


�
h


AG � AD �

q
AGAD

�
�



�
hAG

�
 �

aD
aG

�
�
aD
aG

��
� �����

The surface of a regular truncated pyramid is

M �
pD � pG

�
hs � ������

where pD and pG are the perimeters of the bases� and hs is the altitude of the faces�
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� Tetrahedron is a triangular pyramid �Fig ����� With the notation

�A � a� �B � b� �C � c� CA � q� BC � p and AB � r we have�

V � �


���

�����������

� r� q� a� 
r� � p� b � 
q� p� � c� 
a� b � c� � 
    �

�����������
� ������


 Obelisk is a polyhedron whose lateral faces are all trapezoids� In the special case in Fig ���
the bases are rectangles� the opposite edges have the same inclination to the base but they do not have
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a common point� If a� b and a�� b� are the sides of the bases of the obelisk and h is the altitude of it�
then we have�

V �
h

�
 ��a � a�� b � ��a� � a� b�! �

h

�
 ab � �a � a�� �b � b�� � a�b�! � ������

�� Wedge is a polyhedron whose base is a rectangle� its lateral faces are two opposite isosceles
triangles and two isosceles trapezoids �Fig ����� For the volume we have

V �


�
��a � a�� b h � ������

a� b� c� d� e�

Figure ����

�� Regular Polyeder have congruent regular polyeders as faces and congruent regular corners�
The �ve possible regular polyheders are represented in Fig ���� Table �� shows the corresponding
data�

Table ��� Regular polyeders with edge length a

Number and Number of Total area Volume

Name form of faces
Edges Corners S�a� V�a�

Tetrahedron �triangles � �
p

� � ����

p
�

�
� ����

Cube �squares � � � � ���  � ��

Octahedron �triangles � � �
p

� � �����

p
�

�
� �����

Dodecahedron �pentagons �� �� �
q

��� � �
p

�� � �������
� � �

p
�

�
� �����

Icosahedron ��triangles �� � �
p

� � ������
��� �

p
��

�
� ����

�� Euler�s Theorem on Polyeders If e is the number of vertices� f is the number of faces� and k
is the number of edges of a convex polyhedron then

e� k � f � � � ������

Examples are given in Table ���

����� Solids Bounded byCurved Surfaces
In this paragraph we use the following notation� V volume� S total surface� M lateral surface� h altitude�
AG base�

� Cylindrical Surface is a curved surface which we get by parallel translation of a line� the gener�
ating line or generator along a curve� the so�called directing curve �Fig �����
� Cylinder is a solid bounded by a cylindrical surface with a closed directing curve� and by two
parallel bases cut out from two parallel planes by the cylindrical surface� For every arbitrary cylinder
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�Fig ���� with the base perimeter p � with the perimeter s of the cut perpendicular to the apothem�
whose area is Q� and with the length l of the apothem the following is valid�

V � AG h � Q l� ������ M � p h � s l� ������

� Right Circular Cylinder has a circle as base� and its apothems are perpendicular to the plane
of the circle �Fig ����� With a base radius R we have�

V � � R �h� ������ M � �� Rh� ������ S � �� R�R � h�� �����

� Obliquely Truncated Cylinder �Fig ����

V � � R � h� � h�
�

� ������ M � � R �h� � h�� � ������

S � � R

���h� � h� � R �

vuutR � �

�
h� � h�

�

�� ��� � ������
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Figure ����
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� Ungula of the Cylinder With the notation of Fig ��� and with � � ��� in radians we have�

V �
h

�b

h
a��R � � a�� � �R ��b� R��

i
�

hR �

b

�
sin�� sin� �

�
� � cos�

�
� ������

M �
�Rh

b
 �b� R�� � a! � ������

where the formulas are valid even in the case b � R � � � ��

� Hollow Cylinder With the notation R for the outside radius and r for the inside one� 	 � R� r

for the di�erence of the radii� and � �
R � r

�
for the mean radius �Fig ��
� we have�

V � � h�R � � r�� � � h	��R� 	� � � h	�� r � 	� � � � h	�� ������
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� Conical Surface arises by moving a line� the generating line� along a curve� the direction curve
so that it always goes through a �xed point� the vertex �Fig �����

� Cone �Fig ���� is bounded by a conical surface with a closed direction curve and a base cut
out from a plane by the surface� For an arbitrary cone
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hAG

�
� ������
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 Right Circular Cone has a circle as base and its vertex is right above the centre of the circle
�Fig ����� With l as the length of the apothem and R as the radius of the base we have�

V �


�
� R �h� ������ M � � R l � � R

p
R � � h� � ������ S � � R�R � l� � �����

�� Frustum of Right Cone or Truncated Cone �Fig ����

l �
q
h� � �R� r��� ������ M � � l�R � r�� ������

V �
� h

�

�
R � � r� � R r

	
� ������ H � h �

h r

R� r
� ������

�� Conic Sections see �������� p� ����

�� Sphere �Fig ���� with radius R and diameter D � �R� Every plane section of it is a circle�
A plane section through the center results in a great circle �see ������ p� ��� with radius R � Only
one great circle can be �tted through two surface points of the sphere if they are not the endpoints of
the same diameter� The shortest connecting surface curve between two surface points is the arc of the
great circle between them �see ������ p� ����
Formulas for the surface and for the volume of the sphere�
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S � � � R � 
 ����R �� �����a� S � � D� 
 ����D�� �����b�

S �
�
p

�� � V � 
 �����
�
p
V �� �����c� V �

�

�
� R � 
 ����R �� �����a�

V �
�D �

�

 ������D �� �����b� V �



�

s
S �

�

 �������

p
S �� �����c�

R �


�

s
S

�

 �����

p
S� �����a� R �

�

s
�V

� �

 ������

�
p
V � �����b�

�� Spherical Sector �Fig ����

S � � R�� h � a�� ������ V �
� � R �h

�
� ������

�� Spherical Cap �Fig ����

a� � h��R� h�� ����� V �


�
� h

�
� a� � h�

	
�



�
� h���R� h�� ������

M � � � Rh � �
�
a� � h�

	
� ������ S � �

�
�Rh � a�

	
� �

�
h� � � a�

	
� ������

�� Spherical Layer �Fig ����

R � � a� �

�
a� � b � � h�

� h

��
� ������ V �



�
� h

�
� a� � � b � � h�

	
� ������

M � � � Rh� ������ S � �
�
�Rh � a� � b �

	
� ������

If V� is the volume of a truncated cone written in a spherical layer �Fig ���� and l is the length of its
apothem then we have

V � V� �


�
� h l �� ������
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�� Torus �Fig ��
� is the solid we get by rotating a circle around an axis which is in the plane of
the circle but does not intersect it�

S � ��� Rr 
 �����Rr� �����a� S � �� Dd 
 �����Dd� �����b�

V � ���R r� 
 ����Rr�� ����a� V �


�
��Dd � 
 �����Dd �� ����b�

�� Barrel �Fig ���� arises by rotation of a generating curve� a circular barrel by rotation of a
circular segment� a parabolic barrel by rotation of a parabolic segment� For the circular barrel we have
the approximation formulas
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for the parabolic barrel
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 �������h
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�D � � �Dd � � d �

	
� ������

��� Spherical Trigonometry
For geodesic measures which extend over great distances we have to consider the spherical shape of the
Earth� For this we need spherical geometry� In particular we need formulas for spherical triangles� i�e��
triangles lying on a sphere� This was also realized by the ancient Greeks� so besides the trigonometry
of the plane the trigonometry of the sphere was developed� and we consider Hipparchus �around ��
BC� as the founder of spherical geometry�

����� Basic Concepts ofGeometry on the Sphere

������� Curve� Arc� and Angle on the Sphere

�� Spherical Curves� Great Circle and Small Circle
Curves on the surface of a sphere are called spherical curves� Important spherical curves are great
circles and small circles� They are intersection circles of a plane passing through the sphere� the so�
called intersecting plane �Fig �����
If a sphere of radius R is intersected by a plane K at distance h from the center O of the sphere� then
for radius r of the intersection circle we have

r �
p
R� � h� �� � h � R�� ������

For h � � the intersecting plane goes through the center of the sphere� and r takes the greatest possible
value� In this case the intersection circle g in the plane * is called a great circle� Every other intersection
circle� with � � h � R� is called a small circle� for instance the circle k in Fig ���� For h � R the
plane K has only one common point with the sphere� Then it is called a tangent plane�

On the Earth the equator and themeridianswith their countermeridians � which are their re�ections
with respect to the Earth�s axis � represent great circles� The parallels of latitude are small circles �see
also ������� p� ����

�� Spherical Distance
Through two points A and B of the surface of the sphere� which are not opposite points� i�e�� they are
not the endpoints of the same diameter� in�nitely many small circles can be drawn� but only one great
circle �with the plane of the great circle g�� Consider two small circles k�� k� through A and B and
turn them into the plane of the great circle passing through A and B �Fig ����� The great circle has
the greatest radius and so the smallest curvature� So the shorter arc of the great circle is the shortest
connection between A and B� It is the shortest connection between A and B on the surface of the
sphere� and it is called the spherical distance�
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�� Geodesic Lines
Geodesic lines are the curves on a surface which are the shortest connections between two points of the
surface �see �������� p� �����

In the plane the straight lines� on the sphere the great circles� are the geodesic lines �see also �������
p� ����

�� Measurement of the Spherical Distance
The spherical distance of two points can be expressed as a measure of length or as a measure of angle
�Fig �����

� SphericalDistance as aMeasure of Angle is the angle between the radii �A and �B measured
at the center �� This angle determines the spherical distance uniquely� and in the following we denote
it by a lowercase Latin letter� The notation can be given at the center or on the great circle arc�

� Spherical Distance as a Measure of Length is the length of the great circle arc between A

and B� It is denoted by
�
AB �arc AB��

� Conversions from Measure of Angle into Measure of Length and conversely can be done
by the formulas

�
AB� R arc e � R

e

�
� �����a� e �

�
AB

�

R
� �����b�

Here e denotes the angle given in degrees and arc e denotes the angle in radian �see radian measure
������ p� ���� The conversion factor � is equal to

� �  rad �
���

�
� �������� � ����� � ��������� �����c�

The determinations of the distance as a measure of length or angle are equivalent but in spherical
trigonometry the spherical distances are given mostly as a measure of angle�

A� For spherical calculations on the Earth�s surface we consider a sphere with the same volume
as the biaxial reference ellipsoid of Krassowski� This radius of the Earth is R � ����� km� and

consequently we have � 	
� �� km� � 	� ����� m �  oldseamile� Today  seamile � ��� m�

B� The spherical distance between Dresden and St� Petersburg is
�
AB � ��� km or

e �
��� km

��� km
����� � ����� � ������

�� Intersection Angle� Course Angle� Azimuth
The intersection angle between spherical curves is the angle between their tangent lines at the intersec�
tion point P�� If one of them is a meridian� the intersection angle with the curve segment to the north
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from P� is called the course angle � in navigation� To distinguish the inclination of the curve to the
east or to the west� we assign a sign to the course angle according to Fig ���a�b and we restrict it to
the interval���� � � � ���� The course angle is an oriented angle� i�e�� it has a sign� It is independent
of the orientation of the curve � of its sense�
The orientation of the curve from P� to P�� as in Fig ���c� can be described by the azimuth 	� It is
the intersection angle between the northern part of the meridian passing through P� and the curve arc
from P� to P�� We restrict the azimuth to the interval �� � 	 � �����
Remark� In navigation the position coordinates are usually given in sexagesimal degrees� the spherical
distances and also the course angles and the azimuth are given in decimal degrees�

������� Special Coordinate Systems

�� Geographical Coordinates
To determine points P on the Earth�s surface we use geographical coordinates �Fig ����� i�e�� spherical
coordinates with the radius of the Earth� the geographical longitude � and the geographical latitude ��
To determine the degree of longitude we subdivide the surface of the Earth by half great circles from the
north pole to the south pole� by so�called meridians� The zero meridian goes through the observatory
of Greenwich� From here we count the east longitude with the help of �� meridians and the west
longitude with �� meridians� At the equator they are at a distance of  km of each other� East
longitudes are given as positive� west longitudes are given as negative values� So ���� � � � ����
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To determine the degree of latitude the Earth�s surface is divided by small circles parallel to the equator�
Starting from the equator we count �� degrees of latitude to the north� the northings� and �� southern
latitudes� Northings are positive� southern latitudes are negative� So ���� � � � ����
�� Soldner Coordinates
The right�angled Soldner coordinates and GaussKr�uger coordinates are important in wide surface
surveys� To map part of the curved Earth�s surface onto a right�angled coordinate system in a plane�
distance preserving in the ordinate direction� according to Soldner we place the x�axis on a meridian �we
call it a central meridian�� and the origin at a well�measured center point �Fig ���a�� The ordinate
y of a point P is the segment between P and the foot of the spherical orthogonal �great circle� on the
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central meridian� The abscissa x of the pointP is the segment of a circle between P and the main parallel
passing through the center� where the circle is in a parallel plane to the central meridian �Fig ���b��
Transferring the spherical abscissae and ordinates into the plane coordinate system the segment %x is
stretched and the directions are distorted� The coe�cient of elongation a in the direction of the abscissa
is

a �
%x

%x�
�  �

y�

�R�
� R � ��� km� ������

To moderate the stretching� the system may not be extended more than �� km on both sides of the
central meridian� A segment of  km length has an elongation of ���� m at y � �� km�

�� Gauss�Kr�uger Coordinates
To map part of the curved Earth�s surface onto the plane with an angle�preserving �conformal� mapping�
�rst we prepare the subdivision of the GaussKr�uger system into meridian zones� For Germany these
mid�meridians are at ��� ��� ��� and �� east longitude �Fig ���a�� The origin of every meridian
zone is at the intersection point of the mid�meridian and the equator� In the north�south direction we
consider the total range� in the east�west direction we consider a ���� wide strip on both sides� In
Germany it is ca� ��� km� The overlap is ���� which is here nearly �� km�
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The coe�cient of elongation
a in the abscissa direction
�Fig ���b� is the same as
in the Soldner system �������
To keep the mapping angle�
preserving� we add to the or�
dinates the quantity b�

b �
y�

�R�
� ������

������� Spherical Lune or Biangle
Suppose there are two planes *� and *� passing through the endpoints A and B of a diameter of the
sphere and enclosing an angle � �Fig ���� and so de�ning two great circles g� and g�� The part of
the surface of the sphere bounded by the halves of the great circles is called a spherical lune or biangle
or spherical digon� The sides of the spherical biangle are de�ned by the spherical distances between A
and B on the great circles� Both are ����
We consider the angles between the tangents of the great circles g� and g� at the points A and B as the
angles of the spherical biangle� They are the same as the so�called dihedral angle � between the planes
*� and *�� If C and D are the bisecting points of both great circle arcs A and B � the angle � can be
expressed as the spherical distance of C and D� The area Ab of the spherical biangle is proportional to
the surface area of the sphere just as the angle � to ���� � Therefore the area is

Ab �
�� R��

����
�

�R��

�
� �R� arc� with the conversion factor � as in �����c�� ������

������� Spherical Triangle
Consider three points A�B� and C on the surface of a sphere� not on the same great circle� If we connect
every two of them by a great circle �Fig ��
�� we get a spherical triangle ABC�
The sides of the triangle are de�ned as the spherical distances of the points� i�e�� they represent the
angles at the center between the radii �A� �B� and �C� They are denoted by a� b� and c� and in the
following they are given in angle measure� independently of whether they are denoted at the center as
angles or on the surface as great circle arcs� The angles of the spherical triangle are the angles between
every two planes of the great circles� They are denoted by �� �� and ��
The order of the notation of the points� sides� and angles of the spherical triangle follows the same



��� 	� Geometry

A

B

R

DC
0

α
α

αα

Γ1
Γ2

g1 g2

Figure ����

C

A

B

0b
ac

a
b

c

γ

α

β

Figure ����

left pole
P1

90°

polar

g

P2

right pole

Figure ����

scheme as for triangles of the plane� A spherical triangle is called a right�sided triangle if at least one
side is equal to ���� There is an analogy with the right�angled triangles of the plane�

������� Polar Triangle
� Poles and Polar The endpoints of a diameter P� and P� are called poles� and the great circle g
being perpendicular to this diameter is called polar �Fig �
��� The spherical distance between a pole
and any point of the great circle g is ���� The orientation of the polar is de�ned arbitrarily� Traversing
the polar along the chosen direction we have a left pole to the left and a right pole to the right�
� Polar Triangle A�B�C � of a given spherical triangle A�B�C is a spherical triangle such that the
vertices of the original triangle are poles for its sides �Fig �
��� For every spherical triangle ABC
there exists one polar triangle A�B�C �� If the triangle A�B�C � is the polar triangle of the spherical
triangle ABC � then the triangle ABC is the polar triangle of the triangle A�B�C �� The angles of a
spherical triangle and the corresponding sides of its polar triangle are supplementary angles� and the
sides of the spherical triangle and the corresponding angles of its polar triangle are supplementary
angles�
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������� Euler Triangles andNon�Euler Triangles
The vertices A�B�C of a spherical triangle divide every great circle into two� usually di�erent parts�
Consequently there are several di�erent triangles with the same vertices� e�g�� also the triangle with
sides a�� b� c and the shadowed surface in Fig �
�a� According to the de�nition of Euler we should
always choose the arc which is smaller than ��� as a side of the spherical triangle� This corresponds
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to the de�nition of the sides as spherical distances between the vertices� Considering this� we call the
spherical triangles all of whose sides and angles are less than ��� Euler triangles� otherwise we call
them non�Euler triangles� In Fig �
�b there is an Euler triangle and a non�Euler triangle�

������	 Trihedral Angle
This is a three�sided solid formed by three edge sa� sb� sc starting at a vertex O �Fig �
�a�� As sides
of the trihedral angle we de�ne the angles a� b� and c� every of them enclosed by two edges� The regions
between two edges are called the faces of the trihedral angle� The angles of the trihedral angle are �� ��
and �� the angles between the faces� If the vertex of a trihedral angle is at the center O of a sphere�
it cuts out a spherical triangle of the surface �Fig �
�b�� The sides and the angles of the spherical
triangle and the corresponding trihedral angle are coincident� so every theorem derived for a trihedral
angle is valid for the corresponding spherical triangle� and conversely�
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����� Basic Properties of Spherical Triangles

������� General Statements
For an Euler triangle with sides a� b� and c� whose opposite angles are �� �� and �� the following state�
ments are valid�

� Sum of the Sides The sum of the sides is between �� and �����
�� � a � b � c � ����� ������

� Sum of two Sides The sum of two sides is greater than the third one� e�g��

a � b � c� �����

� Di	erence of Two Sides The di�erence of two sides is smaller than the third one� e�g��

ja� bj � c� ������

� Sum of the Angles The sum of the angles is between ��� and �����
��� � � � � � � � ����� ������

� Spherical Excess The di�erence

� � � � � � � � ��� ������

is called the spherical excess�

� Sum of Two Angles The sum of two angles is less than the third one increased by ���� e�g��

� � � � � � ���� ������

� Opposite Sides and Angles Opposite to a greater side there is a greater angle� and conversely�

� Area The area AT of a spherical triangle can be expressed by the spherical excess � and by the
radius of the sphere R with the formula

AT � � R � � �

���
�

R ��

�
� R � arc �� �����a�
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Here � is the conversion factor �����c�� From the theorem of Girard� with AS as the surface area of the
sphere� we have

AT �
AS

����
�� �����b�

If we know the sides and not the excess� then � can be calculated by the formula of L�Huilier �������

������� Fundamental Formulas andApplications
The notation for the quantities of this paragraph corresponds to those of Fig ��
�

�� Sine Law

sin a

sin b
�

sin�

sin�
� �����a�

sin b

sin c
�

sin�

sin �
� �����b�

sin c

sin a
�

sin �

sin�
� �����c�

The equations from �����a� to �����c� can also be written as proportions� i�e�� in a spherical triangle
the sines of the sides are related as the sines of the opposite angles�

sin a

sin�
�

sin b

sin�
�

sin c

sin �
� �����d�

The sine law of spherical trigonometry corresponds to the sine law of plane trigonometry�

�� Cosine Law� or Cosine Law for Sides

cos a � cos b cos c � sin b sin c cos�� �����a� cos b � cos c cos a � sin c sin a cos �� �����b�

cos c � cos a cos b � sin a sin b cos �� �����c�

The cosine law for sides in spherical trigonometry corresponds to the cosine law of plane trigonometry�
From the notation we can see that the cosine law contains the three sides of the spherical triangle�

�� Sine�Cosine Law
sin a cos � � cos b sin c� sin b cos c cos�� �����a�

sin a cos � � cos c sin b� sin c cos b cos�� �����b�

We can get four more equations by cyclic change of the quantities �Fig �����
The sine�cosine law corresponds to the projection rule of plane trigonometry� Because it contains �ve
quantities of the spherical triangle� we do not use it directly for solving problems of spherical triangles�
but we usually use it for the derivation of further equations�

�� Cosine Law for Angles of a Spherical Triangle
cos� � � cos � cos � � sin� sin � cos a� �����a�

cos � � � cos � cos� � sin � sin� cos b� �����b�

cos � � � cos � cos � � sin� sin � cos c� �����c�

This cosine rule contains the three angles of the spherical triangle and one of the sides� With this
law we can easily express an angle by the opposite side with the angles on it� or a side by the angles�
consequently every side can be expressed by the angles� Contrary to this� for plane triangles we get the
third angle from the sum of ����
Remark� It is not possible to determine any side of a plane triangle from the angles� because there are
in�nitely many similar triangles�

�� Polar Sine�Cosine Law
sin� cos b � cos � sin � � sin � cos � cos a� ����a�

sin� cos c � cos � sin� � sin � cos � cos a� ����b�

Four more equations can be get by cyclic change of the quantities �Fig �����
Just as for the cosine law for angles� also the polar sine�cosine law is not usually used for direct calcu�
lations for spherical triangles� but to derive further formulas�
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� Half�Angle Formulas

To determine an angle of a spherical triangle from the sides we can use the cosine law for sides� The
half�angle formulas allow us to calculate the angles by their tangents� similarly to the half�angle for�
mulas of plane trigonometry�

tan
�

�
�

vuutsin�s� b� sin�s� c�

sin s sin�s� a�
� �����a� tan

�

�
�

vuutsin�s� c� sin�s� a�

sin s sin�s� b�
� �����b�

tan
�

�
�

vuutsin�s� a� sin�s� b�

sin s sin�s� c�
� �����c� s �

a � b � c

�
� �����d�

If from the three sides of a spherical triangle we want to determine all the three angles� the following
calculations are useful�

tan
�

�
�

k

sin�s� a�
� �����a� tan

�

�
�

k

sin�s� b�
� �����b�

tan
�

�
�

k

sin�s� c�
with �����c�

k �

s
sin�s� a� sin�s� b� sin�s� c�

sin s
� �����d� s �

a � b � c

�
� �����e�

�� Half�Side Formulas

With the half�side formulas we can tell one side or all of the sides of a spherical triangle from its three
angles�

cot
a

�
�

vuutcos�� � �� cos�� � ��

� cos � cos�� � ��
������a� cot

b

�
�

vuutcos�� � �� cos�� � ��

� cos � cos�� � ��
� �����b�

cot
c

�
�

vuutcos�� � �� cos�� � ��

� cos � cos�� � ��
� �����c� � �

� � � � �

�
� �����d�

or

cot
a

�
�

k�

cos�� � ��
� �����a� cot

b

�
�

k�

cos�� � ��
� �����b�

cot
c

�
�

k�

cos�� � ��
with �����c�

k� �

s
cos�� � �� cos�� � �� cos�� � ��

� cos �
� �����d� � �

� � � � �

�
� �����e�

Because for the sum of the angles of a spherical triangle according to �������

��� � �� � ���� or ��� � � � ���� ������

holds� cos � � � must always be valid� Because of the requirements for Euler triangles all the roots are
real�
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�� Applications of the Fundamental Formulas of Spherical Geometry
With the help of the given fundamental formulas we can determine� for instance distances� the azimuth�
and course angles on the Earth�

A� Determine the shortest distance between Dresden ��� � ����� � ������ �� � ���� � ������
and Peking ��� � ����� � ������ �� � ������ � ��������
Solution� The geographical coordinates ���� ���� ���� ��� and the north pole N �Fig �
�� result in
two sides of the triangle P�P�N a � ��� � �� and b � ��� � �� lying on meridians� and also the angle
between them � � �� � ��� For c � e it follows from the cosine law �����a�

cos c � �cos a cos b � sin a sin b cos c��

cos e � cos���� � ��� cos���� � ��� � sin���� � ��� sin���� � ��� cos��� � ���

� sin�� sin�� � cos�� cos�� cos��� � ���� ������

i�e�� cos e � ������� � ������ � �������� e � ������� The great circle segment
�

P�P� has length
������� km 
 ���� km using �����a�� For comparison� Berlin � Peking 
 ��� km

B� Calculate the course angles 	� and 	� at departure and at arrival� and also the distance in sea miles
of a voyage from Bombay ��� � ������� �� � ������ to Dar es Saalam ��� � ������� �� � �������
along a great circle�

Solution� The calculation of the two sides a � ��� � �� � ������ b � ��� � �� � ������ and the
enclosed angle � � �� � �� � ������ in the spherical triangle P�P�N with the help of the geographical
coordinates ���� ���� ���� ��� �Fig �
�� and the cosine law �����c� cos c � cos e � cos a cos b �

sin a sin b cos � yields
�

P�P�� e � ������� and because � 
  sm we have
�

P�P�
 ���� sm�
With the cosine law for sides we get

� � arccos
cos a� cos b cos c

sin b sin c
� ������ and � � arccos

cos b� cos a cos c

sin a sin c
� �������

Therefore� we get

	� � ���� � � � �������� and 	� � ��� � � � ��������

Remark� It makes sense to use the sine law to determine sides and angles only if it is already obvious
from the problem that the angles are acute or obtuse�

������� Further Formulas

�� Delambre Equations
Analogously to the Mollweide formulas of plane trigonometry the corresponding formulas of Delambre
are valid for spherical triangles�
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cos
�� �

�

sin
�

�

�
sin

a � b

�

sin
c

�

� �����a�
sin

�� �

�

cos
�

�

�
sin

a� b

�

sin
c

�

� �����b�

cos
� � �

�

sin
�

�

�
cos

a � b

�

cos
c

�

� �����c�
sin

� � �

�

cos
�

�

�
cos

a� b

�

cos
c

�

� �����d�

Because for every equation two more equations exist by cyclic changes� altogether there are � Delambre
equations�

�� Neper Equations and Tangent Law

tan
�� �

�
�

sin
a� b

�

sin
a � b

�

cot
�

�
� �����a� tan

� � �

�
�

cos
a� b

�

cos
a � b

�

cot
�

�
� �����b�

tan
a� b

�
�

sin
�� �

�

sin
� � �

�

tan
c

�
� �����c� tan

a � b

�
�

cos
�� �

�

cos
� � �

�

tan
c

�
� �����d�

These equations are also called Neper analogies� From these we can derive formulas analogous to the
tangent law of plane trigonometry�

tan
a� b

�

tan
a � b

�

�
tan

�� �

�

tan
� � �

�

� ������a�
tan

b� c

�

tan
b � c

�

�
tan

� � �

�

tan
� � �

�

� ������b�

tan
c� a

�

tan
c � a

�

�
tan

� � �

�

tan
� � �

�

� ������c�

�� L�Huilier Equations
We can calculate the area of a spherical triangle with the help of the excess � � It can be calculated from
the known angles �� �� � according to ������� or if the three sides a� b� c are known� with the formulas
about the angles from �����a� to �����e�� The L�Huilier equation makes possible the direct calculation
of � from the sides�

tan
�

�
�

s
tan

s

�
tan

s� a

�
tan

s� b

�
tan

s� c

�
� ������

This equation corresponds to the Heron formula of plane trigonometry�

����� Calculation of SphericalTriangles

������� Basic Problems� AccuracyObservations
The di�erent cases occurring most often in calculations of spherical triangles are arranged into so�called
basic problems� For every basic problem for acute�angled spherical triangles there are several ways to
solve it� and it depends on whether we base our calculations only on the formulas from �����a� to
����b� or also on the formulas from �����a� to ������� and also whether we are looking for only one
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or more quantities of the triangle�

Formulas containing the tangent function yield numerically more accurate results� especially in com�
parison to the determination of de�ning quantities with the sine function if they are close to ���� and
with the cosine function if their value is close to �� or ���� For Euler triangles the quantities calculated
with the sine law are bivalued� since the sine function is positive in both of the �rst quadrants� while
the results obtained from other functions are unique�

������� Right�Angled Spherical Triangles

�� Special Formulas

In a right�angled spherical triangle one of the angles is ���� The sides and angles are denoted analogously
to the plane right�angled triangle� If as inFig �
� � is a right angle� the side c is called the hypotenuse�
a and b the legs and � and � are the leg angles� From the equations from �����a� to ������ it follows
for � � ����

sin a � sin� sin c� ������a� sin b � sin � sin c� ������b�

cos c � cos a cos b� ������c� cos c � cot� cot�� ������d�

tan a � cos � tan c� ������e� tan b � cos � tan c� ������f�

tan b � sin a tan �� ������g� tan a � sin b tan�� ������h�

cos� � sin� cos a� ������i� cos � � sin� cos b� ������j�

c
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b

b a

c
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90°
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β

α
β
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If in certain problems other sides or angles are given� for instance instead of �� �� � the quantities b� �� ��
we get the necessary equations by cyclic change of these quantities� For calculations in a right�angled
spherical triangle we usually start with three given quantities� the angle � � ��� and two other quan�
tities� There are six basic problems� which are represented in Table ���

Table ��� De�ning quantities of a spherical right�angled triangle

Basic Given de�ning Number of the formula to
problem quantities determine other quantities

� Hypotenuse and a leg c� a � ������a�� � ������e�� b ������c�

�� Two legs a� b � ������h�� � ������g�� c ������c�

�� Hypotenuse and an angle c� � a ������a�� b ������f�� � ������d�

�� Leg and the angles on it a� � c ������e�� b ������j�� � ������i�

�� Leg and the angle opposite to it a� � b ������h�� c ������a�� � ������i�

�� Two angles �� � a ������i�� b ������j�� c ������d�
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�� Neper Rule
The Neper rule summarizes the equations ������a� to ������j�� If the �ve determining quantities of a
right�angled spherical triangle� not considering the right angle� are arranged along a circle in the same
order as they are in the triangle� and if the legs are replaced by their complementary angles ��� � a�
��� � b� �Fig �
��� then the following is valid�

� The cosine of every de�ning quantity is equal to the product of the cotangent values of its neighboring
quantities�

� The cosine of every de�ning quantity is equal to the product of the sine values of the non�neighboring
quantities�

A� cos� � cot���� � b� cot c �
tan b

tan c
�see ������f�� �

B� cos���� � a� � sin c sin� � sin a �see ������a���

C� Map the sphere onto a cylinder which contacts the sphere along a meridian� the so�called central
meridian� This meridian and the equator form the axis of the Gauss�Kr�uger system �Fig �
�a�b��
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Solution� A point P of the surface of the sphere will have the corresponding point P � on the plane�
The great circle g passing through the point P perpendicular to the central meridian is mapped into
a line g� perpendicular to the x�axis� and the small circle k passing through P parallel to the given
meridian becomes a line k� parallel to the x�axis �grid meridian�� The image of the meridian m through
P is not line but a curve m� �true meridian�� The upward direction of the tangent of m� at P � gives the
geographical north� the upward direction of k� gives the grid north direction� The angle � between the
two north directions is called the meridian convergence�

In a right�angled spherical triangle QPN with c � ����� � and b � � we get � from � � ���� �� The

Neper rule yields cos� �
tan b

tan c
or cos���� � �� �

tan �

tan���� � ��
� sin � � tan � tan�� Because � and

� are mostly small� we consider sin � 
 �� tan � 
 �� consequently � � � tan� is valid� The length
deviation � of this cylinder sketch is pretty small for small distances �� and we can substitute � � y�R�
where y is the ordinate of P � We get � � �y�R� tan�� The conversion of � from radian into degree
measure yields a meridian convergence of � � ������� or � � ������� at � � ���� y � �� km�

������� Spherical Triangles with Oblique Angles
For three given quantities� we distinguish between six basic problems� just as we did for right�angled
spherical triangles� The notation for the angles is �� �� � and a� b� c for the opposite sides �Fig �

��
Tables �
� ���� ���� and ��� summarize� which formulas should be used for which de�ning quan�
tities in the case of the six basic problems� Problems �� �� �� and � can also be solved by decomposing
the general triangle into two right�angled triangles� To do this for problems � and � �Fig �����
Fig ����� we use the spherical perpendicular from B to AC to the point D� and for problems � and
� �Fig ����� from C to AB to the point D�
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In the headings of Tables �
� ���� ���� and ��� the given sides and angles are denoted by S and
W respectively� This means for instance SWS� Two sides and the enclosed angle are given�

Table ��� First and second basic problems for spherical oblique triangles

First basic problem
Given� � sides a� b� c

SSS
Second basic problem
Given� � angles �� �� �

WWW

Conditions�
�� � a � b � c � �����
a � b � c� a � c � b� b � c � a�

Conditions�
��� � � � � � � � �����
� � � � ��� � �� � � � � ��� � ��
� � � � ��� � ��

Solution � Required � �

cos � �
cos a� cos b cos c

sin b sin c
or

tan
�

�
�

s
sin�s� b� sin�s� c�

sin s sin�s� a�
�

s �
a � b � c

�
�

Solution �� Required �� �� � �

k �

s
sin�s� a� sin�s� b� sin�s� c�

sin s
�

tan
�

�
�

k

sin�s� a�
� tan

�

�
�

k

sin�s� b�
�

tan
�

�
�

k

sin�s� c�
�

Checking� �s� a� � �s� b� � �s� c� � s �

tan
�

�
tan

�

�
tan

�

�
sin s � k�

Solution � Required a �

cos a �
cos � � cos � cos �

sin � sin �
or

cot
a

�
�

s
cos�� � �� cos�� � ��

� cos � cos�� � ��
�

� �
� � � � �

�
�

Solution �� Required a� b� c �

k� �

s
cos�� � �� cos�� � �� cos�� � ��

� cos �
�

cot
a

�
�

k�

cos�� � ��
� cot

b

�
�

k�

cos�� � ��
�

cot
c

�
�

k�

cos�� � ��
�

Checking� �� � �� � �� � �� � �� � �� � � �

cot
a

�
cot

b

�
cot

c

�
�� cos �� � k��

A Tetrahedron� A tetrahedron has base ABC and vertex S �Fig ������ The faces ABS and
BCS intersect each other at an angle ������ BCS and CAS at an angle ������� and CAS and ABS at
������� How big are the angles between every two of the edges AS� BS� and CS(
Solution� From a spherical surface around the vertex S of the pyramid� the trihedral angle �Fig �����
cuts out a spherical triangle with sides a� b� c�
The angles between the faces are the angles of the spherical triangle� the angles between the edges� we
are looking for� are the sides� The determination of the angles a� b� c corresponds to the second problem�
Solution � in Table �
 yields�
� � ������� � � � � ������� � � � � ������ � � � � ������ k� � �������� cot�a��� �
������� cot�b��� � ������� cot�c��� � ��������
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Table ��� Third basic problem for spherical oblique triangles

Third basic problem
Given� � sides and the enclosed angle� eg� a� b� �

SWS

Condition� none

Solution � Required c� or c and � �
cos c � cos a cos b � sin a sin b cos � �

sin� �
sin a sin �

sin c
�

� can be in quadrant I� or II�
We apply the theorem�
Larger angle is opposite
to the larger side or
checking calculation�

cos a� cos b cos c 

� � � in q� I�

� in q� II�
Solution �� Required �� or � and c �
tan u � tan a cos �

tan� �
tan � sin u

sin�b� u�

tan c �
tan�b� u�

cos�
�

Solution �� Required � and �or� � �

tan
� � �

�
�

cos
a� b

�

cos
a � b

�

cot
�

�
�

tan
�� �

�
�

sin
a� b

�

sin
a � b

�

cot
�

�

����� �
�� �

�
� ����

� �
� � �

�
�

�� �

�
� � �

� � �

�
� �� �

�
�

Solution �� Required �� �� c �

tan
� � �

�
�

cos
a� b

�
cos

�

�

cos
a � b

�
sin

�

�

�
Z

N
�

tan
�� �

�
�

sin
a� b

�
cos

�

�

sin
a � b

�
sin

�

�

�
Z �

N �

����� �
� � �

�
� ����

� �
� � �

�
�

�� �

�
� � �

� � �

�
� �� �

�
�

cos
c

�
�

Z

sin
� � �

�

� sin
c

�
�

Z �

sin
�� �

�

�

Checking� Double calculation of c �

BRadioBearing� In the case of a radio bearing two �xed stationsP����� ��� andP����� ��� receive
the azimuths 	� and 	� via the radio waves emitted by a ship �Fig ������ We have to determine the
geographical coordinates of the position P� of the ship� The problem� known by marines as the shore�
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to�ship bearing� is an intersection problem on the sphere� and it will be solved similar to the intersection
problem in the plane �see �������� p� ����

� Calculation in triangle P�P�N � In triangle P�P�N the sides P�N � ������� P�N � ������ and
the angle �� P�NP� � �� � �� � %� are given�
The calculations of the angle �� ��� �� and the segment P�P� � e correspond to the third basic problem�

� Calculation in the triangle P�P�P�� Because �� � 	� � ��� �� � ���� � �	� � ��� � the side e and
the angles lying on it �� and �� are known in P�P�P�� Calculations of the sides e� and e� correspond to
the fourth basic problem� third solution� The coordinates of the point P� can be calculated from the
azimuth and the distance from P� or P��

� Calculation in the triangle NP�P�� In the triangle NP�P� there are given two sides NP� � ��� �
��� P�P� � e� and the included angle 	�� The side NP� � ��� � �� and the angle %�� are calculated
according to the third basic problem� �rst solution� To check ourselves we can calculate in the triangle
NP�P� for a second time NP� � ������� and also %��� Consequently� the longitude �� � ���%�� �
�� �%�� and the latitude �� of the point P� are known�

Table �� Fourth basic problem for spherical oblique triangles

Fourth basic problem
Given� One side and two adjacent angles� eg� �� �� c

WSW

Condition� none

Solution � Required �� or � and a �
cos � � � cos� cos � � sin� sin � cos c �

sin a �
sin c sin�

sin �
�

a can be in quadrant I or II� We ap�
ply the theorem� The larger side is in
opposite to the larger angle or checking
calculation�

cos� � cos � cos � 

� � � in q� I�

� in q� II�
Solution �� Required a� or a and � �

cot� � tan� cos c � tan a �
tan c cos�

cos�� � ��
�

tan � �
cot�� � ��

cos a
�

Solution �� Required a and �or� b �

tan
a � b

�
�

cos
�� �

�

cos
� � �

�

tan
c

�
�

tan
a� b

�
�

sin
�� �

�

sin
� � �

�

tan
c

�

����� �
a� b

�
� ���� �

a �
a � b

�
�

a� b

�
� b �

a � b

�
� a� b

�
�

Solution �� Required a� b� � �

tan
a � b

�
�

cos
�� �

�
sin

c

�

cos
� � �

�
cos

c

�

�
Z

N
�

tan
a� b

�
�

sin
�� �

�
sin

c

�

sin
� � �

�
cos

c

�

�
Z �

N �

���� �
a� b

�
� ���� �

a �
a � b

�
�

a� b

�
� b �

a � b

�
� a� b

�
�

sin
�

�
�

Z

sin
a � b

�

� cos
�

�
�

Z �

sin
a� b

�

�

Checking� Double calculation of ��

������� Spherical Curves
Spherical trigonometry has a very important application in navigation� One basic problem is to deter�
mine the course angle� which gives the optimal route� Other �elds of application are geodesic surveys
and also robot�movement planning�
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Table ��� Fifth and sixth basic problems for a spherical oblique triangle

Fifth basic problem SSW

Given� � sides and an angle opposite
to one of them� eg� a� b� �

Sixth basic problem WWS

Given� � angles and a side opposite
to one of them� eg� a� �� �

Conditions� See distinction of cases� Conditions� See distinction of cases�

Solution� Required is any missing quantity�

sin� �
sin b sin�

sin a
� values ��� �� are possible�

Let �� be acute and �� � ��� � �� obtuse�
Distinction of cases�

�
sin b sin�

sin a
�  � solution�

��
sin b sin�

sin a
�   solution � � ����

��
sin b sin�

sin a
�  �

��� sin a � sin b �
���� b � ���  solution ���
����� b � ���  solution ���
���� sin a � sin b �

�����
a � ��� � � � ���

a � ��� � � � ���
�

� solutions
��� ���

������
a � ��� � � � ���

a � ��� � � � ���
�

� solution�

Further calculations with one angle
or with two angles � �

Solution� Required is any missing quantity�

sin b �
sin a sin�

sin�
� values b�� b� are possible�

Let b� be acute and b� � ��� � �� obtuse�
Distinction of cases�

�
sin a sin�

sin�
�  � solution�

��
sin a sin�

sin�
�   solution b � ����

��
sin a sin�

sin�
�  �

��� sin� � sin��
���� � � ���  solution b��
����� � � ���  solution b��
���� sin� � sin� �

�����
a � ��� � � � ���

a � ��� � � � ���
�

� solutions
b�� b��

������
a � ��� � � � ���

a � ��� � � � ���
�

� solution�

Further calculations with one side
or with two sides b �

Method �

tanu � tan b cos� �

tan v � tan a cos � �

c � u � v �

cot� � cos b tan� �

cot� � cos a tan� �

� � � � � �

Method ��

tan
c

�
� tan

a � b

�

cos
� � �

�

cos
�� �

�

�

� tan
a� b

�

sin
� � �

�

sin
�� �

�

�

tan
�

�
� cot

� � �

�

cos
a� b

�

sin
a � b

�

�

� cot
�� �

�

sin
a� b

�

sin
a � b

�

�

Checking� Double calculation of
c

�
and

�

�

�� Orthodrome
� Notion The geodesic lines of the surface of the sphere � which are curves� connecting two points
A and B by the shortest path � are called orthodromes or great circles �see ������ �� p� ����
� Equation of theOrthodrome Moving on an orthodrome � except for meridians and the equator
� needs a continuous change of course angle� These orthodromes with position�dependent course angles
� can be given uniquely by their point closest to the north pole PN��N� �N�� where �N � �� holds� The
orthodrome has the course angle �N � ��� at the point closest to the north pole� The equation of the
orthodrome through PN and the running point Q��� ��� whose relative position to PN is arbitrary� can
be given by the Neper rule according to Fig ���� as�

tan�N cos��� �N� � tan�� �������
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Point Closest to theNorth Pole� The coordinates of the point closest to the north pole PN��N� �N�
of an orthodrome with a course angle �A ��A �� ��� at the point A��A� �A� ��A �� ���� can be calcu�
lated by the Neper rule considering the relative position ofPN and the sign of�A according toFig ����
as�

�N � arccos�sin j�Aj cos�A� ������a� and �N � �A � sign��A�

�����arccos
tan�A
tan�N

����� � ������b�

Remark� If a calculated geographical distance � is not in the domain ���� � � � ���� then for
� �� �k � ��� �k � IN� the reduced geographical distance �red is�

�red � � arctan

�
tan

�

�

�
� �������

We call this the reduction of the angle in the domain�
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Intersection Points with the Equator� The intersection points PE���E� � �
�� and PE���E� � �

�� of the
orthodrome with the equator can be calculated from ������� because tan�N cos��E� � �N� � � �
 �
� �� must hold�

�E� � �N � ��� �
 � � ��� �������

Remark� In certain cases an angle reduction is needed according to ��������

� Arclength If the orthodrome goes through the points A��A� �A� and B��B� �B�� the cosine law
for sides yields for the spherical distance d or for the arclength between the two points�

d � arccos sin�A sin�B � cos �A cos�B cos��B � �A�!� ������a�

We can convert this central angle into a length considering the radius of the Earth R�

d � arccos sin�A sin�B � cos �A cos�B cos��B � �A�! � �R

���
� ������b�

� Course Angle If we use the sine and cosine laws for sides to calculate sin�A and cos�A� we get
the �nal result for the course angle �A after division�

�A � arctan
cos�A cos �B sin��B � �A�

sin�B � sin�A cos d
� �������

Remark� With the formulas ������a�� �������� ������a� and ������b�� the coordinates of the point
closest to the north pole PN can be calculated for the orthodrome given by the two points A and B�

� IntersectionPointwithaParallelCircle For the intersection pointsX���X�� �X� and X���X� �
�X� of an orthodrome with the parallel circle � � �X we get from ��������

�X� � �N � arccos
tan�X
tan�N

�
 � � ��� �������
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From the Neper rule we have for the intersection angles �X� and �X� � by which an orthodrome with a
point closest to the north pole PN��N� �N� intersects the parallel circle � � �X �

j�X� j � arcsin
cos�N

cos�X
�
 � � ��� ������

The argument in the arc sine function must be extremal with respect to the variable �X for the minimal
course angle j�minj� We get� sin�X � � � �X � � � i�e�� the absolute value of the course angle is
minimal at the intersection points of the equator�

j�Xmin
j � ��� � �N� �����

Remark �� Solutions of ������� exist only for j�X j � �N�
Remark �� In certain cases a reduction of the angle is needed according to ��������
� Intersection Point with a Meridian We get for the intersection point Y ��Y � �Y � of an ortho�
drome with the meridian � � �Y according to ��������

�Y � arctan tan�N cos��Y � �N�!� ������

�� Small Circle
� Notion The de�nition of small a circle on the surface of the sphere must be discussed here in more
detail than in ������ p� ��� The small circle is the locus of the points of the surface �of the sphere�
at a spherical distance r �r � ���� from a point �xed on the surface M��M � �M� �Fig ������ We
denote the spherical center by M � r is called the spherical radius of the small circle�

The plane of the small circle is the base of a spherical cap with an altitude h �see ������ p� ���� The
spherical center M is above the center of the small circle in the plane of the small circle� In the plane
the circle has the planar radius of the small circle r� �Fig ������ Hence� parallel circles are special
small circles with �M � �����

For r  ��� the small circle tends to an orthodrome�

N

PN

0

M

r

r k

small circle plane

Q

small circle plane
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Figure ����
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� Equations of SmallCircles As de�ning parameters we can use either M and r or the small circle
point PN��N� �N� nearest the north pole and r� If the running point on the small circle is Q��� ��� we
get the equation of the small circle with the cosine law for sides corresponding to Fig �����

cos r � sin� sin�M � cos� cos�M cos��� �M�� �����a�

From here� because of �M � �N � r and �M � �N� we get�

cos r � sin� sin��N � r� � cos� cos��N � r� cos��� �N�� �����b�

A� For �M � ��� we get the parallel circles from �����a�� since cos r � sin� � sin���� � r� �
sin� � � � const�

B� For r  ��� we get orthodromes from �����b��
� Arclength The arclength s between two points A��A� �A� and B��B� �B� on a small circle k can

be calculated corresponding to Fig ���� from the equalities
s

�
�

��r�
����

� cos d � cos� r � sin� r cos �
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and r� � R sin r�

s � sin r arccos
cos d� cos� r

sin� r
� �R

���
� ������

For r  ��� the small circle becomes an orthodrome� and from ������ and ������b� it follows that
s � d�

� Course Angle According to Fig ���
 the orthodrome passing through the points A��A� �A�
and M��M ��M� intersects perpendicularly the small circle with radius r� For the course angle �Orth of
the orthodrome after �������

�Orth � arctan
cos�A cos�M sin��M � �A�

sin�M � sin�A cos r
�����a�

is valid� So� we get for the required course angle �A of the small circle at the point A�

�A � �j�Orthj � ���� sign��Orth�� �����b�

N

A k
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R
R

αOrth

αΑ
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Figure ����
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� Intersection Points with a Parallel Circle For the geographical longitude of the intersection
points X���X�� �X� and X���X� � �X� of the small circle with the parallel circle � � �X we get from
�����a��

�X� � �M � arccos
cos r � sin�X sin�M

cos�X cos�M
�
 � � ��� ������

Remark� In some cases an angle reduction is needed according to ��������

� Tangential Point The small circle is touched by two meridians� the tangential meridians� at the
tangential points T���T� � �T � and T���T� � �T � �Fig ������ Because for them the argument of the arc
cosine in ������ must be extremal with respect to the variable �X � we get�

�T � arcsin
sin�M
cos r

� �����a� �T� � �M � arccos
cos r � sin�X sin�M

cos�X cos�M
�
 � � ��� �����b�

Remark� In certain cases an angle reduction is needed according to ��������

� Intersection Points with a Meridian The calculation of the geographical latitudes of the in�
tersection points Y���Y � �Y�� and Y���Y � �Y�� of the small circle with meridian � � �Y can be done
according to �����a� with the equations

�Y� � arcsin
�AC �B

p
A� � B� � C�

A� � B�
�
 � � ��� �����a�

where we use the notation�

A � sin�M � B � cos�M cos��Y � �M�� C � � cos r� �����b�

For A� � B� � C�� in general� there are two di�erent solutions� from which one is missing if a pole is
on the small circle�
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If A� � B� � C� holds and there is no pole on the small circle� then the meridian touches the small
circle at a tangential point with geographical latitude �Y� � �Y� � �T �

�� Loxodrome

� Notion A spherical curve� intersecting all meridians with the same course angle� is called a loxo�
drome or spherical helix� So� parallels �� � ���� and meridians �� � ��� are special loxodromes�

� Equation of the Loxodrome Fig ���� shows a loxodrome with course angle � through the
running point Q��� �� and the in�nitesimally close point P ���d�� ��d��� The right�angled spherical
triangle QCP can be considered as a plane triangle because of its small size� Then�

tan� �
R cos�d�

Rd�
� d� �

tan� d�

cos �
� �����a�

Considering that the loxodrome must go through the point A��A� �A�� therefore� we get the equation
of the loxodrome by integration�

�� �A � tan� ln
tan

�
��� �

�

�

�
tan

�
��� �

�A
�

� � ���

�
�� �� ����� �����b�

In particular if A is the intersection point PE��E� �
�� of the loxodrome with the equator� then�

�� �E � tan� ln tan
�

��� �
�

�

�
� ���

�
�� �� ���� � �����c�

Remark� The calculation of �E can be done with ��������

Q( , )λ ϕ α

α

ds

C

P( +d , +d )λ λ ϕ ϕ

Rdϕ
.

Rcos ϕ λd

N N

Figure ��

ϕ λ

P( =0, =0)ϕ λ

Figure ���

� Arclength From Fig ���� we �nd the di�erential relation

cos� �
Rd�

ds
� ds �

Rd�

cos �
� ������a�

Integration with respect to � results in the arclength s of the arc segment with the endpoints A��A� �A�
and B��B� �B��

s �
j�B � �Aj

cos �
� �R

���
�� �� ���� � ������b�

If A is the starting point and B is the endpoint� then from the given values A� � and s we can determine
step�by�step �rst �B from ������b�� then �B from �����b��

Approximation Formulas� According to Fig ����� with Q � A and P � B we get an approxi�
mation for the arclength l with the arithmetical mean of the geographical latitudes with �����a� and
�����b��
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sin� �
cos

�A � �B
�

��B � �A�

l
� �R

���
� �����a�

l �
cos

�A � �B
�

sin�
��B � �A� � �R

���
� �����b�

� CourseAngle The course angle � of the loxodrome through the points A��A� �A� and B��B��B��
or through A��A� �A� and its equator intersection point PE��E� �

�� are given according to �����b� and
�����c� by�

� � arctan
��B � �A�

ln
tan

�
��� �

�B
�

�
tan

�
��� �

�A
�

�
� �

���
� ������a�

� � arctan
��A � �E�

ln tan
�

��� �
�A
�

� � �

���
� ������b�

� Intersection Point with a Parallel Circle Suppose a loxodrome passes through the point
A��A� �A� with a course angle �� The intersection point X��X � �X� of the loxodrome with a paral�
lel circle � � �X is calculated from �����b��

�X � �A � tan� � ln
tan

�
��� �

�X
�

�
tan

�
��� �

�A
�

� � ���

�
�� �� ����� �������

With ������� we calculate the intersection point with the equator PE��E� �
���

�E � �A � tan� � ln tan
�

��� �
�A
�

�
� ���

�
�� �� ���� � �������

Remark� In certain cases an angle reduction is needed according to ��������
� IntersectionPointwith aMeridian Loxodromes � except parallel circles and meridians � wind
in a spiral form around the pole �Fig ������ The in�nitely many intersection points Y���Y � �Y��
�
 � Z� of the loxodrome passing through A��A� �A� with course angle � with the meridian � � �Y
can be calculated from �����b��

�Y� � � arctan

�
exp

�
�Y � �A � 
 � ����

tan�
� �

���


tan

�
��� �

�A
�

��
� ��� �
 � Z�� ������a�

If A is the equator intersection point PE��E� �
�� of the loxodrome� then we have simply�

�Y� � � arctan exp

�
�Y � �E � 
 � ����

tan�
� �

���


� ��� �
 � Z�� ������b�

�� Intersection Points of Spherical Curves
� Intersection Points of Two Orthodromes Suppose the considered orthodromes have points
PN���N� � �N�� and PN���N�� �N�� closest to the north pole� where PN� �� PN� holds� Substituting the
intersection point S��S� �S� in both orthodrome equations we get an equation system

tan�N� cos��S � �N�� � tan�S � ������a� tan�N� cos��S � �N�� � tan�S � ������b�
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By elimination of �S and using the addition law for the cosine function we get�

tan�S � �tan�N� cos �N� � tan�N� cos �N�

tan�N� sin�N� � tan�N� sin�N�

� �������

The equation ������� has two solutions �S� and �S� in the domain���� � � � ��� of the geographical
longitude� The corresponding geographical latitudes can be got from ������a��

�S� � arctan tan�N� cos��S� � �N��! �
 � � ��� �������

The intersection points S� and S� are antipodal points� i�e�� they are the mirror images of each other
with respect to the centre of the sphere�
� IntersectionPoints of Two Loxodromes Suppose the considered loxodromes have equator in�
tersection points PE���E�� �

�� and PE���E� � �
�� and the course angles �� und �� ��� �� ���� Substituting

the intersection point S��S� �S� in both loxodrome equations we get the equation system�

�S � �E� � tan�� � ln tan
�

��� �
�S
�

�
� ���

�
��� �� ����� ������a�

�S � �E� � tan�� � ln tan
�

��� �
�S
�

�
� ���

�
��� �� ����� ������b�

By elimination of �S and expressing �S we get an equation with in�nitely many solutions�

�S� � � arctan exp

�
�E� � �E� � 
 � ����

tan�� � tan��

� �

���


� ��� �
 � Z�� �������

The corresponding geographical longitudes �S� can be found by substituting �S� in ������a��

�S� � �E� � tan�� ln tan
�

��� �
�S�
�

�
� ���

�
��� �� ����� �
 � Z�� ������

Remark� In certain cases an angle reduction is needed according to ��������
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����� Vector Algebra

������� De�nition of Vectors

�� Scalars and Vectors
Quantities whose values are real numbers are called scalars� Examples are mass� temperature� energy�
and work �for scalar invariant see ������� p� ��� ������� p� �� and �������� p� �����
Quantities which can be completely described by a magnitude and by a direction in space are called
vectors� Examples are power� velocity� acceleration� angular velocity� angular acceleration� and electri�
cal and magnetic force� We represent vectors by directed line segments in space�
In this book we denote the vectors of three�dimensional Euclidean space by �a� and in matrix theory by
a �see also ����� p� �����

�� Polar and Axial Vectors
Polar vectors represent quantities with magnitude and direction in space� such as speed and acceler�
ation� axial vectors represent quantities with magnitude� direction in space� and direction of rotation�
such as angular velocity and angular acceleration� In notation we distinguish them by a polar or by an
axial arrow �Fig ������ In mathematical discussion we treat them in the same way�

�� Magnitude or Absolute Value and Direction in Space
For the quantitative description of vectors �a or a� as line segments between the initial and endpoint A
and B resp�� we have the magnitude� i�e�� the absolute value j�aj� the length of the line segment� and the
direction in space� which is given by a set of angles�

�� Equality of Vectors

Two vectors �a and �b are equal if their magnitudes are the same� and they have the same direction� i�e��
if they are parallel and oriented identically�
Opposite and equal vectors are of the same magnitude� but oppositely directed�

��
AB � �a�

��
BA � ��a but j ��AB j � j��BAj� �������

Axial vectors have opposite and equal directions of rotation in this case�

a) b)

a b

B B

A A

Figure ���
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�� Free Vectors� Bound or Fixed Vectors� Sliding Vectors
A free vector is considered to be the same� i�e� its properties do not change� if it is translated parallel
to itself� so its initial point can be an arbitrary point of space� If the properties of a vector belong to a
certain initial point� we call it a bound or �xed vector� A sliding vector can be translated only along the
line it is already in� In mathematics we deal with free vectors�

� Special Vectors
a� Unit Vector �a� � �e is a vector with length or absolute value equal to � With it we can express
the vector �a as a product of the magnitude and of a unit vector having the same direction as �a�

�a � �e j�aj� �������

We often use the unit vectors�i� �j� �k or �ei� �ej� �ek �Fig ����� to denote the three coordinate axes in
the direction of increasing coordinate values�
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In Fig ���� the directions given by the three unit vectors form an orthogonal triple� These unit
vectors de�ne an orthogonal coordinate system because for their scalar products

�ei�ej � �ei �ek � �ej �ek � � �������

is valid� Because also

�ei�ei � �ej�ej � �ek �ek � � �������

holds� we call it an orthonormal coordinate system� �For more about scalar product see ���������
b� Null Vector or zero vector is the vector whose magnitude is equal to �� i�e�� its initial and endpoint
coincide� and it has no direction�

c� Radius Vector�r or position vector of a point P is the vector
��
�P with the initial point at the origin

and endpoint at P �Fig ������ In this case we call the origin also a pole or polar point� The point P
is de�ned uniquely by its radius vector�
d� Collinear Vectors are parallel to the same line�
e� Coplanar Vectors are parallel to the same plane� They satisfy the equality ��������

������� Calculation Rules for Vectors

�� Sum of Vectors

a� The Sum of Two Vectors
��
AB � �a and

��
AD � �b can be represented also as the diagonal of the

parallelogram ABCD� as the vector
��
AC � �c in Fig ����b� The most important properties of the

sum of two vectors are the commutative law and the triangle inequality�

�a� �b � �b� �a� j�a� �b j � j�a j� j �b j� ������a�

b� The Sum of Several Vectors �a� �b��c� � � � ��e is the vector �f �
��
AF � which closes the broken line

composed of the vectors from �a to �e as in Fig ����a�
Important properties of the sum of several vectors are the commutative law and the associative law of
addition� For three vectors we have�

�a� �b � �c � �c� �b� �a� ��a � �b� � �c � �a � ��b� �c�� ������b�

c� The Di	erence of Two Vectors �a� �b can be considered as the sum of the vectors �a und ��b� i�e��

�a� �b � �a� ���b� � �d ������c�

which is the other diagonal of the parallelogram �Fig ����b�� The most important properties of the
di�erence of two vectors are�

�a� �a � �� �null vector� � j�a� �b j 	 j j�a j � j �b j j� ������d�

w

v
u

a

�w

v�u

v

u A

a

B

v

�ub� c� d�a�

Figure ���

�� Multiplication of a Vector by a Scalar� Linear Combination
The products ��a and �a� are equal to each other and they are parallel �collinear� to �a� The length
�absolute value� of the product vector is equal to j�jj�aj� For � � � the product vector has the same
direction as �a� for � � � it has the opposite one� The most important properties of the product of
vectors by scalars are�

��a � �a�� � � �a � � ��a� �� � ���a � ��a � � �a� � ��a � �b� � ��a � ��b� ������a�
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The linear combination of the vectors �a� �b��c� � � � � �d with the scalars �� �� � � � � 	 is the vector

�k � ��a � � �b � � � �� 	 �d� ������b�

�� Decomposition of Vectors
In three�dimensional space every vector �a can be decomposed uniquely into a sum of three vectors�
which are parallel to the three given non�coplanar vectors �u� �v� �w �Fig ����a�b��

�a � ��u� � �v � � �w� ������a�

The summands ��u� ��v and � �w are called the components of the decomposition� the scalar factors ��
� and � are the coe�cients� When all the vectors are parallel to a plane we can write

�a � ��u� � �v ������b�

with two non�collinear vectors �u and �v being parallel to the same plane �Fig ����c�d��

������� Coordinates of a Vector

k

i
j

a jy

a ix

0

x y

a kz
a

z

Figure ���

� Cartesian Coordinates According to ������a� every vector
��
AB �

�a can be decomposed uniquely into a sum of vectors parallel to the basis

vectors of the coordinate system�i��j� �k or �ei��ej��ek�

�a � ax�i� ay�j � az�k � ax�ei � ay�ej � az�ek� ������a�

where the scalars ax� ay and az are the Cartesian coordinates of the vector
�a in the system with the unit vectors �ei� �ej and �ek� We also write

�a � fax� ay� azg or �a�ax� ay� az�� ������b�

The three directions de�ned by the unit vectors form an orthogonal direc�
tion triple� The components of a vector are the projections of this vector
on the coordinate axes �Fig ������

The coordinates of a linear combination of several vectors are the same linear combination of the co�
ordinates of these vectors� so the vector equation ������b� corresponds to the following coordinate
equations�

kx � � ax � � bx � � � �� 	 dx�

ky � � ay � � by � � � �� 	 dy� �������

kz � � az � � bz � � � �� 	 dz�

For the coordinates of the sum and of the di�erence of two vectors

�c � �a � �b �����a�

the equalities

cx � ax � bx� cy � ay � by� cz � az � az �����b�

are valid� The radius vector �r of the point P �x� y� z� has the Cartesian coordinates of this point�

rx � x� ry � y� rz � z� �r � x�i� y�j� z �k� �������

� A�ne Coordinates are a generalization of Cartesian coordinates with respect to a system of
linearly independent but not necessarily orthogonal vectors� i�e�� to three non�coplanar basis vectors
�e���e���e�� The coe�cients are a�� a�� a�� where the upper indices are not exponents� Similarly to
������a�b� we have for �a

�a � a��e� � a��e� � a� �e� ������a� or �a �
n
a�� a�� a�

o
or �a

�
a�� a�� a�

	
� ������b�

This notation is especially suitable as the scalars a�� a�� a� are the contravariant coordinates of a vector

�see ������� p� ���� For �e� � �i� �e� � �j� �e� � �k the formulas ������a�b� become ������a�c�� For the
linear combination of vectors ������b� just as for the sum and di�erence of two vectors �����a�b� in
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analogy to ������� the same coordinate equations are valid�

k� � � a� � � b� � � � �� 	 d��

k� � � a� � � b� � � � �� 	 d�� �������

k� � � a� � � b� � � � �� 	 d��

c� � a� � b� � c� � a� � b�� c� � a� � b�� �������

������� Directional Coe�cient
The directional coe�cient of a vector �a along a vector �b is the scalar product

ab � �a �b� � j�aj cos�� �������

where �b� �
b

j�bj is the unit vector in the direction of �b and � is the angle between �a and �b�

The directional coe�cient represents the projection of �a on �b�

In the Cartesian coordinate system the directional coe�cients of the vector�a along the x� y� z axes are
the coordinates ax� ay� az� This statement is usually not true in a non�orthonormal coordinate system�

������� Scalar Product andVector Product

�� Scalar product
The scalar product or dot product of two vectors �a and
�b is de�ned by the equation

�a � �b � �a �b � ��a �b� � j�a j j�b j cos�� �������

where � is the angle between �a and �b considering them
with a common initial point �Fig ������ The value
of a scalar product is a scalar�

b

a

�

Figure ���

c b

a
�

Figure ���

�� Vector Product
or cross product of the two vectors �a and �b is a vector �c such that it is perpendicular to the vectors �a

and �b� and in the order �a� �b� and �c the vectors form a right�hand system �Fig ���
�� If the vectors

have the same initial point� and we look at the plane of �a and �b from the endpoint of �c� then the

shortest rotation of �a in the direction of �b is counterclockwise� The vectors �a� �b� and �c have the same
arrangement as the thumb� the fore�nger� and the middle �nger of the right hand� Therefore this is
called the right�hand rule� The vector product

�a� �b �  �a �b ! � �c ������a�

has magnitude

j�c j � j�a j j�b j sin�� ������b�

where � is the angle between �a and �b� Numerically the length of �c is equal to the area of the parallelo�

gram de�ned by the vectors �a and �b�

�� Properties of the Products of Vectors
a� The Scalar Product is commutative�

�a �b � �b�a� �������

b� The Vector Product is anticommutative �changes its sign if we interchange the factors��

�a� �b � ���b� �a�� �������
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c� Multiplication by a Scalar Scalars can be factored out�

���a �b � � ���a� �b� �����a� ���a� �b � � ���a�� �b� �����b�

d� Associativity The scalar and vector products are not associative�

�a ��b�c � �� ��a �b ��c� ������a� �a� ��b� �c� �� ��a� �b �� �c� ������b�

e� Distributivity The scalar and vector products are distributive over addition�

�a ��b� �c � � �a �b � �a�c� ������a�

�a� ��b� �c � � �a� �b � �a� �c and ��b� �c �� �a � �b� �a � �c� �a� ������b�

f�Orthogonality ofTwoVectors Two vectors are perpendicular to each other ��a� �b� if the equality

�a �b � � holds� and neither �a nor �b are null vectors� �������

g� Collinearity of Two Vectors Two vectors are collinear ��a k �b� if the equality

�a� �b � �� holds� and neither �a nor �b are null vectors� �������

h� Multiplication of the same vectors�

�a�a � �a� � a�� �a� �a � ��� �������

i� Linear Combinations of Vectors can be multiplied in the same way as scalar polynomials �be�
cause of the distributive property�� only we have to be careful with the vector product� If we interchange
the factors� we have to change the sign�

A� � ��a ���b� ��c� ��a� ��b� ��c� � ��a� � ��b�a� ��c�a� ��a�b� ��b � � ��c�b� ��a�c� ���b�c� ��c �

� ��a� � ��b � � ��c � � �a�b� ��a�c� ��b�c�

B� � ��a ���b� ��c�� ��a� ��b� ��c� � ��a� �a � ��b� �a� ��c� �a� ��a� �b� ��b� �b

� ��c ��b� ��a� �c� ���b� �c� ��c� �c � �� ��a� �b � ��a� �c� ��a� �b � �� ��b� �c

� ��a ��c� ���b� �c� � � ��a� �b� ��a� �c� ���b� �c � �b� �a � ��c� �a � ���c� �b�

j� Scalar Invariant is a scalar quantity if it does not change its value under a translation or a rotation
of the coordinate system� The scalar product of two vectors is a scalar invariant�

A� The coordinates of a vector �a � fa�� a�� a�g are not scalar invariants� because in di�erent coor�
dinate systems they can have di�erent values�

B� The length of a vector �a is a scalar invariant� because it has the same value in di�erent coordinate
systems�

C� Since the scalar product of two vectors is a scalar invariant� the scalar product of a vector by
itself is also a scalar invariant� i�e�� �a�a � j�aj� cos� � j�aj�� because � � ��

������� Combination of Vector Products

�� Double Vector Product
The double vector product �a� ��b� �c� results in a vector coplanar to �b and �c�

�a� ��b� �c� � �b ��a�c�� �c ��a �b �� �������

�� Mixed Product
The mixed product ��a � �b��c� which is also called the triple product� results in a scalar whose absolute
value is numerically equal to the volume of the parallelepipedon de�ned by the three vectors� the result

is positive if �a� �b� and �c form a right�hand system� negative otherwise� Parentheses and crosses can be
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omitted�

��a� �b��c � �a �b�c � �b�c�a � �c�a�b � ��a�c �b � ��b�a�c � ��c �b�a� �������

The interchange of any two terms results in a change of sign� the cyclic permutation of all three terms
does not a�ect the result�
For coplanar vectors� i�e�� if �a is parallel to the plane de�ned by �b and �c� we have�

�a � ��b� �c� � �� �������

�� Formulas for Multiple Products

a� Lagrange Identity� ��a� �b���c� �d� � ��a�c� ��b �d�� ��b�c� ��a �d�� �������

b� �a �b�c � �e�f �g �

��������
�a�e �a�f �a�g
�b�e �b�f �b�g

�c�e �c�f �c�g

�������� � ������

�� Formulas for Products in Cartesian Coordinates
If the vectors �a� �b� �c are given by Cartesian coordinates as

�a � fax� ay� azg � �b � fbx� by� bzg � �c � fcx� cy� czg � �������

then we can calculate the products by the following formulas�

� Scalar Product� �a �b � axbx � ayby � azbz� �������

� Vector Product� �a� �b � �aybz � azby� �i� �azbx � axbz� �j� �axby � aybx� �k

�

�������
�i �j �k
ax ay az
bx by bz

������� � �������

� Mixed Product� �a �b�c �

������
ax ay az
bx by bz
cx cy cz

������ � �������

�� Formulas for Products in A�ne Coordinates
� Metric Coe�cients and Reciprocal System of Vectors If we have the a�ne coordinates of

two vectors �a and �b in the system of �e�� �e�� �e�� i�e��

�a � a��e� � a��e� � a� �e�� �b � b� �e� � b� �e� � b� �e� �������

are given� and we want to calculate the scalar product

�a �b � a�b� �e��e� � a� b� �e� �e� � a� b� �e� �e�

�
�
a� b� � a� b�

	
�e� �e� �

�
a� b� � a� b�

	
�e��e� �

�
a� b� � a� b�

	
�e��e� �������

or the vector product

�a� �b �
�
a� b� � a� b�

	
�e� � �e� �

�
a� b� � a� b�

	
�e� � �e� �

�
a� b� � a� b�

	
�e� � �e�� ������a�

with the equalities

�e� � �e� � �e� � �e� � �e� � �e� � ��� ������b�

then we have to know the products in pairs of coordinate vectors� For the scalar product these are the
six metric coe�cients �numbers�

g�� � �e��e�� g�� � �e� �e�� g�� � �e� �e��

g�� � �e��e� � �e��e�� g�� � �e� �e� � �e� �e�� g�� � �e� �e� � �e��e� �������
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and for the vector product the three vectors

�e � � � ��e� � �e�� � �e � � � ��e� � �e�� � �e � � � ��e� � �e�� � ������a�

which are the three reciprocal vectors with respect to �e�� �e�� �e�� where the coe�cient

� �


�e� �e� �e�
� ������b�

is the reciprocal value of the mixed product of the coordinate vectors� This notation serves only as a
shorter way of writing in the following� With the help of the multiplication Tables ��� and ���
for the basis vectors calculations with the coe�cients will be easy to perform�

Table ��� Scalar product
of basis vectors

�e� �e� �e�

�e� g�� g�� g��

�e� g�� g�� g��

�e� g�� g�� g��

�gki � gik�

Table ��� Vector product
of basis vectors

M
u
lt
ip
li
ca
n
d
s

Multipliers

�e� �e� �e�

�e� �
�e �

�
��e �

�

�e� � �e �

�
�

�e �

�

�e�
�e �

�
��e �

�
�

� Application toCartesian Coordinates The Cartesian coordinates are a special case of a�ne
coordinates� From Tables ��� and ��� we have for the basis vectors

�e� ��i� �e� ��j� �e� � �k �����a�

with the metric coe�cients

g�� � g�� � g�� � � g�� � g�� � g�� � �� ) �


�i�j �k
� � �����b�

and the reciprocal basis vectors

�e � ��i� �e � ��j� �e � � �k� �����c�

So the basis vectors coincide with the reciprocal basis vectors of the coordinate system� or� in other
words� in the Cartesian coordinate system the basis vector system is its own reciprocal system�

� Scalar Product of Vectors Given by Coordinates

�a�b �
�X

m��

�X
n��

gmna
m bn � g�	a

� b	� �������

Table ��� Scalar product
of reciprocal basis vectors

�i �j �k

�i  � �

�j �  �

�k � � 

Table ��� Vector product
of reciprocal basis vectors

M
u
lt
ip
li
ca
n
d
s

Multipliers

�i �j �k

�i � �k ��j
�j � �k � �i

�k �j ��i �
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For Cartesian coordinates ������� coincides with ��������
After the second equality in ������� we applied a shorter notation for the sum which is often used in
tensor calculations �see ����� �� p� ����� instead of the complete sum we write only a characteristic
term so that the sum should be calculated for repeated indices� i�e�� for the indices appearing once down
and once up� Sometimes the summation indices are denoted by Greek letters� here they have the values
from  until �� Consequently we have

g�	a
� b	 � g��a

� b� � g��a
� b� � g��a

� b� � g��a
�b� � g��a

� b� � g��a
� b�

� g��a
�b� � g��a

� b� � g��a
� b�� �������

� Vector Product of Vectors Given by Coordinates In accordance with ������a�

�a� �b � �e��e� �e�

�������
�e � �e � �e �

a� a� a�

b� b� b�

�������
� �e��e� �e�

h
�a� b� � a� b���e � � �a� b� � a� b���e � � �a� b� � a� b���e �

i
�������

is valid� For Cartesian coordinates ������� coincides with ��������

� Mixed Product of Vectors Given by Coordinates In accordance with ������a� we have

�a �b�c � �e� �e� �e�

�������
a� a� a�

b� b� b�

c� c� c�

������� � �������

For Cartesian coordinates ������� coincides with ��������

������	 Vector Equations

Table ��� contains a summary of the simplest vector equations� In this table �a� �b��c are given vectors�
�x is the unknown vector� �� �� � are given scalars� and x� y� z are the unknown scalars we are looking
for�

������� Covariant andContravariant Coordinates of a Vector

� De�nitions The a�ne coordinates a�� a�� a� of a vector �a in a system with basis vectors �e�� �e��
�e�� de�ned by the formula

�a � a��e� � a��e� � a� �e� � a��e� �������

are also called contravariant coordinates of this vector� The covariant coordinates are the coe�cients
in the decomposition with the basis vectors �e �� �e �� �e �� i�e�� with the reciprocal basis vectors of �e�� �e��
�e�� With the covariant coordinates a�� a�� a� of the vector �a we have

�a � a��e
� � a� �e

� � a� �e
� � a� �e

�� �������

In the Cartesian coordinate system the covariant and contravariant coordinates of a vector coincide�

� Representation of Coordinates with Scalar Product
The covariant coordinates of a vector �a are equal to the scalar product of this vector with the corre�
sponding basis vectors of the coordinate system�

a� � �a�e�� a� � �a�e�� a� � �a�e�� �������

The contravariant coordinates of a vector �a are equal to the scalar product of this vector with the
corresponding basis vectors�

a� � �a�e �� a� � �a�e �� a� � �a�e �� �������

In Cartesian coordinates ������� and ������� are coincident�

ax � �a�i� ay � �a�j� az � �a �k� �������
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Table ��� Vector equations

�x unknown vector� �a � �b � �c � �d given vectors� x � y � z unknown scalars� � � � � � given scalars

Equation Solution

� �x� �a � �b �x � �b� �a

� ��x � �a �x �
�a

�
� �x�a � � Indeterminate equation� if we consider all vectors �x satisfy�

ing the equation� with the same initial point� then the end�
points form a plane perpendicular to the vector �a� Equation
�� is called the vector equation of this plane�

� �x� �a � �b ��b � �a� Indeterminate equation� if we consider all vectors �x satisfy�
ing the equation� with the same initial point� then the end�
points form a line parallel to �a� Equation �� is called the
vector equation of this line�

�

�
�x�a � �

�x� �a � �b ��b � �a�
�x �

��a � �a� �b

a�
�a � j�aj�

�

�����
�x�a � �

�x �b � �
�x�c � �

�x �
���b� �c� � ���c� �a� � ���a� �b�

�a�b�c
� �'�a� �

'�b� �'�c�

where '�a�
'�b� '�c are the reciprocal vectors of �a� �b��c �see �������

�� p� ����

� �d � x�a � y �b� z�c x �
�d �b�c

�a�b�c
� y �

�a �d�c

�a �b�c
� z �

�a �b �d

�a �b�c
� �d � x��b� �c�

�y ��c� �a� � z ��a� �b�
x �

�d�a

�a �b�c
� y �

�d �b

�a �b�c
� z �

�d�c

�a �b�c

� Representation of the Scalar Product in Coordinates
The determination of the scalar product of two vectors by their contravariant coordinates yields the
formula �������� The corresponding formula for covariant coordinates is�

�a �b � g�	 a� b	� ������

where gmn � �em�en are the metric coe�cients in the system with the reciprocal vectors� Their relation
with the coe�cients gmn is

gmn �
���m�nAmn������
g�� g�� g��
g�� g�� g��
g�� g�� g��

������
� �������

where Amn is the subdeterminant of the determinant in the denominator� we get it by deleting the row
and column of the element gmn�

If the vector �a is given by covariant coordinates� and the vector �b by contravariant coordinates� then
their scalar product is

�a �b � a� b� � a� b� � a� b� � a� b� �������

and analogously we have

�a �b � a� b�� �������
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������ Geometric Applications of Vector Algebra
InTable ��� we demonstrate some geometric applications of vector algebra� Other applications from
analytic geometry� such as vector equations of the plane and of the line� are demonstrated in �������
p� �� and �������� p� ���� and on the subsequent pages�

Table ��� Geometric application of vector algebra

Determination
Vector Formula with coordinates

formula �in Cartesian coordinates�

Length of the vector �a a �
p
�a � a �

q
a�x � a�y � a�z

Area of the parallelo�
gram determined by

the vectors �a and �b S �
����a� �b

��� S �

vuut���� ay az
by bz

����� �
���� az ax
bz bx

����� �
���� ax ay
bx by

�����
Volume of the
parallelepiped
determined by the

vectors �a� �b� �c V �
����a�b�c

��� V �

������
ax ay az
bx by bz
cx cy cz

������
Angle between the

vectors �a and �b cos� �
�a�bq
�a��b�

cos� �
axbx � ayby � azbzq

a�x � a�y � a�z
q
b �x � b �y � b �z

����� AnalyticalGeometry of thePlane
������� Basic Concepts� Coordinate Systems in the Plane
The position of every point P of a plane can be given by an arbitrary coordinate system� The numbers
determining the position of the point are called coordinates� Mostly we use Cartesian coordinates and
polar coordinates�

�� Cartesian or Descartes Coordinates
The Cartesian coordinates of a point P are the signed distances of this point� given in a certain measure�
from two coordinate axes perpendicular to each other �Fig ������ The intersection point � of the
coordinate axes is called the origin� The horizontal coordinate axis� usually the x�axis� is usually called
the axis of abscissae� the vertical coordinate axis� usually the y�axis� is the axis of ordinates�

y

0 x

P(a,b)
b

a

Figure ����
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Figure ���
The positive direction is given on these axes� on the x�axis usually to the right� on the y�axis upwards�
The coordinates of a point P are positive or negative according to which half�axis the projections of the
point fall �Fig ������ The coordinates x and y are called the abscissa and the ordinate of the point
P � respectively� We de�ne the point with abscissa a and ordinate b with the notation P �a� b�� The x� y
plane is divided into four quadrants I� II� III� and IV by the coordinate axes �Fig �����a��
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�� Polar Coordinates
The polar coordinates of a point P �Fig ����� are the radius �� i�e�� the distance of the point from a
given point� the pole �� and the polar angle �� i�e�� the angle between the line �P and a given oriented
half�line passing through the pole� the polar axis� The pole is also called the origin� The polar angle is
positive if it is measured counterclockwise from the polar axis� otherwise it is negative�

0
�

�

P( , )� �

Figure ����

v=b1

v=b2

v=b3

u=a1

u=a2

u=a3

P

Figure ����

�� Curvilinear Coordinate System
This system consists of two one�parameter families of curves in the plane� the family of coordinate curves
�Fig ������ Exactly one curve of both families passes through every point of the plane� They intersect
each other at this point� The parameters corresponding to this point are its curvilinear coordinates� In
Fig ���� the point P has curvilinear coordinates u � a� and v � b�� In the Cartesian coordinate
system the coordinate curves are straight lines parallel to the coordinate axes� in the polar coordinate
system the coordinate curves are concentric circles with the center at the pole� and half�lines starting
at the pole�

y y'
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x

x'
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������� Coordinate Transformations

Under transformation of a Cartesian coordinate system into another one� the coordinates change ac�
cording to certain rules�

�� Parallel Translation of Coordinate Axes
We shift the axis of the abscissae by a� and the axis of the ordinates by b �Fig ������ Suppose a
point P has coordinates x� y before the translation� and it has the coordinates x�� y� after it� The old
coordinates of the new origin �� are a� b� The relations between the old and the new coordinates are the
following�

x � x� � a� y � y� � b� ������a� x� � x� a� y� � y � b� ������b�

�� Rotation of Coordinate Axes
Rotation by an angle � �Fig ����� yields the following changes in the coordinates�

x � x� cos�� y� sin�� y � x� sin� � y� cos�� ������a�

x� � x cos� � y sin�� y� � �x sin� � y cos �� ������b�
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The coe�cient matrix belonging to ������a�

D �
�

cos� � sin�
sin� cos�

�
with

�
x

y

�
� D

�
x�

y�

�
and

�
x�

y�

�
� D��

�
x

y

�
� ������c�

is called the rotation matrix�
In general� transformation of a coordinate system into another can be performed in two steps� a trans�
lation and a rotation of the coordinate axes�
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�� Transforming Cartesian Coordinates into Polar Coordinates and Conversely

We suppose in the following that the origin coincides with the pole� and the axis of abscissae coincides
with the polar axis �Fig ������

x � ���� cos� y � ���� sin� ��� � � � �� � 	 ��� ������a�

� �
q
x� � y�� ������b� � �

�������������������������

arctan
y

x
� � forx � ��

arctan
y

x
forx � ��

�

�
for x � � and y � ��

��

�
for x � � and y � ��

inde�ned for x � y � ��

������c�

������� Special Notation in the Plane

�� Distance Between Two Points

If the two points given in Cartesian coordinates as P� �x�� y�� and P� �x�� y�� �Fig ������ then their
distance is

d �
q

�x� � x��
� � �y� � y��

�� �������

If they are given in polar coordinates as P� ���� ��� and P� ���� ��� �Fig ������ their distance is

d �
q
��� � ��� � ����� cos ��� � ���� �������

�� Coordinates of Center of Mass

The coordinates �x� y� of the center of mass of a system of material points Mi �xi� yi� with masses
mi �i � � �� � � � � n� are calculated by the following formula�

x �

P
mixiP
mi

� y �

P
miyiP
mi

� �������
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�� Division of a Line Segment

� Division in a Given Ratio The coordinates of the point P with division ratio
P�P

PP �

�
m

n
� �

�Fig ���
a� of the line segment P�P� are calculated by the formulas

x �
nx� � mx�

n � m
�

x� � �x�
 � �

� �����a� y �
ny� � my�

n � m
�

y� � �y�
 � �

� �����b�

For the midpoint M of the segment P�P�� because of � � � we have

x �
x� � x�

�
� �����c� y �

y� � y�
�

� �����d�

The sign of the segments P�P and PP � can be de�ned� Their signs are positive or negative depending
on whether their directions are coincident with P�P� or not� Then formulas �����a�b�c�d� result in a

point outside of the segment P�P� in the case � � �� We call this an external division� If P is inside the
segment P�P�� we call it an internal division� We de�ne

a� � � � if P � P�� b� � � � if P � P� and c� � � � if P is an in�nite or improper point of

the line g� i�e�� if P is in�nitely far from P�P� on g� The shape of � is shown in Fig ���
b�

For a point P � for which P� is the midpoint of the segment P�P � � �
P�P

PP �

� �� holds�

� HarmonicDivision If the internal and external division of a line segment have the same absolute
value j�j� we call it harmonic division� Denote by Pi and Pa the points of the internal and external
division respectively� and by �i and �a the internal and external devisions� Then we have

P�Pi
PiP�

� �i �
P�Pa
PaP�

� ��a ������a� or �i � �a � �� ������b�

�

1

−1

PP2

M

P1

1 2 3

−2

0

y

x0

P (x ,y )1 1 1

P(x,y)

P (x ,y )2 2 2

m

n

g

a) b)

x g=>

Figure ����

If M denotes the midpoint of the segment P�P� at a distance b from P� �Fig ������ and the distances
of Pi and Pa from M are denoted by xi and xa� then we have

b � xi
b� xi

�
xa � b

xi � b
or

xi
b

�
b

xa
� i�e�� xixa � b�� �������

The name harmonic division is in connection with the harmonic mean �see ������� p� ���� InFig ����
the harmonic division is represented for � � � � � analogously to Fig ���� The harmonic mean r of
the segments P�Pi � p and P�Pa � q according to ������a� equals in accordance with ����b�� p� ��� to

r �
�pq

p � q
see Fig ����� �������
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� Golden Section of a segment a is its division into two parts x and a � x such that the part x
and the whole segment a have the same ratio as the parts a� x and x�

x

a
�

a� x

x
� ������a�

In this case x is the geometric mean of a and a� x� and we have �see also golden section p� ���

x �
q

a�a� x�� ������b� x �
a�
p

�� �

�

 ���� � a� ������c�

x

a

a
2

C
A B

Figure ����

The part x of the segment can be geometrically constructed as
shown in Fig ����� The segment x is also the length of the side
of a regular decagon whose circumcircle has radius a�
The problem� to separate a square from a rectangle with the ratio
of sides given as in ������a� so that for the remaining rectangle
������c� should be valid� also produces the equation of the golden
section�

y

0 x

P1(x1 ,y1) P2(x2 ,y2)

P3(x3 ,y3)

Figure ����

�� Areas
� Area of a Triangle If the vertices are given by P� �x�� y���
P� �x�� y��� and P� �x�� y�� �Fig ������ then we can calculate the
area by the formula

S �


�

������
x� y� 
x� y� 
x� y� 

������ �


�
 x� �y� � y�� � x� �y� � y�� � x� �y� � y��!

�


�
 �x� � x�� �y� � y�� � �x� � x�� �y� � y��

� �x� � x�� �y� � y��! � �������

Three points are on the same line if������
x� y� 
x� y� 
x� y� 

������ � �� �������

� Area of a Polygon If the vertices are given by P� �x�� y��� P� �x�� y��� � � �� Pn �xn� yn�� then the
area is

S �


�
 �x� � x�� �y� � y�� � �x� � x�� �y� � y�� � � � �� �xn � x�� �yn � y��! � �������

The formulas ������� and ������� result in a positive area if the vertices are enumerated counterclock�
wise� otherwise the area is negative�
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�� Equation of a Curve
Every equation F �x� y� � � for the coordinates x and y corresponds to a curve� which has the property
that every point P satis�es the equation� and conversely� every point whose coordinates satisfy the
equation is on the curve� The set of these points is also called the geometric locus or simply locus� If
there is no real point in the plane satisfying the equation F �x� y� � �� then there is no real curve� and
we talk about an imaginary curve�

A� x� � y� �  � ��

B� y � ln
�
� x� � cosh x

	
�

The curve corresponding to the equality F �x� y� � � is called an algebraic curve if F �x� y� is a poly�
nomial� and the degree of the polynomial is the order or degree of the curve �see ������ p� ���� If the
equation of the curve cannot be transformed into the form F �x� y� � � with a polynomial expression
F �x� y�� then the curve is called a transcendental curve�

The equation of a curve can be de�ned in the same way in any coordinate system� But from now on�
we talk about the Cartesian coordinate system only� except when stated otherwise�

������� Line

�� Equation of the Line
Every equation that is linear in the coordinates is the equation of a line� and conversely� the equation
of every line is a linear equation of the coordinates�

� General Equation of Line

Ax � By � C � � �A�B�C const�� �������

For A � � �Fig ����� the line is parallel to the x�axis� for B � � it is parallel to the y�axis� for C � �
it passes through the origin�

� Equation of the Line with Slope �or Angular Coe�cient� Every line that is not parallel to
the y�axis can be represented by an equation written in the form

y � kx � b �k� b const�� �������

The quantity k is called the angular coe�cient or slope of the line� it is equal to the tangent of the angle
between the line and the positive direction of the x�axis �Fig ������ The line cuts out the segment b
from the y�axis� Both the tangent and the value of b can be negative� depending on the position of the
line�

� Equation of a LinePassingThrough aGivenPoint The equation of a line which goes through
a given point P� �x�� y�� in a given direction �Fig ����� is

y � y� � k �x� x�� � with k � tan 	� ������
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y
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� Equation of a Line Passing Through Two Given Points If two points of the line P� �x�� y���
P� �x�� y�� are given �Fig ������ then the equation of the line is

y � y�
y� � y�

�
x� x�
x� � x�

� �������
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� Intercept Equation of a Line If a line cuts out the segments a and b from the coordinate axes�
considering them with sign� the equation of the line is �Fig ���
�
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b
� � �������
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� Normal Form of the Equation of the Line �HessianNormal Form� With p as the distance
of the line from the origin� and with � as the angle between the x�axis and the normal of the line passing
through the origin �Fig ������ with p � �� and � � � � ��� the Hessian normal form is

x cos� � y sin�� p � �� �������

We can get theHessian normal form from the general equation if we multiply ������� by the normalizing
factor

� � � p
A� � B�

� �������

The sign of � must be the opposite to that of C in ��������
� Equation of a Line in Polar Coordinates �Fig �����With p as the distance of the line from
the pole �normal segment from the pole to the line�� and with � as the angle between the polar axis and
the normal of the line passing through the pole� the equation of the line is

� �
p

cos ��� ��
� �������

�� Distance of a Point from a Line
We get the distance d of a point P� �x�� y�� from a line �Fig ����� by substituting the coordinates of
the point into the left�hand side of the Hessian normal form ��������

d � x� cos� � y� sin�� p� �������

If P� and the origin are on di�erent sides of the line� we get d � �� otherwise d � ��
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�� Intersection Point of Lines
� Intersection Point of Two Lines In order to get the coordinates �x�� y�� of the intersection
point of two lines we have to solve the system of equations given by the equation� If the lines are given
by the equations

A�x � B�y � C� � �� A�x � B�y � C� � � ������a�
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then the solution is

x� �

����B� C�

B� C�

��������A� B�

A� B�

���� � y� �

����C� A�

C� A�

��������A� B�

A� B�

���� � ������b�

If
����A� B�

A� B�

���� � � holds� the lines are parallel� If
A�

A�
�

B�

B�
�

C�

C�
holds� the lines are coincident�

� Pencil of Lines If a third line with equation

A�x � B�y � C� � � ������a�

passes through the intersection point of the �rst two lines �Fig ������ then the relation������
A� B� C�

A� B� C�

A� B� C�

������ � � ������b�

must be satis�ed�
The equation

�A�x � B�y � C�� � � �A�x � B�y � C�� � � ��� � � � ��� ������c�

describes all the lines passing through the intersection point P��x�� y�� of the two lines ������a�� By
������c� we de�ne a pencil of lines with center P��x�� y��� If the equations of the �rst two lines are given
in normal form� then for � � � we get the equations of the bisectrices of the angles at the intersection
point �Fig ������
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�� Angle Between Two Lines

In Fig ���� there are two intersecting lines� If their equations are given in the general form

A�x � B�y � C� � � and A�x � B�y � C� � �� �����a�

then for the angle � we have

tan� �
A�B� � A�B�

A�A� � B�B�

� �����b�

cos� �
A�A� � B�B�q

A�
� � B�

�

q
A�
� � B�

�

� �����c� sin� �
A�B� � A�B�q

A�
� � B�

�

q
A�
� � B�

�

� �����d�

With the slopes k� and k� we have

tan� �
k� � k�
 � k�k�

� �����e�
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cos� �
 � k�k�q

 � k��
q

 � k��
� �����f� sin� �

k� � k�q
 � k��

q
 � k��

� �����g�

Here we consider the angle � in the counterclockwise direction from the �rst line to the second one�

For parallel lines �Fig ����a� the equalities
A�

A�
�

B�

B�
or k� � k� are valid�

For perpendicular �orthogonal� lines �Fig ����b� we have A�A� � B�B� � � or k� � ��k� �

������� Circle
� De�nition of the Circle The locus of points at the same given distance from a given point is
called a circle� The given distance is called the radius and the given point is called the center of the
circle�
� Equation of the Circle in Cartesian Coordinates The equation of the circle in Cartesian
coordinates when its center is at the origin �Fig ����a� is

x� � y� � R�� ����a�

If the center is at the point C�x�� y�� �Fig ����b�� then the equation is

�x� x��
� � �y � y��

� � R�� ����b�

The general equation of second degree

ax� � �bxy � cy� � �dx � �ey � f � � �����a�

is the equation of a circle only if b � � and a � c� In this case the equation can always be transformed
into the form

x� � y� � �mx � �ny � q � �� �����b�

For the radius and the coordinates of the center of the circle we have the equalities

R �
q
m� � n� � q � �����a� x� � �m� y� � �n� �����b�

If q � m� � n� holds� the equation de�nes an imaginary curve� if q � m� � n� the curve has one single
point P �x�� y���
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� Parametric Representation of the Circle

x � x� � R cos t� y � y� � R sin t� ������

where t is the angle between the moving radius and the positive direction of the x�axis �Fig ������
� Equation of theCircle inPolarCoordinates in the general case corresponding toFig �����

�� � ���� cos ��� ��� � ��� � R�� �����a�

If the center is on the polar axis and the circle goes through the origin �Fig ���
� the equation has
the form

� � �R cos�� �����b�
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� Tangent of aCircle The tangent of a circle� given by ����a� at the pointP �x�� y�� �Fig �����
has the form

xx� � yy� � R�� ������

������� Ellipse

� Elements of the Ellipse In Fig ����� AB � �a is the major axis� CD � �b is the minor

axis� A� B� C� D are the vertices� F�� F� are the foci at a distance c �
p
a� � b� on both sides from

the midpoint� e � c�a �  is the numerical eccentricity� and p � b��a is the semifocal chord� i�e�� the
half�length of the chord which is parallel to the minor axis and goes through a focus�
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� Equation of the Ellipse If the coordinate axes and the axes of the ellipse are coincident� the
equation of the ellipse has the normal form� This equation and the equation in parametric form are

x�

a�
�

y�

b�
� � �����a� x � a cos t� y � b sin t� �����b�

For the equation of the ellipse in polar coordinates see ��� p� ����

� De�nition of the Ellipse� Focal Properties The ellipse is the locus of points for which the sum
of the distances from two given points� the foci� is a constant� and equal to �a� These distances� which
are also called the focal radii of the points of the ellipse� can be expressed as a function of the coordinate
x from the equalities

r� � F�P � a� ex� r� � F�P � a � ex� r� � r� � �a� ������

Also here� and in the following formulas in Cartesian coordinates� we suppose that the ellipse is given
in normal form�

� Directrices of an Ellipse are lines parallel to the minor axis at distance d � a�e from it
�Fig ������ Every point P �x� y� of the ellipse satis�es the equalities

r�
d�

�
r�
d�

� e� ������

and this property can also be taken as a de�nition of the ellipse�
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� Diameter of the Ellipse The chords passing through the midpoint of the ellipse are called
diameters of the ellipse� The midpoint of the ellipse is also the midpoint of the diameter �Fig ������
The locus of the midpoints of all chords parallel to the same diameter is also a diameter� it is called the
conjugate diameter of the �rst one� For k and k� as slopes of two conjugate diameters the equality

kk� �
�b�

a�
�������

holds� If �a� and �b� are the lengths of two conjugate diameters and � and � are the acute angles
between the diameters and the major axis� where k � � tan� and k� � tan� hold� then we have the
Apollonius theorem in the form

a�b� sin �� � �� � ab� a�� � b�� � a� � b�� ������
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� Tangent of the Ellipse at the point P �x�� y�� is given by the equation
xx�
a�

�
yy�
b�

� � �������

The normal and tangent lines at a point P of the ellipse �Fig ����� are bisectors of the interior and
exterior angles of the radii connecting the point P with the foci� The line Ax�By�C � � is a tangent
line of the ellipse if the equation

A�a� � B�b� � C� � � �������

is satis�ed�
� Radius of Curvature of the Ellipse �Fig ����� If u denotes the angle between the tangent
line and the radius vector connecting the point of contact P �x�� y�� with a focus� then the radius of
curvature is

R � a�b�
�
x��
a�

�
y��
b�

��
�

�
�r�r��

�
�

a b
�

p

sin�u
� �������

At the vertices A and B �Fig ����� and at C and D the radii are RA � RB �
b�

a
� p and RC �

RD �
a�

b
�

� Areas of the Ellipse �Fig �����

a� Ellipse�

S � � a b� ������a�

b� Sector of the Ellipse B�P�

SB�P �
ab

�
arccos

x

a
� ������b�

c� Segment of the Ellipse PBN�

SPBN � a b arccos
x

a
� x y� ������c�
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 Arc and Perimeter of the Ellipse The arclength between two points A and B of the ellipse
cannot be calculated in an elementary way as for the parabola� but only with an incomplete elliptic
integral of the second kind E�k� �� �see �������� �� p� �����
The perimeter of the ellipse �see also ������ �� ���� can be calculated by a complete elliptic integral of

the second kind E�e� � E
�
e�

�

�

�
with the numerical eccentricity e �

p
a� � b��a and with � �

�

�
�for

one quadrant of the perimeter�� and it is

L � �aE�e� � ��a

�
�

�


�

��
e� �

�
 � �
� � �

�� e�
�
�
�

 � � � �
� � � � �

�� e	
�
� � � �


� ������a�

If we substitute � �
�a� b�

�a � b�
� then we have

L � ��a � b�

�
 �

��

�
�

��

��
�

�	

���
�

���


����
� � � �


������b�

and an approximate value is

L 
 �
h
� ��a � b��

p
ab
i

� L 
 ��a � b�
��� ���

��� ���
� ������c�

For a � ��� b �  the formula ������c� results in the value ����� while the better approximation
with the complete elliptic integral of the second kind �see ������� p� ���� results in the value �����

������	 Hyperbola
� Elements of the Hyperbola In Fig ����
AB � �a is the real axis� A� B are the vertices� �
the midpoint� F� and F� are the foci at a distance
c � a from the midpoint on the real axis on both

sides� CD � �b � �
p
c� � a� is the imaginary axis�

p � b��a the semifocal chord of the hyperbola� i�e��
the half�length of the chord which is perpendicular
to the real axis and goes through a focus� e � c�a �
 is the numerical eccentricity�
� Equation of the Hyperbola The equation
of the hyperbola in normal form� i�e�� for coinci�
dent x and real axes� and the equation in parametric
form are

y
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2c
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x�

a�
� y�

b�
� � ������a� x � a cosh t� y � b sinh t ������b� or x �

a

cos t
� y � b tan t� ������c�

In polar coordinates see �������� �� p� ����

� De�nition of theHyperbola� Focal Properties The hyperbola is the locus of points for which
the di�erence of the distances from two given points� the foci� is a constant �a� The points for which
r��r� � �a belong to one branch of the hyperbola �inFig ���� on the left�� the others with r��r� �
�a belong to the other branch �in Fig ���� on the right�� These distances� also called the focal radii�
can be calculated from the formulas

r� � ��ex � a�� r� � ��ex � a�� r� � r� � ��a� �������

where the upper sign is valid for the right branch� the lower one for the left branch� Here and in the
following formulas for hyperbolas in Cartesian coordinates we suppose that the hyperbola is given in
normal form�
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� Directrices of the Hyperbola are the lines perpendicular to the real axis at a distance d � a�c
from the midpoint �Fig ������ Every point of the hyperbola P �x� y� satis�es the equalities

r�
d�

�
r�
d�

� e� �������

� Tangent of the Hyperbola at the point P �x�� y�� is given by the equation

xx�
a�
� yy�

b�
� � �������

The normal and tangent lines of the hyperbola at the point P �Fig ����� are bisectors of the interior
and exterior angles between the radii connecting the point P with the foci� The line Ax � By � C � �
is a tangent line if the equation

A�a� � B�b� � C� � � ������

is satis�ed�
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� Asymptotes of the Hyperbola are the lines �Fig ���
� approached in�nitely closely by the
branches of the hyperbola for x�� �For the de�nition of asymptotes see ������� p� ����� The slopes
of the asymptotes are k � � tan 	 � �b�a� The equations of the asymptotes are

y � �
�
b

a

�
x� �������

A tangent is intersected by the asymptotes� and they form a segment of the tangent of the hyperbola�
i�e�� the segment TT � �Fig ���
�� The midpoint of the segment of the tangent is the point of contact

P � so TP � T�P holds� The area of the triangle T�T� between the tangent and the asymptotes for any
point of contact P is the same� and is

SD � a b� �������



��� 	� Geometry

The area of the parallelogram �FPG� determined by the asymptotes and two lines parallel to the
asymptotes and passing through the point P � is for any point of contact P

SP �
�a� � b��

�
�

c�

�
� �������

� Conjugate Hyperbolas �Fig ����� have the equations

x�

a�
� y�

b�
�  and

y�

b�
� x�

a�
� � �������

where the second is represented in Fig ���� by the dotted line� They have the same asymptotes�
hence the real axis of one of them is the imaginary axis of the other one and conversely�
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� Diameters of the Hyperbola �Fig ����� are the chords between the two branches of the
hyperbola passing through the midpoint� which is their midpoint too� Two diameters with slopes k and
k� are called conjugate if one of them belongs to a hyperbola and the other one belongs to its conjugate�
and kk� � b��a� holds� The midpoints of the chords parallel to a diameter are on its conjugate diameter
�Fig ������ From two conjugate diameters the one with jkj � b�a intersects the hyperbola� If the
lengths of two conjugate diameters are �a� and �b�� and the acute angles between the diameters and
the real axis are � and � � �� then the equalities

a�� � b�� � a� � b�� ab � a�b� sin��� �� �������

are valid�

 Radius of Curvature of the Hyperbola At the point P �x�� y�� the radius of curvature of the
hyperbola is

R � a�b�
�
x��
a�

�
y��
b�

����
�

r�r�
���

ab
�

p

sin�u
� ������a�

where u is the angle between the tangent and the radius vector connecting the point of contact with a
focus� At the vertices A and B �Fig ����� the radius of curvature is

RA � RB � p �
b�

a
� ������b�

�� Areas in the Hyperbola �Fig �����

a� Segment APN�

SAPN � xy � ab ln
�
x

a
�

y

b

�
� x y � a bArcosh

x

a
� ������a�

b� Area �APG�

S�APG �
ab

�
�

ab

�
ln

�d

c
� ������b�

The line segment PG is parallel to the lower asymptote� c is the focal distance and d � �G�
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�� Arc of the Hyperbola The arclength between two points A and B of the hyperbola cannot
be calculated in an elementary way like the parabola� but we can calculate it by an incomplete elliptic
integral of the second kind E�k� �� �see p� ����� analogously to the arclength of the ellipse �see p� �����
�� Equilateral Hyperbola has axes with the same length a � b� so its equation is

x� � y� � a�� ������a�

The asymptotes of the equilateral hyperbola are perpendicular to each other� If the asymptotes coincide
with the coordinate axes �Fig ������ then the equation is

x y �
a�

�
� ������b�

y
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������� Parabola

� Elements of the Parabola In Fig ���� the x�axis coincides with the axis of the parabola�
� is the vertex of the parabola� F is the focus of the parabola which is on the x�axis at a distance p��
from the origin� where p is called the semifocal chord of the parabola� We denote the directrix by NN ��
which is the line perpendicular to the axis of the parabola and intersects the axis at a distance p�� from
the origin on the opposite side as the focus� So the semifocal chord is equal to half of the length of the
chord which is perpendicular to the axis and passes through the focus� The numerical eccentricity of
the parabola is equal to  �see �������� �� p� �����
� Equation of the Parabola If the origin is the vertex of the parabola and the x�axis is the axis of
the parabola with the vertex on the left�hand side� then the normal form of the equation of the parabola
is

y� � �p x � �������

For the equation of the parabola in polar coordinates see �������� �� p� ���� For a parabola with vertical
axis �Fig ����� the equation is

y � ax� � bx � c� �����a�

The parameter of a parabola given in this form is p �


�jaj � �����b�

If a � � holds� the parabola is open up� for a � � it is open down� The coordinates of the vertex are

x� � � b

�a
� y� �

�ac� b�

�a
� �����c�

� Properties of the Parabola �De�nition of the Parabola� The parabola is the locus of points
P �x� y� whose distance from a given point� the focus� is equal to its distance from a given line� the
directrix �Fig ������ Here and in the following formulas in Cartesian coordinates we suppose the
normal form of the equation of the parabola� Then we have the equation

PF � PK � x �
p

�
� �������
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where PF is the radius vector whose initial point is at the focus and endpoint is a point of the parabola�

� Diameter of the Parabola is a line which is parallel to the axis of the parabola �Fig ������
A diameter of the parabola halves the chords which are parallel to the tangent line belonging to the
endpoint of the diameter �Fig ������ With slope k of the chords the equation of the diameter is

y �
p

k
� �������
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� Tangent of the Parabola �Fig����� The equation of the tangent of the parabola at the point
P �x�� y�� is

yy� � p �x � x�� � �������

Tangent and normal lines are bisectors of the angles between the radius starting at the focus and the
diameter starting at the point of contact� The tangent at the vertex� i�e�� the y�axis� halves the segment
of the tangent line between the point of contact and its intersection point with the axis of the parabola�
the x�axis�

TS � SP� T� � �M � x�� TF � FP� �������

A line with equation y � kx � b is a tangent line of the parabola if

p � � b k� �������

� Radius of Curvature of the Parabola at the point P �x�� y�� with ln as the length of the normal

PN �Fig ����� is

R �
�p � �x��

���

p
p

�
p

sin�u
�

l�n
p�

������a�

and at the vertex � it is

R � p� ������b�

� Areas in the Parabola �Fig �����

a� Parabolic Segment P�N�

S�PN �
�

�
SMQNP �MQNP is a parallelogram�� ������a�

b� Area �PR �Area under the Parabola Curve��

S�PR �
�xy

�
� ������b�

� Length of Parabolic Arc from the vertex � to the point P �x� y�

l�P �
p

�

��
vuut�x

p

�
 �

�x

p

�
� ln

�s
�x

p
�

s
 �

�x

p

��� ������a�
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� �
s

x
�
x �

p

�

�
�

p

�
Arsinh

s
�x

p
� ������b�

For small values of
x

y
we have the approximation

l�P 
 y

�� �
�

�

�
x

y

��
� �

�

�
x

y

���� � ������c�

Table ��� Equation of curves of second order� Central curves �	 �� �� �

Quantities � and � Shape of the curve

% �� �
Ellipse a� for % � S � �� real�

b� for % � S � �� imaginary �

Central curves 	 � �
% � � A pair of imaginary � lines with real common point

	 �� �

% �� � Hyperbola
	 � � % � � A pair of intersecting lines

Required coordinate transformations
Normal form of the equation
after the transformation

� Translation of the origin to the
center of the curve� whose coordinates are

x� �
be� cd

	
� y� �

bd� ae

	
�

�� Rotation of the coordinate axes by

the angle � with tan �� �
�b

a� c
�

The sign of sin �� must coincide with
the sign of �b� Here the slope
of the new x��axis is

k �
c� a �

q
�c� a�� � �b�

�b
�

a�x�� � c�y�� �
%

	
� �

a� �
a � c �

q
�a� c�� � �b�

�

c� �
a � c�

q
�a� c�� � �b�

�
�a� and c� are the roots of the quadratic
equation u� � Su � 	 � ���

�%� 	 and S are numbers given in ������b��
� The equation of the curve corresponds to an imaginary curve�

������ Quadratic Curves �Curves of SecondOrder or Conic Sections�

�� General Equation of Quadratic Curves �Curves of Second Order or Degree	
The ellipse� its special case� the circle� the hyperbola� the parabola or two lines as a singular conic
section are de�ned by the general equation of a quadratic curve �curve of second order�

a x� � � b x y � c y� � � d x � � e y � f � �� ������a�

We can reduce this equation to normal form with the help of the coordinate transformations given in
Tables ��
 and ����
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Remark �� The coe�cients in ������a� are not the parameters of the special conic sections�

Remark �� If two coe�cients �a and b or b and c� are equal to zero� the required coordinate transfor�
mation is reduced to a translation of the coordinate axes�
The equation cy� � �dx � �ey � f � � can be written in the form �y � y��

� � �p�x� x���

the equation ax� � �dx � �ey � f � � can be written in the form �x� x��
� � �p �y � y���

Table ���� Equations of curves of second order� Parabolic curves �	 � ��

Quantities � and � Shape of the curve

Parabolic curves �� 	 � �
% �� � Parabola

% � �
Two lines� Parallel lines for d� � af � ��

Double line for d� � af � ��
Imaginary � lines for d� � af � ��

Required coordinate transformation
Normal form of the equation
after the transformation

� Translation of the origin to the vertex of the
parabola whose coordinates x� and y� are de�ned

by the equations ax� � by� �
ad � be

S
� � and�

d �
dc� be

S

�
x� �

�
e �

ae� bd

S

�
y� � f � � �

�� Rotation of the coordinate axes by the angle �

with tan� � �a

b
� the sign of sin� must di�er

from the sign of a�

y�� � �px�

p �
ae� bd

S
p
a� � b�

Rotation of the coordinate axes by the angle �

with tan� � �a

b
� the sign of sin� must di�er

from the sign of a�

Sy�� � �
ad � bep
a� � b�

y� � f � � can be trans�

formed into the form
�y� � y��� �y� � y��� � ��

� In the case 	 � � we suppose that none of the coe�cients a� b� c are equal to zero�
� The equation of the curve corresponds to an imaginary curve�

�� Invariants of Quadratic Curves

are the three quantities

% �

������
a b d
b c e
d e f

������ � 	 �

���� a b
b c

���� � S � a � c� ������b�

They do not change during a rotation of the coordinate system� i�e�� if after a coordinate transformation
the equation of the curve has the form

a�x�� � �b�x�y� � c�y�� � �d�x� � �e�y� � f � � �� ������c�

then the calculation of these three quantities %� 	� and S with the new constants will yield the same
values�
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�� Shape of the Quadratic Curves �Conic Sections	
If a right circular cone is intersected by a plane� the result is a conic section� If the plane does not pass
through the vertex of the cone� we get a hyperbola� a parabola� or an ellipse depending on whether the
plane is parallel to two� one� or none of the generators of the cone� If the plane goes through the vertex�
we get a singular conic section with % � �� As a conic section of a cylinder� i�e�� a singular cone whose
vertex is at in�nity� we get parallel lines� We can determine the shape of a conic section with the help
of Tables ��
 and ����
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Figure ����

�� General Properties of Curves of Second Degree
The locus of every point P �Fig ���
� with constant ratio e of the distance to
a �xed point F � the focus� and the distance from a given line� the directrix� is a
curve of second order with numerical eccentricity e� For e �  it is an ellipse� for
e �  it is a parabola� for e �  it is a hyperbola�

�� Determination of a Curve Through Five Points
There is one and only one curve of second degree passing through �ve given
points� If three of these points are on the same line� we have a singular or degen�
erate conic section�

� Polar Equation of Curves of Second Degree
All curves of second degree can be described by the polar equation

� �
p

 � e cos�
� ������

where p is the semifocal chord and e is the eccentricity� Here the pole is at the focus� while the polar
axis is directed from the focus to the closer vertex� For the hyperbola this equation de�nes only one
branch�

����� AnalyticalGeometry of Space

������� Basic Concepts� Spatial Coordinate Systems
Every pointP in space can be determined by a coordinate system� The directions of the coordinate lines
are given by the directions of the unit vectors� In Fig ����a the relations of a Cartesian coordinate
system are represented� We distinguish right�angled and oblique coordinate systems where the unit
vectors are perpendicular or oblique to each other� Another important di�erence is whether it is a
right�handed or a left�handed coordinate system�

The most common spatial coordinate systems are the Cartesian coordinate system� the spherical polar
coordinate system� and the cylindrical polar coordinate system�

�� Right� and Left�Handed Systems
Depending on the successive order of the positive coordinate directions we distinguish right systems
and left systems or right�handed and left�handed coordinate systems� A right system has for instance
three non�coplanar unit vectors with indices in alphabetical order �ei��ej��ek� They form a right�handed
system if the rotation of one of them around the origin into the next one in alphabetical order in the
shortest direction is a counterclockwise rotation� This is represented symbolically inFig ���� p ����
we substitute the notation a� b� c for the indices i� j� k� A left system consequently requires a clockwise
rotation�
Right� and left�handed systems can be transformed into each other by interchanging two unit vectors�
The interchange of two unit vectors changes its orientation� A right system becomes a left system� and
conversely� a left system becomes a right system�

A very important way to interchange vectors is the cyclic permutation� where the orientation remains
unchanged� As in Fig ��� the interchange the vectors of a right system by cyclic permutation yields
a rotation in a counterclockwise direction� i�e�� according to the scheme �i  j  k  i� j  k 
i j� k  i j  k�� In a left system the interchange of the vectors by cyclic permutation follows a
clockwise rotation� i�e�� according to the scheme �i k  j  i� k  j  i k� j  i k  j��
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A right system is not superposable on a left system�

The re�ection of a right system with respect to the origin is a left system �see ������� p� �����

A� The Cartesian coordinate system with coordinate axes x� y� z is a right system �Fig ����a��

B� The Cartesian coordinate system with coordinate axes x� z� y is a left system �Fig ����b��

C� From the right system �ei��ej��ek we get the left system �ei��ek��ej by interchanging the vectors �ej
and �ek �

D� By cyclic permutation we get from the right system�ei��ej��ek the right system �ej��ek��ei and from
this one �ek��ei��ej� a right system again�

Table ��� Coordinate signs in the octants

Octant I II III IV V VI VII VIII
x � � � � � � � �
y � � � � � � � �
z � � � � � � � �

y

x

z
III II

I

VI

V
VIII

VII

IV

0

Figure ���

�� Cartesian Coordinates
of a point P are its distances from three mutually orthog�
onal planes in a certain measuring unit� with given signs�
They represent the projections of the radius vector �r of
the point P �see ������ �� p� �� onto three mutually
perpendicular coordinate axes �Fig ������ The inter�
section point of the planes O� which is the intersection
point of the axes too� is called the origin� The coordinates
x� y� and z are called the abscissa� ordinate� and appli�
cate� The written form P �a� b� c� means that the point P
has coordinates x � a� y � b� z � c� The signs of the co�
ordinates are determined by the octant where the point
P lies �Fig ����� Table �����

In a right�handed Cartesian coordinate system �Fig
����a� for orthogonal unit vectors given in the order
�ei��ej��ek the equalities

�ei � �ej � �ek � �ej � �ek � �ei � �ek � �ei � �ej � ������a�

hold� i�e�� the right�hand law is valid �see ������� p� ���� The three formulas transform into each other
under cyclic permutations of the unit vectors�

In a left�handed Cartesian coordinate system �Fig ����b� the equations

�ei � �ej � ��ek � �ej � �ek � ��ei � �ek � �ei � ��ej ������b�

are valid� The negative sign of the vector product arises from the left�handed order of the unit vectors�
see Fig ����b� i�e�� from their clockwise arrangement�
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Notice that in both cases the equations

�ei � �ei � �ej � �ej � �ek � �ek � �� ������c�

are valid� Usually we work with right�handed coordinate systems� the formulas do not depend on this
choice� In geodesy we usually use left�handed coordinate systems �see ������� p� ����

�� Coordinate Surfaces and Coordinate Curves
Coordinate Surfaces have one constant coordinate� In a Cartesian coordinate system they are planes
parallel to the other two coordinate axes� By the three coordinate surfaces x � �� y � �� and z � �
three�dimensional space is divided into eight octants �Fig ������ Coordinate lines or coordinate
curves are curves with one changing coordinate while the others are constants� In Cartesian systems
they are lines parallel to the coordinate axes� The coordinate surfaces intersect each other in a coordi�
nate line�

�� Curvilinear Three�Dimensional Coordinate System
arises if three families of surfaces are given such that for any point of space there is exactly one surface
from every system passing through it� The position of a point will be given by the parameter values of
the surfaces passing through it� The most often used curvilinear coordinate systems are the cylindrical
polar and the spherical polar coordinate systems�

�� Cylindrical Polar Coordinates
�Fig ����� are�
� The polar coordinates � and � of the projection of the point P to the x� y plane and
� the applicate z of the point P �
The coordinate surfaces in a cylindrical polar coordinate system are�
� The cylinder surfaces with radius � � const�
� the half�planes starting from the z�axis� � � const and
� the planes being perpendicular to the z�axis� z � const�
The intersection curves of these coordinate surfaces are the coordinate curves�

The transformation formulas between the Cartesian coordinate system and the cylindrical polar coor�
dinate system are �see also Table �����

x � � cos�� y � � sin�� z � z� ������a�

� �
q
x� � y�� � � arctan

y

x
� arcsin

y

�
for x � �� ������b�

For the required distinction of cases with respect to � see ������c�� p� ��
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� Spherical Coordinates or Spherical Polar Coordinates
contain�
� The length r of the radius vector �r of the point P �
� the angle � between the z�axis and the radius vector �r and
� the angle � between the x�axis and the projection of �r on the x� y plane�

The positive directions �Fig ����� here are for�r from the origin to the point P � for � from the z�axis
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to �r� and for � from the x�axis to the projection of �r to the x� y plane� With the values � � r ��� � �
� � �� and �� � � � � every point of space can be described�

Coordinate surfaces are�
� Spheres with the origin � as center and with radius r � const�
� circular cones with � � const� with vertex at the origin� and the z�axis as the axis and
� closed half�planes starting at the z�axis with � � const�

The intersection curves of these surfaces are the coordinate curves�
The transformation formulas between Cartesian coordinates and spherical polar coordinates �see also
Table ���� are�

x � r sin� cos �� y � r sin� sin�� z � r cos�� ������a�

r �
q
x� � y� � z� � � � arctan

p
x� � y�

z
� � � arctan

y

x
� ������b�

For the required distinction of cases with respect to � see ������c�� p� ��

Table ���� Connections between Cartesian� cylindrical� and spherical polar coordinates

Cartesian coordinates Cylindrical polar coordinates Spherical polar coordinates

x � � � cos � � r sin� cos�

y � � � sin� � r sin� sin�

z � � z � r cos�p
x� � y� � � � r sin�

arctan
y

x
� � � �

� z � z � r cos�
p
x� � y� � z� �

p
�� � z� � r

arctan

p
x� � y�

z
� arctan

�

z
� �

arctan
y

x
� � � �

�� Direction in Space

A direction in space can be determined by a unit vector �t � �see ������ �� p� ��� whose coordinates
are the direction cosines� i�e�� the cosines of the angles between the vector and the positive coordinate
axes �Fig �����

l � cos �� m � cos �� n � cos �� l� � m� � n� � � ������a�

The angle � between two directions given by their direction cosines l�� m�� n� and l�� m�� n� can be
calculated by the formula

cos� � l�l� � m�m� � n�n�� ������b�

Two directions are perpendicular to each other if

l�l� � m�m� � n�n� � �� ������c�

������� Transformation of Orthogonal Coordinates

�� Parallel Translation
If the original coordinates are x� y� z� and the new coordinates are x�� y�� z�� and a� b� c are the coordinates
of the new origin in the original coordinate system �Fig ������ then we have

x � x� � a� y � y� � b� z � z� � c� x� � x� a� y� � y � b� z� � z � c� �������
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�� Rotation of the Cordinate Axes
If the direction cosines of the new axes are given as inTable ��� see also �Fig ������ then we have
for the old and new coordinates

x � l�x
� � l�y

� � l�z
��

y � m�x
� � m�y

� � m�z
��

z � n�x
� � n�y

� � n�z
�� ������a�

x� � l�x � m�y � n�z�

y� � l�x � m�y � n�z�

z� � l�x � m�y � n�z� ������b�

The coe�cient matrix of the system ������a�� which is called the rotationmatrixD� and the determinant
% of the transformation are

D �

�� l� l� l�
m� m� m�

n� n� n�

�A � ������c� detD � % �

������
l� l� l�
m� m� m�

n� n� n�

������ � ������d�

Table ���� Notation for the direction cosines under coordinate transformation

With respect to the Direction cosine
old axes of the new axes

x� y� z�

x l� l� l�
y m� m� m�

z n� n� n�

�� Properties of the Transformation Determinant
a� % � �� with a positive sign if it remains left� or right�handed� as it was� and with negative sign if
it changes its orientation�
b� The sum of the squares of the elements of a row or column is always equal to one�
c� The sum of the products of the corresponding elements of two di�erent rows or columns is equal to
zero �see ����� 
� p� �����
d� Every element can be written as the product of % � � and its adjoint �see ����� p� �����

�� Euler�s Angles
The position of the new coordinate system with respect to the old one can be uniquely determined by
three angles which were introduced by Euler �Fig ������

a� The nutation angle � is the angle between the positive directions of the z�axis and the z��axis� it has
the limits � � � � ��

b� The precession angle � is the angle between the positive direction of the x�axis and the intersection
line K of the planes x� y and x�� y�� The positive direction of K is chosen depending on whether the
z�axis� the z��axis and K form a direction triplet with the same orientation as the coordinate axes �see
������� �� p� ���� The angle � is measured from the x�axis to the direction of the y�axis� the limits
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are � � � � ��

c�The rotation angle � is the angle between the positive x��direction and the intersection line K� it has
the limits � � � � ���

If instead of functions of angles we use the letters

cos� � c�� cos � � c�� cos� � c��

sin� � s�� sin� � s�� sin� � s�� ������a�

then we get

l� � c�c� � c�s�s�� m� � s�c� � c�c�s�� n� � s�s��
l� � �c�s� � c�s�c�� m� � �s�s� � c�c�c�� n� � s�c��
l� � s�s�� m� � �s�c�� n� � c��

������b�

�� Scalar Invariant
This is a scalar which keeps its value during translation and rotation� The scalar product of two vectors
is a scalar invariant �see ������� �� p� ����

A� The components of a vector �a � fa�� a�� a�g are not scalar invariants� because they change their
values during translation and rotation�

B� The length of a vector �a � fa�� a�� a�g� i�e�� the quantity
q
a�� � a�� � a�� � is a scalar invariant�

C� The scalar product of a vector with itself is a scalar invariant�
�a�a � �a� � j�aj� cos� � j�a�j� because � � ��

������� Special Quantities in Space

�� Distance Between Two Points
The distance between the points P� �x�� y�� z�� and P� �x�� y�� z�� in Fig ���� is

d �
q

�x� � x��
� � �y� � y��

� � �z� � z��
�� ������a�

The direction cosines of the segment between the points can be calculated by the formulas

cos� �
x� � x�

d
� cos � �

y� � y�
d

� cos � �
z� � z�

d
� ������b�

�� Division of a Segment
The coordinates of the point P �x� y� z� dividing the segment between the points P� �x�� y�� z�� and
P� �x�� y�� z�� in a given ratio

P�P

PP �

�
m

n
� � �������
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are given by the formulas x �
nx� � mx�

n � m
�

x� � �x�
 � �

� �����a�

y �
ny� � my�

n � m
�

y� � �y�
 � �

� �����b� z �
nz� � mz�

n � m
�

z� � �z�
 � �

� �����c�

The midpoint of the segment is given by

xm �
x� � x�

�
� ym �

y� � y�
�

� zm �
z� � z�

�
� �������

The coordinates of the center of mass �often called incorrectly the center of gravity� of a system of n
material points with mass mi are calculated by the following formulas� where the sum index i changes
from  to n�

"x �

P
mixiP
mi

� "y �

P
miyiP
mi

� "z �

P
miziP
mi

� �������
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�� System of Four Points
Four points P �x� y� z� � P� �x�� y�� z�� � P� �x�� y�� z�� and
P� �x�� y�� z�� can form a tetrahedron �Fig ����� or they are in
a plane� The volume of a tetrahedron can be calculated by the for�
mula

V �


�

��������
x y z 
x� y� z� 
x� y� z� 
x� y� z� 

�������� �


�

������
x� x� y � y� z � z�
x� x� y � y� z � z�
x� x� y � y� z � z�

������ � �������

where it has a positive value V � � if the orientation of the three vectors
��
PP � �

��
PP � �

��
PP � is the same

as the coordinate axes �see ������� �� p� ���� Otherwise it is negative�
The four points are in the same plane if and only if��������

x y z 
x� y� z� 
x� y� z� 
x� y� z� 

�������� � � holds� �������

�� Equation of a Surface
Every equation

F �x� y� z� � � �������

corresponds to a surface with the property that the coordinates of every point P satisfy this equation�
Conversely� every point whose coordinates satisfy the equation is a point of this surface� The equation
������� is called the equation of this surface� If there is no real point in the space satisfying equation
�������� then there is no real surface�
� The Equation of a Cylindrical Surface �see ������ p� ��� whose generating lines are parallel
to the x�axis contains no x coordinate� F �y� z� � �� Similarly� the equations of the cylindrical surfaces
with generating lines parallel to the y or to the z axes contain no y or z coordinates� F �x� z� � � or
F �x� y� � � resp� The equation F �x� y� � � describes the intersection curve between the cylinder and
the x� y plane� If the direction cosines� or the proportional quantities l� m� n of the generating line of a
cylinder are given� then the equation has the form

F �nx� lz� ny �mz� � �� �������

� The Equation of a Rotationally Symmetric Surface� i�e�� a surface which is created by the
rotation of a curve z � f�x� given in the x� z plane around the z�axis �Fig ���
�� will have the form
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z � f
�q

x� � y�
�
� �������

We can get the equations of rotationally symmetric surfaces also in the
case of other variables similarly� The equation of a conical surface� whose
vertex is at the origin �see ������ p� ���� has the form F �x� y� z� � � �
where F is a homogeneous function of the coordinates �see �������� ��
p� ����

�� Equation of a Space Curve
A space curve can be de�ned by three parametric equations

z

y
x

Figure ����

x � ���t� � y � ���t� � z � ���t� � �������

To every value of the parameter t� which does not necessarily have a geometrical meaning� there corre�
sponds a point of the curve�
Another method to de�ne a space curve is the determination by two equations

F��x� y� z� � � � F��x� y� z� � � � �������

Both de�ne a surface� The space curve contains all points whose coordinates satisfy both equations�
i�e�� the space curve is the intersection curve of the given surfaces� In general� every equation in the
form

F� � �F� � � ������

for arbitrary � de�nes a surface which goes through the considered curve� so it can substitute any of
the equations ��������

������� Line and Plane in Space

�� Equations of the Plane
Every equation linear in the coordinates de�nes a plane� and conversely every plane has an equation of
�rst degree�
� General Equation of the Plane

a� with coordinates� Ax � By � Cz � D � �� ������a�

b� in vector form� �r�N� D � �� � ������b�

where the vector �N�A�B�C� is perpendicular to the plane� In �Fig ����� the intercepts a� b� and c

are shown� The vector �N is called the normal vector of the plane� Its direction cosines are

cos� �
Ap

A� � B� � C�
� cos � �

Bp
A� � B� � C�

� cos � �
Cp

A� � B� � C�
� ������c�

If D � � holds� the plane goes through the origin� for A � �� or B � �� or C � � the plane is parallel
to the x�axis� the y�axis� or the z�axis� respectively� If A � B � �� or A � C � �� or B � C � �� then
the plane is parallel to the x� y plane� the x� z plane or the y� z plane� respectively�
� Hessian Normal Form of the Equation of the Plane

a� with coordinates� x cos� � y cos � � z cos � � p � �� ������a�

b� in vector form� �r�N � � p � �� ������b�

where �N � is the unit normal vector of the plane and p is the distance of the plane from the origin� The
Hessian normal form arises from the general equation ������a� by multiplying by the normalizing factor

�� �


N
�

p
A� � B� � C�

with N � j�Nj� ������c�

�For the scalar product of two vectors see �������� p� ��� and in a�ne coordinates see �������� ��� p� ���� for the
vector equation of the plane see ������	� p� ����
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Here the sign of � must be chosen opposite to that of D�
� Intercept Form of the Equation of the Plane With the segments a� b� c� considering them
with signs depending on where the plane intersects the coordinate axes �Fig ������ we have

x

a
�

y

b
�

z

c
� � �������

� Equation of the Plane Through Three Points If the points are P� �x�� y�� z�� � P� �x�� y�� z�� �
P� �x�� y�� z�� � then we have

a� with coordinates�

������
x� x� y � y� z � z�
x� � x� y� � y� z� � z�
x� � x� y� � y� z� � z�

������ � � � ������a�

b� in vector form� ��r��r�� ��r��r�� ��r��r�� � �y� ������b�

� Equation of a Plane Through Two Points and Parallel to a Line
The equation of the plane passing through the two points P� �x�� y�� z��� P� �x�� y�� z�� and being parallel

to the line with direction vector �R�l� m� n� is the following

a� with coordinates�

������
x� x� y � y� z � z�
x� � x� y� � y� z� � z�

l m n

������ � �� ������a�

b� in vector form� ��r��r�� ��r��r�� �R � �y� ������b�

� Equation of a Plane Through a Point and Parallel to Two Lines

If the direction vectors of the lines are �R� �l�� m�� n�� and �R� �l�� m�� n��� then we have�

a� with coordinates�

������
x� x� y � y� z � z�

l� m� n�
l� m� n�

������ � �� ������a�

b� in vector form� ��r��r�� �R�
�R� � �y� ������b�

� Equation of a Plane Through a Point and Perpendicular to a Line

If the point is P� �x�� y�� z��� and the direction vector of the line is �N�A�B�C�� then we have�

a� with coordinates� A �x� x�� � B �y � y�� � C �z � z�� � �� ������a�

b� in vector form� ��r��r�� �N � �� ������b�

� Distance of a Point from a Plane If we substitute the coordinates of the point P �a� b� c� in the
Hessian normal form of the equation of the plane ������a�

x cos� � y cos � � z cos � � p � �� ������a�

we get the distance with sign

	 � a cos� � b cos � � c cos 	 � p� ������b�

where 	 � �� if P and the origin are on di�erent sides of the plane� in the opposite case 	 � � holds�


 Equation of a Plane Through the Intersection Line of TwoPlanes The equation of a plane
which goes through the intersection line of the planes given by the equations A�x�B�y�C�z�D� � �
and A�x � B�y � C�z � D� � � is

a� with coordinates� A�x � B�y � C�z � D� � � �A�x � B�y � C�z � D�� � �� ������a�

yFor the mixed product of three vectors see �������� ��� p� ��

�For the scalar product of two vectors see �������� p� ��� and in a�ne coordinates see �������� p� ���� for the equation

of the plane in vector form see �������� p� ����
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b� in vector form� �r �N� � D� � ���r �N� � D�� � �� ������b�

Here � is a real parameter� so ������a� and ������b� de�ne a pencil of planes� Fig ���� shows a pencil
of planes with three planes� If � takes all the values between �� and �� in ������a� and ������b�� we
get all the planes from the pencil� For � � � we get the equations of the planes bisecting the angle
between the given planes if their equations are in normal form�

�� Two andMore Planes in Space

� Angle between Two Planes� General Case� The angle between two planes given by the
equations A�x�B�y �C�z �D� � � and A�x�B�y �C�z �D� � � can be calculated by the formula

cos� �
A�A� � B�B� � C�C�q

�A�
� � B�

� � C�
�� �A�

� � B�
� � C�

��
� �����a�

If the planes are given by vector equations �r �N� � D� � � and �r �N� � D� � �� then we have�

cos� �
�N�

�N�

N�N�
with N� � j �N�j and N� � j �N�j� �����b�

z

y

N

0

x

a

c

b� 
�

Figure ����

z

y
x

0

Figure ���

z

y

0

x

Figure ����

� Intersection Point of Three Planes� The coordinates of the intersection point of three planes
given by the three equations A�x�B�y �C�z �D� � �� A�x�B�y �C�z �D� � �� and A�x�B�y �
C�z � D� � �� are calculated by the formulas

"x �
�%x

%
� "y �

�%y
%

� "z �
�%z

%
with ������a�

% �

������
A� B� C�

A� B� C�

A� B� C�

������ � %x �

������
D� B� C�

D� B� C�

D� B� C�

������ � %y �

������
A� D� C�

A� D� C�

A� D� C�

������ � %z �

������
A� B� D�

A� B� D�

A� B� D�

������ � ������b�

Three planes intersect each other at one point if % �� � holds� If % � � holds and at least one subde�
terminant of second order is non�zero� then the planes is parallel to a line� if every subdeterminant of
second order is zero� then the planes have a common line�

� Conditions for Parallelism and Orthogonality of Planes�
a� Conditions for Parallelism� Two planes are parallel if

A�

A�
�

B�

B�
�

C�

C�
or �N� � �N� � �� holds� �������

b� Conditions for Orthogonality� Two planes are perpendicular to each other if

A�A� � B�B� � C�C� � � or �N�
�N� � � holds� �������

� IntersectionPoint of FourPlanes� Four planes given by the equations A�x�B�y�C�z�D� �
�� A�x � B�y � C�z � D� � �� A�x � B�y � C�z � D� � �� and A�x � B�y � C�z � D� � � have a
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common point only if for the determinant

	 �

��������
A� B� C� D�

A� B� C� D�

A� B� C� D�

A� B� C� D�

�������� � � �������

holds� In this case we determine the common point from three equations� The fourth equation is
super�uous� it is a consequence of the others�

� Distance Between Two Parallel Planes� If two planes are parallel� and they are given by the
equations

Ax � By � Cz � D� � � and Ax � By � Cz � D� � �� �������

then their distance is

d �
jD� �D�jp

A� � B� � C�
� �������

�� Equation of a Line in Space

� Equation of a Line in Space� General Case Because a line in space can be de�ned as the
intersection of two planes� it can be represented by a system of two linear equations�
a� In component form�

A�x � B�y � C�z � D� � �� A�x � B�y � C�z � D� � �� ������a�

b� In vector form�

�r �N� � D� � �� �r �N� � D� � �� ������b�

� Equation of a Line in Two Projecting Planes

The two equations y � kx � a� z � hx � b �������

de�ne a plane each� and these planes go through the line and are perpendicular to the x� y and the x� z
planes resp� �Fig ������ We call them projecting planes� This representation cannot be used for
lines parallel to the y� z plane� so in this case we have to consider other projections to other coordinate
planes�

z

y

x

0
R

P (x ,y ,z )1 1 1 1

Figure ����

x

y

z

0
P (x ,y ,z )1 1 1 1

P (x ,y ,z )2 2 2 2

Figure ����

z

y
N

P (x ,y ,z )1 1 1 10

x

Figure ����

� Equation of a Line Through a Point Parallel to a Direction Vector
The equation �or the equation system� of a line passing through a point P� �x�� y�� z�� parallel to a

direction vector �R�l� m� n� �Fig ����� has the form
a� in component representation and in vector form�

x� x�
l

�
y � y�

m
�

z � z�
n

� ������a� ��r��r��� �R � ��� ������b�

b� in parametric form and vector form�
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x � x� � l t � y � y� � mt � z � z� � n t � ������c� �r � �r� � �Rt � ������d�

where the numbers x�� y�� z� are chosen such that ������a� are satis�ed� The representation ������a�
follows from ������a� with

l �
����B� C�

B� C�

���� � m �
����C� A�

C� A�

���� � n �
����A� B�

A� B�

���� � �����a�

or in vector form �R � �N� � �N�� �����b�

� Equationof aLineThroughTwoPoints The equation of a line through two pointsP� �x�� y�� z��
and P� �x�� y�� z�� �Fig ����� is

in component form and in vector form�

a�
x� x�
x� � x�

�
y � y�
y� � y�

�
z � z�
z� � z�

� ������a� b� ��r��r��� ��r��r�� � ���� ������b�

If for instance x� � x�� the equations in component form are x� � x��
y � y�
y� � y�

�
z � z�
z� � z�

� If x� � x�

and y� � y� are both valid� the equations in component form are x� � x�� y� � y��

� Equation of a Line Through a Point and Perpendicular to a Plane The equation of a line
passing through the point P� �x�� y�� z�� perpendicular to a plane given by the equation Ax � By �

Cz � D � � or by �r �N� D � � �Fig ����� is
in component form and in vector form�

a�
x� x�

A
�

y � y�
B

�
z � z�

C
� ������a� b� ��r��r��� �N � ��� ������b�

If for instance A � � holds� the equations in component form have a similar form as in the previous
case�

�� Distance of a Point from a Line Given in Component Form
For the distance d of the point M�a� b� c� from a line given in the form ������a� we have�

d� �
 �a� x��m� �b� y�� l!

� �  �b� y��n� �c� z��m!� �  �c� z�� l � �a� x��n!�

l� � m� � n�
� �������

�� Smallest Distance Between Two Lines Given in Component Form
If the lines are given in the form ������a�� their distance is

d �

�
������
x� � x� y� � y� z� � z�

l� m� n�
l� m� n�

������s���� l� m�

l� m�

����� �
����m� n�
m� n�

����� �
����n� l�
n� l�

�����
� �������

If the determinant in the numerator is equal to zero� the lines intersect each other�

� Intersection Points of Lines and Planes
� Equation of the Line in Component Form The intersection point of a plane given by the
equation

Ax � By � Cz � D � � � and a line given by
x� x�

l
�

y � y�
m

�
z � z�

n
has the coordinates

"x � x� � l� � "y � y� �m� � "z � z� � n� with ������a�

�For the product of vectors see �������� p� ���
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� �
Ax� � By� � Cz� � D

A l � B m � C n
� ������b�

If A l �B m�C n � � holds� the line is parallel to the plane� If Ax� �By� �Cz� �D � � is also valid�
the line lies in the plane�

� Equation of the Line in Two Projecting Planes The intersection point of a plane given by
the equation Ax�By�Cz�D � �� and a line given by y � kx�a� and z � hx�b has the coordinates

"x � �B a � C b � D

A � B k � C h
� "y � k"x � a� "z � h"x � b� �������

If A � B k � C h � � holds� the line is parallel to the plane� If Ba � Cb � D � � is also valid� the line
lies in the plane�

� Intersection Point of Two Lines If the lines are given by y � k�x � a�� z � h�x � b� and
y � k�x � a�� z � h�x � b�� the coordinates of the intersection point� if any exists� are�

"x �
a� � a�
k� � k�

�
b� � b�
h� � h�

� "y �
k�a� � k�a�

k� � k�
� "z �

h�b� � h�b�
h� � h�

� ������a�

The intersection point exists only if

�a� � a���h� � h�� � �b� � b���k� � k��� ������b�

Otherwise the lines do not intersect each other�

�� Angles between Planes and Lines
� Angle between Two Lines

a� General Case� If the lines are given by the equations
x� x�

l�
�

y � y�
m�

�
z � z�
n�

and
x� x�

l�
�

y � y�
m�

�
z � z�
n�

or in vector form by ��r��r�� � �R� � �� and ��r��r�� � �R� � ��� then for the angle

between them we have

cos� �
l�l� � m�m� � n�n�q

�l�� � m�
� � n��� �l�� � m�

� � n���
or ������a�

cos� �
�R�

�R�

R�R�
with R� � j�R�j and R� � j�R�j� ������b�

b� Conditions of Parallelism� Two lines are parallel if

l�
l�

�
m�

m�
�

n�
n�

or �R� � �R� � ��� �������

c� Conditions of Orthogonality� Two lines are perpendicular to each other if

l�l� � m�m� � n�n� � � or �R�
�R� � �� ������

� Angle Between a Line and a Plane

a� If the line and the plane are given by the equations
x� x�

l
�

y � y�
m

�
z � z�

n
and Ax�By �Cz �

D � � or in vector form by ��r��r��� �R � �� and �r �N� D � �� we get the angle by the formulas

sin� �
Al � Bm � Cnq

�A� � B� � C�� �l� � m� � n��
or ������a�

sin� �
�R �N

RN
with R � j�Rj and N � j�Nj� ������b�
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b� Conditions of Parallelism� A line and a plane are parallel if

A l � B m � C n � � or �R �N � �� �������

c� Conditions of Orthogonality� A line and a plane are orthogonal if

A

l
�

B

m
�

C

n
or �R� �N � ��� �������

������� Surfaces of Second Order� Equations in Normal Form

�� Central Surfaces
We get the following equations� which are also called the normal form of the equations of surfaces of
second order� from the general equations of surfaces of second order �see �������� �� p� ���� by putting
the center at the origin� Here the center is the midpoint of the chords passing through it� The coordinate
axes are the symmetry axes of the surfaces� so the coordinate planes are also the planes of symmetry�

�� Ellipsoid
With the semi�axes a� b� c �Fig ����� the equation of an ellipsoid is

x�

a�
�

y�

b�
�

z�

c�
� � �������

We distinguish the following special cases�

a� Compressed Ellipsoid of Revolution �Lens Form�� a � b � c �Fig ������

b� Stretched Ellipsoid of Revolution �Cigar Form�� a � b � c �Fig ������

c� Sphere� a � b � c so that x� � y� � z� � a� is valid�

The two forms of the ellipsoid of revolution arise by rotating an ellipse in the x� z plane with axes a and
c around the z�axis� and we get a sphere if we rotate a circle around any axis� If a plane goes through an
ellipsoid� the intersection �gure is an ellipse� in a special case it is a circle� The volume of the ellipsoid
is

V �
��abc

�
� �������

0

c

b
y

x

z

a

Figure ����

y

z

x

Figure ����

�� Hyperboloid
a� Hyperboloid of One Sheet �Fig ���
�� With a and b as real and c as imaginary semi�axes
the equation is

x�

a�
�

y�

b�
� z�

c�
�  �for generator lines see p� ����� �������

b� Hyperboloid of Two Sheets �Fig ��
��� With c as real and a� b as imaginary semi�axes the
equation is

x�

a�
�

y�

b�
� z�

c�
� � � �������
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Intersecting it by a plane parallel to the z�axis we get a hyperbola in the case of both types of hyper�
boloids� In the case of a hyperboloid of one sheet the intersection can also be two lines intersecting each
other� The intersection �gures parallel to the x� y plane are ellipses in both cases�
For a � b the hyperboloid can be represented by rotation of a hyperbola with semi�axes a and c around
the axis �c� This is imaginary in the case of a hyperboloid of one sheet� and real in the case of that of
two sheets�

x

y

z

Figure ����

x
a

b0

y

z

Figure ����

yx

c

z

Figure ����

�� Cone �Fig� �����	
If the vertex is at the origin� the equation is

x�

a�
�

y�

b�
� z�

c�
� � � �������

As a direction curve we can consider an ellipse with semi�axes a and b� whose plane is perpendicular
to the z�axis at a distance c from the origin� The cone in this representation can be considered as the
asymptotic cone of the surfaces

x�

a�
�

y�

b�
� z�

c�
� �� ������

whose generator lines approach in�nitely closely both hyperboloids at in�nity �Fig ��
��� For a � b
we have a right circular cone �see ������ 
� p� ����

c

z

yx

a b

Figure ���

x y

z

Figure ����

�� Paraboloid
Because a paraboloid has no center� we suppose in the following that the vertex is at the origin� the
z�axis is its symmetry axis� and the x� z plane and the y� z plane are symmetry planes�
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a� Elliptic Paraboloid �Fig ��
���

z �
x�

a�
�

y�

b�
� �����

The plane sections parallel to the z�axis result in parabolas as intersection �gures� those parallel to the
x� y plane result in ellipses� The volume of a paraboloid which is cut by a plane perpendicular to the

z�axis at a distance h from the origin is given in ������� The parameters a � a
p
h and b � b

p
h are

the half axis of the intersecting ellipse at height h�

V �


�
�abh � ������

The volume is half of the volume of an elliptic cylinder with the same upper surface and altitude�

b� Paraboloid of Revolution� For a � b we have a paraboloid of revolution� We get it by rotating
the z � x��a� parabola of the x� z plane around the z�axis�

c� Hyperbolic Paraboloid �Fig ��
���

z �
x�

a�
� y�

b�
� ������

The intersection �gures parallel to the y� z plane or to the x� z plane are parabolas� parallel to the x� y
plane they are hyperbolas or two intersecting lines�

h

x y
0

z

Figure ����

z

y
x

0

Figure ����

� Rectilinear Generators of a Ruled Surface
These are straight lines lying completely in this surface� Examples are the generators of the surfaces of
the cone and cylinder�

a� Hyperboloid of One Sheet �Fig ��
���

x�

a�
�

y�

b�
� z�

c�
� � ������

The hyperboloid of one sheet has two families of rectilinear generators with equations

x

a
�

z

c
� u

�
 �

y

b

�
� u

�
x

a
� z

c

�
� � y

b
� �����a�

x

a
�

z

c
� v

�
� y

b

�
� v

�
x

a
� z

c

�
�  �

y

b
� �����b�

where u and v are arbitrary quantities�

b� Hyperbolic Paraboloid �Fig ��
���

z �
x�

a�
� y�

b�
� ������

The hyperbolic paraboloid also has two families of rectilinear generators with equations

x

a
�

y

b
� u� u

�
x

a
� y

b

�
� z� �����a�

x

a
� y

b
� v� v

�
x

a
�

y

b

�
� z� �����b�
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The quantities u and v are again arbitrary values� In both cases� there are two straight lines passing
through every point of the surface� one from each family� We denote only one familiy of straight lines
in Fig ��
� and Fig ��
��

Figure ���� Figure ����

�� Cylinder

a� Elliptic Cylinder �Fig ��
���
x�

a�
�

y�

b�
� � ������

b� Hyperbolic Cylinder �Fig ��
���
x�

a�
� y�

b�
� � ������

c� Parabolic Cylinder �Fig ��

�� y� � �px� �������
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Figure ����
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������� Surfaces of Second Order or Quadratic Surfaces� General Theory

�� General Equation of a Surface of Second Order
a��x

� � a��y
� � a��z

� � �a��xy � �a��yz � �a��zx � �a��x � �a��y � �a��z � a�� � �� ������

�� Telling the Type of Second�Order Surface from its Equation
We can determine the type of a second�order surface from its equation by the signs of its invariants
%� 	� S� and T from Tables ��� and ���� Here we can �nd the names with the normal form of
the equation of the surfaces� and every equation can be transformed into a normal form� We cannot
determine the coordinates of any real point from the equation of imaginary surfaces� except the vertex
of the imaginary cone� and the intersection line of two imaginary planes�
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�� Invariants of a Surface of Second Order
If we substitute aik � aki� then we have

% �

��������
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��

�������� � ������a� 	 �

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ � ������b�

S � a�� � a�� � a���������c� T � a��a�� � a��a�� � a��a�� � a��� � a��� � a���� ������d�

During translation or rotation of the coordinate system these invariants do not change�

Table ���� Type of surfaces of second order with 	 �� � �central surfaces�

S � � � �� T � �� S � � and T not both � �

� � � Ellipsoid Hyperboloid of two sheets
x�

a�
�

y�

b�
�

z�

c�
� 

x�

a�
�

y�

b�
� z�

c�
� �

� � � Imaginary ellipsoid Hyperboloid of one sheet
x�

a�
�

y�

b�
�

z�

c�
� �

x�

a�
�

y�

b�
� z�

c�
� 

� � � Imaginary cone �with real vertex� Cone
x�

a�
�

y�

b�
�

z�

c�
� �

x�

a�
�

y�

b�
� z�

c�
� �

� For the quantities S� 	� and T see p� ����

Table ���� Type of surfaces of second order with 	 � � �paraboloid� cylinder and two planes�

� � � �here T � ��� � � � �here T � ��

� �� � Elliptic paraboloid Hyperbolic paraboloid
x�

a�
�

y�

b�
� �z

x�

a�
� y�

b�
� �z

� � � Cylindrical surface with a second�order curve as a directrix whose type
de�nes di�erent cylinders� For T � � imaginary elliptic� for T � �
hyperbolic� and for T � � parabolic cylinder� if the surface does not
split into two real� imaginary� or coincident planes� The condition for
splitting is�������

a�� a�� a��
a�� a�� a��
a�� a�� a��

�������
������
a�� a�� a��
a�� a�� a��
a�� a�� a��

�������
������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ � �

� For the quantities % and T see p� ����
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��� Di�erentialGeometry
In di�erential geometry planar curves and curves and surfaces in space are discussed by the methods
of di�erential calculus� Therefore we suppose that the functions describing the curves and surfaces
are continuous and continuously di�erentiable as many times as necessary for discussion of the corre�
sponding properties� The absence of these assumptions is allowed only at a few points of the curves
and surfaces� These points are called singular points�

During the discussion of geometric con�gurations with their equations we distinguish properties de�
pending on the choice of the coordinate system� such as intersection points with the coordinate axes�
the slope or direction of tangent lines� maxima� minima� and invariant properties independent of co�
ordinate transformations� such as in�ection points� curvature� and cyclic points� There are also local
properties� which are valid only for a small part of the curves and surfaces as the curvature and di�er�
ential of arc or area of surfaces� and there are properties belonging to the whole curve or surface� such
as number of vertices� and arclength of a closed curve�

����� PlaneCurves

������� Ways to De�ne a Plane Curve

�� Coordinate Equations

A plane curve can be analytically de�ned in the following ways�
In Cartesian coordinates�

a� Implicit� F �x� y� � �� �������

b� Explicit� y � f�x�� �������

c� Parametric Form� x � x�t�� y � y�t�� �������

In Polar Coordinates� � � f���� �������

�� Positive Direction on a Curve

If a curve is given in the form �������� the positive direction is de�ned on it in which a point P �x�t�� y�t��
of the curve moves for increasing values of the parameter t� If the curve is given in the form �������� then
the abscissa can be considered as a parameter �x � x� y � f�x��� so we have the positive direction for
increasing abscissa� For the form ������� the angle can be considered as a parameter � �x � f��� cos� �
y � f��� sin��� so we have the positive direction for increasing �� i�e�� counterclockwise�

Fig����a� b� c� A� x � t�� y � t�� B� y � sin x� C� � � a��

y

x0

a) b) c)

y

0 x x0

Figure �����

������� Local Elements of a Curve

Depending on whether a changing point P on the curve is given in the form �������� ������� or ��������
its position is de�ned by x� t or �� We denote a point arbitrarily close to P by N with parameter values
x � dx� t � dt or � � d��
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�� Di
erential of Arc
If s denotes the length of the curve from a �xed point A to the point P � we can express the in�nitesimal

increment %s �
�
PN approximately by the di�erential ds of the arclength� the di�erential of arc�

%s 
 ds �

�����������������

vuut �

�
dy

dx

��
dx for the form �������� �������q

x�� � y�� dt for the form �������� �������q
�� � ��� d� for the form �������� �������

A� y � sin x� ds �
p

 � cos�x dx � B� x � t�� y � t�� ds � t
p

� � �t� dt�

C� � � a�� ds � a
p

 � �� d��

P

N

ta
ng

en
t

normal

Figure ����
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�� Tangent and Normal
� Tangent at a Point P to a Curve is a line in the limiting position of the secants PN for N  P �
the normal is a line through P which is perpendicular to the tangent here �Fig ������
� The Equations of the Tangent and the Normal are given in Table ��� for the three cases
�������� �������� and �������� Here x� y are the coordinates of P � and X� Y are the coordinates of the
points of the tangent and normal� The values of the derivatives should be calculated at the point P �

Table ���� Tangent and normal equations

Type of equation Equation of the tangent Equation of the normal

�������
�F

�x
�X � x� �

�F

�y
�Y � y� � �

X � x
�F

�x

�
Y � y
�F

�y

������� Y � y �
dy

dx
�X � x� Y � y � � 

dy

dx

�X � x�

�������
Y � y

y�
�

X � x

x�
x��X � x� � y��Y � y� � �

Examples for equations of the tangent and normal for the following curves�

A� Circle x� � y� � �� at the point P ��� ���
a� Equation of the tangent� �x�X � x� � �y�Y � y� � � or Xx � Y y � �� considering that the point
P lies on the circle� �X � �Y � ���

b� Equation of the normal�
X � x

�x
�

Y � y

�y
or Y �

y

x
X� at the point P � Y �

�

�
X�
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B� Sine curve y � sin x at the point ���� ���
a� Equation of the tangent� Y � sin x � cos x�X � x� or Y � X cos x � sin x � x cos x� at the point
��� ��� Y � X�

b� Equation of the normal� Y � sin x � � 

cos x
�X � x� or Y � �X sec x � sin x � x sec x� at the point

��� ��� Y � �X�

C� Curve with x � t�� y � t� at the point P ������� t � ���

a� Equation of the tangent�
Y � t�

�t�
�

X � t�

�t
or Y �

�

�
tX � 

�
t�� at the point P � Y � ��X � ��

b� Equation of the normal� �t �X � t�� � �t� �Y � t�� � � or �X � �tY � t� �� � �t��� at the point P �
X � �Y � ���
� Positive Direction of the Tangent and Normal of the Curve If the curve is given in one of
the forms �������� �������� �������� the positive directions on the tangent and normal are de�ned in the
following way� The positive direction of the tangent is the same as on the curve at the point of contact�
and we get the positive direction on the normal from the positive direction of the tangent by rotating it
counterclockwise around P by an angle of ��� �Fig ������ The tangent and the normal are divided
into a positive and a negative half�line by the point P �
� The Slope of the Tangent can be determined
a� by the angle of slope of the tangent � � between the positive directions of the axis of abscissae and
the tangent� or
b� if the curve is given in polar coordinates� by the angle �� between the radius vector OP �OP � ��
and the positive direction of the tangent �Fig ������ For the angles � and � the following formulas
are valid� where ds is calculated according to ����������������

tan� �
dy

dx
� cos� �

dx

ds
� sin� �

dy

ds
� ������a�

tan� �
�
d�

d�

� cos� �
d�

ds
� sin� � �

d�

ds
� ������b�

A� y � sin x� tan� � cos x� cos� �
p

 � cos�x
� sin� �

cos xp
 � cos�x

�

B� x � t�� y � t�� tan� �
�t

�
� cos � �

�p
� � �t�

� sin� �
�tp

� � �t�
�

C� � � a�� tan� � �� cos � �
p

 � ��
� sin� �

�p
 � ��

�

� Segments of the Tangent and Normal� Subtangent and Subnormal �Fig �����
a� In Cartesian Coordinates for the de�nitions in form �������� ��������

PT �

����� yy�
q

 � y��
����� �segment of the tangent�� �����a�

PN �
����yq � y��

���� �segment of the normal�� �����b�

P �T �

����� yy�
����� �subtangent�� �����c� P �N � jyy�j �subnormal�� �����d�

b� In Polar Coordinates for the de�nitions in form ��������

PT � �

����� ���
q
�� � ���

����� �segment of the polar tangent�� ������a�
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PN � �
����q�� � ���

���� �segment of the polar normal�� ������b�

OT � �

���������
����� �polar subtangent�� ������c� ON � � j��j �polar subnormal�� ������d�

A� y � cosh x� y� � sinhx�
q

 � y�� � cosh x � PT � j cosh x coth xj� PN � jcosh�xj� P �T �

j cothxj� P �N � j sinhx cosh xj�
B� � � a�� �� � a�

q
�� � ��� � a

q
 � ���PT � �

����a�q � ��

���� � PN � �
����aq � ��

���� � OT � ����a��
��� � ON � � a�
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� Angle Between Two Curves The angle � between two curves �� and �� at their intersection
point P is de�ned as the angle between their tangents at the point P �Fig ������ By this de�nition
we have reduced the calculation of the angle � to the calculation of the angle between two lines with
slopes

k� � tan�� �

�
df�
dx

�
P

� ������a� k� � tan�� �

�
df�
dx

�
P

������b�

where y � f��x� is the equation of �� and y � f��x� is the equation of ��� and we have to calculate
derivatives at the point P � We get � with the help of the formula

tan� � tan��� � ��� �
tan�� � tan��

 � tan�� tan��

� �������

Determine the angle between the parabolas y �
p
x and y � x� at the point P �� ��

tan�� �

�
d
p
x

dx

�
x��

�


�
� tan�� �

�
d �x��

dx

�
x��

� �� tan � �
tan�� � tan��

 � tan�� tan��
�

�

�
�

�� Convex and Concave Part of a Curve
If a curve is given in the explicit form y � f�x�� then we can examine a small part containing the point
P if the curve is concave up or down here� except of course if P is an in�ection point or a singular point
�see ������� p� ���� If the second derivative f ���x� � � �if it exists�� then the curve is concave up� i�e��
in the direction of positive y �point P� in Fig ������ If f ���x� � � holds �point P��� then the curve is
concave down� In the case if f ���x� � � holds� we should check if it is an in�ection point�

y � x� �Fig ���b�� y�� � �x� for x � � the curve is concave up� for x � � concave down�

�� Curvature and Radius of Curvature

� Curvature of a Curve The curvature K of a curve at the point P is the limit of the ratio of the
angle 	 between the positive tangent directions at the points P and N �Fig ����� and the arclength
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�
PN for

�
PN ��

K � lim
�
PN��

	
�
PN

� �������

The sign of the curvature K depends on whether the curve bends toward the positive half of the normal
�K � �� or toward the negative half of it �K � �� �see ������ �� p� ����� In other words the center of
curvature for K � � is on the positive side of the normal� for K � � it is on the negative side� Sometimes
the curvature K is considered only as a positive quantity� Then we have to take the absolute value of
the limit above�

� Radius of Curvature of a Curve The radius of curvature R of a curve at the point P is the
reciprocal value of the absolute value of the curvature�

R � j�Kj� �������

The larger the curvature K is at a point P the smaller the radius of curvature R is�

A� For a circle with radius a the curvature K � �a and the radius of curvature R � a are constant
for every point�

B� For a line we have K � � and R ���

y

x0

P

N

ds

α

dα=δ

α+ αd

Figure �����

� Formulas for Curvature and Radius of Curvature

With the notation 	 � d� and
�
PN� ds �Fig ����� we have

in general�

K �
d�

ds
� R �

����� dsd�
����� � �������

For the di�erent de�ning formulas of curves in ������ p� ���
we get di�erent expressions for K and R�

De�nition as in �������� K �

d�y

dx��� �

�
dy

dx

�������
� R �

�������������

�� �

�
dy

dx

�������
d�y

dx�

�������������
� �������

De�nition as in �������� K �

���� x� y�

x�� y��
�����

x�� � y��
	��� � R �

���������
�
x�� � y��

	���
���� x� y�

x�� y��
����

��������� � �������

De�nition as in �������� K �

������
Fxx Fxy Fx
Fyx Fyy Fy
Fx Fy �

�������
Fx

� � Fy
�
	��� � R �

�������������

�
Fx

� � Fy
�
	���

������
Fxx Fxy Fx
Fyx Fyy Fy
Fx Fy �

������

�������������
� �������

De�nition as in �������� K �
�� � ���� � ����

��� � �������
� R �

������ ��� � �������

�� � ���� � ����

������ � ������
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A� y � cosh x� K �


cosh� x
� B� x � t�� y � t�� K �

�

t�� � �t�����
�

C� y� � x� � a�� K �
a�

�x� � y�����
� D� � � a�� K �



a
� �� � �

��� � ����
�

�� Circle of Curvature and Center of Curvature
� Circle of Curvature at the point P is the limiting position of the circles passing through P and
two points of the curve from its neighborhood N and M � for N  P and M  P �Fig ������ It
goes through the point of the curve and here it has the same �rst and the same second derivative as the
curve� Therefore it �ts the curve at the point of contact especially well� It is also called the osculating
circle� Its radius is the radius of curvature� It is obvious that it is the reciprocal value of the absolute
value of the curvature�
� Center of Curvature The center C of the circle of curvature is the center of curvature of the
point P � It is on the concave side of the curve� and on the normal of the curve�
� Coordinates of the Center of Curvature We can determine the coordinates �xC � yC� of the
center of curvature for curves with de�ning equations in ������ p� ��� from the following formulas�

De�nition as in �������� xC � x�

dy

dx

�� �

�
dy

dx

����
d�y

dx�

� yC � y �

 �

�
dy

dx

��
d�y

dx�

� �������

De�nition as in �������� xC � x� y��x�� � y���
x� y�

x�� y��
� yC � y �

x��x�� � y���
x� y�

x�� y��
� �������

De�nition as in �������� xC � � cos�� ��� � ������ cos� � �� sin��

�� � ���� � ����
�

yC � � sin�� ��� � ������ sin�� �� cos ��

�� � ���� � ����
� �������

De�nition as in �������� xC � x �
Fx
�
F �
x � F �

y

	
Fxx Fxy Fx
Fyx Fyy Fy
Fx Fy �

� yC � y �
Fy
�
F �
x � F �

y

	
Fxx Fxy Fx
Fyx Fyy Fy
Fx Fy �

� �������

These formulas can be transformed into the form

xC � x� R sin� � yC � y � R cos � or �������

xC � x� R
dy

ds
� yC � y � R

dx

ds
�������

�Fig ���
�� where R should be calculated as in ���������������
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������� Special Points of a Curve
Now we discuss only the points invariant during coordinate transformations� To determine maxima
and minima see ������� p� ���

�� In�ection Points and the Rules to Determine Them
In�ection points are the points of the curve where the curvature changes its sign �Fig ����� while
a tangent exists� The tangent line at the in�ection point intersects the curve� so the curve is on both
sides of the line in this neighborhood� At the in�ection point K � � and R �� hold�

� Explicit Form ������ of the Curve y � f�x�

a� A Necessary Condition for the existence of an in�ection point is the zero value of the second
derivative

f ���x� � � �������

if it exists at the in�ection point �for the case of non�existant second derivative see b��� In order to
determine the in�ection points for existing second derivative we have to consider all the roots of the
equation f ���x� � � with values x�� x�� � � � � xi� � � � � xn� and substitute them into the further derivatives�
If for a value xi the �rst non�zero derivative has odd order� there is an in�ection point here� If the con�
sidered point is not an in�ection point� because for the �rst non�disappearing derivative of k�th order�
k is an even number� then for f �k��x� � � the curve is concave up� for f �k��x� � � it is concave down� If
we do not check the higher�order derivatives� for instance in the case they do not exist� see point b��

b� A Su�cient Condition for the existence of an in�ection point is the change of the sign of the
second derivative f ���x� while traversing from the left neighborhood of this point to the right� if also
a tangent exists here� of course� So the question� of whether the curve has an in�ection point at the
point with abscissa xi� can be answered by checking the sign of the second derivative traversing the
considered point� If the sign changes during the traverse� there is an in�ection point� �Since xi is a root
of the second derivative� the function has a �rst derivative� and consequently the curve has a tangent��
This method can also be used in the case if y�� � �� together with the checking of the existence of a
tangent line� e�g� in the case of a vertical tangent line�

A� y �


 � x�
� f ���x� � ��

� �x�

� � x���
� x��� � � p

�
� f ����x� � ��x

� x�

� � x���
� f ����x���� �� ��

In�ection points� A

�
p
�
�

�

�

�
� B

�
� p

�
�
�

�

�
�

B� y � x�� f ���x� � �x�� x� � �� f ����x� � ��x� f ����x�� � �� f IV �x� � ��� there is no in�ection
point�

C� y � x
�
� � y� �

�

�
x
�
� � y�� �

�

�
x�

�
� � for x � � we have y�� ���

As the value of x changes from negative to positive� the second derivative changes its sign from 	�
 to
	�
� so the curve has an in�ection point at x � ��

Remark� In practice� if from the shape of the curve the existence of in�ection points follows� for in�
stance between a minimum and a maximum with continuous derivatives� then we determine only the
points xi and do not check the further derivatives�

� Other De�ning Forms The necessary condition ������� for the existence of an in�ection point
in the case of the de�ning form of the curve ������� will have the analytic form for the other de�ning
formulas as follows�

a� De�nition in parametric form as in ��������
x� y�

x�� y�� � �� �������

b� De�nition in polar coordinates as in �������� �� � ���� � ���� � �� �������
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c� De�nition in implicit form as in �������� F �x� y� � � and
Fxx Fxy Fx
Fyx Fyy Fy
Fx Fy �

� �� ������

In these cases the solution system gives the possible coordinates of in�ection points�

A� x � a
�
t� 

�
sin t

�
� y � a

�
� 

�
cos t

�
�curtated cycloid �Fig ���b�� p� ����

x� y�

x�� y�� �
a�

�

�� cos t sin t
sin t cos t

�
a�

�
�� cos t � � � cos tk �



�
� tk � ��

�
� �k� �k � ������� � � ���

The curve has an in�nite number of in�ection points for the parameter values tk�

B� � �
p
�

� �� � ��������� �


�
�



���
� �

���
�



���
����� �� The in�ection point is at the angle

� � �� �

C� x� � y� � a� �hyperbola��
Fxx � �
� � �
� � �

�
� � �x
� �� ��y

�x ��y �
� �x�� �y�� The equations x� � y� � a�

and ��x� � y�� � � contradict each other� so the hyperbola has no in�ection point�
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�� Vertices
Vertices are the points of the curve where the curvature has a maximum or a minimum� The el�
lipse has for instance four vertices A� B� C� D� the curve of the logarithm function has one vertex

at E ��
p

� �� ln ���� �Fig ������ The determination of vertices is reduced to the determination of
the extreme values of K or� if it is simpler� the extreme values of R� For the calculation we can use the
formulas from ���������������

�� Singular Points
Singular point is a general notion for di�erent special points of a curve�
� Types of Singular Points The points a�� b�� etc� to j� correspond to the representation in
Fig �����

a� Double Point� At a double point the curve intersects itself �Fig ����a��

b� Isolated Point� An isolated point satis�es the equation of the curve� but it is separated from the
curve �Fig ����b��

c�� d� Cuspidal point� At a cuspidal point or brie�y a cusp the orientation of the curve changes�
according to the position of the tangent we distinguish a cusp of the �rst kind and a cusp of the second
kind �Fig����c�d��

e� Tacnode or point of osculation� At the tacnode the curve contacts itself �Fig ����e��

f� Corner point� At a corner point the curve suddenly changes its direction but in contrast to a cusp
there are two di�erent tangents for the two di�erent branches of the curve here �Fig����f��

g� Terminal point� At a terminal point the curve terminates �Fig����g��

h�Asymptoticpoint� In the neighborhood of an asymptotic point the curve usually winds in and out
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or around in�nitely many times� while it approaches itself and the point arbitrarily close �Fig����h��

i�� j� More Singularities� It is possible that the curve has two or more such singularities at the same
point �Fig ����i�j��

a) b) c) d) e)

f) g) h) i) j)

Figure ����

� Determination of the Tacnode� Corner� Terminal� and Asymptotic Points Singularities
of these types occur only on the curves of transcendental functions �see �������� �� p� ����
The corner point corresponds to a �nite jump of the derivative dy�dx�
Points where the function terminates correspond to the points of discontinuity of the function y � f�x�
with a �nite jump or to a direct termination�
Asymptotic points can be determined in the easiest way in the case of curves given in polar coordinates
as � � f���� If for � � or �  �� the limit lim� � � is equal to zero� the pole is an asymptotic
point�

A� The origin is a corner point for the curve y �
x

 � e
�
x

�Fig ��c� �

B� The points �� �� and �� � are points of discontinuity of the function y �


 � e
�

x��
�Fig ����

C� The logarithmic spiral � � aek � �Fig ���� has an asymptotic point at the origin�
� Determination of Multiple Points �Cases from a� to e�� and i�� and j�� Double points�
triple points� etc� are denoted by the general term multiple points� To determine them� we start with
the equation of the curve of the form F �x� y� � �� A point A with coordinates �x�� y�� satisfying the
three equations F � �� Fx � �� and Fy � � is a double point if at least one of the three derivatives of
second order Fxx� Fxy� and Fyy does not vanish� Otherwise A is a triple point or a point with higher
multiplicity�
The properties of a double point depend on the sign of the Jacobian determinant

% �
Fxx Fxy
Fyx Fyy

�
x�x�

y�y�

�� �������

Case % � �� For % � � the curve intersects itself at the point A� the slopes of the tangents at A are
the roots of the equation

Fyyk
� � �Fxyk � Fxx � �� �������

Case % � �� For % � � A is an isolated point�
Case % � �� For % � � A is either a cusp or a tacnode� the slope of the tangent is

tan� � �Fxy
Fyy

� �������

For more precise investigation about multiple points we can translate the origin to the point A� and
rotate so that the x�axis becomes a tangent at A� Then from the form of the equation we can tell if it
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is a cusp of �rst or second order� or if it is a tacnode�

A� F �x� y� � �x� � y��� � �a��x� � y�� � � �Lemniscate� Fig ���� p� ���� Fx � �x�x� � y� �
a��� Fy � �y�x� � y� � a��� the equation system Fx � �� Fy � � results in the three solutions ��� ���
��a� ��� from which only the �rst one satis�es the condition F � �� Substituting ��� �� into the second
derivatives we have Fxx � ��a�� Fxy � �� Fyy � ��a�� % � ��a� � �� i�e�� at the origin the curve
intersects itself� the slopes of the tangents are tan� � �� their equations are y � �x�

B� F �x� y� � x� � y� � x� � y� � �� Fx � x��x � ��� Fy � y��y � ��� among the points ��� ���
��� ����� ����� ��� and ����� ���� only the �rst one belongs to the curve� further Fxx � ��� Fxy � ��
Fyy � ��� % � � � �� i�e�� the origin is an isolated point�

C� F �x� y� � �y � x��� � x� � �� The equations Fx � �� Fy � � result in only one solution ��� ���
it also satis�es the equation F � �� Furthermore % � � and tan� � �� so the origin is a cusp of the
second kind� This can be seen from the explicit form of the equation y � x���px�� y is not de�ned
for x � �� while for � � x �  both values of y are positive� at the origin the tangent is horizontal�
� Algebraic Curves of Type F �x� y� � �� F �x� y� Polynomial in x and y
If the equation does not contain any constant term and any �rst�degree term� the origin is a double
point� The corresponding tangents can be determined by making the sum of the second�degree terms
equal�

For the lemniscate �Fig ��� p� ��� we get the equations y � �x from x� � y� � ��

If the equation does not contain even second�degree terms� then the origin is a triple point�

������� Asymptotes of Curves

�� De�nition
An asymptote is a straight line to which the curve
approaches while it moves away from the origin
�Fig ������
The curve can approach the line from one side
�Fig ����a�� or it can intersect it again and again
�Fig ����b��

a� b�

Figure ����

Not every curve which goes in�nitely far from the origin �in�nite branch of the curve� has an asymptote�
We call for instance the entire part of an improper rational expression an asymptotic approximation
�see ������ p� ���

�� Functions Given in Parametric Form x � x�t�� y � y�t�
To determine the equation of the asymptote �rst we have to know the values ti such that if t ti either
x�t� �� or y�t� �� �or both� holds�
We have the following cases�

a� x�ti��� but y�ti� � a ��� � y � a� The asymptote is a horizontal line� ������a�

b� y�ti��� but x�ti� � a ��� � x � a� The asymptote is a vertical line� ������b�

c� If both y�ti� and x�ti� tend to��� then we calculate the limitsk � lim
t�ti

y�t�

x�t�
and b � lim

t�ti
 y�t��kx�t�!�

If both exist� the equation of the asymptote is

y � kx � b� ������c�

x �
m

cos t
� y � n�tan t� t�� t� �

�

�
� t� � ��

�
� etc� Determine the asymptote at t��

x�t�� � y�t�� ��� k � lim
t ���

n

m
�sin t� t cos t� �

n

m
�

b � lim
t ���



n�tan t� t�� n

m

m

cos t

�
� n lim

t ���

sin t� t cos t� 

cos t
� �n�

�
� y �

n

m
x� n�

�
� For the
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second asymptote� etc� we get similarly y �
n

m
x� n�

�
�

�� Functions Given in Explicit Form y � f�x�
The vertical asymptotes are at the points of discontinuity where the function f�x� has an in�nite jump
�see ������� p� ���� the horizontal and oblique asymptotes have the equation

y � kx � b with k � lim
x��

f�x�

x
� b � lim

x�� f�x�� kx!� �������

�� Functions Given in Implicit Polynomial Form F �x� y� � �
� To determine the horizontal and vertical asymptotes we choose the highest�degree terms with degree
m from the polynomial expression in x and y� we separate them as a function ��x� y� and solve the
equation ��x� y� � � for x and y�

��x� y� � � yields x � ��y�� y � ��x�� �������

The values y� � a for x  � give the horizontal asymptotes y � a� the values x� � b for y  � the
vertical ones x � b�

� To determine the oblique asymptotes we substitute the equation of the line y � kx � b into the
equation F �x� y�� then we order the resulting polynomial according to the powers of x�

F �x� kx � b� � f��k� b�x
m � f��k� b�x

m�� � � � � � �������

We get the parameters k and b� if they exist� from the equations

f��k� b� � �� f��k� b� � �� �������

x� � y� � �axy � � �Cartesian folium Fig ��
� p� ���� From the equation F �x� kx � b� � � �
k��x����k�b�ka�x� � � � � � we get� according to �������� �k� � � and k�b�ka � � with the solutions
k � �� b � �a� so the equation of the asymptote is y � �x� a�

������� General Discussion of a Curve Given by an Equation
Curves given by their equations ��������������� are investigated in order to know their properties and
shapes�

�� Construction of a Curve Given by an Explicit Function y � f�x�
a� Determination of the domain �see ���� p� ����

b� Determination of the symmetry of the curve with respect to the origin or to the y�axis checking
if the function is odd or even �see ������� p� ����

c� Determination of the behavior of the function at�� by calculating the limits lim
x��� f�x� and

lim
x��� f�x� �see ������� p� ����

d� Determination of the points of discontinuity �see ������� p� ����

e� Determination of the intersection points with the y�axis and with the x�axis calculating
f��� and solving the equation f�x� � ��

f� Determination of maxima and minima and �nding the intervals of monotonicity where the
function is increasing or decreasing�

g� Determination of in�ection points and the equations of tangents at these points �see �������
p� ����

With these data we can sketch the graph of the function� and if it is needed� we can calculate some
substitution values to make it more appropriate�

Sketch the graph of the function y �
�x� � �x� �

x�
�

a� The function is de�ned for all x except x � ��
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b� There is no symmetry�

c� For x  �� we have y  �� and obviously y � �� �� i�e�� approach from below� while x� we
also have y  �� but y � � � �� an approach from above�

d� x � � is a point of discontinuity such that the function from left and also from right tends to ���
because y is negative for small values of x�

e� Because f��� �� holds� there is no intersection point with the y�axis� and from f�x� � �x� � �x�
� � � the intersection points with the x�axis are at x� 
 ���� and x� 
 ������
f� A maximum is at x � ��� 
 ���� and here y 
 �����

g� An in�ection point is at x � �� y � ��� with the slope of the tangent line tan� � ����

h� After sketching the graph of the function based on these data �Fig ����� we can calculate the
intersection point of the curve and the asymptote� which is at x � ��� 
 ��� and y � ��

�� Construction of a Curve Given by an Implicit Function F �x� y� � �

There are no general rules for this case� because depending of the actual form of the function di�erent
steps can be or cannot be performed� If it is possible� the following steps are recommended�

a� Determination of all the intersection points with the coordinate axes�

b� Determination of the symmetry of the curve� so that we replace x by �x and y by �y�

c� Determination of maxima andminimawith respect to the x�axis and then interchanging x and
y also with respect to the y�axis �see ������� p� ����

d�Determination of the in�ection points and the slopes of tangents there �see ������� p� ����

e� Determination of singular points �see ������� �� p� �����

f� Determination of vertices �see ������� �� p� ���� and the corresponding circles of curvature �see
������� �� p� ����� It often happens that the curve�s arc can hardly be distinguish from the circular
segment of the circle of curvature on a relatively large segment�

g� Determination of the equations of asymptotes �see ������� p� ���� and the position of the
curve branches related to the asymptotes�
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������� Evolutes and Evolvents
�� Evolute
The evolute is a second curve which is the locus of the centers of circles of curvature of the �rst curve
�see ������� �� p� ����� at the same time it is the envelope of the normals of the �rst curve �see also
������� p� ����� The parametric form of the evolute we can get from �������� �������� ������� for the
center of curvature if xC and yC are considered as running coordinates� If it is possible to eliminate
the parameter �x� t or �� from �������� �������� �������� we get the equation of the evolute in Cartesian
coordinates�

Determine the evolute of the parabola y � x� �Fig ������ From
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X � x � �x� � �x��

�
� ��x�� Y � x� �

 � �x�

�
�

 � �x�

�
follows with X and Y as running

coordinates the evolute Y �


�
� �

�
X

�

����
�

�� Evolvent or Involute
The evolvent of a curve �� is a curve ��� whose evolute is ��� Here every normal PC of the evolvent is a

tangent of the evolute �Fig ������ and the length of arc
�
CC� of the evolute is equal to the increment

of the radius of curvature of the evolvent�
�
CC�� P�C� � PC� �������

These properties show that the evolvent �� can be regarded as the curve traced by the end of a stretched
thread unspooling from ��� A given evolute corresponds to a family of curves� where every curve is
determined by the initial length of the thread �Fig ������
We get the equation of the evolute by the integration of a system of di�erential equations corresponding
to its evolute� For the equation of the evolvent of the circle see ������ p� ���

The catenoid is the evolute of the tractrix� the tractrix is the evolvent of the catenoid �see �����
p� ����

K

�

� ��+ K

�

� ��+

a) b)

Figure ����

a)

b)

c)

d)

Figure ����

������	 Envelope of a Family of Curves

�� Characteristic Point
Consider the one�parameter family of curves with equation

F �x� y� �� � �� ������

Every two in�nitely close curves of this family corresponding to the values of parameter � and � � %�
have points K of nearest approach� Such a point is either a point of intersection of the curves ��� and
�� � %�� or a point of the curve ��� whose distance from the curve �� � %�� along the normal is an
in�nitesimal quantity of higher order than %� �Fig ����a�b�� For %� � the curve ���%�� tends
to the curve ���� where in some cases the point K approaches a limit position� the characteristic point�

�� Geometric Locus of the Characteristic Points of a Family of Curves
With the equation ������ this can be one or more curves� They are formed by the points of near�
est approach or by the characteristic points of the family �Fig ����a�� or they form an envelope of
the family� i�e�� a curve which contacts tangentially every curve of the family �Fig ����b�� Also a
combination of these two cases is possible �Fig ����c�d��

�� Equation of the Envelope
The equation of the envelope can be calculated from ������� where � can be eliminated from the fol�
lowing equation system�

F � ��
�F

��
� �� �������
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Determine the equation of the family of
straight lines arising when the ends of a line seg�
ment AB with jABj � l are sliding along the
coordinate axes �Fig ���
a��
The equation of the family of curves is�

x

l sin�
�

y

l cos�
�  or

F � x cos � � y sin�� l sin� cos� � ��
�F

��
� �x sin��y cos��l cos� ��l sin� � � ��

By eliminating � we have x��� � y��� � l��� as
an envelope� which is an astroid �Fig ���
b�
see also p� ����

y

A

0 xB

l

y

x0

a) b)

Figure ����

����� SpaceCurves

������� Ways to De�ne a Space Curve

�� Coordinate Equations
To de�ne a space curve we have the following possibilities�

a� Intersection of Two Surfaces� F �x� y� z� � �� ��x� y� z� � �� �������

b� Parametric Form� x � x�t�� y � y�t�� z � z�t�� �������

with t as an arbitrary parameter� mostly we use t � x� y or z�

c� Parametric Form� x � x�s�� y � y�s�� z � z�s�� ������a�

with the arc length s between a �xed point A and the running point P �

s �

tZ
t�

vuut�dx

dt

��
�

�
dy

dt

��
�

�
dz

dt

��
dt� ������b�

�� Vector Equations
With �r as radius vector of an arbitrary point of the curve �see ������ �� p� �� the equation �������
can be written in the form

�r � �r�t�� where �r�t� � x�t��i� y�t��j� z�t��k� �������

and ������a� in the form

�r � �r�s�� where �r�s� � x�s��i� y�s��j� z�s��k� �������

�� Positive Direction
This is the direction of increasing parameter t for a curve given in the form ������� and �������� for
������a� and ������� it is the direction in which the arclength increases�

������� Moving Trihedral
�� De�nitions
We can de�ne three lines and three planes at every point P of a space curve� apart from singular points�
They intersect each other at the point P � and they are perpendicular to each other �Fig������

� Tangent is the limiting position of the secants PN for N  P �Fig������

� Normal Plane is a plane perpendicular to the tangent� Every line passing through the point P
and contained by this plane is called a normal of the curve at the point P �

� OsculatingPlane is the limiting position of the planes passing through three neighboring points
M � P and N � for N  P and M  P � The tangent line is contained by the osculating plane�
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� Principal Normal is the intersection line of the normal and the osculating plane� i�e�� it is the
normal contained by the osculating plane�

� Binormal is the line perpendicular to the osculating plane�

� Rectifying Plane is the plane spanned by the tangent and binormal lines�

� Moving Trihedral The positive directions on the lines tangent� principal normal and binormal
are de�ned as follows�

a� On the tangent line it is given by the positive direction of the curve� the unit tangent vector �t has
this direction�

b� On the principal normal it is given by the sign of the curvature of the curve� and given by the unit
normal vector �n�

c� On the binormal it is de�ned by the unit vector

�b � �t� �n� �������

where the three vectors�t� �n� and �b form a right�handed rectangular coordinate system� which is called
the moving trihedral�

�� Position of the Curve Related to theMoving Trihedral

For the usual points of the curve the space curve is on one side of the rectifying plane at the point P � and
intersects both the normal and osculating planes �Fig����a�� The projections of a small segment of
the curve at the point P on the three planes have approximately the following shapes�

� On the osculating plane it is similar to a quadratic parabola �Fig����b��

� On the rectifying plane it is similar to a cubic parabola �Fig����c��

� On the normal plane it is similar to a semicubical parabola �Fig����d��

If the curvature or the torsion of the curve are equal to zero at P or if P is a singular point� i�e�� if
x��t� � y��t� � z��t� � � hold� then the curve may have a di�erent shape�

c) d)
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b

a)
n

b)

n

t t

b b

n

Figure �����
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�� Equations of the Elements of the Moving Trihedral
� The Curve is De�ned in the Form ������ For the tangent see �������� for the normal plane
see ��������

X � x

�F

�y

�F

�z
��

�y

��

�z

�
Y � y

�F

�z

�F

�x
��

�z

��

�x

�
Z � z

�F

�x

�F

�y
��

�x

��

�y

� �������
X � x Y � y Z � z
�F

�x

�F

�y

�F

�z
��

�x

��

�y

��

�z

� �� �������

Here x� y� z are the coordinates of the point P of the curve and X� Y� Z are the running coordinates of
the tangent or the normal plane� the partial derivatives belong to the point P �
� The Curve is De�ned in the Form ������ ����� In Table ��� the coordinate and vector
equations belonging to the point P are given with x� y� z and also with�r� The running coordinates and

the radius vector of the running point are denoted by X� Y� Z and �R� The derivatives with respect to
the parameter t refer to the point P �
� The Curve is De�ned in the Form �����a� ����� If the parameter is the arclength s� for
the tangent and binormal� and for the normal and osculating plane the same equations are valid as in
case �� we just replace t by s� The equations of the principal normal and the rectifying plane will be
simpler �Table �����

������� Curvature and Torsion

�� Curvature of a Curve
The curvature of a curve at the point P is a number which de�
scribes the deviation of the curve from a straight line in the very
close neighborhood of this point�
The exact de�nition is �Fig������

K � lim
�
PN��

������ %�t
�
PN

������ �

�����d�tds
����� � ������

t+
t∆

∆t

N

t+
t∆

t
P

Figure �����

� Radius of Curvature The radius of curvature is the reciprocal value of the curvature�

R �


K
� �������

� Formulas to calculateK and R
a� If the curve is de�ned in the form ������a��

K �

�����d��rds�

����� �
q
x��� � y��� � z��� � �������

where the derivatives are with respect to s�

b� If the curve is de�ned in the form ��������

K� �

�
d�r

dt

�� �
d��r

dt�

��
�
�
d�r

dt

d��r

dt�

��
������
�
d�r

dt

��������
� �

�x�� � y�� � z����x��� � y��� � z����� �x�x�� � y�y�� � z�z����

�x�� � y�� � z����
�

�������

The derivatives are calculated here with respect to t�
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Table ���� Vector and coordinate equations of accompanying con�gurations of a space curve

Vector equation Coordinate equation

Tangent�

�R � �r� �
d�r

dt

X � x

x�
�

Y � y

y�
�

Z � z

z�

Normal plane�

��R��r�
d�r

dt
� � x��X � x� � y��Y � y� � z��Z � z� � �

Osculating plane�

��R��r�
d�r

dt

d��r

dt�
� � �

������
X � x Y � y Z � z

x� y� z�

x�� y�� z��

������ � �

Binormal�

�R � �r� �

�
d�r

dt
� d��r

dt�

�
X � x���� y� z�

y�� z��
���� �

Y � y���� z� x�

z�� x��
���� �

Z � z���� x� y�

x�� y��
����

Rectifying plane�

��R��r�
d�r

dt

�
d�r

dt
� d��r

dt�

�
� � �

������
X � x Y � y Z � z

x� y� z�

l m n

������ � ��

with l � y�z�� � y��z��
m � z�x�� � z��x��
n � x�y�� � x��y�

Principal normal�

�R � �r� �
d�r

dt
�
�
d�r

dt
� d��r

dt�

�
X � x���� y� z�m n

���� �
Y � y���� z� x�n l

���� �
Z � z����x� y�l m

����
�r position vector of the space curve� �R position vector of the accomp� con�guration
� For the mixed product of three vectors see ������� p� ��

Tabelle ���� Vector and coordinate equations of accompanying con�gurations
as functions of the arclength

Element of trihedral Vector equation Coordinate equation

Principal normal �R � �r� �
d��r

ds�
X � x

x��
�

Y � y

y��
�

Z � z

z��

Rectifying plane ��R��r�
d��r

ds�
� � x���X � x� � y���Y � y� � z���Z � z� � �

�r position vector of the space curve� �R position vector of the accomp� con�guration
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� Helix The equations

x � a cos t� y � a sin t� z � bt �������

describe a so�called helix �Fig����� as a right screw � If the observer is
looking from the positive direction of the z�axis� which is at the same time
the axis of the screw� then the screw climbs in a counter�clockwise direction�
A helix winding itself in the opposite orientation is called a left screw�

Determine the curvature of the helix �������� We replace the parameter

t by s � t
p
a� � b�� Then we have x � a cos

sp
a� � b�

� y � a sin
sp

a� � b�
�

z �
bsp

a� � b�
� and according to �������� K �

a

a� � b�
� R �

a� � b�

a
� Both

quantities K and R are constants�

z

y
x

0
t

P

P'A

Figure �����

Another method� without the parameter transformation in �������� produces the same result�

�� Torsion of a Curve

The torsion of a curve at the point P is a number which describes the de�
viation of the curve from a plane curve in the very close neighborhood of
this point�
The exact de�nition is �Fig������

T � lim
�
PN��

������%
�b

�
PN

������ �

������d
�b

ds

������ � �������

The radius of torsion is

 �


T
� �������

b

b+ b∆

N

P

∆b

Figure �����

� Formulas for Calculating T and �
a� If the curve is de�ned in the form ������a��

T �


 
� R�

�
d�r

ds

d��r

ds�
d��r

ds�

��
�

x� y� z�

x�� y�� z��

x��� y��� z���

�x��� � y��� � z����
� �������

where the derivatives are taken with respect to s�
b� If the curve is de�ned in the form ��������

T �


 
� R�

d�r

dt

d��r

dt�
d��r

dt�������
�
d�r

dt

��������
�

�

� R�

x� y� z�

x�� y�� z��

x��� y��� z���

�x�� � y�� � z����
� �������

where R should be calculated by ������� and ��������
The torsion calculated by �������� ������� can be positive or negative� In the case T � � an observer
standing on the principal normal parallel to the binormal sees that the curve has a right turn� in the
case T � � it has a left turn�

The torsion of a helix is constant� For the right screw R or the left screw L the torsion is

�For the mixed product of three vectors see �������� ��� p� ��
�
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TR �

�
a� � b�

a

��
�a sin t a cos t b
�a cos t �a sin t �
a sin t �a cos t �

 ��a sin t�� � �a cos t�� � b�!�
�

b

a� � b�
�  �

a� � b�

b
� TL � � b

a� � b�
�

�� Frenet Formulas
We can express the derivatives of the vectors �t� �n� and �b by the Frenet formulas�

d�t

ds
�

�n

R
�

d�n

ds
� �

�t

R
�

�b

 
�

d�b

ds
� ��n

 
� �������

Here R is the radius of curvature� and  is the radius of torsion�

�� Darboux Vector
The Frenet formulas ������� can be represented in the clearly arranged form

d�t

ds
� �d��t�

d�n

ds
� �d� �n�

d�b

ds
� �d� �b� ������

Here �d is the Darboux vector� which has the form

�d �


 
�t�



R
�tb� �������

Remarks�
� By the help of the Darboux vector the Frenet formulas can be interpreted in the sense of kinematics
�see  ���!��

� The modulus of the Darboux vector equals the so�called total curvator � of a space curve�

� �

s


R�
�



 �
� j�dj� �������

����� Surfaces

������� Ways to De�ne a Surface

�� Equation of a Surface
Surfaces can be de�ned in di�erent ways�

a� Implicit Form � F �x� y� z� � �� �������

b� Explicit Form � z � f�x� y�� �������

c� Parametric Form � x � x�u� v�� y � y�u� v�� z � z�u� v�� �������

d� Vector Form � �r � �r�u� v� with �r � x�u� v��i� y�u� v��j� z�u� v��k� �������

If the parameters u and v run over all allowed values we get the coordinates and the radius vectors of
all points of the surface from ������� and �������� The elimination of the parameters u and v from the
parametric form ������� yields the implicit form �������� The explicit form ������� is a special case of
the parametric form with u � x and v � y�

The equation of the sphere in Cartesian coordinates� parametric form� and vector form �Fig ������

x� � y� � z� � a� � �� ������a� x � a cos u sin v� y � a sin u sin v� z � a cos v� ������b�

�r � a�cos u sin v�i� sinu sin v�j� cos v�k�� ������c�
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�� Curvilinear Coordinates on a Surface
If a surface is given in the form ������� or �������� and we change the values of the parameter u while
the other parameter v � v� is �xed� the points �r�x� y� z� describe a curve �r � �r�u� v�� on the surface�
If we substitute for v di�erent but �xed values v � v�� v � v�� � � � � v � vn one after the other� we get a
family of curves on the surface� Because when moving along a curve with v � const only u is changing�
we call this curve the u�line �Fig ������ Analogously we get another family of curves� the v�lines� by
varying v and keeping u � const �xed with u�� u�� � � � � un� This way we de�ne a net of coordinate lines
on the surface �������� where the two �xed numbers u � ui and v � vk are the curvilinear or Gauss
coordinates of the point P on the surface�
If a surface is given in the form �������� the coordinate lines are the intersection curves of the surface
with the planes x � const and y � const� With equations in implicit form F �u� v� � � or with the
parametric equations u � u�t� and v � v�t� of these coordinates� we can de�ne curves on the surfaces�

In the parametric equations of the sphere ������b�c� u means the geographical longitude of a point
P � and v means its polar distance� The v lines are here the meridians APB� the u lines are the parallel
circles CPD �Fig ������

������� Tangent Plane and Surface Normal
�� De�nitions
� Tangent Plane The precise general mathematical de�nition of the tangent plane is rather com�
plicated� so we restrict our investigation to the case� when the surface is de�ned by two parameters�
Suppose� for a neighborhood of the point P �x� y� z�� the mapping �u� v�  �r�u� v� is invertible� the

partial derivatives �ru �
��r

�u
and �rv �

��r

�v
are continuous� and not parallel to each other� Then we

call P �x� y� z� a regular point of the surface� If P is regular� then the tangents of all curves passing
through P � and having a tangent here� are in the same plane� and this plane is called the tangent plane
of the surface at P � If this happens� the partial derivatives �ru� �rv are parallel �or zero� only for certain
parametrizations of the surface� If they are parallel for every parametrization� the point is called a
singular point �see �� p� �����

v2 v1 v0

u2

u1

u0

F(u,v)=0P

Figure �����
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B
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Pru

rv

surface normal

v-line
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Figure �����

� Surface Normal The line perpendicular to the tangent plane going through the point P is called
surface normal at the point P �Fig ������
� Normal Vector The tangent plane is spanned by two vectors� by the tangent vectors

�ru �
��r

�u
� �rv �

��r

�v
������a�

of the u� and v�lines� The vector product of the tangent vectors �ru � �rv is a vector in the direction of
the
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surface normal� Its unit vector

�N� �
�ru ��rv
j�ru ��rv j ������b�

is called the normal vector� Its direction to one or other side of the surface depends on which variable
is the �rst and which one is the second coordinate among u and v�

�� Equations of the Tangent Plane and the Surface Normal �see Table ����	
A� For the sphere with equation ������a� we get

a� as tangent plane� �x�X � x� � �y�Y � y� � �z�Z � z� � � or xX � yY � zZ � a� � �� ������a�

b� as surface normal�
X � x

�x
�

Y � y

�y
�

Z � z

�z
or

X

x
�

Y

y
�

Z

z
� ������b�

B� For the sphere with equation ������b� we get

a� as tangent plane� X cos u sin v � Y sin u sin v � Z cos v � a� ������c�

b� as surface normal�
X

cos u sin v
�

Y

sin u sin v
�

Z

cos v
� ������d�

�� Singular Points of the Surface
If for a point with coordinates x � x�� y � y�� z � z� of the surface with equation ������� all the
equalities

�F

�x
� ��

�F

�y
� ��

�F

�z
� �� F �x� y� z� � � ������

are ful�lled� i�e�� if every �rst�order derivative is zero� then the point P �x�� y�� z�� is called a singular
point� All tangents going through here do not form a plane� but a cone of second order with the equation

��F

�x�
�X � x��

� �
��F

�y�
�Y � y��

� �
��F

�z�
�Z � z��

� � �
��F

�x�y
�X � x���Y � y��

� �
��F

�y�z
�Y � y���Z � z�� � �

��F

�z�x
�Z � z���X � x�� � �� �������

where the derivatives belong to the point P � If also the second derivatives are equal to zero� we have a
more complicated type of singularity� Then the tangents form a cone of third or even higher order�

������� Line Elements of a Surface

�� Di
erential of Arc
Consider a surface given in the form ������� or �������� Let P �u� v� an arbitrary point and N�u�du� v�

dv� another one close to P � both on the surface� The arclength of the arc segment
�
PN on the surface

can be approximately calculated by the di�erential of an arc or the line element of the surface with the
formula

ds� � E du� � �F du dv � Gdv�� ������a�

where the three coe�cients

E � �r �u �

�
�x

�u

��
�

�
�y

�u

��
�

�
�z

�u

��
� F � �ru�rv �

�x

�u

�x

�v
�

�y

�u

�y

�v
�

�z

�u

�z

�v
�

G � �r �v �

�
�x

�v

��
�

�
�y

�v

��
�

�
�z

�v

��
������b�

are calculated at the point P � The right�hand side ������a� is called the �rst quadratic fundamental
form of the surface�
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A� For the sphere given in the form ������c� we have�

E � a� sin� v� F � �� G � a�� ds� � a��sin�v du� � dv��� �������

B� For a surface given in the form ������� we get

E �  � p�� F � pq� G �  � q� with p �
�z

�x
� q �

�z

�y
� �������

Table ���� Equations of the tangent plane and the surface normal

Type of equation Tangent plane Surface normal

��	����
�F

�x
�X � x� �

�F

�y
�Y � y�

�
�F

�z
�Z � z� � �

X � x

�F

�x

�
Y � y

�F

�y

�
Z � z

�F

�z

��	��� Z � z � p�X � x� � q�Y � y�
X � x

p
�

Y � y

q
�

Z � z

��

��	����

����������

X � x Y � y Z � z
�x

�u

�y

�u

�z

�u
�x

�v

�y

�v

�z

�v

����������
� �

X � x��������
�y

�u

�z

�u
�y

�v

�z

�v

��������
�

Y � y��������
�z

�u

�x

�u
�z

�v

�x

�v

��������
�

Z � z��������
�x

�u

�y

�u
�x

�v

�y

�v

��������
��	����

��R��r� �ru �rv � � �

or ��R��r��N � �

�R � �r� �� �ru � �rv�

or �R � �r� ��N

In this table x� y� z and �r are the coordinates and radius vector of the points of the curve P �

X�Y�Z and �R are the running coordinates and radius vectors of the points of the tangent

plane and surface normal� furthermore p �
�z

�x
� q �

�z

�y
and �N is the normal vector	

� For the mixed product of three vectors see �		�	�
 ��
 p	 ���

�� Measurement on the Surface
� The Arclength of a surface curve u � u�t�� v � v�t� for t� � t � t� is calculated by the formula

L �

t�Z
t�

ds �

t�Z
t�

vuutE

�
du

dt

��
� �F

du

dt

dv

dt
� G

�
dv

dt

��
dt� �������

r2 r1P �

v-line

u-line

Figure �����

� The Angle Between Two Curves �r� � �r�u��t�� v��t�� and �r� �
�r�u��t�� v��t�� on the surface�r � �r�u� v� is the angle between their tangents

with the direction vectors��r� and��r� �Fig ���
�� It is given by the formula

cos� �
��r���r�q
��r
�

�
��r
�

�

�
E��u

�

�
��u
�

� � F ���u���v� � ��v���u�� � G��v���v�q
E��u

�

� � �F��u���v� � G��v
�

�

q
E��u

�

� � �F��u���v� � G��v
�

�

� �������
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Here the coe�cients E� F and G are calculated at the point P and ��u�� ��u�� ��v� and ��v� represent the �rst
derivatives of u��t�� u��t�� v��t� and v��t�� calculated for the value of the parameter t at the point P �
If the numerator of ������� vanishes� the two curves are perpendicular to each other� The condition of
orthogonality for the coordinate lines v � const and u � const is F � ��
� The Area of a Surface Patch S bounded by an arbitrary curve which is on the surface can be
calculated by the double integral

S �
Z
�S�

dS ������a� with dS �
p
EG� F �du dv� ������b�

dS is called the surface element or element of area�

The calculation of length� angle� and area on a surface is possible with ������� ������ �����a�b� if the
coe�cients E� F � and G of the �rst fundamental form are known� So the �rst quadratic fundamental
form de�nes a metric on the surface�

�� Applicability of Surfaces by Bending
If a surface is deformed by bending� without stretching� compression or tearing� then its metric remains
unchanged� In other words� the �rst quadratic fundamental form is invariant under bendings� Two
surfaces having the same �rst quadratic fundamental form can be rolled onto each other�

n

N P

C Γ

Q Q

Cnorm

N
P

C

nN

�

N

P

C1

Q

C2

Cnorm

N

a) b) c)

Figure �����

������� Curvature of a Surface

�� Curvatures of Curves on a Surface
If di�erent curves � are drawn through a point P of the surface �Fig ������ their radii of curvature
� at the point P are related as follows�
� The Radius of Curvature � of a curve � at the point P is equal to the radius of curvature of a
curve C� which is the intersection of the surface and the osculating plane of the curve � at the point P
�Fig ����a��
� Meusnier�s Theorem For every plane section curve C of a surface �Fig ����b� the radius of
curvature can be calculated by the formula

� � R cos��n� �N�� �������

Here R is the radius of curvature of the normal section Cnorm� which goes through the same tangent

NQ as C and also contains the unit vector �N of the surface normal� �� �n�N� is the angle between the

unit vector �n of the principal normal of the curve C and the unit vector �N of the surface normal� The

sign of � in ������� is positive� if �N is on the concave side of the curve Cnorm and negative otherwise�
� Euler�s Formula The curvature of a surface for every normal section Cnorm at the point P can
be calculated by the Euler formula



R
�

cos� �

R�
�

sin� �

R�
� �������
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where R� and R� are the radii of principal curvatures �see ������a�� and � is the angle between the
planes of the section C and C� �Fig ����c��

�� Radii of Principal Curvature
The radii of principal curvatures of a surface are the radii with maximum and minimum values� We can
calculate them by the principal normal sectionsC� and C� �Fig ����c�� The planes of C� and C� are

perpendicular to each other� their directions are de�ned by the value
dy

dx
which can be calculated from

the quadratic equation

 tpq � s� � q��!

�
dy

dx

��
�  t� � p��� r� � q��!

dy

dx
�  s� � p��� rpq! � �� ������

where the parameters p� q� r� s� t are de�ned in ������b�� If the surface is given in the explicit form
�������� R� and R� are the roots of the quadratic equation

�rt� s��R� � h �pqs� � � p��t� � � q��r!R � h� � � with ������a�

p �
�z

�x
� q �

�z

�y
� r �

��z

�x�
� s �

��z

�x�y
� t �

��z

�y�
and h �

q
 � p� � q� � ������b�

The signs of R� R� and R� can be determined by the same rule as in ��������
If the surface is given in vector form �������� then instead of ������ and ������a� we have the corre�
sponding equations

�GM � FN�

�
dv

du

��
� �GL� EN�

dv

du
� �FL� EM� � �� ������a�

�LN �M��R� � �EN � �FM � GL�R � �EG� F �� � �� ������b�

with the coe�cients L� M � N of the second quadratic fundamental form� They are given by the equal�
ities

L � �ruu �R �
dp

EG� F �
� M � �ruv �R �

d�p
EG� F �

� N � �rvv �R �
d��p

EG� F �
� ������c�

Here the vectors �ruu� �ruv� and �rvv are the second�order partial derivatives of the radius vector �r with
respect to the parameters u and v� In the numerators there are the determinants

d �

��x

�u�
��y

�u�
��z

�u�

�x

�u

�y

�u

�z

�u
�x

�v

�y

�v

�z

�v

� d� �

��x

�u�v

��y

�u�v

��z

�u�v
�x

�u

�y

�u

�z

�u
�x

�v

�y

�v

�z

�v

� d�� �

��x

�v�
��y

�v�
��z

�v�

�x

�u

�y

�u

�z

�u
�x

�v

�y

�v

�z

�v

� ������d�

The expression

Ldu� � �Mdudv � Ndv� ������e�

is called the second quadratic fundamental form� It contains the curvature properties of the surface�
Lines of curvature are the curves on the surface which have the direction of the principal normal section
at every point� We can get their equations by integrating ������ or ������a��

�� Classi�cation of the Points of Surfaces
� Elliptic and Umbilic Points If at a point P the radii of principal curvature R� and R� have the
same sign� then every point of the surface is on the same side of the tangent plane in a close neighborhood
of this point� and we call P an elliptic point �Fig ����a� on the surface� This fact can be expressed
analytically by the relation

LN �M� � �� ������a�
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� Circular or Umbilic Point This is the point P of the surface where the radii of principal
curvature at this point are equal

R� � R�� ������b�

Then for the normal sections R � const is valid�
� Hyperbolic Point In the case of di�erent signs of the radii R� and R� of the principal curvature
the concave sides of the principal normal sections are in opposite directions� The tangent plane inter�
sects the surface� so the surface has a saddle form in the neighborhood of P � P is called a hyperbolic
point �Fig ����b�� the analytic mark of this point is the relation

LN �M� � �� ������c�

� Parabolic Point If one of the two radii of principal curvature R� or R� is equal to�� then either
one of the principal normal sections has an in�ection point here� or it is a straight line� At P there is a
parabolic point �Fig ����c� of the surface with the analytic mark

LN �M� � �� ������d�

All the points of an ellipsoid are elliptic� of a hyperboloid of one sheet are hyperbolic� and of a cylinder
are parabolic�

�� Curvature of a Surface
Two quantities are used mostly to characterize the curvature of a surface�

� Mean Curvature of a surface at the point P � H �


�

�


R�

�


R�

�
� ������a�

� Gauss Curvature of a surface at the point P � K �


R�R�
� ������b�

A� For the circular cylinder with the radius a these are H �


�a
and K � ��

B� For elliptic points K � �� for hyperbolic points K � �� and for parabolic points K � � hold�
� Calculation ofH and K� if the surface is given in the form z � f�x� y��

H �
r� � q��� �pqs � t� � p��

�� � p� � q�����
� ������a� K �

rt� s�

� � p� � q���
� ������b�

For the meaning of p� q� r� s� t see ������b��

�� Classi�cation of the Surfaces According to their Curvature
� Minimal Surfaces are surfaces with a zero mean curvature H at every point� i�e�� with R� � �R��

� Surfaces of Constant Curvature have a constant Gauss curvature K � const�

A� K � �� for instance the sphere�
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B� K � �� for instance the pseudosphere �Fig ������ i�e�� the
surface obtained by rotating the tractrix around the symmetry axis
�Fig ��
��

������� Ruled Surfaces andDevelopable Surfaces

�� Ruled Surface
A surface is called a ruled surface if it can be represented by moving a
line in space�

�� Developable Surface
If a ruled surface can be developed upon a plane� i�e�� rolled out without
stretching or contracting any part of it� we call it a developable surface�
Not every ruled surface is developable�

Figure �����

Developable surfaces have the following characteristic properties�

a� For all points the Gauss curvature is equal to zero� and

b� if the surface is given in the explicit form z � f�x� y� the conditions of developability are ful�lled�

a� K � �� b� rt� s� � �� �������

For the meaning of r� t� and s see ������b��

A� The cone �Fig ��
�� and cylinder �Fig ��
�� are developable surfaces�

B� The hyperboloid of one sheet �Fig ��
�� and hyperbolic paraboloid �Fig ��
�� are ruled
surfaces but they cannot be developed upon a plane�

������� Geodesic Lines on a Surface

�� Concept of Geodesic Line
�see also ������ �� p� ���� A theoretic curve of the surface can go through every point P �u� v� of the

surface in every direction determined by the di�erential quotient
dv

du
� and it is called a geodesic line� It

has the same role on the surface as the straight line on the plane� and it has the following properties�

� Geodesic lines are the shortest curves between two points on the surface�

� If a material point is moving on a surface drawn by another material point on the same surface� and
no other forces have in�uence on it� then it is moving along a geodesic line�

� If an elastic thread is stretched on a given surface� then it has the shape of a geodesic line�

�� De�nition
A geodesic line on a surface is a curve such that its principal normal at every point has the same direction
as the surface normal�

On a circular cylinder the geodesic lines are circular helices�

�� Equation of the Geodesic Line
If the surface is given in the explicit form z � f�x� y�� the di�erential equation of the geodesic lines is

� � p� � q��
d�y

dx�
� pt

�
dy

dx

��
� ��ps� qt�

�
dy

dx

��
� �pr � �qs�

dy

dx
� qr� �������

If the surface is given in parametric form �������� then the di�erential equation of the geodesic lines is
fairly complicated� For the meaning of p� q� r� s� and t see ������b��
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��� Matrices
����� Notion ofMatrix

�� Matrices A of Size �m�n	 or Brie�y A�m�n�

are systems of m times n elements� e�g�� real or complex numbers� or functions� derivatives� vectors�
arranged in m rows and n columns�

A � �aij� �

�BBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
���

���
���

���
am� am� � � � amn

�CCCA
� st row
� �nd row

���
� m�th row

����

� � �
st �nd n�th column�

With the notion size of a matrix matrices are classi�ed according to their number of rows m and number
of columns n� A of size �m�n�� A matrix is called a square matrix if the number of rows and columns is
equal� otherwise it is a rectangular matrix �

�� Real and ComplexMatrices
Real matrices have real elements� complex matrices have complex elements� If a matrix has complex
elements

a�� � ib�� ����a�

it can be decomposed into the form

A� iB ����b�

where A and B have real elements only�
If a matrix A has complex elements� then its conjugate complex matrix A� has elements

a��� � Re �a���� i Im �a���� ����c�

�� Transposed MatricesAT

Changing the rows and columns of a matrix A of size �m�n� we get the transposed matrix AT� This
has the size �n�m� and

�a���T � �a��� �����

is valid�

�� AdjointMatrices
The adjoint matrix AH of a complex matrixA is the transpose of its conjugate complex matrixA� �see
also ������ p� �����

AH � �A��T� �����

�� ZeroMatrix
A matrix � is called a zero matrix if it has only zero elements�

� �

�BBB�
� � � � � �
� � � � � �
���

���
���

���
� � � � � �

�CCCA � �����
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����� SquareMatrices

�� De�nition
Square matrices have the same number of rows and columns� i�e�� m � n�

A � A�n�n� �

�B� a�� � � � a�n
���

� � �
���

an� � � � ann

�CA � �����

The elements a�� of a matrix A in the diagonal from the left upper corner to the right lower one are
the elements of the main diagonal� Their notation is a��� a��� � � � � ann� i�e�� they are all the elements a��
with � � 
�

�� Diagonal Matrices
A square matrix D is called a diagonal matrix if all of the non�diagonal elements are equal to zero�

a�� � � for � �� 
 � D �

�BBB�
a�� � � � � �
� a�� � � � �
���

���
���

���
� � � � � ann

�CCCA �

�BBB�
a�� O

a��
� � �

O ann

�CCCA � �����

�� ScalarMatrix
A diagonal matrix S is called a scalar matrix if all the diagonal elements are the same real or complex
number c�

S �

�BBB�
c � � � � �
� c � � � �
���

���
���

���
� � � � � c

�CCCA � �����

�� Trace or Spur of a Matrix
For a square matrix� the trace or spur of the matrix is de�ned as the sum of the main diagonal elements�

Tr �A� � a�� � a�� � � � � � ann �
nX

���

a��� �����

�� SymmetricMatrices
A square matrix A is symmetric if it is equal to its own transpose�

A � AT� �����

For the elements lying in symmetric positions with respect to the main diagonal

a�� � a�� ����

is valid�

� NormalMatrices
satisfy the equality

AHA � AAH� �����

�For the product of matrices see ����� p� �����

�� Antisymmetric or Skew�SymmetricMatrices
are the square matrices A with the property�

A � �AT� ����a�

For the elements a�� of an antisymmetric matrix the equalities

a�� � �a��� a�� � � ����b�

are valid� so the trace of an antisymmetric matrix vanishes�

Tr �A� � �� ����c�
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The elements lying in symmetric positions with respect to the main diagonal di�er from each other only
in sign�
Every square matrixA can be decomposed into the sum of a symmetric matrixAs and an antisymmetric
matrix Aas�

A � As �Aas with As �


�
�A�AT�� Aas �



�
�A�AT�� ����d�

�� HermitianMatrices or Self�AdjointMatrices
are square matrices A equal to their own adjoints �

A � �A��T � AH� �����

Over the real numbers the concepts of symmetric and Hermitian matrices are the same� The determi�
nant of a Hermitian matrix is real�

�� Anti�Hermitian or Skew�HermitianMatrices
are the square matrices equal to their negative adjoints�

A � ��A��T � �AH� ����a�

For the elements a�� and the trace of an anti�Hermitian matrix the equalities

a�� � �a��� � a�� � �� Tr �A� � � ����b�

are valid� Every square matrix A can be decomposed into a sum of a Hermitian matrix Ah and an
anti�Hermitian matrix Aah�

A � Ah �Aah with Ah �


�
�A�AH�� Aah �



�
�A�AH�� ����c�

��� IdentityMatrix I
is a diagonal matrix such that every diagonal element is equal to  and all of the non�diagonal elements
are equal to zero�

I �

�BBB�
 � � � � �
�  � � � �
���

���
���

���
� � � � � 

�CCCA � �	��� with 	�� �
�

� for � �� 
�
 for � � 
�

�����

The symbol 	�� is called the Kronecker symbol �

��� Triangular Matrix
� Upper Triangular Matrix� U� is a square matrix such that all the elements under the main
diagonal are equal to zero�

R � �r��� with r�� � � for � � 
� �����

� Lower Triangular Matrix� L� is a square matrix such that all the elements above the main
diagonal are equal to zero�

L � �l��� with l�� � � for � � 
� �����

����� Vectors
Matrices of size �n� � are one�column matrices or column vectors of dimension n� Matrices of size �� n�
are one�row matrices or row vectors of dimension n�

Column Vector� a �

�BBB�
a�
a�
���
an

�CCCA � ����a� Row Vector� aT � �a�� a�� � � � � an�� ����b�

By transposing� a column vector is changed into a row vector and conversely� A row or column vector
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of dimension n can determine a point in n�dimensional Euclidean space IRn�
The zero vector is denoted by � or �T respectively�

����� ArithmeticalOperations withMatrices

�� Equality of Matrices
Two matrices A � �a��� and B � �b��� are equal if they have the same size and the corresponding
elements are equal�

A � B� when a�� � b�� for � � � � � � � m� 
 � � � � � � n� ������

�� Addition and Subtraction
Matrices can be added or subtracted only if they have the same size� We get the sum�di�erence of two
matrices by adding�subtracting the corresponding elements�

A�B � �a���� �b��� � �a�� � b���� ����a��
 � �
� � �

�
�
�

� �� �
�  �

�
�
�

� �� �
� � �

�
�

For the addition of matrices the commutative law and the associative law are valid�

a� Commutative Law� A�B � B�A� ����b�

b� Associative Law� �A�B� �C � A� �B�C�� ����c�

�� Multiplication of aMatrix by a Number
A matrix A of size �m�n� is multiplied by a real or complex number � by multiplying every element of
A by ��

�A � � �a��� � ��a���� �����a�

�
�

 � �
� � �

�
�
�

� � �
� �� �

�
�

From �����a� it is obvious that we can factor out a constant multiplier contained by every element of
a matrix� For the multiplication of a matrix by a scalar the commutative� associative and distributive
laws for multiplication are valid�

a� Commutative Law� �A � A�� �����b�

b� Associative Law� ���A� � ����A� �����c�

c� Distributive Law� ��� ��A � �A� �A� ��A�B� � �A� �B� �����d�

�� Division of a Matrix by a Number
The division of a matrix by a scalar � �� � is the same as multiplication by � � ���

�� Multiplication of TwoMatrices
� The Product AB of two matrices A and B can be calculated only if the number of columns of
the factor A on the left�hand side is equal to the number of rows of the factorB on the right�hand side�
IfA is a matrix of size �m�n�� then the matrixBmust have size �n� p�� and the productAB is a matrix
C � �c�� of size �m� p�� The element c� is equal to the scalar product of the ��th row of the factor A
on the left with the ��th column of the factor B on the right�

AB � �
nX
���

a��b�� � �c�� � C �� � � �� � � � � m� � � � �� � � � � p�� ������

� Inequality ofMatrix Products Even if both productsAB andBA exist� usuallyAB �� BA�
i�e�� in general the commutative law for multiplication is not valid� If the equality AB � BA holds�
then we say that the matrices A and B are commutable or commute with each other�
� Falk Scheme Multiplication of matrices AB � C can be performed using the Falk scheme
�Fig ���� The element c� of the product matrix C appears exactly at the intersection point of
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the ��th row of A with the ��th column of B�

Multiplication of the matrices A����� and B����� is shown in Fig �� using the Falk scheme�

p

n
n

m A A B

B

Figure ��

B

ABA

23
1-5
30

1
15
26

-3
11

-12

10-1
4-12 4
731

Figure ���

� Multiplication of the Matrices K� and K� with Complex Elements For multiplication of
two matrices with complex elements we can use their decompositions into real and imaginary parts
according to ����b�� K� � A� � iB�� K� � A� � iB�� Here A��A��B��B� are real matrices� After
this decomposition� the multiplication results in a sum of matrices whose terms are products of real
matrices�

�A� iB��A� iB� � A� �B� � i �BA�AB�� Of course when multiplying these matrices it
must be considered that the commutative law for multiplication is not valid in general� i�e�� the ma�
trices A and B do not usually commute with each other�

� Scalar and Dyadic Product of Two Vectors
If the vectors a and b are considered as one�row and one�column matrices� respectively� then there are
two possibilities to multiply them according to the rules of matrix multiplication�
If a has size �� n� and b has size �n� � then their product has size �� �� i�e� it is a number� It is called
the scalar product of two vectors� If conversely� a has size �n� � and b has size �� m�� then the product
has size �n�m�� i�e�� it is a matrix� This matrix is called the dyadic product of the two vectors�
� Scalar Product of Two Vectors The scalar product of a row vector aT � �a�� a�� � � � � an� with
a column vector b � �b�� b�� � � � � bn�T � both having n elements � is de�ned as the number

aTb � bTa � a�b� � a�b� � � � �� anbn �
nX

���

a�b�� ������

The commutative law for multiplication is not valid for a product of vectors in general� so we must keep
the exact order of aT and b� If the order of multiplication is reversed� then the product baT is a dyadic
product�
� Dyadic Product or Tensor Product of TwoVectors The dyadic product of a column vector
a � �a�� a�� � � � � an�T of dimension n with a row vector bT � �b�� b�� � � � � bm� of dimension m is de�ned
as the following matrix�

abT �

�BBB�
a�b� a�b� � � � a�bm
a�b� a�b� � � � a�bm

���
���

���
���

anb� anb� � � � anbm

�CCCA ������

of size �n�m�� Also here the commutative law for multiplication is not valid in general�
� Hints on the Notion of Vector Products of Two Vectors In the domain of multi�vectors
or alternating tensors there is a so�called outer product whose three�dimensional version is the well�
known vector product or cross product �see ������� �� p� �� ��� We do not discuss the outer product
of multi�vectors of higher rank�

�� Rank of a Matrix
� De�nition In a matrix A the number r of linearly independent column vectors is equal to the
number of linearly independent row vectors �see �������� p� ���� This number r is called the rank of
the matrix and it is denoted by rank �A� � r�
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� Statements about the Rank of a Matrix
a� Because in a vector space of dimension m there exist no more than m linearly independent m�
dimensional row or column vectors �see ������� �� p� ����� the rank r of a matrix A of size �m�n�
cannot be greater� than the smaller of m and n�

rank �A�m�n�� � r � min �m�n�� �����a�

b� A square matrix A�n�n� is called a regular matrix if

rank �A�n�n�� � r � n� �����b�

A square matrix of size �n� n� is regular if and only if its determinant di�ers from zero� i�e�� detA �� �
�see ������ �� p� ����� Otherwise it is a singular matrix �

c� Consequently for the rank of a singular square matrix A�n�n�� i�e�� detA � �

rank �A�n�n�� � r � n �����c�

is valid�

d� The rank of the zero matrix � is equal to zero�

Rg ��� � r � �� �����d�

e� The rank of the sum and product of matrices satis�es the relations

jrank�A�� rank�B�j � rank�A�B� � rank�A� � rank�B�� �����e�

rank�AB� � min�rank�A�� rank�B��� �����f�

� Rules toDetermine theRank Elementary transformations do not change the rank of matrices�
Elementary transformations in this relation are�

a� Interchanging two columns or two rows�

b� Multiplication of a row or column by a number �� ��

c� Addition of a row to another row or a column to an other column�

In order to determine their ranks every matrix can be transformed by appropriate linear combinations
of rows into a form such that in the ��th row �� � �� �� � � � � m�� at least the �rst �� elements are equal
to zero �the principle of Gauss algorithm� see �������� p� ����� The number of row vectors di�erent from
the zero vector in the transformed matrix is equal to the rank r of the matrix�

�� InverseMatrix
For a regular matrixA � �a��� there is always an inverse matrix A�� �with respect to multiplication��
i�e�� the multiplication of a matrix by its inverse yields the identity matrix�

AA�� � A��A � I� �����a�

The elements of A�� � ����� are

��� �
A��

detA
� �����b�

where A�� is the cofactor belonging to the a�� element of the matrix A �see ����� �� p� ����� For a
practical calculation ofA�� the method given in ������ �� p� ��� should be used� In the case of a matrix
of size ��� �� we have�

A �
�
a b
c d

�
� A�� �



ad� bc

�
d �b
�c a

�
� ������

Remark� Why do we not de�ne division among matrices but instead use the inverse for calculations(
This is connected to the fact that division cannot be de�ned uniquely� The solutions of the equations

BX� � A

X�B � A
�B regular��

X� � B��A
X� � AB�� ������

are in general di�erent�
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�� Orthogonal Matrices
If the relation

AT � A�� or AAT � ATA � I ������

holds for a square matrixA� then it is called an orthogonal matrix � i�e�� the scalar product of a row and
the transpose of another one� or the scalar product of the transpose of a column and another one are
zero� while the scalar product of a row with its own transpose or of the transpose of a column with itself
are equal to one�
Orthogonal matrices have the following properties�

a� The transpose and the inverse of an orthogonal matrix A are also orthogonal� furthermore� the
determinant is

detA � �� �����

b� Products of orthogonal matrices are also orthogonal�

The rotation matrix D� which is used to describe the rotation of a coordinate system� and whose
elements are the direction cosines of the new direction of axes �see �������� p� ��� is also an orthogonal
matrix�

��� UnitaryMatrix
If for a matrix A with complex elements

�A��T � A�� or A�A��T � �A��TA � I ������

holds we call it a unitary matrix � In the real case unitary and orthogonal matrices are the same�

����� Rules of Calculation forMatrices
The following rules are valid of course only in the case when the operations can be performed� for in�
stance the identity matrix I always has a size corresponding to the requirements of the given operation�

�� Multiplication of aMatrix by the IdentityMatrix
is also called the identical transformation�

AI � IA � A� ������

�This does not mean that the commutative law is valid in general� because the sizes of the matrix I on
the left� and on the right�hand side may be di�erent��

�� Multiplication of a Square MatrixA by a ScalarMatrix S
or by the identity matrix I is commutative

AS � SA � cA with S given in ������ �����a� AI � IA � A� �����b�

�� Multiplication of aMatrix A by the ZeroMatrix �
results in the zero matrix�

A� � � � �A � �� ������

�The zero matrices above may have di�erent sizes�� The converse statement is not true in general� i�e��
from AB � � it does not follow that A � � or B � ��

�� Vanishing Product of TwoMatrices
The product of two matrices A and B can be the zero matrix even if neither of
them is a zero matrix�

AB � � or BA � � or both� although A �� �� B �� �� ������

 
� �

�  � �
�  � �

�

�� Multiplication of Three Matrices

�AB�C � A �BC� ������

i�e�� the associative law of multiplication is valid�
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� Transposing of a Sum or a Product of TwoMatrices

�A�B�T � AT �BT� �AB�T � BTAT� �AT�T � A� �����a�

For square invertible matrices A�n�n��

�AT��� � �A���T �����b�

holds�

�� Inverse of a Product of TwoMatrices

�AB��� � B��A��� ������

�� Powers of Matrices
Ap � AA � � �A� �z �

p factors

with p � �� integer� �����a�

A� � I �detA �� �� � �����b�

A�p � �A���p �p � �� integer� detA �� ��� �����c�

Ap�q � ApAq �p� q integer�� �����d�

�� Kronecker Product
The Kronecker product of two matrices A � �a��� and B � �a��� is de�ned in the following way�

A � B � �a�� B� � �����

For the transpose and the trace we have the equalities�

�A � B�T � AT � BT � ������

Tr �A � B� � Tr �A� �Tr�B� � ������

����� Vector andMatrixNorms
The norm of a vector or of a matrix can be considered as a generalization of the absolute value �magni�
tude� of numbers� We assign a real number jjxjj �Norm x� to the vector x or jjAjj �NormA� to a matrix
A� These numbers must satisfy the norm axioms �see ������ p� ��� For vectors x � IRn they are�

�� jjxjj 	 � for every x � jjxjj � � if and only if x � �� ������

�� jj�xjj � j�j jjxjj for every x and every real number �� ������

�� jjx� yjj � jjxjj� jjyjj for every x and y �triangle inequality� �see also ������ �� p� ��� ������

There are many di�erent ways to de�ne norms for vectors and matrices� But for practical reasons it is
better to de�ne a matrix norm jjAjj and a vector norm jjxjj so that they might satisfy the inequality

jjAxjj � jjAjj jjxjj� ������

This inequality is very useful for error estimations� If the matrix and vector norms satisfy this inequality�
then we say that they are consistent with each other� If there is a non�zero vector x for every A such
that the equality holds� then we say the matrix norm jjAjj is the subordinate to the vector norm jjxjj�
������� Vector Norms
If x � �x�� x�� � � � � xn�T is a real vector of n dimensions� i�e�� x � IRn � then the most often used vector
norms are�

�� Euclidean Norm

jjxjj � jjxjj� ��

vuut nX
i��

x�i � ������




�� Determinants ��


�� Supremum or UniformNorm
jjxjj � jjxjj� �� max

�
i
n
jxij� ������

�� SumNorm

jjxjj � jjxjj� ��
nX
i��

jxij� ������

In IR�� in elementary vector calculus jjxjj� is considered as the magnitude of the vector x� The
magnitude jxj � jjxjj� gives the length of the vector x�

������� Matrix Norms

�� Spectral Norm for Real Matrices

jjAjj � jjAjj� ��
q
�max�ATA�� �����

Here �max�A
TA� denotes the greatest eigenvalue �see ����� p� ���� of the matrix ATA�

�� Row�SumNorm

jjAjj � jjAjj� �� max
�
i
n

nX
j��

jaijj� ������

�� Column�SumNorm

jjAjj � jjAjj� �� max
�
j
n

nX
i��

jaijj� ������

It can be proved that the matrix norm ����� is the subordinate norm to the vector norm ������� The
same is true for ������ and ������� and for ������ and �������

��� Determinants
����� De
nitions

�� Determinants
are real or complex numbers uniquely associated with square matrices� The determinant of order n
which is associated with the matrix A � �a��� of size �n� n��

D � detA � det �a��� �

���������
a�� a�� � � � a�n
a�� a�� � � � a�n
���

���
���

���
an� an� � � � ann

��������� � ������

is calculated in a recursive way using the Laplace expansion rule�

detA �
nX
���

a��A�� �� �xed� expansion along the ��th row�� �����a�

detA �
nX

���

a��A�� �
 �xed� expansion along the 
�th column�� �����b�

Here A�� is the subdeterminant belonging to the element a�� multiplied by the sign factor ������ �
A�� is called the cofactor or algebraic complement �

�� Subdeterminants
The subdeterminant of order �n � � belonging to the element a�� of a determinant of order n is the
determinant obtained by deleting the ��th row and the 
�th column�
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Expansion of a determinant of order four along the third row���������
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��
a�� a�� a�� a��

�������� � a��

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ � a��

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ � a��

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������� a��

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ �

����� Rules of Calculation forDeterminants
Because of the Laplace expansion the following statements about rows are valid also for columns�

�� Independence of the Value of a Determinant
The value of a determinant does not depend on which row was chosen�

�� Substitution of Cofactors
If during the expansion of a determinant the cofactors of a row are replaced by the cofactors of another
one� then we get zero�

nX
���

a��A� � � ��� � �xed� � �� �� � ������

This relation and the Laplace expansion �����a�b� result in

AadjA � AAadj � �detA� I � ������

The adjoint matrix of A� which is the transpose of the matrix made from the cofactors of A� is denoted
byAadj� We must not confuse this adjoint with the transposed conjugate of a complex matrixAH ������
From the previous equality we get the inverse matrix

A�� �


detA
Aadj � ������

�� Zero Value of a Determinant
A determinant is equal to zero if

a� a row contains zero elements only� or

b� two rows are equal to each other� or

c� a row is a linear combination of the others�

�� Changes and Additions
The value of the determinant does not change if

a� its rows are exchanged for its columns� i�e�� re�ection in the main diagonal does not a�ect the value
of it�

detA � detAT� ������

b� any row is added to or subtracted from another one� or

c� a multiple of any row is added to or subtracted from another one� or

d� a linear combination of other rows is added to any row�

�� Sign on Changing Rows
If two rows are interchanged in a determinant� then the sign of the determinant changes�

� Multiplication of a Determinant by a Number
The value of a determinant will be multiplied by � if the elements of a row are multiplied by this number�
The next formula shows the di�erence between this and the multiplication of a matrix A of size �n� n�
by a number �

det ��A� � �ndetA � ������

�� Multiplication of Two Determinants
The multiplication of two determinants can be reduced to the multiplication of their matrices�

�detA��detB� � det �AB�� �����
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Since detA � detAT �see �������� we have the equalities

�detA��detB� � det �AB� � det �ABT� � det �ATB� � det �ATBT�� ������

i�e�� it is permissible to take the scalar product of rows with columns� rows with rows� columns with
rows or columns with columns�

�� Di
erentiation of a Determinant
If the elements of a determinant of order n are di�erentiable functions of a parameter t� i�e�� a�� �
a���t� � and we want to di�erentiate the determinant with respect to t� then we di�erentiate one row at
a time and �nally we add the n determinants we have obtained�

For a determinant of size ��� �� we have�

d
dt

������
a�� a�� a��
a�� a�� a��
a�� a�� a��

������ �

������
a��� a��� a���
a�� a�� a��
a�� a�� a��

�������
������
a�� a�� a��
a��� a��� a���
a�� a�� a��

�������
������
a�� a�� a��
a�� a�� a��
a��� a��� a���

������ �
����� Evaluation ofDeterminants

�� Value of a Determinant of Second Order���� a�� a��
a�� a��

���� � a��a�� � a��a��� ������

�� Value of a Determinant of Third Order
The Sarrus rule gives us a convenient scheme for the calculations� but it is valid only for determinants
of order three� It is the following�������

a�� a�� a��
a�� a�� a��
a�� a�� a��

������
a�� a��
a�� a��
a�� a��

� a��a��a�� � a��a��a�� � a��a��a��

��a��a��a�� � a��a��a�� � a��a��a����

QQ QQ QQ

QQ QQ QQ
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p

The �rst two columns are copied after the determinant� then the sum of the products of the elements
along the redrawn declining segments is calculated� then the sum of the products of the elements along
the dotted inclining segments is subtracted�

�� Value of a Determinant of n�th Order
By the expansion rule the calculation of the value of a determinant of order n is reduced to the evalu�
ation of n determinants of order �n � �� But for practical reasons �to reduce the number of required
operations�� �rst we transform the determinant with the help of the rules discussed above into a form
such that it contains as many zeros as possible���������

� � � �
� �� � �
� � � ��
 � � �

�������� �

��������
� � � �
� �� � �
� � � ��
 � � �

�������� � �

��������
� � � �
� �� � �
� �  ��
 � � �

�������� � �

�BBB���

������
� � �
�  ��
 � �

������� �z �
��

������
� � �
�  ��
 � �

������
�CCCA

�rule �� �rule �� � � �rule ��

� ��

������
  �
�  ��
 � �

������ � ��
�����  ��

� �

����� ���� � ��
 �

����� � ���

�rule ��

Remark� An especially e�cient method to determine the value of a determinant of order n can be
obtained if we transform it in the same way we do in order to determine the rank of a matrix �see �����
�� p� ����� i�e�� all the elements under the diagonal a��� a��� � � � � ann are equal to zero� Then the value
of the determinant is the product of the diagonal elements of the transformed determinant�
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��� Tensors
����� Transformation of Coordinate Systems
�� Linear Transformation
By the linear transformation

�x � Ax or
'x� � a��x� � a��x� � a��x�
'x� � a��x� � a��x� � a��x�
'x� � a��x� � a��x� � a��x�

������

a coordinate transformation is de�ned in three�dimensional space� Here x� and 'x� �� � � �� �� are the

coordinates of the same point but in di�erent coordinate systems K and 'K �

�� Einstein�s Summation Convention
Instead of ������ we can write

'x� �
�X

���

a��x� �� � � �� �� �����a�

or brie�y by Einstein

x� � a��x� � �����b�

i�e�� we have to calculate the sum with respect to the repeated index 
 and put down the result for
� � � �� �� In general� the summation conventionmeans that if an index appears twice in an expression�
then the expression is added for all values of this index� If an index appears only once in the expressions
of an equation� for instance � in �����b�� then it means that the equality is valid for all possible values
of this index�

�� Rotation of a Coordinate System

If we get the Cartesian coordinate system 'K from K by rotation� then for the transformation matrix
in ������ A � D is valid� Here D � �d��� is the orthogonal rotation matrix� The orthogonal rotation
matrix D has the property

D�� � DT� �����a�

The elements d�� of D are the direction cosines of the angles between the old and new coordinate axes�
From the orthogonality of D� i�e�� from

DDT � I and DTD � I� �����b�

it follows that
�X
i��

d�id�i � 	�� �
�X

k��

dk�dk� � 	�� ��� 
 � � �� ��� �����c�

The equalities in �����c� show that the row and column vectors of the matrix D are orthonormalized�
bcause 	�� is the Kronecker symbol �see ����� ��� p� �����
The elements d�� of the rotation matrix can be determined by the Euler angles �see �������� p� ���
For rotation in the plane see �������� p� ��� in space see �������� p� ��

����� Tensors inCartesianCoordinates
�� De�nition
A mathematical or a physical quantity T can be described in a Cartesian coordinate system K by �n

elements tij���m� the so�called translation invariants� Here the number of indices i� j� � � � � m is exactly
equal to n �n 	 �� � The indices are ordered� and every of them takes the values � � and ��

If under a coordinate transformation from K to 'K for the elements tij���m according to ������

't������ �
�X
i��

�X
j��

� � �
�X

m��

a�ia�j � � �a�mtij���m � ������
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is valid� then T is called a tensor of rank n� and the elements tij���m �mostly numbers� with ordered
indices are the components of the tensor T	

�� Tensor of Rank �
A tensor of rank zero has only one component� i�e�� it is a scalar� Because its value is the same in every
coordinate system� we talk about the invariance of scalars or about an invariant scalar�

�� Tensor of Rank �
A tensor of rank  has three components t�� t� and t�� The transformation law ������ is now

't� �
�X
i��

a�iti �� � � �� ��� ������

It is the transformation law for vectors� i�e�� a vector is a tensor of rank �

�� Tensor of Rank �
If n � � � then the tensor T has nine components tij� which can be arranged in a matrix

T � T �

�� t�� t�� t��
t�� t�� t��
t�� t�� t��

�A � �����a�

The transformation law ������ is now�

't�� �
�X
i��

�X
j��

a�ia�jtij ��� 
 � � �� ��� �����b�

So� a tensor of rank � can be represented as a matrix�

A� The moment of inertia !g of a solid with respect to the line g� which goes through the origin

and has direction vector �a � aT� can be represented in the form

!g � aT
a� �����a�

if we denote by


 � �!ij� �

�� !x �!xy �!xz

�!xy !y �!yz

�!xz �!yz !z

�A �����b�

the so�called inertia tensor� Here !x� !y and !z are the moments of inertia with respect to the coordi�
nate axes� and !xy� !xz and !yz are the deviation moments with respect to the coordinate axes�

B� The load�up conditions of an elastically deformed body can be given by the tension tensor

� �

����� ��� ���
��� ��� ���
��� ��� ���

�A � �����

The elements �ik �i� k � � �� �� are determined in the following way� At a point P of the elastic body�
we choose a small plane surface element whose normal vector points along the direction of the x��axis
of a right�angle Cartesian coordinate system� The power per surface unit on this element� depending
on the material� is a vector with coordinates ���� ��� and ���� The other components can be explained
similarly�

�� Rules of Calculation
� Elementary Algebraic Operations The multiplication of a tensor by a number� and addition
and subtraction of tensors of the same rank are de�ned componentwise� similarly to the corresponding
operations for vectors and matrices�

� Tensor Product Suppose there are given a tensor A of rank m and a tensor B of rank n with
components aij��� and brs��� respectively� Then the �m�n scalars

cij���rs��� � aij���brs��� �����a�
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give the components of a tensor C of rank m � n � We denote it by C � AB and we call it the tensor
product of A and B� The associative and distributive laws are valid�

�AB � C � A �BC �� A �B �C � � AB �AC� �����b�

� Dyadic Product The product of two tensors of rank  A � �a�� a�� a�� and B � �b�� b�� b��
gives a tensor of rank � with the elements

cij � aibj �i� j � � �� �� � �����a�

i�e�� the tensor product results in the matrix�� a�b� a�b� a�b�
a�b� a�b� a�b�
a�b� a�b� a�b�

�A � �����b�

This will be denoted as the dyadic product of the two vectors A and B�

� Contraction If we make two indices equal to each other in a tensor of rank m �m 	 ��� and we
sum with respect to them� then we get a tensor of rank m � �� and we call this the contraction of the
tensor�

The tensor C of rank � of �����a� with cij � aibj � which is the tensor product of the vectors A �
�a�� a�� a�� and B � �b�� b�� b��� can be contracted by the indices i and j�

aibi � a�b� � a�b� � a�b� ������

so we get a scalar� which is a tensor of rank �� This gives the scalar product of vectors A and B�

����� Tensors with Special Properties

������� Tensors of Rank �

�� Rules of Calculation
For tensors of rank � the same rules are valid as for matrices� In particular� every tensor T can be
decomposed into the sum of a symmetric and a skew�symmetric tensor�

T �


�

�
T � T T

	
�



�

�
T � T T

	
� �����a�

A tensor T � �tij� is called symmetric if

tij � tji for all i and j �����b�

holds� In the case

tij � �tji for all i and j �����c�

we call it skew� or antisymmetric� Obviously the elements t�� � t�� and t�� of a skew�symmetric tensor
are equal to zero� The notion of symmetry and antisymmetry can be extended for tensors of higher
rank if we refer to certain pairs of elements�

�� Transformation of Principal Axes
For a symmetric tensor T � i�e�� if t�� � t�� holds� there is always an orthogonal transformation D such
that after the transformation the tensor has a diagonal form�

'T �

�B� 't�� � �
� 't�� �
� � 't��

�CA � �����a�

The elements 't�� � 't�� and 't�� are called the eigenvalues of the tensor T	 They are equal to the roots ���
�� and �� of the algebraic equation of third degree in ��������

t�� � � t�� t��
t�� t�� � � t��
t�� t�� t�� � �

������ � �� �����b�
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The column vectors d� � d� and d� of the transformation matrix D are called the eigenvectors corre�
sponding to the eigenvalues� and they satisfy the equations

Td� � ��d� �
 � � �� ��� �����c�

Their directions are called the directions of the principal axes� and the transformation T to diagonal
form is called the transformation of the principal axes�

������� Invariant Tensors

�� De�nition
A Cartesian tensor is called invariant if its components are the same in all Cartesian coordinate sys�
tems� Physical quantities such as scalars and vectors� which are special tensors� do not depend on the
coordinate system in which they are determined� they must not change their value either under trans�
lation of the origin or rotation of a coordinate system K� We talk about translation invariance and
about rotation invariance or in general about transformation invariance�

�� Generalized Kronecker Delta
If the elements tij of a tensor of rank � are the Kronecker symbols� i�e��

tij � 	ij �
�

 for i � j�
� otherwise�

�����a�

then from the transformation law �����b� in the case of a rotation of the coordinate system considering
�����c� we have

't�� � d�id�j � 	�� � �����b�

i�e�� the elements are rotation invariant� If we put them in a coordinate system so that they are inde�
pendent of the choise of the origin� i�e�� they will be translation invariant� then the numbers 	ij form a
tensor of rank �� the so�called generalized Kronecker delta�

�� Alternating Tensor
If �ei� �ej and �ek are unit vectors in the directions of the axes of a right�angle coordinate system� then for
the mixed product �see ������� �� p� ��� we have

�ijk � �ei ��ej � �ek� �

���
� if i� j� k cyclic �right�hand rule��
�� if i� j� k anticyclic�

�� otherwise �
�����a�

Altogether there are �� � �� elements� which are the elements of a tensor of rank �� In the case of a
rotation of the coordinate system from the transformation law ������ it follows that

't��� � d�id�jd�k�ijk �

������
d�� d�� d��
d�� d�� d��
d�� d�� d��

������ � ����� �����b�

i�e�� the elements are rotation invariant� If we put them in a coordinate system so that they are inde�
pendent of the choise of the origin� i�e�� they are translation invariant� then the numbers �ijk form a
tensor of rank �� the so�called alternating tensor�

�� Tensor Invariants
We must not be confused between tensor invariants and invariant tensors� Tensor invariants are func�
tions of the components of tensors whose forms and values do not change during the rotation of the
coordinate system�

A� If for instance the tensor T � �tij� is transformed in 'T � �'tij� by a rotation� then the trace
�spur� of it does not change�

Tr�T � � t�� � t�� � t�� � 't�� � 't�� � 't�� � ������

The trace of the tensor T is equal to the sum of the eigenvalues �see ����� �� p� �����
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B� For the determinant of the tensor T � �tij�������
t�� t�� t��
t�� t�� t��
t�� t�� t��

������ �

�������
't�� 't�� 't��
't�� 't�� 't��
't�� 't�� 't��

������� ������

is valid� The determinant of the tensor is equal to the product of the eigenvalues�

����� Tensors inCurvilinearCoordinate Systems

������� Covariant andContravariant Basis Vectors

�� Covariant Basis
We introduce the general curvilinear coordinates u� v� w by the position vector

�r � �r �u� v� w� � x�u� v� w��ex � y�u� v� w��ey � z�u� v� w��ez� ����a�

We get the coordinate surfaces corresponding to this system by �xing the independent variables u� v� w
in �r �u� v� w�� one at a time� There are three coordinate surfaces passing through every point of the
considered region of space� and any two of them intersect each other in a coordinate line� and of course
these curves pass through the considered point� too� The three vectors

��r

�u
�

��r

�v
�

��r

�w
����b�

point along the directions of the coordinate lines in the considered point� They form the covariant basis
of the curvilinear coordinate system�

�� Contravariant Basis
The three vectors



D

�
��r

�v
� ��r

�w

�
�



D

�
��r

�w
� ��r

�u

�
�



D

�
��r

�u
� ��r

�v

�
�����a�

with the functional determinant �Jacobian determinant�

D �

�
��r

�u

��r

�v

��r

�w

�
�����b�

are always perpendicular to the coordinate surfaces at the considered surface element and they form
the so�called contravariant basis of the curvilinear coordinate system�

Remark� In the case of orthogonal curvilinear coordinates� i�e�� if

��r

�u
� ��r
�v

� ��
��r

�u
� ��r
�w

� ��
��r

�v
� ��r
�w

� �� ������

then the directions of the covariant and contravariant basis are coincident�

������� Covariant andContravariant Coordinates of Tensors of Rank �
In order to be able to apply the summation convention of Einstein we introduce the following notation
for the covariant and contravariant basis�

��r

�u
� �g��

��r

�v
� �g��

��r

�w
� �g� and



D

�
��r

�v
� ��r

�w

�
� �g ��



D

�
��r

�w
� ��r

�u

�
� �g ��



D

�
��r

�u
� ��r

�v

�
� �g ��

������

Then we have the representations for �v�

�v � V ��g� � V ��g� � V ��g� � V k�gk or �v � V��g
� � V��g

� � V��g
�� ������
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The components V k are the contravariant coordinates� the components Vk are the covariant coordinates
of the vector �v� For these coordinates the equalities

V k � gklVl and Vk � gklV
l �����a�

are valid� where

gkl � glk � �gk � �gl and gkl � glk � �g k � �g l �����b�

respectively� Furthermore using the Kronecker symbol the equality

�gk � �g l � 	kl� �����a�

holds� and consequently

gklglm � 	km� �����b�

The transition from V k to Vk or from Vk to V k according to �����b� is described by raising or lowering
the indices by oversliding�

Remark� In Cartesian coordinate systems covariant and contravariant coordinates are equal to each
other�

������� Covariant� Contravariant andMixed Coordinates of Tensors of
Rank �

�� Coordinate Transformation
In a Cartesian coordinate system with basis vectors �e� � �e� and �e� a tensor T of rank � can be represented
as a matrix

T �

�� t�� t�� t��
t�� t�� t��
t�� t�� t��

�A � ������

By

�r � x��u�� u�� u���e� � x��u�� u�� u���e� � x��u�� u�� u���e� ������

we introduce curvilinear coordinates u�� u�� u�� The new basis is denoted by the vectors �g�� �g� and �g��
We have�

�gl �
��r

�ul
�

�x�
�ul

�e� �
�x�
�ul

�e� �
�x�
�ul

�e� �
�xk
�ul

�ek� ������

If we substitute �el � �g l � then we obtain �gl and �g l as covariant and contravariant basis vectors�

�� Linear Vector Function
In a �xed coordinate system with the tensor T given as in ������ by the equality

�w � T�v ����a�

with

�v � Vk�g
k � V k�gk� �w � Wk�g

k � W k�gk ����b�

we de�ne a linear relation between the vectors �v and �w� So we consider ����a� as a linear vector
function�

�� Mixed Coordinates
When we change the coordinate system� the equality ����a� will have the form

�'w � 'T�'v� �����a�

The relation between the components of T and 'T is the following�

'tkl �
�uk
�xm

�xn
�ul

tmn� �����b�

We introduce the notation
'tkl � T k

� l �����c�
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and we talk about mixed coordinates of the tensor� k contravariant index� l covariant index� For the
components of vectors �v and �w we have

W k � T k
� lV

l� �����d�

If the covariant basis �gk is replaced by the contravariant basis �g k� then we get similarly to �����b� and
�����c�

T � l
k �

�xm
�uk

�ul
�xn

tmn� �����a�

and �����d� is transformed into

Wk � T � l
k Vl� �����b�

For the mixed coordinates T � l
k and T k

� l we have the formula

T k
� l � gkmglnT

�n
m � �����c�

�� Pure Covariant and Pure Contravariant Coordinates
If we substitute in �����b� for Vl the relation Vl � glmV m� then we get

Wk � T � l
k glmV m � TkmV m� �����a�

if we also consider that

T � l
k glm � Tkm� �����b�

The Tkm are called the covariant coordinates of the tensor T � because both indices are covariant� Sim�
ilarly we get the contravariant coordinates

T km
l � gmlT k

� l� ������

The explicit forms are�

Tkl �
�xm
�uk

�xn
�ul

tmn� �����a� T kl �
�uk
�xm

�ul
�xn

tmn� �����b�

������� Rules of Calculation
In addition to the rules described on ������ �� p� ���� the following rules of calculations are valid�
� Addition� Subtraction Tensors of the same rank whose corresponding indices are both covariant
or contravariant can be added or subtracted elementwise� and the result is a tensor of the same rank�
� Multiplication The multiplication of the coordinates of a tensor of rank n by the coordinates of
a tensor of rank m results in a tensor of rank m � n �
� Contraction If we make the indices of a covariant and a contravariant coordinates of a tensor of
rank n �n 	 �� equal� then we use the Einstein summation convention for this index� we get a tensor of
rank n� � � This operation is called contraction�
� Oversliding Oversliding of two tensors is the following operation� We multiply both� then we
make a contraction so that the indices by which the contraction is made belong to di�erent factors�
� Symmetry A tensor is called symmetric with respect to two covariant or two contravariant stand�
ing indices if when exchanging them the tensor does not change�
� Skew�Symmety A tensor is called skew�symmetric with respect to two covariant or two con�
travariant standing indices if when exchanging them the tensor is multiplied by ��

The alternating tensor �see �������� ��p� ���� is skew�symmetric with respect to two arbitrary co�
variant or contravariant indices�

����� Pseudotensors
The re�ection of a tensor plays a special role in physics� Because of their di�erent behavior with respect
to re�ection we distinguish polar and axial vectors �see ������ �� p� ���� altough mathematically they
can be handled in the same way� Axial and polar vectors di�er from each other in their determination�
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because axial vectors can be represented by an orientation in addition to length and direction� Axial
vectors are also called pseudovectors� Since vectors can be considered as tensors� the general notion of
pseudotensors is introduced�

������� Symmetry with Respect to the Origin

�� Behavior of Tensors under Space Inversion
� Notion of Space Inversion The re�ection of the position coordinates of points in space with
respect to the origin is called space inversion or coordinate inversion� In a three�dimensional Cartesian
coordinate system space inversion means the change of the sign of the coordinates�

�x� y� z� ��x��y��z�� ������

By this a right�hand coordinate system becomes a left�hand system� Similar rules are valid for other
coordinate systems� In the spherical coordinate system we have�

�r� �� �� ��r� � � �� � � ��� ������

Under this type of re�ection the length of the vectors and the angles between them do not change� The
transition can be given by a linear transformation�
� Transformation Matrix According to ������� the transformation matrix A � �a��� of a linear
transformation of three�dimensional space has the following properties in the case of space inversion�

a�� � �	�� � detA � �� �����a�

For the components of a tensor of rank n ������

't������ � ���nt������ �����b�

holds� That is� In the case of point symmetry with respect to the origin a tensor of rank � remains a
scalar� unchanged� a tensor of rank  remains a vector with a change of sign� a tensor of rank � remains
unchanged� etc�

x
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180�

Figure ���

�� Geometric Representation
The inversion of space in a three�dimensional Cartesian coordinate system can be realized in two steps
�Fig����

� By re�ection with respect to the coordinate plane� for instance the x� z plane� the coordinate system
x� y� z turns into the coordinate system x��y� z� A right�hand system becomes a left�hand system �see
������� �� p� �����

� By a rotation of the system x� y� z around the y�axis by ��� we have the complete coordinate system
x� y� z re�ected with respect to the origin� This coordinate system stays left�handed� as it was after the
�rst step�

Conclusion� Space inversion changes the orientation of a polar vector by ���� while an axial vector
keeps its orientation�
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������� Introduction to the Notion of Pseudotensors
� Vector Product under Space Inversion Under space inversion two polar vectors a and b
are transformed into the vectors �a and �b� i�e�� their components satisfy the transformation formula
�����b� for tensors of rank � However� if we consider the vector product c � a � b as an example of
an axial vector� then we get c � c under re�ection with respect to the origin� i�e�� a violation of the
transformation formula �����a� for tensors of rank � That is the reason why we call the axial vector c
a pseudovector or generally a pseudotensor�

The vector products �r� �v � �r � �F � r� �v � rot�v with the position vector �r� the speed vector �v� the

power vector �F and the nabla operator r are examples of axial vectors� which have 	false
 behavior
under re�ection�
� Scalar Product under Space Inversion If we use space inversion for a scalar product of a
polar and an axial vector� then we again have a violation of the transformation formula �����b� for
tensors of rank � Because the result of a scalar product is a scalar� and a scalar should be the same
in every coordinate system� here we have a very special scalar� which is called a pseudoscalar� It has
the property that it changes its sign under space inversion� Pseudoscalars do not have the rotation
invariance property of scalars�

The scalar product of the polar vectors �r �position vector� and �v �speed vector� by the axial vector
� �angular velocity vector� results in the scalars �r � � and �v � �� which have the 	false
 behavior under
re�ection� so they are pseudoscalars�
� Mixed Product under Space Inversion The mixed product �a�b� �c �see ������� �� p� ���
of polar vectors a � b� and c is a pseudoscalar according to ����� because the factor �a � b� is an axial
vector� The sign of the mixed product changes under space inversion�
� Pseudovector and Skew�Symmetric Tensor of Rank � The tensor product of axial vectors
a � �a�� a�� a��

T and b � �b�� b�� b��
T results in a tensor of rank � with components tij � aibj �i� j �

� �� �� according to �����a�� Since every tensor of rank � can be decomposed into a sum of a symmetric
and a skew�symmetric tensor of rank �� according to ������ we have

tij �


�
�aibj � ajbi� �



�
�aibj � ajbi� �i� j � � �� �� � ������

The skew�symmetric part of ������ contains exactly the components of the vector product �a � b�

multiplied by 
�� so we can consider the axial vector c � �a� b� with components c�� c�� c� as a skew�

symmetric tensor of rank �

C � c �

�� � c�� c��
�c�� � c��
�c�� �c�� �

�A ����a� where
c�� � a�b� � a�b� � c��
c�� � a�b� � a�b� � c��
c�� � a�b� � a�b� � c��

����b�

whose components satisfy the transformation formula �����b� for tensors of rank ��
Consequently we can consider every axial vector �pseudovector or pseudotensor of rank �
c � �c�� c�� c��

T as a skew�symmetric tensor C of rank �� where we have�

C � c �

�� � c� �c�
�c� � c�
c� �c� �

�A � ������

� Pseudotensors of Rank n The generalization of the notion of pseudoscalar and pseudovector
is a pseudotensor of rank n� It has the same property under rotation as a tensor of rank n �rotation
matrix D with detD � � but it has a ��� factor under re�ection through the origin� Examples of
pseudotensors of higher rank can be found in the literature� e�g��  ��!�
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��� Systemsof LinearEquations

����� Linear Systems� Pivoting

������� Linear Systems
A linear system contains m linear forms

y� � a��x� � a��x� � � � � � a�nxn � a�
y� � a��x� � a��x� � � � � � a�nxn � a�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
ym � am�x� � am�x� � � � � � amnxn � am

or y � Ax� a �����a�

with

A �

�BBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
���
am� am� � � � amn

�CCCA � a �

�BBB�
a��
a��
���

am

�CCCA � x �

�BBB�
x��
x��
���
xn

�CCCA � y �

�BBB�
y��
y��
���

ym

�CCCA � �����b�

The elements a�� of the matrixA of size �m�n� and the components a� �� � � �� � � � � m� of the column
vector a are constants� The components x� �m � � �� � � � � n� of the column vector x are the independent
variables� the components y� �� � � �� � � � � m� of the column vector y are the dependent variables�

������� Pivoting

�� Scheme of Pivoting
If an element aik is not equal to zero in �����a�� the variable yi can be exchanged for an independent one
and the variable xk for a dependent one in a so�called pivoting step� The pivoting step is the basic ele�
ment of pivoting� the method by which for instance systems of linear equations and linear optimization
problems can be solved� The pivoting step is achieved by the schemes

x� x� � � � xk � � � xn 
y� a�� a�� � � � a�k � � � a�n a�
y� a�� a�� � � � a�k � � � a�n a�
��� � � � � � � � � � � � � � � � � � � � � � � � � � � �
yi ai� ai� � � � aik � � � ain ai
��� � � � � � � � � � � � � � � � � � � � � � � � � � � �

ym am� am� � � � amk � � � amn am
xk �i� �i� � � � �ik � � � �in �i

�

x� x� � � � yi � � � xn 
y� ��� ��� � � � ��k � � � ��n ��

y� ��� ��� � � � ��k � � � ��n ��
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
xk �i� �i� � � � �ik � � � �in �i
��� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ym �m� �m� � � � �mk � � � �mn �m

� ������

where the left scheme corresponds to the system �����a��

�� Pivoting Rules
The framed element in the scheme aik �aik �� �� is called the pivot element � it is at the intersection of
the pivot column and pivot row � The elements ��� and �� of the new scheme on the right�hand side
will be calculated by the following pivoting rules�

� �ik �


aik
� �����a� � ��k �

a�k
aik

�� � � � � � � m�� �� i�� �����b�

� �i� � �ai�
aik

� �i � � ai
aik

�
 � � �� � � � � n� 
 �� k�� �����c�

� ��� � a�� � a�k
ai�
aik

� a�� � a�k�i�� �� � a� � a�k�i

�for every � �� i and every 
 �� k�� �����d�



��� 
� Linear Algebra

To make the calculations easier �rule �� we write the elements �i� in the �m� ��th row of the pivoting
scheme �cellar row�� With this pivoting rule we can change further variables�

������� Linear Dependence
The linear forms �����a� are linearly independent �see ������� �� p� ����� if all y� can be changed for
an independent variable x� � The linear independence will be used� for instance to determine the rank
of a matrix� Otherwise� the dependence relation can be found directly from the scheme�

x� x� x� x� 
y� �   � ��
y�  � � � �
y�  � � � �
y� � � �  �

After three pivoting steps
�for instance y�  x��
y�  x�� y�  x�� we
get�

y� x� y� y� 
x� �� ��  � �
x�   � � ��

y� �� � � � �
x� � �� �  �

No further change is possible because ��� � �� and we can see the dependence relation y� � �y���y��
�� Also for another sequence of pivoting� there remains one pair of not exchangeable variables�

������� Calculation of the Inverse of aMatrix
If A is a regular matrix of size �n� n�� then the inverse matrix A�� can be obtained after n steps using
the pivoting procedure for the system y � Ax�

A �

�� � � 
� � �
 � �

�A ��
x� x� x�

y� � � 
y� � � �
y�  � �

�

y� x� x�
y� � � ��

y� � � 
x�  �� ��

�

y� x� y�
y� � � ��
x� �� � 
x� � �� ��

�

y� y� y�
x� � � ��
x� �� � 
x� �� � �

�

After rearranging the elements we get A�� �

�� � � ��
� �� �

�  ��

�A� �We arrange the columns with respect

to the indices of yi� the rows with respect to the indices of xk��

����� Solution of Systems of LinearEquations

������� De�nition and Solvability

�� System of Linear Equations
A system of m linear equations with n unknowns x�� x�� � � � � xn

a��x� � a��x� � � � � � a�nxn � a�
a��x� � a��x� � � � � � a�nxn � a�

���
am�x� � am�x� � � � � � amnxn � am

or brie�y Ax � a� �����a�

is called a linear equation system� Here we denote�

A �

�BBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
���
am� am� � � � amn

�CCCA � a �

�BBB�
a��
a��
���

am

�CCCA� x �

�BBB�
x��
x��
���
xn

�CCCA� �����b�

If the column vector a is the zero vector �a � ��� then the system of equations is called a homogeneous
system� otherwise �a �� �� it is called an inhomogeneous system of equations� The coe�cients a�� of the
system are the elements of the so�called matrix of coe�cients A� and the components a� of the column
vector a are the constant terms �absolute terms��
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�� Solvability of a Linear System of Equations
A linear system of equations is called solvable or consistent or compatible if it has a solution� i�e�� there
exists at least one vector x � � such that �����a� is an identity� Otherwise� it is called inconsistent�
The existence and uniqueness of the solution depend on the rank of the augmented matrix �A� a�� We
get the augmented matrix attaching the vector a to the matrix A as its �n � ��th column�

� General Rules for Inhomogeneous Linear Equation Systems An inhomogeneous linear
equation system Ax � a has at least one solution if

rank �A� � rank �A� a� � �����a�

is valid� Furthermore� if r denotes the rank of A� i�e�� r � rank �A�� then

a� for r � n the system has a unique solution� �����b�

b� for r � n the system has in�nitely many solutions� �����c�

i�e�� the values of n� r unknowns as parameters can be chosen freely�

A�
x� � �x� � �x� � x� � �x� � �

�x� � x� � �x� � �x� � x� � �
�x� � x� � �x� � �x� � �x� � �

The rank of A is �� the rank of the augmented matrix of co�
e�cients �A� a� is �� i�e�� the system is inconsistent�

B�
x� � x� � �x� � 
x� � �x� � x� � �

�x� � x� � �x� � �
��x� � �x� � �x� � ��

Both the matrices A and �A� a� have rank equal to �� Be�
cause r � n � � the system has a unique solution� x� �
�

�
� x� � �

�
� x� � ��

�
�

C�
x� � x� � x� � x� � 
x� � x� � x� � x� � �

x� � x� � �x� � �x� � �
�

Both the matrices A and �A� a� have rank equal to ��
The system is consistent but because r � n it does not
have a unique solution� We can consider n � r � � un�

knowns as free parameters� x� � x� � 
� � x� � x� �



�
� �x�� x� arbitrary values��

D�
x� � �x� � x� � x� � 

�x� � x� � �x� � �x� � �
�x� � x� � x� � �x� � �
x� � �x� � �x� � x� � �

We have the same number of equations as unknowns but
the system has no solution because rank �A� � �� and
rank �A � a� � ��

� Trivial Solution and Fundamental System of Homogeneous Systems

a� The homogeneous system Ax � � of equations always has a solution� the so�called trivial solution

x� � x� � � � � � xn � �� �����a�

�The equality rank �A� � rank �A � �� always holds��

b� If the homogeneous system has the non�trivial solutions � � ���� ��� � � � � �n� and � � ���� ��� � � ��

�n�� i�e�� � �� � and � �� �� then x � s � �t � is also a solution with arbitrary constants s and t�
i�e�� any linear combination of the solutions is a solution too�
Suppose the system has exactly l non�trivial linearly independent solutions��� ���� � � � �l� Then these
solutions form a so�called fundamental system of solutions �see ������� �� p� ����� and the general
solution of the homogeneous system of equations has the form

x � k��� � k��� � � � �� kl�l �k�� k�� � � � � kl arbitrary constants�� �����b�

If the rank of the coe�cient matrixA of the homogeneous system of equations is less than the number
of unknowns n� i�e�� r � n � then the equation system has l � n � r linearly independent non�trivial
solutions� If r � n� then the solution is unique� i�e�� the homogeneous system has only the trivial
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solution�

To determine a fundamental system in the case r � n we choose n�r unknowns as free parameters� and
we express the remaining unknowns in terms of them� If we reorder the equations and the unknowns so
that the subdeterminant of order r in the left upper corner is not equal to zero� then we get for instance�

x� � x��xr��� xr��� � � � � xn�
x� � x��xr��� xr��� � � � � xn�
���

���
���

xr � xr�xr��� xr��� � � � � xn��

������

Then we can have a fundamental system of solutions choosing the free parameters� for instance in the
following way�

xr�� xr�� xr�� � � � xn
� fundamental solution�  � � � � � �
�� fundamental solution� �  � � � � �

���
���

���
���

���
���

�n� r��th fundamental solution� � � � � � � 

� �����

E�
x� � x� � �x� � x� � �
x� � x� � �x� � �x� � �

�x� � x� � �x� � x� � �
x� � �x� � �x� � �x� � �

The rank of the matrix A is equal to �� We can solve the

system for x� and x� and we get� x� � ��

�
x� � x�� x� �

�

�
x� � �x� �x�� x� arbitrary�� Fundamental solutions are ���

���

�
�

�

�
� � ��T and �� � ������ �� �T�

������� Application of Pivoting

�� System of Linear Functions Corresponding to a Linear System of Equations

In order to solve �����a�� we assign a system of linear functions y � Ax � a to the equation system

Ax � a so the use of pivoting �see ������� p� ��� is possible�

Ax � a ���a� is equivalent to y � Ax� a � �� ���b�

The matrix A is of size �m�n�� a is a column vector with m components� i�e�� the number of equations
m must not be equal to the number of unknowns n� After we �nish pivoting we substitute y � �� We
can tell the existence and uniqueness of the solution of Ax � a directly from the last pivoting scheme�

�� Solvability of Linear Equation Systems

The linear equation system ���a� has a solution if one of the following two cases holds for the corre�
sponding linear functions ���b��

Case �� All y� �� � � �� � � � � m� can be exchanged for some x� � This means the corresponding system
of linear functions is linearly independent�

Case �� At least one y� cannot be exchanged for any x� � i�e��

y� � ��y� � ��y� � � � �� �mym � �� �����

holds and also �� � �� This means the corresponding system of linear functions is linearly dependent�

�� Inconsistency of Linear Equation Systems

The linear equation system has no solution if in case � above �� �� � holds� In this case the system has
contradictory equations�
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x� � �x� � �x� � x� � �
��x� � �x� � �x� � �x� � �

�x� � �x� � �x� � �x� � �

x� x� x� x� 

y�  �� � � ��
y� �� � �� � ��
y� � �� � �� 

After three pivoting steps �for instance y� 
x�� y�  x�� y�  x�� we get�

y� y� x� y� 

x�
�
� ��

� � ��
� 

x� �
� �

� � �
� ��

x�
�
� �

� � ��
� ��

This calculation ends with case � y�� y�� y� and x� are independent variables� We substitute y� �
y� � y� � �� and x� � t ��� � t � �� is a parameter� Consequently� the solution is� x� � �t � �
x� � �t� �� x� � t� x� � ��

������� Cramer�s Rule
We have a very important special case when the number of equations is equal to the number of un�
knowns

a��x� � a��x� � � � �� a�nxn � a�
a��x� � a��x� � � � �� a�nxn � a�

���
���

���
���

an�x� � an�x� � � � �� annxn � an

����a�

and the determinant of the coe�cients does not vanish� i�e��

D � detA �� � � ����b�

In this case the unique solution of the equation system ����a� can be given in an explicit and unique
form�

x� �
D�

D
� x� �

D�

D
� � � � � xn �

Dn

D
� ����c�

D� denotes the determinant� which is obtained from D by replacing the elements a�� of the 
�th column
of D by the constant terms a�� for instance

D� �

���������
a�� a� a�� � � � a�n
a�� a� a�� � � � a�n

���
���

���
���

���
an� an an� � � � ann

��������� � ����d�

If D � � and there is at least one D� �� �� then the system ����a� has no solution� In the case D � �
and D� � � for all 
 � � �� � � � � n� then it is possible that the system has a solution but it is not unique�
�see Remark p� �����

�x� � x� � �x� � �
x� � �x� � x� � ��

�x� � �x� � �x� � ��
D �

������
�  �
 �� 
� � �

������ � ��

D� �

������
�  �
�� �� 

� � �

������ � ��� D� �

������
� � �
 �� 
� � �

������ � ��� D� �

������
�  �
 �� ��
� � �

������ � ���

The system has the unique solution x� �
D�

D
� �� x� �

D�

D
� �� x� �

D�

D
� ��

Remark� For practical reasons the Cramer rule is not useful for higher�dimensional problems� As
the dimension of the problem increases� the number of required operations increases very quick� so� for
numerical solutions of linear equation systems we use the Gauss algorithm or pivoting or an iteration
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procedure �see ���� p� �����

������� Gauss�s Algorithm

� Gauss EliminationMethod In order to solve the linear equation system Ax � a �����a� of m
equations with n unknowns we can use the Gauss elimination method � With the help of an equation we
eliminate one unknown from all the other equations� So we get a system of m�  equations and n� 
unknowns� This method will be repeated until we have the equation system in row echelon form� and
from this form we can determine the existence and uniqueness of the solution easily� and we can �nd
the solution itself if it exists�

� Gauss Steps We demonstrate the �rst Gauss step on the augmented matrix of coe�cients �A� a�
�see examples on p� �����

We suppose a�� �� �� otherwise we exchange the �rst equation for another one� In the matrix�BBB�
a�� a�� � � � a�n a�
a�� a�� � � � a�n a�
���

���
���

���
���

am� am� � � � amn am

�CCCA ����a�

we add the appropriate multiple of the �rst row to the others in order to make the coe�cients of x�

equal to zero� i�e�� we multiply the �rst row by � a��
a��

� � a��
a��

� � � � � � am�

a��
then we add them to the

second� third�� � � � m�th row� The transformed matrix has the form�BBB�
a�� a�� � � � a�n a�
� a��� � � � a��n a��
���

���
���

���
���

� a�m� � � � a�mn a�m

�CCCA � ����b�

After applying this Gauss step �r � � times we have a matrix in row echelon form

�BBBBBBBBBBBBBBBBBBBB�

a�� a�� a�� � � � a��r�� � � � a�n a�

� a��� a��� � � � a���r�� � � � a��n a��
� � a���� � � � a����r�� � � � a���n a���
� � � � � � � � � � � � � � � � � � � � �

� � � � � a�r���r�r a
�r���
r�r�� � � � a�r���rn a�r���r

� � � � � � � � � � � � � � a
�r���
r��

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � a�r���m

�CCCCCCCCCCCCCCCCCCCCA

� �����

l
l
l
l
l
l

l
l
l
l

� Existence and Uniqueness of the Solution The Gauss steps are elementary row operations
so they do not a�ect the rank of the matrix �A� a�� consequently the existence and uniqueness of the
solution and the solution itself do not change� From ����� we can tell the following�

Case �� The system has no solution if any of the numbers a
�r���
r�� � a

�r���
r�� � � � � � a�r���m di�ers from zero�

Case �� The system has a solution if a
�r���
r�� � a

�r���
r�� � � � � � a�r���m � � is valid� Then we have two

cases�

a� r � n� The solution is unique�

b� r � n� The solution is not unique� n� r unknowns can be chosen as free parameters�
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If the system has a solution we determine the unknowns in a successive way starting with the last row
of the equation system with the matrix in row echelon form ������

A� x� � �x� � �x� � �x� � ��
�x� � �x� � �x� � x� � �
�x� � �x� � x� � �x� � �
�x� � x� � �x� � �x� � ��

After three Gauss steps
the augmented matrix of
coe�cients has the form

�BB�
 � � � ��
� � �� �� �
� � �� � ��
� � � �� ���

�CCA�

The solution is unique and from the corresponding equation system with a triangular matrix we have�
x� � �� x� � � x� � �� x� � ��

B� �x� � �x� � �x� � ��
�x� � �x� � �x� � �

�x� � �x� � �
�x� � x� � �x� � 
�x� � �x� � x� � �

After two Gauss steps the
augmented matrix of coe��
cients has the form

�BBBBB�
� �� �� ��

� � � �
� � � �
� � � �
� � � �

�CCCCCA�

There is a solution but it is not unique� We can choose one unknown as a free parameter� for instance

x� � t ��� � t ���� and we get x� �
�

�
� �

�
t� x� �

�

�
� �

�
t� x� � t�

����� OverdeterminedLinearEquation Systems
������� OverdeterminedLinearEquationSystemsandLinearMeanSquare

Value Problems

�� Overdetermined System of Equations
Consider the linear system of equations

Ax � b �����

with the rectangular matrix of coe�cients A � �aij� �i � � �� � � � � m� j � � �� � � � � n � m 	 n��

The matrix A and the vector b � �b�� b�� � � � � bm�T on the right�hand side are given� and the vector
x � �x�� x�� � � � � xn�T is unknown� Because m 	 n holds we call this system an overdetermined system�
We can tell the existence and uniqueness of the solution and sometimes also the solution� for instance
by pivoting�

�� LinearMean Square Value Problem
When we represent a practical problem by the mathematical model ����� �i�e�� A� b� x are reals��
then because of measuring errors or because of other errors it is impossible to �nd an exact solution of
����� such that it satis�es all the equations� Substituting any vector x we will have a residual vector
r � �r�� r�� � � � � rm�T given as

r � Ax� b� r �� �� �����

We want to �nd a vector x to make the norm of the residual vector r as small as possible� Suppose now
A� b� x are real� If we consider the Euclidean norm� then

mX
i��

r�i � rTr � �Ax� b�T�Ax� b� � min �����

must be valid� i�e�� the residual sum of squares must be minimal� Gauss already had this idea� We call
����� a linear mean squares value problem� The norm jjrjj �

p
rTr of the residual vector r is called

the residue�

�� Gauss Transformation
The vector x is the solution of ����� if the residual vector r is orthogonal to every column of A� That
is�

ATr � AT�Ax� b� � � or ATAx � ATb� �����

Equation ����� is actually a linear equation system with a square matrix of coe�cients� We refer to it
as the system of normal equations� It has dimension n� The transition from ����� to ����� is called
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Gauss transformation� The matrix ATA is symmetric�

If the matrix A has the rank n �because m 	 n all columns of A are independent�� then the matrix
ATA is positive de�nite and also regular� i�e�� the system of normal equations has a unique solution if
the rank of A is equal to the number of unknowns�

������� Suggestions for Numerical Solutions ofMean Square Value
Problems

�� CholeskyMethod
Because the matrix ATA is symmetric and positive de�nite in the case rank �A� � n� in order to solve
the normal equation system we can use the Cholesky method �see ������� p� ����� Unfortunately this
algorithm is numerically fairly unstable although it works fairly well in the cases of a 	big
 residue jjrjj
and a 	small
 solution jjxjj�
�� Householder Method
Numerically useful procedures in order to solve the mean square value problem are the orthogonalization
methods which are based on the decompositionA � QR� Especially useful is the Householder method �
where Q is an orthogonal matrix of size �m�m� and R is a triangular matrix of size �m�n� �see �����
��� p� �����

�� Regularized Problem
In the case of rank de�ciency � i�e�� if rank �A� � n holds� then the normal equation system no longer
has a unique solution� and the orthogonalization method gives useless results� Then instead of �����
we consider the so�called regularized problem

rTr� �xTx � min$ ������

Here � � � is a regularization parameter � The normal equations for ������ are�

�ATA� �I�x � ATb� �����

The matrix of coe�cients of this linear equation system is positive de�nite and regular for � � �� but
the appropriate choice of the regularization parameter � is a di�cult problem �see  ���!��

��� EigenvalueProblems forMatrices

����� General EigenvalueProblem
Let A and B be two square matrices of size �n� n�� Their elements can be real or complex numbers�
The general eigenvalue problem is to determine the numbers � and the corresponding vectors x �� �
satisfying the equation

Ax � �Bx� ������

The number � is called an eigenvalue� the vector x an eigenvector corresponding to �� An eigenvector
is determined up to a constant factor� because if x is an eigenvector corresponding to �� so is cx �c �
constant� as well� In the special case when B � I holds� where I is the unit matrix of order n� i�e��

Ax � �x or �A� �I�x � �� ������

the problem is called the special eigenvalue problem� We meet this form very often in practical problems�
especially with a symmetric matrixA� and we will discuss it in detail in the following� More information
about the general eigenvalue problem can be found in the literature �see  ���!��

����� Special EigenvalueProblem

������� Characteristic Polynomial
The eigenvalue equation ������ yields a homogeneous system of equations which has non�trivial solu�
tions x �� � only if

det �A� �I� � �� �����a�
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By the expansion of det �A� � I� � � we get

det �A� �I� �

���������
a�� � � a�� a�� � � � a�n
a�� a�� � � a�� � � � a�n
���

���
���

���
���

an� an� an� � � � ann � �

���������
� Pn��� � ���n�n � an���

n�� � � � �� a�� � a� � �� �����b�

So the determination of the eigenvalues is equivalent to the solution of a polynomial equation� This
equation is called the characteristic equation� the polynomialPn��� is the characteristic polynomial � Its
roots are the eigenvalues of the matrixA� For an arbitrary square matrix A of size �n� n� the following
statements hold�

Case �� The matrix A�n�n� has exactly n eigenvalues ��� ��� � � � � �n� because a polynomial of degree
n has n roots if they are considered with their multiplicity� The eigenvalues of a Hermitian matrix are
real numbers� in other cases the eigenvalues can also be complex numbers�

Case �� If all the n eigenvalues are di�erent� then the matrixA�n�n� has exactly n linearly independent
eigenvectors xi as the solutions of the equation system ������ with � � �i�

Case �� If �i has multiplicity ni among the eigenvalues� and the rank of the matrix A�n�n� � �iI is
equal to ri � then the number of linearly independent eigenvectors corresponding to �i is equal to the
so�called nullity n � ri of the matrix of coe�cients� The inequality  � n � ri � ni holds� i�e�� for a
real or complex quadratic matrix A�n�n� there exist at least one and at most n real or complex linearly
independent eigenvectors�

A�

�� � �� 
�  �
�� � ��

�A � det �A� �I� �

������
�� � �� 

� � � �
�� � ��� �

������ � ��� � �� � �� � ��

The eigenvalues are �� � �� �� � � �� � ��� The eigenvectors are determined from the corresponding
homogeneous linear equation system�
� �� � �� �x� � �x� � x� � �

�x� � x� � �x� � �
��x� � �x� � �x� � ��

We get for instance by pivoting� x� arbitrary� x� �
�

�
x�� x� � ��x���x� � �

�
x�� Choosing x� � �

the eigenvector is x� � C�

�� �
�

�

�A� where C� is an arbitrary constant�

� �� � � The corresponding homogeneous system yields� x� is arbitrary� x� � �� x� � �x��x� � �x� �

Choosing x� �  the eigenvector is x� � C�

���
�


�A � where C� is an arbitrary constant�

� �� � ��� The corresponding homogeneous system yields� x� is arbitrary� x� �
�

�
x�� x� � ��x� �

�x� � ��

�
x�� Choosing x� � � the eigenvector is x� � C�

�� �
�
��

�A� where C� is an arbitrary constant�

B�

�� � � �
 � 
� � �

�A � det �A� �I� �

������
�� � � �

 �� � 
� � �� �

������ � ��� � ��� � ��� � �� � ��

The eigenvalues are �� � �� �� � �� � ��
� �� � �� We get that x� is arbitrary� x� � �x�� x� � x� and choosing� for instance x� �  the
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corresponding eigenvector is x� � C�

�� 
�



�A� where C� is an arbitrary constant�

� �� � �� � �� We get that x�� x� are arbitrary� x� � �x�� We have two linearly independent

eigenvectors� e�g�� for x� � � x� � � and x� � �� x� � � x� � C�

�� �

�

�A� x� � C�

���
�


�A� where C��

C� are arbitrary constants�

������� Real SymmetricMatrices� Similarity Transformations

In the case of the special eigenvalue problem ������ for a real symmetric matrixA the following state�
ments hold�

�� Properties Concerning the Eigenvalue Problem

� Number of Eigenvalues The matrixA has exactly n real eigenvalues �i �i � � �� � � � � n�� count�
ing them by their multiplicity�

� Orthogonalityof theEigenvectors The eigenvectors xi andxj corresponding to di�erent eigen�
values �i �� �j are orthogonal to each other� i�e�� for the scalar product of xi and xj

xTi xj � �xi�xj� � � ������

is valid�

� Matrixwith an Eigenvalue ofMultiplicityp For an eigenvalue which has multiplicity p �� �
�� � �� � � � � � �p�� there exist p linearly independent eigenvectors x��x�� � � � �xp� Because of ������
all the non�trivial linear combinations of them are also eigenvectors corresponding to �� Using the
Gram�Schmidt orthogonalization process we can choose p of them such that they are orthogonal to
each other�
Summarizing� The matrix A has exactly n real orthogonal eigenvectors�

A �

�� �  
 � 
  �

�A � det �A� � I� � ��� � �� � � � �� The eigenvalues are �� � �� � � and �� � ��

� �� � �� � �� From the corresponding homogenous equation system we get� x� is arbitrary� x� is
arbitrary� x� � �x� � x�� Choosing �rst x� � � x� � � then x� � �� x� �  we get the linearly inde�

pendent eigenvectors x� � C�

�� 
�
�

�A and x� � C�

�� �

�

�A� where C� and C� are arbitrary constants�

� �� � �� We get� x� is arbitrary� x� � x�� x� � x�� and choosing for instance x� �  we get the

eigenvector x� � C�

�� 



�A� where C� is an arbitrary constant� The matrix A is symmetric� so the

eigenvectors corresponding to di�erent eigenvalues are orthogonal�

� Gram�Schmidt Orthogonalization Process Let Vn be an arbitrary n�dimensional Euclidean
vector space� Let the vectors x ��x �� � � � �xn � Vn be linearly independent� Then there exists an or�
thogonal system of vectors y

�
�y

�
� � � � �y

n
� Vn which can be obtained as follows�

y
�

� x �� y k
� x k �

k��X
i��

�xk�y i
�

�y
i
�y

i
�
y
i

�k � �� �� � � � � n�� ������

Remarks�
� Here �x k� y i

� � xTk y i
is the scalar product of the vectors x k und y

i
�

� Corresponding to the orthogonal system of the vectors y
�
�y

�
� � � � �y

n
we get the orthonormal system
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'x �� 'x �� � � � � 'xn with 'x � �
y
�

jjy
�
jj � 'x � �

y
�

jjy
�
jj � � � � � 'xn �

y
n

jjy
n
jj � where jjy

i
jj �

q
�y

i
�y

i
� is the

Euclidean norm of the vector y
i
�

x � �

�� �



�A � x � �

�� 
�


�A � x � �

�� 

�

�A� From here it follows�

y
�

� x � �

�� �



�A and 'x � �
p
�

�� �



�A� y
�

� x � �
�
x � � y �

	
�
y
�
� y

�

	 y
�

�

�� 
���

��

�A and 'x � �
p
�

�� �
�



�A�

y
�

� x� �
�x ��y �

�

�y
�
�y

�
�
y
�
� �x ��y �

�

�y
�
�y

�
�
y
�

�

�� ���
���
����

�A and 'x � �
p
�

�� 

�

�A�

�� Transformation of Principal Axes� Similarity Transformation
For every real symmetric matrixA� there is an orthogonal matrixU and a diagonal matrixD such that

A � UDUT� ������

The diagonal elements of D are the eigenvalues of A� and the columns of U are the corresponding
normed eigenvectors� From ������ it is obvious that

D � UTAU� ������

Transformation ������ is called the transformation of principal axes� In this way A is reduced to a
diagonal matrix �see also ����� �� p� �����
If the square matrix A �not necessarily symmetric� is transformed by a square regular matrix G such
a way that

G��AG � �A ������

then it is called a similarity transformation� The matrices A and �A are called similar and they have
the following properties�

� The matrices A and �A have the same eigenvalues� i�e�� the similarity transformation does not a�ect
the eigenvalues�

� If A is symmetric and G is orthogonal� then �A is symmetric� too�

�A � GTAG with GTG � I� ������

Now ������ can be put in the form�
A real symmetric matrix A can be transformed orthogonally similar to a real diagonal form D�

������� Transformation of Principal Axes of Quadratic Forms

�� Real Quadratic Form� De�nition
A real quadratic form Q of the variables x�� x��� � � � xn has the form

Q �
nX
i��

nX
j��

aijxixj � xTAx� �����

where x � �x�� x�� � � � � xn�T is the vector of real variables and the matrix A � �aij� is a real symmetric
matrix�
The form Q is called positive de�nite or negative de�nite� if it takes only positive or only negative values
respectively� and it takes the zero value only in the case x� � x� � � � � � xn � ��
The form Q is called positive or negative semide�nite� if it takes non�zero values only with the sign
according to its name� but it can take the zero value for non�zero vectors� too�
A real quadratic form is called inde�nite if it takes both positive and negative values� According to
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the behavior of Q the associated real symmetric matrix A is called positive or negative de�nite� or
semide�nite�

�� Real Positive De�nite Quadratic Form� Properties
� In a real positive de�nite quadratic form Q all elements of the main diagonal of the corresponding
real symmetric matrix A are positive� i�e��

aii � � �i � � �� � � � � n� ������

holds� ������ represents a very important property of positive de�nite matrices�

� A real quadratic form Q is positive de�nite if and only if all eigenvalues of the corresponding matrix
A are positive�

� Suppose the rank of the matrix A corresponding to the real quadratic form Q � xTAx is equal to
r� Then the quadratic form can be transformed by a linear transformation

x � C�x ������

into a sum of pure quadratic terms� into the so�called normal form

Q � �xTK�x �
rX
i��

pi 'xi
� ������

where pi � �sign�i�ki and k�� k�� � � � �kr are arbitrary� previously given� positive constants�

Remark� Regardless of the non�singular transformation ������ that transforms the real quadratic
form of rank r into the normal form ������� the number p of positive coe�cients and the number
q � r� p of negative coe�cients among the pi of the normal form are invariant �the inertia theorem of
Sylvester�� The value p is called the index of inertia of the quadratic form�

�� Generation of the Normal Form
A practical method to use the transformation ������ follows from the transformation of principal axes
������� First we perform a rotation on the coordinate system by the orthogonal matrix U� whose
columns are the eigenvectors of A �i�e�� the directions of the axes of the new coordinate system are the
directions of the eigenvectors�� Then we have the form

Q � �xTL�x �
rX
i��

�i 'xi
�� ������

Here L is a diagonal matrix with the eigenvalues of A in the diagonal� Then a dilatation is performed

by the diagonal matrix D whose diagonal elements are di �

s
kij�ij � The whole transformation now is

given by the matrix

C � UD� ������

and we have�

Q � �xTA�x � �UD�x�TA�UD�x� � �xT�DTUTAUD��x

� �xTDTLD�x � �xTK�x� ������

Remark� The transformation of principal axes of quadratic forms plays an essential role at the classi�
�cation of curves and surfaces of second order �see �������� p� ��� and �������� p� �����

�� Jordan Normal Form
Let A be an arbitrary real or complex �n� n� matrix� Then there exists a non�singular matrix T such
that

T��AT � J ������

holds� where J is called the Jordan matrix or Jordan normal form ofA� The Jordan matrix has a block
diagonal structure of the form ������� where the elemnts Jj of J are called Jordan blocks�
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J �

�BBBBBB�
J�

J� O
� � �

O Jk��
Jk

�CCCCCCA � ������ J �

�BBBBBB�
��

�� O
� � �

O �n��
�n

�CCCCCCA � ������

They have the following structure�

� If A has only single eigenvalues �j� then Jj � �j and k � n� i�e�� J is a diagonal matrix �������

� If �j is an eigenvalue of multiplicity pj� then there are
one or more blocks of the form ����� where the sum
of the sizes of all such blocks is equal to pj and we havePk

j�� pj � n� The exact structure of a Jordan block de�
pends on the structure of the elementary divisors of the
characteristic matrix A� �I�

Jj �

�BBBBBB�
�j 

�j  O
� � � � � �

�j 
O �j

�CCCCCCA � �����

For further information see  ���!�  ���! vol� �

������� Suggestions for the Numerical Calculations of Eigenvalues

� Eigenvalues can be calculated as the roots of the characteristic equation �����b� �see examples
on p� ����� In order to do this we have to determine the coe�cients ai �i � �� � �� � � � � n � � of
the characteristic polynomial of the matrix A� However� we should avoid this method of calculation�
because this procedure is extremely unstable� i�e�� small changes in the coe�cients ai of the polynomial
result in big changes in the roots �j�

� There are many algorithms for the solution of the eigenvalue problem of symmetric matrices� We
distinguish between two types �see  ���!��

a� Transformation methods� for instance the Jacobi method� Householder tridiagonalization�QR algo�
rithm�

b� Iterative methods� for instance vector iteration� the Rayleigh�Ritz algorithm� inverse iteration� the
Lanczos method� the bisection method� As an example the power method of Mises is discussed here�

� The Power Method of Mises Assume that A is real and symmetric and has a unique dominant
eigenvalue� This iteration method determines this eigenvalue and the associated eigenvector� Let the
dominant eigenvalue be denoted by ��� that is�

j��j � j��j 	 j��j 	 � � � 	 j�nj� ������

Let x ��x �� � � � �xn be the associated linearly independent eigenvectors� Then�

� Ax i � �ix i �i � � �� � � � � n�� ������

� Each element x � IRn can be expressed as a linear combination of these eigenvectors x i�

x � c�x � � c�x � � � � �� cnxn �ci const� i � � �� � � � � n�� ������

Multiplying both sides of ������ by A k times� then using ������ we have

Akx � c��
k
�x � � c��

k
�x � � � � �� cn�

k
nxn � �k� c�x� � c�

�
��
��

�k
x � � � � �� cn

�
�n
��

�k
xn!�

������

From this relation and ������ we see that

Akx

�k�c�
� x � as k � � that is� Akx 
 c��

k
�x �� ������

This is the basis of the following iteration procedure�
Step �� Select an arbitrary starting vector x��� � IRn�
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Step �� Compute Akx iteratively�

x�k��� � Ax�k� �k � �� � �� � � � �x��� is given�� ������

From ������ and keeping in mind ������ we have�

x�k� � Akx��� 
 c��
k
�x �� ������

Step �� From ������ and ������ it follows that

x�k��� � Ax�k� � A�Akx�����

A�Akx���� 
 A�c��
k
�x �� � c��

k
��Ax ���

c���
k
�Ax �� � ���c��

k
�x �� 
 ��x

�k�� therefore

x�k��� 
 ��x
�k�� ������

that is� for large values of k the consecutive vectors x�k� are �� multiples of each other�

Step �� Relations ������ and ������ imply for x � and ���

x � 
 x�k���� �� 

�
x�k��x�k���

	
�x�k��x�k��

� ������

For example� let

A �

�� ���� ��� ���
��� ���� ����

��� ���� ���

�A � x��� �

�� 
�
�

�A�

x��� x��� x��� x��� normalization x��� x��� normalization

 ���� ���� �����  ���� ����� 

� ��� ���� ������� ����� ������ ������� �����

� ��� ���� ����� ���� ���� ����� ��

�� ����� ����

x�	� x��� normalization x�
� x�� normalization

���� �����  ���� �����

� ����� ������� ����� ����� �������

��� ���� ��� ���� �����

��� ��� 
 ��

�BB�


�����

����

�CCA 
 x �

Remarks�

� Since eigenvectors are unique only up to a constant multiplier� it is preferable to normalize the
vectors x�k� as shown in the example�

� The eigenvalue with the smallest absolute value and the associated eigenvector can be obtained by
using the power method of Mises forA��� IfA�� does not exist� then � is this eigenvalue and any vector
from the null�space of A can be selected as an associated eigenvector�

� The other eigenvalues and the associated eigenvectors ofA can be obtained by repeated application
of the following idea� Select a starting vector which is orthogonal to the known vector x �� and in this
subspace �� becomes the dominant eigenvalue that can be obtained by using the power method� In order
to obtain ��� the starting vector has to be orthogonal to both x � and x �� and so on� This procedure is
known as matrix de�ation�

� Based on ������ the power method is sometimes called vector iteration�




�� Eigenvalue Problems for Matrices ���

����� SingularValueDecomposition
� Singular Values and Singular Vectors Let A be a real matrix of size �m�n� and its rank be
equal to r� The matrices AAT and ATA have r non�zero eigenvalues ��� and they are the same for
both of the matrices� The positive square roots d� �

p
�� �
 � � �� � � � � r� of the eigenvalues �� of

the matrix ATA are called the singular values of the matrix A� The corresponding eigenvectors u�
of ATA are called right singular vectors of A� the corresponding eigenvectors v� of AAT left singular
vectors�

ATAu� � ��u�� AATv� � ��v� �
 � � �� � � � � r�� ����a�

The relations between the right and left singular vectors are�

Au� � d�v�� ATv� � d�u�� ����b�

A matrixA of size �m�n� with rank r has r positive singular values d� �
 � � �� � � � � r�� There exist r
orthonormalized right singular vectors u� and r orthonormalized left singular vectors v� � Furthermore�
there exist to the zero singular value n� r orthonormalized right singular vectors u��
 � r � � � � � � n�
and m � r orthonormalized left singular vectors v� �
 � r � � � � � � m�� Consequently� a matrix of
size �m�n� has n right singular vectors and m left singular vectors� and two orthogonal matrices can be
made from them �see ����� 
� p� �����

U � �u��u�� � � � �un�� V � �v��v�� � � � �vm�� ������

� Singular Value Decomposition The representation

A � V #AUT �����a� with #A �

�BBBBBBBBBBBBBBBBB�

d� � � � � � � � � � � �

� d� � �
���

���
� � �

���
���

�
� � � � � dr � � � � �
� � � � � � � � � � �

� �
���

���
���

� � � � � � � � � � �

�CCCCCCCCCCCCCCCCCA

 �������!�������"
r rows

 ����!����"m� r rows

� �z � � �z �
r columns n� r columns

�����b�

is called the singular value decomposition of the matrix A� The matrix #A� as the matrix A� is of size
�m�n� and has only zero elements except the �rst r diagonal elements a�� � d� �
 � � �� � � � � r�� The
values d� are the singular values of A�

Remark� If we substitute AH instead of AT and consider unitary matrices U and V instead of or�
thogonals� then all the statements about singular value decomposition are valid also for matrices with
complex elements�
� Application Singular value decomposition can be used to determine the rank of the matrix A of
size �m�n� and to calculate an approximate solution of the overdetermined equation system Ax � b
�see ������� p� ���� after the transformation according to the so�called regularization method� i�e�� to
solve the problem

jjAx� bjj� � �jjxjj� �
mX
i��

�
nX
k��

aikxk � bi

�
� �

nX
k��

x�k � min$ � ������

where � � � is a regularization parameter�
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��� Logic

����� Propositional Calculus

�� Propositions
A proposition is the mental re�ection of a fact� expressed as a sentence in a natural or arti�cial language�
Every proposition is considered to be true or false� This is the principle of two�valuedness �in contrast
to many�valued or fuzzy logic� see ����� p� ����� 	True
 and 	false
 are called the truth value of the
proposition and they are denoted by T �or � and F �or ��� respectively� The truth values can be
considered as propositional constants�

�� Propositional Connectives
Propositional logic investigates the truth of compositions of propositions depending on the truth of the
components� Only the extensions of the sentences corresponding to propositions are considered� Thus
the truth of a composition depends only on that of the components and on the operations applied� So
in particular� the truth of the result of the propositional operations

	NOT A
 ��A�� ���� 	A AND B
 �A � B�� �����

	A OR B
 �A �B�� ����� 	IF A� THEN B
 �A� B� �����

and

	A IF AND ONLY IF B
�A� B� �����

are determined by the truth of the components� Here 	logical OR
 always means 	inclusive OR
� i�e��
	AND�OR
� In the case of implication� for A� B we also use the following verbal forms�

A implies B� B is necessary for A� A is su�cient for B�

�� Truth Tables
In propositional calculus� the propositions A and B are considered as variables �propositional variables�
which can have only the values F and T� Then the truth tables inTable �� contain the truth functions
de�ning the propositional operations�

Table �� Truth tables of propositional calculus

Negation

A �A
F T
T F

Conjunction

A B A �B

F F F
F T F
T F F
T T T

Disjunction

A B A �B

F F F
F T T
T F T
T T T

Implication

A B A� B

F F T
F T T
T F F
T T T

Equivalence

A B A� B

F F T
F T F
T F F
T T T

�� Formulas in Propositional Calculus
We can compose compound expressions �formulas� of propositional calculus from the propositional
variables in terms of a unary operation �negation� and binary operations �conjunction� disjunction�
implication and equivalence�� These expressions� i�e�� the formulas� are de�ned in an inductive way�

� Propositional variables and the constants T� F are formulas� �����

� If A and B are formulas� then ��A�� �A �B�� �A � B�� �A� B� � �A� B� �����
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are also formulas�
To simplify formulas we omit parentheses after introducing precedence rules� In the following sequence
every propositional operation binds more strongly than the next one in the sequence�

�� �� �� �� � �

We often use the notation A instead of 	�A
 and we omit the symbol �� By these simpli�cations� for
instance the formula ��A � ��B��� ��A � B� � C�� can be rewritten more brie�y in the form�

A � B � AB � C�

�� Truth Functions
If we assign a truth value to every propositional variable of a formula� we call the assignment an inter�
pretation of the propositional variables� Using the de�nitions �truth tables� of propositional operations

A B C A � B AB � C A � B � AB � C

F F F T F F
F F T T T T
F T F F F T
F T T F T T
T F F T F F
T F T T T T
T T F T T T
T T T T T T

we can assign a truth value to a formula for
every possible interpretation of the variables�
Thus for instance the formula given above de�
termines a truth function of three variables �a
Boolean function see ������ p� �����

In this way� every formula with n proposi�
tional variables determines an n�place �or n�
ary� truth function� i�e�� a function which as�
signs a truth value to every n�tuple of truth
values� There are ��

n

n�ary truth functions�
in particular these are � binary ones�

� Elementary Laws in Propositional Calculus
Two propositional formulas A and B are said to be logically equivalent or semantically equivalent� de�
noted by A � B� if they determine the same truth function� Consequently� we can check the logical
equivalence of propositional formulas in terms of truth tables� So we get� e�g�� A�B � AB�C � B�C�
i�e�� the formula A �B � AB �C does not in fact depend on A� as follows from its truth table above�
In particular� we have the following elementary laws of propositional calculus�

� Associative Laws

�A � B� � C � A � �B � C�� ����a� �A � B� � C � A � �B � C�� ����b�

� Commutative Laws

A � B � B � A� ����a� A � B � B � A� ����b�

� Distributive Laws

�A � B�C � AC � BC� ����a� AB � C � �A � C��B � C�� ����b�

� Absorption Laws

A�A � B� � A� ���a� A � AB � A� ���b�

� Idempotence Laws

AA � A� ����a� A � A � A� ����b�

� Excluded Middle

AA � F� ����a� A � A � T� ����b�

� De Morgan Rules

AB � A �B� ����a� A � B � AB� ����b�
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� Laws for T and F

AT � A� ����a� A � F � A� ����b�

AF � F� ����c� A � T � T� ����d�

T � F� ����e� F � T� ����f�


 Double Negation

A � A� �����

Using the truth tables for implication and equivalence� we get the identities

A� B � A �B ����a� and A� B � AB � AB� ����b�

Therefore implication and equivalence can be expressed in terms of other propositional operations�
Laws ����a�� ����b� are applied to reformulate propositional formulas�

The identity A � B � AB � C � B � C can be veri�ed in the following way� A � B � AB � C �

A � B � AB � C � AB � AB � C � AB � AB � C � �A � A�B � C � TB � C � B � C�

�� Further Transformations

A�A � B� � AB� ����a� A � AB � A �B� ����b�

�A � C��B � C��A � B� � �A � C��B � C�� ����c� AC � BC � AB � AC � BC� ����d�

�� NAND Function and NOR Function As we know� every propositional formula determines
a truth function� We can check the following converse of this statement� Every truth function can be
represented as a truth table of a suitable formula in propositional logic� Because of ����a� and ����b�
we can eliminate implication and equivalence from formulas �see also ���� p� ����� This fact and the
De Morgan rules ����a� and ����b� imply that we can express every formula� therefore every truth
function� in terms of negation and disjunction only� or in terms of negation and conjunction� There are
two further binary truth functions of two variables which are suitable to express all the truth functions�

Table ��� NAND function

A B AjB
F F T
F T T
T F T
T T F

Table ��� NOR function

A B A � B

F F T
F T F
T F F
T T F

They are called the NAND function or Shef�
fer function �notation 	 j 
� and the NOR
function or Peirce function �notation 	 � 
��
with the truth tables given in Tables ��
and ��� Comparison of the truth tables
for these operations with the truth tables
of conjunction and disjunction makes the
terminologies NAND function �NOT AND�
and NOR function �NOT OR� clear�

�� Tautologies� Inferences in Mathematics
A formula in propositional calculus is said to be a tautology if the value of its truth function is identically
the value T� Consequently� two formulas A and B are called logically equivalent if the formula A� B
is a tautology� Laws of propositional calculus often re�ect inference methods used in mathematics� As
an example� consider the law of contraposition� i�e�� the tautology

A� B � B � A� ����a�

This law� which also has the form

A� B � B � A� ����b�

can be interpreted in this way� To show that B is a consequence of A is the same as showing that A is
a consequence of B� Indirect proof �see also ������ p� �� means the following principle� To show that
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B is a consequence of A� we suppose B to be false� and under the assumption that A is true� we derive
a contradiction� This principle can be formalized in propositional calculus in several ways�

A� B � AB � A �����a� or A� B � AB � B or �����b�

A� B � AB � F� �����c�

����� Formulas inPredicateCalculus
For developing the logical foundations of mathematics we need a logic which has a stronger expressive
power than propositional calculus� To describe the properties of most of the objects in mathematics
and the relations between these objects the predicate calculus is needed�

�� Predicates
We include the objects to be investigated into a set� i�e�� into the domainX of individuums �or universe��
e�g�� this domain could be the set IN of the natural numbers� The properties of the individuums� as� e�g��
	 n is a prime 
� and the relations between individuums� e�g�� 	 m is smaller than n 
� are considered as
predicates� An n�place predicate over the domain X of individuums is an assigment P � Xn  fF�Wg�
which assigns a truth value to every n�tuple of the individuums� So the predicates introduced above
on natural numbers are a one�place �or unary� predicate and a two�place �or binary� predicate�

�� Quanti�ers
A characteristic feature of predicate logic is the use of quanti�ers� i�e�� that of a universal quanti�er or
�for every� quanti�er � and existential quanti�er or �for some� quanti�er �� If P is a unary predicate�
then the sentence 	P �x� is true for every x in X
 is denoted by � xP �x� and the sentence	 There exists
an x in X for which P �x� is true 
is denoted by � x P �x�� Applying a quanti�er to the unary predicate
P � we get a sentence� If for instance IN is the domain of individuums of the natural numbers and P
denotes the �unary� predicate 	n is a prime
� then �n P �n� is a false sentence and �n P �n� is a true
sentence�

�� Formulas in Predicate Calculus
The formulas in predicate calculus are de�ned in an inductive way�

� If x�� � � � � xn are individuum variables �variables running over the domain of individuum variables�
and P is an n�place predicate symbol� then

P �x�� � � � � xn� is a formula �elementary formula�� �����

� If A and B are formulas� then

��A�� �A �B�� �A � B�� �A� B�� �A� B�� �� x A� and �� x A� ������

are also formulas�

Considering a propositional variable to be a null�place predicate� we can consider propositional calculus
as a part of predicate calculus� An occurrence of an individuum variable x is bound in a formula if x is
a variable in � x or in � x or the occurrence of x is in the scope of these types of quanti�ers� otherwise
an occurrence of x is free in this formula� A formula of predicate logic which does not contain any free
occurrences of individuum variables is said to be a closed formula�

�� Interpretation of Predicate Calculus Formulas
An interpretation of predicate calculus is a pair of

� a set �domain of individuums� and

� an assignment� which assigns an n�place predicate to every n�ary predicate symbol�

For every pre�xed value of free variables the concept of the truth evaluation of a formula is similar to
the propositional case� The truth value of a closed formula is T or F� With a formula with free variables�
we can associate the values of individuums for which the truth evaluation of the formula is true� these
values constitute a relation �see ������ �� p� ���� on the universe �domain of individuums��

Let P denote the two�place relation � on the domain IN of individuums� where IN is the set of the
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natural numbers then
� P �x� y� characterizes the set of all the pairs �x� y� of natural numbers with x � y �two�place or binary
relation on IN�� here x� y are free variables�
� � y P �x� y� characterizes the subset of IN �unary relation� consisting of the element � only� here x is
a free variable� y is a bound variable�
� � x � y P �x� y� corresponds to the sentence 	 There is a smallest natural number 
� the truth value is
true� here x and y are bound variables�

�� Logically Valid Formulas
A formula is said to be logically valid �or a tautology� if it is true for every interpretation� The negation
of formulas is characterized by the identities below�

�� x P �x� � � x �P �x� or �� x P �x� � � x �P �x�� ������

Using ������ the quanti�ers � and � can be expressed in terms of each other�

� x P �x� � �� x �P �x� or � x P �x� � �� x �P �x�� ������

Further identities of the predicate calculus are�

� x � y P �x� y� � � y � x P �x� y�� ������

� x � y P �x� y� � � y � x P �x� y�� ������

� x P �x� � � x Q�x� � � x �P �x� �Q�x��� ������

� x P �x� � � x Q�x� � � x �P �x� �Q�x��� ������

The following implications are also valid�

� x P �x� � � x Q�x�� � x �P �x� �Q�x��� ������

� x �P �x� �Q�x��� � x P �x� � � x Q�x�� ������

� x �P �x�� Q�x��� �� x P �x�� � x Q�x��� �����

� x �P �x�� Q�x��� �� x P �x�� � x Q�x��� ������

� x � y P �x� y�� � y � x P �x� y�� ������

The converses of these implications are not valid� in particular� we have to be careful with the fact that
the quanti�ers � and � do not commute �the converse of the last implication is false��

� Restricted Quanti�cation
Often it is useful to restrict quanti�cation to a subset of a given set� So we consider

� x � X P �x� as a short notation of � x �x � X � P �x�� and ������

� x � X P �x� as a short notation of � x �x � X � P �x��� ������

��� SetTheory

����� Concept of Set� Special Sets
The founder of set theory is Georg Cantor ��������� The importance of the notion introduced by
him became well known only later� Set theory has a decisive role in all branches of mathematics� and
today it is an essential tool of mathematics and its applications�

�� Membership Relation
� Sets and their Elements The fundamental notion of set theory is the membership relation� A
set A is a collection of certain di�erent things a �objects� ideas� etc�� that we think belong together for
certain reasons� These objects are called the elements of the set� We write 	a � A
 or 	a �� A
 to denote
	a is an element of A
 or 	a is not an element of A
� respectively� Sets can be given by enumerating
their elements in braces� e�g�� M � fa� b� cg or U � f� �� �� � � �g� or by a de�ning property possessed
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exactly by the elements of the set� For instance the set U of the odd natural numbers is de�ned and
denoted by U � fx j x is an odd natural numberg� For number domains the following notation is
generally used�

IN � f�� � �� � � �g set of the natural numbers�
Z � f�� ��� ����� � � �g set of the integers�

Q �

�
p

q

��� p� q � Z � q �� �

�
set of the rational numbers�

IR set of the real numbers�
C set of the complex numbers�

� Principle of Extensionality for Sets Two sets A and B are identical if and only if they have
exactly the same elements� i�e��

A � B � � x �x � A� x � B�� ������

The sets f�� � �� �� �g and f� �� �� �g are the same�
A set contains every element only 	once
� even if it is enumerated several times�

�� Subsets
� Subset If A and B are sets and

� x �x � A� x � B� ������

holds� then A is called a subset of B� and this is denoted by A � B� In other words� A is a subset of B�
if all elements of A also belong to B� If for A � B there are some further elements in B such that they
are not in A� then we call A a proper subset of B� and we denote it by A � B �Fig ���� Obviously�
every set is a subset of itself A � A�

Suppose A � f�� �� �� �� �g is a set of even numbers and B � f� �� �� � � � � �g is a set of natural
numbers� Since the set A does not contain odd numbers� A is a proper subset of B�
� Empty Set or Void Set It is important and useful to introduce the notion of empty set or void
set� �� which has no element� Because of the principle of extensionality� there exists only one empty set�

A� The set fxjx � IR � x� � �x � � � �g is empty�

B� � �M for every set M � i�e�� the empty set is a subset of every set M �
For a set A the empty set and A itself are called the trivial subsets of A�
� Equality of Sets Two sets are equal if and only if both are subsets of each other�

A � B � A � B �B � A� ������

This fact is very often used to prove that two sets are identical�
� Power Set The set of all subsets A of a set M is called the power set of M and it is denoted by
IP�M�� i�e�� IP�M� � fA j A �Mg�

For the set M � fa� b� cg the power set is

IP�M� � f�� fag� fbg� fcg� fa� bg� fa� cg� fb� cg� fa� b� cgg�
It is true that�
a� If a set M has m elements� its power set IP�M� has �m elements�

b� For every set M we have M� � � IP�M�� i�e�� M itself and the empty set are elements of the power
set of M �
� Cardinal number The number of elements of a �nite set M is called the cardinal number of M
and it is denoted by cardM or sometimes by jM j�
We also de�ne the cardinal number of sets with in�nitely many elements �see ������ p� �����

����� Operations with Sets

�� Venn diagram
The graphical representations of sets and set operations are the so�called Venn diagrams� when we
represent sets by plane �gures� So� in Fig ��� we represent the subset relation A � B�
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�� Union� Intersection� Complement
By set operations we form new sets from the given sets in di�erent ways�
� Union Let A and B be two sets� The union set or the union �denoted by A � B� is de�ned by

A � B � fx j x � A � x � Bg� ������

We say 	A union B
 or 	A cup B
� If A and B are given by the properties E� and E� respectively� the
union set A�B has the elements possessing at least one of these properties� i�e�� the elements belonging
to at least one of the sets� In Fig �� the union set is represented by the shaded region�

f� �� �g � f�� �� �� �g � f� �� �� �� �g�
� Intersection Let A and B be two sets� The intersection set� intersection� cut or cut set �denoted
by A �B� is de�ned by

A � B � fx j x � A � x � Bg� ������

We say 	A intersected by B
 or 	A cap B
� If A and B are given by the properties E� and E� respec�
tively� the intersection A�B has the elements possessing both properties E� and E�� i�e�� the elements
belonging to both sets� In Fig �� the intersection is represented by the shaded region�

With the intersection of the sets of divisors T �a� and T �b� of two numbers a and b we can de�ne the
greatest common divisor �see ������� p� ����� For a � � and b � � we have T �a� � f� �� �� �� �� �g
and T �b� � f� �� �� �� �� � g� so T ����T ��� contains the common divisors� and the greatest common
divisor is g�c�d� ��� �� � ��
� Disjoint Sets Two sets A and B are called disjoint if they have no common element� for them

A � B � � �����

holds� i�e�� their intersection is the empty set�

The set of odd numbers and the set of even numbers are disjoint� their intersection is the empty set�
i�e��

fodd numbersg � feven numbersg � ��
� Complement If we consider only the subsets of a given set M � then the complementary set or the
complement CM�A� of A with respect to M contains all the elements of M not belonging to A�

CM�A� � fx j x �M � x �� Ag� ������

We say 	complement of A with respect to M
� and M is called the fundamental set or sometimes the
universal set� If the fundamental set M is obvious from the considered problem� the notation A is also
used for the complementary set� In Fig �� the complement A is represented by the shaded region�

M

A

Figure ���

A B

Figure ���

A B

Figure ���

�� Fundamental Laws of Set Algebra
These set operations have analoguous properties to the operations in logic� The fundamental laws of
set algebra are�
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� Associative Laws

�A � B� � C � A � �B � C�� ������ �A � B� � C � A � �B � C�� ������

� Commutative Laws

A � B � B � A� ������ A � B � B � A� ������

� Distributive Laws

�A � B� � C � �A � C� � �B � C�� ������ �A � B� � C � �A � C� � �B � C�� ������

� Absorption Laws

A � �A �B� � A� ������ A � �A � B� � A� ������

� Idempotence Laws

A � A � A� ����� A � A � A� ������

� De Morgan Laws

A � B � A � B� ������ A � B � A � B� ������

� Some Further Laws

A � A � �� ������ A � A � M �M fundamental set�� ������

A �M � A� ������ A � � � A� ������

A � � � �� ������ A �M � M� ������

M � �� ����� � � M� ������

A � A� ������

This table can also be obtained from the fundamental laws of propositional calculus �see ���� p� ����
if we make the following substitutions� � by �� � by �� T by M � and F by �� This coincidence is not
accidental� it will be discussed in ���� p� ����

�� Further Set Operations
Besides the operations de�ned above there are de�ned some further operations between two sets A and
B� the di�erence set or di�erence A n B� the symmetric di�erence A B and the Cartesian product
A� B�

� Di	erence of Two Sets The set of the elements of A� not belonging to B is the di�erence set
or di�erence of A and B�

A nB � fx j x � A � x �� Bg� �����a�

If A is de�ned by the property E� and B by the property E�� then A nB contains the elements having
the property E� but not having property E��
In Fig �� the di�erence is represented by the shaded region�

f� �� �� �g n f�� �� �g � f� �g�
� Symmetric Di	erence of Two Sets The symmetric di�erence A B is the set of all elements
belonging to exactly one of the sets A and B�

A B � fx j �x � A � x �� B� � �x � B � x �� A�g� �����b�

It follows from the de�nition that

A B � �A nB� � �B n A� � �A � B� n �A � B�� �����c�
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i�e�� the symmetric di�erence contains the elements which have exactly one of the de�ning properties
E� �for A� and E� �for B��

In Fig �� the symmetric di�erence is represented by the shaded region�

f� �� �� �g f�� �� �g � f� �� �g�
� Cartesian Product of Two Sets The Cartesian product of two sets A� B is de�ned by

A� B � f�a� b� j a � A � b � Bg� �����a�

The elements �a� b� of A� B are called ordered pairs and they are characterized by

�a� b� � �c� d�� a � c � b � d� �����b�

The number of the elements of a Cartesian product of two �nite sets is equal to

card �A� B� � �cardA��cardB�� �����c�

A� For A � f� �� �g and B � f�� �g we get A � B � f�� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��g and
B � A � f��� �� ��� ��� ��� ��� ��� �� ��� ��� ��� ��g with cardA � � � cardB � �� card�A � B� �
card�B � A� � ��

B� Every point of the x� y plane can be de�ned with the Cartesian product IR� IR �IR is the set of
real numbers�� The set of the coordinates x� y is represented by IR� IR� and we have�

IR� � IR� IR � f�x� y� j x � IR� y � IRg�
� Cartesian Product of n Sets
From n elements� by �xing an order of sequence ��rst element� second element� � � � � n�th element� an
ordered n�tuple is de�ned� If ai � Ai �i � � �� � � � � n� are the elements� the n�tuple is denoted by
�a�� a�� � � � � an�� where ai is called the i�th component�
For n � �� �� � we call these n�tuples triples� quadruples� and quintuples�
The Cartesian product of n terms A� � A� � � � � � An is the set of all ordered n�tuples �a�� a�� � � � � an�
with ai � Ai �

A� � � � �� An � f�a�� � � � � an� j ai � Ai �i � � � � � � n�g� �����a�

If every Ai is a �nite set� the number of ordered n�tuples is

card�A� � A� � � � � � An� � cardA� cardA� � � � cardAn� �����b�

Remark� The n times Cartesian product of a set A with itself is denoted by An�

����� Relations andMappings

�� n�ary Relations
Relations de�ne correspondences between the elements of one or di�erent sets� An n�ary relation or
n�place relation R between the sets A�� � � � � An is a subset of the Cartesian product of these sets� i�e��
R � A� � � � � � An� If the sets Ai� i � � � � � � n� are all the same set A� then R � An holds and it is
called an n�ary relation in the set A�

�� Binary Relations
� Notion of Binary Relations of a Set The two�place �binary� relations in a set have special
importance �see ������ �� p� �����
In the case of a binary relation the notation aRb is also very common instead of �a� b� � R�

As an example� we consider the divisibility relation in the set A � f� �� �� �g� i�e�� the binary
relation

T � f�a� b� j a� b � A � a is a divisor of bg �����a�

� f�� �� �� ��� �� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��g� �����b�

� ArrowDiagram orMapping Function Finite binary relations R in a set A can be represented
by arrow functions or arrow diagrams or by relation matrices� The elements of A are represented as
points of the plane and an arrow goes from a to b if aRb holds�
Fig �� shows the arrow diagram of the relation T in A � f� �� �� �g�
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Scheme� Relation matrix

� Relation Matrix The elements of A are used as row and column entries of a matrix �see ����
�� p� ���� At the intersection point of the row of a � A with the column of b � B there is an entry
 if aRb holds� otherwise there is an entry �� The above scheme shows the relation matrix for T in
A � f� �� �� �g�
�� Relation Product� Inverse Relation
Relations are special sets� so the usual set operations �see ������ p� ��� can be performed between
relations� Besides them� for binary relations� the relation product and the inverse relation also have
special importance�
Let R � A � B and S � B � C be two binary relations� The product R � S of the relations R� S is
de�ned by

R � S � f�a� c� j � b �b � B � aRb � bSc�g� ������

The relation product is associative� but not commutative�

The inverse relation R�� of a relation R is de�ned by

R�� � f�b� a� j �a� b� � Rg� ������

For binary relations in a set A the following relations are valid�

�R � S� � T � �R � T � � �S � T �� ������ �R � S� � T � �R � T � � �S � T �� �����

�R � S��� � R�� � S��� ������ �R � S��� � R�� � S��� ������

�R � S��� � S�� �R��� ������

�� Properties of Binary Relations
A binary relation in a set A can have special important properties�
R is called

reflexive� if � a � A aRa� ������

irreflexive� if � a � A �aRa� ������

symmetric� if � a� b � A �aRb� bRa�� ������

antisymmetric� if � a� b � A �aRb � bRa� a � b�� ������

transitive� if � a� b� c � A �aRb � bRc� aRc�� ������

linear� if � a� b � A �aRb � bRa�� ������

These relations can also be described by the relation product� For instance� a binary relation is transi�
tive if R � R � R holds� Especially interesting is the transitive closure tra�R� of a relation R� It is the
smallest �with respect to the subset relation� transitive relation which contains R� In fact

tra�R� �
#
n��

Rn � R� � R� � R� � � � � � �����

where Rn is the n times relation product of R with itself�

Let a binary relation R on the set f� �� �� �� �g be given by its relation matrix M �
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M  � � � �

  � �  �
� � � �  �
� � �  � 
� �  � � 
� �  � � �

M�  � � � �

   �  
� �  � � 
� �   � 
� �  �  �
� � � �  �

M�  � � � �

   �  
� �  �  �
� �    
� �  �  
� �  � � 

We can calculate M� by matrix multiplication where the values � and  are treated as truth values and
instead of multiplication and addition we perform the logical operations conjunction and disjunction�
So� M� is the relation matrix belonging to R�� Similarly� we can calculate the relation matrices of
R�� R� etc�

M �M� �M�  � � � �

   �  
� �  �  
� �    
� �  �  
� �  �  

We get the relation matrix of R � R� � R� �the matrix on the
left� if we calculate the disjunction elementwise of the matrices
M�M� and M�� Since the higher powers of M contains no new
�s� this matrix already coincides with the relation matrix of
tra�R��

The relation matrix and relation product have important ap�
plications in search of path length in graph theory �see �������
p� ����

In the case of �nite binary relations� we can easily recognize the above properties from the arrow di�
agrams or from the relation matrices� We can recognize for instance the re�exivity from 	self�loops

in the arrow diagram� and from the main diagonal elements  in the relation matrix� Symmetry is ob�
vious in the arrow diagram if to every arrow there belongs another one in the opposite direction� or if
the relation matrix is a symmetric matrix �see ������ �� p� ����� We can see from the arrow diagram or
from the relation matrix that the divisibility T is a re�exive but not symmetric relation�

�� Mappings
A mapping �or function� see ����� p� ��� f from a set A to a set B with the notation f � A B is a
rule which assigns to every element a � A a unique element f�a� � B� We can consider a mapping f
as a binary relation between A and B� �f � A� B�� f � A� B is called a mapping from A to B� if

� a � A � b � B ��a� b� � f� and ������

� a � A � b�� b� � B ��a� b��� �a� b�� � f � b� � b�� ������

hold�
Here f is called a one�to�one �or injective� mapping if in addition

� a�� a� � A � b � B ��a�� b�� �a�� b� � f � a� � a�� ������

is valid� While for a mapping we supposed only that an original element has one image� injectivity
means also that every image has only one original element�
Here f is called a mapping from A onto B �or surjective�� if

� b � B � a � A ��a� b� � f� ������

holds� An injective mapping that is also surjective is called bijective� For a bijective mapping f � A B
there is an inverse relation which is also a mapping f��� B  A� the so�called inverse mapping of f �
The relation product is used for composition of mappings� If f � A B and g� B  C are mappings�
f � g is also a mapping from A to C� and is de�ned by

�f � g��a� � g�f�a��� ������

Remark� Be careful with the order of f and g in this equation �it is treated di�erently in the literature$��

����� Equivalence andOrderRelations
The most important classes of binary relations with respect to a set A are the equivalence and order
relations�
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�� Equivalence Relations
A binary relation R with respect to a set A is called an equivalence relation if R is re�exive� symmetric�
and transitive� For aRb we also use the notation a !R b or a ! b if the equivalence relation R is already
known� and we say that a is equivalent to b �with respect to R��

Examples of Equivalence Relations�
A� A � Z� m � IN n f�g� a !R b holds exactly if a and b have the same remainder when divided by

m �they are congruent modulo m��

B� Equality relation in di�erent domains� e�g�� in the set Q of rational numbers�
p�
q�

�
p�
q�
� p�q� �

p�q�� where the �rst equality sign de�nes an equality in Q� while the second one denotes an equality in
Z�

C� Similarity or congruence of geometric �gures�

D� Logical equivalence of expressions of propositional calculus �see ���� �� p� �����

�� Equivalence Classes� Partitions
� Equivalence Classes An equivalence relation in a set A de�nes a partition of A into non�empty
pairwise disjoint subsets� into equivalence classes�

 a!R �� fb j b � A � a !R bg ������

is called an equivalence class of a with respect to R� For equivalence classes the following is valid�

 a!R �� �� a !R b�  a!R �  b!R � and a �!R b�  a!R �  b!R � �� ������

These equivalence classes form a new set� the quotient set A�R�

A�R � f a!R j a � Ag� ������

A subset Z � IP�A� of the power set IP�A� is called a partition of A if

� �� Z� X� Y � Z �X �� Y � X � Y � � � #
X�Z

X � A� ������

� Decomposition Theorem Every equivalence relation R in a set A de�nes a partition Z of A�
namely Z � A�R� Conversely� every partition Z of a set A de�nes an equivalence relation R in A�

a !R b� �X � Z �a � X � b � X�� �����

An equivalence relation in a set A can be considered as a generalization of the equality� where 	 in�
signi�cant 
 properties of the elements of A are neglected� and the elements� which do not di�er with
respect to a certain property� belong to the same equivalence class�

�� Ordering Relations
A binary relation R in a set A is called a partial ordering if R is re�exive� antisymmetric� and transitive�
If in addition R is linear� then R is called a linear ordering or a chain� The set A is said to be ordered
or linearly ordered by R� In a linearly ordered set any two elements are comparable� Instead of aRb we
also use the notation a �R b or a � b� if the ordering relation R is known from the problem�

Examples of Ordering Relations�

A� The sets of numbers IN� Z� Q� IR are completely ordered by the usual � relation�

B� The subset relation is also an ordering� but only a partial ordering�

C� The lexicographical order of the English words is a chain�

Remark� If Z � fA�Bg is a partition of Q with the property a � A � b � B � a � b� then �A�B� is
called aDedekind cut� If neither A has a greatest element nor B has a smallest element� so an irrational
number is uniquely determined by this cut� Besides the nest of intervals �see ����� p� �� the notion
of Dedekind cuts is another way to introduce irrational numbers�
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�� Hasse Diagram

1

2 3

4

Figure ���

Finite ordered sets can be represented by the Hasse diagram� Let an ordering re�
lation � be given on a �nite set A� The elements of A are represented as points of
the plane� where the point b � A is placed above the point a � A if a � b holds� If
there is no c � A for which a � c � b� we say a and b are neighbors or consecutive
members� Then we connect a and b by a line segment�

A Hasse diagram is a 	simpli�ed
 arrow diagram� where all the loops� arrow�heads�
and the arrows following from the transitivity of the relation are eliminated� The
arrow diagram of the divisibility relation T of the set A � f� �� �� �g is given in
Fig ��� T also denotes an ordering relation� which is represented by the Hasse
diagram in Fig ���

����� Cardinality of Sets
In ����� p� ��� the number of elements of a �nite set was called the cardinality of the set� This notion
of cardinality should can also be extended to in�nite sets�

�� Cardinal Numbers
Two sets A and B are called equinumerous if there is a bijective mapping between them� To every set A
we assign a cardinal number jAj or cardA� so that equinumerous sets have the same cardinal number�
A set and its power set are never equinumerous� so no 	 greatest 
 cardinal number exists�

�� In�nite Sets
In�nite sets can be characterized by the property that they have proper subsets equinumerous to the
set itself� The 	smallest
 in�nite cardinal number is the cardinal number of the set IN of the natural
numbers� This is denoted by "� �aleph ���

A set is called enumerable or countable if it is equinumerous to IN� This means that its elements can be
enumerated or written as an in�nite sequence a�� a�� � � ��

A set is called non�countable if it is in�nite but it is not equinumerous to IN� Consequently every in�nite
set which is not enumerable is non�countable�

A� The set Z of integers and the set Q of the rational numbers are countable sets�

B� The set IR of the real numbers and the set C of the complex numbers are non�countable sets�
These sets are equinumerous to IP�IN�� the power set of the natural numbers� and their cardinality is
called the continuum�

��� Classical Algebraic Structures

����� Operations

�� n�ary Operations
The notion of structure has a central role in mathematics and its applications� Now we investigate
algebraic structures� i�e�� sets on which operations are de�ned� An n�ary operation � on a set A is a
mapping �� An  A� which assigns an element of A to every n�tuple of elements of A�

�� Properties of Binary Operations
Especially important is the case n � �� which is called a binary operation� e�g�� addition and multipli�
cation of numbers or matrices� or union and intersection of sets� A binary operation can be considered
as a mapping # � A� A A� where instead of the notation 	#�a� b�
 we use the in�x form 	a # b
� A
binary operation # in A is called associative if

�a # b� # c � a # �b # c�� ������

and commutative if

a # b � b # a ������
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holds for every a� b� c � A�
An element e � A is called a neutral element with respect to a binary operation # in A if

a # e � e # a � a holds for every a � A� ������

�� Exterior Operations
Sometimes we deal with exterior operations� That are the mappings from K � A to K� where K is an
	exterior
 and mostly already structured set �see ������ p� ����

����� Semigroups
The most frequently occurring algebraic structures have their own names� A set H having one associa�
tive binary operation # � is called a semigroup� The notation� is H � �H� #��
Examples of Semigroups�
A� Number domains with respect to addition or multiplication�

B� Power sets with respect to union or intersection�

C� Matrices with respect to addition or multiplication�

D� The set A� of all 	 words 
 �strings� over an 	 alphabet 
 A with respect to concatenation �free
semigroup��

Remark� Except for multiplication of matrices and concatenation of words� all operations in these
examples are also commutative� in this case we talk about a commutative semigroup�

����� Groups

������� De�nition and Basic Properties

�� De�nition
A set G with a binary operation # is called a group if

� # is associative�

� # has a neutral element e� and for every element a � G there exists an inverse element a�� such that

a # a�� � a�� # a � e� ������

A group is a special semigroup�

The neutral element of a group is unique� i�e�� there exists only one� Furthermore� every element of the
group has exactly one inverse� If the operation # is commutative� then the group is called an Abelian
group� If the group operation is written as addition� �� then the neutral element is denoted by � and
the inverse of an element a by �a�

Examples of Groups�
A� The number domains �except IN� with respect to addition�

B� Q n f�g� IR n f�g� and C n f�g with respect to multiplication�

C� SM �� ff � M M �f bijectivegwith respect to composition of mappings �symmetric group��

D� Consider the set Dn of all covering transformations of a regular n�gon in the plane� Here a
covering transformation is the transition between two symmetric positions of the n�gon� i�e�� the moving
of the n�gon into a superposable position� If we denote by d a rotation by the angle ���n and by � the
re�ection with respect to an axis� then Dn has �n elements�

Dn � fe� d� d�� � � � � dn��� �� d�� � � � � dn���g�
With respect to the composition of mappings Dn is a group� the dihedral group� Here the equalities
dn � �� � e and �d � dn��� hold�

E� All the regular matrices �see ����� p� ���� over the real or complex numbers with respect to
multiplication�

Remark� Matrices have a very important role in applications� especially in representation of linear
transformations� Linear transformations can be classi�ed by matrix groups�
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�� Group Tables or Cayley�s Tables
For the representation of �nite groups Cayley�s tables or group tables are used� The elements of the
group are denoted at the row and column headings� The element a # b is the intersection of the row of
the element a and the column of the element b�

If M � f� �� �g� then the symmetric group SM is also denoted by S�� S� consists of all the bijective
mappings �permutations� of the set f� �� �g and consequently it has �$ � � elements �see ���� p� �����
Permutations are mostly represented in two rows� where in the �rst row there are the elements of M
and under each of them there is its image� So� we get the six elements of S� as the following�
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������

With the successive application of these mappings �binary operations� the following group table is
obtained for S��

� � p� p� p� p� p�

� � p� p� p� p� p�
p� p� � p� p� p� p�
p� p� p� � p� p� p�
p� p� p� p� � p� p�
p� p� p� p� p� p� �
p� p� p� p� p� � p�

������

� From the group table it can be seen that the identity per�
mutation � is the neutral element of the group�

� In the group table every element appears exactly once in
every row and in every column�

� It is easy to recognize the inverse of any group element in
the table� i�e�� the inverse of p� in S� is the permutation p��
because at the intersection of the row of p� with the column
of p� is the neutral element ��

� If the group operation is commutative �Abelian group�� then the table is symmetric with respect to
the 	main diagonal
� S� is not commutative� since� e�g�� p� � p� �� p� � p��
� The associative property cannot be recognized easily from the table�

������� Subgroups andDirect Products

�� Subgroups
Let G � �G� #� be a group and U � G� If U is also a group with respect to #� then U � �U� #� is called
a subgroup of G�
A non�empty subset U of a group �G� #� is a subgroup of G if and only if for every a� b � U � the elements
a # b and a�� are also in U �subgroup criterion��
� Cyclic Subgroups The group G itself and E � feg are subgroups of G� the so�called trivial
subgroups� Furthermore� a subgroup corresponds to every element a � G� the so�called cyclic subgroup
generated by a�

� a � � f� � � � a��� a��� e� a� a�� � � �g� ������

If the group operation is addition� then we write the integer multiple ka as a shorthand notation of
the k times addition of a with itself instead of the power ak� as a shorthand notation of the k times
operation of a by itself� i�e��

� a � � f� � � � ����a��a� �� a� �a� � � �g� ������

Here � a � is the smallest subgroup of G containing a� If � a � � G holds for an element a of G�
then G is called cyclic�
There are in�nite cyclic groups� e�g�� Z with respect to addition� and �nite cyclic groups� e�g�� the set
Zm the residue class modulo m with residue class addition �see ������ �� p� �����

If the number of elements of a �nite G group is a prime� then G is always cyclic�
� Generalization The notion of cyclic groups can be generalized as follows� If M is a non�empty
subset of a group G� then the subgroup of G whose elements can be written in the form of a product
of �nitely many elements of M and their inverses� is denoted by � M �� The subset M is called the
system of generators of � M �� If M contains only one element� then � M � is cyclic�
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� Order of a Group� Left and Right Cosets In group theory the number of elements of a �nite
group is denoted by ord G� If the cyclic subgroup � a � generated by one element a is �nite� then this
order is also called the order of the element a� i�e�� ord � a �� ord a�
If U is a subgroup of a group �G� #� and a � G� then the subsets

aU �� fa # uju � Ug and Ua �� fu # aju � Ug ������

of G are called left cosets and right cosets of U in G� The left or right cosets form a partition of G�
respectively �see ������ �� p� �����

All the left or right cosets of a subgroup U in a group G have the same number of elements� namely
ord U � From this it follows that the number of left cosets is equal to the number of right cosets� This
number is called the index of U in G� The Lagrange theorem follows from these facts�
� Lagrange Theorem The order of a subgroup is a divisor of the order of the group�
In general it is di�cult to determine all the subgroups of a group� In the case of �nite groups the
Lagrange theorem as a necessary condition for the existence of a subgroup is useful�

�� Normal Subgroup or Invariant Subgroup
For a subgroup U � in general� aU is di�erent from Ua �however jaU j � jUaj is valid�� If aU � Ua for all
a � G holds� then U is called a normal subgroup or invariant subgroup of G� These special subgroups
are the basis of forming factor groups �see �������� �� p� �����
In Abelian groups� obviously� every subgroup is a normal subgroup�

Examples of Subgroups and Normal Subgroups�

A� IR n f�g� Q n f�g form subgroups of C n f�g with respect to multiplication�

B� The even integers form a subgroup of Z with respect to addition�

C� Subgroups of S�� According to the Lagrange theorem the group S� having six elements can have
subgroups only with two or three elements �besides the trivial subgroups�� In fact� the group S� has
the following subgroups� E � f�g� U� � f�� p�g� U� � f�� p�g� U� � f�� p�g� U� � f�� p�� p�g� S��
The non�trivial subgroups U�� U�� U�� and U� are cyclic� since the numbers of their elements are primes�
But the group S� is not cyclic� The group S� has only U� as a normal subgroup� except the trivial
normal subgroups�
Anyway� every subgroup U of a group G with jU j � jGj�� is a normal subgroup of G�
Every symmetric group SIM and their subgroups are called permutation groups�

D� Special subgroups of the group GL�n� of all regular matrices of type �n� n� with respect to matrix
multiplication�

SL�n� group of all matrices A with determinant �
O�n� group of all orthogonal matrices�
SO�n� group of all orthogonal matrices with determinant �

The groupSL�n� is a normal subgroup ofGL�n� �see �������� �� p� ���� and SO�n� is a normal subgroup
of O�n��

E� As subgroups of all complex matrices of type �n� n� �see ����� p� �����

U�n� group of all unitary matrices�
SU�n� group of all unitary matrices with determinant �

�� Direct Product
� De�nition Suppose A and B are groups� whose group operation �e�g�� addition or multiplication�
is denoted by �� In the Cartesian product �see ������ �� p� ���� A � B �����a� an operation # can be
introduced in the following way�

�a�� b�� # �a�� b�� � �a� � a�� b� � b��� ����a�

A� B becomes a group with this operation and it is called the direct product of A and B�
�e� e� denotes the unit element of A� B� �a��� b��� is the inverse element of �a� b��
For �nite groups A�B

ord �A�B� � ordA � ordB ����b�
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holds� The groups A� �� f�a� e�ja � Ag and B� �� f�e� b�jb � Bg are normal subsets ofA�B isomorphic
to A and B� respectively�
The direct product of Abelian groups is again an Abelian group�
The direct product of two cyclic groups A�B is cyclic if and only if the greatest common divisor of the
orders of the groups is equal to �

A� With Z� � fe� ag and Z� � fe� b� b�g� the direct product Z� � Z� � f�e� e�� �e� b�� �e� b��� �a� e��
�a� b�� �a� b��g� is a group isomorphic to Z	 �see �������� �� p� ���� generated by �a� b��

B� On the other hand Z� � Z� � f�e� e�� �e� b�� �a� e�� �a� b�g is not cyclic� This group has order �
and it is also called Klein�s four�group� and it describes the covering operations of a rectangle�
� FundamentalTheoremofAbelianGroups Because the direct product is a construction which
enables us to make 	larger
 groups from 	smaller
 groups� we can reverse the question� When is it
possible to consider a larger group G as a direct product of smaller groups A�B� i�e�� when will G be
isomorphic to A�B ( For Abelian groups� there exists the so�called fundamental theorem�
Every �nite Abelian group can be represented as direct product of cyclic groups with orders of prime
powers�

������� Mappings Between Groups

�� Homomorphism and Isomorphism
� Group Homomorphism Between algebraic structures we do not consider arbitrary mappings
but only 	structure keeping
 mappings�
Let G� � �G�� #� and G� � �G�� �� are two groups� A mapping h� G�  G� is called a group homo�
morphism� if for all a� b � G�

h�a # b� � h�a� � h�b� �	image of product � product of images
� ������

is valid�

As an example� consider the multiplication law for determinants �see ������ �� p� �����

det�AB� � �detA��detB�� ������

Here on the right�hand side there is the product of non�zero numbers� on the left�hand side there is the
product of regular matrices�
If h� G�  G� is a group homomorphism� then the set of elements of G�� whose image is the neutral
element of G�� is called the kernel of h� and it is denoted by ker h� The kernel of h is a normal subgroup
of G��
� Group Isomorphism If a group homomorphism h is also bijective� then h is called a group iso�
morphism� and the groups G� and G� are said to be isomorphic to each other �notation� G�

!� G���
Then ker h � E is valid�
Isomorphic groups have the same structure� i�e�� they di�er only by the notation of their elements�

The symmetric group S� and the dihedral group D� are isomorphic groups of order � and describe
the covering mappings of an equilateral triangle�

�� Cayley�s Theorem
The Cayley theorem says that every group can be interpreted as a permutation group �see �������� ��
p� ����
Every group is isomorphic to a permutation group�
The permutation group P � whose elements are the permutations �g �g � G� mapping a to �G� #�g� is a
subgroup of SG isomorphic to G� #�
�� Homomorphism Theorem for Groups
The set of cosets of a normal subgroup N in a group G is also a group with respect to the operation

aN � bN � abN� ������

It is called the factor group of G with respect to N � and it is denoted by G�N �
The following theorem gives the correspondence between homomorphic images and factor groups of a
group� because of what it is called the homomorphism theorem for groups�
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A group homomorphism h� G�  G� de�nes a normal subgroup of G�� namely ker h � fa � G�jh�a� �
eg� The factor group G�� ker h is isomorphic to the homomorphic image h�G�� � fh�a�ja � G�g� Con�
versely� every normal subgroup N of G� de�nes a homomorphic mapping natN � G�  G��N with
natN �a� � aN � This mapping natN is called a natural homomorphism�

Since the determinant construction det� GL�n�  IR n f�g is a group homomorphism with ker�
nel SL�n�� SL�n� is a normal subgroup of GL�n� and �according to the homomorphism theorem��
GL�n��SL�n� is isomorphic to the multiplicative group Rnf�g of real numbers �for notation see ��������
�� p� ����

����� GroupRepresentations�

������� De�nitions

�� Representation
A representation D�G� of the group G is a map �homomorphism� of G onto the group of non�singular
linear transformations D on an n�dimensional �real or complex� vector space Vn�

D�G� � a D�a�� a � G� ������

The vector space Vn is called the representation space� n is the dimension of the representation �see
also ����� �� p� ����� Introducing the basis feig �i � � �� � � � � n� in Vn every vector x can be written
as a linear combination of the basis vectors�

x �
nX
i��

xiei� x � Vn� ������

The action of the linear transformation D�a�� a � G� on x can be de�ned by the quadratic matrix
�Dik�a�� �i� k � � �� � � � � n�� which provides the coordinates of the transformed vector x� within the
basis ei�

x� � D�a�x �
nX
i��

x�iei� x�i �
nX
k��

Dik�a�xk� ������

This transformation may also be considered as a transformation of the basis feig  fe�ig�

e�i � eiD�a� �
nX
k��

Dki�a�ek� ������

Thus� every element a of the group is assigned to the representation matrix �Dik�a���

D�G� � a �Dik�a�� �i� k � � �� � � � � n�� a � G� ������

The representation matrix depends on the choice of basis�

�� Faithful Representation
A representation is said to be faithful if G  D�G� is an isomorphism� i�e�� the assignment of the
element of the group to the representation matrix is a one�to�one mapping�

�� Properties of the Representations
A representation has the following properties �a� b � G� I � unit operator��

D�a # b� � D�a� �D�b�� D�a��� � D���a�� D�e� � I� �����

������� Particular Representations

�� Identity Representation
Any group G has a trivial one�dimensional representation �identity representation�� for which every
element of the group is mapped to the unit operator I� a I for all a � G�

�In general� in this section vectors are not printed in bold symbols�
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�� Adjoint Representation
The representation D��G� is said to be adjoint to D�G� if the corresponding representation matrices
are related by complex conjugation and re�ection in the main diagonal�

D��G� � 'D��G�� ����

�� Unitary Representation
For a unitary representation all representation matrices are unitary matrices�

D�G� �D��G� � E� �����

where E is the unit matrix�

�� Equivalent Representations
Two representations D�G� und D��G� are said to be equivalent if for each element a of the group the
corresponding representation matrices are related by the same similarity transformation with the non�
singular matrix T�

D��a� � T�� �D�a� �T� D�
ik�a� �

nX
j�l��

�
T��	

ij
�Djl�a� � Tlk� �����

If such a relation does not hold two representations are called non�equivalent� The transition fromD�G�
to D��G� corresponds to the transformation T � fe�� e�� � � � � eng  fe��� e��� � � � � e�ng of the basis in the
representation space Vn�

e� � e T� e�i �
nX
k��

Tkiek �i � � �� � � � � n�� �����

Any representation of a �nite group is equivalent to a unitary representation�

�� Character of a Group Element
In the representation D�G� the character ��a� of the group element a is de�ned as the trace of the
representation matrix D�a� �sum of the matrix elements on the main diagonal��

��a� � Sp �D� �
nX
i��

Dii�a�� �����

The character of the unit element e is given by the dimension n of the representation� ��e� � n� Since
the trace of a matrix is invariant under similarity transformations� the group element a has the same
character for equivalent representations�

Within the shell model of atomic or nuclear physics two out of three particles with coordinates
x�� x�� x� are supposed to be in the state �� while the third particle is in the state �	 �con�guration�����
The possible occupations ���x�����x���	�x�� � e�� ���x���	�x�����x�� � e�� �	�x�����x�����x��
� e� form a basis fe�� e�� e�g in the three�dimensional vector space V� for a representation of the sym�
metric group S�� According to ������ the matrix elements of the representation matrices can be found
by investigating the action of the group elements ������ on the coordiante subscripts in the basis ele�
ments ei� For example�

p�e� � p����x�����x���	�x�� � ���x���	�x�����x�� � D���p��e��

p�e� � p����x���	�x�����x�� � ���x�����x���	�x�� � D���p��e��

p�e� � p��	�x�����x�����x�� � �	�x�����x�����x�� � D���p��e�� �����

Altogether one �nds�

D�e� �

��  � �
�  �
� � 

�A � D�p�� �

�� �  �
 � �
� � 

�A � D�p�� �

�� � � 
�  �
 � �

�A �

D�p�� �

��  � �
� � 
�  �

�A � D�p�� �

�� �  �
� � 
 � �

�A � D�p�� �

�� � � 
 � �
�  �

�A �

�����
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For the characters one has�

��e� � �� ��p�� � ��p�� � ��p�� � � ��p�� � ��p�� � ��

������� Direct Sum of Representations

The representations D����G�� D����G� of dimension n� and n� can be composed to create a new repre�
sentation D�G� of dimension n � n� � n� by forming the direct sum of the representation matrices�

D�a� � D����a�$D����a� �

�
D����a� �

� D����a�

�
� �����

The block�diagonal form of the representation matrix implies that the representation space Vn is the
direct sum of two invariant subspaces Vn� �Vn��

Vn � Vn� $ Vn�� n � n� � n�� �����

A subspace Vm �m � n� of Vn is called an invariant subspace if for any linear transformationD�a�� a �
G� every vector x � Vm is mapped onto an element of Vm again�

x� � D�a�x with x� x� � Vm� ������

The character of the representation ����� is the sum of the characters of the single representations�

��a� � �����a� � �����a�� �����

������� Direct Product of Representations

If ei �i � � �� � � � � n�� and e�k �k � � �� � � � � n�� are the basis vectors of the representation spaces Vn�

and Vn� � respectively� then the tensor product

eik � feiekg �i � � �� � � � � n�� k � � �� � � � � n�� ������

forms a basis in the product space Vn��Vn� of dimension n� �n�� With the representations D����G� and

D����G� in Vn� and Vn�� respectively an n� � n��dimensional representation D�G� in the product space
can be constructed by forming the direct or �inner� Kronecker product of the representation matrices�

D�G� � D����G��D����G�� �D�G��ik�jl � D
���
ik �a� �D���

jl �a�

with i� k � � �� � � � � n�� j� l � � �� � � � � n�� ������

The character of the Kronecker product of two representations is equal to the product of the characters
of the factors

������a� � �����a� � �����a�� ������

������� Reducible and Irreducible Representations

If the representation space Vn possesses a subspace Vm �m � n� invariant under the group operations
the representation matrices can be decomposed according to

T�� �D�a� � T �
�
D��a� �
A D��a�

� g m rows
g n�m rows

������

by a suitable transformation T of the basis in Vn� D��a� and D��a� themselfes are matrix representa�
tions of a � G of dimension m and n�m� respectively�

A representation D�G� is called irreducible if there is no proper �non�trivial� invariant subspace in Vn�
The number of non�equivalent irreducible representations of a �nite group is �nite� If a transformation
T of a basis can be found which makes Vn to a direct sum of invariant subspaces� i�e��

Vn � V� $ � � � $ Vnj � ������
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then for every a � G the representation matrix D�a� can be transformed into the block�diagonal form
�A � � in ��������

T�� �D�a� �T � D����a�$ � � � $D�nj��a� �

�BB�
D����a� �

� � �

� D�nj��a�

�CCA � ������

by a similarity transformation with T� Such a representation is called completely reducible�

Remark� For the application of group theory in natural sciences a fundamental task consists in the
classi�cation of all non�equivalent irreducible representations of a given group�

The representation of the symmetric group S� given in ����� is reducible� For example� in the
transformation fe�� e�� e�g � fe�� � e� � e� � e�� e�� � e�� e�� � e�g of the basis one obtains for the
representation matrix of the permutation p��

D�p�� �

��  � �
� � 
�  �

�A �
�
D��p�� �
A D��p��

�

with A �
�

�
�

�
� D��p�� �  as the identity representation of S� and D��p�� �

�
� 
 �

�
�

������� Schur�s Lemma �

If C is an operator commuting with all transformations of an irreducible representation D of a group
 C�D�a�! � C �D�a��D�a� �C � �� a � G� and the representation space Vn is an invariant subspace
of C� then C is a multiple of the unit operator� i�e�� a matrix �Cik� which commutates with all matrices
of an irreducible representation is a multiple of the matrix E� C � � �E� � � C�

������	 Clebsch�Gordan Series

In general� the Kronecker product of two irreducible representations D����G�� D����G� is reducible� By

a suitable basis transformation in the product space D����G� � D����G� can be decomposed into the

direct sum of its irreducible parts D��� �� � � �� � � � � n� �ClebschGordan theorem�� This expansion is
called the ClebschGordan series�

D����G��D����a� �
nX

���

$m�D
����G�� ������

Here� m� is the multiplicity with which the irreducible representation D����G� occurs in the Clebsch�
Gordan series�
The matrix elements of the basis transformation in the product space causing the reduction of the
Kronecker product into its irreducible components are called ClebschGordan coe�cients�

������� Irreducible Representations of the Symmetric Group SM

�� Symmetric Group SM

The non�equivalent irreducible representations of the symmetric group SM are characterized uniquely
by the partitions of M � i�e�� by the splitting of M into integers according to

 �! �  ��� ��� � � � � �M !� �� � �� � � � �� �M � M� �� 	 �� 	 � � � 	 �M 	 �� ������

The graphic representation of the partitions is done by arranging boxes in Young diagrams�
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For the group S� one obtains �ve Young dia�
grams as shown in the �gure�

The dimension of the representation  �! is given
by

n�� � M $

Q
i�j
k

��i � �j � j � i�

+k
i����i � k � i�$

� ������

[ ]λ =[ ]λ = [ ]4[ ]4 [ ]3,1[ ]3,1 [ ]2,2[ ]2,2 [ ]2,1,1[ ]2,1,1 [ ]14[ ]14

The Young diagram  '�! conjugated to  �! is constructed by the interchange of rows and columns�
In general� the irreducible representation of SM is reducible if one restricts to one of the subgroups
SM��� SM��� � � ��

In quantum mechanics for a system of identical particles the Pauli principle demands the construc�
tion of many�body wave functions that are antisymmetric with respect to the interchange of all coordi�
nates of two arbitrary particles� Often� the wave function is given as the product of a function in space
coordinates and a function in spin variables� If for such a case due to particle permutations the spatial
part of the wave function transforms according to the irreducible representation  �! of the symmetric

group it has to be combined with a spin function transforming according to  '�! in order to get a total
wave function which is antisymmetric if two particles are interchanged�

����� Applications ofGroups
In chemistry and in physics� groups are applied to describe the 	symmetry
 of the corresponding
objects� Such objects are� for instance� molecules� crystals� solid structures or quantum mechanical
systems� The basic idea of these applications is the von Neumann principle�
If a system has a certain group of symmetry operations� then every physical observational quantity of
this system must have the same symmetry�

������� Symmetry Operations� Symmetry Elements
A symmetry operation s of a space object is a mapping of the space into itself such that the length of
line segments remains unchanged and the object goes into a covering position to itself� The set of �xed
points of the symmetry operation s is denoted by Fix s� i�e�� the set of all points of space which remain
unchanged for s� The set Fix s is called the symmetry element of s� We use the Schoen�iess symbolism
to denote the symmetry operation�
Two types of symmetry operations are distinguished� Operations without a �xed point and operations
with at least one �xed point�
� Symmetry Operations without a Fixed Point� for which no point of the space stays un�
changed� cannot occur for bounded space objects� but now we consider only such objects� A symmetry
operation without a �xed point is for instance a parallel translation�
� Symmetry Operations with at least One Fixed Point are for instance rotations and re�ec�
tions� The following operations belong to them�

a� Rotations Around an Axis by an Angle �� The axis of rotation and also the rotation itself is
denoted by Cn for � � ���n� The axis of rotation is then said to be of n�th order�

b� Re�ection with Respect to a Plane� Both the plane of re�ection and the re�ection itself are
denoted by �� If additionally there is a principal rotation axis� then we draw it perpendicularly and
denote the planes of re�ections which are perpendicular to this axis by �h �h from horizontal� and the
planes of re�ections passing through the rotational axis are denoted by �v �v from vertical� or �d �d
means dihedral� if certain angles are halved��

c� Improper Orthogonal Mappings� An operation such that after a rotation Cn a re�ection �h
follows� is called an improper orthogonal mapping and it is denoted by Sn� Rotation and re�ection
commute� The axis of rotation is then called an improper rotational axis of n�th order and it is also
denoted by Sn� This axis is called the corresponding symmetry element� although only the symme�
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try center stays �xed under the application of the operation Sn� For n � �� an improper orthogonal
mapping is also called a point re�ection �see ������� p� ���� and it is denoted by i�

������� Symmetry Groups or Point Groups
For every symmetry operation S� there is an inverse operation S��� which reverses S 	back
� i�e��

SS�� � S��S � �� �����

Here � denotes the identity operation� which leaves the whole space unchanged� The family of symmetry
operations of a space object forms a group with respect to the successive application� which is in general
a non�commutative symmetry group of the objects� The following relations hold�

a� Every rotation is the product of two re�ections� The intersection line of the two re�ection planes is
the rotation axis�

b� For two re�ections � and ��

��� � ��� ������

if and only if the corresponding re�ection planes are identical or they are perpendicular to each other�
In the �rst case the product is the identity �� in the second one the rotation C��

c� The product of two rotations with intersecting rotational axes is again a rotation whose axis goes
through the intersection point of the given rotational axes�

d� For two rotations C� and C �
� around the same axis or around axes perpendicular to each other�

C�C
�
� � C �

�C�� ������

The product is again a rotation� In the �rst case the corresponding rotational axis is the given one� in
the second one the rotational axis is perpendicular to the given ones�

������� Symmetry Operations withMolecules
It requires a lot of work to recognize every symmetry element of an object� In the literature� for instance
in  ���!�  ���!� it is discussed in detail how to �nd the symmetry groups of molecules if all the symmetry
elements are known� The following notation is used for the interpretation of a molecule in space� The
symbols above C in Fig �
 mean that the OH group lies above the plane of the drawing� the symbol
to the right�hand side of C means that the group OC�H� is under C�
The determination of the symmetry group can be made by the following method�
� No Rotational Axis

a� If no symmetry element exists� then G � f�g holds� i�e�� the molecule does not have any symmetry
operation but the identity ��

The molecule hemiacetal �Fig�
� is not planar and it has four di�erent atom groups�

b� If � is a re�ection or i is an inversion� then G � f�� �g �� Cs or G � f�� ig � Ci hold� and with this
it is isomorphic to Z��

The molecule of tartaric acid �Fig���� can be re�ected in the center P �inversion��
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� There is Exactly One Rotational Axis C
a� If the rotation can have any angle� i�e�� C � C�� then the molecule is linear� and the symmetry
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group is in�nite�

A� For the molecule of sodium chloride �common salt� NaCl there is no horizontal re�ection� The
corresponding symmetry group of all the rotations around C is denoted by C�v�

B� The molecule O� has one horizontal re�ection� The corresponding symmetry group is generated
by the rotations and by this re�ection� and it is denoted by D�h�

b� The rotation axis is of n�th order� C � Cn � but it is not an improper rotational axis of order �n�
If there is no further symmetry element� then G is generated by a rotation d by an angle ��n around
Cn� i�e�� G �� d �!� Zn � In this case G is also denoted by Cn�
If there is a further vertical re�ection �v� then G �� d� �v �!� Dn holds �see ������� p� ����� and G is
denoted by Cnv�
If there exists an additional horizontal re�ection �h� then G �� d� �v �!� Zn�Z� holds� G is denoted
by Cnh and it is cyclic for odd n �see �������� p� �����

A� For hydrogen peroxide �Fig���� these three cases occur in the order given above for � � 	 �
���� 	 � � and 	 � ����

B� The molecule of water H�O has a rotational axis of second order and a vertical plane of re�ection�
as symmetry elements� Consequently� the symmetry group of water is isomorphic to the group D��
which is isomorphic to the Klein four�group V� �see �������� �� p� ����

c� The rotational axis is of order n and at the same time it is also an improper rotational axis of order
�n� We have to distinguish two cases�
�� There is no further vertical re�ection� so G !� Z�n holds� and G is denoted also by S�n�

An example is the molecule of tetrahydroxy allene with formula C��OH�� �Fig�����

�� If there is a vertical re�ection� then G is a group of order �n� which is denoted by Dnh�

For n � � we get G !� D�� i�e�� the dihedral group of order eight� An example is the allene molecule
�Fig�����
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� Several Rotational Axes If there are several rotational axes� then we distinguish further cases�
In particular� if several rotational axes have an order n 	 �� then the following groups are the corre�
sponding symmetry groups�

a� Tetrahedral group Td� Isomorphic to S�� ord Td � ���

b� Octahedral group Oh� Isomorphic to S� � Z�� ord Oh � ���

c� Icosahedral group Ih� Ord Ih � ���
These groups are the symmetry groups of the regular polyeders discussed in ������ Table ��� p� ���
�Fig�����

The methane molecule �Fig���� has the tetrahedral group Td as a symmetry group�
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������� Symmetry Groups in Crystallography

�� Lattice Structures
In crystallography the parallelepiped represents� independently of the arrangment of speci�c atoms
or ions� the elementary �unit� cell of the crystall lattice� It is determined by three non�coplanar basis
vectors�ai starting from one lattice point �Fig ����� The in�nite geometric lattice structure is created

by performing all primitive translations �tn�

α
β γ a1a1

a2a2

a3a3

Figure ���

�tn � n��a� � n��a� � n��a�� n � �n�� n�� n�� ni � Z� ������

Here� the coe�cients ni �i � � �� � � �� are integers�

All the translations �tn �xing the space points of the lattice

L � f�tng in terms of lattice vectors form the translation group

T with the group element T ��tn�� the inverse element T����tn� �

T ���tn�� and the composition law T ��tn�#T � �tm� � T ��tn � �tm��

The application of the group element T ��tn� to the position vec�
tor �r is described by�

T ��tn��r � �r� �tn� ������

�� Bravais Lattices
Taking into account the possible combinations of the relative lengths of the basis vectors �ai and the pair�
wise related angles between them �particularly angles ��� and ���� one obtains seven di�erent types
of elementary cells with the corresponding lattices� the Bravais lattices �see Fig ���� andTable ����
This classi�cation can be extended by seven non�primitive elementary cells and their corresponding
lattices by adding additional lattice points at the intersection points of the face or body diagonals� pre�
serving the symmetry of the elementary cell� In this way one may distinguish one�side face�centered
lattices� body�centered lattices� and all�face centered lattices�

Tabelle ��� Primitive Bravais lattice

Elementary cell Relative lengths Angles between
of basis vectors basis vectors

triclinic a� �� a� �� a� � �� � �� � �� ���

monoclinic a� �� a� �� a� � � � � ��� �� �

rhombic a� �� a� �� a� � � � � � � ���

trigonal a� � a� � a� � � � � � � ������ ����

hexagonal a� � a� �� a� � � � � ���� � � ���

tetragonal a� � a� �� a� � � � � � � ���

cubic a� � a� � a� � � � � � � ���

�� Symmetry Operations in Crystal Lattice Structures
Among the symmetry operations transforming the space lattice to equivalent positions there are point
group operations such as certain rotations� improper rotations� and re�ections in planes or points� But
not all point groups are also crystallographic point groups� The requirement that the application of a

group element to a lattice vector �tn leads to a lattice vector �t�n � L �L is the set of all lattice points�
again restricts the allowed point groups P with the group elements P �R� according to�

P � fR � R�tn � Lg � �tn � L� ������
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Here� R denotes a proper �R � SO���� or improper rotation operator �R � IR� � O���� R� �
SO���� I is the inversion operator with I�r � ��r� �r is a position vector�� For example� only n�fold
rotation axes with n � � �� �� � or � are compatible with a lattice structure� Altogether� there are ��
cristallographic point groups P �

The symmetry group of a space lattice may also contain operators representing simultaneous applica�
tions of rotations and primitive translations� In this way one gets gliding re�ections� i�e�� re�ections in
a plane and translations parallel to the plane� and screws� i�e�� rotations through ���n and translations
by m�a�n �m � � �� � � � � n � � �a are basis translations�� Such operations are called non�primitive

translations �V�R�� because they correspond to 	fractional
 translations� For a gliding re�ection R is
a re�ection and for a screw R is a proper rotation�

The elements of the space group G� for which the crystal lattice is invariant is composed of elements

P of the crystallographic point group P � primitive translations T ��tn� and non�primitive translations
�V�R��

G � ffRj�V�R� � �tn � R � P� �tn � Lgg� ������

The unit element of the space group is fej�g where e is the unit element of R� The element fej�tng
means a primitive translation� fRj�g represents a rotation or re�ection� Applying the group element

fRj�tng to the position vector �r one obtains�

fRj�tng�r � R�r� �tn� ������

Table ��� Bravais lattice� crystal systems� and crystallographic classes
Notation� Cn � rotation about an n�fold rotation axis� Dn � dihedral group� Tn � tetrahedral group�

On � octahedral group� Sn � mirror rotations with an n�fold axis�

Lattice type Crystal system Crystallographic class
�holohedry�

triclinic Ci C�� Ci

monoclinic C�h C�� Ch� C�h

rhombic D�h C�v� D�� D�h

tetragonal D�h C�� S�� C�h� D�� C�v� D�d� D�h

hexagonal D	h C	� C�h� C	h� D	� C	v� D�h� D	h

trigonal D�d C�� S	� D�� C�v� D�d

cubic Oh T� Th� Td� O�Oh

�� Crystal Systems �Holohedry	

From the � Bravais lattices� L � f�tng � the �� crystallographic point groups P � fRg and the allowed

non�primitive translations �V�R� one can construct ��� space groups G � fRj�V�R� � �tng� The point
groups correspond to �� crystallographic classes� Among the point groups there are seven groups that
are not a subgroup of another point group but contain further point groups as a subgroup� Each of
these seven point groups form a crystal system �holohedry�� The symmetry of the seven crystal systems
is re�ected in the symmetry of the seven Bravais lattices� The relation of the �� crystallographic classes
to the seven crystal systems is given in Table �� using the notation of Schoen�iess�

Remark� The space group G ������ is the symmetry group of the 	empty
 lattice� The real crystal
is obtained by arranging certain atoms or ions at the lattice sites� The arrangement of these crystal
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constituents exhibits its own symmetry� Therefore� the symmetry group G� of the real crystal possesses
a lower symmetry than G �G % G��� in general�

������� Symmetry Groups in QuantumMechanics

Linear coordinate transformations that leave the Hamiltonian #H of a quantum mechanical system �see

�������� �� p� ���� invariant represent a symmetry group G� whose elements g commute with #H�

 g� #H! � g #H � #Hg � �� g � G� ������

The commutation property of g and #H implies that in the application of the product of the operators

g and #H to a state � the sequence of the action of the operators is arbitrary�

g� #H�� � #H�g��� ������

Hence� one has� If �E� �� � � �� � � � � n� are the eigenstates of #H with energy eigenvalue E of degener�
acy n� i�e��

#H�E� � E�E� �� � � �� � � � � n�� �����

then the transformed states g�E� are also eigenstates belonging to the same eigenvalue E�

g #H�E� � #Hg�E� � Eg�E�� ������

The transformed states g�E� can be written as a linear combination of the eigenstates �E��

g�E� �
nX

	��

D	��g��E	� ������

Hence� the eigenstates �E� form the basis of an n�dimensional representation space for the representa�

tion D�G� of the symmetry group G of the Hamiltonian #H with the representation matrices �D�	�g�� �
This representation is irreducible if there are no 	hidden
 symmetries� One can state that the energy
eigenstates of a quantum mechaniccal system can be labeled by the signatures of the irreducible repre�
sentations of the symmetry group of the Hamiltonian�

Thus� the representation theory of groups allows for qualitative statements on such patterns of the en�
ergy spectrum of a quantum mechanical system which are established by the outer or inner symmetries
of the system only� Also the splitting of degenerate energy levels under the in�uence of a pertubation
which breaks the symmetry or the selection rules for the matrix elements of transitions between energy
eigenstates follows from the investigation of representations according to which the participating states
and operators transform under group operations�

The application of group theory in quantum mechanics is presented extensively in the literature �see�
e�g��  ���!�  ���!�  ���!�  ���!�  ���!��

������� Further Applications of GroupTheory in Physics
Further examples of the application of particular continuous groups in physics can only be mentioned
here �see� e�g��  ���!�  ���!��

U��� Gauge transformations in electrodynamics�

SU���� Spin and isospin multiplets in particle physics�

SU���� Classi�cation of the baryons and mesons in particle physics� Many�body problem in nuclear
physics�

SO���� Angular momentum algebra in quantum mechanics� Atomic and nuclear many�body problems�

SO���� Degeneracy of the hydrogen spectrum�

SU���� Wigner supermultiplets in the nuclear shell model due to the uni�cation of spin and isospin
degrees of freedom� Description of �avor multiplets in the quark model including the charm degree of
freedom�
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SU���� Multiplets in the quark model due to the combination of �avor and spin degrees of freedom�
Nuclear structure models�

U�n�� Shell models in atomic and nuclear physics�

SU�n�� SO�n�� Many�body problems in nuclear physics�

SU���� U��� Standard model of the electro weak interaction�

SU��� % SU���� SU���� U��� Uni�cation of fundamental interactions �GUT��

Remark� The groups SU�n� and SO�n� are Lie groups� i�e� continuous groups that are not treated
here �see� e�g��  ���!��

����� Rings andFields
In this section� we discuss algebraic structures with two binary operations�

������� De�nitions
�� Rings
A set R with two binary operations �� # is called a ring �notation� �R �� � #��� if

� �R��� is an Abelian group�

� �R� #� is a semigroup� and

� the distributive laws hold�

a # �b � c� � �a # b� � �a # c�� �b � c� # a � �b # a� � �c # a�� ������

If �R� #� is commutative or if �R� #� has a neutral element� then �R��� #� is called a commutative ring
or a ring with identity �ring with unit element�� respectively�

�� Fields
A ring is called a �eld if �R n f�g� #� is an Abelian group� So� every �eld is a special commutative ring
with identity�

�� Field Extensions
Let K and E be two �elds� If K � E holds� E is called the extension �eld of K�

Examples of rings and �elds�

A� The number domains Z� Q� IR� and C are commutative rings with identity with respect to ad�
dition and multiplication� Q � IR� and C are also �elds� The set of even integers is an example of a ring
without identity�
The set C is the extension �eld of IR�

B� The set Mn of all square matrices of ordern with real �or complex� elements is a non�commutative
ring with the identity matrix as unit element�

C� The set of real polynomials p�x� � anx
n � an��xn�� � � � �� a�x � a� forms a ring with respect

to the usual addition and multiplication of polynomials� the polynomial ring R x!� More generally� in�
stead of polynomials over R� polynomial rings over arbitrary commutative rings with identity element
can be considered�

D� Examples of �nite rings are the residue class rings Zm modulo m� Zm consists of all the classes
 a!m of integers having the same residue on division by m� � a!m is the equivalence class de�ned by the
natural number a with respect to the relation!R introduced in ������ �� p� ����� The ring operations
$ � & on Zm are de�ned by

 a!m $  b!m �  a � b!m and  a!m &  b!m �  a � b!m� ������

If the natural number m is a prime� then �Zm �$ �&� is a �eld�

������� Subrings� Ideals

�� Subring
Suppose R � �R��� #� is a ring andU � R� IfU with respect to � and # is also a ring� thenU � �U��� #�
is called a subring of R�



��� �� Algebra and Discrete Mathematics

A non�empty subset U of a ring �R��� #� forms a subring of R if and only if for all a� b � U also a���b�
and a # b are in U �

�� Ideal
A subring I is called an ideal if for all r � R and a � I also r # a and a # r are in I� These special
subrings are the basis for the formation of factor rings �see �������� p� ����
The trivial subrings f�g and R are always ideals of R� Fields have only trivial ideals�

�� Principal Ideal
If all the elements of an ideal can be generated by one element according to the subring criterion� then
it is called a principal ideal� All ideals of Z are principal ideals� They can be written in the form
mZ � fmgjg � Zg and we denote them by �m��

������� Homomorphism� Isomorphism� Homomorphism Theorem

�� Ring Homomorphism and Ring Isomorphism
a� Ring Homomorphism� Let R� � �R���� #� and R� � �R�� ��� ��� be two rings� A mapping
h� R�  R� is called a ring homomorphism if for all a� b � R�

h�a � b� � h�a� �� h�b� and h�a # b� � h�a� �� h�b� ������

hold�

b� Kernel� The kernel of h is the set of elements of R� whose image by h is the neutral element � of
�R����� and we denote it by ker h�

ker h � fa � R�jh�a� � �g� ������

Here ker h is an ideal of R��

c� Ring Isomorphism� If h is also bijective� then h is called a ring isomorphism� and the rings R�

and R� are called isomorphic�

d� Factor Ring� If I is an ideal of a ring �R��� #�� then the sets of cosets fa � Ija � Rg of I in the
additive group �R��� of the ring R �see ������ �� p� ���� form a ring with respect to the operations

�a � I� �� �b � I� � �a � b� � I and �a � I� �� �b � I� � �a # b� � I� ������

This ring is called the factor ring of R by I� and it is denoted by R�I�
The factor ring of Z by a principal ideal �m� is the residue class ring Zm � Z��m� �see examples of rings
and �elds on p� ����

�� Homomorphism Theorem for Rings
If the notion of a normal subgroup is replaced by the notion of an ideal in the homomorphism theorem
for groups� then the homomorphism theorem for rings is obtained� A ring homomorphism h� R�  R�

de�nes an ideal of R�� namely ker h � fa � R�jh�a� � �g� The factor ring R�� ker h is isomorphic to the
homomorphic image h�R�� � fh�a�ja � R�g� Conversely� every ideal I of R� de�nes a homomorphic
mapping natI � R�  R��I with natI�a� � a�I� This mapping natI is called a natural homomorphism�

������� Finite Fields and Shift Registers

�� Finite Fields
Fields are in particular notable for having no zero divisors� Finite �elds are even characterized by this
property� Zero divisors are non�zero elements of a ring for which there is a non�zero element such that
their product is zero� The residue class rings Zm mentioned in ������� p� ��� D have zero divisors
if m is not a prime number� since in this case m � k � l yields � � k & l �multiplication modulo m��
Thus� we obtain in Zp� p prime number� �except isomorphism� all �nite �elds with p elements� More
generally we have�

For every power pn of a prime number p there is �except isomorphism� a unique �eld of pn elements�
and every �nite �elds has pn elements�
The �elds with pn elements are also denoted by GF �pn� �Galois �eld� � Observe that for n �  GF �pn�
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and Zpn are di�erent�

To construct �nite �elds with pn elements �p prime number� n � � polynomial rings over Zp �see
������� p� ��� C� and irreducible polynomials are needed�

Zp x! consists of all polynomials with coe�cients inZp� Addition and multiplicationof such polynomials
is done by calculating with the coe�cients modulo p�
In polynomial rings IK x! over �elds IK the division algorithm �polynomial division with remainder� is
valid� i�e� for f�x�� g�x� � IK x! with deg f�x� � deg g�x� there are polynomials q�x�� r�x� � IK x!
such that

g�x� � q�x� � f�x� � r�x� and deg r�x� � deg f�x� � ������

This situation is described by r�x� � g�x� �mod f�x��� Repeated division with remainder yields the
Euclidean algorithm for polynomial rings and the last non�zero remainder is the greatest common
divisor �gcd� of the polynomials f�x� and g�x��

A polynomial f�x� � IK x! is called irreducible if it cannot be written as a product of polynomials of
lower degree� In this case �analogously to prime numbers in Z� f�x� is called a prime element of IK x!�
For polynomials of second and third degree irreducibility is equivalent to the non�existence of zeroes in
IK�

One can show that IK x! contains irreducible polynomials of arbitrary degree�

For an irreducible polynomial f�x� � IK x!

IK x!�f�x� �� fr�x� � IK x!j deg r�x� � deg g�x�g ������

is a �eld with multiplication modulo f�x�� i�e� g�x� # h�x� � g�x� � h�x� �mod f�x���

If IK � Zp� f�x� � IK x! irreducible and deg f�x� � n then IK x!�f�x� is a �eld with pn elements� i�e�
GF �pn� � Zp x!�f�x��

The multiplicative group IK� � IK n f�g of a �nite �eld IK is cyclic� i�e� there is an element a � IK such
that every element of IK� can be expressed as a power of a� One says� that such an element a generates
the multiplicative group of the �eld� IK� � f� a� a�� � � � aq��g�
An irreducible polynomial f�x� � IK x! is called primitive� if the powers of x cover all non�zero elements
of IL �� IK x!�f�x�� i�e� if x generates the multiplicative group of IL�

With a primitive polynomial f�x� of degree n in Zp x! a 	logarithm table
 for GF �pn� can be produced�
which simpli�es calculations in this �eld considerably�

Construction of the �eld GF ���� and its associated logarithm table�

The polynomial f�x� �  � x � x� is irreducible as a polynomial in Z� x!� since neither � nor  are
zeroes� Therefore� we have

GF
�
��
	

� Z� x!�f�x� ����a�

�
n
a� � a�x � a�x

�j a�� a�� a� � Z� � x� �  � x
o

� ����b�

The polynomial f�x� is even primitive and so we can establish a logarithm table� For this we associate
two expressions with each polynomial a� �a�x�a�x

� in Z� x!�f�x�� its coe�cient vector a�a�a� and its
so�called logarithm� which is that natural number i satisfying xi � a� � a�x � a�x

� modulo  � x � x��
We obtain for GF ����

FE CV log�

  � � �
x �  � 
x� � �  �
x�   � �
x� �   �
x�    �
x	  �  �

Addition of �eld elements �FE� in GF ����
addition of coe�cient vectors �CV��
component�wise mod � �in general mod p��
Multiplication of FE in GF ����
addition of logarithms �log�� mod �
�in general mod �pn � ���

example�
x� � x�

x� � x�
�

x

x	
� x�� � x�
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So� IL �� GF �q�� q � pn� can be considered as an extension �eld of IK �� GF �p�� According to
Fermat�s theorem �see �������� p� ��� we have for all a � IL the equation aq � a� i�e� every element
a � IL is zero of a polynomial with coe�cients in IK� e�g� xq�x� The minimal polynomialma�x� � IK x!
is characterized by having a as a zero� leading coe�cient �ma�x� is normalized� and lowest possible
degree� The minimal polynomial ma�x� has the following properties�

a� ma�x� is irreducible over IK�
b� ma�x� divides every f�x� � IK x! with f�a� � �� in particular it divides xq � x�
c� deg ma�x� � n�
d� If a generates IL� then deg ma�x� � n�

Here the prime number p can also be replaced by any power of p�

Let q � pn� p prime� and gcd�n� q� � � Then� every element a of an extension �eld IL of GF �q� solving
the equation xn �  is called n�th root of unity over GF �q�� The n�th roots of unity over GF �q� form
a cyclic group of order n� A generating element of this group is called primitive n�th root of unity�

�� Application to Shift Registers
Calculations with polynomials can conveniently be performed using linear feed�back shift registers �see
Fig ����� For a linear feed�back shift register with feed back polynomial f�x� � f� � f�x � � � � �

s0 sr-1sr-2s1

-f1 -fr-2
-fr-1-f0

Figure ���

fr��xr�� � xr we obtain from the state polynomial s�x� � s� � s�x � � � � � sr��xr�� in the next step
the state polynomial s�x� � x � sr��f�x� � s�x� � x �mod f�x��� In particular� starting with s�x� � 
we obtain after i feed�back steps the state polynomial xi�mod f�x���

Demonstration using the example of p� ��� We choose the primitive polynomial f�x� � �x�x� �
Z� x! as feed�back polynomial� Then we obtain a shift register of length � with the following sequence
of states�
With initial state  � � b�  �mod f�x��

we obtain consecutively the states�
�  � b� x �mod f�x��
� �  b� x� �modf�x��
  � b� x� �  � x �mod f�x��
�   b� x� � x � x� �mod f�x��
   b� x� �  � x � x� �mod f�x��
 �  b� x	 �  � x� �mod f�x��

 � � b� x� �  �mod f�x��

Here the states are to be interpreted as the coe�cient vectors of a state polynomial s� � s�x � s�x
�� In

general we have� a linear feed�back shift register of length r generates a sequence of states of maximal
length �r � � if the feed�back polynomial is a primitive polynomial of degree r�

����� Vector Spaces �

����	�� De�nition
A vector space over a �eld F consists of an Abelian group V � �V��� of 	 vectors 
 written in additive
form� of a �eld F � �F��� #� of 	 scalars 
 and an exterior multiplication F � V  V � which assigns
to every ordered pair �k� v� for k � F and v � V a vector kv � V � These operations have the following
properties�

�V�� �u � v� � w � u � �v � w� for all u� v� w � V� ������

�In this paragraph� generally� vectors are not printed in bold face�
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�V�� There is a vector � � V such that v � � � v for every v � V� ������

�V�� To every vector v there is a vector � v such that v � ��v� � �� ������

�V�� v � w � w � v for every v� w � V� ������

�V�� v � v for every v � V�  denotes the unit element of F� ������

�V�� r�sv� � �rs�v for every r� s � F and every v � V� ������

�V�� �r � s�v � rv � sv for every r� s � F and every v � V� ������

�V�� r�v � w� � rv � rw for every r � F and every v� w � V� ������

If F � IR holds� then it is called a real vector space�

Examples of vector spaces�
A� Single�column or single�row real matrices of type �n� � and �� n�� respectively� with respect to

matrix addition and exterior multiplication with real numbers form real vector spaces IRn �the vector
space of column or row vectors� see also ����� p� �����

B� All real matrices of type �m�n� form a real vector space�

C� All real functions continuous on an interval  a� b! with the operations

�f � g��x� � f�x� � g�x� and �kf��x� � k � f�x� ������

form a real vector space� Function spaces have a fundamental role in functional analysis ��� p� �����
For further examples see ����� p� ����

����	�� Linear Dependence
Let V be a vector space over F � The vectors v�� v�� � � �� vm � V are called linearly dependent if there
are k�� k�� � � �� km � K not all of them equal to zero such that � � k�v� � k�v� � � � � � kmvm holds�
Otherwise they are linearly independent� Linear dependence of at least two vectors means that one of
them can be expressed in terms of the other�

If there is a maximal number n of linearly independent vectors in a vector space V � then the vector
space V is called n�dimensional� This number n is uniquely de�ned and it is called the dimension�
Every n linearly independent vectors of V form a basis� If such a maximal number does not exist� then
the vector space is called in�nite dimensional� The vector spaces in the above examples are n� m � n�
and in�nite dimensional�
In the vector space IRn� n vectors are independent if and only if the determinant of the matrix� whose
columns or rows are these vectors� is not equal to zero�
If fv�� v�� � � � � vng form a basis of an n�dimensional vector space over F � then every vector v � V has a
unique representation v � k�v� � k�v� � � � �� knvn with k�� k� � � � � kn � F �
Every set of linearly independent vectors can be completed into a basis of the vector space�

����	�� LinearMappings
The mappings respecting the structure of vector spaces are called linear mappings� f � V�  V� is
called linear if for every u� v � V� and every k � F

f�u � v� � f�u� � f�v� and f�ku� � k � f�u� �����

are valid�

The linear mappings f from IRn into IRm can be given by matrices A of type �m�n� by f�v� � Av�

����	�� Subspaces� Dimension Formula
� Subspace� Let V be a vector space and U a subset of V � If U is also a vector space with respect to
the operations of V � then U is called a subspace of V �
A non�empty subset U of V is a subspace if and only if for every u�� u� � U and every k � F also u��u�
and k � u� are in U �subspace criterion��
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� Kernel� Image� Let V�� V� be vector spaces over F � If f � V�  V� is a linear mapping� then the
linear subspaces kernel �notation� ker f� and image �notation� im f� are de�ned in the following way�

ker f � fv � V jf�v� � �g� im f � ff�v�jv � V g� ������

So� for example� the solution set of a homogeneous linear equation system Ax � � is the kernel of the
linear mapping de�ned by the coe�cient matrix A�

� Dimension� The dimension dim ker f and dim im f are called the defect f and rank f � respectively�
For these dimensions the equality

defect f � rank f � dimV� ������

is valid and is called the dimension formula� In particular� if the defect f � �� i�e�� ker f � f�g� then
the linear mapping f is injective� and conversely� Injective linear mappings are called regular�

����	�� Euclidean Vector Spaces� EuclideanNorm
In order to be able to use notions such as length� angle� orthogonality in abstract vector spaces we
introduce Euclidean vector spaces�

�� Euclidean Vector Space
Let V be a real vector space� If �� V � V  IR is a mapping with the following properties �instead of
��v� w� we write v �w� for every u� v� w � V and for every r � IR

�S�� v � w � w � v� ������

�S�� �u � v� � w � u �w � v � w� ������

�S�� r�v � w� � �rv� � w � v � �rw�� ������

�S�� v � v � � if and only if v �� �� ������

then � is called a scalar product on V � If there is a scalar product de�ned on V � then we call V a
Euclidean vector space�

We use these properties to de�ne a scalar product with similar properties on more general spaces� too
�see ������ p� ����

�� Euclidean Norm
The value kvk �

p
v � v denotes the Euclidean norm �length� of v� The angle � between v� w from V is

de�ned by the formula

cos� �
v � w

kvk � kwk � ������

If v � w � � holds� then v and w are said to be orthogonal to each other�

Orthogonality of Trigonometric Functions� In the theory of Fourier series �see ������ p� �����
we consider functions of the form sin kx and cos kx� We can consider these functions as elements of
C �� ��!� In the function space C a� b! the formula

f � g �
Z b

a
f�x�g�x� dx ������

de�nes a scalar product� SinceZ ��

�
sin kx � sin lx dx � � �k �� l�� ������

Z ��

�
cos kx � cos lx dx � � �k �� l�� �����

Z ��

�
sin kx � cos lx dx � �� ������

the functions sin kx and cos lx for every k� l � IN are pairwise orthogonal to each other� This orthogo�
nality of trigonometric functions is used in the calculation of Fourier coe�cients in harmonic analysis
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�see ������ p� �����

����	�� Linear Operators in Vector Spaces

�� Notion of Linear Operators
Let V and W be two real vector spaces� A mapping a from V into W is called a linear mapping or linear
transformation or linear operator �see also ������� p� ���� from V into W if

a�u � v� � au � av for all u� v � V� ������

a��u� � �au for all u � V and all real �� ������

A� The mapping au ��
	R
�
u�t� dt� which transforms the space C �� �! of continuous real functions

into the space of real numbers is linear�

In the special case when W � IR�� as in the previous example� linear transformations are called linear
functionals�

B� Let V � IRn and let W be the space of all real polynomials of degree at most n � � Then the
mapping a�a�� a�� � � � � an� �� a� �a�x�a�x

� � � � ��anx
n�� is linear� In this case each n�element vector

corresponds to a polynomial of degree � n� �

C� If V � IRn and W � IRm� then all linear operators a from V into W �a � IRn � IRm� can be
characterized by a real matrix A � �aik� of type �m�n�� The relation Ax � y corresponds to the

system of linear equations �����a��BBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
���
am� am� � � � amn

�CCCA
�BBB�

x�
x�
���
xn

�CCCA �

�BBB�
y�
y�
���

ym

�CCCA�

�� Sum and Product of two Linear Operators
Let a� V �W � b� V � W and c� W � U be linear operators� Then the

sum a � b� V � W is de�ned as �a � b�u � au � bu for all u � V and the ������

product ca� V � U is de�ned as �ca�u � c�au� for all u � V� ������

Remarks�
� If a� b and c are linear� then a � b and ac are also linear operators�

� The product ������ of two linear operators represents the consecutive application of these operators
a and c�

� The product of two linear operators is usually non�commutative even if the products exist�

ca �� ac � �����a�

We have commutability � if

ca� ac � � �����b�

holds� In quantum mechanics the left�hand side of this equation ca � ac is called the commutator� In
the case �����a� the operators a and c do not commutate� therefore we have to be very careful about
the order�

As a particular example of sums and products of linear operators one may think of sums and products
of the corresponding real matrices�
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��� ElementaryNumberTheory
Elementary number theory investigates divisibility properties of integers�

����� Divisibility

������� Divisibility and Elementary Divisibility Rules

�� Divisor
An integer b � Z is divisible by an integer a without remainder i� � if there is an integer q such that

qa � b ������

holds� Here a is a divisor of b in Z� and q is the complementary divisor with respect to a� b is a multiple
of a� For 	a divides b
 we write also ajb� For 	a does not divide b
 we can write a�jb� The divisibility
relation ������ is a binary relation in Z �see ������ �� p� ����� Analogously� divisibility is de�ned in
the set of natural numbers�

�� Elementary Divisibility Rules
�DR�� For every a � Z we have ja� aja and aj�� ������

�DR�� If ajb� then ��a�jb and aj��b�� ������

�DR�� ajb and bja implies a � b or a � �b� �����

�DR�� aj implies a �  or a � �� ������

�DR�� ajb and b �� � imply jaj � jbj� ������

�DR�� ajb implies ajzb for every z � Z� ������

�DR�� ajb implies azjbz for every z � Z� ������

�DR�� azjbz and z �� � implies ajb for every z � Z� ������

�DR
� ajb and bjc imply ajc� ������

�DR��� ajb and cjd imply acjbd� ������

�DR��� ajb and ajc imply aj�z�b � z�c� for arbitrary z�� z� � Z� ������

�DR��� ajb and aj�b � c� imply ajc� ������

������� PrimeNumbers

�� De�nition and Properties of Prime Numbers
A positive integer p �p � � is called a prime number i�  and p are its only divisors in the set IN of
positive integers� Positive integers which are not prime numbers are called composite numbers�
For every integer� the smallest positive divisor di�erent from  is a prime number� There are in�nitely
many prime numbers�
A positive integer p �p � � is a prime number i� for arbitrary positive integers a� b� pj�ab� implies pja
or pjb�
�� Sieve of Eratosthenes
By the method of the 	Sieve of Eratosthenes
� every prime number smaller than a given positive integer
n can be determined�

a� Write down the list of all positive integers from � to n�

b� Underline � and delete every subsequent multiple of ��

c� If p is the �rst non�deleted and non�underlined number� then underline p and delete every p�th
number �beginning with �p and counting the numbers of the original list��

d� Repeat step c� for every p �p � pn� and stop the algorithm�

�if and only if
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Every underlined and non�deleted number is a prime number� In this way� all prime numbers � n are
obtained�
The prime numbers are called prime elements of the set of integers�

�� Prime Pairs
Prime numbers with a di�erence of � form prime pairs �twin primes��

��� ��� ��� ��� �� ��� ��� ��� ���� ��� ��� ���� ���� ��� ��� ���� ��� ��� are prime pairs�

�� Prime Triplets
Prime triplets consist of three prime numbers occuring among four consecutive odd numbers�

��� �� �� ��� � ��� �� �� ��� ��� �� ��� ��� �� ���� ���� �� ��� are prime triplets�

�� Prime Quadruplets
If the �rst two and the last two of �ve consecutive odd numbers are prime pairs� then they are called a
prime quadruplet�

��� �� � ��� �� �� �� ��� ��� ��� ��� ���� ��� ��� ��� ��� are prime quadruplets�

The conjecture that there exist in�nitely many prime pairs� prime triplets� and prime quadruplets� is
not proved still�

� Mersenne Primes
If �k � � k � IN� is a prime number� then k is also a prime number� The numbers �p �  �p prime�
are called Mersenne numbers� A Mersenne prime is a Mersenne number �p �  which is itself a prime
number�

�p �  is a prime number for the �rst ten values of p� �� �� �� ���� �� �� �� ��� ��� etc�

�� Fermat Primes
If a number �k�� k � IN� is an odd prime number� then k is a power of �� The numbers �k�� k � IN�
are called Fermat numbers� If a Fermat number is a prime number� then it is called a Fermat prime�

For k � �� � �� �� � the corresponding Fermat numbers �� �� �� ���� ����� are prime numbers� It is
conjectured that there are no further Fermat primes�

�� Fundamental Theorem of Elementary Number Theory
Every positive integer n �  can be represented as a product of primes� This representation is unique
except for the order of the factors� Therefore n is said to have exactly one prime factorization�

��� � � � � � � � � � � � � � �� � �� � ��

Remark� Analogously� the integers �except�� �� � can be represented as products of prime elements�
unique apart from the order and the sign of the factors�

�� Canonical Prime Factorization
It is usual to arrange the factors of the prime factorization of a positive integer according to their size�
and to combine equal factors to powers� If every non�occurring prime is assigned exponent �� then every
positive integer is uniquely determined by the sequence of the exponents of its prime factorization�

To  ��� �� � �� � �� � � belongs the sequence of exponents ��� �� �� �� �� �� �� � � ���

For a positive integer n� let p�� p�� � � � pm be the pairwise distinct primes divisors of n� and let �k denote
the exponent of a prime number pk in the prime factorization of n� Then

n �
mY
k��

p�kk � ����a�

and this representation is called the canonical prime factorization of n� It is often denoted by

n �
Y
p

p�p�n�� ����b�

where the product applies to all prime numbers p� and where 
p�n� is the multiplicity of p as a divisor
of n� It always means a �nite product because only �nitely many of the exponents 
p�n� di�er from ��
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��� Positive Divisors
If a positive integer n 	  is given by its canonical prime factorization ����a�� then every positive
divisor t of n can be written in the form

t �
mY
k��

p�kk with  k � f�� � �� � � � � �kg for k � � �� � � � � m� �����a�

The number  �n� of all positive divisors of n is

 �n� �
mY
k��

��k � �� �����b�

A�  ������ �  ��� � �� � � � �� � �� � ��� � �� � �� � � � ���

B�  �p�p� � � � pr� � �r� if p�� p�� � � � � pr are pairwise distinct prime numbers�

The product P �n� of all positive divisors of n is given by

P �n� � n
�
�
��n�� �����c�

A� P ���� � ��� � ����� B� P �p�� � p	� if p is a prime number�

C� P �pq� � p�q�� if p and q are di�erent prime numbers�

The sum ��n� of all positive divisors of n is

��n� �
mY
k��

p�k��k � 

pk � 
� �����d�

A� ����� � ���� � � � �� � � � � � � � ���� B� ��p� � p � � if p is a prime number�

������� Criteria for Divisibility

�� Notation
Consider a positive integer given in decimal form�

n � �akak�� � � �a�a�a���� � ak�k � ak���k�� � � � �� a��� � a�� � a�� �����a�

Then

Q��n� � a� � a� � a� � � � �� ak �����b�

and

Q�
��n� � a� � a� � a� �� � � �� ���kak �����c�

are called the sum of the digits �of �rst order� and the alternating sum of the digits �of �rst order� of n�
respectively� Furthermore�

Q��n� � �a�a���� � �a�a���� � �a�a���� � � � � and �����d�

Q�
��n� � �a�a���� � �a�a���� � �a�a���� �� � � � �����e�

are called the sum of the digits and the alternating sum of the digits� respectively� of second order and

Q��n� � �a�a�a���� � �a�a�a���� � �a
a�a	��� � � � � �����f�

and

Q�
��n� � �a�a�a���� � �a�a�a���� � �a
a�a	��� � � � � � �����g�

are called the sum of the digits and alternating sum of the digits� respectively� of third order �

The number �� ��� ��� has the following sum of the digits� Q� � ���������������� � ���
Q�
� � ���������������� � �� Q� � ������������ � ���� Q�

� � ������������ � ���
Q� � ��� � ��� � �� � ��� and Q�

� � ���� ��� � �� � ����
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�� Criteria for Divisibility
There are the following criteria for divisibility�

DC��� �jn� �jQ��n�� �����a� DC��� �jn� �jQ�
��n�� �����b�

DC��� �jn� �jQ��n�� �����c� DC��� jn� jQ�
��n�� �����d�

DC��� �jn� �jQ�
��n� �����e� DC��� ��jn� ��jQ��n�� �����f�

DC��� �jn� �jQ�
��n�� �����g� DC��� �jn� �ja�� �����h�

DC�
� �jn� �ja�� �����i� DC���� �kjn� �kj�ak��ak�� � � �a�a����� �����j�

DC���� �kjn� �kj�ak��ak�� � � �a�a����� �����k�

A� a � �� ��� ��� is divisible by � since Q��a� � �� and �j��� but it is not divisible by � since
Q�
��a� � ��� and ��j����

B� � �� is divisible by  since Q�
��� ��� � �� and j���

C� �� ��� ��� is divisible by �� since ��j� ����

������� Greatest CommonDivisor and Least CommonMultiple

�� Greatest Common Divisor
For integers a�� a�� � � � � an� which are not all equal to zero� the largest number in the set of common
divisors of a�� a�� � � � � an is called the greatest common divisor of a�� a�� � � � � an� and it is denoted by
gcd�a�� a�� � � � � an�� If gcd�a�� a�� � � � � an� � � then the numbers a�� a�� � � � � an are called coprimes�
To determine the greatest common divisor� it is su�cient to consider the positive common divisors� If
the canonical prime factorizations

ai �
Y
p

p�p�ai� �����a�

of a�� a�� � � � � an are given� then

gcd�a�� a�� � � � � an� �
Y
p

p

�
min  
p�ai�!
i

�
� �����b�

For the numbers a� � � ��� � �� � �� � � � � a� � � ��� � �� � �� � �� a� � � ��� � � � �� � � � � the
greatest common divisor is gcd�a�� a�� a�� � �� � � � ���

�� Euclidean Algorithm
The greatest common divisor of two integers a� b can be determined by the Euclidean algorithmwithout
using their prime factorization� To do this� a sequence of divisions with remainder� according to the
following scheme� is performed� For a � b let a� � a� a� � b� Then�

a� � q�a� � a�� � � a� � a��

a� � q�a� � a�� � � a� � a��

���
���

��� �����a�

an�� � qn��an�� � an� � � an � an���
an�� � qnan�

The division algorithm stops after a �nite number of steps� since the sequence a�� a�� � � � is a strictly
monotone decreasing sequence of positive integers� The last remainder an� di�erent from � is the great�
est common divisor of a� and a� �see �rst example next page��
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gcd���� ��� � � since
�� � � � �� � ��
�� �  � �� � �
�� � � � � � �
� � � � � � 
� � � �  �

By the recursion formula

gcd�a�� a�� � � � � an� � gcd�gcd�a�� a�� � � � � an���� an�� �����b�

the greatest common divisor of n positive integers with
n � � can be determined by repeated use of the Euclide�
an algorithm�

gcd���� ��� ��� � gcd�gcd���� ���� ��� � gcd��� ��� � �

The Euclidean algorithm to determine the gcd �see also ����� ��
p� �� of two numbers has especially many steps� if the numbers are adja�
cent numbers in the sequence of Fibonacci numbers �see ������� p� �����
The annexed calculation shows an example where all quotients are al�
ways equal to �

�� Theorem for the Euclidean Algorithm
For two natural numbers a� b with a � b � �� let ��a� b� denote the
number of divisions with remainder in the Euclidean algorithm� and let
��b� denote the number of digits of b in the decimal system� Then

�� �  � �� � �
�� �  � � � �
� �  � � � �
� �  � � � �
� �  � � � �
� �  � � � �
� �  � � � 
� �  �  � 
 �  � �

��a� b� � � � ��b�� ������

�� Greatest Common Divisor as a Linear Combination

It follows from the Euclidean algorithm that

a� � a� � q�a� � c�a� � d�a��

a� � a� � q�a� � c�a� � d�a��

���
��� �����a�

an � an�� � qn��an�� � cn��a� � dn��a��

Here cn�� and dn�� are integers� Thus the gcd�a�� a�� can be represented as a linear combination of a�
and a� with integer coe�cients�

gcd�a�� a�� � cn��a� � dn��a�� �����b�

Moreover gcd�a�� a�� � � � � an� can be represented as a linear combination of a�� a�� � � � � an� since�

gcd�a�� a�� � � � � an� � gcd�gcd�a�� a�� � � � � an���� an� � c � gcd�a�� a�� � � � � an��� � dan� �����c�

gcd���� ��� ��� � gcd�gcd���� ���� ��� � gcd��� ��� �  with � � ���� � �� � � � �� and
 � � � � � ���� � ���� thus gcd���� ��� ��� � ����� � �� � �� � �� � ���� � ���

�� Least CommonMultiple

For integers a�� a�� � � � � an� among which there is no zero� the smallest number in the set of positive
common multiples of a�� a�� � � � � an is called the least commonmultiple of a�� a�� � � � � an� and it is denoted
by lcm�a�� a�� � � � � an��
If the canonical prime factorizations �����a� of a�� a�� � � � � an are given� then�

lcm�a�� a�� � � � � an� �
Y
p

p

�
max  
p�ai�!
i

�
� ������

For the numbers a� � � ��� � �� � �� � � � � a� � � ��� � �� � �� � �� a� � � ��� � � � �� � � �  the
least common multiple is lcm�a�� a�� a�� � �� � �� � �� � � �  � ��� ����

� Relation between g�c�d� and l�c�m�

For arbitrary integers a� b�

jabj � gcd�a� b� � lcm�a� b�� �������
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Therefore� the lcm�a� b� can be determined with the help of the Euclidean algorithm without using the
prime factorizations of a and b�

������� Fibonacci Numbers

�� Fibonacci Sequence
The sequence

�Fn�n�IN with F� � F� �  and Fn�� � Fn � Fn�� ������

is called Fibonacci sequence� It starts with the elements � � �� �� �� �� �� �� ��� ��� ��� ���
���� ���� � � �

The consideration of this sequence goes back to the question posed by Fibonacci in ���� How many
pairs of descendants has a pair of rabbits at the end of a year� if every pair in every month produces a
new pair� which beginning with the second month itself produces new descended pairs( The answer is
F�� � ����

�� Fibonacci Recursion Formula
Besides the recursive de�nition ������ there is an explicit formula for the Fibonacci numbers�

Fn �
p
�

��
 �
p

�

�

n
�
�

�p�

�

n�
� �������

Some important properties of Fibonacci numbers are the following� For m�n � IN�

��� Fm�n � Fm��Fn � FmFn�� �m � �� ������a� ��� FmjFmn� ������b�

��� gcd�m�n� � d implies gcd�Fm� Fn� � Fd� ������c� ��� gcd�Fn� Fn��� � � ������d�

��� FmjFk holds i� mjk holds� ������e� ���
nX
i��

F �
i � FnFn��� ������f�

��� gcd�m�n� �  implies FmFnjFmn� ������g� ���
nX
i��

Fi � Fn�� � � ������h�

�
� FnFn�� � F �
n�� � ���n��� ������i� ���� F �

n � F �
n�� � F�n��� ������j�

���� F �
n�� � F �

n � F�n��� ������k�

����� LinearDiophantineEquations

�� Diophantine Equations
An equation f�x�� x�� � � � � xn� � b is called a Diophantine equation in n unknowns i� f�x�� x�� � � � � xn�
is a polynomial in x�� x�� � � � � xn with coe�cients in the set Z of integers� b is an integer constant and
only integer solutions are of interest� The name 	Diophantine
 reminds us of the Greek mathematician
Diophantus� who lived around ��� AD�
In practice� Diophantine equations occur for instance� if relations between quantities are described�
Until now� only general solutions of Diophantine equations of at most second degree with two variables
are known� Solutions of Diophantine equations of higher degrees are only known in special cases�

�� Linear Diophantine Equations in nUnknowns
A linear Diophantine equation in n unknowns is an equation of the form

a�x� � a�x� � � � �anxn � b �ai � Z� b � Z�� �������

where only integer solutions are searched for� A solution method is described in the following�
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�� Conditions of Solvability
If not all the coe�cients ai are equal to zero� then the Diophantine equation ������� is solvable i�
gcd�a�� a�� � � � � an� is a divisor of b�

�x � ��y � � is solvable� since gcd��� ��� � ��

If a linear Diophantine equation in n unknowns �n � � has a solution and Z is the domain of variables�
then the equation has in�nitely many solutions� Then in the set of solutions there aren� free variables�
For subsets of Z� this statement is not true�

�� Solution Method for n � �
Let

a�x� � a�x� � b �a�� a�� �� ��� �� ������a�

be a solvable Diophantine equation� i�e�� gcd�a�� a��jb� To �nd a special solution of the equation� the
equation is divided by gcd�a�� a�� and one obtains a��x

�
� � a��x

�
� � b� with gcd�a��� a

�
�� � �

As described in ����� �� p� ���� gcd�a��� a
�
�� is determined to obtain �nally a linear combination of a��

and a��� a��c
�
� � a��c

�
� � �

Substitution in the given equation demonstrates that the ordered pair �c��b
�� c��b

�� of integers is a solution
of the given Diophantine equation�

�x���y � �� The equation is divided by �� since � � gcd��� ���� That implies ��x���y � �
and �� � �� � �� � ���� �  �see ����� �� p� ����� The ordered pair ��� � �� ���� � �� � �������� is
a special solution of the equation �x � ��y � ��

The family of solutions of ������a� can be obtained as follows� If �x��� x
�
�� is an arbitrary special solution�

which could also be obtained by trial and error� then

f�x�� � t � a��� x�� � t � a���jt � Zg ������b�

is the set of all solutions�

The set of solutions of the equation �x � ��y � � is f��� � ��t����� �t�jt � Zg�
�� ReductionMethod for n � �
Suppose a solvable Diophantine equation

a�x� � a�x� � � � �� anxn � b ������a�

with �a�� a�� � � � � an� �� ��� �� � � � � �� and gcd�a�� a�� � � � � an� �  is given� If gcd�a�� a�� � � � � an� �� � then
the equation should be divided by gcd�a�� a�� � � � � an�� After the transformation

a�x� � a�x� � � � �� an��xn�� � b� anxn ������b�

xn is considered as an integer constant and a linear Diophantine equation in n� unknowns is obtained�
and it is solvable i� gcd�a�� a�� � � � � an��� is a divisor of b� anxn�
The condition

gcd�a�� a�� � � � � an���jb� anxn ������c�

is satis�ed i� there are integers c� cn such that�

gcd�a�� a�� � � � � an��� � c � ancn � b� ������d�

This is a linear Diophantine equation in two unknowns� and it can be solved as shown in �������� p� ����
If its solution is determined� then it remains to solve a Diophantine equation in only n�  unknowns�
This procedure can be continued until a Diophantine equation in two unknowns is obtained� which can
be solved with the method given in ������ �� p� ����
Finally� the solution of the given equation is constructed from the set of solutions obtained in this way�

Solve the Diophantine equation

�x � �y � �z � �� ������a�

This is solvable since gcd��� �� �� is a divisor of ��
The Diophantine equation

�x � �y � �� �z ������b�
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in the unknowns x� y is solvable i� gcd��� �� is a divisor of � � �z� The corresponding Diophantine
equation �z� � �z � � has the set of solutions f��� � �t� �� �t�jt � Zg� This implies� z � �� �t� and
now the set of solutions ot the solvable Diophantine equation �x � �y � �� ���� �t� or

x � �y � �� � �t ������c�

is sought for every t � Z�
The equation ������c� is solvable since gcd�� �� � j��� � �t�� Now  � ��� � � �  �  and  � ���
�t� � � � ��� � �t� � �� � �t� The set of solution is f�����t� � �s� ��� � �t�� s�js � Zg � That implies
x � �� � �t� � �s� y � ��� � �t� � s� and f��� �t � �s��� � �t� s� �� �t�js� t � Zg so obtained is
the set of solutions of ������a��

����� Congruences andResidueClasses
�� Congruences
Let m be a positive integer m� m � � If two integers a and b have the same remainder� when divided
by m� then a and b are called congruent modulo m� denoted by a � b mod m or a � b�m��

� � � mod �� �� � � mod �� � � �� mod ��

Remark� Obviously� a � b mod m holds i� m is a divisor of the di�erence a� b� Congruence modulo
m is an equivalence relation �see ������ �� p� ���� in the set of integers� Note the following properties�

a � a mod m for every a � Z� ������a�

a � b mod m� b � a mod m� ������b�

a � b mod m � b � c mod m � a � c mod m� ������c�

�� Calculating Rules
a � b mod m � c � d mod m� a � c � b � d mod m� ������a�

a � b mod m � c � d mod m� a � c � b � d mod m� ������b�

a � c � b � c mod m � gcd�c�m� �  � a � b mod m� ������c�

a � c � b � c mod m � c �� �� a � b mod
m

gcd�c�m�
� ������d�

�� Residue Classes� Residue Class Ring
Since congruence modulo m is an equivalence relation in Z� this relation induces a partition of Z into
residue classes modulo m�

 a!m � fxjx � Z � x � a mod mg� ������

The residue class 	 a modulo m 
 consists of all integers having equal remainder if divided by m� Now
 a!m �  b!m i� a � b mod m�
There are exactly m residue classes modulo m� and normally they are represented by their smallest
non�negative representatives�

 �!m�  !m� � � � �  m� !m� �����

In the set Zm of residue classes modulo m� residue class addition and residue class multiplication are
de�ned by

 a!m $  b!m ��  a � b!m� ������

 a!m &  b!m ��  a � b!m� ������

These residue class operations are independent of the chosen representatives� i�e��

 a!m �  a�!m and  b!m �  b�!m imply

 a!m $  b!m �  a�!m $  b�!m and  a!m &  b!m �  a�!m &  b�!m� ������

The residue classes modulo m form a ring with unit element� with respect to residue class addition
and residue class multiplication �see ������ �� p� ����� the residue class ring modulo m� If p is a prime
number� then the residue class ring modulo p is a �eld �see ������ �� p� �����
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�� Residue Classes Relatively Prime tom
A residue class  a!m with gcd�a�m� �  is called a residue class relatively prime to m� If p is a prime
number� then all residue classes di�erent from  �!p are residue classes relatively prime to p �
The residue classes relatively prime to m form an Abelian group with respect to residue class multi�
plication� the so�called group of residue classes relatively prime to m� The order of this group is ��m��
where � is the Euler function �see ������ �� p� ����

A�  !
�  �!
�  �!
�  �!
 are residue classes relatively prime to ��

B�  !��  �!��  �!��  �!� are residue classes relatively prime to ��

C� ���� � ���� � � is valid�

�� Primitive Residue Classes
A residue class  a!m relatively prime to m is called a primitive residue class if it has order ��m� in the
group of residue classes relatively prime to m�

A�  �!� is a primitive residue class modulo �� since � �!��
� �  �!�� � �!��

� �  �!�� � �!��
� �  !��

B� There is no primitive residue class modulo �� since  !
 has order � and  �!
�  �!
�  �!
 have order
� in the group of residue classes relatively prime to m�

Remark� There is a primitive residue class modulo m� i� m � �� m � �� m � pk or m � �pk� where p
is an odd prime number and k is a positive integer�
If there is a primitive residue class modulo m� then the group of residue classes relatively prime to m
forms a cyclic group�

� Linear Congruences

� De�nition If a� b and m � � are integers� then

ax � b�m� ������

is called a linear congruence �in the unknown x��

� Solutions An integer x� satisfying ax� � b�m� is a solution of this congruece� Every integer�
which is congruent to x� modulo m� is also a solution� If all solutions of ������ we searched for� then
it is su�cient to �nd the integers pairwise incongruent modulo m which satisfy the congruence�
The congruence ������ is solvable i� gcd�a�m� is a divisor of b� In this case� the number of solutions
modulo m is equal to gcd�a�m��
In particular� if gcd�a�m� �  holds� the congruence modulo m has a unique solution�

� Solution Method There are di�erent solution methods for linear congruences� It is possible to
transform the congruence ax � b�m� into the Diophantine equation ax � my � b� and to determine
a special solution �x�� y�� of the Diophantine equation a�x � m�y � b� with a� � a�gcd�a�m�� m� �
m�gcd�a�m�� b� � b�gcd�a�m� �see ������ �� p� �����
The congruence a�x � b��m�� has a unique solution since gcd�a�� m�� �  modulo m�� and

x � x��m��� �����a�

The congruence ax � b�m� has exactly gcd�a�m� solutions modulo m�

x�� x� � m� x� � �m� � � � � x� � �gcd�a�m�� �m� �����b�

�x � � mod �� is solvable� since gcd��� ��� is a divisor of �� there are three solutions modulo
���
��x � � mod �� has a unique solution� x � �� mod �� �see ������ �� p� ����� ��� ��� and ��� are
the solutions of �x � � mod ���

�� Simultaneous Linear Congruences
If �nitely many congruences

x � b��m��� x � b��m��� � � � � x � bt�mt� ������

are given� then ������ is called a system of simultaneous linear congruences� A result on the set of
solutions is the Chinese remainder theorem� Consider a given system x � b��m��� x � b��m��� � � � � x �
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bt�mt�� where m�� m�� � � � � mt are pairwise coprime numbers� If

m � m� �m� � � �mt� a� �
m

m�
� a� �

m

m�
� � � � � at �

m

mt
�����a�

and xj is choosen such that ajxj � bj�mj� for j � � �� � � � � t� then

x� � a�x� � a�x� � � � �� atxt �����b�

is a solution of the system� The system has a unique solution modulo m� i�e�� if x� is a solution� then x��

is a solution� too� i� x�� � x��m��

Solve the system x �  ���� x � � ���� x � � ���� where �� �� � are pairwise coprime numbers�
Then m � ��� a� � �� a� � �� a� � �� The congruences �x� �  ���� �x� � � ���� �x� � � ���
have the special solutions x� � � x� � �� x� � �� The given system has a unique solution modulo m�
x � � �  � � � � � � � � ����� i�e�� x � �� �����

Remark� Systems of simultaneous linear congruences can be used to reduce the problem of solving
non�linear congruences modulo m to the problem of solving congruences modulo prime number powers
�see ������ 
� p� �����

�� Quadratic Congruences

� Quadratic Residues Modulom One can solve every congruence ax� � bx � c � ��m� if one
can solve every congruence x� � a�m��

ax� � bx � c � ��m�� ��ax � b�� � b� � �ac�m�� ������

First quadratic residues modulo m are considered� Let m � IN� m �  and a � Z� gcd�a�m� � � The
number a is called a quadratic residue modulo m i� there is an x � Z with x� � a�m��

If the canonical prime factorization of m is given� i�e��

m �
�Y
i��

p�ii � �������

then r is a quadratic residue modulo m i� r is a quadratic residue modulo p�ii for i � � �� �� � � � �

If a is a quadratic residue modulo a prime number p� then this is denoted by

�
a

p

�
� � if a is a quadratic

non�residue modulo p� then it is denoted by

�
a

p

�
� � �Legendre symbol��

The numbers � �� � are quadratic residues modulo ��

� Properties of Quadratic Congruences

�E�� pj�ab and a � b�p� imply

�
a

p

�
�

�
b

p

�
� �����a�

�E��

�


p

�
� � �����b�

�E��

��

p

�
� ���

p��
� � �����c�

�E��

�
ab

p

�
�

�
a

p

�
�
�
b

p

�
in particular

�
ab�

p

�
�

�
a

p

�
� �����d�

�E��

�
�

p

�
� ���

p���

 � �����e�
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�E�� Quadratic reciprocity law� If p and q are distinct odd prime numbers�

then

�
p

q

�
�
�
q

p

�
� ���

p��
�

q��
� � �����f�

�
��

���

�
�
�

�

���

�
�
�

�

���

�
�
�

���

�

�
�
�

���

�

�
�
�

�

�

�
�
�

�

�

�
� ���

����
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In General� A congruence x� � a����� gcd�a� �� � � is solvable i� a � ��� for � � � and a � ���
for � 	 �� If these conditions are satis�ed� then modulo �� there is one solution for � � � there are
two solutions for � � � and four solutions for � 	 ��
A necessary condition for solvability of congruences of the general form

x� � a�m�� m � ��p��� p��� � � � p�tt � gcd�a�m� � � ������a�

is the solvability of the congruences

a � ��� for � � �� a � ��� for � 	 ��

�
a

p�

�
� �

�
a

p�

�
� � � � � �

�
a

pt

�
� � ������b�

If all these conditions are satis�ed� then the number of solutions is equal to �t for � � � and � � �
equal to �t�� for � � � and equal to �t�� for � 	 ��

�� Polynomial Congruences
If m�� m�� � � � � mt are pairwise coprime numbers� then the congruence

f�x� � anx
n � an��x

n�� � � � �� a� � ��m�m� � � �mt� ������a�

is equivalent to the system

f�x� � ��m��� f�x� � ��m��� � � � � f�x� � ��mt�� ������b�

If kj is the number of solutions of f�x� � ��mj� for j � � �� � � � � t� then k�k� � � �kt is the number of
solutions of f�x� � ��m�m� � � �mt�� This means that the solution of the congruence

f�x� � � �p��� p��� � � � p�tt �� ������c�

where p�� p�� � � � � pt are primes� can be reduced to the solution of congruences f�x� � ��p��� Moreover�
these congruences can be reduced to congruences f�x� � ��p� modulo prime numbers in the following
way�

a� A solution of f�x� � ��p�� is a solution of f�x� � ��p�� too�

b� A solution x � x��p� of f�x� � ��p� de�nes a unique solution modulo p� i� f ��x�� is not divisible
by p�
Suppose f�x�� � ��p�� Let x � x� � pt� and determine the unique solution t�� of the linear congruence

f�x��

p
� f ��x��t� � ��p�� ������a�

Substitute t� � t�� � pt� into x � x� � pt�� then x � x� � p�t� is obtained� Now� the solution t�� of the
linear congruence

f�x��

p�
� f ��x��t� � ��p� ������b�

has to be determined modulo p�� By substitution of t� � t�� � pt� into x � x� � p�t� the result
x � x� � p�t� is obtained� Continuing this process yields the solution of the congruence f�x� � � �p���

Solve the congruence f�x� � x� � �x � � � � ����� f�x� � x� � �x � � � � ��� implies x �
 ���� i�e�� x �  � �t�� Because of f ��x� � �x� � � and �j�f ��� now the solution of the congruence
f���� � f ��� � t� � � � t� � � ��� is searched for� t� �  ���� i�e�� t� �  � �t� and x � � � �t��
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Then consider f����� � f ���� � t� � � ��� and the solution t� � � ��� is obtained� i�e�� t� � � � �t� and
x � �� � ��t�� Therefore� �� is the solution of x� � �x � � � � ����� uniquely determined modulo ���

����� Theorems of Fermat� Euler� andWilson

�� Euler Function
For every positive integer m with m � � one can determine the number of coprimes x with respect to
m for  � x � m� The corresponding function � is called the Euler function� The value of the function
��m� is the number of residue classes relatively prime to m �s� ������ �� p� �����
For instance� ��� � � ���� � � ���� � �� ���� � �� ���� � �� ���� � �� ���� � �� ���� � �� etc�
In general� ��p� � p� holds for every prime number p and ��p�� � p��p��� for every prime number
power p�� If m is an arbitrary positiv integer� then ��m� can be determined in the following way�

��m� � m
Y
pjm

�
� 

p

�
� ������a�

where the product applies to all prime divisors p of m�

������ � ���� � �� � �� � ��� � �� �
�
� � �� �

�
� � �� �

�
� � ���

FurthermoreX
djm

��d� � m ������b�

is valid� If gcd�m�n� �  holds� then we get ��mn� � ��m���n��

������ � ���� � �� � �� � ����� � ����� � ���� � � � � � � � ���

�� Fermat�Euler Theorem
The FermatEuler theorem is one of the most important theorems of elementary number theory� If a
and m are coprime positive numbers� then

a��m� � �m�� �������

Determine the last three digits of �
�

in decimal notation� This means� determine x with x �
�

�
����� and � � x � ���� Now ������ � ���� and according to Fermats theorem ���� �  ������

Furthermore � � ��� � �� � � �
��

�
�

	
��� � � �

�
�
�

	
��� � �

	
� � � � � � � ��� � � � ��� � � � �� ������

From that it follows that �
� � �
 � ����
 �

�


�

	
�� ����
�

�


�

	
�� ����

�

�


�

	
�� ����
� �

� � �� � �� ��� � �� � � � � � ��� � ��������� The decimal notation of �
�

ends with the
digits ����

Remark� The theorem above for m � p� i�e�� ��p� � p� was proved by Fermat� the general form was
proved by Euler� This theorem forms the basis for encoding schemes �see ������� It contains a necessary
criterion for the prime number property of a positive integer� If p is a prime� then ap�� � �p� holds for
every integer a with p j�a�

�� Wilson�s Theorem
There is a further prime number criterion� called the Wilson theorem�
Every prime number p satis�es �p� �$ � ��p��
The inverse proposition is also true� and therefore�
The number p is a prime number i� �p� �$ � ��p��

����� Codes

�� RSACodes
R� Rivest� A� Shamir and L� Adleman �see  ���!� developed an encryption scheme for secret messages
on the basis of the Euler�Fermat theorem �see ������ ��� The scheme is called the RSA algorithm after
the initials of their last names� Part of the key required for decryption can be made public without
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endangering the con�dentiality of the message� for this reason� the term public key code is used in this
context as well�
In order to apply the RSA algorithm the recipient B chooses two very large prime numbers p and q�
calculates m � pq and selects a number r relatively prime to ��m� � �p� ��q� � and  � r � ��m��
B publishes the numbers m and r because they are needed for decryption�
For transmitting a secret message from sender A to recipient B the text of the message must be con�
verted �rst to a string of digits that will be split into N blocks of the same length of less than �� decimal
positions� Now A calculates the remainder R of N r divided by m�

N r � R�m�� ������a�

Sender A calculates the number R for each of the blocks N that were derived from the original text
and sends the number to B� The recipient can decipher the message R if he has a solution of the linear
congruence rs �  ���m��� The number N is the remainder of Rs divided by m�

Rs � �N r�s � N��k��m� � N � �N��m��k � N�m�� ������b�

Here� the Euler�Fermat theorem with N��m� � �m� has been applied� Eventually� B converts the
sequence of numbers into text�

A recipient B who expects a secret message from sender A chooses the prime numbers p � �� and
q � �� �actually too small for practical purposes�� calculates m � �� � �� � ��� �and ������ �
����� � ����� � ������ and chooses r � � �it satis�es the requirement of gcd����� �� � �� B passes
the values m � ��� and r � � to A�
A intends to send the secret message N � � to B� A encrypts N into R � ��� by calculating N r � �� �
��� ������ and just sends the value R � ��� to B� B solves the congruence � � s �  ������ arrives at
the solution s � ���� and thus determines Rs � ���	�� � � � N ������

Remark� The security of the RSA code correlates with the time needed by an unauthorized listener
to factorize m� Assuming the speed of today�s computers� a user of the RSA algorithm should choose
the two prime numbers p and q with at least a length of �� decimal positions in order to impose a
decryption e�ort of approximately �� years on the unauthorized listener� The e�ort for the authorized
user� however� to determine an r relatively prime to ��pq� � �p� ��q � � is comparatively small�

�� International Standard Book Number �ISBN	
A simple application of the congruence of numbers is the use of control digits with the International
Standard Book Number ISBN� A combination of � digits of the form

ISBN a� bcd� efghi� p� ������a�

is assigned to a book� The digits have the following meaning� a is the group number �for example� a � �
tells us that the book originates from Austria� Germany� or Switzerland�� bcd is the publisher�s number�
and efghi is the title number of the book by this publisher� A control digit p will be added to detect
erroneous book orders and thus help reduce expenses� The control digit p is the smallest non�negative
digit that ful�ls the following congruence�

�a � �b � �c � �d � �e � �f � �g � �h � �i � p � ���� ������b�

If the control digit p is �� a unary symbol such as X is used �see also ������ �� p� ����� A presented
ISBN can now be checked for a match of the control digit contained in the ISBN and the control digit
determined from all the other digits� In case of no match an error is certain� The ISBN control digit
method permits the detection of the following errors�

� Single digit error and

� interchange of two digits�

Statistical investigations showed that by this method more than ��& of all actual errors can be detected�
All other observed error types have a relative frequency of less than &� In the majority of the cases
the described method will detect the interchange of two digits or the interchange of two complete digit
blocks�
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�� Central Codes for Drugs andMedicines

In pharmacy� a similar numerical system with control digits is employed for identifying medicaments�
In Germany� each medicament is assigned a seven digit control code�

abcdefp� ������a�

The last digit is the control digit p� It is the smallest� non�negative number that ful�ls the congruence

�a � �b � �c � �d � �e � �f � p��� ������b�

Here too� the single digit error or the interchange of two digits can always be detected�

�� Account Numbers

Banks and saving banks use a uniform account number system with a maximum of � digits �depending
on the business volume�� The �rst �at most four� digits serve the classi�cation of the account� The
remaining six digits represent the actual account number including a control digit in the last position�
The individual banks and saving banks tend to apply di�erent control digit methods� for example�

a� The digits are multiplied alternately by � and by � beginning with the rightmost digit� A control
digit p will then be added to the sum of these products such that the new total is the next number
divisible by �� Given the account number abcd efghi p with control digit p� then the congruence

�i � h � �g � f � �e � d � �c � b � �a � p � � �mod ��� �������

holds�

b� As in method a�� however� any two�digit product is �rst replaced by the sum of its two digits and
then the total sum will be calculated�

In case a� all errors caused by the interchange of adjacent digits and almost all single�digit errors will
be detected�
In case b�� however� all errors caused by the change of one digit and almost all errors caused by the
interchange of two adjacent digits will be discovered� Errors due to the interchange of non�adjacent
digits and the change of two digits will often not be detected�

The reason for not using the more powerful control digit method modulo  is of a non�mathematical
nature� The non�numerical sign X �instead of the control digit � �see ������ �� p� ����� would require
an extension of the numerical keyboard� However� renouncing those account numbers whose control
digit has the value of � would have barred the smooth extension of the original account number in a
considerable number of cases�

�� European Article Number EAN

EAN stands for European Article Number� It can be found on most articles as a bar code or as a string
of � or � digits� The bar code can be read by means of a scanner at the counter�
In the case of ��digit strings the �rst two digits identify the country of origin� e�g�� ��� �� �� and
�� stand for Germany� The next �ve digits identify the producer� the following �ve digits identify a
particular product� The last digit is the control digit p�

This control digit will be obtained by �rst multiplying all � digits of the string alternately by  and
� starting with the left�most digit� by then totalling all values� and by �nally adding a p such that the
next number divisible by � is obtained� Given the article number abcdefghikmn p with control digit
p� then the congruence

a � �b � c � �d � e � �f � g � �h � i � �k � m � �n � p � � �mod ��� ������

holds�

This control digit method always permits the detection of single digit errors in the EAN and often the
detection of the interchange of two adjacent digits� The interchange of two non�adjacent digits and the
change of two digits will often not be detected�
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��� Cryptology

����� Problem ofCryptology
Cryptology is the science of hiding information by the transformation of data�

The idea of protecting data from unauthorized access is rather old� During the ���s together with the
introduction of cryptosystems on the basis of public keys� cryptology became an independent branch of
science� Today� the subject of cryptological research is how to protect data from unauthorized access
and against tampering�

Beside the classical military applications� the needs of the information society gain more and more in
importance� Examples are the guarantee of secure message transfer via email� electronic funds transfer
�home�banking�� the PIN of EC�cards� etc�

Today� the �elds of cryptography and cryptanalysis are subsumed under the notion of cryptology� Cryp�
tography is concerned with the development of cryptosystems whose cryptographic strengths can be
assessed by applying the methods of cryptanalysis for breaking cryptosystems�

����� Cryptosystems
An abstract cryptosystem consists of the following sets� a set M of messages� a set C of ciphertexts�
sets K and K � of keys� and sets IE and ID of functions� A message m � M will be encrypted into a
ciphertext c � C by applying a function E � IE together with a key k � K� and will be transmitted via
a communication channel� The recipient can reproduce the original message m from c if he knows an
appropriate function D � ID and the corresponding key k� � K �� There are two types of cryptosystems�

� Symmetric Cryptosystems� The conventional symmetric cryptosystem uses the same key k for
encryption of the message and for decryption of the ciphertext� The user has complete freedom in
setting up his conventional cryptosystem� Encryption and decryption should� however� not become
too complex� In any case� a trustworthy transmission between the two communication partners is
mandatory�

� Asymmetric Cryptosystems� The asymmetric cryptosystem �see ������� p� ���� uses two keys�
one private key �to be kept secret� and a public key� The public key can be transmitted along the same
path as the ciphertext� The security of the communication is warranted by the use of so�called one�way
functions �see �������� p� ����� which makes it practically impossible for the unauthorized listener to
deduce the plaintext from the ciphertext�

����� Mathematical Foundation
An alphabet A � fa�� a�� � � � � an��g is a �nite non�empty totally ordered set� whose elements ai are
called letters� jAj is the length of the alphabet� A sequence of letters w � a��a

�
� � � � a

�
n of length n � IN

and ai � A is called a word of length n over the alphabet A� An denotes the set of all words of length
n over A� Let n�m � IN� let A�B be alphabets� and let S be a �nite set�

A cryptofunction is a mapping t� An � S  Bm such that the mappings ts� An  Bm � w  t�w� s�
are injective for all s � S� The functions ts and t��s are called the encryption and decryption function�
respectively� w is called plaintext� ts�w� is the ciphertext�

Given a cryptofunction t� then the one�parameter family ftsgs�S is a cryptosystem TS� The term cryp�
tosystem will be applied if in addition to the mapping t� the structure and the size of the set of keys is
signi�cant� The set S of all the keys belonging to a cryptosystem is called the key space� Then

TS � fts� An  Anjs � Sg �������

is called a cryptosystem on An�

If TS is a cryptosystem over An and n � � then ts is called a stream cipher� otherwise ts is called a
block cipher�

Cryptofunctions of a cryptosystem over An are suited for the encryption of plaintext of any length� To
this end a plaintext will be split into blocks of length n prior to applying the function to each individual
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block� The last block may need padding with �ller characters to obtain a block of length n� The �ller
characters must not distort the plaintext�

There is a distinction between context�free encryption� where the ciphertext block is only a function of
the corresponding plaintext block and the key� and context sensitive encryption� where the ciphertext
block depends on other blocks of the message� Ideally� each ciphertext digit of a block depends on all
digits of the corresponding plaintext block and all digits of the key� Small changes to the plaintext or
to the key cause extended changes to the ciphertext �avalanche e�ect��

����� Security of Cryptosystems
Cryptanalysis is concerned with the development of methods for deducing from the ciphertext as much
information about the plaintext as possible without knowing the key� According to A� Kerkho� the
security of a cryptosystem rests solely in the di�culty of detecting the key or� more precisely� the de�
cryption function� The security must not be based on the assumption that the encryption algorithm is
kept secret� There are di�erent approaches to assess the security of a cryptosystem�

� Absolutely Secure Cryptosystems� There is only one absolutely secure cryptosystem based on
substitution ciphers� which is the one�time pad� This was proved by Shannon as part of his information
theory�

� Analytically Secure Cryptosystems� No method exists to break a cryptosystem systematically�
The proof of the non�existence of such a method follows from the proof of the non�computability of a
decryption function�

� Secure Cryptosystems according to Criteria of Complexity Theory� There is no algorithm
which can break a cryptosystem in polynomial time �with regard to the length of the text��

� Practically Secure Cryptosystems� No method is known which can break the cryptosystem
with available resources and with justi�ed costs�

Cryptanalysis often applies statistical methods such as determining the frequency of letters and words�
Other methods are an exhaustive search� the trial�and�error method and a structural analysis of the
cryptosystem �solving of equation systems��

In order to attack a cryptosystem one can bene�t from frequent �aws in encryption such as using stereo�
type phrases� repeated transmissions of slightly modi�ed text� an improper and predictable selection
of keys� and the use of �ller characters�

������� Methods of Conventional Cryptography
Besides the application of a cryptofunction it is possible to encrypt a plaintext by means of cryptological
codes� A code is a bijective mapping of some subset A� of the set of all words over an alphabet A onto
the subset B� of the set of all words over the alphabet B� The set of all source�target pairs of such a
mapping is called a code book�

today evening ���
tomorrow evening �

The advantage of replacing long plaintexts by short ciphertexts is contrasted with the disadvantage
that the same plaintext will always be replaced by the same ciphertext� Another disadvantage of code
books is the need for a complete and costly replacement of all books should the code be compromised
even partially�

In the following only encryption by means of cryptofunctions will be considered� Cryptofunctions have
the additional advantage that they do not require any arrangement about the contents of the messages
prior to their exchange�

Transposition and substitution constitute conventional cryptoalgorithms� In cryptography� a transpo�
sition is a special permutation de�ned over geometric patterns� The substitutions will now be discussed
in detail� There is a distinction between monoalphabetic and polyalphabetic substitutions according to
how many alphabets are used for presenting the ciphertext� Generally� a substitution is termed polyal�
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phabetic even if only one alphabet is used� but the encryption of the individual plaintext letter depends
on its position within the plaintext�

A further� useful classi�cation is the distinction between monographic and polygraphic substitutions�
In the �rst case� single letters will be substituted� in the latter case� strings of letters of a �xed length
� �

������� Linear Substitution Ciphers
Let A � fa�� a�� � � � � an��g be an alphabet and k� s � f�� � � � � � n � g with gcd�k� n� � � The
permutation tks � which maps each letter ai to tks�ai� � aki�s� is called a linear substitution cipher� There
exist n��n� linear substitution ciphers on A�

Shift ciphers are linear substituting ciphers with k � � The shift cipher with s � � was already used
by Julius Caesar ��� to �� BC� and� therefore� it is called the Caesar cipher�

������� Vigen�ere Cipher
An encryption called the Vigen�ere cipher is based on the periodic application of a key word whose
letters are pairwise distinct� The encryption of a plaintext letter is determined by the key letter that
has the same position in the key as the plaintext letter in the plaintext� This requires a key that is as
long as the plaintext� Shorter keys are repeated to match the length of the plaintext�

A version of the Vigen�ere cipher attributed to L� Carroll utilizes
the so�called Vigen�ere tableau �see picture� for encryption and
decryption� Each row represents the cipher for the key letter
to its very left� The alphabet for the plaintext runs across the
top� The encryption step is as follows� Given a key letter D and
a plaintext letter C� then the ciphertext letter is found at the
intersection of the row labeled D and the column labeled C� the
ciphertext is F� Decryption is the inverse of this process�

A B C D E F � � �

A A B C D E F � � �
B B C D E F G � � �
C C D E F G H � � �
D D E F G H I � � �
E E F G H I J � � �
F F G H I J K � � �
���

���
���

���
���

���
���

� � �

Let the key be 	 HUT 
�
Plaintext� O N C E U P O N A T I M E
Key� H U T H U T H U T H U T H
Ciphertext� V H V L O I V H T A C F L

Formally� the Vigen�ere cipher can be written in the following way� let ai be the plaintext letter and aj be
the corresponding key letter� then k � i� j determines the ciphertext letter ak� In the above example�
the �rst plaintext letter is O � a��� The ��th position of the key is taken by the letter H � a�� Hence�
k � i � j � � � � � � yields the ciphertext letter a�� � V �

������� Matrix Substitution
Let A � fa�� a�� � � � � an��g be an alphabet and S � �sij�� sij � f�� � � � � � m � g� be a non�singular
matrix of type �m�m� with gcd�detS� n�� � The mapping which maps the block of plaintext at����
at���� � � � � at�m� to the ciphertext determined by the vector �all arithmetic modulo n� vectors transposed
as required��BBB�S �

�BBB�
at���
at���

���
at�m�

�CCCA
�CCCA
T

�������

is called the Hill cipher� This represents a monoalphabetic matrix substitution�

S �

�� � � �
� � �
� � 

�A �
Let the letters of the alphabet be enumerated a� � A� a� �B� � � � � a�� �
Z� For m � � and the plaintext AUTUMN� the strings AUT and UMN
correspond to the vectors ��� ��� �� and ���� �� ���
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Then S � ��� ��� ��� � ���� ��� ���� � ��� �� ����mod��� and S � ���� �� ��� � ���� ���� ���� �
���� �� ����mod���� Thus� the plaintext AUTUMN is mapped to the ciphertext JIHZMT�

����� Methods of Classical Cryptanalysis

The purpose of cryptanalytical investigations is to deduce from the ciphertext an optimum of infor�
mation about the corresponding plaintext without knowing the key� These analyses are of interest not
only to an unauthorized 	eavesdropper
 but also help assess the security of cryptosystems from the
user�s point of view�

������� Statistical Analysis
Each natural language shows a typical frequency distribution of the individual letters� two�letter com�
binations� words� etc� For example� in English the letter e is used most frequently�

Letter Relative frequency
E� ��� &
T� A� O� I� N� S� H� R ���� &
D� L ��� &
C� U� M� W� F� G� Y� P� B ��� &
V� K� J� X� Q� Z ��� &

Given su�ciently long ciphertexts it is possible to break a monoalphabetic� monographic substitution
on the basis of the frequency distribution of letters�

������� Kasiski�Friedman Test
Combining the methods of Kasiski and Friedman it is possible to break the Vign�ere cipher� The attack
bene�ts from the fact that the encryption algorithm applies the key periodically� If the same string
of plaintext letters is encrypted with the same portion of the key then the same string of ciphertext
letters will be produced� A length � � of the distance of such identical strings in the ciphertext must
be a multiple of the key length� In the case of several reoccurring strings of ciphertext the key length
is a divisor of the greatest common divisor of all distances� This reasoning is called the Kasiski test�
One should� however� be aware of erroneous conclusions due to the possibility that matches may occur
accidentally�

The Kasiski test permits the determination of the key length at most as a multiple of the true key length�
The Friedman test yields the magnitude of the key length� Let n be the length of the ciphertext of some
English plaintext encrypted by means of the Vign�ere method� Then the key length l is determined by

l �
�����n

�n� �IC� �����n � �����
� ������a�

Here IC denotes the coincidence index of the ciphertext� This index can be deduced from the number
ni of occurrences of the letter ai �i � f�� � � � � � ��g� in the ciphertext�

IC �

�	P
i��

ni�ni � �

n�n� �
� ������b�

In order to determine the key� the ciphertext of length n is split into l columns� Since the Vign�ere cipher
produces the contents of each column by means of a shift cipher� it su�ces to determine the equivalence
of E on a column base� Should V be the most frequent letter within a column� then the Vign�ere tableau
points to the letter R

E
���

R� � �V

������c�
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of the key� The methods described so far will not be successful if the Vign�ere cipher employs very long
keys �e�g�� as long as the plaintext�� It is� however� possible to deduce whether the applied cipher is
monoalphabetic� polyalphabetic with short period or polyalphabetic with long period�

����� One�TimePad

The one�time pad is a substitution cipher that is considered theoretically secure� The encryption ad�
heres to the principle of the Vign�ere cipher� where the key is a random string of letters as long as the
plaintext�

Usually� one�time pads are applied as binary Vign�ere ciphers� Plaintext and ciphertext are represented
as binary numbers with addition modulo �� In this particular case the cipher is involutory� which means
that the twofold application of the cipher restores the original plaintext� A concrete implementation
of the binary Vign�ere cipher is based on shift register circuits� These circuits combine switches and
storage elements� whose states are � or � according to special rules�

����� PublicKeyMethods

Although the methods of conventional encryption can have e�cient implementations with today�s com�
puters� and although only a single key is needed for bidirectional communication� there are a number
of drawbacks�

� The security of encryption solely depends on keeping the next key secret�

� Prior to any communication� the key must be exchanged via a su�ciently secured channel� sponta�
neous communication is ruled out�

� Furthermore� no means exist to prove to a third party that a speci�c message was sent by an iden�
ti�ed sender�

����	�� Di�e�Hellman Key Exchange
The concept of encryption with public keys was developed by Di�e and Hellman in ���� Each partic�
ipant owns two keys� a public key that is published in a generally accessible register� and a private key
that is solely known to the participant and kept absolutely secret� Methods with these properties are
called asymmetric ciphers �see ������ p� �����

The public key KPi of the i�th participant controls the encryption step Ei� his private key KSi the
decryption step Di� The following conditions must be ful�lled�

� Di � Ei constitutes the identity�

� E�cient implementations for Ei and Di are known�

� The private key KSi cannot be deduced from the public key KPi with the means available in the
foreseeable future� If in addition

� also Ei �Di yields the identity�

then the encryption algorithm quali�es as an electronic signature method with public keys� The elec�
tronic signature method permits the sender to attach a tamperproof signature to a message�

If A wants to send an encrypted message m to B� then A retrieves B�s public key KPB from the register�
applies the encryption algorithmEB� and calculates EB�m� � c� A sends the ciphertext c via the public
network to B who will regain the plaintext of the message by decrypting c using his private key KSB in
the decryption function DB� DB�c� � DB�EB�m�� � m� In order to prevent tampering of messages� A
can electronically sign his message m to B by complying with an electronic signature method with the
public key in the following way� A encrypts the message m with his private key� DA�m� � d� A attaches
to d his signature 	A
 and encrypts the total using the public key of B� EB�DA�m�� 	A
� � EB�d�
	A
� � e� The text thus signed and encrypted is sent from A to B�

The participant B decrypts the message with his private key and obtains DB�e� � DB�EB�d� 	A
��
� �d� 	A
�� Based on this text B can identify A as the sender and can now decrypt d using the public
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key of A � EA�d� � EA�DA�m�� � m�

����	�� One�Way Function

The encryption algorithms of a method with public key must constitute a one�way function with a 	trap
door
� A trap door in this context is some special� additional information that must be kept secret� An
injective function f � X � Y is called a one�way function with a trap door� if the following conditions
hold�

� There is an e�cient method to compute both f and f���
� The calculation of f�� cannot be deduced from f without the knowledge of the secret additional
information�

The e�cient method to get f�� from f cannot be made without the secret additional information�

����	�� RSAMethod

The RSA method described in the number theory section �see ������ �� p� ��� is the most popular
asymmetric encryption method�

� Prerequisites� Let p and q be two large prime numbers with pq � ���� and n � pq� The number of
decimal positions of p and q should di�er by a small number� yet� the di�erence between p and q should
not be too large� Furthermore� the numbers p �  and q �  should contain rather big prime factors�
while the greatest common divisor of p �  and q �  should be rather small� Let e �  be relatively
prime to �p� ��q� � and let d satisfy d � e �  �mod�p� ��q� ��� Now n and e represent the public
key and d the private key�

� Encryption Algorithm�

E� f�� � � � � � n� g  f�� � � � � � n� g E�x� �� xe modulo n� ������a�

� Decyphering Operations�

D� f�� � � � � � n� g  f�� � � � � � n� g D�x� �� xd modulo n� ������b�

Thus D�E�m�� � E�D�m� � m for message m�

The function in this encryption method with n � ���� constitutes a candidate for a one�way function
with trap door �see ��������� The required additional information is the knowledge of how to factor n�
Without this knowledge it is infeasible to solve the congruence d � e �  �modulo �p� ��q � ���

The RSA method is considered practically secure as long as the above conditions are met� A disadvan�
tage in comparison with other methods is the relatively large key size and the fact that RSA is ���
times slower than DES�

����	 AESAlgorithm �AdvancedEncryption Standard

From ��� to ��� the DES algorithm has served as o�cial US encryption standard for con�dential
data �see  ����! and also  ����!� p� ����� In ���� after a worldwide discussion� the NIST �National
Institute of Standards and Technology� has adopted a variant of the Rijndael algorithm suggested by
J� Daemen and V� Rijnmen as the new o�cial US encryption standard �AES��
The AES algorithm consists of several rounds of substitutions and permutations� First a secret key
is chosen� The length of the blocks in the plaintext to be encoded and the length of the key can be
��� �� or ��� Bits� The encoded blocks of plaintext constitute the ciphertext� which has the same
length as the plaintext� From the latter the original plaintext can be reconstructed block by block with
an inverse algorithm and the key� In contrast to the encoding procedure for the decoding the subkeys
generated from the key are applied in reverse order�
The strength of this encoding method lies in the construction of the mappings which are applied in the
separate iteration rounds� The only non�linear substitution occurs in the 	SubBytes
 operation� For
its description the blocks to be transformed are considered as elements of a �nite �eld� All details of
the algorithm can be found in  ���!� Although� the AES algorithm has been laid out in the open� there



��� �� Algebra and Discrete Mathematics

are no realistic possibilities of attack known to date�

����� IDEAAlgorithm
�InternationalData EncryptionAlgorithm

The IDEA algorithm was developed by LAI and MASSAY and patented ��� It is a symmetric en�
cryption method similar to the DES algorithm and constitutes a potential successor to DES� IDEA
became known as part of the reputed software package PGP �Pretty Good Privacy� for the encryption
of emails� In contrast to DES not only was the algorithm published but even its basic design criteria�
The objective was the use of particularly simple operations �addition modulo �� addition modulo ��	�
multiplication modulo ��	����

IDEA works with keys of �� bits length� IDEA encrypts plaintext blocks of �� bits each� The algo�
rithm splits a block into four subblocks of � bits each� From the ���bit key �� subkeys are derived�
each � bits long� Each of the eight encryption rounds employs six subkeys� the remaining four subkeys
are used in the �nal transformation which constructs the resulting ���bit ciphertext� Decryption uses
the same algorithm with the subkeys in reverse order� IDEA is twice as fast as DES� its implementa�
tion in hardware� however� is more di�cult� No successful attack against IDEA is known� Exhaustive
attacks trying all ��	 keys are infeasible considering the length of the keys�

��� UniversalAlgebra
A universal algebra consists of a set� the underlying set� and operations on this set� Simple examples are
semigroups� groups� rings� and �elds discussed in sections ������ p� ���� ������ p� ��� and ������ p� ���
Universal algebras �mostly many�sorted� i�e�� with several underlying sets� are handled especially in
theoretical informatics� There they form the basis of algebraic speci�cations of abstract data types
and systems and of term�rewriting systems�

����� De
nition
Let ) be a set of operation symbols divided into pairwise disjoint subsets )n� n � IN� )� contains the
constants� )n� n � �� contain the n�ary operation symbols� The family �)n�n�IN is called the type or
signature� If A is a set� and if to every n�ary operation symbol  � )n an n�ary operation A in A is
assigned� then we call A � �A� fAj � )g� an )�algebra or algebra of type �or of signature� )�
If ) is �nite� ) � f�� � � � � kg� then we also write A � �A� A� � � � � � 

A
k � for A�

If a ring �see ������ p� ��� is considered as an )�algebra� then ) is partitioned )� � f�g� )� � f�g�
)� � f�� �g� where to the operation symbols �� �� �� � the constant �� taking the inverse with
respect to addition� addition and multiplication are assigned�

Let A and B be )�algebras� B is called an )�subalgebra of A� if B � A holds and the operations B

are the restrictions of the operations A � � )� to the subset B�

����� CongruenceRelations� FactorAlgebras
If we want to construct factor structures for universal algebras� then we need the notion of congruence
relation� A congruence relation is an equivalence relation compatible with the structure� Let A �
�A� fAj � )g� be an )�algebra and R be an equivalence relation in A� R is called a congruence
relation in A� if for all  � )n �n � IN� and all ai� bi � A with aiRbi �i � � � � � � n��

A�a�� � � � � an� R A�b�� � � � � bn�� �������

The set of equivalence classes �factor set� with respect to a congruence relation also form an )�algebra
with respect to representative�wise calculations� Let A � �A� fAj � )g� be an )�algebra and R be
a congruence relation in A� The factor set A�R �see ������ �� p� ���� is an )�algebra A�R with the

following operations A�R � � )n� n � IN� with

A�R� a�!R� � � � �  an!R� �  A�a�� � � � � an�!R �������

and it is called the factor algebra of A with respect to R�
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The congruence relations of groups and rings can be de�ned by special substructures � normal sub�
groups �see �������� � p� ��� and ideals �see �������� p� ���� respectively� In general� e�g�� in semi�
groups� such a characterization of congruence relations is not possible�

����� Homomorphism
Just as with classical algebraic structures� the homomorphism theorem gives a connection between the
homomorphisms and congruence relations�
Let A and B be )�algebras� A mapping h� A B is called a homomorphism� if for every  � )n and
all a�� � � � � an � A�

h�A�a�� � � � � an�� � B�h�a��� � � � � h�an��� �������

If� in addition� h is bijective� then h is called an isomorphism� the algebras A and B are said to be
isomorphic� The homomorphic image h�A� of an )�algebra A is an )�subalgebra of B� Under a ho�
momorphism h� the decomposition of A into subsets of elements with the same image corresponds to a
congruence relation which is called the kernel of h�

ker h � f�a� b� � A� Ajh�a� � h�b�g� �������

����� HomomorphismTheorem
Let A and B be )�algebras and h� A B a homomorphism� h de�nes a congruence relation ker h in
A� The factor algebra A� ker h is isomorphic to the homomorphic image h�A��
Conversely� every congruence relationR de�nes a homomorphic mappingnatR� A A�RwithnatR�a�
�  a!R� Fig ��� illustrats the homomorphism theorem�

a
h(a)

hA h(A)

nat ker h

A/ker h

[a]ker h

Figure ���

����� Varieties
A variety V is a class of )�algebras� which is closed
under forming direct products� subalgebras� and
homomorphic images� i�e�� these formations do not
lead out of V � Here the direct products are de�ned
in the following way�

If we consider the operations corresponding to )
componentwise on the Cartesian product of the un�
derlying sets of )�algebras� then we again get an )�
algebra� the direct product of these algebras� The
theorem of Birkho� �see ������ p� ��� characterizes
the varieties as those classes of )�algebras� which
can be equationally de�ned�

����� TermAlgebras� FreeAlgebras
Let �)n�n�IN be a type �signature� and X a countable set of variables� The set T��X� of )�terms over
X is de�ned inductively in the following way�

� X � )� � T��X��

� If t�� � � � � tn � T��X� and  � )n hold� then also t� � � � tn � T��X� holds�

The set T��X� de�ned in this way is an underlying set of an )�algebra� the term algebra T��X� of type

) over X� with the following operations� If t�� � � � � tn � T��X� and  � )n hold� then T��X� is de�ned
by

T��X��t�� � � � � tn� � t� � � � tn� �������

Term algebras are the 	most general
 algebras in the class of all )�algebras� i�e�� no 	identities
 are
valid in term algebras� These algebras are called free algebras�
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An identity is a pair �s�x�� � � � � xn�� t�x�� � � � � xn�� of )�terms in the variables x�� � � � � xn� An )�algebra
A satis�es such a equation� if for every a�� � � � � an � A we have�

sA�a�� � � � � an� � tA�a�� � � � � an�� ������

A class of )�algebras de�ned by identities is a class of )�algebras satisfying a given set of identities�

Theorem of Birkho	� The classes de�ned by identities are exactly the varieties�

Varieties are for example the classes of all semigroups� groups� Abelian groups� and rings� But� e�g��
the direct product of cyclic groups is not a cyclic group� and the direct product of �elds is not a �eld�
Therefore cyclic groups or �elds do not form a variety� and cannot be de�ned by equations�

��� BooleanAlgebras andSwitchAlgebra

Calculating rules� similar to the rules established in ������ �� p� ��� for set algebra and propositional
calculus ����� �� p� ����� can be found for other objects in mathematics too� The investigation of
these rules yields the notion of Boolean algebra�

����� De
nition

A set B� together with two binary operations u �	conjunction
� and t �	disjunction
�� and a unary
operation �	negation
�� and two distinguished �neutral� elements � and  from B� is called a Boolean
algebra B � �B� u� t� � �� � if the following properties are valid�

��� Associative Laws�

�a u b� u c � a u �b u c�� ������� �a t b� t c � a t �b t c�� �������

��� Commutative Laws�

a u b � b u a� ������� a t b � b t a� �������

��� Absorption Laws�

a u �a t b� � a� ������� a t �a u b� � a� �������

��� Distributive Laws�

�a t b� u c � �a u c� t �b u c�� ������� �a u b� t c � �a t c� u �b t c�� �������

��� Neutral Elements�

a u  � � ������� a t � � a� ������

a u � � �� ������� a t  � � �������

��� Complement�

a u a � �� ������� a t a � � �������

A structure with the associative laws� commutative laws� and absorption laws is called a lattice� If
the distributive laws also hold� then we call it a distributive lattice� So a Boolean algebra is a special
distributive lattice�

Remark� The notation used for Boolean algebras is not necessarily identical to the notation for the
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operations in propositional calculus�

����� DualityPrinciple

�� Dualizing
In the 	axioms
 of a Boolean algebra above we can discover the following duality� If we replace u by
t� t by u� � by � and  by � in an axiom� then we always get the other axiom in the same row� The
axioms in a row are dual to each other� and the substitution process is called dualization� We get the
dual statement from a statement of the Boolean algebra by dualization�

�� Duality Principle for Boolean Algebras
The dual statement of a true statement for a Boolean algebra is also a true statement for the Boolean
algebra� i�e�� with every proved proposition� the dual proposition is also proved�

�� Properties
We get� e�g�� the following properties for Boolean algebras from the axioms�

�E�� The Operations u and t are Idempotent�
a u a � a� ������� a t a � a� �������

�E�� De Morgan Rules�

a u b � a t b � ������� a t b � a u b � �������

�E�� A further Property�

a � a� �������

It is enough to prove only one of the two properties in any line above� because the other one is the dual
property� The last property is self�dual�

����� Finite BooleanAlgebras

All �nite Boolean algebras can be described easily up to 	isomorphism
� Let B�� B� be two Boolean
algebras and f � B�  B� a bijective mapping� f is called an isomorphism if

f�a u b� � f�a� u f�b�� f�a t b� � f�a� t f�b� and f�a� � f�a� ������

hold� Every �nite Boolean algebra is isomorphic to the Boolean algebra of the power set of a �nite set�
In particular every �nite Boolean algebra has �n elements� and every two �nite Boolean algebras with
the same number of elements are isomorphic�

In the following� we denote by B the Boolean algebra with two elements f�� g with the operations

u � 

� � �
 � 

t � 

� � 
  

�
� 
 �

If we de�ne the operations u� t� and componentwise on the n�times Cartesian product Bn � f�� g�
� � � � f�� g� then Bn will be a Boolean algebra with � � ��� � � � � �� and  � �� � � � � �� We call Bn the
n times direct product of B� Because Bn contains �n elements� we get all the �nite Boolean algebras in
this way �up to isomorphism��

����� BooleanAlgebras asOrderings

We can assign an order relation to every Boolean algebra B� Here a � b holds if a u b � a is valid �or
equivalently� if a t b � b holds��
So every �nite Boolean algebra can be represented by a Hasse diagram �see ������ �� p� �����
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Suppose B is the set f� �� �� �� �� �� �� ��g of the divisors of ��� We de�ne
the least common multiple and the greatest common divisor as binary opera�
tions� and taking the complement as unary operation� The numbers  and ��
correspond to the distinguished elements � and � The corresponding Hasse di�
agram is shown in Fig ����

����� Boolean Functions� BooleanExpressions

�� Boolean Functions
We denote by B the Boolean algebra with two elements as in ������ An n�ary
Boolean function f is a mapping from Bn into B� There are ��

n

n�ary Boolean
functions� The set of all n�ary Boolean functions with the operations

30

15106

2 3

1

5

Figure ���

�f u g��b� � f�b� u g�b�� ������� �f t g��b� � f�b� t g�b�� �������

f�b� � f�b�� �������

is a Boolean algebra� Here b always means an n�tuple of the elements of B � f�� g� and on the right�
hand side of the equations the operations are performed in B� The distinguished elements � and 
correspond to the functions f� and f� with

f��b� � �� f��b� �  for all b � Bn� �������

A� In the case n � � i�e�� for only one Boolean variable b� there are four Boolean functions�

Identity f�b� � b� Negation f�b� � b�
Tautology f�b� � � Contradiction f�b� � ��

�������

B� In the case n � �� i�e�� for two Boolean variables a and b� there are � di�erent Boolean functions�
among which the most important ones have their own names and notation� They are shown in Table
���

Table ��� Some Boolean functions with two variables a and b

Name of the
function

Di	erent
notation

Di	erent
symbols

Value table for�
a

b

�
�

�
�

�

�
�

�
�



�
�

�


�

�
�

�




�

She�er
or
NAND

a � b
a j b
NAND �a� b�

&  �  �  � �

Peirce
or
NOR

a � b
a � b
NOR a� b

>_1  � � � � � �

Antivalence
or
XOR

a b � a b
aXOR b
a �� b
a $ b

=1 +
� �  �  � �

Equivalence
a b � a b
a � b
a ' b

=1 +
 � � � � � 

Implication a � b
a  b

 �  � � � 

�� Boolean Expressions
Boolean expressions are de�ned in an inductive way� Let X � fx� y� z� � � �g be a �countable� set of
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Boolean variables �which can take values only from f�� g��
� The constants � and  just as the Boolean variables from X are

Boolean expressions� �������

� If S and T are Boolean expressions� so are T � �S u T �� and �S t T �� as well� �������

If a Boolean expression contains the variables x�� � � � � xn� then it represents an n�ary Boolean function
fT �
Let b be a 	valuation
 of the Boolean variables x�� � � � � xn� i�e�� b � �b�� � � � � bn� � Bn�
We assign a Boolean function to the expression T in the following way�

� If T � �� then fT � f�� if T �  � then fT � f�� ������a�

� If T � xi� then fT �b� � bi� if T � S� then fT �b� � fS�b�� ������b�

� If T � R u S� then fT �b� � fR�b� u fS�b�� ������c�

� If T � R t S� then fT �b� � fR�b� t fS�b�� ������d�

On the other hand� every Boolean function f can be represented by a Boolean expression T �see �������

�� Concurrent or Semantically Equivalent Boolean Expressions
The Boolean expressions S and T are called concurrent or semantically equivalent if they represent the
same Boolean function� Boolean expressions are equal if and only if they can be transformed into each
other according to the axioms of a Boolean algebra�
Under transformations of a Boolean expression we consider especially two aspects�

� Transformation in a possible 	simple
 form �see �������

� Transformation in a 	normal form
�

����� Normal Forms

�� Elementary Conjunction� Elementary Disjunction
Let B � �B�u�t� � �� � be a Boolean algebra and fx�� � � � � xng a set of Boolean variables� Every
conjunction or disjunction in which every variable or its negation occurs exactly once is called an ele�
mentary conjunction or an elementary disjunction respectively �in the variables x�� � � � � xn��
Let T �x�� � � � � xn� be a Boolean expression� A disjunction D of elementary conjunctions with D � T is
called a principal disjunctive normal form �PDNF� of T � A conjunction C of elementary disjunctions
with C � T is called a principal conjunctive normal form �PCNF� of T �

Part �� In order to show that every Boolean function f can be represented as a Boolean expression�
we construct the PDNF form of the function f given in the annexed table�

x y z f�x� y� z�

� � � �
� �  
�  � �
�   �
 � � �
 �  
  � 
   �

The PDNF of the Boolean function f contains the elementary conjunctions
x u y u z� x u y u z� x u y u z� These elementary conjunctions belong to
the valuations b of the variables where the function f has the value � If a
variable v has the value  in b� then we put v in the elementary conjunction�
otherwise we put v�

Part �� The PDNF for the example of Part  is�

�x u y u z� t �x u y u z� t �x u y u z�� �������

The 	dual
 form for PDNF is the PCNF� The elementary disjunctions be�
long to the valuations b of the variables for which f has the value ��

If a variable v has the value � in b� then we put v in the elementary disjunction� otherwise v� So the
PCNF is�

�x t y t z� u �x t y t z� u �x t y t z� u �x t y t z� u �x t y t z�� ������

The PDNF and the PCNF of f are uniquely determined� if the ordering of the variables and the ordering
of the valuations is given� e�g�� if we consider the valuations as binary numbers and we arrange them in
increasing order�
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�� Principal Normal Forms
The principal normal form of a Boolean function fT is considered as the principal normal form of the
corresponding Boolean expression T �
To check the equivalence of two Boolean expression by transformations often causes di�culties� The
principal normal forms are useful� Two Boolean expressions are semantically equivalent exactly if their
corresponding uniquely determined principal normal forms are identical letter by letter�

Part �� In the considered example �see Part  and �� the expressions �y u z� t �x u y u z� and
�x t ��y t z� u �y t z� u �y t z��� u �x t ��y t z� u �y t z��� are semantically equivalent because the
principal disjunctive �or conjunctive� normal forms of both are the same�

����� SwitchAlgebra
A typical application of Boolean algebra is the simpli�cation of series�parallel connections �SPC�� We
assign a Boolean expression to a SPC �transformation�� This expression will be 	simpli�ed
 with the
transformation rules of Boolean algebra� Finally we assign a SPC to this expression �inverse transfor�
mation�� As a result� we get a simpli�ed SPC which produces the same behavior as the initial connection
system �Fig ��
��

A SPC has two types of contact points� the so�called 	make contacts
 and 	break contacts
� and both
types have two states� namely open or closed� Here we consider the usual symbolism� When the equip�
ment is put on� the make contacts close and the break contacts open� We assign Boolean variables to
the contacts of the switch equipment�

Boolean
expression

SPC
simplified
SPC

simplified
Boolean
expression

simplification by
Boolean algebra

electrically equivalent

inverse
transformation

transformation
(modelling)

Figure ���

The position 	o�
 or 	on
 of the equipment corresponds to the value � or  of the Boolean variables� The
contacts being switched by the same equipment are denoted by the same symbol� the Boolean variable
belonging to this equipment� The contact value of a SPC is � or � according to whether the switch is
electrically non�conducting or conducting� The contact value depends on the position of the contacts� so
it is a Boolean function S �switch function� of the variables assigned to the switch equipment� Contacts�
connections� symbols� and the corresponding Boolean expressions are represented in Fig ����
The Boolean expressions� which represent switch functions of SPC� have the special property that the
negation sign can occur only above variables �never over subexpressions��

Simplify the SPC of Fig ���� This connection corresponds to the Boolean expression

S � �a u b� t �a u b u c� t �a u �b t c�� �������

as switch function� According to the transformation formulas of Boolean algebra we get�

S � �b u �a t �a u c��� t �a u �b t c��

� �b u �a t c�� t �a u �b t c��

� �a u b� t �b u c� t �a u c�

� �a u b u c� t �a u b u c� t �b u c� t �a u b u c� t �a u c� t �a u b u c�

� �a u c� t �b u c�� �������



��� Boolean Algebras and Switch Algebra ���

(symbol: )(symbol: )

S = a

break contact parallel connection

b

S = a b

S = a b

a ba

make contact series connection

(symbol: ) (symbol: )

a

S = a

a

Figure ����

b

c

a b

a b c

a

Figure ���

a c

b c

Figure ����

Here we get au c from �au bu c�t �au c�t �au bu c�� and bu c from �au bu c�t �bu c�t �au bu c��
Finally we have the simpli�ed SPC shown in Fig ����
This example shows that usually it is not so easy to get the simplest Boolean expression by transfor�
mations� In the literature we can �nd di�erent methods for this procedure�
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��� Algorithms ofGraphTheory
Graph theory is a �eld in discrete mathematics having special importance for informatics� e�g�� for rep�
resenting data structures� �nite automata� communication networks� derivatives in formal languages�
etc� Besides this there are applications in physics� chemistry� electrotechnics� biology and psychology�
Moreover� �ows can be applied in transport networks and in network analysis in operations research
and in combinatorial optimization�

��	�� BasicNotions andNotation

�� Undirected and Directed Graphs
A graph G is an ordered pair �V�E� of a set V of vertices and a set E of edges� There is a mapping�
de�ned on E� the incidence function� which uniquely assigns to every element of E an ordered or non�
ordered pair of �not necessarily distinct� elements of V � If a non�ordered pair is assigned then G is
called an undirected graph �Fig ����� If an ordered pair is assigned to every element of E� then the
graph is called a directed graph �Fig ����� and the elements of E are called arcs or directed edges� All
other graphs are called mixed graphs�
In the graphical representation� the vertices of a graph are denoted by points� the directed edges by
arrows� and undirected edges by non�directed lines�
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A� For the graph G in Fig ���� V � fv�� v�� v�� v�� v�g� E � fe�� e�� e�� e�� e�� e	� e�g�
f��e�� � fv�� v�g� f��e�� � fv�� v�g� f��e�� � �v�� v��� f��e�� � �v�� v��� f��e�� � �v�� v���
f��e	� � �v�� v��� f��e�� � �v�� v���

B� For the graph G in Fig ���� V � fv�� v�� v�� v�� v�g� E � � fe��� e��� e��� e��g
f��e

�
�� � �v�� v��� f��e

�
�� � �v�� v��� f��e

�
�� � �v�� v��� f��e

�
�� � �v�� v���

C� For the graph G in Fig ���� V � fv�� v�� v�� v�� v�g� E �� � fe���� e���� e���� e���g�
f��e

��
�� � fv�� v�g� f��e

��
�� � fv�� v�g� f��e

��
�� � fv�� v�g� f��e

��
�� � fv�� v�g�

�� Adjacency
If �v� w� � E� then the vertex v is said to be adjacent to the vertex w� Vertex v is called the initial point
of �v� w�� w is called the terminal point of �v� w�� and v and w are called the endpoints of �v� w��
Adjacency in undirected graphs and the endpoints of undirected edges are de�ned analogously�

�� Simple Graphs
If several edges or arcs are assigned to the same ordered or non�ordered pairs of vertices� then they
are called multiple edges� An edge with identical endpoints is called a loop� Graphs without loops and
multiple edges and multiple arcs� respectively� are called simple graphs�

�� Degrees of Vertices
The number of edges or arcs incident to a vertex v is called the degree dG�v� of the vertex v� Loops are
counted twice� Vertices of degree zero are called isolated vertices�
For every vertex v of a directed graph G� the out�degree d�G�v� and in�degree d�G�v� of v are distinguished
as follows�

d�G�v� � jfwj�v� w� � Egj� ������a� d�G�v� � jfwj�w� v� � Egj� ������b�
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�� Special Classes of Graphs
Finite graphs have a �nite set of vertices and a �nite set of edges� Otherwise the graph is said to be
in�nite�
In regular graphs of degree r every vertex has degree r�
An undirected simple graph with vertex set V is called a complete graph if any two di�erent vertices in
V are connected by an edge� A complete graph with an n�element set of vertices is denoted by Kn�

If the set of vertices of an undirected simple graph G can be partitioned into two disjoint classes X and
Y such that every edge of G joins a vertex of X and a vertex of Y � then G is called a bipartite graph�
A bipartite graph is called a complete bipartite graph� if every vertex of X is joined by an edge with
every vertex of Y � If X has n elements and Y has m elements� then the graph is denoted by Kn�m�

Fig ��� shows a complete graph with �ve vertices�

Fig ��� shows a complete bipartite graph with a two�element set X and a three�element set Y �
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Further special classes of graphs are plane graphs� trees and transport networks� Their properties will
be discussed in later paragraphs�

� Representation of Graphs
Finite graphs can be visualized by assigning to every vertex a point in the plane and connecting two
points by a directed or undirected curve� if the graph has the corresponding edge� There are examples
in Fig �������� Fig ��� shows the Petersen graph� which is a well�known counterexample for
several graph�theoretic conjectures� which could not be proved in general�

Figure ���� Figure ���� Figure ���� Figure ���

�� Isomorphism of Graphs
A graph G� � �V�� E�� is said to be isomorphic to a graph G� � �V�� E�� i� there are bijective mappings
� from V� onto V� and � from E� onto E� being compatible with the incidence function� i�e�� if u� v
are the endpoints of an edge or u is the initial point of an arc and v is its terminal point� then ��u�
and ��v� are the endpoints of an edge and ��u� is the initial point and ��v� the terminal point of
an arc� respectively� Fig ��� and Fig ��� show two isomorphic graphs� The mapping � with
��� � a� ���� � b� ���� � c� ���� � d is an isomorphism� In this case� every bijective mapping of
f� �� �� �g onto fa� b� c� dg is an isomorphism� since both graphs are complete graphs with equal number
of vertices�

�� Subgraphs� Factors
If G � �V�E� is a graph� then the graph G� � �V �� E �� is called a subgraph of G� if V � � V and E � � E�
If E � contains exactly those edges of E which connect vertices of V �� then G� is called the subgraph ofG
induced by V � �induced subgraph��
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A subgraph G� � �V �� E �� of G � �V�E� with V � � V is called a partial graph of G�
A factor F of a graph G is a regular subgraph of G containing all vertices of G�
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�� AdjacencyMatrix
Finite graphs can be described by matrices� Let G � �V�E� be a graph with V � fv�� v�� � � � � vng and
E � fe�� e�� � � � � emg� Let m�vi� vj� denote the number of edges from vi to vj� For undirected graphs�
loops are counted twice� for directed graphs loops are counted once� The matrix A of type �n� n� with
A � �m�vi� vj�� is called an adjacency matrix� If in addition the graph is simple� then the adjacency
matrix has the following form�

A � �aij� �
�

� for �vi� vj� � E�
�� for �vi� vj� �� E�

�������

i�e�� in the matrix A there is a  in the i�th row and j�th column i� there is an edge from vi to vj�
The adjacency matrix of undirected graphs is symmetric�

A� Beside Fig ��� there is the adjacency matrix A�G�� of the directed graph G��

B� Beside Fig ��� there is the adjacency matrix A�G�� of the undirected simple graph G��

v4v3

v2

v1

Figure ����

A� �

�BB�
�  � �
� � � �
�  � �
�  � �

�CCA
v6

v1

v2

v3

v4

v5

Figure ����

A� �

�BBBBBBB�

�  �  � 
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��� IncidenceMatrix
For an undirected graph G � �V�E� with V � fv�� v�� � � � � vng and E � fe�� e�� � � � � emg� the matrix I
of type �n�m� given by

I � �bij� �

���
�� vi is not incident with ej�
� vi is incident with ej and ej is not a loop�
�� vi is incident with ej and ej is a loop

�������

is called the incidence matrix�
For a directed graph G � �V�E� with V � fv�� v�� � � � � vng and E � fe�� e�� � � � � emg� the incidence
matrix I is the matrix of type �n�m�� de�ned by

I � �bij� �

�������
�� vi is not incident with ej�
� vi is the initial point of ej and ej is not a loop�
�� vi is the terminal point of ej and ej is not a loop�
��� vi is incident to ej and ej is a loop�

�������

��� Weighted Graphs
If G � �V�E� is a graph and f is a mapping assigning a real number to every edge� then �V�E� f� is
called a weighted graph� and f�e� is the weight or length of the edge e�
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In applications� these weights of the edges represent costs resulting from the construction� maintenance
or use of the connections�

��	�� Traverse ofUndirectedGraphs
������� Edge Sequences or Paths

�� Edge Sequences or Paths
In an undirected graph G � �V�E� every sequence F � �fv�� v�g� fv�� v�g� � � � � fvs� vs��g� of the ele�

ments of E is called an edge sequence of length s�
If v� � vs��� then the sequence is called a cycle� otherwise it is an open edge
sequence� An edge sequence F is called a path i� v�� v�� � � � � vs are pairwise
distinct vertices� A closed path is a circuit� A trail is a sequence of edges with�
out repeated edges�

In the graphs in Fig ���� F� � �f� �g� f�� �g� f�� �g� f�� �g� f�� �g� is
an edge sequence of length �� F� � �f� �g� f�� �g� f�� �g� f�� �g� f�� g� is
a cycle of length �� F� � �f�� �g� f�� �g� f�� �g� f�� g� is a path� F� �
�f� �g� f�� �g� f�� �g� is a path� An elementary cycle is given by F� �
�f� �g� f�� �g� f�� g��
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�� Connected Graphs� Components
If there is at least one path between every pair of distinct vertices v� w in a graph G� then G is said to
be connected� If a graph G is not connected� it can be decomposed into components� i�e�� into induced
connected subgraphs with maximal number of vertices�

�� Distance Between Vertices
The distance 	�v� w� between two vertices v� w of an undirected graph is the length of a path with
minimum number of edges connecting v and w� If such a path does not exist� then let 	�v� w� ���

�� Problem of Shortest Paths
Let G � �V�E� f� be a weighted simple graph with f�e� � � for every e � E� Determine the shortest
path from v to w for two vertices v� w of G� i�e�� a path from v to w having minimum sum of weights of
edges and arcs� respectively�
There is an e�cient algorithm of Dantzig to solve this problem� which is formulated for directed graphs
and can be used for undirected graphs �see ������ p� ���� in a similar way�

Every graph G � �V�E� f� with V � fv�� v�� � � � � vng has a distance matrix D of type �n� n��

D � �dij� with dij � 	�vi� vj� �i� j � � �� � � � � n�� �������

In the case that every edge has weight � i�e�� the distance between v and w is equal to the minimum
number of edges which have to be traversed in the graph to get from v to w� then the distance between
two vertices can be determined using the adjacency matrix� Let v�� v�� � � � � vn be the vertices of G� The
adjacency matrix of G is A � �aij�� and the powers of the adjacency matrix with respect to the usual
multiplication of matrices �see ����� �� p� ���� are denoted by Am � �amij �� m � IN�

There is a shortest path of length k from the vertex vi to the vertex vj �i �� j� i��

akij �� � and asij � � �s � � �� � � � � k � �� �������

The weighted graph represented in Fig ��� has the distance matrix D beside it�

The graph represented in Fig ��� has the adjacency matrix A beside it� and for m � � or m � �
the matrices A� and A� are obtained� Shortest paths of length � connect the vertices  and ��  and ��
 and �� � and �� � and �� � and �� � and �� Furthermore the shortest paths between the vertices  and
�� � and �� and �nally � and � are of length ��
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������� Euler Trails
�� Euler Trail� Euler Graph
A trail containing every edge of a graph G is called an open or closed Euler trail of G�
A connected graph containing a closed Euler trail is an Euler graph�

The graph G� �Fig ��
� has no Euler trail� The graph G� �Fig ���� has an Euler trail� but it
is not an Euler graph� The graph G� �Fig ���� has a closed Euler trail� but it is not an Euler graph�
The graph G� �Fig ���� is an Euler graph�

G1

Figure ����

G2

Figure ����

G3

Figure ���

G4

Figure ����

�� Theorem of Euler�Hierholzer
A �nite connected graph is an Euler graph i� all vertices have positive even degrees�

�� Construction of a Closed Euler Trail
If G is an Euler graph� then choose an arbitrary vertex v� of G and construct a trail F�� starting at
v�� which cannot be continued� If F� does not contain all edges of G� then construct another path F�

induced by edges not in F� starting at a vertex v� � F�� until it cannot be continued� Compose a closed
trail in G using F� and F�� Start traversing F� at v� until v� is reached� then continue by traversing F��
and �nish by traversing the edges of F� not used before� Repeating this method a closed Euler trail is
obtained in �nitely many steps�

�� Open Euler Trails
There is an open Euler trail in a graph G i� there are exactly two vertices in G with odd degrees�
Fig ��� shows a graph which has no closed Euler trail� but it has an open Euler trail� The edges are
consecutively enumerated with respect to an Euler trail� In Fig ��� there is a graph with a closed
Euler trail�

�� Chinese Postman Problem
The problem� that a postman should pass through all streets in his service area at least once and return
to the initial point and use a trail as short as possible� can be formulated in graph theoretical terms as
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follows� Let G � �V�E� f� be a weighted graph with f�e� 	 � for every edge e � E� Determine an edge
sequence F with minimum total length

L �
X
e�F

f�e�� �������

The name of the problem refers to the Chinese mathematician Kuan� who studied this problem �rst�
To solve it two cases are distinguished�

� G is an Euler graph � then every closed Euler trail is optimal � and

� G has no closed Euler trail�

An e�ective algorithm solving this problem is given by Edmonds and Johnson �see  ����!��

������� Hamiltonian Cycles

�� Hamiltonian Cycle

A Hamiltonian cycle is an elementary cycle in a graph covering all of the vertices�

In Fig ���� lines in bold face show a Hamiltonian cycle�
The idea of a game to constructHamiltonian cycles in the graph of a pentagondodecaeder� goes back
to Sir W� Hamilton�

Remark� The problem of characterizing graphs with Hamiltonian cycles leads to one of the classical
NP�complete problems� Therefore� an e�cient algorithm to determine the Hamilton cycles cannot be
given here�

�� Theorem of Dirac

If a simple graph G � �V�E� has at least three vertices� and dG�v� 	 jV j�� holds for every vertex v of
G� then G has a Hamiltonian cycle� This is a su�cient but not a necessary condition for the existence
of Hamiltonian cycles� The following theorems with more general assumptions give only su�cient but
not necessary conditions for the existence of Hamilton cycles� too�

Figure ����

Fig ��� shows a graph which has a Hamiltonian cycle� but does
not satisfy the assumptions of the following theorem of Ore�

�� Theorem of Ore
If a simple graph G � �V�E� has at least three vertices� and dG�v� �
dG�w� 	 jV j holds for every pair of non�adjacent vertices v� w� then G
contains a Hamiltonian cycle�

�� Theorem of Posa
Let G � �V�E� be a simple graph with at least three vertices� There is
a Hamiltonian cycle in G if the following conditions are satis�ed�

� For  � k � �jV j � ���� the number of vertices of degree not exceeding k is less than k�

� If jV j is odd� then the number of vertices of degree not exceeding �jV j � ��� is less than or equal to
�jV j � ����
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��	�� Trees and SpanningTrees

������� Trees

�� Trees
An undirected connected graph without cycles is called a tree� Every tree with at least two vertices has
at least two vertices of degree � Every tree with n vertices has exactly n�  edges�
A directed graph is called a tree if G is connected and does not contain any circuit �see ������ p� �����

Fig ��� and Fig ��� represent two non�isomorphic trees with � vertices� They demonstrate
the chemical structure of butane and isobutane�

�� Rooted Trees
A tree with a distinguished vertex is called a rooted tree� and the distinguished vertex is called the
root� In diagrams� the root is usually on the top� and the edges are directed downwards from the root
�see Fig ��
�� Rooted trees are used to represent hierarchic structures� as for instance hierarchies in
factories� family trees� grammatical structures�

Fig ��
 shows the genealogy of a family in the form of a rooted tree� The root is the vertex assigned
to the father�

�� Regular Binary Trees
If a tree has exactly one vertex of degree � and otherwise only vertices of degree  or �� then it is called
a regular binary tree�
The number of vertices of a regular binary tree is odd� Regular trees with n vertices have �n � ���
vertices of degree � The level of a vertex is its distance from the root� The maximal level occurring
in a tree is the height of the tree� There are several applications of regular binary rooted trees� e�g�� in
informatics�

�� Ordered Binary Trees
Arithmetical expressions can be represented by binary trees� Here� the numbers and variables are as�
signed vertices of degree � the operations 	�
�	�
� 	�
 correspond to vertices of degree � � and the
left and right subtree� respectively� represents the �rst and second operand� respectively� which is� in
general� also an expression� These trees are called ordered binary trees�
The traverse of an ordered binary tree can be performed in three di�erent ways� which are de�ned in a
recursive way �see also Fig �����

Inorder traverse� Traverse the left subtree of the root �in inorder traverse��
visit the root�
traverse the right subtree of the root �in inorder traverse��

Preorder traverse� Visit the root�
traverse the left subtree �in preorder traverse��
traverse the right subtree of the root �in preorder traverse��

Postorder traverse� Traverse the left subtree of the root �in postorder traverse��
traverse the right subtree of the root �in postorder traverse��
visit the root�
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Using inorder traverse the order of the terms does not change in comparision with the given expression�
The term obtained by postorder traverse is called post�x notation PN or Polish notation� Analogously�
the term obtained by preorder traverse is called pre�x notation or reversed Polish notation�

Pre�x and post�x expressions uniquely describe the tree� This fact can
be used for the implementation of trees�

InFig ��� the term a ��b�c��d is represented by a graph� Inorder
traverse yields a � b � c � d� preorder traverse yields � � a � bcd� and
postorder traversal yields abc� �d��

������� Spanning Trees

�� Spanning Trees
A tree� being a subgraph of an undirected graph G� and containing all
vertices of G� is called a spanning tree of G� Every �nite connected graph
G contains a spanning tree H�

+

d

a −

b c

.

Figure ����

If G contains a cycle� then delete an edge of this cycle�
The remaining graph G� is still connected and can be
transformed into a connected graph G� by deleting a fur�
ther edge of a cycle of G�� if there exists such an edge� Af�
ter �nitely many steps a spanning tree of G is obtained�

Fig ��� shows a spanning tree H of the graph G
shown in Fig ����
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�� Theorem of Cayley
Every complete graph with n vertices �n � � has exactly nn�� spanning trees�

�� Matrix Spanning Tree Theorem
Let G � �V�E� be a graph with V � fv�� v�� � � � � vng �n � � and E � fe�� e�� � � � � emg� De�ne a matrix
D � �dij� of type �n� n��

dij �
�

� for i �� j�
dG�vi� for i � j�

�����a�

which is called the degree matrix� The di�erence between the degree matrix and the adjacency matrix
is the admittance matrix L of G�

L � D�A� �����b�

Deleting the i�th row and the i�th column of L the matrix Li is obtained� The determinant of Li is
equal to the number of spanning trees of the graph G�

The adjacency matrix� the degree matrix and the admittance matrix of the graph in Fig ��� are�

A �

�BB�
�   �
 � � �
 � � 
� �  �

�CCA � D �

�BB�
� � � �
� � � �
� � � �
� � � 

�CCA � L �

�BB�
� � � �
� � �� �
� �� � �

� � � 

�CCA �

Since detL� � �� the graph has �ve spanning trees�

�� Minimal Spanning Trees
Let G � �V�E� f� be a connected weighted graph� A spanning tree H of G is called aminimum spanning
tree if its total length f�H� is minimum�

f�H� �
X
e�H

f�e�� �������

Minimum spanning trees are searched for� e�g�� if the edge weights represent costs� and one is interested
in minimum costs� A method to �nd a minimum spanning tree is the Kruskal algorithm�

a� Choose an edge with the least weight�
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b� Continue� as long as it is possible� choosing a further edge having least weight and not forming a
cycle with the edges already chosen� and add such an edge to the tree�

In step b� the choice of the admissible edges can be made easier by the following labeling algorithm�
� Let the vertices of the graph be labeled pairwise di�erently�
� At every step� an edge can be added only in the case that it connects vertices with di�erent labels�
� After adding an edge� the label of the endpoint with the larger label is changed to the value of the
smaller endpoint label�

��	�� Matchings

�� Matchings
A set M of edges of a graph G is called a matching in G� i� M contains no loop and two di�erent edges
of M do not have common endpoints�
A matching M� of G is called a saturated matching� if there is no matching M in G such that M� �M �
A matching M�� of G is called a maximum matching� if there is no matching M in G such that jM j �
jM��j�
If M is a matching of G such that every vertex of G is an endpoint of an edge of M � then M is called a
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Figure ����

perfect matching�

In the graph in Fig ��� M� � ff�� �g� f�� �gg is a saturated
matching and M� � ff� �g� f�� �g� f�� �gg is a maximum matching
which is also perfect�

Remark� In graphs with an odd number of edges there is no perfect
matching�

�� Theorem of Tutte
Let q�G�S� denote the number of the components of G�S with an odd number of vertices� A graph
G � �V�E� has a perfect matching i� jV j is even and for every subset S of the vertex set q�G�S� � jSj�
Here G�S denotes the graph obtained from G by deleting the vertices of S and the edges incident with
these vertices�
Perfect machings exist for example in complete graphs with an even number of vertices� in complete
bipartite graphs Kn�n and in arbitrary regular bipartite graphs of degree r � ��

�� Alternating Paths
Let G be a graph with a matching M � A path W in G is called an alternating path i� in W every edge
e with e �M �or e ��M� is followed by an edge e� with e� �� M �or e �M��
An open alternating path is called an increasing path i� none of the endpoints of the path is incident
with an edge of M �

�� Theorem of Berge
A matching M in a graph G is maximum i� there is no increasing alternating path in G�
If W is an increasing alternating path in G with corresponding set E�W � of traversed edges� then
M � � �M n E�W �� � �E�W � nM� forms a matching in G with jM �j � jM j � �

In the graph of Fig ��� �f� �g� f�� �g� f�� �g� is an increasing alternating path with respect to
matching M�� Matching M� with jM�j � jM�j�  is obtained as described above�

�� Determination of MaximumMatchings
Let G be a graph with a matching M �

a� First form a saturated matching M� with M � M��
b� Chose a vertex v in G� which is not incident with an edge of M�� and determine an increasing
alternating path in G starting at v�

c� If such a path exists� then the method described above results in a matching M � with jM �j � jM�j�
If there is no such path� then delete vertex v and all edges incident with v in G� and repeat step b��
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There is an algorithm of Edmonds� which is an e�ective method to search for maximum matchings� but
it is rather complicated to describe �see  ����!��

��	�� PlanarGraphs
Here� the considerations are restricted to undirected graphs� since a directed graph is planar i� the
corresponding undirected graph is a planar one�

Figure ���� Figure ����

�� Planar Graph
A graph is called a plane graph i� G can be drawn in the plane
with its edges intersecting only in vertices of G� A graph iso�
morphic with a plane graph is called a planar graph�

Fig ��� shows a plane graph G�� The graph G� in Fig ���
is isomorphic to G�� it is not a plane graph but a planar graph�
since it is isomorphic with G��

�� Non�Planar Graphs
The complete graph K� and the complete bipartite graph K���

are non�planar graphs �see ����� �� p� �����

�� Subdivisions
A subdivision of a graph G is obtained if vertices
of degree � are inserted into edges of G� Every
graph is a subdivision of itself� Certain subdivi�
sions of K� and K��� are represented in Fig ���
and Fig ����

�� Kuratowski�s Theorem
A graph is non�planar i� it contains a subgraph
which is a subdivision either of the complete bipar�
tite graph K��� or of the complete graph K��

Figure ���� Figure ����

��	�� Paths inDirectedGraphs

�� Arc Sequences
A sequence F � �e�� e�� � � � � es� of arcs in a directed graph is called a chain of length s� i� F does not
contain any arc twice and one of the endpoints of every arc ei for i � �� �� � � � � s �  is an endpoint of
the arc ei�� and the other one an endpoint of ei���

A chain is called a directed chain i� for i � � �� � � � � s�  the terminal point of the arc ei coincides with
the initial point of ei���
Chains or directed chains traversing every vertex at most once are called elementary chains and ele�
mentary directed chains� respectively�
A closed chain is called a cycle� A closed directed path� with every vertex being the endpoint of exactly
two arcs� is called a circuit�

Fig ��� contains examples for various kinds of arc sequences�

�� Connected and Strongly Connected Graphs
A directed graph G is called connected i� for any two vertices there is a chain connecting these vertices�
The graph G is said to be strongly connected i� to every two vertices v� w there is is assigned a directed
chain connecting these vertices�

�� Algorithm of Dantzig
Let G � �V�E� f� be a weighted simple directed graph with f�e� � � for every arc e� The following
algorithm yields all vertices ofG� which are connected with a �xed vertex v� by a directed chain� together
with their distances from v��

a� Vertex v� gets the label t�v�� � �� Let S� � fv�g�
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chain elementary
chain

elementary directed
chain

cycle circuitdirected
chain

Figure ����

b� Denote the set of the labeled vertices by Sm�

c� If Um � feje � �vi� vj� � E� vi � Sm� vj �� Smg � �� then �nish the algorithm�

d� Otherwise choose an arc e� � �x�� y�� with minimum t�x�� � f�e��� Label e� and y�� We set
t�y�� � t�x�� � f�e�� and also Sm�� � Sm � fy�g� and repeat b� with m �� m � �

�If all arcs have weight � then the length of a shortest directed chain from a vertex v to a vertex w can
be found using the adjacency matrix �see ������� �� p� �����
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If a vertex v of G is not labeled� then there is no di�
rected path from v� to v�

If v has label t�v�� then t�v� is the length of such a
directed chain� A shortest directed path from v� to
v can be found in the tree given by the labeled arcs
and vertices� the distance tree with respect to v��

In Fig ��
� the labeled arcs and vertices rep�
resent the distance tree with respect to v� in the
graph� The lengths of the shortest directed chains
are�

from v� to v� � � from v� to v	 � �
from v� to v� � � from v� to v
 � �
from v� to v � � from v� to v�� � �
from v� to v� � � from v� to v� � �
from v� to v�� � � from v� to v�� � �
from v� to v� � � from v� to v�� � �
from v� to v�� � ��

Remark� There is also a modi�ed algorithm to
�nd the shortest directed chains in the case that
G � �V�E� f� has arcs with negative weights�

��	�� Transport Networks

�� Transport Network
A connected directed graph is called a transport network if it has two labeled vertices� called the source
Q and sink S which have the following properties�

a� There is an arc u� from S to Q� where u� is the only arc with initial point S and the only arc with
terminal point Q�

b� Every arc ui di�erent from u� is assigned a real number c�ui� 	 �� This number is called its capacity�
The arc u� has capacity��

A function �� which assigns a real number to every arc� is called a �ow on G� if the equalityX
�u�v��G

��u� v� �
X

�v�w��G
��v� w� ������a�
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holds for every vertex v� The sumX
�Q�v��G

��Q� v� ������b�

is called the intensity of the �ow� A �ow � is called compatible to the capacities� if for every arc ui of G
� � ��ui� � c�ui� holds�

For an example of a transport network see p� ����

�� MaximumFlowAlgorithm of Ford and Fulkerson
Using the maximum �ow algorithm one can recognize whether a given �ow � is maximal�
Let G be a transport network and � a �ow of intensity v� compatible with the capacities� The algorithm
given below contains the following steps for labeling the vertices� and after �nishing this procedure one
can recognize how much the intensity of the �ow could be improved depending on the chosen labeling
steps�

a� Label the source Q and set ��Q� ���

b� If there is an arc ui � �x� y� with labeled x and unlabeled y and ��ui� � c�ui�� then label y and
�x� y�� and set ��y� � minf��x�� c�ui�� ��ui�g� then repeat step b�� otherwise follows step c��

c� If there is an arc ui � �x� y� with unlabeled x and labeled y� ��ui� � � and ui �� u�� then we label x
and �x� y�� substitute ��x� � minf��y�� ��ui�g and return to continue step b� if it is possible�
Otherwise we �nish the algorithm�
If the sink S of G is labeled� then the �ow in G can be improved by an amount of ��S�� If the sink is
not labeled� then the �ow is maximal�

Maximum �ow� For the graph in Fig ��� the weights are written next to the edges� A �ow with
intensity �� compatible to these capacities� is represented in the weighted graph in Fig ���� It is a
maximum �ow�
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Transport network� A product is produced
by p �rms F�� F�� � � � � Fp� There are q users
V�� V�� � � � � Vq� During a certain period there will be
si units produced by Fi and tj units required by Vj�
cij units can be transported from Fi to Vj during
the given period� Is it possible to satisfy all the re�
quirements during this period( The corresponding
graph is shown in Fig ����
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��� FuzzyLogic

����� BasicNotions of Fuzzy Logic

������ Interpretation of Fuzzy Sets
Real situations are very often uncertain or vague in a number of ways� The word 	fuzzy
 also means
some uncertainty� and the name of fuzzy logic is based on this meaning� Basically we distinguish two
types of fuzziness� vagueness and uncertainty� There are two concepts belonging here� The theory of
fuzzy sets and the theory of fuzzy measure� In the following practice�oriented introduction we discuss
the notions� methods� and concepts of fuzzy sets� which are the basic mathematical tools of multi�valued
logic�

�� Notions of Classical and Fuzzy Sets
The classical notion of �crisp� set is two�valued� and the classical Boolean set algebra is isomorphic to
two�valued propositional logic� Let X be a fundamental set named the universe� Then for every A � X
there exists a function

fA� X  f�� g� ������a�

such that it says for every x � X whether this element x belongs to the set A or not�

fA�x� � � x � A and fA�x� � �� x �� A� ������b�

The concept of fuzzy sets is based on the idea of considering the membership of an element of the set as a
statement� the truth value of which is characterized by a value from the interval  �� !� For mathematical
modeling of a fuzzy set A we need a function whose range is the interval  �� ! instead of f��g� i�e��

�A� X   �� !� �������

In other words� To every element x � X we assign a number �A�x� from the interval  �� !� which
represents the grade of membership of x in A� The mapping �A is called the membership function� The
value of the function �A�x� at the point x is called the grade of membership� The fuzzy sets A�B�C�
etc� over X are also called fuzzy subsets of X� The set of all fuzzy sets over X is denoted by F �X��

�� Properties of Fuzzy Sets and Further De�nitions
The properties below follow directly from the de�nition�

�E�� Crisp sets can be interpreted as fuzzy sets with grade of membership � and �

�E�� The set of the arguments x� whose grade of membership is greater than zero� i�e�� �A�x� � �� is
called the support of the fuzzy set A�

supp�A� � fx � X j �A�x� � �g � �������

The set ker�A� � fx � X � �A�x� � g is called the kernel or core of A�

�E�� Two fuzzy sets A and B over the universe X are equal if the values of their membership functions
are equal�

A � B� if �A�x� � �B�x� holds for every x � X� �������

�E�� Discrete representation or ordered pair representation� If the universe X is �nite� i�e��

X � fx�� x�� � � � � xng it is reasonable to de�ne the membership
function of the fuzzy set with a table of values� The tabular
representation of the fuzzy set A is seen in Table ���

We can also write

Table ��� Tabular representation of a
fuzzy set
x� x� � � � xn
�A�x�� �A�x�� � � � �A�xn�

A �� �A�x���x� � � � �� �A�xn��xn �
nX
i��

�A�xi��xi� �������

In ������� the fraction bars and addition signs have only symbolic meaning�

�E��Ultra�fuzzy set� A fuzzy set� whose membership function itself is a fuzzy set� is called� after Zadeh�
an ultra�fuzzy set�
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�� Fuzzy Linguistics
If we assign linguistic values� e�g�� 	small
� 	medium
 or 	big
� to a quantity then we call it a linguistic
quantity or linguistic variable� Every linguistic value can be described by a fuzzy set� for example� by
the graph of a membership function �������� with a given support �������� The number of fuzzy sets
�in the case of 	small
� 	medium
� 	big
 they are three� depends on the problem�
In ������ the linguistic variable is denoted by x� For example� x can have linguistic values for temper�
ature� pressure� volume� frequency� velocity� brightness� age� wearing� etc�� and also medical� electrical�
chemical� ecological� etc� variables�

By the membership function �A�x� of a linguistic variable� the membership degree of a �xed �crisp�
value can be determined in the fuzzy set represented by �A�x�� Namely� the modeling of a 	high

quantity� e�g�� the temperature� as a linguistic variable given by a trapezoidal membership function
�Fig ���� means that the given temperature � belongs to the fuzzy set 	high temperature
 with the
degree of membership � �also degree of compatibility or degree of truth��

������ Membership Functions on the Real Line
The membership functions can be modeled by functions with values between � and � They represent
the di�erent grade of membership for the points of the universe being in the given set�

�� Trapezoidal Membership Functions
Trapezoidal membership functions are widespread� Piecewise �continuously di�erentiable� member�
ship functions and their special cases� e�g�� the triangle shape membership functions described in the
following examples� are very often used� Connecting fuzzy quantities we get smoother output functions
if the fuzzy quantities were represented by continuous or piecewise continuous membership functions�

A� Trapezoidal function �Fig ���� corresponding to ��������
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�A�x� �

�������������������������������

� x � a� �

x� a�
a� � a�

a� � x � a� �

 a� � x � a� �

a� � x

a� � a�
a� � x � a� �

� x 	 a��

�������

The graph of this function
turns into a triangle function
if a� � a� � a and a� �
a � a�� Choosing di�erent
values for a�� � � � � a� we get
symmetrical or asymmetri�
cal trapezoidal functions� a
symmetrical triangle func�
tion �a� � a� � a and ja �
a�j � ja� � aj� or asymmet�
rical triangle function �a� �
a� � a and ja � a�j �� ja� �
aj��

B� Membership function bounded to the left and to the right �Fig ���� corresponding to ��������
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C� Generalized trapezoidal function �Fig ���� corresponding to �������
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�A�x� �

���������������������������������������������������������

� x � a��

b��x� a��

a� � a�
a� � x � a��

�b� � b���x� a��

a� � a�
� b� a� � x � a��

b� � b� �  a� � x � a��

�b� � b���a� � x�

a� � a�
� b� a� � x � a��

b��a	 � x�

a	 � a�
a� � x � a	�

� a	 � x�

������

�� Bell�ShapedMembership Functions
A� We get a class of bell�shaped� di�erentiable mem�

bership functions with the function f�x� from ������� if we
choose an appropriate p�x��
If p�x� � k�x � a��b � x� and� e�g�� k � � or k �  or
k � ��� then we get a family of symmetrical curves of

f�x� �

�����������
� x � a�

e���p�x� a � x � b�

� x 	 b�

�������

di�erent width with the membership function �A�x� � f�x�

�
f

�
a � b

�

�
� where 

�
f

�
a � b

�

�
is the

normalizing factor �Fig ����� We get the exterior curve with the value k � � and the interior one
with k � ���
We get asymmetrical membership functions in  �� ! for example with p�x� � x� � x���� x� or with
p�x� � x�� x��x � � �Fig ����� using appropriate normalizing factors� The factor ��� x� in the
�rst polynomial results in the shifting of the maximum to the left and it yields an asymmetrical curve
shape� Similarly� the factor �x � � in the second polynomial results in a shifting to the right and in an
asymmetric form�
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B� We can get examples for a more �exible class of membership functions by the formula

Ft�x� �

Z x

a
f �t�u�� duZ b

a
f �t�u�� du

� �������
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where f is de�ned by ������� with p�x� � �x � a��b � x� and t is a transformation on  a� b!� If t is
a smooth transformation on  a� b!� i�e�� if t is di�erentiable in�nitely many times in the interval  a� b!
then Ft is also smooth� since f is smooth� If we require t to be either increasing or decreasing and
to be smooth� then the transformation t allows us to change the shape of the curve of the membership
function� In practice� polynomials are especially suitable for transformations� The simplest polynomial
is the identity t�x� � x on the interval  a� b! �  �� !�

The next simplest polynomial with the given properties is t�x� � ��
�
cx� � cx� �

�
� c

�

	
x with a

constant c �  ��� �!� The choice c � �� results in the polynomial of maximum curvature� its equation
is q�x� � �x� � �x� � �x � If we choose for q� the identity function� i�e�� q��x� � x � then we can get
recursively further polynomials q by the formula qi � q�qi�� for i � IN� Substituting the corresponding
polynomial transformations q�� q�� � � � into ������� for t� we get a sequence of smooth functions Fq� � Fq�
and Fq� �Fig ����� which can be considered as membership functions �A�x�� where Fqn converges to
a line� The trapezoidal membership function can be approximated by di�erentiable functions using the
function Fq� � its re�ection and a horizontal line �Fig ��
��
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Summary� Imprecise and non�crisp information can be described by fuzzy sets and represented by
membership functions ��x��

������ Fuzzy Sets
�� Empty and Universal Fuzzy Sets
a� Empty fuzzy set� A set A over X is called empty if �A�x� � � � x � X holds�

b� Universal fuzzy set� A set is called universal if �A�x� �  � x � X holds�

�� Fuzzy Subset
If �B�x� � �A�x� � x � X� then B is called a fuzzy subset of A �we write� B � A��

�� Tolerance Interval and Spread of a Fuzzy Set on the Real Line
If A is a fuzzy set on the real line� then the interval

 a� b! � fx � Xj�A�x� � g �a� b const� a � b� �������

is called the tolerance interval of the fuzzy set A� and the interval  c� d! � cl�suppA� �c� d const�c � d�
is called the spread of A� where cl denotes the closure of the set� �The tolerance interval is sometimes
also called the peak of set A�� The tolerance interval and the kernel coincide only if the kernel contains
more then one point�

A� In Fig ���  a�� a�! is the tolerance interval� and  a�� a�! is the spread�

B� If a� � a� � a �Fig ����� then we get a triangle�shaped membership function �� In that
case the triangular fuzzy set has no tolerance� but its kernel is the set fag� If additionally a� � a � a�
holds� too� then we have a crisp value� it is called a singleton� A singleton A has no tolerance� but
ker�A� � supp�A� � fag�
�� Conversion of Fuzzy Sets on a Continuous and Discrete Universe
Let the universe be continuous� and let a fuzzy set be given on it by its membership function� Discretiz�
ing the universe� every discrete point together with its membership value determines a fuzzy singleton�
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Conversely� a fuzzy set given on a discrete universe can be converted into a fuzzy set on the continuous
universe by interpolating the membership value between the discrete points of the universe�

�� Normal and Subnormal Fuzzy Sets

If A is a fuzzy subset of X� then its height is de�ned by

H�A� �� max f�A�x�jx � Xg� �������

A is called a normal fuzzy set if H�A� � � otherwise it is subnormal�
The notions and methods represented in this paragraph are limited to normal fuzzy sets� but it easy to
extend them also to subnormal fuzzy sets�

� Cut of a Fuzzy Set

The ��cut A
� or the strong ��cut A�� of a fuzzy set A are the subsets of X de�ned by

A
� � fx � Xj�A�x� � �g� A�� � fx � Xj�A�x� 	 �g� � � ��� !� �������

and A�� � cl �A
��� The ��cut and strong ��cut are also called ��level set and strong ��level set�
respectively�

� Properties
a� The ��cuts of fuzzy sets are crisp sets�

b� The support supp�A� is a special ��cut� supp�A� � A
��

c� The crisp �cut A�� � fx � Xj�A�x� � g is called the kernel of A�

� Representation Theorem
To every fuzzy subset A of X we can assign uniquely the families of its ��cuts �A
��������� and its strong

��cuts
�
A��

	
�������� The ��cuts and strong ��cuts are monotone families of subsets from X� since�

� � � � A
� ( A
	 and A�� ( A�	� ������a�

Conversely� if there exist the monotone families �U��������� or �V��������� of subsets from X� then there

are uniquely de�ned fuzzy sets U and V such that U
� � U� and V �� � V� and moreover

�U�x� � supf� �  �� ��jx � U�g� �V �x� � supf� � ��� !jx � V�g� ������b�

�� Similarity of the Fuzzy Sets A and B

� The fuzzy sets A�B with membership functions �A� �B � X   �� ! are called fuzzy similar if for
every � � ��� ! there exist numbers �i with �i � ��� !� �i � � �� such that�

supp����A�� � supp��B��� supp����B�� � supp��A��� �������

��C�� represents a fuzzy set with the membership function ��C�� �
�
�C�x� if �C�x� � �
� otherwise

and ���C�

represents a fuzzy set with the membership function ���C� �
�
� if �C�x� � �
� otherwise�

� Theorem� Two fuzzy sets A�B with membership functions �A� �B � X   �� ! are fuzzy�similar if
they have the same kernel�

supp��A�� � supp��B��� ������a�

since the kernel is equal to the �cut� i�e�

supp��A�� � fx � Xj�A�x� � g� ������b�

� A�B with �A� �B � X   �� ! are called strongly fuzzy�similar if they have the same support and
the same kernel�
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supp��A�� � supp��B��� ������a� supp��A�� � supp��B��� ������b�

����� Aggregation of Fuzzy Sets
Fuzzy sets can be aggregated by operators� There are several di�erent suggestions of how to generalize
the usual set operations� such as union� intersection� and complement of fuzzy sets�

������ Concepts for Aggregation of Fuzzy Sets

�� Fuzzy Set Union� Fuzzy Set Intersection
The grade of membership of an arbitrary element x � X in the sets A � B and A � B should depend
only on the grades of membership �A�x� and �B�x� of the element in the two fuzzy sets A and B� The
union and intersection of fuzzy sets is de�ned with the help of two functions

s� t�  �� !�  �� !  �� !� ������

and they are de�ned in the following way�

�A�B�x� �� s ��A�x�� �B�x�� � ������� �A�B�x� �� t ��A�x�� �B�x�� � �������

The grades of membership �A�x� and �B�x� are mapped in a new grade of membership� The functions
t and s are called the t�norm and t�conorm� this last one is also called the s�norm�

Interpretation� The functions �A�B and �A�B represent the truth values of membership� which is
resulted by the aggregation of the truth values of memberships �A�x� and �B�x��

�� De�nition of the t�Norm�
The t�norm is a binary operation t in  �� !�

t�  �� !�  �� !  �� !� �������

It is symmetric� associative� monotone increasing� it has � as the zero element and  as the neutral
element� For x� y� z� v� w �  �� ! the following properties are valid�

�E�� Commutativity� t�x� y� � t�y� x�� ������a�

�E�� Associativity� t�x� t�y� z�� � t�t�x� y�� z�� ������b�

�E�� Special Operations with Neutral and Zero Elements�

t�x� � � x and because of �E�� t�� x� � x� t�x� �� � t��� x� � �� ������c�

�E�� Monotony� If x � v and y � w� then t�x� y� � t�v� w� is valid� ������d�

�� De�nition of the s�Norm�
The s�norm is a binary function in  �� !�

s�  �� !�  �� !  �� !� �������

It has the following properties�

�E�� Commutativity� s�x� y� � s�y� x�� ������a�

�E�� Associativity� s�x� s�y� z�� � s�s�x� y�� z�� ������b�

�E�� Special Operations with Zero and Neutral Elements�

s�x� �� � s��� x� � x� s�x� � � s�� x� � � ������c�

�E�� Monotony� If x � v and y � w� then s�x� y� � s�v� w� is valid� ������d�

With the help of these properties a class T of t�norms and a class S of s�norms can be introduced�
Detailed investigations proved that the following relations hold�

minfx� yg 	 t�x� y� � t � T� � x� y �  �� ! and ������e�

maxfx� yg � s�x� y� � s � S� � x� y �  �� !� ������f�
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������ Practical Aggregator Operations of Fuzzy Sets

�� Intersection of Two Fuzzy Sets
The intersection A � B of two fuzzy sets A and B is de�ned by the minimum operation min��� �� on
their membership functions �A�x� and �B�x�� Based on the previous requirements� we get�

C �� A � B and �C�x� �� min ��A�x�� �B�x�� � x � X� where� ������a�

min�a� b� ��
�
a� if a � b�
b� if a � b�

������b�

The intersection operation corresponds to the AND operation of two membership functions �Fig�����
The membership function �C�x� is de�ned as the minimum value of �A�x� and �B�x��

�� Union of Two Fuzzy Sets
The union A�B of two fuzzy sets is de�ned by the maximum operation max��� �� on their membership
functions �A�x� and �B�x�� We get�

C �� A � B and �C�x� �� max ��A�x�� �B�x�� � x � X� where� ������a�

max�a� b� ��
�
a � if a 	 b�
b� if a � b�

������b�

The union corresponds to the logical OR operation� Fig��� illustrates �C�x� as the maximum value
of the membership functions �A�x� and �B�x��

The t�norm t�x� y� � minfx� yg and the s�norm s�x� y� � maxfx� yg de�ne the intersection and the
union of two fuzzy sets� respectively �see Fig��� and Fig�����
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�� Further Aggregations
Further aggregations are the bounded� the algebraic� and the drastic sum and also the bounded di�erence�
the algebraic and the drastic product �see Table ����
The algebraic sum� e�g�� is de�ned by

C �� A � B and �C�x� �� �A�x� � �B�x�� �A�x� � �B�x� for every x � X� �����a�



��� Fuzzy Logic ���

Table ��� t� and s�norms� p � IR

Author t�norm s�norm

Zadeh intersection� t�x� y� � minfx� yg union� s�x� y� � maxfx� yg
Lukasiewicz bounded di�erence bounded sum

tb�x� y� � maxf�� x � y � g sb�x� y� � minf� x � yg
algebraic product algebraic sum
ta�x� y� � xy sa�x� y� � x � y � xy

drastic product drastic sum

tdp�x� y� �

���minfx� yg� whether x � 
or y � 

� otherwise
sds�x� y� �

���maxfx� yg� whether x � �
or y � �

 otherwise

Hamacher

�p 	 �� th�x� y� �
xy

p � �� p��x � y � xy�
sh�x� y� �

x � y � xy � �� p�xy

� �� p�xy

Einstein te�x� y� �
xy

 � �� x��� y�
se�x� y� �

x � y

 � xy

Frank tf�x� y� � sf�x� y� � �
�p � �� p �� � logp

�
 �

�px � ��py � �

p� 


logp

�
 �

�p��x � ��p��y � �

p� 



Yager tya�x� y� � � sya�x� y� � min
�
� �xp � yp���p

	
�p � �� min

�
� ��� x�p � �� y�p���p

	
Schweizer ts�x� y� � max��� x�p � y�p � ����p ss�x� y� � �
�p � �� max ��� �� x��p � �� y��p � �

���p

Dombi tdo�x� y� � sdo�x� y� � �

�p � ��

��� �

��
� x

x

�p
�

�
� y

y

�p��p !"
�� ��� �

��
x

� x

�p
�

�
y

� y

�p��p !"
��

Weber tw�x� y� � max��� � � p� sw�x� y� � min�� x � y � pxy�

�p 	 �� ��x � y � �� pxy�

Dubois tdu�x� y� �
xy

max�x� y� p�
sdu�x� y� �

�� � p � �
x � y � xy � min�x� y� �� p��

max��� x�� �� y�� p�

Remark to Table ��� For the values of the t� and s�norms listed in the table� the following ordering
is valid�

tdp � tb � te � ta � th � t � s � sh � sa � se � sb � sds� �����b�

Similarly to the union ������a�b�� this sum also belongs to the class of s�norms� They are included in
the right�hand column ofTable ��� InTable �
 is given a comparision of operations in Boolean logic
and fuzzy logic�

Analogously to the notion of the extended sum as a union operation� the intersection can also be ex�
tended for example by the bounded� the algebraic� and the drastic product� So� e�g�� the algebraic
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product is de�ned in the following way�

C �� A �B and �C�x� �� �A�x� � �B�x� for every x � X� �����c�

It also belongs to the class of t�norms� similarly to the intersection ������a�b�� and it can be found in
the middle column of Table ���

������ Compensatory Operators
Sometimes we need operators lying between the t� and the s�norms� they are called compensatory
operators� Examples for compensatory operators are the lambda and the gamma operator�
� Lambda Operator

�AB�x� � �  �A�x��B�x�! � �� ��  �A�x� � �B�x�� �A�x��B�x�! with � �  �� !� �����

Case � � � � Equation ����� results in a form known as the algebraic sum �Table ��� s�norms�� it
belongs to the OR operators�

Case � � � Equation ����� results in the form known as the algebraic product �Table ��� t�norms��
it belongs to the AND operators�
� Gamma Operator

�A�B�x� �  �A�x��B�x�!���  � �� �A�x�� �� �B�x��!� with � �  �� !� ������

Case �� �� Equation ������ results in the representation of the algebraic sum�

Case �� �� Equation ������ results in the representation of the algebraic product�

The application of the gamma operator on fuzzy sets of any numbers is given by

��x� �

�
nY
i��

�i�x�

��� �
�

nY
i��

�� �i�x��

�
� ������

and with weights 	i�

��x� �

�
nY
i��

�i�x��i
��� �

�
nY
i��

�� �i�x���i
�

with x � X�
nX
i��

	i � � � �  �� !� ������

������ Extension Principle
In the previous paragraph� we discussed the possibilities of generalizing the basic set operations for
fuzzy sets� Now� we want to extend the notion of mapping on fuzzy domains� The basis of the con�
cept is the acceptance grade of vague statements� The classical mapping � � Xn  Y assigns a crisp
function value ��x�� � � � � xn� � Y to the point �x�� � � � � xn� � Xn� This mapping can be extended for

fuzzy variables as follows� The fuzzy mapping is #� � F �X�n  F �Y �� which assigns a fuzzy func�

tion value #����� � � � � �n� to the fuzzy vector variables �x�� � � � � xn� given by the membership functions
���� � � � � �n� � F �X�n�

������ FuzzyComplement
A function c �  �� !   �� ! is called a complement function if the following properties are ful�lled for
� x� y �  �� !�

�EK�� Boundary Conditions� c��� �  and c�� � �� �����a�

�EK��Monotony� x � y � c�x� 	 c�y�� �����b�

�EK�� Involutivity� c�c�x�� � x� �����c�

�EK�� Continuity� c�x� should be continuous for every x �  �� !� �����d�

A� The most often used complement function is �continuous and involutive��

c�x� �� � x� ������

B� Other continuous and involutive complements are the Sugeno complement c�x� �� ��x�� �

�x��� with � � ����� and the Yager complement cp�x� �� �� xp���p with p � ������
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Table ��� Comparison of operations in Boolean logic and in fuzzy logic

Operator Boolean logic Fuzzy logic ��A� �B � ��� ���

AND C � A �B �A�B � min��A� �B�

OR C � A �B �A�B � max��A� �B�

NOT C � �A �CA � � �A ��CA as complement of �A�

����� Fuzzy�ValuedRelations

������ FuzzyRelations

�� Modeling Fuzzy�Valued Relations
Uncertain or fuzzy�valued relations� as e�g� 	approximately equal
� 	practically larger than
� or 	prac�
tically smaller than
� etc�� have an important role in practical applications� A relation between numbers
is interpreted as a subsets of IR�� So� the equality 	�
 is de�ned as the set

A �
n

�x� y� � IR�jx � y
o
� ������

i�e�� by a straight line y � x in IR��
Modeling the relation 	approximately equal
 denoted by R�� we can use a fuzzy subset on IR�� the
kernel of which is A� and we require that the membership function should decrease and tend to zero
getting far from the line A� A linear decreasing membership function can be modeled by

�R��x� y� � maxf�� � ajx� yjg with a � IR� a � �� ������

For modeling the relation R� 	practically larger than
� it is useful to start with the crisp relation 		
�
The corresponding set of values is given byn

�x� y� � IR�jx � y
o
� ������

It describes the crisp domain above the line x � y�
The modi�er 	practically
 means that a thin zone under the half�space in ������ is still acceptable
with some grade� So� the model of R� is

�R��x� y� �
�

maxf�� � ajx� yjg for y � x
 for y 	 x

�
with a � IR� a � �� �������

If the value of one of the variables is �xed� e�g�� y � y�� then R� can be interpreted as a region with
uncertain boundaries for the other variable�
Handling the uncertain boundaries by fuzzy relations has practical importance in fuzzy optimization�
qualitative data analysis and pattern classi�cation�

The foregoing discussion shows that the concept of fuzzy relations� i�e�� fuzzy relations between several
objects� can be described by fuzzy sets� In the following� we discuss the basic properties of binary
relations over universe which consists of ordered pairs�

�� Cartesian Product
Let X and Y be two universes� Their 	cross product
 X � Y � or Cartesian product� is a universe G�

G � X � Y � f�x� y�jx � X � y � Y g� ������

Then� a fuzzy set on G is a fuzzy relation� analogously to classical set theory� if it consists of the valued
pair of universes X and Y � A fuzzy relation R in G is a fuzzy subset R � F �G�� where F �G� denotes the
set of all the fuzzy sets over X � Y � R can be given by a membership function �R�x� y� which assigns
a membership degree �R�x� y� from  �� ! to every element of �x� y� � G�

�� Properties of Fuzzy�Valued Relations
�E�� Since the fuzzy relations are special fuzzy sets� all propositions stated for fuzzy sets will also be
valid for fuzzy relations�

�E�� All aggregations de�ned for fuzzy sets can be de�ned also for fuzzy relations� they yield a fuzzy
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relation again�

�E�� The notion of ��cut de�ned above can be transmitted without di�culties to fuzzy relations�

�E�� The ��cut �the closure of the support� of a fuzzy relation R � F �G� is a usual relation on G�

�E�� We denote the membership value by �R�x� y�� i�e�� the degree by which the relation R between
the pair �x� y� holds� The value �R�x� y� �  means that R holds perfectly for the pair �x� y�� and the
value �R�x� y� � � means that R does not at all hold for the pair �x� y��

�E�� Let R � F �G� be a fuzzy relation� Then the fuzzy relation S �� R��� the inverse of R� is de�ned
by

�S�x� y� � �R�y� x� for every �x� y� � G� �������

The inverse relationR��
� means 	practically smaller than
 �see ������� �� p� ����� the unionR��R��

�

can be determined as 	practically smaller or approximately equal
�

�� n�Fold Cartesian Product
Let n be the number of universal sets� Their cross product is an n�fold Cartesian product� A fuzzy set
on an n�fold Cartesian product represents an n�fold fuzzy relation�

Consequences� The fuzzy sets� considered until now� are unary fuzzy relations� i�e�� in the sense of the
analysis they are curves above a universal set� A binary fuzzy relation can be considered as a surface
over the universal set G� A binary fuzzy relation on a �nite discrete support can be represented by a
fuzzy relation matrix�

Colour�ripe grade relation� The well�known correspondence between the colour x and the ripe grade
y of a friut is modeled in the form of a binary relation matrix with elements f�� g� The possible colours
are X � fgreen� yellow� redg and the ripe grades are Y � funripe� half�ripe� ripeg� The relation
matrix ������� belongs to the table�

unripe half�ripe ripe
green  � �
yellow �  �
red � � 

R �

��  � �
�  �
� � 

�A � �������

Interpretation of this relation matrix� IF a fruit is green� THEN it is unripe� IF a fruit is yellow�
THEN it is half�ripe� IF a fruit is red� THEN it is ripe� Green is uniquely assigned to unripe� yellow
to half�ripe and red to ripe� If we want to formalize that a green fruit can be considered half�ripe in a
certain percentage� then we can get the following table with discrete membership values�
�R �green� unripe� � ��� �R �green� half�ripe� � ����
�R �green� ripe� � ���� �R �yellow� unripe� � �����
�R �yellow� half�ripe� � ��� �R �yellow� ripe� � �����
�R �red� unripe� � ���� �R �red� half�ripe� � ����
�R �red� ripe� � ���

The relation matrix with �R �  �� !
is�

R �

�� �� ��� ���
���� �� ����
��� ��� ��

�A � �������

�� Rules of Calculations
The AND�type aggregation of fuzzy sets� e�g� �� � X   �� ! and �� � Y   �� ! given on di�erent
universes is formulated by the min operation as follows�

�R�x� y� � min����x�� ���y�� or ��� � ����x� y� � min����x�� ���y�� with ������a�

�� � ��� G  �� !� where G � X � Y� ������b�

The result of this aggregation is a fuzzy relation R on the cross product set �Cartesian product universe
of fuzzy sets� Gwith �x� y� � G� IfX andY are discrete �nite sets and so���x�� ���y� can be represented
as vectors� then we get�

�� � �� � �� � �T� and �R���x� y� �� �R�y� x� � �x� y� � G� �������

The aggregation operator � does not denote here the usual matrix product� The product is calculated
here by the componentwise min operation and addition by the componentwise max operation�
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The validity grade of an inverse relation R�� for the pair �x� y� is always equal to the validity grade of
R for the pair �y� x��

If the fuzzy relations are given on the same Cartesian product universe� then the rules of their aggre�
gations can be given as follows� Let R�� R� � X � Y   �� ! be binary fuzzy relations� The evaluation
rule of their AND�type aggregation uses the min operator� namely for ��x� y� � G�

�R��R��x� y� � min��R��x� y�� �R��x� y��� �������

A corresponding evaluation rule for the OR�type aggregation is given by the max operation�

�R��R��x� y� � max��R��x� y�� �R��x� y��� �������

������ Fuzzy Product RelationR � S

�� Composition or Product Relation
Suppose R � F �X � Y � and S � F �Y � Z� are two relations� and it is additionally assumed that
R� S � F �G� with G � X � Z� Then the composition or the fuzzy product relation R � S is�

�R�S�x� z� �� supy�Y fmin��R�x� y�� �S�y� z��g � �x� z� � X � Z� �������

If a matrix representation is used for a �nite universal set analogously to �������� then the composition
R � S is motivated as follows� Let X � fx�� � � � � xng� Y � fy�� � � � � ymg� Z � fz�� � � � � zlg and R �
F �X � Y �� S � F �Y � Z� and let the matrix representations R� S be in the form R � �rij� and
S � �sjk� for i � � � � � � n� j � � � � � � m� k � � � � � � l� where

rij � �R�xi� yj� and sjk � �S�yj� zk�� �������

If the composition T � R � S has the matrix representation tik� then

tik � sup
j

minfrij� sjkg� ������

The �nal result is not a usual matrix product� since instead of the summation operation there is the
least upper bound �supremum� operation and instead of the product we have the minimum operator�

With the representations for rij and sjk and with �������� the inverse relation R���ri�j�T� can also be
computed taking into consideration that R�� can be represented by the transpose matrix� i�e�� R�� �
�rij�

T�

Interpretation� Let R be a relation from X to Y and S be a relation from Y to Z� Then the following
compositions are possible�

a� If the composition R � S of R and S is de�ned as a max�min product� then the resulted fuzzy
composition is called a max�min composition� The symbol sup stands for supremum and denotes the
largest value� if no maximum exists�

b� If the product composition is de�ned as with the usual matrix multiplication� then we get the max�
prod composition�

c� For max�average composition� 	multiplication
 is replaced by the average�

�� Rules of Composition
The following rules are valid for the composition of fuzzy relations R� S� T � F �G��
�E�� Associative Law�

�R � S� � T � R � �S � T �� �������

�E�� Distributive Law for Composition with Respect to the Union�

R � �S � T � � �R � S� � �R � T �� �������

�E�� Distributive Law in a Weaker Form for Composition with Respect to Intersection�

R � �S � T � � �R � S� � �R � T �� �������

�E�� Inverse Operations�

�R � S��� � S�� �R��� �R � S��� � R�� � S�� and �R � S��� � R�� � S��� �������
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�E�� Complement and Inverse��
R��	�� � R�

�
RC
	��

�
�
R��	C � �������

�E�� Monotonic Properties�

R � S � R � T � S � T und T �R � T � S� �������

A� Equation ������� for the product relation R �S is de�ned by the min operation as we have done
for intersection formation� In general� any t�norm can be used instead of the min operation�

B� The ��cuts with respect to the union� intersection� and complement are� �A�B�
� � A
��B
��
�A � B�
� � A
� � B
�� �AC�
� � A
��� � fx � Xj�A�x� �  � �g� Corresponding statements
are valid for strong ��cuts�

�� Fuzzy Logical Inferences
It is possible to make a fuzzy inference� e�g�� with the IF THEN rule by the composition rule �� � ���R�
The detailed formulation for the conclusion �� is given by

���y� � maxx�X
�
min����x�� �R�x� y��

	
�������

with y � Y� ��� X   �� !� ��� Y   �� !� R� G  �� ! und G � X � Y �

����� Fuzzy Inference �ApproximateReasoning
Fuzzy inference is an application of fuzzy relations with the goal of getting fuzzy logical conclusions with
respect to vague information �see �������� p� ����� Vague information means here fuzzy information
but not uncertain information� Fuzzy inference� also called implication� contains one or more rules� a
fact and a consequence� Fuzzy inference� which is called by Zadeh� approximate reasoning� cannot be
described by classical logic�

�� Fuzzy Implication� IF THENRule
The fuzzy implication contains one IF THEN rule in the simplest case� The IF part is called the premise
and it represents the condition� The THEN part is the conclusion� Evaluation happens by �� � �� �R
and ��������

Interpretation� �� is the fuzzy inference image of �� under the fuzzy relation R� i�e�� a calculation
prescription for the IF THEN rule or for a group of rules�

�� Generalized Fuzzy Inference Scheme
The rule IF A� AND A� AND A� � � � AND An THEN B with Ai � �i � Xi   �� ! �i � � �� � � � � n� and
the membership function of the conclusion B � �� Y   �� ! is described by an �n� ��valued relation

R� X� �X� � � � �Xn � Y   �� !� ������a�

For the actual input with crisp values x��� x
�
�� � � � � x

�
n the rule ������a� de�nes the actual fuzzy output

by

�B��y� � �R�x��� x
�
�� � � � � x

�
n� y� � min����x

�
��� ���x

�
��� � � � � �n�x�n�� �B�y�� where y � Y� ������b�

Remark� The quantity min����x
�
��� ���x

�
��� � � � �n�x�n�� is called the degree of ful�llment� and the

quantities f���x���� ���x���� � � � � �n�x�n�g represent the fuzzy�valued input quantities�

Forming the fuzzy relations for a connection between the quantities 	medium
 pressure and 	high

temperature �Fig ����� '���p� T � � ���p� �T � X� with �� � X�   �� ! is a cylindrical extension
�Fig ���c� of the fuzzy set medium pressure �Fig ���a�� Analogously� '���p� T � � ���T � � p �
X� with �� � X�   �� ! is a cylindrical extension �Fig ���d� of the fuzzy set high temperature
�Fig ���b�� where '��� '��� G � X� �X�   �� !�

Fig ���a shows the graphic result of the formation of fuzzy relations� In Fig ���b the result of the
composition medium pressure AND high temperature with the min operator �R�p� T � � min����p��
���T �� is represented� and �Fig ���b� shows the result of the composition OR with the max operator
�R�p� T � � max����p�� ���T ���
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����� Defuzzi
cationMethods

Often we have to get a crisp set from a fuzzy�valued set� This process is called defuzzi�cation� There
are di�erent methods to do this�

� Maximum�CriterionMethod An arbitrary value � � Y is selected from the domain where the
fuzzy set �Outputx������xn has the maximal membership degree�

� Mean�of�MaximumMethod �MOM� The output value is the mean value of the maximal mem�
bership values�

sup
�
�Output�x������xn

	
��

fy � Y j�x������xn�y� 	 �x������xn�y�� � y� � Y g � �������

i�e�� the set Y is an interval� which should not be empty and
it is characterized by �������� from which we get �������

�MOM �

Z
y�sup��Outputx������xn�

y dyZ
y�sup��Outputx������xn�

dy
�������

� Center of Gravity Method �COG�
In the center of gravity method� we take the abscissa value
of the center of gravity of a surface with a �ctitious homo�
geneous density of value �

�COG �

Z ysup

yinf
��y�y dyZ ysup

yinf
��y� dy

� �������
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� Parametrized Center of Gravity Method
�PCOG�
The parametrized method works with the exponent � � IR�
From ������� it follows for � � � �PCOG � �COG and for
�  �� �PCOG � �MOM�

�PCOG �

Z ysup

yinf

��y��y dyZ ysup

yinf

��y�� dy
� �������

� Generalized Center of Gravity Method �GCOG�
The exponent � is considered as a function of y in the
PCOG method� Then ������� follows obviously� The
GCOG method is a generalization of the PCOG method�
where ��y� can be changed by the special weight � depend�
ing itself on y�

�GCOG �

Z ysup

yinf

��y���y�y dyZ ysup

yinf
��y���y� dy

� �������

� Center of Area �COA�Method
We calculate a line parallel to the ordinate axis so that the
area under the membership function is the same on the
left� and on the right�hand side of it�

Z �

yinf
��y� dy �

Z ysup

�
��y� dy� �������

� Parametrized Center of Area �PCOA�Method

Z �PB

yinf
��y�� dy �

Z ysup

�PF
��y�� dy� �������

� Method of the Largest Area �LA� The signi�cant subset is selected and one of the methods
de�ned above� e�g�� the method of center of gravity �COG� or center of area �COA� is used for this
subset�

����� Knowledge�BasedFuzzy Systems
There are several application possibilities of multi�valued fuzzy logic� based on the unit interval� both
in technical and non�technical life� The general concept is that we fuzzify quantities and distinguish
marks� we aggregate them in an appropriate knowledge base with operators� and if necessary� we de�
fuzzify the possibly fuzzy result set�

������ Method ofMamdani
The following steps are applied for a fuzzy control process�
� Rule Base Suppose� for example� for the i�th rule

Ri � If e is Ei AND ,e is %Ei THEN u is U i� �������

Here e characterizes the error� ,e the change of the error and u the change of the �not fuzzy valued� output
value� Every quantity is de�ned on its domain E�%E and U � Let the entire domain be E �%E � U �
The error and the change of the error will be fuzzi�ed on this domain� i�e�� they will be represented by
fuzzy sets� where linguistic description is used�
� FuzzifyingAlgorithm In general� the error e and its change ,e are not fuzzy�valued� so they must
be fuzzi�ed by a linguistic description� The fuzzy values will be compared with the premisses of the
IF THEN rule from the rule base� From this it follows� which rules are active and how large are their
weights�
� Aggregation Module The active rules with their di�erent weights will be combined with an
algebraic operation and applied to the defuzzi�cation�
� Decision Module In the defuzzi�cation process a crisp value should be given for the control
quantity� With a defuzzi�cation operation� a non�fuzzy�valued quantity is determined from the set of
possible values� i�e�� a crisp quantity� This quantity expresses how the control parameters of the system
should be set up to keep the deviation minimal�
Fuzzy control means that the steps from � to � are repeated until the goal� the smallest deviation e
and its change ,e� is reached�
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������ Method of Sugeno
The Sugeno method is also used for planning of a fuzzy control process� It di�ers from the Mamdani
concept in the rule base and in the defuzzi�cation method� It has the following steps�

� Rule Base� The rule base consists of rules of the following form�

Ri � IF x� is Ai
� AND � � � ANDxk is Ai

k�THEN ui � pi� � pi�x� � pi�x� � � � �� pikxk� �������

The notations mean�
Aj� fuzzy sets� which can be determined by membership functions�
xj� crisp input values as� e�g�� the error e and the change of the error ,e� which tell us something about

the dynamics of the system�
pij� weights of xj �j � � �� � � � � k��

ui� the output value belonging to the i�th rule �i � � �� � � � � n��

� Fuzzifying Algorithm� A �i �  �� ! is calculated for every rule Ri�

� DecisionModule� A non�fuzzy�valued quantity is calculated from the weighted mean of ui� where
the weights are �i from the fuzzy�cation�

u �
nX
i��

�iui

�
nX
i��

�i

���
� �������

Here u is a crisp value�

The defuzzi�cation of the Mamdani method does not work here� The problem is to get the weight
parameters pij available� These parameters can be determined by a mechanical learning method� e�g��

by an arti�cial neuronetwork �ANN��

������ Cognitive Systems
To clarify the method� the following known example will be investigated with the Mamdami method�
The regulation of a pendulum that is perpendicular to its moving base �Fig ����� The aim of the
control process is to keep a pendulum in balance so that the pendulum rod should stand vertical� i�e��
the angular displacement from the vertical direction and the angular velocity should be zero� It must
be done by a force F acting at the lower end of the pendulum� This force is the control quantity� The
model is based on the activity of a human 	control expert
 �cognitive problem�� The expert formulates
its knowledge in linguistic rules� Linguistic rules consist� in general� of a premisse� i�e�� a speci�cation
of the measured values� and a conclusion which gives the appropriate control value�

For every set of values X�� X�� � � � � Xn for the measured values and Y for the control quantity the appro�
priate linguistic terms are de�ned as 	approximately zero
� 	small positive
� etc� Here 	approximately
zero
 with respect to the measured value �� can have a di�erent meaning as for the measured value ���

Inverse Pendulum on a Moving Base �Fig ����
� Modeling For the set X� �values of angle� and analogously for the input
quantity X� �values of the angular velocity� the seven linguistic terms� negative
large �nl�� negative medium �nm�� negative small �ns�� zero �z�� positive small
�ps�� positive medium �pm� and positive large �pl� are chosen�

For the mathematical modeling� a fuzzy set must be assigned by graphs to every
one of these linguistic terms �Fig ����� as was shown for fuzzy inference �see
������ p� �����

F

 

Figure ����

� Determination of the Domain of Values
� Values of angles� !����� � ! � ���� � X� ��  ����� ���!�
� Values of angular velocity� ,!����� s�� � ,! � ��� s��� � X� ��  ���� s��� ��� s��!�
� Values of force F � ��� N � F � � N�� Y ��  ��N� � N!�
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The partitioning of the input quantities X� and X� and the output quantity Y is represented graphically

in Fig ���� Usually� the initial values are actual measured values� e�g�� ! � ���� ,! � ������ s���

nl nm pm pl

�� �

 

1

45
a�

nl pl

�� �

 

1

22.5

.

.

b�

nl pl

�� �F

1

F5
c�

Figure ����

� Choice of Rules Considering the following table� there are �� possible rules ��� �� but there are
only � important in practice� and we discuss the following two� R� and R�� from them�

R�� If ! is positive small �ps� and ,! zero �z�� then F is positive small �ps�� For the degree of ful�llment

�also called the weight of the rules� of the premise with � � min
n
�����!������� ,!�

o
� minf���� ���g �

��� we get the output set ������� by an ��cut� hence the output fuzzy set is positive small �ps� in the
height � � ��� �Fig ���c��

Table� Rule base with � practically meaning�
ful rules

,!n! nl nm ns z ps pm pl
nl ps pl
nm pm
ns nm ns ps
z nl nm ns z ps pm pl
ps ns ps pm
pm nm
pl nl ns

�
Output �R��
�	������ �y� �

���������������������������

�

�
y � � y � �

���  � y � ��

�� �

�
y � � y � ��

� otherwise�

�������

R�� If ! is positive medium �pm� and ,! is
zero �z�� then F is positive medium �pm��
For the performance score of the premise

we get � � min
n
�����!������ ,!

o
�

minf���� ���g � ���� the output set ������
analogously to rule R� �Fig ���f��

�
Output �R��
�	������ �y� �

���������������������������

�

�
y �  ��� � y � ��

��� � � y � ��

�� �

�
y � � y � ����

� otherwise�

������

� Decision Logic The evaluation of rule R� with the min operation results in the fuzzy set in
Figs ���a�c� The corresponding evaluation for the rule R� is shown in Figs ���d�f� The control
quantity is calculated �nally by a defuzzi�cation method from the fuzzy proposition set �Fig ���g��
We obtain the fuzzy set �Fig ���g� by using the max operation if we take into account the fuzzy sets
�Fig ���c� and �Fig ���f��

a� Evaluation of the fuzzy set obtained in this way� which is aggregated by operators �see max�min
composition �������� �� p� ���� The decision logic yields�

�Outputx������xn
� Y   �� ! � y  maxr�f������kg

n
min

n
�
���
il�r

�x��� � � � � �
�n�
il�r

�xn�� �ir�y�
oo

� �������
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b� For the function graph of the fuzzy set we
get ������� after taking the maximum�

c� For the other � rules we get a degree of ful�
�llment equal to zero for the premise� i�e�� it re�
sults in fuzzy sets� which are zeros themselves�
� Defuzzi�cation The decision logic yields
no crisp value for the control quantity� but a
fuzzy set� That means� by this method� we get
a mapping� which assigns a fuzzy set �Outputx������xn of

Y to every tuple �x�� � � � � xn� � X��X��� � ��
Xn of the measured values�

�Output�	�������y� �

�������������������������������������������

�

�
y for � � y � �

��� for  � y � ����

�

�
y �  for ��� � y � ��

��� for � � y � ��

�� �

�
y for � � y � ����

� for otherwise�

�������

Defuzzi�cation means that we have to determine a control quantity using defuzzi�cation methods�

The center of gravity method and the maximum criterion method result in the value for control quantity
F � ���� or F � ��� �
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Figure ����� Remarks
� The 	knowledge�based
 trajectories should lie in the rule base so that the endpoint is in the center
of the smallest rule deviation�

� By defuzzi�cation we start the iteration process� which leads �nally to the middle of the partition
space� i�e�� which results in a zero control quantity�

� Every non�linear domain of characteristics can be approximated with arbitrary accuracy by the
choice of appropriate parameters on a compact domain�

������ Knowledge�Based Interpolation Systems
�� InterpolationMechanism
We can build up interpolation mechanisms with the help of fuzzy logic� Fuzzy systems are systems
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to process fuzzy information� With them we can approximate and interpolate functions� A simple
fuzzy system� by which we investigate this property� is the Sugeno controller� It has n input variables
��� � � � � �n and de�nes the value of the output variable y by rules R�� � � � �Rn in the form

Ri � IF �� is A
�i�
� and � � � and �n is A�i�

n �THEN is y � fi���� � � � � �n� �i � � �� � � � � n�� �������

The fuzzy sets A
���
j � � � � � A

�k�
j here always partition the input sets Xj� The conclusions fi���� � � � � �n� of

the rules are singletons� which can depend on the input variables ��� � � � � �n�

By a simple choice of the conclusions the expensive defuzzi�cation can be omitted and the output value
y will be calculated as a weighted sum� To do this� the controller calculates a degree of ful�llment �i
for every rule Ri with a t�norm from the membership grades of the single inputs and determines the
output value

y �

PN
i�� �ifi���� � � � � �n�PN

i�� �i
� �������

�� Restriction to the One�Dimensional Case
For fuzzy systems with only one input x � ��� we often use fuzzy sets represented by triangle functions�
intersected at the height ���� Such fuzzy sets satisfy the following three conditions�

� For every rule Ri there is an input xi� for which only one rule is ful�lled� For this input xi� the output
is calculated by fi� By this� the output of the fuzzy system is �xed at N nodes x�� � � � � xN � Actually�
the fuzzy system interpolates the nodes x�� � � � � xN � The requirement that at the node xi only one rule
Ri holds� is su�cient for an exact interpolation� but it is not necessary� For two rules R� and R�� as
they will be considered in the following� this requirement means that ���x�� � ���x�� � � holds� To
ful�ll the �rst condition� ���x�� � ���x�� � � must hold� This is a su�cient condition for an exact
interpolation of the nodes�

� There are at most two rules ful�lled between two consecutive nodes� If x� and x� are two such nodes
with rules R� and R�� then for inputs x �  x�� x�! the output y is

y �
���x�f��x� � ���x�f��x�

���x� � ���x�
� f��x� � g�x�  f��x�� f��x�! with g ��

���x�

���x� � ���x�
� �������

The actual shape of the interpolation curve between x� and x� is determined by the function g� The
shape depends only on the satisfaction grades �� and ��� which are the values of the membership func�
tions �

A
	�

i

and �
A
	�

i

at the point x� i�e�� �� � �A	�
�x� and �� � �A	�
�x� are valid� or in short form

�� � ���x� and �� � ���x�� The shape of the curve depends only on the relation ����� of the mem�
bership functions�

� The membership functions are positive� so the output y is a convex combination of the conclusions
fi� For the given and for the general case hold ������� and �������� respectively�

min�f�� f�� � y � max�f�� f��� ������� min
i�f��������Ng

fi � y � max
i�f��������Ng

fi� �������

For constant conclusions� the terms f� and f� cause only a translation and stretching of the shape of
the curve g� If the conclusions are dependent on the input variables� then the shape of the curve is
di�erently perturbed in di�erent sections� Consequently� another output function can be found�

If we apply linearly dependent conclusions and membership functions with constant sum for the inputx�

then the output is y � c
NP
i��

�i�x�fi�x� with �i depending on x and a constant c� so that the interpolation

functions are polynomials of second degree� These polynomials can be used for the construction of an
interpolation method with polynomials of second degree�

In general� choosing polynomials of n�th degree� we get an interpolation polynomial of the �n � ��
th degree as a conclusion� In this sense fuzzy systems are rule�based interpolation systems besides
conventional interpolation methods interpolating locally by polynomials� e�g�� with splines�
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� Di�erentiation

��� Di�erentiation of Functions ofOneVariable

����� Di�erentialQuotient

�� Di
erential Quotient or Derivative of a Function

The di�erential quotient of a function y � f�x� at x� is equal to lim
�x��

f�x� � %x�� f�x��

%x
if this limit

exists and is �nite� The derivative function of a function y � f�x� with respect to the variable x is

another function of x denoted by the symbols y�� ,y� Dy�
dy

dx
� f ��x�� Df�x�� or

df�x�

dx
� and its value for

every x is equal to the limit of the quotient of the increment of the function %y and the corresponding
increment %x for %x �� if this limit exists�

y

x0

dy

x ∆x=dx

∆y

y
α

P

f(x)

Figure ��

f ��x� � lim
�x��

f�x � %x�� f�x�

%x
� ����

�� Geometric Representation of the Derivative
If y � f�x� is represented as a curve in a Cartesian coordinate
system as in Fig ��� and if the x�axis and the y�axis have the
same unit� then

f ��x� � tan� �����

is valid� The angle � between the x�axis and the tangent line of
the curve at the considered point de�nes the angular coe�cient or
slope of the tangent �see ������� �� p� ����� The angle is measured
from the positive x�axis to the tangent in a counterclockwise di�
rection� and it is called the angle of slope or angle of inclination�

�� Di
erentiability
From the de�nition of the derivative it obviously follows that f�x� is di�erentiable with respect to x
for the values of x where the di�erential quotient ���� has a �nite value� The domain of the derivative
function is a subset �proper or trivial� of the domain of the original function� If the function is contin�
uous at x but the derivative does not exist� then perhaps there is no determined tangent line at that
point� or the tangent line is perpendicular to the x�axis� In this last case the limit in ���� is in�nity�
For this case we use the notation f ��x� � �� or ���

y

x0

y

x0

y

0 x

a) b) c)

Figure ���

A� f�x� � �
p
x � f ��x� �



�
�
p
x�

� f ���� � �� At the point � the limit ���� tends to in�nity� so the

derivative does not exist at the point � �Fig ��a�� B� f�x� � x sin


x
for x �� �� and f��� � �� At

the point x � � the limit of type ���� does not exist �Fig ��b��
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y

0 xa
α1 α2

Figure ���

�� Left�Hand and Right�Hand Di
erentiability
If the limit ���� does not exist for a value x � a� but the left�hand
limit or the right�hand limit exists� this limit is called the left�hand
derivative or right�hand derivative respectively� If both exist� the
curve has two tangents here�

f ��a� �� � tan��� f ��a � �� � tan��� �����

Geometrically this means that the curve has a knee �Fig ��c�
Fig ����

f�x� �
x

 � e
�
x

for x �� � and f��� � �� At the point x � � there

is no limit of type ����� but there is a left�hand and a right�hand limit f ����� �  and f ����� � ��
i�e�� the curve has a knee here �Fig ��c��

����� Rules ofDi�erentiation for Functions ofOneVariable
������� Derivatives of the Elementary Functions
The elementary functions have a derivative on all their domains except perhaps some points� as repre�
sented in Fig ���

A summary of the derivatives of elementary functions can be found in Table ��� Further derivatives
of elementary functions can be found by reversing the results of the inde�nite integrals in Table ���

Remark� In practice� it is often useful to transform the function into a more convenient form to per�
form di�erentiation� e�g�� to transform it into a sum where parentheses are removed �see ����� p� �
or to separate the integral rational part of the expression �see ���� p� �� or to take the logarithm of
the expression �see ������ p� ���

A� y �
�� �

p
x � � �

p
x � x�

x
�

�

x
� �x

�


� � �x
�

�

� � x �
dy

dx
� ��x�� �

�

�
x
�

�

� � �

�
x
�

�

� �  �

B� y � ln

s
x� � 

x� � 
�



�
ln�x� � �� 

�
ln�x� � � �

dy

dx
�



�

�
�x

x� � 

�
� 

�

�
�x

x� � 

�
� � �x

x� � 
�

������� Basic Rules of Di
erentiation
In the following u� v� w� and y are functions of the independent variable x� and u�� v�� w�� and y� are the
derivatives with respect to x� We denote by du� dv� dw� and dy the di�erential �see ������� p� ����� The
basic rules of di�erentiation� which are explained separately� are summarized in Table ��� p� ����

�� Derivative of a Constant Function
The derivative of a constant function c is the zero function�

c� � �� �����

�� Derivative of a ScalarMultiple
A constant factor c can be factored out from the di�erential sign�

�c u�� � c u�� d�c u� � c du� �����

�� Derivative of a Sum
If the functions u� v� w� etc� are di�erentiable one by one� their sum and di�erence is also di�erentiable�
and equal to the sum or di�erence of the derivatives�

�u � v � w�� � u� � v� � w�� ����a�

d�u � v � w� � du � dv � dw� ����b�

It is possible that the summands are not di�erentiable separately� but their sum or di�erence is� Then
we calculate the derivative by the de�nition�
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Table �� Derivatives of elementary functions in the intervals on which they are de�ned and the
occurring numerators are not equal to zero

Function Derivative Function Derivative

C �constant� � sec x
sinx

cos� x

x  cosec x
� cos x

sin� x

xn �n � IR� nxn�� arcsinx �jxj � �
p

� x�


x
� 

x�
arccos x �jxj � � � p

� x�


xn
� n

xn��
arctanx



 � x�

p
x



�
p
x

arccotx � 

 � x�

n
p
x �n � IR� n �� �� x � ��



n n
p
xn��

arcsec x


x
p

x� � 

ex ex arccosec x � 

x
p

x� � 

ebx �b � IR� bebx sinhx cosh x

ax �a � �� ax ln a cosh x sinh x

abx �b � IR� a � �� babx ln a tanhx


cosh� x

lnx


x
cothx �x �� �� � 

sinh� x

loga x �a � �� a �� � x � ��


x
loga e �



x ln a
Arsinhx

p
 � x�

lgx �x � ��


x
lg e 
 ������

x
Arcosh x �x � �

p
x� � 

sinx cos x Artanhx �jxj � �


� x�

cos x � sin x Arcothx �jxj � � � 

x� � 

tanx �x �� ��k��
�

�
� k � Z�



cos� x
� sec� x  f�x�!n �n � IR� n f�x�!n��f ��x�

cotx �x �� k�� k � Z�
�

sin� x
� � cosec� x ln f�x� �f�x� � ��

f ��x�

f�x�

�� Derivative of a Product
If two� three� or n functions are di�erentiable one by one� then their product is di�erentiable� and can
be calculated as follows�

a� Derivative of the Product of Two Functions�

�u v�� � u� v � u v�� d�u v� � v du � u dv� ����a�

It is possible that the terms are not di�erentiable separately� but their product is� Then we calculate
the derivative by de�nition�
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b� Derivative of the Product of Three Functions�

�u v w�� � u� v w � u v�w � u v w�� d�u v w� � v w du � uw dv � u v dw� ����b�

c� Derivative of the Product of n Functions�

�u� u� � � � un�� �
nX
i��

u� u� � � � u�i � � � un� ����c�

A� y � x� cos x� y� � �x� cos x� x� sin x�

B� y � x�ex cos x� y� � �x�ex cos x � x�ex cos x� x�ex sin x�

�� Derivative of a Quotient
If both u and v are di�erentiable� and v�x� �� �� their ratio is also di�erentiable��

u

v

��
�

v u� � u v�

v�
� d

�
u

v

�
�

v du� u dv

v�
� �����

y � tanx �
sin x

cos x
� y� �

�cos x��sin x�� � �sin x��cos x��

cos� x
�

cos� x � sin� x

cos� x
�



cos� x
�

� Chain Rule
The composite function �see ������� �� p� ��� y � u�v�x�� has the derivative

dy

dx
� u��v� v��x� �

du

dv

dv

dx
� �����

where the functions u � u�v� and v � v�x� are di�erentiable functions with respect to their own vari�
ables� u�v� is called the exterior function� and v�x� is called the interior function� According to this�
du

dv
is the exterior derivative and

dv

dx
is the interior derivative� It is possible that the functions u and

v are not di�erentiable separately� but the composite function is� Then we get the derivative by the
de�nition�

We proceed similarly if we have a longer 	chain
� i�e�� we have a composite function of several interme�
diate variables� So we have� e�g�� for y � u�v�w�x����

y � u�v�w�x���� y� �
dy

dx
�

du

dv

dv

dw

dw

dx
� �����

A� y � esin� x�
dy

dx
�

d
�
esin� x

�
d
�
sin� x

	 d
�
sin� x

	
d �sinx�

d �sinx�

dx
� esin� x � sinx cos x�

B� y � etan
p
x�

dy

dx
�

d
�
etan

p
x
�

d �tan
p
x�

d �tan
p
x�

d �
p
x�

d�
p
x�

dx
� etan

p
x 

cos�
p
x



�
p
x

�

�� Logarithmic Di
erentiation
If y�x� � � holds� we can calculate the derivative y� starting with the function ln y�x�� whose derivative
�considering the chain rule� is�

d�ln y�x��

dx
�



y�x�
y� � ����

From this rule

y� � y�x�
d�ln y�

dx
�����

follows�
Remark �� With the help of logarithmic di�erentiation it is possible to simplify some di�erentiation
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problems� and there are functions such that this is the only way to calculate the derivative� for instance�
when the function has the form

y � u�x�v�x� with u�x� � �� �����

The logarithmic di�erentiation of this equality follows from the formula �����

y� � y
d �lnuv�

dx
� y

d�v lnu�

dx
� uv

�
v� lnu �

vu�

u

�
� �����

y � ��x � ��x� ln y � �x ln��x � ��
y�

y
� � ln��x � � �

�x � �
�x � 

�

y� � � ��x � ��x
�

ln��x � � �
�x

�x � 

�
�

Remark �� Logarithmic di�erentiation is often used when we have to di�erentiate a product of several
functions�

A� y �
p
x�e�x sinx� ln y �



�
�� lnx � �x � ln sin x��

y�

y
�



�

�
�

x
� � �

cos x

sin x

�
� y� �



�

p
x�e�x sin x

�
�

x
� � � cot x

�
�

B� y � u v� ln y � lnu � ln v�
y�

y
�



u
u� �



v
v�� From this identity it follows that y� � �u v�� �

v u� �u v�� so we get the formula for the derivative of a product ����a� �under the assumption u� v � ���

C� y �
u

v
� ln y � lnu � ln v�

y�

y
�



u
u� � 

v
v�� From this identity it follows that y� �

�
u

v

��
�

u�

v
� uv�

v�
�

v u� � u v�

v�
� which is the formula for the derivative of a quotient ����� �under the assumption

u� v � ���

�� Derivative of the Inverse Function
If y � ��x� is the inverse function of the original function y � f�x�� then both representations y � f�x�
and x � ��y� are equivalent� For every corresponding value of x and y such that f is di�erentiable
with respect to x� and � is di�erentiable with respect to y� e�g�� none of the derivatives is equal to zero�
between the derivatives of f and its inverse function � we have the following relation�

f ��x� �


���y�
or

dy

dx
�


dx

dy

� �����

The function y � f�x� � arcsinx for � � x �  is equivalent to the function x � ��y� � sin y for
���� � y � ���� From ����� it follows that

�arcsinx�� �


�sin y��
�



cos y
�

q
� sin� y

�
p

� x�
� because cos y �� � for ���� � y � ����

�� Derivative of an Implicit Function
Suppose the function y � f�x� is given in implicit form by the equation F �x� y� � �� Considering the
rules of di�erentiation for functions of several variables �see ���� p� ���� calculating the derivative with
respect to x we get

�F

�x
�

�F

�y
y� � � and so y� � �Fx

Fy
� �����

if the partial derivative Fy di�ers from zero�
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The equation
x�

a�
�

y�

b�
�  of an ellipse with semi�axes a and b can be written in the form F �x� y� �

x�

a�
�

y�

b�
�  � �� For the slope of the tangent line at the point of the ellipse �x� y� we get according to

�����

y� � ��x

a�

$�y

b�
� � b�

a�
x

y
�

��� Derivative of a Function Given in Parametric Form
If a function y � f�x� is given in parametric form x � x�t�� y � y�t�� then the derivative y� can be
calculated by the formula

dy

dx
� f ��x� �

,y

,x
�����

with the help of the derivatives ,y�t� �
dy

dt
and ,x�t� �

dx

dt
with respect to the variable t� if of course

,x�t� �� � holds�

Polar Coordinate Representation� If a function is given with polar coordinates �see �������� ��
p� �� � � ����� then the parametric representation is

x � ���� cos�� y � ���� sin� �����

with the angle � as a parameter� For the slope y� of the tangent of the curve �see ������� �� p� ��� or
���� �� p� ���� we get from �����

y� �
,� sin� � � cos�

,� cos �� � sin�
where ,� �

d�

d�
� �����

Remarks�

� The derivatives ,x� ,y are the components of the tangent vector at the point �x�t�� y�t�� of the curve�

� It is often useful to consider the complex relation�

x�t� � i y�t� � z�t�� ,x�t� � i ,y�t� � ,z�t�� ������

CircularMovement� z�t� � reit �r�  const�� ,z�t� � rieit � rei�t � �
�
�� The tangent

vector runs ahead by a phase�shift ��� with respect to the position vector� given direction MN � To

��� Graphical Di
erentiation
If a di�erentiable function y � f�x� is represented by its curve * in the
Cartesian coordinate system in an interval a � x � b� then the curve *�

of its derivative can be constructed approximately� The construction of a
tangent estimated by eye is pretty inaccurate� However� if the direction
of the tangent MN �Fig ��� is given� then we can determine the point
of contact A more precisely�

� Construction of the Point of Contact of a Tangent
We draw two secants M�N � and M�N� parallel to the direction MN of
the tangent so that the curve is intersected in points being not far from
each other� Then we determine the midpoints of the secants� and draw a
straight line through them� This line PQ intersects the curve at the point
A� which is approximately the point� where the tangent has the

N

M

N1

N2

A
P

QR2 R1

M2

M1

Figure ���
check the accuracy� we draw a third line close to and parallel to the �rst two lines� and the line PQ
should intersect it at the midpoint�

� Construction of the Derivative Curve

a� Choose some directions l�� l�� � � � � ln which could be the directions of some tangents of the curve
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y � f�x� in the considered interval as in Fig ��� and determine the corresponding points of contact
A�� A�� � � � � An� where the tangents themselves must not be constructed�

b� Choose a point P � a 	pole
� on the negative side of
the x�axis� where the longer the segment PO � a� the
�atter the curve is�

c� Draw the lines through the pole P parallel to the di�
rections l�� l�� � � � ln� and denote their intersection points
with the y�axis by B�� B�� � � � Bn�

d� Construct the horizontal lines B�C�� B�C�� � � � � BnCn

through the points B�� B�� � � � � Bn to the intersection
points C�� C�� � � � � Cn with the orthogonal lines from the
points A�� A�� � � � � An�

e� Connect the points C�� C�� � � � � Cn with the help of a
curved ruler� The resulting curve satis�es the equation
y � af ��x�� If the segment a is chosen so that it corre�
sponds to the unit length on the y�axis� then the curve
we get is the curve of the derivative� Otherwise� we have
to multiply the ordinates of C�� C�� � � � � Cn by the factor
�a� The points D�� D�� � � � � Dn given in Fig �� are on
the correctly scaled curve *� of the derivative�

l1

l6

l5

l2
l3
l4

A1

A2

A3 A5
A4

A6

C1
B1

B2
B3

B4

B5

P
0

C2
C3

C4D1

D3

D2

D4

D6

D5

C5

�

x

B6 C6

�'

y

Figure ���

����� Derivatives ofHigherOrder

������� De�nition of Derivatives of Higher Order

The derivative of y� � f ��x�� which means �y��� or
d

dx

�
dy

dx

�
� is called the second derivative of the

function y � f�x� and it is denoted by y��� �y�
d�y

dx�
� f ���x� or

d�f�x�

dx�
� Higher derivatives can be de�ned

analogously� The notation for the n�th derivative of the function y � f�x� is�

y�n� �
dny

dxn
� f �n��x� �

dnf�x�

dxn

�
n � �� � � � � � y����x� � f ����x� � f�x�

	
� �����

������� Derivatives of Higher Order of some Elementary Functions
The n�th derivatives of the simplest functions are collected in Table ���

������� Leibniz�s Formula
To calculate the n�th�order derivative of a product of two functions� the Leibniz formula can be used�

Dn�uv� � uDnv �
n

$
DuDn��v �

n�n� �

�$
D�uDn��v � � � �

�
n�n� � � � � �n�m � �

m$
DmuDn�mv � � � �� Dnu v see also p� ���� ������

Here� we use the notation D�n� �
dn

dx
� If D�u is replaced by u and D�v by v� then we get the formula

������ whose structure corresponds to the binomial formula �see p� ���

Dn�uv� �
nX

m��

�
n

m

�
DmuDn�mv � ������



��� �� Di�erentiation

Table ��� Di�erentiation rules

Expression Formula for the derivative

Constant function c� � � �c const�

Constant multiple �cu�� � cu� �c const�

Sum �u� v�� � u� � v�

Product of two functions �uv�� � u�v � uv�

Product of n functions �u�u� � � �un�� �
nP
i��

u� � � �u�i � � �un

Quotient
�
u

v

��
�

vu� � uv�

v�
�v �� ��

Chain rule for
two functions

y � u�v�x�� � y� �
du

dv

dv

dx

Chain rule for
three functions

y � u�v�w�x��� � y� �
du

dv

dv

dw

dw

dx

Power
�u��� � �u���u� �� � IR � � �� ��

specially �
�



u

��
� � u�

u�
�u �� ��

Logarithmic
di�erentiation

d�ln y�x��

dx
�



y
y� �� y� � y

d�ln y�

dx

special � �uv�� � uv
�
v� lnu �

vu�

u

�
�u � ��

Di�erentiation of the
inverse function

� inverse function of f� i�e� y � f�x�)� x � ��y� �

f ��x� �


���y�
or

dy

dx
�


dx

dy

Implicit
di�erentiation

F �x� y� � �� Fx � Fy y
� � � or

y� � �Fx
Fy

�
Fx �

�F

�x
� Fy �

�F

�y
� Fy �� �

�

Derivative in
parameter form

x � x�t� � y � y�t� �t parameter� �

y� �
dy

dx
�

,y

,x

�
,x �

dx

dt
� ,y �

dy

dt

�

Derivative in
polar coordinates

r � r��� �
x � ���� cos�
y � ���� sin�

�angle � as parameter�

y� �
dy

dx
�

,� sin� � � cos�

,� cos �� r sin�

�
,� �

dx

d�

�

A� �x� cos ax������ If v � x�� u � cos ax are substituted� then we have u�k� � ak cos
�
ax � k �

�

	
�

v� � �x� v�� � �� v��� � v��� � � � � � � � Except the �rst three cases� all the summands are equal to

zero� so �uv����� � x�a�� cos
�
ax � ���

�

	
�

��


� �xa� cos

�
ax � ��

�

�

�
�

�� � ��

 � � � �a�
 cos
�
ax � ��

�

�

�
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� a�
 ������ a�x�� cos ax� ��ax sin ax! �

B� �x�ex��	� �

�
�

�

�
� x�ex �

�
�



�
� �x�ex �

�
�

�

�
� �xex �

�
�

�

�
� �ex�

Table ��� Derivatives of higher order of some elementary functions

Function n�th�order derivative

xm m�m� ��m� �� � � � �m� n � �xm�n

�for integer m and n � m the n�th derivative is ��

lnx ���n���n� �$


xn

loga x ���n��
�n� �$

ln a



xn

ekx knekx

ax �ln a�nax

akx �k ln a�nakx

sinx sin�x �
n�

�
�

cos x cos�x �
n�

�
�

sin kx kn sin�kx �
n�

�
�

cos kx kn cos�kx �
n�

�
�

sinhx sinh x for even n� cosh x for odd n

cosh x cosh x for even n� sinhx for odd n

������� Higher Derivatives of Functions Given in Parametric Form

If a function y � f�x� is given in the parametric form x � x�t�� y � y�t�� then its higher derivatives

�y��� y���� etc�� can be calculated by the following formulas� where ,y�t� �
dy

dt
� ,x�t� �

dx

dt
� �y�t� �

d�y

dt�
� �x �

d�x

dt�
� etc�� denote the derivatives with respect to the parameter t�

d�y

dx�
�

,x�y � ,y�x

,x�
�

d�y

dx�
�

,x� ,y,,� � ,x�x�y � � ,y�x� � ,x ,y ,x,,

,x�
� � � � � ,x�t� �� ��� ������

������� Derivatives of Higher Order of the Inverse Function

If y � ��x� is the inverse function of the original function y � f�x�� then both representations y � f�x�
and x � ��y� are equivalent� Supposing ���y� �� � holds� the relation ����� is valid for the derivatives
of the function f and its inverse function �� For higher derivatives �y��� y���� etc�� we get

d�y

dx�
� � ����y�

 ���y�!�
�

d�y

dx�
�

� ����y�!� � ���y������y�

 ���y�!�
� � � � � ������
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����� Fundamental Theorems ofDi�erentialCalculus

������� Monotonicity
If a function f�x� is de�ned and continuous in a connected interval� and if it is di�erentiable at every
interior point of this interval� then the relations

f ��x� 	 � for a monotone increasing function� �����a�

f ��x� � � for a monotone decreasing function �����b�

are necessary and su�cient� If the function is strictly monotone increasing or decreasing� then the
derivative function f ��x� must not be identically zero on any subinterval of the given interval� In

Fig ��b this condition is not ful�lled on the segment BC�

The geometrical meaning of monotonicity is that the curve of an increasing function never falls for
increasing values of the argument� i�e�� it either rises or runs horizontally �Fig ��a�� Therefore the
tangent line at any point of the curve forms an acute angle with the positive x�axis or it is parallel to
it� For monotonically decreasing functions �Fig ��b� analogous statements are valid� If the function
is strictly monotone� then the tangent can be parallel to the x�axis only at some single points� e�g�� at
the point A in Fig ��a� i�e�� not on a subinterval such as BC in Fig ��b�

y

0 x

A

�

y

0 x

B C

�

a) b)

Figure ���

y

0 x

A

Bc1

c2

Figure ���

������� Fermat�s Theorem
If a function y � f�x� is de�ned on a connected interval� and it has a maximum or a minimum value at
an interior point x � c of this interval �Fig ���� i�e�� if for every x in this interval

f�c� � f�x� �����a� or f�c� � f�x�� �����b�

holds� and if the derivative exists at the point c� then the derivative must be equal to zero there�

f ��c� � �� �����c�

The geometrical meaning of the Fermat theorem is that if a function satis�es the assumptions of the
theorem� then its curve has tangents parallel to the x�axis at A and B �Fig ����
The Fermat theorem gives only a necessary condition for the existence of a maximum or minimum value
at a point� FromFig ��a it is obvious that having a zero derivative is not su�cient to give an extreme
value� At the point A� f ��x� � � holds� but there is no maximum or minimum here�
To have an extreme value di�erentiability is not a necessary condition� The function in Fig ��d has
a maximum at e� but the derivative does not exist here�

������� Rolle�s Theorem
If a function y � f�x� is continuous on the closed interval  a� b!� and di�erentiable on the open interval
�a� b�� and

f�a� � �� f�b� � � �a � b� �����a�

hold� then there exists at least one point c between a and b such that

f ��c� � � �a � c � b� �����b�

holds� The geometrical meaning of Rolle�s theorem is that if the graph of a function y � f�x� which is
continuous on the interval �a� b� intersects the x�axis at two points A and B� and it has a non�vertical
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tangent at every point� then there is at least one point C between A and B such that the tangent is
parallel to the x�axis here �Fig ��a�� It is possible� that there are several such points in this inter�
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val� e�g�� the points C� D� and E in Fig ��b� The properties of continuity and di�erentiability are
important in the theorem� in Fig ��c the function is not continuous at x � d� and in Fig ��d the
function is not di�erentiable at x � e� In both cases f ��x� �� � holds everywhere where the derivative
exists�

������� MeanValue Theorem of Di
erential Calculus
If a function y � f�x� is continuous on the closed interval  a� b!� di�erentiable on the open interval �a� b�
and it has a non�vertical tangent at every point� then there exists at least one point c between a and b
such that

0 a c

A

C

By

b x

Figure ���

f�b�� f�a�

b� a
� f ��c� �a � c � b� �����a�

holds� If we substitute b � a�h� and ! means a number between
� and � then the theorem can be written in the form

f�a � h� � f�a� � h f ��a � !h� �� � ! � �� �����b�

� Geometrical Meaning The geometrical meaning of the
theorem is that if a function y � f�x� satis�es the conditions of
the theorem� then its graph has at least one point C between A
and B such that the tangent line at this point is parallel to the
line segment between A and B �Fig �
�� There can be several
such points �Fig ��b��

The properties of continuity and di�erentiability are important in the theorem� as can be observed in
Fig ��c�d�
� Applications The mean value theorem has several useful applications�

A� This theorem can be used to prove some inequalities in the form

jf�b�� f�a�j � Kjb� aj� ������

where K is an upper bound of jf ��x�j for every x in the interval  a� b!�

B� How accurate is the value of f��� �


 � ��
if � is replaced by the approximate value � � ���(

We have� jf��� � f�"��j �

����� �c

� � c���

����� j� � "�j � ����� � ����� � ����� ���� which means 
 � ��

is

between ����� ���� ����� ����

������� Taylor�s Theorem of Functions of One Variable
If a function y � f�x� is continuously di�erentiable �it has continuous derivatives� n �  times on the
interval  a� a � h!� and if also the n�th derivative exists in the interior of the interval� then the Taylor



�
� �� Di�erentiation

formula or Taylor expansion is

f�a � h� � f�a� �
h

$
f ��a� �

h�

�$
f ���a� � � � �� hn��

�n� �$
f �n����a� �

hn

n$
f �n��a � !h� �����

with � � ! � � The quantity h can be positive or negative� The mean value theorem �����b� is a
special case of the Taylor formula for n � �

������� GeneralizedMeanValue Theorem of Di
erential Calculus
�Cauchy�s Theorem�

If two functions y � f�x� and y � ��x� are continuous on the closed interval  a� b! and they are dif�
ferentiable at least in the interior of the interval� and ���x� is never equal to zero in this interval� then
there exists at least one value c between a and b such that

f�b�� f�a�

��b�� ��a�
�

f ��c�
���c�

�a � c � b�� ������

The geometrical meaning of the generalized mean value theorem corresponds to that of the �rst mean
value theorem� Supposing� e�g�� that the curve in Fig�
 is given in parametric form x � ��t�� y �
f�t�� where the points A and B belong to the parameter values t � a and t � b respectively� Then for
the point C

tan� �
f�b�� f�a�

��b�� ��a�
�

f ��c�
���c�

������

is valid� For ��x� � x the generalized mean value theorem is simpli�ed into the �rst mean value
theorem�

����� Determination of the ExtremeValues and In�ectionPoints

������� Maxima andMinima
The substitution value f�x�� of a function f�x� is called the relative maximum �M� or relative minimum
�m� if one of the inequalities

f�x� � h� � f�x�� �for maximum�� �����a�

f�x� � h� � f�x�� �for minimum� �����b�

holds for arbitrary positive or negative values of h small enough� At a relative maximum the value f�x��
is greater than the substitution values in the neighborhood� and similarly� at a minimum it is smaller�
The relative maxima and minima are called relative or local extrema� The greatest or the smallest value
of a function in an interval is called the global or absolute maximum or global or absolute minimum in
this interval�

������� Necessary Conditions for the Existence of a Relative
Extreme Value

A function can have a relative maximum or minimum only at the points where its derivative is equal
to zero or does not exist� That is� At the points of the graph of the function corresponding to the
relative extrema the tangent line is whether parallel to the x�axis �Fig ���a� or parallel to the y�axis
�Fig ���b� or does not exist �Fig ���c�� Anyway� these are not su�cient conditions� e�g�� at the
points A�B�C in Fig ��� these conditions are obviously ful�lled� but there are no extreme values of
the function�
If a continuous function has relative extreme values� then maxima and minima follow alternately� that
means� between two neighboring maxima there is a minimum� and conversely�

�� Method of Sign Change
For values x� and x� � which are slightly smaller and greater than xi� and for which between xi and x�
and x� no more roots or points of discontinuity of f ��x� exist� we check the sign of f ��x�� When during
the transition from f ��x�� to f ��x�� the sign of f ��x� changes from 	�
 to 	�
� then there is a relative
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������� Relative ExtremeValues of a Dif�
ferentiable Explicit Function y � f�x�

�� Determine the Points of ExtremeValues
Since f ��x� � � is a necessary condition where the deriva�
tive exists� after determining the derivative f ��x�� �rst
we calculate all the real roots x�� x�� � � � � xi� � � � � xn of the
equation f ��x� � �� Then we check each of them� e�g�� xi
with the following method�

maximum of the function f�x� at x � xi �Fig ���a�� if it changes from 	�
 to 	�
� then there is a
relative minimum there �Fig ���b�� If the derivative does not change its sign �Fig ���c�d�� then
there is no extremum at x � xi� but it has an in�ection point with a tangent parallel to the x�axis�

�� Method of Higher Derivatives
If a function has higher derivatives at x � xi� then we can substitute� e�g�� the root xi into the second
derivative f ���x�� If f ���xi� � � holds� then there is a relative maximum at xi� and if f ���xi� � � holds�
a relative minimum� If f ���xi� � � holds� then xi must be substituted into the third derivative f ����x��
If f ����xi� �� � holds� then there is no extremum at x � xi but an in�ection point� If still f ����xi� � �
holds� then we substitute it into the forth derivative� etc� If the �rst non�zero derivative at x � xi is
an even one� then f�x� has an extremum here� If the derivative is positive� then there is minimum� if
it is negative� then there is a maximum� If the �rst non�zero derivative is an odd one� then there is no
extremum there �actually� there is an in�ection point��
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�� Further Conditions for Extreme Points and Determination of In�ection Points
If a continuous function is increasing below x� and decreasing after� then it has a maximum there� if it
is decreasing below and increasing after� then it has a minimum there� Checking the sign change of the
derivative is a useful method even if the derivative does not exist at certain points as in Fig ���b�c
and Fig ���� If the �rst derivative exists at a point where the function has an in�ection point� then
the �rst derivative has an extremum there� So� to �nd the in�ection points with the help of derivatives�
we have to do the same investigation for the derivative function as we have done for the original function
to �nd its extrema�

Remark� For non�continuous functions� and sometimes also for certain di�erentiable functions the
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determination of extrema needs individual ideas� It is possible that a function has an extremum so
that the �rst derivative exists and it is equal to zero� but the second derivative does not exist� and
the �rst one has in�nitely many roots in an arbitrary neighborhood of the considered point� so it is
meaningless to say it changes its sign there� For instance f�x� � x��� � sin ��x�� for x �� � and
f��� � ��

������� Determination of Absolute Extrema
The considered interval of the independent variable is divided into subintervals such that in these in�
tervals the function has a continuous derivative� The absolute extreme values are among the relative
extreme values� or at the endpoints of the subintervals� if their endpoints belong to them� For non�
continuous functions or for non�closed intervals it is possible that no maximum or minimum exists on
the considered interval�

Examples of the Determination of Extrema�

A� y � e�x
�
� interval  ���!� Greatest value at x � �� smallest at the endpoints �Fig ���a�

B� y � x� � x�� interval  ����!� Greatest value at x � ��� smallest at x � �� at the ends of the
interval �Fig ���b��

C� y �


 � e
�
x

� interval  �����!� x �� �� There is no maximum or minimum� Relative minimum

at x � ��� relative maximum at x � �� If we de�ne y �  for x � �� then there will be an absolute
maximum at x � � �Fig ���c�

D� y � �� x
�
� � interval  ���!� Greatest value at x � � �Fig ���d� the derivative is not �nite��

������� Determination of the Extrema of Implicit Functions
If the function is given in the implicit form F �x� y� � �� and the function F itself and also its partial
derivatives Fx� Fy are continuous� then its maxima and minima can be determined in the following way�

� Solution of the Equation System F �x� y� � �� Fx�x� y� � � and substitution of the resulting
values �x�� y��� �x�� y��� � � � � �xi� yi�� � � � in Fy and Fxx�

� Sign Comparison for Fy and Fxx at the Point �xi� yi�� When they have di�erent signs� the
function y � f�x� has a minimum at xi� when Fy and Fxx have the same sign� then it has a maximum
at xi� If either Fy or Fxx vanishes at �xi� yi�� then we need further and rather complicated investigation�
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��� Di�erentiation of Functions of SeveralVariables
����� Partial Derivatives
������� Partial Derivative of a Function
The partial derivative of a function u � f�x�� x�� � � � � xi� � � � � xn� with respect to one of its n variables�
e�g�� with respect to x� is de�ned by

�u

�x�
� lim

�x���

f�x� � %x�� x�� x�� � � � � xn�� f�x�� x�� x�� � � � � xn�

%x�
� ������
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so only one of the n variables is changing� the other n �  are considered as constants� The symbols

for the partial derivatives are
�u

�x
� u�x�

�f

�x
� f �x� A function of n variables can have n �rst�order partial

derivatives�
�u

�x�
�
�u

�x�
�
�u

�x�
� � � � �

�u

�xn
� The calculation of the partial derivatives can be done following

the same rules we have for the functions of one variable�

u �
x�y

z
�

�u

�x
�

�xy

z
�

�u

�y
�

x�

z
�

�u

�z
� �x�y

z�
�

������� Geometrical Meaning for Functions of TwoVariables
If a function u � f�x� y� is represented as a surface in a Cartesian coordinate system� and this surface
is intersected through its point P by a plane parallel to the x� u plane �Fig ����� then we have

�u

�x
� tan�� �����a�

where � is the angle between the positive x�axis and the tangent line of the intersection curve at P �
which is the same as the angle between the positive x�axis and the perpendicular projection of the
tangent line into the x� u plane� Here� � is measured starting at the x�axis� and the positive direction is
counterclockwise if we are looking toward the positive half of the y�axis� Analogously to �� � is de�ned
with a plane parallel to the y� u plane�

�u

�y
� tan �� �����b�

The derivative with respect to a given direction� the so�called directional derivative� and derivative with
respect to volume� will be discussed in vector analysis �see ����� p� ��� and p� �����
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������� Di
erentials of x and f�x�

�� The Di
erential dx of an Independent Variable x
is equal to the increment %x� i�e��

dx � %x �����a�

for an arbitrary value of %x�

�� The Di
erential dy of a Function y � f�x� of One Variable x
is de�ned for a given value of x and for a given value of the di�erential dx as the product

dy � f ��x� dx� �����b�
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�� The Increment�y from x to x��x of One Variable x
is the di�erence

%y � f�x � %x�� f�x�� �����c�

�� GeometricalMeaning of the Di
erential
If the function is represented by a curve in a Cartesian coordinate system� then dy is the increment of
the ordinate of the tangent line for the change of x by a given increment dx �Fig ����

������� Basic Properties of the Di
erential

�� Invariance
Independently of whether x is an independent variable or a function of a further variable t

dy � f ��x� dx ������

is valid�

�� Order of Magnitude
If dx is an arbitrarily small value� then dy and %y � y�x � %x� � y�x� are also arbitrarily small� but

equivalent amounts� i�e�� lim
�x��

%y

dy
� � Consequently� the di�erence between them is also arbitrarily

small� but of higher order than dx� dy and %x �except if dy � � holds�� Therefore� we get the relation

lim
�x��

%y

dy
� � %y 
 dy � f ��x� dx� ������

which allows us to reduce the calculation of a small increment to the calculation of its di�erential� This
formula is frequently used for approximate calculations �see ������� p� ��� and ������� �� p� �����

������� Partial Di
erential
For a function of several variables u � f�x� y� � � �� we can form the partial di�erential with respect to
one of its variables� e�g�� with respect to x� which is de�ned by the equality

dxu � dxf �
�u

�x
dx� ������

����� Total Di�erential andDi�erentials of HigherOrder

������� Notion of Total Di
erential of a Function of Several Variables
�Complete Di
erential�

�� Di
erentiability
The function of several variable u � f�x�� x�� � � � � xi� � � � � xn� is said to be di�erentiable at the point
P��x��� x��� � � � � xi�� � � � � xn�� if at a transition to an arbitrarily close point P �x���dx�� x���dx�� � � � � xi�
�dxi� � � � � xn� � dxn� with the arbitrarily small quantities dx�� dx�� � � � � dxi� � � � � dxn the complete in�
crement

%u � f�x�� � dx�� x�� � dx�� � � � � xi� � dxi� � � � � xn� � dxn�

�f�x��� x��� � � � � xi�� � � � � xn�� ����a�

of the function di�ers from the sum of the partial di�erentials of all variables

�
�u

�x�
dx� �

�u

�x�
dx� � � � � �

�u

�xn
dxn�x���x�������xn� ����b�

by an arbitrarily small amount in higher order than the distance

P�P �
q
dx�� � dx�� � � � � � dx�n � ����c�

A continuous function of several variables is di�erentiable at a point if its partial derivatives� as func�
tions of several variables� are continuous in a neighborhood of this point� This is a su�cient but not a
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necessary condition� while the simple existence of the partial derivatives at the considered point is not
su�cient even for the continuity of the function�

�� Total Di
erential
If u is a di�erentiable function� then the sum ����b�

du �
�u

�x�
dx� �

�u

�x�
dx� � � � � �

�u

�xn
dxn �����a�

is called the total di�erential of the function� With the n�dimensional vectors

gradu �

�
�u

�x�
�
�u

�x�
� � � � �

�u

�xn

�T
� �����b� dr � �dx�� dx�� � � � � dxn�T �����c�

the total di�erential can be expressed as the scalar product

du � �gradu�T � dr� �����d�

In �����b�� there is the gradient� de�ned in ������ p� ���� for n independent variables�

�� Geometrical Representation
The geometrical meaning of the total di�erential of a function of two variables u � f�x� y�� represented
in a Cartesian coordinate system as a surface �Fig ����� is that du is the same as the increment of the
applicate �see ������� �� p� ���� of the tangent plane �at the same point� if dx and dy are the increments
of x and y�
From the Taylor formula �see �������� �� p� ���� it follows for functions of two variables that

f�x� y� � f�x�� y�� �
�f

�x
�x�� y���x� x�� �

�f

�y
�x�� y���y � y�� � R�� �����a�

Ignoring the remainder R�� we have that

u � f�x�� y�� �
�f

�x
�x�� y���x� x�� �

�f

�y
�x�� y���y � y�� �����b�

gives the equation of the tangent plane of the surface u � f�x� y� at the point P��x�� y�� u���

�� The Fundamental Property of the Total Di
erential
is the invariance with respect to the variables as formulated in ������ for the one�variable case�

�� Application in Error Calculations
In error calculations we use the total di�erential du for an estimation of the error %u �see ����a�� �see�
e�g�� ������� �� p� ����� From the Taylor formula �see �������� �� p� ���� we have

j%uj � jdu � R�j � jduj� jR�j 
 jduj� ������

i�e�� the absolute error j%uj can be replaced by jduj as a �rst approximation� It follows that du is a
linear approximation for %u�

������� Derivatives andDi
erentials of Higher Order

�� Partial Derivatives of Second Order� Schwarz�s Exchange Theorem
The second�order partial derivative of a function u � f�x� � x� � � � � � xi� � � � � xn� can be calculated

with respect to the same variable as the �rst one was� i�e��
��u

�x��
�

��u

�x��
� � � � � or with respect to another

variable� i�e�
��u

�x��x�
�

��u

�x��x�
�

��u

�x��x�
� � � � � In this second case we talk about mixed derivatives� If

at the considered point the mixed derivatives are continuous� then

��u

�x��x�
�

��u

�x��x�
������
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holds for given x� and x� independently of the order of sequence of the di�erentiation �Schwarz�s ex�
change theorem��

Partial derivatives of higher order such as� e�g��
��u

�x�
�

��u

�x�y�
� � � � are de�ned analogously�

�� Second�Order Di
erential of a Function of One Variable u � f�x�
The second�order di�erential of a function y � f�x� of one variable� denoted by the symbols d�y� d�f�x��
is the di�erential of the �rst di�erential� d�y � d�dy� � f ���x�dx�� These symbols are appropriate only
if x is an independent variable� and they are not appropriate if x is given� e�g�� in the form x � z�v�� Dif�
ferentials of higher order are de�ned analogously� If the variables x�� x�� � � � � xi� � � � � xn are themselves
functions of other variables� then we get more complicated formulas �see ������ p� �����

�� Total Di
erential of Second Order of a Function of Two Variables u � f�x� y�

d�u � d�du� �
��u

�x�
dx� � �

��u

�x�y
dx dy �

��u

�y�
dy� �����a�

or symbolically

d�u �

�
�

�x
dx �

�

�y
dy

��
u� �����b�

�� Total Di
erential of n�th Order of a Function of Two Variables

dnu �

�
�

�x
dx �

�

�y
dy

�n
u� ������

�� Total Di
erential of n�th Order of a Function of Several Variables

dnu �

�
�

�x�
dx� �

�

�x�
dx� � � � � �

�

�xn
dxn

�n
u� ������

������� Taylor�s Theorem for Functions of Several Variables

�� Taylor�s Formula for Functions of Two Variables

a� First Form of Representation�

f�x� y� � f�a� b� �
�f�x� y�

�x

����
�x�y���a�b�

�x� a� �
�f�x� y�

�y

����
�x�y���a�b�

�y � b�

�


�$

�
��f�x� y�

�x�

����
�x�y���a�b�

�x� a�� � �
��f�x� y�

�x�y

����
�x�y���a�b�

�x� a��y � b�

�
��f�x� y�

�y�

����
�x�y���a�b�

�y � b��
�

�


�$
f� � �g� � � �� 

n$
f� � �g� Rn� �����a�

Here �a� b� is the center of expansion and Rn is the remainder� Sometimes we write� e�g�� instead of
�f�x� y�

�x

����
�x�y���x��y��

the shorter expression
�f

�x
�x�� y�� �

The terms of higher order in �����a� can be represented in a clear way with the help of operators�

f�x� y� � f�a� b� �


$

�
�x� a�

�

�x
� �y � b�

�

�y

�
f�x� y�

����
�x�y���a�b�

�


�$

�
�x� a�

�

�x
� �y � b�

�

�y

��
f�x� y�

����
�x�y���a�b�

�


�$
f� � �g�f�x� y�

���
�x�y���a�b�

� � � �� 

n$
f� � �gnf�x� y�

���
�x�y���a�b�

� Rn � �����b�



��� Di�erentiation of Functions of Several Variables �
�

This symbolic form means that after using the binomial theorem the powers of the di�erential operators
�

�x
and

�

�y
represent the higher�order derivatives of the function f�x� y�� Then the derivatives must

be taken at the point �a� b��

b� Second Form of the Representation�

f�x � h� y � k� � f�x� y� �


$

�
�

�x
h �

�

�y
k

�
f�x� y� �



�$

�
�

�x
h �

�

�y
k

��
f�x� y�

�


�$

�
�

�x
h �

�

�y
k

��
f�x� y� � � � �� 

n$

�
�

�x
h �

�

�y
k

�n
f�x� y� � Rn� �����c�

c� Remainder� The expression for the remainder is

Rn �


�n � �$

�
�

�x
h �

�

�y
k

�n��
f�x � !h� y � !k� �� � ! � �� �����d�

�� Taylor Formula for Functions of m Variables
The analogous representation with di�erential operators is

f�x � h� y �k� � � � � t � l�

� f�x� y� � � � � t� �
nX
i��



i$

�
�

�x
h �

�

�y
k � � � �� �

�t
l

�i
f�x� y� � � � � t� � Rn� �����a�

where the remainder can be calculated by the expression

Rn �


�n � �$

�
�

�x
h �

�

�y
k � � � �� �

�t
l

�n��
f�x � !h � y � ! k � � � � � t � ! l�

�� � ! � �� �����b�

����� Rules ofDi�erentiation for Functions of SeveralVariables

������� Di
erentiation of Composite Functions

�� Composite Function of One Independent Variable
u � f�x�� x�� � � � � xn� � x� � x����� x� � x���� � � � � � xn � xn��� ����a�

du

d�
�

�u

�x�

dx�
d�

�
�u

�x�

dx�
d�

� � � � �
�u

�xn

dxn
d�

� ����b�

�� Composite Function of Several Independent Variables

u � f�x�� x�� � � � � xn��

x� � x���� �� � � � �  �� x� � x���� �� � � � �  �� � � � � xn � xn��� �� � � � �  � �����a�

�u

��
�

�u

�x�

�x�
��

�
�u

�x�

�x�
��

� � � �� �u

�xn

�xn
��

�

�u

��
�

�u

�x�

�x�
��

�
�u

�x�

�x�
��

� � � �� �u

�xn

�xn
��

�

��� �
��� �

��� �
��� �

���
�u

� 
�

�u

�x�

�x�
� 

�
�u

�x�

�x�
� 

� � � �� �u

�xn

�xn
� 
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 �����������!�����������"
�����b�
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� �� Di�erentiation

������� Di
erentiation of Implicit Functions

� A Function y � f�x� of One Variable is given by the equation

F �x� y� � �� �����a�

Di�erentiating �����a� with respect to x with the help of ����b� we get

Fx � Fyy
� � � �����b� and y� � �Fx

Fy
�Fy �� ��� �����c�

Di�erentiation of �����b� yields in the same way

Fxx � �Fxyy
� � Fyy�y

��� � Fyy
�� � �� �����d�

so considering �����b� we have

y�� �
�FxFyFxy � �Fy�

�Fxx � �Fx�
�Fyy

�Fy��
� �����e�

In an analogous way we can calculate the third derivative

Fxxx � �Fxxyy
� � �Fxyy�y

��� � Fyyy�y
��� � �Fxyy

�� � �Fyyy
�y�� � Fyy

��� � �� �����f�

from which y��� can be expressed�

� A Function u � f�x�� x�� 	 	 	 � xi� 	 	 	 � xn� of Several Variables is given by the equation

F �x�� x�� � � � � xi� � � � � xn� u� � �� �����a�

The partial derivatives

�u

�x�
� �Fx�

Fu
�
�u

�x�
� �Fx�

Fu
� � � � �

�u

�xn
� �Fxn

Fu
�����b�

can be calculated similarly as we have shown above but we use the formulas �����b�� The higher�order
derivatives can be calculated in the same way�

� Two Functions y � f�x� and z � ��x� of One Variable are given by the system of
equations

F �x� y� z� � � and ��x� y� z� � �� �����a�

Then di�erentiation of �����a� according to ����b� results in

Fx � Fyy
� � Fzz

� � �� �x � �yy
� � �zz

� � �� �����b�

y� �
Fz�x � �zFx
Fy�z � Fz�y

� z� �
Fx�y � Fy�x
Fy�z � Fz�y

� �����c�

The second derivatives y�� and z�� are calculated in the same way by di�erentiation of �����b� considering
y� and z��
� n Functions of One Variable Let the functions y� � f�x�� y� � ��x�� � � � � yn � ��x� be given
by a system

F �x� y�� y�� � � � � yn� � �� ��x� y�� y�� � � � � yn� � �� � � � � "�x� y�� y�� � � � � yn� � � �����a�

of n equations� Di�erentiation of �����a� using ����b� results in

Fx � Fy�y
�
� � Fy�y

�
� � � � �� Fyny

�
n � ��

�x � �y�y
�
� � �y�y

�
� � � � �� �yny

�
n � ��

��� �
��� �

��� �
��� �

��� � ��

"x � "y�y
�
� � "y�y

�
� � � � �� "yny

�
n � ��

 ������!������"
�����b�

Solving �����b� we get the derivatives y��� y
�
�� � � � � y

�
n� we are looking for� In the same way we can calculate

the higher�order derivatives�
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� Two Functions u � f�x� y�� v � ��x� y� of Two Variables are given by the system of
equations

F �x� y� u� v� � � and ��x� y� u� v� � �� �����a�

Then di�erentiation of �����a� with respect to x and y with the help of �����b� results in

�F

�x
�

�F

�u

�u

�x
�

�F

�v

�v

�x
� ��

��

�x
�

��

�u

�u

�x
�

��

�v

�v

�x
� ��

 ���!���" �����b�

�F

�y
�

�F

�u

�u

�y
�

�F

�v

�v

�y
� ��

��

�y
�

��

�u

�u

�y
�

��

�v

�v

�y
� ��

 ���!���" �����c�

Solving the system �����b� for
�u

�x
�
�v

�x
and the system �����c� for

�u

�y
�
�v

�y
give the �rst�order partial

derivatives� The higher�order derivatives should be calculated in the same way�
� n Functions of m Variables Given by a System of n Equations The �rst�order and
higher�order partial derivatives can be calculated in the same way as we did in the previous cases�

����� Substitution ofVariables inDi�erential Expressions and

Coordinate Transformations

������� Function of OneVariable
Suppose� given a function and a functional relation containing the independent variable� the function�
and its derivatives�

y � f�x�� �����a� H � F

�
x� y�

dy

dx
�
d�y

dx�
�
d�y

dx�
� � � �

�
� �����b�

If the variables are substituted� then the derivatives can be calculated in the following way�

Case �a� The variable x is replaced by the variable t� and they have the relation

x � ��t�� �����a�

Then we have

dy

dx
�



���t�
dy

dt
�

d�y

dx�
�



 ���t�!�

�
���t�

d�y

dt�
� ����t�

dy

dt

�
� �����b�

d�y

dx�
�



 ���t�!�

�
 ���t�!�

d�y

dt�
� � ���t� ����t�

d�y

dt�
�  � ����t�!� � ���t� �����t�!

dy

dx

�
� � � � � �����c�

Case �b� If the relation between the variables is not explicit but it is given in implicit form

��x� t� � �� ������

then the derivatives
dy

dx
�

d�y

dx�
�
d�y

dx�
are calculated by the same formulas� but the derivatives���t�� ����t��

�����t� must be calculated according to the rules for implicit functions� In this case it can happen that
the relation �����b� contains the variable x� To eliminate x� the relation ������ is used�

Case �� If the function y is replaced by a function u� and the relation between them is

y � ��u�� ����a�

then the calculation of the derivatives can be performed using the following formulas�

dy

dx
� ���u�

du

dx
�

d�y

dx�
� ���u�

d�u

dx�
� ����u�

�
du

dx

��
� ����b�

d�y

dx�
� ���u�

d�u

dx�
� �����u�

du

dx

d�u

dx�
� �����u�

�
du

dx

��
� � � � � ����c�
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Case �� The variables x and y are replaced by the new variables t and u� and the relations between
them are given by

x � ��t� u�� y � ��t� u�� �����a�

For the calculation of the derivatives the following formulas are used�

dy

dx
�

��

�t
�

��

�u

du

dt
��

�t
�

��

�u

du

dt

� �����b�

d�y

dx�
�

d

dx

�
dy

dx

�
�

d

dx

����
��

�t
�

��

�u

du

dt
��

�t
�

��

�u

du

dt

���� �


��

�t
�

��

�u

du

dt

d

dt

����
��

�t
�

��

�u

du

dt
��

�t
�

��

�u

du

dt

���� � �����c�



B

d

dt

�
A

B

�
�



B�

�
B

dA

dt
� A

dB

dt

�
� �����d�

with A �
��

�t
�

��

�u

du

dt
� �����e� B �

��

�t
�

��

�u

du

dt
� �����f�

The determination of the third derivative
d�y

dx�
can be done in an analogous way�

For the transformation from Cartesian coordinates into polar coordinates according to

x � � cos �� y � � sin� �����a�

the �rst and second derivatives should be calculated as follows�

dy

dx
�

�� sin� � � cos�

�� cos�� � sin�
� �����b�

d�y

dx�
�

�� � ���� � ����

��� cos�� � sin���
� �����c�

������� Function of TwoVariables

Suppose given a function and a functional relation containing the independent variables� the function
and its partial derivatives�

 � f�x� y�� �����a�

H � F

�
x� y� �

�

�x
�
�

�y
�
��

�x�
�
��

�x�y
�
��

�y�
� � � �

�
� �����b�

If x and y are replaced by the new variables u and v given by the relations

x � ��u� v�� y � ��u� v�� �����a�

then the �rst�order partial derivatives can be expressed from the system of equations

�

�u
�

�

�x

��

�u
�

�

�y

��

�u
�

�

�v
�

�

�x

��

�v
�

�

�y

��

�v
�����b�

with the new functions A�B�C� and D of the new variables u and v

�

�x
� A

�

�u
� B

�

�v
�

�

�y
� C

�

�u
� D

�

�v
� �����c�
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The second�order partial derivatives are calculated with the same formulas� only we do not use  in

them but its partial derivatives
�

�x
and

�

�y
� e�g��

��

�x�
�

�

�x

�
�

�x

�
�

�

�x

�
A
�

�u
� B

�

�v

�
� A

�
A
��

�u�
� B

��

�u�v
�

�A

�u

�

�u
�

�B

�u

�

�v

�

�B

�
A

��

�u�v
� B

��

�v�
�

�A

�v

�

�u
�

�B

�v

�

�v

�
� ������

The higher partial derivatives can be calculated in the same way�

Express the Laplace operator �see �������� p� ���� in polar coordinates �see ������� �� p� ����

% �
��

�x�
�

��

�y�
� �����a� x � � cos�� y � � sin�� �����b�

The calculations are�
�

��
�

�

�x
cos� �

�

�y
sin��

�

��
� ��

�x
� sin� �

�

�y
� cos��

�

�x
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�

��
� sin�

�

�
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�

�

�y
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�
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�
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�
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�
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�
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�
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�

��
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�
�

Similarly�
��

�y�
is calculated� so �nally�
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���
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�

�

��
� �����c�

Remark� If functions of more than two variables should be substituted� then similar substitution
formulas can be derived�

����� ExtremeValues of Functions of SeveralVariables

������� De�nition
A function u � f�x�� x�� � � � � xi� � � � � xn� has a relative extreme value at a point P��x��� x��� � � � � xi�� � � � �
xn��� if there is a number � such that for every point belonging to the domain x�� � � � x� � x�� �
�� x�� � � � x� � x�� � �� � � � � xn� � � � xn � xn� � � and to the domain of the function but di�erent
from P�� then for a maximum the inequality

f�x�� x�� � � � � xn� � f�x��� x��� � � � � xn�� �����a�

holds� and for a minimum the inequality

f�x�� x�� � � � � xn� � f�x��� x��� � � � � xn�� �����b�

holds� Using the terminology of several dimensional spaces �see ����� p� �� a function has a relative
maximum or a relative minimum at a point if it is greater or smaller there than at the neighboring
points�

������� Geometric Representation
In the case of a function of two variables� represented in a Cartesian coordinate system as a surface
�see ������� p� ��� the relative extreme value geometrically means that the applicate �see ������� ��
p� ���� of the surface in the point A is greater or smaller than the applicate of the surface in any other
point in a su�ciently small neighborhood of A �Fig �����
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If the surface has a relative extremum at the point P� which is an interior point of its domain� and
if the surface has a tangent plane at this point� then the tangent plane is parallel to the x� y plane
�Fig ���a�b�� This property is necessary but not su�cient for a maximum or minimum at a point
P�� For example Fig ���c shows a surface having a horizontal tangent plane at P�� but there is a
saddle point here and not an extremum�

������� Determination of Extreme Values of Functions of TwoVariables
If u � f�x� y� is given� then we solve the system of equations fx � �� fy � �� The resulting pairs of
values �x�� y��� �x�� y��� � � � can be substituted into the second derivatives

A �
��f

�x�
� B �

��f

�x�y
� C �

��f

�y�
� ������

Depending on the expression

% �

����A B
B C

���� � AC � B� �  fxxfyy � �fxy�
�!x�xi�y�yi �i � � �� � � �� ������

it can be decided whether an extreme value exists�

� In the case % � � the function f�x� y� has an extreme value at �xi� yi�� and for fxx � � it is a
maximum� for fxx � � it is a minimum �su�cient condition��

� In the case % � � the function f�x� y� does not have an extremum�

� In the case % � �� we need further investigation�

������� Determination of the Extreme Values of a Function of n Variables
If u � f�x�� x�� � � � � xn� is given� then �rst we �nd a solution �x��� x��� � � � � xn�� of the system of the n
equations

fx� � �� fx� � �� � � � � fxn � �� �����

because it is a necessary condition for an extreme value� We prepare a matrix of the second�order par�

tial derivatives such that aij �
��f

�xi�xj
� Then we substitute a solution of the system of equations into

the terms� and we prepare the sequence of left upper subdeterminants �a��� a��a��� a��a��� � � ��� Then
we have the following cases�

� The signs of the subdeterminants follow the rule �������� � � �� then there is a maximum there�

� The signs of the subdeterminants follow the rule �������� � � �� then there is a minimum there�

� There are some zero values among the subdeterminants� but the signs of the non�zero subdetermi�
nants coincide with the signs of the corresponding positions of one of the �rst two cases� Then fur�
ther investigation is required� Usually we check the values of the function in a close neighborhood of
x��� x��� � � � � xn��
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� The signs of the subdeterminants does not follow the rules given in cases � and ��� There is no
extremum at that point�

The case of two variables is of course a special case of the case of n variables� �see  ���!��

������� Solution of Approximation Problems
Several di�erent approximation problems can be solved with the help of the determination of the ex�
treme values of functions of several variables� e�g�� �tting problems or mean squares problems�

Problems to solve�

� Determination of Fourier coe�cients �see ������� p� ��� ������� p� �����

� Determination of the coe�cients and parameters of the approximation function �see ������ p� ��
���

�Determination of an approximate solution of an overdetermined linear system of equations �see p� ����
��������

Remark� For these problems the following notations are equivalent�

� Gaussian least squares method �see� e�g�� ������ p� ����

� Least squares method �see �������� p� ����

� Approximation in mean square �continuous and discrete� �see� e�g�� ������ p�����

� Calculus of observations �or �tting� �see ������ p� ��� and regression �see �������� �� p� �����

������� Extreme Value Problemwith Side Conditions
Suppose we have to determine the extreme values of a function u � f�x�� x�� � � � � xn� of n variables with
the side conditions

��x�� x�� � � � � xn� � �� ��x�� x�� � � � � xn� � �� � � � � ��x�� x�� � � � � xn� � �� �����a�

Because of the conditions� the variables are not independent� and if the number of conditions is k�
obviously k � n must hold� One possibility to determine the extreme values of u is to express k variables
with the others from the system of equations of the conditions� to substitute them into the original
function� then the result is an extreme value problem without conditions for n � k variables� The
other way is the Lagrange multiplier method� We introduce k unde�ned multipliers �� �� � � � � �� and we
compose the Lagrange function �Lagrangian� of n � k variables x�� x�� � � � � xn� �� �� � � � � ��

� �x�� x�� � � � � xn� �� �� � � � � ��

� f�x�� x�� � � � � xn� � ���x�� x�� � � � � xn� � ���x�� x�� � � � � xn� � � � �
����x�� x�� � � � � xn�� �����b�

An extremum of the function � can be only at a point �x��� x��� � � � � xn�� ��� ��� � � � � ��� which is the
solution of the system of n � k equations �����

� � �� � � �� � � � � � � �� �x� � �� �x� � � � � � � � �xn � � �����c�

with unknowns x�� x�� � � � � xn� �� �� � � � � �� Since the equations of the side conditions are ful�lled� the
extreme value of � will be an extreme value also for f � So we have to look for the extremum points of f
among the solutionsx��� x��� � � � � xn� of the system of equations �����b�� To determine whether there are
really extreme values at these points ful�lling the necessary conditions requires further investigations�
for which the general rules are fairly complicated� Usually we use some appropriate and individual
calculations depending on the function f to prove if there is an extremum there� or not�

The extreme value of the function u � f�x� y� with the side condition ��x� y� � � will be determined
from the three equations

��x� y� � ��
�

�x
 f�x� y� � ���x� y�! � ��

�

�y
 f�x� y� � ���x� y�! � �� ������

There are three unknowns� x� y� ��
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� In�niteSeries

��� Sequences ofNumbers

����� Properties of Sequences ofNumbers

	������ De�nition of Sequence of Numbers
An in�nite sequence of numbers is an in�nite system of numbers

a�� a�� � � � � an� � � � or brie�y fakg with k � � �� � � � � ����

arranged in a given order� The numbers of the sequence of numbers are called the terms of the sequence�
Among the terms of a sequence of numbers the same numbers can occur several times� A sequence is
considered to be de�ned if the law of formation� i�e�� a rule is given� by which any term of the sequence
can be uniquely determined� Mostly there is a formula for the general term an�

Examples of Sequences of Numbers�

A� an � n� � �� �� �� �� � � � � B� an � � � ��n� �� �� �� �� �� �� � � � �

C� an � �
�
�

�

�n��
� ����

�
�

�

�
� ��

�
�

�

�
� � � � � D� an � ���n��� ��� ��� � � � � �

E� an � �� 

�n��
� � �� �



�
� �

�

�
� �

�

�
� � � � �read �

�

�
�



�
� �

F� an � �


�
� 

�
� ��n��

� for odd n and

an � �


�
�

�

�
� ��

n
�

�  for even n� �� �� ���� ���� ����� ����� ������ ������ � � � �

G� an �


n
� �



�
�



�
�



�
�


�
� � � � � H� an � ���n��n� ���� ����� ����� � � � �

I� an � �n � 

�
for odd n and an � � for even n� �� ����� ����� ����� �� � � � �

J� an � �� 

�
n
�
� �

�

for odd n and an � �� 

�
n
�
� �

for even n� � � �� �� �


�
� �



�
� �

�

�
� �

�

�
� � � � �

	������ Monotone Sequences of Numbers
A sequence a�� a�� � � � � an� � � � is monotone increasing if

a� � a� � a� � � � � � an � � � � � �����

is valid and it is monotone decreasing if

a� 	 a� 	 a� 	 � � � 	 an 	 � � � �����

is valid� We talk about a strictlymonotone increasing sequence or strictlymonotone decreasing sequence�
if equality never holds in ����� or ������

Examples of Monotone Sequences of Numbers�

A� Among the sequences from A to J the sequences A� B� E are strictly monotone increasing�

B� The sequence G is strictly monotone decreasing�

	������ Bounded Sequences
A sequence is called bounded if for all terms

janj � K� �����

is valid for a certain K � �� If such a K �bound� does not exist� then the sequence is unbounded�
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Among the sequences from A to J the sequences C with K � �� D with K � �� E with K � �� F
with K � �� G with K � � and J with K � � are bounded�

����� Limits of Sequences ofNumbers

�� Limit of a Sequence of Numbers
An in�nite sequence of numbers ���� has a limit A if for an unlimited increase of the index n the
di�erence an�A becomes arbitrarily small� Precisely de�ned this means� For an arbitrarily small � �
� there exists an index n���� such that for every n � n�

jan � Aj � �� ����a�

The sequence has the limit �� ����� if for arbitrary K � � there exists an index n��K� such that for
every n � n�

an � K �an � �K�� ����b�

�� Convergence of a Sequence of Numbers
If a sequence of numbers fang satis�es ����a�� then we say it converges to A� This is denoted by

lim
n��an � A or an  A� �����

Among the sequences from A to J on the previous page� C with A � �� E with A � �� F with
A � ��

�
� G with A � � are convergent�

�� Divergence of a Sequence of Numbers
Non�convergent sequences of numbers are called divergent� We talk about proper divergence in the case
of ����b�� i�e�� if as n exceeds any value� an exceeds any large positive number K �K � �� so that
it never goes below� or if as n exceeds any value� an goes below any negative number �K �K � ��
with arbitrarily large magnitude and never increases above it� i�e�� if it has the limit ��� We use the
notation�

lim
n��an �� �an � K �n � n�� or lim

n���an � �� �an � �K �n � n��� �����

Otherwise the sequence is called improperly divergent�

Examples of Divergent Sequences of Numbers�

A� Among the sequences from A to J on the previous page� A and B tend ��� they are properly
divergent�

B� Among the sequences D is improperly divergent�

�� Theorems for Limits of Sequences
a� If the sequences fang and fbng are convergent� then

lim
n���an � bn� � lim

n��an � lim
n�� bn� ����� lim

n���anbn� � � lim
n��an�� lim

n�� bn� �����

hold� and if bn �� � for every n� and lim
n�� bn �� �� then

lim
n��

an
bn

�
lim
n��an

lim
n�� bn

�����

is valid� If lim
n�� bn � � and fang is bounded� then lim

n���anbn� � � even if fang does not have any �nite

limit�

b� If lim
n��an � lim

n�� bn � A is valid and at least� from an index n� and beyond� the inequality an �
cn � bn holds� then we also have

lim
n�� cn � A� ����

c� A monotone and bounded sequence has a �nite limit� If a monotone increasing sequence a� � a� �
a� � � � � is bounded above� i�e�� an � K� for all n� then it is convergent� and its limit is equal to
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its least upper bound which is the smallest possible value for K�� If a monotone decreasing sequence
a� 	 a� 	 a� 	 � � � is bounded below� i�e�� an 	 K�� then it is convergent� and its limit is equal to its
greatest lower bound which is the largest possible value for K��

��� NumberSeries
����� General ConvergenceTheorems

	������ Convergence andDivergence of In�nite Series

�� In�nite Series and its Sum
From the terms ak of an in�nite sequence fakg �see ����� p� ���� the formal expression

a� � a� � � � �� an � � � � �
�X
k��

ak �����

can be composed and this is called an in�nite series� The �nite sums

S� � a�� S� � a� � a�� � � � � Sn �
nX
k��

ak �����

are called partial sums�

�� Convergent and Divergent Series
A series ����� is called convergent if the sequence of partial sums fSng is convergent� The limit

S � lim
n��Sn �

�X
k��

ak �����

is called the sum� and ak is called the general term of the series� If the limit ����� does not exist or it
is equal to ��� then we call the series divergent� In this case the partial sums are not bounded or they
oscillate� So the determination of the convergence of an in�nite series is reduced to the determination
of the limit of a sequence fSng�
A� The geometric series �see ����� p� ��

 �


�
�



�
�



�
� � � �� 

�n
� � � � �����

is convergent�

B� The harmonic series ����� and the series ����� and �����

 �


�
�



�
� � � �� 

n
� � � � �����  �  �  � � � ��  � � � � �����

�  � � � � �� ���n�� � � � � �����

are divergent� For the series ����� and ����� lim
n��Sn �� holds� ����� oscillates�

�� Remainder

The remainder of a convergent series S �
�X
k��

ak is the di�erence between its sum S and the partial sum

Sn�

Rn � S � Sn �
�X

k�n��

ak � an�� � an�� � � � � � �����

	������ General Theorems about the Convergence of Series
� Leaving out the Initial Terms If we leave out �nitely many initial terms of a series or introduce
�nitely many further terms into it at the begin or we change the order of �nitely many terms� then its
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convergence behavior does not change� Exchange of the order of �nitely many terms does not a�ect
the sum if it exists�

� Multiplication of Terms If all the terms of a convergent series are multiplied by the same factor
c� then the convergence of the series does not change� its sum is multiplied by the factor c�

� Termwise Addition or Subtraction If we add or subtract two convergent series

a� � a� � � � �� an � � � � �
�X
k��

ak � S�� �����a� b� � b� � � � �� bn � � � � �
�X
k��

bk � S� �����b�

term by term� then the result is a convergent series� and its sum is

�a� � b�� � �a� � b�� � � � �� �an � bn� � � � � � S� � S�� �����c�

� Necessary Criterion for the Convergence of a Series The sequence of terms of a convergent
series is a null sequence�

lim
n��an � �� �����

This is only a necessary but not su�cient condition�

For the harmonic series ����� lim
n��an � � holds� but lim

n��Sn ���

����� ConvergenceCriteria for Series withPositiveTerms

	������ Comparison Criterion
Suppose we have two series

a� � a� � � � �� an � � � � �
�X
k��

ak� �����a� b� � b� � � � �� bn � � � � �
�X
k��

bk �����b�

with only positive terms �an � �� bn � ��� If an 	 bn holds from a certain n� then the convergence of
the series �����a� yields the convergence of the series �����b�� and the divergence of the series �����b�
yields the divergence of the series �����a��

A� Comparing the terms of the series

 �


��
�



��
� � � �� 

nn
� � � � �����a�

with the geometric series ������ the convergence of the series �����a� follows� From n � � the terms of
the series �����a� are smaller than the terms of the convergent series ������



nn
�



�n��
�n 	 ��� �����b�

B� From the comparison of the terms of the series

 �
p
�

�
p
�

� � � �� p
n

� � � � �����a�

with the terms of the harmonic series ����� follows the divergence of the series �����a�� For n �  the
terms of the series �����a� are greater than those of the divergent series ������

p
n

�


n
�n � �� �����b�

	������ D�Alembert�s Ratio Test
If for the series

a� � a� � � � �� an � � � � �
�X
k��

ak �����a�
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all the ratios
an��
an

are smaller than a number q �  from a certain n onwards� then the series is conver�

gent�
an��
an

� q � � �����b�

If these ratios are greater than a number Q �  from a certain n onwards� then the series is divergent�
From the two previous statements it follows that if the limit

lim
n��

an��
an

� � �����c�

exists� then for � �  the series is convergent� for � �  it is divergent� In the case � �  the ratio test
gives no information whether the series is convergent or not�

A � The series


�
�

�

��
�

�

��
� � � �� n

�n
� � � � �����a�

is convergent� because

� � lim
n��

�
n � 

�n��
�
n

�n

�
� lim

n��

 �


n
�

�


�
�  holds� �����b�

B � For the series � �
�

�
�

�

�
� � � �� n � 

n�
� � � � �����a�

the ratio test does not give any result about whether the series is convergent or not� because

� � lim
n��

�
n � �

�n � ��
�
n � 

n�

�
� � �����b�

	������ Root Test of Cauchy
If for a series

a� � a� � � � �� an � � � � �
�X
k��

ak �����a�

from a certain n onwards for every value n
p
an

n
p

an � q �  �����b�

holds� then the series is convergent� If from a certain n every value n
p
an is greater than a number Q

where Q �  holds� then the series is divergent�
From the previous statements it follows that if

lim
n��

n
p
an � � �����c�

exists� in the case � �  the series is convergent� in the case � �  it is divergent� For � �  with this
test we cannot tell anything about the convergence behavior of the series�

The series


�
�
�

�

�

��
�
�

�

�

�
� � � ��

�
n

n � 

�n�
� � � � �����a�

is convergent because

� � lim
n��

n

s�
n

n � 

�n�
� lim

n��

�BB� 

 �


n

�CCA
n

�


e
�  holds� �����b�

	������ Integral Test of Cauchy
� Convergence If a series has the general term an � f�n�� and f�x� is a monotone decreasing
function such that the improper integral
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�Z
c

f�x� dx �see �������� �� p� ���� ������

exists �it is convergent�� then the series is convergent�
� Divergence If the above integral ������ is divergent� then the series with the general term an �
f�n� is divergent� too�
The lower limit c of the integral is almost arbitrary but it must be chosen so that for c � x � � the
function f�x� should be monotone decreasing�

The series �����a� is divergent because

f�x� �
x � 

x�
�
Z �

c

x � 

x�
dx �



lnx� 

x

��
c

��� �����

����� Absolute andConditionalConvergence

	������ De�nition
Along with the series

a� � a� � � � �� an � � � � �
�X
k��

ak� �����a�

whose terms can have di�erent signs� we consider also the series

ja�j� ja�j� � � �� janj� � � � �
�X
k��

jakj� �����b�

whose terms are the absolute values of the terms of the original sequence �����a�� If the series �����b�
is convergent� then the original one �����a� is convergent� too� �This statement is valid also for series
with complex terms�� In this case� the series �����a� is called absolutely convergent� If the series �����b�
is divergent� then the series �����a� can be either divergent or convergent� In the second case� the series
�����a� is called conditionally convergent�

A � The series
sin�

�
�

sin ��

��
� � � �� sinn�

�n
� � � � � � �����a�

where � is an arbitrarily constant number� is absolutely convergent� because the series of absolute values

with terms
����sinn�

�n

���� is convergent� This is obvious by comparing it with the geometric series ����������sinn�

�n

���� � 

�n
� �����b�

B � The series � 

�
�



�
� � � �� ���n��



n
� � � � ������

is conditionally convergent� because it is convergent according to �����b�� and the series made of the

absolute values of the terms is the divergent harmonic series ����� whose general term is


n
� janj�

	������ Properties of Absolutely Convergent Series

�� Exchange of Terms
a� The terms of an absolutely convergent series can be exchanged with each other arbitrarily �even
in�nitely many of them� and the sum does not change�

b� Exchanging an in�nite number of terms of a conditionally convergent series can change the sum and
even the convergence behavior� Theorem of Riemann� The terms of a conditionally convergent series
can be rearranged so that the sum will be equal to any given value� even to ���
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�� Addition and Subtraction
Absolutely convergent series can be added and subtracted term�by�term� the result is absolutely con�
vergent�

�� Multiplication
Multiplying a sum by a sum� the result is a sum of the products where every term of the �rst factor
is multiplied by every term of the second one� These two�term products can be arranged in di�erent
ways� The most common way for this arrangement is made as if the series were power series� i�e��

�a� � a� � � � �� an � � � ���b� � b� � � � �� bn � � � ��
� a�b�� �z �� a�b� � a�b�� �z �� a�b� � a�b� � a�b�� �z �� � � �� anb� � an��b� � � � �� a�bn� �z �� � � � � �����a�

If two series are absolutely convergent� then their product is absolutely convergent� so it has the same

sum in any arrangement� If
X

an � Sa and
X

bn � Sb hold� then the sum of the product is

S � SaSb� �����b�

If two series a� � a� � � � �� an � � � � � �P
n��

an and b� � b� � � � �� bn � � � � � �P
n��

bn are convergent� and

at least one of them is absolutely convergent� then their product is also convergent� but not necessarily
absolutely convergent�

	������ Alternating Series

�� Leibniz Alternating Series Test �Theorem of Leibniz	
For an alternating series

a� � a� � a� � � � � � an � � � � � �����a�

where an are positive numbers� a su�cient condition of convergence is if the following two relations
hold�

�� lim
n�� an � � and �� a� � a� � a� � � � � � an � � � � � �����b�

The series ������ is convergent because of this criterion�

�� Estimation of the Remainder of an Alternating Series
If we consider the �rst n terms of an alternating series� then the remainder Rn has the same sign as the
�rst omitted term an��� and the absolute value of Rn is smaller than jan��j�

signRn � sign�an��� with Rn � S � Sn� �����a� jS � Snj � jan��j� �����b�

Considering the series
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n
� � � � � ln � �����a� the remainder is j ln �� Snj � 

n � 
������b�

����� Some Special Series

	������ TheValues of Some Important Number Series

 �


$
�



�$
�



�$
� � � �� 

n$
� � � � � e � ������

� 

$
�



�$
� 

�$
� � � � � 

n$
� � � � � 

e
� ������

� 

�
�



�
� 

�
� � � � � 

n
� � � � � ln � � �����

 �


�
�



�
�



�
� � � �� 

�n
� � � � � � � ������



��� Number Series ���

� 

�
�



�
� 

�
� � � � � 

�n
� � � � � �

�
� ������

� 

�
�



�
� 

�
�



�
� � � � � 

�n� 
� � � � � �

�
� ������



 � � �


� � � �


� � � � � � �� 

n�n � �
� � � � �  � ������



 � � �


� � � �


� � � � � � �� 

��n� ���n � �
� � � � � 

�
� ������



 � � �


� � � �


� � � � � � �� 

�n� ��n � �
� � � � � �

�
� ������



� � � �


� � � �


 � �
� � � �� 

��n� ���n � �
� � � � � 

�
� �

�
� ������



 � � � � �


� � � � � � � � �� 

n�n � ��n � ��
� � � � � 

�
� ������



 � � � � � l
�



� � � � � � �l � �
� � � �� 

n � � � �n � l � �
� � � � � 

�l � ��l � �$
� ������

 �


��
�



��
�



��
� � � �� 

n�
� � � � � ��

�
� �����

� 

��
�



��
� 

��
� � � � � 

n�
� � � � � ��

�
� ������



�
�



��
�



��
� � � �� 

��n � ��
� � � � � ��

�
� ������

 �


��
�



��
�



��
� � � �� 

n�
� � � � � ��

��
� ������

� 

��
�



��
� � � � � 

n�
� � � � � ���

���
� ������



�
�



��
�



��
� � � �� 

��n � ��
� � � � � ��

��
� ������

 �


��k
�



��k
�



��k
� � � �� 

n�k
� � � � � ��k��k��

��k�$
Bk �

� ������

� 

��k
�



��k
� 

��k
� � � � � 

n�k
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��k����k�$
Ek �

y ������

�Bk are the Bernoulli numbers
yEk are the Euler numbers



��� �� In�nite Series

	������ Bernoulli and Euler Numbers

� First De�nition of the Bernoulli Numbers The Bernoulli numbers Bk occur in the power
series expansion of some special functions� e�g�� in the trigonometric functions tan x� cotx and csc x�
also in the hyperbolic functions tanh x� coth x� and cosech x� The Bernoulli numbers Bk can be de�ned
as follows

x

ex � 
� � x

�
� B�

x�

�$
� B�

x�

�$
� � � �� ���n��Bn

x�n

��n�$
� � � � �jxj � ��� �����

and they can be calculated by the coe�cient comparison method with respect to the powers of x� Their
values are given in Table ���

Table �� The �rst Bernoulli numbers

k Bk k Bk k Bk k Bk
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� Second De�nition of Bernoulli Numbers Some authors de�ne the Bernoulli numbers in the
following way�

x

ex � 
�  � B�

x

$
� B�

x�

�$
� � � �� B�n

x�n

��n�$
� � � � �jxj � ���� ������

So we get the recursive formula

Bk�� � �B � �k�� �k � � �� �� � � ��� ������

where after the application of the binomial theorem �see ������ �� p� �� we have to replace B
�

by

B�� i�e�� the exponent becomes the index� The �rst few numbers are�

B� � �

�
� B� �



�
� B� � � 

��
� B	 �



��
�

B
 � � 

��
� B�� �

�

��
� B�� � � ��

����
� B�� �

�

�
� ������

B�	 � ����

��
� � � � � B� � B� � B� � � � � � ��

The following relation is valid�

Bk � ���k��B�k �k � � �� �� � � ��� ������

� First De�nition of Euler Numbers The Euler numbers Ek occur in the power series expansion
of some special functions� e�g�� in the functions sec x and sech x� TheEuler numbers Ek can be de�ned
as follows

sec x �  � E�
x�

�$
� E�

x�

�$
� � � �� En

x�n

��n�$
� � � � �jxj � �

�
� ������

and they can be calculated by coe�cient comparison with respect to the powers of x� Their values are
given in Table ���
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� Second De�nition of Euler Numbers Analogously to ������ the Euler numbers can be de�ned
with the recursive formula

�E � �k � �E � �k � � �k � � �� �� � � ��� ������

where after the application of the binomial theorem we have to replace E� by E�� For the �rst values
we get�

E� � �� E� � �� E	 � ��� E
 �  ����

E�� � ��� ��� E�� � � ��� ���� E�� � ��� ��� ��� ������

E�	 � � �� �� ��� � � � � E� � E� � E� � � � � � ��

The following relation is valid�

Ek � ���kE�k �k � � �� �� � � ��� ������

Table ��� First Euler numbers

k Ek k Ek

  � �� ��
� � � � ��� ���
� � � �� ��� ��
�  ���

� Relation Between the Euler and Bernoulli Numbers The relation between the Euler and
Bernoulli numbers is�

E�k �
��k��

�k � 

�
Bk � 

�

��k��
�k � � �� � � �� � ������

����� Estimation of theRemainder

	������ Estimation withMajorant
In order to determine how well the n�th partial sum approximates the sum of the series� the absolute
value of the remainder

jS � Snj � jRnj �
������

�X
k�n��

ak

������ �
�X

k�n��

jakj �����

of the series
�X
k��

ak must be estimated� For this estimation we use a majorant for
�X

k�n��

jakj� usually a

geometric series or another series which is easy to sum or estimate�

Estimate the remainder of the series e �
�X
n��



n$
� For the ratio

am��

am
of two subsequent terms of this

series with m 	 n �  we have�
am��

am
�

m$

�m � �$
�



m � 
� 

n � �
� q � � So the remainder

Rn �


�n � �$
�



�n � ��$
�



�n � ��$
� � � � can be majorized by the geometric series ����� with the

quotient q �


n � �
and with the initial term a �



�n � �$
� and it yields�

Rn �
a

� q
�



�n � �$

n � �

n � 
�



n$

n � �

n� � �n
�



n � n$
� ������
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	������ Alternating Convergent Series
For a convergent alternating series� whose terms tend to zero with monotone decreasing absolute values�
the easy estimation for the remainder is �see �������� �� p� ����

jRnj � jS � Snj � jan��j � ������

	������ Special Series
For some special series� e�g�� Taylor series� there are special formulas to estimate the remainder �see
�������� p� ����

��� FunctionSeries

����� De
nitions

� Function Series is a series whose terms are functions of the same variable x�

f��x� � f��x� � � � �� fn�x� � � � � �
�X
k��

fk�x�� ������

� Partial Sum Sn�x� is the sum of the �rst n terms of the series �������

Sn�x� � f��x� � f��x� � � � �� fn�x�� ������

� Domain of Convergence of a function series ������ is the set of values of x � a for which all
the functions fn�x� are de�ned and the series of constant terms

f��a� � f��a� � � � �� fn�a� � � � � �
�X
k��

fk�a� ������

is convergent� i�e�� for which the limit of the partial sums Sn�a� exists�

lim
n��Sn�a� � lim

n��

nX
k��

fk�a� � S�a�� ������

� The Sum of the Series ������ is the function S�x�� and we say that the series converges to the
function S�x��

� Remainder Rn�x� is the di�erence between the sum S�x� of a convergent function series and its
partial sum Sn�x��

Rn�x� � S�x�� Sn�x� � fn���x� � fn���x� � � � �� fn�m�x� � � � � � ������

����� UniformConvergence

	������ De�nition�Weierstrass Theorem
According to the de�nition of the limit of a sequence of numbers �see ����� p� ��� and ������ �� p� ����
the series ������ converges at a point x to S�x� if for an arbitrary � � � there is an integer N such that
jS�x�� Sn�x�j � � holds for every n � N � For function series we distinguish between two cases�

� Uniformly Convergent Series If there is a number N such that for every x in the domain of
convergence of the series ������� jS�x� � Sn�x�j � � holds for every n � N � then the series is called
uniformly convergent on this domain�

� Non�Uniform Convergence of Series If there is no such number N which is good for every
value of x in the domain of convergence� i�e�� there are such values of � for which there is at least one x
in the domain of convergence such that jS�x�� Sn�x�j � � holds for arbitrarily large values of n� then
the series is non�uniformly convergent�

A � The series  �
x

$
�

x�

�$
� � � �� xn

n$
� � � � �����a�
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with the sum ex �see Table ���� p� ��� is convergent for every value of x� The convergence is uniform
for every bounded domain of x� and for every jxj � a using the remainder of the Maclaurin formula
�see �������� �� p� ��� the inequality

jS�x�� Sn�x�j �

����� xn��

�n � �$
e�x
����� � an��

�n � �$
ea �� � ! � � �����b�

is valid� Because �n � �$ increases more quick than an��� the expression on the right�hand side of
the inequality� which is independent of x� for su�ciently large n will be less than �� The series is not
uniformly convergent on the whole numerical axis� For any large n there will be a value of x such that����� xn��

�n � �$
e�x
����� is greater than a previously given ��

B � The series x � x�� x� � x�� x�� � � � �� x�� x�n � � � � � �����a�

is convergent for every x in  �� !� because corresponding to the d�Alembert ratio test �see �������� p� ����

� � lim
n��

����an��an

���� � j� xj �  holds for � � x �  �for x � � S � � holds�� �����b�

The convergence is non�uniform� because

S�x�� Sn�x� � x �� x�n�� � �� x�n�� � � � �! � �� x�n�� �����c�

is valid and for every n there is an x such that ��x�n�� is close enough to � i�e�� it is not smaller than
�� In the interval a � x �  with � � a �  the series is uniformly convergent�
� Weierstrass Criterion for Uniform Convergence The series

f��x� � f��x� � � � �� fn�x� � � � � ����a�

is uniformly convergent in a given domain if there is a convergent series of constant positive terms

c� � c� � � � �� cn � � � � ����b�

such that for every x in this domain the inequality

jfn�x�j � cn ����c�

is valid� We call ����c� a majorant of the series ����a��

	������ Properties of Uniformly Convergent Series
� Continuity If the functions f��x�� f��x�� � � � � fn�x�� � � � are continuous in a domain and the series
f��x��f��x�� � � ��fn�x�� � � � is uniformly convergent in this domain� then the sum S�x� is continuous
in the same domain� If the series is not uniformly convergent in a domain� then the sum S�x� may have
discontinuities in this domain�

A� The sum of the series �����a� is discontinuous� S�x� � � for x � � and S�x� �  for x � ��

B� The sum of the series �����a� is a continuous function� The series is uniformly convergent for any
�nite domain� it cannot have any discontinuity at any �nite x�
� Integration and Di	erentiation of Uniformly Convergent Series In the domain  a� b! of
uniform convergence it is allowed to integrate the series term�by�term� It is also allowed to di�erentiate
term�by�term if the result is a uniformly convergent series� That is�

xZ
x�

�X
n��

fn�t� dt �
�X
n��

xZ
x�

fn�t� dt for x�� x �  a� b!� �����a�

� �X
n��

fn�x�

��
�

�X
n��

f �n�x� for x �  a� b!� �����b�
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����� Power series

	������ De�nition� Convergence

� De�nition The most important function series are the power series of the form

a� � a�x � a�x
� � � � �� anx

n � � � � �
�X
n��

anx
n or �����a�

a� � a��x� x�� � a��x� x��
� � � � �� an�x� x��

n � � � � �
�X
n��

an�x� x��
n� �����b�

where the coe�cients ai and the centre of expansion x� are constant numbers�

� Absolute Convergence and Radius of Convergence A power series is convergent either
only for x � x� or for all values of x or there is a number r � �� the radius of convergence� such that the
series is absolutely convergent for jx� x�j � r and divergent for jx� x�j � r �Fig ���� The radius of
convergence can be calculated by the formulas

r � lim
n��

����� an
an��

����� or r � lim
n��



n

q
janj

������

domain of convergence

x r0− x0 x +r0

Figure ��

if the limits exist� If these limits do not exist� then we have to take
the limit superior �lim� instead of the usual limit �see  ���!� Vol� I��
At the endpoints x � �r and x � �r for the series �����a� and
x � x� � r and x � x� � r for the series �����b� the series can be
either convergent or divergent�

� Uniform Convergence A power series is uniformly convergent on every subinterval jx� x�j �
r� � r of the domain of convergence �theorem of Abel��

For the series  �
x


�

x�

�
� � � �� xn

n
� � � � we get



r
� lim

n��
n � 

n
�  � i�e�� r � � ������

Consequently the series is absolutely convergent in � � x � �� for x � � it is conditionally
convergent �see series ������ on p� ���� and for x �  it is divergent �see the harmonic series ����� on
p� ����� According to the theorem of Abel the series is uniformly convergent in every interval  �r���r�!�
where r� is an arbitrary number between � and �

	������ Calculations with Power Series

� Sum and Product Convergent power series can be added� multiplied� and multiplied by a con�
stant factor term�by�term inside of their common domain of convergence� The product of two power
series is� �X

n��

anx
n

�
�
� �X
n��

bnx
n

�
� a�b� � �a�b� � a�b��x � �a�b� � a�b� � a�b��x

�

��a�b� � a�b� � a�b� � a�b��x
� � � � � � ������

� First Terms of Some Powers of Power Series�

S � a � bx � cx� � dx� � ex� � fx� � � � � � ������

S� � a� � �abx � �b� � �ac�x� � ��ad � bc�x� � �c� � �ae � �bd�x�

���af � be � cd�x� � � � � � ������

p
S � S

�
� � a

�
�

�
 �



�

b

a
x �

�


�

c

a
� 

�

b�

a�

�
x� �

�


�

d

a
� 

�

bc

a�
�



�

b�

a�

�
x�
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�

�


�

e

a
� 

�

bd

a�
� 

�

c�

a�
�

�

�

b�c

a�
� �

��

b�

a�

�
x� � � � �


� ������

p
S

� S� �
� � a�

�
�

�
� 

�

b

a
x �

�
�

�

b�

a�
� 

�

c

a

�
x� �

�
�

�

bc

a�
� 

�

d

a
� �

�

b�

a�

�
x�

�

�
�

�

bd

a�
�

�

�

c�

a�
� 

�

e

a
� �

�

b�c

a�
�

��

��

b�

a�

�
x� � � � �


� ������



S
� S�� � a��

�
� b

a
x �

�
b�

a�
� c

a

�
x� �

�
�bc

a�
� d

a
� b�

a�

�
x�

�

�
�bd

a�
�

c�

a�
� e

a
� �

b�c

a�
�

b�

a�

�
x� � � � �


� �����



S�
� S�� � a��

�
� �

b

a
x �

�
�
b�

a�
� �

c

a

�
x� �

�
�
bc

a�
� �

d

a
� �

b�

a�

�
x�

�

�
�
bd

a�
� �

c�

a�
� �

e

a
� �

b�c

a�
� �

b�

a�

�
x� � � � �


� ������

� Quotient of Two Power Series
�X
n��

anx
n

�X
n��

bnx
n

�
a�
b�

 � ��x � ��x
� � � � �

 � ��x � ��x� � � � � �
a�
b�

  � ��� � ���x � ��� � ���� � ��
� � ���x

�

���� � ���� � ���� � �� � ��
� � ����

� � ������x
� � � � �!� ������

We get this formula by considering the quotient as a series with unknown coe�cients� and after multi�
plying by the numerator we get the unknown coe�cients by coe�cient comparison�

� Inverse of a Power Series If the series

y � f�x� � ax � bx� � cx� � dx� � ex� � fx	 � � � � �a �� �� �����a�

is given� then its inverse is the series

x � ��y� � Ay � By� � Cy� � Dy� � Ey� � Fy	 � � � � � �����b�

Taking powers of y and comparing the coe�cients we get

A �


a
� B � � b

a�
� C �



a�
��b� � ac�� D �



a�
��abc� a�d� �b���

E �


a
��a�bd � �a�c� � �b� � a�e� �ab�c�� �����c�

F �


a��
��a�be � �a�cd � ��ab�c� a�f � ��a�b�d� ��a�bc� � ��b���

The convergence of the inverse series must be checked in every case individually�

	������ Taylor Series Expansion� Maclaurin Series

There is a collection of power series expansions of the most important elementary functions in Ta�
ble ��� �see p� ���� Usually� we get them by Taylor expansion�

�� Taylor Series of Functions of One Variable
If a function f�x� has all derivatives at x � a� then it can often be represented with the Taylor formula
as a power series �see ������� p� �����
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a� First Form of the Representation�

f�x� � f�a� �
x� a

$
f ��a� �

�x� a��

�$
f ���a� � � � �� �x� a�n

n$
f �n��a� � � � � � �����a�

This representation �����a� is correct only for the x values for which the remainder Rn � f�x� � Sn
tends to zero if n  �� This notion of the remainder is not identical to the notion of the remainder
given in ����� p� �� in general� only in the case if the expressions �����b� can be used�

There are the following formulas for the remainder�

Rn �
�x� a�n��

�n � �$
f �n������ �a � � � x or x � � � a� �Lagrange formula�� �����b�

Rn �


n$

xZ
a

�x� t�nf �n����t� dt �Integral formula�� �����c�

b� Second Form of the Representation�

f�a � h� � f�a� �
h

$
f ��a� �

h�

�$
f ���a� � � � �� hn

n$
f �n��a� � � � � � �����a�

The expressions for the remainder are�

Rn �
hn��

�n � �$
f �n����a � !h� �� � ! � �� �����b�

Rn �


n$

hZ
�

�h� t�nf �n����a � t� dt� �����c�

�� Maclaurin Series
The power series expansion of a function f�x� is called a Maclaurin series if it is a special case of the
Taylor series with a � �� It has the form

f�x� � f��� �
x

$
f ���� �

x�

�$
f ����� � � � �� xn

n$
f �n���� � � � � �����a�

with the remainder

Rn �
xn��

�n � �$
f �n����!x� �� � ! � �� �����b�

Rn �


n$

xZ
�

�x� t�nf �n����t� dt� �����c�

The convergence of the Taylor series and Maclaurin series can be proven either by examining the re�
mainder Rn or determining the radius of convergence �see ������� p� ���� In the second case it can
happen that although the series is convergent� the sum S�x� is not equal to f�x�� For instance for the

function f�x� � e�
�

x� for x �� �� and f��� � � the Maclaurin series is the identically zero series�

����� ApproximationFormulas
Considering only a neighborhood small enough of the centre of the expansion� we can introduce ratio�
nal approximation formulas for several functions with the help of the Taylor expansion� The �rst few
terms of some functions are shown in Table ��� The data about accuracy are given by estimating the
remainder� Further possibilities for approximate representation of functions� e�g�� by interpolation and
�tting polynomials or spline functions� can be found in ���� p� �� and ���� p� ���
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Table ��� Approximation formulas for some frequently used functions

Tolerance interval for x with an error of

Approximate Next �	�� �� ���
formula term from to from to from to

sin x 
 x �x�

�

������

�����
�����

����
������

�����
�����

����
������

������
�����

�����

sinx 
 x� x�

�
�

x�

��

������

������
�����

�����
�����

������
����

�����
�����

������
����

�����

cos x 
  �x�

�

������

�����
�����

����
����

����
���

���
�����

������
����

�����

cos x 
 � x�

�
�

x�

��

������

�����
�����

����
������

������
�����

�����
�����

������
����

�����

tanx 
 x �
x�

�

������

����
�����

���
�����

�����
����

����
�����

������
����

�����

tan x 
 x �
x�

�
�

�

�
x�

������

�����
�����

����
�����

������
����

�����
������

�����
�����

����

p
a� � x 
 a �

x

�a
� x�

�a�
������a� �����a� ������a� �����a� ������a� ����a�

�


�

�
a �

a� � x

a

�
p

a� � x

 

a
� x

�a�
�

�x�

�a�
�����a� �����a� �����a� ����a� ������a� �����a�



a � x

 

a
� x

a�
�

x�

a�
�����a ����a ������a �����a �����a ����a

ex 
  � x �
x�

�
������ ����� ����� ���� ������ �����

ln� � x� 
 x �x�

�
������ ����� ������ ����� ����� �����

����� Asymptotic Power Series

Even divergent series can be useful for calculation of substitution values of functions� In the following

we consider some asymptotic power series with respect to


x
to calculate the values of functions for large

values of jxj�
	������ Asymptotic Behavior

Two functions f�x� and g�x�� de�ned for x� � x ��� are called asymptotically equal for x� if

lim
x��

f�x�

g�x�
�  �����a� or f�x� � g�x� � o�g�x�� for x� �����b�

hold� Here� o�g�x�� is the Landau symbol 	little o
 �see ������� p� ���� If �����a� or �����b� is ful�lled�
then we write also f�x� ! g�x��



��� �� In�nite Series

A�
p
x� �  ! x� B� e

�
x ! � C�

�x � �

�x� � x � �
! �

�x�
�

	������ Asymptotic Power Series

�� Notion of Asymptotic Series

A series
P�

���

a�
x�

is called an asymptotic power series of the function f�x� de�ned for x � x� if

f�x� �
nX
���

a�
x�

� O
�



xn��

�
������

holds for every n � �� � �� � � � � Here� O
�



xn��

�
is the Landau symbol 	big O
� For ������ we also write

f�x� 

�X
���

a�
x�

�

�� Properties of Asymptotic Power Series

a� Uniqueness� If for a function f�x� the asymptotic power series exists� then it is unique� but a func�
tion is not uniquely determined by an asymptotic power series�

b� Convergence� Convergence is not required from an asymptotic power series�

A� e
�
x 


�X
���




$x�
is an asymptotic series� which is convergent for every x with jxj � x� �x� � ���

B� The integral f�x� �
Z �

�

e�xt

 � t
dt �x � �� is convergent for x � � and repeated partial inte�

gration results in the representation f�x� �


x
� $

x�
�

�$

x�
� �$

x�
� � � � � ���n��

�n� �$

xn
� Rn�x�

with Rn�x� � ���n
n$

xn

Z �

�

e�xt

� � t�n��
dt� Because of jRn�x�j � n$

xn

Z �

�
e�xt dt �

n$

xn��
we get

Rn�x� � O
�



xn��

�
� and with this estimationZ �

�

e�xt

 � t
dt 


�X
���

����

$

x���
� ������

The asymptotic power series ������ is divergent for every x� because the absolute value of the quotient

of the �n � ��th and of the n�th terms has the value
n � 

x
� However� this divergent series can be used

for a reasonably good approximation of f�x�� For instance� for x � � with the partial sums S����

and S���� we get the estimation ������ �
Z �

�

e���t

 � t
dt � �������

��� Fourier Series
����� Trigonometric SumandFourier Series
	������ Basic Notions

�� Fourier Representation of Periodic Functions
Often it is necessary or useful to represent a given periodic function f�x� with period T exactly or
approximatively by a sum of trigonometric functions of the form

sn�x� �
a�
�

� a� cos x � a� cos �x � � � �� an cosnx

�b� sinx � b� sin �x � � � �� bn sinnx� �����



��
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This is called the Fourier expansion� Here the frequency is  �
��

T
� In the case T � �� we have  � �

We can get the best approximation of f�x� in the sense given on ������� p� �� by an approximation
function sn�x�� where the coe�cients ak and bk �k � �� � �� � � � � n� are the Fourier coe�cients of the
given function� They are determined with the Euler formulas

ak �
�

T

TZ
�

f�x� cos kx dx �
�

T

x��TZ
x�

f�x� cos kx dx �
�

T

T��Z
�

 f�x� � f��x�! cos kx dx� �����a�

and

bk �
�

T

TZ
�

f�x� sin kx dx �
�

T

x��TZ
x�

f�x� sin kx dx �
�

T

T��Z
�

 f�x�� f��x�! sin kx dx� �����b�

or approximatively with the help of methods of harmonic analysis �see ������ p� �����

�� Fourier Series
If there are x values such that the sequence of functions sn�x� tends to a limit s�x� for n  �� then
the given function has a convergent Fourier series for these x values� This can be written in the form

s�x� �
a�
�

� a� cos x � a� cos �x � � � �� an cosnx � � � �
�b� sinx � b� sin �x � � � �� bn sinnx � � � � �����a�

and also in the form

s�x� �
a�
�

� A� sin�x � ��� � A� sin��x � ��� � � � �� An sin�nx � �n� � � � � � �����b�

where in the second case�

Ak �
q
ak� � bk

�� tan�k �
ak
bk

� �����c�

�� Complex Representation of the Fourier Series
In many cases the complex form is very useful�

s�x� �
��X

k���
cke

ik�x � �����a�

ck �


T

TZ
�

f�x�e�ik�x dx �

�����������������



�
a� for k � � �



�
�ak � ibk� for k � � �



�
�a�k � ib�k� for k � � �

�����b�

	������ Most Important Properties of the Fourier Series

�� LeastMean Squares Error of a Function
If a function f�x� is approximated by a trigonometric sum

sn�x� �
a�
�

�
nX
k��

ak cos kx �
nX
k��

bk sin kx� �����a�

also called the Fourier sum� then the mean square error �see ������� p� ��� and ������� �� p� ����

F �


T

TZ
�

 f�x�� sn�x�!� dx �����b�
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is smallest if we de�ne ak and bk as the Fourier coe�cients �����a�b� of the given function�

�� Convergence of a Function in theMean� Parseval Equation
The Fourier series converges in mean to the given function� i�e��

TZ
�

 f�x�� sn�x�!� dx � for n� �����a�

holds� if the function is bounded and in the interval � � x � T it is piecewise continuous� A consequence
of the convergence in the mean is the Parseval equation�

�

T

TZ
�

 f�x�!� dx �
a��
�

�
�X
k��

�ak
� � bk

��� �����b�

�� Dirichlet Conditions
If the function f�x� satis�es the Dirichlet conditions� i�e��

a� the interval of de�nition can be decomposed into a �nite number of intervals where the function f�x�
is continuous and monotone� and

b� at every point of discontinuity of f�x� the values f�x � �� and f�x� �� are de�ned�

then the Fourier series of this function is convergent� At the points where f�x� is continuous the sum

is equal to f�x�� at the points of discontinuity the sum is equal to
f�x� �� � f�x � ��

�
�

�� Asymptotic Behavior of the Fourier Coe�cients
If a periodic function f�x� and its derivatives up to k�th order are continuous� then for n  � both
expressions ann

k�� and bnn
k�� tend to zero�
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����� Determination of Coe�cients for SymmetricFunctions

	������ Di
erent Kinds of Symmetries
� Symmetry of the First Kind If f�x� is an even function� i�e�� if f�x� � f��x� �Fig ���� then
for the coe�cients we have

ak �
�

T

T��Z
�

f�x� cos k
��x

T
dx � bk � � �k � �� � �� � � �� � ������

� Symmetry of the Second Kind If f�x� is an odd function� i�e�� if f�x� � �f��x� �Fig ����
then for the coe�cients we have

ak � �� bk �
�

T

T��Z
�

f�x� sin k
��x

T
dx �k � �� � �� � � ��� ������
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� Symmetry of the Third Kind If f�x � T��� � �f�x� holds �Fig ���� then the coe�cients
are

a�k�� �
�

T

T��Z
�

f�x� cos��k � �
��x

T
dx� a�k � �� �����a�

b�k�� �
�

T

T��Z
�

f�x� sin��k � �
��x

T
dx� b�k � � �k � �� � �� � � ��� �����b�

� Symmetry of the Fourth Kind If the function f�x� is odd and also the symmetry of the third
kind is satis�ed �Fig ��a�� then the coe�cients are

ak � b�k � �� b�k�� �
�

T

T��Z
�

f�x� sin��k � �
��x

T
dx �k � �� � �� � � ��� �����

If the function f�x� is even and also the symmetry of the third kind is satis�ed �Fig��b�� then the
coe�cients are

bk � a�k � �� a�k�� �
�

T

T��Z
�

f�x� cos��k � �
��x

T
dx �k � �� � �� � � ��� ����
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	������ Forms of the Expansion into a Fourier Series
Every function f�x�� satisfying the Dirichlet conditions in an interval � � x � l �see ������� �� p� �����
can be expanded in this interval into a convergent series of the following forms�

�� f��x� �
a�
�

� a� cos
��x

l
� a� cos �

��x

l
� � � �� an cosn

��x

l
� � � �

� b� sin
��x

l
� b� sin �

��x

l
� � � �� bn sinn

��x

l
� � � � � ����a�
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The period of the function f��x� is T � l� in the interval � � x � l the function f��x� coincides
with the function f�x� �Fig ���� At the points of discontinuity the substitution values are f�x� �


�
 f�x � �� � f�x � ��!� The coe�cients of the expansion are determined with the Euler formulas

�����a�b� for  �
��

l
�

�� f��x� �
a�
�

� a� cos
�x

l
� a� cos �

�x

l
� � � �� an cosn

�x

l
� � � � � ����b�

The period of the function f��x� is T � �l� in the interval � � x � l the function f��x� has a symmetry
of the �rst kind and it coincides with the function f�x� �Fig ���� The coe�cients of the expansion
of f��x� are determined by the formulas for the case of symmetry of the �rst kind with T � �l�

�� f��x� � b� sin
�x

l
� b� sin �

�x

l
� � � �� bn sinn

�x

l
� � � � � ����c�

The period of the function f��x� is T � �l� in the interval � � x � l the function f��x� has a symmetry
of the second kind and it coincides with the function f�x� �Fig ���� The coe�cients of the expansion
are determined by the formulas for the case of symmetry of the second kind with T � �l�
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����� Determination of the FourierCoe�cients withNumerical
Methods

If the periodic function f�x� is a complicated one or in the interval � � x � T its values are known only

for a discrete system xk �
kT

N
with k � �� � �� � � � � N � � then we have to approximate the Fourier

coe�cients� Furthermore� e�g�� also the number of measurements N can be a very large number� In
these cases we use the methods of numerical harmonic analysis �see ������ p� �����

����� Fourier Series andFourier Integrals
�� Fourier integral
If the function f�x� satis�es the Dirichlet conditions �see ������� �� p� ���� in an arbitrarily �nite

interval and� moreover� the integral

��Z
��
jf�x�j dx is convergent �see �������� �� p� ����� then the following

formula holds �Fourier integral��

f�x� �


��

��Z
��

ei�x d

��Z
��

f�t�e�i�t dt �


�

�Z
�

d

��Z
��

f�t� cos�t� x� dt� ����a�

At the points of discontinuity we substitute

f�x� �


�
 f�x� �� � f�x � ��!� ����b�
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�� Limiting Case of a Non�Periodic Function
The formula ����a� can be regarded as the expansion of a non�periodic function f�x� into a trigono�
metric series in the interval ��l��l� for l��

With Fourier series expansion a periodic function with period T is represented as the sum of harmonic

vibrations with frequency n � n
��

T
with n � � �� � � � and with amplitude An� This representation is

based on a discrete frequency spectrum�
With the Fourier integral the non�periodic function f�x� is represented as the sum of in�nitely many
harmonic vibrations with continuously varying frequency � The Fourier integral gives an expansion
of the function f�x� into a continuous frequency spectrum� Here the frequency  corresponds to the
density g�� of the spectrum�

g�� �


��

��Z
��

f�t�e�i�t dt� ����c�

The Fourier integral has a simpler form if f�x� is either a� even or b� odd�

a� f�x� �
�

�

�Z
�

cosx d

�Z
�

f�t� cost dt� ����a�

b� f�x� �
�

�

�Z
�

sinx d

�Z
�

f�t� sint dt� ����b�

The density of the spectrum of the even function f�x� � e�jxj and the representation of this function
are

g�� �
�

�

Z �

�
e�t cost dt �

�

�



� � 
����a� and e�jxj �

�

�

Z �

�

cosx

� � 
d� ����b�

����� Remarks on theTable of SomeFourier Expansions
In Table ��� there are given the Fourier expansions of some simple functions� which are de�ned in
a certain interval and then they are periodically extended� The shapes of the curves of the expanded
functions are graphically represented�

�� Application of Coordinate Transformations
Many of the simplest periodic functions can be reduced to a function represented in Table ��� when
we either change the scale �unit of measure� of the coordinate axis or we translate the origin�

A function f�x� � f��x� de�ned by the relations

y �

�������
� for � � x �

T

�
�

� for
T

�
� x �

T

�

����a�

�Fig �
�� can be transformed into the form � given in Table ���� if we substitute a �  and we

introduce the new variables Y � y �  and X �
��x

T
�

�

�
� By the substitution of the variables in

series �� because sin��n � �
�

��x

T
�

�

�

�
� ���n cos��n � �

��x

T
we get for the function ����a� the

expression

y �  �
�

�

�
cos

��x

T
� 

�
cos �

��x

T
�



�
cos �

��x

T
� � � �

�
� ����b�
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�� Using the Series Expansion of Complex Functions
Many of the formulas given in Table ��� for the expansion of functions into trigonometric series can
be derived from power series expansion of functions of a complex variable�

The expansion of the function



� z
�  � z � z� � � � � �jzj � � �����

yields for

z � aei� �����

after separating the real and imaginary parts

 � a cos� � a� cos �� � � � �� an cosn� � � � � �
� a cos�

� �a cos� � a�
�

a sin� � a� sin �� � � � �� an sinn� � � � � �
a sin�

� �a cos� � a�
for jaj � � �����



���

	 IntegralCalculus

� Integral Calculus and Inde�nite Integrals Integration represents the inverse operation of
di�erentiation in the following sense� While di�erentiation calculates the derivative function f ��x� of a
given function f�x�� integration determines a function whose derivative f ��x� is previously given� This
process does not have a unique result� so we get the notion of an inde�nite integral�

� De�nite Integral If we start with the graphical problem of the integral calculus� to determine
the area between the curve of y � f�x� and the x�axis� and for this purpose we approximate it with
thin rectangles �Fig ���� then we get the notion of the de�nite integral�

� ConnectionBetweenDe�nite and Inde�nite Integrals The relation between these two types
of integral is the fundamental theorem of calculus �see ������� �� p� �����

��� Inde�nite Integrals

	���� PrimitiveFunction orAntiderivative

�� De�nition
Consider a function y � f�x� given on an interval  a� b!� F �x� is called a primitive function or an�
tiderivative of f�x� if F �x� is di�erentiable everywhere on  a� b! and its derivative is f�x��

F ��x� � f�x�� ����

Because under di�erentiation an additive constant disappears� a function has in�nitely many primitive
functions� if it has any� The di�erence of two primitive function is a constant� So� the graphs of all
primitive functions F��x�� F��x�� � � � � Fn�x� can be got by parallel translation of a particular primitive
function in the direction of the ordinate axis �Fig ����
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�� Existence
Every function continuous on a connected interval has a primitive function on this interval� If there are
some discontinuities� then we decompose the interval into subintervals in which the original function
is continuous �Fig ���� The given function y � f�x� is in the upper part of the �gure� the function
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y � F �x� in the lower part is a primitive function of it on the considered intervals�

������� Inde�nite Integrals
The inde�nite integral of a given function f�x� is the set of primitive functions

F �x� � C �
Z

f�x� dx� �����

The function f�x� under the integral sign
Z

is called the integrand � x is the integration variable� and C

is the integration constant � It is also a usual notation� especially in physics� to put the di�erential dx
right after the integral sign and so before the function f�x��

Table �� Basic integrals

Powers Exponential functionsZ
xn dx � xn��

n �  �n �� ��
Z
ex dx � exZ

dx
x � ln jxj

Z
ax dx � ax

ln a

Trigonometric functions Hyperbolic functionsZ
sinx dx � � cos x

Z
sinh x dx � cosh xZ

cos x dx � sinx
Z

cosh x dx � sinh xZ
tan x dx � � ln j cosxj

Z
tanh x dx � ln j cosh xjZ

cot x dx � ln j sinxj
Z

coth x dx � ln j sinhxjZ
dx

cos� x
� tanx

Z
dx

cosh� x
� tanh xZ

dx
sin� x

� � cot x
Z

dx
sinh� x

� � coth x

Fractional rational functions Irrational functionsZ
dx

a� � x�
� 

a arctan x
a

Z
dxp

a� � x�
� arcsin x

aZ
dx

a� � x�
� 

aArtanh x
a � 

�a ln
���a � x
a� x

��� Z
dxp

a� � x�
� Arsinh x

a � ln
���x �

p
x� � a�

���
�for jxj � a�Z

dx
x� � a�

� �
aArcoth x

a � 
�a ln

���x� a
x � a

��� Z
dxp

x� � a�
� Arcosh x

a � ln
���x �

p
x� � a�

���
�for jxj � a�

������� Integrals of Elementary Functions

�� Basic Integrals
The integration of elementary functions in analytic form is reduced to a sequence of basic integrals�
These basic integrals can be got from the derivatives of well�known elementary functions� since inde��
nite integration means the determination of a primitive function F �x� of the function f�x��
The collection of integrals given in Table �� comes from reversing the di�erentiation formulas in Ta�
ble �� �Derivatives of elementary functions�� The integration constant C is omitted�
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�� General Case
For the solution of integration problems� we try to reduce the given integral by algebraic and trigono�
metric transformations� or by using the integration rules to basic integrals� The integration methods
given in section ���� make it possible in many cases to integrate those functions which have an ele�
mentary primitive function� The results of some integrations are collected in Table ��� �Inde�nite
integrals�� The following remarks are very useful in integration�

a� The integration constant is mostly omitted� Exceptions are some integrals� which in di�erent forms
can be represented with di�erent arbitrary constants�

b� If in the primitive function there is an expression containing ln f�x�� then we have to consider always
ln jf�x�j instead of it�

c� If the primitive function is given by a power series� then the function cannot be integrated in an
elementary fashion�

A wide collection of integrals and their solutions are given in  ��! and  ���!�

	���� Rules of Integration
The integral of an integrand of arbitrary elementary functions is not usually an elementary function�
In some special cases we can use some tricks� and by practice we can gain some knowledge of how to
integrate� Today we leave the calculation of integrals mostly to computers�

The most important rules of integration� which are �nally discussed here� are collected in Table ���

�� Integrand with a Constant Factor
A constant factor � in the integrand can be factored out in front of the integral sign �constant multiple
rule��Z

� f�x� dx � �
Z

f�x� dx� �����

�� Integration of a Sum or Di
erence
The integral of a sum or di�erence can be reduced to the integration of the separate terms if we can tell
their integrals separately �sum rule��Z

�u � v � w� dx �
Z

u dx �
Z

v dx�
Z

w dx� �����

The variables u� v� w are functions of x�Z
�x � ����x� � � dx �

Z
�x� � �x� � �x� � �x � �� dx �

x�

�
�

�

�
x� �

�

�
x� � �x� � �x � C�

�� Transformation of the Integrand
The integration of a complicated integrand can sometimes be reduced to a simpler integral by algebraic
or trigonometric transformations�Z

sin �x cos x dx �
Z 

�
�sin �x � sinx� dx�

�� Linear Transformation in the Argument

If
Z

f�x� dx � F �x� is known� e�g�� from an integral table� then we get�

Z
f�ax� dx �



a
F �ax� � C� ����a�

Z
f�x � b� dx � F �x � b� � C� ����b�

Z
f�ax � b� dx �



a
F �ax � b� � C� ����c�

A�
Z

sin ax dx � �

a
cos ax � C� B�

Z
eax�b dx �



a
eax�b � C�
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C�
Z dx

 � �x � a��
� arctan�x � a� � C�

Table ��� Important rules of calculation of inde�nite integrals

Rule Formula for integration

Integration constant
Z

f�x� dx � F �x� � C �C const�

Integration and
di�erentiation

F ��x� �
dF

dx
� f�x�

Constant multiple rule
Z

�f�x� dx � �
Z

f�x� dx �� const�

Sum rule
Z

 u�x�� v�x�! dx �
Z

u�x� dx�
Z

v�x� dx

Partial integration
Z

u�x�v��x� dx � u�x�v�x��
Z

u��x�v�x� dx

Substitution rule

x � u�t� or t � v�x� �
u und v are inverse functions of each other �Z

f�x� dx �
Z

f�u�t��u��t� dt orZ
f�x� dx �

Z f�u�t��

v��u�t��
dt

Special form of
the integrand

�
Z f ��x�

f�x�
dx � ln jf�x�j� C �logarithmic integration�

��
Z

f ��x�f�x� dx �


�
f ��x� � C

Integration of the
inverse function

u und v are inverse functions of each other �Z
u�x� dx � xu�x�� F �u�x�� � C� with

F �x� �
Z

v�x� dx � C� �C� � C� const�

�� Power and Logarithmic Integration

If the integrand has the form of a fraction such that in the numerator we have the derivative of the
denominator� then the integral is the logarithm of the absolute value of the denominator�Z

f ��x�

f�x�
dx �

Z
d f�x�

f�x�
� ln jf�x�j� C� �����

A�
Z �x � �

x� � �x� �
dx � ln jx� � �x� �j� C�

If the integrand is a product of a power of a function multiplied by the derivative of the function� and
the power is not equal to �� thenZ

f ��x�f��x� dx �
Z

f��x�d f�x� �
f����x�

� � 
� C �� const� � �� ���

B�
Z �x � �

�x� � �x� ���
dx �



�����x� � �x� ���
� C�
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� Substitution Method
If x � u�t� where t � v�x� is the inverse function of x � u�t�� then according to the chain rule of
di�erentiation we getZ

f�x� dx �
Z

f �u�t��u��t� dt or
Z

f�x� dx �
Z f�u�t��

v��u�t��
dt� �����

A�
Z ex � 

ex � 
dx� Substituting x � ln t� �t � ���

dx

dt
�



t
� then taking the decomposition into

partial fractions we get�Z ex � 

ex � 
dx �

Z t� 

t � 

dt

t
�
Z � �

t � 
� 

t

�
dt � � ln�ex � �� x � C�

B�
Z

x dx

 � x�
� Substituting �x� � t�

dt

dx
� �x� then we get

Z
x dx

 � x�
�
Z

dt

�t
�



�
ln��x���C�

�� Partial Integration
Reversing the rule for the di�erentiation of a product we getZ

u�x�v��x� dx � u�x� v�x��
Z

u��x� v�x� dx� �����

where u�x� and v�x� have continuous derivatives�

The integral
Z

x ex dx can be calculated by partial integration where we choose u � x and v� � ex�

so we get u� �  and v � ex�
Z

xex dx � x ex �
Z

ex dx � �x� �ex � C�

�� Non�Elementary Integrals
Integrals of elementary functions are not always elementary functions� These integrals are calculated
mostly in the following three ways� where the primitive function will be approximated by a given accu�
racy�

� Table of Values The integrals which have a particular theoretical or practical importance but
cannot be expressed by elementary functions can be given by a table of values� �Of course� the table
lists values of one particular primitive function�� Such special functions usually have special names�
Examples are�

A� Logarithmic integral �see ������ �� p� �����Z x

�

dx

lnx
� Li �x�� �����

B� Elliptic integral of the �rst kind �see ������� p� �����Z sin�

�

dxq
�� x���� k�x��

� F �k� ��� �����

C� Error function �see ������ �� p� ����

�p
�

Z x

�
e�t

�

dt � erf�x�� ����

� Integration by Series Expansion We take the series expansion of the integrand� and if it is
uniformly convergent� then it can be integrated term�by�term�

A�
Z sinx

x
dx� �see also Sine integral p� �����

B�
Z ex

x
dx� �see also Exponential integral p� ����
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� Graphical integration is the third approximation method� which is discussed in ������� ��
p� ����

	���� Integration ofRational Functions
Integrals of rational functions can always be expressed by elementary functions�

������� Integrals of Integer Rational Functions �Polynomials�
Integrals of integer rational functions are calculated directly by term�by�term integration�Z

� anx
n � an��xn�� � � � �� a�x � a�� dx

�
an

n � 
xn�� �

an��
n

xn � � � � �
a�
�
x� � a�x � C� �����

������� Integrals of Fractional Rational Functions

The integrand of an integral of a fractional rational function
Z P �x�

Q�x�
dx� where P �x� and Q�x� are

polynomials with degree m and n� respectively� can be transformed algebraically into a form which is
easy to integrate� We perform the following steps�

� We simplify the fraction by the greatest common divisor� so P �x� and Q�x� have no common factor�

� We separate the integer rational part of the expression� If m 	 n holds� then we divide P �x� by
Q�x�� Then we have to integrate a polynomial and a proper fraction�

� We decompose the denominator Q�x� into linear and quadratic factors �see ������� p� ����

Q�x� � an�x� ��k�x� ��l � � � �x� � px � q�
r
�x� � p�x � q��

s � � � ����a�

with
p�

�
� q � ��

p��

�
� q� � �� � � � � ����b�

� We factor out the constant coe�cient an in front of the integral sign�

� We decompose the fraction into a sum of partial fractions� The proper fraction we get after the
division� which can nolonger be simpli�ed and whose denominator is decomposed into a product of
irreducible factors� can be decomposed into a sum of partial fractions �see ������ p� ��� which are
easy to integrate�

������� FourCases of Partial Fraction Decomposition

�� Case� All Roots of the Denominator are Real and Single
Q�x� � �x� ���x� �� � � � �x� �� ����a�

a� We form the decomposition�

P �x�

Q�x�
�

A

x� �
�

B

x� �
� � � �� L

x� �
����b�

with A �
P ���

Q����
� B �

P ���

Q����
� � � � � L �

P ���

Q����
� ����c�

b� The numbers A�B�C� � � � � L can also be calculated by the method of undetermined coe�cients �see
������ �� p� ���

c� We integrate by the formulaZ Adx

x� �
� A ln�x� ��� ����d�
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I �
Z

��x � �� dx

x� � x� � �x
�

�x � �

x�x� ��x � ��
�

A

x
�

B

x� 
�

C

x � �
� A �

P ���

Q����
�
�

�x � �

�x� � �x� �

�
x��

� ��

�
� B �

�
�x � �

�x� � �x� �

�
x��

�
�

�
� C �

�
�x � �

�x� � �x� �

�
x���

� �

�
�

I �
Z ���

�

x
�

�
�

x� 
�
��

	

x � �

�
dx � ��

�
lnx �

�

�
ln�x� �� 

�
ln�x � �� � C� � ln

C�x� ����

x����x � ����	
�

�� Case� All Roots of the Denominator are Real� Some of themwith a Higher Mul�
tiplicity

Q�x� � �x� ��l�x� ��m � � � � ����a�

a� We form the decomposition�

P �x�

Q�x�
�

A�

�x� ��
�

A�

�x� ���
� � � �� Al

�x� ��l

�
B�

�x� ��
�

B�

�x� ���
� � � �� Bm

�x� ��m
� � � � � ����b�

b� We calculate the constants A�� A�� � � � � Al� B�� B�� � � � � Bm� � � � by the method of undetermined coef�
�cients �see ������ �� p� ���

c� We integrate by the ruleZ
A� dx

x� �
� A� ln �x� ���

Z
Ak dx

�x� ��k
� � Ak

�k � ��x� ��k��
�k � �� ����c�

I �
Z x� � 

x�x� ��
dx �

x� � 

x�x� ��
�

A

x
�

B�

x� 
�

B�

�x� ��
�

B�

�x� ��
� The method of undetermined

coe�cients yields A�B� � � ��A��B� �B� � �� �A�B��B� �B� � �� �A � � A � �� B� �
�� B� � � B� � �� The result of the integration is

I �
Z �
�

x
�

�

x� 
�



�x� ��
�

�

�x� ��


dx � � lnx � � ln�x� �� 

x� 
� 

�x� ��
� C

� ln
�x� ��

x
� x

�x� ��
� C�

�� Case� Some Roots of the Denominator are Single Complex

Suppose all coe�cients of the denominator Q�x� are real� Then� with a single complex root of Q�x� its
conjugate complex number is a root too and we can compose them into a quadratic polynomial�

Q�x� � �x� ��l�x� ��m � � � �x� � px � q��x� � p�x � q�� � � � ����a�

with
p�

�
� q�

p��

�
� q�� � � � � ����b�

because the quadratic polynomials have no real zeros�

a� We form the decomposition�

P �x�

Q�x�
�

A�

x� �
�

A�

�x� ���
� � � �� Al

�x� ��l
�

B�

x� �
�

B�

�x� ���
� � � �� Bm

�x� ��m

�
Cx � D

x� � px � q
�

Ex � F

x� � p�x � q�
� � � � � ����c�
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b� We calculate the constants by the method of undetermined coe�cients �see ������ �� p� ���

c� We integrate the expression
Cx � D

x� � px � q
by the formula

Z �Cx � D� dx

x� � px � q
�

C

�
ln�x� � px � q� �

D � Cp��q
q � p���

arctan
x � p��q
q � p���

� ����d�

I �
Z � dx

x� � �x
�

�

x� � �x
�

A

x
�

Cx � D

x� � �
� The method of undetermined coe�cients yields the

equations A � C � �� D � �� �A � �� A � � C � �� D � ��

I �
Z �

x
� x

x� � �

�
dx � lnx� 

�
ln�x� � �� � lnC� � ln

C�xp
x� � �

� where in this particular case the

term arctan is missing�

�� Case� Some Roots of the Denominator are Complex with a Higher Multiplicity

Q�x� � �x� ��k�x� ��l � � � �x� � px � q�m�x� � p�x � q��n � � � � ����a�

a� We form the decomposition�

P �x�

Q�x�
�

A�

x� �
�

A�

�x� ���
� � � �� Ak

�x� ��k
�

B�

x� �
�

B�

�x� ���
� � � �� Bl

�x� ��l

�
C�x � D�

x� � px � q
�

C�x � D�

�x� � px � q��
� � � �� Cmx � Dm

�x� � px � q�m

�
E�x � F�

x� � p�x � q�
�

E�x � F�

�x� � p�x � q���
� � � �� Enx � Fn

�x� � p�x � q��n
� ����b�

b� We calculate the constants by the method of undetermined coe�cients�

c� We integrate the expression
Cmx � Dm

�x� � px � q�m
for m �  in the following steps�

�� We transform the numerator into the form

Cmx � Dm �
Cm

�
��x � p� �

�
Dm � Cmp

�

�
� ����c�

�� We decompose the integrand into the sum of two summands� where the �rst one can be integrated
directly�Z

Cm

�

��x � p� dx

�x� � px � q�m
� � Cm

��m� �



�x� � px � q�m��
� ����d�

�� The second one will be integrated by the following recursion formula� not considering its coe�cient�Z dx

�x� � px � q�m
�

x � p��

��m� � �q � p���� �x� � px � q�m��

�
�m� �

��m� � �q � p����

Z dx

�x� � px � q�m��
� ����e�

I �
Z �x� � �x � �

�x� ���x� � ��
dx �

�x� � �x � �

�x� ���x� � ��
�

A

x� �
�

C�x � D�

x� � 
�

C�x � D�

�x� � ��
�

The method of undetermined coe�cients results in the following system of equations�
A�C� � �� ��C��D� � �� �A�C���D��C� � �� ��C��D���C��D� � �� A��D���D� � ��
the coe�cients are A � � C� � �� D� � ��� C� � ��� D� � ���

I �
Z � 

x� �
� x � �

x� � 
� �x � �

�x� � ��

�
dx�
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According to ����e� we get
Z dx

�x� � ��
�

x

��x� � �
�



�

Z dx

x� � 
�

x

��x� � �
�



�
arctanx� and

�nally the result is I �
�� �x

��x� � �
�



�
ln

�x� ���

x� � 
� � arctanx � C�

Table ��� Substitutions for integration of irrational functions I

Integral � Substitution

Z
R

�
x� n

r
ax � b
cx � e

�
dx n

r
ax � b
cx � e � tZ

R

�
x� n

r
ax � b
cx � e �

m

r
ax � b
cx � e

�
dx r

r
ax � b
cx � e � t

where r is the lowest common multiple
of the numbers m�n� � � � �Z

R
�
x�
p
ax� � bx � c

	
dx� One of the three Euler substitutions�

� For a � � y p
ax� � bx � c � t�pax

�� For c � �
p

ax� � bx � c � xt �
p
c

�� If the the polynomial ax� � bx � c
has di�erent real roots�

ax� � bx � c � a�x� ���x� ��
p

ax� � bx � c � t�x� ��

� The symbol R denotes a rational function of the expressions in parentheses�
The numbers n�m� � � � are integers�
y If a � �� and the polynomial ax� � bx � c has complex roots� then the integrand is not de�ned
for any value of x� since

p
ax� � bx � c is imaginary for every real value of x� In this case the in�

tegral is meaningless�

	���� Integration of Irrational Functions

������� Substitution to Reduce to Integration of Rational Functions

Irrational functions cannot always be integrated in an elementary way� Table ��� contains a wide
collection of integrals of irrational functions� In the simplest cases we can introduce substitutions� as
in Table ��� such that the integral can be reduced to an integral of a rational function�

The integral
Z

R �x�
p
ax� � bx � c� dx can be reduced to one of the following three formsZ

R �x�
p
x� � ��� dx� ����a�

Z
R �x�

p
x� � ��� dx� ����b�

Z
R �x�

p
�� � x�� dx� ����c�

because the quadratic polynomial ax� � bx � c can always be written as the sum or as the di�erence of
two complete squares� Then� we can use the substitutions given in Table ���

A� �x���x�� � �
�
x� � �x � � �



�

�
� �

�
�x � ��� �

�


�

��
� �

�
x�� �

�


�

��
with x� � x���
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B� x� � �x �  � x� � �x �
�

�
� �

�
�
�
x �

�

�

��
�
�p

�

�

��
� x�� �

�p
�

�

��
with x� � x �

�

�
�

C� �x� � �x � � x� � �x�  � � � �x� �� � � � x�� with x� � x� �

Tabelle ��� Substitutions for integration of irrational functions II

Integral SubstitutionZ
R
�
x�
p

x� � ��
	
dx x � � sinh t or x � � tan tZ

R
�
x�
p
x� � ��

	
dx x � � cosh t or x � � sec tZ

R
�
x�
p
�� � x�

	
dx x � � sin t or x � � cos t

������� Integration of Binomial Integrands
An expression of the form

xm�a � bxn�p �����

is called a binomial integrand� where a and b are arbitrary real numbers� and m�n� p are arbitrary pos�
itive or negative rational numbers� The theorem of Chebyshev tells that the integralZ

xm�a � bxn�p dx ������

can be expressed by elementary functions only in the following three cases�

Case �� If p is an integer� then the expression �a� bxn�p can be expanded by the binomial theorem� so
the integrand after eliminating the parentheses will be a sum of terms in the form cxk� which are easy
to integrate�

Case �� If
m � 

n
is an integer� then the integral ������ can be reduced to the integral of a rational

function by substituting t � r
p
a � bxn� where r is the denominator of the fraction p�

Case �� If
m � 

n
� p is an integer� then the integral ������ can be reduced to the integral of a rational

function by substituting t � r

s
a � bxn

xn
� where r is the denominator of the fraction p�

A�
Z �
q

 � �
p
xp

x
dx �

Z
x����

�
 � x���

	���
dx� m � �

�
� n �



�
� p �



�
�

m � 

n
� � � �Case ���

Substitution t � �
q

 � �
p
x� x � �t� � ��� dx � �t��t� � ��dt�

Z �
q

 � �
p
xp

x
dx � �

Z
�t	 � t�� dt

�
�

�
t���t� � �� � C�

B�
Z

x� dx
�
p

 � x�
�
Z

x�� � x������ � m � �� n � �� p � �

�
�

m � 

n
�

�

�
�

m � 

n
� p �

�

�
�

Because none of the three conditions is ful�lled� the integral is not an elementary function�
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������� Elliptic Integrals

�� Inde�nite Elliptic Integrals
Elliptic integrals are integrals of the formZ

R �x�
p
ax� � bx� � cx � e� dx�

Z
R �x�

q
ax� � bx� � cx� � ex � f� dx� �����

Usually they cannot be expressed by elementary functions� if it is still possible� the integral is called
pseudoelliptic� The name of this type of integral originates from the fact that the �rst application of
them was to calculate the perimeter of the ellipse �see �������� �� p� ����� The inverses of elliptic inte�
grals are the elliptic functions �see ����� p� ����� Integrals of the types ������ which are not integrable
in elementary terms� can be reduced by a sequence of transformations into elementary functions and
integrals of the following three types �see  ��!�  ���!�  ���!��Z

dtq
�� t���� k�t��

�� � k � �� �����a�
Z �� k�t�� dtq

�� t���� k�t��
�� � k � �� �����b�

Z dt

� � nt��
q

�� t���� k�t��
�� � k � �� �����c�

Concerning the parameter n in �����c� one has to distinguish certain cases �see  ��!��

By the substitution t � sin�
�

� � � �
�

�

�
the integrals �����a�b�c� can be transformed into the

Legendre form�

Elliptic Integral of the First Kind�
Z

d�q
� k� sin� �

� �����a�

Elliptic Integral of the Second Kind�
Z q

� k� sin� �d�� �����b�

Elliptic Integral of the Third Kind�
Z d�

� � n sin� ��
q

� k� sin� �
� �����c�

�� De�nite Elliptic Integrals
De�nite integrals with zero as the lower bound corresponding to the inde�nite elliptic integrals are de�
noted by

�Z
�

d�q
� k� sin� �

� F �k� ��� �����a�

�Z
�

q
� k� sin� � d� � E�k� ��� �����b�

�Z
�

d�

� � n sin� ��
q

� k� sin� �
� +�n� k� �� �for all three integrals � � k �  holds�� �����c�

We call these integrals incomplete elliptic integrals of the �rst� second� and third kind for � �
�

�
� The

�rst two integrals are called complete elliptic integrals� and we denote them by

K � F
�
k�

�

�

�
�

�
�Z
�

d�q
� k� sin� �

� �����a�
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E � E
�
k�

�

�

�
�

�
�Z
�

q
� k� sin� � d�� �����b�

Tables ��
�� �� � contain the values for incomplete and complete elliptic integrals of the �rst and
second kind F�E and also K and E�

The calculation of the perimeter of the ellipse leads to a complete elliptic integral of the second kind
as a function of the numerical eccentricity e �see �������� �� p� ����� For a � ��� b �  it follows
that e � ����� Since e � k � ���� holds� we get from Table ��
�� sin� � ����� i�e�� � � ��� and

E�k�
�

�
� � E������ � ���� It follows that U � �aE������ � �aE�� � ���� � � � ���a � �����

Calculation with the approximation formula ������c� yields �����

	���� Integration of Trigonometric Functions

������� Substitution
With the substitution

t � tan
x

�
� i�e�� dx �

� dt

 � t�
� sinx �

�t

 � t�
� cos x �

� t�

 � t�
� ������

an integral of the formZ
R �sinx� cos x� dx ������

can be transformed into an integral of a rational function� where R denotes a rational function of its
arguments�

Z  � sin x

sin x� � cos x�
dx �

Z �
 �

�t

 � t�

�
�

 � t�

�t

 � t�

�
 �

� t�

 � t�

� dt �


�

Z �
t � � �



t

�
dt �

t�

�
� t �



�
ln t � C

�
tan�

x

�
�

� tan
x

�
�



�
ln tan

x

�
� C� In some special cases we can apply simpler substitutions� If the

integrand in ������ contains only odd powers of the functions sin x and cos x� then by the substitution
t � tan x a rational function can be obtained in a simpler way�

������� Simpli�edMethods

Case ��
Z

R �sin x� cos x dx� Substitution t � sin x� cos x dx � dt � ������

Case ��
Z

R �cos x� sin x dx� Substitution t � cos x� sin x dx � �dt� ������

Case ��
Z

sinn x dx � �����a�

a� n � �m � � odd�Z
sinn x dx �

Z
�� cos� x�m sinx dx � �

Z
�� t��m dt with t � cos x� �����b�

b� n � �m� even�Z
sinn x dx �

Z 


�
�� cos �x�

�m
dx �



�m��

Z
�� cos t�m dt with t � �x� �����c�
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We halve the power in this way� After removing the parentheses in �� cos t�m we integrate term�by�
term�

Case ��
Z

cosn x dx � ����a�

a� n � �m � � odd�Z
cosn x dx �

Z
�� sin� x�m cos x dx �

Z
�� t��m dt with t � sin x� ����b�

b� n � �m� even�Z
cosn x dx �

Z 


�
� � cos �x�

�m
dx �



�m��

Z
� � cos t�m dt with t � �x� ����c�

We halve the power in this way� After removing the parentheses we integrate term�by�term�

Case ��
Z

sinn x cosm x dx � �����a�

a� One of the numbers m or n is odd� We reduce it to the cases  or ��

A�
Z

sin� x cos� x dx �
Z

sin� x �� sin� x�� cos x dx �
Z

t��� t��� dt with t � sinx�

B�
Z

sin xp
cos x

dx � �
Z

dtp
t

with t � cos x�

b� The numbers m and n are both even� we reduce it to the cases � or � by halving the powers using
the trigonometric formulas

sinx cos x �
sin �x

�
� sin� x �

� cos �x

�
� cos� x �

 � cos �x

�
� �����b�Z

sin� x cos� x dx �
Z

�sinx cos x�� cos� x dx �


�

Z
sin� �x� � cos �x� dx �



�

Z
sin� �x cos �x dx �



�

Z
�� cos �x� dx �



��
sin� �x �



�
x� 

��
sin �x � C �

Case ��
Z

tann x dx �
Z

tann�� x�sec� x� � dx �
Z

tann�� x �tanx�� dx�
Z

tann�� x dx

�
tann�� x
n� 

�
Z

tann�� x dx� �����a�

By repeating this process we decrease the power and depending on whether n is even or odd we �nally
get the integralZ

dx � x or
Z

tan x dx � � ln cos x �����b�

respectively�

Case ��
Z

cotn x dx� ������

The solution is similar to case ��

Remark� Table ���� p� ��� contains several integrals with trigonometric functions�

	���� Integration of FurtherTranscendental Functions

������� Integrals with Exponential Functions
Integrals with exponential functions can be reduced to integrals of rational functions if it is given in the
form Z

R �emx� enx� � � � � epx� dx� �����a�
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where m�n� � � � � p are rational numbers� We need two substitutions to calculate the integral�

� Substitution of t � ex results in an integralZ 

t
R �tm� tn� � � � � tp� dt� �����b�

� Substitution of z � r
p
t� where r is the loweest common multiple of the denominators of the fractions

m�n� � � � � p� results in an integral of a rational function�

������� Integrals with Hyperbolic Functions
Integrals with hyperbolic functions� i�e�� containing the functions sinh x� cosh x� tanhx and coth x in
the integrand� can be calculated as integrals with exponential functions� if the hyperbolic functions

are replaced by the corresponding exponential functions� The most often occurring cases
Z

sinhn x dx �Z
coshn x dx �

Z
sinhn x coshm x dx can be integrated in a similar way to the trigonometric functions

�see ����� � p� �����

������� Application of Integration by Parts
If the integrand is a logarithm� inverse trigonometric function� inverse hyperbolic function or a product
of xm with lnx� eax� sin ax or cos ax or their inverses� then the solution can be got by a single or
repeated integration by parts�
In some cases the repeated partial integration results in an integral of the same type as the original
integral� In this case we have to solve an algebraic equation with respect to this expression� We can

calculate in this way� e�g�� the integrals
Z

eax cos bx dx�
Z

eax sin bx dx� where we need integration by

parts twice� We choose the same type of function for the factor u in both steps� either the exponential
or the trigonometric function�

We also use integration by parts if we have integrals in the forms
Z

P �x�eax dx�
Z

P �x� sin bx dx andZ
P �x� cos bx dx� where P �x� is a polynomial� �Choosing u � P �x� the degree of the polynomial will

be decreased at every step��

������� Integrals of Transcendental Functions
The Table ���� p� ���� contains many integrals of transcendental functions�

��� De�nite Integrals

	���� BasicNotions� Rules andTheorems

������� De�nition and Existence of the De�nite Integral

�� De�nition of the De�nite Integral
The de�nite integral of a bounded function y � f �x� de�ned on a �nite closed interval  a� b! is a number�
which is de�ned as a limit of a sum� where either a � b can hold �case A� or a � b can hold �case B��

In a generalization of the notion of the de�nite integral �see ������ p� ���� we will consider functions
de�ned on an arbitrary connected domain of the real line� e�g�� on an open or half�open interval� on
a half�axis or on the whole numerical axis� or on a domain which is only piecewise connected� i�e��
everywhere� except �nitely many points� These types of integrals belong to improper integrals �see
������ �� p� �����

�� De�nite Integral as the Limit of a Sum
We get the limit� leading to the notion of the de�nite integral� by the following procedure �see Fig ���
�����
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� Step� The interval  a� b! is decomposed into n subintervals by the choice of n �  arbitrary points
x�� x�� � � � � xn�� so that one of the following cases occurs�

a � x� � x� � x� � � � � � xi � � � � � xn�� � xn � b �case A� or �����a�

a � x� � x� � x� � � � � � xi � � � � � xn�� � xn � b �case B�� �����b�

� Step� A point �i is chosen in the inside or on the boundary of each subinterval as in Fig ���

xi�� � �i � xi �in case A� or xi�� 	 �i 	 xi �in case B�� �����c�

a=x0 x1 x2 x3

b=xn xn-1 xl xl-1

∆xn-1 ∆xl-1

∆x2∆x1∆x0

-

-

8
8

ξ2ξ1 ξ3

ξn ξl

∆xl-1 ∆xn-1

xl-1 xl xn-1 x =bn

x3 x2

∆x2

x1

∆x1

x =a0

∆x0

ξl ξn

ξ3 ξ1ξ2

8
8

(A)

(B)

Figure ���

� Step� The value f ��i� of the function f �x� at the chosen point is multiplied by the corresponding
di�erence %xi�� � xi � xi��� i�e�� by the length of the subinterval taken with a positive sign in case A
and taken with negative sign in case B� This step is represented in Fig ��� p ��� for the case A�

� Step� Then all the n products f ��i� %xi�� are added�

� Step� The limit of the obtained integral approximation sum or Riemann sum

nX
i��

f ��i� %xi�� ������

is calculated if the length of each subinterval %xi�� tends to zero and consequently their number n
tends to�� Based on this� we can also denote %xi�� as an in�nitesimal quantity�

If this limit exists independently of the choice of the numbers xi and �i� then it is called the de�nite
Riemann integral of the considered function on the given interval� We write

bZ
a

f �x� dx � lim
�xi����
n��

nX
i��

f ��i� %xi��� ������

The endpoints of the interval are called limits of integration and the interval  a� b! is the integration
interval � a is the lower limit� b is the upper limit of integration� x is called the integration variable and
f�x� is called the integrand�

�� Existence of the De�nite Integral
The de�nite integral of a continuous function on  a� b! is always de�ned� i�e�� the limit ������ always
exists and is independent of the choice of the numbers xi and �i� Also for a bounded function having
only a �nite number of discontinuities on the interval  a� b! the de�nite integral exists� The function
whose de�nite integral exists on a given interval is called an integrable function on this interval�

������� Properties of De�nite Integrals

The most important properties of de�nite integrals explained in the following are enumerated in Ta�
ble ��� p� ����
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�� Fundamental Theorem of Integral Calculus
If the integrand f�x� is continuous on the interval  a� b!� and F �x� is a primitive function� then

bZ
a

f �x� dx �

bZ
a

F ��x� dx � F �x�
���b
a

� F �b�� F �a� ������

holds� i�e�� the calculation of a de�nite integral is reduced to the calculation of the corresponding indef�
inite integral� to the determination of the antiderivative�

F �x� �
Z

f �x� dx � C� ������

Remark� There are integrable functions which do not have any primitive function� but we will see
that� if a function is continuous� it has a primitive function�

�� Geometric Interpretation and Rule of Signs

� Area under a Curve For all x in  a� b! let f �x� 	 �� Then the sum ������ can be considered as the
total area of the rectangles �Fig ���� p ���� which approximate the area under the curve y � f �x��
Therefore the limit of this sum and together with it the de�nite integral is equal to the area of the region
A� which is bounded by the curve y � f �x�� the x�axis� and the parallel lines x � a and x � b�

A �

bZ
a

f �x� dx �a � b and f �x� 	 � for a � x � b�� �����

� Sign Rule If a function y � f�x� is piecewise positive or negative in the integration interval
�Fig ���� then the integrals over the corresponding subintervals� that is� the area parts� have pos�
itive or negative values� so the integration over the total interval yields the sum of signed areas�
In Fig ��a�d four cases are represented with the di�erent possibilities of the sign of the area�

y

0 xa b
f(x)>0, a<b

+

a�

y

0 xb a

−

f(x)>0, a>b

b�

y

0

xa b

f(x)<0, a<b

�

c�

y

0

xb a

+

f(x)<0, a>b

d�

Figure ���

A�
Z x��

x��
sin x dx �read� Integral from x � � to x � �� � �� cos xj�� � �� cos � � cos �� � ��

B�
Z x���

�
sinx dx �read� Integral from x � � to x � ��� � �� cos j��� � �� cos �� � cos �� � ��

�� Variable Upper Limit

� Particular Integral If we consider the area depending on the upper limit as its variable �Fig ���
region ABCD�� then we have an area function in the form

S�x� �

xZ
a

f�t� dt �f�x� 	 � for x 	 a�� ������

We call this integral a particular integral�
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To avoid accidently confusing the variable upper limit x with the variable of the integrand� often the
integration variable is denoted by t instead of x as in �������

� Di	erentiationof theDe�nite IntegralwithRespect to theUpper Limit A de�nite integral

with a variable upper limit
Z x

a
f�t� dt� if this integral exists� is a continuous function F �x� of the upper

limit� If f�x� is continuous� then F �x� is di�erentiable with respect to x� i�e�� it is a primitive function
of the integrand� So� if f�x� is continuous on  a� b!� and x � �a� b��

F ��x� � f�x� or
d

dx

xZ
a

f�t� dt � f�x�� ������

The geometrical meaning of this theorem is that the derivative of the variable area S�x� is equal to the
length of the segment NM �Fig ���� Here� the area� just as the length of the segment� is considered
according to the sign rule �Fig ����

�� Decomposition of the Integration Interval

The interval of integration  a� b! can be decomposed into subintervals� The value of the de�nite integral
over the complete interval is

bZ
a

f�x� dx �

cZ
a

f�x� dx �

bZ
c

f�x� dx� ������

This is called the interval rule� If the integrand has �nitely many jumps� then the interval can be
decomposed into subintervals such that on these subintervals the integrand will already be continuous�
Then the integral can be calculated according to the above formula as the sum of the integrals on the
subintervals�
At the endpoints of the subintervals the function must be de�ned by its corresponding left or right�sided
limit� if it exists� If it does not� then the integral is an improper integral �see �������� �� p� ����

Remark� The formula above is valid also in the case if c is outside of the interval  a� b! if we suppose
that the integrals on the right�hand side exist�

������� Further Theorems about the Limits of Integration

�� Independence of the Notation of the Integration Variable

The value of a de�nite integral is independent of the notation of the integration variable�

bZ
a

f�x� dx �

bZ
a

f�u� du �

bZ
a

f�t� dt� ������
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Table ��� Important properties of de�nite integrals

Property Formula

Fundamental theorem of
the integral calculus
�f�x� is continuous�

bZ
a

f�x� dx � F �x�
���b
a

� F �b�� F �a� with

F �x� �
Z

f�x� dx � C or F ��x� � f�x�

Interchange rule

bZ
a

f�x� dx � �
aZ
b

f�x� dx

Equal integration limits

aZ
a

f�x� dx � �

Interval rule

bZ
a

f�x� dx �

cZ
a

f�x� dx �

bZ
c

f�x� dx

Independence of the notation
of the integration variable

bZ
a

f�x� dx �

bZ
a

f�u� du �

bZ
a

f�t� dt

Di�erentiation with respect to
the upper limit

d

dx

xZ
a

f�t� dt � f�x� with f�x� continuous

Mean value theorem
of the integral calculus

bZ
a

f�x� dx � �b� a�f��� �a � � � b�

�� Equal Integration Limits
If the lower and upper limits are equal� then the value of the integral is equal to zero�

aZ
a

f�x� dx � �� ������

�� Interchange of the Integration Limits
After interchanging the limits� the integral changes the sign �interchange rule��

bZ
a

f�x� dx � �
aZ
b

f�x� dx� ������

�� Mean Value Theorem andMean Value

� Mean Value Theorem If a function f�x� is continuous on the interval  a� b!� then there is at least
one value � in this interval such that in the case A with a � � � b and in the case B with a � � � b �see
������ �� p� ���

bZ
a

f�x� dx � �b� a�f��� ������

is valid�

The geometric meaning of this theorem is that between the points a and b there exists at least one point
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� such that the area of the �gure ABCD is equal to the area of the rectangle AB�C �D in Fig ��� The
value

m �


b� a

bZ
a

f�x� dx ������

is called the mean value or the arithmetic average of the function f�x� in the interval  a� b! �

� GeneralizedMean Value Theorem If the functions f�x� and ��x� are continuous on the closed
interval  a� b!� and ��x� does not change its sign in this interval� then there exists at least one point �
such that

bZ
a

f�x���x� dx � f���

bZ
a

��x� dx �a � � � b� ������

is valid�

�� Estimation of the De�nite Integral

The value of a de�nite integral lies between the values of the products
of the in�mumm and the supremum M of the function on the interval
 a� b! multiplied by the length of the interval�

m�b� a� �
bZ
a

f�x� dx � M�b� a�� �����

If f is continuous� then m is the minimum and M is the maximum of
the function� It is easy to recognize the geometrical interpretation of
this theorem in Fig �
�

y

0

m

xa b

M

Figure ���

������� Evaluation of the De�nite Integral

�� Principal Method
The principal method of calculating a de�nite integral is based on the fundamental theorem of integral
calculus� i�e�� the calculation of the inde�nite integral �see ������� �� p� ����� e�g�� using Table ����
Before substituting the limits we have to check if we have an improper integral�

Nowadays we have computer algebra systems to determine analytically inde�nite and de�nite integrals
�see Chapter ����

�� Transformation of De�nite Integrals
In many cases� de�nite integrals can be calculated by appropriate transformations� with the help of the
substitution method or partial integration�

A� Use the substitution method for I �
Z a

�

p
a� � x� dx�

First we substitute� x � ��t� � a sin t� t � ��x� � arcsin
x

a
� ���� � �� ��a� �

�

�
� We get�

I �
Z a

�

p
a� � x� dx �

Z arcsin �

arcsin �
a�
q

� sin� t cos t dt � a�
Z ���

�
cos� t dt � a�

Z ���

�



�
� � cos �t� dt�

With the further substitution t � ��z� �
z

�
� z � ��t� � �t� ���� � �� �

�
�

�

�
� � we get�

I �
a�

�
tj

�
�
� �

a�

�

Z �

�
cos z dz �

�a�

�
�

a�

�
sin zj�� �

�a�

�
�

B� Method of partial integration�
Z �

�
x ex dx � xex

����
�
�
Z �

�
ex dx � e� �e� � � �
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�� Method for Calculation of More Di�cult Integrals
If the determination of an inde�nite integral is too di�cult and complicated� or it is not possible to
express it in terms of elementary functions� then there are still some further ideas to determine the
value of the integral in several cases� Here� we mention integration of functions with complex variables
�see the examples on p� �������� or the theorem about the di�erentiation of an integral with respect
to a parameter �see ������ p� �����

d

dt

bZ
a

f�x� t� dx �

bZ
a

� f�x� t�

� t
dx� ������

I �
Z �

�

x� 

lnx
dx� Introducing the parameter t� F �t� �

Z �

�

xt � 

lnx
dx� F ��� � �� F �� � I�

Using ������ for F �t��
dF

d t
�
Z �

�

�

� t

�
xt � 

lnx


dx �

Z �

�

xt lnx

lnx
dx �

Z �

�
xt dx �



t � 
xt��

����
�

�


t � 
�

Integration� F �t�� F ��� �
Z t

�

d t

t � 
� ln�t � �

���t
�

� ln�t � �� Result� I � F �� � ln ��

�� Integration by Series Expansion
If the integrand f�x� can be expanded into a uniformly convergent series

f�x� � ���x� � ���x� � � � �� �n�x� � � � � ������

in the integration interval  a� b!� then the integral can be written in the formZ
f�x� dx �

Z
���x� dx �

Z
���x� dx � � � ��

Z
�n�x� dx � � � � � ������

In this way the de�nite integral can be represented as a convergent numerical series�

bZ
a

f�x� dx �

bZ
a

���x� dx �

bZ
a

���x� dx � � � ��
bZ
a

�n�x� dx � � � � � ������

When the functions �k�x� are easy to integrate� if� e�g�� f�x� can be expanded in a power series� which

is uniformly convergent in the interval  a� b!� then the integral
Z b

a
f�x� dx can be calculated to arbitrary

accuracy�

Calculate the integral I �
Z ���

�
e�x� dx with an accuracy of ������ The series e�x

�
�  � x�

$ �

x�
�$ �

x	
�$ � x


�$ � � � � is uniformly convergent in any �nite interval according to the Abel theorem �see

������� p� ���� so
Z

e�x� dx � x

�
� x�

$ � � �
x�

�$ � � �
x	

�$ � � �
x


�$ � � � � � �
�

holds� With this result it

follows that I �
Z ���

�
e�x� dx � 

�

�
� 

�� � $ � � � 
�� � �$ � � �


�	 � �$ � � � 

�
 � �$ � � � � � �
�

� 
�

�
� 

� � 
�� � 

���� � 
����� � � � �

	
� To achieve the accuracy ����� for the calculation of the

integral it is enough to consider the �rst four terms� according to the theorem of Leibniz about alter�
nating series �see �������� �� p� ����

I 
 
��� ������� � �������� �������� � 

� � ������� � �������
Z ���

�
e�x� dx � ������

�� Graphical Integration
Graphical integration is a graphical method to integrate a function y � f�x� which is given by a curve

AB �Fig ����� i�e�� to calculate graphically the integral
Z b

a
f�x� dx� the area of the region M�ABN �
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� The interval M�N is divided by the points
x���� x�� x���� x�� � � � � xn��� xn���� into �n equal parts� where the
result is more accurate if there are more points of division�
� At the points of division x���� x���� � � � � xn���� we draw vertical
lines intersecting the curve� The ordinate values of the segments
are denoted on the y�axis by OA�� OA�� � � � � OAn�
� A segment OP of arbitrary length is placed on the negative
x�axis� and P is connected with the points A�� A�� � � � � An�
� Through the point M� a line segment is drawn parallel to PA�

to the intersection point with the line x � x�� this is the segment
M�M�� Through the point M� the segment M�M� is drawn paral�
lel to PA� to the intersection with the line x � x�� etc�� until the
last point Mn is reached with the abscissa xn�
The integral is numerically equal to the product of the length of
OP and the length of NMn�

bZ
a

f�x� dx � OP �NMn� ������

By a suitable choice of the arbitrary segment OP the shape of our result can be in�uenced� the smaller

the graph we want� the longer we should choose the segment OP � If OP � � then
Z b

a
f�x� dx � NMn�

and the broken line M��M��M�� � � � �Mn represents approximately the graph of a primitive function of

f�x�� i�e�� one of the functions given by the inde�nite integral
Z

f�x� dx�

� Planimeter and Integraph
A planimeter is a tool to �nd the area bounded by a closed plane curve� thus also to compute a de�nite
integral of a function y � f�x� given by the curve� Special types of planimeters can evaluate not onlyZ

y dx� but also
Z

y� dx and
Z

y� dx�

An integraph is a device which can be used to draw the graph of a primitive function Y �
Z x

a
f�t� dt if

the graph of a function y � f�x� is given �see  ����!��

�� Numerical Integration
If the integrand of a de�nite integral is too complicated� or the corresponding inde�nite integral cannot
be expressed by elementary functions� or we have the values of the function only at discrete points� e�g��
from a table of values� then we use the so�called quadrature formulas or other methods of numerical
mathematics �see ����� p� �����

	���� Application ofDe
nite Integrals

������� General Principles for Application of the De�nite Integral
� We decompose the quantity we want to calculate into a large number of very small quantities� i�e��
into in�nitesimal quantities�

A � a� � a� � � � �� an� ������

� We replace every one of these in�nitesimal quantities ai by a quantity 'ai� which di�ers only very
slightly in value from ai� but which can be integrated by known formulas� Here the error �i � ai � 'ai
should be an in�nitesimal quantity of higher order than ai and 'ai�
� We express 'ai by a variable x and a function f�x� so that 'ai has the form f�xi� %xi�
� We evaluate the desired quantity as the limit of the sum
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A � lim
n��

nX
i��

'ai � lim
n��

nX
i��

f�xi�%xi �

bZ
a

f�x� dx� ������

where %xi 	 � holds for every i� The lower and upper limit for x is denoted by a and b�

We evaluate the volume V of a pyramid with base area S and height H �Fig ���a�c��

a� We decompose the required volume V by plane sections into frustums �Fig ���a�� V � v� � v� �
� � �� vn�

b�We replace every frustum by a prism� whose volume is 'vi� with the same height and with a base area
of the top base of the frustum �Fig ���b�� The di�erence of their volumes is an in�nitesimal quantity
of higher order than vi�

h
i

H

�hi

S

Si

a) b) c)

Figure ��

c� We represent the volume 'vi in the form 'vi � Si %hi �
where hi �Fig ���c� is the distance of the top surface
from the vertex of the pyramid� Since Si � S � h�i � H�

we can write� 'vi �
Sh�i
H� %hi �

d� We calculate the limit of the sum

V � lim
n��

nX
i��

'vi � lim
n��

nX
i��

Sh�i
H� %hi �

HZ
�

Sh�

H� dh �
SH

�
�

������� Applications in Geometry

�� Area of Planar Figures

� Area of a Curvilinear Trapezoid Between B and C �Fig ���a� if the curve is given by an
equation in explicit form �y � f�x� and a � x � b� or in parametric form �x � x�t�� y � y�t�� t� �
t � t���

SABCD �

bZ
a

f�x� dx �

t�Z
t�

y�t�x��t� dt� �����a�

� Area of a Curvilinear Trapezoid Between G and H �Fig ���b� if the curve is given by an
equation in explicit form �x � g�y� and � � y � �� or in parametric form �x � x�t�� y � y�t�� t� �
t � t���

SEFGH �

	Z
�

g�y� dy �

t�Z
t�

x�t�y��t� dt� �����b�

� Area of a Curvilinear Sector �Fig ���c�� bounded by a curve between K and L� which is
given by an equation in polar coordinates �� � ����� �� � � � ����

SOKL �


�

��Z
��

�� d�� �����c�

Areas of more complicated �gures can be calculated by partition of the area into simple parts� or by
line integrals �see ���� p� ���� or by double integrals �see ����� p� ����
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�� Arclength of Plane Curves

� Arclength of a Curve Between Two Points �I� A and B� given in explicit form �y � f�x� or
x � g�y�� or in parametric form �x � x�t�� y � y�t�� �Fig ���a� can be calculated by the integrals�

L�
AB

�

bZ
a

q
 �  f ��x�!� dx �

	Z
�

q
 g��y�!� �  dy �

t�Z
t�

q
 x��t�!� �  y��t�!� dt� �����a�

With the di�erential of the arclength dl we get

L �
Z

dl with dl� � dx� � dy�� �����b�

The perimeter of the ellipse with the help of �����a�� With the substitutions x � x�t� � a sin t� y �

y�t� � b cos t we getL�
AB

�
Z t�

t�

q
a� � �a� � b�� sin� t dt � a

Z t�

t�

q
� e� sin� t dt� where e �

p
a� � b��a

is the numerical eccentricity of the ellipse�
Since x � �� y � b and x � a� y � �� the limits of the integral in the �rst quadrant are L�

AB
�

�a
Z ���

�

q
� e� sin� t dt � aE�k�

�

�
� with k � e� The value of the integral E�k�

�

�
� is given in Ta�

ble ��
 �see example on p� �����

� Arclength of a Curve Between Two Points �II� C and D� given in polar coordinates �� �
����� �Fig ���b��

L�
CD

�

��Z
��

vuut�� �

�
d�

d�

��
d�� �����c�

With the di�erential of the arclength dl we get

L �
Z

dl with dl� � ��d�� � d��� �����d�

�� Surface Area of a Body of Revolution �see also First Guldin Rule� p� ����

� The area of the surface of a body given by rotating the graph of the function y � f�x� around the
x�axis �Fig ���a� is�

S � ��

bZ
a

y dl � ��

bZ
a

y�x�

vuut �

�
dy

dx

��
dx� ����a�
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� The area of the surface of a body given by rotating x � f�y� around the y�axis �Fig ���b� is�

S � ��

	Z
�

x dl � ��

	Z
�

x�y�

vuut �

�
dx

dy

��
dy� ����b�

To calculate the area of more complicated surfaces see the application of double integrals in �������
p� ��� and the application of surface integrals of the �rst kind� ������� p� ���� General formulas for
the calculation of surface areas with double integrals are given in Table �
 �Application of double
integrals�� p� ����

�� Volume �see also Second Guldin Rule� p� ���	
� The volume of a rotationally symmetric body given by a rotation around the x�axis �Fig ���a�
is�

V � �

bZ
a

y� dx� �����a�

� The volume of a rotationally symmetric body given by a rotation around the y�axis �Fig ���b�
is�

V � �

bZ
a

x� dy� �����b�

� The volume of a body� whose section perpendicular to the x�axis �Fig ���� has an area given by
the function S � f�x�� is�

V �

bZ
a

f�x� dx� ������



��� De�nite Integrals ���

General formulas to calculate volumes by multiple integrals are given in Table �
 �Applications of
double integrals� see p� ���� and Table ��� �Applications of triple integrals� see p� �����
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Figure ���
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������� Applications inMechanics and Physics

�� Distance Traveled by a Point
The distance traveled by a moving point during the time from t� until T with a time�dependent velocity
v � f�t� is

s �

TZ
t�

v dt� ������

�� Work
To determine the work in moving a body in a force �eld we suppose that the direction of the �eld and
the direction of the movement are constant and coincident� We de�ne the x�axis in this direction� If
the magnitude of the force �F is changing� i�e�� j�F j � f�x�� then we get for the work W necessary to
move the body from the point x � a to the point x � b along the x�axis�

W �

bZ
a

f�x� dx� ������

In the general case� when the direction of the force �eld and the direction of the movement are not
coincident� we calculate the work as a line integral �see ������� p� ���� of the scalar product of the
force and the variation of the position vector at every point of �r along the given path�

�� Pressure
In a �uid at rest with a density � we distinguish between gravitational pressure and lateral pressure�
This second one is exerted by the �uid on one side of a vertical plate immersed in the �uid� Both
depend on the depth�

� Gravitational Pressure The gravitational pressure ph at depth h is�

ph � � g h� ������

where g is the gravitational acceleration�

� Lateral Pressure The lateral pressure ps� e�g�� on the cover of a lateral opening of a container of
some �uid with the di�erence of depth h� � h� �Fig ���� is�

ps � � g

h�Z
h�

x y��x�� y��x�! dx� ������

The left and the right boundary of the cover is given by the functions y��x� and y��x��
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�� Moments of Inertia
� Moment of Inertia of an Arc The moment of inertia of a homogeneous curve segment y � f�x�
with constant density � in the interval  a� b! with respect to the y�axis �Fig ���a� is�

Iy � �

bZ
a

x� dl � �

bZ
a

x�
q

 � �y��� dx� ������

If the density is a function ��x�� then its analytic expression is in the integrand�

y

0 x

dl
x

a

b

a) b)

y

y

x

0 a bdx x

Figure ���

� Moment of Inertia of a Planar Figure The moment of inertia of a planar �gure with a ho�
mogeneous density � with respect to the y�axis� where y is the length of the cut parallel to the y�axis
�Fig ���b�� is�

Iy � �

bZ
a

x�y dx� ������

�See also Table ����� �Applications of line integral�� p� ����� If the density is position dependent�
then its analytic expression must be in the integrand�
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�� Center of Gravity� Guldin Rules
� Center of Gravity of an Arc Segment The center of gravity C of an arc segment of a homo�
geneous plane curve y � f�x� in the interval  a� b! with a length L �Fig ���a� considering �����a��
p� ���� has the coordinates�

xC �

bZ
a

x
q

 � y�� dx

L
� yC �

bZ
a

y
q

 � y�� dx

L
� ������

� Center of Gravity of a Closed Curve The center of gravity C of a closed curve y � f�x�
�Fig ���b� with the equations y� � f��x� for the upper part and y� � f��x� for the lower part� and
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with a length L has the coordinates�

xC �

bZ
a

x�
q

 � �y���� �
q

 � �y����� dx

L
� yC �

bZ
a

�y�
q

 � �y���� � y�
q

 � �y����� dx

L
� �����

� First Guldin Rule Suppose a plane curve segment is rotated around an axis which lies in the
plane of the curve and does not intersect the curve� We choose it as the x�axis� The surface area Srot of
the body generated by the rotated curve segment is the product of the perimeter of the circle drawn by
the centre of gravity at a distance yC from the axis of rotation� i�e�� ��yC � and the length of the curve
segment L�

Srot � L � ��yC� ������

� Center ofGravity of a Trapezoid The center of gravity C of a homogeneous trapezoid bounded
above by a curve segment between the points of the curve A and B �Fig ���c�� with an area S of the
trapezoid� and with the equation y � f�x� of the curve segment AB� has the coordinates�

xC �

bZ
a

x y dx

S
� yC �

�
�

bZ
a

y� dx

S
� ������

� Center of Gravity of an Arbitrary Planar Figure The center of gravity C of an arbitrary
planar �gure �Fig ���d� with area S� bounded above and below by the curve segments with the
equations y� � f��x� and y� � f��x�� has the coordinates

xC �

bZ
a

x�y� � y�� dx

S
� yC �



�

bZ
a

�y�� � y��� dx

S
� ������

Formulas to calculate the center of gravity with multiple integrals are given in Table �
 �Application
of double integrals� p� ���� and in Table ��� �Application of triple integrals� p� �����
� Second Guldin Rule Suppose a plane �gure is rotated around an axis which is in the plane of
the �gure and does not intersect it� We choose it as the x�axis� The volume V of the body generated by
the rotated �gure is equal to the product of the perimeter of the circle drawn by the center of gravity
under the rotation� i�e�� ��yC� and the area of the �gure S�

Vrot � S � ��yC � ������

	���� Improper Integrals� Stieltjes andLebesgue Integrals

������� Generalization of the Notion of the Integral
The notion of the de�nite integral �see ������ p� ����� as a Riemann integral �see ������ �� p� ���� was
introduced under the assumptions that the function f�x� is bounded� and the interval  a� b! is closed
and �nite� Both assumptions can be relaxed in the generalizations of the Riemann integral� In the
following we mention a few of them�

�� Improper Integrals
These are the generalization of the integral to unbounded functions and to unbounded intervals� We
discuss integrals with in�nite integration limits and integrals with unbounded integrands in the next
paragraph�

�� Stieltjes Integral for Functions of One Variable
We start from two �nite functions f�x� and g�x� de�ned on the �nite interval  a� b!� We make a partition
of the interval into subintervals� just as with the Riemann integral� but instead of the Riemann sum
������ we compose the sum
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nX
i��

f��i� g�xi�� g�xi���!� ������

If the limit of ������ exists� when the length of the subintervals tends to zero� and it is independent of
the choice of the points xi and �i� then this limit is called a de�nite Stieltjes integral �see  ���!��

For g�x� � x the Stieltjes integral becomes the Riemann integral�

�� Lebesgue Integral
Another generalization of the integral notion is connected with measure theory �see ���� p� ����� where
the measure of a set� measure spaces� and measurable functions are introduced� In functional analysis
the Lebesgue integral is de�ned �see �������� p� ���� based on these notions �see  ���!�� The generaliza�
tion with comparison to the Riemann integral is� e�g�� the domain of integration can be a rather general
subset of IRn and it is partitioned into measurable subsets�

There are di�erent notations for the generalizations of the integrals �see  ���!��

������� Integrals with In�nite Integration Limits

�� De�nitions
a� If the integration domain is the closed half�axis  a����� and if the integrand is de�ned there� then
the integral is by de�nition

��Z
a

f�x� dx � lim
B��

BZ
a

f�x� dx� ������

If the limit exists� then the integral is called a convergent improper integral� If the limit does not exist�
then the improper integral ������ is divergent�

b� If the domain of a function is the closed half�axis ���� b! or the whole real axis �������� then
we de�ne analogously the improper integrals

bZ
��

f�x� dx � lim
A���

bZ
A

f�x� dx� �����a�

��Z
��

f�x� dx � lim
A���
B��

BZ
A

f�x� dx� �����b�

c� At the limits of �����b� the numbers A and B tend to in�nity independently of each other� If the
limit �����b� does not exist� but the limit

lim
A��

�AZ
�A

f�x� dx� �����c�

exists� then this limit �����c� is called the principal value of the improper integral� or Cauchy�s principal
value�

Remark� An obviously necessary but not su�cient condition for the convergence of the integral ������
is lim

x�� f�x� � ��

�� GeometricalMeaning of Integrals with In�nite Limits
The integrals ������� �����a� and �����b� give the area of the �gures represented in Fig ��
�

A�
Z �

�

dx

x
� lim

B��

Z B

�

dx

x
� lim

B��
lnB �� �divergent��

B�
Z �

�

dx

x�
� lim

B��

Z B

�

dx

x�
� lim

B��

�


�
� 

B

�
�



�
�convergent��

C�
Z ��

��
dx

 � x�
� lim

A���
B���

Z B

A

dx

 � x�
� lim

A���
B���

 arctanB� arctanA! �
�

�
�
�
��

�

�
� � �convergent��
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�� Su�cient Criteria for Convergence
If the direct calculation of the limits ������� �����a� and �����b� is complicated� or if only the convergence
or divergence of an improper integral is the question� then one of the following su�cient criteria can be
used� Here� only the integral ������ is considered� The integral �����a� can be transformed into ������
by substitution of x by �x�

aZ
��

f�x� dx �

��Z
�a

f��x� dx� ������

The integral �����b� can be decomposed into the sum of two integrals of type ������ and �����a��

��Z
��

f�x� dx �

cZ
��

f�x� dx �

��Z
c

f�x� dx� ������

where c is an arbitrary number�

Criterion �� If f�x� is integrable on any �nite subinterval of  a��� and if the integral

��Z
a

j f�x� j dx �����

exists� then there exists also the integral ������� The integral ������ is in this case said to be absolutely
convergent� and the function f�x� is absolute integrable on the half�axis  a�����

Criterion �� If for the functions f�x� and ��x�

f�x� � �� ��x� � � and f�x� � ��x� for a � x � �� �����a�

hold� then from the convergence of the integral

��Z
a

��x� dx �����b� the convergence of the integral

��Z
a

f�x� dx �����c�
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follows� and conversely� from the divergence of the integral �����c� the divergence of the integral �����b�
follows�

Criterion �� If we substitute

��x� �


x�
� �����a�

and we consider that for a � �� � �  the integral
��Z
a

dx

x�
�



��� �a���
�a � �� � � � �����b�

is convergent and has the value of the right�hand side� and the integral of the left�hand side is divergent
for � � � then we can deduce a further convergence criterion from the second one�

If f�x� in a � x � � is a positive function� and there exists a number � �  such that for x large
enough

f�x� x� � k �� �k � �� const� �����c�

holds� then the integral ������ is convergent� if f�x� is positive and there exists a number � �  such
that

f�x� x� � c � � �c � �� const� �����d�

holds from a certain point� then the integral ������ is divergent�Z ��

�

x��� dx

 � x�
� If we substitute � �



�
� then we get

x���

 � x�
x��� �

x�

 � x�
 � The integral is

divergent�

�� Relations Between Improper Integrals and In�nite Series
If x�� x�� � � � � xn� � � � is an arbitrary� unlimited increasing in�nite sequence� i�e�� if

a � x� � x� � � � � � xn � � � � with lim
n���xn ��� �����a�

and if the function f�x� is positive for a � x � �� then the problem of convergence of the integral
������ can be reduced to the problem of convergence of the series

x�Z
a

f�x� dx �

x�Z
x�

f�x� dx � � � ��
xnZ

xn��

f�x� dx � � � � � �����b�

If the series �����b� is convergent� then the integral ������ is also convergent� and it is equal to the sum
of the series �����b�� If the series �����b� is divergent� then the integral ������ is also divergent� So
the convergence criteria for series can be used for improper integrals� and conversely� in the integral
criterion for series �see �������� p� ���� we use the improper integrals to investigate the convergence of
in�nite series�

������� Integrals with Unbounded Integrand

�� De�nitions
� RightOpen or Closed Interval For a function f�x�� which has a domain open on the right  a� b�
or a domain closed on the right  a� b!� but at the point b it has the limit lim

x�b��
f�x� � �� we have the

de�nition of the improper integral in both cases�
bZ
a

f�x� dx � lim
���

b��Z
a

f�x� dx� ������

If this limit exists and is �nite� then the improper integral ������ exists� and we call it a convergent
improper integral� If the limit does not exist or it is not �nite� then we call the integral a divergent
improper integral�
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� Left Open or Closed Interval For a function f�x�� which has a domain open on the left �a� b!
or a domain closed on the left  a� b!� but at the point a it has the limit lim

x�a��
f�x� � �� we de�ne the

improper integral analogously to ������� That is�

bZ
a

f�x� dx � lim
���

bZ
a��

f�x� dx� ������

� Two Half�Open Contiguous Intervals For a function f�x�� which is de�ned on the interval
 a� b! except at an interior point c with a � c � b� i�e�� for a function f�x� de�ned on the half�open
intervals  a� c� and �c� b!� or is de�ned on the interval  a� b!� but at the interior point c it has an in�nite
limit at least from one side lim

x�c��
f�x� �� or lim

x�c��
f�x� ��� the de�nition of the improper integral

is�

bZ
a

f�x� dx � lim
���

c��Z
a

f�x� dx � lim
���

bZ
c��

f�x� dx� �����a�

Here the numbers � and 	 tend to zero independently of each other� If the limit �����a� does not exist�
but the limit

lim
���

���
c��Z
a

f�x� dx �

bZ
c��

f�x� dx

 !" �����b�

does� then we call the limit �����b� the principal value of the improper integral or Cauchy�s principal
value�

�� GeometricalMeaning
The geometrical meaning of the integral of discontinuous functions ������� ������� and �����a� is to �nd
the area of the �gures bounded� e�g�� from one side by a vertical asymptote as represented in Fig����
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� Case ������� singular point at x � ��Z b

�
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x

� lim
���

Z b

�

dxp
x
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���

��
p
b� �

p
�� � �

p
b �convergent��

B�
Z ���

�
tan x dx � Case ������� singular point at x �

�

�
�Z ���

�
tan x dx � lim

���

Z �����

�
tanx dx � lim

���



ln cos �� ln cos

�
�

�
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�� �divergent��
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C�
Z 


��
dx
�
p
x

� Case �����a�� singular point at x � ��Z 


��
dx
�
p
x

� lim
���

Z ��

��
dx
�
p
x

� lim
���

Z 


�

dx
�
p
x

� lim
���

�

�
����� � � � lim

���

�

�
��� 	���� �

�

�
�convergent��

D�
Z �

��
�x dx

x� � 
� Case �����a�� singular point at x � � �Z �

��
�x dx

x� � 
� lim

���

Z ����

��
� lim

���
���

Z ���

����
� lim

���

Z �

���

� lim
���

ln�x� � �
��������� � � � � � lim

���
 ln� � �� � �� � �� ln �! � � � � �� �divergent��

�� The Application of the Fundamental Theorem of Integral Calculus
� Warning The calculation of improper integrals of type �����a� with the mechanical use of the
formula

bZ
a

f�x� dx � F �x�
���b
a

with F ��x� � f�x� ������

�see ������ p� ���� usually results in mistakes if the singular points in the interval  a� b! are not taken
into consideration�

E� Using formally the fundamental theorem we get for the example DZ �

��
�x dx

x� � 
� ln�x� � �

������ � ln �� ln � � ��

though this integral is divergent�
� General Rule The fundamental theorem of integral calculus can be used for �����a� only if the
primitive function of f�x� can be de�ned to be continuous at the singular point�

F� In the example D the function ln�x� � � is discontinuous at x � �� so the conditions are not

ful�lled� Consider the example C� The function y �
�

�
x��� is such a primitive function of


�
p
x

on the

intervals  a� �� and ��� b! which can be de�ned continuously at x � �� so the fundamental theorem can
be used in the example C�Z 


��
dx
�
p
x

�
�

�
x���

���
�� �
�

�
����� � ������� �

�

�
�

�� Su�cient Conditions for the Convergence of an Improper Integral with
Unbounded Integrand

� If the integral
Z b

a
jf�x�j dx exists� then the integral

Z b

a
f�x� dx also exists� In this case we call it an

absolutely convergent integral and the function f�x� is an absolutely integrable function on the consid�
ered interval�

� If the function f�x� is positive in the interval  a� b�� and there is a number � �  such that for the
values of x close enough to b

f�x� �b� x�� �� �����a�

holds� then the integral �����a� is convergent� But� if the function f�x� is positive in the interval  a� b��
and there is a number � �  such that for the values of x close enough to b

f�x� �b� x�� � c � � �c const� �����b�

holds� then the integral �����a� is divergent�
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	���� Parametric Integrals
������� De�nition of Parametric Integrals
The de�nite integral

bZ
a

f�x� y� dx � F �y� ������

is a function of the variable y considered here as a parameter� In several cases the function F �y� is no
longer elementary� even if f�x� y� is an elementary function of x and y� The integral ������ can be an
ordinary integral� or an improper integral with in�nite limits or unbounded integrand f�x� y��

For theoretical discussions about the convergence of improper integrals depending on a parameter see�
e�g�� ���!�

Gamma Function or Euler Integral of the Second Kind �see ������ �� p� ����

� �y� �

�Z
�

xy��e�x dx �convergent for y � ��� �����

������� Di
erentiation Under the Symbol of Integration
� Theorem If the function ������ is de�ned in the interval c � y � e� and the function f�x� y� is
continuous on the rectangle a � x � b� c � y � e and it has here a partial derivative with respect to
y� then for arbitrary y in the interval  c� e!�

d

dy

bZ
a

f�x� y� dx �

bZ
a

�f�x� y�

�y
dx� ������

This is called di�erentiation under the symbol of integration�

For arbitrary y � ��
d

dy

Z �

�
arctan

x

y
dx �

Z �

�

�

�y

�
arctan

x

y

�
dx � �

Z �

�

x dx

x� � y�
�



�
ln

y�

 � y�
�

Checking�
Z �

�
arctan

x

y
dx � arctan



y
�



�
y ln

y�

 � y�
�
d

dy

�
arctan



y
�



�
y ln

y�

 � y�

�
�



�
ln

y�

 � y�
�

For y � � the condition of continuity is not ful�lled� and there exists no derivative�
� Generalization for Limits of Integration Depending on Parameters The formula ������
can be generalized� if with the same assumptions we made for ������ the functions ��y� and ��y� are
de�ned in the interval  c� e!� they are continuous and di�erentiable there� and the curves x � ��y�� x �
��y� do not leave the rectangle a � x � b� c � y � e�

d

dy

	�y�Z
��y�

f�x� y� dx �

	�y�Z
��y�

�f�x� y�

�y
dx � � ��y� f ���y�� y�� ���y� f ���y� � y� � ������

������� Integration Under the Symbol of Integration
If the function f�x� y� is continuous on the rectangle a � x � b� c � y � e� then the function ������ is
de�ned in the interval  c� e!� and

eZ
c

�� bZ
a

f�x� y� dx

�� dy �

bZ
a

�� eZ
c

f�x� y� dy

�� dx ������

is valid� This is called integration under the symbol of integration�

A� Integration of the function f�x� y� � xy on the rectangle � � x � � a � y � b� The function xy

is discontinuous at x � �� y � �� for a � � it is continuous� So we can change the order of integration�
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Z b

a


Z �

�
xy dx

�
dy �

Z �

�

�Z b

a
xy dy


dx� On the left�hand side we get

Z b

a

dy

 � y
� ln

 � b

 � a
� on the right�

hand side
Z �

�

xb � xa

lnx
dx� The inde�nite integral cannot be expressed by elementary functions� Anyway�

the de�nite integral is known� so we get�Z �

�

xb � xa

lnx
dx � ln

 � b

 � a
�� � a � b��

B� Integration of the function f�x� y� �
y� � x�

�x� � y���
over the rectangle � � x � � � � y � � The

function is discontinuous at the point ��� ��� so the formula ������ cannot be used� Checking it we get�Z �

�

y� � x�

�x� � y���
dx �

x

x� � y�

���x��
x��

�


 � y�
�

Z �

�

dy

 � y�
� arctan y

����
�

�
�

�
�Z �

�

y� � x�

�x� � y���
dy �

y

x� � y�

���y��
y��

� � 

x� � 
� �

Z �

�

dx

x� � 
� � arctan x

����
�

� ��

�
�

	���� Integration by Series Expansion� SpecialNon�Elementary
Functions

It is not always possible to express an integral by elementary functions� even if the integrand is an
elementary function� In many cases we can express these non�elementary integrals by series expansions�
If the integrand can be expanded into a uniformly convergent series in the interval  a� b!� then we get

also a uniformly convergent series for the integral
Z x

a
f�t� dt if we integrate it term by term�

�� Integral Sine �jxj ��� see also �������� �� p� ����

Si �x� �

xZ
�

sin t

t
dt �

�

�
�

�Z
x

sin t

t
dt

� x� x�

� � �$
�

x�

� � �$
�� � � �� ���nx�n��

��n � � � ��n � �$
� � � � � ������

�� Integral Cosine �� � x ��	

Ci �x� � �
�Z
x

cos t

t
dt � C � lnx�

xZ
�

� cos t

t
dt

� C � lnx� x�

� � �$
�

x�

� � �$
� � � � �� ���nx�n

�n � ��n�$
� � � � with �����a�

C � �
�Z
�

e�t ln t dt � ����� �� ��� � � � �Euler constant�� �����b�

�� Integral Logarithm �� � x � �� for � � x �� as Cauchy Principal Value	

Li �x� �

xZ
�

dt

ln t
� C � ln j lnxj� ln jxj� �lnx��

� � �$
� � � �� �lnx�n

n � n$
� � � � � ������
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�� Exponential Integral ��� � x � �� for � � x �� as Cauchy Principal Value	

Ei �x� �

xZ
��

et

t
dt � C � ln jxj� x �

x�

� � �$
� � � �� xn

n � n$
� � � � � �����a�

Ei �lnx� � Li �x�� �����b�

�� Gauss Error Integral and Error Function
The Gauss error integral is de�ned for the domain jxj �� and it is denoted by �� The following de��
nitions and relations are valid�

��x� �
p
��

xZ
��

e�
t�

� dt� �����a� lim
x����x� � � �����b�

���x� �
p
��

xZ
�

e�
t�

� dt � ��x�� 

�
� �����c�

The function ��x� is the distribution function of the standard normal distribution �see �������� p� ����
and its values are tabulated in Table ����� p� ���

The error function erf �x�� often used in statistics �see also �������� p� ����� has a strong relation with
the Gauss error integral�

erf �x� �
�p
�

xZ
�

e�t
�

dt � ����x
p

��� �����a� lim
x�� erf �x� � � �����b�

erf �x� �
�p
�

�
x� x�

$ � � �
x�

�$ � � � � � � �� ���nx�n��

n$ � ��n � �
� � � �

�
� �����c�

xZ
�

erf �t� dt � x erf �x� �
p
�

�
e�x

� � 
	
� �����d�

d erf �x�

dx
�

�p
�
e�x

�

� �����e�

� GammaFunction and Factorial
� De�nition The gamma function� the Euler in�
tegral of the second kind ������ is an extension of
the notion of factorial for arbitrary numbers x� even
complex numbers� except zero and the negative inte�
gers� The curve of the function � �x� is represented
in Fig ���� Its values are given in Table �����
p� ���� It can be de�ned in two ways�

� �x� �

�Z
�

e�ttx�� dt �x � ��� ����a�

� �x� � lim
n��

nx � n$

x�x � ��x � �� � � � �x � n�

�x �� ������� � � ��� ����b�

5
4
3

2
1

0 2 431 x-1-2-3-4-5
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-2
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-5

�(x)

Figure ���

� Properties of the Gamma Function

� �x � � � x� �x�� �����a� � �n � � � n$ �n � �� � �� � � ��� �����b�



��� �� Integral Calculus

� �x�� �� x� �
�

sin�x
�x �� ������� � � ��� �����c� �

�


�

�
� �

�Z
�

e�t
�

dt �
p
� � �����d�

�
�
n �



�

�
�

��n�$
p
�

n$��n
�n � �� � �� � � ��� �����e�

�
�
�n �



�

�
�

���nn$��n
p
�

��n�$
�n � �� � �� � � ��� �����f�

The same relations are valid for complex arguments z� but only if Re �z� � � holds�
� Generalization of the Notion of Factorial The notion of factorial� de�ned until now only for
positive integers n �see ������ �� p� ��� leads to the function

x$ � � �x � � �����a�

as its extension for arbitrary real numbers� The following equalities are valid�

For positive integers x� x$ �  � � � � � � �x� �����b� for x � �� �$ � � �� � � �����c�

for negative integers x� x$ � ��� �����d� for x �


�
�
�



�

�
$ � �

�
�

�

�
�

p
�

�
� �����e�

for x � �

�
�
�
�

�

�
$ � �

�


�

�
�
p
� � �����f� for x � ��

�
�
�
��

�

�
$ � �

�
�

�

�
� ��

p
� ������g�

An approximate determination of a factorial can be performed for large numbers �� ��� also for frac�
tions n with the Stirling formula�

n$ 

�
n

e

�np
��n

�
 �



�n
�



���n�
� � � �

�
� �����h�

ln�n$� 

�
n �



�

�
lnn� n � ln

p
��� �����i�

�� Elliptic Integrals
For the complete elliptic integrals �see ������� �� p� ���� the following series expansions are valid�

K �

�
�Z
�

d �p
� k� sin� �

�
�

�

�
 �

�


�

��
k� �

�
 � �
� � �

��
k� �

�
 � � � �
� � � � �

��
k	 � � � �


� k� � � ������

E �

�
�Z
�

q
� k� sin� � d � �

�

�

�
�

�


�

�� k�


�
�

 � �
� � �

�� k�

�
�
�

 � � � �
� � � � �

�� k	

�
� � � �


�

k� � � ������

The numerical values of the elliptic integrals are given in Table ��
� p� ���

��� Line Integrals
The notion of the integral can be generalized in di�erent ways� While the domain of an ordinary de�nite
integral is an interval on the numerical axis� for a line integral� the domain of integration is a segment
of a planar or space curve� The curve� i�e�� the path of integration can also be closed� it is called also
circuit integral and it gives the circulation of the function along the curve� We distinguish line integrals
of the �rst type� of the second type� or of general type�
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	���� Line Integrals of the First Type

������� De�nitions
The line integral of the �rst type or integral over an arc is the de�nite
integralZ

�C�

f�x� y� ds� ������

where u � f�x� y� is a function of two variables de�ned on a con�

nected domain and the integration is performed over an arc C ��
AB

of a plane curve given by its equation� The considered arc is in the
same domain� and we call it the path of integration� The numerical
value of the line integral of the �rst type can be determined in the
following way �Fig �����

A0 A
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P2
A1

A2
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A3 Ai-1
Pi

Ai

An-1

Pn

An B

∆s
n-

1

∆s i-1

∆s 2

∆s
1

∆s
0

y

x0

Figure ����

� We decompose the recti�able arc segment
�
AB into n elementary parts by points A�� A�� � � � � An��

chosen arbitrarily� starting at the initial point A � A� and �nishing at the endpoint B � An�

� We choose arbitrary points Pi inside or at the end of the elementary arcs
�

Ai��Ai� with coordinates
�i and �i�

� We multiply the values of the function f��i� �i� at the chosen points with the arclength
�

Ai��Ai�
%si�� which should be taken positive� �Since the arc is recti�cable� %si�� is �nite��

� We add the n products f��i� �i�%si���
� We evaluate the limit of the sum

nX
i��

f��i� �i�%si�� �����a�

as the arclength of every elementary curve segment %si�� tends to zero� while n obviously tends to��
If the limit of �����a� exists and is independent of the choice of the points Ai and Pi� then this limit is
called the line integral of the �rst type� and we writeZ

�C�

f�x� y� ds � lim
�si��
n��

nX
i��

f��i� �i�%si��� �����b�

We can de�ne analogously the line integral of the �rst type for a function u � f�x� y� z� of three vari�
ables� whose path of integration is a curve segment of a space curve�Z

�C�

f�x� y� z� ds � lim
�si��
n��

nX
i��

f��i� �i� �i�%si��� �����c�

������� Existence Theorem

The line integral of the �rst type �����b� or �����c� exists if the function f�x� y� or f�x� y� z� and also
the curve along the arc segmentC are continuous� and the curve has a tangent which varies continuously�
In other words� The above limits exist and are independent of the choice of Ai and Pi� In this case� the
functions f�x� y� or f�x� y� z� are said to be integrable along the curve C�

������� Evaluation of the Line Integral of the First Type

We calculate the line integral of the �rst type by reducing it to a de�nite integral�
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�� The Equation of the Path of Integration is Given in Parametric Form
If the de�ning equations of the path are x � x�t� and y � y�t�� thenZ

�C�

f�x� y� ds �

TZ
t�

f  x�t�� y�t�!
q

 x��t�!� �  y��t�!� dt �����a�

holds� and in the case of a space curve x � x�t�� y � y�t�� and z � z�t�Z
�C�

f�x� y� z� ds �

TZ
t�

f  x�t�� y�t�� z�t�!
q

 x��t�!� �  y��t�!� �  z��t�!� dt� �����b�

where t� is the value of the parameter t at the point A and T is the parameter value at B � The points
A and B are chosen so that t� � T holds�

�� The Equation of the Path of Integration is Given in Explicit Form
We substitute t � x and get from �����a� for the planar caseZ

�C�

f�x� y� ds �

bZ
a

f  x� y�x�!
q

 �  y��x�!� dx� �����a�

and from �����b� for the three dimensional caseZ
�C�

f�x� y� z� ds �

bZ
a

f  x� y�x�� z�x�!
q

 �  y��x�!� �  z��x�!� dx� �����b�

Here a and b are the abscissae of the points A and B � where the relation a � b must be ful�lled� We
can consider x as a parameter if every point corresponds to exactly one point on the projection of the
curve segment C onto the x�axis� i�e�� every point of the curve is uniquely determined by the value of
its abscissa� If this condition does not hold� we have to partition the curve segment into subsegments
having this property� The line integral along the whole segment is equal to the sum of the line integrals
along the subsegments�

������� Application of the Line Integral of the First Type
Some applications of the line integral of the �rst type are given in Table ��� The curve elements
needed for the calculations of the line integrals are given for di�erent coordinate systems inTable ���

	���� Line Integrals of the SecondType

������� De�nitions
A line integral of the second type or an integral over a projection �onto the x�� y� or z�axis� is the de�nite
integralZ

�C�

f�x� y� dx ����a� or
Z
�C�

f�x� y� z� dx� ����b�

where f�x� y� or f�x� y� z� are two or three variable functions de�ned on a connected domain� and we

integrate over a projection of a plane or space curve C ��
AB �given by its equation� onto the x�� y�� or

z�axis� The path of integration is in the same domain�

We get the line integral of the second type similarly to the line integral of the �rst type� but in the
third step the values of the function f��i� �i� or f��i� �i� �i� are not multiplied by the arclength of the

elementary curve segments
�

Ai��Ai� but by its projections onto a coordinate axis �Fig �����
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Table ��� Line integrals of the �rst type

Length of a curve segment C L �
Z
�C�

ds

Mass of an inhomogeneous
curve segment C M �

Z
�C�

� ds �� � f�x� y� z� density function�

Center of gravity coordinates xC �


L

Z
�C�

x�ds � yC �


L

Z
�C�

y�ds � zC �


L

Z
�C�

z�ds

Moments of inertia of a plane
curve in the x� y plane Ix �

Z
�C�

x��ds� Iy �
Z
�C�

y��ds

Moments of inertia of a
space curve with respect
to the coordinate axes

Ix �
Z
�C�

�y� � z���ds� Iy �
Z
�C�

�x� � z���ds�

Iz �
Z
�C�

�x� � y���ds

In the case of homogeneous curves we substitute � � �

Table ��� Curve elements

Cartesian coordinates x� y � y�x� ds �
q

 �  y��x�!�dx

Plane curve in
the x� y plane

Polar coordinates �� � � ���� ds �
q
����� �  �����!�d�

Parametric form in Cartesian ds �
q

 x��t�!� �  y��t�!�dt
coordinates x � x�t�� y � y�t�

Space curve Parametric form in Cartesian ds �
q

 x��t�!� �  y��t�!� �  z��t�!�dt
coordinates x � x�t�� y � y�t�� z � z�t�

�� Projection onto the x�Axis

With Prx
�

Ai��Ai� xi � xi�� � %xi�� we get ����Z
�C�

f�x� y� dx � lim
�xi����
n��

nX
i��

f��i� �i� %xi��� ����a�

Z
�C�

f�x� y� z� dx � lim
�xi����
n��

nX
i��

f��i� �i� �i� %xi��� ����b� 0 x

B
y

A

Ai-1

Ai

P ( , )i i i! �

xi-1 xi

yi
yi-1

Figure ����

�� Projection onto the y�AxisZ
�C�

f�x� y� dy � lim
�yi����
n��

nX
i��

f��i� �i� %yi��� ����a�
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Z
�C�

f�x� y� z� dy � lim
�yi����
n��

nX
i��

f��i� �i� �i� %yi��� ����b�

�� Projection onto the z�AxisZ
�C�

f�x� y� z� dz � lim
�zi����
n��

nX
i��

f��i� �i� �i� %zi��� �����

������� Existence Theorem

The line integral of the second type in the form ����a�� ����a�� ����b�� ����b� or ����� exists
if the function f�x� y� or f�x� y� z� and also the curve are continuous along the arc segment C� and the
curve has a continuously varying tangent there�

������� Calculation of the Line Integral of the Second Type

We reduce the calculation of the line integrals of the second type to the calculation of de�nite integrals�

�� The Path of Integration is Given in Parametric Form
With the parametric equations of the path of integration

x � x�t�� y � y�t� and �for a space curve� z � z�t� �����

we get the following formulas�

For ����a�
Z
�C�

f�x� y� dx �

TZ
t�

f  x�t�� y�t�!x��t� dt� ����a�

For ����a�
Z
�C�

f�x� y� dy �

TZ
t�

f  x�t�� y�t�!y��t� dt� ����b�

For ����b�
Z
�C�

f�x� y� z� dx �

TZ
t�

f  x�t�� y�t�� z�t�!x��t� dt� ����c�

For ����b�
Z
�C�

f�x� y� z� dy �

TZ
t�

f  x�t�� y�t�� z�t�!y��t� dt� ����d�

For �����
Z
�C�

f�x� y� z� dz �

TZ
t�

f  x�t�� y�t�� z�t�!z��t� dt� ����e�

Here� t� and T are the values of the parameter t for the initial point A and the endpoint B of the arc
segment� In contrast to the line integral of the �rst type� here we do not require the inequality t� � T �

Remark� If we reverse the path of the integral� i�e�� interchange the points A and B � the sign of the
integral changes�

�� The Path of Integration is Given in Explicit Form
In the case of a plane or space curve with the equations

y � y�x� or y � y�x�� z � z�x� �����
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as the path of integration� with the abscissae a and b of the points A and B� where the condition a � b is
no longer necessary� the abscissa x takes the place of the parameter t in the formulas ����a� � ������

	���� Line Integrals ofGeneral Type
������� De�nition
A line integral of general type is the sum of the integrals of the second type along all the projections of
a curve� If two functions P �x� y� and Q�x� y� of two variables� or three functions P �x� y� z�� Q�x� y� z��
and R�x� y� z� of three variables� are given along the given curve segment C� and the corresponding line
integrals of the second type exist� then the following formulas are valid for a planar or for a space curve�

�� Planar CurveZ
�C�

�P dx � Qdy� �
Z
�C�

P dx �
Z
�C�

Qdy� ����a�

�� Space CurveZ
�C�

�P dx � Qdy � Rdz� �
Z
�C�

P dx �
Z
�C�

Qdy �
Z
�C�

Rdz� ����b�

The vector representation of the line integral of general type and an application of it in mechanics will
be discussed in the chapter about vector analysis �see ������ p� �����

������� Properties of the Line Integral of General Type

�� The Decomposition of the Path of the Integral

by a point M � which is on the curve� and it can even be outside of
�
AB

�Fig ����� results in the decomposition of the integral into two parts�Z
�
AB

�P dx � Qdy� �
Z
�
AM

�P dx � Qdy� �
Z
�
MB

�P dx � Qdy��� �����

A

B

M

A

B

M

a)

b)

Figure ����
�� The Reverse of the Sense of the Path of Integration
changes the sign of the integral�Z

�
AB

�P dx � Qdy� � �
Z
�
BA

�P dx � Qdy��� ������

�� Dependence on the Path
In general� the value of the line integral is dependent not only on the initial and
endpoints but also on the path of integration �Fig �����Z

�
AMB

�P dx � Qdy� ��
Z
�
ADB

�P dx � Qdy��� �����

A

M
B

D

Figure ����

A� I �
Z
�C�

�xy dx � yz dy � zx dz�� where C is one turn of the helix x � a cos t� y � a sin t� z � bt

�see Helix on p� ���� from t� to T � ���

I �
Z ��

�
��a� sin� t cos t � a�bt sin t cos t � ab�t cos t� dt � ��a�b

�
�

�Similar formulas are valid for the three�variable case�
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B� I �
Z
�C�

 y� dx � �xy � x�� dy!� where C is the arc of the parabola y� � �x between the points

A��� �� and B�� ��� I �
Z �

�

�
�

�
y� �

�
y�

�
� y�

�

�
dy � �

�

��
�

������� Integral Along a Closed Curve

� Notion of the Integral Along a Closed Curve A circuit integral or the circulation along a
curve is a line integral along a closed path of integration C � i�e�� the initial point A and the end point
B are identical� We use the notation�I

�C�

�P dx � Qdy� or
I
�C�

�P dx � Qdy � Rdz�� ������

In general� this integral di�ers from zero� But it is equal to zero if the conditions ������ are satis�ed�
or if the integration is performed in a conservative �eld �see ������� p� ����� �See also zero�valued
circulation� ������� p� �����

� The Calculation of the Area of a Plane Figure is a typical example of the application of the
integral along a closed curve in the form

S �


�

I
�C�

�x dy � y dx�� ������

where C is the boundary curve of the plane �gure� The integral is positive if the path is oriented
counterclockwise�

	���� Independence of the Line Integral of thePath of Integration

The condition for independence of a line integral of the path of integration is also called integrability of
the total di�erential�

������� Two�Dimensional Case

If the line integralZ
 P �x� y� dx � Q�x� y� dy! ������

with continuous functions P and Q de�ned on a simple connected domain depends only on the initial
point A and the endpoint B of the path of integration� and does not depend on the curve connecting
these points� i�e�� for arbitrary A and B and arbitrary paths of integration ACB and ADB �Fig ����
the equalityZ

�
ACB

�P dx � Qdy� �
Z
�
ADB

�P dx � Qdy� ������

holds� then it is a necessary and su�cient condition for the existence of a function U�x� y� of two vari�
ables� whose total di�erential is the integrand of the line integral�

P dx � Qdy � dU� �����a� i�e�� P �
�U

�x
� Q �

�U

�y
� �����b�

The function U�x� y� is a primitive function of the total di�erential �����a�� In physics� the primitive



��	 Line Integrals ��


function U�x� y� means the potential in a vector �eld �see ������� �� p� �����

������� Existence of a Primitive Function
A necessary and su�cient criterion for the existence of the primitive function� the integrability condition
for the expression P dx � Qdy� is the equality of the partial derivatives

�P

�y
�

�Q

�x
� ������

where also the continuity of the partial derivatives is required�

������� Three�Dimensional Case
The condition of independence of the line integralZ

 P �x� y� z� dx � Q�x� y� z� dy � R�x� y� z� dz! ������

of the path of integration analogously to the two�dimensional case is the existence of a primitive function
U�x� y� z� for which

P dx � Qdy � Rdz � dU� �����a�

holds� i�e��

P �
�U

�x
� Q �

�U

�y
� R �

�U

�z
� �����b�

The integrability condition is now that the three equalities for the partial derivatives

�Q

�z
�

�R

�y
�

�R

�x
�

�P

�z
�

�P

�y
�

�Q

�x
�����c�

should be simultaneously satis�ed� provided that the partial derivatives are continuous�

The work W �see also �������� �� p� ��� is de�ned as the scalar product of force �F ��r� and displace�
ment �s� In a conservative �eld the work depends only on the place �r� but not on the velocity �v� With
�F � P�ex � Q�ey � R�ez � gradV and �ds � dx�ex � dy�ey � dz�ez the relations �����a�� �����b� are
satis�ed for the potential V ��r�� and �����c� is valid� Independently of the path between the points P�

and P� we get�

W �
Z P�

P�

�F ��r� � �ds �
Z P�

P�
 P dx � Qdy � Rdz! � V �P��� V �P��� ������

y
P(x, y)

K

L

A(x , y )0 0

x0

Figure ����

z P(x, y, z)

yx

0

A(x , y , z )0 0      0

K L

Figure ����

������� Determination of the Primitive Function

�� Two�Dimensional Case
If the integrability condition ������ is satis�ed� then along an arbitrary path of integration connecting
an arbitrary �xed point A�x�� y�� with the variable point P �x� y� �Fig���� and passing through the
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domain where ������ is valid� the primitive function U�x� y� is equal to the line integral

U �
Z
�
AP

�P dx � Qdy�� �����

In practice� it is convenient to choose a path of integration parallel to the coordinate axes� i�e�� one of
the segments AKP or ALP � if they are inside the domain where ������ is valid� With these we have
two formulas for the calculation of the primitive function U�x� y� and the total di�erential P dx�Qdy�

U � U�x�� y�� �
Z
AK

�
Z
KP

� C �

xZ
x�

P ��� y�� d� �

yZ
y�

Q�x� �� d� � �����a�

U � U�x�� y�� �
Z
AL

�
Z
LP

� C �

yZ
y�

Q�x�� �� d� �

xZ
x�

P ��� y� d� � �����b�

Here C is an arbitrary constant�

�� Three�Dimensional Case �Fig� ����	
If the condition �����c� is satis�ed� the primitive function can be calculated for the path of integration
AKLP with the formulas

U � U�x�� y�� z�� �
Z
AK

�
Z
KL

�
Z
LP

�

xZ
x�

P ��� y�� z�� d� �

yZ
y�

Q�x� �� z�� d� �

zZ
z�

R�x� y� �� d� � C �C arbitrary constant�� ������

For the other �ve possibilities of a path of integration with the segments being parallel to the coordinate
axes we get �ve further formulas�

A� P dx�Qdy � � y dx
x� � y�

� x dy
x� � y�

� The condition �����c� is satis�ed� �P
�y � �Q

�x � y� � x�

�x� � y���
�

Application of the formula �����b� and the substitution of x� � �� y� �  �x� � �� y� � �
may not be chosen since the functions P and Q are discontinuous at the point ��� ��� results in U �Z y

�

� � d�
�� � ��

�
Z x

�

�y d�

�� � y�
� U��� � � � arctan

x

y
� C � arctan

y

x
� C��

B� P dx � Qdy � Rdz � z
�


x�y
� 

x� � z�

�
dx � z

xy�
dy �

�
x

x� � z�
� 

xy

�
dz� The relations

�����c� are satis�ed� Application of the formula ������ and substitution of x� � � y� � � z� � 

result in U �
Z x

�
� � d� �

Z y

�
� � d� �

Z z

�

�
x

x� � ��
� 

xy

�
d� � C � arctan

z

x
� z

xy
� C�

������� Zero�Valued Integral Along a Closed Curve
The integral along a closed curve� i�e�� the line integral P dx � Qdy is equal to zero� if the relation

������ is satis�ed� and if there is no point inside the curve where even one of the functions P� Q� �P
�y

or �Q
�x is discontinuous or not de�ned�

Remark� The value of the integral can be equal to zero also without this conditions� but then we get
this value only after performing the corresponding calculations�
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��� Multiple Integrals
The notion of the integral can be extended to higher dimensions� If the domain of integration is a
region in the plane or on a surface in space� then the integral is called a surface integral� if the domain is
a part of space� then it is called a volume integral� For the di�erent special applications we use di�erent
notations�

	���� Double Integrals
������� Notion of the Double Integral
�� De�nition
The double integral of a function of two variables u � f�x� y� over a planar domain S is denoted byZ

S

f�x� y� dS �
ZZ
S

f�x� y� dy dx� ������

It is a number� if it exists� and it is de�ned in the following way �Fig �����

� We consider a partition of the domain S into n elementary domain�

� We chose an arbitrary point Pi�xi� yi� in the interior or on the boundary of every elementary domain�

� We multiply the value of the function u � f�xi� yi� at this point by the area %Si of the corresponding
elementary domain�

� We add these products f�xi� yi�%Si�

� We calculate the limit of the sum
nX
i��

f�xi� yi�%Si �����a�

as the diameter of the elementary domains tends to zero� consequently %Si tends to zero� and so n tends
to�� �The diameter of a set of points is the supremum of the distances between the points of the set��
The requirement %S tends to zero is not enough� because� e�g�� in the case of a rectangle the area can
be close to zero also if only one side is small and the other is not� so the considered points could be far
from each other�

P (x ,y )i i i

�SiS

y

x0

Figure ����

x �Si
P (x ,y )i i i

y
S

0

u=f(x,y)z

Figure ����

If this limit exists independently of the partition of the domain S into elementary domains and also of
the choice of the points Pi�xi� yi�� then we call it the double integral of the function u � f�x� y� over
the domain S� the domain of integration� and we write�Z

S

f�x� y� dS � lim
�Si��
n��

nX
i��

f�xi� yi� %Si� �����b�

�� Existence Theorem
If the function f�x� y� is continuous on the domain of integration including the boundary� then the
double integral �����b� exists� �This condition is su�cient but not necessary��
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�� GeometricalMeaning
The geometrical meaning of the double integral is the volume of a solid whose base is the domain in the
x� y plane� whose side is a cylindrical surface with generators parallel to the z�axis� and it is bounded
above by the surface de�ned by u � f�x� y� �Fig ��
�� Every term f�xi� yi�%Si of the sum �����b�
corresponds to an elementary cell of a prism with base %Si and with altitude f�xi� yi�� The sign of the
volume is positive or negative� according to whether the considered part of the surface u � f�x� y� is
above or under the x� y plane� If the surface intersects the x� y plane� then the volume is the algebraic
sum of the positive and negative parts�

If the value of the function is identically  �f�x� y� � �� then the volume has the numerical value of
the area of the domain S in the x� y plane�

������� Evaluation of the Double Integral

The evaluation of the double integral is reduced to the evaluation of a repeated integral� i�e�� to the
evaluation of two consecutive integrals�

�� Evaluation in Cartesian Coordinates
If the double integral exists� then we can consider any type of partition of the domain of integration�
such as a partition into rectangles� We divide the domain of integration into in�nitesimal rectangles by
coordinate lines �Fig ���a�� Then we calculate the sum of all di�erentials f�x� y�dS starting with
all the rectangles along every vertical stripe� then along every horizontal stripe� �The interior sum is
an integral approximation sum with respect to the variable y� the exterior one with respect to x�� If
the integrand is continuous� then this repeated integral is equal to the double integral on this domain�
The analytic notation is�

Z
S

f�x� y� dS �

bZ
a

��� ���x�Z
���x�

f�x� y� dy

��� dx �

bZ
a

���x�Z
���x�

f�x� y� dy dx� �����a�

Here y � ���x� and y � ���x� are the equations of the upper and lower boundary curves
�

�AB�above

and
�

�AB�below of the surface patch S� Here a and b are the abscissae of the points of the curves to the
very left and to the very right� The elementary area in Cartesian coordinates is

dS � dx dy� �����b�

�The area of the rectangle is %x%y independently of the value of x�� For the �rst integration x is

y

dy

0 xdxa b

A

By=ϕ 2(x
)

y=ϕ 1(x
)

a�

y

xdx0

dy

D

C x=ψ 2(y
)
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(y)

β

α

b�

Figure ����
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Figure ����

handled as a constant� The square brackets in �����a� can be omitted� since according to the notation
the interior integral is referred to the interior integration variable� the exterior integral is referred to
the second variable� In �����a� the di�erential signs dx and dy are at the end of the integrand� It is
also usual to put these signs right after the corresponding integral signs� in front of the integrand�
We can perform the summation in reversed order� too� �Fig ���b�� If the integrand is continuous�
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then it results also in the double integral�

Z
S

f�x� y� dS �

	Z
�

���y�Z
���y�

f�x� y� dx dy� �����c�

A �
Z
S

xy� dS� where S is the surface patch between the parabola y � x� and the line y � �x in

Fig ���� A �
Z �

�

Z �x

x�
xy� dy dx �

Z �

�
x dx

�
y�

�

�����
�x

x�
�



�

Z �

�
��x� � x�� dx �

��

�
or

A �
Z �

�

Z p
y

y��
xy� dx dy �

Z �

�
y� dy

�
x�

�

�����
p
y

y��

�


�

Z �

�
y�
�
y � y�

�

�
dy �

��

�
�

�� Evaluation in Polar Coordinates

The integration domain is divided by coordinate lines into elementary parts bounded by the arcs of
two concentric circles and two segments of rays issuing from the pole �Fig ����� The area of the
elementary domain in polar coordinates has the form

� d� d� � dS� �����a�

�The area of an elementary part determined by the same %� and %� is obviously smaller being close
to the origin� and larger far from it�� With an integrand given in polar coordinates w � f��� �� we
perform a summation �rst along each sector� then with respect to all sectors�

Z
S

f��� �� dS �

��Z
��

�����Z
�����

f��� �� � d� d�� �����b�

where � � ����� and � � ����� are the equations of the interior and the exterior boundary curves
�

AmB and
�

AnB of the surface S and �� and �� are the in�mum and supremum of the polar angles of
the points of the domain� The reverse order of integration is seldom used�

A �
Z
S

� sin� �dS� where S is a half�circle � � � cos� �Fig �����

A �
Z ���

�

Z � cos�

�
�� sin� �d� d� �

Z ���

�
sin� �d�

�
��

�

�����
� cos�

�

� �
Z ���

�
sin� � cos� �d� �

�

�
�

�� Evaluation with Arbitrary Curvilinear Coordinates u and v

The coordinates are de�ned by the relations

x � x�u� v�� y � y�u� v� ������

�see ������� p� ����� The domain of integration is partitioned by coordinate lines u � const and v �
const into in�nitesimal surface elements �Fig ���� and the integrand is expressed by the coordinates
u and v� We perform the summation along one strip� e�g�� along v � const� then over all strips�

Z
S

f�u� v� dS �

u�Z
u�

v��u�Z
v��u�

f�u� v�jDj dv du� ������

Here v � v��u� and v � v��u� are the equations of the boundary curves
�

AmB and
�

AnB of the surface
S� We denote by u� and u� the in�mum and supremum of the values of u of the points belonging to the
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surface S� jDj denotes the absolute value of the Jacobian determinant �functional determinant�

D �
D�x� y�

D�u� v�
�

��������
�x

�u

�x

�v
�y

�u

�y

�v

�������� � �����a�

The area of the elementary domain in curvilinear coordinates can be easily expressed�

jDj dv du � dS� �����b�

0 (3, 0)
x

Figure ����
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The formula �����b� is a special case of ������ for the polar coordinates x � � cos�� y � � sin�� The
functional determinant here is D � ��
We choose curvilinear coordinates so that the limits of integration in the formula ������ are as simple
as possible� and also the integrand is not very complicated�

Calculate A �
Z
S

f�x� y� dS for the case when S is the interior of an asteroid �see ������ p� ����

with x � a cos� t� y � a sin� t �Fig ����� First we introduce the curvilinear coordinates x � u cos� v�
y � u sin� v whose coordinate lines u � c� represents a family of similar asteroids with equations
x � c� cos� t and y � c� sin� t� The coordinate lines v � c� are rays with the equations y � kx� where
k � tan� c� holds� We get

D �

����� cos� v ��u cos� v sin v
sin� v �u sin� v cos v

����� � �u sin� v cos� v� A �
Z a

�

Z ��

�
f�x�u� v�� y�u� v�� �u sin� v cos� v dv du�

������� Applications of the Double Integral
Some applications of the double integral are collected in Table �
� The required areas of elementary
domains in Cartesian and polar coordinates are given in Table ��

Tabelle ��� Plane elements of area

Coordinates Element of area

Cartesian coordinates x� y dS � dy dx

Polar coordinates �� � dS � � d� d�

Arbitrary curvilinear coordinates u� v dS � jDj du dv �D Jacobian determinant�
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Table ��� Applications of the double integral

General formula Cartesian coordinates Polar coordinates

� Area of a plane �gure�

S �
Z
S

dS �
ZZ

dy dx �
ZZ

� d� d�

� Surface�

SO �
Z
S

dS

cos �
�
ZZ vuut �

�
�z

�x

��
�

�
�z

�y

��
dy dx �

ZZ vuut�� � ��
�
�z

��

��
�

�
�z

��

��
d� d�

� Volume of a cylinder�

V �
Z
S

z dS �
ZZ

z dy dx �
ZZ

z� d� d�

� Moment of inertia of a plane �gure� with respect to the x�axis�

Ix �
Z
S

y� dS �
ZZ

y� dy dx �
ZZ

�� sin� �d� d�

� Moment of inertia of a plane �gure� with respect to the pole ��

I� �
Z
S

�� dS �
ZZ

�x� � y�� dy dx �
ZZ

�� d� d�

� Mass of a plane �gure with the density function �

M �
Z
S

� dS �
ZZ

� dy dx �
ZZ

�� d� d�

� Coordinates of the center of gravity of a homogeneous plane �gure�

xC �

Z
S

x dS

S

yC �

Z
S

y dS

S

�

ZZ
x dy dxZZ
dy dx

�

ZZ
y dy dxZZ
dy dx

�

ZZ
�� cos�d� d�ZZ

� d� d�

�

ZZ
�� sin�d� d�ZZ

� d� d�
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	���� Triple Integrals
The triple integral is an extension of the notion of the integral into three�dimensional domains� We also
call it volume integral�

������� Notion of the Triple Integral

�� De�nition
We de�ne the triple integral of a function f�x� y� z� of three variables over a three�dimensional domain
V analogously to the de�nition of the double integral� We write�Z

V

f�x� y� z� dV �
ZZ
V

Z
f�x� y� z� dz dy dx� �����

The volume V �Fig ���� is partitioned into elementary volumes %Vi� Then we form the products
f�xi� yi� zi�%Vi� where the point Pi�xi� yi� zi� is inside the elementary volume or it is on the boundary�
The triple integral is the limit of the sum of these products with all the elementary volumes in which the
volume V is partitioned� then the diameter of every elementary volume tends to zero� i�e�� their number
tends to�� The triple integral exists only if the limit is independent of the partition into elementary
volumes and the choice of the points Pi�xi� yi� zi�� Then we have�Z

V

f�x� y� z� dV � lim
�Vi��
n��

nX
i��

f�xi� yi� zi� %Vi� ������

�� Existence Theorem
The existence theorem for the triple integral is a perfect analogue of the existence theorem for the
double integral�

V

Pi

�Vi

x

y

0

z

Figure ����
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z= (x, y)ψ1

y

C y= (x)ϕ2

dyx

b
dx

a

0

z

Γ

y= (x)ϕ1

Figure ����

������� Evaluation of the Triple Integral
The evaluation of triple integrals is reduced to repeated evaluation of three ordinary integrals� If the
triple integral exists� then we can consider any partition of the domain of integration�

�� Evaluation in Cartesian Coordinates
The domain of integration can be considered as a volume V here� We prepare a decomposition of
the domain by coordinate surfaces� in this case by planes� into in�nitesimal parallelepipeds� i�e�� their
diameter is an in�nitesimal quantity �Fig ����� Then we perform the summation of all the products
f�x� y� z� dV � starting the summation along the vertical columns� i�e�� summation with respect to z� then
in all columns of one slice� i�e�� summation with respect to y� and �nally in all such slices� i�e�� summation
with respect to x� Every single sum for any column is an approximation sum of an integral� and if the



��
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diameter of the parallelepipeds tends to zero� then the sums tend to the corresponding integrals� and
if the integrand is continuous� then this repeated integral is equal to the triple integral� Analytically�

Z
V

f�x� y� z� dV �

bZ
a

�����
���x�Z
���x�

��� ���x�y�Z
���x�y�

f�x� y� z� dz

��� dy

 �!�" dx

�

bZ
a

���x�Z
���x�

���x�y�Z
���x�y�

f�x� y� z� dz dy dx� �����a�

Here z � ���x� y� and z � ���x� y� are the equations of the lower and upper part of the surface bounding
the domain of integration V �see limiting curve * in Fig ����� dx dy dz is the elementary volume in
the Cartesian coordinate system� y � ���x� and y � ���x� are the functions describing the lower
and upper part of the curve C which is the boundary line of the projection of the volume onto the x� y
plane� and x � a and x � b are the extreme values of the x coordinates of the points of the volume
under consideration �and also the projection under consideration�� We have the following postulates for
the domain of integration� The functions ���x� and ���x� are de�ned and continuous in the interval
a � x � b� and they satisfy the inequality ���x� � ���x�� The functions ���x� y� and ���x� y� are
de�ned and continuous on the domain a � x � b� ���x� � y � ���x�� and also ���x� y� � ���x� y�
holds� In this way� every point �x� y� z� in V satis�es the relations

a � x � b� ���x� � y � ���x�� ���x� y� � z � ���x� y�� �����b�

Just as with double integrals� we can change the order of integration� then the limiting functions will
change in the same sense� �Formally� the limits of the outermost integral must be constants� and any
limit may contain variables only of exterior integrals��

Calculate the integral I �
Z
V

�y� � z�� dV for a pyramid bounded by the coordinate planes and the

plane x � y � z � �

I �
Z �

�

Z ��x

�

Z ��x�y

�
�y� � z�� dz dy dx �

Z �

�

�Z ��x

�


Z ��x�y

�
�y� � z�� dz

�
dy
�

dx �


��
�

z

x

y

0 dz

d�

� d�
d� �

d��
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�� Evaluation in Cylindrical Coordinates

The domain of integration is decomposed into in�nitesimal elementary cells by coordinate surfaces
� � const� � � const� z � const �Fig ����� The volume of an elementary domain in cylindrical
coordinates is

dV � � dz d� d�� �����a�
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After de�ning the integrand by cylindrical coordinates f��� �� z� the integral is�

Z
V

f��� �� z� dV �

��Z
��

�����Z
�����

z������Z
z������

f��� �� z� � dz d� d�� �����b�

Calculate the integral I �
Z
V

dV for a solid �Fig ��
� bounded by the x� y plane� the x� z plane�

the cylindrical surface x� � y� � ax and the sphere x� � y� � z� � a�� z� � �� z� �
q
a� � x� � y� �q

a� � �� � �� � �� �� � a cos�� �� � �� �� �
�

�
� I �

Z ���

�

Z a cos�

�

Z pa����

�
� dz d� d� �Z ���

�

���
Z a cos�

�

��Z pa����

�
dz

�� � d�

 !" d� �
a�

�
��� � �� � Since f��� �� z� � � the integral is equal to

the volume of the solid�

x

y

z

dr

rd�

r sin d� �d�
�

�

d�

dr

r

Figure ����
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�� Evaluation in Spherical Coordinates

The domain of integration is decomposed into in�nitesimal elementary cells by coordinate surfaces
r � const� � � const� � � const �Fig ����� The volume of an elementary domain in spherical
coordinates is

dV � r� sin� dr d� d�� �����a�

For the integrand f�r� �� �� in spherical coordinates� the integral is�

Z
V

f�r� �� �� dV �

��Z
��

�����Z
�����

r������Z
r������

f�r� �� �� r� sin� dr d� d�� �����b�

Calculate the integral I �
Z
V

cos�

r�
dV for a cone whose vertex is at the origin� and its symmetry axis

is the z�axis� The angle at the vertex is ��� the altitude of the cone is h �Fig ����� Consequently we

have� r� � �� r� �
h

cos�
� �� � �� �� � �� �� � �� �� � ���

I �
Z ��

�

Z �

�

Z h� cos�

�

cos�

r�
r� sin� dr d� d� �

Z ��

�

�Z �

�
cos� sin�

�Z h� cos�

�
dr


d�

�
d�
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� �� h �� cos���

�� Evaluation in Arbitrary Curvilinear Coordinates u� v� w
The coordinates are de�ned by the equations

x � x�u� v� w�� y � y�u� v� w�� z � z�u� v� w� ������

�see ������� p� ����� The domain of integration is decomposed into in�nitesimal elementary cells by the
coordinate surfaces u � const� v � const� w � const� The volume of an elementary domain in arbitrary
coordinates is�

dV � jDj du dv dw� with D �

�����������

�x
�u

�x
�v

�x
�w

�y
�u

�y
�v

�y
�w

�z
�u

�z
�v

�z
�w

�����������
� �����a�

i�e�� D is the Jacobian determinant� For the integrand f�u� v� w� in curvilinear coordinates u� v� w� the
integral is�Z

V

f�u� v� w� dV �

u�Z
u�

v��u�Z
v��u�

w��u�v�Z
w��u�v�

f�u� v� w� jDj dwdv du� �����b�

Remark� The formulas �����b� and �����b� are special cases of �����b��
For cylindrical coordinates D � � holds� for spherical coordinates D � r� sin� is valid�
If the integrand is continuous� then we can change the order of integration in any coordinate system�
We always try to choose a curvilinear coordinate system such that the determination of the limits of
the integral �����b�� and also the calculation of the integral� should be as easy as possible�

������� Applications of the Triple Integral
Some applications of the triple integral are collected inTable ���� The elementary areas correspond�
ing to di�erent coordinates are given inTable ��� The elementary volumes corresponding to di�erent
coordinates are given in Table ����

Table ��� Elementary volumes

Coordinates Elementary volume

Cartesian coordinates x� y� z dV � dx dy dz

Cylindrical coordinates � � � � z dV � � d� d� dz

Spherical coordinates r � � � � dV � r� sin� dr d� d�

Arbitrary curvilinear coordinates u� v� w dV � jDj du dv dw �D Jacobian determinant�

��� Surface Integrals
We distinguish surface integrals of the �rst type� of the second type� and of general type� analogously
to the three di�erent line integrals �see ���� p� �����

	���� Surface Integral of the First Type
The surface integral or integral over a surface in space is the generalization of the double integral� sim�
ilarly as the line integral of the �rst type �see ����� p� ���� is a generalization of the ordinary integral�
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Table �� Applications of the triple integral

General Cartesian Cylindrical Spherical

formula coordinates coordinates coordinates

� Volume of a solid

V �
Z
V

dV �
ZZZ

dz dy dx
ZZZ

� dz d� d�
ZZZ

r� sin� dr d� d�

� Axial moment of inertia of a solid with respect to the z�axis

Iz �
Z
V

�� V �
ZZZ

�x� � y�� dz dy dx
ZZZ

�� dz d� d�
ZZZ

r� sin� � dr d� d�

� Mass of a solid with the density function 

M �
Z
V

� dV �
ZZZ

� dz dy dx
ZZZ

�� dz d� d�
ZZZ

�r� sin� dr d� d�

� Coordinates of the center of a homogeneous solid

xC �

Z
V

x dV

V
�

yC �

Z
V

y dV

V
�

zC �

Z
V

z dV

V
�

ZZZ
x dz dy dxZZZ
dz dy dx

ZZZ
y dz dy dxZZZ
dz dy dx

ZZZ
z dz dy dxZZZ
dz dy dx

ZZZ
�� cos�d� d� dzZZZ

� d� d� dz

ZZZ
�� sin�d� d� dzZZZ

� d� d� dz

ZZZ
�z d� d� dzZZZ
� d� d� dz

ZZZ
r� sin� � cos�dr d� d�ZZZ

r� sin� dr d� d�

ZZZ
r� sin� � sin�dr d� d�ZZZ

r� sin� dr d� d�

ZZZ
r� sin� cos � dr d� d�ZZZ

r� sin� dr d� d�

������� Notion of the Surface Integral of the First Type

�� De�nition
The surface integral of the �rst type of a function u � f�x� y� z� of three variables de�ned in a connected
domain is the integralZ

S

f�x� y� z� dS� ������

over a region S of a surface� The numerical value of the surface integral of the �rst kind is de�ned in
the following way �Fig �����
� We decompose the region S in an arbitrary way into n elementary regions�
� We choose an arbitrary point Pi�xi� yi� zi� inside or on the boundary of each elementary region�
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x

y

0
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�Si
S

Figure ����

� We multiply the value f�xi� yi� zi� of the function at this point by the area
%Si of the corresponding elementary region�
� We add the products f�xi� yi� zi�%Si so obtained�
� We determine the limit of the sum

nX
i��

f�xi� yi� zi� %Si �����a�

as the diameter of each elementary region tends to zero� so %Si tends to zero�
hence� their number n tends to� �see ������ �� p� ����

If this limit exists and is independent of the particular decomposition of the region S into elementary
regions and also of the choice of the points Pi�xi� yi� zi�� then it is called the surface integral of the �rst
type of the function u � f�x� y� z� over the region S� and we write�Z

S

f�x� y� z� dS � lim
�Si��
n��

nX
i��

f�xi� yi� zi� %Si� �����b�

�� Existence Theorem
If the function f�x� y� z� is continuous on the domain� and the functions de�ning the surface have con�
tinuous derivatives here� the surface integral of the �rst type exists�

������� Evaluation of the Surface Integral of the First Type
The evaluation of the surface integral of the �rst type is reduced to the evaluation of a double integral
over a planar domain �see ����� p� ����

� Explicit Representation of the Surface If the surface S is given by the equation

z � z�x� y� ������

in explicit form� thenZ
S

f�x� y� z� dS �
ZZ
S�

f  x� y� z�x� y�!
q

 � p� � q� dx dy� ����a�

is valid� where S � is the projection of S onto the x� y plane and p and q are the partial derivatives

p �
�z

�x
� q �

�z

�y
� Here we assume that to every point of the surface S there corresponds a unique point

in S � in the x� y plane� i�e�� the points of the surface are de�ned uniquely by their coordinates� If it does
not hold� we decompose S into several parts each of which satis�es the condition� Then the integral on
the total surface can be calculated as the algebraic sum of the integrals over these parts of S�
The equation ����a� can be written in the formZ

S

f�x� y� z� dS �
ZZ
Sxy

f  x� y� z�x� y�!
d Sxy
cos�

� ����b�

since the equation of the surface normal of ������ has the form
X � x

p
�

Y � y

q
�

Z � z

�
�see Ta�

ble ��
� p ����� since for the angle between the direction of the normal and the z�axis� cos � �
p

 � p� � q�
holds� In evaluating a surface integral of the �rst type� this angle � is always considered

as an acute angle� so cos � � � always holds�
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� Parametric Representation of the Surface

m

A

B
u2nu=const.

v=v
1 (u)

v=v
2 (u)

u1

Figure ����

If the surface S is given in parametric form by the equations

x � x�u� v�� y � y�u� v�� z � z�u� v�� �����a�

�Fig ����� thenZ
S

f�x� y� z� dS

�
ZZ
�

f
�
x�u� v�� y�u� v�� z�u� v�

	p
EG� F � du dv� �����b�

where the functions E� F � and G are the quantities given in �������� ��
p� ���� The elementary region in parametric form isp

EG� F � du dv � dS� �����c�

and % is the domain of the parameters u and v corresponding to the given surface region� The evaluation
is performed by a repeated integration with respect to v and u�

Z
S

��u� v� dS �

u�Z
u�

v��u�Z
v��u�

��u� v�
p
EG� F � dv du� � � f  x�u� v�� y�u� v�� z�u� v�!� �����d�

Here u� and u� are coordinates of the extreme coordinate lines u � const enclosing the region S

�Fig ����� and v � v��u� and v � v��u� are the equations of the curves
�

AmB and
�

AnB of the
boundary of S�

Remark� The formula ����a� is a special case of �����b� for

u � x� v � y� E �  � p�� F � p q� G �  � q�� ������

� Elementary Regions of Curved Surfaces
The elementary regions of curved surfaces are given in Table ����

Table ��� Elementary regions of curved surfaces

Coordinates Elementary region

Cartesian coordinates x� y� z � z�x� y� dS �

vuut �

�
�z

�x

��
�

�
�z

�y

��
dx dy

Cylindrical lateral surface� dS � Rd�dz

R �const� radius�� coordinates �� z

Spherical surface R �const� radius�� dS � R� sin� d� d�

coordinates � � �

Arbitrary curvilinear coordinates u� v dS �
p
EG� F � du dv

�E� F�G see di�erential of arc� p� ����

������� Applications of the Surface Integral of the First Type

�� Surface Area of a Curved Surface

S �
Z
S

dS� ������
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�� Mass of an Inhomogeneous Curved Surface S
With the coordinate�dependent density � � f�x� y� z� we have�

MS �
Z
S

� dS� ������

	���� Surface Integral of the SecondType
The surface integral of the second type� also called an integral over a projection� is a generalization of
the notion of double integral similarly to the surface integral of the �rst type�

������� Notion of the Surface Integral of the Second Type

�� Notion of an Oriented Surface
A surface usually has two sides� and one of them can be chosen arbitrarily as the exterior one� If the
exterior side is �xed� we call it an oriented surface� We do not discuss surfaces for which we cannot
de�ne two sides �see  ���!��

�� Projection of an Oriented Surface onto a Coordinate Plane
If we project a bounded part S of an oriented surface onto a coordinate plane� e�g�� onto the x�y plane�
we can consider this projection Prxy S as positive or negative in the following way �Fig �����
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0
+

Pr Sxy

a�
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Pr Sxy

−

b�
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x
− +

0

Pr Sxy
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y
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+
B

C
D

0D'

C'

A

Pr Syz

−

x

Pr Sxz

exterior side

interior side

d�
Figure ����

a� If the x� y plane is looked at from the positive direction of the z�axis� and we see the positive side
of the surface S� where the exterior part is considered to be positive� then the projection Prxy S has a
positive sign� otherwise it has a negative sign �Fig ��� a�b��

b� If one part of the surface shows its positive side and the other part its negative side� then the pro�
jection Prxy S is regarded as the algebraic sum of the positive and negative projections �Fig ���c��

TheFig ���d shows the projections PrxzS and PryzS of a surface S� one of them is positive the other
one is negative�
The projection of a closed oriented surface is equal to zero�
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�� De�nition of the Surface Integral of the Second Type over a Projection
onto a Coordinate Plane

The surface integral of the second type of a function f�x� y� z� of three variables de�ned in a connected
domain is the integralZ

S

f�x� y� z� dx dy� ������

over the projection of an oriented surface S onto the x� y plane� where S is in the same domain where the
function is de�ned� and if there is a one�to�one correspondence between the points of the surface and
its projection� The numerical value of the integral is obtained in the same way as the surface integral
of the �rst type except that in the third step the function value f�xi� yi� zi� is not multiplied by the
elementary region %Si� but by its projection Prxy%Si� oriented according to ������� �� p� ��� on the
x� y plane� Then we get�Z

S

f�x� y� z� dx dy � lim
�Si��
n��

nX
i��

f�xi� yi� zi�Prxy %Si� �����a�

We de�ne analogously the surface integrals of the second type over the projections of the oriented
surface S onto the y� z plane and onto the z� x plane�Z

S

f�x� y� z� dy dz � lim
�Si��
n��

nX
i��

f�xi� yi� zi�Pryz %Si� �����b�

Z
S

f�x� y� z� dz dx � lim
�Si��
n��

nX
i��

f�xi� yi� zi�Przx %Si� �����c�

�� Existence Theorem for the Surface Integral of the Second Type
The surface integral of the second type �����a�b�c� exists if the function f�x� y� z� is continuous and
the equations de�ning the surface are continuous and have continuous derivatives�

������� Evaluation of Surface Integrals of the Second Type
The principal method is to reduce it to the evaluation of double integrals�

�� Surface Given in Explicit Form
If the surface S is given by the equation

z � ��x� y� ������

in explicit form� then the integral �����a� is calculated by the formulaZ
S

f�x� y� z� dx dy �
Z

PrxyS

f  x� y� ��x� y�! dSxy� �����a�

where Sxy � PrxyS� The surface integral of the function f�x� y� z� over the projections of the surface
S onto the other coordinate planes is calculated similarly�Z

S

f�x� y� z� dy dz �
Z

PryzS

f  ��y� z�� y� z! dSyz� �����b�

where we substitute x � ��y� z�� the equation of the surface S solved for x� and Syz � PryzS�Z
S

f�x� y� z� dz dx �
Z

PrzxS

f  x� ��z� x�� z! dSzx� �����c�

where we substitute y � ��z� x�� the equation of the surface S solved for y� and Szx � PrzxS� If the
orientation of the surface is changed� i�e�� if we interchange the exterior and interior sides� then the
integral over the projection changes its sign�
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�� Surface Given in Parametric Form
If the surface is given by the equations

x � x�u� v�� y � y�u� v�� z � z�u� v� ������

in parametric form�we calculate the integral �����a�b�c� with help of the following formulas�Z
S

f�x� y� z� dx dy �
Z
�

f  x�u� v�� y�u� v�� z�u� v�!
D�x� y�

D�u� v�
du dv� ����a�

Z
S

f�x� y� z� dy dz �
Z
�

f  x�u� v�� y�u� v�� z�u� v�!
D�y� z�

D�u� v�
du dv� ����b�

Z
S

f�x� y� z� dz dx �
Z
�

f  x�u� v�� y�u� v�� z�u� v�!
D�z� x�

D�u� v�
du dv� ����c�

Here the expressions
D�x� y�

D�u� v�
�

D�y� z�

D�u� v�
�

D�z� x�

D�u� v�
are the Jacobian determinants of pairs of functions

x� y� z with respect to the variables u and v� % is the domain of u and v corresponding to the surface
S�

	���� Surface Integral inGeneral Form

������� Notion of the Surface Integral in General Form
If P �x� y� z�� Q�x� y� z�� R�x� y� z� are three functions of three variables de�ned in a connected domain
and S is an oriented surface contained in this domain� the sum of the integrals of the second type taken
over the projections on the three coordinate planes is called the surface integral in general form�Z

S

�P dy dz � Qdz dx � Rdx dy� �
Z
S

P dy dz �
Z
S

Qdz dx �
Z
S

Rdx dy� ������

The formula reducing the surface integral to a double integral is�Z
S

�P dy dz � Qdz dx � Rdx dy� �
Z
�

�
P

D�y� z�

D�u� v�
� Q

D�z� x�

D�u� v�
� R

D�x� y�

D�u� v�


du dv� ������

where the quantities
D�x� y�

D�u� v�
�

D�y� z�

D�u� v�
�
D�z� x�

D�u� v�
� and % have the same meaning� as above�

Remark� The surface integral of vector�valued functions is discussed in the chapter about the theory
of vector �elds �see ������ p� �����

������� Properties of the Surface Integrals

� If the domain of integration� i�e�� the surface S� is decomposed into two parts S� and S�� thenZ
S

�P dy dz � Qdz dx � Rdx dy� �
Z
S�

�P dy dz � Qdz dx � Rdx dy�

�
Z
S�

�P dy dz � Qdz dx � Rdx dy�� ������

� If the orientation of the surface is reversed� i�e�� if we interchange the exterior and interior sides�
the integral changes its sign�Z

S�

�P dy dz � Qdz dx � Rdx dy� � �
Z
S�

�P dy dz � Qdz dx � Rdx dy�� ������
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where S� and S� denote the same surface with di�erent orientation�
� A surface integral depends� in general� on the line bounding the
surface region S as well as on the surface itself� Thus the integrals taken
over two di�erent non�closed surface regions S� and S� spanned by the
same closed curve C are� in general� not equal �Fig �����Z

S�

�P dy dz � Qdz dx � Rdx dy�

��
Z
S�

�P dy dz � Qdz dx � Rdx dy�� ������

S1

C
S2

Figure ����

������� AnApplication of the Surface Integral
The volume V of a solid bounded by a closed surface S can be expressed and calculated by a surface
integral

V �


�

Z
S

�x dy dz � y dz dx � z dx dy�� ������

where S is oriented so that its exterior side is positive�



���


 Di�erentialEquations

� A Di	erential Equation is an equation� in which one or more variables� one or more functions
of these variables� and also the derivatives of these functions with respect to these variables occur� The
order of a di�erential equation is equal to the order of the highest occurring derivative�
� Ordinary and Partial Di	erential Equations di�er from each other in the number of their
independent variables� in the �rst case there is only one� in the second case there are several�

A�

�
dy

dx

��
�xy�

dy

dx
�sin y � �� B� xd�ydx�dy�dx�� � ey�dy��� C�

��z

�x�y
� xyz

�z

�x

�z

�y
�

��� OrdinaryDi�erential Equations
�� General Ordinary Di
erential Equation of Order n
in implicit form has the equation

F
h
x� y�x�� y��x�� � � � � y�n��x�

i
� �� ����

If this equation is solved for y�n��x�� then it is the explicit form of an ordinary di�erential equation of
order n�

�� Solution or Integral
of a di�erential equation is every function satisfying the equation in an interval a � x � b which
can be also in�nite� A solution� which contains n arbitrary constants c�� c�� � � � � cn� is called the general
solution or general integral� If the values of these constants are �xed� a particular integral or a particular
solution is obtained� The value of these constants can be determined by n further conditions� If the
substitution values of y and its derivatives up to order n �  are prescribed at one of the endpoints of
the interval� then the problem is called an initial value problem� If there are given substitution values
at both endpoints of the interval� then the problem is called a boundary value problem�

The di�erential equation �y� sin x � y cos x �  has the general solution y � cos x � c sinx� For the
condition c � � we get the particular solution y � cos x�

�� Initial Value Problem
If the n values y�x��� y

��x��� � � � � y�n����x�� are given at x� for the solution y � y�x� of an n�th order
ordinary di�erential equation� then an initial value problem is given� The numbers are called the initial
values or initial conditions� They form a system of n equations for the unknown constants c�� c�� � � � � cn
of the general solution of the n�th order ordinary di�erential equation�

The harmonic motion of a special elastic spring�mass system can be modeled by the initial value
problem y�� � y � � with y��� � y�� y

���� � �� The solution is y � y� cos x�

�� Boundery Value Problem
If the solution of an ordinary di�erential equation and�or its derivatives are given at several points of
its domain� then these values are called the boundary conditions� We call a di�erential equation with
boundary conditions a boundary value problem�

The bending line of a bar with �xed endpoints and uniform load is described by the di�erential
equation y�� � x � x� with the boundary conditions y��� � �� y�� � � �� � x � �� The solution is

y �
x�

�
� x�

�
� x

�
�
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����� First�OrderDi�erential Equations

������ Existence Theorems� Direction Field

�� Existence of a Solution
In accordance with the Cauchy existence theorem the di�erential equation

y� � f�x� y� �����

has at least one solution in a neighborhood of x� such that it takes the value y� at x � x� if the function
f�x� y� is continuous in a neighborhood G of the point �x�� y��� For example� we may select G as the
region given by jx� x�j � a and jy � y�j � b with some a and b�

�� Lipschitz Condition
The Lipschitz condition with respect to y is satis�ed by f�x� y� if

jf�x� y��� f�x� y��j � N jy� � y�j �����

holds for all �x� y�� and �x� y�� from G� where N is independent of x� y�� and y�� If this condition is
satis�ed� then the di�erential equation ����� has a unique solution through �x�� y��� The Lipschitz
condition is obviously satis�ed if f�x� y� has a bounded partial derivative �f��y in this neighborhood�
In ������ p� ��� we will see examples in which the assumptions of the Cauchy existence theorem are
not satis�ed�

�� Direction Field
If the graph of a solution y � ��x� of the di�erential equation y� � f�x� y� goes through the point
P �x� y�� then the slope dy�dx of the tangent line of the graph at this point can be determined from
the di�erential equation� So� at every point �x� y� the di�erential equation de�nes the slope of the
tangent line of the solution passing through the considered point� The collection of these directions
�Fig 
�� forms the direction �eld� An element of the direction �eld is a point together with the direc�
tion associated to it� Integration of a �rst�order di�erential equation geometrically means to connect
the elements of a direction �eld into an integral curve� whose tangents have the same slopes at all points
as the corresponding elements of the direction �eld�

y

x0

Figure ��

y

0 x

P(x ,y )0 0

Figure ���

�� Vertical Directions
If in a direction �eld we have vertical directions� i�e�� if the function f�x� y� has a pole� we exchange the
role of the independent and dependent variables and we consider the di�erential equation

dx

dy
�



f�x� y�
�����

as an equivalent equation to ������ In the region where the conditions of the existence theorems are
ful�lled for the di�erential equations ����� or ������ there exists a unique integral curve �Fig 
��
through every point P �x�� y���
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�� General Solution
The set of all integral curves can be characterized by one parameter and it can be given by the equation

F �x� y� C� � � ����a�

of the corresponding one�parameter family of curves� The parameter C� an arbitrary constant� can be
chosen freely and it is a necessary part of the general solution of every �rst�order di�erential equation�
A particular solution y � ��x�� which satis�es the condition y� � ��x��� can be obtained from the
general solution ����a� if C is expressed from the equation

F �x�� y�� C� � �� ����b�

������ Important SolutionMethods

�� Separation of Variables
If a di�erential equation can be transformed into the form

M�x�N�y�dx � P �x�Q�y�dy � �� ����a�

then it can be rewritten as

R�x�dx � S�y�dy � �� ����b�

where the variables x and y are separated into two terms� To get this form� we divide equation ����a�
by P �x�N�y�� For the general solution we haveZ M�x�

P �x�
dx �

Z Q�y�

N�y�
dy � C� �����

If for some values x � x or y � y� the functions P �x� or N�y� or both are equal to zero� then the
constant functions x � x or�and y � y are also solutions of the di�erential equation� They are called
singular solutions�

xdy � ydx � ��
Z

dy

y
�
Z

dx

x
� C� ln jyj� ln jxj � C � ln jcj� yx � c� If we allow also c � �

in this �nal equation� then we have the singular solutions y � � and x � ��

�� Homogeneous Equations
If M�x� y� and N�x� y� are homogeneous functions of the same order �see �������� �� p� ��� then in
the equation

M�x� y�dx � N�x� y�dy � � �����

we separate the variables by substitution of u � y�x�

x�x � y�y� � y� � � with y � u�x�x� we get � � u�u� � u�x � �� By separation of the variablesZ �� u�

u
du � �

Z 

x
dx� After integration� ln jxj � ln ju � uj � C � ln jcj� ux � ceu� y � cey�x�

As we have seen in the preceding paragraph� Separation of Variables� the line x � � is also an integral
curve�

�� Exact Di
erential Equations
An exact di�erential equation is an equation of the form

M�x� y�dx � N�x� y�dy � � or N�x� y�y� � M�x� y� � �� ����a�

if there exists a function ��x� y� of two variables such that

M�x� y�dx � N�x� y�dy � d��x� y�� ����b�

i�e�� if the left side of ����a� is the total di�erential of a function ��x� y� �see ������� p� ����� If functions
M�x� y� and N�x� y� and their �rst�order partial derivatives are continuous on a connected domain G�
then the equality

�M

�y
�

�N

�x
����c�
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is a necessary and su�cient condition for equation ����a� to be exact� In this case the general solution
of ����a� is the function

��x� y� � C �C � const�� ����d�

which can be calculated according to �������� �������� p� ��� as the integral

��x� y� �

xZ
x�

M��� y� d� �

yZ
y�

N�x�� �� d�� ����e�

where x� and y� can be chosen arbitrarily from G�

An example is given in �� Integrating Factor�

�� Integrating Factor
A function ��x� y� is called an integrating factor or a multiplier if the equation

Mdx � Ndy � � ����a�

multiplied by ��x� y� becomes an exact di�erential equation� The integrating factor satis�es the di�er�
ential equation

N
� ln�

�x
�M

� ln�

�y
�

�M

�y
� �N

�x
� ����b�

Every particular solution of this equation is an integrating factor� To give a general solution of this
partial di�erential equation is much more complicated than to solve the original equation� so usually
we are looking for the solution ��x� y� in a special form� e�g�� ��x�� ��y�� ��xy� or ��x� � y���

We now solve the di�erential equation �x��y� dx�x dy � �� The equation for the integrating factor

is�x
� ln�

�x
��x��y�

� ln�

�y
� �� An integrating factor which is independent of y must satisfy x

� ln�

�x
�

��� so � �


x�
� Multiplication of the given di�erential equation by � yields

�
 �

y

x�

�
dx � 

x
dy � ��

The general solution according to ����e� with the selection of x� � � y� � � is then�

��x� y� �
Z x

�

�
 �

y

��

�
d� �

Z y

�
d� � C or x� y

x
� C��

�� First�Order Linear Di
erential Equations
A �rst�order linear di�erential equation has the form

y� � P �x�y � Q�x�� ���a�

where the unknown function and its derivative occur only in �rst degree� and P �x� and Q�x� are given
functions� If P �x� and Q�x� are continuous functions on a �nite� closed interval� then the di�erential
equation here satis�es the conditions of thePicardLindel�of theorem �see p� ���� The integrating factor
is here

� � exp
�Z

P dx
�
� ���b�

the general solution is

y � exp
�
�
Z

P dx
� 
Z

Q exp
�Z

P dx
�
dx � C

�
� ���c�

If we replace the inde�nite integrals by de�nite ones with lower bound x� and upper bound x in this
formula� then for the solution y�x�� � C �see ������� �� p� ����� If y� is any particular solution of the
di�erential equation� then the general solution of the di�erential equation is given by the formula

y � y� � C exp
�
�
Z

P dx
�
� ���d�
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If y��x� and y��x� are two linearly independent particular solutions �see ������� �� p� ����� then we
can get the general solution without any integration as

y � y� � C�y� � y��� ���e�

Solve the di�erential equation y� � y tanx � cos x with the initial condition x� � �� y� � �� We

calculate exp
�
�
Z x

�
tanx dx

�
� cos x and get the solution according to ���c��

y �


cos x

Z x

�
cos� x dx �



cos x



sinx cos x � x

�

�
�

sinx

�
�

x

� cos x
�

� Bernoulli Di
erential Equations
The Bernoulli di�erential equation is an equation of the form

y� � P �x�y � Q�x�yn �n �� �� n �� �� �����

which can be reduced to a linear di�erential equation if it is divided by yn and the new variable z �
y�n�� is introduced�

Solve the di�erential equation y� � �y

x
� x
p

y � Since n � ��� dividing by
p
y and introducing the

new variable z �
p
y leads to the equation

dz

dx
� �z

x
�

x

�
� By using the formulas for the solution of a

linear di�erential equation we have exp�
R
P dx� �



x�
and z � x�


Z x

�



x�
dx � C

�
� x�





�
ln jxj� C

�
�

So� �nally� y � x�
�



�
ln jxj� C

��
�

�� Riccati Di
erential Equations
The Riccati di�erential equation is the equation

y� � P �x�y� � Q�x�y � R�x�� ����a�

which cannot usually be solved by elementary integration� However� if we know a particular solution
y� of the Riccati di�erential equation� then we can reduce the equation to a linear di�erential equation
for z by substituting

y � y� �


z
� ����b�

If we also know a second particular solution y�� then

z� �


y� � y�
����c�

is a particular solution of the linear di�erential equation for the function z� so its solution can be sim�
pli�ed� If we know three particular solutions y�� y�� and y�� then the general solution of the Riccati
di�erential equation is

y � y�
y � y�

�
y� � y�
y� � y�

� C� ����d�

By the substitution of

y �
u

P �x�
� ��x�� ����e�

the Riccati di�erential equation can be transformed into the normal form

du

dx
� u� � R�x�� ����f�
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With the substitution

y � � v�

P �x�v
����g�

we get a second�order linear di�erential equation �see ������� �� p� ���� from ����a�

P v�� � �P � � PQ�v� � P �Rv � �� ����h�

Solve the di�erential equation y� � y� �


x
y� �

x�
� �� We substitute y � z ���x� into the equation�

and for the coe�cient of the �rst power of z we get the expression �� � �x� which disappears if we

substitute ��x� � ���x� In this way we get z�� z�� �

�x�
� �� We are looking for particular solutions

in the form z� �
a

x
and we get the solutions a� � ��

�
� a� �

�

�
by substitution� i�e�� the two particular

solutions are z� � � �

�x
� z� �

�

�x
� The substitution of z �



u
� z� �



u
� �

�x
results in the equation

u� �
�u

x
� � Substituting the particular solution u� �



z� � z�
�

x

�
we obtain the general solution

u �
x

�
�

C

x�
�

x� � C�

�x�
and therefore� y �



u
� �

�x
� 

�x
�

�x� � �C�

x� � C�x
�

������ Implicit Di
erential Equations

�� Solution in Parametric Form
Suppose we have a di�erential equation in implicit form

F �x� y� y�� � �� �����

There are n integral curves passing through a point P �x�� y�� if the following conditions hold�

a� The equation F �x�� y�� p� � � �p � dy�dx� has n real roots p�� � � � � pn at the point P �x�� y���

b� The function F �x� y� p� and its �rst partial derivatives are continuous at x � x�� y � y�� p � pi�
furthermore �F��p �� ��

If the original equation can be solved with respect to y�� then it yields n equations of the explicit forms
discussed above� Solving these equations we get n families of integral curves� If the equation can be
written in the form x � ��y� y�� or y � ��x� y��� then putting y� � p and considering p as an auxiliary
variable� after di�erentiation with respect to y or x we obtain an equation for dp�dy or dp�dx which is
solved with respect to the derivative� A solution of this equation together with the original equation
����� determines the desired solution in parametric form�

Solve the equation x � yy� � y��� We substitute y� � p and get x � py � p�� Di�erentiation with

respect to y and substituting
dx

dy
�



p
results in



p
� p� �y � �p�

dp

dy
or

dy

dp
� py

� p�
�

�p�

� p�
� Solving

this equation for y we get y � �p �
c � arcsin pp

� p�
� Substituting into the initial equation we get the

solution for x in parametric form�

�� Lagrange Di
erential Equation
The Lagrange di�erential equation is the equation

a�y��x � b�y��y � c�y�� � �� ����a�

The solution can be determined by the method given above� If for p � p��

a�p� � b�p�p � �� ����b� then a�p��x � b�p��y � c�p�� � � ����c�

is a singular solution of ����a��
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�� Clairaut Di
erential Equation
The Clairaut di�erential equation is the special case of the Lagrange di�erential equation if

a�p� � b�p�p � �� ����a�

and so it can be transformed into the form

y � y�x � f�y��� ����b�

The general solution is

y � Cx � f�C�� ����c�

Besides the general solution� the Clairaut di�erential equation also has a singular solution� which can
be obtained by eliminating the constant C from the equations

y � Cx � f�C� ����d� and � � x � f ��C�� ����e�

We can obtain the second equation by di�erentiating the �rst one with respect to C� Geometrically�
the singular solution is the envelope �see ������� p� ���� of the solution family of lines �Fig 
���

Solve the di�erential equation y � xy� � y��� The general solution is y � Cx � C�� and we get the
singular solution with the help of the equation x � �C � � to eliminate C� and hence x� � �y � ��
Fig 
� shows this case�

y

x0

Figure ���

y

0
x

x-y
=0

x-y
=
4
27

Figure ���

������ Singular Integrals and Singular Points

�� Singular element
An element �x�� y�� y

�
�� is called a singular element of the di�erential equation� if in addition to the

di�erential equation

F �x� y� y�� � � ����a�

it also satis�es the equation

�F

�y�
� �� ����b�

�� Singular Integral
An integral curve from singular elements is called a singular integral curve� the equation

��x� y� � � ����c�

of a singular integral curve is called a singular integral� The envelopes of the integral curves are singular
integral curves �Fig 
��� they consist of the singular elements�
The uniqueness of the solution �see ����� �� p� ���� fails at the points of a singular integral curve�

�� Determination of Singular Integrals
Usually we cannot obtain singular integrals for any values of the arbitrary constants of the general
solution� To determine the singular solution of a di�erential equation ����a� with p � y� we have to
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introduce the equation

�F

�p
� � ����d�

and to eliminate p� If the obtained relation is a solution of the given di�erential equation� then it is
a singular solution� The equation of this solution should be transformed into a form which does not
contain multiple�valued functions� in particular no radicals where the complex values should also be
considered�

Radicals are expressions we get by nesting algebraic equations �see ����� p� ���� If the equation of the
family of integral curves is known� i�e�� the general solution of the given di�erential equation is known�
then we can determine the envelope of the family of curves� the singular integral� with the methods of
di�erential geometry �see ������� p� �����

A� Solve the di�erential equation x�y��

�
y���

�

��
y�� � �� After we substitute y� � p� the calculation

of the additional equation with ����d� yields ��

�
p �

�

�
p� � �� Elimination of p results in equation a�

x � y � � and b� x� y �
�

��
� where a� is not a solution� b� is a solution� a special case of the general

solution �y � C�� � �x� C��� The integral curves of a� and b� are shown in Fig 
��

B� Solve the di�erential equation y�� ln jxj � �� We transform the equation into the form ep�jxj �
��

�F

�p
� ep � �� We get the singular solution x � � eliminating p�

�� Singular Points of a Di
erential Equation
Singular points of a di�erential equation are the points where the right side of the di�erential equation

y� � f�x� y� ����a�

is not de�ned� This is the case� e�g�� in the di�erential equations of the following forms�
� Di	erential Equation with a Fraction of Linear Functions

dy

dx
�

ax � by

cx � ey
�ae� bc �� �� ����b�

has an isolated singular point at ��� ��� since the assumptions of the existence theorem are ful�lled almost
at every point arbitrarily close to ��� �� but not at this point itself� The conditions are not ful�lled at the
points where cx � ey � �� We can force the ful�llment of the conditions at these points if we exchange
the role of the variables and we consider the equation

dx

dy
�

cx � ey

ax � by
� ����c�

The behavior of the integral curve in the neighborhood of a singular point depends on the roots of the
characteristic equation

�� � �b � c�� � bc� ae � �� ����d�

We can distinguish between the following cases�

Case �� If the roots are real and they have the same sign� then the singular point is a branch point�
The integral curves in a neighborhood of the singular point pass through it and if the roots of the
characteristic equation do not coincide� except for one� they have a common tangent� If the roots
coincide� then either all integral curves have the same tangent� or there is a unique integral curve passing
through the singular point in each direction�

A� For the di�erential equation
dy

dx
�

�y

x
the characteristic equation is �� � �� � � � �� �� � ��

�� � � The integral curves have the equation y � C x� �Fig 
��� The general solution also contains
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the line x � � if we consider the form x� � C� y�

B� The characteristic equation for
dy

dx
�

x � y

x
is ������ � �� �� � �� � � The integral curves

are y � x ln jxj� Cx �Fig 
��� The singular point is a so�called node�

C� The characteristic equation for
dy

dx
�

y

x
is �� � �� �  � �� �� � �� � � The integral curves

are y � C x �Fig 
��� The singular point is a so�called ray point�

y

x

Figure ���

y

x

Figure ���

y

x

Figure ���

Case �� If the roots are real and they have di�erent signs� the singular point is a saddle point� and
two of the integral curves pass through it�

D� The characteristic equation for
dy

dx
� �y

x
is �� �  � �� �� � �� �� � �� The integral curves

are x y � C �Fig 
��� For C � � we get the particular solutions x � �� y � ��

Case �� If the roots are conjugate complex numbers with a non�zero real part �Re��� �� ��� then the
singular point is a spiral point which is also called a focal point� and the integral curves wind about this
singular point�

E� The characteristic equation for
dy

dx
�

x � y

x� y
is �� � �� � � � �� �� �  � i� �� �  � i� The

integral curves in polar coordinates are r � C e� �Fig 

��

y

x0

Figure ���

y

x

Figure ���

y

x0

Figure ���

Case �� If the roots are pure imaginary numbers� then the singular point is a central point� or center�
which is surrounded by the closed integral curves�
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F� The characteristic equation for
dy

dx
� �x

y
is �� �  � �� �� � i� �� � �i� The integral curves are

x� � y� � C �Fig 
����

� Di	erential Equation with the Ratio of Two Arbitrary Functions

dy

dx
�

P �x� y�

Q�x� y�
����a�

has the singular points for the values of the variables where

P �x� y� � Q�x� y� � �� ����b�

If P and Q are continuous functions and they have continuous partial derivatives� ����a� can be written
in the form

dy

dx
�

a�x� x�� � b�y � y�� � P��x� y�

c�x� x�� � e�y � y�� � Q��x� y�
� ����c�

Here x� and y� are the coordinates of the singular point and P��x� y� and Q��x� y� are in�nitesimals of a
higher order than the distance of the point �x� y� from the singular point �x�� y��� With these assump�
tions the type of a singular point of the given di�erential equation is the same as that of the approximate
equation obtained by omitting the terms P� and Q�� with the following exceptions�

a� If the singular point of the approximate equation is a center� the singular point of the original equa�
tion is either a center or a focal point�

b� If a e � b c � �� i�e��
a

c
�

b

e
or a � c � � or a � b � �� then the type of singular point should be

determined by examining the terms of higher order�

������ ApproximationMethods for Solution of First�Order Di
erential
Equations

�� Successive ApproximationMethod of Picard
The integration of the di�erential equation

y� � f�x� y� ����a�

with the initial condition y � y� for x � x� results in the �xed�point problem

y � y� �

xZ
x�

f�x� y� dx� ����b�

If we substitute another function y��x� instead of y into the right�hand side of ����b�� then the result
will be a new function y��x�� which is di�erent from y��x�� if y��x� is not already a solution of ����a��
After substituting y��x� instead of y into the right�hand side of ����b� we get a function y��x�� If
the conditions of the existence theorem are ful�lled �see ����� �� p� ����� the sequence of functions
y�� y�� y�� � � � converges to the desired solution in a certain interval containing the point x��
This Picard method of successive approximation is an iteration method �see ���� p� �����

Solve the di�erential equation y� � ex � y� with initial values x� � �� y� � �� Rewriting the
equation in integral form and using the successive approximation method with an initial approximation

y��x� � �� we get� y� �
Z x

�
ex dx � ex � � y� �

Z x

�

h
ex � �ex � ��

i
dx � �ex � 

�
e�x � x� �

�
� etc�

�� Solution by Series Expansion
The Taylor series expansion of the solution of a di�erential equation �see �������� �� p� ��� can be
given in the form

y � y� � �x� x��y�
� �

�x� x��
�

�$
y�
�� � � � �� �x� x��

n

n$
y�

�n� � � � � ������
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if the values y�
�� y���� � � � � y��n�� � � � of all derivatives of the solution function are known at the initial

value x� of the independent variable� The values of the derivatives can be determined by successively
di�erentiating the original equation and substituting the initial conditions� If the di�erential equation
can be di�erentiated in�nitely many times� the obtained series will be convergent in a certain neigh�
borhood of the initial value of the independent variable� We can use this method also for n�th order
di�erential equations�
Remark� The above result is the Taylor series of the function� which may not represent the function
itself �see �������� �� p� ����

It is often useful to substitute the solution by an in�nite series with undetermined coe�cients� and to
determine them by comparing coe�cients�

A� To solve the di�erential equation y� � ex � y�� x� � �� y� � � we consider the series y �
a�x�a�x

� �a�x
� � � � ��anx

n� � � �� Substituting this into the equation considering the formula �������
p� �� for the square of the series we get

a� � �a�x � �a�x
� � � � ��  a�

�x� � �a�a�x
� � �a�

� � �a�a��x
� � � � �! �  � x �

x�

�
�

x�

�
� � � � �

Comparing coe�cients we get� a� � � �a� � � �a� � a�
� �



�
� �a� � �a�a� �



�
� etc� Solving

these equations successively and substituting the coe�cient values into the series representation we

get y � x �
x�

�
� x�

�
� �

��
x� � � � ��

B� The same di�erential equation with the same initial conditions can also be solved in the follow�
ing way� If we substitute x � � into the equation� we get y�

� � � By successive di�erentiation we get

y�� � ex� �yy�� y��� � � y��� � ex� �y�� � �yy��� y���� � �� y��� � ex � �y�y��� �yy���� y���� � ��� From

the Taylor theorem �see �������� �� p� ��� we get the solution y � x �
x�

�$
� x�

�$
� �x�

�$
� � � ��

y

0 x

y0

x0

Figure ��

�� Graphical Solution of Di
erential Equations
The graphical integration of a di�erential equation is a method�
which is based on the direction �eld �see ����� �� p� �����
The integral curve in Fig 
�� is represented by a broken line
which starts at the given initial point and is composed of short
line segments� The directions of the line segments are always
the same as the direction of the direction �eld at the starting
point of the line segment� This is also the endpoint of the pre�
vious line segment�

�� Numerical Solution of Di
erential Equations
The numerical solutions of di�erential equations will be discussed in detail in ���� p� ���� We use
numerical methods to determine a solution of a di�erential equation� if the equation y� � f�x� y� does
not belong to the special cases dicussed above whose analytic solutions are known� or if the function
f�x� y� is too complicated� This can happen if f�x� y� is non�linear in y�

����� Di�erential Equations ofHigherOrder and Systems of

Di�erential Equations
������ Basic Results
�� Existence of a Solution
� Reduction to a System of Di	erential Equations Every explicit n�th order di�erential equa�
tion

y�n� � f
�
x� y� y�� � � � � y�n���

	
����a�



�
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by introducing the new variables

y� � y�� y� � y��� � � � � yn�� � y�n��� ����b�

can be reduced to a system of n �rst�order di�erential equations

dy

dx
� y��

dy�
dx

� y�� � � � �
dyn��
dx

� f�x� y� y�� � � � � yn���� ����c�

� Existence of a System of Solutions The system of n di�erential equations

dyi
dx

� fi�x� y�� y�� � � � � yn� �i � � �� � � � � n�� �����a�

which is more general than system ����c�� has a unique system of solutions

yi � yi�x� �i � � �� � � � � n�� �����b�

which is de�ned in an interval x� � h � x � x� � h and for x � x� takes the previously given initial
values yi�x�� � yi

� �i � � �� � � � � n�� if the functions fi�x� y�� y�� � � � � yn� are continuous with respect to
all variables and satisfy the following Lipschitz condition�
� Lipschitz condition For the values x� yi and yi � %yi� which are in a certain neighborhood of
the given initial values� the functions fi satisfy the following inequalities�

jfi�x� y� � %y�� y� � %y�� � � � � yn � %yn� � fi�x� y�� y�� � � � � yn�j
� K �j%y�j� j%y�j� � � �� j%ynj� �����a�

with a common constant K �see also ����� �� p� �����

This fact implies that if the function f�x� y� y�� � � � � y�n���� is continuous and satis�es the Lipschitz con�
dition �����a�� then the equation

y�n� � f
�
x� y� y�� � � � � y�n���

	
�����b�

has a unique solution with the initial values y�x�� � y�� y
��x�� � y�

�� � � � � y�n����x�� � y�
�n���� and it

is �n� � times continuously di�erentiable�

�� General Solution
� The general solution of the di�erential equation �����b� contains n independent arbitrary con�
stants�

y � y�x� C�� C�� � � � � Cn�� �����a�

� In the geometrical interpretation the equation �����a� de�nes a family of curves depending on n
parameters� Every single one of these integral curves� i�e�� the graph of the corresponding particular
solution� can be obtained by a suitable choice of the constants C�� C�� � � � � Cn� If the solution has to
satisfy the above initial conditions� then the values C�� C�� � � � � Cn are determined from the following
equations�

y�x�� C�� � � � � Cn� � y���
d

dx
y�x� C�� � � � � Cn�


x�x�

� y�
�� �����b�

� � � � � � � � � � � � � � � � � � � � � � � � � � ��
dn��

dxn��
y�x� C�� � � � � Cn�


x�x�

� y�
�n����

If these equations are inconsistent for any initial values in a certain domain� then the solution is not
general in this domain� i�e�� the arbitrary constants cannot be chosen independently�
� The general solution of system �����a� also contains n arbitrary constants� This general solution
can be represented in two di�erent ways� Either it is given in a form which is solved for the unknown
functions

y� � F��x� C�� � � � � Cn�� y� � F��x� C�� � � � � Cn�� � � � � yn � Fn�x� C�� � � � � Cn� �����a�
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or in the form which is solved for the constants

���x� y�� � � � � yn� � C�� ���x� y�� � � � � yn� � C�� � � � � �n�x� y�� � � � � yn� � Cn� �����b�

In the case of �����b� each relation

�i�x� y�� � � � � yn� � Ci �����c�

is a �rst integral of the system �����a�� The �rst integral can be de�ned independently of the general
solution as a relation �����c�� That is� �����c� will be an identity if we replace y�� y�� � � � � yn by any
particular solution of the given system and we replace the constant by the arbitrary constant Ci deter�
mined by this particular solution�
If any �rst integral is known in the form �����c�� then the function �i�x� y�� � � � � yn� satis�es the partial
di�erent equation

��i
�x

� f��x� y�� � � � � yn�
��i
�y�

� � � �� fn�x� y�� � � � � yn�
��i
�yn

� �� �����d�

Conversely� each solution �i�x� y�� � � � � yn� of the partial di�erential equation �����d� de�nes a �rst inte�
gral of the system �����a� in the form �����c�� The general solution of the system �����a� can be repre�
sented as a system of n �rst integrals of system �����a�� if the corresponding functions �i�x� y�� � � � � yn�
�i � � �� � � � � n� are linearly independent �see ������� �� p� �����

������ Lowering the Order
One of the most important solution methods for n�th order di�erential equations

f
�
x� y� y�� � � � � y�n�

	
� � ������

is the substitution of variables in order to obtain a simpler di�erential equation� especially one of lower
order� We can distinguish between di�erent cases�

� f � f�y� y�� 	 	 	 � y�n��� ie� x does not appear explicitly�

f
�
y� y�� � � � � y�n�

	
� �� �����a�

By substitution

dy

dx
� p�

d�y

dx�
� p

dp

dy
� � � � �����b�

we can reduce the order of the di�erential equation from n to �n� ��

We reduce the order of the di�erential equation yy�� � y�� � � to one� With the substitution y� �
p� p dp�dy � y�� it becomes a �rst�order di�erential equation y p dp�dy � p� � �� and y dp�dy � p � �
results in p � C y � dy�dx� y � C�e

Cx� Canceling p does not result in a loss of a solution� since p � �
gives the solution y � C�� which is included in the general solution with C � ��

� f � f�x� y�� 	 	 	 � y�n��� ie� y does not appear explicitly�

f
�
x� y�� ���� y�n�

	
� �� �����a�

The order of the di�erential equation can be reduced from n to �n� � by the substitution

y� � p� �����b�

If the �rst k derivatives are missing in the initial equation� then a suitable substitution is

y�k��� � p� �����c�

The order of the di�erential equation y���xy�����y����� � � will be reduced by the substitution y�� � p�

so we get a Clairaut di�erential equation p�x
dp

dx
�

�
dp

dx

��
� � whose general solution is p � C� x�C�

��

Therefore� y �
C�x

�

�
�C�

�x�

�
�C�x�C�� From the singular solution of the Clairaut di�erential equation
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p �
�
p

�

�
x��� we get the singular solution of the original equation� y �

�
p

�

��
x��� � C�x � C��

� f
�
x� y� y�� 	 	 	 � y�n�

	
is a homogeneous function �see �������� �� p� ���

in y� y�� y��� 	 	 	 � y�n��

f
�
x� y� y�� � � � � y�n�

	
� �� �����a�

We can reduce the order by the substitution

z �
y�

y
� i�e�� y � e

R
z dx� �����b�

We transform the di�erential equation yy�� � y�� � � by the substitution z � y��y� Then
dz

dx
�

yy�� � y��

y�
� so the order is reduced by one� We get z � C�� therefore� ln jyj � C�x � C�� or y � CeC�x

with ln jCj � C��

� f � f�x� y� y�� 	 	 	 � y�n�� is a function of only x�

y�n� � f�x�� �����a�

We get the general solution by n repeated integrations� It has the form

y � C� � C�x � C�x
� � � � �� Cnx

n�� � ��x� �����b�

with

��x� �
ZZ
� � �
Z

f�x� �dx�n �


�n� �$

xZ
x�

f�t��x� t�n�� dt� �����c�

We mention here that x� is not an additional arbitrary constant� since the change in x� results in the
change of Ck because of the relation

Ck �


�k � �$
y�k����x��� �����d�

������ Linear n�th Order Di
erential Equations
�� Classi�cation
A di�erential equation of the form

y�n� � an��y�n��� � an��y�n��� � � � �� a�y
� � a�y � F �����

is called an n�th order linear di�erential equation� Here F and the coe�cients ai are functions of x�
which are supposed to be continuous in a certain interval� If a�� a�� � � � � an�� are constants� we call
it a di�erential equation with constant coe�cients� If F � �� then the linear di�erential equation is
homogeneous� and if F �� �� then it is inhomogeneous�

�� Fundamental System of Solutions
A system of n solutions y�� y�� � � � � yn of a homogeneous linear di�erential equation is called a funda�
mental system if these functions are linearly independent on the considered interval� i�e�� their linear
combination C� y� � C� y� � � � �� Cn yn is not identically zero for any system of values C�� C�� � � � � Cn�
except for the values C� � C� � � � � � Cn � �� The solutions y�� y�� � � � � yn of a linear homogeneous dif�
ferential equation form a fundamental system on the considered interval if and only if their Wronskian
determinant

W �

���������
y� y� � � � yn
y�
� y�

� � � � yn�
� � � � � � � � � � � � � � � � � � � � � � � �
y�

�n��� y�
�n��� � � � yn�n���

��������� ������
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is non�zero� For every solution system of a homogeneous linear di�erential equation the formula of
Liouville is valid�

W �x� � W �x�� exp

��� xZ
x�

a��x� dx

�A � ������

It follows from ������ that if the Wronskian determinant is zero somewhere in the solution interval�
then it can be only identically zero� This means� The n solutions y�� y�� � � � � yn of the homogeneous
linear di�erential equation are linearly dependent if even for a single point x� of the considered interval
W �x�� � �� If the solutions y�� y�� � � � � yn form a fundamental system of the di�erential equation� then
the general solution of the linear homogeneous di�erential equation ����� is given as

y � C� y� � C� y� � � � �� Cn yn� ������

A linear n�th order homogeneous di�erential equation has exactly n linearly independent solutions on
an interval� where the coe�cient functions ai�x� are continuous�

�� Lowering the Order
If we know a particular solution y� of a homogeneous di�erential equation� by assuming

y � y��x�u�x� ������

we can determine further solutions from a homogeneous linear di�erential equation of order n �  for
u��x��

�� Superposition Principle
If y� and y� are two solutions of the di�erential equation ����� for di�erent right�hand sides F� and
F�� then their sum y � y� � y� is a solution of the same di�erential equation with the right�hand side
F � F� � F�� From this observation it follows that to get the general solution of an inhomogeneous
di�erential equation it is su�cient to add any particular solution of the inhomogeneous di�erential
equation to the general solution of the corresponding homogeneous di�erential equation�

�� Decomposition Theorem
If an inhomogeneous di�erential equation ����� has real coe�cients and its right�hand side is complex
in the form F � F� � iF� with some real functions F� and F�� then the solution y � y� � iy� is also
complex� where y� and y� are the two solutions of the two inhomogeneous di�erential equations �����
with the corresponding right�hand sides F� and F��

� Solution of Inhomogeneous Di
erential Equations �����	 byMeans
of Quadratures

If the fundamental system of the corresponding homogeneous di�erential equation is already known�
we have the following two solution methods to continue our calculations�

� Method of Variation of Constants We are looking for the solution in the form

y � C�y� � C�y� � � � �� Cnyn �����a�

where C�� C�� � � � � Cn are functions of x� There are in�nitely many such functions� but if we require that
they satisfy the equations

C�
�y� � C�

�y� � � � �� Cn
�yn � ��

C�
�y�� � C�

�y�� � � � �� Cn
�yn� � �� �����b�

� � � � � � � � � � � � � � �

C�
�y�

�n��� � C�
�y�

�n��� � � � �� Cn
�yn

�n��� � �

and we substitute y into ����� with these equalities we get

C�
�y��n��� � C�

�y��n��� � � � �� Cn
�yn�n��� � F� �����c�

Because the Wronskian determinant of the coe�cients in the linear equation system �����b� and �����c�
is di�erent from zero� we get a unique solution for the unknown functions C�

�� C�
�� � � � � Cn

�� and their
integrals give the functions C�� C�� � � � � Cn�
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y�� �
x

� x
y� � 

� x
y � x� � �����d�

In the interval x �  or x �  all assumptions on the coe�cients are ful�lled� First we solve the

homogeneous equation y���
x

� x
y�� 

� x
y � �� A particular solution is �� � ex� We are looking for a

second one in the form�� � exu�x�� and with the notationu��x� � v�x� we get the �rst�order di�erential

equation v� �
�

 �


� x

�
v � �� A solution of this equation is v�x� � � � x�e�x� and therefore�

u�x� �
Z

v�x� dx �
Z

� � x�e�x dx � xe�x� With this result we get �� � x for the second element

of the fundamental system� The general solution of the homogeneous equation is y�x� � C�e
x � C�x�

The variation of constants is now�

y�x� � u��x�ex � u��x�x�

y��x� � u��x�ex � u��x� � u�
��x�ex � u�

��x�x� u�
��x�ex � u�

��x�x � ��

y���x� � u��x�ex � u�
��x�ex � u�

��x�� u�
��x�ex � u�

��x� � x� �

so

u�
��x� � xe�x� u�

��x� � �� i�e�� u��x� � �� � x�e�x � C�� u��x� � �x � C��

With this result the general solution of the inhomogeneous di�erential equation is�

y�x� � �� � x�� � C�e
x � �C� � �x � �� � x�� � C�

�ex � C�
�x�

� Method of Cauchy In the general solution

y � C�y� � C�y� � � � �� Cnyn �����a�

of the homogeneous di�erential equation associated to ����� we determine constants such that for an

arbitrary parameter � the equations y � �� y� � �� � � � � y�n��� � �� y�n��� � F ��� are satis�ed� In this
way we get a particular solution of the homogeneous equation� denoted by ��x� ��� and then

y �

xZ
x�

��x� �� d� �����b�

is a particular solution of the inhomogeneous di�erential equation ������ This solution and their deriva�
tives up to order �n� � are equal to zero at the point x � x��

The general solution of the homogeneous equation associated to the di�erential equation �����a�
which we solved by the method variation of constants is y � C�e

x � C�x� From this result we see
that y��� � C�e

� � C�� � �� y���� � C�e
� � C� � � �  and ��x� �� � �e��ex � x� so the par�

ticular solution y�x� of the inhomogeneous di�erential equation with y�x�� � y��x�� � � is� y�x� �Z x

x�
��e��ex � x� d� � �x� � �ex�x� � �x� � �x � x� � � Therefore� we can already get the general

solution y�x� � C�
�ex � C�

�x� �x� � � of the inhomogeneous di�erential equation�

������ Solution of Linear Di
erential Equations with Constant
Coe�cients

�� Operational Notation
The di�erential equation ����� can be written symbolically in the form

Pn�D�y �
�
Dn � an��Dn�� � an��Dn�� � � � �� a�D � a�

	
y � F� �����a�

where D is a di�erential operator�

Dy �
dy

dx
� Dky �

dky

dxk
� �����b�

If the coe�cients ai are constants� then Pn�D� is a usual polynomial in the operator D of degree n�
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�� Solution of theHomogeneous Di
erential EquationwithConstant Coe�cients
To determine the general solution of the homogeneous di�erential equation �����a� with F � �� i�e��

Pn�D�y � � �����a�

we have to �nd the roots r�� r�� � � � � rn of the characteristic equation

Pn�r� � rn � an��rn�� � an��rn�� � � � �� a�r � a� � �� �����b�

Every root ri determines a solution erix of the equation Pn�D�y � �� If a root ri has a higher multiplicity
k� then xerix� x�erix� � � � � xk��erix are also solutions� The linear combination of all these solutions is the
general solution of the homogeneous di�erential equation�

y � C�e
r�x � C�e

r�x � � � �� erix
�
Ci � Ci��x � � � �� Ci�k��xk��

	
� � � � � �����c�

If the coe�cients ai are all real� then the complex roots of the characteristic equation are pairwise
conjugate with the same multiplicity� In this case� for r� � � � i� and r� � �� i� we can replace the
corresponding complex solution functions er�x and er�x by the real functions e�x cos �x and e�x sin �x�
The resulting expression C� cos �x � C� sin�x can be written in the form A cos��x � �� with some
constants A and ��

In the case of the di�erential equation y�	� � y��� � y�� � y � �� the characteristic equation is r	 �
r� � r� �  � � with roots r� � � r� � �� r��� � i� r��	 � �i� The general solution can be given in
two forms�

y � C�e
x � C�e

�x � �C� � C�x� cos x � �C� � C	x� sinx� or

y � C�e
x � C�e

�x � A� cos�x � ��� � xA� cos�x � ����

�� Hurwitz Theorem
In di�erent applications� e�g�� in vibration theory� it is important to know whether a solution of a given
homogeneous di�erential equation with constant coe�cients tend to zero for x �� or not� It tends
to zero� obviously� if the real parts of the roots of the characteristic equation �����b� are negative�
According to the Hurwitz theorem an equation

anx
n � an��xn�� � � � �� a�x � a� � � �����a�

has only roots with negative real part if and only if all the determinants

D� � a�� D� �

���� a� a�
a� a�

���� � D� �

������
a� a� �
a� a� a�
a� a� a�

������ � � � � � Dn �

��������
a� a� � � � � �
a� a� a� � � � �
� � � � � � � � � � � � � �
� � � � � � an

��������
�with am � � for m � n� �����b�

are positive� The determinantsDk have on their diagonal the coe�cients a�� a�� � � � � ak �k � � �� � � � � n��
and the coe�cient�indices are decreasing from left to right� Coe�cients with negative indices and also
with indices larger than n are all put to ��

For a cubic polynomial the determinants have in accordance to �����b� the following form�

D� � a�� D� �
���� a� a�
a� a�

���� � D� �

������
a� a� �
a� a� a�
� � a�

������ �
�� Solution of Inhomogeneous Di
erential Equations with Constant Coe�cients
can be determined by the method variation of constants� or by the method of Cauchy� or with the oper�
ator method �see �������� �� p� ����� If the right�hand side of the inhomogeneous di�erential equation
����� has a some special form� a particular solution can be determined very easily�

� Form� F �x� � Ae�x� Pn��� �� � ����a�
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A particular solution is

y �
Ae�x

Pn���
� ����b�

If � is a root of the characteristic equation of multiplicity m� i�e�� if

Pn��� � Pn
���� � � � � � Pn

�m������ � �� ����c�

then y �
Axme�x

Pn
�m����

is a particular solution� These formulas can also be used by applying the decompo�

sition theorem� if the right side is

F �x� � Ae�x cosx or Ae�x sinx� ����d�

The corresponding particular solutions are the real or the imaginary part of the solution of the same
di�erential equation for

F �x� � Ae�x�cosx � i sinx� � Ae���i��x ����e�

on the right�hand side�

A� For the di�erential equation y�� � �y� � �y � e�x� the characteristic polynomial is P �D� �
D���D� � with P ��� � � and P ��D� � �D�� with P ���� � � ���� � ��� so the particular solution

is y � �xe�x

�
�

B� The di�erential equation y�� � y� � y � ex sin x results in the equation �D� � D � �y � e���i�x�

From its solution y �
e���i�x

� � i�� � � � i� � 
�

ex�cos x � i sinx�

� � �i
we get a particular solution y� �

ex

�
�� sinx� � cos x�� Here y� is the imaginary part of y�

� Form� F �x� � Qn�x�e
�x� Qn�x� is a polynomial of degree n ������

A particular solution can always be found in the same form� i�e�� as an expression y � R�x�e�x� R�x� is
a polynomial of degree n multiplied by xm if � is a root of the characteristic equation with a multiplicity
m� We consider the coe�cients of the polynomial R�x� as unknowns and we substitute the expression
into the inhomogeneous di�erential equation� It must satisfy the equation� so we get a linear equation
system for the coe�cients� and this equation system always has a unique solution�

This method is very useful especially in the cases ofF �x� � Qn�x� for� � � andF �x� � Qn�x�erx cosx
or F �x� � Qn�x�erx sinx for � � r � i� There is a solution in the form
y � xmerx Mn�x� cosx � Nn�x� sinx!�

The roots of the characteristic equation associated to the di�erential equation y��� � �y��� � y�� �
�x � �x sinx are k� � k� � �� k� � k� � �� Because of the superposition principle �see �������
�� p� ���� we can calculate the particular solutions of the inhomogeneous di�erential equation for the
summands of the right�hand side separately� For the �rst summand the substitution of the given form
y� � x��ax � b� results in a right�hand side �a � �b � �ax � �x� and so� a �  und b � ��� For the
second summand we substitute y� � �cx�d� sinx��fx�g� cosx� We get the coe�cients by coe�cient
comparison from ��g��f��c��fx� sin x���c��d��f ��cx� cos x � �x sin x� so c � �� d � ��� f �
� g � �� Therefore� the general solution is y � c��c�x��x��x���c�x�c��e

�x�� sinx��x�� cos x�

� Euler Di	erential Equation
The Euler di�erential equation

nX
k��

ak�cx � d�ky�k� � F �x� �����a�

with the substitution

cx � d � et �����b�
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can be transformed into a linear di�erential equation with constant coe�cients�

The di�erential equation x�y�� � �xy� � �y � x� is a special case of the Euler di�erential equation
for n � �� With the substitution x � et it becomes the di�erential equation discussed earlier in

example A� on p� ����
d�y

dt�
� �

dy

dt
� �y � e�t� The general solution is y � C�e

�t � C�e
�t � t

�
e�t �

C�x
� � C�x

� � x�

�
ln jxj�

������ Systems of Linear Di
erential Equations with Constant
Coe�cients

�� Normal Form
The following simple case of a �rst�order linear di�erential equation system with constant coe�cients
is called a normal system or a normal form�

y�
� � a��y� � a��y� � � � �� a�nyn�

y�
� � a��y� � a��y� � � � �� a�nyn�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
yn

� � an�y� � an�y� � � � �� annyn�

 ��!��" �����a�

To �nd the general solution of such a system� we have to �nd �rst the roots of the characteristic equation��������
a�� � r a�� � � � a�n
a�� a�� � r � � � a�n
� � � � � � � � � � � � � � � � � � � � � � � � �
an� an� � � � ann � r

�������� � �� �����b�

To every single root ri of this equation there is a system of particular solutions

y� � A�e
rix� y� � A�e

rix� � � � � yn � Ane
rix� �����c�

whose coe�cients Ak �k � � �� � � � � n� are determined from the homogeneous linear equation system

�a�� � ri�A� � a��A� � � � �� a�nAn � ��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
an�A� � an�A� � � � �� �ann � ri�An � ��

�����d�

This system gives the relations between the values of Ak �see Trivial solution and fundamental system
in ������� �� p� ����� For every ri� the particular solutions we get in this way will contain an arbitrary
constant� If all the roots of the characteristic equation are di�erent� the sum of these particular solutions
contains n independent arbitrary constants� so in this way we get the general solution� If a root ri has
a multiplicity m in the characteristic equation� the system of particular solutions corresponding to this
root has the form

y� � A��x�erix� y� � A��x�erix� � � � � yn � An�x�erix� �����e�

where A��x�� � � � � An�x� are polynomials of degree at most m�� We substitute these expressions with
unknown coe�cients of the polynomialsAk�x� into the di�erential equation system� We can �rst cancel
the factor erix� then we can compare the coe�cients of the di�erent powers of x to have linear equations
for the unknown coe�cients of the polynomials� and among them m can be chosen freely� In this way�
we get a part of the solution with m arbitrary constants� The degree of the polynomials can be less
than m� �
In the special case when the system �����a� is symmetric� i�e�� when aik � aki� then it is su�cient to
substitute Ai�x� � const� For complex roots of the characteristic equation� the general solution can
be transformed into a real form in the same way as shown earlier for the case of a di�erential equation
with constant coe�cients �see ������� p� �����

For the system y�
� � �y� � �y��y�� y�

� � ��y� � �y� �y�� y�
� � ��y� � �y� � �y� the characteristic
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equation has the form������
�� r � �
�� �� r 
�� � �� r

������ � ��r � ���r � �� � ��

For the simple root r� � � we get��A� ��A��A� � ����A���A� �A� � ����A� ��A���A� � ��

From this system we have A� � �� A� �


�
A� � C�� y� � �� y� � C�e

	x� y� � �C�e
	x� For the multiple

root r� �  we get y� � �P�x � Q��e
x� y� � �P�x � Q��e

x� y� � �P�x � Q��e
x� Substitution into the

equations yields

P�x � �P� � Q�� � ��P� � �P� � P��x � ��Q� � �Q� �Q���

P�x � �P� � Q�� � ���P� � �P� � P��x � ���Q� � �Q� � Q���

P�x � �P� � Q�� � ���P� � �P� � �P��x � ���Q� � �Q� � �Q���

which implies that P� � �C�� P� � C�� P� � �C�� Q� � �C� � �C�� Q� � C�� Q� � �C� � C�� The
general solution is y� � ��C�x � �C� � �C��e

x� y� � C�e
	x � �C�x � C��e

x� y� � �C�e
	x � ��C�x �

�C� � C��e
x�

�� Homogeneous Systems of First�Order Linear Di
erential Equations
with Constant Coe�cients

have the general form
nX
k��

aikyk
� �

nX
k��

bikyk � � �i � � �� � � � � n�� �����a�

If the determinant det�aik� does not disappear� i�e��

det�aik� �� �� �����b�

then the system �����a� can be transformed into the normal form �����a��
In the case of det�aik� � � we need further investigations �see  ���!��
The solution can be determined from the general form in the same way as shown for the normal form�
The characteristic equation has the form

det�aikr � bik� � �� �����c�

The coe�cients Ai in the solution �����c� corresponding to a single root rj are determined from the
equation system

nX
k��

�aikrj � bik�Ak � � �i � � �� � � � � n�� �����d�

Otherwise the solution method follows the same ideas as in the case of the normal form�

The characteristic equation of the two di�erential equations �y�
���y���y�

��y� � �� y�
���y���y� �

� is� ���� �r � � ��r � 
r � � ��

���� � �r� � �r � � � �� r� � � r� � ���

We get the coe�cients A� and A� for r� �  from the equations �A� � �A� � �� �A� � �A� � �
so A� � �A� � �C�� For r� � �� we get analogously A� � �A� � �C�� The general solution is
y� � C�e

x � C�e
��x� y� � �C�e

x � �C�e
��x�

�� Inhomogeneous Systems of First�Order Linear Di
ererential Equations
have the general form

nX
k��

aikyk
� �

nX
k��

bikyk � Fi�x� �i � � �� � � � � n�� ������
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� Superposition Principle� If yj
��� and yj

��� �j � � �� � � � � n� are solutions of inhomogeneous

systems which di�er from each other only in their right�hand sides Fi
��� and Fi

���� then the sum yj �

yj
��� � yj

��� �j � � �� � � � � n� is a solution of this system with the right�hand side Fi�x� � Fi
����x� �

Fi
����x�� Because of this� to get the general solution of an inhomogeneous system it is enough to add a

particular solution to the general solution of the corresponding homogeneous system�
� The Variation of Constants can be used to get a particular solution of the inhomogeneous
di�erential equation system� To do this we use the general solution of the homogeneous system� and
we consider the constants C�� C�� � � � � Cn as unknown functions C��x�� C��x�� � � � � Cn�x�� We substitute
it into the inhomogeneous system� In the expressions of the derivatives of yk

� we have the derivative
of the new unknown functions Ck�x�� Because y�� y�� � � � � yn are solutions of the homogeneous system�
the terms containing the new unknown functions will be canceled� only their derivatives remain in
the equations� We get for the functions Ck

��x� an inhomogeneous linear algebraic equation system
which always has a unique solution� After n integrations we get the functions C��x�� C��x�� � � � � Cn�x��
Substitution them into the solution of the homogeneous system instead of the constants results in the
particular solution of the inhomogeneous system�

For the system of two inhomogeneous di�erential equations �y�
� � �y� � �y�

� � y� � e�x� y�
� �

�y� � �y� � �e�x the general solution of the homogeneous system is �see p� ���� y� � C�e
x � C�e

��x�
y� � �C�e

x � �C�e
�x� Considering the constants C� and C� as functions of x and substituting into

the original equations we get �C�
�ex � �C�

�e��x � �C�
�ex � �C�

�e��x � e�x� C�
�ex � C�

�e��x � �e�x

or C�
�e��x � C�

�e�x � e�x� C�
�ex � C�

�e��x � �e�x� Therefore� �C�
�ex � �e�x� C� � �e��x � const�

�C�
�e��x � �e�x� C� � �ex � const� Since we are looking for a particular solution� we can replace

every constant by zero and the result is y� � �e�x� y� � �e�x� The general solution is �nally y� �
�e�x � C�e

x � C�e
��x� y� � �e�x � �C�e

x � �C�e
��x�

� The Method of Unknown Coe�cients is especially useful if on the right�hand side there are
special functions in the form Qn�x�e�x� The application is similar to the one we used for di�erential
equations of n�th order �see ������� p� �����

�� Second�Order Systems
The methods introduced above can also be used for di�erential equations of higher order� For the
system

nX
k��

aikyk
�� �

nX
k��

bikyk
� �

nX
k��

cikyk � � �i � � �� � � � � n� ������

we can determine particular solutions in the form yi � Aie
rix� To do this� we get ri from the charac�

teristic equation det�aikr
� � bikr � cik� � �� and we get Ai from the corresponding linear homogeneous

algebraic equations�

������ Linear Second�Order Di
erential Equations
Many special di�erential equations belong to this class� which often occur in practical applications� We
discuss several of them in this paragraph� For more details of representation� properties and solution
methods see  ���!�

�� General Methods
� The Inhomogeneous Di	erential Equation is

y�� � p�x�y� � q�x�y � F �x�� �����a�

a� The general solution of the corresponding homogeneous di�erential equation� i�e�� with F �x� � �� is

y � C�y� � C�y�� �����b�

Here y� and y� are two linearly independent particular solutions of this equation �see ������� �� p� �����
If a particular solution y� is already known� then the second one y� can be determined by the equation

y� � Ay�

Z exp �� R p dx�

y��
dx �����c�
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which follows from the Liouville formula ������� where A can be chosen arbitrarily�

b� A particular solution of the inhomogeneous equation can be determined by the formula

y �


A

xZ
x�

F ��� exp
�Z

p��� d�
�

 y��x�y����� y��x�y����! d�� �����d�

where y� and y� are two particular solutions of the corresponding homogeneous di�erential equation�

c�A particular solution of the inhomogeneous di�erential equation can be determined also by variation
of constants �see ������� �� p� ����

� If in the Inhomogeneous Di	erential Equation

s�x�y�� � p�x�y� � q�x�y � F �x� �����a�

the functions s�x�� p�x�� q�x� and F �x� are polynomials or functions which can be expanded into a
convergent power series around x� in a certain domain� where s�x�� �� �� then the solutions of this
di�erential equation can also be expanded into a similar series� and these series are convergent in the
same domain� We determine them by the method of undetermined coe�cients� The solution we are
looking for as a series has the form

y � a� � a��x� x�� � a��x� x��
� � � � � � �����b�

and we substitute it into the di�erential equation �����a�� Equating like coe�cients �of the same powers
of �x� x��� results in equations to determine the coe�cients a�� a�� a�� � � � �

To solve the di�erential equation y�� � xy � � we substitute y � a� � a�x � a�x
� � a�x

� � � � � �
y� � a� � �a�x � �a�x

� � � � � � and y�� � �a� � �a�x � � � � � We get �a� � �� �a� � a� � �� � � � �

The solution of these equations is a� � �� a� � � a�
� � � � a� � � a�

� � � � a� � �� � � � � so the solution is

y � a�

�
� x�

� � � �
x	

� � � � � � � � � � �
�

� a�

�
x� x�

� � � �
x�

� � � � � � � � � � �
�

�

� The Homogeneous Di	erential Equation

x�y�� � xp�x�y� � q�x�y � � �����a�

can be solved by the method of undetermined coe�cients if the functions p�x� and q�x� can be expanded
as a convergent series of x� The solutions have the form

y � xr�a� � a�x � a�x
� � � � ��� �����b�

whose exponent r can be determined from the de�ning equation

r�r � � � p���r � q��� � �� �����c�

If the roots of this equation are di�erent and their di�erence is not an integer number� then we get two
linearly independent solutions of �����a�� Otherwise the method of undetermined coe�cients results
only one solution� Then with the help of �����b� we can get a second solution or at least we can �nd a
form from which we can get a second solution with the method of undetermined coe�cients�

For the Bessel di�erential equation ����a� we get only one solution with the method of the undeter�

mined coe�cients in the form y� �
�X
k��

akx
n��k �a� �� ��� which coincides with Jn�x� up to a constant

factor� Since exp
�
�
Z

p dx
�

�


x
we �nd a second solution by using formula �����c�

y� � Ay�

Z
dx

x � x�n �
P

akx�k�
� � Ay�

Z �P
k��

ckx
�k

x�n��
dx � By� lnx � x�n

�X
k��

dkx
�k�

The determination of the unknown coe�cients ck and dk is di�cult from the ak�s� But we can use this
last expression to get the solution with the method of undetermined coe�cients� Obviously this form
is a series expansion of the function Yn�x� �����c��
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�� Bessel Di
erential Equation
x�y�� � xy� � �x� � n��y � �� ����a�

� The De�ning Equation is in this case

r�r � � � r � n� � r� � n� � �� ����b�

so� r � �n� Substituting

y � xn�a� � a�x � � � �� ����c�

into ����a�and equating the coe�cients of xn�k to zero we have

k��n � k�ak � ak�� � �� ����d�

For k �  we get ��n � �a� � �� For the values k � �� �� � � � we obtain

a�m�� � � �m � � �� � � ��� a� � � a�
���n � ��

�

a� �
a�

� � � � ��n � ����n � ��
� � � � � a� is arbitrary� ����e�

� Bessel or Cylindrical Functions The series obtained above for a� �


�n� �n � �
� where � is

the gamma function �see ������ �� p� ���� is a particular solution of the Bessel di�erential equation
����a� for integer values of n� It de�nes the Bessel or cylindrical function of the �rst kind of index n

Jn�x� �
xn

�n� �n � �

�
� x�

���n � ��
�

x�

� � � � ��n � ����n � ��
� � � �

�

�
�X
k��

���k
�
x

�

�n��k
k$� �n � k � �

� �����a�

The graphs of functions J� and J� are shown in Fig 
���
The general solution of the Bessel di�erential equation for non�integer n has the form

y � C�Jn�x� � C�J�n�x�� �����b�

where J�n�x� is de�ned by the in�nite series obtained from the series representation of Jn�x� by re�
placing n with �n� For integer n� we have J�n�x� � ���nJn�x�� In this case� the term J�n�x� in the
general solution should be replaced with the Bessel function of the second kind

Yn�x� � lim
m�n

Jm�x� cosm� � J�m�x�

sinm�
� �����c�

which is also called the Weber function� For the series expansion of Yn�x� see� e�g��  ���!� The graphs
of the functions Y� and Y� are shown in Fig 
���
� Bessel Functions with Imaginary Variables In some applications we use Bessel functions
with pure imaginary variables� In this case we have to consider the product i�nJn�ix� which will be
denoted by In�x��

In�x� � i�nJn�ix� �

�
x

�

�n
� �n � �

�

�
x

�

�n��
$� �n � ��

�

�
x

�

�n��
�$� �n � ��

� � � � � �����a�

The functions In�x� are solutions of the di�erential equation

x�y�� � xy� � �x� � n��y � �� �����b�

A second solution of this di�erential equation is the MacDonald function

Kn�x� �
�

�

I�n�x�� In�x�

sinn�
� �����c�
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If n converges to an integer number� this expression also converges�

The functions In�x� and Kn�x� are called modi�ed Bessel functions� The graphs of functions I� and I�
are shown in Fig 
��� the graphs of functions K� and K� are illustrated in Fig 
��� The values of
functions J��x�� J��x�� Y��x�� Y��x�� I��x�� I��x�� K��x�� K��x� are given in Table ����� p� ����
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� Important Formulas for the Bessel Functions Jn�x�

Jn���x� � Jn���x� �
�n

x
Jn�x� �

dJn�x�

dx
� �n

x
Jn�x� � Jn���x�� �����a�

The formulas �����a� are also valid for the Weber functions Yn�x��

In���x�� In���x� �
�nIn�x�

x
�

dIn�x�

dx
� In���x�� n

x
In�x�� �����b�

Kn���x��Kn���x� �
�nKn�x�

x
�

dKn�x�

dx
� �Kn���x�� n

x
Kn�x�� �����c�

For integer numbers n the following formulas are valid�

J�n�x� �
�

�

���Z
�

cos�x sin�� cos �n� d�� �����d�
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J�n���x� �
�

�

���Z
�

sin�x sin�� sin��n � ��d� �����e�

or� in complex form�

Jn�x� �
��i�n

�

�Z
�

eix cos� cosn� d�� �����f�

The functions Jn�����x� can be expressed by using elementary functions� In particular�

J����x� �

s
�

�x
sin x� �����a� J�����x� �

s
�

�x
cos x� �����b�

By applying the recursion formulas �����a�������f� the expression for Jn�����x� for arbitrary integer n
can be given� For large values of x we have the following asymptotic formulas�

Jn�x� �

s
�

�x



cos
�
x� n�

�
� �

�

�
� O

�


x

��
� �����a�

In�x� �
exp
��x



 � O

�


x

��
� �����b�

Yn�x� �

s
�

�x



sin
�
x� n�

�
� �

�

�
� O

�


x

��
� �����c�

Kn�x� �

r
�

�x
e�x



 � O

�


x

��
� �����d�

The expression O
�



x

�
means an in�nitesimal quantity of the same order as



x
�see the Landau symbol�

p� ����
For further properties of the Bessel functions see  ��!�

�� Legendre Di
erential Equation
Restricting our investigations to the case of real variables and integer parameters n � �� � �� � � � the
Legendre di�erential equation has the form

�� x��y�� � �xy� � n�n � �y � � or ��� x��y��� � n�n � �y � �� �����a�

� Legendre Polynomials or Spherical Harmonics of the First Kind are the particular solu�
tions of the Legendre di�erential equation for integer n� which can be expanded into the power series

y �
�X
���

a�x
�� By the method of undetermined coe�cients we get for jxj � �� n � �� � � � � � the

polynomials

Pn�x� �
��n�$

�n�n$��

�
xn � n�n� �

���n� �
xn�� �

n�n� ��n� ���n� ��

� � ���n� ���n� ��
xn�� � � � � �


� �����b�

Pn�x� � F
�
n � ��n� �

� x

�

�
�



�nn$

dn�x� � �n

dxn
� �����c�

where F denotes the hypergeometric series �see �� p� ���� The �rst eight polynomials have the fol�
lowing simple form �see ���� p� �����

P��x� �  � �����d� P��x� � x � �����e�
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P��x� �


�
��x� � � � �����f� P��x� �



�
��x� � �x� � �����g�

P��x� �


�
���x� � ��x� � �� � �����h� P��x� �



�
���x� � ��x� � �x� � �����i�

P	�x� �


�
���x	���x����x���� ������j� P��x� �



�
����x�����x����x����x� ������k�

The graphs of Pn�x� for the values from n �  to n � � are represented in Fig 
��� The numerical
values can be calculated easily by pocket calculators or from function tables�

� Properties of the Legendre Polynomials of the First Kind
a� Integral Representation�

Pn�x� �


�

�Z
�

�x� cos�
p
x� � �n d� �



�

�Z
�

d�

�x� cos�
p
x� � �n��

� �����a�

The signs can be chosen arbitrarily in both equations�

b� Recursion Formulas�

�n � �Pn���x� � ��n � �xPn�x�� nPn���x� �n 	 �P��x� � � P��x� � x�� �����b�

�x� � �
dPn�x�

dx
� n xPn�x�� Pn���x�! �n 	 �� �����c�

c� Orthogonality Relation�

�Z
��

Pn�x�Pm�x� dx �

���
� for m �� n�

�

�n � 
for m � n�

�����d�

d� Root Theorem� All the n roots of Pn�x� are real and single and are in the interval ��� ��

e� Generating Function� The Legendre polynomial of the �rst kind can be represented as the power
series expansion of the function

p
� �rx � r�

�
�X
n��

Pn�x�rn� �����e�

For further properties of the Legendre polynomials of the �rst kind see  ��!�

� Legendre Functions or Spherical Harmonics of the Second Kind We get a second partic�
ular solution Qn�x� of �����a�� which is valid for jxj �  and linearly independent of Pn�x�� see �����a��

by the power series expansion
��n���X
����

b�x
� �

Qn�x� �
�n�n$��

��n � �$
x��n���F

�
n � 

�
�
n � �

�
�

�n � �

�
�



x�

�

�
�n�n$��

��n � �$

�
x��n��� �

�n � ��n � ��

���n � ��
x��n���

�
�n � ��n � ���n � ���n � ��

� � � � ��n � ����n � ��
x��n��� � � � �


� �����a�

The representation of Qn�x� valid for jxj �  is�

Qn�x� �


�
Pn�x� ln

 � x

� x
�

nX
k��



k
Pk���x�Pn�k�x�� �����b�
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We call the spherical harmonics of the �rst and second kind also the associated Legendre functions �see
also ����c�� p� �����

�� Hypergeometric Di
erential Equation
The hypergeometric di�erential equation is the equation

x�� x�y�� �  � � �� � � � �x!y� � ��y � �� �����a�

where �� �� � are parameters� It contains several important special cases�

a� For � � n � � � � �n� � � � and x �
� z

�
it is the Legendre di�erential equation�

b� If � �� � or � is not a negative integer� it has the hypergeometric series or hypergeometric function
as a particular solution �

F ��� �� �� x� �  �
� � �
 � � x �

��� � ���� � �

 � � � ��� � �
x� � � � �

�
��� � � � � � �� � n���� � � � � � �� � n�

 � � � � � �n � � � ��� � � � � � �� � n�
xn�� � � � � � �����b�

which is absolutely convergent for jxj � � The convergence for x � � depends on the value of
	 � � � �� �� For x �  it is convergent if 	 � �� it is divergent if 	 � �� For x � � it is absolutely
convergent if 	 � �� it is conditionally convergent for � � 	 � �� and it is divergent for 	 � ��

c� For �� � �� � or not equal to a negative integer it has a particular solution

y � x���F �� � � �� � � � �� �� �� x�� �����c�

d� In some special cases the hypergeometric series can be reduced to elementary functions� e�g��

F �� �� �� x� � F ��� � �� x� �


� x
� ����a� F ��n� �� ���x� � � � x�n� ����b�

F �� � ���x� �
ln� � x�

x
� ����c� F

�


�
�



�
�
�

�
� x�
�

�
arcsinx

x
� ����d�

lim
	��

F

�
� �� �

x

�

�
� ex� ����e�

�� Laguerre Di
erential Equation
If we restrict our investigation to integer parameters �n � �� � �� � � �� and real variables� the Laguerre
di�erential equation has the form

xy�� � �� � � x�y� � ny � �� �����a�

As a particular solution we have the Laguerre polynomial

L���
n �x� �

exx��

n$

dn

dxn
�e�xxn��� �

nX
k��

�
n � �

n� k

�
��x�k

k$
� �����b�

The recursion formula for n 	  is�

�n � �L
���
n���x� � ��x � �n � � � �L���

n �x�� �n � ��L
���
n���x�� �����c�

L
���
� �x� � � L

���
� �  � �� x� �����d�

An orthogonality relation for � � � holds�

�Z
�

e�xx�L���
m �x�L���

n �x� dx �

�����
� for m �� n��
n � �

n

�
� � � �� for m � n�

�����e�

With � we denote the gamma function �see ������ �� p� ����
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� Hermite Di
erential Equation
Two de�ning equations are often used in the literature�

a� De�ning Equation of Type ��

y�� � xy� � ny � � �n � �� � �� � � ��� �����a�

b� De�ning Equation of Type ��

y�� � �xy� � ny � � �n � �� � �� � � ��� �����b�

Particular solutions are theHermite polynomials� Hen�x� for the de�ning equation of type � and Hn�x�
for the de�ning equation of type ��

a� Hermite Polynomials for De�ning Equation of Type ��

Hen�x� � ���ne
x�

�
dn

dxn

�
e�

x�

�

�

� xn �
�
n

�

�
xn�� �  � �

�
n

�

�
xn�� �  � � � �

�
n

�

�
xn�	 � � � � �n � IN�� �����c�

For n 	  the following recursion formulas are valid�

Hen���x� � xHen�x�� nHen���x�� �����d� He��x� � � He��x� � x� �����e�

The orthogonality relation is�
��Z
��

e�x
���Hem�x�Hen�x� dx �

�
� for m �� n�

n$
p

�� for m � n�
�����f�

b� Hermite Polynomials for De�ning Equation of Type ��

Hn�x� � ���n ex
� dn

dxn

�
e�x

�
	

�n � IN�� �����g�

The relation with the Hermite polynomials for de�ning equation of type  is the following�

Hen�x� � ��n��Hn

�
xp
�

�
�n � IN�� �����h�

����� BoundaryValueProblems

������ Problem Formulation

�� Notion of the Boundary Value Problem
In di�erent applications� e�g�� in mathematical physics� di�erential equations must be solved as so�
called boundary value problems �see ������ p� ����� where the solution we are looking for must satisfy
previously given relations at the endpoints of an interval of the independent variable� A special case
is the linear boundary value problem� where a solution of a linear di�erential equation should satisfy
linear boundary value conditions� In the followings we restrict our discussion to second�order linear
di�erential equations with linear boundary values�

�� Self�Adjoint Di
erential Equation
Self�adjoint di�erential equations are important special second�order di�erential equations of the form

 py�!� � qy � ��y � f� �����a�

The linear boundary values are the homogeneous conditions

A�y�a� � B�y
��a� � �� A�y�b� � B�y

��b� � �� �����b�

The functions p�x�� p��x�� q�x�� ��x�� and f�x� are supposed to be continuous in the �nite interval
a � x � b� In the case of an in�nite interval the results change considerably �see  ���!�� Furthermore�
we suppose that p�x� � p� � �� ��x� � �� � �� The quantity �� a parameter of the di�erential
equation� is a constant� For f � �� it is called the homogeneous boundary value problem associated to
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the inhomogeneous boundary value problem�
Every second�order di�erential equation of the form

Ay�� � By� � Cy � �Ry � F �����c�

can be reduced to the self�adjoint equation �����a� by multiplying it by p�A if in  a� b!� A �� �� and
performing the following substitutions

p � exp
�Z R

A
dx
�
� q � �pC

A
� � �

pR

A
� �����d�

To �nd a solution satisfying the inhomogeneous conditions

A�y�a� � B�y
��a� � C�� A�y�b� � B�y

��b� � C� �����e�

we return to the problem with homogeneous boundary conditions� but we change the right�hand side
f�x�� We substitute y � z � u where u is an arbitrary twice di�erentiable function satisfying the
inhomogeneous boundary conditions and z is a new unknown function satisfying the corresponding
homogeneous conditions�

�� Sturm�Liouville Problem
For a given value of the parameter � there are two cases�

� Either the inhomogeneous boundary value problem has a unique solution for arbitrary f�x�� while
the corresponding homogeneous problem has only the trivial� identically zero solution� or�

� The corresponding homogeneous problem also has non�trivial� i�e�� not identically zero solutions�
but in this case the inhomogeneous problem does not have a solution for arbitrary right�hand side� and
if a solution exists� it is not unique�

The values of the parameter �� for which the second case occurs� i�e�� the homogeneous problem has a
non�trivial solution� are called the eigenvalues of the boundary value problem� the corresponding non�
trivial solutions are called the eigenfunctions� The problem of determining the eigenvalues and eigen�
functions of a di�erential equation �����a� is called the SturmLiouville problem�

������ Fundamental Properties of Eigenfunctions and Eigenvalues

� The eigenvalues of the boundary value problem �����a�b� form a monotone increasing sequence of
real numbers

�� � �� � �� � � � � � �n � � � � � �����a�

tending to in�nity�

� The eigenfunction associated to the eigenvalue �n has exactly n roots in the interval a � x � b�

� If y�x� and z�x� are two eigenfunctions belonging to the same eigenvalue �� they di�er only in a
constant multiplier c� i�e��

z�x� � cy�x�� �����b�

� Two eigenfunctions y��x� and y��x�� associated to di�erent eigenvalues �� and ��� are orthogonal to
each other with the weight function ��x�

bZ
a

y��x� y��x� ��x� dx � �� �����c�

� If in �����a� the coe�cients p�x� and q�x� are replaced by 'p�x� 	 p�x� and 'q�x� 	 q�x�� then the

eigenvalues will not decrease� i�e�� '�n 	 �n� where '�n and �n are the n�th eigenvalues of the modi�ed
and the original equations respectively� But if the coe�cient ��x� is replaced by '��x� 	 ��x�� then

the eigenvalues will not increase� i�e�� '�n � �n� The n�th eigenvalue depends continuously on the
coe�cients of the equation� i�e�� small changes in the coe�cients will result in small variations of the
n�th eigenvalue�
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� Reduction of the interval  a� b! into a smaller one does not result in smaller eigenvalues�

������ Expansion in Eigenfunctions

�� Normalization of the Eigenfunction
For every �n an eigenfunction �n�x� is chosen such that

bZ
a

 �n�x�!���x� dx � � �����a�

It is called a normalized eigenfunction�

�� Fourier Expansion
To every function g�x� de�ned in the interval  a� b!� we can assign its Fourier series

g�x� !
�X
n��

cn�n�x�� cn �

bZ
a

g�x��n�x� ��x� dx �����b�

with the eigenfunctions of the corresponding boundary value problem� if the integrals in �����b� exist�

�� Expansion Theorem
If the function g�x� has a continuous derivative and satis�es the boundary conditions of the given prob�
lem� then the Fourier series of g�x� �in the eigenfunctions of this boundary value problem� is absolutely
and uniformly convergent to g�x��

�� Parseval Equation
If the integral on the left�hand side exists� then

bZ
a

 g�x�!���x� dx �
�X
n��

cn
� �Parseval equation� �����c�

is always valid� The Fourier series of the function g�x� converges in this case to g�x� in mean� that is

lim
N��

bZ
a

�
g�x��

NX
n��

cn�n�x�

�
��x� dx � �� �����d�

������ Singular Cases
Boundary value problems of the above type very often occur in solving problems of theoretical physics
by the Fourier method� however at the endpoints of the interval  a� b! some singularities of the di�eren�
tial equation may occur� e�g�� p�x� vanishes� At such singular points we impose some restrictions on the
solutions� e�g�� continuity or being �nite or unlimited growth with a bounded order� These conditions
play the role of homogeneous boundary conditions �see ����� p� ���� In addition� we often have the
case where in certain boundary value problems homogeneous boundary conditions should be consid�
ered� such that they connect the values of the function or its derivative at di�erent endpoints of the
interval� We often have the relations

y�a� � y�b�� p�a�y��a� � p�b�y��b�� ������

which represent periodicity in the case of p�a� � p�b�� For such boundary value problems everything
we introduced above remains valid� except statement �����b�� For further discussion of this topic see
 ���!�
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��� Partial Di�erential Equations

����� First�Order Partial Di�erential Equations

������ Linear First�Order Partial Di
erential Equations

�� Linear and Quasilinear Partial Di
erential Equations
The equation

X�
�z

�x�
� X�

�z

�x�
� � � �� Xn

�z

�xn
� Y �����a�

is called a linear �rst�order partial di�erential equation� Here z is an unknown function of the inde�
pendent variables x�� � � � � xn� and X�� � � � � Xn� Y are given functions of these variables� If functions
X�� � � � � Xn� Y depend also on z� the equation is called a quasilinear partial di�erential equation� In the
case of

Y � �� �����b�

the equation is called homogeneous�

�� Solution of a Homogeneous Partial Linear Di
erential Equation
The solution of a homogeneous partial linear di�erential equation and the solution of the so�called
characteristic system

dx�
X�

�
dx�
X�

� � � � � dxn
Xn

�����a�

are equivalent� This system can be solved in two di�erent ways�
� Any xk� for which Xk �� �� can be chosen as an independent variable� so the system is transformed
into the form

dxj
dxk

�
Xj

Xk
�j � � � � � � n�� �����b�

� A more convenient way is to keep symmetry and introduce a new variable t� and then we get

dxj
dt

� Xj� �����c�

Every �rst integral of the system �����a� is a solution of the homogeneous linear partial di�erential
equation �����b�� and conversely� every solution of �����b� is a �rst integral of �����a� �see ������ ��
p� ����� If the n�  �rst integrals

�i�x�� � � � � xn� � � �i � � �� � � � � n� � �����d�

are independent �see ������� �� p� ����� then the general solution is

z � ����� � � � � �n���� �����e�

Here � is an arbitrary function of the n �  arguments �i and a general solution of the homogeneous
linear di�erential equation�

�� Solution of Inhomogeneous Linear and Quasilinear
Partial Di
erential Equations

To solve an inhomogeneous linear and quasilinear partial di�erential equation �����a� we try to �nd the
solution z in the implicit form V �x�� � � � � xn� z� � C� The function V is a solution of the homogeneous
linear di�erential equation with n �  independent variables

X�
�V

�x�
� X�

�V

�x�
� � � �� Xn

�V

�xn
� Y

�V

�z
� �� �����a�

whose characteristic system

dx�
X�

�
dx�
X�

� � � � � dxn
Xn

�
dz

Y
�����b�
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is called the characteristic system of the original equation �����a��

�� Geometrical Representation and Characteristics of the System
In the case of the equation

P �x� y� z�
�z

�x
� Q�x� y� z�

�z

�y
� R�x� y� z� ����a�

with two independent variables x� � x and x� � y� a solution z � f�x� y� is a surface in x� y� z space�
and it is called the integral surface of the di�erential equation� Equation ����a� means that at every

point of the integral surface z � f�x� y� the normal vector

�
�z

�x
�
�z

�y
��

�
is orthogonal to the vector

�P�Q�R� given at that point� Here the system �����b� has the form

dx

P �x� y� z�
�

dy

Q�x� y� z�
�

dz

R�x� y� z�
� ����b�

It follows �see ������� p� ���� that the integral curves of this system� the so�called characteristics� are
tangent to the vector �P�Q�R�� Therefore� a characteristic having a common point with the integral
surface z � f�x� y� lies completely on this surface� Since the conditions for the existence theorem
������� �� p� ��� hold� there is an integral curve of the characteristic system passing through every
point of space� so the integral surface consists of characteristics�

�� Cauchy Problem
There are given n functions of n�  independent variables t�� t�� � � � � tn���

x� � x��t�� t�� � � � � tn���� x� � x��t�� t�� � � � � tn���� � � � � xn � xn�t�� t�� � � � � tn���� �����a�

The Cauchy problem for the di�erential equation �����a� is to �nd a solution

z � ��x�� x�� � � � � xn� �����b�

such that if we substitute �����a�� the result is a previously given function ��t�� t�� � � � � tn����
� x��t�� t�� � � � � tn���� x��t�� t�� � � � � tn���� � � � � xn�t�� t�� � � � � tn���! � ��t�� t�� � � � � tn���� �����c�

In the case of two independent variables� the problem reduces to �nd an integral surface passing through
the given curve� If this curve has a tangent depending continuously on a point and it is not tangent to the
characteristics at any point� then the Cauchy problem has a unique solution in a certain neighborhood
of this curve� Here the integral surface consists of the set of all characteristics intersecting the given
curve� For more mathematical discussion on theorems about the existence of the solution of the Cauchy
problem see  ���!�

A� For the linear �rst�order inhomogeneous partial di�erential equation �mz � ny�
�z

�x
� �nx �

lz�
�z

�y
� ly�mx �l� m� n are constants�� the equations of the characteristics are

dx

mz � ny
�

dy

nx� lz
�

dz

ly �mx
� The integrals of this system are lx � my � nz � C�� x

� � y� � z� � C�� We get circles as

characteristics� whose centers are on a line passing through the origin� and this line has direction cosines
proportional to l� m� n� The integral surfaces are rotation surfaces with this line as an axis�

B� Determine the integral surface of the �rst�order linear inhomogeneous di�erential equation
�z

�x
�

�z

�y
� z� which passes through the curve x � �� z � ��y�� The equations of characteristics are

dx


�

dy


�

dz

z
� The characteristics passing through the point �x�� y�� z�� are y � x � x� � y�� z � z�e

x�x��

A parametric representation of the required integral surface is y � x�y�� z � ex��y��� if we substitute
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x� � �� z� � ��y��� The elimination of y� results in z � ex��y � x��

������ Non�Linear First�Order Partial Di
erential Equations

�� General Form of First�Order Partial Di
erential Equation
is the implicit equation

F

�
x�� � � � � xn� z�

�z

�x�
� � � � �

�z

�xn

�
� �� �����a�

� Complete Integral is the solution

z � ��x�� � � � � xn� a�� � � � � an�� �����b�

depending on n parameters a�� � � � � an if at the considered values of x�� � � � � xn� z the functional deter�
minant �or Jacobian determinant� see �������� �� p� �� is non�zero�

� ��x� � � � � � �xn�

��a�� � � � � an�
�� �� �����c�

� Characteristic Strip The solution of �����a� is reduced to the solution of the characteristic
system

dx�
P�

� � � � � dxn
Pn

�
dz

p�P� � � � �� pnPn
�

�dp�
X� � p�Z

� � � � � �dpn
Xn � pnZ

�����d�

with

Z �
�F

�z
� Xi �

�F

�xi
� pi �

�z

�xi
� Pi �

�F

�pi
�i � � � � � � n�� �����e�

The solutions of the characteristic system satisfying the additional condition

F �x�� � � � � xn� z� p�� � � � � pn� � � �����f�

are called the characteristic strips�

�� Canonical Systems of Di
erential Equations
Sometimes it is more convenient to consider an equation not involving explicitly the unknown function
z� Such an equation can be obtained by introducing an additional independent variable xn�� � z
and an unknown function V �x�� � � � � xn� xn���� which de�nes the function z�x�� x�� � � � � xn� with the
equation

V �x�� � � � � xn� z� � C� �����a�

At the same time� we substitute the functions ��V

�xi

�
�V

�xn��
�i � � � � � � n� for

�z

�xi
in �����a�� Then

we solve the di�erential equation �����a� for an arbitrary partial derivative of the function V � The
corresponding independent variable will be denoted by x after a suitable renumbering of the other
variables� Finally� we have the equation �����a� in the form

p � H�x�� � � � � xn� x� p�� � � � � pn� � �� p �
�V

�x
� pi �

�V

�xi
�i � � � � � � n�� �����b�

The system of characteristic di�erential equations is transformed into the system

dxi
dx

�
�H

�pi
�

dpi
dx

� ��H

�xi
�i � � � � � � n� and �����c�

dV

dx
� p�

�H

�p�
� � � �� pn

�H

�pn
�H�

dp

dx
� ��H

�x
� �����d�

Equations �����c� represent a system of �n ordinary di�erential equations� which corresponds to an
arbitrary function H�x�� � � � � xn� x� p�� � � � � pn� with �n �  variables� It is called a canonical system or
a normal system of di�erential equations�
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Many problems of mechanics and theoretical physics lead to equations of this form� Knowing a complete
integral

V � ��x�� � � � � xn� x� a�� � � � � an� � a �����e�

of the equation �����b� we can �nd the general solution of the canonical system �����c�� since the equa�

tions
��

�ai
� bi�

��

�xi
� pi �i � � �� � � � � n� with �n arbitrary parameters ai and bi determine a �n�

parameter solution of the canonical system �����c��

�� Clairaut Di
erential Equation
If the given di�erential equation can be transformed into the form

z � x�p� � x�p� � � � �� xnpn � f�p�� p�� � � � � pn�� pi �
�z

�xi
�i � � � � � � n�� �����a�

it is called a Clairaut di�erential equation� The determination of the complete integral is particularly
simple� because a complete integral with the arbitrary parameters a�� a�� � � � � an is

z � a�x� � a�x� � � � �� anxn � f�a�� a�� � � � � an�� �����b�

Two�BodyProblemwithHamiltonFunction� Consider two particles moving in a plane under
their mutual gravitational attraction according to the Newton �eld �see also �������� p� ����� We
choose the origin as the initial position of one of the particles� so the equations of motion have the form

d�x

dt�
�

�V

�x
�

d�y

dt�
�

�V

�y
� V �

k�p
x� � y�

� �����a�

If we introduce the Hamiltonian function

H �


�
�p� � q��� k�p

x� � y�
� �����b�

the system �����a� is transformed into the normal system �into the system of canonical di�erential
equations�

dx

dt
�

�H

�p
�

dy

dt
�

�H

�q
�

dp

dt
� ��H

�x
�

dq

dt
� ��H

�y
�����c�

with variables

x� y� p �
dx

dt
� q �

dy

dt
� �����d�

Now� the partial di�erential equation has the form

�z

�t
�



�

����z

�x

��
�

�
�z

�y

����� k�p
x� � y�

� �� �����e�

Introducing the polar coordinates �� � in �����e� we obtain a new di�erential equation having the
solution

z � �at� b� � c�
Z �

��

s
�a �

�k�

r
� b�

r�
dr �����f�

with the parameters a� b� c� We get the general solution of the system �����c� from the equations

�z

�a
� �t��

�z

�b
� ���� �����g�

�� First�Order Di
erential Equation in Two Independent Variables
For x� � x� x� � y� p� � p� p� � q the characteristic strip �see ������� �� p� ��� can be geometrically
interpreted as a curve at every point �x� y� z� of which a plane p���x� � q���y� � �� z being tangent
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to the curve is prescribed� So� the problem of �nding an integral surface of the equation

F

�
x� y� z�

�z

�x
�
�z

�y

�
� � ������

passing through a given curve� i�e�� to solve the Cauchy problem �see ������ �� p� ���� is transformed
into another problem� To �nd the characteristic strips passing through the points of the initial curve
such that the corresponding tangent plane to each strip is tangent to that curve� We get the values p
and q at the points of the initial curve from the equations F �x� y� z� p� q� � � and pdx � qdy � dz� We
may have several solutions in the case of non�linear di�erential equations�

Therefore� under the formulation of the Cauchy problem� in order to obtain a unique solution we assume
two continuous functions p and q satisfying the above relations along the initial curve�
For the existence of solutions of the Cauchy problem see  ���!�

For the partial di�erential equation p q �  and the initial curve y � x�� z � �x�� we can choose
p � x and q � �x along the curve� The characteristic system has the form

dx

dt
� q�

dy

dt
� p�

dz

dt
� �p q�

dp

dt
� ��

dq

dt
� ��

The characteristic strip with initial values x�� y�� z�� p� and q� for t � � satis�es the equations x �
x� � q�t� y � y� � p�t� z � �p�q�t � z�� p � p�� q � q�� For the case of p� � x�� q� � �x� the equation
of the curve belonging to the characteristic strip that passes through the point �x�� y�� z�� of the initial
curve is

x � x� �
t

x�
� y � x�

� � tx�� z � �t � �x�
��

Eliminating the parameters x� and t we get z� � �xy� For other chosen values of p and q along the
initial curve we can get di�erent solutions�

Remark� The envelope of a one�parameter family of integral surfaces is also an integral surface� Con�
sidering this fact we can solve the Cauchy problem with a complete integral� We �nd a one�parameter
family of solutions tangent to the planes given at the points of the initial curve� Then we determine the
envelope of this family�

Determine the integral surface for the Clairaut di�erential equation z � px � qy � pq � � passing
through the curve y � x� z � x�� The complete integral of the di�erential equation is z � ax� by�ab�
Since along the initial curve p � q � x� we determine the one�parameter family of integral surfaces by

the condition a � b� Finding the envelope of this family we have z �


�
�x � y���

�� Linear First�Order Partial Di
erential Equations in Total Di
erentials

Equations of this kind have the form

dz � f�dx� � f�dx� � � � �� fndxn� �����a�

where f�� f�� � � � � fn are given functions of the variables x�� x�� � � � � xn� z� The equation is called a com�
pletely integrable or exact di�erential equationwhen there exists a unique relation between x�� x�� � � � � xn�
z with one arbitrary constant� which leads to equation �����a�� Then there exists a unique solution
z � z�x�� x�� � � � � xn� of �����a�� which has a given value z� for the initial values x�

�� � � � � xn
� of the

independent variables� Therefore� for n � �� x� � x� x� � y a unique integral surface passes through
every point of space�

The di�erential equation �����a� is completely integrable if and only if the
n�n� �

�
equalities

�fi
�xk

� fk
�fi
�z

�
�fk
�xi

� fi
�fk
�z

�i� k � � � � � � n� �����b�
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in all variables x�� x�� � � � � xn� z are identically satis�ed�
If the di�erential equation is given in symmetric form

f�dx� � � � �� fndxn � �� �����c�

then the condition for complete integrability is

fi

�
�fk
�xj

� �fj
�xk

�
� fj

�
�fi
�xk

� �fk
�xi

�
� fk

�
�fj
�xi
� �fi

�xj

�
� � �����d�

for all possible combinations of the indices i� j� k� If the equation is completely integrable� then the
solution of the di�erential equation �����a� can be reduced to the solution of an ordinary di�erential
equation with n�  parameters�

����� Linear Second�OrderPartial Di�erential Equations

������ Classi�cation and Properties of Second�Order Di
erential
Equations with Two Independent Variables

�� General Form
of a linear second�order partial di�erential equation with two independent variables x� y and an un�
known function u is an equation in the form

A
��u

�x�
� �B

��u

�x�y
� C

��u

�y�
� a

�u

�x
� b

�u

�y
� cu � f� �����a�

where the coe�cients A�B�C� a� b� c and f on the right�hand side are known functions of x and y�
The form of the solution of this di�erential equation depends on the sign of the discriminant

	 � AC � B� �����b�

in a considered domain� We distinguish between the following cases�

� � � �� Hyperbolic type

� � � �� Parabolic type

� � � �� Elliptic type

� � changes its sign� Mixed type

� An important property of the discriminant 	 is that its sign is invariant with respect to arbitrary
transformation of the independent variables� e�g�� to introduction new coordinates in the x� y plane�
Therefore� the type of the di�erential equation is invariant with respect to the choice of the independent
variables�

�� Characteristics
of linear second�order partial di�erential equations are the integral curves of the di�erential equation

Ady� � �Bdxdy � Cdx� � � or
dy

dx
�

B �p�	

A
� ������

For the characteristics of the above three types of di�erential equations the following statements are
valid�

� Hyperbolic type� There exist two families of real characteristics�

� Parabolic type� There exists only one family of real characteristics�

� Elliptic type� There exists no real characteristic�

� A di�erential equation obtained by coordinate transformation from �����a� has the same character�
istics as �����a��

� If a family of characteristics coincides with a family of coordinate lines� then the term with the
second derivative of the unknown function with respect to the corresponding independent variable is
missing in �����a�� In the case of a parabolic di�erential equation� the mixed derivative term is also
missing�
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�� Normal Form or Canonical Form
We have the following possibilities to transform �����a� into the normal form of linear second�order
partial di�erential equations�

� Transformation intoNormalForm� The di�erential equation �����a� can be transformed into
normal form by introducing the new independent variables

� � ��x� y� and � � ��x� y� � ����a�

which according to the sign of the discriminant �����b� belongs to one of the three considered types�

��u

���
� ��u

���
� � � � � � � 	 � �� hyperbolic type� ����b�

��u

���
� � � � � �� 	 � �� parabolic type� ����c�

��u

���
�

��u

���
� � � � � � � 	 � �� elliptic type� ����d�

The terms not containing second�order partial derivatives of the unknown function are denoted by dots�

� Reduction of a Hyperbolic Type Equation to Canonical Form ����b�� If� in the hyper�
bolic case� we chose two families of characteristics as the coordinate lines of the new coordinate system
����a�� i�e�� if we substitute �� � ��x� y�� �� � ��x� y�� where ��x� y� � constant� ��x� y� � constant
are the equations of the characteristics� then �����a� becomes the form

��u

������
� � � � � �� ����e�

This form is also called the canonical form of a hyperbolic type di�erential equation� From here we get
the canonical form ����b� by the substitution

� � �� � ��� � � �� � ��� ����f�

� Reduction of a Parabolic Type Equation to Canonical Form ����c�� The only family of
characteristics given in this case is chosen for the family � � const� where an arbitrary function of x
and y can be chosen for �� which must not be dependent on ��

� Reduction of an Elliptic Type Equation to Canonical Form ����d�� If the coe�cients
A�x� y�� B�x� y�� C�x� y� are analytic functions �see ������ p� ���� in the elliptic case� then the char�
acteristics de�ne two complex conjugate families of curves ��x� y� � constant� ��x� y� � constant� If
we substitute � � � � �� and � � i��� ��� the equation becomes the form ����d��

�� Generalized Form
Every statement for the classi�cation and reduction to canonical form remains valid for equations given
in a more general form

A�x� y�
��u

�x�
� �B�x� y�

��u

�x�y
� C�x� y�

��u

�y�
� F

�
x� y� u�

�u

�x
�
�u

�y

�
� �� ������

where F is a non�linear function of the unknown function u and its �rst�order partial derivatives �u��x
and �u��y� in contrast to �����a��

������ Classi�cation and Properties of Linear Second�Order Di
erential
Equations withMore than Two Independent Variables

�� General Form
A di�erential equation of this kind has the formX

i�k

aik
��u

�xi�xk
� � � � � �� ������
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where aik are given functions of the independent variables and the dots in ������ mean terms not con�
taining second�order derivatives of the unknown function u�
In general� the di�erential equation ������ cannot be reduced to a simple canonical form by transforming
the independent variables� However� there is an important classi�cation� similar to the one introduced
above in ������� p� ��� �see  ���!��

�� Linear Second�Order PartialDi
erential EquationswithConstantCoe�cients
If all coe�cients aik in ������ are constants� then the equation can be reduced by a linear homogeneous
transformation of the independent variables into a simpler canonical formX

i

�i
��u

�xi�
� � � � � �� ������

where the coe�cients �i are � or �� We can distinguish between several characteristic cases�

� Elliptic Di	erential Equation All the coe�cients �i are di�erent from zero� and they have the
same sign� Then we have an elliptic di�erential equation�

� Hyperbolic and Ultrahyperbolic Di	erential Equation All the coe�cients �i are di�erent
from zero� but one has a sign di�erent from the other�s� Then we have a hyperbolic di�erential equation�
If both type of signs occur at least twice� then it is an ultrahyperbolic di�erential equation�

� ParabolicDi	erentialEquation One of the coe�cients �i is equal to zero� the others are di�erent
from zero and they have the same sign� Then we have a parabolic di�erential equation�

� Simple Case for Elliptic and Hyperbolic Di	erential Equations We have a relatively simple
case if not only the coe�cients of the highest derivatives of the unknown function are constants� but
also those of the �rst derivatives� Then we can eliminate the terms of the �rst derivatives� for which
�i �� �� by substitution� For this purpose� we substitute

u � v exp

�
�

�

X bk
�k

xk

�
� ������

where bk is the coe�cient of
�u

�xk
in ������ and the summation is performed for all �i �� �� In this way�

every elliptic and hyperbolic di�erential equation with constant coe�cients can be reduced to a simple
form�

a� Elliptic Case� %v � kv � g� ������ b� Hyperbolic Case�
��v

�t�
�%v � kv � g� ������

Here % denotes the Laplace operator �see �������� p� ����� t �time� a further independent variable�

������ IntegrationMethods for Linear Second�Order Partial Di
erential
Equations

�� Method of Separation of Variables
We can determine certain solutions of several di�erential equations of physics by special substitutions�
and although these are not general solutions� we get a family of solutions depending on arbitrary pa�
rameters� Linear di�erential equations� especially those of second order� can often be solved if we are
looking for a solution in the form of a product

u�x�� � � � � xn� � ���x�����x�� � � � �n�xn�� ������

Next� we try to separate the functions �k�xk�� i�e�� for each of them we want to determine an ordinary
di�erential equation containing only one variable xk� This separation of variables is successful in many
cases when the trial solution in the form of a product ������ is substituted into the given di�erential
equation� In order to guarantee that the solution of the original equation satis�es the required homo�
geneous boundary conditions� it may appear to be su�cient that some of functions ���x��� ���x��� � � � �
�n�xn� satisfy certain boundary conditions�
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By means of summation� di�erentiation and integration� new solutions can be acquired from the ob�
tained ones� the parameters should be chosen so that the remaining boundary and initial conditions
are satis�ed �see examples��
Finally� we must not forget that the solutions obtained in this way� often in�nite series and improper
integrals� are only formal solutions� That is� we have to check whether the solution makes a physical
sense� e�g�� whether it is convergent� satis�es the original di�erential equation and the boundary con�
ditions� whether it is di�erentiable termwise and whether the limit at the boundary exists�

The in�nite series and improper integrals in the examples of this paragraph are convergent if the func�
tions de�ning the boundary conditions satisfy the required conditions� e�g�� the continuity assumption
for the second derivativs in the �rst and the second examples�

A� Equation of the Vibrating String is a linear second�order partial di�erential equation of
hyperbolic type

��u

�t�
� a�

��u

�x�
� �����a�

It describes the vibration of a spanned string� The boundary and the initial conditions are�

u

����
t��

� f�x��
�u

�t

����
t��

� ��x�� ujx�� � �� ujx�l � �� �����b�

We seek a solution in the form

u � X�x�T �t�� �����c�

and after substituting it into the given equation �����a� we have

T ��

a�T
�

X ��

X
� �����d�

The variables are separated� the right side depends on only x and the left side depends on only t� so
each of them is a constant quantity� This constant must be negative� otherwise the bondary conditions
cannot be satis�ed� We get an ordinary linear second�order di�erential equation with constant coe��
cients for both variables� For the general solution see ������� p� ���� We denote this negative constant
by ��� and we get the linear di�erential equations

X �� � ��X � �� �����e� T �� � a���T � �� �����f�

We have X��� � X�l� � � from the boundary conditions� Hence X�x� is an eigenfunction of the
Sturm�Liouvilleboundary value problem and �� is the corresponding eigenvalue �see ������ �� p� ����
Solving the di�erential equation �����e� for X with the corresponding boundary conditions we get

X�x� � C sin�x with sin�l � �� i�e�� with � �
n�

l
� �n �n � � �� � � ��� �����g�

Solving equation �����f� for T yields a particular solution of the original di�erential equation �����a�
for every eigenvalue �n�

un �
�
an cos

na�

l
t � bn sin

na�

l
t
�

sin
n�

l
x� �����h�

Requiring that for t � ��

u �
�X
n��

un is equal to f�x� �����i� and
�

�t

�X
n��

un is equal to ��x�� �����j�

we get with a Fourier series expansion in sines �see ������ �� p� ����

an �
�

l

Z l

�
f�x� sin

n�x

l
dx� bn �

�

na�

Z l

�
��x� sin

n�x

l
dx� �����k�
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B� Equation of Longitudinal Vibration of a Bar is a linear second�order partial di�erential
equation of hyperbolic type� which describes the longitudinal vibration of a bar with one end free and a
constant force p a�ecting the �xed end� We have to solve the same di�erential equation as in example
A �p� ����� i�e��

��u

�t�
� a�

��u

�x�
� �����a�

with the same initial but di�erent boundary conditions�

u
����
t��

� f�x��
�u

�t

����
t��

� ��x�� �����b�
�u

�x

�����
x��

� � �free end�� �����c�

�u

�x

�����
x�l

� kp � �����d�

These conditions can be replaced by the homogeneous conditions

�z

�x

����
x��

�
�z

�x

����
x�l

� � �����e�

where instead of u we introduce a new unknown function

z � u� kpx�

�l
� �����f�

The di�erential equation becomes inhomogeneous�

��z

�t�
� a�

��z

�x�
�

a�kp

l
� �����g�

We are looking for the solution in the form z � v � w� where v satis�es the homogeneous di�erential
equation with the initial and boundary conditions for z� i�e��

z

����
t��

� f�x�� kpx�

�
�

�z

�t

����
t��

� ��x�� �����h�

and w satis�es the inhomogeneous di�erential equation with zero initial and boundary conditions� So�

we get w �
ka�pt�

�l
� Substituting the product form into the di�erential equation

v � X�x�T �t� �����i�

we get the separated ordinary di�erential equations as in the example A �p� ����

X ��

X
�

T ��

a�T
� ���� �����j�

Integrating the di�erential equation for X with the boundary conditions X ���� � X ��l� � � we �nd
the eigenfunctions

Xn � cos
n�x

l
�����k�

and the corresponding eigenvalues

�n
� �

n���

l�
�n � �� � �� � � ��� �����l�

Proceeding as in example A �p� ���� we �nally obtain

u �
ka�pt�

�l
�

kpx�

�l
� a� �

a�

l
b�t �

�X
n��

�
an cos

an�t

l
�

bn
n

sin
an�t

l

�
cos

n�x

l
� �����m�
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where an and bn �n � �� � �� � � �� are the coe�cients of the Fourier series expansion in cosines of the

functions f�x�� kpx�

�
and

l

a�
��x� in the interval ��� l� �see ������ �� p� �����

C� Equation of a Vibrating Round Membrane �xed along the boundary�
The di�erential equation is linear� partial and it is of hyperbolic type� It has the form in Cartesian and
in polar coordinates �see ������� �� p� ����

��u

�x�
�

��u

�y�
�



a�
��u

�t�
� ����a�

��u

���
�



�

�u

��
�



��
��u

���
�



a�
��u

�t�
� ����b�

The initial and boundary conditions are

ujt�� � f��� ��� ����c�
�u

�t

�����
t��

� F ��� ��� ����d� uj��R � �� ����e�

The substitution of the product form

u � U�������T �t� ����f�

with three variables into the di�erential equation in polar coordinates yields

U ��

U
�

U �

�U
�

���

���
�



a�
T ��

T
� ���� ����g�

Three ordinary di�erential equations are obtained for the separated variables analogously to examples
A �p� ���� and B �p� �����

T �� � a���T � �� ����h�
��U �� � �U �

U
� ���� � ����

�
� 
�� ����i�

��� � 
�� � �� ����j�

From the conditions ���� � ������ ����� � ������ it follows that�

���� � an cosn� � bn sinn�� 
� � n� �n � �� � �� � � ��� ����k�

U and � will be determined from the equations  �U �!� � n�

�
U � ����U and U�R� � �� Considering

the obvious condition of boundedness of U��� at � � � and substituting �� � z we get

z�U �� � zU � � �z� � n��U � �� i�e�� U��� � Jn�z� � Jn

�
�
�

R

�
� ����l�

where Jn are the Bessel functions �see ������� �� p� ���� with � �
�

R
and Jn��� � �� The function

system

Unk��� � Jn

�
�nk

�

R

�
�k � � �� � � �� ����m�

with �nk as the k�th positive root of the function Jn�z� is a complete system of eigenfunctions of the
self�adjoint Sturm�Liouville problem which are orthogonal with the weight function ��
The solution of the problem can have the form of a double series�

U �
�X
n��

�X
k��



�ank cosn� � bnk sinn�� cos

a�nkt

R

��cnk cosn� � dnk sinn�� sin
a�nkt

R

�
Jn

�
�nk

�

R

�
� ����n�
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From the initial conditions at t � � we obtain

f��� �� �
�X
n��

�X
k��

�ank cosn� � bnk sinn��Jn

�
�nk

�

R

�
� ����o�

F ��� �� �
�X
n��

�X
k��

a�nk
R

�cnk cosn� � dnk sinn��Jn

�
�nk

�

R

�
� ����p�

where

ank �
�

�R�J�
n����nk�

Z ��

�
d�
Z R

�
f��� �� cosn�Jn

�
�nk

�

R

�
� d�� ����q�

bnk �
�

�R�J�
n����nk�

Z ��

�
d�
Z R

�
f��� �� sinn�Jn

�
�nk

�

R

�
� d�� ����r�

In the case of n � �� the numerator � should be changed to � To determine the coe�cients cnk and dnk

we replace f��� �� by F ��� �� in the formulas for ank and bnk and we multiply by
R

a�nk
�

y

b

0 xa

Figure ���

D� Dirichlet Problem �see ����� p� ���� for the rectangle
� � x � a� � � y � b �Fig 
����
Find a function u�x� y� satisfying the elliptic type Laplace di�eren�
tial equation

%u � � �����a�

and the boundary conditions

u��� y� � ���y�� u�a� y� � ���y��

u�x� �� � ���x�� u�x� b� � ���x�� �����b�

First we determine a particular solution for the boundary conditions ���y� � ���y� � �� Substituting
the product form

u � X�x�Y �y� �����c�

into �����a� we get the separated di�erential equations

X ��

X
� �Y ��

Y
� ��� �����d�

with the eigenvalue � analogously to examplesA �p� ���� throughC �p� ����� Since X��� � X�a� � ��
we get

X � C sin�x� � �
n�

a
� �n �n � � �� � � ��� �����e�

In the second step we write the general solution of the di�erential equation

Y �� � n���

a�
Y � � �����f� in the form Y � an sinh

n�

a
�b� y� � bn sinh

n�

a
y � �����g�

From these equations we get a particular solution of �����a� satisfying the boundary conditionsu��� y� �
u�a� y� � �� which has the form

un �


an sinh

n�

a
�b� y� � bn sinh

n�

a
y
�

sin
n�

a
x � �����h�

In the third step we consider the general solution as a series

u �
�X
n��

un� �����i�
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so from the boundary conditions for y � � and y � b we get

u �
�X
n��

�
an sinh

n�

a
�b� y� � bn sinh

n�

a
y
�

sin
n�

a
x �����j�

with the coe�cients

an �
�

a sinh
n�b

a

Z a

�
���x� sin

n�

a
x dx� bn �

�

a sinh
n�b

a

Z a

�
���x� sin

n�

a
x dx� �����k�

The problem with the boundary conditions ���x� � ���x� � � can be solved in a similar manner� and
taking the series �����j� we get the general solution of �����a� and �����b��

E� Heat Conduction Equation Heat conduction in a homogeneous bar with one end at in�n�
ity and the other end kept at a constant temperature is described by the linear second�order partial
di�erential equation of parabolic type

�u

�t
� a�

��u

�x�
� �����a�

which satis�es the initial and boundary conditions

ujt�� � f�x�� ujx�� � � �����b�

in the domain � � x � ��� t 	 �� We also suppose that the temperature tends to zero at in�nity�
Substituting

u � X�x�T �t� �����c�

into �����a� we obtain the ordinary di�erential equations

T �

a�T
�

X ��

X
� ���� �����d�

whose parameter � is introduced analogously to the previous examples A �p� ���� through D �p� �����
We get

T �t� � Ce
��a�t �����e�

as a solution for T �t�� Using the boundary condition X��� � �� we get

X�x� � C sin�x �����f� and so u � Ce
��a�t sin�x� �����g�

where � is an arbitrary real number� The solution can be obtained in the form

u�x� t� �
Z �

�
C���e�

�a�t sin�x d�� �����h�

From the initial condition ujt�� � f�x�� so

f�x� �
Z �

�
C��� sin�x d�� �����i�

which is satis�ed if we substitute

C��� �
�

�

Z �

�
f�s� sin�s ds �����j�

for the constant �see ������ �� p� ����� Combining this equation and �����i� we get

u�x� t� �
�

�

Z �

�
f�s�

�Z �

�
e�

�a�t sin�s sin�x d�
�
ds �����k�
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or after replacing the product of the two sines with one half of the di�erence of two cosines ��������
p� �� and using formula ������� p� ���� we get

u�x� t� �
Z �

�
f�s�



�a
p
�t

����e�
�x� s��

�a�t � e
��x � s��

�a�t

���� ds� �����l�

�� RiemannMethod for Solving Cauchy�s Problem for the Hyperbolic
Di
erential Equation

��u

�x�y
� a

�u

�x
� b

�u

�y
� cu � F �����a�

� Riemann Function is a function v�x� y� �� ��� where � and � are considered as parameters� sat�
isfying the homogeneous equation

��v

�x�y
� ��av�

�x
� ��bv�

�y
� cv � � �����b�

which is the adjoint of �����a� and the conditions

v�x� �� �� �� � exp

�B� xZ
�

b�s� �� ds

�CA � v��� y� �� �� � exp

�� yZ
�

a��� s� ds

�A � �����c�

In general� linear second�order di�erential equations and their adjoint di�erential equations have the
form X

i�k

aik
��u

�xi�xk
�
X
i

bi
�u

�xi
� cu � f �����d� and

X
i�k

���aikv�

�xi�xk
�X

i

��biv�

�xi
� cv � �� �����e�

� Riemann Formula is the integral formula which is used to determine function u��� �� satisfying

y

0 x

P

QM(ξ,η)

Γ

Figure ���

the given di�erential equation �����a� and taking the previously
given values along the previously given curve � �Fig 
��� together
with its derivative in the direction of the curve normal �see �������
�� p� �����

u��� �� �


�
�uv�P �



�
�uv�Q �

Z
�
QP

�
buv �



�

�
v
�u

�x
� u

�v

�x

�
dx

�
�
auv �



�

�
v
�u

�y
� u

�v

�y

�
dy �

Z Z
PMQ

Fv dx dy� �����f�

The smooth curve � �Fig 
���must not have tangents parallel to the coordinate axes� i�e�� the curve
must not be tangent to the characteristics� The line integral in this formula can be calculated� since the
values of both partial derivatives can be determined from the function values and from its derivatives
in a non�tangential direction along the curve arc�

In the Cauchy problem� the values of the partial derivatives of the unknown function� e�g��
�u

�y
are often

given instead of the normal derivative along the curve� Then we use another Riemann formula�

u��� �� � �uv�P �
Z
�
QP

�
buv � u

�v

�x

�
dx�

�
auv � v

�u

�y

�
dy �

Z Z
PMQ

Fv dx dy� �����g�
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Electric Circuit Equation �Telegraphic Equation� is a linear second�order partial di�erential
equation of hyperbolic type

a
��u

�t�
� �b

�u

�t
� cu �

��u

�x�
�����a�

where a � �� b� and c are constants� The equation describes the current �ow in wires� It is a general�
ization of the di�erential equation of a vibrating string�
We replace the unknown function u�x� t� by u � ze��b�a�t� Then �����a� is reduced to the form

��z

�t�
� m� �

�z

�x�
� n�z

�
m� �



a
� n� �

b� � ac

a�

�
� �����b�

Replacing the independent variables by

� �
n

m
�mt � x�� � �

n

m
�mt� x� �����c�

we �nally get the canonical form

��z

����
� z

�
� � �����d�

of a hyperbolic type linear partial di�erential equation �see ������� �� p� ����� The Riemann function
v��� �� ��� ��� should satisfy this equation with unit value at � � �� and � � ��� If we choose the form

w � �� � ����� � ��� �����e�

for w in v � f�w�� then f�w� is a solution of the di�erential equation

w
d�f

dw�
�

df

dw
� 

�
f � � �����f�

with initial condition f��� � � The substitution w � �� reduces this di�erential equation to Bessel�s
di�erential equation of order zero �see ������� �� p� ����

d�f

d��
�



�

df

d�
� f � �� �����g�

hence the solution is

v � I�


q
�� � ����� � ���

�
� �����h�

A solution of the original di�erential equation �����a� satisfying the boundary conditions

z
����
t��

� f�x��
�z

�t

����
t��

� g�x� �����i�

can be obtained if we substitute the found value of v into the Riemann formula and then return to the
original variables�

z�x� t� �


�
 f�x�mt� � f�x � mt�!

�


�

x�mtZ
x�mt

����g�s�
I�

�
n

m

q
m�t� � �s� x��

�
m

� f�s�
ntI�

�
n

m

q
m�t� � �s� x��

�
q
m�t� � �s� x��

���� ds� �����j�

�� Green�s Method of Solving the Boundary Value Problem for Elliptic
Di
erential Equations with Two Independent Variables

This method is very similar to the Riemann method of solving the Cauchy problem for hyperbolic
di�erential equations�
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If we want to �nd a function u�x� y� satisfying the elliptic type linear second�order partial di�erential
equation

��u

�x�
�

��u

�y�
� a

�u

�x
� b

�u

�y
� c u � f �����a�

in a given domain and taking the prescribed values on its boundary� �rst we determine the Green func�
tion G�x� y� �� �� for this domain� where � and � are regarded as parameters� The Green function must
satisfy the following conditions�

� The function G�x� y� �� �� satis�es the homogeneous adjoint di�erential equation

��G

�x�
�

��G

�y�
� ��aG�

�x
� ��bG�

�y
� cG � � �����b�

everywhere in the given domain except at the point x � �� y � ��

� The function G�x� y� �� �� has the form

U ln


r
� V �����c� with r �

q
�x� ��� � �y � ��� � �����d�

where U has unit value at the point x � �� y � � and U and V are continuous functions in the entire
domain together with their second derivatives�

� The function G�x� y� �� �� is equal to zero on the boundary of the given domain�
The second step is to give the solution of the boundary value problem with the Green function by the
formula

u��� �� �


��

Z
S

u�x� y�
�

�n
G�x� y� �� �� ds� 

��

ZZ
D

f�x� y�G�x� y� �� �� dx dy� �����e�

where D is the considered domain� S is its boundary on which the function is assumed to be known and
�

�n
denotes the normal derivative directed toward the interior of D�

Condition � depends on the formulation of the problem� For instance� if instead of the function values
the values of the derivative of the unknown function in the direction normal to the boundary of the
domain are given� then in � we have the condition

�G

�n
� �a cos� � b cos ��G � � �����f�

on the boundary� � and � denote here the angles between the interior normal to the boundary of the
domain and the coordinate axes� In this case� the solution is given by the formula

u��� �� � � 

��

Z
S

�u

�n
Gds� 

��

ZZ
D

fGdx dy� �����g�

�� Green�s Method for the Solution of Boundary Value Problems with Three
Independent Variables

The solution of the di�erential equation

%u � a
�u

�x
� b

�u

�y
� c

�u

�z
� e u � f �����a�

should take the given values on the boundary of the considered domain� As the �rst step� we construct
again the Green function� but now it depends on three parameters �� �� and �� The adjoint di�erential
equation satis�ed by the Green function has the form

%G� ��aG�

�x
� ��bG�

�y
� ��cG�

�z
� eG � �� �����b�
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As in condition �� the function G�x� y� z� �� �� �� has the form

U


r
� V �����c� with r �

q
�x� ��� � �y � ��� � �z � ���� �����d�

The solution of the problem is�

u��� �� �� �


��

ZZ
S

u
�G

�n
ds� 

��

ZZZ
D

fGdx dy dz� �����e�

Both methods� Riemann�s and Green�s� have the common idea �rst to determine a special solution of the
di�erential equation� which can then be used to obtain a solution with arbitrary boundary conditions�
An essential di�erence between the Riemann and the Green function is that the �rst one depends only
on the form of the left�hand side of the di�erential equation� while the second one depends also on the
considered domain� Finding the Green function is� in practice� an extremely di�cult problem� even if
it is known to exist� therefore� Green�s method is used mostly in theoretical research�

M( , )! �

M1

r1

p

R

r

0

�
�

y

x

Figure ���

A� Construction of the Green function for the Dirichlet problem
of the Laplace di�erential equation �see ����� p� ����

%u � � �����a�

for the case� when the considered domain is a circle �Fig 
�
��
The Green function is

G�x� y� �� �� � ln


r
� ln

r��

R
� �����b�

where r � MP� � � OM � r� � M�P and R is the radius of the
considered circle �Fig 
�
�� The points M and M� are symmet�
ric with respect to the circle� i�e�� both points are on the same ray
starting from the center and

OM �OM� � R�� �����c�

The formula �����e� for a solution of Dirichlet�s problem� after sub�
stituting the normal derivative of the Green function and after cer�
tain calculations� yields the so�called Poisson integral

u��� �� �


��

Z ��

�

R� � ��

R� � �� � �R� cos�� � ��
u��� d�� �����d�

The notation is the same as above� The known values of u are given on the boundary of the circle by
u���� For the coordinates of the point M��� �� we have� � � � cos�� � � � sin��

B� Construction of the Green function for the Dirichlet problem of the Laplace di�erential equation
�see ����� p� ����

%u � �� �����a�

for the case when the considered domain is a sphere with radius R� The Green function now has the
form

G�x� y� z� �� �� �� �


r
� R

r��
� �����b�

with � �
p
�� � �� � �� as the distance of the point ��� �� �� from the center� r as the distance between

the points �x� y� z� and ��� �� ��� and r� as the distance of the point �x� y� z� from the symmetric point

of ��� �� �� according to �����c�� i�e�� from the point

�
R�

�
�
R�

�
�
R�

�

�
� In this case� the Poisson integral

has �with the same notation as in example A �p� ����� the form

u��� �� �� �


��

ZZ
S

R� � ��

Rr�
u ds� �����c�
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�� Operational Method
Operational methods can be used not only to solve ordinary di�erential equations but also for partial
di�erential equations �see ����� p� ����� They are based on transition from the unknown function to
its transform �see ��� p� ����� In this process� we regard the unknown function as a function of only
one variable and we perform the transformation with respect to this variable� The remaining variables
are considered as parameters� The di�erential equation to determine the transform of the unknown
function contains one less independent variable than the original equation� In particular� if the original
equation is a partial di�erential equation of two independent variables� then we obtain an ordinary
di�erential equation for the transform� If we can �nd the transform of the unknown function from
the obtained equation� then we determine the original function either from the formula for the inverse
function or from the table of transforms�

� ApproximationMethods
In order to solve practical problems with partial di�erential equations� we often use di�erent approxi�
mation methods� We distinguish between analytical and numerical methods�

� AnalyticalMethods make possible the determination of approximate analytical expressions for
the unknown function�

� NumericalMethods result in approximate values of the unknown function for certain values of
the independent variables� We use the following methods �see ���� p� ���

a� Finite Di	erenceMethod� or Lattice�Point Method� The derivatives are replaced by divided dif�
ferences� so the di�erential equation including the initial and boundary conditions becomes an algebraic
equation system� A linear di�erential equation with linear initial and boundary conditions becomes a
linear equation system�

b� Finite ElementMethod� or brie�y FEM� for boundary value problems� We assign a variational
problem to the boundary value problem� We approximate the unknown function by a spline� whose co�
e�cients should be chosen to get the best possible solution� We decompose the domain of the boundary
value problem into regular subdomains� The coe�cients are determined by solving an extreme value
problem�

c� Integral Equation Method �along a Closed Curve� for special boundary problems� We for�
mulate the boundary value problem as an equivalent integral equation problem along the boundary of
the domain of the boundary value problem� To do this� we apply the theorems of vector analysis� e�g��
Green formulas� We determine the remaining integrals along the closed curve numerically by a suitable
quadrature formula�

� Physical Solutions of di�erential equations can be given by experimental methods� This is based
on the fact that various physical phenomena can be described by the same di�erential equation� To
solve a given equation� we �rst construct a model by which we can simulate the given problem� and we
obtain the values of the unknown function directly from this model� Since such models are often known
and can be constructed by varying the parameters in a wide range� the di�erential equation can also
be investigated in a wide domain of the variables�

����� Some further PartialDi�erential Equations fromNatural

Sciences andEngineering

������ Formulation of the Problem and the Boundary Conditions

�� Problem Formulation
The modeling and the mathematical treatment of di�erent physical phenomena in classical theoretical
physics� especially in modeling media considered structureless or continuously changing� such as gases�
�uids� solids� the �elds of classical physics� leads to the introduction of partial di�erential equations�
Examples are the wave �see �������� p� ���� and the heat equations �see �������� p� ����� Many problems
in non�classical theoretical physics are also governed by partial di�erential equations� An important
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area is quantum mechanics� which is based on the recognition that media and �elds are discontinu�
ous� The most famous relation is the Schr�odinger equation� Linear second�order partial di�erential
equations occur most frequently and they have special importance in today�s natural sciences�

�� Initial and Boundary Conditions

The solution of the problems of physics� engineering� and the natural sciences must usually ful�ll two
basic requirements�

� The solution must satisfy not only the di�erential equation� but also certain initial and�or boundary
conditions� There are problems with only initial condition or only with boundary conditions or with
both� All the conditions together must determine the unique solution of the di�erential equation�

� The solution must be stable with respect to small changes in the initial and boundary conditions�
i�e�� its change should be arbitrarily small if the perturbations of these conditions are small enough�
Then a correct problem formulation is given�
We can assume that the mathematical model of the given problem to describe the real situation is
adequate only in cases when these conditions are ful�lled�
For instance� the Cauchy problem �see ������ �� p� ��� is correctly de�ned with a di�erential equation
of hyperbolic type for investigating vibration processes in continuous media� This means that the values
of the required function� and the values of its derivatives in a non�tangential �mostly in a normal�
direction are given on an initial manifold� i�e�� on a curve or on a surface�

In the case of di�erential equations of elliptic type� which occur in investigations of steady state and
equilibrium problems in continuous media� the formulation of the boundary value problem is correct� If
the considered domain is unbounded� then the unknown function must satisfy certain given properties
with unlimited increase of the independent variables�

�� Inhomogeneous Conditions and Inhomogeneous Di
erential Equations

The solution of homogeneous or inhomogeneous linear partial di�erential equations with inhomoge�
neous initial or boundary conditions can be reduced to the solution of an equation which di�ers from
the original one only by a free term not containing the unknown function� and which has homogeneous
conditions� It is su�cient to replace the original function by its di�erence from an arbitrary twice dif�
ferentiable function satisfying the given inhomogeneous conditions�

In general� we use the fact that the solution of a linear inhomogeneous partial di�erential equation with
given inhomogeneous initial or boundary conditions is the sum of the solutions of the same di�erential
equation with zero conditions and the solution of the corresponding homogeneous di�erential equation
with the given conditions�
To reduce the solution of the linear inhomogeneous partial di�erential equation

��u

�t�
� L u! � g�x� t� �����a�

with homogeneous initial conditions

u
����
t��

� ��
�u

�t

����
t��

� � �����b�

to the solution of the Cauchy problem for the corresponding homogeneous di�erential equation� we
substitute

u �

tZ
�

��x� t�  � d � �����c�

Here ��x� t�  � is the solution of the di�erential equation

��u

�t�
� L u! � �� �����d�
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which satis�es the boundary conditions

u
����
t��

� ��
�u

�t

����
t��

� g�x�  �� �����e�

In this equation� x represents symbolically all the n variables x�� x�� � � � � xn of the n�dimensional prob�

lem� L u! denotes a linear di�erential expression� which may contain the derivative
�u

�t
� but not higher�

order derivatives with respect to t�

������ Wave Equation
The extension of oscillations in a homogeneous media is described by the wave equation

��u

�t�
� a�%u � Q�x� t�� ����a�

whose right�hand side Q�x� t� vanishes when there is no perturbation� The symbol x represents the n
variables x�� � � � � xn of the n�dimensional problem� The Laplace operator % �see also �������� ����� is
de�ned in the following way�

%u �
��u

�x��
�

��u

�x��
� � � �� ��u

�xn�
� ����b�

The solution of the wave equation is the wave function u� The di�erential equation ����a� is of hy�
perbolic type�

�� Homogeneous Problem
The solution of the homogeneous problem with Q�x� t� � � and with the initial conditions

u

����
t��

� ��x��
�u

�t

����
t��

� ��x� ������

is given for the cases n � � �� � by the following integrals�

Case n � � �Kirchho	 Formula��

u�x�� x�� x�� t� �


��a�

���� ZZ
�Sat�

����� ��� ���

t
d� �

�

�t

Z Z
�Sat�

����� ��� ���

t
d�

���� � �����a�

where the integration is performed over the spherical surface Sat given by the equation ��� � x��
� �

��� � x��
� � ��� � x��

� � a�t��

Case n � � �Poisson Formula��

u�x�� x�� t� �


��a


 Z Z
�Cat�

����� ��� d��d��q
a�t� � ��� � x��� � ��� � x���

�
�

�t

Z Z
�Cat�

����� ��� d��d��q
a�t� � ��� � x��� � ��� � x���

�
� �����b�

where the integration is performed along the circle Cat given by the equation ����x��
� � ����x��

� �
a�t��

Case n � � �d�Alembert formula��

u�x�� t� �
��x� � at� � ��x� � at�

�
�



�a

x��atZ
x��at

���� d�� �����c�
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�� Inhomogeneous Problem
In the case� when Q�x� t� �� �� we have to add to the right�hand sides of �����a�b�c� the correcting
terms�

Case n � � �Retarded Potential�� For a domain K given by r � at with

r �
q

��� � x��� � ��� � x��� � ��� � x���� the correction term is



��a�

ZZZ
�K�

Q
�
��� ��� ��� t� r

a

�
r

d��d��d�� � �����a�

Case n � ��


��a

ZZZ
�K�

Q���� ���  � d��d��d q
a��t�  �� � ��� � x��� � ��� � x���

� �����b�

where K is a domain of ��� ���  space de�ned by the inequalities � �  � t� ��� � x��
� � ��� � x��

� �
a��t�  ���

Case n � ��


�a

ZZ
�T �

Q���  � d�d � �����c�

where T is the triangle � �  � t� j� � x�j � ajt�  j� a denotes the wave velocity of the perturbation�

������ Heat Conduction andDi
usion Equation for HomogeneousMedia

�� Three�Dimensional Heat Conduction Equation
The propagation of heat in a homogeneous medium is described by a linear second�order partial di�er�
ential equation of parabolic type

�u

�t
� a�%u � Q�x� t�� �����a�

where % is the three�dimensional Laplace operator de�ned in three directions of propagation x�� x��
x�� determined by the position vector�r� If the heat �ow has neither source nor sink� the right�hand side
vanishes since Q�x� t� � ��
The Cauchy problem can be posed in the following way� We want to determine a bounded solution
u�x� t� for t � �� where ujt�� � f�x�� The requirement of boundedness guarantees the uniqueness of
the solution�
For the homogeneous di�erential equation with Q�x� t� � �� we get the wave function

u�x�� x�� x�� t� �


��a
p
�t�n

��Z
��

��Z
��

��Z
��

f���� ��� ���

� exp

�
��x� � ���

� � �x� � ���
� � �x� � ���

�

�a�t

�
d��d��d��� �����b�

In the case of an inhomogeneous di�erential equation with Q�x� t� �� �� we have to add to the right�hand
side of �����b� the following expression�

tZ
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��Z
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��Z
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 �a
q
��t�  �!n
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�
��x� � ���
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� � �x� � ���

�
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�
d��d��d��


d � �����c�
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The problem of determining u�x� t� for t � �� if the values u�x� �� are given� cannot be solved in this
way� since the Cauchy problem is not correctly formulated in this case�
Since the temperature di�erence is proportional to the heat� we often introduce u � T ��r� t� �tempera�
ture �eld� and a� � DW �heat di�usion constant or thermal conductivity� to get

�T

�t
�DW%T � QW ��r� t�� �����d�

�� Three�Dimensional Di
usion Equation
In analogy to the heat equation� the propagation of a concentration C in a homogeneous medium is
described by the same linear partial di�erential equation �����a� and �����d�� where DW is replaced
by the three�dimensional di�usion coe�cient DC � The di�usion equation is�

�C

�t
�DC%C � QC��r� t�� ������

We get the solutions by changing the symbols in the wave equations �����b� and �����c��

������ Potential Equation
The linear second�order partial di�erential equation

%u � ���� �����a�

is called the potential equation or Poisson di�erential equation �see ������ p� ����� which makes the
determination of the potential u�x� of a scalar �eld determined by a scalar point function ��x� possible�
where x has the coordinates x�� x�� x� and % is the Laplace operator� The solution� the potential
uM�x�� x�� x�� at the point M � is discussed in ������ p� ����
We get the Laplace di�erential equation �see ����� p� ���� for the homogeneous di�erential equation
with � � �

%u � �� �����b�

The di�erential equations �����a� and �����b� are of elliptic type�

������ Schr�odinger�s Equation

�� Notion of the Schr�odinger Equation
� Determination and Dependencies The solutions of the Schr�odinger equation� the wave func�
tions �� describe the properties of a quantum mechanical system� i�e�� the properties of the states of a
particle� The Schr�odinger equation is a second�order partial di�erential equation with the second�order
derivatives of the wave function with respect to the space coordinates and �rst�order with respect to
the time coordinate�

i "h
��

�t
� � "h�

�m
%� � U�x�� x�� x�� t�� � #H � �����a�

#H � #p�

�m
� U��r� t� � #p � "h

i

�

��r
� "h

i
r� �����b�

Here� % is the Laplace operator� "h �
h

��
is the reduced Planck�s constant� i is the imaginary unit and

r is the nabla operator� The relation between the impulse p of a free particle with mass m and wave
length � is � � h�p�
� Remarks�
a� In quantum mechanics� we assign an operator to every measurable quantity� The operator occurring

in �����a� and �����b� is called the Hamilton operator #H �	Hamiltonian
� � It has the same role as
the Hamilton function of classical mechanical systems �see� e�g�� the example on Two�Body Problem on
p� ����� It represents the total energy of the system which is divided into kinetic and potential energy�

The �rst term in #H is the operator for the kinetic energy� the second one for the potential energy�
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b� The imaginary unit appears explicitly in the Schr�odinger equation� Consequently� the wave func�

tions are complex functions� Both real functions occurring in ���� � i���� are needed to calculate the
observable quantities� The square j" j� of the wave function� describing the probability dw of the par�
ticle being in an arbitrary volume element dV of the observed domain� must satisfy special further
conditions�

c� Besides the potential of the interaction� every special solution depends also on the initial and bound�
ary conditions of the given problem� In general� we have a linear second�order boundary value problem�
whose solutions have physical meaning only for the eigenvalues� The squares of the absolute value of
meaningful solutions are everywhere unique and regular� and tend to zero at in�nity�

d� The microparticles also have wave and particle properties based on the waveparticle duality� so the
Schr�odinger equation is a wave equation �see �������� p� ���� for the De Broglie matter waves�

e� The restriction to the non�relativistic case means that the velocity v of the particle is very small
with respect to the velocity of light c �v * c��

The application of the Schr�odinger equations is discussed in detail in the literature of theoretical physics
�see� e�g��  ���!�  ���!� ���!�  ����!�� In this chapter we demonstrate only some most important exam�
ples�

�� Time�Dependent Schr�odinger Equation
The time�dependent Schr�odinger equation �����a� describes the general non�relativistic case of a spin�
less particle with mass m in a position�dependent and time�dependent potential �eld U�x�� x�� x�� t��
The special conditions� which must be satis�ed by the wave function� are�
a� The function � must be bounded and continuous�
b� The partial derivatives ����x�� ����x�� and ����x� must be continuous�
c� The function j�j� must be integrable� i�e��ZZZ

V

j��x�� x�� x�� t�j� dV ��� �����a�

According to the normalization condition� the probability that the particle is in the considered domain
must be equal to one� �����a� is su�cient to guarantee the condition� since multiplying� by a constant
the value of the integral becomes one�
A solution of the time�dependent Schr�odinger equation has the form

��x�� x�� x�� t� � "�x�� x�� x��e
�iE

�h
t � �����b�

The state of the particle is described by a periodic function of time with angular frequency  � E�"h�
If the energy of the particle has the �xed value E � constant� then the probability dw of �nding the
particle in a space element dV is independent of time�

d � j�j� dV � ��� dV� �����c�

Then we talk about a stationary state of the particle�

�� Time�Independent Schr�odinger Equation
If the potential U does not depend on time� i�e�� U � U�x�� x�� x��� then it is the time�independent
Schr�odinger equation and the wave function "�x�� x�� x�� is su�cient to describe the state� We can
reduce it from the time�dependent Schr�odinger equation �����a� with the solution �����b� and we
get

%" �
�m

"h�
�E � U�" � �� ����a�

In this non�relativistic case� the energy of the particle is

E �
p�

�m
����b�
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with impulse p �
h

�
� The wave functions " satisfying this di�erential equation are the eigenfunctions�

they exist only for certain energy values E� which are given for the considered problem of the special
boundary conditions� The union of the eigenvalues forms the energy spectrum of the particle� If U is a
potential of �nite depth and it tends to zero at in�nity� then the negative eigenvalues form a discrete
spectrum�

If the considered domain is the entire space� then it can be required as a boundary condition that " is
quadratically integrable in the entire space in the Lebesgue sense �see �������� p� ��� and  ���!�� If the
domain is �nite� e�g�� a sphere or a cylinder� then we can require� e�g�� " � � for the boundary as the
�rst boundary condition problem�
We get the Helmholtz di�erential equation in the special case of U�x� � ��

%" � �" � � ���a� with the eigenvalue � �
�mE

"h�
� ���b�

" � � is often required here as a boundary condition� ���a� represents the initial mathematical
equation for acoustic oscillation in a �nite domain�

�� Force�Free Motion of a Particle in a Block
� Formulation of the Problem A particle with a mass m is moving freely in a block with in�
penetrable walls of edge lengths a� b� c� therefore� it is in a potential box which is in�nitely high in all
three directions because of the inpenetracy of the walls� That is� the probability of the presence of the
particle� and also the wave function " � vanishes outside the box� The Schr�odinger equation and the
boundary conditions for this problem are

��"

�x�
�

��"

�y�
�

��"

�z�
�

�m

"h�
E" � �� ����a� " � � for

���
x � �� x � a�
y � �� y � b�
z � �� z � c�

����b�

� Solution Separating the variables

"�x� y� z� � "x�x�"y�y�"z�z� ����a�

and substituting into ����a� we get



"x

d�"x
dx�

�


"y

d�"y
dy�

�


"z

d�"z
dz�

� ��m

"h�
E � �B� ����b�

Every term on the left�hand side depends only on one independent variable� Their sum can be a constant
�B for arbitrary x� y� z only if every single term is a constant� In this case the partial di�erential
equation is reduced to three ordinary di�erential equations�

d�"x
dx�

� �kx
�"x�

d�"y
dy�

� �ky
�"y�

d�"z
dz�

� �kz
�"z� ����c�

The relation for the separation constants �kx
�� �ky

�� �kz
� is

kx
� � ky

� � kz
� � B� ����d�

consequently

E �
"h�

�m
�kx

� � ky
� � kz

��� ����e�

� Solutions of the three equations ����c� are the functions

"x � Ax sin kx x� "y � Ay sin ky y� "z � Az sin kz z ����a�

with the constants Ax� Ay� Az� With these functions " satis�es the boundary conditions " � � for
x � �� y � � and z � ��

sin kx a � sin ky b � sin kz c � � ����b�
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must be valid to satisfy also the relation " � � for x � a� y � b and z � c� i�e�� the relations

kx �
�nx
a

� ky �
�ny
b

� kz �
�nz
c

����c�

must be satis�ed� where nx� ny� and nz are integers�
We get for the total energy

Enx�ny�nz � ��
"h�

�m

��
nx
a

��
�
�
ny
b

��
�
�
nz
c

��
�nx� ny� nz � ����� � � ��� ����d�

It follows from this formula that the changes of energy of a particle by interchange with the neigh�
borhood is not continuous� which is possible only in quantum systems� The numbers nx� ny� and nz�
belonging to the eigenvalues of the energy� are called the quantum numbers�
After calculating the product of constants AxAyAz from the normalization condition

�AxAyAz�
�

aZ
�

bZ
�

cZ
�

sin�
�nxx

a
sin�

�nyy

b
sin�

�nzz

c
dx dy dz �  ����e�

we get the complete eigenfunctions of the states characterized by the three quantum numbers

"nx�ny�nz �

s
�

abc
sin

�nxx

a
sin

�nyy

b
sin

�nzz

c
� ����f�

The eigenfunctions vanish at the walls since one of the three sine functions is equal to zero� This is
always the case outside the walls if the following relations are valid

x �
a

nx
�

�a

nx
� � � � �

�nx � �a

nx
�

y �
b

ny
�

�b

ny
� � � � �

�ny � �b

ny
� ����g�

z �
c

nz
�

�c

nz
� � � � �

�nz � �c

nz
�

So� there are nx �  and ny �  and nz �  planes perpendicular to the x� or y� or z�axis� in which "
vanishes� These planes are called the nodal planes�
� Special Case of a Cube� Degeneracy In the special case of a cube with a � b � c� a particle
can be in di�erent states which are described by di�erent linearly independent eigenfunctions and they
have the same energy� This is the case when the sum nx

� � ny
� � nz

� has the same value in di�erent
states� We call them degenerate states� and if there are i states with the same energy� we call it i�fold
degeneracy�
The quantum numbers nx� ny and nz can run through all real numbers� except zero� This last case
would mean that the wave function is identically zero� i�e�� the particle does not exist at any place in
the box� The particle energy must remain �nite� even if the temperature reaches absolute zero� This
zero�point translational energy for a block is

E� � ��
"h�

�m

�


a�
�



b�
�



c�

�
� ����h�

�� ParticleMovement in a Symmetric Central Field �see ������� p� ����

� Formulation of the Problem The considered particle moves in a central symmetric potential
V �r�� This model reproduces the movement of an electron in the electrostatic �eld of a positively
charged nucleus� Since this is a spherically symmetric problem� it is reasonable to use spherical coor�
dinates �Fig 
���� We have the relations
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r
0

�

�

x

y

z

Figure ����

r �
q
x� � y� � z� � x � r sin� cos ��

� � arccos
z

r
� y � r sin� sin��

� � arctan
y

x
� z � r cos ��

����a�

where r is the absolute value of the radius vector� � is the angle be�
tween the radius vector and the z�axis �polar angle� and � is the
angle between the projection of the radius vector onto the x� y plane
and the x�axis �azimuthal angle�� For the Laplace operator we get

%" �
��"

�r�
�

�

r

�"

�r
�



r�
��"

���
�

cos�

r� sin�

�"

��
�



r� sin� �

��"

���
� ����b�

so the time�independent Schr�odinger equation is�



r�
�

�r

�
r�

�"

�r

�
�



r� sin�

�

��

�
sin�

�"

��

�
�



r� sin� �

��"

���
�

�m

"h�
 E � V �r�!" � �� ����c�

� Solution We are looking for a solution in the form

"�r� �� �� � Rl�r�Y m
l ��� ��� ����a�

where Rl is the radial wave function depending only on r� and Y m
l ��� �� is the wave function depending

on both angles� Substituting ����a� in ����c� we get



r�
�

�r

�
r�

�Rl

�r

�
Y m
l �

�m

"h�
 E � V �r�!RlY

m
l

� �
�



r� sin�

�

��

�
sin�

�Y m
l

��

�
Rl �



r� sin� �

��Y m
L

���
Rl

�
� ����b�

Dividing by RlY
m
l and multiplying by r� we get



Rl

d

dr

�
r�

dRl

dr

�
�

�mr�

"h�
 E � V �r�! � � 

Y m
l

�


sin�

�

��

�
sin�

�Y m
l

��

�
�



sin� �

��Y m
l

���

�
� ����c�

Equation ����c� can be satis�ed if the expression on the left�hand side depending only on r and expres�
sion on the right side depending only on � and � are equal to a constant� i�e�� both sides are independent
of each other and they are equal to the same constant� From the partial di�erential equation we get
two ordinary di�erential equations� If the constant is chosen equal to l�l � �� then we get the so�called
radial equation depending only on r and the potential V �r��



Rlr�
d

dr

�
r�

dRl

dr

�
�

�m

"h�

�
E � V �r�� l�l � �"h�

�mr�


� �� ����d�

We want to �nd a solution for the angle�dependent part also in the separated form

Y m
l ��� �� � !�������� ����e�

Substituting ����e� into ����c� we get

sin� �

�


! sin�

d

d�

�
sin�

d!

d�

�
� l�l � �

�
� � 

�

d��

d��
� ����f�

If the separation constant is chosen as m� in a reasonable way� then the so�called polar equation is



! sin�

d

d�

�
sin�

d!

d�

�
� l�l � �� m�

sin� �
� � ����g�
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and the azimuthal equation is

d��

d��
� m�� � �� ����h�

Both equations are potential�independent� so they are valid for every central symmetric potential�
We have three requirements for ����a�� It should tend to zero for r  �� it should be one�valued
and quadratically integrable on the surface of the sphere�
� Solution of the Radial Equation Beside the potential V �r� the radial equation ����d� also
contains the separation constant l�l � �� We substitute

ul�r� � r �Rl�r�� ����a�

since the square of the function ul�r� gives the last required probability jul�r�j�dr � jRl�r�j�r�dr of
the presence of the particle in a spherical shell between r and r � dr� The substitution leads to the
one�dimensional Schr�odinger equation

d�ul�r�

dr�
�

�m

"h�

�
E � V �r�� l�l � �"h�

�mr�


ul�r� � �� ����b�

This one contains the e�ective potential

Ve� � V �r� � Vl�l�� ����c�

which has two parts� The rotation energy

Vl�l� � Vrot�l� �
l�l � �"h�

�mr�
����d�

is called the centrifugal potential�
The physical meaning of l as the orbital angular momentum follows from analogy with the classical
rotation energy

Erot �


�
!�� �

�!���

�!
�

�l
�

�!
�

�l
�

�mr�
����e�

a rotating particle with moment of inertia ! � �r� and orbital angular momentum �l � !��

�l
�

� l�l � �"h��
����l �
��� � "h

q
l�l � � � ����f�

� Solution of the polar equation The polar equation ����g�� containing both separation con�
stants l�l � � and m�� is a Legendre di�erential equation �����a�� p� �� Its solution is denoted by
!m
l ���� and it can be determined by a power series expansion� Finite� single�valued and continuous

solutions exist only for l�l � � � �� �� �� �� � � � � We get for l and m�

l � �� � �� � � � � jmj � l� ����a�

So� m can take the ��l � � values

�l� ��l � �� ��l � ��� � � � � �l � ��� �l � �� l� ����b�

We get the corresponding Legendre polynomial for m �� �� which is de�ned in the following way�

Pm
l �cos�� �

���m

�ll$
�� cos� ��m��

d l�m�cos� �� �l

�d cos��l�m
� ����c�

We get the Legendre function of the �rst kind �����c�� p� �� as a special case �l � n� m � �� cos� � x��
Its normalization results in the equation

!m
l ��� �

vuut�l � 

�
� �l �m�$

�l � m�$
� Pm

l �cos�� � Nm
l Pm

l �cos��� ����d�

� Solution of theAzimuthalEquation Since the motion of the particle in the potential �eld V �r�
is independent of the azimuthal angle even in the case of the physical assignment of a space direction�
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e�g�� by a magnetic �eld� we specify the general solution � � �eim� � �e�im� by �xing

�m��� � Ae�im�� ����a�

because in this case j�mj� is independent of �� The requirement for uniqueness is

�m�� � ��� � �m���� ����b�

so m can take on only the values ������� � � ��
It follows from the normalization

��Z
�

j�j� d� �  � jAj�
Z ��

�
d� � ��jAj� ����c�

that

�m��� �
p
��

eim� �m � ������� � � ��� ����d�

The quantum number m is called the magnetic quantum number�

� Complete Solution for the Dependency of the Angles In accordance with ����e�� the
solutions for the polar and the azimuthal equations should be multiplied by each other�

Y m
l ��� �� � !������� �

p
��

Nm
l Pm

l �cos��eim�� �����a�

The functions Y m
l ��� �� are the so�called surface spherical harmonics�

When the radius vector �r is re�ected with respect to the origin ��r  ��r�� the angle � becomes � � �
and � becomes � � �� so the sign of Y m

l may change�

Y m
l �� � �� � � �� � ���lY m

l ��� ��� �����b�

We get the parity of the considered wave function

P � ���l� ����a�

� Parity The parity property serves the characterization of the behavior of the wave function under
space inversion �r ��r �see ������� �� p� ����� It is performed by the inversion or parity operator P�
P"��r� t� � "���r� t�� If we denote the eigenvalue of the operator by P � then applying P twice it must
yield PP"��r� t� � P P "��r� t� � "��r� t�� the original wave function� So�

P � � � P � �� ����b�

We call it an even wave function if its sign does not change under space inversion� and it is called an
odd wave function if its sign changes�

� Linear Harmonic Oscillator

� Posing the Problem Harmonic oscillation occurs when the drag forces in the oscillator satisfy
Hooke�s law F � �kx� For the frequency of the oscillation� for the frequency of the oscillation circuit
and for the potential energy we get�


 �


��

s
k

m
� �����a�  �

s
k

m
� �����b� Epot �



�
kx� � m

�

�
x�� �����c�

Substituting into ���a�� the Schr�odinger equation becomes

d�"

dx�
�

�m

"h�

�
E � �

�
mx�


" � �� �����a�

With the substitutions

y � x

r
m

"h
� �����b� � �

�E

"h
� �����c�
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where � is a parameter and not the wavelength� �����a� can be transformed into the simpler form of
the Weber di�erential equation

d�"

dy�
� ��� y��" � �� �����d�

� Solution We get a solution for the Weber di�erential equation in the form

"�y� � e�y
���H�y�� �����a�

Di�erentiation shows that

d�"

dy�
� e�y

���

�
d�H

dy�
� �y

dH

dy
� �y� � �H


� �����b�

Substitution into the Schr�odinger equation �����d� yields

d�H

dy�
� �y

dH

dy
� ��� �H � �� �����c�

We determine a solution in the form of a series

H �
�X
i��

aiy
i with

dH

dy
�

�X
i��

iaiy
i���

d�H

dy�
�

�X
i��

i�i� �aiy
i��� �����a�

Substitution of �����a� into �����c� results in

�X
i��

i�i� �aiy
i�� �

�X
i��

�iaiy
i �

�X
i��

i��� �aiy
i � �� �����b�

Comparing the coe�cients of yj we get the recursion formula

�j � ���j � �aj�� �  �j � ��� �!aj �j � �� � �� � � ��� �����c�

We get the coe�cients aj for even powers of y from a�� the coe�cients for odd powers from a�� So� a�
and a� can be chosen arbitrarily�

� Physical Solutions We want to determine the probability of the presence of a particle in the
di�erent states� This will be described by a quadratically integrable wave function "�x� and by an
eigenfunction which has physical meaning� i�e�� normalizable and for large values of y it tends to zero�
The exponential function exp��y���� in �����a� guarantees that the solution "�y� tends to zero for
y  � if the function H�y� is a polynomial� To get a polynomial� the coe�cients aj in �����a��
starting from a certain n� must vanish for every j � n� an �� �� an�� � an�� � an�� � � � � � �� The
recursion formula �����c� with j � n is

an�� �
�n� ��� �

�n � ���n � �
an� �����a�

an�� � � can be satis�ed for an �� � only if

�n� ��� � � �� � �
�E

"h
� �n � � �����b�

The coe�cients an��� an��� � � � vanish for this choice of �� Also an�� � � must hold to make the coe��
cients an��� an��� � � � equal to zero�
We get theHermite polynomials from the second de�ning equation �see ������� �� p� ��� for the special
choice of an � �n� an�� � �� The �rst six of them are�

H��y� � � H��y� � ��y � �y��

H��y� � �y� H��y� � �� ��y� � �y��

H��y� � �� � �y�� H��y� � ��y � ��y� � ��y��

�����c�
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The solution "�y� for the vibration quantum number n is

"n � Nne
�y���Hn�y�� �����a�

where Nn is the normalizing factor� We get it from the normalization condition
Z

"n
� dy �  as

Nn
� �



�nn$

r
�

�
with

p
� �

y

x
�

r
m

"h
�see �����b�� p� ����� �����b�

From the terminating condition of the series �����c� we get

En � "h
�
n �



�

�
�n � �� � �� � � �� �����c�

for the eigenvalues of the vibration energy� The spectrum of the energy levels is equidistant� The sum�

mand ��� in the parentheses means that in contrast to the
classical case the quantum mechanical oscillator has energy
even in the deepest energetic level with n � �� which is known
as the zero�point vibration energy�

Fig 
�� shows a graphical representation of the equidistant
spectra of the energy states� the corresponding wave functions
from "� to "� and also the function of the potential energy
�����c�� The points of the parabola of the potential energy
represent the reversal points of the classical oscillator� which

are calculated from the energy E �


�
m�a� as the amplitude

a �




s
�E

m
� The quantum mechanical probability of �nding a

particle in the interval �x� x�dx� is given by dwqu � j"�x�j� dx�
It is di�erent from zero also outside of these points�
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Figure ���

So we get for� e�g�� n � � hence for E � �����"h� according to dwqu � �

s
�

�
e�x

�

dx� the maximum of

the probability of presence at

xmax�qu �
�p
�

� �
s

"h

m
� �����d�

For a corresponding classical oscillator� this is

xmax�kl � �a � �
s

�E

m�
� �

s
�"h

m
� �����e�

The quantum mechanical probability density function approaches the classical one for large quantum
number n in its mean value�

����� Non�LinearPartialDi�erentialEquations� Solitons�Periodic

Patterns� andChaos
������ Formulation of the Physical�Mathematical Problem

�� Notion of Solitons
Solitons� also called solitary waves� from the viewpoint of physics� are pulses� or also localized distur�
bances of a non�linear medium or �eld� the energy related to such propagating pulses or disturbances
is concentrated in a narrow spatial region� They occur�
� in solids� e�g�� in anharmonic lattices� in Josephson contacts� in glass �bres and in quasi�one�dimensional
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conductors�
� in �uids as surface waves or spin waves�
� in plasmas as Langmuir solitons�
� in linear molecules�
� in classical and quantum �eld theory�
Solitons have both particle and wave properties� they are localized during their evolution� and the do�
main of the localization� or the point around which the wave is localized� travels as a free particle� in
particular it can also be at rest� A soliton has a permanent wave structure� based on a balance between
nonlinearity and dispersion� the form of this structure does not change�
Mathematically� solitons are special solutions of certain non�linear partial di�erential equations occur�
ring in physics� engineering and applied mathematics� Their special features are the absence of any
dissipation and also that the non�linear terms cannot be handled by perturbation theory�
Important examples of equations with soliton solutions are�

a� Korteweg de Vries �KdV� Equation ut � �uux � uxxx � �� ������

b� Non�Linear Schr�odinger �NLS� Equation iut � uxx � �juj�u � �� ������

c� Sine�Gordon �SG� Equation utt � uxx � sin u � �� ������

The subscripts x and t denote partial derivatives� e�g�� uxx � ��u��x��
We consider the one�dimensional case in these equations� i�e�� u has the form u � u�x� t�� where x is the
spatial coordinate and t is the time� The equations are given in a scaled form� i�e�� the two independent
variables x and t are here dimensionsless quantities� In practical applications� they must be multiplied
by quantities having the corresponding dimensions and being characteristic of the given problem� The
same holds for the velocity�

�� Interaction between Solitons
If two solitons� moving with di�erent velocities� collide� they appear again after the interaction as if
they had not collided� Every soliton asymptotically keeps its form and velocity� there is only a phase
shift� Two solitons can interact without disturbing each other asymptotically� This is called an elastic
interaction which is equivalent to the existence of an N �soliton solution� where N �N � � �� �� � � �� is
the number of solitons� Solving an initial value problem with a given initial pulse u�x� �� that disag�
gregates into solitons� the number of solitons does not depend on the shape of the pulse but on its total
amount

R��
�� u�x� �� dx�

�� Non�Linear Phenomena in Dissipative Systems
In dissipative systems �hence friction or damped systems�� periodic patterns and non�linear waves can
appear through the impact of external forces� One striking example is a �uid �gas or liquid�� where the
combined action of gravitation and a tmpereature gradient causes �with increasing temperature di�er�
ence� a transition from a purely heat conducting state �without convection� to a very special� namely
regular cell convection state �nally up to turbulence� Depending on the magnitude of the temparature
di�erence bifurcation and chaos can appear �see ���� p� ����� Important examples for equations of
such phenomena are�

a� Ginsburg�Landau �GGL� Equation ut � u� � � ib�uxx � � � ic�juj�u � �� �����

b� Kuramoto�Sivashinsky �KS� Equation ut � uxx � uxxxx � u�x � �� ������

In contrast to the dissipationless KdV� NLS� SG� equations� the equations ����� and ������ are
non�linear dissipative equations� which have� besides spatio�temporal periodic solutions� also spatio�
temporal disordered �chaotic� solutions�

�� Non�Linear Evolution Equation
An evolution equation describes the evolution of a physical quantity in time� Examples for such evolu�
tion equations are the wave equation �see �������� p� ����� the heat equation �see �������� p� ���� and
the Schr�odinger equation �see �������� �� p� ����� The solutions of the evolution equations are called
evolution functions�
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In contrast to linear evolution equations� the non�linear evolution equations ������� ������� and ������
contain non�linear terms u�u��x� juj�u and sinu� These equations are �with the exception of ������
parameter�free� From the viewpoint of physics non�linear evolution equations describe structure forma�
tions like solitons �dispersive structures� as well as periodic patterns and non�linear waves �dissipative
structures��

������ Korteweg de Vries Equation �KdV�

�� Occurrance
The KdV equation is used in the discussion of
� surface waves in shallow water�
� anharmonic vibrations in non�linear lattices�
� problems of plasma physics and
� non�linear electric networks�

�� Equation and Solutions
The KdV equation for the evolution function u is

ut � �uux � uxxx � �� ������

It has the soliton solution

u�x� t� �
v

� cosh�
h
�
�

p
v�x� vt� ��

i � ������
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Figure ����
This KdV soliton is uniquely de�ned by the two dimensionless parameters v �v � �� and �� In
Fig 
�� v �  is chosen� A typical non�linear e�ect is that the velocity of the soliton v determines the
amplitude and the width of the soliton� KdV solitons with larger amplitude and smaller width move
quicker than those with smaller amplitude and larger width �taller waves travel faster than shorter
ones�� The soliton phase � describes the position of the maximum of the soliton at time t � ��

Equation ������ also has N �soliton solutions� Such an N �soliton solution can be represented asymp�
totically for t �� by the linear superposition of one�soliton solutions�

u�x� t� !
NX
n��

un�x� t�� ������

Here every evolution function un�x� t� is characterized by a velocity vn and a phase ��n � The initial
phases ��n before the interaction or collision di�er from the �nal phases after the collision ��

n � while the
velocities v�� v�� � � � � vN have no changes� i�e�� it is an elastic interaction�

For N � �� ������ has a two�soliton solution� It cannot be represented for a �nite time by a linear

superposition� and with kn �


�

p
vn and �n �



�

p
vn�x� vnt� �n� �n � � �� it has the form�

u�x� t� � �

k��e
�� � k��e

�� � �k� � k��
�e�������

�
� �



�k� � k���

�
k��e

�� � k��e
��
	

�� � e�� � e�� �

�
k� � k�
k� � k�

��
e�������

���
� ������

Equation ������ describes for t  �� asymptotically two non�interacting solitons with velocities
v� � �k�� and v� � �k��� which transform after their mutual interaction again into two non�interacting
solitons with the same velocities for t �� asymptotically�
The non�linear evolution equation

wt � ��wx�
� � wxxx � � �����a�

where w �
Fx
F

has the following properties�
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a� For F �x� t� �  � exp���� � �


�

p
v�x� vt� �� �����b�

it has a soliton solution and

b� for F �x� t� �  � exp���� � exp���� �

�
k� � k�
k� � k�

��
exp��� � ��� �����c�

it has a two�soliton solution� With �wx � u the KdV equation ������ follows from �����a�� Equation
������ and the expression w following from �����c� are examples of a non�linear superposition�

If the term ��uux is replaced by ��uux in ������� then the right�hand side of ������ has to be multi�
plied by ���� In this case the notation antisoliton is used�

������ Non�Linear Schr�odinger Equation �NLS�

�� Occurrence
The NLS equation occurs

� in non�linear optics� where the refractive index n depends on the electric �eld strength �E� as� e�g�� for

the Kerr e�ect� where n��E� � n� � n�j�Ej� with n�� n� � constant holds� and
� in the hydrodynamics of self�gravitating discs which allow us to describe galactic spiral arms�

�� Equation and Solution
The NLS equation for the evolution function u and its solution are�

iut � uxx � �juj�u � �� ������ u�x� t� � ��
exp �i ��x � ���� � ���t� �!�

cosh ���x � ��t� ��!
� ������

Here u�x� t� is complex� The NLS soliton is charac�
terized by the four dimensionless parameters �� �� ��
and �� The envelope of the wave packet moves with
the velocity ���� the phase velocity of the wave
packet is ���� � ������
In contrast to the KdV soliton ������� the ampli�
tude and the velocity can be chosen independently
of each other�
In the case of N interacting solitons� we can char�
acterize them by �N arbitrary chosen parameters�
�n� �n� �n� �n �n � � �� � � � � N� � If the soli�
tons have di�erent velocities� the N �soliton solution
splits asymptotically for t  �� into a sum of N
individual solitons of the form ������� Fig 
��
displays the real part of ������ with v � ���� � �
�� and � � ����

-6 -4 -2 2 4 6

1

-1

Re u(x,t)

x-vt-ϕ

Figure ����

������ Sine�Gordon Equation �SG�
�� Occurrence
The SG equation is obtained from the Bloch equation for spatially inhomogeneous quantum mechani�
cal two�level systems� It describes the propagation of
� ultra�short pulses in resonant laser media �self�induced transparency��
� the magnetic �ux in large surface Josephson contacts� i�e�� in tunnel contacts between two supercon�
ductors and
� spin waves in super�uid helium � ��He��
The soliton solution of the SG equation can be illustrated by a mechanical model of pendula and springs�
The evolution function goes continuously from � to a constant value c� The SG solitons are often called
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�� Equation and Solution
The SG equation for the evolution function u is

utt � uxx � sinu � �� ������

It has the following soliton solutions�
� Kink Soliton

u�x� t� � � arctan exp
�
��x� x� � vt�

	
� �����

where � �
p

� v�
and � � v � ��

The kink soliton ����� for v � �� is given in
Fig 
��� The kink soliton is determined by two di�
mensionless parameters v and x�� The velocity is inde�
pendent of the amplitude� The time and the position
derivatives are ordinary localized solitons�

�ut
v

� ux �
��

cosh ��x� x� � vt�
� ������

0

u(x,t)

-5-10 5 10
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x-x -vt0

π

2π

Figure ����

kink solitons� If the evolution function changes from the constant value c to �� it describes a so�called
antikink soliton� Walls of domain structures can be described with this type of solutions�

� Antikink Soliton

u�x� t� � � arctan exp
�
� ��x� x� � vt�

	
� ������

� Kink�Antikink Soliton We get a static kink�antikink soliton from ����� ����� with v � ��

u�x� t� � � arctan exp
�
� �x� x��

	
� ������

Further solutions of ������ are�

� Kink�Kink Collision

u�x� t� � � arctan

�
v

sinh �x

cosh �vt


� ������

� Kink�Antikink Collision

u�x� t� � � arctan

�


v

sinh �vt

cosh �x


� ������

� Double or Breather Soliton� also called Kink�Antikink Doublet

u�x� t� � � arctan

�p
� �



sint

cosh
p

� �x


� ������

Equation ������ represents a stationary wave� whose envelope is modulated by the frequency �

� Local Periodic Kink Lattice

u�x� t� � � arcsin

�
�sn

�
x� vt

k
p

� v�
� k

�
� �� �����a�

The relation between the wavelength � and the lattice constant k is

� � �K�k�k
p

� v�� �����b�

For k � � i�e�� for ��� we get

u�x� t� � � arctan exp
�
���x� vt�

	
� �����c�

which is the kink soliton ����� and the antikink soliton ������ again� with x� � ��



��� Partial Di�erential Equations ���

Remark� sn x is a Jacobian elliptic function with parameter k and quarter�period K �see ������
p� �����

snx � sin��x� k�� �����a�

x �

sin��x�k�Z
�

dqq
�� q���� k�q��

� �����b� K�k� �

���Z
�

d-p
� k� sin� -

� �����c�

Equation �����b� comes from �����a�� p� ���� by the substitution of sin� � q� The series expansion
of the complete elliptic integral is given as equation ������� p� ����

������ Further Non�linear Evolution Equations with Soliton Solutions

�� Modi�ed KdV Equation
ut � �u�ux � uxxx � �� ������

The even more general equation

ut � upux � uxxx � � �����

has the soliton

u�x� t� �

����


�
jvj�p � ��p � ��

cosh�
�



�
p
q
jvj�x� vt� ��

�
����
�
p

������

as its solution�

�� Sinh�Gordon Equation
utt � uxx � sinhu � �� ������

�� Boussinesq Equation
uxx � utt � �u��xx � uxxxx � �� ������

This equation occurs in the description of non�linear electric networks as a continuous approximation
of the charge�voltage relation�

�� Hirota Equation
ut � i��juj�ux � �uxx � i�uxxx � 	juj�u � �� �� � �	� ������

�� Burgers Equation
ut � uxx � uux � �� ������

This equation occurs when modeling turbulence� With the Hopf�Cole transformation it is transformed
into the di�usion equation� i�e�� into a linear di�erential equation�

� Kadomzev�Pedviashwili Equation
The equation

�ut � �uux � uxxx�x � uyy �����a�

has the soliton

u�x� y� t� � �
��

�x�
ln





k�
�
���x � iky � �k�t

����� �����b�

as its solution� The equation �����a� is an example of a soliton equation with a higher number of
independent variables� e�g�� with two spatial variables�
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�� CalculusofVariations

��� De�ning theProblem
�� Extremum of an Integral Expression
A very important problem of the di�erential calculus is to determine for which x values the given func�
tion y�x� has extreme values� The calculus of variations discusses the following problem� For which
functions has a certain integral� whose integrand depends also on the unknown function and its deriva�
tives� an extremum value( The calculus of variations concerns itself with determining all the functions
y�x� for which the integral expression

I y! �

bZ
a

F �x� y�x�� y��x�� � � � � y�n��x��dx ����

has an extremum� if the functions y�x� are from a previously given class of functions� Here� we may
de�ne some boundary and side conditions for y�x� and for its derivatives�

�� Integral Expressions of Variational Calculus
There can also be several variables instead of x in ����� In this case� the occurring derivatives are
partial derivatives and the integral in ���� is a multiple integral� In the calculus of variations� the
following types of integral expressions are discussed�

I y! �

bZ
a

F �x� y�x�� y��x�� dx� �����

I y�� y�� � � � � yn! �

bZ
a

F �x� y��x�� � � � � yn�x�� y���x�� � � � � y�n�x�� dx� �����

I y! �

bZ
a

F �x� y�x�� y��x�� � � � � y�n��x�� dx� �����

I u! �
ZZ
�

F �x� y� u� ux� uy� dx dy� �����

Here the unknown function is u � u�x� y�� and ) represents a plane domain of integration�

I u! �
ZZ
R

Z
F �x� y� z� u� ux� uy� uz� dx dy dz� �����

The unknown function is u � u�x� y� z�� and R represents a space region of integration� Additionally�
boundary values can be given for the solution of a variational problem� at the endpoints of the interval
a and b in the one�dimensional case� and at the boundary of the domain of integration ) in the two�
dimensional case� Besides� various further side conditions can be de�ned� e�g�� in integral form or as a
di�erential equation�
A variational problem is called �rst�order or higher�order depending whether the integrand F contains
only the �rst derivative y� or higher derivatives y�n� �n � � of the function y�

�� Parametric Representation of the Variational Problem
A variational problem can also be posed in parametric form� If we consider a curve in parametric form
x � x�t�� y � y�t� �� � t � ��� then� e�g�� the integral expression ����� has the form

I x� y! �

	Z
�

F �x�t�� y�t�� ,x�t�� ,y�t�� dt� �����
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��� Historical Problems
������ Isoperimetric Problem
The general isoperimetric problem is to determine the plane region with the largest area among the
plane regions with a given perimeter� The solution of this problem� a circle with a given perimeter�
originates from queen Dido� who was allowed� as legend has it� to take such an area for the foundation
of Carthago which she could be surround by one bull�s leather� She cut the leather into �ne stripes�
and formed a circle with them�
A special case of the isoperimetric problem is to �nd the equation
of the curve y � y�x� in a Cartesian coordinate system connect�
ing the points A�a� �� and B�b� �� and having the given length l� for

which the area determined by the line segment AB and the curve
is the largest possible �Fig ����� The mathematical formaliza�
tion is� We have to determine a one�time continuously di�erentiable
function y�x� such that

y
y(x)

x0 A(a, 0) B(b, 0)

Figure ��

I y! �

bZ
a

y�x� dx � max ����a�

holds� where the side condition ����b� and the boundary conditions ����c� are satis�ed�

G y! �

bZ
a

q
 � y���x� dx � l ����b� y�a� � y�b� � � ����c�

������ BrachistochroneProblem
The brachistochrone problem was formulated in ��� by J� Bernoulli� and it is the following� A point
mass descends from the point P��x�� y�� to the origin in the vertical plane x� y only under the in�uence
of gravity� We should determine the curve y � y�x� along which the point reaches the origin in the
shortest possible time from P� �Fig ����� Considering the formula for the time of fall� T � we get the
mathematical description� We have to determine a one�time continuously di�erentiable function
y � y�x�� for which

T  y! �

x�Z
�

p
 � y��q

�g�y� � y�
dx � min� �����

�g is the acceleration due to gravity� and the boundary value condi�
tions are

y��� � �� y�x�� � y�� �����

We see that there is a singularity for x � x� in ������

P (x , y )0 0 0

y
y0

0 x0

y(x)

x

Figure ���

��� Variational Problems ofOneVariable
������ SimpleVariational Problems andExtremalCurves
A simple variational problem is to determine the extreme value of the integral expression given in the
form

I y! �

bZ
a

F �x� y�x�� y��x�� dx� ����

where y�x� is a twice continuously di�erentiable function satisfying the boundary conditions y�a� � A
and y�b� � B� The values a� b and A�B� and the function F are given�
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The integral expression ���� is an example of a so�called functional� A functional assigns a real
number to every function y�x� from a certain class of functions�
If the functional I y! in ���� takes� e�g�� its relative maximum for a function y��x�� then

I y�! 	 I y! �����

for every twice continuously di�erentiable function y satisfying the boundary conditions� The curve
y � y��x� is called an extremal curve� Sometimes all the solutions of the Euler di�erential equation of
the variational calculus are called extremal curves�

������ EulerDi�erential Equation of theVariational Calculus
We get a necessary condition for the solution of the variational problem in the following way� We
construct an auxiliary curve or comparable curve for the extremal y��x� characterized by �����

y�x� � y��x� � � ��x� �����

with a twice continuously di�erentiable function ��x� satisfying the special boundary conditions ��a� �
��b� � �� � is a real parameter� Substituting ����� in ���� we get a function depending on � instead
of the functional I y!

I��� �

bZ
a

F �x� y� � � �� y�� � � ��� dx� �����

and the functional I y! has an extreme value for y��x� if the function I���� as a function of �� has an
extreme value for � � �� Now� we deduce the variational problem to an extreme value problem with
the necessary condition

dI

d�
� � for � � �� �����

Supposing that the function F � as a function of three independent variables� is di�erentiable as many
times as needed� by its Taylor expansion we get �see �������� p� ���

I��� �

bZ
a

�
F �x� y�� y

�
�� �

�F

�y
�x� y�� y

�
��� � �

�F

�y�
�x� y�� y

�
��� �

� � O����


dx� �����

The necessary condition ����� results in the equation

bZ
a

�
�F

�y
dx �

bZ
a

��
�F

�y�
dx � �� �����

By partial integration of this equation and considering the boundary conditions for ��x�� we get

bZ
a

�

�
�F

�y
� d

dx

�
�F

�y�

��
dx � �� �����

From the assumption of continuity and because the integral in ����� must disappear for any consid�
erable ��x��

�F

�y
� d

dx

�
�F

�y�

�
� � �����

must hold� The equation ����� gives a necessary condition for the simple variational problem and it
is called the Euler di�erential equation of the calculus of variations� The di�erential equation �����
can be written in the form

�F

�y
� ��F

�x�y�
� ��F

�y�y�
y� � ��F

�y��
y�� � �� ������

It is an ordinary second�order di�erential equation if Fy�y� �� � holds�
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The Euler di�erential equation has a simpler form in the following special cases�

Case �� F �x� y� y�� � F �y��� i�e�� x and y do not appear explicitly� Then instead of ����� we get

�F

�y
� � ����a� and

d

dx

�
�F

�y�

�
� �� ����b�

Case �� F �x� y� y�� � F �y� y��� i�e�� x does not appear explicitly� We consider

d

dx

�
F � y�

�F

�y�

�
�

�F

�y
y� �

�F

�y�
y�� � y��

�F

�y�
� y�

d

dx

�
�F

�y�

�
� y�

�
�F

�y
� d

dx

�
�F

�y�

��
�����a�

and because of ������ we get

d

dx

�
F � y�

�F

�y�

�
� �� �����b� i�e�� F � y�

�F

�y�
� c �c const� �����c�

as a necessary condition for the solution of the simple variational problem in the case F � F �y� y���
A� The functional to determine the shortest curve connecting the points P��a� A� and P��b� B� in

the x� y plane is�

I y! �
Z b

a

q
 � y�� dx � min� �����a�

It follows from ����b� for F � F �y�� �
p

 � y�� that

d

dx

�
�F

�y�

�
�

y���p
 � y��

	� � �� �����b�

so y�� � �� i�e�� the shortest curve is the straight line�

B� We connect the points P��a� A� and P��b� B� by a curve y�x�� and we rotate it around the x�axis�
Then the surface area is

I y! � ��
Z b

a
y
q

 � y�� dx� �����a�

For which curve y�x� will the surface area be the smallest( It follows from �����c� with F � F �y� y�� �

��y
p

 � y�� that y �
c

��

q
 � y�� or y�� �

�
y

c�

��
�  with c� �

c

��
� This di�erential equation is

separable �see �������� �� p� ����� and its solution is

y � c� cosh
�

x

c�
� c�

�
�c�� c� const�� �����b�

the equation of the so�called catenary curve �see ����� p� ���� We determine the constants c� and c�
from the boundary values y�a� � A and y�x� � B� We have to solve a non�linear equation system �see
������ p� ����� which cannot be solved for every boundary value�

������ Variational Problemswith SideConditions
These problems are usually isoperimetric problems �see ����� p� ����� The simple variational problem
�see ����� p� ����� given by the functional ����� is completed by a further side condition in the form

bZ
a

G�x� y�x�� y��x�� dx � l �l const� ������

where the constant l and the function G are given� A method to solve this problem is given by Lagrange
�extreme values with side conditions in equation form� see �������� p� ����� We consider the expression

H�x� y�x�� y��x�� �� � F �x� y�x�� y��x�� � � �G�x� y�x�� y��x��� l� � ������
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where � is a parameter� and we consider the problem

bZ
a

H�x� y�x�� y��x�� �� � extreme$� ������

i�e�� an extreme value problem without side condition� The corresponding Euler di�erential equation
is�

�H

�y
� d

dx

�
�H

�y�

�
� �� ������

The solution y � y�x� �� depends on the parameter �� which can be determined by substituting y�x� ��
into the side condition �������

For the isoperimetric problem ����� p� ���� we get

H�x� y�x�� y��x�� �� � y � �
q

 � y�� � �����a�

Because the variable x does not appear in H� we get instead of the Euler di�erential equation �������
analogously to �����c�� the di�erential equation

y � �
q

 � y�� � �y��q
 � y��

� c� or y�� �

q
�� � �c� � y��

c� � y
�c� const�� �����b�

whose solution is the family of circles

�x� c��
� � �y � c��

� � �� �c�� c�� � const�� �����c�

The values c�� c� and � are determined from the conditions y�a� � �� y�b� � � and from the requirement
that the arclength between A and B should be l� We get a non�linear equation for �� which should be
solved by an appropriate iterative method�

������ Variational ProblemswithHigher�OrderDerivatives
We consider two types of problems�

�� F � F �x� y� y�� y���

The variational problem is�

I y! �

bZ
a

F �x� y� y�� y��� dx � extreme$ �����a�

with the boundary values

y�a� � A� y�b� � B� y��a� � A�� y��b� � B�� �����b�

where the numbers a� b� A�B�A�� and B�� and the function F are given� Similarly as in ������ p� ����
we introduce comparable curves y�x� � y��x� � � ��x� with ��a� � ��b� � ���a� � ���b� � �� and we
get the Euler di�erential equation

�F

�y
� d

dx

�
�F

�y�

�
�

d�

dx�

�
�F

�y��

�
� � �����

as a necessary condition for the solution of the variational problem �����a�� The di�erential equation
����� represents a fourth�order di�erential equation� Its general solution contains four arbitrary con�
stants which can be determined by the boundary values �����b��

Consider the problem

I y! �
Z �

�
�y��� � �y�� � �y�� dx � extreme$ �����a�
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with the given constants � and � for F � F �y� y�� y��� � y��� � �y�� � �y�� Then�

Fy � ���y� Fy� � ��y�� Fy�� � �y���
d

dx
�Fy�� � ��y���

d�

dx�
�Fy��� � ��y���� and the Euler di�erential

equation is

y��� � �y�� � �y � �� �����b�

This is a fourth�order linear di�erential equation with constant coe�cients �see ������� p� �����

�� F � F �x� y� y�� 	 	 	 � y�n��
In this general case� when the functional I y! of the variational problem depends on the derivatives of
the unknown function y up to order n �n 	 �� the corresponding Euler di�erential equation is

�F

�y
� d

dx

�
�F

�y�

�
�

d�

dx�

�
�F

�y��

�
� � � �� ���n

dn

dxn

�
�F

�y�n�

�
� �� ������

whose solution should satisfy the boundary conditions analogously to �����b� up to order n� �

������ Variational Problemwith SeveralUnknownFunctions
Suppose the functional of the variational problem has the form

I y�� y�� � � � � yn! �

bZ
a

F �x� y�� y�� � � � � yn� y
�
�� y

�
�� � � � � y

�
n� dx� ������

where the unknown functions y��x�� y��x�� � � � � yn�x� should take given values at x � a and x � b� We
consider n twice continuously di�erentiable comparable functions

yi�x� � yi��x� � �i�i�x� �i � � �� � � � � n�� ������

where the functions �i�x� should disappear at the endpoints�
������ becomes I���� ��� � � � � �n� with ������� and from the necessary conditions

�I

��i
� � �i � � �� � � � � n� ������

for the extreme values of a function of several variables� we get the n Euler di�erential equations

�F

�y�
� d

dx

�
�F

�y��

�
� ��

�F

�y�
� d

dx

�
�F

�y��

�
� �� � � � �

�F

�yn
� d

dx

�
�F

�y�n

�
� �� ������

whose solutions y��x�� y��x�� � � � � yn�x� must satisfy the given boundary conditions�

������ Variational Problems usingParametricRepresentation
For some variational problems it is useful to determine the extremal� not in the explicit form y � y�x��
but in the parametric form

x � x�t�� y � y�t� �t� � t � t��� ������

where t� and t� are the parameter values corresponding to the points �a� A� and �b� B�� Then the simple
variational problem �see ����� p� ���� is

I x� y! �

t�Z
t�

F �x�t�� y�t�� ,x�t�� ,y�t��dt � extreme$ �����a�

with the boundary conditions

x�t�� � a� x�t�� � b� y�t�� � A� y�t�� � B� �����b�

Here ,x and ,y denote the derivatives of x and y with respect to the parameter t� as usual in the parametric
representation�
The variational problem �����a� makes sense only if the value of the integral is independent of the
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parametric representation of the extremal curve� To ensure the integral in �����a� is independent of
the parametric representation of the curve connecting the points �a� A� and �b� B�� F must be a positive
homogeneous function of the degree  of homogeneity ��������� �� p� ���� i�e��

F �x� y� � ,x� � ,y� � �F �x� y� ,x� ,y� �� � �� ������

must hold�
Because the variational problem �����a� can be considered as a special case of ������� the correspond�
ing Euler di�erential equations are

�F

�x
� d

dt

�
�F

� ,x

�
� ��

�F

�y
� d

dt

�
�F

� ,y

�
� �� �����

They are not independent of each other� but they are equivalent to the so�called Weierstrass form of
the Euler di�erential equation�

��F

�x� ,y
� ��F

� ,x�y
� M� ,x�y � �x ,y� � � �����a�

with

withM �


,y�
��F

� ,x�
� � 

,x ,y

��F

� ,x� ,y
�



,x�
��F

� ,y�
� �����b�

Starting with the calculation of the radius of curvature R of a curve given in parametric representation
�see ������ �� p� ����� we calculate the radius of curvature of the extremal curve considering �����a�
with

R �

������� ,x� � ,y��
���

,x�y � �x ,y

������ �

������M � ,x� � ,y��
���

F �xy � Fx �y

������ � �����c�

The isoperimetric problem ����a to ���c� �see ����� p� ���� has the form in parametric represen�
tation�

I x� y! �
Z t�

t�
y�t� ,x�t�dt � max$ �����a� with G x� y! �

Z t�

t�

q
,x��t� � ,y��t� dt � l� �����b�

This variational problem with the side condition becomes a variational problem without the side con�
dition according to ������ with

H � H�x� y� ,x� ,y� � y ,x � �
q

,x� � ,y�� �����c�

We see that H satis�es the condition ������� so it is a positive homogeneous function of �rst degree�
Furthermore� we have

M �


,y�
H �x �x �

�

� ,x� � ,y�����
� H �xy � � Hx �y � �� �����d�

so �����c� yields that the radius of curvature is R � j�j� Since � is a constant� the extremals are circles�

��� Variational ProblemswithFunctions of SeveralVariables

������ SimpleVariational Problem
One of the simplest problems with a function of several variables is the following variational problem
for a double integral�

I u! �
ZZ
�G�

F �x� y� u�x� y�� ux� uy� dx dy � extreme$ ������
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Here� the unknown function u � u�x� y� should take given values on the boundary � of the domain G�
Analogously to ������ p� ���� we introduce the comparable function in the form

u�x� y� � u��x� y� � ���x� y�� ������

where u��x� y� is a solution of the variational problem ������ and it takes the given boundary values�
while ��x� y� satis�es the condition

��x� y� � � on the boundary � ������

and together with u��x� y�� they are di�erentiable as many times as needed�
The quantity � is a parameter� We determine a surface by u � u�x� y� which is close to the solution sur�
face u��x� y�� I u! becomes I��� with ������� i�e�� the variational problem ������ becomes an extreme
value problem which must satisfy the necessary conditions

dI

d�
� � for � � �� ������

We get from this the Euler di�erential equation

�F

�u
� �

�x

�
�F

�ux

�
� �

�y

�
�F

�uy

�
� � ������

as a necessary condition for the solution of the variational problem �������

A free membrane� �xed at the perimeter � of a domain G of the x� y plane� covers a surface with
area

I� �
ZZ
�G�

dx dy� �����a�

If the membrane is deformed by a load so that every point has an elongation u � u�x� y� in the z�
direction� then its area is calculated by the formula

I� �
ZZ
�G�

q
 � u�x � u�y dx dy� �����b�

If we linearize the integrand in �����b� using Taylor series �see �������� p� ����� then we get the relation

I� 
 I� �


�

ZZ
�G�

�
u�x � u�y

	
dx dy� �����c�

We have

U � ��I� � I�� �
�

�

ZZ
�G�

�
u�x � u�y

	
dx dy� �����d�

for the potential energy U of the deformed membrane� where the constant � denotes the tension of the
membrane� We obtain the so�called Dirichlet variational problem in this way� We have to determine
the function u � u�x� y� so that the functional

I u! �
ZZ
�G�

�
u�x � u�y

	
dx dy �����e�

should have an extremum� and u vanishes on the boundary � of the plane domainG� The corresponding
Euler di�erential equation is

��u

�x�
�

��u

�y�
� �� �����f�
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It is the Laplace di�erential equation for functions of two variables �see ����� p� �����

������ MoreGeneral Variational Problems
We should consider two generalizations of the simple variational problem�

�� F � F �x� y� u�x� y�� ux� uy� uxx� uxy� uyy�
The functional depends on higher�order partial derivatives of the unknown function u�x� y�� If the
partial derivatives occur up to second order� then the Euler di�erential equation is�

�F

�u
� �

�x

�
�F

�ux

�
� �

�y

�
�F

�uy

�
�

��

�x�

�
�F

�uxx

�
�

��

�x�y

�
�F

�uxy

�
�

��

�y�

�
�F

�uyy

�
� �� ������

�� F � F �x�� x�� 	 	 	 � xn� u�x�� 	 	 	 � xn�� ux�� 	 	 	 � uxn�
In the case of a variational problem with n independent variables x�� x�� � � � � xn� the Euler di�erential
equation is�

�F

�u
�

nX
k��

�

�xk

�
�F

�uxk

�
� �� �����

��� Numerical Solution ofVariational Problems
Most often two ways are used to solve variational problems in practice�

�� Solution of the Euler Di
erential Equation and Fitting the Found Solution to
the Boundary Conditions

Usually� exact solution of the Euler di�erential equation is possible only in the simplest cases� so we have
to use a numerical method to solve the boundary value problem for ordinary or for partial di�erential
equations �see ���� p� � or ������� p� ������

�� DirectMethods
The direct methods start directly from the variational problem and do not use the Euler di�erential
equation� The most popular and probably the oldest procedure is the Ritz method� It belongs to the so�
called approximation methods which are also used for approximate solutions of di�erential equations
�see �������� p� ��� and ������ p� ���� and we demonstrate it with the following example�

Solve numerically the isoperimetric problemZ �

�
y���x� dx � extreme$ �����a� for

Z �

�
y��x� dx �  and y��� � y�� � �� �����b�

The corresponding variational problem without side condition according to ������ p� ���� is�

I y! �
Z �

�

h
y���x� dx� �y��x�

i
� extreme$ �����c�

We want to �nd the best solution of the form

y�x� � a�x�x� � � a�x
��x� �� �����d�

Both approximation functions x�x�� and x��x�� are linearly independent� and satisfy the boundary
conditions� �����c� is reduced with �����d� to

I�a�� a�� �


�
a�� �

�

�
a�� �



�
a�a� � �

�


��
a�� �



��
a�� �



��
a�a�

�
� �����e�

and the necessary conditions �I
�a�

� �I
�a�

� � result in he homogeneous linear equation system�
�

�
� �

�

�
a� �

�


�
� �

��

�
a� � ��

�


�
� �

��

�
a� �

�
�

�
� ��

��

�
a� � �� �����f�
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This system has a non�trivial solution only if the determinant of the coe�cient matrix is equal to zero�
So� we get�

�� � ��� � ��� � �� i�e�� �� � �� �� � ��� �����g�

For � � �� � � we get from �����f� a� � �� a� arbitrary� so the normed solution belonging to �� � �
is�

y � ����x�x� �� �����h�

To make a comparison� consider the Euler di�erential equation belonging to �����f�� We get the bound�
ary value problem

y�� � �y � � with y��� � y�� � � �����i�

with the eigenvalues �k � k��� �k � � �� � � �� and the solution yk � ck sin k�x� The normed solution�
e�g�� for the case k � � i�e�� �� � �� 
 ���� is

y �
p

� sin�x� �����j�

which is really very close to the approximate solution �����h��

Remark� With today�s level of computers and science we have to apply� �rst of all� the �nite element
method �FEM� for numerical solutions of variational problems�
The basic idea of this method is given in ������ p� ��� for numerical solutions of di�erential equations�
The correspondence between di�erential and variational equations will be used there� e�g�� by Euler
di�erential equations or bilinear forms according to �����a�b��

Also the gradient method can be used for the numerical solution of variational problems as an e�cient
numerical method for non�linear optimization problems �see ������ p� ����

��� SupplementaryProblems

������ First and SecondVariation

In the derivation of the Euler di�erential equation with a comparable function �see ������ p� ����� we
stopped after the linear term with respect to � of the Taylor expansion of the integrand of

I��� �

bZ
a

F �x� y� � ��� y�� � ���� dx� ������

If we consider also quadratic terms� then we get

I���� I��� � �

bZ
a

�
�F

�y
�x� y�� y

�
��� �

�F

�y�
�x� y�� y

�
���

�

dx ������

�
��

�

bZ
a

�
��F

�y�
�x� y�� y

�
���

� � �
��F

�y�y�
�x� y�� y

�
����

� �
��F

�y��
�x� y�� y

�
���

�� � O���


dx�

If we denote as
� Variation 	I of the functional I y! the expression

	I �

bZ
a

�
�F

�y
�x� y�� y

�
��� �

�F

�y�
�x� y�� y

�
���

�

dx and as ������

� Variation 	�I of the functional I y! the expression

	�I �

bZ
a

�
��F

�y�
�x� y�� y

�
���

� � �
��F

�y�y�
�x� y�� y

�
����

� �
��F

�y��
�x� y�� y

�
���

��

dx� ������
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then we can write�

I���� I��� 
 � 	I �
��

�
	� I� ������

We can formalize the di�erent optimality conditions with these variations for the functional I y! �see
 ���!��

������ Application inPhysics
Variational calculus has a determining role in physics� We can derive the fundamental equations of
Newtonian mechanics from a variational principle and arrive at the Jacobi�Hamilton theory� Varia�
tional calculus is also very important in both atomic theory and quantum physics� It is obvious that
the extension and generalization of classical mathematical notions is undoubtedly necessary� So� the
calculus of variations must be discussed today by modern mathematical disciplines� e�g�� functional
analysis and optimization� Unfortunately� we can only give a brief account of the classical part of the
calculus of variations �see  ���!�  ���!�  ���!��



���

�� LinearIntegralEquations

���� Introduction andClassi�cation
�� De�nitions
An integral equation is an equation in which the unknown function appears under the integral sign�
There is no universal method for solving integral equations� Solution methods and even the existence
of a solution depend on the particular form of the integral equation�
An integral equation is called linear if linear operations are performed on the unknown function� The
general form of a linear integral equation is�

g�x���x� � f�x� � �

b�x�Z
a�x�

K�x� y���y� dy� c � x � d� ���

The unknown function is ��x�� the function K�x� y� is called the kernel of the integral equation� and
f�x� is the so�called perturbation function� These functions can take complex values as well� The
integral equation is homogeneous if the function f�x� is identically zero over the considered domain�
i�e�� f�x� � �� otherwise it is inhomogeneous� � is usually a complex parameter�

Two types of equation ��� are of special importance� If the limits of the integral are independent of
x� i�e�� a�x� � a and b�x� � b� we call it a Fredholm integral equation ���a���b��

If a�x� � a and b�x� � x� we call it a Volterra integral equation ���c� ��d��

If the unknown function ��x� appears only under the integral sign� i�e�� g�x� � � holds� we have an
integral equation of the �rst kind as ���a�� ���c�� The equation is called an integral equation of the
second kind if g�x� �  as in ���b�� ���d��

� � f�x� � �

bZ
a

K�x� y���y� dy� ���a� ��x� � f�x� � �

bZ
a

K�x� y���y� dy� ���b�

� � f�x� � �

xZ
a

K�x� y���y� dy� ���c� ��x� � f�x� � �

xZ
a

K�x� y���y� dy� ���d�

�� Relations with Di
erential Equations
The problems of physics and mechanics relative rarely lead directly to an integral equation� These
problems can be described mostly by di�erential equations� The importance of integral equations is
that many of these di�erential equations� together with the initial and boundary values� can be trans�
formed into integral equations�

From the initial value problem y��x� � f�x� y� with x 	 x� and y�x�� � y� by integration from x�
to x we get

y�x� � y� �
Z x

x�
f��� y���� d�� ����

The unknown function y�x� appears on the left�hand side of ���� and also under the integral sign� The
integral equation ���� is linear if the function f��� y���� has the form f��� ����� � a��� y��� � b����
i�e�� the original di�erential equation is also linear�

Remark� In this chapter  we only deal with integral equations of the �rst and second kind of Fred�
holm and Volterra types� and with some singular integral equations�
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���� Fredholm Integral Equations of theSecondKind

������ Integral EquationswithDegenerateKernel

If the kernelK�x� y� of an integral equation is the �nite sum of products of two functions of one variable�
i�e�� one depends only on x and the other one only on y� it is called a degenerate kernel or a product kernel�

�� Solution in the Case of a Degenerate Kernel
The solution of a Fredholm integral equation of the second kind with a degenerate kernel leads to the
solution of a �nite�dimensional equation system� Consider the integral equation

��x� � f�x� � �

bZ
a

K�x� y���y� dy with ���a�

K�x� y� � ���x����y� � ���x����y� � � � � � �n�x��n�y�� ���b�

The functions ���x�� � � � � �n�x� and ���x�� � � � � �n�x� are given on the interval  a� b! and are supposed to
be continuous� Furthermore� the functions ���x�� � � � � �n�x� are supposed to be linearly independent
of one another� i�e�� the equality

nX
k��

ck �k�x� � � ����

with constant coe�cients ck holds for every x in  a� b! only if c� � c� � � � � � cn � �� Otherwise�
K�x� y� can be expressed as the sum of a smaller number of products�
From ���a� and ���b� we get�

��x� � f�x� � ����x�

bZ
a

���y���y� dy � � � � � ��n�x�

bZ
a

�n�y���y� dy� ���a�

The integrals are nolonger functions of the variable x� they are constant values� Let�s denote them by
Ak�

Ak �

bZ
a

�k�y���y� dy� k � � � � � � n� ���b�

The solution function ��x�� if any exists� is the sum of the perturbation function f�x� and a linear
combination of the functions ���x�� � � � � �n�x��

��x� � f�x� � �A����x� � �A����x� � � � � � �An�n�x�� ���c�

�� Calculation of the Coe�cients of the Solution
The coe�cients A�� � � � � An are calculated as follows� Equation ���c� is multiplied by �k�x� and its
integral is calculated with respect to x with the limits a and b�

bZ
a

�k�x���x� dx �

bZ
a

�k�x�f�x� dx � �A�

bZ
a

�k�x����x� dx � � � � � �An

bZ
a

�k�x��n�x� dx� ���a�

The left�hand side of this equation is equal to Ak according to ���b�� Using the following notation

bk �

bZ
a

�k�x�f�x� dx and ckj �

bZ
a

�k�x��j�x� dx ���b�

we obtain for k � � � � � � n�

Ak � bk � �ck�A� � �ck�A� � � � � � �cknAn� ���c�
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It is possible that the exact values of the integrals in ���b� cannot be calculated� When this is the
case� their approximate values must be calculated by one of the formulas given in ���� p� ���� The
linear equation system ���c� contains n equations for the unknown values A�� � � � � An�

�� �c���A� ��c�� A�� � � � ��c�n An � b� �

��c�� A� ��� �c���A�� � � � ��c�n An � b� �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��cn� A� ��cn� A�� � � � ��� �cnn�An � bn �

���d�

�� Analyzing the Solution� Eigenvalues and Eigenfunctions
It is known from the theory of linear equation systems that ���d� has one and only one solution for
A�� � � � � An if the determinant of the matrix of the coe�cients is not equal to zero� i�e��

D��� �

�����������

�� �c��� ��c�� � � � ��c�n

��c�� �� �c��� � � � ��c�n

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��cn� ��cn� � � � �� �cnn�

�����������
�� �� ����

Obviously D��� is not identically zero� as D��� �  holds� So there is a number R � � such that
D��� �� � if j�j � R� For further investigation we have to consider two di�erent cases�

Case D��� �� ��
The integral equation has exactly one solution in the form ���c�� and the coe�cients A�� � � � � An are
given by the solution of the equation system ���d�� If in ���a� we have a homogeneous integral
equation� i�e�� f�x� � �� then b� � b� � � � � � bn � �� Then the homogeneous equation system ���d�
has only the trivial solution A� � A� � � � � � An � �� In this case only the function ��x� � � satis�es
the integral equation�

Case D��� � ��
D��� is a polynomial of no higher than n�th degree� so it can have at most n roots� For these values of
� the homogeneous equation system ���d� with b� � b� � � � � � bn � � also has non�trivial solutions�
so besides the trivial solution ��x� � � the homogeneous equation system has other solutions of the
form

��x� � C � �A����x� � A����x� � � � � � An�n�x�� �C is an arbitrary constant��

Because ���x�� � � � � �n�x� are linearly independent� ��x� is not identically zero� The roots of D��� are
called the eigenvalues of the integral equation� The corresponding non�vanishing solutions of the homo�
geneous integral equation are called the eigenfunctions belonging to the eigenvalue �� Several linearly
independent eigenfunctions can belong to the same eigenvalue� If we have an integral equation with a
general kernel� we consider all values of � eigenvalues� for which the homogeneous integral equation has

non�trivial solutions� Some authors call the � with D��� � � the characteristic number� and � �


�
is

called the eigenvalue corresponding to an equation form ���x� �
Z b

a
K�x� y���y� dy�

�� Adjoint Integral Equation
Now we need to investigate the conditions under which the inhomogeneous integral equation will have
solutions if D��� � �� For this purpose we introduce the adjoint or transposed integral equation of
���a��

��x� � g�x� � �

bZ
a

K�y� x���y� dy� ���a�
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Let � be an eigenvalue and ��x� a solution of the inhomogeneous integral equation ���a�� It is easy
to show that � is also an eigenvalue of the adjoint equation� Now multiply both sides of ���a� by any
solution ��x� of the homogeneous adjoint integral equation and evaluate the integral with respect to x
between the limits a and b�

bZ
a

��x���x� dx �

bZ
a

f�x���x� dx �

bZ
a

���

bZ
a

K�x� y���x� dx

�A��y� dy� ���b�

Assuming that ��y� � �
Z b

a
K�x� y���x� dx� we get

Z b

a
f�x���x� dx � ��

That is� The inhomogeneous integral equation ���a� has a solution for some eigenvalue � if and only if
the perturbation function f�x� is orthogonal to every non�vanishing solution of the homogeneous adjoint
integral equation belonging to the same �� This statement is valid not only for integral equations with
degenerate kernels� but also for those with general kernels�

A� ��x� � x �
Z ��

��
�x�y � xy� � xy���y� dy� ���x� � x�� ���x� � x� ���x� � �x� ���y� �

y� ���y� � y�� ���y� � y� The functions �k�x� are linearly dependent� This is why we transform the

integral equation into the form ��x� � x �
Z ��

��
 x�y � x�y�� y�!��y� dy� For this integral equation we

have ���x� � x�� ���x� � x� ���y� � y� ���y� � y� � y� If any solution ��x� exists� it has the form
��x� � x � A�x

� � A� x�

c�� �
Z ��

��
x� dx � �� c�� �

Z ��

��
x� dx �

�

�
� b� �

Z ��

��
x� dx �

�

�
�

c�� �
Z ��

��
�x� � x�� dx �

�

�
� c�� �

Z ��

��
�x� � x�� dx � ��

�
� b� �

Z ��

��
�x� � x�� dx � ��

�
�

With these values we have the equations for A� and A�� A� � �

�
A� �

�

�
� ��

�
A� �

�
 �

�

�

�
A� � ��

�
�

which in turn yield that A� �
�

�
� A� � ��

�
and ��x� � x �

�

�
x� � �

�
x �

�

�
x� �

�

�
x�

B� ��x� � x � �
Z �

�
sin�x � y���y� dy� i�e�� K�x� y� � sin�x � y� � sin x cos y � cos x sin y� ��x�

� x � � sinx
Z �

�
cos y ��y� dy � � cos x

Z �

�
sin y ��y� dy�

c�� �
Z �

�
sin x cos x dx � �� c�� �

Z �

�
cos� x dx �

�

�
� b� �

Z �

�
x cos x dx � ���

c�� �
Z �

�
sin� x dx �

�

�
� c�� �

Z �

�
cos x sinx dx � �� b� �

Z �

�
x sinx dx � ��

With these values the system ���d� is A�� �
�

�
A� � ��� ��

�

�
A� � A� � �� It has a unique solution

for any � with D��� �

�������
 ��

�

�
��

�

�


������� �  � ��
��

�
�� �� So A� �

�
��

�
� �

� ��
��

�

� A� �
��� ��

� ��
��

�

� and

the solution of the integral equation is ��x� � x �
�

� ��
��

�

��
�
��

�
� �

�
sinx � ��� �� cos x


� The

eigenvalues of the integral equation are �� �
�

�
� �� � � �

�
�

The homogeneous integral equation ��x� � �k

Z �

�
sin�x � y���y� dy has non�trivial solutions of the
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form �k�x� � �k�A� sinx � A� cos x� �k � � ��� For �� �
�

�
we get A� � A�� and with an arbitrary

constant A we have ���x� � A�sin x � cos x�� Similarly for �� � � �

�
we get ���x� � B�sin x� cos x�

with an arbitrary constant B�

Remark� The previous solution method is fairly simple but it only works in the case of a degenerate
kernel� By this method� however� we can get a good approximate solution in the case of a general kernel
too if we can approximate the general kernel by a degenerate one closely enough �see  ��!��

������ SuccessiveApproximationMethod�Neumann Series

�� IterationMethod

Similarly to the Picard iteration method �see ������ �� p� ���� for the solution of ordinary di�erential
equations� an iterative method needs to be given to solve Fredholm integral equations of the second
kind� Starting with the equation

��x� � f�x� � �

bZ
a

K�x� y���y� dy� ����

we de�ne a sequence of functions ���x�� ���x�� ���x�� � � � � Let the �rst be ���x� � f�x�� We get the
subsequent �n�x� by the formula

�n�x� � f�x� � �

bZ
a

K�x� y��n���y� dy �n � � �� � � � � ���x� � f�x��� ��a�

Following the given method our �rst step is

���x� � f�x� � �

bZ
a

K�x� y�f�y� dy� ��b�

According to the iteration formula this expression of ��y� is substituted into the right�hand side of
����� To avoid the accidental confusion of the integral variables� let�s denote y by � in ��b��

���x� � f�x� � �

bZ
a

K�x� y�

��f�y� � �

bZ
a

K�y� ��f��� d�

�� dy ��c�

� f�x� � �

bZ
a

K�x� y�f�y� dy � ��
bZ
a

bZ
a

K�x� y�K�y� ��f��� dy d�� ��d�

Introducing the notation of K��x� y� � K�x� y� and K��x� y� �
Z b

a
K�x� ��K��� y� d�� and renaming �

as y� we can write ���x� in the form

���x� � f�x� � �

bZ
a

K��x� y�f�y� dy � ��
bZ
a

K��x� y�f�y� dy� ��e�

Denoting

Kn�x� y� �

bZ
a

K�x� ��Kn����� y� d� �n � �� �� � � �� ��f�
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we get the representation of the n�th iterated �n�x��

�n�x� � f�x� � �

bZ
a

K��x� y�f�y� dy � � � � � �n
bZ
a

Kn�x� y�f�y� dy� ��g�

We call Kn�x� y� the n�th iterated kernel of K�x� y��

�� Convergence of the Neumann Series
To get the solution ��x�� we have to discuss the convergence of the power series of �

f�x� �
�X
n��

�n
bZ
a

Kn�x� y�f�y� dy� ����

which is called the Neumann series� If the functions K�x� y� and f�x� are bounded� i�e�� the inequalities

jK�x� y�j � M �a � x � b� a � y � b� and jf�x�j � N �a � x � b�� ���a�

hold� then the series

N
�X
n��

j�M�b� a�jn ���b�

is a majorant series for the power series ����� This geometric series is convergent for all

j�j � 

M�b � a�
� ���c�

The Neumann series is absolute and uniformly convergent for all values of � satisfying ���c�� By
a sharper estimation of the terms of the Neumann series we can give the convergence interval more
precisely� According to this� the Neumann series is convergent for

j�j � s
bR
a

bR
a
jK�x� y�j� dx dy

� ���d�

This limit for the parameter � does not mean that there are no solutions for any j�j outside the bounds
set by ���d�� but only that we cannot get it by the Neumann series� Let�s denote by

� �x� y��� �
�X
n��

�n��Kn�x� y� ���a�

the resolvent or solving kernel of the integral equation� Using the resolvent we get the solution in the
form

��x� � f�x� � �

bZ
a

� �x� y���f�y� dy� ���b�

For the inhomogeneous Fredholm integral equation of the second kind ��x� � x � �
Z �

�
xy ��y� dy

we have K��x� y� � xy� K��x� y� �
Z �

�
x� �y dy �



�
xy� K��x� y� �



�
xy� � � � � Kn�x� y� �

xy

�n��

and from this � �x� y��� � xy

� �X
n��

�n

�n

�
� With the limit ���c� the series is de�nitely convergent for

j�j � � because jK�x� y�j � M �  holds� The resolvent � �x� y��� �
xy�

� �

�

� is a geometric series
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which is convergent even for j�j � �� Thus from ���b� we get ��x� � x��
Z �

�

xy��
� �

�

� dy �
x

� �

�

�

Remark� If for a given � the relation ���d� does not hold� then we can decompose any continuous
kernel into the sum of two continuous kernels K�x� y� � K��x� y� � K��x� y�� where K��x� y� is a
degenerate kernel� and K��x� y� is so small that for this kernel ���d� holds� This way we have an
exact solution method for any � which is not an eigenvalue �see  ��!��

������ FredholmSolutionMethod� FredholmTheorems

�������� Fredholm SolutionMethod

�� Approximate Solution by Discretization
A Fredholm integral equation of the second kind

��x� � f�x� � �

bZ
a

K�x� y���y� dy ����

can be approximately represented by a linear equation system� We need to assume that the functions
K�x� y� and f�x� are continuous for a � x � b� a � y � b�
We will approximate the integral in ���� with the so�called left�hand rectangular formula �see �������
p� ����� It is also possible to use any other quadrature formula �see ����� p� ����� With an equidistant
partition

yk � a � �k � �h �k � � �� � � � � n� h �
b� a

n
� ���a�

we get the approximation

��x� 
 f�x� � �h  K�x� y����y�� � � � � � K�x� yn���yn�! � ���b�

Let�s replace ��x� in this expression by a function ��x� exactly satisfying ���b��

��x� � f�x� � �h  K�x� y����y�� � � � � � K�x� yn���yn�! � ���c�

To determine this approximate solution� we need the substitution values of ��x� at the interpolation
nodes xk � a � �k � �h� If we substitute x � x�� x � x�� � � � � x � xn into ���c�� we get a linear
equation system for the required n substitution values of ��xk�� Using the shorthand notation

Kjk � K�xj� yk�� �k � ��xk�� fk � f�xk� ���a�

we get

�� �hK����� ��hK�� ��� � � � ��hK�n �n � f��

��hK�� �� ��� �hK������ � � � ��hK�n �n � f��

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��hKn� �� ��hKn� ��� � � � ��� �hKnn��n � fn�

���b�

This system has the determinant of the coe�cients

Dn��� �

��������
�� �hK��� ��hK�� � � � ��hK�n

��hK�� �� �hK��� � � � ��hK�n

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��hKn� ��hKn� � � � �� �hKnn�

�������� � ���c�

This determinant has the same structure as the determinant of the coe�cients in the solution of an
integral equation with a degenerate kernel� The equation system ���b� has a unique solution for
every � where Dn��� �� �� The solution gives the approximate substitution values of the unknown
function � �x� at the interpolation nodes� The values of � with Dn��� � � are approximations of the
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eigenvalues of the integral equations� The solution of ���b� can be written in quotient form �see
Cramer rule� �������� p� �����

�k �
Dk
n���

Dn���

 ��xk�� k � � � � � � n� ����

Here we get Dk
n��� from Dn��� by replacing the elements of the k�th column by f�� f�� � � � � fn�

�� Calculation of the Resolvent
If n tends to in�nity� so the number of rows and columns of the determinant Dk

n��� and Dn���� too� We
use the determinant

D��� � lim
n��Dn��� ���a�

to get the solution kernel �resolvent� � �x� y��� �see ����� p� ���� in the form

� �x� y��� �
D�x� y���

D���
� ���b�

It is true that every root of D��� is a pole of � �x� y���� Exactly these values of �� for which D��� � ��
are the eigenvalues of the integral equation ����� and in this case the homogeneous integral equation
has non�vanishing solutions� the eigenfunctions belonging to the eigenvalue �� In the case of D��� �� ��
knowing the resolvent � �x� y���� we have an explicit form of the solution�

��x� � f�x� � �

bZ
a

� �x� y���f�y� dy � f�x� �
�

D���

bZ
a

D�x� y���f�y� dy� ���c�

To get the resolvent� we need the power series of D�x� y��� and D��� with respect to ��

� �x� y��� �
D�x� y���

D���
�

�P
n��

���nKn�x� y� � �n
�P
n��

���ndn � �n
� ����a�

where d� � � K��x� y� � K�x� y�� and we get further coe�cients from the recursive formula�

dn �


n

bZ
a

Kn���x� x� dx� Kn�x� y� � K�x� y� � dn �
bZ
a

K�x� t�Kn���t� y� dt� ����b�

A� ��x� � sinx � �
Z �

�

�
sinx cos y ��y� dy� The exact solution of this integral equation is

��x� �
�

�� �
sin x� For n � � with x� � �� x� �

�

�
� x� �

�

�
� h �

�

�
we have

D���� �

�������������

 � �

���

�
�

p
���

��
���

��

�
p

���

�
����

��
�

p
���

��

�������������
�

�
�

p
���

��

��
� ����

��
� �

p
���

�
� � �

�p
��

 ����� is

an approximation of the exact eigenvalue� � �� From the �rst equation of the equation system ���b�
for f� � � we get the solution �� � �� Substituting this result into the second and third equation we

have the equation system�

�
�

p
���

��

�
��� ��

��
�� �



�
� ����

��
�� �

�
�

p
���

��

�
�� �

p
�

�
� This

system has the solution�� �


��
p

��

�
�

� �� �

p
�

��
p

��

�
�

� If� � � then�� � �� �� � ����� �� �
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����� The substitution values of the exact solution are� ���� � �� �
�
�

�

�
� � �

�
�

�

�
� �����

In order to achieve better accuracy� the number of interpolation nodes needs to be increased�

B� ��x� � x � �
Z �

�
��xy � x����y� dy� d� � � K��x� y� � �xy � x�� d� �

Z �

�
�x� dx � �

K��x� y� � �xy�x��
Z �

�
��xt�x����ty� t�� dt � x��x�y� �

�
x�� �

�
xy� d� �



�

Z �

�
K��x� x� dx �



�
�

K��x� y� �


�
��xy�x���

Z �

�
K�x� t�K��t� y� dt � �� With these the values d�� K��x� y� and all the fol�

lowing values of dk andKk�x� y� are equal to zero� � �x� y��� �
�xy � x� �



x � �x�y � �

�
x� � �

�
xy
�
�

� � �
��

�

�

From � ��
��

�
� �� we get the two eigenvalues ���� � �� �

p
�� If � is not an eigenvalue� we have the

solution ��x� � x � �
Z �

�
� �x� y���f�y� dy �

�x���� ��x � ��

�� � �� � �
�

�������� FredholmTheorems

For the Fredholm integral equation of the second kind

��x� � f�x� � �

bZ
a

K�x� y���y� dy ���a�

the correspondent adjoint integral equation is given by

��x� � g�x� � �

bZ
a

K�y� x���y� dy� ���b�

For this pair of integral equations the following statements are valid �see also ���� p� �����

� A Fredholm integral equation of the second kind can only have �nite or countably in�nite eigenval�
ues� The eigenvalues cannot accumulate in any �nite interval� i�e�� for any positive R there are only a
�nite number of � for which j�j � R�

� If � is not an eigenvalue of ���a�� then both of the inhomogeneous integral equations have a
unique solution for any perturbation function f�x� or g�x�� and the corresponding homogeneous inte�
gral equations have only trivial solutions�

� If � is a solution of ���a�� then � is also an eigenvalue of the adjoint equation ���b�� Both
homogeneous integral equations have non�vanishing solutions� and the number of linearly independent
solutions are the same for both equations�

� For an eigenvalue � the homogeneous integral equation can be solved if and only if the perturbation
function is orthogonal to every solution of the homogeneous adjoint integral equation� i�e�� for every
solution of the integral equation

��x� � �

bZ
a

K�x� y���y� dy� ����a�

bZ
a

f�x���x� dx � � holds� ����b�

The Fredholm alternative theorem follows from these statements� Either the inhomogeneous integral
equation can be solved for any perturbation function f�x� or the corresponding homogeneous equation
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has non�trivial solutions �see  ��!��

������ NumericalMethods forFredholmIntegralEquationsof the
SecondKind

Often it is either impossible or takes too much work to get the exact solution of a Fredholm integral
equation of the second kind

��x� � f�x� � �

bZ
a

K�x� y���y� dy �����

by the solution methods given in ���� p� ���� ����� p� ��� and ����� p� ���� In such cases certain
numerical methods can be used for approximation� Three di�erent methods are given below to get
the numerical solution of an integral equation of the form ������ These solution approaches often
lead to large linear equation systems with dense coe�cient matrices� Multigrid methods are especially
suitable for solving linear equation systems arising from the numerical solution of integral equations of
the second kind �see  ��!��

�������� Approximation of the Integral
�� Semi�Discrete Problem
Working on the integral equation ����� we replace the integral by an approximation formula� These
approximation formulas are called quadrature formulas� They take the form

bZ
a

f�x� dx 
 Q�a�b��f� �
nX
k��

kf�xk�� �����

i�e�� instead of the integral we have a sum of the substitution values of the function at the interpolation
nodes xk weighted by the values k� The numbers k should be suitably chosen �so as to be independent
of f�� Equation ����� can be written in the approximate form�

��x� 
 f�x� � �Q�a�b��K�x� ������� � f�x� � �
nX
k��

kK�x� yk���yk�� ����a�

The quadrature formula Q�a�b��K�x� ������� also depends on the variable x� The dot in the argument of
the function means that the quadrature formula will be used with respect to the variable y� De�ning
the relation

��x� � f�x� � �
nX
k��

kK�x� yk���yk�� ����b�

��x� is an approximation of the exact solution ��x�� We can consider ����b� as a semi�discrete prob�
lem� because the variable y is turned into discrete values while the variable x can still be arbitrary�

If the equation ����b� holds for a function ��x� for every x �  a� b!� it must also be valid for the
interpolation nodes x � xk�

��xk� � f�xk� � �
nX
j��

jK�xk� yj���yj�� k � � �� � � � � n� ����c�

This is a linear equation system containing n equations for the n unknown values ��xk�� Substituting
these solutions into ����b� we have the solution of the semi�discrete problem� The accuracy and
the amount of calculations of this method depend on the quadrature formula used� For example if we
use the left�hand rectangular formula �see ������� p� ���� with an equidistant partition yk � xk �
a � h�k � �� h � �b� a��n� �k � � � � � � n��

bZ
a

K�x� y���y�dy 

nX
k��

hK�x� yk���yk�� ����a�
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With the notation

Kjk � K�xj� yk�� fk � f�xk�� �k � ��xk� ����b�

the system ����c� has the form�

�� �hK����� ��hK�� ��� � � � ��hK�n �n � f��

��hK�� �� ��� �hK������ � � � ��hK�n �n � f��

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��hKn� �� ��hKn� ��� � � � ��� �hKnn��n � fn�

����c�

We had the same system in the Fredholm solution method �see ����� p� ����� As the rectangular
formula is not accurate enough� for a better approximation of the integral we have to increase the
number of interpolation nodes� along with an increase in the dimension of the equation system� Hence
we get the idea of looking for another quadrature formula�

�� Nystr�omMethod
In the so�called Nystr�om method we use the Gauss quadrature formula for the approximation of the
integral �see ������ p� ����� In order to derive this� we consider the integral

I �

bZ
a

f�x� dx� ����a�

We replace the integrand by a polynomial p�x�� namely the interpolation polynomial of f�x� at the
interpolation nodes xk�

p�x� �
nX
k��

Lk�x�f�xk� with

Lk�x� �
�x� x�� � � � �x� xk����x� xk��� � � � �x� xn�

�xk � x�� � � � �xk � xk����xk � xk��� � � � �xk � xn�
� ����b�

For this polynomial� p�xk� � f�xk�� k � � � � � � n� The replacement of the integrand f�x� by p�x�
results in the quadrature formula

bZ
a

f�x� dx 

bZ
a

p�x� dx �
nX
k��

f�xk�

bZ
a

Lk�x� dx �
nX
k��

kf�xk� with k �

bZ
a

Lk�x� dx� ����c�

For the Gauss quadrature formula the interpolation nodes cannot be chosen arbitrarily but we have to
choose them by the formula�

xk �
a � b

�
�

b� a

�
tk� k � � �� � � � � n� ����a�

The n values tk are the n roots of the Legendre polynomial of the �rst kind �see ������� �� p� ��

Pn�t� �


�n � n$

dn  �t� � �n!

dtn
� ����b�

These roots are in the interval  ���!� We calculate the coe�cients k by the substitution x� xk �
b� a

�
�t� tk�� so�

k �

bZ
a

Lk�x� dx � �b� a�


�

�Z
��

�t� t�� � � � �t� tk����t� tk��� � � � �t� tn�

�tk � t�� � � � �tk � tk����tk � tk��� � � � �tk � tn�
dt

� �b� a�Ak� �����

In Table ��� we give the roots of the Legendre polynomial of the �rst kind and the weights Ak for
n � � � � � � ��
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Table � Roots of the Legendre polynomial of the �rst kind

n t A n t A

 t� � � A� �  � t� � ������� A� � ����

� t� � ������� A� � ��� t� � ������� A� � ������

t� � ������ A� � ��� t� � � A� � ������

� t� � ������� A� � ������ t� � ������ A� � ������

t� � � A� � ������ t� � ������ A� � ����

t� � ������ A� � ������ � t� � ������� A� � ������

� t� � ������ A� � ����� t� � ������ A� � �����

t� � ������� A� � ����� t� � ������� A� � ������

t� � ������ A� � ����� t� � ������ A� � ������

t� � ����� A� � ����� t� � ����� A� � �����

t	 � ������ A	 � ������

Solve the integral equation ��x� � cos �x�
x

x� � ��
�ex���

Z �

�
exy��y� dy by the Nystr�om method

for n � ��
n � � � x� � ����� x� � ���� x� � �������

A� � ������� A� � ������� A� � �������

f� � ������� f� � ������� f� � ��������

K�� � ������ K�� � ������� K�� � �������

K�� � K�� � � ������ K�� � K�� � ����� K�� � K�� � �������

The equation system ����c� for ��� ��� and �� is

�������� � �������� � ��������� � �������

���������� � ��������� � ��������� � �������

���������� � ��������� � ��������� � ��������

The solution of the system is� �� � ������� �� � �������� �� � ��������� The substitution values
of the exact solution at the interpolation nodes are� ��x�� � �������� ��x�� � �� ��x�� � ���������

�������� Kernel Approximation
Replace the kernel K�x� y� by a kernel K�x� y� so that K�x� y� 
 K�x� y� for a � x � b� a � y � b�
Try to choose a kernel making the solution of the integral equation

��x� � f�x� � �

bZ
a

K�x� y���y� dy �����

the easiest possible�

�� Tensor Product Approximation
A frequently�used approximation of the kernel is the tensor product approximation in the form

K�x� y� 
 K�x� y� �
nX
j��

nX
k��

djk �j�x��k�y� ���a�

with given linearly independent functions ���x�� � � � � �n�x� and ���y�� � � � � �n�y� whose coe�cients djk
must be chosen so that the double sum approximates the kernel closely enough in a certain sense�
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Rewrite ���a� in a degenerate kernel�

K�x� y� �
nX
j��

�j�x�

�
nX
k��

djk�k�y�


� 	j�y� �

nX
k��

djk�k�y� K�x� y� �
nX
j��

�j�x�	j�y�� ���b�

Now� the solution method ���� p� ��� can be used for the integral equation

��x� � f�x� � �

bZ
a

�� nX
j��

�j�x�	j�y�

����y� dy� ���c�

Functions ���x�� � � � �n�x� and ���y�� � � � � �n�y� should be chosen so that the coe�cients djk in ���a�
can be calculated easily and also that the solution of ���c� isn�t too di�cult�

�� Special Spline Approach
Let�s choose

�k�x� � �k�x� �

����� � n

�����x� k

n

����� for
k � 

n
� x � k � 

n
�

� otherwise

�����

for a special kernel approximation on the interval of integration  a� b! �  �� !� The function �k�x� has

non�zero values only in the so called carrier interval

�
k � 

n
�
k � 

n

�
� �Fig �����

1

0 xk-1 k k+1
n n n

αk(x)

Figure �

To calculate the coe�cients djk in ���a�� consider K�x� y�
at the points x � l�n� y � i�n �l� i � �� � � � � � n�� We get

�j

�
l

n

�
�k

�
i

n

�
�

�
 for j � l� k � i�

� otherwise
�����

and consequently K�l�n� i�n� � dli� Hence� we substitute

dli � K

�
l

n
�
i

n

�
� K

�
l

n
�
i

n

�
� Now ���a� has the form

K�x� y� �
nX
j��

nX
k��

K

�
j

n
�
k

n

�
�j�x��k�y�� �����

As we know� the solution of ���c� has the form

��x� � f�x� � A����x� � � � � � An�n�x�� �����

The expression A����x� � � � � � An�n�x� is a piecewise linear function with substitution values Ak at
the points xk � k�n� Solving ���c� by the method given for the degenerate kernel� we get a linear
equation system for the numbers A�� � � � � An�

�� �c���A� ��c�� A� � � � � ��c�n An � b��

��c�� A� � �� �c��A��� � � � ��c�n An � b��

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��cn� A� ��cn� A� � � � � � �� �cnn�An � bn�

����a�

where

cjk �

�Z
�

	j�x��k�x� dx �

�Z
�

�
nX
i��

K
�
j

n
�
i

n

�
�j�x�


�k�x� dx
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� K
�
j

n
�

�

n

� �Z
�

���x��k�x� dx � � � � � K
�
j

n
�
n

n

� �Z
�

�n�x��k�x� dx� ����b�

For the integrals we get

Ijk �

�Z
�

�j�x��k�x� dx �

�������������������������



�n
for j � �� k � � and j � n� k � n�

�

�n
for j � k�  � j � n�



�n
for j � k � � j � k � �

� otherwise�

����c�

The numbers bk in ����a� are given by

bk �

�Z
�

f�x�

�� nX
j��

K

�
k

n
�
j

n

�
�j�x�

�� dx� ����d�

Taking a matrix C with numbers cjk from ����a�� a matrix B with the values K�j�n� k�n� and a
matrix A with the values Ijk respectively� a vector b from the numbers b�� � � � � bn� and a vector a from
the unknown values A�� � � � � An� the equation system ����a� has the form

�I� �C�a � �I� �BA�a � b� ����e�

In the case when the matrix �I� �BA� is regular� this system has a unique solution a � �A�� � � � � An��

�������� CollocationMethod
Suppose the n functions ���x�� � � � � �n�x� are linearly independent in the interval  a� b!� They can be
used to form an approximation function ��x� of the solution ��x��

��x� 
 ��x� � a����x� � a����x� � � � � � an�n�x�� ����a�

The problem is now to determine the coe�cients a�� � � � � an� Usually� there are no values a�� � � � � an
such that the function ��x� given in this form represents the exact solution ��x� � ��x� of the integral
equation ������ Therefore� n interpolation points x�� � � � � xn are de�ned in the interval of integration�
and it is required that the approximation function ����a� satis�es the integral equation at least at
these points�

��xk� � a����xk� � � � � � an�n�xk� ����b�

� f�xk� � �

bZ
a

K�xk� y�  a����y� � � � � � an�n�y�! dy �k � � � � � � n�� ����c�

With some transformations this equation system takes the form������xk�� �

bZ
a

K�xk� y����y� dy

��a� � � � � �

���n�xk�� �

bZ
a

K�xk� y��n�y� dy

��an
� f�xk� �k � � � � � � n�� ����d�

Let�s de�ne the matrices

A �

�B� ���x�� � � � �n�x��
���

���
���xn� � � � �n�xn�

�CA � B �

�B� ��� � � � ��n
���

���
�n� � � � �nn

�CA with �jk �

bZ
a

K�xj� y��k�y� dy ����e�

and the vectors

a � �a�� � � � � an�� � b � �f�x��� � � � � f�xn��� � ����f�



���	 Fredholm Integral Equations of the First Kind ���

Then the equation system to determine the numbers a�� � � � � an can be written in matrix form�

�A� �B� a � b� ����g�

��x� �

p
x

�
�
Z �

�

p
xy ��y� dy� The approximation function is ��x� � a�x

� � a�x � a�� ���x� �

x�� ���x� � x� ���x� � � The interpolation nodes are x� � �� x� � ���� x� � �

A �

�BBBB�
� � 



�



�


  

�CCCCA � B �

�BBBBBBB�

� � �
p

�

�

p
�

�

p
�

�
�

�

�

�

�

�

�CCCCCCCA � b �

�BBBBBB�
�



�
p

�


�

�CCCCCCA �

The system of equations is
a� � ���



�
�
p

�

�

�
a� �

�


�
�
p

�

�

�
a� �

�
�

p
�

�

�
a� �



�
p

�
�

�

�
a� �

�

�
a� �



�
a� �



�
�

whose solutions are a� � ������� a� � ������ a� � � and with these ��x� � ������ x� � ����� x�
and so ���� � �� ������ � ������� ��� � �������
The exact solution of the integral equation is ��x� �

p
x with the values ���� � �� ������ � ������

��� � �

In order to improve the accuracy in this example� it is not a good idea to increase the degree of the
polynomial� as polynomials of higher degree are numerically unstable� It is much better to use di�erent
spline approximations� e�g�� a piecewise linear approximation ��x� � a����x��a����x��� � ��an�n�x�
with the functions introduced in ������

�k�x� �

����� � n

�����x� k

n

����� for
k � 

n
� x � k � 

n
�

� otherwise�

In this case� the solution ��x� is approximated by a polygon ��x��

Remark� There is no theoretical restriction as to the choice of the interpolation nodes for the colloca�
tion method� In the case� however� when the solution function oscillates considerably in a subinterval�
we have to increase the number of interpolation points in this interval�

���� Fredholm Integral Equations of theFirstKind

������ Integral EquationswithDegenerateKernels

�� Formulation of the Problem
Consider the Fredholm integral equation of the �rst kind with degenerate kernel

f�x� �

bZ
a

����x����y� � � � � � �n�x��n�y����y� dy �c � x � d�� ����a�

and introduce the notation similar to that used in ��� p� ����

Aj �

bZ
a

�j�y���y� dy �j � � �� � � � � n�� ����b�
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Then ����a� has the form

f�x� � A����x� � � � � � An�n�x�� ����c�

i�e�� the integral equation has a solution only if f�x� is a linear combination of the functions ���x�� � � � �
�n�x�� If this assumption is ful�lled� the constants A�� � � � � An are known�

�� Initial Approach
We are looking for the solution in the form

��x� � c����x� � � � � � cn�n�x� ����a�

where the coe�cients c�� � � � � cn are unknown� Substituting in ����b�

Ai � c�

bZ
a

�i�y����y� dy � � � � � cn

bZ
a

�i�y��n�y� dy �i � � �� � � � � n�� ����b�

and introducing the notation

Kij �

bZ
a

�i�y��j�y� dy ����c�

we have the following equation system for the unknown coe�cients c�� � � � � cn�

K��c� � � � �� K�ncn � A��
���

���
���

Kn�c� � � � �� Knncn � An�

����d�

�� Solutions
The matrix of the coe�cients is non�singular if the functions ���y�� � � � � �n�y� are linearly independent
�see ����� p� ����� However� the solution obtained in ����a� is not the only one� Unlike the integral
equations of the second kind with a degenerate kernel� the homogeneous integral equation always has
a solution� Suppose �h�x� is a solution of the homogeneous equation and ��x� is a solution of ����a��
Then ��x� � �h�x� is also a solution of ����a��
To determine all the solutions of the homogeneous equation� let us consider the equation ����c� with
f�x� � �� If the functions ���x�� � � � � �n�x� are linearly independent� the equation holds if and only if

Aj �

bZ
a

�j�y���y� dy � � �j � � �� � � � � n�� �����

i�e�� every function �h�y� orthogonal to every function �j�y� is a solution of the homogeneous integral
equation�

������ AnalyticBasis

�� Initial Approach
Several methods for the solution of Fredholm integral equations of the �rst kind

f�x� �

bZ
a

K�x� y���y� dy �c � x � d� ����

determine the solution ��y� as a function series of a given system of functions ��n�y�� � f���y�� ���y��
� � �g� i�e�� we are looking for the solution in the form

��y� �
�X
j��

cj�j�y� �����

where we have to determine the unknown constants cj� When choosing the system of functions we have
to consider that the functions ��n�y�� should generate the whole space of solutions� and also that the
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calculation of the coe�cients cj should be easy�
For an easier survey� we will discuss only real functions in this section� All of the statements can be
extended to complex�valued functions� too� Because of the solution method we are going to establish�
certain properties of the kernel function K�x� y� are required� We assume that these requirements are
always ful�lled� Next� we discuss some relevant information�

�� Quadratically Integrable Functions
A function ��y� is quadratically integrable over the interval  a� b! if

bZ
a

j��y�j� dy �� �����

holds� For example� every continuous function on  a� b! is quadratically integrable� The space of quadrat�
ically integrable functions over  a� b! will be denoted by L� a� b!�

�� Orthonormal System
Two quadratically integrable functions �i�y�� �j�y�� y �  a� b! are considered orthogonal to each other
if the equality

bZ
a

�i�y��j�y� dy � � ����a�

holds� We call a system of functions ��n�y�� in the space L� a� b! an orthonormal system if the following
equalities are true�

bZ
a

�i�y��j�y� dy �
�

 for i � j�
� for i �� j�

����b�

An orthonormal system of functions is complete if there is no function '��y� �� � in L� a� b! orthogonal
to every function of this system� A complete orthonormal system contains countably many functions�
These functions form a basis of the space L� a� b!� To transform a system of functions ��n�y�� into an
orthonormal system ���n�y�� we can use the Schmidt orthogonalization procedure� This determines the
coe�cients bn�� bn�� � � � � bnn for n � � �� � � � successively so that the function

��n�y� �
nX
j��

bnj�j�y� ����c�

is normalized and orthogonal to every function ����y�� � � � � ��n���y��

�� Fourier Series
If ��n�y�� is an orthonormal system and ��y� � L� a� b!� we call the series

�X
j��

dj�j�y� � ��y� ����a�

the Fourier series of ��y� with respect to ��n�y��� and the numbers dj are the corresponding Fourier
coe�cients� Based on ����b� we have�

bZ
a

�k�y���y� dy �
�X
j��

dj

bZ
a

�j�y��k�y� dy � dk� ����b�

If ��n�y�� is complete� we have the Parseval equality

bZ
a

j��y�j� dy �
�X
j��

jdjj�� ����c�
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������ Reduction of an Integral Equation into a Linear Systemof
Equations

A linear equation system is needed in order to determine the Fourier coe�cients of the solution function
��y� with respect to an orthonormal system� First� we have to choose a complete orthonormal system
��n�y��� y �  a� b!� A corresponding complete orthonormal system ��n�x�� can be chosen for the interval
x �  c� d!� With respect to the system ��n�x�� the function f�x� has the Fourier series

f�x� �
�X
i��

fi�i�x� with fi �

dZ
c

�i�x�f�x� dx� ����a�

If the integral equation ���� is multiplied by �i�x� and the integral is evaluated for x running from
c to d alone� we get�

fi �

dZ
c

bZ
a

K�x� y���y��i�x� dy dx

�

bZ
a

���
dZ
c

K�x� y��i�x� dx

 !"��y� dy �i � � �� � � ��� ����b�

The expression in braces is a function of y with the Fourier representation

dZ
c

K�x� y��i�x� dx � Ki�y� �
�X
j��

Kij�j�y� with ����c�

Kij �

bZ
a

dZ
c

K�x� y��i�x��j�y� dx dy�

With the Fourier series approach

��y� �
�X
k��

ck�k�y� ����d�

we get

fi �

bZ
a

���
�X
j��

Kij�j�y�

� �X
k��

ck�k�y�

� !" dy

�
�X
j��

�X
k��

Kijck

bZ
a

�j�y��k�y� dy �i � � �� � � ��� ����e�

Because of the orthonormal property ����b�� we have the equation system

fi �
�X
j��

Kijcj �i � � �� � � ��� ����f�

This is an in�nite system of equations to determine the Fourier coe�cients c�� c�� � � � � The matrix of
coe�cients of the equation system

K �

�BBB�
K�� K�� K�� � � �
K�� K�� K�� � � �
K�� K�� K�� � � �

���
���

���

�CCCA ����g�



���	 Fredholm Integral Equations of the First Kind ���

is called a kernel matrix� The numbers fi and Kij �i� j � � �� � � �� are known� although they depend
on the orthonormal system chosen�

f�x� �


�

Z �

�

sin y

cos y � cos x
��y� dy� � � x � �� The integral is considered in the sense of the Cauchy

principal value� As a complete orthogonal system we use�

� ���x� �
p
�

� �i�x� �

s
�

�
cos ix �i � � �� � � ��� � �j�y� �

s
�

�
sin jy �j � � �� � � ���

By ����d�� the coe�cients of the kernel matrix are

K�j �
p
�



�

s
�

�

Z �

�

Z �

�

sin y sin jy

cos y � cos x
dx dy � � �j � � �� � � ���

Kij �
�

�



�

Z �

�

Z �

�

sin y sin iy cos ix

cos y � cos x
dx dy �

�

��

Z �

�
sin y sin iy

�Z �

�

cos ix

cos y � cos x
dx

�
dy �i � � �� � � ���

For the inner integral the equationZ �

�

cos ix

cos y � cos x
dx � ��

sin iy

sin y
�����

holds� Consequently Kij � � �

�

Z �

�
sin jy sin iy dy �

��� � for i �� j�

� for i � j�

The Fourier coe�cients of f�x� from ����a� are fi �
Z �

�
f�x��i�x� dx �i � �� � �� � � ��� The equation

system is

�BBB�
� � � � � �
� � � � � �

� � � � � �
���

���

�CCCA
�BBB�

c�
c�
c�
���

�CCCA �

�BBBBBB�
f�
f�
f�
f�
���

�CCCCCCA� According to the �rst equation� the system can have any

solution only if the equality f� �
Z �

�
f�x����x� dx �

p
�

Z �

�
f�x� dx � � holds� Then we have cj �

�fj �j � � �� � � ��� and ��y� � �
s

�

�

�X
j��

fj sin jy �


�

Z �

�

sin y

cos y � cos x
f�x� dx�

������ Solutionof theHomogeneous IntegralEquationof theFirst
Kind

If ��y� and �h�y� are arbitrary solutions of the inhomogeneous and the homogeneous integral equation
respectively� i�e��

f�x� �

bZ
a

K�x� y���y� dy ����a� and � �

bZ
a

K�x� y��h�y� dy� ����b�

then the sum ��y� � �h�y� is a solution of the inhomogeneous integral equation� Therefore we have to
determine all the solutions of the homogeneous integral equation� This problem is the same as deter�
mining all the non�trivial solutions of the linear equation system

�X
j��

Kijcj � � �i � � �� � � ��� �����
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As sometimes this system is not so easy to solve� we can use the following method for our calculations�
If we have a complete orthonormal system ��n�x��� take the functions

Ki�y� �

dZ
c

K�x� y��i�x� dx �i � � �� � � ��� ����a�

If �h�y� is an arbitrary solution of the homogeneous equation� i�e��

bZ
a

K�x� y��h�y� dy � � ����b�

holds� then multiplying this equality by �i�x� and performing an integration with respect to x� we get

� �

bZ
a

�h�y�

dZ
c

K�x� y��i�x� dx dy �

bZ
a

�h�y�Ki�y� dy �i � � �� � � ��� ����c�

i�e�� every solution�h�y� of the homogeneous equation must be orthogonal to every functionKi�y�� If we
replace the system �Kn�y�� by an orthonormal system �K�

n�y�� using an orthogonalization procedure�
instead of ����c� we have

bZ
a

�h�y�K�
i �y� dy � �� ����d�

If we extend the system �K�
n�y�� into a complete orthonormal system� the conditions ����d� are ob�

viously valid for every linear combination of the new functions� If the orthonormal system �K�
n�y�� is

already complete� then only the trivial solution �h�y� � � exists�
We can calculate the solution system of the adjoint homogeneous integral equation in exactly the same
way�

dZ
c

K�x� y���x� dx � �� ����e�



�

Z �

�

sin x

cos y � cos x
��y� dy � �� � � x � �� An orthonormal system is� �i�x� �

s
�

�
sin ix �i �

� �� � � ��� Ki�y� �

s
�

�



�

Z �

�

sin x sin ix

cos y � cos x
dx �

s
�

�



��

Z �

�

cos�i� �x� cos�i � �x

cos y � cos x
dx� Applying

����� twice we get Ki�y� � �
s

�

�



�

�
sin�i� �y � sin�i � �y

sin y

�
�

s
�

�
cos iy �i � � �� � � ��� The

system �Kn�y�� is already an orthonormal system� The function K��y� �
p
�

completes this system�

Consequently the homogeneous equation has only the solution� �h�y� � c
p
�

� 'c� �c is arbitrary��

������ Construction of Two SpecialOrthonormal Systems for a
GivenKernel

�� Preliminaries
The solution of in�nite systems of linear equations we saw in ����� p� ���� is not usually easier than
the solution of the original problem� Choosing suitable orthonormal systems ��n�x�� and ��n�y�� we
can change the structure of the kernel matrix K in such a way that the equation system can be solved
easily� By the following method we can construct two orthonormal systems such that the coe�cients
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Kij of the kernel matrix are non�zero only for i � j and i � j � �

Using the method given in the previous paragraph� we �rst determine two orthonormal systems ��hn�y��
and ��hn�x��� the solution systems of the homogeneous and the corresponding adjoint homogeneous
integral equations respectively� This means that we can give all the solutions of these two integral
equations by a linear combination of the functions �hn�y� and �hn�x�� These orthonormal systems are not
complete� By the following method we complete these systems step by step into complete orthonormal
systems �j�x�� �j�y� �j � � �� � � ���

�� Procedure

First a normalized function ���x� is determined� which is orthogonal to every function
�
�hn�x�

	
� Then

the following steps are performed for j � � �� � � ��
� Determination of the function �j�y� and the number 
j from the formulas


����y� �

dZ
c

K�x� y����x� dx or ���a�


j�j�y� �

dZ
c

K�x� y��j�x� dx� �j���j���y� �j �� �� ���b�

so that 
j is never equal to zero and �j�y� is normalized� Then �j�y� is orthogonal to the functions�
��hn�y��� ���y�� � � � � �j���y�

	
�

� Determination of the function �j���x� and the number �j from the formula

�j�j���x� �

bZ
a

K�x� y��j�y� dy� 
j�j�x�� ���c�

There are two possibilities�

a� �j �� �� The function �j���x� is orthogonal to the functions
�
��hn�x��� ���x�� � � � � �j�x�

	
�

b� �j � �� Then the function �j���x� is not uniquely de�ned� Here again we have two cases�

b�� The system
�
��hn�x��� ���x�� � � � � �j�x�

	
is already complete� Then the system

�
��hn�y��� ���y�� � � � �

�j�y�
	

is also complete� and the procedure is �nished�

b�� The system
�
��hn�x��� ���x�� � � � � �j�x�

	
is not complete� Then again we choose an arbitrary func�

tion �j���x� orthogonal to the previous functions�

This procedure is repeated until the orthonormal systems are complete� It is possible that after a cer�
tain step the case b� does not occur during a countable number of steps� but the system of this countable

number of functions
�
��hn�x��� ���x�� � � �

	
is still not complete� Then again we can start the procedure

by a function '���x�� which is orthogonal to every function of the previous system�

If the functions �j�x�� �j�y� and the numbers 
j� �j are determined by the procedure given above� we
have the kernel matrix K in the form

K �

�BBB�
� � � � � �
� K� � � � �
� � K� � � �
��� � � �

���

�CCCA with Km �

�BBBBB�


�m�
� � � � � �

�
�m�
� 


�m�
� � � � �

� ��m�
� 
�m�

� � � �
��� � � �

���

�CCCCCA � �����
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The matrices Km �m � � �� � � �� are �nite if during the procedure we have �
�m�
j � � after a �nite

number of steps� They are in�nite if for countably many values of j� �
�m�
j �� � holds� The number of

zero rows and zero columns in K corresponds to the number of functions in the systems ��hn�x�� and

��hn�y��� We have a very simple case if the matrices Km contain one number 

�m�
� � 
m only� i�e�� all

numbers �
�m�
j are equal to zero�

Using the notation of ����� p� ���� we have the solution of the in�nite equation system under the
assumptions fj � � for �j�x� � ��hn�x�� �

cj �

�����
fj

j

for �j�y� ��
�
�hn�y�

	
�

arbitrary for �j�y� �
�
�hn�y�

	
�

�����

������ IterationMethod

To solve the integral equation

f�x� �

bZ
a

K�x� y���y� dy �c � x � d�� ����a�

starting with ���x� � f�x� we determine the functions

�n�y� �

dZ
c

K�x� y��n���x� dx ����b� and �n�x� �

bZ
a

K�x� y��n�y� dy� ����c�

for n � � �� � � � � If there is a quadratically integrable solution ��y� of ����a� then the following
equalities hold�

bZ
a

��y��n�y� dy �

bZ
a

dZ
c

��y�K�x� y��n���x� dx dy

�

dZ
c

f�x��n���x� dx �n � � �� � � ��� ����d�

By the orthogonalizationand normalizationof the function systems that we have obtained from ����b��
����c� we get the orthonormal systems ���n�x�� and ���n�y��� Using the Schmidt orthogonalization
method we have ��n�y� in the form

��n�y� �
nX
j��

bnj�j�y� �n � � �� � � ��� ����e�

We need to show that the solution ��y� of ����a� has the representation by the series

��y� �
�X
j��

cn�
�
n�y�� ����f�

In this case we have for the coe�cients cn regarding ����d��

cn �

bZ
a

��y���n�y� dy �
nX
j��

bnj

bZ
a

��y��j�y� dy �
nX
j��

bnj

dZ
c

f�x��j���x� dx� ����g�
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To have a solution in the form ����f� the following conditions are both necessary and su�cient�

��

dZ
c

 f�x�!� dx �
�X
n��

��� dZ
c

f�x���n�x� dx
����� ����a� ��

�X
n��

jcnj� ��� ����b�

���� Volterra Integral Equations

������ Theoretical Foundations
A Volterra integral equation of the second kind has the form

��x� � f�x� �

xZ
a

K�x� y���y� dy� �����

The solution function ��x� with the independent variable x from the closed interval I �  a� b! or from
the semi�open interval I �  a��� is required� We have the following theorem about the solution of
a Volterra integral equation of the second kind� If the functions f�x� for x � I and K�x� y� on the
triangular region x � I and y �  a� x! are continuous� then there exists a unique solution ��x� of the
integral equation such that it is continuous for x � I� For this solution

��a� � f�a� �����

holds� In many cases� the Volterra integral equation of the �rst kind can be transformed into an equation
of the second kind� Hence� theorems about existence and uniqueness of the solution are valid with some
modi�cations�

�� Transformation by Di
erentiation
Assuming that ��x�� K�x� y�� and Kx�x� y� are continuous functions� we can transform the integral
equation of the �rst kind

f�x� �

xZ
a

K�x� y���y� dy ����a�

into the form

f ��x� � K�x� x���x� �

xZ
a

�

�x
K�x� y���y� dy ����b�

by di�erentiation with respect to x� If K�x� x� �� � for all x � I� then dividing the equation by K�x� x�
we get an integral equation of the second kind�

�� Transformation by Partial Integration
Assuming that ��x� � K�x� y� and Ky�x� y� are continuous� we can evaluate the integral in ����a� by
partial integration� Substituting

xZ
a

��y� dy � ��x� ����a�

gives

f�x� �
h
K�x� y���y�

iy�x
y�a
�

xZ
a

�
�

�y
K�x� y�

�
��y� dy

� K�x� x���x��
xZ
a

�
�

�y
K�x� y�

�
��y� dy� ����b�
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If K�x� x� �� � for x � I� then dividing by K�x� x� we have an integral equation of the second kind�

��x� �
f�x�

K�x� x�
�



K�x� x�

xZ
a

�
�

�y
K�x� y�

�
��y� dy� ����c�

Di�erentiating the solution ��x� we get the solution ��x� of ����a��

������ Solution byDi�erentiation
In some Volterra integral equations the integral vanishes after di�erentiation with respect to x� or it
can be suitably substituted� Assuming that the functions K�x� y�� Kx�x� y�� and ��x� are continuous
or� in the case of an integral equation of the second kind� ��x� is di�erentiable� and di�erentiating

f�x� �

xZ
a

K�x� y���y� dy ����a� or ��x� � f�x� �

xZ
a

K�x� y���y� dy ����b�

with respect to x we get

f ��x� � K�x� x���x� �

xZ
a

�

�x
K�x� y���y� dy or ����c�

���x� � f ��x� � K�x� x���x� �

xZ
a

�

�x
K�x� y���y� dy� ����d�

Find the solution ��x� for x �


��

�

�

�
of the equation

Z x

�
cos�x��y���y� dy �



�
x sinx �I�� Di�eren�

tiating it twice with respect to x we have ��x� cos x�
Z x

�
sin�x��y���y� dy �



�
�sin x�x cos x� �II a��

and ���x� cos x�
Z x

�
cos�x� �y���y� dy � cos x� 

�
x sin x �IIb�� The integral in the second equation

is the same as that in the original problem� so we can substitute it� We get ���x� cos x � cos x and

because cos x �� � for x �


��

�

�

�
� ���x� � � so ��x� � x � C�

To determine the constant C substitute x � � in �IIa� to obtain ���� � �� Consequently C � �� and
the solution of �I� is ��x� � x�

Remark� If the kernel of a Volterra integral equation is a polynomial� then we can transform the in�
tegral equation by di�erentiation into a linear di�erential equation� Suppose the highest power of x in
the kernel is n� After di�erentiating the equation �n � � times with respect to x we have a di�erential
equation of n�th order in the case of an integral equation of the �rst kind� and of the order n �  in the
case of an integral equation of the second kind� Of course we have to assume that ��x� and f�x� are
di�erentiable as many times as necessary�Z x

�
 ��x � y�� � !��y� dy � x� �I.�� After di�erentiating three times with respect to x we have

��x���
Z x

�
�x�y���y� dy � �x� �II.a�� ���x���

Z x

�
��y� dy � �x �II.b�� ����x�����x� � � �II.c��

The general solution of this di�erential equation is ��x� � A sin �x�B cos �x�
�

�
� Substituting x � �

in �II.a� and �II.b� results in ���� � �� ����� � �� so we have A � �� B � ���� The solution of the

integral equation �I.� is ��x� �
�

�
�� cos �x��
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������ Solution of theVolterra Integral Equation of the Second
KindbyNeumann Series

We can solve Volterra integral equations of the second kind by using Neumann series �see ����� p� �����
If we have the equation

��x� � f�x� � �

xZ
a

K�x� y���y� dy� ����

we substitute

K�x� y� �

�
K�x� y� for y � x�

� for y � x�
����a�

With this transformation ���� is equivalent to a Fredholm integral equation

��x� � f�x� � �

bZ
a

K�x� y���y� dy� ����b�

allowing b �� as well� The solution has the representation

��x� � f�x� �
�X
n��

�n
bZ
a

Kn�x� y�f�y� dy� ����c�

The iterated kernelsK�� K�� � � � are de�ned by the following equalities�

K��x� y� � K�x� y�� K��x� y� �

bZ
a

K�x� ��K��� y� d� �

xZ
y

K�x� ��K��� y� d�� � � � ����d�

and in general�

Kn�x� y� �

xZ
y

K�x� ��Kn����� y� d�� ����e�

The equalities Kj�x� y� � � for y � x �j � � �� � � �� are also valid for iterated kernels� Contrary to
Fredholm integral equations if ���� has any solution� the Neumann series converges to it regardless
of the value of ��

��x� �  � �
Z x

�
ex�y��y� dy� K��x� y� � K�x� y� � ex�y� K��x� y� �

Z x

y
ex��e��y d� � ex�y�x �

y�� � � � � Kn�x� y� �
ex�y

�n� �$
�x� y�n���

Consequently the resolvent is� � �x� y��� � ex�y
�X
n��

�n

n$
�x � y�n � e�x�y������ It is well�known that

this series is convergent for any value of the parameter ��

We get ��x� �  � �
Z x

�
e�x�y����� dy �  � �e����x

Z x

�
e�����y dy� in particular if � � �� ��x� �

� x� � �� �� ��x� �


� � 

�
 � �e����x

	
�

������ ConvolutionTypeVolterra Integral Equations
If the kernel of a Volterra integral equation has the special form

K�x� y� �
�
k�x� y� for � � y � x�
� for � � x � y�

����a�
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we can use the Laplace transformation to solve the equations

xZ
�

k�x� y���y� dy � f�x� ����b� or ��x� � f�x� �

xZ
�

k�x� y���y� dy� ����c�

If the Laplace transforms Lf��x�g � ��p�� Lff�x�g � F �p�� and Lfk�x�g � K�p� exist� then the
transformed equations have the form �see ������� ��� p� ���

K�p���p� � F �p� ����a� or ��p� � F �p� � K�p���p� resp� ����b�

From these we get

��p� �
F �p�

K�p�
����c� or ��p� �

F �p�

�K�p�
resp� ����d�

The inverse transformation gives the solution ��x� of the original problem� Rewriting the formula for
the Laplace transform of the solution of the integral equation of the second kind we have

��p� �
F �p�

�K�p�
� F �p� �

K�p�

�K�p�
F �p�� ����e�

The formula

K�p�

�K�p�
� H�p� ����f�

depends only on the kernel� and if we denote its inverse by h�x�� the solution is

��x� � f�x� �

xZ
�

h�x� y�f�y� dy� ����g�

The function h�x� y� is the resolvent kernel of the integral equation�

��x� � f�x� �
Z x

�
ex�y��y� dy� ��p� � F �p� �



p� 
��p�� i�e�� ��p� �

p� 

p� �
F �p�� The inverse

transformation gives ��x�� From H�p� �


p� �
it follows that h�x� � e�x� By ����g� the solution is

��x� � f�x� �
Z x

�
e��x�y�f�y� dy�

������ NumericalMethods forVolterra Integral Equation of
the SecondKind

We are to �nd the solution for the integral equation

��x� � f�x� �

xZ
a

K�x� y���y� dy �����

for x from the interval I �  a� b!� The purpose of numerical methods is somehow to approximate the
integral by a quadrature formula�

xZ
a

K�x� y���y� dy 
 Q�a�x��K�x� �������� ����a�

Both the interval of integration and the quadrature formula depend on x� This fact is emphasized by
the index  a� x! of Q�a�x��� � ��� We get the following equation as an approximation of ������

��x� � f�x� � Q�a�x��K�x� �������� ����b�
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The function ��x� is an approximation of the solution of ������ The number and the arrangement of
the interpolation nodes of the quadrature formula depend on x� so as to allow little choice� If � is an
interpolation node of Q�a�x��K�x� ������� � then �K�x� ������� and especially ���� must be known� For
this purpose� the right�hand side of ����b� should be evaluated �rst for x � �� which is equivalent to a
quadrature over the interval  a� �!� As a consequence� the use of the popular Gauss quadrature formula
is not possible�

We solve the problem by choosing the interpolation nodes as a � x� � x� � � � � � xk � � � � and we use
a quadrature formula Q�a�xn� with the interpolation nodes x�� x�� � � � � xn� The substitution values of the
function at the interpolation nodes are denoted by the brief notation �k � ��xk� �k � �� � �� � � ���
For �� we have �see ���� p� ����

�� � f�x�� � f�a�� ����c� and with this� �� � f�x�� � Q�a�x���K�x�� �������� ����d�

Q�a�x�� has the interpolation points x� and x� and consequently it has the form

Q�a�x���K�x�� ������ � w�K�x�� x���� � w�K�x�� x���� ����e�

with suitable coe�cients w� and w�� Continuing this procedure� the values �k are successively deter�
mined from the general relation�

�k � f�xk� � Q�a�xk��K�xk� �������� k � � �� �� � � � � ����f�

The quadrature formulas Q�a�xk� have the following form�

Q�a�xk��K�xk� ������ �
kX
j��

wjkK�xk� xj��j� ����g�

Hence� ����f� takes the form�

�k � f�xk� �
kX
j��

wjkK�xk� xj��j� ����h�

The simplest quadrature formula is the left�hand rectangular formula �see ������� p� ����� For this
the coe�cients are

wjk � xj�� � xj for j � k and wkk � �� ����i�

We have the system

�� � f�a��

�� � f�x�� � �x� � x��K�x�� x����� ����a�

�� � f�x�� � �x� � x��K�x�� x���� � �x� � x��K�x�� x����

and generally

�k � f�xk� �
k��X
j��

�xj�� � xj�K�xk� xj��j� ����b�

More accurate approximations of the integral can be obtained by using the trapezoidal formula �see
�������� p� ����� To make it simple� we choose equidistant interpolation nodes xk � a � kh� k �
�� � �� � � � �

bZ
a

g�x� dx 
 h

�

��g�x�� � �
k��X
j��

g�xj� � g�xk�

�� � ����c�

Using this approximation for ����f� we get�

�� � f�a�� ����d�

�k � f�xk� �
h

�

��K�xk� x���� � K�xk� xk��k � �
k��X
j��

K�xk� xj��j

�� � ����e�
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Altough the unknown values also appear on the right�hand side of the equation� they are easy to express�

Remark� With the previous method we can approximate the solution of non�linear integral equations
as well� If we use the trapezoidal formula to determine the values �k we have to solve a non�linear
equation� We can avoid this by using the trapezoidal formula for the interval  a� xk��!� and we use the
rectangular formula for the interval  xk��� xk!� If h is small enough� this quadrature error does not have
a signi�cant e�ect on the solution �see  ��!��

Let�s give the approximate values of the solution of the integral equation ��x� � ��
Z x

�
�x�y���y� dy

by the formula ����f� using the rectangular formula� The interpolation nodes are the equidistant
points xk � k � ��� and hence h � ���

�� � ��
�� � f�x�� � hK�x�� x����

� � � �� � �� � � � �����
�� � f�x�� � h�K�x�� x���� � K�x�� x�����

� � � ������ � � � �� � ����� � ������
etc�

x exact rectangular trapezoidal

formula formula

��� ����� ������ �����

��� ���� ������ �����

��� ������ ������ ������

��� ������ ������ ������

�� ������ ������ ������

In the table the values of the exact solution are given� as well as the approximate values calculated by
the rectangular and the trapezoidal formulas� respectively� so the accuracies of these methods can be
compared� The step size used is h � ���

���� Singular Integral Equations
An integral equation is called a singular integral equation if the range of the integral in the equation
is not �nite� or if the kernel has singularities inside of the range of integration� We suppose that the
integrals exist as improper integrals� or as Cauchy principal values �see ������ p� ������� The properties
and the conditions for the solutions of singular integral equations are very di�erent from those in the
case of 	ordinary
 integral equations� We will discuss only some special problems in the following
paragraph� For further discussions see  ��� ��� ��!�

y
y0

P1 (0,0) x0 x

P0 ( x0 ,y0 )

Figure ��

������ Abel Integral Equation
One of the �rst applications of integral equations for a physical prob�
lem was considered by Abel� A particle is moving in a vertical plane
along a curve under the in�uence only of gravity from the point
P��x�� y�� to the point P���� �� �Fig �����
The velocity of the particle at a point of the curve is

v �
ds

dt
�
q

�g�y� � y� � �����

By integration we calculate the time of fall as a function of y��

T �y�� �

lZ
�

dsq
�g�y� � y�

� ����a�

If s is considered as a function of y� i�e�� s � f�y�� then

T �y�� �

y�Z
�

p
�g
� f ��y�p

y� � y
dy� ����b�
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The next problem is to determine the shape of the curve as a function of y� if the time of the fall is
given� By substitutionq

�g � T �y�� � F �y�� and f ��y� � ��y� ����c�

and changing the notation of the variable y� into x� a Volterra integral equation of the �rst kind is
obtained�

F �x� �

xZ
�

��y�p
x� y

dy� ����d�

We will consider the slightly more general equation

f�x� �

xZ
a

��y�

�x� y��
dy with � � � � � �����

The kernel of this equation is not bounded for y � x� In ������ the variable y is formally replaced
by � and the variable x by y� By these substitutions the solution is obtained in the form � � ��x�� If

both sides of ����� are multiplied by the term


�x� y����
and integrated with respect to y between

the limits a and x� it yields the equation

xZ
a



�x� y����

�� yZ
a

����

�y � ���
d�

�A dy �

xZ
a

f�y�

�x� y����
dy� ���a�

Changing the order of integration on the left�hand side we have

xZ
a

����

�����
xZ
�

dy

�x� y�����y � ���

 �!�" d� �

xZ
a

f�y�

�x� y����
dy� ���b�

The inner integral can be evaluated by the substitution y � � � �x� ��u�

xZ
�

dy

�x� y�����y � ���
�

�Z
�

du

u��� u����
�

�

sin����
� ���c�

We substitute this result into ���b�� After di�erentiation with respect to x we get the function ��x��

��x� �
sin����

�

d

dx

xZ
a

f�y�

�x� y����
dy� ���d�

x �
Z x

�

��y�p
x� y

dy� ��x� �


�

d

dx

Z x

�

yp
x� y

dy �
�

�

p
x �

������ Singular Integral EquationwithCauchyKernel

�������� Formulation of the Problem

Consider the following integral equation�

a�x���x� �


� i

Z
�

K�x� y�

y � x
��y� dy � f�x�� x � �� �����

� is a system consisting of a �nite number of smooth� simple� closed curves in the complex plane such
that they form a connected interior domain S� with � � S� and an exterior domain S�� Traversing the
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curve we have S� always on the left�hand side of � � A function u�x� is H�older continuous �or satis�es
the H�older condition� over � if for any pair x�� x� � � the relations

ju�x��� u�x��j � Kjx� � x�j	� � � � � � K � � �����

are valid� We suppose that the functions a�x�� f�x�� and ��x� are H�older continuous with exponent
��� and K�x� y� is H�older continuous with respect to both variables with the exponents �� � ��� The
kernel K�x� y��y � x��� has a strong singularity for x � y� The integral exists as a Cauchy principal

value� With K�x� x� � b�x� and k�x� y� �
K�x� y��K�x� x�

y � x
we have ����� in the form

�L���x� �� a�x���x� �
b�x�

� i

Z
�

��y�

y � x
dy �



� i

Z
�

k�x� y���y� dy � f�x�� x � �� ����a�

The expression �L���x� denotes the left�hand side of the integral equation in abbreviated form� L is
a singular operator� The function k�x� y� is a weakly singular kernel� It is assumed that the normality
condition a�x�� � b�x�� �� �� x � � holds� The equation

�L����x� � a�x���x� �
b�x�

� i

Z
�

��y�

y � x
dy � f�x�� x � �� ����b�

is the characteristic equation pertaining to ����a�� The operator L� is the characteristic part of the
operator L� From the adjoint integral equation of ����a� we get the equality

�L����y� � a�y���y�� b�y�

� i

Z
�

��x�dx

x� y
�



� i

Z
�

�
k�x� y�� b�x�� b�y�

x� y

�
��x� dx

� g�y�� y � �� ����c�

�������� Existence of a Solution
The equation �L���x� � f�x� has a solution ��x� if and only if for every solution ��y� of the homoge�
neous adjoint equation �L����y� � � the condition of orthogonalityZ

�

f�y���y� dy � � ����a�

is satis�ed� Similarly� the adjoint equation �L����y� � g�y� has a solution if for every solution ��x� of
the homogeneous equation �L���x� � � the following is valid�Z

�

g�x���x� dx � �� ����b�

�������� Properties of Cauchy Type Integrals
We call the function

��z� �


�� i

Z
�

��y�

y � z
dy� z � C� ����a�

a Cauchy type integral over � � For z �� � the integral exists in the usual sense and the result is a
holomorphic function �see ����� p� ����� We also have ���� � �� For z � x � � in ����a� we
consider the Cauchy principal value

�H���x� �


�� i

Z
�

��y�

y � x
dy� x � �� ����b�
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The Cauchy type integral ��z� can be extended continuously over � from S� and from S�� Approach�
ing the point x � � with z we denote the limit by ���x� and ���x�� respectively� The formulas of
Plemelj and Sochozki are valid�

���x� �


�
��x� � �H���x�� ���x� � �

�
��x� � �H���x�� ����c�

�������� TheHilbert BoundaryValue Problem

�� Relations
The solution of the characteristic integral equation and the Hilbert boundary value problem strongly
correlate� If ��x� is a solution of ����b�� then ����a� is a holomorphic function on S� and S� with
���� � �� Because of the formulas of Plemelj and Sochozki ����c� we have�

��x� � ���x�� ���x�� ��H���x� � ���x� � ���x�� x � �� ����a�

With the notation

G�x� �
a�x�� b�x�

a�x� � b�x�
and g�x� �

f�x�

a�x� � b�x�
� ����b�

the characteristic integral equation has the form�

���x� � G�x����x� � g�x�� x � �� ����c�

�� Hilbert Boundary Value Problem
We are looking for a function ��z� which is holomorphic on S� and S�� and vanishes at in�nity� and
satis�es the boundary conditions ����c� over � � A solution ��z� of the Hilbert problem can be given
in the form ����a�� So� as a consequence of the �rst equation of ����a�� a solution ��x� of the
characteristic integral equation is determined�

�������� Solution of the Hilbert BoundaryValue Problem
�in short� Hilbert Problem�

�� Homogeneous Boundary Conditions
���x� � G�x����x�� x � �� �����

During a single circulation of the point x along the curve �l the value of logG�x� changes by �� i�l�
where �l is an integer� The change of the value of the function logG�x� during a single traverse of the
complete curve system � is

nX
l��

�� i�l � �� i�� ����a�

The number � �
nP
l��

�l is called the index of the Hilbert problem� We compose a function

G��x� � �x� a��
��+�x�G�x� ����b�

with

+�x� � �x� a��
��x� a��

� � � � �x� an�n � ����c�

where a� � S� and al �l � � � � � � n� are arbitrarily �xed points inside �l� If � � �� is a simple closed
curve �n � ��� then we de�ne +�x� � � With

I�z� ��


�� i

Z
�

logG��y�

y � z
dy ����d�

the following particular solution of the homogeneous Hilbert problems is obtained� which is called the
fundamental solution�

X�z� �
�

+���z� exp I�z� for z � S��
�z � a��

�� exp I�z� for z � S�� ����e�
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This function doesn�t vanish for any �nite z� The most general solution of the homogeneous Hilbert
problem� which vanishes at in�nity� for � � � is

�h�z� � X�z�P����z�� z � C �����

with an arbitrary polynomial P����z� of degree at most ��� �� For � � � there exists only the trivial
solution /h�z� � � which satis�es the condition /h��� � �� so in this case P����z� � �� For � � � the
homogeneous Hilbert problem has � linearly independent solutions vanishing at in�nity�

�� Inhomogeneous Boundary Conditions
The solution of the inhomogeneous Hilbert problem is the following�

��z� � X�z�R�z� � �h�z� ���� with R�z� �


�� i

Z
�

g�y�dy

X��y��y � z�
� �����

If � � � holds� for the existence of a solution vanishing at in�nity the following necessary and su�cient
conditions must be ful�lled�Z

�

ykg�y�dy

X��y�
� � �k � �� � � � � ���� �� �����

�������� Solution of the Characteristic Integral Equation

�� Homogeneous Characteristic Integral Equation
If �h�z� is the solution of the corresponding homogeneous Hilbert problem� from ����a� we have the
solution of the homogeneous integral equation

�h�x� � ��
h �x�� ��h �x�� x � �� ����a�

For � � � only the trivial solution �h�x� � � exists� For � � � the general solution is

�h�x� �  X��x��X��x�!P����x� ����b�

with a polynomial P��� of degree at most �� �

�� Inhomogeneous Characteristic Integral Equation
If ��z� is a general solution of the inhomogeneous Hilbert problem� the solution of the inhomogeneous
integral equation can be given by ����a��

��x� � ���x�� ���x� ����a�

� X��x�R��x��X��x�R��x� � ��
h �x�� ��h �x�� x � �� ����b�

Using the formulas of Plemelj and Sochozki ����c� for R�z� we have

R��x� �


�

g�x�

X��x�
�
�
H g

X�

�
�x�� R��x� � �

�

g�x�

X��x�
�
�
H g

X�

�
�x� � ����c�

Substituting ����c� into ����a� and considering ����b� and g�x� � f�x���a�x� � b�x�� �nally
results in the the solution�

��x� �
X��x� � X��x�

��a�x� � b�x��X��x�
f�x�

��X��x��X��x��


�� i

Z
�

f�y�

�a�y� � b�y��X��y��y � x�
dy � �h�x�� x � �� �����

According to ����� in the case � � � the following relations must hold simultaneously in order to
ensure the existence of a solution�Z

�

ykf�y�

�a�y� � b�y��X��y�
dy � � �k � �� � � � � ���� �� �����
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The characteristic integral equation is given with constant coe�cients a and b�

a��x� �
b

� i

Z
�

��y�

y � x
dy � f�x�� Here � is a simple closed curve� i�e�� � � �� �n � ��� From ����b�

we get G �
a� b

a � b
and g�x� �

f�x�

a � b
� G is a constant� consequently � � �� Therefore� +�x� �  and

G� � G �
a� b

a � b
� I�z� � log

a� b

a � b



��i

Z
�



y � z
dy �

��� log
a� b

a � b
� z � S��

�� z � S��

X�z� �

�����
a� b

a � b
� z � S��

� z � S��
i�e�� X� �

a� b

a � b
� X� � �

Since � � � holds� the homogeneous Hilbert boundary value problem has only the function �h�z� � �
as the solution vanishing at in�nity� From ����� we have

��x� �
X� � X�

��a � b�X�
f�x� �

X� �X�

��a � b�X�



� i

Z
�

f�y�

y � x
dy �

a

a� � b�
f�x�� b

a� � b�


� i

Z
�

f�y�

y � x
dy�
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�� FunctionalAnalysis

�� Functional Analysis
Functional analysis arose after the recognition of a common structure in di�erent disciplines such as
the sciences� engineering and economics� General principles were discovered that resulted in a common
and uni�ed approach in calculus� linear algebra� geometry� and other mathematical �elds� showing their
interrelations�

�� In�nite Dimensional Spaces
There are many problems� the mathematical modeling of which requires the introduction of in�nite
systems of equations or inequalities� Di�erential or integral equations� approximation� variational or
optimization problems could not be treated by using only �nite dimensional spaces�

�� Linear and Non�Linear Operators
In the �rst phase of applying functional analysis � mainly in the �rst half of the twentieth century
� linear or linearized problems were thoroughly examined� which resulted in the development of the
theory of linear operators� More recently the application of functional analysis in practical problems
required the development of the theory of non�linear operators� since more and more problems had
to be solved that could be described only by non�linear methods� Functional analysis is increasingly
used in solving di�erential equations� in numerical analysis and in optimization� and its principles and
methods became a necessary tool in engineering and other applied sciences�

�� Basic Structures
In this chapter only the basic structures will be introduced� and only the most important types of
abstract spaces and some special classes of operators in these spaces will be discussed� The abstract
notion will be demonstrated by some examples� which are discussed in detail in other chapters of this
book� and the existence and uniqueness theorems of the solutions of such problems are stated and
proved there� Because of its abstract and general nature it is clear that functional analysis o�ers a large
range of general relations in the form of mathematical theorems that can be directly used in solving a
wide variety of practical problems�

���� VectorSpaces

������ Notion of aVector Space
A non�empty set V is called a vector space or linear space over the �eld IF of scalars if there exist two
operations on V � addition of the elements and multiplication by scalars from IF � such that they have
the following properties�

� for any two elements x� y � V� there exists an element z � x � y � V� which is called their sum�

� For every x � V and every scalar �number� � � IF there exists an element �x � V� the product of x
and the scalar � so that the following properties� the axioms of vector spaces �see also ������� p� ����
are satis�ed for arbitrary elements x� y� z � V and scalars �� � � IF�

�V�� x � �y � z� � �x � y� � z� ����

�V�� There exists an element � � V� the zero element� such that x � � � x� �����

�V�� To every vector x there is a vector � x such that x � ��x� � �� �����

�V�� x � y � y � x� �����

�V��  � x � x� � � x � �� �����

�V�� ���x� � ����x� �����

�V�� �� � ��x � �x � �x� �����

�V�� ��x � y� � �x � �y� �����



���� Vector Spaces �
�

V is called a real or complex vector space� depending on whether IF is the �eld IR of real numbers or the
�eld C of complex numbers� The elements of V are called either points or� according to linear algebra�
vectors� In functional analysis� we do not use the vector notation �x or x�

We can also de�ne in V the di�erence x � y of two arbitrary vectors x� y � V as x � y � x � ��y��
From the previous de�nition� it follows that the equation x�y � z can be solved uniquely for arbitrary
elements y and z� The solution is x � z � y� Further properties follow from axioms �V����V���

� the zero element is uniquely de�ned�

� �x � �x and x �� �� imply � � ��

� �x � �y and � �� �� imply x � y�

� ���x� � � � ��x��

������ Linear andA�neLinear Subsets

�� Linear Subsets
A non�empty subset V� of a vector space V is called a linear subspace or a linearmanifold of V if together
with two arbitrary elements x� y � V� and two arbitrary scalars �� � � IF� their linear combination
�x � �y is also in V�� V� is a vector space in its own right� and therefore satis�es the axioms �V���
�V��� The subspace V� can be V itself or only the zero point� In these cases the subspace is called
trivial�

�� A�ne Subspaces
A subset of a vector space V is called an a�ne linear subspace or an a�ne manifold if it has the form

fx� � y � y � V�g� �����

where x� � V is a given element and V� is a linear subspace� It can be considered �in the case x� �� ��

as the generalization of the lines or planes not passing through the origin in IR��

�� The Linear Hull
The intersection of an arbitrary number of subspaces in V is also a subspace� Consequently� for every
non�empty subset E � V� there exists a smallest linear subset lin�E� or  E! in V containing E� namely
the intersection of all the linear subspaces� which contain E� The set lin�E� is called the linear hull of
the set E� or the linear subspace generated by the set E� It coincides with the set of all ��nite� linear
combinations

��x� � ��x� � � � � � �nxn� �����

comprised of elements x�� x�� � � � � xn � E and scalars ��� ��� � � � � �n � IF�

�� Examples for Vector Spaces of Sequences

AVector Space IFn� Let n be a given natural number and V the set of all n�tuples� i�e�� all �nite
sequences consisting of n scalar terms f���� � � � � �n� � �i � IF� i � � � � � � ng� The operations will be
de�ned componentwise or termwise� i�e�� if x � ���� � � � � �n� and y � ���� � � � � �n� are two arbitrary ele�
ments from V and � is an arbitrary scalar� � � IF� then

x � y � ��� � ��� � � � � �n � �n�� ���a� � � x � ����� � � � � ��n�� ���b�

In this way� we get the vector space IFn� In the special case of n �  we get the linear spaces IR or C�
This example can be generalized in two di�erent ways �see examples B and C��

BVectorSpace s of all Sequences� If we consider the in�nite sequences as elements x � f�ng�n���
�n � IF and de�ne the operations componentwise� similar to ���a� and ���b�� then we get the vec�
tor space s of all sequences�

C Vector Space ��also c��� of all Finite Sequences� Let V be the subset of all elements of
s containing only a �nite number of non�zero components� where the number of non�zero components
depends on the element� This vector space � the operations are again introduced termwise � is denoted
by � or also by c��� and it is called the space of all �nite sequences of numbers�
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D Vector Space m �also l�� of all Bounded Sequences� A sequence x � f�ng�n�� belongs
tom if and only if there exists Cx � � with j�nj � Cx� �n � � �� � � � � This vector space is also denoted
by l��

E Vector Space c of all Convergent Sequences� A sequence x � f�ng�n�� belongs to c if and
only if there exists a number �� � IF such that for � � � � there exists an index n� � n���� such that
for all n � n� one has j�n � ��j � � �see ����� p� �����

F Vector Space c� of all Null Sequences� The vector space c� of all null sequences� i�e�� the
subspace of c consisting of all sequences converging to zero ��� � ���

GVector Space lp� The vector space of all sequences x � f�ng�n�� such that
P�
n�� j�njp is conver�

gent� is denoted by lp � � p ����
It can be shown by the Minkowski inequality that the sum of two sequences from lp also belongs to lp�
�see ������� p� ����

Remark� For the vector spaces introduced in examples A�G� the following inclusions hold�

� � c� � c �m � s and � � lp � lq � c�� where  � p � q ��� �����

�� Examples of Vector Spaces of Functions

AVector Space F�T �� Let V be the set of all real or complex valued functions de�ned on a given
set T � where the operations are de�ned pointwise� i�e�� if x � x�t� and y � y�t� are two arbitrary
elements of V and � � IF is an arbitrary scalar� then we de�ne the elements �functions� x � y and � � x
by the rules

�x � y��t� � x�t� � y�t� � t � T� ����a�

��x��t� � � � x�t� � t � T� ����b�

We denote this vector space by F�T ��
We introduce some of its subspaces in the following examples�

BVector Space B�T � orM�T �� The space B�T � is the space of all functions bounded on T � This
vector space is often denoted by M�T �� In the case of T � IN� we get the space M�IN� � m from
example D of the previous paragraph�

C Vector Space C��a� b��� The set C� a� b!� of all functions continuous on the interval  a� b! �see
������ p� ����

D Vector Space C�k���a� b��� Let k � IN� k 	 � The set C�k�� a� b!� of all functions k�times
continuously di�erentiable on  a� b! �see ��� p� �������� is a vector space� At the endpoints a and
b of the interval  a� b!� the derivatives have to be considered as right�hand and left�hand derivatives�
respectively�

Remark� For the vector spaces of examples A�D of this paragraph� and T �  a� b! the following
subspace relations hold�

C�k�� a� b!� � C� a� b!� � B� a� b!� � F� a� b!�� �����

E Vector Subspace of C� a� b!�� For any given point t� �  a� b!� the set fx � C� a� b!�� x�t�� � �g
forms a linear subspace of C� a� b!��

������ Linearly Independent Elements
�� Linear Independence
A �nite subset fx�� � � � � xng of a vector space V is called linearly independent if

��x� � � � �� �nxn � � implies �� � � � � � �n � �� �����

Otherwise� it is called linearly dependent� If �� � � � � � �n � �� then for arbitrary vectors x�� � � � � xn
from V� the vector ��x� � � � � � �nxn is trivially the zero element of V� Linear independence of the
vectors x�� � � � � xn means that the only way to produce the zero element � � ��x� � � � ���nxn is when
all coe�cients are zero �� � � � � � �n � �� This important notion is well known from linear algebra
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�see �������� p� ��� and was used for the de�nition of a fundamental system of homogeneous di�erential
equations �see ������� �� p� ����� An in�nite subset E � V is called linearly independent if every �nite
subset of E is linearly independent� Otherwise� E is called linearly dependent�

If we denote by ek the sequence whose k�th term is equal to  and all the others are �� then ek is in
the space � and consequently in any space of sequences� The set fe�� e�� � � �g is linearly independent in
every one of these spaces� In the space C� �� �!�� e�g�� the system of functions

� sinnt� cosnt �n � � �� �� � � ��

is linearly independent� but the functions � cos �t� cos� t are linearly dependent �see ������� p� ����

�� Basis and Dimension of a Vector Space
A linearly independent subset B from V� which generates the whole space V� i�e�� lin�B� � V holds� is
called an algebraic basis or a Hamel basis of the vector space V �see �������� p� ���� B � fx� � � � 0g
is a basis of V if and only if every vector x � V can be written in the form x �

P
���

��x�� where the

coe�cients �� are uniquely determined by x and only a �nite number of them �depending on x� can be
di�erent from zero� Every non�trivial vector space V� i�e�� V �� f�g� has at least one algebraic basis�
and for every linearly independent subset E of V� there exists at least one algebraic basis of V� which
contains E�

A vector space V is m�dimensional if it possesses a basis consisting of m vectors� That is� there exist
m linearly independent vectors in V� and every system of m �  vectors is linearly dependent�

A vector space is in�nite dimensional if it has no �nite basis� i�e�� if for every natural number m there
are m linearly independent vectors in V�

The space IFn is n�dimensional� and all the other spaces in examplesB�E are in�nite dimensional� The
subspace lin�f� t� t�g� � C� a� b!� is three�dimensional�

In the �nite dimensional case� every two bases of the same vector space have the same number of ele�
ments� Also in an in�nite dimensional vector space any two bases have the same cardinality� which is
denoted by dim�V�� The dimension is an invariant quantity of the vector space� it does not depend on
the particular choice of an algebraic basis�

������ Convex Subsets and theConvexHull

�������� Convex Sets
A subset C of a real vector space V is called convex if for every pair of vectors x� y � C all vectors of
the form �x � � � ��y� � � � � � also belong to C� In other words� the set C is convex� if for any
two elements x and y� the whole line segment

f�x � �� ��y � � � � � g� �����

�which is also called an interval�� belongs to C� �For examples of convex sets in IR� see the sets denoted
by A and B in Fig ���� p� �����

The intersection of an arbitrary number of convex sets is also a convex set� where the empty set is agreed
to be convex� Consequently� for every subset E � V there exists a smallest convex set which contains
E� namely� the intersection of all convex subsets of V containing E� It is called the convex hull of the
set E and it is denoted by co �E�� co �E� is identical to the set of all �nite convex linear combinations
of elements from E� i�e�� co �E� consists of all elements of the form ��x� � � � �� �nxn� where x�� � � � � xn
are arbitrary elements from E and �i �  �� ! satisfy the equality �� � � � �� �n � � Linear and a�ne
subspaces are always convex�

�������� Cones
A non�empty subset C of a �real� vector space V is called a convex cone if it satis�es the following
properties�

� C is a convex set�
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� From x � C and � 	 �� it follows that �x � C�

� From x � C and �x � C� it follows that x � ��

A cone can be characterized also by � together with

x� y � C and �� � 	 � imply �x � �y � C� �����

A� The set IRn
� of all vectors x � ���� � � � � �n� with non�negative components is a cone in IRn�

B� The set C� of all real continuous functions on  a� b! with only non�negative values is a cone in
the space C� a� b!��

C� The set of all sequences of real numbers f�ng�n�� with only non�negative terms� i�e�� �n 	 �� �n�
is a cone in s� Analogously we obtain cones in the spaces of examples C�G on p� ���� if we consider the
sets of non�negative sequences in these spaces�

D� The set C � lp � � p ���� consisting of all sequences f�ng�n��� such that for some a � �
�X
n��

j�njp � a �����

is a convex set in lp� but obviously� not a cone�

E� Examples from IR� see Fig ���� a� convex set� not a cone� b� not convex� c� convex hull�
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������ LinearOperators andFunctionals

�������� Mappings
A mapping T � D � Y from the set D � X into the set Y is called

� injective� if

T �x� � T �y� �� x � y� �����

� surjective� if for

� y � Y there exists an element x � D such that T �x� � y� ������

� bijective� if T is both injective and surjective�

D is called the domain of the mapping T and is denoted by DT or D�T �� while the subset fy � Y �
� x � DT with T �x� � yg of Y is called the range of the mapping T and is denoted byR�T � or Im�T ��

�������� Homomorphism and Endomorphism
Let X and Y be two vector spaces over the same �eld IF and D a linear subset of X� A mapping T �
D � Y is called linear �or a linear transformation� linear operator or homomorphism�� if for arbitrary
x� y � D and �� � � IF�

T ��x � �y� � �Tx � �Ty� �����

For a linear operator T we prefer the notation Tx� which is similarly used for linear functions� while
the notation T �x� is used for general operators� N�T � � fx � X � Tx � �g is the null space or kernel
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of the operator T and is also denoted by ker�T �� A mapping of the vector space X into itself is called
an endomorphism� If T is an injective linear mapping� then the mapping de�ned on R�T � by

y +� x� such that Tx � y� y � R�T � ������

is linear� It is denoted by T��� R�T � � X and is called the inverse of T � If Y is the vector space IF�
then a linear mapping f� X � IF is called a linear functional or a linear form�

�������� Isomorphic Vector Spaces
A bijective linear mapping T � X � Y is called an isomorphism of the vector spaces X and Y� Two
vector spaces are called isomorphic provided an isomorphism exists�

������ Complexi
cation ofRealVector Spaces

Every real vector space V can be extended to a complex vector space 'V� The set 'V consists of all pairs
�x� y� with x� y � V� The operations �addition and multiplication by a complex number a � ib � C�
are de�ned as follows�

�x�� y�� � �x�� y�� � �x� � x�� y� � y��� �����a�

�a � ib��x� y� � �ax� by� bx � ay�� �����b�

Since the special relations

�x� y� � �x� �� � ��� y� and i�y� �� � �� � i��y� �� � �� � y �  � �� y � � � �� � ��� y� ������

hold� the pair �x� y� can also be written as x � iy� The set 'V is a complex vector space� where the set

V is identi�ed with the linear subspace 'V� � f�x� ��� x � Vg� i�e�� x � V is considered as �x� �� or as
x � i��
This procedure is called the complexi�cation of the vector space V� A linearly independent subset in V

is also linearly independent in 'V� The same statement is valid for a basis in V� so dim�V� � dim�'V��

������ OrderedVector Spaces

�����	�� Cone and Partial Ordering
If a cone C is �xed in a vector space V� then an order can be introduced for certain pairs of vectors in
V� Namely� if x � y � C for some x� y � V then we write x 	 y or y � x and say x is greater than
or equal to y or y is smaller than or equal to x� The pair �V� C� is called an ordered vector space or a
vector space partially ordered by the cone C� An element x is called positive� if x 	 � or� which means
the same� if x � C holds� Moreover

C � fx � V� x 	 �g� ������

If we consider the vector space IR� ordered by its �rst quadrant as the cone C�� IR�
��� then a typical

phenomenon of ordered vector spaces will be seen� This is referred to as 	partially ordered
 or some�
times as 	semi�ordered
� Namely� only several pairs of two vectors are comparable� Considering the
vectors x � ���� and y � ��� ��� neither the vector x � y � ����� nor y � x � ��� �� is in C� so
neither x 	 y nor x � y holds� An ordering in a vector space� generated by a cone� is always only a
partial ordering�

It can be shown that the binary relation 	 has the following properties�

�O�� x 	 x � x � V �re�exivity�� ������

�O�� x 	 y and y 	 z imply x 	 z �transitivity�� ������

�O�� x 	 y and � 	 �� � � IR� imply �x 	 �y� ������

�O�� x� 	 y� and x� 	 y� imply x� � x� 	 y� � y�� ������
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Conversely� if in a vector space V there exists an ordering relation� i�e�� a binary relation 	 is de�ned
for certain pairs of elements and satis�es axioms �O����O��� and if one puts

V� � fx � V� x 	 �g� ������

then it can be shown that V� is a cone� The order 	V� in V induced by V� is identical to the original
order 	� consequently� the two possibilities of introducing an order in a vector space are equivalent�
A cone C � X is called generating or reproducing if every element x � X can be represented as x �
u� v with u� v � C� We also write X � C�C�

A� An obvious order in the space s �see example B� p� ���� is induced by means of the cone

C � fx � f�ng�n�� � �n 	 � � ng �����

�see example C� p� �����

We usually consider the natural coordinatewise order in the spaces of sequences �see ������ p �����
This is de�ned by the cone obtained as the intersection of the considered space with C �see ������
p� ����� The positive elements in these ordered vector spaces are then the sequences with non�negative
terms� It is clear that we can de�ne other orders by other cones� as well� Then we obtain orderings
di�erent from the natural ordering �see  ���!�  ���!��

B� In the real spaces of functions F�T �� B�T �� C� a� b!� and C�k�� a� b!� �see ����� �� p� ����� we
de�ne the natural order x 	 y for two functions x and y by x�t� 	 y�t�� � t � T� or � t �  a� b!�
Then x 	 � if and only if x is a non�negative function in T � The corresponding cones are denoted by
F��T �� B��T �� etc� We can also obtain C� � C��T � � F��T � � C�T � if T �  a� b!�

�����	�� Order Bounded Sets
Let E be an arbitrary non�empty subset of an ordered vector space V� An element z � V is called
an upper bound of the set E if for every x � E� x � z� An element u � V is a lower bound of E if
u � x� � x � E� For any two elements x� y � V with x � y� the set

 x� y! � fv � V� x � v � yg ������

is called an order interval or �o��interval�

Obviously� the elements x and y are a lower bound and an upper bound of the set  x� y!� respectively�
where they even belong to the set� A set E � V is called order bounded or simply �o��bounded� if E is a
subset of an order interval� i�e�� if there exist two elements u� z � V such that u � x � z� � x � E or�
equivalently� E �  u� z!� A set is called bounded above or bounded below if it has an upper bound� or a
lower bound� respectively�

�����	�� Positive Operators
A linear operator �see  ���!�  ���!� T � X � Y from an ordered vector space X � �X�X�� into an
ordered vector space Y � �Y� Y�� is called positive� if

T �X�� � Y�� i�e�� Tx 	 � for all x 	 �� ������

�����	�� Vector Lattices

�� Vector Lattices
In the vector space IR� of the real numbers the notions of �o��boundedness and boundedness �in the
usual sense� are identical� It is known that every set of real numbers which is bounded from above
has a supremum� the smallest of its upper bounds �or the least upper bound� sometimes denoted by
lub�� Analogously� if a set of reals is bounded from below� then it has an in�mum� the greatest lower
bound� sometimes denoted by glb� In a general ordered vector space� the existence of the supremum
and in�mum cannot be guaranteed even for �nite sets� They must be given by axioms� An ordered
vector space V is called a vector lattice or a linear lattice or a Riesz space� if for two arbitrary elements
x� y � V there exists an element z � V with the following properties�

� x � z and y � z�

� if u � V with x � u and y � u� then z � u�
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Such an element z is uniquely determined� is denoted by x � y� and is called the supremum of x and y
�more precisely� supremum of the set consisting of the elements x and y�� In a vector lattice� there also
exists the in�mum for any x and y� which is denoted by x� y� For applications of positive operators in
vector lattices see� e�g��  ���!�  ���!  ���!�

A vector lattice in which every non�empty subset E that is order bounded from above has a supremum
lub�E� �equivalently� if every non�empty subset that is order bounded from below has an in�mum
glb�E�� is called Dedekind complete or a K�space �Kantorovich space��
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A� In the vector lattice F� a� b!� �see ����� �� p� ����� the
supremum of two functions x� y is calculated pointwise by the for�
mula

�x � y��t� � maxfx�t�� y�t�g � t �  a� b!� ������

In the case of  a� b! �  �� !� x�t� � � �
�
t and y�t� � t� �Fig �����

we get

�x � y��t� �

�
� �

�
t� if � � t � �

�
�

t�� if �
�
� t � �

������

B� The spaces C� a� b!� and B� a� b!� �see ����� �� p� ���� are

also vector lattices� while the ordered vector space C���� a� b!� is not
a vector lattice� since the minimum or maximum of two di�erentiable
functions may not be di�erentiable on  a� b!� in general�

A linear operator T � X � Y from a vector lattice X into a vector
lattice Y is called a vector lattice homomorphism or homomorphism
of the vector lattice� if for all x� y � X

T �x � y� � Tx � Ty and T �x � y� � Tx � Ty� ������

�� Positive and Negative Parts� Modulus of an Element
For an arbitrary element x of a vector lattice V� the elements

x� � x � �� x� � ��x� � � and jxj � x� � x� ������

are called the positive part� negative part� and modulus of the element x� respectively� For every element
x � V� the three elements x�� x�� jxj are positive� where for x� y � V the following relations are valid�

x � x� � jxj� x � x� � x�� x� � x� � �� jxj � x � ��x�� �����a�

�x � y�� � x� � y�� �x � y�� � x� � y�� jx � yj � jxj� jyj� �����b�

x � y implies x� � y� and x� 	 y� �����c�

and for arbitrary � 	 �

��x�� � �x�� ��x�� � �x�� j�xj � �jxj� �����d�

a
0 bx(t)

a
0 bx (t)+ a0 b a0 bx (t)- |x|(t)

Figure ���

In the vector spaces F� a� b!� and C� a� b!�� we get the positive part� the negative part� and the modulus
of a function x�t� by means of the following formulas �Fig �����
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x��t� �
�
x�t�� if x�t� 	 ��

�� if x�t� � ��
�����a�

x��t� �
�

�� if x�t� � ��
�x�t�� if x�t� � ��

�����b� jxj�t� � jx�t�j � t �  a� b!� �����c�

���� Metric Spaces

������ Notion of aMetric Space
Let X be a set� and suppose a real� non�negative function ��x� y� �x� y � X� is de�ned on X � X� If

this function � � X� X � IR�
� satis�es the following properties �M����M�� for arbitrary elements

x� y� z � X� then it is called a metric or distance in the set X� and the pair X � �X� �� is called a metric
space� The axioms of metric spaces are�

�M�� ��x� y� 	 � and ��x� y� � � if and only if x � y �non�negativity�� ������

�M�� ��x� y� � ��y� x� �symmetry�� �����

�M�� ��x� y� � ��x� z� � ��z� y� �triangle inequality�� ������

A metric can be de�ned on every subset Y of a metric space X � �X� �� in a natural way if we restrict
the metric � of the space X to the set Y� i�e�� if we consider � only on the subset Y�Y� The space �Y� ��
of X� X is called a subspace of the metric space X�

A� The sets IRn and Cn are metric spaces with the Euclidean metric de�ned for points
x � ���� � � � � �n� and y � ���� � � � � �n� as

��x� y� �

vuut nX
k��

j�k � �kj�� ������

B� The function

��x� y� � max
�
k
n

j�k � �kj ������

for vectors x � ���� � � � � �n� and y � ���� � � � � �n� also de�nes a metric in IRn and Cn� the so�called

maximum metric� If 'x � � '��� � � � � '�n� is an approximation of the vector x� then it is of interest to know

how much is the maximal deviation between the coordinates� max
�
k
n

j�k � '�kj�
The function

��x� y� �
nX
k��

j�k � �kj ������

for vectors x� y � IRn �or Cn� de�nes a metric in IRn and C� the so�called absolute value metric� The
metrics ������� ������ and ������ are reduced in the case of n �  to the absolute value jx� yj in the

spaces IR � IR� and C �the sets of real and complex numbers��

C� Finite �� sequences� e�g�� � and ���� are called words in coding theory� If we count
the number of positions where two words of the same length n have di�erent digits� i�e�� for x �
���� � � � � �n�� y � ���� � � � � �n�� �k� �k � f�� g� we de�ne ��x� y� as the number of the k � f� � � � � ng
values such that �k �� �k� then the set of words with a given length n is a metric space� and the metric
is the so�called Hamming distance� e�g�� ������ ������ � ��

D� In the set m and in its subsets c and c� �see ������ p� ���� a metric is de�ned by

��x� y� � sup
k
j�k � �kj� �x � ���� ��� � � ��� y � ��� ��� � � ���� ������
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E� In the set lp � � p ��� of sequences x � ���� ��� � � �� with absolutely convergent series
�P
n��
j�njp

a metric is de�ned by

��x� y� � p

vuut �X
n��

j�n � �njp� �x� y � lp�� ������

F� In the set C� a� b!� a metric is de�ned by

��x� y� � max
t��a�b�

jx�t�� y�t�j� ������

G� In the set C�k�� a� b!� a metric is de�ned by

��x� y� �
kX
l��

max
t��a�b�

jx�l��t�� y�l��t�j� ������

where �see ����� C���� a� b!� is understood as C� a� b!���

H� Consider the set Lp�)� � � p ��� of the equivalence classes of Lebesgue measurable functions

which are de�ned almost everywhere on a bounded domain ) � IRn and
Z
�

jx�t�jp d� � � �see also

���� p� ����� A metric in this set is de�ned by

��x� y� � p

vuutZ
�

jx�t�� y�t�jp d�� ������

�������� Balls� Neighborhoods andOpen Sets
In a metric space X � �X� ��� whose elements are also called points� the following sets

B�x�� r� � fx � X � ��x� x�� � rg� ����� B�x�� r� � fx � X � ��x� x�� � rg ������

de�ned by means of a real number r � � and a �xed point x�� are called an open and closed ball with
radius r and center at x�� respectively�
The balls �circles� de�ned by the metrics ������ and ������ and ������ in the vector space IR� are
represented in Fig ���a�b with x� � � and r � �
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A subset U of a metric space X � �X� �� is called a neighborhood of the point x� ifU contains x� together
with an open ball centered at x�� in other words� if there exists an r � � such that B�x�� r� � U � A
neighborhood U of the point x is also denoted by U�x�� Obviously� every ball is a neighborhood of its
center� an open ball is a neighborhood of all of its points� A point x� is called an interior point of a set
A � X if x� belongs to A together with some of its neighborhood� i�e�� there is a neighborhood N of x�
such that x� � U � A� A subset of a metric space is called open if all of its points are interior points�
Obviously� X is an open set�
The open balls in every metric space� especially the open intervals in IR� are the prototypes of open sets�
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The set of all open sets satis�es the following axioms of open sets�

� If G� is open for �� � I� then the set
S
��I

G� is also open�

� If G�� G�� � � � � Gn are �nitely many arbitrary open sets� then the set
nT
k��

Gk is also open�

� The empty set � is open by de�nition�

A subset A of a metric space is bounded if for a certain element x� �which does not necessarily belong
to A� and a real number R � � the set A is in the ball B�x��R�� i�e�� ��x� x�� � R for all x � A�

�������� Convergence of Sequences inMetric Spaces
Let X � �X� �� be a metric space� x� � X and fxng�n��� xn � X a sequence of elements of X�
The sequence fxng�n�� is said to be convergent to the point x� if for every neighborhood U�x�� there is
an index n� � n��U�x��� such that for all n � n�� xn � U�x��� We use the usual notation

xn  x� �n�� or lim
n��xn � x� ������

and call the point x� the limit of the sequence fxng�n��� The limit of a sequence is uniquely determined�
Instead of an arbitrary neighborhood of the point x�� it is su�cient to consider only open balls with
arbitrary radii� so ������ is equivalent to the following� � � � � �we are at once thinking about the
open ball B�x�� ���� there is an index n� � n����� such that if n � n�� then ��xn� x�� � �� Notice that
������ means ��xn� x�� ��

With these notions introduced in special metric spaces we can calculate the distance between points
and investigate the convergence of point sequences� This has a great importance in numerical methods
and in approximating functions by certain classes of functions �see� e�g�� ���� p� ����
In the space IRn� equipped with one of the metrics given above� convergence always means coordinate�
wise convergence�
In the spaces B� a� b!� and C� a� b!�� the convergence introduced by ������ means uniform convergence
of the function sequence on the set  a� b! �see ������ p� ����
In the space L��)� convergence with respect to the metric ������ means convergence in the �quadratic�
mean� i�e�� xn  x� ifZ

�

jxn � x�j� d� � for n� � ������

�������� Closed Sets andClosure

�� Closed Sets
A subset F of a metric space X is called closed if X n F is an open set� Every closed ball in a metric
space� especially every interval of the form  a� b!�  a���� ���� a! in IR� is a closed set�
Corresponding to the axioms of open sets� the collection of all closed sets of a metric space has the
following properties�

� If F� are closed for �� � I� then the set
T
��I

F� is closed�

� If F�� � � � � Fn are �nitely many closed sets� then the set
nS
k��

Fk is closed�

� The empty set � is a closed set by de�nition�
The sets � and X are open and closed at the same time�
A point x� of a metric space X is called a limit point of the subset A � X if for every neighborhood
U�x���

U�x�� � A �� �� ������

If this intersection always contains at least one point di�erent from x�� then x� is called an accumulation
point of the set A� A limit point� which is not an accumulation point� is called an isolated point�
An accumulation point of A does not need to belong to the set A� e�g�� the point a with respect to the
set A � �a� b!� while an isolated point of A must belong to the set A�
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A point x� is a limit point of the set A if there exists a sequence fxng�n�� with elements xn from A� which
converges to x�� If x� is an isolated point� then xn � x�� � n 	 n� for some index n��

�� The Closure of a Set
Every subset A of a metric space X obviously lies in the closed set X� Therefore� there always exists a
smallest closed set containing A� namely the intersection of all closed sets of X� which contain A� This
set is called the closure of the set A and it is usually denoted by A� A is identical to the set of all limit
points of A� we get A from the set A by adding all of its accumulation points to it� A is a closed set if
and only if A � A� Consequently� closed sets can be characterized by sequences in the following way� A
is closed if and only if for every sequence fxng�n�� of elements of A� which converges in X to an element
x��� X�� the limit x� also belongs to A�

Boundary points of A are de�ned as follows� x� is a boundary point of A if for every neighborhood
U�x��� U�x�� � A �� � and also U�x�� � �X n A� �� �� x� itself does not need to belong to A� Another
characterization of a closed set is the following� A is closed if it contains all of its boundary points� �The
set of boundary points of the metric space X is the empty set��

�������� Dense Subsets and SeparableMetric Spaces
A subset A of a metric space X is called everywhere dense if A � X� i�e�� each point x � X is a limit
point of the set A� That is� for each x � X� there is a sequence fxng xn � A such that xn  x�

A� According to the Weierstrass approximation theorem� every continuous function on a bounded
closed interval  a� b! can be approximated arbitrarily well by polynomials in the metric space of the
space C� a� b!�� i�e�� uniformly� This theorem can now be formulated as follows� The set of polynomials
on the interval  a� b! is everywhere dense in C� a� b!��

B� Further examples for everywhere dense subsets are the set of rational numbers Q and the set of
irrational numbers in the space of the real numbers IR �

A metric space X is called separable if there exists a countable everywhere dense subset in X� A count�
able everywhere dense subset in IRn is� e�g�� the set of all vectors with rational components� The space
l � l� is also separable� since a countable everywhere dense subset is formed� for example� by the set of
its elements of the form x � �r�� r�� � � � � rN � �� �� � � �� � where ri are rational numbers and N � N�x� is
an arbitrary natural number� The space m is not separable�

������ CompleteMetric Spaces

�������� Cauchy Sequences
Let X � �X� �� be a metric space� A sequence fxng�n�� with xn � X is called a Cauchy sequence if for
� � � � there is an index n� � n���� such that for � n�m � n� there holds the inequality

��xn� xm� � �� ������

Every Cauchy sequence is a bounded set� Furthermore� every convergent sequence is a Cauchy se�
quence� In general� the converse statement is not true� as is shown in the following example�

Consider the space l� with the metric ������ of the space m� Obviously� the elements x�n� ��
�



�
�



�
� � � � �



n
� �� �� � � �

�
belong to l� for every n � � �� � � � and the sequence fx�n�g�n�� is a Cauchy

sequence in this space� If the sequence �of sequences� fx�n�g�n�� converges� then it has to be convergent

also coordinate�wise to the element x��� �
�

�


�
�



�
� � � � �



n
�



n � 
� � � �

�
� However� x��� does not belong

to l�� since
�X
n��



n
� �� �see ������ �� p� ���� harmonic series��
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�������� CompleteMetric Spaces
A metric space X is called complete if every Cauchy sequence converges in X� Hence� complete metric
spaces are the spaces for which the Cauchy principle� known from real calculus� is valid� A sequence
is convergent if and only if it is a Cauchy sequence� Every closed subspace of a complete metric space
�considered as a metric space on its own� is complete� The converse statement is valid in a certain way�
If a subspace Y of a �not necessary complete� metric space X is complete� then the set Y is closed in X�

Complete metric spaces are� e�g�� the spaces� m� lp � � p ���� c� B�T �� C� a� b!�� C�k�� a� b!��
Lp�a� b� � � p ����

�������� Some Fundamental Theorems in CompleteMetric Spaces
The importance of complete metric spaces can be illustrated by a series of theorems and principles�
which are known and used in real calculus� and which we want to apply even in the case of in�nite
dimensional spaces�

�� Theorem on Nested Balls
Let X be a complete metric space� If

B�x�� r�� % B�x�� r�� % � � � % B�xn� rn� % � � � ������

is a sequence of nested closed balls with rn � �� then the intersection of all of those balls is non�
empty and consists of only a single point� If this property is valid in some metric space for any sequence
satisfying the assumptions� then the metric space is complete�

�� Baire Category Theorem

Let X be a complete metric space and fFkg�k�� a sequence of closed sets in X with
�S
k��

Fk � X� Then

there exists at least one index k� such that the set Fk� has an interior point�

�� Banach Fixed�Point Theorem
Let F be a non�empty closed subset of a complete metric space �X� ��� Let T� X � X be a contracting
operator on F � i�e�� there exists a constant q �  �� � such that

��Tx� Ty� � q ��x� y� for all x� y � F� ������

Suppose� if x � F � then Tx � F � Then the following statements are valid�

a� For an arbitrary initial point x� � F the iteration

xn�� �� Txn �n � �� � �� � � �� ������

is well de�ned� i�e�� xn � F for every n�

b� The iteration sequence fxng�n�� converges to an element x� � F �

c� Tx� � x�� i�e�� x� is a �xed point of the operator T� ������

d� The only �xed point of T in F is x��
e� The following error estimation is valid�

��x�� xn� � qn

� q
��x�� x��� �����

The Banach �xed�point theorem is sometimes called the contraction mapping principle�

�������� SomeApplications of the ContractionMapping Principle

�� IterationMethod for Solving a System of Linear Equations
The given linear �n� n� system of equations

a��x� �a��x� � � � �� a�nx� � b��
a��x� �a��x� � � � �� a�nxn � b��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
an�x� �an�x� � � � �� annxn � bn

�����a�
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can be transformed according to ����� p� ���� into the equivalent system

x� ��� a���x� �a��x� � � � � �a�nxn � b��
x� �a��x� ��� a���x� � � � � �a�nxn � b��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
xn �an�x� �an�x� � � � � ��� ann�xn � bn�

�����b�

If the operator T � IFn � IFn is de�ned by

Tx �

�
x� �

nX
k��

a�kxk � b�� � � � � xn �
nX
k��

ankxk � bn

�T
� ������

then the last system is transformed into the �xed�point problem

x � Tx ������

in the metric space IFn� where an appropriate metric is considered� The Euclidean ������� the maxi�

mum ������ or the absolute value metric ��x� y� �
nP
k��
jxk � ykj �compare with �������� If one of the

numbersvuut nX
j�k��

jajkj�� max
�
j
n

nX
k��

jajkj� max
�
k
n

nX
j��

jajkj ������

is smaller than one� then T turns out to be a contracting operator� It has exactly one �xed point
according to the Banach �xed�point theorem� which is the componentwise limitof the iteration sequence
started from an arbitrary point of IFn�

�� Fredholm Integral Equations
The Fredholm integral equation of the second kind �see also ��� p� ����

��x��
bZ
a

K�x� y���y� dy � f�x�� x �  a� b! ������

with a continuous kernel K�x� y� and continuous right�hand side f�x� can be solved by iteration� By
means of the operator T � C� a� b!� � C� a� b!� de�ned as

T��x� �

bZ
a

K�x� y���y� dy � f�x� � � � C� a� b!�� ������

it is transformed into a �xed�point problem T� � � in the metric space C� a� b!� �see example A in

����� �� p� ����� If max
a
x
b

Z b

a
jK�x� y�j dy � � then T is a contracting operator and the �xed�point

theorem can be applied� The unique solution is now obtained as the uniform limit of the iteration
sequence f�ng�n��� where �n � T�n��� starting with an arbitrary function ���x� � C� a� b!�� It is clear
that �n � T n�� and the iteration sequence is fT n��g�n���
�� Volterra Integral Equations
The Volterra integral equation of the second kind �see ��� p� ����

��x��
xZ
a

K�x� y���y� dy � f�x�� x �  a� b! ������

with a continuous kernel and a continuous right�hand side can be solved by means of the Volterra
integral operator

�V ���x� ��

xZ
a

K�x� y���y� dy � � � C� a� b!� ������



��� ��� Functional Analysis

and T� � f � V � as the �xed�point problem T� � � in the space C� a� b!��

�� Picard�Lindel�of Theorem
Consider the di�erential equation

,x � f�t� x� ������

with a continuous mapping f � I�G � IRn� where I is an open interval of IR and G is an open domain
of IRn� Suppose the function f satis�es a Lipschitz condition with respect to x �see ����� � p� �����
i�e�� there is a positive constant L such that

��f�t� x��� f�t� x��� � L��x�� x�� � �t� x��� �t� x�� � I �G� �����

where � is the Euclidean metric in IRn� �Using the norm �see ����� p� �� and the formula �����
��x� y� � kx�yk ����� can be written as kf�t� x���f�t� x��k � kx��x�k�� Let �t�� x�� � I�G� Then
there are numbers � � � and r � � such that the set ) � f�t� x� � IR� IRn� jt� t�j � �� ��x� x�� � rg
lies in I � G� Let M � max� ��f�t� x�� �� and � � minf�� r

M
g� Then there is a number b � � such

that for each 'x � B � fx � IRn� ��x� x�� � bg� the initial value problem

,x � f�t� x�� x�t�� � 'x ������

has exactly one solution��t� 'x�� i�e�� ,��t� 'x� � f�t� ��t� 'x�� for �t satisfying jt�t�j � � and ��t�� 'x� � 'x�
The solution of this initial value problem is equivalent to the solution of the integral equation

��t� 'x� � 'x �

tZ
t�

f�s� ��s� 'x�� ds� t �  t� � �� t� � �!� ������

If X denotes the closed ball f��t� x� � d���t� x�� x�� � rg in the complete metric space C� t� � �� t� �
�!�B� IRn� with metric

d��� �� � max
�t�x��fjt�t�j
�gB

����t� x�� ��t� x��� ������

then X is a complete metric space with the induced metric� If the operator T � X � X is de�ned by

T��t� x� � 'x �

tZ
t�

f�s� ��s� 'x�� ds ������

then T is a contracting operator and the solution of the integral equation ������ is the unique �xed
point of T which can be calculated by iteration�

�������� Completion of aMetric Space

Every �non�complete� metric space X can be completed� more precisely� there exists a metric space 'X
with the following properties�

a� 'X contains a subspace Y isometric to X �see ������ �� p� ���

b� Y is everywhere dense in 'X�

c� 'X is a complete metric space�

d� If Z is any metric space with the properties a��c�� then Z and 'X are isometric�

The complete metric space� de�ned uniquely in this way up to isometry� is called the completion of the
space X�

������ ContinuousOperators

�� Continuous Operators
Let T � X � Y be a mapping of the metric space X � �X� �� into the metric space Y � �Y� ��� T is
said to be continuous at the point x� � X if for every neighborhood V � V �y�� of the point y� � T �x��
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there is a neighborhood U � U�x�� such that�

T �x� � V for all x � U� ������

T is called continuous on the set A � X if T is continuous at every point of A� Equivalent properties
for T to be continuous on X are�

a� For any point x � X and any arbitrary sequence fxng�n��� xn � X with xn  x there always holds
T �xn� � T �x�� Hence ��xn� x�� � implies ��T �xn�� T �x��� ��

b� For any open subset G � Y the inverse image T���G� is an open subset in X�

c� For any closed subset F � Y the inverse image T���F � is a closed subset in X�

d� For any subset A � X one has T �A� � T �A��

�� Isometric Spaces
If there is a bijective mapping T � X � Y for two metric spaces X � �X� �� and Y � �Y� �� such that

��x� y� � ��T �x�� T �y�� � x� y � X� ������

then the spaces X and Y are called isometric� and T is called an isometry�

���� NormedSpaces

������ Notion of aNormed Space

�������� Axioms of a Normed Space
Let X be a vector space over the �eld IF� A function k � k � X � IR�

� is called a norm on the vector
space X and the pair X � �X� k � k� is called a normed space over the �eld IF� if for arbitrary elements
x� y � X and for any scalar � � IF the following properties� the so�called axioms of a normed space� are
ful�lled�

�N�� kxk 	 �� and kxk � � if and only if x � �� ������

�N�� k�xk � j�j � kxk �homogenity�� ������

�N�� kx � yk � kxk� kyk �triangle inequality�� ������

A metric can be introduced by means of

��x� y� � kx� yk� x� y � X� �����

in any normed space� The metric ����� has the following additional properties which are compatible
with the structure of the vector space�

��x � z� y � z� � ��x� y�� z � X �����a�

���x� �y� � j�j��x� y�� � � IF� �����b�

So� in a normed space there are available both the properties of a vector space and the properties of a
metric space� These properties are compatible in the sense of �����a� and �����b�� The advantage is
that most of the local investigations can be restricted to the unit ball

B��� � � fx � X � kxk � g or B��� � � fx � X � kxk � g ������

since

B�x� r� � fy � X � ky � xk � rg � x � rB��� �� � x � X and � r � �� ������

Moreover� the algebraic operations in a vector space are continuous� i�e��

xn  x� yn  y� �n  � imply

xn � yn  x � y� �nxn  �x� kxnk  kxk� ������

In normed spaces instead of ������ we may write for convergent sequences

kxn � x�k � � �n��� ������
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�������� Some Properties of Normed Spaces
Among the linear metric spaces� those spaces are normable �i�e�� a norm can be introduced by means
of the metric� if one de�nes kxk � ��x� ��� whose metric satis�es the conditions �����a� and �����b��

Two normed spaces X and Y are called norm isomorphic if there is a bijective linear mapping T � X �
Y with kTxk � kxk for all x � X� Let k � k� and k � k� be two norms on the vector space X� and denote
the corresponding normed spaces by X� and X�� i�e�� X� � �X� k � k�� and X� � �X� k � k���
The norm k � k� is stronger than the norm k � k�� if there is a number � � � such that kxk� � �kxk��
for all x � X� In this case� the convergence of a sequence fxng�n�� to x with respect to the stronger
norm k � k�� i�e�� kxn � xk�  �� implies the convergence to x with respect to the norm k � k�� i�e��
kxn � xk�  ��

Two norms k�k and kj�kj are called equivalent if there are two numbers �� � �� �� � � such that �x � X
there holds ��kxk � kjxkj � ��kxk� In a �nite dimensional vector space all norms are equivalent to
each other�

A subspace of a normed space is a closed linear subspace of the space�

������ Banach Spaces
A complete normed space is called a Banach space� Every normed space X can be completed into a

Banach space 'X by the completion procedure given in �������� p� ��� and by the natural extension of

its algebraic operations and the norm to 'X�

�������� Series in Normed Spaces
In a normed space X we can consider in�nite series� That means for a given sequence fxng�n�� of
elements xn � X a new sequence fskg�k�� is constructed by

s� � x�� s� � x� � x�� � � � � sk � x� � � � �� xk � sk�� � xk� ������

If the sequence fskg�k�� is convergent� i�e�� ksk � sk  � �k �� for some s � X� then a convergent
series is de�ned� The elements s�� s�� � � � � sk� � � � are called the partial sums of the series� The limit

s � lim
k��

kX
n��

xn ������

is the sum of the series� and we write s �
�P
n��

xn� A series
�P
n��

xn is called absolutely convergent if the

number series
�P
n��
kxnk is convergent� In a Banach space every absolutely convergent series is conver�

gent� and ksk � �P
n��
kxnk holds for its sum s�

�������� Examples of Banach Spaces

A � IFn with kxk �

�
nX
k��

j�kjp
� �

p

� if  � p ��� kxk � max
�
k
n

j�kj� if p ��� �����a�

These normed spaces over the same vector space IFn are often denoted by lp�n� � � p � ��� For
 � p � �� we call them Euclidean spaces in the case of IF � IR� and unitary spaces in the case of
IF � C�

B � m with kxk � sup
k
j�kj� �����b�

C � c and c� with the norm from m� �����c�

D � lp with kxk � kxkp �

� �X
n��

j�njp
� �

p

� � p ���� �����d�
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E � C� a� b!� with kxk � max
t��a�b�

jx�t�j� �����e�

F � Lp��a� b�� � � p ��� with kxk � kxkp �

�� bZ
a

jx�t�jp dt
�A

�
p

� �����f�

G � C�k�� a� b!� with kxk �
kX
l��

max
t��a�b�

jx�l��t�j� where x����t� stands for x�t�� �����g�

�������� Sobolev Spaces
Let ) � IRn be a bounded domain� i�e�� an open connected set� with a su�ciently smooth boundary
�)� For n �  or n � �� � we can imagine ) being something similar to an interval �a� b� or a convex
set�
A function f � ) � IR is k�times continuously di�erentiable on the closed domain ) if f is k�times
continuously di�erentiable on ) and each of its partial derivatives has a �nite limit on the boundary�
i�e�� if x approaches an arbitrary point of �)� In other words� all partial derivatives can be continuously
extended on the boundary of )� i�e�� each partial derivative is a continuous function on )� In this vector
space �for p �  ���� and with the Lebesgue measure � in IRn �see example C in ����� �� p� ���� the
following norm is de�ned�

kfkk�p � kfk �

�B�Z
�

jf�x�jp d� �
X

�
j�j
k

Z
�

jD�f jp d�
�CA

�
p

� ������

The resulting normed space is denoted by 'W k�p�)� or also by 'W k
p �)� �in contrast to the space C�k�� a� b!�

which has a quite di�erent norm�� Here � means a multi�index� i�e�� an ordered n�tuple ���� � � � � �n� of
non�negative integers� where the sum of the components of � is denoted by j�j � �� � �� � � � �� �n�

For a function f�x� � f���� � � � � �n� with x � ���� � � � � �n� � ) we use the brief notation as in �������

D�f �
�j�jf

����� � � ����nn
� �����

The normed space 'W k�p�)� is not complete� Its completion is denoted by W k�p�)� or in the case of

p � � by IHk�)� and it is called a Sobolev space�

������ OrderedNormed Spaces

�� Cones in a Normed Space
Let X be a real normed space with the norm k � k� A cone X� � X �see ������� p� ���� is called a solid�
if X� contains a ball �with positive radius�� or equivalently� X� contains at least one interior point�

The usual cones are solid in the spaces IR� C� a� b!�� c� but in the spaces Lp��a� b�� and lp � � p ���
they are not solid�

A cone X� is called normal if the norm in X is semimonotonic� i�e�� there exists a constant M � � such
that

� � x � y �� kxk � Mkyk� ������

If X is a Banach space ordered by a cone X�� then every �o��interval is bounded with respect to the
norm if and only if the cone X� is normal�

The cones of the vectors with non�negative components and of the non�negative functions in the
spaces IRn� m� c� c�� C� lp and Lp� respectively� are normal�

A cone is called regular if every monotonically increasing sequence which is bounded above�

x� � x� � � � � � xn � � � � � z ������
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is a Cauchy sequence in X� In a Banach space every closed regular cone is normal�

The cones in IRn� lp and Lp for  � p �� are regular� but in C and m they are not�

�� Normed Vector Lattices and Banach Lattices
Let X be a vector lattice� which is a normed space at the same time� X is called a normed lattice or
normed vector lattice �see  ���!�  ���!�  ����!�  ����!�� if the norm satis�es the condition

jxj � jyj implies kxk � kyk � x� y � X �monotonicity of the norm�� ������

A complete �with respect to the norm� normed lattice is called a Banach lattice�

The spaces C� a� b!�� Lp� lp� B� a� b!� are Banach lattices�

������ NormedAlgebras
A vector space X over IF is called an algebra� if in addition to the operations de�ned in the vector space
X and satisfying the axioms �V����V�� �see ���� p� ����� a product x � y � X is also de�ned for ev�
ery two elements x� y � X� or with a simpli�ed notation the product xy is de�ned so that for arbitrary
x� y� z � X and � � IF the following conditions are satis�ed�

�A�� x�yz� � �xy�z� ������

�A�� x�y � z� � xy � xz� ������

�A�� �x � y�z � xz � yz� ������

�A�� ��xy� � ��x�y � x��y�� ������

An algebra is commutative if xy � yx holds for two arbitrary elements x� y� A linear operator �see
������ p� ���� T � X � Y of the algebra X into the algebra Y is called an algebra homomorphism if
for any x�� x� � X�

T �x� � x�� � Tx� � Tx�� ������

An algebra X is called a normed algebra or a Banach algebra if it is a normed vector space or a Banach
space and the norm has the additional property

kx � yk � kxk � kyk� ������

In a normed algebra all the operations are continuous� i�e�� additionally to ������� if xn � x and
yn � y� then also xnyn � xy �see  ����!��

Every normed algebra can be completed to a Banach algebra� where the product is extended to the
norm completion with respect to �������

A� C� a� b!� with the norm �����e� and the usual �pointwise� product of continuous functions�

B� The vector space W � �� ��!� of all complex�valued functions x�t� continuous on  �� ��! and having
an absolutely convergent Fourier series expansion� i�e��

x�t� �
�X

n���
cne

int� �����

with the norm kxk �
�P

n���
jcnj and the usual multiplication�

C� The space L�X� of all bounded linear operators on the normed space X with the operator norm
and the usual algebraic operations �see ������� p� ���� where the product T S of two operators is
de�ned as the sequential application� i�e�� TS�x� � T �S�x��� x � X�

D� The space L������� of all measurable and absolutely integrable functions on the real axis �see
���� p� ���� with the norm

kxk �
Z �

��
jx�t�j dt ������

is a Banach algebra if the multiplication is de�ned as the convolution �x # y��t� �
Z �

��
x�t� s�y�s� ds�
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���� Hilbert Spaces

������ Notion of aHilbert Space

�������� Scalar Product
A vector space V over a �eld IF �mostly IF � C� is called a space with scalar product or an inner product
space or pre�Hilbert space if to every pair of elements x� y � V there is assigned a number �x� y� � IF �the
scalar product of x and y�� such that the axioms of the scalar product are satis�ed� i�e�� for arbitrary
x� y� z � V and � � IF�

�H�� �x� x� 	 �� �i�e�� �x� x� is real�� and �x� x� � � if and only if x � �� ������

�H�� ��x� y� � ��x� y�� ������

�H�� �x � y� z� � �x� z� � �y� z�� ������

�H�� �x� y� � �y� x�� ������

�Here  denotes the conjugate of the complex number � which is denoted by � in ����c�� Sometimes
the notation of a scalar product is hx� yi��
In the case of IF � IR� i�e�� in a real vector space� �H�� means the commutativity of the scalar product�
Some further properties follow from the axioms�

�x� �y� � "��x� y� and �x� y � z� � �x� y� � �x� z�� ������

�������� Unitary Spaces and Some of their Properties
In a pre�Hilbert space IH a norm can be introduced by means of the scalar product as follows�

kxk �
q

�x� x� �x � IH�� ������

A normed space IH � �IH� k�k� is called unitary if there is a scalar product satisfying ������� Based on
the previous properties of scalar products and ������ in unitary spaces the following facts are valid�

a� Triangle Inequality�

kx � yk� � �kxk � kyk�� � ������

b� Cauchy�Schwarz Inequality or Schwarz�Buniakowski Inequality �see also ������� p� ���

j�x� y�j �
q

�x� x�
q

�y� y� � �����

c� Parallelogram Identity� This characterizes the unitary spaces among the normed spaces�

kx � yk� � kx� yk� � �
�
kxk� � kyk�

	
� ����

d� Continuity of the Scalar Product�

xn  x� yn  y imply �xn� yn� �x� y�� �����

�������� Hilbert Space
A complete unitary space is called a Hilbert space� Since Hilbert spaces are also Banach spaces� they
possess in particular� the properties of the last �see ����� p� �� ������� p� ��� ������ p� ���� In
addition they have the properties of unitary spaces ������� p� ��� A subspace of a Hilbert space is a
closed linear subspace�

A� l��n�� l� and L���a� b�� with the scalar products

�x� y� �
nX
k��

�k�k� �x� y� �
�X
k��

�k�k and �x� y� �
Z b

a
x�t�y�t� dt� �����



��� ��� Functional Analysis

B� The space IH��)� with the scalar product

�f� g� �
Z
�

f�x�g�x� dx �
X

�
j�j
k

Z
�

D�f�x�D�g�x� dx� �����

C� Let ��t� be a measurable positive function on  a� b!� The complex space L���a� b�� �� of all mea�
surable functions� which are quadratically integrable with the weight function � on �a� b�� is a Hilbert
space if the scalar product is de�ned as

�x� y� �
Z b

a
x�t�y�t���t� dt� �����

������ Orthogonality
Two elements x� y of a Hilbert space IH are called orthogonal �we write x � y� if �x� y� � � �the notions
of this paragraph also make sense in pre�Hilbert spaces and in unitary spaces�� For an arbitrary subset
A � IH� the set

A� � fx � IH� �x� y� � � � y � Ag �����

of all vectors which are orthogonal to each vector in A is a �closed linear� subspace of IH and it is called
the orthogonal space to A or the orthogonal complement of A� We write A � B if �x� y� � � for all
x � A and y � B� If A consists of a single element x� then we write x � B�

�������� Properties of Orthogonality
The zero vector is orthogonal to every vector of IH� The following statements hold�

a� x � y and x � z imply x � ��y � �z� for any �� � � C�

b� From x � yn and yn  y it follows that x � y�

c� x � A if and only if x � lin�A�� where lin�A� denotes the closed linear hull of the set A�

d� If x � A and A is a fundamental set� i�e�� lin�A� is everywhere dense in IH� then x � ��

e� Pythagoras Theorem� If the elements x�� � � � � xn are pairwise orthogonal� that is xk � xl for all
k �� l� then

k
nX
k��

xkk� �
nX
k��

kxkk�� �����

f� Projection Theorem� If IH� is a subspace of IH� then each vector x � IH can be written uniquely
as

x � x� � x��� x� � IH�� x�� � IH�� �����

g� Approximation Problem� Furthermore� the equation kx�k � ��x� IH�� � infy�IH�fkx�ykg holds�
and so the problem

kx� yk  inf� y � IH� �����

has the unique solution x� in IH�� In this statement IH� can be replaced by a convex closed non�empty
subset of IH�
The element x� is called the projection of the element x on IH�� It has the smallest distance from x �to

IH��� and the space IH can be decomposed� IH � IH� $ IH�
� �

�������� Orthogonal Systems
A set fx� � � � 0g of vectors from IH is called an orthogonal system if it does not contain the zero vector
and x� � x�� � �� �� hence �x�� x�� � 	�� holds� where

	�� �
�

 for � � ��
� for � �� �

������
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denotes the Kronecker symbol �see ����� ��� p� ����� An orthogonal system is called orthonormal if
in addition kx�k �  � ��
In a separable Hilbert space an orthogonal system may contain at most countably many elements� In
what follows we assume� therefore� 0 � IN�

A� The system

p
��

�
p
�

cos t�
p
�

sin t�
p
�

cos �t�
p
�

sin �t� � � � �����

in the real space L������ ��� and the system

p
��

eint �n � ������� � � �� ������

in the complex space L������ ��� are orthonormal systems� Both of these systems are called trigono�
metric�

B� The Legendre polynomials of the �rst kind �see ������� �� p� ���

Pn�t� �
dn

d tn
 �t� � �n! �n � �� � � � �� ������

form an orthogonal system of elements in the spaceL����� ��� The corresponding orthonormal system
is

'Pn�t� �

s
n �



�



��n�$$
Pn�t�� ������

C� The Hermite polynomials �see ������� �� p� �� and �������� �� ���� according to the second
de�nition of the Hermite di�erential equation �����b�

Hn�t� � et
� dn

dtn
e�t

�

�n � �� � � � �� ������

form an orthogonal system in the space L����������

D� The Laguerre polynomials form an orthogonal system �see ������� �� p� ��� in the space
L���������
Every orthogonal system is linearly independent� since the zero vector was excluded� Conversely� if
we have a system x�� x�� � � � xn� � � � of linearly independent elements in a Hilbert space IH� then there
exist vectors e�� e�� � � � � en� � � �� obtained by the GramSchmidt orthogonalization method �see ��������
�� p� ���� which form an orthonormal system� They span the same subspace� and by the method they
are determined up to a scalar factor with modulus �

������ Fourier Series inHilbert Spaces

�������� Best Approximation

Let IH be a separable Hilbert space and

fen� n � � �� � � �g ������

a �xed orthonormal system in IH� For an element x � IH the numbers cn � �x� en� are called the Fourier
coe�cients of x with respect to the system ������� The �formal� series

�X
n��

cnen ������

is called the Fourier series of the element x with respect to the system ������ �see ������ �� p� �����
The n�th partial sum of the Fourier series of an element x has the property of the best approximation�
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i�e�� for �xed n� the n�th partial sum of the Fourier series

�n �
nX
k��

�x� ek�ek ������

gives the smallest value of kx � nP
k��

�kekk among all vectors of IHn � lin�fe�� � � � � eng�� Furthermore�

x� �n is orthogonal to IHn� and there holds the Bessel inequality�
�X
n��

jcnj� � kxk�� cn � �x� en� �n � � �� � � ��� ������

�������� Parseval Equation� Riesz�Fischer Theorem
The Fourier series of an arbitrary element x � IH is always convergent� Its sum is the projection of

the element x onto the subspace IH� � lin�feng�n���� If an element x � IH has the representation

x �
�P
n��

�nen� then �n are the Fourier coe�cients of x �n � � �� � � ��� If f�ng�n�� is an arbitrary

sequence of numbers with the property
�P
n��
j�nj� � �� then there is a unique element x in IH� whose

Fourier coe�cients are equal to �n and for which the Parseval equation holds�
�X
n��

j�x� en�j� �
�X
n��

j�nj� � kxk� �RieszFischer theorem�� ������

An orthonormal system feng in IH is called complete if there is no non�zero vector y orthogonal to every

en� it is called a basis if every vector x � IH has the representation x �
�P
n��

�nen� i�e�� �n � �x� en� and

x is equal to the sum of its Fourier series� In this case� we also say that x has a Fourier expansion� The
following statements are equivalent�

a� feng is a fundamental set in IH�

b� feng is complete in IH�

c� feng is a basis in IH�

d� For � x� y � IH with the corresponding Fourier coe�cients cn and dn �n � � �� � � �� there holds

�x� y� �
�X
n��

cndn� �����

e� For every vector x � IH� the Parseval equation ������ holds�

A� The trigonometric system ����� is a basis in the space L������ ����

B� The system of the normalized Legendre polynomials ������ 'Pn�t� �n � �� � � � �� is complete
and consequently a basis in the space L����� ���

������ Existence of aBasis� IsomorphicHilbert Spaces
In every separable Hilbert space there exits a basis� From this fact it follows that every orthonormal
system can be completed to a basis�
Two Hilbert spaces IH� and IH� are called isometric or isomorphic as Hilbert spaces if there is a linear
bijective mapping T � IH� � IH� with the property �Tx� Ty�IH� � �x� y�IH� �that is� it preserves the
scalar product and because of ������ also the norm�� Any two arbitrary in�nite dimensional separable
Hilbert spaces are isometric� in particular every such space is isometric to the separable space l��
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������ Boundedness� NormandContinuity of LinearOperators

�������� Boundedness and the Norm of Linear Operators
Let X � �X� k � k� and Y � �Y� k � k� be normed spaces� In the following discussion� we omit the index
X in the notation k � kX emphasizing that we are in the space X� because from the text it will be always
clear which norm and which space we are talking about� An arbitrary operator T � X � Y is called
bounded if there is a real number � � � such that

kT �x�k � �kxk � x � X� ������

A bounded operator with a constant � 	stretches
 every vector at most � times and it transforms every
bounded set of X into a bounded set of Y� in particular the image of the unit ball of X is bounded in Y�
This last property is characteristic of bounded linear operators� A linear operator is continuous �see
������ p� ��� if and only if it is bounded�
The smallest constant �� for which ������ still holds� is called the norm of the operator T and it is
denoted by kTk� i�e��

kTk �� inff� � � � kTxk � �kxk� x � Xg� ������

For a continuous linear operator the following equalities hold�

kTk � sup
kxk
�

kTxk � sup
kxk��

kTxk � sup
kxk��

kTxk ������

and� furthermore� the equality

kTxk � kTk � kxk � x � X� ������

Let T be the operator in the space C� a� b!� with the norm �����d�� de�ned by the integral

�Tx��s� � y�s� �
Z b

a
K�s� t�x�t� dt �s �  a� b!�� ������

where K�s� t� is a �complex�valued� continuous function on the rectangle fa � s� t � bg� Then T is a
bounded linear operator� which maps C� a� b!� into C� a� b!�� Its norm is

kTk � max
s��a�b�

Z b

a
jK�s� t�j dt� ������

�������� The Space of Linear Continuous Operators
The sum U � S � T and the multiple �T of two linear �continuous� operators S� T � X � Y are
de�ned pointwise�

U�x� � S�x� � T �x�� ��T ��x� � � � T �x�� � x � X and � � � IF� ������

The set L�X�Y�� often denoted by B�X�Y�� of all linear continuous operators T from X into Y equipped
with the operations ������ is a vector space� where kTk ������ turns out to be a norm on it� So�
L�X�Y� is a normed space and even a Banach space if Y is a Banach space� So the axioms �V����V��
and �N����N�� are satis�ed�

If Y � X� then a product can be de�ned for two arbitrary elements S� T � L�X�X� � L�X� � B�X� as

�ST ��x� � S�Tx� �� x � X�� ������

which satis�es the axioms �A����A�� from ������ p� ��� and also the compatibility condition ������
with the norm� L�X� is in general a non�commutative normed algebra� and if X is a Banach space� then
it is a Banach algebra� Then for every operator T � L�X� its powers are de�ned by

T � � I� T n � T n��T �n � � �� � � ��� ������

where I is the identity operator Ix � x� � x � X� Then

kT nk � kTkn �n � �� � � � ��� �����
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and furthermore there always exists the ��nite� limit

r�T � � lim
n��

n

q
kT nk � ������

which is called the spectral radius of the operator T and satis�es the relations

r�T � � kTk� r�T n� �  r�T �!n� r��T � � j�jr�T �� r�T � � r�T ��� ������

where T � is the adjoint operator to T �see ���� p� ���� and �������� If L�X� is complete� then for
j�j � r�T �� the operator ��I � T ��� has the representation in the form of a Neumann series

��I � T ��� � ���I � ���T � � � � � ��nT n�� � � � � � ������

which is convergent for j�j � r�T � in the operator norm on L�X��

�������� Convergence of Operator Sequences

�� Pointwise Convergence
of a sequence of linear continuous operators Tn� X � Y to an operator T � X � Y means that�

Tnx � Tx in Y for each x � X� ������

�� Uniform Convergence
The usual norm�convergence of a sequence of operators fTng�n�� in a space L�X�Y� to T � i�e��

kTn � Tk � sup
kxk
�

kTnx� Txk  � �n�� ������

is the uniform convergence on the unit ball of X� It implies pointwise convergence� while the converse
statement is not true in general�

�� Applications
The convergence of quadrature formulas when the number n of interpolation nodes tends to �� the
performence principle of summation� limiting methods� etc�

������ LinearContinuousOperators inBanach Spaces
Suppose now X and Y to be Banach spaces�

�� Banach�Steinhaus Theorem �Uniform Boundedness Principle	
The theorem characterizes the pointwise convergence of a sequence fTng of linear continuous operators
Tn to some linear continuous operator by the conditions�

a� For every element from an everywhere dense subset D � X� the sequence fTnxg has a limit in Y�

b� there is a constant C such that kTnk � C� � n�

�� OpenMappings Theorem
The theorem tells us that a linear continuous operator mapping from X onto Y is open� i�e�� the image
T �G� of every open set G from X is an open set in Y�

�� Closed Graph Theorem
An operator T � DT � Y with DT � X is called closed if xn � DT � xn  x� in X and Txn  y� in Y
imply x� � DT and y� � Tx�� A necessary and su�cient condition is that the graph of the operator T
in the space X� Y� i�e�� the set

�T � f�x� Tx�� x � DTg ������

is closed� where here �x� y� denotes an element of the set X� Y�
If T is a closed operator with a closed domain DT � then T is continuous�

�� Hellinger�Toeplitz Theorem
Let T be a linear operator in a Hilbert space IH� If �x� Ty� � �Tx� y� for every x� y � IH� then T is
continuous �here �x� Ty� denotes the scalar product in IH��
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�� Krein�Losanovskij Theorem on the Continuity of Positive Linear
Operators

If X � �X�X�� k � k� and Y � �Y�Y�� k � k� are ordered normed spaces� where X� is a generating
cone� then the set L��X�Y� of all positive linear and continuous operators T � i�e�� T �X�� � Y�� is a
cone in L�X�Y�� The theorem of Krein and Losanovskij asserts �see  ���!�� If X and Y are ordered
Banach spaces with closed cones X� and Y�� and X� is a generating cone� then the positivity of a linear
operator implies its continuity�

� Inverse Operator
Let X and Y be arbitrary normed spaces and let T � X � Y be a linear� not necessarily continuous
operator� T has a continuous inverse T�� � Y � X� if T �X� � Y and there exists a constant m � �

such that kTxk 	 mkxk for each x � X� Then kT��k � 

m
�

In the case of Banach spaces X�Y we have the

�� Banach Theorem on the Continuity of the Inverse Operator
If T is a linear continuous bijective operator from X onto Y� then the inverse operator T�� is also
continuous�

An important application is� e�g�� the continuity of ��I � T ��� given the injectivity and surjectivity of
�I � T � This fact has importance in investigating the spectrum of an operator �see �������� p� �����
It also applies to the

�� Continuous Dependence of the Solution
on the right�hand side and also on the initial data of initial value problems for linear di�erential equa�
tions� We will demonstrate this fact by the following example�

The initial value problem

�x�t� � p��t� ,x�t� � p��t�x�t� � q�t�� t �  a� b!� x�t�� � �� ,x�t�� � ,�� t� �  a� b! �����a�

with coe�cients p��t�� p��t� � C� a� b!� has exactly one solution x from C�� a� b!� for every right�hand

side q�t� � C� a� b!� and for every pair of numbers �� ,�� The solution x depends continuously on q�t�� �

and ,� in the following sense� If qn�t� � C� a� b!�� �n� ,�n � IR� are given and xn � C� a� b!� denotes the
solution of

�xn�t� � p��t� ,xn�t� � p��t�xn�t� � qn�t�� xn�a� � �n� ,xn�a� � ,�n� �����b�

for n � � �� � � �� then�

qn�t�  q�t� in C� a� b!��
�n  ��
,�n  ,�

 �!�" implies that xn  x in the space C�� a� b!�� �����c�

�� Method of Successive Approximation
to solve an equation of the form

x� Tx � y ������

with a continuous linear operator T in a Banach space X for a given y� This method starts with an
arbitrary initial element x�� and constructs a sequence fxng of approximating solutions by the formula

xn�� � y � Txn �n � �� � � � �� � ������

This sequence converges to the solution x� in X of ������� The convergence of the method� i�e��
xn  x�� is based on the convergence of the series ������ with � � �
Let kTk � q � � Then the following statements are valid�

a� The operator I � T has a continuous inverse with k�I � T ���k � 

� q
� and ������ has exactly

one solution for each y�
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b� The series ������ converges and its sum is the operator �I � T ����
c� The method ������ converges to the unique solution x� of ������ for any initial element x�� if
the series ������ converges� Then the following estimation holds�

kxn � x�k � qn

� q
kTx� � x�k �n � � �� � � ��� �����

Equations of the type

x� �Tx � y� �x� Tx � y� �� � � IF ������

can be handled in an analogous way �see ����� p� ���� and  ���!��

������ Elements of the Spectral Theory of LinearOperators

�������� Resolvent Set and the Resolvent of anOperator
For an investigation of the solvability of equations one tries to rewrite the problem in the form

�I � T �x � y ������

with some operator T having a possible small norm� This is especially convenient for using a functional
analytic method because of ������ and ������� In order to handle large values of kTk as well� we
investigate the whole family of equations

��I � T �x � y x � X� with � � C ������

in a complex Banach space X� Let T be a linear� but in general not a bounded operator in a Banach
space X� The set ��T � of all complex numbers � such that ��I � T ��� � B�X� � L�X� is called the
resolvent set and the operator R � R�T � � ��I � T ��� is called the resolvent� Let T now be a
bounded linear operator in a complex Banach space X� Then the following statements are valid�

a� The set ��T � is open� More precisely� if �� � ��T � and � � C satisfy the inequality

j�� ��j � 

kR�k
� ������

then R exists and

R � R� � ��� ���R
�
� � ��� ���

�R�
� � � � � �

�X
k��

��� ���
k��Rk

� � ������

b� f� � C � j�j � kTkg � ��T �� More precisely� � � � C with j�j � kTk� the operator R exists and

R � � I

�
� T

��
� T �

��
� � � � � ������

c� kR �R�k  �� if � �� ��� �� � ��T ��� and kRk  �� if �� �� � ��T ���

d�
%%%%R � R�

�� ��
� R�

�

%%%% � �� if � ���

e� For an arbitrary functional f � X� �see ������� p� ���� and arbitrary x � X the function F ��� �
f�R�x�� is holomorphic on ��T ��

f� For arbitrary �� � � ��T �� and � �� � one has�

RR� � R�R �
R �R�

�� �
� ������

�������� Spectrum of an Operator

�� De�nition of the Spectrum
The set ��T � � C n ��T � is called the spectrum of the operator T � Since I � T has a continuous inverse
�and consequently ������ has a solution� which continuously depends on the right�hand side� if and
only if  � ��T �� we must know the spectrum ��T � as well as possible� From the properties of the
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resolvent set it follows immediately that the spectrum ��T � is a closed set of C which lies in the disk
f� � j�j � kTkg� however� in many cases ��T � is much smaller than this disk� The spectrum of any
linear continuous operator on a complex Banach space is never empty and

r�T � � sup
���T �

j�j� ������

It is possible to say more about the spectrum in the cases of di�erent special classes of operators�
If T is an operator in a �nite dimensional space X and if the equation ��I�T �x � � has only the trivial
solution �i�e�� �I � T is injective�� then � � ��T � �i�e�� �I � T is surjective�� If this equation has a
non�trivial solution in some Banach space� then the operator �I � T is not injective and ��I � T ��� is
in general not de�ned�

The number � � C is called an eigenvalue of the linear operator T � if the equation �x � Tx has a non�
trivial solution� All those solutions are called eigenvectors� or in the case when X is a function space
�which occurs very often in applications�� they are called eigenfunctions of the operator T associated
to �� The subspace spanned by them is called the eigenspace �or characteristic space� associated to ��
The set �p�T � of all eigenvalues of T is called the point spectrum of the operator T �

�� Comparison to Linear Algebra� Residual Spectrum
An essential di�erence between the �nite dimensional case which is considered in linear algebra and the
in�nite dimensional case discussed in functional analysis is that in the �rst case ��T � � �p�T � always
holds� while in the second case the spectrum usually also contains points which are not eigenvalues of
T � If �I � T is injective and surjective as well� then � � ��T � due to the theorem on the continuity
of the inverse �see ������ �� p� ���� In contrast to the �nite dimensional case where the surjectivity
follows automatically from the injectivity� the in�nite dimensional case has to be dealt with in a very
di�erent way�

The set �c�T � of all � � ��T �� for which �I � T is injective and Im��I � T � is dense in X� is called
the continuous spectrum and the set �r�T � of all � with an injective �I � T and a non�dense image� is
called the residual spectrum of operator T �

For a bounded linear operator T in a complex Banach space X

��T � � �p�T � � �c�T � � �r�T �� ������

where the terms of the right�hand side are mutually exclusive�

������ Continuous Linear Functionals

�������� De�nition

For Y � IF we call a linear mapping a linear functional or a linear form� In the following discussions�
for a Hilbert space we consider the complex case� in other situations almost every times the real case
is considered� The Banach space L�X� IF� of all continuous linear functionals is called the adjoint space
or the dual space of X and it is denoted by X� �sometimes also by X��� The value �in IF� of a linear
continuous functional f � X� on an element x � X is denoted by f�x�� often also by �x� f� � emphasizing
the bilinear relation of X and X� � �compare also with the Riesz theorem �see �������� p� �����

A� Let t�� t�� � � � � tn be �xed points of the interval  a� b! and c�� c�� � � � � cn real numbers� By the
formula

f�x� �
nX
k��

ckx�tk� �����

a linear continuous functional is de�ned on the space C� a� b!�� the norm of f is kfk �
nP
k��
jckj� A special

case of ����� for a �xed t �  a� b! is the 	 functional

	t�x� � x�t� �x � C� a� b!��� ������
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B� With an integrable function ��t� �see ������� p� ���� on  a� b!

f�x� �
Z b

a
��t�x�t� dt ������

is a linear continuous functional on C� a� b!� and also on B� a� b!� in each case with the norm kfk �Z b

a
j��t�j dt�

�������� Continuous Linear Functionals in Hilbert Spaces�
Riesz Representation Theorem

In a Hilbert space IH every element y � IH de�nes a linear continuous functional by the formula f�x� �
�x� y�� where its norm is kfk � kyk� Conversely� if f is a linear continuous functional on IH� then there
exists a unique element y � IH such that

f�x� � �x� y� � x � IH� ������

where kfk � kyk� According to this theorem the spaces IH and IH� are isomorphic and might be iden�
ti�ed�

The Riesz representation theorem contains a hint on how to introduce the notion of orthogonality in
an arbitrary normed space� Let A � X and A� � X�� We call the sets

A� � ff � X� f�x� � � � x � Ag and A�� � fx � X� f�x� � � � f � A�g ������

the orthogonal complement or the annulator of A and A�� respectively�

�������� Continuous Linear Functionals inL p

Let p 	 � The number q is called the conjugate exponent to p if


p
�



q
� � where it is assumed that

q �� in the case of p � �

Based on the H�older integral inequality �see ������� p� ��� the functional ������ can be considered

also in the spaces Lp� a� b!� � � p � �� �see ������ p� ���� if � � Lq� a� b!� and


p
�



q
� � Its norm

is then

kfk � k�k �

���������
�Z b

a
j��t�jqdt

��
q

� if  � p � ��

ess� sup
t��a�b�

j��t�j� if p � 
������

�with respect to the de�nition of ess� sup j�j see ������� p� ����� To every linear continuous functional
f in the space Lp� a� b!� there is a uniquely �up to its equivalence class� de�ned element y � Lq� a� b!�
such that

f�x� � �x� y� �

bZ
a

x�t�y�t�dt� x � Lp and kfk � kykq �

�� bZ
a

jy�t�jqdt
�A

�
q

� ������

For the case of p �� see  ���!�

������ Extension of a Linear Functional

�� Seminorm
A mapping p� X � IR of a vector space X is called a seminorm or pseudonorm� if it has the following
properties�

�HN�� p�x� 	 �� ������

�HN�� p��x� � j�jp�x�� ������

�HN�� p�x � y� � p�x� � p�y�� ������
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Comparison with ����� p� �� shows that a seminorm is a norm if and only if p�x� � � holds only for
x � ��

Both for theoretical mathematical questions and for practical reasons in applications of mathematics�
the problem of the extension of a linear functional given on a linear subspace X� � X to the entire
space �and� in order to avoid trivial and uninteresting cases� with preserving certain 	 good
 properties
became a fundamental question� The solution of this problem is guaranteed by

�� Analytic Form of the Hahn�Banach Extension Theorem
Let X be a vector space over IF and p a pseudonorm on X� Let X� be a linear �complex in the case of
IF � C and real in the case of IF � IR� subspace of X� and let f� be a �complex�valued in the case of
IF � C and real�valued in the case of IF � IR� linear functional on X� satisfying the relation

jf��x�j � p�x� � x � X�� �����

Then there exists a linear functional f on X with the following properties�

f�x� � f��x� � x � X�� jf�x�j � p�x� � x � X� ������

So� f is an extension of the functional f� onto the whole space X preserving the relation ������

If X� is a linear subspace of a normed space X and f� is a continuous linear functional on X�� then
p�x� � kf�k � kxk is a pseudonorm on X satisfying ������ so we get the Hahn�Banach theorem on
the extension of continuous linear functionals�

Two important consequences are�

� For every element x �� � there is a functional f � X� with f�x� � kxk and kfk � �

� For every linear subspace X� � X and x� �� X� with the positive distance d � infx�X� kx� x�k � �
there is an f � X� such that

f�x� � � � x � X�� f�x�� �  and kfk �


d
� ������

������ Separation of Convex Sets

�� Hyperplanes
A linear subset L of the real vector space X� L �� X� is called a hypersubspace or hyperplane through �
if there exists an x� � X such that X � lin�x�� L�� Sets of the form x � L �L a linear subset� are a�ne�
linear manifolds �see ����� p� ����� If L is a hypersubspace� these manifolds are called hyperplanes�

There exist the following close relations between hyperplanes and linear functionals�

a� The kernel f����� � fx � X� f�x� � �g of a linear functional f on X is a hypersubspace in X� and
for each number � � IR there exists an element x � X with f�x� � � and f����� � x � f������

b� For any given hypersubspace L � X and each x� �� L and � �� � �� � IR� there always exists a
uniquely determined linear functional f on X with f����� � L and f�x�� � ��

The closedness of f����� in the case of a normed space X is equivalent to the continuity of the functional
f �

�� Geometric Form of the Hahn�Banach Extension Theorem
Let X be a normed space� x� � X and L a linear subspace of X� Then for every non�empty convex open
set K which does not intersect the a�ne�linear manifold x� � L� there exists a closed hyperplane H
such that x� � L � H and H �K � ��
�� Separation of Convex Sets
Two subsets A�B of a real normed space X are said to be separatedby a hyperplane if there is a functional
f � X� such that�

sup
x�A

f�x� � inf
y�B

f�y�� ������

The separating hyperplane is then given by f����� with � � supx�A f�x�� which means that the two
sets are contained in the di�erent half�spaces
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A � fx � X� f�x� � �g and B � fx � X� f�x� 	 �g� ������

In Fig ���b�c two cases of the separation by a hyperplane are shown�
Their disjointness is less decisive for the separation of two sets� In fact� Fig ���a shows two sets E
and B� which are not separated although E and B are disjoint and B is convex� The convexity of both
sets is the intrinsic property for separating them� In this case it is possible that the sets have common
points which are contained in the hyperplane�

E

B

A

B

% �
-1( )

b) c)

% �
-1

( )
A

B
% �

-1
( )

a)

Figure ���

If A is a convex set of a normed space X with a non�empty interior Int�A� and B � X is a non�empty
convex set with Int�A� � B � �� then A and B can be separated� The hypothesis Int�A� �� � in that
statement cannot be dropped �see  ���!� example ������ A �real linear� functional f � X� is then called
a supporting functional to A of the set A at the point x� � A� if there is a real number � � IR such that
f�x�� � �� and A � fx � X � f�x� � �g� f����� is called the supporting hyperplane at the point x��
For a convex set K with a non�empty interior� there exists a supporting functional at each of its bound�
ary points�

Remark� The famous Kuhn�Tucker theorem �see ���� p� ���� which yields practical methods to de�
termine the minimum of convex optimization problems �see  ���!�� is also based on the separation of
convex sets�

������ SecondAdjoint Space andRe�exive Spaces
The adjoint space X� of a normed space X is also a normed space if it is equipped with the norm kfk �
sup
kxk
�

jf�x�j� so �X��� � X��� The second adjoint space to X can also be considered� The canonical

embedding

J � X � X�� with Jx � Fx� where Fx�f� � f�x� � f � X� ������

is a norm isomorphism �see ����� p� ��� hence X is identi�ed with the subset J�X� � X��� A Banach
space X is called re�exive if J�X� � X��� Hence the canonical embedding is then a surjective norm
isomorphism�

Every �nite dimensional Banach space and every Hilbert space is re�exive� as well as the spaces
Lp � � p ���� however C� a� b!�� L�� �� !�� c� are examples of non�re�exive spaces�

���� AdjointOperators inNormedSpaces

������ Adjoint of aBoundedOperator
For a given linear continuous operator T � X � Y �X�Y are normed spaces� to every g � Y� there
is assigned a functional f � X� by f�x� � g�Tx�� � x � X� In this way� we get a linear continuous
operator

T �� Y� � X�� �T �g��x� � g�Tx�� � g � Y� and � x � X� ������

which is called the adjoint operator of T and has the following properties�

�T �S�� � T ��S�� �ST �� � S�T �� kT �k � kTk� where for the linear continuous operators T � X Y
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and S � Y  Z �X�Y�Z normed spaces�� the operator ST � X  Z is de�ned in the natural way as
ST �x� � S�T �x��� With the notation introduced in ����� p� ���� and �������� p� ���� the following
identities are valid for an operator T � B�X�Y��

Im�T � � ker�T ���� Im�T �� � ker�T ��� ������

where the closedness of Im�T � implies the closedness of Im�T ���
The operator T �� � X��  Y��� obtained as �T ��� from T �� is called the second adjoint of T � Due to
�T ���Fx��g � Fx�T

�g� � �T �g��x� � g�Tx� � FTx�g� the operator T �� has the following property� If
Fx � X��� then T ��Fx � FTx � Y��� Hence� the operator T ��� X��  Y�� is an extension of T �

In a Hilbert space IH the adjoint operator can also be introduced by means of the scalar product
�Tx� y� � �x� T �y�� x� y � IH� This is based on the Riesz representation theorem� where the iden�

ti�cation of IH and IH�� implies ��T �� � �T �� I� � I and even T �� � T � If T is bijective� then the same
holds for T �� and also �T ���� � �T����� For the resolvents of T and T � there holds

 R�T �!� � R�T ��� ������

from which ��T �� � f�� � � ��T �g follows for the spectrum of the adjoint operator�

A� Let T be an integral operator in the space Lp� a� b!� � � p ���

�Tx��s� �
Z b

a
K�s� t�x�t� dt ������

with a continuous kernel K�s� t�� The adjoint operator of T is also an integral operator� namely

�T �g��t� �
Z b

a
K��t� s�yg�s� ds �����

with the kernel K��s� t� � K�t� s�� where yg is the element from Lq associated to g � �Lp�� according
to �������

B� In a �nite dimensional complex vector space the adjoint of an operator represented by the matrix
A � �aij� is de�ned by the matrix A� with a�ij � aji�

������ AdjointOperator of anUnboundedOperator

Let X and Y be real normed spaces and T a �not necessarily bounded� linear operator with a �linear�
domain D�T � � X and values in Y� For a given g � Y�� the expression g�Tx�� depending obviously
linearly on x� is meaningful� Now the question is� Does there exist a well�de�ned functional f � X�

such that

f�x� � g�Tx� � x � D�T �� ������

Let D� � Y� be the set of all those g � Y� for which the representation ������ holds for a certain

f � X�� If D�T � � X� then for the given g the functional f is uniquely de�ned� So a linear operator T �

is de�ned by f � T �g with D�T �� � D�� Then for arbitrary x � D�T � and g � D�T �� one has

g�Tx� � �T �g��x�� ������

The operator T � turns out to be closed and is called the adjoint of T � The naturalness of this general
procedure stems from the fact that D�T �� � Y� holds if and only if T is bounded on D�T �� In this case
T � � B�Y��X�� and kT �k � kTk hold�

������ Self�AdjointOperators

An operator T � B�IH� �IH is a Hilbert space� is called self�adjoint if T � � T � In this case the number
�Tx� x� is real for each x � IH� One has the equality

kTk � sup
kxk��

j�Tx� x�j ������
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and with m � m�T � � inf
kxk��

�Tx� x� and M � M�T � � sup
kxk��

�Tx� x� also the relations

m�T �kxk� � �Tx� x� �M�T �kxk� and kTk � r�T � � maxfjmj�Mg� ������

The spectrum of a self�adjoint �bounded� operator lies in the interval  m�M ! and m�M � ��T � holds�

�������� Positive De�nite Operators
A partial ordering can be introduced in the set of all self�adjoint operators of B�IH� if we de�ne

T 	 � if and only if �Tx� x� 	 � � x � IH� ������

An operator T with T 	 � is called positive �or� more exactly positive de�nite�� For any self�adjoint
operator T �with �H�� from ������ p� ���� �T �x� x� � �Tx� Tx� 	 �� so T � is positive de�nite�
Every positive de�nite operator T possesses a square root� i�e�� there exists a unique positive de�nite
operator W such that W � � T � Moreover� the vector space of all self�adjoint operators is a K�space
�Kantorovich space� see ������� p� ����� where the operators

jT j �
p
T �� T� �



�
�jT j� T �� T� �



�
�jT j � T � ������

are the corresponding elements with respect to ������� They are of particular importance for the
spectral decomposition and spectral and integral representations of self�adjoint operators by means of
some Stieltjes integral �see ������� �� p� ���� and  ��!�  ��!�  ���!�  ���!�  ���!��

�������� Projectors in a Hilbert Space
Let IH� be a subspace of a Hilbert space IH� Then every element x � IH has its projection x� onto IH�

according to the projection theorem �see ������ p� ���� and therefore� an operator P with Px � x� is
de�ned on IH with values in IH�� P is called a projector onto IH�� Obviously� P is linear� continuous� and
kPk � � A continuous linear operator P in IH is a projector �onto a certain subspace� if and only if�

a� P � P �� i�e�� P is self�adjoint� and

b� P � � P � i�e�� P is idempotent�

���� CompactSets andCompactOperators

������ Compact Subsets of aNormed Space
A subset A of a normed spacey X is called

� compact� if every sequence of elements from A contains a convergent subsequence whose limit lies in
A�

� relatively compact or precompact if its closure �see ������� p� ���� is compact� i�e�� every sequence of
elements from A contains a convergent subsequence �whose limit does not necessarily belong to A��

This is the Bolzano�Weierstrass theorem in real calculus� and we say that such a set has the Bolzano
Weierstrass property�
Every compact set is closed and bounded� Conversely� if the space X is �nite dimensional� then every
such set is compact� The closed unit ball in a normed space X is compact if and only if X is �nite
dimensional�
For some characterizations of relatively compact subsets in metric spaces �the Hausdor� theorem on
the existence of a �nite ��net� and in the spaces s� C �Arzela�Ascoli theorem� and in the spacesLp� �
p ��� see  ���!�

������ CompactOperators
���	���� De�nition of Compact Operator
An arbitrary operator T � X � Y of a normed space X into a normed space Y is called compact if the

yIt is enough that X is a metric �or an even more general space� We do not use this generality in what follows�
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image T �A� of every bounded set A � X is a relatively compact set in Y� If� in addition the operator T
is also continuous� then it is called completely continuous� Every compact linear operator is bounded
and consequently completely continuous� For a linear operator to be compact it is su�cient to require
that it transforms the unit ball of X into a relatively compact set in Y�

���	���� Properties of Linear Compact Operators
A characterization by sequences of the compactness of an operator from B�X� Y� is the following� For
every bounded sequence fxng�n�� from X the sequence fTxng�n�� contains a convergent subsequence�
A linear combination of compact operators is also compact� If one of the operators U � B�W�X�� T �
B�X�Y�� S � B�Y�Z� in each of the following products is compact� then the operators TU and ST are
also compact� If Y is a Banach space� then one has the following important statements�

a� Convergence� If a sequence of compact operators fTng�n�� is convergent in the space B�X�Y�� then
its limit is a compact operator� too�

b� Schauder Theorem� If T is a linear continuous operator� then either both T and T � are compact
or both are not�

c� Spectral Properties of a Compact Operator T in an �In�nite Dimensional�
Banach Space X� The zero belongs to the spectrum� Every non�zero point of the spectrum ��T �

is an eigenvalue with a �nite dimensional eigenspace X � fx � X � ��I � T �x � �g� and � � � �
there is always only a �nite number of eigenvalues of T outside the circle fj�j � �g� where only the zero
can be an accumulation point of the set of eigenvalues� If � � � is not an eigenvalue of T � then T�� is
unbounded if it exists�

���	���� Weak Convergence of Elements
A sequence fxng�n�� of elements of a normed space X is called weakly convergent to an element x� if for
each f � X� the relation f�xn� f�x�� holds �written as� xn # x���
Obviously� xn  x� implies xn # x�� If Y is another normed space and T � X � Y is a continuous
linear operator� then�

a� xn # x� implies Txn # Tx��

b� if T is compact� then xn # x� implies Txn  Tx��

A� Every �nite dimensional operator is compact� From this it follows that the identity operator in
an in�nite dimensional space cannot be compact �see ����� p� �����

B� Suppose X � l�� and let T be the operator in l� given by the in�nite matrix�BBBBB�
t�� t�� t�� � � �
t�� t�� t�� � � �
t�� � � � � �
� � � � � �
� � � � � �

�CCCCCA with Tx �

� �X
k��

t�kxk� � � � �
�X
k��

tnkxk� � � �

�
� ������

If
�P

k�n��
jtnkj� � M ��� then T is a compact operator from l� into l� with kTk � M �

C� The integral operator ������ is a compact operator in the spaces C� a� b!� and Lp��a� b�� � �
p ����

������ FredholmAlternative
Let T be a compact linear operator in a Banach space X� We consider the following equations �of the
second kind� with a parameter � �� ��

�x� Tx � y� �x� Tx � ��
�f � T �f � g� �f � T �f � ��

������
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The following statements are valid�

a� dim�ker��I�T �� � dim�ker��I�T ��� � ��� i�e�� both homogeneous equations always have the
same number of linearly independent solutions�

b� Im��I � T � � ker��I � T ��� and z Im��I � T �� � ker��I � T ���

c� Im��I � T � � X if and only if ker��I � T � � ��

d� The Fredholm alternative �also called the Riesz�Schauder theorem��

�� Either the homogeneous equation has only the trivial solution� In this case � � ��T �� the operator
��I � T ��� is bounded� and the inhomogeneous equation has exactly one solution x � ��I � T ���y for
arbitrary y � X�

�� Or the homogeneous equation has at least one non�trivial solution� In this case � is an eigenvalue of
T � i�e�� � � ��T �� and the inhomogeneous equation has a �non�unique� solution if and only if the right�
hand side y satis�es the condition f�y� � � for every solution f of the adjoint equation T �f � �f �
In this last case every solution x of the inhomogeneous equation has the form x � x� � h� where x� is
a �xed solution of the inhomogeneous equation and h � ker��I � T ��

Linear equations of the form Tx � y with a compact operator T are called equations of the �rst kind�
Their mathematical investigation is in general more di�cult �see  ��!� ���!��

������ CompactOperators inHilbert Space
Let T � IH � IH be a compact operator� Then T is the limit �in B�IH�� of a sequence of �nite dimen�
sional operators� The similarity to the �nite dimensional case can be seen from the following�

If C is a �nite dimensional operator and T � I � C� then the injectivity of T implies the existence of
T�� and T�� � B�IH��

If C is a compact operator� then the following statements are equivalent�

a� �T�� and it is continuous�

b� x �� �� Tx �� �� i�e�� T is injective�

c� T �IH� � IH� i�e�� T is surjective�

������ Compact Self�AdjointOperators

�� Eigenvalues
A compact self�adjoint operator T �� � in a Hilbert space IH possesses at least one non�zero eigenvalue�
More precisely� T always has an eigenvalue � with j�j � kTk� The set of eigenvalues of T is at most
countable�
Any compact self�adjoint operator T has the representation T �

P
k
�kPk �in B�IH��� where �k are the

di�erent eigenvalues of T and P denotes the projector onto the eigenspace IH� We say in this case
that the operator T can be diagonalized� From this fact it follows that Tx �

P
k
�k�x� ek�ek for every

x � IH� where fekg is the orthonormal system of the eigenvectors of T � If � �� ��T � and y � IH� then

the solution of the equation ��I � T �x � y can be represented as x � R�T �y �
X
k



�� �k
�y� ek�ek�

�� Hilbert�Schmidt Theorem
If T is a compact self�adjoint operator in a separable Hilbert space IH� then there is a basis in IH con�
sisting of the eigenvectors of T �
The so�called spectral �mapping� theorems �see  ���!�  ���!�  ���!�  ���!�  ���!� can be con�
sidered as the generalization of the Hilbert�Schmidt theorem for the non�compact case of self�adjoint
�bounded or unbounded� operators�

zHere the orthogonality is considered in Banach spaces �see �����
��� p� ��
�



���� Non�Linear Operators ���

���� Non�LinearOperators
In the theory of non�linear operator equations the most important methods are based on the following
principles�

� Principle of the ContractingMapping� Banach Fixed�Point Theorem �see �������� p� ����
and �������� p� ����� For further modi�cations of this principle see  ���!� ��!�  ���!�  ���!�

� Generalization of the NewtonMethod �see �������� p� ��� and ������ p� ���� for the in�nite
dimensional case�

� Schauder Fixed�Point Principle

� Leray�Schauder Theory

Methods based on principles � and � yield information on the existence� uniqueness� constructivity
etc� of the solution� while methods based on principles � and �� in general� allow 	only
 the qualitative
statement of the existence of a solution� If further properties of operators are known then see also
������ p� ���� and ������ p� ����

���	�� Examples ofNon�LinearOperators
For non�linear operators the relation between continuity and boundedness discussed for linear operators
in ����� p� �� is no longer valid in general� In studying non�linear operator equations� e�g�� non�
linear boundary value problems or integral equations� the following non�linear operators occur most
often� Iteration methods described in �������� p� ���� can be succesfully applied for solving non�linear
integral equations�

�� Nemytskij Operator
Let ) be an open measurable subset from IRn ������ p� ���� and f � ) � IR � IR a function of two
variables f�x� s�� which is continuous with respect to x for almost every s and measurable with respect
to s for every x �Caratheodory conditions�� The non�linear operator N to F�)� de�ned as

�Nu��x� � f  x� u�x�! �x � )� ������

is called the Nemytskij operator� It is continuous and bounded if it maps Lp�)� into Lq�)�� where


p
�



q
� � This is the case� e�g�� if

jf�x� s�j � a�x� � bjsj
p
q with a�x� � Lq�)� �b � �� �����

or if f � )� IR � IR is continuous� The operator N is compact only in special cases�

�� Hammerstein Operator
Let ) be a relatively compact subset of IRn� f a function satisfying the Caratheodory conditions and
K�x� y� a continuous function on )� )� The non�linear operatorH on F�)�

�Hu��x� �
Z
�

K�x� y�f  y� u�y�! dy �x � )� ������

is called theHammerstein operator� H can be written in the formH � K � N with the integral operator
K determined by the kernel K

�Ku��x� �
Z
�

K�x� y�u�y� dy �x � )�� ������

If the kernel K�x� y� satis�es the additional conditionZ
��

jK�x� y�jq dx dy �� ������

and the function f satis�es the condition ������ then H is a continuous and compact operator on
Lp�)��
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�� Urysohn Operator
Let ) � IRn be an open measurable subset and K�x� y� s� � ) � ) � IR � IR a function of three
variables� Then the non�linear operator U on F�)�

�Uu��x� �
Z
�

K x� y� u�y�! dy �x � )� ������

is called the Urysohn operator� If the kernel K satis�es the corresponding conditions� then U is a con�
tinuous and compact operator in C�)� or in Lp�)�� respectively�

���	�� Di�erentiability ofNon�LinearOperators

Let X�Y be Banach spaces� D � X be an open set and T � D � Y� The operator T is called Fr�echet
di�erentiable �or� brie�y� di�erentiable� at the point x � D if there exists a linear operator L � B�X�Y�
�in general depending on the point x� such that

T �x � h�� T �x� � Lh � �h� with k�h�k � o�khk� ������

or in an equivalent form

lim
khk��

kT �x � h�� T �x�� Lhk
khk � �� ������

i�e�� � � � �� � 	 � �� such that khk � 	 implies kT �x � h� � T �x� � Lhk � �khk� The operator L�
which is usually denoted by T ��x�� T ��x� �� or T ��x����� is called the Fr�echet derivative of the operator T
at the point x� The value dT �x� h� � T ��x�h is called the Fr�echet di�erential of the operator T at the
point x �for the increment h��
The di�erentiability of an operator at a point implies its continuity at that point� If T � B�X�Y�� i�e��
T itself is linear and continuous� then T is di�erentiable at every point� and its derivative is equal to
T �

���	�� Newton�sMethod

Let X� D be as in the previous paragraph and T � D � X� Under the assumption of the di�erentiability
of T at every point of the set D an operator T � � D � B�X� is de�ned by assigning the element
T ��x� � B�X� to every point x � D� Suppose the operator T � is continuous on D �in the operator
norm�� in this case T is called continuously di�erentiable on D� Suppose Y � X and also that the set
D contains a solution x� of the equation

T �x� � �� ������

Furthermore� we suppose that the operator T ��x� is continuously invertible for each x � D� hence
 T ��x�!�� is in B�X�� Because of ������ for an arbitrary x� � D one conjectures that the elements
T �x�� � T �x���T �x�� and T ��x���x��x�� are 	not far
 from each other and therefore the element x�
de�ned as

x� � x� �  T ��x��!��T �x��� ������

is an approximation of x� �under the assumption we made�� Starting with an arbitrary x� the so�called
Newton approximation sequence

xn�� � xn �  T ��xn�!��T �xn� �n � �� � � � �� �������

can be constructed� There are many theorems known from the literature discussing the behavior and
the convergence properties of this method� We mention here only the following most important result
which demonstrates the main properties and advantages of Newton�s method�

� � � ��� � there exists a ball B � B�x�� 	�� 	 � 	��� in X� such that all points xn lie in B and the
Newton sequence converges to the solution x� of ������� Moreover� kxn � x�k � �nkx� � x�k which
yields a practical error estimation�

The modi�ed Newton�s method is obtained if the operator  T ��x��!�� is used instead of  T ��xn�!�� in



���� Non�Linear Operators ���

formula �������� For further estimations of the speed of convergence and for the �in general sensitive�
dependence of the method on the choice of the starting point x� see  ���!�  ���!�  ���!�

���	�� Schauder�s Fixed�PointTheorem
Let T � D � X be a non�linear operator de�ned on a subset D of a Banach space X� The non�trivial
question of whether the equation x � T �x� has at least one solution� can be answered as follows� If
X � IR and D �  �� !� then every continuous function mapping D into D has a �xed point in D�
If X is an arbitrary �nite dimensional normed space �dimX 	 ��� then Brouwer�s �xed�point theorem
holds�

� Brouwer�s Fixed�Point Theorem Let D be a non�empty closed bounded and convex subset of
a �nite dimensional normed space� If T is a continuous operator� which maps D into itself� then T has
at least one �xed point in D�
The answer in the case of an arbitrary in�nite dimensional Banach space X is given by Schauder�s
�xed�point theorem�

� Schauder�s Fixed�Point Theorem Let D be a non�empty closed bounded and convex subset of
a Banach space� If the operator T � D � X is continuous and compact �hence completely continuous�
and it maps D into itself� then T has at least one �xed point in D�
By using this theorem� it is proved� e�g�� that the initial value problem ������� p� ��� always has a
local solution for t 	 �� if the right�hand side is assumed only to be continuous�

���	�� Leray�SchauderTheory
For the existence of solutions of the equations x � T �x� and �I�T ��x� � y with a completely continuous
operator T � a further principle is found which is based on deep properties of the mapping degree� It
can be successfully applied to prove the existence of a solution of non�linear boundary value problems�
We mention here only those results of this theory which are the most useful ones in practical problems�
and for simplicity we have chosen a formulation which avoids the notion of the mapping degree�

Leray�Schauder Theorem� Let D be an open bounded set in a real Banach space X and let T �
D�� X be a completely continuous operator� Let y � D be a point such that x � �T �x� �� y for each
x � �D and � �  �� !� where �D denotes the boundary of the set D� Then the equation �I �T ��x� � y
has at least one solution�
The following version of this theorem is very useful in applications�

Let T be a completely continuous operator in the Banach space X� If all solutions of the family of
equations

x � �T �x� �� �  �� !� ������

are uniformly bounded� i�e�� � c � � such that �� and � x satisfying ������ the a priori estimation
kxk � c holds� then the equation x � T �x� has a solution�

���	�� PositiveNon�LinearOperators
The successful application of Schauder�s �xed�point theorem requires the choice of a set with appropri�
ate properties� which is mapped into itself by the considered operator� In applications� especially in the
theory of non�linear boundary value problems� ordered normed function spaces and positive operators
are often considered� i�e�� which leave the corresponding cone invariant� or isotone increasing operators�
i�e�� if x � y � T �x� � T �y�� If confusions �see� e�g�� ������ p� ���� are excluded� we also call these
operators monotone�

Let X � �X�X�� k � k� be an ordered Banach space� X� a closed cone and  a� b! an order interval of
X� If X� is normal and T is a completely continuous �not necessarily isotone� operator that satis�es
T � a� b!� �  a� b!� then T has at least one �xed point in  a� b! �Fig ���b��
Notice that the condition T � a� b!� �  a� b! automatically holds for any isotone increasing operator T �
which is de�ned on an �o��interval �order interval�  a� b! of the space X if it maps only the endpoints a� b
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into  a� b!� i�e�� when the two conditions T �a� 	 a and T �b� � b are satis�ed� Then both sequences

x� � a and xn�� � T �xn� �n 	 �� and y� � b and yn�� � T �yn� �n 	 �� �������

are well de�ned� i�e�� xn� yn �  a� b!� n 	 �� They are monotone increasing and decreasing� respectively�
i�e�� a � x� � x� � � � � � xn � � � � and b � y� 	 y� 	 � � � yn 	 � � �� A �xed point x� of the operator T
is called minimal � maximal� respectively� if for every �xed point z of T the inequalities x� � z� z � x�
hold� respectively�

Now� we have the following statement �Fig ���a��� Let X be an ordered Banach space with a closed
cone X� and T � D � X� D � X a continuous isotone increasing operator� Let  a� b! � D be such
that T �a� 	 a and T �b� � b� Then T � a� b!� �  a� b!� and the operator T has a �xed point in  a� b! if one
of the following conditions is ful�lled�

a� X� is normal and T is compact�

b� X� is regular�

Then the sequences fxng�n�� and fyng�n��� de�ned in �������� converge to the minimal and to the
maximal �xed points of T in  a� b!� respectively�

The notion of the super� and subsolutions is based on these results �see  ���!��

���	�� MonotoneOperators inBanach Spaces

�� Special Properties
An arbitrary operator T � D � X � Y �X�Y normed spaces� is called demi�continuous at the point
x� � D if for each sequence fxng�n�� � D converging to x� �in the norm of X� the sequence fT �xn�g�n��
converges weakly to T �x�� in Y� T is called demi�continuous on the set D if T is demi�continuous at
every point of D�

In this paragraph we introduce another generalization of the notion of monotonity known from real
analysis� Let X now be a real Banach space� X� its dual� D � X and T � D � X� a non�linear
operator� T is called monotone if � x� y � D the inequality �T �x��T �y�� x� y� 	 � holds� If X � IH is
a Hilbert space� then ��� �� means the scalar product� while in the case of an arbitrary Banach space we
refer to the notation introduced in ������� p� ���� The operator T is called strongly monotone if there
is a constant c � � such that �T �x��T �y�� x�y� � ckx�yk� for �x� y � D� An operator T � X � X�

is called coercive if lim
kxk��

�T �x�� x�

kxk ���

�� Existence Theorems
for solutions of operator equations with monotone operators are given here only exemplarily� If the op�
erator T � mapping the real separable Banach space X into X�� �DT � X�� is monotone demi�continuous
and coercive� then the equation T �x� � f has a solution for arbitrary f � X��
If in addition the operator T is strongly monotone� then the solution is unique� In this case the inverse
operator T�� also exists�

For a monotone� demi�continuous operator T � IH � IH in a Hilbert space IH with DT � IH� there holds
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Im�I � T � � IH� where �I � T ��� is continuous� If we suppose that T is strongly monotone� then T��

is bijective with a continuous T�� �

Constructive approximation methods for the solution of the equation T �x� � � with a monotone oper�
ator T in a Hilbert space are based on the idea of Galerkin�s method �see �������� p� ���� or  ���!�
 ���!�� By means of this theory set�valued operators T � X � �X

�

can also be handled� The notion
of monotonity is then generalized by �f � g� x� y� 	 �� � x� y � DT and f � T �x�� g � T �y��

���� Measure andLebesgue Integral

������ SigmaAlgebra andMeasures
The initial point for introducing measures is a generalization of the notion of the length of an interval in
IR� of the area� and of the volume of subsets of IR� and IR�� respectively� This generalization is necessary
in order to 	measure
 as many sets as possible and to 	make integrable
 as many functions as possible�
For instance� the volume of an n�dimensional rectangular parallelepiped

Q � fx � IRn� ak � xk � bk �k � � �� � � � � n�g has the value
nY
k��

�bk � ak�� �������

�� Sigma Algebra
Let X be an arbitrary set� A non�empty system A of subsets from X is called a ��algebra if�

a� A � A implies X n A � A and ������a�

b� A�� A�� � � � � An� � � � � A implies
�#
n��

An � A� ������b�

Every ��algebra contains the sets � and X� the intersection of countably many of its sets and also the
di�erence sets of any two of its sets�

In the following IR denotes the set IR of real numbers extended by the elements f��g and f��g
�extended real line�� where the algebraic operations and the order properties from IR are extended to

IR in the natural way� The expressions ���� � ���� and
�
� are meaningless� while � � ���� and

� � ���� are assigned the value ��

�� Measure
A function �� A � IR� � IR� � ��� de�ned on a ��algebra A� is called a measure if

a� ��A� 	 � � A � A� ������a�

b� ���� � �� ������b�

c� A�� A�� � � � An� � � � � A� Ak � Al � � �k �� l� implies �

� �#
n��

An

�
�

�X
n��

��An�� ������c�

The property c� is called ��additivity of the measure� If � is a measure on A� and for the sets A�B �
A� A � B holds� then ��A� � ��B� �monotonicity�� If An � A �n � � �� � � �� and A� � A� � � � ��
then �

� �S
n��

An

�
� lim

n����An� �continuity from below��

Let A be a ��algebra of subsets of X and � a measure on A� The triplet X � �X�A� �� is called a
measure space� and the sets belonging to A are called measurable or A�measurable�

A� CountingMeasure� Let X be a �nite set fx�� x�� � � � � xNg�A the ��algebra of all subsets of X�
and let assign a non�negative number pk to each xk �k � � � � � � N�� Then the function � de�ned on A
for every set A � A� A � fxn� � xn� � � � � � xnkg by ��A� � pn� � pn� � � � �� pnk is a measure which takes
on only �nite values since ��X� � p� � � � �� pN ��� This measure is called the counting measure�

B� DiracMeasure� LetA be a ��algebra of subsets of a set X and a an arbitrary given point from
X� Then a measure is de�ned on A by

	a�A� �
�

� if a � A�
�� if a �� A�

�������
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It is called the 	 function �concentrated on a�� Obviously 	a�A� � 	a��A� � �A�a� �see ������ p� �����
where �A denotes the characteristic function of the set A�

C� Lebesgue Measure� Let X be a metric space and B�X� the smallest ��algebra of subsets of X
which contains all the open sets from X� B�X� exists as the intersection of all the ��algebras containing
all the open sets� and is called the Borel ��algebra of X� Every element from B�X� is called a Borel set
�see  ���!��

Suppose now� X � IRn �n 	 �� Using an extension procedure we can construct a ��algebra and a
measure on it� which coincides with the volume on the set of all rectangular parallelepipeds in IRn�
More precisely� There exists a uniquely de�ned ��algebra A of subsets of IRn and a uniquely de�ned
measure � on A with the following properties�

a� Each open set from IRn belongs to A� in other words� B�IRn� � A�

b� If A � A� ��A� � � and B � A then B � A and ��B� � ��

c� If Q is a rectangular parallelepiped� then Q � A� and ��Q� �
nQ
k��

�bk � ak��

d� � is translation invariant� i�e�� for every vector x � IRn and every set A � A one has x�A � fx� y�
y � Ag � A and ��x � A� � ��A��

The elements of A are called Lebesgue measurable subsets of IRn� � is the �n�dimensional� Lebesgue
measure in IRn�

Remark� In measure theory and integration theory one says that a certain statement �property� or
condition� with respect to the measure � is valid almost everywhere or ��almost everywhere on a set X�
if the set� where the statement is not valid� has measure zero� We write a�e� or ��a�e�x For instance� if
� is the Lebesgue measure on IR and A�B are two disjoint sets with IR � A � B and f is a function on
IR with f�x� � � �x � A and f�x� � �� � x � B� then f � � ��a�e� on IR if and only if ��B� � ��

������ Measurable Functions

������� Measurable Function
LetA be a ��algebra of subsets of a set X� A function f � X � IR is calledmeasurable if for an arbitrary
� � IR the set f��������!� � fx � x � X� f�x� � �g is in A�
A complex�valued function g � ih is called measurable if both functions g and h are measurable�
If A is the ��algebra of the Lebesgue measurable sets of IRn and f � IRn � IR is a continuous function�
then the set f��������!� � f����������� according to ������ p� ��� is open for every � � IR� hence
f is measurable�

������� Properties of the Class ofMeasurable Functions
The notion of measurable functions requires no measure but a ��algebra� Let A be a ��algebra of sub�
sets of the set X and let f� g� fn � X � IR be measurable functions� Then the following functions �see
������� p� ���� are also measurable�

a� �f for every � � IR� f � g�

b� f�� f�� jf j� f � g and f � g�

c� f � g� if there is no point from X where the expression ���� � ���� occurs�

d� sup fn� inf fn� lim sup fn �� lim
n�� sup

k�n
fk�� lim inf fn�

e� the pointwise limit limfn� in case it exists�

f� if f 	 � and p � IR� p � �� the f p is measurable�

A function f � X � IR is called elementary or simple if there is a �nite number of pairwise disjoint sets

xHere and in the following �a�e�� is an abbrevation for �almost everywhere��
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A�� � � � � An � A and real numbers ��� � � � � �n such that f �
nP
k��

�k�k� where �k denotes the character�

istic function of the set Ak� Obviously� each characteristic function of a measurable set is measurable�
so every elementary function is measurable� It is interesting that each measurable function can be ap�
proximated arbitrarily well by elementary functions� For each measurable function f 	 � there exists
a monotone increasing sequence of non�negative elementary functions� which converges pointwise to f �

������ Integration

������� De�nition of the Integral

Let �X�A� �� be a measurable space� The integral
Z
X

f d� �also denoted by
Z

f d�� in this section�

except point � we prefer the latter notation� for a measurable function f is de�ned by means of the
following steps�

� If f is an elementary function f �
nP
k��

�k�k� thenZ
f d� �

nX
k��

�k��Ak�� �������

� If f � X � IR �f 	 ��� thenZ
f d� � sup

�Z
g d� � g is an elementary function with � � g�x� � f�x�� � x � X

�
� �������

� If f � X � IR and f�� f� are the positive and the negative parts of f � thenZ
f d� �

Z
f� d��

Z
f� d� �������

under the condition that at least one of the integrals on the right side is �nite �in order to avoid the
meaningless expression�����

� For a complex�valued function f � g � ih� if the integrals ������� of the functions g� h are �nite�
put Z

f d� �
Z

g d� � i
Z

h d�� ������

� If for any measurable set A and a function f there exists the integral of the function f�A then putZ
A

f d� �
Z

f�A d�� �����

The integral of a measurable function is in general a number from IR� A function f � X � IR is called

integrable or summable over X with respect to � if it is measurable and
Z
jf j d� ���

������� Some Properties of the Integral
Let �X�A� �� be a measure space� f� g � X � IR be measurable functions and �� � � IR�

� If f is integrable� then f is �nite a�e�� i�e�� �fx � X� jf�x�j � ��g � ��

� If f is integrable� then
����Z f d�

���� � Z jf j d��

� If f is integrable and f 	 �� then
Z

f d� 	 ��

� If � � g�x� � f�x� on X and f is integrable� then g is also integrable� and
Z

g d� �
Z

f d��
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� If f� g are integrable� then �f � �g is integrable� and
Z

��f � �g� d� � �
Z

f d� � �
Z

g d��

� If f� g are integrable on A � A� i�e�� there exist the integrals
Z
A
f d� and

Z
A
g d� according to

����� and f � g ��a�e� on A� then
Z
A
f d� �

Z
A
g d��

If X � IRn and � is Lebesgue measure� then we have the notion of the �n�dimensional�Lebesgue integral
�see also ������� �� p� ����� In the case n �  and A �  a� b!� for every continuous function f on

 a� b! both the Riemann integral
Z b

a
f�x� dx �see ������ ��� p� ��� and the Lebesgue integral

Z
�a�b�

f d�

are de�ned� Both values are �nite and equal to each other� Furthermore� if f is a bounded Riemann
integrable function on  a� b!� then it is also Lebesgue integrable and the values of the two integrals
coincide�

The set of Lebesgue integrable functions is larger than the set of the Riemann integrable functions and
it has several advantages� e�g�� when passing to the limit under the integral sign and f � jf j is Lebesgue
integrable simultaneously�

������� Convergence Theorems
Now Lebesgue measurable functions will be considered throughout�

�� B� Levi�s Theorem onMonotone Convergence
Let ffng�n�� be an a�e� monotone increasing sequence of non�negative integrable functions with values

in IR� Then

lim
n��

Z
fn d� �

Z
lim
n�� fn d�� ������

�� Fatou�s Theorem
Let ffng�n�� be a sequence of non�negative IR�valued measurable functions� ThenZ

lim inf fn d� � lim inf
Z

fn d�� ������

�� Lebesgue�s Dominated Convergence Theorem
Let ffng be a sequence of measurable functions convergent on X a�e� to some function f � If there exists
an integrable function g such that jfnj � g a�e�� then f � limfn is integrable and

lim
Z

fn d� �
Z

lim fn d�� ������

�� Radon�NikodymTheorem
a�Assumptions� Let �X�A� �� be a ���nite measure space� i�e�� there exists a sequence fAng� An � A
such that X �

�S
n��

An and ��An� � � for � n� In this case the measure is called ���nite� It is called

�nite if ��X� ��� and it is called a probability measure if ��X� � � A real function � de�ned onA is
called absolutely continuous with respect to � if ��A� � � implies ��A� � �� We denote this property
by � , ��
For an integrable function f � the function� de�ned onA by ��A� �

R
A f d� is ��additive and absolutely

continuous with respect to the measure �� The converse of this property plays a fundamental role in
many theoretical investigations and practical applications�

b� Radon�Nikodym Theorem� Suppose a ��additive function � and a measure � are given on a
��algebraA� and let � , �� Then there exists a ��integrable function f such that for each set A � A�

��A� �
Z
A

f d�� ������
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The function f is uniquely determined up to its equivalence class� and � is non�negative if and only if
f 	 � ��a�e�

������ Lp Spaces
Let �X�A� �� be a measure space and p a real number  � p � �� For a measurable function f �
according to �������� p� ���� the function jf jp is measurable as well� so the expression

Np�f� �
�Z
jf jp d�

� �
p

������

is de�ned �and may be equal to ���� A measurable function f � X � IR is called p�th power integrable�
or an Lp�function if Np�f� � �� holds or� equivalent to this� if jf jp is integrable�

For every p with  � p � ��� we denote the set of all Lp�functions� i�e�� all functions p�th power
integrable with respect to � on X� by Lp��� or by Lp�X� or in full detail Lp�X�A� ��� For p �  we use
the simple notation L�X�� For p � � the functions are called quadratically integrable�

We denote the set of all measurable ��a�e� bounded functions on X by L���� and de�ne the essential
supremum of a function f as

N��f� � ess� sup f � inffa � IR � jf�x�j � a ��a�e�g� ������

Lp��� � � p � �� equipped with the usual operations for measurable functions and taking into
consideration Minkowski inequality for integrals �see ������� p� ���� is a vector space and Np��� is a
semi�norm on Lp���� If f � g means that f�x� � g�x� holds ��a�e�� then Lp��� is also a vector lattice
and even a K�space �see ������� p� ����� Two functions f� g � Lp��� are called equivalent �or we
declare them as equal� if f � g ��a�e� on X� In this way� functions are identi�ed if they are equal ��
a�e� The factorization of the set Lp�X� modulo the linear subspace N��

p ��� leads to a set of equivalence
classes on which the algebraic operations and the order can be transferred naturally� So we get a vector
lattice �K�space� again� which is denoted now by Lp�X� �� or Lp���� Its elements are called functions�
as before� but actually they are classes of equivalent functions�

It is very important that k #fkp � Np�f� is now a norm on Lp��� � #f stands here for the equivalence class
of f � which will later be denoted simply by f�� and �Lp���� kfkp� for every p with  � p � �� is a
Banach lattice with several good compatibility conditions between norm and order� For p � � with

�f� g� �
Z

fg d� as a scalar product� L���� is also a Hilbert space �see  ���!��

Very often for a measurable subset ) � IRn the space Lp�)� is considered� Its de�nition is not a problem
because of step � in �������� p� �����

The spaces Lp�)� ��� where � is the n�dimensional Lebesgue measure� can also be introduced as the
completions �see �������� p� �� and ������ p� ��� of the non�complete normed spaces C�)� of all

continuous functions on the set ) � IRn equipped with the integral norm kxkp �
�Z
jxjp d�

� �
p

� �
p ��� �see  ���!��

Let X be a set with a �nite measure� i�e�� ��X� � ��� and suppose for the real numbers p�� p��  � p� �
p� � ��� Then Lp��X� �� � Lp��X� ��� and with a constant C � C�p�� p�� ��X�� � � independent
of x� there holds the estimation kxk� � Ckxk� for x � Lp� �here kxkk denotes the norm of the space
Lpk�X� �� �k � � ����

������ Distributions

������� Formula of Partial Integration
For an arbitrary �open� domain ) � IRn� C�� �)� denotes the set of all arbitrary many times in )

di�erentiable functions � with compact support� i�e�� the set supp��� � fx � ) � ��x� �� �g is compact
in IRn and lies in )� By L�

loc�)� we denote the set of all locally summable functions with respect to
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the Lebesgue measure in IRn� i�e�� all the measurable functions f �equivalent classes� on ) such thatR
� jf j d� � �� for every bounded domain  � )�

Both sets are vector spaces �with the natural algebraic operations��

There holds Lp�)� � L�
loc�)� for  � p � �� and L�

loc�)� � L��)� for a bounded )� If we consider the

elements of Ck�)� as the classes generated by them in Lp�)�� then the inclusion Ck�)� � Lp�)� holds

for bounded )� where Ck�)� is at once dense� If ) is unbounded� then the set C�� �)� is dense �in this
sense� in Lp�)��

For a given function f � Ck�)� and an arbitrary function � � C�� �)� the formula of partial integration
has the formZ

�

f�x�D���x� d� � ���j�j
Z
�

��x�D�f�x� d� ������

�� with j�j � k �we have used the fact that D��j�� � ��� which can be taken as the starting point for
the de�nition of the generalized derivative of a function f � L�

loc�)��

������� Generalized Derivative
Suppose f � L�

loc�)�� If there exists a function g � L�
loc�)� such that � � � C�� �)� with respect to

some multi�index � the equationZ
�

f�x�D���x� d� � ���j�j
Z
�

g�x���x� d� ������

holds� then g is called the generalized derivative �derivative in the Sobolev sense or distributional deriva�
tive� of order � of f � We write g � D�f for this as in the classical case�

We de�ne the convergence of a sequence f�kg�k�� in the vector space C�� �)� to � � C�� �)� as follows�

�k � � if and only if
�

a� � a compact set K � ) with supp��k� � K �n
b� D��k  D�� uniformly on K for each multi�index ��

�������

The set C�� �)�� equipped with this convergence of sequences� is called the fundamental space� and is
denoted by D�)�� Its elements are often called test functions�

������� Distributions
A linear functional $ on D�)� continuous in the following sense �see ������ p� ����

�k� � � D�)� and �k � � implies $��k� � $��� ������

is called a generalized function or a distribution�

A� If f � L�
loc�)�� then

$f��� � �f� �� �
Z
�
f�x���x� d�� � � D�)� �������

is a distribution� A distribution� de�ned by a locally summable function as in �������� is called regular�
Two regular distributions are equal� i�e�� $f��� � $g��� �� � D�)�� if and only if f � g a�e� with respect
to ��

B� Let a � ) be an arbitrary �xed point� Then $�a��� � ��a�� � � D�)� is a linear continuous
functional on D�)�� hence a distribution� which is called the Dirac distribution� 	 distribution or 	
function�

Since $�a cannot be generated by any locally summable function �see  ��!�  ����!�� it is an example
for a non�regular distribution�

The set of all distributions is denoted byD��)�� From a more general duality theory than that discussed
in ������ p� ���� we getD��)� as the dual space ofD�)�� Consequently� we should writeD��)� instead�
In the space D��)�� it is possible to de�ne several operations with its elements and with functions
from C��)�� e�g�� the derivative of a distribution or the convolution of two distributions� which make
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D��)� important not only in theoretical investigations but also in practical applications in electrical
engineering� mechanics� etc�

For a review and for simple examples in applications of generalized functions see� e�g��  ��!� ����!�
Here� we discuss only the notion of the derivative of a generalized function�

������� Derivative of a Distribution
If $ is a given distribution� then the distribution D�$ de�ned by

�D�$���� � ���j�j$�D���� � � D�)�� �������

is called the distributional derivative of order � of $�
Let f be a continuously di�erentiable function� say on IR �so f is locally summable on IR� and f can be
considered as a distribution�� let f � be its classical derivative and D�f its distributional derivative of
order � Then�

�D�f� �� �
Z
IR

f ��x���x� dx� ������a�

from which by partial integration there follows

�D�f� �� � �
Z
IR

f�x����x� dx � ��f� ���� ������b�

In the case of a regular distribution $f with f � L�
loc�)� by using ������� we obtain

�D�$f���� � ���j�j$f�D��� � ���j�j
Z
�

f�x�D��d�� �������

and get the generalized derivative of the function f in the Sobolev sense �see ��������

A� For the regular distribution generated by the obviously locally summable Heaviside function

!�x� �
�

 for x 	 ��
� for x � �

�������

we get the non�regular 	 distribution as the derivative�

B� In mathematical modeling of technical and physical problems we are faced with �in a certain
sense idealized� in�uences concentrated at one point� such as a 	point�like
 force� needle�de�ection�
collision� etc�� which can be expressed mathematically by using the 	 or Heaviside function� For exam�
ple� m	a is the mass density of a point�like mass m concentrated at one point a �� � a � l� of a beam
of length l�

The motion of a spring�mass system on which at time t� there acts a momentary external force F is
described by the equation �x � �x � F	t� � With the initial conditions x��� � ,x��� � � its solution is

x�t� �
F


sin��t� t���!�t� t���
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�� VectorAnalysisandVectorFields

���� BasicNotions of theTheory ofVectorFields

������ Vector Functions of a ScalarVariable

�������� De�nitions

�� Vector Function of a Scalar Variable t
A vector function of a scalar variable is a vector �a whose components are real functions of t�

�a � �a�t� � ax�t��ex � ay�t��ey � az�t��ez� ����

The notions of limit� continuity� di�erentiability are de�ned componentwise for the vector �a�t��

�� Hodograph of a Vector Function
If we consider the vector function �a�t� as a position or radius vector �r � �r�t� of a point P � then this
function describes a space curve while t varies �Fig ����� This space curve is called the hodograph of
the vector function �a�t��

0
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P1

r1 r2

r3

Figure ��
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�rr
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�������� Derivative of a Vector Function
The derivative of ���� with respect to t is also a vector function of t�

d�a

dt
� lim

�t��

�a�t � %t�� �a�t�

%t
�

dax�t�

dt
�ex �

day�t�

dt
�ey �

daz�t�

dt
�ez� �����

The geometric representation of the derivative
d�r

dt
of the radius vector is a vector pointing in the direc�

tion of the tangent of the hodograph at the point P �Fig ����� Its length depends on the choice of
the parameter t� If t is the time� then the vector �r�t� describes the motion of a point P in space �the

space curve is its path�� and
d�r

dt
has the direction and magnitude of the velocity of this motion� If t � s

is the arclength of this space curve� measured from a certain point� then obviously

�����d�rds
����� � �

�������� Rules of Di
erentiation for Vectors

d

dt
��a� �b� �c� �

d�a

dt
� d�b

dt
� d�c

dt
� ����a�

d

dt
���a� �

d�

dt
�a � �

d�a

dt
�� is a scalar function of t�� ����b�

d

dt
��a�b� �

d�a

dt
�b� �a

d�b

dt
� ����c�
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d

dt
��a� �b� �

d�a

dt
� �b� �a� d�b

dt
�the factors must not be interchanged�� ����d�

d

dt
�a ��t�! �

d�a

d�
� d�
dt

�chain rule�� ����e�

If j�a�t�j � const� i�e�� �a��t� � �a�t� � �a�t� � const� then it follows from ����c� that �a � d�a
dt

� �� i�e��
d�a

dt
and �a are perpendicular to each other� Examples of this fact�

A� Radius and tangent vectors of a circle in the plane and

B� position and tangent vectors of a curve on the sphere� Then the hodograph is a spherical curve�

�������� Taylor Expansion for Vector Functions

�a�t � h� � �a�t� � h
d�a

dt
�

h�

�$

d��a

dt�
� � � �� hn

n$

dn�a

dtn
� � � � � �����

The expansion of a vector function in a Taylor series makes sense only if it is convergent� Because the
limit is de�ned componentwise� the convergence can be checked componentwise� so the convergence
of this series with vector terms can be determined exactly by the same methods as the convergence of
a series with complex terms �see ������ p� ���� So the convergence of a series with vector terms is
reduced to the convergence of a series with scalar terms�
The di�erential of a vector function �a�t� is de�ned by�

d�a �
d�a

dt
%t� �����

������ Scalar Fields

�������� Scalar Field or Scalar Point Function
If we assign a number �scalar value� U to every point P of a subset of space� then we write

U � U�P � ����a�

and we call ����a� a scalar �eld �or scalar function��

Examples of scalar �elds are temperature� density� potential� etc�� of solids�

A scalar �eld U � U�P � can also be considered as

U � U��r�� ����b�

where �r is the position vector of the point P with a given pole � �see ������ �� p� ���

�������� Important Special Cases of Scalar Fields

�� Plane Field
We have a plane �eld� if the function is de�ned only for the points of a plane in space�

�� Central Field
If a function has the same value at all pointsP lying at the same distance from a �xed pointC��r��� called
the center� then we call it a central symmetric �eld or also a central or spherical �eld� The function U
depends only on the distance CP � j�rj�

U � f� �j r j�� ����a�

The �eld of the intensity of a point�like source� e�g�� the �eld of brightness of a point�like source of
light at the pole� can be described with j�rj � r as the distance from the light source�

U �
c

r�
�c const� � ����b�
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�� Axial Field
If the function U has the same value at all points lying at an equal distance from a certain straight line
�axis of the �eld� then the �eld is called cylindrically symmetric or an axially symmetric �eld � or brie�y
an axial �eld �

�������� Coordinate De�nition of a Field
If the points of a subset of space are given by their coordinates� e�g�� by Cartesian� cylindrical� or spher�
ical coordinates� then the corresponding scalar �eld ����a� is represented� in general� by a function of
three variables�

U � ��x� y� z�� U � "��� �� z� or U � ��r� �� ��� ����a�

In the case of a plane �eld� a function with two variables is su�cient� It has the form in Cartesian and
polar coordinates�

U � ��x� y� or U � "��� ��� ����b�

The functions in ����a� and ����b�� in general� are assumed to be continuous� except� maybe� at some
points� curves or surfaces of discontinuity� The functions have the form

a� for a central �eld� U � U�
q

x� � y� � z�� � U�
q

�� � z�� � U�r�� ����a�

b� for an axial �eld� U � U�
q

x� � y�� � U��� � U�r sin��� ����b�

Dealing with central �elds is easiest using spherical coordinates� with axial �elds using cylindrical co�
ordinates�

�������� Level Surfaces and Level Lines of a Field

�� Level Surface
A level surface is the union of all points in space where the function ����a� has a constant value

U � const� ����a�

Di�erent constants U�� U�� U�� � � � de�ne di�erent level surfaces� There is a level surface passing through
every point except the points where the function is not de�ned� The level surface equations in the three
coordinate systems used so far are�

U � ��x� y� z� � const� U � "��� �� z� � const� U � ��r� �� �� � const� ����b�

Examples of level surfaces of di�erent �elds�

A� U � �c�r � cxx � cyy � czz� Parallel planes�

B� U � x� � �y� � �z�� Similar ellipsoids in similar positions�

C� Central �eld� Concentric spheres�

D� Axial �eld� Coaxial cylinders�

�� Level Lines
Level lines replace level surfaces in plane �elds� They satisfy the equation

U � const� ����

Level lines are usually drawn for equal intervals of U and each of them is marked by the corresponding
value of U �Fig �����

Well�known examples are the isobaric lines on a synoptic map or the contour lines on topographic
maps�

In particular cases� level surfaces degenerate into points or lines� and level lines degenerate into separate
points�

The level lines of the �elds a� U � xy� b� U �
y

x�
� c� U � r�� d� U �



r
are represented in Fig ����
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������ Vector Fields

�������� Vector Field or Vector Point Function
If we assign a vector �V to every point P of a subset of space� then we denote it by

�V � �V�P � ����a�

and we call ����a� a vector �eld �

Examples of vector �elds are the velocity �eld of a �uid in motion� a �eld of force� and a magnetic
or electric intensity �eld�

A vector �eld �V � �V�P � can be regarded as a vector function

�V � �V��r�� ����b�

where �r is the position vector of the point P with a given pole �� If all values of �r as well as �V lie in a
plane� then the �eld is called a plane vector �eld �see ������ p� ����

�������� Important Cases of Vector Fields

�� Central Vector Field
In a central vector �eld all vectors �V lie on straight lines passing through a �xed point called the center
�Fig ���a��
If we locate the pole at the center� then the �eld is de�ned by the formula

�V � f��r��r� ����a�
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where all the vectors have the same direction as the radius vector �r� It often has some advantage to
de�ne the �eld by the formula

�V � ���r�
�r

r
� ����b�

where ���r� is the length of the vector �V and
�r

r
is a unit vector�

c

a) c)b)

Figure ���

�� Spherical Vector Field

A spherical vector �eld is a special case of a central vector �eld� where the length of the vector �V depends
only on the distance j�rj �Fig ���b��

Examples are the Newton and the Coulomb force �eld of a point�like mass or of a point�like electric
charge�

�V �
c

r�
�r �

c

r�
�r

r
�c const� � �����

The special case of a plane spherical vector �eld is called a circular �eld �

�� Cylindrical Vector Field

a� All vectors �V lie on straight lines intersecting a certain line �called the axis� and perpendicular to
it� and

b� all vectors �V at the points lying at the same distance from the axis have equal length� and they are
directed either toward the axis or away from it �Fig ���c��

If we locate the pole on the axis parallel to the unit vector �c� then the �eld has the form

�V � ����
�r�

�
� ����a�

where �r� is the projection of �r on a plane perpendicular to the axis�

�r� � �c� ��r� �c�� ����b�

By intersecting this �eld with planes perpendicular to the axis� we always get equal circular �elds�

�������� Coordinate Representation of Vector Fields

�� Vector Field in Cartesian Coordinates
The vector �eld ����a� can be de�ned by scalar �elds V���r�� V���r�� and V���r� which are the coordinate

functions of �V� i�e�� the coe�cients of its decomposition into any three non�coplanar base vectors �e��
�e�� and �e��



�	�� Basic Notions of the Theory of Vector Fields ���

�V � V��e� � V��e� � V��e�� ����a�

If we take the coordinate unit vectors�i��j� and �k as the base vectors and express the coe�cients V�� V��
V� in Cartesian coordinates� then we get�

�V � Vx�x� y� z��i� Vy�x� y� z��j� Vz�x� y� z��k� ����b�

So� the vector �eld can be de�ned with the help of three scalar functions of three scalar variables�

�� Vector Field in Cylindrical and Spherical Coordinates
In cylindrical and spherical coordinates� the coordinate unit vectors

�e�� �e�� �ez �� �k�� and �er ��
�r

r
�� �e�� �e� ����a�

are tangents to the coordinate lines at each point �Fig ���� ����� In this order they always form a
right�handed system� The coe�cients are expressed as functions of the corresponding coordinates�

�V � V���� �� z��e� � V���� �� z��e� � Vz��� �� z��ez � ����b�

�V � Vr�r� �� ���er � V��r� �� ���e� � V��r� �� ���e�� ����c�

At transition from one point to the other� the coordinate unit vectors change their directions� but
remain mutually perpendicular�

e =kz
V
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e�
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z

Figure ���
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�������� Transformation of Coordinate Systems
See also Table ����
� Cartesian Coordinates in Terms of Cylindrical Coordinates

Vx � V� cos�� V� sin�� Vy � V� sin� � V� cos �� Vz � Vz� �����

� Cylindrical Coordinates in Terms of Cartesian Coordinates

V� � Vx cos� � Vy sin�� V� � �Vx sin� � Vy cos�� Vz � Vz� �����

� Cartesian Coordinates in Terms of Spherical Coordinates

Vx � Vr sin� cos�� V� sin� � V� cos� cos��

Vy � Vr sin� sin� � V� cos� � V� sin� cos��

Vz � Vr cos �� V� sin�� ������

� Spherical Coordinates in Terms of Cartesian Coordinates

Vr � Vx sin� cos� � Vy sin� sin� � Vz cos��

V� � Vx cos � cos� � Vy cos� sin�� Vz sin�� �����
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V� � � Vx sin� � Vy cos��

� Expression of a Spherical Vector Field in Cartesian Coordinates

�V � ��
q
x� � y� � z���x�i� y�j� z�k�� ������

� Expression of a Cylindrical Vector Field in Cartesian Coordinates

�V � ��
q
x� � y���x�i� y�j�� ������

In the case of a spherical vector �eld� spherical coordinates are most convenient for investigations�

i�e�� the form �V � V �r��er� and for investigations in cylindrical �elds� cylindrical coordinates are most

convenient� i�e�� the form �V � V ����e�� In the case of a plane �eld �Fig ����� we have

�V � Vx�x� y��i� Vy�x� y��j � V���� ���e� � V���� ���e�� ������

and for a circular �eld

�V � ��
q
x� � y���x�i� y�j� � �����e�� ������

Table �� Relations between the components of a vector in Cartesian� cylindrical� and spherical
coordinates

Cartesian coordinates Cylindrical coord Spherical coordinates

�V � Vx�ex � Vy�ey � Vz�ez V��e� � V��e� � Vz�ez Vr�er � V��e� � V��e�

Vx � V� cos �� V� sin� � Vr sin� cos� � V� cos� cos �

� V� sin�

Vy � V� sin� � V� cos � � Vr sin� sin� � V� cos� sin�

� V� cos�

Vz � Vz � Vr cos�� V� sin�

Vx cos � � Vy sin� � V� � Vr sin� � V� cos �

�Vx sin� � Vy cos� � V� � V�

Vz � Vz � Vr cos�� V� sin�

Vx sin� cos� � Vy sin� sin� � Vz cos� � V� sin� � Vz cos� � Vr

Vx cos � cos� � Vy cos� sin�� Vz sin� � V� cos �� Vz sin� � V�

�Vx sin� � Vy cos� � V� � V�

�������� Vector Lines
A curve C is called a line of a vector or a vector line of the vector �eld
�V��r� �Fig ��
� if the vector �V��r� is a tangent vector of the curve
at every point P � There is a vector line passing through every point
of the �eld� Vector lines do not intersect each other� except� maybe�

at points where the function �V is not de�ned� or where it is the zero
vector� The di�erential equations of the vector lines of a vector �eld
�V given in Cartesian coordinates are

Figure ���
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a� in general�
dx

Vx
�

dy

Vy
�

dz

Vz
� �����a� b� for a plane �eld�

dx

Vx
�

dy

Vy
� �����b�

To solve these di�erential equations see ������ p� ��� or ������ p� ���

A� The vector lines of a central �eld are rays starting at the center of the vector �eld�

B� The vector lines of the vector �eld �V � �c � �r are circles lying in planes perpendicular to the
vector �c� Their centers are on the axis parallel to �c�

���� Di�erential Operators of Space

������ Directional and SpaceDerivatives

�������� Directional Derivative of a Scalar Field

The directional derivative of a scalar �eld U � U��r� at a point P with position vector�r in the direction
�c �Fig ����� is de�ned as the limit of the quotient

�U

��c
� lim

���

U��r� ��c�� U��r�

�
� ������

If the derivative of the �eld U � U��r� at a point �r in the direction of the unit vector �c � of �c is denoted

by
�U

��c �
� then the relation between the derivative of the function with respect to the vector �c and with

respect to its unit vector �c � at the same point is

�U

��c
� j�cj �U

��c �
� ������

The derivative
�U

��c �
with respect to the unit vector represents the speed of increase of the function U in

the direction of the vector �c � at the point �r� If �n is the normal unit vector to the level surface passing

through the point �r� and �n is pointing in the direction of increasing U � then
�U

��n
has the greatest value

among all the derivatives at the point with respect to the unit vectors in di�erent directions� Between
the directional derivatives with respect to �n and with respect to any direction �c �� we have the relation

�U

��c �
�

�U

��n
cos��c �� �n� �

�U

��n
cos� � �c � � gradU �see ������� p� ��� � ������

In the following� directional derivatives always mean the directional derivative with respect to a unit
vector�

c
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�������� Directional Derivative of a Vector Field
The directional derivative of a vector �eld is de�ned analogously to the directional derivative of a scalar

�eld� The directional derivative of the vector �eld �V � �V��r� at a point P with position vector �r
�Fig ����� with respect to the vector �a is de�ned as the limit of the quotient

� �V

��a
� lim

���

�V��r� ��a�� �V��r�

�
� ������

If the derivative of the vector �eld �V � �V��r� at a point �r in the direction of the unit vector �a � of �a is

denoted by
� �V

��a �
� then

� �V

��a
� j�aj �

�V

��a �
� �����

In Cartesian coordinates� i�e�� for �V � Vx�ex � Vy�ey � Vz�ez� �a � ax�ex � ay�ey � az�ez� we have�

� �V

��a
� ��a � grad ��V � ��a � gradVx� �ex � ��a � gradVy� �ey � ��a � gradVz��ez� �����a�

In general coordinates we have�

� �V

��a
� ��a � grad ��V

�


�
�rot ��V� �a� � grad ��a � �V� � �adiv �V� �Vdiv�a� �a� rot �V � �V � rot�a� �����b�

�������� VolumeDerivative
Volume derivatives of a scalar �eld U � U��r� or a vector �eld �V at a point �r are quantities of three
forms� which are obtained as follows�

� We surround the point�r of the scalar �eld or of the vector �eld by a closed surface 1� This surface can
be represented in parametric form�r � �r�u� v� � x�u� v��ex �y�u� v��ey � z�u� v��ez� so the corresponding
vectorial surface element is

d�S �
��r

�u
� ��r

�v
du dv � �����a�

� We evaluate the surface integral over the closed surface 1� Here� the following three types of integrals
can be considered�ZZ

���

- U d�S �
ZZ
���

- �V � d�S�
ZZ
���

- �V� d�S� �����b�

� We determine the limits �if they exist�

lim
V��



V

ZZ
���

- U d�S� lim
V��



V

ZZ
���

- �V � d�S� lim
V��



V

ZZ
���

- �V� d�S� �����c�

Here V denotes the volume of the region of space that contains the point with the position vector �r
inside� and which is bounded by the considered closed surface 1�

The limits �����c� are called volume derivatives� The gradient of a scalar �eld and the divergence and
the rotation of a vector �eld can be derived from them in the given order� In the following paragraphs�
we discuss these notions in details �we will even de�ne them again��

������ Gradient of a Scalar Field
The gradient of a scalar �eld can be de�ned in di�erent ways�
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�������� De�nition of the Gradient
The gradient of a function U is a vector gradU � which can be assigned to every point of a scalar �eld
U � U��r�� having the following properties�

� The direction of gradU is always perpendicular to the direction of the level surface U � const�
passing through the considered point�

� gradU is always in the direction in which the function U is increasing�

� jgradU j �
�U

��n
� i�e�� the magnitude of gradU is equal to the directional derivative of U in the normal

direction�

If the gradient is de�ned in another way� e�g�� as a volume derivative or by the di�erential operator�
then the previous de�ning properties became consequences of the de�nition�

�������� Gradient andVolumeDerivative
The gradient U of the scalar �eld U � U��r� at a point �r can be de�ned as its volume derivative� If the
following limit exists� then we call it the gradient of U at �r�

gradU � lim
V��

ZZ
���

- U d�S

V
� ������

Here V is the volume of the region of space containing the point belonging to �r inside and bounded by
the closed surface 1� �If the independent variable is not a three�dimensional vector� then the gradient
is de�ned by the di�erential operator��

�������� Gradient andDirectional Derivative
The directional derivative of the scalar �eld U with respect to the unit vector �c � is equal to the projec�
tion of gradU onto the direction of the unit vector �c ��

�U

��c �
� �c � � gradU� ������

i�e�� the directional derivative can be calculated as the dot product of the gradient and the unit vector
pointing into the required direction�

Remark� The directional derivative at certain points in certain directions may also exist if the gradient
does not exist there�

�������� Further Properties of the Gradient
� The absolute value of the gradient is greater if the level lines or level surfaces drawn as mentioned
in ������� �� p� ���� are more dense�

� The gradient is the zero vector �gradU � ��� if U has a maximum or minimum at the considered
point� The level lines or surfaces degenerate to a point there�

�������� Gradient of the Scalar Field in Di
erent Coordinates

�� Gradient in Cartesian Coordinates

gradU �
�U�x� y� z�

�x
�i�

�U�x� y� z�

�y
�j �

�U�x� y� z�

�z
�k� ������

�� Gradient in Cylindrical Coordinates �x � � cos �� y � � sin �� z � z	
gradU � grad� U�e� � grad� U�e� � gradz U�ez with �����a�

grad�U �
�U

��
� grad�U �



�

�U

��
� gradzU �

�U

�z
� �����b�
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�� Gradient in Spherical Coordinates �x � r sin � cos �� y � r sin � sin �� z �

r cos �	
gradU � gradr U�er � grad� U�e� � grad� U�e� with �����a�

gradrU �
�U

�r
� grad�U �



r

�U

��
� grad�U �



r sin�

�U

��
� �����b�

�� Gradient in General Orthogonal Coordinates ��� �� �	

If �r��� �� �� � x��� �� ���i� y��� �� ���j� z��� �� ���k� then we get

gradU � grad� U�e� � grad� U�e� � grad� U�e� � where �����a�

grad� U �
�������r��
�����
�U

��
� grad�U �

�������r��
�����
�U

��
� grad�U �

�������r��
�����
�U

��
� �����b�

�������� Rules of Calculations
We assume in the followings that �c and c are constant�

grad c � ��� grad �U� � U�� � gradU� � gradU�� grad �c U� � c gradU� ������

grad �U�U�� � U�gradU� � U�gradU�� grad��U� �
d�

dU
gradU� �����

grad ��V� � �V�� � ��V� � grad ��V� � ��V� � grad ��V� � �V� � rot �V� � �V� � rot �V�� ������

grad ��r � �c� � �c� ������

�� Di
erential of a Scalar Field as the Total Di
erential of the Function U

dU � gradU � d�r �
�U

�x
dx �

�U

�y
dy �

�U

�z
dz� ������

�� Derivative of a Function U along a Space Curve�r�t�
dU

dt
�

�U

�x

dx

dt
�

�U

�y

dy

dt
�

�U

�z

dz

dt
� ������

�� Gradient of a Central Field

gradU�r� � U
�

�r�
�r

r
�spherical �eld�� �����a� grad r �

�r

r
��eld of unit vectors�� �����b�

������ VectorGradient
The relation �����a� inspires the notation

� �V

��a
� �a � grad �Vx�ex � Vy�ey � Vz�ez� � �a � grad �V �����a�

where grad �V is called the vector gradient� It follows from the matrix notation of �����a� that the
vector gradient� as a tensor� can be represented by a matrix�

��a �grad ��V �

�BBBBBBBBB�

�Vx
�x

�Vx
�y

�Vx
�z

�Vy
�x

�Vy
�y

�Vy
�z

�Vz
�x

�Vz
�y

�Vz
�z

�CCCCCCCCCA
�� ax

ay
az

�A ������b� grad �V �

�BBBBBBBBB�

�Vx
�x

�Vx
�y

�Vx
�z

�Vy
�x

�Vy
�y

�Vy
�z

�Vz
�x

�Vz
�y

�Vz
�z

�CCCCCCCCCA
� �����c�
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These types of tensors have a very important role in engineering sciences� e�g�� for the description of
tension and elasticity �see ������ �� p� ���� and p� �����

������ Divergence ofVector Fields
�������� De�nition of Divergence

We can assign a scalar �eld to a vector �eld �V��r� which is called its divergence� The divergence is
de�ned as a space derivative of the vector �eld at a point �r�

div �V � lim
V��

ZZ
���

- �V � d�S

V
� ������

If the vector �eld �V is considered as a stream �eld� then the divergence can be considered as the �uid
output or source� because it gives the amount of �uid given in a unit of volume during a unit of time

�owing by the considered point of the vector �eld �V� In the case div �V � � the point is called a source�

in the case div �V � � it is called a sink�

�������� Divergence in Di
erent Coordinates

�� Divergence in Cartesian Coordinates

div �V �
�Vx
�x

�
�Vy
�y

�
�Vz
�z

�����a� with �V�x� y� z� � Vx�i� Vy�j � Vz�k� �����b�

The scalar �eld div �V can be represented as the dot product of the nabla operator and the vector �V as

div �V � r � �V �����c�

and it is translation and rotation invariant� i�e�� scalar invariant �see �������� p� �����

�� Divergence in Cylindrical Coordinates

div �V �


�

���V��

��
�



�

�V�
��

�
�Vz
�z

�����a� with �V��� �� z� � V��e� � V��e� � Vz�ez� �����b�

�� Divergence in Spherical Coordinates

div �V �


r�
��r�Vr�

�r
�



r sin�

��sin�V��

��
�



r sin�

�V�
��

����a�

with �V�r� �� �� � Vr�er � V��e� � V��e�� ����b�

�� Divergence in General Orthogonal Coordinates

div �V �


D

�
�

��

��������r��
�����
�������r��

�����V�
�

�
�

��

��������r��
�����
�������r��

�����V�
�

�
�

��

��������r��
�����
�������r��

�����V�
��

�����a�

with �r��� �� �� � x��� �� ���i� y��� �� ���j� z��� �� ���k� �����b�

D �

�����
�
��r

��

��r

��

��r

��

������ �

�������r��
����� �
�������r��

����� �
�������r��

����� � �����c�

and �V��� �� �� � V��e� � V��e� � V��e� � �����d�

�������� Rules for Evaluation of the Divergence

div�c � �� div ��V� � �V�� � div �V� � div �V�� div �c�V� � c div �V� ������
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div �U �V� � U div �V � �V � gradU

�
especially div� r�c� �

�r � �c
r

�
� ������

div ��V� � �V�� � �V� � rot �V� � �V� � rot �V� � ������

�������� Divergence of a Central Field

div�r � �� div��r��r � ���r� � r�
�

�r�� ������

������ Rotation ofVector Fields
�������� De�nitions of the Rotation

�� De�nition
The rotation or curl of a vector �eld �V at the point �r is a vector denoted by rot �V� curl �V or with the

nabla operator r� �V� and de�ned as the negative space derivative of the vector �eld�

rot �V � � lim
V��

ZZ
���

- �V� d�S

V
� lim

V��

ZZ
���

- d�S� �V

V
� ������

�� De�nition
The vector �eld of the rotation of the vector �eld �V��r� can be de�ned in the following way�

Proj rot =limn V

r

SS 0

C

Cmax

Smax

rot V

S

n

0

C

90
o

V rd

P

Figure ���

a� We put a small surface sheet S �Fig �����
through the point �r� We describe this surface

sheet by a vector �S whose direction is the di�
rection of the surface normal �n and its absolute
value is equal to the area of this surface patch�
The boundary of this surface is denoted by C�

b� We evaluate the integral
I
�C�

�V � d�r along the

closed boundary curve C of the surface �the sense
of the curve is positive looking to the surface
from the direction of the surface normal �see
Fig ������

c�We �nd the limit �if it exists� lim
S��

�
S

I
�C�

�V � d�r�

while the position of the surface sheet remains
unchanged�

d�We change the position of the surface sheet in order to get a maximum value of the limit� The surface
area in this position is Smax and the corresponding boundary curve is Cmax�
e� We determine the vector rot�r at the point �r� whose absolute value is equal to the maximum value
found above and its direction coincides with the direction of the surface normal of the corresponding
surface� We then get�

���rot �V
��� � lim

Smax��

I
�Cmax�

�V � d�r

Smax
� �����a�

The projection of rot �V onto the surface normal �n of a surface with area S� i�e�� the component of the

vector rot �V in an arbitrary direction �n ��l is
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�l � rot �V � rot l �V � lim
S��

I
�C�

�V � d�r

S
� �����b�

The vector lines of the �eld rot �V are called the curl lines of the vector �eld �V�

�������� Rotation in Di
erent Coordinates

�� Rotation in Cartesian Coordinates

rot �V ��i

�
�Vz
�y
� �Vy

�z

�
��j

�
�Vx
�z
� �Vz

�x

�
� �k

�
�Vy
�x
� �Vx

�y

�
�

����������
�i �j �k

�

�x

�

�y

�

�z
Vx Vy Vz

����������
� �����a�

The vector �eld rot �V can be represented as the cross product of the nabla operator and the vector �V�

rot �V � r� �V� �����b�

�� Rotation in Cylindrical Coordinates

rot �V � rot � �V�e� � rot � �V�e� � rot z �V�ez with �����a�

rot � �V �


�

�Vz
��
� �V�

�z
� rot � �V �

�V�
�z
� �Vz

��
� rot z �V �



�

�
�

��
��V��� �V�

��

�
� �����b�

�� Rotation in Spherical Coordinates

rot �V � rot r �V�er � rot � �V�e� � rot � �V�e� with ����a�

rot r �V �


r sin�

�
�

��
�sin�V��� �V�

��

�
�

rot � �V �


r sin�

�Vr
��
� 

r

�

�r
�rV���

rot � �V �


r

�
�

�r
�rV��� Vr

��

�
�

 ����������!����������"
����b�

�� Rotation in General Orthogonal Coordinates

rot �V � rot � �V�e� � rot � �V�e� � rot � �V�e� with �����a�

rot � �V �


D

�������r��
�����
�

�

��

��������r��
�����V�
�
� �

��

��������r��
�����V�
�

�

rot � �V �


D

�������r��
�����
�

�

��

��������r��
�����V�
�
� �

��

��������r��
�����V�
�

�

rot � �V �


D

�������r��
�����
�
�

��

��������r��
�����V�
�
� �

��

��������r��
�����V�
�

�

 ����������!����������"
�����b�

�r��� �� �� � x��� �� ���i� y��� �� ���j� z��� �� ���k� D �

�������r��
����� �
�������r��

����� �
�������r��

����� � �����c�

�������� Rules for Evaluating the Rotation

rot � �V� � �V�� � rot �V� � rot �V�� rot �c�V� � c rot �V� ������
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rot �U �V� � U rot �V � gradU � �V� ������

rot � �V� � �V�� � � �V� � grad � �V� � � �V� � grad � �V� � �V� div �V� � �V� div �V�� ������

�������� Rotation of a Potential Field
This also follows from the Stokes theorem �see �������� p� ���� that the rotation of a potential �eld is
identically zero�

rot �V � rot �grad U� � ��� ������

This also follows from �����a� for �V � gradU � if the assumptions of the Schwarz interchanging theo�
rem are ful�lled �see �������� �� p� �����

For �r � x�i � y�j � z�k with r � j�rj �
p
x� � y� � z� we have� rot �r � � and rot ���r��r� � ��� where

��r� is a di�erentiable function of r�

������ NablaOperator� LaplaceOperator

�������� Nabla Operator
The symbolic vector r is called the nabla operator� Its use simpli�es the representation of and calcu�
lations with space di�erential operators� In Cartesian coordinates we have�

r �
�

�x
�i�

�

�y
�j�

�

�z
�k� ������

The components of the nabla operator are considered as partial di�erential operators� i�e�� the symbol
�

�x
means partial di�erentiation with respect to x� where the other variables are considered as con�

stants�

The formulas for spatial di�erential operators in Cartesian coordinates can be obtained by formal mul�

tiplication of this vector operator by the scalar U or by the vector �V� For instance� in the case of the
operators gradient� vector gradient� divergence� and rotation�

grad U � rU �gradient of U �see ������ p� ������ �����a�

grad �V � r �V �vector gradient of �V �see ������ p� ������ �����b�

div �V � r � �V �divergence of �V �see ������ p� ������ �����c�

rot �V � r� �V �rotation or curl of �V �see ������ p� ������ �����d�

�������� Rules for Calculations with the Nabla Operator
� If r stands in front of a linear combination

P
aiXi with constants ai and with point functions Xi�

then� independently of whether they are scalar or vector functions� we have the formula�

r�
X

aiXi� �
X

airXi� ������

� Ifr is applied to a product of scalar or vector functions� then we apply it to each of these functions
after each other and add the result� There is a � above the symbol of the function submitted to the
operation

r�XY Z� � r�
�
X Y Z� �r�X

�
Y Z� �r�XY

�
Z �� i�e�� ������

r�XY Z� � �rX�Y Z � X�rY �Z� � XY �rZ��

We transform the products according to vector algebra so as the operatorr is applied to only one factor
with the sign �� Having performed the computation we omit that sign�
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A� div �U �V� � r�U �V� � r�
�
U �V� �r�U

�
�V � � �V � rU � Ur � �V � �V � gradU � U div �V�

B� grad ��V�
�V�� � r��V�

�V�� � r�

�
�V�

�V�� �r��V�

�
�V� �� Because �b��a�c� � ��a�b��c� �a� ��b��c� we

get� grad ��V�
�V�� � ��V�r��V� � �V� � �r� �V�� � ��V�r��V� � �V� � �r� �V��

� ��V�grad ��V� � �V� � rot �V� � ��V�grad ��V� � �V� � rot �V��

�������� Vector Gradient

The vector gradient grad �V is represented by the nabla operator as

grad �V � r�V� ����a�

We get for the expression occurring in the vector gradient ��a � r��V�

���a � r��V � rot ��V� �a� � grad ��a�V� � �adiv �V � �Vdiv�a� �a� rot �V� �V� rot�a� ����b�

In particular we get for �r � x�i� y�j� z�k�

��a � r��r � �a� ����c�

�������� Nabla Operator Applied Twice

For every �eld �V�

r�r� �V� � div rot �V � �� �����a� r� �rU� � rot gradU � ��� �����b�

r�rU� � div gradU � %U� �����c�

�������� Laplace Operator

�� De�nition
The dot product of the nabla operator with itself is called the Laplace operator�

% � r � r � r�� ������

The Laplace operator is not a vector� It prescribes the summation of the second partial derivatives� It
can be applied to scalar functions as well as to vector functions� The application to a vector function�
componentwise� results in a vector�
The Laplace operator is an invariant� i�e�� it does not change during translation and�or rotation of the
coordinate system�

�� Formulas for the Laplace Operator in Di
erent Coordinates
In the following� we apply the Laplace operator to the scalar point function U��r�� Then the result is a

scalar� The application of it for vector functions �V��r� results in a vector %�V with components %Vx�
%Vy� %Vz�

� Laplace Operator in Cartesian Coordinates

%U�x� y� z� �
��U

�x�
�

��U

�y�
�

��U

�z�
� ������

� Laplace Operator in Cylindrical Coordinates

%U��� �� z� �


�

�

��

�
�
�U

��

�
�



��
��U

���
�

��U

�z�
� ������
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� Laplace Operator in Spherical Coordinates

%U�r� �� �� �


r�
�

�r

�
r�

�U

�r

�
�



r� sin�

�

��

�
sin�

�U

��

�
�



r� sin� �

��U

���
� ������

� Laplace Operator in General Orthogonal Coordinates

%U��� �� �� �


D

�������
�

��

�BBBBB�
D�������r��
�����
�

�U

��

�CCCCCA�
�

��

�BBBBB�
D�������r��
�����
�

�U

��

�CCCCCA�
�

��

�BBBBB�
D�������r��
�����
�

�U

��

�CCCCCA

������� with �����a�

�r��� �� �� � x��� �� ���i� y��� �� ���j� z��� �� ���k� �����b� D �

�������r��
����� �
�������r��

����� �
�������r��

����� � �����c�

�� Special Relations between the Nabla Operator and Laplace Operator

r�r � �V� � grad div �V� ������

r� �r� �V� � rot rot �V� ������

r�r � �V��r� �r� �V� � %�V� where ������

%�V � �r � r��V � %Vx�i� %Vy�j� %Vz�k �

�
��Vx
�x�

�
��Vx
�y�

�
��Vx
�z�

�
�i

�

�
��Vy
�x�

�
��Vy
�y�

�
��Vy
�z�

�
�j �

�
��Vz
�x�

�
��Vz
�y�

�
��Vz
�z�

�
�k� �����

������ Review of SpatialDi�erentialOperations

�����	�� Fundamental Relations andResults �see Table �����

Table ��� Fundamental relations for spatial di�erential operators

Operator Symbol Relation Argument Result Meaning

Gradient gradU rU scalar vector maximal increase

Vector gradient grad �V r�V vector tensor second order

Divergence div �V r � �V vector scalar source� sink

Rotation rot �V r� �V vector vector curl

Laplace operator %U �r � r�U scalar scalar potential �eld source

Laplace operator %�V �r � r��V vector vector

�����	�� Rules of Calculation for Spatial Di
erential Operators

U� U�� U�� scalar functions� c constant� �V� �V�� �V� vector functions�

grad �U� � U�� � gradU� � gradU�� ������

grad �cU� � c gradU� ������

grad �U�U�� � U� gradU� � U� gradU�� ������

gradF �U� � F ��U� gradU� ������
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div ��V� � �V�� � div �V� � div �V�� ������

div �c�V� � c div �V� ������

div �U �V� � �V � gradU � U div �V� ������

rot ��V� � �V�� � rot �V� � rot �V�� ������

rot �c�V� � c rot �V� ������

rot �U �V� � U rot �V� �V � gradU� �����

div rot �V � �� ������

rot gradU � �� �zero vector�� ������

div gradU � %U� ������

rot rot �V � grad div �V�%�V� ������

div ��V� � �V�� � �V� � rot �V� � �V� � rot �V�� ������

�����	�� Expressions of Vector Analysis in Cartesian� Cylindrical� and

Spherical Coordinates �see Table �����

Table ��� Expressions of vector analysis in Cartesian� cylindrical� and spherical coordinates

Cartesian coordinates Cylindrical coordinates Spherical coordinates

d�s � d�r �exdx � �eydy � �ezdz �e�d� � �e��d� � �ezdz �erdr � �e�rd� � �e�r sin�d�

gradU �ex
�U

�x
� �ey

�U

�y
� �ez

�U
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�e�

�U

��
� �e�
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���� Integration inVectorFields
Integration in vector �elds is usually performed in Cartesian� cylindrical or in spherical coordinate sys�
tems� Usually we integrate along curves� surfaces� or volumes� The line� surface� and volume elements
needed for these calculations are collected in Table ����

Table ��� Line� surface� and volume elements in Cartesian� cylindrical� and spherical coordinates

Cartesian coordinates Cylindrical coordinates Spherical coordinates

d�r �exdx � �eydy � �ezdz �e�d� � �e��d� � �ezdz �erdr � �e�rd� � �e�r sin�d�

d�S �exdydz � �eydxdz � �ezdxdy �e��d�dz � �e�d�dz � �ez�d�d� �err
� sin�d�d�

��e�r sin�drd�

��e�rdrd�

dv� dxdydz �d�d�dz r� sin�drd�d�

�ex � �ey � �ez �e� � �e� � �ez �er � �e� � �e�

�ey � �ez � �ex �e� � �ez � �e� �e� � �e� � �er

�ez � �ex � �ey �ez � �e� � �e� �e� � �er � �e�

�ei � �ej �
�

� i �� j
 i � j

�ei � �ej �
�

� i �� j
 i � j

�ei � �ej �
�

� i �� j
 i � j

The indices i and j take the place of x� y� z or �� �� z or r� �� ��

. The volume is denoted here by v to avoid confusion with the absolute value of the vector

function j�Vj � V�

������ Line Integral andPotential inVector Fields

�������� Line Integral in Vector Fields

� De�nition The scalar�valued curvilinear integral or line integral of a vector function �V��r� along

a recti�cable curve
�
AB �Fig ����� is the scalar value

P �
Z
�
AB

�V��r� � d�r� �����a�

� Evaluation of this Integral in Five Steps

a� We divide the path
�
AB �Fig ����� by division points A���r��� A���r��� � � � � An����rn��� �A � A��

B � An� into n small arcs which are approximated by the vectors �ri ��ri�� � %�ri���
b� We choose arbitrarily the points Pi with position vectors �ri lying inside or at the boundary of each
small arc�

c� We calculate the dot product of the value of the function �V��ri� at these chosen points with the
corresponding %�ri���
d� We add all the n products�

e� We calculate the limit of the sums got this way
nX
i��

'�V��ri� � %�ri�� for %�ri��  �� while n  �
obviously�
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If this limit exists independently of the choice of the points Ai and Pi� then it is called the line integralZ
�
AB

�V � d�r � lim
��r��
n��

nX
i��

'�V��ri� �%�ri��� �����b�

A su�cient condition for the existence of the line integral �����a�b� is that the vector function �V��r�

and the curve
�
AB are continuous and the curve has a tangent varying continuously� A vector function

�V��r� is continuous if its components� the three scalar functions� are continuous�

A=A0 r0

P1
∆r0

A1

P2

r1

∆r1

A2

r2

P3

A3

∆r2

r3

rn-1

An-1

Pn

rn

∆rn-1 B=An

0

Figure ���

A

B

C

Figure ���

�������� Interpretation of the Line Integral inMechanics

If �V��r� is a �eld of force� i�e�� �V��r� � �F��r�� then the line integral �����a� represents the work done by

�F while a particle m moves along the path
�
AB �Fig �����������

�������� Properties of the Line IntegralZ
�
ABC

�V��r� � d�r �
Z
�
AB

�V��r� � d�r�
Z
�
BC

�V��r� � d�r� ������

Z
�
AB

�V��r� � d�r � �
Z
�
BA

�V��r� � d�r �Fig ������ ������

Z
�
AB

h
�V��r� � �W��r�

i
� d�r �

Z
�
AB

�V��r� � d�r�
Z
�
AB

�W��r� � d�r� ������

Z
�
AB

c�V��r� � d�r � c
Z
�
AB

�V��r� � d�r� �����

�������� Line Integral in Cartesian Coordinates
In Cartesian coordinates� we have�Z

�
AB

�V��r� � d�r �
Z
�
AB

�Vx dx � Vy dy � Vz dz� � ������
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�������� Integral Along a Closed Curve in a Vector Field
A line integral is called a contour integral if the path of integration is a closed curve� If the scalar value
of the integral is denoted by P and the closed curve is denoted by C� then we use the notation�

P �
I
�C�

�V��r� � d�r� ������

�������� Conservative or Potential Field

�� De�nition
If the value P of the line integral �����a� in a vector �eld depends only on the initial point A and the
endpoint B� and is independent of the path between them� then we call this �eld a conservative �eld or
a potential �eld�

The value of the contour integral in a conservative �eld is always equal to zero�I
�V��r� � d�r � �� ������

A conservative �eld is always irrotational�

rot �V � ��� ������

and conversely� this equality is a su�cient condition for a vector �eld to be conservative� Of course�
we have to suppose that the partial derivatives of the �eld function are continuous with respect to the

corresponding coordinates� and the domain of �V is simply connected� This condition� also called the
integrability condition �see �������� p� ����� has the form in Cartesian coordinates

�Vx
�y

�
�Vy
�x

�
�Vy
�z

�
�Vz
�y

�
�Vz
�x

�
�Vx
�z

� ������

�� Potential of a Conservative Field�
or its potential function or brie�y its potential is the scalar function

���r� �

�rZ
�r�

�V��r� � d�r� �����a�

We can calculate it in a conservative �eld with a �xed initial point A��r�� and a variable endpoint B��r�
from the integral

���r� �
Z
�
AB

�V��r� � d�r� �����b�

Remark� In physics� the potential ����r� of a function �V��r� at the point �r is considered with the op�
posite sign�

����r� � �
�rZ

�r�

�V��r� � d�r � ����r�� ������

�� Relations between Gradient� Line Integral� and Potential

If the relation �V��r� � gradU��r� holds� then U��r� is the potential of the �eld �V��r�� and conversely� �V��r�
is a conservative or potential �eld� In physics we consider the negative sign corresponding to �������

�� Calculation of the Potential in a Conservative Field
If the function �V��r� is given in Cartesian coordinates �V � Vx�i�Vy�j�Vz�k� then for the total di�erential
of its potential function holds�
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z
B( r )

A( r )0

y

x

0

Figure ���

dU � Vx dx � Vy dy � Vz dz� �����a�

Here� the coe�cients Vx� Vy� Vz must ful�ll the integrability condition
������� The determination of U follows from the equation system

�U

�x
� Vx�

�U

�y
� Vy�

�U

�z
� Vz� �����b�

In practice� the calculation of the potential can be done by performing
the integration along three straight line segments parallel to the coor�
dinate axes and connected to each other �Fig ������

U �

�rZ
�r�

�V � d�r � U�x�� y�� z�� �
Z x

x�
Vx�x� y�� z�� dx

�
Z y

y�
Vy�x� y� z�� dy �

Z z

z�
Vz�x� y� z� dz� �����

������ Surface Integrals
�������� Vector of a Plane Sheet
The vector representation of the surface integral of general type �see �������� p� ���� requires to assign

a vector �S to a plane surface region S� which is perpendicular to this region and its absolute value is
equal to the area of S� Fig ����a shows the case of a plane sheet� The positive direction in S is given
by de�ning the positive sense along a closed curve C according to the right�hand law �also called right
screw rule�� If we look from the initial point of the vector into the direction of its �nal point� then the
positive sense is the clockwise direction� By this choice of orientation of the boundary curve we �x the
exterior side of this surface region� i�e�� the side on which the vector lies� This de�nition works in the
case of any surface region bounded by a closed curve �Fig ����b�c��

S

a�

exterior side

interior side

K
b�

interior side

exterior side

K

c�

Figure ���

�������� Evaluation of the Surface Integral
The de�nition of a surface integral in scalar or vector �elds is independent of whether the surface S is
bounded by a closed curve or is itself a closed surface� The evaluation is performed in �ve steps�

a� We divide the surface region S on the exterior side de�ned by the orientation of the boundary curve
�Fig ����� into n arbitrary elementary surfaces %Si so that each of these surface elements can be

approximated by a plane surface element� We assign the vector %�Si to every surface element %Si as
given in �����a�� In the case of a closed surface� the positive direction is de�ned so that the exterior

side is where %�Si should start�
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b�We choose an arbitrary point Pi with the position vector �ri inside or on the boundary of each surface
element�

c� We produce the products U��ri� %�Si in the case of a scalar �eld and the product �V��ri� � %�Si or
�V��ri��%�Si in the case of a vector �eld�

d� We add all these products�

e� We evaluate the limit while the diameters of %Si tend to zero� i�e�� %�Si  � for n  �� So� the
surface elements tend to zero in the sense given in ����� �� p� ��� for double integrals�
If this limit exists independently of the partition and of the choice of the points �ri� then we call it the

surface integral of �V on the given surface�

ri

�Si

�Si V( r )i

0

Pi

Figure ���

S

Syz

Szx

x Sxy

y

z

0

Figure ���

�������� Surface Integrals and Flow of Fields

�� Vector Flow of a Scalar Field

�P � lim
�Si��

n��

nX
i��

U��ri� %�Si �
Z
�S�

U��r� d�S� ����

�� Scalar Flow of a Vector Field

Q � lim
�Si��

n��

nX
i��

�V��ri� �%�Si �
Z
�S�

�V��r� � d�S� �����

�� Vector Flow of a Vector Field

�R � lim
�Si��

n��

nX
i��

�V��ri��%�Si �
Z
�S�

�V��r�� d�S� �����

�������� Surface Integral in Cartesian Coordinates as
Surface Integrals of Second TypeZ

�S�

U d�S �
Z
�Syz�

Z
U dy dz�i�

Z
�Szx�

Z
U dz dx�j�

Z
�Sxy�

Z
U dx dy �k� �����
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Z
�S�

�V � d�S �
Z
�Syz�

Z
Vx dy dz �

Z
�Szx�

Z
Vy dz dx �

Z
�Sxy�

Z
Vz dx dy� �����

Z
�S�

�V� d�S �
Z
�Syz�

Z
�Vz�j� Vy�k� dy dz �

Z
�Szx�

Z
�Vx�k� Vz�i� dz dx �

Z
�Sxy�

Z
�Vy�i� Vx�j� dx dy������

The existence theorems for these integrals can be given similarly to those in ������ �� p� ����
In the formulas above� each of the integrals is taken over the projection S on the corresponding coor�
dinate plane �Fig ������ where one of the variables x� y or z should be expressed by the others from
the equation of S�

Remark� Integrals over a closed surface are denoted byI
�S�

U d�S �
ZZ
�S�

-U d�S�
I
�S�

�V � d�S �
ZZ
�S�

-�V � d�S�
I
�S�

�V� d�S �
ZZ
�S�

-�V� d�S� �����

A� Calculate the integral �P �
Z
�S�

xyz d�S� where the surface is the plane region x�y�z �  bounded

by the coordinate planes� The upward side is the positive side�

�P �
Z
�Syz�

Z
�� y � z�yz dy dz�i�

Z
�Szx�

Z
�� x� z�xz dz dx�j�

Z
�Sxy�

Z
�� x� y�xy dx dy �k�

Z
�Syz�

Z
� � y � z�yz dy dz �

Z �

�

Z ��z

�
� � y � z�yz dy dz �



��
� We get the two further integrals

analogously� The result is� �P �


��
��i��j� �k��

B� Calculate the integral Q �
Z
�S�

�r � d�S �
Z
�Syz�

Z
x dy dz �

Z
�Szx�

Z
y dz dx �

Z
�Sxy�

Z
z dx dy over the

same plane region as in A�
Z
�Syz�

Z
x dy dz �

Z �

�

Z ��x

�
� � x � y� dy dx �



�
� Both other integrals are

calculated similarly� The result is� Q �


�
�



�
�



�
�



�
�

C� Calculate the integral �R �
Z
�S�

�r� d�S �
Z
�S�

�x�i� y�j� z�k�� �dy dz�i� dz dx�j � dx dy �k�� where

the surface region is the same as in A� Performing the computations we get �R � ���

������ Integral Theorems

�������� Integral Theorem and Integral Formula of Gauss

�� Integral Theorem of Gauss or the Divergence Theorem

The integral theorem of Gauss gives the relation between a volume integral of the divergence of �V over
a volume v� and a surface integral over the surface S surrounding this volume� The orientation of the
surface �see ������� p� ���� is de�ned so that the exterior side is the positive one� The vector function
�V should be continuous� their �rst partial derivatives should exist and be continuous�ZZ

�S�

- �V � d�S �
ZZ
�v�

Z
div �V dv� ����a�
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The scalar �ow of the �eld �V through a closed surface S is equal to the integral of divergence of �V over
the volume v bounded by S� In Cartesian coordinates we get�ZZ

�S�

-�Vx dy dz � Vy dz dx � Vz dx dy� �
ZZ
�v�

Z ��Vx
�x

�
�Vy
�y

�
�Vz
�z

�
dx dy dz� ����b�

�� Integral Formula of Gauss
In the planar case� the integral theorem of Gauss restricted to the x� y plane becomes the integral for�
mula of Gauss� It represents the correspondence between a line integral and the corresponding surface
integral�Z

�B�

Z ��Q�x� y�

�x
� �P �x� y�

�y


dx dy �

I
�C�

 P �x� y� dx � Q�x� y� dy! � �����

B denotes a plane region which is bounded by C� P and Q are continuous functions with continuous
�rst partial derivatives�

�� Sector Formula
The sector formula is an important special case of the Gauss integral formula� We can calculate the
area of plane regions with it� For Q � x� P � �y it follows that

F �
Z
�B�

Z
dx dy �



�

I
�C�

 x dy � y dx!� ������

�������� Integral Theorem of Stokes
The integral theorem of Stokes gives the relation between a surface integral over an oriented surface

region S de�ned in the vector �eld �V� and the integral along the closed boundary curve C of the surface
S� The sense of the curve C is chosen so that the sense of traverse forms a right screw with the surface

normal �see ������� p� ����� The vector function �V should be continuous and it should have continuous
�rst partial derivatives�Z

�S�

Z
rot �V � d�S �

I
�C�

�V � d�r� ����a�

The vector �ow of the rotation through a surface S bounded by the closed curve C is equal to the

contour integral of the vector �eld �V along the curve C�
In Cartesian coordinates� we have�I

�C�

�Vx dx � Vy dy � Vz dz�

�
Z
�S�

Z 
 ��Vz
�y
� �Vy

�z

�
dy dz �

�
�Vx
�z
� �Vz

�x

�
dz dx �

�
�Vy
�x
� �Vx

�y

�
dx dy

�
� ����b�

In the planar case� the integral theorem of Stokes� just as that of Gauss� becomes into the integral
formula ����� of Gauss�

�������� Integral Theorems of Green
The Green integral theorems give relations between volume and surface integrals� They are the applica�

tions of the Gauss theorem for the function �V � U� gradU�� where U� and U� are scalar �eld functions
and v is the volume surrounded by the surface S�ZZ

�v�

Z
�U�%U� � gradU� � gradU�� dv �

ZZ
�S�

-U� gradU� � d�S� ������
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ZZ
�v�

Z
�U�%U� � U�%U�� dv �

ZZ
�S�

-�U� gradU� � U� gradU�� � d�S� ������

In particular for U� � � we have�ZZ
�v�

Z
%U dv �

ZZ
�S�

-gradU � d�S� ������

In Cartesian coordinates the third Green theorem has the following form �compare ���b��ZZ
�v�

Z �
��U

�x�
�

��U

�y�
�

��U

�z�

�
dv �

ZZ
�S�

-
�
�U

�x
dy dz �

�U

�y
dz dx �

�U

�z
dx dy

�
� ������

A� Calculate the line integral I �
I
�C�

�x�y� dx � dy � z dz� with C as the intersection curve of the

cylinder x� � y� � a� and the plane z � �� We get with the Stokes theorem�

I �
I
�C�

�V � d�r �
Z
�S�

Z
rot �V � d�S � �

Z
�S��

Z
�x�y� dx dy � ��

��Z
���

aZ
r��

r� cos� � sin� �dr d� � �a	

�
� with

rot �V � ��x�y��k� d�S � �k dx dy and the circle S�� x� � y� � a��

B� Determine the �ux I �
I
�S�

�V � d�S in the drift space �V � x��i� y��j � z��k through the surface S

of the sphere x� � y� � z� � a�� The theorem of Gauss yields�

I �
I
�S�

�V� d�S �
ZZ
�v�

Z
div �V dv � �

ZZ
�v�

Z
�x��y��z�� dx dy dz � �

��Z
���

�Z
���

aZ
r��

r� sin� dr d� d� �
�

�
a���

C� Heat conduction equation� The change in time of the heat Q of a space region v containing no

heat source is given by
dQ

dt
�
ZZ
�v�

Z
c�

�T

�t
dv �speci�c heat�capacity c� density �� temperature T �� while

the corresponding time�dependent change of the heat �ow through the surface S of v is given by
dQ

dt
�Z

�S�

Z
� gradT � d�S �thermal conductivity ��� Applying the theorem of Gauss for the surface integral we

get from
ZZ
�v�

Z �
c�

�T

�t
� div �� gradT �


dv � � the heat conduction equation c�

�T

�t
� div �� gradT ��

which has the form
�T

�t
� a�%T in the case of a homogeneous solid �c� �� � constants��

���� Evaluation of Fields

������ Pure Source Fields

We call a �eld �V� a pure source �eld or an irrotational source �eld when its rotation is equal to zero
everywhere� If the divergence is q��r�� then we have�

div �V� � q��r�� rot �V� � ��� ������
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In this case� the �eld has a potential U � which is de�ned at every point P by the Poisson di�erential
equation �see ������ p� ����

�V� � gradU� div gradU � %U � q��r�� �����a�

where �r is the position vector of P � �In physics� �V� � �gradU is used�� The evaluation of U comes
from

U��r� � � 

��

ZZZ
div �V��r�� dv��r��

j�r��r�j � �����b�

The integration is taken over the whole of space �Fig ���
�� The divergence of �V must be di�eren�
tiable and be decreasing quickly enough for large distances�

P

r

0

r

r - r

dv( r )

*

*

*

Figure ���
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Figure ����

������ PureRotation Field or Zero�Divergence Field

A pure rotation �or curl� �eld or a solenoidal �eld is a vector �eld �V� whose divergence is equal to zero
everywhere� If the rotation is �w��r�� then we have�

div �V� � �� rot �V� � �w��r�� �����a�

The rotation �w��r� cannot be arbitrary� it must satisfy the equation div �w � �� With the assumptions

�V���r� � rot �A��r�� div �A � �� i�e�� rot rot �A � �w �����b�

we get according to ������

grad div �A�%�A � �w� i�e�� %�A � ��w� �����c�

So� �A��r� formally satis�es the Poisson di�erential equation just as the potential U of an irrotational

�eld �V� and that is why it is called a vector potential� For every point P �

�V� � rot �A with �A �


��

ZZZ �w��r��
j�r��r�j dv��r��� �����d�

The meaning of �r is the same as in �����b�� the integration is taken over the whole of space�

������ Vector FieldswithPoint�Like Sources

�������� Coulomb Field of a Point�Like Charge
The Coulomb �eld is an important example of an irrotational �eld� which is also solenoidal� except at
the location of the point charge� the point source �Fig ������ The �eld and potential equations are�

�E �
e

r�
�r� U � �e

r
in physics also

e

r
� �����a�



�	�� Di�erential Equations of Vector Field Theory ��


The scalar �ow is ��e or �� depending on whether the surface S encloses the point source or not�I
�S�

�E � d�S �
�

��e� if S encloses the point source�
�� otherwise�

�����b�

The quantity e is the source intensity or source strength�

�������� Gravitational Field of a PointMass
The �eld of gravity of a point mass is the second example of an irrotational and at the same time
solenoidal �eld� except at the center of mass� We also call it the Newton �eld� Every relation valid for
the Coulomb �eld is valid analogously also for the Newton �eld�

������ Superposition of Fields
�������� Discrete Source Distribution
Analogously to the superposition of the �elds of physics� the vector �elds of mathematics superpose

each other� The superposition law is� If the vector �elds �V� have the potentials U�� then the vector �eld
�V � 1�V� has the potential U � 1U� �
For n discrete point sources with source strength e� �
 � � �� � � � � n�� whose �elds are superposed� the
resulting �eld can be determined by the algebraic sum of the potentials U��

�V��r� � �grad
nX
���

U� with U� �
e�

j�r��r�j � �����a�

Here� the vector �r is again the position vector of the point under consideration� �r� are the position
vectors of the sources�

If there is an irrotational �eld �V� and a zero�divergence �eld �V� together and they are everywhere
continuous� then

�V � �V� � �V� � � 

��

�
grad

ZZZ q��r��
j�r��r�j dv��r��� rot

ZZZ �w��r��
j�r��r�j dv��r��


� �����b�

If the vector �eld is extended to in�nity� then the decomposition of �V��r� is unique if j�V��r�j decreases
su�cient rapidly for r � j�rj  �� The integration is taken over the whole of space�

�������� Continuous Source Distribution
If the sources are distributed continuously along lines� surfaces� or in domains of space� then� instead
of the �nite source strength e�� we have in�nitesimals corresponding to the density of the source distri�
butions� and instead of the sums� we have integrals over the domain� In the case of a continuous space

distribution of source strength� the divergence is q��r� � div �V�
Similar statements are valid for the potential of a �eld de�ned by rotation� In the case of a continuous

space rotation distribution� the 	 rotation density 
 is de�ned by �w��r� � rot �V�

�������� Conclusion
A vector �eld is determined uniquely by its sources and rotations in space if all these sources and rota�
tions lie in a �nite space�

���� Di�erential Equations ofVectorFieldTheory

������ LaplaceDi�erential Equation

The problem to determine the potential U of a vector �eld �V� � gradU containing no sources� leads
to the equation according to ������ with q��r� � �

div �V� � div gradU � %U � �� ����a�
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i�e�� to the Laplace di�erential equation� In Cartesian coordinates we have�

%U �
��U

�x�
�

��U

�y�
�

��U

�z�
� �� ����b�

Every function satisfying this di�erential equation and which is continuous and possesses continuous
�rst and second order partial derivatives is called a Laplace or harmonic function�
We distinguish three basic types of boundary value problems�

� Boundary value problem �for an interior domain� or Dirichlet problem� We determine a function
U�x� y� z� which is harmonic inside a given space or plane domain and takes the given values at the
boundary of this domain�

� Boundary value problem �for an interior domain� or Neumann problem� We determine a function

U�x� y� z�� which is harmonic inside a given domain and whose normal derivative
�U

�n
takes the given

values at the boundary of this domain�

� Boundary value problem �for an interior domain�� We determine a function U�x� y� z�� which is
harmonic inside a given domain and the expression

�U � �
�U

�n
��� � const� �� � �� �� �� takes given values at the boundary of this domain�

������ PoissonDi�erential Equation

The problem to determine the potential U of a vector �eld �V� � gradU with given divergence� leads
to the equation according to ������ with q��r� �� �

div �V� � div gradU � %U � q��r� �� �� �����a�

i�e�� to the Poisson di�erential equation� Since in Cartesian coordinates�

%U �
��U

�x�
�

��U

�y�
�

��U

�z�
� �����b�

the Laplace di�erential equation ����b� is a special case of the Poisson di�erential equation �����b��
The solution is the Newton potential �for point masses� or the Coulomb potential �for point charges�

U � � 

��

ZZZ q��r�� dv��r��
j�r��r�j � �����c�

The integration is taken over the whole of space� U��r� tends to zero su�ciently rapidly for increasing
j�rj values�

We can discuss the same three boundary value problems for the Poisson di�erential equation as for the
solution of the Laplace di�erential equation� The �rst and the third boundary value problems can be
solved uniquely� for the second one we have to prescribe further special conditions �see  ���!��



���

�� FunctionTheory

���� Functions ofComplexVariables

������ Continuity�Di�erentiability
�������� De�nition of a Complex Function
Analogously to real functions� we can assign complex values to complex values� i�e�� to the value z �
x � i y we can assign a complex number w � u � i v� where u � u�x� y� and v � v�x� y� are real
functions of two real variables� We then write w � f�z�� The function w � f�z� is a mapping from the
complex z plane to the complex w plane�
The notions of limit� continuity� and derivative of a complex function w � f�z� can be de�ned analo�
gously to real functions of real variables�

�������� Limit of a Complex Function
The limit of a function f�z� is equal to the complex number w� if for z approaching z� the value of the
function f�z� approaches w��

w� � lim
z�z�

f�z�� ���a�

In other words� For any positive � there is a �real� 	 such that for every z satisfying ���b�� except
maybe z� itself� the inequality ���c� holds�

jz� � zj � 	� ���b� jw� � f�z�j � �� ���c�

The geometrical meaning is as follows� Any point z in the circle with center z� and radius 	� except
maybe the center z� itself� is mapped into a point w � f�z� inside a circle with center w� and radius
� in the w plane where f has its range� as shown in Fig ���� The circles with radii 	 and � are also
called the neighborhoods U��w�� and U��z���

z0
�

y

x0 z plane

w0

�

u0 w plane

v

a) b)

Figure ��

�������� Continuous Complex Functions
A function w � f�z� is continuous at z� if it has a limit there� a substitution value� and these two
are equal� i�e�� if for an arbitrarily small given neighborhood U��w�� of the point w� � f�z�� in the w
plane there exists a neighborhood U��z�� of z� in the z plane such that w � f�z� � U��w�� for every
z � U��z��� As represented in Fig ���� U��w�� is� e�g�� a circle with radius � around the point w�� We
then write

lim
z�z�

f�z� � f�z�� or lim
���

f�z� � 	� � f�z��� �����

�������� Di
erentiability of a Complex Function
A function w � f�z� is di�erentiable at z if the di�erence quotient

�w

� z
�

f�z �� z�� f�z�

� z
�����
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has a limit for � z  �� independently of how � z approaches zero� This limit is denoted by f ��z� and
it is called the derivative of f�z��

The function f�z� � Re z � x is not di�erentiable at any point z � z�� since approaching z� parallel
to the x�axis the limit of the di�erence quotient is one� and approaching parallel to the y�axis this value
is zero�

������ Analytic Functions

�������� De�nition of Analytic Functions
A function f�z� is called analytic� regular or holomorphic on a domain G� if it is di�erentiable at every
point of G� The boundary points of G� where f ��z� does not exist� are singular points of f�z��
The function f�z� � u�x� y��iv�x� y� is di�erentiable in G if u and v have continuous partial derivatives
in G with respect to x and y and they also satisfy the CauchyRiemann di�erential equations�

�u

�x
�

�v

�y
�

�u

�y
� ��v

�x
� �����

The real and imaginary parts of an analytic function satisfy the Laplace di�erential equation�

� u�x� y� �
��u

�x�
�

��u

�y�
� �� ����a� � v�x� y� �

��v

�x�
�

��v

�y�
� �� ����b�

The derivatives of the elementary functions of a complex variable can be calculated with the help of
the same formulas as the derivative of the corresponding real functions�

A� f�z� � z�� f ��z� � �z�� B� f�z� � sin z� f ��z� � cos z�

�������� Examples of Analytic Functions

�� Elementary Functions
The elementary algebraic and transcendental functions are analytic in the whole z plane except at
some isolated singular points� If a function is analytic on a domain� i�e�� it is di�erentiable� then it is
di�erentiable arbitrarily many times�

A� The function w � z� with u � x� � y�� v � �xy is everywhere analytic�

B� The function w � u � iv� de�ned by the equations u � �x � y� v � x � �y� is not analytic at
any point�

C� The function f�z� � z� with f ��z� � �z� is analytic�

D� The function f�z� � sin z with f ��z� � cos z is analytic�

�� Determination of the Functions u and v
If both the functions u and v satisfy the Laplace di�erential equation� then they are harmonic functions
�see ����� p� ����� If one of these harmonic functions is known� e�g�� u � then the second one� as
the conjugate harmonic function v� can be determined up to an additive constant with the Cauchy�
Riemann di�erential equations�

v �
Z �u

�x
dy � ��x� with

d�

dx
� �

�
�u

�y
�

�

�x

Z �u

�x
dy

�
� �����

Analogously u can be determined if v is known�

�������� Properties of Analytic Functions

�� Absolute Value or Modulus of an Analytic Function
The absolute value �modulus� of an analytic function is�

jwj � jf�z�j �
q

 u�x� y�!� �  v�x� y�!� � ��x� y�� �����

The surface jwj � ��x� y� is called its relief � i�e�� jwj is the third coordinate above every point z � x�i y�
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A� The absolute value of the function sin z � sinx cosh y�i cos x sinh y is j sin zj �
q

sin� x � sinh� y �
The relief is shown in Fig ���a�

B� The relief of the function w � e��z is shown in Fig ���b�

For the reliefs of several analytic functions see  ���!�

1

2

x

1

2

|f(z)|

y

cosh

sin

sinh

y

x

|f(z)|

a) b)

Figure ���

�� Roots

Since the absolute value of a functions is never negative� the relief is always above the z plane� except
the points where jf�z�j � � holds� so f�z� � �� The z values� where f�z� � � holds� are called the roots
of the function f�z��

�� Boundedness

A function is bounded on a certain domain� if there exists a positive number N such that jf�z�j � N is
valid everywhere in this domain� In the opposite case� if no such number N exists� then the function is
called unbounded�

�� Theorem about theMaximumValue

If w � f�z� is an analytic function on a closed domain� then the maximum of its absolute value is
attained on the boundary of the domain�

�� Theorem about the Constant �Theorem of Liouville	

If w � f�z� is analytic in the whole plane and also bounded� then this function is a constant� f�z� �
const�

�������� Singular Points

If a function w � f�z� is analytic in a neighborhood of z � a� i�e�� in a small circle with center a� except
a itself� then f has a singularity at a� There exist three types of singularities�

� f�z� is bounded in the neighborhood� Then there exists w � lim
z�a

f�z�� and setting f�a� � w the

function becomes analytic also at a� In this case� f has a removable singularity at a�

� If lim
z�a
jf�z�j ��� then f has a pole at a� About poles of di�erent orders see ������� p� ����

� If f has neither a removable singularity nor a pole� then f has an essential singularity� In this case�
for any complex w there exists a sequence zn  a such that f�zn� w�

A� The function w �


z � a
has a pole at a�
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B� The function w � e��z has an essential singularity at � �Fig ���b��

������ ConformalMapping

�������� Notion and Properties of ConformalMappings

�� De�nition
A mapping from the z plane to the w plane is called a conformal mapping if it is analytic and injective�
In this case�

w � f�z� � u � iv� f ��z� �� �� �����

The conformal mapping has the following properties�

The transformation dw � f ��z� dz of the line element dz �
�
dx
dy

�
is the composition of a dilatation by

� � jf ��z�j and of a rotation by � � arg f ��z�� This means that in�nitesimal circles are transformed
into almost circles� triangles into �almost� similar triangles �Fig ����� The curves keep their angles
of intersection� so an orthogonal family of curves is transformed into an orthogonal family �Fig �����
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Remark� Conformal mappings can be found in physics� electrotechnics� hydro� and aerodynamics and
in other areas of mathematics�

�� The Cauchy�Riemann Equations
The mapping between dz and dw is given by the a�ne di�erential transformation

du �
�u

�x
dx �

�u

�y
dy� dv �

�v

�x
dx �

�v

�y
dy ����a�

and in matrix form

dw � A dz with A �
�
ux uy
vx vy

�
� ����b�

According to the Cauchy�Riemann di�erential equations� A has the form of a rotation�stretching ma�
trix �see �������� �� p� �� with � as the stretching factor�

A �
�
ux �vx
vx ux

�
� �

�
cos� �sin�
sin� cos �

�
� ����a�

ux � vy � � cos� � ����b� � � jf ��z�j �
q
u�x � u�y �

q
v�x � v�y � ����c�

�uy � vx � � sin� � ����d� � � arg f ��z� � arg �ux � ivx� � ����e�

�� Orthogonal Systems
The coordinate lines x � const and y � const of the z plane are transformed by a conformal mapping
into two orthogonal families of curves� In general� we can generate a bunch of orthogonal curvilinear
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coordinate systems by analytic functions� and conversely� for every conformal mapping there exist an
orthogonal net of curves which is transformed into an orthogonal coordinate system�

A� In the case of u � �x � y� v � x � �y �Fig ����� orthogonality does not hold�
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B� In the case w � z� the orthogonality is retained� except at the point z � � because here w� � ��
The coordinate lines are transformed into two confocal families of parabolas �Fig ����� the �rst
quadrant of the z plane into the upper half of the w plane�

y

x0

v

u

a) b)

Figure ���

�������� Simplest ConformalMappings
In this paragraph� we discuss some transformations with their most important properties� and we give
the graph of their isometric net in the z plane� i�e�� the net which is transformed into an orthogonal
Cartesian net in the w plane� The boundaries of the z regions mapped into the upper half of the w
plane are denoted by shading� Black regions are mapped onto the square in the w plane with vertices
��� ��� ��� �� �� ��� and �� � by the conformal mapping �Fig �����

�� Linear Function
For the conformal mapping given in the form of a linear function

w � az � b� ���a�

the transformation can be done in three steps�

a� Rotation of the plane by the angle � � arg a according to � w� � ei�z�
b� Stretching by the factor jaj� w� � jajw��
c� Parallel translation by b � w � w� � b�

���b�

Altogether� every �gure is transformed into a similar one� The points z� �� and z� �
b

� a
for a �� �

b �� � are transformed into themselves� and they are called �xed points� Fig ��� shows the orthogonal
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net which is transformed into the orthogonal Cartesian net�
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Figure ���

y
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Figure ���

y

x

Figure ���

�� Inversion
The conformal mapping

w �


z
�����

represents an inversion with respect to the unit circle and a re�ection in the real axis� namely� a point z
of the z plane with the absolute value r and with the argument � is transformed into a point w of the w
plane with the absolute value �r and with the argument�� �see Fig ������ Circles are transformed
into circles� where lines are considered as limiting cases of circles �radius��� Points of the interior of
the unit circle become exterior points and conversely �see Fig ������ The point z � � is transformed
into w ��� The points z � � and z �  are �xed points of this conformal mapping� The orthogonal
net of the transformation ����� is shown in Fig ��
�

Remark� In general a geometric transformation is called inversion with respect to a circle with radius
r� when a point P� with radius r� inside the circle is transformed into a point P� on the elongation of

the same radius vector
�
OP� outside of the circle with radius OP � � r� � r��r�� Points of the interior

of the circle become exterior points and conversely�
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�� Linear Fractional Function
For the conformal mapping given in the form of a linear fractional function

w �
az � b

cz � d
����a�
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the transformation can be performed in three steps�

a� Linear function� w� � cz � d�

b� Inversion� w� �


w�

�

c� Linear function� w �
a

c
�

bc� ad

c
w��

����b�

Circles are transformed again into circles �circular transformation�� where straight lines are considered
as limiting cases of circles with r  �� Fixed points of this conformal mapping are the both points
satisfying the quadratic equation

z �
az � b

cz � d
� �����

If the points z� and z� are inverses of each other with respect to a circle K� of the z plane� then their
images w� and w� in the w plane are also inversions of each other with respect to the image circle K�

of K��
The orthogonal net which has the orthogonal Cartesian net as its image is represented in Fig �����
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�� Quadratic Function
The conformal mapping described by a quadratic function

w � z� ����a�

has the form in polar coordinates and as a function of x and y�

w � �� ei��� ����b� w � u � i v � x� � y� � �ixy� ����c�

It is obvious from the polar coordinate representation that the upper half of the z plane is mapped onto
the whole w plane� i�e�� the whole image of the z plane will cover twice the whole w plane�
The representation in Cartesian coordinates shows that the coordinate lines of the w plane� u � const
and v � const� come from the orthogonal families of hyperbolas x��y� � u and �xy � v of the z plane
�Fig ������
Fixed points of this mapping are z � � and z � � This mapping is not conformal at z � ��

�� Square Root
The conformal mapping given in the form as a square root of z�

w �
p
z � �����

transforms the whole z plane whether onto the upper half of the w plane or onto the lower half of it� i�e��
the function is double�valued� The coordinate lines of the w plane come from two orthogonal families of
confocal parabolas with the focus at the origin of the z plane and with the positive or with the negative
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real half�axis as their axis �Fig ������
Fixed points of the mapping are z � � and z � � The mapping is not conformal at z � ��

� Sum of Linear and Fractional Linear Functions
The conformal mapping given by the function

w �
k

�

�
z �



z

�
�k a real constant� k � �� ����a�

can be transformed by the polar coordinate representation of z � � ei� and by separating the real and
imaginary parts according to ������

u �
k

�

�
� �



�

�
cos�� v �

k

�

�
�� 

�

�
sin�� ����b�

Circles with � � �� � const of the z plane �Fig ����a� are transformed into confocal ellipses

u�

a�
�

v�

b�
�  with a �

k

�

�
�� �



��

�
� b �

k

�

������� � 

��

����� ����c�

in the w plane �Fig ����b�� The foci are the points �k of the real axis� For the unit circle with
� � �� �  we get the degenerate ellipse of the w plane� the double segment ��k��k� of the real axis�
Both the interior and the exterior of the unit circle are transformed onto the entire w plane with the
cut ��k��k�� so its inverse function is double�valued�

z �
w �

p
w� � k�

k
� ����d�

The lines � � �� of the z plane �Fig ����c� become confocal hyperbolas

u�

��
� v�

��
�  with � � k cos��� � � k sin�� ����e�

with foci �k �Fig ����d�� The hyperbolas corresponding to the coordinate half�axis of the z plane�
� � ��

�

�
� ��

�

�
�
�

are degenerate in the axis u � � �v axis� and in the intervals �����k� and �k���

of the real axis running there and back�

y

x0 0-k k
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Figure ���

�� Logarithm
The conformal mapping given in the form of the logarithm function

w � Ln z ����a�

has the form for z given in polar coordinates�

u � ln �� v � � � �k� �k � ������� � � ��� ����b�

We can see from this representation that the coordinate lines u � const and v � const come from
concentric circles around the origin of the z plane and from rays starting at the origin of the z plane
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�Fig ������ The isometric net is a polar net�
The logarithm function Ln z is in�nitely many valued �see �����c�� p� �����
If we restrict our investigation to the principal value ln z of Ln z ��� � v � ���� then the whole z
plane is transformed into a stripe of the w plane bounded by the lines v � ��� where v � � belongs to
the stripe�

�� Exponential Function
The conformal mapping given in the form of an exponential function �see also ������ �� p� ����

w � ez ����a�

has the form in polar coordinates�

w � �ei�� ����b�

We get from z � x � i y�

� � ex and � � y� ����c�

If y changes from �� to ��� and x changes from �� to ��� then � takes all values from � to� and
� from �� to �� A �� wide stripe of the z plane� parallel to the x�axis� will be transformed into the
entire w plane �Fig ������
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�� The Schwarz�Christo
el Formula
By the Schwarz�Christo�el formula

z � C�

wZ
�

dt

�t� w�����t� w�����t� wn��n
� C� �����a�

the interior of a polygon of the z plane can be mapped onto the upper half of the w plane� The polygon
has n exterior angles ���� ���� � � � � �n� �Fig ����a�b�� We denote by wi �i � � � � � � n� the points
of the real axis in the w plane assigned to the vertices of the polygon� and by t the integration variable�
The oriented boundary of the polygon is transformed into the oriented real axis of the w plane by this
mapping�
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For large values of t� the integrand behaves as �t� and is regular at in�nity� Since the sum of all the
exterior angles of an n�gon is equal to ��� we get�

nX
���

�� � �� �����b�

The complex constants C� and C� yield a rotation� a stretching and a translation� they do not depend
on the form of the polygon� only on the size and the position of the polygon in the z plane�

Three arbitrary points w�� w�� w� of the w plane can be assigned to three points z�� z�� z� of the polygon
in the z plane� If we assign a point at in�nity in the w plane� i�e�� w� � �� to a vertex of the polygon
in the z plane� e�g�� to z � z�� then the factor �t � w��

�� is omitted� If the polygon is degenerate�
e�g�� a vertex is at in�nity� then the corresponding exterior angle is �� so �� � � i�e�� the polygon is a
half�stripe�
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�

88
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A� We want to map a certain region of the z plane� It is the shaded region in
Fig ���
a� Considering

P
�� � � we choose three points as the table shows

�Fig ���
a�b�� The formula of the mapping is�

z � C�

Z w

�

dt

�t � �t����
� �C�

�p
w � arctan

p
w
	

� i
�d

�

�p
w � arctan

p
w
	

�

z� �� w�

A �  �

B � ��� �

C � ��� �

For the determination of C� we substitute t � �ei� � � id � C� lim���

Z �

�

�
� � �ei�

	���
i�ei�d�

�ei�
�

C��� i�e�� C� � i
d

�
�

We get the constant C� � � considering that the mapping assigns 	z � � w � �
�

B� Mapping of a rectangle� Let the vertices of the rectangle be z��� � �K� z��� � �K � iK �� The
points z� and z� should be transformed into the points w� �  and w� � �k �� � k � � of the real
axis� z� and z� are re�ections of z� and z� with respect to the imaginary axis� According to the Schwarz
re�ection principle �see ������� p� ��� they must correspond to the points w� � � and w� � ��k
�Fig ����a�b�� So� the mapping formula for a rectangle ��� � �� � �� � �� � ��� of the position
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sketched above is� z � C�

Z w

�

dtq
�t� w���t� w���t� w���t� w��

� C�

Z w

�

dts
�t� � �

�
t� � 

k�

� � The

point z � � has the image w � � and the image of z � iK is w � �� With C� � �k we get

z �
Z w

�

dtq
�� t���� k�t��

�
Z �

�

d�p
� k� sin� �

� F ��� k� �substituting t � sin�� w � sin���

F ��� k� is the elliptic integral of the �rst kind �see ������� p� �����
We get the constant C� � � considering that the mapping assigns 	 z � � w � � 
�

�������� The Schwarz Re�ection Principle

�� Statement
Suppose f�z� is an analytic complex function in a domain G� and the boundary of G contains a line
segment g�� If the function is continuous on g� and it maps the line g� into a line g��� then the points
lying symmetric with respect to g� are transformed into points lying symmetric with respect to g��
�Fig ������
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�� Application
The application of this principle makes it easier to perform calculations and the representations of
plane regions with straight line boundaries� If the line boundary is a stream line �isolating boundary
in Fig ������ then the sources are re�ected as sources� the sinks as sinks and curls as curls with
the opposite sense of rotation� If the line boundary is a potential line �heavy conducting boundary in
Fig ������ then the sources are re�ected as sinks� the sinks as sources and curls as curls with the
same sense of rotation�

�������� Complex Potential

�� Notion of the Complex Potential

We will consider a �eld �V � �V�x� y� in the x� y plane with continuous and di�erentiable components

Vx�x� y� and Vy�x� y� of the vector �V for the zero�divergence and the irrotational case�

a� Zero�divergence �eld with div �V � �� i�e��
�Vx
�x

�
�Vy
�y

� �� That is the integrability condition

for the di�erential equation expressed with the �eld or stream function "�x� y�
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d" � �Vy dx � Vx dy � �� ����a� and then Vx �
�"

�y
� Vy � ��"

�x
� ����b�

For two points P� � P� of the �eld �V the di�erence "�P�� � "�P�� is a measure of the �ux through a
curve connecting the points P� and P�� in the case when the whole curve is in the �eld�

b� Irrotational �eld with rot �V � ��� i�e��
�Vy
�x
� �Vx

�y
� �� That is the integrability condition for the

di�erential equation with the potential function ��x� y�

d� � Vx dx � Vy dy � �� �����a� and then Vx �
��

�x
� Vy �

��

�y
� �����b�

The functions � and " satisfy the Cauchy�Riemann di�erential equations �see ������ p� ���� and
both satisfy the Laplace di�erential equation ��� � �� �" � ��� We combine the functions � and "
into the analytic function

W � f�z� � ��x� y� � i"�x� y�� ������

and this function is called the complex potential of the �eld �V�

Then ���x� y� is the potential of the vector �eld �V in the sense of the usual notation in physics and
electrotechnics �see ������� �� p� ����� The level lines of " and � form an orthogonal net� We have

the following equalities for the derivative of the complex potential and the �eld vector �V�

dW

dz
�

��

�x
� i

��

�y
� Vx � iVy�

dW

dz
� f ��z� � Vx � iVy� ������

�� Complex Potential of a Homogeneous Field
The function

W � a z� ������

with real a is the complex potential of a �eld whose potential lines are parallel to the y�axis and whose
direction lines are parallel to the x�axis �Fig ������ A complex a results in a rotation of the �eld
�Fig ������

y

x

Ψ=const

Φ=const

Figure ����

y

x
Φ=const

Ψ=const

Figure ����

�� Complex Potential of Source and Sink
The complex potential of a �eld with a strength of source s � � at the point z � z� has the equation�

W �
s

��
ln�z � z�� � ������

A sink with the same intensity has the equation�

W � � s

��
ln�z � z�� � ������
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The direction lines run away radially from z � z�� while the potential lines are concentric circles around
the point z� �Fig ������

�� Complexes Potential of a Source�Sink System
We get the complex potential for a source at the point z� and for a sink at the point z�� both having the
same intensity� by superposition

W �
s

��
ln

z � z�
z � z�

� ������

The potential lines � � const form Apollonius circles with respect to z� and z�� the direction lines
" � const are circles through z� and z� �Fig ������
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�� Complex Potential of a Dipole
The complex potential of a dipole with dipole moment M � � at the point z�� whose axis encloses an
angle � with the real axis �Fig ������ has the equation�

W �
Mei�

���z � z��
� ������

� Complex Potential of a Curl
If the intensity of the curl is j� j with real � and its center is at the point z�� then its equation is�

W �
�

��i
ln�z � z��� ������

In comparison with Fig ����� the roles of the direction lines and the potential are interchanged� For
complex � ������ gives the potential of a source of curl� whose direction and potential lines form two
families of spirals orthogonal to each other �Fig ���
��

�������� Superposition Principle

�� Superposition of Complex Potentials
A system composed of several sources� sinks� and curls is an additive superposition of single �elds� i�e��
we get its function by adding their complex potential and stream functions� Mathematically this is
possible because of the linearity of the Laplace di�erential equations �� � � and �" � ��

�� Composition of Vector Fields

� Integration A new �eld can be constructed from complex potentials not only by addition but
also by integration of the weight functions�

Let a curl be given with density ��s� on a line segment l� Then we get a Cauchy type integral �see
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������ p� ���� for the derivative of the complex potential�

dW

dz
�



��i

Z
�l�

��s� ds

z � ��s�
�



��i

Z
�l�

�����

z � �
d� � �����

where ��s� is the complex parametric representation of the curve l with arclength s as its parameter�
� Maxwell Diagonal Method If we want to compose the superposition of two �elds with the
potentials �� and ��� then we draw the potential line �gures   ��!! and   ��!! so that the value of the
potential changes by the same amount h between two neighboring lines in both systems� and we direct
the lines so that the higher � values are on the left�hand side� The lines lying in the diagonal direction
to the net elements formed by   ��!! and   ��!! give the potential lines of the �eld   �!!� whose potential
is � � �� � �� or � � �� � ��� We get the �gure of   �� � ��!! if the oriented sides of the net
elements are added as vectors �Fig ����a�� and we get the �gure of   �����!! when we subtract them
�Fig ����b�� The value of the composed potential changes by h at transition from one potential line
to the next one�

Vector lines and potential lines of a source and a sink with an intensity quotient je�j�je�j � ���
�Fig ����a�b��

&2+h

&1

&2

&1+h

&2+h

&1

&1+h

&2

a) b)

Figure ����

�������� ArbitraryMappings of the Complex Plane
A function

w � f�z � x � i y� � u�x� y� � i v�x� y� �����a�

is de�ned if the two functions u � u�x� y� and v � v�x� y� with real variables are de�ned and known�
The function f�z� must not be analytic� as it was required in conformal mappings� The function w
maps the z plane into the w plane� i�e�� it assigns to every point z� a corresponding point w��

a� Transformation of the Coordinate Lines

y � c � u � u�x� c�� v � v�x� c�� x is a parameter�
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z1 z2
z2z1

a) b)

Figure ���

x � c� � u � u�c�� y�� v � v�c�� y�� y is a parameter� �����b�

b� Transformation of Geometric Figures Geometric �gures as curves or regions of the z plane are
usually transformed into curves or regions of the w plane�

x � x�t�� y � y�t�  u � u�x�t�� y�t��� v � v�x�t�� y�t��� t is a parameter� �����c�

For u � �x � y� v � x � �y� the lines y � c are transformed into u � �x � c� v � x � �c� hence into

the lines v �
u

�
�

�

�
c� The lines x � c� are transformed into the lines v � �u� �c� �Fig ����� The

shaded region in Fig ���a is transformed into the shaded region in Fig ���b�

c� Riemann Surface If we get the same value w for several di�erent z for the mapping w � f�z�� then
the image of the function consists of several planes 	lying on each other
� If we cut these planes and
connect them along a curve� then we get a many�sheeted surface� the so�called many�sheeted Riemann
surface �see  ���!�� This correspondence can be considered also in an inverse relation� in the case of
multiple�valued functions as� e�g�� the functions n

p
z� Ln z� Arcsin z� Arctan z�

u

v 0

Figure ����

w � z�� While z � rei� overruns the entire z plane�
i�e�� � � � � ��� the values of w � �ei� � r�ei��� cover
twice the w plane� We can imagine that we place two
w planes on each other� and we cut and connect them
along the negative real axis according to Fig �����
This surface is called the Riemann surface of the func�
tion w � z��

The zero point is called a branch point� The image of the function ez �see ������� is a Riemann surface
of in�nitely many sheets� �In many cases the planes are cut along the positive real axis� It depends
on whether the principal value of the complex number is de�ned for the interval ������! or for the
interval  �� �����

���� Integration in theComplexPlane

������ De
nite and Inde
nite Integral

�������� De�nition of the Integral in the Complex Plane

�� De�nite Complex Integral
Suppose f�z� is continuous in a domain G� and the curve C is recti�able� it connects the points A and
B� and the whole curve is in this domain� We decompose the curve C between the points A and B by
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arbitrary division points zi into n subarcs �Fig������ We
choose a point �i on every arc segment and form the sum

nX
i��

f��i�� zi with � zi � zi � zi��� �����a�

If the limit

lim
n��

nX
i��

f��i�� zi �����b�

exists for � zi  � and n � independently of the choice of
the points �i� then we call this limit the de�nite complex integral

y

0 x

A zi-1

'i

zi C

B
G

Figure ����

I �
Z
�
AB

f�z� dz � �C�

BZ
A

f�z� dz ������

along the curve C between the points A and B� The value of the integral usually depends on the path
of the integral�

�� Inde�nite Complex Integral
If the de�nite integral is independent of the path of the integral �see ������ p� ����� then we denote�

F �z� �
Z

f�z� dz � C with F ��z� � f�z�� ������

Here C is the integration constant which is complex� in general� The functionF �z� is called an inde�nite
complex integral�

The inde�nite integrals of the elementary functions of a complex variable can be calculated with the
same formulas as the integrals of the corresponding elementary function of a real variable�

A�
Z

sin z dz � � cos z � C� B�
Z

ez dz � ez � C�

�� Relation between De�nite and Inde�nite Complex Integrals
If the function f�z� has an inde�nite integral� then the relation between its de�nite and inde�nite
integral isZ

�
AB

f�z� dz �

BZ
A

f�z� dz � F �zB�� F �zA�� ������

�������� Properties and Evaluation of Complex Integrals
�� Comparison with the curvilinear integral of the second type
The de�nite complex integral has the same properties as the curvilinear integral of the second type �see
������ p� �����

a� If we reverse the direction of the path of integration� then the integral changes its sign�

b� If we decompose the path of integration into several parts� then the value of the total integral is the
sum of the integrals on the parts�

�� Estimation of the Value of the Integral
If the absolute value of the function f�z� does not exceed a positive number M at the points z of the

path of integration
�
AB which has the length s� then����������

Z
�
AB

f�z� dz

��������� � Ms with jf�z�j �M� ������
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�� Evaluation of the Complex Integral in Parametric Representation

If the path of integration
�
AB �or the curve C� is given in the form

x � x�t�� y � y�t� ������

and the t values for the initial and endpoint are tA and tB� then the de�nite complex integral can be
calculated with two real integrals� We separate the real and the imaginary parts of the integrand and
we get�

�C�

BZ
A

f�z� dz �

BZ
A

�u dx� v dy� � i

BZ
A

�v dx � u dy�

�

tBZ
tA

 u�t�x��t�� v�t�y��t�! dt � i

tBZ
tA

 v�t�x��t� � u�t�y��t�! dt �����a�

with f�z� � u�x� y� � iv�x� y�� z � x � i y� �����b�

The notation �C�

BZ
A

f�z� dz means that the de�nite integral is calculated along the curve C between the

points A and B� The notation
Z
�C�

f�z� dz and
Z
�
AB

f�z� dz is also often used� and has the same meaning�

I �
Z
�C�

�z � z��
n dz �n � Z�� Let the curve C be a circle around the point z� with radius r��

x � x� � r� cos t� y � y� � r� sin t with � � t � ��� For every point z of the curve C� z � x � i y �
z� � r��cos t � i sin t�� dz � r��� sin t � i cos t� dt� After substituting these values and transforming

according to the de Moivre formula we get� I � rn���

Z ��

�
�cosnt � i sinnt��� sin t � i cos t� dt

� rn���

Z ��

�
 i cos�n � �t� sin�n � �t! dt �

�
� for n �� ��

��i for n � ��

�� Independence of the Path of Integration
Suppose a function of a complex variable is de�ned in a simply connected domain� The integral ������
of the function can be independent of the path of integration� which connects the �xed points A�zA�
and B�zB�� A su�cient and necessary condition is that the function is analytic in this domain� i�e�� the
Cauchy�Riemann di�erential equations ����� are satis�ed� Then also the equality ������ is valid� If
a domain is bounded by a simple closed curve� then the domain is simply connected�

�� Complex Integral along a Closed Curve
Suppose f�z� is analytic in a simply connected domain� If we integrate the function f�z� along a closed
curve C which is the boundary of this domain� the value of the integral according to the Cauchy integral
theorem is equal to zero �see ������ p� �����I

f�z� dz � �� ������

If f�z� has singular points in this domain� then the integral is calculated by using the residue theorem
�see �������� p� ����� or by the formula �����a��

The function f�z� �


z � a
� with a singular point at z � a has an integral value for the closed curve

directed counterclockwise around a �Fig�����
I
�C�

dz

z � a
� ��i�
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������ Cauchy Integral Theorem
�������� Cauchy Integral Theorem for Simply Connected Domains
If a function f�z� is analytic in a simply connected domain� then we get two equivalent statements�

a� The integral is equal to zero along any closed curve C�I
f�z� dz � �� �����

b� The value of the integral
Z B

A
f�z� dz is independent of the curve connecting the points A and B� i�e��

it depends only on A and B�
This is the Cauchy integral theorem�

�������� Cauchy Integral Theorem forMultiply Connected Domains
If C� C�� C�� � � �� Cn are simple closed curves such that the curve C encloses all the C� �
 � � �� � � � � n��
none of the curves C� encloses or intersects another one� and furthermore the function f�z� is analytic
in a domain G which contains the curves and the region between C and C�� i�e�� at least the region
shaded in Fig����� thenI

�C�

f�z� dz �
I

�C��

f�z� dz �
I

�C��

f�z� dz � � � � �
I

�Cn�

f�z� dz� ������

if the curves C� C�� � � �� Cn are oriented in the same direction� e�g�� counterclockwise�
This theorem is useful for the calculation of an integral along a closed curve C� if it also encloses singular
points of the function f�z� �see �������� p� �����
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Calculate the integral
I
�C�

z � 

z�z � �
dz� where C is a curve enclosing the origin and the point z � �

�Fig ������ Applying the Cauchy integral theorem� the integral along C is equal to the sum of the
integrals along C� and C�� where C� is a circle around the origin with radius r� � �� and C� is a circle
around the point z � � with radius r� � ��� The integrand can be decomposed into partial fractions�

Then we get�
I
�C�

z � 

z�z � �
dz �

I
�C��

� dz

z � 
�
I

�C��

� dz

z � 
�
I

�C��

dz

z
�
I

�C��

dz

z
� � � ��i� ��i � � � ��i�

�Compare the integrals with the example in ������� �� p� �����



�
�	 Power Series Expansion of Analytic Functions ��


������ Cauchy Integral Formulas

�������� Analytic Function on the Interior of a Domain
If f�z� is analytic on a simple closed curve C and on the simply connected domain inside it� then the
following representation is valid for every interior point z of this domain �Fig ������

f�z� �


��i

I
�C�

f���

� � z
d� �Cauchy integral formula�� ������

where � traces the curve C counterclockwise� With this formula� the values of an analytic function in
the interior of a domain are expressed by the values of the function on the boundary of this domain�
The existence and the integral representation of the n�th derivative of the function analytic on the
domain G follows from �������

f �n��z� �
n$

��i

I
�C�

f���

�� � z�n��
d�� ������

Consequently� if a complex function is di�erentiable� i�e�� it is analytic� then it is di�erentiable arbitrar�
ily many times� In contrast to this� di�erentiability does not include repeated di�erentiability in the
real case�
The equations ������ and ������ are called the Cauchy integral formulas�

�������� Analytic Function on the Exterior of a Domain
If a function f�z� is analytic on the entire part of the plane outside of a closed curve of integration
C� then the values and the derivatives of the function f�z� at a point z of this domain can be given
with the same Cauchy formulas ������� ������� but the orientation of the curve C is now clockwise
�Fig ������
Also certain real integrals can be calculated with the help of the Cauchy integral formulas �see ����
p� �����
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���� PowerSeriesExpansion ofAnalytic Functions

������ Convergence of SerieswithComplexTerms

�������� Convergence of a Number Sequence with Complex Terms
An in�nite sequence of complex numbers z�� z�� � � � � zn� � � � has a limit z �z � lim

n�� zn� if for arbitrarily

given positive � there exists an n� such that the inequality jz � znj � � holds for every n � n�� i�e��
from a certain n� the points representing the numbers zn� zn��� � � � are inside of a circle with radius �
and center at z�

If the expression f n
p
ag means the root with the smallest non�negative argument� then the limit

lim
n�� f n

p
ag �  is valid for arbitrary a �Fig ���
��
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�������� Convergence of an In�nite Series with Complex Terms
A series a� � a� � � � �� an � � � � with complex terms ai converges to the number s� if

s � lim
n���a� � a� � � � �� an� ������

holds� The number s is the sum of the series� If we connect the points corresponding to the numbers
sn � a� � a� � � � � � an in the z plane by a broken line� then convergence means that the end of the
broken line approaches the point s�

A� i �
i�

�
�

i�

�
�

i�

�
� � � � � B� i �

i�

�
�

i�

��
� � � � �Fig ����� �

A series is called absolutely convergent �see B�� if the series of absolute values of the terms ja�j �
ja�j� ja�j� � � � is also convergent� The series is called conditionally convergent �see A� if the series
is convergent but not absolutely convergent� If the terms of a series are functions fi�z�� like

f��z� � f��z� � � � �� fn�z� � � � � � ������

then its sum is a function de�ned for the values z for which the series of the substitution values is
convergent�

�������� Power Series with Complex Terms

�� Convergence
A power series with complex coe�cients has the form

P �z � z�� � a� � a��z � z�� � a��z � z��
� � � � �� an�z � z��

n � � � � � �����a�

where z� is a �xed point in the complex plane and the coe�cients a� are complex constants �which can
also have real values�� For z� � � the power series has the form

P �z� � a� � a�z � a�z
� � � � �� anz

n � � � � � �����b�

If the power series P �z� z�� is convergent for a value z�� then it is absolutely and uniformly convergent
for every z in the interior of the circle with radius r � jz� � z�j and center at z��

�� Circle of Convergence
The limit between the domain of convergence and the domain of divergence of a complex power series
is a uniquely de�ned circle� We determine its radius just as in the real case� if the imits

r � lim
n��



n
q
janj

or r � lim
n��

����� an
an��

����� ������

exist� If the series is divergent everywhere except at z � z�� then r � �� if it is convergent everywhere�
then r � �� The behavior of the power series on the boundary circle of the domain of convergence
should be investigated point by point�

The power series P �z� �
�P
n��

zn

n
with radius of convergence r �  is divergent for z �  �harmonic
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series� and convergent for z � � �according to the Leibniz criteria for alternating series�� This power
series is convergent for all further points of the unit circle jzj �  except the point z � �

�� Derivative of Power Series in the Circle of Convergence
Every power series represents an analytic function f�z� inside of the circle of convergence� We get the
derivative by a term�by�term di�erentiation� The derivative series has the same radius of convergence
as the original one�

�� Integral of Power Series in the Circle of Convergence

We get the power series expansion of the integral
Z z

z�
f��� d� by a term�by�term integration of the power

series of f�z�� The radius of convergence remains the same�

������ Taylor Series
Every function f�z� analytic in a domain G can be expanded uniquely into a power series of the form

f�z� �
�X
n��

an�z � z��
n �Taylor series� �����a�

for any z� in G� where the circle of convergence is the greatest circle around z� which belongs entirely
to the domain G �Fig ������ The coe�cients an are complex numbers in general� and for them we
get�

an �
f �n��z��

n$
� �����b�

The Taylor series can be written in the form

f�z� � f�z�� �
f ��z��

$
�z � z�� �

f ���z��
�$

�z � z��
� � � � �� f �n��z��

n$
�z � z��

n � � � � � �����c�

Every power series is the Taylor expansion of its sum function in the interior of its circle of convergence�

Examples of Taylor expansions are the series representations of the functions ez� sin z� cos z� sinh z�
and cosh z in ������ p� ����
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������ Principle ofAnalyticContinuation
We consider the case when the circles of convergence K� around z� and K� around z� of the two power
series

f��z� �
�X
n��

an�z � z��
n and f��z� �

�X
n��

bn�z � z��
n �����a�

have a certain common domain �Fig ����� and in this domain they are equal�

f��z� � f��z�� �����b�
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Then both power series are the Taylor expansions of the same analytic function f�z�� belonging to the
points z� and z�� The function f��z� is called the analytic continuation into K� of the function f��z�
de�ned only in K��

The geometric series f��z� �
�X
n��

zn with the circle of convergence K� �r� � � around z� � � and

f��z� �


� i

�X
n��

�
z � i

� i

�n
with the circle of convergence K� �r� �

p
�� around z� � i have the same

analytic function f�z� � �� � z� as their sum in their own circle of convergence� consequently also
on the common part of them �doubly shaded region in Fig ����� for z �� � So� f��z� is the analytic
continuation of f��z� from K� into K� �and conversely��

������ Laurent Expansion
Every function f�z�� which is analytic in the interior of a circular ring between two concentric circles
with center z� and radii r� and r�� can be expanded into a generalized power series� into the so�called
Laurent series�

f�z� �
�X

n���
an�z � z��

n � � � �� a�k
�z � z��k

�
a�k��

�z � z��k��
� � � �

�
a��

z � z�
� a� � a��z � z�� � a��z � z��

� � � � �� ak�z � z��
k � � � � � ����a�

The coe�cients an are usually complex and they are uniquely de�ned by the formula

an �


��i

I
�C�

f���

�� � z��n��
d� �n � ������� � � ��� ����b�

where C denotes an arbitrary closed curve which is in the circular ring r� � jzj � r�� and the circle
with radius r� is inside of it� and its orientation is counterclockwise �Fig ������ If the domain G of
the function f�z� is larger than the circular ring� then the domain of convergence of the Laurent series
is the largest circular ring with center z� lying entirely in G�

Determine the Laurent series expansion of the function f�z� �


�z � ��z � ��
� around z� � � in

the circular ring  � jzj � � where f�z� is analytic� First we decompose the function f�z� into partial

fractions� f�z� �


z � �
� 

z � 
� Since j�zj �  and jz��j �  holds in the considered domain� the

two terms of this decomposition can be written as the sums of geometric series absolutely convergent
in the entire circular ring  � jzj � �� We get�

f�z� �


�z � ��z � ��
� � 

z
�

� 

z

� � 

�
�

� z

�

� � �
�X
n��



zn� �z �
jzj � 

�

�

�X
n��

�
z

�

�n
� �z �
jzj � �

�

������ Isolated SingularPoints and theResidueTheorem

�������� Isolated Singular Points
If a function f�z� is analytic in the neighborhood of a point z� but not at the point z� itself� then z� is
called an isolated singular point of the function f�z�� If f�z� can be expanded into a Laurent series in
the neighborhood of z�

f�z� �
�X

n���
an�z � z��

n� ������



�
�	 Power Series Expansion of Analytic Functions �
�

then the isolated singular point can be classi�ed by the behavior of the Laurent series�
� If the Laurent series does not contain any term with a negative power of �z � z��� i�e�� an � � for
n � � holds� then the Laurent series is a Taylor series with coe�cients given by the Cauchy integral
formula

an �


��i

I
�K�

�� � z��
�n��f��� d� �

f �n��z��

n$
� ������

In this case� the function f�z� itself is either analytic at the point z� and f�z�� � a� or z� is a removable
singularity�

� If the Laurent series contains a �nite number of terms with negative powers of �z�z��� i�e�� am �� ��
an � � for n � m � �� then z� is called a pole� a pole of orderm� or a pole of multiplicitym� If we multiply
by �z� z��

m� and not by any lower power� then f�z� is transformed into a function which is analytic at
z� and in its neighborhood�

f�z� �


�

�
z �



z

�
has a pole of order one at z � ��

� If the Laurent series contains an in�nite number of terms with negative powers of �z � z��� then z�
is an essential singularity of the function f�z��
Approaching a pole� jf�z�j tends to�� Approaching an essential singularity� f�z� gets arbitrarily close
to any complex number c�

The function f�z� � e��z� whose Laurent series is f�z� �
�X
n��



n$



zn
� has an essential singularity at

z � ��

�������� Meromorphic Functions
If an otherwise holomorphic function has only a �nite number of poles as singular points� then it is
calledmeromorphic� A meromorphic function can always be represented as the quotient of two analytic
functions�

Examples of functions meromorphic on the whole plane are the rational functions which have a �nite
number of poles� and also transcendental functions such as tan z and cot z�

�������� Elliptic Functions
Elliptic functions are double periodic functions whose singularities are poles� i�e�� they are meromorphic
functions with two independent periods �see ���� p� ����� If the two periods are � and �� which are
in a non�real relation� then

f�z � m� � n�� � f�z� �m�n � ������� � � � � Im
�
�
�

�
�� ��� ������

The range of f�z� is already attained in a primitive period parallelogram with the points �� �� � �
�� ��

�������� Residue
The coe�cient a�� of the power �z � z��

�� in the Laurent expansion of f�z� is called the residue of the
function f�z� at the point z��

a�� � Res f�z�jz�z� �


��i

I
�K�

f��� d�� �����a�

The residue belonging to a pole of order m can be calculated by the formula

a�� � Res f�z�jz�z� � lim
z�z�



�m� �$

dm��

dzm��
 f�z��z � z��

m!� �����b�
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If the function can be represented as a quotient f�z� � ��z����z�� where the functions ��z� and ��z�
are analytic at the point z � z� and z� is a simple root of the equation ��z� � �� i�e�� ��z�� � ��
���z�� �� � holds� then the point z � z� is a pole of order one of the function f�z�� It follows from
�����b� that

Res

�
��z�

��z�


z�z�

�
��z��

���z��
� �����c�

If z� is a root of multiplicity m of the equation ��z� � �� i�e�� ��z�� � ���z�� � � � � � ��m����z��
� �� ��m��z�� �� � holds� then the point z � z� is a pole of order m of f�z��

�������� Residue Theorem

With the help of residues we can calculate the integral of a function along a closed curve enclosing
isolated singular points �Fig ������
If the function f�z� is single valued and analytic in a simply connected domain G except at a �nite
number of points z�� z�� z�� � � � � zn� and the domain is bounded by the closed curve C� then the value of
the integral of the function along this closed curve in a counterclockwise direction is the product of ��i
and the sum of the residues in all these singular points�I

�K�

f�z� dz � ��i
nX
k��

Res f�z� jz�zk� ������

The function f�z� � ez��z� � � has poles of order one at z��� � �i� The corresponding residues

have the sum sin � If K is a circle around the origin with radius r � � then
I
�K�

ez

z� � 
dz � ��i sin �

z1
z2

z3

z4
C

y

0 x

Figure ����
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0 x
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���� Evaluation ofReal Integrals byComplex Integrals

������ Application of Cauchy Integral Formulas

The value of certain real integrals can be calculated with the help of the Cauchy integral formula�

The function f�z� � ez �see �������� p� ����� which is analytic in the whole z plane� can be repre�
sented with the Cauchy integral formula ������� where the path of integration C is a circle with center
z and radius r� The equation of the circle is � � z � rei�� We get from ������

ez �
n$

��i

I
�C�

e�

�� � z�n��
d� �

n$

��i

Z ����

���

e�z�re
i��

rn��ei��n���
irei� d� �

n$

��rn

Z ��

�
ez�r cos��ir sin��in� d�� so that

��rn

n$
�
Z ��

�
er cos��i�r sin��n�� d� �

Z ��

�
er cos� cos�r sin�� n��! d�� i

Z ��

�
er cos� sin�r sin�� n��! d��
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Since the imaginary part is equal to zero� we get
Z ��

�
er cos� cos�r sin�� n�� d� �

��rn

n$
�

������ Application of theResidueTheorem

Several de�nite integrals of real functions with one variable can be calculated with the help of the
residue theorem� If f�z� is a function which is analytic in the whole upper half of the complex plane
including the real axis except the singular points z�� z�� � � � � zn above the real axis �Fig ������ and if
one of the roots of the equation f��z� � � has multiplicity m 	 � �see ������ �� p� ���� then

��Z
��

f�x� dx � ��i
nX
i��

Res f�z�jz�zi� ������

Calculation of the integral
Z ��

��
dx

� � x���
� The equation f

�


x

�
�

�
 �



x�

�� �
x	

�x� � ��
� � has

a root of order six at x � �� The function w �


� � z���
has a single singular point z � i in the upper

half�plane� which is a pole of order �� since the equation � � z��� � � has two triple roots at i and �i�
The residue is according to �����b��

Res


� � z���jz�i �


�$

d�

dz�

�
�z � i��

� � z���


z�i

� From
d�

dz�

�
z � i

 � z�

��
�

d�

dz�
�z � i��� � ��z � i��� it

follows that Res


� � z���jz�i � ��z � i���jz�i �
�

��i��
� � �

�
i� and with �������

Z ��

��
f�x� dx �

��i
�
� �

�
i
�

�
�

�
�� For further applications of residue theory see� e�g��  ���!�

������ Application of the Jordan Lemma

�������� Jordan Lemma

In many cases� real improper integrals with an in�nite domain of integration can be calculated by
complex integrals along a closed curve� To avoid the always recurrent estimations� we use the Jordan
lemma about improper integrals of the formZ

�CR�

f�z�ei�z dz� �����a�

where CR is the half�circle arc with center at the origin and with the radius R in the upper half of the
z plane �Fig ������ The Jordan lemma distinguishes the following cases�

a� � � �� If f�z� tends to zero uniformly in the upper half�plane and also on the real axis for jzj  �
and � is a positive number� then for R�Z

�CR�

f�z�ei�z dz  �� �����b�

b� � � �� If the expression z f�z� tends to zero uniformly for jzj  �� then the above statement is
also valid in the case � � ��

c� � � �� If the half�circle is now below the real axis� then the corresponding statement is also valid
for � � ��

d� The statement is also valid if only an arc segment is considered instead of the complete half�circle�
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e� The corresponding statement is valid for the integral in the formZ
�C�

R
�

f�z�e�z dz� �����c�

where C�
R is a half�circle or an arc segment in the left half�plane with � � �� or in the right one with

� � ��

y
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xR0-R

Figure ����

0
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x
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�������� Examples of the Jordan Lemma

�� Evaluation of the Integral
�Z
�

x sin�x

x� � a�
dx�

The following complex integral is assigned to the above real integral�

�i

RZ
�

x sin�x

x� � a�� �z �
even function

dx � i

RZ
�R

x sin�x

x� � a�
dx �

RZ
�R

x cos �x

x� � a�
dx

� �z �
� � �odd integrand�

�

RZ
�R

xei�x

x� � a�
dx�

The very last of these integrals is part of the complex integral
I
�C�

zei�z

z� � a�
dz� The curve C contains the

CR half�circle de�ned above and the part of the real axis between the values�R and R �R � jaj�� The
complex integrand has the only singular point in the upper half�plane z � a i� We obtain from the

residue theorem� I �
I
�C�

zei�z

z� � a�
dz � ��i lim

z�ai

�
zei�z

z� � a�
�z � ai�


� ��i lim

z�ai

zei�z

z � ai
� �ie��a� hence

I �
Z

�CR�

zei�z

z� � a�
dz �

RZ
�R

xei�x

x� � a�
dx � �ie��a� It follows from lim

R��
I and from the Jordan lemma that

�Z
�

x sin�x

x� � a�
dx �

�

�
e��a �� � �� a 	 ���

Several further integrals can be evaluated in a similar way Table ���� p� ����

�� Sine Integral �see also ������� p� ����

The integral

�Z
�

sinx

x
dx is called the sine integral or the integral sine �see also ������ �� p� ����� Analo�

gously to the previous example� we investigate the complex integral
Z
C

eiz

z
dz with the curve C according

to Fig ����� The integrand of the complex integral has a pole of �rst order at z � �� so
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I � ��i limz��

�
eiz

z
z


� ��i� hence I � �i

RZ
r

sinx

x
dx � i

��Z
�

eir�cos��i sin�� d� �
Z
CR

eiz

z
dz � ��i� This

limit is evaluated as R  �� r  �� where the second integral tends to  uniformly for r  � with
respect to �� i�e�� the limiting process r  � can be done behind the integral sign� Then we get with
the Jordan lemma�

�i

�Z
�

sinx

x
dx � �i � ��i� hence

�Z
�

sin x

x
dx �

�

�
� ������

�� Step Function
Discontinuous real functions can be represented as complex integrals� The so�called step function is an
example�

F �t� �


��i

Z
���

eitz

z
dz �

���
 for t � � �
�� for t � � �
� for t � � �

������

The symbol ��� denotes a path of integration along the real axis �j R j �� going round the origin
�Fig ������
If t denotes time� then the function ��t� � cF �t� t�� represents a quantity which jumps at time t � t�
from � through the value c�� to the value c� We call it a step function or also a Heaviside function� It
is used in the electrotechnics to describe suddenly occurring voltage or current impulses�

�� Rectangular Pulse
A further example of the application of complex integrals and the Jordan lemma is the representation
of the rectangular pulse�

"�t� �


��i

Z
���

ei�b�t�z

z
dz � 

��i

Z
���

ei�a�t�z

z
dz �

���
� for t � a and t � b�
 for a � t � b�
�� for t � a and t � b�

�����

�� Fresnel Fntegrals
To derive the Fresnel integral

�Z
�

sin�x�� dx �

�Z
�

cos�x�� dx �


�

q
��� ������

we investigate the integral I �
Z
K

e�z
�

dz on the closed path of integration shown in Fig ����� We

get� according to the Cauchy integral theorem� I � II � III � IIII � � with II �
Z R

�
e�x

�

dx�

III � iR
Z ���

�
e�R

��cos ���i sin ����i�d��

IIII � e
i�
�

Z �

R
eir

�

dr �


�

p
�� � i�

�
i
Z R

�
sin r� dr �

Z R

�
cos r� dr


�

Estimation of III� Since jij � jei� j �  � real� holds� we get� jIIIj � R
Z ���

�
e�R

� cos �� d�

�
R

�

Z �

�
e�R

� cos� d� �
R

�

Z ���

�
e�R

� cos� d� �
R

�

Z �

�
e�R

� cos� d� �
R

�

Z ���

�

sin�

sin�
e�R

� cos� d�

�
�R

�
e�R

� cos� �
� e�R

� cos�

�R sin�

�
� � � �

�

�

�
� Performing the limiting process lim

R��
I we get the



�
� �
� Function Theory

values of the integrals II and III� limR�� II �


�

p
� � lim

R��
III � �� We get the given formulas ������

by separating the real and imaginary parts�

���� Algebraic andElementaryTranscendentalFunctions

������ Algebraic Functions

�� De�nition
A function which is the result of �nitely many algebraic operations performed with z and maybe also
with �nitely many constants� is called an algebraic function� In general� a complex algebraic function
w�z� can be de�ned in an implicit way as a polynomial� just as its real analogue

a�z
m�wn� � a�z

m�wn� � � � �� akz
mkwnk � �� ������

Such functions cannot always be solved for w�

�� Examples of Algebraic Functions

Linear function� w � az � b� ������ Inverse function� w �


z
� ������

Quadratic function� w � z�� ������ Square root function� w �
p
z� � a�� ������

Fractional linear function� w �
z � i

z � i
� ������

������ ElementaryTranscendental Functions
The complex transcendental functions have de�nitions corresponding to the transcendental real func�
tions� just as in the case of the algebraic functions� For a detailed discussion of them see� e�g��  ��! or
 ���!�

�� Natural Exponential Function

ez �  �
z

$
�

z�

�$
�

z�

�$
� � � � � ������

The series is absolutely convergent in the whole z plane�
a� Pure imaginary exponent iy� This is valid according to the Euler relation �see ������� p� ����

eiy � cos y � i sin y with e�i � �� ������

b� General case z � x � iy�

ez � ex�iy � exeiy � ex�cos y � i sin y�� ����a�

Re �ez� � ex cos y� Im �ez� � ex sin y� jezj � ex� arg�ez� � y� ����b�

c� The function ez is periodic� its period is �� i� ez � ez��k� i �k � ����� �� � � �� � ����c�

In particular� e� � e�k� i � � e��k����i � �� ����d�

d� Exponential form of a complex number �see ������� p� ����

a � ib � �ei�� ������

e� Euler relation for complex numbers�

eiz � cos z � i sin z� �����a� e�iz � cos z � i sin z� �����b�

�� Natural Logarithm
w � Ln z� if z � ew� �����a�



�
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Since z � �ei�� we can write�

Ln z � ln � � i �� � �k�� and �����b�

Re �Ln z� � ln �� Im �Ln z� � � � �k � �k � ������� � � �� � �����c�

Since Ln z is a multiple�valued function �see ������ p� ���� we usually give only the principal value of the
logarithm ln z�

ln z � ln � � i� ��� � � � ���� �����d�

The function Ln z is de�ned for every complex number� except zero�

�� General Exponential Function
az � ezLn a� �����a�

az �a �� �� is a multiple�valued function �see ������ p� ��� with principal value

az � ez lna� �����b�

�� Trigonometric Functions and Hyperbolic Functions

sin z �
eiz � e�iz

�i
� z � z�

�$
�

z�

�$
� � � � � �����a�

cos z �
eiz � e�iz

�
� � z�

�$
�

z�

�$
� � � � � �����b�

sinh z �
ez � e�z

�
� z �

z�

�$
�

z�

�$
� � � � � �����a�

cosh z �
ez � e�z

�
�  �

z�

�$
�

z�

�$
� � � � � �����b�

All four series are convergent on the entire plane and they are all periodic� The period of the functions
�����a�b� is ��� the period of the functions �����a�b� is �� i�
The relations between these functions for any real or complex z are�

sin i z � i sinh z� �����a� cos i z � cosh z� �����b�

sinh i z � i sin z� �����a� cosh i z � cos z� �����b�

The transformation formulas of the real trigonometric and hyperbolic functions �see ������ p� ��� and
������ p� ��� are also valid for the complex functions� We calculate the values of the functions sin z�
cos z� sinh z� and cosh z for the argument z � x�i y with the help of the formulas sin�a� b�� cos�a� b��
sinh�a � b�� and cosh�a � b� or we can do it by using the Euler relation �see ������� p� ����

cos�x � i y� � cos x cos i y � sin x sin i y � cos x cosh y � i sin x sinh y� ������

Therefore�

Re �cos z� � cos Re �z� cosh Im �z�� ����a�

Im �cos z� � � sin Re �z� sinh Im �z�� ����b�

The functions tan z� cot z� tanh z� and coth z are de�ned by the following formulas�

tan z �
sin z

cos z
� cot z �

cos z

sin z
� �����a� tanh z �

sinh z

cosh z
� coth z �

cosh z

sinh z
� �����b�

�� Inverse Trigonometric Functions and Inverse Hyperbolic Functions
These functions are many�valued functions� and we can express them with the help of the logarithm
function�

Arcsin z � �i Ln �i z �
p

� z��� �����a� Arsinh z � Ln �z �
p
z� � �� �����b�

Arccos z � �i Ln �z �
p
z� � �� �����a� Arcosh z � Ln �z �

p
z� � �� �����b�
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Arctan z �


�i
Ln

 � i z

� i z
� �����a� Artanh z �



�
Ln

 � z

� z
� �����b�

Arccot z � � 

�i
Ln

i z � 

i z � 
� �����a� Arcoth z �



�
Ln

z � 

z � 
� �����b�

The principal values of the inverse trigonometric and the inverse hyperbolic functions can be expressed
by the same formulas using the principal value of the logarithm ln z�

arcsin z � �i ln�i z �
p

� z��� �����a� arsinh z � ln�z �
p
z� � �� �����b�

arccos z � �i ln�z �
p
z� � �� �����a� arcosh z � ln�z �

p
z� � �� �����b�

arctan z �


�i
ln

 � iz

� iz
� �����a� artanh z �



�
ln

 � z

� z
� �����b�

arccot z � � 

�i
ln

iz � 

iz � 
� �����a� arcoth z �



�
ln

z � 

z � 
� �����b�

� Real and Imaginary Part of the Trigonometric and Hyperbolic Functions
�See Table ����	

�� Absolute Values and Arguments of the Trigonometric and Hyperbolic Func�
tions �See Table ����	

Table �� Real and imaginary parts of the trigonometric and hyperbolic functions

Function

w � f�x� iy�
Real part Re �w� Imaginary part Im �w�

sin�x� iy� sinx cosh y � cos x sinh y
cos�x� iy� cos x cosh y � sinx sinh y

tan�x� iy�
sin �x

cos �x � cosh �y
� sinh �y

cos �x � cosh �y
sinh�x� iy� sinhx cos y � cosh x sin y
cosh�x� iy� cosh x cos y � sinhx sin y

tanh�x� iy�
sinh �x

cosh �x � cos �y
� sin �y

cosh �x � cos �y

Table ��� Absolute values and arguments of the trigonometric and hyperbolic functions

Function

w � f�x� iy�
Absolute value jwj Argument arg w

sin�x� iy�
q

sin� x � sinh� y � arctan�cotx tanh y�

cos�x� iy�
q

cos� x � sinh� y � arctan�tan x tanh y�

sinh�x� iy�
q

sinh� x � sin� y � arctan�cothx tan y�

cosh�x� iy�
q

sinh� x � cos� y � arctan�tanh x tan y�
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������ Description of Curves inComplexForm
A complex function of one real variable t can be represented in parameter form�

z � x�t� � iy�t� � f�t�� �����

As t changes� the points z draw a curve z�t�� In the following� we give the equations and the corre�
sponding graphical representations of the line� circle� hyperbola� ellipse� and logarithmic spiral�

�� Straight Line
a� Line through a point �z�� ���� is the angle with the x�axis� Fig ���
a��

z � z� � tei�� �����a�

b� Line through two points z�� z��Fig ���
b��

z � z� � t�z� � z��� �����b�

�� Circle
a� radius r� center at the point z� � � �Fig ����a��

z � reit �jzj � r�� �����a�

b� radius r� center at the point z� �Fig ����b��

z � z� � reit �jz � z�j � r�� �����b�
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Figure ����

y

x0
r

a�

y

0 x

r
z0

b�

Figure ����

�� Ellipse

a� Normal Form
x�

a�
�

y�

b�
�  �Fig ����a��

z � a cos t � ib sin t �����a� or z � c eit � d e�it �����b� with c �
a � b

�
� d �

a� b

�
� �����c�

i�e�� c and d are arbitrary real numbers�

b� General Form �Fig ����b�� The center is at z�� the axes are rotated by an angle�

z � z� � ceit � de�it� ������

Here c and d are arbitrary complex numbers� they determine the length of the axis of the ellipse and
the angle of rotation�

�� Hyperbola� Normal Form
x�

a�
� y�

b�
�  �Fig� �����	�

z � a cosh t � ib sinh t �����a�

or

z � cet � "ce�t� �����b�

where c and "c are conjugate complex numbers�

c �
a � ib

�
� "c �

a� ib

�
� �����c�
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�� Logarithmic Spiral �Fig� �����	�

z � a eibt� ������

where a and b are arbitrary complex numbers�

���� Elliptic Functions

������ Relation to Elliptic Integrals

Integrals in the form ����� with integrands R
�
x�
q
P �x�

	
can�

y

x0

Figure ����

not be integrated in closed form if P �x� is a polynomial of degree three or four� except in some special
cases� but they are calculated numerically as elliptic integrals �see ������� p� ����� The inverse functions
of elliptic integrals are the elliptic functions� They are similar to the trigonometric functions and they
can be considered as their generalization� As an illustration� let us consider the special case

uZ
�

�� t���
�
� dt � x �juj � �� ������

We can tell that

a� there is a relation between the trigonometric function u � sin x and the principal value of its inverse
function

u � sinx� x � arcsinu for � �

�
� x � �

�
� � � u � � ������

b� the integral ������ is equal to arcsinu� The sine function can be considered as the inverse function
of the integral ������� Analogies are valid for the elliptic integrals�

The period of a mathematical pendulum� with mass m� hanging on a non�elastic weightless thread
of length l �Fig ������ can be calculated by a second�order non�linear di�erential equation� We get
this equation from the balance of the forces acting on the mass of the pendulum�

d��

dt�
�

g

l
sin� � � with ���� � ��� ,���� � � or

d

dt

���d�

dt

���� � �
g

l

d

dt
�cos��� �����a�

The relation between the length l and the amplitude s from the dwell is s � l�� so ,s � l ,� and �s � l ��
hold� The force acting on the mass is F � mg� where g is the acceleration due to gravity� and it is
decomposed into a normal component FN and a tangential component FT with respect to its path
�Fig ������ The normal component FN � mg cos� is balanced by the thread stress� Since it is
perpendicular to the direction of motion� it has no e�ect to the equation of motion� The tangential

component FT yields the acceleration of the motion� FT � m�s � ml �� � �mg sin�� The tangential
component always points in the direction of dwell�



�
�� Algebraic and Elementary Transcendental Functions ���

We get by separation of variables�

t� t� �

s
l

g

Z �

�

d!q
��cos! � cos���

� �����b�

Here� t� denotes the time for which the pendulum is in the deepest position for the �rst time� i�e�� where
��t�� � � holds� ! denotes the integration variable� We get the equation

t� t� �

s
l

g

Z �

�

d�q
� k� sin� �

�

s
l

g
F �k� �� �����c�

after some transformations and with the substitutions sin
!

�
� k sin� � k � sin

!

�
� Here F �k� �� is

an elliptic integral of the �rst kind �see �����a�� p� ����� The angle of de�ection � � ��t� is a periodic
function of period �T with

T �

s
l

g
F
�
k�

�

�

�
�

s
l

g
K � �����d�

where K represents a complete elliptic integral of the �rst kind �Table ��
�� T denotes the period

of the pendulum� i�e�� the time between two consecutive extreme positions for which
d�

dt
� �� If the

amplitude is small� i�e�� sin� 
 �� then T � ��
q
l�g holds�

ϑ

ϑ ϑ0
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Figure ����
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������ Jacobian Functions

�� De�nition
It follows for � � k �  from the representation �����a� and �����a�� ������� p� ��� for the elliptic
integral of the �rst kind F �k� �� that

dF

d�
� �� k� sin� ���

�
� � �� �����

i�e�� F �k� �� is strictly monotone with respect to �� so the inverse function

� � am�k� u� � ��u� �����a� of u �

�Z
�

d�q
� k� sin� �

� u��� �����b�

exists� It is called the amplitude function� The so�called Jacobian functions are de�ned as�

snu � sin� � sin am�k� u� �amplitude sine�� �����a�

cnu � cos� � cos am�k� u� �amplitude cosine�� �����b�
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dnu �
p

� k�sn�u �amplitude delta�� �����c�

�� Meromorphic and Double Periodic Functions
The Jacobian functions can be continued analytically in the z plane� The functions snz� cnz� and dnz
are thenmeromorphic functions �see �������� p� ����� i�e�� they have only poles as singularities� Besides�
they are double periodic� Each of these functions f�z� has exactly two periods � and � with

f�z � �� � f�z�� f�z � �� � f�z�� ������

Here� � and � are two arbitrary complex numbers� whose ratio is not real� The general formula

f�z � m� � n�� � f�z� ������

follows from ������� and here m and n are arbitrary integers� Meromorphic double periodic functions
are called elliptic functions� The set

fz� � ��� � ���� � � ��� �� � g� ������

with an arbitrary �xed z� � C� is called the period parallelogram of the elliptic function� If this function
�Fig ����� is bounded in the whole period parallelogram� then it is a constant�

The Jacobian functions �����a� and �����b� are elliptic functions� The amplitude function
�����a� is not an elliptic function�

�� Properties of the Jacobian functions
The properties of the Jacobian functions given in Table ��� can be got by the substitutions

k�� � � k�� K � � F
�
k��

�

�

�
� K � F

�
k�

�

�

�
� ������

where m and n are arbitrary integers�

Table ��� Periods� roots and poles of Jacobian functions

Periods ��� �� Roots Poles

snz �K� �iK � �mK � �niK �

cnz �K� ��K � iK �� ��m � �K � �niK �

 �!�"�mK � ��n � �iK �

dnz �K� �iK � ��m � �K � ��n � �iK �

The shape of snz� cnz� and dnz can be found in Fig ����� The following relations are valid for the
Jacobian functions except at the poles�

� sn�z � cn�z � � k�sn�z � dn�z � � ������

� sn�u � v� �
�snu��cnv��dnv� � �snv��cnu��dnu�

� k��sn�u��sn�v�
� �����a�

cn�u � v� �
�cnu��cnv�� �snu��dnu��snv��dnv�

� k��sn�u��sn�v�
� �����b�

dn�u � v� �
�dnu��dnv�� k��snu��cnu��snv��cnv�

� k��sn�u��sn�v�
� �����c�

� �snz�� � �cnz��dnz�� ����a� �cnz�� � ��snz��dnz�� ����b�

�dnz�� � �k��snz��cnz�� ����c�
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For further properties of the Jacobian functions and further elliptic functions see  ���!�  ���!�

������ Theta Function
We apply the theta function to evaluate the Jacobian functions

���z� q� � �q
�
�

�X
n��

���nqn�n��� sin��n � �z� ���a�

���z� q� � �q
�
�

�X
n��

qn�n��� cos��n � �z� ���b�

���z� q� �  � �
�X
n��

qn
�

cos �nz� ���c�

���z� q� �  � �
�X
n��

���nqn
�

cos �nz� ���d�

If jqj �  �q complex� holds� then the series ���a�����d� are convergent for every complex
argument z� We use the brief notation in the case of a constant q

�k�z� �� �k��z� q� �k � � �� �� ��� �����

Then� the Jacobian functions have the representations�

snz � �K
�����

������

��

�
z

�K

�
��

�
z

�K

� � ����a� cnz �
�����

�����

��

�
z

�K

�
��

�
z

�K

� � ����b�

dnz �
�����

�����

��

�
z

�K

�
��

�
z

�K

� � ����c� with q � exp

�
��

K �

K

�
� k �

�
�����

�����

��
����d�

and K�K � are as in �������

������ Weierstrass Functions
The functions

%�z� � %�z� �� ��� ����a� ��z� � ��z� �� ��� ����b�

��z� � ��z� �� ��� ����c�

were introduced by Weierstrass� and here � and � represent two arbitrary complex numbers whose
quotient is not real� We substitute

mn � ��m� � n��� ����a�

where m and n are arbitrary real numbers� and we de�ne

%�z� �� �� � z�� �
X
m�n

� h�z � mn��� � ��mn
i
� ����b�

The accent behind the sum sign denotes that the value pair m � n � � is omitted� The function
%�z� �� �� has the following properties�

� It is an elliptic function with periods � and ��

� The series ����b� is convergent for every z �� mn�

� The function %�z� �� �� satis�es the di�erential equation
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%�� � �%� � g�%� g� ����a� with g� � ��
X
m�n

���mn� g� � ��
X
m�n

��	mn� ����b�

The quantities g� and g� are called the invariants of %�z� �� ���

� The function u � %�z� �� �� is the inverse function of the integral

z �

�Z
u

dtp
�t� � g�t� g�

� �����

� %�u � v� �


�

�
%��u�� %��v�

%�u�� %�v�

�
� %�u�� %�v�� �����

The Weierstrass functions

��z� � z�� �
X
m�n

� h�z � mn��� � ��mn � ��mnz
i
� ����a�

��z� � zexp
�Z z

�

h
��t�� t��

i
dt
�

� z
Y
m�n

�
�

� z

mn

�
exp

�
z

mn
�

z�

��
mn

�
����b�

are not double periodic� so they are not elliptic functions� The following relations are valid�

� � ��z� � �%�z�� ��z� � �ln��z�� � ������

� ���z� � ���z�� ���z� � ���z�� �����

� ��z � ��� � ��z� � ������ ��z � ��� � ��z� � ������ ������

� ��u � v� � ��u� � ��v� �


�

%��u�� %��v�

%�u�� %�v�
� ������

� Every elliptic function is a rational function of the Weierstrass functions %�z� and ��z��
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���� Notion of IntegralTransformation

������ GeneralDe
nition of Integral Transformations
AnIntegral transformation is a correspondence between two functions f�t� and F �p� in the form

F �p� �

��Z
��

K�p� t�f�t� dt� ���a�

The function f�t� is called the original function� its domain is the original space� The function F �p� is
called the transform� its domain is the image space�
The function K�p� t� is called the kernel of the transformation� In general� t is a real variable� and
p � � � i is a complex variable�
We may use a shorter notation by introducing the symbol T for the integral transformation with kernel
K�p� t��

F �p� � T ff�t�g� ���b�

Then� we call it a T transformation�

������ Special Integral Transformations
We get di�erent integral transformations for di�erent kernels K�p� t� and di�erent original spaces� The
most widely known transformations are the Laplace transformation� the Laplace�Carson transforma�
tion� and the Fourier transformation� We give an overview of the integral transformations of functions
of one variable in Table ���� More recently� some additional transformations have been introduced
for use in pattern recognition and in characterizing signals� such as the Wavelet transformation� the
Gabor transformation and the Walsh transformation �see ���� p� �������

������ InverseTransformations
The inverse transformation of a transform into the original function has special importance in applica�
tions� With the symbol T �� the inverse integral transformation of ���a� is

f�t� � T ��fF �p�g� ����a�

The operator T �� is called the inverse operator of T � so

T ��fT ff�t�gg � f�t�� ����b�

The determination of the inverse transformation means the solution of the integral equation ���a��
where the function F �p� is given and function f�t� is to be determined� If there is a solution� then it
can be written in the form

f�t� � T ��fF �p�g� ����c�

The explicit determination of inverse operators for di�erent integral transformations� i�e�� for di�erent
kernels K�p� t�� belongs to the fundamental problems of the theory of integral transformations� The
user can solve practical problems by using the given correspondences between transforms and original
functions in the corresponding tables �Table ����� p� ���� Table ����� p� ���� and Table �����
p� �����

������ Linearity of Integral Transformations
If f��t� and f��t� are transformable functions� then

T fk�f��t� � k�f��t�g � k�T ff��t�g� k�T ff��t�g� �����

where k� and k� are arbitrary numbers� That is� an integral transformation represents a linear operation
on the set T of the T �transformable functions�
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Table �� Overview of integral transformations of functions of one variable

Transformation Kernel K�p�t� Symbol Remark

Laplace
transformation

�
� for t � �
e�pt for t � �

Lff�t�g �

�Z
�

e�ptf�t�dt p � � � i

Two�sided
Laplace
transformation

e�pt LIIff�t�g �

��Z
��

e�ptf�t�dt

LIIff�t���t�g � Lff�t�g
where

��t� �
�

� for t � �
 for t � �

Finite
Laplace
transformation

���
� for t � �
e�pt for � � t � a
� for t � a

Laff�t�g �

aZ
�

e�ptf�t�dt

Laplace�Carson
transformation

�
� for t � �
pe�pt for t � �

Cff�t�g �

�Z
�

pe�ptf�t�dt

The Carson transforma�
tion can also be a two�
sided and �nite transfor�
mation�

Fourier
transformation

e�i�t Fff�t�g �

��Z
��

e�i�tf�t�dt p � � � i � � �

One�sided
Fourier
transformation

�
� for t � �
e�i�t for t � �

FIff�t�g �

�Z
�

e�i�tf�t�dt p � � � i � � �

Finite
Fourier
transformation

���
� for t � �
e�i�t for � � t � a
� for t � a

Faff�t�g �

aZ
�

e�i�tf�t�dt p � � � i � � �

Fourier cosine
transformation

�
� for t � �
Re  ei�t! for t � � Fcff�t�g �

�Z
�

f�t� cost dt p � � � i � � �

Fourier sine
transformation

�
� for t � �
Im  ei�t! for t � � Fsff�t�g �

�Z
�

f�t� sint dt p � � � i � � �

Mellin
transformation

�
� for t � �
t p�� for t � �

Mff�t�g �

�Z
�

t p��f�t�dt

Hankel
transformation
of order 


�
� for t � �
tJ���t� for t � �

H�ff�t�g �

�Z
�

tJ���t�f�t�dt

p � � � i  � �
J���t� is the 
�th or�
der Bessel function of the
�rst kind�

Stieltjes
transformation

���
� for t � �



p � t
for t � �

Sff�t�g �

�Z
�

f�t�

p � t
dt
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������ IntegralTransformations forFunctionsofSeveralVariables

Integral transformations for functions of several variables are also called multiple integral transforma�
tions �see  ���!�� The best�known ones are the double Laplace transformation� i�e�� the Laplace trans�
formation for functions of two variables� the double Laplace�Carson transformation and the double
Fourier transformation� The de�nition of the double Laplace transformation is

F �p� q� � L�ff�x� y�g �
�Z

x��

�Z
y��

e�px�qyf�x� y� dx dy� �����

The symbol L denotes the Laplace transformation for functions of one variable �see Table �����

������ Applications of Integral Transformations

�� Fields of Applications
Besides the great theoretical importance that integral transformations have in such basic �elds of math�
ematics as the theory of integral equations and the theory of linear operators� they have a large �eld of
application in the solution of practical problems in physics and engineering� Methods with applications
of integral transformations are often called operator methods� They are suitable to solve ordinary and
partial di�erential equations� integral equations and di�erence equations�

�� Scheme of the Operator Method
The general scheme to the use of an operator method with an integral transformation is represented
in Fig ���� We get the solution of a problem not directly from the original de�ning equation� we
�rst apply an integral transformation� The inverse transformation of the solution of the transformed
equation gives the solution of the original problem�

Problem
Equation of
the problem

Solution of
the equation

Result

Transformed
equation

Solution of
the transformed

equation

Transformation Inverse transformation

Solution by using

the transformation

Figure ��

The application of the operator method to solve ordinary di�erential equations consists of the following
three steps�

� Transition from a di�erential equation of an unknown function to an equation of its transform�

� Solution of the transformed equation in the image space� The transformed equation is usually no
longer a di�erential equation� but an algebraic equation�

� Inverse transformation of the transform with help of T �� into the original space� i�e�� determination
of the solution of the original problem�

The major di�culty of the operator method is usually not the solution of the transformed equation�
but the transform of the function and the inverse transformation�



��� ��� Integral Transformations

���� LaplaceTransformation

������ Properties of the LaplaceTransformation

�������� Laplace Transformation� Original and Image Space

�� De�nition of the Laplace Transformation
The Laplace transformation

Lff�t�g �

�Z
�

e�ptf�t� dt � F �p� �����

assigns a functionF �p� of a complex variable p to a function f�t� of a real variable t� if the given improper
integral exists� f�t� is called the original function� F �p� is called the transform of f�t�� The improper
integral exists if the original function f�t� is piecewise smooth in its domain t 	 �� in the original space�
and for t  �� suppose jf�t�j � Ke�t with certain constants K � �� � � �� The domain of the
transform F �p� is called the image space�
In the literature one can �nd the Laplace transformation also introduced in the Wagner or Laplace�
Carson form

LWff�t�g � p

�Z
�

e�ptf�t� dt � p F �p�� �����

�� Convergence
The Laplace integral Lff�t�g converges in the half�plane Re p � � �Fig ����� The transform F �p�
is an analytic function with the properties�

� lim
Re p��

F �p� � �� ����a�

This property is a necessary condition for F �p� to be a transform�

� lim
p��

	p��


p F �p� � A� ����b�

if the original function f�t� has a �nite limit lim
t��
	t��


f�t� � A�

0

Im p

Re p
α

Figure ���
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0
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Figure ���

�� Inverse Laplace Transformation
We can retrieve the original function from the transform with the formula

L��fF �p�g �


��i

c�i�Z
c�i�

e ptF �p� dp �
�
f�t� for t � ��
� for t � ��

�����
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The path of integration of this complex integral is a line Re p � c parallel to the imaginary axis� where
Re p � c � �� If the function f�t� has a jump at t � �� i�e�� lim

t���
f�t� �� �� then the integral has the

mean value


�
f���� there�

�������� Rules for the Evaluation of the Laplace Transformation

The rules for evaluation are the mappings of operations in the original domain into operations in the
transform space�
In the following� we denote the original functions by lowercase letters� the transforms are denoted by
the corresponding capital letters�

�� Addition or Linearity Law
The Laplace transform of a linear combination of functions is the same linear combination of the Laplace
transforms� if they exist� With constants ��� � � � � �n we get�

Lf��f��t� � ��f��t� � � � �� �nfn�t�g � ��F��p� � ��F��p� � � � �� �nFn�p�� �����

�� Similarity Laws
The Laplace transform of f�at� �a � �� a real� is the Laplace transform of the original function divided
by a and with the argument p�a�

Lff�at�g �


a
F
�
p

a

�
�a � �� real�� ����a�

Analogously for the inverse transformation

F �ap� �


a
L
�
f
�
t

a

��
� ����b�

Fig ��� shows the application of the similarity laws for a sine function�

Determination of the Laplace transform of f�t� � sin�t�� For the correspondence of the sine func�
tion we have Lfsin�t�g � F �p� � ��p� � �� Application of the similarity law gives Lfsin�t�g �



F �p�� �







�p��� � 
�



p� � �
�

�� Translation Law

� Shifting to the Right The Laplace transform of an original function shifted to the right by a
�a � �� is equal to the Laplace transform of the non�shifted original function multiplied by the factor
e�ap�

Lff�t� a�g � e�ap F �p�� ���a�

� Shifting to the Left The Laplace transform of an original function shifted to the left by a is
equal to eap multiplied by the di�erence of the transform of the non�shifted function and the integralR a
� f�t� e�pt dt�

Lff�t � a�g � e ap

��F �p��
aZ
�

e�pt f�t� dt

�� � ���b�

Figs ��� and ��� show the cosine function shifted to the right and a line shifted to the left�

�� Frequency Shift Theorem
The Laplace transform of an original function multiplied by e�bt is equal to the Laplace transform with
the argument p � b � b is an arbitrary complex number��

Lfe�btf�t�g � F �p � b�� �����



��� ��� Integral Transformations

f(t) f(t)
1 1

0 0 tt 3 3+2π

2π

Figure ���

f(t)f(t)

0 t -3 0 t

Figure ���

�� Di
erentiation in the Original Space
If the derivatives f ��t�� f ���t�� � � � � f �n��t� exist for t � � and the highest derivative of f�t� has a trans�
form� then the lower derivatives of f�t� and also f�t� have a transform� and�

Lff ��t�g � p F �p�� f�����

Lff ���t�g � p� F �p�� f���� p� f ������
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Lff �n��t�g � pn F �p�� f���� pn�� � f ����� pn�� � � � �
� f �n������� p� f �n������� with

f ������� � lim
t���

f ����t��

 �����������!�����������"
�����

Equation ����� gives the following representation of the Laplace integral� which can be used for ap�
proximating the Laplace integral�

Lff�t�g �
f����

p
�

f �����

p�
�

f ������

p�
� � � �� 

pn
Lff �n��t�g� �����

� Di
erentiation in the Image Space

Lftnf�t�g � ���nF �n��p�� �����

The n�th derivative of the transform is equal to the Laplace transform of the ��t�n�th multiple of the
original function f�t��

Lf���n tn f�t�g � F �n��p� �n � � �� � � �� � �����

�� Integration in the Original Space
The transform of an integral of the original function is equal to �pn �n � �� multiplied by the trans�
form of the original function�

L
���

tZ
�

d �

��Z
�

d � � � �

�n��Z
�

f� n� d n

 !" �


�n� � $
L
���

tZ
�

�t�  ��n��� f� � d 

 !" �


pn
F �p�� ����a�

In the special case of the ordinary simple integral we have�

L
���

tZ
�

f� � d 

 !" �


p
F �p�� ����b�

In the original space� di�erentiation and integration act in converse ways if the initial values are zeros�

�� Integration in the Image Space

L
�
f�t�

tn

�
�

�Z
p

dp�

�Z
p�

dp� � � �

�Z
pn��

F �pn� dpn �


�n� � $

�Z
p

�z � p�n��F �z� dz� �����

This formula is valid only if f�t��tn has a Laplace transform� For this purpose� f�x� must tend to zero
fast enough as t �� The path of integration can be any ray starting at p� which forms an acute angle



���� Laplace Transformation ���

with the positive half of the real axis�

�� Division Law

In the special case of n �  of ����� we have

L
�
f�t�

t

�
�

�Z
p

F �z� dz� �����

For the existence of the integral ������ the limit lim
t��

f�t�

t
must also exist�

��� Di
erentiation and Integration with Respect to a Parameter

L
�
�f�t� ��

��

�
�

�F �p� ��

��
� �����a� L

���
��Z
��

f�t� �� d�

 !" �

��Z
��

F �t� �� d�� �����b�

Sometimes we can calculate Laplace integrals from known integrals with the help of these formulas�

��� Convolution

� Convolution in the Original Space The convolution of two functions f��x� and f��x� is the
integral

f� # f� �

tZ
�

f�� � � f��t�  � d � �����

Equation ����� is also called the one�sided convolution in the interval ��� t�� A two�sided convolution
occurs for the Fourier transformation �convolution in the interval ������ see ������� 
� p� �����
The convolution ����� has the properties

a� Commutative law� f� # f� � f� # f�� �����a�

b� Associative law� �f� # f�� # f� � f� # �f� # f��� �����b�

c� Distributive law� �f� � f�� # f� � f� # f� � f� # f�� �����c�

g(t)

f(t)

(f  g)(t)*
t

t

t

Figure ���

In the image domain� the usual multiplication
corresponds to the convolution�

Lff� # f�g � F��p� � F��p�� ������

The convolution of two functions is shown in
Fig ���� We can apply the convolution the�
orem to determine the original function�

a� Factoring the transform

F �p� � F��p� � F��p��

b� Determining the original functions f��t� and
f��t� of the transforms F��p� and F��p� �from a
table��

c� Determining the original function associated
to F �p� by convolution of f��t� and f��t� in the
original space �f�t� � f��t� # f��t���



��� ��� Integral Transformations

� Convolution in the Image Space �Complex Convolution�

Lff��t� � f��t�g �

�����������������



��i

x��i�Z
x��i�

F��z� � F��p� z� dz�



��i

x��i�Z
x��i�

F��p� z� � F��p� dz�

������

The integration is performed along a line parallel to the imaginary axis� In the �rst integral� x� and p
must be chosen so that z is in the half plane of convergence of Lff�g and p � z is in the half plane of
convergence of Lff�g� The corresponding requirements must be valid for the second integral�

�������� Transforms of Special Functions

�� Step Function
The unit jump at t � t� is called a step function �Fig ���� �see also �������� �� p� ����� it is also
called the Heaviside unit step function�

u�t� t�� �
�

 for t � t��
� for t � t�

�t� � ��� ������

A� f�t� � u�t� t�� sint� F �p� � e�t�p
 cos t� � p sin t�

p� � �
�Fig �����

B� f�t� � u�t� t�� sin �t� t��� F �p� � e�t�p


p� � �
�Fig ��
��

f(t)

1

0 tt0

u(t-t0)

Figure ���

f(t)
1

0 tt0

u(t-t0) sin ωt

Figure ���

f(t)
1

0 tt0

u(t-t0) sin ω(t-t0)

Figure ���

�� Rectangular Impulse
A rectangular impulse of height  and width T �Fig ����� is composed by the superposition of two
step functions in the form

uT �t� t�� � u�t� t��� u�t� t� � T � �

���
� for t � t��
 for t� � t � t� � T�
� for t � t� � T �

������

LfuT �t� t��g �
e�t�p�� e�Tp�

p
� ������

�� Impulse Function �Dirac � Function	
�See also �������� p� ���� The impulse function 	�t � t�� can obviously be interpreted as a limit of
the rectangular impulse of width T and height �T at the point t � t� �Fig ������

	�t� t�� � lim
T� �



T
 u�t� t��� u�t� t� � T � !� ������



���� Laplace Transformation ���

f(t)

1

0 tt0 t0+T

uT(t-t0)

Figure ���

f(t)

1
T

0 tt0 t0+T

Figure ��

For a continuous function h�t��

bZ
a

h�t� 	�t� t�� dt �
�
h�t��� if t� is inside �a� b��
�� if t� is outside �a� b��

������

Relations such as

	�t� t�� �
du�t� t��

dt
� Lf 	�t� t��g � e�t�p �t� 	 �� ������

are investigated generally in distribution theory �see �������� p� �����

�� Piecewise Di
erentiable Functions

The transform of a piecewise di�erentiable function can be determined easily with the help of the 	
function� If f�t� is piecewise di�erentiable and at the points t� �
 � � �� � � � � n� it has jumps a� � then
its �rst derivative can be represented in the form

df�t�

dt
� f �s�t� � a�	�t� t�� � a�	�t� t�� � � � �� an	�t� tn� �����

where f �s�t� is the usual derivative of f�t�� where it is di�erentiable�
If jumps occur �rst in the derivative� then similar formulas are valid� In this way� we can easily determine
the transform of functions which correspond to curves composed of parabolic arcs of arbitrarily high
degree� e�g�� curves found empirically� In formal application of ������ we should replace the values
f����� f ������ � � � by zero in the case of a jump�

A�

f�t� �
�
at � b for � � t � t��
� otherwise�

�Fig ������ f ��t� � a ut��t� � b 	�t�� �at� � b� 	�t� t��� Lff ��t�g �

a

p
�� e�t�p� � b� �at� � b� e�t�p� Lff�t�g �



p

�
a

p
� b� e�t�p

�
a

p
� at� � b

�
�

B�

f�t� �

���
t for � � t � t��
�t� � t for t� � t � �t��
� for t � �t��

�Fig ������ f ��t� �

���
 for � � t � t��
� for t� � t � �t��
� for t � �t��

�Fig ������

f ���t� � 	�t��	�t�t���	�t�t���	�t��t��� Lff ���t�g � ��e�t�p�e��t�p� Lff�t�g �
� � e�t�p ��

p�
�

C� f�t� �

�������
E t�t� for � � t � t��
E for t� � t � T � t��
�E�t� T ��t� for T � t� � t � T�
� otherwise�

�Fig ������



��� ��� Integral Transformations
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�
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�� Periodic Functions
The transform of a periodic function f ��t� with period T � which is a periodic continuation of a function
f�t�� can be obtained from the Laplace transform of f�t� multiplied by the periodization factor

�� e�Tp���� ������



���� Laplace Transformation ���

A� The periodic continuation of f�t� from exampleB �see above� with period T � �t� is f ��t� with

Lff ��t�g �
�� e�t�p��

p�
� 

� e��t�p
�

� e�t�p

p�� � e�t�p�
�

B� The periodic continuation of f�t� from example C �see above� with period T is f ��t� with

Lff ��t�g �
E �� e�t�p� �� e��T�t��p�

t� p� �� e�Tp�
�

�������� Dirac � Function andDistributions
In describing certain technical systems by linear di�erential equations� functions u�t� and 	�t� often
occur as perturbation or input functions� although the conditions required in ������ � p� ��� are
not satis�ed� u�t� is discontinuous� and 	�t� cannot be de�ned in the sense of classical analysis�
Distribution theory o�ers a solution by introducing so�called generalized functions �distributions�� so
that with the known continuous real functions 	�t� can also be examined� where the necessary di�eren�
tiability is also guaranteed� Distributions can be represented in di�erent ways� One of the best known
representations is the continuous real linear form� introduced by L� Schwartz �see ������ p� �����
We can associate Fourier coe�cients and Fourier series uniquely to periodic distributions� analogously
to real functions �see ���� p� �����

�� Approximations of the � Function
Analogously to ������� the impulse function 	�t� can be approximated by a rectangular impulse of
width � and height �� �� � ���

f�t� �� �
�

�� for jtj � ����
� for jtj 	 ���� �����a�

Further examples of the approximation of 	�t� are the error curve �see ������ p� ��� and Lorentz function
�see ����� p� ����

f�t� �� �


�
p

��
e�

t�

��� �� � ��� �����b�

f�t� �� �
���

t� � ��
�� � ��� �����c�

These functions have the common properties�

�

�Z
��

f�t� �� dt � � �����a�

� f��t� �� � f�t� ��� i�e�� they are even functions� �����b�

� lim
���

f�t� �� �
�� for t � ��

� for t �� ��
�����c�

�� Properties of the � Function
Important properties of the 	 function are�

�

x�aZ
x�a

f�t�	�x� t� dt � f�x� �f is continuous� a � ��� ������

� 	��x� �


�
	�x� �� � ��� ������

� 	 �g�x�� �
nX
i��



jg��xi�j	�x� xi� with g�xi� � � and g��xi� �� � �i � � �� � � � � n�� ������



��� ��� Integral Transformations

Here we consider all roots of g�x� and they must be simple�

� n�th Derivative of the � Function� After n repeated partial integrations of

f �n��x� �

x�aZ
x�a

f �n��t� 	�x� t� dt� �����a�

we obtain a rule for the n�th derivative of the 	 function�

���nf �n��x� �

x�aZ
x�a

f�t� 	�n��x� t� dt� �����b�

������ InverseTransformation into theOriginal Space

To perform an inverse transformation� we have the following possibilities�
� Using a table of correspondences� i�e�� a table with the corresponding original functions and trans�
forms �see Table ����� p� �����

� Reducing to known correspondences by using some properties of the transformation �see ��������
p� ��� and �������� p� ����

� Evaluating the inverse formula �see �������� p� �����

�������� Inverse Transformation with the Help of Tables

The use of a table is shown here by an example with Table ����� p� ����

Further tables can be found� e�g�� in  ���!�

F �p� �


�p � c��p� � ��
� F��p� � F��p�� L��fF��p�g � L��

�


p� � �

�
�




sint � f��t��

L��fF��p�g � L��
�



p � c

�
� e�ct � f��t�� We have to apply the convolution theorem �������

f�t� � L��fF��p� � F��p�g
�
Z t

�
f�� � � f��t�  � d �

Z t

�
e�c�t���

sin 


d �



c� � �

�
c sint�  cost


� e�ct

�
�

�������� Partial Fraction Decomposition

�� Principle
In many applications� we have transforms in the form F �p� � H�p��G�p�� where G�p� is a polynomial
of p� If we already have the original functions for H�p� and �G�p�� then we get the required original
function F �p� by applying the convolution theorem�

�� Simple Real Roots ofG�p�
If the transform �G�p� has only simple poles p� �
 � � �� � � � � n�� then we get the following partial
fraction decomposition�



G�p�
�

nX
���



G��p���p� p��
� ������

The corresponding original function is

q�t� � L��
�



G�p�

�
�

nX
���



G��p��
ep�t� ������



���� Laplace Transformation ��


�� The Heaviside Expansion Theorem
If the numerator H�p� is also a polynomial of p with a lower degree than G�p�� then we can obtain the
original function of F �p� with the help of the Heaviside formula

f�t� �
nX
���

H�p��

G��p��
ep�t� �����

�� Complex Roots
Even in cases when the denominator has complex roots� we can use the Heaviside expansion theorem in
the same way� We can also collect the terms belonging to complex conjugate roots into one quadratic
expression� whose inverse transformation can be found in tables also in the case of roots of higher
multiplicity�

F �p� �


�p � c��p� � ��
� i�e�� H�p� � � G�p� � �p � c��p� � ��� G��p� � �p� � �pc � ��

The poles p� � �c� p� � i� p� � �i are all simple� According to the Heaviside theorem we get

f�t� �


� � c�
e�ct � 

�� � ic�
ei�t � 

�� � ic�
e�i�t or by using partial fraction decomposition and

the table F �p� �


� � c�

�


p � c
�

c� p

p� � �


� f�t� �



� � c�



e�ct �

c


sint� cos t

�
� These

expressions are identical�

�������� Series Expansion

In order to obtain f�t� from F �p�� we can try to expand F �p� into a series F �p� �
�P
n��

Fn�p�� whose

terms Fn�p� are transforms of known functions� i�e�� Fn�p� � Lffn�t�g�
�� F �p� is an Absolutely Convergent Series
If F �p� has an absolutely convergent series

F �p� �
�X
n��

an
pn

� ������

for jpj � R� where the values �n form an arbitrary increasing sequences of numbers � � �� � �� �
� � � � �n � � � � � � � �  �� then a termwise inverse transformation is possible�

f�t� �
�X
n��

an
tn��

� ��n�
� ������

� denotes the gamma function �see ������ �� p� ���� In particular� for �n � n � � i�e�� for F �p� �
�P
n��

an��
pn��

� we get the series f�t� �
�P
n��

an��
n $

tn� which is convergent for every real and complex t� Fur�

thermore� we can have an estimation in the form jf�t�j � C ecjtj �C� c real constants��

F �p� �
p

 � p�
�



p

�
 �



p�

�����
�

�X
n��

���

�
n

�A 

p�n��
� After a termwise transformation into

the original space we get f�t� �
�X
n��

���

�
n

�A t�n

��n� $
�

�X
n��

���n

�n $ ��

�
t

�

��n
� J��t� �Bessel function of

� order��

�� F �p� is a Meromorphic Function
If F �p� is a meromorphic function� which can be represented as the quotient of two integer functions
�of two functions having everywhere convergent power series expansions� which do not have common



��� ��� Integral Transformations

roots� and so can be rewritten as the sum of an integer function and �nitely many partial fractions�
then we get the equality



��i

c�iynZ
c�iyn

etp F �p� dp �
nX
���

b�e
p�t � 

��i

Z
�Kn�

etpF �p� dp� ������

Here p� �
 � � �� � � � � n� are the �rst�order poles of the function F �p�� b� are the corresponding residues
�see �������� p� ����� y� are certain values and K� are certain curves� for example� half circles in the
sense represented in Fig ���
� We get the solution f�t� in the form

f�t� �
�X
���

b�e
p� t� if



��i

Z
�Kn�

etpF �p� dp  � ������

as y �� what is often not easy to verify�
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In certain cases� e�g�� when the rational part of the meromorphic function F �p� is identically zero� the
above result is a formal application of the Heaviside expansion theorem to meromorphic functions�

�������� Inverse Integral
The inverse formula

f�t� � lim
yn��



��i

c�iynZ
c�iyn

etp F �p� dp ������

represents a complex integral of a function analytic in a certain domain� The usual methods of inte�
gration for complex functions can be used� e�g�� the residue calculation or certain changes of the path
of integration according to the Cauchy integral theorem�

F �p� �
p

p� � �
e�

p
p� is double valued because of

p
p� Therefore� we chose the following path of inte�

gration �Fig ������


��i

I
�K�

etp
p

p� � �
e�

p
p� dp �

Z
�
AB

� � ��
Z
�
CD

� � ��
Z
�
EF

� � ��
Z
DA

� � ��
Z
BE

� � ��
Z
FC

� � � �

X
Res etpF �p� � e��

p
��� cos�t � �

p
����� According to the Jordan lemma �see ������ p� ����� the

integral part over
�
AB and

�
CD vanishes as yn  �� The integrand remains bounded on the circular

arc
�
EF �radius ��� and the length of the path of integration tends to zero for �  �� so this term of

the integral also vanishes� We have to investigate the integrals on the two horizontal segments BE and
FC� where we have to consider the upper side �p � rei�� and the lower side �p � re�i�� of the negative
real axis�



���� Laplace Transformation ���

Z �

��
F �p�etp dp � �

Z �

�
e�tr

r

r� � �
e�i�

p
r dr�

Z ��

�
F �p�etp dp �

Z �

�
e�tr

r

r� � �
e i�

p
r dr�

Finally we get�

f�t� � e��
p
��� cos

�
 t� �

r


�

�
� �

�

Z �

�
e�tr

r sin�
p
r

r� � �
dr�

������ Solution ofDi�erential Equations using Laplace
Transformation

We have already noticed from the rules of calculation of the Laplace transformation �see �������
p� ��� that using the Laplace transformation we can replace complicated operations� such as di�er�
entiation or integration in the original space� by simple algebraic operations in the image space� Here�
we have to consider some additional conditions� such as initial conditions in using the di�erentiation
rule� These conditions are necessary for the solution of di�erential equations�

�������� Ordinary Di
erential Equations with Constant Coe�cients

�� Principle
The n�th order di�erential equation of the form

y�n��t� � cn�� y�n����t� � � � �� c� y
��t� � c� y�t� � f�t� �����a�

with the initial values y���� � y�� y
����� � y��� � � � � y

�n������� � y
�n���
� can be transformed by Laplace

transformation into the equation
nX
k��

ckp
kY �p��

nX
k��

ck
k��X
���

pk����y���� � F �p� �cn � �� �����b�

Here G�p� �
nP
k��

ckp
k � � is the characteristic equation of the di�erential equation �see ������� p� �����

�� First�Order Di
erential Equations
The original and the transformed equations are�

y��t� � c�y�t� � f�t�� y���� � y�� �����a� �p � c��Y �p�� y� � F �p�� �����b�

where c� � const� For Y �p� we get

Y �p� �
F �p� � y�
p � c�

� �����c�

Special case� For f�t� � � e�t ��� � const� we get �����a�

Y �p� �
�

�p� ���p � c��
�

y�
p � c�

� �����b�

y�t� �
�

� � c�
e�t �

�
y� � �

� � c�

�
e�c�t� �����c�

�� Second�Order Di
erential Equations
The original and transformed equations are�

y���t� � �ay��t� � by�t� � f�t�� y���� � y�� y����� � y��� �����a�

�p� � �ap � b�Y �p�� �ay� � �py� � y��� � F �p�� �����b�

We then get for Y �p�

Y �p� �
F �p� � ��a � p� y� � y��

p� � �ap � b
� �����c�



��� ��� Integral Transformations

Distinction of Cases�

a� b � a� � G�p� � �p� ����p� ��� ���� �� real� �� �� ���� ����a�

q�t� �


�� � ��
�e��t � e��t�� ����b�

b� b � a� � G�p� � �p� ���� �����a� q�t� � t e�t� �����b�

c� b � a� � G�p� has complex roots� �����a�

q�t� �
p

b� a�
e�at sin

p
b� a�t� �����b�

We obtain the solution y�t� as the convolution of the original function of the numerator of Y �p� and
q�t�� The application of the convolution can be avoided if we can �nd a direct transformation of the
right�hand side�

The transformed equation for the di�erential equation y���t� � �y��t� � �y�t� � �� cos �t � �e�t

with y� �  and y�� � � is Y �p� �
p � �

p� � �p � �
�

��p

�p� � ���p� � �p � ��
�

�

�p � ��p� � �p � ��
�

We get the representation Y �p� �
�p

p� � �p � �
� �

�p� � �p � ��
�

p

�p� � ��
�

�

�p� � ��
�



�p � �
by

partial fraction decomposition of the second and third terms of the right�hand side but not separating
the second�order terms into linear ones� We get the solution after termwise transformation �see Table
����� p� ���� y�t� � �� cos �t� � sin �t�e�t � cos �t � � sin �t � e�t�
�� n�th Order Di
erential Equations
The characteristic equation G�p� � � of this di�erential equation has only simple roots ��� ��� � � � � �n�
and none of them is equal to zero� We can distinguish two cases for the perturbation function f�t��

� If the perturbation function f�t� is the jump function u�t� which often occurs in practical problems�
then the solution is�

u�t� �
�

 for t � ��
� for t � ��

�����a� y�t� �


G���
�

nX
���



��G�����
e�� t� �����b�

� For a general perturbation function f�t�� we get the solution 'y�t� from �����b� in the form of the
Duhamel formula which uses the convolution �see ������� ��� p� ����

'y�t� �
d

dt

tZ
�

y�t�  �f� � d �
d

dt
 y # f !� ������

�������� Ordinary Linear Di
erential Equations with Coe�cients
Depending on the Variable

Di�erential equations whose coe�cients are polynomials in t can also be solved by Laplace transfor�
mation� Applying ������ in the image space we get a di�erential equation� whose order can be lower
than the original one�
If the coe�cients are �rst�order polynomials� then the di�erential equation in the image space is a �rst�
order di�erential equation and maybe it can be solved more easily�

Bessel di�erential equation of � order� t
d�f

dt�
�

d f

dt
� tf � � �see ����a� p� ���� for n � ��� The

transformation into the image space results in

� d

dp
 p�F �p�� pf���� f ���� ! � pF �p�� f���� dF �p�

dp
� � or

dF

dp
� � p

p� � 
F �p� �



���� Laplace Transformation ���

Separation of the variables and integration yields logF �p� � �
Z p dp

p� � 
� � log

q
p� �  � logC�

F �p� �
Cp

p� � 
�C is the integration constant�� F �t� � CJ��t� �see in ���������� p� �� with

the Bessel function of � order��

�������� Partial Di
erential Equations

�� General Introduction
The solution of a partial di�erential equation is a function of at least two variables� u � u�x� t�� Since
the Laplace transformation represents an integration with respect to only one variable� the other vari�
able should be considered as a constant in the transformation�

Lfu�x� t�g �

�Z
�

e�ptu�x� t� dt � U�x� p�� ������

x also remains �xed in the transformation of derivatives�

L
�
�u�x� t�

�t

�
� pLfu�x� t�g � u�x�����

L
�
��u�x� t�

�t�

�
� p�Lfu�x� t�g � u�x����p� ut�x�����

������

For di�erentiation with respect to x we suppose that they are interchangeable with the Laplace integral�

L
�
�u�x� t�

�t

�
�

�

�x
Lfu�x� t�g �

�

�x
U�x� p�� ������

This way� we get an ordinary di�erential equation in the image space� Furthermore� we have to trans�
form the boundary and initial conditions into the image space�

�� Solution of the One�Dimensional Heat Conduction Equation for a

Homogeneous Medium

� Formulation of the Problem Suppose the one�dimensional heat conduction equation with van�
ishing perturbation and for a homogeneous medium is given in the form

uxx � a��ut � uxx � uy � � �����a�

in the original space � � t ��� � � x � l and with the initial and boundary conditions

u�x���� � u��x�� u���� t� � a��t�� u�l � �� t� � a��t�� �����b�

The time coordinate is replaced by y � at� �����a� is also a parabolic type equation� just as the
three�dimensional heat conduction equation �see �������� p� �����

� Laplace Transformation The transformed equation is

d�U

dx�
� pU � u��x�� �����a�

and the boundary conditions are

U���� p� � A��p�� U�l � �� p� � A��p�� �����b�

The solution of the transformed equation is

U�x� p� � c�e
x
p
p � c�e

�xpp� �����c�

It is a good idea to produce two particular solutions U� and U� with the properties

U���� p� � � U��l� p� � �� ����a� U���� p� � �� U��l� p� � � i�e�� ����b�
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U��x� p� �
e�l�x�

p
p � e��l�x�

p
p

e l
p
p � e�l

p
p

� ����c� U��x� p� �
ex

p
p � e�x

p
p

e l
p
p � e�l

p
p
� ����d�

The required solution of the transformed equation has the form

U�x� p� � A��p�U��x� p� � A��p�U��x� p�� ������

� Inverse Transformation The inverse transformation is especially easy in the case of l��

U�x� p� � a��p�e�x
p
p� �����a� u�x� t� �

x

�
p
�

tZ
�

a��t�  �

 ���
exp

�
�x�

� 

�
d � �����b�

���� FourierTransformation

������ Properties of the Fourier Transformation

�������� Fourier Integral

�� Fourier Integral in Complex Representation
The basis of the Fourier transformation is the Fourier integral� also called the integral formula of
Fourier� If a non�periodic function f�t� satis�es the Dirichlet conditions �see ������� �� p� ���� in
an arbitrary �nite interval� and furthermore the integral

��Z
��
jf�t�j dt �����a� is convergent� then f�t� �



��

��Z
��

��Z
��

ei��t���f� � d d �����b�

at every point where the function f�t� is continuous� and

f�t � �� � f�t� ��

�
�



�

�Z
�

d

��Z
��

f� � cos  �t�  � d �����c�

at the points of discontinuity�

�� Equivalent Representations
Other equivalent forms for the Fourier integral �����b� are�

� f�t� �


��

��Z
��

��Z
��

f� � cos   �t�  � ! d d � �����a�

� f�t� �

�Z
�

 a�� cost � b�� sint ! d with the coe�cients �����b�

a�� �


�

��Z
��

f�t� cost dt �����c� b�� �


�

��Z
��

f�t� sint dt� �����d�

� f�t� �

�Z
�

A�� cos  t � ��� ! d� ������

� f�t� �

�Z
�

A�� sin  t � ��� ! d� ������
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The following relations are valid here�

A�� �
q
a��� � b��� � �����a� ��� � ��� �

�

�
� �����b�

cos��� �
a��

A��
� �����c� sin��� �

b��

A��
� �����d�

cos��� �
b��

A��
� �����e� sin��� �

a��

A��
� �����f�

�������� Fourier Transformation and Inverse Transformation

�� De�nition of the Fourier Transformation
The Fourier transformation is an integral transformation of the form ���a�� which comes from the
Fourier integral �����b� if we substitute

F �� �

��Z
��

e�i��f� � d � ������

We get the following relation between the real original function f�t� and the usually complex transform
F ���

f�t� �


��

��Z
��

ei� tF �� d� ������

In the brief notation we use F �

F �� � Ff f�t� g �

��Z
��

e�i� tf�t� dt� �����

The original function f�t� is Fourier transformable if the integral ������� i�e�� an improper integral
with the parameter � exists� If the Fourier integral does not exist as an ordinary improper integral�
we consider it as the Cauchy principal value �see �������� �� p� ����� The transform F �� is also called
the Fourier transform� it is bounded� continuous� and it tends to zero for jj  ��

lim
j�j��

F �� � �� ������

The existence and boundedness of F �� follow directly from the obvious inequality

jF ��j �
��Z
��
je�i� tf�t�j dt �

��Z
��
jf�t�j dt� ������

The existence of the Fourier transform is a su�cient condition for the continuity of F �� and for the
properties F ��  � for jj  �� This statement is often used in the following form� If the function
f�t� in ���� �� is absolutely integrable� then its Fourier transform is a continuous function of � and
������ holds�

The following functions are not Fourier transformable� Constant functions� arbitrary periodic func�
tions �e�g�� sin  t� cos  t�� power functions� polynomials� exponential functions �e�g�� e�t � hyperbolic
functions��

�� Fourier Cosine and Fourier Sine Transformation
In the Fourier transformation ������ the integrand can be decomposed into a sine and a cosine part�
So� we get the sine and the cosine Fourier transformation�
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� Fourier Sine Transformation

Fs�� � Fsf f�t� g �

�Z
�

f�t� sin �t� dt� �����a�

� Fourier Cosine Transformation

Fc�� � Fcf f�t� g �

�Z
�

f�t� cos � t� dt� �����b�

� Conversion Formulas Between the Fourier sine �����a� and the Fourier cosine transformation
�����b� on one hand� and the Fourier transformation ����� on the other hand� the following relations
are valid�

F �� � Ff f�t� g � Fcf f�t� � f��t� g � iFsf f�t�� f��t� g� �����a�

Fs�� �
i

�
Ff f�jtj�sign t g� �����b� Fc�� �



�
Ff f�t� g� �����c�

For an even or for an odd function f�t� we have the representation

f�t� even� Ff f�t� g � �Fcf f�t� g�
f�t� odd� Ff f�t� g � ��iFsf f�t� g� �����d�

�� Exponential Fourier Transformation
Di�erently from the de�nition of F �� in ������ the transform

Fe�� � Feff�t�g �


�

��Z
��

ei�tf�t� dt ������

is called the exponential Fourier transformation� and we have

F �� � �Fe���� ������

�� Tables of the Fourier Transformation
Based on formulas �����a�b�c� we either do not need special tables for the corresponding Fourier sine
and Fourier cosine transformations� or we have tables for Fourier sine and Fourier cosine transforma�
tions and we may calculateF�� with the help of �����a�b�c�� InTable ����� �see ����� p� ����
and Table ����� �see ������ p� ���� the Fourier sine transforms Fs��� the Fourier cosine trans�
formsFc��� and for some functions the Fourier transformF�� inTable ����� �see ������ p� ����
and the exponential transform Fe�� in Table ����� �see ������ p� ���� are given�

The function of the unipolar rectangular impulse f�t� �  for jtj � t�� f�t� � � for jtj � t�
�A�� �Fig ����� satis�es the assumptions of the de�nition of the Fourier integral �����a�� Ac�

cording to �����c�d� we get for the coe�cients a�� �


�

Z �t�

�t�
cos  t dt �

�

�
sin  t� and b�� �



�

Z �t�

�t�
sin  t dt � � �A��� and so from �����b�� f�t� �

�

�

Z �

�

sin  t� cos  t


d �A����

�� Spectral Interpretation of the Fourier Transformation
Analogously to the Fourier series of a periodic function� the Fourier integral for a non�periodic function
has a simple physical interpretation� A function f�t�� for which the Fourier integral exists� can be rep�
resented according to ������ and ������ as a sum of sinusoidal vibrations with continuously changing
frequency  in the form

A�� d sin   t � ��� !� �����a� A�� d cos   t � ��� !� �����b�

The expression A�� d gives the amplitude of the wave components and ��� and ��� are the phases�
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f(t)

1

0 tt0-t0

Figure ���

2
ω

2t0

F(ω)

ωt0π 2π 3π0-π-2π-3π

Figure ����

We have the same interpretation for the complex formulation� The function f�t� is a sum �or integral�
of summands depending on  of the form



��
F �� d ei� t� ������

where the quantity


��
F �� also determines the amplitude and the phase of all the parts�

This spectral interpretation of the Fourier integral and the Fourier transformation has a big advantage
in applications in physics and engineering� The transform

F �� � jF ��jei���� or jF ��j ei���� �����a�

is called the spectrum or frequency spectrum of the function f�t�� the quantity

jF ��j � � A�� �����b�

is the amplitude spectrum and ��� and ��� are the phase spectra of the function f�t�� The relation
between the spectrum F �� and the coe�cients �����c�d� is

F �� � � a��� ib�� !� �����

from which we get the following statements�

� If f�t� is a real function� then the amplitude spectrum F �� is an even function of � and the phase
spectrum is an odd function of �

� If f�t� is a real and even function� then its spectrum F �� is real� and if f�t� is real and odd� then
the spectrum F �� is imaginary�

If we substitute the result �A��� for the unipolar rectangular impulse function on p� ��� into ������
then we get for the transform F �� and for the amplitude spectrum jF ��j �Fig �����
F �� � Ff f�t� g � �a�� � �

sin  t�


�A���� jF ��j � �

����sin  t�


���� �A���� The points of contact of

the amplitude spectrum jF ��j with the hyperbola
�


are at t� � ���n � �

�

�
�n � �� � �� � � �� �

�������� Rules of Calculation with the Fourier Transformation
As we have already pointed out for the Laplace transformation� the rules of calculation with integral
transformations mean the mappings of certain operations in the original space into operations in the
image space� If we suppose that both functions f�t� and g�t� are absolutely integrable in the interval
���� �� and their Fourier transforms are

F �� � Ff f�t� g and G�� � Ff g�t� g ������

then the following rules are valid�

�� Addition or Linearity Laws
If � and � are two coe�cients from ������� then�

Ff�f�t� � �g�t� g � �F �� � �G��� ������
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�� Similarity Law
For real � �� ��

Ff f�t��� g � j�jF ���� ������

�� Shifting Theorem
For real � �� � and real ��

Ff f��t � �� g � ���� ei	���F ���� or �����a�

Ff f�t� t�� g � e�i�t�F ��� �����b�

If we replace t� by �t� in �����b�� then we get

Ff f�t � t�� g � ei�t�F ��� �����c�

�� Frequency�Shift Theorem
For real � � � and � � �������

Ff ei	tf��t� g � ����F �� � ����� or �����a�

Ff ei��tf�t� g � F � � ��� �����b�

�� Di
erentiation in the Image Space
If the function tnf�t� is Fourier transformable� then

Ff tnf�t�g � inF �n���� ������

where F �n��� denotes the n�th derivative of F ���

� Di
erentiation in the Original Space

� First Derivative If a function f�t� is continuous and absolutely integrable in ������ and it
tends to zero for t ��� and the derivative f ��t� exists everywhere except� maybe� at certain points�
and this derivative is absolutely integrable in ������� then

Ff f ��t� g � iFf f�t� g� �����a�

� n�th Derivative If the requirements of the theorem for the �rst derivative are valid for all deriva�
tives up to f �n���� then

Ff f �n��t� g � �i�nFf f�t� g� �����b�

These rules of di�erentiation will be used in the solution of di�erential equations �see ������ p� ����

�� Integration in the Image Space
If the function tnf�t� is absolutely integrable in ������� then the Fourier transform of the function
f�t� has n continuous derivatives� which can be determined for k � � �� � � � � n as

dkF ��

dk
�

��Z
��

�k

�k

h
e�i�tf�t�

i
dt � ���k

��Z
��

e�i�ttkf�t� dt� �����a�

and we have

lim
����

dkF ��

dk
� �� �����b�

With the above assumptions these relations imply that

Ff tnf�t� g � in
dnF ��

dn
� �����c�
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�� Integration in the Original Space and the Parseval Formula

� Integration Theorem If the assumption

��Z
��

f�t� dt � � �����a� is ful�lled� then F
���

tZ
��

f�t� dt

 !" �


i
F ��� �����b�

� Parseval Formula If the function f�t� and its square are integrable in the interval �������
then

��Z
��
jf�t�j� dt �



��

��Z
��
jF ��j� d� �����

�� Convolution
The two�sided convolution

f��t� # f��t� �

��Z
��

f�� �f��t�  � d ������

is considered in the interval ������ and exists under the assumptions that the functions f��t� and
f��t� are absolutely integrable in the interval ������� If f��t� and f��t� both vanish for t � �� then
we get the one�sided convolution from ������

f��t� # f��t� �

�������
tZ

�

f�� �f��t�  � d for t 	 ��

� for t � ��

������

So� it is a special case of the two�sided convolution� While the Fourier transformation uses the two�
sided convolution� the Laplace transformation uses the one�sided convolution�

For the Fourier transform of a two�sided convolution we have

Ff f��t� # f��t� g � Ff f��t� g � Ff f��t� g� ������

if both integrals

��Z
��
jf��t�j� dt and

��Z
��
jf��t�j� dt ������

exist� i�e�� the functions and their squares are integrable in the interval �������

Calculate the two�sided convolution ��t� � f�t� # f�t� �
Z ��

��
f� �f�t� � d �A�� for the function

of the unipolar rectangular impulse function �A�� in ������� � on p� ����

Since ��t� �
Z t�

�t�
f�t�  � d �

Z t�t�

t�t�
f� � d �A���� we get for t � ��t� and t � �t�� ��� � � and

for ��t� � t � �� ��t� �
Z t�t�

�t�
d � t � �t�� �A���

Analogously� we get for � � t � �t�� ��t� �
Z t�

t�t�
d � �t � �t�� �A���

Altogether� for this convolution �Fig ����� we get

��t� � f�t� # f�t� �

���
t � �t� for ��t� � t � ��
�t � �t� for � � t � �t��
� for jtj � �t��

�A���

With the Fourier transform of the unipolar rectangular impulse function �A�� �p� ��� and Fig �����



��� ��� Integral Transformations

we get "�� � Ff��t� g � Ff f�t� # f�t� �  F �� !� � �
sin�  t�

�
�A��� and for the amplitude

spectrum of the function f�t� we have jF ��j � �
����sin  t�



���� and jF ��j� � �
sin�  t�

�
� �A���

0 t2t0-2t0

ψ(t)

Figure ����

ϕ(t)

1

0 t2t0

-1
-2t0

Figure ����

��� Comparing the Fourier and Laplace Transformations
There is a strong relation between the Fourier and Laplace transformation� since the Fourier trans�
formation is a special case of the Laplace transformation with p � i� Consequently� every Fourier
transformable function is also Laplace transformable� while the reverse statement is not valid for every
f�t�� Table ��� contains comparisons of several properties of both integral transformations�

Table ��� Comparison of the properties of the Fourier and the Laplace transformation

Fourier transformation Laplace transformation

F �� � Ff f�t� g �
��R
��

e�i� tf�t� dt F �p� � Lf f�t�� p g �
�R
�
e�ptf�t� dt

 is real� it has a physical meaning� e�g�� p is complex� p � r � ix�
frequency�

One shifting theorem� Two shifting theorems�

interval� ������� interval�  ����
Solution of di�erential equations� problems de�
scribed by two�sided domain� e�g�� the wave
equation�

Solution of di�erential equations� problems de�
scribed by one�sided domain� e�g�� the heat con�
duction equation�

Di�erentiation law contains no initial values� Di�erentiation law contains initial values�

Convergence of the Fourier integral depends only
on f�t��

Convergence of the Laplace integral can be im�
proved by the factor e�pt�

It satis�es the two�sided convolution law� It satis�es the one�sided convolution law�

�������� Transforms of Special Functions

A� Which image function belongs to the original function f�t� � e�ajtj� Re a � � �A��( Consider�

ing that jtj � �t for t � � and jtj � t for t � � with ����� we get�
Z �A

�A
e�i� t�ajtjdt �

Z �

�A
e��i��a�t dt�

Z �A

�
e��i��a�t dt � �e��i��a�t

i � a

�����
�

�A
� e��i��a�t

i � a

�����
�A

�

�
� � e�i��a�A

i � a
�

� e��i��a�A

i � a
�A���� Since je�aAj �

e�ARe a and Re a � �� the limit exists for A�� so we get F �� � Ff e�ajtj g �
�a

a� � �
�A����

B� Which image function belongs to the original function f�t� � e�at� Re a � �( The function is
not Fourier transformable� since the limit A� does not exist�



���	 Fourier Transformation ���

C� Determinate the Fourier transform of the bipolar rectangular impulse function �Fig �����

��t� �

���
 for ��t� � t � ��
� for � � t � �t��
� for jtj � �t�

�C��

where ��t� can be expressed by using equation �A�� given for the unipolar rectangular impulse on
p� ���� since ��t� � f�t � t��� f�t� t�� �C���� By the Fourier transformation according to �����b�
����c� we get ��� � Ff��t� g � ei� t�F ��� e�i� t�F ��� �C��� from which� using �A��� we have�

&�� � �ei� t� � e�i� t��
� sin  t�


� �i

sin�  t�


�C����

D� Transform of a damped oscillation� The damped oscillation represented in Fig ����a is given

by the function f�t� �
�

� for t � ��
e��t cos �t for t 	 ��

To simplify the calculations� the Fourier transformation is calculated with the complex function f � �t� �

e����i���t� since f�t� � Re �f � �t��� The Fourier transformation gives

Ff f � �t� g �
Z �

�
e�i� te����i���t dt �

Z �

�
e����������i t dt �

e��tei������t

�� � i�� � �

�����
�

�

�


�� i� � �
�

� � i�� � �

�� � � � ���
� The result is the Lorentz or Breit�Wigner curve �see also p� ���

Ff f�t� g �
�

�� � � � ���
�Fig ����b�� It has a unique peak in the frequency domain which cor�

responds to a damped oscillation in the time domain�

2�
	0

f(t)
1

-1

0 t

a�

F(ω)
1
α

0 ω0 ω
b�

Figure ����

y(t)

0 t0 t-t0

Figure ����

������ Solution ofDi�erential Equations using the Fourier

Transformation
Analogously to Laplace transformation� an important �eld of application of the Fourier transformation
is the solution of di�erential equations� since these equations can be transformed by the integral trans�
formation into a simple form� In the case of ordinary di�erential equations we get algebraic equations�
in the case of partial di�erential equations we get ordinary di�erential equations�

�������� Ordinary Linear Di
erential Equations
The di�erential equation

y��t� � a y�t� � f�t� with f�t� �

�
 for jtj � t��

� for jtj 	 t��
�����a�
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i�e�� with the function f�t� of Fig ����� is transformed by the Fourier transformation

Ff y�t� g � Y �� �����b�

into the algebraic equation

i Y � aY �
� sin  t�


� �����c� so we get Y �� � �

sin t�
�a � i�

� �����d�

The inverse transformation gives

y�t� � F��fY �� g � F��
�

�
sin t�

�a � i�

�
�



�

��Z
��

ei�t sin t�
�a � i�

d �����e�

and

y�t� �

���������������

� for �� � t � �t��


a

h
� e�a�t�t��

i
for �t� � t � �t��



a

h
e�a�t�t�� � e�a�t�t��

i
for t� � t ���

�����f�

Function �����f� is represented graphically in Fig �����

�������� Partial Di
erential Equations

�� General Remarks
The solution of a partial di�erential equation is a function of at least two variables� u � u�x� t�� As the
Fourier transformation is an integration with respect to only one variable� the other variable is consid�
ered a constant during the transformation� Here we keep as a constant the variable x and transform
with respect to t�

Ff u�x� t� g �

��Z
��

e�i� tu�x� t� dt � U�x� �� ������

During the transformation of the derivatives we also keep the variable x�

F
�

��n�u�x� t�

�tn

�
� �i�nFf u�x� t� g � �i�nU�x� �� ������

The di�erentiation with respect to x supposes that it is interchangeable with the Fourier integral�

F
�

�u�x� t�

�x

�
�

�

�x
 u�x� t� ! �

�

�x
U�x� �� ������

So� we get an ordinary di�erential equation in the image space� We also have to transform the boundary
and initial conditions into the image space� of course�

�� Solution of the One�DimensionalWave Equation for a Homogeneous Medium
� Formulation of the Problem The one�dimensional wave equation with vanishing perturbation
term and for a homogeneous medium is�

uxx � utt � �� �����a�

Like the three�dimensional wave equation �see ��������p� ����� the equation �����a� is a partial di�er�
ential equation of hyperbolic type� The Cauchy problem is correctly de�ned by the initial conditions

u�x� �� � f�x� ��� � x ���� ut�x� �� � g�x� �� � t ���� �����b�

� Fourier Transformation We perform the Fourier transformation with respect to x where the
time coordinate is kept constant�

Ff u�x� t� g � U�� t�� ����a�



���
 Z�Transformation ���

We get�

�i��U�� t� � d�U�� t�

dt�
� � with ����b�

Ff u�x� �� g � U�� �� � Ff f�x� g � F ��� ����c�

Ff ut�x� �� g � U ��� �� � Ff g�x� g � G��� ����d�

�U � U �� � �� ����e�

The result is an ordinary di�erential equation with respect to t with the parameter  of the transform�
The general solution of this known di�erential equation with constant coe�cients is

U�� t� � C�e
i� t � C�e

�i� t� �����a�

We determine the constants C� and C� from the initial values

U�� �� � C� � C� � F ��� U ��� �� � iC� � iC� � G�� �����b�

and we get

C� �


�
 F �� �



i
G�� !� C� �



�
 F ��� 

i
G�� !� �����c�

The solution is therefore

U�� t� �


�
 F �� �



i
G�� !ei� t �



�
 F ��� 

i
G�� !e�i� t� �����d�

� Inverse Transformation We use the shifting theorem

Ff f�ax � b� g � �a � eib��aF ��a�� �����a�

for the inverse transformation of F ��� and we get

F��f ei� tF �� g � f�x � t�� F�� e�i� tF �� ! � f�x� t�� �����b�

Applying the integration rule

F
���

xZ
��

f� � d 

 !" �


i
F �� we get �����c�

F��
�



i
G��ei� t

�
�

xZ
��
F��fG��ei� tg d �

xZ
��

g � � t� d �

x�tZ
��

g �z� dz �����d�

after substituting s � t � z� analogously to the previous integral we get

F��
�
� 

i
G��e�i� t

�
� �

x�tZ
��

g �z� dz� �����e�

Finally� the solution in the original space is

u�x� t� �


�
f�x � t� �



�
f�x� t� �

x�tZ
x�t

g �z� dz� ������

���� Z�Transformation
In natural sciences and also in engineering we can distinguish between continuous and discrete pro�
cesses� While continuous processes can be described by di�erential equations� the discrete processes
result mostly in di�erence equations� The solution of di�erential equations mostly uses Fourier and
Laplace transformations� however� to solve di�erence equations other operator methods have been



��� ��� Integral Transformations

developed� The best known method is the z�transformation� which is closely related to the Laplace
transformation�

������ Properties of the Z�Transformation
�������� Discrete Functions

f(t)

0 T 3T t2T

f0
f1

f2

f3

Figure ����

If a function f�t� �� � t ��� is known only at discrete values
tn � nT �n � �� � �� � � � � T � � is a constant� of the argu�
ment� then we write f�nT � � fn and we form the sequence
ffng� Such a sequence is produced� e�g�� in electrotechnics by
	scanning
 a function f�t� at discrete time periods tn� Its rep�
resentation results in a step function �Fig ������
The sequence ffng and the function f�nT � de�ned only at dis�
crete points of the argument� which is called a discrete func�
tion� are equivalent�

�������� De�nition of the Z�Transformation
�� Original Sequence and Transform
We assign the in�nite series

F �z� �
�X
n��

fn

�


z

�n
������

to the sequence ffng� If this series is convergent� then we call the sequence ffng z�transformable� and
we write

F �z� � Zffng� ������

ffng is called the original sequence� F �z� is the transform� z denotes a complex variable� and F �z� is a
complex�valued function�

fn �  �n � �� � �� � � �� � The corresponding in�nite series is

F �z� �
�X
n��

�


z

�n
� ������

It represents a geometric series with common ratio �z� which is convergent if
����z
���� �  and its sum is

F �z� �
z

z � 
� It is divergent for

����z
���� 	 � Therefore� the sequence fg is z�transformable for

����z
���� � �

i�e�� for every exterior point of the unit circle jzj �  in the z plane�

�� Properties
Since the transform F �z� according to ������ is a power series of the complex variable �z� the prop�
erties of the complex power series �see ������� p� ���� imply the following results�

a� For a z�transformable sequence ffng� there exists a real number R such that the series ������ is
absolutely convergent for jzj � �R and divergent for jzj � �R� The series is uniformly convergent
for jzj 	 �R� � �R� R is the radius of convergence of the power series ������ of �z� If the series
is convergent for every jzj � �� we write R ��� For non z�transformable sequences we write R � ��

b� If ffng is z�transformable for jzj � �R� then the corresponding transform F �z� is an analytic func�
tion for jzj � �R and it is the unique transform of ffng� Conversely� if F �z� is an analytic function
for jzj � �R and is regular also at z � �� then there is a unique original sequence ffng for F �z��
Here� F �z� is called regular at z � �� if F �z� has a power series expansion in the form ������ and
F ��� � f��

�� Limit Theorems
Analogously to the limit properties of the Laplace transformation �����b�� p� ���� the following limit
theorems are valid for the z�transformation�



���
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a� If F �z� � Zffng exists� then

f� � lim
z��F �z�� ������

Here z can tend to in�nity along the real axis or along any other path� Since the series

zfF �z�� f�g � f� � f�


z
� f�



z�
� � � � � ������

z�
�
F �z�� f� � f�



z

�
� f� � f�



z
� f�



z�
� � � � � �����

���
���

���

are obviously z transforms� analogously to ������ we get

f� � lim
z�� zfF �z�� f�g� f� � lim

z�� z�
�
F �z�� f� � f�



z

�
� � � � � ����

We can determine the original function ffng from its transform F �z� in this way�

b� If lim
n�� fn exists� then

lim
n�� fn � lim

z����
�z � �F �z�� �����

We can however determine the value lim
n�� fn from ����� only if its existence is guaranteed� since the

above statement is not reversible�

fn � ���n �n � �� � �� � � �� � Then Zffng �
z

z � 
and lim

z����
�z��



z � 
� �� but lim

n�����n does

not exist�

�������� Rules of Calculations
In applications of the z�transformation it is very important to know how certain operations de�ned on
the original sequences a�ect the transforms� and conversely� For the sake of simplicity we will use the
notation F �z� � Zffng for jzj � �R�

�� Translation
We distinguish between forward and backward translations�

� First Shifting Theorem� Zffn�kg � z�kF �z� �k � �� � �� � � �� � �����

here fn�k � � is de�ned for n� k � ��

� Second Shifting Theorem� Zffn�kg � zk
�
F �z��

k��X
���

f�

�


z

��
�k � � �� � � �� � �����

�� Summation

For jzj � max
�

�


R

�
holds Z

�
n��X
���

f�

�
�



z � 
F �z� � �����

�� Di
erences
For the di�erences

%fn � fn�� � fn� %mfn � %�%m��fn� �m � � �� � � � � %�fn � fn� �����

the following holds�

Zf%fng � �z � �F �z�� zf��
Zf%�fng � �z � ��F �z�� z�z � �f� � z%f��

��� �
���

Zf%kfng � �z � �kF �z�� z
k��P
���

�z � �k����%�f��

�����
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�� Damping
For an arbitrary complex number � �� � and jzj � j�j

R
�

Zf�nfng � F
�
z

�

�
� �����

�� Convolution
The convolution of two sequences ffng and fgng is the operation

fn # gn �
nX
���

f� gn��� �����

If the z�transformed functions Zffng � F �z� for j�j � �R� and Zfgng � G�z� for jzj � �R� exist�
then

Zffn # gng � F �z�G�z� ������

for jzj � max
�



R�

�


R�

�
� Relation ������ is called the convolution theorem of the z�transformation�

It corresponds to the rules of multiplying two power series�

� Di
erentiation of the Transform

Zfnfng � �z
dF �z�

dz
� �����

We can determine higher�order derivatives of F �z� by the repeated application of ������

�� Integration of the Transform
Under the assumption f� � ��

Z
�
fn
n

�
�

�Z
z

F ���

�
d�� ������

�������� Relation to the Laplace Transformation
If we describe a discrete function f�t� �see ������ p� ���� as a step function� then

f�t� � f�nT � � fn for nT � t � �n � �T �n � �� � �� � � � � T � �� T const�� ������

We can use the Laplace transformation �see ������ �� p� ��� for this piecewise constant function�
and for T �  we get�

Lff�t�g � F �p� �
�X
n��

n��Z
n

fne
�pt dt �

�X
n��

fn
e�np � e��n���p

p
�

� e�p

p

�X
n��

fne
�np� ������

The in�nite series in ������ is called the discrete Laplace transformation and it is denoted by D�

Dff�t�g � Dffng �
�X
n��

fne
�np� ������

If we substitute ep � z in ������� thenDffng represents a series with increasing powers of �z� which
is a so�called Laurent series �see ������ p� ����� The substitution ep � z suggested the name of the z
transformation� With this substitution from ������ we �nally get the following relations between the
Laplace and z�transformation in the case of step functions�

pF �p� �
�

� 

z

�
F �z� �����a� or pLff�t�g �

�
� 

z

�
Zffng� �����b�

In this way� we can transform the relations of z�transforms of step functions �see Table ����� p� ����
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into relations of Laplace transforms �see Table ����� p� ���� of step functions� and conversely�

�������� Inverse of the Z�Transformation

The inverse of the z�transformation is to �nd the corresponding unique original sequence ffng from its
transform F �z�� We write

Z��fF �z�g � ffng� ������

There are di�erent possibilities for the inverse transformation�

�� Using Tables

If the function F �z� is not given in tables� then we can try to transform it to a function which is given
in Table �����

�� Laurent Series of F �z�

We get the inverse transform directly from the de�nition ������� p� ���� if a series expansion of F �z�
with respect to �z is known or if it can be determined�

�� Taylor Series of F

�
�

z

�
Since F

�


z

�
is a series of increasing powers of z� from ������ and the Taylor formula we get

fn �


n $

dn

dzn
F
�



z

�����
z��

�n � �� � �� � � ��� ������

�� Application of Limit Theorems

Using the limits ������ and ����� p� ���� we can directly determine the original sequence ffng
from its transform F �z��

F �z� �
�z

�z � ���z � ��
� We use the previous four methods�

� By the partial fraction decomposition �see ������ p� �� of F �z��z we obtain functions which are
contained in Table �����

F �z�

z
�

�

�z � ���z � ��
�

A

z � �
�

B

�z � ��
�

C

z � 
� So

F �z� �
�z

z � �
� �z

�z � ��
� �z

z � 
and therefore fn � ���n � n� � for n 	 ��

� F �z� will be a series with decreasing powers of z by division�

F �z� �
�z

z� � �z� � �z � �
� �



z�
� �



z�
� ��



z�
� ��



z�
� �



z	
� � � � � ������

From this expression we get f� � f� � �� f� � �� f� � �� f� � ��� f� � ��� f	 � �� � � �� but we do
not obtain a closed expression for the general term fn�

� For formulating F
�



z

�
and its required derivatives� �see ������� we consider the partial fraction
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decomposition of F �z�� and get�

F
�



z

�
�

�

� �z
� �z

�� z��
� �

� z
� i�e�� F

�


z

�
� � for z � ��

dF
�



z

�
dz

�
�

�� �z��
� �z

�� z��
� �

�� z��
� i�e��

dF
�



z

�
dz

� � for z � ��

d�F
�



z

�
dz�

�
�

�� �z��
� �z

�� z��
� �

�� z��
� i�e��

d�F
�



z

�
dz�

� � for z � ��

d�F
�



z

�
dz�

�
��

�� �z��
� ��z

�� z��
� ��

�� z��
� i�e��

d�F
�



z

�
dz�

� �� for z � ��

���
���

���
���

from which we can easily obtain f�� f�� f�� f�� � � � considering also the factorials in �������

� Application of the limit theorems �see ������� �� p� ���� gives�

f� � lim
z��F �z� � lim

z��
�z

z� � �z� � �z � �
� ��

f� � lim
z�� z�F �z�� f�� � lim

z��
�z�

z� � �z� � �z � �
� ��

f� � lim
z�� z�

�
F �z�� f� � f�



z

�
� lim

z��
�z�

z� � �z� � �z � �
� ��

f� � lim
z�� z�

�
F �z�� f� � f�



z
� f�



z�

�
� lim

z�� z�
�

�z

z� � �z� � �z � �
� �

z�

�
� �� � � �

where the Bernoullil�Hospital rule is applied �see ������� �� p� ���� We can determine the original
sequence ffng successively�

������ Applications of the Z�Transformation

�������� General Solution of Linear Di
erence Equations

A linear di�erence equation of order k with constant coe�cients has the form

akyn�k � ak��yn�k�� � � � �� a�yn�� � a�yn�� � a�yn � gn �n � �� � � � � ��� ������

Here k is a natural number� The coe�cients ai �i � �� � � � � � k� are given real or complex numbers and
they do not depend on n� Here a� and ak are non�zero numbers� The sequence fgng is given� and the
sequence fyng is to be determined�

To determine a particular solution of ������ the values y�� y�� � � � � yk�� have to be previously given�
Then we can determine the next value yk for n � � from ������� We then get yk�� for n �  from
y�� y�� � � � � yk and from ������� In this way� we can calculate recursively all values yn� We can
give however a general solution for the values yn with the z�transformation� We use the second shifting
theorem ����� applied for ������ to get�

akz
k
h
Y �z�� y� � y�z

�� � � � � � yk��z��k���
i

� � � �� a�z Y �z�� y�! � a�Y �z� � G�z�������

Here we denote Y �z� � Zfyng and G�z� � Zfgng� If we substitute akz
k � ak��zk�� � � � �� a�z � a� �

p�z�� then the solution of the so�called transformed equation ����� is

Y �z� �


p�z�
G�z� �



p�z�

k��X
i��

yi
kX

j�i��

ajz
j�i� ������



���
 Z�Transformation ��


As in the case of solving linear di�erential equations with the Laplace transformation� we have the
similar advantage of the z�transformation that initial values are included in the transformed equation�
so the solution contains them automatically� We get the required solution fyng � Z��fY �z�g from
������ by the inverse transformation discussed in ������� p� ����

�������� Second�Order Di
erence Equations �Initial Value Problem�

The second�order di�erence equation is

yn�� � a�yn�� � a�yn � gn� ������

where y� and y� are given as initial values� Using the second shifting theorem for ������ we get the
transformed equation

z�


Y �z�� y� � y�



z

�
� a�z Y �z�� y�! � a�Y �z� � G�z�� ������

If we substitute z� � a�z � a� � p�z�� then the transform is

Y �z� �


p�z�
G�z� � y�

z�z � a��

p�z�
� y�

z

p�z�
� ������

If the roots of the polynomial p�z� are �� and ��� then �� �� � and �� �� �� otherwise a� is to be zero� and
then the di�erence equation could be reduced to a �rst�order one� By partial fraction decomposition
and applying Table ���� for the z�transformation we get the following�

z

p�z�
�

�������


�� � ��

�
z

z � ��
� z

z � ��

�
for �� �� ���

z

�z � ����
for �� � ���

Z��
�

z

p�z�

�
� fpng �

�����
�n� � �n�
�� � ��

for �� �� ���

n�n��� for �� � ���
�����a�

Since p� � �� by the second shifting theorem

Z��
�

z�

p�z�

�
� Z��

�
z

z

p�z�

�
� fpn��g �����b�

and by the �rst shifting theorem

Z��
�



p�z�

�
� Z��

�


z

z

p�z�

�
� fpn��g� �����c�

Here we substitute p�� � �� Based on the convolution theorem we get the original sequence with

yn �
nX
���

pn��qn�� � y��pn�� � a�pn� � y�p�� �����d�

Since p�� � p� � �� this relation and �����a� imply that in the case of �� �� ��

yn �
nX
���

gn��
����� � �����

�� � ��
� y�

�
�n��� � �n���

�� � ��
� a�

�n� � �n�
�� � ��

�
� y�

�n� � �n�
�� � ��

� �����e�

This form can be further simpli�ed� since a� � ���� � ��� and a� � ���� �see the root theorems of
Vieta� ������ ��� p� ���� so

yn �
nX
���

gn��
����� � �����

�� � ��
� y�a�

�n��� � �n���

�� � ��
� y�

�n� � �n�
�� � ��

� �����f�



��� ��� Integral Transformations

In the case of �� � �� similarly

yn �
nX
���

gn���
 � ������ � y�a��n� ��n��� � y�n�
n��
� � �����g�

In the case of second�order di�erence equations the inverse transformation of the transform Y �z� can
be performed without partial fraction decomposition if we use correspondences such as� e�g��

Z��
�

z

z� � �az cosh b � a�

�
� an��

sinh bn

sinhn
������

and the second shifting theorem� By substituting a� � ��a cosh b� and a� � a� the original sequence
of ������ becomes�

yn �


sinh b

�
nX
���

gn��a��� sinh�
 � �b� y�a
n sinh�n� �b � y�a

n�� sinhnb


� ������

This formula is useful in numerical computations especially if a� and a� are complex numbers�

Remark� Notice that the hyperbolic functions are also de�ned for complex variables�

�������� Second�Order Di
erence Equations �BoundaryValue Problem�
It often happens in applications that the values yn of a di�erence equation are needed only for a �nite
number of indices � � n � N � In the case of a second�order di�erence equation ������ both boundary
values y� and yN are usually given� To solve this boundary value problem we start with the solution
�����f� of the corresponding initial value problem� where instead of the unknown value y� we have to
introduce yN � If we substitute n � N into �����f�� we can get y� depending on y� and yN �

y� �


�N� � �N�

�
y�a���

N��
� � �N��� � � yN��� � ����

NX
���

������ � ����� �gN��


� ������

If we substitute this value into �����f� then we get

yn �


�� � ��

nX
���

������ � ����� �gn�� � 

�� � ��

�n� � �n�
�N� � �N�

NX
���

������ � ����� �gN��

�


�N� � �N�
 y���

N
� �n� � �n��

N
� � � yN��n� � �n� �!� ������

The solution ������ makes sense only if �N� � �N� �� �� Otherwise� the boundary value problem has
no general solution� but analogously to the boundary value problems of di�erential equations� we have
to solve the eigenvalue problem and to determine the eigenfunctions�

���� WaveletTransformation
������ Signals
If a physical object emits an e�ect which spreads out and can be described mathematically� e�g�� by a
function or a number sequence� then we call it a signal �
Signal analysis means that we characterize a signal by a quantity that is typical for the signal� This
means mathematically� The function or the number sequence� which describes the signal� will be
mapped into another function or number sequence� from which the typical properties of the signal
can be clearly seen� For such mappings� of course� some informations can also be lost�
The reverse operation of signal analysis� i�e�� the reconstruction of the original signal� is called signal
synthesis�

The connection between signal analysis and signal synthesis can be well represented by an example
of Fourier transformation� A signal f�t� �t denotes time� is characterized by the frequency � Then�
formula ����a� describes the signal analysis� and formula ����b� describes the signal synthesis�



���� Wavelet Transformation ���

F �� �

�Z
��

e�i�tf�t� dt ����a� and f�t� �


��

�Z
��

ei�tF �� d� ����b�

������ Wavelets
The Fourier transformation has no localization property� i�e�� if a signal changes at one position� then
the transform changes everywhere without the possibility that the position of the change could be
recognized 	at a glance
� The basis of this fact is that the Fourier transformation decomposes a signal
into plane waves� These are described by trigonometric functions� which have arbitrary long oscillations
with the same period� However� for wavelet transformations there is an almost freely chosen function
�� the wavelet �small localized wave�� that is shifted and compressed for analysing a signal�

Examples are the Haar wavelet �Fig ����a� and the Mexican hat �Fig ����b��

A Haar wavelet�

� �

�����
 if � � x � �

�
�

� if �
�
� x �  �

� otherwise�

������
B Mexican hat�

��x� � � d�

dx�
e�x

��� ������

� �� x��e�x
���� ������

ψ(t)

0 t

1

1

ψ(t)

-1

0 t½

1

1

a) b)

Figure ����

Every function � comes into consideration as a wavelet if it is quadratically integrable and its Fourier
transform 2�� according to ����a� results in a positive �nite integral

�Z
��

j2��j
jj d� ������

Concerning wavelets� the following properties and de�nitions can be mentioned�
� For the mean value of the wavelet�

�Z
��

��t� dt � �� ������

� The following integral is called the k�th moment of a wavelet ��

�k �

�Z
��

tk��t� dt� ������

The smallest positive integer n such that �n �� �� is called the order of the wavelet ��

For the Haar wavelet ������� n � � and for the Mexican hat ������� n � ��
� When �k � � for every k� � has in�nite order� Wavelets with bounded support always have �nite
order�
� A wavelet of order n is orthogonal to every polynomial of degree � n� �

������ WaveletTransformation
For a wavelet ��t� we can form a family of curves with parameter a�

�a�t� �
q
jaj

�
�
t

a

�
�a �� ��� ������



��� ��� Integral Transformations

In the case of jaj � � the initial function ��t� is compressed� In the case of a � � there is an additional

re�ection� The factor �
q
jaj is a scaling factor�

The functions �a�t� can also be shifted with a second parameter b� Then we get a two�parameter family
of curves�

�a�b �
q
jaj

�

�
t� b

a

�
�a� b real� a �� ��� ������

The real shifting parameter b characterizes the �rst moment� while parameter a gives the deviation of
the function �a�b�t�� The function �a�b�t� is called a basis function in connection to the wavelet trans�
formation�

The wavelet transformation of a function f�t� is de�ned as�

L�f�a� b� � c

�Z
��

f�t��a�b�t� dt �
cq
jaj

�Z
��

f�t��

�
t� b

a

�
dt� �����a�

For the inverse transformation�

f�t� � c

�Z
��

�Z
��
L�f�t��a�b�t�



a�
da db� �����b�

Here c is a constant dependent on the special wavelet ��

Using the Haar wavelets ������ we get

�

�
t� b

a

�
�

���
 if b � t � b � a���
� if b � a�� � t � b � a�
� otherwise

and therefore

L�f�a� b� �
q
jaj

�Z b�a��

b
f�t� dt�

Z b�a

b�a��
f�t� dt

�

�

q
jaj
�

�
�

a

Z b�a��

b
f�t� dt� �

a

Z b�a

b�a��
f�t� dt

�
� �����

The value L�f�a� b� given in ����� represents the di�erence of the mean values of a function f�t�

over two neighboring intervals of length
jaj
�

� connected at the point b�

Remarks�

� The dyadic wavelet transformation has an important role in applications� As a basis function we
select the functions

�i�j�t� �
p
�i

�

�
t� �ij

�i

�
� ������

i�e�� we get di�erent basis functions from one wavelet ��t� by doubling or halving the width and shifting
by an integer multiple of the width�

� A wavelet ��t� � where the basis functions given in ������ form an orthogonal system� is called an
orthogonal wavelet�

� The Daubechies wavelets have especially good numerical properties� They are orthogonal wavelets
with compact support� i�e�� they are di�erent from zero only on a bounded subset of the time scale�



���� Wavelet Transformation ���

They do not have a closed form representation �see  ���!��

������ DiscreteWaveletTransformation

�������� FastWavelet Transformation
The integral representation �����b� is very redundant� and so the double integral can be replaced
by a double sum without loss of information� We consider this idea at the concrete application of the
wavelet transformation� We need

� an e�cient algorithm of the transformation� which leads to the concept of multi�scale analysis� and

� an e�cient algorithm of the inverse transformation� i�e�� an e�cient way to reconstruct signals from
their wavelet transformations� which leads us to the concept of frames�

For more details about these concepts see  ���!�  ��!�

Remark� The great success of wavelets in many di�erent applications� such as
� calculation of physical quantities from measured sequences
� pattern and voice recognition
� data compression in news transmission
is based on 	fast algorithms
� Analogously to the FFT �Fast Fourier Transformation� see ��������
p� ���� we talk here about FWT �Fast Wavelet Transformation��

�������� Discrete HaarWavelet Transformation
As an example of a discrete wavelet transformation we describe the Haar wavelet transformation� The
values fi �i � � �� � � � � N� are given from a signal� The detailed values di �i � � �� � � � � N��� are
calculated as�

si �
p
�

�f�i�� � f�i�� di �
p
�

�f�i�� � f�i�� ������

The values di are to be stored while the rule ������ is applied to the values si� i�e�� in ������ the
values fi are replaced by the values si� This procedure is continued� sequentially so that �nally from

s
�n���
i �

p
�

�
s
�n�
�i�� � s

�n�
�i

	
� d

�n���
i �

p
�

�
s
�n�
�i�� � s

�n�
�i

	
������

a sequence of detailed vectors is formed with components d
�n�
i � Every detailed vector contains infor�

mation about the properties of the signals�

Remark� For large values of N the discrete wavelet transformation converges to the integral wavelet
transformation �����a��

������ Gabor Transformation
Time�frequency analysis is the characterization of a signal with respect to the contained frequencies
and time periods when these frequencies occur� Therefore� the signal is divided into time segments
�windows� and a Fourier transform is used� We call it a Windowed Fourier Transformation �WFT��

g(t)

0

t30

0.04

0-30
-0.04

Figure ����

The window function should be chosen so that a signal is con�
sidered only in the window� Gabor applied the window function

g�t� �
p
���

e
�

t�

��� ������

�Fig ���
�� This choice can be explained as g�t�� with the
	total unit mass
� is concentrated at the point t � � and the
width of the window can be considered as a constant �about
����



��� ��� Integral Transformations

The Gabor transformation of a function f�t� then has the form

Gf�� s� �

�Z
��

f�t�g�t� s�e�i� t dt� ������

This determines� with which complex amplitude the dominant wave �fundamental harmonic� ei� t oc�
curs during the time interval  s � �� s � �! in f � i�e�� if the frequency  occurs in this interval� then it
has the amplitude jGf�� s�j�
���� WalshFunctions
������ Step Functions
In the approximation theory of functions orthogonal function systems have an important role� For
instance� special polynomials or trigonometric functions are used since they are smooth� i�e�� they are
di�erentiable su�ciently many times in the considered interval� However� there are problems� e�g�� the
transition of points of a rough picture� when smooth functions are not suitable for the mathematical
description� but step functions� piecewise constant functions are more appropriate� Walsh functions
are very simple step functions� They take only two function values � and �� These two function
values correspond to two states� so the Walsh functions can be implemented by computers very easily�

������ Walsh Systems
Analogously to trigonometric functions we can consider periodic step functions� We apply the interval
I �  �� � as a period interval and we divide it into �n equally long subintervals� Suppose Sn is the set of
periodic step functions with period  over such an interval� We can consider the di�erent step functions
belonging to Sn as vectors of a �nite dimensional vector space� since every function g � Sn is de�ned
by its values g�� g�� g�� � � � � g�n�� in the subintervals and it can be considered as a vector�

gT � �g�� g�� g�� � � � � g�n���� ������

The Walsh functions belonging to Sn form an orthogonal basis with respect to a suitable scalar product
in this space� The basis vectors can be enumerated in many di�erent ways� so we can get many di�erent
Walsh systems� which actually contain the same functions� There are three of them which should be
mentioned� Walsh�Kronecker functions� Walsh�Kaczmarz functions and Walsh�Paley functions�
The Walsh transformation is constructed analogously to the Fourier transformation� where the role of
the trigonometric functions is taken by the Walsh functions� We get� e�g�� Walsh series� Walsh poly�
nomials� Walsh sine and Walsh cosine transformations� Walsh integral� and analogously to the fast
Fourier transformation there is a Fast Walsh Transformation� For an introduction in the theory and
applications of Walsh functions see  ���!�



���

�� ProbabilityTheoryand
MathematicalStatistics

When experiments or observations are made� various outcomes are possible even under the same con�
ditions� Probability theory and statistics deal with regularity of random outcomes of certain results
with respect to given experiments or observations� �In probability theory and statistics� observations
are also called experiments� since they have certain outcomes�� We suppose� at least theoretically� that
these experiments can be repeated arbitrarily many times under the same circumstances� namely� these
disciplines deal with the statistics of mass phenomena� The term stochastics is used for the mathemat�
ical handling of random phenomena�

���� Combinatorics
We often compose new sets� systems� or sequences from the elements of a given set� in a certain way�
Depending on the way we do it� we get the notion of permutation� combination� and arrangement� The
basic problem of combinatorics is to determine how many di�erent choices or arrangements are possible
with the given elements�

������ Permutations

�� De�nition
A permutation of n elements is an ordering of the n elements�

�� Number of Permutations without Repetition
The number of di�erent permutations of n di�erent elements is

Pn � n$ � ����

In a classroom � students are seated on � places� There are �$ di�erent possible arrangements�

�� Number of Permutations with Repetitions

The number Pn
�k� of di�erent permutations of n elements containing k identical elements �k � n� is

Pn
�k� �

n$

k$
� �����

In a classroom � schoolbags of � students are placed on � chairs� Four of them are identical�
There are �$��$ di�erent arrangements of the schoolbags�

�� Generalization
The number Pn

�k��k������km� of di�erent permutations of n elements containing m di�erent types of ele�
ments with multiplicities k�� k�� � � � � km respectively �k� � k� � � � � � km � n� is

Pn
�k��k������km� �

n$

k�$k�$ � � � km$
� �����

Suppose we compose �ve�digit numbers from the digits �� �� �� �� �� We can have P�
����� �

�$

�$�$
� �

di�erent numbers�

������ Combinations

�� De�nition
A combination is a choice of k elements from n di�erent elements not considering the order of them�
We call it a combination of k�th order and we distinguish between combinations with and without
repetition�



��� ��� Probability Theory and Mathematical Statistics

�� Number of Combinations without Repetition

The number Cn
�k� of di�erent possibilities to choose k elements from n di�erent elements not consid�

ering the order is

Cn
�k� �

�
n

k

�
with � � k � n �see binomial coe�cient in ������ �� p� ��� �����

if we choose any element at most once� We call this a combination without repetition�

There are

�
��

�

�
� ����� possibilities to choose an electoral board of four persons from �� partici�

pants�

�� Number of Combinations with Repetition

The number of possibilities to choose k elements from n di�erent ones� repeating each element arbi�
trarily times and not considering the order is

Cn
�k� �

�
n � k � 

k

�
� �����

In other words� we consider the number of di�erent selections of k elements chosen from n di�erent
elements� where the selected ones must not be di�erent�

Rolling k dice� we can get C	
�k� �

�
k � �� 

k

�
di�erent results� Consequently� we can get C	

��� ��
�

�

�
� � di�erent results with two dice�

������ Arrangements

�� De�nition

An arrangement is an ordering of k elements selected from n di�erent ones� i�e�� arrangements are
combinations considering the order�

�� Number of Arrangements without Repetition

The number Vn
�k� of di�erent orderings of k di�erent elements selected from n di�erent ones is

Vn
�k� � k$

�
n

k

�
� n�n� ��n� �� � � � �n� k � � �� � k � n�� �����

How many di�erent ways are there to choose a chairman� his deputy� and a �rst and a second assistant

for them from �� participants at an election meeting( The answer is

�
��

�

�
�$ � �������

�� Number of Arrangements with Repetition

An ordering of k elements selected from n di�erent ones� where any of the elements can be selected
arbitrarily many times� is called an arrangement with repetition� Their number is

Vn
�k� � nk� �����

A� In a soccer�toto with � games there are ��� di�erent outcomes�

B� We can represent �
 � ��� di�erent symbols with the digital unit called a byte which contains �
bits� see for example the well�known ASCII table�



���� Probability Theory ���

������ CollectionoftheFormulasofCombinatorics�seeTable����

Table �� Collection of the formulas of combinatorics

Type of choice or Number of possibilities

selection of kfrom without repetition with repetition

n elements �k � n� �k � n�

Permutations Pn � n$ �n � k� P �k�
n �

n$

k$

Combinations Cn
�k� �

�
n

k

�
Cn

�k� �

�
n � k � 

k

�

Arrangements Vn
�k� � k$

�
n

k

�
Vn

�k� � nk

���� Probability Theory

������ Event� Frequency andProbability

�������� Events

�� Di
erent Types of Events
All the possible outcomes of an experiment are called events in probability theory� and they form the
fundamental probability set A�
We distinguish the certain event� the impossible event and random events�
The certain event occurs every time when the experiment is performed� the impossible event never
occurs� a random event sometimes occurs� sometimes does not� All possible outcomes of the experiment
excluding each other are called elementary events �see also Table ����� We denote the events of the
fundamental probability set A by A�B�C� � � � � the certain event by I� the impossible event by O� We
de�ne some operations and relations between the events� they are given in Table ����

�� Properties of the Operations
The fundamental probability set forms a Boolean algebra with complement� addition� and multiplica�
tion de�ned in Table ���� and it is called the �eld of events� The following rules are valid�

� a� A � B � B � A� ����� � b� AB � BA� �����

� a� A � A � A� ����� � b� AA � A� ����

� a� A � �B � C� � �A � B� � C� ����� � b� A�BC� � �AB�C� �����

� a� A � A � I� ����� � b� AA � O� �����

� a� A�B � C� � AB � AC� ����� � b� A � BC � �A � B��A � C�� �����

� a� A � B � A B� ����� � b� AB � A � B� �����

� a� B � A � BA� ������ � b� A � I � A� �����

� a� A�B � C� � AB � AC� ������ � b� AB � C � �A� C��B � C�� ������
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 a� O � A� ������ 
 b� A � I� ������

�� From A � B follows a� A � AB ������ and b� B � A � BA and conversely� ������

�� Complete System of Events� A system of events A� �� � '� ' is a �nite or in�nite set of
indices� is called a complete system of events if the following is valid�

�� a� A�A	 � O for� �� � ������ and �� b�
X
���

A� � I� ������

Table ��� Relations between events

Name Nota� De�nition
tion

� Complementary event ofA� A A occurs exactly if A does not�
� Sum of events A and B� A � B A�B is the event which occurs if A or B or both occur�
� Product of the events A

and B�
AB AB is the event which occurs exactly if both A and B

occur�
� Di�erence of the events A

and B�
A� B A� B occurs exactly if A occurs and B does not�

� Event as a consequence of
the other�

A � B A � B means that from the occurrence of A follows
the occurrence of B�

� Elementary or simple
event�

E From E � A � B it follows that E � A or E � B �

� Compound event� Event� which is not elementary�
� Disjoint or exclusive events

A and B�
AB � O The events A and B cannot occur at the same time�

A� Tossing two coins� Elementary events for the separate toss�
ings� See the table on the right�

� Elementary event for tossing both coins� e�g�� First coin shows
head� second shows tail� A��A���

Compound event for tossing both coins� First coin shows head�
A�� � A��A�� � A��A��

Head Tail
� Coin A�� A��

�� Coin A�� A��

�� Compound event for tossing one coin� e�g�� the �rst one� First coin shows head or tail� A�� �A�� � I�
Head and tail on the same coin are disjoint events� A��A�� � O�

B� Lifetime of light�bulbs�
We can de�ne the elementary events An� the lifetime t satis�es the inequalities �n � �%t � t �
n%t �n � � �� � � �� and %t � �� arbitrary unit of time��

Compound event A� The lifetime is at most n%t� i�e�� A �
nX
���

A��

�������� Frequencies and Probabilities

�� Frequencies

Let A be an event belonging to the �eld of events A of an experiment� If event A occurred nA times
while we repeated the experiment n times� then nA is called the frequency� and nA�n � hA is called
the relative frequency of the event A� The relative frequency satis�es certain properties which can be
used to built up an axiomatic de�nition of the notion of the probability P �A� of event A in the �eld of
events A�
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�� De�nition of the Probability
A real function P de�ned on the �eld of events is called a probability if it satis�es the following proper�
ties�
� For every event A � A we have

� � P �A� � � and � � hA � � ������

� For the impossible event O and the certain event I� we have

P �O� � �� P �I� � � and hO � �� hI � � �����

� If the events Ai � A �i � � �� � � �� are �nite or countably many mutually exclusive events
�AiAk � O for i �� k�� then

P �A� � A� � � � �� � P �A�� � P �A�� � � � � � and hA��A����� � hA� � hA� � � � � � ������

�� Rules for Probabilities
�� B � A yields P �B� � P �A�� ������

�� P �A� � P �A� � � ������

�a� For n mutually exclusive events Ai �i � � � � � � n�AiAk � O� i �� k�� we have

P �A� � A� � � � � An� � P �A�� � P �A�� � � � � � P �An�� �����a�

�b� In particular for n � � we have

P �A � B� � P �A� � P �B�� �����b�

� a� For arbitrary events Ai �i � � � � � � n�� we have

P �A� � � � �� An� � P �A�� � � � �� P �An�� P �A�A��� � � � � P �A�An�

�P �A�A��� � � � � P �A�An�� � � � � P �An��An�

�P �A�A�A�� � � � �� P �A�A�An� � � � �� P �An��An��An��
���

����n��P �A�A� � � � An�� �����a�

��b� In particular for n � � we have P �A� � A�� � P �A�� � P �A��� P �A�A��� �����b�

� Equally likely events� If every event Ai �i � � �� � � � � n� of a �nite complete system of events occurs
with the same probability� then

P �Ai� �


n
� ������

If A is a sum of m �m � n� events with the same probability Ai �i � � �� � � � � n� of a complete system�
then

P �A� �
m

n
� ������

�� Examples of Probabilities

A� The probability P �A� to get a � rolling a fair die is� P �A� �


�
�

B� What is the probability of guessing four numbers for the lotto 	� from ��
� i�e�� � numbers are
to be chosen from the numbers � �� � � � � ���

If � numbers are drawn� then there are
�
	
�

	
possibilities to choose �� On the other hand there are�

��	
	��
	

�
�
��
�

	
possibilities for the false numbers� Altogether� there are

�
�
	

	
di�erent possibilities to

draw � numbers� Therefore� the probability P �A�� is�

P �A�� �

�
	
�

	�
��
�

	
�
�
	

	 �
���

������
� ������ &�
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Similarly� the probability P �A	� to get a direct hit is�

P �A	� �
�
�
	

	 � ���� � ��� � ��� � ��	 &�

C� What is the probability P �A� that at least two persons have birthdays on the same day among
k persons( �The years of birth must not be identical� and we suppose that every day has the same
probability of being a birthday��

It is easier to consider the complementary event A� All the k persons have di�erent birthdays� We get�

P �A� �
���

���
� ���� 

���
� ���� �

���
� � � � � ���� k � 

���
�

From this it follows that

P �A� � � P �A� � � ��� � ��� � ��� � � � � � ����� k � �

���k
�

Some numerical results�
k � �� �� �� ��

P�A� ��� ��� ����� ����� �����

We can see that the probability that among �� and more persons at least two have the same birthday
is greater than �� &�

�������� Conditional Probability� Bayes Theorem

�� Conditional Probability
The probability of an event B� when it is known that some event A has already occurred� is called a
conditional probability and it is denoted by P �BjA� or PA�B� �read� The probability that B occurs
given that A has occurred�� It is de�ned by

P �BjA� �
P �AB�

P �A�
� P �A� �� �� ������

The conditional probability satis�es the following properties�

a� If P �A� �� � and P �B� �� � holds� then

P �BjA�

P �B�
�

P �AjB�

P �A�
� �����a�

b� If P �A�A�A� � � � An� �� � holds� then

P �A�A� � � � An� � P �A��P �A�jA�� � � � P �AnjA�A� � � � An���� �����b�

�� Independent Events
The events A and B are independent events if

P �AjB� � P �A� and P �BjA� � P �B� ����a�

holds� In this case� we have

P �AB� � P �A�P �B�� ����b�

�� Events in a Complete System of Events
If A is a �eld of events and the events Bi � A with P �Bi� � � �i � � �� � � �� form a complete system
of events� then for an arbitrary event A � A the following formulas are valid�
a� Total Probability Theorem

P �A� �
X
i

P �AjBi�P �Bi�� ������
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b� Bayes Theorem with P �A� � �

P �BkjA� �
P �AjBk�P �Bk�X
i

P �AjBi�P �Bi�
� ������

Three machines produce the same type of product in a factory� The �rst one gives �� & of the total
production� the second one gives �� & and the third one �� &� It is known from past experience that
� &� � &� and � & of the product made by each machine� respectively� are defective� Two types of
questions often arise�

a� What is the probability that an article selected randomly from the total production is defective(

b� If the randomly selected article is defective� what is the probability that it was made� e�g�� by the
�rst machine(

We use the following notation�

� Ai denotes the event that the randomly selected article is made by the i�th machine �i � � �� �� with
P �A�� � ���� P �A�� � ���� P �A�� � ���� The events Ai form a complete system of events�

� AiAj � �� A� � A� � A� � I�

� A denotes the event that the chosen article is defected�

� P �AjA�� � ���� gives the probability that an article produced by the �rst machine is defective�
analogously P �AjA�� � ���� and P �AjA�� � ���� hold�

Now� we can answer the questions�

a� P �A� � P �A��P �AjA�� � P �A��P �AjA�� � P �A��P �AjA��
� ��� � ���� � ��� � ���� � ��� � ���� � ������

b� P �A�jA� � P �A��
P �AjA��

P �A�
� ���

����

�����
� ����

������ RandomVariables� Distribution Functions
To apply the methods of analysis in probability theory� we introduce the notions of variable and func�
tion�

�������� RandomVariable
If we assign numbers to the elementary events� then we de�ne a random variable X� Then every ran�
dom event can be described by this variable X� The random variable X can be considered as a quantity
which takes its values x randomly from a subset R of the real numbers�
If R contains �nite or countably many di�erent values� then we call X a discrete random variable� In
the case of a continuous random variable� R can be the whole real axis or it may contain subintervals�
For the precise de�nition see �������� �� p� ���� There are also mixed random variables�

A� If we assign the values � �� �� � to the elementary events A��� A��� A��� A��� respectively� in ex�
ample A� p� ���� then we de�ne a discrete random variable X�

B� The lifetime T of a randomly selected light�bulb is a continuous random variable� The elemen�
tary event T � t occurs if the lifetime T is equal to t�

�������� Distribution Function

�� Distribution Function and its Properties
A random variable X can be de�ned by its distribution function

F �x� � P �X � x� for �� � x ��� ������

It determines the probability that the random variable X takes a value between �� and x� Its domain
is the whole real axis� The distribution function has the following properties�

a� F ���� � �� F ���� � �
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b� F �x� is a non�decreasing function of x�

c� F �x� is continuous on the right�

Remarks�

� From the de�nition it follows that P �X � a� � F �a�� lim
x�a��F �x��

� In the literature� also the de�nition F �x� � P �X � x� is often used� In this case
P �X � a� � lim

x�a��
F �x�� F �a��

�� Distribution Function of Discrete and Continuous RandomVariables
a� Discrete Random Variable� A discrete random variable X� which takes the values xi �i �
� �� � � �� with probabilities P �X � xi� � pi �i � � �� � � ��� has the distribution function

F �x� �
X
xi
x

pi� ������

b� Continuous Random Variable� A random variable is called continuous if there exists a non�
negative function f�x� such that the probability P �X � S� can be expressed as P �X � S� �

R
S f�x�dx

for any domain S such that it is possible to consider an integral over it� This function is the so�called
density function� A continuous random variable takes any given value xi with � probability� so we rather
consider the probability that X takes its value from a �nite interval  a� b!�

P �a � X � b� �

bZ
a

f�t� dt� ������

A continuous random variable has an everywhere continuous distribution function�

F �x� � P �X � x� �

xZ
��

f�t� dt� ������

F ��x� � f�x� holds at the points where f�x� is continuous�

Remark� When there is no confusion about the upper integration limit� often the integration variable
is denoted by x instead of t�

�� Area Interpretation of the Probability
By introducing the distribution function and density function in ������� we can represent the proba�
bility P �X � x� � F �x� as an area between the density function f�t� and the x�axis on the interval
�� � t � x �Fig ���a��

f(t)
F(x)

tx0
a�

f(t)

α

xα0 t
b�

Figure ��

Often there is given a probability value �� If

P �X � x� � � ������

holds� we call the corresponding value of the abscissa x � x� the quantile or the fractile of order �
�Fig ���b�� This means the area under the density function f�t� to the right of x� is equal to ��
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Remark� In the literature� the area to the left of x� is also used for the de�nition of quantile�

In mathematical statistics� for small values of �� e�g�� � � �& or � � &� we also use the notion of
signi�cance level or type � error rate� The most often used quantiles for the most important distributions
in practice are given in tables �Table ����� p� ���� to Table ����� p� �����

�������� Expected Value andVariance� Chebyshev Inequality
For a global characterization of a distribution� we mostly use the parameters expected value� denoted
by �� and the variance �� of a random variable X� The expected value can be interpreted with the
terminology of mechanics as the abscissa of the center of gravity of a surface bounded by the curve of
the density function f�x� and the x�axis� The variance represents a measure of deviation of the random
variable X from its expected value ��

�� Expected Value
If g�X� is a function of the random variable X� then g�X� is also a random variable� Its expected value
or expectation is de�ned as�

a� Discrete Case� E�g�X�� �
X
k

g�xk�pk� if the series
�X
k��

jg�xk�jpk exists� �����a�

b� Continuous Case� E�g�X�� �

��Z
��

g�x�f�x� dx� if
Z ��

��
jg�x�jf�x� dx exists� �����b�

The expected value of the random variable X is de�ned as

�X � E�X� �
X
k

xkpk or

��Z
��

xf�x� dx� �����a�

if the corresponding sum or integral with the absolute values exists� We note that �����a�b� yields
that

E�aX � b� � a�X � b �a� b const� �����b�

is also valid� Of course� it is possible that a random variable does not have any expected value�

�� Moments of Order n
We introduce�

a� Moment of Order n� E�Xn�� ����a�

b� Central Moment of Order n� E��X � �X�n�� ����b�

�� Variance and Standard Deviation
In particular� for n � �� the central moment is called the variance or dispersion�

E��X � �X��� � D��X� � ��X �

�������������

X
k

�xk � �X��pk or

��Z
��

�x� �X��f�x� dx�
������

if the expected values occurring in the formula exist� The quantity �X is called the standard deviation�
The following relations are valid�

D��X� � ��X � E�X��� ��X � D��aX � b� � a�D��X�� ������

�� Weighted and ArithmeticalMean
In the discrete case� the expected value is obviously the weighted mean

E�X� � p�x� � � � � � pnxn ������
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of the values x�� � � � � xn with the probabilities pk as weights �k � � � � � � n�� The probabilities for the
uniform distribution are p� � p� � � � � � pn � �n� and E�X� is the arithmetical mean of the values
xk�

E�X� �
x� � x� � � � � � xn

n
� ������

In the continuous case� the density function of the continuous uniform distribution on the �nite interval
 a� b! is

f�x� �

���


b� a
for a � x � b�

� otherwise�
������

and it follows that

E�X� �


b� a

bZ
a

x dx �
a � b

�
� ��X �

�b� a��

�
� ������

�� Chebyshev Inequality
If the random variable X has the expected value � and standard deviation �� then for arbitrary � � �
the Chebyschev inequality is valid�

P �jX � �j 	 ��� � 

��
� ������

That is� it is very unlikely that the values of the random variable X are farther from the expected value
� than a multiple of the standard deviation �� large��

�������� Multidimensional RandomVariable
If the elementary events mean that n random variables X�� � � � � Xn take n real values x�� � � � � xn� then
a random vector X � �X�� X�� � � � � Xn� is de�ned �see also random vector� ������ �� p� ����� The
corresponding distribution function is de�ned by

F �x�� � � � � xn� � P �X� � x�� � � � � Xn � xn�� ������

The random vector is called continuous if there is a function f�t�� � � � � tn� such that

F �x�� � � � � xn� �

x�Z
��
� � �

xnZ
��

f�t�� � � � � tn� dt� � � � dtn ������

holds� The function f�t�� � � � � tn� is called the density function� It is non�negative� If some of the vari�
ables x�� � � � � xn tend to in�nity� then we get the so�calledmarginal distributions� Further investigations
and examples can be found in the literature�
The random variables X�� � � � � Xn are independent random variables if

F �x�� � � � � xn� � F��x��F��x�� � � � Fn�xn�� f�t�� � � � � tn� � f��t�� � � � fn�tn�� �����

������ DiscreteDistributions

�� Two�Stage Population and UrnModel
Suppose we have a two�stage population with N elements� i�e�� the population we consider has two
classes of elements� One class has M elements with a property A� the other one has N �M elements
which do not have the property A� If we investigate the probabilities P �A� � p and P �A� �  � p
for randomly chosen elements� then we distinguish between two cases� When we select n elements one
after the other� we either replace the previously selected element before selecting the next one� or we
do not replace it� The selected n elements� which contain k elements with the property A� is called the
sample� n being the size of the sample� This can be illustrated by the urn model�
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�� Urn model
Suppose there are a lot of black balls and white balls in a container� The question is� What is the
probability that among n randomly selected balls there are k black ones� If we put every chosen ball
back into the container after we have determined its color� then the number k of black ones among the
chosen n balls has a binomial distribution� If we do not put back the chosen balls and n � M and
n � N �M � then the number of black ones has a hypergeometric distribution�

�������� Binomial Distribution
Suppose we observe only the two events A and A in an experiment� and we do n independent experi�
ments� If P �A� � p and P �A� � �p holds every time� then the probability that A takes place exactly
k times is

W n
p �k� �

�
n

k

�
pk�� p�n�k �k � �� � �� � � � � n�� ������

For every choice of an independent element from the population� the probabilities are

P �A� �
M

N
� P �A� �

N �M

N
� � p � q� ������

The probability of getting an element with property A for the �rst k choices� then an element with the
remaining property A for the n�k choices is pk��p�n�k� because the results of choices are independent
of each other� We get the same result assigning the k places any other way� We can assign these places�

n

k

�
�

n$

k$�n� k�$
������

di�erent ways� and these events are mutually exclusive� so we add

�
n

k

�
equal numbers to get the re�

quired probability�
A random variable Xn� for which P �Xn � k� � W n

p �k� holds� is called binomially distributed with
parameters n and p�

�� Expected Value and Variance

E�Xn� � � � n � p� �����a� D��Xn� � �� � n � p�� p�� �����b�

�� Approximation of the Binomial Distribution by the Normal Disribution
If Xn has a binomial distribution� then

lim
n��P

�
Xn � E�Xn�

D�Xn�
� �

�
�

p
��

Z
��

exp

��t�

�

�
dt� �����c�

This means that� if n is large� the binomial distribution can be well approximated by a normal distri�
bution �see ������� p� ���� with parameters �X � E�Xn� and �� � D��Xn�� if p or � p are not too
small� The approximation is the more accurate the closer p is to ��� and the larger n is� but acceptable if
np � � and n�� p� � � hold� For very small p or � p� the approximation by the Poisson distribution
�see ������ in �������� is useful�

�� Recursion Formula
The following recursion formula is recommended for practical calculations with the binomial distribu�
tion�

W n
p �k � � �

n� k

k � 
� p
q
�W n

p �k�� �����d�

�� Sum of Binomially Distributed RandomVariables
If Xn and Xm are both binomially distributed random variables with parameters n� p and m� p� then
the random variable X � Xn � Xm is also binomially distributed with parameters n � m� p�
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Fig ���a�b�c represents the distributions of three binomially distributed random variables with pa�
rameters n � �� p � ���� ����� and ��� Since the binomial coe�cients are symmetric� the distribution
is symmetric for p � q � ���� and the farther p is from ��� the less symmetric the distribution is�

�������� Hypergeometric Distribution
Just as with the binomial distribution� we suppose that we have a two�stage population with N ele�
ments� i�e�� the population we consider has two classes of elements� One class has M elements with a
property A� the other one has N �M elements which do not have the property A� In contrast to the
case of binomial distribution� we do not replace the chosen ball of the urn model�
The probability that among the n chosen balls there are k black ones is

P �X � k� � W n
M�N�k� �

�
M

k

��
N �M

n� k

�
�
N

n

� with �����a�

� � k � n� k �M� n� k � N �M� �����b�

If also n �M and n � N �M hold� then the random variable X with the distribution �����a� is said
to be hypergeometrically distributed�
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�� Expected Value and Variance of the Hypergeometric Distribution
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�� Recursion Formula

W n
M�N�k � � �

�n� k��M � k�

�k � ��N �M � n � k � �
W n

M�N�k�� �����c�
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In Fig ���a�b�c we represent three hypergeometric distributions for the cases N � ��� M � ���
�� and �� for n � �� These cases correspond to the cases p � ���� ����� and �� of Fig ���a�b�c�
There is no signi�cant di�erence between the binomial and hypergeometric distributions in these ex�
amples� If also M and N �M are much larger than n� then the hypergeometric distribution can be
well approximated by a binomial one with parameters as in �������
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�������� Poisson Distribution

If the possible values of a random variable X are the non�negative integers with probabilities

P �X � k� �
�k

k$
e� �k � �� � �� � � � � � � ��� ������

then it has a Poisson distribution with parameter ��

�� Expected Value and Variance of the Poisson Distribution

E�X� � �� �����a� D��X� � �� �����b�

�� Sum of Independent Poisson Distributed RandomVariables
If X� and X� are independent Poisson distributed random variables with parameters �� and ��� then
the random variable X � X� � X� also has a Poisson distribution with parameter � � �� � ���

�� Recursion Formula

P

�
k � 

�

�
�

�

k � 
P

�
k

�

�
� �����c�

�� Connection between Poisson and Binomial Distribution
We can get the Poisson distribution as a limit of binomial distributions with parameters n and p if
n�� and p �p �� changes with n so that np � � � const� i�e�� the Poisson distribution is a good
approximation for a binomial distribution for large n and small p with � � np� In practice� we use it if
p � ���� and n 	 ���p hold� because the calculations are easier with a Poisson distribution�

Table ����� p� ���� contains numerical values for the Poisson distribution� Fig ���a�b�c repre�
sents three Poisson distributions with � � np � ���� ��� and ���� i�e�� with parameters corresponding
to Figs ��� and ����

�� Application
The number of independently occurring point�like discontinuities in a continuous medium can usually
be described by a Poisson distribution� e�g�� number of clients arriving in a store during a certain time
interval� number of misprints in a book� etc�
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������ ContinuousDistributions

�������� Normal Distribution

�� Distribution Function and Density Function
A random variable X has a normal distribution if its distribution function is

P �X � x� � F �x� �


�
p

��

xZ
��

e�
�t����
��� dt� ������

Then it is also called a normal variable� and the distribution is called a ��� �� normal distribution� The
function

f�t� �


�
p

��
e�

�t����
��� �����

is the density function of the normal distribution� It takes its maximum at t � � and it has in�ection
points at �� � �see ������� p� ��� and Fig ���a��

f(t)

0 t�� (− � (+

a�

�(t)

t0 x

&(x)

b�

Figure ���

�� Expected Value and Variance
The parameters � and �� of the normal distribution are its expected value and variance� respectively�
i�e�

E�X� �


�
p

��

��Z
��

xe�
�x����
��� dx � �� �����a�

D��X� � E �X � ���! �


�
p

��

��Z
��

�x� ���e�
�x����
��� dx � ��� �����b�
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If the normal random variables X� and X� are independent with parameters ��� �� and ��� ��� resp��
then the random variable X � k�X� �k�X� �k�� k� real constants� also has a normal distribution with

parameters � � k��� � k���� � �
q
k�

���� � k�
�����

If we perform the substitution  �
t� �

�
in ������� then the calculation of the substitution values of

the distribution function of any normal distribution is reduced to the calculation of the substitution
values of the distribution function of the ��� � normal distribution� which is called the standard normal
distribution� Consequently� the probability P �a � X � b� of a normal variable can be expressed by
the distribution function ��x� of the standard normal distribution�

P �a � X � b� � �

�
b� �

�

�
� �

�
a� �

�

�
� ������

�������� StandardNormal Distribution� Gaussian Error Function

�� Distribution Function and Density Function
We get from ������ with � � � and �� �  the distribution function

P �X � x� � ��x� �
p
��

xZ
��

e�
t�

� dt �

xZ
��

��t� dt �����a�

of the so�called standard normal distribution� Its density function is

��t� �
p
��

e�
t�

� � �����b�

it is called the Gaussian error curve �Fig ���b��
The values of the distribution function ��x� of the ��� � normal distribution are given inTable �����
p� ��� Only the values for the positive arguments x are given� while we get the values for the negative
arguments from the relation

���x� � � ��x�� ������

�� Probability Integral
The integral ��x� is also called the probability integral or Gaussian error integral� We can also �nd in
the literature the following de�nitions�

���x� �
p
��

xZ
�

e�
t�

� dt � ��x�� 

�
� �����a� erf �x� �

�p
�

xZ
�

e�t
�

dt � � � ���
p

�x�� �����b�

erf denotes the error function�

�������� Logarithmic Normal Distribution

�� Density Function and Distribution Function
The continuous random variable X has a logarithmic normal distribution� or lognormal distribution
with parameters �L and ��L if it can take all positive values� and if the random variable Y � de�ned by

Y � logX� ������

has a normal distribution with parameters �L and ��L� Consequently� the random variable X has the
density function

f�t� �

�����
� for t � ��

log e

t�L
p

��
exp

�
��log t� �L��

���L

�
for t � ��

������
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and the distribution function

F �x� �

�������
� for x � ��



�L
p

��

log xZ
��

exp

�
��t� �L��

���L

�
dt for x � ��

������

We can use either the natural or the decimal logarithm in practical applications�

�� Expected Value and Variance
Using the natural logarithm we get the expected value and variance of the lognormal distribution�

� � exp

�
�L �

��L
�

�
� �� �

�
exp ��L � 

	
exp

�
��L � ��L

	
� ������

�� Remarks
a� The density function of the lognormal distribution is continuous everywhere and it has positive
values only for positive arguments� Fig ��� shows the density functions of lognormal distributions
for di�erent �L and �L� Here we used the natural logarithm�

b�Here the values �L and ��L are not the expected value and variance of the lognormal random variable
itself� but of the variable Y � logX�

c� The values of the distribution function F �x� of the lognormal distribution can be calculated by the
distribution function ��x� of the standard normal distribution �see �����a��� in the following way�

F �x� � �

�
log x� �L

�L

�
� �����

d� The lognormal distribution is often applied in lifetime analysis of economical� technical� and biolog�
ical processes�

e� The normal distribution can be used in additive superposition of a large number of independent ran�
dom variables� and the lognormal distribution is used for multiplicative superposition of a large number
of independent random variables�
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�������� Exponential Distribution

�� Density Function and Distribution Function
A continuous random variable X has an exponential distribution with parameter � �� � �� if its density
function is �Fig ����

f�t� �

�
� for t � �
�e�t for t 	 ��

������
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consequently� the distribution function is

F �x� �

xZ
��

f�t�dt �

�
� for x � ��
� e�x for x 	 ��

������

�� Expected Value and Variance

� �


�
� �� �



��
� ������

Usually� we can describe the following quantities by an exponential distribution� Length of phone calls�
lifetime of radioactive particles� working time of a machine between two stops in certain processes�
lifetime of light�bulbs or certain building elements�

�������� Weibull Distribution

�� Density Function and Distribution Function
The continuous random variable X has a Weibull distribution with parameters � and � �� � �� � � ���
if its density function is

f�t� �

�������
� for t � ��

�

�

�
t

�

����
exp

�
�
�

t

�

��
for t 	 �

������

and so its distribution function is

F �x� �

�����
� for x � ��

� exp

�
�
�
x

�

��
for x 	 ��

������

�� Expected Value and Variance

� � ��
�

 �


�

�
� �� � ��



�
�

 �
�

�

�
� � �

�
 �



�

��
� ������

Here � �x� denotes the gamma function �see ������ �� p� ����

� �x� �

�Z
�

tx��e�t dt for x � �� ������

In ������� � is the shape parameter and � is the scale parameter �Fig ���� Fig ��
��
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Remarks�

a� The Weibull distribution becomes an exponential distribution for � �  with � �


�
�

b� The Weibull distribution also has a three�parameter form if we introduce a position parameter ��
Then the distribution function is�

F �x� � � exp

�
�
�
x� �

�

��
� ������

c� The Weibull distribution is especially useful in life expectancy theory� because� e�g�� it describes the
functional lifetime of building elements with great �exibility�

�������� �� �Chi�Square� Distribution

�� Density Function and Distribution Function
Let X�� X��� � � � Xn be n independent ��� � normal random variables� Then the distribution of the
random variable

�� � X�
� � X�

� � � � �� Xn
� ������

is called the �� distribution with n degrees of freedom� Its distribution function is denoted by F ��x��
and the corresponding density function by f ��t��

f ��t� �

�������


�n���
�
n

�

�tn� � e�
t
� for �t � ��

� for t � ��

����a�

F ��x� � P ��� � x� �


�n���
�
n

�

� xZ
�

t
n
�
� e�

t
� dt �x � ��� ����b�

�� Expected Value and Variance

E���� � n� �����a� D����� � �n� �����b�

�� Sum of Independent RandomVariables
If X� and X� are independent random variables both having a �� distribution with n and m degrees of
freedom� then the random variable X � X� �X� has a �� distribution with n�m degrees of freedom�

�� Sum of Independent Normal RandomVariables
If X�� X��� � � � Xn are independent� ��� �� normal random variables� then

X �
nX
i��

Xi
� has the density function f�t� �



��
f �
�

t

��

�
� ������

X �


n

nX
i��

Xi
� has the density function f�t� �

n

��
f �
�
nt

��

�
� ������

X �

vuut 

n

nX
i��

Xi
� has the density function f�t� �

�t

��
f �

�
t�

��

�
� ������

�� Quantile
For the quantile �see �������� �� p� ���� ����m of the �� distribution with m degrees of freedom �Fig

������

P �X � ����m� � �� ������
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Quantiles of the �� distribution can be found in Table ����� p� ����

�������	 Fisher F Distribution

�� Density Function and Distribution Function
If X� and X� are independent random variables both having �� distribution with m� and m� degrees
of freedom� then the distribution of the random variable

Fm��m� �
X�

m�

&
X�

m�

������

is a Fisher distribution or F distribution with m�� m� degrees of freedom�

fF �t� �

�������������
�
m�

�

�m����m�

�

�m��� �
�
m�

�
�

m�

�

�
�
�
m�

�

�
�
�
m�

�

� t
m�

�
� �

m�

�
t �

m�

�

�m�

�
� m�

�

for t � ��

� for t � ��

�����a�

For x � � we have FF �x� � P �Fm��m� � x� � �� for x � ��

FF �x� � P �Fm��m� � x�

�
�
m�

�

�m����m�

�

�m��� �
�
m�

�
�

m�

�

�
�
�
m�

�

�
�
�
m�

�

� xZ
�

�
t
m�

�
� 

�
dt�

m�

�
t �

m�

�

�m�

�
� m�

�

�����b�

�� Expected Value and Variance

E�Fm��m�� �
m�

m� � �
� �����a� D��Fm��m�� �

�m�
��m� � m� � ��

m��m� � ����m� � ��
� �����b�

�� Quantile
The quantiles �see �������� �� p� ���� t��m��m� of the Fisher distribution �Fig ����� can be found in
Table ���
� p� ����

�������� Student tDistribution

�� Density Function and Distribution Function
If X is a ��� � normal random variable and Y is a random variable independent from X and it has a
�� distribution with m � n�  degrees of freedom� then the distribution of the random variable

T �
Xq
Y�m

������
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is called a Student t distribution or t distribution with m degrees of freedom� The distribution function
is denoted by FS�x�� and the corresponding density function by fS�t��

fS�t� �
p
m�

�
�
m � 

�

�
�
�
m

�

� �
 �

t�

m

�m��
�

� ����a�

FS�x� � P �T � x� �

xZ
��

fS�t� dt �
p
m�

�
�
m � 

�

�
�
�
m

�

� xZ
��

dt�
 �

t�

m

�m��
�

� ����b�
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�� Expected Value and Variance

E�T � � � �m � �� �����a� D��T � �
m

m� �
�m � ��� �����b�

�� Quantile
The quantiles t��m and t����m of the t distribution �Fig ����a�b�� for which

P �T � t��m� � � �����a� or P � jT j � t����m� � � �����b�

holds� are given in Table ����� p� ����
The Student t distribution� introduced by Gosset under the name Student� is used in the case of sam�
ples with small sample size n� when only estimations can be given for the mean and for the standard
deviation� The standard deviation �����b� nolonger depends on the deviation of the population from
where the sample is taken�

������ Law of LargeNumbers� LimitTheorems
The law of large numbers gives a relation between the probability P �A� of a random event A and its
relative frequency nA�n with a large number of repeated experiments�

�� Law of Large Numbers of Bernoulli
The following inequality holds for arbitrary given numbers � � � and � � �

P
� ����nAn � P �A�

���� � �
�
	 � �� �����a� if n 	 

����
� �����b�

For other similar theorems see  ���!�

How many times should we roll a not necessarily fair die if the relative frequency of the � should be
closer to its probability than �� with a probability of at least �� & (
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Now� � � ��� and � � ����� so ���� � � � ���� and according to the law of large numbers of Bernoulli
n 	 � ��� must hold� This is an extremely large number� We can reduce n� if we know the distribution
function�

�� Central Limit Theorem of Lindeberg�Levy
If the independent random variables X��� � � � Xn all have the same distribution with an expected value
� and a variance ��� then the distribution of the random variable

Yn �



n

nX
i��

Xi � �

��
p
n

������

tends to the ��� � normal distribution for n�� i�e�� for its distribution function Fn�y� we get

lim
n��Fn�y� �

p
��

yZ
��

e�
t�

� dt� ������

If n � �� holds� then Fn�y� can be replaced by the ��� � normal distribution� Further limit theorems
can be found in  ���!�  ���!�

We take a sample of �� items from a production of resistors� We suppose that their actual resistance
values are independent and they have the same distribution with deviation �� � ��� The mean value
for these �� resistors is x � ��� )� In which domain is the true expected value � with a probability
of �� & (
We are looking for an � such that P �jX � �j � �� � ���� holds� We can suppose �see ������� that

the random variable Y �
X � �

��
p
n

has a ���� normal distribution� From P �jY j � �� � P ��� �
Y � �� � P �Y � �� � P �Y � ���� and from P �Y � ��� �  � P �Y � �� it follows that
P �jY j � �� � �P �Y � ���  � �����

So� P �Y � �� � ���� � ����� and fromTable ����� p� ��� we get � � ����� Since ��
p

�� � �����
we get with a �� & probability� j���� �j � ���� � ����� i�e�� ����� ) � � � ����� )�

������ Stochastic Processes and Stochastic Chains
Many processes occurring in nature and those being studied in engineering and economics can be real�
istically described only by time�dependent random variables�

The electric consumption of a city at a certain time t has a random �uctuation that is dependent
on the actual demand of the households and industry� The electric consumption can be considered
as a continuous random variable X� When the observation time t changes� electric consumption is a
continuous random variable at every moment� so it is a function of time�

The stochastic analysis of time�dependent random variables leads to the concept of stochastic pro�
cesses� which has a huge literature of its own �see� e�g��  ���!�  ���!�� Some introductory notions will
be given next�

�������� Basic Notions� Markov Chains

�� Stochastic Processes
A set of random variables depending on one parameter is called a stochastic process� The parameter�
in general� can be considered as time t� so the random variable can be denoted by Xt and the stochastic
process is given by the set

fXtjt � Tg� ������

The set of parameter values is called the parameter space T � the set of values of the random variables
is the state space Z�
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�� Stochastic Chains
If both the parameter space and the state space are discrete� i�e�� the state variable Xt and the param�
eter t can have only �nite or countably in�nite di�erent values� then the stochastic process is called a
stochastic chain� In this case the di�erent states and di�erent parameter values can be numbered�

Z � f� �� � � � � i� i � � � � � � g ������

T � ft�� t�� � � � � tm� tm��� � � �g with � � t� � t� � � � � � tm � tm�� � � � � � ������

The times t�� t�� � � � are not necessary equally spaced�

�� Markov Chains� Transition Probabilities
If the probability of the di�erent values of Xtm�� in a stochastic process depends only on the state at
time tm� then the process is called a Markov chain� The Markov property is de�ned precisely by the
requirement that

P �Xtm�� � im��jXt� � i�� Xt� � i�� � � � � Xtm � im� � P �Xtm�� � im��jXtm � im�

for all m � f�� � �� � � �g and for all i�� i�� � � � � im�� � Z� �����

Consider a Markov chain and times tm and tm��� The conditional probabilities

P �Xtm�� � jjXtm � i� � pij�tm� tm��� ����

are called the transition probabilities of the chain� The transition probability determines the probability
by which the system changes from the state Xtm � i at tm into the state Xtm�� � j at tm���

If the state space of a Markov chain is �nite� i�e�� Z � f� �� � � � � Ng� then the transition probabilities
pij�t�� t�� between the states at times t� and t� can be represented by a quadratic matrix P�t�� t��� by
the so�called transition matrix�

P�t�� t�� �

�BBBB�
p���t�� t�� p���t�� t�� � � � p�N�t�� t��
p���t�� t�� p���t�� t�� � � � p�N�t�� t��

���
pN��t�� t�� pN��t�� t�� � � � pNN�t�� t��

�CCCCA � �����

The times t� and t� are not necessarily consecutive�

�� Time�Homogeneous �Stationary	Markov Chains
If the transition probabilities of a Markov chain ���� do not depend on time� i�e��

pij�tm� tm��� � pij� �����

then the Markov chain is called time�homogeneous or stationary� A stationary Markov chain with a
�nite state space Z � f� �� � � � � Ng has the transition matrix

P �

�BBB�
p�� p�� � � � p�N
p�� p�� � � � p�N
���

pN� pN� � � � pNN

�CCCA � ����a�

where

a� pij 	 � for all i� j and ����b�

b�
NX
j��

pij �  for all i� ����c�

Being independent of time pij gives the transition probability from the state i into the state j during
time unit�

The number of busy lines in a telephone exchange can be modeled by a stationary Markov chain�
For the sake of simplicity we suppose that we have only two lines� Hence� the states are i � �� � � � Let
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the time unit be� e�g��  minute� Suppose the transition matrix pij is�

�pij� �

�� ��� ��� ���
��� ��� ���
�� ��� ���

�A �i� j � �� � ���

In the matrix �pij� the �rst row corresponds to the state i � �� The matrix element p�� � �� � �second
row� third column� shows the probability that two lines are busy at time tm given that one was busy at
tm���

Remark� Every quadratic matrix P � �pij� of size N � N satisfying the properties ����b� and
����c� is called a stochastic matrix� Their row vectors are called stochastic vectors�

Although the transition probabilities of a stationary Markov chain do not depend on time� the distri�
bution of the random variable Xt is given at a given time by the probabilities

P �Xt � i� � pi�t� �i � � �� � � � � N� ����a� with
NX
i��

pi�t� �  ����b�

since the process is in one of the states with probability one at any time t� Probabilities ����a� can
be written in the form of a probability vector

p �
�
p��t�� p��t�� � � � � pN�t�T

	
� �����

The probability vector p is a stochastic vector� It determines the distribution of the states of a station�
ary Markov chain at time period t�

�� Probability Vector and Transition Matrix

Let the transition matrixP of a stationary Markov chain be given �according to ����a�b�c��� Starting
with the probability distribution at time period t determine the probability distribution at t � � that
is� calculate p�t � � from P and p�t��

p�t � � � p�t� �P �����

and furthermore

p�t � k� � p�t� �Pk� �����

Remarks�

� For t � � it follows from ����� that

p�k� � p���Pk� �����

that is� a stationary Markov chain is uniquely determined by the initial distribution p��� and the tran�
sition matrix P�

� If matrices A and B are stochastic matrices� then C � AB is a stochastic matrix� as well� Conse�
quently� if P is a stochastic matrix� then the powers Pk are also stochastic matrices�

A particle changes its position �state� Xt � � x � �� along a line in time periods t � � �� �� � � �
according to the following rules�
a� If the particle is at x � �� �� �� then it moves to the right by a unit during the next time unit with
probability p � ��� and to the left with probability � p � ����
b� At points x �  and x � � the particle is absorbed� i�e�� it stays there with probability �
c� At time t � � the position of the particle is x � ��
Determine the probability distribution p��� at time period t � ��

By ����� the probability distribution p��� � p��� �P� holds with p��� � ��� � �� �� �� and with the
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transition matrix

P �

�BBBB�
 � � � �

��� � ��� � �
� ��� � ��� �
� � ��� � ���
� � � � 

�CCCCA � We get P� �

�BBBB�
 � � � �

����� � ����� � ����
���� ���� � ����� �����
����� � ���� � �����

� � � � 

�CCCCA �

and �nally p��� � ������� �� ������ �� ����� �

�������� Poisson Process

�� The Poisson Process
In the case of a stochastic chain both the state space Z and the parameter space T are discrete� that is�
the stochastic process is observed only at discrete time periods t�� t�� t�� � � � � Now� we study a process
with continuous parameter space T � and it is called a Poisson process�
� Mathematical Formulation Mathematical formulation of the Poisson process�

a� Let the random variable Xt be the number of signals in the time interval  ��t��

b� let the probability pX�t� � P �Xt � x� be the probability of x signals during the time interval  �� t��

Additionally� the following assumptions are required� which hold in the process of radioactive decay
and many other random processes �at least approximately��

c� The probablity P �Xt � x� of x signals in a time interval of length t depends only on x and t� and
does not depend on the position of the time interval on the time axis�

d� The numbers of signals in disjoint time intervals are independent random variables�

e� The probability to get at least one signal in a very short interval of length %t is approximately
proportional to this length� The proportionality factor is denoted by � �� � ���
� Distribution Function By properties a��e� the distribution of the random variable Xt is deter�
mined� We get�

P �Xt � x� �
��t�x

x $
e�t� ������

where � � �t is the expected value and �� � �t the variance�
� Remarks

� From ������ we get the Poisson distribution as a special case for t �  �see �������� p������

� To interpret the parameter � or to estimate its value from observed data the following properties
are useful�

� � is the average number of signals during a time unit�

� 

�
is the average distance �in time� between two signals in a Poisson process�

� The Poisson process can be interpreted as the random motion of a particle in the state space Z �
f�� � �� � � �g� The particle starts in the state �� and at every sign it jumps from state i into the next
state i � � Furthermore� for a small interval %t the transition probability pi�i�� from state i into the
state i �  should be�

pi�i�� 
 �%t� �����

� is called the transition rate�
� Examples of Poisson Processes

Radioactive decay is a typical example of a Poisson process� The number of decays �signals� are
registered with a counter and marked on the time axis� The observation interval should be relatively
small with respect to the half�period of the radiating matter�

Consider the number of calls registered in a telephone exchange until time t and calculate� e�g�� the
probability that at most x calls are registered until time t with the assumption that the average number
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of calls during a time unit is ��

In reliability testing� the number of failures of a reparable system is counted during a period of duty�

In queuing theory we consider the number of customers arriving at the counter of a department
store� to a booking o�ce or to a gasoline station�

�� Birth and Death Processes
One of the generalizations of the Poisson process is the following� We assume that the transition rate �i
in ����� depends on the state i� Another generalization is when the transition from state i into state
i� is allowed� The corresponding transition rate is denoted by �i� The state i can be considered� e�g��
as the number of individuals in a population� It increases by one at transition from state i into state
i � � and decreases by one at transition from i into i � � These stochastic processes are called birth
and death processes� Let p�Xt � i� � pi�t� be the probability that the process is in state i at time t�
Analogously to the Poisson process�

from i�  into i � pi���i 
 �i��%t�

from i �  into i � pi���i 
 �i��%t� ������

from i into i � pi�i 
 � ��i � �i�%t�

Remark� The Poisson process is a pure birth process with a constant transition rate�

�� Queuing
The simplest queuing system is considered as a counter where customers are served one by one in the
order of their arrival time� The waiting room is su�ciently large� so no one needs to leave because it
becomes full� The customers arrive according to a Poisson process� that is� the interarrival time between
two clients is exponentially distributed with parameter �� and these interarrival times are independent�
In many cases also the serving time has an exponential distribution with parameter �� The parameters
� and � have the following meanings�

� �� average number of arrivals per time unit�

� 

�
� average interarrival time�

� �� average number of served clients per time unit�

� 

�
� average serving time�

Remarks�

� If the number of clients standing in the queue is considered as the state of this stochastic process� then
the above simple queuing model is a birth and death process with constant birth rate � and constant
death rate ��

� The above queuing model can be modi�ed and generalized in many di�erent ways� e�g�� there can be
several counters where the clients are served and�or the arrival times and serving times follow di�erent
distributions �see  ���!�  ���!��

���� Mathematical Statistics
Mathematical statistics provides an application of probability theory for given mass phenomena� Its
theorems allow us to make statements with certain probability about properties of given sets� which
statements are based on the results of some experiments whose number should be kept low for econom�
ical reasons�

������ Statistic Function or Sample Function
�������� Population� Sample� RandomVector
�� Population
The Population is the set of all elements of interest in a particular study� We can consider any set of
things having the same property in a certain sense� e�g�� every article of a certain production process
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or all the values of a measuring sequence occurring in a permanent repetition of an experiment� The
number N of the elements of a population can be very large� even practically in�nite� We often use the
word population to denote also the set of numerical values assigned to the elements�

�� Sample

In order not to check the total population about the considered property� data are collected only from
a subset� from a so�called sample of size n �n � N�� We talk about a random choice if every element of
the population has the same chance of being chosen� A random sample of size n from a �nite population
of size N is a sample selected such that each possible sample of size n has the same probability of being
selected� A random sample from an in�nite population is a sample selected such that each element is
selected independently� The random choice can be made by so�called random numbers� We often use
the word sample for the set of values assigned to the selected elements�

�� RandomChoice with RandomNumbers

It often happens that a random selection is physically impossible on the spot� e�g�� in the case of piled
material� like concrete stabs� Then we apply random numbers for a random selection �seeTable �����
p� �����

Most calculators can generate uniformly distributed random numbers from the interval  �� !� Pushing
the button RAN or RAND we get a number between ���� � � � � and ���� � � � �� The digits after the
decimal point form a sequence of random numbers�

We often take random numbers from tables� Two�digit random numbers are given in Table �����
p� ���� If we need larger ones� then we can compose several�digit numbers from them by writing them
after each other�

A random sample is to be examined from a transport of �� piled pipes� The sample size is supposed
to be �� We number the pipes from �� to ��� A two�digit table of random numbers is applied to select
the numbers� We �x the way we choose the numbers� e�g�� horizontally� vertically or diagonally� If
during this process random numbers occur repeatedly� or they are larger than ��� then they are simply
omitted� The pipes corresponding to the chosen random numbers are the elements of the sample� If we
have a several�digit table of random numbers� we can decompose them into two�digit numbers�

�� RandomVector

A random variable X can be characterized by its distribution function� by its parameters� where the
distribution function itself is determined completely by the properties of the population� These are
unknown at the beginning of a statistical investigation� so we want to collect as much information as
possible with the help of samples� Usually we do not restrict our investigation to one sample but we
apply more samples �with same size n if it is possible� for practical reasons�� The elements of a sam�
ple are chosen randomly� so the realizations take their values randomly� i�e�� the �rst value of the �rst
sample is usually di�erent from the �rst value of the second sample� Consequently� the �rst value of
a sample is a random variable itself denoted by X�� Analogously� we can introduce the random vari�
ables X�� X�� � � �Xn for the second� third�� � � � n�th sample values� and they are called sample variables�
Together� they form the random vector

X � �X�� X�� � � � � Xn��

Every sample of size n with elements xi can be considered as a vector

x � �x�� x�� � � � � xn��

as a realization of the random vector�

�������� Statistic Function or Sample Function

Since the samples are di�erent from each other� their arithmetic means x are also di�erent� We can
consider them as realizations of a new random variable denoted by X which depends on the sample
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variables X�� X�� � � � � Xn�

� sample� x��� x��� � � � x�n with mean x��
�� sample� x��� x��� � � � x�n with mean x��

���
���

���
���

���
���

m�th sample� xm�� xm�� � � � xnn with mean xm�

������

We denote the realization of the j�th sample variable in the i�th sample by xij �i � � �� � � � � m� j �
� �� � � � � n��
A function of the random vector X � �X�� X�� � � � � Xn� is again a random variable� and it is called a
statistic or sample function� The most important sample functions are the mean� variance� median and
range�

�� Mean

The mean X of the random variables Xi is�

X �


n

nX
i��

Xi� �����a�

The mean x of the sample �x�� x�� � � � � xn� is

x �


n

nX
i��

xi� �����b�

It is often useful to introduce an estimate x� in the calculations of the mean� It can be chosen arbitrarily
but possibly close to the mean x� If� e�g�� xi� �i � � �� � � �� are several�digit numbers in a long measuring
sequence� and they di�er only in the last few digits� it is simpler to do the calculations only with the
smaller numbers

zi � xi � x�� �����c�

Then we get

x � x� �


n

nX
i��

zi � x� � z� �����d�

�� Variance

The variance S� of the random variables Xi with mean X is de�ned by�

S� �


n� 

nX
i��

�Xi �X��� �����a�

The realization of the variance with the help of the sample �x�� x�� � � � � xn� is

s� �


n� 

nX
i��

�xi � x��� �����b�

It is proven that in the estimation of the variance of the original population we get a more accurate
estimation by dividing n�  than by dividing n� With the estimated value x� we get

s� �

nX
i��

zi
� � z

nX
i��

zi

n� 
�

nX
i��

zi
� � n�x� x��

�

n� 
� �����c�

For x � x� the correction is z
nX
i��

zi � � because z � � holds�
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�� Median
Let the n elements of the sample be arranged in ascending �or descending� order� If n is odd� then the

median 'X is the value of the
n � 

�
�th item� if n is even� then the median is the average value of the

n

�
�th and

�
n

�
� 
�

�th items� the two items on the middle�

The median 'x in a particular sample �x�� x�� � � � � xn�� whose elements are arranged in ascending �or
descending� order� is

'x �

��� xm��� if n � �m � �
xm�� � xm

�
� if n � �m�

������

�� Range
R � max

i
Xi �min

i
Xi �i � � �� � � � � n�� �����a�

The range R of a particular sample �x�� x�� � � � � xn� is

R � xmax � xmin� �����b�

Every particular realization of a sample function is denoted by a lowercase letter� except the range R�
i�e�� for a particular sample �x�� x�� � � � � xn� we calculate the particular values x� s�� 'x� and R�

i Xi i Xi i Xi

 �� � ���  ���
� ��� � ���� � ���
� ��� � �� � ���
� ���� � �� � ���
� ���� � ��� � ��

We take a sample of � loudspeakers from a running pro�
duction of loudspeakers� The interesting quantity X is the
air gap induction B� measured in Tesla� We get from these
data�
x � ����� or x � ����� with x� � ����
s� � ����� � ��� or s� � ����� � ��� with x� � ����
'x � ���� R � �����

������ Descriptive Statistics

�������� Statistical Summarization andAnalysis of Given Data
In order to describe statistically the properties of certain elements� we characterize them by a random
variable X� Usually� the n measured or observed values xi of the property X form the starting point of
a statistical investigation� which is made to �nd some parameters of the distribution or the distribution
itself of X�
Every measured sequence of size n can be considered as a random sample from an in�nite population� if
the experiment or the measurement could be repeated in�nitely many times under the same conditions�
Since the size n of a measuring sequence can be very large� we proceed as follows�

� Protocol� Prime Notation The measured or observed values xi are recorded in a protocol list�

� Intervals or Classes We consider an interval� which contains the n data xi �i � � �� � � � � n� of
the sample� and divide it into k subintervals� so�called classes or class intervals� Usually ���� classes
are selected with equal length h� and their boundaries are called class boundaries� The endpoints of
the total interval are not uniquely de�ned� in general� we choose them approximately symmetricly with
respect to the smallest and largest value of the sample� and class boundaries should be di�erent from
any sample value�

� Frequencies and Frequency Distribution The absolute frequencies hj �j � � �� � � � � k� are the
numbers hj of data �occupancy number� belonging to a given interval %xj � The ratios hj�n �in &�
are called relative frequencies� If the values hj�n are represented over the classes as rectangles� then
we get a graphical representation of the given frequency distribution� and this representation is called a
histogram �Fig ����a�� The values hj�n can be considered as the empirical values of the probabilities
or the density function f�x��
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� Cumulative Frequency Adding the absolute or relative frequencies� we get the cumulative abso�
lute or relative frequency

Table ��� Frequency table

Class hj hj�n�&� Fj �&�

�� � ��  ��� ���
� � ��  ��� ��
� � � � �� ���

 � �� � ��� ���
� � �� � ��� ����
� � �� �� ��� ����
� � �� �� ���� ����
� � �� �� ��� ����
� � ��� � ��� ����
�� � ��� � ��� ����
�� � ��� � ��� ����

Fj �
h� � h� � � � �� hj

n
& �j � � �� � � � � k�� ������

If we represent the value Fj at the upper boundary and
draw a horizontal line until the next boundary� then we
get a graphical representation of the empirical distribu�
tion function� which can be considered as an approxi�
mation of the unknown underlying distribution function
F �x� �Fig ����b��

Suppose we perform n � �� measurements during a
study� The results spread in the interval from �� to ���� so
it is reasonable to divide this interval into k �  classes
with a length h � ��� We get the frequency table Table
����

hj
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a) b)

Figure ���

�������� Statistical Parameters
After summarizing and analyzing the data of the sample as given in ������� p� ���� we can approximate
the parameters of the random variable by the following parameters�

�� Mean
If we use directly the data of the sample� then the sample mean is

x �


n

nX
i��

xi� �����a�

If we use the means xj and frequencies hj of the classes� then we get

x �


n

kX
j��

hjxj� �����b�

�� Variance
If we use directly the data of the sample� then the sample variance is

s� �


n� 

nX
i��

�xi � x��� �����a�
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If we use the means xj and frequencies hj of the classes� then we get

s� �


n� 

kX
j��

hj�xj � x��� �����b�

The class midpoint uj �the midpoint of the corresponding interval� is also often used instead of xj�

�� Median
The median 'x of a distribution is de�ned by

P �X � 'x� �


�
� ����a�

The median may not be a uniquely determined point� The median of a sample is

'x �

���
xm��� if n � �m � �
xm�� � xm

�
� if n � �m�

����b�

�� Range
R � xmax � xmin� ������

�� Mode or Modal Value
is the data value that occurs with greatest frequency� It is denoted by D�

������ ImportantTests

One of the fundamental problems of mathematical statistics is to draw conclusions about the popula�
tion from the sample� There are two types of the most important questions�

� The type of the distribution is known� and we want to get some estimate for its parameters� A dis�
tribution can be characterized mostly quite well by the parameters � and �� �here � is the exact value
of the expected value� and �� is the exact variance�� consequently one of the most important questions
is how good an estimation can we give for them� based on the samples�

� Some hypotheses are known about these parameters� and we want to check if they are true� The
most often occurring questions are�

a� Is the expected value equal to a given number or not(

b� Are the expected values for two populations equal or not(

c� Does the distribution of the random variable with � and �� �t a given distribution or not( etc�

Because in observations and measurements� the normal distribution has a very important role� we dis�
cuss the goodness of �t test for a normal distribution� The basic idea can be used for other distributions�
too�

�������� Goodness of Fit Test for a Normal Distribution
There are di�erent tests in mathematical statistics to decide if the data of a sample come from a normal
distribution� We discuss a graphical one based on normal probability paper� and a numerical one based
on the use of the chi�square distribution �	�� test
��

�� Goodness of Fit Test with Probability Paper
a� Principle of Probability Paper The x�axis in a right�angled coordinate system is scaled equidis�
tantly� while the y�axis is scaled on the following way� It is divided equidistantly with respect to Z� but
scaled by

y � ��Z� �
p
��

ZZ
��

e�
t�

� dt� ������
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If a random variable X has a normal distribution with expected value � and variance ��� then for its
distribution function �see �������� p� ����

F �x� � �
�
x� �

�

�
� ��Z� �����a�

holds� i�e��

Z �
x� �

�
�����b�

Z x
� �
 � � �
� �� �

�����c�

must be valid� and so there is a linear relation between x and Z and �����c��

b� Application of Probability Paper
We consider the data of the sample� we cal�
culate the cumulative relative frequencies ac�
cording to ������� and sketch these onto the
probability paper as the ordinates of the points
with abscissae the upper class boundaries� If
these points are approximately on a straight line�
�with small deviations� then the random variable
can be considered as a normal random variable
�Fig ������
As we see from Fig ����� the distribution to
which the data of Table ��� belong� can be con�
sidered as a normal distribution� We can also see
that � 
 ��� � 
 ���� �from the x values be�
longing to the � and � values of Z��

Remark� The values Fi of the relative cumula�
tive frequencies can be plotted more easily on the

70 110 150 190 230 270 x
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Figure ���

probability paper� if its scaling is equidistant with respect to y� which means a non�equidistant scaling
for the ordinates�

�� �� Test for Goodness of Fit
We want to check if a random variable X can be considered normal� We divide the range of X into k
classes and we denote the upper limit of the j�th class �j � � �� � � � � k� by �j� Let pj be the 	theoretical

probability that X is in the j�th class� i�e��

pj � F ��j�� F ��j���� �����a�

where F �X� is the distribution function of X �j � � �� � � � � k � �� is the lower limit of the �rst class with
F ���� � ��� Because X is supposed to be normal� then

F ��j� � �

�
�j � �

�

�
�����b�

must hold� where ��x� is the distribution function of the standard normal distribution �see ��������
p� ����� The parameters � and �� of the population are usually not known� We use x and s� as an ap�
proximation of them� We have to make the decomposition of the range so that the expected frequencies
for every class should exceed �� i�e�� if the size of the sample is n� then npj 	 ��
Now� we consider the sample �x�� x�� � � � � xn� of size n and calculate the corresponding frequencies hj
�for the classes given above�� Then the random variable

��S �
kX
j��

�hj � npj�
�

npj
�����c�

has approximately a �� distribution with m � k� degrees of freedom if we know � and ��� m � k��
if we estimated one of them from the sample� and m � k � � if we estimated both by x and s��
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Now� we determine a level �� which is called the signi�cance level� and determine the quantile ����k�i �i

depends on the number of unknown parameters� of the corresponding �� distribution� e�g�� fromTable
����� p� ���� This means P ��� 	 ����k�i� � � holds� Then we compare the value ��S we got in

�����c� and this quantile� and if

��S � ����k�i �����d�

holds� we accept the assumption that the sample came from a normal distribution� This test is called
the �� test for goodness of �t�

The following �� test is based on the example on p� ���� The sample size is n � ��� with the
mean x � ����� and variance s� � ������ These values are used as approximations of the unknown
parameters � and �� of the population� We can determine the test statistic ��S according to �����c�
after performing the calculations according to �����a� and �����b�� as shown inTable ���� p� ����

Table ��� �� test

�j hj
�j � �

�
�

�
�j � �

�

�
pj npj

�hj � npj�
�

npj

��
��

�
��



�
�

 ��!��" �

�����
�����
���
����

�����
������
�����
�����

�����
������
������
������

������
������
�����
������

 ��!��" ������ �������

�� � ����� ������ ����� ������ �����
�� �� ���� ������ ����� ������� ������
�� �� ���� ������ ���� ������� ������
�� �� ���� ����� ����� ����� �����
��� � ��� ������ ����� ������ ����
���
���

�
�

�
�

���
����

������
������

������
�����

������
�����

�
������ ������

��S � ������

It follows from the last column that ��S � ������� Because of the requirement npj 	 �� the number of
classes is reduced from k �  to k� � k�� � �� We calculated the theoretical frequencies npj with the
estimated values x and s� of the sample instead of � and �� of the population� so the degrees of freedom
of the corresponding �� distribution is reduced by �� The critical value is the quantile ����k������ For

� � ���� we get �������� � ��� fromTable ����� p� ���� so because of the inequality ��S � �������� there
is no contradiction to the assumption that the sample is from a population with a normal distribution�

�������� Distribution of the SampleMean

LetX be a continuous random variable� Suppose we can take arbitrarily many samples of size n from the
corresponding population� Then the sample mean is also a random variableX� and it is also continuous�

�� Con�dence Probability of the SampleMean
If X has a normal distribution with parameters � and ��� then X is also a normal random variable with
parameters � and ���n� i�e�� the density function f�x� of X is concentrated more around � than the
density function f�x� of the population� For any value � � ��

P � jX � �j � �� � ��
�
�

�

�
� � P � jX � �j � �� � ��

�
�
p
n

�

�
� � ������
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Table ��� Con�dence level
for the sample mean

n P

�
jX � �j � �

�
�

�
 ����� &
� ����� &

� ����� &
�� ����� &
�� ����� &

It follows from this that with increasing sample sizen� the probability
that the sample mean is a good approximation of � is also increasing�

We get for � �


�
� from ������ P

�
jX � �j � 

�
�
�

�

��
�



�

p
n
�
� � and for di�erent values of n we get the values listed

in Table ���� We see from Table ���� e�g�� that with a sample
size n � ��� the probability that the sample mean x di�ers from �

by less than �

�
� is ����� &�

�� SampleMean Distribution for Arbitrary Distribution of the Population
The random variable X has an approximately normal distribution with parameters � and ���n for any
distribution of the population with expected value � and variance ��� This fact is based on the central
limit theorem �see �������� p� �����

�������� Con�dence Limits for theMean

�� Con�dence Interval for theMean with a Known Variance ��

If X is a random variable with parameters � and ��� then according to �������� p� ���� X is approxi�
mately a normal random variable with parameters � and ���n� Then substitution of

Z �
X � �

�

p
n ������

yields a random variable Z which has approximately a standard normal distribution� therefore

P � jZj � �� �

�Z
��

��x� dx � ������ � ������

If the given signi�cance level is �� namely�

P � jZj � �� � � �� ������

is required� then � � ���� can be determined from ������� e�g�� from Table ����� p� ��� for the

standard normal distribution� From jZj � ���� and from ������ we get the relation

� � x� �p
n
����� ������

The values x � �p
n
���� in ������ are called con�dence limits for the expected value and the interval

between them is called a con�dence interval for the expected value � with a known �� and given signif�
icance level �� In other words� The expected value � is between the con�dence limits ������ with a
probability � ��

Remark� If the sample size is large enough� then we can use s� instead of �� in ������� The sample
size is considered to be large� if n � ��� but in practice� depending on the actual problem� it is consid�
ered to be su�ciently large if n � ��� If n is not large enough� then we have to apply the t distribution
to determine the con�dence limits as in �������

�� Con�dence Interval for the Expected Value with an Unknown Variance ��

If the variance �� of the population is unknown� then we replace it by the sample variance s� and instead
of ������ we get the random variable

T �
X � �

s

p
n � �����
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which has a t distribution �see �������� p� ���� with m � n�  degrees of freedom� Here n is the size
of the sample� If n is large� e�g�� n � �� holds� then T can be considered as a normal random variable
as Z in ������� We get for a given signi�cance level �

P � jT j � �� �

�Z
��

ft�x� dx � P

� jX � �j
s

p
n � �

�
� � �� ������

From ������ it follows that � � ���� n� � t����n��� where t����n�� is the quantile of the t distribution
�with n �  degrees of freedom� for the signi�cance level � �Table ����� p� ����� It follows from
jT j � t����n�� that

� � x� sp
n
t����n��� ������

The values x� sp
n
t����n�� are called the con�dence limits for the expected value � of the distribution of

the population with an unknown variance �� and with a given signi�cance level �� The interval between
these limits is the con�dence interval�

A sample contains the following � measured values� ������ ������ ������ ������ ������ ������ We get
from this x � ������ and s � ��������
What is the maximum deviation of the sample mean x from the expected value � of the population
distribution� if the signi�cance level � is given as � & or  & (
� � � ����� We read from Table ����� p� ���� that t����� � ����� and we get

jX � �j � ���� � ��������
p

� � ������� Thus� the sample mean x � ������ di�ers from the expected
value � by less than ������� with a probability �� &�

� � � ���� t����� � ����� jX � �j � ���� � ��������
p

� � ������� i�e�� the sample mean x di�ers from
� by less than ������� with a probability �� &�

�������� Con�dence Interval for the Variance
If the random variableX has a normal distribution with parameters � and ��� then the random variable

�� � �n� �
s�

��
������

has a �� distribution with m � n �  degrees of
freedom� where n is the sample size and s� is the
sample deviation� f ��x� denotes the density func�

tion of the �� distribution inFig ����� and we see
that

P ��� � ��u� � P ��� � ��o� �
�

�
� ������

Thus� using the quantiles of the �� distribution

α/2

0

1-α
α/2

xXo
2

Xu

2

fX
2(x)

Figure ���

�see Table ����� p� ���� we obtain that

��u � ��������n��� ��o � ������n��� ������

Considering ������ we get the following estimation for the unknown variance �� of the population
distribution with a signi�cance level ��

�n� �s�

������n��
� �� � �n� �s�

��������n��
� ������

The con�dence interval given in ������ for �� is fairly large for small sample sizes�

For the numerical data of the example on p� ��� and for � � �& we get from Table ����� p� ����
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��������� � ���� and �������� � ���� so it follows from ������ that ����� � s � � � ����� � s with
s � ��������

�������� Structure of Hypothesis Testing
A statistical hypothesis testing has the following structure�

� First we develop a hypothesis H that the sample belongs to a population with some given properties�
e�g��
H� The population distribution has a normal distribution with parameters � and �� �or another given
distribution�� or
H� The expected value is equal to a given value ��� or
H� Two populations have the same expected value� �� � �� � �� etc�

� We determine a con�dence interval B� based on our hypothesis �in general with tables�� The value
of the sample function should be in this interval with the given probability� e�g�� with probability ��&
for � � �����

� We calculate the value of the sample function and we accept the hypothesis if this value is in the
given interval B� otherwise we reject it�

Test the hypotesis H� � � �� with a signi�cance level ��

The random variable T �
X � ��

s

p
n has a t distribution with m � n� degrees of freedom according

to �������� p� ���� It follows from this that we have to reject this hypothesis� if x is not in the con�dence
interval given by ������� i�e�� if

jx� ��j 	 sp
n

t����n�� ������

holds� We say that there is a signi�cant di�erence� For further problems about tests see  ���!�

������ Correlation andRegression
Correlation analysis is used to determine some kind of dependence between two or more properties of
the population from the experimental data� The form of this dependence between these properties is
determined with the help of regression analysis�

�������� Linear Correlation of twoMeasurable Characters

�� Two�Dimensional RandomVariable
In the following� we mostly use the formulas for continuous random variables� but it is easy to replace
them by the corresponding formulas for discrete variables� Suppose that X and Y � as a two�dimensional
random variable �X� Y �� have the joint distribution function

F �x� y� � P �X � x� Y � y� �

xZ
��

yZ
��

f�x� y� dx dy� �����a�

F��x� � P �X � x� Y ���� F��y� � P �X ��� Y � y�� �����b�

The random variables X and Y are said to be independent of each other if

F �x� y� � F��x� � F��y� ������

holds� We can determine the fundamental quantities assigned to X and Y from their joint density
function f�x� y��

a� Expected Values

�X � E�X� �

�Z
��

�Z
��

x f�x� y� dx dy� ����a� �Y � E�Y � �

�Z
��

�Z
��

y f�x� y� dx dy� ����b�
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b� Variances

��X � E��X � �X���� �����a� ��Y � E��Y � �Y ���� �����b�

c� Covariance

�XY � E ��X � �X��Y � �Y �� � ������

d� Correlation Coe�cient

�XY �
�XY
�X�Y

� ������

We assume that every expected value above exists� The covariance can also be calculated by the formula

�XY � E�XY �� �X�Y where E�XY � �

�Z
��

�Z
��

xy f�x� y� dx dy� ������

The correlation coe�cient is a measure of the linear dependence of X and Y � because of the following
facts�
All points �X� Y � are on one line with probability  if ��XY �  holds� If X and Y are independent
random variables� then their covariance is equal to zero� �XY � �� From �XY � �� it does not follow
that X and Y are independent� but it does if they have a two�dimensional normal distribution which is
de�ned by the density function

f�x� y� �


���X�Y
q

� ��XY
exp



� 

��� ��XY �

�
�x� �X��

��X

��
�XY �x� �X��y � �Y �

�X�Y
�

�y � �Y ��

��Y

��
� ������

�� Test for Independence of two Variable
We often have the question of whether the variables X and Y can be considered independent with
�XY � �� if the sample with size n and with the measured values �xi� yi� �i � �� � � � � n� comes from a
two�dimensional normal distributed population� The test is performed in the following way�

a� We have the hypothesis H� �XY � � �

b�We determine a signi�cance level � and determine the quantile t��m of the t distribution fromTable
����� p� ���� for m � n� ��

c� We calculate the empirical correlation coe�cients rxy and calculate the test statistics �sample func�
tion�

t �
rxy
p
n� �q

� r�xy
�����a� with rxy �

nX
i��

�xi � x��yi � y�vuut nX
i��

�xi � x��
nX
i��

�yi � y��
� �����b�

d� We reject the hypothesis if jtj 	 t��m holds�

�������� Linear Regression for twoMeasurable Characters

�� Determination of the Regression Line
If we have detected a certain dependence between the variables X and Y by the correlation coe�cient�
then the next problem is to �nd the functional dependence Y � f�X�� We consider mostly linear
dependence�
The simplest case is linear regression� when we suppose that for any �xed value of x the random variable
Y in the population has a normal distribution with the expected value

E�Y � � a � bx ������

and a variance �� independent of x� The relation ������ means that the mean value of the random
variable Y depends linearly on the �xed value of x� The values of the parameters a� b and �� of the
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population are usually unknown� and we estimate them approximately by the least squares method from
a sample with values �xi� yi� �i � � �� � � � � n�� The least squares method requires that

nX
i��

 yi � �a � bxi�!
� � min$ ������

and we get the estimates

'b �

nX
i��

�xi � x��yi � y�

nX
i��

�xi � x��
� 'a � y � 'bx� '�� �

n� 

n� �
s�y�� r�xy� with �����a�

x �


n

nX
i��

xi� y �


n

nX
i��

yi� s�y �


n� 

nX
i��

�yi � y��� �����b�

and the empirical correlation coe�cient rxy is given in �����b�� The coe�cients 'a and 'b are called

regression coe�cients� The line y�x� � 'a � 'bx is called the regression line�

�� Con�dence Intervals for the Regression Coe�cients

Our next question is� after the determination of the regression coe�cients 'a and 'b� how well do the
estimates approximate the theoretical values a and b� We form the test statistics

tb � �'b� b�
sx
p
n� �

sy
q

� r�xy
����a� and ta � �'a� a�

sx
p
n� �

sy
q

� r�xy

p
nvuut nX

i��

xi
�

� ����b�

These are realizations of random variables having a t distribution with m � n� � degrees of freedom�
We can determine the quantile t����m taken from Table ����� p� ���� for a given signi�cance level �
and because P � jtj � t����m� � � � holds for t � ta and t � tb�

j'b� bj � t����n��
sy
q

� r�xy

sx
p
n� �

� �����a� j'a� aj � t����n��

sy
q

� r�xy �
vuut nX

i��

xi
�

sx
p
n� � � pn

� �����b�

We can determine a con�dence region for the regression line y � a � bx with the con�dence interval
given in �����a�b� for a and b�

�������� Multidimensional Regression

�� Functional Dependence
Suppose that there is a functional dependence between the characters X�� X��� � � � Xn� and Y � which is
described by the theoretical regression function

y � f�x�� x�� � � � � xn� �
sX

j��

ajgj�x�� x�� � � � � xn�� ������

The functions gj�x�� x�� � � � � xn� are known functions of n independent variables� The coe�cients aj
in ������ are constant multipliers in this linear combination� We also call expression ������ linear
regression� although the functions gj can be arbitrary�

The function f�x�� x�� � a� � a�x� � a�x� � a�x�
� � a�x�

� � a�x�x�� which is a complete quadratic
polynomial of two variables with g� � � g� � x�� g� � x�� g� � x�

�� g� � x�
�� and g� � x�x�� is an

example for a theoretical linear regression function�
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�� Writing in Vector Form
It is useful to write formulas in vector form in the multidimensional case

x � �x�� x�� � � � � xn�T� ������

so� ������ now has the form�

y � f�x� �
sX

j��

ajgj�x�� ������

�� Solution and Normal Equation System
The theoretical dependence ������ cannot be determined by the measured values

�x�i�� fi�� �i � � �� � � � � N� �����a�

because of random measuring errors� We are looking for the solution in the form

y � 'f�x� �
sX

j��

'ajgj�x� �����b�

and using the least squares method �see �������� �� p� ��� we determine the coe�cients 'aj as the
estimations of the theoretical coe�cients aj� from the equation

NX
i��

h
fi � 'f

�
x�i�
	i�

� min$ � �����c�

Introducing the notation

'a �

�BBB�
'a�
'a�
���

'as

�CCCA � f �

�BBB�
f�
f�
���

fN

�CCCA � G �

�BBBBBBB�

g�
�
x���

	
g�
�
x���

	
� � � gs

�
x���

	
g�
�
x���

	
g�
�
x���

	
� � � gs

�
x���

	
���

���
� � �

���
g�
�
x�N�

	
g�
�
x�N�

	
� � � gs

�
x�N�

	

�CCCCCCCA �����d�

we get from �����c� the so�called normal equation system

GTG'a � GTf �����e�

to determine �a� The matrix GTG is symmetric� so the Cholesky method �see ������� p� ���� is espe�
cially good to solve �����e��

Consider the sample whose result is given in the next table� Determine the coe�cients of the re�
gression function �������

x� � � � �
x� ��� ��� ��� ���

f�x�� x�� �� ��� ��� ���

'f�x�� x�� � a� � a�x� � a�x�� ������

From �����d� it follows that

'a �

�� 'a�
'a�
'a�

�A � f �

�BB�
��
���
���
���

�CCA � G �

�BB�
 � ���
 � ���
 � ���
 � ���

�CCA ������

and �����e� is

�'a� � � 'a� � �� 'a� � ����
�'a� � �� 'a� � ��� 'a� � �����

��'a� � ���'a� � ����'a� � �����
i�e��

'a� � ����
'a� � �����
'a� ���

������
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�� Remarks

� To determine the regression coe�cients we start with the interpolation 'f
�
x�i�
	

� fi �i � � �� � � � �

N�� i�e�� with

G�a � f � ������

In the case s � N � ������ is an overdetermined system of equations which can be solved by the
Householder method �see �������� p� ���� The multiplication of ������ by GT to get �����e� is
also called Gauss transformation� If the columns of the matrix G are linearly independent� i�e�� rank
G � s �  holds� then the normal equation system �����e� has a unique solution� which coincides
with the result of ������ got by the Householder method�

� Also in the multidimensional case� it is possible to determine con�dence intervals for the regression
coe�cients with the t distribution� analogously to �����a�b��

� We can analyse the assumption �����b� by the help of the F distribution �see �������� p� �����
if there are some super�uous variables in it�

������ MonteCarloMethods

�������� Simulation
Simulation methods are based on constructing equivalent mathematical models� These models are then
easily analysed by computer� In such cases� we talk about digital simulation� A special case is given
by Monte Carlo methods when certain quantities of the model are randomly selected� These random
elements are selected by using random numbers�

�������� RandomNumbers
Random numbers are realizations of certain random quantities �see ������ p� ��� satisfying given
distributions�

�� Uniformly Distributed RandomNumbers
These numbers are uniformly distributed in the interval  �� !� they are realizations of the random vari�
able X with the following density function f��x� and distribution function F��x��

f��x� �
�

 for � � x � �
� otherwise�

F��x� �

���
� for � � x�
x for � � x � �
 for x 	 �

�����

� Method of the Inner Digits of Squares A simple method to generate random numbers is
suggested by J� v� Neumann� It is also called the method of the inner digits of squares� and it starts
from a decimal number z � ��� � which has �n digits� Then we form z�� so we get a decimal number
which has �n digits� We erase its �rst and its last n digits� so we again have a number with �n digits�
To get further numbers� we repeat this procedure� In this way we get �n digit decimal numbers from
the interval  �� ! which can be considered random numbers with a uniform distribution� The value of
�n is selected according to the largest number representable in the computer� For example� we may
choose �n � �� This procedure is seldom recommended� since it produces more smaller numbers than
it should� Several other di�erent methods have been developed�

�n � � �
z � z� � �� ��� � z�� � �� � ���� �� �

z � z� � �� ���� � z�� � �� �� ��� �� �
z � z� � �� ��� usw�
Th �rst three random numbers are z�� z� and z� �

� Congruence Method The so�called congruence method is widely used� A sequence of integers
zi �i � �� � �� � � �� is formed by the recursion formula

zi�� � c � zi modm� ������
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Here z� is an arbitrary positive number and c and m denote positive integers� which must be suitably
chosen� For zi�� we take the smallest non�negative integer satisfying the congruence ������� The
numbers zi�m are between � and  and can be used for uniformly distributed random numbers�

� Remarks
a� We choose m � �r� where r is the number of bits in a computer word� e�g�� r � ��� Then the order
of c is

p
m�

b� Random number generators using certain algorithms produce so�called pseudorandom numbers�

c� On calculators and also in computers� 	ran
 or 	rand
 is used for generating random numbers�

�� RandomNumbers with other Distributions
To get random numbers with an arbitrary distribution function F �x� we adopt the following procedure�
Consider a sequence of uniformly distributed random numbers ��� ��� � � � from  �� !� With these num�
bers we form the numbers �i � F����i� for i � � �� � � � � Here F���x� is the inverse function of the
distribution function F �x�� Then we get�

P ��i � x� � P �F����i� � x� � P ��i � F �x�� �

F �x�Z
�

f��t� dt � F �x�� ������

i�e�� the random numbers ��� ��� � � � satisfy a distribution with the distribution function F �x��

�� Tables and Application of RandomNumbers

� Construction Random number tables can be constructed in the following way� We index ten
identical chips by the numbers �� � �� � � � � �� We place them into a box and shu3e them� One of them
is then selected� and its index is written into the table� Then we replace the chip into the box� shu3e
again� and choose the next one� In this way a sequence of random numbers is produced� which is written
in groups �for easier usage� into the table� In Table ����� p� ���� four random digits form a group�

In the procedure� we have to guarantee that the digits �� � �� � � � � � always have equal probability�

� Application of RandomNumbers The use of a table of random numbers is demonstrated with
an example�

Suppose we choose randomly n � �� items from a population of N � ��� items� We renumber the
objects from ��� to ���� We choose a number in an arbitrary column or row in Table ����� p� ����
and we determine a rule of how the remaining � random numbers should be chosen� e�g�� vertically�
horizontally or diagonally� We consider only the �rst three digits from these random numbers� and we
use them only if they are smaller than ����

�������� Example of aMonte Carlo Simulation
We consider the approximate evaluation of the integral

I �

�Z
�

g�x� dx ������

as an example of the use of uniformly distributed random numbers in a simulation� We discuss two
solution methods�

�� Applying the Relative Frequency
We suppose � � g�x� �  holds� We can always guarantee this condition by
a transformation �see ������� p� ����� Then the integral I is an area inside
the unit square E �Fig ������ If we consider the numbers of a sequence
of uniformly distributed random numbers from the interval  �� ! in pairs as
the coordinates of points of the unit square E� then we get n points Pi �i �
� �� � � � � n�� If we denote by m the number of points inside the area A� then
considering the notion of the relative frequency �see ������� p� �����

E

A

y

0 x

g(x)
1

1

Figure ���
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�Z
�

g�x� dx 
 m

n
� ������

To achieve relatively good accuracy with the ratio in ������� we need a very large number of random
numbers� This is the reason why we are looking for possibilities to improve the accuracy� One of these
methods is the following Monte Carlo method� Some others can be found in the literature�

�� Approximation by theMean Value
To determine ������� we start with n uniformly distributed random numbers ��� ��� � � � � �n as the
realization of the uniformly distributed random variableX� Then the values gi � g��i� �i � � �� � � � � n�
are realizations of the random variable g�X�� whose expectation according to formula �����a�b�� p� ����
is�

E�g�X�� �

�Z
��

g�x�f��x�dx �

�Z
�

g�x�dx 
 

n

nX
i��

gi� ������

This method� which uses a sample to obtain the mean value� is also called the usualMonteCarlomethod�

�������� Application of theMonte CarloMethod inNumerical

Mathematics

�� Evaluation of Multiple Integrals
First� we have to show how to transform a de�nite integral of one variable

I� �

bZ
a

h�x� dx ������

into an expression which contains the integral

I �

�Z
�

g�x� dx with � � g�x� � � ������

Then we can apply the Monte Carlo method given in �������� Introduce the following notation�

x � a � �b� a�u� m � min
x��a�b�

h�x�� M � max
x��a�b�

h�x�� ������

Then ������ becomes

I� � �M �m��b� a�

�Z
�

h�a � �b� a�u��m

M �m
du � �b� a�m� ������

where the integrand
h�a � �b� a�u��m

M �m
� g�u� satis�es the relation � � g�u� � �

The approximate evaluation of multiple integrals with Monte Carlo methods is demonstrated by an
example of a double integral

V �
ZZ
S

h�x� y� dx dy with h�x� y� 	 �� �����

S denotes a plane surface domain given by the inequalities a � x � b and ���x� � y � ���x�� where
���x� and ���x� denote given functions� Then V can be considered as the volume of a cylindrical solid
K� which stands perpendicular to the x� y plane and its upper surface is given by h�x� y�� If h�x� y� � e
holds� then this solid is in a block Q given by the inequalities a � x � b� c � y � d� � � z �
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e �a� b� c� d� e const�� After a transformation similar to ������� we get from ����� an expression
containing the integral

V � �
ZZ
S�

g�u� v� du dv with � � g�u� v� � � ������

where V � can be considered as the volume of a solidK� in the three�dimensional unit cube� The integral
������ is approximated by the Monte Carlo method in the following way�
We consider the numbers of a sequence of uniformly distributed random numbers from the interval
 �� ! in triplets as the coordinates of points Pi �i � � �� � � � � n� of the unit cube� and count how many
points among Pi belong to the solid K�� If m point belong to K�� then analogously to ������

V � 
 m

n
� ������

Remark� In de�nite integrals with one integration variable we should use the methods given in ����
p� ���� For the evaluation of multiple integrals� the Monte Carlo method is still often recommended�

�� Solution of Partial Di
erential Equations with the RandomWalk Process
The Monte Carlo method can be used for the approximate solution of partial di�erential equations with
the random walk process�

a� Example of a Boundary Value Problem� Consider
the following boundary value problem as an example�

%u �
��u

�x�
�

��u

�y�
� � for �x� y� � G� �����a�

u�x� y� � f�x� y� for �x� y� � �� �����b�

Here G is a simply connected domain in the x� y plane� �
denotes the boundary of G �Fig������ Similarly to the
di�erence method in paragraph ����� G is covered by a
quadratic lattice� where we can assume� without loss of gen�
erality� that the step size can be chosen as h � �

G

y

y+1
y

y-1

0

xx-1 x+1x

�

Figure ���

This way we get interior lattice points P �x� y� and boundary points Ri� The boundary points Ri� which
are at the same time also lattice points� are considered in the following as points of the boundary � of
G� i�e��

u�Ri� � f�Ri� �i � � �� � � � � N� ������

b� SolutionPrinciple� We imagine that a particle starts a randomwalk from an interior pointP �x� y��
That is�

� The particle moves randomly from P �x� y� to one of the four neighboring points� We assign to each
of these four grid points ��� the probability to move into them�

� If the particle reaches a boundary point Ri� then the random walk terminates there with probability
one�

It can be proven that a particle starting at any interior point P reaches a boundary point Ri after a
�nite number of steps with probability one� We denote by

p�P�Ri� � p��x� y�� Ri� ������

the probability that a random walk starting at P �x� y� will terminate at the boundary point Ri� Then
we get

p�Ri� Ri� � � p�Ri� Rj� � � for i �� j and ������

p��x� y�� Ri� �


�
 p��x�� y�� Ri��p��x�� y�� Ri��p��x� y��� Ri��p��x� y��� Ri�!� ������
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The equation ������ is a di�erence equation for p��x� y�� Ri�� If we start n random walks from the
point P �x� y�� from which mi terminates at Ri �mi � n�� then we get

p��x� y�� Ri�� 
 mi

n
� ������

The equation ������ gives an approximate solution of the di�erential equation �����a� with the
boundary condition ������� The boundary condition �����b� will be ful�lled if we substitute

v�P � � v�x� y� �
NX
i��

f�Ri�p��x� y�� Ri�� ������

because of ������� v�Rj� �
NP
i��

f�Ri�p�Rj� Ri� � f�Rj��

To calculate v�x� y� we multiply ������ by f�Ri�� After summation we get the following di�erence
equation for v�x� y��

v�x� y� �


�
 v�x� � y� � v�x � � y� � v�x� y � � � v�x� y � �!� �����

If we start n random walks from an interior point P �x� y�� and among them mj terminate at the bound�
ary point Ri �i � � �� � � � � N�� then we get an approximate value at the point P �x� y� of the boundary
value problem �����a�b� by

v�x� y� 
 

n

nX
i��

mif�Ri�� ������

�������� Further Applications of theMonte CarloMethod
Monte Carlo methods as stochastic simulation� sometimes calledmethods of statistical experiments� are
used in many di�erent areas� For example we mention�
� Nuclear techniques� Neutrons passing through material layers�
� Communication� Separating signals and noise�
� Operations research� Queueing systems� process design� inventory control� service�
For further details of these problem areas see for example  ���!�

���� Calculus ofErrors
Every scienti�c measurement� giving certain numerical quantities � regardless of the care which with
the measurements are made � is always subject to errors and uncertainties� There are observational
errors� errors of the measuring method� instrumental errors and often errors arising from the inherent
random nature of the phenomena being measured� Together they compose the measurment error�

All measurement errors arising during the measuring process we call deviations� As a consequence a
measured quantity represented by a number of signi�cant digits can be given only with a rounding er�
ror� i�e�� with a certain statistical error� which we call the uncertainty of the result�

� The deviations of the measuring process should be kept as small as possible� On this basis we have to
evaluate the possible best approximation� what can be done with the help of smoothing methods which
have their origin in the Gaussian least squares method�

� The uncertainties have to be estimated as well as possible� what can be done with the help of meth�
ods of mathematical statistics�

Because of the random character of the measuring results we can consider them as statistical samples
�see ������ �� p� ���� with its probability distribution� whose parameters contain the desired informa�
tion� In this sence� measurement errors can be seen as sampling errors�
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������ Measurement Error and itsDistribution

�������� Qualitative Characterization ofMeasurement Errors
If we qualify the measurement errors by their causes� we can distinguish between the following three
types of errors�
� Rough errors are caused by inaccurate readings or confusion� they are excludable�

� Systematic measurement errors are caused by inaccurately scaled measuring devices and by the
method of measuring� where the method of reading the data and also the measured error of the mea�
surement system can play a role� They are not always avoidable�
� Statistical or random measurement errors can arise from random changes of the measuring con�
ditions that are di�cult or impossible to control and also by certain random properties of the events
observed�

In the theory of measurement errors the rough errors and the systematic measurement errors are ex�
cluded and we deal only with the statistical properties and with the random measurement errors in the
calculation of the rounding errors�

�������� Density Function of theMeasurement Error

�� Measurement Protocol
We suppose that in the characterization of the uncertainty we have the measured results listed in amea�
surement record as a prime notation and we have the relative frequencies or the density function f�x��
or the cumulative frequencies or the distribution function F �x� �see ������� p� ���� of the uncertain
values� By x we denote the realization of the random variable X� which is under consideration�

�� Error Density Function
Special assumptions about the properties of the measurement error result in certain special properties
of the density function of the error distribution�

� Continuous Density Function Since the random measurement errors can take any value in a
certain interval� they are described by a continuous density function f�x��

� Even Density Function If measurement errors with the same absolute value but with di�erent
signs are equally likely� then the density function is an even function� f��x� � f�x��

� Monotonically Decreasing Density Function If a measuring error with larger absolute value
is less likely than an error with smaller absolute value� then the density function f�x� is monotonically
decreasing for x � ��

� Finite Expected Value The expected value of the absolute value of the error must be �nite�

E�jXj� �

�Z
��
jxjf�x� dx ��� ������

Di�erent properties of the errors result in di�erent types of density functions�

�� Normal Distribution of the Error
� Density Function and Distribution Function In most practical cases we can suppose that the
distribution of the measurement error is a normal distribution with expected value � � � and variance
��� i�e�� the density function f�x� and the distribution function F �x� of the measurement error are�

f�x� �


�
p

��
e
� x�

��� �����a� and F �x� �


�
p

��

xZ
��

e
� t�

��� dt � �
�
x

�

�
� �����b�

Here ��x� is the distribution function of the standard normal distribution �see �����a�� p� ���� and
Table ����� p� ���� In the case of �����a�b� we speak about normal errors�

� GeometricalRepresentation The density function �����a� is represented inFig ����a with
in�ection points and points at the center of gravity� and its behavior is shown in Fig ����b when the
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variance changes� The in�ection points are at the abscissa values��� the centers of gravity of the half�

areas are at ��� The maximum of the function is at x � � and it is ���
p

���� The curve widens as ��

increases� the area under the curve always equals one� This distribution shows that small errors occur
often� large errors only seldom�
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Figure ���

�� Parameters to Characterize the Normally Distributed Error
Beside the variance �� or the standard deviation � which is also called themean square error or standard
error� there are other parameters to characterize the normally distributed error� such as the measure
of accuracy h� the average error or mean error �� and the probable error ��
� Measure of Accuracy Beside the variance ��� the measure of accuracy

h �


�
p

��
������

is used to characterize the width of the normal distribution� A narrower Gauss curve results in bet�
ter accuracy �Fig ����b�� If we replace � by the experimental value of '� or '�x obtained from the
measured values� the measure of accuracy characteizes the accuracy of the measurement method�
� Average or Mean Error The expected value � of the absolute value of the error is de�ned as

� � E�jXj� � �

�Z
�

xf�x� dx� ������

� Probable Error The bound � of the absolute value of the error with the property

P �jXj � �� �


�
�����a�

is called the probable error� It implies that
��Z
��

f�x� dx � ��
�
�

�

�
�  �



�
� �����b�

where ��x� is the distribution function of the standard normal distribution�
� Given Error Bounds If an upper bound a � � of an error is given� then we can calculate the
probability that the error is in the interval  �a� a! by the formula

P �jXj � a� � ��
�
a

�

�
� � ������

� Relations between Standard Deviation� Average Error� Probable Error�
and Accuracy If the error has a normal distribution� then the following relations hold with the
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constant factor � � ������ �

� �
p
�h

�

s
�

�
� �

�

�
p
�

� � �
p
�h

�

r
�

�
� �

�p
��

� �����a�

� �
�

h
� �
p

�� � �
p
�� � h �

p
��

�
p
��

�
�

�
�����b�

and

���
p

�� �


�
� �������

�������� Quantitative Characterization of theMeasurement Error

�� True Value and its Approximations
The true value xw of a measurable quantity is usually unknown� We choose the expected value of the
random variables� whose realizations are the measured values xi �i � � �� � � � � n�� as an estimated value
of xw� Consequently� the following means can be considered as an approximation of xw�
� ArithmeticalMean

x �


n

nX
i��

xi �����a� or x �
kX
j��

hjxj� �����b�

if the measured values are distributed into k classes with absolute frequencies hj and class means
xj �j � � �� � � � � k��
� Weighted Mean

x�g� �
nX
i��

gixi

& nX
i��

gi� �������

Here the single measured values are weighted by the weighting factors gi �gi � �� �see ������� ��
p� �����

�� Error of a Single Measurement in aMeasurement Sequence
� True Error of a SingleMeasurement in aMeasurement Sequence is the di�erence between
the true value xw and the measuring result� Because this is usually unknown� the true error �i of the
i�th measurement with the result xi is also unknown�

�i � xw � xi� ������a�

� Mean Error of a Single Measurement in a Measurement Sequence is the di�erence of the
arithmetical mean and the measurement result xi�

vi � x� xi� ������b�

� Mean Square Error of a Single Measurement or Standard Error of a Single
Measurement Since the expected value of the sum of the true errors �i and the expected value of

the sum of the mean errors vi of n measurement is zero �independently of how large they are�� we also
consider the sum of the error squares�

�� �
nX
i��

�i
�� ������a� v� �

nX
i��

vi
�� ������b�

From a practical point of view only the value of ������b� is interesting� since only the values of vi can
be determined from the measuring process� Therefore� the mean square error of a single measurement
of a measurement sequence is de�ned by

'� �

vuut nX
i��

vi
�
&

�n� �� �������
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The value '� is an approximation of the standard deviation � of the error distribution�
We get for '� � � in the case of normally distributed error�

P �j�j � '�� � �����  � ����� �������

That is� The probability that the absolute value of the true value does not exceed �� is about ��&�

� Probable Error is the number �� for which

P �j�j � �� �


�
� �������

That is� The probability that the absolute value of the error does not exceed �� is ��&� The abscis�
sae �� divide the area of the left and the right parts under the density function into two equal parts
�Fig ����a��
The relation between '� and '� in the case of a normally distributed error is

'� � ������'� 
 �

�
'� �

�

�

vuut nX
i��

vi
�
&

�n� �� �������

� Average Error is the number �� which is the expected value of the absolute value of the error�

� � E�j�j� �

�Z
��
jxjf�x� dx� �������

In the case of a normally distributed error we get � � ������ It follows from the relation

P �j�j � �� � ��
�
�

�

�
�  � ������ ������

that the probability that the error does not exceed the value � is about ���� &� The centers of gravity
of the left and right areas under the density function �Fig ����a� are at abscissae ��� We also get�

'� �

s
�

�
'� � ������'� 
 ���'� � ���

vuut nX
i��

vi
�
&

�n� �� �����

�� Error of the ArithmeticalMean of aMeasurement Sequence
The error of the arithmetical mean x of a measurement sequence is given by the errors of the single
measurement�

� Mean Square Error or Standard Deviation

'�AM �

vuut nX
i��

vi
�
&

 n�n� �! �
'�p
n

� ������

� Probable Error

'�AM 
 �

�

vuut nX
i��

vi
�
&

 n�n� �! �
�

�

'�p
n

� ������

� Average Error

'�AM 
 ���

vuut nX
i��

vi
�
&

 n�n� �! � ���
'�p
n

� ������

� Accessible Level of Error Since the three types of errors de�ned above ������������� are di�
rectly proportional to the corresponding error of the single measurement �������� ������� and �����
and they are proportional to the reciprocal of the square root of n� it is not reasonable to increase the
number of the measurements after a certain value� It is more e�cient to improve the accuracy h of the
measuring method �������
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�� Absolute and Relative Errors
� Absolute Uncertainty� Absolute Error The uncertainty of the results of measurement is char�
acterized by errors �i� vi� �i� �i� �i� or �� v� �� �� �� which measure the reliability of the method of
measurement� The notion of the absolute uncertainity� given as the absolute error� is meaningful for
all types of errors and for the calculation of error propagation �see ������ p� ����� They have the same
dimension as the measured quantity� The word 	absolute
 error is introduced to avoid confusion with
the notion of relative error� We often use the notation %xi or %x� The word 	absolute
 has a di�erent
meaning from the notion of absolute value� It refers to the numerical value of the measured quantity
�e�g�� length� weight� energy�� without restriction of its sign�

� Relative Uncertainty� Relative Error The relative uncertainty� given by the relative error�
is a measure of the quality of the method of measurement with respect to the numerical value of the
measured quantity� In contrast to the absolute error� the relative error has no dimension� because it is
the quotient of the absolute error and the numerical value of the measured quantity� If this value is not
known� we replace it by the mean value of the quantity x�

	xi �
%xi
x

 %xi

x
� �����a�

The relative error is given mostly as a percentage and it is also called the percentage error �

	xi�& � 	xi � �� &� �����b�

�� Absolute and RelativeMaximumError
� AbsoluteMaximumError If the quantity z we want to determine is a function of the measured
quantities x�� x�� � � � � xn� i�e�� z � f�x�� x�� � � � � xn�� then the resulting error must be calculated taking
also the function f into consideration� There are two di�erent ways to examine errors� The �rst ap�
proach is that statistical error analysis is applied by smoothing the data values using the least squares
method �min

P
�zi � z���� and in the second approach� an upper bound %zmax is determined for the

absolute error of the quantities� If we have n independent variables xi� then�

%zmax �
nX
i��

����� �

�xi
f�x�� x�� � � � � xn�

�����%xi� ������

where we should substitute the mean value xi for xi�

� Relative Maximum Error We can get the relative maximum error if we divide the absolute
maximum error by the numerical value of the measured value �mostly by the mean of z��

	zmax �
%zmax

z

 %zmax

z
� ������

�������� Determining the Result of aMeasurement with Bounds on the

Error
A realistic interpretation of a measurement result is possible only if the expected error is also given�
error estimations and bounds are components of measurement results� It must be clear from the data
what is the type of the error� what is the con�dence interval and what is the signi�cance level�

� De�ning the Error The result of a single measurement is required to be given in the form

x � xi �%x 
 xi � '�� �����a�

and the result of the mean has the form

x � x�%xAM 
 x� '�AM � �����b�

Here %x is the most often used distance� the standard deviation� '� and '� could also be used�

� Prescription of Arbitrary Con�dence Limits The quantity T �
X � xw

'�AM
has a t distribution

����b� with f � n �  degrees of freedom in the case of a population with a distribution N��� ���
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according to ������� For a required signi�cance level � or for an acceptance probability S �  � �
we get the con�dence limits for the unknown quantity xw � � with the t quantile t����f

� � x� t����f � '�AM � ������

That is� the true value xw is in the interval given by these limits with a probability S � � ��
We are mostly interested in keeping the size n of the measurement sequence at its lowest possible level�
The length �t����f '�AM of the con�dence interval decreases by a smaller value of  � � and also by a

larger number n of measurements� Since '�AM decreases proportionally to �
p
n and the quantile t����f

with f � n�  degrees of freedom also decreases proportionally to �
p
n for values of n between � and

� �see Table ����� p� ���� the length of the con�dence interval decreases proportionally to �n for
such values of n�

�������� Error Estimation for DirectMeasurements with the Same

Accuracy
If we can achieve the same variance �i for all n measurements� we talk about measurements with the
same accuracy h � const� In this case� the least squares method results in the error quantities given in
�������� �������� and �������

Determine the �nal result for the measurement sequence given in the following table which contains
n � � direct measurements with the same accuracy�

xi ���� ��� ���� ���� ���� ���� ��� ���� ��� ����

vi � �� � � �  � � � � � �� � �  � � � � � �

vi
� � �	 ��  �� �� ��� � � � � ��

x � ����� '� �

vuut nX
i��

vi
���n� � � ����� '�AM � '�

p
n � �����

Final result� x � x� '�AM � ����� �����

�������� Error Estimation for DirectMeasurements with Di
erent

Accuracy

�� WeightedMeasurements
If the direct measurement results xi are obtained from di�erent measuring methods or they represent
means of single measurements� which belong to the same mean x with di�erent variances '�i

�� we cal�
culate a weighted mean

x�g� �
nX
i��

gixi

& nX
i��

gi �������

where gi is de�ned as

gi �
'��

'�i
� � ������

Here '� is an arbitrary positive value� mostly the smallest '�i� It serves as a weight unit of the deviations�
i�e�� for '�i � '� it is gi � � It follows from ������ that a larger weight of a measurement results in a
smaller deviation '�i�

�� Standard Deviations
The standard deviation of the weight unit is estimated as

'��g� �

vuut nX
i��

givi
�
&

�n� � � �������
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We have to be sure that '��g� � '�� In the opposite case� if '��g� � '�� then there are xi values which have
systematic deviations�

The standard deviation of the single measurement is

'�i
�g� �

'��g�p
gi

�
'��g�

'�
'�i � �������

where '�i
�g� � '�i can be expected�

The standard deviation of the weighted mean is�

'�
�g�
AM � '��g�

�vuut nX
i��

gi �

vuut nX
i��

givi
�
&�

�n� �
nX
i��

gi

�
� �������

�� Error Description
The error can be described as it is represented in ������� p� ���� either by the de�nition of the error
or by the t quantile with f degrees of freedom�

The �nal results of measurement sequences �n � �� with di�erent means xi �i � � �� � � � � �� and
with di�erent standard deviations '�AM i

are given in Table ����
We calculate �xi�m � ����� and we choose x� � ���� and '� � ������ With zi � xi � x�� gi � '��� '�i

�

we get z � ������� and x � x� � z � ����� The standard deviation is '��g� �

vuut nX
i��

givi
�
&

�n� � �

������ � '� and '�x � '�AM � ������� The �nal result is x � x� '�x � ����� �������

Table ��� Error description of a measurement sequence

xi ��AM i
���
AM i

gi zi gizi zi
� gizi

�

���� ���� ������ ��� ������� �������� ������� ������

���� ����� ������ ���� �������� �������� �������� �������

���� ����� ������� ���� �������� �������� ������	 �������

���� ����� ������ ��� �������� ������� ������ ������

��� ��� ������ ���� �������� ������� ������� ��������

�xi�m '�
nX
i��

gi
nX
i��

gizi
nX
i��

gizi
�

� ���� � ����� � ��� � ������� � ������

������ Error Propagation andErrorAnalysis
Measured quantities appear in �nal results often after a functional transformation� If the error is small�
we can use a linear Taylor expansion with respect to the error� Then we talk about error propagation�

�������� Gauss Error Propagation Law

�� Problem Formulation
Suppose we have to determine the numerical value and the error of a quantity z given by the function z �
f�x�� x�� � � � � xk� of the independent variables xj �j � � �� � � � � k�� The mean value xj obtained from
nj measured values is considered as realizations of the random variable xj� with variance �j

�� We wish
to examine how the errors of the variables a�ect the function value f�x�� x�� � � � � xk�� It is assumed that



���
 Calculus of Errors �
�

the function f�x�� x�� � � � � xk� is di�erentiable� its variables are stochastically independent� However
they may follow any type of distribution with di�erent variances �j

��

�� Taylor Expansion
Since the error represents relatively small changes of the independent variables� the function f�x�� x�� � � � �
xk� can be approximated in the neighborhood of the mean xj by the linear part of its Taylor expansion
with the coe�cients aj� so for its error %f we have�

%f � f�x�� x�� � � � � xk�� f�x�� x�� � � � � xk�� ������a�

%f 
 df �
�f

�x�
dx� �

�f

�x�
dx� � � � �� �f

�xk
dxk �

kX
j��

�f

�xj
dxj �

kX
j��

ajdxj� ������b�

where the partial derivatives �f��xj are taken at �x�� x�� � � � � xk��
The variance of the function is

�f
� � a�

��x�
� � a�

��x�
� � � � �� ak

��xk
� �

kX
j��

aj
��xj

�� �������

�� Approximation of the Variance ��
f

Since the variances of the independent variables xj are unknown� we approximate them by the variance
of their mean� which is determined from the measured values xjl �l � � �� � � � � nl� of the single variables
as follows�

'��xj �

njX
l��

�xjl � xj�
�

nj�nj � �
� �������

With these values we form an approximation of �f
��

'��f �
kX
j��

aj
�'��xj � �������

The formula ������� is called the Gauss error propagation law�

�� Special Cases
� LinearCase An often occurring case is when we add the absolute values of the errors of sequentially
occurring error quantities with aj � �

'�f �
q

'��� � '��� � � � �� '��k� �������

The pulse length is to be measured at the output of a pulse ampli�er of a detector channel for spec�
trometry of radiation� whose error can be deduced for three components�
� statistical energy distribution of the radiation of the part passing through the spectometer with an
energy E�� which is characterized by '�Str�
�� statistical interference processes in the detector with '�Det�
�� electronic noice of the ampli�er of the detector impulse '�el�
The total pulse length has the error

'�f �
q

'��Str � '��Det � '��el� �������

� Power Rule The variables xj often occur in the following form�

z � f�x�� x�� � � � xk� � ax�
b� � x�b� � � � xk

bk � ������

By logarithmic di�erentiation we get the relative error

df

f
� b�

dx�
x�

� b�
dx�
x�

� � � �� bk
dxk
xk

� �������
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from which by the error propagation law we get for the mean relative error�

'�f
f

�

vuuut kX
j��

�
bj

'�xj
xj

��
� �������

Suppose that the function f�x�� x�� x�� has the form f�x�� x�� x�� �
p
x�x�

�x�
�� and the standard

deviations are �x� � �x� and �x� �
The relative error is then

	z �
'�f
f

�

vuut�

�

'�x�
x�

��
�
�

�
'�x�
x�

��
�
�

�
'�x�
x�

��
�

�� Di
erence to theMaximumError
Declaring the absolute or relative maximal error ������� ������ means that we do not use smoothing
for the values of the measurement� For the determination of the relative and absolute error with the
error propagation laws ������� or ������� smoothing between the measurement values xj means
that we determine for them a con�dence interval for a previously given level� This procedure is given
in ������� p� ����

�������� Error Analysis
The general analysis of error propagation in the calculations of a function ��xi�� when quantities of
higher order are neglected� is called error analysis� In the framework of the theory of error analysis we
investigate using an algorithm� how an input error %xi a�ects the value of ��xi�� In this relation we
also talk about di�erential error analysis�

In numerical mathematics� error analysis means the investigation of the e�ect of errors of methods� of
roundings� and of input errors to the �nal result �see  ����!��
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������ Dynamical Systems

�	������ Basic Notions

�� The Notion of Dynamical Systems and Orbits
A dynamical system is a mathematical object to describe the development of a physical� biological
or another system from real life depending on time� It is de�ned by a phase space M � and by a one�
parameter family of mappings �t � M  M � where t is the parameter �the time�� In the following�
the phase space is often IRn� a subset of it� or a metric space� The time parameter t is from IR �time
continuous system� or from Z or from Z� �time discrete system�� Furthermore� it is required for arbitrary
x �M that

a� ���x� � x and

b� �t��s�x�� � �t�s�x� for all t� s� The mapping �� is denoted brie�y by ��

In the following� the time set is denoted by � � hence� � � IR� � � IR�� � � Z or � � Z�� If � � IR�
then the dynamical system is also called a �ow� if � � Z or � � Z�� then the dynamical system is
discrete� In case � � IR and � � Z� the properties a� and b� are satis�ed for every t � � � so the inverse
mapping ��t��� � ��t also exists� and these systems are called invertible dynamical systems�

If the dynamical system is not invertible� then ��t�A� means the pre�image of A with respect to �t�
for an arbitrary set A � M and arbitrary t � �� i�e�� ��t�A� � fx � M � �t�x� � Ag� If the mapping
�t � M  M is continuous or k times continuously di�erentiable for every t � � �here M � IRn�� then
the dynamical system is called continuous or Ck�smooth� respectively�
For an arbitrary �xed x � M � the mapping t +� �t �x�� t � �� de�nes a motion of the dynamical
system starting from x at time t � �� The image ��x� of a motion starting at x is called the orbit �or
the trajectory� through x� namely ��x� � f�t�x�gt�� � Analogously� the positive semiorbit through x is
de�ned by ���x� � f�t�x�gt�� and� if � �� IR� or � �� Z�� then the negative semiorbit through x is
de�ned by ���x� � f�t�x�gt
��
The orbit ��x� is a steady state �also equilibrium point or stationary point� if ��x� � fxg� and it is
T�periodic if there exists a T � � � T � �� such that �t�T �x� � �t�x� for all t � � � and T � � is the
smallest positive number with this property� The number T is called the period�

�� Flow of a Di
erential Equation
Consider the ordinary linear planar di�erential equation

,x � f�x�� ����

where f � M  IRn �vector �eld� is an r�times continuously di�erentiable mapping and M � IRn or
M is an open subset of IRn� In the following� the Euclidean norm k � k is used in IRn� i�e�� for arbitrary

x � IRn� x � �x�� � � � � xn�� its norm is kxk �

vuut nX
i��

x�i � If the mapping f is written componentwise

f � �f�� � � � � fn�� then ���� is a system of n scalar di�erential equations ,xi � fi�x�� � � � � xn�� i �
� �� � � � � n�

The Picard�Lindel�of theorem on the local existence and uniqueness of solutions of di�erential equations
locally and the theorem on the r�times di�erentiability of solutions with respect to the initial values �see
 ��!� guarantee that for every x� �M � there exist a number � � �� a sphere B��x�� � fx� kx�x�k �
	g in M and a mapping �� ���� ��� B��x��M such that�

� ���� �� is �r � ��times continuously di�erentiable with respect to its �rst argument �time� and r�
times continuously di�erentiable with respect to its second argument �phase variable��
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� for every �xed x � B��x��� � ��� x� is the locally unique solution of ���� in the time interval ���� ��

which starts from x at time t � �� i�e��
��

�t
�t� x� � ,��t� x� � f���t� x�� holds for every t � ���� ���

���� x� � x� and every other solution with initial point x at time t � � coincides with ��t� x� for all
small jtj�
Suppose that every local solution of ���� can be extended uniquely to the whole of IR� Then there
exists a mapping �� IR�M M with the following properties�

� ���� x� � x for all x � M �

� ��t � s� x� � ��t� ��s� x�� for all t� s � IR and all x �M �

� ���� �� is continuously di�erentiable �r � � times with respect to its �rst argument and r times with
respect to the second one�

� For every �xed x �M � ���� x� is a solution of ���� on the whole of IR�

Then the Cr�smooth �ow generated by ���� can be de�ned by �t � � ��t� ��� The motions ���� x� �
IRM of a �ow of ���� are called integral curves�

The equation

,x � ��y � x�� ,y � rx� y � xz� ,z � xy � bz �����

is called a Lorenz system of convective turbulence �see also �������� p� ����� Here � � �� r � � and

b � � are parameters� The Lorenz system corresponds to a C� �ow on M � IR��

�� Discrete Dynamical System
Consider the di�erence equation

xt�� � ��xt�� �����

which can also be written as an assignment x +� ��x�� Here � � M  M is a continuous or r times
continuously di�erentiable mapping� where in the second case M � IRn� If � is invertible� then �����
de�nes an invertible discrete dynamical system through the iteration of �� namely�

�t � � � � � � ��� �z �� for t � �� �t � ���� � � � ����� �z �� for t � �� �� � id�

t times� �t times�
�����

If � is not invertible� then the mappings �t are de�ned only for t 	 �� For the realization of �t see
������� p� ����

A� The di�erence equation

xt�� � �xt �� xt�� t � �� � � � � �����

with parameter � � ��� �! is called a logistic equation� Here M �  �� !� and ��  �� !   �� ! is� for a
�xed �� the function ��x� � �x� � x�� Obviously� � is in�nitely many times di�erentiable� but not
invertible� Hence ����� de�nes a non�invertible dynamical system�

B� The di�erence equation

xt�� � yt � � ax�t � yt�� � bxt� t � ���� � � � � �����

with parameters a � � and b �� � is called a H�enonmapping � The mapping �� IR�  IR� corresponding
to ����� is de�ned by ��x� y� � �y � � ax�� bx�� is in�nitely often di�erentiable and invertible�

�� Volume Contracting and Volume Preserving Systems
The invertible dynamical system f�tgt�� onM � IRn is called dissipative �respectively volume�preserving
or conservative�� if the relation vol��t�A�� � vol�A� �respective vol��t�A�� � vol�A�� holds for every
set A �M with a positive n�dimensional volume vol�A� and every t � � �t�� ��

A� Let � in ����� be a Cr�di�eomorphism �i�e�� � � M  M is invertible� M � IRn open� � and
��� are Cr�smooth mappings� and let D��x� be the Jacobi matrix of � in x � M � The discrete system
����� is dissipative if j detD��x�j �  for all x �M � and conservative if j detD��x� j �  in M �
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B� For the system ����� D��x� y� �
���ax 

b �

�
and so j detD��x� y�j � b� Hence� ����� is

dissipative if jbj � � and conservative if jbj � �
The H�enon mapping can be decomposed into three mappings �Fig ����� First� the initial domain
is stretched and bent by the mapping x� � x� y� � y �  � ax� in a area�preserving way� then it is
contracted in the direction of the x��axis by x�� � bx�� y�� � y� �at jbj � �� and �nally it is re�ected with
respect to the line y�� � x�� by x��� � y��� y��� � x���

y'''

x'''x

y

x'

y' y''

x''

Figure ��
�	������ Invariant Sets

�� � � and  �Limit Set� Absorbing Sets
Let f�tgt�� be a dynamical system on M � The set A �M is invariant under f�tg� if �t�A� � A holds
for all t � � � and positively invariant under f�tg� if �t�A� � A holds for all t 	 � from � �
For every x �M � the �limit set of the orbit passing through x is the set

�x� � fy �M � � tn � �� tn  ��� �tn�x� y as n ��g� �����

The elements of �x� are called �limit points of the orbit� If the dynamical system is invertible� then
for every x �M � the set

��x� � fy �M � � tn � �� tn  ��� �tn�x� y as n ��g �����

is called the ��limit set of the orbit passing through x� the elements of ��x� are called the ��limit points
of the orbit�
For many systems which are volume decreasing under the �ow there exists a bounded set in phase
space such that every orbit reaching it stays there as time increases� A bounded� open and connected
set U � M is called absorbing with respect to f�tgt�� � if �t�U� � U holds for all positive t from � � �U
is the closure of U ��

Consider the system of di�erential equations

,x � �y � x �� x� � y��� ,y � x � y �� x� � y�� ����a�

in the plane� Using the polar coordinates x � r cos�� y � r sin�� the solution of ����a� with initial
state �r�� ��� at time t � � has the form

r�t� r�� �   � �r��� � � e��t!����� ��t� ��� � t � ��� ����b�

This representation of the solution shows that the �ow of ����a� has a periodic orbit with period ���
which can be given in the form ���� ��� � f�cos t� sin t�� t �  �� ��!g� The limit sets of an orbit through
p are�

��p� �

�����
��� ��� k p k � �

���� ���� k p k � �
�� k p k � 

and �p� �
�
���� ���� p �� ��� ���

��� ��� p � ��� ���

Every open sphere Br � f�x� y�� x� � y� � r�g with r �  is an absorbing set for ����a��

�� Stability of Invariant Sets
Let A be an invariant set of the dynamical system f�tgt�� de�ned on �M� ��� The set A is called stable�
if every neighborhood U of A contains another neighborhood U� � U of A such that �t�U�� � U holds
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for all t � �� The set A� which is invariant under f�tg� is called asymptotically stable if it is stable and
the following relations are satis�ed�

�% � �
�x �M
dist�x�A� � %

�
� dist��t�x�� A� � � for t ��� �����

Here� dist�x�A� � inf
y�A

��x� y��

�� Compact Sets
Let �M� �� be a metric space� A system fUigi�II of open sets is called an open covering of M if every
point of M belongs to at least one Ui� The metric space �M� �� is called compact if it is possible to
choose �nitely many Ui� � � � � � Uir from every open covering fUigi�II of M such that M � Ui� � � � � � Uir

holds� The set K � M is called compact if it is compact as a subspace�

�� Attractor� Domain of Attraction
Let f�tgt�� be a dynamical system on �M� �� and A an invariant set for f�tg� Then W �A� � fx �
M � �x� � Ag is called the domain of attraction of A� A compact set 4 � M is called an attractor of
f�tgt�� on M if 4 is invariant under f�tg and there is an open neighborhood U of 4 such that �x� � 4
for almost every �in the sense of Lebesgue measure� x � U �

4 � ���� ��� is an attractor of the �ow of ����a�� Here W �4� � IR� n f��� ��g� For some dynamical
systems� a more general notion of an attractor makes sense� So� there are invariant sets 4 which have
periodic orbits in every neighborhood of 4 which are not attracted by 4� e�g�� the Feigenbaum attractor�
The set 4 may not be generated by a single limit set � A compact set 4 is called an attractor in the
sense of Milnor of the dynamical system f�tgt�� on M if 4 is invariant under f�tg and the domain of
attraction of 4 contains a set with positive Lebesgue measure�

������ QualitativeTheory ofOrdinaryDi�erential Equations

�	������ Existence of Flows� Phase Space Structure

�� Extensibility of Solutions
Besides the di�erential equation ����� which is called autonomous� there are di�erential equations
whose right�hand side depends explicitly on the time and they are called non�autonomous�

,x � f�t� x�� ����

Let f � IR �M  M be a Cr�mapping with M � IRn� By the new variable xn�� �� t� ���� can
be interpreted as the autonomous di�erential equation ,x � f�xn��� x�� ,xn�� � � The solution of
���� starting from x� at time t� is denoted by ���� t�� x��� In order to show the global existence of
the solutions and with this the existence of the �ow of ����� the following theorems are useful�

� Criterion of Wintner and Conti If M � IRn in ���� and there exists a continuous function

�  �����  ����� such that kf�x�k �  �kxk� for all x � IRn and
Z ��

�



�r�
dr � �� holds� then

every solution of ���� can be extended onto the whole of IR��

For example� the following functions satisfy the criterion of Wintner and Conti� �r� � Cr �  or
�r� � C rj ln rj� � where C � � is a constant�

� Extension Principle If a solution of ���� stays bounded as time increases� then it can be ex�
tended to the whole of IR��
Assumption� In the following� the existence of the �ow f�tgt�IR of ���� is always assumed�

�� Phase Portrait
a� If ��t� is a solution of ����� then the function ��t�c� with an arbitrary constant c is also a solution�

b� Two arbitrary orbits of ���� have no common point or they coincide� Hence� the phase space of
���� is decomposed into disjoint orbits� The decomposition of the phase space into disjoint orbits is
called a phase portrait �
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c� Every orbit� di�erent from a steady state� is a regular smooth curve� which can be closed or not
closed�

�� Liouville�s Theorem
Let f�tgt�IR be the �ow of ����� D � M � IRn be an arbitrary bounded and measurable set� Dt �
� �t�D� and Vt � � vol�Dt� be the n�dimensional volume of Dt �Fig ���a�� Then the relation
d

dt
Vt �

Z
Dt

divf�x� dx holds for arbitrary t � IR � For n � �� Liouville�s theorem states�

d

dt
Vt �

Z Z
Dt

Z
divf�x�� x�� x�� dx� dx� dx�� �����

Dt

D
M

T
2

a) b)

Figure ���

Corollary� If divf�x� � � in M holds for ����� then the �ow of ���� is volume contracting� If
divf�x� � � in M holds� then the �ow of ���� is volume preserving�

A� For the Lorenz system ������ divf�x� y� z� � �����b�� Since � � � and b � �� divf�x� y� z� �

� holds� With Liouville�s theorem�
d

dt
Vt �

Z Z
Dt

Z
��� �  � b� dx� dx� dx� � ��� �  � b�Vt obviously

holds for any arbitrary bounded and measurable set D � IR�� The solution of the linear di�erential

equation ,Vt � ��� �  � b�Vt is Vt � V� � e������b�t� so that Vt  � follows for t ���

B� Let U � IRn�IRn be an open subset and H � U  IR a C��function� Then� ,xi �
�H

�yi
�x� y�� ,yi �

��H

�xi
�x� y� �i � � �� � � � � n� is called aHamiltonian di�erential equation� The function H is called the

Hamiltonian of the system� If f denotes the right�hand side of this di�erential equation� then obviously

divf�x� y� �
nX
i��

�
��H

�xi�yi
�x� y�� ��H

�yi�xi
�x� y�


� �� Hence� the Hamiltonian di�erential equations are

volume preserving�

�	������ Linear Di
erential Equations

�� General Statements
Let A�t� �  aij�t�!

n
i�j�� be a matrix function on IR � where every component aij � IR IR is a continuous

function� and let b� IR IRn be a continuous vector function on IR � Then

,x � A�t�x � b�t� ����a�

is called an inhomogeneous linear �rst�order di�erential equation in IRn� and

,x � A�t�x ����b�

is the corresponding homogeneous linear �rst�order di�erential equation�
� Fundamental Theorem for Homogeneous Linear Di	erential Equations Every solution
of ����a� exists on the whole of IR� The set of all solutions of ����b� forms an n�dimensional vector
subspace LH of the C��smooth vector functions over IR �
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� Fundamental Theorem for Inhomogeneous Linear Di	erential Equations The set of all
solutions LI of ����a� is an n�dimensional a�ne vector subspace of the C��smooth vector functions
over IR of the form LI � �� � LH � where �� is an arbitrary solution of ����a��

Let ��� � � � � �n be arbitrary solutions of ����b� and � �  ��� � � � � �n! the corresponding solution ma�

trix � Then � satis�es the matrix di�erential equation ,Z�t� � A�t�Z�t�� on IR� where Z � IRn�n� If
the solutions ��� � � � � �n form a basis of LH � then � �  ��� � � � � �n! is called the fundamental matrix
of ����b�� W �t� � det��t� is the Wronskian determinant with respect to the solution matrix � of
����b�� The formula of Liouville states that�

,W �t� � SpA�t�W �t� �t � IR�� ����c�

For a solution matrix� either W �t� � � on IR or W �t� �� � for all t � IR � The system ��� � � � � �n is a
basis of LH � if and only if det ���t�� � � � � �n�t�! �� � for a t �and so for all t��

� Theorem �Variation of Constants Formula� Let � be an arbitrary fundamental matrix of
����b�� Then the solution � of ����a� with initial point p at time t �  can be represented in the
form

��t� � ��t��� ��� p �

tZ
�

��t���s��� b�s� ds �t � IR�� ����d�

�� Autonomous Linear Di
erential Equations

Consider the di�erential equation

,x � Ax� �����

where A is a constant matrix of type �n� n�� The operator norm �see also ������ p� ��� of a matrix
A is given by kAk � maxfkAxk� x � IRn� kxk � g� where for the vectors of IRn the Euclidean norm
is again considered�
Let A and B be two arbitrary matrices of type �n� n�� Then

a� kA � Bk � kAk� kBk� b� k�Ak � j�j kAk �� � IR��

c� kAxk � kAkkxk x � IRn�� d� kABk � kAkkBk�
e� kAk �

p
�max � where �max is the greatest eigenvalue of ATA �

The fundamental matrix with initial value En at time t � � of ����� is the matrix exponential function

eAt � En �
At

 $
�

A�t�

� $
� � � � �

�X
i��

Aiti

i $
�����

with the following properties�

a� The series of eAt is uniformily convergent with respect to t on an arbitrary compact time interval
and absolutely convergent for every �xed t�

b� keAtk � ekAkt �t 	 ���

c�
d

dt
�eAt� � �eAt�� � AeAt � eAtA �t � IR��

d� e�t�s�A � etA esA �s� t � IR��

e� eAt is regular for all t and �eAt��� � e�At�
f� if A and B are commutative matrices of type �n� n�� i�e�� AB � BA holds� then B eA � eAB and

eA�B � eA eB�

g� if A and B are matrices of type �n� n� and B is regular� then eBAB
��

� B eAB���
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�� Linear Di
erential Equations with Periodic Coe�cients
We consider the homogeneous linear di�erential equation ����b�� where A�t� �  aij�t�!

n
i�j�� is a T�

periodic matrix function� i�e�� aij�t� � aij �t � T � ��t � IR � i� j � � � � � � n�� In this case we call
����b� a linear T�periodic di�erential equation� Then every fundamental matrix � of ����b� can be
written in the form ��t� � G�t�etR� where G�t� is a smooth� regular T �periodic matrix function and R
is a constant matrix of type �n� n� �Floquet�s theorem��
Let ��t� be the fundamental matrix of the T �periodic di�erential equation ����b�� normed at t � ��
i�e�� ���� � En� and let ��t� � G�t�etR be a representation of it according to Floquet�s theorem� The
matrix ��T � � eRT is called the monodromy matrix of ����b�� the eigenvalues �j of ��T � are the
multipliers of ����b�� A number � � C is a multiplier of ����b� if and only if there exists a solution
� �� � of ����b� such that ��t � T � � ���t� �t � IR� holds�

�	������ Stability Theory

�� Ljapunov Stability and Orbital Stability
Consider the non�autonomous di�erential equation ����� The solution ��t� t�� x�� of ���� is said
to be stable in the sense of Lyapunov if�

� t� 	 t� � � � � � 	 � 	��� t�� �x� �M
kx� � ��t�� t�� x��k � 	

�
� k��t� t�� x��� ��t� t�� x��k � �

� t 	 t��

����a�

The solution ��t� t�� x�� is called asymptotically stable in the sense of Lyapunov� if it is stable and�

� t� 	 t� �% � %�t�� � x� �M
kx� � ��t�� t�� x��k � %

�
� k��t� t�� x��� ��t� t�� x��k  �

for t ���

����b�

For the autonomous di�erential equation ����� there are other important notions of stability besides
the Lyapunov stability� The solution ��t� x�� of ���� is called orbitally stable �asymptotically orbitally
stable�� if the orbit ��x�� � f��t� x��� t � IRg is stable �asymptotically stable� as an invariant set� A
solution of ���� which represents an equilibrium point is Lyapunov stable exactly if it is orbitally
stable� The two types of stability can be di�erent for periodic solutions of �����

Let a �ow be given in IR�� whose invariant set is the torus T �� Locally� let the �ow be described in

a rectangular coordinate system by ,!� � �� ,!� � f��!��� where f� � IR  IR is a �� periodic smooth
function� for which�

�!� � IR � U�� �neighborhood of !�� �	�� 	� � U��

	� �� 	�

�
� f��	�� �� f��	���

An arbitrary solution satisfying the initial conditions �!����� !����� can be given on the torus by

!��t� � !����� !��t� � !���� � f��!����t �t � IR��

From this representation it can be seen that every solution is orbitally stable but not Lyapunov stable
�Fig ���b��

�� Asymptotical Stability� Theorem of Lyapunov
A scalar�valued function V is called positive de�nite in a neighborhood U of a point p �M � IRn� if�

� V � U � M  IR is continuous�

� V �x� � � for all x � U n fpg and V �p� � � �

Let U � M be an open subset and V � U  IR a continuous function� The function V is called a
Lyapunov function of ���� in U � if V ���t�� does not increase while for the solution ��t� � U holds�
Let V � U  IR be a Lyapunov function of ���� and let V be positive de�nite in a neighborhood U
of p� Then p is stable� If the condition V ���t� x��� � constant �t 	 �� always yields ��t� x�� � p for
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a solution � of ���� with ��t� x� � U �t 	 ��� i�e�� if the Lyapunov function is constant along a
complete trajectory� then this trajectory can only be an equilibrium point� and the equilibrium point
p is also asymptotically stable�

The point ��� �� is a steady point of the planar di�erential equation ,x � y� ,y � �x � x�y� The
function V �x� y� � x� � y� is positive de�nite in every neighborhood of ��� �� and for its derivative
d

dt
V �x�t�� y�t�� � ��x�t��y�t�� � � holds along an arbitrary solution for x�t�y�t� �� �� Hence� ��� �� is

asymptotically stable�

�� Classi�cation and Stability of Steady States
Let x� be an equilibrium point of ����� In the neighborhood of x� the local behavior of the orbits of
���� can be described under certain assumptions by the variational equation ,y � D f�x��y� where
Df�x�� is the Jacobian matrix of f in x�� If Df�x�� does not have an eigenvalue �j with Re�j � ��
then the equilibrium point x� is called hyperbolic� The hyperbolic equilibrium point x� is of type �m� k�
if Df�x�� has exactly m eigenvalues with negative real parts and k � n�m eigenvalues with positive
real parts� The hyperbolic equilibrium point of type �m� k� is called a sink� if m � n� a source� if k � n�
and a saddle point� if m �� � and k �� � �Fig ����� A sink is asymptotically stable� sources and
saddles are unstable �theorem on stability in the �rst approximation�� Within the three topological
basic types of hyperbolic equilibrium points �sink� source� saddle point� further algebraic distinctions
can be made� A sink �source� is called a stable node �unstable node� if every eigenvalue of the Jacobian
matrix is real� and a stable focus �unstable focus� if there are eigenvalues with non�vanishing imaginary
parts� For n � �� we get a classi�cation of saddle points as saddle nodes and saddle foci�

Type of equi�
librium point

Sink Source Saddle point

Eigenvalues of the
Jacobian matrix

Phase portrait

Figure ���

�� Stability of Periodic Orbits
Let ��t� x�� be a T �periodic solution of ���� and ��x�� � f��t� x��� t �  �� T !g its orbit� Under certain
assumptions� the phase portrait in a neighborhood of ��x�� can be described by the variational equation
,y � Df���t� x��� y� Since A�t� � Df���t� x��� is a T �periodic continuous matrix function of type
�n� n�� it follows from the Floquet theorem �see ��������� p� ���� that the fundamental matrix �x��t�
of the variational equation can be written in the form �x��t� � G�t�eRt� where G is a T �periodic regular
smooth matrix function with G��� � En� and R represents a constant matrix of type �n� n� which is not
uniquely given� The matrix �x��T � � eRT is called the monodromy matrix of the periodic orbit ��x���
and the eigenvalues ��� � � � � �n of eRT are called multipliers of the periodic orbit ��x��� If the orbit ��x��
is represented by another solution ��t� x��� i�e�� if ��x�� � ��x��� then the multipliers of ��x�� and ��x��
coincide� One of the multipliers of a periodic orbit is always equal to one �AndronovWitt theorem��
Let ��� � � � � �n��� �n �  be the multipliers of the periodic orbit ��x�� and let �x��T � be the monodromy
matrix of ��x��� Then

nX
j��

�j � Sp�x��T � and
nY
j��

�j � det�x��T � � exp

�Z T

�
SpDf���t� x���dt

�
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� exp

�Z T

�
divf���t� x��� dt

�
� �����

Hence� if n � �� then �� �  and �� � exp
�R T

� divf���t� x��� dt
	
�

Let ��t� �� ��� � �cos t� sin t� be a ���periodic solution of ����a�� The matrix A�t� of the variational
equation with respect to this solution is

A�t� � D f���t� �� ���� �

�
�� cos� t �� sin �t
� sin �t �� sin� t

�
�

The fundamental matrix �������t� normed at t � � is given by

�������t� �

�
e��t cos t � sin t
e��t sin t cos t

�
�
�

cos t � sin t
sin t cos t

��
e��t �

� 

�
�

where the last product is a Floquet representation of �������t�� Thus� �� � e��� and �� � � The multi�

pliers can be determined without the Floquet representation� For system ����a� divf�x� y� � ���x��
�y� holds� and hence divf�cos t� sin t� � ��� According to the formula above� �� � exp

�R ��
� ��dt

	
�

exp������

�� Classi�cation of Periodic Orbits
If the periodic orbit � of ���� has no further multiplier on the complex unit circle besides �n � � then
� is called hyperbolic� The hyperbolic periodic orbit is of type �m� k� if there are m multipliers inside
and k � n�  multipliers outside the unit circle� If m � � and k � �� then the periodic orbit of type
�m� k� is called a saddle point�

According to the Andronov�Witt theorem a hyperbolic periodic orbit � of ���� of type �n � � �� is
asymptotically stable� Hyperbolic periodic orbits of type �m� k� with k � � are unstable�

A� A periodic orbit � � f��t�� t �  �� T !g in the plane with multipliers �� and �� �  is asymptoti�

cally stable if j��j � � i�e�� if
Z T

�
divf���t�� dt � ��

B� If there is a further multiplier besides �n �  on the complex unit circle� then the Andronov�
Witt theorem cannot be applied� The information about the multipliers is not su�cient for the stability
analysis of the periodic orbit�

C� As an example� let the planar system ,x � �y � x f�x� � y��� ,y � x � y f�x� � y�� be given
by the smooth function f � ������  IR� which additionally satis�es the properties f�� � f ��� � �
and f�r��r � � � � for all r �� � r � �� Obviously� ��t� � �cos t� sin t� is a ���periodic solution of the

system and �������t� �
�

cos t � sin t
sin t cos t

��
 �
� 

�
is the Floquet representation of the fundamental matrix�

It follows that �� � �� � � The use of polar coordinates results in the system ,r � r f�r��� ,� � � This
representation yields that the periodic orbit ���� ��� is asymptotically stable�

� Properties of Limit Sets� Limit Cycles
The � � and  �limit sets de�ned in ������ p� ���� have with respect to the �ow of the di�erential
equation ���� with M � IRn the following properties� Let x �M be an arbitrary point� Then�

a� The sets ��x� and �x� are closed�

b� If ���x� �respectively ���x�� is bounded� then �x� �� � �respectively ��x� �� �� holds� Furthermore�
�x� �respectively ��x�� are in this case invariant under the �ow ���� and connected�

If for instance� ���x� is not bounded� then �x� is not necessarily connected �Fig ���a��

For a planar autonomous di�erential equation ����� �i�e�� M � IR�� the Poincar�e�Bendixson theorem
is valid�
Poincar�e�Bendixson Theorem� Let ���� p� be a non�periodic solution of ����� for which ���p� is
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bounded� If �p� contains no equilibrium point of ����� then �p� is a periodic orbit of �����
Hence� for autonomous di�erential equations in the plane� attractors more complicated than an equi�
librium point or a periodic orbit are not possible�

A periodic orbit � of ���� is called a limit cycle� if there exists an x �� � such that either � � �x� or
� � ��x� holds� A limit cycle is called a stable limit cycle if there exists a neighborhood U of � such
that � � �x� holds for all x � U � and an unstable limit cycle if there exists a neighborhood U of � such
that � � ��x� holds for all x � U �

A� For the �ow of ����a�� the property � � �p� for all p �� ��� �� is valid for the periodic orbit

� � f�cos t� sin t�� t �  �� ���g� Hence� U � IR�nf��� ��g is a neighborhood of � such that with it� � is
a stable limit cycle �Fig ���b��

B� In contrast� for the linear di�erential equation ,x � �y� ,y � x� the orbit � � f�cos t� sin t�� t �
 �� ��!g is a periodic orbit� but not a limit cycle �Fig ���c��

�� m�Dimensional Embedded Tori as Invariant Sets
A di�erential equation ���� can have an m�dimensional torus as an invariant set� An m�dimensional
torus Tm embedded into the phase space M � IRn is de�ned by a di�erentiable mapping g� IRm  IRn�
which is supposed to be ���periodic in every coordinate!i as a function �!�� � � � � !m� + g�!�� � � � � !m��

In simple cases� the motion of the system ���� on the torus can be described in a rightangular co�

ordinate system by the di�erential equations ,!i � i �i � � �� � � � � m�� The solution of this system
with initial values �!����� � � � � !m���� at time t � � is !i�t� � it � !i��� �i � � �� � � � � m� t � IR��
A continuous function f � IR  IRn is called quasiperiodic if f has a representation of the form f�t� �
g��t� �t� � � � � nt�� where g is also a di�erentiable function as above� which is ���periodic in every
component� and the frequencies i are incommensurable� i�e�� there are no such integers ni with
mP
i��

n�i � � for which n�� � � � �� nmm � � holds�

�	������ InvariantManifolds
�� De�nition� Separatrix Surfaces
Let � be a hyperbolic equilibrium point or a hyperbolic periodic orbit of ����� The stable manifold
W s��� �respectively unstable manifoldW u���� of � is the set of all points of the phase space such that
the orbits tending to � as t �� �resepctively t ��� pass through these points�

W s��� � fx �M � �x� � �g and W u��� � fx �M � ��x� � �g� �����

Stable and unstable manifolds are also called separatrix surfaces�

In the plane� the di�erential equation

,x � �x� ,y � y � x� ����a�

is considered� The solution of ����a� with initial state �x�� y�� at time t � � is explicitly given by

��t� x�� y�� � �e�tx�� ety� �
x��
�

�et � e��t�� � ����b�

For the stable and unstable manifolds of the equilibrium point ��� �� of ����a� we get�

W s���� ��� � f�x�� y��� lim
t��� ��t� x�� y�� � ��� ��g � f�x�� y��� y� �

x��
�

� �g�
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W u���� ��� � f�x�� y��� lim
t��� ��t� x�� y�� � ��� ��g � f�x�� y��� x� � �� y� � IRg �Fig ���a��
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Let M and N be two smooth surfaces in IRn� and let LxM and LxN be the corresponding tangent planes
to M and N through x� The surfaces M and N are transversal to each other if for all x � M � N the
following relation holds�

dimLxM � dimLxN � n � dim �LxM � LxN��

For the section represented in Fig ���b we have dimLxM � �� dimLxN �  and dim�LxM �
LxN� � �� Hence� the section represented in Fig ���b is transversal�

�� Theorem of Hadamard and Perron
Important properties of separatrix surfaces are given by the Theorem of Hadamard and Perron�
Let � be a hyperbolic equilibrium point or a hyperbolic periodic orbit of �����

a� The manifolds W s��� and W u��� are generalized Cr�surfaces� which locally look like Cr�smooth ele�
mentary surfaces� Every orbit of ����� which does not tend to � for t �� or t ��� respectively�
leaves a su�ciently small neighborhood of � for t �� or t ��� respectively�

b� If � � x� is an equilibrium point of type �m� k�� then W s�x�� and W u�x�� are surfaces of dimension
m and k� respectively� The surfaces W s�x�� and W u�x�� are tangent at x� to the stable vector subspace

Es � fy � IRn� eD f�x��ty  � for t ��g of equation ,y � Df�x��y �����a�

and the unstable vector subspace

Eu � fy � IRn� eD f�x��ty  � for t ��g of equation ,y � Df�x��y� respectively� �����b�

c� If � is a hyperbolic periodic orbit of type �m� k�� then W s��� and W u��� are surfaces of dimension
m �  and k � � respectively� and they intersect each other transversally along � �Fig ���a��

A� To determine a local stable manifold through the steady state ��� �� of the di�erential equation
����a� we suppose that W s

loc���� ��� has the following form�
W s

loc���� ��� � f�x� y�� y � h�x�� jxj � %� h� ��%�%� IR di�erentiableg�
Let �x�t�� y�t�� be a solution of ����a� lying in W s

loc���� ���� Based on the invariance� for times s near
to t we get y�s� � h�x�s��� By di�erentiation and representation of ,x and ,y from the system ����a�
we get the initial value problem h��x� ��x� � h�x� �x�� h��� � � for the unknown function h�x�� If we

are looking for the solution in the form of a series expansion h�x� �
a�
�
x� �

a�
�$

x� � � � � � where h���� � �

is taken under consideration� then we get by comparing the coe�cients a� � ��

�
and ak � � for k 	 ��

B� For the system

,x � �y � x�� x� � y��� ,y � x � y�� x� � y��� ,z � �z �����

with a parameter � � �� the orbit � � f�cos t� sin t� ��� t �  �� ��!g is a periodic orbit with multipliers
�� � e���� �� � e��� and �� � �
In cylindrical coordinates x � r cos �� y � r sin�� z � z� with initial values �r�� ��� z�� at time t � ��
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the solution of ����� has the representation �r�t� r��� ��t� ���� e
�tz��� where r�t� r�� and ��t� ��� is the

solution of ����a� in polar coordinates� Consequently�

W s��� � f�x� y� z�� z � �g n f��� �� ��g and W u��� � f�x� y� z�� x� � y� � g �cylinder��

Both separatrix surfaces are shown in Fig ���b�
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Figure ���

�� Local Phase Portraits Near Steady States for n � �
We consider now the di�erential equation ���� with the hyperbolic equilibrium point � for n � �� Set
A � D f��� and let det �E � A! � �� � p�� � q� � r be the characteristic polynomial of A� With the
notation 	 � p q � r and % � �p�q� � �p�r � �q� � �pqr � ��r� �discriminant of the characteristic
polynomial�� the di�erent equilibrium point types are characterized in Table ����

�� Homoclinic and Heteroclinic Orbits
Suppose �� and �� are two hyperbolic equilibrium points or periodic orbits of ����� If the separatrix
surfaces W s���� and W u���� intersect each other� then the intersection consists of complete orbits�
For two equilibrium points or periodic orbits� the orbit � � W s���� �W u���� is called heteroclinic if
�� �� �� �Fig ���a�� and homoclinic if �� � ��� Homoclinic orbits of equilibrium points are also called
separatrix loops �Fig ���b��
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Consider the Lorenz system ����� with �xed parameters � � �� b � ��� and with variable r� The
equilibrium point ��� �� �� of ����� is a saddle for  � r � ����� � � � � which is characterized by a two�
dimensional stable manifold W s and a one�dimensional unstable manifold W u� If r � ����� � � � � then
there are two separatrix loops at ��� �� ��� i�e�� as t  �� branches of the unstable manifold return
�over the stable manifold� to the origin �see  ���!��

�	������ Poincar�eMapping
�� Poincar�e Mapping for Autonomous Di
erential Equations
Let � � f��t� x��� t �  �� T !g be a T �periodic orbit of ���� and

P
a �n � ��dimensional smooth

hypersurface� which intersects the orbit � transversally in x� �Fig ���a�� Then� there is a neighbor�
hood U of x� and a smooth function  � U  IR such that  �x�� � T and �� �x�� x� � P for all x � U �
The mapping P � U �P  P

with P �x� � �� �x�� x� is called the Poincar�e mapping of � at x�� If
the right�hand side f of ���� is r times continuously di�erentiable� then P is also r times continu�
ously di�erentiable � The eigenvalues of the Jacobi matrix DP �x�� are the multipliers ��� � � � � �n�� of
the periodic orbit� They do not depend on the choice of x� on � and on the choice of the transversal
surface�
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Table �� Steady state types in three�dimensional phase spaces

Parameter
domain

�
Type of equili�
brium point

Roots of the charac�
teristic polynomial

Dimension of
W s and W u

	 � �� r � ��
q � �

% � � stable
node

Im�j � �
�j � �� j � � �� �

dimW s � �� dimW u � �

% � � stable
focus

Re���� � �
�� � �

% � �� % � ��

Parameter
domain

�
Type of equili�
brium point

Roots of the charac�
teristic polynomial

Dimension of
W s and W u

	 � �� r � ��
q � �

% � � unstable
node

Im�j � �
�j � �� j � � �� �

dimW s � �� dimW u � �

% � � unstable
focus

Re���� � �
�� � �

% � �� % � ��

Parameter
domain

�
Type of equili�
brium point

Roots of the charac�
teristic polynomial

Dimension of
W s and W u

	 � �� r � ��
q � � or
r � �� q � �

% � � saddle
node

Im�j � �
���� � �� �� � � dimW s � �� dimW u � 

% � � saddle
focus

Re���� � �
�� � �

% � �� % � ��

Parameter
domain

�
Type of equili�
brium point

Roots of the charac�
teristic polynomial

Dimension of
W s and W u

	 � �� r � ��
q � � or
r � �� q � �

% � � saddle
node

Im�j � �
���� � �� �� � � dimW s � � dimW u � �

% � � saddle
focus

Re���� � �
�� � �

% � �� % � ��
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A system ����� in M � U can be connected with the Poincar�e mapping� which makes sense until the
iterates stay in U � The periodic orbits of ���� correspond to the equilibrium points of this discrete
system� and the stability of these equilibrium points corresponds to the stability of the periodic orbits
of �����

x0x

��)� � �x x

steady state periodic orbit

M

s

x1 x0

x2

a) b)

Figure ���

We consider for the system ����a� the transversal hyperplanesX
� f�r� ��� r � �� � � ��g

in polar coordinate form� For these planes U �
P

can be chosen� Obviously�  �r� � �� ��r � �� and
so

P �r� �   � �r�� � � e���!�����
where the solution representation of ����a� is used� It is also valid that P �

P
� �

P
� P �� �  and

P ��� � e��� � �

�� Poincar�eMapping forNon�Autonomous Time�Periodic Di
erential Equations
A non�autonomous di�erential equation ����� whose right�hand side f has period T with respect
to t� i�e�� for which f�t � T� x� � f�t� x� �� t � IR � � x � M� holds� is interpreted as an autonomous
di�erential equation ,x � f�s� x�� ,s �  with cylindrical phase space M �fs mod Tg� Let s� � fs mod
Tg be arbitrary� Then�

P
� M � fs�g is a transversal plane �Fig ���b�� The Poincar�e mapping is

given globally as P �
P P

over x� +� ��s� � T� s�� x��� where ��t� s�� x�� is the solution of ����
with the initial state x� at time s��

�	������ Topological Equivalence of Di
erential Equations

�� De�nition
Suppose� besides ���� with the corresponding �ow f�tgt�IR� that a further autonomous di�erential
equation

,x � g�x�� ������

is given� where g � N  IRn is a Cr�mapping on the open set N � IRn� Of course� the �ow f�tgt�IR of
������ should exist�

The di�erential equations ���� and ������ �or their �ows� are called topologically equivalent if there
exists a homeomorphism h � M  N �i�e�� h is bijective� h and h�� are continuous�� which transforms
each orbit of ���� to an orbit of ������ preserving the orientation� but not necessarily preserving
the parametrization� The systems ���� and ������ are topologically equivalent if there also exists a
continuous mapping  � IR�M  IR � besides the homeomorphism h� M  N � such that  is strictly
monotonically increasing at every �xed x � M � maps IR onto IR� with  ��� x� � � for all x � M and

asatis�es the relation h��t�x�� � ���t�x��h�x�� for all x � M and t � IR �

In the case of topological equivalence� the equilibrium points of ���� go over into steady states of
������ and periodic orbits of ���� go over into periodic orbits of ������� where the periods are not
necessarily coincident� Hence� if two systems ���� and ������ are topologically equivalent� then the
topological structure of the decomposition of the phase spaces into orbits is the same� If two systems
���� and ������ are topologically equivalent with the homeomorphism h� M  N and if h preserves
the parametrization� i�e�� h��t�x�� � �t�h�x�� holds for every t� x� then ���� and ������ are called
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topologically conjugate�

Topological equivalence or conjugacy can also refer to subsets of the phase spaces M and N � Suppose�
e�g�� ���� is de�ned on U� � M and ������ on U� � N � We say that ���� on U� is topologically
equivalent to ������ on U� if there exists a homeomorphism h � U�  U� which transforms the inter�
section of the orbits of ���� with U� into the intersection of the orbits of ������ with U� preserving
the orientation�

A� Homeomorphisms for ���� and ������ are mappings where� e�g�� stretching and shrinking of
the orbits are allowed� cutting and closing are not�
The �ows corresponding to phase portraits of Fig ��
a and Fig ��
b are topologically equivalent�
the �ows shown in Fig ��
a and Fig ��
c are not�

a) b) c)

Figure ���

B� Consider the two linear planar di�erential equations �see  ��!�

,x � Ax and ,x � Bx with A �
�� ��
�� �

�
and B �

�
� �
� ��

�
� The phase portraits of these systems

close to ��� �� are shown in Fig ����a and Fig ����b�

The homeomorphism h � IR�  IR� with h�x� � Rx � where R �
p
�

�
 �
 

�
� and the function

 � IR� IR�  IR with  �t� x� �


�
t transform the orbits of the �rst system into the orbits of the second

one� Hence� the two systems are topologically equivalent�

x1

x2 x2

x1

a) b)

Figure ���

�� Theorem of Grobman and Hartman
Let p be a hyperbolic equilibrium point of ����� Then� in a neighborhood of p the di�erential equation
���� is topologically equivalent to its linearization ,y � Df�p�y�

������ DiscreteDynamical Systems
�	������ Steady States� Periodic Orbits and Limit Sets

�� Types of Steady State Points
Let x� be an equilibrium point of ����� with M � IRn� The local behavior of the iteration �����
close to x� is given� under certain assumptions� by the variational equation yt�� � D��x��yt� t � � � If
D��x�� has no eigenvalue �i with j�ij � � then the steady state point x�� analogously to the di�erential
equation case� is called hyperbolic� The hyperbolic equilibrium point x� is of type �m� k� if Df�x�� has
exactly m eigenvalues inside and k � n�m eigenvalues outside the complex unit circle� The hyperbolic
equilibrium point of type �m� k� is called a sink for m � n� a source for k � n and a saddle point for
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m � � and k � �� A sink is asymptotically stable� sources and saddles are unstable �theorem on stability
in the �rst approximation for discrete systems��

�� Periodic Orbits
Let ��x�� � f�k�x��� k � �� � � � � T � g be a T �periodic orbit �T 	 �� of ������ If x� is a hyperbolic
equilibrium point of the mapping �T � then ��x�� is called hyperbolic�
The matrix D�T �x�� � D���T���x��� � � �D��x�� is called the monodromy matrix� the eigenvalues �i
of D�T �x�� are the multipliers of ��x���

If all multipliers �i of ��x�� have an absolute value less than one� then the periodic orbit ��x�� is asymp�
totically stable�

�� Properties of � �Limit Set
Every  �limit set �x� of ����� with M � IRn is closed� and ���x�� � �x�� If the semiorbit ���x� is
bounded� then �x� �� � and �x� is invariant under �� Analogous properties are valid for ��limit sets�

Suppose the di�erence equation xt�� � �xt� t � ���� � � � � is given on IR with ��x� � �x� Obvi�
ously� the relations �� � f��g� ����� � ��� � ��� and ����� � �� are satis�ed for
x � � We mention that �� is not connected� is di�erent from the case of di�erential equations�

�	������ InvariantManifolds

�� Separatrix Surfaces
Let x� be an equilibrium point of ������ Then W s�x�� � fy � M � �i�y� x� for i  ��g is called
a stable manifold and W u�x�� � fy �M � �i�y� x� for i ��g an unstable manifold of x�� Stable
and unstable manifolds are also called separatrix surfaces�

�� Theorem of Hadamard and Perron
The theorem of Hadamard and Perron describes the properties of separatrix surfaces for discrete sys�
tems in M � IRn�
If x� is a hyperbolic equilibrium point of ����� of type �m� k�� then W s�x�� and W u�x�� are generalized
Cr�smooth surfaces of dimension m and k� respectively� which locally look like Cr�smooth elementary
surfaces� The orbits of ������ which do not tend to x� for i  �� or i  ��� leave a su�ciently
small neighborhood of x� for i  �� or i  ��� respectively� The surfaces W s�x�� and W u�x��
are tangent at x� to the stable vector subspace Es � fy � IRn �  D��x��!

i y  � for i  ��g of
yi�� � D��x��yi and the unstable vector subspace Eu � fy � IRn �  D��x��!

iy  � for i  ��g�
respectively�

We consider the following time discrete dynamical system from the family of H�enon mappings�

xi�� � x�i � yi � �� yi�� � xi� i � Z� ������

Both hyperbolic equilibrium points of ������ are P� � �
p

��
p

�� and P� � ��p���p���
Determination of the local stable and unstable manifolds of P�� The variable transformation xi �
�i �

p
�� yi � �i �

p
� transforms system ������ into the system �i�� � ��i � �

p
� �i � �i� �i�� � �i

with the equilibrium point ��� ��� The eigenvectors a� � �
p

� �
p

�� � and a� � �
p

� � p�� � of the

Jacobian matrix Df���� ��� correspond to the eigenvalues ���� �
p

� � p�� so Es � fta�� t � IRg
and Eu � fta�� t � IRg� Supposing that W u

loc���� ��� � f��� �� � � � ����� j�j � %� � � ��%�%� 
IR di�erentiableg� we are looking for� in the form of a power series ���� � �

p
��p�� ��k���� � � � From

��i� �i� � W u
loc���� ���� ��i��� �i��� � W u

loc���� ��� follows� This leads to an equation for the coe�cients
of the decomposition of �� where k � �� The theoretical shape of the stable and unstable manifolds is
shown in Fig ����a �see  ���!��

�� Transverse Homoclinic Points
The separatrix surfaces W s�x�� and W u�x�� of a hyperbolic equilibrium point x� of ����� can intersect
each other� If the intersection W s�x���W u�x�� is transversal� then every point y � W s�x���W u�x��
is called a transversal homoclinic point�
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Fact� If y is a transversal homoclinic point� then the orbit f�i�y�g of the invertible system ����� consists
only of transversal homoclinic points �Fig ����b��

�	������ Topological Conjugacy of Discrete Systems

�� De�nition
Suppose� besides ������ a further discrete system

xt�� � ��xt� ������

with � � N  N is given� where N � IRn is an arbitrary set and � is continuous �M and N can be
general metric spaces�� The discrete systems ����� and ������ �or the mappings � and �� are called
topologically conjugate if there exists a homeomorphism h� M  N such that � � h�� �� �h� If �����
and ������ are topologically conjugated� then the homeomorphism h transforms the orbits of �����
into orbits of �������

�� Theorem of Grobman and Hartman
If � in ����� is a di�eomorphism � � IRn  IRn� and x� a hyperbolic equilibrium point of ������ then
in a neighborhood of x� ����� is topologically conjugate to the linearization yt�� � D��x��yt�

������ Structural Stability �Robustness

�	������ Structurally Stable Di
erential Equations

�� De�nition
The di�erential equation ����� i�e�� the vector �eld f � M  IRn� is called structurally stable or robust � if
small perturbations of f result in topologically equivalent di�erential equations� The precise de�nition
of robustness requires the notion of distance between two vector �elds de�ned on M � We restrict our
investigations to smooth vector �elds on M � which have a common open connected absorbing set U �
M � Let the boundary �U of U be a smooth �n� ��dimensional hypersurface and suppose that it can
be represented as �U � fx � IRn � h�x� � �g� where h � IRn  IR is a C��function with grad h�x� �� �

in a neighborhood of �U � Let X��U� be the metric space of all smooth vector �elds on M with the C�

metric

��f� g� � sup
x�U
k f�x�� g�x�k� sup

x�U
kDf�x��Dg�x�k� ������

�In the �rst term of the right�hand side k � k means the Euclidean vector norm� in the second one the
operator norm�� The smooth vector �elds f intersecting transversally the boundary �U in the direction
U � i�e�� for which grad h�x�Tf�x� �� �� �x � �U� and �t�x� � U �x � �U� t � �� hold� form the set

X�
��U� � X��U�� The vector �eld f � X�

��U� is called structurally stable if there is a 	 � � such that

every other vector �eld g � X�
��U� with ��f� g� � 	 is topologically equivalent to f �

Consider the planar di�erential equation g ��� ��

,x � �y � x ��� x� � y��� ,y � x � y ��� x� � y�� ������



��� ��� Dynamical Systems and Chaos

with parameter �� where j�j � � The di�erential equation g belongs� e�g�� to X�
��U� with U � f�x� y��

x� � y� � �g �Fig ����a�� Obviously� ��g ��� ��� g ��� ��� � j�j �p� � �� The vector �eld g ��� �� is
structurally unstable� there exist vector �elds arbitrarily close to g ��� ��� which are not topologically
equivalent to g ��� �� �Fig ����b�c�� This is clear if we consider the polar coordinate representation

,r � �r� � �r� ,� �  of ������� For � � � there always exists a stable limit cycle r �
p
��

y y

x x

U

δU

���

y

� *��a) b) c)

x

Figure ���

�� Structurally Stable Systems in the Plane
Suppose the planar di�erential equation ���� with f � X�

��U� is structurally stable� Then�

a� ���� has only a �nite number of equilibrium points and periodic orbits�

b� All �limit sets �x� with x � U of ���� consist of equilibrium points and periodic orbits only�

Theorem of Andronov and Pontryagin� The planar di�erential equation ���� with f � X�
��U�

is structurally stable if and only if�

a� All equilibrium points and periodic orbits in U are hyperbolic�

b�There are no separatrices� i�e�� no heteroclinic or homoclinic orbits� coming from a saddle and tending
to a saddle point�

�	������ Structurally Stable Discrete Systems
In the case of discrete systems ������ i�e�� of mappings � � M  M � let U � M � IRn be a bounded�

open� and connected set with a smooth boundary� Let Di� ��U� be the metric space of all di�eomor�
phisms on M with the corresponding U de�ned C��metric� Suppose the set Di� �

��U� �Di��U� consists

of the di�eomorphisms �� for which ��U� � U is valid� The mapping � � Di� �
��U� �and the corre�

sponding dynamical system ������ is called structurally stable if there exists a 	 � � such that every

other mapping � � Di� �
��U� with ���� �� � 	 is topologically conjugate to ��

�	������ Generic Properties

�� De�nition
A property of elements of a metric space �M� �� is called generic �or typical� if the set of the elements
B of M with this property form a set of the second Baire category � i�e�� it can be represented as B �T
m�������

Bm� where every set Bm is open and dense in M �

A� The sets IR and II � IR �irrational numbers� are sets of second Baire category� but Q � IR is not�

B� Density alone as a property of 	typical
 is not enough� Q � IR and II � IR are both dense� but
they cannot be typical at the same time�

C� There is no connection between the Lebesgue measure � �see ����� �� p� ���� of a set from IR

and the Baire category of this set� The set B �
T

k��������
Bk withBk �

S
n��

�
an � 

k �n
� an �



k �n

�
� where

Q � fang�n�� represents the rational numbers� is a set of second Baire category �see  ���!�  ���!��
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On the other hand� since Bk % Bk�� and ��Bk� � �� also ��B� � lim
k��

��Bk� � lim
k��

�

k
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� �

holds�
�� Generic Properties of Planar Systems� Hamiltonian Systems
For planar di�erential equations the set of all structurally stable systems from X�

��U� is open and dense

in X�
��U�� Hence� structurally stable systems are typical for the plane� It is also typical that every orbit

of a planar system from X�
��U� for increasing time tends to one of a �nite number of equilibrium points

and periodic orbits� Quasiperiodic orbits are not typical� Under certain assumptions� in the case of
Hamiltonian systems� the quasiperiodic orbits of di�erential equation are preserved in the case of small
perturbations� Hence� Hamiltonian systems are not typical systems�

Given in IR� a Hamiltonian system in action�angle variables ,j� � �� ,j� � �� ,!� �
�H�

�j�
� ,!� �

�H�

�j�
�

where the Hamiltonian H��j�� j�� is analytical� Obviously� this system has the solutions j� � c�� j� �
c�� !� � �t � c�� !� � �t � c� with constants c�� � � � � c�� where � and � can depend on c� and c��
The relation �j�� j�� � �c�� c�� de�nes an invariant torus T �� Consider now the perturbed Hamiltonian

H��j�� j�� � �H��j�� j�� !�� !��

instead of H�� where H� is analytical and � � � is a small parameter�
The KolmogorovArnoldMoser theorem �KAM theorem� says in this case that if H� is non�degenera�

te� i�e�� det

�
��H�

�j�k

�
�� �� then in the perturbed Hamiltonian system most of the invariant non�resonant

tori will not vanish for su�ciently small � � � but will be only slightly deformed� 	Most of the tori

means that the Lebesgue measure of the complement set with respect to the tori tends to zero if � tends
to �� A torus� de�ned as above and characterized by � und �� is called non�resonant if there exists a

constant c � � such that the inequality

������� � p

q

����� 	 c

q���
holds for all positive integers p and q�

�� Non�Wandering points� Morse�Smale Systems
Let f�tgt�IR be a dynamical system on the n�dimensional compact orientable manifold M � The point
p �M is called non�wandering with respect to f�tg if

� T � � � t� jtj 	 T � �t�Up� � Up �� � ������

holds for an arbitrary neighborhood Up � M of p�

Steady states and periodic orbits consist only of non�wandering points�

The set )��t� of all non�wandering points of the dynamical systems generated by ���� is closed� in�
variant under f�tg and contains all periodic orbits and all  �limit sets of points from M �
The dynamical system f�tgt�IR on M generated by a smooth vector �eld is called a Morse�Smale system
if the following conditions are ful�lled�

� The system has �nitely many equilibrium points and periodic orbits and they are all hyperbolic�

� All stable and unstable manifolds of equilibrium points and periodic orbits are transversal to each
other�

� The set of all non�wandering points consists only of equilibrium points and periodic orbits�

Theorem of Palis and Smale� Morse�Smale systems are structurally stable�
The converse statement of the theorem of Palis and Smale is not true� In the case of n 	 �� there exist
structurally stable systems with in�nitely many periodic orbits�
For n 	 �� structurally stable systems are not typical�
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���� QuantitativeDescription ofAttractors

������ ProbabilityMeasures onAttractors

�	������ InvariantMeasure

�� De�nition� Measure Concentrated on the Attractor
Let f�tgt�� be a dynamical system on �M� ��� Let B be the ��algebra of Borel sets on M ������ ��
p� ���� and let �� B   ����! be a measure on B� Every mapping �t is supposed to be � measurable�
The measure � is called invariant under f�tgt�� if ����t�A�� � ��A� holds for all A � B and t � ��
If the dynamical system f�tgt�� is invertible� then the property of the measure being invariant under
the dynamical system can be expressed as ���t�A�� � ��A� �A � B� t � ��� The measure � is said
to be concentrated on the Borel set A � M if ��M n A� � �� If 4 is also an attractor of f�tgt�� and �
is an invariant measure under f�tg� then it is concentrated at 4� if ��B� � � for every Borel set B with
4 �B � ��
The support of a measure � � B   ����!� denoted by supp �� is the smallest closed subset of M on
which the measure � is concentrated�

A� We consider the Bernoulli shift mapping on M �  �� !�

xt�� � �xt �mod�� �����a�

In this case the map ��  �� !  �� ! is de�ned as

��x� �
�

�x� � � x � ���
�x� � �� � x � � �����b�

The de�nition yields that the Lebesgue measure is invariant under the Bernoulli shift mapping� If a

number x �  �� � is written in dyadic form x �
�X
n��

an ���n �an � � or �� then this representation can

be identi�ed with x � �a�a�a� � � � � The result of the operation �x� mod � can be written as �a�� a
�
� a

�
� � � �

with a�i � ai�� � i�e�� all digits ak are shifted to the left by one position and the �rst digit is omitted�

B� The mapping " �  �� !  �� ! with

"�y� �

�
�y� � � y � ���

��� y�� �� � y � 
������

is called a tent mapping and the Lebesgue measure is an invariant measure� The homeomorphism

h �  �� �   �� � with y �
�

�
arcsin

p
x transforms the mapping � from ����� into ������� Hence�

in the case of � � �� ����� has an invariant measure which is absolutely continuous� For the density
���y� �  of ������ and ��x� of ����� at � � � it is valid that ���y� � ��h���y�� j�h�����y�j� It follows

directly that ��x� �


�
q
x�� x�

�

C� If x� is a stable periodic point of period T of the invertible discrete dynamical system f�ig�
then � �



T

T��X
i��

	�i�x�� is a probability measure for f�ig� Here� 	x� is the Dirac measure concentrated

at x��

�� Natural Measure
Let 4 be an attractor of f�tgt�� in M with domain of attraction W � For an arbitrary Borel set A � W
and an arbitrary point x� � W de�ne the number�

��A� x�� �� lim
T��

t�T�A� x��

T
� ������
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Here� t�T�A� x�� is that part of the time T � � for which the orbit portion f�t�x��gTt�� lies in the set A�
If ��A� x�� � � for ��a�e�� x� from W � then let ��A� �� ��A� x��� Since almost all orbits with initial
points x� � W tend to 4 for t ��� � is a probability measure concentrated at 4�

�	������ Elements of Ergodic Theory

�� Ergodic Dynamical Systems
A dynamical system f�tgt�� on �M� �� with invariant measure � is called ergodic �we also say that the
measure is ergodic� if either ��A� � � or ��M nA� � � for every Borel set A with ��t�A� � A �� t � ���
If f�tg is a discrete dynamical system ������ � � M  M is a homeomorphism and M is a compact
metric space� then there always exists an invariant ergodic measure�

A� Suppose there is given with a parameter � �  �� ��! the rotation mapping of the circle S�

xt�� � xt � � �mod ���� t � �� � � � � � �����

with ��  �� ���  �� ���� de�ned by ��x� � x�� �mod���� The Lebesgue measure is invariant under

�� If
�

��
is irrational� then ����� is ergodic� if

�

��
is rational� then ����� is not ergodic�

B� Dynamical systems with stable equilibrium points or stable periodic orbits as attractors are
ergodic with respect to the natural measure�

Birkho	 Ergodic Theorem� Suppose that the dynamical system f�tgt�� is ergodic with respect to
the invariant probability measure �� Then� for every integrable function h � L��M�B� ��� the time

average along the positive semiorbits f�t�x��g�t�� � i�e� h�x�� � lim
T���



T

Z T

�
h ��t�x��� dt for �ows and

h�x�� � lim
n��



n

n��X
i��

h ��i�x��� for discrete systems� coincide with the space average
Z
M

h d� for ��a�e�

points x� �M �

�� Physical or SBRMeasure
The statement of the ergodic theorem is useful only if the support of the measure � is large� Let � �
M  M be a continuous mapping� and �� B  IR be an invariant measure� We call �see  ���!� � an
SBR measure �according to Sinai� Bowen and Ruelle� if for any continuous function h� M  IR the set
of all points x� �M � for which

lim
n��



n

n��X
i��

h��i�x��� �
Z
M

h d� �����a�

holds� has a positive Lebesgue measure for this� It is su�cient that the sequence of measures

�n ��


n

n��X
i��

	�i�x� �����b�

where 	x is the Dirac measure� weakly converges to � for almost all x � M � i�e�� for every continuous

function
Z
M

h d�n 
Z
M

hd� as n ���

For some important attractors� such as the H�enon attractor� the existence of an SBR measure is
proven�

�� Mixing Dynamical Systems
A dynamical system f�tgt�� on �M� �� with invariant probability measure � is called mixing if
lim
t���� �A � ��t�B�� � ��A���B� holds for arbitrary Borel sets A�B � M � For a mixing system� the

measure of the set of all points which are at t � � in A and under �t for large t in B� depends only on

�Here and in the following a�e� is an abbreviation for �almost everywhere��
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the product ��A���B��
A mixing system is also ergodic� Let f�tg be a mixing system and A be a Borel set with ��t�A� �
A �t � ��� Then ��A�� � lim

t������t�A� � A� � ��A� holds and ��A� is � or �

A �ow f�tg of ���� is mixing if and only if the relation

lim
t���

Z
M

 g��t�x��� g ! h�x�� h ! d� � � ������

holds for arbitrary quadratically integrable functions g� h � L��M�B� ��� Here� g and h denote the
space average� which is replaced by the time average�

The modulo mapping �����a� is mixing� The rotation mapping ����� is not mixing with respect

to the probability measure
�

��
�

�� Autocorrelation Function
Suppose the dynamical system f�tgt�� on M with invariant measure � is ergodic� Let h � M  IR
be an arbitrary continuous function� f�t�x�gt�� be an arbitrary semiorbit and let the space average

h be replaced by the time average� i�e�� by lim
T��



T

TZ
�

h ��t�x�� dt in the time�continuous case and by

lim
n��



n

n��X
i��

h ��i�x�� in the time�discrete case� With respect to h the autocorrelation function along

the semiorbit f�t�x�gt�� to a time point  	 � is de�ned for a �ow by

Ch� � � lim
T��



T

TZ
�

h ��t�� �x�� h ��t�x�� dt� h � �����a�

and for a discrete system by

Ch� � � lim
n��



n

n��X
i��

h ��i�� �x�� h ��i�x��� h �� �����b�

The autocorrelation function is de�ned also for negative time� where Ch��� is considered as an even
function on IR or Z�

Periodic or quasiperiodic orbits lead to periodic or quasiperiodic behavior of Ch� A quicker descent of
Ch� � for increasing  and arbitrary test function h refers to chaotic behavior� If Ch� � decreases for
increasing  with an exponential speed� then it means mixed behavior�

�� Power Spectrum
The Fourier transform of Ch� � is called a power spectrum �see also ������� �� p� ���� and is denoted

by Ph��� In the time�continuous case� under the assumption that
Z ��

��
jCh� �jd ��� we have

Ph�� �

��Z
��

Ch� �e�i�� d � �

�Z
�

Ch� � cos� � d � �����a�

In the time�discrete case� if
��P

k���
jCh�k�j � �� holds� then

Ph�� � Ch��� � �
�X
k��

Ch�k� cosk� �����b�

If the absolute integrability or summability of Ch��� does not hold� then� in the most important cases�
Ph can be considered as a distribution� The power spectrum corresponding to the periodic motions of
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a dynamical system is characterized by equidistant impulses� For quasiperiodic motions� there occur
impulses in the power spectrum� which are linear combinations with integer coe�cients of the basic
impulses of the quasiperiodic motion� A 	wide�band spectrum with singular peaks
 can be considered
as an indicator of chaotic behavior�

A� Let � be a T �periodic orbit of ����� h be a test function such that the time average of h���t��
is zero� and suppose h���t�� has the Fourier representation

h���t�� �
��X

k���
�ke

ik��t with � �
��

T
�

Then we have� with 	 as the 	 distribution�

Ch� � �
��X

k���
j�kj� cos�k� � and Ph�� � ��

��X
k���

j�kj�	� � k���

B� Suppose � is a quasiperiodic orbit of ����� h is a test function such that the time average is
zero along �� and let h���t�� be the representation �double Fourier series�

h���t�� �
��X

k����

��X
k����

�k�k�e
i�k����k����t�

Then�

Ch� � �
��X

k����

��X
k����

j�k�k� j� cos�k�� � k��� �

Ph�� � ��
��X

k����

��X
k����

j�k�k�j�	� � k�� � k����

������ Entropies
�	������ Topological Entropy
Let �M� �� be a compact metric space and f�kgk�� be a continuous dynamical system with discrete
time on M � A distance function �n on M for arbitrary n � IN is de�ned by

�n�x� y� �� max
�
i
n

� ��i�x�� �i�y��� ������

Furthermore� let N��� �n� be the largest number of points fromM which have in the metric �n a distance
at least � from each other� The topological entropy of the discrete dynamical system ����� or of the

mapping� is h��� � lim
���

lim sup
n��



n
ln N��� �n�� The topological entropy is a measure for the complexity

of the mapping� Let �M�� ��� be a further compact metric space and �� � M�  M� be a continuous
mapping� If both mappings � and �� are topologically conjugate� then their topological entropies
coincide� In particular� the topological entropy does not depend on the metric� For arbitrary n � IN�
h ��n� � nh ��� holds� If � is a homeomorphism� then h ��k� � jkj h ��� for allk � Z� Based on the
last property� we de�ne the topological entropy h��t� �� h ���� for a �ow �t � ��t� �� of ���� on
M � IRn�

�	������ Metric Entropy
Let f�tgt�� be a dynamical system on M with attractor 4 and with an invariant probability mea�
sure � concentrated on 4� For an arbitrary � � � consider the cubes Q����� � � � � Qn������ of the form
f�x�� � � � � xn� � ki� � xi � �ki � �� �i � � �� � � � � n�g with ki � Z� for which ��Qi� � �� For arbitrary
x from a Qi the semiorbit f�t�x�g�t�� is followed for increasing t� In time�distances of  � � � � 
in discrete systems�� the N cubes� in which the semiorbit is found is denoted by i�� � � � � iN after each
other� Let Ei������iN be the set of all starting points in the neighborhood of 4 whose semiorbits at the
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times ti � i �i � � �� � � � � N� are always in Qi� � � � � � QiN and let p�i�� � � � � iN � � ��Ei������iN � be the
probability that a �typical� starting point is in Ei������iN �

The entropy gives the increment of the information on average by an experiment which shows that
among a �nite number of disjoint events which one has really happened� In the above situation this is

HN � � X
�i������iN �

p �i�� � � � � iN� ln p�i�� � � � � iN�� ������

where the summation is over all symbol sequences �i�� � � � � iN� with length N � which are realized by the
orbits described above�

The metric entropy or KolmogorovSinai entropy h� of the attractor 4 of f�tg with respect to the in�

variant measure � is the quantity h� � lim
���

lim
N��

HN

 N
� For discrete systems� the limit as �  � is

omitted� For the topological entropy h��� of � � 4  4 the inequality h� � h��� holds� In several
cases h��� � supfh� � � invariant probability measure on 4g�
A� Suppose 4 � fx�g is a stable equilibrium point of ���� as an attractor� with the natural mea�

sure � concentrated on x�� For these attractors h� � ��

B� For the shift mapping �����a�� h��� � h� � ln �� where � is the invariant Lebesgue measure�

������ LyapunovExponents

�� Singular Values of aMatrix
Let L be an arbitrary matrix of type �n� n�� The singular values �� 	 �� 	 � � � 	 �n of L are the
non�negative roots of the eigenvalues �� 	 � � � 	 �n 	 � of the positive semide�nite matrix LTL� The
eigenvalues �i are enumerated according to their multiplicity�
The singular values can be interpreted geometrically� If K� is a sphere with center at � and with radius
� � �� then the image L�K�� is an ellipsoid with semi�axis lengths �i� �i � � �� � � � � n� �Fig ����a��

� L
( �� ( �� x0

�v

x + v0 �

�
t
(x )0

y(t,x , v)0 �

� �
t
(x + v)0

a) b)

Figure ���

�� De�nition of Lyapunov Exponents
Let f�tgt�� be a smooth dynamical system on M � IRn� which has an attractor 4 with an invariant
ergodic probability measure � concentrated on 4� Let ���t� x� 	 � � � 	 �n�t� x� be the singular values
of the Jacobian matrix D�t�x� of �t at the point x for arbitrary t 	 � and x � 4� Then there exists

a sequence of numbers �� 	 � � � 	 �n� the Lyapunov exponents� such that


t
ln �i�t� x�  �i for

t �� ��a�e� in the sense of L�� According to the theorem of Oseledec there exists ��a�e� a sequence
of subspaces of IRn

IRn � Ex
s�
% Ex

s�
% � � � % Ex

sr��
� f�g� ������

such that for ��a�e� x the quantity


t
ln kD�t�x�vk tends to an element �sj � f��� � � � � �ng uniformly

with respect to v � Ex
sj
n Ex

sj��
�
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�� Calculation of Lyapunov Exponents
Suppose �i�t� x� are the semi�axis lengths of the ellipsoid got by deformation of the unit sphere with

center at x by D�t�x�� The formula �i�x� � lim
t�� sup



t
ln �i�t� x� can be used to calculate the Lya�

punov exponents� if additionally a reorthonormalization method� such as Housholder� is used� The
function y�t� x� v� � D�t�x�v is the solution of the variational equation with v at t � � associated to
the semiorbit ���x� of the �ow f�tg� Actually� f�tgt�IR is the �ow of ����� so the variational equation
is ,y � Df��t�x�� y� The solution of this equation with initial v at time t � � can be represented as
y�t� x� v� � �x�t�v� where �x�t� is the normed fundamental matrix of the variational equation at t � ��

which is a solution of the matrix di�erential equation ,Z � Df��t�x��Z with initial Z��� � En accord�
ing to the theorem about di�erentiability with respect to the initial state �see ����� �� p� �����

The number ��x� v� � lim
t�� sup



t
ln kD�t�x�vk describes the behavior of the orbit ��x��v�� � � �* 

with initial x��v with respect to the initial orbit ��x� in the direction v� If ��x� v� � �� then the orbits
move nearer to x for increasing t in the direction v� If� on the contrary� ��x� v� � �� then the orbits
move away �Fig ����b��
Let 4 be the attractor of the dynamical system f�tgt�� and � the invariant ergodic measure concen�
trated on it� Then� the sum of all Lyapunov exponents ��a�e� x � 4 is

nX
i��

�i � lim
t��



t

tZ
�

divf��s�x�� ds �����a�

in the case of �ows ���� and for a discrete system ������ it is

nX
i��

�i � lim
k��



k

k��X
i��

ln j detD���i�x��j� �����b�

Hence� in dissipative systems
nP
i��

�i � � holds� Considering that one of the Lyapunov exponents is

equal to zero if the attractor is not an equilibrium point� the calculation of Lyapunov exponents can be
simpli�ed �see  ���!��

A� Let be x� an equilibrium point of the �ow of ���� and let �i be the eigenvalues of the Jacobian
matrix at x�� With the measure concentrated on x�� the following holds for the Lyapunov exponents�
�i � Re�i �i � � �� � � � � n��

B� Let ��x�� � f�t�x��� t �  �� T !g be a T �periodic orbit of ���� and let �i be the multipliers of

��x��� With the measure concentrated on ��x�� we have that �i �


T
ln j�ij for i � � � � � � � n�

�� Metric Entropy and Lyapunov Exponents
If f�tgt�� is a dynamical system on M � IRn with attractor 4 and an ergodic probability measure �

concentrated on 4� then the inequality h� �
X
i
�

�i holds for the metric entropy h�� where in the sum

the Lyapunov exponents are repeated according to their multiplicity�
The equality

h� �
X
i
�

�i �Pesin�s formula� ������

is not valid in general� If the measure � is absolutely continuous with respect to the Lebesgue measure
and �� M M is a C ��di�eomorphism� then Pesin�s formula is valid �see also �������� B� p� �����
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������ Dimensions
�	������ Metric Dimensions

�� Fractals
Attractors or other invariant sets of dynamical systems can be geometrically more complicated than
point� line or torus� Fractals� independently of dynamics� are sets which distinguish themselves by one
or several characteristics such as fraying� porousity� complexity� and self�similarity� Since the usual
notion of dimension used for smooth surfaces and curves cannot be applied to fractals� we must give a
generalized de�nition of the dimension� For more details see  ���!�  ���!�

The interval G� �  �� ! is divided into three subintervals with the same length and the middle open
third is removed� so we obtain the set G� �  �� �

�
! �  �

�
� !� Then from both subintervals of G� the open

middle third ones are removed� which yields the set G� �
h
�� �



i
�
h
�

� �
�

i
�
h
�
�
� �


i
�
h



� 
i
� Continuing

this procedure� Gk is obtained from Gk�� by removing the open middle thirds from the subintervals�
So� we get a sequence of sets G� % G� % � � � % Gn % � � � � where every Gn consists of �n intervals of

length


�n
�

The Cantor set C is de�ned as the set of all points belonging to all Gn� i�e�� C �
�T
n��

Gn� The set C is

compact� uncountable� its Lebesgue measure is zero and it is perfect� i�e�� C is closed and every point
is an accumulation point� The Cantor set can be an example of a fractal�

�� Hausdor
 Dimension
The motivation for this dimension comes from volume calculation based on Lebesgue measure� If we
suppose that a bounded set A � IR� is covered by a �nite number of spheres Bri with radius ri � ��

so that
S
iBri % A holds� we get for A the 	rough volume


X
i

�

�
�r�i � Now� we de�ne the quantity

���A� � inffX
i

�

�
�r�i g over all �nite coverings of A by spheres with radius ri � �� If � tends to zero�

then we get the Lebesgue outer measure ��A� of A� If A is measurable� the outer measure is equal to
the volume vol�A��
Suppose M is the Euclidean space IRn or� more generally� a separable metric space with metric � and
let A �M be a subset of it� For arbitrary parameters d 	 � and � � �� the quantity

�d���A� � inf

�X
i

�diamBi�
d � A � # Bi� diamBi � �

�
����a�

is determined� where Bi �M are arbitrary subsets with diameter diamBi � sup
x�y�Bi

��x� y��

The Hausdor� outer measure of dimension d of A is de�ned by

�d�A� � lim
���

�d���A� � sup
�
�

�d���A� ����b�

and it can be either �nite or in�nite� The Hausdor� dimension dH�A� of the set A is then the �unique�
critical value of the Hausdor� measure�

dH�A� �
�

��� if �d�A� �� � for all d 	 ��
inf fd 	 �� �d�A� � �g� ����c�

Remark� The quantities �d���A� can be de�ned with coverings of spheres with radius ri � � or� in the
case of IRn� of cubes with side length � ��

Important Properties of the Hausdor	 Dimension�

�HD�� dH��� � ��

�HD�� If A � IRn� then � � dH�A� � n�
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�HD�� From A � B� it follows that dH�A� � dH�B��

�HD�� If A �
�S
i��

Ai� then dH�A� � sup
i

dH�Ai��

�HD�� If A is �nite or countable� then dH�A� � ��

�HD�� If �� M M is Lipschitz continuous� i�e�� there exists a constant L � � such that ����x�� ��y��
� L��x� y� �x� y �M � then dH���A�� � dH�A�� If the inverse mapping ��� exists as well� and it is also
Lipschitz continuous� then dH�A� � dH���A���

For the set Q of all rational numbers dH�Q� � � because of �HD��� The dimension of the Cantor

set C is dH�C� �
ln �

ln �

 ������ � � � �

�� Box�Counting Dimension or Capacity
Let A be a compact set of the metric space �M� �� and let N��A� be the minimal number of sets of
diameter � �� necessary to cover A� The quantity

dB�A� � lim sup
���

lnN��A�

ln �
�

�����a�

is called the upper box�counting dimension or upper capacity � the quantity

dB�A� � lim inf
���

lnN��A�

ln �
�

�����b�

is called the lower box�counting dimension or lower capacity �then dC� ofA� If dB�A� � dB�A� �� dB�A�
holds� then dB�A� is called the box�counting dimension of A� In IRn the box�counting dimension can be
considered also for bounded sets which are not closed�

For a bounded set A � IRn� the number N��A� in the above de�nition can also be de�ned in the following
way� Let IRn be covered by a grid from n�dimensional cubes with side length �� Then� N��A� can be
the number of cubes of the grid having a non�empty intersecting A�

Important Properties of the Box�Counting Dimension�

�BD�� dH�A� � dB�A� always holds�

�BD�� For m�dimensional surfaces F � IRn holds dH�F � � dB�F � � m�

�BD�� dB�A� � dB�A� holds for the closure A of A� while often dH�A� � dH�A� is valid�

�BD�� If A �
S
n
An� then� in general� the formula dB�A� � sup

n
dB�An� does not hold for the box�

counting dimension�

Suppose A � f�� � 

�
�



�
� � � �g � Then dH�A� � � and dB�A� �



�
�

If A is the set of all rational points in  �� !� then because of BD� and BD� dB�A� �  holds� On the
other hand dH�A� � ��

�� Self�Similarity
Several geometric �gures� which are called self�similar� can be derived by the following procedure� An
initial �gure is replaced by a new one which is composed of p copies of the original� any of them scaled
linearly by a factor q � � All �gures that are k times scalings of the initial �gure in the k�th step are
handled as the in the �rst step�

Figure ���

A� Cantor set� p � �� q � ��

B� Koch curve� p � �� q � �� The
�rst three steps are shown in Fig �����
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Figure ���

C� Sierpinski gasket� p � �� q � �� The
�rst three steps are shown in Fig �����
�The white triangles are always removed��

Figure ���

D� Sierpinski carpet� p � �� q � �� The
�rst three steps are shown in Fig �����
�The white squares are always removed��

For the sets in the examples A�D�

dB � dH �
ln p

ln q
�

�	������ Dimensions De�ned by InvariantMeasures

�� Dimension of aMeasure
Let � be a probability measure in �M� ��� concentrated on 4� If x � 4 is an arbitrary point and B��x�
is a sphere with radius 	 and center at x� then

d��x� � lim sup
���

ln��B��x��

ln 	
�����a�

denotes the upper and

d��x� � lim inf
���

ln��B��x��

ln 	
�����b�

denotes the lower pointwise dimension of � in x� If d��x� � d��x� �� d��x�� then d��x� is called the
dimension of the measure � in x�

Young Theorem �� If the relation d��x� � � holds for ��a�e��� x � 4� then

� � dH��� �� inf
X��� ��X���

fdH�X�g� ������

The quantity dH��� is called the Hausdor� dimension of the measure � �

Suppose M � IRn and let 4 � IRn be a compact sphere with Lebesgue measure ��4� � �� The

restriction of � to 4 is �� �
�

��4�
� Then

��B��x�� ! 	n and dH��� � n�

�� Information Dimension
Suppose� the attractor 4 of f�tgt�� is covered by cubes Q����� � � � � Qn������ of side length � as in ��������
p� ��� Let � be an invariant probability measure on 4�
The entropy of the covering Q����� � � � � Qn������ is

H��� � �
n���X
i��

pi��� ln pi���� with pi��� � ��Qi���� �i � � � � � � n����� ������

If the limit dI��� � � lim
���

H���

ln �
exists� then this quantity has the property of a dimension and is called

the information dimension�

�Here and in the following a�e� is an abbreviation for �almost everywhere��
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Young Theorem �� If the relation d��x� � � holds for ��a�e� x � 4� then

� � dH��� � dI���� ������

A� Let the measure � be concentrated at the equilibrium point x� of f�tg� Since H���� � � ln  �
� always holds for � � �� so dI��� � ��

B� Suppose the measure � is concentrated on the limit cycle of f�tg� For � � �� H���� � � ln �
holds and so dI��� � �

�� Correlation Dimension

Let fyig�i�� be a typical sequence of points of the attractor 4 � IRn of f�tgt�� � � an invariant probability
measure on 4 and let m � IN be arbitrary� For the vectors xi �� �yi� � � � � yi�m� let the distance be
de�ned as dist�xi� xj� �� max

�
s
m
kyi�s � yj�sk� where k � k is the Euclidean vector norm� If ! denotes

the Heaviside function !�x� �
�

�� x � ��
� x � ��

then the expression

Cm��� � lim sup
N���



N�
cardf�xi� xj�� dist�xi� xj� � �g

� lim sup
N��



N�

NX
i�j��

! ��� dist�xi� xj�� �����a�

is called the correlation integral� The quantity

dK � lim
���

lnCm���

ln �
�����b�

�if it exists� is the correlation dimension�

�� Generalized Dimension

Let the attractor 4 of f�tgt�� on M with invariant probability measure � be covered by cubes with
side length � as in �������� p� ��� For an arbitrary parameter q � IR� q �� � the sum

Hq��� �


� q
ln

n���X
i��

pi���q where pi��� � ��Qi���� �����a�

is called the generalized entropy of q�th order with respect to the covering Q����� � � � � Qn�������
The R�enyi dimension of q�th order is

dq � � lim
���

Hq���

ln �
� �����b�

if this limit exists�

Special Cases of the R�enyi Dimension�

a� q � �� d� � dC�supp ��� �����a�

b� q � � d� �� lim
q��

dq � dI���� �����b�

c� q � �� d� � dK� �����c�

�� Lyapunov Dimension

Let f�tgt�� be a smooth dynamical system on M � IRn with attractor 4 �or invariant set� and with the
invariant ergodic probability measure � concentrated on 4� If �� 	 �� 	 � � � 	 �n are the Lyapunov

exponents with respect to � and if k is the greatest index for which
kP
i��

�i 	 � and
k��P
i��

�i � � hold� then
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the value

dL��� � k �

kX
i��

�i

j�k��j ������

is called the Lyapunov dimension of the measure ��

If
nP
i��

�i 	 �� then dL��� � n� if �� � �� then dL��� � ��

Ledrappier Theorem� Let f�tg be a discrete system ����� on M � IRn with a C��function � and
�� as above� an invariant ergodic probability measure concentrated on the attractor 4 of f�tg� Then
dH��� � dL��� holds�

A� Suppose the attractor 4 � IR� of a smooth dynamical system f�tg is covered by N� squares with
side length �� Let �� �  � �� be the singular values of D�� Then for the dB�dimensional volume of
the attractor mdB . N� � �dB holds� Every square of side length � is transformed by � approximately
into a parallelogram with side length ��� and ���� If the covering is made by rhombi with side length

���� then N��� . N�
��
��

holds� From the relation N��
dB . N��������

dB we get directly

dB . � ln��
ln��

�  �
��
j��j � �����

This heuristic calculation gives a hint of the origin of the formula for the Lyapunov dimension�

B� Suppose the H�enon system ����� is given with a � �� and b � ���� The system ����� has
an attractor 4 �H�enon attractor� with a complicated structure for these parameter values� The nu�
merically determined box�counting dimension is dB�4� . ���� It can be shown that there exists
an SBR measure for the H�enon attractor 4� For the Lyapunov exponents �� and �� the formula
�� � �� � ln j detD��x�j � ln b � ln ��� . ����� holds� With the numerically determined value
�� . ���� we get �� . ����� So�

dL��� .  �
����

���
. ���� ������

�	������ Local Hausdor
 Dimension According to Douady andOesterl�e
Let f�tgt�� be a smooth dynamical system on M � IRn and 4 a compact invariant set� Suppose that
an arbitrary t� 	 � is �xed and let � �� �t� �

Theorem of Douady and Oesterl�e� Let ���x� 	 � � � 	 �n�x� be the singular values of D��x�
and let d � ��� n! be a number written as d � d� � s with d� � f�� � � � � � n � g and s �  �� !� If
sup
x��

 ���x����x� � � � �d��x��sd����x�! �  holds� then dH�4� � d�

Special Version for Di	erential Equations� Let f�tgt�IR be the �ow of ����� 4 be a compact
invariant set and let ���x� 	 � � � 	 �n�x� be the eigenvalues of the symmetrized Jacobian matrix


�
 Df�x�T � Df�x�! at an arbitarary point x � 4� If d � ��� n! is a number of the form d � d� � s

where d� � f�� � � � � n � g and s �  �� !� and sup
x��

 ���x� � � � � � �d��x� � s�d����x�! � � holds� then

dH�4� � d� The quantity

dDO�x� �
�

�� if ���x� � ��
supfd� � � d � n� ���x� � � � �� ��d��x� � �d�  d!���d����x� 	 �g otherwise�

������

where x � 4 is arbitrary and  d! is the integer part of d� is called the DouadyOesterl�e dimension
at the point x� Under the assumptions of the Douady�Oesterl�e theorem for di�erential equations�
dH�4� � sup

x��
dDO�x��
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Figure ���

The Lorenz system ������ in the case of � � �� b � ���� r �
��� has an attractor 4 �Lorenz attractor� with the numerically de�
termined dimension dH�4� 
 ���� �Fig ���� is generated by
Mathematica�� With the Douady�Oesterl�e theorem� for arbitrary
b � � � � � and r � � we get the estimation

dH�4� � �� � � b � 

�
where �����a�

� �


�

��� � b �

vuut�� � b�� �

�
bp

b� 
� �

�
�r

�� � �����b�

�	������ Examples of Attractors
A� The horseshoe mapping � occurs in connection with

Poincar�e mappings containing the transversale intersections of
stable and unstable manifolds� The unit square M �  �� !�  �� !
is stretched linearly in one coordinate direction and contracted in
the other direction� Finally� this rectangle is bent at the middle

Μ ϕ(Μ) ϕ Μ2( )

Figure ���

�Fig ������ Repeating this procedure
in�nitely many times� we get a sequence
of sets M % ��M� % � � � � for which

4 �
�'
k��

�k�M� ������

is a compact set and an invariant set with
respect to �� 4 attracts all points of M �
Apart from one point� 4 can be described
locally as a product 	line � Cantor set
�

B� Let � � ��� ��� be a parameter and M �  �� !� �� ! be the unit square� The mapping �� M 
M given by

��x� y� �

�������
��x� �y�� if � � x � 

�
� y �  �� !�

��x� � �y �


�
� if



�
� x � � y �  �� !

�����a�

is called the dissipative baker�smapping� Two iterations of the baker�smapping are shown inFig ���
�
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Figure ���

The 	�aky pastry structure
 is recogniz�
able� The set

4 �
�'
k��

�k�M� �����b�

is invariant under � and all points from
M are attracted by 4� The value of the
Hausdor� dimension is

dH�4� �  �
ln �

� ln�
� �����c�

For the dynamical system f�kg there exists an invariant measure � on M � which is di�erent from the
Lebesgue measure� At the points where the derivative exists� the Jacobian matrix is D�k��x� y�� ��

�k �
� �k

�
� Hence� the singular values are ���k� �x� y�� � �k� ���k� �x� y�� � �k and� consequently�
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the Lyapunov exponents are �� � ln �� �� � ln� �with respect to the invariant measure ��� For the
Lyapunov dimension we get

dL��� �  �
ln �

� ln�
� dH�4�� �����d�

Pesin�s formula for the metric entropy is valid here� i�e�� h� �
P
i
�

�i � ln ��

C� Let T be the whole torus with local coordinates �!� x� y�� as is shown in Fig ����a�

+
D( )+

x

y �(T)

Ta) b) c)

Figure ����

Let a mapping �� T  T be de�ned by

!k�� � �!k�

�
xk��
yk��

�
�



�

�
cos!k

sin!k

�
� �

�
xk
yk

�
�k � �� � � � �� ������

with parameter � � ��� ���� The image ��T �� with the intersections ��T ��D�!� and ���T ��D�!��
is shown in Fig ����b and Fig ����c� The result of in�nitely many intersections is the set 4 �
�T
k��

�k�T �� which is called a solenoid� The attractor 4 consists of a continuum of curves in the length

direction� and each of them is dense in 4� and unstable� The cross�section of the 4 transversal to these
curves is a Cantor set�

The Hausdor� dimension is dH�4� � � ln �

ln�
� The set 4 has a neighborhood which is a domain of at�

traction� Furthermore� the attractor 4 is structurally stable� i�e�� the qualitative properties formulated
above do not change for C��small perturbations of ��

D� The solenoid is an example of a hyperbolic attractor�

������ StrangeAttractors andChaos

�� Chaotic Attractor
Let f�tgt�� be a dynamical system in the metric space �M� ��� The attractor 4 of this system is called
chaotic if there is a sensitive dependence on the initial condition in 4�
The property 	 sensitive dependence on the initial conditions 
 will be made more precise in di�erent
ways� It is given� e�g�� if one of the two following conditions is ful�lled�

a� All motions of f�tg on 4 are unstable in a certain sense�

b� The greatest Lyapunov exponent of f�tg is positive with respect to an invariant ergodic probability
measure concentrated on 4�

Sensitive dependence in the sense of a� occurs for the solenoid� Property b� can be found� e�g�� for
H�enon attractors�

�� Fractals and Strange Attractors
An attractor 4 of f�tgt�� is called fractal if it represents neither a �nite number of points or a piecewise
di�erentiable curve or surface nor a set which is bounded by some closed piecewise di�erentiable surface�
An attractor is called strange if it is chaotic� fractal or both� The notions chaotic� fractal and strange
are used for compact invariant sets analogously even if they are not attractors� A dynamical system is
called chaotic if it has a compact invariant chaotic set�
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The mapping

xn�� � �xn � yn �mod �� yn�� � xn � yn �mod � ������

�Anosov di�eomorphism� is considered on the unit square� The adequate phase space for this system
is the torus T �� It is conservative� has the Lebesgue measure as invariant measure� has a countable
number of periodic orbits whose union is dense and is mixing� Otherwise� 4 � T � is an invariant set
with integer dimension ��

�� Systems Chaotic in the sense of Devaney
Let f�tgt�� be a dynamical system in the metric space �M� �� with a compact invariant set 4� The
system f�tgt�� �or the set 4� is called chaotic in the sense of Devaney� if�

a� f�tgt�� is topologically transitive on 4� i�e�� there is a positive semiorbit� which is dense in 4�

b� The periodic orbits of f�tgt�� are dense in 4�

c� f�tgt�� is sensitive with respect to the initial conditions in the sense of Guckenheimer on 4� i�e��

� � � � � x � 4 � 	 � � � y � 4 � U��x� � t 	 � � ���t�x�� �t�y�� 	 � ������

where U��x� � fz �M � ��x� z� � 	g�
Consider the space of the ���sequencesX

� fs � s�s�s� � � � � si � f�� g �i � ��  � � ��g�
For two sequences s � s�s�s� � � � and s� � s��s

�
�s
�
� � � �� their distance is de�ned by

��s� s�� �
�

�� if s � s��
��j� if s �� s��

where j is the smallest index for which sj �� s�j� So� �
P

� �� is a complete metric space which is also
compact�
The mapping �� s � s�s�s� � � � +� ��s� � s� � s�s�s� � � � is called a Bernoulli shift �
The Bernoulli shift is chaotic in the sense of Devaney�

������ Chaos inOne�DimensionalMappings
For continuous mappings of a compact interval into itself� there exist several su�cient conditions for
the existence of chaotic invariant sets� We mention three examples�

Shinai Theorem� Let � � I  I be a continuous mapping of a compact interval I� e�g�� I �  �� !
into itself� Then the system f�kg on I is chaotic in the sense of Devaney if and only if the topological
entropy of � on I� i�e�� h���� is positive�

Sharkovsky Theorem� Consider the following ordering of positive integer numbers�

� / � / � / � � � / � � � / � � � / � � � / �� � � / �� � � / � � � � � � / �� / �� / � / � ������

Let � � I  I be a continuous mapping of a compact interval into itself and suppose f�kg has an n�
periodic orbit on I� Then f�kg also has an m�periodic orbit if n / m�

Block� Guckenheimer and Misiuriewicz Theorem� Let � � I  I be a continuous mapping
of the compact interval I into itself such that f�kg has a �nm�periodic orbit �m � � odd�� Then

h��� 	 ln �

�n��
holds�

���� BifurcationTheory andRoutes toChaos

������ Bifurcations inMorse�Smale Systems
Let f�t�gt�� be a dynamical system generated by a di�erential equation or by a mapping on M � IRn�

which additionally depends on a parameter � � V � IRl� Every change of the topological structure
of the phase portrait of the dynamical system for small changes of the parameter is called bifurcation�
The parameter � � � � V is called the bifurcation value if there exist parameter values � � V in every
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neighborhood of � such that the dynamical systems f�t�g and f�t�g are not topologically equivalent
or conjugated on M � The smallest dimension of the parameter space for which a bifurcation can be
observed is called the codimension of the bifurcation�

We distinguish between local bifurcations� which occur in the neighborhood of a single orbit of the
dynamical system� and global bifurcations� which a�ect a large part of the phase space�

�	������ Local Bifurcations in Neighborhoods of Steady States

�� CenterManifold Theorem
Consider a parameter�dependent di�erential equation

,x � f�x� �� or ,xi � fi�x�� � � � � xn� ��� � � � � �l� �i � � �� � � � � n� �����

with f � M � V  IRn� where M � IRn and V � IRl are open sets and f is supposed to be r times con�
tinuously di�erentiable� Equation ����� can be interpreted as a parameter�free di�erential equation
,x � f�x� ��� ,� � � in the phase space M � V � From the Picard�Lindel�of theorem and the theorem on
di�erentiability with respect to the initial values �see ����� �� p� ���� it follows that ����� has a
locally unique solution ���� p� �� with initial point p at time t � � for arbitrary p �M and � � V � which
is r times continuously di�erentiable with respect to p and �� Suppose all solutions exist on the whole
of IR�
Furthermore� we suppose that system ����� has the equilibrium point x � � at � � �� i�e�� f��� �� � �

holds� Let ��� � � � � �s be the eigenvalues of Dxf��� �� �

�
�fi
�xj

��� ��

n
i�j��

with Re�j � �� Furthermore�

suppose� Dxf��� �� has exactly m eigenvalues with negative real part and k � n � s �m eigenvalues
with positive real part�
According to the center manifold theorem for di�erential equations �theorem of Shoshitaishvili� see
 ���!�� the di�erential equation ������ for � with a su�ciently small norm k�k in the neighborhood
of �� is topologically equivalent to the system

,x � F �x� �� � Ax � g�x� ��� ,y � �y� ,z � z ������

with x � IRs� y � IRm and z � IRk� where A is a matrix of type �s� s� with eigenvalues ��� � � � � �s� and g
represents a Cr�function with g��� �� � � and Dxg��� �� � ��
It follows from representation ������ that the bifurcations of ����� in a neighborhood of � are
uniquely described by the di�erential equation

,x � F �x� ��� ������

Equation ������ represents the reduced di�erential equation to the local centermanifoldW c
loc � fx� y� z�

y � �� z � �g of ������� The reduced di�erential equation ������ can often be transformed into
a relatively simple form� e�g�� with polynomials on the right�hand side� by a non�linear parameter�
dependent coordinate transformation so that the topological structure of its phase portrait does not
change close to the considered equilibrium point� This form is a so�called normal form� A normal form
cannot be determined uniquely� in general� a bifurcation can be described equivalently by di�erent
normal forms�

�� Saddle�Node Bifurcation and Transcritical Bifurcation
Suppose ����� is given with l � � where f is continuously di�erentiable at least twice and Dxf��� ��
has the eigenvalue �� � � and n �  eigenvalues �j with Re�j �� �� According to the center manifold
theorem� in this case� all bifurcations ����� near � are described by a one�dimensional reduced di�er�

ential equation ������� Obviously� here F ��� �� �
�F

�x
��� �� � �� If� additionally� it is supposed that

��

�x�
F ��� �� �� ��

�F

��
��� �� �� � and the right�hand side of ������ is expanded according to the Taylor

formula� then this representation can be transformed by coordinate transformation �see  ���!� into
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the normal form

,x � � � x� � � � � �������
for

��F

�x�
��� �� � �

�
or ,x � � � x� � � � �

�
for

��F

�x�
��� �� � �

�
� where � � ���� is a di�erentiable

function with ���� � � and the points indicate higher�order terms� For � � �� ������ has two equi�
librium points close to x � �� among which one is stable� the other is unstable� For � � �� these
equilibrium points fuse into x � �� which is unstable� For � � �� ������ has no equilibrium point near
to � �Fig ����b��
The multidimensional case results in a saddle�node bifurcation in a neighborhood of � in ������ This
bifurcation is represented in Fig ���� for n � � and �� � �� �� � �� The representation of the
saddle�node bifurcation in the extended phase space is shown in Fig ����a� For su�ciently smooth
vector �elds ������ the saddle�node bifurcations are generic�

x

� �<0 �=0 �>0

a) b)

Figure ���

001 02

�<0 �=0 �>0

Figure ����

If among the conditions which yield a saddle�node bifurcation for F � the condition
�F

��
��� �� �� � is

replaced by the conditions
�F

��
��� �� � � and

��F

�x��
��� �� �� �� then we get from ������ the truncated

normal form �without higher�order terms� ,x � �x � x� of a transcritical bifurcation� For n � � and
�� � �� the transcritical bifurcation together with the bifurcation diagram is shown in Fig �����
Saddle�node and transcritical bifurcations have codimension �bifurcations�

x

�

�<0 �=0 �>0

Figure ����

�� Hopf Bifurcation
Consider ����� with n 	 �� l �  and r 	 �� Suppose that f��� �� � � is valid for all � with j�j � ��
��� � � su�ciently small�� Suppose the Jacobian matrix Dxf��� �� has the eigenvalues �� � �� � i
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with  �� � and n � � eigenvalues �j with Re�j �� �� According to the center manifold theorm� the
bifurcation is described by a two�dimensional reduced di�erential equation ������ of the form

,x � ����x� ���y � g��x� y� ��� ,y � ���x � ����y � g��x� y� �� ������

where �� � g� and g� are di�erentiable functions and ��� �  and also ���� � � hold� By a non�linear
complex coordinate transformation and by the introduction of polar coordinates �r� ��� ������ can be
written in the normal form

,r � ����r � a���r� � � � � � ,� � ��� � b���r� � � � � ������

where dots denote the terms of higher order� The Taylor expansion of the coe�cient functions of ������
yields the truncated normal form

,r � ������r � a���r�� ,� � ��� � ����� � b���r�� ������

The theorem of Andronov and Hopf guarantees that ������ describes the bifurcations of ������ in a
neighborhood of the equilibrium point for � � ��

The following cases occur for ������ under the assumption ����� � ��

� a��� � � �Fig ����a�� � � a��� � � �Fig ����b� �

a� � � �� Stable limit cycle and a� � � �� Unstable limit cycle�
unstable equilibrium point�

b� � � �� Cycle and equilibrium point fuse b� � � �� Cycle and equilibrium point fuse
into a stable equilibrium point� into an unstable equilibrium point�

c� � � �� All orbits close to ��� �� tend c� � � �� Spiral type unstable
as in b� for t �� equilibrium point as in b��
spirally to the equilibrium point ��� ���

� �� � ��� �� � ��b)a)

Figure ����

The interpretation of the above cases for the initial system ����� shows the bifurcation of a limit
cycle of a compound equilibrium point �compound focus point of multiplicity �� which is called a Hopf
bifurcation �or AndronovHopf bifurcation�� The case a��� � � is also called supercritical� the case

a��� � � subcritical �supposing that ����� � ��� The case n � �� �� � �� � i� �� � �� ����� � � and
a��� � � is shown in Fig �����

��� � ��

Figure ����

Hopf bifurcations are generic and have codimension � The cases above illustrate the fact that a super�
critical Hopf bifurcation under the above assumptions can be recognized by the stability of a focus�
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Suppose the eigenvalues ����� and ����� of the Jacobian matrix on the right�hand side of ����� at �
are pure imaginary for � � �� and for the other eigenvalues �j Re�j �� � holds� Suppose furthermore

that
d

d�
Re�����j��� � � and let � be an asymptotically stable focus for ����� at � � �� Then there is

a supercritical Hopf bifurcation in ����� at � � ��

The van der Pol di�erential equation �x � ��x� � � ,x � x � � with parameter � can be written as a
planar di�erential equation

,x � y� ,y � ���x� � �y � x� ������

For � � �� ������ becomes the harmonic oscillator equation and it has only periodic solutions and
an equilibrium point� which is stable but not asymptotically stable� With the transformation u �p
� x� v �

p
� y for � � � ������ is transformed into the planar di�erential equation

,u � v� ,v � �u� �u� � �� v� ������

For the eigenvalues of the Jacobian matrix at the equilibrium point ��� �� of �������

������� �
�

�
�
s

��

�
�  and so ������� � �i and

d

d�
Re�����j��� �



�
� ��

As shown in the example of ������� �� p� ���� ��� �� is an asymptotically stable equilibrium point of
������ for � � �� There is a supercritical Hopf bifurcation for � � �� and for small � � �� ��� �� is an
unstable focus surrounded by a limit cycle whose amplitude is increasing as � increases�

�� Bifurcations in Two�Parameter Di
erential Equations
� Cusp Bifurcation Suppose the di�erential equation ����� is given with r 	 � and l � �� Let
the Jacobian matrix Dxf��� �� have the eigenvalue �� � � and n�  eigenvalues �j with Re�j �� � and

suppose that for the reduced di�erential equation ������ F ��� �� �
�F

�x
��� �� �

��F

�x�
��� �� � � und

l� ��
��F

�x�
��� �� �� �� Then the Taylor espansion of F close to ��� �� leads to the truncated normal form

�without higher�order terms see�  ��!�

,x � �� � ��x � sign l�x
� ������

with the parameters �� and ��� The set f���� ��� x�� �� � ��x � sign l�x
� � �g represents a surface in

extended phase space and this surface is called a cusp �Fig ����a��
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Figure ����

In the following� we suppose l� � �� The non�hyperbolic equilibrium points of ������ are de�ned by
the system �� � ��x � x� � �� �� � �x� � � and thus they lie on the curves S� and S�� which are
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determined by the set f���� ���� ����
� � ���

� � �g and form a cusp �Fig ����b�� If ���� ��� � ��� ��
then the equilibrium point � of ������ is stable� The phase portrait of ����� in a neighborhood of ��
e�g�� for n � �� l� � � and �� � � is shown in Fig ����c for �� � � �triple node� and in Fig ����d
for �� � � �triple saddle� �see  ���!��

At transition from ���� ��� � ��� �� into the interior of domain  �Fig ����b� the compound node�
type non�hyperbolic equilibrium point � of ����� splits into three hyperbolic equilibrium points �two
stable nodes and a saddle� �supercritical pitchfork bifurcation��

In the case of the two�dimensional phase space of ����� the phase portraits are shown inFig ����c�e�
When the parameter pair of Si n f��� ��g �i � � �� traverse from  into � then a double saddle node�
type equilibrium point is formed which �nally vanishes� A stable hyperbolic equilibrium point remains�
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Figure ����

� Bogdanov�Takens Bifurcation Suppose� for ������ n 	 �� l � �� r 	 � hold and the matrix
Dxf��� �� has two eigenvalues �� � �� � � and n � � eigenvalues �j with Re�j �� �� Let the reduced
two�dimensional di�erential equation ������ be topologically equivalent to the planar system

,x � y� ,y � �� � ��x � x� � xy� �����

Then there is a saddle�node bifurcation on the curve S� � f���� ���� ��
� � ��� � �g� At the transition

on the curve S� � f���� ���� �� � �� �� � �g from the domain �� � � into the domain �� � � a stable
limit cycle arises by a Hopf bifurcation and on the curve S� � f���� ��� � �� � �k��

� � � � �g �k � ��
constant� there exists a separatrix loop for the original system �Fig ������ which bifurcates into a
stable limit cycle in domain � �see  ���!�  ���!��

This bifurcation is of a global nature and we say that a single periodic orbit arises from the homoclinic
orbit of a saddle or a separatrix loop disappears�
� Generalized Hopf Bifurcation Suppose that the assumptions of the Hopf bifurcation with
r 	 � are ful�lled for ������ and the two�dimensional reduced di�erential equation after a coordinate

transformation into polar coordinates has the normal form ,r � ��r � ��r
�� r� � � � � � ,� �  � � � �� The

bifurcation diagram �Fig ����� of this system contains the lineS� � f���� ���� �� � �� �� �� �g� whose
points represent a Hopf bifurcation �see  ���!�  ���!�� There exist two periodic orbits in domain ��
among which one is stable� the other one is unstable� On the curve S� � f���� ���� ������� � �� �� � �g�
these non�hyperbolic cycles fuse into a compound cycle which disappears in domain ��

�� Breaking Symmetry
Some di�erential equations ����� have symmetries in the following sense� There exists a linear trans�
formation T �or a group of transformations� such that f�Tx� �� � T f �x� �� holds for all x � M and
� � V � An orbit � of ����� is called symmetric with respect to T if T� � ��
We talk about a symmetry breaking bifurcation at � � �� e�g�� in ����� �for l � �� if there is a stable
equilibrium point or a stable limit cycle for � � �� which is always symmetric with respect to T � and for
� � � two further stable steady states or limit cycles arise� which are nolonger symmetric with respect
to T �
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Figure ����

For system ����� with f�x� �� � �x�x� the transformation T de�ned as T � x + �x is a symmetry�
since f��x� �� � �f�x� �� �x � IR� � � IR�� For � � � the point x� � � is a stable equilibrium point�
For � � �� besides x� � �� there exist the two other equilibrium points x��� � �p�� both are non�
symmetric�

�	������ Local Bifurcations in a Neighborhood of a Periodic Orbit

�� CenterManifold Theorem for Mappings
Let � be periodic orbit of ����� for � � � with multipliers ��� � � � � �n��� �n � � A bifurcation close to
� is possible� if when changing �� at least one of the multipliers lies on the complex unit circle� The use
of a surface transversal to � leads to the parameter�dependent Poincar�e mapping

x +� P �x� ��� ������

Then� with open sets E � IRn�� and V � IRl let P � E�V  IRn�� be a Cr�mapping where the mapping
'P � E � V  IRn�� � IRl with 'P �x� �� � �P �x� ��� �� should be a Cr�di�eomorphism� Furthermore�
let P ��� �� � � and suppose the Jacobian matrix DxP ��� �� has s eigenvalues ��� � � � � �s with j�ij � �
m eigenvalues �s��� � � � � �s�m with j�ij �  and k � n � s � m �  eigenvalues �s�m��� � � � � �n��
with j�ij � � Then� according to the the center manifold theorem for mappings �see  ���!�� close to

��� �� � E � V � the mapping 'P is topologically conjugate to the mapping

�x� y� z� �� +� �F �x� ��� Asy� Auz� �� ������

near ��� �� � IRn�� � IRl with F �x� �� � Acx � g�x� ��� Here g is a Cr�di�erentiable mapping satisfying
the relations g��� �� � � and Dxg��� �� � �� The matrices Ac� As and Au are of type �s� s�� �m�m� and
�k� k�� respectively�

It follows from ������ that bifurcations of ������ close to ��� �� are described only by the reduced
mapping

x +� F �x� �� ������

on the local center manifold W c
loc � f�x� y� z�� y � �� z � �g�
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�� Bifurcation of Double Semistable Periodic Orbits
Let the system ����� be given with n 	 �� r 	 � and l � � Suppose� at � � �� the system ����� has
periodic orbit � with multipliers �� � �� j�ij ��  �i � �� �� � � � � n� � and �n � � According to the
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center manifold theorem for mappings� the bifurcations of the Poincar�e mapping ������ are described

by the one�dimensional reduced mapping ������ with Ac � � If
��F

�x�
��� �� �� � and

�F

��
��� �� �� � is

supposed� then it leads to the normal forms

x +� 'F �x� �� � � � x � x�
�

for
��F

�x�
��� �� � �

�
or �����a�

x +� � � x� x�
�

for
��F

�x�
��� �� � �

�
� �����b�

The iterations from �����a� close to � and the corresponding phase portraits are represented in
Fig ���
a and in Fig ���
b for di�erent � �see  ���!�� Close to x � � there are for � � � a
stable and an unstable equilibrium point� which fuse for � � � into the unstable steady state x � � �
For � � � there exists no equilibrium point close to x � �� The bifurcation described by �����a� in
������ is called a subcritical saddle node bifurcation for mappings�
In the case of the di�erential equation ������ the properties of the mapping �����a� describe the
bifurcation of a double semistable periodic orbit � For � � � there exists a stable periodic orbit �� and an
unstable periodic orbit ��� which fuse for � � � into a semistable orbit �� which disappears for � � �
�Fig ����a�b��

� �<0 �=0 �>0

a) b) c)

Figure ����

�� Period Doubling or Flip Bifurcation
Let system ����� be given with n 	 �� r 	 � and l � � We consider a periodic orbit � of ����� at
� � � with the multipliers �� � �� j�ij ��  �i � �� � � � � n� �� and �n � � The bifurcation behavior
of the Poincar�e mapping in the neighborhood of � is described by the one�dimensional mapping ������
with Ac � �� if we suppose the normal form

x +� 'F �x� �� � �� � ��x � x�� ������

The steady state x � � of ������ is stable for small � 	 � and unstable for � � �� The second iterated

mapping 'F � has for � � � two further stable �xed points besides x � � for x��� � �p�� � o�j�j��
which are not �xed points of 'F � Consequently� they must be points of period � of �������
In general� for a C��mapping ������ there is a two�periodic orbit at � � �� if the following conditions
are ful�lled �see  ���!��

F ��� �� � ��
�F

�x
��� �� � ��

�F �

��
��� �� � ��

��F �

�x��
��� �� �� ��

��F �

�x�
��� �� � ��

��F �

�x�
��� �� �� ��

������

Since
�F �

�x
��� �� � � holds �because of

�F

�x
��� �� � ��� the conditions for a pitchfork bifurcation are

formulated for the mapping F ��

For the di�erential equation ����� the properties of the mapping ������ imply that at � � � a stable
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periodic orbit �� splits from � with approximately a double period �period doubling�� where � loses its
stability �Fig ����c��

The logistic mapping �� �  �� !   �� ! is given for � � � � � by ���x� � �x� � x�� i�e�� by the
discrete dynamical system

xt�� � �xt�� xt�� ������

The mapping has the following bifurcation behavior �see  ���!�� For � � � �  system ������ has
the equilibrium point � with domain of attraction  �� !� For  � � � �� ������ has the unstable

equilibrium point � and the stable equilibrium point  � 

�
� where this last one has the domain of

attraction ��� �� For �� � � the equilibrium point � 

�
is unstable and leads to a stable two�periodic

orbit�
At the value �� �  �

p
�� the two�periodic orbit is also unstable and leads to a stable ���periodic or�

bit� The period doubling continues� and stable �q�periodic orbits arise at � � �q� Numerical evidence
shows that �q  �� 
 ����� � � � as q  ���

For � � ��� there is an attractor F �the Feigenbaum attractor�� which has a structure similar to the
Cantor set� There are points arbitrarily close to the attractor which are not iterated towards the at�
tractor� but towards an unstable periodic orbit� The attractor F has dense orbits and the Hausdor�
dimension is dH�F � 
 ����� � � � � On the other hand� the dependence on initial conditions is not sen�
sitive� In the domain �� � � � �� there exists a parameter set A with positive Lebesgue measure
such that system ������ has a chaotic attractor of positive Lebesgue measure for � � A� The set A is
interspersed with windows in which period doublings occur�

The bifurcation behavior of the logistic mapping can also be found in a class of unimodal mappings�
i�e�� of mappings of the interval I into itself� which has a single maximum in I� Although the param�
eter values �i� for which period doubling occurs� are di�erent from each other for di�erent unimodal
mappings� the rate of convergence by which these parameters tend to ��� is equal� �k � �� 
 C	�k�
where 	 � ������ � � � is the Feigenbaum constant �C depends on the concrete mapping�� The Hausdor�
dimension is the same for all attractors F at � � ��� dH�F � 
 ����� � � � �

�� Creation of a Torus
Consider system ����� with n 	 �� r 	 � and l � � Suppose that for all � close to � system ����� has

a periodic orbit ��� Let the multipliers of �� be ���� � e�i� with " ��
�

��
�

�
�

��

�
� �
�

� �j �j � �� � � � � n��

with j�jj ��  and �n � �
According to the center manifold theorem� in this case there exists a two�dimensional reduced C	�
mapping

x +� F �x� �� ������

with F ��� �� � � for � close to ��
If the Jacobian matrix DxF ��� �� has the conjugate complex eigenvalues ���� and ���� with j����j � 

for all � near �� if d ��
d

d�
j����jj��� � � holds and ���� is not a q�th root of  for q � � �� �� ��

then ������ can be transformed by a smooth � dependent coordinate transformation into the form

x + 'F �x� �� � 'Fo�x� �� � O�kxk�� �O Landau symbol�� where 'Fo is given in polar coordinates by�
r

�

�
+�

� j����jr � a���r�

� � ��� � b���r�

�
� ������

Here ��  and b are di�erentiable functions� Suppose a��� � � holds� Then� the equilibrium point r � �
of ������ is asymptotically stable for all � � � and unstable for � � �� Furthermore� for � � � there
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exists the circle r �

s
� d�

a���
� which is invariant under the mapping ������ and asymptotically stable

�Fig ����a��

�>0�<0a) b)

Figure ���

The Neimark�Sacker Theorem �see  ���!�  ��!� states that the bifurcation behavior of ������

is similar to that of 'F �supercritical Hopf bifurcation for mappings��

In mapping ������� given by�
x

y

�
+� p

�

�
� � ��x � y � x� � �y�

�x � � � ��y � x� � x�

�
�

there is a supercritical Hopf bifurcation at � � ��

With respect to the di�erential equation ������ the existence of a closed invariant curve of mapping
������ means that the periodic orbit �� is unstable for a��� � � and for � � � a torus arises which is
invariant with respect to ����� �Fig ����b��

�	������ Global Bifurcation
Besides the periodic creation orbit which arises if a separatrix loop disapears� ����� can have further
global bifurcations� Two of them are shown in  ���! by examples�

�� Emergence of a Periodic Orbit due to the Disappearance of a Saddle�Node
The parameter�dependent system

,x � x�� x� � y�� � y� � x � ��� ,y � �x� � x � �� � y�� x� � y��

has in polar coordinates x � r cos�� y � r sin� the following form�

,r � r�� r��� ,� � �� � � � r cos ��� �����

Obviously� the circle r �  is invariant under ����� for an arbitrary parameter �� and all orbits �except
the equilibrium point ��� ��� tend to this circle for t ��� For � � � there are a saddle and a stable
node on the circle� which fuse into a compound saddle�node type equilibrium point at � � �� For � � ��
there is no equilibrium point on the circle� which is a periodic orbit �Fig ������

�<0 �=0 �>0

Figure ����

�� Disappearance of a Saddle�Saddle Separatrix in the Plane
Consider the parameter�dependent planar di�erential equation

,x � � � �xy� ,y �  � x� � y�� ������
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For � � �� equation ������ has the two saddles ��� � and ����� and the y�axis as invariant sets� The
heteroclinic orbit is part of this invariant set� For small j�j �� �� the saddle�points are retained while
the heteroclinic orbit disappears �Fig ������

�<0 �=0 �>0

Figure ����

������ Transitions to Chaos
Often a strange attractor does not arise suddenly but as the result of a sequence of bifurcations� from
which the typical ones are represented in Section ����� The most important ways to create strange
attractors or strange invariant sets are described in the following�

�	������ Cascade of Period Doublings
Analogously to the logistic equation ������� a cascade of period doublings can also occur in time�

continuous systems in the following way� Suppose system ����� has the stable periodic orbit ����� for

� � ��� For � � �� a period doubling occurs near ������
� at which the periodic orbit ����� loses its stability

for � � ��� A periodic orbit ������ with approximately double period splits from it� At � � ��� there is a

new period doubling� where ������
loses its stability and a stable orbit ������

with an approximately double

period arises� For important classes of systems ����� this procedure of period doubling continues� so
a sequence of parameter values f�jg arises�

Numerical calculations for certain di�erential equations ������ e�g�� for hydrodynamical di�erential
equations such as the Lorenz system� show the existence of the limit

lim
j���

�j�� � �j
�j�� � �j��

� 	� where 	 ������

is again the Feigenbaum constant�
For �� � lim

j��
�j� the cycle with in�nite period loses its stability� and a strange attractor appears�

The geometric background for this strange attractor in ����� by a cascade of period doubling is shown
in Fig ����a� The Poincar�e section shows approximately a baker mapping� which suggests that a
Cantor set�like structure is created�

x

F(., )�

a) b)

Figure ����

�	������ Intermittency
Consider a stable periodic orbit of ������ which loses its stability for � � � when exactly one of
the multipliers� for � � � inside the unit circle takes the value �� According to the center manifold
theorem� the corresponding saddle�node bifurcation of the Poincar�e mapping can be described by a

one�dimensional mapping in the normal form x + 'F �x� �� � � � x � x� � � � � � Here � is a parameter
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depending on �� i�e�� � � ���� with ���� � �� The graph of 'F ��� �� for positive � is represented in
Fig ����b�

As can be seen in Fig ����b� the iterates of 'F ��� �� stay for a relatively long time in the tunnel zone
for � 
! �� For equation ������ this means that the corresponding orbits stay relatively long in the
neighborhood of the original periodic orbit� During this time� the behavior of ������ is approximately
periodic �laminar phase�� After getting through the tunnel zone the considered orbit escapes� which
results in irregular motion �turbulent phase�� After a certain time the orbit is recovered and a new
laminar phase begins� A strange attractor arises in this situation if the periodic orbit vanishes and
its stability goes over to the chaotic set� The saddle�node bifurcation is only one of the typical local
bifurcations playing a role in the intermittence scenario� Two further ones are period doubling and the
creation of a torus�

�	������ Global Homoclinic Bifurcations

�� Smale�s Theorem
Let the invariant manifolds of the Poincar�e mapping of the di�erential equation ����� in IR� near the
periodic orbit � be as in Fig ����b� p� ��� The transversal homoclinic points P j�x�� correspond
to a homoclinic orbit of ����� to �� The existence of such a homoclinic orbit in ����� leads to
a sensitive dependence on initial conditions� In connection with the considered Poincar�e mapping�
horseshoe mappings� introduced by Smale� can be constructed� This leads to the following statements�

a� In every neighborhood of a transversal homoclinic point of the Poincar�e mapping ������ there exists
a periodic point of this mapping �Smale�s theorm�� Hence� in every neighborhood of a transversal
homoclinic point there exists an invariant set ofPm�m � IN�� 4� which is of Cantor type� The restriction
of Pm to 4 is topologically conjugate to a Bernoulli shift� i�e�� to a mixing system�

b� The invariant set of the di�erential equation ����� close to the homoclinic orbit is like a product of
a Cantor set with the unit circle� If this invariant set is attracting� then it represents a strange attractor
of ������

�� Shilnikov�s Theorem
Consider the di�erential equation ����� in IR� with scalar parameter �� Suppose that the system
����� has a saddle�node type hyperbolic steady state � at � � �� which exists so long as j�j remains
small� Suppose� that the Jacobian matrix Dxf��� �� has the eigenvalue �� � � and a pair of conjugate
complex eigenvalues ���� � a � i with a � �� Suppose� additionally� that ����� has a separatrix
loop �� for � � �� i�e�� a homoclinic orbit which tends to � for t �� and t �� �Fig ����a��

Then� in a neighborhood of a separatrix loop ����� has the following phase portrait �

a� Let �� � a � �� If the separatrix loop breaks at � �� � according to the variant denoted by A in
�Fig ����a�� then there is exactly one periodic orbit of ����� for � � �� If the separatrix loop breaks
at � �� � according to the variant denoted by B in �Fig ����a�� then there is no periodic orbit�

b� Let �� � a � �� Then there exist countably many saddle�type periodic orbits at � � � �respectively�
for small j�j� close to the separatrix loop �� �respectively� close to the destroid loop ���� The Poincar�e
mapping with respect to a transversal to the �� plane generates a countable set of horseshoe mappings
at � � �� from which there remain �nitely many for small j�j �� ��
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�� Melnikov�s Method
Consider the planar di�erential equation

,x � f�x� � �g�t� x�� ������

where � is a small parameter� For � � �� let ������ be a Hamiltonian system �see ������� �� p� ����

i�e�� for f � �f�� f�� f� �
�H

�x�
and f� � ��H

�x�
hold� where H � U � IR�  IR is supposed to be a C��

function� Suppose the time�dependent vector �eld g� IR�U  IR� is twice continuously di�erentiable�
and T �periodic with respect to the �rst argument� Furthermore� let f and g be bounded on bounded
sets� Suppose that for � � � there exists a homoclinic orbit with respect to the saddle point �� and
the Poincar�e section

P
t� of ������ in the phase space f�x�� x�� t�g for t � t� looks as in Fig ����b�

The Poincar�e mapping P��t� �
P

t� 
P
t� � for small j�j� has a saddle point p� close to x � � with the

invariant manifolds W s�p�� and W u�p��� If the homoclinic orbit of the unperturbed system is given by
��t� t��� then the distance between the manifold W s�p�� and W u�p��� measured along the line passing
through ���� and perpendicular to f������� can be calculated by the formula

d�t�� � �
M�t��

k f������ k � O����� �����a�

Here� M��� is the Melnikov function which is de�ned by

M�t�� �

��Z
��

f���t� t��� � g�t� ��t� t��� dt� �����b�

�For a � �a�� a�� and b � �b�� b��� � means a � b � a�b� � a�b��� If the Melnikov function M has a
simple root at t�� i�e�� M�t�� � � and M ��t�� �� � hold� then the manifolds W s�p�� and W u�p�� intersect
each other transversally for su�ciently small � � �� If M has no root� then W s�p�� � W u�p�� � �� i�e��
there is no homoclinic point�

Remark� Suppose the unperturbed system ������ has a heteroclinic orbit given by ��t� t��� running
from a saddle point �� in a saddle ��� Let p�� and p�� be the saddle points of the Poincar�e mapping P��t�
for small j�j� If M � calculated as above� has a simple root at t�� then W s�p��� and W u�p��� intersect each
other transversally for small � � ��

Consider the periodically perturbated pendulum equation �x � sin x � � sint� i�e�� the system
,x � y� ,y � � sinx � � sint� in which � is a small parameter and  is a further parameter� The

unperturbed system ,x � y� ,y � � sin x is a Hamiltonian system with H�x� y� �


�
y� � cos x� It has

�among others� a pair of heteroclinic orbits through ���� �� and ��� �� �in the cylindrical phase space

S� � IR these are homoclinic orbits� given by ���t� �
�
�� arctan�sinh t����



cosh t

�
�t � IR�� The

direct calculation of the Melnikov function yields M�t�� � � �� sint�
cosh�����

� Since M has a simple root

at t� � �� the Poincar�e mapping of the perturbed system has transversal homoclinic points for small
� � ��

�	������ Destruction of a Torus

�� From Torus to Chaos
� Hopf�LandauModel of Turbulence The problem of transition from regular �laminar� behav�
ior to irregular �turbulent� behavior is especially interesting for systems with distributed parameters�
which are described� e�g�� by partial di�erential equations� From this viewpoint� chaos can be inter�
preted as behavior irregular in time but ordered in space�

On the other hand� turbulence is the behavior of the system� that is irregular in time and in space� The
Hopf�Landau model explains the arising of turbulence by an in�nite cascade of Hopf bifurcations� For
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� � �� a steady state befurcates in a limit cycle� which becomes unstable for �� � �� and leads to a
torus T �� At the k�th bifurcation of this type a k�dimensional torus arises� generated by non�closed
orbits which wind on it� The Hopf�Landau model does not lead in general to an attractor which is
characterized by sensitive dependence on the initial conditions and mixing�
� Ruelle�Takens�Newhouse Scenario Suppose that in system ����� we have n 	 � and l � �
Suppose also that changing the parameter �� the bifurcation sequence 	equilibrium point periodic
orbit torus T �  torus T �
 is achieved by three consecutive Hopf bifurcations�
Let the quasiperiodic �ow on T � be structurally unstable� Then� certain small perturbation of �����
can lead to the destruction of T � and to the creation of a structurally stable strange attractor�
� Theorem of Afraimovich and Shilnikov on the Loss of Smoothness and the

Destruction of the Torus T � Let the su�ciently smooth system ����� be given with n 	 �
and l � �� Suppose that for the parameter value ��� the system ����� has an attracting smooth torus
T ����� spanned by a stable periodic orbit �s� a saddle�type periodic orbit �u and its unstable manifold
W u��u� �resonance torus��
The invariant manifolds of the equilibrium points of the Poincar�e mapping computed with respect to
a surface transversal to the torus in the longitudinal direction� are represented in Fig ����a� The
multiplier � of the orbit �s� which is the nearest to the unit circle� is assumed to be real and simple�
Furthermore� let ���� �  �� !  V be an arbitrary continuous curve in parameter space� for which
���� � �� and for which system ����� has no invariant resonance torus for � � ���� Then the
following statements are true�

a� There exists a value s� � ��� � for which T ����s��� loses its smoothness� Here� either the multiplier
��s�� is complex or the unstable manifold W u��u� loses its smoothness close to �s�

b� There exists a further parameter value s�� � �s�� � such that system ����� has no resonance torus
for s � �s��� !� The torus is destroyed in the following way�

�� The periodic orbit �s loses its stability for � � ��s���� A local bifurcation arises as period doubling
or the creation of a torus�

�� The periodic orbits �u and �s coincide for � � ��s��� �saddle�node bifurcation� and so they vanish�

�� The stable and unstable manifolds of �u intersect each other non�transversally for � � ��s��� �see
the bifurcation diagram in Fig ����c�� The points of the beak�shaped curve S� correspond to the
fused �s and �u �saddle�node bifurcation�� The tip C� of the beak�shaped curve is on a curve S�� which
corresponds to a splitting of the torus�
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S1

��
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S3
S4 S4
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a) b) c)
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Figure ����

The parameter points where the smoothness is lost� are on the curve S�� while the points on S� charac�
terize the dissolving of a T � torus� The parameter points for which the stable and unstable manifolds of
�u intersect each other non�transversally� are on the curve S�� Let P� be an arbitrary point in the beaked
shaped tip of the beak such that for this parameter value a resonance torus T � arises� The transition
from P� to P� corresponds to the case �� of the theorem� If the multiplier � becomes � on S�� then
there is a period doubling� A cascade of further period doublings can lead to a strange attractor� If a
pair of complex conjugate multipliers ���� arises on the unit circle passing through S�� then it can result
in the splitting of a further torus� for which the Afraimovich�Shilnikov theorem can be used again�
The transition from P� to P� represents the case �� of the theorem� The torus loses its smoothness� and
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on passing through on S�� there is a saddle�node bifurcation� The torus is destroyed� and a transition
to chaos through intermittence can happen� The transition from P� to P�� �nally� corresponds to the
case ��� After the loss of smoothness� a non�robust homoclinic curve forms on passing through on S��
The stable cycle �s remains and a hyperbolic set arises which is not attracting for the present� If �s
vanishes� then a strange attractor arises from this set�

�� Mappings on the Unit Circle and Rotation Number

� Equivalent and LiftedMappings The properties of the invariant curves of the Poincar�e map�
ping play an important role in the loss of smoothness and destruction of a torus� If the Poincar�e mapping
is represented in polar coordinates� then� under certain assumptions� we get decoupled mappings of the
angular variables as informative auxiliary mappings on the unit circle� These are invertible in the case
of smooth invariant curves �Fig ����a� and in the case of non�smooth curves �Fig ����b� they
are not invertible� A mapping F � IR  IR with F �! � � � F �!� �  for all ! � IR� which generates
the dynamical system

!n�� � F �!n�� ������

is called equivariant � For every such mapping� an associated mapping of the unit circle f � S�  S�

can be assigned where S� � IR n Z � f! mod � ! � IRg� Here f�x� �� F �!� if the relation x �  !!
holds for the equivalence class  !!� F is called a lifted mapping of f � Obviously� this construction is not
unique� In contrast to ������

xt�� � f�xt� ������

is a dynamical system on S��

For two parameters  and K let the mapping 'F �� �� K� be de�ned by 'F ����K� � ���K sin�
for all  � IR� The corresponding dynamical system

�n�� � �n �  �K sin�n ������

can be transformed by the transformation �n � ��!n into the system

!n�� � !n � )� K

��
sin ��!n ������

where ) �


��
� With F �!� )� K� � !�)�K

��
sin ��! an equivariant mapping arises� which generates

the canonical form of the circle mapping�

� Rotation Number The orbit ��!� � fF n�!�g of ������ is a q�periodic orbit of ������ in S� if

and only if it is a
p

q
cycle of ������� i�e�� if there exists an integer p such that !n�q � !n � p� �n � Z�

holds� The mapping f � S�  S� is called orientation preserving if there exists a corresponding lifted
mapping F � which is monotone increasing� If F from ������ is a monotone inreasing homeomorphism�

then there exists the limit lim
jnj��

F n�x�

n
for every x � IR� and this limit does not depend on x� Hence�

the expression ��F � �� lim
jnj��

F n�x�

n
can be de�ned� If f � S�  S� is a homeomorphism and F and 'F

are two lifted mappings of f � then ��F � � �� 'F � � k � where k is an integer� Based on this last property�
the rotation number ��f� of an orientation�preserving homeomorphism f � S�  S� can be de�ned as
��f� � ��F � mod � where F is an arbitrary lifted mapping of f �

If f � S�  S� in ������ is an orientation�preserving homeomorphism� then the rotation number has
the following properties �see  ���!��

a� If ������ has a q�periodic orbit� then there exists an integer p such that ��f� �
p

q
holds�

b� If ��f� � �� then ������ has an equilibrium point�
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c� If ��f� �
p

q
� where p �� � is an integer and q is a natural number �p and q are coprimes�� then ������

has a q�periodic orbit�

d� ��f� is irrational if and only if ������ has neither a periodic orbit nor an equilibrium point�

Theoremof Denjoy� If f � S�  S� is an orientation�preserving C��di�eomorphism and the rotation
number � � ��f� is irrational� then f is topologically conjugate to a pure rotation whose lifted mapping
is F �x� � x � ��

�� Di
erential Equations on the Torus T �

Let
,!� � f��!�� !��� ,!� � f��!�� !�� ������

be a planar di�erential equation� where f� and f� are di�erentiable and one�periodic functions in both
arguments� In this case ������ de�nes a �ow� which can also be interpreted as a �ow on the torus
T � � S� � S� with respect to !� and !�� If f��!�� !�� � � for all �!�� !��� then ������ has no
equilibrium points and it is equivalent to the scalar �rst�order di�erential equation

d!�

d!�

�
f��!�� !��

f��!�� !��
� �����

With the relations !� � t� !� � x and f �
f�
f�

� ����� can be written as a non�autonomous di�erential

equation

,x � f�t� x� ������

whose right�hand side is one�periodic with respect to t and x�
Let ���� x�� be the solution of ������ with initial state x� at time t � �� So� a mapping ����� � ��� ��
can be de�ned for ������� which can be considered as the lifted mapping of a mapping f � S�  S��

Let �� � � IR be constants and ,!� � �� ,!� � � a di�erential equation on the torus� which

is equivalent to the scalar di�erential equation ,x �
�
�

for � �� �� Thus� ��t� x�� �
�
�

t � x� and

���x� �
�
�

� x�

�� Canonical Form of a Circle Mapping
� Canonical Form The mapping F from ������ is an orientation�preserving di�eomorphism for

� � K � � because
�F

��
�  � K cos ��� � � holds� For K � � F is nolonger a di�eomorphism�

but it is still a homeomorphism� while for K � � the mapping is not invertible� and hence nolonger a
homeomorphism� In the parameter domain � � K � � the rotation number ��)� K� �� ��F ���)� K��
is de�ned for F ���)� K�� Let K � ��� � be �xed� Then ���� K� has the following properties on  ��!�

a� The function ���� K� is not decreasing� it is continuous� but it is not di�erentiable�

b� For every rational number
p

q
�  �� � there exists an interval Ip�q� whose interior is not empty and

for which ��)� K� �
p

q
holds for all ) � Ip�q�

c� For every irrational number � � ��� � there exists exactly one ) with ��)� K� � ��
� Devil�s Staircase andArnoldTongues For every K � ��� �� ���� K� is a Cantor function� The
graph of ���� K�� which is represented inFig ����b� is called the devil�s staircase� The bifurcation di�
agram of ������ is represented inFig ����a� At every rational number on the )�axis� a beak�shaped
region �Arnold tongue� with a non�empty interior starts� where the rotation number is constant and
equal to the rational number�

The reason for the formation of the tongue is a synchronization of the frequencies �frequency locking��
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a� For � � K � � these regions are not overlapping� At every irrational number of the )�axis� a
continuous curve starts which always reaches the line K � � In the �rst Arnold tongue with � � ��
the dynamical system ������ has equilibrium points� If K is �xed and ) increases� then two of these
equilibrium points fuse on the boundary of the �rst Arnold tongue and vanish at the same time� As a
result of such a saddle�node bifurcation� a dense orbit arises on S�� Similar phenomena can be observed
when leaving other Arnold tongues�

b� For K �  the theory of the rotation numbers is nolonger applicable� The dynamics become more
complicated� and the transition to chaos takes place� Here� similarly to the case of Feigenbaum con�
stants� further constants arise� which are equal for certain classes of mappings to which also the standard
circle mapping belongs� One of them is described in the following�
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� GoldenMean� Fibonacci Numbers The irrational number

p
�� 

�
is called the golden mean

and it has a simple continued fraction representation

p
�� 

�
�



 � �
�� �

�����

�  � � � � � �! �see �����

�� p� ��� By successive evaluation of the continued fraction we get a sequence frng of rational numbers�

which converges to

p
�� 

�
� The numbers rn can be represented in the form rn �

Fn
Fn��

� where Fn are

Fibonacci numbers� which are determined by the iteration Fn�� � Fn�Fn�� �n � � �� � � �� with initial

values F� � � and F� � � Now� let )� be the parameter value of ������� for which ��)�� � �

p
�� 

�
and let )n be the closest value to )�� for which ��)n� � � rn holds� Numerical calculation gives the

limit lim
n��

)n � )n��
)n�� � )n

� ������� � � � �
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�	 Optimization

���� LinearProgramming

�	���� Formulation of theProblemandGeometrical
Representation

�������� The Form of a Linear Programming Problem

�� The Subject
of linear programming is the minimization or maximization of a linear objective function �OF� of �nitely
many variables subject to a �nite number of constraints �CT�� which are given as linear equations or
inequalities�
Many practical problems can be directly formulated as a linear programming problem� or they can be
modeled approximately by a linear programming problem�

�� General Form
A linear programming problem has the following general form�

OF� f�x� � c�x� � � � �� crxr � cr��xr�� � � � �� cnxn � max$ ���a�

CT� a���x� � � � �� a��rxr � a��r��xr�� � � � �� a��nxn � b��
���

���
���

���
���

as��x� � � � �� as�rxr � as�r��xr�� � � � �� as�nxn � bs�
as����x� � � � �� as���rxr � as���r��xr�� � � � �� as���nxn � bs���

���
���

���
���

���
am��x� � � � �� am�rxr � am�r��xr�� � � � �� am�nxn � bm�

x� 	 �� � � � � xr 	 �� xr��� � � � � xn free�

 �������������!�������������"
���b�

In a more compact vector notation this problem becomes�

OF � f�x� � c�
T
x� � c�

T
x� � max$ ����a� CT � A��x

� � A��x
� � b��

A��x
� � A��x

� � b��

x� 	 �� x� free�

 ��!��" ����b�

Here� we denote�

c� �

�BBB�
c�
c�
���
cr

�CCCA � c� �

�BBB�
cr��
cr��

���
cn

�CCCA � x� �

�BBB�
x�
x�
���
xr

�CCCA � x� �

�BBB�
xr��
xr��

���
xn

�CCCA � ����c�

A�� �

�BBB�
a�� a�� � � � a��r
a�� a�� � � � a��r
���
as�� as�� � � � as�r

�CCCA � A�� �

�BBB�
a��r�� a��r�� � � � a��r�n
a��r�� a��r�� � � � a��r�n
���
as�r�� as�r�� � � � as�n

�CCCA � ����d�

A�� �

�BBB�
as���� as���� � � � as���r
as���� as���� � � � as���r
���
am�� am�� � � � am�r

�CCCA � A�� �

�BBB�
as���r�� as���r�� � � � as���n
as���r�� as���r�� � � � as���n
���
am�r�� am�r�� � � � am�n

�CCCA � ����e�
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�� Constraints
with the inequality sign 	 	 
 will have the above form if we multiply them by ����

�� MinimumProblem
A minimum problem f�x� � min$ becomes an equivalent maximum problem by multiplying the ob�
jective function by ���

�f�x� � max$ �����

�� Integer Programming
Sometimes certain variables are restricted to be only integers� We do not discuss this discrete problem
here�

� Formulation with only Non�Negative Variables and Slack Variables
In applying certain solution methods� we have to consider only non�negative variables� and constraints
���b�� ����b� given in equality form�
Every free variable xk must be decomposed into the
di�erence of two non�negative variables xk � x�k �
x�k� The inequalities become equalities by adding
non�negative variables� they are called slack vari�
ables� That is� we can consider the problem in the
form as given in ����a�b�� where n is the increased
number of variables�
In vector form we have�

OF � f�x� � c�x� � � � �� cnxn � max$ ����a�

CT � a���x� � � � �� a��nxn � b��
���

���
���

am��x� � � � �� am�nxn � bm�

x� 	 �� � � � � xn 	 ��

 ������!������"
����b�

OF� f�x� � cTx � max$ ����a� CT� Ax � b � x 	 � � ����b�

We can suppose that m � n� otherwise the system of equations contains linearly dependent or contra�
dictory equations�

�� Feasible Set
The set of all vectors x satisfying constraints ����b� is called the feasible set of the original problem�
If we rewrite the free variables as above� and every inequality of the form 	�
 into an equation as in
����a� and ����b�� then the set of all non�negative vectors x 	 � satisfying the constraints is called
the feasible set M �

M � fx � IRn � x 	 �� Ax � bg� ����a�

A point x� �M with the property

f�x�� 	 f�x� for every x �M ����b�

is called the maximum point or the solution point of the linear programming problem� Obviously� the
components of x not belonging to slack variables form the solution of the original problem�

�������� Examples andGraphical Solutions

�� Example of the Production of Two Products
Suppose we need primary materials R�� R�� and R� to produce two products E� and E�� Scheme ���
shows how many units of primary materials are needed to produce each unit of the products E� and
E�� and there are given also the available amount of the primary materials�
Selling one unit of the products E�

or E� results in �� or �� units of
pro�t� respectively �PR ��
Determine a production program
which yields maximum pro�t� if at
least � units must be produced
from product E��
If we denote by x� and x� the num�

Scheme ��

R� � Ei R� �Ei R� �Ei

E� � � �

E� � � �

Available amount ��� ��� ���
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ber of units produced from E� and E�� then we get the following problem�

OF� f�x� � ��x� � ��x� � max$

CT� �x� � �x� � ����
�x� � �x� � ����

�x� � ����

x� 	 ��

Introducing the slack variables x�� x�� x�� x	� we get�

OF � f�x� � ��x� � ��x� � � � x� � � � x� � � � x� � � � x	 � max$

CT � �x� � �x� � x� � ����
�x� � �x� � x� � ����

�x� � x� � ����

�x� � x	 � ���

�� Properties of a Linear Programming Problem
On the basis of this example� we can demonstrate some properties
of the linear programming problem by graphical representation� To
do this� we do not consider the slack variables� only the original two
variables are used�
a�A line a�x��a�x� � b divides the x�� x� plane into two half�planes�
The points �x�� x�� satisfying the inequality a�x��a�x� � b are in one
of these half�planes� The graphical representation of this set of points
in a Cartesian coordinate system can be made by a line� and the half�
plane containing the solutions of the inequalities is denoted by an
arrow� The set of feasible solutionsM � i�e�� the set of points satisfying
all inequalities is the intersection of these half�planes �Fig �����

x2

0 10 40 x1

M

35

25

Figure ��
In this example the points of M form a polygonal domain� It may happen that M is unbounded or
empty� If more then two boundary lines go through a vertex of the polygon� we call this vertex a
degenerate vertex �Fig �����

M

P

x2

0 x1

x2

0 x1 0 x1

x2

x1

Figure ���

b� Every point in the x�� x� plane satisfying the equality f�x� � ��x� � ��x� � c� is on one line� on
the level line associated to the value c�� With di�erent choices of c�� a family of parallel lines is de�ned�
on each of which the value of the objective function is constant� Geometrically� those points are the
solutions of the programming problem� which belong to the feasible set M and also to the level line
��x� � ��x� � c� with maximal value of c�� In this example� the solution point is �x�� x�� � ���� ���
on the line ��x� � ��x� � ����� The level lines are represented in Fig ���� where the arrows point
in the direction of increasing values of the objective function�
Obviously� if the feasible set M is bounded� then there is at least one vertex such that the objective
function takes its maximum� If the feasible set M is unbounded� it is possible that the objective function
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is unbounded� as well�

�	���� BasicNotions of LinearProgramming�Normal Form
We consider problem ����a�b� with the feasible set M�

�������� Extreme Points andBasis

�� De�nition of the Extreme Point
A point x �M is called an extreme point or vertex of M � if for all x��x� �M with x� �� x��

x �� �x� � �� ��x�� � � � � � �����

i�e�� x is not on any line segment connecting two di�erent points of M �

�� Theorem about Extreme Points
The point x � M is an extreme point of M if the columns of matrix A associated to the positive
components of x are linearly independent�
If the rank of A is m� then the maximal number of independent columns in A is m� So� an extreme
point can have at most m positive components� The other components� at least n � m� are equal to
zero� In the usual case� there are exactly m positive components� If the number of positive components
is less then m� we call it a degenerate extreme point�

�� Basis
We can assign m linearly independent column vectors of the matrix A to every extreme point� the
columns belonging to the positive components� This system of linearly independent column vectors is
called the basis of the extreme point � Usually� exactly one basis belongs to every extreme point� However

several bases can be assigned to a degenerate extreme point� There are at most
�

n
m

�
possibilities to

choose m linearly independent vectors from n columns of A� Consequently� the number of di�erent

bases� and therefore the number of di�erent extreme points is
�

n
m

�
� If M is not empty� then M has at

least one extreme point�
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OF� f�x� � �x� � �x� � �x� � max$

CT� x� � x� � x� 	 �
x� � ��

�x� � �x� � ��
�x� � �x� � �x� � ��

�����

The feasible set M determined by the constraints is represented in Fig ���� Introduction of slack
variables x�� x�� x	� x� leads to�

CT � x� � x� � x� � x� � �
x� � x� � ��

�x� � �x� � x	 � ��
�x� � �x� � �x� � x� � ��

The extreme point P� � ��� � �� of the polyhedron corresponds to the point x � �x�� x�� x�� x�� x�� x	�
x�� � ��� � �� �� � �� �� of the extended system� The columns �� �� � and � of A form the corresponding
basis� The degenerated extreme point P� corresponds to �� �� �� �� �� �� ��� A basis of this extreme point
contains the columns � �� � and one of the columns �� � or ��

Remark� Here� the �rst inequality was a 		
 inequality and we did not add but subtract x�� Fre�
quently these types of additional variables both with a negative sign and a corresponding bi � � are
called surplus variables� rather than slack variables� As we will see in ������� p� ���� the occurrence
of surplus variables requires additional e�ort in the solution procedure�

�� Extreme Point with aMaximal Value of the Objective Function
Theorem� If M is not empty� and the objective function f�x� � cTx is bounded from above on M �
then there is at least one extreme point of M where it has its maximum�
A linear programming problem can be solved by determining at least one of the extreme points with
maximum value of the objective function� Usually� the number of extreme points of M is very large in
practical problems� so we need a method by which we can �nd the solution in a reasonable time� Such
a method is the simplex method � which is also called the simplex algorithm or simplex procedure�

�������� Normal Form of the Linear Programming Problem

�� Normal Form and Basic Solution
The linear programming problem ����a�b� can always be transformed to the following form with a
suitable renumbering of the variables�

OF� f�x� � c�x� � � � �� cn�mxn�m � c� � max$ ����a�

CT� a���x� � � � �� a��n�mxn�m � xn�m�� � b� �
���

���
� � �

���
am��x� � � � �� am�n�mxn�m � xn � bm �

x�� � � � � xn�m� xn�m��� � � � � xn 	 ��

 �����!�����"
����b�

The last m columns of the coe�cient matrix are obviously independent� and they form a basis� The
basic solution �x�� x�� � � � � xn�m� xn�m��� � � � � xn� � ��� � � � � �� b�� � � � � bm� can be determined directly
from the system of equations� but if b 	 � does not hold� it is not a feasible solution�

If b 	 �� then ����a�b� is called a normal form or canonical form of the linear programming problem�
In this case� the basic solution is a feasible solution� as well� i�e�� x 	 �� and it is an extreme point of M �
The variables x�� � � � � xn�m are called non�basic variables and xn�m��� � � � � xn are called basic variables�
The objective function has the value c� at this extreme point� since the non�basic variables are equal
to zero�
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�� Determination of the Normal Form
If an extreme point of M is known� then we can get a normal form of the linear programming problem
in the following way� We choose a basis from the columns of A corresponding to the extreme point�
Suppose the basic variables are collected into the vector xB and the non�basic variables are in xN � The
columns associated to the basis form the basis matrix AB� the other columns form the matrix AN �
Then�

Ax � ANxN �ABxB � b� �����

The matrix AB is non�singular and it has an inverse A��
B � the so�called basis inverse� Multiplying

����� by A��
B and changing the objective function according to the non�basic variables results in the

canonical form of the linear programming problem�

OF � f�x� � cTNxN � c�� ���a�

CT � A��
B ANxN � xB � A��

B b with xN 	 �� xB 	 �� ���b�

Remark� In the original system ���b� has only constraints of type 	�
 and simultanously b 	 ��
Then the extended system ����b� contains no surplus variables �see ������ p� ����� In this case a
normal form is immediatlely known� Selecting all slack variables as basic variables xB we have AB � I
and xB � b� xN � � is a feasible extreme point�

In the above example x � ��� � �� �� � �� �� is an extreme point� Consequently�

AB �

�BB�
 � � �
  � �
� �  �
�� � � 

�CCA �

x� x� x	 x�

A��
B �

�BB�
 � � �
�  � �

� �  �
� � � 

�CCA � AN �

�BB�
  �
� � �
� � �

� � �

�CCA �

x� x� x�

����a�

A��
B AN �

�BB�
  �
� � 
� � �

� � ��

�CCA
x� x� x�

� A��
B b �

�BB�


�
�

�CCA � ����b�

x� � x� � x� � x� � �
�x� � x� � x� � x� � �
�x� � �x� � x	 � ��
�x� � �x� � �x� � x� � ��

 ��!��" �����

From f�x� � �x� � �x� � �x�� we get the transformed objective function

f�x� � �x� � x� � �x� � �� �����

if we subtract the triple of the �rst constraint�

�	���� SimplexMethod

�������� Simplex Tableau

The simplex method is used to produce a sequence of extreme points of the feasible set with increasing
values of the objective function� The transition to the new extreme point is performed starting from the
normal form corresponding to the given extreme point� and arriving at the normal form corresponding
to the new extreme point� In order to get a clear arrangement� and easier numerical performance� we
put the normal form ����a�b� in the simplex tableau �Scheme ���a� ���b��



��� ��� Optimization

Scheme ���a

x� � � � xn�m
xn�m�� a��� � � � a��n�m b�

���
���

���
���

xn am�� � � � am�n�m bm

c� � � � cn�m �c�

or brie�y

Scheme ���b

xN
xB AN b

c �c�

The k�th row of the tableau corresponds to the constraint

xn�m�k � ak��x� � � � �� ak�n�mxn�m � bk� ����a�

We have for the objective function

c�x� � � � �� cn�mxn�m � f�x�� c�� ����b�

From this simplex tableau� we can �nd the extreme point �xN �xB� � ���b�� We also get the value of
the objective function at this point f�x� � c��
We can always �nd exactly one of the following three cases in every tableau�
a� cj � �� j � � � � � � n�m� The tableau is optimal� The point �xN �xB� � ���b� is the maximal point�

b� There exists at least one j such that cj � � and aij � �� i � � � � � � m� The linear programming
problem has no solution� since the objective function is not bounded on the feasible set� for increasing
values of xj it increases without a bound�

c� For every j with cj � � there exists at least one i with aij � �� We can move from the extreme point
x to a neighboring extreme point 'x with f�'x� 	 f�x�� In the case of a non�degenerate extreme point
x� the 	�
 sign always holds�

�������� Transition to the New Simplex Tableau

�� Non�Degenerate Case
If a tableau is not in �nal form �case c��� then we determine a new tableau �Scheme ����� We inter�
change a basic variable xp and a non�basic variable xq by the following calculations�

a� 'apq �


apq
� ����a�

b� 'apj � apj � 'apq� j �� q� 'bp � bp � 'apq� ����b�

c� 'aiq � �aiq � 'apq� i �� p� 'cq � �cq � 'apq� ����c�

d� 'aij � aij � apj � 'aiq� i �� p� j �� q�

'bi � bi � bp � 'aiq� i �� p� 'cj � cj � apj � 'cq� j �� q� 'c� � c� � bp � 'cq� ����d�

The element apq is called the pivot element � the p�th row is the pivot row� and the q�th column is the
pivot column� We must consider the following requirements for the choice of a pivot element�
a� 'c� 	 c� should hold�

b� the new tableau must also correspond to a feasible solution� i�e�� �b 	 � must hold�

Then� �'xN � 'xB� � ��� 'b� is a new extreme point at which the value of the objective function f�'x� � 'c�
is not smaller than it was previously� These conditions are satis�ed if we choose the pivot element in
the following way�

a� To increase the value of the objective function� a column with cq � � can be chosen for a pivot
column�

b� to get a feasible solution� the pivot row must be chosen as

bp
apq

� min
�
i
m
aiq
�

�
bi
aiq

�
� �����
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If the extreme points of the feasible set are not degenerate� then the simplex method terminates in a
�nite number of steps �case a� or case b���

The normal form in ���� can be written in a simplex tableau �Scheme ���a��

Scheme ���

'xN

'xB 'AN
'b

'c �'c�

Scheme ���a

x� x� x�

x�   � 

x� � �    � 

x	 � � � �

x� � � �� �

�   � ��

Scheme ���b

x� x� x�

x� � �  �

x� � �  

x	 � � � � � � �

x� � � � � � � �

� � �� ��

This tableau is not optimal� since the objective function has a positive coe�cient in the third column�
The third column is assigned as the pivot column �the second column could also be taken under consid�
eration�� We calculate the quotients bi�aiq with every positive element of the pivot column �there is only
one of them�� The quotients are denoted behind the last column� The smallest quotient determines the
pivot row� If it is not unique� then the extreme point corresponding to the new tableau is degenerate�
After performing the steps of ����a������d� we get the tableau in Scheme ���b� This tableau
determines the extreme point ��� �� �� � �� �� ��� which corresponds to the point P� in Fig ���� Since
this new tableau is still not optimal� we interchange x	 and x� �Scheme ���c�� The extreme point
of the third tableau corresponds to the point P	 in Fig ���� After an additional change we get an
optimal tableau �Scheme ���d� with the maximal point x� � ��� �� �� �� �� �� ��� which corresponds
to the point P�� and the objective function has a maximal value here� f�x�� � ��

Scheme ���c

x� x	 x�

x� � �  �

x� ��

�



�
 �

x� �

�



�
� 

x� � � � � � � �

� �� �� ��

Scheme ���d

x� x	 x�

x� � �  �

x�


�
�

�

�
�

x�


�



�



�
�

x�


�
�

�
 �

� �

�
��

�
�� ��

Scheme ���

x� � � � xn

y� a��� � � � a��n b�
���

���
���

���
ym am�� � � � am�n bm

OF c� � � � cn �

OF�
mP
j��

aj�� � � �
mP
j��

aj�n
mP
j��

bj � �g���b�

�� Degenerate Case
If the next pivot element cannot be chosen uniquely in a simplex tableau� then the new tableau rep�
resents a degenerate extreme point� A degenerate extreme point can be interpreted geometrically as
the coincident vertices of the convex polyhedron of the feasible solutions� There are several bases for
such a vertex� In this case� it can therefore happen that we perform some steps without reaching a new
extreme point� It is also possible that we get a tableau that we had before� so an in�nite cycle may
occur�

In the case of a degenerate extreme point� one possibility is to perturb the constants bi by adding �i

�with a suitable �i � �� such that the resulting extreme points are nolonger degenerate� We get the
solution from the solution of the perturbed problem� if we substitute � � ��

If the pivot column is chosen 	randomly
 in the non�uniquely determined case� then the occurrence of
an in�nite cycle is unlikely in practical cases�
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�������� Determination of an Initial Simplex Tableau

�� Secondary Program� Arti�cial Variables
If there are equalities among the original constraints ���b� or inequalities with negative bi� then it is
not easy to �nd a feasible solution to start the simplex method� In this case� we start with a secondary
program to produce a feasible solution� which can be a starting point for a simplex procedure for the
original problem� We add an arti�cial variable yk 	 � �k � � �� � � � � m� to every left�hand side of
Ax � b with b 	 �� and we consider the secondary program�

OF�� g�x�y� � �y� � � � � � ym � max$ ����a�

CT�� a���x� � � � �� a��nxn � y� � b��
���

���
� � �

���
am��x� � � � �� am�nxn � ym � bm�

x�� � � � � xn 	 �� y�� � � � � ym 	 ��

 �����!�����"
����b�

For this problem� the variables y�� � � � � ym are basic variables� and we can start the �rst simplex tableau
�Scheme ����� The last row of the tableau contains the sums of the coe�cients of the non�basic
variables � and these sums are the coe�cients of the new secondary objective functionOF�� Obviously�
g�x�y� � � always� If g�x��y�� � � for a maximal point �x��y�� of the secondary problem� then

obviously y� � �� and consequently x� is a solution of Ax � b� If g�x��y�� � �� then Ax � b does not
have any solution�

�� Solution of the Secondary Program
Our goal is to eliminate the arti�cial variables from the basis� We do not prepare a scheme only for
the secondary program separately� We add the columns of the arti�cial variables and the row of the
secondary objective function to the original tableau� The secondary objective function now contains the
sums of the corresponding coe�cients from the rows corresponding to the equalities� as shown below�
If an arti�cial variable becomes a non�basic variable� we can omit its column� since we will never choose
it again as a basis variable� If we determined a maximal point �x��y��� then we distinguish between
two cases�
� g�x��y�� � �� The system Ax � b has no solution� the linear programing problem does not have
any feasible solution�

� g�x��y�� � �� If there are no arti�cial variables among the basic variables� this tableau is an initial
tableau for the original problem� Otherwise we remove all arti�cial variables among the basic variables
by additional steps of the simplex method�

By introducing the arti�cial variables� the size of the problem can be increased considerably� As we
see� it is not necessary to introduce arti�cial variables for every equation� If the system of constraints
before introducing the slack and surplus variables �see Remark on p� ���� has the form A�x 	 b��
A�x � b�� A�x � b� with b��b��b� 	 �� then we have to introduce arti�cial variables only for the
�rst two systems�

For the third system the slack variables can be chosen as basic variables�

In the example of ����� p� ���� only the �rst equation requires an arti�cial variable�

OF�� g�x�y� � � y� � max$

CT�� x� � x� � x� � x� � y� � �
x� � x� � ��

�x� � �x� � x	 � ��
�x� � �x� � �x� � x� � ��

The tableau �Scheme ���b� is optimal with g�x��y�� � �� After omitting the second column we get
the �rst tableau of the original problem�
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Scheme ���a

x� x� x� x�

y�    �   � 

x� �  � � � � � 

x	 � � � � �

x� � �� � � �

OF � � � � �

OF�    � 

Scheme ���b

x� y� x� x� 

x�    � 

x� � � �  

x	 � � � � �

x� � � � �� �

OF �  ��  � ��

OF� � � � � �

�������� Revised SimplexMethod

�� Revised Simplex Tableau
Suppose the linear programming problem is given in normal form�

OF� f�x� � c�x� � � � �� cn�mxn�m � c� � max$ ����a�

CT� ����x� � � � �� ���n�mxn�m � xn�m�� � ���
���

���
� � �

���
�m��x� � � � �� �m�n�mxn�m � xn � �m�

x� 	 �� � � � � xn 	 ��

 �����!�����"
����b�

Obviously� the coe�cient vectors �n�m�i �i � � � � � � n� are the i�th unit vectors�
In order to change into another normal form and therefore to reach another extreme point� it is su�cient
to multiply the system of equations ����b� by the corresponding basis inverse� �We refer to the fact
that if AB denotes a new basis� the coordinates of a vector x can be expressed in this new basis as
A��
B x� If we know the inverse of the new basis� we can get any column as well as the objective function

from the very �rst tableau by simple multiplication�� The simplex method can be modi�ed so that
we determine only the basis inverse in every step instead of a new tableau� From every tableau� we
determine only those elements which are required to �nd the new pivot element� If the number of
variables is considerably larger than the number of constraints �n � �m�� then the revised simplex
method requires considerably less computing cost and therefore has better accuracy�
The general form of a revised simplex tableau is shown in Scheme ����

Scheme ���

x� � � � xn�m xn�m�� � � � xn xq

xB� a��n�m�� � � � a��n b� r�
���

���
���

���
���

xBm am�n�m�� � � � am�n bm rm

c� � � � cn�m cn�m�� � � � cn �c� cq

The quantities of the scheme have the following meaning�

xB� � � � � � x
B
m � Actual basic variables �in the �rst step the same as xn�m�� � � �xn��

c�� � � � � cn � Coe�cients of the objective function �the coe�cients associated to the basic variables are
zeros��

b�� � � � � bm � Right�hand side of the actual normal form�
c� � Value of the objective function at the extreme point �xB� � � � � � x

B
m� � �b�� � � � � bm��

A� �

�B� a��n�m�� � � � a��n
���

���
am�n�m�� � � � am�n

�CA�
Actual basis inverse� where the columns of A� are the columns of
xn�m��� � � � � xn corresponding to the actual normal form�

r � �r�� � � � � rm�T� Actual pivot column�
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�� Revised Simplex Step
a� The tableau is not optimal when at least one of the coe�cients cj �j � � �� � � � � n� is positiv� We
choose a pivot column q for a cq � ��
b� We calculate the pivot column r by multiplying the q�th column of the original coe�cient matrix
����b� by A� and we introduce the new vector as the last vector of the tableau�
We determine the pivot row k in the same way as in the simplex algorithm ������
c� We calculate the new tableau by the pivoting step ����a�d�� where aiq is formally replaced by ri
and the indices are restricted for n � m �  � j � n� The column �r is omitted� xq becomes a basic

variable� For j � � � � � � n�m� we get 'cj � cj � �T
j 'c� where 'c � �'cn�m��� � � � � 'cn�T� and �j is the j�th

column of the coe�cient matrix of ����b��

Consider the normal form of the example in ����� p� ���� We want to bring x� into the basis� The
corresponding pivot column r � �� is placed into the last column of the tableau �Scheme ���a�
�initiallyA� is the unit matrix��

Scheme ���a

x� x� x� x� x� x	 x� x�

x�  � � �  �

x� �  � �    � 

x	 � �  � � �

x� � � �  � ��

�   � � � � � �� �

Scheme ���b

x� x� x� x� x� x	 x� x�

x�   � � � �

x� �  � �  �

x	 � �  � � � � � �

x� � � �  � � � � �

� � �� � �� � � �� �

For j � � �� � we have� 'cj � cj � ���j� �c�� c�� c�� � ��� �� ���
The determined extreme point x � ��� �� �� � �� �� �� corresponds to the point P� in Fig ���� The
next pivot column can be chosen for j � � � q� The vector r is determined by

r � �r�� � � � � rm� � A��� �

�BB�
  � �
�  � �
� �  �
� � � 

�CCA �
�BB�


�

�
�

�CCA �

�BB�
�
�

�
�

�CCA
and we place it into the very last column of the second tableau �Scheme ���b�� We proceed as above
analogously to the method shown in ������� p� ���� If we want to return to the original method� then
we have to multiply the matrix of the original columns of the non�basic variables by A� and we keep
only these columns�

�������� Duality in Linear Programming

�� Correspondence
To any linear programming problem �primal problem� we can assign another unique linear program�
ming problem �dual problem��

Primal problem Dual problem

OF� f�x� � cT� x� � cT� x� � max$ �����a� OF�� g�u� � bT� u� � bT� u� � min$ ����a�

CT� A���x� � A���x� � b��

A���x� � A���x� � b��

x� 	 �� x� free� �����b�

CT�� AT
���u� � AT

���u� 	 c��

AT
���u� � AT

���u� � c��

u� 	 �� u� free� ����b�

The coe�cients of the objective function of one of the problems form the right�hand side vector of the
constraints of the other problem� Every free variable corresponds to an equation� and every variable
with restricted sign corresponds to an inequality of the other problem�
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�� Duality Theorems
a� If both problems have feasible solutions� i�e�� M �� �� M� �� � �where M and M� denote the feasible
sets of the primal and dual problems respectively�� then

f�x� � g�u� for all x �M� u �M�� �����a�

and both problems have optimal solutions�

b� The points x �M and u �M� are optimal solutions for the corresponding problem� if and only if

f�x� � g�u�� �����b�

c� If f�x� has no upper bound on M or g�u� has no lower bound on M�� then M� � � or M � �� i�e��
the dual problem has no feasible solution�

d� The points x �M and u �M� are optimal points of the corresponding problems if and only if�

uT� �A���x� �A���x� � b�� � � and xT� �AT
���u� �AT

���u� � c�� � �� �����c�

Using these last equations� we can �nd a solutionx of the primal problem from a non�degenerate optimal
solution u of the dual problem by solving the following linear system of equations�

A���x� �A���x� � b� � �� �����a�

�A���x� �A���x� � b��i � � for ui � �� �����b�

xi � � for �AT
���u� �AT

���u� � c��i �� �� �����c�

We can also solve the dual problem by the simplex method�

�� Application of the Dual Problem
Working with the dual problem may have some advantages in the following cases�
a� If it is simple to �nd a normal form for the dual problem� we switch from the primal problem to the
dual�
b� If the primal problem has a large number of constraints compared to the number of variables� then
we can use the revised simplex method for the dual problem�

Consider the original problem of the example of ����� p� ����

Primal problem Dual problem

OF� f�x� � �x� � �x� � �x� � max$ OF�� g�u� � �u� � �u� � �u� � �u� � min$

CT� �x� � x� � x� � ��
x� � ��

�x� � �x� � ��
�x� � �x� � �x� � ��

x�� x�� x� 	 ��

CT�� �u� � u� � �u� 	 ��
�u� � u� � �u� 	 ��
�u� � �u� � �u� 	 ��

u�� u�� u�� u� 	 ��

If the dual problem is solved by the simplex method after introducing the slack variables� then we get
the optimal solution u� � �u�� u�� u�� u�� � ��� �� ���� ���� with g�u� � �� We can obtain a solution
x� of the primal problem by solving the system �Ax� b�i � � for ui � �� i�e�� x� � �� �x� � �x� � ��
�x� � �x� � �x� � �� therefore� x� � ��� �� �� with f�x� � ��

�	���� Special LinearProgrammingProblems

�������� Transportation Problem

�� Modeling
A certain product� produced by m producers E�� E�� � � � � Em in quantities a�� a�� � � � � am� is to be trans�
ported to n consumers V�� V�� � � � � Vn with demands b�� b�� � � � � bn� Transportation cost of a unit product
of producer Ei to consumer Vj is cij� The amount of the product transported from Ei to Vj is xij units�



��� ��� Optimization

We are looking for an optimal transportation plan with minimum total transportation cost� We sup�
pose the system is balanced� i�e�� supply equals demand�

mX
i��

ai �
nX
j��

bj� ������

We construct the matrix of costs C and the distribution matrix X�

C �

E ��B� c��� � � � c��n
���

���
cm�� � � � cm�n

�CA E�
���

Em

�

V � V� � � � Vn

�����a� X �

P
��B� x��� � � � x��n

���
���

xm�� � � � xm�n

�CA a�
���

am

�

P
� b� � � � bn

�����b�

If condition ������ is not ful�lled� then we distinguish between two cases�
a� If

P
ai �

P
bj� then we introduce a �ctitious consumer Vn�� with demand bn�� �

P
ai �P bj and

with transportation costs ci�n�� � ��
b� If

P
ai �

P
bj� then we introduce a �ctitious producer Em�� with capacity am�� �

P
bj �P ai and

with transportation costs cm���j � ��
In order to determine an optimal program� we have to solve the following programming problem�

OF � f�X� �
mX
i��

nX
j��

cijxij � min$ �����a�

CT �
nX
j��

xij � ai �i � � � � � � m��
mX
i��

xij � bj �j � � � � � � n�� xij 	 ��� �����b�

The minimum of the problem occurs at a vertex of the feasible set� There are m � n �  linearly
independent constraints among the m � n original constraints� so� in the non�degenerate case� the
solution contains m � n �  positive components xij� To determine an optimal solution the following
algorithm is used� which is called the transportation algorithm�

�� Determination of a Basic Feasible Solution
With the Northwest corner rule we can determine an initial basic feasible solution�

a� Choose x�� � min�a�� b��� �����a�

b� If a� � b�� we omit the �rst row of X and proceed to the next source� �����b�

If a� � b�� we omit the �rst column of X and proceed to the next destination� �����c�

If a� � b�� we omit either the �rst row or the �rst column of X� �����d�

If there are only one row but several columns� we cancel one column� The same applies for the rows�
c� We replace a� by a� � x�� and b� by b� � x�� and we repeat the procedure with the reduced scheme�
The variables obtained in step a� are the basic variables� all the others are non�basic variables with zero
values�

C �

E ��� � � � �
� �  
� � � �

�A E�

E�

E�

�

V � V� V� V� V�

X �

P
��� x��� x��� x��� x���

x��� x��� x��� x���
x��� x��� x��� x���

�A a� � �
a� � �
a� � �

�P
� b� � � b� � � b� � � b� � �

Determination of an initial extreme point with the Northwest corner rule�
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�rst step second step further steps

X �

�� �����
�A �� �

�
�

�

�� � � �
�

X �

�� � �����
�A �� �

�
�

�

� �� � �
�

X �

�� � �����  � �
j j �

�A �
�� �� �� �
�

�

� �� ��
� � �
�

There are alternative methods to �nd an initial basic solution which also takes the transportation costs
into consideration �see� e�g�� the Vogel approximation method in  ���!� and they usually result in a
better initial solution�

�� Solution of the Transportation Problem with the SimplexMethod
If we prepare the usual simplex tableau for this problem� we get a huge tableau ��m � n� � �m � n��
with a large number of zeros� In each column� only two elements are equal to � So� we will work with
a reduced tableau� and the following steps correspond to the simplex steps working only with the non�
zero elements of the theoretical simplex tableau� The matrix of the cost data contains the coe�cients
of the objective function� The basic variables are exchanged for non�basic variables iteratively� while
the corresponding elements of the cost matrix are modi�ed in each step� The procedure is explained
by an example�

a� Determination of the modi�ed cost matrix 'C from C by

'cij � cij � pi � qj �i � � � � � � m� j � � � � � � n�� �����a�

with the conditions

'cij � � for �i� j� if xij is an actual basic variable� �����b�

We mark the elements ofC belonging to basic variables and we substitute p� � �� The other quantities
pi and qj� also called potentials or simplex multiplicators� are determined so that the sum of pi� qj and
the marked costs cij should be ��

C �

�BB�
��� ��� � �

� ��� �� ��

� � � ���

�CCA
p� � �

p� � 

p� � �
q� � �� q� � �� q� � �� q� � ��

�� 'C �

�B� � � � �
� � � �

� �� � �

�CA � �����c�

b� We determine�

'cpq � min
i�j
f'cijg� �����d�

If 'cpq 	 �� then the given distribution X is optimal� otherwise xpq is chosen as a new basic variable� In
our example� 'cpq � 'c�� � ���

c� In 'C� we mark 'cpq and the costs associated to the basic variables� If 'C contains rows or columns with
at most one marked element� then these rows or columns will be omitted� We repeat this procedure
with the remaining matrix� until no further cancellation is possible�

'C �

�B� ��� ��� � �

� ��� ��� ���

� ���� � ���

�CA � �����e�

d� The elements xij associated to the remaining marked elements 'cij form a cycle� The new basic
variable 'xpq is to be set to a positive value 	� The other variables 'xij associated to the marked elements
'cij are determined by the constraints� In practice� we subtract and add 	 from or to every second element
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of the cycle� To keep the variables non�negative� the amount 	 must be chosen as

	 � xrs � minfxij � 'xij � xij � 	g� �����f�

where xrs will be the non�basic variable� In the example 	 � minf� �g � �

'X �

P�BBBBB�
� �

��
� 	 � � � 	
� �
	 � �� 	

�CCCCCA
�

�

�P
� � � �

�� 'X �

�� � �
� �

 �

�A � f�x� � ��� �����g�

Then� we repeat this procedure with X � 'X but in the calculation of the new pi� qj values we always
start with the original C�

C �

�BB�
��� ��� � �

� � �� ��

� ��� � ���

�CCA
p� � �

p� � �

p� � 
q� � �� q� � �� q� � �� q� � ��

�� 'C �

�BB�
��� ��� ���� �

� � ��� ���

� ��� � ���

�CCA � �����h�

'X �

�BBBBB�
� �� 	 � 	

�
� �� 	 � � � 	

�
 � 	 � �� 	

�CCCCCA
	 � �
�� 'X �

�� � � �
� �

�

�A � f�X� � ��� �����i�

The next matrix 'C does not contain any negative element� So� 'X is an optimal solution�

�������� Assignment Problem
The representation is made by an example�

n shipping contracts should be given to n shipping companies so that each company receives exactly
one contract� We want to determine the assignment which minimizes the total costs� if the i�th company
charges cij for the j�th contract�
An assignment problem is a special transportation problem with m � n and ai � bj �  for all i� j�

OF � f�x� �
nX
i��

nX
j��

cijxij � min$ �����a�

CT �
nX
j��

xij �  �i � � � � � � n��
nX
i��

xij �  �j � � � � � � n�� xij � f�� g� �����b�

Every feasible distribution matrix contains exactly one  in every row and every column� all other
elements are equal to zero� In a general transportation problem of this dimension� however� a non�
degenerate basic solution would have �n �  positive variables� Thus� basic feasible solutions to the
assignment problem are highly degenerate� with n �  basic variables equal to zero� Starting with
a feasible distribution matrix X� we can solve the assignment problem by the general transportation
algorithm� It is time consuming to do so� However� because of the highly degenerate nature of the basic
feasible solutions� the assignment problem can be solved with the highly e�cient Hungarian method
�see  ���!��

�������� Distribution Problem
The problem is represented by an example�
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m products E�� E�� � � � � Em should be produced in quantities a�� a�� � � � � am� Every product can be
produced on any of n machines M��M�� � � � �Mn� The production of a unit of product Ei on machine
Mj needs processing time bij and cost cij� The time capacity of machine Mj is bj� Denote the quantity
produced by machine Mj from product Ei by xij� We want to minimize the total production costs�
We get the following general model for this distribution problem�

OF � f�x� �
mX
i��

nX
j��

cijxij � min$ �����a�

CT �
mX
j��

xij � ai �i � � � � � � m��
nX
i��

bijxij � bj �j � � � � � � n�� xij 	 � for all i� j� �����b�

The distribution problem is a generalization of the transportation problem and it can be solved by
the simplex method� If all bij � � then we can use the more e�ective transportation algorithm �see
������ p� ���� after introducing a �ctitious product Em�� �see ������ p� �����

�������� Travelling Salesman
Suppose there are n places O�� O�� � � � � On� The travelling time from Oi to Oj is cij� Here� cij �� cji is
possible�
We want to determine the shortest route such that the traveller passes through every place exactly
once� and returns to the starting point�
Similarly to the assignment problem� we have to choose exactly one element in every row and column
of the time matrixC so that the sum of the chosen elements is minimal� The di�culty of the numerical
solution of this problem is the restriction that the marked elements cij should be arranged in order of
the following form�

ci��i� � ci��i�� � � � � cin�in�� with ik �� il for k �� l and in�� � i�� �����

The travelling salesman problem can be solved by the branch and bound method�

�������� Scheduling Problem
n di�erent products are processed on m di�erent machines in a product�dependent order� At any time
only one product can be processed on a machine� The processing time of each product on each machine
is assumed to be known� Waiting times� when a given product is not in process� and machine idle times
are also possible�
An optimal scheduling of the processing jobs is determined where the objective function is selected
as the time when all jobs are �nished� or the total waiting time of jobs� or total machine idle time�
Sometimes the sum of the �nishing times for all jobs is chosen as the objective function when no waiting
time or idle time is allowed�

���� Non�linearOptimization

�	���� Formulation of theProblem�Theoretical Basis

�������� Formulation of the Problem

�� Non�linear Optimization Problem
A non�linear optimization problem has the general form

f�x� � min$ subject to x � IRn with �����a�

gi�x� � �� i � I � f� � � � � mg� hj�x� � �� j � J � f� � � � � rg �����b�

where at least one of the functions f � gi� hj is non�linear� The set of feasible solutions is denoted by

M � fx � IRn � gi�x� � �� i � I� hj�x� � �� j � Jg� ������

The problem is to determine the minimum points�
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�� MinimumPoints
A point x� � M is called the global minimum point if f�x�� � f�x� holds for every x � M � If this
relation holds for only the points x of a neighborhood U of x�� then x� is called a local minimum point�
Since the equality constraints hj�x� � � can be expressed by two inequalities�

�hj�x� � �� hj�x� � �� ������

the set can be supposed to be empty� J � ��
�������� Optimality Conditions

�� Special Directions
a� The Cone of the Feasible Directions at x �M is de�ned by

Z�x� � fd � IRn � �"� � � � x� �d �M� � � � � "�g� x �M� ������

where the directions are denoted by d� If d � Z�x�� then every point of the ray x � �d belongs to M
for su�cient small values of ��

b� A Descent Direction at a point x is a vector d � IRn for which there exists an "� � � such that

f�x� �d� � f�x� �� � ��� "��� ������

There exists no feasible descent direction at a minimum point�
If f is di�erentiable� then d is a descent direction rf�x�Td � �� Here� r denotes the nabla operator�
so rf�x� represents the gradient of the scalar�valued function f at x�

�� Necessary Optimality Conditions
If f is di�erentiable and x� is a local minimum point� then

rf�x��Td 	 � for every d � Z�x��� �����a�

In particular� if x� is an interior point of M � then

rf�x�� � �� �����b�

�� Lagrange Function and Saddle Point
Optimality conditions �����a�b� should be transformed into a more practical form including the con�
straints� We construct the so�called Lagrange function or Lagrangian�

L�x�u� � f�x� �
mX
i��

uigi�x� � f�x� � uTg�x�� x � IR� u � IRm
� � ������

according to the Lagrange multiplier method �see �������� p� ���� for problems with equality constraints�
A point �x��u�� � IRn � IRm

� is called a saddle point of L� if

L�x��u� � L�x��u�� � L�x�u�� for every x � IRn� u � IRm
� � ������

�� Global Kuhn�Tucker Conditions
A point x� � IRn satis�es the global KuhnTucker conditions if there is an u� � IRm

� � i�e�� u� 	 � such
that �x��u�� is a saddle point of L�
For the proof of the Kuhn�Tucker conditions see ������ p� ����

�� Su�cient Optimality Condition
If �x��u�� � IRn � IRm

� is a saddle point of L� then x� is a global minimum point of �����a�b��
If the functions f and gi are di�erentiable� then we can also deduce local optimality conditions�

� Local Kuhn�Tucker Conditions
A point x� �M satis�es the local Kuhn�Tucker conditions if there are numbers ui 	 �� i � I��x

�� such
that

�rf�x�� �
X

i�I��x��
uirgi�x

��� where �����a�

I��x� � fi � f� � � � � mg � gi�x� � �g �����b�

is the index set of the active constraints at x� The point x� is also called a KuhnTucker stationary
point�
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This means geometrically that a point x� �
M satis�es the local Kuhn�Tucker condi�
tions� if the negative gradient �rf�x�� lies
in the cone spanned by the gradients rgi�x

��
i � I��x

�� of the constraints active at x�

�Fig �����
The following equivalent formulation for
�����a�b� is also often used� x� � IRn satis�es
the local Kuhn�Tucker conditions� if there is
a u� � IRm

� such that

g�x�� � �� ����a�

uigi�x
�� � �� i � � � � � � m� ����b�

rf�x�� �
mX
i��

uirgi�x
�� � �� ����c�

M

g (x)=01

g (x)=02

x*

g (x*)1

�

f(x*)

�-

g (x*)2

�

level lines
f(x) = const

Figure ���

�� Necessary Optimality Conditions and Kuhn�Tucker Conditions
If x� �M is a local minimum point of �����a�b� and the feasible set satis�es the regularity condition at
x� � �d � IRn such that rgi�x

��Td � � for every i � I��x
��� then x� satis�es the local Kuhn�Tucker

conditions�

�������� Duality in Optimization

�� Dual Problem
With the associated Lagrangian ������ we form the maximum problem� the so�called dual of �����a�b��

L�x�u� � max$ subject to �x�u� �M� with �����a�

M� � f�x�u� � IRn � IRm
� � L�x�u� � min

z�IRn
L�z�u�g� �����b�

�� Duality Theorems
If x� �M and �x��u�� �M�� then

a� L�x��u�� � f�x���

b� If L�x��u�� � f�x��� then x� is a minimum point of �����a�b� and �x��u�� is a maximum point of
�����a�b��

�	���� SpecialNon�linearOptimizationProblems
�������� Convex Optimization

�� Convex Problem
The optimization problem

f�x� � min$ subject to gi�x� � � �i � � � � � � m� ������

is called a convex problem if the functions f and gi are convex� In particular� f and gi can be linear
functions� The following statements are valid for convex problems�
a� Every local minimum of f over M is also a global minimum�
b� If M is not empty and bounded� then there exists at least one solution of �������
c� If f is strictly convex� then there is at most one solution of �������
� Optimality Conditions
a� If f has continuous partial derivatives� then x� �M is a solution of ������� if

�x� x��Trf�x�� 	 � for every x �M� ������

b� The Slater condition is a regularity condition for the feasible set M � It is satis�ed if there exists an
x �M such that gi�x� � � for every non�a�ne linear functions gi�
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c� If the Slater condition is satis�ed� then x� is a minimum point of ������ if and only if there exists a
u� 	 � such that �x��u�� is a saddle point of the Lagrangian� Moreover� if functions f and gi are dif�
ferentiable� then x� is a solution of ������ if and only if x� satis�es the local Kuhn�Tucker conditions�
d� The dual problem �����a�b� can be formulated easily for a convex optimization problem with dif�
ferentiable functions f and gi�

L�x�u� � max$� subject to �x�u� �M� with �����a�

M� � f�x�u� � IRn � IRm
� � rxL�x�u� � �g� �����b�

The gradient of L is calculated here only with respect to x�
e� For convex optimization problems� the strong duality theorem also holds�
If M satis�es the Slater condition and if x� � M is a solution of ������� then there exists a u� � IRm

� �
such that �x��u�� is a solution of the dual problem �����a�b�� and

f�x�� � min
x�M

f�x� � max
�x�u��M�

L�x�u� � L�x��u��� ������

�������� Quadratic Optimization

�� Formulation of the Problem
Quadratic optimization problems have the form

f�x� � xTCx� pTx � min$ � subject to x �M � IRn with �����a�

M � MI � M � fx � IRn � Ax � b� x 	 �g� �����b�

Here� C is a symmetric �n� n� matrix� p � IRn� A is an �m�n� matrix� and b � IRm�
The feasible set M can be written alternatively in the following way�

M � MII � M � fx � Ax � b� x 	 �g� �����a�

M � MIII � M � fx � Ax � bg� �����b�

�� Lagrangian and Kuhn�Tucker Conditions
The Lagrangian to the problem �����a�b� is

L�x�u� � xTCx� pTx � uT�Ax� b�� ������

By introducing the notation

v �
�L

�x
� p � �Cx �ATu and y � ��L

�u
� �Ax� b ������

the Kuhn�Tucker conditions are as follows�

Case I� Case II� Case III�

a� Ax � y � b� a� Ax � b� a� Ax � y � b� ����a�

b� �Cx� v �ATu � �p� b� �Cx� v �ATu � �p� b� �Cx �ATu � �p� ����b�

c� x 	 �� v 	 �� y 	 �� u 	 �� c� x 	 �� v 	 �� c� u 	 �� y 	 �� ����c�

d� xTv � yTu � �� d� xTv � �� d� yTu � �� ����d�

�� Convexity
The function f�x� is convex �strictly convex� if and only if the matrix C is positive semide�nite �posi�
tive de�nite�� Every result on convex optimization problems can be used for quadratic problems with
a positive semide�nite matrix C� in particular� the Slater condition always holds� so it is necessary
and su�cient for the optimality of a point x� that there exists a point �x��y�u�v�� which satis�es the
corresponding system of local Kuhn�Tucker conditions�
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�� Dual Problem
If C is positive de�nite� then the dual problem �����a� of �����a� can be expressed explicitly�

L�x�u� � max$� subject to �x�u� �M�� where �����a�

M� � f�x�u� � IRn � IRm
� � x � �

�
C���ATu� p�g� �����b�

If we substitute the expression x � �

�
C���ATu � p� into the dual objective function L�x�u�� then

we get the equivalent problem

��u� � �

�
uTAC��ATu�

�


�
AC��p� b

�T
u� 

�
pTC��p � max$� u 	 �� ������

Hence� If x� �M is a solution of �����a�b�� then ������ has a solution u� 	 �� and

f�x�� � ��u��� ������

Problem ������ can be replaced by an equivalent formulation�

��u� � uTEu � hTu � min$ � subject to u 	 � where �����a�

E �


�
AC��AT and h �



�
AC��p� b� �����b�

�	���� SolutionMethods forQuadraticOptimizationProblems

�������� Wolfe�s Method

�� Formulation of the Problem and Solution Principle
The method of Wolfe is to solve quadratic problems of the special form�

f�x� � xTCx� pTx � min$ � subject to Ax � b� x 	 �� ������

We suppose that C is positive de�nite� The basic idea is the determination of a solution �x��u��v�� of
the corresponding system of Kuhn�Tucker conditions� associated to problem �������

Ax � b� �����a�

�Cx� v �ATu � �p� �����b�

x 	 �� v	�� �����c�

xTv � �� ������

Relations �����a�b�c� represent a linear equation system with m�n equations and �n�m non�negative
variables� Because of relation ������� either xi � � or vi � � �i � � �� � � � � n� must hold� Therefore�
every solution of �����a�b�c�� ������ contains at most m�n non�zero components� Hence� it must be
a basic solution of �����a�b�c��

�� Solution Process
First� we determine a feasible basic solution �vertex� "x of the system Ax � b� The indices belonging
to the basis variables of "x form the set IB� In order to �nd a solution of system �����a�b�c�� which also
satis�es ������� we formulate the problem

�� � min$ � �� � IR�� ������

Ax � b� �����a�

�Cx� v �ATu� �q � �p with q � �C"x � p� �����b�

x 	 �� v 	 �� �	�� �����c�

xTv � �� �����
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If �x�v�u� �� is a solution of this problem also satisfying �����a�b�c� and ������� then � � ��
The vector �x�v�u� �� � �"x� �� �� � is a known feasible solution of the system �����a�b�c�� and it
satis�es the relation ������ too� We form a basis associated to this basic solution from the columns
of the coe�cient matrix�� A � � �

�C �I AT �q

�A �
I denotes the unit matrix� � the zero matrix and �
is the zero vector of the corresponding dimension�

������

in the following way�
a� m columns belonging to xi with i � IB�
b� n�m columns belonging to vi with i �� IB�
c� all m columns belonging to ui�
d� the last column� but then a suitable column determined in b� or c� will be dropped�
If q � �� then the interchange according to d� is not possible� Then "x is already a solution�
Now� we can construct a �rst simplex tableau� The minimization of the objective function is performed
by the simplex method with an additional rule that guarantees that the relation xTv � � is satis�ed�
The variables xi and vi �i � � �� � � � � n� must not be simultaneously basic variables�
The simplex method provides a solution of problem ������� �����a�b�c�� ����� with � � � for positive
de�niteC considering this additional rule� For a positive semide�nite matrixC� based on the restricted
pivot choice� it may happen that although � � �� no more exchange�step can be made without violating
the additional rules� We can show that in this case � cannot be reduced any further�

f�x� � x�� � �x�� � �x� � ��x� � min$ with x� � �x� � x� � �� �x� � x� � x� � ��

A �
�

 �  �
�  � 

�
� b �

�
�
�

�
� C �

�BB�
 � � �
� � � �
� � � �
� � � �

�CCA � p �

�BB�
��
���

�
�

�CCA �

In this case C is positive semide�nite� A feasible basic solution of Ax � b is "x � ��� �� �� ��T� q �

�C"x� p � �������� �� ��T� We choose the basis vectors�

a� columns � and � of
�
A
�C

�
� b� columns  and � of

�
�
�I
�

� c� the columns of
�
�
AT

�
and d�

column

�
�
�q

�
instead of the �rst column of

�
�
�I
�

�

The basis matrix is formed from these columns� and
the basis inverse is calculated �see ��� p� �����

Multiplying matrix ������ and the vectors

�
b
�p

�
by the basis inverse� we get the �rst simplex tableau
�Scheme ��
��
Only x� can be interchanged with v� in this tableau
according to the complementary constraints� Af�
ter a few steps� we get the solution x� �

��� ���� �� ����T� The last two equations of �Cx �
v�ATu��q � �p are� v� � u�� v� � u�� There�
fore� by eleminating u� and u� the dimension of the
problem can be reduced�

Scheme ���

x� x� v� v� v�

x�  � � � � �
x� �  � � � �

v�
��

�
� � � ��

�

�

�

��

�
�

u� � � � �  � �
u� � � � � �  �

�
�

�
� � 

�



�

�

�


� �

�
�



�
� 

�
� �

�
� 
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�������� Hildreth�d�EsopoMethod

�� Principle
The strictly convex optimization problem

f�x� � xTCx� pTx � min$ � Ax � b ������

has the dual problem �see ���������� p� ����

��u� � uTEu � hTu � min$ u 	 � with �����a�

E �


�
AC��AT� h �



�
AC��p� b� �����b�

Matrix E is positive de�nite and it has positive diagonal elements eii � �� �i � � �� � � � � m�� The
variables x and u satisfy the following relation�

x � �

�
C���ATu � p�� ������

�� Solution by Iteration
The dual problem �����a�� which contains only the condition u 	 �� can be solved by the following
simple iteration method�
a� Substitute u� 	 �� �e�g�� u� � ��� k � �

b� Calculate uk��i for i � � �� � � � � m according to

wk��
i � � 

eii

��i��X
j��

eiju
k��
j �

hi
�

�
mX

j�i��

eiju
k
j

�A � �����a� uk��i � max
n

�� wk��
i

o
� �����b�

c� Repeat step b� with k �  instead of k until a stopping rule is satis�ed� e�g��
�����uk���� ��uk�

��� � ��

� � ��
Under the assumption that there is an x such that Ax � b� the sequence f��uk�g converges to the
minimum value �min and sequence fxkg given by ������ converges to the solution x� of the original
problem� The sequence fukg is not always convergent�

�	���� Numerical SearchProcedures
By using non�linear optimization procedures we can �nd acceptable approximate solutions with rea�
sonable computing costs for several types of optimization problems� They are based on the principle
of comparison of function values�

�������� One�Dimensional Search
Several optimization methods contain the subproblem of �nding the minimum of a real function f�x�
for x �  a� b!� It is often su�cient to �nd an approximation x of the minimum point x��
�� Formulation of the Problem
A function f�x�� x � IR� is called unimodal in  a� b! if it has exactly one local minimum point on every
closed subinterval J �  a� b!� Let f be a unimodal function on  a� b! and x� the global minimum point�
Then we have to �nd an interval  c� d! �  a� b! with x� �  c� d! such that d� c � �� � � ��

�� Uniform Search

We choose a positive integer n such that 	 �
b� a

n � 
�

�

�
� and we calculate the values f�xk� for xk �

a � k	 �k � � � � � � n�� If f�x� is the smallest value among these function values� then the minimum
point x� is in the interval  x� 	� x � 	!� The number of required function values for the given accuracy
can be estimated by

n �
��b� a�

�
�  � ������
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�� Golden SectionMethod� Fibonacci Method
The interval  a� b! �  a�� b�! will be reduced step by step so that the new subinterval always contains
the minimum point x�� We determine the points ��� �� in the interval  a�� b�! as

�� � a� � ��  ��b� � a��� �� � a� �  �b� � a�� with �����a�

 �


�
�
p

�� � 
 ����� �����b�

This corresponds to the golden section� We distinguish between two cases�

a� f���� � f����� We substitute a� � a�� b� � �� and �� � ��� �����a�

b� f���� 	 f����� We substitute a� � ��� b� � b� and �� � ��� �����b�

If b��a� 	 �� then we repeat the procedure with the interval  a�� b�!� where one value is already known�
f���� in case a� and f���� in case b�� from the �rst step� To determine an interval  an� bn!� which
contains the minimum point x�� we must calculate n function values altogether� From the requirement

� � bn � an �  n���b� � a�� ������

we can estimate the necessary number of steps n�
By using the golden section method� at most one more function value should be determined compared to
the Fibonacci method� Instead of subdividing the interval according to the golden section� we subdivide
the interval according to the Fibonacci numbers �see ������� p� ���� and �������� �� p� �����

�������� Minimum Search inn�Dimensional Euclidean Vector Space

The search for an approximation of the minimum point x� of the problem f�x� � min$� x � IRn� can
be reduced to the solution of a sequence of one�dimensional optimization problems�
We take

a� x � x�� k � � where x� is an appropriate initial approximation of x�� ����a�

b� We solve the one�dimensional problems

���r� � f�xk��� � � � � � xk��r�� � x
k
r � �r� x

k
r��� � � � � x

k
n� � min$ with �r � IR ����b�

for r � � �� � � � � n� If "�r is an exact or approximating minimum point of the r�th problem� then we
substitute xk��r � xkr � "�r�
c� If two consecutive approximations are close enough to each other� i�e�� with some vector norm�

jjxk�� � xkjj � �� or jf�xk���� f�xk�j � ��� ����c�

then xk�� is an approximation of x�� Otherwise we repeat step b� with k �  instead of k� The one�
dimensional problem in b� can be solved� by using the methods given in ������� p� ����

�	���� Methods forUnconstrainedProblems

The general optimization problem

f�x� � min$ for x � IRn ������

is considered with a continuously di�erentiable function f � Each method described in this section con�
structs� in general� an in�nite sequence of points fxkg � IRn� whose accumulation point is a stationary
point� The sequence of points will be determined starting with a point x� � IRn and according to the
formula

xk�� � xk � �kd
k �k � � �� � � � �� ������

i�e�� we �rst determine a direction dk � IRn at xk and by the step size �k � IR we indicate how far xk��

is from xk in the direction dk� Such a method is called a descent method� if

f�xk��� � f�xk� �k � � �� � � ��� ������
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The equalityrf�x� � �� wherer is the nabla operator �see ������� p� ����� characterizes a stationary
point and can be used as a stopping rule for the iteration method�

�������� Method of Steepest Descent �GradientMethod�

Starting from an actual point xk� the direction dk in which the function has its steepest descent is

dk � �rf�xk� �����a� and consequently xk�� � xk � �krf�xk�� �����b�

A schematic representation of the steepest descent method with level lines f�x� � f�xi� is shown in
Fig ����

x*x
3

x
2

x
1

f(x )
1�

level lines

f(x)=f(x )
1

Figure ���

The step size �k is determined by a line
search� i�e�� �k is the solution of the one�
dimensional problem

f�xk � �dk� � min$ � � 	 �� ������

This problem can be solved by the methods
given in ������ p� ����
The steepest descent method �����b� con�
verges relatively slowly� For every accu�
mulation point x� of the sequence fxkg�
rf�x�� � �� In the case of a quadratic ob�
jective function� i�e�� f�x� � xTCx�pTx�
the method has the special form�

xk�� � xk � �kd
k �����a� with dk � ���Cxk � p� and �k �

dk
T
dk

�dk
T
Cdk

� �����b�

�������� Application of the NewtonMethod
Suppose we approximate the function f at the actual approximation point xk by a quadratic function�

q�x� � f�xk� � �x� xk�Trf�xk� �


�
�x� xk�TH�xk��x� xk�� ������

Here H�xk� is the Hessian matrix� i�e�� the matrix of second partial derivatives of f at the point xk� If
H�xk� is positive de�nite� then q�x� has an absolute minimum at xk�� with rq�xk��� � �� therefore
we get the Newton method�

xk�� � xk �H���xk�rf�xk� �k � � �� � � �� � i�e�� �����a�

dk � �H���xk�rf�xk� and �k in ������� �����b�

The Newton method converges quickly but it has the following disadvantages�
a� The matrix H�xk� must be positive de�nite�
b� The method converges only for su�ciently good initial points�
c� We cannot in�uence the step size�
d� The method is not a descent method�

e� The computational cost of computing the inverse of H���xk� is fairly high�
Some of these disadvantages can be reduced by the following version of the damped Newton method�

xk�� � xk � �kH
���xk�rf�xk� �k � � �� � � �� � ������

The relaxation factor �k can be determined� for example� by the principle given earlier �see �������
p� �����

�������� Conjugate GradientMethods

Two vectors d��d� � IRn are called conjugate vectors with respect to a symmetric� positive de�nite
matrix C� if

d�
T
Cd� � �� �����
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If d��d�� � � � �dn are pairwise conjugate vectors with respect to a matrix C� then the convex quadratic
problem q�x� � xTCx � pTx� x � IRn� can be solved in n steps if we construct a sequence xk�� �

xk��kd
k starting fromx�� where �k is the optimal step size� Under the assumption that f�x� is approx�

imately quadratic in the neighborhood of x�� i�e�� C 
 

�
H�x��� the method developed for quadratic

objective functions can also be applied for more general functions f�x�� without the explicit use of the
matrix H�x���
The conjugate gradient method has the following steps�

a� x� � IRn� d� � �rf�x��� ������

where x� is an appropriate initial approximation for x��

b� xk�� � xk � �kd
k �k � � � � � � n� with �k 	 � so that f�xk � �dk� will be minimized� �����a�

dk�� � �rf�xk��� � �kd
k �k � � � � � � n� � with �����b�

�k �
rf�xk���

Trf�xk���

rf�xk�Trf�xk�
and dn�� � �rf�xn���� �����c�

c� Repeating steps b� with xn�� and dn�� instead of x� and d��

�������� Method of Davidon� Fletcher and Powell �DFP�

With the DFP method� we determine a sequence of points starting from x� � IRn according to the
formula

xk�� � xk � �kMkrf�xk� �k � � �� � � ��� ������

Here� Mk is a symmetric� positive de�nite matrix� The idea of the method is a stepwise approximation
of the inverse Hessian matrix by matrices Mk in the case when f�x� is a quadratic function� Starting
with a symmetric� positive de�nite matrix M�� e�g�� M� � I �I is the unit matrix�� the matrix Mk is
determined from Mk�� by adding a correction matrix of rank two

Mk � Mk�� �
vkvk

T

vkTvk
� �Mk��wk��Mk��wk�

T

wkTMkwk
������

with vk � xk � xk�� and wk � rf�xk��rf�xk��� �k � �� �� � � ��� We get the step size �k from

f�xk � �Mkrf�xk�� � min$ � � 	 �� ������

If f�x� is a quadratic function� then the DFP method becomes the conjugate gradient method with
M� � I�

�	���� Evolution Strategies
Evolution strategies are stochastic optimization methods that imitate the process of natural evolution�
Evolutionary algorithms are based on the principles of mutation� recombination and selection� For a
comprehensive representation see  ��� ���!�
� Mutation A parent point xP is modi�ed by adding a random variationd� resulting in an o�spring
point xO � xP � d� Using normally distributed variations d� smaller steps are more likely than big
jumps�
� Recombination New individuals of the o�spring generation can be derived by merging the in�
formation of two ore more parents� which are randomly selected from a population of m parents� For
example� an o�spring can be represented as the weighted mean of n parents corresponding to

xO �
nX
i��

�i xPi�
nX
i��

�i � � n � �� � � � � m � ������

� Selection The objective function f�x� provides the measure to compare the quality of the indi�
viduals� The best individuals survive to become the parents of the next generation�
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Evolution strategies are classi�ed with respect to the number of parents and o�springs� the number of
parents involved in recombination as well as the rules for mutation and selection�

�������� Mutation�Selection�Strategy
This strategy is similar to the gradient method discribed in ������� p� ���� But now the direction xk

is a normally distributed random vector�

� Mutation Step A single parent point of the generation k generates one o�spring point by adding
a normal distributed variation corresponding to

x k
O � x k

p � �d k � ������

The factor � is a parameter to control the mutation step size and to improve the convergence rate of
the algorithm�

� Selection Step The point with the better objective function value is selected as the parent point
of the next generation k � 

xk��P �

�
xkO if f�x k

O� � f�xkP �

xkP otherwise �
������

The method terminates if no improved descendants are determined over a certain number of genera�
tions� The step size � can be enlarged� if the mutation frequently results in better descendants whereas
� shoud be reduced in the case of rare improvements�

�������� Recombination
Starting with a population of m parents of the kth generation X k

P � fx k
P�

� � � � �x k
Pmg� we form a

set of n o�springs X k
O � fx k

O�
� � � � �x k

On
g by applying mutation and recombination n times� Each

o�spring is determined combining � or more randomly chosen parents� The best m points are se�
lected out of the m � n points of the union of X k

P and X k
O to form the subsequent parent generation

X k��
P � fx k��

P� � � � � �xk��Pm g � To limit the lifetime of all individuals to one generation the selection can

be restricted to the set of descendants X k
O � Thus� the objective function values of the o�springs can

exceed those of the parents� which makes it possible to leave local minima�

�	���� GradientMethod for Problemswith Inequality
TypeConstraints

If the problem

f�x� � min$ subject to the constraints gi�x� � � �i � � � � � � m� ������

has to be solved by an iteration method of the type

xk�� � xk � �kd
k �k � � �� � � �� �����

then we have to consider two additional rules because of the bounded feasible set�

� The direction dk must be a feasible descent direction at xk�

� The step size �k must be determined so that xk�� is in M �

The di�erent methods based on the formula ����� di�er from each other only in the construction of

the direction dk� To ensure the feasibility of the sequence fxkg � M � we determine ��k and ���k in the
following way�

��k from f�xk � �dk� � min$ � � 	 �

���k � maxf� � IR � xk � �dk �Mg� ������

Then

�k � minf��k� ���k g� ������



��� ��� Optimization

If there is no feasible descent direction dk in a certain step k� then xk is a stationary point�

�����	�� Method of Feasible Directions

�� Direction Search Program

A feasible descent direction dk at point xk can be determined by the solution of the following optimiza�
tion problem�

� � min$� ������

rgi�x
k�
T
d � �� i � I��x

k�� �����a� rf�xk�
T
d � �� �����b� jjdjj � � �����c�

If � � � for the result d � dk of this direction search program� then �����a� ensures feasibility and

�����b� ensures the descending property of dk� The feasible set for the direction search program is
bounded by the normalizing condition �����c�� If � � �� then xk is a stationary point� since there is
no feasible descent direction at xk�
A direction search program� de�ned by �����a�b�c�� can result in a zig�zag behavior of the sequence
xk� which can be avoided if the index set I��x

k� is replaced by the index set

I�k�x
k� � fi � f� � � � � mg � ��k � gi�x

k� � �g� �k 	 � ������

which are the so�called �k active constraints inxk� Thus� we exclude local directions of descent which are
going from xk and lead closer to the boundaries of M consisting of the �k active constraints �Fig �����
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g (x)=1 −�

g (x)=2 −�
g (x)=02

Figure ���

If � � � is a solution of �����a�b�c� after these modi�cations� then xk is a stationary point only if
I��x

k� � I�k�x
k�� Otherwise �k must be decreased and the direction search program must be repeated�

f(x )
k�-

d
k

x
k

x
k

d
k

M
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k�-

Ma) b)

Figure ���

�� Special Case of Linear Constraints
If the functions gi�x� are linear� i�e�� gi�x� �
ai

Tx� bi� then we can establish a simpler direc�
tion search method�

� � rf�xk�
T
d � min$ with ������

ai
Td � �� i � I��x

k� or i � I�k�x
k�� �����a�

jjdjj � � �����b�

The e�ect of the choice of di�erent norms jjdjj �
maxfjdijg �  or jjdjj �

q
dTd �  is shown in

Fig ���a�b�

In a certain sense� the best choice is the norm jjdjj � jjdjj� �
q
dTd� since by the direction search pro�

gram we get the direction dk� which forms the smallest angle with �rf�xk�� In this case the direction
search program is not linear and requires higher computational costs� With the choice jjdjj � jjdjj� �
maxfjdijg �  we get a system of linear constraints� � di � � �i � � � � � � n�� so the direction search
program can be solved� e�g�� by the simplex method�
In order to ensure that the method of feasible directions for a quadratic optimization problem f�x� �
xTCx � pTx � min$ with Ax � b results in a solution in �nitely many steps� the direction search
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program is completed by the following conjugate requirements� If �k�� � ��k�� holds in a step� i�e�� xk

is an 	interior
 point� then we add the condition

dk��
T
Cd � � ������

to the direction search program� Furthermore we keep the corresponding conditions from the previous
steps� If in a later step �k � ���k we remove the condition �������

f�x� � x�� � �x�� � �x� � ��x� � min$ g��x� � �x� � �� g��x� � �x� � ��
g��x� � x� � �x� � � � �� g��x� � �x� � x� � � � ��

Step � Starting with x� � ��� ��T� rf�x�� � ��������T� I��x
�� � f�g�

Direction search program�

���d� � ��d� � min$

�d� � �� jjdjj� � 

�
�� d� � �� �T�

Minimizing constant� ��k � �d
kTrf�xk�

�dk
T
Cdk

with C �
�

 �
� �

�
�

Maximal feasible step size� ���k � min

��gi�x
k�

aiTd
k � for i such that ai

Tdk � �

�
� ��� �

�

�
� ���� �

�

�
��

�� � min
�

�

�
�
�

�

�
�

�

�
� x� �

�


�
�

�

�

�T
�

Step �� rf�x�� �
�
��

�
����

�

�T
� I��x

�� � f�g�

Direction search program�

����
�

�
d� � ��

�
d� � min$

�d� � d� � �� jjdjj� � 

 !" �� d� �
�
�

�
� 
�T

� ��� �
��

�
� ���� �

�

�
��

�� �
�

�
� x� � ��� ��T�

Step �� rf�x�� � �������T� I� � �x�� � f�� �g�
Direction search program����d� � �d� � min$

d� � �d� � �� �d� � d� � �� jjdjj� � 

�
�� d� �

�
��



�

�T
� ��� � � ���� � � �� �� � � x� �

�
��

�

�

�T
�

The next direction search program results in � � �� Here
the minimum point is x� � x� �Fig ��
��
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�����	�� Gradient ProjectionMethod

�� Formulation of the Problem and Solution Principle
Suppose the convex optimization problem

f�x� � min$ with ai
Tx � bi� ������

for i � � � � � � m is given� A feasible descent direction dk at the point xk � M is determined in the
following way�

If �rf�xk� is a feasible direction� then dk � �rf�xk� is selected� Otherwise xk is on the boundary
of M and �rf�xk� points outward from M � The vector �rf�xk� is projected by a linear mapping
Pk into a linear submanifold of the boundary of M de�ned by a subset of active constraints of xk�
Fig ����a shows a projection into an edge� Fig ����b shows a projection into a face� Supposing
non�degeneracy� i�e�� if the vectors ai� i � I��x� are linearly independent for every x � IRn� such a
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projection is given by

dk � �Pkrf�xk� � �
�
I�Ak

T�AkAk
T�

��
Ak

	
rf�xk�� �����

Here� Ak consists of all vectors ai
T� whose corresponding constraints form the submanifold� into which

�rf�xk� should be projected�

f(x )
k�-

d
k

x
k f(x )

k�-

d
k

x
k

a) b)

Figure ���
�� Algorithm
The gradient projection method consists of the following steps� starting with x� �M and substituting
k �  and proceeding in accordance to the following scheme�

I� If �rf�xk� is a feasible direction� then we substitute dk � �rf�xk�� and we continue with III�
Otherwise we construct Ak from the vectors ai

T with i � I��x
k� and we continue with II�

II� We substitute dk � �
�
I�Ak

T�AkAk
T�

��
Ak

	
rf�xk�� If dk �� �� then we continue with III� If

dk � � and u � ��AkAk
T�

��
Akrf�xk� 	 �� then xk is a minimum point� The local Kuhn�Tucker

conditions �rf�xk� �
P

i�I��xk�
uiai � Ak

Tu are obviously satis�ed�

If u 	� �� then we choose an i with ui � �� delete the i�th row from Ak and repeat II�

III� Calculation of �k and xk�� � xk � �kd
k and returning to I with k � k � �

�� Remarks on the Algorithm
If �rf�xk� is not feasible� then this vector is mapped onto the submanifold of the smallest dimension

which contains xk� If dk � �� then �rf�xk� is perpendicular to this submanifold� If u 	 � does
not hold� then the dimension of the submanifold is increased by one by omitting one of the active

constraints� so maybe dk �� � can occur �Fig ����b� �with projection onto a �lateral� face�� SinceAk

is often obtained fromAk�� by adding or erasing a row� the calculation of �AkAk
T�

��
can be simpli�ed

by the use of �Ak��Ak��
T�

��
�

Solution of the problem of the previous example on p� ����

Step � x� � ��� ��T�

I� rf�x�� � ��������T� �rf�x�� is feasible� d� � ��� ���T�

III� The step size is determined as in the previous example� �� �


��
� x� �

�
�

�
�

�

�

�T
�

Step ��

I� rf�x�� �
�
��

�
����

�

�T
�not feasible�� I��x

�� � f�g� A� � �� ��

II� P� �


�

�
 ��
�� �

�
� d� �

�
� �

��
�
�

��

�T
�� ��

III� �� �
�

�
� x� � ��� ��T�

Step ��
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I� rf�x�� � �������T �not feasible�� I��x
�� � f�� �g� A� �

�
 �
� 

�
�

II� P� �
�

� �
� �

�
� d� � ��� ��T�u �

�
��

�
���

�

�T
u� � � � A� � � ���

II� P� �


�

�
� ��
�� 

�
� d� �

�
��

�
�
�

�

�T
�

III� �� �
�

�
� x� �

�
��

�

�

�T
�

Step ��

I� rf�x�� � �������T �not feasible�� I��x
�� � f�g� A� � A��

II� P� � P�� d� � ��� ��T� u � � 	 ��

It follows that x� is a minimum point�

�	���	 Penalty Function andBarrierMethods
The basic principle of these methods is that a constrained optimization problem is transformed into
a sequence of optimization problems without constraints by modifying the objective function� The
modi�ed problem can be solved� e�g�� by the methods given in Section ������ With an appropriate
construction of the modi�ed objective functions� every accumulation point of the sequence of the solu�
tion points of this modi�ed problem is a solution of the original problem�

�������� Penalty FunctionMethod
The problem

f�x� � min$ subject to gi�x� � � �i � � �� � � � � m� ������

is replaced by the sequence of unconstrained problems

H�x� pk� � f�x� � pkS�x� � min$ with x � IRn� pk � � �k � � �� � � ��� ������

Here� pk is a positive parameter� and for S�x�

S�x� �
�

� � x �M �
� � x ��M �

������

holds� i�e�� leaving the feasible set M is punished with a 	penalty
 term pkS�x�� The problem ������
is solved with a sequence of penalty parameters pk tending to�� Then

lim
k��

H�x� pk� � f�x�� x �M� ������

If xk is the solution of the k�th penalty problem� then�

H�xk� pk� 	 H�xk��� pk���� f�xk� 	 f�xk���� ������

and every accumulation point x� of the sequence fxkg is a solution of ������� If xk � M � then xk is
a solution of the original problem�
For instance� the following functions are appropriate realizations of S�x��

S�x� � maxrf�� g��x�� � � � � gm�x�g �r � � �� � � �� or �����a�

S�x� �
mX
i��

maxrf�� gi�x�g �r � � �� � � ��� �����b�

If functions f�x� and gi�x� are di�erentiable� then in the case r � � the penalty function H�x� pk�
is also di�erentiable on the boundary of M � so analytic solutions can be used to solve the auxiliary
problem �������
Fig ���� shows a representation of the penalty function method�

f�x� � x�� � x�� � min$ for x� � x� 	 � H�x� pk� � x�� � x�� � pk max�f�� � x� � x�g�
The necessary optimality condition is�
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M x* x
1

x

H(x,p )1

x
2

H(x,p )2

f(x)

Figure ��

x

M x
1

x*x
2

f(x)

H(x,q )1

H(x,q )2

Figure ���

rH�x� pk� �
�

�x� � �pk maxf�� � x� � x�g
�x� � �pk maxf�� � x� � x�g

�
�
�

�
�

�
�

The gradient of H is evaluated here with respect to x� By subtracting the equations we have x� � x��

The equation �x� � �pk maxf��  � �x�g � � has a unique solution xk� � xk� �
pk

 � �pk
� We get the

solution x�� � x�� � lim
k��

pk
 � �pk

�


�
by letting k ��

�������� BarrierMethod

We consider a sequence of modi�ed problems in the form

H�x� qk� � f�x� � qkB�x� � min$ � qk � � � ������

The term qkB�x� prevents the solution leaving the feasible set M � since the objective function increases
unboundedly on approaching the boundary of M � The regularity condition

M� � fx �M � gi�x� � � �i � � �� � � � � m�g �� � and M� � M ������

must be satis�ed� i�e�� the interior of M must be non�empty and it is possible to get to any boundary
point by approaching it from the interior� i�e�� the closure of M� is M �
The function B�x� is de�ned to be continuous on M�� It increases to� at the boundary of M � The
modi�ed problem ������ is solved by a sequence of barrier parameters qk tending to zero� For the
solution xk of the k�th problem ������ holds

f�xk� � f�xk���� �����

and every accumulation point x� of the sequence fxkg is a solution of �������
Fig ���� shows a representation of the barrier method�

The functions� e�g��

B�x� � �
mX
i��

� ln��gi�x��� x �M� or ���a�

B�x� �
mX
i��



 �gi�x�!r
�r � � �� � � ��� x �M� ���b�

are appropriate realizations of B�x��

f�x� � x�� � x�� � min$ subject to x� � x� 	 � H�x� qk� � x�� � x�� � qk�� ln�x� � x� � ���
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x� �x� � �rH�x� qk� �

�BBB�
�x� � qk



x� � x� � 

�x� � qk


x� � x� � 

�CCCA �
�

�
�

�
� x� �x� � � The gradient of H is given

with respect to x�

Subtracting the equations results in x� � x�� �x� � qk


�x� � 
� �� x� �



�
� �� x�� �

x�
�
� qk

�
�

�� x� �


�
� xk� � xk� �



�
�

s


�
�



�
qk� k �� qk  �� x�� � x�� �



�
�

The solutions of problems ������ and ������ at the k�th step do not depend on the solutions of the
previous steps� The application of higher penalty or smaller barrier parameters often leads to conver�
gence problems with numerical solution of ������ and ������� e�g�� in the method of �������� in
particular� if we do not have any good initial approximation� Using the result of the k�th problem as
the initial solution for the �k � ��th problem we can improve the convergence behavior�

�	���� CuttingPlaneMethods

�� Formulation of the Problem and Principle of Solution
We consider the problem

f�x� � cTx � min$� c � IRn �����

over the bounded region M � IRn given by convex functions gi�x� �i � � �� � � � � m� in the form gi�x� �
�� A problem with a non�linear but convex objective function f�x� is transformed into this form� if

f�x�� xn�� � �� xn�� � IR �����

is considered as a further constraint and

f�x� � xn�� � min$ for all x � �x� xn��� � IRn�� �����

is solved with gi�x� � gi�x� � ��
The basic idea of the method is the iterative linear approximation of M by a convex polyhedron in the
neighborhood of the minimum point x�� and therefore the original program is reduced to a sequence of
linear programming problems�
First� we determine a polyhedron

P� � fx � IRn � ai
Tx � bi� i � � � � � � sg� �����

From the linear program

f�x� � min$ with x � P� �����

an optimal extreme pointx� of P� is determined with respect to f�x�� If x� �M holds� then the optimal
solution of the original problem is found� Otherwise� we determine a hyperplane H� � fx � as��

Tx

� bs��� as��
Tx� � bs��g� which separates the point x� from M � so the new polyhedron contains

H2
x
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x
1

x
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H1
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M

Figure ���

P� � fx � P� � as��
Tx � bs��g� �����

Fig ���� shows a schematic representation of the
cutting plane method�

�� Kelley Method
The di�erent methods di�er from each other in the
choice of the separating planes Hk� In the case of the
Kelley method Hk is chosen in the following way� A
jk is chosen so that

gjk�x
k� � maxfgi�xk� �i � � � � � � m�g� �����
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At the point x � xk� the function gjk�x� has the tangent plane

T �x� � gjk�x
k� � �x� xk�Trgjk�x

k�� �����

The hyperplane Hk � fx � IRn � T �x� � �g separates the point xk from all points x with gjk�x� � ��
So� for the �k � ��th linear program� T �x� � � is added as a further constraint� Every accumulation
point x� of the sequence fxkg is a minimum point of the original problem�
In practical applications this method shows a low speed of convergence� Furthermore� the number of
constraints is always increasing�

���� DiscreteDynamicProgramming

�	���� DiscreteDynamicDecisionModels
A wide class of optimization problems can be solved by the methods of dynamic programming� The
problem is considered as a process proceeding naturally or formally in time� and it is controlled by
time�dependent decisions� If the process can be decomposed into a �nite or countably in�nite num�
ber of steps� then we talk about discrete dynamic programming� otherwise about continuous dynamic
programming �see  ���!�� In this section� we discuss only n�stage discrete processes�

�������� n�Stage Decision Processes
An n�stage process P starts at stage � with an initial state xa � x� and proceeds through the interme�
diate states x�� x�� � � � � xn�� into a �nal state xn � xe � Xe � IRm� The state vectors xj are in the
state space Xj � IRm� To drive a state xj�� into the state xj� a decision uj is required� All possible

decision vectors uj in the state xj�� form the decision space Uj�xj��� � IRs� From xj�� we get the

consecutive state xj by the transformation �Fig �����

xj � gj�xj���uj�� j � ��n� ������

x = xa 0 g (x , u )1 0 1
x1 g (x , u )2 1 2

x2 xn-1

u U (x )1 1 0- u U (x )2 2 1- u U (x )n n n-1-

g (x , u )n n 1 n-
x = xn e

Figure ���

�������� Dynamic Programming Problem
Our goal is to determine a policy �u�� � � � �un� which drives the process from the initial state xa into
the state xe considering all constraints so that it minimizes an objective function or cost function
f�f��x��u��� � � � � fn�xn���un��� The functions fj�xj���uj� are called stage costs� The standard form
of the dynamic programming problem is

OF� f�f��x��u��� � � � � fn�xn���un�� � min$ ����a�

CT� xj � gj�xj���uj�� j � ��n�
x� � xa� xn � xe � Xe� xj � Xj � IRm� j � ��n�
uj � Uj�xj��� � IRm� j � ��n�

 !" ����b�

The �rst type of constraints xj are called dynamic and the others x��uj are called static� Similarly to

����a�� a maximum problem can also be considered� A policy �u�� � � � �un� satisfying all constraints
is called feasible� The methods of dynamic programming can be applied if the objective function satis�
�es certain additional requirements �see ������ p� �����
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�	���� Examples ofDiscreteDecisionModels

�������� Purchasing Problem

In the j�th period of a time interval which can be divided into n periods� a workshop needs vj units
of a certain primary material� The available amount of this material at the beginning of period j is
denoted by xj��� in particular� x� � xa is given� We have to determine the amounts uj� for a unit price
cj� which should be purchased by the workshop at the end of each period� The given storage capacity
K must not be exceeded� i�e�� xj�� � uj � K� We have to determine a purchase policy �u�� � � � � un��
which minimizes the total cost� This problem leads to the following dynamic programming problem

OF� f�u�� � � � � un� �
nX
j��

fj�uj� �
nX
j��

cjuj � min$ �����a�

CT� xj � xj�� � uj � vj � j � ��n�
x� � xa � � � xj � K � j � ��n�
Uj�xj��� � fuj � maxf�� vj � xj��g � uj � K � xj��g � j � ��n�

 !" �����b�

In �����b� we ensure that demands are satis�ed and the storage capacity is not exceeded� If there is
also a storage cost l per unit per period� then intermediate cost in the j�th period is �xj�� �uj�vj���l�
and the modi�ed cost function is

f�x�� u�� � � � � xn��� un� �
nX
j��

�cjuj � �xj�� � uj � vj��� � l�� ������

�������� Knapsack Problem

We have to select some of the items A�� � � � � An with weights w�� � � � � wn and with values c�� � � � � cn so
that the total weight does not exceed a given bound W � and the total value is maximal� This problem
does not depend on time� It will be reformulated in the following way� At every stage we make a de�
cision uj about the selection of item Aj� Here� uj �  holds if Aj is selected� otherwise uj � �� The
capacity still available at the beginning of a stage is denoted by xj��� so we get the following dynamic
problem�

OF� f�u�� � � � � un� �
nX
j��

cjuj � max$ �����a�

CT� xj � xj�� � wjuj� j � ��n�
x� � W � � � xj � W� j � ��n�
uj � f�� g� falls xj�� 	 wj�
uj � � � falls xj�� � wj�

�
j � ��n�

 ���!���" �����b�

�	���� BellmanFunctional Equations

�������� Properties of the Cost Function

In order to state the Bellman functional equations� the cost function must satisfy two requirements�

�� Separability

The function f�f��x��u��� � � � � fn�xn���un�� is called separable� if it can be given by binary functions
H�� � � � � Hn�� and by functions F�� � � � � Fn in the following way�

f�f��x��u��� � � � � fn�xn���un�� � F��f��x��u��� � � � � fn�xn���un���
F��f��x��u��� � � � � fn�xn���un�� � H� �f��x��u��� F��f��x��u��� � � � � fn�xn���un��� �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Fn���fn���xn���un���� fn�xn���un�� � Hn�� �fn���xn���un���� Fn�fn�xn���un��� �
Fn�fn�xn���un�� � fn�xn���un��

������
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�� Minimum Interchangeability

A function H� 'f�a�� 'F �b�� is called minimum interchangeable� if�

min
�a�b��AB

H
�

'f�a�� 'F �b�
	

� min
a�A

H
�

'f�a��min
b�B

'F �b�
�
� ������

This property is satis�ed� for example� if H is monotone increasing with respect to its second argument
for every a � A� i�e�� if for every a � A�

H
�

'f�a�� 'F �b��
	
� H

�
'f�a�� 'F �b��

	
for 'F �b�� � 'F �b��� ������

Now� for the cost function of the dynamic programming problem� the separability of f and the minimum
interchangeability of all functions Hj� j � ��n�  are required� The following often occurring type
of cost function satis�es both requirements�

f sum �
nX
j��

fj�xj���uj� or fmax � max
j�����n

fj�xj���uj�� ������

The functions Hj are

Hsum
j � fj�xj���uj� �

nX
k�j��

fk�xk���uk� and ������

Hmax
j � max

�
fj�xj���uj�� max

k�j�����n
fk�xk���uk�

�
� ������

�������� Formulation of the Functional Equations
We de�ne the following functions�

&j�xj��� � min
uk�Uk�xk���
k�j���n

Fj�fj�xj���uj�� � � � � fn�xn���un��� j � ��n� �����

&n���xn� � �� ������

If there is no policy �u�� � � � �un� driving the state xj�� into a �nal state xe � Xe� then we substitute

&j�xj��� � �� Using the separability and minimum interchangeability conditions and the dynamic

constraints for j � ��n we get�

&j�xj��� � min
uj�Uj�xj���

Hj�fj�xj���uj�� min
uk�Uk�xk���
k�j�����n

Fj���fj���xj�uj���� � � � � fn�xn���un����

� min
uj�Uj�xj���

Hj

�
fj�xj���uj�� &j���xj�

	
&j�xj��� � min

uj�Uj�xj���
Hj

�
fj�xj���uj�� &j���gj�xj���uj��

	
� ������

Equations ������ and ������ are called the Bellman functional equations� &��x�� is the optimal
value of the cost function f �

�	���� BellmanOptimalityPrinciple
The evaluation of the functional equation

&j�xj��� � min
uj�Uj�xj���

Hj

�
fj�xj���uj�� &j���xj�

	
������

corresponds to the determination of an optimal policy �u�j � � � � �u
�
n� minimizing the cost function� i�e��

Fj�fj�xj���uj�� � � � � fn�xn���un�� � min$ ������
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based on the subprocess Pj starting at state xj�� and consisting of the last n � j �  stages of the
total process P � The optimal policy of the process Pj with the initial state xj�� is independent of the
decisions u�� � � � �uj�� of the �rst j� stages of P which have driven P to the state xj��� To determine

&j�xj���� we need to know the value &j���xj�� Now� if �u�j � � � � �u
�
n� is an optimal policy for Pj� then�

obviously� �u�j��� � � � �u
�
n� is an optimal policy for the subprocess Pj�� starting at xj � gj�xj���u

�
j��

This statement is generalized in the Bellman optimality principle�
BellmanPrinciple� If �u��� � � � �u

�
n� is an optimal policy of the process P and �x��� � � � �x

�
n� is the corre�

sponding sequence of states� then for every subprocess Pj� j � ��n� with initial state x�j�� the policy

�u�j � � � � �u
�
n� is also optimal �see  ���!��

�	���� BellmanFunctional EquationMethod

�������� Determination ofMinimal Costs
With the functional equations ������� ������ and starting with &n���xn� � � we determine every
value &j�xj��� with xj�� � Xj�� in decreasing order of j� It requires the solution of an optimum

problem over the decision space Uj�xj��� for every xj�� � Xj��� For every xj�� there is a minimum
point uj � Uj as an optimal decision for the �rst stage of a subprocess Pj starting at xj��� If the
sets Xj are not �nite or they are too large� then the values &j can be calculated for a set of selected
nodes xj�� � Xj��� The intermediate values can be calculated by a certain interpolation method�

&��x�� is the optimal value of the cost function of process P � The optimal policy �u��� � � � �u
�
n� and the

corresponding states �x��� � � � �x
�
n� can be determined by one of the following two methods�

�������� Determination of the Optimal Policy

� Variant �� During the evaluation of the functional equations� the computed uj is also saved for

every xj�� � Xj��� After the calculation of &��x��� we get an optimal policy if we determine x�� �

g��x
�
��u

�
�� from x� � x�� and the saved u� � u��� then from x�� and the saved decision u�� we get x��� etc�

� Variant �� We save only &j�xj��� for every xj�� � Xj��� After every &j�xj��� is known� we make
a forward calculation� Starting with j �  and x� � x�� we determine u�j in increasing order of j by the
evaluation of the functional equation

&j�x
�
j��� � min

uj�Uj�x�j���
Hj

�
fj�x

�
j���uj�� &j���gj�x

�
j���uj��

	
� ������

We obtain x�j � gj�x
�
j���u

�
j�� During the forward calculation� we again have to solve an optimization

problem at every stage�

� Comparison of the two Variants� The computation costs of variant � are less than variant �
requires because of the forward calculations� However decision uj is saved for every state xj��� which

may require very large memory in the case of a higher dimensional decision space Uj�xj���� while in

the case of variant �� we have to save only the values &j�xj���� Therefore� sometimes variant � is used
on computers�

�	���� Examples forApplications of the Functional Equation
Method

�������� Optimal Purchasing Policy

�� Formulation of the Problem
The problem from ������� p� ���� to determine an optimal purchasing policy

OF f�u�� � � � � un� �
nX
j��

cjuj � min$ �����a�
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CT xj � xj�� � uj � vj� j � ��n�

x� � xa� � � xj � K� j � ��n� �����b�

Uj�xj��� � fuj � maxf�� vj � xj��g � uj � K � xj��g � j � ��n

leads to the functional equations

&n���xn� � �� ������

&j�xj��� � min
uj�Uj�xj���

�cjuj � &j���xj�� � uj � vj�� � j � ��n� ������

�� Numerical Example

n � � � K � � � xa � � �
c� � �� c� � �� c� � �� c� � �� c� � �� c	 � ��
v� � �� v� � �� v� � �� v� � �� v� � �� v	 � ��

Backward Calculation� The function values &j�xj��� will be determined for the states xj�� �
�� � � � � � �� Now� it is enough to make the minimum search only for integer values of uj�

j � �� &	�x�� � min
u��U��x�

c	u	 � c	 maxf�� v	 � x�g � � maxf�� �� x�g�
According to variant � of the Bellman functional equation method� only the values of &	�x�� are written
in the last row� For example� we determine &�����

&���� � min
�
u�
��

��u� � &��u� � ���

� min���� ��� ��� ��� ��� ��� ��� ��� ��� � ���

xj��  � � � � � � � � �
j� ��

� �� �� �� �� �� �� � �� �� �� ��
� �� �� �� �� �� � � � � � �
� �� � � � � � � � � � �
� �� � � � � � � � � � �
� � � � � � � � � � � �

Forward Calculation�

&���� � �� � min
�
u�



��u� � &��u� � ����

We get u�� � � as the minimum point� therefore x�� � x�� � u�� � v� � �� This method is repeated for
&���� and for all later stages� The optimal policy is�

�u��� u
�
�� u

�
�� u

�
�� u

�
�� u

�
	� � ��� �� � �� �� ���

�������� Knapsack Problem

�� Formulation of the Problem
Consider the problem given in �������� p� ���

OF �f�u�� � � � � un� �
nX
j��

cjuj � max$ �����a�

CT� xj � xj�� � wjuj� j � ��n�
x� � W� � � xj � W� j � ��n�
uj � f�� g� if xj�� 	 wj�
uj � � � if xj�� � wj�

�
j � ��n�

 ���!���" �����b�

Since we have a maximum problem� the Bellman functional equations are now

&n���xn� � ��

&j�xj��� � max
uj�Uj�xj���

�cjuj � &j���xj�� � wjuj��� j � ��n�
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The decisions can be only � and � so it is practical to apply variant � of the functional equation method�
For j � n� n� � � � � �  we get�

&j�xj��� �
�
cj � &j���xj�� � wj� if xj�� 	 wj and cj � &j���xj�� � wj� � &j���xj����
&j���xj��� otherwise�

uj�xj��� �
�

 if xj�� 	 wj and cj � &j���xj�� � wj� � &j���xj����
� otherwise�

�� Numerical Example

W � �� n � ��
c� � � c� � �� c� � �� c� � � c� � �� c	 � ��
w� � �� w� � �� w� � �� w� � �� w� � �� w	 � ��

Since the weights wj are integers� the possible values for xj are xj � f�� � � � � � �g� j � ��n� and x� �
�� The table contains the function values &j�xj��� and the actual decision uj�xj��� for every stage and
for every state xj��� For example� the values of &	�x��� &����� &����� and &���� are calculated�

&	�x�� �
�

�� if x� � w	 � ��
c	 � �� otherwise�

u	�x�� �
�

�� if x� � ��
�� otherwise�

&���� � x� � � � w� � �� &���� � &���� � �� u���� � ��

&���� � x� � w� and c� � &��x� � w�� � � � � � &��x�� � �� &���� � �� u���� � ��

&���� � x� � w� and c� � &��x� � w�� � � � � � &��x�� � �� &���� � �� u���� � �

The optimal policy is

�u��� u
�
�� u

�
�� u

�
�� u

�
�� u

�
	� � ��� � � � �� �� &���� � ��

xj � �  � � � � � � � � �
j �  �� �

� �� � �� � ��  ��  �� � ��  ��  ��  �� � �� � �� 
� �� � �� � �� � ��  ��  �� � �� � ��  ��  ��  �� �
� �� � ��  ��  ��  �� � ��  ��  ��  ��  �� � �� 
� �� � �� � �� � �� � �� � ��  ��  ��  ��  ��  �� 
� �� � �� � �� � �� � ��  ��  ��  ��  ��  ��  �� 
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�
 NumericalAnalysis
The most important principles of numerical analysis will be the subject of this chapter� The solution
of practical problems usually requires the application of a professional numerical library of numerical
methods� developed for computers� Some of them will be introduced at the end of Section ������
Special computer algebra systems such asMathematica andMaplewill be discussed with their numerical
programs in Chapter ��� p� ��� and in Section ������ p� ���� Error propagation and computation errors
will be examined in Section ������ p� ����

���� Numerical Solution ofNon�LinearEquations in a Single
Unknown

Every equation with one unknown can be transformed into one of the normal forms�

Zero form� f�x� � �� ����

Fixed point form� x � ��x�� �����

Suppose equations ���� and ����� can be solved� The solutions are denoted by x�� To get a �rst
approximation of x�� we can try to transfom the equation into the form f��x� � f��x�� where the
curves of the functions y � f��x� and y � f��x� are more or less simple to sketch�

f�x� � x� � sin x � �� We can see from the shapes of the curves y � x� and y � sinx that x�� � �
and x�� 
 ���� are roots �Fig �
���
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������ IterationMethod
The general idea of iterative methods is that starting with known initial approximations xk �k �
�� � � � � � n� we form a sequence of further and better approximations� step by step� hence we approach
the solution of the given equation by iteration� by a convergent sequence� We try to create a sequence
with convergence as fast as possible�

������� Ordinary IterationMethod
To solve an equation given in or transformed into the �xed point form x � ��x�� we use the iteration
rule

xn�� � ��xn� �n � �� � �� � � � � x� given�� �����

which is called the ordinary iteration method� It converges to a solution x� if there is a neighborhood
of x� �Fig �
�� such that�������x�� ��x��

x� x�

����� � K �  �K const� �����
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holds� and the initial approximation x� is in this neighborhood� If ��x� is di�erentiable� then the cor�
responding condition is

j���x�j � K � � �����

The convergence of the ordinary iteration method becomes faster with smaller values of K�

x� � sinx� i�e��

xn�� �
p

sin xn�

n �  � � � �

xn ���� ������ ������ ������ ������ ������

sinxn ������ ������ ����� ������ ������ ������

Remark �� In the case of complex solutions� we substitute x � u � iv� Separating the real and the
imaginary part� we get an equation system of two equations for real unknowns u and v�

Remark �� The iterative solution of non�linear equation systems can be found in ������ p� ����

������� Newton�sMethod

�� Formula of the NewtonMethod
To solve an equation given in the form f�x� � �� we mostly use the Newton method which has the
formula

xn�� � xn � f�xn�

f ��xn�
�n � �� � �� � � � � x� is given�� �����

i�e�� to get a new approximation xn��� we need the value of the function f�x� and its �rst derivative
f ��x� at xn�

�� Convergence of the NewtonMethod
The condition

f ��x� �� � ����a�

is necessary for convergence of the Newton method� and the condition�����f�x�f ���x�

f ���x�

����� � K �  �K const� ����b�

is su�cient� The conditions ����a�b� must be ful�lled in a neighborhood of x� such that it contains
all the points xn and x� itself� If the Newton method is convergent� it converges very quickly� It has
quadratic convergence� which means that the error of the �n���st approximation is less than a constant
multiple of the square of the error of the n�th approximation� In the decimal system� this means that
after a while the number of exact digits will double step by step�

The solution of the equation f�x� � x� � a � �� i�e�� the calculation of x �
p
a �a � � is given��

with the Newton method results in the iteration formula

xn�� �


�

�
xn �

a

xn

�
� �����

We get for a � ��
n �  � �

xn �� ��� ��� � ��� �� � ��� �� �

�� Geometric Interpretation
The geometric interpretation of the Newton method is represented in Fig �
�� The basic idea of the
Newton method is the local approximation of the curve y � f�x� by its tangent line�

�� Modi�ed NewtonMethod
If the values of f ��xn� barely change during the iteration� we can keep it constant� and we use the
so�called modi�ed Newton method

xn�� � xn � f�xn�

f ��xm�
�m �xed� m � n�� �����
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The goodness of the convergence is hardly modi�ed by this simpli�cation�

�� Di
erentiable Functions with Complex Argument
The Newton method also works for di�erentiable functions with complex arguments�

������� Regula Falsi

�� Formula for Regula Falsi
To solve the equation f�x� � �� the regula falsi method has the rule�

xn�� � xn � xn � xm
f�xn�� f�xm�

f�xn� �n � � �� � � � � m � n � x�� x� are given�� �����

We need to compute only the function values� The method follows from the Newton method ����� by
approximating the derivative f ��xn� by the �nite di�erence of f�x� between xn and a previous approx�
imation xm �m � n��

�� Geometric Interpretation
The geometric interpretation of the regula falsi method is represented in Fig �
�� The basic idea of
the regula falsi method is the local approximation of the curve y � f�x� by a secant line�

�� Convergence
The method ����� is convergent if we choose m so that f�xm� and f�xn� always have di�erent signs�
If the convergence already seems to be quick enough during the process� it will speed up if we ignore
the change of sign� and we just substitute xm � xn���

f�x� � x� � sin x � ��

n %xn � xn � xn�� xn f�xn� %yn � f�xn�� f�xn���
%xn
%yn

� ��� ������
 ���� ���� ������� ������ ������
� ������ ������ ��������� ������� ������
� �������� �������� �������� �������� ������
� ��������� ��������

If during the process the value of %xn�%yn only barely changes� we do not need to recalculate it again
and again�

�� Ste
ensenMethod
Applying the regula falsi method with xm � xn�� for the equation f�x� � x � ��x� � � we can often
speed up the convergence� especially in the case ���x� � �� This algorithm is known as the Ste�ensen
method�

To solve the equation x� � sin x with the Ste�ensen method� we should use the form f�x� � x �p
sinx � ��
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n %xn � xn � xn�� xn f�xn� %y � f�xn�� f�xn���
%xn
%yn

� ��� �������
 ����� ���� ��������� ������� ������
� �������� �������� ��������� ������� �������
� �������� �������

������ Solution of Polynomial Equations

Polynomial equations of n�th degree have the form

f�x� � pn�x� � anx
n � an��xn�� � � � �� a�x � a� � �� ����

For their e�ective solution we need e�cient methods to calculate the function values and the derivative
values of the function pn�x� and an initial estimate of the positions of the roots�

������� Horner�s Scheme

�� Real Arguments
To determine the value of a polynomial pn�x� of n�th degree at the point x � x� from its coe�cients�
�rst we consider the decomposition

pn�x� � anx
n � an��xn�� � � � �� a�x

� � a�x � a� � �x� x��pn���x� � pn�x�� �����

where pn���x� is a polynomial of �n� ��st degree�

pn���x� � a�n��x
n�� � a�n��x

n�� � � � �� a��x � a��� �����

We get the recursion formula

a�k�� � x�a
�
k � ak� �k � n� n� � � � � � �� a�n � �� a��� � pn�x��� �����

by coe�cient comparison in ����� with respect to xk� �Note that a�n�� � an�� This way� we deter�
mine the coe�cients a�k of pn���x� and the value pn�x�� from the coe�cients ak of pn�x�� Furthermore
fewer multiplications are required than by the 	traditional
 way� By repeating this procedure� we get
a decomposition of the polynomial pn���x� with the polynomial pn���x��

pn���x� � �x� x��pn���x� � pn���x�� �����

etc�� and we get a sequence of polynomials pn�x�� pn���x� � � � � p��x�� p��x�� The calculations of the
coe�cients and the values of the polynomial is represented in ������

an an�� an�� � � � a� a� a� a�
x� x�a

�
n�� x�a

�
n�� � � � x�a

�
� x�a

�
� x�a

�
� x�a

�
�

a�n�� a�n�� a�n�� � � � a�� a�� a�� pn�x��

x� x�a
��
n�� x�a

��
n�� � � � x�a

��
� x�a

��
� x�a

��
�

a��n�� a��n�� a��n�� � � � a��� a��� pn���x��
� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

x� x�a
�n���
�

a
�n���
� p��x��

x�

a
�n�
� � p��x��

�����

We get from scheme ����� the value pn�x��� and derivatives p�k�n �x�� as�

p�n�x�� � $pn���x��� p��n�x�� � �$pn���x��� � � � � p�n�n �x�� � n$p��x��� �����
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p��x� � x� � �x� � �x� � ��
The substitution value and
derivatives of p��x� are cal�
culated at x� � � according
to ������

 � �� � ��
� � � � ��

 � � � �
� � � ��

 � � ��
� � �

 � ��
� �

 �
�



We see�
p���� � ��
p����� � ���
p������ � ���
p���� ��� � ���

p
���
� ��� � ���

Remarks�

� We can rearrange the polynomial pn�x� with respect to the powers of x � x�� e�g�� in the example
above we get p��x� � �x� ��� � ��x� ��� � ���x� ��� � ���x� �� � ��

� The Horner scheme can also be used for complex coe�cients ak� In this case for every coe�cient we
have to compute a real and an imaginary column according to ������

�� Complex Arguments
If the coe�cients ak in ���� are real� then the calculation of pn�x�� for complex values x� � u� � iv�
can be made real� In order to show this� we decompose pn�x� as follows�

pn�x� � anx
n � an��xn�� � � � �� a�x � a�

� �x� � px� q��a�n��x
n�� � � � �� a��� � r�x � r� with ����a�

x� � px� q � �x� x���x� x��� i�e�� p � �u�� q � ��u�
� � v�

��� ����b�

Then� we get

pn�x�� � r�x � r� � �r�u� � r�� � ir�v�� ����c�

To �nd ����a� we can construct the so�called two�row Horner scheme introduced by Collatz�

an an�� an�� � � � a� a� a� a�
q qa�n�� � � � qa�� qa�� qa�� qa��
p pa�n�� pa�n�� � � � pa�� pa�� pa��

a�n�� a�n�� a�n�� � � � a�� a�� r� r�
� an

����d�

p��x� � x� � �x� � �x� � �� Calculate the value of p� at x� � �� i� i�e�� for p � � and q � ���

 � �� � ��
�� �� ��� ���

� � �� ��

 � � �� ���

We see�

p��x�� � ��x� � �� � ��� ��i�

������� Positions of the Roots

�� Real Roots� Sturm Sequence
With the Cartesian rule of signs we can get a �rst idea of whether the polynomial equation ���� has
a real root� or not�

a� The number of positive roots is equal to the number of sign changes in the sequence of the cooe��
cients

an� an��� � � � � a�� a� ����a�

or it is less by an even number�



���� Numerical Solution of Non�Linear Equations in a Single Unknown ��


b� The number of negative roots is equal to the number of sign changes in the coe�cient sequence

a�� �a�� a�� � � � � ���nan ����b�

or it is less by an even number�

p��x� � x� � �x� � �x� � �x� � �x� � has  or � positive roots and � or � negative roots�
To determine the number of real roots in any given interval �a� b�� Sturm sequences are used �see �������
�� p� ����
After computing the function values y� � pn�x�� at a uniformly distributed set of nodes x� � x� � 
 �h
�h constant� �which can be easily performed by using the Horner scheme� a good guess of the graph of
the function and the locations of roots are obtained� If pn�c� and pn�d� have di�erent signs� there is at
least one real root between c and d�

�� Complex Roots
In order to localize the real or complex roots into a bounded region of the complex plane consider the
following polynomial equation which is a simple consequence of �����

f ��x� � jan��jrn�� � jan��jrn�� � � � �� ja�jr � ja�j � janjrn ������

and we determine� e�g�� by systematic repeated trial and error� an upper bound r� for the positive roots
of ������� Then� for all roots x�k �k � � �� � � � � n� of �����

jx�kj � r�� �����

f�x� � p��x� � x�����x������x������x������ � �� f ��x� � ���r������r������r������ �
r�� We get for

r � �� f ���� � ������� � ��� � r��
r � �� f ���� � ������� � ��� � r��
r � �� f ���� � ������� � ���� � r��

From this it follows that jx�kj � � �k � � �� �� ��� Actually� for the root x�� with maximal absolute value
we have� �� � x�� � ���

Remark� A special method has been developed in electrotechnics in the so�called root locus theory
for the determination of the number of complex roots with negative real parts� It is used to examine
stability �see  ��!�  ����!��

������� Numerical Methods

�� General Methods
The methods discussed in Section ���� p� ���� can be used to �nd real roots of polynomial equations�
The Newton method is well suited for polynomial equations because of its fast convergence� and the
fact that the values of f�xn� and f ��xn� can be easily computed by using Horner�s rule� By assuming
that an approximation xn of the root x� of a polynomial equation f�x� � � is su�ciently good� then
the correction term 	 � x� � xn can be iteratively improved by using the �xed�point equation

	 � � 

f ��xn�



f�xn� �



�$
f ���xn�	� � � � �

�
� ��	�� ������

�� Special Methods
The Bairstow method is well applicable to �nd root pairs� especially complex conjugate pairs of roots�
The Horner scheme ����a�d� is used to �nd quadratic factors of the given polynomial having the root
pair to determine the coe�cients p and q which make the coe�cients of the linear remainder r� and r�
equal to zero �see  ����!�  ��!�  ����!��
If the computation of the root with largest or smallest absolute value is required� then the Bernoulli
method is the choice �see  ���!��
TheGrae�emethod has some historical importance� It gives all roots simultaneously including complex
conjugate roots� however the computation costs are tremendous �see  ��!�  ����!��
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���� Numerical Solution of Equation Systems
In several practical problems� we have m conditions for the n unknown quantities xi �i � � �� � � � � n�
in the form of equations�

F��x�� x�� � � � � xn� � ��
F��x�� x�� � � � � xn� � ��

���
���

Fm�x�� x�� � � � � xn� � ��

������

We have to determine the unknowns xi so that they form a solution of the equation system �������
Mostly m � n holds� i�e�� the number of unknowns and the number of equations are equal to each
other� In the case of m � n� we call ������ an overdetermined system� in the case of m � n it is an
underdetermined system�
Overdetermined systems usually have no solutions� Then� we are looking for the 	best
 solution of
������� in the Euclidean metric with the least squares method

mX
i��

F �
i �x�� x�� � � � � xn� � min$ ������

or in other metrics as another extreme value problem� Usually� the values of n � m variables of an
underdetermined problem can be chosen freely� so the solution of ������ depends on n�m parameters�
We call it an �n�m��dimensional manifold of solutions�
We distinguish between linear and non�linear equation systems� depending on whether the equations
are only linear or non�linear in the unknowns�

������ Systems of Linear Equations
Consider the linear equation system

a��x� � a��x� � � � � � a�nxn � b��
a��x� � a��x� � � � � � a�nxn � b��

���
���

an�x� � an�x� � � � � � annxn � bn�

������

The system ������ can be written in matrix form

Ax � b �����a�

with

A �

�BBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
���
an� an� � � � ann

�CCCA � b �

�BBB�
b��
b��
���
bn

�CCCA � x �

�BBB�
x��
x��
���
xn

�CCCA � �����b�

Suppose the quadratic matrix A � �aik� �i� k � � �� � � � � n� is regular� so system ������ has a unique
solution �see ������� �� p� ����� In the practical solution of ������� we distinguish between two types
of solution methods�
� DirectMethods are based on elementary transformations� from which the solution can be obtained
immediately� These are the pivoting techniques �see ������� p� ��� and the methods given in ������
�������
� Iteration methods start with a known initial approximation of the solution� and forming a se�
quence of approximations that converges to the solution of ������ �see ������� p� �����

������� Triangular Decomposition of aMatrix

�� Principle of the Gauss EliminationMethod
By elementary transformations
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� interchanging rows�

� multiplying a row by a non�zero number and

� adding a multiple of a row to another row�

the system Ax � b is transformed into the so�called row echelon form

Rx � c with R �

�BBBBBB�
r�� r�� r�� � � � r�n

r�� r�� � � � r�n
r�� � � � r�n

�
� � �

���
rnn

�CCCCCCA � ������

Since only equivalent transformations were made� the equation system Rx � c has the same solutions
as Ax � b� We get from �������

xi �


rii

��ci �
nX

k�i��

rikxk

�A �
i � n� � n� �� � � � � � xn �

cn
rnn

�
� ������

The rule given in ������ is called backward substitution� since the equations of ������ are used in the
opposite order as they follow each other�
The transition from A to R is made by n�  so�called elimination steps� whose procedure is shown by
the �rst step� This transforms matrix A into matrix A��

A �

�BBBBBB�
a�� a�� � � � a�n
a�� a�� � � � a�n
a�� a�� � � � a�n
���

an� an� � � � ann

�CCCCCCA � A� �

�BBBBBBBBB�

a
���
�� a

���
�� � � � a

���
�n

�

�
���

�

a
���
�� � � � a

���
�n

a
���
�� � � � a

���
�n

���

a
���
n� � � � a���nn

�CCCCCCCCCA
� ������

We proceed as follows�

� We choose an ar� �� � �according to �������� If there is none� stop� A is singular� Otherwise ar� is
called the pivot�

� We interchange the �rst and the r�th row of A� The result is A�

� We subtract li� �i � �� �� � � � � n�times the �rst row from the i�th row of the matrix A�

As a result we get the matrix A� and analogously the new right�hand side b� with the elements

a
���
ik � aik � li�a�k� li� �

ai�
a��

�

b
���
i � bi � li�b� �i� k � �� �� � � � � n�� ������

The framed submatrix in A� �see ������� is of type �n� � n� � and it will be handled analogously
to A� etc� This method is called the Gaussian elimination method or the Gauss algorithm �see ��������
p� �����

�� Triangular Decomposition

The result of the Gauss elimination method can be formulated as follows� To every regular matrix A
there exists a so�called triangular decomposition or LU factorization of the form

PA � LR �����
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with

R �

�BBBBBB�
r�� r�� r�� � � � r�n

r�� r�� � � � r�n
r�� � � � r�n

�
� � �

���
rnn

�CCCCCCA � L �

�BBBBBB�

l��  �
l�� l�� 
���

���
� � �

ln� ln� � � � ln�n�� 

�CCCCCCA � ������

Here R is called an upper triangular matrix� L is a lower triangular matrix and P is a so�called permu�
tation matrix� A permutation matrix is a quadratic matrix which has exactly one  in every row and
every column� and the other elements are zeros� The multiplicationPA results in row interchanges in
A� which comes from the choices of the pivot elements during the elimination procedure�

The Gauss elimination method should be used for the system

�� �  �
�  �
  

�A��x�
x�
x�

�A �

�� �
�
�

�A� In

schematic form� where the coe�cient matrix and the vector from the right�hand side are written next
to each other �into the so�called extended coe�cient matrix�� we get�

�A�b� �

�BB� �  �
�  �
  

�
�
�

�CCA �
�BB�

�

���

��

 �

�� �

��� �

�

���

���

�CCA �
�B� �  � �

�� ��� � ���

��� �� ��� �

�CA� i�e��

P �

��  � �
� � 
�  �

�A � PA �

�� �  �
  
�  �

�A �L �

��  � �
��  �
��� �� 

�A �R �

�� �  �
� ��� �
� � ���

�A�

In the extended coe�cient matrices� the matricesA�A� andA�� and also the pivots are shown in boxes�

�� Application of Triangular Decomposition

With the help of triangular decomposition� we can describe the solution of linear equation systems
Ax � b in three steps�

� PA � LR� Determination of the triangular decomposition and substitution Rx � c�

� L c � Pb� Determination of the auxiliary vector c by forward substitution�

� Rx � c� Determination of the solution x by backward substitution�

If the solution of a system of linear equations is handled by the expanded coe�cient matrix �A�b��
as in the above example� by the Gauss elimination method� then the lower triangular matrix L is not
needed explicitly� This can be especially useful if several systems of linear equations are to be solved
after each other with the same coe�cient matrix� with di�erent right�hand sides�

�� Choice of the Pivot Elements

Theoretically� every non�zero element a
�k���
i� of the �rst column of the matrix Ak�� could be used as a

pivot element at the k�th elimination step� In order to improve the accuracy of solution �to decrease
the accumulated rounding errors of the operations�� the following strategies are recommended�

� Diagonal Strategy The successive diagonal elements are chosen as pivot elements i�e�� there is
no row interchange� This kind of choice of the pivot element makes sense if the absolute value of the
elements of the main diagonal are fairly large compared to the others in the same row�

� Column Pivoting To perform the k�th elimination step� we choose the row index r for which�

ja�k���rk j � max
i�k
ja�k���ik j� ������
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If r �� k� then the r�th and the k�th rows will be interchanged� It can be proven that this strategy makes
the accumulated rounding errors smaller�

������� Cholesky�sMethod for a Symmetric Coe�cientMatrix
In several cases� the coe�cient matrix A in �����a� is not only symmetric� but also positive de�nite�
i�e�� for the corresponding quadratic form Q�x� holds

Q�x� � xTAx �
nX
i��

nX
k��

aikxixk � � ������

for every x � IRn� x �� �� Since for every symmetric positive de�nite matrix A there exists a unique
triangular decomposition

A � LLT ������

with

L �

�BBBBBB�
l��
l�� l�� �
l�� l�� l��
���

� � �
ln� ln� ln� � � � lnn

�CCCCCCA � �����a�

lkk �
q
a
�k���
kk � lik �

a
�k���
ik

lkk
�i � k� k � � � � � � n� � �����b�

a
�k�
ij � a

�k���
ij � likljk �i� j � k � � k � �� � � � � n�� �����c�

the solution of the corresponding linear equation system Ax � b can be determined by the Cholesky
method by the following steps�

� A � LLT� Determination of the so�called Cholesky decomposition and substitution LTx � c�

� L c � b� Determination of the auxiliary vector c by forward substitution�

� LTx � c� Determination of the solution x by backward substitution�
For large values of n the computation cost of the Cholesky method is approximately half of that of the
LU decomposition given in ������ p� ���

������� OrthogonalizationMethod

�� Linear Fitting Problem
Suppose an overdetermined linear equation system

nX
k��

aikxk � bi �i � � �� � � � � m� m � n�� ������

is given in matrix form

Ax � b� ������

Suppose the coe�cient matrixA � �aik� with size �m�n� has full rank n� i�e�� its columns are linearly
independent� Since an overdetermined linear equation system usually has no solution� instead of ������
we consider the so�called error equations

ri �
nX
k��

aikxk � bi �i � � �� � � � � m� m � n� ������

with residues ri� and we require that the sum of their squares should be minimal�

mX
i��

ri
� �

mX
i��

�
nX
k��

aikxk � bi

�
� F �x�� x�� � � � � xn� � min$ ������
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The problem ������ is called a linear �tting problem or a linear least squares problem �see also ��������
p� ����� The necessary condition for the relative minimum of the sum of residual squares F �x�� x�� � � � �
xn� is

�F

�xk
� � �k � � �� � � � � n� �����

and it leads to the linear equation system

ATAx � ATb� ������

The transition from ������ to ������ is called a Gauss transformation� since the system ������ arises
by applying the Gaussian least squares method �see �������� p� ���� for ������� Since we suppose full
rank forA�ATA is a positive de�nite matrix of size �n�n�� and the so�called normal equations ������
can be solved numerically by the Cholesky method �see ������� p� �����
We can have numerical di�culties with the solution of the normal equation system ������ if the condi�
tion number �see  ����!� of the matrixATA is too large� The solution x can then have a large relative
error� Because of this problem� it is better to use the orthogonalization method for solving numerically
linear �tting problems�

�� Orthogonalization Method
The following facts are the basis of the following orthogonalization method for solving a linear least
squares problem �������

� The length of a vector does not change during an orthogonal transformation� i�e�� the vectors x and
'x � Q�x with

QT
�Q� � E ������

have the same length�

� For every matrix A of size �m�n� with maximal rank n �n � m� there exists an orthogonal matrix
Q of size �m�m� such that

A � Q #R ������ with QTQ � E and #R �

�
R

O

�
�

�BBBBBBBB�

r�� r�� � � � r�n
r�� � � � r�n

� � �
���

rnn

O

�CCCCCCCCA
� ������

Here R is an upper triangular matrix of size �n� n�� and O is a zero matrix of size �m� n� n��
The factored form ������ of matrixA is called the QR decomposition� So� the error equations ������
can be transformed into the equivalent system

r��x� � r��x� � � � �� r�nxn �#b� � #r��

r��x� � � � �� r�nxn �#b� � #r��
� � �

���
��� �

���

rnnxn �#bn � #rn�

�#bn�� � #rn���
���

���

�#bm � #rm

������

without changing the sum of the squares of the residuals� From ������ it follows that the sum of the
squares is minimal for #r� � #r� � � � � � #rn � � and the minimum value is equal to the sum of the squares
of #rn�� to #rm� We get the required solution x by backward substitution

Rx � #b�� ������
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where #b� is the vector with components #b�� #b�� � � � � #bn obtained from �������
There are two methods most often used for a stepwise transition of ������ into �������

� Givens transformation�

� Householder transformation�

The �rst one results in the QR decomposition of matrix A by rotations� the other one by re�ections�
The numerical implementations can be found in  ����!�

Practical problems in linear mean square approximations are solved mostly by the Householder trans�
formation� where the frequently occurring special band structure of the coe�cient matrix A can be
used�

������� IterationMethods

�� Jacobi Method
Suppose in the coe�cient matrix of the linear equation system ������ every diagonal element aii �i �
� �� � � � � n� is di�erent from zero� Then the i�th row can be solved for the unknown xi� and we get
immediately the following iteration rule� where � is the iteration index�

x
�����
i �

bi
aii
�

nX
k��
�k ��i�

aik
aii

x
���
k �i � � �� � � � � n� ������

�� � �� � �� � � � � x
���
� � x

���
� � � � � � x���n are given initial values��

Formula ������ is called the Jacobi method� Every component of the new vector x����� is calculated

from the components of x���� If at least one of the conditions

max
k

nX
i��
�i ��k�

����aikaii

���� �  column sum criterion ������

or

max
i

nX
k��
�k ��i�

����aikaii

���� �  row sum criterion ������

holds� then the Jacobi method is convergent for any initial vector x����

�� Gauss�Seidel Method
If the �rst component x������ is calculated by the Jacobi method� then this value can be used in the

calculation of x
�����
� � While we proceed similarly in the calculation of the further components� we get

the iteration formula

x
�����
i �

bi
aii
�

i��X
k��

aik
aii

x
�����
k �

nX
k�i��

aik
aii

x
���
k �����

�i � � �� � � � � n� x
���
� � x

���
� � � � � � x���n given initial value� � � �� � �� � � �� �

Formula ����� is called the GaussSeidel method� The Gauss�Seidel method usually converges more
quickly than the Jacobi method� but its convergence criterion is more complicated�

�x� � �x� � �x� � �x� � ��
��x� � ��x� � �x� � x� � ���
��x� � �x� � �x� � �x� � ��

�x� � �x� � �x� � �x� � ����

The corresponding iteration formula according to ����� is�
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Some approximations and the solution
are given here�

x��� x��� x��� x��� x

� �� ����� ���� ��
� ����� ������ ������ 
� ����� ������ ����� ���
� ���� ����� ����� �

�� RelaxationMethod
The iteration formula of the Gauss�Seidel method ����� can be written in the so�called correction
form

x
�����
i � x

���
i �

�
bi
aii
�

i��X
k��

aik
aii

x
�����
k �

nX
k�i

aik
aii

x
���
k

�
� i�e��

x
�����
i � x

���
i � d

���
i �i � � �� � � � � n� � � �� � �� � � ��� ������

By an appropriate choice of a relaxation parameter  and rewriting ������ in the form

x
�����
i � x

���
i � d

���
i �i � � �� � � � � n� � � �� � �� � � ��� ������

we can try to improve the speed of convergence� It can be shown that convergence is possible only for

� �  � �� ������

For  �  we retrieve the Gauss�Seidel method� In the case of  � � which is called overrelaxation�
the corresponding iteration method is called the SOR method �successive overrelaxation�� The deter�
mination of an optimal relaxation parameter is possible only for some special types of matrices�
We apply iterative methods to solve linear equation systems in the �rst place when the main diagonal
elements aii of the coe�cient matrix have an absolute value much larger than the other elements aik
�i �� k� �in the same row or column�� or when the rows of the equation system can be rearranged in a
certain way to get such a form�

������ Non�Linear Equation Systems
Suppose the system of n non�linear equations

Fi�x�� x�� � � � � xn� � � �i � � �� � � � � n� ������

for the n unknowns x�� x�� � � � � xn has a solution� Usually� a numerical solution can be given only by
an iteration method�

������� Ordinary IterationMethod
We can use the ordinary iteration method if the equations ������ can be transformed into a �xed�point
form

xi � fi�x�� x�� � � � � xn� �i � � �� � � � � n�� ������

Then� starting from estimated approximations x
���
� � x

���
� �� � � � x���n � we get the improved values either by

� iteration with simultaneous steps

x
�����
i � fi

�
x
���
� � x

���
� � � � � � x���n

	
�i � � �� � � � � n� � � �� � �� � � �� ������

or by

� iteration with sequential steps

x
�����
i � fi

�
x
�����
� � � � � � x

�����
i�� � x

���
i � x

���
i��� � � � � x

���
n

	
�i � � �� � � � � n� � � �� � �� � � ��� ������
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It is of crucial importance for the convergence of this method that in the neighborhood of the solution
the functions fi should depend only weakly on the unknowns� i�e�� if fi are di�erentiable� the absolute
values of the partial derivatives must be rather small� We get as a convergence condition

K �  with K � max
i

�
nX
k��

max

����� �fi�xk

�����
�
� ������

With this quantity K� the error estimation is the following�

max
i

���x�����i � xi
��� � K

�K
max
i

���x�����i � x
���
i

��� � ������

Here� xi is the component of the required solution� x
���
i and x

�����
i are the corresponding ��th and

�� � ��th approximations�

������� Newton�sMethod

The Newton method is used for the problem given in the form ������� After �nding the initial ap�

proximation values x
���
� � x

���
� � � � � � x���n � the functions Fi are expanded in Taylor form as functions of n

independent variables x�� x�� � � � � xn �see p� ���� Terminating the expansion after the linear terms�
from ������ we get a linear equation system� and with this we can get iterative improvements by the
following formula�

Fi
�
x
���
� � x

���
� � � � � � x���n

	
�

nX
k��

�Fi
�xk

�
x
���
� � � � � � x���n

	 �
x
�����
k � x

���
k

	
� � �����

�i � � �� � � � � n� � � �� � �� � � ���

The coe�cient matrix of the linear equation system ������ which should be solved in every iteration
step� is

F��x���� �

�
�Fi
�xk

�
x
���
� � x

���
� � � � � � x���n

	�
�i� k � � �� � � � � n� ������

and it is called the Jacobian matrix� If the Jacobian matrix is invertible in the neighborhood of the so�
lution� the Newton method is locally quadratically convergent� i�e�� its convergence essentially depends

on how good the initial approximations are� If we substitute x
�����
k � x

���
k � d

���
k in ������ then the

Newton method can be written in the correction form

x
�����
k � x

���
k � d

���
k �i � � �� � � � � n� � � �� � �� � � ��� ������

To reduce the sensitivity to the initial values� analogously to the relaxation method� we can introduce
a so�called damping or step length parameter ��

x
�����
k � x

���
k � �d

���
k �i � � �� � � � � n� � � �� � �� � � � � � � ��� ������

Methods to determine � can be found in  ����!�

������� Derivative�Free Gauss�NewtonMethod

To solve the least squares problem ������� we proceed iteratively in the non�linear case as follows�

� Starting from a suitable initial approximation x
���
� � x

���
� � � � � � x���n � we approximate the non�linear

functions Fi�x�� x�� � � � � xn� �i � � �� � � � � m� as in the Newton method �see ������ by linear approxi�

mations 'Fi�x�� x�� � � � � xn�� which are calculated in every iteration step according to

'Fi�x�� � � � � xn� � Fi
�
x
���
� � x

���
� � � � � � x���n

	
�

nX
k��

�Fi
�xk

�
x
���
� � � � � � x���n

	 �
xk � x

���
k

	
�i � � �� � � � � n� � � �� � �� � � ��� ������
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� We substitute d
���
k � xk�x

���
k in ������ and we determine the corrections d

���
k by using the Gaussian

least squares method� i�e�� by the solution of the linear least squares problem
mX
i��

'F �
i �x�� � � � � xn� � min� ������

e�g�� with the help of the normal equations �see �������� or the Householder method �see ��������
p� ����

� We get approximations for the required solution by

x
�����
k � x

���
k � d

���
k or �����a�

x
�����
k � x

���
k � �d

���
k �k � � �� � � � � n�� �����b�

where � �� � �� is a step length parameter similar to the Newton method�

By repeating steps � and � with x
�����
k instead of x

���
k we get the GaussNewton method� It results in a

sequence of approximation values� whose convergence strongly depends on the accuracy of the initial
approximation� We can reduce the sum of the error squares by introducing a length parameter ��

If the evaluation of the partial derivatives
�Fi
�xk

�
x
���
� � � � � � x���n

	
�i � � �� � � � � m� k � � �� � � � � n� requires

too much work� we can approximate the partial derivatives by di�erence quotients �

�Fi
�xk

�
x���� � � � � � x���k � � � � � x���n

	

 

h
���
k



Fi
�
x���� � � � � � x���k��� x

���
k � h���k � x���k��� � � � � x

���
n

	
�Fi

�
x
���
� � � � � � x

���
k � � � � � x���n

	 �
�i � � �� � � � � m� k � � �� � � � � n� � � �� � �� � � ��� ������

The so�called discretization step sizes h
���
k may depend on the iteration steps and the values of the

variables�
If we use approximations ������� then we have to calculate only function values Fi while performing
the Gauss�Newton method� i�e�� the method is derivative free�

���� Numerical Integration

������ General Quadrature Formulas
The numerical evaluation of the de�nite integral

I�f� �

bZ
a

f�x� dx ������

must be done only approximately if the integrand f�x� cannot be integrated by elementary calculus� or
it is too complicated� or when the function is known only at certain points x�� the so�called interpolation
nodes from the integration interval  a� b!� We use the so�called quadrature formulas for the approximate
calculation of ������� They have the general form

Q�f� �
nX
���

c��y� �
nX
���

c��y
�
� � � � ��

nX
���

cp�y
�p�
� ������

with y���� � f ����x�� �� � � �� � � � � p� 
 � � �� � � � � n�� y� � f�x��� and constant values of c��� Obvi�
ously�

I�f� � Q�f� � R� �����

where R is the error of the quadrature formula� We suppose in the application of quadrature formulas
that the required values of the integrand f�x� and its derivatives at the interpolation nodes are known
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as numerical values� Formulas using only the values of the function are called mean value formulas�
formulas using also the derivatives are called Hermite quadrature formulas�

������ InterpolationQuadratures

The following formulas represent so�called interpolation quadratures� Here� the integrand f�x� is in�
terpolated at certain interpolation nodes �possibly the least number of them� by a polynomial p�x� of
corresponding degree� and the integral of f�x� is replaced by that of p�x�� The formula for the inte�
gral over the entire interval is given by summation� In the following� we give the formulas for the most
practical cases� The interpolation nodes are equidistant�

x� � x� � 
h �
 � �� � �� � � � � n�� x� � a� xn � b� h �
b� a

n
� ������

We give an upper bound for the magnitude of the error jRj for every quadrature formula� Here� M�

means an upper bound of jf ����x�j on the entire domain�

������� Rectangular Formula

In the interval  x�� x��h!� f�x� is replaced by the constant function y � y� � f�x��� which interpolates
f�x� at the interpolation node x�� which is the left endpoint of the integration interval� We get in this
way the simple rectangular formula

x��hZ
x�

f�x� dx 
 h � y�� jRj � h�

�
M�� �����a�

We get the left�sided rectangular formula by summation�

bZ
a

f�x� dx 
 h�y� � y� � y� � � � �� yn���� jRj � �b� a�h

�
M�� �����b�

M� denotes an upper bound of jf ��x�j on the entire domain of integration�
We get analogously the right�sided rectangular sum� if we replace y� by y� in �����a�� The formula is�

bZ
a

f�x� dx 
 h�y� � y� � � � �� yn�� jRj � �b� a�h

�
M�� ������

������� Trapezoidal Formula

f�x� is replaced by a polynomial of �rst degree in the interval  x�� x� � h!� which interpolates f�x� at
the interpolation nodes x� and x� � x� � h� We get�

x��hZ
x�

f�x� dx 
 h

�
�y� � y��� jRj � h�

�
M�� ������

We get the so�called trapezoidal formula by summation�

bZ
a

f�x� dx 
 h
�
y�
�

� y� � y� � � � �� yn�� �
yn
�

�
� jRj � �b� a�h�

�
M�� ������

M� denotes an upper bound of jf ���x�j� on the entire integration domain� The error of the trapezoidal
formula is proportional to h�� i�e�� the trapezoidal sum has an error of order �� It follows that it converges
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to the de�nite integral for h � �hence� n��� if we do not consider rounding errors�

������� Simpson�s Formula
f�x� is replaced by a polynomial of second degree in the interval  x�� x� � �h!� which interpolates f�x�
at the interpolation nodes x�� x� � x� � h and x� � x� � �h�

x���hZ
x�

f�x� dx 
 h

�
�y� � �y� � y��� jRj � h�

��
M�� ������

n must be an even number for a complete Simpson formula� We get�

bZ
a

f�x� dx 
 h

�
�y� � �y� � �y� � �y� � � � �� �yn�� � �yn�� � yn�� ������

jRj � �b� a�h�

��
M��

M� is an upper bound for jf ����x�j on the entire integration domain� The Simpson formula has an error
of order � and it is exact for polynomials up to third degree�

������� Hermite�s Trapezoidal Formula
f�x� is replaced by a polynomial of third degree in the interval  x�� x� �h!� which interpolates f�x� and
f ��x� at the interplation nodes x� and x� � x� � h�

x��hZ
x�

f�x� dx 
 h

�
�y� � y�� �

h�

�
�y�� � y���� jRj � h�

���
M�� ������

We get the Hermite trapezoidal formula by summation�

bZ
a

f�x� dx 
 h
�
y�
�

� y� � y� � � � �� yn�� �
yn
�

�
�

h�

�
�y�� � y�n�� jRj � �b� a�h�

���
M�� ������

M� denotes an upper bound for jf ����x�j on the entire integration domain� The Hermite trapezoidal
formula has an error of order � and it is exact for polynomials up to third degree�

������ Quadrature Formulas ofGauss
Quadrature formulas of Gauss have the general form

bZ
a

f�x� dx 

nX
���

c�y� with y� � f�x�� �����

where not only the coe�cients c� are considered as parameters but also the interpolation nodes x� �
These parameters are determined in order to make the formula ����� exact for polynomials of the
highest possible degree�
The quadrature formulas of Gauss result in very accurate approximations� but the interpolation nodes
must be chosen in a very special way�

������� Gauss Quadrature Formulas
If the integration interval in ����� is chosen as  a� b! �  �� !� and we choose the interpolation nodes
as the roots of the Legendre polynomials �see ������� �� p� �� ���� p� ����� then the coe�cients
c� can be determined so that the formula ����� gives the exact value for polynomials up to degree
�n � � The roots of the Legendre polynomials are symmetric with respect to the origin� For the cases
n � � � and � we get�
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n � � x� � �x�� c� � �

x� �
p
�

� ����� ��� ��� � � � � c� � �

n � �� x� � �x�� c� �
�

�
�

x� � �� c� �
�

�
�

x� �

s
�

�
� ����� ��� ��� � � � � c� � c��

n � �� x� � �x�� c� � ����� ��� ��� � � � �
x� � �x�� c� � ����� �� �� � � � �
x� � ����� �� ��� � � � � c� � c��
x� � ���� �� � � � � � c� � c��

������

Remark� A general integration interval  a� b! can be transformed into  �� ! by the transformation

t �
b� a

�
x �

a � b

�
�t �  a� b!� x �  �� !�� Then

bZ
a

f�t� dt 
 b� a

�

nX
���

c�f

�
b� a

�
x� �

a � b

�

�
������

with the values x� and c� given above for the interval  �� !�

������� Lobatto�s Quadrature Formulas
In some cases it is reasonable also to choose the endpoints of the integration interval as interpolation
nodes� Then� we have �n more free parameters in ������ These values can be determined so that
polynomials up to degree �n�  can be integrated exactly� We get for the cases n � � and n � ��

n � ��

x� � �� c� �


�
�

x� � �� c� �
�

�
�

x� � � c� � c��

�����a�

n � ��

x� � �� c� �


�
�

x� � �x�� c� �
�

�
�

x� �
p
�

� ����� �� ��� � � � � c� � c��

x� � � c� � c��

�����b�

The case n � � represents the Simpson formula�

������ Method ofRomberg
To increase the accuracy of numerical integration the method of Romberg can be recommended� where
we start with a sequence of trapezoid sums� which is obtained by repeated halving of the integration
step size�

������� Algorithm of the RombergMethod
The method consists of the following steps�

�� Trapezoid sums determination

We determine the trapezoid sumT �hi� according to ������ as approximations of the integral
Z b

a
f�x� dx

with the step sizes

hi �
b� a

�i
�i � �� � �� � � � � m�� ������
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Here� we consider the recursive relation

T �hi� � T

�
hi��

�

�
�

hi��
�

�


�
f�a� � f

�
a �

hi��
�

�
� f�a � hi��� � f

�
a �

�

�
hi��

�

�f�a � �hi��� � � � �� f
�
a �

�n� 

�
hi��

�
�



�
f�b�


������

�


�
T �hi��� �

hi��
�

n��X
j��

f

�
a �

hi��
�

� jhi��

�
�i � � �� � � � � m� n � �i����

Recursion formula ������ tells that for the calculation of T �hi� from T �hi��� we need to compute the
function values only at the new interpolation nodes�

�� Triangular Scheme
We substitute T�i � T �hi� �i � �� � �� � � �� and we calculate recursively the values

Tki � Tk���i �
Tk���i � Tk���i��

�k � 
�k � � �� � � � � m� i � k� k � � � � ��� ������

The arrangement of the values calculated according to ������ is most practical in a triangular scheme�
whose elements are calculated in a column�wise manner�

T �h�� � T��
T �h�� � T�� T��
T �h�� � T�� T�� T��
T �h�� �T�� T�� T�� T��
� � � � � � � � � � � � � � � � � � � � � � � � �

������

The scheme will be continued downwards �with a �xed number of columns� until the lower values at
the right are almost the same� The values T�i �i � � �� � � �� of the second column correspond to those
calculated by the Simpson formula�

������� Extrapolation Principle
The Romberg method represents an application of the so�called extrapolation principle� This will be
demonstrated by deriving the formula ������ for the case k � � We denote by I the required integral�
by T �h� the corresponding trapezoid sum ������� If the integrand of I is ��m � �� times continuously
di�erentiable in the integration interval� then it can be shown that an asymptotical expansion with
respect to h is valid for the error R of the quadrature formula� and it has the form

R�h� � I � T �h� � a�h
� � a�h

� � � � �� amh�m � O�h�m��� �����a�

or

T �h� � I � a�h
� � a�h

� � � � � � amh�m � O�h�m���� �����b�

The coe�cients a�� a��� � � �am are constants and independent of h�

We form T �h� and T

�
h

�

�
according to �����b� and consider the linear combination

T��h� � ��T �h� � ��T

�
h

�

�
� ��� � ���I � a�

�
�� �

��

�

�
h� � a�

�
�� �

��

�

�
h� � � � � � ������

If we substitute ����� �  and ���
��

�
� �� then T��h� has an error of order �� while T �h� and T �h���

both have errors of order only �� We have

T��h� � �

�
T �h� �

�

�
T

�
h

�

�
� T

�
h

�

�
�

T

�
h

�

�
� T �h�

�
� �����
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This is the formula ������ for k � � Repeated application of the above procedure results in the
approximation Tki according to ������ and

Tki � I � O�h�k��i �� ������

The de�nite integral I �
Z �

�

sin x

x
dx �integral sine� see ������ �� p� ���� cannot be obtained in an

elementary way� Calculate the approximate values of this integral �calculating for � digits��

� Romberg method�

k � � k �  k � � k � �

����������
���������� ���������
��������� ���������� ����������
���������� ��������� ���������� �����������

The Romberg method results in the approximation value ����������� The value calculated for � digits

is ������������� The order O
�
����


	

 � � ��
 of the error according to ������ is proved�

� Trapezoidal and Simpson Formulas� We can read directly from the scheme of the Romberg
method that for h� � �� the trapezoid formula has the approximation value ���������� and the
Simpson formula gives the value ����������
The correction of the trapezoidal formula by Hermite according to ������ results in the value I 

���������� �

��������

�� � �
� ����������

� Gauss Formula� By the formula ������ we get for

n � � I 
 

�



c�f

�


�
x� �



�

�
� c�f

�


�
x� �



�

��
� ���������

n � �� I 
 

�



c�f

�


�
x� �



�

�
� c�f

�


�
x� �



�

�
� c�f

�


�
x� �



�

��
� ����������

n � �� I 
 

�



c�f

�


�
x� �



�

�
� � � �� c�f

�


�
x� �



�

��
� �����������

We see that the Gauss formula results in an ��digit exact approximation value for n � �� i�e�� with only
four function values� With the trapezoidal rule this accuracy would need a very large number �� ����
of function values�

Remarks�
� Fourier analysis has an important role in integrating periodic functions �see ������ �� p� ����� The
details of numerical realizations can be found under the title of harmonic analysis �see ������ p� �����
The actual computations are based on the so�called Fast Fourier Transformation FFT �see ��������
p� �����

� In many applications it is useful to take the special properties of the integrands under consideration�
Further integration routines can be developed for such special cases� A large variety of convergence
properties� error analysis� and optimal integration formulas is discussed in the literature �see� e�g��
 ���!��

� Numerical methods to �nd the values of multiple integrals are discussed in the literature �see� e�g��
 ����!��
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���� Approximate IntegrationofOrdinaryDi�erential
Equations

In many cases� the solution of an ordinary di�erential equation cannot be given in closed form as an
expression of known elementary functions� The solution� which still exists under rather general circum�
stances �see ����� p� ����� must be determined by numerical methods� These result only in particular
solutions� but it is possible to reach high accuracy� Since di�erential equations of higher order than one
can be either initial value problems or boundary value problems� numerical methods were developed
for both types of problems�

������ InitialValueProblems
The principle of the methods presented in the following discussion to solve initial value problems

y� � f�x� y�� y�x�� � y� ������

is to give approximate values yi for the unknown function y�x� at a chosen set of interpolation points
xi� Usually� we consider equidistant interpolation nodes with a previously given step size h�

xi � x� � ih �i � �� � �� � � ��� ������

������� Euler Polygonal Method
We get an integral representation of the initial value problem ������ by integration

y�x� � y� �

xZ
x�

f�x� y�x�� dx� ������

This is the starting point for the approximation

y�x�� � y� �

x��hZ
x�

f�x� y�x�� dx 
 y� � hf�x�� y�� � y�� ������

which is generalized as the Euler broken line method or Euler polygonal method �

yi�� � yi � hf�xi� yi� �i � �� � �� � � � � y�x�� � y��� ������

For a geometric interpretation see Fig �
�� If we compare ������ with the Taylor expansion

y0 y1 y2 y3

x0 x1 x2 x3

y

0 x

h h h

y(x)

Figure ���

y�x�� � y�x� � h�

� y� � f�x�� y��h �
y�����

�
h� ������

with x� � � � x� � h� then we see that
the approximation y� has an error of order h��
The accuracy can be improved by reducing
the step size h� Practical calculations show
that halving the step size h results in halving
the error of the approximations yi�
We can get a quick overview of the approxi�
mate shape of the solution curve by using the
Euler method�

������� Runge�KuttaMethods

�� Calculation Scheme
The equation y��x� � f�x� y� determines at every point �x�� y�� a direction� the direction of the tangent
line of the solution curve passing through the point �x�� y��� The Euler method follows this direction
until the next interpolation node� The Runge�Kutta methods consider more points 	between
 �x�� y��



���
 Approximate Integration of Ordinary Di�erential Equations 
��

and the possible next point �x� � h� y�� of the curve� and depending on the appropriate choice of these
additional points we get more accurate values for y�� We have Runge�Kutta methods of di�erent orders
depending on the number and the arrangements of these 
auxiliary
 points� Here we show a fourth�
order method �see ������� �� p� ����� �The Euler method is a �rst�order Runge�Kutta method��

The calculation scheme of fourth order
for the step from x� to x� � x� � h
to get an approximate value for y� of
������ is given in ������� The further
steps follow the same scheme�

The error of this Runge�Kutta method
has order h� �at every step� accord�
ing to ������� so with an appropriate
choice of the step size we can have high
accuracy�

x y k � h � f�x� y�

x� y� k�
x� � h�� y� � k��� k�
x� � h�� y� � k��� k�
x� � h y� � k� k�

x� � x� � h y� � y� �


�
�k� � �k� � �k� � k��

������

y� �


�
�x� � y�� with y��� � �� We determine y�����

in one step� i�e� h � ��� �see the table on the right�� The
exact value for � digits is ���������

�� Remarks
� For the special di�erential equation y� � f�x�� this
Runge�Kutta method becomes the Simpson formula �see
�������� p� �����

x y k �


�
�x� � y��

� � �
���� � ���������
���� ���������� ��������
��� �������� ���������

��� ��������

� For a large number of integration steps� a change of step size is possible or sometimes necessary� The
change of step size can be decided by checking the accuracy so that we repeat the step with a double
step size �h� If we have� e�g�� the approximate value y��h� for y�x� � �h� �calculated by the single
step size� and y���h� �calculated by the doubled step size�� then we have the estimation for the error
R��h� � y�x� � �h�� y��h��

R��h� 
 

�
 y��h�� y���h�!� ������

Information about the implementation of the step size changes can be found in the literature �see
 ����!��

� Runge�Kutta methods can easily be used also for higher�order di�erential equations� see  ����!�
Higher�order di�erential equations can be rewritten in a �rst�order di�erential equation system �see
p� ����� Then� the approximation methods are performed as parallel calculations according to �������
as the di�erential equations are connected to each other�

������� Multi�StepMethods
The Euler method ������ and the Runge�Kutta method ������ are so�called single�stepmethods� since
we start only from yi in the calculation of yi��� In general� linear multi�step methods have the form

yi�k � �k��yi�k�� � �k��yi�k�� � � � �� ��yi�� � ��yi
� h��kfi�k � �k��fi�k�� � � � �� ��fi�� � ��fi� �����

with appropriately chosen constants �j and �j �j � �� � � � � � k� �k � �� The formula ����� is
called a k�step method if j��j � j��j �� �� It is called explicit� if �k � �� since in this case the values
fi�j � f�xi�j� yi�j� on the right�hand side of ����� only contain the already known approximation
values yi� yi��� � � � � yi�k��� If �k �� � holds� the method is called implicit� since then the required new
value yi�k occurs on both sides of ������
We have to know the k initial values y�� y�� � � � � yk�� in the application of a k�step method� We can get
these initial values� e�g�� by one�step methods�

We can derive a special multi�step method to solve the initial value problem ������ if we replace the
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derivative y��xi� in ������ by a di�erence formula �see ������ �� p� ���� or if we approximate the
integral in ������ by a quadrature formula �see ����� p� �����

Examples of special multi�step methods are�
� MidpointRule The derivative y��xi��� in ������ is replaced by the slope of the secant line between
the interpolation nodes xi and xi��� We get�

yi�� � yi � �hfi��� ������

� Rule of Milne The integral in ������ is approximated by the Simpson formula�

yi�� � yi �
h

�
�fi � �fi�� � fi���� ������

� Rule of Adams and Bashforth The integrand in ������ is replaced by the interpolation poly�
nomial of Lagrange �see ������� p� ��� based on the k interpolation nodes xi� xi���� � � � xi�k��� We
integrate between xi�k�� and xi�k and get�

yi�k � yi�k�� �
k��X
j��

��� xi�kZ
xi�k��

Lj�x� dx

��� f�xi�j� yi�j� � h
k��X
j��

�jf�xi�j� yi�j�� ������

The method ������ is explicit for yi�k� For the calculation of the coe�cients �j see  ���!�

������� Predictor�CorrectorMethod
In practice� implicit multi�step methods have a great advantage compared to explicit ones in that they
allow much larger step sizes with the same accuracy� But� an implicit multi�step method usually re�
quires the solution of a non�linear equation to get the approximation value yi�k� This follows from
����� and has the form

yi�k � h
kX
j��

�jfi�j �
k��X
j��

�jyi�j � F �yi�k�� ������

The solution of ������ is an iterative one� We proceed as follows� An initial value y
���
i�k is determined

by an explicit formula� the so�called predictor� Then it will be corrected by an iteration rule

y
�����
i�k � F �y

���
i�k� �� � �� � �� � � ��� ������

which is called the corrector coming from the implicit method� Special predictor�corrector formulas
are�

�� y
���
i�� � yi �

h

�
��fi�� � �fi�� � ��fi�� �����a�

y
�����
i�� � yi �

h

�
��fi�� � �fi � �f

���
i��� �� � �� � � � ��� �����b�

�� y
���
i�� � yi�� � �yi�� � �yi � �h�fi�� � fi�� �����a�

y
�����
i�� � yi�� �

h

�
�fi�� � �fi � f

���
i��� �� � �� � � � ��� �����b�

The Simpson formula as the corrector in �����b� is numerically unstable and it can be replaced� e�g��
by

y
�����
i�� � ���yi�� � ��yi �

h

��
���fi�� � ���fi�� � ����fi � ��f

���
i���� ������
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������� Convergence� Consistency� Stability

�� Global Discretization Error and Convergence
Single�step methods can be written generally in the form�

yi�� � yi � hF �xi� yi� h� �i � �� � �� � � � � y� given�� �����

Here F �x� y� h� is called the increment function or progressive direction of the single�step method� The
approximating solution obtained by ����� depends on the step size h and it should be denoted by
y�x� h�� Its di�erence from the exact solution y�x� of the initial value problem ������ is called the global
discretization error g�x� h� �see ������ and we say� The single�step method ����� is convergent
with order p if p is the largest natural number such that

g�x� h� � y�x� h�� y�x� � O�hp� ����

holds� Formula ���� says that the approximation y�x� h� determined with the step size h �
x� x�

n
converges to the exact solution y�x� for every x from the domain of the initial value problem if h ��

The Euler method ������ has order of convergence p � � For the Runge�Kutta method ������
p � � holds�

�� Local Discretization Error and Consistency
The order of convergence according to ���� shows how well the approximating solution y�x� h�
approximates the exact solution y�x�� Beside this� it is an interesting question of how well the increment
functionF �x� y� h� approximates the derivative y� � f�x� y�� For this purpose we introduce the so�called
local discretization error l�x� h� �see ������ and we say� The single�step method ����� is consistent
with order p� if p is the largest natural number with

l�x� h� �
y�x � h�� y�x�

h
� F �x� y� h� � O�hp�� �����

It follows directly from ����� that for a consistent single�step method

lim
h��

F �x� y� h� � f�x� y�� �����

The Euler method has order of consistency p � � the Runge �Kutta method has order of consistency
p � ��

�� Stability with Respect to Perturbation of the Initial Values
In the practical performance of a single�step method� a rounding error O��h� adds to the global dis�
cretization error O�hp�� Consequently� we have to select a not too small� �nite step size h � �� It is
also an important question of how the numerical solution yi behaves under perturbations of the initial
values or in the case xi ��
In the theory of ordinary di�erential equations� an initial value problem ������ is called stable with
respect to perturbations of its initial values if�

j'y�x�� y�x�j � j'y� � y�j� �����

Here 'y�x� is the solution of ������ with the perturbed initial value 'y�x�� � 'y� instead of y�� Estimation
����� tells that the absolute value of the di�erence of the solutions is not larger than the perturbation
of the initial values�

In general� it is hard to check ������ Therefore we consider the linear test problem

y� � �y with y�x�� � y� �� constant� � � �� �����

which is stable� and a single�step method is applied to this special initial value problem� A consistent
method is called absolutely stable with step size h � � with respect to perturbed initial values if the
approximating solution yi of the above linear test problem ����� obtained by using the method
satis�es the condition

jyij � jy�j� �����




�� ��� Numerical Analysis

Applying the Euler polygon method for equation ����� results in the solution yi�� � � � �h�yi
�i � �� � � � ��� Obviously� ����� holds if j ��hj � � and so the step size must satisfy�� � �h � ��

�� Sti
 Di
erential Equations
Many application problems� including those in chemical kinetics� can be modeled by di�erential equa�
tions whose solutions consist of terms converging to zero exponentially but in a high di�erent kind of
exponential decreasing� These equations are called sti� di�erential equations� For example�

y�x� � C�e
�x � C�e

�x �C�� C�� ��� �� const� �����

with �� � �� �� � � and j��j * j��j� e�g�� �� � �� �� � ����� The term with �� does not have a
signi�cant a�ect on the solution function� but it does in selecting the step size h for a numerical method�
In such cases the choice of the most appropriate numerical method has special importance �see  ����!��

������ BoundaryValueProblems
The most important methods for solving boundary value problems of ordinary di�erential equations
will be demonstrated on the following simple linear boundary value problem for a di�erential equation
of the second order�

y���x� � p�x�y��x� � q�x�y�x� � f�x� �a � x � b� with y�a� � �� y�b� � �� �����

The functions p�x�� q�x� and f�x� and also the constants � and � are given�
The given method can also be adapted for boundary value problems of higher�order di�erential equa�
tions�

������� Di
erenceMethod
We divide the interval  a� b! by equidistant interpolation points x� � x��
h �
 � �� � �� � � � � n� x� � a�
xn � b� and we substitute the values of the derivatives in the di�erential equation at the interior
interpolation points

y���x�� � p�x��y
��x�� � q�x��y�x�� � f�x�� �
 � � �� � � � � n� � �����

by so�called �nite divided di�erences� e�g��

y��x�� 
 y�� �
y��� � y���

�h
� �����a�

y���x�� 
 y��� �
y��� � �y� � y���

h�
� �����b�

This way� we get n�  linear equations for the n�  approximation values y� 
 y�x�� in the interior of
the integration interval  a� b!� considering the conditions y� � � and yn � �� If the boundary conditions
also contain derivatives� they must also be replaced by �nite expressions�

Eigenvalue problems of di�erential equations �see ������� p� ��� are handled analogously� The ap�
plication of the di�erence method� described by ����� and �����a�b�� leads to a matrix eigenvalue
problem �see ���� p� �����

The solution of the homogeneous di�erential equation y�� � ��y � � with boundary conditions
y��� � y�� � � leads to a matrix eigenvalue problem� The di�erence method transforms the dif�
ferential equation into the di�erence equation y��� � �y� � y��� � h���y� � �� If we choose three
interior points� hence h � ��� then considering y� � y��� � �� y� � y�� � � we get the discretized
system�
�� �

��

�

�
y� � y� � ��

y� �

�
�� �

��

�

�
y� � y� � ��

y� �

�
�� �

��

�

�
y� � ��
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This homogeneous equation system has a non�trivial solution only when the coe�cient determinant is
zero� This condition results in the eigenvalues ��

� � ����� ��
� � �� and ��

� � ������ Among them
only the smallest one is close to its corresponding true value �����

Remark� The accuracy of the di�erence method can be improved by
� decreasing the step size h�
� application of a derivative approximation of higher order �approximations as �����a�b� have an
error of order O�h����
� application of multi�step methods �see ������� p� �����

If we have a non�linear boundary value problem� the di�erence method leads to a system of non�linear
equations of the unknown approximation values y� �see ������ p� �����

������� Approximation byUsing Given Functions
For the approximate solution of the boundary value problem ����� we apply a linear combination
of suitably chosen functions gi�x�� which are linearly independent and each one satis�es the boundary
value conditions�

y�x� 
 g�x� �
nX
i��

aigi�x�� �����

If we substitute g�x� into the di�erential equation ������ then we get an error� the so�called defect

��x� a�� a�� � � � � an� � g���x� � p�x�g��x� � q�x�g�x�� f�x�� ������

To determine the coe�cients ai� we can use the following principles �see also p� ����
� Collocation Method The defect is to be zero at n given points x� � the so�called collocation
points� The conditions

��x�� a�� a�� � � � � an� � � �
 � � �� � � � � n�� a � x� � x� � � � � � xn � b ������

result in a linear equation system for the unknown coe�cients�
� Least Squares Method We require that the integral

F �a�� a�� � � � � an� �

bZ
a

���x� a�� a�� � � � � an� dx� ������

depending on the coe�cients� should be minimal� The necessary conditions

�F

�ai
� � �i � � �� � � � � n� ������

give a linear equation system for the coe�cients ai�
� Galerkin Method We require that the so�called error orthogonality is satis�ed� i�e��

bZ
a

��x� a�� a�� � � � � an�gi�x� dx � � �i � � �� � � � � n�� ������

and we get in this way a linear equation system for the unknown coe�cients�
� RitzMethod The solution y�x� often has the property that it minimizes the variational integral�

I y! �

bZ
a

H�x� y� y�� dx ������

�see ������ p� ����� If we know the function H�x� y� y��� then we replace y�x� by the approximation
g�x� as in ����� and we minimize I y! � I�a�� a�� � � � � an�� The necessary conditions

�I

�ai
� � �i � � �� � � � � n� ������

result in n equation for the coe�cients ai�
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Under certain conditions on the functions p� q� f and y� the boundary value problem

� p�x�y��x�!� � q�x�y�x� � f�x� with y�a� � �� y�b� � � ������

and the variational problem

I y! �
Z b

a
 p�x�y���x� � q�x�y��x�� �f�x�y�x�! dx � min$ with y�a� � �� y�b� � � ������

are equivalent� so we can get H�x� y� y�� immediately from ������ for the boundary value problem of
the form �������
Instead of the approximation ������ we often consider

g�x� � g��x� �
nX
i��

aigi�x�� �����

where g��x� satis�es the boundary values and the functions gi�x� satisfy the conditions

gi�a� � gi�b� � � �i � � �� � � � � n�� ������

For the problem ������ we can choose� e�g��

g��x� � � �
� � �

b� a
�x� a�� ������

Remark� In a linear boundary value problem� the forms ����� and ����� result in a linear equa�
tion systems for the coe�cients� In the case of non�linear boundary value problems we get non�linear
equation systems� which can be solved by the methods given in Section ������ p� ����

������� ShootingMethod
With the shooting method� we reduce the solution of a boundary value problem to the solution of an
initial value problem� The basic idea of the method is described below as the single�target method�

�� Single�Target Method
The initial value problem

y�� � p�x�y� � q�x�y � f�x� with y�a� � �� y��a� � s ������

is associated to the boundary value problem ������ Here s is a parameter� which the solution y of the
initial�value problem ������ depends on� i�e�� y � y�x� s� holds� The function y�x� s� satis�es the �rst
boundary condition y�a� s� � � according to ������� We have to determine the parameter s so that
y�x� s� satis�es the second boundary condition y�b� s� � �� Therefore� we have to solve the equation

F �s� � y�b� s�� �� ������

and the regula falsi �or secant� method is an appropriate method to do this� It needs only the values of
the function F �s�� but the computation of every function value requires the solution of an initial value
problem ������ until x � b for the special parameter value s with one of the methods given in �����

�� Multiple�Target Method
In a so�called multiple�target method� the integration interval  a� b! is divided into subintervals� and we
use the single�target method on every subinterval� Then� the required solution is composed from the
solutions of the subintervals� where the continuous transition at the endpoints of the subintervals must
be ensured�
This requirement results in further conditions� For the numerical implementation of the multiple�target
method� which is used mostly for non�linear boundary value problems� see�  ����!�
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���� Approximate IntegrationofPartial Di�erential
Equations

In the following� we discuss only the principle of numerical solutions of partial di�erential equations
using the example of linear second�order partial di�erential equations with two independent variables
with the corresponding boundary or�and initial conditions�

������ Di�erenceMethod
We consider a regular grid on the integration domain by the chosen points �x�� y��� Usually� this grid
is chosen to be rectangular and equally spaced�

x� � x� � �h� y� � y� � 
l ��� 
 � � �� � � ��� ������

We get squares for l � h� If we denote the required solution by u�x� y�� then we replace the partial
derivatives occurring in the di�erential equation and in the boundary or initial conditions by �nite
divided di�erences in the following way� where u�� denotes an approximate value for the function value
u�x�� y���

Partial Derivative Finite Divided Di	erence Order of Error

�u

�x
�x�� y��



h
�u����� � u���� or



�h
�u����� � u������ O�h� or O�h��

�u

�y
�x�� y��



l
�u����� � u���� or



�l
�u����� � u������ O�l� or O�l��

��u

�x�y
�x�� y��



�hl
�u������� � u������� � u������� � u�������� O�hl�

��u

�x�
�x�� y��



h�
�u����� � �u��� � u������ O�h��

��u

�y�
�x�� y��



l�
�u����� � �u��� � u������ O�l��

 ���������������������!���������������������"

������

The error order in ������ is given by using the Landau symbol O�
In some cases� it is more practical to apply the approximation

��u

�x�
�x�� y�� 
 �

u������� � �u����� � u�������
h�

� �� ��
u����� � �u��� � u�����

h�
������

with a �xed parameter � �� � � � �� Formula ������ represents a convex linear combination of two
�nite expressions obtained from the corresponding formula ������ for the values y � y� and y � y����

A partial di�erential equation can be rewritten as a di�erence equation at every interior point of the
grid by the formulas ������� where the boundary and initial conditions are considered� as well� This
equation system for the approximation values u��� has a large dimension for small step sizes h and l� so
usually� we solve it by an iteration method �see ������� p� �����
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A� The function u�x� y� should be the solution of the di�erential
equation %u � uxx�uyy � � for the points �x� y� with jxj � � jyj � � �
i�e�� in the interior of a rectangle� and it should satisfy the boundary
conditions u � � for jxj �  and jyj � �� The di�erence equation corre�
sponding to the di�erential equation for a square grid with step size h
is� �u��� � u����� � u����� � u����� � u����� � h�� The step size h � 
�Fig �
�� results in a �rst rough approximation for the function val�
ues at the three interior points� �u��� � � � � � � � u��� � � �u��� �
� � u��� � � � u���� � � �u���� � � � u��� � � � � � �

We get� u��� �
�

�

 ������ u��� � u���� �

�

�

 ������
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B� The equation system arising in the application of the di�erence method for partial di�erential
equations has a very special structure� We demonstrate it by the following example which is a more
general boundary value problem� The integration domain is the square G� � � x � � � � y � � We
are looking for a function u�x� y� with %u � uxx � uyy � f�x� y� in the interior of G� u�x� y� � g�x� y�
on the boundary of G� The functions f and g are given� The di�erence equation associated to this
di�erential equation is� for h � l � �n�
u������u������u������u�������u��� � �

n�
f�x�� y�� ��� 
 � � �� � � � � n��� In the case of n � �� the

left�hand side of this di�erence equation system for the approximation values u��� in the �� � interior
points has the form ��������BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

��  � �
 ��  �
�  �� 
� �  ��

 � � �
�  � �
� �  �
� � � 

O

 � � �
�  � �
� �  �
� � � 

��  � �
 ��  �
�  �� 
� �  ��

 � � �
�  � �
� �  �
� � � 

 � � �
�  � �
� �  �
� � � 

��  � �
 ��  �
�  �� 
� �  ��

 � � �
�  � �
� �  �
� � � 
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 � � �
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� �  ��
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������

if we consider the grid row�wise from left to right� and considering that the values of the function are
given on the boundary� We see that the coe�cient matrix is symmetric and is a sparse matrix� This
form is called block�tridiagonal� We can also see that the form of the matrix depends on how we select
the grid�points�
For di�erent classes of partial di�erential equations of second order� such as elliptic� parabolic and
hyperbolic di�erential equations� more e�ective methods have been developed� and also the convergence
and stability conditions have been investigated� There is a huge number of books about this topic �see�
i�e��  ����!�  ����!��

������ Approximation byGivenFunctions

We approximate the solution u�x� y� by a function in the form

u�x� y� 
 v�x� y� � v��x� y� �
nX
i��

aivi�x� y�� ������

Here� we distinguish between two cases�

� v��x� y� satis�es the given inhomogeneous di�erential equation� and the further functions vi�x� y� �i �
� �� � � � � n� satisfy the corresponding homogeneous di�erential equation �then we are looking for the lin�
ear combination approximating the given boundary conditions as well as possible��

� v��x� y� satis�es the inhomogeneous boundary conditions and the other functions vi�x� y� �i �
� �� � � � � n� satisfy the homogeneous boundary conditions �then we are looking for the linear combi�
nation approximating the solution of the di�erential equation on the considered domain as well as
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possible��

If we substitute the approximating function v�x� y� from ������ in the �rst case into the boundary
conditions� in the second case into the di�erential equation� then in both cases we get an error term�
the so�called defect

� � ��x� y� a�� a�� � � � � an�� �����

To determine the unknown coe�cients ai� we can apply one of the following methods�

�� CollocationMethod
The defect � should be zero in n reasonably distributed points� at the collocation points �x�� y�� �
 �
� �� � � � � n��

��x�� y�� a�� a�� � � � � an� � � �
 � � �� � � � � n�� ������

The collocation points in the �rst case are boundary points �we talk about boundary collocation�� in
the second case they are interior points of the integration domain �we talk about domain collocation��
From ������ we get n equations for the coe�cients� Boundary collocation is usually preferred to
domain collocation�

We apply this method to the example solved in ���� by the di�erence method� with the functions
satisfying the di�erential equation�
v�x� y� a�� a�� a�� � ��

�
�x��y���a��a��x

��y���a��x
���x�y��y��� The coe�cients are determined

to satisfy the boundary conditions at the points �x�� y�� � �� ����� �x�� y�� � �� ��� and �x�� y�� �
����� �� �boundary collocation�� We get the linear equation system

������ � a� � ����a� � ������a� � ��
������ � a� � ���a� � ������a� � ��
������ � a� � ����a� � ������a� � �

with the solution a� � ������� a� � �������� a� � ������� We can calculate the approximate values
of the solution at arbitrary points with the approximating function� To compare the values with those
obtained by the di�erence method� v��� � � ����� and v��� �� � �������

�� Least Squares Method
Depending on whether the approximation function ������ satis�es the di�erential equation or the
boundary conditions� we require

� either the line integral over the boundary C

I �
Z
�C�

���x�t�� y�t� � a�� � � � � an� dt � min� �����a�

where the boundary curve C is given by a parametric representation x � x�t�� y � y�t��

� or the double integral over the domain G

I �
ZZ
�G�

���x� y� a�� � � � � an� dx dy � min� �����b�

From the necessary conditions�
�I

�ai
� � �i � � �� � � � � n�� we get n equations for computing of the

parameters a�� a��� � � � an�

������ Finite ElementMethod �FEM
After the appearance of modern computers the �nite element methods became the most important
technique for solving partial di�erential equations� These powerful methods give results which are
easy to interpret�
Depending on the types of various applications� the FEM is implemented in very di�erent ways� so
here we give only the basic idea� It is similar to those used in the Ritz method �see �������� p� ����




�� ��� Numerical Analysis

for numerical solution of boundary value problems for ordinary di�erential equations and is related to
spline approximations �see ���� p� ����
The �nite element method has the following steps�

� De�ning a Variational Problem We formulate a variational problem to the given boundary
value problem� The process is demonstrated on the following boundary value problem�

%u � uxx � uyy � f in the interior of G� u � � on the boundary of G� ������

We multiply the di�erential equation in ������ by an appropriate smooth function v�x� y� vanishing
on the boundary of G� and we integrate over the entire G to getZZ

�G�

�
��u

�x�
�

��u

�y�

�
v dx dy �

ZZ
�G�

fv dx dy� ������

Applying the Gauss integral formula �see ������� �� p� ����� where we substitute P �x� y� � �vuy and
Q�x� y� � vux in ������ we get the variational equation from ������

a�u� v� � b�v� �����a�

with

a�u� v� � �
ZZ
�G�

�
�u

�x

�v

�x
�

�u

�y

�v

�y

�
dx dy� b�v� �

ZZ
�G�

fv dx dy� �����b�
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� Triangularization The domain of integrationG is decomposed into simple subdomains� Usually�
we use a triangularization� where we cover G by triangles so that the neighboring triangles have a
complete side or only a single vertex in common� Every domain bounded by curves can be approximated
quite well by a union of triangles �Fig �
���

Remark� To avoid numerical di�culties� the triangularization should not contain obtuse�angled tri�
angles�

A triangularization of the unit square could be performed as shown in Fig �
�� Here we start
from the grid points with coordinates x� � �h� y� � 
h ��� 
 � �� � �� � � � � N � h � �N�� We get
�N��� interior points� Considering the choice of the solution functions� it is always useful to consider
the surface elements G�� composed of the six triangles having the common point �x�� y��� �In other
cases� the number of triangles may di�er from six� These surface elements are obviously not mutually
exclusive��

� Solution We de�ne a supposed approximating solution for the required function u�x� y� in every
triangle� A triangle with the corresponding supposed solution is called a �nite element� Polynomials
in x and y are the most suitable choices� In many cases� the linear approximation

'u�x� y� � a� � a�x � a�y ������
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is su�cient� The supposed approximating function must be continuous under the transition from one
triangle to neighboring ones� so we get a continuous �nal solution�
The coe�cients a�� a� and a� in ������ are uniquely de�ned by the values of the functions u�� u�
and u� at the three vertices of the triangle� The continuous transition to the neighboring triangles is
ensured by this at the same time� The supposed solution ������ contains the approximating values
ui of the required function as unknown parameters� For the supposed solution� which is applied as an
approximation in the entire domain G for the required solution u�x� y�� we choose

'u�x� y� �
N��X
���

N��X
���

���u���x� y�� ������

We have to determine the appropriate coe�cients ��� � The following must be valid for the functions
u���x� y�� They represent a linear function over every triangle of G�� according to ������ with the
following conditions�

� u���xk� yl� �
�

 for k � �� l � 
�
� at any other grid point of G�� �

�����a�

� u���x� y� � � for �x� y� �� G��� �����b�

G�#

x�

y#

1

Figure ���

The representation of u���x� y� over G�� is shown in
Fig �

�
The calculation of u�� over G�� � i�e�� over all triangles 
to � in Fig �
� is shown here only for triangle �

u���x� y� � a� � a�x � a� with ������

u���x� y� �

���
 for x � x�� y � y� �
� for x � x���� y � y����
� for x � x�� y � y����

�����

From ����� we have a� � � 
� a� � �� a� � �h� and
we get for triangle �

u���x� y� �  �
�
y

h
� 


�
� ������

Analogously� we have�

u���x� y� �

�����������������������������������

�
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x
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� �

�
�
�
y

h
� 


�
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 �
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������

� Calculation of the Solution Coe�cients We determine the solution coe�cients ��� by the
requirements that the solution ������ satis�es the variational problem �����a� for every solution
function u��� i�e�� we substitute 'u�x� y� for u�x� y� and u���x� y� for v�x� y� in �����a�� This way� we
get a linear equation system

N��X
���

N��X
���

���a�u�� � ukl� � b�ukl� �k� l � � �� � � � � N � � ������
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for the unknown coe�cients� where

a�u��� ukl� �
ZZ
Gkl

�
�u��
�x

�ukl
�x

�
�u��
�y

�ukl
�y

�
dx dy� b�ukl� �

ZZ
Gkl

fukl dx dy� ������

In the calculation of a�u��� ukl� we must pay attention to the fact that we have to integrate only in the
cases of domains G�� and Gkl with non�empty intersection� These domains are denoted by shadowing
in Table �
��

Table �� Auxiliary table for FEM

Surface
region

Graphical
representation

Triangle of
Gkl G��

�ukl

�x

�u��

�x

P �ukl

�x

�u��

�x
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� � k

 � l
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2
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� �
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 �

�h
�

�
��h

�

The integration is always performed over a triangle with an area h���� so for the partial derivatives
with respect to x we get�



h�
���kl � ��k���l � ��k���l�

h�

�
� �����a�
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Analogously� for the partial derivatives with respect to y we have�



h�
���kl � ��k�l�� � ��k�l���

h�

�
� �����b�

The calculation of the right�hand side b�ukl� of ������ gives�

b�ukl� �
ZZ
Gkl

f�x� y�ukl�x� y� dx dy 
 fklVP � �����a�

where VP is the volume of the pyramid over Gkl with height � determined by ukl�x� y� �Fig �

��
Since

VP �


�
� � � 

�
h� � we have b�ukl� 
 fklh

�� �����b�

So� the variational equations ������ result in the linear equation system

��kl � �k���l � �k���l � �k�l�� � �k�l�� � h�fkl �k� l � � �� � � � � N � � ������

for the determination of the solution coe�cients�

Remarks�
� If the solution coe�cients are determined by ������� then 'u�x� y� from ������ represents an
explicit approximating solution� whose values can be calculated for an arbitrary point �x� y� from G�

� If the integration domain must be covered by an irregular triangular grid then it is useful to introduce
triangular coordinates �also called barycentric coordinates�� In this way� the position of a point can
be easily determined with respect to the triangular grid� and the calculation of the multidimensional
integral is made easier as in ������� because every triangle can be easily transformed into the unit
triangle with vertices ��� ��� ��� �� �� ���

� If accuracy must be improved or also the di�erentiability of the solution is required� we have to
apply piecewise quadratic or cubic functions to obtain the supposed approximation �see� e�g��  ����!��

� In practical applications� we usually obtain equation systems of huge dimensions� This is the
reason why so many special methods have been developed� e�g�� for automatic triangularization and
for practical enumeration of the elements �the structure of the equation system depends on it�� For
detailed discussion of FEM see  ���!�  ���!�  ����!�

���� Approximation�ComputationofAdjustment�Harmonic
Analysis

������ Polynomial Interpolation
The basic problem of interpolation is to �t a curve through a sequence of points �x� � y�� �
 � �� �
� � � � n�� This can happen graphically by any curve��tting gadget� or numerically by a function g�x��
which takes given values y� at the points x� � at the so�called interpolation points� That is g�x� satis�es
the interpolation conditions

g�x�� � y� �
 � �� � �� � � � � n�� ������

In the �rst place� we use polynomials as interpolation functions� or for periodic functions so�called
trigonometric polynomials� In this last case we talk about trigonometric interpolation �see �������
�� p� ����� If we have n �  interpolation points� the order of the interpolation is n� and the highest
degree of the interpolation polynomial is at most n� Since with increasing degree of the polynomials�
strong oscillation may occur� which is usually not required� we decompose the interpolation interval
into subintervals and we perform a spline interpolation �see ���� p� ����

������� Newton�s Interpolation Formula
To solve the interpolation problem ������ we consider a polynomial of degree n in the following form�

g�x� � pn�x� � a� � a��x� x�� � a��x� x���x� x�� � � � �
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�an�x� x���x� x�� � � � �x� xn���� ������

This is called the Newton interpolation formula� and it gives an easy calculation of the coe�cients
ai �i � �� � � � � � n�� since the interpolation conditions ������ result in a linear equation system with
a triangular matrix�

For n � � we get the annexed equation
system from ������� The interpolation
polynomial pn�x� is uniquely determined
by the interpolation conditions �������

p��x�� � a� � y�
p��x�� � a� � a��x� � x�� � y�
p��x�� � a� � a��x� � x�� � a��x� � x���x� � x�� � y�

The calculation of the function values can be simpli�ed by the Horner schema �see ������ p� �����

������� Lagrange�s Interpolation Formula
We can �t a polynomial ofn�th degree through n� points �x�� y�� �
 � �� � � � � � n�� with the Lagrange
formula�

g�x� � pn�x� �
nX

���

y�L��x�� �����

Here L��x� �� � �� � � � � � n� are the Lagrange interpolation polynomials� Equation ����� satis�es
the interpolation conditions ������� since

L��x�� � 	�� �
�

 for � � 
�
� for � �� 
�

������

Here 	�� is the Kronecker symbol� The Lagrange interpolation polynomials are de�ned by the formula

L� �
�x� x���x� x�� � � � �x� x�����x� x���� � � � �x� xn�

�x� � x���x� � x�� � � � �x� � x�����x� � x���� � � � �x� � xn�
�

nY
���
� ��	

x� x�
x� � x�

� ������

We �t a polynomial through the points given by the table
x �  �
y  � �

�

We use the Lagrange interpolation formula ����� and we get�

L��x� �
�x� ��x� ��

��� ���� ��
�



�
�x� ��x� ���

L��x� �
�x� ���x� ��

�� ���� ��
� �

�
x�x� ���

L��x� �
�x� ���x� �

��� ����� �
�



�
x�x� ��

p��x� �  � L��x� � � � L��x� � � � L��x� � ��

�
x� �

�

�
x � �

The Lagrange interpolation formula depends explicitly and linearly on the given values y� of the func�
tion� This is its theoretical importance �see� e�g�� the rule of Adams�Bashforth� ������� �� p� �����
For practical calculation the Lagrange interpolation formula is rarely reasonable�

������� Aitken�Neville Interpolation
In several practical cases� we do not need to know the explicit form of the polynomial pn�x�� but only
its value at a given location x of the interpolation domain� We can get this function value in a recursive
way due to Aitken and Neville� We apply the useful notation

pn�x� � p��������n�x�� ������

in which the interpolation points x�� x�� � � � � xn and the degree n of the polynomial are denoted� Notice
that

p��������n�x� �
�x� x��p��������n�x�� �x� xn�p����������n���x�

xn � x�
� ������



���� Approximation� Computation of Adjustment� Harmonic Analysis 
�


i�e�� the function value p��������n�x� can be obtained by linear interpolation of the function values of
p��������n�x� and p����������n���x�� two interpolation polynomials of degree � n� � Application of ������
leads to a scheme which is given here for the case of n � ��

x� y� � p�
x� y� � p� p��
x� y� � p� p�� p���
x� y� � p� p�� p��� p����
x� y� � p� p�� p��� p���� p����� � p��x��

������

The elements of ������ are calculated column�wise� A new value in the scheme is obtained from its
west and north�west neighbors

p�� �
�x� x��p� � �x� x��p�

x� � x�
� p� �

x� x�
x� � x�

�p� � p��� �����a�

p��� �
�x� x��p�� � �x� x��p��

x� � x�
� p�� �

x� x�
x� � x�

�p�� � p���� �����b�

p���� �
�x� x��p��� � �x� x��p���

x� � x�
� p��� �

x� x�
x� � x�

�p��� � p����� �����c�

For performing the AitkenNeville algorithm on a computer we need to introduce only a vector p with

n �  components �see  ���!�� which takes the values of the columns in ������ after each other
according to the rule that the value pi�k�i�k�������i �i � k� k � � � � � � n� of the k�th column will be the
i�th component pi of p� The columns of ������ must be calculated from the top down� so we will have
all necessary values� The algorithm has the following two steps�

�� For i � �� � � � � � n set pi � yi� �����a�

�� For k � � �� � � � � n and for i � n� n� � � � � � k compute pi � pi �
x� xi

xi � xi�k
�pi � pi���������b�

After �nishing �����b� we have the required function value pn�x� at x in element pn�

������ Approximation inMean

The principle of approximation in mean is known as the Gauss least squares method� In calculations we
distinguish between continuous and discrete cases�

������� Continuous Problems� Normal Equations

The function f�x� is approximated by a function g�x� on the interval  a� b! so that the expression

F �

bZ
a

�x� f�x�� g�x�!� dx� ������

depending on the parameters contained by g�x�� should be minimal� �x� denotes a given weight func�
tion� such that �x� � � in the integration interval�
If we are looking for the best approximation g�x� in the form

g�x� �
nX
i��

aigi�x� ������

with suitable linearly independent functions g��x�� g��x�� � � � � gn�x�� then the necessary conditions

�F

�ai
� � �i � �� � � � � � n� �����
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for an extreme value of ������ result in the so�called normal equation system

nX
i��

ai�gi� gk� � �f� gk� �k � �� � � � � � n� ������

to determine the unknown coe�cients ai� Here we used the brief notation

�gi� gk� �

bZ
a

�x�gi�x�gk�x� dx� �����a�

�f� gk� �

bZ
a

�x�f�x�gk�x� dx �i� k � �� � � � � � n�� �����b�

which are considered as the scalar products of the two indicated functions�

The system of normal equations can be solved uniquely� since the functions g��x�� g��x�� � � � � gn�x� are
linearly independent� The coe�cient matrix of the system ������ is symmetric� so we could apply the
Cholesky method �see ������� p� ����� The coe�cients ai can be determined directly� without solving
the equation system� if the system of functions gi�x� is orthogonal� that is� if

�gi� gk� � � for i �� k� ������

We call it an orthonormal system� if

�gi� gk� �
�

� for i �� k�
 for i � k

�i� k � �� � � � � � n�� ������

With ������� the normal equations ������ are reduced to

ai � �f� gi� �i � �� � � � � � n�� ������

Linearly independent function systems can be orthogonalized� From the power functions gi�x� � xi

�i � �� � � � � � n�� depending on the weight function and on the interval� we may obtain the orthogonal
polynomials in Table �
��

Table ��� Orthogonal polynomials

�a� b� ��x� Name of the polynomials see p

 �� !  Legendre polynomial Pn�x� �

 �� !
p

� x�
Chebysev polynomial Tn�x� ���

 ���� e�x Laguerre polynomial Ln�x� ��
������ e�x

��� Hermite polynomial Hn�x� ��

With these polynomial systems we can work on arbitrary intervals�
� Finite approximation interval�
� Approximation interval in�nite at one end� e�g�� in time�dependent problems�
� Approximation interval in�nite at both ends� e�g�� in stream problems�
Every �nite interval  a� b! can be transformed by the substitution

x �
b � a

�
�

b� a

�
t �x �  a� b!� t �  �� !� ������
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into the interval  �� !�

������� Discrete Problems� Normal Equations� Householder�s Method

Let N pairs of values �x� � y�� be given� e�g�� by measured values� We are looking for a function g�x��
whose values g�x�� di�er from the given values y� in such a way that the quadratic expression

F �
NX
���

 y� � g�x��!
� ������

is minimal� The value of F depends on the parameters contained in the function g�x�� Formula ������
represents the classical sum of residual squares� The minimizationof the sum of residual squares is called

the least squares method� From the assumption ������ and the necessary conditions
�F

�ai
� � �i �

�� � � � � � n� for a relative minimum of ������ we obtain a linear equation system for the coe�cients�
which is called the normal equations�

nX
i��

ai gigk! �  ygk! �k � �� � � � � � n�� ������

Here we used the Gaussean sum symbols in the following notation�

 gigk! �
NX
���

gi�x��gk�x��� �����a�  ygk! �
NX
���

y�gk�x�� �i� k � �� � � � � � n�� �����b�

Usually� n* N �

For the polynomial g�x� � a� � a�x� � � �� anx
n� the normal equations are a� x

k! � a� x
k��! � � � ��

an xk�n! �  xky! �k � �� � � � � � n� with  xk! �
PN
��� x�

k�  x�! � N�  xky! �
PN

��� x�
ky��  y! �PN

��� y�� The coe�cient matrix of the normal equation system ������ is symmetric� so for the nu�
merical solution we may apply the Cholesky method�

The normal equations ������ and the residue sum square ������ have the following compact form�

GTGa � GTy� F � �y �Ga�T�y �Ga� with ����a�

G �

�BBBBBB�
g��x�� g��x�� g��x�� � � � gn�x��
g��x�� g��x�� g��x�� � � � gn�x��
g��x�� g��x�� g��x�� � � � gn�x��

���
g��xN� g��xN� g��xN � � � � gn�xN�

�CCCCCCA � y �

�BBBBBB�
y�
y�
y�
���

yN

�CCCCCCA � a �

�BBBBBB�
a�
a�
a�
���
an

�CCCCCCA � ����b�

If� instead of the minimalization of the sum of residual squares� we want to solve the interpolation
problem for the N points �x�� y��� then we have to solve the following system of equations�

Ga � y� ������

This equation system is overdetermined in the case of n � N � � and usually it does not have any
solution� We get ������ or ����a� if we multiply ������ by GT�
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From a numerical viewpoint� the Householder method �see �������� �� p� ���� is recommended to solve
equation ������� and this solution results in the minimal sum of residual squares �������

������� Multidimensional Problems

�� Computation of Adjustments

Suppose that there is a function f�x�� x�� � � � � xn� of n inde�
pendent variables x�� x�� � � � � xn� We do not know its explicit
form� onlyN substitution values f� are given� which are� in gen�
eral� measured values� We can write these data in a table �see
��������
The formulation of the adjustment problem is clearer if we in�
troduce the following vectors�

x� x
���
� x

���
� � � � x

�N�
�

x� x
���
� x

���
� � � � x

�N�
�

���
���

���
���

xn x���n x���n � � � x�N�
n

f f� f� � � � fN

������

x � �x�� x�� � � � � xn�T � Vector of n independent variables�

x��� � �x���� � x���� � � � � � x���n �T � Vector of the 
�th interpolation node �
 � � � � � � N��

f � �f�� f�� � � � fN �T � Vector of the N function values at the N interpolation nodes�

We approximate f�x�� x�� � � � � xn� � f�x� by a function of the form

g�x�� x�� � � � � xn� �
mX
i��

aigi�x�� x�� � � � � xn�� ������

Here� the m �  functions gi�x�� x�� � � � � xn� � gi�x� are suitable� selected functions�

A� Linear approximation by n variables� g�x�� x�� � � � � xn� � a� � a�x� � a�x� � � � �� anxn�

B� Complete quadratic approximation with three variables�
g�x�� x�� x�� � a� � a�x� � a�x� � a�x� � a�x�

� � a�x�
� � a	x�

� � a�x�x� � a
x�x� � ax�x��

The coe�cients are chosen to minimize
PN
���

h
f� � g

�
x
���
� � x

���
� � � � � � x���n

	i�
�

�� Normal Equation System
Analogously to ����b� we form the matrix G� in which we replace the interpolation nodes x� by

vectorial interpolation nodes x��� �
 � � �� � � � � N�� To determine the coe�cients� we can use the
normal equation system

GTGa � GTf ������

or the overdetermined equation system

Ga � f � ������

For an example of multidimensional regression see �������� �� p� ����

������� Non�Linear Least Squares Problems
We show the main idea for a one�dimensional discrete case� The approximation function g�x� depends
non�linearly on certain parameters�

A� g�x� � a�e
a�x � a�e

a�x� This expression does not depend linearly on the parameters a� and a��

B� g�x� � a�e
a�x cos a�x� This function does not depend linearly on the parameters a� and a��

We indicate the fact that the approximation function g�x� depends on a parameter vector a � �a�� a��
� � � � an�T by the notation

g � g�x� a� � g�x� a�� a�� � � � � an�� ������

Suppose� N pairs of values �x�� y�� �
 � � �� � � � � N� are given� To minimize the sum of residual squares

NX
���

 y� � g�x�� a�� a�� � � � � an�!� � F �a�� a�� � � � � an� ������
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the necessary conditions
�F

�ai
� � �i � �� � � � � � n� lead to a non�linear normal equation system which

must be solved by an iterative method� e�g�� by the Newton method �see �������� p� �����
Another way to solve the problem� which is usually used in practical problems� is the application of
the Gauss�Newton method �see �������� p� ���� given for the solution of the non�linear least squares
problem ������� We need the following steps to apply it for this non�linear approximation problem
�������

� Linearization of the approximating function g�x� a� with the help of the Taylor formula with respect

to ai� To do this� we need the approximation values a
���
i �i � �� � � � � � n��

g�x� a� 
 'g�x� a� � g�x� a���� �
nX
i��

�g

�ai
�x� a�����ai � a

���
i �� ������

� Solution of the linear minimum problem

NX
���

 y� � 'g�x�� a�!� � min$ ������

with the help of the normal equation system

'GT 'G�a � 'GT�y �����

or by the Householder method� In ����� the components of the vectors �a and �y are given as

%ai � ai � a���i �i � �� � �� � � � � n� and �����a�

%y� � y� � g�x�� a
���� �
 � � �� � � � � N�� �����b�

The matrix 'G can be determined analogously to G in ����b�� where we replace gi�x�� by
�g

�ai
�x� � a

���
� � �i � �� � � � � � n� 
 � � �� � � � � N��

� Calculation of a new approximation

a
���
i � a

���
i � %ai or a

���
i � a

���
i � �%ai �i � �� � �� � � � � n�� ������

where � � � is a step length parameter�

By repeating steps � and � with a
���
i instead of a

���
i � etc� we obtain a sequence of approximation val�

ues for the required parameters� whose convergence strongly depends on the accuracy of the initial
approximations� We can reduce the value of the sum of residual squares with the introduction of the
multiplyer ��

������ ChebyshevApproximation

������� ProblemDe�nition and the Alternating Point Theorem

�� Principle of Chebyshev Approximation
Chebyshev approximation or uniform approximation in the continuous case is the following� The func�
tion f�x� is to be approximated in an interval a � x � b by the approximation function g�x� �
g�x� a�� a�� � � � � an� so that the error de�ned by

max
a
x
b

jf�x�� g�x� a�� a�� � � � � an�j � ��a�� a�� � � � � an� ������

should be as small as possible for the appropriate choice of the unknown parameters ai �i � �� � � � � � n��
If there exists such an approximating function for f�x�� then the maximum of the absolute error value
will be taken at least at n�� points x� of the interval� at the so�called alternating points� with changing
signs �Fig �
���� This is actually the meaning of the alternating point theorem for the characteriza�
tion of the solution of a Chebyshev approximation problem�
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y

0 a b x

g(x)

f(x)

y

0 xa b

f(x)-g(x)

a) b)

Figure ���

If we approximate the function f�x� � xn on the interval  �� ! by a polynomial of degree� n� in
the Chebyshev sense� then we get theChebyshev polynomial Tn�x� as an error function whose maximum
is normed to one� The alternating points� being at the endpoints and at exactly n �  points in the
interior of the interval� correspond to the extreme points of Tn�x� �Fig �
��a�f��

T1(x) 1

x
1-1

-1

0

a�

0
x

1-1

-1

1T2(x)

b�

0
x

1-1

-1

1T3(x)

c�

x
10-1

-1

1T4(x)

d�

-1 0 1
x

-1

1T5(x)

e�

-1 0 1
x

1T6(x)

-1
f�

Figure ��

������� Properties of the Chebyshev Polynomials

� Representation

Tn�x� � cos�n arccos x�� �����a�

Tn�x� �


�

h�
x �
p
x� � 

	n
�
�
x�px� � 

	ni
� �����b�

Tn�x� �
�

cos nt� x � cos t for jxj � �
cosh nt� x � cosh t for jxj � 

�n � � �� � � ��� �����c�
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� Roots of Tn�x�

x� � cos
���� ��

�n
�� � � �� � � � � n�� ������

� Position of the extreme values of Tn�x� for x � ���� ��
x� � cos


�

n
�
 � �� � �� � � � � n�� ������

� Recursion Formula

Tn�� � �xTn�x�� Tn���x� �n � � �� � � � � T��x� � � T��x� � x�� ������

From this recursion we have for example

T��x� � �x� � � T��x� � �x� � �x� �����a�

T��x� � �x� � �x� � � T��x� � �x� � ��x� � �x� �����b�

T	�x� � ��x	 � ��x� � �x� � � �����c�

T��x� � ��x� � �x� � ��x� � �x� �����d�

T
�x� � ��x
 � ���x	 � ��x� � ��x� � � �����e�

T�x� � ���x � ���x� � ���x� � ��x� � �x� �����f�

T���x� � ��x�� � ���x
 � ��x	 � ���x� � ��x� � � �����g�

������� Remes Algorithm

�� Consequences of the Alternating Point Theorem
The numerical solution of the continuous Chebyshev approximation problem originates from the alter�
nating point theorem� We choose the approximating function

g�x� �
nX
i��

aigi�x� �������

withn� linearly independent known functions� and we denote by ai
� �i � �� � � � � � n� the coe�cients of

the solution of the Chebyshev problem and by � � ��a�
�� a��� � � � � an�� the minimal deviation according

to ������� In the case when the functions f and gi �i � �� � � � � � n� are di�erentiable� from the
alternating point theorem we have

nX
i��

ai
�gi�x�� � ����� � f�x���

nX
i��

ai
�g�i�x�� � f ��x�� �
 � � �� � � � � n � ��� ������

The nodes x� are the alternating points with

a � x� � x� � � � � � xn�� � b� �������

The equations ������ give �n � � conditions for the �n � � unknown quantities of the Chebyshev
approximation problem� n �  coe�cients� n � � alternating points and the minimal deviation �� If
the endpoints of the interval belong to the alternating points� then the conditions for the derivatives
are not necessarily valid there�

�� Determination of theMinimal Solution according to Remes
According to Remes� we proceed with the numerical determination of the minimal solution as follows�

� We determine an approximation of the alternating points x�
��� �
 � � �� � � � � n � �� according to

�������� e�g�� equidistant or as the positions of the extrema of Tn���x� �see �������� p� �����

� We solve the linear equation system
nX
i��

aigi�x�
���� � ����� � f�x�

���� �
 � � �� � � � � n � ��
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and as a solution� we get the approximations ai
��� �i � �� � � � � � n� and ���

� We determine a new approximation of the alternating points x�
��� �
 � � �� � � � � n � ��� e�g�� as

positions of the extrema of the error function f�x� � nP
i��

ai
���gi�x�� Now� it is su�cient to apply only

approximations of these points�
By repeating steps � and � with x�

��� and ai
��� instead of x�

��� and ai
���� etc� we obtain a sequence

of approximations for the coe�cients and the alternating points� whose convergence is guaranteed un�
der certain conditions� which can be given �see  ����!�� We stop calculations if� e�g�� from a certain
iteration index �

j��j � max
a
x
b

�����f�x��
nX
i��

ai
���gi�x�

����� �������

holds with a su�cient accuracy�

������� Discrete Chebyshev Approximation andOptimization

From the continuous Chebyshev approximation problem

max
a
x
b

�����f�x��
nX
i��

aigi�x�

����� � min$ �������

we get the corresponding discrete problem� if we choose N nodes x� �
 � � �� � � � � N � N 	 n� �� with
the property a � x� � x� � � � � xN � b and require

max
����������N

�����f�x���
nX
i��

aigi�x��

����� � min$ � �������

We substitute

� � max
����������N

�����f�x���
nX
i��

aigi�x��

����� � �������

and obviously we have�����f�x���
nX
i��

aigi�x��

����� � � �
 � � �� � � � � N�� �������

Eliminating the absolute values from ������� we obtain a linear inequality system for the coe�cients
ai and �� so the problem ������� becomes a linear programming problem �see ����� p� �����

� � min$ subject to

�������
� �

nP
i��

aigi�x�� 	 f�x���

� � nP
i��

aigi�x�� 	 �f�x��
�
 � � �� � � � � N�� �������

Equation ������� has a minimal solution with � � �� For a su�ciently large number N of nodes and
with some further conditions the solution of the discrete problem can be considered as the solution of
the continuous problem�

If we use instead of the linear approximation function g�x� �
nP
i��

aigi�x� a non�linear approximation

function g�x� � g�x� a�� a�� � � � � an�� which does not depend linearly on the parameters a�� a�� � � � � an�
then we obtain analogously a non�linear optimization problem� It is usually non�convex even in the
cases of simple function forms� This essentially reduces the number of numerical solution methods for
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non�linear optimization problems �see ������� p� �����

������ HarmonicAnalysis
We want to approximate a periodic function f�x� with period ��� which is given formally or empirically�
by a trigonometric polynomial or a Fourier sum of the form

g�x� �
a�
�

�
nX
k��

�ak cos kx � bk sin kx�� �������

where the coe�cients a�� ak and bk are unknown real numbers� The determination of the coe�cients is
the topic of harmonic analysis�

������� Formulas for Trigonometric Interpolation

�� Formulas for the Fourier Coe�cients
Since the function system � cos kx� sin kx �k � � �� � � � � n� is orthogonal in the interval  �� ��! with
respect to the weight function  � � we get the formulas for the coe�cients

ak �


�

��Z
�

f�x� cos kx dx� bk �


�

��Z
�

f�x� sin kx dx �k � �� � �� � � � � n� ������

by applying the continuous least squares method according to ������� The coe�cients ak and bk
calculated by formulas ������ are called Fourier coe�cients of the periodic function f�x� �see ����
p� �����

If the integrals in ������ are complicated or the function f�x� is known only at discrete points� then
the Fourier coe�cients can be determined only approximately by numerical integration�

Using the trapezoidal formula �see �������� p� ���� with N �  equidistant nodes

x� � 
h �
 � �� � � � � � N�� h �
��

N
�����

we get the approximation formula

ak 
 'ak �
�

N

NX
���

f�x�� cos kx�� bk 
 'bk �
�

N

NX
���

f�x�� sin kx� �k � �� � �� � � � � n�� ������

The trapezoidal formula becomes the very simple rectangular formula in the case of periodic functions�
It has higher accuracy here as a consequence of the following fact� If f�x� is periodic and ��m��� times
di�erentiable� then the trapezoidal formula has an error of order O�h�m����

�� Trigonometric Interpolation

Some special trigonometric polynomials formed with the approximation coe�cients 'ak and 'bk have
important properties� Two of them are mentioned here�

� Interpolation Suppose N � �n holds� The special trigonometric polynomial

'g��x� �


�
'a� �

n��X
k��

�'ak cos kx � 'bk sin kx� �


�
'an cos nx ������

with coe�cients ������ satis�es the interpolation conditions

'g��x�� � f�x�� �
 � � �� � � � � N� ������

at the interpolation nodes x� ������ Because of the perodicity of f�x� we have f�x�� � f�xN��

� Approximation in Mean Suppose N � �n� The special trigonometric polynomial

'g��x� �


�
'a� �

mX
k��

�'ak cos kx � 'bk sin kx� ������
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for m � n and with the coe�cients ������ approximates the function f�x� in discrete quadratic mean
with respect to the N nodes x� ������ that is� the residual sum of squares

F �
NX
���

 f�x��� 'g��x��!
� ������

is minimal� The formulas ������ are the originating point for the di�erent ways of e�ective calculation
of Fourier coe�cients�

������� Fast Fourier Transformation �FFT�

�� Computation costs of computing Fourier coe�cients
The sums in the formulas ������ also occur in connection with discrete Fourier transformation� e�g��
in electrotechnics� in impulse and picture processing� Here N can be very large� so the occurring sums
must be calculated in a rational way� since the calculation of the N approximating values ������ of
the Fourier coe�cients requires about N� additions and multiplications�

For the special case of N � �p� the number of multiplications can
be largely reduced from N��� ��p� to pN�� p�p� with the help of
the so�called fast Fourier transformationFFT� The magnitude of
this reduction is demonstrated on the example on the right�hand
side�

p N� pN

� ! �	 ! ��

�� ! ��� ! ��
������

By this method� the computation costs and computation time are reduced so e�ectively that in some
important application �elds even a smaller computer is su�cient�
The FFT uses the properties of the N �th unit roots� i�e�� the solutions of equation zN �  to a successive
sum up in �������

�� Complex Representation of the Fourier Sum
The principle of FFT can be described fairly easily if we rewrite the Fourier sum ������� with the
formulas

cos kx �


�

�
eikx � e�ikx

	
� sin kx �

i

�

�
e�ikx � eikx

	
������

into the complex form

g�x� �


�
a� �

nX
k��

�ak cos kx � bk sin kx� �


�
a� �

nX
k��

�
ak � ibk

�
eikx �

ak � ibk
�

e�ikx
�
� ������

If we substitute

ck �
ak � ibk

�
� ������a� then because of ������ ck �



��

Z ��

�
f�x�e�ikx dx� ������b�

and ������ becomes the complex representation of the Fourier sum�

g�x� �
nX

k��n
cke

ikx with c�k � "ck� ������

If the complex coe�cients ck are known� then we get the required real Fourier coe�cients in the following
simple way�

a� � �c�� ak � �Re�ck�� bk � ��Im�ck� �k � � �� � � � � n�� �������

�� Numerical Calculation of the Complex Fourier Coe�cients
For the numerical determination of ck we apply the trapezoidal formula for ������b� analogously to
����� and ������� and get the discrete complex Fourier coe�cients 'ck�

'ck �


N

N��X
���

f�x��e
�ikx� �

N��X
���

f�
k�
N �k � �� � �� � � � � n� with ������a�
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f� �


N
f�x��� x� �

��


N
�
 � �� � �� � � � � N � �� N � e�

��i
N � ������b�

Relation ������a� with the quantities ������b� is called the discrete complex Fourier transformation
of length N of the values f� �
 � �� � �� � � � � N � ��

The powers �N � z �
 � �� � �� � � � � N � � satisfy equation zN � � So� they are called the N�th unit
roots� Since e���i � �

NN � � N��
N � �

N � N��
N � �

N � � � � � �������

The e�ective calculation of the sum ������a� uses the fact that a discrete complex Fourier transfor�

mation of length N � �n can be reduced to two transformations with length
N

�
� n in the following

way�

a� For every coe�cient 'ck with an even index� i�e�� k � �l� we have

'c�l �
�n��X
���

f�
�l�
N �

n��X
���

h
f�

�l�
N � fn��

�l�n���
N

i
�

n��X
���

 f� � fn��!
�l�
N � �������

Here we use the equality 
�l�n���
N � �ln

N �l�
N � �l�

N �

If we substitute

y� � f� � fn�� �
 � �� � �� � � � � n� � �������

and consider that �
N � n� then

'c�l �
n��X
���

y�
l�
n �
 � �� � �� � � � � n� � �������

is the discrete complex Fourier transformation of the values y� �
 � �� � �� � � � � n � � with length

n �
N

�
�

b� For every coe�cient 'ck with an odd index� i�e�� with k � �l � � we get analogously�

'c�l�� �
�n��X
���

f�
��l����
N �

n��X
���

 �f� � fn���
�
N !�l�

N � �������

If we substitute

yn�� � �f� � fn���
�
N �
 � �� � �� � � � � n� � �������

and we consider that �
N � n� then we have

'c�l�� �
n��X
���

yn��
l�
n �
 � �� � �� � � � � n� � �������

which is the discrete complex Fourier transformation of the values yn�� �
 � �� � �� � � � � n � � with

length n �
N

�
�

The reduction according to a� and b�� i�e�� the reduction of a discrete complex Fourier transformation
to two discrete complex Fourier transformations of half the length� can be continued if N is a power of ��
i�e�� if N � �p �p is a natural number�� The application of the reduction after p times is called the FFT�

Since every reduction step requires
N

�
complex multiplications because of �������� the computation

cost of the FFT method is

N

�
p �

N

�
log� N� ������
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�� Scheme for FFT
For the special case N � � � ��� the three corresponding reduction steps of the FFT according to
������� and ������� are demonstrated in the following Scheme ��
Scheme ��

Step  Step � Step �

f� y� � f� � f� y� �� y� � y� y� �� y� � y� � 'c�

f� y� � f� � f� y� �� y� � y� y� �� �y� � y��
�
� � 'c�

f� y� � f� � f	 y� �� �y� � y��
�
� y� �� y� � y� � 'c�

f� y� � f� � f� y� �� �y� � y��
�
� y� �� �y� � y��

�
� � 'c	

f� y� � �f� � f��
�

 y� �� y� � y	 y� �� y� � y� � 'c�

f� y� � �f� � f��
�

 y� �� y� � y� y� �� �y� � y��

�
� � 'c�

f	 y	 � �f� � f	�
�

 y	 �� �y� � y	�

�
� y	 �� y	 � y� � 'c�

f� y� � �f� � f��
�

 y� �� �y� � y��

�
� y� �� �y	 � y��

�
� � 'c�

N � �� n �� �� 
 � e�
��i
� N �� �� n �� �� � � �


 N �� �� n �� � � � �
�

We can observe how terms with even and odd indices appear� In Scheme � ������� the structure of
the method is illustrated�
Scheme ��

'ck �

�������������������������

'c�k �

�������
'c�k �

�
'c
k
'c
k��

'c�k�� �
�

'c
k��
'c
k�	

'c�k�� �

�������
'c�k�� �

�
'c
k��
'c
k��

'c�k�� �
�

'c
k��
'c
k��

�������

�k � �� � � � � � �� �k � �� � �� �� �k � �� � �k � ���

If the coe�cients 'ck are substi�
tuted into Scheme � and we
consider the binary forms of the
indices before step  and af�
ter step �� then we recognize
that the order of the required
coe�cients can be obtained by
simply reversing the order of
the bits of the binary form of
their indices� This is shown in
Scheme ��

Scheme �� Index Step  Step � Step � Index

'c� ��� 'c� 'c� 'c� ���

'c� ��L 'c� 'c� 'c� L��

'c� �L� 'c� 'c� 'c� �L�

'c� �LL 'c	 'c	 'c	 LL�

'c� L�� 'c� 'c� 'c� ��L

'c� L�L 'c� 'c� 'c� L�L

'c	 LL� 'c� 'c� 'c� �LL

'c� LLL 'c� 'c� 'c� LLL

In the case of the function f�x� �
�

��� for x � ��
x� for � � x � ���

with period ��� the FFT is used for the dis�

crete Fourier transformation� We chooseN � �� Withx� �
��

�
� f� �



�
f�x�� �
 � �� � �� � � � � ��� 
 �

e�
��i

 � ��������� i�� �


 � �i� �

 � ��������� � i� we get Scheme ��



���� Representation of Curves and Surfaces with Splines 
��

Scheme �� Step  Step � Step �

f� � ������� y� � ������ y� � �������� y� � ������� � 'c�

f� � ������� y� � �������� y� � �������� y� � �������� � 'c�

f� � �������� y� � ������� y� � ������ y� � ������ � �������� i � 'c�

f� � �������� y� � ������� y� � �������� i y� � ������� �������� i � 'c	

f� � ������ y� � ������� y� � ������� y� � ������� � �������� i � 'c�

�������� i

f� � ������� y� � ���������� i� y� � �������� y� � �������� ������ i � 'c�

��������� i

f	 � �������� y	 � ������� i y	 � ������� y	 � ������� � ������ i � 'c�

�������� i

f� � �������� y� � �������� � i� y� � ��������� y� � �������� �������� i � 'c�

��������� i

From the third �last� reduction step we get the required
real Fourier coe�cients according to �������� �See the
right�hand side��
In this example� the general property

a� � ������ ���
a� � ���� � b� � ���� ���
a� � ���� ��� b� � � ����� ���
a� � ����� ��� b� � � ����� ���
a� � ���� ��� b� � �

'cN�k � "'ck �������

of the discrete complex Fourier coe�cients can be observed� For k � � �� �� we see that 'c� � "'c�� 'c	 �
"'c�� 'c� � "'c��

���� RepresentationofCurves andSurfaceswith Splines

������ Cubic Splines
Since interpolation and approximation polynomials of higher degree usually have unwanted oscillations�
it is useful to divide the approximation interval into subintervals by the so�called nodes and to consider
a relatively simple approximation function on every subinterval� In practice� cubic polynomials are
mostly used� We require a smooth transition at the nodes of this piecewise approximation�

��	���� Interpolation Splines

�� De�nition of the Cubic Interpolation Splines� Properties
Suppose there are given N interpolation points �xi� fi� �i � � �� � � � � N � x� � x� � � � � xN �� The cubic
interpolation spline S�x� is determined uniquely by the following properties�

� S�x� satis�es the interpolation conditions S�xi� � fi �i � � �� � � � � N��

� S�x� is a polynomial of degree � � in any subinterval  xi� xi��! �i � � �� � � � � N � ��

� S�x� is twice continuously di�erentiable in the entire approximation interval  x�� xN !�

� S�x� satis�es the special boundary conditions�

a� S ���x�� � S ���xN � � � �we call them natural splines� or

b� S ��x�� � f�
�� S ��xN � � fN

� �f�
� and fN

� are given values� or

c� S�x�� � S�xN�� in the case of f� � fN � S ��x�� � S ��xN� and S ���x�� � S ���xN � �we call them
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periodic splines��

It follows from these properties that for all twice continuously di�erentiable functions g�x� satisfying
the interpolation conditions g�xi� � fi �i � � �� � � � � N�

xNZ
x�

 S ���x�!� dx �
xNZ
x�

 g���x�!� dx �������

is valid �Holladay�s Theorem�� Based on ������� we can say that S�x� has minimal total curvature�
since for the curvature � of a given curve� in a �rst approximation� � 
 S �� �see ������� �� p� ����� It
can be shown that if we lead a thin elastic ruler �its name is spline� through the points �xi� fi� �i �
� �� � � � � N�� its bending line follows the cubic spline S�x��

�� Determination of the Spline Coe�cients
We suppose that the cubic interpolation spline S�x� for x �  xi� xi��! has the form�

S�x� � Si�x� � ai � bi�x� xi� � ci�x� xi�
� � di�x� xi�

� �i � � �� � � � � N � �� �������

The length of the subinterval is denoted by hi � xi�� � xi� We can determine the coe�cients of the
natural spline on the following way�

� From the interpolation conditions we get

ai � fi �i � � �� � � � � N � �� �������

It is reasonable to introduce the additional coe�cient aN � fN � which does not occur in the polynomi�
als�

� The continuity of S ���x� at the interior nodes requires that

di�� �
ci � ci��

�hi��
�i � �� �� � � � � N � �� �������

The natural conditions result in c� � �� and ������� still holds for i � N � if we introduce cN � ��

� The continuity of S�x� at the interior nodes results in the relation

bi�� �
ai � ai��

hi��
� �ci�� � ci

�
hi�� �i � �� �� � � � � N�� �������

� The continuity of S ��x� at the interior nodes requires that

ci��hi�� � ��hi�� � hi�ci � ci��hi � �

�
ai�� � ai

hi
� ai � ai��

hi��

�
�i � �� �� � � � � N � �� �������

Because of �������� the right�hand side of the linear equation system ������� to determine the coef�
�cients ci �i � �� �� � � � � N � � c� � cN � �� is known� The left hand�side has the following form��BBBBBBBB�

��h� � h�� h�
h� ��h� � h�� h� O

h� ��h� � h�� h�
� � �

� � �
� � �

O hN��
hN�� ��hN�� � hN���

�CCCCCCCCA

�BBBBBBBB�

c�
c�
c�
���

cN��

�CCCCCCCCA
� �������

The coe�cient matrix is tridiagonal� so the equation system ������� can be solved numerically very
easily by an LR decomposition �see ������ �� p� ���� We can then determine all other coe�cients
in ������� and ������� with these values ci�

��	���� Smoothing Splines
The given function values fi are usually measured values in practical applications so they have some er�
ror� In this case� the interpolation requirement is not reasonable� This is the reason why cubic smoothing
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splines are introduced� We get this spline if in the cubic interpolation splines we replace the interpola�
tion requirements by

NX
i��

�
fi � S�xi�

�i

�
� �

xNZ
x�

 S ���x�!
�
dx � min$� ������

We keep the requirements of continuity of S� S � and S ��� so the determination of the coe�cients is a
constrained optimization problem with conditions given in equation form� The solution can be obtained
by using a Lagrange function �see �������� p� ����� For details see  ����!�

In ������ � �� 	 �� represents a smoothing parameter � which must be given previously� For � � � we
get the cubic interpolation spline� as a special case� for 	large
 � we get a smooth approximation curve�
but it returns the measured values inaccurately� and for � � � we get the approximating regression
line as another special case� A suitable choice of � can be made� e�g�� on computer by screen dialog�
The parameter �i ��i � �� in ������ represents the standard deviation �see ������� �� p� ���� of the
measurement errors� of the values fi �i � � �� � � � � N��

Until now� the abscissae of the interpolation points and the measurement points were the same as the
nodes of the spline function� For large N this results in a spline containing a large number of cubic
functions �������� A possible solution is to choose the number and the position of the nodes freely�
because in many practical applications only a few spline segments are satisfactory� It is reasonable also
from a numerical viewpoint to replace ������� by a spline of the form

S�x� �
r��X
i��

aiNi���x�� �������

Here r is the number of freely chosen nodes� and the functions Ni���x� are the so�called normalized B�
splines �basis splines� of order �� i�e�� polynomials of degree three� with respect to the i�th node� For
details see  ���!�

������ Bicubic Splines

��	���� Use of Bicubic Splines
Bicubic splines are used for the following problem� A rectangle R of the x� y plane� given by a � x � b�
c � y � d� is decomposed by the grid points �xi� yj� �i � �� � � � � � n� j � �� � � � � � m� with

a � x� � x� � � � � � xn � b� c � y� � y� � � � � � ym � d �������

into subdomains Rij� where the subdomain Rij contains the points �x� y� with xi � x � xi��� yj � y �
yj�� �i � �� � � � � � n� � j � �� � � � � � m� �� The values of the function f�x� y� are given at the grid
points

f�xi� yj� � fij �i � �� � � � � � n� j � �� � � � � � m�� �������

A possible simple� smooth surface over R is required which approximates the points ��������

��	���� Bicubic Interpolation Splines

�� Properties
The bicubic interpolation spline S�x� y� is de�ned uniquely by the following properties�

� S�x� y� satis�es the interpolation conditions

S�xi� yj� � fij �i � �� � � � � � n� j � �� � � � � � m�� �������

� S�x� y� is identical to a bicubic polynomial on every Rij of the rectangle R� that is�

S�x� y� � Sij�x� y� �
�X

k��

�X
l��

aijkl�x� xi�
k�y � yj�

l �������

on Rij� So� Sij�x� y� is determined by � coe�cients� and for the determination of S�x� y� we need
� �m � n coe�cients�
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� The derivatives

�S

�x
�

�S

�y
�

��S

�x�y
�������

are continuous on R� So� a certain smoothness is ensured for the entire surface�

� S�x� y� satis�es the special boundary conditions�

�S

�x
�xi� yj� � pij for i � �� n� j � �� � � � � � m�

�S

�y
�xi� yj� � qij for i � �� � � � � � n� j � �� m� �������

��S

�x�y
�xi� yj� � rij for i � �� n� j � �� m�

Here pij� qij and rij are previously given values�
We can use the results of one�dimensional cubic spline interpolation for the determination of the coef�
�cients aijkl� We see�

� There is a very large number ��n � m � s� of linear equation systems but only with tridiagonal
coe�cient matrices�

� The linear equation systems di�er from each other only on their right�hand sides�

In general� it can be said that bicubic interpolation splines are useful with respect to computation cost
and accuracy� and so they are appropriate procedures for practical applications� For practical methods
of computing the coe�cients see the literature�

�� Tensor Product Approach
The bicubic spline approach ������� is an example of the so�called tensor product approach having the
form

S�x� y� �
nX
i��

mX
j��

aijgi�x�hj�y� �������

and which is especially suitable for approximations over a rectangular grid� The functions gi�x� �i �
�� � � � � � n� and hj�y� �j � �� � � � � � m� form two linearly independent function systems� The tensor
product approach has the big advantage� from numerical viewpoint� that� e�g�� the solution of a two�
dimensional interpolation problem ������� can be reduced to a one�dimensional one� Furthermore�
the two�dimensional interpolation problem ������� is uniquely solvable with the approach ������� if

� the one�dimensional interpolation problem with functions gi�x� with respect to the interpolation
nodes x�� x�� � � � � xn and

� the one�dimensional interpolation problem with functions hj�y� with respect to the interpolation
nodes y�� y�� � � � � ym
are uniquely solvable�

An important tensor product approach is that with the cubic B�splines�

S�x� y� �
r��X
i��

p��X
j��

aijNi���x�Nj���y�� �������

Here� the functions Ni���x� and Nj���y� are normalized B�splines of order four� Here r denotes the
number of nodes with respect to x� p denotes the number of nodes with respect to y� The nodes can be
chosen freely but their positions must satisfy certain conditions for the solvability of the interpolation
problem�

The B�spline approach results in an equation system with a band structured coe�cient matrix� which
is a numerically useful structure�
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For solutions of di�erent interpolation problems using bicubic B�splines see the literature�

��	���� Bicubic Smoothing Splines
The one�dimensional cubic approximation spline is mainly characterized by the optimality condition
������� For the two�dimensional case we could determine a whole sequence of corresponding opti�
mality conditions� however only a few special cases make the existence of a unique solution possible�
For appropriate optimality conditions and algorithms for solution of the approximation problem with
bicubic B�splines see the literature�

������ Bernstein�B�ezierRepresentation of Curves and Surfaces
�� Bernstein Basis Polynomials
The Bernstein�B�ezier representation �brie�y B�B representation� of curves and surfaces applies the
Bernstein polynomials

Bi�n�t� �
�
n
i

�
ti�� t�n�i �i � �� � � � � � n� ������

and uses the following fundamental properties�

� � � Bi�n�t� �  for � � t � � �������

�
nX
i��

Bi�n�t� � � �������

Formula ������� follows directly from the binomial theorem �see ������ p� ���

A� B���t� � � t � B����t� � t �Fig �
����

B� B���t� � �� t�� � B����t� � �t�� t�� � B����t� � �t��� t� B����t� � t� �Fig �
����
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�� Vector Representation
In the following� a space curve� whose parametric representation is x � x�t�� y � y�t�� z � z�t�� will be
denoted in vector form by

�r � �r�t� � x�t��ex � y�t��ey � z�t��ez� �������

Here t is the parameter of the curve� The corresponding representation of a surface is

�r � �r�u� v� � x�u� v��ex � y�u� v��ey � z�u� v��ez� �������

Here� u and v are the surface parameters�

��	���� Principle of the B�BCurve Representation
Suppose there are given n �  vertices Pi �i � �� � � � � � n� of a three�dimensional polygon with the

position vectors �Pi� Introducing the vector�valued function

�r�t� �
nX
i��

Bi�n�t��Pi �������
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we assign a space curve to these points� which is called the B�B curve� Because of ������� we can
consider ������� as a 	variable convex combination
 of the given points� The three�dimensional curve

P0

P1 P2

P3

P4

P5

Figure ���

������� has the following important properties�
� The points P� and Pn are interpolated�

� Vectors
��

P�P� and
��

Pn��Pn are tangents to �r�t� at points P�

and Pn�
The relation between a polygon and a B�B curve is shown in
Fig �
���
The B�B representation is considered as a design of the curve�
since we can easily in�uence the shape of the curve by changing
the polygon vertices�
We often use normalized B�splines instead of Bernstein poly�
nomials�

The corresponding space curves are called the B�spline curves� Their shape corresponds basically to
the B�B curves with the following advantages�

� The polygon is better approximated�

� The B�spline curve changes only locally if the polygon vertices are changed�

� In addition to the local changes of the shape of the curve the di�erentiability can also be in�uenced�
So� it is possible to produce break points and line segments for example�

��	���� B�B Surface Representation

Suppose there are given the points Pij �i � �� � � � � � n� j � �� � � � � � m� with the position vectors �Pij�
which can be considered as the nodes of a grid along the parameter curves of a surface� Analogously to
the B�B curves �������� we assign a surface to the grid points by

�r�u� v� �
nX
i��

mX
j��

Bi�n�u�Bj�m�v��Pij� �������

Representation ������� is useful for surface design� since by changing the grid points we may change
the surface� Anyway� the in�uence of every grid point is global� so we should change from the Bernstein
polynomials to the B�splines in ��������

���� Using theComputer

���	�� Internal SymbolRepresentation
Computer are machines that work with symbols� The interpretation and processing of these symbols is
determined and controlled by the software� The external symbols� letters� cyphers and special symbols
are internally represented in binary code by a form of bit sequence� A bit �binary digit� is the smallest
representable information unit with values � and � Eight bits form the next unit� the byte� In a byte
we can distinguish between �
 bit combinations� so ��� symbols can be assigned to them� Such an
assignment is called a code� There are di�erent codes� one of the most widespread isASCII �American
Standard Code for Information Interchange��

������� Number Systems
�� Law of Representation
Numbers are represented in computers in a sequence of consecutive bytes� The basis for the internal
representation is the binary system� which belongs to the polyadic systems� similarly to the decimal
system�
The law of representation for a polyadic number system is

a �
nX

i��m
ziB

i �m � �� n 	 �� m�n integer� �������
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with B as basis and zi �� � zi � B� as a cypher of the number system� The positions i 	 � form the
integers� those with i � � the fractional part of the number�

For the decimal number representation� i�e�� B � �� of the decimal number ������ we get
������ �  � �� � � � �� � � � �� � � � ��� �  � ��� � � � ��� � � � ����
The number systems occurring most often in computers are shown in Table �
��

Table ��� Number systems

Number system Basis Corresponding cyphers

Binary system � ��  �or O�L�

Octal system � �� � �� �� �� �� �� �

Hexadecimal system � �� � �� �� �� �� �� �� �� ��A�B�C�D�E�F
�The letters A�F are for the values �����

Decimal system � �� � �� �� �� �� �� �� �� �

�� Conversion

The transition from one number system to another is called conversion� If we use di�erent number
systems in the same time� in order to avoid confusion we put the basis as an index�

The decimal number ������ is in di�erent systems� �������� � ������� � �����
 �
�B�D�	�

� Conversion of Binary Numbers into Octal or Hexadecimal Numbers The conversion
of binary numbers into octal or hexadecimal numbers is simple� We form groups of three or four bits
starting at the binary point to the left and to the right� and we determine their values� These values
are the cyphers of the octal or hexadecimal systems�

� Conversion of Decimal Numbers into Binary� Octal or Hexadecimal Numbers For the
conversion of a decimal numbers into another system� we adept the following rules for the integer and
for the fractional part separately�

a� Integer Part� If G is an integer in the decimal system� then for the number system with basis B
the law of formation ������� is�

G �
nX
i��

ziB
i �n 	 ��� �������

If we divide G by B� then we get an integer part �the sum� and a residue�

G

B
�

nX
i��

ziB
i�� �

z�
B

� �������

Here� z� can have the values �� � � � � � B � � and it is the lowest valued cypher of the required number�
If we repeat this method for the quotients� we get further cyphers�

b� Fractional Part� If g is a proper fraction� then the method to convert it into the number system
with basis B is

gB � z�� �
mX
i��

z�iB�i��� ������

i�e�� we get the next cypher as the integer part of the product gB� The values z��� z��� � � � can be
obtained in the same way�
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A� Conversion of the decimal number
�� into a binary number�
�� � � � �� residue  � � z��
�� � � � �� residue  � � z��
�� � � � � residue � �� � z��
� � � � � residue  �
� � � � � residue � �
� � � � � residue � �
� � � �  residue � �
 � � � � residue  � � z��

���� � �����

B� Conversion of a decimal fraction
����� into a binary fraction�
����� � � � ���� � � z���
����� � � � ��� � � z���
���� � � � ��� �� � z���
��� � � � �� � � z���
��� � � � ���

������� � ����

� Conversion of Binary� Octal� and Hexadecimal Numbers into a Decimal Number The
algorithm for the conversion of a value from the binary� octal� or hexadecimal system into the decimal
system is the following� where the decimal point is after z��

a �
nX

i��m
ziB

i �m � �� n 	 �� integer�� �������

The calculation is convenient with the Horner rule�

LLLOL �  � �� �  � �� �  � �� � � � �� �  � �� � ���L and O see Table
���� The corresponding Horner scheme is shown on the right�

   � 
� � � � ��

 � � � ��

������� Internal Number Representation
Binary numbers are represented in computers in one or more bytes� We distinguish between two types
of form of representation� the �xed�point numbers and the �oating�point numbers� In the �rst case� the
decimal point is at a �xed place� in the second case it is 	�oating
 with the change of the exponent�

�� Fixed�Point Numbers
The range for �xed�point numbers with the
given parameters is

� � j a j � �t � � �������

Fixed�point numbers can be represented in the
form of Fig �
���

�� Floating�Point Numbers
Basically� two di�erent forms are in

binary number ( bits)t

sign of the fixed-point number.

Figure ���
use for the representation of �oating�point numbers� where the internal implementation can vary in
detail�

mantissa
( bits)

M
t

exponent
( bits)

E
p

sign

of the mantissa

.Msign

of the exponent

.E

Figure ���

� Normalized Semilogarithmic Form
In the �rst form� the signs of the exponent
E and the mantissa M of the number a are
stored separately

a � �MB�E � ������a�

Here the exponent E is chosen so that for the
mantissa

�B � M �  ������b�

holds� We call it the normalized semilogarith�
mic form �Fig �
����

The range of the absolute value of the �oating�point numbers with the given parameters is�

���
p � j a j �

�
� ��t

	
� ���p���� �������
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� IEEE Standard The second �nowadays used� form of �oating�point numbers corresponds to the
IEEE �Institute of Electrical and Electronics Engineers� standard accepted in ���� It deals with the
requirements of computer arithmetic� roundo� behavior� arithmetical operators� conversion of num�
bers� comparison operators and handling of exceptional cases such as over� and under�ow�
The �oating�point number representations are
shown in Fig �
���

We get the characteristic C from the exponent
E by addition of a suitable constant K� This is
chosen so that we get only positive numbers in
the characteristic� The representable number is

a � ���v � �E � �b�b� � � � bt��
with E � C �K� �������

mantissa Mcharacteristic C

sign of the floating-point number.

Figure ���

Here� Cmin � � Cmax � ���� since C � � andC � ��� are reserved�
The standard gives two basic forms of representation �single�precision and double�precision �oating�
point numbers�� but other representations are also possible� Table �
� contains the parameters for
the basic forms�

Table ��� Parameters for the basic forms

Parameter Single precision Double precision

Word length in bits �� ��
Maximal exponent Emax ��� ����
Minimal exponent Emin ��� ����
Constant K ��� ����
Number of bits in exponent � 
Number of bits in mantissa �� ��

���	�� Numerical Problems inCalculationswithComputers
������� Introduction� Error Types
The general properties of calculations with a computer are basically the same as those of calculations
done by hand� however some of them need special attention� because the accuracy comes from the rep�
resentation of the numbers� and from the missing judgement with respect to the errors of the computer�
Furthermore� computers perform many more calculation steps than human can do manually�

So� we have the problem of how to in�uence and control the errors� e�g�� by choosing the most appro�
priate numerical method among the mathematically equivalent methods�

In further discussions� we will use the following notation� where x denotes the exact value of a quantity�
which is mostly unknown� and 'x is an approximation value of x�

Absolute error� j%xj � jx� 'xj� ������� Relative error�
����%x

x

���� �
����x� 'x

x

���� � �������

The notation

��x� � x� 'x and �rel�x� �
x� 'x

x
�������

is also often used�

������� Normalized Decimal Numbers andRound�O

�� Normalized Decimal Numbers
Every real number x �� � can be expressed as a decimal number in the form

x � ���b�b� � � � � �E �b� �� ��� �������
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Here �� b�b� � � � is called the mantissa formed with the cyphers bi � f�� � �� � � � � �g� The number E is an
integer� the so�called exponent with respect to the base �� Since b� �� �� we call ������� a normalized
decimal number�
Since only �nitely many cyphers can be handled by a real computer� we have to restrict ourselves to
a �xed number t of mantissa cyphers and to a �xed range of the exponent E� So� from the number x
given in ������� we obtain the number

'x �

�
���b�b� � � � bt � �E for bt�� � � �round�down��
����b�b� � � � bt � ��t��E for bt�� � � �round�up��

������

by round�o� �as it is usual in practical calculations�� For the absolute error caused by round�o��

j%xj � jx� 'xj � ��� � ��t�E� �������

�� Basic Operations and Numerical Calculations
Every numerical process is a sequence of basic calculation operations� Problems arise especially with
the �nite number of positions in the �oating�point representation� We give here a short overview� We
suppose that x and y are normalized error�free �oating�point numbers with the same sign and with a
non�zero value�

x � m�B
E� � y � m�B

E� with ������a�

mi �
tX

k��

a
�i�
�kB

�k� a
�i�
�� �� �� and ������b�

a
�i�
�k � � or  or � � � or B �  for k �  �i � � ��� ������c�

� Addition If E� � E�� then the common exponent becomes E�� since normalization allows us to
make only a left�shift� The mantissas are then added�

If B�� �j m� � m�B
��E��E�� j� � ������a� and j m� � m�B

��E��E�� j	 � ������b�

then shifting the decimal point by one position to the left results in an increase of the exponent by one�

������ � �� � ������ � �� � ������ � �� � ������� � �� � ���� � �� � ���� � ���

� Subtraction The exponents are equalized as in the case of addition� the mantissas are then sub�
tracted� If

j m� �m�B
��E��E�� j� �B�t ������a� and j m� �m�B

��E��E�� j� B��� ������b�

shifting the decimal point to the right by a maximum of t positions results in the corresponding decrease
of the exponent�

����� � ��� ������ � �� � ����� � ��� ������� � �� � ������� � �� � ������ � ��� This example
shows the critical case of subtractive cancellation� Because of the limited number of positions �here
four�� zeros are carried in from the left instead of the correct characters�

� Multiplication The exponents are added and the mantissas are multiplied� If

m�m� � B��� �������

then the decimal point is shifted to the right by one position� and the exponent is decreased by one�

������ � ��� � ������ � ��� � ���������� � �
 � ������ � ���

� Division The exponents are subtracted and the mantissas are divided� If

m�

m�

	 B��� �������

then the decimal point is shifted to the left by one position� and the exponent is increased by one�

������ � ����������� � ��� � �������� � � ���� � ����� � ����
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� Error of the Result The error of the result in the four basic operations with terms that are
supposed to be error�free is a consequence of round�o�� For the relative error with number of positions
t and the base B� the limit is

B

�
B�t� �������

� Subtractive cancellation As we have seen above� the critical operation is the subtraction of
nearly equal �oating�point numbers� If it is possible� we should avoid this by changing the order of
operations� or by using certain identities�

x �
p

��� � p��� � ������ � �� � ������ � �� � �� � ��� or x �
p

��� � p��� �
���� ���p
��� �

p
���

� ���� � ���

������� Accuracy in Numerical Calculations

�� Types of Errors

Numerical methods have errors� There are several types of errors� from which the total error of the �nal
result is accumulated �Fig �
����

Total error

Input error Error of method Round-off error

Truncation error Discretization error

Figure ���

�� Input Error

� Notion of Input Error Input error is the error of the result caused by inaccurate input data�
Slight inaccuracies of input data are also called perturbations� The determination of the error of the
input data is called the direct problem of error calculus� The inverse problem is the following� How
large an error the input data may have such that the �nal input error does not exceed an acceptable
tolerance value� The estimation of the input error in rather complex problems is very di�cult and is
usually hardly possible� In general� for a real�valued function y � f�x� with x � �x�� x�� � � � � xn�T� for
the absolute value of the input error we have

j%yj � jf�x�� x�� � � � � xn�� f�'x�� 'x�� � � � � 'xn�j

� j
nX
i��

�f

�xi
���� ��� � � � � �n��xi � 'xi�j �

nX
i��

�
max
x
j �f
�xi

�x�j
�
j%xij� �������

if we use the Taylor formula �see �������� p� ��� for y � f�x� � f�x�� x�� � � � � xn� with a linear residue�
��� ��� � � � � �n denote the intermediate values� 'x�� 'x�� � � � � 'xn denote the approximating values of x�� x��
� � � � xn� The approximating values are the perturbed input data� Here� we also consider the Gauss error
propagation law �see ������� p� �����

� Input Error of Simple Arithmetic Operations The input error is known for simple arith�
metical operations� With the notation of ��������������� for the four basic operations we get�
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��x� y� � ��x�� ��y�� ������� ��xy� � y��x� � x��y� � ��x���y�� ������

�

�
x

y

�
�



y
��x�� x

y�
��y� � terms of higher order in �� �������

�rel�x� y� �
x�rel�x�� y�rel�y�

x� y
� ������� �rel�xy� � �rel�x� � �rel�y� � �rel�x��rel�y�� �������

�rel

�
x

y

�
� �rel�x�� �rel�y� � terms of higher order in �� �������

The formulas show� Small relative errors of the input data result in small relative errors of the result
on multiplication and division� For addition and subtraction� the relative error can be very large if
jx� yj * jxj� jyj�
�� Error of theMethod
� Notion of the Error of the Method The error of the method comes from the fact that we
should be able to numerically approximate theoretically continuous phenomena in many di�erent ways
as limits� Hence� we have truncation errors in limiting processes �as� e�g�� in iteration methods� and
discretization errors in the approximation of continuous phenomena by a �nite discrete system �as� e�g��
in numerical integration�� Errors of methods exist independently of the input and round�o� errors�
consequently� they can be investigated only in connection with the applied solution methodology�

� Applying IterationMethods If we use an iteration method� we should consider that both cases
may occur� We can get a correct solution or also a false solution of the problem� It is also possible that
we get no solution by an iteration method although there exists one�
To make an iteration method clearer and safer� we should consider the following advice�

a� To avoid 	in�nite
 iterations� we should count the number of steps and stop the process if this
number exceeds a previously given value �i�e�� we stop without reaching the required accuracy��

b� We should keep track of the location of the intermediate result on the screen by a numerical or a
graphical representation of the intermediate results�

c� We should use all known properties of the solution such as gradient� monotonicity� etc�

d� We should investigate the possibilities of scaling the variables and functions�

e� We should perform several tests by varying the step size� truncation conditions� initial values� etc�

�� Round�o
 Errors
Round�o� errors occur because the intermediate results should be rounded� So� they have an essential
importance in judging mathematical methods with respect to the required accuracy� They determine
together with the errors of input and the error of the method� whether a given numerical method is
strongly stable� weakly stable or unstable� Strong stability� weak stability� or instability occur if the
total error� at an increasing number of steps� decreases� has the same order� or increases� respectively�
At the instability we distinguish between the sensitivity with respect to round�o� errors and discretiza�
tion errors �numerical instability� and with respect to the error in the initial data at a theoretically exact
calculation �natural instability�� A calculation process is appropriate if the numerical instability is not
greater than the natural instability�

For the local error propagation of round�o� errors� i�e�� errors at the transition from a calculation step
to the next one� the same estimation process can be used as the one we have at the input error�

�� Examples of Numerical Calculations
We illustrate some of the problems mentioned above by numerical examples�

A� Roots of a Quadratic Equation�
ax� � bx � c � � with real coe�cients a� b� c and D � b� � �ac 	 � �real roots�� Critical situations are
the cases a� j �ac j* b� and b� �ac 
 b�� Recommended proceeding�
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a� x� � �b � sign�b�
p
D

�a
� x� �

c

ax�
�Vieta root theorem� see ������ ��� p� ����

b� The vanishing of D cannot be avoided by a direct method� Subtractive cancellation occurs but the

error in �b � sign�b
p
D� is not too large since jbj 0 pD holds�

B� Volume of a Thin Conical Shell for h* r

V � ��
�r � h�� � r�

�
because of �r�h� 
 r there is a case of subtractive cancellation� However in the

equation V � ��
�r�h � �rh� � h�

�
there is no such problem�

C� Determining the Sum S �
�X
k��



k� � 
�S � ������ � � �� with an accuracy of three signif�

icant digits� Performing the calculations with � digits� we should add about ���� terms� After the

identical transformation


k� � 
�



k�
� 

k��k� � �
we see that

S �
�X
k��



k�
�

�X
k��



k��k� � �
� and S �

��

�
�

�X
k��



k��k� � �
� By this transformation we have

to consider only eight terms�

D� Avoiding the
�

�
Situation in the function z � � �

q
 � x� � y��

x� � y�

x� � y�
for x � y � ��

Multiplying the numerator and the denominator by � �
p

 � x� � y�� we avoid this situation�

E� Example for an Unstable Recursive Process Algorithms with the general form yn�� �

ayn � byn�� �n � � �� � � �� are stable if the condition

������a� �
s

a�

�
� b

������ �  is satis�ed� The special

case yn�� � ��yn � �yn�� �n � � �� � � �� is unstable� If y� and y� have errors � and ��� then for
y�� y�� y�� y�� y	� � � � we get the errors ��� ����� ���� ������ ����� � � �� The process is instable for the
parameters a � �� and b � ��

F� Numerical Integration of a Di	erential Equation For the �rst�order ordinary di�erential
equation

y� � f�x� y� with f�x� y� � ay �������

and the initial value y�x�� � y� we will represent the numerical solution�

a� Natural Instability Together with the exact solution y�x� for the exact initial values y�x�� � y�
let u�x� be the solution for a perturbed initial value� Without loss of generality� we may assume that
the perturbed solution has the form

u�x� � y�x� � � ��x�� ������a�

where � is a parameter with � � � �  and ��x� is the so�called perturbation function� Considering
that u��x� � f�x� u� we get from the Taylor expansion �see �������� p� ���

u��x� � f�x� y�x� � � ��x�� � f�x� y� � � ��x� fy�x� y� � terms of higher order ������b�

which implies the so�called di�erential variation equation

���x� � fy�x� y���x�� ������c�

The solution of the problem with f�x� y� � ay is

��x� � �� e
a�x�x�� with �� � ��x��� ������d�

For a � � even a small initial perturbation �� results in an unboundedly increasing perturbation ��x��
So� there is a natural instability�

b� Investigation of the Error of theMethod in the Trapezoidal Rule With a � �� the stable
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di�erential equation y��x� � �y�x� has the exact solution

y�x� � y�e
��x�x��� where y� � y�x��� ������a�

The trapezoidal rule is
xi��Z
x�

y�x�dx 
 yi � yi��
�

h with h � xi�� � xi� ������b�

By using this formula for the given di�erential equation we get

'yi�� � 'yi �

xi��Z
xi

��y�dx � 'yi � 'yi � 'yi��
�

h or 'yi�� �
�� h

� � h
'yi or

'yi �

�
�� h

� � h

�i
'y�� ������c�

With xi � x� � ih� i�e�� with i � �xi � x��h we get for � � h � �

'yi �

�
�� h

� � h

��xi�x���h
'y� � 'y�e

c�h��xi�x�� with

c�h� �

ln

�
�� h

� � h

�
h

� �� h�

�
� h�

��
� � � � ������d�

If 'y� � y�� then 'yi � yi� and so for h �� 'yi also tends to the exact solution y�e
��xi�x���

c� Input Error We supposed in b� that the exact and the approximate initial values coincide� Now�
we investigate the behavior when y� �� 'y� with j 'y� � y� j� ��� Since

�'yi�� � yi��� � �� h

� � h
�'yi � yi� we have �'yi�� � yi��� �

�
�� h

� � h

�i��
�'y� � y��� ������a�

So� �i�� is at most of the same order as ��� and the method is stable with respect to the initial values�
We have to mention that in solving the above di�erential equation with the Simpson method an arti�cial
instability is introduced� In this case� for h �� we would get the general solution

'yi � C�e
�xi � C����iexi��� ������b�

The problem is that the numerical solution method uses higher�order di�erences than those to which
the order of the di�erential equation corresponds�

���	�� Libraries ofNumericalMethods
Over time� libraries of functions and procedures have been developed independently of each other for
numerical methods in di�erent programming languages� An enormous amount of computer experimen�
tation was considered in their development� so in solutions of practical numerical problems we should
use the programs from one of these program libraries� Programs are available for current operating
systems like WINDOWS� UNIX and LINUX and mostly for every computation problem type and they
keep certain conventions� so it is more or less easy to use them�

The application of methods from program libraries does not relieve the user of the necessity of thinking
about the expected results� This is a warning that the user should be informed about the advantages
and also about the disadvantages and weaknesses of the mathematical method he�she is going to use�

������� NAGLibrary
The NAG library �NumericalAlgorithmsGroup� is a rich collection of numerical methods in the form
of functions and subroutines�procedures in the programming languages FORTRAN ��� FORTRAN ���



���� Using the Computer 
��

and C� Here is a contents overview�
� Complex arithmetic �� Eigenvalues and eigenvectors
� Roots of polynomials �� Determinants
� Roots of transcendental equations �� Simultaneous linear equations
� Series �� Orthogonalization
� Integration �� Linear algebra
� Ordinary di�erential equations �
 Simple calculations with statistical data
� Partial di�erential equations �� Correlation and regression analysis
� Numeric di�erentiation �� Random number generators

 Integral equations �� Non�parametric statistics
�� Interpolation �� Time series analysis
�� Approximation of curves and surfaces from data �� Operations research
�� Minimum�maximum of a function �� Special functions
�� Matrix operations� inversion �� Mathematical and computer constants

Furthermore the NAG library contains extensive software concerning statistics and �nancial mathe�
matics�

������� IMSL Library
The IMSL library �International Mathematical and Statistical Library� consists of three synchro�
nized parts�

General mathematical methods�
Statistical problems�
Special functions�

The sublibraries contain functions and subroutines in FORTRAN ��� FORTRAN �� and C� Here is a
contents overview�

General Mathematical Methods
� Linear systems � Transformations
� Eigenvalues � Non�linear equations
� Interpolation and approximation � Optimization
� Integration and di�erentiation 
 Vector and matrix operations
� Di�erential equations �� Auxiliary functions

Statistical Problems
� Elementary statistics �� Random sampling
� Regression �� Life time distributions and reliability
� Correlation �� Multidimensional scaling
� Variance analysis �� Estimation of reliability function�
� Categorization and discrete data analysis hazard rate and risk function
� Non�parametric statistics �� Line�printer graphics
� Test of goodness of �t and test of randomness �� Probability distributions
� Analysis of time series and forecasting �� Random number generators

 Covariance and factor analysis �
 Auxiliary algorithms
�� Discriminance analysis �� Auxiliary mathematical tools
�� Cluster analysis

Special Functions
� Elementary functions � Bessel functions
� Trigonometric and hyperbolic � Kelvin functions

functions � Bessel functions with fractional orders
� Exponential and related functions 
 Weierstrass elliptic integrals and
� Gamma function and relatives related functions
� Error functions and relatives �� Di�erent functions
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������� Aachen Library
The Aachen library is based on the collection of formulas for numerical mathematics of G� Engeln�
M�ullges �Fachhochschule Aachen� and F� Reutter �Rheinisch�Westf�alische Technische Hochschule Aa�
chen�� It exists in the programming languages BASIC� QUICKBASIC� FORTRAN ��� FORTRAN ��� C�
MODULA � and TURBO PASCAL� Here is an overview�

� Numerical methods to solve non�linear and special algebraic equations
� Direct and iterative methods to solve systems of linear equations
� Systems of non�linear equations
� Eigenvalues and eigenvectors of matrices
� Linear and non�linear approximation
� Polynomial and rational interpolation� polynomial splines
� Numerical di�erentiation
� Numerical quadrature

 Initial value problems of ordinary di�erential equations
�� Boundary value problems of ordinary di�erential equations

The programs of the Aachen library are especially suitable for the investigation of individual algorithms
of numerical mathematics�

���	�� Application of ComputerAlgebra Systems

������� Mathematica

�� Tools for the Solution of Numerical Problems
The computer algebra system Mathematica o�ers a very e�ective tool that can be used to solve a large
variety of numerical mathematical problems� The numerical procedures of Mathematica are totally dif�
ferent from symbolic calculations� Mathematica determines a table of values of the considered function
according to certain previously given principles� similarly to the case of graphical representations� and
it determines the solution using these values� Since the number of points must be �nite� this could be
a problem with 	 badly 
 behaving functions� Although Mathematica tries to choose more nodes in
problematic regions� we have to suppose a certain continuity on the considered domain� This can be
the cause of errors in the �nal result� It is advised to use as much information as possible about the
problem under consideration� and if it is possible� then to perform calculations in symbolic form� even
if this is possible only for subproblems�
In Table �
�� we represent the operations for numerical computations�

Table ��� Numerical operations

NIntegrate calculates de�nite integrals

NSum calculates sums
nP
i��

f�i�

NProduct calculates products
NSolve numerically solves algebraic equations
NDSolve numerically solves di�erential equations

After starting Mathematica the 	 Prompt 
 In��� �� is shown� it indicates that the system is ready to
except an input� Mathematica denotes the output of the corresponding result by Out���� In general�
The text in the rows denoted by In�n� �� is the input� The rows with the sign Out�n� are given back
by Mathematica as answers� The arrow �� in the expressions means� e�g�� replace x by the value a�

�� Curve Fitting and Interpolation
� Curve Fitting Mathematica can perform the �tting of chosen functions to a set of data using the
least squares method �see ������ p� ����� and the approximation in mean to discrete problems �see
�������� p� ���� The general instruction is�

Fit fy�� y�� � � �g� funkt� x!� �������
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Here the values yi form the list of data� funkt is the list of the chosen functions� by which the �tting
should be performed� and x denotes the corresponding domain of the independent variables� If we
choose funkt� e�g�� as Table x	i� fi� �� ng! � then the �tting will be made by a polynomial of degree n�

Let the following list of data be given�

In��� �� l � f������� ������ ��������� ��������� �������� ������� ���������� ����������

���������� ��������g
With the input

In��� �� f � Fit l� f� x� x	�� x	�� x	�g� x!

we suppose that the elements of l are assignd to the values � �� � � � � � of x� We get the following
approximation polynomial of degree four�

Out��� � ������� ��������x � ���������x� � ���������x� � �����������x�

With the command

In��� �� Plot ListPlot l� fx� �g!� f� fx� � �g� AxesOrigin�� f�� �g!
we get a representation of the data and the approximation curve given in Fig �
�
a�
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Figure ���

For the given data this is completely satisfactory� The terms are the �rst four terms of the series ex�
pansion of e�����x�
� Interpolation Mathematica o�ers special algorithms for the determination of interpolation func�
tions� They are represented as so�called interpolating function objects� which are formed similarly
to pure functions� The directions for using them are in Table �
�� Instead of the function values yi
we can give a list of function values and values of speci�ed derivatives at the given points�

With In��� �� Plot Interpolation l! x!� fx� � �g! we get Fig �
�
b� We can see that Mathe�
matica gives a precise correspondence to the data list�

Table ��� Commands for interpolation

Interpolation fy�� y�� � � �g! gives an approximation function with the values yi for the
values xi � i as integers

Interpolation ffx�� y�g� fx�� y�g� � � �g! gives an approximation function for the point�sequence
�xi� yi�

�� Numerical Solution of Polynomial Equations
As shown in �������� p� ���� Mathematica can determine the roots of polynomials numerically� The
command is NSolve p x! �� �� x� n!� where n prescribes the accuracy by which the calculations should
be done� If we omit n� then the calculations are made to machine accuracy� We get the complete
solution� i�e�� m roots� if we have an input polynomial of degree m�

In��� �� NSolve x	� � �x	�� � �� �!

Out��� � fx�� �������g� fx�� ���������� �����Ig� fx�� ��������� � �����Ig�
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fx�� ��������� �����Ig� fx�� �������� � �����Ig� fx�� ������gg�

�� Numerical Integration
For numerical integration Mathematica o�ers the procedure NIntegrate� Di�erently from the symbol�
ical method� here it works with a table of values of the integrand� We consider two improper integrals
�see ������ p� ���� as examples�

A� In��� �� NIntegrate Exp �x	�!� fx��Infinity� Infinityg! Out��� � �������

B� In��� �� NIntegrate �x	�� fx��� g!

Power��infy� In�nite expression


�
encountered�

NIntegrate��inum� Integrand ComplexIn�nity is not numerical atfxg � f�g�
Mathematica recognizes the discontinuity of the integrand at x � � in example B and gives a warning�
Mathematica applies a table of values with a higher number of nodes in the problematic domain� and it
recognizes the pole� However� the answer can be still wrong�

Mathematica applies certain previously speci�ed options for numerical integration� and in some spe�
cial cases they are not su�cient� We can determine the minimal and the maximal number of recur�
sion steps� by which Mathematica works in a problematic domain� with parameters MinRecursion and
MaxRecursion� The default options are always � and �� If we increase these values� although Mathe�
matica works slower� it gives a better result�

In��� �� NIntegrate Exp �x	�!� fx������ ���g! Mathematica cannot �nd the peak at x � ��
since the integration domain is too large� and the answers is�

NIntegrate��ploss�
Numerical integration stopping due to loss of precision� Achieved neither the requested
PrecisionGoal nor AccuracyGoal� suspect one of the following� highly oscillatory integrand
or the true value of the integral is ��
Out��� � ������ � ���	

If we require

In��� �� NIntegrate Exp �x	�!� fx������ ���g� MinRecursion�� �� MaxRecursion�� �!�

then we get

Out��� � ������

Similarly� we get a result closer to the actual value of the integral with the command�

NIntegrate fun� fx� xa� x�� x�� � � � � xeg!� ������

We can give the points of singularities xi between the lower and upper limit of the integral to force
Mathematica to evaluate more accurately�

�� Numerical Solution of Di
erential Equations
In the numerical solution of ordinary di�erential equations and also in the solution of systems of di�er�
ential equations Mathematica represents the result by an InterpolatingFunction� It allows us to get
the numerical values of the solution at any point of the given interval and also to sketch the graphical
representation of the solution function� The most often used commands are represented inTable �
��

Table ��� Commands for numerical solution of di�erential equations

NDSolve dgl� y� fx� xa� xeg! computes the numerical solution of the di�erential equation
in the domain between xa and xe

InterpolatingFunction liste! x! gives the solution at the point x
Plot Evaluate y x!�� l�os!!� fx� xa� xeg! scetches the gravical representation
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Solution of a di�erential equation describing the motion of a heavy object in a medium with friction�
The equations of motion in two dimension are

�x � ��
q

,x� � ,y� � ,x� �y � �g � �
q

,x� � ,y� � ,y�

The friction is supposed to be proportional to the velocity� If we substitute g � �� � � ��� then the
following command can be given to solve the equations of motion with initial values x��� � y��� � �
and ,x��� � ��� ,y��� � ����

In��� �� dg � NDSolve fx�� t! �� ���Sqrt x� t!	� � y� t!	�! x� t!� y�� t! �� ��

���Sqrt x� t!	� � y� t!	�! y� t!� x �! �� y �! �� �� x� �! �� ��� y� �! �� ���g�
fx� yg� ft� �g!

Mathematica gives the answer by the interpolating function�

Out��� � ffx�� InterpolatingFunction f��� ��g� ��!�

y�� InterpolatingFunction f��� ��g� ��!gg
We can represent the solution

In��� �� ParametricPlot fx t!� y t!g��dg� ft� �� �g� PlotRange�� All!

as a parametric curve �Fig �
��a��

NDSolve accepts several options which a�ect the accuracy of the result�
The accuracy of the calculations can be given by the command AccuracyGoal� The command
PrecisionGoal works similarly� During calculations� Mathematica works according to the so�called
WorkingPre cision� which should be increased by �ve units in calculations requiring higher accuracy�

The numbers of steps by which Mathematica works in the considered domain is prescribed as ���� In
general� Mathematica increases the number of nodes in the neighborhood of the problematic domain�
In the neighborhood of singularities it can exhaust the step limit� In such cases� it is possible to increase
the number of steps by MaxSteps� It is also possible the prescribe Infinity for MaxSteps�

The equations for the Foucault pendulum are�

�x�t� � �x�t� � �) ,y�t�� �y�t� � �y�t� � ��) ,x�t��

With  � � ) � ����� and the initial conditions x��� � �� y��� � �� ,x��� � ,y��� � � we get the
solution�

In��� �� dg� � NDSolve fx�� t! �� �x t! � ����y� t!� y�� t! �� �y t!� ����x� t!�

x �! �� �� y �! �� �� x� �! �� y� �! �� �g� fx� yg� ft� �� ��g!
Out��� � ffx�� InterpolatingFunction f��� ���g� ��!�

y�� InterpolatingFunction f��� ���g� ��!gg
With

In��� �� ParametricPlot fx t!� y t!g��dg�� ft� �� ��g� AspectRatio�� !

we get Fig �
��b�

������� Maple
The computer algebra system Maple can solve several problems of numerical mathematics with the use
of built�in approximation methods� The number of nodes� which is required by the calculations� can
be determined by specifying the value of the global variable Digits as an arbitrary n� But we should
not forget that selecting a higher n than the prescribed value results in a lower speed of calculation�

�� Numerical Calculation of Expressions and Functions
After starting Maple� the symbol 	 Prompt 
 � is shown� which denotes the readyness for input� Con�
nected in� and outputs are often represented in one row� separated by the arrow operator � �
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Figure ����

� Operator evalf Numerical values of expressions containing built�in and user�de�ned functions
which can be evaluated as a real number� can be calculated with the command

evalf�expr� n�� �������

expr is the expression whose value should be determined� the argument n is optional� it is for evaluation
to n digits accuracy� Default accuracy is set by the global variable Digits�

Prepare a table of values of the function y � f�x� �
p
x � lnx�

First� we de�ne the function by the arrow operator�

� f �� z �� sqrt�z� � ln�z��� f �� z �� px � lnx�

Then we get the required values of the function with the command evalf�f�x��� � where a numerical
value should be substituted for x�

A table of values of the function with steps size ��� between  and � can be obtained by

� for x from  by ��� to � do print�f  x! � evalf�f�x�� ��� od�

Here� it is required to work with twelve digits�
Maple gives the result in the form of a one�column table with elements in the form f����� � �����������

� Operator evalhf�expr�� Beside evalf there is the operator evalhf� It can be used in a similar
way to evalf� Its argument is also an expression which has a real value� It evaluates the symbolic
expression numerically� using the hardware �oating�point double�precision calculations available on
the computer� A Maple �oating�point value is returned� Using evalhf speeds up your calculations in
most cases� but you lose the de�niable accuracy of using evalf and Digits together� For instance in
the problem in ������ p� ���� it can produce a considerable error�

�� Numerical Solution of Equations
As discussed in Chapter ��� see ��������� p� ���� by using Maple we can solve equations or systems of
equations numerically in many cases�
The command to do this is fsolve� It has the syntax

fsolve�eqn� var� option�� �������

This command determines real solutions� If eqn is in polynomial form� the result is all the real roots�
If eqn is not in polynomial form� it is likely that fsolve will return only one solution� The available
options are given in Table �
��

Table ��� Options for the command fsolve

complex determines a complex root �or all roots of a polynomial�
maxsols � n determines at least the n roots �only for polynomial equations�
fulldigits ensures that fsolve does not lower the number of digits used during computations
intervall looks for roots in the given interval
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A� Determination of all solutions of a polynomial equation x	 � �x� � � � �� With

� eq �� x	� � � # x	�� � � � �

we get

� fsolve�eq� x��� ������������ ����������

Maple determined only the two real roots� With the option complex� we get also the complex roots�

� fsolve�eq� x� complex��

�������������������������� ��������I�������������� � ��������I�

������������� ��������I� ������������ � ��������I� ����������

B� Determination of both solutions of the transcendental equation e�x
� � �x� � ��

After de�ning the equation

� eq �� exp��x	��� � # x	� � �

we get

� fsolve�eq� x��� ������������

as the positive solution� With

� fsolve�eq� x� x � �������� ������������

Maple also determines the second �negative� root�

�� Numerical Integration
The determination of de�nite integrals is often possible only numerically� This is the case when the
integrand is too complicated� or if the primitive function cannot be expressed by elementary functions�
The command to determine a de�nite integral in Maple is evalf�

evalf�int�f�x�� x � a��b�� n�� �������

Maple calculates the integral by using an approximation formula�

Calculation of the de�nite integral
Z �

��
e�x

�

dx� Since the primitive function is not known� for the

integral command we get the following answer

� int�exp��x	��� x � ��������
Z �

��
e�x

�

dx�

If we type

� evalf�int�exp��x	��� x � ������� ���

then we get ����������������
Maple used the built�in approximation method for numerical integration with � digits�

In certain cases this method fails� especially if the integration interval is too large� Then� we can try to
call another approximation procedure with the call to a library

readlib��evalf�int�� �

which applies an adaptive Newton method�

The input

� evalf�int�exp��x	��� x � ������������

results in an error message� With

� readlib��evalf�int�� �

� �evalf�int��exp��x	��� x � ���������� �� NCrule��

���������

we get the correct result� The third argument speci�es the accuracy and the last one speci�es the
internal notation of the approximation method�
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�� Numerical Solution of Di
erential Equations
We solve ordinary di�erential equations with the Maple operation dsolve given in ������� �� p� ����
However� in most cases it is not possible to determine the solution in closed form� In these cases� we
can try to solve it numerically� where we have to give the corresponding initial conditions�
In order to do this� we use the command dsolve in the form

dsolve�deqn� var� numeric� �������

with the option numeric as a third argument� Here� the argument deqn contains the actual di�erential
equation and the initial conditions� The result of this operation is a procedure� and if we denote it�
e�g�� by f � for using the command f�t�� we get the value of the solution function at the value t of the
independent variable�
Maple applies the Runge�Kutta method to get this result �see ������� p� ����� The default accuracy for
the relative and for the absolute error is ��Digits��� The user can modify these default error tolerances
with the global symbols RELERR and ABSERR� If there are some problems during calculations� then
Maple gives di�erent error messages�

At solving the problem given in the Runge�Kutta methods in ������� p� ���� Maple gives�

� r �� dsolve�fdiff�y�x�� x� � ���� # �x	� � y�x�	��� y��� � �g� y�x�� numeric��

r �� proc �dsolve�numeric�result�� �x� �������  !� end

With

� r������� fx���� � ������������� y�x����� � �����������g
we can determine the value of the solution� e�g�� at x � ����
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�� ComputerAlgebraSystems

��� Introduction
������ BriefCharacterization of ComputerAlgebra Systems

�� General Purpose of Computer Algebra Systems
The development of computers has made possible the introduction of computer algebra systems for 	do�
ing mathematics
� They are software systems able to perform mathematical operations formally� These
systems� such as Macsyma� Reduce� MuPad� Maple� Mathematica� can also be used on relatively small
computers �PC�� and with their help� we can transform complicated expressions� calculate derivatives
and integrals� solve systems of equations� represent functions of one and of several variables variables
graphically� etc� They can manipulate mathematical expressions� i�e�� they can transform and simplify
mathematical expressions according to mathematical rules if this is possible in closed form� They also
provide a wide range of numerical solutions to required accuracy� and they can represent functional
dependence between data sets graphically�

Most computer algebra systems can import and export data� Besides a basic o�er of de�nitions and
procedures which are activated at every start of the system� most systems provide a large variety of
libraries and program packages from special �elds of mathematics� which can be loaded and activated
on request �see  ����!�� Computer algebra systems allow users to build up their own packages�

However� the possibilities of computer algebra systems should not be overestimated� They spare us
the trouble of boring� time�demanding� and mechanical computations and transformations� but they
do not save us from thinking�
For frequent errors see ������ p� ����

�� Restriction toMathematica andMaple
The systems are under perpetual developing� Therefore� every concrete representation re�ects only a
momentary state� In the following� we introduce the basic idea and applications of these systems for
the most important �elds of mathematics� This introduction will help for the �rst steps in working
with computer algebra systems� In particular� we discuss the two systems Mathematica �version ���
and Maple �� These two systems seem to be very popular among users� and the basic structure of the
other systems is similar�

�� Input and output in Mathematica andMaple
In this book� we do not discuss how computer algebra systems are installed on computers� It is as�
sumed that the computer algebra system has already been started by a command� and it is ready to
communicate by command lines or in a Windows�like graphical environment�
The input and output is always represented for both Mathematica �see ������� �� p� ���� and Maple
�see �������� �� p� ���� in rows which are distinguished from other text�parts� e�g�� in the form

In��� �� Solve � x� � �� �� x! in Mathematica�
� solve�� # x� � � �� x� in Maple�

�����

System speci�c symbols �commands� type notation� etc�� will be represented in typewriter style�

In order to save space� we often write the input and the output in the same row in this book� and we
separate them by the symbol ��

������ Examples of BasicApplicationFields

�������� Manipulation of Formulas
Formula manipulation means here the transformation of mathematical expressions in the widest sense�
e�g�� simpli�cation or transformation into a useful form� representation of the solution of equations or
equation systems by algebraic expressions� di�erentiation of functions or determination of inde�nite
integrals� solution of di�erential equations� formation of in�nite series� etc�
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Solution of the following quadratic equation�

x� � ax � b � � with a� b � IR� �����a�

In Mathematica� we type �note the blank between a and x��

Solve x	� � a x � b �� �� x! � �����b�

After pressing the corresponding input key�keys �ENTER or SHIFT�RETURN� depending on the
operation system�� Mathematica replaces this row by

In��� �� Solve x	� � a x � b �� �� x! �����c�

and starts the evaluation process� In a moment� the answer appears in a new row

Out��� � ffx�� �a � Sqrt a� � �b!

�
g� f x�� �a� Sqrt a� � �b!

�
gg� �����d�

Mathematica has solved the equation and both solutions are represented in the form of a list consisting
of two sublists� Here Sqrt means the square root�

In Maple the input has the following form�

� solve�fx	� � a # x � b � �g� fxg�� �����a�

The semicolon after the last symbol is very important� After the equation is entered with the ENTER
key� Maple evaluates this input and the resulting output is displayed directly below the input

f����a � �a� � �b�����g� f����a� �a� � �b�����g �����b�

The result is given in the form of a sequence of two sets representing the solutions�

Except for some special symbols of the systems� the basic structures of commands are very similar� At
the beginning there is a symbol� which is interpreted by the system as an operator� which is applied to
the operand given in braces or in brackets� The result is displayed as a list or sequence of solutions or
answers� Several operations and formula manipulations are represented similarly�

�������� Numerical Calculations

Computer algebra systems provide many procedures to handle numerical problems of mathematics�
These are solutions of algebraic equations� linear systems of equations� the solutions of transcendental
equations� calculation of de�nite integrals� numerical solutions of di�erential equations� interpolation
problems� etc�

Problem� Solution of the equation

x	 � �x� � ��x� � ��x� � ��x� � ��x� �� � �� �����a�

Although this equation of degree six cannot be solved in closed form� it has six real roots� which are to
be determined numerically�

In Mathematica the input is�

In��� �� NSolve x	�� �x	�� ��x	� � ��x	� � ��x	�� ��x� �� �� �� x! �����b�

It results in the answer�

Out��� � ffx�� ��������g� fx�� �������g� fx�� ���������g� fx�� �������g�
fx�� �������g� fx�� �����gg �����c�

This is a list of the six solutions with a certain accuracy which will be discussed later�

The input in Maple is�

� fsolve�fx	�� � # x	�� �� # x	� � �� # x	� � �� # x	�� �� # x� �� � �g� fxg�� �����d�

Here� the input of 	� �
 can be omitted� and the assignment of the variable 	fxg
 is also not necessary
here� since it is the only one� Maple automatically considers the entered expression to be equal to zero�
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The output is the sequence of the six solutions� The application of the command fsolve tells to Maple
that the result is wanted numerically in the form of �oating�point decimal numbers�

�������� Graphical Representations
Most computer algebra systems allow the graphical representation of built�in and self�de�ned functions�
Usually� this is the representation of functions of one variable in Cartesian and in polar coordinates�
parametric representation� and representation of implicit functions� Functions of two variables can
be represented as surfaces in space� parametric representation is also possible� Further more curves
can be demonstrated in three�dimensional space� In addition� there are further graphical possibilities
to demonstrate functional dependence between data sets� e�g�� in the form of diagrams� All systems
provide a wide selection of options of representation such as line thickness of the applied elements� e�g��
vectors� di�erent colours� etc�
Usually� the represented graphics can be exported in an appropriate format such as eps� gif� jpeg� bmp
and they can be built into other programs� or directly printed on a printer or plotter�

�������� Programming in Computer Algebra Systems
All systems allow useres to develop their own packages to solve special problems� This means both the
use of well�known tools to build up procedures� e�g�� DO� IF � THEN� WHILE� FOR� etc� and� on the
other hand the application of the built�in methods of the system which allow elegant solutions for many
problems�
Self�constructed program blocks can be introduced into the libraries and they can be reactivated at any
time�

������ Structure of ComputerAlgebra Systems

�������� Basic Structure Elements

�� Type of Objects
Computer algebra systems work with several di�erent types of objects� Objects are the known family
of numbers� variables� operators� functions� etc�� which are loaded at the start of the system� or which
are de�ned by the user according to a suitable syntax�
Classes of objects� like type of numbers or lists� etc�� are called types�
Most of the objects are identi�ed by their names� which one can think of as associated to an object class
and which must satisfy the given grammatical rules�

The user gives a sequence of objects in the input row� i�e�� their names� corresponding to the given
syntax� closes the input with the corresponding special key and�or by a special system command� then
the system starts evaluation and returns the result in a new row or rows� �Input can be spread over
several lines��

The objects� object types and object classes described below are available in every computer algebra
system� and their particular specialities are described in the manuals for the system�

�� Numbers
Computer algebra systems usually use the number types integers� rational numbers� real numbers ��oa�
ting�point numbers�� complex numbers� some systems also know algebraic numbers� radical numbers�
etc�

With di�erent type�check operations� the type or certain properties of given numbers can be deter�
mined� like non�negative� prime� etc�

Floating�point numbers can be determined with arbitrary accuracy� Usually� the systems work with a
default precision� which can be changed on request�

The systems know the special numbers� which have a fundamental importance in mathematics� such as
e� � and�� They use these numbers symbolically� but they also know their numerical approximation
to an arbitrary accuracy�
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�� Variables and Assignments
Variables have names represented by given symbols which are usually determined by the user� There
are names that are prede�ned and reserved by the system� they cannot be chosen� While no value is
assigned to the variable� the symbol itself stands for the variable�

Values can be assigned to the variables by special assignment operators� These values can be numbers�
other variables� special sequences of objects� or even expressions� In general� there exist some assign�
ment operators which di�er� �rst of all� in the time of their evaluation� i�e�� right after their input or for
the �rst time at a later call of the variable�

�� Operators
All systems have a basic set of operators� The usual operators of mathematics �� �� #� �� 	 �or # #��
�� �� � belong to this set� for which the usual order of precedence is valid for evaluation� The in�x
form of an expression means that these operators are written between the operands�

The set of operators written in pre�x form � where the operator is written in front of the operand
� is dominant in all systems� This type of operator operates on special classes of objects� e�g�� on
numbers� polynomials� sets� lists� matrices� or on systems of equations� or they operate as functional
operators� such as di�erentiation� integration� etc� In general� there are operators for organizing the
form of the output� manipulating strings and further systems of objects� Some systems allow us to
represent some operators in su�x form� i�e�� the operator is behind the operand� Operators often use
optional arguments�

�� Terms and Functions
The notion of term means an arrangement of objects connected by mathematical operators� usually
in in�x form� hence� it means certain basic elements often occurring in mathematics� A basic task of
computer algebra systems is transforming terms and solving equations�

The following sequence

x	�� � # x	� � � # x	�� � ������

is� e�g�� a term� in which x is a variable�

Computer algebra systems know the usual elementary functions such as the exponential function� loga�
rithmic function� trigonometric functions� and their inverses and several other special functions� These
functions can be placed into terms instead of variables� In this way� complicated terms or functions can
be generated�

� Lists and Sets
All computer algebra systems know the object class of lists� which is considered as a sequence of objects�
The elements of a list can be reached by special operators� In general� the elements of a list can be lists
themselves� So� we can get nested lists� which are used in the construction of special types of objects�
such as matrices� tensors� all systems provides such special object classes� They make it possible to
manipulate objects like vectors and tensors symbolically in vector spaces� and to apply linear algebra�

The notion of set is also known in computer algebra systems� The operators of set theory are de�ned�

In the following sections� the basic structure elements and their syntax will be discussed for the two
chosen computer algebra systems� Mathematica ��	 and Maple ��

��� Mathematica
Mathematica is a computer algebra system� developed by Wolfram Research Inc� A detailed description
of Mathematica ��	 can be found in  ����� ���!�

������ Basic Structure Elements
In Mathematica the basic structure elements are called expressions� Their syntax is �we emphasize
again� the current objects are given by their corresponding symbol� by their names��

obj� obj�� obj�� � � � � objn! ������
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obj� is called the head of the expression� the index � is assigned to it� The parts obji �i � � � � � � n�
are the elements or arguments of the expression� and one can refer to them by their indices � � � � � n�
In many cases the head of the expression is an operator or a function� the elements are the operands or
variables on which the head acts�
Also the head� as an element of an expression� can be an expression� too� Square brackets are reserved
in Mathematica for the representation of an expression� and they can be applied only in this relation�

The term x	���#x�� which can also be entered in this in�x form inMathematica� has the complete
form �FullForm�

Plus � Times �� x!� Power x� �!!

which is also an expression� Plus� Power and Times denote the corresponding arithmetical operations�

The example shows that all simple mathematical operators exist in pre�x form in the internal repre�
sentation� and the term notation is only a facility in Mathematica�
Parts of expressions can be separated� This can be done with Part expr� i!� where i is the number of
the corresponding element� In particular� i � � gives back the head of the expression�

If we enter in Mathematica

In��� �� x	� � � # x � 

where the sign # can be omitted� then after the ENTER key is pressed� Mathematica answers

Out��� �  � �x � x�

Mathematica analyzed the input and returned it in mathematical standard form� If the input had been
terminated by a semicolon� then the output would have been suppressed�
If we enter

In��� �� FullForm &!

then the answer is

Out��� � Plus � Times �� x!� Power x� �!!

The sign & in the square brackets tells Mathematica that the argument of this input is the last output�
From this expression it is possible to get� e�g�� the third element

In��� �� Part &� �! for instance Out��� � Power x� �!

which is an expression in this case�

Symbols in Mathematica are the notation of the basic objects� they can be any sequence of letters and
numbers but they must not begin with a number� The special sign 5 is also allowed� Upper�case and
lower�case letters are distinguished� Reserved symbols begin with a capital letter� and in compound
words also the second word begins with a capital letter� Users should write their own symbols using
only lower�case letters�

������ Types ofNumbers inMathematica

�������� Basic Types of Numbers inMathematica
Mathematica knows four types of numbers represented in Table ����

Table ��� Types of numbers in Mathematica

Type of number Head Characteristic Input

Integers Integer exact integer� arbitrarily long nnnnn
Rational numbers Rational fraction of coprimes in form Integer�Integer pppp�qqqq
Real numbers Real �oating�point number� arbitrary given precision nnnn�mmmm
Complex numbers Complex complex number in the form number�number #I

Real numbers� i�e�� �oating�point numbers� can be arbitrarily long� If an integer nnn is written in the
form nnn�� then Mathematica considers it as a �oating�point number� that is� of type Real�
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The type of a number x can be determined with the command Head x!� Hence� In��� �� Head �!
results in Out��� � Integer� while In��� �� Head ��! Out��� � Real� The real and imaginary
components of a complex number can belong to any type of numbers� A number such as ���� � � I is
considered as a Real type by Mathematica� while ���� � �� I is of type Complex� since �� is considered
as a �oating�point approximation of ��

There are some further operations� which give information about numbers� So�

if x is a number In��� �� NumberQ x! Out��� �� True� �����a�

Otherwise� if x is not a number� then the output is Out��� �False� Here� True and False are the
symbols for Boolean constants�
IntegerQ x! tests if x is an integer� or not� so

In��� �� IntegerQ ��! Out��� � False �����b�

Similar tests can be performed for numbers with operators EvenQ� OddQ and PrimeQ� Their meanings
are obvious� So� we get

In��� �� PrimeQ ������! Out��� � True� �����c�

while

In��� �� PrimeQ �����! Out��� � False �����d�

These last tests belong to a group of test operators� which all end by Q and always answer True or False
in the sense of a logical test �in this case a type check��

�������� Special Numbers
In Mathematica� there are some special numbers which are often needed� and they can be called with

arbitrary accuracy� They include � with the symbol Pi� e with the symbol E�
�

���
as the transformation

factor from degree measure into radian measure with the command Degree� Infinity as the symbol
for� and the imaginary unit I�

�������� Representation andConversion of Numbers
Numbers can be represented in di�erent forms which can be converted into each other� So� every real
number x can be represented by a �oating�point number N x� n! with an n�digit precision�

IN��� �� N E� ��! yields Out��� � ������������������� �����a�

With Rationalize x� dx!� the number x with an accuracy dx can be converted into a rational number�
i�e�� into the fraction of two integers�

In�	� �� Rationalize &� �	 � �! Out�	� �
���

���
�����b�

With � accuracy� Mathematica gives the possible best approximation of the number x by a rational
number�
Numbers of di�erent number systems can be converted into each other� With BaseForm x� b!� the num�
ber x given in the decimal system is converted into the corresponding number in the number system
with base b� If b � �� then the consecutive letters of the alphabet a� b� c� � � � are used for the further
digits having a meaning greater than ten�

A � In���� �� BaseForm ���� �! Out���� � ��BaseForm � ff�	 �����a�

In���� �� BaseForm N E� �!� �! Out���� � ��BaseForm � ����������
 �����b�

The conversion of a number of base b into the decimal system can be performed by b		mmmm�

B � In���� �� � 		��� Out���� � ��� �����c�

Numbers can be represented with arbitrary precision �the default here is the hardware precision�� and
for large numbers so�called scienti�c form is used� i�e�� the form n�mmmm�	 � qq�
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������ ImportantOperators
Several basic operators can be written in in�x form �as in the classical form in mathematics�
� symb� op symb� � � However� in every case� the complete form of this simpli�ed notation is an
expression� The most often occurring operators and their complete form are collected in Table ����

Table ���� Important Operators in Mathematica

a � b Plus a� b! u �� v Equal u� v!
a b or a # b Times a� b! w$ � v Unequal w� v!
a	b Power a� b! r � t Greater r� t!
a�b Times a� Power b� �!! r �� t GreaterEqual r� t!
u�� v Rule u� v! s � t Less s� t!
r � s Set r� s! s �� t LessEqual s� t!

Most symbols in Table ��� are obvious� For multiplication in the form a b� the space between the
factors is very important�

The expressions with the heads Rule and Set will be explained� Set assigns the value of the expression
s on the right�hand side� e�g�� a number� to the expression r on the left�hand side� e�g�� a variable� From
here on� r is represented by this value until this assignment is changed� The change can be done either
by a new assignment or by x � � or Clear x!� i�e�� by releasing every assignment so far� The construction
Rule should be considered as a transformation rule� It occurs together with the substitution operator
�� �

Replace t� u�� v! or t�� u�� v means that every element u which occurs in the expression t will be
replaced by the expression v�

In��� �� x � y� �� y�� a � b Out��� � x � �a � b��

It is typical in the case of both operators that the right�hand side is evaluated immediately after the
assignment or transformation rule� So� the left�hand side will be replaced by this evaluated right�hand
side at every later call�

Here� we have to mention two further operators with delayed evaluation�

u �� v FullForm � SetDelayed u� v! and �����a�

u �� v FullForm � RuleDelayed u� v! �����b�

The assignment or the transformation rule are also valid here until it is changed� Although the left�
hand side is always replaced by the right side� the right�hand side is evaluated for the �rst time only at
the moment when the left one is called�

The expression u �� v or Equal u� v! means that u and v are identical� Equal is used� e�g�� in mani�
pulation of equations�

������ Lists
�������� Notions
Lists are important tools in Mathematica for the manipulation of whole groups of quantities� which are
important in higher�dimensional algebra and analysis�

A list is a collection of several objects into a new object� In the list� each object is distinguished only
by its place in the list� The de�nition of a list is made by the command

List a� a�� a�� � � �! � fa� a�� a�� � � �g �����

To explain the work with lists� a concrete list is used� denoted by l�

In��� �� l � List a� a�� a�� a�� a�� a�! Out��� � fa� a�� a�� a�� a�� a�g ������

Mathematica applies a short form to the output of the list� It is enclosed in curly braces�

Table ��� represents commands which choose one or more elements from a list� and the output is a
	sublist
�
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Table ���� Commands for the choice of list elements

First l! selects the �rst element
Last l! selects the last element
Part l� n! or l  n!! selects the n�th element
Part l� fn� n�� � � �g! gives a list of the elements with the given numbers
l  fn� n�� � � �g!! equivalent to the previous operation
Take l� m! gives the list of the �rst m elements of l
Take l� fm� ng! gives the list of the elements from m through n
Drop l� n! gives the list without the �rst n elements
Drop l� fm� ng! gives the list without the elements from m through n

For the list l in ����� we get� e�g��

In��� �� First l! Out��� � a In��� �� l  �!! Out��� � a�

In��� �� l  f�� �� �g!! Out��� � fa�� a�� a�g In��� �� Take l� �! Out��� � fa� a�g
�������� Nested Lists� Arrays or Tables
The elements of lists can again be lists� so we get nested lists� If we enter� e�g�� for the elements of the
previous list l

In��� �� a � fb� b�� b�� b�� b�g
In��� �� a� � fb�� b��� b��� b��� b��g
In�	� �� a� � fb�� b��� b��� b��� b��g

and analogously for a�� a� and a�� then because of ������ we get a nested list �an array� which we do
not represent here explicitly� We can refer to the j�th element of the i�th sublist with the command
Part l� i� j!� The expression l  i� j!! has the same result� In the above example� e�g��

In���� �� l  �� �!! yields Out���� � b��

Furthermore� Part l� fi� i� � � �g� fj� j� � � �g! or l  fi� i�� � � �g� fj� j�� � � �g!! results in a list con�
sisting of the elements numbered with j� j� � � � from the lists numbered with i� i�� � � ��

For the above example

In���� �� l  f�� �g� f�� �� �g!! Out���� � ffb��� b��� b��g� fb��� b��� b��gg
The idea of nesting lists is obvious from these examples� It is easy to create lists of three or higher
dimensions� and it is easy to refer to the corresponding elements�

Table ���� Operations with lists

Position l� a! gives a list of the positions where a occurs in the list
MemberQ l� a! checks whether a is an element of the list
FreeQ l� a! checks if a does not occur in the list
Prepend l� a! changes the list by adding a to the front
Append l� a! changes the list by appending a to the end
Insert l� a� i! inserts a at position i in the list
Delete l� fi� j� � � �g! delete the elements at positions i� j� � � � from the list
ReplacePart l� a� i! replace the element at position i by a

�������� Operations with Lists
Mathematica provides several further operations by which lists can be monitored� enlarged or shortened
�Table �����

With Delete� the list l can be shortened by the term a��

In���� �� l� � Delete l� �! Out���� � fa� a�� a�� a�� a�g�
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where in the output the ai are shown by their values � they are lists themselves�

�������� Special Lists
In Mathematica� several operations are available to create special lists� One of them� which often occurs
in working with mathematical functions� is the command Table shown in Table ����

Table ���� Operation Table

Table f� fimaxg! creates a list with imax values of f �f��� f���� � � � � f�imax�
Table f� fi� imin� imaxg! creates a list with values of f from imin to imax
Table f� fi� imin� imax� dig! the same as the last one� but by steps di

Table of binominal coe�cients for n � ��

In���� �� Table Binomial �� i!� fi� �� �g!! Out���� � f� �� �� ��� ��� �� �� g
With Table� also higher�dimensional arrays can be created� With the expression

Table f� fi� i� i�g� fj� j� j�g� � � �!
we get a higher�dimensional� multiple nested table� i�e�� entering

In���� �� Table Binomial i� j!� fi� � �g� fj� �� ig!
we get the binominal coe�cients up to degree ��

Out���� � ff� g� f� �� g� f� �� �� g� f� �� �� �� g�
f� �� �� �� �� g� f� �� �� ��� �� �� g� f� �� �� ��� ��� �� �� gg

The operation Range produces a list of consecutive numbers or equally spaced numbers�

Range n! yields the list f� �� � � � � ng
Similarly� Range n� n�! and Range n� n�� dn! produce lists of numbers from n to n� with step�size
 or dn respectively�

������ Vectors andMatrices as Lists

�������� Creating Appropriate Lists
Several special �list� commands are available for de�ning vectors and matrices� A one�dimensional list
of the form

v � fv� v�� � � � � vng ������

can always be considered as a vector in n�dimensional space with components v� v�� � � � � vn� The spe�
cial operation Array v� n! produces the list �the vector� fv !� v �!� � � � � v n!g� Symbolic vector opera�
tions can be performed with vectors de�ned in this way�

The two�dimensional lists l of ���������� p� ���� and l� ���������� p� ���� introduced above can be
considered as matrices with rows i and columns j� In this case bij would be the element of the matrix
in the i�th row and the j�th column� A rectangular matrix of type ����� is de�ned by l� and a square
matrix of type ��� �� by l��

With the operation Array b� fn� mg! a matrix of type �n�m� is generated� whose elements are denoted
by b i� j!� The rows are numbered by i� i changes from  to n� by j the columns are numbered from 
to m� In this symbolic form l can be represented as

l � Array b� f�� �g!� �����a�

where

b i� j! � bij �i � � � � � � �� j � � � � � � ��� �����b�

The operation IdentityMatrix n! produces the n�dimensional unit matrix�

With the operation DiagonalMatrix list! a diagonal matrix is produced with the elements of the list
in its main diagonal�
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The operation Dimension list! gives the size �number of rows� columns� � � � � of a matrix� whose struc�
ture is given by a list� Finally� with the command MatrixForm list!� we get a matrix�type representation
of the list� A further possibility to de�ne matrices is the following� Let f�i� j� be a function of integers
i and j� Then� the operation Table f� fi� ng� fj� mg! de�nes a matrix of type �n�m�� whose elements
are the corresponding f�i� j��

�������� Operations withMatrices and Vectors
Mathematica allows formal manipulation of matrices and vectors� The operations given in Table ���
can be applied�

Table ���� Operations with matrices

c a matrix a is multiplied by the scalar c
a � b the product of matrices a and b
Det a! the determinant of matrix a
Inverse a! the inverse of matrix a
Transpose a! the transpose of matrix a
MatrixPower a� n! the n�th power of matrix a
Eigenvalues a! the eigenvalues of matrix a
Eigenvectors a! the eigenvectors of matrix a

A � In��	� �� r � Array a� f�� �g! Out��	� � f f a � !� a � �!� a � �!� a � �! g�
f a �� !� a �� �!� a �� �!� a �� �! g�
f a �� !� a �� �!� a �� �!� a �� �! g�
f a �� !� a �� �!� a �� �!� a �� �! gg

In��
� �� Transpose r! Out��
� � f f a � !� a �� !� a �� !� a �� ! g�
f a � �!� a �� �!� a �� �!� a �� �! g�
f a � �!� a �� �!� a �� �!� a �� �! g�
f a � �!� a �� �!� a �� �!� a �� �! gg

Here� the transpose matrix rT of r is produced�

If the general four�dimensional vector v is de�ned by

In���� �� v � Array u� �!�

then we get

Out���� � fu !� u �!� u �!� u �!g
Now� the product of the matrix r and the vector v is again a vector �see Calculations with Matrices�
����� p� �����

In���� �� r� v Out ���� � f a � ! u ! � a � �! u �! � a � �! u �! � a � �! u �! �
a �� ! u ! � a �� �! u �! � a �� �! u �! � a �� �! u �! �
a �� ! u ! � a �� �! u �! � a �� �! u �! � a �� �! u �! �
a �� ! u ! � a �� �! u �! � a �� �! u �! � a �� �! u �! g�

There is no di�erence between row and column vectors in Mathematica� In general� matrix multiplica�
tion is not commutative �see Calculations with Matrices ����� p� ����� The expression r� v corresponds
to the product in linear algebra when a matrix is multiplied by a column vector from the right� while
v� r means a multiplication by a row vector from the left�

B� In the section on Cramer�s rule ��������� p� ���� the linear system of equations pt � b is solved
with the matrix

In���� �� p � MatrixForm ff�� � �g� f� ��� g� f�� �� �gg!
Out���� � ��MatrixForm � �  �

 �� 
� � �
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and vectors

In���� �� t � Array x� �! Out���� � fx !� x �!� x �!g
In���� �� b � f�� ��� �g Out���� � f�� ��� �g�

Since in this case det�p� �� � holds� the system can be solved by t � p��b� This can be done by

In���� �� Inverse p!� b with the output of the solution vector Out���� � f�� �� �g�

������ Functions

�������� Standard Functions
Mathematica knows several mathematical standard functions� which are listed in Table ����

Table ���� Standard functions

Exponential function Exp x!
Logarithmic functions Log x!� Log b�x!
Trigonometric functions Sin x!� Cos x!� Tan x!� Cot x!� Sec x!� Csc x!
Arc functions ArcSin x!� ArcCos x!� ArcTan x!� ArcCot x!� ArcSec x!� ArcCsc x!
Hyperbolic functions Sinh x!� Cosh x!� Tanh x!� Coth x!� Sech x!� Csch x!
Area functions ArcSinh x!� ArcCosh x!� ArcTanh x!� ArcCoth x!� ArcSech x!� ArcCsch x!

All these functions can also be applied with complex arguments�

In every case we have to consider the single�valuedness of the functions� For real functions we have to
choose one branch of the function �if it is needed�� for functions with complex arguments the principal
value �see ���� p� ���� should be chosen�

�������� Special Functions
Mathematica knows several special functions� which are not elementary functions� Table ��� lists
some of these functions�

Tabelle ���� Special functions

Bessel functions Jn�z� and Yn�z� BesselJ n�z!� BesselY n�z!
Modi�ed Bessel functions In�z� and Kn�z� BesselI n�z!� BesselK n�z!
Legendre polynomials Pn�x� LegendrP n�x!
Spherical harmonic Y m

l ��� &� SphericalHarmonicY l� m� theta� phi!

Further functions can be loaded with the corresponding special packages �see also  ���!��

�������� Pure Functions
Mathematica supports the use of so�called pure functions� A pure function is an anonymous function�
an operation with no name assigned to it� They are denoted by Function x� body!� The �rst argument
speci�es the formal parameters and the second one is the body of the function� i�e�� body is an expression
for the function of the variable x�

In��� �� Function x� x	� � x	�! Out��� � Function x� x� � x�! ������

and so

In��� �� Function x� x	� � x	�! c! gives Out��� � c� � c�� ������

We can use a simpli�ed version of this command� It has the form body 6� where the variable is denoted
by 7 � Instead of the previous two rows we can also write

In��� �� �7	� � 7	�� 6  c! Out��� � c� � c� ������

It is also possible to de�ne pure functions of several variables�
Function fx�� x�� � � �g� body! or in short form body 6� where the variables in body are denoted by the
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elements 7�7�� � � �� The sign 6 is very important for closing the expression� since it can be seen from
this sign that the previous expression should be considered as a pure function�

������ Patterns
Mathematica allows users to de�ne their own functions and to use them in calculations�

With the command In��� �� f x ! �� Polynom�x� ������

with Polynom�x� as an arbitrary polynomial of variable x� a special function is de�ned by the user�

In the de�nition of the function f� there is no simple x� but x �pronounced x�blank� with a symbol
for the blank� The symbol x means 	something with the name x
� From here on� every time when
the expression f something! occurs� Mathematica replaces it by its de�nition given above� This type of
de�nition is called a pattern� The symbol blank denotes the basic element of a pattern� y stands for
y as a pattern� It is also possible to apply in the corresponding de�nition only a 	 
� that is y	 � This
pattern stands for an arbitrary power of y with any exponent� thus� for an entire class of expressions
with the same structure�

The essence of a pattern is that it de�nes a structure� When Mathematica checks an expression with
respect to a pattern� it compares the structure of the elements of the expression to the elements of
the pattern� Mathematica does not check mathematical equality$ This is important in the following
example� Let l be the list

In��� �� l � f� y� y	a� y	Sqrt x!� ff y	�r�q�!� �	ygg ������

If we write

In��� �� l �� y	 �� ja �������

then Mathematica returns the list

Out��� � f� y� ja� ja� ff ja!� �ygg ������

Mathematica checked the elements of the list with respect to its structural identity to its pattern y	

and in every case when it determined coincidence it replaced the corresponding element by ja� The
elements  and y were not replaced� since they have not the given structure� even though y� � � y� � y
holds�

Remark� Pattern comparison always happens in FullForm� If we examine

In��� �� b�y �� y	 �� ja then we get Out��� � b ja �������

This is a consequence of the fact that FullForm of b�y is Times b� Power y� �! !� and for structure
comparison the second argument of Times is identi�ed as the structure of the pattern�

With the de�nition

In��� �� f x ! �� x	� ������a�

Mathematica replaces� corresponding to the given pattern�

In��� � f r! by Out��� � r� etc� ������b�

In��� �� f a! � f x! yields Out��� � a� � x� ������c�

If

In�	� �� f x! �� x	�� so for the same input In��� �� � � � ������d�

then the output would be

Out��� � f a! � x� ������e�

In this case only the 	identical
 input corresponds to the de�nition�

�����	 FunctionalOperations
Functions operate on numbers and expressions� Mathematica can also perform operations with func�
tions� since the names of functions are handled as expressions so they can be manipulated as expres�
sions�
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� Inverse Function The determination of the inverse function of a given function f�x� can be made
by the functional operation InverseFunction�

A� In��� �� InverseFunction f !  x! Out��� � f��  x!

B� In��� �� InverseFunction Exp! Out��� � Log

� Di	erentiation Mathematica uses the possibility that the di�erentiation of functions can be
considered as a mapping in the space of functions� In Mathematica� the di�erentiation operator is
Derivative ! f ! or in short form f�� If the function f is de�ned� then its derivative can be got by f��

In��� �� f x ! �� Sin x! Cos x!
With

In��� �� f� we get Out��� � Cos 7!� � Sin 7!� 6 �

hence f� is represented as a pure function and it corresponds to

In��� �� &  x! Out��� � Cos x!� � Sin x!�

� Nest The command Nest f� x� n! means that the function f nested n times into itself should be
applied on x� The result is f f � � � f x!! � � �!�
� NestList By NestList f� x� n! a list fx� f x!� f f x!!� � � �gwill be shown� where �nally f is nested
n times�
� FixedPoint For FixedPoint f� x!� the function is applied repeatedly until the result does not
change�
� FixedPointList The functional operation FixedPointList f� x! shows the continued list with
the results after f is applied� until the value no longer changes�

As an example for this type of functional operation the NestList operation will be used for the
approximation of a root of an equation f�x� � � with Newton�s method �see ������ p� ����� We seek
a root of the equation x cos x � sin x in the neighborhood of �����

In��� �� f x ! �� x � Tan x! In��� �� f� x! Out��� �  � Sec x!�

In�	� � g x ! �� x � f x!�f� x!

In�
� �� NestList g� ���� �! ��N

Out�
� � f���� �������� ������� ������� ������g
In���� �� FixedPoint g� ���! Out���� � ������

A higher precision of the result can also be achieved�
� Apply Let f be a function which is considered in connection with a list fa� b� c� � � �g� Then� we
get

Apply f� fa� b� c� � � �g! f  a� b� c� � � �! �������

In��� �� Apply Plus� fu� v� wg! Out��� � u � v � w

In��� �� Apply List� a � b � c! Out��� � fa� b� cg
Here� the general scheme of how Mathematica handles expressions of expressions can be easily recog�
nized� We write the last operation in FullForm�

In��� �� Apply List� Plus a� b� c!! Out��� � List a� b� c!

The functional operation Apply obviously replaces the head of the considered expression Plus by the
required List�
� Map With a de�ned function f the operation Map gives�

Map f� fa� b� c� � � �g! � ff  a!� f  b!� f  c!� � � �g �������

Map generates a list whose elements are the values when f is applied for the original list�

Let f be the function f�x� � x�� It is de�ned by

In��� �� f x ! �� x	�
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With this f we get

In��� �� Map f� fu� v� wg! Out��� � fu�� v�� w�g
Map can be applied for more general expressions�

In��� �� Map f� Plus a� b� c!! Out��� � a� � b� � c�

������ Programming
Mathematica can handle the loop constructions known from other languages for procedural program�
ming �IF� FOR� WHILE� DO�� The two basic commands are

Do expr� fi� i� i�� dig! and ������a�

While test� expr! ������b�

The �rst command evaluates the expression expr� where i runs over the values from i to i� in steps di�
If di is omitted� the step size is one� If i is also missing� then it starts from �
The second command evaluates the expression while test has the value True�

In order to determine an approximate value of e�� the series expansion of the exponential function
is used�

In��� �� sum � ���
Do sum � sum � ��	i�i$�� fi� � �g!�
sum

Out��� � �������

�������

The Do loop evaluates its argument a previously given number of times� while the While loop evaluates
until a previously given condition becomes false�

Among other things� Mathematica provides the possibility of de�ning and using local variables� This
can be done by the command

Module ft� t�� � � �g� procedure! �������

The variables or constants enclosed in the list are locally usable in the module� their values assigned
here are not valid outside of this module�

A� We have to de�ne a procedure which calculates the sum of the square roots of the integers from
 to n�

In��� �� sumq n ! ��
Module fsum � �g�

Do sum � sum � N  Sqrt i!!� fi� �� ng!�
sum !�

�������

The call sumq ��! results in ������

The real power of the programming capabilities of Mathematica is� �rst of all� the use of functional
methods in programming� which are made possible by the operations Nest� NestWhile� Apply� Map�
ReplaceList and by some further ones�

B� Example A can be written in a functional manner for the case when an accuracy of ten digits is
required�

sumq n ! �� N Apply Plus� Table Sqrt i!� fi� � ng!!� �!�

sumq ��! results in ����������

For the details� see  ����!�

������� Supplement about Syntax� Information�Messages
��������� Contexts� Attributes
Mathematica must handle several symbols� among them there are those which are used in further pro�
gram modules loaded on request� To avoid many�valuedness� the names of symbols in Mathematica
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consist of two parts� the context and the short name�

Short names mean here the names �see ����� p� ���� of heads and elements of the expressions� In
addition� in order to name a symbolMathematica needs the determination of the program part to which
the symbol belongs� This is given by the context� which holds the name of the corresponding program
part� The complete name of a symbol consists of the context and the short name� which are connected
by the � sign�

When Mathematica starts there are always two contexts present� System� and Global�� We can get
information about other available program modules by the command Contexts !�

All built�in functions of Mathematica belong to the context System�� while the functions de�ned by the
user belong to the context Global��

If a context is actual� thus� the corresponding program part is loaded� then the symbols can be referred
to by their short names�
For the input of a further Mathematica program module by �� NamePackage� the corresponding con�
text is opened and introduced into the previous list� It can happen that a symbol has already been
introduced with a certain name before this module is loaded� and in this newly opened context the
same name occurs with another de�nition� In this case Mathematica gives a warning to the user� Then
we can erase the previously de�ned name by the command Remove Global8name!� or we can apply the
complete name for the newly loaded symbol�

Besides the properties that the symbols have per de�nition� it is possible to assign to them some other
general properties� called attributes� like Orderless� i�e�� unordered� commutative� Protected� i�e��
values cannot be changed� or Locked� i�e� attributes cannot be changed� etc� Informations about the
already existing attributes of the considered object can be obtained by Attributes f !�

Some symbols can be protected by Protect somesymbol!� then no other de�nition can be introduced
for this symbol� This attribute can be erased with the command Unprotect�

��������� Information
Information can be obtained about the fundamental properties of objects by the commands

(symbol information about the object given by the name symbol�
((symbol detailed information about the object�
(B# information about all Mathematica objects� whose name begins with B�

It is also possi�

ble to get information about special operators� e�g�� by ( �� about the SetDelay operator�

��������� Messages
Mathematica has a message system which can be activated and used for di�erent reasons� The messages
are generated and shown during the calculations� Their presentation has a uniform form� symbol � �
tag� providing the possibility to refer to them later� �Such messages can also be created by the user��
Consider the following examples as illustrations�

A� In��� �� f x ! �� �x� In��� �� f �!

Power� �infy�Infinite expression
�

�
encountered� Out��� � ComplexInfinity

B� In��� �� Log �� �� ��!
Log� �argt�Log called with � arguments� � or � arguments are expected� Out��� �Log �� �� ��!

C� In��� �� Multply x� x	n!
General� �spell�� Possible spelling Error� new symbol name ��Multply�� is similar

to existing symbol ��Multiply��� Out��� � Multply x� x	n!

In exampleA�Mathematicawarns us that during the evaluation of an expression it got the value�� The
calculation itself can be performed� In exampleB the call of logarithm contains three arguments� which
is not allowed according to the de�nition� Calculations cannot be performed� Mathematica cannot do
anything with the expression� In example C� Mathematica �nds a new symbol name� which is very
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similar to an existing one which is often used� A spelling error is supposed� and Mathematica does not
evaluate this expression�

The user can switch o� a message with Off s � � tag!� With On the message will appear again�
With Messages symbol! all messages associated to the symbol with the name symbol can be recalled�

��� Maple
The computer algebra system Maple was developed at the University of Waterloo �Ontario Canada��
We discuss Maple � by Waterloo Maple Software� Good introductions can be found in the handbooks�

������ Basic Structure Elements

�������� Types and Objects
In Maple� all objects have a type which determines its proper a�liation in an object class� An object can
be assigned to several types� as e�g�� if a given object class contains a subclass de�ned by an additional
relation� As an example it can be mentioned that the number � is of type integer and of type posint�
By giving the type and arranging all objects in a hierarchy� a consistent formalization and evaluation
of given classes of mathematical problems is guaranteed�
The user can always ask about the basic type of an object with the question

� whattype�obj�� �������

The semicolon must be written at the end of the input� The output is the basic type of the object�
Maple knows the following basic types of objects� collected in Table ��
�

The more detailed type structure can be determined by the help of commands like type�obj�typname��
the values of which are the Boolean functions true or false� Table ���� contains some type names
known by Maple�

Table ���� Basic types in Maple

� # � � � � ��� ���� � �� � � � �
� �� � � �� � � � � � # � �and� array
exprseq �oat fraction function hfarray indexed
integer list �not� �or� procedure series

set string symbol table uneval Array
Matrix Vector  column! Vector  row!

Table ���� Types

# ## � � �� � � ��
� 	 PLOT PLOT�D RootOf algebraic algext algfun
algn algnumext and anything array biconnect bipartite boolean
colourabl connected constant cubic digraph equation even evenfunc
expanded facint �oat fraction function graph indexed integer
intersect laurent linear list listlist logical mathfunc matrix
minus monomial name negative negint nonneg nonnegint not
numeric odd oddfunc operator or planar point polynom
posint positive primeint procedure quadratic quartic radext radfun
radfunext radical radnum radnumext range rational ratpoly realcons
relation scalar series set sqrt square string subgraph
symmfunc taylor tree trig type undigraph uneval union
vector
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It can be seen that the type�check functions themselves have a type� namely type�

In a simpli�ed manner one can say� basic types represent classes of fundamental data structures and
basic operators� The other types characterize further typisation of the basic types or algebraic proper�
ties or are connected with some procedures of Maple�

Expressions are important objects in Maple� They comprise constants �numbers�� structured data� call
of functions etc� Procedures and modules also can be interpreted �at least in a technical manner� as ex�
pressions� InMaple names are sequences of characters �one or more� which identify in a well�determined
manner a command� a variable or other objects�

One has to distinguish between indicialed names and symbols� An indicialed name is� A � �! � A����
Symbols are not indicialed names� Values can be assigned to indicialed names and symbols�

�������� Input and Output

In Maple the input often has the form

obj��obj�� obj�� � � � � objn�� ������

The �rst term� which is in front of the left parenthesis� is usually an operator� a command or a function�
which acts on the parts in parentheses� In certain cases there are special options as arguments� which
control the special application of operators or functions� The terminating semicolon is very important�
it tells Maple that the input has ended� If the input is terminated by a �� this means that although the
input is �nished� the result should not be calculated�

Symbols� i�e�� names in Maple� can consist of letters� numbers� and the Blank � �� Names cannot begin
with numbers� In the �rst place numbers are not allowed� Upper� and lower�case letters are always
distinguished� The blank is used by Maple for internal symbols� it should be avoided in user�de�ned
symbols�

Strings� i�e�� objects of type string� must be input between the marks 
�

� S �� 
this is a string

S �� this is a string

�������

Type checking with whattype gives string�

While no value is assigned to a symbol� the symbol is of type string or name� i�e�� the type checking

� type�symb� name�� or type�symb� string�� �������

results in true�

If the user does not know if a symbol in Maple is already reserved� then it can be asked for by name� If
Maple answers that it does not know this symbol� then it can be used freely�

If a value is assigned to a symbol by the assignment operator ��� then the symbol automatically takes
the type of the assigned value�

Let x be a symbol� which should be a variable� For the input

� whattype�x�� Maple answers by string

If an integer value is assigned to it�

� x �� �� � x �� �

and then it is asked � whattype�x�� then the answer is integer�

Maple knows a huge number of commands� functions� and operators� Not all of them can be called
right after the start� Several special functions and operators are in di�erent packages in the Maple
library� There exist packages for linear algebra� for statistics� etc� These packages can be loaded by
the command � with�packagename�� if they are needed �see Supplement about Syntax� Information�




�� ��� Computer Algebra Systems

Messages� �������� p� ���� then their operations and functions can be used as usual�

������ Types ofNumbers inMaple

�������� Basic Types of Numbers inMaple
Maple knows the basic types of numbers introduced in Table �����

Table ��� Types of numbers in Maple

Number Type Representation form
Integer integer nnnnnn sequence of �almost� arbitrary number of digits
Fraction fraction ppp�qqq fraction of two integer
Floating�point number float nn�mmm or in scienti�c notation n�mm # �	�pp�

With the help of type control functions� some further properties of numbers can be asked�

� Rational Numbers �Type rational�� Rational numbers are in Maple the integers and fractions�
A fraction� which becomes an integer with all common factors removed� will not be recognized by Maple
as a fraction �type fraction��

� Floating�Point Numbers �Type float�� If a decimal point is placed behind an integer �nnn���
it is automatically considered a �oating�point number�

�CommonProperties� All three types of numbers have the types realcons� numeric and constant�
The last two types also belong to the complex numbers�

�ComplexNumbers� Complex numbers are formed with the imaginary unit I as usual� The number
I represents the root of �� which is of type complex and which has the internal de�nition

I �� complex�� �������

The construction complex gives

� complex�x� y� � x � yI �������

if x� y are numbers�

�������� Special Numbers
Maple knows several special numbers such as Pi� E� gamma�

�������� Representation andConversion of Numbers

�� Floating�Point Numbers
The command evalf�number�� results in a �oating�point number with a previously given precision�
the default value is � digits� The argument can be a rational number or a symbolic number given by
an expression� and in this last case the result of the calculations is represented�

� evalf�E�� ���������

The precision is de�ned inMaple by the environment variable Digits� If the default value of the number
of digits is not suitable for the concrete problem� then it can be changed by the command

� Digits �� m� m required number of digits �������

It remains valid until the next de�nition�

�� Numbers of Di
erent Bases
The conversion of decimal numbers into another base can be made by the command convert� The
basic form of this command is

convert�expr� form� opt�� �������

and it transforms certain types of expressions of one form into another form �if it has any meaning��
The argument form can be a type enumerated in Table ����� The table shows that several forms
are provided for conversion of numbers�
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Examples of using the command convert�

� convert���� binary�� � ���� � convert���� octal�� � 

� convert���� hex�� � �F � convert����� rational�� � ��

��
� convert����� decimal� binary�� � convert�8FFA�8� decimal� hex��
� ��� � �����

Table ���� Some arguments of function convert

� � � �#� D array base binary confrac decimal
degrees diff double eqnlist equality exp expln expsincos
factorial float fraction GAMMA hex horner hostfile hypergeom
lessthan lessequal list listlist ln matrix metric mod�
multiset name octal parfrac polar polynom radians radical
rational ratpoly RootOf series set sincos sqrfree tan
vector

In the last one� the hexadecimal number is enclosed between backward quotes�

With the command convert�list� base� bas� bas�� a number� which is given in the form of a list in
bas� is converted into a number in bas�� and the result is given in the form of a list� Input in a form of
a list means that the number has the form z � z� # �bas�� � z� # �bas�� � z� # �bas�� � � � � and the list
is  � � � � z�� z�� z�!�

The octal number �� should be converted into a hexadecimal number�

� convert� � �� �!� base� �� ��� �  �� �!

The result is a list�

������ ImportantOperators inMaple
Important operators are �� �� #� �� 	 as the known arithmetical operations� �� �� ��� �� ���
�� as relational operators and the well known operator ���

The cat operator �concatenation operator� has special importance and it can be written in the short
in�x form jj� With this operator� two symbols can be connected� It holds�

� cat�
a 
jjb� � 
ab 
 � whattype�&� � string ������a�

� cat�a� 
b 
� � ab � whattype�&� � symbol ������b�

The connection gives a result� which takes over the type of the �rst argument� Similarly for the con�
nection operator jj�

� 
a 
jjb� � 
ab 
 � ajj
b
 � ab �������

By the help of jj it is possible to generate sequences of symbols�

� i �� �� �� �� �� �� � a sequence of integers�

� yjji� connecting the sequence to a variable � y� y�� y�� y�� y� or

� yjj������

������ Algebraic Expressions
Expressions can be constructed from variables �symbols� with the help of arithmetical operators� All of
them have the type algebraic� which includes the 	subtypes
 integer� fraction� float� string�
indexed� series� function� uneval� the arithmetical operator types and the point operator�
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We can see that a single variable �a string� also belongs to the type algebraic� The same is valid for
basic number types� since algebraic expressions with the command subs are evaluated into them� in
general�

� p �� x	�� � # x	� � � # x � � �

Here� an expression� namely� a polynomial of degree � in x is de�ned� With the substitution operator
subs a value can be assigned to the variable x in the polynomial �expression� and then the evaluation
is performed�

� subs�x � �� p�� � � � subs�x � ���� p�� � ���

��

� subs�x � ���� p�� � ��������

The operator op displays the internal structure� the subexpressions from an expression� With

op�p�� �������

we get the sequence �see next section� of subexpressions on the �rst level�

x����x�� �x� � ������

In the form op�i� p��� the i�th term is displayed� so� e�g�� op��� p� yields the term ��x�� op��� p� gives
the basic type of p� here �� The number of terms of the expression is given by nops�p���

������ Sequences and Lists

In Maple� a sequence consists of consecutive expressions separated by commas� The order of the ele�
ments is important� Sequences with the same elements but in di�erent orders are considered as di�erent
objects� The sequence is a basic type of Maple� exprseq�

� f �� x	���� # x	�� � # x� � � ������a�

de�nes a sequence� then

� type�f� exprseq�� results in true� ������b�

With the command

� seq�f�i�� i � ��n�� the sequence f��� f���� � � � � f�n� �������

is shown�

With � seq�i�� i � ����� we get � �� �� �� ���

The range operator range de�nes the range of integer variables represented in the form i � n��m� and
it means that the index variable i takes the consecutive values n� n � � n � �� � � � � m� The type of this
structure is �����

An equivalent form to generate a sequence is provided by the simpli�ed form

� f�i�5i � n��m� �������

which also generates f�n�� f�n � �� � � � � f�m�� Consequently� 5n��m� results in the sequence n� n �
� � � � � m and x5i� the sequence with i terms x�

Indexed variables can be generated by

� a i!5i � ���� � a�� a�� a�� a�

Sequences can be completed by further terms�

sequence� a� b� � � � �������

If we put a sequence f into square brackets� then we get a list� which has the type list�

� l ��  i5i � ����!� � l ��  � �� �� �� �� �!
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With the already known operator op� for the command op�liste�� we get the sequence back� which was
the base of the list�

A list can be completed if �rst it is changed by op�liste� into a sequence� this sequence is completed�
then it is changed into a new list by square brackets�

Lists can have elements which are themselves lists� their type is listlist� These types of constructions
have an important role when matrices are constructed�

The selection of one particular element of a list can be done by op�n� liste��� This command gives the
n�th element of the list� If the list has a name� like L� then it is easier to type L n!�� For a double list
we �nd the elements on a lower level with op�m� op�n� L��� or with the equivalent call L n! m!��

There are no di�culties in building up lists with higher levels�

Generating a simple list�

� L ��  a� b� c� d� e� f !� � L ��  a� b� c� d� e� f !

Selecting the fourth element of this list�

� op��� L�� or � L �!� � d

Generating a double nested list�

� L� ��   a� b� c!�  d� e� f !! �

�output is suppressed$� Selecting the third element of the second sublist�

� op��� op��� L��� or L �! �!� � f

Generating a triple nested list�

� L� ��    a� b� c!�  d� e� f !!�   s� t!�  u� v!!�   x� y!�  w� z!!! �

������ Tables� Arrays� Vectors andMatrices

�������� Tables andArrays
Maple knows the commands table� array and Array to construct tables and arrays� With

table�ifc� list� �������

Maple generates a table�type structure� Here� ifc is an indexing function �see ��������� p� ����� list
is a list of expressions� whose elements are equations� In this case Maple use the left�hand side of the
equation as the indexing of the table elements and the right�hand side as the current table element� If
the list contains only elements� then Maple uses the natural indexing� starting at one�

� T �� table� a� b� c!�� � table�  � a� � � b� � � c!�

� R �� table� a � x� b � y� c � z!�� � table� a � x� b � y� c � z!�

The repeated call of T or R gives only the symbols T or R� With op�T � or eval�T �� the output is the
table� For the call op�op�T ��� we get the components of the table in the form of a list� a list of the
equations for the table elements� Here� we can see that the evaluation principle for these structures is
di�erent from the general one� In general� Maple evaluates an expression until the end� i�e�� until no
further transformations are possible� However� while the de�nition is recognized in the example above�
further evaluation is suppressed until it is explicitly required with the special command op�

The indices of T form a sequence with the command indices�T ��� a sequence of the elements can be
obtained by entries �T ���

A table also can be constructed implicit� taking an indicialed name and assigning values of this name�
Tab�index��

Tab a! �� x � Tab b! �� y � Tab c! �� z �

� eval�Tab�� � table� a � x� b � y� c � z!�
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With the command � table�� we get an empty table� table� !�� The values of the table can be
obtained by � T�index��

� Tab b!� � y

For the previous examples

� indices�T �� yields  !�  �!�  �! � indices�R�� yields  a!�  b!�  c!

and correspondingly

� entries�R�� yields  x!�  y!�  z!

With the command

array�ifc� ber� list�� �������

special tables can be generated� which can be of several dimensions� but they can have only integer
indices in every dimension�

�������� One�Dimensional Arrays
With array������� e�g�� a one�dimensional array of length � is generated without explicit elements� with
v �� array�����  a��� a���� a���� a���� a���!�� one gets the same but with given components� These one�
dimensional arrays are considered by Maple as vectors� With the type check function type�v� vector��
we get true� If we ask whattype�v��� then the answer is symbol� This is in connection with the special
evaluation mentioned above�

�������� Two�Dimensional Arrays
Two�dimensional arrays can be de�ned similarly with

A �� array���m� ��n�   a�� �� � � � � a�� n�!� � � � �  a�m� �� � � � � a�m�n�!!�� �������

The structure de�ned in this way is considered by Maple as a matrix of size m�n� The values of a�i� j�
are the corresponding matrix elements�

� X �� array�����  x� x�� x�!��

X ��  x� x�� x�!

results in a vector� A matrix is obtained� e�g�� by

� A �� array����� ����  !��

A �� array����� ����  !�

The input

� eval�A�� yields the output

��� (����� (����� (����� (�����
(����� (����� (����� (�����
(����� (����� (����� (�����

���
Maple characterizes the unde�ned values of the matrix by the question mark (�i�j�� If a value is assigned
to all or some of these elements� like

� A � ! ��  � A �� �! ��  � A �� �! �� � �

then the renewed call for A will be displayed with the given values�

� eval�A�� �
���  (����� (����� (�����

(�����  (����� (�����
(����� (����� � (�����

���
With the command

� B �� array�  b� b�� b�!�  b�� b��� b��!�  b�� b��� b��!!��

B ��

��� b b� b�

b� b�� b��

b� b�� b��

���
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Maple displays the generated matrix with its elements� since they are given explicitly in the de�nition�
The optional assignment of dimension is not necessary here� since the complete determination of the
matrix elements makes the de�nition unique� If only a few elements are known� then the dimensions
must be given� Maple replaces the non�de�ned values by their formal values�

� C �� array����� ����   c� c�� c�!�  c�� c��!�  !!��

C ��

������
c c� c� C�����

c� c�� C����� C�����

C����� C����� C����� C�����

C����� C����� C����� C�����

������
�Since some elements are given� Maple cannot return an empty list as it did in the de�nition of A� If
we call eval�C�� then we get question marks instead of C in the matrix�� Index functions� such as
diagonal� identity�symmetric� antisymmetric� sparse can be used as optional arguments� With
them we can get the corresponding matrices�

� array����� ���� antisymmetric�� �
��� � (����� (�����
�(����� � (�����
�(����� �(����� �

���
Another command Array can be used to construct objects of several dimensions� This command has
the same form as array but allows much more options� Internally the �rst is a hash�array� the second
a hardblock�array�

�������� Special Commands for Vectors andMatrices
Problems of linear algebra can be solved in Maple with the help of two special packages� The pack�
age linalg makes use of the command�structure array and provides special commands like matrix�
vector and others as well as corresponding operators�

The package Linear Algebra makes use of the command�structure Array� provides commands like
Matrix� Vector and a great number of rules for constructions and manipulations of linear algebra�

The product of the matrix B and vector X from the �rst example in ��������� p� ��� by the help of
with�linalg� is

� evalm�B6 # x��

 b x � b� x� � b� x�� b� x � b�� x� � b�� x�� b� x � b�� x� � b�� x�!

The multiplication of a matrix by a column vector is a column vector� A multiplication in the opposite
order would give an error message�

������ Procedures� Functions andOperators
�����	�� Procedures
A procedure has the following form�

� P �� proc�parm� parm�� � � � � parmn�
� commands
� endproc�

�������

� f �� proc�x�
� x	n
� end proc� � f �� proc�x� xn end proc
� f�t�� � tn

�����	�� Functions
Maple has a huge number of prede�ned functions� which are available immediately after the start or
they can be loaded with packages� They belong to type mathfunc� An enumeration can be got by
�inifcns� We give a collection of the standard and special functions in Tables ���� and �����
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Table ���� Standard functions

Exponential function exp
Logarithmic functions log� ln
Trigonometric functions sin� cos� tan� cot� sec� csc
Arcus functions arcsin� arccos� arctan� arccot�
Hyperbolic functions sinh� cosh� tanh� coth� sech� csch
Area functions arcsinh� arcsosh� arctanh� arccoth�

Table ���� Special functions

Bessel functions Jn�z� and Yn�z� BesselJ�v� z�� BesselY�v�z�
Modi�ed Bessel functions In�z� and Kn�z� BesselI�v� z�� BesselK�v� z�
Gamma function Gamma�x�
Integral exponential function Ei�x�

The Fresnel functions can also be found among the special functions�

The package for orthogonal polynomials contains among others the Hermite� Laguerre� Legendre� Ja�
cobi and Chebyshev polynomials� For more details see  ����!�

In Maple the functions behave as procedures� Slightly simpli�ed this means that the name of a function�
as de�ned in Maple� is considered as a procedure� In other words� type�sin� procedure�� yields true� If
the argument� or several arguments if this is needed� is attached to the procedure in parentheses� then
one gets the corresponding function of the given variables�

� type�cos� procedure�� yields true and � type�cos� function�� yields false�
If we replace the argument cos by cos�x�� then type checking will give the opposite results�

Maple provides the possibility to generate self�de�ned functions in procedure form� A function can be
de�ned by the arrow operator ��� With

� F �� x�� mathexpr � �������

and with mathexpr as an algebraic expression of the variable x� a new function with name F is de�ned
in procedure form� The algebraic expression can contain previously de�ned and�or built�in functions�
If an independent variable is attached in parentheses to the procedure symbol generated in this way�
then it becomes a function of this independent variable�

� F �� x�� sin�x� # cos�x� � x	� # tan�x� � x	� �
� F �y�� � F �y� �� sin�y� cos�y� � y� tan�y� � y�

If a numerical value �e�g�� a �oating�point number� is assigned to this argument� say� with the call

� F �nn�mmm��

Maple gives the corresponding function value�

Conversely� it can be generated from a function �e�g�� from a polynomial of the variable x� the corre�
sponding procedure with the command unapply�function� var�� So� we get back from F �y� with

� unapply�F �y�� y�� � F

the procedure with symbol F �

�����	�� Functional Operators
Functional operators are special forms of procedures� They are used as commands for manipulation
and combination of functions �procedures�� It is possible to work with operators according to the usual
rules� The sum and di�erence of two operators is again an operator� For multiplication we have to
be careful that the product is again an operator� Maple uses the special multiplication symbol � for
operator multiplication� In general� this multiplication is not commutative�

Let F �� x�� cos�� # x� and G �� x�� x	�� Then

� �G �F ��x�� � cos���x�� while
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� �F �G��x�� � cos��x�� �

The product of two functions given in operator representation �F # G��x� � �G # F ��x�� results in
F �x� #G�x��

�����	�� Di
erential Operators
The di�erentiation operator in Maple is D� Its application on functions in procedure form is D�F � or
D i!�G�� In the �rst case the derivative of a function of one variable is de�ned in procedure form� The
attachment of the variable in parentheses results in the derivative as a function� In another form� it
can be written as D�F ��x� � diff�F �x�� x�� Higher derivatives can be got by repeated application
of the operator D� which can be simpli�ed by the notation �D � �n��F � where � � n means the n�th
	power
 of the di�erential operator�

If G is a function of several variables� then D i!�G� generates the partial derivatives of G with respect to
the i�th variable� This result is also a procedure� With D i� j!�G� we get D i!�D j!�G��� i�e�� the second
partial derivative with respect to the j�th and i�th variables� Higher derivatives can be formed similarly�

The rules of di�erential calculus �see ������� p� ���� are valid for the di�erential operator D� where F
and H are di�erentiable functions�

D�F � H� � D�F � � D�H�� �����a�

D�F #H� � �D�F � #H� � �F # D�H��� �����b�

D�F � H� � D�F � �H # D�H�� �����c�

�����	�� The Functional Operator map
The operator map can be used in Maple to apply an operator or a procedure to an expression or to its
components� Let� e�g�� F be an procedure representing a function� Then map�F� x� x	� � x # y� yields
the expression F �x� � F �x�� � F �x y�� Similarly� with map�F � y # z� the result is F �y� # F �z��

map�f�  a� b� c� d!�� �  f�a�� f�b�� f�c�� f�d�!

�����	 Programming inMaple
Maple provides the usual control and loop structures in a special form to build procedures and programs�

Case distinction is made by the if command� Its basic structure is

if cond then stat  else stat � end if �������

The else branch can be omitted� Before the else branch� arbitrarily many further branches can be
introduced with the structure

elif cond i then stat i end if �������

Loops are generated with for and while� which require in the command part the form

do � � � stat � � � end do

In the for loop the running index must be written in the form

i from n to m by di

where di is the step size� If the initial value and step size are missing� then they are automatically
replaced by �

In the while loop� the �rst part is

while cond do stat end do

Also loops can be multiply nested into each other�

In order to write a closed program� the procedure command is needed in Maple� It can have several
rows� and if it is stored appropriately� then it can be recalled by name if it is needed� Its basic structure
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is� proc�args�
local � � �
options � � �
commands

end proc

�������

The number of arguments of the procedure is not necessarily equal to number of the variables used
by the kernel of the procedure� in particular they can be completely missing� All variables de�ned by
local are known only in the procedure�

Write a procedure which calculates the sum of the square roots of the �rst n natural numbers�

� sumqw �� proc�n�
� local s� i�
� s �! �� ��
� for i to n
� do s i! �� s i� ! � sqrt�i� end do�
� evalf�s n!��
� end proc

Maple displays the procedure de�ned in this way�
Then the procedure can be called by name with the required argument n�

� sumqw�����

Output� ���������

������ Supplement about Syntax� Information andHelp

������� Using theMaple Library
Maple consists of three main parts� the kernel� a Maple�library and a user�panel� The kernel is written
in the programming language C and guarantees the main work of the system including basic operations
of mathematics� The library holds the main part of mathematical formalism� Corresponding parts will
be loaded automatically on demand�
Beyond it to Maple belongs a big library of special packages�
A special package can be loaded with the command

� with�name�� �������

Here the name is the name of the current package� hence linalg for the package of linear algebra� After
loading� Maple lists all the commands of the package and gives a warning if in the new de�nitions there
are commands already available which were introduced earlier�

If only one particular command is needed from a package� then it can be called by

paket command! �������

������� Environment Variable
The output of Maple is controled by several environment variables� We already introduced the variable
Digits �see ��������� �� p� ����� by which the number of the displayed digits of �oating�point numbers
is de�ned�

The general form of the output of the result is de�ned by prettyprint� Default is here

� interface�prettyprint � true� �������

This provides centered output in mathematical style� If this option is de�ned false� then the output
starts at the left�hand side with the form of input�

������� Information andHelp
Help about the meaning of commands and keywords is available by the input

(notion� �������
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Instead of the question mark� help�notion� can also be written� This results in a help screen� which
contains the corresponding part of the library handbook for the required notion�

If Maple runs under Windows� then the call for HELP opens a menu usually on the right�hand side� and
the explanation about the required notion can be obtained by clicking on it with the mouse�

��� Applications ofComputerAlgebra Systems
This section describes how to handle mathematical problems with computer algebra systems� The
choice of the considered problems is organized according to their frequency in practice and also accord�
ing to the possibilities of solving them with a computer algebra system� Examples will be given for
functions� commands� operations and supplementary syntax� and hints for current computer algebra
systems� When it is important� the corresponding special package is also discussed brie�y�

������ Manipulation ofAlgebraic Expressions
In practice� further operations must usually be performed with the occurring algebraic expressions �see
���� p� �� such as di�erentiation� integration� series representation� limiting or numerical evaluation�
transformations� etc� In general� these expressions are considered over the ring of integers �see ������
p� ��� or over the �eld �see ������� �� p� ��� of real numbers� Computer algebra systems can handle�
e�g�� polynomials also over �nite �elds or over extension �elds �see ������� �� p� ��� of the rational
numbers� Interested people should study the special literature� The algebraic operations with polyno�
mials over the �eld of rational numbers have special importance�

�������� Mathematica
Mathematica provides the functions and operations represented in Table ���� for transformation of
algebraic expressions�

�� Multiplication of Expressions
The operation of multiplication of algebraic expressions can always be performed� The coe�cients can
also be unde�ned expressions�

In��� � � Expand �x � y � z�	�! gives

Out��� � x� � � x� y � � x� y� � � x y� � y� � � x� z � � x� y z � � x y� z � � y� z
�� x� z� � � x y z� � � y� z� � � x z� � � y z� � z�

Similarly�

In��� � � Expand �a x � b y	���c x	�� d y	��!

Out��� � a c x� � a d x y� � b c x� y� � b d y�

Tabelle ���� Commands for manipulation of algebraic expressions

Expand p! expands the powers and products in a polynomial p by multiplication
Expand p� r! multiplies only the parts in p� which contain r
PowerExpand a! expands also the powers of products and powers of powers
Factor p! factorizes a polynomial completely
Collect p� x! orders the polynomial with respect the powers of x
Collect p� fx� y� � � �g! the same as the previous one� with several variables
ExpandNumerator r! expands only the numerator of a rational expression
ExpandDenominator r! expands only the denominator
ExpandAll r! expands both numerator and denominator completely
Together r! combines the terms in the expression over a common denominator
Apart r! represents the expression in partial fractions
Cancel r! cancels the common factors in the fraction
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�� Factorization of Polynomials
Mathematica performs factorization over the integer or rational numbers if it is possible� Otherwise the
original expression is returned�

In��� �� p � x	� � �x	� � �x	� � �x	�� ��x	�� ��x� ���

In��� �� Factor p! � gives

Out��� � ��� � x� � � x � x�� ��� � x� � x���

Mathematica decomposes the polynomial into three factors which are irreducible over the rational num�
bers�

If a polynomial can be completely decomposed over the complex rational numbers� then this can be
obtained by the option GaussianIntegers�

In��� �� Factor x� � �x � �! � Out��� � �� �x � x� � but

In��� �� Factor &� GaussianIntegers�� True!

Out��� � ��� �I � x��� � �I � x�

�� Operations with Polynomials
Table ���� contains a collection of operations by which polynomials can be algebraically manipulated
over the �eld of rational numbers�

Table ���� Algebraic polynomial operations

PolynomialGCD p� p�! determines the greatest common divisor of the two polynomials
p and p�

PolynomialLCM p� p�! determines the least common multiple of the polynomials
p and p�

PolynomialQuotient p� p�� x! divides p �as a function of x� by p�� the residue
is omitted

PolynomialRemainder p� p�� x! determines the residue on dividing p by p�

Two polynomials are de�ned�

In��� �� p � x	� � �x	� � �x	� � �x	�� ��x	�� ��x� ���

q � x	� � x	�� �x	�� �x� ��

With these polynomials the following operations are performed�

In��� �� PolynomialGCD p� q! � Out��� �  � x � x�

In��� �� PolynomialLCM p� q!

Out��� � ���� � x�� � x � x������� �x � �x� � �x� � x��

In��� �� PolynomialQuotient p� q� x! � Out��� � � � �x � x�

In��� �� PolynomialRemainder p� q� x! � Out��� � �� � ��x � ��x� � ��x�

With the two last results we get

x	 � �x� � �x� � �x� � ��x� � ��x� ��

x� � x� � �x� � �x� �
� x� � �x � � �

��x� � ��x� � ��x � ��

x� � x� � �x� � �x� �

�� Partial Fraction Decomposition
Mathematica can decompose a fraction of two polynomials into partial fractions� of course� over the
�eld of rational numbers� The degree of the numerator of any part is always less than the degree of the
denominator�

Using the polynomials p and q from the previous example we get

In��� �� Apart q�p! � Out��� �
��

�� �� � x�
�
��� �  x � � x�

�� ��� � x� � x��
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�� Manipulation of Non�Polynomial Expressions
Complicated expressions� not necessarily polynomials� can often be simpli�ed by the help of the com�
mand Simplify� Mathematica will always try to manipulate algebraic expressions� independently of
the nature of the symbolic quantities� Here� certain built�in knowledge is used� Mathematica knows the
rules of powers �see ����� p� ���

In��� �� Simplify a	n�a	m�! � Out��� � a��m�n� �������

With the command FullSimplify�Expr� inMathematica simpli�cations are possible� For the manipu�
lation of trigonometric expressions there are the commands TrigExpand� TrigFactor� TrigFactorList�
and TrigReduce�

In ! �� TrigExpand Sin �x! Cos �x!!

Out ! � � Cos x! Cos y!� Sin x!� � Cos x! �Cos y! � Sin y!�

In �! �� TrigFactor &!

Out �! � � Cos x! Sin x!�Cos y!� Sin y!� �Cos y! � Sin y!�

In �! �� TrigReduce &!

Out �! � �����Sin �x� �y! � Sin �x � �y!�

Some trigonometric formulas �see �������� p� ��� can be veri�ed with the following input�

In��� �� Factor Sin �x!� Trig�� True! � Out��� � � cos�x�� sin�x�� � cos�x� sin�x��

In��� �� Factor Cos �x!� Trig�� True! � Out��� � cos�x� �� � cos�� x� � � cos�� x�� �

Finally� we mention that the command ComplexExpand expr! assumes a real variable expr� while in
ComplexExpand expr� fx� x�� � � �g! the variables xi are supposed to be complex�

In��� �� ComplexExpand Sin � x!� fxg!
Out��� � Cosh � Im x!! Sin � Re x!! � I Cos � Re x!! Sinh � Im x!!

�������� Maple
Maple provides the operations enumerated in Table ���� for transformation and simpli�cation of
algebraic expressions�

Table ���� Operations to manipulate algebraic expressions

expand�p� q� q�� � � �� expands the powers and the products in an algebraic expression p�
The optional arguments qi prevent the further expansion of
the subexpressions qi�

factor�p�K� factorizes the expression p� K is an optional RootOf argument�
simplify�p� q� q�� � � �� applies built�in simplifying rules on p� In the presence of the

optional arguments these rules are applied only for them�
radsimp�p� simpli�es p containing radicals�
normal�p� normalizes the rational expression p�
sort�p� sorts the terms of polynomial p in order of decreasing degree�
coeff�p� x� i� determines the coe�cient of xi�
collect�p� v� collects the terms of a polynomial of several variables containing the

variable v�

�� Multiplication of Expressions
In the simplest case Maple decomposes the expression into the sum of powers of the variables�

� expand��x � y � z�	���

� x�y � � x�z � � x�y� � � x�z� � � xy� � � xz� � � y�z � � y�z� � � yz� � x� � y� � z�

�� x�yz � � xy�z � � xyz�
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Here we can demonstrate the e�ect of the absence and presence of an optional argument on theMaple
procedure�

� expand��a # x	� � b # y	�� # sin�� # x� # cos�� # x���

� ax� sin�x� cos�x�� � � ax� sin�x� cos�x�� � ax� sin�x� � � by� sin�x� cos�x��

�� by� sin�x� cos�x�� � by� sin�x�

The expression is completely expanded�

� expand��a # x	�� b # y	�� # sin�� # x� # cos�� # x�� a # x	�� b # y	���

� �ax� � by�� sin�x� cos�x�� � � �ax� � by�� sin�x� cos�x�� � �ax� � by�� sin�x�

Maple kept the expression of the optional argument unchanged�

The following example shows the e�ectiveness of Maple�

� expand�exp�� # a # x� # sinh�� # x� � ln�x�� # sin�� # x���

� eax� sinh�x� cosh�x� � �� ln�x� sin�x� cos�x�� � � ln�x� sin�x� cos�x�

�� Factorization of Polynomials

Maple can decompose polynomials over algebraic extension �elds �if it is possible anyway��

� p �� x	� � � # x	� � � # x	� � � # x	�� �� # x	�� �� # x� ���

q �� x	� � x	�� � # x	�� � # x� ��

� p �� factor�p��

�x � �� �x� � x � � �x� � x� � �� and

� q �� factor�q��

�x� � x � � �x� � ��

Here� Maple decomposed both polynomials into irreducible factors over the �eld of rational numbers�
If we want to have a decomposition over an algebraic extension �eld� then we can continue�

� p� �� factor�p� ����	������

�x� � x� � ��
�
� x � �p��

	 �
� x �  �

p��
	

�x � ��

�

Maple decomposed the second factor �in this case after a formal extension of the �eld by
p����

In general� we do not know if such an extension is possible� If the degrees of the factors are � �� then
it is possible� With the operation RootOf� the roots can be determined as algebraic expressions�

� r �� RootOf�x� � x� � �� � k �� allvalues�r� �

� k !�

�

s
��

��
�

p
���
p

�

�
�



�
�
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��
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�
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���
p

�
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� k �!�
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�
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The call for k �! results in the complex conjugate of k �!�

The procedure given in this example yields a sequence of �oating�point numbers in case the polynomial
can be decomposed only over the �eld of real or complex numbers�

�� Operations with Polynomials
Besides the operations discussed above� the operations gcd and lcm have special importance� They
�nd the greatest common divisor and the least common multiple of two polynomials� Correspondingly�
quo�p� q� x� yields the integer part of the ratio of polynomials p and q� and rem�p� q� x� gives the residue�

� p �� x	 � � # x� � � # x� � � # x� � �� # x� � �� # x� ���

q �� x� � x� � � # x� � � # x� ��

� gcd�p� q��

x� � x � 

� lcm�p� q��

�� x � � x	 � �� x� � �� x� � �� x� � �� x� � �� � � x� � x


With the command normal the ratio of two polynomials can be transformed into normal form over the
�eld of rational numbers� i�e�� the quotient of two relatively prime polynomials with integer coe�cients�

With the polynomials from the previous example

� normal�p�q��

x� � � x� � � x� � � x� ��

x� � �

With numer and denom the numerator and the denominator can be represented separately�

� factor�denom�x � ���x� � ��� ���	�������
x �
p

�
	 �

x�
p

�
	

�� Partial Fraction Decomposition
The partial fraction decomposition in Maple is performed by the command convert� which is called
with the option parfrac�

Using the polynomials p and q from the previous examples we get

� convert�p�q� parfrac� x��

x� � � x � � �
�� x � ��

x� � �
and

� convert�q�p� parfrac� x��

� �

�� x � ��
�
��� �  x � � x�

�� x� � �� x� � ��

�� Manipulation of General Expressions
The operations introduced in the following allow the transformation of algebraic and transcendental
expressions with rational and algebraic functions containing functions which are self�de�ned or built�in
in Maple� In general� optional arguments can be given� which modify the transformations under certain
conditions�

The command simplify is introduced here in an example� In the simple form simplify�expr� Maple
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performs some built�in simpli�cation rules on the expression�

� t �� sinh�� # x� � cosh�� # x� �

� simplify�t��

� sinh�x� cosh�x�� � sinh�x� � � cosh�x�� � � cosh�x�� � 

Similarly�

� r �� sin�� # x� # cos�� # x� �

� simplify�r��

� sin�x� cos�x�� � � sin�x� cos�x��

There exists a command combine� which is the reverse command of expand in a certain sense�

� t �� tan�� # x�� �

� t �� expand�t��

t ��
� sin�x�� cos�x��

�� cos�x�� � ��

� combine�t� trig��

cos�� x��� � 

Here� combinewas called with the optiontrig� which provides the use of the basic rules of trigonometry�
Using the command simplify we get

� t� �� simplify�t�� �� �cos�� x�� � 

cos�� x��

Here� Maple reduced the tangent function to the cosine function�

Transformations can be performed with the exponential� logarithmic and further functions as Bessel
and Gamma Functions�

������ Solution of Equations and Systems of Equations

Computer algebra systems know procedures to solve equations and systems of equations� If the equa�
tion can be solved explicitly in the domain of algebraic numbers� then the solution will be represented
with the help of radicals� If it is not possible to give the solution in closed form� then at least numerical
solutions can be found with a given accuracy� In the following� we introduce some basic commands�
The solution of systems of linear equations �see ��������� �� p� ���� is discussed in a special section�

�������� Mathematica

�� Equations
Mathematica allows the manipulation and solution of equations within a wide range� In Mathematica�
an equation is considered as a logical expression� If one writes

In��� �� g � x	� � �x� � �� �� ������a�

then Mathematica considers it as a de�nition of an identity� Giving the input

In��� �� &�� x�� �� we get Out��� � False� ������b�

since with this value of x the left�hand side and right�hand side are not equal�
The command Roots g� x! transforms the above identity into a form which contains x explicitly� Math�
ematica represents the result with the help of the logical OR in the form of a logical statement�

In��� � � Roots g� x! yields

Out��� � x �� ��
p

�jjx �� � �
p

� ������c�

In this sense� logical operations can be performed with equations�
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With the operation ToRules� the last logical type equations can be transformed as follows�

In��� � � fToRules &!g 
Out��� � ffx�� ��

p
�g� fx�� � �

p
�gg ������d�

�� Solution of Equations
Mathematica provides the command Solve to solve equations� In a certain sense� Solve perform the
operations Roots and ToRules after each other�

Mathematica solves polynomial equations in symbolic form up to fourth degree� since for these equations
solutions can be given in the form of algebraic expressions� However� if equations of higher degree can be
transformed into a simpler form by algebraic transformations� such as factorization� then Mathematica
provides symbolic solutions� In these cases� Solve tries to apply the built�in operations Expand and
Decompose�

In Mathematica numerical solutions are also available�

The general solution of an equation of third degree�

In��� �� Solve x	� � a x	� � b x � c �� �� x!

Mathematica gives

Out��� � ffx�� �a

�

� �
�
� ��a� � � b�

�
�
�� a� � � a b� �� c � �

�
�

q
� �a� b�� � � b� � � a� c� � a b c � �� c�

��
�

�

�
�� a� � � a b� �� c � �

�
�

q
� �a� b�� � � b� � � a� c� � a b c � �� c�

��
�

��
�
�

g�
� � �g

The solution list shows only the �rst term explicitly because of the length of their terms� If we want
to solve an equation with given coe�cients a� b� c� then it is better to handle the equation itself with
Solve than to substitute a� b� c into the solution formula�

A� For the cubic equation �see ������� p� ��� x� � �x � � � � we get�

In��� � � Solve x	� � � x � � �� �� x!

Out��� � ffx�� ���� � ����g� fx�� � i
p

�

����
�  � i

p
�

����
g� fx�� �� i

p
�

����
�

 � i
p

�

����
gg

B� Solution of an equation of sixth degree�

In��� � � Solve x	�� �x	� � �x	�� �x	� � ��x	�� ��x� �� �� �� x!

Out��� � ffx�� �g� fx�� �g� fx�� �g� fx�� �g� fx�� �� � ig� fx�� � � � igg
Mathematica succeeded in factorizing the equation in B with internal tools� then it is solved without
di�culty�

If numerical solutions are required� then the command NSolve is recommended� since it is faster�

The following equation is solved by NSolve�

In��� � � NSolve x	�� �x	� � �x	�� �x	� � �x	�� �x � � �� �� x!

Out��� � ffx�� ���������� ������� ig� fx�� ��������� � ������� ig�
fx�� �������g� fx�� �� � ig� fx�� � � � ig� fx�� �����gg

�� Solution of Transcendental Equations
Mathematica can solve transcendental equations� as well� In general� this is not possible symbolically�
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and these equations often have in�nitely many solutions� In these cases� a domain should be given�
where Mathematica has to �nd the solutions� This is possible with the command FindRoot g� fx� xsg!�
where xs is the initial value for the search of the root�

In�	� � � FindRoot x � ArcCoth x!� � �� �� fx� �g!
Out�	� � fx�� ������g and

In�
� � � FindRoot x � ArcCoth x!� � �� �� fx� �g! � Out�
� � fx�� �������g
�� Solution of Systems of Equations

Mathematica can solve simultaneous equations� The operations� built�in for this purpose� are repre�
sented in Table ����� and they present the symbolical solutions� not the numerical ones�

Similarly to the case of one unknown� the command NSolve gives the numerical solution� The solution
of systems of linear equations is discussed in ������� p� ����

Table ���� Operations to solve systems of equations

Solve fl� �� r�� l� �� r�� � � �g� fx� y� � � �g! solves the given system of equations with respect to
the unknowns

Eliminate fl� �� r�� � � �g� fx� � � �g! eliminates the elements x� � � � from the system of
equations

Reduce fl� �� r�� � � �g� fx� � � �g! simpli�es the system of equations and gives the possi�
ble solutions

�������� Maple

�� Important Operations

The two basic operations in Maple to solve equations symbolically are solve and RootOf or roots�
With them� or with their variations with certain optional arguments� it is possible to solve several
equations� even transcendental ones� If an equation cannot be solved in closed form� Maple provides
numerical solutions�

RootOf represents the roots of an equation of one variable�

k �� RootOf�x	�� � # x � �� x� � k �� RootOf� Z� � � Z � �� ������

In Maple k denotes the set of the roots of the equation x� � �x � � � �� Here� the given expression is
transformed into a simple form� if it is possible� and the global variable is represented by Z� �Maple
returns an unevaluated RootOf�� The command allvalues�k� results in a sequence of the roots�

The command solve yields the solution of an equation if any exists�

� k �� solve�x	� � x	�� � # x	�� � # x� �� x��

k �� �

�
�



�
I
p

���

�
� 

�
I
p

��
p

���
p

� �

If the equation entered is of degree greater then four� then answers are provided in terms of RootOf�

� r �� solve�x	� � � # x	�� � # x � �� x�� �� r �� RootOf� Z	 � � Z� � � Z � ��

This equation has no solution for rational numbers� With allvalues we get the approximate numerical
solutions�

�� Solution of Equations with One Variable

� Polynomial Equations Polynomial equations with one unknown� whose degree is � �� can be
solved by Maple symbolically�

� solve�x	�� � # x	�� ��� � I��I�
p

���p�
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� Equations of Degree Three Maple can solve the general third degree equation with general
coe�cients�

� r �� solve�x	� � a # x	� � b # x � c� x� �

� r !�
�

s
ba

�
� c

�
� a�

��
�

p
� b� � b�a� � � bac � �� c� � � ca�

p
�

�

�
b

�
� a�

�

�

s
ba

�
� c

�
� a�

��
�

p
� b� � b�a� � � bac � �� c� � � ca�

p
�

�

� a

�

We get the corresponding expression for the other roots r �!� r �!� too� but we do not give them here
because of their length�
If the input equation in solve has �oating�point numbers for coe�cients� thenMaple solves the equation
numerically�

� solve�� # x	� � �� # x � ��� x��

������������ ���������� ���������� I� ��������� � ���������� I

� General Equation of Degree Four The general solution is given by Maple also for polynomial
equations of degree four�

� Other Algebraic Expressions Maple can solve equations containing radical expressions of the
unknown�

� Extra root We must be careful� when taking roots� because occasionally we may get equations
whose roots are not roots of the original equation� These roots are called extra roots� Hence� every root
o�ered by Maple should be substituted into the original expression�

The solution of the equation
p
x � � �

p
�x� �  � � is to be determined� The input is

� p �� sqrt�x � �� � sqrt�� # x� ��  � l �� solve�p � �� x� �

With � s �� allvalues�l� � we obtain

s ! ��


�
�



�
�� �

p
��� and s �! ��



�
�



�
���

p
��� �

By � subs�x � s i!� p�� i � � � we can convince ourselves that only s �! is a solution�

�� Solution of Transcendental Equations
Equations containing transcendental parts can usually be solved only numerically� Maple provides the
command fsolve for numerical solution of any kind of equation� With this command� Maple �nds real
roots of the equation� Usually� we get only one root� However� transcendental equations often have
several roots� The command fsolve has an optional third argument� the domain where the root is to
be found�

� fsolve�x � arccoth�x�� � � �� x� ������ � ����������� but
� fsolve�x � arccoth�x�� � � �� x� ����� � ����������

�������

�� Solution of Nonlinear System of Equations
Systems of equations can be solved by the same commands solve and fsolve� The �rst argument
contains all of the equations in curly braces� and the second one� also in curly braces� lists the unknowns
for which the equations are to be solved�

� solve�fgl � gl �� � � �g� fx� x�� � � �g�� �������

� solve�fx	�� y	� � �� x	� � y	� � �g� fx� yg��
fy � � x �

p
�g� fy � � x � �p�g� fy � �� x �

p
�g� fy � �� x �

p
�g

�������
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������ Elements of LinearAlgebra
�������� Mathematica
In ������� p� ���� the notion of matrix and several operations with matrices were de�ned on the basis of
lists� Mathematica applies these notions in the theory of systems of linear equations� In the followings

p � Array p� fm�ng! �������

de�nes a matrix of type �m�n� with elements pij � p  i� j!!� Furthermore

x � Array x� fng! und b � Array b� fmg! �������

are n� or m�dimensional vectors� With these de�nitions the general system of linear homogeneous or
inhomogeneous equations can be written in the form �see ������ p� ����

p � x �� b p � x �� � �������

�� Special Case n � m� det p �� �
In the special case n � m� detp �� �� the system of inhomogeneous equations has a unique solution�
which can be determined directly by

x � Inverse p!� b �������

Mathematica can handle such systems of up to ca� �� unknowns in a reasonable time� depending on the
computer system� An equivalent� but much faster solution is obtained by LinearSolve p� b!�

�� General Case
With the commands LinearSolve and NullSpace� all the possible cases can be handled as discussed
in ������ p� ���� i�e�� it can be determined �rst if any solution exists� and if it does� then it is calculated�
In the following� we discuss some of the examples from Section ������ p� �����

A� The example in ������� �� p� ���� is a system of homogeneous equations

x� � x� � �x� � x� � �
x� � x� � �x� � �x� � �

�x� � x� � �x� � x� � �
x� � �x� � �x� � �x� � �

which has non�trivial solutions� These solutions are the linear combinations of the basis vectors of the
null space of matrix p� It is the subspace of the n�dimensional vector space which is mapped into the
zero by the transformation p� A basis for this space can be generated by the command NullSpace p!�
With the input

In��� �� p � ff��� ���g� f� ���� �g� f���� �� g� f� ����� �gg
we de�ne the matrix whose determinant is actually zero� which can be checked by Det p!� Now we take�

In��� �� NullSpace p! and get Out��� � ff��

�
�

�

�
� � �g� f����� �� gg

is displayed� a list of two linearly independent vectors of four�dimensional space� which form a basis for
the two�dimensional null�space of matrix p� An arbitrary linear combination of these vectors is also in
the null�space� so it is a solution of the system of homogeneous equations� This solution coincides with
the solution found in Section ������� �� p� ����

B� Consider the example A in ������� �� p� ����

x� � �x� � �x� � x� � �x� � �
�x� � x� � �x� � �x� � x� � �
�x� � x� � �x� � �x� � �x� � �

with matrix m of type ��� ��� and vector b

In��� �� m � ff���� ���� �g� f���� ������g� f�� � �������gg�
In��� �� b � f�� �� �g�
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For the command

In��� �� LinearSolve m� b!

the response is

LinearSolve � � nosol� Linear equation encountered which has no solution�

The input appears as output�

C� According to example B from Section ������� �� p� ����

x� � x� � �x� � 
x� � �x� � x� � �

�x� � x� � �x� � �
��x� � �x� � �x� � ��

the input is

In��� �� m� � ff��� �g� f�����g� f���� �g� f��� �� �gg�
In��� �� b� � f� �� ����g�

If we want to know how many equations have independent left�hand sides� then we call

In��� �� RowReduce m�!�� Out��� � ff� �� �g� f�� � �g� f�� �� g� f�� �� �gg
Then the input is

In�	� �� LinearSolve m�� b�!�� Out�	� � f�

�
��

�
���

�
g

The answer is the known solution�

�� Eigenvalues and Eigenvectors
Eigenvalues and eigenvectors of matrices are de�ned in ���� p� ���� Mathematica provides the possibility
of determining eigenvalues and eigenvectors by special commands� So� the command Eigenvalues m!
produces a list of eigenvalues of a square matrix m� Eigenvectors m! creates a list of the eigenvectors
of m� If N m! is substituted instead of m� then we get the numerical eigenvalues� In general� if the order
of the matrix is greater than four �n � ��� then no algebraic expression can be obtained� since the
characteristic polynomial has degree higher than four� In this case� we should ask for numerical values�

In�
� �� h � Table ��i � j � �� fi� �g� fj� �g!
This generates a �ve�dimensional so�called Hilbert matrix�

Out�
� � ff� 

�
�


�
�



�
�



�
g� f

�
�



�
�



�
�


�
�



�
g� f

�
�


�
�



�
�



�
�


�
g� f

�
�



�
�


�
�



�
�



�
g� f

�
�


�
�



�
�


�
�



�
gg

With the command

In���� �� Eigenvalues h!

we get the answer

Eigenvalues��eival� Unable to �nd all roots of the characteristic polynomial�

But with the command

In���� �� Eigenvalues N  h!!� we get

Out���� � f������� ��������� �������� ������������ ������� ��	g

�������� Maple
The Maple library provides the special packages linalg and LinearAlgebra� After the command

� with �linalg� � �������
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all the �� commands and operations of the package linalg are available for the user� For a complete
list and description see  ����!� It is important that matrices and vectors must be generated by the
commands matrix and vector while using this package� and not by the general structure array�

With matrix�m�n� s�� an m � n matrix is generated� If s is missing� then the elements of this matrix
are not speci�ed� but they can be determined later by the assignments A i� j! �� � � �� If s is a function
f � f�i� j� of the indices� then Maple generates the matrix with these elements� Finally� s can be a list
with elements� e�g�� vectors� Analogously� the de�nition of vectors can happen by vector�n� e�� The
input of a vector is similar to a � n matrix� but a vector is always considered to be a column vector�
Table ���
 gives the most important matrix and vector operations�
Addition of vectors and matrices can be performed by the command add�u� v� k� l�� This procedure
adds the vectors or matrices u and v multiplied by the scalars k and l� The optional arguments k and
l can be omitted� The addition is performed only if the corresponding matrices have the same number
of rows and columns�

Multiplication of matrices can be performed by multiply�u� v� or with the short form �see ���������
p� ���� 6# as an in�x operator�

Table ���� Matrix operations

transpose�A� determines the transpose of A
det�A� determines the determinant of the square matrix A
inverse�A� determines the inverse of the square matrix A
adjoint�A� determines the adjoint of the square matrix A� i�e��

A 6# adjoint�A� � det�A�
mulcol�A� s� expr� multiplies the s�th column of the matrix A by expr
mulrow�A� r� expr� multiplies the r�th row by expr

�� Solution of Systems of Linear Equations
To handle systems of linear equations Maple provides special operations contained in the linear algebra
package� One of them is the command linsolve�A� c�� It handles the system of linear equations in the
form

A � x � c �������

where A denotes the coe�cient matrix and c is the vector on the right�hand side�

If there is no solution� then the null�sequence Null is returned� If the system has several linearly inde�
pendent solutions� they will be given in parametric form�

The operation nullspace�A� �nds a basis in the null space of matrix A � which is di�erent from zero if
the matrix is singular�

It is also possible to solve a system of linear equations with the operators of multiplication and evalu�
ation of the inverse�

A� Consider the example E from ������� �� p� ���� of the homogeneous system

x� � x� � �x� � x� � �
x� � x� � �x� � �x� � �

�x� � x� � �x� � x� � �
x� � �x� � �x� � �x� � �

whose matrix is singular� This system has non�trivial solutions� In order to solve it� �rst we de�ne
matrix A�

� A �� matrix�  ��� ���!�  � ���� �!�  ���� �� !�  � ����� �!!� �

�With det�A� we can be convinced that the matrix is singular�� With the command

� a �� nullspace�A� � a ��
�

��

�
�

�

�
� � �

�
�  ����� �� !

�
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the list of two linearly independent vectors is determined� They form a basis in the two�dimensional
null space of matrix A�

For the general case� operations to apply the Gaussian algorithm are available in Maple� They are
enumerated in Table �����
If the number of unknowns is equal to the number of equations and the coe�cient matrix is non�singular�
then the command linsolve is recommended�

Table ����� Operations of the Gaussian algorithm

pivot�A� i� j� generates a matrix from A by adding an appropriate multiple of the i�th
row to the others� whose j�th column consists of zeros except Aij

gausselim�A� generates the Gaussian triangle matrix by row�pivoting� the elements of A
have to be rational numnbers

gaussjord�A� generates a diagonal matrix according to the Gauss�Jordan method
augment�A� u� generates the augmented matrix consisting of A and the column vector u

B� The system from ������� �� p� ����

�x� � �x� � �x� � �x� � �
��x� � ��x� � �x� � x� � ��
��x� � �x� � �x� � �x� � �

�x� � �x� � �x� � �x� � ���

is to be solved� Now� the input is

� A �� matrix�  �������� �!�  ��� ��� ���!�  ��� �� �� �!�  �� �������!!� �

� v �� vector� �� ��� �����!� �

With linsolve we get

� linsolve�A� v�� ��



�

�




�
�
�

The Gaussian algorithm results in

� F �� gaussjord�augment�A� v��� �� F ��

���������
 � � �

�

�
�  � � 

� �  �


�
� � �  �

���������
C� The inhomogeneous system of example

B from ������� �� p� ����

x� � x� � �x� � 
x� � �x� � x� � �

�x� � x� � �x� � �
��x� � �x� � �x� � ��

is to be solved� The input is the corresponding matrix and vector�

� A �� matrix�  ��� �!�  �����!�  ���� �!�  ��� �� �!!� �

� v �� vector� � �� ����!� �

The system is overdetermined� The command linsolve cannot be used� We can start with

� F �� augment�A� v�� �� F ��

����
 � � 
 �� � �
� � � �
�� � � ��

����
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then by gaussjord the matrix F is
transformed into an upper triangular form�

� F �� gaussjord�F �� �� F ��

�����������

 � �
�

�

�  � �

�

� �  ��

�
� � � �

�����������The solution can be read from F�

�� Eigenvalues and Eigenvectors
InMaple� the eigenvalues and eigenvectors of a square matrix can be determined by the special operators
eigenvals and eigenvects� Usually� the eigenvalue equation cannot be solved in closed form for
matrices of order n � �� Then Maple gives the results as approximating �oating�point numbers�

Find the eigenvalues of the �ve�dimensional Hilbert matrix �see �������� �� p� �����
In the package linalg there is a special command to generate n�dimensional Hilbert matrices� It is
hilbert�n� x�� The elements of the matrix are ��i� j�x�� If x is not de�ned� then Maple substitutes
x �  automatically� We solve the problem with the input

� eigenvals�hilbert�����

Maple answers

RootOf� � � ������ Z � �������� Z� � ����������� Z�

������������� Z� � ����������� Z��

With allvalues� a sequence of the approximated values can be produced�

������ Di�erential and Integral Calculus

�������� Mathematica
The notation of the derivative as a functional operator was introduced in ������� p� ���� Mathematica
provides several possibilities to apply the operations of analysis� e�g�� determination of the di�erential
quotient of arbitrarily high order� of partial derivatives� of the complete di�erential� determination of
inde�nite and de�nite integrals� series expansion of functions� and also solutions of di�erential equa�
tions�

�� Calculation of Di
erential Quotients

� Di	erentiationOperator The di�erentiation operator �see Section ������� p� ���� has the name
Derivative� Its complete form is

Derivative n�� n�� � � �! ������

The arguments say how many times the function is to be di�erentiated with respect to the current
variables� In this sense� it is an operator of partial di�erentiation� Mathematica tries to represent the
result as a pure function�

� Di	erentiation of Functions The di�erentiation of a given function can be performed in a
simpli�ed manner with the operator D� With D f  x!� x!� the derivative of the function f�x� will be
determined�
D belongs to a group of di�erential operations� which are enumerated in Table �����

Tabelle ���� Operations of di�erentiation

D f  x!� fx� ng! yields the n�th derivative of function f�x� with respect to x
D f� fx�� n�g� fx�� n�g� � � �! multiple derivatives� ni�th derivative with respect to xi �i � � �� � � ��
Dt f ! the complete di�erential of the function f

Dt f� x! the complete derivative
df

dx
of the function f

Dt f� x�� x�� � � �! the complete derivative of a function of several variables
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For both examples in ������� p� ���� we get

A � In��� � � D Sqrt x	� Exp �x! Sin x!!� x!

Out��� �
E�x x� �x Cos x! � � Sin x! � � x Sin x!�

� Sqrt E�x x� Sin x!!

B � In��� �� D ��x � �	��x�� x! �
Out��� � � x � � � x�����x � � � � � x��x Log  � � x!

The command Dt results in the complete derivative or complete di�erential�

C � In��� �� Dt x	� � y	�! � Out��� � �x�Dt x! � �y� Dt y!

D � In��� �� Dt x	� � y	�� x! � Out��� � �x� � �y�Dt y� x!

In this last example� Mathematica supposes y to be a function of x� which is not known� so it writes the
second part of the derivative in a symbolic way�

If Mathematica �nds a symbolic function while calculating a derivative� it leaves it in this general form�
and expresses its derivative by f ��

E � In��� �� D x f x!	�� x! � Out��� � f x!� � �xf x!�f� x!

Mathematica knows the rules for di�erentiation of products and quotients� it knows the chain rule� and
it can apply these formally�

F � In��� �� D f u x!!� x! Out��� � f� u x!! u� x!

G � In��� �� D u x!�v x!� x! Out��� �
u� x!

v x!
� u x! v� x!

v x!�

�� Inde�nite Integrals

With the command Integrate f� x!� Mathematica tries to determine the inde�nite integral
Z
f�x� dx�

If Mathematica knows the integral� it gives it without the integration constant� Mathematica supposes
that every expression not containing the integration variable does not depend on it�
In general� Mathematica �nds an inde�nite integral� if there exists one which can be expressed in closed
form by elementary functions� such as rational functions� exponential and logarithmic functions� trigono�
metric and their inverse functions� etc� If Mathematica cannot �nd the integral� then it returns the orig�
inal input� Mathematica knows some special functions which are de�ned by non�elementary integrals�
such as the elliptic functions� and some others�

To demonstrate the possibilities of Mathematica� some examples will be shown� which are discussed in
��� p� �����

� Integration of Rational Functions �see ������� p� ������

A � In��� � � Integrate ��x � ����x	� � x	�� �x�� x!

Out��� �
� Log � � x!

�
� � Log x!

�
� Log � � x!

�

B � In��� � � Integrate �x	� � ���x�x� �	��� x!

Out��� � � �� � x��� � 

� � x
� � Log � � x!� Log x! �������

� Integration of Trigonometric Functions �see ����� p� ������

A� The example A in ������� p� ���� with the integralZ
sin� x cos� x dx �

Z
sin� x �� sin� x�� cos x dx �

Z
t��� t��� dt with t � sinx
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is calculated�

In��� � � Integrate Sin x!	�Cos x!	�� x!

Out��� �
� Sin x!

��
� Sin � x!

��
� � Sin � x!

���
� Sin � x!

���

B� The example B in ������� p� ���� with the integralZ sin xp
cos x

dx � �
Z dtp

t
with t � cos x

is calculated�

In��� �� Integrate Sin x!�Sqrt Cos x!!� x! � Out��� � ��Sqrt Cos x!!

Remark� In the case of non�elementary integrals Mathematica tries to substitute them by special
integrals� If that is not possible it does nothing�

In��� �� Integrate x	x� x! � Out��� � Integrate xx� x!

�� De�nite Integrals
With the command Integrate f� fx� xa� xeg!� Mathematica can evaluate the de�nite integral of the
function f�x� with a lower limit xa and upper limit xe�

A � In��� �� Integrate Exp �x�!� fx��Infinity� Infinityg!� we get Out��� � Sqrt Pi!

After Mathematica has loaded a special package for integration� it gives the value � �see Table ����
p� ���� Nr� � for a � ��

B� It can happen� with earlier releases of Mathematica� that if the input is

In��� �� Integrate �x	�� fx��� g!� we get Out��� ��
After a slightly longer working time� Mathematica gives�� because the integrand has a pole at x � ��

In the calculation of de�nite integrals� we should be careful� If the properties of the integrand are not
known� it is recommended before integration to ask for a graphical representation of the function in the
considered domain�

�� Multiple Integrals
De�nite double integrals can be called by the command

Integrate f x� y!� fx� xa� xeg� fy� ya� yeg! �������

The evaluation is performed from right to left� so� �rst the integration is evaluated with respect to y�
The limits ya and ye can be functions of x� which are substituted into the primitive function� Then the
integral is evaluated with respect to x�

For the integral A� which calculates the area between a parabola and a line intersecting it twice� in
������� p� ���� we get

In��� �� Integrate x y	�� fx� �� �g� fy� x	�� �xg! � Out��� �
��

�
�

Also in this case� it is important to be careful with the discontinuities of the integrand�

�� Solution of Di
erential Equations
Mathematica can handle ordinary di�erential equations symbolically if the solution can be given in
closed form� In this case� Mathematica gives the solution in general� The commands discussed here are
listed in Table �����
The solutions �see ��� p� ���� are represented as general solutions with the arbitrary constants C i!�
Initial values and boundary conditions can be introduced in the part of the list which contains the
equation or equations� In this case we get a special solution�

As examples� two di�erential equations are solved here from ������ p� ����
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Table ����� Commands to solve di�erential equations

DSolve dgl� y x!� x! solves the di�erential equation for y x! �if it is possible�� y x!
may be given in implicit form

DSolve dgl� y� x! gives the solution of the di�erential equation in the form of a
pure function

DSolve fdgl�� dgl�� � � �g� y� x! solves a system of ordinary di�erential equations

A� The solution of the di�erential equation y��x�� y�x� tanx � cos x is to be determined�

In��� �� DSolve y� x!� y x! Tan x! �� Cos x!� y� x!

Mathematica solves this equation� and gives the solution as a pure function with the integrations con�
stant C !

Out��� � ffy  Function 
Sec Slot !! �� C�� � Sin � Slot !! � � Slot !�

�
!gg

The symbol Slot is for 7� it is its FullForm�
If it is required to get the solution for y x!� then Mathematica gives

In��� �� y x!�� & � Out��� � fSec x! �� x � � C�� � Sin � x!�

�
g

We also could make the substitution for other quantities� e�g�� for y� x! or y !� The advantage of using
pure functions is obvious here�

B� The solution of the di�erential equation y��x�x�x� y�x�� � y��x� � � �see ������ �� p� ���� is
to be determined�

In��� �� DSolve y� x! x�x� y x!� � y x!	� �� �� y x!� x!

Mathematica returns�
InverseFunction � � ifun� Inverse Functions are beeng used� Values may be lost � � �

Out��� ��

��
y x! �� �xProductLog

�
eC�i�

x

��
Here ProductLog�z� is the principal velue of the solution of z � e� in � The reason for doing so is
that Mathematica cannot solve this di�erential equation for y� The solution of this di�erential equation
was given in implicit form �see ������ �� p� �����

In such cases� the solutions can be found by numerical solutions �see ������� �� p� ����� Also in
the case of symbolic solutions of di�erential equations� like in the evaluation of inde�nite integrals� the
e�ciency of Mathematica should not be overestimated� If the result cannot be expressed as an algebraic
expression of elementary functions� the only way is to �nd a numerical solution�

By the help of DSolve gleich� y x� � � � � xn!� fx�� � � � � xng! also partial di�erential equations can be solved�

�������� Maple
Maple provides many possibilities to handle the problems of analysis� Besides di�erentiation of func�
tions� it can also evaluate inde�nite and de�nite integrals� multiple integrals� and expansion of functions
into power series� The basic elements of the theory of analytic functions are also provided� Several dif�
ferential equations can be solved� as well�

�� Di
erentiation
The operator of di�erentiation D was introduced in ������� p� ����� Its application with di�erent op�
tional arguments allows us to di�erentiate functions in procedure representation� Its complete syntax
is

D i!�f� ������a�
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Here� the partial derivative of the �procedure� function f is determined with respect to the i�th variable�
The result is a function in procedure representation� D i� j!�f� is equivalent to

D i!�D j!�f�� and D !�f� � f� ������b�

The argument f is here a function expression represented in procedure form� The argument can contain
self�de�ned functions besides the built�in functions� functions de�ned by the arrow operator� etc�

Let � f �� �x� y��� exp�x # y� � sin�x � y� � �

Then one sets

� D  !�f�� � f

� D  !�f�� � �x� y��� y exp�x y� � cos�x � y�

� D  �!�f�� � �x� y��� x exp�x y� � cos�x � y�

� D  � �!�f�� � �x� y��� exp�x y� � x y exp�x y�� sin�x � y�

Besides the di�erentiation operator there exists the operator diff with the syntax

diff�expr� x� x�� � � � � xn� ������a�

Here expr is an algebraic expression of the variables x� x�� � � � � The result is the partial derivative of
the expression with respect to the variables x� � � � � xn� If n �  holds� then the same result can be
obtained by repeated application of the operation diff�

diff�a� x� x�� � diff�diff�a� x�� x�� ������b�

Multiple di�erentiation with respect to the same argument can be got by the sequence operator 5�

� diff�sin�x�� x5��� �� diff�sin�x�� x� x� x� x� x�� � cos�x�

If the function f�x� is not de�ned� then the operation diff gives the derivatives symbolically�
d

dx
f�x��

A � diff�f�x��g�x��� �
d

dx
f�x�

g�x�
�

f�x�
d

dx
g�x�

g�x��

B � diff�x # f�x�� x�� � f�x� � x
d

dx
f�x�

�� Inde�nite Integrals
If the primitive function F �x� can be represented as an expression of elementary functions for a given
function f�x�� then Maple can usually �nd it with int�f� x�� The integration constant is not displayed�
If the primitive function does not exist or is not known in closed form� then Maple returns the integrand�
Maple knows many special functions and will substitute them if possible into the output� Instead of the
operator int� the long form integrate can be used�
� Integration of Rational Functions

A � � int��� # x � ����x	� � x	�� � # x�� x�� � ��

�
ln�x�� 

�
ln�x � �� �

�

�
ln�x� �

B � � int��x	� � ���x # �x� �	��� x�� � � ln�x�� 

�x� ��
� 

x� 
� � ln�x� �

� Integral ofRadicands Maple can determine the inde�nite integrals given in the table of inde�nite
integrals �see ���� p� �������

If the input is � X �� sqrt�x	�� a	�� � then we have the output�

� int�X� x�� � 

�
x
p

x� � a� � 

�
a� ln�x �

p
x� � a��

� int�X�x� x�� �
p
x� � a� � aarcsec

�
x

a

�
� int�X # x� x�� � 

�
�x� � a�����

�������
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� Integrals with Trigonometric Functions

A � � int�x	� # sin�a # x�� x��
�a�x� cos�ax� � �a�x� sin�ax�� � sin�ax� � �ax cos�ax�

a�

B � � int���sin�a # x��	�� x�� � �

�

cos�ax�

a sin�ax��
�



�

ln�csc�ax�� cot�ax�

a

Remark� In the case of non�elementary integrals� which can not be substituted by known special
functions� only a formal transformation is performed�

� int�x	x� x�� the output is
Z

xx dx�

since this integral cannot be given in an elementary way�

�� De�nite Integrals
To determine a de�nite integral the command int is used with the second argument x � a �� b� Here� x
is the integration variable� and a �� b are the lower and upper limits of the integration interval�

A � � int�x	�� x � a��b�� � 

�
b� � 

�
a� � int�x	�� x � ����� � ��

�
�������

B � � int�exp��x	��� x � �infinity��infinity�� � p
�

C � � int��x	�� x � ����� � �
If Maple cannot solve the integral symbolically� it returns the input� In this case we can try a nu�
merical integration �see ���� p� ������ with the commands evalf�int�expr�var	a

b�� or evalf
�Int�expr�var	a

b���

�� Multiple Integrals
Maple can even calculate multiple integrals if it can be done explicitly� The operation int can be nested�

A � � int�int�x	� � y	� # exp�x � y�� x�� y��



�
x�y � ex�y�x � y�� � ��x � y�ex�y � �ex�y � �

�
�x � y�ex�y � ex�y

	
x � ex�yx�

B � � int�int�x # y	�� y � x	���� # x�� x � ������ � ��

�

�� Solution of Di
erential Equations
Maple provides the possibility of solving ordinary di�erential equations and di�erential equation sys�
tems with the di�erent forms of the operator dsolve� The solution can be a general solution or a
particular solution with given initial conditions� The solution is given either explicitly or implicitly as
a function of a parameter� The operator dsolve accepts as a last argument the options shown inTable
�����

Table ����� Options of operation dsolve

explicit gives the solution in explicit form if it is possible
laplace applies the Laplace transformation for the solution
series the power series expansion is used for the solution
numeric the result is a procedure to calculate numerical values of the solution

� General Solution

� dsolve�diff�y�x�� x�� y�x� # tan�x� � cos�x�� y�x��� ������a�

y�x� �


�

cos�x� sin�x� � x � � C

cos�x�
������b�
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Maple gives the general solution in explicit form with a constant� In the following example the solution
is given in implicit form� since y�x� cannot be expressed from the de�ning equation� The additional
option explicit has no e�ect here�

� dsolve�diff�y�x�� x� # �x� y�x�� � y�x�	�� y�x��� ������a�

e
� �
y�x�x� Ei

�
�



y�x�

�
� C ������b�

� Solution with Initial Values Consider the di�erential equation y�� ex� y� � � with y��� � ��
Here we give the option series� If we use this option� the initial values should belong to x � �� The
same is valid for the option laplace�

� dsolve�fdiff�y�x�� x�� exp�x�� y�x�	�� y��� � �g� y�x�� series�� ������a�

y�x� � x �


�
x� �



�
x� �

�

��
x� �

�

��
x� � O�x	� ������b�

The equation and the initial values have to be in curly braces� The same is true for systems of di�erential
equations�

��� Graphics inComputerAlgebra Systems
By providing routines for graphical representation of mathematical relations such as the graphs of
functions� space curves� and surfaces in three�dimensional space� modern computer algebra systems
provide extensive possibilities for combining and manipulating formulas� especially in analysis� vector
calculus� and di�erential geometry� and they provide immeasurable help in engineering designing�

������ GraphicswithMathematica

�������� Basic Elements of Graphics

Mathematica builds graphical objects from built�in �so�called� graphics primitives� These are objects
such as points �Point�� lines �Line� and polygons �Polygon� and properties of these objects such as
thickness and colour�

Mathematica has several options to specify the environment for graphics and how the graphical objects
should be represented�
With the command Graphics list!� where list is a list of graphics primitives� Mathematica is called
to generate a graphic from the listed objects� The object list can follow a list of options about the
appearance of the representation�
With the following input

In��� �� g � Graphics fLine ff�� �g� f�� �g� f�� �gg!� Circle f�� �g� �!� �����a�

Text FontForm 	Example
�	Helvetica�Bold
���!� f�� �g!g� AspectRatio�� Automatic! �����b�

a graphic is built from the following elements�

a� Broken line of two line segments starting at the point ��� �� through the point ��� �� to the point
��� ���

b� Circle with the center at ��� �� and radius ��

c� Text with the content 	Example
� written in Helvetica�Bold font �the text appears centered with
respect to the reference point ��� ����
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example

Figure ���

With the call Show g!� Mathematica displays the picture
of the generated graphic �Fig �����

Certain options should be previously speci�ed� Here the
option AspectRatio is set to Automatic� By default
Mathematica makes the ratio of the height to the width of
the graph  � GoldenRatio� It corresponds to a relation
between the extension in the x direction to the one in the
y direction of  � ���� �  � ����� With this option
the circle would be deformed into an ellipse� The value of
the option Automatic ensures that the representation is
not deformed�

�������� Graphics Primitives

Mathematica provides the two�dimensional graphic objects enumerated in Table �����

�������� Syntax of Graphical Representation

�� Building Graphic Objects
If a graphic object is to be built from primitives� then �rst a list of the corresponding objects with their
global de�nition should be given in the form

fobject�� object�� � � �g� ������a�

where the objects themselves can be lists of graphic objects�

Table ����� Two�dimensional graphic objects

Point fx� yg! point at position x� y
Line ffx�� y�g� fx�� y�g� � � �g! broken line through the given points
Rectangle fxlu� ylug� fxro� yrog! shaded rectangle with the given coordinates left�down� right�up
Polygon ffx�� y�g� fx�� y�g� � � �g! shaded polygon with the given vertices
Circle fx� yg� r! circle with radius r around the center x� y
Circle fx� yg� r� f��� ��g! circular arc with the given angles as limits
Circle fx� yg� fa� bg! ellipse with half�axes a and b
Circle fx� yg� fa� bg� f��� ��g! elliptic arc
Disk fx� yg� r!� Disk fx� yg� fa� bg! shaded circle or ellipse
Text text� fx� yg! writes text centered to the point x� y

Besides these objects Mathematica provides further primitives to control the appearance of the rep�
resentation� the graphics commands� They specify how graphic objects should be represented� The
commands are listed in Table �����

Table ����� Graphics commands

PointSize a! point is drawn with radius a as a fraction of the total picture
AbsolutePointSize b! denotes the absolute radius b of the point �measured in pt

������ mm��
Thickness a! draws lines with relative thickness a
AbsoluteThickness b! draws lines with absolute thickness b �also in pt�
Dashing fa�� a�� a�� � � �g! draws a line as a sequence of stripes with the given length �in

relative measure�
AbsoluteDashing fb�� b�� � � �g! the same as the previous one but in absolute measure
GrayLevel p! speci�es the level of shade �p � � is for black� p �  is for white�
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There is a wide scale of colors to choose from but their de�nitions are not discussed here�

�������� Graphical Options
Mathematica provides several graphical options which have an in�uence on the appearance of the entire
picture� Table ���� gives a selection of the most important commands� For a detailed explanation�
see  ����!�

Table ����� Some graphical options

AspectRatio �� w sets the ratio w of height and width� Automatic determines
w from the absolute coordinates� the default setting is
w �  � GoldenRatio

Axes �� True draws coordinate axes
Axes �� False does not draw coordinate axes
Axes �� fTrue� Falseg shows only the x�axis
Frame �� True shows frames
GridLines �� Automatic shows grid lines
AxesLabel �� fxsymbol� ysymbolg denotes axes with the given symbols
Ticks �� Automatic denotes scaling marks automatically� with None they can be

suppressed
Ticks �� ffx�� x�� � � �g� fy�� y�� � � �gg scaling marks are placed at the given nodes

Let object  be� e�g��

In��� �� o � fCircle f�� �g� f�� �g!� Line ff�� �g� f�� �gg!g
and corresponding to it

In��� �� o� � fCircle f�� �g� �!g�
If a graphic object� e�g�� o�� is to be provided with certain graphical commands� then it should be written
into one list with the corresponding command

In��� �� o� � fThickness ���!� o�g�
This command is valid for all objects in the corresponding braces� and also for nested ones� but not for
the objects outside of the braces of the list�
From the generated objects two di�erent graphic lists are de�ned�

In��� �� g � Graphics fo� o�g! � g� � Graphics fo� o�g!� �
which di�ers only in the second object by the thickness of the circle� With the call

Show g! and Show g�� Axes �� True! ������b�

we get the picture represented in Fig ����

In the call of the picture in Fig ���b� the option Axes �� True was activated� This results in the
representation of the axes with marks on them chosen by Mathematica and with the corresponding
scaling�
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�� Graphical Representation of Functions
Mathematica has special commands for the graphical representation of functions� With

Plot f x!� fx� xmin� xmaxg! �������

the function f�x� is represented graphically in the domain between x � xmin and x � xmax� Mathe�
matica produces a function table by internal algorithms and reproduces the graphic following from this
table by graphics primitives�

If the function sin �x is to be graphically represented in the domain between ��� and ��� then the
input is

In��� �� Plot Sin �x!� fx���Pi� �Pig!

-6 -4 -2 2 4 6

-1

-0.5

0.5

1

Figure ����

Mathematica produces the curve shown in Fig ����

It is obvious thatMathematica uses certain default graph�
ical options in the representation� So� the axes are auto�
matically drawn� they are scaled and denoted by the cor�
responding x and y values� In this example� the in�uence
of the default AspectRatio can be seen� The ratio of the
total width to the total height is  � �����

With the command InputForm &! the whole representa�
tion of the graphic objects can be shown� For the previous
example we get�

Graphics ffLine ff����������������� ��������������� # �	 � �g�
List of points from the function table calculated by Mathematica

f��������������������������������� # �	 � ��gg!gg�
fPlotRange�� Automatic� AspectRatio�� GoldenRatio	����

DisplayFunction �� �DisplayFunction� ColorOutput�� Automatic�

Axes�� Automatic� AxesOrigin�� Automatic� PlotLabel�� None�

AxesLabel�� None� Ticks�� Automatic� GridLines�� None� Prolog�� fg�
Epilog�� fg� AxesStyle�� Automatic� Background�� Automatic�

DefaultColor�� Automatic� DefaultFont �� �DefaultFont�

RotateLabel�� True� Frame�� False� FrameStyle�� Automatic�

FrameTicks�� Automatic� FrameLabel�� None� PlotRegion�� Automaticg!
Consequently� the graphic object consists of two sublists� The �rst one contains the graphics primitive
Line� with which the internal algorithm connects the calculated points of the curve by lines� The second
sublist contains the options needed by the given graphic� These are the default options� If the picture
is to be altered at certain positions� then the new settings in the Plot command must be set after the
main input� With

In��� �� Plot Sin �x!� fx���Pi� �Pig� AspectRatio�� ! �������

the representation would be done with equal x and y absolute scaling�
It is possible to give several options at the same time after each other�With the input

Plot ff� x!� f� x!� � � �g� fx� xmin� xmaxg! �������

several functions are shown in the same graphic� With the command

Show plot� options! �������

an earlier picture can be renewed with other options�With

Show GraphicsArray list!!� �������
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�with list as lists of graphic objects� pictures can be placed next to each other� under each other� or
they can be arranged in matrix form�

�������� Two�Dimensional Curves
A series of curves from the chapter on functions and their representations �see ��� p� ����� is shown as
examples�

�� Exponential Functions
A family of curves with several exponential functions �see ����� p� �� is generated by Mathematica
�Fig ���a� with the following input�

In��� �� f x ! �� �	x� g x ! �� �	x�

In��� �� h x ! �� ����	x� j x ! �� ��E�	x� k x ! �� ����	x�

These are the de�nitions of the considered functions� The function ex need not be de�ned� since it is
built into Mathematica� In the second step the following graphics are generated�

In��� �� p � Plot ff x!� h x!g� fx���� �g� P lotStyle�� Dashing f���� ����g!!
In��� �� p� � Plot fExp x!� j x!g� fx���� �g!
In��� �� p� � Plot fg x!� k x!g� fx���� �g� PlotStyle�� Dashing f������ ����� ���� ����g!!

The whole picture �Fig ���a� can be obtained by�

In��� �� Show fp� p�� p�g� PlotRange�� f�� �g� AspectRatio�� ��!

The question of how to write text on the curves is not discussed here� This is possible with the graphics
primitive Text�
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�� Function y � x� Arcothx
Considering the properties of the function Arcoth x discussed in ���� p� �� the function y � x �
Arcoth x can be graphically represented in the following way�

In��� �� f � Plot x � ArcCoth x!� fx� �������������� �g!
In��� �� f� � Plot x � ArcCoth x!� fx������������������g!
In�� �� �Show ff� f�g� PlotRange�� f��� �g� AspectRatio�� ��� Ticks��

fff�����g� f���g� f� g� f�� �gg� ff���� ���g� f�� �ggg
The high precision of the x values in the close neighborhood of  and � was chosen to get su�ciently
large function values for the required domain of y� The result is shown in Fig ���b�

�� Bessel Functions
With the calls

In��� �� bj� � Plot fBesselJ �� z!� BesselJ �� z!� BesselJ �� z!g� fz� �� �g�
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PlotLabel�� 	J�n� z� n � �� �� �
!

In��� �� bj � Plot fBesselJ � z!� BesselJ �� z!� BesselJ �� z!g� fz� �� �g�
PlotLabel�� 	J�n� z� n � � �� �
! �������

the graphics of the Bessel function Jn�z� for n � �� �� � and n � � �� � are generated� which are then
represented by the call

In��� �� Show GraphicsArray fbj�� bjg!!
next to each other in Fig ����
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�������� Parametric Representation of Curves
Mathematica has a special graphics command� with which curves given in parametric form can be graph�
ically represented� This command is�

ParametricPlot ffx�t�� fy�t�g� ft� t�� t�g!� �������

It provides the possibility of showing several curves in one graphic� A list of several curves must be
given in the command� With the option AspectRatio�� Automatic� Mathematica shows the curves
in their natural forms�
The parametric curves in Fig ��� are the Archimedean spiral �see ����� p� ��� and the logarithmic
spiral �see ������ p� ���� They are represented with the input

In��� �� ParametricPlot ft Cos t!� t Sin t!g� ft� �� �Pig� AspectRatio�� Automatic!

and

In��� �� ParametricPlot fExp ��t! Cos t!� Exp ��t! Sin t!g� ft� �� �Pig�
AspectRatio�� Automatic!

With

In��� �� ParametricPlot ft� � Sin t!� � � Cos t!g� ft��Pi� Pig� AspectRatio�� ���!

a trochoid �see ������ p� ��� is generated �Fig �����

-7.5 -5 -2.5 2.5 5

-4
-2

2
4
6
8

-2 -1 1
-1

1

2

a) b)

Figure ����

5 10 15 20 25 30 35-1

1
2
3

Figure ����

�������	 Representation of Surfaces and Space Curves
Mathematica provides the possibility of representing three�dimensional graphics primitives�
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Similarly to the two�dimensional case� three�dimensional graphics can be generated by applying di�er�
ent options� The objects can be represented and observed from di�erent viewpoints and from di�erent
perspectives� Also the representation of curved surfaces in three�dimensional space� i�e�� the graphical
representation of functions of two variables� is possible� Furthermore it is possible to represent curves
in three�dimensional space� e�g�� if they are given in parametric form� For a detailed description of
three�dimensional graphics primitives see  ����!� The introduction of these representations is similar
to the two�dimensional case�

�� Graphical Representation of Surfaces

The command Plot�D in its basic form requires the de�nition of a function of two variables and the
domain of these two variables�

In�� �� Plot�D f x� y!� fx� xa� xeg� fy� ya� yeg! �������

All options have the default setting�

For the function z � x� � y�� with the input

In��� �� Plot�D x	� � y	�� fx���� �g� fy���� �g� PlotRange�� f�� ��g!
we get Fig ���a� while Fig ���b is generated by the command

In��� �� Plot�D �� Sin x!� ��� Cos � y!�� fx���� �g� fy���� �g!
For the paraboloid� the option PlotRange is given with the required z values� because the solid is cut
at z � ���

�� Options for �D Graphics

The number of options for �D graphics is large� In Table ����� only a few are enumerated� where
options known from �D graphics are not included� They can be applied in a similar sense� The option
ViewPoint has special importance� by which very di�erent observational perspectives can be chosen�
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�� Three�Dimensional Objects in Parametric Representation

Similarly to �D graphics� three�dimensional objects given in parametric representation can also be
represented� With

ParametricPlot�D ffx t� u!� fy t� u!� fz t� u!g� ft� ta� teg� fu� ua� ueg! ������

a parametrically given surface is represented� with

ParametricPlot�D ffx t!� fy t!� fz t!g� ft� ta� teg! �������
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a three�dimensional curve is generated parametrically�

Table ����� Options for �D graphics

Boxed default setting is True� it draws a three�dimensional frame around the surface
HiddenSurface sets the non�transparency of the surface� default setting is True
ViewPoint speci�es the point �x� y� z� in space� from where the surface is observed� De�

fault values are f�������� �g
Shading default setting is True� the surface is shaded� False yields white surfaces
PlotRange fza� zeg� ffxa� xeg� fya� yeg� fza� zegg can be chosen for the values All� De�

fault is Automatic
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The objects in Fig ��
a and Fig ��
b are represented with the commands

In��� �� ParametricPlot�D fCos t! Cos u!� Sin t! Cos u!� Sin u!g� ft� �� �Pig�
fu��Pi��� Pi��g! �������

In��� �� ParametricPlot�D fCos t!� Sin t!� t��g� ft� �� ��g!
Mathematica provides further commands by which density� and contour diagrams� bar charts and sector
diagrams� and also a combination of di�erent types of diagrams� can be generated�

The representation of the Lorenz attractor �see �������� p� ���� can be generated by Mathematica�

������ GraphicswithMaple
�������� Two�Dimensional Graphics
Maple can graphically represent functions with the command plot with several di�erent options� The
input functions can be explicit functions of one variable� functions given in parametric form and lists of
two�dimensional points� Maple prepares a table of values from the input function by internal algorithms�
and its points are connected by a spline method to get a smooth curve� There are several options
by which the shape of the graphic can be in�uenced� The graphic itself is represented in a special
environment� and it can be connected to the work document by the corresponding system commands�
or it can be sent to the printer or plotter� The data can be saved in various formats� for example as a
Postscript �le�

�� Syntax of Two�Dimensional Graphics
The two�dimensional plot command has the basic structure

plot�funct� hb� vb� options�� �������
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The �rst argument funct can have the following meanings�

a� a real function of one independent variable� e�g�� f�x��

b� a procedure of a function� generated by� e�g�� the arrow symbol�

c� the parametric representation of a real function in the form of a list  u�t�� v�t�� t � a��b!� where
t � a��b is the domain of the parameter�

d� several functions enclosed in curly braces� which should be represented together�

e� a list of numbers� which are considered to be the coordinates �x� y� of the points to be represented�

The second argument hb is the domain of the independent variable� it has the form x � a��b� If no
argument is given� then Maple automatically takes the domain ������ It is possible to assign to one
or to both limits the values �� and�or�� In this case� Maple chooses a representation of the x�axis
with arctan�

The third argument vb directs the domain of the dependent variable �vertical�� It should be given in
the form y � a��b� If it is omitted� Maple takes the values determined from the equation of the function
for the domain of the independent variable� It can cause problems if in this domain there is� e�g�� a pole�
Then� if it is necessary� this domain should be limited�

One or several options can follow as further arguments� Some of them are represented inTable �����
The representation of several functions by Maple in one graphic is made in general by di�erent colors
or by di�erent line structure�

Maple provides the possibility of making changes directly on the graphic according to corresponding
menus� e�g�� the ratio of the horizontal and vertical measure� the frame of the picture� etc�

Table ����� Options for Plot command

coords � polar yields the representation of a parametric input in polar coordinates �the �rst
variable is the radius� the second one is the angle�

numpoints � n sets the minimal number of the generated points �default ���
resolution � m sets the horizontal resolution of the representation in pixels �default m � ����
xtickmarks � p sets the number of scaling marks on the x�axis
style � SPLINE generates the connection with cubic spline interpolation �default�
style � LINE generates linear interpolation
style � POINT shows only the points
title � T places a title for the graphic� T must be a string
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�� Examples for Two�Dimensional Graphics
The following graphics are generated byMaple� then vectorized by Coreltrace and �nished by Coreldraw
�
This was necessary because the direct conversion of a Maple graphic in EPS data results in very thin
lines and so unattractive pictures�
� Exponential and Hyperbolic Functions With the construction

� plot�f�	x� �	x� ����	x� ����	x� exp�x�� �exp�x�g� x � ������ y � ������ ������a�
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� xtickmarks � �� ytickmarks � ��� ������b�

we get the exponential functions represented in Fig ����a�
Similarly� the command

� plot�fsinh�x�� cosh�x�� tanh�x�� coth�x�g� x � �������� y � ����������� ������c�

yields the common representation of the four hyperbolic functions �see ����� p� ��� in Fig ����b�

Additional structures� such as arrow heads on axes� captions� etc�� are added subsequently with the
help of graphic programs�

� Bessel Functions With the calls

� plot�fBesselJ��� z�� BesselJ��� z�� BesselJ��� z�g� z � ������ ������a�

� plot�fBesselJ�� z�� BesselJ��� z�� BesselJ��� z�g� z � ������ ������b�

we get the �rst three Bessel functions J�n� z� with even n �Fig ����a� and with odd n �Fig ����b��
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The other special functions built into Maple can be represented in a similar way�

� Parametric Representation With the call

� plot� t # cos�t�� t # sin�t�� t � ���� # Pi!�� ������a�

we get the curve represented in Fig ����a�
For the following two commands Maple gives a loop function similar to a trochoid Fig ����b �com�
pare� Curtate trochoid in ������ p� ��� and the hyperbolic spiral Fig ����c �see ������ p� ����

� plot� t� sin�� # t�� � cos�� # t�� t � �� # Pi��� # Pi!�� ������b�

� plot� �t� t� t � ���� # Pi!� x � ������� coords � polar�� ������c�

Because of the introduction the option coords� Maple interprets the parametric representation as polar
coordinates at the execution of the command�
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Figure ����

�� Special Package plots
The special package plots with additional graphical operations can be found in the Maple library� In
the two�dimensional case� the commands conformal and polarplot have special interest� With

polarplot�L� options� �������
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curves given in polar coordinates can be drawn� L denotes a set �enclosed in curly braces� of several
functions r���� Maple interprets the variable � as an angle and it denotes the curve in the domain
between �� � � � � if no other domain is prescribed�

The command

conformal�F� r� r�� options� �������

displays the mapping of the standard grid lines of the plane to a set of grid curves with the help of a
function F of complex variables� The new grid lines also intersect each other orthogonally� The domain
r determines the original grid lines� Default values are ��� � ������� The domain r� gives the size
of the window in which the range lies� The default range here is calculated to completely enclose the
resulting conformal lines�

�������� Three�Dimensional Graphics
Maple provides the command plot�d to represent functions of two independent variables as surfaces
in space or to represent space curves� Maple represents the objects generated by this command anal�
ogously to two�dimensional ones in one window� The number of options for representation is usually
larger� especially by the additional options about the viewpoint �of observation��

�� Syntax of plot�d Commands
This command can be used in four di�erent forms�

a� plot�d�funct� x � a��b� y � c��d�� In this form� funct is a function of two independent variables�
whose domain is given by x � a��b and y � c��d � The result is a space surface�

b� plot�d�f� a��b� c��d�� Here f is a procedure with two arguments� e�g�� generated by the arrow oper�
ator� the domains are associated to these variables�

c� plot�d� u�s� t�� v�s� t�� w�s� t�!� s � a��b� t � c��d�� The three functions u� v� w depending on the two
parameters s and t de�ne a parametric representation of a space surface� restricted to the domain of
the parameters�

d� plot�d� f� g� h!� a��b� c��d�� This is the equivalent form of the parametric representation� where f� g� h
must be procedures of two arguments�

All further arguments of the operator plot�d are interpreted by Maple as options� Some important
options are represented in Table ���
� They should be used in the form option � value�

Table ����� Options of command plot�d

numpoints � n sets the minimal number of generated points �default number is n �
����

grid m�n! speci�es that an m� n grid of equally spaced points is sampled �de�
fault ��� ���

labels �  x� y� z! indicates the labels used along the axes �string is required�
style � s s is a value from POINT� HIDDEN� PATCH� WIREFIRE� Here it de�nes

how the surface is represented
axes � f f can have the values BOXED� NORMAL� FRAME or NONE� The represen�

tation of the axes is speci�ed
coords � c speci�es the required coordinate system� Values can be cartesian�

spherical� cylindrical� Default is cartesian
projection � p p takes values between � and  and it de�nes the observational per�

spective� Default value is  �orthogonal projection�
orientation �  theta� phi! speci�es the angle of the point in space in a spherical coordinate sys�

tem from which the surface is observed
view � z��z� gives the domain of the z values for which the surface should be rep�

resented� Default is the total surface

In general� almost all options can be reached and appropriately set in the corresponding menu in the
screen� In this way� the picture can subsequently be improved�
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�� Additional Operations from Package plots
The library package plots provides further possibilities for representation of space structures� Es�
pecially important is the representation of space curves with the command spacecurve� The �rst
argument is a list of three functions depending on a parameter� the second argument must specify the
domain of this parameter� So� the options of the command plot�d are kept until they have any mean�
ing for this case� For further information about this package one should study the literature�

With the inputs

� plot�d� cos�t� # cos�u�� sin�t� # cos�u�� sin�u�!� t � ���� # Pi� u � ���� # Pi� ������a�

� spacecurve� cos�t�� sin�t�� t��!� t � ���� # Pi� ������b�

the graphics of a perspectively represented sphere �Fig ����a� and a perspectively represented space
spiral �Fig ����b� are generated�
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�� Tables

���� FrequentlyUsedMathematical Constants

� ��������� � � � C Euler constant ���������� � � �

� � ������ rad ���������� � � �  rad �  ���������� � � ��

��� ��� ��� � ����

e ��������� � � � lg e � M ����������� � � �

ln � � �M ����������� � � �

���� Natural Constants

The table contains values of the physical constants� recommended in  ��! and  ���!� In parenthesis
is given the standard uncertainty of the last two digits�
Fundamental constants
velocity of light in vacuum c�� c � ��� ��� ��� ms�� �exact�
gravitation constant G � ������ �������� m�kg��s��

standard acceleration of gravity gn � ����� �� ms�� �exact�
permeability of free space �� � �� ���� NA�� � ����� ��� �� � � ����� NA�� �exact�
permittivity of vacuum �� � ��ec

� � ����� �� �� � � ������ Fm�� �exact�
Planck constant� h � ����� ��� �������� Js � ���� ��� ����������� eVs
Planck quantum "h � h��� � ���� �� ���������� Js

� ����� � ���������	 eVs
characteristic impedance
of vacuum Z� � ������� �� �� � � � ) �exact�

Electromagnetic constants
fundamental electric charge e � ���� �� ��������� C

e�h � ���� ��� ��������� AJ��

speci�c fundamental electric charge �e�me � ����� ��� �������� C kg��

�ne structure constant � � �ece
���h � ����� ��� �����������

�� � ������ ��� ����
quantum of magnetic �ux �� � h��e � ����� ��� ����������Wb
Josephson�constant KJ � �e�h � ��� ������������ HzV��

v� Klitzing�constant RK � h�e� � �������� ) �exact��
quantum of conductance G� � �e�h � ����� �� �����������S
quantum of circulation s � h��me � ����� ��� �����������m�s�� �

Atomic electron shell
Bohr magneton �B � e"h��me � ����� ����� ��������	 JT��

� ����� �� ����������� eVT��

Bohr radius a� � "h��E��e�e� � re��
� � ����� �� ����������� m

classical electron radius re � ��a� � ���� ��� ������������m
Rydberg�constant R� � ��

�me�c���h� � � ��� ������ ������� m��

Rydberg�energy hcr� � ����� ��� ���� eV
Thomson�cross�section �� � ��re

��� � ����� ��� ����������
 m�



���� Natural Constants ����

Atomic nuclei and particles
atomic mass unit mu �  u �  �kg mol����NA � �

��
m���C� � ���� ��� ������

�����kg � ������ ������� MeV c�� � ������me

molar mass of carbon�� M���C� � � � ���kg�mol
nuclear magneton �k � e"h��mp � ����� ��� ����������� JT��

� ���� �� ���������
 eVT��

nuclear radius R � r�A
���� r� � ��� � � � ��� fm�  � A � ����

r� � R � � fm
magic neutron� and Nm� Zm � �� �� ��� ��� ��� ���
proton�numbers Nm � ��� may be ��� Zm � may be �� ��
Rest energy

atomic mass unit E��u� � ������ ������ MeV
electron E��e� � ���� ��� ������ MeV
proton E��p� � ������ ������� MeV
neutron E��n� � ������� ������� MeV

Rest mass
electron me � ���� ��� ��������� kg � ����� ��� ������������ u
proton mp � ���� �� ���������� kg � ������ ��� �����me

� ���� ��� ��� ����� u
neutron mn � ���� ��� ����������� kg �  ������� ��� ����me

� ���� ��� �� ������ u
magnetic moment

electron �e � ���� �� ��� �������B
� �������� ����������	 JT��

proton �p � ������ ��� ��������k � ��� ��� ��������	 JT��

neutron �n � ���� ��� �������k � ����� ��� ����������	 JT��

Physical chemistry� Thermodynamics
Avogadro�constant NA � ����� � �������� mol��

Loschmidt�constant n� � NA�Vm � ����� ����������� m��

Boltzmann�constant k � R��NA � ���� ������������� J K��

� ���� ������ � ��� eVK��

Universal gas constant R� � NAk � ���� ������ J mol��K��

Faraday�constant F � NAe � �� ������������ C mol��

molar volum of inert gas Vm � R�T��p� � ��� �� ����������� m�mol��

�T � ����� K� p � ����� kPa�
� Planck radiation constant c� � ��hc�� � ���� �� ����������	W m�

�� Planck radiation constant c� � hc��k � ���� ��� ���������m K
Stefan�Boltzmann�constant � � �������k��"h�c� � ����� ����������
 Wm��K��

Wien�constant
b � �maxT � c������� � �� � � � b ������ ��� ��������m K



���� ��� Tables

���� MetricPre�xes

Pre�x Factor Abbreviation Pre�x Factor Abbreviation

yocto ���� y deca �� da
zepto ���� z hecto �� h
atto ���
 a kilo �� k
femto ���� f mega �	 M
pico ���� p giga � G
nano �� n tera ��� T
mikro ��	 � peta ��� P
milli ��� m exa ��
 E
centi ��� c zetta ��� Z
deci ��� d yotta ��� Y

�� � ��� � ��� � �� �� �

�m � mikrometer� � ��	 m �  nm � nanometer� � �� m �

Remark� The metric system is built up by adding pre�xes which are the same for every kind of mea�
sure� These pre�xes should be used in steps of powers with base � and exponent ��� milli�� micro��
nano�� ruther than in the smaller steps hecto�� deca�� deci�� The British system� unlike the metric one�
is not built up in ��s e� g��  lb � � oz � ���� grains�

���� International SystemofPhysicalUnits 	SI�Units

Further information about physical units see  ��!�  ���!�

SI Base Units

Base quantity Symbol Name
length m meter
time s second
mass kg kilogram
thermodynamic temperature K kelvin
electric current A ampere
amount of substance mol mole � mol � A particles� A � Avogadro�constant�
luminous intensity cd candela
Additional SI�units

plain angle rad radian � � l�r �  rad �  m� m �see p� ���

solid angle sr steradian ) � S�r� �  sr �  m�� m� �see p� ��

Examples of SI derived units without special names and symbols

Derived quantity Symbol Derived quantity Symbol
area m� moment of inertia kg m�

volume m� mass density kg�m�

speed� velocity m�s particle number density m��

acceleration m�s� speci�c volume m��kg
angular velocity rad�s magnetic �eld strength A�m
angular acceleration rad�s� amount�of�substance
wave number �m concentration

mol�m�

momentum kg m s�� luminance cd�m�

angular momentum kg m�s�� mass fraction kg�kg � 



���
 International System of Physical Units �SI�Units� ����

Examples of SI derived units with special names and symbols

Derived quantity Symbol Name Expression in terms of SI base units
frequency Hz hertz Hz � �s
force N newton N � kg m�s�

pressure� stress Pa pascal Pa � N�m�

energy� work� J joule J � N m � kg m��s�

quantity of heat kWh kilowatthour kWh � �����	 J
power� radiation �ux W watt W � J�s � N m�s � kg m��s�

electric charge�
quantity of electrity

C coulomb C � A s

electric potential V volt V � W�A � kg m���A s��
electric capacitance F farad F � C�V � A�s���m� kg�
electric resistance ) ohm ) � V�A � kg m���A�s��
electric conductance S siemens S � A�V � A�s���kg m��
magnetic �ux Wb weber Wb � V s � kg m���A s��
magnetic �ux density T tesla T � Wb�m� � kg��A s��
inductance H henry H � Wb�A � kg m���A�s��
Celsius temperature �C degree Celsius t ��C � T �K� �����
luminous �ux lm lumen cd sr � m�m��cd � cd
illuminance lx lux lx � lm�m� � cd�m�

activity �radionuclides� Bq becquerel Bq � �s
dose equivalent Sv sievert Sv � J�kg � m��s�

absorbed dose Gy gray Gy � J�kg � m��s�

catalytic activity kat katal �s mol

Examples of SI derived units whose names and symbols include SI derived
units with special names and symbols

Quantity SI derived unit Quantity SI derived unit
dynamic viscosity Pa s moment of force N m
surface tension N�m energy density J�m�

action J s speci�c energy J�kg

heat capacity� speci�c heat capacity J��K kg�
entropy

J�K
enthalpy J

molar entropy� irradiance�
molar heat capacity

J��mol K�
heat �ux density

W�m�

thermal conductivity W��m K� molar energy J�mol
electric �eld strength V�m magnetic �eld strength A m��

electric charge density C�m� electric �ux density C�m�

permittivity F�m permeability H�m

radiant intensity W�sr radiance W��m�sr�
exposure �X and � rays� C�kg absorbed dose rate Gy�s
catalytic �activity� concentration kat�m�
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Some units outside the SI that are accepted for use with the SI

Name Symbol Value in SI units

length astronomical unit ua ua � ������������� m

parsec ps pc � ���������� m

light year ly ly � �������������� m

volume litre L �l� L � dm� � ��� m�

time minute min min � �� s
hour h h � ���� s
day d d � ����� s
year a a � ��� d � ���� h

plain angle degree � � ���� rad � � ���������� � � � rad
radiant rad rad � ���������� � � ��

grade gon gon � �
���

rad
minute � � ������ � ������ rad � � ��������� � � � rad
second �� � ������ � �������� rad �� � ��������� � � � rad

mass uni�ed atomic mass unit u u � ������ � ���� kg

metric ton t t � �� kg

energy electronvolt eV eV � ���� � J

focal power diopter dpt dpt � �m

neper Np Np � 

bel B � dB � ��B� B � �
�

ln � Np

Some units outside the SI that are currently accepted for use with the SI�
subject to further review

Name Symbol Value in SI units

length nautical �intern�� mile sm sm � ���m
9Angstr:m 9A 9A � �� nm � ���� m

area are a a � dam� � �� m�

hectare ha ha � hm� � �� m�

area cross�section b �barn� b � �� fm� � ���
 m�

volume U�S� barrel petroleum bbl bbl � ������� m�

velocity knot kn kn � sm�h � ���� km�h
� ����� m�s

energy calorie cal cal � ����� J

pressure bar bar bar � �� MPa � �� kPa

� �� kg��s�m� � �� Pa
mmHg column mmHg mmHg � ������ Pa
standard atmosphere atm atm � �������� Pa

curie Ci Ci � ��� � ��� Bq

roentgen R R � ���� � ��� C�kg
rad rad rad � cGy � ��� Gy
rem rem rem � cSv � ��� Sv
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���� Important SeriesExpansions

Function Series Expansion
Convergence

Region

Algebraic Functions

Binomial Series

�a� x�m After transforming to the form am
�

� x

a

�m
we get

the following series�

jxj � a

form � �
jxj � a

form � �
Binomial Series with Positive Exponents

�� x�m �mx �
m�m� �

�$
x� � m�m� ��m� ��

�$
x� � � � �

�m � ��
� ���n

m�m� � � � � �m� n � �

n$
xn � � � � jxj � 

�� x�
�
� � 

�
x�  � �

� � �x
� �  � � � �

� � � � �
x� �  � � � � � 

� � � � � � �
x� � � � � jxj � 

�� x�
�
� � 

�
x�  � �

� � �x
� �  � � � �

� � � � �x
� �  � � � � � �

� � � � � � �
x� � � � � jxj � 

�� x�
�
� � 

�
x�  � 

� � �x
� �  �  � �

� � � � �x
� �  �  � � � �

� � � � � � �x
� � � � � jxj � 

�� x�
�
� � �

�
x �

� � 
� � �x

� � � �  � 
� � � � �x

� �
� �  �  � �
� � � � � � �x

� � � � � jxj � 

�� x�

� � �

�
x �

� � �
� � �x

� � � � � � 
� � � � �x

� � � � � �  � 
� � � � � � �x

� � � � � jxj � 

Binomial Series with Negative Exponents

�� x��m �mx �
m�m � �

�$
x� � m�m � ��m � ��

�$
x� � � � �

�m � ��
� ���n

m�m � � � � � �m � n� �

n$
xn � � � � jxj � 

�� x��
�
� � 

�
x �

 � �
� � �x

� �  � � � �
� � � � �

x� �
 � � � � � �

� � � � � � �
x� � � � � jxj � 

�� x��
�
� � 

�
x �

 � �
� � �x

� �  � � � �
� � � � �x

� �
 � � � � � �

� � � � � � �
x� � � � � jxj � 

�� x��
�
� � 

�
x �

 � �
� � �x

� �  � � � �
� � � � �x

� �
 � � � � � �
� � � � � � �x

� � � � � jxj � 

�� x��� � x � x� � x� � x� � � � � jxj � 

�� x��
�
� � �

�
x �

� � �
� � �x

� � � � � � �
� � � � �x

� �
� � � � � � �
� � � � � � �x

� � � � � jxj � 

�� x��� � �x � �x� � �x� � �x� � � � � jxj � 
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�� x��

� � �

�
x �

� � �
� � �x

� � � � � � �
� � � � �x

� �
� � � � � � 

� � � � � � � x� � � � � jxj � 

�� x��� � 

 � ��� � �x� � � �x� � � � �x� � � � �x� � � � �� jxj � 

�� x��� � 

 � � � ��� � � � �x� � � � � �x�
�� � � � �x� � � � � � �x� � � � �� jxj � 

�� x��� � 

 � � � � � ��� � � � � � �x� � � � � � � �x�

�� � � � � � �x� � � � � � � � �x� � � � �� jxj � 

Trigonometric Functions

sin x x� x�

�$
�

x�

�$
� � � �� ���n

x�n��

��n � �$
� � � � jxj ��

sin�x � a� sin a � x cos a� x� sin a

�$
� x� cos a

�$

�
x� sin a

�$
� � � ��

xn sin
�
a � n�

�

	
n$

� � � jxj ��

cos x � x�

�$
�

x�

�$
� x	

�$
� � � �� ���n

x�n

��n�$
� jxj ��

cos�x � a� cos a� x sin a� x� cos a

�$
�

x� sin a

�$

�
x� cos a

�$
� � � ��

xn cos
�
a � n�

�

	
n$

� � � � jxj ��

tanx x �


�
x� �

�

�
x� �

�

��
x� �

��

����
x � � � �

�
��n���n � �Bn

��n�$
x�n�� � � � � jxj � �

�

cot x


x
�
�
x

�
�

x�

��
�

�x�

���
�

x�

����
� � � �

�
��nBn

��n�$
x�n�� � � � �


� � jxj � �

sec x  �


�
x� �

�

��
x� �

�

���
x	 �

���

����
x
 � � � �

�
En

��n�$
x�n � � � � jxj � �

�
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cosec x


x
�



�
x �

�

���
x� �

�

���
x� �

��

������
x� � � � �

�
����n�� � �

��n�$
Bnx

�n�� � � jxj � �

Exponential Functions

ex  �
x

$
�

x�

�$
�

x�

�$
� � � �� xn

n$
� � � � jxj ��

ax � ex ln a  �
x ln a

$
�

�x ln a��

�$
�

�x ln a��

�$
� � � �� �x ln a�n

n$
� � � � jxj ��

x

ex � 
� x

�
�

B� x�

�$
� B� x�

�$
�

B� x	

�$
� � � �

����n��
Bn x�n

��n�$
� � � � jxj � ��

Logarithmic Functions

ln x �

�
x� 

x � 
�

�x� ��

��x � ��
�

�x� ��

��x � ��
� � � �

�
�x� ��n��

��n � ��x � ��n��
� � � �


x � �

ln x �x� �� �x� ��

�
�

�x� ��

�
� �x� ��

�
� � � �

����n��
�x� �n

n
� � � � � � x � �

ln x
x� 

x
�

�x� ��

�x�
�

�x� ��

�x�
� � � �� �x� �n

nxn
� � � � x �



�

ln � � x� x� x�

�
�

x�

�
� x�

�
� � � �� ���n��

xn

n
� � � � � � x � 

ln �� x� �
�
x �

x�

�
�

x�

�
�

x�

�
�

x�

�
� � � �� xn

n
� � � �


� � x � 

ln
�

 � x

� x

�
�

�
x �

x�

�
�

x�

�
�

x�

�
� � � �� x�n��

�n � 
� � � �


jxj � 

� � Artanh x



���� ��� Tables

Function Series Expansion
Convergence

Region

ln
�
x � 

x� 

�
�

�


x
�



�x�
�



�x�
�



�x�
� � � �� 

��n � � x�n��
� � � �


jxj � 

�� Arcoth x

ln jsinxj ln jxj � x�

�
� x�

��
� x	

����
� � � � � ��n�� Bn x�n

n ��n� $
� � � � � � jxj � �

ln cos x �x�

�
� x�

�
� x	

��
� �x


����
� � � �

���n�����n � �Bn x
�n

n��n� $
� � � � jxj � �

�

ln jtan xj ln jxj� 

�
x� �

�

��
x� �

��

����
x	 � � � �

�
��n���n�� � �Bn

n��n� $
x�n � � � � � � jxj � �

�

Inverse Trigonometric Functions

arcsinx x �
x�

� � � �
 � � x�

� � � � � �
 � � � � x�

� � � � � � � � � � �

�
 � � � � � � � ��n� � x�n��

� � � � � � � � ��n���n � �
� � � � jxj � 

arccosx
�

�
�
�
x �

x�

� � � �
 � � x�

� � � � � �
 � � � � x�

� � � � � � � � � � �

�
 � � � � � � � ��n� � x�n��

� � � � � � � � ��n���n � �
� � � �


jxj � 

arctanx x� x�

�
�

x�

�
� x�

�
� � � �� ���n

x�n��

�n � 
� � � � jxj � 

arctanx ��

�
� 

x
�



� x�
� 

� x�
�



� x�
� � � �

����n��


��n � � x�n��
� � � � jxj � 

arccot x
�

�
�
�
x� x�

�
�

x�

�
� x�

�
� � � �� ���n

x�n��

�n � 
� � � �


jxj � 



���� Important Series Expansions ���


Function Series Expansion
Convergence

Region

Hyperbolic Functions

sinh x x �
x�

� $
�

x�

� $
�

x�

� $
� � � �� x�n��

��n � � $
� � � � jxj ��

cosh x  �
x�

� $
�

x�

� $
�

x	

� $
� � � �� x�n

��n� $
� � � � jxj ��

tanh x x� 

�
x� �

�

�
x� � �

��
x� �

��

����
x � � � �

�
���n�� ��n���n � �

��n� $
Bnx

�n�� � � � � jxj � �

�

coth x


x
�

x

�
� x�

��
�

�x�

���
� x�

����
� � � �

�
���n�� ��n

��n� $
Bnx

�n�� � � � � � � jxj � �

sech x � 

� $
x� �

�

� $
x� � �

� $
x	 �

���

� $
x
 � � � �

�
���n

��n� $
Enx

�n � � � � jxj � �

�

cosech x


x
� x

�
�

� x�

���
� � x�

���
� � � �

�
����n ���n�� � �

��n� $
Bnx

�n�� � � � � � � jxj � �

Area Functions

Arsinh x x� 

� � � x� �
 � �

� � � � � x� �  � � � �
� � � � � � � x� � � � �

����n �  � � � � � � � ��n� �

� � � � � � � ��n ��n � �
x�n�� � � � � jxj � 

Arcosh x �


ln ��x�� 

� � �x� �
 � �

� � � � �x� �
 � � � �

� � � � �x	 � � � �
�

x � 

Artanh x x �
x�

�
�

x�

�
�

x�

�
� � � �� x�n��

�n � 
� � � � jxj � 

Arcoth x


x
�



�x�
�



�x�
�



�x�
� � � �� 

��n � � x�n��
� � � � jxj � 



���� ��� Tables

���� Fourier Series

� y � x for �� x � ��

y � � � �
�

sinx


�

sin �x

�
�

sin �x

�
� � � �

�
y

x0-2π 2π 4π 6π

2π

�� y � x for �� x � �

y � �� � x for � � x � ��

y �
�

�
� �

�

�
cos x �

cos �x

��
�

cos �x

��
� � � �

�
y

x0-π π 4π 6π2π
π

�� y � x for �� � x � �

y � �
�

sinx


� sin �x

�
�

sin �x

�
� � � �

�
y

x0-π π 3π 5π 7π
2π 4π 6π

π

�� y � x for ��

�
� x � �

�

y � � � x for
�

�
� x � ��

�

y �
�

�

�
sin x� sin �x

��
�

sin �x

��
� � � �

�
y

x0 π 2π 3π-π
π/2

�� y � a for �� x � �

y � �a for � � x � ��

y �
�a

�

�
sin x �

sin �x

�
�

sin �x

�
� � � �

�
y

x

a

-π 0 2π 4π 6π5π 7π3ππ



���� Fourier Series ����

�� y � � for � � x � � and for � � � � x � � � � and �� � � � x � ��
y � a for � � x � � � �
y � �a for � � � � x � �� � �

y

x

a

0

π-αα

π
2

3π
2

5π
2

π
2

y �
�a

�

�
cos� sinx �



�
cos �� sin �x

�


�
cos �� sin �x � � � �

�

�� y �
ax

�
for �a � x � a

y � a for � � x � � � �

y �
a�� � x�

�
for � � � � x � � � �

y � �a for � � � � x � �� � �

y �
�

�

a

�

�
sin� sin x �



��
sin �� sin �x

�


��
sin �� sin �x � � � �

�
y

0 x

a

2
5π

3π
2

2
π π

π-αα
π
2

Especially� for � �
�

�
holds� y �

�
p

�a

��

�
sinx� 

��
sin �x �



��
sin �x� 

�
sin x � � � �

�
�� y � x� for �� � x � �

y �
��

�
� �

�
cos x


� cos �x

��
�

cos �x

��
� � � �

�
y

x-π 0 π 3π 5π 7π2π 4π 6π

π
2

�� y � x�� � x� for � � x � �

y �
��

�
�
�

cos �x

�
�

cos �x

��
�

cos �x

��
� � � �

�
y

x0 π 2π 3π 4π-π
π

2
/4

�� y � x�� � x� for � � x � �

y � �� � x���� � x� for � � x � ��

y �
�

�

�
sin x �



��
sin �x �



��
sin �x � � � �

�
y

x-π 0 π 2π 3π 4π
3 /4π

2



���� ��� Tables

� y � sin x for � � x � �

y �
�

�
� �

�

�
cos �x

 � � �
cos �x

� � � �
cos �x

� � � � � � �
�

y

x-π 0 π 2π 3π 4π

1

�� y � cos x for � � x � �

y �
�

�

�
� sin �x

 � � �
� sin �x

� � � �
� sin �x

� � � � � � �
�

y

x

1

-1
-π 0 π 2π 3π

�� y � sin x for � � x � �

y � � for � � x � ��

y �


�
�



�
sinx� �

�

�
cos �x

 � � �
cos �x

� � �
�

cos �x

� � � � � � �
�y

x-π 0 π 2π 3π

1

�� y � cos ux for �� � x � �

y �
�u sinu�

�





�u�
� cos x

u� � 
�

cos �x

u� � �
� cos �x

u� � �
� � � �

�
�u arbitrary
 but not integer number�

�� y � sin ux for �� � x � �

y �
� sinu�

�

�
sinx

� u�
� � sin �x

�� u�
�

� sin �x

�� u�
� � � �

�
�u arbitrary
 but not integer number�

�� y � x cos x for �� � x � �

y � �

�
sinx �

� sin �x

�� � 
� � sin �x

�� � 
�

� sin �x

�� � 
� � � �

�� y � � ln
�

� sin
x

�

�
for � � x � �

y � cos x �


�
cos �x �



�
cos �x � � � �

�� y � ln
�

� cos
x

�

�
for � � x � �

y � cos x� 

�
cos �x �



�
cos �x� � � �

�� y �


�
ln cot

x

�
for � � x � �

y � cos x �


�
cos �x �



�
cos �x � � � �



���� Inde�nite Integrals ����
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The de�nite integral
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t
dt is called the exponential function integral �see ������ �� p� ��� and it is

denoted by Ei�x�� For x � � the integrand is divergent at t � �� in this case we consider the principal
value of the improper integral Ei�x� �see ������ �� p� ����
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For x �  the integrand is divergent at t � � In this case we consider the principal value of the
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���� De�nite Integrals

���	�� De
nite Integrals of Trigonometric Functions

For natural numbers m�n�
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gamma function or the Euler integral of the second kind �see ������ �� p� ����
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� �n� denotes the gamma function �see ������ �� p� ���� see also the table of the gamma function ����
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���	�� De
nite Integrals of Logarithmic Functions
�combined with algebraic and trigonometric functions�
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���� Elliptic Integrals
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The symbols in the table are de�ned in the following way�
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normed space� ���
open set� ���
ordered vector space� ���
pseudonorm� ��

scalar product� ���
vector space� ���

axis
abscissae
plane coordinates� ���
space coordinates� ���

ordinates
plane coordinates� ���
space coordinates� ���

parabola� ���
azimuth� ���
azimuthal equation� �
�

backward substitution� ���
Baire� second Baire category� ��

Bairstow method� ���

ball� metric space� ���
Banach

�xed�point theorem� ���
space� ���
example� ���
series� ���

theorem� continuity� inverse operator� ���
band structure� coe�cient matrix� ���
barrel� ��	

circular� ��	
parabolic� ��	

base� 	
power� 	
vector� ���
reciprocal� ���� ���

vector space� ��	
basic

formulas
plane trigonometry� �
�

problems
plane trigonometry� �
�
spherical trigonometry� ��	

theorems
propositional logic� ��	

basis� ���
contravariant� ���
covariant� ���
inverse� ���
vector
contravariant� ���
covariant� ���

vector space� ���
Bayes theorem� 	��
B�B representation

curve� ���
surface� ���

Berge theorem� ���
Bernoulli

inequality� ��
numbers� 
��
shift� ���

Bernoulli�l�Hospital rule� �

Bernstein polynomial� ���
Bessel

di�erential equation� ���
di�erential equation� linear� zero order� 	��
function� ���
imaginary variables� ���
modi�ed� ���

inequality� ���
beta function� ����
biangle� spherical� ���
bifurcation

Bogdanov�Takens� ��

codimension� ���
cusp� ���
�ip bifurcation� ���
global� ���� ���
homoclinic� �
�

Hopf bifurcation� ���
generalized� ��


local� ���
mappings� subcritical saddle node� ���
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bifurcation �continued
pitchfork� ���
supercritical� ��


saddle node� ���
transcritical� ���

binary number� ���� ��	
binary system� ��	
binomial� ��

coe�cient� ��
distribution� 	��
formula� ��
linear� ��
quadratic� ��
theorem� ��

binormal� space curve� ���� �
�
biquadratic equation� 
�
birth process� 	��
bisection method� ���
bisector� �
�

triangle� ���
bit� ���

reversing the order� ���
block� ���
body of revolution� lateral surface� 

�
Bolzano theorem

one variable� ��
several variables� ���

Bolzano�Weierstrass property� ���
Boolean

algebra� �
�� 	
	
�nite� �
�

expression� �


function� ��	� �


n�ary� �



variable� �


Borel

set� ���
��algebra� ���

bound
function� ��
sequence� 
�


boundary
collocation� ���
condition� ���
uncertain for some variables �fuzzy� ���

boundary value
conditions� 
�	� ��

problem� 
�	� ��
� ���
Hilbert� ���
Hilbert� homogeneous� ���
homogeneous� ��

inhomogeneous� ��

linear� ��


bounded set �order�bounded� ���
boundedness of a function

one variable� ��
several variables� ���

Bravais lattice� ���
break of symmetry� bifurcation� ��

Breit�Wigner curve� 	��
Brouwer �xed�point theorem� ���
business mathematics� ��
byte� ���

calculation
complex numbers� ��
determinants� ���
numerical
accuracy� �
�
basic operations� �
�

tensors� ���
calculus

di�erentiation� �	�
errors� 	�	
integral� 
�	
observations� measurement error� 	�	
propositional� ���
variations� ���

canonical form� circle�mapping� �
�� �


canonical system� ���
Cantor function� �


Cantor set� ���� ���� ��	
cap� spherical� ��	
capacity� edge� ���
Caratheodory condition� ���
Cardano formula� 
�
cardinal number� ���� ���
cardinality� set� ���
cardioid� ��
carrier function� �	�
Carson transformation� 	�	
Cartesian

coordinates
plane� ���
space� ���

folium� �

cartography scale� �


cascade� period doubling� ���� �
�
Cassinian curve� ��
category� second Baire category� ��

catenary curve� ��� ���� ���
catenoid� ��
Cauchy

integral� ���
integral formula� ���
integral formulas� application� ��

method� di�erential equations of higher order� ���
principal value
improper integral� 
�	

principal value� improper integral� 
�

principle� ���
problem� ���
sequence� ��	
theorem� ���

Cauchy�Riemann di�erential equations� partial� �	�
Cayley

table� ���
theorem� ���� ���

center
circle� ��	
curvature� ���
spherical� �	�

center manifold theorem
di�erential equations� ���
mappings� ���

center of area method� �	

center of gravity� ���



Index ����

arbitrary planar �gure� 
��
arc segment� 
��
closed curve� 
��
double integral� 
	

line integral� �rst type� 
�

method� �	�
generalized� �	

parametrized� �	


trapezoid� 
��
triangle� ���
triple integral� 
��

center of mass� ���� ���
central

angle� ���
curves� ���
�eld� �
�
limit theorem� Lindeberg�Levy� 	��
surface� ���

centroid� points having masses� ���
chain� ��	� ���

directed� elementary� ��	
graph� ��	
elementary� ��	

Markov� 	��
stationary� 	��
time�homogeneous� 	��

rule� �
�
composite function� ���

stochastic� 	��� 	��
chaos� 	�	� �
�

attractor� strange� ���
from torus to chaos� �
�
one�dimensional mapping� ���
routes to chaos� ���
through intermittence� �
�
transition to chaos� ���

character
group element� ��

representation of groups� ���

characteristic� ��
characteristic equation� 
�
� ���� ���
characteristic strip� ���
Chebyshev

approximation� ���
continuous� ���
discrete� ���

formula� �	
inequality� ��
polynomials� ��

theorem� 
��

Chinese remainder theorem� ���
�� distribution� 	��
�� test� 		�� 		�
Cholesky

decomposition� ���
method� �	�� ���

chord� �
�
theorem� ���

circle
Apollonius� ���
area� ���
center� ��	
chord� ���

circumference� ���
convergence� ���
curvature� ���
plane curve� ���

dangerous� �
�
de�nition� ���� ��	
equation
Cartesian coordinates� ��	
polar coordinates� ��	

great circle� ���� �	�
intersection� ���
mapping� �
�� �


parametric representation� ��	
periphery� ���
plane� ���� ��	
radius� ���� ��	
small circle� ���� �	�
tangent� ���� ���

circuit
directed� graph� ��	
Euler� ���
Hamilton� ���

circuit integral� 
��
being zero� 
	�

circular
�eld� �
�
point� �
�
sector� �
�
segment� �
�

circumcircle
quadrangle� ���
triangle� ���� �
�

circumscribing
quadrangle� ���
triangle� ���

cissoid� ��
Clairaut

di�erential equation� ordinary� 
��
di�erential equation� partial� ���

class
de�ned by identities� �
�
equivalence class� ��	
midpoint� 		�
statistics� 		�

Clebsch�Gordan
coe�cient� ���
series� ���
theorem� ���

closure
closed linear� ���
linear� ��	
set� ��	
transitive� ���

clothoid� ���
code� ���

ASCII �American Standard Code for Information
Interchange� ���

public key� ���
RSA �Rivest� Shamir� Adleman� ���

codimension� ���
coding� ���� ���
coe�cient� ��

Clebsch�Gordan� ���
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coe�cient �continued
comparison� ��
Fourier� 
��
leading� ��
matrix� extended� ���
metric� ���� ���
vector decomposition� ���

collinearity� vectors� ��

collocation

boundary� ���
domain� ���
method� �	�� ���� ���
points� ���� ���

column pivoting� ���
column sum criterion� ���
combination� 	
�

with repetition� 	
�
without repetition� 	
�

combinatorics� 	
�
commensurability� 

commutative law

Boolean algebra� �
�
matrices� ��

propositional logic� ��	
sets� ���
vectors� ���

commutativity� scalar product� ���
commutator� ���
comparable function� ���
complement� ���

algebraic� ���
fuzzy� ���
fuzzy set� ���
orthogonal� ���� ��

sets� ���
Sugeno complement� ���
Yager complement� ���

complementary angles formulas� 	�
completeness relation� ���
completion� metric space� ���
complex analysis� �	�
complex function� 
	

pole� �	�
complex number� �


plane� �

complex mapping� ��


complex�valued function� 
	
complexi�cation� ���
composition� �	�

max�average� �	�
max��t�norm� �	�

compound interest� ��
calculation� ��

computation of adjustment� ��	
computer

basic operations� �
�
error of the method� �
�
error types� ���� �
�
internal number representation� ���
internal symbol representation� ���
numerical accuracy� �
�
numerical problems in calculation� ���
use of computers� ���

computer algebra systems
applications� �	�
basic structure elements� ���
di�erential and integral calculus� ���
elements of linear algebra� ���
equations and systems of equations� ��

functions� ���
graphics� ���
in�x form� ���
list� ���
manipulation of algebraic expressions� �	�
numbers� ���
object� ���
operator� ���
pre�x form� ���
programming� ���
purpose� ���
set� ���
su�x form� ���
terms� ���
type� ���
variable� ���

concave� curve� ���
conchoid

Nicomedes� ��
general� ��
of the circle� ��
of the line� ��

conclusion� �	�
concurrent expressions� �
�
condition

boundary value� ordinary di�erential equation� 
�	
Caratheodory� ���
Cauchy �convergence� ���
Dirichlet �convergence� 
��
initial value� ordinary di�erential equation� 
�	
Kuhn�Tucker� ���
Lipschitz� higher�order di�erential equation� 
��
Lipschitz� ordinary di�erential equation� 
��
number� ��

regularity condition� �	�
Slater� ���

cone� ���� ���� ���
central surface� ��

circular� ���
generating� ���
imaginary� ��

normal� ���
regular� ���
solid� ���
truncated� ���
vector space� ���

con�dence
interval� 	��
regression coe�cient� 	��
variance� 		�

limit
for the mean� 			
prescription� 	��

probability� 		�
region� 	��

congruence
algebraic� ��	



Index ����

corners� ���
linear� ���
method� 	��
plane �gures� ���
polynomial congruence� ���
quadratic� ���
relation� �
�
kernel� �
�

simultaneous linear� ���
system simultaneous linear� ���
theorems� ���

congruent
directly� ���
indirectly� ���
mapping� ���� ���

conic section� ���� ���� ��	
singular� ��	

conjugate complex number� ��
conjunction� ���

elementary� �
�
consistency

integration of di�erential equation� ��	
order p� ��	

constant
Euler� 
��
in polynomial� ��
propositional calculus� ���
term� �	�

constants
mathematical� frequently used� ����
natural� ����

continuation� analytic� ���
continued fractions� �
continuity

composite functions� ��
elementary function� ��
from below� ���
function
one variable� �	
several variables� ���

H�older� ���
continuous� absolutely� ���
continuum� ���
contour integral

vector �eld� ���
contracting principle� ���
contraction� ��


tensor� ���
contradiction� Boolean function� �


control digit� ���
convergence

absolute� 
��� 
��
complex terms� ���

alternating series test of Leibniz� 
��
Banach space� ���
circle of convergence� ���
condition of Cauchy� ��
conditional� 
��
complex terms� ���

in mean� 
��
in�nite series� complex terms� ���
integration of di�erential equation� ��	
non�uniform� 
�


order p� ��	
sequence of numbers� 
��
complex terms� ���

series� 
��� 
��
complex terms� ���

uniform� 
�
�
��
uniformly� function sequences� ���
weak� ���
Weierstrass criterion� 
��

convergence criterion
comparison criterion� 
�	
D�Alembert�s ratio test� 
�	
integral test of Cauchy� 
��
root test of Cauchy� 
��

convergence theorem� 
��
measurable function� ���

conversion� number systems� ��	
convex� curve� ���
convolution

Fourier transformation� 	��
Laplace transformation� 	��
one�sided� 	��
two�sided� 	��
z�transformation� 	��

coordinate inversion� ���
coordinate line� ���� ���
coordinate surface� ���� ���
coordinate system

double logarithmic� ���
Gauss�Krueger� �
�
left�hand� ��	
orientation� ��	
orthogonal� ���
orthonormal� ���
plane� ���
right�hand� ��	
semilogarithmic� ���
Soldner� �
�
spatial� ��	
transformation� ���

coordinate transformation� ���� ��	� �
	
equation
central curves second order� ���
quadratic curve �parabolic� ���

coordinates
a�ne� ���
axis� ���
barycentric� ��	
Cartesian� ���
plane� ���
space� ���

Cartesian� transformation� ���
contravariant� ��	� ���
covariant� ��	� ���
curvilinear� ���� �

� ���
three dimensional� ���

cylindrical� ���
vector �eld� �
	

Descartes� ���
equation� space curve� �
�
Gauss� �


Gauss�Kr�uger� ���
geodetic� �
�
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ccordinates �continued
geographical� ���
mixed� ��	
point� ���
polar� plane� ���
polar� spherical� ���
representation with scalar product� ��	
Soldner� ���
spherical� ���
vector �eld� �
	

transformation� ���
triangle coordinates� ��	
vector� ���

coprime� �
corner

convex� ���
�gure� ���
northwest corner rule� ���
symmetric� ���
trihedral� ���

correction form� ���
corrector� ���
correlation� 		�

analysis� 		�
coe�cient� 	��
empirical� 	��

cosecant
geometric de�nition� ���
hyperbolic� �	
trigonometric� 	�

coset
left� ���
right� ���

cosine
geometric de�nition� ���
hyperbolic� �	
geometric de�nition� ���

law� �
�
law for sides� ��

rule� spherical triangle� ��

trigonometric� 	�

cotangent
geometric de�nition� ���
hyperbolic� �	
trigonometric� 	�

Coulomb �eld� point�like charge� �
�� ���
counterpoint� ���
course angle� ���
covariance� two�dimensional distribution� 	��
covering transformation� ���
covering� open� ���
Cramer rule� �	�
credit� ��
criterion

convergence
sequence of numbers� 
��
series� 
��
series with positive terms� 
�	
uniform� Weierstrass� 
��

divisibility� ���
subspace� ��	

cross product� ���
cryptanalysis� classical� methods� ��	

Kasiski�Friedman test� ��	
statistical analysis� ��	

cryptography� conventional
methods� ���
linear substitution ciphers� ���

substitution� ���
monoalphabetic� ���
monographic� ���
polyalphabetic� ���
polygraphic� ���

transposition� ���
cryptology� ��


AES algorithm� ���
classical
Hill cypher method� ���
matrix substitution method� ���
Vigenere cypher method� ���

cryptosystem� ��

Di�e�Hellman key exchange� ���
encryption
context free� ��

context sensitive� ��


IDEA algorithm� �
�
mathematical foundation� ��

one�time pad� ���
one�way function� ���
public key methods� ���
RSA method� ���
security of cryptosystems� ���
subject� ��


crystal class� ���
crystal system� ���
crystallography

lattice� ���
symmetry group� ���

cube� ���
curl� ���

density� ���
�eld
pure� ���
zero�divergence �eld� ���

line� ���
curvature

center� ���
circle� ���
curves on a surface� �
	
Gauss surface� �
�
mean� surface� �
�
minimal total curvature� ���
plane curve� ���
radius� ���
curve on a surface� �
	
principal� �
	

space curve� �
�
surface� �
	� �
�
constant curvature� �
�

total� �
�
curve

algebraic� ��� ��

n�th order� ��


arc cosine� �

arc cotangent� �

arc sine� �




Index ����

curve �continued I
arc tangent� �

Archimedean spiral� ���
area cosine� ��
area cotangent� ��
area sine� ��
area tangent� ��
astroid� ���
asymptote� ���� ��

asymptotic point� ���
B�B representation� ���
cardioid� ��
Cartesian folium� �

Cassinian� ��
catenary� ���
cissoid� ��
clothoid� ���
concave� ���
conchoid of Nicomedes� ��
convex� ���
corner point� ���
cosecant� 	�
cosine� 	�
cotangent� 	�
curvature� ���
cuspidal point� ���
cycloid� ���
damped oscillation� ��
directing� ��

double point� ���
empirical� ���
envelope� ���
epicycloid� ���
epitrochoid� ���
equation
complex form� 	��
plane� ��
� ���
second degree� ���
second order� ���
space� ��


error curve� 	�
evolute� ���
evolvent� ���� ��	
of the circle� ��


exponential� 	�
fourth order� ��
Gauss error curve� 	��
general discussion� ���
hyperbolic cosine� ��
hyperbolic cotangent� ��
hyperbolic sine� ��
hyperbolic tangent� ��
hyperbolic type� ��� 	�
hyperbolice spiral� ��

hypocycloid� ���
hypotrochoid� ���
imaginary� ��

in�ection point� ���
involute� ��	
isolated point� ���
Koch curve� ���
lemniscate� ��
length� line integral� �rst type� 
�


curve �continued II
logarithmic� 	�
logarithmic spiral� ��

loops� ���	
Lorentz curve� �

multiple point� ���
normal� plane� ���
n�th degree� ��� ��

n�th order� ��� ��

parabolic type� ��
Pascal lima�con� ��
plane� ���
angle� ���
direction� ���
vertex� ���

quadratic� ���
radius of curvature� ���� ���
representation with splines� ���
secant� 	�
second degree� ���
second order� ���
semicubic parabola� ��
sine� 	�
space� ���
spherical� ���� �	�� �
�
spiral� ���
strophoide� ��
tacnode� ���
tangent� 	�
plane� ���

terminal point� ���
third degree� ��
third order� ��
tractrix� ���
transcendent� ��

trochoid� ���
witch of Agnesi� �


curves
family of� envelope� ��	
second order
central curves� ���
parabolic curves� ���
polar equation� ��	

spherical� intersection point� �	�
cut� ���

Dedekind�s� ��	
fuzzy sets� ��

set� ���

cutting plane method� �		
cycle� ���

chain� ��	
limit� ���

cycloid� ���
basis� ���
common� ���
congruent� ���
curtate� ���
prolate� ���

cylinder� ��
� ���
circular� ���
elliptic� ���
hollow� ���
hyperbolic� ���
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cylinder �continued
invariant signs
elliptic� ��

hyperbolic� ��

parabolic� ��


parabolic� ���
cylindrical coordinates� ���
cylindrical function� ���
cylindrical surface� ��
� ���

d�Alembert formula� ���
damping parameter� ��	
damping� oscillations� ��
Darboux vector� �
�
data type� �
�
death process� 	��
debt� ��
decay� radioactive� 	��
decimal

number� ��	
normalized� ���
representation� ��	

system� ��	
decoding� ���
decomposition

orthogonal� ���
partial fractions� ��
vectors� ���

decomposition theorem
di�erential equation� higher order� ���

Dedekind cut� ��	
defect� ���� ���

vector space� ���
de�nite� positive� ���
defuzzi�cation� �	�
degeneracy of states� �
�
degree

curve� second degree� ���
curve� n�th degree� ��

homogeneity� ���
in�degree� �
�
matrix� ���
measure in degrees� ���
out�degree� �
�

Delambre equations� ���
� distribution� �
�
� function� ���� �
�

application� 	�	
approximation� 	�	
Dirac� 	�


� functional� ���
De Morgan

law� ���
rule� ��	
Boolean algebra� �
�

density function� 	��
multidimensional� 	�


dependence� linear� �	�� ��	
deposit

in the course of the year� ��
regular� ��
single� ��

depreciation� ��

arithmetically declining� ��
digital� �	
geometrically declining� �	
straight�line� ��

derivative
complex function� �	�
constant� ���
directional� �
�
scalar �eld� �
�
vector �eld� ���

distribution� �
�
exterior� ���
fraction� ���
Fr�echet� ���
function
composite� ���
elementary� ���
implicit� ���
inverse� ���
parametric representation� ��

several variable� ���

generalized� �
�
higher order� ���� ���
inverse function� ��	
parametric representation� ��	

interior� ���
left�hand� ���
logarithmic� ���
mixed� ���
one variable� �	�
partial� ���
product� ���
quotient� ���
right�hand� ���
scalar multiple� ���
Sobolev sense� �
�
space� �
�
sum� ���
table� ���
vector function� �
�
volume di�erentiation� ���

Derive �computer algebra system� ���
Descartes rule� 
�
descent� ���
descent method� ���
determinant� ���

di�erentiation� ���
evaluation� ���
functional� ���
Jacobian� ���
multiplication� ���
re�ection� ���
rules of calculation� ���
Wronskian� ���� ���
zero value� ���

determination of extrema
absolute extremum� ���
implicit function� ���

deviation� standard deviation� 	��
devil�s staircase� �


diagonal matrix� ���
diagonal method� Maxwell� ��

diagonal strategy� ���
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diameter
parabola� ��

circle� ���
conjugate
ellipse� ���
hyperbola� ���

ellipse� ���
hyperbola� ���

di�eomorphism� 	��
Anosov� ���
orientation�preserving� �



di�erence
bounded� ���
�nite expression� ���
sets� ���
symmetric� ���

signi�cant� 		�
symmetric
sets� ���

z�transformation� 	��
di�erence equation� 	��

boundary value� 	
�
linear� 	��
partial di�erential equations� ���
second�order� 	��� 	
�

di�erence method� ���
partial di�erential equations� ���

di�erence quotient� ���
di�erence schema� ��
di�erentiability

complex function� �	�
function of one variable� �	�
function of several variables� ��

with respect to the initial conditions� 	�	

di�erentiable
continuously� ���
Fr�echet� ���

di�erential
arc
plane� ���
surface� �
�

complete� ��

�rst�order� ���
higher order� ��

integrability� 
��
notion� ���
partial� ��

principal properties� ��

quotient �see also derivative� �	�
second�order� ���
total� ��
� ���
n�th order� ���
second�order� ���

di�erential calculus� �	�
fundamental theorem� ���

di�erential equation� 
�	
boundary value problem� ��

eigenfunction� ���
eigenvalue� ���
eigenvalues� �
�
�ow� 	�	
Fourier transformation� 	��
Laplace transformation� 	��

numerical solution� 
�	
operational notation� ���
order� 
�	
orthogonality� ���
self�adjoint� ��

singular solution� 
��
sti�� ���
topological equivalent� ���
Weber� �
�

di�erential equation� higher order� 
�	
constant coe�cients� ���
decomposition theorem� ���
Euler� n�th order� ��

fundamental system� ���
n�th order� ���
lowering the order� 
��� ���
normal form� ���
quadrature� ���
superposition principle� ���
system� 
�	
system of linear� ���
system of solutions� 
��
variation of constants� ���

di�erential equation� linear
autonomous� on the torus� ���
�rst�order� ���
fundamental theorem� ���
homogeneous� ���
homogeneous systems� ���
inhomogeneous� ���
inhomogeneous systems� ���
matrix�di�erential equation� ���

non�autonomous� on the torus� �


periodic coe�cients� ���
second order� ��	
Bessel� ���
de�ning equation� ���
Hermite� ��

hypergeometric� ���
Laguerre� ���
Legendre� ���
method of unknown coe�cients� ��	

di�erential equation� ordinary� 
�	
approximate integration� ��

autonomous� ���
Bernoulli� 
��
boundary value conditions� 
�	
boundary value problem� 
�	
center� 
��
central point� 
��
Clairaut� 
��
direction �eld� 
��
element� singular� 
��
exact� 
��
existence theorem� 
��
explicit� 
�	
�rst�order� 
��
approximation methods� 
��
important solution methods� 
��

�ow� 	�	
fraction of linear functions� 
�

general solution� 
�	
general� n�th order� 
�	



���� Index

di�erential equation� ordinary �continued
graphical solution� 
�	
homogeneous� 
��
implicit� 
�	� 
��
initial value conditions� 
�	
initial value problem� 
�	
integral� 
�	
integral curve� 
��
integral� singular� 
��
integrating factor� 
��
Lagrange� 
��
linear� 	��
constant coe�cients� 	��
�rst�order� 
��
variable coe�cient� 	��

linear� planar� 	�	� ���
multiplier� 
��
non�autonomous� ���
notion� 
�	
particular solution� 
�	
point� singular� 
��
radicals� 
��
ratio of arbitrary functions� 
��
Riccati� 
��
separation of variables� 
��
series expansion� 
��
singular point� 
�

solution� 
�	
successive approximation� 
��
van der Pol� ���

di�erential equation� partial� ��	
approximate integration� ���
Cauchy�Riemann� ���� �	�
characteristic system� ���
Clairaut� ���
completely integrable� ���
eigenfunction� �
�
electric circuit� ���
elliptic type� ���
constant coe�cients� ��


Euler� calculus of variations� ��

�eld theory� ���
�rst�order� ��	
canonical system� ���
characteristic strip� ���
characteristic system� ��	
linear� ��	
non�linear� ���
non�linear� complete integral� ���
total di�erentials� ���
two variables� ���

Fourier transformation� 	��
Hamilton� ���� �
�
heat conduction equation
one dimensional� ���
one�dimensional� ���
three�dimensional� ��	

Helmholtz� �
�
hyperbolic type� ���� ��

integral surface� ���
Laplace� ���
Laplace transformation� 	��
linear� ��	

di�erential equation� partial �continued
non�linear� �
�
Schr�odinger� �
�

normal system� ���
notion� 
�	
parabolic type� ���
constant coe�cients� ��


Poisson� ���� ��	� �	�
quasilinear� ��	
reduced� ���
reduced� normal form� ���
second�order� ���
constant coe�cients� ��


separation of variables� �
�
ultrahyperbolic type� constant coe�cients� ��


di�erential operation
review� ���
vector components� ���

di�erential operator
divergence� ���� ���
gradient� ���� ���� ���
Laplace� ��	� ���
nabla� ���� ���
non�linear� ���
relations� ���
rotation� ��
� ���
rules of calculations� ���
space� �
�� ���
vector gradient� ���

di�erential transformation� a�ne� �	

di�erentiation� �	�

complex function� �	�
composite function� ��	
function
elementary� ���
implicit� ���
inverse� ���
one variable� �	�
parametric representation� ��

several variables� ���

graphical� ��

higher order
inverse function� ��	
parametric representation� ��	

implicit function� ���
logarithmic� ���
several variables� ��	
under the integration sign� 
��
volume� ���

di�erentiation rules
basic rules� ���
derivative of higher order� ���
function
one variable� ���
several variables� ���� ���

table� ���
vector function� �
�
vectors� �
�

di�usion coe�cient� ���
di�usion equation� ���

three�dimensional� ��	
digon� spherical� ���
dihedral angle� ���



Index ����

dihedral group� ���
dimension� ���

capacity� ���
correlation� ���
de�ned by invariant measures� ��

Douady�Oesterl�e� ���
formula� ��	
generalized� ���
Hausdor�� ���
information� ��

lower pointwise� ��

Lyapunov� ���
measure� ��

metric� ���
Renyi� ���
upper pointwise� ��

vector space� ��	� ���

Dirac
distribution� �
�
measure� ���� ���
theorem� ���

directing curve� ��

direction

cosine� space� ���
plane curve� ���
space� ���
space curve� ���

directional
angle� �
�
derivative� ���

directrix
ellipse� ���
hyperbola� ���
parabola� ���

Dirichlet
condition� 
��
problem� ���� �	�

discontinuity� �	
function� �	
removable� ��

discount� ��
discretization error

global� ��	
local� ��	

discretization step interval� ���
discriminant� ���
disjoint� ���
disjunction� ���

elementary� �
�
dispersion� 	��
dissolving torus� �
�
distance� 
��

Hamming distance� ��

line�point� ���
metric space� ��

planes� ��	
parallel� ��	

point�line� space� ���
point�plane� space� ���
spherical� ���
two lines� space� ���
two points� ���
space� ���

distribution� ���� �
�� 	�	
binomial� 	��
��� 	��
continuous� 	��
derivative� �
�
Dirac� �
�
discrete� 	�

exponential� 	��
Fisher� 	��
frequency� 		�
function� 	��
function� continuous� 	��
hypergeometric� 	��� 	��
logarithmic normal� 	��
lognormal distribution� 	��
measurement error density� 	��
normal� 	��
Poisson� 	�	
regular� �
�
standard normal� 	��
Student� 	��
t distribution� 	��
theory� 	�

Weibull� 	��

distribution problem� ���
distributive law

Boolean algebra� �
�
matrices� ��

propositional logic� ��	
ring� �eld� ���
sets� ���
tensors� ��


distributivity� product of vectors� ��

divergence� ��	

central �eld� ��

de�nition� ���
di�erent coordinates� ���
improper� 
��
proper� 
��
remark� ���
sequence of numbers� 
��
series� 
��
theorem� ���
vector components� ���
vector �eld� ���

divisibility� ���
criteria� ���� ���

division
complex numbers� �	
computer calculation� �
�
external� ���
golden section� ���
harmonic� ���
in extreme and mean ratio� ���
internal� ���
line segment� plane� ���
polynomial� �

rational numbers� �
segment� space� ���

divisor� ���
greatest common �g�c�d�
integer numbers� ���
linear combination� ��




���� Index

divisor �continued
polynomials� �


positive� ���
dodecahedron� ��

domain� ���

closed� ���
convergence� function series� 
�

doubly�connected� ���
function� 
	
image� set� 
�
multiply�connected� ���
non�connected� ���
of attraction� ���
of individuals� predicate calculus� ���
open� ���
operator� ���
set� 
�
simply�connected� ���� ��	
three or multidimensional� ���
two�dimensional� ���
values� set� 
�

dot product� ���
double integral� 
	�

application� 
	

notion� 
	�

double line� ���
dual� �
�
duality

linear programming� ���
non�linear optimization� ���
theorem� strong� ��


duality principle� Boolean algebra� �
�
dualizing� �
�
Duhamel formula� 	��

eccentricity� numerical
curve second order� ��	
ellipse� ���
hyperbola� ���
parabola� ���

edge
angle� ���
�gure� ���
graph� �
�
length� ���
valuation� ���

multiple� �
�
sequence� ���
cycle� ���
directed circuit� ���
isolated edge� ���
open� ���
path� ���

e�ective rate� ��
eigenfunction� �
�

di�erential equation� ���
integral equation� ���� �	�
normalized� ���

eigenvalue� �	�� �
�
di�erential equation� ���
integral equation� ���� �	�
operator� ���

eigenvalue problem

general� �	�
matrices� �	�
special� �	�

eigenvector� ��
� �	�� ���
Einstein�s summation convention� ���
element� ���

�nite� ��

generic� ��

linearly independent� ���
neutral� ���
positive� ���

element of area� plane� table� 
	

element of surface� curved� table� 
��
element of volume� table� 
	�
elementary cell

crystal lattice� ���
non�primitive� ���
primitive� ���

elementary formula� predicate logic� ���
elementary surface� parametric form� 
��
elementary volume

arbitrary coordinates� 
	�
Cartesian coordinates� 
	�
cylindrical coordinates� 
		
spherical coordinates� 
	�

elimination method� Gauss� �	�
elimination step� ���
ellipse� ���

arc� ���
area� ���
diameter� ���
equation� ���
focal properties� ���
focus� ���
perimeter� ���
radius of curvature� ���
semifocal chord� ���
tangent� ���
transformation� ���
vertex� ���

ellipsoid� ���
central surface� ��

cigar form� ���
imaginary� ��

lens form� ���
of revolution� ���
surface second order� ��


embedding� canonical� ���
encoding method� RSA� ���
encyphering� ��

endomorphism� linear operators� ���
endpoint� �
�
energy

particle� ���
spectrum� �
�
system� ���
zero�point translational energy� �
�
zero�point vibration energy� �
�

entropy
generalized� ���
metric� ���
topological� ���� ���

envelope� ���� ��	



Index ����

epicycloid� ���
curtate� ���
prolate� ���

epitrochoid� ���
equality

asymptotic� 
��
complex numbers� �

matrices� ��


equality relation
identity� ��

equation� ��
algebraic� ��� 
�
biquadratic� 
�
characteristic� �	�� 
�
� ���� ���
cubic� 
�� ��
curve
plane� ��
� ���
second degree� ���
second order� ���

de�ning� ���
degree� ��
Diophantine� ���
linear� ���

ellipse� ���
exponential� solution� 
�
�rst degree� ��
fourth degree� 
�
homogeneous� ���
hyperbola� ���
hyperbolic functions� solution� 
�
inhomogeneous� ���
irrational� ��
Korteweg de Vries� �
�
line
plane� ��

space� ��	

linear� ��
logarithmic� solution� 
�
logistic� 	��� ��	
non�linear
�xed point� ��

numerical solution� ��


normal form� ��
n�th degree� 
�
operator equation� ���
parabola� ���
Parseval� 
��� ���� �	�� ���
pendulum� �
�
plane� ��

general� ��

Hessian normal form� ��

intercept form� ���

plane curve� ��

polynomial
numerical solution� ��	

quadratic� ��� ��
root� de�nition� ��
Schr�odinger
linear� ���
non�linear� �
	

second degree� ��
sine�Gordon� �
�
solution� general� ��

space curve� ��
� ���
vector form� ���

sphere� �
�
surface
normal form� ���
second order� ���
space� ���� �
�

system of� ��
term algebra� �
�
third degree� 
�
transcendent� ��
trigonometric� solution� 
�
vector� ��	

equation system
linear� �	�� ���
overdetermined� ���

non�linear� ���� ���
numerical method� iteration� ���
numerical solution� ���
direct method� ���

overdetermined� �		� ���
row echelon form� ���
underdetermined� ���

equations
Delambre� ���
L�Huilier� ��	
Mollweide� �
�
Neper� ��	

equilibrium point� 	�	
hyperbolic� ��


equivalence� ���
class� ��	
logic� ��	
proof� �
relation� ���

Eratosthenes sieve� ���
error

absolute� 	��� ���
absolute maximum error� 	��
apparent� 	��
average� 	��� 	��
computer calculation� �
�
de�ned� 	��
density function� 	��
discretization� �
�
equation� ���
estimation� iteration method� ��	
input error� �
�
least mean squares� 
��
mean� 	��
square� 	��� 	��

normally distributed� 	��
percentage� 	��
probable� 	��� 	��
relations between error types� 	��
relative� 	��� ���
relative maximum error� 	��
round�o�� �
�
single measurement� 	��
standard� 	��
true� 	��
truncation error� �
�
type � error rate� 	��



���� Index

error �continued
type� measurement errors� 	��

error analysis� 	��
error calculus

direct problem� �
�
inverse problem� �
�

error curve� 	�
error estimation� mean value theorem� ���
error function� 
��

Gauss� 	��
error integral� Gauss� 
��
error orthogonality� ���
error propagation� 	�


law� 	��
error types� computer calculation� �
�
ess� sup �essential supremum� ���
Euclidean

algorithm� �� �

polynomial rings� ���

norm� ���
vector norm� ���
vector space� ���

Euler
angle� ���
broken line method� ��

circuit� ���
constant� 
��
di�erential equation
n�th order� ��

variational calculus� ��


formula� �
	� 
��
formulas� 
��� 
�

function� ���
graph� ���
integral of the second kind� 
��
integral� �rst kind� ����
integral� second kind� ����
numbers� 
��
polygonal method� ��

relation �complex numbers� ��� ���
theorem� ��

trail� ���
open� ���

Euler�Hierholzer theorem� ���
event� 	
	

certain� 	
	
complete system of� 	
�� 	��
elementary� 	
	
impossible� 	
	
independent� 	��
random� 	
	
set of events� 	
	
simple� 	
	

evolute� ���
evolution

equation� �
	
function� �
	

evolution strategies� �	�
evolvent� ���� ��	

of circle� ��

excess� spherical triangle� ���
exchange theorem� ���
exchange� cyclic� sides and angles� �
�

excluded middle� ��	
existential quanti�er� ���
expansion

Fourier� forms� 
��
Laplace� ���
Laurent� ���
Maclaurin� 
��
Taylor� ���� 
�	� ���

expectation� 	��
expected value� 	��

bivariate distribution� 		�
two�dimensional distribution� 		�

exponent� 	
exponential distribution� 	��
exponential function� 	�

complex� �	�
general� ���
natural� ���

exponential integral� 
��
exponential sum� 	�
expression

algebraic� ��
manipulation� �	�

analytic� 
�
domain� 
�
explicit form� 
�
implicit form� 
�
parametric form� 
�

Boolean� �


concurrent� �
�
explicit form� 
�
�nite� ���
partial di�erential equations� ���

implicit form� 
�
integral rational� ��
irrational� ��� �	
non�polynomial� manipulation� ���
parametric form� 
�
propositional logic� ���
rational� ��� �

semantically equivalent� �
�
tautology� ���
transcendent� ��
vector analysis� ���

extension principle� ���
extension theorem of Hahn� ���
extension� linear functional� ��

extraction of the root

complex numbers� ��
real numbers� �

extrapolation principle� ���
extremal� radius of curvature� ���
extreme value� ���

absolute� ���
determination� ���
higher derivatives� ���
side conditions� 
��
sign change� ���

function� 
��
relative� ���

face� corner� ���
factor algebra� �
�



Index ����

factor group� ���
factor ring� ��

factor� polynomial� product representation� 
�
factorial� ��

generalization of the notion� 
��
factoring out� ��
Falk scheme� ��

feasible set� �
	
Feigenbaum constant� ��	� ���
FEM ��nite element method� ���
FFT �fast Fourier transformation� ���
Fibonacci

numbers� ���� �
�
sequence� ���

�eld �algebraically� ���
extension� ���
�nite� ��

Galois� ��


�eld
axial� �


central symmetric� �
�
circular� �
�
conservative� ���
Coulomb� point�like charge� �
�� ���
cylinder symmetric� �


�ow� ��

function� ���
gravitational� point mass� ���
Newton� point�like mass� �
�
potential� ���
scalar� �
�
source� ��	
spherical� �
�

�eld theory
basic notions� �
�
di�erential equations� partial� ���

�elds� superposition� ���
�nite di�erence method� ��

�nite element method� ��
� ���
�tting problem

di�erent versions� 
��
linear� ���
non�linear� ��	

�xed point
conformal mapping� �	�� �	�
�ip bifurcation� ���

�xed�point number� ���
�oating�point number� ���

IEEE standard� ���
Maple� �	�
Mathematica� ��	
semilogarithmic form� ���

Floquet
representation� ���
theorem� ���

�ow
di�erential equation� 	�	
edge� ���
scalar �eld� ��

vector �eld
scalar �ow� ��

vector �ow� ��


focal line� tractrix� ���

focus� ���
compound� ���
ellipse� ���
hyperbola� ���
parabola� ���
saddle� ��

saddle focus� ���
stable� ��


form
quadratic� ���
saddle� �
�

formula
binomial� ��
Cardano� 
�
closed� predicate logic� ���
d�Alembert� ���
Duhamel� 	��
Euler� �
	� 
��
Heron�s� �
�
integral �series remainder� 
��
interpretation� predicate logic� ���
Kirchho�� ���
Lagrange� 
��
Leibniz� ���
Liouville� ���� ���
Maclaurin� 
��
manipulation� ���
de Moivre
complex number� �	
hyperbolic functions� ��
trigonometric functions� 	�

Parseval� 	��
Pesin� ���� ���
Plemelj and Sochozki� ���
Poisson� ���
predicate logic� ���
rectangular� ���
Riemann� ���
Simpson� ���
Stirling� 
��
tangent� �
�
tautology� ���
Taylor
one variable� ���
several variables� ��	

trapezoidal� ���
formulas

Euler� 
��� 
�

Frenet� �
�
predicate logic� ���

four�group� Klein�s� ���
Fourier analysis� 
��
Fourier coe�cient� 
��� ��	

asymptotic behavior� 
��
determination� 
��
numerical methods� 
�


Fourier expansion� 
��
complex functions� 
��
forms� 
��
symmetries� 
��

Fourier integral� 
�
� 	�

complex representation� 	�

equivalent representations� 	�
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Fourier series� 
��
best approximation� ��	
complex representation� 
��
Hilbert space� ��	
Bessel inequality� ���

Fourier sum� 
��� ��	
complex representation� ���

Fourier transformation� 	�

addition law� 	�	
comparing to Laplace transformation� 	��
convolution� 	��
two�sided� 	��

de�nition� 	��
di�erentiation
image space� 	��
original space� 	��

discrete complex� ���
fast� ���
Fourier cosine transformation� 	��
Fourier exonential transformation� 	��
Fourier sine transformation� 	��
frequency�shift theorem� 	��
integration
image space� 	��
original space� 	��

inverse� 	��
linearity law� 	�	
shifting theorem� 	��
similarity law� 	��
spectral interpretation� 	��
survey� 	�	
tables� 	��
transform� 	��

fractal� ���
fractile� 	��
fraction

continued� �
decimal� �
improper� ��
proper� ��

fractional part of x� 
�
frames� 	
�
Fr�echet

derivative� ���
di�erential� ���

Fredholm
alternative� ���
alternative theorem� �	�
integral equation� ���� ���
�rst kind� �		

solution method� ���
theorems� ���

Frenet formulas� �
�
frequency� 	�

angular�radial� ��
distribution� 		�
locking� �


relative� 	
�
sine� ��
spectrum� 	�	
continuous� 
��
discrete� 
��

statistics� 	
�� 		�

cumulative� 		�
Fresnel integral� ��	
frustum

cone� ���
pyramid� ���

function� 
	
absolutely integrable� 
��� 
��
algebraic� ��
amplitude function� elliptic� 	��
analytic� �	�
area� ��
arrow� ��

autocorrelation� ���
Bessel� ���
modi�ed� ���

beta function� ����
Boolean� ��	� �


bounded� ��
circular� geometric de�nition� ���
comparable� ���
complement� ���
complex� 
	� �	�
algebraic� ���
bounded� �	�
linear� �	�
linear fractional� �	�
quadratic� �		
square root� �		

complex variable� �	�
complex�valued� 
	
composite� ��
derivative� ���
intermediate variable� ���

continuity
in interval� �	
one�sided� �	
piecewise� �	

continuous� complex� �	�
cosecant� 	�
cosine� 	�
cotangent� 	�
cyclometric� �

cylindrical� ���
density� 	��
dependent� ���
discontinuity� �	
removable� ��

discrete� 	�

distribution� 	��
double periodic� 	�

elementary� ��
elementary� transcendental� ���
elliptic� 
�	� ���� 	�

entire rational� ��
error function� 
��
Euler� ���
even� ��
exponential� ��� 	�
exponential� complex� �	�
exponential� natural� ���
function series� 
�

gamma� 
��
generalized� ���� �
�� 	�	



Index ����

function �continued I
Green� ���
Hamilton� ���� ���
harmonic� ���� �	�
Heaviside� �
�
Hermite� ���
holomorphic� �	�
homogeneous� ���
homographic� ��� ��
hyperbolic� �	� ���
geometric de�nition� ���� ���

impulse� 	�

increment� ��	
independent� ���
integrable� 

�
integral rational� ��
�rst degree� ��
n�th degree� ��
second degree� ��
third degree� ��

inverse� ��
complex� hyperbolic� ���
complex� trigonometric� ���
derivative� ���
derivative of higher order� ��	
existence� ��
hyperbolic� ��
trigonometric� ��� �


irrational� ��� ��
Jacobian� 	��
Lagrangian� ���
Laguerre� ���
Laplace� ���
limit� ��
at in�nity� ��
in�nity� ��
iterated� ���
left�hand� ��
right�hand� ��
Taylor expansion� ��

limit theorems� ��
linear� ��� ��
linear fractional� ��� ��
local summable� ���
logarithm� complex� �	�
logarithmic� ��� 	�
loop function� ���	
MacDonald� ���
matrix exponential� ���
mean value� 



measurable� ���
meromorphic� ���� 	�
� 	��
monotone
decreasing� 
�
increasing� 
�

non�elementary� ��
notion� 
	
odd� ��
of angle� 	

one variable� 
	
order of magnitude� ��
parametric representation
derivative of higher order� ��	

function �continued II
periodic� ��� 	��
piecewise continuous� �	
point of discontinuity� �	
�nite jump� ��
tending to in�nity� �	

positive homogeneous� ���
power� 	�
primitive� 
�	
quadratic� ��
random variable� 	��
rational� ��� �

real� 
	
regular� �	�
Riemann� ���
sample function� 		�
secant� 	�
several variables� 
	� ��	
sign of� 
�
sine� 	

special fractional linear fractional� �

step� 	�

stream� ���
strictly monotone� 
�
sum of linear and fractional linear functions� �	�
summable� ��	
switch� �
�
tangent� 	�
theory� �	�
theta� 	��
transcendental� ��
trigonometric� ��� 	
� ���
geometric de�nition� ���

truth� ���� ��	
Weber� ���
Weierstrass� 	��

function system
orthogonal� ���
orthonormal� ���

function theory� �	�
functional� ���� ���

de�nition� 
	
linear� ���� ���� ���
linear continuous� ���
Lp space� ��


functional determinant� ���� ���� 
	

fundamental form

�rst quadratic� of a surface� �
�
second quadratic� of a surface� �
�

fundamental formulas
spherical trigonometry� ��


fundamental laws� set algebra� ���
fundamental matrix� ������

fundamental problem

�rst� triangulation� �
	
second� triangulation� �
�

fundamental system
di�erential equation� higher order� ���

fundamental theorem
Abelian groups� ���
algebra� 
�
elementary number theory� ���
integral calculus� 

�
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future value� ��
fuzzy

control� �	

inference� �	�
linguistics� ���
logic� ���
logical inferences� �	�
product relation� �	�
relation� ���
relation matrix� �	�
system� �		
systems� applications� �	

valuation� ���

fuzzy set
aggregation� ���
aggregation operator� �	�
complement� ���
composition� �	�
cut �representation theorem� ��

degree� ��

empty� ���
intersection� ���
intersection set� ���
level set� ��

normal� ��

peak� ���
similarity� ��

subnormal� ��

subset� ���
support� ���
tolerance interval� ���
union� ���
universal� ���

fuzzy sets
cut� ��

intersection� ���
union� ���

g�c�d� �greatest common divisor� ��

g�c�d� and l�c�m�� relation between� ��

Gabor transformation� 	
�
Galerkin method� ���
Galois �eld� ��

gamma function� 
��� 
��
Gauss

algorithm� �	�� ���
coordinates� �


curvature� surface� �
�
elimination method� �	�� ���
error curve� 	��
error function� 	��
error integral� 
��
error propagation law� 	��
integral theorem� ���
least squares method� 
��� ��
� ���
plane� �

step� �	�
transformation� �		� 	��� ��


Gauss�Kr�uger coordinates� ���
Gauss�Newton method� ��	

derivative free� ���
Gauss�Seidel method� ���
generating line� ��


generator� ��

ruled surface� ���

geodesic line� ���
geodesy

angle� �
�
coordinates� �
�
polar coordinates� �
�

geometric sequence� ��
geometry� ���

analytical� ���
plane� ���
space� ��	

di�erential� ���
plane� ���

Girard theorem� ��

golden section� �� 
� ���� �
�
gon� �
�
gradient

de�nition� ���
di�erent coordinates� ���
remark� ���
scalar �eld� ���� ���
vector components� ���
vector gradient� ���� ��	

Grae�e method� ���
graph

alternating way� ���
arc� �
�
bipartite� �
�
complete� �
�
complete bipartite� �
�
components� ���
connected� ���� ��	
cycle� ��	
directed� �
�
directed circuit� ��	
directed edge� �
�
edge� �
�
Euler� ���
�ow� ���
increasing way� ���
in�nite� �
�
isomorphism� �
�
loop� �
�
mixed� �
�
non�planar� ��	
partial� �
�
planar� ��	
plane� �
�
regular� �
�
simple� �
�
special classes� �
�
strongly connected� ��	
subdivision� ��	
subgraph� �
�
transport network� �
�
tree� �
�
undirected� �
�
vertex� �
�
weighted� ���

graph paper
double logarithmic� ���
log�log paper� ���
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notion� ���
reciprocal scale� ���
semilogarithmic� ���

graph theory� algorithm� �
�
gravitational �eld� point mass� ���
great circle� ���� �	�
greatest common divisor �g�c�d�

integer numbers� ���
linear combination� ��

polynomials� �


Green
function� ���
integral theorem� ���
method� ���� ���

group� ���
Abelian� ���
dihedral� ���
element� ���
character� ��

inverse� ���

factor group� ���
permutation� ���
point group� ���
representation� ���
irreducible� ���
reducible� ���

subgroup� ���
symmetry group� ���

group table� ���
Cayley table� ���

grouping� ��
groups

applications� ��	
direct product� ���
homomorphism� ���
homomorphism theorem� ���
isomorphism� ���

growth factor� ��
Guldin�s �rst rule� 
��
Guldin�s second rule� 
��

half�angle formulas
plane trigonometry� �
�
spherical trigonometry� ���

half�line� notion� ���
half�side formulas� ���
Hamel basis� ���
Hamilton

circuit� ���
di�erential equation� ���
di�erential equation� partial� ���� �
�
function� ���� ���
system� ���

Hamiltonian� ���
Hamming distance� ��

Hankel transformation� 	�	
harmonic analysis� ��	
harmonic� spherical

�rst kind� ���
second kind� ���

Hasse diagram� ���
heat conduction equation

one�dimensional� ���� 	��

three�dimensional� ��	
Heaviside

expansion theorem� 	��
function� �
�� ��	
unit step function� 	�
� ���


helix� �
�
Helmholtz� di�erential equation� �
�
H�enon mapping� 	��� ���
Hermite

di�erential equation� ��

polynomial� ��
� �
�
trapezoidal formula� ���

Hessian
matrix� ���
normal form
line equation� plane� ���
plane equation� space� ��


hexadecimal
number� ��	
system� ��	

Hilbert
boundary value problem� ���
homogeneous� ���
inhomogeneous� ��


matrix� ���
space� ���
isomorphic� ���
pre�Hilbert space� ���
scalar product� ���

histogram� statistics� 		�
hodograph� vector function� �
�
H�older

condition� ���
continuity� ���
inequality� ��
integrals� ��
series� ��

Holladay� theorem� ���
holoedry� ���
homeomorphism

and topological equivalence� ���
conjugate� ���
orientation preserving� �
�

homomorphism� ���� �
�
algebra� ��

groups� ���
linear operators� ���
natural� ���� ��

ring� ��

theorem� �
�
groups� ���
ring� ��


vector lattice� ���
Hopf bifurcation� ���
Hopf�Landau model� turbulence� �
�
Horner

rule� ���
scheme� ��	� ���
two rows� ���

horseshoe mapping� ��	
Householder

method� �	�� ���
tridiagonalization� ���
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l�Huilier equations� ��	
hull

convex� ���
linear� ��	

Hungarian method� ���
hyperbola� ���

arc� ���
area� ���
asymptote� ���
binomial� ��
conjugate� ���
diameter� ���
equation� ���
equilateral� �
� ���
focal properties� ���
focus� ���
radius of curvature� ���
segment� ���
semifocal chord� ���
tangent� ���
transformation� ���
vertex� ���

hyperbolic
cosecant� �	
cosine� �	
cotangent� �	
secant� �	
sine� �	
tangent� �	

hyperbolic function� ���
geometric de�nition� ���
inverse� complex� ���

hyperboloid� ���
one sheet� ���� ���
central surface� ��


two sheets� ���
central surface� ��


hyperplane� ���
of support� ���

hypersubspace� ���
hypersurface� ��	
hypocycloid� ���

curtate� ���
prolate� ���

hypotenuse� ���
hypothesis testing� 		�
hypotrochoid� ���

icosahedron� ��

ideal� ���

principal ideal� ���
idempotence law

Boolean algebra� �
�
propositional logic� ��	
sets� ���

identically valid� ��
identity� ��

Boolean function� �


representation of groups� ���

identity matrix� ���
IEEE standard� ���
IF�THEN rule� �	�
i� �if and only if� ���

image
function� 
�
set� 
�
space� 
�� 	�	
subspace� ��	

imaginary
number� �

part� �

unit� �


implication� ���
proof� �

impulse function� 	�

impulse� rectangular� 	�

incidence function� �
�
incidence matrix� ���
incircle

quadrangle� ���
triangle� ���� �
�

incommensurability� 
� ���
increment� ��� ��

independence

linear� �	�� ���
path of integration� 
��� ��	
potential �eld� ���

induction step� �
inequality� ��

arithmetic and geometric mean� ��
arithmetic and quadratic mean� ��
Bernoulli� ��
Bessel� ���
binomial� ��
Cauchy�Schwarz� ��
Chebyshev� ��� 	�

Chebyshev� generalized� ��
di�erent means� ��
�rst degree� ��
H�older� ��
linear� ��
�rst degree� ��
solution� ��

Minkowski� ��
product of scalars� ��
pure� ��
quadratic� ��
solution� ��

Schwarz�Buniakowski� ���
second degree� ��
solution� ��
special� ��
triangle� ���
norm� ���

triangle inequality
complex numbers� ��
real numbers� ��

in�mum� ���
in�nite

denumerable� ���
non�denumerable� ���

in�nitesimal quantity� 

�
in�nity� �
in�x form� ���
in�ection point� ���� ���� ���
initial conditions� 
�	



Index ����

initial value problem� 
�	� ��

inner product� ���
inscribed circle

quadrangle� ���
triangle� ���

inscribed pentagram� ���
instability� round�o� error

numerical calculation� �
�
insurance mathematics� ��
integer

non�negative� �
part of x� 
�
programming� �
	

integrability
complete� ���
condition� 
��
conditions� 
��� ���
di�erential� 
��
quadratic� �	�

integral
absolutely convergent� 
��
antiderivative� 
�	
basic
notion� 
��

calculus� 
�	
circuit� 
��� 
��
complex
de�nite� ���
inde�nite� ���

complex function
measurable function� ��	

elementary functions� 
��
error integral� 
��
Euler� 
��� 
��
exponential integral� 
��
Fourier integral� 
�
� 	�

Fresnel� ��	
interval of integration� 

�
Lebesgue integral� ��	
comparison with Riemann integral� 
��

limits of integration� 

�
line integral� 
��
�rst type� applications� 
�


lorarithmic integral� 
��
lower limit� 

�
non�elementary� 
��� 
��
parametric� 
��
primitive function� 
�	
probability integral� 	��
Riemann� 

�
comparison with Stieltjes integral� 
��

Stieltjes� ���
comparison with Riemann integral� 
��
notion� 
��

surface integral� 
	�� 
��� 
��� ��

triple integral� 
	�
upper limit� 

�
volume integral� 
	�

integral calculus� 
�	
fundamental theorem� 

�� 
��
mean value theorem� 




integral cosine� 
��
integral curves� 	��

integral equation
Abel� ���
adjoint� ���� ���
approximation
successive� ��	

characteristic� ���
collocation method� �	�
eigenfunction� ���
eigenvalue� ���
�rst kind� ���
Fredholm� ���� ���
degenerate kernel� �		
�rst kind� �		
second kind� ��


general form� ���
homogeneous� ���
inhomogeneous� ���
iteration method� ��	� ��

kernel� ���
degenerate� ��

iterated� ��	
product� ��


kernel approximation� �	

tensor product� �	


linear� ���
Nystr�om method� �	�
orthogonal system� �	�� ���
perturbation function� ���
quadratically integrable function� �	�
quadrature formula� �	�
second kind� ���
singular� ���
Cauchy kernel� ���

transposed� ���
Volterra� ���� ���
convolution type� ��	
�rst kind� ���
second kind� ���

integral equation method� closed curve� ��

integral exponential function� table� ����
integral formula

Cauchy� ���
application� ��


Gauss� ���
series remainder� 
��

integral logarithm� table� ����
integral norm� ���
integral surface� ���
integral test of Cauchy� 
��
integral theorem� ���

Cauchy� ���
Gauss� ���
Green� ���
Stokes� ���

integral transformation� 	�	
application� 	��
Carson� 	�	
de�nition� 	�	
Fourier� 	�	
Gabor� 	
�
Hankel� 	�	
image space� 	�	
inverse� 	�	
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integral transformation �continued
kernel� 	�	
Laplace� 	�	
linearity� 	�	
Mellin� 	�	
multiple� 	��
one variable� 	�	
original space� 	�	
several variables� 	��
special� 	�	
Stieltjes� 	�	
Walsh� 	


wavelet� 	
�� 	
�
fast� 	
�

integral� de�nite� 

�
di�erentiation� 

�
notion� 
�	
particular integral� 

�
table� ����
algebraic functions� ����
exponential function� ���	
logarithmic function� ����
trigonometric functions� ����

integral� elliptic� 
�	
�rst kind� 
��� 
�	� 	��
second kind� 
�	
series expansion� 
��
table� ����
third kind� 
�	

integral� improper� 

�
Cauchy�s principal value� 
�
� 
�	
convergent� 
�
� 
��
divergent� 
�
� 
��
in�nite integration limits� 
��
notion� 
��
principal value� 
�

unbounded integrand� 
��

integral� inde�nite� 
�	
basic integral� 
��
cosine function� table� ��
�
cotangent function� table� ��
�
elementary functions� 
��
elementary functions� table� ����
exponential function� table� ����
hyperbolic functions� table� ����
inverse hyperbolic functions� table� ����
inverse trigonometric function� table� ���

irrational functions� table� ����
logarithmic functions� table� ����
notion� 
��
other transcendental functions� table� ����
sine and cosine function� table� ��
�
sine function� table� ��
�
table� ����
tangent function� table� ��
�
trigonometric functions� table� ��
�

integral� logarithmic� 
��
integral� surface

�rst type� 
	�
general form� 
��
second type� 
��

integrand� 
��� 

�
integrating factor� 
��

integration
approximate
ordinary di�erential equation� ��

partial di�erential equation� ���

complex plane� ���
constant� 
��
function� non�elementary� 
��
graphic� 
��
graphical� 

�
in complex� ��

interval� 

�
limit
depending on parameter� 
��
lower� 

�
upper� 

�

logarithmic� 
��
numerical� ���
multiple integrals� ���

partial� 
��
power� 
��
rational functions� 
��
rules
by series expansion� 
��
by substitution� 
��
constant multiple rule� 
��
de�nite integrals� 

�
general rule� 
��
inde�nite integrals� 
��
interchange rule� 



interval rule� 

�
series expansion� 

�� 
��
sum rule� 
��

under the integration sign� 
��
variable� 

�
variable� notion� 
��
vector �eld� ���
volume� 
��

integrator� 

	
intensity� source� ���
interaction� soliton� �
	
intercept theorem� ��

interest� ��

calculation� ��
compound� ��

intermediate value theorem
one variable� ��
several variables� ���

intermediate variable� ���
intermittence� ���� �
�
Internationale Standard Book Number ISBN� ���
interpolation

Aitken�Neville� ���
condition� ��	
formula
Lagrange� ���
Newton� ��	

fuzzy system� �		� �	�
knowledge�based� �		
node� ���
equidistant� ��


points� ��	
quadrature� ���
spline� ��	� ���
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bicubic� ���
cubic� ���

trigonometric� ��	� ��	
interpretation

formula� predicate logic� ���
variable� ��	

intersection� ���
angle� ���
by two oriented lines� �
	
fuzzy set� ���
on the sphere� �	�
point
four planes� ���
lines� ���
plane and line� ���
three planes� ���
two lines� space� ���

set� fuzzy set� ���
sets� ���
without visibility� �
	

interval
convergence� 
��
numbers� �
order ���interval� ���
rule� 

�
statistics� 		�

invariance
rotation invariance� ���
transformation invariance� ���
translation invariance� ���

invariant� 	��
quadratic curve� ���
scalar� ���
scalar invariant� ��

surface second order� ��


inverse� ���
inverse function� ��

hyperbolic� ��
trigonometric� �


inverse transformation� 	�	
inversion

Cartesian coordinate system� ���
conformal mapping� �	�
space� ���

involute� ��	
irrational

algebraic� �
quadratic� �

isometry� space� ���
isomorphic

vector spaces� ���
isomorphism� ���� �
�

Boolean algebra� �
�
graph� �
�
groups� ���
surjective norm� ���

iteration� ��

inverse� ���
method� ���� ��
� ���
ordinary� ��
� ���

sequential steps� ���
simultaneous steps� ���
vector� ��


Jacobi
function� 	��
method� ���� ���

Jacobian
determinant� ���� ���
matrix� ��	

Jordan
matrix� ���
normal form� ���

jump� �nite� ��

KAM �Kolmogorov�Arnold�Moser theorem� ���
ker� �
�� ���
kernel� ���

approximation
integral equation� �	

spline approach� �	�
tensor product� �	


congruence
relation� �
�

homomorphism� �
�
integral equation� ���
degenerate� �	

iterated� ���� ��	
resolvent� �	�
solving� ���

integral transformation� 	�	
operator� ���
ring� ��

subspace� ��	

key equation� ���
kink soliton� ���
Kirchho� formula� ���
Klein�s four�group� ���
Koch curve� ���
Korteweg de Vries equation� �
	
Kronecker

generalized delta� ���
product� ���
symbol� ���� ���

Kuan� ���
Kuhn�Tucker conditions� ���

reference� ���
Kuratowski theorem� ��	

l�c�m� �least common multiple� ��

Lagrange

function� 
��
identity� vectors� ���
interpolation formula� ���
method of multiplier� 
��
theorem� ���

Lagrangian� 
��� ���
Laguerre

di�erential equation� linear� second order� ���
polynomial� ���

Lanczos method� ���
Landau� order symbol� ��
Laplace

di�erential equation� partial� ���� ���
expansion� ���
wave equation� ���
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Laplace operator
di�erent coordinates� ��	
polar coordinates� 
��
vector components� ���

Laplace transformation� 	��
addition law� 	��
comparing to Fourier transformation� 	��
convergence� 	��
convolution� 	��
one�sided� 	��

convolution� complex� 	�

de�nition� 	��
di�erential equation� ordinary
linear� constant coe�cients� 	��
linear� variable coe�cients� 	��

di�erential equation� partial� 	��
di�erential equations� 	��
di�erentiation� image space� 	��
di�erentiation� original space� 	��
discrete� 	��
division law� 	��
frequency�shift theorem� 	��
image space� 	��
integration� image space� 	��
integration� original space� 	��
inverse� 	��� 	��
inverse integral� 	��
linearity law� 	��
original function� 	��
original space� 	��
partial fraction decomposition� 	��
piecewise di�erentiable function� 	��
series expansion� 	��
similarity law� 	��
step function� 	�

survey� 	�	
table� ���	
transform� 	��
translation law� 	��

largest area method� �	

lateral area

cone� ���
cylinder� ��

polyhedron� ���

lateral face� ���
latitude� geographical� ���� �


lattice� �
�

Banach� ��

Bravais� ���
crystallography� ���
distributive� �
�
vector� ��


Laurent
expansion� ���
series� ���� 	��

law
cosine� ��

spherical triangle� ��


large numbers� 	�

Bernoulli� 	�

limit theorem� Lindeberg�Levy� 	��

sine�cosine� ��

polar� ��


layer� spherical� ��	
least common multiple �l�c�m�� integer numbers� ��

least squares method� ��	� �		� ���� ���� ���� ���

calculus of observations� 	�	
Gauss� 
��
regression analysis� 	��

least squares problem� linear� ��

Lebesgue

integral� 
�
� ��	
comparison with Riemann integral� 
��

measure� ���� ���
left singular vector� ���
left�hand coordinate system� ��	
leg or side of an angle� ���
Legendre

di�erential equation� ���
polynomial
associated� ���
�rst kind� ���
second kind� ���

symbol� ���
Leibniz

alternating series test� 
��
formula� ���

lemma
Jordan� ���
Schur� ���

lemniscate� ��� ��

length

interval� ���
line integral� �rst type� 
�

reduced� �	

vector� ���

length� arc
space curve� �
�

level
curve� ��	
line� �


surface� �



level set �fuzzy set� ��

library �numerical methods� �



Aachen library� �
�
IMSL library� �
�
NAG library� �



limit
cycle� ���� ���
stable� ���
unstable� ���

de�nite integral� 

�
function
complex variable� �	�
one variable� ��
several variables� ���
theorems� ��

function series� 
�

integration� depending on parameter� 
��
partial sum� 
�

sequence of numbers� 
��
sequence� in metric space� ���
series� 
��
superior� 
��

line� ��
curvature� surface� �
�
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geodesic� ���
imaginary� ���
notion� ���
space� ���� ��

vector equation� ���

line element
surface� �
�
vector components� ���

line equation
plane� ��

Hessian normal form� ���
intercept form� ���
polar coordinates� ���
through a point� ��

through two points� ��


slope� plane� ��

space� ��	

line integral� 
��
Cartesian coordinates� ���
�rst type� 
��
applications� 
�


general type� 
�	
second type� 
�

vector �eld� ���

linear combination� vectors� ��� ���� ��

linear form� ���� ���

continuous� ���
linear programming

assignment problem� ���
basic notions� �
�
basic solution� ���
basis of the extreme point� �
�
constraints� �
�
degenerate extreme point� �
�
distribution problem� ���
dual problem� ���
duality� ���
extreme point� �
�
normal form� �
�� ���
objective function� �
�
primal problem� ���
round�tour problem� ���
surplus variable� ���

linearly
dependent� ��	
independent� ��	

lines
angle between� plane� ���
intersection point� plane� ���
orthogonal� ���� ��	
parallel� ���� ���� ��	
pencil� ���
perpendicular� ���� ��	
skew� ���

Liouville
approximation theorem� 

formula� ���� ���
theorem� ���

Lipschitz condition
higher�order di�erential equation� 
��
ordinary di�erential equation� 
��

locus� geometric� ��

logarithm

binary� ��
Briggsian� �
complex function� �	�
decimal� �
de�nition� �
natural� �� ���
Neperian� �
principal value� ���
table� ��
taking of an expression� �

logarithmic decrement� ��
logarithmic integral� 
��� 
��
logarithmic normal distribution� 	��
logic� ���

fuzzy� ���
predicate� ���
propositional� ���

longitude� geographical� ���� �


loop function� ���	
loop� graph� �
�
Lorentz curve� 	��
Lorenz system� 	��� ���� ���
loxodrome� �		

arclength� �		
course angle� �	�
intersection point� �	�
intersection point of two loxodromes� �	�

Lp space� ���
LU factorization �lower and upper triangular matrix�

���
Lyapunov

exponent� ���
function� ���

MacDonald function� ���
Maclaurin

formula� 
��
series expansion� 
��

Macsyma �computer algebra system� ���
majorant series� 
��
manifold

center manifold theorem
local� ���
mappings� ���

of solutions� ���
stable� ���� ���
unstable� ���� ���

manipulation
algebraic expressions� �	�
non�polynomial expressions� ���

mantissa� ��� ���
manyness set� ���
Maple �computer algebra system� ���
Maple

addendum to syntax� �	�
algebraic expressions� �	�
manipulation� ���
multiplication� ���

array� �	�
attribute� �	�
basic structure elements� ���
context� �	�
conversion of numbers� di�erent bases� �	�
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Maple �continued
di�erential equations� ��	
di�erential operators� �		
di�erentiation� ���
eigenvalues� eigenvectors� ���
elements of linear algebra� ���
environment variable� �	�
equation
one unknown� ���
transcendental� ��	

factorization of polynomials� ���
�oating�point number� conversion� �	�
formula manipulation� introduction� ���
functions� �	�
graphics� ����
introduction� ���
three�dimensional� ����
two�dimensional� ����

help and information� �	�
input� output� �
�� ���
input�output� ���
integral
de�nite� ��	
inde�nite� ���
multiple� ��	

lists� �	�
manipulation� general expressions� ���
matrices� �	�
numerical calculations� introduction� ��

numerical mathematics� �
�
di�erential equations� ���
equations� ���
expressions and functions� �
�
integration� ���

object classes� ���
objects� ���
operations
important� ���
polynomials� ���

operators
functional� �	�
important� �	�

partial fraction decomposition� ���
procedures� �	�
programming� �		
sequences� �	�
short characteristc� ���
special package plots� ���	
system description� ���
system of equations� ��	
systems of equations� linear� ���
table structures� �	�
types� ���
types of numbers� �	�
vectors� �	�

mapping� ��
� ���
between groups� ���
bijective� ���� ���
complex number plane� ��

conformal� �	

circular transformation� �	�
exponential function� �	�
�xed�point� �	�� �	�

inversion� �	�
linear fractional� �	�
linear function� �	�
logarithm� �	�
quadratic function� �		
square root� �		
sum of linear and fractional linear functions� �	�

contracting� ���
equivalent� �
�
function� 
�� ��

H�enon mapping� ���
horseshoe� ��	
injective� ���� ���
inverse mapping� ���
kernel� ���
lifted� �
�
linear� ��	� ���� ���
modulo� ���
one�to�one� ���
Poincar�e� ��	
Poincar�e mapping� ���
reduced� ���
regular� ���
rotation mapping� ��	
shift� ���
surjective� ���� ���
tent� ���
topological conjugate� ���
unit circle� �
�

marginal distribution� 	�

mass

double integral� 
	

line integral� �rst type� 
�

triple integral� 
��

matching� ���
maximal� ���
perfect� ���
saturated� ���

Mathcad �computer algebra system� ���
Mathematica �computer algebra system� ���
Mathematica

�D graphics� ���

algebraic expressions� manipulation� �	�
algebraic expressions� multiplication� �	�
apply� ���
attribute� ���
basic structure element� ���
context� ���
curves
parametric representation� ����
two�dimensional� ����

di�erential and integral calculus� ���
di�erential equation� ��

di�erential quotient� ���
di�erentiation� ���
eigenvalues� eigenvectors� ���
elements� ���
elements of linear algebra� ���
equation� ���
manipulation� ��

transcendent� ���

expression� ���
factorization� polynomials� ���
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Mathematica �continued
FixedPoint� ���
FixedPointList� ���
�oating�point number� conversion� ���
formula manipulation� introduction� ���
function� inverse� ���
functional operations� ��

functions� ���
graphics� ���
functions� ����
introduction� ���
options� ����
primitives� ���� ���

head� ���
input and output� �
�
input�output� ���� ��	
integral
de�nite� ��

inde�nite� ���
multiple� ��


lists� ���
manipulation with matrices� ���
manipulation with vectors� ���
Map� ���
matrices as lists� ���
messages� ��	
Nest� ���
NestList� ���
numerical calculations� introduction� ��

numerical mathematics� �
�
curve �tting� �
�
di�erential equations� �
�
integration� �
�
interpolation� �
	
polynomial equations� �
	

objects� three�dimensional� ���

operations� polynomials� ���
operators� important� ���
partial fraction decomposition� ���
pattern� ��

programming� ���
short characteristc� ���
surfaces� ���

surfaces and space curves� ����
syntax� additional information� ���
system description� ���
system of equations� ���
general case� ���
special case� ���

types of numbers� ��	
vectors as lists� ���

mathematics� discrete� ���
matrices

arithmetical operations� ��

associative law� ��

commutative law� ��
� ���
distributive law� ��

division� ��

eigenvalue� �	�
eigenvalue problem� �	�
eigenvectors� �	�
equality� ��

multiplication� ��


powers� ���
rules of calculation� ��	

matrix� ���
adjacency� ���
adjoint� ���� ���
admittance� ���
anti�Hermitian� ���
antisymmetric� ���
block tridiagonal� ���
complex� ���
conjugate� ���
de�ation� ��

degree� ���
diagonal� ���
distance� ���
extended coe�cient� ���
full rank� �		
fundamental� ���
Hermitian� ���
Hessian� ���
identity� ���
incidence� ���
inverse� ���� ���
inverse calculation� �	�
Jacobian� ��	
Jordan� ���
lower triangular� ���
main diagonal element� ���
monodromy� ���� ���
normal� ���
of coe�cients� �	�
augmented� �	�

orthogonal� ��	
rank� ���
real� ���
rectangular� ���
regular� ���
rotation� ��	
scalar� ���
self�adjoint� ���
singular� ���
size� ���
skew�symmetric� ���
spanning tree theorem� ���
sparse� ���
spur� ���
square� ���� ���
stochastic� 	��
symmetric� ���
trace� ���
transposed� ���
triangle decomposition� ���
triangular� ���
unitary� ��	
upper triangular� ���
zero� ���

matrix exponential function� ���
matrix product� disappearing� ��	
max�min composition� �	�
maximum

absolute� ��� ���� ���
global� ���
point� �
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maximum �continued
relative� ���

maximum�criterion method� �	�
Maxwell� diagonal method� ��

mean

arithmetic� ��� 	��� 	��
estimate� 		�
geometric� ��
golden� �
�
harmonic� ��
quadratic� ��
sample function� 		�
statistics� 		�
value� ��
weighted� 	��� 	��� 	��

mean squares problem
di�erent versions� 
��
non�linear� ���

mean squares value problem
linear� �		
rank de�ciency case� �	�

mean value formula� ���
mean value function� integral calculus� 



mean value method� ��	
mean value theorem

di�erential calculus� ���
generalized� ���

integral calculus� 



generalized� 

�

measure
concentrated on a set� ���
counting� ���
degrees� ���
dimension� ��

Dirac� ���� ���
ergodic� ��	
function� convergence theorems� ���
Hausdor�� ���
invariant� ���
Lebesgue� ���� ���
natural� ���
physical� ��	
probability� ���
invariant� ���

SBR �Sinai�Bowen�Ruelle� ��	
��algebra� ���
���nite� ���
support� ���

measured value� 	�	
measurement

error� 	�	
error density� 	��
error� characterization� 	��
protocol� 	��

measuring error� distribution� 	��
median� �
�

sample function� 		�
statistics� 		

triangle� ���

Mellin transformation� 	�	
Melnikov method� �
�
membership

degree� ���

function� ���� ���
bell�shaped� ���
trapezoidal� ���

relation� ���
meridian� ���� �



convergence� ���
tangential� �	�

method
Bairstow� ���
barrier� �	�
Bernoulli� ���
bisection� ���
broken line� Euler� ��

center of area� �	

center of gravity� �	�
generalized� �	

parametrized� �	


Cholesky� �	�� ���
collocation
boundary value problem� ���
integral equation� �	�
partial integral equation� ���

cryptoanalysis� ��	
cryptography� ���
cutting plane� �		
descent� ���
di�erence
ordinary di�erential equations� ���
partial di�erential equations� ���

extrapolation� ���
Fibonacci� ���
�nite di�erence� ��

�nite element� ��
� ���� ���
Galerkin� ���
Gauss elimination� ���
Gauss�Newton� ��	
derivative free� ���

Gauss�Seidel� ���
gradient� ���
Grae�e� ���
Green� ���� ���
Hildreth�d�Esopo� ��	
Householder� �	�� ���
Hungarian� ���
inner digits of squares� 	��
integrating factor� 
��
iteration� ���� ��
� ���� ���
ordinary� ��
� ���

Jacobi� ���� ���
Kelley�s� optimization� �		
Lagrange multiplier� ���
Lanczos� ���
largest area� �	

least squares� ��	� ���� ���� ���� ���� ���
Mamdani� �	

maximum�criterion� �	�
mean�of�maximum� �	�
Monte Carlo� 	��
multi�step� ���
multiple�target� ���
Newton� ���� ��	
modi�ed� ���
non�linear operators� ���
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method �continued
operator� 	��
orthogonalization� �	�� ���� ��

parametrized center of area� �	

pivoting� �	�
polygonal� Euler� ��

predictor�corrector� ���
public key� ���
regula falsi� ���
relaxation� ���
Riemann� ���
Ritz� ���� ���
Romberg� ���
RSA encryption� ���
Runge�Kutta� ��

separation of variables� 
��
shooting� ���
single�target� ���
SOR �successive overrelaxation� ���
statistical experiment� 	�	
steepest descent� ���
Ste�ensen� ���
successive approximation
Banach space� ���
Picard� 
��

Sugeno� �	�
transformation� ���
undetermined coe�cients� ��� 
�	
variation of constants� ���
Vigenere cypher� ���
Wolfe� ���

metric� ��

Euclidean� ��

surface� �
	

Meusnier� theorem� �
	
midpoint line segment

plane� ���
space� ���

midpoint rule� ���
minimal surface� �
�
minimum

absolute� ��� ���� ���
global� ���
point� ���
global� ���
local� ���

problem� �
	
relative� ���

Minkowski
inequality� ��
integrals� ��
series� ��

mixed product� ��	
modal value� statistics� 		

mode� statistics� 		

model

Hopf�Landau� turbulence� �
�
urn model� 	��

module of an element� ���
modulo

congruence� ��	� ��	
mapping� ���

modulus� analytic function� �	�

de Moivre formula
complex number� �	
hyperbolic functions� ��
trigonometric functions� 	�

Mollweide equations� �
�
moment of inertia� ���� 
��

double integral� 
	

line integral� �rst type� 
�

triple integral� 
��

moment� order n� 	��
monodromy matrix� ���� ��
� ���
monotonicity� ���
monotony� ���

function� 
�
sequence� numbers� 
�


Monte Carlo method� 	��
application in numerical mathematics� 	��
usual� 	��

Monte Carlo simulation� 	��
example� 	�


Morse�Smale system� ���
multi�index� ���
multi�scale analysis� 	
�
multi�step method� ���
multiple integral� 
	�

transformation� 	��
multiple�target method� ���
multiplication

complex numbers� ��
computer calculation� �
�
polynomials� ��
rational numbers� �

multiplicity� of divisors� ���
multiplier� 
��� ���� ��
� ���

Lagrange method� 
��
mutation� �	�

nabla operator
de�nition� ���
divergence� ���
gradient� ���
rotation� ���
twice applied� ��	
vector gradient� ���� ��	

NAND function� ���
nautical� radio bearing� �	�
navigation� �	�
negation� ���

Boolean function� �


double� ���

neighborhood� ���
point� ���

Neper
equations� ��	
logarithm� �
rules� ���

net
chart� ���
more than three variables� ��	
three variables� ���

isometric� �	�
points� ���
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Neumann
problem� �	�
series� ���� ��	

Newton
�eld� point�like mass� �
�
interpolation formula� ��	

Newton method� ���� ��	
adaptive� ���
modi�ed� ���
non�linear operators� ���
approximation sequence� ���
modi�ed� ���

non�linear optimization� ���
damped� ���

niveau line� ��	
nodal plane� �
�
node� ���

approximation interval� ���
di�erential equation� ordinary� 
�

saddle node� ��
� ���
stable� ��

triple� ��


nominal rate� ��
nomogram� ���
nomography� ���
non�negative integer� �
NOR function� ���
norm

axioms� linear algebra� ���
Euclidean� ���
integral� ���
isomorphism� ���
matrix� ���
column sum norm� ���
row sum norm� ���
spectral norm� ���
subordinate� ���
uniform norm� ���

operator norm� ���� ���
pseudonorm� ��

residual vector� �		
seminorm� ��

s�norm� ���
space� ���
t�norm� ���
vector� ���
Euclidean norm� ���
matrix norm� ���
sum norm� ���

normal distribution� 	��
logarithmic normal distribution� 	��
observational error� 	�
standard normal distribution� 	��
standard� table� ����
two�dimensional� 	��

normal equation� ��
� ���� ���
system� 	��� ���

normal form� �
�
equation of a surface� ���
Jordan� ���
principal conjunctive� �
�
principal disjunctive� �
�

normal plane� space curve� ���� �
�

normal vector
plane� ��

plane sheet� ���
surface� �



normal� plane curve� ���
normalization condition� �
�
normalizing factor� ���
northern direction

geodesical� ���
geographical� ���

northwest corner rule� ���
notation

Polish notation� ���
post�x notation� ���
pre�x notation� ���
reversed polish� ���

n�tuple� ��	
number� �

approximation� 

cardinal� ���� ���
complex� �

absolute value� ��
addition� ��
algebraic form� �

argument� ��
division� �	
exponential form� ��
main value� ��
multiplication� ��
power� �	
subtraction� ��
taking the root� ��
trigonometric form� ��

composite� ���
conjugate complex� ��
imaginary� �

integer� �
interval� �
irrational� ��
� ��	
natural� �
non�negative� �
random� 		�
rational� �� �
real� �
taking of root� �

sequence� 
�

convergent� ���
metric space� ���

transcendental� �
number line� extended� ���
number plane� complex� Gauss� �

number representation� computer internally� ���� ���
number system� ���

binary� ��	
decimal� ��	
hexadecimal� ��	
octal� ��	

number theory� elementary� ���
numbers

Bernoulli� 
��
Euler� 
��
Fermat� prime� ���
Fibonacci� ���� �
�
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Mersenne� prime� ���
prime� ���

numerical
analysis� ��

axis� �
calculations� computer� ���
library �numerical methods� ��


nutation angle� ���
Nystr�om method� �	�

obelisk� ���
objective function� linear� �
�
observational value� 	�	
occupancy number� statistics� 		�
octahedron� ��

octal number� ��	
octal system� ��	
octant� ���
��limit set� 	��� ���� ���
operation� ���

algebraic� ���
arithmetical� �
associative� ���
binary� ���
commutative� ���
exterior� ���
n�ary� ���

operational method� ��

operational notation� di�erential equation� ���
operator

adjoint� ���
AND� ���
bounded� ���
closed� ���
coercivity� ��

compact� ���
compensatory� ���
completely continuous� ���
continuous� ���
inverse� ���

contracting� ���
demi�continuous� ��

di�erentiable� ���
�nite dimensional� ���
gamma� ���
Hammerstein� ���
idempotent� ���
inverse� ���
isotone� ���
lambda� ���
linear� ���� ���
bounded� ���
continuous� ���

linear� notion� ���
linear� permutability� ���
linear� product� ���
monotone� ��

Nemytskij� ���
non�linear� ���
norm� ���
notion� 
�
OR� ���
positive� ���

positive de�nite� ���
positive non�linear� ���
self�adjoint� ��	
singular� ���
strongly monotone� ��

Urysohn� ���

operator method� 	��
opposite side� ���
optimality condition� ���� ���

su�cient� ���
optimality principle� Bellman� ���
optimization� �
�
optimization method

Bellman functional equation� ���
conjugate gradient� ���
cutting plane method� �		
damped� ���
DFP �Davidon�Fletcher�Powell� �	�
feasible direction� �	�
Fibonacci method� ���
golden section� ���
Hildreth�d�Esopo� ��	
Kelley� �		
penalty method� �	�
projected gradient� �	�
unconstrained problem� ���
Wolfe� ���

optimization problem
convex� ���� ���
dynamic� �	�
non�linear� ���

optimization� evolution strategies� �	�
mutation� �	�
recombination� �	�� �	�
selection� �	�

optimization� non�linear� ���
barrier method� �	�
convex� ���
convexity� ��

descent method� ���
direction search program� �	�
duality� ���
gradient method
inequality constraints� �	�

Newton method� ���
numerical search procedure� ��	
quadratic� ��

saddle point� ���
steepest descent method� ���

orbit� 	�	
double� periodic� ���
heteroclinic� ���
homoclinic� ���� �
�
periodic� 	�	
hyperbolic� ���
saddle type� ���

order
���interval� ���
curve� second order� ���
curve� n�th order� ��

di�erential equation� 
�	
interval� ���
of magnitude� function� ��
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order �continued
second order surface� ���
wavelet� 	
�

order relation� ���
linear� ��	

order symbol� Landau� ��
ordering� ��	

lexicographical� ��	
linear� ��	
partial� ��	� ���

ordinate
plane coordinates� ���
space coordinates� ���

Ore theorem� ���
orientation� ���

coordinate system� ��	
numerical axis� �

origin
numerical axis� �
plane coordinates� ���
space coordinates� ���

original function� 	�	
original space� 	�	

set� 
�
orthocenter� triangle� ���
orthodrome� �	�

arclength� �	

course angle� �	�
intersection point� �	
� �	�
intersection point of two orthodromes� �	�
point� closest to the north pole� �	�

orthogonal
function system� ���
polynomials� ���
space� ���
spherical� ���

orthogonality
conditions
line�plane� ���
lines in space� ���
planes� ���

eigenvalues� di�erential equation� ���
Hilbert space� ���
lines� ���
real vector space� ���
trigonometric functions� ���
vectors� ��

weight� ���

orthogonalization method� ���� ��

Givens� ���
Gram�Schmidt� ��	
Householder� �	�� ���
Schmidt� �	�

orthogonalization process� ���
Gram�Schmidt� ���

orthonormal
function system� ���

orthonormalization� vectors� ���
oscillation

duration� ��
harmonic� ��

oscillator� linear harmonic� �


osculating plane� space curve� ���� �
�

osculation point� curve� ���
oversliding� ���

pair� ordered� ��

parabola� ���

arclength� ��

area� ��

axis� ���
binomial� ��
cubic� ��
diameter� ��

directrix� ���
equation� ���
focus� ���
intersection �gure� ���
n�th degree� �

parameter� ���
quadratic polynomial� ��
radius of curvature� ��

semicubic� ��
semifocal chord� ���
tangent� ��

transformation� ���
vertex� ���

paraboloid� ���
elliptic� ���
hyperbolic� ���
central surface� ��


invariant signs
elliptic� ��

hyperbolic� ��

parabolic� ��


of revolution� ���
parallel circle� �


parallelepiped� ���

rectangular� ���
parallelism

lines� ���
parallelism conditions

line�plane� ���
lines in space� ���
planes� ���

parallelogram� ��

parallelogram identity� unitary space� ���
parameter� ��� 
�

parabola� ���
statistical� 		�

parameter space� stochastic� 	��
parametric integral� 
��
parametric representation� circle� ��	
parametrized center of area method� �	

parity� �


Parseval

equation� 
��� ���� �	�� ���
formula� 	��

partial fraction decomposition� ��
special cases� ����

partial ordering� ��	
partial sum� 
��
partition� ��	
Pascal lima�con� ��
Pascal triangle� ��
path� ���
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closed� ���
integration� 
��

PCNF �principal conjunctive normal form� �
�
PDNF �principal disjunctive normal form� �
�
pencil of lines� ���
pendulum

equation� �
�
Foucault� �
�
mathematical� 	��
period� 	��

pentagon� regular� ���
pentagram� 

pentagram� regular� ���
percentage� ��

calculation� ��
performance score� �	�
perimeter

circle� ���
ellipse� ���
polygon� ��	

period� ��
secant� 	�
sine� 	�� ��
tangent� 	�

period doubling� ���
cascade� ��	� �
�

period parallelogram� 	�

permutability� linear operators� ���
permutation� 	
�

cyclic� vectors� ��	
group� ���
matrix� ���
with repetition� 	
�
without repetition� 	
�

perturbation� ���� �
�
Pesin formula� ���� ���
phase

initial� ��
portrait� dynamical systems� ���
shift� 	�� ��
sine� 	�� ��
space� dynamical systems� 	�	
spectrum� 	�	

physical units� ����
Picard

iteration method
integral equation� ��	

successive approximation method� 
��
Picard�Lindel�of theorem� ���
pivot� ���

column� �	�� ���
element� �	�� ���
row� �	�� ���
scheme� �	�

pivoting� �	�� �	

column pivoting� ���
step� �	�

plane
equation
general� ��

in space� ��


geometry� ���
intersecting� ���

rectifying� ���� �
�
space� ���� ��

vector equation� ���

planes
orthogonality� conditions� ���
parallel� ���
distance� ��	

parallelism� conditions� ���
planimeter� 

	
Poincar�e mapping� ���� ���
Poincar�e section� �
�
point

accumulation� ���
asymptotic� curve� ���
boundary� ���
circular� �
�
coordinates� ���
corner� ���
cuspidal� curve� ���
discontinuity� �	
double� curve� ���
�xed� conformal mapping� �	�
�xed� stable� ���
focal� ordinary di�erential equation� 
��
improper� ���
in�nite� ���
interior� ���
isolated� ���
isolated� curve� ���
limit� ��	
limiting� ���
multiple� curve� ���
n�dimensional space� ��	
nearest approach� ��	
neighborhood� ���
non�wandering� ���
notion� ���
plane curve� ���
rational� �
regular� surface� �


saddle� ordinary di�erential equation� 
��
singular� ���� ���
isolated� 
�

ordinary di�erential equation� 
�

surface� �

� �
�

spectrum� ���
spiral� ordinary di�erential equation� 
��
surface point
circular� �
�
elliptic� �
�
hyperbolic� �
�
parabolic� �
�
spherical� �
�
umbilical� �
�

terminal� curve� ���
transversal homoclinic� ���
umbilical� �
�

Poisson
di�erential equation� partial� ���� ��	� �	�
distribution� 	�	
formula� ���
integral� ���
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polar� ���
angle� ���
axis� ���
coordinates� plane� ���
coordinates� spherical� ���
coordinates� transformation� ���
distance� �


equation� �
�
curve second order� ��	

subnormal� ��	
subtangent� ��	

pole
complex function� �	�
function� ��
left� ���
multiplicity m� complex function� ���
on the sphere� ���
order m� complex function� ���
origin� ���
right� ���

Polish notation� ���
polyeder� ���
polygon

area
�n�gon� ���
n�gon� ��	

base angle� ��	
central angle� ��	
circumcircle radius� ��	
circumscribing� ��	
exterior angle� ��	
inscribed circle radius� ��	
interior angle� ��	
perimeter� ��	
plane� ��	
regular� convex� ��	� ���
side length� ��	
similar� ���

polyhedral angle� ���
polyhedron� ���

convex� ��

regular� ��


polynomial� ��
Bernstein� ���
characteristic� �	�
Chebyshev formula� �	
division algorithm� ���
division with remainder� ���
equation� numerical solution� ��	
�rst degree� ��
Hermite� �
�� ��	
integral rational function� ��
interpolation� ��	
irreducible� ���
Laguerre� ���� ��	
Legendre� ���� ���
minimal� ���
n�th degree� ��
primitive� ���
product representation� 
�
quadratic� ��
ring� ���
second degree� ��

third degree� ��
trigonometric� ��	

polynomials� ��
Chebyshev� ��

orthogonal� ���

population� 	��
two�stage� 	�


Posa theorem� ���
position coordinate� re�ection� ���
positive de�nite� ���
post�x notation� ���
postman problem� Chinese� ���
potential

complex� ���
equation� ���
�eld� ���
conservative� ���
rotation� ���

retarded� ��	
power

complex number� �	
notion� 	
real number� 	
reciprocal� ��

power series� 
��
asymptotic� 
��� 
��
complex terms� ���
expansion� analytic function� ���
inverse� 
�	

power set� ���
power spectrum� ���
precession angle� ���
predicate� ���

logic� ���
n�ary� ���

predictor� ���
predictor�corrector method� ���
pre�xes� metric� ����
pre�Hilbert space� ���
present value� ��
pressure� 
��
prime

coprime� �� �

decomposition� canonical� ���
element
numbers� ���
polynomials� ���

factorization� ���
canonical� ���

Fermat� ���
Mersenne� ���
notation �measurement protocol� 	��
number� ���
pair� ���
quadruplet� ���
relatively� �

triplet� ���

prime formula� predicate logic� ���
principal �a sum of money� ��
principal axis

direction� ���
transformation� ��


principal ideal� ���
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principal normal
section� surface� �
�
space curve� ���� �
�

principal quantities� ��
principal value

integral� improper� 
�

inverse hyperbolic function� 	��
inverse trigonometric function� �
� 	��
logarithm� ���� 	��

principle
Cauchy� ���
contracting mapping� ���
extensionality� ���
extrapolation principle� ���
Neumann� ��	
of bivalence� ���

prism� ���
lines� ���
regular� ���

probability
area interpretation� 	��
conditional� 	��
de�nition� 	
�
total� 	��

probability integral� 	��
probability measure� ���

ergodic� ���
invariant� ���

probability paper� 		

probability theory� 	
�� 	
	
probability vector� 	�	
problem

Cauchy� ���
Dirichlet� ���� �	�
discrete� ���
inhomogeneous� ��	
multidimensional
computation of adjustments� ���

Neumann� �	�
regularized� �	�
scheduling� ���
shortest way� ���
Sturm�Liouville� ���
two�body� ���

process
birth process� 	��
death process� 	��
orthogonalization process� ���
Poisson process� 	��
stochastic� 	��

product� 	
algebraic� ���
Cartesian
fuzzy sets� ���
n�ary� �	�
sets� ��


cross� ���
derivative� ���
direct
group� ���
��algebra� �
�

dot� ���
drastic� ���

dyadic� ���
dyadic� tensors� ��

inner product� ���
Kronecker� ���
n times direct� �
�
product sign� 	
rules of calculation� 	
scalar� ���� ���
vector� ���

programming� �
�
computer algebra system� ���
continuous dynamic� �	�
discrete dynamic� �	�
Bellman functional equation� �	�
Bellman functional equation method� ���
Bellman optimality principle� ���
constraint dynamic� �	�
constraint static� �	�
knapsack problem� �	�
problem� �	�
purchasing problem� �	�
state vector� �	�

linear� �
�
linear� transportation problem� ��	
Maple� �		
Mathematica� ���
problem
dual problem� ���
primal problem� ���

programming� discrete
continuous dynamical� �	�
cost function� �	�
decision� �	�
decision space� �	�
dynamic� �	�
functional equation� ���
Bellman� �	�
method� ���

knapsack problem� �	�� ���
minimum interchangeability� ���
minimum separability� �	�
n�stage decision process� �	�
optimal policy� ���
optimal purchasing policy� ���
purchasing problem� �	�
state costs� �	�
state vector� �	�

programming� linear
constraints� �
�
forms� �
�
general form� �
�
properties� �
�
scheduling problem� ���

programming� non�linear
see optimization� non�linear� ���

projection sides� �
�
projection theorem� orthogonal space� ���
projector� ���
proof

by contradiction� �
constructive� �
direct� �
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proof �continued
indirect� ���
implication� �

mathematical induction� �
step from n to n� �� �

proportionality
direct� ��
inverse� �


proportions� �	
proposition� ���

dual� �
�
propositional logic� ���

basic theorems� ��	
expression� ���

propositional operation� ���
extensional� ���

propositional variable� ���
protocoll� 		�
pseudonorm� ��

pseudorandom numbers� 	�

pseudoscalar� �	�
pseudotensor� ���� �	�
pseudovector� ���� �	�
Ptolemy�s theorem� ���
pulse� rectangular� ��	
pyramid� ���

frustum� ���
n�faced� ���
regular� ���
right� ���
truncated� ���

Pythagoras
general triangle� �
�
right�angled triangle� �
�

QR algorithm� ���� ��

QR decomposition� ��

quadrangle� ��
� ���

circumscribing� ���
concave� ���
convex� ���
inscribed� ���

quadrant relations� trigonometric functions� 		
quadrant� Cartesian coordinates� ���
quadratic

curve� ���
surface� ���

quadratic form
�rst fundamental� of a surface� �
�
index of inertia� ���
real positive de�nite� ���
second fundamental� surface� �
�
transformation
principal axis� ���

quadrature formula� ���
Gauss type� ���
Hermite� ���
integral equation� �	�
interpolation quadrature� ���
Lobatto type� ���

quadruple �ordered four�tuple� ��

quanti�cation� restricted� ���
quanti�er� ���

quantile� 	��
quantity� in�nitesimal� 

�� 

	
quantum number� �
�

energy� �
�
magnetic� �


orbital angular momentum� �
�
vibration quantum number� �
�

quartic� ��
quasiperiodic� ���
queuing� 	��

theory� 	��
quintuple �ordered ��tuple� ��

quotient� �� ��

derivative� ���
di�erential� �	�
set� ��	

radial equation� �
�
radian

de�nition� ���
measure� ���

radicals� ordinary di�erential equation� 
��
radicand� �
radius

circle� ���� ��	
circumcircle� �
�
convergence� 
��
curvature� ���
curve� ���
space curve� �
�

curvature� extremal� ���
polar coordinates� ���
principal curvature
surface� �
	

short� ���
torsion� space curve� �
�
vector� ���

raising to a power
complex numbers� �	
real numbers� 	� �

random number� 		�� 	��
application� 	�

congruence method� 	��
construction� 	�

di�erent distributions� 	�

pseudorandom� 	�

uniformly distributed� 	��

random numbers� table� ���	
random variable� 	��

continuous� 	��� 	��
discrete� 	��
independent� 	�
� 		�
mixed� 	��
multidimensional� 	�

two�dimensional� 		�

random vector
mathematical statistics� 		�
multidimensional random variable� 	�


random walk process� 	��
range� 
	

operator� ���
sample function� 		�
statistics� 		
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rank
matrix� ���
tensor� ���
vector space� ���

rate
e�ective� ��
nominal� ��
of interest� ��

ray point� 
��
ray� notion� ���
Rayleigh�Ritz algorithm� ���
reaction� chemical� concentration� ���
real part �complex number� �

rebate� ��
recombination� �	�� �	�
rectangle� ���
rectangular formula� simple� ���
rectangular impulse� 	�

rectangular pulse� ��	
rectangular sum� ���
recti�cation� ��	
Reduce �computer algebra system� ���
reduction� ��

angle� �	

reduction formula� trigonometric functions� 		
re�ection principle� Schwarz� ���
re�ection� position coordinate� ���
region� ���

multiply�connected� ���
non�connected� ���
simply�connected� ���
two�dimensional� ���

regression
analysis� 		�
coe�cient� 	��
line� 	��� 	��
linear� 	��
multidimensional� 	��

regula falsi� ���
regularity condition� ���� �	�
regularization method� ���
regularization parameter� �	�
relation� ��


binary� ��

congruence relation� �
�
equivalence relation� ���
Euler �complex numbers� ��� ���
fuzzy�valued� ���
inverse� ���
less or equal than �� relation� ���
matrix� ��

n�ary� ��

n�place� ��

order relation� ���
product� ���

relaxation method� ���
relaxation parameter� ���
reliability testing� 	��
relief� analytic function� �	�
remainder

estimation� 
��
series� 
��
term� 
��

Remes algorithm� ���
rent� ��

ordinary� constant� ��
representation of groups� ���

adjoint� ��

direct product� ���
direct sum� ���
equivalent� ��

faithful� ���
identity� ���
irreducible� ���
non�equivalent� ��

particular� ���
properties� ���
reducible� ���
reducible� complete� ���
representation matrix� ���
representation space� ���
subspace� ���
true� ���
unitary� ��


representation theorem �fuzzy logic� ��

resection

Cassini� �
�
Snellius� �
�

residual spectrum� ���
residual sum of squares� �		� ��

residual vector� �		
residue

quadratic modulo m� ���
complex function� ���
theorem� ��


residue class� ��	
addition� ��	
multiplication� ��	
primitive� ���
relatively prime� ���
ring� ���� ��	
ring� modulo m� ��	

residue theorem� ���
application� ���

residuum� �		� ���
resolvent� ���� �	�� ��	� ���

set� ���
resonance torus� �
�
reversing the order of the bits� ���
rhombus� ���
Riemann

formula� ���
function� ���
integral� 

�
comparison with Lebesgue integral� 
��
comparison with Stieltjes integral� 
��

method� ���
sum� 

�
surface� many�sheeted� ���
theorem� 
��

right screw rule� ���
right singular vector� ���
right�hand coordinate system� ��	
right�hand rule� ���� ���
ring� ���

factor ring� ��
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ring �continued
homomorphism� ��

theorem� ��


isomorphism� ��

polynomial� ���
subring� ���

risk theory� ��
Ritz method� ���� ���
IRn� n�dimensional Euclidean vector space� ��

Romberg method� ���
root

complex function� �	�
complex number� ��
equation� 
�
non�linear� ��


notion� �
N �th of unity� ���
real number� �
square root� complex� �		
theorem of Vieta� 
�

root locus theory� ���
root test of Cauchy� 
��
rotation

de�nition� ��

di�erent coordinates� ���
mapping� ��	
potential �eld� ���
remark� ���
vector components� ���
vector �eld� ��


rotation angle� ���
rotation �eld

pure� ���
zero�divergence �eld� ���

rotation invariance� ���
rotation matrix� ���� ���� ��	

orthogonal� ���
rotation number� �
�
rotator� rigid� �
�
round�o�� �
�

error� �
�
measurement� 	�	

error method� �
�
round�tour problem� ���
row echelon form� system of linear equations� �	�
row sum criterion� ���
RSA encryption method� ���
Ruelle�Takens�Newhouse scenario� �
�
rule� ���

Adams and Bashforth� ���
Bernoulli�l�Hospital� �

Cartesian rule of signs� ���
Cramer� �	�
De Morgan� ��	
Descartes� 
�
Guldin� �rst rule� 
��
Guldin� second rule� 
��
Laplace expansion� ���
linguistic� �	�
Milne� ���
Sarrus� ���

ruled surface� ���
rules

composition� �	�
determinant calculation� ���
divisibility� elementary� ���
matrix calculation� ��	
Neper� ���
tensor calculation� ���

Runge�Kutta method� ��


saddle� ��
� ���
saddle form� �
�
saddle point

di�erential equation� 
��
Lagrange function� ���

sample� 	�
� 		�
function� 		�
random� 		�
size� 	�

summarizing the sample� 		�
variable� 		�

Sarrus rule� ���
scalar

invariant� ���
notion� ���

scalar �eld� �
�
axial� �


central �eld� �
�
coordinate de�nition� �


directional derivative� �
�
gradient� ���� ���
plane� �
�

scalar matrix� ���
scalar product� ���� ���

Hilbert space� ���
representation in coordinates� ���� ���
rotation invariance property� �	�
two functions� ���
vectors� ���

scale
cartography� �


equation� ��

factor� ��
� �
�
logarithmic� ��

notion� ��

semilogarithmic� ���

scenario� Ruelle�Takens�Newhouse� �
�
Schauder �xed�point theorem� ���
scheduling problem� ���
scheme

Falk� ��

Young� ���

Schmidt� orthogonalization method� �	�
Schoen�ies symbolism� ��	
Schr�odinger equation

linear� ���
non�linear� partial� �
	� �
�
time�dependent� ���
time�independent� ���

Schur�s lemma� ���
Schwarz

exchange theorem� ���
re�ection principle� ���

Schwarz�Buniakowski inequality� ���
Schwarz�Christo�el formula� �	�
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screw
left� �
�
right� �
�

search procedure� numerical� ��	
secant

geometric de�nition� ���
hyperbolic� �	
theorem� ���
trigonometric� 	�

secant�tangent theorem� ���
section� golden� �� 
� ���� �
�
sector formula� ���
sector� spherical� ��	
segment

normal� ��	
notion� ���
polar normal� ��	
polar tangent� ��	
tangent� ��	

selection� �	�
self�similar� ���
semantically equivalent� ��	

expressions� �
�
semifocal chord

ellipse� ���
hyperbola� ���
parabola� ��� ���

semigroup� ���
free� ���

semimonotone� ���
seminorm� ��

semiorbit� 	�	
sense class� ���

of a �gure� ���
sensitive� with respect to the initial values� ���
sentence� ���
sentence�forming functor� ���
sentential operation� ���
separable sets� ���
separation

constant� �
�
theorems �convex sets� ���
variables� 
��� ��
� �
�

separatrix
loop� ���� �
�
surface� ���� ���

sequence� 
�

bounded� ���
Cauchy sequence� ��	
convergente� ���
�nite� ��	
in metric space� ���
in�nite� 
�

numbers� 
�

bounded� 
�
� ���
bounded above� 
��
bounded below� 
��
convergence� 
��
converging to zero� ���
divergence� 
��
�nite� ��	
law of formation� 
�

limit� 
��

monotone� 
�

term� 
�


series� ��� 
�

alternating� 
��
arithmetic� ��
Banach space� ���
Clebsch�Gordan� ���
comparison criterion� 
�	
constant term� 
��
convergence� 
��
absolute � 
��
non�uniform� 
�

uniform� 
�
� 
��

convergence theorems� 
��
convergent� 
��
D�Alembert�s ratio test� 
�	
de�nite� ��
divergence� 
��
divergent� 
��
expansion� 
�	
Fourier� 
��
Laplace transformation� 	��
Laurent� ���
Maclaurin� 
��
power series� 
��
Taylor� ���� 
�	� ���

�nite� ��
Fourier� 
��
complex representation� 
��

function� 
�

domain of convergence� 
�


general term� 
��
geometric� ��
in�nite� ��� 
��

harmonic� 
��
hypergeometric� ���
in�nite� 
�
� 
��
integral test of Cauchy� 
��
Laurent� ���
Maclaurin� 
��
Neumann� ���
Neumann series� ���
partial sum� 
��
power� 
��
expansion� 
�	
inverse� 
�	

remainder� 
��� 
�

root test of Cauchy� 
��
sum� 
��
Taylor� ���� 
�	
analytic function� ���

uniformly convergent
continuity� 
��
di�erentiation� 
��
integration� 
��
properties� 
��

Weierstrass criterion� uniform convergence� 
��
set� ���

absorbing� 	��
algebra� fundamental laws� ���
axioms of closed sets� ���
axioms of open sets� ���
Borel� ���



���� Index

set �continued
bounded in metric space� ���
cardinality� ���
closed� ���
closure� ��	
compact� ���� ���
complex numbers� �

convex� ���
dense� ��	
denumerable in�nite� ���
disjoint� ���
element� ���
empty� ���
equality� ���
equinumerous� ���
fundamental� ���� ���
fuzzy� ���
image� 
�
in�nite� ���
integers� �
invariant� 	��
chaotic� ���
fractal� ���
stable� 	��

irrational numbers� �
linear� ��	
manyness� ���
measurable� ���
natural numbers� �
non�denumerable in�nite� ���
notion of set� ���
open� ���
operation
Cartesian product� ��

complement� ���
di�erence� ���
intersection� ���
symmetric di�erence� ���
union� ���

operations� ���
order�bounded� ���
original space� 
�
power� ���
power set� ���
quotient set� ��	
rational numbers� �
real numbers� �
relative compact� ���
subset� ���
theory� ���
universal� ���
void� ���

sets� ���
coordinates x� y� ��

di�erence� symmetric� ���

sexagesimal degree� ���
shift mapping� ���
shift register� lineare� ���
shooting method� ���

simple� ���
shore�to�ship bearing� �	�
SI system� ����
side or leg of an angle� ���

side�condition� ���
Sierpinski

carpet� ��

gasket� ��


sieve of Eratosthenes� ���
��additivity� ���
��algebra� ���

Borelian� ���
sign of a function� 
�
signal� 	
�

analysis� 	
�
synthesis� 	
�

signature� universal algebra� �
�
signi�cance� 		�

level� 	��� 		�
similarity transformation� ���� ���
simplex

method� ���� ���
revised� ���

step� revised� ���
tableau� ���
revised� ���

Simpson�s formula� ���
simulation

digital� 	��
Monte Carlo� 	��

sine
geometric de�nition� ���
hyperbolic� �	
geometric de�nition� ���

trigonometric� 	

sine integral� 
��� ���
sine law� �
�� ��

sine�cosine law� ��


polar� ��

sine�Gordon equation� �
	� �
�
single�target method� ���
singleton� ���
singular value� ���� ���

decomposition� ���
singular value decomposition� ���
singularity

analytic function� �	�
essential� �	�� ���
isolated� ���
pole� ���
removable� �	�

sink� ��
� ���
vector �eld� ���
vertex� ���

sinusoidal amount� ��
slack variable� �
	
Slater condition� ���
slide rule� ��

logarithmic scale� ��

slope

plane� ��

tangent� ��	

small circle� ���� �	�
arclength� �	�
course angle� �	�
intersection point� �	�
radius� plane� �	�



Index ����

radius� spherical� �	�
smoothing

continuous problem� ���
parameter� ���
spline� ���
cubic� ���

Sobolev space� ���
solenoid� ���
solid angle� ���
soliton

antikink� ���
antisoliton� �
�
Boussinesq� ���
Burgers� ���
di�erential equation� partial� non�linear� �
�
Hirota� ���
interaction� �
	
Kadomzev�Pedviashwili� ���
kink� ���
lattice� ���

kink�antikink� ���
collision� ���
doublet� ���

kink�kink
collision� ���

Korteweg de Vries� �
�
non�linear� Schr�odinger� �
�

solution
point� �
	
product form� method separation of variables� ��


SOR method �successive overrelaxation� ���
source� ��
� ���

distribution
continuous� ���
discrete� ���

�eld
irrotational� ��	
pure� ��	

vector �eld� ���
vertex� ���

space
abstract� 
�
Banach� ���
complete� metric� ��	� ���
directions� ���
�nite�dimensional� ���
higher�dimensional� ��	
Hilbert� ���
in�nite�dimensional� ���
isometric� ���
Kantorovich� ���� ���
linear� ���
Lp space� ���
metric� ��

completion� ���
convergence of sequence� ���
normable� ���
separable� ��	

non�re�exive� ���
normed
axiom� ���
properties� ���

ordered normed� ���

orthogonal� ���
re�exive� ���
Riesz� ���
second adjoint� ���
separable� ��	
Sobolev� ���
unitary� ���
vector� ���

space curve� ���
binormal� ���� �
�
coordinate equation� �
�
curvature� �
�
direction� ���
equation� ��
� ���
moving trihedral� ���
normal plane� ���� �
�
osculating plane� ���� �
�
principal normal� ���� �
�
radius of curvature� �
�
radius of torsion� �
�
tangent� ���� �
�
torsion� �
�
vector equation� ���� �
�

space inversion� ���
mixed product� �	�
scalar product� �	�

spectral radius� ���
spectral theory� ���
spectrum� 	�	

amplitude� 	�	
continuous� ���
frequency� 	�	
linear operator� ���
phase� 	�	

sphere� ���
ellipsoid� ���
equation� three forms� �
�

spherical
biangle� ���
coordinates� ���
diagon� ���
distance� ���
�eld� �
�
helix� �		
lune� ���

spiral� ���
Archimedean� ���
hyperbolic� ��

logarithmic� ��
� ���

spline
basis spline� ���
bicubic� ���
approximation� ���
interpolation� ���

cubic� ���
interpolation� ���
smoothing� ���

interpolation� ��	� ���
natural� ���
normalized B�spline� ���
periodic� ���
smoothing� ���



���� Index

spur
matrix� ���
tensor� ���

square� ���
stability

absolutely stable� ��	
�rst approximation� ��

integration of di�erential equation� ��	
Lyapunov stability� ���
orbital� ���
periodic orbit� ��

perturbation of initial values� ��	
round�o� error� numerical calculation� �
�
structural� ���� ��


standard
deviation� 	��� 	��� 	��
error� 	��
normal distribution� 	��

state
degenerate� �
�
particle� ���
space� stochastic� 	��
stationary� ���

statistics� 	
�
descriptive� 		�
estimate� 		�
mathematical� 	
�� 	��
sample function� 		�

steady state� 	�	
Ste�ensen method� ���
step

from n to n� �� �
function� ��	� 	�
� 	�
� 	


interval parameter� ��	
size� ��

change� ���

steradian� ���
stereometry� ���
Stieltjes

integral� ���
comparison with Riemann integral� 
��
notion� 
��

transformation� 	�	
Stirling formula� 
��
stochastic

basic notions� 	��
chains� 	��
process� 	��
processes� 	��

stochastics� 	
�
Stokes� integral theorem� ���
strangling� ��

Strategie

mutations�selektion�� �	�
stream function� ���
strip� characteristic� ���
strophoide� ��
structure

algebraic� ���
classical algebraic� ���

Sturm
chain� 


function� 



sequence� ���
theorem� 



Sturm�Liouville problem� ���
subdeterminant� ���
subdomain� ���
subgraph� �
�

induced� �
�
subgroup� ���

criterion� ���
cyclic� ���
invariant� ���
normal� ���
trivial� ���

subinterval� 

�
subnormal� ��	
subring� ���

trivial� ���
subset� ���� ��	

a�ne� ��	
linear� ��	
open� ���

subspace� ��	
a�ne� ��	
criterion� ��	
invariant� representation of groups� ���

subtangent� ��	
subtraction

complex numbers� ��
computer calculation� �
�
polynomials� ��
rational numbers� �

subtractive cancellation� �
�
sum� �

algebraic� ���
drastic� ���
of the digits
alternating� �rst order� ���
alternating� second order� ���
alternating� third order� ���
�rst order� ���
second order� ���
third order� ���

residual squares� ���
Riemann� 

�
rules of calculation� �
summation sign� �
transverse� ���
vectors� ���

summation convention� Einstein�s� ���
superposition

�elds� ���
law� �elds� ���
non�linear� �
�
oscillations� ��
principle� ���
di�erential equation� linear� ��	
di�erential equations� higher order� ���

supplementary angle formulas� 	�
support

compact� 	
�
measure� ���
membership function� ���

supporting functional� ���



Index ����

supremum� ���
surface� �
�

area� double integral� 
	

B�B representation� ���
barrel� ��	
block� ���
cone� ���
conical� ���� ��

constant curvature� �
�
cube� ���
curvature of a curve� �
	� �
�
cylinder� ��

developable� ���
element� �
	
element� vector components� ���
equation� ���
in normal form� ���
space� ���

equation� space� �
�
�rst quadratic fundamental form� �
�
Gauss curvature� �
�
geodesic line� ���
harmonic� �


integral� 
	�� ���� ��

�rst type� 
	�
general form� 
��
second type� 
��� 
�


line element� �
�
line of curvature� �
�
metric� �
	
minimal� �
�
normal� �

� �
�
normal vector� �


oriented� 
��
patch� area� �
	
polyhedron� ���
principal normal section� �
�
pyramid� ���
quadratic� ���
radius of principal curvature� �
	
rectangular parallelepiped� ���
rectilinear generator� ���
representation with splines� ���
rotation symmetric� ���
ruled� ���
second order� ���� ���
central surfaces� ��

invariant signs� ��

types� ���

second quadratic fundamental form� �
�
sphere� ���
tangent plane� �

� �
�
torus� ��	
transversal� ���

surplus variable� linear programming� ���
switch

algebra� �
�� �
�
function� �
�
value� �
�

Sylvester� theorem of inertia� ���
symbol

internal representation �computer� ���
Kronecker� ���

Legendre� ���
symmetry

axial� ���
central� ���
element� ��	
Fourier expansion� 
��
group� ���
applications in physics� ���
crystallography� ���
molecules� ���
quantum mechanics� ���

operation� ��	
crystal lattice structure� ���
improper orthogonal mapping� ��	
re�ection� ��	
rotation� ��	
without �xed point� ��	

with respect to a line� ���
system

chaotic according to Devaney� ���
cognitive� �	�
complete� ���
di�erential equation� higher order� 
�	
linear� ���

di�erential equations� partial
canonical system� ���
normal system� ���

dynamical� 	�	
chaotic� ���
conservative� 	��
continuous� 	�	
Cr�smooth� 	�	
discrete� 	��
dissipative� 	��
ergodic� ��	
invertible� 	�	
mixing� ��	
motion� 	�	
time continuous� 	�	
time discrete� 	�	
time dynamical� 	��
volume decreasing� 	��
volume preserving� 	��
volume shrinking� 	��

equation
numerical solution� ���

four points� ���
generators� ���
knowledge based interpolation� �		
linear equations� �	�� �	�
compatible� �	�
consistent� �	�
fundamental system� �	�
homogeneous� �	�
inconsistent� �	�
inhomogeneous� �	�
overdetermined� �		
pivoting� �	

row echelon form� �	�
solvable� �	�
trivial solution� �	�

mixing� ���
Morse�Smale� ���



���� Index

system �continued
normal equations� �		
orthogonal� ���
orthonormal� ��	
term�substitutions� �
�
trigonometric� ���

table with double entry� ���
tacnode� curve� ���
tangent

circle� ���
formula� �
�
geometric de�nition� ���
hyperbolic� �	
geometric de�nition� ���

law� �
�
plane� ���� ���
surface� �

� �
�

plane curve� ���
polygon� ��	
space curve� ���� �
�
trigonometric� 	�

tautology
Boolean function� �


predicate logic� ���
propositional logic� ���

Taylor
expansion� ��� ���� 
�	
analytic function� ���
one variable� 
�	
several variables� ��	
vector function� �
�

formula� ���
several variables� ��	
two variables� ���

series� ���� 
�	
analytic function� ���
one variable� 
�	
several variables� ��	

theorem� ���
several variables� ���

telegraphic equation� ���
telephone�call distribution� 	��
tensor� ���

addition� subtraction� ���
alternating� ���
antisymmetric� ��

components� ���
contraction� ��
� ���
de�nition� ���
dyadic product� ��

eigenvalue� ��

generalized Kronecker delta� ���
inertia� ���
invariant� ���
multiplication� ���
oversliding� ���
product� ���
vectors� ���

rank n� ���
rank �� ���
rank �� ���
rank �� ���

rules of calculation� ���� ��

skew�symmetric� ��
� ���
spur� ���
symmetric� ��
� ���
tension� ���
trace� ���

tensor product approach� ��

tent mapping� ���
term algebra� �
�
test problem� linear� ��	
test� Kasiski�Friedman� ��	
test� statistical� 		

tetraeder� ���
tetragon� ���
tetrahedron� ���
Thales theorem� ���� �
�
theorem

Abel� 
��
Afraimovich�Shilnikov� �
�
alternating point� ���
Andronov�Pontryagin� ��

Andronov�Witt� ��
� ���
Apollonius� ���
Arzeli�Ascoli� ���
Baire category� ���
Banach
continuity� inverse operator� ���
�xed�point� ���

Banach�Steinhaus� ���
Bayes� 	��� 	��
Berge� ���
binomial� ��
Birkho�� �
�� ��	
Block�Guckenheimer�Misiuriewicz� ���
Bolzano
one variable� ��
several variables� ���

boundedness of a function
one variable� ��
several variables� ���

Cauchy integral theorem� ���
Cayley� ���� ���
center manifold
di�erential equations� ���
mappings� ���

Chebyshev� 
��
Chinese remainder� ���
Clebsch�Gordan� ���
closed graph� ���
constant analytic function� �	�
convergence� measurable function� ���
decomposition� ��	
Denjoy� �


di�erentiability� respect to initial conditions� 	�	
Dirac� ���
Douady�Oesterl�e� ���
Euclidean
algorithm� ��

theorems� �
�

Euler� ��
� ���
Euler�Hierholzer� ���
Fatou� ���
Fermat� ���� ���



Index ����

theorem �continued I
Fermat�Euler� ���
�xed point theorem
Banach� ���

�xed�point
Banach� ���
Brouwer� ���
Schauder� ���

Floquet� ���
fundamental integral calculus� 
��
Girard� ��

Grobman�Hartman� ���� ���
Hadamard�Perron� ��	� ���
Hahn �extension theorem� ���
Hellinger�Toeplitz� ���
Hilbert�Schmidt� ���
Holladay� ���
Hurwitz� ���
intermediate value
one variable� ��
several variables� ���

KAM �Kolmogorov�Arnold�Moser� ���
Krein�Losanovskij� ���
Kuratowski� ��	
Lagrange� ���
Lebesgue� majorized convergence� ���
Ledrappier� ���
Leibniz� 
��
Lerey�Schauder� ���
Levi� B�� ���
limits
functions� 
��
sequences of numbers� 
��

Liouville� �	�� ���
Lyapunov� ���
maximum value� analytic function� �	�
Meusnier� �
	
nested balls� ���
Ore� ���
Oseledec� ���
Palis�Smale� ���
Picard�Lindel�of� ���� 	�	
Poincar�e�Bendixson� ���
Posa� ���
Ptolemy�s� ���
Pythagoras
general triangle� �
�
orthogonal space� ���
right�angled triangle� �
�

Radon�Nikodym� ���
Riemann� 
��
Riesz� ��

Riesz�Fischer� ���
Rolle� ���
Schauder� ���
Schwarz� exchange� ���
Sharkovsky� ���
Shilnikov� �
�
Shinai� ���
Shoshitaishvili� ���
Smale� �
�
stability in the �rst approximation� ��

Sturm� 



theorem �continued II
superposition law� ���
Sylvester� of inertia� ���
Taylor� ���
one variable� 
�	
several variables� ���

Thales� ���� �
�
total probability� 	��
Tutte� ���
variation of constants� ���
Weierstrass� 
�
� ��	
one variable� ��
several variables� ���

Wilson� ���
Wintner�Conti� ���
Young� ��
� ���

theory
distribution� 	�

elementary number� ���
�eld� ���
function� �	�
graph� algorithms� �
�
probability� 	
�
risk� ��
set� ���
spectral� ���
vector �elds� �
�

theta function� 	��
time frequency analysis� 	
�
tolerance� ��

topological

conjugate� ���
equivalent� ���

torsion� space curve� �
�
torus� ��	� ���� ���

di�erential equation� linear� autonomous� ���
dissolving� �
�
formation� ��	� �
�
invariant set� ���
losing smoothness� �
�
resonance torus� �
�

total curvature� �
�
trace

matrix� ���
tensor� ���

tractrix� ���
trail� ���

Euler� ���
open� ���

trajectory� 	�	
transform� 	�	
transformation

Cartesian into polar coordinates� 
��
covering� ���
determinant� ���
element of area� 
	

element of curved surface� 
��
geometrical� �
�
Hopf�Cole� ���
identical� ��
invariance� ���
linear� ���� ���� ���
method� ���



���� Index

transformation �continued
orthogonal coordinates� ���
principal axes� ��
� ���
quadratic form� ���

similarity� ���� ���
wavelet transformation� 	
�

transition
matrix� 	��� 	�	
probability� stochastic� 	��

transitivity� ��
translation

invariance� ���
primitive� ���

transport� network� ���
transportation problem� ��	
transposition law� ���
trapezoid� ���

Hermite�s trapezoidal formula� ���
trapezoidal

formula� ���
sum� ���

traversing� �
	
tree� ��


hight� ��

ordered binary� ��

regular binary� ��

rooted� ��

spanning� ��
� ���
minimum� ���

triangle
altitude� ���
area� ���
bisector� ���
center of gravity� ���
circumcircle� ���
congruent� ���
coordinates� ��	
equilateral� ���
Euler� ���
incircle� ���
inequality� ���
axioms of norm� ���
complex numbers� ��
metric space� ��

norm� ���
real numbers� ��
unitary space� ���

isosceles� ���
median� ���
orthocenter� ���
Pascal� ��
plane� ���
area� �
�� �
�
basic problems� �
�
Euclidean theorems� �
�
general� �
�
incircle� �
�
radius of circumcircle� �
�
right�angled� ���� �
�
tangent formula� �
�

polar� ���
similar� ���
spherical� ���

basic problems� ��	
calculation� ��	
Euler� ���
oblique� ���
right�angled� ���

triangular
decomposition� ���
matrix� ���
lower� ���
upper� ���

triangularization� FEM ��nite element method� ��

triangulation� geodesy

�rst fundamental problem� �
	
second fundamental problem� �
�

trigonometry
plane� �
�
spherical� ���

trihedral
angle� ���� ���
moving� ���� ���

triple �ordered ��tuple� ��

triple integral� 
	�

application� 
��
trochoid� ���
truncation� measurement error� 	�	
truth

function� ���� ��	
conjunction� ���
disjunction� ���
equivalence� ���
implication� ���
NAND function� ���
negation� ���
NOR function� ���

table� ���
value� ���

turbulence� 	��� �
�
Tutte theorem� ���
two lines� transformation� ���
two�body problem� ���
type� universal algebra� �
�

umbilical point� �
�
uncertainty

absolute� 	��
fuzzy� ���
relative� 	��

ungula� cylinder� ���
union

fuzzy sets� ���� ���
sets� ���

units
SI system� ����

units� physical� ����
universal quanti�er� ���
universal substitution� 
��
urn model� 	��

vagueness� ���
valence

in�valence� �
�
out�valence� �
�



Index ����

value
expected� measurent� 	��
system �function of several variables� ��	
true� measurement� 	��

van der Pol di�erential equation� ���
variable

arti�cial� ��

basic� ���
Boolean� �


bound variable� predicate logic� ���
dependent� 
	� �	�
free� predicate logic� ���
independent� 
	� ��	� �	�
linguistic� ���
non�basic� ���
propositional� ���
random� 	��

variance� 	��
distribution� 	��
sample function� 		�
statistics� 		�
two�dimensional distribution� 	��

variation
function� ��
of constants� method� ���

variation of constants
di�erential equation� linear� ��	
theorem� ���

variational calculus� ���
auxiliary curve� ��

comparable curve� ��

Euler di�erential equation� ��

side�condition� ���

variational equation� ��
� ���� ��

equilibrium point points� ���

variational problem� ���� ���
brachistochrone problem� ���
Dirichlet� ���
extremal curves� ���
�rst order� ���
�rst variation� ���
functional� ���
higher order� ���
higher order derivatives� ���
isoperimetric� general� ���
more general� ���
numerical solution� ���
direct method� ���
�nite element method� ���
gradient method� ���
Ritz method� ���

parameter representation� ���
parametric representation� ��	
second variation� ���
several unknown functions� ��	
side�conditions� ���
simple
one variable� ���
several variable� ���

variety� �
�
vector

absolute value� ���
a�ne coordinates� ���

axial� ���
re�ection behavior� ���

base� ���
base vector
reciprocal� ���

bound� ���
Cartesian coordinates� ���
column� ���
components� �
�
conjugate� ���
coordinates� ���
Darboux vector� �
�
decomposition� ���
diagram� oscillations� ��
di�erentiation rules� �
�
direction in space� ���
direction� vector triple� ���
directional coe�cient� ���
expansion coe�cient� ���
�elds� �
�
free� ���
left singular� ���
length� ���
line� �
�
magnitude� ���
matrix� ���
metric coe�cients� ���
notion� ���
null vector� ���
polar� ���
re�ection behavior� ���

pole� origine� ���
position vector� ���
complex�number plane� �


radius vector� ���
complex�number plane� �


reciprocal� ���
reciprocal basis vectors� ���
residual� �		
right singular� ���
row� ���
scalar invariant� ��	
sliding� ���
space� ��	
stochastic� 	��
unit� ���
zero vector� ���

vector algebra� ���
geometric application� ���
notions and principles� ���

vector analysis� �
�
vector equation

line� ���
plane� ���
space curve� ���� �
�

vector equations� ��	
vector �eld� �
�� 	�	

Cartesian coordinates� �
�
central� �
�
circular �eld� �
�
components� �
�
contour integral� ���
coordinate de�nition� �
�



���� Index

vector �eld �continued
cylindrical� �
�
cylindrical coordinates� �
	
directional derivative� ���
divergence� ���
point�like source� ���
rotation� ��

sink� ���
source� ���
spherical� �
�
spherical coordinates� �
	

vector function� �
�� �
�
derivative� �
�
di�erentiation� �
�
hodograph� �
�
linear� ��	
scalar variable� �
�
Taylor expansion� �
�

vector gradient� ���
vector iteration� ���� ��

vector lattice� ���

homomorphism� ���
vector potential� ���
vector product� ���

hints� ���
representation in coordinates� ��	

vector space� ���� ���
all null sequences� ���
bounded sequences� ���
B�T � ���
C��a� b�� ���
C�k���a� b�� ���
complex� ��	
convergent sequences� ���
Euclidean� ���
�nite sequence of numbers� ��	
IFn� ��	
F�T � ���
functions� ���
in�nite�dimensional� ��	� ���
Lp� ���
lp� ���
n�dimensional� ��	
n�dimensional Euclidean� ��

ordered by a cone� ���
partial ordering� ���
real� ���� ��	
s of all sequences� ��	
sequences� ��	

vector subspace
stable� ��	� ���
unstable� ��	� ���

vectors� ���� ���
angle between� ���
collinear� ���
collinearity� ��

commutative law� ���
coplanar� ���
cyclic permutation� ��	
double vector product� ��

dyadic product� ���
equality� ���

Lagrange identity� ���
linear combination� ���� ��

mixed product� ��
� ��	
Cartesian coordinates� ���

orthogonality� ��

products
a�ne coordinates� ���
Cartesian coordinates� ���

products� properties� ���
scalar product� ���
Cartesian coordinates� ���
representation in coordinates� ���

sum� ���
tensor product� ���
triple product� ��

vector product
representation in coordinates� ��	

Venn diagram� ���
veri�cation� proof� �
vertex

angle� ���
degree� �
�
ellipse� ���
graph� �
�
hyperbola� ���
initial� �
�
isolated� �
�
level� ��

parabola� ���
plane curve� ���
sink� ���
source� ���
terminal� �
�

vertical angle� �
�
vertices� distance� ���
vibration� di�erential equation

bar� ���
round membrane� ��	
string� ���

Vieta� root theorem� 
�
Volterra integral equation� ���� ���

�rst kind� ���
second kind� ��	

volume
barrel� ��	
block� ���
cone� ���
cube� ���
cylinder� ��

double integral� 
	

element� vector components� ���
hollow cylinder� ���
obelisk� ���
parallelepipedon with vectors� ���
polyhedron� ���
prism� ���
pyramid� ���
rectangular parallelepiped� ���
sphere� ���
subset� ���
tetraeder� ���
torus� ��	
triple integral� 
��



Index ���


wedge� ��

volume derivative� ���
volume integral� 
	�
volume scale� ��


Walsh
functions� 	


systems� 	



wave
amplitude� ��
frequency� ��
length� ��
period� ��
phase� ��
plane� 	
�

wave equation
n�dimensional� ���
one�dimensional� 	��
Schr�odinger equation� ���

wave function
classical problem� ���
heat�conduction equation� ��	
Schr�odinger equation� ���

wavelet� 	
�
Daubechies� 	
�
Haar� 	
�
Mexican hat� 	
�
orthogonal� 	
�
transformation� 	
�� 	
�
discrete� 	
�
discrete� Haar� 	
�
dyadic� 	
�
fast� 	
�

Weber
di�erential equation� �
�
function� ���

wedge� ��

Weibull distribution� 	��
Weierstrass

approximation theorem� ��	
criterion uniform convergence� 
��
function� 	��
theorem� 
�

one variable� ��
several variables� ���

weight
measurement� 	��
of orthogonality� ���
statistical� 	��

weighting factor� statistical� 	��
witch of Agnesi� �

word� ��

work �mechanics

general� 
��
special� 
��

Wronskian determinant� ���� ���

Young scheme� ���

zenith� �
�
distance� �
�

zero matrix� ���
zero�point translational energy� �
�

zero�point vibration energy� �
�
zeropoint� �
z�transformation� 	��

convolution� 	��
damping� 	��
de�nition� 	�

di�erence� 	��
di�erentiation� 	��
integration� 	��
inverse� 	�	
original sequence� 	�

rules of calculation� 	��
summation� 	��
transform� 	�

translation� 	��

z�transformable� 	�




Mathematical Symbols A

MATHEMATICAL SYMBOLS

Relational Symbols

 equal to � approximately equal to � less than or equal to

� identically equal to � less than � greater than or equal to

! equal to by de�nition � greater than � unequal to� di�erent from

� much less than � much greater than
�
 corresponding to

� partial order relation 	 partial order relation

Greek Alphabet

A � Alpha B � Beta � 	 Gamma " � Delta E 
 Epsilon Z � Zeta
H � Eta �  � Theta I � Iota K � Kappa � � Lambda M � Mu
N � Nu # � Xi O o Omicron � � Pi P � Rho $ � Sigma
T � Tau � � Upsilon � � Phi X � Chi � � Psi � � Omega

Constants

const constant amount �constant C  ���		�� � � � Euler constant

�  ���
��� � � � ratio of the perimeter of the circle to
the diameter

e  ��	���� � � � base of the natural logarithms

Algebra
A� B propositions


A� A negation of the proposition A
A � B� u conjunction� logical AND
A � B� t disjunction� logical OR
A B implication� IF A THEN B
A� B equivalence� A IF AND ONLY IF B

A� B� C�� � � sets IN set of natural numbers
A closure of the set A or complement of Z set of the integers

A with respect to a universal set Q set of the rational numbers

A � B A is a proper subset of B IR set of the real numbers

A � B A is a subset of B IR� set of the positive real numbers

A nB di�erence of two sets IRn n�dimensional Euclidean vector space

A�B symmetric di�erence C set of the complex numbers

A�B Cartesian product R � S relation product

x � A x is an element of A x �� A x is not an element of A

cardA cardinal number of the set A � empty set� zero set

A � B intersection of two sets
Tn

i�� Ai intersection of n sets Ai

A � B union of two sets
Sn
i�� Ai union of n sets Ai

�x for all elements x �x there exists an element x

fx � X ! p�xg subset of all x from X fx ! p�xg� set of all x with the
of the property p�x fxjp�xg property p�x

T ! X �� Y mapping T from the space X � isomorphy of groups
into the space Y �R equivalence relation

� residue class addition � residue class multiplication

H  H� �H� orthogonal decomposition of space H A � B Kronecker product
supp support

supM supremum! least upper bound of the non�empty set M �M � IR bounded above
infM in�mum! greatest lower bound of the non�empty set M �M � IR bounded below



B Mathematical Symbols

�a� b� closed interval� i�e�� fx � IR! a � x � bg
�a� b� �a� b� open interval� i�e�� fx � IR! a � x � bg
�a� b�� �a� b� interval open from left� i�e� fx � IR! a � x � bg
�a� b� �a� b� interval open from right� i�e�� fx � IR! a � x � bg

signa sign of the number a� e�g�� sign � �   �� sign �  �
j a j absolute value of the number a

am a to the power m� a to the m�thp
a square root of a

n
p
a n�th root of a

logb a logarithm of the number a to the base b� e�g�� log� ��  �
log a decimal logarithm �base �� of the number a� e�g�� lg ���  �
ln a natural logarithm �base e of the number a� e�g�� ln e  �

a j b a is a divisor of b� a devides b� the ratio of a to b
a �j b a is not a divisor of b

a � bmodm� a � b�m a is congruent to b modulo m� i�e�� b� a is divisible by m

g�c�d��a�� a�� � � � � an greatest common divisor of a�� a�� � � � � an
l�c�m��a�� a�� � � � � an least common multiple of a�� a�� � � � � an�
n

k

�
binomial coe�cient� n over k�a

b

	
Legendre symbol

n%  � ! � ! � ! � � � ! n factorial� e�g�� �%  � ! � ! � ! 
 ! � ! �  	��� specially! �%  �%  �

��n%%  � ! 
 ! � ! � � � ! ��n  �n ! n%� in particular! �%%  �%%  �

��n� �%%  � ! � ! � ! � � � ! ��n� �

A  �aij matrix A with elements aij
AT transposed matrix
A�� inverse matrix
detA� D determinant of the square matrix A
E  ��ij unit matrix
� zero matrix
�ij Kronecker symbol! �ij  � for i � j and �ij  � for i  j

a column vector in IRn

a� unit vector in the direction of �parallel to a

jj a jj norm of a

�a� �b��c vectors in IR�

�i��j� �k �ex��ey��ez basis vectors �orthonormed of the Cartesian coordinate system

ax� ay� az coordinates �components of the vector �a
j �a j absolute value� length of the vector �a

� a multiplication of a vector by a scalar

�a ! �b� �a�b� ��a�b scalar product� dot product

�a� �b� ��a�b� vector product� cross product

�a�b�c  �a ! ��b� �c parallelepipedal product� mixed product �triple scalar product

�� �� zero vector

T tensor

G  �V�E graph with the set of vertices V and the set of edges E



Mathematical Symbols C

Geometry
" orthogonal �perpendicular k parallel
k equal and parallel � similar� e�g�� �ABC � �DEF � pro�

portional
� triangle � angle� e�g�� � ABC
� arc segment� e�g��

�
AB the arc between A and B rad radian

�

�

��

degree
minute
second

�
as measure of angle and circular arc� e�g�� ��� �
� ������

AB the line segment between A and B
��

AB the directed line segment from A to B� the ray from A to B

Complex Numbers
i �sometimes j imaginary unit �i�  ��  I imaginary unit in computer algebra
Re �z real part of the number z Im �z imaginary part of the number z
jzj absolute value of z arg z argument of the number z
&z or z� complex conjugate of z� e�g�� z  ���i�

&z  �� �i
Ln z logarithm �natural of a complex num�

ber z

Trigonometric Functions� Hyperbolic Functions
sin sine cos cosine
tan tangent cot cotangent
sec secant cosec cosecant

arcsin principal value of arc sine �sine inverse arccos principal value of arc cosine �cosine inverse
arctan principal value of arc tangent �tangent inverse arccot principal value of arc cotangent �cotangent in�

verse
arcsec principal value of arc secant �secant inverse arccosec principal value of arc cosecant �cosecant in�

verse

sinh hyperbolic sine cosh hyperbolic cosine
tanh hyperbolic tangent coth hyperbolic cotangent
sech hyperbolic secant cosech hyperbolic cosecant
Arsinh area�hyperbolic sine Arcosh area�hyperbolic cosine
Artanh area�hyperbolic tangent Arcoth area�hyperbolic cotangent
Arsech area�hyperbolic secant Arcosech area�hyperbolic cosecant

Analysis
lim
n��

xn  A A is the limit of the sequence �xn� We also write xn � A as n�#�
e�g�� lim

n��

(
� � �

n
)n
 e

lim
x�a

f�x  B B is the limit of the function f�x as x tends to a

f  o�g for x� a Landau symbol �small o� means! f�x�g�x� � as x� a

f  O�g for x� a Landau symbol �big O� means! f�x�g�x� C �C  const� C � � as x� a
nP
i��

�
Pn

i�� sum of n terms for i equals � to n

nQ
i��
�
Qn

i�� product of n factors for i equals � to n

f� � ��  notation for a function� e�g�� y  f�x� u  ��x� y� z

� di�erence or increment� e�g�� �x �delta x

d di�erential� e�g�� dx �di�erential of x
d

dx
�
d�

dx�
� � � � �

dn

dxn
determination of the �rst� second� � � �� n�th derivative with respect to x

f ��x� f ���x� f ����x�

f ����x� � � � � f �n��x

or
'y� �y� � � � � y�n�

 ��!��" �rst� second�� � � � n�th derivative of the function f�x or of the function y



D Mathematical Symbols

�

�x
�
�

�y
�
��

�x�
� � � � determination of the �rst� second� � � �� n�th partial derivative

��

�x�y
determination of the second partial derivative �rst with respect to x�
then with respect to y

fx� fy� fxx� fxy� fyy� � � � �rst� second� � � � partial derivative of function f�x� y

D di�erential operator� e�g�� Dy  y�� D�y  y��

grad gradient of a scalar �eld �grad�  r�
div divergence of a vector �eld �div �v  r ! �v 
rot rotation or curl of a vector �eld �rot�v  r� �v 

r  �

�x
�i�

�

�y
�j�

�

�z
�k nabla operator� here in Cartesian coordinates �also called the

Hamiltonian di�erential operator� not to be confused with the Hamil�
ton operator in quantum mechanics

"  
��

�x�
�

��

�y�
�

��

�z�
Laplace operator

��

��a
directional derivative� i�e�� derivative of a

scalar �eld � into the direction �a !
��

��a
 �a ! grad�

bZ
a

f�xdx� de�nite integral of the function f between the limits a and b

Z
�C�

f�x� y� zds line integral of the �rst kind with respect to the space curve C with
arclength sI

�C�

f�x� y� z ds integral along a closed curve �circulatory integral

Z
�S�

Z
f�x� ydS  

ZZ
�S�

f�x� y dx dy double integral over a planar region S

Z
�S�

f�x� y� z dS  

Z
�S�

Z
f�x� y� zdS surface integral of the �rst kind over a spatial surface S �see ������b�

p� 
��Z
�V �

f�x� y� z dV  

ZZZ
�V �

f�x� y� z dx dy dz triple integral or volume integral over the volume V

I
�S�

U��r �dS  

ZZ
�S�

$ U��r �dSI
�S�

�V��r ! �dS  
ZZ
�S�

$ �V��r ! �dS

I
�S�

�V��r� �dS  

ZZ
�S�

$ �V��r� �dS

 �����������!�����������"
surface integrals over a closed surface in vector analysis

A  max% expression A is to be maximized� similarly min%� extreme%

A  max expression A is maximal� similarly min� extreme�


