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Preface

The European Conference on Numerical Mathematics and Advanced Appli-
cations (ENUMATH) is a series of meetings held every two years to provide
a forum for discussion on recent aspects of numerical mathematics and their
applications. They seek to convene leading experts and young scientists with
special emphasis on contributions from Europe. The first ENUMATH meet-
ing held in Paris (1995), and the series continued by the ones in Heidelberg
(1997), Jyvaskyla (1999), Ischia (2001) and Prague (2003).

This book collects the major part of the lectures given at ENUMATH
2005, that took place in Santiago de Compostela, Spain, from July 18 to 22,
2005. It contents texts of invited speakers, and a selection of papers presented
in minisymposia and works communicated within the sessions.

The importance of numerical methods has increased dramatically in sci-
ence and engineering, reflecting today’s unprecedented use of computers. The
increasing importance of modeling in addition to numerical simulation was
again evident in ENUMATH 2005. Indeed, nodaways mathematics is gen-
erally accepted as a technology, playing a crucial role in many branches of
industrial activity. Recent results and new trends in the analysis of numerical
algorithms as well as their application to challenging scientific and industrial
problems were discussed during the meeting. Apart from the theoretical as-
pects, a major part of the conference was devoted to numerical methods for
interdisciplinary applications, with emphasis on showing the potential of new
computational methods for solving practical multidisciplinary problems.

We are happy that so many people have shown their interest in this meet-
ing. In addition to the ten invited presentations, we had more than 192 talks
during the five-day meeting and about 215 participants from thirty four coun-
tries, specially from Europe. A total of 123 contributions appear in these pro-
ceedings. The contents range over several of the most active research fields,
and survey many of the latest developments in scientific computing. Topics in-
clude applications such as atmosphere and ocean, water pollution, electromag-
netism, interface problems, waves, finance, heat transfer, unbounded domains,
numerical linear algebra, convection-diffusion, fluid-structure, plates, solids,
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hyperbolic equations, multiphase flow, Navier-Stokes, singular perturbation
problems, non-linear PDE, control, parabolic equations, as well as method-
ologies such as a posteriori error estimates, discontinuous Galerkin methods,
multiscale methods, optimization, adaptive methods, domain decomposition
techniques, exponential integrators, hp-finite elements, level set methods, frac-
tional step methods, penalty procedures, and finite volumes.

We would like to thank all the participants for the attendance and for their
valuable contributions to discussions during the meeting. Special thanks to
minisymposium organizers, who made a large contribution to the conference,
the chairpersons, the speakers, and, in particular, to the contributors of this
volume.

We would like to address our warmest thanks to the invited speakers: A.
Buffa (Italy), R. Codina (Spain), W. Dahmen (Germany), Z. Dostél (Czech
Republic), A. Ern (France), A. Iserles (United Kingdom), K. Kunisch (Aus-
tria), P. Monk (USA), S. Repin (St.Petersburg), E. Zuazua (Spain), for coming
to Santiago de Compostela and contributing to the success of the conference
with the high quality of their presentations.

A big share of the success of this conference should be given to the mem-
bers of the Programme Committee (F. Brezzi, M. Feistauer, R. Glowinski, R.
Jeltsch, Yu. Kuznetsov, J. Periaux, R. Rannacher) who contribute with their
time and energy to produce this series of meetings.

We are greatly indebted to the Scientific Committee (O. Axelsson,
C. Bernardi, C. Canuto, E. Fernandez-Cara, M. Griebel, R. Hoppe, G. Ko-
belkov, M. Krizek, P. Hansbo, P. Neittaanméki, O. Pironneau, A. Quarteroni,
J. Sanz-Serna, C. Schwab, E. Siili, W. Wendland) and the external anonymous
reviewers who performed the invaluable task of reviewing and selecting the
contributed material.

We gratefully acknowledge the financial support provided by the the Span-
ish Ministerio de Educacién y Ciencia, the Xunta de Galicia and the Universi-
dade de Santiago de Compostela, which, in particular, allowed us to grant the
participation of many young researchers. We also thank to Springer-Verlag
for its cooperation in publishing these proceedings.

Finally, we would like to thank Manuel Porto for his administrative help,
Tono Lago for the computer support, and the research students Marta Benitez,
Ana Maria Ferreiro, Laura Saavedra, Inés Santos, Rafael Vézquez, and, par-
ticularly, to M2 Cristina Naya for their help during the meeting.

We think that this book presents a valuable state of the art of the most
recent research in scientific computing, providing to the reader the latest de-
velopments concerning the mathematical issues and the applications of this
active field of science.

Santiago de Compostela, Spain Alfredo Bermadez
July 2006 Dolores Gomez
Peregrina Quintela

Pilar Salgado
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Compatible Discretizations in Two Dimensions

Annalisa Buffa

Istituto di Matematica Applicata e Tecnologie Informatiche del CNR,
Via Ferrata 1, 27100 Pavia, ITALY

annalisa@imati.cnr.it

Summary. In this paper we recall the construction of the dual finite element com-
plex introduced in [11] and we investigate some applications. More precisely, we
propose and analyze fully compatible discretizations for the magnetostatics and the
Darcy flow equations in two dimensions, and we introduce an optimal matching
condition for domain decomposition methods for Maxwell equations in three dimen-
sions.

1 Introduction

The use of differential complexes has become increasingly popular in the nu-
merical analysis for partial differential equations. As shown in [2] (see also
[3, 4]), they provide a framework for the understanding of the properties of
numerical schemes for systems of first order equations such as magnetostatics,
Darcy flow, the Stokes problem and so on. The use of differential complexes,
or finite elements which form suitable differential complexes, allow to con-
struct stable discretizations which also enjoy some (not all) local conservation
properties. In what follows we say that a discrete method is “compatible”
when conformity and all conservations are preserved locally. These ideas in
the field of electromagnetics has been put forward by Bossavit in [9] and then
used by many authors (see [17, 18] and the references there in). Moreover,
finite element techniques bases on differential complexes are strictly related
with finite difference techniques like the Finite Integration Technique (see [14]
and the reference therein), or the Mimetic Finite Differences Technique (see
[8] and the references there in). We believe that the deep relation existing
among these ideas is still not completely understood.

A missing step for the use of differential complexes to provide compatible
discretizations is the construction of discrete stable Hodge-x operators (see.
e.g. [16] for a first attempt in this direction). Without entering into the details
of differential forms, we explain the concept through an example borrowed by
physics: magnetostatics. The magnetic induction B and the magnetic field
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H coexists, they verify divB = 0 and curlH = J, where J is a fixed current
density. Measurements of B are fluxes and measurements of H are circulations.
In the modeling of constitutive relation B = pu(H) we need an operator p
which maps circulation into fluxes, this is an Hodge-x operator. A compatible
numerical method should be able to reproduce this action. On the other hand,
this concept can be useful in the numerical analysis of PDEs only if it is
combined with a metric and, in particular, with Sobolev spaces. Let us then
introduce some notation. Given a Lipschitz bounded domain £2 C R? and any
s € [—1, 1] we denote by H*(£2) the standard Sobolev space of regularity s (see
[15, p. 16])), H*(2) := {u € H*(2) : @& € H*(R?)}, where @ is the extension
by zero of u (see [15, p. 18]). Note that it holds H™%(£2) := (HS(Q)), and
H5(02) := (ﬁs(())), In a similar way, we introduce, for d = div and d = curl:!

H*(d, 2) = {u e H*(2)? : duc H(N)}; (1)
H*(d, 2) = {u € H*(d, 2) : ueH(d,R?)}. (2)

The following duality relation holds true (see [12, 13]):
(H™*(curl, 2)) = B~ (div, 2) s €[0,1].

We can draw the following diagram, s € (—%, %)

Ho(2) <l go-l(div, ) 4V Ho-1(0)
*0 l *1 l *2 l
H-s(02) cwl g=s(curl, 2) —grad gi-s(0)

It is apparent that the Hodge-x operators are the (isomorphic) identifications
between spaces on the first line and their duals on the second line: the vertical
arrows. In the paper [11], a discrete analog of this diagram is provided when
the first line is discretized by the complex centered around low order Raviart-
Thomas (RT) finite elements on a given simplicial mesh 7, (see (3) for the
definition of spaces, and [10] for details). More precisely, another discrete
complex (Y9,Y},Y?) is built as discretization of the second line in order
to ensure that the vertical lines remains uniformly stable isomorphisms in
natural norms. This is way we call it “dual complex”. In other words, the
authors built couples of finite dimensional spaces (X},Y}) which are linked
by discrete, uniformly stable Hodge-x operators, i.e., which are inf-sup stable
in natural norms, with respect to the L? duality pairing.

In this paper, after recalling the construction and main properties of the
new family of finite elements, we analyze its applications. In Section 3 we first
provide a compatible discretization scheme for a general div — curl problem.
The scheme is then adapted in Section 3.1 to magnetostatics and Darcy flow

! We recall: curlu = dyuz — Oyuy and curlu = (9,u, —0,u)
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equation. For both problems, two different compatible discretizations are pro-
posed and their stability properties are analyzed. Finally, in Section 3.2, we
use the dual complex to provide an optimal matching conditions for domain
decomposition methods on non-matching grids for Maxwell equations in three
dimensions. For all these examples only the stability properties are analyzed
and the corresponding error estimates are object of on-going research.

2 Construction of the dual complex

2.1 Definition and algebraic properties

Let £2 be a bounded Lipschitz polygon in R?, I' be its boundary and n be
the outer unit normal. We equip {2 with a simplicial mesh denoted 7;, and
we denote by 7,}, i = 0,1,2 the set of vertices, (closed) edges and (closed)
triangles of 7j. For further use, we also introduce the barycentric refinement
of 75, whish is constructed by dividing each triangle s € ’];LQ, into six triangles
by drawing the six edges joining the barycentre of s with the vertexes of s as
well as the midpoints of its edges. The barycentric refinement of 7j, is denoted
7,]. In the figures 1, 3 and 4 the edges of 7;, are drawn in bold, whereas
non-bold segments are edges of 7,/ (all bold segments are also edges of 7}/).

On 7;, we consider the lowest order finite-element complex (X7, X}, X?)
based on Raviart-Thomas divergence conforming vector fields RTy. It is de-
fined by:

X)={ueH'(2) :VteT? ulePi}, (3a)
X}L ={ue ﬁ(div, ):Vte 7;12 ult € RTo}, (3b)
X}QL = {u c Lg(ﬁ) :Vt e 7—h2 U|t € PO}v (3C)

where LZ(£2) denotes the space of L? functions with zero mean value. For
generalities about mixed finite elements and Raviart-Thomas vector fields in
particular, we refer to [10]. These spaces satisfy curlX) C X} and divX} C
X2, so that the spaces do indeed form a complex:

xPeurl x1 div x2 (4)

We denote by A = (\}) indexed by s € 7;' the standard basis of X}. For
each 4, the usual family of degrees on freedom relative to X; will be denoted
I' = (1) indexed by s € 7;'. Then [9 is evaluation at the vertex v, I} is
integration of the normal component along the edge e in some orientation,
and [? is integration on the triangle t. In a sense, for each i and each s, [’
can be represented as integration on the simplex s. The basis A’ of X} is
characterized by the property that [£(\f) = dg;.

On 7,/ we consider the slightly different finite-element complex (X}°, X},
X?) defined by:
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XP={ueH(Q) :VteT? ul,eP}, (52)
X}’l1 = {u € H(cuwl, 2) : Vt € 7;,/2 ul; € RTy x n}, (5b)
X]/f = {u e L2(Q) :Vte 7’;{2 U|t € 730} (5C)

The only two differences from the spaces corresponding to X} on the refined
mesh 7, is that we rotate the middle one by the operation u — u x n, and
that we remove the boundary conditions. These spaces satisfy grad X ;Lo cX ,’Ll
and curlX}! C X}? so that we have the complex:

X0 grad xtcurl 72, (6)

Basis are constructed for the spaces X }/12 associated with 7,/ as for the spaces
associated with 75, and denoted (A} : s € 7,") (the corresponding degrees of
freedom will not be needed).

In the paper [11], the authors construct subspaces Y} C X/? such that on
the one hand Yy is L2-dual to X;~* (in the sense of satisfying a Babuska-
Brezzi Inf-Sup condition uniformly in h, in appropriate norms), and on the
other hand they should form a complex:

y9grad y1 curly?, (7)

We recall here the construction of these spaces, by means of explicit definition
of their basis functions. To this aim we fix some notation. For each triangle
t e ThQ, let ¢’ denote its barycentre. For each edge e € 7,1, let ¢’ be union of
(the geometric realizations of) the two edges of 7,/ joining the barycentre of
e to the barycentres of the two neighboring triangles. The oriented tangent
vector along e’ is denoted 7./, orientation being chosen such that 7., -7, xn < 0.
For each vertex v € 7;107 denote by v’ the union of (the geometric realizations
of) the triangles of 7, containing v.

For each i € {0, 1,2} and each simplex s € Th27i, let ! € X} be the field
attached to s constructed as a linear combination of the functions A with
the following coefficients:

e Fori=0,lette ’2712. We need to distinguish three cases:
(i) t N 02 = B, the coefficients are shown in Figure 1; ¢ is the triangle of
75, whose barycentre carries the coefficient 1. Thus uf is the continuous
piecewise affine function on 7, with non-zero values at the vertices shown
in that figure.
(i) tN 082 € T}, i.e., t shares an edge with the boundary, then the basis
function associated with ¢ is uf € 5(;9 having the coefficients shown in
Figure 2(a), where ¢ is the triangle of 7; whose barycentre carries the
coefficient 1. B
(iii) tN 082 € TY, i.e., t shares a vertex with the boundary, then uf € X}
has the coefficients shown in Figure 2(b)
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e Fori=1letse Thl. We need to distinguish two cases:

(i) s N 92 = (. The coeflicients are shown in Figure 3; s is the central
edge and we have oriented the edges as pointing away from it. Thus pl
is the Nédélec vector field on 7,/ such that the integrals of the tangent
component on edges is the coefficient shown in the figure. The coefficient
of each edge should be multiplied by the one indicated at its origin e.g.
to the left we have coefficients ranging from 5/12 to —5/12 when ordered
counterclockwise.

Fig. 3. A basis element for Y} expressed in the basis of X} .

(ii) sNOS2 # (. We associate a basis function only with those edges e € 7!
such that e N 92 € 7,0, i.e., which share a vertex with the boundary. Let
v € T2 be on 912 and m, + 1 the number of triangles ¢t € 7,2 sharing
v as a vertex. We number these triangles as to,...,¢,, turning around
v in a counterclockwise sense. Accordingly we number edges e such that
eNdf2=vaser, ea,... ey,—1 and denote by w; the other vertex of e;.
We suppose each e; to be oriented from w; to v, and we denote by u,
the basis function associated with e; built as in (i) here above. The basis
function uéi associated with e; is then defined as:
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1 H; on w;
Hei = {Z;:g gradugj on v'. (8)

e Fori =2 and s € 7. The coefficients are shown in Figure 4; s is the
central vertex. All 12 triangles of 7, in the shaded region should carry
the same weight 1/12. Thus p?2 is the piecewise constant field on 7,/ whose
integral is 1/12 on each shaded triangle. We associate a basis function only
to those vertices s such that s € (2.

1/12

Fig. 4. A basis element for Y;? expressed in the basis of X}2.

In each ﬁgur_e the shaded region is the support of the corresponding field
We define Y}! by:

Vi =span{ul : s€ 727" (s\ 9s) N 0N = 0}. (9)

For each integer i € {0,1,2}, we now construct families of linear forms
on fields (scalar or vector according to the case) whose restrictions to Y7 are
linearly independent. These linear forms are the degrees of freedom (dof).

We now define three families of degrees of freedom:

M) = (m? : u v u(t') teT72), (10a)
My =(ml:um [, u-1o:e€T)), (10b)

Mj=(m2:iu— [, u cv e T). (10c)
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It is perhaps worth remarking that the first family of linear forms M9 can also
be written as integrals (with respect to the trivial measure on points). In this
sense the three preceding definitions may be written:

h=miiu— [,u: seT), (11)

where we integrate on certain dual geometric objects s’ relative to 7, and
attached to simplexes s € 7}, defined above.

Proposition 1. For each i € {0,1,2} and each i-dimensional simplexes
s,s € T, we have: o

mi: (Mzs’) = O (12)
In particular, for each i the family u* = (ul) indexed by s € Thzfi is a basis

for Y}f, and an element uw € Yj,, i = 0,1,2 is uniquely determined the values
mi(u) for s € T,2".

Proof. This is a matter of straightforward checking. n

We also remark that:
Proposition 2. The family of functions (ui : s € T,2) is a partition of unity.

Proof. Tt is enough to remark that for each s € ’];12 the nonzero values of p at
the vertexes v of the barycentric refinement 7, are the inverses of the number
of triangles ¢t € 7,2 such that v € t. Therefore the sum of the functions pf
evaluated at any such vertex v is 1. [

Proposition 3. We have gradY C Y} and curlY,! C Y7. Moreover the ma-
triz of grad : Y — Y} in the basis p° — p' is minus the transpose of the
matriz of div : X} — X? in the standard basis, and similarly the matriz
of curl : V! — Y% in the basis p' — p? is the transpose of the matriz of
curl : X — X} in the standard basis.

Proof. Concerning the grad operator one checks that for each triangle ¢t € 7j,,
grady is a linear combination of the three vector-fields p! where e is an edge
of t. The coefficients are 1 or —1 according to orientations of the edges. Check-
ing this is a matter of elementary but tedious computations using only the
definitions of basis functions. The matrix thus formed is known as an incidence
matrix and its transpose is also known to be the matrix of —div : X ,11 — X,Ql
in the standard basis. The case of the curl operator is similar. [

For each i € {0,1,2} we denote by Iﬁl the interpolation operator associated
with the d.o.f M} . Explicitly I}, associates with a field w (scalar or vector
according to i) the element uy, of ¥} such that :

Vs e T2 mi(up) = mi(u). (13)
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Let A0 ¢ HY(£2), A C (curl, Q) and A2 C L2(£2) be the subspaces consisting
of piecewise smooth fields. We then have:

Proposition 4. The interpolators satisfy the following commuting diagram:
A0 grad A1 curl A2

Ll Ll Gl (14)
y0 grad y1 curl y2

Proof. This follows from an application of Stokes theorem on the geometric
elements s’ we associated with the simplexes s € 7, in order to define the
degrees of freedom. n

Moreover,

Proposition 5. In the following complex, the cohomology groups have the
“right” dimenston.

0_, yoeradylculy2 (15)

Specifically, for a connected domain, for the first cohomology group an element
of Y2 has gradient 0 iff it is constant, whereas for the last cohomology group
an element of Y2 is the curl of an element of Y,!.

Proof. By Proposition 3, we already know that gradY2 C Y}, and curlY} C
YZ. We need now to prove that {u € Y} : curlu = 0} = gradY). Take
u € Yy : curlu = 0. Since Y} C Xj!, there exists a p € X}° such
that v = gradp. Given a edge e, let v; and v its end point. Note that
Lu-Te = [, gradp - 7o = £(p(v]) — p(v5)). Let ¢ € X} be such that
q(v') = p(v'), Yo € T,?. We have gradg C Y}. On the other hand, by construc-
tion fe, U Ter = fe, gradq - Te. Since the d.o.fs M}L are uni-solvent, u = gradg.
The last statement is an application of the Euler identity. [

Proposition 4 and 5 are the main tool to prove the validity of a uniform
discrete Friedrichs inequality (see [11, Section 3.2]): for all u € Y}, it holds

/u~gradq=0 VgeYy) = |ullo < Cpllcurlul|o; (16)
7

where Cr is a constant which depends only upon the domain (2. The same
result holds true in a slightly more general situation: let a be a positive definite
2 x 2 matrix with piecewise regular coeflicients, then for all u € Y,ll it holds

/ au-gradg=0 VqgeY) = |ullo<COf|curlulo; (17)
Q
where C. is a constant which depends only upon the domain (2 and ||a||. The

same type of result holds true for Raviart-Thomas finite elements (see [10]
and [1] for details).
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2.2 LBB inf-sup conditions

In the work [11], the authors prove that the couples X,il — YhZ_i7 1=0,1,2 are
inf-sup stable for the L?(£2) scalar product for a range of Sobolev indices. Here
we report only the ones we need in the applications we propose in Section 3.
Under the assumption that the mesh 7 is quasi-uniform there hold:

(i) The couple X?L — Yh2 is inf-sup stable: i.e., there exists a > 0 independent
of the mesh size s.t.

J v Jww (18)

inf sup >« and inf sup ——— > a.
ueX? ey [[uflolvllo vev? yexz l[ullollvllo

(#i) The couple X,QL — Y;? is inf-sup stable: i.e., there exists a > 0 independent
of the mesh size s.t.

J v Jww (19)

inf sup ———— >a and inf sup ——— > a.
uexy veyz [[uflolvllo vev? yexo [[ullollvllo

(#7i) The question whether the couple X ,} — th is L2 inf-sup stable is still
open. In [11], the authors prove that this couple is stable with respect to other
norms but L? which are relevant for the application proposed later in Section
3.2. We consider the spaces H™2 (div, £2) and H™2 (curl, 2) as defined in the
Introduction, formulae (1) endowed with their graph norms || - [[_1 4, and

Il - ||_%7cur1. Following [13], we know it holds H—2(div, 2) = (H_%(curl7 Q))/,
i.e. these spaces are in duality with L? as a pivot space: with a little abuse of

notation (because one should make explicit the meaning of the numerator in
the next fraction), this can be expressed in formulae as:

u-v
inf sup / > [ >0. (20)
weH™ 2 (div,£2) vGHfé (curl,2) Hu” —1.div HU”—%,curl

We have X} C Hz (div, 2), Y; C H~z (curl, £2) and the following discrete
counterpart of (20) is proved in [11]: there exists o > 0 independent of the
mesh size such that

inf sup Jou-v

>a > 0. (21)
u€Xj, veyY;} ||u||—%,div||vH—%,curl

3 Applications

This section is devoted to some applications of the finite element complex in-
troduced in Section 2. In [11], the complex {Y? } is used to provide an optimal
preconditioner for integral equations in electromagnetics, and more precisely
for the Electric Field Integral Equation. Here, we devote our attention to
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other applications where a suitable modeling of the Hodge-x operator allow
for “compatible” discretization of some partial differential equations in the
sense of [2]. The meaning we give to the word “compatible” is made clear
through in the following Section 3.1. Finally, in the Section 3.2, we show
how to apply this theory to the construction of an optimal mortar method
for Maxwell equation in three dimension. For all examples, the attention is
devoted only to the wellposedness and stability of the discrete problems we
propose and no error analysis is provided. A complete error analysis for the
schemes proposed in this section will be the object of a future work.

In this section, || -||s, s € [—1, 1] will denote the standard Sobolev norm of
H*(12).

3.1 The div-curl problem and some applications

We formulate the div-curl problem in two dimensions in the following way:
given f € L*(02), g € L3(£2), find

divx =g {2
curly = f 2 (22)
x-n=0 012

together with the constitutive law x = ay where a is assumed here to be
a positive smooth function or a positive definite 2 x 2 matrix with smooth
coefficients. Equations (22) can be reformulated in terms of conservation and
continuity in the following way: for any subset T' C {2 it holds

[X]por =0 and [,.x-v=[.g (23a)
[ylror =0 and [o,y-T=[.f (23b)

where 7 and v are the tangential and normal unit vectors at 9T, respectively;
[-lv,or and [-]+ o7 denote the jumps of the normal and tangential component,
respectively. We say that a discretization of (22) is “compatible” when (23)
are verified on each element of the mesh (or of a dual mesh), or, in order words,
when the discretization spaces are conforming and the local conservations are
preserved.

A well known discretization of this problem is by means of RT finite ele-
ments. In this case, the discretization reads: Find x;, € X}, such that:

divxhq:/gq quXi /axh-chlU:/fv VUEX%. (24)
Q o) Q Q

This discretization provides a wellposed problem [10], which is not compatible:
the conservation and continuity (23b) are not satisfied on any subset T' of (2.
This can be seen as a lack of modeling for the constitutive relation y = ax.
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Thanks to the new finite element complex (Yg, Y,l17 YZ), we can propose a
compatible discretization of (22) as follows: Find x), € X} and y;, € Y} such
that:

Jodivxng= [,9q9 VqeX3 Joeuly, ¢ = [, fd V4 €Y (25a)
Jolyn —a™'xp)x, =0 Vx}, € Xj. (25Db)
In alternative, (25b) can be replaced by its analog:

fg(ayh - xh)yz =0 VYZ € Yllz (26)

All next theorems and remarks will apply with no change to the discrete
problem (25a)-(26).
A few remarks are due:

1. conformity steams directly from the choice of the spaces;

2. conservation is achieved on all T € ThQ for the divergence equation, and
on all dual cells v/, v € 7,0 for the curl equation;

3. apparently we multiply by two the number of unknowns. Indeed, both
projections (25b) or (26) provide a mapping from one set of unknowns
(dof for x5,) to the other (dof for y;,) which is, in general, cheap to compute
once that the basis functions for both X,ll and Y,ll have been built.

Thus, the discretization (25) is compatible. It remains to prove that the
discrete problem is wellposed and this is the object of the following theorem.

Theorem 1. The problem (25) admits a unique solution (xp,y,) € X} x Y}
which verifies:

[%nllo + lynll-1 < CI£llo + llgllo) (27)

where the constant C' does not depend upon the data and the mesh size.

Proof. Since the problem is finite dimensional, uniqueness implies existence.
We prove uniqueness. Let (xp,y,) € X}, X Y} be a solution of (25). Using the
properties of the complexes (4) and (15), we decompose x; and y,, as follows:

xp=curlg+ €, g X)),  €cX} : /a_lé-mX=OVXEX2;
Q

y, =gradp+, peY), ¥ecY; : /w-gradpt:O‘v’pteY?L.
Q
(28)
By means of the discrete Friedrichs inequalities for the space X} (see [10]) and
for the space Y} (see (16)), we have ||£|lo < C/||div€]|o, and ||3]lo < C/||curley|o.

Thus, the quantities ¥ and & are determined by the equations (25a) only, and
it holds:

1€llo < Cliglo [I%llo < Cl flo- (29)

Using the decomposition (28) for the test function x!, € X}, (25b) splits in
two:
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/ (a~'curlg — ¢)curlg’ = 0 Vg' / (a='€ — ¢ —gradp)g’ = 0 V&' (30)
2 2

Now, from the first equation, we deduce ||curlg|lo < C||%||o, and from the
second one, integrating by parts:

[ paive' = [ @-a"g)e"

Using now (18) and the discrete Friedrichs inequality for X,ll7 we obtain
Ipllo < Clla= €& — ||o. This concludes the proof. n

Corollary 1. The problem (25a)-(26) admits a unique solution which verifies:

[xell—1 + [lynllo < C(llfllo + llgllo)
where the constant C' does not depend upon the data and the mesh size.

Remark 1. Note that the Hodge decompositions (28) are just a tool to prove
wellposedness and they are not part of the numerical scheme. Thus, we never
need to compute them explicitly.

A new compatible discretization of magnetostatics

Magnetostatics corresponds to (22) with ¢ = 0: x is the magnetic induction
B, y the magnetic field H and a is the inverse of the magnetic permeability.
Thus, the schemes (25) or (25a)-(26) are a compatible discretization of the
magnetostatics. Moreover, following the steps in the proof of Theorem 1 and
looking in particular to (29), we realize that the computed magnetic induction
B; := x; takes the form of B, = curlg, for some ¢; € X?L. This suggests a
way to simplify the discrete problem by using this information explicitly in
the scheme.

Performing this simplification on the discretization (25a)-(26), we obtain
the following discrete problem: Find ¢, € X%, H;, € Y}L such that:

/ curlHyq' = / fdvqeY: / (curlg, — aH,)H' =0 VH' € Y}, (31)
0 0 Q
Proposition 6. The problem (31) admits a unique solution which verifies:

lanllo + [Hallo < Cll£llo- (32)

Proof. We decompose any element y € Y} as follows:

y:grader'c,b,pGYg, andeEY,ll : /a'l,[;~gradpt:0thEY2.
Q
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The equation (31-left) together with the discrete Friedrichs inequality (17)
implies that ||¢]lo < C|lcurly|lo < C| fllo- The equation (31-right) reads,
after rearrangement and integration by parts,

/ qn curlyp’ = / a -t V! / agradp - gradp’ = 0 Vp'.
Q 0 Q

Thus, gradp = 0, and using (19) together with the discrete Friedrichs inequal-
ity (17), we obtain:
lanllo < Cli%llo

which concludes the proof. [

Remark 2. The problem (31) is simpler, and “smaller” (less unknowns) than
(25). On the other hand, it has lost symmetry.

The estimate (32) is not completely satisfactory, since we would like
to provide a stability for g, is H', ic., |lgnlli < C|fllo. Such an esti-
mate would rely on an inf-sup condition for the pair (X9, Y?) with respect
to the norms H! — H~!, and on an optimal discrete Friedrichs inequality
l%]lo0 < Cllcurlep|—1 for all discrete ¥ € Y} orthogonal to gradients. The
inf-sup condition has been proved in [11, Section 3.3], whereas the validity of
such a discrete Friedrichs inequality is an open problem. In [11], it is proved
that [|[¢]lo < C|lcurle||—14s, for s € (0,1] and for all ¢ € Y} orthogonal to
gradients. This estimate ensures only the following;:

lanllis < C(s)Ifllo s €(0,1],

where the constant C(s) may be unbounded when s — 0.

A new compatible discretization of the Darcy flow equation

The Darcy flow equation corresponds to (22) with f = 0: x is the flow usu-
ally denoted by o, y is the gradient of a potential p and a is the diffusion
coefficient. As before, we can use the information that y = gradp to simplify
the discretization (22) and we will see that we obtain a scheme which is very
similar to the standard discretization of the Darcy flow equation by means of
RT element (see [10] for details). Performing this simplification on the scheme
(25), we obtain the following discrete problem: Find o, € X} and py, € Y) \R
such that:

/ diveyq = / gqVqeX: / (gradpy, —a top)o! =0Va' € Xj. (33)
e 7 e

Note that, an integration by parts can be performed in the second equation
and we obtain:



Compatible Discretizations in Two Dimensions 17
/ (a oy - o' +ppdive’) =0 Vo' € X}
2

The following Proposition holds.

Proposition 7. The problem (33) admits a unique solution which verifies:

llonllo + llonllo < Cligllo (34)

Proof. Tt is enough to proceed as for the proof of Proposition 6. n

As for the magnetostatics, the estimate on the discrete scalar potential py, is
not optimal, we would like a stability estimate of the type ||pn]l1 < C|g]lo-
Such an estimate would rely again on an inf-sup condition which has been
proved in [11, Section 3.3] and on an optimal discrete Friedrichs inequality
for RT elements which is not known (to the author’s knowledge). The inf-sup
condition and the discrete Friedrichs inequality provided in [11] ensure only
the following:
lpnlli-s < Cs)lglo s € (0,1],

where, as before, the constant C'(s) may be unbounded when s — 0.

3.2 An optimal mortar method for Maxwell equations

In this Section we will show how the space Y} can be used as Lagrange
multiplier space in the definition of domain decomposition methods with non-
matching grids for Maxwell equations. We restrict ourselves to simplified sit-
uation and leave the generality for future investigation. In this section we
suggest a way to reformulate the mortar method proposed in [6] in an opti-
mal way. Let 2 C R3 be a bounded Lipschitz polyhedron, n be unit outer
normal at the boundary 92 and

Ho(curl, 2) := {u € L*(2)® : curlu € L*(2)®, (u x n)|sn = 0}.

This is the energy space for the following problem: Given f € L2(£2)3, find
u € Hy(curl, £2) such that:

curlcurlu+u=f. (35)

This is a simplified and coercive version of Maxwell equations in three space
dimensions. Let I" be a flat interface which split the domain {2 into two non-
empty subsets 27 and 27 : in particular 1" C 2. We denote by v the unit
normal on I" pointing into 2. Given two triangulations Th+ and 7, of 27
and {27, respectively, we define the continuous and discrete broken spaces:

Vb={ve?(2)® . vi=wvulp+ € H(curl,2F), (v x n)|gp = 0}
VZ ::{Vh S LQ(Q)?’ : V}:‘L: = Vh|_(_)i S No('];zi), (Vh X n)|aQ = 0}
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where Ny (’Z;Li) stands for low order edge elements of the first family (see [19]
for the definition).
It is well known that

Ho(curl,2) ={veV’ : (vi —v ) xv=0o0nTI7} (36)

and we want to reproduce the matching condition (vt —v™) xv =0in a
suitable way at the discrete level. Let us first analyze its consequences:

(i) if v happens to be a gradient v = gradp, then p € H! (2)and pt—p~ =0
on [
(ii) it also holds that div((v’ —v~) x v) = 0 on I', which means

(curlvt —curlv™)-v=0o0n I

Indeed, it is easy to see that (i) and (ii) provide a characterization of the
matching condition in (36).

The discretization we propose here will reproduce (i) and (ii) at the dis-
crete level in a stable way.

The interface I is triangulated by two possibly different grids. We choose
one of them, say the trace of ’Z;j' and we introduce the spaces Y} (I"), i =0,1,2
as Y}L on this given triangulation on I, i.e., Thﬂp. We define the constrained
space by mimicking (36):

V5, = {v, eV} : /F((VZ_V;) xv)-y,=0Vy, € Yy(I)}
and solve the following discrete problem: Find u, € V), such that
/ (curluy, - curlvy, +uy, - vy) = / f-vp, Vv, eV, (37)
10 10

It is now enough to realize that v x v belongs to the space X}, (I") defined
on I' and on the triangulation ’];f of I'. Thus, the inf-sup condition (21),
together with the standard theory of mortar method (see [7] or [5]), implies
the wellposedness of (37):

Theorem 2. The problem (87) admits a unique solution which verifies:
i [lo,0+ + lleurl iy [lo,0+ < C|fllo,0-

For this theorem, only the inf-sup condition (21) is needed. In general, Maxwell
equations do not correspond to a positive definite coercive bilinear form, and
then the structure of the interface condition should matter in order to ensure
wellposedness, spectral correctness and so on. We analyze then the discrete
counterpart of the characterization (i) and (ii) above. We have:
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(i), Suppose that V}:i: = gradpf Then, the interface condition reads
/F ((gradp; — gradp, ) x v)y, =0 Vy, € Y (D). (38)

Note that the potential p, = pf on 2% verifies pplon = 0. We rewrite
(38) and by integration by parts we obtain: for all y, € Y} (I")

/ ((gradp;; — gradp), ) x v) = / (curl(pf —py,) - yn =
I I

= / (p;f — py, Jeurly, =0.
r

Thus the jump (p; — pj,) is orthogonal to the space curlY; (I') = Y2(I').
Note that p;|r € X9(I') and that the pair (X9(I"), Y2(I")) verifies an
inf-sup condition. Thus the potential p; matches in an optimal way on
the interface I

(ii), Choosing only Lagrange multipliers of the type gradqs, g, € YO (I"), we
perform integration by parts:

/F (v —v;,) x v) - gradg, = /Fdiv((v,': -V, ) X V)qn
= / (curlvy —curlv; ) -vg, =0.
r

This means that the quantity (curlv;} — curlv; ) - v is orthogonal to
all g, € Y)(I'). Noting that curlv}, - v € X2(I') and recalling that the
pair (X2 (1), Y9(I)) is inf-sup stable, we can argue that also the condition
(curl VZ —curlv, )-v = 0is reproduced at the discrete level in an optimal
way.
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Summary. The stress-displacement-pressure formulation of the elasticity problem
may suffer from two types of numerical instabilities related to the finite element in-
terpolation of the unknowns. The first is the classical pressure instability that occurs
when the solid is incompressible, whereas the second is the lack of stability in the
stresses. To overcome these instabilities, there are two options. The first is to use dif-
ferent interpolation for all the unknowns satisfying two inf-sup conditions. Whereas
there are several displacement-pressure interpolations that render the pressure sta-
ble, less possibilities are known for the stress interpolation. The second option is to
use a stabilized finite element formulation instead of the plain Galerkin approach. If
this formulation is properly designed, it is possible to use equal interpolation for all
the unknowns. The purpose of this paper is precisely to present one of such formu-
lations. In particular, it is based on the decomposition of the unknowns into their
finite element component and a subscale, that will be approximated and whose goal
is to yield a stable formulation. A singular feature of the method to be presented
is that the subscales will be considered orthogonal to the finite element space. We
describe in detail the original formulation and a simplified variant and present the
results of their numerical analysis.

1 Introduction

The analysis of the three field formulation of the linear elastic problem is
probably not a goal by itself, but rather a simple model to study problems
in which it is important to interpolate the stresses independently from the
displacements and, in the case we will consider, also the pressure. Perhaps
the most salient problem that requires the interpolation of the (deviatoric)
stresses is the viscoelastic one. In this case, the algebraic constitutive equation
(linear or nonlinear) that relates stresses and strains has to be replaced by an
evolution equation (see [1] for a review).

The problem we will study in this paper is the simple Stokes problem aris-
ing in linear elasticity or creeping flows, taking as unknowns the displacement
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field (or velocity field, in a fluid problem), the pressure and the deviatoric
part of the stresses. In particular, we shall consider that the material is in-
compressible.

When the finite element approximation of the problem is undertaken, it
is well known that incompressibility poses a stringent requirement in the way
the pressure is interpolated with respect to the displacement field. The dis-
placement and pressure finite element spaces have to satisfy the classical inf-
sup condition [4]. Several interpolations are known that satisfy this condition
and yield a stable displacement-pressure numerical solution. However, less is
known about another inf-sup condition that needs to be satisfied when the
stresses are interpolated independently from the displacement. This inf-sup
condition is trivially satisfied for the continuous problem, but only a few in-
terpolations are known that verify it for the discrete case.

The inf-sup conditions for the displacement-pressure and stresses-displa-
cement interpolations are needed if the standard Galerkin method is used for
the space discretization. However, there is also the possibility to resort to a
stabilized finite element method, in which the discrete variational form of the
Galerkin formulation is modified in order to enhance its stability. The purpose
of this paper is precisely to present one of such formulations. In particular,
the one proposed here is based on the decomposition of the unknowns into
their finite element component and a subscale, that is, the component of the
continuous unknown that can not be captured by the finite element mesh.
Obviously, this subscale needs to be approximated in one way or another.
This idea was proposed in the finite element context in [11, 12], although
there are similar concepts developed in different situations (both in physical
and numerical modeling).

The important property of the formulation to be presented here is that the
subscale will be considered orthogonal to the appropriate finite element space.
This idea was first applied to the Stokes problem in displacement-pressure
form in [5], and subsequently applied to general incompressible flows in [6].

Different stabilized formulations for the three-field Stokes problem can be
found in the literature. The GLS (Galerkin/least-squares) method is used for
example in [2, 9]. In [10, 8] the authors propose what they call EVSS (elastic-
viscous-split-stress), that is related to the formulation proposed in this paper
in what concerns the way to stabilize the stress interpolation. An analysis of
both approaches, GLS and EVSS, is presented in [3].

The paper is organized as follows. In the following section we present the
problem to be solved and its Galerkin finite element approximation, explain-
ing the sources of numerical instability. Then we present the stabilized finite
element formulation we propose, for which we present a complete numerical
analysis in Section 4. Section 5 is concerned with a modified formulation,
slightly simpler but that in fact allows us to obtain stability and error esti-
mates in natural norms (H?! for the displacement and L? for the pressure and
the stresses). The paper concludes with some final remarks.
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2 Problem statement and Galerkin finite element
discretization

2.1 Boundary value problem

Let {2 be the computational domain of R* (d =2 or 3) occupied by the solid
(or fluid) and 94?2 its boundary. If u is the displacement field, p the pressure
(taken as positive in compression) and o the deviatoric component of the
stress field, the field equations to be solved in the domain {2 are

-V.-o+Vp=Ff, (1)
V-u=0, (2)
o —2uVou =0, (3)

where f is the vector of body forces, u the shear modulus and VSu the sym-
metrical part of Vu. For simplicity, we shall consider the simplest boundary
condition u = 0 on 012.

2.2 Variational form

To write the weak form of problem (1)-(3) we need to introduce some func-
tional spaces. Let V = (H}(2))%, Q = L*(2)/R and T = (L?(£2))4*?. If we
call U = (u,p,0), X =V x Q x T, the weak form of the problem consists in
finding U € & such that

B(U,V) = L(V), (4)

for all V = (v,q,7) € X, where

B(U,V) = (Vo,0) — (p,V-v)+ (¢,V -u) + —
L(V) = {f,v), (6)

where (-,-) is the L? inner product and (,-) is the duality pairing betwen V
and its dual, (H~'(£2))?, where f is assumed to belong.

2.3 Stability of the Galerkin finite element discretization

let us consider a finite element partition of the domain {2 of diameter h. For
simplicity, we will consider quasi uniform refinements, and thus all the element
diameters can be bounded above and below by constants multiplying h.

From the finite element partition we may build up conforming finite el-
ement spaces V, C V, Q, C Q and 7, C 7 in the usual manner. If
Xn = Vp x Qn x T, and Uy, = (up, pr, or), the Galerkin finite element ap-
proximation consists in finding U;, € A}, such that
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B(Uh, Vi) = L(V4), (7)

for all V}, = (’Uh,qh,Th) € Ay.

In principle, we have posed no restrictions on the choice of the finite ele-
ment spaces. However, let us analyze the numerical stability of problem (6).
If we take V}, = Uy, it is found that

1
B(Un,Up) = 5||0h|\27 (8)

where || -|| is the L2(£2) norm. It is seen from (7) that By, is not coercive in A},
the displacement and the pressure being out of control. Moreover, the inf-sup
condition

inf  sup 7B(Uh’vh)
UneXn vy ex, |Unllxl|[Vellx —

is not satisfied for any positive constant § unless the two conditions

AVAR
inf L@ Vovn) o 9)
€ v,ev, [l lvnllv,
) , Vv
inf _(Tn, V7on) > Cy >0, (10)
vneVn 1,7, | ThllT [vnllv,
hold for positive constants C; and Cs. In all the expressions above, || - ||y

stands for the appropriate norm in space ).

Conditions (9) and (10) pose stringent requirements on the choice of the
finite element spaces. Our intention in this paper is to present a stabilized
finite element formulation that avoids the need for such conditions and, in
particular, allows equal interpolation for all the unknowns. Although this is
only a particular choice for the finite element spaces, we will concentrate on
this. Therefore, in what follows we will assume that V), Qp and 7;, are all
constructed from continuous finite element interpolations of degree k.

3 Finite element approximation using subscales

3.1 Decomposition of the unknowns

Let us start by explaining the basic idea of the multiscale formulation proposed
in [11] and applying it to our problem. If we split U = Uy, + U’, where Uy,
belongs to the finite element space X}, and U’ to any space X’ to complement
X, in X, problem (4) is exactly equivalent to

B(Un, Vi) + B(U',V},) = L(V,,) VYV, € Ay, (11)
B(Uh,V/) + B(U’,V’) =LV vV e X' (12)
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Integrating some terms by parts and using the fact that w, = v’ = 0 on 942,
it is easy to see that (11) in our case can be written as the system

(vsvha Uh) + (vsvhval) - (ph7 % 'Uh) - (p/’ V- ’Uh) = <f,'U>, (13)

(q}u v : uh) - (tha ul) = Oa (14)

(on,Th)+ (6, 7h) — 2u(Voup, 7)) + 2u(u/,V - 75,) = 0, (15)

(12)

which must hold for all test functions vy, ¢, and 74. On the other hand, (12
implies that

V.o +Vp =ry:=f+V-0o,— Vp,+£&i, (16)
V-u' =ry:=-V- -uy+&, (17)
o' —2uVoiu = r3 = —oy + 2uVuy, + &, (18)

where &1, & and &3 are responsible to enforce that the previous equations hold
in the space for the subscales, that still needs to be approximated (see [6] for
more details). The way to approximate the solution of problem (16)-(18) and
to choose the space for the subscales is the objective of the following section.

3.2 Approximation of the subscales

The subscales, solution of problem (16)-(18), need now to be approximated.
Once this is done, inserting them in (13)-(14) will lead to a problem for the
finite element unknowns which will hopefully have better stability properties
than the standard Galerkin method.

The are several possibilities to deal with problem (16)-(18). As in [6], we
will approximate o', p’ and w' by using an (approximate) Fourier analysis
of the problem. We will omit the details, for which we refer to the above
reference, and sketch only the idea.

Denoting by ~ the Fourier transform, and assuming that the values of
the subscales are negligible on the element boundaries (which is reasonable
for highly fluctuating subscales), the transformed problem (16)-(18) is, within
each element of the finite element partition,

k= ks
71ﬁ~0‘ +1ﬁp =7,
iﬁ"ljl/\/:'l?Q,

" : k - - k =
o' —m E@u +u ®E =73,

where k is the dimensionless wave number. From these equations it is possible
to obtain the Fourier transform of the subscales and to compute its L2 norm,
which will have the form |U’(k)|| = ||a(k)R(k)| for a certain matrix a(k)

depending on k and R being the vector that contains (71,72, 73). The mean
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value theorem guarantees that there is a wave number k( for which Hl_'/]\’(k) II <
|au(ko)R(K)||. Parseval’s formula allows now to state that ||U’]| < |la(ko)R).
Thus, if we take U’ = agR, where now aq is a matrix of constants, there
will be values of these constants for which the approximated subscales U’ will
have the correct L? norm over each element.

In principle, ap is a full (symmetric) matrix. However, assuming that the
components of kg are high and neglecting tensors of rang lower that d, it can
be heuristically argued that o can be approximated by a diagonal matrix,

and therefore the subscales approximated by

2

u' =Qa1—"7r, (19)
i

p = a2urs, (20)

o = asrs. (21)

These are the expressions we were looking for. Here, oy, ay and a3 are con-
stants that play the role of the algorithmic parameters of the formulation.
The possibility of using the full matrix g needs to be further explored.

It only remains to determine which is the space of the subscales, that is,
to choose the functions &;, ¢ = 1,2,3. Our particular choice is to take the
space for the subscales L? orthogonal to the finite element space. In view of
(19)-(15), this implies that =y, ro and 73 must be orthogonal to V},, 9 and
Ty, respectively. Denoting by P,, P, and P, the L? projections onto these
spaces and by P, Ppl and P;- the orthogonal projections, we will have that

h2
& =-P,(f+V-0,—Vp,) and u' = 041;}%(10 +V .o — V),
& = —Py(=V -w) and 3f = as2uP (=7 - up),
€3 = =P, (=0 + 2uV7uy) and o' = azPt (-0 +2uV7uy).

Clearly, we have that Pi(—a},) = 0. We may also assume for simplicity that
the body force belongs to the finite element space, and thus Pl (f) = 0.
Hence, the expression for the subscales we finally propose is

h2
u' = oq;PuL(V ~on— V), (22)
P = —2uP(V - uy), (23)
o' = az2uP; (Vouy). (24)

3.3 Stabilized finite element problem

Once arrived to (22)-(17), the stabilized finite element problem is obtained by
inserting these approximations for the subscales into (13)-(14). Noting that
(o/,71) = 0, the result is the following:
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(VZ0n,01) + as2u(Vivp, P(Vour)) = (pr, V - )

+ O‘22/1'(P;_(V : uh)7 V. vh) = <_f,’U>, (25)
h2
(qn, V -up) + 041;(V(Jh7p7f(vph —-V.op)) =0, (26)
1 h?

Z(ah, 7h) — (Voup, m4) + alz(PuL(V o —Vpn),V-T)=0. (27)

Introducing the bilinear form

Bstab(Ufu Vh) = B(Uh, Vh) + a32p(VSvh,Pj(VSuh))

+ aﬂu(Pj(V “up), V- vp)
h2
+ oq;(th -V -1y, Pj‘(Vph, —V-oy3)), (28)

problem (18)-(27) can be written as follows: find Uy € A}, such that
Bstab(Uns Vi) = L(Va), (29)

for all V}, € &},. This is the stabilized finite element method we propose and
whose stability and convergence properties are established in the following
section. In Section 5 we will also present and analyze a modified formulation.

4 Numerical analysis of the original formulation

In this section we present the results of the numerical analysis of the method
proposed in the previous section. The norm in which the results will be pre-
sented is

1
IVall? :zﬂllfhllz + a2l VI |* + as2p|[V - v |2
h2
+a1;||th—V~ThII2- (30)

In fact, the term multiplied by «s is unnecessary, since it already appears in
the term multiplied by as. However, we will keep it for generality, to see the
effect of the subscale associated to the pressure introduced in the previous
section. In all what follows we will assume that a; > 0,7 =1,2,3.

As it has been mentioned in Section 2, we will consider for the sake of
conciseness quasi-uniform finite element partitions. Therefore, we assume that
there is a constant Ci,y, independent of the mesh size h (the maximum of all
the element diameters), such that

C’inv
190l < 22 o], (31)
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for all finite element functions vy,. Since, again for the sake of simplicity, we
have assumed equal interpolation for all the unknowns, this inequality can be
used for scalars, vectors or tensors.

In all what follows, C will denote a positive constant, independent of the
discretization and the physical coefficient u, and possibly different at different
occurrences.

We start proving what is in fact the key result, which states that the
formulation presented is stable in the norm (30). This stability is presented
in the form of an inf-sup condition:

Theorem 1 (Stability I). There is a constant C > 0 such that
Bgtan (Un, Vi
inf  sup Betan(Un, Vi) >C. (32)
UneXivieXn  [[UnllIIVll

Proof. Let us start noting that, for any function U, € X}, we have

1
Bstab(Un; Un) = @HMH2 + as2pl[ Py (Vi) |

h2
+ aa2u| By (V- up)|* + algulle(Vph ~ Vo)l (33)

The basic idea is to obtain control on the components on the finite element
space for the terms whose orthogonal components appear in this expression.
The key point is that this control comes from the Galerkin terms in the bilinear
form Bstap-

Let us consider V3, := alh;(Pu (Vp,—V -04),0,0). A straightforward ap-
plication of Schwarz’s inequality, Young’s inequality and the inverse estimate
(31) leads to

h2
Bgtab(Un, V1) > oq@HPu(Vph —V-ou)l?

— dar03uC || P (V) |12

— 4o a3 pCE || Py (V- up) |12, (34)
Consider now Vj,g := (0, 22 P,(V - uyp), 0). The same strategy as before now
leads to
Bitab (Un, Viz) = aapl| Pp(V - w) |12
h2
; ;HPJ(VP;L - Vo)l (35)
Finally, taking Vi3 := (0,0, —a32uP,(VSuy)) what we obtain is

Bstab(Un, Viz) > asp|| Py (Vup) |2

2
- Qo Cinv

1
— az—|on |*
I

h2
- 2@?@30§1V;||P5(Vph = Vo) (36)
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Let Vi, = B1Vh1+62Vio+ 83 Vs, with Vi, i = 1,2, 3, introduced above. Adding
up inequalities (34)-(35)-(36) multiplied by 81, B2 and (s, respectively, and
adding also (33), it is trivially verified that there exist values of the coefficients
Bi, 1 =1,2,3, for which

Bstab(Un, Vi) > CllU|1*. (37)

On the other hand, we have that

IVialI? < 203 (02 + a5)C HVPh V- on|* < Clw|?,

[Viall* < 4a100uCh ||V - Uh||2 < ClUJP?,
IVisll® < 2030(1 + 201 CL)IVEun||* < CIULIP,

mnv

from where it follows that [|V,| < C||Uy||. Using this fact in (37) we have
shown that for each U, € X}, there exists V}, € &), such that Bgay, (Up, Vi) >
CNULIIVR, from where the theorem follows. "

Once stability is established, a more or less standard procedure leads to
convergence. In this case, we will assume that all the components of the con-
tinuous solution U = (u,p,o) € X belong to H**1(§2), where k is the order
of the finite element interpolation. A remark on this requirement will be made
after the final convergence result.

Let W), C HY(£2) be a finite element space of degree k, constructed as any
of the spaces for the displacement, the pressure or the deviatoric stress. For
any function v € H**1(£2) and for i = 0, 1, we define the interpolation errors

, lgf o = vallariey < CRF ]| e (o) =: (). (38)

We will denote by v, the best approximation of v in W,,. Clearly, we have
that £o(v) = heq(v). This will allow us to prove that the error function of the
method is

1 1
B(h) = h* (ﬁuW(m + bl + ﬁhnpnmﬂ(m) . (39)

To prove convergence, we need to preliminary lemmas. The first concerns
the consistency of the formulation:

Lemma 1 (Consistency I). Let U € X be the solution of the continuous
problem and Uy, € X}, the finite element solution of (29). Then, if f € Vp,

Bgtan(U = Up, Vi) =0 YV, € Xy. (40)

Proof. This lemma is a trivial consequence of the consistency of the finite
element method proposed (considering the force term f in the finite element
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space). Note that all the terms added to B in the definition (20) of Bgtap
vanish if Uj, is replaced by U (recall that o, could have been added to Viuy,
since Pi (o) = 0). n

Remark 1. If PX(f) # O there are two options. The first is to include this
orthogonal projection in the definition of the method, and therefore to modify
the right-hand-side of (29). All the analysis carries over to this case. The
second is to take into account the consistency error coming from f in (40).
It is easy to see that in this case this equation can be replaced by Bgtan(U —
U, Vi) < CE(h)||Vh] and the following results can be immediately adapted.

The next step is to express the interpolation error in terms of the norm
IIIl and the bilinear form Bggap. We do this in the following:

Lemma 2 (Interpolation error I). Let U € X be the continuous solution

and U, € X, its best finite element approximation. Then, the following in-
equalities hold:

Baan(U = Uy, Vi) < CE()|Vil, (41)
U — Ul < CE(h), (42)
where E(h) is given in (39).
Proof. Let us start proving (42). By the definition (30) of the norm ||| it is
immediately checked that
U = Oull < 5-23(0) + a2 () + ax2pcta)
2 2

h
+ o ;5%(29) + al;{‘:?(a)a

and (42) follows from the fact that g (v) = he;(v) for any function v € H*(£2).
The proof of (41) is as follows:

~ 1 1
Bitan(U = Un, Vi) < \/ﬁllvsvhllﬁ&)(a) ViV vh\lﬁso(p)

1 1
+ 7||7'h||7€0(0) + ﬁHmII\/ﬁm(U)
+ 203/l Vi0n | /REr (1) + 202/ V - o]/ (w)
h2
+ al;Hth — V71| (e1(p) + e1(o))-

All the terms have been organized to see that they are all bounded by
CE(h)||[V4|l, from where (41) follows. n

We are finally in a position to prove convergence. The proof is standard,
but we include it for completeness.
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Theorem 2 (Convergence I). Let U = (u,p,0) € X be the solution of the
continuous problem. Assume that all the components of this solution belong
to H*1(02), where k is the order of the finite element interpolation. Then,
there is a constant C' > 0 such that

IU = Unll < CE(R),
where E(h) is given in (39).

Proof. Consider the finite element function U, n—Up € X, where, as in Lemma
2, Uy, € X}, is the best finite element approximation to U. Starting from the
inf-sup condition (16) it follows that there exists V3, € A}, such that

CITw = UnlllVill < Bstan(Un = Un, V)

= Bstab(Up, — U, V3) (from the consistency (40))
< CEM)|Vall (from (41)),

from where ||U;, — Up|| < CE(h). The theorem follows now from the triangle
inequality ||[U — Ug|| < U — Ur|| + |Un — Ur|| and the interpolation error es-
timate (42). "

Clearly, this convergence result is optimal.

Remark 2. In the error estimate obtained with the standard Galerkin method
and using finite element interpolations satisfying the inf-sup conditions (9)-
(10), the error function would involve [|o| ;i) and ||p| k(o) instead of
hllo| gis1 (o) and Al|p||gusi (), respectively. Therefore, the stabilized finite
element method requires more regularity for the continuous solution than
what would be needed using the Galerkin method. This is a common feature
of all stabilized methods of the type presented in this paper.

5 A modified stabilized problem

The problem presented in Section 3 and analyzed in Section 4 comes directly
from the variational multiscale concept. However, once arrived to the stabi-
lized problem (29) we may a posteriori modify it. We do this here. As we shall
see, the modified method has both improved convergence behavior and smaller
computational cost. The only price to be paid is a consistency error that has
to be taken into account in the convergence analysis, which otherwise follows
exactly the same lines as in the one presented in the previous section.

The starting observation is that it would be computationally convenient
to drop the last term in the left-hand-side of (27), that is to say, to replace
it by the equation that would come from the standard Galerkin method. In
this case we would simply have o), = P,(2uV°uy). But then the discrete
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equations would be non-symmetric, due to the presence of V - o, in (19). The
next idea is thus to drop also this term. The final discrete system of equations
to be solved, instead of (18)-(27), is

(VSvy,04) + @32u(Vivy, PH(Viup)) — (04, V - v3)

+ @2u(Py(V - up), V- vy) = (f,0), (43)

2
(a0, V- up) + al%wqh,zﬂj(m)) 0, (44)
im,rh) — (VSup, ) = 0, (45)

that must hold for all V}, = (vn,qn,Tr) € Ap. This problem can now be
written as: find U;, € X}, such that

Bgtab,«(Un, Vi) = L(Vy) VYV, € Ay, (46)
where the bilinear form Bgtap,« is now defined as

Bstab,*(Uha Vh) = B(Uh; Vh) + 032M(VS’U}L, P;‘(Vsuh))
h2
+ 22u(Py (V- up), V - vp) +a1Z(th,Pul(Vph)). (47)

Remark 3. Even though we will not discuss here the extension of the present
formulation to nonlinear problems, let us briefly discuss some of its impli-
cations in a nonlinear situation. Suppose for example that the constitutive
law is of the form o = F(VSu), with F a nonlinear function. Equation
(45) has to be replaced by (o, 7s) — (F(VSup),7s) = 0, that is to say,
on = P,(F(VSuy)). A straightforward application of the variational multi-
scale concept would lead us to replace the second term in the left-hand-side
of (43) by az(VSvy, P (F(V7u))) and therefore the first two terms of this
equation would add up to (VSvp, (1 — a3) P, (F(Vouy)) + azF(Vouy,)). For
as = 0 the formulation would be unstable, whereas for ag = 1 we would recover
an trreductibe formulation, without the stress as unknwon. Nothing is gained
for 0 < az < 1. However, there is no need to take az(VSvy,, P+ (F(VSu))) in
the second term of (43). We could for example take aspo(Vovy, P (VSuy)),
with o a constant. Once more, the only price to be paid is an optimal con-
sistency error, and the gain is that the constitutive law only appears in (45)
which, as it has been said, implies o, = P, (F(V uy)).

Let us proceed to analyze now problem (46) with the bilinear form Bggab, «
given by (47). The analysis now is based on the norm ||-||., defined by

1 h?
VAl =5l + a2l Vo012 + a2V - v |* + a1 — || Van . (48)
2u Iz

Clearly, the first point to be noticed is that this norm is finer than ||-||, since
it involves the norm of the pressure gradient directly, and not a combination
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of the pressure gradient and the stress divergence. The same stability and
convergence estimate in this norm gives, in principle, more information than
in the norm ||-||.

The results to be presented follow the same scheme as in Section 4. Let us
start proving stability:

Theorem 3 (Stability IT). There is a constant C' > 0 such that

. Bstab,«(Un, Vi)
inf sup ————"——=>(C. (49)
UneXn viex, [URllVall«

Proof. Taking V}, = U}, in the definition of Bsap « yields
Bstab,«(Un, Up) = *MllthIZ + as2pl|[ Py (Vup)|?
1 2 h? 1 2
+ 22| Py (V) || + al;p’”Pu (Vo)™ (50)

The control on the components on the finite element space for the terms
whose orthogonal components appear in this expression is obtained in a man-
ner completely analogous to that of Theorem 1. Some of the details will be
omitted.

Taking V1 = al—( . (Vpp,),0,0) it is now found that

h2
Bstab(Un, Vi1) > 041*||Pu(vph)||2

- 4a1a3MCmVHPL( h)H2
- 4a1a2l’tcmvHPL( h)||2

— O —|lon?. 51
1 MH I (51)

Considering Via = (0, 221 Py (V - uy,),0), Vis := (0,0, —a32uP, (Vouy)), as
in Theorem 1, yields:

Bytab (Un, Viz) = copol| Bp(V - un)||* — ofaaCl, HPL(VP;L)H2 (52)

Bitab(Un, Via) > asp]| Po (Vup)||* — a3@|lah ||2- (53)

Let Vi, = B1 V1 +02Vio+ 03 Vhs, with Vi, @ = 1,2, 3, introduced above. Adding
up inequalities (51)-(52)-(53) multiplied by (i, B2 and B3, respectively, and
adding also (50), it is easily shown that there exist 3;, i = 1,2, 3, for which

Bitab«(Un, Vi) > Cll U3 (54)

On the other hand, it can be shown that ||V, ||« < C||Up]«, which, together
with (54) completes the proof of the theorem. "
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We shall prove convergence under the same assumptions as in Section 4. We
will see that the error function in this case is again (89). The main difference
in the analysis is in fact the consistency established in the following:

Lemma 3 (Consistency II). Let U € X be the solution of the continuous
problem and Uy € X, the finite element solution of (46). Then

Bitab, (U — Un, Vi) < CE(h)|| Vi« Vi € Xn, (55)
where E(h) is given in (39).
Proof. 1t is readily checked that

Batab s (U = Un, Vi) = as2u(VZvy, PH(VSu))
h2
T m;(v%,ﬂf(w)). (56)

We could have neglected the first term in the right-hand-side of this expression
assuming that P (f) = 0 and noting that P; (o) = 0. However, we have
in any case a consistency error due to the last term, and therefore there is no
need to assume that f is a finite element function (see Remark 1).

To prove (55) from (56) it is enough to recall the best approximation
property of the L?(£2)-projection onto the finite element spaces, which im-
plies || P (Vu)|| < Cei(u) and || PH(Vp)|| < Cheo(p), with &;(-), i = 0,1,
defined in (38). n

Now we need to express the interpolation error in terms of the norm ||-|.
and the bilinear form Bsgap «. The result is

Lemma 4 (Interpolation error II). Let U € X be the continuous solu-
tion and Uy, € X}, its best finite element approximation. Then, the following
inequalities hold:

Batab (U = Un, Vi) < CER)[[Vil, (57)
|U - Upll. < CE(h), (58)

where E(h) is given in (39).

Proof. It follows the same steps as that of Lemma 2. n

We finally give the convergence result. The modification of the standard
proof due to the consistency error is trivial:

Theorem 4 (Convergence II). Let U = (u,p,0) € X be the solution of the
continuous problem. Assume that all the components of this solution belong
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to H*T1(£2), where k is the order of the finite element interpolation. Then,
there is a constant C > 0 such that

IU = Unlls < CE(h),
where E(h) is given in (39).

The direct control on the pressure gradient provided by Theorem 3 and
Theorem 4 (instead of a combination of pressure gradient and stress diver-
gence, as in the previous formulation) allows us to obtain stability and error
estimates for the pressure in its natural norm, namely, L?(£2). We do this
next, extending the strategy employed for example in [7] for the classical
displacement-pressure formulation of the Stokes problem:

Theorem 5 (Stability and convergence in natural norms). The solu-
tion of the discrete problem (46), Up = (up,pr, o) € X, is bounded as

1 1
Virllunl g2y + —=llonll + —=llpn [l (59)

VAR ”—f

Moreover, under the assumptions of Theorem 4 it follows that

1 1
Villu = unllaie) + —=llo = anll + —=llp = pull < CE(R),  (60)

N Vi
where U = (u,p,0) € X is the solution of the continuous problem.

Proof. Let us first recall that Korn’s inequality implies that ||V°v]| is a norm
in V equivalent to [|v| g1(o). On the other hand, it is clear that

(f,on) < f||f||H v VEllvRll g2y < f||f||H 1 @) I Vil
f f

where V, = (vp,qn, Th) € A}, is arbitrary. Therefore the inf-sup condition
proved in Theorem 3 implies that ||Up[. < %HfHH—l(Q), which, together
with the definition of |||« in (48) yields the bound (59) for the first two terms
in the left-hand-side of this inequality. Likewise, Theorem 4 implies the error
estimate (60) for the displacement and the stresses.

The point is thus to prove the stability and the error estimate for the
pressure stated in (59) and (60), respectively. We do this using a duality
argument. Let (w, 7, S) € X be the solution of the following problem:

-V -8+Vr=0 in £, (61)
V- -w=9—pn in £2, (62)
S —2uVSw =0 in £, (63)

w=20 on 042,
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where 7 can only take the values 0 and 1. Testing (61) by w, (62) by m, (63)
by S and adding the results, it follows that

1
—|8]% < - } 64
2,J” 1 < llvp = prllll=|l (64)

On the other hand, the continuous inf-sup condition for V and Q implies
that there exists & € V such that ||7||[[&]| g1 (o) < C(7, V - §), and, from (61),
(m,V-§) < Cll&llar (o)l S]], from where ||| < C||S]|. The continuous equation
(63) yields also 2u||w|| g1y < C||S||. Using this in (64) we have the stability
bound

wllz(2) < Cllvp — pall- (65)
Let wp, € V, be an approximation to w such that
lw = @nllam(2) < Ch w1 (2), m=0,1. (66)
If now we test (62) by vp — pp, we obtain:

lvp = pall> = (vp = pr, v — 1)
= (V-w,p —pn)
= (V- (w—wn), 7 —pn) — (@n, V(70 — 1))
= —(w—@p, V(yp—pn) + (VSOn,vo — o1) = (v = 1)(@n, f)
|w —@nllllvVp — Vi
+ Cllwlmo) (lve —onll + @ =) flla-1(0)
< Cllwllz(2)hlvVp = V|
+ Cllwlm(o) (lve —onll + @ =) fllz-1(0)
< C (hlvVp = Vpull + [lve = anll + 0 =DIflla-12) e = pall-

IN

The stability and error estimate for the pressure we wished to prove follow
taking v = 0 and v = 1, respectively, and using the stability and convergence
provided by Theorems 3 and 4. [

6 Concluding remarks

Let us conclude with some remarks concerning the numerical formulations
presented in this paper. From the point of view of the numerical analysis,
which has been our main concern, the two methods presented are stable and
optimally accurate using equal interpolation for the displacement, the pressure
and the stresses. Therefore, the main goal has been achieved.

Let us comment on two aspects that have been not treated in the paper
and that refer to the pontential of these formulations. The first remark is the
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implementation of the orthogonal projections, say P+. In practice, this projec-
tion applied to any derivative of a finite element function, vy, can be expressed
as P+(Vuy,) = Vo, — P(Voy,). In an iterative scheme, the term P(Vuvy,) can
be evaluated in a previous iteration. This allows us to maintain the stencil of
the Galerkin formulation in the matrix of the final discrete system. Of course
for a linear problem, as the one analyzed here, this iterative procedure implies
an additional cost, but for a nonlinear problem this iterative treatment can be
coupled with the iterations due to the nonlinearity. Our experience indicates
that this causes no significant deterioration of the nonlinear convergence of
the scheme.

As it has been mentioned in the Introduction, the problem analyzed here
is nothing but a model for more complex situations. Typically, viscoelastic
flows are often posed as example of a problem that requires the interpolation
of the stresses, but this can also be done for nonlinear models such as damage
or plasticity in solid mechanics, and non-Newtonian fluids or even turbulence
models in fluid mechanics. When designing an extension of the formulations
presented here to these more complex situations, the most important idea
to bear in mind is which is the stabilization mechanism introduced by the
formulations proposed. The analysis dictates that pressure is stabilized by the
term proportional to P.-(Vpy,) introduced in the continuity equation (see (19)
and (44)) and the displacement gradient is stabilized by the term proportional
to P (VSuy) introduced in the momentum equation (see (18) and (43)). This
is the essential point. The only condition on the factors that multiply these
terms is that they have to yield an adequate scaling and order of convergence.
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Summary. We investigate adaptive wavelet methods which are goal-oriented in
the sense that a functional of the solution of a linear elliptic PDE is computed
up to arbitrary accuracy at possibly low computational cost measured in terms of
degrees of freedom. In particular, we propose a scheme that can be shown to exhibit
convergence to the target value without insisting on energy norm convergence of
the primal solution. The theoretical findings are complemented by first numerical
experiments.

1 Introduction

The importance of adaptive solution concepts for large scale computational
tasks arising in Numerical Simulation based on PDEs or integral equations is
nowadays well accepted. The evidence provided by numerical experience is,
however, nor quite in par with the theoretical foundation of such schemes.
A thorough analytical understanding, in turn, has recently proven to lead to
new algorithmic paradigms in connection with wavelet based schemes. Rigor-
ous complexity and convergence estimates were obtained for adaptive wavelet
methods for a wide class of linear and nonlinear variational problems, see, e.g.,
[8, 9, 12, 14]. These estimates relate for the first time the computational work
and the adaptively generated number of degrees of freedom to the target accu-
racy of the approximate solution. This accuracy refers to the approximation
in some (energy) norm, i.e., the whole unknown solution is recovered. These

* This research was supported in part by the EEC Human Potential Programme un-
der contract HPRN-CT-2002-00286, “Breaking Complexity”, the SFB 401, “Flow
Modulation and Fluid-Structure Interaction at Airplane Wings”, and SFB 611,
“Singular Phenomena and Scaling in Mathematical Models”, funded by the Ger-
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developments have meanwhile spilled over to the Finite Element setting where
analogous results could be obtained for a much more restricted problem class,
though, see, e.g., [3, 24].

However, in many applications one is only interested in some functional
of the solution which, in particular, might be local such as point values or
integrals on some lower dimensional manifold. In such a case one might expect
to obtain the desired information at a much lower expense than computing the
whole solution. This is exactly the objective of goal-oriented error estimation
which gives rise to the so called dual weighted residual method (DWR), see,
e.g., [7] and the references cited therein.

Many striking examples indicate that one may indeed reach the goal with
the aid of this paradigm at the expense of much less computational work in
comparison with schemes driven by norm approzimation. On the other hand,
a rigorous analysis of the DWR faces a number of severe obstructions related,
in particular, to the fact that the central error representation involves the
(unknown) solution to the dual problem. Thus, the dual solution has to be
estimated along the way. Although this problem arises, in principle, already
when dealing with linear problems, it becomes more delicate in the nonlinear
case since the dual solution depends then on the primal one. It is fair to say
that the mutual intertwinement of the accuracies of dual and primal solutions,
especially with regard to the spatial distribution of degrees of freedom, is far
from a rigorous understanding. It is not even clear in the linear case that
adaptive refinements based on the practiced versions of the DWR paradigm
actually converge in the sense that the searched value is actually approached
better and better by the computed one as the refinement goes on. It is this
issue that will be the primary concern of this paper.

To appreciate this issue, it is helpful to keep a few principal facts in mind.
Approximability of a function in some norm can always be understood in terms
of the regularity of that function (with respect to some nonclassical regularity
measure). In a typical application of the DWR, adaptivity is not driven by
the regularity of the searched for object, but primarily by the locality of the
targeted information, conveyed by the dual solution which is often termed
generalized Green’s function, see, e.g., [19]. This generalized Green’s function
indicates the influence of parts of the primal solution away from the spatial
location of the target functional. Thus, the experience gained with adaptive
wavelet schemes for energy norm approximation is not immediately seen to
be helpful in the context of the DWR.

Nevertheless, the primary goal of this paper is to contribute to the under-
standing of the DWR by looking at this paradigm from a wavelet point of view.
Here is a rough indication why this might indeed be a promising perspective:
The key to the above mentioned results from [8, 9] is to formulate an iteration
(e.g., a gradient or a Newton scheme) for the full infinite dimensional problem
formulated in wavelet coordinates. This idealized iteration is then mimicked
by the adaptive evaluation of the involved operators within any desired error



Convergence of Adaptive Wavelet Methods ... 41

tolerance. Staying in that sense controllably close to the infinite dimensional
problem may therefore be expected to help also in the context of the DWR.

In this note we wish to explore this aspect for an admittedly simple class of
model problems, namely, linear elliptic boundary value problems. Moreover,
we shall consider only linear evaluation functionals that belong to the dual of
the energy space. Further linearization and /or regularization can be, of course,
performed as explained in many foregoing investigations. The main point is to
identify the key mechanisms so as to draw also conclusions for more complex
problems.

We shall occasionally use the following convention for estimates containing
generic constants. The relation a ~ b always stands for a < b and a 2> b,
i.e., a can be estimated from above and below by a constant multiple of b
independent of all parameters on which a or b may depend.

2 Goal-oriented error estimation

2.1 Problem formulation

Let V denote a Hilbert space living on some bounded Lipschitz domain {2 C
R? and let V' be its topological dual. Its associated dual form will be denoted
as (-, )vxvr, or shortly as (-, -).

Moreover, let a(-,-) be a symmetric bilinear form which will here always
supposed to be continuous and elliptic on V, i.e., there exist constants c4,Ca
such that

Veallvlly < a(v,v)/2 < /Callvllv, veV. (2.1)
In this case the variational problem: given any f € V', find u € V such that

a(v,u) = (v, f), velv, (2.2)

is well posed. It will be convenient to introduce the induced operator A : V —
V' given by (v, Aw) := a(v,w) for all v,w € V.

Instead of approximating the whole solution u we are interested in evalu-
ating only a functional of the unknown solution. Specifically, we consider the
following problem: Given a fixed linear functional J € V', compute

J(u) = (u, J), (2.3)

where v is the solution of (12). J(u) may be a very local quantity, such as the
point evaluation of u at some point x, € (2, if the Dirac functional is in V' (as
in the case of Plateau’s equation on an interval), or a local quantity like the
mean of u over some small domain 25 C £2, i.e., J(u) = |25 [, u 0, u(z) dz, or
a weighted integral of u over some lower dlmensmnal manifold in Q We shall
exclude first more general situations such as nonlinear functionals J which
would require an additional linearization process as shown in [7], as well as
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functionals that are not contained in V’ but require additional regularity of
the solution.

Of course, one might approximate the quantity J(u) by determining first
some approximation u, to w sitting in some finite dimensional trial space
indicated by the subscript A, and take then J(u,4) as an approximation to the
desired value J(u). Moreover, in the above framework it is natural to take u 4
as a Galerkin solution with respect to some subspace V4 C V, i.e.,

a(v,us) = (v, f), veVy. (2.4)

Under the circumstances (2.1), (12), u4 is uniquely determined for any V4 C
V. (For conceptual reasons that will become clear later, we deliberately do not
even insist at this point on V) being finite dimensional.) We shall frequently
use the shorthand notation

EA = U— Uy.

Our goal now is to determine u, such that for a given target accuracy
e>0
|J(u) = J(ua)l = |J(u—up)| = [J(ea)| <e, (2.5)

while the computational cost needed to determine u, is to be kept as low as
possible. Since, by assumption, J € V', we have

|J(ea)l < [ I]lv—r lleallv, (2.6)
where, as usual, [|J||v—r = sSup,cv, v, <1 (Vs J)-

Remark 1. When J ¢ V' but J € (V1) where V' — V and u,us € V', we
obtain an analogous estimate of the form [J(es)| < ||J||v+—r lleallv+-

Staying with the simpler former situation, a principal gain is that the target
accuracy ¢ can be achieved by solving two problems, namely, the primal (12)
and the dual one (2.8) with accuracies of the order /. Thus, choosing some
subspace V4, based on some a-priori estimates, such that the Galerkin error
satisfies

lu —uallv <e/llJ]lv-r, (2.7)

this, together with (2.6), would yield (2.5). In general, such an a-priori choice
would require a too large V4. In any case, an adaptive choice of V, with
respect to the energy norm may lead to an overestimation since such a norm
approximation does not take the locality of J into account.

2.2 The dual weighted residual method: error representation

It is the very purpose of the dual weighted residual method (DWR) to take the
locality of J into account when refining a given discretization so as to improve
on the accuracy of the approximate value, possibly without approximating
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the whole solution everywhere in the domain with a comparable accuracy.
In order to motivate the subsequent development, we briefly review some
basic facts concerning this methodology from [7, 19]. The key is to obtain an
error representation comprised of local quantities that reflect residual terms
which can be evaluated. The derivation of such representations relies on duality
arguments to be explained next.

Let z € V be the solution of the dual problem

a(z,w) = (w, J), w eV, (2.8)

with J € V' serving as right hand side. Inserting w = u — uy = e, yields the
error representation

J(ea) = (ea,J) = a(z,eq) = a(z — ya,en), for any y, € Vy, (2.9)

where we have used Galerkin orthogonality in the last step. This suggests
several options for bounding these residuals. First, we obtain the estimate

70— wa)| = laz — yasu—ua)| < Ju—ually il [z —yally.  (2.10)
YAEVA

Thus, if the computational work (measured in terms of problem size expressed
as the number of degrees of freedom N) needed to compute such approxima-
tions for the primal and dual solution with accuracy e scales like N(e) = &= @
for some o > 0, the error in (2.10) can be bounded by £2. So the computa-
tional work needed to determine the value J(u) within a tolerance e scales like
2¢~®/2_ This is asymptotically better than just computing the primal solution
with tolerance ¢ in the energy norm (2.7).

This still does not exploit the locality of the functional J of interest. In
the framework of Finite Element discretizations, one usually treats this latter
objective by bounding the error representation a(z — ya,u — u,) by a sum
of local computable quantities. To specify this, let A denote then a current
triangulation of the domain 2. Such estimates have then the form

la(z = ya,u—ua)|l S > wr(ya) rr(ua), (2.11)
TeA

where the rp(ua) are local residuals of the approximate solution u, and the
wr(ya) are weights computed in terms of the dual solution. For the simple
case a(v,w) = [,(Vy)T Vwdz, they look like

1 _ ou
rr(ua) = 1 + Aualliyer + 5hr [aﬂ (2.12)
LR NIFNEN)
The weights or stability factors are of the form
wr(ya) = 2 = yalleaery + by M1z = yall oo, (2.13)

see, e.g., [7, 19].
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Note that, while the rr(u4) are computable, the weights wr(y4) depend
on the unknown dual solution z. One can argue that, in practical applications
it suffices to know only the “trend” of these weights to see the influence of
the local residual r7(u,) and, consequently, of the local error caused by wu .
There are several ways of obtaining approximations to these weights:

(i) One can compute an approximate solution z of z on some finer mesh
than the one used for the primal solution and substitute z for z.

(ii) Ome can compute a higher order Galerkin approzimation as a substitute
for z in (2.13).

(iii) Instead of computing the difference z —y,4, one determines a higher order
Galerkin approximation Z to z, computes its second order derivatives and
replaces wr(y4) by some constant multiple of h#||Z]| gr2(7).

(iv) A lower order Galerkin approximation is postprocessed to provide second
order approximations that can then be used as in (iii).

In simple cases, all these strategies are expected to work fine. Nevertheless,
even in the simple linear model case, none of them give rigorous bounds for
the actual error resulting from any refinement strategy and from correspond-
ing decisions on how accurately the dual solution needs to be approximated.
The amount of confidence one can put in either of them may vary consid-
erably: Neither is it clear that any fixed mesh refinement or a higher order
approximation is sufficiently closer to the true solution to provide a reliable
trend (in particular, near singularities), nor is it clear that the second order
derivatives behave as those of the true dual solution (again, especially, when
singularities interfere).

Thus, already at a rather basic level, one faces the essential question as
to how accurately should the dual solution be computed and how localized
the distribution of degrees of freedom can be chosen without loosing essential
information.

The subsequent discussion attempts to shed some further light on these
issues exploiting some concepts that have been developed in connection with
adaptive wavelet schemes, see, e.g., [7, 8, 9].

2.3 Wavelet coordinates

Let W := {¢» : A€ I'} CV be a wavelet basis for V. By this we mean that
every v € V has a unique expansion v = ), _; va¥x with coefficient array
v = (vx)aer such that for fixed constants ¢y, Cy one has

co|[vll < lvllv < Collvl, (2.14)

where [|[v[? := > .y [val* = v!'v denotes the fo-norm. Only when the /-
norm with respect to a specific subset A C II is meant we write for clarity
||VH§2(A) = > yex [val®. Recall that, by a simple duality argument (see, e.g.,
[13]), one has
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Cy 1{n, 0)]| < lwllv: < et [{gnw)]l, we V" (2.15)

For typical constructions of wavelet bases that are suitable, e.g., for V =
H}(02), we refer to [5, 6, 15, 16, 11, 17]. Here it suffices to add a few remarks
on the structure of the index set II. Each index A comprises information on
the scale, denoted by |A|, and on the spatial location of the associated basis
function k(A). There is usually a finite number of “scaling function type”
basis functions on some coarsest level of resolution jy. This subset will be
denoted by [ 4. All remaining indices refer to “true” wavelets gathered in .
These wavelets are always of compact support whose diameter scale like 271
Moreover, these true wavelets have cancellation properties of some specified
order m usually derived from a corresponding order of vanishing moments
(¢x,P) =0 for all A € I, and any polynomial P of total order at most m.
Furthermore, it follows from (2.14) that the wavelets are normalized such that
[l ~ 1.

Testing (12) by v = ¥, A € I, we obtain an equivalent formulation in
wavelet coordinates

Au=f, (2.16)

where

A= (a(%Z)A,wV))A’UeE (217)

is the wavelet representation of the operator A : V' — V' induced by a(v, w) =
(v, Aw) for all v,w € V. Likewise the dual problem (2.8) is equivalent to

ATz =17, (2.18)

where J := ((¢, E)) Combining (2.14), (2.15) with (2.1) yields

Nen”
cyeallvll < |AV] < CECallvll, v € b, (2.19)

i.e., the wavelet representation is well conditioned in the Euclidean metric /5,
see e.g. [9].

For any subset A C I welet W, := {¢» : A € I'} C V be the corresponding
subset of wavelets and denote by Vj the closure in V of the linear span of
¥,. We continue denoting by u, the Galerkin solution, now with respect to
the subspace V4, and by u, the corresponding array of wavelet coefficients
supported in A.

Note that for any w = Y,y way =: wly

J(w) =Y wrJ(¥x) = I"w. (2.20)

Aeln

Thus, abbreviating e := u—uy, e4 := (u—u,)? ¥, the representation (2.9)
then takes on the form

J(u)=I(us) = ITes = (z—ya)" (f—Aun) = (AT (z—ya))" (u—un), (2:21)
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where y 4 is any vector supported in A and the primal residual is given by
ra(u) ;== f — Auy = Aey. (2.22)

It is important to note here that (2.22) is the true residual for the infinite
dimensional operator A.
We shall frequently exploit that, by definition, one has

ra(u)|a =0. (2.23)
Moreover, it immediately follows from (2.19) that
cacylu—uyll < [[ra(u)l] < CaCillu - uall. (2.24)

Hence, approximations in V' and V' on the function side reduce to approxi-
mation in ¢y for the primal and dual wavelet coefficient arrays.

Of course, the problem that the representation (2.21) involves the un-
known dual solution remains the same as in conventional discretization set-
tings. However, while the terms in (2.11) reflect primarily spatial localization,
the summands in (2.21) convey spatial and frequency information in terms of
(dual) wavelet coefficients (of the residual) and of the error. We shall explore
next whether this can be exploited for a reliable error estimation.

3 Adaptive error estimation

Our objective is to develop a-posteriori refinement strategies that aim at com-
puting J(u) within some error tolerance at possibly low computational cost.
This amounts to a DWR method in wavelet coordinates. (2.20) suggests to
take (the computable quantity)

J(UA) :J(uA) = ZJTUA (3.25)
A€EA

as an approximate value of the target functional, where A is a suitable finite
index set. Concerning the incurred error, since, by (2.23), one hasr4(u)|4 =0,
we infer from (2.21)

Iey= Y zn(ra(u)). (3.26)

AEM\A

As a natural heuristics this suggests an analog to option (i) in the Finite
Element context, namely, to select some larger index set A> Aand replace z
in (3.26) by the Galerkin solution z ; in V;. But again the question remains,
how large has A to be chosen in order to provide a reliable estimate. The
following simple observations suggest how to deal with this question. By (2.21)
we have
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137 (u — )| < \ 3 ZAA,ATA,A(u)\ + 3 1oz ) ran @l (3:27)
A€A5\A A\ A
The first part is a finite sum that is computable through the primal residual
on a finite set and the computed z ;. The second part can be estimated as
follows:

awnl<| X sraa|+ it el eatll,

Aed\A
(3.28)
Specifically, p = p’ = 1/2 yields
Il <] Y 2 raa)| -zl ral. (3.29)

Aed\4

Thus, due to the norm equivalences (2.24), (2.15), (2.14) the second term on
the right hand side is the product of the primal and dual energy norm error.
Thus, whenever the dual solution is approximated in the energy norm and
the growth of A depends on the energy norm approximation of z the target
value is approximated with increasing accuracy even though the global primal
residual does not tend to zero at all in /5. It may tend to zero in some weaker
norm which, according to (3.28), could give a better estimate.

Led by the above considerations, we formulate now in precise terms an
algorithm which, for any given target accuracy e, computes J(u4) = J7 (u,)
such that |J(e4)| = |[JT(e)| < e. A central ingredient is the adaptive wavelet
scheme from [9] that will be formulated next. The resulting well-posedness in
U5 (2.19) allows one to contrive an (idealized) iteration

ut =u" —B(Au" - f), n=0,1,2,..., (3.30)

where B is (a possibly stage dependent) preconditioner, such that for some
p<l1

[u—u"" < pllu—u||, neNy, (3.31)
see [8, 9] for various examples covering also noncoercive problems.

The idea is now to mimic (3) numerically by evaluating the weighted resid-
ual B(Au" — f) within a stage dependent dynamical accuracy tolerance. This,
in turn, hinges on the adaptive evaluation of the involved (at this stage still
infinite dimensional) operators when applied to a finitely supported array. We
refer to [9, 10, 2] for the precise description of such evaluation schemes for a
range of (linear and nonlinear) operators. Therefore we may assume at this
point to have a routine of the following form at hand:

REes[n, B, A, f,v] — r, COMPUTES FOR ANY FINITELY SUPPORTED INPUT V
AND ANY POSITIVE TOLERANCE 7) AN APPROXIMATE FINITELY SUPPORTED
RESIDUAL r, SUCH THAT

IB(Av — f) —r,|| <. (3.32)
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We further need the routine
COARSE[H,V] — Wy DETERMINES FOR ANY FINITELY SUPPORTED INPUT Vv
AN OUTPUT w,, WITH POSSIBLY SMALL SUPPORT SUCH THAT STILL

[V = wyll <n. (3.33)

Following [9] the announced adaptive solution scheme can now be de-
scribed as follows.

SowE[e, A, f,u’] — (U.,A.) COMPUTES FOR ANY GIVEN TARGET ACCU-
RACY ¢ > 0 AND ANY INITIAL GUESS U, SATISFYING |u — @’| < 4, AN
APPROXIMATION U, TO (12), SUPPORTED IN SOME FINITE (TREE LIKE) IN-
DEX SET /A., SUCH THAT

lu—u.| <e, (3.34)

ACCORDING TO THE FOLLOWING STEPS:

(1) CHOOSE SOME C* > 1, p € (0,1). SET ¢g := § ACCORDING TO THE
ABOVE INITIALIZATION, AND j = 0;

(11) IF ; < & STOP AND OUTPUT U, := @/; ELSE SET v?:=1u/ AND k=0
(1.1) SET 7y, := wgple; AND COMPUTE

r* = RES [, B, A, f,vF], vFTl=vFk_rF

(11.2) IF
B + I*]) < e5/(2(1 +C)), (3.35)

SET Vv := vF AND GO TO (111). ELSE SET k+1 — k AND GO TO (11.1).
(III)COARSE[%7V] —wtt e =¢;/2, j+1—j, co TO (1I).

Step (ii) is a block of perturbed iterations of the form (3). As soon as
the approximate residual is small enough, the iteration is interrupted by a
coarsening step. The constant § in step (ii.2) depends on the constants in
(2.19). It can be shown that the number of perturbed iterations between two
coarsening steps remains uniformly bounded. Things are arranged such that
after an iteration block and a coarsening step the error in the energy norm is at
least halved. Thus, under the above conditions the scheme SOLVE terminates
always after finitely many steps. Moreover, its computational complexity is in
some sense asymptotically optimal in that the number of adaptively generated
degrees of freedom and the respective computational work grow at the rate
of the best N-term approximation, see [9]. For more general problem classes,
the coarsening step ensures optimal complexity rates. It has recently been
shown in [20], however, that coarsening can be avoided for the current class
of problems.

We shall use (variants of) this algorithm as ingredients in the present
weighted dual residual scheme. The routine RES is based on the following
ingredients. Suppose for simplicity that f is a finitely supported array, possibly
as a result of a preprocessing step. In addition, one needs an approximate
application of A:
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APPLY[n,A,v] — W COMPUTES FOR ANY FINITELY SUPPORTED INPUT Vv
AND ANY TOLERANCE 7) > 0 A FINITELY SUPPORTED OUTPUT W SUCH THAT

lAvV — wl| <. (3.36)

Realizations of such a routine satisfying all requirements that render
SOLVE having optimal complexity can be found in [1]. For the current type of
elliptic problems we can, in principle, choose the preconditioner B = ol as a
stage independent damped identity which gives rise to a Richardson iteration.
In this case the residual approximation scheme takes the form

RES[n, A, f,v] := a (APPLY [/2a, A, v] — COARSE [1/2¢, f]) . (3.37)

The quantitative performance of this choice is usually rather poor and we refer
to [18] for more efficient versions that are actually used in our experiments
here as well.

Since SOLVE produces energy norm approximants, a few preparatory com-
ments on its use in the present context are in order. Let again A C II be any
(possibly infinite) subset of I. For any two such subsets A, A" let

AA,A/ = (a(i/fm l/}l/)) AeAveN

be the section of A determined by A and A’. For simplicity we set Ay := A4 4.
Clearly, (2.4) is then equivalent to

Aqug=f,i=fla (3.38)

Of course, (2.19) remains valid when replacing ¢5 by ¢5(A) and A by A,
uniformly in A. Solving the original problem in V4 can therefore be done
by running the scheme SOLVE while restricting all arrays to A. An adaptive
application of the operator A in this constrained setting can be thought of
for the moment as employing the usual (unconstrained) scheme to the con-
strained input and cutting the result back to A. (There may be even better
ways taking the special circumstances into account but this satisfies all the
properties needed in [9] to establish corresponding error and complexity esti-
mates for the restricted case.) We identify this version of SOLVE by writing
SovEA[n, A, f,1°] (and accordingly RESA[n, A, f,v]). As before, the sub-
script A is omitted when A = I. All arrays generated by this scheme are then
by definition supported in A.

It will be important to distinguish between the residual a(A, v — f,) in
£5(A) which is approximated by RESA[n, A, f, v] and the full residual Av — f
which appears in (2.21). The latter one reflects the global deviation of v from
the exact solution u. In fact, for the exact solution u, of the restricted problem
(3.38) one has Auy = Ay suy and therefore

ra(u) =Agus—f = ( Asua=Ja ) = ( 0 );

Apaaua— Fpa Apaaua— Fa
(3.39)
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reflecting the pollution caused by the restricted wavelet coordinate domain.
A more careful analysis of this aspect will be given in a forthcoming paper.
We have collected now the main ingredients for the following scheme:

ALGORITHM I[¢, A, J, f] — J COMPUTES FOR ANY TARGET ACCURACY ¢ > 0
A VALUE J SUCH THAT -
|J = J(u)| <e, (3.40)
WHERE % IS THE SOLUTION TO (12), AS FOLLOWS:
(1) FIX PARAMETERS ¢y, ¢z, ¢, € (0,1), mg > 2 AND SET j = 0, §, :=
cIEN, 62 = c;|I|| AND CHOOSE &g := min {6,,/2,6,/2}.
APPLY SOLVE [gg, A, f,0] — (u®, Ag);
ApPLY SOLVE [, AT, J, 0] — (Zo,fo);
SET /10 = /io U To. , R
(11) APPLY SOLVE[c,¢;, AT, J,77] — (2, A;);
APPLY SOLVEy, [cuej, A, f, W] — Uy,;
APPLY RES[c ¢4, A, f,TU]lm\a, — 13

SET W := 2;

i\A, AND COMPUTE

€j = ‘ Z @Am‘. (3.41)
AEA;\ A,
IrF
e+ (Cacut e ¥ 50 | Hez) belrl} <c (342)
STOP AND ACCEPT
J =30y, =) ta,na (3.43)
AGA]‘

AS TARGET VALUE.

OTHERWISE

(11) SET
— 41 — i+1 A n . .
Wt =1, 7 =25, A= A;UAp gj01 =¢5/mo, G+1—

(3.44)
AND GO TO (1I).

A few comments on this scheme are in order. Step (i) should be viewed as
an initialization where ¢ is a crude initial tolerance whose square is typically
still larger than the target accuracy e. The initial approximate solutions for
the primal and dual problem are energy norm approximations. Because of the
crude target accuracy, one expects that the degrees of freedom generated in
Ay are necessary anyway.
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Note that the approximations u,; are then generated through the re-
stricted scheme SOLVE 4, while the corresponding residual approximations are
unrestricted. Moreover, the application of SOLVE for the dual problem in step
(ii) is unconstrained. We have explained the rationale of this step above. It
essentially enforces the approximation of z in the norm but is expected to
draw in only the relevant degrees of freedom concentrated near the support
of J. It presumably requires only a few iterations with the initial guess z,;,
which already is a good norm approximation for a somewhat larger tolerance.

In summary, in the above version the primal problem is always solved in
a constrained subspace determined by the morm approzimation of the dual
solution.

Theorem 1. For any target accuracy € > 0 the above scheme terminates after
a finite number of steps and outputs a result J satisfying |J(u) — J| < e.

Proof: First note that at the jth stage we have, according to (3.26),

J(eAj):z ry,( Z WAT ) + Z wx(ra; a(u) —7ry)

Aed;\4, Aed;\4,
+ Z (zx — Wx)ry + Z (2a — wWa) (14,2 (1) —7y)
AEI\A; AET\A;

- (V~V|/ij\Aj)Tr T (VT’\Aj\Aj)T(rAJ (u) —r)
+((Z - "’VV)|H\AJ‘)TI' + ((Z — VT/')|1\A].>T(I‘AJ_ (u) —r),
so that

[T (eap)l < e+ 1]\, Il e, (@) = xll + 11 (2 = ) v, | il
+[(z = W) [ma, || e = v, (- (3.45)

We collect now several auxiliary estimates for the various terms in (1). By
definition of w we have

1z = %)l || < llz - W] < e (3.46)

As for the exact residual of the exact Galerkin solution u,;, we have, on
account of (3.38), the very rough estimate

leaC)ll < I£1+ [1Awal = [ 1]+ [AALf Al (3.47)

Alternatively, because the exact Galerkin solution u, is a best approximation
to u from ¢5(A) in the norm |[||v[||* := vT Av, one could argue that

lra(u)]] < CYPIAY2(u —uy)|| < CY?[|AY2(u - @%)|| < Caco,  (3.48)
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which would allow us to use the initial norm approximation to u in step (1)
of ALGORITHM I to influence the constant.

Moreover, the approximate residual r deviates from the exact one for the
exact Galerkin solution uy; by

[ra; () —xfl < [[A(ug, =gl + AT, — f — 1]
< A(ug, —ug,)|| +erej < (Cacy +cr)ej. (3.49)

Inserting (3.46) and (3) into (1), yields
[J(ea;)] < €5+ ||€V|Aj\Aj [(Cacu+cr)ej +czg; (HI'H +(Cacy +CT)€j)a (3.50)

which is the computable error bound (3.42). Thus the termination criterion
ensures that the asserted target tolerance is met.

In order to prove convergence it remains to estimate the terms | w| AnA, II,
lr|| and e;. Clearly

Wi, < 12 = %) [ma, |+ N2l 4,0,
< csgjt |z — 21| < calej+e5-1)
= Cz(l +m0)€j. (351)

Furthermore, by (3.47) and (3),
x| < [lr —ra, (u)]| + [[ra, ()] < (Cacy + cr)ej + Caco. (3.52)
Finally, by (3.51) and (3.52), we obtain
ej < ||V~V|/ij\/1j Hirll < e.(1+ mo)ej((CAcu +ec)ej + C’Aao), (3.53)
which also tends to zero as j grows. This finishes the proof. [

To prepare for the numerical experiments in the subsequent section, we
address next several further issues concerning the scheme ALGORITHM I.
We have not specified yet the choice of the parameters ¢, c,, ¢,.. Of course,
the smaller these parameters are chosen, the more will the computed error
terms e; dominate the true error. It is also clear that one should take c, < c,.
The numerical experiments in the subsequent section will shed some more
light on the quantitative behavior of ALGORITHM I regarding this point.
Concerning the progressive improvement of accuracy, let

ej(wW,r) = ej + e (Cacu + )W\, I + ez85) +ealirlly, (3.54)
i\

see step (ii) in ALGORITHM I. An alternative choice of the tolerances ¢; might
be

1 ~
€j+1 = — min {gjaéj(war)}v (3.55)
mo
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in order to exploit the fact that the error decay is superlinear. In fact, in view
of (3.50) and (3.51), the estimate (3.42) says that

[T (ea;)] < cej(llell +&5)-

Thus, up to the approximate residual ||r||, the error decay is quadratic in the
refinement tolerances ¢;. If instead of using the constraint scheme SOLVE,; for
the primal problem in step (ii) of ALGORITHM I, one applies the unconstraint
SOLVE also to the primal problem, the term |/r| would decay like ¢; as well.
In this case, an overall quadratic error decay would result which is the point
of view taken in [22]. In fact, during the final stage of this work, we became
aware of recent results by M. S. Mommer and R. P. Stevenson [22] who derive
convergence rates for a goal oriented scheme in the Finite Element framework.
There, however, they combine adaptive energy norm approximations to the
primal and dual solution to arrive at concrete rates. Of course, this may
increase the number of degrees of freedom required for the primal solution
even in regions where they may only weakly contribute to the accuracy of
the target functional. We shall address this issue in the experiments in the
subsequent section.

Even though in the present scheme the primal problem is solved only in
a constrained way, one expects that the third term on the right hand side of
(1) is too crude an estimate. In fact, as shown in later experiments, ||r| may
not tend to zero at all but r may be “locally” small where z has its most
significant terms and large contributions may be damped by negligible com-
ponents of z. Therefore, the Cauchy Schwarz inequality produces a significant
overestimation. Better estimates would require some a-priori knowledge about
the decay of the coefficients in the dual solution z which will be discussed in
a forthcoming paper.

As another practical variant, one could tame the increase of degrees of
freedom by modifying step (ii) in ALGORITHM I as follows. When (3.42) is
not satisfied, for gy := |Wara|, A € A;\ A;, let g := (QA)Ae/ij\Aj and determine

the smallest subset I' C /ij \ 4; such that

1
lelrlescry > =gl (i a0 (3.56)

In the subsequent step (iii), one would then set

l_lj—"_1 : Zj+1 = ij, Aj+1 = AjUF, 8j+1:5j/m0, j—‘y—l—)],
(3.57)
and go to (ii). This may be viewed as a coarsening based on the error rep-
resentation. To ensure convergence, one could add in (3.57), in addition, the
support of a norm approximation to z with respect to the coarser tolerance
c.ej, ¢, > c¢,. The reasoning remains then the same while the constants change

somewhat.

:ﬁAja
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As for the computational complexity of any of these versions, most of the
applications of SOLVE are actually just tightenings of already good initial
guesses where the current accuracy is improved only by a constant factor. So
the corresponding computational work remains, in principle, proportional to
the current number of degrees of freedom.

4 Numerical experiments

We complement next the above findings by some first numerical experiments
that are to shed some light on the quantitative behavior of the various error
components.

Our test case is the Poisson equation on the L-shaped domain {2 =
(—=1,1)2\((=1,0] x [0,1)) so that

a(u,v):/Q(Vu)TVvdz (4.58)

and V = H(£2) in (12). This problem is interesting since the solution may
exhibit a singularity caused by the shape of the domain even for smooth right
hand sides, see, e.g., [21]. Thus, we can monitor the quantitative influence of
such a singularity on the growth of the sets A;. For the discretization, we use
a globally continuous and piecewise linear wavelet basis.

The linear functional in our experiments is given by

1
J(u) = O] /QM u(z)dx (4.59)

with
Qps={r €R?: |jv— 2|00 <6} C 2.

We choose v = (0.5,0.5)7 and § = 0.1. The right hand side is scaled such
that J(u) ~ 1. Hence J(e4) is close to the relative error |J(ea)|/|J(u)|. Using
approximations to u of very high accuracy, we use the resulting value of J for
the validation of the results.

In the experiments below, e; is defined as before by (3.41) while the second
summand on the right hand side of (3.42) is denoted by f;, so that e; + f; is
the computed error bound at the jth stage of ALGORITHM I.

4.1 Example 1: Smooth right hand side

In the first example, we choose f := 10 so that the solution u of (12) exhibits
only a singularity at the reentrant corner.

Table 1 shows that the “true” error J(es) decays at least as fast as the
parameter €;. The component e; is much smaller than the true error and the
computed error bound e; + f; exceeds the true error only by a factor around 2.
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Table 1. Convergence history of ALGORITHM I in Example 1.

’ e e+ fil e | fi ] Jea) |
2.07e+00(8.11e-01|3.10e-01{5.00e-01|1.02e+00
1.03e+00(8.91e-01(5.77e-01|3.14e-01| 7.47e-01
5.17e-01|3.82e-01|2.20e-01|1.61e-01| 2.55e-01
2.58e-01{1.21e-01|3.98e-028.08e-02| 1.32e-01
1.29e-013.45e-02{3.72e-03|3.07e-02| 4.21e-02
6.46e-02{2.03e-02|5.05e-03(1.53e-02| 2.35e-02
3.23e-02{9.03e-03|1.70e-03|7.34e-03| 7.30e-03
1.61e-02|4.24e-03[6.84e-04|3.56e-03| 3.63e-03
8.07e-03]1.93e-03|2.24e-04|1.71e-03| 8.77e-04

© 0 ~J O U i W N .

This is illustrated in Figure 3 which displays the computed dual error and the
computed primal residual. While the dual energy norm error is halved within
each iteration, the primal residual shows very poor convergence in accordance
with the spirit of the scheme. As mentioned earlier, the slight overestimation
is probably due to the crude estimate in the third term of the right hand side
of (1). This is substantiated by Figure 1 which depicts the computed primal
and dual solution uy,; and z,, for j = 1,...,5. The strong concentration of
the generalized Green’s function around the support of J indicates that the
primal residual, being large far away from the support of J, would hardly
influence accuracy.

Moreover, the actual behavior of the primal approximate solutions is il-
lustrated in Figures 2 and 4. With each wavelet 15, we associate a reference
point xy € R? which is located in the ‘center’ of its support. Locations where
wavelets on many scales overlap therefore appear darker. Therefore, plotting
the reference points (kx)xea gives an impression of the distribution of active
indices in u = )., @x. Specifically, in Figure 2 the distribution of the el-
ements of Ag is displayed. As expected, most wavelets are located near the
support of J and near the reentrant corner.

To see where the largest coefficients of the primal residual r are located,
we plot the reference points of the largest (in modulus) 5% of the coefficients
rx. The result is displayed in Figure 4. It can be seen that, near the support of
J, the residual is small, reflecting a ‘local’ (in the wavelet coordinate domain)
convergence behavior of Gy .
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Fig. 1. Computed primal and dual solution in Example 1.
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Supp(u_9)

Fig. 2. Set of active coefficients Ay used to evaluate J(u4) in Example 1.

Comparison primal residual vs. dual error
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dual error -x--

E
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Iteration

Fig. 3. Convergence of primal residual and dual solution in Example 1.
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Fig. 4. Largest (in modulus) 5% of coefficients appearing in the primal residual
vector in Example 1.
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4.2 Example 2: Singular Right Hand Side

Next we wish to test the influence of a strong singularity of the primal solution
u located far away from the support of J. This is realized by constructing a
corresponding right hand side as follows. All (dual) wavelet coefficients of f are
set equal to zero except the ones that overlap a fixed given point in the domain.
These coefficients are chosen as (¢, f) := 1/(J]A| + 1). Since on each dyadic
level only a uniformly bounded finite number of indices contributes and since
the sequence ((¥y, f))rer therefore belongs to s, the resulting functional f
is not contained in L (£2), but certainly in H~1(£2). We finally add to f the
constant function from Example 1. We expect that the singularity of the right
hand side causes a strong concentration of relevant coefficients in the solution
u that are spatially close to the singularity of f and comprise a wide range of
relevant scales.

As we see from Table 2, the overestimation of the true error is slightly
stronger than in Example 1. The reason is that, according to Figure 5, the
primal residual is in this case larger (away from the support of J) due to the
unresolved singularity caused by the right hand side f, so that the third term
on the right hand side of (1) is overly pessimistic.

Table 3 sheds some more light on the local behavior of the primal residual.
It shows that in the lower left patch where the singularity of f is located it

Table 2. Convergence history of ALGORITHM I in Example 2.

Ul & Te+hi] e [ Fi [ Jlea) [#4]]
1.03e+00{1.31e+00(5.77e-01|7.33e-01|7.5092¢-01| 16
5.17e-01| 5.85e-01|2.20e-01{3.65e-01|2.5913e-01| 53
2.58e-01| 2.27e-01|4.47e-02{1.82e-01]|1.3628e-01| 139
1.29¢-01] 9.21e-02(3.72e-03|8.84e-02(5.7297e-02| 279
6.46e-02| 4.90e-02(4.87e-03|4.41e-02(2.7194e-02| 570
3.23e-02| 2.37e-02]1.68e-03|2.20e-02(6.8861e-03|1752
1.61e-02| 1.17e-02|6.95e-04(1.10e-02{2.7267e-03|5726

—

~N O UL W N

Fig. 5. Largest (in modulus) 5% of coefficients appearing in the primal residual
vector and index set Ajo generated in Example 2.
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Table 3. Convergence of dual error, primal residual, primal residual restricted to
upper right patch P1 and lower left patch P3 in Example 2.

LI T Tl Tleledll T Tixlesl ]
116.92e-01(5.35e+00(8.60e-01|5.23e+00
212.23e-015.37e+00|6.80e-01|5.23e+00
311.02e-01(5.40e+00(3.22¢e-01|5.29e+00
415.37e-025.20e+001(3.23e-01{5.19e¢+00
5
6
7
8

3.30e-025.20e+00|2.85e-01|5.18e+-00
1.63e-02|5.19e¢+4-00|1.94e-01|5.18e+00
8.46€-03]5.19e+00{1.13e-01|5.18e+-00
4.34e-03|5.18e+005.66e-02|5.17e+4-00

Error vs. #Delta_j
0

05+

b

-15 |

log10(J(e_j)

2 slope = -0.99
-25

3t

35 L L L L L L
1 15 2 25 3 35 4 45

log10(#Delta_j)

Fig. 6. Error J(ea) vs. number of degrees of freedom in Example 2.

does not converge to zero at all which, however, does not appear to affect the
accuracy in a strong way.

The complexity of the scheme is indicated in Figure 6 which shows that
the true error actually decays like N~!, where N is the size of the index set
needed to compute the approximate target value. Note that the rate for the
energy norm error would be N=1/2 at best.
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Summary. We first review our recent results concerning optimal algorithms for
the solution of bound and/or equality constrained quadratic programming prob-
lems. The unique feature of these algorithms is the rate of convergence in terms of
bounds on the spectrum of the Hessian of the cost function. Then we combine these
estimates with some results on the FETI method (FETI-DP, FETI and Total FETTI)
to get the convergence bounds that guarantee the scalability of the algorithms. i.e.
asymptotically linear complexity and the time of solution inverse proportional to
the number of processors. The results are confirmed by numerical experiments.

1 Introduction

One of the most impressive results in numerical analysis of the twentieth
century was discovery that the systems of linear equations arising from the
discretization of an elliptic partial differential equation may be solved by the
multigrid or domain decomposition methods with asymptotically linear com-
plexity. In this paper, we show how to extend these results to get scalable
algorithms for variational inequalities. Our basic tool is the FETI method,
which was proposed by Farhat and Roux [28] for parallel solution of problems
described by elliptic partial differential equations. Its key ingredient is the de-
composition of the spatial domain into non-overlapping subdomains that are
7glued” by Lagrange multipliers, so that, after eliminating the primal vari-
ables, the original problem is reduced to a small, relatively well conditioned,
typically equality constrained quadratic programming problem that is solved
iteratively. Observing that the equality constraints may be used to define so
called ”"natural coarse grid”, Farhat, Mandel and Roux [27] modified the basic
FETI algorithm so that they were able to prove its numerical scalability. A
similar results were achieved by the Dual-Primal FETI method (FETI-DP)
introduced by Farhat et al. [26]; see also [32].

If the FETI procedure is applied to the contact problems, the resulting
quadratic programming problem has not only the equality constraints, but
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also the non-negativity constraints. Even though the latter is a considerable
complication as compared with the linear problem, the resulting problem is
still easier to solve than the contact problem in displacements as it is smaller,
better conditioned having constraints with simpler structure. Promising ex-
perimental results by Dureisseix and Farhat [24] support this claim and even
indicate numerical scalability of their metod. Similar results were achieved
also with the FETI-DP method by Avery, Rebel, Lesoinne and Farhat [1]. A
different approach based on the augmented Lagrangian method was used by
Dostal, Friedlander, Gomes and Santos [12, 13].

In this paper we review our recent improvements that resulted in develop-
ment of theoretically supported scalable algorithms for variational inequalities
that combine various FETT based domain decomposition methods with our
optimal quadratic programming algorithms [6, 23, 7]. We present optimal al-
gorithms based on scalable variant of FETI [27] or on its easier implementable
variant called TFETI [19], on FETI-DP [26] and on optimal dual penalty [17].
Let us point out that the effort to develop scalable solvers for variational in-
equalities was not restricted to FETI. For example, developing ideas of Mandel
[35], Kornhuber, Krause and Wohlmuth [33, 34, 40] gave an experimental ev-
idence of numerical scalability of the algorithm based on monotone multigrid.
Nice results concerning development of scalable algorithms were proved by
Schéberl [37].

We start our exposition by presenting our MPRGP (Modified Propor-
tioning with Reduced Gradient Projection) and SMALBE (Semimonotonic
Augmented Lagrangians for Bound and Equality constrained problems) algo-
rithms with in a sense optimal rates of convergence. Then we present a simple
model problem and the FETI methodology [12] that turns the variational in-
equality into the quadratic programming problem with bound and possibly
equality constraints. Combining these ingredients, we shall get new algorithms
for numerical solution of boundary elliptic variational inequalities. A unique
feature of these algorithms is theoretically guaranteed numerical scalability.
We report results of numerical experiments that are in agreement with the
theory and indicate high parallel and numerical scalability of the algorithm
presented.

2 Bound constrained problems

Let us consider the problem

minimize ¢(x) subject to x € £2p (1)
with ¢(x) = 3x7Ax —b”x, A a symmetric positive definite matrix, b € IR",
2p = {x:x> £} and £ € IR". The unique solution X of (1) is fully determined
by the Karush-Kuhn-Tucker optimality conditions [3] so that fori=1,...,n,

T; = ¢; implies g, > 0 and T; > ¢; implies g, = 0, (2)
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where g = g(x) denotes the gradient of ¢ defined by
g = g(x) = Ax — b. (3)

The conditions (2) can be described alternatively by the free gradient ¢ and
the chopped gradient 3 that are defined by

vi(x) = gi(x) for x; > £;, ;(x) =0 for x; = ¢;,

Bi(x) = 0 for x; > 4;, Bi(x) = g; (x) for z; = 4;,

where we have used the notation g;. = min{g;, 0}. Thus the conditions (2) are
satisfied iff the projected gradient g¥(x) = ¢(x) + B(x) is equal to the zero.
The algorithm for the solution of (1) that we describe here exploits a given
constant I' > 0, a test to decide about leaving the face and three types of steps
to generate a sequence of the iterates {x*} that approximate the solution of
(1). The ezpansion step may expand the current active set and is defined by

R ()

x
with the fixed steplength @ € (0, ||A|| 7] and the reduced free gradient @(x)
with the entries @; = @;(x) = min{(z; — £;)/a, ¢; }. If the inequality

I1B(x)I* < @ (x") T (x") ()

holds then we call the iterate x* strictly proportional. The test (5) is used to
decide which component of the projected gradient g (x*) will be reduced in
the next step. The proportioning step may remove indices from the active set
and is defined by

= 5 0, B(x) (6)

with the steplength ., that minimizes ¢ (x’c - a,@(xk)). It is easy to check
[3] that cg that minimizes ¢(x — ad) for a given d and x may be evaluated
by the formula

d'g(x)
Qg = Qeg(d) = ITAd (7)
The conjugate gradient step is defined by
xFt = xF — acgpk (8)

where p* is the conjugate gradient direction [3] which is constructed recur-
rently. The recurrence starts (or restarts) from p® = ¢(x°) whenever x° is
generated by the expansion or proportioning step. If p* is known, then p*+!
is given [3] by

QO(Xk'H)T/-\pk
(P)TAPF

P = p(x") —p*, 4 =

9)
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Algorithm 1. Modified proportioning with reduced gradient projec-
tions (MPRGP).

Let x° € 2, @ € (0,||A||7!], and I > 0 be given. For k > 0 and x* known,
choose x**1 by the following rules:

Step 1. If g (x*) = o, set xk*+1 = xF.

Step 2. If x* is strictly proportional and g” (x*) # o, try to generate x**! by
the conjugate gradient step. If x**1 € (2, then accept it, else use the expan-
sion step.

Step 3. If x* is not strictly proportional, define x*+1

by proportioning.

Algorithm 1 has been proved to enjoy the R-linear rate of convergence in
terms of the spectral condition number [23].

To formulate the optimality results, let 7 denote any set of indices and
assume that for any ¢ € 7 there is defined the problem

minimize ¢(x) s.t. x € 24 (10)

with 24 = {x € R™ : x > £}, q(x) = $x'A;x — b/ x, A, € R""™ sym-
metric positive definite, and by, x, £; € IR™t. Our optimality result then reads
as follows.

Theorem 1. Let the Hessian matrices Ay = V2q; of (10) satisfy
0< Amin S )\min(At) S Amax(At) S Gmax

let {xF} be generated by Algorithm 1 for (10) with a given x9 € 024, @ €
(0,a,L.], and let I' > 0. Let there be a constant ay, such that ||x?|| < ap||by||

? max

foranyteT.
(i) If € > 0 is given, then the approzimate solution X; of (10) which satisfies

It — el < e[|

may be obtained at O(1) matriz-vector multiplications by As.
(ii) If € > 0 is given, then the approzimate solution x¥ of (10) which satisfies

gt (x£)I| < ellbe]
may be obtained at O(1) matriz-vector multiplications by As.
Proof. See [23]. n

Numerical experiments and implementation details may be found in [23].

3 Bound and equality constrained problems

We shall now be concerned with the problem of finding the minimizer of
the strictly convex quadratic function g(x) subject to the bound and linear
equality constraints, that is



66 Zdenék Dostdl, David Hordk and Dan Stefanica

minimize ¢(x) subject to x € 2pp (11)

with 2pp = {x € R" : x > £ and Cx = o} and C € IR™*". We do not
require that C is a full row rank matrix, but we shall assume that 2gg is not
empty. Let us point out that confining ourselves to the homogeneous equality
constraints does not mean any loss of generality, as we can use a simple trans-
form to reduce any non-homogeneous equality constraints to our case. The
algorithm that we describe here combines in a natural way the augmented
Lagrangians and MPRGP described above. It is related to the earlier work
of Friedlander and Santos with the present author [11]. Let us recall that the
basic scheme that we use was proposed by Conn, Gould and Toint [4] who
adapted the augmented Lagrangian method to the solution of the problems
with a general cost function subject to general equality constraints and simple
bounds.

Algorithm 2. (Semi-monotonic augmented Lagrangians for bound
and equality constraints (SMALBE)
Givenn >0, 8>1, M >0, po >0, and u® € R™ ,set k = 0.
Step 1. {Inner iteration with adaptive precision control.}
Find x* such that

g (x*, 1*, pp) || < min{ M ||Cx*[|, n}. (12)
Step 2. {Update p.}
pFtt = k4 g CxR (13)
Step 8. {Update p provided the increase of the Lagrangian is not sufficient.}
If £k >0 and
L, b, p%) < Dt ) + B O (14)
then
Pk+1 = 5/)167 (15)
else
Pr+1 = Pk- (16)

Step 4. Set k =k + 1 and return to Step 1.
In (12), we use the augmented Lagrangian defined by
k
Lix, 1,p) = qlx) + " Cx + B2 (17)

Algorithm 2 has been shown to be well defined [11], that is, any convergent
algorithm for the solution of the auxiliary problem required in Step 1 which
guarantees convergence of the projected gradient to zero will generate either
x* that satisfies (12) in a finite number of steps or a sequence of approxima-
tions that converges to the solution of (11). To present explicitly the optimality
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of Algorithm 2 with Step 1 implemented by Algorithm 1, let 7 denote any
set of indices and let for any ¢ € 7 be defined the problem

minimize ¢ (x) s.t. x € 24, (18)

with 2L, = {x € R" : Gix =0 and x > &}, q:(x) = %XTAtX - b/ x,
A; € IR™*™ symmetric positive definite, C; € IR™*™*, and by, £; € IR™.
Our optimality result reads as follows.

Theorem 2. Let {xF}, {uF} and {p,x} be generated by Algorithm 2 for (18)
with ||by]| > m >0, 8>1, M >0, pro =po >0, p) = o. Let Step
1 of Algorithm 2 be implemented by Algorithm 1 (MPRGP) which generates

the iterates xf’o,xf717...7xf’l = xF for the solution of (18) starting from
xf’o = x""1 with x;' = o, where | = I, is the first index satisfying
k,l k,l
g™ (" i i) | < MI|Cox;| (19)
or
k.l . _
lg” (x¢"", 1 pi) | < elfby | min{1, A3, (20)

Let 0 < Gmin < Gmax and 0 < cmax be given and let the class of problems (18)
satisfy

Amin < /\min(At) S )\max(At) S Amax and ||Ct|| S Cmax- (21)

Then Algorithm 2 generates an approximate solution xft of any problem (18)
which satisfies

lg” (xi*, 1t o) | < ellbell and [|Cox;* || < el|be] (22)

at O(1) matriz-vector multiplications by the Hessian of the augmented La-
grangian Ly.

Proof. See [7, 8]. n

4 Model problem

To simplify our exposition, we restrict our attention to a simple scalar
variational inequality. The computational domain is 2 = 2! U 22, where
21 =(0,1) x (0,1) and 22 = (1,2) x (0,1), with boundaries I'' and I"?, re-
spectively. We denote by i, I }, and I the fixed, free, and potential contact
parts of I, i = 1,2. We assume that I} has non-zero measure, i.e., Il # 0.
For a coercive model problem, I'2 # (), while for a semicoercive model prob-
lem, I'? = {); see Figure 1. Let H'(£2%),i = 1,2 denote the Sobolev space
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of the first order in the space L?(£2%) of functions on £2¢ whose squares are
integrable in the Lebesgue sense. Let

Vi={v' e H(2"):v'=0 on I}}
denote the closed subspaces of H(£2¢),i = 1,2, and let
V=V'xV? and K= {vv EVU—U>00nF}

denote the closed subspace and the closed convex subset of H = H!(£2') x
H'(§2?), respectively. The relations on the boundaries are in terms of traces.
On 'H we shall define a symmetric bilinear form

Out Ov' Out o'
(u,0) Z/,<8$ax Oy 63/)dhQ

and a linear form )
v) = Z/ fitde,
i=1 /2

where f' € L?(£2%),i = 1,2 are the restrictions of

—1| -3 for (z,y) €(0,1)x[0.75,1),
flz,y) = 0] 0 for (z,y) € (0,1) x [0,0.75) and (z,y) € (1,2) x [0.25,1),
-3|—-1 for (=z,y)€(1,2)x[0,0.25),

for coercive | semicoercive model problem. Thus we can define a problem to
find

1
min ¢(u) = ia(u, u) — £(u) subject to u € K. (23)

The solution of the model problem may be interpreted as the displacement of
two membranes under the traction f. The membranes are fixed as in Fig. 1 and
the left edge of the right membrane is not allowed to penetrate below the right
edge of the left membrane. In the first case, when the Dirichlet conditions are
prescribed on the parts I':,i = 1,2 of the boundaries with a positive measure,
the quadratic form a is coercive which guarantees the existence and uniqueness

Fig. 1. The coercive (left) and semicoercive (right) model problem
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of the solution [31]. In the second case, only the left membrane is fixed on the
outer edge and the right membrane has no prescribed displacement as in Fig.
1 (right), so that

Iy ={0,y) e R?:y (0,1}, I7=0.

Even though a is in this case only semidefinite, the form g is still coercive due
to the choice of f so that it has again the unique solution [31].

5 FETI and total FETI domain decomposition

To enable efficient application of the domain decomposition methods, we can
optionally decompose each £2¢ into square subdomains 2,..., 2% p = s? >
1,7 = 1, 2. The outer subdomains 2% can either inherit the Dirichlet boundary
conditions from I'! as in the original FETI [28], or they can be treated as
floating with the Dirichlet conditions enforced by the Lagrange multipliers.
The latter approach was coined Total FETI (TFETT) [19]. The continuity in
2! and 22 of the global solution assembled from the local solutions u* will be
enforced by the "gluing” conditions v (x) = u**(x) that should be satisfied
for any z in the interface I'** of 2% and 2°%. After modifying appropriately
the definition of problem (23), introducing regular grids in the subdomains
2% that match across the interfaces I'"/"* indexing contiguously the nodes
and entries of corresponding vectors in the subdomains, and using the finite
element discretization, we get the discretized version of problem (23) with the
auxiliary domain decomposition that reads

1
min EuTKu —f'u st. Blu<o and Bfu=o. (24)
In (24), K = diag[Ky, ..., Kg,] denotes a positive semidefinite stiffness matrix,

the full rank matrices B! and B¥ describe the discretized inequality and gluing
conditions, respectively, and f represents the discrete analog of the linear term

£(u). Denoting
I I
A= |:AE:| and B = |:BBE:|7

we can write the Lagrangian associated with problem (30) briefly as
1
L(u,A) = §uT Ku—f'u+A"Bu

It is well known that (24) is equivalent to the saddle point problem

Find (W,A) st. L(W,A) = sup inf L(u, ). (25)

A>o0 U

After eliminating the primal variables u from (25), we shall get the minimiza-
tion problem
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min ©(A) st. Af >0 and RT(f-BTA)=o, (26)

where 1
O\ = §>\TBKTBT>\ — ATBKIf, (27)

KT denotes a generalized inverse that satisfies KKTK = K, and R denotes
the full rank matrix whose columns span the kernel of K. We shall choose
R so that its entries belong to {0,1} and each column corresponds to some
floating auxiliary subdomain 2% with the nonzero entries in the positions
corresponding to the indices of nodes belonging to £2%. The action of Kt =
diag[K{, ..., Kgp] can be evaluated in parallel at the cost comparable with the
action of the inverse of the regular matrix with the same sparsity pattern [25].
When TFETI method is used, the implementation is easy as the kernels of
K; are known a priori. Even though problem (26) is much more suitable for
computations than (24), further improvement may be achieved by adapting
some simple observations and the results of Farhat, Mandel and Roux [27].
Let us denote

F=BKBT, G=R™BT, e=R'f, d=BK'f,

and let X solve GA = &, so that we can transform the problem (26) to mini-
mization on the subset of the vector space by looking for the solution in the
form A = p + A. Since

1 ~ 1 ~ ~ 1~T ~ ~T~
§ATFA —Ald= §[JTFN —p'(d—FX) + §>\ FA—X d,
problem (26) is, after returning to the old notation, equivalent to
1 ~I
min §>\TF>_ ATd st GA=o0 and A >-X, (28)

whered = d —f;\ and G denotes a matrix arising from the orthonormalization
of the rows of G. Our final step is based on observation that the problem (28)
is equivalent to

1 ~I
min §>\TPFPA —~ATPd st GA=o0 and A >-X (29)

where

Q=G'G and P=1-Q

denote the orthogonal projectors on the image space of G' and on the kernel
of G.

Theorem 3. If F and P denote the matrices of the problem (29) (generated
either by FETI or TFETI), then the following spectral bounds hold:

H
Amax(PFP) < |[F|| < Oﬁ; Amin(PFP[ImP) > C.

Proof. See [27, 9. n
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6 FETI-DP domain decomposition and discretization

We shall now assume that the subdomains are not completely separated, but
joined in the joint corners that we shall call crosspoints. We call a crosspoint
either a corner that belongs to four subdomains, or a corner that belongs to
two subdomains and is located on 92! \ I'! or on 9022\ I'2. An important
feature for developing FETI-DP type algorithms is that a single degree of
freedom is considered at each crosspoint, while two degrees of freedom are
introduced at all the other matching nodes across subdomain edges as in
FETI or TFETI. Using the finite element discretization, we get again the
discretized version of problem (23) with the auxiliary domain decomposition

1
min EuTKu —fTu st. Blu<o and BPu=o, (30)

where the full rank matrices B! and B describe the non-penetration (in-
equality) conditions and the gluing (equality) conditions, respectively, and f
represents the discrete analog of the linear form #(-). In (30), using suitable
numbering, K = diag(K', K2) is the block diagonal stiffness matrix with the
nonzero blocks ) )

7 K'L

11 1,p+1

) Kzl?’p K;»PH
Kios11 -+ Kor1p Kbt pr1
The block K! corresponding to £2' is nonsingular due to the Dirichlet bound-
ary conditions on I'!. The block K? corresponding to §2? is nonsingular for a
coercive problem, and is singular, with the kernel made of a vector e with all
the entries equal to 1, for a semicoercive problem. In the latter case, the kernel
of K is spanned by the matrix R = [0",e'] T Using the duality theory [3],
we can again transform (30) to the dual problem. For a coercive problem, K
is nonsingular and we obtain the problem of finding

1
min iAT FA-ATd st. A >o, (31)

with F =B K™'BT and d = B K~!f. For an efficient implementation of F,
it is important to exploit the structure of K; see [21] for more details. For a
semicoercive problem, we obtain the problem of finding

1 ~T
min 5ATF)\— d'A st GA=o0o and A >-X\, (32)

with d =d — FA and G and X defined similarly as in FETI. Our final step is
again based on the observation that the Hessian of the augmented Lagrangian
for problem (32) may be decomposed by the orthogonal projectors

Q=G'G and P=1-Q
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on the image space of G and on the kernel of G, respectively. Since PA = A
for any feasible A, problem (32) is equivalent to

1 ~I
min 5ATPFPA—ATPd st GA=o and X >-X. (33

The optimality follows from the following theorem.

Theorem 4. If F denotes the matriz of the problem (32) generated by FETI-
DP for the coercive problem, then the following spectral bounds hold:

H

2
Amax(F):”FH S C<h> 5 Amin(F) 2 C.

If F and P denote the matrices of the problem (33) generated by FETI-DP
for the semicoercive problem, then the following spectral bounds hold:

H

2
Amax(PFP|ImP) < ||F|| < C<h> ' Amin(PFP|ImP) > C.

Proof. See [21, 22]. "

7 Numerical scalability

To show that Algorithm 2 with the inner loop implemented by Algorithm 1
is optimal for the solution of our model problems (or a class of problems)
discretized by means of FETI, TFETI and FETI-DP, we shall use

T={(Hh)€eR*:H<1, 2h<H and H/h€ IN}

as the set of indices. Given a constant C' > 2, we shall define a subset 7o of
T by

To={(H,h) € R*: H<1,2h< H, Hhe€ IN and H/h < C}.
For any t € 7, and a given p > 0, we shall define

A; = PFP +9Q, b; = Pd
~TI
C; =G, £l =-X and £F = -0
with the vectors and matrices generated with the discretization and decompo-

sition parameters H and h, respectively, so that the problem (29) is equivalent
to the problem

minimize O:(A¢) s.t. CAr =0 and Ay > £ (34)

with ©;(A) = LATA,A—b/ X. Using these definitions and GG' = I, we obtain

-2
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1G]l <1 and [|€] =0, (35)

where for any vector v with the entries v;, v" denotes the vector with the
entries v;” = max{v;, 0}. Moreover, it follows by Theorem 4 that for any C' > 2

i
there are constants a5, > a$, > 0 such that

max
agin < amin(At) < max(Ar) < a’Slax (36)

for any t € 7o. Moreover, there are positive constants C; and C5 such that
al. > C; and af,, < C3C. In particular, it follows that the assumptions of

Theorem 5 (i.e. the inequalities (35) and (36)) of [8] are satisfied for any set
of indices 7, C > 2, and we have the following result:

Theorem 5. Let C > 2 denote a given constant, let {\F}, {uk} and {p; 1}
be generated by Algorithm 2 (SMALBE) for (34) with ||bs|| > n: > 0, 8 > 1,
M >0, pto=po >0, and p? = 0. Let s > 0 denote the smallest integer such
that 3°pg > M2/amin and assume that Step 1 of Algorithm 2 is implemented by
means of Algorithm 1 (MPRGP) with parameters I' > 0 and @ € (0, (amax +
B%po) 1], so that it generates the iterates )\f’o)\f’l,...)\f’l = AF for the
solution of (34) starting from Ai® = XE=1 with A7Y = o, where | = 1, . is the
first indez satisfying

lg” A, mfs pei) |l < MICAT| (37)

or
lg” (A, 1f s pee)|| < ellbl|min{1, A7, (38)

Then for any t € Tc and problem (34), Algorithm 2 generates an approximate
solution )\ft which satisfies

M g" (N it e[| < NCAT | < elbe (39)

at O(1) matriz-vector multiplications by the Hessian of the augmented La-
grangian Ly for (84) and pr < B°po.

Proof. See [9]. n

8 Numerical experiments

We have implemented all three domain decomposition methods described
above to the solution of both variants of the model problems of Fig. 1. The
solution of both problems is in Fig. 2. For the solution of the quadratic pro-
gramming problems generated by FETI1 and TFETI, we used the SMALBE
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Fig. 3a: Coercive problem Fig. 3b: Semicoercive problem

Fig. 2. Solution of model problems

algorithm of Section 3 with the inner loop generated by the MPRGP algo-
rithm of Section 2. We have implemented the solver in C exploiting PETSc
to solve the semicoercive model problem with varying decomposition and dis-
cretization parameters. The results of computations which were carried out
to the relative precision le-4 are in Table 1.

Table 1. Numerical scalability of FETI and TFETI for H/h=const and p=1e3

primal dim. 2312 9248 36992 [133128|532512|2130048
FETI/TFETT dual dim.|167/201|863/931|3839/3975|1287/-| 6687 /- |29823/-
subdomains 8 32 128 8 32 128
FETI iterations 47 58 64 59 36 47
TFETI iterations 39 54 45 - - -

Since the algorithms are closely related to the original FETI method, it
is not surprising that they enjoy good parallel scalability as documented in
Table 2. The experiments with semicoercive problem were run on the Lomond
52-processor Sun Ultra SPARC-III based system with 900 MHz, 52 GB of
shared memory, nominal peak performance 93.6 GFlops, 64 kB level 1 and 8
MB level 2 cache in EPCC Edinburgh, to the relative precision le-4.

Table 2. Parallel scalability for semicoer.problem with prim.dim 540800, dual
dim.14975, 2 outer iters, 43 cg iters, 128 subdomains using Lomond, p=1e3

processors\ 11214 |8(16/32
time [sec] [879]290]138]50[27]15
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We have implemented also the basic FETI-DP algorithms for the so-
lution of both coercive and semicoercive problems in MATLAB. We have
used MPRGP of Section 2 for the solution of the coercive problems and the
SMALBE algorithm of Section 3 with the inner loop generated by the MPRGP
algorithm to the solution of the semicoercive problem to the relative precision
le-6. The results are in Table 3.

Table 3. Numerical scalability of the basic FETI-DP for coer. and semi-
coer.problem, p=1e3

prim./dual/corner dim. 2312/153/10(9248/785/42(36992/3489 /154
subdomains 8 32 128
cg iters for coer.problem 27 48 51
cg iters for semicoer.problem 41 57 63

9 Comments and conclusions

We have reviewed our recent results related to application of the augmented
Lagrangians with the FETI based domain decomposition method to the so-
lution of variational inequalities using recently developed algorithms for the
solution of special QP problems. In particular, we have shown that the solu-
tion of the discretized problem to a prescribed precision may be found in a
number of iterations bounded independently of the discretization parameter.
Numerical experiments with the model variational inequality are in agreement
with the theory and indicate that the algorithms presented are efficient. The
research in progress includes implementation of preconditioners, the mortar
discretization and the generalization to the contact problems with friction.
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Summary. This work presents a unified analysis of Discontinuous Galerkin meth-
ods to approximate Friedrichs’ systems. A general set of boundary conditions is
identified to guarantee existence and uniqueness of solutions to these systems. A
formulation enforcing the boundary conditions weakly is proposed. This formula-
tion is the starting point for the construction of Discontinuous Galerkin methods
formulated in terms of boundary operators and of interface operators that mildly
penalize interface jumps. A general convergence analysis is presented. The setting
is subsequently specialized to two-field Friedrichs’ systems endowed with a partic-
ular 2x2 structure in which some of the unknowns can be eliminated to yield a
system of second-order elliptic-like PDE’s for the remaining unknowns. A general
Discontinuous Galerkin method where the above elimination can be performed in
each mesh cell is proposed and analyzed. Finally, details are given for four exam-
ples, namely advection—reaction equations, advection—diffusion—reaction equations,
the linear elasticity equations in the mixed stress—pressure—displacement form, and
the Maxwell equations in the so-called elliptic regime.

1 Introduction

Since their introduction in 1973 by Reed and Hill [19] to simulate neutron
transport, Discontinuous Galerkin (DG) methods have sparked extensive in-
terest owing to their flexibility in handling non-matching grids, heterogeneous
data, and high-order hp-adaptivity. However, the development and analysis of
DG methods has followed two somewhat parallel routes depending on whether
the PDE is hyperbolic or elliptic.

For hyperbolic PDE’s, the first analysis of DG methods in an already
rather abstract form was performed by Lesaint and Raviart in 1974 [16, 17]
and subsequently improved by Johnson et al. [15] in 1984. More recently,
DG methods for hyperbolic and nearly hyperbolic equations experienced a
significant development based on the ideas of numerical fluxes, approximate
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Riemann solvers, and slope limiters; see, e.g., Cockburn et al. [8] and the
references therein.

For elliptic PDE’s, DG methods originated from the early work of Nitsche
on boundary-penalty methods [18] and the use of Interior Penalties (IP) to
weakly enforce continuity on the solution or its derivatives across the interfaces
between adjoining elements; see, e.g., Babuska [3], Babuska and Zldmal [4],
Baker [5], Wheeler [20], and Arnold [1]. DG methods for elliptic problems in
mixed form were introduced more recently (see, e.g., Bassi and Rebay [6])
and further extended by Cockburn and Shu [9] leading to the so-called Local
Discontinuous Galerkin (LDG) method. The fact that several of the above DG
methods (including IP methods) share common features and can be tackled by
similar analysis tools called for a unified analysis. A first important step in that
direction has been recently accomplished in Arnold et al. [2], where it is shown
that it is possible to cast many DG methods for the Poisson equation with
homogeneous Dirichlet boundary conditions into a single framework amenable
to a unified error analysis.

The goal of the present work is to propose a unified analysis of DG methods
that goes beyond the traditional hyperbolic/elliptic classification of PDE’s. To
this purpose, we make systematic use of the theory of Friedrichs’ systems [14],
i.e., systems of first-order PDE’s endowed with a symmetry and a positivity
property, to formulate DG methods and to perform the convergence analysis.
For brevity, the main theoretical results are stated without proof; see [11, 12,
13] for full detail.®

This paper is organized as follows. In mS2 we revisit Friedrichs’ theory
and formulate a set of abstract conditions ensuring well-posedness of the con-
tinuous problem while avoiding to invoke traces at the boundary. In mS3
we formulate and analyze a general DG method to approximate Friedrichs’
systems. The design of the method is based on an operator enforcing bound-
ary conditions weakly and an operator penalizing the jumps of the solution
across the mesh interfaces. All the design constraints to be fulfilled by the
boundary and the interface operators for the error analysis to hold are stated.
Moreover, using integration by parts, the DG method is re-interpreted locally
by introducing the concept of element fluxes, thus providing a direct link with
engineering practice where approximation schemes are often designed by spec-
ifying such fluxes. In mS4 we specialize the setting to a particular class of
Friedrichs’ systems with a 2x2 structure in which some of the unknowns can be
eliminated to yield a system of second-order elliptic-like PDE’s for the remain-
ing unknowns. For such systems, a general Discontinuous Galerkin method is
proposed and analyzed. The key feature of the method is that the unknowns
that can be eliminated at the continuous level can also be eliminated at the
discrete level by solving local problems. In mS5, we apply the theoretical re-
sults to advection—reaction equations, advection—diffusion-reaction equations,
the linear elasticity equations in the mixed stress—pressure—displacement form,

3 Internal reports available at cermics.enpc.fr/reports/CERMICS-2005
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and the Maxwell equations in the so-called elliptic regime. Concluding remarks
are reported in mS6.

2 Friedrichs’ systems

Let £2 be a bounded, open, and connected Lipschitz domain in R?. We denote
by ©(£2) the space of € functions that are compactly supported in 2. Let
m be a positive integer. Let K and {A*}1<x<q be (d+ 1) functions on £2 with
values in R™™ such that

K e [L=(2)]™m, (A1)

d

Vke{1,...,d}, A€ [L¥(2))™™ and Y 0pAF € [Lo(Q)™™, (a2)
k=1

Vk e {1,...,d}, AF = (AF)" ae. in 2, (A3)

d
K+K' =Y opA" > 20T, ace. on £2, (a4)
k=1

where Z,, is the identity matrix in R™™. Assumptions (A3) and (A4) are,
respectively, the symmetry and the positivity property referred to above.

Set L = [L?(£2)]™. A function z in L is said to have an A-weak derivative
in L if the linear form [D(£2)]™ 3 ¢ — — [, Zi:l 210y (Ak$) € R is bounded
on L. In this case, the function in L that can be associated with the above
linear form by means of the Riesz representation theorem is denoted by Az.
Clearly, if z is smooth, e.g., z € [€1(2)|™, Az = Zzzl AEdy.z. Define the
so-called graph space W = {z € L; Az € L} equipped with the graph norm
lzllw = ||Az||z+]|z||r- The space W is endowed with a Hilbert structure when
equipped with the scalar product (z,y)r + (Az, Ay)r. Define the operators
TeLW;L)and T € L(W; L) as

Tz=Kz+ Az, Tz =K'z + Az, (1)

with Az = — Zzzl Ok (AF2). Assumption (a4) implies that T+1T is L-coercive
on L.

Let f € L and consider the problem of seeking z € W such that Tz = f
in L. In general, boundary conditions must be enforced for this problem to be
well-posed. In other words, one must find a closed subspace V' of W such that
T:V — L is an isomorphism. Let D € L(W; W) be the operator defined by

V(z,y) €W x W7 <DZ,y>W/7W = (szy)L - (ngy)L' (2)

Let Wy be the closure of [D(£2)]™ in W. For every subspace Z C W, let Z+
denote the polar set of Z, i.e., the set of linear forms on W that vanish on Z
and use a similar notation for the polar sets of subspaces of W’. A key result
concerning the operator D is the following
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Lemma 1. The operator D is self-adjoint. Moreover, the following holds:
Ker(D)=W, and  Im(D)=W;. (3)

To enforce boundary conditions, a simple approach inspired from Friedrichs’
work consists of assuming that there is an operator M € L(W; W') such that

M is positive, i.e., (Mz, z)w w >0 for all z in W, (Mm1)
W = Ker(D — M) + Ker(D + M). (M2)

Then by setting V' = Ker(D — M) and V* = Ker(D + M*) where M* €
L(W;W’) is the adjoint of M and equipping V' and V* with the graph norm,
the following theorem can be proved:

Theorem 1. Assume (A1)—(a4) and (M1)—(M2). Then, the restricted opera-
torsT:V — L and T : V* — L are isomorphisms.

The proof of Theorem 1 relies on the following fundamental result, the
so-called Banach—Necas—Babuska (BNB) Theorem, that is restated below for
completeness (see, e.g., [5]).

Theorem 2 (BNB). Let V and L be two Banach spaces, and denote by
(-, )L the duality pairing between L' and L. Then, T € L(V; L) is bijective
if and only if

T ’

Ja >0, YwelV, sup W T, > aljw|v, (4)
yeL\{0} ||3/HL’

Vvye L', ((y,Tw)p, =0, VweV) = (y=0). (5)

Remark 1.1t is possible to formulate an intrinsic criterion for the bijectivity
of the operators T and T that circumvents the somewhat ad hoc operator M
by introducing the concept of maximal boundary conditions. To this purpose,
introduce the cones C* = {w € W; + (Dw,w)y w > 0}. Let V and V* be
two subspaces of W such that

VcCtandV*c O™, (v1)
V =D(V*)* and V* = D(V)*. (v2)

Then, under the assumptions (A1)—(a4) and (v1)—(v2), the conclusions of
Theorem 1 still hold. Furthermore, one can prove that if V and V* are two
subspaces of W satisfying (v1)—(v2), then V is maximal in C* (there is no
x € W such that V,, := V + span(z) C Ct and V is a proper subspace of V)
and V* is maximal in C~ (there is no y € W such that V" := V* +span(y) C
C~ and V* is a proper subspace of Vy*). In this sense, the boundary conditions
embodied in V and V* are maximal.
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Owing to Theorem 1, the following problems are well-posed:

Seek z € V such that Tz = f, (6)
Seek z* € V* such that Tz* = f. (7)
The boundary conditions in (6) and (7) are enforced strongly by seeking the
solutions in V and V*, respectively. A key feature of Friedrichs’ systems is
that it is possible to enforce boundary conditions naturally, thus leading to

a suitable framework for developing a DG theory. To see this, introduce the
following bilinear forms on W x W,

a(z,y) = (TZ,y)L+%<(M*D)Z7y>W/7W7 (8)
a*(z,y) = (Tz,y)r + 3{(M" + D)z, y)w.w- (9)
It is clear that a and a* are in L(W x W;R). Consider the following problems:

Seek z € W such that a(z,y) = (f,y)r, Yy € W, (10)
Seek z* € W such that a*(2*,y) = (f,y)r, Yy € W. (11)

Contrary to (6) and (7), the boundary conditions in (10) and (11) are weakly
enforced. For this reason, problem (10) will constitute our working basis for
designing DG methods. The key result of this section is the following

Theorem 3. Assume (Al)—(a4) and (M1)—(M2). Then, there is a unique so-
lution to (10) (resp., (11)) and this solution solves (6) (resp., (7)).

3 Design and analysis of DG methods

The purpose of this section is to design and analyze a general DG method to
approximate the unique solution to (10).

3.1 The discrete setting

Let {75 }r>0 be a family of meshes of {2. The meshes are assumed to be affine
to avoid unnecessary technicalities, i.e., {2 is assumed to be a polyhedron.
However, we do not make any assumption on the matching of element inter-
faces. Let p be a non-negative integer and set

Py ={vn € L*(2); VK € Ty, vp|x € P}, (12)

where P, denotes the vector space of polynomials with real coefficients and
total degree less than or equal to p. Define

Wi = [Pup]™,  W(h) = [H' ()] + Wi (13)
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We denote by Fi the set of interior faces (or interfaces), i.e., F € F},
if F'is a (d—1)-manifold and there are K;(F), Ks(F) € 75, such that F' =
K1(F)N Ky(F). We denote by F? the set of the faces that separate the mesh
from the exterior of (2, i.e., F € F{ if F is a (d—1)-manifold and there is
K(F) € T;, such that F = K(F) N 0f2. Finally, we set F), = Fi U F?. Since
every function v in W (h) has a (possibly two-valued) trace almost everywhere
on F € F}, it is meaningful to set v"(z) = lm e v(y), n € {1,2}, for a.e.
xz € F and A

[v] = vt — 2, {v} = L(v' +2?), a.e. on F. (14)

Nothing that is said hereafter depends on the arbitrariness in the sign of [v].

For any measurable subset of §2, say F, (-,-)r g denotes the usual L?-
scalar product on E. The same notation is used for scalar- and vector-valued
functions. For K € 7}, (resp., F' € Fy), hi (resp., hr) denotes the diameter
of K (resp., F'). The mesh family {7}, }5>0 is assumed to be shape-regular so
that the usual inverse and trace inverse inequalities hold on W},. Henceforth,
we use the notation A < B to represent the inequality A < ¢B where c is
independent of h.

3.2 The design of the DG bilinear form

Set D = 22:1 npA¥, where n = (ni,...,nq)" is the outward unit normal to
2, and assume that there is a matrix-valued field M : 92 — R™™ such
that for all functions y, w smooth enough (e.g., y,w € [H(£2)]™),

(Dy,wyw'w = | w'Dy, (My,w)ywrw= [ w'My.  (15)
a0 on

To enforce boundary conditions weakly, we introduce for all ' € _7-';? a linear
operator Mg € L([L?(F)]™; [L*(F)]™) such that for all y,w € [L*(F)]™,

(Mr(y),y)r.r 20, (pcl)
(My =Dy) = (Mr(y) = Dy), (DG2)
|(Mr(y) — Dy, w)r,r| < ylarllwllc,F, (Da3)
|(MF(y) + Dy, w)r,r| S ylle,plwla,r, (DG4)

where for all y € W (h), |y3, = ZFG}-}? |y\?w’F with |y|?wp = (MrY),y)L.F-
For K € 7, define the matrix-valued field Dyg : 0K — R™™ as

d
Dok (z) = ZnKvak(Jc) a.e. on 0K, (16)
k=1
where ng = (nk1,...,nK,q)" is the unit outward normal to K on 9K. We

extend the matrix-valued field D on Fj, = ]—"}L U ]—',? as follows. On ]-',‘3 , Dis
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defined as above. On F}, D is two-valued and for all F € Fl, its two values
are Dok, (r) and Dy, (). Note that {D} = 0 a.e. on F},. To control the jumps
of functions in W}, across mesh interfaces, we introduce for all F' € F; a linear
operator Sp € L([L?(F)]™;[L?(F)]™) such that for all y,w € [L?(F)]™,

(Sr(y),y)L,r >0, (DG5)
(Sr(y), w)L, (DG6)
|(Por(ryy, w)L,r| S (DGT)
where F' C 0K (F) and where for all y € W(h), |y|% = ZFGH y|3 p with

% r = (Sr(y),y)r.r- A simple way of enforcing (DG5)~(DG7) consists of
setting Sr(y) = Dok (r)ly-
Introduce the bilinear form ay such that for all z, y in W(h),

an(z,y) = Z (Tz,y)r,x + Z +(Mp(z) — Dz,y)L.F

KeT, FeF?

= > 2Dz} {yer+ Y (S, W)e.r

FeF} FeF}

(17)

Observe that owing to (DG2), the second term in the definition of a; weakly
enforces the boundary conditions in a way which is consistent with (8). The
purpose of the third term is to ensure that an L-coercivity property holds on
Wh. The last term controls the jump of the discrete solution across interfaces.
Some user-dependent arbitrariness appears in the second and fourth term
through the definition of the operators My and Sr. An equivalent definition
of the DG bilinear form obtained by integration by parts is the following:

an(z,y) = Z (2,Ty) LK+ Z z2)+Dz,y)r,F

KeT, FE]-'a (18)
+ 3 5D e+ Y (Se(leD). [WD)er
FeF} FeF}

3.3 Convergence analysis

An approximation to the solution of (10) is constructed as follows: For f € L,

Seek z;, € W), such that (19)
an(zn,yn) = (fyn)L, VYyn € Wi,
The error analysis uses the following discrete norms on W (h),
lyla = Iz + 915 + 1yl + Y bl Ayl (20)
KeTy,
gl s = lylh 4+ D (P I9Z e + 19112 0x], (21)

KE,]-}L
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where for all y € W(h), |y|> = ZFef,i, y|2JF with |yl r = |[ylls.r. The
convergence analysis is performed in the spirit of Strang’s Second Lemma.
The main result is the following

Theorem 4. Let z solve (10) and let zp, solve (19). Assume that for all k €
{1,...,d}, A* € [€%32 (2)]™™. Then,

Iz =2nllna S inf [[z—=wynlpz, (22)
Yn€

f
Wh
if z € [HY(2)]™, and limy, ¢ ||z — 21||z, = 0 if 2 € V only, assuming there is
v >0 such that [H(2)]™ NV is dense in V.

Using standard interpolation results on W}, the above result implies that
1
Iz = znlln.a S BPT2 |12l (prmr m (23)

whenever z is in [HP+1(£2)]™. In particular, ||z—zp|| . converges to order h?*z,

. . . Lo 1
and if the mesh family {75, }5>0 is quasi-uniform, (3 ccr |A(z — 20)||7 5 )2
converges to order hP. These estimates are identical to those that can be
obtained by other stabilization methods like Galerkin/Least-Squares, subgrid
viscosity, etc.

3.4 Localization and the notion of fluxes

The purpose of this section is to discuss briefly some equivalent formulations of
the discrete problem (19) in order to emphasize the link with other formalisms
derived previously for DG methods based on the notion of fluxes (see, e.g.,
Arnold et al. [2]). Let K € 7;,. For v € W(h) and € 9K, set v'(z) =
limy—s v(y), ve(z) = limy—. v(y) (with v¢(z) =0 if = € 912), and

[v]ox (z) = v'(2) —v¥(x), {v}ox (2) = 5(v'(2) +v°(x)).  (24)

The element fluz of a function v on K, say ¢pax (v) € [L*(OK)]™, is defined
on a face F' C 0K by

3Mp(v|r) + 3Dv, if FcoK?,
Se([vlox|r) + Dox{v}gr, if F COK',

where K denotes that part of K that lies in £2 and 0K that part of 0K
that lies on 0f2. The relevance of the notion of flux is clarified by the following

dor (V)|F = { (25)

Proposition 1. The discrete problem (19) is equivalent to each of the follow-
ing two local formulations:

{ Seekj'h € W), such that VK € 7, and Vy;, € [P, (K)]™, (26)

(zn, Tyn)r ik + (Pok (zn), yn) Lok = (f,yn)L K,

{ Seek z;, € W}, such that VK € ’Zﬁland Yy, € [Pp(K)]™, @7)
(Tzn, yn)L.ix + (Pox (zr) — Dok 21, yn) Lok = (f,yn) L.k -
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In engineering practice, approximation schemes such as (26) are often de-
signed by specifying the element fluxes. The above analysis then provides a
practical means to assess the properties of the scheme. Indeed, once the ele-
ment fluxes are given, the boundary operators My and the interface operators
Sr can be directly retrieved from (25). Then, properties (DG1)—(DG7) provide
sufficient conditions for convergence.

Remark 2. The element fluxes are conservative in the sense that for all F' =
K(F) N Ky(F) € F}, dory () (V) + dor,r)(v) = 0 on F. The concept of
conservativity as such does not play any role in the present analysis of DG
methods. It plays a role when deriving improved L?-error estimates by using
the Aubin—Nitsche lemma; see, e.g., Arnold et al. [2] and mS4.3.

4 DG approximation of two-field Friedrichs’ systems

In this section the setting is specialized to Friedrichs’ systems endowed with
a 2x2 block structure in which some of the unknowns can be eliminated to
yield a system of elliptic-like PDE’s for the remaining unknowns. A general
DG method to approximate such systems is proposed and analyzed. The key
feature is that the unknowns that can be eliminated at the continuous level
can be also eliminated at the discrete level by solving local problems. To
achieve this goal we will see that at variance with the DG method formulated
in mS3, where jumps and boundary values are equally controlled among
the unknowns, the boundary values and jumps of the discrete unknowns to
be eliminated must no longer be controlled whereas the boundary values and
jumps of the remaining discrete unknowns must be controlled with an O(h~1)
weight.

4.1 The setting

We now assume that there are two positive integers m, and m, with m =
My +my, such that the (d+1) R™™-valued fields K and {A¥};<j<q have the
following 2x2 block structure:

L T

,,,,, ] ’ (28)

with obvious notation for the blocks of K and where for all k € {1,...,d}, B
is an m, xm,, matrix field and C¥ is a symmetric m,, xm,, matrix field. Define
the operators B = Zizl Bkoy,, Bt = Zzzl[Bk]tGk, and C = Zzzl C*0). The
two key hypotheses on which the present work is based are the following:
Jko > 0, VE € R™, €K779¢ > ko||€||3m, a.e. on £2, (A5)

Vk € {1,...,d}, the myxm, upper-left block of A* is zero. (AG)
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Set L, = [L*(2)]™ and L, = [L?(£2)]™«. Consider the PDE system
Tz = f with f € L = L, XL, and partition z and f into (27, 2%) and (f7, f*),
respectively. Assumption (A5) (which implies that the matrix K7 is invert-
ible) together with assumption (A6) allow for the elimination of 2% from the
PDE system, yielding 27 = [K77]71(f7 — K742z% — Bz%), and it comes that
z% solves the following second-order PDE:

_ BT[IC(TO’]—lBZu T (C _ BT[ICO'U]—lKau — Cuo [Kaﬂ]—lB)zu
+ (]Cuu _ K:ucr[lco'a}—llco'u)zu — fu _ (]Cucr + BT)[’CUU]—lfO'. (29)
The leading order term in this PDE has a very particular structure since the

matrices (B¥)![K°?]~1B* are positive semi-definite. Hence, the PDE’s covered
hereafter are elliptic-like.

4.2 The design of the DG bilinear form

Let p and p, be two non-negative integers such that p — 1 < p, < p. Define
the vector spaces

U, = [Ph7p]m“, X = [PhJ,U}m", Wy, = Upx 2y, (30)

Consider the DG bilinear form defined in (17) and the discrete problem (19).
Partition the discrete unknown into z, = (27, z}). We now want to design a
DG method in which 2 can be eliminated by solving local problems. It is
then readily seen from (26) that this is possible only if the o-component of
the flux ¢ox (21) solely depends on zj'. Owing to (25), it is inferred that the
boundary operators M and the interface operators S must be such that

M7 =0 and S =0. (31)

Let U(h) = [H'(£2)]™ 4 Uy. We define the mapping 6}, : U(h) — X}, such
that for all 2% € U(h) and for all K € Ty, 0} (2%)|x solves the following
problem: For all ¢7 € [P, _(K)]™,

(K7703,(2*),¢" )L,k = — (K7"2" 4+ Bz",¢") L, K
— (#3x (2") = DG (2")", 47 )L, 0k - (32)

Owing to (A5), this problem is well-posed. Similarly, we define the mapping
07 : L, — X}, such that for all f° € L, and for all K € Tp,, 62(f°)|k solves
the following local problem: For all ¢ € [P, (K)]™~,

(K770%(f7), 4" Lo = (£7:47 )L, K- (33)
Finally, define the bilinear form ¢, on U(h) x U(h) by
¢h(zu7yu) = ah((g}lz(zu)azu)7(07yu))a (34)

and the linear form ¢y, on U(h) by ¥n(y*) = an((67(f7),0),(0,y*)). This
readily leads to the following
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Proposition 2. If the pair (27, z}) solves (19), then,
% = Oh(z1) +07(f7), (35)

and z; solves the following problem:

Seek z}* € Uj, such that
{ " (36)

Sn(zn,un) = (f“u1) L. — Yn(yr), Yy € Up.

Conversely, if z;' solves (36) and if zj is defined by (35), then the pair (27, z}")
solves (19).

For the convergence analysis of mS4.3 to hold, the boundary operators
Mp and the interface operators S must comply with certain design criteria
that are formulated in [12]. This set of conditions simplifies into the following
whenever Dirichlet-type boundary conditions are enforced on z*: For all F' €
F2 and for all y = (y7,y*) € [L*(F)]™, we assume that

My —Dy =0) = (Mp(y) — Dy =0), (LpGl)
(M'y +Dy=0) = (Mf(y) + Dy =0), (LpG2)
Mg =0, Mg“(y") = -D™y", M (y7) =Dy, (Lpa3)
Mp® is self-adjoint, (LDG4)
hp (D D)3 + hp|D™| < ME < hp'To,, (LDG5)

where M7, denotes the adjoint operator of Mp and Z,,, the identity matrix
in R™= ™« Similarly, for all F' € F;, we assume that

Sg7 =0, Sg*=0, S =0, (LDG6)
St is self-adjoint, (LDGT)
hp (DY D7) 7 + hp|D™| < SE < bl T, . (LDGR)

Remark 3. Assumption (LDG1) is a consistency assumption similar to (DG2).
Assumption (LDG2) is an adjoint-consistency assumption needed to obtain
an improved error estimate for zj* in the L,-norm. Assumption (LDG3) is
suitable to enforce Dirichlet boundary conditions and must be modified if
other boundary conditions are considered. In this case, assumption (LDG5)
must also be modified: M no longer scales as h', but is of order 1.

4.3 Convergence analysis

The error analysis uses the following discrete norms on W (h),
Iyl = 72, + w17, + 1“5 + v 15 + D 1By 12, « (37)
KeTy,

lyll7 1 = Iyl o+ DNy N7, o+ Iy 17, on +hxclly” I, ox].(38)
KEIZ—}L
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where for all y* € U(h), |[y*3;, = Yo rersMp"(y"),y")L,.F and ly“|% =
ZFG]—'}I (S ([y"D, [v*D L., F- The main result is the following

Theorem 5. Let z solve (10) and let zj, solve (19). Assume that for all k €
{1,...,d}, Bk € [€%L(Q)]™™. Then

z—z S inf ||z — , 39
[ nllnar S ,of 2 — ynllna (39)
if z € [HY(2)]™, and limp_o(||2z — 2ull] + Y ger, 1B = 27, L) =0 if

z € V only, assuming there is v > 0 s.t. [HY(2)]™ox[H*(2)]™ NV is
dense in V.

Using standard interpolation results on W}, and since p — 1 < p, < p, the
above result implies

(1127 | (pro+1 (2yme + 12" | (pro+1 (2 ) - (40)

whenever z is in [HP-T1(0Q)]™e x[HPFL(2)]™«. In particular, ||z — 23|
converges to order AP and if the mesh family {7j,}x>0 is quasi-uniform,
(X ker, IB(z* = z}f)H%dK)% also converges to order hP. If p, = p, the L-
norm error estimate is suboptimal when compared with that obtained using
the DG method analyzed in mS3. The reason for this optimality loss is that
the interface jumps of the o-component are no longer controlled to allow for
this component to be locally eliminated, and the jumps of the u-component
are penalized with an O(h~!) weight. If p, = p—1, the L-norm error estimate
is still suboptimal for the u-component, but is optimal for the o-component.

To derive an optimal error estimate for the u-component in the L,-norm,
we use a duality argument. Let ¢ € V* solve

Ty = (0, 2" — 2). (41)

Assuming the above problem yields elliptic regularity, i.e., [|"||(g2(@)mu +
107 1mr (2)me S 12 = 23] L, » the main result is the followmg

Theorem 6. The following holds:

1 = zille. Sh inf 2= ynllnes (42)
where Hy”iﬁ ”th 1t ZKeTh[h%{Hy H [H(K)]me +hrllyell, orc]- In par-
ticular, if z € [HT’U“(Q)]’”G X [HPHL(£2)]™=, then

12 = 2|z, S BPEH (1 oo +1 @pme + 12" lroer (ppmn). - (43)
5 Examples

In this section we apply the methods formulated in mS3 and mS4 to vari-
ous Friedrichs’ systems encountered in engineering applications. To alleviate
notation, an index A indicates that the norm is broken on the mesh elements
and b denotes the piecewise constant function equal to hx on each K € 7.
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5.1 Advection—reaction

Let u € L>®(£2), let 8 € [L>=(§2)]¢ with V-8 € L*°(£2), and assume that there
is po > 0 such that p(z) — 1V-B(z) > po ae. in 2. Let f € L?(£2). The PDE

pu+ B-Vu = f (44)

is recast as a Friedrichs’ system by setting m = 1, K = y, and A* = g* for k €
{1,...,d}. The graph space is W = {w € L?(£2); 8-Vw € L?(£2)}. To enforce
boundary conditions, define 2% = {z € 802; + B(x)n(x) > 0}, and assume
that 902~ and 027" are well-separated, i.e., dist(9027,927) > 0. Then, the
boundary operator D has the following representation: For all v,w € W,

(Dv,w)ywrw = vw(Bn). (45)
on
Letting (Mv,w)yw'.w = [,,vw|fn|, then (M1)-(M2) hold and V = {v €
W; v|gn- = 0}, i.e., homogeneous Dirichlet boundary conditions are enforced
at the inflow boundary.
Let a > 0 (a can vary from face to face) and for all F' € F},, set

Mp =|6n| and Sr = a|fnp|, (46)

where np is a unit normal vector to F' (the orientation is irrelevant). Then,
letting Mp(v) = Mpv and Sp(v) = Spv, assumptions (DG1)—(DG7) hold.
Hence, if 8 € [C%2 (£2)]% and the exact solution is smooth enough,

WPH 3 ||ul| o+ () (47)

l[w = unllz2 () + 107 8-V (u —up) |l 2y <

Remark 4. The specific value a = % leads to the so-called upwind scheme. This
coincidence has led many authors to believe that DG methods are methods
of choice to solve hyperbolic problems. Actually DG methods, as presented
herein, are merely stabilization techniques tailored to solve symmetric positive
systems of first-order PDE’s.

5.2 Advection—diffusion—reaction

Let u, 8, and f be as in mS5.1. Then, the PDE —Au+ (-Vu+ pu = f written

in the mixed form

{U+VU:0, (48)

ju+ Vo + B-Vu = f,
falls into the category of Friedrichs’ systems by setting m = d 4+ 1 and

7,10 0 e
k= {od‘u} L A= [(ek)t‘ﬁk] : (49)
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where Zy is the identity matrix in R%? and e* is the k-th vector in the canonical
basis of R?. The graph space is W = H (div; 2)x H' ().
The boundary operator D is such that for all (o, u), (1,v) € W,

(D(o,u), (T, 0))w,w = (on,v)_1 1+ (Tnu) 11+ /80(5~n)uv, (50)
where (,)_1 1 denotes the duality pairing between H~2(802) and Hz(012).
Dirichlet boundary conditions are enforced by setting (M (o, ), (7,0))wrw =
(on,v)_1 1 = (rn,u)_y1 1, yielding V = H(div; £2)x Hg(£2). Neumann and
Robin boundary conditions can be treated similarly.

Let a; > 0, ag > 0, and 1 > 0 (these design parameters can vary from
face to face) and for all F' € Fy, set

Mp = |\t‘ —————— ] Sy = [MW@TLF.O] . (51)

Then, letting Mp(o,u) = Mpg(o,u) and Sp(o,u) = Sp(o,u), assump-
tions (pa1)-(pa7) hold. Hence, if B € [C%2(£2)]¢ and the exact solution is
smooth enough,

1
lu —unlrz() + llo = onlliz2(ye + 182V (w — up)lln,22(02)

+52V-(0 — on)llnr22) S WP+ || (o, u) eyt (52)

The above Friedrichs’ system can be equipped with the 2x2 block structure
analyzed in mS4 by setting 27 := o and 2" := u. Take

M 0i-n s |20
Al PO E P =10 aghy! | (53)

Then, letting Mp(o,u) = Mp(o,u) and Sp(o,u) = Sp(o,u), assump-
tions (LDG1)—(LDG8) hold. If the exact solution is smooth enough,

lu = unllL2(0) + hllo = onllizz(oye + AV (= un)lln r2(0)e
S P (o u) e (oyax a1 (o). (54)
Remark 5. Other choices for the operators Mp and Sg are possible. In par-
ticular, one can show that the DG method of Brezzi et al. [7], that of Bassi
and Rebay [6], the TP method of Baker [5] and Arnold [1] (provided (LDG5)

and (LDG8) are slightly weakened), and the LDG method of Cockburn and
Shu [9] fit into the present framework.

5.3 Linear elasticity

Let ¢ and 7 be two positive functions in L°°(£2) uniformly bounded away from
zero. Let f € [L2(£2)]. Let u be the Re-valued displacement field and let o
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be the R%?-valued stress tensor. The PDE’s o = 1(Vu + (Vu)!) + %(Vu)l'd
and —V-0 + ¢u = f can be written in the following mixed stress—pressure—
displacement form
0+ 7Ly — 3(Vu+ (Vu)) =0,
tr(o) + (d+ )7 =0, (55)
—1V(o+a) +cu="f.
The tensor o in R%? can be identified with the vector & € R by setting

G5 = 045 with 1 <4, j < d and [ij] = d(j — 1) + 4. Then, (55) falls into the
category of Friedrichs’ systems by setting m = d? + 1 4+ d and

g2t 2 10 0 i0igk
K=1|(2)ti(d+y)i 0 |, A=]| 0 0071, (56)
0 0 icZy (EMrioio

where Z € R? has components given by Zj;;) = d;5, and for all k € {1,...,d},
&k € R has components given by 5[’%“ = —%(&-kéﬂ + 0:10;1); here, 4,4,1 €
{1,...,d} and the &’s denote Kronecker symbols. The graph space is W =
Hzx L2(2)x[HY(2)]¢ with Hr = {7 € [LZ(Q)}dQ; V(o + o') € [L3(02)]4}.
The boundary operator D is s.t. for all (z := (7,7, u),y := (T, p,v)) € W,

(D2, y)ywrw = =3+ mu)_y = (Bo+o)mo)_y,.  (67)

Letting (Mz,y)wrw = (3(r+7%)m,u)_y , —(b(o-+0")n,v)_y 1, then (M1)-
(M2) hold and V' = HzxL?(2)x[H}(£2)]4, i.e., homogeneous Dirichlet bound-
ary conditions are enforced on the displacement.

Let a3 > 0, ag > 0, and > 0 (these design parameters can vary from
face to face) and for all F' € Fy, set

0i0i-H arHpHei00 0
Mp=|9:0: 0 Sp=|"7" 0o o o |- (8
HGO0inZa | | T 0 i 0iasZy

where H = 2221 npEF € R%* and ‘Hr is defined similarly by substituting np
to n. Then, letting Mp(7,7,u) = Mp(c,7,u) and Sp(T, 7, u) = Sp(F, 7, u),
assumptions (DG1)—(DG7) hold. Hence, if the exact solution is smooth enough,
||u — ’u,hH[Lz(Q)]d —+ ||7T — 7ThHL2(_Q) + ||(T — O’hH[Lz(_Q)]d,d
1929 (w = un) 2 (@yaa + 102 V(0 + o) = (o0 + 0Ly

SHER@ 70 g g rsa (59)

The above Friedrichs’ system can be equipped with the 2x2 block structure
analyzed in mS4 by setting 27 := (7, 7) and z* := u. Take
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0:0; —H 0:0; 0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Mp=|0:0i O 1, Sp=1{00i 0 : (60)
H'0inhE' Ty 0:0}ashp'Zy

Then, letting Mp(a,m,u) = Mp(o,m,u) and Sp(7,7,u) = Sp(F, 7, u), as-
sumptions (LDG1)—(LDG8) hold. Hence, if the exact solution is smooth enough,

||’LL — uhH[Lz(Q)]d + hHTf — 7Th||L2(Q) + hHO’ — O'hH[Lz(Q)]d,d

+ W1V (u = un)lln 2 @as S PPHIE T w) o oya o1 s e (61)

5.4 Maxwell’s equations in the elliptic regime

Let o and u be two positive functions in L ({2) uniformly bounded away from
zero. A simplified form of Maxwell’s equations in R? in the elliptic regime,
i.e., when displacement currents are negligible, consists of the PDE’s

wH +VxE = f, ocFE —VxH =g, (62)

with data f, g € [L?(§2)]®. The above PDE’s fall into the category of Friedrichs’
systems by setting m = 6 and

K — [ﬂ?’.o} L A= l(ojﬂ , (63)

with Rfj = e; for i,j,k € {1,2,3}, €;x; being the Levi-Civita permuta-
tion tensor. The graph space is W = H/(curl; £2)x H(curl; 2). The boundary
operator D is such that for all (H, E), (h,e) € W,

<D(H, E), (h, e))W/7W = (VXE, h)[LZ(_Q)]3 — (E, VXh)[LQ(_Q)]z (64)
+ (H,Vxe)[sz(Q)]s - (VXH, €)[L2(Q)]3.
Letting (M (H, E), (h,e))w w = —(VXE,h)r2a)2 + (E, Vxh)r2o)p +
(H, VX@)[Lz(Q)]a —(VxH7 6)[L2(Q)]3, then (Ml)*(MQ) hold and V = {(]‘]7 E) S
W (Exn)lgn = 0}, i.e., homogeneous Dirichlet boundary conditions are en-
forced on the tangential component of the electric field.
Let a; > 0, ag > 0, and 1 > 0 (these design parameters can vary from
face to face) and for all F' € Fy, set

777777777777777 . (65)

where N' = 22:1 npR* € R33 and Ny is defined similarly by substituting
np to n. Then, letting Mp(H,E) = Mp(H,E) and Sp(H,E) = Sp(H, E),
assumptions (DG1)—(DG7) hold. Hence, if the exact solution is smooth enough,
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1
IE = Enlliz2@p + 1H = Halliz2 2y + 102 VX (E = Ep)|ln, (22 )8
1 1
+ 02 VX (H = Hp)lln 2@ S W2 (H, E)|| e @ys- (66)

The above Friedrichs’ system can also be equipped with the 2x2 block
structure analyzed in mS4 by setting 2 := H and z* := E. Take

,,,,,,,,,,,,,,,,,,,,,,,,,

0 Oégh NNF

Then, letting Mp(H,E) = Mp(H,FE) and Sp(H,E) = Sp(H, E), assump-
tions (LDG1)—(LDG8) hold. Hence, if the exact solution is smooth enough,

|E — Enlliz2eys + M H — Hylliz2(2ys + VX (E = En)|ln,z2 29
S PPU(H, Bl e oy v 2y (68)

6 Concluding remarks

In this paper we have presented a unified analysis of DG methods by making
systematic use of Friedrichs’ systems. As already pointed out by Friedrichs,
such systems go beyond the traditional hyperbolic/elliptic classification of
PDE’s. Furthermore, DG methods as presented herein appear to be merely
stabilization methods where the boundary operators Mg and the interface
operators Sg have to be set (tuned) by the user so as to comply with the
design criteria (DG1)—(DG7) or (LDG1)—(LDGS).
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Summary. The last few years have witnessed substantive developments in the com-
putation of highly oscillatory integrals in one or more dimensions. The availability
of new asymptotic expansions and a Stokes-type theorem allow for a comprehensive
analysis of a number of old (although enhanced) and new quadrature techniques:
the asymptotic, Filon-type and Levin-type methods. All these methods share the
surprising property that their accuracy increases with growing oscillation. These
developments are described in a unified fashion, taking the multivariate integral
[, f(x)e?")dV as our point of departure.

1 The challenge of high oscillation

Rapid oscillation is ubiquitous in applications and is, by common consent,
considered a ‘difficult’ problem. Indeed, the standard technique of dealing
with high oscillation is to make it disappear by sampling the signal sufficiently
frequently, and this typically leads to prohibitive cost.

The subject of this article is a review of recent work on the computation
of integrals of the form

15.9) = [ f@er@av, (1)
10
where 2 C R" is a bounded open domain with piecewise-smooth boundary,

while f and the oscillator g are smooth. We assume in (1) that w € R is large
in modulus, hence I[f, {2] oscillates rapidly as a function of w.
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A natural technique to compute (1) in a univariate setting is Gaussian
quadrature. Yet, a moment’s reflection clarifies that it is likely to be absolutely
useless unless |w| is small. Classical quadrature (with a trivial weight function)
is just an exact integration of a polynomial interpolation of the integrand.
However, if the integrand oscillates rapidly, and unless we use an astronomical
number of function evaluations, polynomial interpolation is useless! This is
vividly demonstrated in Fig. 1. We have computed

1 1 1 1
. 1 1 _1

/ cosze dr = ——— exp (i) {erf (i — ) et <i o ﬂ
~1 2(—iw)z 1w (—iw)= (—iw)

by Gaussian quadrature with different number of points. The figure displays
the absolute value of the error as a function of w € [0,100]. Note that, as
long as w is small, everything is fine, but as soon as w is large in comparison
with the number of quadrature points and high oscillation sets in, the error
becomes O(1). As a matter of fact, given that I[f] ~ O(w’%), the trivial
approximation I[f] = 0 is far superior to Gaussian quadrature with 30 points!

Yet, efficient and cheap quadrature of (1) is perfectly possible. Indeed, once
we understand the mathematical mechanism underlying (1), we can compute
it to high precision with minimal effort and, perhaps paradoxically, the quality
of approzximation increases with w.

Nl

10
/‘J\/‘\‘ /\/\

Fig. 1. Error in Gaussian quadrature with 2 = (—1,1), f(z) = cosz, g(z) and v
points. Here v increases by increments of five, from 5 to 30.
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This article collates a sequence of papers by the authors into unified nar-
rative. In particular, we revisit here the work of [8, 10, 16] and [17], to which
the reader is referred for technical details, more comprehensive exposition and
a wealth of further numerical examples.

The conventional organising principle of quadrature is a Taylor expansion.
Once the integrand oscillates rapidly, a Taylor expansion converges very slowly
indeed and is, to all intents and purposes, useless. Instead, we need to exploit
an asymptotic expansion in negative powers of w. In Section 2 we present an
asymptotic expansion of (1) in the case when the oscillator g has no critical
points: Vg(x) # 0 for all z € cl 2 and subject to the nonresonance condition:
Vyg(x) is not allowed to be normal to the boundary 92 for any x € 912.

The availability of an asymptotic expansion allows us to design and analyse
effective quadrature methods, and this is the subject of Section 3. We single
out for consideration three general techniques: asymptotic methods, consisting
of a truncation of the asymptotic expansion of Section 2, Filon-type methods,
which interpolate just f(x), rather than the entire integral [3], and Levin-type
methods, which collocate the integrand [11].

In Section 4 we consider the case when critical points are allowed. A com-
prehensive theory exists, as things stand, only in one dimension, hence we
focus on g : [a,b] — R and study the case of ¢’(§) = 0 for some & € [a, )],
g # 0 for [a,b] \ {£{}. (Obviously, we are allowed, without loss of generality,
to assume the existence of just one critical point: otherwise we integrate in
a finite number of subintervals.) An asymptotic expansion in the presence of
a critical point presents us with new challenges. In principle, we could have
used here the standard technique of stationary phase [15, 18], except that it
is not equal to our task. We present an alternative that leads to an explicit
and workable expansion. It is subsequently used to design asymptotic and
Filon-type methods: unfortunately, Levin-type methods are not available in
this setting.

The purpose of the final section is the sketch gaps in the theory and com-
ment on ongoing challenges and developments. Moreover, we describe there
briefly the recent method of [5], as well as the work in progress in Cambridge
and Trondheim.

Quadrature of (1) represents but one problem in the wide range of issues
originating in high oscillation. Quite clearly, a more significant challenge is to
solve highly oscillatory differential equations. It is thus of interest to mention
that the availability of efficient highly oscillatory quadrature is critical to
a number of contemporary methods for ordinary differential equations that
exhibit rapid oscillation [2, 6, 7, 12].

2 Asymptotic expansion in the absence of critical points

We restrict our analysis to R?, directing the reader to [10] for the general
case. Let first {2 = So, the triangle with vertices at (0,0), (1,0) and (0,1).
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The nonresonance condition is thus
gy(7,0) #0, x€[0,1],  g.(0,y9) #0, yel0,1],

Integrating by parts in the inner integral,

1 1-y ‘
I[gif7 82] = / / gi (Jf, y)f(.%‘, y)e“"g(fﬁ,y)dx dy
0 JO
1 1

— [ g.(1—y,y)f(l—y,y)ert7vvdy

1w 0
1 [t . 1 [0
- 0,9)f(0,y)e 0¥ dy — —1 | = S
) 92(0,9) f(0,y)e V- (%(gxf), 2
1 ! .
= — go(x,1 — ) f(x,1 — x)ewg(m’kz)dx
1w 0

1 [t . 1 d
_ 1 iwg(0y) g, _ 7|9
), 92(0,9)f(0,y)e dy — —1I {%(gxf),é‘z]-

By the same token,

1/t _ B
I[g;ﬁ 82] = r /0 gy(x, 1-— x)f(m7 1— x)elwg(gc,l )d.’L‘
1 ' i 1 0
1wg(w,0)d I .
w Jo 9y(,0)f (x,0)e U [321 (gyf)’SQ]

Adding up, we have

IV 18] = - (0 4 285 1+ 01) — 19T (99). 53]
where
M, = /0 0] V(e 0@ dz,
My = \/5/01 f(z,1—x)[ng Vg(z,1 — z)]ews ™= dg,
M; = /01 £(0,9)[ng g(0,y)le™7 ) dy.
Here

nl = O n2 = g n3 = 71
-1 ’ ? ’ 0

are outward unit normals at the edges of Ss.

Since Vg(z,y) # 0 in cl Sa, we may replace above f by f/||Vgl||? without
any danger of dividing by zero. The outcome is
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LN S SRR i C.) B S
1581 = [ 500 08 ®)

L fer( f
" [V <||Vg||2vg) ’82} '

Extending this technique to R", it is possible to prove that (2) remains
true once we replace So by S, C R", the reqular simplex with vertices at 0
and ey, ..., e,.

Let

fm71<w)
IVg(z)|?

We deduce from (2) (extended to R™) that

folw) = f(@), fmsz[ Vg(w)}, menN.

1 1
I[fm,Sn] = — / T Vg(z) L (””)2 9@ AS — —TI[fni1, 8], m €Ly
W Jas, [Vg(z)ll 1w

Finally, we iterate the above expression to obtain a Stokes-type formula, ex-
pressing I[f, S,] as an asymptotic expansion on the boundary of the simplex,

-3 e [ Ve s, )

= 85, V()|

We wish to highlight four important issues. Firstly, a trivial inductive
proof confirms that each f,, can be expressed as a linear combination of f
and the first m directional derivatives (altogether, (”‘LQH) quantities), with
coefficients that depend on the oscillator g and its derivatives.

Secondly, the simplest (and most useful) special case is n = 1, whence (3)
reduces to

> elwg(1) elwg(0)
[ o). @

[f’ O 1 Z —1w m+1 g’(l) fm(l - W

=0

Thirdly, using an affine transformation, we can map S, to an arbitrary
simplex in R". Applying an identical transformation to (3), we deduce that it
is valid for I[f,S], where S C R" is any simplex.

Fourthly, the boundary of S is itself composed of n+ 1 simplices in R" ™!,
Because of the nonresonance condition, the gradient of the oscillator does not
vanish in any of these simplices and we can apply (3) therein: this expresses
I[f,S] as an asymptotic expansion over (n — 2)-dimensional simplices. We
continue with this procedure until we reach 0-dimensional simplices: the n+1
vertices of the original simplex. Bearing in mind our first observation, we thus
deduce that

~ Z Ty Onlf] (5)
m=0
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where each ©,, is a linear functional which depends on 9/%l f /0x?, |i| < m, at
the n + 1 vertices of S. Note that I[f,S] = O(w™").

In general, the functionals @,, are fairly complicated, the univariate case
(4) being an exception. However, it is the existence of (5), rather than its
exact form, which render possible the design of efficient quadrature methods
in the next section.

Let 2 C R™ be a polytope, a bounded (open) domain with piecewise-linear
boundary. (Note that {2 need be neither convex nor even simply connected.)
We may then tessellate {2 with simplices (21, {2,..., 2, € R", therefore

2= 1. 2] (6)

A simplicial complex is a collection C of simplices in R" such that every face
of @ € Cis also in C and if &1 N Py # () for 1, Py € C then &1 NP, is a face
of both ¢; and ®, [14]. We may always choose a tessellation composed of all
n-dimensional simplices in a simplicial complex. In finite-element terminology,
this corresponds to a tessellation without ‘hanging nodes’.

Assume that the nonresonance condition condition holds for the oscilla-
tor g. We may always choose a simplicial complex so that the nonresonance
condition is valid in each (2, otherwise we vary the internal nodes. Clearly,
once we can expand asymptotically each I[f, £2;], we may use (6) to expand
I[f, £2]. Bearing in mind (5), this means that the entire information needed
to construct such an expansion is the values of f and its derivatives at the
vertices of the {2;s. However, a moment’s reflection clarifies that only the
original vertices of {2 may influence the expansion: the internal vertices are
arbitrary, since there is an infinity of simplicial complexes consistent with
the nonresonance condition. In other words, because of our construction of
the tessellation via a simplicial complex, the contributions from neighbour-
ing simplices cancel at internal vertices and each ©,, depends on f and its
derivatives at the original vertices of (2.

3 Asymptotic, filon and levin methods

3.1 Asymptotic methods

The simplest and most natural means of approximating (1) consists of a trun-
cation of the asymptotic expansion (5) (replacing S by a polytope (2). This
results in the asymptotic method

s—1

QS 02 Z Sy Omlf] (7)

m:O

bearing an asymptotic error of
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QAL O —I1f, 2] ~ O(w™™°),  |w| > 1.

We say that Q% is of an asymptotic order s + n.

Asymptotic quadrature is particularly straightforward in a single dimen-
sion, since then its coefficients are readily provided explicitly by an affine
mapping of (4) from (0,1) to an arbitrary bounded real interval.

In Fig. 2 we have plotted the absolute value of the error once

1
. i 1,2
/ rsin zeE@ T80 g
—1

is approximated by Q% with s = 1 and s = 2. The error (here and in the
sequel) is scaled by wP, where p is the asymptotic order, otherwise the rate of
decay at the plot would have been so rapid as to prevent much useful insight.
It is clear that, exactly as predicted by our theory, the error indeed decays as
(w)/wP, where 1 is a bounded function.

The coefficients of an asymptotic method are becoming fairly elaborate
in n > 2 dimensions. Thus, for example, for the linear oscillator g(z,y) =
K1 + Koy we have

®
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Fig. 2. Error, scaled by w?, in asymptotic quadrature of asymptotic order p with
2= (-1,1), f(z) = zsinz, g(z) =+ +2” and s = 1, p = 2 (on the left) and s = 2,
p =3 (on the right).
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Qé[fa 82] =

1 1 einlw eimgw
- 0,0) + ——
(—iw)? [mﬁgf( ) k1(k1 — K2)
1

1 1
+ m { {I%fz(oao) + Iﬁﬂ%fy(oao)]
: 2,%1 — K2
1K1W
e [H%(fﬂ — 2)?

fz(lvo)_ fy(170):|

R1 (Hl - /’12)2

iKow 7; M
+e [ ra (R _K2)2fr(0,1)+ 2(mr —Iig)ny(O’l)]}'

Note that all the coefficients are well defined, because of the nonresonance
condition.

Figure 3 exhibits the scaled error of two asymptotic methods, of asymp-
totic orders 3 and 4, respectively, in Sy. Yet, it is fair to comment that the
sheer complexity of the coefficients for general oscillators and polytopes lim-
its the application of (1) mainly to the univariate case. Another important
shortcoming of an asymptotic method is that, given w and the number of
derivatives that we may use, its accuracy, although high, is predetermined.
Often we may increase accuracy by using higher derivatives, but even this is
not assured, since asymptotic expansions do not converge in the usual sense.
Once w is fixed, it is entirely possible that Q% for some s > 1 is superior to
QR for all r > s.

3.2 Filon-type methods

Although an asymptotic method (1) is the most obvious consequence of the
asymptotic expansion (5), it is by no means the most effective. A more
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Fig. 3. Scaled error for Q) (on the left) and Q5 (on the right) for 2 = 8o, f(z,y) =
e~ and g(z,y) = = + 2y.
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sophisticated use of the asymptotic expansion rapidly leads to far superior,
accurate and versatile quadrature schemes.

Let ¢ be an arbitrary smooth function in the closure of the polytope
2 C R™ and suppose that at every vertex v € R" of 2 it is true that

ol ol
ozt wlv) = ozt

f(v), 0<[i|<s—1

It then follows at once from (5) (where, again, we have replaced S with (2)
that

I, Q) = I[f, Q) =Ilp— {, 2] ~O(w™ "),  |w[>1
This motivates the Filon-type method
QLA 2 = 116, 2) = [ pla)etr@ds. (®)
Q

Needless to say, the above is a ‘method’ only if I[p, 2] can be evaluated
exactly. In the most obvious case when ¢ is a polynomial, this is equivalent
to the explicit computability of relevant moments of the oscillator g,

pi(w) = / xtelwI@) g, =2 xlr, deZl.
0
We will return to this restriction upon the applicability of (2) in the sequel.

It is important to observe that in the ‘minimalist’ case, when ¢ interpo-
lates only at the vertices of £2, (1) and (2) use ezactly the same information.
The difference in their performance, which is often substantive, is due solely
to the different way this information is processed. While the error in (1) is
determined by the asymptotic expansion (5) of f, the error of (2) follows from
an asymptotic expansion of the interpolation error ¢ — f. The latter is likely
to be smaller.

Historically, Louis Napoleon George [3] was the first to contemplate this
approach in a single dimension, replacing f by a quadratic approximation at
the endpoints and the midpoint. This was generalized by [13] and [4], who
have considered general univariate interpolatory quadrature in which e“9(*)
plays the role of a complex-valued weight function. Yet, a thorough qualita-
tive understanding of such methods and an analysis of their asymptotic order
(indeed, the very observation that this concept is germane to their under-
standing) has been presented only recently: in the univariate case in [8] and
in a multivariate setting in [10].

In one dimension we construct Filon-type methods similarly to the familiar
interpolatory quadrature rules. Thus, we choose nodes ¢; < ca < --- < ¢y,
where ¢, and ¢, are the endpoints of (2, as well as multiplicities m € N”. The
function ¢ is the unique Hermite interpolating polynomial of degree 1'm — 1
such that
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cp(i)(ck):f(i)(ck), 1=0,...,mg, k=1,2... v

This is consistent with (2) with s = min{m4,m, }.

Note that, although asymptotic order is assured by interpolation at the
endpoints, it is often useful to interpolate also at internal points, since this
usually decreases the error. This is demonstrated in Fig. 4, where we revisit
the calculation of Fig. 2 using three Filon-type methods.

UWW R‘U‘/\dbﬁﬂh\f‘u Ml JW [ ,MM»WMWwmw\/wm

Fig. 4. Scaled error for Qf with ¢ = [~1,1], m = [1,1] (on the left), QT with
c=[-1, 4,4,1],m: [1,1,1,1] (at the centre) and Q5 with ¢ = [—1,1], m = [2,2]
(on the rlght) for 2 =(—1,1), f(z) = zsinz and g(z) = = + $2°.

Unlike (1), it is fairly straightforward to implement Filon-type methods in
a multivariate setting, using standard multivariate approximation theory. The
most natural approach is to take a leaf off finite-element theory, tessellate a
polytope with simplices (taking care to respect nonresonance) and interpolate
in each simplex with suitable polynomials. Note that there is no need to force
continuity across edges. In general, the computation of the moments might be
problematic, but it is trivial for linear oscillators g(z) = &' x.

Figure 5 displays a bivariate Filon-type quadrature of the integral of Fig. 3.
On the left we have used a standard linear interpolation at the vertices. On
the right the ten degrees of freedom of a bivariate cubic were quenched by
imposing function and first-derivative interpolation at the vertices and simple
interpolation at the centroid (3, %).

We mention that it is possible to implement Filon-type methods without
the computation of derivatives, using instead finite differences with spacing of
O(w™1) [9].

Filon-type methods are highly accurate, affordable and very simple to
construct. Yet, there is no escaping their main shortcoming: we must be able
to evaluate the moments p; of the underlying oscillator. In the next subsection
we describe another kind of quadrature methods that use identical information
and attain identical asymptotic order without any need to calculate moments.
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Fig. 5. Scaled error for Qf (on the left) and QF (on the right) for 2 = Ss, f(z,y) =
e”"% and g(z,y) = = + 2y.

3.3 Levin-type methods

Levin-type methods are quadrature techniques which do not require the com-
putation of moments. Indeed, if {2 satisfies the nonresonance condition, a
Levin-type method can be used to approximate I[f, (2] even if {2 is not a
polytope. We begin with an overview of the method described in [11]. If we
have a function F' such that

d

dz
then we can compute I[f, (a,b)] trivially. Defining the differential operator
L[F] = F' + iwg’'F and rewriting the above equation as L[F] = f, we can
now approximate F' by a function v that is a linear combination of v basis
functions 1, ¥, . . ., ¥, using collocation with the operator L. In other words,
we choose nodes ¢; < cg < -+ < ¢,, where ¢; and ¢, are the endpoints of the
interval {2, and solve for v using the system

Lv](ck) = f(ck), k=1,2,... v

{F(m)eiwg(x)] — [F/(.T) + iwg/(m)F(w)]eiwg(x) _ f(.’l?)eiwg(x)7

[16] generalized this method in a manner similar to a Filon-type method,
equipping collocation points with multiplicities m € N”. Now v is a linear
combination of 7 = 1"m — 1 functions. This results in a new system,

dt 4 ’
wllle) = o fle), =12 m k=120
We then define
QL[S (a,b)] = v(b)e“I®) — y(a)elw9(@)

which is equivalent to I[L[v]].
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One huge benefit of Levin-type methods is that they work easily on com-
plicated domains and complicated oscillators for which Filon-type methods
utterly fail. We demonstrate the method on the quarter-circle H = {(z,y) :
22 +y? <1, z,y > 0}, however it works equally well on other domains that
satisfy the nonresonance condition, including those in higher dimensions. In
the univariate version we approximated F', where L[F] = f, which enabled us
to ‘push’ the integral to the boundary of the interval, namely its endpoints.
We use this idea as an inspiration for the multivariate case: we begin by deter-
mining an operator L that will allow us to ‘push’ the integral to the boundary.
To do so, we use differential forms along with the Stokes theorem. Suppose
we have a function F' such that

F(z,y)es™¥) (dz + dy) = / f(,y)e oo dv.
oH H
Stokes’ theorem tells us that

1= [ Perasdy) = [ a[pes(as +ay)

_ / (F, +iwg, F)e9dy A da + (Fy + iwg, F)e“9de A dy
H
= I[F; + iwg, F — Fy — iwgy F]

Hence we use the collocation operator L[F| = F, + iwg, F — F,, — iwg, F'. For
simplicity, we write both the univariate and multivariate operator as L[F] =
J[F]+iwJ[g]F, where in two dimensions J[F| = F;—F},, and in one dimension
J[F] = F’'. Thus we determine a linear combination of basis functions v by
solving the system

M e =2 e, o<l L k=12 (9)
—L|\v|(C) = —= J(Ck), Sigmk— s =1,2,...,U,
ox? ox?

where ¢y, ..., ¢, is a sequence of nodes. Consequently,

I[f,H) = I[L[v], H] = /8Hvei‘”g(dx—|—dy)

5 s .
= / (COSt — sin t)’U(COSt, sin t)elwg(cos t,sin t)dt (10)
0
1 ) 1 .
0 0

We thus define Q'[f, H] by approximating each of these univariate integrals
using univariate Levin-type methods. For the proof of the asymptotic order we
assume that the endpoints of each of these integrals have the same multiplicity
as the associated vertex. For example, the multiplicity at ¢ = 0 of the first
integral is the same as the multiplicity at (cos0,sin0) = (1,0).
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We will show that, as in a Filon-type method, I[f, H] — Q'[f, H] =
Ow™™™) = O(w_s_2)7 where s is again the smallest vertex multiplicity.
We begin by showing that I[f, 2] — I[L[v], 2] = O(w~*""), where 2 = H or
a univariate interval. One might be tempted to prove this by considering it
as a Filon-type method with ¢ = L[v]. Indeed, it satisfies all the conditions
of a Filon-type method, except for the fact that L[v] depends on w. Hence, in
order to prove the error, we also need to show that f — L[v] and its derivatives
are bounded for increasing w. To do so, we impose the reqularity condition,
which requires that the vectors g,,9,,...,9,, where 7 = 1"m — 1, are linearly
independent. Here

Pja
pj,y
where
8|pk,1‘
pre CAICAICD
Pjk = : )
8‘Pk,nk‘
W(J[Q]%)(Ck)
while py 1,..., Py, € N, g = $mi(my + 1), are all the vectors such that

|Pgi| < my — 1, lexicographically ordered.

Note that we can rewrite the system (9) in the form (P + iwG)d = f,
where G is the matrix whose jth column is g;, P is a matrix independent of
w, d is the vector of unknown coefficients in v, and f is defined as

9Pl

ol P fler)

o, alpk,nkl
8:1313’””"1&‘ f(Ck)

From Cramer’s rule we know that d = det Dy, /det(P + iwG), where Dy, is
the matrix P+ iwG with the kth column replaced by f. Due to the regularity
condition, G is nonsingular, hence [det(P + iwG)]™! = O(w™7), where T is
equal to the number of rows in GG. Moreover, it is clear that det Dy, = (’)(wT_l).
Hence d;, = O(w™!), and L[v] = O(1) for increasing w. Thus, as in a Filon-
type method, I[f, 2] — I[L[v], 2] = O(w™*"").

If 2 is a univariate interval then we have just demonstrated that I[f, 2] —
Qf, 2] = O(w*‘“*l). In the multivariate case (and sticking to our example of
a quarter-circle: the general case is similar) we need to prove that I[L[v], H] —
Q[f, H] = O(w™*™"). Each of the integrands in (10) is of order O(w™!). It
follows that the approximations by @ are of order (’)(w_s_g). Hence we have



110 A. Iserles, S.P. Ngrsett and S. Olver

demonstrated that I[f, H] — Q-[f, H] = O(w*3’2). It is clear that this proof
can be generalized to other domains, with an asymptotic order n + s.

It should be emphasized that a Levin-type method attains exactly the same
asymptotic order as a Filon-type method, using the same information about
f. In fact, if £2 is a simplex and g is a linear oscillator then the two methods
are equivalent, assuming that the subintegrals in a Levin-type method have a
sufficient number of data points [17]. However, the latter requires significantly
more operations, assuming that the computation of moments is efficient, since
a system must be solved for each dimension. Moreover, [16] presents exper-
imental evidence that suggests that Levin-type methods are typically less
accurate than Filon-type methods, though this depends on the choice of os-
cillator g, on interpolation nodes, the closeness of f to a polynomial and the
choice of interpolation basis for the Levin-type method.

In Fig. 6, we approximate the same univariate integral as in Fig. 4, now
with Levin-type methods in place of Filon-type methods. As can be seen, in
conformity with the theory, the two methods share the same asymptotic order,
while the Levin-type method exhibits somewhat lesser accuracy.

nMM IO :

(0] (0] (0]
Fig. 6. Scaled error for Q% with ¢ = [-1,1], m = [1,1] (on the left), Q% with
c=[-1,-2,21], m = [1,1,1,1] (at the centre) and Q5 with e = [~1,1], m = [2,2]

(on the rlght) for 2 =(—1,1), f(z) = zsinz and g(z) =z + $2°.

In Fig. 7 we see how well can a Levin-type method handle two-dimensional
domains with nonlinear g. Specifically, we consider the quarter-circle H =
{(z,y) : 2?2 +y? < 1, 2,y > 0}. In the first figure we collate at each vertex
with multiplicity one for the bivariate system, and at the endpoints with mul-
tiplicity one for each univariate integral in (10). The second figure collocates
with multiplicity two at each vertices and with multiplicity one at (3, 3) for
the bivariate system, and collocates with just the endpoints with multiplicities
two for each univariate system. Note that H, not being a polytope, represents
a domain for which no viable theory exists for Filon-type methods.

In the univariate case it is possible to identify basis functions vy, which lead
to the highest-possible asymptotic order. Specifically, ¥r, = fr11/g’, where the
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Fig. 7. Scaled error for Q} (on the left) and Q5 (on the right) for 2 = H, f(z,y) =
e” % and g(z,y) = 2> +2 —y.

functions fj have already featured in the asymptotic expansion (4). We dwell
no further on this issue, referring the reader to [16].

4 Critical points

Once Vg is allowed to vanish in cl £2, the asymptotic formula (5) is no longer
valid. Worse, in a multivariate setting surprisingly little is known about as-
ymptotic expansions in the presence of high oscillation and critical points [18].
The situation is much clearer and better understood in a single dimension.*
This is due to the wvan der Corput theorem, which allows us to determine
the asymptotic order of magnitude of (1) [18]. Moreover, the classical method
of stationary phase provides an avenue of sorts, once we have taken care of
the behaviour at the endpoints, toward an asymptotic expansion [15, 18].
Unfortunately, this technique falls short of providing the entire information
required to construct an asymptotic expansion, while being complicated and
cumbersome.

In this section we describe an alternative to the method of stationary phase
which has been introduced in [8]. We revisit the method of proof of Section 2,
taking full advantage of the considerable simplification due to univariate set-
ting. Let us suppose for simplicity that 2 = (a,b) and there exists a unique
& € (a,b) such that ¢'(§) =0, ¢”’(§) # 0 and ¢'(z) # 0 for = € [a,b] \ {&}.
Clearly, the assumption that there is just one critical point hardly represents
loss of generality, since we can always partition (a,b) into such subintervals.
We will comment later on the case when also higher derivatives of g vanish at

4 In the univariate case critical points are often termed “stationary points”, but for
consistency’s sake we employ ‘multivariate’ terminology.
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£. Finally, the case of £ = a or £ = b can be obtained by fairly straightforward
generalization of our technique and is left to the reader.

A single step of our expansion technique in the absence of critical points
in a single dimension is

b
d |
I1f. (a,b)] = i ;((Z))Mewg(x)dx

= 0 - S )] - S| (4) )
FOREI0 g

and it does not generalize to our setting since division by ¢’ introduces polar
singularity at £. Instead, we add and subtract f(£) in the integrand,

b b B _
1 (an) = £(©) [ oo o [HOZLO L goras )

B 1 [ elws(®) ) elwg(a)
= FOwale) + o { S 0) - 1€ - St - 1160}

()]

Note that [f(z) — f(€)]/¢'(x) is a smooth function, since the singularity at &
is removable.

Iterating the last identity leads to an asymptotic expansion in the presence
of a simple critical point. Thus, we define

ifmfl(x) B fmfl(y)

fO(‘T) - f(x)v fm(x) = dz g’(x) , meN,
whence
I1F.(@.0] ~ 10(e) - s F) (12)
m=0

eiwg(b) eiwg(a)

- 1
"L {7 )= 5] = S o) = fut]

For x # & each f,, is a linear combination of f, f/,..., f(™) but at z = &
we have

fo&) = £(8),
1 1 " 7;9,”(5) ’
fl(f) - 29//(§)f (E) 29”2(5)]: (5)7
1 1 (iv) o igm(f) " 59///2(5) _ 1g(iv)(§)‘| "
f2(£) 89//2(§)f (5) 129//3(£)f (§)+ Sg”4(§) 1 g//g(g) f (6)
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and so on: in general, each f,,(£) is a linear combination of f((¢), i =
0,1,...,2m. The price tag of quadrature in the presence of critical point is
the imperative to evaluate more derivatives there.

Note that (12) is not a ‘proper’ asymptotic expansion, because of the
presence of the function pg(w). In principle, it might have been possible to
replace g by its asymptotic expansion, e.g. using the method of stationary
phase. This, however, is neither necessary nor, indeed, advisable. Assuming
that po can be computed — and we need this anyway for Filon-type methods!
— it is best to leave it in place. According to the van der Corput theorem,
po(w) ~ (’)(w_%)

It is straightforward to generalize our method of analysis to higher-order
critical points. Thus, if ¢V (¢) = 0,47 = 1,2,...,r, gt (&) # 0, in place of
(11) we integrate by parts on the right in

r—1 b
f; CL b Z %f / (CU o g)keiwg(w)dx
k=0

/ f@) = Sl P E)@ - 9F a4
1w g'(x) dz
Again, we obtain removable singularity inside the integral. Note that by the
van der Corput theorem I[f, (a,b)] = O(w™Y/(+1).

Truncation of (12) results in an asymptotic method, a generalization of
(1). Specifically,

ewI(®) qy.

s—1

QUf: (a,0)] = po(w) Y

— (—iw)m

Jm ()

s—1 1 eiwg(b) elwg(a)
=3 i { Sy Un® = ] = S @)~ S}

bears asymptotic error of s + %

Figure 8 revisits the calculation from Section 1 that persuaded us in the
inadequacy of Gaussian quadrature in the present setting: the calculation of
f_ll cosz ¢ dz. Note that Q" requires just the values of f at —1,0,1, while
Q% needs f and f' at the endpoints and f, f, f” at the critical point.

It is easy to generalize Filon-type methods to this setting. Nothing of
essence changes. Thus, we choose nodes a = ¢; < ¢cg < -+ < ¢, = b, taking
care to include &: thus, ¢, = € for some r € {2,...,v — 1}. We interpolate to
f and its first my — 1 derivatives at cx, k = 1,2,...,v, with a polynomial ¢
of degree m "1 — 1 and set

QS[fv (a7 b)] = I[QP» (a7 b)] (13)

Here s = min{my, | (m, — 1)/2],m,}. It follows at once from the asymptotic
expansion that

m=
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Fig. 8. The error for Q% (on the left) and Q5 (on the right), scaled by w? and w?
respectively, for 2 = (—1,1), f(z) = cosx and g(x) = 2%, with a stationary point
at the origin.

QU (@ b)) =11, (@ b)] + O(w ™), > 1,

and the method is of asymptotic order s + % As a matter of fact, a general-
ization of Filon in the presence of critical points is much more flexible than
that of the asymptotic method. We can easily cater for any number of critical
points, possibly of different degrees, once we include them among the nodes
and choose sufficiently large multiplicities.

Figure 9 shows the scaled error for three different Filon-type methods
for the same problem as in Figs 1 and 8. Note how the accuracy greatly
improves upon the addition of extra internal nodes. It is at present unclear
why the addition of extra internal nodes has a much more dramatic effect in
the presence of critical points.
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Fig. 9. Scaled error for Qf with ¢ = [~1,0,1], m = [1,3,1] (on the left), QT with
c = [71,75,0, %,1}, m = [1,1,3,1,1] (at the centre) and Qb with ¢ = [—1,0,1],
m = [2,5,2] (on the right) for 2 = (—1,1), f(z) = cosz and g(z) = 2°.
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5 Conclusions and pointers for further research

The first and foremost lesson to be drawn from our analysis is that, once we
can understand the mathematics of high oscillation, we gain access to a wide
variety of effective and affordable algorithms. This, of course, is a truism that
we might apply to just about every issue in mathematical computation, yet it
is of particular importance in the current framework. The overwhelming wis-
dom in much of classical treatment of rapidly oscillating phenomena is to find
means to make high oscillation go away. Thus, the ‘rule of a thumb’, ubiqui-
tous in signal processing, that a function should be sampled sufficiently often
within each period: in the current setting this translates to an approximation
of I[f,(a,b)], say, by partitioning (a,b) into a very large number of subin-
tervals of length (’)(w‘l) and using Gaussian quadrature within each ‘panel’.
However, the conclusion of this paper, and also of much contemporary work in
the discretization of highly oscillatory ordinary differential equations, is that
high oscillation renders solution easier!

Another reason why it is important to emphasize the role of mathematical
understanding in our endeavour is that so little is known about the asymp-
totics of I[f, 2] in general domains (2. A fairly complete theory exists for
Q2 =R" and for 2 = S"! (the (n — 1)-sphere), at least as long as there are
no critical points [18]. Yet, once we concern ourselves with bounded domains
with boundary and allow for the presence of critical points, a great deal re-
mains to be done. It is a sobering thought that the asymptotic behaviour of
I[f, 2], where 2 C R? is bounded and with piecewise-smooth boundary, is
unknown in general even if there are no critical points! Clearly, it depends
on the geometry of 02, an issue to which we will return, but it is presently
unclear how.

A thread running through our entire analysis is the centrality of an as-
ymptotic expansion of I[f, {2]. Once (5) is available, its truncation presents
us with an immediate means to compute the integral. Moreover, even if the
explicit form of (5) is unavailable, the very existence and known structure of
an asymptotic formula allow us to analyse better and more flexible quadrature
methods.

The assumption that {2 is a polytope is very restrictive. A naive means
of a generalization to arbitrary bounded domains {2 with piecewise-smooth
boundary is to approximate it from within by a convergent sequence of poly-
topes and use the dominating convergence theorem. This, however, might fall
foul of the nonresonance condition. Consider, for example, the linear oscillator
g(x) = k' x, € R? and a circular wedge £2 with angle o,

€T
Q_{m€R2 sl oy <1, arctan2<a}.
T

As long as
1

.
e 12,
VKT + K3 [ K1 ] ?
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we can approximate {2 with narrow wedges, pass to a limit and obtain an
asymptotic expansion, expressing I[f, (2] in terms of f and its derivatives at
(0,0) and (cos o, +sin ). Yet, if the above condition fails, the nonresonance
condition must be breached upon passage to the limit. It is important to
make it clear that the fault is definitely not in our method of proof. Once the
resonance condition fails, an (5)-like expansion is no longer true! For simplicity,
consider the bivariate unit disc 2 = S' and, again, a linear oscillator. We have

-

2
/ / (z,y)elwmztray) qydy,
(1- x2>2

Expanding asymptotically in the inner interval similarly to (4), we thus have
(assuming for simplicity that ko # 0)

2y dm .
[ N_if Z _1w m+1 |:elw’i2(1 =) d f( ,(1—372)2)

_ —iWi2(1—x2)5 dm (1 2\ iwki
e S —f(z,—(1—-2%)2)|e dz
Y
1 & 1 Logm 1. ol
- _ 1— 2\ 1\ Jiw[k1z+ ke (1—2 )2]d
= 2 Ty | a0 he :

an infinite sum of univariate integrals. However, before we rush to expand
them asymptotically, we observe that the new oscillators have critical points

at +r1/(k? 4+ k2)2. Our immediate conclusion is that I[f,S'] ~ O(w*%),
rather than the (’)(w_Q) which we might have expected. Worse, all our three

approaches fail. The moments of g(z) = k1x+k2(1—22)2 are unknown, hence
we have neither an asymptotic expansion d la (12) nor a Filon-type method.
Moreover, a Levin-type method fails because of the presence of critical points.

As long as the nonresonance condition is maintained throughout the ap-
proximation of {2 by polytopes, our methods can be extended to this setting.
This has been already done for Levin-type methods in [17]: cf. the discussion
leading to Fig. 7 in Section 3.

Our narrative underlies the importance of further research into quadra-
ture methods for highly oscillatory integrals, in particular in the presence
of critical points and when exact moments are unavailable. There are a few
natural ways forward, in particular Filon-type methods with suitable approxi-
mate moments and Levin-type methods with special treatment of small neigh-
bourhoods surrounding critical points (where the integral does not oscillate
rapidly). Both approaches are under active consideration. Another option is
quadrature methods based on altogether new principles, e.g. the recent tech-
nique of [5], who approximate (1) in a single dimension using a complex-valued



Highly Oscillatory Quadrature: The Story so Far 117

path along which €“9(*) does not oscillate. The underlying idea there, assum-
ing that both f and g can be analytically extended to the complex plane, is
to find a path from each endpoint of {2 = (a,b) to infinity alongside which
g9(z) —g(a) and g(z) — g(b), respectively, are real and negative. In place of (1)
it is then possible to integrate from b to z = oo and then from oo to a. Because
of exponential decay of the integrand, each integration can be accomplished
by familiar Gauss—Laguerre quadrature and the outcome matches Filon-type
and Levin-type methods in its asymptotic behaviour. We further note that
in the presence of critical points there is a need to integrate also along paths
joining them with z = co in a fairly nontrivial manner.

Other challenges in highly oscillatory quadrature abound. One obvious
generalization of (1) is

f(@) K (w, z)dV,
[0
where K oscillates rapidly for |w| > 1. Filon-type methods have been gen-
eralized to this setting in the important special case of the Bessel oscillator,
when 2 = (a,b) and K(w,z) = J,(wz) [20] but, by and large, this is an un-
charted territory. Another terra incognita is (1) where 2 is a general bounded
manifold with boundary, immersed in R".

We have already touched upon applications of highly oscillatory quadra-
ture to numerical methods for rapidly oscillating differential equations. Even
more ambitious goal is the analysis of highly oscillatory Fredholm equations
of the second kind

b
/ f@w)K (@, g, w)dz = \@)f(w) - gw),  yelabl,  (14)

where A(w) € C is not an eigenvalue of the underlying operator, and of the
corresponding spectral problem

1
| dewk@ye) = x@ete)  velad.  (9)
Both (14) and (15) are highly interesting because of their applications in
electromagnetics and in laser theory, but their treatment by ‘our’ methods is
hampered by the fact that the function f in (14) and the eigenfunction ¢ in
(15) themselves oscillate. This renders integration by parts, along the lines of
Section 2, fairly useless.

The spectral problem (15) has been solved for the kernel K(x,y,w) =
e“?¥ by demonstrating that ¢ obeys a specific Sturm-Liouville problem [1].
The asymptotic behaviour of the spectrum for K (z,y,w) = ¢“l7=¥l hag been
investigated by [19]. A detailed investigation of this kernel, inclusive of an
asymptotic expansion of both eigenvalues and the solution of (14) in nega-
tive powers of w will feature in a forthcoming paper by Brunner, Iserles and
Ngrsett. Yet, in their full generality, highly oscillatory integral equations of
this kind represent an enduring and difficult challenge.
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Summary. We use the linear sampling method to determine the shape and sur-
face conductivity of a partially coated dielectric from a knowledge of the far field
pattern of the scattered electromagnetic wave at fixed frequency. A mathematical
justification of the method is provided for the full 3D vector case based on the use
of a complete family of solutions. Numerical examples are given.

1 Introduction

In a previous paper together with D. Colton [6], we have analyzed the use of
the linear sampling method to identify the shape of a coated dielectric in the
2D TM-polarized case. In addition we proposed and tested a heuristic formula
for calculating the surface conductivity from far field data. In this paper we
extend the techniques of [6] to the full three dimensional electromagnetic
scattering problem at a fixed frequency. Using approximation arguments we
shall provide a mathematical justification of the linear sampling method of
finding the shape of a coated dielectric. Such arguments avoid the need to
analyze an appropriate interior problem appearing in the theory (the “interior
transmission problem”). Assuming that the interior transmission problem is
well-posed (currently an open problem), we then derive a formula for the
surface conductivity. Computational results for simple model problems show
that the linear sampling method can reconstruct the surface conductivity .

The physical relevance and background for the inverse problem in this
paper is discussed in [6] and we direct the reader there for further references.

The plan of our paper is as follows. In Section 2 we formulate the direct
and inverse scattering problem for a dielectric that is partially coated by a
highly conductive layer. In Section 3, we then use the linear sampling method
[10] to determine the shape of the scattering object. We also discuss how
to additionally recover the surface conductivity from the scattering data. In
Section 4, we conclude by providing some numerical examples.
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2 Formulation of the direct and inverse scattering
problem

Let D C R? be a bounded region with boundary I' such that D, := R3\ D
is connected. Each simply connected piece of D is assumed to be a Lipschitz
curvilinear polyhedron. Moreover we assume that the boundary I' = I} U
II U I is split into two disjoint parts I'7 and I having IT as their possible
common boundary in I" which is assumed to be a union of Lipschitz curves.
The domain D is the support of an anisotropic object that is partially coated
on a portion I of the boundary by a very thin homogeneous layer of a highly
conductive material and the incident field is a time-harmonic electromagnetic
plane wave with frequency w (I'; may be the empty set which corresponds to
a fully coated obstacle!). The interior electric and magnetic fields Ent, Hint,
and the exterior electric and magnetic fields E*t, He*!, satisfy

V x Bt — jwugHet = ()

in D, (1)

V x H 4+ jweg Bt = 0

V x Eint iw,uoﬁi”t =0
in D (2)

V x H" + (iwe(x) — o(x)) B =0
and on the boundary I

v x B —y x Bt =0 on I (3)
vx H —y x H™ =0 on I (4)
vx H — y x H™ =7 (v x EY) x v on Ib. (5)

The electric permittivity €y and magnetic permeability pg of the exterior
dielectric medium are positive constants whereas the scatterer has the same
magnetic permeability jo as the exterior medium but the electric permittivity
e and conductivity o are real 3 x 3 matrix valued functions. The constant
77 > 0 describes the physical properties of the thin coating layer [1]. If we

define E(ext,int) — %E(ext,int)’ ﬁ(ezt,mt) — \/%H(ext,int)7 k2 = GOMO"‘}Q’

N(z) = é (e(x) + igf) ), and 7] = , /%7 we obtain the transmission problem
V x Eert — jkHe = 0

in D, (6)
V x He® 4+ kB =0

V x EBint — ilHint — 0
in D (7)
V x Hi" 1 ikN(z)E™ =0
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vXx B —yx E™ =0 on I (8)
vX H" —yx H™ =0 on I} (9)
vx H*' —y x H™ = (v x E“Y) xv on Iy, (10)

where the exterior field E¢**, H¢*! is given by

E' = E'+ E* (11)
H*' = H'+ H°, (12)

E*, H? is the scattered field satisfying the Silver Miiller radiation condition

lim (H®* x 2 —rE®) =0 (13)

T—00

uniformly in & = z/|z|, » = |z|, the incident field E*,H' is given by

Ei(z) = %v X V x petd = ik(d x p) x deihe-d (14)
Hi(z) ==V x pet*®d = jkd x petk©d,

where the wave number k is a positive constant, d € 2 := {z € R?: |z| =1}
is a unit vector giving the direction of propagation and p is the polarization
vector.

In the following we assume that N is a 3 x 3 symmetric matrix-valued
function whose entries are in C*(D), and N satisfies £ - Im (N)¢ > 0 and
€-Re(N) €& > v|¢)? for all € € C? and all z € D where 7 is a positive constant.
In order to formulate precisely the forward problem we need the following
spaces. Letting (H*(D))3, (Hi .(D.))® and (H*(I"))3, s € R, denote the prod-
uct of the standard Sobolev spaces defined on D, D, and I respectively (with
the convention HY = L?), and

H(curl, D) := {u € (L*(D))® : V xu € (L*(D))*}
LX) :={ue (L*(N)* :v-u=0 on I}
LI(I) := {u|p, :u € LI},

we introduce the space
X(D,Iy) :={u € H(curl, D) : v xu|p, € LI(I%)}
equipped with the norm
lul %o, ) = l3reurt, py + 17 X wll72(ryy- (15)

For the exterior domain D, we define the above spaces in the same way for
every D, N Bg, with B a ball of radius R containing D and denote these
spaces by Hjoe(curl, D.) and Xj,.(De, I'2), respectively. Finally, we introduce
the trace space of X (D, I%) on I" by
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Y(I) := {h € (H-Y2(I))? : Fu € Ho(eurl, Bp), » % U € Li(I3) }

and h=vxu|pr

where Hy(curl, Bg) is the space of functions w in H (curl, Br) satisfying & xu =
0 on the boundary of Bgr. As shown in [7] Y'(I") is a Banach space with respect
to the norm

1PNy = inf {lullFr eurt, ) + 1V % U”%g(m)} (16)

where the infimum is taken over all functions u € Hy(curl, Br) such that v x

Z1
u|p, € L7 (I%) and h = v x u|p. In fact Y (I") coincides with H ;2 (I") N L7 (I%)
where

Hy2 (D) = (we (), vou=0, divrue H (1))

is the trace space of v x u| for u € Hy(curl, Bg) (see [4] and [2, 3] for the case
of Lipshitz boundaries). We also recall that the trace space of (v X u) x v|r
for u € H(curl, Bg) is defined by

H_2/(I) = (u e(H )}, v-u=0, culrue H—%(F)) :
and a duality relation is defined between Hd_j (I') and Hd_f ().

Expressing the magnetic fields in terms of the electric fields, the direct scat-
tering problem becomes a particular case of the following problem: Given
feyY(),heY(I), hy € L3(I}) find E* € Xipe(De, I), E™ € X (D, I3)
such that

VxVxE—kE*=0 in D, (17)
VxVxE™_E2N(z)E™ =0 in D (18)
vXE*—vxE™M=f on I (19)
- 0 on I}
s\ __ int)
vx(VxE*)—vx(VxE )_h+{iknE%+h2 on I (20)
lim, oo ((V X E®) X © —ikrE®) =0 (21)

where up denotes the tangential component (v x u) X v. Note that the direct
scattering problem corresponds to f := —v x E|p, h :== —v x (V x EY)|r,
and hy = ikn E%|r,.

The following theorem concerning the well-posedness of the above problem
was proved in [9].

Theorem 1. The transmission problem (17)-(21) has a unique solution E'™ €
X(D,Iv), E* € Xioc(De, I'y) which satisfies

IE™ | x(D.r2) + 1Bl x B\ D1y < C <||f||Y(F) + |Pllyry + Hh2||L§(F2)>
(22)
for some positive constant C' depending on R but not on f, h and hs.
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It is known [11] that the radiating solution E® to (17)—(21) has the asymptotic

behavior ikl .
B (z) = {Ew(@) +0 < ) } (23)

|| ||

as |z| — oo, where E, is defined on the unit sphere {2 and is known as the
electric far field pattern. In the case of incident plane waves given by (14) the
electric far field pattern depends on the incident direction and polarization
which will be indicated by Foo (%) = Ex (&, d, p).

The inverse scattering problem we are concern with is to determine D and
7 from a knowledge of the electric far field pattern E (&, d, p) of the scattered
field E* for &, —d € {2y, where {2 is a subset of the unit sphere {2, and three
linearly independent polarizations p. Note that no a priori knowledge of the
amount of coating is required.

3 Analysis of the inverse problem

Now we turn to the inverse problem for the vector case. Given the incident
plane wave E' = ik(d x p) x de?**? and the corresponding electric far field
pattern E (2, d, p) for , d in the unit sphere 2 and three linearly independent
polarizations p, determine D and 7. Uniqueness results for the inverse problem
can be found in [9]. The aim of this paper is to show how to reconstruct D
and 7 from the given data.

3.1 Shape reconstruction

The analysis of this inverse problems follows the lines of the analysis of the
inverse problem in the scalar case treated in [6]. We define Mazwell eigenvalues
to be the values of k for which

VxVxE+kEN@)E=0 in D
vx E=0 on I

has a nontrivial solution, and transmission eigenvalues the values of k for
which

2 _
{VVXXVVXEE—OI#J];@SJE:OO n D (24)
vXE—-vxFEy=0 on I' (25)
vXx (VXE)—vx(VxE)=0 on I (26)
vX (VX E)—vx(VxEy)=—ikn(vx Eg)xv on Iy. (27)

has a nontrivial solution. Note that if £ - Im (N)¢ > 0 at a point zg € D
Maxwell eigenvalues and transmission eigenvalues do not exist.
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We now define an electromagnetic Herglotz pair to be a pair of vector fields
of the form

Byw) = [ lgla)ds(d),  Hyw)= VX Ey) (29)
2

where g € L7(£2). It is easy to see that V x V x E; — k?E, = 0. Next we
consider the vector space
E(D):={F e X(D,I3),Vx EeX(D,I3),
VxVxE-kN(@)E=0inD}

and define the subset of Y(I") := Hd“j (I') x Y(In) x LZ(I2) by

E={vx(Ey—FE),vxVx(E;—E)|p,
vxVx(E;,—FE)—ikn(vx Eg) xv|p,}

for all E € E(D), g € L#(I'), E, the electric field of the electromagnetic
Herglotz pair with kernel g, where Y(I) := {h|r, : h € Y(I)}.

Theorem 2. Suppose that k is neither a Mazwell eigenvalue nor a transmis-

sion eigenvalue. Then & is dense in Y(I').

Proof. Let ¢ € chrl( ) and ) € chl([’) N L?(I3) such that

/ux(Eg—E)-<pd5+/1/><V><(Eg—E)wds—/ k()b ds = 0 (29)

I
r r

for all g € L7(£2) and F € E(D). Note that ¢ € chl( ) and ¢|p, € Y(I7)
(see [7], Section 2.2 for the characterization of the dual space Y (I1)"). The
first and the second integral in (29) is understood in the sense of duality
paring between H;j (I') and H;w% (I') while the third integral containing 7 is
understood in the L7(I%) sense. Setting first £ = 0 in (29) and interchanging
the order of integrations we obtain

0= & x /(go x v)e M ds ik i x /(w x v)e”hYE gs (30)
r r

—ikzn/[(u X ) x v]e VT ds b x 7
I

The right hand side of the above expression is the far field pattern of the
following electric and magnetic dipole distribution defined by
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Pla) = 59 %V x [(pl) x »)(a.p) ds,
r

V% / ((y) x v)B(x,y) ds,

r
—ig V X V x /[(y x )(y)) x V®(z,y) ds, (31)
I

1 etklz—yl

where &(z,y) 1= ;- FETRE Therefore we conclude that P(x) = 0 in D, :=

R3\ D. Hence taking the limit of P(x) as z — I" from both sides we obtain
vXPT=—-vxy vXVXPT —ikfvx P )Xxv=vxXxep

on I', where the superscript - indicates the limit obtained by approaching the
boundary I" from D, and 7 = 0 on I} and 7 = 1 on I5. We remark that
P(z) and curl P(x) are both square integrable in any compact subset of D

and D,. Furthermore, since ¢ X v and @ X v are in H;j (I'), the potentials
over I' in (31) and the corresponding jump relations are well defined from
potential theory for single layer potentials with H ~2 densities [17], while the
jump relations for the potential over I, with L? density is interpreted in the
sense of the L? limit ([11] p.172). Next, setting E, = 0 in (29), using the
expressions for ¢ and 1 and Green’s formula together with a parallel surfaces
argument (see [14]) we obtain

0:/[(1/><P’)~V><E—(V><E)~V><P’
r
—ikij(v x E) - (v x P7)] ds

=k* [ P-(I-N)Edx—ikn | (vxE)-(vxP)ds. (32)
/ /

I

Note that P € L?(D). Now let F € H(curl, D) be the unique solution (c.f.
[18]) of

VxVxF—k:QNF:IcQ(I—N)P in D
vxF=0 on I.

Using the vector Green formula for E and F', from (32) we obtain

/(uxE)-Vdes:—kQ/P_~(I—N)de
D D

= —ik‘n/F (vxE)-(vxP7)ds.



126 Fioralba Cakoni and Peter Monk

Hence
/(VXE)- [V X F+ikn(vx P7)] ds=0
r

for all E € E(D) whence
vXVXF4+iknfvx PT)xv=0 on I

since k is not a Maxwell eigenvalue. Now we observe that P and E=P+F
satisfy

VxVxXxP—-k’P=0 .
{VXVXE—k2N(x)E=0 D (33)

vxE—vxP=0 on I’ (34)
vx (VXE)—vx(VxP)=0 on I (35)

vx (VX E)—vx(VxP)=—iknlvx P)xv onl} (36)

which implies that P = E=0inD provided k is not a transmission eigen-
value. Therefore ¢ = 1 = 0 which proves the theorem. We remark that, in
order to conclude that P = E = 0 in D, the H(curl, Dy)-regularity of P,
where D, C D allows us to apply the vector Green’s formula in any com-
pact subset Dy, of D and then take the limit of the surface integrals since the
boundary relations in (33)—(36) hold in the L2-limit sense (see Lemma 2.1 of
[6] for a similar proof in the scalar case). n

Next we define the far field operator F : L?(§2) — L?(12) by

(Fg)(z) :== /Eoo(:i:,d,g(d))ds(d), €N and g€ Li(N) (37)
(9]

and look for solutions g € LZ(£2) of the far field equation

(Fg)(i') = Ee,oo(‘%ﬂ Z7q) (38)

where

ik s —iki-z
— X X
e g xae

is the electric far field pattern of the electric dipole with polarization ¢ given
by

Ee oo, 2,q) =

E.(z,2,q) == %vx X Vg x qP(z,2) (39)
with &(x, 2) := ﬁ ET;‘:? . We can now prove the following theorem.

Theorem 3. Assume thatk is neither a transmission eigenvalue nor a Mazwell
eigenvalue and let F be the far field operator corresponding to (6)-(13). Then
we have:
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1. For z € D and every e > 0 there exists a solution g € L?(§2) of the
inequality
1F9e = Be,oo (s 2,0l L2(02) < €

such that ||Eg:||x(p,r,) < 0o where Ey= is the electric field of the electro-
magnetic Herglotz pair with kernel g?. Moreover, for a fized € > 0

Jim 19222y = 00 and  lim [[Eg:[lx(p.r,) = oo-

2. For z € R3\ D and every e > 0 and § > 0 there exists a solution 925 €
L2(02) of the inequality

||Fgez76 - EE,OO('7 ZaQ)HLZ(Q) <€+ 6
such that
}13(1) l9ZsllL2(0) =00 and gig%)HEg;éHX(D,Fz) = 00,

where Eg?,s is the electric field of the electromagnetic Herglotz pair with
kernel gZ 5.

Remark 1. Note that, in Theorem 3, E,: for z € D is such that v x E,: and
v x V x Eg: converge with respect to the Y (I") norm as € — 0.

Proof. The proof follows the lines of the proof of Theorem 2.6 of [6]. Let B
denotes the linear bounded operator which maps f := v x E|p, h:=v x (V x
E)|r and hy := ikn(v x E) X v|p,, where E € X (D, I';) satisfies Vx V x E —
k?E = 0, onto the electric far field pattern of the corresponding solution of
(17)—(21). Exactly in the same way as in Lemma 2.5 of [6] by making use of
the result of Theorem 2 and using the divergence free vector spherical wave
functions [11], one can show that B : Y(I') x Y(I') x L}(I3) — L?(R2) is
compact, injective and has dense range provided that k is neither a Maxwell
eigenvalue nor a transmission eigenvalue.

Next consider z € D. Given € > 0 from Theorem 2 there exists E,: with
gz € L{(2) and E? € E(D) such that v x (Eg: — E?), v x V x (Eg: — EZ) —
iknj(v x E,4:) x v approximates v X E.(-,z,q), v X V x E.(-, z,q) — iknj(v x
E.(-, z,q)) X v in the Y(I") norm with discrepancy €, where 77 = n on I and
7 =0 on I. Noting that Fy: is the far field pattern of the electric scattered
field corresponding to Ey- as the incident field, from the estimate (22) and
the fact that the far field pattern depends continuously on the scattered field
we obtain that

1Fg2 5 — ool 2.)ll12() < Ce

where C'is a positive constant independent of €. As z — I', using (22) for the
solution of the direct scattering problem E. and E.(-, z,q) together with the
fact that lim._.p [|Ec(-, 2, @)l g (curt, Bp\5) = 0© One obtain that



128 Fioralba Cakoni and Peter Monk
lim, 92l L2(2) =00 and lim, | gz | x (D, 1) = 0

Now let z € R3\ D. From the theory of the ill-posed problems applied to the
compact operator B, we obtain

B(fZh25hT,) = Beoo(s 2, @) 2(2) <90

for an arbitrary small but fixed § where f& = v x E$, h = v x VX EY, hY, =
ikn(v x ES xv) with ES € X (D, Iy) is the regularlzed solution correspondlng
to the regularization parameter a chosen by a regular regularization strat-
egy (e.g. the Morozov discrepancy principle). Furthermore, we have that the
Y(I') x Y(I') x L?(I%) norm of (f&, h%, h$,) goes to infinity as o — oo. Note
that « — 0 as 6 — 0. Now the second part of the theorem follows from
the fact that EY can be approximated arbitrarily close with respect to the
X(D, I';)-norm by a Herglotz wave function E, (see Theorem 2.5 of [7]) and
the fact that Fig = B(vx Ey, vx VX Eg4,ikn(vx Eyxv)). This ends the proof. m

The above result provides a characterization for the boundary I' of the
scattering object D. Unfortunately, since the behavior of E,: is described in
terms of a norm depending on the unknown region D, F- can not be used to
characterize D. Instead the linear sampling method characterlzes the obstacle
by the behavior of ¢g?. In particular, given a discrepancy € > 0 and g7 the
e-approximate solution of the far field equation (38), the boundary of the
scatterer is reconstructed as the set of points z where the L?(2) norm of g7
becomes large. Alternatively one can try to use |Egy:| as an indicator function
of the boundary 0D of the scattering object D as it will be shown in the
numerical examples presented in Section 4 (although this is not justified by
the foregoing theory).

3.2 Identification of the surface conductivity

Assuming now that D is known, we want to determine the surface conductiv-
ity m by making use of the approximate solution g to the far field equation
(38). In [5] a formula for computing 1 in the 2D TE-polarized case is derived
and the mathematical justification is based on the analysis of a appropriate
boundary value problem called the interior transmission problem. The interior
transmission problem corresponding to our scattering problem reads: Find a
solution E, Ey of the following boundary value problem

{ V x V xE§ —kE; =0
VXV xE*—E’N(z)E*=0
vX E*—vx (Ef +FE.(,2,4q)=0 on I (41)
vXx (VX E?*)—vx|[VX(E;+E(,2,q)]=0 on I} (42)
vX (VX E?*)—vXx|VX(E}+E:(,z24)))
—ikn[v x (E§ — Ee(+,2,q))] X v on Iy (43)

in D (40)
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where E. (-, z,q) is the electric dipole given by (39), 2 € D and ¢q € R3.

As noticed in [6] the completeness result given by Theorem 2 does not suffice
to proceed further with the reconstruction of 7. It is essential in the following
analysis to know that the interior transmission problem has a (weak) solution
in appropriate Sobolev spaces. Unfortunately, the well posedness of (40)—(43)
is not yet established. In the case where n = 0, Haddar in [13] has shown that,
provided k is not a transmission eigenvalue and under some assumptions on N,
the interior transmission problem has a unique weak solution £% € L?(D) and
E¢ € L*(D) such that B — E¢ € H(curl, D) and V x (E? — E¢) € H(curl, D).

Congjecture 1. Assume that k is not a transmission eigenvalue and either ¢ -
Re(N—I)"teé>ql¢l2or £ Re(N —1)& > q|¢? forall € € C3, all z € D and
some v > 0. Then the interior transmission problem (40)—(43) has a unique
solution E* € L*(D), E € L?(D) and EZ|r, € L*(I3) such that E* — Ef €
H(curl, D), V x (E* — EZ) € H(curl, D) and v x V x (E* — E§)|, € L*(I%).
Assuming Conjecture 1, we now use the approximate solution g* for z €

D of the far field equation (38) to give an approximation for the surface
conductivity 7. To this end we need the following lemma.

Lemma 1. Assume that k is neither a Mazwell eigenvalue nor a transmission
etgenvalue. For any point z in D we have that

/Ez IIII(N)Ez dl""k’l]/‘l/ X (Eg +Ee('a Zaq)|2d8
D I,

K
= — gl + kRe (E§(2) (44)

where E* and E§ is a solution to the interior transmission problem (40)—(43).

Proof. From Theorem 2, for given € > 0, there exists a E* € E(D) and a
electromagnetic Herglotz pair with electric field Ey- and kernel g7 € L7(12)
such that

vX E?—FE.(,2,q) = Ey: + a.

vx VX (E?—=E.(,z27q)+iknvx E.(,z2,q)) xXv
=v X VX Eg: —ikn(v x Egz) x v+ 3

on I" where
| (ate; Be) llyry < e (45)

Now, let E* and Ef be the unique solution of the interior transmission problem
(40)—(43). Obviously, E? and E,: and converge to £* and Ej, respectively as
€ — 0 with respect to the graph norm L?(D)NL7(I%). Hence, EZ and E,- are
uniformly bounded together with their curl in the L?(D) norm. Applying the
vector Green’s formula to EZ and E. in D (see [18] for the case of H(curl, D)
functions) we obtain
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/(1/ x EZ -curl E? — v x EZ - cwrl EZ) ds = Qz/Ej -Im (N)EZ? dx. (46)
r D

On the other hand, using (45) and defining WZ := E,: + E.(, 2,q), we have
that

/(V x EZ -curl E? — v x E? - cuwrl E?) ds

uxWZ curl Wz —v x Wz - cuerZ)d

|
H\ ~

—Qikn/ (v x WZ) x v|*ds + R? (47)

where |R?| < Ce for a positive constant C' independent of e. Again using the
vector Green’s formula, the integral representation formula and connecting
the radiating solution E.(-, z,q) to its far field pattern as in [8] Theorem 3.1,
we obtain

/(l/ X WE-curl Wz — v x Wz - curl W7) ds (48)
ha

ik3 T
= o llalP + ikq - [By: (2) + By (2)] -

Hence, combining (46), (47) and (48) we have that
22/E N)E? dx + 2@]4:17/| vx W2 xv]*ds (49)
I
ik 2 . al z
= B kg (B () + By ()] - B

Now letting € — 0 in (49) we obtain the result. "

Theorem 4. Let z be a fized point in D, Im (N) = 0 and assume that k is
neither a Mazwell eigenvalue nor a transmission eigenvalue. Then for every
€ > 0 there exists an electromagnetic Herglotz function Eg: with kernel g7 €
L?(02) an approximate solution of the far field equation (5’8) such that

2
yo —talal® ~Re (Bp:(2) | _ (50)
I x (Egz + Ee(s 2, 0)32 1, |~

Proof. From the proof of Theorem 3 we have that the kernel g7 of the Herglotz
wave function Ey: in the proof of Lemma 1 is the e-approximate solution to the
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far field equation (38). Hence the result of the theorem follows from Lemma
1. L]

A draw back of (50) is that the extent of the coating I'; is not known. So, in
practice this expression only provides a lower bound for 7. In addition, due
to the accuracies in the determination of I' by the linear sampling method,
the computation of the outward normal v can be problematic hence the most
reliable lower bound for 7 is the following estimate

2
> —tlal? + Re (£, (2)
N H(Egz + Ee('7 ZaQ))llig(p)

(51)

where g, is the regularized solution of the far field equation (38) which is
previously computed to determine D.

4 Numerical example

For detailed numerical examples of shape reconstruction for coated objects,
and also of estimating the surface conductivity the reader can consult [12].
Here we will give a single numerical example that illustrates our more general
experience with the method. The numerical experiment is performed on syn-
thetic far field data computed using the Ultra Weak Variational Formulation
of Maxwell’s equations as described in [16]. This (already approximate) far
field data is further corrupted by noise as described in [12]. The far field data
is then used first to reconstruct the shape of the scatterer using the standard
Linear Sampling Method. This involves computing an approximate solution
to the far field equation (38) for many sampling points z by discretizing g on
the unit sphere and applying Tikhonov regularization and Morozov’s principle
to this ill-posed problem.

Once an approximation to the boundary of the scatterer is determined, the
conductivity n can be approximated using (50) or a lower bound estimated
using (51).

For this example we choose as test object the cube [—1,1]3. Outside this
cube N = 1 and within the cube N = 2. The entire cube is coated with n = .1
and k = 3 so the wavelength of the radiation is A = 2.09. Figure 1 shows the
result of reconstructing the cube using the Linear Sampling Method with 96
incoming waves (and 96 measurements) for each of two linearly independent
polarizations (the other parameters in the method including the surface chosen
for display are as in [12]). It is interesting to see that the Herglotz wave
function gives a much better reconstruction of the scatterer than the Herglotz
kernel.

Using the reconstructed surface in panel (c) of Fig. 1 we can estimate 7.
Alternatively we can test the formula (50) using the exact boundary in (a).
The exact value is = 0.1 using (50) gives n ~ 0.14 and using (51) gives
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Fig. 1. Reconstructing the cube: (a) the original scatterer showing the surface mesh,
(b) the reconstructed surface using the Linear Sampling Method and g, (c) a contour
map of 1/||g-|| in the plane z3 = 0 showing how the surface in (b) is obtained, (d)
a reconstruction of the scatterer using |Ey, (z)|. Surprisingly, use of the Herglotz
wave function E,, gives a much better reconstruction of the scatterer than use of
the kernel.

the same approximation. Of course the reconstructed scatterer is not very
accurate and this accounts for the rather poor approximation to 1 (the lower
bound is an overestimate for this reason also).

5 Conclusion

We have given some mathematical theory to substantiate the use of the Linear
Sampling Method for reconstructing the shape of coated dielectrics. Assuming
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a conjecture on the existence of solutions of an interior transmission problem
we have also derived a formula for the surface conductivity. Numerical results
here and elsewhere show that the method can be applied in practice. We hope
that the conjectured existence theory will be proved shortly.
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Summary. The paper is concerned with functional approach to the a posteriori er-
ror control for approximate solutions of differential equations. Functional a posteriori
estimates are derived by purely functional methods using the analysis of variational
problems or integral identities. They are intended to give computable minorants and
majorants for various measures of the difference between exact solutions and their
conforming approximations. Functional estimates contain no mesh dependent con-
stants and provide guaranteed lower and upper bounds of errors. In this paper, the
major attention is paid on a posteriori estimates in terms of local norms or locally
based linear functionals. It is shown that for linear elliptic and parabolic problems
functional estimates in global (energy) norms imply a posteriori estimates in terms
of local quantities.

1 Introduction

A posteriori error estimation methods for partial differential equations started
receiving attention in the middle of the 20th century (see [10, 13]). In general,
they are intended to solve two problems: (a) find reliable bounds of the overall
error encompassed in an approximate solution and (b) give an error indicator
for mesh—adaptive procedures. In the last decades, such topics as adaptive
methods, reliable computer simulation methods and a posteriori estimates for
differential equation were in the focus of numerous researches and are ex-
posed in a vast amount of publications. It is not surprising that finite element
methods (FEM) where one of the first were such methods were developed. At
present, such methods as “explicit residual”, “dual-weighted residual”, and
“equilibrated residual” (see, e.g., [1, 4, 2, 4, 27]) are widely used by numer-
ical analysts for a posteriori control of the quality of approximate solutions.
Methods based on post—processing (e.g., gradient averaging) form another
group of cheap and efficient error indicators (see, e.g., [3, 5, 28]). They gained
high popularity in engineering computations. Typically, a posteriori methods
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for FEM exploit specific features of approximations (Galerkin orthogonality,
superconvergence, higher regularity etc.).

In this paper, we consider another (functional) approach to the a poste-
riori error control of approximate solutions of differential equations. These
estimates are derived by purely functional methods using the analysis of vari-
ational problems or integral identities. Functional a posteriori estimates are
intended to give computable minorants and majorants for various measures of
the difference between exact solution u and any conforming approximation v.
In general, they have the following form:

Mo (D,v) < ®(u—v) < Mg(D,v)  WweV, (1)

where D is the data set (coefficients, domain, parameters, etc.) and & : V —
Ry is a given functional. Mg and Mg must be explicitly computable and
continuous in the sense that

Mg and Mg — 0, ifv—u
Typically, the the functional @ is presented on one of the following three forms:

S(u—v)=|u—2|gn (Il - [l isthe global (energy) norm);
S(u—v) = |lu—vo (|| - |l isalocal norm);

S(u—v)=<tiu—v> (£ isalinear functional).

Estimate (1) provides a computable measure for the deviation from the exact
solution u and, therefore, is also called a deviation estimate. The latter gives
the principal form of the a posteriori bounds for all conforming approxima-
tions of a boundary—value problem considered that follows from the theory of
partial differential equations. It does not attract specific features of the nu-
merical method, approximations, and the mesh used. This information should
be used on the next stage when deviation estimates are applied to a particular
approximate solution.

Such type estimates were primarily derived in 1996-99 by means of varia-
tional methods in the duality theory of the calculus of variations and convex
analysis (see, [14]-[16] and some other papers cited therein). A systematic
exposition of the variational approach to a posteriori error estimation is pre-
sented in [12, 16]. Functional a posteriori estimates can be also used for ap-
proximations that violate boundary conditions (see [24, 25]). Other important
areas of their application arise due to a possibility to evaluate modeling and
indeterminacy errors (see [20, 21, 25]).

For elliptic type problems, a non—variational approach to the derivation
of functional a posteriori estimates was suggested in [17]. In [7, 18] it was
extended to parabolic problems. In [17], it was also shown that for linear
elliptic PDE’s deviation estimates obtained by variational and non-variational
methods are identical. Deviation estimates for the Stokes problem can be
found in [19].
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All the estimates mentioned above has been derived for energy norms.
Deviation estimates in terms of non—energy quantities were considered in [22,
23], where such estimates were obtained for local norms of u — v and for
(¢,u — v). In this paper, we present advanced forms of this type a posteriori
estimates and discuss their properties.

For the convenience of readers, in Section 2, we first consider functional
a posteriori estimates in global norms and present the main ideas of the ap-
proach on the paradigm of the problem

divAVu+ f =0 in £2; (2)
u = ug on 0142 (3)
v-AVu=F on Ox{2, (4)

where 2 € R? is a bounded connected domain with Lipschitz continuous
boundary that consists of two measurable disjoint parts 012 and 02(2. For
this problem, we derive two—sided bounds for the energy norm || u—wv ||, where
v is an arbitrary conforming approximation of u.

In Section 3, these results are used to derive guaranteed upper bounds for
errors measured in terms of the local norm || u — v ||, related to a certain
domain w C 2. We discuss particular forms of such estimates and methods of
their practical implementation. Local a posteriori estimates are also derived
for the linear elasticity problem.

Section 4 is concerned with estimates in terms of goal-oriented quantities.
One example of such a quantity is [, ¢(u — v)dz. If £ is a locally supported
function, then such a quantity can be also used to characterize local behavior
of approximation errors.

Finally, in Section 5, we consider the parabolic equation

ug —divAVu — f =0 in{2.

For the respective initial boundary—value problem we obtain a posteriori esti-
mates in terms of local quantities and discuss how to apply them in practice.

2 Functional a posteriori estimates for elliptic problems

2.1 Two—sided estimates in the energy norm

In this section, we shortly recall a non-variational method. In a more general
form, it has been presented in [17] where it was shown that functional a pos-
teriori estimates can be obtained from the integral identities of the respective
boundary—value problems without using methods of the duality theory in the
calculus of variations. For the convenience of readers, we present below this
method using (2)—(3) as an example. We assume that A = {a;;} is a symmet-
ric positive definite matrix, which has a positive definite inverse matrix A~!
and satisfies the usual condition
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il < Ag-e<alef e, (5)

where [¢]? =¢-& =", &2 Here and later on, || - || defines the norm in L?(£2).
To simplify the notation, we denote the norm in the space of vector—valued
functions Y := L?(£2,R%) by the same symbol. Also, we use the norms

Iy %= /Q Ay ydr  and [y 2= /Q Aty -y de,

which are equivalent to the natural norm of Y.
Generalized solution « is an function in V + ug, where

Vo:={ve H(2) | v=00n0, 7}

that meets the integral identity

/AVU-demz/ fwdx—l—/Fwds Yw € Vo(£2) (6)
o) I7)
0202

For any w € V and any
Y€ Yy i={y €Y :=L*N2,R") | divy € L*(2), y-v € L*(0.02},

we have

/Q ((divy)w + Vw - y) do = /(y - v)wds.

0282

Now, from (6) it follows that

/ AV (u —v) - Vwdx = / (f + divy)wdz+
Ie; Q

/(y—AVv)~de;v+/(F—y-u)wds. (7)
“ 8202

Let A\ (£2,0242) be such a constant that

2
A2 (02,0,0) = inf M.
S T e

Since

/Q (AVv —y) - Vwdz <|| AV — y ||| Voo |

and
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/(f—i—divy)wdx—i- /(F—y-u)wds <
Q

9202

. 1/2
< (If +divy|P +|F —y-vl|3,0) " C1 || Vu |

we arrive at the deviation estimate in the global (energy) norm

I V(u—v) IP< ME(v,y,5,C1) :=(1+B) | AVv —y ||7 +

1+3 .
+7012 (If +divyl® + |1F —y-vl3,0), (9)
where [ is an arbitrary positive number, and C; is any constant greater than

M (02,0.0).
Minimization with respect to 3 leads to the estimate

. 1/2
IV (u=0) <[l AVo—y [l +Cy (|| f+divyl* + [|[F~y - v[3,0) "~ (10)

It is worth noting that (9) may be less convenient for practical computations
than (9) because its right-hand side is given by a non-quadratic functional.
Estimates (9) and (9) are directly computable and give guaranteed upper
bounds of the energy norm of the difference between the exact solution and an
arbitrary conforming approximation v. These bounds are exact in the sense
that by choosing proper 3 and y it is possible to make the right hand side of
the estimate arbitrarily close to the left hand one. In other words (see [17]),

I V(u—=v)l=

. . 1/2
= inf | AVo—y [ +4C (| f+divy]+ [ F—y - v]30) .
yE€Yaiv(£2)

A lower bound of || V(u — v) || can be derived as follows. Note that

1
sup / (AV(u —v)-Vw— §AVw . Vw) dzr <
I7;

weVp

1 1
< sup / <AV(U—U)'T—AT'T>d$—||V(U—U)|||2-
T€L2(2,R") J 2 2 2

However,

sup / (AV(u —v)-Vw — %AV@U : Vw) dx >
7

weVy
! _1 u—)|?
/Q (AV(u—v)-V(u—v)—2AV(u—v)~V(u—v)) de = 5 [IV( )~

Thus, we conclude that
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1 1
3 IV (u—)||* = sup / (AV(u—v) -Vw — 2AVw~Vw) dzx >
weVy J N2

1
> sup/ (—ZAVw-Vw—AVU-Vw+fw> dac—l—/Fwds.
7]

weVy
0282

It is easy to see that this lower bound is sharp (set w = u — v). Thus, for any
w e Vy

IV (u —v)||> >M2 (v, w) :=

:/ (—AVw-Vw—?AVv-Vw+2fw)dx—|—2/Fwds. (11)
Q
0282

2.2 Application to FEM

There are 3 basic ways to measure errors of a finite element approximations
by means of the above estimates:

e (a) Direct (flux averaging on the mesh 7p,);

e (b) One step retardation (flux averaging on the mesh h,.y);

e (c) Optimization (minimization (maximization) of the Majorant (Mino-
rant) with respect to y (w)).

Let us discuss these methods on the paradigm of Dirichlét type problem (i.e.,
for the case 02 = 0, (2).
(a) Use recovered fluzes on Tp. Let uy, € V},, then

Ph = vuh € LQ(Qde)a DPh ¢ H(Qadlv)

Use an averaging operator Gy, : Lo(§2,R%) — H(£2,div) and have a directly
computable estimate

IV (u—un) | < AVup = Gupn ||« +C [|divGrpn + fIl. (12)

(b) Take the recovered fluzes from a refined mesh. Let wp,, Uny, ooy Upy s ---
be a sequence of approximations on meshes 7, . Compute py := Vuy, average
it by G, and for up, , use the estimate

IV (u—un,_,) ISl AVun,_, = Ghpny I« +C1 |divGhpr, + I (13)

It is worth mentioning, that this estimate gives a quantitative form of the
heuristic Runge’s rule that dates back to the 19th century. This rule reads:
If the difference between approzimate solutions computed on two consequent
meshes is small, then probably both of them are close to the exact one.

In other words, it was suggested to use the quantity |lup, — up,_,|| as a
heuristic a posteriori error indicator based on the information contained in
two consequent approximations.
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Estimate (6) presents a functional, which is defined on approximations
computed on the two consequent meshes 75, , and 7, . It gives a cheaply
computable and guaranteed upper bound of ||u — up, ||

A computable lower bound is given by (4). By setting w = up, — up,_, we
find that the quantity

M@(uhk—l y Uhy, — uhk—l)

gives a guaranteed lower bound for || V(u — up,_,) |-

(¢) Minimization with respect to y. Select a certain subspace Y, in
H(,div). In the simplest case, this space is constructed with help of the
same mesh 7,. However, in general, any another suitable mesh 7. and trial
functions can be used.

Then, we have

IV —un)ll < inf {[Vun =y + Colldivy- + £} (14)

Let us denote the respective minimizer by ¥,. It is clear that the wider
Y, C H(£2, div) we take the sharper upper bound we obtain.
Similarly, if take a subspace V}, wider than V},, then the quantity

sup Mé(uh,wh)
wp €V

gives a positive lower bound for ||V (u — uy)||. As we will see, the respective
maximizer Wy, can be also used in a posteriori estimates of local errors and
errors estimated in terms of goal-oriented quantities.

More information on the practical implementation of the functional a pos-
teriori estimates is presented in [6, 8, 11, 12, 16, 24].

2.3 A posteriori error estimates in local norms

Functional a posteriori estimates implies computable upper bounds for the
local errors. Let w be a subdomain of {2 with Lipschitz continuous boundary
Ow and || - ||, denotes the norm in Ls(w). Take a function ¢ € V4. Since
U = (v+ ) can be viewed as an approximation of u, we apply (9) and obtain

IV (u =) 1=l V(=) I, + | V(u=70) 5, <

<(A+B) 1 AV(v+e) -y |2 +

1+ .
+ 7012 (If +divyl® +IF —y - v]3,0) . (15)

where (3 is an arbitrary positive number and y is an function from Yy;,. For
any v € (0,1),

I V=) 12> (A=) | Viu—0) 12 + (1 - i) 1V |2 -
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Then, we obtain

ANV, <l Vw—v) % < M2, (v), (16)
where
2 . . 1 2
ME)i= it ——{A+B) | AV +e) =y |2+
BeRy, peVp +
76(0,1), YE€Yaiv
1+ ) 1
58 (I + vy 4| F =y -vl,0) - I Vo I

Note that the second inequality in (13) holds as equality (i.e., Mg, (v) gives
the exact bound of the local error). To show this it suffices to set ¢ = u — v,
y = AVu and tend 7 to 1.

In particular, if take

© C Vo :={v €V | v(z) = const Vz € w}.

then the third term vanishes and we observe that an upper bound of the local
error is obtained by the minimization of the global (energy) majorant with
respect to an additional variable ¢ in the space Vi, of all the functions from
the space Vi having zero gradients on w gives a guaranteed upper bound of
Il w—v || for any conforming approzimation v.

Practical implementation of the above estimate follows the lines of the
scheme presented in 2.2. If uy, and up, , are two approximate solutions com-
puted on two consequent meshes, then from (13) we find that

IV = tng ) o < V(un, = wng ) o +
. 1/2
+ 1| AVun, — Gropny | +C1 (|| F+AVGiy i |24 F = Gy o - v]12) 2.

(17)

If we have only one approximate solution u; computed on 75, then bounds
of local errors can be easily found provided that two-sided estimates of the
global energy error norm has been accurately determined. In this case, we
may use the functions 7, and @, found in the framework of the method (c)
and obtain

I'V(u—wun) llo <l Voor [|o +
~ ~ .~ ~ 1/2
+ | AV (un + @) = Gr | +Co (I +dive: |+ F =3 -v]?) 7. (18)

Linear elasticity problem gives another practically interesting elliptic prob-
lem. In this problem, we need to find a vector—valued function u (displace-
ment) and a tensor—valued function o (stress) such that
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dive + f =0 inf% (19)
o=Le(w); L={Lijkm}, Lijkm = Lkmi; = Ljikm, (20)
u=ug onOoif2, oc-v=F ond2, (21)

where e(u) is the symmetric part of the tensor Vu, v is the unit outward
normal to 012 and (o - v); = 0;;v;. Assume that

e’ < L& g <cjlef*  vee M, (22)

where two dots denote the scalar product in the space of real n x n matrixes
and [£] = /£ : & Generalized solution w of this problem is a function in
Vo :={v € WH(£2,R") | v=0o0n 002} that meets the integral identity

/Le(u)'a(w)dx:/ fwda:+/Fwds Yw € Vo (£2)
Q 7 oo

For this problem, a posteriori error estimates in the energy norm has been
derived in [15, 17] and tested in [11]. It has the form

Ie(u—wv) I?<2(1+ B)D(e(v), 7) + (23)

148 .
+7012 (If +divr|* + [|[F = 7 v|?).

Here
1 2 1 2
D(e(),m) =5 lle@) IP+5 I 7lli = [ ev):7da,
2 2 I
) o= [ Le)ict)dn, |7 [2i= [ 170rirds,
Q Q
T is an arbitrary tensor—valued function in the space

Ddiy = {T S LQ(Q,M”X") | divr € LQ(Q7Rn)},

3 is an arbitrary positive number, L~! is the tensor inverse to L, and C; is a
constant greater than A\ ({2, 02(2), where

2
N(2,0,2) = inf —he@ (24)
! we v [lw]|? + [lwll3, o

Estimate (23) yields local estimates. To derive them we use the same argu-
ments. Take ¢ € V. Then v = v + ¢ € V + ug. We apply (23) and obtain

I e((u—2) I”< (14 B)D(e(v + @), 7)+
+ % C? (Hf —divr||* 4+ [|[F — T - 1/H2) , (25)
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Thus,
¢ le((u =)l <l e((u—0) %, < ME(v), (26)
where
2 : 1
ME,):= it {4+ B)D(Ew+ ) )+
B€R+7 WEVO - 7
v€(0,1), TEXaiv
144 . 1
+ =5 OF (If +div| P+ ]| F vllg)}+; Vel -

Similarly to the previous case, we establish that the last inequality in (26)
holds as the equality, i.e., the upper bound of the local error is sharp. Also,
(26) leads to practically computable a posteriori estimates analogous to (5)
and (18).

2.4 Error estimates in terms of linear functionals

Very often error control is performed in terms of the so—called “goal-oriented”
functionals (see, e.g., [4]). In this case, a linear functional ¢ € V{ is specially
selected in order to control some specific properties of the solution. If £ is de-
fined by the integral relation with a locally based integrand, then the quantity
| (¢,u —v) |, is a certain characteristic of the local accuracy. In this section,
we discuss how guaranteed upper bounds of such a quantity can be derived
with help of the functional type a posteriori estimates derived for the energy
norm of the error (see also [22, 23]). Let ¢ € V. Then

(liu—v)y = (l,u—v—) + ({, )

and, therefore,

| {(Gu—v) [< [4] inf [V(u—v—9p)]+]{e) ] (27)
PV
where
| {4, w) |
] := sup ————.
1= Towl

This estimate is sharp. Indeed, if ¢ = u — v, then (27) holds as equality.
Usually, the quantity [¢] is not difficult to estimate. For example, if

<E,ufv>:/n)\(u7v)dx, A€ Ly(02)

C
then [£] < [[A|52.
Now, we apply the energy estimate (9) and obtain
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| (6u—v) [< €] inf {||\ AV +e) =y -+
weVy, >0
YE€Yaiv (£2)

. 1/2
+C1 (I +divyl2 + IF=y - vlid,0) "+ 1 o) [} @28)

If o € Vou(92) := {p € Wo(£2) | {(¢,) = 0}, then a particular form of (28)
arises. It reads,

| {{u—v)|< [£]  inf {||| AV(v+o) —yll+
peVoe, B>0
Y€ Yaiv (§2)

. 1/2
+Cy ([ f+divyl® + [|[F—y - v]3,0) "%} (29)

This estimate shows that minimization of the global (energy) error majorant
with respect to an additional variable ¢ in the space Vg of all the functions or-
thogonal to £ gives a guaranteed upper bound of | (£, u—v) | for any conforming
approximation v.

Note that actually (28) and (29) hold as equalities. For (28) it is easily
observed (take ¢ = u — v, y = AVu). For (29) the respective proof is more
complicated (see [23]).

Practical implementation of the above estimate follows the lines of the
scheme presented in 2.2. If up, and up,_, are two approximate solutions com-
puted on two consequent meshes, then from

| <€’ U — uhk—l) |S | <£7 Uhy, — uhk—1> | +|£|‘ {m Avuhk - thphk ”' +

+ C1 (| +divGnpu I+ F = Gpn, - vI) %} (30)

If we have only one approximate solution u;, computed on 75, then bounds of
the goal-oriented quantity can be directly computed provided that we have
found the functions ¥, and Wy, that give sufficiently good two-sided estimates
of the global energy error norm. In this case,

(6w —un) || (6T —wn) | +
~ ~ PN ~ 1/2
+ 161 {1 AV (un + @n) = G | +Ca (I +divg [P+ F =5 -v]2) ). (31)

Another way to compute an upper bound of the goal-oriented error follows
from (29): set y = ¥, and minimize the functional

112 {1+ 8) | AV + ) —y I +

+ 2280 (I + aivyl? 1P - viB0) ) 32)
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with respect to 3 > 0 and ¢ € Vg, where Vg, is a certain finite dimensional
subspace of Vjy.

Guaranteed error bounds in terms of goal-oriented quantities for linear
elasticity and Stokes problem can be derived in a similar way (see [22, 23]).

3 Functional a posteriori estimates for a model
evolutionary problem

Consider the classical linear parabolic problem: find a function wu(z,t) such
that

uy — divAVu — f =0, in Qr, (33)
u(z,0) = p(z), x € {2, (34)
u(z,t) =0, (x,t) € Sr. (35)

Here, Q7 := {2 x (0,T) is the space-time cylinder, Sy := 92 x [0,T],
T > 0, A is a symmetric matrix that satisfies the conditions

vi€)? < Az, )€ - € < wol€f?, VE € RY, te0,T],

with 0 < 11 < vs.
Weak solution of the problem (33)—(35) (see, e.g., [9]) is a function

u € IX/%’O(QT) = Lz((O,T);I/?/%(Q)) such that

/AVU -Vn dxdt — /um dxdt+

Qr Qr
+ / (u(e, TY(a, T) — pl)(z, 0))dz = / fi dedt ¥y € Wio(Qr), (36)
0 Qr
where

Wy0(Qr) = {w € W3 (Qr) | w(z,t) = 0 on Sr}.

Hereafter, we assume that f € Lo(Qr) and ¢(z) ew 3(92). Then, u €
Wfdl(QT), where Wfdl(QT) is a space with the norm

2
|w |25 = /(w2 + i+ | Vo 2 +(Aw)?)dz dt
Qr

Let v € Wy o(Qr) be an approximation of w. In [7, 18], an upper bound of
the deviation e := u — v was evaluated in terms of the quantity
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2
(€2, ) = mlle(@ DI + 2 Vel .

where

T
Vel := [ | Ve |>dt= | AVe-Vedzdt,
Qr
0 Gr

and 7 and 5 are some positive numbers.
An upper bound of the deviation is given by the estimate

le]fs_51) < ME(0,9,8,6) =
T

—l v(e.0) - pla) [0+ [ [(148) T AV -y I2 +
0

1
+ C_% <1 + ﬁ) ||f — v + divy||2 dt,
where § € (0,2], C, is the constant in the Friedrichs inequality ,

y € Yai (Qr) = {y(z,t) € Lo(Qr; RY) | divy € Lo(Q7)},

and B = ((t) is a positive valued function.
As in the elliptic case, the majorant Mé(v, y, 3,9, Cp) consists of the terms
that can be interpreted as penalties for possible violations of the relations

Uy — ley - f = 0, in QT’
y = AVu, in Qr,
u(z,0) = p(z), x € L.

Since v(z,t) = 0 on S, we observe that Meg(v,y,ﬂ,é, Cy,) vanishes if and
only if v = u and y = AVu.

In [7, 18], it was also derived a sharper upper bound of the error norm. It
is as follows:

M%Q,(;’l,%) < MéI('anayaﬂa%é) = 7||w(x,T)||2+

1

T
1 2
+ 50/[(1+ﬂ) ly—AVo+AVw|; + <1+5

e
+ /(AVU -Vw + vnw — fw) de di+
Qr

+ / (lp(z) = v(z, 0)[* = 2w(z, 0)(p(z) — v(x,0))) dz, (37)

n
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where y € Yain(Qr), 0 € (0,2], v > 1, 8 = §(t) is a positive valued function
and w € W3 o(Qr) is an additional free variable.

It is worth noting, that both majorants MGI9 and MéI give certain quan-
titative forms of the Runge’s rule for the parabolic problem. Indeed, let Uz g
be an approximate solution of the problem computed on the mesh with mesh
size T for time variable and H for spatial variables and let u, j, be another ap-
proximate solution computed on a finer mesh (7,h) (e.g. 7 =7 /2, h = H/2).
Then the estimates can be applied as follows:

[u — UTH]%2_5,1) < ML(Urn,Gru(Vus), B,9), (38)
[u — UTH}?Q_(; 11y < ME (Urg,wen — Ura, Gra(Vurn), 8,7, 6). (39)
’ ¥

Properties of M} and ML were investigated in [7, 18] where it was shown
that

e for any approximation v € WQI’O(QT) the majorants gives guaranteed upper
bounds of the error in terms of the quantity [e] ?71 )}

e majorants vanish if and only if v coincides with the exact solution v and
y = Vuy;

e majorants does not depend on mesh parameters and contains only global
constants;

e to obtain a sharper upper bound one should minimize Mé over y €
Yaiv(Qr) and 8 = B(¢) > 0 and Mél additionally with respect to w;

e majorants are given by certain integrals in (); and {2; therefore in practice
they are presented as sums of local quantities distributed in space and
time, which can be used as error indicators for time and space adaptation
strategies (see [7]).

Recalling the idea used for deriving local estimates in elliptic problems, we
observe that functional majorants Mé and Mél also imply certain local a
posteriori estimates.

Indeed, let Qo = w x [T —tg, T] be a subdomain of the space—time cylinder

Qr.
Let ¢ € Wy ,(Qr). Denote by [y ,4, the restriction of [],, ~, on Qo.
We have

[e]Qo;’hﬂ’z < [6 - 90]717"/2 + [@]Qo;’yu“{z

From this relation, we obtain guaranteed upper bounds for the local error
norm

1/2
[e]Qo;Q—&l < (Mé (U +©,Y, ﬂa 6)) + [SO]QO;Q—(S,la (4())
1/2
[8]@0;275}17% < (Mél(v + Y, W,Y, 67 Ys 6)) + [@]Qo;Zfé,lfi' (41)

These estimates are valid for any variables ¢, y, and w in the respective spaces.
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Practical implementation of (40) and (41) follows the scheme discussed for

elliptic problems (cf. (5) and (18)). Namely, if u, , and Urg are two approx-
imate solutions computed on a “coarse” and “refined” mesh, then directly

CO

mputable bounds are given by the relations

1/2
w—Urnlauz—si < (ML (urp, Gra(Vumm),5,6) " +

+urn — UralQoz—s,1, (42)
1/2
[’LL - UTH]%O.Q_(; 1—1 S (Mél(u‘r,hau‘rh - UTH7GTH(vuTh)7ﬁ7’735)) / +
’ ’ R
—|—[U7—,h — UTH]QQO;Q—é,l—%' (43)

Another option is to define certain finite dimensional subspaces for the vari-
ables ¢, 7, and w and minimize the majorants over these subspaces.
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Summary. In this paper we consider a problem of parabolic optimal design in
2D for the heat equation with Dirichlet boundary conditions. We introduce a finite
element discrete version of this problem in which the domains under consideration
are polygons defined on the numerical mesh. The discrete optimal design problem
admits at least one solution. We prove that, as the mesh size tends to zero, any limit
in H¢ of discrete optimal shapes is an optimal domain for the continuous optimal
design problem. We work in the functional and geometric setting introduced by V.
Sverak in which the domains under consideration are assumed to have an a priori
limited number of holes. We present in detail a numerical algorithm and show the
efficiency of the method through various numerical experiments.

1 Introduction

We consider a problem of optimal control in which the control variable is the
domain on which a partial differential equation is posed. The function we want
to minimize depends on {2 through the solution of the PDE. In the present
paper we analyze the heat equation in 2D with Dirichlet boundary conditions
extending previous works by D. Chenais and the second author on the elliptic
problem in [6] and [7].

We focus on the problem of numerical approximation of optimal shapes.
We build a finite element approximation of the optimal design problem and
prove that, as the mesh size tends to zero, in the H°-topology, every limit
of discrete optimal shapes is an optimal shape for the continuous equation.
We work in the functional setting introduced by Sverak [25] in which the
domains under consideration have an a priori limited finite number of holes,
later adapted to the finite element setting in [6] and [7].
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Let us describe more precisely the problem under the consideration.

C is a non-empty bounded Lipschitz open set of R2.
O is the set of all open subsets of C.
For all £2 € O and T > 0, we consider the heat equation in (2

u —Au=f 2x][0,T],
u=0 002 x (0,7, (1)
u(0) = tho 2,

where f € L?(0,T; L*(R?)) and ¢y € L?(R?). The variational formulation
of (1) is as follows (see [4]):

To find u € C([0,T]; L*(£2)) N L2(0,T; H}(£2)) such that
%(7;’ w)er a(u,¢) = (f,¢), Vo€ Hy(2), (2
u(0) = 05

where

a(u,v) = / Vu - Vudz,
o)

and (-, -) stands for the scalar product in L?(2).

We also consider the functional J : O — R to be minimized. Typically
in applications J is defined as an integral involving the solution u of (1).
Therefore, the continuity of J (with respect to the H¢ convergence of
domains) requires the continuity of the solutions of (1) with respect to the
domain. For that to be the case one often needs to restrict the functional
to a suitable subclass of domains.

To be more precise we consider functionals of the form

J(2) = /OT/QL(tw,u,Vu)dmdt, (3)

where L(t, z, z, s) is assumed to be non-negative, continuous in (¢, z, z, s),
strictly convex in s and and such that there exists ¢ > 0 such that

IL(t,,2,8)] < (|22 + |5[2).

In (3) u denotes the solution of (1) in £2.

These assumptions may be greatly simplified in specific applications. We
do not intend to describe the most general framework but only give a few
relevant examples in which our developments apply.

Let us give some examples of functionals J({2) which often arise in appli-
cations and fulfill the previous requirements:

— The first one concerns the compliance of the system (1). It is defined

by
J(92) /OT/qudxdt.

The assumptions are fulfilled when f = f(x,t) is continuous although
our methods apply when f € L?(0,T; L>(R?)).
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— A second important example concerns shape identification problems.
Let us consider a subdomain E € O, E # (). We suppose that a function
up has been measured on F, which is a known or accesible part of the
set {2 which is unknown and has to be identified.

In this case, the functional to be minimized is, for example, of the form

T
J(02) = 1/ IV (u — i) Pdadt.
2Jo Ja
Here and in the sequel we denote by @ the extension by zero of u so that uw =0
in C\ 2. The assumptions above are satisfied by this functional too.
The continuous optimal design problem we consider is as follows:
To find 2 € O such that J(2%) = gleué J(02). (4)
In practice, often, this problem is formulated in a suitable subset of O in order
to guarantee the compactness and continuity properties that are needed for
the minimum to be achieved. The results by Sverak [25] guarantee that this
occurs when working in the subclass of domains with complementary sets with
at most a finite prescribed number of connected components. We shall denote
by O that class where #(2¢) < N for all 2 € O, N being a finite number
and #(K) the number of connected components of K.
In other words, we shall be mainly concerned with the following minimiza-
tion problem:
To find 2* € OV such that T := J(02*) = nin J(92). (5)
The question we address in this paper is the numerical approximation of the
optimal design problem (5). In particular we address the issue of whether the
discrete optimal shapes for a suitable discretization of the above problem con-
verge in H® (see Section 2 for the precise definition), to an optimal shape for
the continuous one as the mesh-size tends to zero. This problem was success-
fully formulated and solved by D. Chenais and the second author in [6] and
[7] for the elliptic case and this article is aimed to give an extension to the
parabolic one.
In order to do this, we now introduce a discretization of this problem as
follows.

e For any h > 0, we consider a triangulation 7;, = {(Tih)ie]h} of C made of
finite elements 7 so that

/—/OH
C= U T,
i€l
—~
where A denotes the interior of A C R2. To this end, we suppose that
the triangulations are uniformly regular, that is
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h
Jdo > 0s.t. Vh > 0, TihE'Th, 0< — <o,

Pi

where the grid size h is defined as the maximum diameter of the elements
mh and p; is the radius of the largest ball contained in 7).

e (U is the set of open subsets of C constituted by unions of triangles of
the triangulation 75 and O = Op, N ON, the subset of those polygonal
domains for which the number of connected components of the complement
is a priori bounded by N.

e We use the implicit Euler method with time step At = T'/M, for some
M € N, to discretize the heat equation (1) in time and a P1 finite element
approximation for the elliptic component. For doing that we consider the
P1 finite element space X, C H&(Qh’m), and we denote by ufl’m the
discrete solution in the time step k, uf o, ~ u(w,t) where ¢, = kAt.
We also denote by Uy ar = (uf A,) | the vector-valued solution con-
taining the solution for all time—stéps. The discrete solution we consider is
characterized by the following system:

To find UZ,At € X}, such that

k—
Ul At _uh,Alt k k
y Ph +a(uh,Ata<ph):(f 7<ph)av90h € Xp,k=1,....M

At
Uy, = Q/JOJH

(6)

where

I
E_ _—
=g pw

and g, is the orthogonal projection of 1y over Xj.

e  We approximate J(£2) by a well-chosen functional JhAt(QhAt) : (’),{LV — R.
In practice this is done by keeping the same structure of the functional as
in (3) in what concerns its z-dependence and replacing the time-integral
by a discrete sum.

Thus, the discrete problem we consider is

To find 2} o, € OF such that Ihm = hAt(QZ A¢) = min JhAt(thm).
’ ’ f?h,,AtEOiLV
(7)

As indicated above, this is a natural extension to the parabolic setting of the
elliptic optimal design problem addressed in [6] and [7].

The main result of this paper asserts that, for any fixed N, the discrete
optimal design problems (7) converge towards (5) as h — 0 and At — 0 in
the sense that the minima converge and that the limits of Q,’fb A are optimal
domains for the continuous optimization problem (5).

The techniques we employ and the results we obtain in this article can
be adapted and extended to other discretization schemes. In particular this
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can be done for the semi-discrete approximation and other time-discretization
methods of (1).

This paper is divided in five sections after this introduction. In Section 2
we recall some definitions and properties concerning Hausdorff topology, -
convergence, Mosco-convergence and some useful results from previous papers.
In Section 3 we prove the convergence of the numerical scheme. In Section 4
we prove the convergence of discrete optimal shapes. In Section 5 we develop
a classical optimization algorithm to obtain the optimal design in the con-
tinuous and the discrete time cases respectively. In particular, we present a
fully discrete numerical algorithm allowing to obtain an approximation of the
optimal domain. Moreover, we present in detail some numerical experiments
that allow checking the efficiency of the method. Finally, Section 6 is devoted
to summarize the main results of the paper.

2 Preliminaries

2.1 Hausdorff convergence

In this section we recall some notations and basic results.
The Hausdorff distance between two compact sets K; and Ks of R? is
defined by

d(K1,K5) =max | sup inf ||z — sup inf ||z — .
(16, 8) = max (sup inf flo =l sup int [}o o)

Fig. 1. Hausdorff distance between two compact sets

Definition 1. The complementary Hausdorff distance between two open sub-
sets {21 and 25 of C is defined by

dige (21, 25) = dgr(C\21,C\2s).

We denote by H€ the corresponding convergence of sets, i.e., {2, 20 i only
if dge(§2,,82) — 0.
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In addition to the set OV defined above, for any open non-empty subset
w of C we define the class O of domains of O containing w, i.e.

o ={neo: :wcn}

The following result on the H¢-compactness of the sets OV and O will be
useful for addressing the optimal design problems above.

Lemma 1. (/25, 12]) For any finite N, and w open subset of C, the sets ON
and OF are H¢-compact.

2.2 Dependence of the dirichlet problem with respect to the
domain

For each function ¢ € Hi(£2), we define ¢ its extension by zero to C so that
@ € HE(C) (see [4]).

We recall the definition of «-convergence and Mosco-convergence.
Definition 2. (/12]) Given a sequence (£2,)n, C O and a domain 2 € O, 2,
y-converges to 2, and we denote it as 2, > 2, if

Vfe H'C), 7n, — uq strongly in H}(C),

where ug, € HY(§2,) is defined as the solution of the Dirichlet elliptic problem
a(ug,, 9) =< [, >g-1(00)xHi(2,) VP € Hy(2n).

Definition 3. ([18]) £2,, Mosco-converges to £2 and we denote it as {2, Moso 2,
if
1. For all € H(£2), there exists @, € H}(£2,) such that @, — @ strongly
in H}(C).
2. For all subsequence of domains (2, )k, and for all @,, € Hi(2,,), one
has

{@n, — w weakly in Hy(C)} = {Fp € HY(N) such that w = §}.

It is by now well known that these two notions coincide (see [12]), i.e. 2, L0
Mosco

if and only if 2, = (2.

Now, let us recall some relations between H “-convergence and y-convergence.

Lemma 2. ([5]) If a sequence H°-converges, then the first point of the defi-
nition of the Mosco convergence is satisfied. In other words, if {2, converges
to 2 in HE, then, for all ¢ € HL(82), there exists @, € H}($2,) such that
On — @ strongly in H(C).
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In general, H®-convergence does not imply y-convergence, nevertheless, sev-
eral situations are known where this implication holds true. In [5], a list of
subsets U of O on which H¢-convergence implies y-convergence is given. The
following one is due to V. Sverak [25]:

Theorem 1. In two space dimensions, for any finite N, H¢-convergence and
y-convergence are equivalent properties on ON .

In order to deal with the time-dependent continuous and discrete heat equa-
tions we have to work with functions depending on the time variable. The
following technical result is a natural consequence of y-convergence for se-
quences of functions depending both on x and t.

Lemma 3. Assume that 2; L2 and consider a sequence of functions uj in
L>(0,T5 L*(£2)) N L*(0,T; Hy (£2;)) satisfying

u; —w  weakly x in L°°(0,T; L*(C)) N L*(0,T; Hy(C)). (8)
Then w =, with y € L>(0,T; L?(£2)) N L?(0,T; H (£2))

Proof (of Lemma 3). As £2; 2 2 we know that 2; "5 0.
Let 6 € L?(0,T) be given. We obtain

xt /9 ()t (z, t)dt — w’(z,t) /0 w(x,t)dt in H(C).

Since u! u € H(£2;), by the y-convergence of the sets 2;, we get w? € H} ().
By the Lebesgue Differentiation Theorem we have

T
w(z,tp) = lim 5= X[to—jito+j) (Dw(z, t)dt  a.e. tg € [0,T].
=00 2j

Therefore, w(t) € H(2) a.e. t € [0,T].

Now, we have to prove that the function w : [0, T] — H}(£2) is measurable.

Since H}(2) is separable, it is sufficient to prove (see [8]) that w is weakly
measurable, i.e., that for any go e Cx (12 ) the function t— [ow(z,t)p(r)ds
is measurable. According to (8), [,w oW x)dx is the Weak x limit in
L>(0,T) of [, u;(z,t)p(x)dr, and in partlcular 1t is measurable with respect
to t.

This completes the proof of the Lemma. n

3 Preliminaries on the convergence of the numerical
scheme

We first define the set of discrete admissible domains. This set is independent
of At.
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Definition 4. For each h > 0, we consider the set Oy of subdomains of C
constituted by elements of the triangulations T,. Then we set

OF = {02, € Oy, : #(25) < N}.

For all (2, € O, we consider the P1 finite element space X C Hg(£2,). We
use the implicit Euler method to discretize in time and we get the discrete
system (6). At each time step k, it consist on solving a linear system of the
form

(M + OtA)EE =,

where %=1 = M¢EFL + F¥ is known, with F* = (f* ¢;), M = (pi, ;) is
the mass matrix, A = a(y;, ;) is the stiffness matrix for ¢,j = 1,..., 5, and
¢k = (ff)jszl is the vector of the coefficients of the solution on the finite-
elements basis, i.e.

S
k _ k
Up At = E fj Pjs
j=1

(gaj)le being the basis functions for Xj. Obviously M + AtA is symmetric
and positive definite so that the system above is solvable.

We recall that, for a fixed bounded domain {2 with Lipschitz boundary, the
fully discrete solutions ui A converge to the solution u of the continuous heat
equation (1) as h — 0 and At — 0. The proof of this result is based on the
classical consistency plus stability analysis. In particular, the implicit method
(6) is unconditionally stable with respect to the L?(0,T; H{ (£2))-norm.

The following estimate on the rate of convergence is also well known. Given
o € H2(R2), for each k = 1,..., M it follows that (see Section 11.3, pp. 394,
Corollary 11.3.1, [21]):

luk ar — u(ti)ll22) < llvon — Yollz2(e)

+ch2(|¢0|H2(m+/0tk atu(s)‘m(m) +At(/0tk LQ(Q)), 9)

where the seminorm in H?(£2) is denoted by |- |g2() and the norm in L?(£2)
is denoted by || - |[z2(0)-

5t2u(s)‘

Remark 1. We choose the implicit method for the time-discretization because
it is unconditionally stable, so that the choice of At is dictated from accuracy
requirements only. Recall that, by the contrary, explicit methods are condi-
tionally stable, and, therefore, they require the time-step At to be sufficiently
small with respect to the spatial mesh size h.

In the analysis of the convergence of the optimal design problems we will
need to pass to the limit in the solution of the discrete problems towards
those of the continuous heat equation when the domain varies. The following
Proposition provides the needed convergence result:
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Proposition 1. Let 2 € OV be given. Let 2, ar € ON be a sequence such

that 2 5 0.
Then ﬂ’fLAt — U strongly in L?(0,T; H}(C)) when h — 0 and At — 0.

Remark 2. This convergence property holds for the piecewise constant or lin-
ear extension of ﬂ’fh Ay to all £ € [0,T]. For the sake of simplicity we denote it

simply as ﬂﬁ At

Proof (of Proposition 1). Let us denote by X, the vector space of all functions
of X}, extended by zero to C.

Let o(z,t) = o(t)w(z) € C (2 x [0,T]) be given. We define the time
discrete test function:

oF =octw(z) =otp)w(z), k=1,..,M

and ¢* = o*&(z) its extension by zero to C.
The equation (6) can be rewritten as follows,

~k ~k—1
Up At — Up,At
c At

@kdm+/vagm-vgzkdx:/fk&kdx, k=1,..M.
C C

Taking the test function g% = ﬂ’,j’ A and rewriting

~ ~k-1  ~ ~k—1
ko gulﬁ,m —Up At i Ui,m N
D) At 2 ’
we get
1oz At||%2(c) - Hﬂﬁth%z(c) ~ 1 1.
N + Huh,AtH%—Ig(C) < §|\fk||%2(0) + §||uh,AtH%2(6)'

Therefore, we conclude that

||ﬂ;cz,AtHL2(O,T;H§(C)) <cilllfllz20,1:22(0)) + 11Yo.nllz2 )]

for any h and At.

Thus, up to the extraction of subsequences, 62, Ay Weakly converges in
L?(0,T; H}(C)) to w. We have to show that its limit coincides with @, u being
the solution of (1), to later prove strong convergence. By Lemma 3, we know
that there exists y € L?(0,T; H}(£2)) such that w = 7.

Now, let us prove that y = u and that the convergence holds in the strong
topology.

First we prove that y = u. Observe that the solution w of (1) is character-
ized by the fact that u € C([0,7T]; L?(£2)) N L?(0,T; H}(£2)) and
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/ /uatwdajdt—i—/ Yoo (0 dx—/ /Vu oVwdxdt

= fowdzxdt,
Q
Vo(t)w(z) € HY (N2 x (0,T)) s.t. J(t)w(x)\agx[oj]o: 0 and o(T) = 0.

We have to prove that y is the solution of the previous equation.
We have

ay
Z/ hm h2 de:t—&—Z/Vuhm Uthdx—Z/kakwhdx

By Lemma 3.1 pp. 17, [7], there exists wy, € X}, such that &, — @ strongly in
H}(C) as h — 0.
Adding by parts we get

k
/ /uh A whdxdt—/¢0 holnda
T
+ / /C Vg py - Vopodadt = / /c fEo* Gy dxdt. (10)
0 0

On the other hand
k41 _ gk

At

o k+1 k

- Ut(tk)‘ + ’Ut(t) - Ut(tk)‘
< C(AY)||owt]| L~ (0,1

Furthermore, we know that aﬁ,m — g weakly in L?(0,T; H}(C)). Thus, we
can pass to the limit in equation (10) and get

T T T
7/ /ﬂat@dxdtf/woo(O)&d:ch/ /Vﬂ-anadwdt:/ /fm?}dxdt.
0o Jc c 0o Je 0o Je

Using that g is vanishes on C\{2 and § = y on {2 we have that y satisfies the
same equation on 2. So y = u.

Now, we prove the strong convergence in L2(0,7T; H}(C)). For u the energy
estimate yields

T - 1, 1, rr
/ /\vu\Zdazdt+§|\u(T)||iz(c) = 5||u(0)\|2L2(c)+/ /fuda:dt. (11)
0 C 0 C

For a¥ ., taking as test function pf = uf ., we get

~ 1
AtZ/W NI / QTN 2dz:§/c\ﬂ%m|2dx

M
+ALY /C FEuf papdz. (12)
k=1
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Under the assumptions on the initial data and the weak convergence in
L2(0,T; H}(C)) we can easily pass to the limit in the right hand side term of
(14). On the other hand, by weak convergence of the solutions and the weak
lower semi-continuity of norms, we have

~ 1.
IValIZ2 0,722y + DI E2 ey

.. - 1,
< lim inf IV adllZ207:02(c)) + §||u£/,[AtH2L2(C)]

1 T
= S0 F2(c) + / / Fiidudt.
0 C

On the other, by the energy identity (13) for the heat equation (1) we deduce
that

- 1, m ~ 1,
IVah adllZ20.7:02(0)) + 5”%,&”%2(0) = |IVal[Z2 0.7, 02(cy) + §\|U(T)||%2(C)~
This, together with weak convergence, implies the strong convergences:

Uy py —u  in L*(0,T; Hg(C)).

ﬂ%At —u(T) in LQ(C).

Note that, in the proof above, we have used the weak convergence of ﬂhM At
towards @(T) in L?(C). This is due to the uniform bounds on (14), the weak
convergence in L?(0,T; H}(C)) and a classical compactness argument which
uses the Aubin-Lions Lemma and the equation satisfied by ﬂ% A¢ Which al-
lows getting uniform bounds on the time-derivative of its piecewise linear and
continuous extension in time in L2(0,7; H=1(C)). u

4 Convergence of discrete optimal shapes

The question we address here is the numerical approximation of the optimal
design problem (5). In particular, we address the issue of whether the discrete
optimal shapes for a suitable discretization of the above problem converge in
HF¢ to a continuous optimal shape. As we shall see, the answer to this question
is positive if the discrete optimization problem is conveniently built, as above,
in the context of finite element approximations.

The triangulation 75, being fixed, for any A > 0, the number of triangular
domains in O}]LV under consideration for the discrete optimal design problem
(7) is finite. Thus, the existence of discrete optimal shapes is obvious, and we
denote them by 2} A,.

Now, we prove that any limit in H¢ of discrete optimal shapes is an optimal
domain for the continuous optimal design problem.
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Theorem 2. Let J be the functional as in (3). Suppose that the discretization
JhAt of J has been chosen such that:

1. If 2,2, a0 € ON are such that QhAtEQ, then JhAt(Qh,At) — J(2)
when h — 0 and At — 0.

Then, the discrete optimal design problems (7) converge as h — 0 and At — 0
to the continuous one (5) in the sense that

(a) JhAt reaches its minimum on O for all h >0 and At > 0.
(b) Any accumulation point as h — 0, At — 0 in the topology H¢ of any

sequence (.Q,’; At of discrete minimizers is a continuous minimizer.
EVAWN

(¢) The whole sequence (Ihm) L, converges toZ.
h,At

3

Remark 3. Similar results hold in the class OY of domains.

Proof (of Theorem 2). Let (2 ny)n,at be a sequence of discrete minimizers
for problem (6). Any 2} o, belongs to ON which is H¢-compact. Let §2,,
be an accumulation point of this sequence. By Lemma 1 24, € OY. From
Proposition 1 we have

—_

Uy ny — uer strongly in L*(0,T; Hg (C)),

where uf is the solution of the continuous problem (1) in §2,,. Due to the

assumption of the Theorem, we obtain
It = J(2p) — J(24p)  when h — 0 and At — 0. (13)

Let us now check that (2, is a minimizer for J.

Given 2 € OV, there exist 2, € (’),Jy such that (2, "0 (see Section 4.2.1,
[7]). For each h and At, we have

It < IR 8).

Passing to the limit in this inequality and using (13) and hypothesis 1, we
obtain J(£24,) < J(£2) for all 2 € ON. This proves points a) and b) of the
theorem.

Also, we have seen that the only accumulation point of the sequence

(IhAt) is nothing but Z. n
h, At

Remark 4. We have proved that any limit in H¢ of discrete optimal shapes is
an optimal domain for the continuous optimal design problem. The obtention
of convergence rates would be of interest, but this subject is completely open.
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5 Gradient calculations: A numerical approach

5.1 Preliminaries

We have proven that the discrete optimal shapes converge in H® to an optimal
shape for the continuous problem. Now we address the problem of efficiently
computing the discrete optimal shapes. Despite of the fact that, for h > 0
and At > 0 given, the existence of the discrete optimal shapes is trivial,
its computation may be rather complex because of the very large number of
existing admissible domains.

The search of the discrete optimal shapes is usually performed by gradient
type methods. The main idea of these methods is to iterate in the discrete
domain using the information provided by the gradient of the functional with
respect to perturbations of the domain in the continuous framework. This gra-
dient can be calculated using classical methods of differentiation with respect
to the domain (see [9, 16, 19, 20]).

As far as we know, the convergence of an iterative method based on these
ideas is not proved so far. In fact, in principle, taking into account that the
information we are using to iterate on the discrete domains comes from the
continuous framework, it is not even clear that the discrete functional de-
creases along the iteration. We refer to [9] and [19] for an analysis of the
comparison between discrete and continuous gradients. As we shall see, how-
ever, the method turns out to be efficient in practice.

The second drawback of this procedure is that it is based on tools coming
from the differentiation with respect to the shape of the domain. This requires
a minimal amount of regularity of the domains under consideration and, con-
sequently, can not be applied in the general geometric setting in which our
convergence result in Theorem 2 has been established.

The use of differentiation with respect to domain deformations can be
fully justified by restricting the class of admissible domains to consider only
sufficiently smooth ones (see [22, 23, 24]). In that setting the existence of
optimal domains can be proved by classical regularity and compactness results
for the solutions of the PDE under consideration both in the elliptic and the
parabolic case (see [16, 17]). However, as far as we know, the convergence of
these iterative numerical methods is still to be proved in this context too.

Let us now describe how to use differentiation with respect to the domain
to build an iterative method for searching optimal shapes.

5.2 A example for the continuous problem

Consider the functional

T
J(02) = 7/0 [ (i) Pt (14)
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where ug is the solution of the problem (1) in the domain E that we want to
recover. Obviously the solution of this minimization problem is 2 = E. We
use it as a test of the efficiency of our method.

The aim of this section is to obtain an expression for the variation of the
functional (14). The main tool is the so-called shape differentiation ([16, 20,
22]). To do this, we consider normal variations of the domain and the new
domains of the form

R+a={z+ax):zec 2},

where a represents the variations of £2, with a € C?. These variations « are
assumed to be small enough and oriented along the normal direction over the
boundary 942. This induces a variation on the solution: du = u(£2+a) —u(f2).
Differentiating in (14) we obtain

(0J(£2),a) = %/0 /Fa|8n(u —ug)|*dodt —|—/0 /Q V(u—1ug) - V(éu)dxdt
(15)

where I' = 02.
On the other hand, differentiating the state equation (1) we have (see
(16, 20, 22])
6ut—A(5u)—OQx[ , 1Y,
du = —a(dhu) [ ,T] (16)
du(0) =0

Let ¢ € HY(0,T; L2(2))NL2(0,T; H*(2) N Hg (.Q)) Multiplying the previous
equation by ¢ and integrating by parts, we get

0= /O ' /Q (1 — A)Sududt + /Q S(T)ou(T)d — /0 ! /F O, (6u) bdordt
T
+/0 /F(anqﬁ)(;udodt.

Let us choose ¢ as the solution of the adjoint problem

—¢r — D =—-A(u—ug) 2x10,T],
»=0 I x [O’T]7 (17)
¢(T) =0 Q.

Multiplying this equation (17) by du and integrating by parts we get

/OT_/QV(U—ﬂE)'V(M)dedt—/T/ On(u — ug)dudodt
/ /(bt(Sdedt—/ /A¢5udmdt
:/0 /Q(;S[&Lt— (6u)] dmdt—/ / On@)dudodt.
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Therefore,
T T
/ / V(u—iip) - V(du)dadt = / / (Ott) (D) dordt
0o Jo o Jr
T
7/ /a@n(ufﬂE)ﬁnudadt. (18)
o Jr

Taking (18) in (15) we obtain

(6J(02),a) = % /0 ! /F |0, (u — up)Pdodt + /0 ' /F (9p1) (9, ¢)dodt

T
—/ /a(“)n(u—ﬂE)@nudet

o Jr
—/T/a(8 (u— i) (00— i) — D) + D)) o
o - n E 2 n E n n UUn .

In this way we obtain the following expression for the variation of J:

(6J(2),a) = /0 ' /F a(—%((@nu)Q—(anﬂE)Q) +8nu8n¢)dadt. (19)

Note that using the adjoint state, the expression of (6.J(£2), ) in (15) has been
simplified. Indeed, in the final one (19), the variation of the state du does not
enter. This is a significant improvement since, according to (16), computing
du would require solving an initial boundary value problem for each «. In view
of (19), it is sufficient to compute the adjoint solution ¢ and then an integral
for each a.

5.3 Optimization algorithm
We introduce a full-discretization of the functional (14):
At &
T (@a) =5 > | V() Pde. (20)
k=1"h At

We discretize the adjoint problem (17) in the same way as the state equation,
ie. let ¢ﬁ’m € X, be the solution of

(bE,At - Z?Zt d v k Vo)d
ot Ohtt iy [ (V6 n0) - (Vo)
Qh,At Qh,At

:/ V(u;‘;’At—ﬂE)-Vgodx Voe Xp,k=1,..., M,
n,nt

MA+1 _
At = 0-

(21)
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We discretize (19) to get an approximate estimate of the variation of the
discrete functional (20):

< 1
(0T (2n,nt), 00) ~ AtZ/F a( _ 5((3nu§’m)2 B (anﬂE)2>

k=1
+(Ontth A ) Onh p) o (22)

Note that both in the continuous and the discrete case 0,u = Vu - n.
We denote by I, the interior boundary of the domain, and I',,; the outer
one, and by Tih_ the triangles belonging to in I, and Tih+ those in I,,;. The

inner 7'~

and outer triangles Tih+ are linked by the fact that they have a

common edge on the boundary I, and Fj, is the set of nodes of the boundary
(see Fig. 2).

o F A Lionia

—_Th

it

Fig. 2. Outer and inner boundaries of the domain, I, and [, respectively.

As we mentioned above, in the continuous case the deformations a consid-
ered are oriented in the normal direction along the boundary. In the discrete
setting it is natural to interprete this fact by considering perturbations in
which one adds triangles ’Tih+ or drops Tih_ depending how they contribute to
the decrease of the functional.

To do this we compute the contribution of each edge of the boundary to
the gradient of the discrete functional as follows:

M
1 _
- =12 [ (-5 (0uda - @)

J h—
h,At b, a5

O3 (92, ar)

+(Ontth 4 )Ondh 1) )do,  (23)
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the contribution of the edge I’ ,z At N7/~ to this approximation of the variation
of the functional JhA L

The functional JhA t(Qh, At) being defined on a finite number of polygonal
domains its continuous derivative is not well defined. But (23) provides an
approximation to its change rate locally on each edge of the boundary. How-
ever one has to interprete the estimated variation in (23) in the context of the
given triangulation and the possible polygonal configurations.

To do this, given a discrete domain, in view of (23), we analyze the con-
tribution of each one of its boundary triangles, both inner and outer ones,
and we obtain the new domain adding or cutting triangles based on their
contribution to decreasing the value of JhAt (see [9, 16, 17, 19, 20]).

To compute (5JhAt(!2i’At) , according to (23), we need to solve

J h—
NIl

the discrete state equation (6) and the discretization of the adjoint problem
(21) with 2y ar = 2] A,

For each node of the boundary, ¢ € F}, we compute the variation of the
functional at this node as the average of the variation of the funcional in the

edges F}Z’At N 71" containing the node ¢. We denote by (5JhAt(QfL’At) , the

variation of the functional at the node /. _
Following this procedure, the new domain Q{L Ay is obtained from the pre-

vious one Qillt adding the triangles containing the node ¢ where the contri-

bution of (SJhA t(Qz At) , is negative, and cutting ones where its contribution
is positive.
We explain this procedure in more detail below.
Let us now describe the algorithm. We fix a tolerance TOL > 0.
1. We choose h > 0 and At > 0 and construct the mesh 7;, of C.
2. Consider the initial guess (227& =C.
3. Tteration scheme, j > 0. It is applied while \Jhm(ﬁi’mﬂ > TOL:
a) Solve the discrete state problem (6) with 25, ¢ = QZ,At'
b) Solve the adjoint discrete problem (21) with 25, A, = Qi,m'

c¢) Compute 6JhAt(Qi’At) _asin (23).

J
NIl

d) Compute 5JhAt(Qi,At)

e) Deformation of the domain.
We build the new domain Qf’zl , as follows:

. , e e
D ne =2 I 077 (2 a0)|, < O\ 07702 0)|, > O,

where 7' are the triangles that contain the node .

f) Compute the functional (20) in the new domain Qljﬁzt
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g) We take Qf; AL = Q{fgt and go back to the beginning of this iteration
scheme.

5.4 Numerical results

All the numerical experiments we present here have been performed with a
Pentium M 715 processor and 512 MB RAM.

Let the set C be the rectangle (—1.5,1.5) x (—1,1). We consider problems
(1) and (5), with force term f = 1, initial data ¢o(z,y) = sin(27z) and where
the functional to be minimized is

T
J(02) = %/0 /Q IV (u— tp)[*dzdt, (24)

where ug is the solution of the problem (1) in the domain E that we want to
recover, and w is the solution in 2.

Numerical experiment # 1

We take T' = 20, At = 0.1 and h = 0.19197. This time the computation is
done over a mesh of 206 nodes and 372 triangles. Our goal is to recover the
circle F (see Fig 3).

Fig. 3. The unknown body

In order to do this, we compute ug, the solution of the problem (6) in the
domain F, then we minimize the functional (24) by the algorithm that we
have described in the previous section.

Figure 4 depicts the evolution of the domain with respect to the iteration j.
We find the circle E in 6 steps and 3621 seconds (CPU time). Figure 5 depicts
the evolution of the cost function. As expected, the limit of the sequence §2;
is close to the circle F.

Numerical experiment # 2

We take T = 20, At = 0.1 and A = 0.31062. This time the computation is
done over a mesh of 118 nodes and 213 triangles. Now, our goal is to recover
FE as in Fig. 6 bellow:
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Fig. 4. Evolution of the domain converging to the circle E

Fig. 5. Evolution of the functional (24)

Fig. 6. The unknown body
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Figure 7 depicts the evolution of the domain with respect to the iteration
j. In this case, we find E in 5 steps and 1768 seconds (CPU time). Figure 8
depicts the evolution of the cost function.

I-]--.-.“:“:... -

Fig. 7. Evolution of the domain converging to F

Fig. 8. Evolution of the functional (24)



Finite Element Approximation of 2D Parabolic Optimal Design Problems 171
Numerical experiment # 3

We take T' = 20, At = 0.1 and h = 0.14509. This time the computation is
done over a mesh of 281 nodes and 506 triangles. Now, our goal is to recover
FE as in Fig. 9 bellow:

Fig. 9. The unknown body

Figure 10 depicts the evolution of the domain with respect to the iteration
j- In this case, we find F in 6 steps and 6866 seconds (CPU time). Figure 11
depicts the evolution of the cost function.

Fig. 10. Evolution of the domain converging to F
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Fig. 11. Evolution of the functional (24)

Numerical experiment # 4

We take T' = 20, At = 0.1 and h = 0.13798. This time the computation is
done over a mesh of 284 nodes and 516 triangles. Now, our goal is to recover
F as in Fig. 12 bellow:

Fig. 12. The unknown body

Figure 13 depicts the evolution of the domain with respect to the iteration
j- In this case, we find F in 6 steps and 10372 seconds (CPU time). Figure 14
depicts the evolution of the cost function.
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Fig. 13. Evolution of the domain converging to £

Fig. 14. Evolution of the functional (24)

6 Conclusions

We have considered the problem of numerically approximating optimal shapes
in the context of the 2D linear heat equation with Dirichlet boundary con-
ditions. We have addressed the issue of whether discrete optimal shapes for
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a suitable discretization of the original continuous optimal design problem
provide an approximation of the continuous optimal shape.

We have developed a P1 finite-element approximation in space and an
implicit discretization in time for which this convergence result holds in the
2D case, in the class of domains with an a priori bounded number of holes,
introduced by V. Sverdk ([25]). According to our results convergence holds in
the complementary-Hausdorff topology.

Our results can be extended to a more general framework of evolution
problems provided a number of properties are guaranteed: (a) the continuous
dependence of the solution of the PDE with respect to the domain on which
it is posed, and (b) the H¢-compactness of the set of admissible continuous
domains. These continuity properties, and the convergence properties of the
numerical scheme under consideration, allow proving sufficient continuity con-
ditions of numerical schemes with respect to the numerical mesh, to guarantee
the convergence of the optimal shapes.

These results extend to the evolution framework those previously devel-
oped in [6] and [7] in the elliptic case.

Then, we use a classical iterative optimization algorithm to obtain a nu-
merical approximation of the discrete optimal domains. Using differentiation
with respect to the domain, we can find explicit formulas of the approximate
variation of the discrete functional to build numerical methods for the search
of the discrete optimal shape, by means of the solution of the discrete adjoint
problem. The convergence of the iterative numerical methods we obtain by
this procedure is not proved but its efficiency is illustrated by various experi-
ments.
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Summary. We present a multilayer Saint-Venant system for the simulation of 3D
free surface flows. A precise analysis of the shallow water assumption leads to a set of
coupled Saint-Venant type systems. For each time dependent layer, a Saint-Venant
type system is solved on the same 2D mesh by a kinetic solver using a finite volume
framework. We validate the model by comparisons with Navier-Stokes solutions.

1 Introduction

In this paper, we present a multilayer Saint-Venant system for the simula-
tion of 3D free surface flows. The idea is to introduce, when the hydrostatic
assumption is valid, an alternative to the solution of the free surface Navier-
Stokes system, leading to a precise description of the vertical profile of the
horizontal velocity while preserving the robustness and the computational ef-
ficiency of the usual Saint-Venant system. This study generalizes the work of
Audusse [1] to the 3D problem with slow varying bottom (see also [4]).

In Section 2, we recall the incompressible Navier-Stokes equations, the
boundary conditions and the hydrostatic approximation. The multilayer Saint-
Venant system is described in Section 3 and the associated numerical method
in Section 4. A numerical example is presented in Section 5.

2 Navier-Stokes equations and hydrostatic
approximation

We consider the classical incompressible Navier-Stokes system

V.U =0, (1)

ou
W+V.(U®U)=V.a+g, (2)
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free surface

hit,z.,y)

Y

Fig. 1. Flow domain

with the stress tensor o given by

o = —plld + p[VU + (VU)7] (3)

and where U = (u,v,w) is the velocity, u = (u,v) is the horizontal velocity,
0

p is the pressure, g represents the gravity forces, g = 0 and p is the
-9

viscosity coefficient.
We consider a free surface flow (see Fig. 1), so we assume

Z(x,y) <z < H(t,x,y) = h(t,2,y) + Z(x,y)

with Z(z,y) the bottom elevation and h(t,z,y) the water depth.
On the bottom we prescribe an impermeability condition

Un=0 (4)
and a friction condition given by a Navier law
(omn)t=—-k Ut (5)

with x a Navier coefficient, n a unit outward normal and t a tangential vector.
For applications, we use also the Strickler friction.
On the free surface, the kinematic boundary condition is satisfied

O ult, .y, H).VH ~ (., H) =0 (©

and also the no stress condition
on=0. (7)

Then we introduce the shallow water assumption. We consider two character-
istic dimensions H and £ in the vertical and horizontal directions respectively
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and we assume that H is small compared to £, so we can write € = % with e
a small parameter. We assume also slow varying bottom ([4]). We introduce
dimensionless variables and we obtain a dimensionless Navier-Stokes system
(see [1, 4]). By an asymptotic analysis, we deduce the approximation at zero
order in € of the system (1)—(7) which gives the horizontally inviscid hydro-
static model

Vv.U=0, (8)
ou Juw 0%u
§+V(u®u)+W+VP—Uﬁ’ (9)
dp
— = — 1
5, = 9 (10)
with the boundary conditions
w(t,z,y, Z(x,y)) =0, (11)
ou
14 E(taxayaz(xay)) :Ku(t,x,y,Z(x,y)), (12)
O 1, H (1, 2.0) = (13)
p(t,z,y, H(t, z,y)) = 0. (14)

The system is still associated with the kinematic boundary condition (6).
Taking into account the pressure boundary condition on the free surface
(14), the equation (10) is equivalent to

p(t,x,y,z) :g(H(taxvy) _Z)' (15)

3 A Multilayer saint-venant system

In order to define a vertical discretization of the system (8)—(14), we introduce
a discretization of the water domain in the z direction (see Fig.2). For some
M € IN we define M intermediate water heights H, (¢, x,y) such that

0= Ho(t,z,y) < Hi(t,z,y) < Hy(t,2,y) < ...
e < Hpypq(tx,y) < Hy(t,x,y) = h(t, 2, y).

Then for each layer we define its water height h,(t,z,y) by
Vae{1,M},  ha(t,2,y) = Ha(t,2,y) — Ha—1(t, 2, ),

and so
M

Z ha(t,z,y) = h(t,x,y).

a=1
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Free surface
.

_-_\_-_\_-——-—..
ha(t, 2, y) Ug(t, z,y)
) hs(t, x,y) g H‘E‘h“h‘-—ﬁ—ﬂ——___

Bottom

Fig. 2. Water domain discretization in the z direction

We assume that the interfaces are advected by the flow.
We also define an average velocity U, (¢, z,y) by

1 He
Va e {1,M}, U,(t,z,y)= m/ u(t,z,y, z)dz. (16)
a\ly L, 1

An extension of the arguments in [1] leads to the following result:

The multilayer Saint-Venant system with friction defined by

Ohg
W + V. (haUa) =0, (17)
0h, U,
En + V(haUy ®U,) + ghaVh = —ghoVZ
Ua+1—U Ua_Uafl
—koUq + 2Ug——— — 21—, for a=1,...M (18
T R N (18)
with
koif a=1 0 if a=0,
ﬁa:{o i ol P =< W '1f a=1,..,.M —1,
0 if a=M.

results from a formal asymptotic approximation in O(e), coupled with a verti-
cal discretization, of the hydrostatic model and therefore of the Navier-Stokes
equations.

The multilayer Saint-Venant system satisfies some fundamental properties
(see [1]), we just mention here that the multilayer system (17)—(18) preserves
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the positivity of the water height in each layer. It preserves also the steady-
state of still water.

However the formulation of the multilayer system (17)—(18) has two main
drawbacks. The pressure terms are not in a conservative form and thus their
definition is not obvious when shocks occur. And if we consider a two layers
system satisfying

U, (t,z,y) =U(t,z,y) + O(e) Va =1,2, (19)

we verify (see [1]) that the two layers system is not hyperbolic.

In order to define a stable approximation of the multilayer system, it is
shown in [1] that the following new set-up of the same system but with a
conservative form of the left hand side is better

Ohg
_ = 2
5+ V(haUa) = 0, (20)
6ho¢ o g g, o ha
U g — Ipzyley Z
o + V(haUsa®U,) + 2V(hah) 2h V( h ) ghoV
Uyt — U, U, -U,_1

ko Uq 4 2o — 20 gy, = —eml g — 1, M (21
" + K hori-l +h a ! ha +ha—1 o« ( )

4 Numerical method

In this section we give some short information concerning space and time
discretization of the system (20)—(21).

With At the time step, knowing the solution (hZ,U”) at time ¢", we
compute the solution at time "1 with an explicit treatment of the hyperbolic
part (left hand side), of the non conservative pressure source term and of the
bottom topography term, and an implicit treatment of the viscous and friction
terms, so the scheme is written:

hn+1 — hn
P 4 V(UL = 0, (22)
hn+1Un+1 _ hnUn

e —leo L V(UL UL) + SV(hhT)

9102 h’g n
= (") VD) = ghaVZ (23)
vy U w oo

—KQUQ + 2/14 W — 2/La W, for a = ]. M

We notice that A1 is obtained explicitly and UnT! is the solution of a
tridiagonal M x M linear system.

Concerning the space discretization, we consider finite volumes defined on
an unstructured mesh. For the hyperbolic part, the fluxes at the interfaces
are computed by a kinetic solver analogous to the one explained in details in
[2] for the Saint-Venant system. Here the Gibbs equilibrium for the layer « is
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ha(t7x7y) {—Ua(t,x,y)
A(t,z,y) c(t, z,y)

Mo (t, @, y,€) = X( ); (24)

with ¢(t,z,y) = \/@, and the notations defined in [2].

To discretize the bottom topography term we generalize the hydrostatic
reconstruction [3] in order to preserve steady state of still water.

We define:

e a piecewise constant approximation of the bottom topography Z(x,y)

Z; = L/ Z(z,y)dzdy, (25)
ICilJe,

with |C;| the area of the cell C; surrounding the node P;,
e an interface topography (we denote Z,;, Z;; the values at the interface
between nodes P; and P;)

Zij = Zj; = max(Z;, Z;), (26)
e an hydrostatic reconstructed total water depth
hij = (hi + Zi = Zij)+, (27)
e a proportional reconstructed water depth for each layer

ha,ij = hai T

(28)
For the non conservative source term of the right hand side hZV(hT“) we use
the following approximation S, ; which has proved to be robust and gives
stable results 5
Sai = min(h?j) minmod (ka(f)) (29)
J
where V1, denotes the constant gradient on each triangle surrounding the
node P;.
The vertical velocity is an output variable and is deduced from the imper-
meability condition at the bottom and the integration in z of the incompress-

ibility condition (8).
5 Numerical results

We compare the results obtained with the multilayer system described above
and the hydrostatic Navier-Stokes solver “Telemac” presented in [5]. The main
ingredients of the Telemac solver are finite elements, operator splitting, semi-
implicit scheme, o transformation (A.L.E. type transformation) along vertical
axis.

We consider a classical test, a stationary transcritical flow over a parabolic
bump and the geometric data are the following: channel length ~ 21 m, chan-
nel width & 2 m, bump length ~ 5.75 m, bump height ~ 0.2 m. At the inflow
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boundary, the given discharge is 2.m3/s and at the outflow the prescribed
water depth is 0.6 m. The vertical viscosity is 10~2m? /s and the Strickler co-
efficient is 30. The results shown in Figures (3)—(6) have been obtained with
6 layers along the vertical axis (1452 nodes, 2620 triangles for the 2D mesh).
We can see the good agreement of the results obtained with the two different
models though the approximation of the velocities are different (constant by
layer or piecewise linear). The CPU times are 10 minutes for the multilayer
and 33 minutes for the hydrostatic Navier-Stokes solver.

(b) Hydrostatic Navier-Stokes model

Fig. 3. Horizontal velocities

(a) Multilayer Saint-Venant model

(b) Hydrostatic Navier-Stokes model

Fig. 4. Vertical velocities
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Fig. 5. Free surface comparisons. Multilayer Saint-Venant model (red line) and
hydrostatic Navier-Stokes model (green dotted line).
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Fig. 6. Vertical profiles of horizontal velocity . Comparison of the multilayer (red
crosses) and of the hydrostatic Navier-Stokes (green lines) solutions.
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Summary. This paper is concerned with the numerical approximation of bed-load
sediment transport due to water evolution. We introduce an unified formulation for
several bed-load models. Some numerical simulations are presented.*

1 Sediment transport model

In order to understand and predict geomorphological evolutions in coastal
seas and estuaries a model, which describes the dynamics of the water motion
and bed-load sediment transport movement, is needed.

In this paper, the hydrodynamical model is given by shallow water equa-
tions, and the morphological model is modelized using a bed evolution equa-
tion. Both systems can be written as a coupled system of conservations laws,
with non-conservative products and source terms. The model equations are
described in Section 1.4.

1.1 Hydrodynamical model: shallow water equations

The system of equations governing a flow of a shallow layer of fluid through a
straight channel with a constant rectangular cross-section is given by the well
known shallow water model,

4 This research was partially supported by Spanish Government Research Projects
BFM2003-07530-C02-01 and BFM2003-07530-C02-02.
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@_}_i_o

ot oxr 1)
dq¢ 0 (¢ 1 5\ _ . dH

(%+&E<h+2gh —gh%—gth.

In this system, it is supposed that the fluid is homogeneous and inviscid;
coordinate x refers to the axis of the channel, t is the time; h(z,t) is the
thickness of the fluid layer and g(x, t) represents the mass-flow, being g(z,t) =
h(z,t)u(z,t) where u(z,t) is the velocity of the fluid; g is gravity and H(x)
the depth function measured from a fixed level of reference (Ag).

The term Sy models bottom friction, that it is supposed given by a Man-
ning’s law,

2,,2
gn-u

Sp =75 (2)
f R;;L/g

being 7 the Manning coefficient. Ry, is the hydraulic ratio, that can be apro-
ximated by h.

To study bed-load sediment transport it is necessary to consider a sediment
layer of thickness z;, and a fixed layer (without sediments), with thickness

given by zy = —H + Ag. In this case, system (1) can be rewritten as,
o, o,
ot oxr 3)
aq 8 q2 1 2 321, dH
—+— | >=+=-gh" | = —gh— + gh—— — ghS;.
8t+6x(h+2g gax+g dz It
In
AT | B
i "
[z, —

Fig. 1. Sediment layer over a fixed bed

1.2 Morphological model

The continuity sediment equation models bed-load sediment transport. The
temporal variation of sediment layer must be equal to the total variation of
the solid transport.

The expression of the conservation law of sediment volume is given by,
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Oz, Oy

— — =0. 4

ot + Ox )
zp(x,t) represent the sediment layer; £ = 1/(1 — ps) where py is the sediment
porosity. g, denotes the solid transport flux, that depends on fluid velocity

v = Qb(h7 Q)

1.3 Flux of bed-load sediment transport equations

In the literature there are several formulae for ¢,, which have been obtai-
ned using different empirical methods, studying hydrodynamical problems in
rivers, currents in coastal areas, etc. Some of the most popular equations are
(see [4, 5, 6]),

e Grass equation uses the hypothesis that sediment movement begins at the
same time as fluid movement,

@ = Agyulu™ 7, 1< m, <4 (5)
where, the constant A, (s*/m) is determined using experimental data, and
its value is between 0 and 1. Usually the constant m, is set to my = 3.

e Meyer-Peter&Muller equation is a flux formula based on the size of the
grain of a porous media. The expression of ¢ is obtained from the following
identity:

db
(G —1)gd}
where, T, = 0.047 is the critical stress shear; d; denotes grain size. G = 2=
is the rate between the specific weight of the fluid, v, and the specific weight

of the sediment, 5. Finally, u is fluid velocity and, 7, denotes the shear
stress whose expression is:

= sgn(u)8 (T — 7'*0)3/2 ; (6)

2,2
T yntu
Ty = ————— where 7 = ———. 7)
(s = 7)ds R? (

Note that bed-load transport occurs when the bed shear stress 7, exceed
the critical value 7.

Other models that can be found in literature are: Nielsen, Van Rijn,
FL&Van Beek, etc.
Unified formulation

The different formulae of g, can be written under an unified formulation in
this way,

@ = c192(h, q)(c2 + cagi(h, @)™, (8)

where c¢1, ¢3, cs and m are constants and g1, go are functions of h and q.
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1.4 One-dimensional coupled model

The one-dimensional model used to modelize the bed-load sediment transport
due to water movement, is obtained coupling the shallow water system (3) and
the conservation law of the sediment volume (4), resulting the following cou-
pled system of conservations laws with non-conservative products and source
terms:

% + 87 =0
ot or
o9 0 (¢ 1 , Oz dH
a2 (1L, — _gh22b el 9
8t+8x<h+29h ghax +ghdx ghS;. ©
92 | On _
ot or
If a new variable S is defined by S = H — z,, and taking into account
oS Ozp . . .
that %= o s possible to re-write the system (9) as a coupled system
of conservation laws with a non-conservative product and a source term Sg:
oW  OF (W) ow
e =B - 1
ot ox W) gz 57 (10)
where,
h , ql 00 0 0
W=\q|. F= T4 gn?| , BW)={00gh|,Sp=|—ghS;
S h= 2 000
—£q 0

(11)

2 Finite volume method for non conservative hyperbolic
systems

The friction term Sr will be discretized in a semi-implicit way. So, in what
follows, to simplify notation, we can forget the friction term and work with
the system:

ow  OF (W) ow
- =B —_— 12
ot Oox W) oxr’ (12)
Note that, (12) can be written as a non-conservative hyperbolic system,
ow ow
—_— —_— 1
AN =0, (13

where,
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0 1 0
q2
A(W) = AW) - BOW) = | —p3 +oh 25 —gh | (14)
_9n %
oh 5 0

being A(W) the jacobian matrix of F(W). Let us assume that the system is
hyperbolic, that is, the eigenvalues of matrix A(W), {);, j = 1,2,3} are real
and distinct.

In order to construct a numerical scheme for solving (13), computing cells
I, = [mi,l/g, mi+1/2] are considered. Let us suppose for simplicity that the cells
have constant size, Az, and that ;. /2 = iAz. We will note z; = (i—1/2)Ax,
the center of the cell I;. Let At be the constant time step and define t" = nAt.
Noting by W the approximation of the cell averages of the exact solution
provided by the numerical scheme, that is,

1%

e /LH/Q W (z, t")d (15)
e — z, t")dx.
Az J,

i—1/2
Then, the numerical scheme advances in time by solving Linear Riemann pro-
blems at each intercell at time ¢ and taking the averages of their solutions
on the cells at time ¢"*!. Under usual CFL conditions, the resulting scheme
can be written:

W =W + (Giy1y2 — Giz1)2)
G (16)

t 5. (Biz1)2(W" = W) + Biy1)2(Wiy — W),

where,

1

1
Giy12 =5 ( (W) + F(W],)) — QDi+1/2 (Wi, = W) (17)

being D; 1,2 the V1500$1ty matrix of the scheme. Depending on the choice of
this matrix, different schemes are obtained. Roe method is obtained by

Dit1y2 = ’Ai+1/2| =K (Wi"; Wﬁd) ‘E (W{”7 1+1)|’C (Wina W:H) , (18)

where Aj; 1/ is the Roe matrix for the states W' and W ;. Li11/2 is a

3
diagonal matrix whose coefficients are the eigenvalues of A; 1 /s:

)\z1+1/2<)\;+1/2<)\;+1/2’

and K12 is a 3 x 3 matrix whose columns are the associated eigenvectors.

Other definitions of matriz D; /o can be obtained including flux limiters.
The basic idea is to use Lax-Wendroff method in the regular parts of the
solution.
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3 High order schemes based on state reconstruction

Methods based on state reconstruction are built using the following procedure:
given a first order scheme with numerical flux function G(U, V), a reconstruc-
tion operator of order p is considered, that is, an operator that associates to
each given sequence of states, W;, two new sequences Wiil /20 Wi /2 in a
way that, whenever

1
= T w d 3
for some smooth function W, then:

w

41,2 = W(in+1/2) + O(Axp)

In [3], a high order numerical scheme based on the state reconstruction
for coupled systems of conservation laws with non-conservative products like
(12) is obtained. The space discretization is provided by:

W, = % (@-71/2 - éi+1/2>
+ QAAita; (Bi—1/2 ' (Wit1/2 - Wi:1/2) * Bi+1/2 . (Wiil/z - Wijrl/Q))
+ %ZBJ
(19)

where,

éi—1/2 = % (F (Wi11/2) +F (W:o-l/2>> - %’Di—i-l/Q ’ (Wi-:l/Q - Wi:—l/2) )

(20)
being D, 1/ the viscosity matrix given in (18).
Moreover,
Lit1/2 d
I, =/ B [P}| —P/(x)dz, (21)
Ti-1/2 dx

being P! a regular function provided by the reconstruction operator and de-
fined at every cell I;, verifying (see [3] to details),

lim  Pi(x) =W}, ,(t); lim Pi(z) =W, (). (22)

i—1/2 i
T— ToET L

+
Ti_1/2

The time discretization is provided by a TVD method such RK2 or RK3
proposed in [1].
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4 Numerical test: comparison with an analytical solution

Hudson and Sweby in [4] propose a family of asymptotic analytical solutions
for the Grass model, when the constant A, < 1072, supposing that the
sediment layer z, is present over all the domain, and the fluid movement is
slow, with a constant flow ¢q. We have considered an analytical solution of this
family given by:

h =10 — zp(z,t), ¢ =10,
where,
7 (o — 300)
200
0.1 otherwise,

0.1 + sin? ( ) if 300 < z, < 500,

zp(z,t) = (23)

where x,, is the solution of the equation,

. (7 (zo—300) \ e
e net Ay o 10 - (= 0) )
if 300 < z, < 500,

T=1x,+AgEMmyt/10 otherwise.

We consider a rectangular channel with length L = 1000 meters, dis-
cretized with 250 cells. The CFL parameter is set to 0.8. The sediment porosity
is set by po = 0.4. The constant A, of Grass formula (5) is set to A, = 0.001
(weak interaction) and my = 3. Free boundary conditions are considered and
the initial condition is given by:

h(z,0) =10 — z(x,0), ¢(x,0) = 10,
7 (z — 300)

0.1 4 sin?
+ sin ( 200
0.1 otherwise.

> if 300 < 2 < 500;

zp(x,0) = (24)

In Figures 2, 3, 4 the analytical solution (continued line) is compared with
the approximation provided by different numerical schemes. In Figure 2 the
first order Roe method is compared with the second order Roe-flux limiter
scheme. In Figure 3 the second order Roe-Flux limiter scheme is compared
with the second order Roe-Weno2-RK2 scheme. Finally, in Figure 4 the com-
parison between the third order Roe-Weno3-RK3 scheme and the second order
Roe-Weno2-Rk2 scheme is provided. The best approximation is obtained, as
expected, using the third order Roe-Weno3-RK3 scheme.
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t=238080 t=238080

0.6

0.4

0.2

— sol exact
- roecl
= - roesl

0.8

— sol exact
. rkewzs!
1| = - roecl

0

L L L L L L L L L L L L L L L L L L
100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Fig. 2. Roe-Flux limeter (dotted line) and Fig. 3. Roe-Flux limiters (dash line). Re-
Roe-Euler (dash line) construction Weno2-Rk2 (dotted line)

t=238080

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Fig. 4. Reconstruction: Weno2-Rk2 (dotted line), Weno3-Rk3 (dash line)
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Summary. We review a conservative finite difference shock capturing scheme that
has been used by our research team over the last years for the numerical simula-
tions of complex flows [3, 6]. This scheme is based on Shu and Osher’s technique [9]
for the design of highly accurate finite difference schemes obtained by flux recon-
struction procedures (ENO, WENO) on Cartesian meshes and Donat-Marquina’s
flux splitting [4]. We then motivate the need for mesh adaptivity to tackle realistic
hydrodynamic simulations on two and three dimensions and describe some details
of our Adaptive Mesh Refinement (AMR) (|2, 7]) implementation of the former fi-
nite difference scheme [1]. We finish the work with some numerical experiments that
show the benefits of our scheme.

1 Introduction

This work is concerned with the numerical solution of hyperbolic systems of
conservation laws of the form:

{ Ut + ch‘lzl Fl(U)ﬂ?7 =0 (1)
U(x,0) = Up(x),

where U = (Uy,...,Un)T 2 = (z1,...,24), Ui: R — R and F;: R —
R™, by means of a numerical scheme built from Shu-Osher’s conserva-
tive finite-difference formulation [9], a fifth order weighted essentially non-
oscillatory (WENO) interpolatory technique, Donat-Marquina’s flux-splitting
[4], and a third order TVD Runge-Kutta ODE solver [9], merged with the
adaptive mesh refinement (AMR) algorithm [2].

* Research supported by EUCO Projects HPRN-CT-2002-00282 and HPRN-CT-
2002-00286
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The paper is organized as follows: in Sect. 2 we review the numerical
method used to solve (1) on a fixed grid. In Sect. 3 we review the AMR
technique and we explain our implementation of the method described in
Sect. 2 within the AMR framework. In Sect. 5 we experimentally validate our
algorithm. Finally, the conclusions are pointed out in Sect. 5.

2 Finite-difference Shu-Osher schemes

Shu and Osher [9] proposed a finite-difference scheme to solve (1) based on
highly accurate conservative approximations of the fluxes F;(U), to ease multi-
dimensional extensions. This dimensional-splitting facility allows us to restrict
the exposition to the one dimensional case, i.e.,d = 1in (1). In this case system
(1) is written as:

U(x,0) = Up(z). (2)

We will denote by U™ = {U}'}; the vector of the numerical approximations
to the exact solution U(z,t) of (2) at the points (z;,t"), , where z; = (j+3)Ax
and t" = nAt. We start with the case of a scalar conservation law, i.e., m =1
in (2).

The key idea of Shu-Osher’s formulation is to express the derivative of the
flux as a finite difference. For an (unknown) function ¢ such that

{Ut +F(U)y =0

x—&-%
FU1) = 5 / o(s)ds,

Ax
2

we have

FU(x,t)), =

The conservation law (2) is thus equivalent to

oz + 42) — lz — 4%)

U,
¢+ Az

—0. (3)

We can apply a method of lines to solve (3) to obtain a conservative scheme
if we approximate the values ¢(z + %) using the known values of the cell-
averages of the function ¢ (i.e. the values F'(U(xj,t))) in the mesh. We denote
by F; 1 such a reconstruction in the cell interface z; +1

This reconstruction can be performed with the same methodb used in the
classical finite-volume formulation, in which the point-values of the conserved
variables are reconstructed from its cell-averages. The time accuracy is ob-
tained by a high order ODE solver.

The extension to systems is performed by local characteristic decomposi-
tions and Donat-Marquina’s flux splitting [4]. The idea is that the numerical
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flux Fj 41 is the sum of contributions of the characteristic fluxes correspond-
=357
the p-th field at each contributor cell takes into account the sign of the corre-
sponding eigenvalue A, (U) and is consistent with the characteristic structure
of the Jacobian Matrix at the cell.
At a given cell interface z; +1, We compute two sided interpolations U

ing to cells [z; 1,2, 1] and [z;, 1,2, s]. The contribution corresponding to

+2
of the conserved variables. The values coming from the left, Uj 1 and from
2

the right, U+1,
interpolation procedures with upwind biased stencils that contain the points
x; and x;41, respectively.

At each point z; belonging to some upwind biased stencil that contains
the given cell interface x; 1 these interpolated quantities are used to define

are computed using high order essentially non-oscillatory

two sets of characteristic variables wﬁf’ =1 (UJ i1 ) - U, and characteristic
2
fluxes FPL’;CR = lp(UJ_L+I:) F(Uy), where 1,(U), r,(U) stand for normalized left

and right eigenvectors of the Jacobian matrix F'(U) corresponding to the
eigenvalue A,(U). Upwind characteristic fluxes are then computed according
to the characteristic speeds at both sides, except at sonic points, at which a
local Lax-Friedrichs splitting (see [9]) is applied.

Let R(g—s,,- - -, Ysy,x) denote the evaluation at z of a reconstruction based
on cell-averages g; of a function at some s; + s, + 1 adjacent cells (we use here
the WENOS5 procedure [5]). The algorithm to compute the numerical fluxes
at 2, 1 is as follows:

if A\p(U) does not change sign in a path in phase space connecting U; and Uj+1
if \p(U;) >0

L L
Vpj = R(ij s F,J+szv J+i 1)
wp,j =0
else
L
wp,J 0 R
Uy = R(Fy}j- 51+17~~-Fp,j+s2+171j+%)
else
1L L 1L L
wzm = (§(F p,j— 81+0‘+1wzm 1) §(FP,J+82+O"+lwp,j+52)7xj+%)
1 R R
QZ}PJ = (i(FpJ s1+17 H—%wpd S1+1)7 (FP7]+52+1 j+%wpyj+52+l)7xj+%)

With the numerical flux defined as

Fiy= Zw,,jp 1) (U ), (4)

the spatial semi-discretization of (2)
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oU; By = Fioy
ot Ax

is then solved with a high order ODE solver. We have used a third order TVD

Runge-Kutta ODE solver [9].

For higher space dimensions, this scheme admits a straightforward tenso-
rial (dimension by dimension) extension. Each flux function F;(U),, in (1) is
discretized using the one-dimensional algorithm in the ¢ — th coordinate, and
the ODE solver is then applied to the semi-discrete system

=0 (5)

ot pt Az

A more detailed description of the overall algorithm can be found in [6].

3 Adaptive mesh refinement for Shu-Osher schemes

The mesh size Az imposes a limit in the features of the numerical solution
that can be resolved by a numerical scheme. To be able to resolve phenomena
whose physical scale is small we need very fine computational grids, thus
increasing the computational cost of the calculation.

Since fine grids are usually needed only in a part of the computational
domain (where the solution has non-smooth structure) the resolution of the
computational grid can be increased locally. We have adopted the adaptive
mesh refinement technique of Berger et al. [2].

The AMR algorithm uses a grid hierarchy Gy,...,Gr_1, where G; is
formed by the union of Cartesian patches G j of uniform mesh size. The
grids at different levels are nested, i.e. Gj+1 C G (our description implies
that G141 is finer than Gj).

As singularities move as time advances the grid system has to be adapted
in a way such that singularities cannot move from a given grid to a coarser
one before the grid is adapted

Given a grid G; the adaption process obtains a grid at level [ + 1 that
will substitute the existing grid Gjy;. This new grid will take into account
the features of the recently computed solution at G;. The adaption process
consists of three main building blocks: first a procedure decides which cells of
the grid G; have to be refined to form the grid G;4;. Since the main three
kind of singularities that appear in the solutions of hyperbolic systems of
conservation laws constitute variations in the solution or in the gradient of the
solution it could be enough to use the gradient of the solution as an indicator
of the presence of such discontinuities. If the change in some seminorm of the
gradient (e.g., the absolute value of the density component of the gradient for
Euler equations or some norm of the gradient for general equations) of the
solution between two adjacent cells is above a given tolerance Ry,;, then both
cells are flagged for refinement.
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Once the coarse grid has been flagged we add a certain number of safety
flags to ensure that the cells adjacent to a singularity are refined. The safety
flags will avoid singularities to escape from the fine grid during one coarse
time step.

The cells corresponding to the fine grid will be composed by the sub-
division of the coarse cells flagged for refinement. The second process obtains,
from a given set of flagged cells, a set of Cartesian mesh patches containing
all the flagged cells, and possibly some non-flagged cells. A parameter Cy
controls the percentage of non-flagged cells that can be admitted into a patch.
Finally, the third process transfers a numerical solution to the newly created
grid. The numerical solution can come from three sources: interpolation from
the coarser grid, copy from the grid at level [+ 1 that existed before the
adaption, or the application of boundary conditions.

A leading principle of the AMR algorithm is that each Cartesian mesh
patch can be integrated by the basic numerical scheme independently of any
other patch. To this aim each mesh patch is augmented by some ghost cells
that are filled with a numerical solution prior to the integration of the patch.
This feature allows the AMR algorithm to integrate each grid with a time
step coherent with its mesh size, so that the Courant number ﬁ—;’l remains
constant independently of [. This time refinement is expected to reduce the
number of cell updates needed to integrate the whole grid hierarchy from time
t to time t + Atg, with respect to a fixed grid of size Az _1.

Once the grid hierarchy has been evolved from time ¢ to time t + At;, the
numerical solution in a grid G41 is more precise than in a coarser grid G so
the coarse solution is modified conservatively using information coming from
the fine grid. This process is performed by modifying the numerical fluxes at
the interfaces of cells in (G; with the numerical fluxes computed in Gjy1, in
the regions in which both grids overlap. Then the numerical solution at G;
is modified according to the new fluxes. This projection from fine fluxes to
coarse fluxes entails communication among grids and is fundamental for the
efficiency of the algorithm.

As stated above, the main issue to be taken into account is to ensure
that singularities cannot escape from fine to coarse grids. In [7] it is shown
that, for the linear advection equation it is enough to adapt a grid G; after
all grids Gy41,...,Gr—1 have been evolved until time t + At;, provided that
the Courant numbers do not depend on [, the typical CFL condition %
is satisfied for the coarsest grid and at least one safety flag is added in the
adaption process. The integration and adaption processes can be organized in
a way such that the adaption process follows the integration process in the
correct order, see [7, 1].
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4 Numerical examples

To validate our algorithm we take two particular instances of the Riemann
problems for gas dynamics described in [8], which have been used as test
problems in other adaptive schemes (see e.g. [3]). Our setup is identical to the
one in [3] for both problems.

We consider the Euler equations in two dimensions, Uy +F(U), +G(U), =
0, where

P é)u pv
| pu . pus+0p . puv
U - p’l} 9 F - pU’U 9 G - p'l}2 +p ) (6)
E u(E +p) v(E +p)

where p is the density, u and v are the velocity components of the fluid in the
x and y directions respectively, F = % + %p(u2 + v?) is the total energy
The internal energy is given by the equation of state

p=(y—1pe (7)

The computational domain consists of the unit square. Four (constant) dif-
ferent states, initially separated by simple one-dimensional waves are evolved
in time. In the first test case the four states are separated by shock waves.
The initial data is as follows:

Uy if0.75 <z <1and 0.75 <y <1
Ugpif0<x<075and 0.75 <y <1 (8)
Ucif0<2x<0.75and 0 <y <0.75"’
Upif 0.75 <z <1land 0 <y <0.75

U(z,0) = Up(x) =

where the respective values of Us,Up and Ue and Up are taken from the
initial states:

pA=1.5, uA:0, ’UAZO, }9,421.57
pp = 0.5323, up = 1.206, v =0, pg=0.3,
pe = 0.138, uc = 1.206, ve = 1.206, pe: = 0.029,
PD = 0.5323, Uup = 0, Vp = 1.206, PD = 0.3.

We have used a coarse mesh of 100 x 100 cells to discretize the computa-
tional domain. Three levels of refinement with all refinement factors set to 2
have been used to obtain a resolution equivalent to a fixed grid of 400 x 400
cells. In this experiment we have used the following parameters: the CFL con-
dition has been set to 0.25, the refinement parameter is R, = 3.0 and the
clustering parameter is Ci,; = 0.8. In Fig. 1 we display a contour plot of the
numerical solution at time ¢ = 0.8 as computed with a fixed grid of 400 x 400
cells and with the AMR algorithm.

The second test corresponds to a 4-contact configuration, with initial data
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Uy if 05 <zx<land 05<y<1
Upif0<z<05and 0.5<y<1 )
Ucif0<2x<05and 0<y <05
Upif0.5<z<land0<y<0.5

U(z,0) = Uy(z) =

where
pa=1,uq =075 v4=-0.5psg=1,
PB = 2 ,up = 0.75, vp = 0.5, PB = 1,
pCc = 1 , U = —0.757 Vo = 0.5, pPc = 1,
PD = 3 , Up = —0.75, Up = —0.5, PD = 1.

We compute the numerical solution with the same grids as in the first
experiment, and with parameters CFL = 0.3, Ryo; = 5.0 and C = 0.8 (see
Fig. 2). In both results we can see that the AMR algorithm has been able
to resolve all the structure of the solution with the same quality as with the
fixed grid algorithm. With this setup at time ¢ = 0.8 the AMR algorithm has
computed a 24.71% of integrations with respect to the fixed grid algorithm
and has required a 30.20% of computational time for the 4-shock problem,
corresponding to the initial data (8), and a 39.59% of integrations with a
39.65% of computational time in the 4-contact problem, corresponding to the
initial data (9).

Fig. 1. Contour plot (30 lines) of the density computed with the AMR algorithm
(left) and with a fixed grid algorithm (right) for the initial data (8)

5 Conclusions

We have presented a numerical method for the solution of hyperbolic systems
of conservation laws, obtained by the combination of a fifth order high resolu-
tion shock capturing scheme, built from Shu-Osher’s conservative formulation
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Fig. 2. Contour plot (30 lines) of the density computed with the AMR algorithm
(left) and with a fixed grid algorithm (right) for the initial data (9)

[9], a fifth order weighted essentially non-oscillatory (WENO) interpolatory
technique [5] and Donat-Marquina’s flux-splitting method [4] , with the adap-
tive mesh refinement technique of Berger et al. [2], in the simplified form pro-
posed by Quirk [7]. The scheme inherits the robustness of Donat-Marquina’s
basic scheme and has shown to be able to resolve the structure of the numer-
ical solution with an accuracy comparable to the computations made with
fixed grids, with a significant reduction of the computational cost.
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The accuracy of low order numerical methods for the shallow water equations
is improved by using vector reconstruction techniques based on matrix valued
radial basis functions. Applications to geophysical fluid dynamics problems
show that these reconstruction techniques allow to maintain important dis-
crete conservation properties while greatly reducing the error with respect to
low order discretizations.

1 Finite volume methods for shallow water models

The shallow water equations result from the Navier-Stokes equations when
the hydrostatic assumption holds and only barotropic and adiabatic motions
are considered. They can be written as

oh
EJFV. (Hv) =0, (1)
%—s—(v-V)v:—kaV—th- (2)

Here, v denotes the two-dimensional velocity vector, k is the radial unit vec-
tor perpendicular to the plane on which v is defined (or to the local tangent
plane, in case of applications in spherical geometry), h is the height of the fluid
layer above a reference level, H = h — hg is the thickness of the fluid layer,
hs is the orographic or bathymetric profile, g is the gravitational constant
and f is the Coriolis parameter. Eulerian-Lagrangian discretizations for the
shallow water equations using formulation (1), (2) have been proposed in [5],
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[6], which couple a mass conservative, semi-implicit discretization on unstruc-
tured Delaunay meshes to an Eulerian-Lagrangian treatment of momentum
advection. The resulting methods are highly efficient because of their mild
stability restrictions, while mass conservation allows for their practical (and
successful) application to a number of pollutant and sediment transport prob-
lems. A key step of the Eulerian-Lagrangian method is the interpolation at
the foot of characteristic lines, which in the papers quoted above is performed
by RTO elements (see e.g. [9]) or by low order interpolation procedures based
on area weighted averaging. These interpolators have at most first order con-
vergence rate and can introduce large amounts of numerical diffusion, thus
making their application questionable especially for long term simulations.
Another widely used formulation for applications to large scale atmospheric
dynamics is the so called vector invariant form (see e.g. [11]), in which the
momentum equation is rewritten as:

%z—(C—I—f)kxv—V(gh—&-K). (3)
Here, ( is the component of relative vorticity in the direction of k and K de-
notes the kinetic energy. This formulation is usually the starting point for the
derivation of energy, potential enstrophy and potential vorticity preserving
discretizations (see e.g. [1]). Eulerian discretizations of equations (1),(3) have
been proposed in [3, 4], which preserve discrete approximations of mass, vor-
ticity and potential enstrophy. These properties are important for numerical
models of general atmospheric circulation, especially for applications to cli-
mate modelling. The two time level, semi-implicit scheme proposed in these
papers used RT reconstruction to compute the nonlinear terms in the dis-
cretization of (3).

In this paper, vector interpolators based on the technique of matrix val-
ued Radial Basis Functions (RBF) proposed in [7] are applied to improve the
accuracy of the above mentioned Eulerian or Eulerian-Lagrangian finite vol-
ume solvers. The use of matrix RBF interpolators allows to achieve this goal
without having to resort e.g. to higher order RT elements, which would make
more difficult or impossible to preserve the important discrete conservation
properties of the methods reviewed above. For simplicity, in this paper we
restrict ourselves to the two dimensional case, although all the results and the
methods can be generalized to 3D. Although in general this is not sufficient
to raise the convergence order of the overall methods, models employing RBF
reconstructions display significantly smaller errors and have in general less nu-
merical dissipation, making their use attractive for a number of applications.
More extensive tests of the accuracy of matrix valued RBF reconstructions
have been reported in [2].



Finite Volume Solvers Using Matrix RBF 209

2 Matrix valued Radial Basis Functions for vector field
reconstruction

In this section, the vector reconstruction based on RBF proposed in [7] is
briefly summarized in a context that is appropriate for the applications to hy-
drodynamic models. Similar applications of scalar RBF reconstructions have
been presented e.g. in [10].

Consider a set of N distinct points in the plane z;,i = 1,..., N, z; € R?,
and assume that for each x; a two dimensional unit vector n; is given. Consider
then a smooth vector field u : R? — R2. The interpolation data are the values
u; = u(x;)-n;. The interpolation problem consists of the reconstruction of the
field u(x) at an arbitrary point x € R?, given the values ;. This problem can
be reformulated as follows: consider the vector valued distribution denoted
formally by A; = §(z — ;) - n;, whose action on a vector valued function f(z)
is such that (A;,f) = f(z;) - n,;. Given a matrix valued radial basis function

() dr2(x)
2 = [ o]

where the functions ¢;; are e.g. Gaussian or multiquadric kernels, the convo-
lution @ * A; is defined according to [7] as

_ [én(e — zi)n! + dra(e — zi)n?
D« Ai(x) = [g;i(x —x)n} + ¢l§<x - xi)n?]

where n; = [n},n?]T. The interpolation problem consists then of finding co-

efficients ¢j,7 = 1,...,N and a vector valued polynomial p(z) such that
the vector valued distribution denoted formally by A = Z;\f:l cjA; and the
polynomyal p satisfy the conditions (A;, @ * A+ p) = u;, ¢ =1,...,N.
Furthermore, if u is actually a polynomial, the polynomial p determined by
this procedure should coincide with u. These conditions can be rewritten as

N
Y (A ®xX +p)=u;, i=1,... N
j=1
It can be seen that determination of the coefficients c;,j = 1,..., N requires

the inversion of the interpolation matrix A = (a; ;)i j=1,...,n Whose entries are
given by a; j = (A;, P * ;). Conditions under which this matrix is symmetric
and positive definite are given in [7]. In the simple case in which it is assumed
that no polynomial constraint is imposed and that & = ¢I, where I is the
identity matrix and ¢ is a single scalar radial basis function, the problem
reduces for example to Z;\le cio(x; —xj)n; -n; =u;, i=1,...,N.
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3 Applications to environmental modelling

Numerical results obtained with the models described in section 1 will now be
presented. In all cases, it will be shown that RBF vector reconstruction leads
to a substantial improvement of the accuracy of the considered methods. For
all the tests, we employed a reconstruction using the Gaussian or multiquadric
RBF. The polynomial reproduction constraint, when applied, imposed exact
reproduction of constant vectors. A simple 9 point stencil has been adopted,
using the normal velocity components to the edges of the triangle on which the
reconstruction is being carried out and to the edges of its nearest neighbours
(i.e. of the triangles which have common edges with it).

Fig. 1. Relative decay in total energy for Eulerian-Lagrangian model, computed
using RT reconstruction (full line) and RBF reconstruction with 9 points stencil
(dotted line) in a free oscillations test.

Firstly, the results obtained with the Eulerian-Lagrangian method of [6]
will be discussed. In this context, the RBF reconstruction can be used as
opposed to RT0 elements when performing the interpolation at the foot of the
characteristics. In a first test, a square domain of width 20 m was considered,
which was discretized by an unstructured triangular mesh with 3984 elements
and 2073 nodes. A constant basin depth of 2 m was assumed. At the initial
time, still water was assumed and the free surface profile was taken to be
a gaussian hill centered at the center of the domain, with amplitude 0.1 m
and standard deviation 2 m. In absence of any explicit dissipative term, the
total energy of the system should be conserved. The free oscillations of the
fluid were simulated for a total of 6 s with a time step At = 0.01 s. The time
evolution of total energy is shown in figure 1, while the height field computed
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at various timesteps is shown in figures 2, 3. It can be observed that the energy
dissipation caused by the interpolation of the Eulerian-Lagrangian method is
reduced by 40% if the RBF reconstruction is used, while the values of the
maxima and minima in the height field are improved by approximately 20%.
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Fig. 2. Height field computed using RT reconstruction for the Eulerian-Lagrangian
method in free oscillations test at time (a) t =4 s and (b) t =6 s.
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Fig. 3. Height field computed using RBF reconstruction with 9 points stencil for
Eulerian-Lagrangian method in a free oscillations test at time (a) ¢t = 4 s and (b)
t=6s.

Similar experiments have also been carried out with an Eulerian discretiza-
tion of the shallow water equations in spherical geometry. In this particular
case, a three-time level, semi-implicit time discretization was coupled to the
potential enstrophy preserving spatial discretization of [4], using either the
Raviart Thomas algorithm or a vector RBF reconstruction of the velocity
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field necessary for the solution of equation (3). The algorithm performance
was studied when applied to test case 3 of the standard shallow water suite
[11], which consists of a steady-state, zonal geostrophic flow with a narrow
jet at midlatitudes. For this test case, an analytic solution is available, so
that errors can be computed by applying the numerical method at different
resolutions (denoted by the refinement level in a dyadic refinement proce-
dure starting from the regular icosahedron, see [4] for a complete description
of the grid construction). The values of the relative error in various norms
as computed at day 2 with different spatial resolutions and with time step
At = 1800 s is displayed in Tables 1, 2 for Raviart Thomas algorithm and
vector RBF' reconstruction, respectively. It can be observed that, although
the convergence rates remain approximately unchanged (due to the fact that
the approximately second order discretization of the geopotential gradient was
the same in both tests), the errors both in the height and velocity fields have
decreased by an amount that ranges between 30% and 50% approximately.

Table 1. Relative errors in shallow water test case 3 with RT reconstruction for
nonlinear terms.

Level ly error, h ly error,v Il error, h lo error, v

3 7.42e-3 0.25 2.53e-2 0.33

4 1.94e-3 5.9e-2 8.1e-3 9.1e-2
5 6.05e-4 1.27e-2 2.9e-3 1.87e-2
6 2.54e-4 3.19e-3 1.24e-3 4.17e-3

Table 2. Relative errors in shallow water test case 3 with 9 points RBF reconstruc-
tion for nonlinear terms.

Level [y error, h ly error, v ls error, h lo error, v

3 7.27e-3 0.16 2.08e-2 0.17

4 1.52e-3 3.38e-2 6.74e-3 5.77e-2
5 4.05e-4 7.7e-3 1.7e-3 1.22e-2
6 1.45e-4 2.11e-3 4.8e-4 2.89%-3

We have then considered the nonstationary test case 6 of [11], for which
the inital datum consists of a Rossby - Haurwitz wave of wavenumber 4. This
type of wave is an analytic solution for the barotropic vorticity equation and
can also be used to test shallow water models on a time scale of up to 10-
15 days. Plots of the meridional velocity component at simulation day 5 are
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Fig. 4. Meridional velocity in shallow water test case 5, computed using (a) RTO
reconstruction (b) RBF reconstruction with 9 points stencil. Contour lines spacing

is 15 m st

shown in figure 4, as computed with a timestep of At = 600 s on a spheri-
cal quasi-uniform triangular mesh with a spatial resolution of approximately
400 km. It can be observed for example that, when using RT0 reconstruction,
the meridional velocity field obtained is much less regular than in the case
of matrix RBF reconstruction, which compares better with results obtained
in reference high resolution simulations. Furthermore, the total energy loss
is reduced in the RBF computation by approximately 30%, thus improving
the energy conservation properties of the model, which conserves potential
enstrophy but not energy as discussed in [4].
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Concerning the computational cost of RBF reconstructions, it should be
observed that, in the case of Eulerian models, it is possible to carry out most of
the RBF computations at startup, so that the extra computational cost due to
the use of RBFs is approximately 20% of the cost of a model run using simple
RTO reconstruction. On the other hand, in the case of Eulerian-Lagrangian
models, the extra computational cost is higher than in the Eulerian case, since
the RBF coefficients have to be recomputed at each time step for each of the
trajectory departure points.
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Abstract. We investigate the hierarchical structure of hexagonal kinetic mod-
els as a tool for the numerical simulation of the Boltzmann equation. This is of
use for a number of applications, e.g. in the context of domain decomposition
and of multigrid techniques.

1 Introduction

Due to the development of hexagonal kinetic models [3] there is an efficient
tool available for the numerical simulation of rarefied gas flows [5]. This tool
has been proven to be numerically efficient, is reliable from a theoretical point
of view and covers a broad spectrum of physical situations, ranging from slow
interior to fast exterior 2D flows. Examples are given in [5]. As one particular
example, Fig. 1 shows the gas kinetic analogon of the well-known (1D) shock
tube problem for the Euler equations (see, e.g. [6]). It is calculated with a
kinetic 54-velocity model (2-layer model, cf. Section 2). We easily identify the
four plateaus of the density and those interfaces which in the fluid dynamic
case correspond to the rarefaction zone, the contact discontinuity, and the
shock interface. Of course, in rarefied gas kinetics discontinuities through the
shock turn into continuous profiles with steep gradient. If we want to come
closer to the fluid dynamic situation described by the Euler equations, we
have to cut down viscosity; for this it is necessary to refine the discretization
of the velocity space, i.e. to use a larger discrete velocity model.

An interesting aspect is that the hexagonal model is accessible to a multi-
grid approach, since it can be refined giving rise to a hierarchy of hexagonal
models. This hierarchy is the subject of the paper. Since more refined mod-
els require essentially more time and memory resources, it seems favorable
to supplement them with calculations on coarser grids. One might think e.g.
of one of the following three scenarios. First, one might try to establish a
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Fig. 1. Shock tube problem. (a) density, (b) velocity.

multigrid scheme as it is applied in different context for partial differential
equations, where the calculations switch in an appropriate manner between
the different grid levels. Second, numerical results on the coarse grid may be
seen as a predictor which is corrected on the refined level. e.g., if steady solu-
tions are calculated via a time marching algorithm, the initial phase could be
calculated by a rough scheme and followed by a refinement procedure. Third,
the refined model could be restricted to sensitive areas of the computational
domain and coupled to the coarse system in the complementary region.

The scope of the paper is as follows. First, we give a short review on
hexagonal collision models (Section 2). Then we introduce a refinement strat-
egy which leads to a hierarchy of grid levels. Given densities on one of the
levels, we investigate coarsening and refinement procedures to switch between
the levels (Section 3). Finally, we discuss the coupling of different models in
a domain decomposition approach (spatially 1D) and work out the problems
to be attacked for a successful implementation.

2 Hexagonal kinetic models

Hexagonal kinetic models are founded on two basic features. First, on the
hexagonal discretization G of R? (in 2D velocity space; a similar discretiza-
tion for IR® has been worked out in [2] but will not be considered here) as given
in Fig. 2(a). Second, it is based on a collision operator on each regular hexagon
with nodes in G. The number of regular hexagons with nodes in G is large. As
can be shown, for any two points g; # g2 € G there are two hexagons contain-
ing (g1, g2) as an edge. Given a hexagon H = (go, ..., g5) € G° (g; numbered in
consecutive order as appearing in the hexagon), a collision operator for a den-
sity f = (fo,.-., f5) on H is given as J = Jy;, + J,.. with the binary collision
operator J,;, and the ternary J,.. being defined via S[f] := fofs + fifa+ fof5
and T'(f] := fifsfs — fofafs as
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Fig. 2. Hexagonal discretization. (a) the grid, (b) n-layer models.

Jbin[f] = S[f] : (17 1a 1a 17 17 1)T - 3(f0f37 f1f4a f2f57 f0f37 f1f4a f2f5)T (1>
Tl f1=TIf]- (1, -1,1,-1,1,-1)T. (2)

The corresponding kinetic theory has been worked out in [3, 2, 1].

For numerical purposes one has to restrict to finite grids. Convenient are
so-called n-layer grids which are grouped in a symmetric fashion around a
central hexagon as shown in Fig. 2(b). The six nodes of the bold hexagon form
the O-layer system. Including the hexagons with lines of medium thickness
yields the 1-layer model with 24 velocities. All lines together form the 2-layer
system with 54 velocities. The total number of regular hexagons in the grid
and with this the required numerical effort for the calculation of the collision
operator increase significantly with n as can be read off from Table 1. (Here,
|G| denotes the number of grid points; basic hexagons are the small hexagons
producing the grid; |H| is the number of all regular hexagons.) Thus for the
design of efficient algorithms it is necessary to choose n as small as possible.

Table 1. n-layer models

| #Qayers) 012 3 4 5 6 7 8 9 10

|G| 62454 96150 216 294 384 486 600 726
#(basic hexagons)|1 719 37 61 91 127 169 217 271 331
|H]| 116 81 256 625 1296 2401 4096 6561 10000 14641

On the other hand, consider a physical flow situation with a typical tem-
perature Ty and bulk velocities ranging in a certain bounded domain V. The
choice of the grid size h and the number n of layers depends significantly on
Ty and V. The lowest temperature to be resolved is certainly restricted by the
size of the basic hexagons. If Tj is too large, then we find distorting boundary
effects. Furthermore, bulk velocities close to the boundary of the n-layer grid
are not well reproduced. Detailed investigations are found in [2]. In Fig. 3(a),
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Fig. 3. Discrete equilibria. (a) centered equilibria, (b) boundary distortion.

discrete equilibrium distributions of the 2-layer model with zero bulk veloc-
ities are compared to the equilibria of the continuous Boltzmann equation
(“Maxwellians”). It turns out, that there is best agreement (with an error of
0.33%) if the temperature is not too small (restriction of the grid length) and
not too large (restriction of the bounded grid size). Fig. 3(b) shows distortion
effects when the bulk velocity comes into the vicinity of the grid boundary. In
this case we find an error of 17% for the discrete equilibrium due to boundary
effects.

3 Hexagonal hierarchy

Given an (infinite) grid G with grid length h, a coarser grid G?" c g
with double grid size can be generated by replacing 4-point stencils of the
form given in Fig. 4(a) by their center points. In a similar manner, G, can
be refined to a grid G*/? > G by blowing up every point to a 4-point
stencil. This refinement procedure can be continued ad infinitum ending with
a continuous kinetic model [5]. In this section we restrict to the three-layer
model Gy with 96 grid points as given in Fig. 4(b) and its one-layer restriction
Gaa C Ggg with 24 grid points (edges of the solid lines in Fig. 4(b)). Switching
between the grids requires a coarsening and a refinement procedure.
Coarsening: Suppose given a distribution function fgg on Ggg to be coars-
ened to a distribution function fo4 on Goy4 in such a manner that the physical
conservation laws (mass, momenta and kinetic energy) are satisfied. A first
attempt consists in moving the masses of the outer points of each stencil
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Fig. 4. Switching between grids: (a) 4-point stencil, (b) 3- and 1-layer grid.

to their center points (call the resulting distribution fg4). This procedure is
mass conserving but momenta and energy are (slightly) perturbed. One way
to remedy the situation is to choose methods from optimization theory and
find the vector foy closest to fo4 (in some appropriate norm) satisfying the
conservation laws and the restriction foq > 0. It should be pointed out that
in fluid dynamics there are further quantities which are of interest; among
them are the momenta flows and the heat flow which are given by second and
third momenta of the distribution. These should be considered to be conserved
quantities in the coarsening procedure and included into the optimization de-
scribed above.

Refinement: The simplest procedure to refine a distribution function fo
on Go4 to a function on Gyg is to imbed foy into Gyg, i.e. to let the center points
of the stencils take over the values of fa4 and put fgog = 0 on the outer stencil
points. In this case, all quantities mentioned above are conserved. However,
there is a severe drawback, since an equilibrium function fs4 on Go4 is mapped
onto a function which is quite far apart from the corresponding equilibrium
function on Ggg. Thus for calculations close to the fluid dynamic limit, a better
choice is to find among all distributions on Ggg satisfying the conservation
laws that one which minimizes the H-functional H[f] = >_ f;In(f;). Again
optimization theory supplies the tools.

4 Coupling of two kinetic models

4.1 General remarks

When coupling two different kinetic models within one computational domain,
two modeling aspects have to be considered. First, at least close to the fluid
dynamic limit it is essential that both models have to be compatible in the
sense that they exhibit the same macroscopic behavior. An example may
illustrate this.

Apart from the (physical) boundaries, the temperature profile T'(x) of the
classical 1D steady heat layer problem turns out to be (close to) a straight
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line. The temperature gradient in this area is ruled by the heat flux ¢ and the
heat conduction coefficient k. A well accepted assumption is ¢ = k- 9, 7. It
is an easy exercise to prove that the heat flux has to be constant along the
whole line. Thus matching two kinetic models with different heat coefficients
leads to the matching of two linear temperature profiles with different slopes
which leads to a discontinuity of the first derivative of T' and is unphysical.

Besides the adaptation of the heat coefficient, consideration of the viscosity
coefficient is important as well. In [5, Section 3.4.2] an example is presented
how to vary the viscosity coefficient of a hexagonal kinetic model by changing
the collision frequencies. Matching of different kinetic models is in some sense
straightforward and is not the subject of the present paper.

A second aspect playing a crucial role in the coupling of kinetic models
are interface conditions mapping the flux leaving one of the computational
domains into one entering the second domain. This will be investigated in
some detail.

4.2 Interface conditions

For simplicity we restrict on the spatially 1D case with 2D velocity space.

Suppose given a Discrete Velocity Model (DVM) defined on some finite
set (set of admissible velocities) ¥V C IR*. We denote the elements of V by
v = (v, vy), where v, is the velocity component in z-direction and v, that in
y-direction. Furthermore we define Vy ={v eV :v, >0} and V_ ={v e V:
v, < 0}. The dynamics for the model is given in terms of a kinetic equation.
A special role is played by the equilibrium solutions M which we assume to
depend — as in standard kinetic theory — uniquely on the density p, the mean
velocity T and temperature T, i.e. M = M|p,7,T].

Suppose we want to model the transport on the real line by coupling
two different kinetic models — say model A on the negative and model B on
the positive part with the velocity sets V4 and VB. Let f4 and f? denote
the corresponding densities. The most essential question is that of coupling
conditions for f4 and fP at the artificial boundary z = 0. There is a flux
Vg ff (0,v) entering from the left which serves as a source term for model B;
similarly, the flux v, fZ(0,v) from the right serves as a source for A. Here,
f+ denotes the restriction of f to arguments v = (v, v,) with v, > 0 resp.
vz < 0. The most straightforward way to formulate coupling conditions is to
choose transmission laws 74 and define the interface conditions

v | FA( Z T_(v|o")|vl|fP(0,0) forall ve VA (3)
v/’ €VB

lvg | fFE( Z T (v f2(0,0") for all ve VP (4)
v'evy

In order not to introduce artificial sources or sinks we have to require that
71 (.|v") are probability distributions, i.e. they are nonnegative and satisfy
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Vo eV Y Ti() =1, WeVE: Y T () =1 (5)

vEVf vEVA

A plausible choice for a nonlinear transmission law is (in analogy to diffuse
reflection laws) given by

Te(v]t) = clog|MF[pT, 77, T¥)(v) (6)

with Maxwellians M* and moments p¥,7T,TT depending on the moments
of the outgoing flows of the adjacent areas; c is a normalizing constant. Hav-
ing chosen the moments properly, reproduces correctly global equilibria. For
nonequilibrium flows, results from linearized theory tell us that we have to ex-
pect interface perturbations which fade away exponentially. This is confirmed
in a first numerical experiment to produce a constant gradient temperature
profile. The result is shown in Fig. 5; at the interface, we find temperature
jumps compared to the linear profile of approximately 1.2%. What makes the
problem quite complicated is to find the correct interface temperatures which
determine the inflow Maxwellians. Between the temperature of the linear pro-
file at z = 0 and T there is a jump of +5.2% for the left hand side and of
—5.1% on the right. At present, there is no possibility to calculate these jumps
— they have to be found out experimentally for each single kinetic model.

In a second series of numerical experiments we have chosen 71 in such a
way that passing from outgoing to ingoing flows, none of the moments of f
up to third order is changed, and the H-functional is minimized (cf. Sec. 3).
Here, we coupled the 3-layer and the 1-layer hexagonal models and solved the
heat layer problem. The results are presented in Fig. 6(a) (refined for > 0.5,
coarse for z > 0.5) and Fig. 6(b) (refined only in the boundary layers). This
interface model produces smaller jumps at the interfaces (~ 0.6%), is easier
to handle and thus should be given preference over the first model.

Fig. 5. Temperature profile, artificial interface layers.



224 Hans Babovsky and Laek S. Andallah

o o1 o0z 03 04 05 06 07 08 09 1 o 01 02z 03 04 05 08 07 08 08 1
XL L

Fig. 6. Temperature profiles of heat layer problem.

4.3 Conclusions

The coupling of different kinetic models in a smooth way is not a straight-
forward matter as it turned out in the above numerical experiments. Using
e.g. the diffuse transmission law requires the matching of the temperatures at
the artificial boundary. For hierarchical hexagonal models, an easier to handle
alternative is to use refinement and prolongation techniques leaving all up to
the third moments invariant and minimizing the H-functional. However, in all
cases we experience a (slight) interface perturbation.

As an alternative approach, the coarsening and refinement techniques pre-
sented above can be used to establish multigrid schemes.
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Summary. The paper deals with a construction of an adaptive mesh in the frame-
work of the cell-centred finite volume scheme. The adaptive strategy is applied to
the numerical solution of problems governed by hyperbolic partial differential equa-
tions. Starting from the adaptation techniques for the stationary problems (for a
general overview see e.g. [9]), the nonstationary case is studied. The main attention
is paid to an adaptive part of a time marching procedure. The main feature of the
proposed method is to keep the mass conservation of the numerical solution at each
adaptation step. We apply an anisotropic mesh adaptation from [1]. This is followed
by a recovery of the approximate solution on the new mesh satisfying the geometric
conservation law. The adaptation algorithm is formulated in the framework of an
N-dimensional numerical solution procedure. A new strategy for moving a vertex of
the mesh, based on a gradient method, is presented. The results from [4] are further
developed. The general significance of the proposed method is the ability to solve
problems with moving discontinuities. A numerical example is presented.

1 Euler equations

Let us consider the flow of an inviscid perfect gas in a bounded domain {2 C
IRY and time interval (0,7) with T > 0. Here N = 2 or 3 for 2D or 3D flow,
and we suppose that {2 is polygonal in 2D or polyhedral in 3D, respectively.
Further we suppose that the flow is adiabatic and we neglect the outer volume
force. Our goal is to solve numerically the Euler equations

ow N Of (w) B
W"‘S:lTS—O IHQT—QX(QT) (1)

equipped with the initial condition
w(x,()):wo(x), z € (2, (2)
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with a given vector function w® and boundary conditions
B(w(x,t)) =0 for (x,t) € 92 x (0,T). (3)

Here B is a suitable boundary operator. The specification of the boundary
conditions and their approximation can be found, e.g. in [9, pages 227-233].
For recent results concerning boundary conditions see [3]The state vector w =
(p,pv1,...,pon, E)T € R™, m = N +2 (i.e. m = 4 or 5 for 2D or 3D
flow, respectively). Here p, v1,...,vny and E denote the density, the velocity
components and the total energy, respectively. The fluxes f,, s =1,..., N,
are m-dimensional mappings. For their definition see e.g. [9, page 102].

2 Adaptive algorithm

The problem (1)—(3) is solved by an explicit finite volume (FV) method. Its
description and the use for a solution of steady 3D problems can be found e.g.
in [9]. Here we are dealing with the adaptive time marching procedure in the
non-stationary case. Let 0 < tp <t; < ... <t <...<T be the partition of
the time interval (0,7) and D* = {D¥},c;« be a system of N-simplicial (i.e.
triangular in 2D, tetrahedral in 3D, respectively) FV meshes of the computa-
tional domain {2, where J* is an index set. As wf we denote an approximation
of an integral average of the vector of conserved quantities on the finite volume
D¥ at the time level #;:

1
DF o w(z, ty) de ~ wk. 4)

We define a finite volume approximate solution of (1) as piecewise constant
vector-valued functions w’{)k ,k=0,1,..., defined a.e. in {2 so that w%k |Dok =
o]

w? for all i € J*, where DF is the interior of D¥ and w! are obtained from the
FV formula. The function w%k is the approximate solution on the mesh D*
at time t = t;. The vector w¥ is the value of the approximate solution on the
finite volume Df at time t;. Analogously we denote by ng;l the approximate
solution on the mesh D* at time ¢t = t; 1.

In [4] a time marching FV method for non-stationary problems was worked
out. Here we present its further development. The new algorithm consists of
three basic sections at each time step: the time evolution of the numerical
solution, the mesh adaptation and the recomputing of the numerical solution
from the mesh before the adaptation to the mesh after the adaptation. In one
time step the finite volume scheme is evaluated twice. Firstly for the prediction
how to adapt the mesh, further for the update of the numerical solution itself.
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Prediction part

In the prediction part, we forecast the evolution of the numerical solution and
adapt the mesh. The anisotropic mesh adaptation (AMA) is applied. For its
description see e.g. [1].

1. Prediction: ngl := FVsol (w%k,Dk). For the update of the numerical

%k on the mesh DF the explicit FV scheme is applied and the

new approximation W;“;,;l at time leve ¢ is constructed.

2. Adaptation: DF*! := MeshAdapt (Dk, wl;fkl) . Using the anisotropic mesh
adaptation the new mesh DFt! is constructed based on the computed

prediction w¥it

solution w

Dk

3. Recovery: VT/'%;Hl := SolRecovery (w%k,’Dk,’Dk‘H) . The solution w%k on
the mesh D* is recomputed on the mesh D**!. Such a recovery has to
satisfy a geometric mass conservation law (GMCL).

PDE Evolution Part

4. Update: w%ﬂrl := FVsol (W%Hl,DkH) . The numerical solution W%tlﬂ
at the time level ¢x4; is computed using the explicit FVM.

3 Anisotropic mesh adaptation

In [1] the necessary condition for the properties of the N-simplicial mesh, on
which the discretization error is below the prescribed tolerance, is formulated.
It is shown, how to control this necessary condition by the interpolation er-
ror and the anisotropic mesh adaptation technique is applied. For 2D and
3D numerical examples see e.g. [9, Section 3.7]. In the AMA technique, the
equilateral mesh is constructed in the least squares sense. The length of an
edge of an N-simplicial mesh is measured in the numerical solution dependent
Riemann norm. For a given mesh D and the solution w’;;l on it we define
the quality parameter of the mesh

Q= zpr > 5 (el —en) o)

DeDk e=edgeof D

Here #D* is the number of N-simplexes in D, || - || ++ denotes the energy
k

norm of the vector of the edge e given by a matrix relatgd to the Hesse matrix
of the numerical solution and ¢y is the dimension dependent constant related
to the tolerance for the discretization error. The details can be found in [1].
The equilateral (in the least squares sense) N-simplicial grid with respect to
the Riemann norm ||- ||w;c;€1 is constructed by minimizing the quality parameter

Qp-
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For a given D* the quality parameter Qpx is a computable quantity. We
adapt the grid DF in order to decrease Qp. and we want to find a new grid
D*+1 such that the quality parameter Qpria of DF1 is smaller. To this end,
the iterative process including the face swappings (F), the edge swappings
(&), the edge bisections (B), the removal of edges (R) and the moving of
vertices (M) is used. The iterative process reads

MAR+S+M+B+S+M+S+ M, (6)

where S includes both face and edge swappings and the sequence of operations
goes from the left to the right.

The above-mentioned local operations are performed as long as the quality
parameter Qpr decreases. The process is stopped if no local operation leads
to a decrease of the quality parameter Qpx.

Next we shall deal with a new strategy for moving a vertex. This allows also
to compare the anisotropic mesh adaptation with moving mesh adaptation
techniques proposed e.g. in [6].

3.1 Moving a vertex

Let us denote by ¥ the set of all vertices of the mesh D*. Moving a vertex is
a local operation on the mesh which moves a vertex P € ¢* towards its new
position with the aim to decrease the quality parameter (5) of the adapted
mesh. We denote by Kp the admissible set in which interior the vertex P can

move
Ke= |J D (7)

DeDk
D>P

Further we define the quality parameter of the vertex P as the function of its
coordinates = (z1,...,TN)

Q@)= Y (lellusy —en) (®)

ec&(x)

where £(z) is the set of edges connecting the point x with those vertices of
D* lying on the boundary 0K p. See Fig. 1. _

For the motion of the vertex P to its new position P we use the interior
point method, which minimizes the following function

P(z, ) := aQ(z) + B(x), (9)

where B(x) is the so called barrier function and a > 0 is a weighted parameter
between the quality parameter of the vertex Q(z) and the barrier function
B(z). The barrier function B(x) for the vertex P is a non-negative continuous
function defined on the interior of the admissible region Kp which satisfies
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Fig. 1. Admissible set Kp

lim B(z) — co.
r—ycdkp

We use the following barrier function:
1
B(z) := E —_— 1
(z) dist(z, )’ (10)
P

where dist(z, b) is a distance of the point = from the boundary edge b C Kp.
(See Fig. 1.)

Mowing Vertex Algorithm

1. Set the initial position P := P and set the initial value of the weighted
parameter a := 1 _
2. Find P = arg mingex, P(z; P, ).

The step 2 is repeated with the increasing parameter o := a3, 3 = 2, until
the maximum number of repetition is reached or Q(P) decreases. The BFGS
quasi-Newton method from [5] is used for the minimization of ¢. We set the
threshold for the number of repetitions to 10.

4 Geometric mass conservation law

After the adaptive mesh is constructed it is necessary to recompute the so-
lution W%k on the old mesh D* to its recovery VN\f]{)kJrl on the newly adapted
mesh DF+1 . According to [6] the geometric mass conservation law has to be

satisfied in this computational step. It reads

> [DHwh= > | Dkt @)

icJk i€ Jk+1

; (11)

~k ~ . .
where w; = WX, .| - . (o denotes the interior of D¥*))
7 Dk+ DEH 7

In what follows we shall concentrate on the recomputing of the solution
after a moving a vertex. In this case the number of finite volumes #DF¥ of the
mesh DF is the same as is the number #D¥*+1 of the mesh D**!1. The recovery
strategy for other local mesh operations R,S and B can be found in [4].
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4.1 Perturbation method

The perturbation method from [6] is applied. By the displacement of vertices
P, of the finite volume Df to their new positions ]54 the linear mapping ¢ on
DF is defined. The point 2 € DF is transformed to the point 7 € DF* via
the relation

T=u1z—c(x) (12)

with the Jacobian
861 801 801

1—- = - it
i 88931’ 0xo’ gx3
x Co C2 C2
= det — = det — -, = 1
J(z) ¢ Dz ¢ 0xy’ Oxy’  Ox (13)
863 (963 1— C3
8,@1 ’ 8:}52 ’ 8$3

Supposed that the displacement ¢ is small we can write

:/kw(xfc(x))(lfdivc(x)JrO) dz
D

i

/ (w—Vw-c+ 0)(1—dive(z) + O) dx

/ (w — wdive — Vw - ¢+ (Vw - ¢)dive + O) dx
Df

~ /D? (w — div(we)) dz

= wdr — wey, dS, (14)
Dk aDk

where O denotes the generic higher order terms that, together with (Vw -

c)dive, are neglected in (14). In (14) ¢, = ¢ - n, n being the unit outer

normal to dD¥. The passage to volume averages and the approximation of

the surface integral in (14) leads to the following formula for the evaluation
~k P . .

of w, satisfying the geometric conservation law (11)

|DEY @k = |Df[wk — S |1y (cj”jwf + c;ijwf) : (15)
Jjes(i)

Here s(i) is the set of neigbouring finite volumes to D¥, I = aDF N 8D;?,
|I5;] is the N-dimensional measure of I5;, n;; denotes the unit outer normal
to OD¥ on I';; and * denotes the positive (>) and negative (<) part of a scalar
quantity, respectively. The constants c,,, in (15) are evaluated at centers of
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Fig. 2. P — 15, Ii; — fij displacement.

gravity of I};. Fig. 2 illustrates the choice of w¥ for I};, where Cn,; evaluated
at the center of gravity is positive. This means that in the situation in Fig. 2

wey, dS = |Ijlen,, wr. (16)
Iij

Note that the center of gravity of I3; = 9D} ' N 9D lies in D¥. Equiva-
lently, the approximation used in (14) can be expressed as

| cnz
wcn dS =~ { slens

k . ~ k
i if €;j € Di s
k . ~ k
| |Cn“ i if €;j € Dj,

(17)

where €;; denotes the center of gravity of fl]

5 Numerical example

We illustrate the proposed algorithm on a 1D example of Burgers equation:

ow ow :
at +w %70 n (O,27T)X(07T)7

w(z,0) = 0.5 +sin(z) =z € (0,2m7),
w(0,t) = w(2m,t) te (0,T).

The moving of nodes in an anisotropic mesh adaptation framework is used.
The evolution of the exact solution (full line) and numerical solution (rec-
tangles) with the underlying finite volume mesh is presented. The results
correspond in left-right-down order to the time instants ¢t = 0.9,1.2,1.6, 2.

The multidimensional example is the subject -matter of the forthcomming
paper [7]. Here, the proposed adaptation strategy is applyed in the framework
of the ADER higher order scheme for the Euler equations.
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Fig. 3. Evolution of the anisotropic mesh refinement at time ¢ = 0.9,1.2,1.6, 2.
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Summary. A slope limiting approach to the design of recovery based a posteriori
error indicators for P; finite element discretizations is presented. The smoothed gra-
dient field is recovered at edge midpoints by means of limited averaging of adjacent
slope values. As an alternative, the constant gradient values may act as upper and
lower bounds to be imposed on edge gradients resulting from traditional reconstruc-
tion techniques such as averaging projection or discrete patch recovery schemes.
In either case, the difference between consistent and reconstructed gradient values
measured in the Lz-norm provides a usable indicator for grid adaptivity.

1 Introduction

In a series of recent publications (c.f. [3, 4] and the references therein) an
algebraic framework for the construction of high-resolution schemes for con-
vection dominated partial differential equations was developed. The algebraic
flux correction (AFC) paradigm renders a high-order discretization local ex-
tremum diminishing (LED) by applying discrete (anti-)diffusion in a nonlinear
conservative fashion. The antidiffusive fluxes are limited node-by-node either
by a symmetric FCT limiter or by its upwind-biased counterpart of TVD type.

The adaptive blending of high- and low-order methods prevents us from
using error estimators that require an a priori knowledge of the order of
approximation such as those based on Richardson extrapolation. Gradient
recovery techniques [8] seem to be a promising alternative, but their use in
error estimation requires that the true solutions be sufficiently smooth.

This paper focuses on hyperbolic problems featuring shocks and disconti-
nuities so that traditional recovery procedures may fail to be reliable. In what
follows, limited averaging of consistent slopes is used to compute improved
gradient values at midpoints of edges. As an alternative, classical recovery
procedures are employed to predict provisional gradient values at edge mid-
points to be corrected by means of a slope limiter. The upper and lower bounds
to be imposed are given by the constant slopes in two adjacent triangles.
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2 A posteriori error indication

As a model problem, consider the weak form of a generic PDE Lu = f

/ w[lu— f]ldx=0 (1)
o}
where the solution is approximated by means of finite elements

uR up :Zujgoj. (2)
J

In this article, we shall concentrate on the numerical error resulting from the
approrimation of spatial derivatives and devise an a posteriori indicator for
the vector-valued gradient error e = Vu — Vuy. In the sequel, the consistent
gradient Vuy, =Y j u;V; will be referred to as low-order gradient.

The aim of recovery based error estimators, introduced by Zienkiewicz and
Zhu in [8], is to replace the unknown exact value Vu by a smoothed gradient
field @uh, so as to obtain a good approximation to the true error

e~ é&=Vu, — Vuy,. (3)

In general, pointwise error estimates are difficult to obtain, so integral mea-
sures are typically employed in the finite element framework. Let §2;, denote a
partition of the domain into a set of non-overlapping elements (2. so that the
Lo-norm represents a usable measure for the error both globally and locally

ez, =D el el = /(Z &' dx. (4)
.

e

We only consider linear (P;) finite elements for which the consistent gradient
Vuy, is piecewise constant on each triangle. Hence, the improved slopes should
be at least piecewise linear so as to provide a better approximation to the
exact gradient. It suffices to specify slope values at all midpoints of edges, i.e.,
X = %(xl + x;), to obtain a smoothed quantity Vuy, that varies linearly
in §2. and is allowed to exhibit jumps across interelement boundaries. This
approach can be seen as determining the nodal values for a non-conforming
approximation of Vuy, by means of linear Crouzeix-Raviart finite elements for
which the local degrees of freedom are located on edge midpoints. For bilinear
finite elements used on quadrilateral meshes, the gradient approximation can
be based on the nonconforming Rannacher Turek element.
Let (4) be integrated via the second order accurate quadrature rule

AT A |QE| AT A A =
/Qe éle dx = = %:eggeij, €;; = Vu;; — Vuj, (5)

where |{2,] stands for the element area and all quantities are evaluated at the
midpoints of surrounding edges indicated by subscript 7j. It remains to devise
a procedure for constructing an improved gradient value Vu;; for edge ij.
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3 Limited gradient averaging

Our first approach to obtaining a smoothed edge gradient is largely inspired
by slope limiting techniques employed in the context of high-resolution finite
volume schemes and later carried over to discontinuous Galerkin finite element
methods. For simplicity, let us illustrate the basic ideas for a one-dimensional
finite volume discretization. The task is to define a suitable slope value u;
on the jth interval I; = (:(:j,l/z,xjﬂ/g) so as to recover a piecewise linear
approximate solution from the mean value ;:

up(z) = a; + vz — x;), Ve l;. (6)

In the simplest case, one-sided or centered slopes can be utilized to obtain
first- and second-order accurate schemes which lead to rather diffusive pro-
files and are quite likely to produce nonphysical oscillations in the vicinity
of steep fronts and discontinuities, respectively. For a numerical scheme to
be nonoscillatory, it should possess certain properties [3], e.g., be monotone,
positivity preserving, total variation diminishing or satisfy the LED condition.

To this end, Jameson [2] introduced a family of limited average operators
L(a,b) which are characterized by the following properties:

P1. L(a,b) = L(b,a).

P2. L(ca,cb) = c,C(a b).

P3. L(a,a) =

P4. L(a, b)f() if ab <O0.
While conditions P1-P3 are natural properties of an average, P4 is to be
enforced by means of a limiter function. It has been demonstrated [2] that a
variety of standard TVD limiters can be written in such form. Let the modified
sign function be given by S(a,b) = 3 (sign(a) + sign(b)) which equals zero for
ab < 0 and returns the common sign of a and b otherwise. Then the most
widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a,b) = S(a,b) min{|al, |b|}

2. maxmod: L(a,b) = S(a,b) max{|al, |b|}

3. MC: L(a,b) = S(a,b) min {i|a+b],2|al,2/b|}

4. superbee: (a,b) = S(a,b) max{min{2|al, |b|}, min{|al, 2|b|}}

Finally, the limited counterpart of u} in (6) can be computed as follows

o (Lol ) o

Tj—1—Tj Tj41 — Ty

Let us return to our original task that requires the reconstruction of solution
gradients at edge midpoints. This is where the benefits of an edge based
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formulation come into play. Except at the boundary, ezactly two elements
are adjacent to edge ij such that an improved gradient can be determined
efficiently from the constant slopes to the left and to the right as follows:
Vug; = L(Vu;, Vug;). (8)
For all limiter functions £ presented above, the recovered gradient value equals
zero if Vuj'jVui_j < 0 and satisfies the following inequality otherwise
max  max n

min v max min  __
Vui™ < Vug; < Vugi™, where Vujsm = min {Vuyj,

Vu;]} (9)

If the upper and lower bounds have different signs, this indicates that the
approximate solution attains a local extremum across the edge. Hence, prop-
erty P4 of limited average operators acts as a discrete analog to the necessary
condition in the continuous case which requires the derivative to be zero.

Clearly, the recovered gradient (8) depends on the choice of the limiter
function to some extent. In the authors’ experience, MC seems to be a safe
choice as it tries to select the standard average whenever possible without
violating the natural bounds provided by the low-order slopes.

4 Limited gradient reconstruction

As an alternative to the limited averaging approach, traditional recovery pro-
cedures can be used to predict provisional gradient values at edge midpoints
which are corrected by edgewise slope limiting so as to satisfy the geometric
constraints defined in (9). Since the advent of recovery based schemes [8], a
family of averaging projection schemes has been proposed in the literature to
construct a smoothed gradient from the finite element solution as follows

Vun = Vu;d;, (10)
J
where the coefficients @uj are obtained by solving the discrete problem

d)i(@uh — Vuh) dx = 0. (11)
(9]

Note that the element shape functions used to construct the basis functions
¢; may by different from those used in the finite element approximation (2).
A detailed analysis by Ainsworth et al. [1] reveals that the corresponding
polynomial degrees should satisfy deg¢ > deg¢ whereby the original choice
¢ = ¢ proposed in [8] ‘is not only effective, but also the most economical’
[1] one. The substitution of equation (10) into (11) yields a linear algebraic
system for each component of the smoothed gradient

Mcﬁuh = Cu. (12)
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The consistent mass matrix Mo = {m;;} and the matrix of discretized spatial
derivatives C = {c;;} are assembled from the following integral terms

ij :/Q¢Z¢J dX7 Cij:/g(ﬁiV(pj dX. (13)

For a fixed mesh, the coefficients m;; and c;; remain unchanged throughout

the simulation and, consequently, need to be evaluated just once at the be-

ginning of the simulation and each time the grid has been modified. In case

@ = ¢, the coefficients defined in (13) coincide with the matrix entries of the

finite element approximation and, hence, are available at no additional costs.
An edge-by-edge assembly of the right-hand side is also feasible

= ciju; —u) (14)

J#i

since C features the zero row sum property > ;Cij =0 as long as the sum
of basis functions equals one. The solution to system (12) can be computed
iteratively by successive approximation preconditioned by the lumped mass
matrix My = diag{m;}, where m; = Zj m;j, as follows:

VU m+1 :?u;lm)—i—M;l[CU—MC@U;m)], m2071727"" (15)

If mass lumping is applied directly to equation (12), the values of the projected
gradient can be determined at each node from the explicit formula

Vu; = Z cij(u; —u;). (16)

b

From the nodal values obtained either from (12) or (16), provisional slopes
at edge midpoints can be interpolated according to equation (10). For linear
finite elements this corresponds to taking the mean values for each edge ij, i.e.,
Vaun (Xi5) = (Vuﬁ—Vuj) It follows from (10) and (11) that it is also feasible
to project the low-order gradient Vuy, into the space of non-conforming (bi-)
linear finite element by letting ¢; € ]31 or @1, respectively, so as to obtain its
smoothed counterpart directly at edge midpoints.

Over the years, a more accurate patch recovery technique (SPR) was intro-
duced [9] which relies on the superconvergence property of the finite element
solution at some exceptional, yet a priori known, points. Let the smoothed
gradient be represented in terms of a polynomial expansion of the form

Vuy, = p(x)a (17)

where the row vector p(x) contains all monomials of degree k at most. Since
each vertex, say i, is surrounded by a patch of elements sharing this node,
the vector of coefficients a can be computed from a discrete least square fit to
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the set S; of sampling points x; [9]. As a consequence, the multicomponent
quantity a can be determined by solving the linear system

Mya=f, (18)

where the local matrix M, and the right-hand side vector f are given by

Mp = ZPT(Xj)p(Xj)a f= ZPT(Xj)vuh<Xj)' (19)

JES: JES:

For linear elements, p(x) = [1,z,y] and the low-order gradient is sampled at
the centroids of triangles in the patch. In this case the lumped Ls-projection
yields almost the same results on uniform grids but only patch recovery retains
its superconvergence property if the grid becomes increasingly distorted.
Regardless of which procedure is employed to predict the high-order gradi-
ent values, it may fail if the solution exhibits jumps or the gradient is too steep.
This can be attributed to the fact that the averaging process extends over an
unsettled number of surrounding element gradients which may strongly vary
in magnitude and even possess different signs. Thus, it is very difficult the find
admissible bounds to be imposed on such nodal gradients. The transition to
an edge based formulation makes it possible to correct the provisional values
according to the constraints (9), set up by the low-order slopes, such that

Vuli™ < Vug; < Vuji™. (20)

It is also advisable to enforce the sign-preserving property (P4) of limited
average operators so as to mimic the necessary condition of a local extremum
attained across edge ij in the discrete context. Let s;; := éa'(Vu?}m7 Vu?}ax),

then the corrected slope values @uj‘] can be computed as follows:

min

ij

, min{@uij, Vu?;-ax}} (21)

@u;‘j = s5;; |max{Vu
The generality of this predictor-corrector edgewise limited recovery (ELR) ap-
proach, enables us to use arbitrary reconstruction techniques in the prediction
step, e.g., polynomial preserving recovery (PPR) [6] schemes or some recent
‘meshless’ variants which have been presented by Zhang et al. [7].

5 Adaptation strategy

In adaptive solution procedures for steady state simulations of hyperbolic
flows, one typically starts with a moderately coarse grid on which an initial
solution can be computed efficiently. Nevertheless, the mesh needs to be fine
enough in order to capture all essential flow features in the solution and to
enable the error indicator to detect ‘imperfect’ zones. Next, the grid is locally
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refined or coarsened according to some adaptation parameter and the whole
process is repeated until (ideally) the global relative percentage error

lleflz,

= ao e < Thol (22)
IVl

is below the prescribed tolerance 7,1. Replacing the unknown exact quantities
by their approximate values and assuming that the relative error is distributed
equally between cells the gradient error for each element (2. should not exceed

N 1/2
Va2, +[&]12,1"
|25 ’

€] La(2.) < o (23)
where |£2,,| represents the number of employed elements. Depending on the
ratio of estimated and tolerated error, cells are flagged for refinement or coars-
ening. For a detailed presentation of the grid adaptation procedure including
some grid improvement techniques the interested reader is referred to [5].

6 Numerical examples

Let us illustrate the performance of the new algorithm by considering a su-
personic flow which enters a converging channel at M., = 2. The bottom wall
is sloped at 5° which gives rise to the formation of multiple shock reflections.
The initial mesh consists of 60 x 16 quadrilaterals each of which is divided into
two triangles. After three sweeps of local mesh refinement (.. = 1%) and
coarsening (nes = 0.1%) governed by the MC-limited averaging error indica-
tor, the zone of highest grid point concentration confines itself more and more
to the vicinity of the shock as depicted in Figure 1. Algebraic flux correction
of TVD type [4] was employed to compute the solution, making use of the
moderately diffusive CDS-limiter applied to the characteristic variables.

The density distribution for the finest grid (15,664 elements) demonstrates
the precise separation into five zones of uniform flow. The crisp resolution
of the reflected shock wave can also be observed by considering the density
‘cascade’ drawn along the straight line y = 0.6 for all four grid levels.

7 Conclusions

Slope limiting techniques provide a valuable tool for the construction of high-
resolution gradient recovery procedures. Improved slopes can be directly com-
puted at edge midpoints as a limited average of adjacent low-order gradients.
Moreover, the consistent slope values serve as natural upper and lower bounds
to be imposed on any edge gradient. In addition, traditional (nodal) recovery
procedures can be used to predict the high-order gradient which is corrected
according to geometric constraints by invoking a slope limiter edge-by-edge.
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Summary. We state a superconvergence result for the lowest order Raviart-Thomas
approximation of eigenvalue problems. Numerical experiments confirm the supercon-
vergence property and suggest that it holds also for the lowest order Brezzi-Douglas-
Marini approximation.

1 Introduction

This paper deals with a superconvergence result for mixed approximation of
eigenvalue problems. It is well-known that a superconvergence property holds
for the mixed approximation of Laplace problem, provided the solution is
smooth enough (see [6]). Nevertheless, the proof given by Brezzi and Fortin
[6] cannot be generalised in a easy way to eigenvalue problems. Indeed, the
key point of the proof strongly relies on the Galerkin orthogonality, which
holds for the source problem but not for the eigenvalue one.

In order to prove the superconvergence property we will use the equivalence
between the lowest order Raviart-Thomas (RTp) approximation of Laplace
eigenproblem with Neumann boundary condition and the non-conforming
piecewise linear Crouziex-Raviart approximation (see [3]). We will also make
use of a superconvergence result proved by Durdn et al. in [8] for Laplace
eigenproblem with Dirichlet boundary condition.

An outline of the paper is as follows. Section 2 is devoted to the mathe-
matical formulation of the model eigenvalue problem and to its mixed lowest
order Raviart-Thomas approximation. In Sect. 3 we recall the equivalence
with a non-conforming approximation and we state the main results concern-
ing the superconvergence property. Finally, in Sect. 4 we report the results
of some numerical experiment, which confirm the superconvergece property
in the case of regular eigenmode. Moreover, we investigate numerically if the
superconvergence property holds for the lowest order Brezzi-Douglas-Marini
(BDM;) space as well.
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2 Statement of the problem and its discretization

Let  C R (d = 2, 3) be a simply connected bounded polygonal or polyhedral
domain. We consider the following eigenvalue problem:

find A € R s.t. there exists ¢ # 0 :

—Ap=2Ap inQ, (1)
dyp

— =0 on 0,

on

where n denotes the outward normal unit vector.

For easy presentation we shall develop the analysis in two dimensions,
being the extension to three dimensions straightforward.

We shall use the standard notation for the Sobolev spaces H™({), their
norms || - |, and seminorms | - |,, (see [1]). As usual we denote by (-,-) the
L2-inner product.

Introducing o = V¢, we obtain the usual mixed formulation of problem
(1) which in weak form is given by

find A € R s.t. there exist (o, ) € Ho(div, Q) x L3(Q), with ¢ # 0 :
{ (o,7)+ (divr,p) =0 V7 € Hy(div,Q), (2)
(le an) = _)\((P,'(/J) V’(/J € L(Q)(Q)a

where LZ((2) is the space consisting of square Lebesgue-integrable functions
having zero mean value and

Hy(div, Q) = {v € L*(Q)? : divv € L*(Q) and v -n = 0 on 90}

is endowed with the usual norm ||v||3,, = ||v||2+]/div v||2. Here and thereafter
conditions of the type v = 0 on 9f) are to be understood in the sense of traces
(see [13]).

It is well-known that problem (2) admits a countable set of real and posi-
tive eigenvalues, which can be ordered in an increasing divergent sequence and
the corresponding eigenfunctions give rise to an orthonormal basis of L?()2.
Moreover each eigenspace is finite dimensional. Finally, due to regularity re-
sults (see [12]), there exists a constant s € (3,1] (depending on ), such
that (o, ) belongs to the space H*(2)? x H'**(2). Moreover, the following
estimate holds true:

[ulls + [divulli+s < Cllullo, 3)

where C'is a constant depending on the eigenvalue A. Here s = 1 if ) is convex
and s = 7m/w — ¢ for a nonconvex domain, w < 27 being the maximum interior
angle of Q.

Let {9}, } denote a shape-regular family (i.e., satisfying the minimum angle
condition, see [7]) of simplicial decomposition of 2. As usual we require that
any two elements in .7, share at most a common edge or a common vertex,
and we denote by h the maximum diameter of the elements K in 9.
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The lowest order Raviart-Thomas space is defined (see [6]) on each element
K as
RTy(K) = Po(K)? + (z1, 22)Po(K), (4)

where Py (K) denotes the space of polynomials of degree at most k on K.
Setting
Xy = {T S Ho(diV,Q) : 7-|K S RT()(K) VK € %}
and
Dy = {1 € LE(Q) : Y|k € Po(K) VK € T},
then the mixed finite element approximation of problem (2) reads
find Ay € R s.t. there exist (on, pp) € X, X @p,, with ¢p #0:

{ (oh,7)+ (divr,pp) =0 VT e, (5)
(diven,¥) = =An(pn, ) Vi € &y,

Assume for simplicity that A is a simple eigenvalue. Then, taking |o|lp =
llonllo =1, it follows from the abstract theory (see [4, 5]) and known a priori
error estimates that for h small enough (depending on \)

o — onllaiv = O(h), (6)
A= Xl = O(R*), (7)

where ¢ = min{1, s}.

3 Main results

Following the arguments given in [3, 14], it can be seen that problem (5)
is equivalent to a nonconforming approximation of the standard formulation
of (1). Let us introduce the nonconforming space of Crouxiez and Raviart
enriched by local bubbles. Denoting by B(K) the space of cubic polynomials
vanishing on 0K, we define

Xy ={p € L3N : ¢|x € P1(K) VK € F,,¢ is continuous at interior

midpoints},
B, ={be H}(Q):b|lx € B(K) VK € .},
Wi = X5 @ By.

Let
Yl={veL*N)?:v|x € RTH(K) VK e }.

We also introduce the following L2-projection operator:

Py : [2(Q)? — 5
Pyav € Y4 such that(v — Pgav,vp) =0 Vv € xd.
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In the following we denote by V1, the elementwise gradient of 1. Then
problem (5) is equivalent to the following one:

find A;, € R s.t. there exists ¢ € Wj,, with ¢p, # 0 s.t.
(Pya(Vron), Vitn) = An(Phdn, ¥n) Vo € Wh, (10)

in the sense that they have the same eigenvalues A\, and the eigenvectors are
related by o, = Pya(Vaon) and ¢ = Prgy (see [3, 14]).

Applying the general theory developed in [4], Durdn et al. in [8] proved
(for Dirichlet boundary condition) the following result, which can be extended
to our problem as stated in [2]:

o = dullo = O(R*"), (11)

where ¢y, is a multiple of ¢y, such that ||¢nllo = ||¢]lo and ¢ = min{1, s}.
We now state a result which is useful in the proof of the superconvergence

property.

Proposition 1. If (A, ¢p) is an eigensolution of problem (10). Then the el-
ementwise H-seminorm |¢p, 1,n 15 bounded.

Then, the following result which generalises to eigenvalue problem the super-
convergence property which holds for the source problem is true.

Theorem 1. Let (A, p) be the eigensolution of Laplace eigenproblem (1) and
(A, ©n) be the corresponding discrete eigenpair of problem (5). Then it holds

[Py — ¢nllo = O(h*),
where t = min{1, s}.

Remark 1. From Theorem 1 together with the a priori error estimate (6), we
get that || Py — @nllo is of higher order than ||¢ — ¢nllo and | — o |o-

For the details of the analysis and for some possible application of this
superconvergence result to a posteriori error estimates we refer to [9, 10, 11]
and to forthcoming papers.

4 Numerical results

In this section we present the results of some numerical experiments which, in
the case of regular eigenmodes, confirm the superconvergence property stated
in the previous section. Moreover, we investigate numerically whether the
superconvergence property holds for BDM; elements as well.

The lowest order BDM space is defined (see [6]) by

BDM,(K) =P, (K)2.
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Then the BDM; mixed approximation of problem (2) is obtained taking
Yn={r € Ho(div,Q) : 7|k € BDM;,(K) VK € F,}

and
@y, = {p € L§(Q) : Y|k € Po(K) VK € F},

in (5).

Let (A, o) denote the BDM; approximation to (A, ) and let us assume
llollo = ||lorllo = 1. Then, it follows from the abstract theory (see [4, 5]) and
known a priori error estimates that for h small enough (depending on \),

o — onllaiv = O(h), (
lo—onllo =O(h"), (13)
A= Au| = O(h*), (

where r = min{2, s}, and ¢t = min{1, s}.

Remark 2. If the eigenfunction o is smooth enough (i.e. belongs to the
space H(div,$2) N H*(£2) for some « > 1) then, contrary to RTj elements,
BDM; ones provide a L2-approximation of higher order than the H(div)-
approximation.

The numerical tests have been performed taking Q = (0,m) x (0, ). In this
case in fact the eigensolutions of Laplace eigenproblem with homogeneous
Neumann boundary condition are given by eigenvalues

A =n?+m?,
with the corresponding eigenfunctions
© = cos(nx) cos(my),

where n,m € N are not simultaneously vanishing.

We choose as exact eigenpair (), ¢) = (2, cosz cosy) and we use RTj and
BDM; as approximation spaces.

We test the superconvergence property on two sequences of meshes, both
structured and unstructured as shown in Figs. 1-2. The meshes are obtained
from an initial triangulation of the square by uniform refinement, namely
subdividing each triangle by joining the midpoints of each edge. The first
test concerns RTy approximation. In Tables 1-2 we report both the L? and
the H(div)-norms of the error in the approximation of the eigenfunction and
we compute the numerical rate of convergence, which is 1 as predicted by
the a priori error estimate (6) for regular eigenmodes. We also report the L?-
norm of the error between the projection of the continuous eigenfunction and
the discrete one. In this case the order of convergence is 2, as predicted by
Theorem 1 for regular eigenmodes. Eventually, in Fig. 3 we plot the above
errors using a log/log scale.
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Table 1. Error table: RTy on structured mesh

mesh size  ||o—opllo  ||divie —on)llo  [|Pre — rllo
err. order err. order err. order
ho 1.018359 1.894110 0.149686

ho/2  0.504852 1.01 0.902151 1.07 0.041618 1.84
ho/4  0.251870 1.00 0.450850 1.00 0.010459 1.99
ho/8 0.125915 1.00 0.225469 0.99 0.002625 1.99
ho/16 0.062959 0.99 0.112742 0.99 0.000657 1.99

Table 2. Error table: RTy on unstructured mesh

mesh size  ||o—opllo  ||div(e —on)llo  [|Pre — ¢rllo
err. order err. order err. order
ho 0.583376 0.750504 0.063330

ho/2  0.294074 0.98 0.383364 0.96 0.016101 1.97
ho/4  0.147403 0.99 0.192606 0.99 0.004053 1.98
ho/8 0.073762 0.99 0.096416 0.99 0.001016 1.99

In the second test we consider BD M, finite elements. The results of these
experiments are shown in Tables 3—4. As predicted by the a priori error es-
timates (12) and (13) for regular eigenmodes, the order of convergence is 1
in the H(div)-norm and 2 in the L?-norm. Moreover, the numerical results
suggest that the superconvergence property holds as well. Finally, in Fig. 4
we plot the errors in a log/log scale.
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Fig. 3. Errors versus A" in log/log-scale for RTy on structured (left) and unstruc-
tured meshes (right)

Table 3. Error table: BDM; on structured mesh

mesh size  |lo —opllo  ||div(ie —ap)llo [|Pre — ¢rllo
err. order err. order err. order
hg 0.653615 2.020459 0.057680

ho/2  0.134918 2.27 0.921033 1.13 0.006028 3.25
ho/4  0.032997 2.03 0.453273 1.02 0.002522 1.25
ho/8 0.008265 1.99 0.225774 1.00 0.000712 1.82
ho/16 0.002130 1.95 0.112780 1.00 0.000183 1.96

Table 4. Error table: BDM; on unstructured mesh

mesh size llo — onllo ldiv(ie —or)llo || Pre — ¢rllo
err. order. err. order err. order
hg 0.083746 0.766087 0.020439

ho/2  0.022797 1.87 0.385542 0.99 0.006066 1.75
ho/4 0.005837 1.96 0.192885 0.99 0.001578 1.94
ho/8 0.001553 1.91 0.096451 0.99 0.000398 1.98

Possible future developments of the present work go towards the study of
the superconvergence property for BDM elements and for RT elements of
any order.
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Summary. The research presented is focused on a comparative study of a posteriori
error estimation methods to various approximations of the Stokes problem. Mainly,
we are interested in the performance of functional type a posterior error estimates
and their comparison with other methods.

We show that functional type a posteriori error estimators are applicable to var-
ious types of approximations (including non-Galerkin ones) and robust with respect
to the mesh structure, type of the finite element and computational procedure used.
This allows the construction of effective mesh adaptation procedures in all cases
considered. Numerical tests justify the approach suggested.

1 Introduction

Reliable methods of numerical modeling are an important and rapidly devel-
oping part of modern numerical analysis. In particular, such methods are of
utmost significance for the development of the theory of fluids. Most of the
a posteriori error estimators are based on a well-known residual method and
its modification (see [1, 3, 5, 12]) and averaging techniques (see [3]). These
methods use specific features of FEM solution and have certain restrictions
in their applicability. First of all, they are valid only for Galerkin approxima-
tion of the problem, i.e., for the exact solution of finite dimensional problem.
Moreover they depend on the discretization and the type of approximation
used. Theoretically they provide an upper bound of the error. However, it re-
quires effective calculation of many local (so-called interpolation) constants.
Inaccurate estimation of these constants leads to a major overestimation of
the error (see [4] for elliptic equation). Regardless of this fact, they are widely
used mainly as error indicators.

In works [9] and [11], a new approach was proposed. Estimators suggested
have been derived by the investigation of the respective differential problem
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on purely functional ground. Therefore, they are applicable for any function
from the required functional space.

This paper is devoted to numerical justification of the functional type
a posteriori error estimates for the Stokes problem. Some investigation of
computational properties of proposed error majorant was made in [7]. The
robustness and effectiveness of the numerical approach have been confirmed
by series of numerical tests. The results justify not only the effectiveness of a
posteriori estimation of the difference between exact and numerical solutions
but also give an opportunity to evaluate error distribution in the domain. A
posteriori error estimates introduced in this research are valid for a wide class
of conforming approximations and do not depend on the method by which a
numerical solution was obtained.

2 The stokes problem and its approximation

Let {2 be a bounded domain in R™, with Lipschitz continuous boundary 0f2.
Let f € L2(§2,R™) be a given vector-valued function. The classical Stokes
problem consists in determination a vector-valued function u (the velocity of
the fluid), and a scalar-valued function p (the pressure), which are defined in
{2 and satisfy the following equations and boundary conditions:

—vAu=f—-Vp in 2,
divu=0 in {2,
u=1u, on df2,
where v > 0 is the kinematic viscosity coefficient.

Two variational formulations of the Stokes problem (see e.g., [6]) can be
formulated as follows:

v Vu:Vvdx:/ (f —Vp)-vdzx VVEVOV%(Q,R"), (1)
o Q
_/ gdivu =0 VqEEz(Q)z{qELz(QH/qu:()} @)
2 7
and
I// Vu:Vde:/f-vd:E Vvefi%((),ﬂ%”)7 (3)
Q 2

where ﬁé(Q,R”) - is the closure of the set EW(Q,R”) in the norm of space
W1(02,R"):

o

JP(2,R") ={v e C5°(2,R") | div v = 0, suppv CC 2}. (4)

In the first variational formulation (1), (2), test functions are taken from

the space \%]%(.Q,R”), in the second (3), from the space of divergence-free
function.
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These approximations lead to different methods for solving the Stokes
problem, including method of stream function, penalty method, Uzawa algo-
rithm etc.

The approximations of the Stokes problem can be divided into three
groups: (a) fully-conforming approximation (exactly fulfilling the incompress-
ibility condition); (b) conforming approximation (approximation from energy
class, but without divergence-free property, e.g. Taylor-Hood approximations,
mini-elements, macro-elements (see [6] for explanation)); (c¢) non-conforming
approximations (approximations which do not belong to the energy space e.g.,
Crouzeix-Raviart approximation).

It is important to note that the functional type a posteriori error estimates
considered in this paper depend only on the type of approximation, but not
on the mesh, method used and other properties.

3 Estimation of the deviation from the exact solution
Consider v to be some approximate solution of the Stokes problem obtained

by any numerical method. Then (see [11]) the difference between it and the
exact solution can be estimated as follows:

v Via—v) |I<||vVv—71 || +Cq || div 7+f-Vq || + vi]divv]. (5)

CLeB
Here and later on we call the right-hand side of (5) the functional type error
magorant. This estimator is valid for any tensor-function 7 € {Ly (2, M™*") |
| divr € La(£2,R™)} (by M™*™ we denote the space of real symmetric n x n

matrices) and scalar-function ¢ € EZ(Q) N W2(£2), which can be chosen
in order to minimize the right-hand side of (5). The constant Cy comes
from Friedrichs-Poincaré inequality, Cppp is the constant that appears in
Ladyzhenskaya-Babuska-Brezzi inequality (inf-sup inequality).

Jo @ div wdx

inf sup
el Vw |

$EL2(2); 6720 weWk(2,R7); w0

> CrLBB.

The functional in the right-hand side of (5) has a clear physical meaning.
It represents a linear combination of the error in constitutive law, residual
error and error in incompressibility condition. We refer to the first term of
(5) as the primary term. It dominates in the whole functional (5) and shows
the distribution of the error over the domain. The second term of (5) is the
reliability term. When the error majorant is closed to the true error, it is
closed to 0. The third term is called the div-term. See [7] and [11] for more
details.

For fully-conforming approximations in view of fulfilling the incompress-
ibility condition, the error estimate has a more simple form:
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v Via=v)|I<||vVv =71 || +Cq || div T+ f—Vq] . (6)

The main advantage of this form is the following: it does not require the
value of Crpp, which estimation is a very important, but a separate prob-
lem in modern applied mathematics. Both estimates (5) and (6) are valid
only for the conforming approximations. Thus, for non-conforming approxi-
mation (Crouzeix-Raviart elements) a special algorithm was constructed, that
projects the approximate solution obtained to the space of divergence-free
functions (see [8]). This projection can be considered as a new approximation.
For error estimation, error majorant in the form (6) can be used. Note that
each term can be computed directly and that this method does not require
the value of Crgpg.

The error majorant satisfies the following very important property: it is
“exact”. This means that it is consistent and allows getting a very sharp
estimation of the error. In fact, by substituting in (6) the gradient of the
exact solution as 7 and exact pressure as ¢ the error is equal to the error
estimation. This property does not depend on mesh and characteristics of the
approximate solution.

Other a posteriori error estimators are exact only asymptotically for h — 0
and only for the Galerkin approximations. For this reason they cannot provide
“exactness property” on any particular mesh and for any approximation.

4 Numerical experiments

In this section, we consider two boundary—value problems whose exact solu-
tions are known. They are solved numerically and the respective approxima-
tion errors are estimated by means of the method described above. The error
estimation results are compared with exact values of the errors. In this analysis
we pay a major attention to two points: (a) the quality of the error estima-
tion in the global (energy) norm and (b) the quality of local error estimation
performed either by the error indicator that comes from the global error ma-
jorant or by the local error estimation techniques. The latter information is
used for the element marking and further mesh refinement. In the experiments
we mainly used the following (rather typical) adaptation criterion: an element
s to be refined if the error is bigger than one half of the maximum error. In
this rule, by the “error on a triangle” we mean the contribution of this ele-
ment to the overall error (or error estimator). Those elements that provide
local contributions higher than the mean value are subject to the refinement
together with certain neighbor elements, which is necessary to avoid hanging
nodes (the so—called red-green-blue refinement, see, e.g., [12]).

Certainly, the best possible adaptive algorithm can be constructed on the
basis of the true error distribution obtained by comparing the true and ap-
proximate solutions. Since in our examples the true solutions are known, we
can compute that distribution and use it as an “etalon”. Thus, we construct
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the refined meshes by using such an etalon and compare them with those ob-
tained by various error indication techniques (the adaptation criteria defined
above is one and the same in all the cases). By the results presented below, we
can compare the efficiency of different error estimation methods. To compare
them not only qualitatively but also quantitatively we introduce a special co-
efficient p.s; that shows the percentage of the elements that has been colored
correctly, i.e, colored by the same colors as in the etalon marking.

Another important quantity typically used in the a posteriori error esti-
mation is the effectivity index I.r; which is the value of the error estimate
divided by the energy norm of the true error. It is always greater than one
and characterizes the overestimation of the true error.

4.1 Example 1

First example is on the L-shape domain 2 = (—1,1) x (=1,1)\ [0,1] x [-1, 0]
with f = 0. The boundary values are taken from the exact solution (u, p) which
reads in polar coordinates for a = 856399/1572864 ~ 0.54448, w = 37/2,

w(¢) = (sin((1 + a)@) cos(aw))/(1 + «) — cos((1 + a)p)—
— (sin((1 — a)¢) cos(aw)) /(1 — ) + cos((1 — a) ),

u(r, @) = r*((1 4 a)(sin(¢), — cos(¢))w(¢) + (cos(¢),sin(¢))we(¢)),
pr, @) = —r*7H(1+ 0)*ws(9) + wose(9)) /(1 — a).

We use Taylor-Hood elements and the standard adaptation algorithm de-
scribed above. Error control is obtained by using projection on the space of
divergence-free functions. For guaranteed estimations of the error, we use the
error majorant in form (6). We use second order finite elements for approxi-
mation of the duality variables 7 and ¢. As an initial guess for 7, we use an
averaging of ¥Vv, while an initial guess for q is p", obtained via the Uzawa
algorithm. Then estimation is improved by minimization over 7 and ¢. The
plot of the initial (a) and the final (b) mesh generated by using functional
type error control depicted in Fig.1. It clearly shows hight refinement of the
mesh near the singularity. Similar mesh can be obtained by using some other
method of a posteriori error estimation control (see [1, 3, 5, 12]) or by the in-
formation about the true error. Obviously, we can expect improvement of the
convergence rate in comparison with uniform discretization. Corresponding
results are depicted in Fig.1(c). Error and error majorant are plotted against
the number of degrees of freedom on a log-scale. This improvement is very
similar to the results obtained by other methods of a posteriori control for the
error indication and mesh adaptation (see [1, 3, 5, 12]).

Moreover, besides error indication, the functional type error majorant pro-
vides guaranteed upper bounds of the error (see Fig.1 (c) and Table 1).
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L (a) (b) 5 (c)
Majorant
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Majorant
Error
-1
-1 0 1 10" 10°

Fig. 1. Example 1. Initial mesh (a), Final mesh (b), error and error majorant for
uniform and adaptive meshes (c)

Table 1. Example 1. Error estimation.

iteration N  error error majorant I.rp
5 472 0.94 1.288 1.37
9 2174 0.041 0.057 1,41
14 5734 0.013 0.0166 1.28
26 12552 0.008 0.0095 1.19

4.2 Example 2

In the second example data and the exact solution are smooth, so it is not ob-
vious, where the error should be concentrated. Consider an example from [2].
Let 2 =(0,1) x (0,1), v = 1, the exact solution and effective force are defined
as follows:

u=(— sin(g z) sin(g y), — Cos(g z) cos(g g7,

p= wcos(gx) sin(ﬁy), f = (0, —7? cos(g x) cos(E )T

2 2
This problem can be solved by different methods. As an example, we present
results obtained by using the Uzawa algorithm, Hesteness-Powel algorithm
and Taylor-Hood elements. For the error control a similar procedure to that
in Example 1 is used. But error majorant is implemented in the form (5). For
the value of Cppp for the rectangular domain we refer to [10].

The procedure for the majorant minimization requires additional compu-
tational work. Computational time spent on majorant improvement is deter-
mined in compliance with the time spent for obtaining the numerical solution
(1TU). Table 4.2 demonstrates the dependence of the quality of the error es-
timation on the computational time spend on majorant improvement. Note
that t = 0TU denotes the substitution 7 = vGVv, ¢ = p (G is operator of
averaging (see e.g. [13])). This allows one to get guaranteed error estimation
almost without additional computational time. Table 4.2 contains information
about components of the error majorant and main characteristics, standard
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Table 2. Example 2. Dependence of the quality of the error estimation on the
computational time spend on majorant improvement

t=0 t=05TUt=1TU t=2TU
v|[|Via—v) | 589 e4d 589 ed 589ed 589 e4
error majorant 0.0159 1.86e-3 1.0e-3 6.95e-4
primary term 1.3 e-4 5.3e-4 591e4d 6.3e4
reliability term 0.0157 1.3 e3 3.8e4 6.2e5
div term 3.1e-6  3.1e-6 3.le-6  3.1e-6
Iesy 27 3.16 1.71 1.18
Peff 63% 87% 96% 97%

for a posteriori error estimation. They show overestimation of the error and
quality determination local distribution of the error over the domain. The-
oretically it is known that the error majorant achieves its minimum when
7 =vVu and ¢ = p. By this substitution the second component of (6) turns
into 0 and the error estimation turns to be equal to the error. In ¢ = 0TU the
second component in error majorant prevails and the error indication is not
very accurate. But after some time one can see near equality in error estimates
and true error, and the local error indication is also very accurate.

Finally, we demonstrate robustness of the functional type estimator in
situation, where other error indicator does not work. In Fig. 2 by the dark
color we depict the zones in the domain, where cardinal error is concentrated.
These elements are need to be refined. On the left there are depicted such
zones according to the true error, on the right according to the error majorant.

True error GA indicator MAJ indicator
|

i 0 0.5 1 0 0.5 1
True error GA indicator MAJ indicator
1

Fig. 2. Example2. Indication of the error by the true error, gradient averaging and
the functional type majorant (top: Taylor Hood elements, Uzawa algorithm; bottom:
Taylor Hood elements, Hesteness-Powel method)



A Posteriori Estimates for the Stokes Problem 259

It is easy to see that they display almost the same zones, what tells about
good quality of error indication of error majorant. In the middle there are
indications of the error according to the gradient averaging. At some situations
(see Fig. 2, top) it also quite closed to the true distribution, but in some cases
(see Fig. 2, bottom) it shows totally wrong zones.

In all the examples indication of the error by the error majorant is al-
ways very close to the true error distribution even in the example without
any singularity. By having information about local distribution of the error,
one can construct an effective adaptive algorithm. Moreover, guaranteed er-
ror estimation allows one to solve important problems with any controllable
accuracy.
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Summary. The modeling of numerous industrial processes leads to multifield prob-
lems, which are governed by the coupled interaction of several physical fields. As
an example, consider electromagnetic forming, where the evolution of the deforma-
tion field of a mechanical structure consisting of well conducting material is coupled
with an electromagnetic field, triggering a Lorentz force, which drives the deforma-
tion process. The purpose of the work reported on here is to develop techniques for
a posteriori error control for the finite element approximation to the solution of cer-
tain systems of two boundary value problems that are coupled via their coefficients
and their right-hand sides. As a first step, an error estimator for the right-hand side
of the mechanical subsystem is presented in the case of a simplified model problem
for the electromagnetic system. The particular influence of the mixed character of
the evolution equations is discussed for a numerical example.

1 Introduction

Many technological processes are governed by the interaction of different phys-
ical fields. As an example consider electromagnetic metal forming: In this
process, a pulsed magnetic field induces eddy currents in a work piece con-
sisting of good conducting material like aluminum or copper. The interaction
of the eddy currents with the triggering field results in a material body force,
the Lorentz force, which drives the deformation of the work piece (see Fig-
ure 1). Considering the high strain rates typical of this process, Svendsen
and Chanda formulated a material model [14, 15] for a wide class of materi-
als under the influence of strong electromagnetic fields based on the Perzyna
model of elasto-viscoplasticity (see [12]). The evolution of the electromagnetic
field is determined by Maxwell’s equations under the quasistatic hypothesis.
The two systems are coupled via the Lorentz force representing the source
term in the impulse balance of the mechanical structure and via the distribu-
tion of conductivity, which depends on the position of the moving structure.
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Fig. 1. A typical arrangement for electromagnetic sheet metal forming.

Particularly, a boundary value problem of mixed type arises for the electro-
magnetic field, which is parabolic in areas of positive conductivity and elliptic
elsewhere. In [13], finite element formulations for the electromagnetic and for
the mechanical system have been derived and implemented within a staggered
strong coupling scheme. See [6, 7, 8, 9, 11, 16] for different approaches to the
simulation of coupled electromagnetic mechanical systems.

The present note begins with a brief review of the coupled finite element
model. Then, on the electromagnetic side, a method for a posteriori error
control of the input quantity to the mechanical subsystem is presented con-
sidering a simplified model problem. Its derivation is guided by Eriksson’s and
Johnson’s techniques for parabolic a posteriori error estimation [2, 3, 4, 5.
The methods presented here represents a first step towards a rigorous error
control for coupled problems: A more appropriate approach would be the use
of dual weighted residual error estimators (see, e.g., [1]), which allow to control
the error in the quantity of interest under additional consideration of those
errors introduced by the coupling process.

2 Electromagnetic forming

2.1 The mechanical model

The simulation of sheet metal forming requires to account for large deforma-
tions. In the following, a suitable mechanical model in Lagrange formulation is
described. The applied material model [14, 15] considers viscous effects which
become significant at high strain rates. Starting point is a pull back of the
weak momentum balance from the current configuration of the work piece X
to its reference configuration Xy, yielding

m(§) = KFT.V® dx +/
o o

(b= 7r©) @de=0 (1)

for all test functions @ in the Sobolev space H' fulfilling the adequate bound-
ary conditions. Here, £ = £(z) denotes the deformation field, FF = V¢ the
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deformation gradient and J = det F' its determinant. Moreover, K = Jo rep-
resents the Kirchhoff stress computed from the Cauchy stress . The corre-
sponding strain measure results from a multiplicative split of the deformation
gradient F' = F' F'P in elastic and visco-plastic part, as usual in finite strain
plasticity (see [12]). Then the elastic part of the strain is given by ¢ = log V¢,
where V¢ is the symmetric part of the polar decomposition F¢ = Ve R,
and its visco-plastic part by €"? = log det F''P. Solving the momentum balance
(1) requires a method to compute the stresses for the current thermodynamic
state of the structure. They are obtained from the free Helmholtz energy

U(e a) = %)\ (tr eel)2 + ptr (e 1 ) 4+ (eP)

which represents the energy reversibly stored in the material, via the relation

K:Joz%:Czed.
Here, A and p are Lamé’s constants and i represents energy storage due to
hardening (see [13]). The Helmholtz energy depends on a finite set of internal
variables, whose values characterize the thermodynamic state of the mechanic
structure and represent its memory of the load history. For these, evolution
equations have to be constituted. Characteristic for viscoplasticity is an ex-
plicit equation

P 0 3 f(()') < 0 )
€ =
+F(0)™ - (o =TIlo)/llo =IIall , F(o) >0,
for the plastic strain rate. Here, (o) = [|devol|p2(0) — 0o describes the

von Mises yield surface and []o = ogdevo/|[devo|[r2(q) + 1/3tro denotes
a projection on it. For simplicity, the influence of strain hardening is not
considered in this notation. The non linear momentum balance is iteratively
solved by Newton’s method &1 = & — ([“)m/aé“)*l m(&;) . To compute the
required linearization, the evolution equations for the internal variables need
to be discretized in time, leading to a non-linear system of equations which
has to be solved with a further inner Newton-iteration.

2.2 Electromagnetic field computation

Since the occurring wave lengths are much longer than the distances relevant
for the forming process, the quasistatic approximation to Maxwell’s equations
applies (see [10, 13]). An Eulerian description of the evolution of the electro-
magnetic field is given by

1
curl — curla 4+ oa; — o(v X curla) = —oV¢ ,
W

diva; — div(v x curla) = A¢ , (2)
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where a = a(z,t) denotes the magnetic vectorpotential and ¢ the electrostatic
potential to be determined. Further, v represents the velocity of the body in
which the field is computed, p = p(z,t) the permeability and o = o(x,t) the
conductivity distribution. For the considered geometries, o is spatially piece-
wise constant, and p is entirely constant for the materials considered. The
stated differential equations yield in areas, where ¢ is continuous. At material
interfaces, where o is discontinuous, transition conditions are necessary, stat-
ing that tangential components of a remain continuous. Due to the fast decay
of the electromagnetic dipol field of order ||a(z)|| = O(||z||~2), ||z|| — oo, the
problem can be tackled in a large bounded open set 2 C R* (k = 2,3) with
sufficient accuracy. In general, the vector potential is not unique and has to be
gauged. However, in two-dimensional or axisymmetric situations the Coulomb
gauge diva = 0 is always fulfilled. Since div(v x b) = 0 is also true in these
situations, the system (2) decouples. The weak form for the vector potential
reads as follows: Find @ € Heyn,0(£2)? such that for all a* € Hey,0(£2)3

1
—/ —curla - curl a* dx—|—/oat-a* dx:—/UV¢-a* dz .
oM Q Q

In general, a possesses no H'! regularity, which has to be considered in the fi-
nite element discretization. However, in axisymmetric situations, we are back
in the realm of H'-regularity since Heur,0($2)® N Haiv,0(£2)% = H}(2)3, pro-
vided that (2 possesses a C2?-boundary.

2.3 Coupling

The simulation is carried out in two meshes, a fixed Eulerian mesh for the
electromagnetic field and a Lagrangian mesh for the mechanical structure. At
a certain time step, the magnetic vector potential depending on the input am-
perage and the position of the structure is computed in the electromagnetic
mesh and the Lorentz forces f;, = a; X curl a are derived. After that, the forces
are transferred into the mechanical mesh and imposed on the structure to de-
termine its corresponding position. The altered position of the work piece is
then transferred into the electromagnetic mesh and a corrected force distrib-
ution is computed. The two steps field computation and structure simulation
are iterated until both f; and the position of the structure do not change
in the scope of accuracy. After that, the next time step is started. It has
turned out that a fine resolution is required at the boundaries of the moving
structure to avoid oscillations of the Lorentz forces (see [13]). However, the
computed deformations of the strucure are quite accurate even for relatively
coarse meshes (see [13]). Nevertheless, the implementation of an ALE-based
formulation to improve the accuracy of the computed forces represents work
in progress.
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3 Error control for coupled and mixed problems

Dual weighted residual error estimators represent an appropriate aproach to
error control for problems of the type described above. They allow a goal
oriented control of exactly those quantities of interest (see, e.g., [1]). Applied
to a staggered solution algorithm, such techniques enable also a control of the
error of the quantities that realize the coupling between the two subsystems.
Thus, error accumulation due to the coupling procedure can be controlled
and, moreover, be reduced by mesh adaption in both subsystems. Here, we
only focus on the electromagnetic subsystem and present techniques for the
control of the Lorentz force. The incorporation of the strategy outlined before
represents work in progress. Further, we neglect here additional errors due to
data transfer from one mesh into the other.

Assume that the deformation field u of the mechanical structure is char-
acterized by, e.g., M(u,¢) = (fr, ) for all suitable test functions ¢, where
fr denotes the exact values of the Lorentz force, (-,-) the space-time scalar
product in L?(L?(X)) w. r. t. a time interval I,,, ¥ the current configuration
of the structure and M an operator that is linear in ¢, but possibly non lin-
ear in u. For simplicity, the Lagrangian formulation of the mechanical mesh
has been dismissed here. As an example, consider the error ||u — U||o, where
U represents a Galerkin approximation to u. For brevity, we write here and
below || - || for the norm in L¥(L*(X)). To account for the influence of the
approximation error w. r. t. f7, the following estimate on the right-hand side
of the equation for w is reasonable:

//(fL—AtxcurlA)go‘SHgﬂoo/ / |az x curla — Ay x curl A|
I, J% L, J¥
< llelloe (I[Atll2 [[curl(a — A)[|2 + || curl Ao [|as — Ael]1

+ [lae = A¢fl2 || curl(a — A)][2) , (3)

where A is a Galerkin approximation to a and A; any approximation to
a; derived from A. Here, dx and dt have been dispensed with. Hence, a
control on the error in the right-hand side of the mechanical simulation is
achieved by controlling || curl(a — A)||2 and |la; — A¢|]1 < vmes X (||(a —
A)(ta)llzzw) + (@ — A)(t1)l|z2(5y) + O(k2), by — 0, in the electromag-
netic mesh. For brevity, we consider now an analogous problem for a mixed
heat- / Laplace-equation and derive an estimator for [|V(a — A)||r2(z2(0))-
To estimate |[|(a — A)(tn)|/12(5), the techniques presented in [2] for parabolic
problems can immediately be applied here.

3.1 A mixed elliptic-parabolic model problem

Let 2 =] — 1,1[x] — 1,1[C R? be the domain we exemplarily use for
field computation and X' C 2 the area in which diffusion takes place. As
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“right-hand side” a source term s € L2(L?(X)) is given and initial values
ug € L*(£2). The problem is now to find u € L?(H}(£2)) with u(tg) = uo and

/ Vu(z,t) Vo(x, ) dz + / iy (2,1) 6z, ) d = / s(a,t) b )z (4)
Q = =
for all € HJ(£2) and for to <t <T a.e.

To discretize (4), a partition 0 = ¢ty < ... < t, = T of [0,7] in
intervals I, = (t,—1,t,) of length k, = t, — t,—1 is introduced. We
briefly write u, = u(t,). Further, a discrete space S, as spatial test and
trial space is chosen. This leads to the local test- and trial spaces V,, =

{v v = ?:0 tjgpj y 05 € Sn}, q € N, in the time-space setting. To com-

pute an approximation to (4) the following (temporal) discontinuous Galerkin
method is applied: Find a function U with Ul|oxy, € Vyn, such that

/IW/QVU(x,t) Vo(z,t) dedt + /In/ZUt(m)v(m)dxdt
+/Z[U]nl(x)v:{1(x)dx:/In/zs(xat)U(x,t)dxdt (5)

for allv € V,,, and n € N, where [w],, = w} —w,,, wi = lim w(t, +s). To
s—0

obtain discrete spaces S,,, we consider triangulations 7,, and choose continuous
functions whose restriction to an element of the triangulation is linear. Let
further h be a positive function in C*(£2) with bounded gradient. We assume,
that for the diameter hx of each triangle K € 7 the estimates ¢; h%( < mes K
and cohg < h(z) < hg, x € K, are true with constants ¢y, co > 0.

3.2 On Error Estimation for the Mixed Problem

Let [U], = U} — Uy

n

represent the temporal jumps of U and let Dy, 1(U,,) =

oN 1/2
(ZTE E, h2 [ggj] ) dentote the spatial jumps of the gradient, where E;

is the set of all internal edges of the triangulation of 2. Further, P, dentotes
the L2-projection on S,,. The qualtity of P,, can be estimated by interpolation.
Eriksson and Johnson [2] show

|(f. (I = Po)v)l < allhfllr2qo) [[Volleey  f € L2(R2),v € Hy(R2)
|(Vw, V(I = Po)v)| < BDpa(w) [Vl weSuveHy(2)  (6)

with constants «, 8 > 0 and with mesh density function h. To facilitate the
notation, the sought error estimator is now derived in the particular case
qg=0and f(z,t) = fn(z) for t € I, = (tn—1,t,). Further, Uy = Pyup = ug is
assumed.
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Theorem 1. Let C' be the constant from the Poincaré-Friedrichs inequality
i X and o and B as above. Then

/1 IVu(t) = VU)|[72(0y dt <21Jup—1 = Uy_llL2(5) + Ea(U) + O(K2)

for k, — oo, with

E(U) = 4a2||h[U]n||%2(2) + 4ﬁ2knDh’1(Un)2 + 4a2kn”h‘9n”%2(2)
+ 402 C ke ||B[7 oo (5 VUL [ (55 -

The star indicates that this term only needs to be accounted for in elements
that have been coarsened the step before. An estimator for ||u, 1—U, _||12(x)
is presented in [2]. Further, the terms summed up in O(k2) also admid an a
posteriori error control. For brevity, this is not further discussed here.

Proof. To derive the error estimator, one tests with u—U in a time integrated
version of (4) and with the projection of w — U on the relevant discrete spaces
in (5). The difference of these expressions can then be estimated with the help
of (16) and Young’s inequality. ]

As an example, X = ¥y U X5 has been chosen with »; = [-0.6,0.6] x
[0.4,0.6] and X3 = [-0.2,0.2]x[—0.2,0.2]. On X, a constant source s(x,t) =1
is imposed. Outside X1, s vanishes. In (4), the u; term has additionally been
multiplied with a coefficient @ with () = 500 on X and a(x) = 5000 on Xs.
The error estimator has now been used to equilibrate the elementwise error
contributions among all elements K of the triangulation of 2. For spatial
mesh adaption, a fixed fraction strategy is applied several times in each time
step, refining those 7% elements, that introduce the highest and coarsening
those % that produce the smallest contribution to the error. The spatial mesh
adaption is carried out in each time step several times. In Figure 2 a typical
mesh resulting from this algorithm is presented (r = 20). The error estimator
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Fig. 2. Typical meshes produced by the autoadaptive algorithm described above
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recognizes the transition zones between parabolic and elliptic regions, entailing
a huge number of refinement steps there. In X5, the gradient remains small
for a quite long time, since convergence to the equilibrium state is retarded
due to the small diffusivity of 1/5000 in this area. Consequently, only very few
triangulation points lie inside Y. Note that the only geometrical disposition
during mesh refinement is that the corner points of Xy and X5 are held fixed.
Everything else has been “realized” by the error estimator. While the solution
to the above problem possesses locally H?-regularity away from the transition
zones, its overall regularity is reduced. The question, whether adaptive mesh
refinement enables to increase the rate of convergence as a function of the
numerical efforts to the order of the corresponding purely parabolic problem
represents work in progress.
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Summary. For the linear finite element approximation to a linear elliptic model
problem, we propose to safeguard the Zienkiewicz-Zhu estimator by an additional
estimator for the residual of the averaged gradient. We give a brief account of the
theoretical results on reliability, (local) efficiency, and asymptotic exactness of the
full estimator and illustrate these properties in numerical tests, incorporating sin-
gular solutions and anisotropic ellipticity.

1 Introduction

The gradient averaging and the appertaining a posteriori error estimator intro-
duced in Zienkiewicz/Zhu [9] have striking asymptotic properties. Restricting
ourselves to recent references, we mention the superconvergence results in
Xu/Zhang [8] and the observed asymptotic exactness in Carstensen/Bartels
[3]. On the other hand, since this estimator relies solely on post-processing of
the approximate solution, it cannot in general be reliable.

In [4] the authors therefore propose and analyze the Zienkiewicz-Zhu es-
timator (or, for short, ZZ estimator) with a complementing ‘security part’,
which is based upon the residual of the averaged gradient. The resulting
estimator combines the good properties of the ZZ estimator and the stan-
dard residual estimator: it is reliable, (locally) efficient, and asymptotically
exact whenever the averaged gradient is superconvergent. The latter is a con-
sequence of the fact that the security part is an efficient estimator for the
error of the averaged gradient. This proven properties do not hinge on the
particular gradient averaging associated with the ZZ estimator and distin-
guish the approach in [4] from previous ones in Rodriguez [6], Repin [5],
Carstensen/Bartels [3], and Carstensen [2].

The purpose of this work is to give an account of the theoretical results of
[4] in a simplified setting and to provide further numerical tests.
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2 Error estimator and theoretical results

As usual, Lo (U) denotes the space of functions that are Lebesgue measurable
and square-integrable in the domain U and HJ(U) stands for the space of
Lo(U)-functions that have first weak derivatives in Ly (U) and zero trace on
the boundary oU.

2.1 Model problem and discretization

Let 2 C R? be a bounded polygonal domain with boundary I := 842 that is
locally a Lipschitz graph. The load term fulfills f € Lo(£2) and the constant
coefficients of the linear operator are given by a symmetric matrix A € R%2x?2
satisfying

VEER? M < Ag-€ < Al

with 0 < A < A.
Let uw be the typically unknown weak solution of the elliptic boundary

value problem
—div(AVu) = fin £, u=0on I.

In other words:
uwe Hi(2) and Vo€ HY (D) /Aw.w:/ feo. (1)
2 2

In view of the Riesz representation theorem, u exists and is unique.

In order to approximate the solution u of (9), we shall use linear finite
elements that are subordinated to a macro triangulation. Suppose that the
macro triangulation 7 is a conforming (admissibile) triangulation of 2. The
following two quantities of 7y will be important:

maxreT, hT

(2)

Qmin = smallest angle occurring in 7y and p = — ,
mingpeg, hr
where hp := diam T denotes the diameter of a triangle T.

Let 7 be any (not necessarily quasi-uniform) refinement of 7y that was
obtained with the help of the newest-vertex bisection; see e.g. [7]. Hereafter,
we suppose that, together with 7 itself, we are given an appropriate fixed set
of refinement edges. The set of the nodes (or vertices) of 7 is denoted by N
Let S be the space of continuous piecewise affine finite elements over 7 :

S:={weC(Q)|VT €T wyr e P(T)},

where Py(T), k € N, stands for the space of polynomials over T with degree
<k.
The finite element approximation g of w in (9) is then characterized by

ug €Sy and Vy €Sy / AViug -Vyx = / X (3)
2 2
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where Sy := S N H{(£2). Like u, the finite element approximation g exists
and is unique. In practice, one often does not solve the linear system resulting
from (3) exactly. We therefore suppose that ug € Sy is an approximation of
s and will provide an a posteriori analysis for the approzimate finite element
solution ug and its error in the the so-called energy norm defined by

\Y = AVw -V 1/2f H (02 4
IVw||a := ; w - Vw or w € Hy(92). (4)

2.2 Estimator and local indicators

We now define the safeguarded ZZ estimator. For linear elements, the ZZ
estimator is given by
C:Z HVUS_GUS”A, (5)

where Gug € S x S is the nodewise averaged gradient of Vug:
VieN Gus(z)= £2(wz)_1/ Vus € R?, (6)

where w, = J{T' € 7 : T > 2} is the star around the node z and £?(w,)
denotes its area. To split ¢ into local contributions, we use the partition of
unity >\ ¢. = 1 provided by the canonical basis functions of S: for all
z €N, we set

(2 = |Vus — Gus|y, = / (Vus — Gus) - A(Vus — Gug)d..  (7)

The complementing security part consists of two contributions related to
the residual of the averaged gradient Gug, which is continuous. The first part
builds upon the ‘strong residual’ r := f + div(AGug) and is given by

1/2 . _
=[] wim g2 =2 / =7 (8)
zeEN w=
and

(1. @)711‘% rg. ifzeN\T,
0 ifze NNT.

h, := diam w,, T, 1=

For the second contribution, we shall use a multilevel decomposition of .S.
The bisections generating 7 from 7 can be recorded by a forest of binary
trees F, where each triangle corresponds to a node, the triangles of 7, are
roots, and those of 7 are leafs; see e.g. [7] and Figure 1 for an example. Let
Fr be the maximal subforest of F with depth equal or smaller than ¢ > 0
such that its leafs constitute a conforming triangulation, which will be called
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/\

Fig. 1. From left to right: a macro triangulation, a refinement, and its corresponding
forest of binary trees, which has maximal depth 4

T¢. We denote by Ny the vertices (or nodes) in 7, and by S, the continuous
linear finite elements over 7;. Clearly, there holds

Sy C S€+17 S = UZZO Sy and ./\/g C M+1, N = UZZONZ' (9)
The indicators of the ¢ level are given by

o ::{IIQAGus-V%f@z itz e o\ T,

10
0 ifze NyNT, (10)

where (¢¢).cn, are the canonical basis function in Sy satisfying ¢..(z) = 1
and ¢¢(y) = 0 for all y € Ny \ {z}. Moreover, we define

M = (M \NK—l) U {Z S ./V'E—l | ¢€z 7£ ¢€—1,z}

for £ > 1 and Ny := Ny. To any node z € Ny with £ > 1, there corresponds a
hat function ¢y, that is not contained in Sy;_;. Consequently only the corre-
sponding indicators 7., z € N, provide new information that cannot be seen
on the previous level £ — 1. We therefore define the global contribution by

=2 Y] ()

€20 e N,

which measures how much Gug — Vu misses to mimic the Galerkin orthogo-
nality of V(ag — u).

2.3 Error control

The ZZ estimator ¢ alone cannot in general be a reliable. Indeed, consider
A =1d and a load term f # 0 that is Lo (£2)-orthogonal to Sy. Then u # 0
but ug := g = 0, whence ||V(ug — u)||a > 0. However, due to (6), we have
Gug = 0 and thus ¢ = 0. For a concrete example and related underestimation
of ¢, see [1, mS4.7] or [4, mS6.1 and mS6.2].

The proofs of the following results are given in [4] for more general gradient
averaging procedures and more general linear elliptic boundary values prob-
lems. The letter C indicates constants that depend only on i, and p in (2)
of the macro triangulation 75. We start with the reliability of the safeguared
77 estimator.
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Theorem 1 (Global upper bound). The energy norm error of the approz-
imate finite element solution ug is globally bounded in the following way:

IV (g —u)la < ¢+ %ww.

For sake of simplicity, we assume in the following local lower bounds that
the load term f is piecewise constant over 7. Given a subdomain w C {2 and

a vector field W € Ly(w)?, define the local norm |[W|| 4y, := [ [, W - AW] /2,

Proposition 1 (Lower bounds with averaged gradient). The indicators
Coy pry 2 €N, and Yoo, £ >0, 2 € Ny, are bounded as follows:

G < |[[V(us — u)[lag. + [|Gus — Vul 4.,
Pz Yez
< C1||Gus — V|| ae.. < Co||Gus — V|| g,
= < C1]|Gus | Aw. Vi 2||Gus [l A

where wy, = supp Pp, indicates a star on the level L.

All these local lower bounds have global counterparts, the derivation of
which is not trivial for . Consequently, the safeguarded ZZ estimator is as-
ymptotically exact whenever the averaged gradient is superconvergent.

For the last two results, let B(w) := |U{T € T : TNw # 0} be the smallest
ball in 7 around the set w.

Proposition 2 (Nondeterioration of averaging). For any T € T, the
averaged gradient Gug satisfies

VA
|Gus — Vulla;r < CWHV(US — )|l a;5(7)-

Combining the two propositions yields the efficiency in any case.

Theorem 2 (Lower bounds). The indicators (,, p., V., are bounded by the
local energy error. More precisely, for any z € N,

Pz, Dz

VA VA

A
o+ < O [IV(us = Wl aBo.)-

3 Numerical results

Using the safeguarded estimator £ = ¢+ \~1/2 (Clp+027) and the maximum
strategy, the authors design in [4] an adaptive algorithm, which is implemented
within finite element toolbox ALBERTA [7]. It is worth mentioning that this
algorithm produces adaptive meshes even in situations when the ZZ estimator
vanishes everywhere.

In what follows, we report on two more experiments that enter in the
more general setting of [4] and complement the tests therein. As in [4], the
estimator constants are C1; = 1/5 and Cy = 1/3 and the various quantities
depending on the current finite element space S are indexed by the counter k
of the adaptive iteration.
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3.1 L-shaped domain

For the L-shaped domain 2 = ]—1,1[*\ ([0,1] x [~1,0]) and the Laplace
operator, A = Id, we approximate the exact solution given in polar coordinates
(r,6) by

u(r,0) = 1?3 sin(26/3). (12)

Due to the 72/3-singularity, u ¢ H?(£2). The second derivatives of u how-
ever exist in L;(£2) and so the error of nonlinear approximation decays with

#DOFs™1/2.

L : Yoay o1
; om

A

R -

. s )
[ . —— e
J . ‘\\_ el _‘_.—r'-'-ﬂ.-t :
i\\“\w:«""( - 1005 7

Fig. 2. Example (12): domain and approximate solution of iteration k = 17 (left).
Log-log plot of error of the untreated (‘+’) and averaged (‘o’) gradient versus number
of DOFs; the decay rates —0.5 and —0.65 are indicated by dashed lines (right)

Figure 2 and Table 1 reveal that, in spite of the singularity, the averaged
gradient is superconvergent, whence the effectivity index of & approaches 1
in accordance with Proposition 1. Notice also that the decay of ||V (ur —u)||a
is optimal in that it coincides with the one of nonlinear approximation.

Table 1. Example (12): number of DOFs, error of untreated and averaged gradient,
and effectivity indices for selected iterations

Ck Ex
k. #DOFs |V(ur —u)||a ||Gur — Vulla o0 — a9 —a)la
0 8 4.649¢—01 3.917¢—01 1.064 1.468
5 161  8.357e—02 5.235e—02 1.004 1.392
10 1080 2.910e—02 9.808e—03 0.999 1.275
15 11707 8.639¢—03 1.747e—03 0.998 1.190
20 108993 2.837¢—03 4.000e—04 0.999 1.141

25 1061834 9.010e—04 9.323e—05 0.999 1.106
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3.2 Anisotropic ellipticity

We conclude with an example where the condition number of the coefficient
matrix A is large. Let 2 := ]0,1[> and let A be the diagonal matrix with
diagonal (0.1,10) and consider two exact solutions

u'(z1, x2) = 1070 Y sin(ra;), i=1,2. (13)

The solutions u! and u? are smooth, have the same energy norm and profile,
but depend, respectively, only on the direction associated to the minimum
eigenvalue 0.1 or the maximum one 10.

To approximate both exact solutions u! and u2, we employ the algorithm
of [4] and the standard algorithm of ALBERTA using the maximum strategy
and the explicit residual estimator 7y, equilibrated with the same constant 1/5
as py; this leads to effectivity indices of v/10 7, close to 1 when approximating
on regular meshes the solution u' associated with the minimum eigenvalue
0.1. In [4] all four simulation are started from a regular (structured) macro
triangulation. Here we start from the irregular macro triangulation in Figure
3 (left) and obtain Table 2.

0.001

1le-04

10 100 1000 10000 100000 1le+06
0 1 DOFS

Fig. 3. Example (13): macro triangulation (left). Log-log plot of error of the un-
treated (‘+’) and averaged (‘o’) gradient versus number of DOFs; the decay rates
—0.5 and —0.65 are indicated by dashed lines (right)

For the case ¢ = 1 corresponding to the minimum eigenvalue 0.1, the
safeguarded ZZ estimator & has moderate effectivity indices that appear to
decrease to 1, while the residual estimator /107, has quite big effectivity
indices, probably due to an error component in the direction of the maximum
eigenvalue that is introduced by the irregularity of the macro triangulation.

For the case i = 2 corresponding to the maximum eigenvalue 10, & starts
with relatively big effectivity indices. However, they improve with refinement,
while the ones of the residual estimator /107 are always above 10.

The improving effectivity indices of & in both cases are again a conse-
quence of the superconvergence of the averaged gradient, see Figure 3 (right)
for ¢ = 2, and Proposition 1.
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Table 2. Example (13): number of DOFs, error and effectivity indices of & (left
subcolumns) and 7y (right subcolumns) related to minimum (¢ = 1) and maximum
(i = 2) eigenvalue of A

& or V10

k #DOF's IV (us —u)||a Vus — s
=1

0 0 18 18 5.785e—01 5.785e—01 1.217  4.951

3 4 492 355 1.191e—01 1.384e—01 2.227 7.031

6 9 6513 5893 3.072e—02 3.286e—02 1.753 7.344

9 17 68510 62549 9.486e—03 9.850e—03 1.624 7.381

12 33 354026 338423 4.018¢—03 4.204e—03 1.461 7.391
1=2

0 0 18 18 1.775e—01 1.775e—01 5.795 11.702

3 4 458 440 2.714e—02 2.678¢—02 4.821 11.568

6 7 4 880 3162 8.148e—03 1.027¢—02 4.009 11.642

9 10 34029 25567 3.089e—03 3.393e—03 2.861 11.728

13 14 458924 380611 8.294e—04 8.825¢—04 2.728 11.723
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Summary. We analyse some questions concerning splitting solution techniques of
non-hydrostatic models with atmospheric forcing. We prove that at the free surface
the dynamic pressure must exactly vanish. We also analyse a linearised model of
free surface and give simple rules to construct stable pairs of (horizontal velocities,
free surfaces) for mixed discretizations.

1 Introduction

In this paper we analyse some issues regarding the mathematical modelling of
the hydrodynamic forcing of the Ocean by the atmospheric pressure. Hydrody-
namic forcing is relevant in ocean areas were important vertical accelerations
occur, such as closed and semi-closed seas, straits, flow induced by hurricanes,
ete.

Primitive equation models, extensively used in Physical Oceanography,
are addressed to large oceanic zones, and only include hydrostatic pressure
modelling. Consequently, these models are not suitable to simulate the flows
mentioned above (Cf. [6]).

Non-hydrostatic models for ocean flows include an additional pressure
(the hydrodynamic pressure) to take into account vertical acceleration effects.
These models are also able to drive these flows by horizontal gradients of the
atmospheric pressure. The numerical approximations of non-hydrostatic flows
usually follow a time splitting into hydrostatic + hydrodynamic steps (Cf.
[2, 5, 7]). In this splitting, there is a lack of boundary conditions for the in-
termediate unknowns, particularly for the hydrodynamic pressure. Thus, the
forcing of the flow by the atmospheric pressure is only approximated. How-
ever, some of the mentioned flows are quite sensitive to small variations of
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the forcing conditions. This is the case, for instance, of stratified flows with
slight variations of the vertical density gradient. Consequently, to simulate
this kind of flows, far from hydrostaticity, it is relevant to correctly impose
the atmospheric pressure forcing.

A theory supporting the well-possedness of the models and of their nu-
merical approximations is also lacking. This has been successfully analysed
by several authors in the case of the primitive equations (Cf. [8, 6, 3], but it
is still an open question for non-hydrostatic models. In fact, this causes the
generation of spurious solutions in the numerical solution of the free surface
equations. In particular the determination of stable pairs of spaces for velocity
and pressure (both hydrodynamic and hydrostatic) is required. (Cf. [7], for
instance)

In this paper we address some aspects of the difficulties we have mentioned:
We properly impose the atmospheric pressure as a boundary condition at
the free surface for the total (hydrodynamic + hydrostatic) pressure, and
we derive stable approximations of the free surface equations on a linearised
steady model.

On one hand, the main innovation introduced is to give a surface bound-
ary condition for the non-hydrostatic pressure. This is usually set to zero by
heuristic reasons, but we prove that it should exactly be set to zero, if the flow
is forced by the atmospheric pressure gradient. On another hand, we analyse
a linear steady version of the hydrostatic step that yields the free surface. We
assume known a solution of the problem, and prove its well-possedness, based
upon an inf-sup condition that relates horizontal velocities and free-surfaces.
We give a rule to build stable pairs of Finite Element spaces for this steady
problem.

2 Modelling of non-hydrostatic free-surface flows

In this section we motivate our work by describing with some detail the main
issues related to the modelling of 3D non-hydrostratic free-surface flows.

Let us consider a flow of oceanic water filling at any time ¢ € [0,7] a
domain £2(t). We assume that this domain may be described in terms of a 2D
domain w(t), a continuous depth function D : w(t) — R™, and a continuous
surface function 7(x,t) : w(t) — R (we assume 1 > D on @ for simplicity):

2(t) = {(x,2) € R*such thatx € w(t), —D(x) < z < n(x,t) }.

We assume that the physical behaviour of the flow is described by the velocity
U, the pressure P and the density of the water p, and that these variables
satisfy the Boussinesq equations, forced by the gravitatory field of the Earth
(—g =—(0,0,9)) and the Coriolis forces (that we denote by C):



Some Remarks on a Model for the Atmospheric Pressure 281

1
O U+ (UV)U-vAU+C+ —VP=—Lg,

Po (1)
V.U = 0.

Here, pg is a mean value of density the water, which suffers only of small
variations. It depends on salinity and temperature, through the state equation
of the water p = p(S,T). Salinity and temperature satisfy convection-diffusion
equations, typically

0SS +U-VS — KsAS = fs.

Boussinesq’s equations are derived from Navier-Stokes equations with the as-
sumption that density fluctuations are only relevant in the equation describing
the conservation of vertical momentum (Cf. [6]).

2.1 An exact boundary condition for the dynamic pressure
The total pressure is the sum of its hydrostatic and hydrodynamic parts,
P =Py + Pp. (2)

Pp is linked to the incompressibility of the flow while Py is due to the po-
tential nature of the gravity field. As a consequence, it is determined by

0.Py=—pg=—(po+0)g, (3)

Vertical integration of (3) from some depth z to the free surface n yields

/

n
Pu(z) = Pu() + pog(n+b-2), b= [ 2, 4)
2 PO
where Pg(n) is the 2D value of the hydrostatic pressure at the free-surface,
and b is the hydrostatic pressure due to density fluctuations. It is called the
“baroclinic” part of the hydrostatic pressure. In some models, Py (n) is as-
sumed constant, so the forcing by the atmospheric pressure is neglected. To
take into consideration this effect, some other models assume that the vertical
equilibrium of the free surface requires (Cf. [7]) Py (1) = Patm, where Py, de-
notes the atmospheric pressure. The horizontal gradient of the total pressure
is then split into its barotropic (Vgn), baroclinic (Vgb) and hydrodynamic
parts, plus a forcing term due to the atmospheric pressure:

VHP:pogVH(n+b)+VHPD+VHPatm (5)

If we inject this expression in the horizontal momentum conservation equation
of Boussinesq equations, we obtain a model in which apparently only the
hydrostatic component of the oceanic flow is driven by the horizontal gradient
of the atmospheric pressure.

However, one readily proves that the above expression (5) is exact, if a
zero value for the hydrodynamic pressure at the free surface is set. Indeed, let
us properly set Pp(n) + P (n) = Patm, so that equation (2) is re-written as
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P(x,z) = [Pp(x,2) = Pp(n)] + pog (n+ b — 2) + Patm, (6)

If we now re-define the hydrodynamic pressure as Qp = Pp + Ps, with
Ps(x) = —Pp(n), then @Qp(n) =0, and (6) reads

P(x,2) = Qp(%,2) + pog (n+ b — 2) + Patm, (7)

where both the hydrodynamic and the hydrostatic contributions to the pres-
sure vanish at the free surface. Injecting this expression in model (1), we
obtain the reduced model

1
6tUH + (UV)UH — I/AUH + Cyg + ; VH(QD +g77) = fH7
0

1
0.Us + (U-V)Us — vAUs + Cs + - 0:Qp = fs (8)
0
VU =0,
where )
fu = o Vi (=Patm + pogb) , f3 = —g03 (b — 2). 9)

In this model Pg is the surface value of the hydrodynamic pressure corres-
ponding to a forcing by the atmospheric pressure.

2.2 The hydrostatic 4+ Non-hydrostatic splitting
The equation of the free surface of the flow domain £2(¢):

o+ UpgVn =Us at z = n(x,t) (10)
when V- U = 0, is equivalent (in a convenient sense) to

n(x;t)
Oom+Ve-(Ug)=0, onw, where(Uy)= / Upg(x,z2)dz.
—D(x)

This allows to decompose the solution of problem (8) by a splitting tech-
nique in time by means of hydrostatic and hydrodynamic steps. The procedure
maybe sketched as follows:

e First, a convection stage is performed to update a known velocity U™ into
Ut
e Next, in the hydrostatic step, the free boundary is updated:

e+l _ fyntl
U Ui A_tU?f — v AU+ Ot Lt = gy
nn+1 _ nn po . ’ (11)
T"’VH' <ULt >=0
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e A diagnostic vertical velocity ﬁg“ is next computed by solving the con-
tinuity equation, _ _
;UL = v UL

e Finally, in the hydrodynamic step, the computed velocity is corrected to
take into account vertical acceleration effects, and continuity:

Ut g
gy

- AURT P s = Y
VUt = 0.

1
+ XVHQ%+1 = 0,
- 0

Uyt —uptt (12)

At

At this stage, frequently diffusive and Coriolis forces are neglected as their
size is small compared to convective ones.

To compute the hydrodynamic pressure @ most often projection tech-
niques are used, as this is computationally less expensive than using mixed
methods. This requires to solve an equation of the form

n+1
D

—AQEH = oL,

So, Dirichlet data at the free surface are needed. These data are usually set
to zero, as it is assumed that this pressure is small. This is fully justified by
our modelling approach, as we have seen that the exact surface boundary
condition is @p = 0.

3 A linearised model for the free surface equation

We focus now on the building of stable pairs of spaces for the numerical
solution of the free surface equation. Our purpose is to find ways to construct
stable pairs of (horizontal velocities, free surfaces) to discretize the free surface
equation.

We shall specifically focus on the solution of a linearised steady version of
problem (8) with some simplifying assumptions: We assume that we already
know a steady solution (velocity U, free surface n and hydrodynamic pressure
Q). We fix the domain {2 given by 7, and consider @) as a data that we integrate
into the forcing terms. We also consider U as a data in the convection term.
We finally neglect the Coriolis forces, as these are not relevant for our analysis,
and assume py = g = 1. This yields the linear problem:

Find Ug : 2+— R?, n:w+— R such that

U -VUy — I/AUHJrVHT]: fg,in 2,
Vg <Ug>=0 in w, [’

We set the following boundary conditions,
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—vd,Ug=71,0nly, Uy=0o0n I, UI;

where I is a vertical piece of the boundary of 2 formed from a subset v of
Ow as I} = {(x,2) € R® s.t. — D(x) < z < n(x), x € v}, and T, I} are the
surface and the bottom of the domain, defined as

I's={(x,2) e R®s.t.2 =n(x), x ew}, [, = {(x,2) € R® s.t.2 = —D(x) }.

The vertical velocity is recovered by integration of the continuity equation,
for this reason is not considered in the PDE system above.

We shall assume the functions n and D to be Lipschitz continuous.

The condition on I's models the wind friction on the surface boundary
layer. The no-slip conditions on I, U I} has been set for the sake of simplicity.
For the same reason we have not included Coriolis forces in the above model.

Consider the velocity space H}(§2) ={V € H'(2)s.t.V =0 on [,UI; }.
We shall look for Uy in [H}(£2)]? .

Our variational formulation is based upon the observation that if
o € L*(£2) and, 030 = 0, then for any V € H}!(£2)?, we have

(Vuo,Vu)o =(0,Vu -nu)og — (0, Vu - Vi)n

n(x)
:(UavH'nH)é?Q—/O' [/ VH~VHdzdx]
w —D(x)

:oanonHmn—1/ow7vH@n-vacm

w

—/O'VH~<‘7H>dX7

where the first integral is understood as a duality pairing.
Using that z = n(x,y) is a parameterization of I's, we deduce

@vamm:wwﬁmmn:/okwmvahm

so that
(Vuo,Vi)o = —(0,Vy- < Vg >),, YVy e [HN D). (14)
We shall look for n in the the pressure/free-surface space
L30(2) ={qs € L§(£2) s.t. 9.qs =0}
We give the following variational formulation to the steady version of Prob-
lem (11) :
Obtain Uy € [H} (22)]?,n € L% ,(£2) such that

a(Ug,Vg)+bn, Vi) =L(Vy), Vg € [Hbl(Q)]Q}
=0 ’

b(o, Ug) = 0, Yo € L2 (1), (15)

where
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a(UH,VH) = (U . VUH,VH)Q + I/(VUH, VVH)Q,
b(O‘7VH) = —(O’, Ve <Vg >)w> L(VH) =< fH,VH >0 — < Tw,VH >r, -

Here, we recall that the convection velocity U is considered as a data.

To prove that this variational formulation yields a weak form of problem
(13), one must at first consider identity (14) to recover the first equation and
the boundary conditions on 9f2.

Also, as 7 and D are assumed to be Lipschitz continuous functions, then
Vi < Uy >€ L*(12), and the following estimate holds,

Ve <Ug > [lo,e < C (|[VUg

lo.o +1Un

or, +[|Un

lo.1,) 5

where the constant C' depends on || + D|oow, |VEN 0w |VED| 00w The
second identity in (15) then implies

Vu-<Ug >=m, for some constant m.

Now, if we take n =1 and V = U in (14), we deduce m = 0.
The well-possedness of problem (15) lies on the following inf-sup condition,
reported in Chacén-Guillén [3]:

Lemma 1. Assume that §2 is a bounded domain of R?, (d = 2 or 3) with a
Lipschitz-continuous boundary. Then there exists a constant B > 0 depending
on {2 and the dimension d such that

Vg <Vg >,
0,0 < sup (H i >,0)u

Vo e L% (2), B0
5.0 Vi EHL(2)4 VVh]

(16)

0,02

This result lets us to prove our main result, stated as follows:

Theorem 1. Under hypotheses of Lemma 1, assume U € HY ()3, 7, €
H-Y2(I,)?, £ € H-Y(2)2. Then, Problem (15) is well posed: It admits a
unique solution Uy € [HL(2)],n € L%,O(Q) that satisfies the estimates

VHVUH”O,_Q S cCM (17)
[llo,e < C (14 |Ull1,0) M (18)

where M = (||Twll—1/2,r, + ||fl|=1,2 ), for some constant C' depending on the
domain §2 and the space dimension d.

Proof. As H(£2)4 C H}(£2)?, then the inf-sup (16) also holds between
L%,(£2) and H}(£2)%. The result follows using the standard theory for saddle
point problems (Cf. [1]). "
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3.1 Some hints for mixed approximation

The main interest of the above derivation lies on the fact that it may be
applied to obtain stable pairs of (Horizontal velocities, free-surface) discrete
spaces for mixed approximations of the free-surface problem.

The derivation of the inf-sup condition of [3] allows to construct stable
pairs of Finite Elements in a simple way: Given a standard stable 3D pair
of finite element spaces, say (Y, @), consider the space X} formed by the
horizontal components of the velocities of Y}, and the pressures of M, that do
not depend on z. There exists a constant 8 > 0 such that

(V-Vi,an)e
Yan € Qn < sup ——— 21
an € Qn Bllanllo,e Vhe}))/h Voo

If 0.gr, =0, then (V -V, qn)2 = (V- < Vg >,qn)w, and then

V- < Vpg >
0.0 < sup ( H hH th)w'

B llan
lanl Vi,ex, IVVhl

0,02

So, this pair (X, M},) satisfies a discrete inf-sup condition similar to (16).
Now, we may build a mixed stable approximation of problem (15): Let us
consider the approximated problem

Obtain Uy, € Xj, n, € My, such that
a(Uh,VH) + b(nh,Vh) = L(Vh), YV, € Xy, (19)
b(O’h,Uh) =0, Yoy € My,

Then, we may conclude the following

Theorem 2. Assume the family of pairs of spaces {(Xpn, Mp)}nh>0 s a con-
vergent internal approzimation of [Hy(£2)]* x L% ((§2) satisfying a discrete
inf-sup condition for form b. Then problem (19) admits a unique solution that
converges strongly in [Hy (£2)]* x L% ,(£2) to the solution of problem (15).

This analysis yields some relevant indications to build stable computations
of steady free surfaces. The linear problem (13) is a hydrostatic sub-problem
of the general Boussinesq equations (8), and any stable solver of these last
equations must be able to solve our simplified problem. This suggests to use
pairs of spaces derived as above to solve the transient hydrostatic equations.
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Summary. The goal of this paper is to construct efficient finite volume parallel
solvers on non-structured grids for 2d hyperbolic systems of conservation laws with
source terms and nonconservative products using SIMD registers. Line method is
applied: at every intercell a projected Riemann problem along the normal direction
is considered (see [2]). The resulting 2d numerical schemes are explicit and first
order accurate. The solver is parallelized following a SIMD approach, by means of
SSE (“Streaming SIMD Eaxtensions”), which are present in common processors. A
generic C++ wrapper to small matrices libraries that make use of SIMD instructions
has been implemented in an efficient way and an application to IPP small matrix
library is presented.

1 Introduction

This article deals with the development of efficient implementations of finite
volume solvers on non-structured grids for 2d hyperbolic systems of conserva-
tion laws with source terms and nonconservative products. We are concerned
in particular with the simulation of one or two layer fluids that can be mode-
lled by the shallow water systems, formulated under the form of a conservation
law with source terms or balance law. We are mainly interested in the appli-
cation of these systems to geophysical flows: models based on shallow water
systems are useful for the simulation of rivers, channels, dambreak problems,
etc...Simulating this phenomena leads to very long lasting simulations in
big computational domains, so extremely efficient solvers are needed to solve
and analyze these problems in small computational time. In [2] an efficient
implementation of the first order well-balanced numerical scheme for general
systems of balance laws with nonconservative products was carried out using
domain decomposition techniques and MPI in a PC cluster. Very good speed-
up results were obtained and the scheme was assessed with numerical and
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experimental data. In this article we follow a different approach to reduce
calculus time. This kind of algorithms essentially consist of performing a huge
number of small matrix computations, similar to those carried out in 3d soft-
ware, CAD, physics computation for games, etc. Modern CPU’s are provided
with specific SIMD units devoted to these purposes. We introduce a tech-
nique to develop a high level C++ small matrix library that takes advantage
of SIMD registers, hiding the difficulties related to the use of very low level
coding (mostly assembler).

The organization of the article is as follows: in the second section, we
present the general formulation of systems of balance laws with nonconserv-
ative products and source terms in 2d domains. Next, the numerical scheme
is presented for the general case. Section 4 is devoted to SSE description and
the description of the high level C++ matrix library implementation.

2 Equations
We consider a general problem consisting of a system of conservation laws

with non conservative products and source terms given by:

ow  0F 0Fy ow ow

ﬁ'i‘aTcl(W +87:c2(W):Bl(W).8Tc1+BQ(W)'87x2 (1)
OH OH
+S1(W)8731 Sz(W)T@a

where W (mz,t): D x (0,T) + 2 C RY, being D a bounded domain of
R?; ma = (x1,72) denotes an arbitrary point of D; 2 is an open convex
subset of RV. Finally F;: 2 — RN, B;: 2 +— My, S;i: 2 — RN, i = 1,2,
are regular functions, and H: D — R is a known function. Observe that
if B = By = 51 = Sy =0, (1) is a system of conservation laws; and if
B; = By =0, (1) is a system of conservation laws with source term or balance
law. The shallow water Systems are particular cases of this general problem
OF; ) .

(see [2]). Let J;(W) = BTG (W), i = 1,2 denote the Jacobians of the fluxes
F;, i =1,2. Given a unit vector mn = (11,12) € R?, we define the matrix

AW, mn) = JL(W)m + Jo(W)ng — (Bi(W)m + B2(W)n2).

We assume here that (1) is strictly hyperbolic, i.e. for every W in 2 and
every unit vector mn € R?, A(W,mn) has N real distinct eigenvalues so that
AW, mn) = K(W,mn)D(W,mn)K~1 (W, mn), where D(W, mn) is the diago-
nal matrix whose coefficients are the eigenvalues of A(W,mn) and (W, mn)
is a matrix whose columns are associated eigenvectors. Notice that the non-
conservative products By(W)0,, W, Ba(W)0,, W, do not make sense in the
framework of distributions for discontinuous solutions. The problem of giving
a sense to the solution is difficult, and we refer to [4] and [7].
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3 Numerical scheme

In this section we present the discretization of System (1) by means of a finite
volume scheme. First, the computational domain is divided into discretization
cells or finite volumes, V; C R2, which are supposed to be closed polygons. Let
us denote by 7 the set of cells. Hereafter we will use the following notation:
given a finite volume V;, N; € R? is the center of V;, N; is the set of indexes
J such that Vj is a neighbor of V;; I5; is the common edge of two neighbor
cells V; and V;, and |I;] its length; mn;; = (1:5,1,7i5,2) is the normal unit
vector to the edge i; and points toward the cell V;. The approximations to
the cell averages of the exact solution produced by the numerical scheme will
be denoted as follows:

1

1
Win W/W($1,$2,tn)d$1d$2, (2)

where |V;| is the area of the cell and t™ = nAt, being At the time step which is
supposed to be constant for simplicity. Let us suppose that the approximations
at time ", W', have been yet calculated. To advance in time, a projected
Riemann Problem is considered at every edge Ij;, obtaining a 1d system
of conservation laws with source terms and nonconservative product as those
studied in [3]. Following this work, this one-dimensional problem is discretized
by means of a generalized Q-scheme of Roe. V[/i”'H is then calculated by
averaging the approximations obtained at every edge. The resulting scheme
is as follows (see [2]):

WnJrl Wzn
IV |

Z |F1J| ij (3)

JEN;

where F;; = P (A (W) — W) — Si5(H; — H;)), with Ay = A(Wiz,mn;;);
Wi an “mtermedlate state” between W and W}'; and

1
Py; = 5Kij - (I —sgn(Dy)) - K,

Szg = MNij, 151( zy)—’_nlj 252( )

being D;; the diagonal matrix whose coefficients are the eigenvalues of A,
and KC;; a matrix whose columns are associated eigenvectors. Finally sgn(D;;)
is the diagonal matrix whose coefficients are the sign of the eigenvalues of
matrix A;j.

4 Parallel SIMD implementation

In [2] a parallelization of the resulting algorithm based in domain decom-
position techniques was carried out. However, if we want to obtain a bigger
reduction refering to CPU time with a medium cluster, it is necessary to make
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a better use of the computational power at each node. As the more demanding
operations in this algorithms are matrix computations, our main interest is
to have an efficient small matrix library. Performing small matrix operations
in commodity processors in a more efficient way can be achieved using SSE
instructions. SSE provides a set of eight registers (16 in 64 bit processors) of
128 bits each one, that can store data in 128 bits, 64 bits, 32 bits, 16 bits,
etc; and a set of functions providing the elementary algebra. To make use
of SIMD registers we must program using assembler or intrinsics, which are
not well suited to develop numerical methods due to their lack of portability
and because the obtained code is hard to debug. In this section we present a
general framework for the development of a generic C++ matrix library with
high level characteristics on top of matrix libraries developed making use of
SIMD instruccions for common processors. To achieve this goal we make use
of the advanced characteristics of C++-.

4.1 Application to the intel IPP small matrix library

The “Intel Performance Primitives” (IPP) are a set of numerical libraries
developed by Intel to help software developers to make use of SSE registers
using a higher programming level than rough assembler. These libraries are
grouped in several categories: video and audio compression, cryptography,
signal analysis and Fourier transform, small matrix and vector operations for
physics modeling, etc. The small matrix library (up to size 6 x 6) is well
suited for the kind of problems we are interested in: one layer and two layer
flows, as it focuses in the matrix sizes we need and contains all the necessary
operations. A detailed description of this library can be seen at [6]. If we want,
for example, to add two matrices, A, B of size 6 x 6 and type 64 bits, and store
the result in C, the code would read as follows:

’ ippmAdd mm_64f_6x6(A,LR,B,LR,C,LR); ‘

where LR denotes de distance in bits between the columns of the matrix (in
this example LR=48=6x8 bits). So, the name of each function depends on the
data type, on the matrix size and on the distance in bites between columns.
This implementation would lead us to a difficult to debug code, which is not
desirable for implementing numerical methods. To obtain a portable imple-
mentation that can benefit from SSE we can build a C+4 wrapper.

Overloading usual matrix operations

To develop a more readable code, it is necessary to employ the concept of
operator overloading, present in object oriented programming languages. So,
the main work to develop our matrix library is to implement the most common
operator overloading, that afterwards will be used in the finite volume code.
To do this in an efficient way, sophisticated C++ techniques must be used.
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Templates

As we have seen, it is necessary to distinguish the data type which we
are using and the size of the matrix to consider, in the development of
the C+4 matrix library. This decision must be taken in precompile time,
avoiding the use of conditionals, so we have used “templates” to imple-
ment the class Matrix, in a generic way for the case of simple and double
precision and for different matrix sizes; all these characteristics will be
parameters that will be passed as arguments to the class Matrix. In this
way, Matrix<TYPE>A,B; creates a matrix of the given TYPE, where TYPE
refers to matrices of size 3 x 3 or 6 x 6 in single or double precision. For
each type and size of matrices, we must define the basic operations, using
the optima function from IPP library.

. Awoiding using temporal variables

If we carry out a traditional operator overloading, a great part of the
improvement of the calculus time is lost (see Section 4.2, Table 1). This
is due to the creation of temporal variables. When we carry out a binary
operation in a processor the process in which this operation is carried
out is the following: for example, to perform the addition of two matrices
(A,B), that is C = A+ B, in the computer, a temporal variable is created, C,
where the result of the addition is stored and then assigned to variable C.
As we will see in Section 4.2, creating this temporal variable in memory
can nearly double the calculus time. To overcome this difficulty, we use
a technique described in [9], that consists of creating a class, ¢ ‘MMsum’’,
that does not perform any operation, but saving references to the operands
that take place in the operation, as follows:

class Matrix;

class MMsum {

public:

const Matrix& mO;

const Matrix& mi;

MMsum(const Matrix&mmO,const Matrix& mm1): mO(mmO),ml(mm1) {};
operator Matrix();

friend inline MMsum operator+(const Matrix& mmO,const Matrix& mmil)

return MMsum(mmO,mm1);

}

};

MMsum: :operator Matrix() {
Matrix m;
ippmAdd_mm_64f_6x6(m0.v,LR,ml1.v,LR,m.v,LR);
return m;

}

Matrix& operator=(const MMsum& m){

ippmAdd_mm_64f_6x6(m.m0.v,LR,m.mi.v,LR,v,LR);

return (*this);
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With this implementation the compiler does the following: when it finds
an expression of the type C = A + B, it begins reading from right to left,
and when it finds two matrices separated by the sign “+”, the compiler
identifies it as an object of the class MMsum, then it saves the correspon-
ding references to the operands A, B and C and the operation type; after
that, it continues reading till finding the sign “=” and a matrix on the
other side. Then it looks for the operation corresponding to this case
(after considering all the operands) and it performs this operation: in this
example it should choose the operation defined by Matrix& operator=
(ippmAdd_mm_64f_6x6 in this example).
3. Function inlining

Finally, another aspect to consider if we want to achieve a efficient im-
plementation is the use of function inlining, as we want to call very small
functions many times and we do not want the program to go and search
for them in execution time.

One of the main advantages of using this matrix library is that this technique
can be easily mixed with a domain decomposition based implementation.

4.2 Performance tests for the C++ matrix library

We will present only results for the case of matrices of size 3 x 3; similar results
are obtained for matrices of size 6 x 6 (see [5]).

Comparison between the wrapper efficiency and the original
matrix library

In this section we present comparisons of the performance of the implemented
C++ wrapper and the direct use of IPP functions. Times corresponding to
the implementation of the overloading using temporal variables (the usual
implementation) are also presented. The referred operations are carried out
1.000.000.000 times in order to be able to measure a significant calculus time.
Note that the differences in performance between the functions of IPP and
our C++ library are neglectible. A fact to consider is that using a temporal
variable to define the overloading of operators doubles the calculus time (see
Table 1).

Matrix operations test

In this section we present a comparison between the developed matrix library
and some usual C++ matrix libraries. To carry out this comparison we have
considered Newmat v10.0, which is a C++ matrix library with the usual
matrix operations and Gmm-+-, which is based in Blas and also contains the
needed matrix operations. We have performed typical operations used in our
finite volume algorithm. In the tables we will use the following notation: V will
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Table 1. Efficiency of the C++ wrapper: 3 x 3.

Operations IPP Optimized wrapper|Wrapper with temporals
V+V Om 7.263s Om 7.266s Om 10.772s
M+M Om 18.660s Om 18.667s Om 29.312s
M-V Om 13.130s Om 13.145s Om 24.533s
M-V+V  |Om 16.387s Om 16.391 Om 29.852s
M T Om 44.735s Om 44.745s Om 49.s97s

mean vectors of 3 components, and M matrices of 3 x 3. Again, the referred
operations are carried out 1.000.000.000 times in order to be able to measure
a significant calculus time. Note that for the reference operation in our case,
that is M-D-M~!-V, we are able to reduce 48 times the calculus time if compared
to Newmat, which is possibly the most used free C++ matrix library.

Table 2. Calculus time: Different matrix libraries performance: 3 x 3.

Operaciones|Newmat v. 10.0/ Gmm++ |IPP wrapper
M+M 10m 2.675s 6m 4.012s | Om 18.657s

M-V 11m 6.830s | 1m 24.316s | Om 13.145s
M-V+V 14m 51.380s | 3m 10.810s | Om 16.381s
M-t 35m 22.920s | 7m 20.120s | Om 44.745s
M-D-M~1.V| 85m 41.870s [16m 52.053s| 1m 48.260s

4.3 Numerical performance of the matrix library

We consider a rectangular channel of 1 m width and 10 m long with a bump
placed at the middle of the domain given by the depth function H(x1,x9) =
1-0.2e~@1 =5 Three meshes of the domain are constructed with 2590, 5162
and 10832 volumes respectively. The initial condition is mq(x1,22) = m0, and:

H(zy,20) +0.7 if4 <z <6,

4
H(x1,22) + 0.5 other case. @

h(l‘l,l’g) = {

The numerical scheme is run in the time interval [0,10] with CF'L = 0.9.
Wall boundary conditions mq - mn = 0 are considered. Table (3) shows the
CPU time for each run. As it can be seen in Figure 1 the linearity of the
speed-up of the domain decomposition parallelization noticeably diminishes
for meshes 1 and 3 in the one layer case, with respect to the case in which
IPP are not used. This phenomena is due to the fact that, due to the great
efficiency of the SSE parallelization, the calculus time for each iteration in
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Table 3. Calculus time: meshes 1, 2 and 3.

295

mesh 1

mesh 2

mesh 3

CPUs.

SSE

NON-SSE

SSE

NON-SSE

SSE

NON-SSE

Om 18.507s

4m 52.201s

Om 51.764s

14m 16.735s

3m 5.985s

50m 21.319s

Om 10.685s

2m 32.606s

Om 29.066s

7m 6.800s

1m 38.830s

25m 25.037s

Om 6.876s

1m 17.556s

Om 17.078s

3m 38.655s

Om 53.459s

12m 43.717s

Q| = | N —

Om 4.340s

Om 40.120s

Om 10.032s

1m 51.360s

Om 29.315s

6m 26.135s

(a) Mesh 1: SIMD speed-up.

Fig. 1. Speed-up for meshes 1 and 3: one layer model.

(b) Mesh 3: SIMD speed-up.

each node is very small, so most of the time is spent in communications. The
efficiency of mixing both kinds of parallelism increases with the mesh size.
To explain this behaviour, we consider a much finer mesh than mesh number
3 (meshd4, with 244.163 volumes) to compute again test 1 and compare the
speed-up (see Table 4).

Table 4. Speed-up: meshes 3 and 4.

N. CPUs. 1 2 4 8
Time for mesh 4 |25m 26.436s|12m 53.427s|6m34.203s|3m24.476s
Speed-up for mesh 3 1 1.8818 3.4790 6.3443
Speed-up for mesh 4 1 1.9736 3.8722 7.4651
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Summary. An optimal control problem for a 2-d elliptic equation and with point-
wise control constraints is investigated. The domain is assumed to be polygonal but
non-convex. The corner singularities are treated by a priori mesh grading. A sec-
ond order approximation of the optimal control is constructed by a projection of
the discrete adjoint state. Here we summarize the results from [1] and add further
numerical tests.

1 Introduction

This paper is concerned with the a 2-d elliptic optimal control problem with
pointwise control constraints. The state and the adjoint state are discretized
by continuous, piecewise linear functions on a family of graded finite ele-
ment meshes. The control is initially discretized with piecewise constants on
the same meshes, but this control is used only for solving the system of dis-
cretized equations. Finally, an improved control is constructed by postprocess-
ing the adjoint state. This approach was suggested and analysed for sufficiently
smooth solutions by Meyer and Résch [3]. The results of our analysis [1] of
the case of non-smooth solutions are summarized in Section 2.

In Section 3, we present some new numerical tests of this method. It can be
seen that graded meshes are indeed suited to retain the convergence order of
smooth solutions in the non-smooth case. Moreover, we see that the boundary
between active and non-active controls is approximated well although the
method does not specially target to this aim. The results show that it is not
necessary to adapt the mesh to these a priori unknown curves.
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2 Theory

In this section, we summarize our results from [1]; and therefore we closely
follow that paper. We consider the elliptic optimal control problem

J(@) = min J(u), J(u):= F(Su,u), (1)
UEUaa
1 2 v 2
F(y,u) == §||y - yd||L2(Q) + §Hu”L2(Q)’ (2)

where the associated state y = Su to the control u is the weak solution of the
state equation
Ly=u in 0, y=0 on I =091, (3)

and the control variable is constrained by
a<u(x)<b for a.a. z € (2. (4)

The function yq € L (£2) is the desired state, a and b are real numbers, and
the regularization parameter v > 0 is a fixed positive number. Moreover, {2 C
R? is a bounded polygonal domain with boundary I'. The set of admissible
controls is Unq := {u € L%(2) : a < u < b a.e. in 2}. The second order
elliptic operator L is defined by

Ly := -V -(AVy) +a-Vy+ agy, (5)

where the coefficients A = AT € C(02,R?*?), a € C(£2,R?), ag € C(92),
satisfy the usual ellipticity and coercivity conditions €7 AE > mo€T¢ for all
EeR? andao—%v-azo.

We focus on state equations with non-smooth solutions. Let us assume
that the domain 2 C R? has exactly one reentrant corner with interior angle
w > 7 located at the origin. Due to the local nature of corner singularities in
elliptic problems this not a loss of generality. We denote by r := r(z) = ||
the Euclidean distance to this corner. The solution of the elliptic boundary
value problem

Ly=g in £, y=0 onl,

has typically an r*-singularity where A € (1/2,1) is a real number which is
defined by the coefficient matrix A and the angle w. In the case of the Dirichlet
problem for the Laplace operator, the value of A is explicitly known, A = 7/w.
In more general cases this can also be computed.

Via (2), the operator S associates a state y = Su to the control u. We
denote by S* the solution operator of the adjoint problem

L'p=y—yq in §2, p=0 onlT, (6)

that means, we have p = S*(y—yq). Since we can also write p = S*(Su—yq) =
Pu with an affine operator P we call the solution p = Pu the associated adjoint
state to u.
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Fig. 1. 2 with a quasi-uniform mesh (¢ = 1.0) and with graded meshes (u = 0.6)

Introducing the projection

4 4 f () := max(a, min(b, f(x))),

the condition .

u=Hap (=P ) (7)
is necessary and sufficient for the optimality of u.

The optimal control problem is now discretized by a finite element method.
We analyze a family of graded triangulations (1}),-, of 2 with the global
mesh size h and a grading parameter p© < A\. We assume that the individual
element diameter hr := diamT of any element T' € T}, is related to the
distance 77 := inf,e7 |2| of the triangle to the corner by the relation

c1hY1® < hp < eohM* for rp = 0, ®)

clhrgp_“ < hr< czhr;_“ for rr > 0.
For a 2-dimensional domain the number of elements of such a triangulation
is of order h~2. Figure 1 shows an example domain with a uniform mesh and

graded meshes. Implementational aspects are given in Section 3. On these
meshes, we define the finite element spaces

Uy = {uh S LOO(.Q) : uh\T e€Pyforal T e Th}, U;:d =Up NUyg,
Vi i={yn € C(2): yn|lr € Py for all T € T}, and y,, =0 on I'},

where Py, kK = 0,1, is the space of polynomials of degree less than or equal
to k.

For each u € L2(§2), we denote by Spu the unique element of Vj}, that
satisfies a(Spu, vn) = (u, vp)L2(0) for all vy, € Vi, where a : H' (2)x H'(2) —
R is the bilinear form defined by a(y,v) := [, (Vy - (AVv) + bVv + agyv) d.
In other words, Spu is the approximated state associated with a control w.

The finite dimensional approximation of the optimal control problem is
defined by

Jn(up) = min Jp(up) 9)

upeUpd
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with Jp(up) = %||Spun — yd”%z(ﬂ) + %||uh||%2(9). The adjoint equation is
discretized in the same way: We search p, = S} (Shun —ya) = Prun € V}, such
that a(va,pr) = (Shun — Ya,vn)r2(0) for all v, € Vj. The optimal control
problem (9) admits a unique solution a4, and we denote by g, = Spiy the
optimal discrete state and by pp, = Pty the optimal discrete adjoint state. In
analogy to (6) we define a postprocessed approximate control u;, by a simple

projection of the piecewise linear adjoint state pj, onto the admissible set Uyq,

~ 1_
up = g ) <—Vph> :

Let us now summarize discretization error estimates. Under the assump-
tion that the mesh grading parameter p satisfies the condition

1< A, (10)
the optimal, piecewise constant approximate control u; satisfies

1@ — an| 22 () < ch ([la]lze o) + 1yl L= () (1)

The first order convergence is also observed in numerical tests. Although the
difference @ —uy, is of first order, the associated states and adjoint states differ
by second order,

17— GnllL20) < cb® (|l ) + lyallLe(2)) » (12)
15 = Pullzo) < cb® (|l ) + lvallLe(a2)) » (13)

from which one can conclude that the error of the postprocessed control is
also of second order,

|2 = @nll 2@y < ch® ([l pe(o) + lyallL=(2) (14)

These results were first proved by Meyer and Rosch [3] for uniform meshes
in the smooth case, where the solution of Ly = f is contained in W22(£2) N
Who°(§2). The main result of our paper [1] is that the error estimates (11)—
(14) are also valid in the case of non-convex domains and appropriately graded
meshes, (10). Without local mesh grading (4 = 1), only a reduced convergence
order is observed.

For the proof of the superconvergence results, we needed the following
assumption. The formula (6) computes the optimal control @ by a projection
of the adjoint state p. This reduces the smoothness. While |r!=#p[y22(g) <
c|r'=Hplwe2(0) < oo for p < X < 1, this is not true for @ due to kinks at the
boundary of the active set. We assume that

Z measT < ch.
TeTy: rt—rugW?22(T)
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3 Numerical results

Let {2 be a circular sector as shown in Figure 1. In order to construct meshes
that fulfil the conditions (8) we transformed the mesh using the mapping
T(z) = xHxH%_l near the corner, see figure 1, middle image. An alternative
is to use a partitinong strategy, see figure 1, right image.

We choose the example such that the state and dual state have a singularity
near the corner. Consider

—Ayt+y=u+7f in (2,
—Ap+p=Y—Yd in £2,
u = Iy (—5 p)

with homogeneous Dirichlet boundary conditions for y and p.
First Example. In order to have an exact solution we choose the data
f=Ly—u= Ly—H(—%p) and yq = y — L*p such that

y(r, @) = (1 — r®) sin \p

p(r, ) = v(r —r?)sin Ag
are the exact solutions of the optimal control problem. We set A = %, a =
B = %, v =10"% a = —0.3 and b = —0.1. Figure 2 displays a piecewise
linear approximation of the corresponding control function w. Table 1 shows
the reduced convergence rate 2A on a quasi-uniform mesh (u = 1) and the
optimal rate of convergence of the control on a graded mesh (u = 0.6).

Figure 3 shows that the error near the corner dominates the global error.

The picture visualizes the contribution of each triangle to the global L2-error.
Using graded meshes this error diminishs at least as fast as the global error.

0.05 W W e
o5 | WM’%’W%I/

eSO
025 85 04"”!
0.3.1

Fig. 2. Example 1. Optimal control function —0.3 < u(x) < —0.1
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Table 1. Example 1. L2-error of the computed control %, —0.3 < u(z) < —=0.1

©w=0.6 pn=1.0
ndof||lu —ul|;. rate||lu—ul,;. rate
18| 1.95e-01  0.00| 1.95e-01  0.00
55| 1.92e-01  0.02] 1.92e-01  0.02
189| 1.24e-01  0.63| 1.31e-01  0.56
697| 4.44e-02  1.48| 5.87e-02 1.16
2673| 1.38e-02 1.69| 2.42e-02  1.28
10465| 3.79e-03  1.86| 9.84e-03  1.30
41409| 9.58¢-04  1.98| 3.93e-03  1.32
164737| 2.17e-04  2.14| 1.57e-03  1.33

Fig. 3. Example 1. Visualization of the L?-error of p, —0.3 <wu(z) <1, p=1

Second Example. We choose now the data f and yg4 such that

A — %) sin 3\

y(r,p) = (r
=v %) sin 3\

p(r,p) = v(r

3

with A = % and a = 8 = g Further we set ¢ = —0.2, b = 0 and v = 10™4.
We used a mesh that did not even coincide with the boundary of the upper
active set {x : u(x) = b} in order to show that the method does not need
any apriori information about the active set. Figure 4 shows the piecewise
constant approximation of the optimal control .

Table 2 shows that the convergence rate of the control w is about 2 which
was proven in [1]. Table 3 contains the absolute errors and error reduction rates
of the approximated state y;, in both the L2-norm and the H'-seminorm.
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Fig. 4. Example 2. Piecewise constant approximation of optimal control function
@, —0.2 < wu(z) < 0. One can see a singularity near the corner.

Table 2. Example 2. L?-error of the computed control s, —0.2 < u(z) <0

n=0.6
ndof||lu —ul|;. rate
18| 2.63e-01  0.00
55| 2.59¢-01  0.02
189| 2.33e-01  0.15
697| 8.44e-02 147
2673| 2.36e-02 1.84
10465| 6.04e-03  1.96
41409| 1.57e-03  1.95
164737| 4.31e-04 1.86

Active Sets. The approximation of the boundary of the active sets is very
important for the quality of the computed control, see e.g. [2]. The method
presented here approximates the active set by a union of triangles. However,
after postprocessing the piecewise linear function u; gives a much better rep-
resentation of the active sets. Figure 5 shows the active set of Example 1 on
different meshes. The active triangles are shaded. The black curve shows the
computed boundary of the active set as represented by uy. The second curve
displays the exact boundary. Clearly, the approximation improves with de-
creasing mesh size. Figure 6 shows the same behavior for the second example.
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Table 3. Example 2. L?- and H'-errors of the computed state y, —0.2 < u(z) <0

pn=20.6 pn=1
ndof||ly — ynllr2 rate|lly — ynllzr  rate ||ly —ynllz2 rate||ly —ynllm1  rate
18| 1.55e-01 0.00| 1.78e+00 0.00 1.55e-01 0.00| 1.78e400 0.00
55  3.92e-02 1.98| 1.04e+00 0.77 4.35e-02 1.83| 1.10e4+00 0.69
189| 7.68e-03 2.35 5.74e-01 0.86 1.10e-02 1.98 6.84e-01 0.69
697 1.99e-03 1.94 3.06e-01 0.91 3.55e-03 1.63 4.24e-01 0.69
2673| 6.18e-04 1.69 1.61e-01  0.93 1.23e-03 1.53 2.64e-01 0.68
10465| 1.58e-04 1.97 8.38e-02 0.94 3.91e-04 1.66 1.65e-01 0.68
41409 3.97e-05 1.99 4.33e-02  0.95 1.23e-04 1.67 1.04e-01 0.67
164737 1.00e-05 1.99 2.22e-02  0.96 3.87e-05 1.67 6.52e-02 0.67

Fig. 5. Example 1: Active triangles and boundary of active sets, (zoom of
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Fig. 6. Example 2: Active triangles and boundary of active sets, —0.2 < u(z) < 0,
=10 a=p0= g, (zoom of region near singularity), left: ndof=2673, middle:
ndof=10465, right: ndof=41409
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1 Introduction

A posteriori analysis has become an inherent part of numerical mathematics.
Methods of a posteriori error estimation for finite element approximations
were actively developed in the last two decades (see, e.g., [1, 2, 3, 12] and
the references therein). For problems in the theory of optimization, these
methods started receiving attention much later. In particular, for optimal
control problems governed by PDEs the literature on this matter is rather
scarce. In this work, we present a new approach to a class of optimal control
problems associated with elliptic type partial differential equations. In the
framework of this approach, we obtain directly computable upper bounds for
the cost functionals of the respective optimal control problems.

Let 2 € R™ be a Lipschitz domain with boundary I" := 942.
Problem 1. Given ¢ € Loo(R2), y? € La(02), u® € La(02), f € La(£2), and
a € R4, consider the distributed control problem

minimize J(y(v),v) = % ly —y)*> + g v — ud||? (1a)

over (y,v) € Hy(2) x L*(22) ,

subject to —Ay = v+ f ae. in 2, (1b)
veK = {veL*(2) |v<yae in02}. (1c)

The function y? is given and presents the desired shape of the state function
y, whereas u presents the desired control. It is well-known that under the
above assumptions Problem 1 has a unique solution (see, e.g. [9]).
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There exist many different approaches to optimal control problems of this
type. The numerical solution of optimal control problems is usually based on
applying specific iterative schemes to the system of optimality conditions, e.g.,
active set strategies or interior point methods (cf., e.g., [6, 7] and the references
therein). Adaptive techniques for optimal control problems governed by PDEs
are presented in [4] and [8].

In this work, we follow another approach which is based on so-called func-
tional type a posteriori error estimates. To explain the meaning of such esti-
mates, as a model problem we consider Poisson’s equation with homogeneous
boundary conditions

—Ay=v+f in 2, (2a)
y=0 on I, (2b)

which describes the dependence between the control and the state in the
optimal control problem (1a)-(1c). Let § be any function from the admissible
set Y := H(£2) which we view as an approximation of the solution of the
elliptic problem (2a)-(2b). It was shown (see, e.g., [10] and [11]) that the error
of the approximation y satisfies the following estimate:

V(@) =9l < lIT = Vyll + Colldivr + v+ f|| . 3)
Here, Cy, is the constant in the Friedrichs inequality
lwl < Co [Vuwll, we Hy($2) (4)

for the domain {2 and 7 is an arbitrary function from the functional class
Y := Haiv(£2,R™). Mathematical justifications of functional type a posteriori
estimates and their analysis can be found in the above cited literature. Below,
we recall the main properties of such estimates:

e For any approximation 3 € Y, the right—hand side of (3) gives an upper
bound of the error in the natural energy norm of the problem considered;
Its value is equal to zero if and only if § coincides with y(v) and 7 = Vy(v);
The estimate is consistent in the sense that its value tends to zero for
any sequences {Jr} and {74}, converging to the exact solution y and its
gradient Vy, respectively;

e The estimate is exact in the sense that there exists a function 7 such that
equality holds true;

e The estimate does not depend on the mesh parameters and only contains
a global constant.

The function 7 in the expression of the error majorant (3) serves as an image
of the exact flux Vy(v). It is easy to observe that two terms of the majorant
represent the respective errors in the constitutive relation 7 = Vy(v) and in
the equilibrium equation divr +v + f = 0.

In this paper, we apply this estimate in order to reformulate the origi-
nal optimal control problem. As a result, we obtain a directly computable
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and guaranteed majorant for the cost functional. Besides, we prove that the
sequences of approximate state and control functions, computed by the min-
imization of the majorant, converge to the exact state and control functions.

2 Majorants for the cost functional

One of the major difficulties in (1a)-(1c) is that the state and control functions
must satisfy the equality constraint presented by the boundary-value problem
for an elliptic PDE.

Let v € K and y € Y be two functions related by the differential equation
(1b). For this pair, the cost functional is as follows:

1 dj2 a dj2

Jyw),v) = Slly=ylI° + Sllv—u”.
2 2

Let y € Y be some approximation of y so that we may include it in the first

term of the cost functional. By the triangle and Friedrichs inequalities, we

obtain the estimate

Ty, < 5 (17— + Cal VDI + Slo—ull?. (5)

N |

Now, using the error majorant (3) we can estimate the weak norm of the error
and substitute it to the estimate of the cost functional (5). By this procedure,
we exclude the explicit entry of the exact solution y of (2a)-(2b) from our
estimate and arrive at the relation

1

~ ~ . 2 a
J(y(),v) < 5 (IlF =y + Cal Vg — 7|l + CEldivr +v + £]) Jrg\\vfudll2 :

|

However, from a computational point of view it is desirable to reformulate
this estimate such that the right—-hand side is given by a quadratic functional.
For this purpose, we introduce parameters «, 8 > 0 and obtain the following
upper bound (hereafter called the majorant):

J(y(),v) < J¥a, B;9,7,0), Yve K. (6)
Here,

. I+oa, l+a)(1+p8 ~
(e85 m) = gy S D e gy
I4+a)A+8) gy 2, 0 d)2
A DEED b aivr +0-+ 2 + S - w?,

where y € Y and 7 is an arbitrary function in X.

Remark 1. A similar upper estimate can be derived for the optimal control
problem with the cost functional
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1 dy2 | @ d2
T(y,0) = Iy — oI + Sl — w2,

where the vector-valued function o is given and presents the desired gradient
of the state function.

Let us consider the majorant as a functional that generates a new mini-
mization problem

Problem 1*. Given 1) € Loo(£2), y? € La(92), u? € La(2), f € La(£2), and

a€cRy,
minimize J®(a, 3;7, T, v) (8a)
overve K, yeY, 1€ X, o pfeRy,
K = {veL*(2) | v<1ae in 2} . (8b)

We see that in this problem the differential equation (which in (1a)-(1c) defines
the respective admissible set) does not appear explicitly. In (8a)-(8b), the
functions 7, ¥ and v act as independent variables. In the next section, we
present properties of the majorant (7) and show that Problem 1* and Problem
1 have one and the same exact lower bound attained on the same state and
control functions.

Remark 2. Tt is worth noting that the majorant J® (o, 8; 7, 7,v) can be used to
find guaranteed upper bounds for the cost functional when the minimization
problem is solved by known methods. Indeed, since the functions y and v
are arbitrary, we can take them as approximate solutions computed by some
optimization procedure and minimize the majorant w.r.t. the function 7 and
the parameters 3 and «.. The respective value J® will represent the guaranteed
upper bound for the value of the cost functional.

3 Properties of majorants

Theorem 1. The ezact lower bound of the majorant (7) coincides with the
optimal value of the cost functional of the problem (1a)-(1c), i.e,
inf  J%(a, 87, 7,0) = J(y(u),u) .

JEY,TEX,
vEK,a,BER L

The infimum of J® is attained for v =wu, § = y(u), 7 = Vy(u).

This property means that our transformation of the original problem is math-
ematically correct in the sense that the new problem is solvable and has the
same lower bound as the original one.

Let {Vi}32 1, {Y}32, and {X%}72, be sequences of finite-dimensional sub-
spaces that are limit dense in V := L?(£2), Y and X, respectively. The discrete
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control constraints are given by Ky := VN K. It is not difficult to show that
K, is limit dense in K.
We define the sequence of numbers

JEB = J®(akvﬁk;gka7kavk) = inf J@(a,ﬂ;ﬂ,ﬂv) ) (9)

YEY , TEX,
veEK,a,BERL

which is obtained by solving the problem on sequences of the selected finite—
dimensional subspaces.

Theorem 2. If Ky, Y5 and Xy are limit dense in K, Y, and X, respectively,
then

() JP = J(y(w)w) as k- oo;
(i1) the sequence {y(vs),vs} converges to the exact solution

of the control problem {y(u),u} inY x K.

The theorem shows that a numerical strategy based upon using the majo-
rant produces sequences of control and state functions which provide a value of
the cost functional as close to the value J(y(u),u) as it is required. Moreover,
the respective sequences of control and state functions tend to the desired
solution of the original problem.

4 Practical implementation

In this section, we briefly discuss the practical implementation of the numerical
strategy based on the majorants.

4.1 Discretization of the problem

In the resultes exposed below, we restrict ourselves to the case when the
problem is solved by usual finite element approximations on a simplicial mesh
which is the same for all functions involved. Let 73 (2) denote such a shape-
regular simplicial triangulation of {2. For the state function, we use continuous
piecewise affine approximations g, € Y}, vanishing on the boundary I", whereas
for the control v € K we use piecewise constant approximations v, € Kj,
where K is chosen such that K; C K. The vector—valued functions 7 € X
are approximated by piecewise affine functions 7, € X},

4.2 Minimization algorithm

To obtain a sharp upper bound of the cost functional, we minimize the ma-
jorant JP(a, B;9n, Th,vn) over (Yn,Th,vn) € Yi x i x Kp, and a, 3 € RT.
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The numerical results presented below have been obtained using the following
algorithm:

Step 1. Initialization. Set i = 0, define o, 3°, vY, 0.
Step 2. Minimize J®(a’, 5% G, Th, i) over (Jn, Th,vn) € Yi X Zp X K.
Step 3. Minimize J¥(a, 3; g}";LH,T;LH,vZH) wart. f,a € Ry. Set i =14+ 1.

Steps 2 and 3 are repeated until

Rl O A
T ] 193

2

> €,

where € is a given tolerance and J© = J®(af, B 78, 75, vi).

5 Numerical experiments

The method described in the previous sections has been numerically tested on
a set of various optimal control problems. In all examples, it has been observed
that the sequences of computed upper bounds of the cost functionals rapidly
converge to the exact lower bound whose value has been computed at high
accuracy. Also, it has been observed that the sequences of the state and control
functions converge to the exact ones.

Below, we show these results for the model problem in 2 = (0,1)?. In this
case, Cp = ——

The efficiency of the approach is measured by three quantities. The index

I=J%/J(y,u)

shows the relation between the value of majorant computed for the control
function v and the exact lower bound of the cost functional J(y,u). The
quantities

1y = (ly =l /Nyl ) 100% , nu = (llv —ull/[Ju]]) * 100% ,
represent the relative errors in the state and control functions, respectively.
Ezxample
As an example we take the problem from [6] with the following data:

a=0.01, Y(z,y) =1, f(z,y) =0, u’(z,y) = 0 and

200(z — 0.5)%(1 — y)yx , r<0.5,
y( ,y)={ ( L)

200(x — 0.5)2(1 —y)y(z — 1), else.

The exact solution of this optimal control problem is unknown. Therefore, in
order to analyze the efficiency of the method, we have computed a ‘reference
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solution’ using a mesh much finer than those used in the actual computations.
For this task, we have used the primal-dual active set strategy (cf., e.g., [5]).
The reference value of the cost functional in this case is J(y, u) = 9.5838-1072.

The discrete problem has been solved for various uniform meshes with NV
nodes. Table 1 shows the relative errors in the state and control functions and
the index I. In Figure 1, we depict values of the majorant with respect to
the minimization time (N = 1089). In this figure, the horizontal line shows
J(y(u),u) (actual value of the cost functional) whereas the rapidly decaying
curve reflects the reduction of the computable upper bound given by the
majorant. The desired tolerance e = 10~* was achieved after i = 16 iterations.
Approximations (¥, vy, ) obtained by the algorithm and the reference state and

control functions are displayed in Figure 2.

estimate

0.09
0

Fig. 1. Reduction of the upper bound of the cost functional w. r. t. CPU time.

Table 1. Index [ and relative errors in the state and control.

t (sec)

N Mys %0 N, % I

25 67.51 54.39 1.050
81 31.50 25.23 1.029
289 14.59 12.07 1.014
1089  7.55 6.49 1.007
4225 4.67 4.18 1.003
16641 3.65 3.39 1.002
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Fig. 2. Exact state y (upper left) and approximate state g5, (upper right), exact
control u (lower left) and approximate control v;, (lower right).
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Summary. Mathematical modelling of air lubrication phenomena taking place dur-
ing read/write processes in magnetic storage devices (hard—disks, for example) can
be addressed by using a compressible Reynolds equation for the air pressure. In the
present paper, we propose a duality algorithm with optimal functional parameters
to numerically solve the nonlinear diffusive term. A theoretical result is stated and
some numerical examples are presented to illustrate the performance of the method.

1 The mathematical model

A real hard—disk magnetic recording device consists in a rigid head and a
rigid disk. A thin layer of air fills the gap between both elements and acts
as a lubricant. Following [4], we will assume in this paper that the device is
wide enough (in order to use a 1-D model), and the disk moves with constant
velocity V. Moreover, air will be considered a perfect gas in newtonian and
laminar regime, inertial forces and stress effects are negligible, and constant
viscosity and temperature will be also assumed.

Let be 0 < l; < ls. The thin gap between the head and the disk is given
by a function h € L*°(ly,l5). Under the previous hypotheses, Burgdorfer [5]
proposes the classical compressible Reynolds equation to model the hydrody-
namic behaviour of the device:

d d ( odp d (3 dp\ :
6Vde (ph) — 6/\padx (h dx) - (h pdz) =0 in (l1,l2) (1)

p(lh) = p(l2) = pa (2)

where p is the air pressure, p is its viscosity, A is the molecular mean free path
of the air and p, is the ambient pressure.
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If we introduce the dimensionless variables [7]: X = 100z, P = p/p,,
H = 10°h, then problem (1)—(2) can be written in the form:

d d (. ,dP d [ . dP\

P(L;)=P(Ly) =1,
where o = 10~*\p, /(1V) and 8 = 10710, /(6uV).

Several difficulties arise when addressing the numerical solution of this
problem. First, the dimensionless compressible Reynolds equation presents
a nonlinear diffusive term; secondly, in real applications a = O(1072) and
B = O(1072), so that the advection effects are larger than the diffusion ones.
In this paper, we focus on the numerical solution of this problem and we
propose some specific techniques to overcome these difficulties. In particular,
a duality method is used to solve the nonlinearity appearing in the diffusive
term, which is optimized in order to reduce the number of iterations needed
to attain the convergence.

2 Numerical solution

In order to use a finite element method, let us consider the following varia-
tional formulation:

Find P € V; such that:

L L
2d(PH) 2 ) 5\ dP dy
X H? + BH3P) — —— dX = V
/Ll = od +/L1(a Jé] )dXdXd 0, VpeVy, (3)

where the functional sets are:
Vo=H}(Li,Ly) and Vi={pc H' (L1, L)/ o(L1) = p(Ly) =1} .

Next, taking into account the dominating convection feature in (3), we
propose in [1] a characteristics technique for steady state problems. Thus,
after a time discretization procedure, an iterative method is deduced in order
to reach the stationary solution. More precisely, for m > 0 and P,, given, we
search P, € V; such that:

L2P 1Hg0dX+k‘/L2 (OéH2—|—ﬁH3P 1) deJ'_ldi(de:
Lo L "X dx
Lo
[ (@ ext)pdx, voets, (4
Ly
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where k is the artificial time step, and x*(X) = X — k is related to the char-
acteristics method [1]. Notice that (4) is a nonlinear diffusive problem.

Next, we apply a duality algorithm to solve (4), which is an extension of
the one proposed in [3] to solve variational inequalities. For this, we consider
the maximal monotone operator f:

0 if P<0
P) = ’
(P {W , if P>0

so that the variational equation (4) can be written as:

L2 L2
[ Puattpax i [ (am sy 0 e oy

. . X 2 dx )ax
Lo
=/ (PuH)ox) pdX . Vpelp. (5)
Ly

Next, following the version of the algorithm with variable parameters [9],
given a function w > 0, we introduce the new unknown 6,,11 = f(Ppnt1) —
wPy,11, and search (P11, 0m+1) verifying the still nonlinear problem:

Lo

L2 Bw dPyq d
P HodX g2 4 23| Emi1 99 gy
m+1H @ d —|—l<;/ (a 5 ) X dXd +

Ly
kB [t
l/ Lﬁ;—fnﬁl < X = /1 (PrH)ox*) pdX—

do 1 d(p
A H3 m+ ax
2 L dX dX ’

Om+1 = f(Pm+1) — wPmy1 . (7)

Yo eV (6)

Now, we can use Bermudez—Moreno lemma for functional parameters [9] and
replace (7) by

1
Om+1 = [1)20 < mt1 + 2w9m+1> ; (8)

where fid/Zw is the Yosida approximation of f —wl with parameter 1/2w, I be-
ing the identity operator. Finally, in order to overcome the nonlinearity (8), we
propose the following fixed—point algorithm that iterates between equations

(6) and (8):

o 0 41 known, find P, +1 verifying the linear problem:
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Lo Lo dp@-‘rl d
PUYH odx k/ H? 5—” Emi1 9 x
/Ll S H pdX + aH? + et X

5/ H3dX nﬁﬁd;dx/ ((PnH) o X*) pdX —

_ e d0m+1 d‘)p dx

Vo eV 9
2L1 dX dx ’ v e 9)

. Pnt“;fl known, 65! 1 is updated by:
¢
07:-&1 f1/2w ( j,_-ll + 0m+1> .
Lagrange P; finite elements have been used for the spatial discretization
of (9).
3 Optimization of the duality algorithm
In order to analyze the optimal choice of parameter w, we will consider an

abstract mathematical frame. For this, let us introduce the Hilbert spaces
E = L2(L1,L2) and V = Hl(Ll,Lg). Let be:

Ap : E — E' the canonical isomorphism between E and its dual space;
A:V — V' the operator given by:

Ay = Hzp—(;)((HQ;l;é) , Yy eV,

e B :FE — V' the operator given by:

L
2 d

<Bw,p>= | H?w2dx, vYweE, VeV
L X

G : V — V, the maximal monotone operator given by:

(p(X))?, if o(X) >0
0, if p(X) <0;

G is well posed, thanks to inclusion V' C L*°(Lq, Ls);
f €V’ given by:

Lo
<f,<,0>:/ (PnH)ox*)pdX, VoeV.
Ly
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In this abstract frame, the hydrodynamical problem of finding P,,, 11 € V;
solution of (5) is equivalent to find y € V4 such that:

Ay +c(BAG' BY)(G(y)) = f | (10)

where ¢ = k3/2. Next, for w € WH*°(Ly, Ly) such that 1/w € W1>°(Ly, L),
we introduce § = G(y) —wy € V and apply Bermidez—Moreno lemma to pose
the fixed—point algorithm:

Ayt + e(BAR BY)(wy™') = f — c(BAG' B*)(0")

1
0€+1 — (W 41 70@ )
Girow (Y + %

First, notice that Yosida approximation is given by:

(%) = 2w (I - (;I+ ;uG)_l) ().

Next, we define the function F,, : V — V, given by:

Ful) = G (40) 4 5 )

where, given ¢ € V, y(q) is such that:
Ay(q) + ¢ (BAG' B*)(wy(q)) = f — ¢(BAR'B*)(q) -

Let 6 be a fixed point of F,,. Our aim is to accelerate the convergence of
the fixed—point algorithm, by choosing w such that:

DF,(6) =0, (11)
DF,,(0) being the Gateaux—derivative of F,, in 0.

Proposition 1. A sufficient condition for (11) is w = 2y(0).

0
Proof. Let z = y(0) + o0 Some straigthforward calculations show that:
w

(DF,(0),q) = dei/Qw (y(9) + 23;) (y(q) + %) , VgeV. o (12)

If we can choose w so that:

A%y (g
/2w

OH+—]=0,
dz <y( )+ Qw)
then (11) is achieved. An easy application of the inverse function theorem
gives:
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aGgy 1
— 2 ) = 2w <1 - > (2) (13)
dz 3+ 5G/(t)
where t verifies the equation:
1 1
§t+ZG(t)fz, (14)

provided that z # 0. So, using (12) and (13), a sufficient condition for (11) is:

11, , — 0 .
§+%G(t)—1, Wlch—y(H)—i—%m(M),

which is equivalent to w(X) = G'(¢)(X). Finally, as § = G(y(9)) — w0, it

easily follows the equivalence:

2=y0)+5- = t=y()

and the optimal choice for the parameter is w(X) = 2y(0)(X). "

Remark 1. Notice that the optimal choice of the parameter depends on solu-

tion y(6). So, in our practical implementation w = 2P, is taken, P, being
the approximation of solution in the last step of the characteristics method.

Remark 2. The particular case with constant w is more classical, although (10)
is out of the frame of previous works [3, 2]. In this case, a convergence result
is stablished for Lagrange P; finite elements discretized problem in [6].

4 Numerical examples

In this section we present several tests that show the behaviour of the previ-
ously described numerical techniques.

Test 1. Let us consider the following nonlinear diffusion problem:

A (P s, P ;
T <h dx+hpdx>_f in (0,1)
p(0) =p(1) =1

where h(z) = 2 — x and f is such that the solution is p(x) = 1+ x — 2.

Table 1 shows the number of iterations of the duality method (with op-
timal constant and variable parameters) and the relative quadratic error e,
(between the numerical approximation and the analytical solution) for dif-
ferent mesh sizes and a relative error stopping test equal to 10~7. Table 2
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Table 1. Number of iterations (I4) and quadratic error in Test 1

w =2 w=2p
Az 14 ep 1, ep
1072 7  1.2x10°° 4 1.1x107°C
10072 7  1.2x1078 4 4.9x107°
1074 7 77x1070 4 6.1x10710

Table 2. Number of iterations (1) for different w in Test 1

w 0.02 0.2 1 2 3 20 200
I 231 41 12 7 8 60 525
w 0.02p 0.2p P 2p  3p 20p  200p
14 200 34 8 4 8 48 455

illustrates the optimality of parameters in terms of the number of iterations.

Test 2. Let us now consider the convection—diffusion problem which consists
in finding the pressure, p, such that:

d d (. dp dp\ .
@(hp) T dr <h2dx + hspdm> =f in (0,1)
p(0) =p(1) =1

where h(z) = 2 —x and f is such that the solution is p(x) = 1 + 2 — 22. We
have taken k = 0.5 Ax as time step. The obtained results are shown in Table
3, where I, is the number of iterations of the characteristics algorithm and I
is the average of iterations of the duality algorithm.

Table 3. Number of iterations for different parameter choices in Test 2

w =2 w = 2pm, w=2p
Ax 1. Td I, E 1. Td
1072 90 4.2 90 3.3 90 2.8
1073 712 3.4 712 2.9 712 2.6

1074 5922 2.5 5922 24 5923 2.3

Test 3. In [8], the following compressible Reynolds equation is proposed to
model lubricated rough surfaces:
dp

d d 2dp 4 B .
300dx(hp) T (0.4h . +h pdm) =0 in (0,1)

p(0) = p(1) = 1
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Table 4. Number of iterations in Test 3

w=2 w = 2D,

Az I. I I. I
102 415 7.0 415 3.5
1073 4862 7.5 4802 2.9
1074 45039 4.4 45006 2.8

where h(z) = 2 — 2 4 0.6 sin(1007z). Table 4 shows the number of iterations
obtained for constant and functional parameters for different mesh sizes and
maximum relative error € = 5x1077.

5 Conclusions

In this paper we present an original duality algorithm with functional pa-
rameters to solve the nonlinear diffusive term appearing in the first order
compressible Reynolds equation. Moreover, the optimal choice of parame-
ters is theoretically proved and illustrated by some numerical experiments.
Although the method is presented for 1-D problems, its extension to two di-
mensions is straightforward (see [6], for example). The algorithm can also be
coupled with elastic equations to simulate flexible storage devices.
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Summary. We present some stabilized methods for a nonstationary advection-
diffusion problem. The methods are designed by combining of some stabilized finite
element methods and Discontinuous Galerkin time integration. Numerical experi-
ments are presented comparing the new schemes with the space time elements of [3].

1 Introduction

The numerical simulation of advection-diffusion problems has been a sub-
ject of active research during the last thirty years. In this paper we look
at the unsteady problem. Following with the research initiated in [4], our
aim is to study the issue of how some of the stabilization techniques pro-
posed for the steady problem could be appropriately combined and used with
time integration Discontinuous Galerkin (DG) methods, so that the result-
ing fully discretized scheme is able to capture and reproduce the small scales
into the coarse ones. Our starting point is based on the simple observation
that in the non-stationary problem we have two types of partial differentiation
which might be considered of different nature: the spatial convection-diffusion-
reaction operator and the time derivative which determines the evolution of
the convection-diffusion-reaction processes. Therefore, at the very first step of
designing the numerical method, two rather different strategies arise:

e discretize at first in time by using a DG method and then apply a stabilized
method to approximate the resulting family of stationary problems;

e discretize first in space by means of a stabilized finite element method and
then use a DG scheme to integrate the corresponding system of ODE’s.

The resulting methods from these two approaches will be described and fur-
ther compared with the “classical” space-time elements introduced in the 80’s
by Johnson, Névert and Pitkdranta in [3].
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The outline of the paper is as follows. In Sect. 2 we review the stabi-
lization techniques proposed for the stationary problem, that will be further
considered. In Sect. 3 we revise the time DG integration and introduce the
stabilized methods for the time-dependent problem. Numerical experiments
are presented in Sect. 4. For the sake of simplicity we restrict ourselves to the
one dimensional problem.

2 Stabilization techniques for the stationary problem

Let Q = (0, L) and let f € L?(Q2) be given. Consider the stationary problem
Lu = —€Uzy + Puz +ou=f, inQ, u=0 on 99, (1)

where € > 0, 0 > 0 and P are assumed to be constants and e will be typically
small. Let V = H{(£2). The bilinear form associated to £ is defined by

a(u,v) =< Lu,v >= e/

Up Ve dT + B/ Uzvdr +a/ wodz, Yu,v €V. (2)
Q Q Q

We denote by Lgym and Lgkew the symmetric and skew-symmetric parts of £,
respectively. The formal adjoint of £ will be denoted by L* = Lgym — Lskew-

Let 75, be a partition of € into elements (subintervals) K and let V;, C V
be the corresponding finite element space of piecewise linear polynomials. The
standard Galerkin (SG) approximation of (1) reads:

Find u;“ € Vj,  such that a(uyC,v) = (f,vn), You € Vi

It is well known that the plain Galerkin method on a uniform grid fails to
furnish a satisfactory approximation if the diffusion coefficient € is small with
respect to the advection or/and reaction coefficients and to the mesh size h. To
cope with these difficulties, we consider the next family of strongly consistent
methods, which following [1] can be presented in the unified way

Find u3® € V}, such that
a(ui®, vn) + Y geer, i (L™, Lskewvn + pLsymVn) ¢ (3)
= (f,vn) + X ker, Ok (f, Lskewn + pLsymVR) ¢ s YO € Vi,

where p = 0 gives the SUPG (Stramline Upwind Petrov Galerkin) method[5];
p = 1 gives the GLS (Galerkin/Least Squares ) method [11]; and p = —1 gives
the DWG (Douglas- Wang Galerkin) method [7]. These schemes require an ap-
propriate tuning of the problem-dependent parameter 8. A straightforward
calculation shows that by taking

8x = ((20) + (21Bl)/h + (126)/h%) ", (4)

the bilinear form B? defining these methods,
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B (wp, vp) = a(wp,vp) + Z Ox (Lwp, Lskewtn + pﬁsymvh)K , (5

KeT,

with wy, v, € Vj is coercive in the norm ||[v||? = (e + h|[3|)|vﬁ{1(m +
0

U||UH2L2(Q) in all possible regimes and consequently the methods are stable.

We consider next the Link-Cutting Bubble strategy [4], based on the en-
richment of the finite element space V},. The idea behind is to augment V}, by
adding a space of discrete bubbles Vg, which is constructed element by element
on a suitable subgrid. The LCB method can be regarded from two different
standpoints. On the one hand, by considering Vg = V;, @ Vp as a space of
piecewise linear functions on a suitable refined grid, the LCB-approximation
reduces to the plain Galerkin method:

Find uk“P € Vi such that a(uk“P,vg) = (f,vg), Yop e Vg  (6)

On the other hand, by means of static condensation of the bubble degrees of
freedom, one gets the stabilized method: Find uLCB eV, s.t.:

a(uECB ) + Z (Mg (f — L'u,LZCB),E*vh)K = (f,vn), Yop € Vi (7)

Keﬁz
where for each K € 7;, , Mg : L*(K) — VB‘K is the solution operator of
the local bubble problems: a(uéCB vp)k = (f — £uLCB ,uB)k Yup € VB’K,

a(+, )k and Vg|,. being the restrictions to K of a(+,-) and Vg, respectively.

I

3 Stabilized methods for the non-stationary problem

Given f € L?([0,T]; L?(£2)) and ug € L*(2), consider the model problem:

%quEuff in@Q=Qx(0,7),

uj,_, =up on £, u=0 ondx(0,T).

(8)

We next briefly revise the DG method for the time integration of (8). Then,
we shall describe the classical space-time elements and the stabilized methods
resulting from the two approaches mentioned in the Introduction.

3.1 DG-methods for the time integration

Let 0 = t9 < t; < ... <ty = T a subdivision of the time interval (0,7,
set J, = (tn,tnt1] with & = t,11 — ¢, , and introduce the strips S,

{(z,t) € @ x J,}, for n =0,...N — 1. The DG approximation in time to w,
solution of (8), is sought as a piecewise polynomial of degree at most ¢ > 0
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in t on each subinterval J,,, with coefﬁcients in V, i.e., it belongs to the space
W= {v: [0, TV V5 v, =3t b € V] Note that any v € W1 is
allowed to be discontinuous at the nodes of the partition. Let (-,-) denote the
standard L2-inner product and for v,w € W9 we denote by

s—0t

(v, w)" ::/ vwdxdt:/ (v, w)dt , vy (z,t) = lim v(z,t+ s),
Sn Jn

s—0~

<v,w >M= / v(x, ty)w(z, ty)de = (v, w"™), v_(z,t) = lim v(z,t+s),
Q

and set [[v]], = v} —v”. The DG time-discretization of (8) is obtained by
imposing on §,, the initial value at ¢t = t,, weakly. Thus, the method reduces
to find U € W1 such that on each J, (for n =0,... N — 1), satisfies

dU
(G + LUV < Uy, Vi S"=<U_ Ve >" +(f,V)" YV W (9)

For ¢ = 0 (i.e., piecewise constants) one has dU/dt = 0 and U (t) = U"*+! = U}
in J,, so that the method reduces to the modified backward Euler:

a(U"H,?/J) + %(Uﬂ+1,d}) _ % ( / fdt,’(ﬁ) Vi eV. (10)

For ¢=1, let U(t):UgH—&—@Ul"H on J,, so that we have to find U™+Y g.t.:

%(D.U"H’\[)_Fc.a(U”H,V):%(E.U”,V)—i-(F"H,V) vV, (11)

where U =[U7 ! UMY with U, U e v, V=[, 0T, 1, n € V and

p=[11] e[ 1] B[] wec ],

00 & )dt

With a small abuse of notation, a(-,-) should be understood as the matrix
a(U07 1/)) ) a(Ulv 1/))

U, V)=
a< ) |: Q(UOW) 70‘(U1777)
by L the scalar operator acting component-wise; i.e., LU = [LUy, LU;|7.

[T
(S ST

} . Similarly, in what follows we shall denote

3.2 Classical Space-Time Elements

We describe briefly the method introduced in [3]. For each n consider a quasi-
uniform partition of the strip S,, with elements of size h > ¢, and let V"
be a FE subspace of H!(S,,) based on such partition, such that for v € V;*
it holds v = 0 on 99 x J,. By applying successively on each strip S,, the
stabilized methods of (3) and imposing the initial value at ¢ = t,, weakly and
the boundary conditions strongly, one obtains the following method: given 1

an approximation to the initial data ug, forn =20,..., N —1 find " € V"



332 M.I. Asensio, B. Ayuso, G. Sangalli

(ug + Lu,v)" + (Ut + Lu, §- [v + Bvg + Pﬁsymv]) + <ug,vq >"=
= (f,v+8- v+ Bu. + PLsym V)" + < u_, vy >, YoeVy, (12)

where the parameter § is set to Ch if € < h and 0 otherwise.

3.3 First Approach: DG in Time + Stabilized Method in Space

To present the fully discretized methods resulting from the first approach, the
key point is to observe that on each slab S, the solution U"*! € V of the
DG in time method (10) (and resp. (11)), might be regarded as the solution
of a ”steady” convection-diffusion-reaction problem with some “added extra
reaction” %7 coming from the time discretization. Thus, by discretizing (10)
in space with any of the stabilized methods (3), leads to the problem: for each
n=20,...N —1, find uZ‘H €V, s.t.

n+1 _ 1
3 By ( %)  Luptt = - / it [ Lot + pLogm + 7 ”h) "
Jn

KeTy, K

1 1 1
a(uzﬂ,vh) + E(uﬁ“,vh) — (/ fdt,vh> — —(up,vp) =0, Vv € V.
Jn

ol

Similarly for the discretization (11) (¢ = 1), we get: for n =0,..., N —1 find
U"+1 (U, UMT that satisfies for all Vi, = [vp,, wp]T with vy, wy, € Vi,

pe DU —EUY
> 3x (M +Cocuptt —Fr {cgskew + pCLaym + p%] Vh)

k
KeT, K

n n 1 n
U V) — (F", V) — —(EUR, V) = 0. (13)

D
+Ca(Uy™, Vi) + p

7 (
where a(-,-) is defined as in Sect. 3.1. Note that the weighting operators
resulting from the stabilization in this approach, (ESkew +d [Esym + ,%D

for ¢ = 0, and (CLskew + p [CLsym + £D]) for ¢ = 1, contain a term
coming from the time derivative, but it acts as a reaction term. To ensure
the stability of the method in all possible regimes, it can be shown that
it is enough to take g(;{ = ((20 +2/k) —|—2|[3|/h—|—126/h2)_1 and 6; =
(2D/k + 20C + (2IB|C)/h + (1260)/h2)71, for ¢ = 0 and g = 1, respectively.
In the last case, we have taken into account that (13) is a system.

For the sake of brevity and clarity in the exposition, we only consider
the method that results by discretizing (10) in space by means of the LCB
strategy. As before, the key observation is that (10) might be regarded as a
convection-difussion-reaction stationary problem with the extra reaction 1/k.
Then, the idea is to define a new bilinear form on each strip S,

1

a(w,v) = a(w,v) + %(w,v), w,v e W? (14)
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and construct the bubble subgrid, and consequently the bubble space XN/B,
according to this bilinear form rather than (15), the one associated to the
stationary problem. Then, for each n one consider either the (SG) approach
(6), but with Vg = V}, & V.

3.4 Second Approach: Stabilized Method in Space + DG in Time

We first discretize (8) in space by means of the stabilized methods given in
Sect. 2. As for the techniques (3), we are lead to the following system of ODE’s:

d Juyp,
dt (uhv vh) +a uha Uh Z dx < + Lup, LSkewVn + pESmeh) =
KeTy, K

Z Ok (f(t), LskewVh + PLSymVL) ¢ > Yon € Vi, (15)
KeTy,

where uy, : [0,7] — V}, and 8k is taken as in (4). By Integrating (15) with
(10), we get for eachn =0,...N — 1

n+1 n
- 1
R ((“hk“h) + Lt - o / fdt, [.cs,mw + pﬁsym]vh) +
In

K

1 1 1
ah(uz+1,vh) + - uZH,vh) - <k:/ fdt,vh) — E(uﬁ,vh) =0, Yo, € V},.
JIn

and upon integration in time of (15) with (11) we have: for n =0,...,N —1
find U"‘*‘1 [U""’1 U"+1]T that satisfies for all Vi, = [vs, wp]T vn, wp, € Vi,

(DU - EUy
Z 8K ( b A h) +CLUZ+1 _Fn+17 |:L"skew + p‘csym:| Vh) +
KeT, K

C’ah(UZ+1,Vh) +

%(U;}“,Vh) — (F"tvy,) — %(EUZ,V;L) =0. (16)
Notice that unlike for methods (12) or (13) no explicit reference to the time
integration or time-discretization is contained in the weighting operator for
these stabilized methods?.

For the method resulting by considering the LCB strategy, one starts by
constructing the subgrid for the local bubble space Vg, according to the steady
operator L, i.e. according to the bilinear form a (is done as for the steady
problem). Then, the enriched space Vg = V}, @ Vg is built and the LCB
approximation is defined by the scheme: Find ug : [0,7] — Vg such that

d
dt
Then, one uses either (10) or (11) for the DG integration in time of system
(17), noting that now V is approximated by the enriched space Vg = V}, & V.

(UE(t),’UE) + a(uE(t),vE) = (f, UE), Yvg € Vg, (17)

3 For this reason it is enough to take 8x as in (4) to ensure the stability of the
method in all the regimes we will look at; in particular the advection dominated.



334 M.I. Asensio, B. Ayuso, G. Sangalli

4 Numerical Experiments

The next set of experiments is devoted to evaluate the performance of the sta-
bilization methods introduced before. We have considered problem (8) over
Q = (0,1) and subject to homogeneous Dirichlet boundary conditions. We
have set € = 1076, B =1, o = 0, the final time 7' = 0.2 and we assume f = 0.
The inital data is taken as ug = 1 if |[x—0.3| < 0.1 and is set to zero otherwise.
We have taken a uniform partition of € into subintervals of length h = |Q| /N,
with N = 20,40, 80, 160, 320. For each h, every experiment was carried out
with different values of the time step k below which the local time discretiza-
tions are desired. k is selected so that the Courant-number CFL = k|B|/h =
1,1/2,1/3,1/4,1/5,1/10. For the three approaches, linear DG integration in
time has been used.

To valuate the quality of the approximate solutions obtained by the dif-
ferent methods we have represented them in Fig. 1 at time ¢ = 0.15. For the
methods obtained with the first and second approaches, we have only repre-
sented the approximation obtained with DWG (o joined by a continuous line)
and LCB (squares joined with a dotted line). For the classical space-time ele-
ments the approximations with all the methods in (3) are represented. It can
be observed, that while the classical time-space elements reduce almost com-
pletely the spurious oscillations in the numerical approximations, the solution
appears to be extremely dissipated. Nevertheless, the approximation with the
other approaches while not very diffusive still presents spurious oscillations.
We next look to the relative errors in L>°([0,7]; L*(£2))-norm against N, for
the three approaches. They are represented in Fig. 1 for CFL = 1/3 and all
diagrams are depicted with the same vertical axes to ease the comparation.
Among the stabilization techniques of (3) depicted with —o—, no significant
differences can be observed. The LCB stabilization is represented by squares
joined with a dotted line, and in both the first and second approaches, is the
method producing the smallest errors. For the first and second approaches,
an almost first order of convergence can be observed while for the space-
time elements the rate of convergence seems to be close to 0.6. Moreover,
the first apprach seems to be the most accurate from the error-diagrams. For
space time elements, the errors are substantially higher than for the other

DG in time + FE in space FE in Space + DG in time Classical Space-Time elements

Fig. 1. Approximate solutions with h = 80 and CFL = 1/3, at time ¢ = 0.15.
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DG in Time + FE in space FE in space + DG in Time Classical Space-Time elements

Fig. 2. Convergence Diagrams in L>([0, T]; L*(Q)).

two approaches, possibly due to the amount of dissipation that the scheme
introduces.
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Summary. This paper is devoted to the numerical solution of two—dimensional
steady scalar convection—diffusion equations using the finite element method. If the
popular streamline upwind /Petrov—Galerkin (SUPG) method is used, spurious oscil-
lations usually arise in the discrete solution along interior and boundary layers. We
review various finite element discretizations designed to diminish these oscillations
and we compare them computationally.

1 Introduction

This paper is devoted to the numerical solution of the scalar convection—
diffusion equation

—eAu+b-Vu=f in {2, u=u, on 02 (1)

where 2 C R? is a bounded domain with a polygonal boundary 042, € > 0 is
constant and b, f and w; are given functions.

If convection strongly dominates diffusion, the solution of (1) typically
contains interior and boundary layers and solutions of Galerkin finite ele-
ment discretizations are usually globally polluted by spurious oscillations. To
enhance the stability and accuracy of these discretizations, various stabiliza-
tion strategies have been developed during the past three decades. One of
the most efficient procedures is the SUPG method developed by Brooks and
Hughes [2]. Unfortunately, the SUPG method does not preclude spurious os-
cillations localized in narrow regions along sharp layers and hence various
terms introducing artificial crosswind diffusion in the neighbourhood of layers
have been proposed to be added to the SUPG formulation. This procedure is
often referred to as discontinuity capturing (or shock capturing). The liter-
ature on discontinuity—capturing methods is rather extended and numerical
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tests published in the literature do not allow to draw conclusions concern-
ing their advantages and drawbacks. Therefore, the aim of this paper is to
provide a review of various discontinuity—capturing methods and to compare
these methods computationally.

The plan of the paper is as follows. In the next section, we recall the Galer-
kin discretization of (1) and, in Section 3, we formulate the SUPG method.
Section 4 contains a review and a computational comparison of discontinuity—
capturing methods and, in Section 5, we present our conclusions.

2 Galerkin’s finite element discretization

We introduce a triangulation 7}, of the domain {2 consisting of a finite number
of open polygonal elements K. We assume that 2 = | J KeT, K and that the el-
ements of 7}, satisfy the usual compatibility conditions. Further, we introduce
a finite element space V), approximating the space H{(£2) and satisfying

Vi C{veL*(2); v € C°(K) VK € Tp}.

Since the functions from V; may be discontinuous across edges of the trian-
gulation 7j,, we define the ‘discrete’ operators Vj, and Ay by

(Viv)lg =V(vlk), (Anv)|x = Av|k) VKeT,.

Finally, let up, € L%(£2) be a piecewise smooth function whose trace on 912
approximates up. Then a discrete solution of (1) can be defined as a function
up, € L%(82) satisfying up, —upn, € Vi, and ap, (up,vn) = (f,vn) Yon € Vi, where

ap(u,v) =¢(Vpu,Viv)+ (b- Vi u,v)

and (-,-) denotes the inner product in the space L?(£2) or L?(§2)%.

3 The SUPG method

Brooks and Hughes [2] enriched the Galerkin method by a stabilization term
yielding the streamline upwind/Petrov-Galerkin (SUPG) method. The dis-
crete solution uy, € L?(§2) satisfies up, — upp, € Vy, and

ap(un,vn) + (Rp(up), 7b- Vi vp) = (f,vn) YV oup € Vy, (2)

where Rp(u) = —e Apu+b-Vyu— fis the residual and 7 is a nonnegative
stabilization parameter. As we see, the SUPG method introduces numerical
diffusion along streamlines in a consistent manner. A delicate question is the
choice of the parameter 7 which may dramatically influence the accuracy of
the discrete solution. Here we shall use the formula (cf. Galedo et al . [8])
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_ [blhx
2epk’

hi 1
= — th(P - ith P 3
Tl 36 pr (co (Pek) PeK> wi ex (3)
where hg is the diameter of K € 7}, in the direction of b, px is the order of
approximation of V;, on K (usually the maximum degree of polynomials in
Vy, on K), |- | is the Euclidean norm and Peg is the local Péclet number.

4 Methods diminishing spurious oscillations in layers

In this section, we present a review and a computational comparison of most
of the methods introduced during the last two decades to diminish the oscil-
lations arising in discrete solutions of the problem (1). These methods can be
divided into upwinding techniques and into methods adding additional artifi-
cial diffusion to the SUPG discretization (2). The artificial diffusion may be
either isotropic, or orthogonal to streamlines, or based on edge stabilizations.
These four classes of methods will be discussed in the following subsections.
It is not possible to describe here thoroughly the ideas on which the design
of the methods relies, see [11] for a more comprehesive description. Generally,
one can say that the methods are based either on convergence analyses or on
investigations of the discrete maximum principle (called DMP in the follow-
ing) or on heuristic arguments. As we shall see, most of the methods will be
nonlinear. The computational comparison of the methods will be performed
by means of two test problems specified by the following data of (1):

Example 1. 2 = (0,1)2, ¢ = 1077, b = (cos(—m/3),sin(—7/3))T, f =0,
up(z,y) =0for z =1 or y <0.7, up(x,y) = 1 otherwise.

Example 2. 2 =(0,1)2, e =10"", b= (1,0)7, f =1, up = 0.

The solution of Ex. 1 possesses an interior layer and exponential bound-
ary layers whereas the solution of Ex. 2 possesses parabolic and exponential
boundary layers but no interior layers. All results were computed on uniform
N x N triangulations of the type depicted in Fig. 1. Unless stated otherwise,
we used the conforming linear finite element Py, N = 20 for Ex. 1 and N = 10
for Ex. 2. The SUPG solutions of Ex. 1 and 2 are shown in Fig. 2 and 5, re-
spectively. It is important that the parameter 7 is optimal for the P; element
in the sense that the SUPG method approximates the boundary layers at
y=0in Ex. 1 and at x = 1 in Ex. 2 sharply and without oscillations.

Fig. 1. Type of triangulations (N = 5) Fig. 2. Ex. 1, SUPG
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Fig. 3. Ex. 1, IMH [14] Fig. 4. Ex. 1, do Carmo, Galedo [6]

4.1 Upwinding techniques

Initially, stabilizations of the Galerkin discretization of (1) imitated upwind
finite difference techniques. However, like in the finite difference method, the
upwind finite element discretizations remove the unwanted oscillations but
the accuracy attained is often poor since too much numerical diffusion is
introduced. According to our experiences, one of the most successful up-
winding techniques is the improved Mizukami-Hughes (IMH) method, see
Knobloch [14]. It is a nonlinear Petrov—Galerkin method for P; elements
which satisfies the DMP on weakly acute meshes. In contrast with many other
upwinding methods for P; elements satisfying the DMP, the IMH method
adds much less numerical diffusion and provides rather accurate solutions,
cf. Knobloch [15]. The IMH solution for Ex. 1 is depicted in Fig. 3. For Ex. 2,
it is even nodally exact.

4.2 Methods adding isotropic artificial diffusion

Hughes et al . [10] came with the idea to change the upwind direction in

the SUPG term of (2) by adding a multiple of the function b‘,l1 which is the
projection of b into the direction of Vuy. This leads to the additional term

(Rn(un), o by, - Vi vp) (4)

on the left-hand side of (2), where o is a nonnegative stabilization parameter.
Since bl depends on up, the resulting method is nonlinear. Hughes et al . [10]

proposed to set o = max{0, T(b‘}IL) — 7(b)} where we use the notation 7(b*)
for 7 defined by (3) with b replaced by b*. Other definitions of o in (4) were
proposed by Tezduyar and Park [17]. Since the term (4) equals to

(Evh uh,Vh 'Uh) (5)

with & = o Ry (up) b-Vup/|Vuy|?, it introduces an isotropic artificial diffusion.
Another stabilization strategy was introduced by Galedo and do Carmo [9]

who proposed to replace the flow velocity b in the SUPG stabilization term

by an approximate upwind direction. This gives rise to the additional term

(Rh(uh), ozp-Vp ’Uh) (6)
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on the left-hand side of (2), where z, = Ry(up) Vup/|Vup|? and o =
max{0,7(z,)—7(b)}. If f =0 and Ap up = 0, we have z, = bl and hence the
method of Galedo and do Carmo [9] is identitical with the method of Hughes
et al . [10]. Do Carmo and Galedo [6] proposed to simplify o to

o = 7(b) maX{O ol } (7)

b
|2

Almeida and Silva [1] suggested to replace (7) by

|b| . b- Vh Up
o =1(b) max{O, ) Ch} with ¢, = max{L Ro(un) } , (8
which reduces the amount of artificial diffusion along the z; direction.

Do Carmo and Galedo [6] also introduced a feedback function which should
minimize the influence of the term (6) in regions where the solution u of (1)
is smooth. Since this approach was rather involved, do Carmo and Alvarez [5]
introduced another procedure (still defined using several formulas) suppressing
the addition of the artificial diffusion in regions where u is smooth.

Again, the term (6) can be written in the form (5), now with & =
o |Ru(up)|?/|Vun|?. To prove error estimates, Knopp et al . [16] proposed
to replace this &, on any K € 7, by

[ Bn (un)llo x

flic = oc(un) Quclmn)*  with  Quc(un) = g =mriie—

9)

where ok (up) > 0 and Sk > 0 are appropriate constants.
The stabilization term (5) was also used by Johnson [12], who considered

€l = max{0, o [diam(K)]” |Rp (ur)| — €} VKeT,

with some constants o and v € (3/2,2). He suggested to take v ~ 2.

If the above methods are applied to Ex. 1, the discrete solution improves
in comparison to the SUPG method. However, most of the methods do not re-
move the spurious oscillations completely and/or lead to an excessive smearing
of the layers. The best methods are the methods of do Carmo and Galeao [6]
and Almeida and Silva [1] which are identical in this case, see Fig. 5.

4.3 Methods adding artificial diffusion orthogonally to streamlines

Since the streamline diffusion introduced by the SUPG method seems to be
enough along the streamlines, an alternative approach to the above methods
is to modify the SUPG discretization (2) by adding artificial diffusion in the
crosswind direction only as considered by Johnson et al . [13]. A straightfor-
ward generalization of their approach leads to the additional term

(gD Vh Uh,vh 'Uh) (10)
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Fig. 5. Ex. 2, SUPG Fig. 6. Ex. 2, MBE

on the left-hand side of (2), where €], = max{0, |b| h?;(/Q —e} VK € Tj, and
D =T1-b®b/|b|? is the projection onto the line orthogonal to b, I being the
identity tensor.

Investigating the validity of the DMP for several model problems, Cod-
ina [7] came to the conclusion that the artificial diffusion € in (10) should be
defined, for any K € 7, by

1 2¢ . | Rp (un)
€l == max{0,C — —————— } diam(K) ——4 11
=3 { |b,Ldiam(K)} &) V| )

where C' is a suitable constant (we use C' = 0.6 for linear elements and C' =
0.35 for quadratic elements). Motivated by assumptions and results of general
a priori and a posteriori error analyses, Knopp et al . [16] changed (11) to

2¢
Q k (up) diam(K)

€l = % max{O,C— } diam(K) Qg (up),  (12)

where Qg (up) is defined in (9) (the constants Sk equal to 1 in numerical
experiments of [16]). Combining the above two definitions of &, we further
propose to use (10) with £ defined by (12) where Qk (up) = |Rp(up)|/|Vun|.
This modified method of Codina is called MC method in the following. It is
equivalent to (11) if f =0 and Ay up, = 0.

Based on investigations of the DMP for strictly acute meshes and linear
simplicial finite elements, Burman and Ern [3] suggested to use (10) with &
defined, on any K € 7, by

7(b) |b]* Ry (un)|  |b] [V unl + |Ri(un)| + tan ag [b] [D Vj, up

£ =
TK |b\|thh|+|Rh(uh)| |Rh(uh)|+tanaK|b|\Dthh|

Here, ak is equal to 7/2 minus the largest angle of K (if K is a triangle). In
case of right triangles, it is recommended to set ax = 7/6.

Our numerical experiments indicate that the above value of ¢ is too large
and therefore we also consider (10) with & defined, on any K € 7, by

_ 7(b) b |Rp(up)]
b [V un| 4 |Ra(un)|

&k (13)
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Fig. 7. Ex. 1, MC, P,, N =10 Fig. 8. Ex. 1, do Carmo, Galedo [6], P;*°

This modified Burman—Ern method is called MBE method in the following.
If we apply the methods of this subsection to Ex. 2, then only the MC
and MBE methods give satisfactory results (and they are comparable), see
Fig. 1. For Ex. 1, these methods provide comparable results to the solution in
Fig. 5. On the other hand, the two best methods of the previous subsection
(do Carmo and Galedo [6], Almeida and Silva [1]) give almost the same results
for Ex. 2, which are comparable to the results of the MC and MBE methods.

4.4 Edge stabilizations

Another stabilization strategy for linear simplicial finite elements was intro-
duced by Burman and Hansbo [4]. The term to be added to the left-hand side
of (2) is defined by

> [ el signton - Vlunlic)) tor - Vi(wnl ) do
KeTy, 9K

where tgx is a unit tangent vector to the boundary 0K of K, Wi (uy) =
diam(K) (Cy € + Cy diam(K)) maxpcok | [[ne - Vup|]g |, ne are normal vec-
tors to edges E of K, [|v]] p denotes the jump of a function v across the edge F
and C, Cs are appropriate constants. Burman and Hansbo proved that, using
an edge stabilization instead of the SUPG term, the DMP is satisfied. Other
choices of Wk (uy) based on investigations of the DMP were recently proposed
by Burman and Ern. However, all these edge stabilizations add much more
artificial diffusion than the best methods of the previous subsections.

5 Conclusions

Our computations indicate that, among the methods mentioned in this paper,
the best ones are: the IMH method [14], the method of do Carmo, Galeao [6]
defined by (6), (7), the method of Almeida and Silva [1] defined by (6), (8),
the MC method introduced below (12) and the MBE method defined by (10),
(13). The IMH method can be used for the P; element only but gives best
results in this case. The other methods can be successfully also applied to
other finite elements as Figs. 2 and 8 show (for the conforming quadratic
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element P, and the nonconforming Crouzeix—Raviart element P;*¢). However,
much more comprehensive numerical studies are still necessary to obtain clear
conclusions of the advantages and drawbacks of the discontinuity—capturing
methods.

Acknowledgements

The work of Petr Knobloch is a part of the research project MSM 0021620839
financed by MSMT and it was partly supported by the Grant Agency of the
Charles University in Prague under the grant No. 343/2005/B-MAT /MFF.

References

10.

Almeida, R.C., Silva, R.S.: A stable Petrov—Galerkin method for convection—
dominated problems. Comput. Methods Appl. Mech. Eng., 140, 291-304 (1997)
Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov—Galerkin formula-
tions for convection dominated flows with particular emphasis on the incom-
pressible Navier—Stokes equations. Comput. Methods Appl. Mech. Eng., 32,
199-259 (1982)

Burman, E., Ern, A.: Nonlinear diffusion and discrete maximum principle for
stabilized Galerkin approximations of the convection—diffusion-reaction equa-
tion. Comput. Methods Appl. Mech. Eng., 191, 3833-3855 (2002)

Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of
convection—diffusion-reaction problems. Comput. Methods Appl. Mech. Eng.,
193, 1437-1453 (2004)

do Carmo, E.G.D., Alvarez, G.B.: A new stabilized finite element formula-
tion for scalar convection—diffusion problems: The streamline and approximate
upwind/Petrov—Galerkin method. Comput. Methods Appl. Mech. Eng., 192,
3379-3396 (2003)

do Carmo, E.G.D., Galedo, A.C.: Feedback Petrov—Galerkin methods for con-
vection—dominated problems. Comput. Methods Appl. Mech. Eng., 88, 1-16
(1991)

Codina, R.: A discontinuity—capturing crosswind—dissipation for the finite el-
ement solution of the convection—diffusion equation. Comput. Methods Appl.
Mech. Eng., 110, 325-342 (1993)

Galedo, A.C., Almeida, R.C., Malta, S.M.C., Loula, A.F.D.: Finite element
analysis of convection dominated reaction—diffusion problems. Appl. Numer.
Math., 48, 205-222 (2004)

Galedo, A.C., do Carmo, E.G.D.: A consistent approximate upwind Petrov—
Galerkin method for convection-dominated problems. Comput. Methods Appl.
Mech. Eng., 68, 83-95 (1988)

Hughes, T.J.R., Mallet, M., Mizukami, A.: A new finite element formulation
for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl.
Mech. Eng., 54, 341-355 (1986)



344

11.

12.

13.

14.

15.

16.

17.

Volker John and Petr Knobloch

John, V., Knobloch, P.: A comparison of spurious oscillations at layers dimin-
ishing (SOLD) methods for convection—diffusion equations: Part I. Preprint
Nr. 156, FR 6.1 — Mathematik, Universitat des Saarlandes, Saarbriicken (2005)
Johnson, C.: Adaptive finite element methods for diffusion and convection prob-
lems. Comput. Methods Appl. Mech. Eng., 82, 301-322 (1990)

Johnson, C., Schatz, A.H., Wahlbin, L..B.: Crosswind smear and pointwise errors
in streamline diffusion finite element methods. Math. Comput., 49, 25-38 (1987)
Knobloch, P.: Improvements of the Mizukami—-Hughes method for convection—
diffusion equations. Preprint No. MATH-knm-2005/6, Faculty of Mathematics
and Physics, Charles University, Prague (2005)

Knobloch, P.: Numerical solution of convection—diffusion equations using up-
winding techniques satisfying the discrete maximum principle. Submitted to
the Proceedings of the Czech—Japanese Seminar in Applied Mathematics 2005
Knopp, T., Lube, G., Rapin, G.: Stabilized finite element methods with shock
capturing for advection—diffusion problems. Comput. Methods Appl. Mech.
Eng., 191, 2997-3013 (2002)

Tezduyar, T.E., Park, Y.J.: Discontinuity—capturing finite element formulations
for nonlinear convection—diffusion-reaction equations. Comput. Methods Appl.
Mech. Eng., 59, 307-325 (1986)



Algebraic Flux Correction for Finite Element
Approximation of Transport Equations

Dmitri Kuzmin

Institute of Applied Mathematics (LS III), University of Dortmund
Vogelpothsweg 87, D-44227, Dortmund, Germany
kuzmin@math.uni-dortmund.de

Summary. An algebraic approach to the design of high-resolution finite element
schemes for convection-dominated flows is pursued. It is explained how to get rid
of nonphysical oscillations and remove excessive artificial diffusion in regions where
the solution is sufficiently smooth. To this end, the discrete transport operator and
the consistent mass matrix are modified so as to enforce the positivity constraint
in a mass-conserving fashion. The concept of a target flur and a new definition of
upper/lower bounds make it possible to design a general-purpose flux limiter which
provides an optimal treatment of both stationary and time-dependent problems.

1 Introduction

Algebraic flux correction [3] constitutes a promising approach to the design of
high-resolution schemes for convection-dominated transport problems. In the
present paper, flux limiting for consistent-mass Galerkin schemes is addressed.
Building on the multidimensional limiters of FCT and TVD type [1, 2, 3],
we design a general-purpose algorithm which combines their advantages. It
represents a simple way to satisfy the discrete maximum principle for both
explicit and implicit FEM on structured and unstructured meshes.

2 Flux decomposition

As a representative model problem, consider the continuity equation

ou
E+V~(vu)=0 (1)

discretized in space by a high-order finite element method which yields an
ODE system for the vector of time-dependent nodal values

D = K (2)
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where Mc = {m,;} denotes the consistent mass matrix and K = {k;;} is the
discrete operator resulting from the discretization of the convective term.

A fully discrete scheme proves positivity-preserving (PP) if each solution
update u" — u"T! satisfies an equivalent algebraic system [3]

Ayt = Bu", (3)

where A = {a,;} is an M-matriz and B = {b;;} has no negative entries. In the
linear case, this algebraic criterion can be readily enforced using the ‘discrete
upwinding’ technique which yields a linear PP scheme of the form [3]

mDu

M
LDt

=Lu, L=K+D, (4)

where My, = diag{m;} is the lumped mass matrix and D = {d;;} is the artifi-
cial diffusion operator which is supposed to be a symmetric matrix with zero
row and column sums. Its off-diagonal coeflicients are given by the relation
d;; = max{—k;;,0,—k;;} = dj; so that l;; := k;; + d;; > 0, as required by
the positivity criterion. Without loss of generality, it is assumed that [;; < l;;,
which implies that node i is located ‘upwind’ of node j [3].

By construction, the difference between the high- and low-order schemes
admits decomposition into a sum of antidiffusive target fluxes given by

mD
fij = |:mijm +di3} (i —uy) = fii + ”7 (5)
where fI' = m;(i; — ;) and idj = d;;(u; — uy) offset the error induced

by mass lumping and discrete upwinding, respectively. Note that the former
contains a time derivative which still needs to be discretized.

3 Algebraic flux correction

In order to prevent the formation of nonphysical local extrema, the raw an-
tidiffusive fluxes are multiplied by suitable correction factors (see below)

[ = aijfiz, where 0<a;; <L (6)

The task of the flux limiter is to determine an optimal value of «;; so as
to remove as much artificial diffusion as possible without generating wiggles.
Antidiffusive fluxes which violate the positivity constraint (3) and need to be
limited are of the form f;; = p;j(u; — u;), where p;; < 0. On the other hand,
edge contributions with nonnegative coefficients resemble diffusive fluxes and
are harmless. Hence, some antidiffusion is admissible as long as there exists a
set of (solution-dependent) coefficients ¢;, > 0, Vk # ¢ such that

> i(uy —w) + £ =D canlue — us). (7)

J#i k#i
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In order to enforce this sufficient condition, we resort to a node-based
limiting strategy which was largely inspired by Zalesak’s FCT algorithm [5]
but is even more general. The net antidiffusion received by each node may
consist of both positive and negative edge contributions. Assuming the worst-
case scenario, let us limit them separately by the following generic algorithm

1. Compute the sums of positive and negative antidiffusive fluxes represented
as edge contributions f;; = p; (uj — u;) with negative coefficients pij <0

P = Zpij min{0, u; — u;}, P = Zpij max{0,u; —u;}. (8)

J#i G
2. Define the upper/lower bounds to be imposed in the course of flux correc-
tion as a sum of edge contributions with nonnegative coefficients g;; > 0

Qf = Zqij max{0,u; —u;}, Q; = ZQij min{0,u; —u;}. (9)
J#i i
3. Evaluate the nodal correction factors for positive/negative fluxes
Rf =min{1,Qf/P"},  R; =min{l1,Q; /P }. (10)
4. Multiply the target flux f;; by a combination of R?E and Rf such that

= {Q(RT,RJ_), if fij > 0,

(R, R;), otherwise. (11)

[ = aijfij,

The last part calls for further explanation. Recall that the edges of the sparsity
graph are oriented so that 0 <I;; <1l;; = kj; + d;; and we have

Lii(uwi — ug) — fi; = (Li + qigpig) (wi — uj), (12)
so that the positivity constraint is satisfied if {;; +-c;;ps; > 0. The contribution
of the limited antidiffusive flux f;; to node ¢ is harmless since

QU SRy PT <) aifi <EIPT<QF (13)
In light of the above, flux correction can be performed in two different ways:

e Upwind-biased flux correction: ‘prelimit’ the coefficient p;; = fi;/(u; —u;)
if it violates the positivity condition (12) for the downwind node j

fi; = min{—pyj, i} (u; — uy) (14)

and multiply the so-defined antidiffusive flux fi’j by a;; = Rii to enforce
the positivity condition (13) for the upwind node i.

e Symmetric flux correction: multiply f;; by the minimum of nodal correc-
tion factors, i.e., a;; = min{Rf, R;F} regardless of the edge orientation.

The optimal choice of the limiting strategy depends on the magnitude of the
antidiffusion coefficient p;; as compared to that of /;;. The above algorithm
leads to a variety of algebraic flux correction schemes which differ in the
definition of upper/lower bounds as well as in the type of flux limiting.
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3.1 Treatment of convective antidiffusion

For the time being, let us assume that the problem at hand is stationary and
neglect the contribution of the consistent mass matrix. The prelimited target
flux (14) for a lumped-mass Galerkin discretization is given by

fi; = min{dy;, i} (wi — uy), (15)

where d;; is the artificial diffusion coefficient for discrete upwinding. It is
worth mentioning that there is actually no need for prelimiting as long as
lii — ajdi; = kji + (1 — o )di; > 0. Therefore, the above target flux reduces
to {ij as defined above, unless both off-diagonal coefficients of the high-order
operator K were negative (a rather unusual situation). In this particular case,
the upwind-biased limiting strategy is preferable. The total amount of raw

antidiffusion received by node ¢ from its downwind neighbors is given by

max C

Pr=" U0, fi}, where T ={j #i|0 =1y <l;}. (16)
Jj€T:

The off-diagonal coefficients of the low-order operator L can be used to define

the upper/lower bounds as in the case of algebraic TVD schemes [3]

QF =Y Ly (uy—w), >0, Vi#i. (A7)
it

Flux limiting is performed using the correction factor for the upwind node:

. {Rjgj, if f/; >0,

Tij = R; fi;,  otherwise,

fr= 13 (18)
The same approach can be used to construct a family of positivity-preserving
schemes based on standard TVD limiters [3]. However, the associated target
fluxes are certain to ensure second-order accuracy only for a finite difference
approximation in one dimension, whereas the real target fluxes for a finite el-
ement scheme are uniquely defined by (5). Therefore, such ad hoc extensions
of TVD schemes are likely to pollute the solution in smooth regions and are
not to be recommended for multidimensional FEM discretizations.

3.2 Treatment of mass antidiffusion

The contribution of the mass matrix to target fluxes of the form (5) may
be large enough to render the upwind-biased limiting strategy impractical.
Furthermore, the upper and lower bounds based on the coefficients of the
low-order operator (17) are independent of the time step and may turn out
to be too restrictive. In this subsection, we concentrate on the treatment of
mass antidiffusion f77' assuming that the convective part fflj of the target
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flux vanishes. In this case, the flow direction is unknown and the antidiffusive
flux may violate the positivity condition for both nodes. Therefore, we adopt
the symmetric limiting strategy and discuss the choice of constraints to be
imposed on the fully discretized target flux f;7" which corresponds to

mi4 mi4
J u’(l+1 _ 7_1+1 J no__ un

fij: At( i U )_ At (uz j)' (19)
Interestingly enough, this flux consists of a truly antidiffusive implicit part
and a diffusive explicit part which has a strong damping effect.

If the standard FEM-FCT algorithm is employed, the corresponding upper
and lower bounds in depend on the local extrema ﬁii of the low-order solution
% = u" + AtM ' Lu™ which reduces to u™ in the case L = 0 (no convection).
In order to avoid the computation of # and accommodate the contribution of
the convective term in what follows, we use a weaker constraint and take

max mi; max n n
Pr= Z min {0, fis}, Qi = Azt] min {0,uj —u'}, (20)

J#i J#i
where the coefficients m;; are tacitly assumed to be nonnegative. Note that
the nodal correction factors Rii = min{l,Qii /Pf} are independent of the
time step, since both Pii and Q;t are inversely proportional to it.
If the coefficient p}; = fi;/(u} —uf') is negative, the target flux (19) proves
truly antidiffusive and should be limited in a symmetric fashion

. _ fmin{RS, R} fij, if fij >0, s _ g
f {min{R;,Rj}fz’jy otherwise, Tji=—1ij- (21)

?

The above limiting strategy is closely related to Zalesak’s multidimensional
FCT algorithm [5] but the bounds QljE are defined in a different way and there
is no need to compute a provisional low-order solution.

3.3 General-purpose flux limiter

Now that we have a stand-alone flux limiter for convective antidiffusion and a
stand-alone flux limiter for mass antidiffusion at our disposal, we can proceed
to the treatment of antidiffusive fluxes (5) which involve both contributions.
Our experience with flux correction of FCT type indicates that it is worth-
while to prelimit f;; so as to prevent it from becoming diffusive and creating
numerical artifacts [3]. Therefore, let us adjust the target fluxes thus:

fij = pijluy —wi),  piy = min{0, (fF + f15)/(u; —us)}. (22)

It remains to specify the upper/lower bounds in and choose the flux limiting
strategy. Both algorithms considered so far are directly applicable to target
fluxes of the form (22) but their performance is highly problem-dependent. Tt
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is not unusual that p;; 4+ l;; < 0 if mass antidiffusion is strong enough, which
means that a significant portion of the target flux cannot be recovered by
the upwind-biased flux limiter alone. In other cases, symmetric flux limiting
may produce inferior results because taking the minimum of nodal correction
factors turns out to be more restrictive than prelimiting based on (14).

A straightforward but inefficient way to combine the two flux limiting tech-
niques is to apply them sequentially. For instance, one can use the upwind-
biased algorithm (16)—(18) to predict f;; and limit the rejected antidiffusion
Afij = fij— fi; according to (20)—(21) or vice versa. In any event, the effective
upper and lower bounds for the sum of limited antidiffusive fluxes f; + Af;
consist of the ‘stationary’ upwind part (17) and the ‘time-dependent’ sym-
metric part (20) which complement each other so that

e a certain fraction of admissible antidiffusion is independent of the time
step, which prevents a loss of accuracy in steady-state computations;

e solutions to truly time-dependent problems become more accurate as At
is refined, since a larger portion of the target flux may be retained.

Instead of limiting the target fluxes by the algorithms (16)—(18) and/or
(20)—(21) in a segregated way or sequentially, it is worthwhile to combine
these special-purpose limiters, which can be accomplished as follows

1. Decompose the target flux f;; = p;;(u; — u;) into the prelimited ‘upwind’
part (14) and the remainder which must be limited in a symmetric fashion

fi/j = min{—py;, lji } (wi —uy), Afij = fij — f{j- (23)
2. Compute the total sums of raw antidiffusive fluxes to be constrained
+ max max
P = Z min {Qf{j}"‘Z min {0, Afis}. (24)
JET: i

3. Define the combined upper/lower bounds to be enforced on Pii as follows

Qf = Z [HXZ + lm} (= wg). (25)

J#i
4. Evaluate the nodal correction factors (10) for the flux limiting step
R¥ = min{1,Qf/PF}. (26)
5. In a loop over edges, compute the limited antidiffusive correction
£y = Rf fi; + min{ R, RTYAf,;. (27)

Note that the first sum in (24) is evaluated over j € J; (see (16)) while the
second one contains antidiffusive fluxes from all neighboring nodes. The result-
ing nonlinear algebraic system can be solved by an iterative defect correction
scheme preconditioned by the ‘monotone’ low-order operator [3].
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4 Numerical example

Let us illustrate the performance of the new algorithm by applying it to the
solid body rotation problem proposed by LeVeque [4]. After one full revolution
(t = 2m) the exact solution of the continuity equation (1) coincides with the
initial data. The numerical solutions presented in Fig. 1-2 were computed on a
uniform mesh of 128 x 128 ()1 —elements using Crank-Nicolson time-stepping
with At = 1073. The general-purpose (GP) algorithm (24)—(27) produces the
results shown in Fig. 1. The cone and hump are reproduced very well and even
the narrow bridge of the slotted cylinder is largely preserved. Not surprisingly,
this solution is very similar to that computed by an FCT algorithm based on
the same target flux [3]. On the other hand, the performance of standard
TVD limiters for this time-dependent test problem leaves a lot to be desired.
The strongly antidiffusive superbee entails a pronounced flattening of smooth
peaks [3], while the ‘default’ MC limiter proves overly diffusive (see Fig. 2).

Fig. 1. Solid body rotation: GP limiter, ¢t = 27.
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Fig. 2. Solid body rotation: MC limiter, ¢t = 2.

5 Conclusions

Algebraic flux correction of the form (8)—(11) provides a very general frame-
work for the derivation of nonoscillatory high-resolution schemes. Unlike other
limiting techniques, it is readily applicable to finite element discretizations and
unstructured meshes. This paper bridges the gap between algebraic FCT and
TVD schemes [3] proposed previously and paves the way to the design of
general-purpose flux limiters for implicit FEM including the consistent mass
matrix. Of course, there are many other ways to define the upper/lower bounds
and perform algebraic flux corection. Moderate improvements can be achieved
— at a disproportionately high overhead cost — but our numerical experiments
indicate that the accuracy of the target flux rather than the choice of con-
straints and the type of flux limiting is decisive in many cases. Hence, it is not
the limiter but the antidiffusive flux itself that still needs to be optimized.
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Summary. In this paper we consider the local Modified Extrapolated Gauss-
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1 Introduction

The model problem considered here is that of solving the second order con-
vection diffusion equation

ou

Au—f(w,y)%—g(rmy)afy:() (1)

defined on a domain 2 = {(x,y)|0 <z < ¢, 0<y <{ly}, where A is the
Laplacian operator and v = u(x,y) is prescribed on the boundary 9f2. The
discretization of (1) on a rectangular grid My x My = N unknowns within 2
using the 5—point stencil leads to

Uiy = lijUi—1, 5T U1 iU j41 TbiUs j—1, 1=1,2,--- My, j=1,2,--- My

with

l“_kiz 1—|—1hf~ - K 1—1hf»» (3)
U 5(k2 + h2) oM o T T 9 R 9" |

t,,fhiz 1,1]C g b,,7h72 1+1k g (4)
U752 + h2) 9" i )> VT 902 1 2y 9" )
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where h = {1 /(M1 +1), k=4{y/(Ma+1), fij = f(ih, jk) and g;; = g(ih, jk).
For a particular ordering of the grid points, (2) yields a large, sparse linear
system of equations of the form

Az =b. (5)

For the numerical solution of (5) we consider iterative methods. In the present
paper we extend our work in [2] to include the case of complex eigenvalues for
the Jacobi iteration matrix. Convergence ranges and good (near the optimum)
values for the involved set of parameters of the Local Modified Extrapolated
Gauss-Seidel(LM EGS) method are obtained in case the eigenvalues of the
Jacobi iteration matrix are complex of the form p = a + i3, where «, 3 are
real with & € [am,an] and B € [Bm, Oum]. Numerical results indicate that
LMEGS, combined with semi-iterative techniques, posesses the same order
of converegence as the local SOR method.

2 The local modified extrapolated Gauss-Seidel
(LMEGS) method

The local Jacobi operator J;; is defined as
Jij = di (liEy ' + 1By + ti; By + by B (6)

where E,, E, are shift operators along the x and y directions defined by
Epuij = wip1j, Bylug = w1y, Byuig = uijy1, E'ug = u ;1. We can
choose to call a grid point (4, j) as red when ¢ + j is even and black when i+ j
is odd. For the numerical solution of (5) the LM EGS method becomes

(n+1)
ij

(n)

u =(1- Tij)ugl)-i- Tijiju;;’, 1+ J even (7)

(n+1)

(n+1) _
V. = ij

u’Lj (1 - Tz/])uxl) + Jlju

+ (1 = DJyul?, it jodd  (8)

where 75, ’Ti/j are called the local parameters and correspond to red (i + j
even) and black (i + j odd) grid points, respectively. We remark that the
LMEGS method generalizes the GS method, allowing the introduction of two
sets of parameters (7;; and Ti/ ;)- The advantage of using the above parameters
is (i) the possible increase in the rate of convergence and (ii) that each node
in the mesh has its own parameter, thus avoiding global communication when
the method is parallelized [1].

3 The eigenvalue relationship

In this section we apply the local Fourier analysis to find an eigenvalue re-
latioship between the eigenvalues of the LMEGS iteration operator and J;;
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the local Jacobi operator. At this point it should be mentioned that Fourier
analysis applies exactly only to linear constant coefficient PDEs on an infinite
or on a rectangular domain with Dirichlet or periodic boundary conditions.
Although this would seem a restriction to our analysis it has been shown that

there is a strong correspondence with results for other boundary conditions

[6]. Writing (7) and (8) in terms of the error vector e ij — Uiz, we have

e = (1= e+ migdiyely), i+ jeven ©)

en ™ = (1 —7)el) + e (7 = Vel i+ jodd (10)

where e%l) and eg) represent the errors at the red and black points, respec-
tively. By eliminating eg+1)7 (10) is written as
e = (i — )iy + (1= my) 4 e ™. (11)

Equations (9) and (11) can be written as

) 0
egu-l) :[:Tij,T;j(Jij) egl) > (12)

1 — Tij TijJij :l

,C ’ Jl = ’ ’
TiJ’Tij( i) l:(Tij—Tij)Jij 1= 7 + 7S

where
(13)

is called the LMEGS iteration operator. By assuming that an eigenfunction
of £, .+ (Ji;) possesses the form (cre?Frethay) coeilkiztkay))T and that the
i30T

corresponding eigenvalue is A;;, we have

i(k1z+kay) i(k1z+kay)
c1e oy ci1€
‘C'rij,‘ri/j (JZJ) (C2ei(k1m+k2y) ) - )\ZJ <826i(k1$+k2y)> ’ (14)
yielding
Cc1 C1
L i = Aij 15
) () = (2) @
since _ ,
Jijez(klz—l-kzy) — ,Uij(kl, k2)el(klz+k2y)’ (16)
where . ) ) )
pij(ky, ka) = lije ™0 orjet™ 1 4 ;56728 4 b2k, (17)

Furthermore, from (15) it follows that det (ETM + (i) =XijI) = 0 or because
of (13)

N — (2= mij — 7y + Tignd) g + (L= 75) (1= 7i;) + 735 (1 — 7i,)pd; = 0.(18)
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4 Determination of good values

Let us assume that the eigenvalues of J;; are complex of the form p;; =
a;j + i3, where ayj, Bi; are real with oy € [ami;, an;] = I and By €
[Bmij» Bari;] = I2. Solving (18) we find that it has the following two roots

)\z'j =1- TijTij and /\ =1- y (19)

Tij
where r;; = lfufj and r;; = a;j+1b;j, with a;; € [a;;,@;;] and b;; € [— bij, bij)-
Theorem 1. If S(L,,) <12 then

(i) an upper bound on S(L; ) is given by

1—7, 0<7/' <1-AY2
S(Lyr) < AYV2 . 1 AV2 <7 <14 AY2 (20)
-1, 1+AY2<7 <2,

where A given by (30),
(i1) if a >0, then the bound on S(L. ) is minimised for 7, given by (39)
and any 7'y € [T'm, 7'M, where Ty, and 7'y are given by (41).

Proof. The spectral radius of £+ is (£, ) = max{|\1], [A2|} where Ai, Ay
are the roots of (18). Next, we dlstlngmsh the following cases :

Case I: Suppose that |A;| > |Az|, then
S(L.)=IMl=[1-7|<1 or 0<7 <2. (22)

Furthermore, |A1] > |\z| yields successively

=7 > 1—7(1—p (23)
or
o(r') = 7% o 4 k(r,a,b) >0, (24)
where
k(T a,b) = 27a — 72 (a® + b?) . (25)

Since for LMEGS to converge 0 < 7/ < 2, we distinguish the following two
subcases:

L. 0<7' <1 or I, 1<7<2. (26)

If 0<7<1
S(Lr)=1-1". (27)

2 In the sequel we drop the subscripts i; for notation simplicity.
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Also, if 1< 7 <2
S(Lr)=1—1. (28)

A similar analysis can be followed for Case II. In this case

S(Lrr) :max|1—7’(1—,u2)| < AV, (29)
u2

where

A =max\(r,a,b), A= migl A(7,a,b) and A(7,a,b) =1 —k(r,a,b). (30)

a,b a
Summarizing our results so far we have

1—7', 0<7 <1-AY2
S(Lr) < AYZ . 1 N/2 </ <1422 (31)
=1, 14+A2<7 <2,

By determining that an upper bound on S(L: /), in the intervals for 7/
[1—AV%1—AVﬂzmd[y+xﬂ,1+AVﬂ, (32)

is A'/? we prove the validity of (20). Therefore, (i) holds. In the sequence
we will minimize the bound on S(L;,/) first with respect to 7' and then
with respect to 7. Let us consider the first branch of (20). Then, S(L; /) is
minimized for the largest value of 7/, say 7/, which is given by

'y =1— A2 (33)
and its correspoding value is given by
S(Lyrr,) < A2, (34)

Similarly, considering the third branch of (20), the bound on S(£; /) is min-
imized for the smallest value of 7/ which now is given by

=1+ 42 (35)

and its correspoding value is given by (34) also, which coincides with the value
of the bound of the second branch of (20). Our conclusion so far is

S(ETJ'/b) < A2 (36)

for
7-/b S [T/m7 T/M]a (37)

where
T =1—AY2 and 7/ =1+ A2, (38)
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thus (ii) is proved. Next, we have to determine Aib/? = min{max A'/2}. How-
T

a‘7

ever, if @ > 0 this is achieved (see Theorem 3.1 of [5]) at

a

—— ,if a<b
a’+b
Ty — (39)
2 _
= if b<a
at+a
and -
b -
- if a<b
(@ +b)2
A% < (40)
—92 _ o7l
[4b —|—7(a a)?]z i b<a
at+a
"
Therefore, (38), because of (40), becomes
T'm=1-AY% and 7/p =1+ AY2 (41)

A similar result holds for @ < 0 (see Theorem 3.1 of [5]).

5 Numerical results and conclusions

In order to predict the performance of the LMEGS method we have to study
the eigenvalue spectrum of the local Jacobi operator J;;. From (17) we have
that for periodic boundary conditions

Iuij(k’la k2)‘ = ( [(’I“ij + KU) coskih + (ti]‘ + bij) CcOs k‘gk‘]2

+ [(’I“ij — é,»j) sinkih + (ti]‘ — b,‘j) sin kgk‘]2 )1/2 (42)

ij indicating that p;;(k1, k2) depends upon the coefficients of the particular
PDE, where ki, ky = 7,27, , (VN — 1)m. If the coefficients of the PDE are
constant, then 7;; = @, 7;; = 7, and LMEGS becomes the classic MEGS.
Moreover, for f(z,y) = g(z,y) = 0 (Poisson equation) on the unit square
with Dirichlet boundary conditions (42) yields

1
piij (K1, ko) = i(cos kih + cos kok) (43)

hence
Tii = max ij(k1, k2)| = cosmh. 44
o= o mas k) (44)
If /N is even, then the Jacobi operator has an odd number of eigenvalues
which occur in pairs £u,;, therefore zero will be one of its eigenvalues. In this
case 1, = 0. If VN is odd, then
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: m(1—h)
= min ii(k1, ko)| = cos ———= 45
Hz] WSkl,]%S(\/ﬁfl)ﬂ'“lj( 1 2)| 2 ( )
with M; = M, = +/N. If the PDE has space-varying coefficients with Dirichlet
boundary conditions, then for the 5-point stencil the quantities z;; and By

are determined by [3]

k‘17T kgﬂ'
Hij =2 (\/ éijrijcosiMl 1t tijbijcosiMz n 1) ; (46)

where k1 =1,2,..., My and ko = 1,2,..., Ms. From (46) we find

i =2 (\/Eijrijcowh + \/tijbijcomk) (47)
and 1-nh 1-k
Hij =2 (\/&j’l‘ijCOSﬂ-(2_) tijbijCOSﬂ-(Q_)) . (48)

Note that (47) and (48) yield (44) and (45), respectively, for constant coeffi-
cient PDEs. From (46) we see that the eigenvalues y;; may be real, imaginary
or complex.

The optimum values for the local relaxation parameters are given by The-
orem 1. Next, in an attempt to improve the rate of convergence of LM EGS,
we apply semi-iterative techniques. In order to test our theoretical results we
considered the numerical solution of (1) with u = 0 on the boundary of the
unit square. The initial vector was chosen as u(® (z,y) = zy(1 — z)(1 — y).
The solution of the above problem is zero. For comparison purposes we con-
sidered the application of the local SOR with red black ordering (LSOR R/B)
as described in [4]. The iterative process was terminated when the criterion
[[ul™ ]| < 107% was satisfied. Various functions for the coefficients f(z,v)
and g(z,y) were chosen such that the eigenvalue p;; to be real, imaginary or
complex. The coefficients used in each problem are

Real case: 1. f(x,y) = Re-2%, g(x,y)=0

2. f(z,y) = Re- (10 — 2z), g(x,y) = Re- (10 — 2y)
Imaginary case : 8. f(x,y) = %(1 +a2%), gz, y) =100
Complex case : 4. f(z,y) = Re- (2x —1)3, g(z,y) = 0.

The number of iterations for the problems considered are presented in
Table 1. These results show that SI — LM EGS has the same convengence
behavior as the local SOR method in case the eigenvalues of the Jacobi it-
eration matrix posesses real or imaginary eigenvalues (see cases 1, 2, 3 of
Table 1). This phenomenon was expected since LM EGS has the same order
of convergence rate as GS and when one applies semi-iterative techniques to
GS, then its rate of convergence is equivalent to that of SOR. However, when
the Jacobi iteration matrix posesses complex eigenvalues the corresponding
problem was an open one. In this case selecting the involved parameters T
and 7’ appropriately (as in Theorem 1) we found that there are cases (case 4
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Table 1. Number of iterations of SFLMEGS and LSOR methods for h = 1/21, 1/41.
% denotes no convergence after 5 - 10* iterations.

h=1/21 [h=1/21][h =1/41
#|Method Re=1 |Re=10| Re=1
1|LSOR 50 69 97
SI-LMEGS 44 66 86
2 |LSOR 29 26 73
SI-LMEGS 29 24 53
Re = 2-10*|Re = 10°|| Re = 10?
3|LSOR 1399 6933 *
SI-LMEGS 180 203 878
Re =100 |Re = 10°||Re = 100
4 |LSOR 173 1673 330
SI-LMEGS 170 756 326

of Table 1), where ST — LM EGS has significantly better performance than
LSOR, a fact which needs further investigation. We therefore conclude that
SI — LMEGS is a promissing method, like local SOR, and has an efficient
parallel implementation. As GS is used as a smoother in Multigrid methods
[6] it would be interesting to study its replacement by LM EGS.
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Summary. In this paper we discuss numerical method for a pore scale model for
precipitation and dissolution in porous media. We focus here on the chemistry, which
is modeled by a parabolic problem that is coupled through the boundary conditions
to an ordinary differential inclusion. A semi-implicit time stepping is combined with
a regularization approach to construct a stable and convergent numerical scheme.
For dealing with the emerging time discrete nonlinear problems we propose here a
simple fixed point iterative procedure.

1 Introduction

In this paper we consider a pore scale model for crystal dissolution and pre-
cipitation processes in porous media. This model is proposed in [2] and rep-
resents the pore—scale analogue of the one proposed in [7]. We continue here
the analysis in [2] by investigating a semi-implicit time discretization of the
model. The resulting nonlinear elliptic problems are solved by a simple linear
iterative scheme.

Without going into the modeling details, we give here the background of
the problem under consideration. A fluid in which cations and anions are dis-
solved occupies the void region of a porous medium. Under certain conditions,
these ions can precipitate and form a crystalline solid, which is attached to the
surface of the grains (the porous skeleton) and thus is immobile. The reverse
reaction of dissolution is also possible. Therefore the model consists of several
components: the Stokes flow in the pores, the transport of dissolved ions by
convection and diffusion, and dissolution/precipitation reactions on the sur-
face of the porous skeleton (grains). Here we assume that the flow geometry,
as well as the fluid properties are not affected by the chemical processes.
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Our main interest is focused on the chemistry, this being the challenging
part of the model. To be specific, we denote by 2 C R? (d > 1) the void
space of the porous medium, which is assumed open, connected and bounded.
Its boundary is Lipschitz continuous and consists of two disjoint parts: the
internal part (I'c) represents the surface of the porous skeleton (the grains),
and the external part I'p, which is the outer boundary of the domain. Further,
v denotes the outer normal to 0f2 and T" > 0 a fixed but arbitrarily chosen
value of time. For X being (2, I'g, or I'p, we define

X7 =(0,T] x X.

Assuming, for the simplicity of presentation, that the boundary and initial
data are compatible (see [3], or [7]) we reduce our model to

Ou+ V- (qu— DVu) =0, in 27,
—Dv -Vu = endw, on I'k,
T (1)
u =0, on I'p,
u=ur, in £2, for t =0,

for the ion transport, and

O = Dy (r(u) —w), on I'k,
w € H(v), on I'}, (2)
v = vy, on I'g, fort =0,

for the precipitation and dissolution. Here v denotes the concentration of the
precipitate, which is defined only on the interior boundary I'g, while u stands
for the cation concentration. q denotes the divergence free fluid velocity. The
initial data u; and vy are assumed non—negative and essentially bounded.
Moreover, for simplicity we assume that u; € H& rp, (§2), the space of H 1
functions defined on {2 and having a vanishing trace on I'p.

All the quantities and variables in the above are assumed dimensionless.
D denotes the diffusion coefficient and 7 the anion valence. D, represents
the ratio of the characteristic precipitation/dissolution time scale and the
characteristic transport time scale - the Damkdhler number, which is assumed
to be of moderate order. By ¢ we mean the ratio of the characteristic pore
scale and the reference (macroscopic) length scale. Throughout this paper we
keep the value of ¢ fixed, but this can be taken arbitrarily small.

Assuming mass action kinetics, with []+ denoting the non-negative part,
the precipitation rate is defined by

r(u) = [u]}[(mu — ) /Al 3)

where m is the cation concentration and ¢ the total negative charge, which is
assumed here constant in time and space. The analysis here is not restricted
to the typical example above, but assumes that r is an increasing, positive,
locally Lipschitz continuous function. Further, since ¢ is fixed in (3), there
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exists a unique u, > 0 such that r(u) = 0 for all u < wu,, and r is strictly
increasing for u > u,.
By H we mean the Heaviside graph,

0, if u <0,
H(u)=1<[0,1], if u=0,
1, ifu>0,

and w is the actual value of the dissolution rate. The dissolution rate is con-
stant (1, by the scaling) in the presence of crystal, i.e. for v > 0 somewhere
on I'¢. In the absence of crystals, the overall rate is either zero, if the fluid is
not containing sufficient dissolved ions, or positive.

Remark 1. In the setting above, a unique u* exists for which r(u*) = 1. If
u = u* for all t and z, then the system is in equilibrium: no precipitation or
dissolution occurs, since the precipitation rate is balanced by the dissolution
rate regardless of the presence of absence of crystals.

The particularity of the model considered here is in the description of
the dissolution and precipitation processes taking place on the surface of the
grains I, involving a multi—valued dissolution rate function. In mathematical
terms, this translates into a graph—type boundary condition that couples the
convection—diffusion equation for the concentration of the ions to an ordinary
differential equation defined only on the grain boundary and describing the
concentration of the precipitate. Models of similar type are analyzed in a
homogenization context in [5] and [6], or [4], where also a numerical scheme
is briefly discussed. However, the analysis there does not cover our model.

Due to the occurrence of the multi—valued dissolution rate, classical so-
lutions do not exists, except for some particular cases. For defining a weak
solution we consider the following sets

U :={ue L*((0,T); Hy , (2)) : dpu € L*((0,T); H'(£2))},
V= {ve H'((0,T); L*(I'c))},
W= {we L®(TE), : 0<w< 1}
Here we have used standard notations in the functional analysis.
Definition 1. A triple (u,v,w) € U X V X W is called a weak solution of (1)
and (2) if (u(0),v(0)) = (uy,vr) and if
(Oru, p)or + D(Vu, Vo) or — (qu, Vo) or = —en(0wv, @)z, (4)
(000,0)rx = Dalr(u) — w,0) 1.
we Hw) ae inl},
for all (¢,0) € L2((O,T);H&FD(Q)) X LQ(Fg).

By [2], Theorem 2.21, a weak solution exists. The proof is based on regulari-
zation arguments and provides a solution for which, in addition, we have

()

w = r(u,c) ae in {v=0}NTg.
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2 The numerical scheme

In this section we analyze a semi—implicit numerical scheme for the numerical
solution of (1) and (2). To overcome the difficulties that are due to the multi—
valued dissolution rate we start with approximating it by

0, ifv<o0,
Hs(v) := < v/d, if v e (0,4), (6)
1, ifv>9,

where 6 > 0 is a small regularization parameter. Next we consider a time
stepping that is implicit in u and explicit in v. With N € N, 7 = T/N, and
t, = n7, the approximation (u™,v™) of (u(t,),v(t,)) is the solution of the
following problem:

Problem P}: Given u"~", v" ', compute u™ € Hg r (2), and v™ € L*(I'g)
such that

(u" —u"t ¢)o + TD(Vu™, Vo) o + 7(V.(qu™), ¢)n o

+ eﬁ(i}n - /Un_la QS)FG = 07

(’Unve)f‘c = (vnila G)Fc + TDG(T(un) - H(S(vnil)’ 0)1—'07 (8)
forall ¢ € Hy p (£2) and 0 € L*(I).
Here n=1,..., N, while u® = u; and v° = v;. For completeness we define
w™ = Hs(v"). (9)

To simplify the notations, we have given up the subscript ¢ for the solution
triple (u™,v™, w™).

Remark 2. It is worth noticing that the cation concentration w is treated im-
plicitly, whereas for the crystalline concentration v an explicit discretization
is considered. A fully implicit discretization is also possible, at the expense of
an additional nonlinearity. Further, the I'¢ scalar product in (7) can be re-
placed by the last term in (8). In this way the two equations can be partially
decoupled. Firstly one has to solve an elliptic problem defined in 2 with a
nonlinear boundary term. Once u™ has been obtained, v™ can be determined
straightforwardly from (8).

In what follows we restrict to announcing the results without proofs. De-
tails will be given in a forthcoming paper. First, since the initial data is positive
and essentially bounded, the same holds for the numerical solution at each
time step t,. This can be obtained assuming § > 7D,. With

M, = max{||us oo, 2, u* },
M, )D. (10)
M, = max{[[vy ]|, 1}, and C, = M)
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the time discrete numerical approximations are essentially bounded for all
0<n<N:

0 <u"(x) < M,, and 0 <v™(z) < M,ef". (11)

For a fixed time step t¢,, the nonlinear time discrete problem P} can
be solved, for example, by the fixed point iteration proposed in Section 3.
This also provides the existence and uniqueness of a solution pair {(u",v™),
whereas w,, is defined in (9). Having the sequence of time discrete triples
{(u™,v",w"™),n = 1, N} solving the problems P}, we can construct an ap-
proximation of the solution of (1) and (2) for all times ¢ € [0,7]. To do so,
define for ¢t € (t,—1, ty,]

(t - tn—l) + Py , (12)

Z.(t) == 2"
(8) =z T T

where Z is either U, V', or W, whereas z is either u, v, or w. Notice that Z,
does not only depend on 7, but also on the regularization parameter §. By
compactness arguments, for this construction we obtain:

Theorem 1. Assume § = O(7*), with some o € (0,1). Then we have
18U 12207 11-1(02) + IVUT G0 + 5||8tVT||§ﬂGT <C.

Here C > 0 does not depend on T or §. Further, along a sequence T\, 0, the
triple (U;, Vy, W;) converges to a weak solution (u,v,w) of (1) and (2).

The estimates stated above are uniform in § and 7, and are in good agreement
with the ones obtained for the solution defined in Definition 1 (see [2]). Fur-
ther, for a e—periodic porous medium, the estimates are also e-independent.

The above convergence should be understood in a weak sense. Unfortu-
nately, no error estimates can be given. Specifically, we have

a) Ur —u weakly in L2((0,7); H&F (1)),
b) 0.U; — Osu  weakly in L2((0,T); H-1(02)),
c) Ve —w weakly in LQ((O T); L*(I'g)),
d) 8;V, — 0w weakly in LA(T),

e) W, - w weakly—star in L>(I'L).

3 A fixed point iteration

For each n > 1, the time discrete problem P} is nonlinear. Even though the
nonlinearity appears only in the boundary term, instabilities in the form of
negative concentrations or artificial precipitation can be encountered when
applying a straightforward Newton iteration. Moreover, there is no guarantee
of convergence, unless the time stepping is not small enough. In this section
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we discuss a simple iteration scheme for solving the nonlinear elliptic problem.
This method is of fixed point type and produces stable results. Moreover, the
scheme converges linearly regardless of the parameters €, 7, or 4.

Assume "' and v" ! given. To construct the iteration scheme we re-
call Remark 2 and decouple the ion transport equation from the dissolu-
tion/precipitation equation on the boundary. Using (8), (7) gives

(u™ —u""t ¢)g + TD(Vu™, Vo) + 7(V.(qu"), d) o (13)
13
+ 7enDg(r(u™) — Hs(v™™1),0)r, = 0,

forall ¢ € H&_’ I'o (£2). This is a scalar elliptic equation with nonlinear boundary
conditions on I'g. We first construct a sequence {u™% i > 0} approximating
the solution u™ of (13). Once this is computed, we use (8) for directly deter-
mining v"™.

Let L, be the Lipschitz constant of the precipitation rate r on the interval
[0, M.,]. With a given u™~" € H  (£2), the next iteration u™* is the solution
of the linear elliptic equation

(™t —u""t @) o + TD(Vu™ Vo) o + 7(V(qu™"), )
=7enDy Ly (u™™" —u™" @), (14)
—TEﬁDa(T(Un’i_l) - H&(’Un_1>7 Q)FGa

for all ¢ € H(},FD(“Q)' The starting point of the iteration can be chosen ar-
bitrarily in H& rp, (£2), but essentially bounded by 0 and M,. A good initial
guess is ©™? = w™1, but this is not a restriction.

Comparing the above to (13) and up to the presence of the superscripts i—1
and 7, the only difference is in the appearance of the first term on the right in
(14). As u™* approaches u™, this term will cancel. Before making this sentence
more precise we mention that the above construction is common in the analysis
of nonlinear elliptic problems, in particular when sub- or supersolutions are
sought. In [10] this approach is used in a fixed point context, for approximating
the solution of an elliptic problem with a nonlinear and possibly unbounded
source term. Following the same ideas, a similar scheme is considered for
the implicit discretization of a degenerate (fast diffusion) problem in both
conformal and mixed formulation (see [12] and [9]). Since the scheme is of
fixed point type, we expect only a linear convergence rate. The advantage
is in the stability of the approximation and the guaranteed convergence. For
being specific we let e™? := u™ —u™* denote the error at iteration i and define
the H'-equivalent norm

T -
LI == 11 + 7DIVFIG + SenDalrll 17 (15)

Here f is any function in H& rp, (£2). For this norm, the iteration is a contrac-
tion and the iteration converges linearly in H' to the solution u™ of (13).
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Theorem 2. With u™° € H  (£2) bounded essentially by 0 and M,, the it-
eration defined in (14) is stable and convergent. Specifically, if T < 2/(enDyL,),
an i—independent constant v € [0,1) exists such that for all i > 0 we have

0 <u™ < M,
almost everywhere in 2, and

[lle™*I* < ~*flle™ 1.

4 A numerical example

We conclude this presentation with a numerical example obtained for the
undersaturated regime. In this case we have v < u* almost everywhere in £27,
where u* is the equilibrium concentration mentioned in Remark 1. Extensive
numerical results for both dissolution and precipitation, and for high or low
Damkohler numbers, will be presented in a forthcoming paper.

The present computations are carried out in a reference cell {2, where the
square (—1,1)? is including a circular grain of radius R = 0.5 centered in the
origin. For symmetry reasons, the computations are restricted to the upper
half of the domain. The fluid velocity q is obtained by solving numerically the
Stokes model in 2. To this aim the bubble stabilized finite element method
proposed in [11] (see also [8]) has been applied.

We have used the following parameters and rate function:

"~ 10
D =025 e=1, m=n=1.0, and r(u,c) = j[u]_ﬁu —0.1]4+.

Two different regimes are considered, D, = 1 and D, = 10. The Peclet num-
ber is moderate. The time discretization discussed in the above is completed
by standard piecewise finite elements. No special stabilizing techniques were
needed.The initial conditions are v; = 0.01 and u; = u* = 1.0. On the exter-
nal boundaries we take u(t,—1) = u, = 0.1, and J,u = 0 on the remaining
part. In this case, only dissolution is possible. This is guaranteed by the L*°
estimates.

The present computations are implemented in the research software pack-
age SciFFEM (Scilab Finite Element Method, [1]). In Figure 1 we present the
cation concentration u. This concentration nis higher at the outflow, since un-
dersaturated fluid is flowing in at the left boundary. Further, notice that for a
higher Damkohler number, the cation concentration is higher along the grain
boundary. This is due to the enhanced dissolution. As a result, the crystal
concentration is bigger if D, = 1, as resulting from Figure 2.
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Summary. We design finite volume schemes for two dimensional parabolic degen-
erate systems by using a kinetic, formally BGK, approach. The hyperbolic and
parabolic parts are not splitted and the schemes are Riemann solver free. Moreover
the spatial discretization can be written analytically, so that the implementation is
easy. Some numerical tests are presented.

1 Introduction

Our aim is to construct numerical approximations of the two-dimensional
nonlinear degenerate parabolic system:

Ot + By Ay (u) + 0, As(u) = AB(u). (1)

Here u(xz,y,t) € £2, a domain of R¥, and AB = 92,B + 9},B. A and B are
smooth functions satisfying hyperbolic-parabolic COIldlthIlb for u € §2:

(C1) for all (&1,&2) € R? such that 7 + €3 = 1, the matrix & A (u) + & AL (u)
has real eigenvalues and is diagonalizable,

(C2) the real parts of the eigenvalues of B’(u) are non negative.

It is possible that B’(u) = 0 on a subset of {2 with nonzero measure. As a
particular case, the set of equations (15) can be a pure system of conservation
laws. Such systems arise in the context of multiphase flows in porous media.

There is a new interest for degenerate parabolic systems for a few years.
We refer the reader to the references in [1] for theoritical results and one-
dimensional or cartesian discretizations. In [3], a diffusive relaxation approxi-
mation is used to design a parallel algorithm. Multi-dimensional finite volume
schemes have been studied in [4, 8], with convergence results in some scalar
cases, see also references therein.

In [1] we proposed a discrete diffusive kinetic approximation to the sys-
tem (15). Numerical schemes on cartesian meshes were constructed. Here, we
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show that our framework also allows the design of finite volume schemes on
unstructured meshes and that the spatial discretizations can be computed
with explicit formulas. The obtained schemes are robust and easy to imple-
ment, even for complicated flux functions: they are Riemann solver free and
the formalism for systems is the same as for the scalar case. They are also very
flexible. Moreover, the solutions of those kinetic models have been rigorously
proved to converge to solutions of (15), in the scalar case as well as for some
systems, see [2, 7].

The plan of the paper is the following: in Sect. 2, we describe the kinetic
models and related stability conditions. In Sect. 4 we design the numerical
schemes. Sect. 4 is devoted to some numerical experiments.

2 Kinetic models

Let us consider the following system:
Off  ANDff + M2y f = 2 (Mi(u%) = ff), 1< LS N,
OtfRpm Y 0m102 fRim (2)

+'760-m28yf]€\]+m = é (%ZE) - fIEVij) , 1<m <3,

N+3
where u®(z,y,t) = Z ff(z,y,t), each ff and M, take values in RX ¢ is a
1=1

positive parameter, the A\;4 and 0,,4 are some fixed real constants, v* = u+%,
uw> 0,0 >0, and the o,,q are such that

3 3 3
Z Om10m2 = 0, Z Omd =0, Z o2.=1 d=12. (3)
m=1 m=1 m=1

Moreover, systems (15) and (2) are linked by the following compatibility con-
ditions, for all u € £2:

N N
Sy =u- 2B S ) = A a=12. @)
=1 =1

By analogy with the kinetic theory, M is called a maxwellian function. This
approach is based on the ideas of the relaxation approximation of conservation
laws [5], as well as on the ones of kinetic (BGK) schemes for compressible fluid
flows.

Let us denote

N 3
VS = NG AT Omifiim J =12 (5)
=1 m=1
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Then it is easy to prove that an equivalent formulation of system (2) is

1
Ouff + M0z f7 + Xi20y ff = - (My(u) — ff), 1<I<N,
Opu® + 0xvf + 0yv5 =0,

N 3
o5 + Z MM Oe ff 4 1 Z OmjTm10z [N 4m

=1 m=1
ad € 2 : £ 1
+ Z >\lj)\l28yfl + Z O'erijZany+m = g (Aj - Uj)
=1 m=1
1

3
(2p0VE +6%) > Omi(Om10n fipm + Om20y fiim)s §=1,2.

m=1
(6)
Suppose that the sequence f€ converges to some limit function f in a suitable
(strong) topology, then the limit function is a maxwellian state: f; = M;(u)
for I =1,...,N and fxym = B(u)/0% for m = 1,2,3, with u = Y012 f,.
Consequently, if v¢ converges to v, by the third equation of (6), we obtain:

3

v=A(u) — VB(u) ,

which proves that u is a weak solution of system (15).

Convergence has been proved rigorously in [2] for the scalar case, and
in [7] for some systems. A necessary condition for convergence is that M
is monotone: for all w € {2, the real parts of the eigenvalues of M/(u) are
non negative. This condition is also sufficient in the scalar case K = 1. The
monotonicity of M can be interpreted as a subcharacteristic condition. Let us
show it on an example.

Ezample

As already remarked in [5], flux vector splitting schemes for systems of con-
servation laws own a kinetic interpretation. They can be extended to more
general situations. Suppose that for all u € 2

Aj(u) = Aj'(u) — A (u), j=12

in such a way that the eigenvalues of (A;r)'(u) and (4;

We take A\ > 0, A\s > 0. We put

)(u) are non negative.

Af AS AT Ay
My="L, My="2, My="L, My=-"2
1 A] ) 2 )\2 ) 4 )\1 ) 5 )\2 )
and 3B(w)
u
M3(u) =Uu-— (Ml(u)+M2(u)+M4(u)+M5(u)) — 02

The characteristic velocities are
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A =\ 41,0,0,-1,0), A® =X,%0,1,0,0,—-1) .

The compatibility conditions (4) are satisfied. The maxwellian function is
monotone if the real parts of the eigenvalues of the matrix

(A () + (AD) (W) (A3 (w) + (A3) (w)  3B'(u)
A Ao 02

1

are non negative. This is a generalized subcharacteristic condition.

3 The numerical schemes

3.1 The Principle of the Method

The general idea is to construct a discretization of the BGK system (2). This
discretization depends on the parameter € in such a way that when ¢ tends
to zero, a consistent discretization of system (15) is obtained.

Taking U® = (ff,..., f%,u%,v°) as unknown, system (6) is equivalent to
(2) and can be written in the more synthetic form:

U + Mo, U + 0Po,U° = Q.(U%,0,U%,0,U*). (7)

The C® do not depend on &:

c@ = <Dmg Oiahisisw Z?d)) L d=12 (8)

The blocks D@ and (@ are detailed below.
Notations

We consider a computational domain V of R? composed of polygonal cells
C, which are either the elements of a mesh (triangles or quadrangles) or
constructed from these elements. The measure of C,, is denoted |C,|.

The (possibly variable) time step is denoted At and the discrete time levels
are to = 0 and ¢, 41 = t,, + At. The numerical solution of (15) at time ¢, is a
vector u™ = (u”),. Each u? is an approximation of the mean value of u(.,t,)
on the cell C,. At time tg = 0, if ug is the given initial value, we put

il

0

U = 7~ UO((E,y)d.’Edy
|Ca| Cy

As we want to approximate (6), we need for initial values for U. We take the
maxwellian states:

B(u?)
fl(fa = Ml(ug) ) fl%—&-m,a = 9204
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fori=1,...,N and m = 1,2,3. In view of (11), (4), (5), this gives

0 0
v, = A(uyg,) -
Suppose now that for some n > 0, an approximation U" of the relaxed
limit U of U*® is known.
We use a fractional step method. First, we solve on [t,,t,+1] the linear,
independant of € system associated to the left hand side:

2
U+ Cca,,U=0. (9)

d=1

We want to obtain an approximate value U™*1/2 at time t,,. This is possible
because we know that the linear system (9) is hyperbolic diagonalizable [1].
For all ¢ € R? such that &7 + ¢2 = 1, let us denote

Cu(§) =600 + &0,

It is highly desirable to know the eigenvalues of C, () analytically and we
show below that it is the case here. Consequently, we may easily design an
upwind (Godunov) scheme or a higher order extension:

. LY S
g1z — g o S leloUz, Ug, ne). (10)

CCCa,(i:Fag

Here we denote I, the part of the boundary of C,, which is common to the
cells C, and Cg, and n. is the unit normal pointing in the direction of Clj.
The function @ is the numerical flux approximating ﬁ fFug Cu(ne)Uds and

D= (Fp,...,Fn,V,Pni2,Prns) .

Then, with initial value U™/2 at time t,, we solve exactly the nonlinear
system related to the right hand side:

QU = Q.(U%,0,U%,0,U%). (11)

We proved in [1] that the obtained solution U¢(t,+1) has the following limit
Un+1 when € goes to zero:

wntl = 2l — A () 1< < N,
v+l = A(yntl) — VB(unth).
Hence, a discretization Vj,B(u) of VB(u) being given, we put:

un+1 _ un+1/27 fanrl _ Ml(u”+1), 1<1< ]\/’7
" = A" = v, B(u"h).
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The obtained scheme is a consistent discretization of system (15) which takes
the form:

At
unt = — N > eV Ug.ne)
@ eCCq,e=Iap (12)

ot = My (unth), 1=1,...

a)

va Tt = A(ug™) = (VaB(w)g ™

3.2 The effective schemes

In view of formulas (12), we need only for the V component of the numerical
flux and for VjB(u).

The latest can be obtained by several ways, depending on the type of finite
volumes. For instance, suppose that we use a vertex centered method where
the edges of the control volumes are the perpendicular bisectors of the edges
of the triangles. The (uq ) being given, one can construct the related P1
approximation of v on the primal mesh and then compute an approximation
of VB(u) on the control volumes.

Let us now show that we can compute V explicitly by Godunov’s scheme.
To that aim, we fix

1 _ 1

011 V2 012 \{6

- | - L N I O

021 - V2 ) 022 - 2\/6
031 0 032 7

Then the blocks of the matrix C,,(§) are given by:

Du,ll(g) =0, )
Dua(§) =& [N — &+ ’%2} +& [Au)\zz + “\//\g , 1l=1.....N

2
D,31(§) =& [ A2 + “\%1} +& {)\122 -5 - #\%2 ,

and
0 & &
S —Gap —E1p
2.O= 3 V6 6
Lo —&p Eop

3 V6 V6
The eigenvalues of this last matrix are aq(§) = — %(fg +&V3), ax(8) = fg%

and a3(§) = %(— &3 +&1V/3). Moreover, it turns out that the associated right
eigenvectors do not depend on £ and can be written as:

1

=

sl
s o -

I (p) =

SHSE =
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Hence, the matrix of right eigenvectors for C,,(§) is

1 ...1

@0 =) 7=

This allows us to write down explicitly the numerical fluxes. We denote £ the
outward normal vector to Cy on I,g, and A (§) = &1 i1 + {2 A2 Taking into
account the expression of U, and Ug as functions of u, and ug:

] =

V(Uou U,Byf) = [A;(S)Ml(uﬁ) + Af(g)Ml(ua)} + 'R(Ua, UB?&)?
= (13)
R(Ua:Up, &) = ) [07(&)2m,5 + a3 (§)2m.a]
m=1
with
21 = T s (0B + s (0, B
20 = 5t — 220, B(u))

2= B0 (0, B(u))n + Y (0, ().
Due to the compatibility conditions (4), the terms of the sum over [ in (13)
are a consistent approximation of the hyperbolic flux associated to A. Let us
point out the fact that (unusually) those terms depend generally also on B.
As an example, we now deal with a cartesian grid with elements C;; and
complete the expression of R in this case. We obtain (with obvious notations):

Rit1/25 = —35 [(0:B)iv1; + (0:B)ij] = g5 B(uir1;) — Bluij)]
_2%/5 [(ayB)z‘Jrl,j - (ayB)ij] )

Rijiyz = =5 [0yB)ijr + 20y B)ij) — 535 [B(uij+1) — Bluij)).

In these expressions the second and third terms are diffusion terms. As the
only condition on g is its positivity, we can make it tend to zero and then
suppress the second term.

The first term of R; 12 j provides a centered approximation of 92, B while
in the second expression, the first term provides a non-symmetric approxima-
tion of 8§yB .

Our method provides spatial discretizations. One can then modify the
related time discretization but this is out of the scope of this paper.

4 Numerical experiments

As the main difficulty here comes from the parabolic part of the problem,
we test our scheme on the porous media equation, which owns analytical
(Barenblatt) solutions. This is a nonlinear degenerate parabolic equation.



380 Denise Aregba-Driollet

We consider a cartesian grid and solve the one-dimensional porous media
equation in the direction X, making angle w/3 with the z—axis:

1
atu = 58?()('&2 .

The computational domain is [0, 1] x [0, 1]. The approximate and exact solu-
tions in the direction X are depicted in In Fig. 1. In the left, we take Az = 1/51
and Ay = 1/61, in the right, we take Az = 1/301 and Ay = 1/266. The results
are satisfactory and are confirmed by others tests.

computed  + computed  +
exact exact

Fig. 1. Two-dimensional computations on porous media equation.
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Summary. The purpose of this note is to review recent results by the authors on

the well-posedness of entropy and renormalized entropy solutions for anisotropic
doubly nonlinear degenerate parabolic equations.

1 Introduction

We are interested in the uniqueness of entropy and renormalized entropy so-
lutions of anisotropic doubly nonlinear degenerate parabolic problems:

atu+Za filu Za (|a AP &CiAi(u)) nQr. ()
U= o—uo 1n(2andu_00n (0,T) x 042,

where u(t,z) : Qr — R is the unknown function, Qr = (0,7) x £2, T > 0 is
a fixed time, 2 C R? is a bounded domain with smooth boundary 942, and
p;>1fori=1,...,d. We always asume that

A; € Lipioc(R), A;(+) is nondecreasing, A;(0)=0,i=1,...,d, (2)

and £(4) € Lipioc(R; RY) and £(0) = 0. (3)

In [2] we proved the uniqueness of entropy solutions of the problem (1). In
that paper we did not prove the existence of entropy solutions; This problem
still remains open, essentially bacause Minty’s argument does not apply to this
highly anisotropic problem. In this note we review instead recent progress on
the existence question for the following simplified anisotropic problem

8tu+28%fz Zam(w Au |’“—26MA(U)) nQr.
U= o—uo 1n(2andu—00n (0,T) x 042,

where A and f satisfy the assumptions (2) and (3) respectively.
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Global solutions of (1) and (4) are in general discontinuous and it is well-
known that discontinuous weak solutions are not uniquely determined by their
data. Consequently, it is more challenging to devise reasonable solution con-
cepts and to prove uniqueness/stability results.

Let us state a closely related problem, namely the following one containing
an “isotropic” second order operator:

Byu + divf(u) = div(|VA(u)|p*2 VA(u)) in Qr,

)
Ult=0 = up in 2 and u =0 on (0,T) x 012, ©)

where p > 1 and A(-) is a scalar nondecreasing Lipschitz function with A(0) =
0. Note that when p; = p # 2 and A; = A for all 4, the anisotropic problem
(1) does not coincide with (5) (but it does when p = 2).

When the data ug € L' N L*°, Igbida and Urbano [10] prove existence and
uniqueness results for weak solutions of the isotropic problem (5), under the
additional structure condition

f(u) = F(A(u)), for some Lipschitz function F': R — R%, F(0) = 0. (6)

Uniqueness of weak solutions is obtained by verifying that any weak solution is
also an entropy solution and then using the doubling of the variables approach
developed by Carrillo [6].

In this contribution we review recent results [1, 2, 3] by the authors on
a solution theory that avoids any structure condition like (6) and is able to
encompass the anisotropic problem (1). Carrillo’s approach (as used in [10]) is
a good one when the second order differential operator is isotropic. However, it
is not applicable to an anisotropic problem like (1). Recently, in [2, 3] we have
developed well-posedness theory based on a notion of entropy solutions for
the bounded (L>°) data case and a notion of renormalized entropy solutions
for the unbounded (L') data case. A similar theory can be found in [1] for the
Cauchy problem for the equation

Opu 4 div f(u) = div (a(u)Vu), a(u) = o(u)o(u)’,

where o(u) € LS (R; R¥K), 1 < K < d. The paper [1], which uses Kruzkov
approach, is inspired by Chen and Perthame [8] and their study of the same
equation using the kinetic approach. We recall that the notion of renormalized
solutions was introduced by DiPerna and Lions in the context of Boltzmann
equations [9]. This notion was then adapted to nonlinear elliptic and parabolic
equations with L' (or measure) data by various authors. We refer to [5] for
recent results in this context and relevant references. Bénilan, Carrillo, and
Wittbold [4] introduced a notion of renormalized entropy solutions for scalar
conservation laws in unbounded domains with L' data and proved the well-
posedness of such solutions (see [7] for bounded domains).

2 Entropy solution

For 1 <i < d, we set
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G = [ e =G ),

and for any ¢ € L® (R)

loc

V() = /0 O e ) = () w).

Definition 1. We call (n,q), withn: R — R and ¢ = (q1,...,qq4) : R — R,
an entropy-entropy flux pair if

neC*R), 7">0, ¢ =nf"
If, in addition,

n(0)=0,  7'(0)=0,  q(0)=0,
we call (n,q) a boundary entropy-entropy flux pair.

The following notion of an entropy solution is used in [2]:

Definition 2 (entropy solution). A entropy solution of (1) is a measurable
function u : Q7 — R satisfying the following conditions:

(D.1) uw € L*(Qr) and 0,,(;(u) € LPH(Qr) for anyi=1,...,d

(D.2) (interior entmpy condition) For any entropy-entropy flux pair (n,q),

I (u +Z<’9m gi(u Za ( ) |0, Ai(u)
= 1d

pi=2 8%.Ai(u))

Z w) 05, G ()P in D'([0,T) x 2). "
that is, for an; 0<¢eD(0,T) x £2),
| <n<u>at¢ - _zd;qxu)ax ¢
- Xd: 0 () [0, Ai (W)~ D, Ai(), ¢> dx dt
i=1
/ n(uo)(0, x) da > o, ;n” ) 0g, Ci(u) [P ¢ dex dt.
(8)

(D.3) (boundary entropy condition) For any boundary entropy-entropy fluz
pair (n,q) and for any 0 < ¢ € D([0,T) x £2), (8) holds.
(D.4) For any v € L2.(R),

[ (ouct@o+ ¢ won o) dedt =0, voeD(0.7) x )
Qr

fori=1,...,d.
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Remark 1. In the case A; = A for ¢ = 1,...,d, we can replace (D.4) by
A(u) € LP(0,T; W) P (£2)), where p = min (py, . . ., pq).

Remark 2. We will make repeated use of the following chain rule property. Let
u be an entropy solution to (1) and fix ¢ € L{S. (R). We have for a.e. t € (0,7),

loc

awlgzw(u(t’x)) = ¢(U(taff))5mi@(u(t7$))a (9)
for a.e. z € 2 and in LPi(2),i=1,...,d.

Remark 8. By the chain rule (9) we have for a.e. t € (0,T)

By, As(u(t, @) = (Al(ult,z))) 7 Dy, G (ult, z),

a.e. in 2 and in L? (2) N L*(£2), p, = pi/(pi — 1), so that by (D.1) there holds
0z, Ai(u) € LP1(Qr), i = 1,...,d. This also implies

|awal(u)|pl_2 811141(”) S Lp; (QT); p; = pp_l 1’

fori=1,...,d, and thus (8) makes sense.
In [2] we prove the following theorem:

Theorem 1 (uniqueness). Suppose (2) and (3) hold. Let uw and v be two
entropy solutions of (1) with nitial data uli—g = up € L°(2) and v|i=g =
vo € L®((£2), respectively. Then for a.e. t € (0,T)

/ (u(t,z) —v(t,x))" dr < / (up — vo)t da.
2 Q
The following existence result is proved in [3]:

Theorem 2 (existence). Suppose (2)-(3) hold. Let ug € L>°(§2). Then there
exists at least one entropy solution u of the problem (/).

3 Renormalized entropy solution

Let us recall the definition of the truncation function 7; : R — R at height

l > 0: _l, u < _l7
Tl(u) =y |u| <1 (10)
l, u > .

The following notion of an L! solution is suggested in [3]:

Definition 3 (renormalized entropy solution). A renormalized entropy
solution of (1) is a measurable function u : Qr — R satisfying the following
conditions:
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(D.1)u € L>(0,T; L*(RY)), 0,,6:(Ti(u)) € LP (Qr), i = 1,...,d, for any
[>0.

(D.2) For any l > 0 and any entropy-entropy fluz triple (@q), there exists a
nonnegative bounded Radon measure pj' on [0,T) x 2 such that

d
oL (w) + 3 0r,q:(Ti (w))

=1

d
=3 00 (W (Ti(0)) 10, As(Ti(w)
=1

PO, AT (w)))

Pyt in D([0,T) x £2).
(11)

d
< - Z 0" (Ti()) 02, Gi(Ti (u))

that is, for any 0 < ¢ € D([0,T) x §2),

d
/ <nm<u>>at¢+qumu))amqs

i=1
d

= >0 (Ti(w) |00, Ai(Ti(w))

=1
n / m(uo)m(o r) dz

/ S () 05,6 (T )

QT j=1

Pigdedt — / ¢ duj(t,z).
(12)

(D.3) For any boundary entropy-entropy flur pair (n,q) and for any 0 < ¢ €
D([0,T) x £2), (12) holds.
(D.4) For any ¢ € LS. (R),

| (0n @iy o+ ¢ (1) 91,0) dedt =0, ¥o € D(0,T) x )
T
fori=1,...,d.
(D.5) The total mass of the renormalization measure pj' vanishes as 1 T oo,
that is, limyyeo pj*([0,7) x £2) =0

Remark 4. Since Tj(u) € L>=(Qr), the integrals in (12) are well defined. More-
over, if a renormalized entropy solution u belongs to L (Qr), then it is also
an entropy solution in the sense of Definition 2 (let I T oo in of Definition 3).

Remark 5. The measure p; is supported on the set {|u| = I} and encode
information about the behavior of the “p;-energies“ on the set where |u| is
large. Condition (D.5) says that the p;-energies should be small for large values
of |ul, that is, the total mass of the measure p; should vanish as | — oo.
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The proof of the following results can be found in [3]:

Theorem 3 (uniqueness). Suppose conditions (2) and (3) hold. Let u and
v be two renormalized entropy solutions of (1) with initial data uli—o = ug €
LY(02) and v|i—o = vo € L*(£2), respectively. Then for a.e. t € (0,T)

/ (u(t,z) —v(t,2))" dx < / (up — vo)* da.

0 0

Theorem 4 (existence). Suppose (2)—(3) hold. Let ug € L*(£2). Then there
exists at least one renormalized entropy solution w of the problem (4).
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Summary. A multiresolution method for a one-dimensional strongly degenerate
parabolic equation modeling sedimentation-consolidation processes is introduced.
The method is based on the switch between central interpolation or exact evaluation
of the numerical flux combined with a thresholded wavelet transform applied to point
values of the solution to control the switch. A numerical example is presented.

1 Introduction

The multiresolution method has been devised to reduce the computational
cost of high resolution methods for conservation laws, whose solutions are
usually smooth on the major part of the computational domain but strongly
vary in small regions near discontinuities. The method adaptively concen-
trates computational effort on the latter regions. It goes back to Harten [§]
for conservation laws and was used in [2, 12] for parabolic equations.

In this contribution, we construct adaptive multiresolution schemes and
present numerical results for the strongly degenerate parabolic equation

ur + f(u)y = A(U) gz, (x,t) € Qr :=(0,L) x (0,77, (1)

where f,A : R — R are piecewise smooth and Lipschitz continuous, and
A(-) is nondecreasing. On intervals [a, 5] with A(u) = const. for all u €
[cr, 8], equation (1) degenerates into a conservation law. Equation (1) arises
from a sedimentation-consolidation model for suspensions [1]; see [5] for other
applications. Since A = 0 on u-intervals of positive length, (1) is called strongly
degenerate. Its solutions are in general discontinuous.

The multiresolution method reduces the number of exact flux evaluations
required by a high resolution scheme. To this purpose, point values or cell
averages of the numerical solution are defined on a hierarchical sequence of
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nested diadic meshes, where the initially given mesh is the finest. The sequence
of coefficients for all meshes forms the multiresolution representation of the
solution. Since multiresolution coefficients are small on smooth regions, data
can be compressed by thresholding, i.e. setting to zero those multiresolution
coefficients which are in absolute value smaller than a prescribed tolerance.

The multiresolution representation can be used to locate discontinuities
of the numerical solution, since multiresolution coefficients measure its local
regularity. Harten converted this idea [8] into a sensor to decide at which
fine-mesh positions fluxes should be exactly evaluated, or can otherwise be
obtained more cheaply by interpolation from coarser scales. Our multires-
olution scheme combines the switch between central interpolation and exact
evaluation of both convective and diffusive numerical fluxes with a thresholded
wavelet (multiresolution) transform applied to solution point values to con-
trol the switch. The first alternative is performed on smooth regions, while
the second applies near strong variations. Instead of calculating a wavelet
transform for cell averages as in [8], we use here the interpolatory framework
(point values) to analyze the smoothness of the solution. This slight change
improves the efficiency of the algorithm, since the multiresolution representa-
tion is cheaply obtained as in [9]. The efficiency of the multiresolution method
is measured in terms of the data compression rate and CPU time.

Our scheme can be extended to multidimensional problems by a multidi-
mensional wavelet transform [3] or by dimensional splitting (see e.g. [6]).

In this work, we consider the zero-flux initial-boundary value problem for
a bounded domain (2 := [0, L] with the conditions

w(z,0) =uo(z), z€2; f(u)—Au),=0, z€{0,L}, te(0,T]. (2)

Solutions of strongly degenerate parabolic PDEs are in general discontin-
uous and must be defined as entropy solutions. Recent works on the analysis
and numerics of these PDEs include [4, 10, 11], see [5] for further references.

2 The multiresolution scheme

Let (G°,G1,...,G%¢) denote a family of uniform nested grids on I := [a, b],
where G¥ := (zf,29,...,2%,), No = 2™, m € N is the finest resolution level,
and hg := (b—a)/No. The values of a functlon u on GO are the input data. The
remaining diadically coarsened grids are obtained as follows: given G*~1, we

obtain G* by removing the even-indexed grid pointb Therefore GF—1\ GF =

(:17’51 )=t N GFTINGF = G, and x = 1‘2J “Lfor 0 < j< N, =2mF,
kE=1,. L The representatlon of u on any coarser grld G',...,GF can
be obtamed directly from G°: u* u(;vk) = u(xgkj) = . for 0 < Jj < Ng.

To recover the representation of u on Gk ! from its representatlon on Gk we
need an interpolation operator Z(u”,x) of v on G* to obtaln approximations
for the missing points of G*¥~1. The function value at 5523 1 is obtained from

the (r — 1)-th degree polynomial interpolating (u* (R J+S 1). Therefore
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aIQCJ 11 :I(u $2J 1 Zﬁl Ujpi—1 +u] l) r = 2s, (3)
=1

with 8y =1/2 for r = 2 and 8; = 9/16, f2 = —1/16 for r = 4. The mterpola—

tion errors, known as details or wavelet coefficients, are d;“ = u% ! aZ]—l for
1 < j < Ng. Thus, from u* := (uf,uf,... uk ) and d* := (do,d cd ),

we can exactly recover the representation of u on G¥~!. The pair of vectors
(u¥,d¥) is the multiresolution representation of u*~1. Applymg successively
this procedure for 1 < k < L, we can recover the values of v on G° from its
values on G and the sequence of all details from levels L. to 1:

0o (dlaul) A (d13d27u2) A (d17d2a .. 'ach7uLC) =:Uum, (4)

where wuy is the multiresolution representation of u® = w. The details d*
contain information on the smoothness of u, and will be used to flag the
non-smooth parts of the solution in the adaptive numerical method.

Standard interpolation results imply that if v at a given point z has p — 1
continuous derivatives and a dlscontlnmty in its p-th derlvatlve then dk
(hg)P[uP)] for 0 < p < 7 and df ~ (hi)"u ™) for p > 7, for ¥ near x, where
7 :=r — 1 is the order of accuracy of the approximation and [-] denotes the
jump. Therefore \d’;j_l\ = 2*ﬁ|d§?|, if the k—th level is fine enough, where
P := min{p, 7}. Thus, away from discontinuities of u, the wavelet coefficients
d;? diminish as the levels of resolution become finer.

We see that near a discontinuity of the function, the wavelet coefficients
remain of the same size for all levels of refinement. Thus, data compression
and reduction of computational effort can be attained by discarding wavelet
coefficients that are smaller than a prescribed tolerance. This operation is
known as thresholding or truncation. To define it, let us denote by tr., the
hard thresholding operator with ¢; as threshold parameter:

5 0 if |d¥] < e

d* = tr., (d¥) = 1< j< Ny, 1<k<L. (5

J Ek( J) {df 1f|d?|>5k, J k ()
Consequently, iy := (d*, ..., d%, ule) is the thresholded multiresolution rep-

resentation. Let u° be the data recovered from 4. Harten proved in [8] that
[u®—u°|| < e1(e1+---+er,) < &, where the constant ¢; is independent of L.
Hence, given a tolerance €, we can compress data by truncating uy;. Clearly,
the actual compression rate depends on the chosen strategy (e1,...,eL1.).

In contrast to the evaluation on a sparse point representation [9], we evalu-
ate the differential operator on the uniform fine grid but adapt the manner of
flux computation to the significant coefficients of u°, as is done in [8, 2, 6]. This
strategy does not provide memory savings, but we have a better compression
rate, and consequently, a smaller number of exact flux evaluations.

Finally, the index set of significant coefficients in each time step, D™, needs
to capture the finite speed of propagation of information and the formation of
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shock waves. For this reason, Harten [8] proposed an algorithm to extend D™
after thresholding, including so-called safety points near positions associated
with significant details, which yields an extended index set D™. We here utilize
a version of Harten’s algorithm [8, Alg. (6.1)], see [5, Alg. 2.1] for details.

For the time discretization of u; = L(u) = —f(u), + A(u)z, Wwe use an
explicit 3-step third-order Runge-Kutta TVD (RKTVD) scheme [7]. A general
nrk-step explicit RKTVD scheme has the form

i—1
0 4
ol =g, ) =3 (agad? + AtgL; (D)), wrt =", (6)
k=0
i=1,...,nrk, where £;(u) contains the flux and diffusion terms. We distin-
guish between the interior operators L4, ..., Ln,—1 and the boundary opera-

tors Lo and Ly, , which include the boundary conditions.

Point values of the initial solution of (1) are given on a uniform fine grid
G, u; = u(x;), and the index set D" is considered already built. Then a
conservative semi-discrete scheme is given by

o(t) = Lo(u(t)) := —(Fij2 — Dy2) /A,
uj(t) = L (ut)) == —(Fj41/2 — Fj—1/2 — (Dj4172 — Dj—1/2)) Az, (7)
Uy (t) = Lng (u(t)) == (Fny—1/2 — Dny—1/2) /A,

where k = 1,..., Ny, u(t) := (uo(t),...,un,(t)), and the numerical fluxes
Fiﬂ /2 and Di+1 /2 contain the advective and diffusive terms, respectively.
Ifi e 5”, then we use a Lax-Friedrichs splitting [13] with a third-order
ENO interpolation for Fiy /2 and add a fine-grid finite difference of the dif-
fusion term. If ¢ ¢ D™ the numerical flux is approximated by interpolation
of fluxes previously evaluated on a coarser level. On our finite domain, the

interpolator (3) is replaced by ZU(F*, 335]4}3/2) ZI;J/16, where
5FY)y + 153, = 5F)y + Fy)s, J=0,

FL o._ L

Iy = —FF 1/2+9]+1/2+9]+3/2 FF /o j=1,...,N, —2,
F};k 7/2 —5F% 5/2+15FNFS/2+5F L1y F=Ne— 1L

By construction, all positions from the coarsest level L. are in D". There-
fore all fluxes on level L. are always exactly evaluated. The u-values required
for the flux computation are taken from the finest level, £ = 0.

The convective fluxes in (7) are given by FJr (f“')Z 12t (f~ )Z+1/2,
P =0, No — 1, where f*(u) = (F(us) + am)/2 and f-(u) = (F(ar) ~
aul)/Q for 0 § i < Np, where o := max, |f'(u)| [13] and (f+)z+1/2’ (f~ )z+1/2
are approximations obtained by the ENO interpolator of each splitting com-
ponent fT and f~, evaluated at cell boundaries. The diffusive fluxes at level k
are calculated by Dfﬂ/? = (A(ugki+1) A(udy,))/ Az

The stability condition is the same as that of the difference finite scheme on
the finest grid. i.e. CFL := max, | f’(u)|(At/Ar)+2max, |a(u)|(At/Ax?) < 1
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Since the ENO interpolator needs six points to search the least oscillatory
four-point stencil for the flux calculation, we extrapolate the solution across
the boundaries of I. We summarize the flux computation procedure as follows.

Algorithm 1

1. Compute F+1/2 and DEe i1/20 08 stated above, for i =0,...,Np_ —1.
2. dok=L,L.—1,...,1 (compute fluzes for all other levels)
doj=0,. Nk 1
k—1 k—
Fz j+1/2 g+1/27 Dz j+1/2 D]+1/2
if (j, k) € D" then (fluz/diffusion terms are computed explicitly)
Fk—1 fyk—1 f\k—1
F2j+3/2 - (f+)2j+3/2 +(f )2j+3/2
k-1 0 0
D2]+3/2 (A(“2k—1(2j+1)+1) — A(uge-s 2g+1)))/A91j
else (| flux/dzﬁusion terms are computed by interpolation)
Fk—1 k—1 k—1 LAk k-1
Fyiis)e —I" ( 2g+3/2) D2g+3/2 —I"(D ’x2j+3/2)
endif
enddo
enddo

The final multiresolution scheme for calculating the approximate solutions

w0, ... uN0 where N is the number of time steps, is the following algorithm.

Algorithm 2

1. Create the initial set of significant positions DO [5, Algorithm 2.1]

2.don=1,....N
ul?” <—u;0, j=0,...,N
dOZ—l,...,’nRK
dok=0,...,i—1
if B # 0 then
using uék), .. 553 as input data for Algorithm 1, calculate
Lo(u™) *( 12— J+1/2)/A$

Zj (u(k)) - _(Fj0+1/2 F0—1/2 - (D?H/z - ng/z))/ﬂx;
j=1,...,Ny—1,

L, (“(k)) - (FJ%O—I/Q - D?v0—1/2)/A37

endif
enddo
calculate u( D “5\72] by (6), with L; replaced by L;
enddo
u?‘“’o - u§”RK), j=0,...,No, compute uj;™",

determine D1 using [5, Alg. 2.1]; apply data compression to uf/ﬁ'l

enddo
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3 Sedimentation-consolidation processes

We limit ourselves here to batch settling of a suspension of initial concentra-
tion ug = up(z) in a column of height L, where ug(z) € [0, Umax] and Umax
is a maximum solids volume fraction. The relevant initial and boundary con-
ditions are (2). The unknown is the solids concentration u as a function of
time ¢ and depth x. The suspension is characterized by the hindered settling
function f(u) and the integrated diffusion coefficient A(u), which models the
sediment compressibility. The function f(u) is assumed to satisfy f(u) > 0
for u € (0, umax) and f(u) =0 for u < 0 and u > umax- A typical example is

f(u) = voou(l —u)% for u € (0, umax), C >0, f(u) =0 otherwise, (8)

where vo, > 0 is the settling velocity of a single particle in unbounded fluid.
Moreover, we have A(u) = [’ a(s)ds, where a(u) := f(u)oy(u)/(Aygu). Here,
A, > 0 is the solid-fluid density difference, g is the acceleration of gravity,
and of(u) is the derivative of the effective solid stress function o.(u). We
assume that the solid particles touch each other at a critical concentration
0 < ue < Umax, and that o.(u), ol (u) = 0 for u < u, and oe(u), ol (u) > 0 for
u > tc. This implies that a(u) = 0 for u < u,, such that for this application,
(1) is indeed strongly degenerate parabolic. A typical function is

Oo(u) = 0 for u < ue, ou(u) = oo(u/uc)? — 1] for u > ue, (9)

with 09 > 0 and 8 > 1. In our numerical example, the suspension is char-
acterized by the parameters vo, = 2.7 x 1074m/s, C = 21.5, Upax = 0.5,
o9 = 1.2Pa, u. = 0.07, 3 =5, A, = 1660kg/m?* and g = 9.81 m/s%.

4 Numerical results

We consider a suspension of concentration vy = 0.06 in a column of depth
L = 0.16 m. Figure 1 shows the numerical solution. The finest and coarsest
levels are Np := 2! and N, := 23, respectively. The thresholding strategy
iser =19 %1077 and ¢, = 2.99¢,_1 for k > 2. We used the parameters
CFL = 0.075, At = 0.0491898 h, Az = L/Ny and a final time ¢ = 4000s. The
CPU time for this simulation was 503 min (user time) against 1852 min when
all fluxes are calculated on G° without multiresolution. The example involves
the formation of a stationary type-change interface (the sediment level). Fig-
ure 1 also displays the grid positions of the significant wavelet coefficients of
the solution. The marked positions are the current elements of D™, at which
fluxes are evaluated explicitly. At unmarked positions, these terms have been
obtained by a simple cubic interpolation. Figure 1 illustrates how the scheme
concentrates significant multiresolution coefficients near the downwards prop-
agating shock (Figures 1 (a) and (b)), near the parabolic-hyperbolic type
change interface, and near x = 0 and = = L. Figure 2 shows the number of
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Fig. 1. Numerical solution to the batch settling problem, including significant po-
sitions of the wavelet coefficients of the solution per transformation level

significant wavelet coefficients of the solution in each time step of the simula-
tion and the corresponding compression rate Ny/#D". This simulation starts
from a very high compression rate, since the initial solution is constant all over
the domain, having a discontinuity near the boundary. As time evolves, the
solution varies rapidly, and through the multiresolution analysis, this causes
a variation of the density of significant positions.
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Summary. The aim of this paper is to collect some results concerning relaxation
limits of hyperbolic systems of balance laws toward parabolic equilibrium systems.
More precisely, we will discuss BGK approximations for strongly parabolic systems
in the case of weak solutions, by means of compensated compactness techniques.
Moreover, we will study the case of a semilinear relaxation approximation to a 2 x 2
hyperbolic-parabolic equilibrium system, with applications to viscoelasticity, in the
case of classical solutions in one and several space variables. The latter case will be
used as a case study to apply the modulated energy estimates.

1 Introduction

In this paper we collect some of the personal contribution to the theory of
diffusive relaxation limits [8, 4, 5].
We shall focus our attention firstly in the following BGK system

b 1
Ii+ <a(£)+\</?> o= E(Mfa —f9), (m,t8) eRxRt x =2

f(2,0;€) = fo(;6), (z;6) eR x =.

In (1), f¢ € RN, a, b€ L>®(Z) and M- is a function defined as follows

(1)

Mye = M(u®;¢,¢),

where M : U € RN x 5 x Rt — RY is a C? function with respect to u,
measurable and bounded with respect to & and

u (2, 1) = / F (.t €)de. ()
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The formal limit of (1) is given by the following system

3)

up + A(uw)y = B(t)ze, (2,t) € RxRT
U(IE,O) ZUO(I), z € R,
with u € RY and A : RV — R is a regular function, provided the function
M is a local Mazwellian (see the corresponding compatibility conditions in
Section 2). We shall assume the equilibrium system (3) is strongly parabolic,
that is B(u) verifies
VB(u)+ (VB(u))* >0 (4)

for any u € U C RY and ug € L*°(R). In [8], under additional conditions on
the Maxwellian, we proved the L stability of (1) and the strong convergence
in LY ., p <400, of u® given by (2) toward the distributional solution of (3),
by means of compensated compactness techniques.

The paper [4] is devoted to the study of the following semilinear hyperbolic
system with relaxation term

U — vy =0
Vg — 2, =0 (5)

€22y — vy = —z + o(u).

Clearly, the latter system reduces for € = 0 to

{ut—vmzo (6)

v — 0(U)y = Wga,

namely, an incompletely parabolic system, since the (constant) diffusion matrix
(8 2) is positive semidefinite. Using standard energy estimates, in [4] we

prove the strong convergence in L}, p > 2 of smooth solutions of (5) toward
smooth solutions of its limit (6), provided the relaxation term is globally
Lipschitz, namely
sup |0’ (u)| < 4o0. (7)
u€R
We emphasize that, due to the lack of parabolicity of the limit, the compen-
sated compactness techniques do not have a straightforward generalization
to this case. The only result of singular convergence toward a degenerate
parabolic equilibrium has been proved in [1], but it applies only for BGK sys-
tems approximating a scalar equation and our result is the first in the case
of an incompletely parabolic equilibrium. These results are summarized in
Section 3.
Finally, in Section 4 we present some preliminary results [5] concerning
the three-dimensional version of (5), namely
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atFia — 80/01' =0
90 — 0aSia =0 (8)
EatSia - ,U/aozvi = _Sia + Tia(F)a

where v;, ¢ = 1,...3 is the velocity of the motion, F;, and S;,, i,a =1,...3,
the deformation gradient and the stress tensor. In particular, we prove the L?
stability and convergence of its solutions toward the solutions of its equilib-
rium

atFia - 8o/Ui =0

9
atvi - aaﬂa(F) - ,LLaaaan ( )

in the smooth regime and for polyconvex stored energy, that is for

0
_aFia

Tia(F) W(F)
and the equilibrium internal energy W (F') a convex function of the minors of
the matrix F', namely

W (F) = g(B(F)), &(F):= (F,cof F,det F),

with ¢ = g(F,Z,w) = g(A) a convex function of A € R. To apply the
modulated energy technique, we rewrite system (8) as an approximation via
the wave operator

8tFm — 8avi =0

(10)
8tv¢ — 8aTm(F) = u@oﬁavi — 882111'
and we correct the energy of (9) by higher order contributions of acoustic
waves, in such a way the resulting energy dissipates along the relaxation
process. This method has been successfully applied in [9] for the hyperbolic—
hyperbolic stress relaxation limit of (8) or (10), namely for u = fie.

There is a wide literature of papers concerning the study of nonhomoge-
neous hyperbolic system with an underlying parabolic behavior. Among all,
we recall the papers of Kurtz [7] and McKean [11], where for the first time this
feature for hyperbolic systems has been put into evidence. Then, we recall the
papers of Marcati with various collaborators (see [12, 6] and the references
therein), where the above scaling has been used for different systems and the
convergence has been obtained for weak solutions with the aid of the com-
pensated compactness. In the framework of Boltzmann kinetic models with a
finite number of velocities, we recall the paper of Lions and Toscani [10], where
the same parabolic behavior has been pointed out, proving in particular the
convergence toward the porous media equation. Finally, we recall the paper of
Brenier, Natalini and Puel [2], where modulated energy techniques have been
used in the diffusive relaxation for the incompressible Navier—Stokes equation.
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2 BGK approximation of strongly parabolic systems

In this section we review the results of [8] concerning BGK approximation
of the form (1) for equilibrium systems (3) which are strongly parabolic in
the sense of (1) for any u € U C RY and with L* initial datum. In (1), u*
is given by (2) and the Maxwellian M- = M (u®;&,¢) verifies the following
compatibility conditions:

/5 M(w; €, e)d§ = w, K <a(§) + bfg) M(w;€,¢)dé = A(w),

1

[ w2 artws e, epde = B,

for any w € U and € € (0,1] and M (w;&,e) — M(w;§,0) as € | 0, uniformly
inw € U, ae. in & We shall prove the convergence of the approximating
sequence u® by means of compensated compactness [3]. Thus, we shall first
obtain the stability of this approximating sequence in L°° and the control of
its deviation from the equilibrium manifold, namely the difference M — f*.
The former property can be proved in the context of Maxwellian functions
independent from e and under appropriate assumptions (see [8] for details).
Since here we focus our attention only in the rigorous proof of the relaxation
limit, we put ourselves in the following framework [8]:

(Hy) the function M are Maxwellians such that, for any ¢ € (0,1], a.e. in
& M(€€) : U — U . are global diffeomorphisms and U, Ue . are com-
pact, convex sets. Moreover, f(z,t;€) is a global-in-time solution of (1),
uniformly bounded, such that f¢: R x RT — F¢;

(Hz) there exist a function F: U — R¥ and a positive constant «, indepen-
dent from ¢, such that the matrix (VM)* VF is symmetric and it verifies
(VM)*VF > a >0, for any u € U, for any € € (0,1], a.e. in £.

Condition (Hy) implies u® € U, namely, the desired L stability, and condi-
tion (Hz), together with an appropriate finite—energy condition for fo(x;¢),
gives the L? control of the relaxation limit, that is | M- — f5||L2(RX[07T]X5) =
O(V/¢), for any fixed T' > 0. We the aid of this estimate and thanks to compen-
sated compactness, we obtain the strong convergence of the relaxation limit
as follows [8].

Theorem 1. Let hypotheses (Hy) and (Hz) hold. Then, if the initial data
fo(z; &) wverifies an appropriate integrability condition, u®* — wu strongly in
LY (R x RT) for any p < +oo, where u(x,t) verifies (3) in the sense of
distributions.

The crucial part in the proof of the previous theorem is the reformulation of

the BGK model as the non—closed system of the first two moments of f¢
uj +vg = O

1~ 1
v + 25 + \[wx + BE == = (A(u®) —v°),
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where

¥ = /_ a?(€)f2(€)ds, w* = / a(€)b(E) f*(&)dE, B =

b (€) 5 (€)d.

T

Then, the above L? estimate implies that the deviation of that system from
(3) is compact in a negative Sobolev space, which allows us to apply the
compensated compactness techniques.

3 One—dimensional semilinear model in viscoelasticity

This section is devoted to the study of the one-dimensional model (5)
and its relaxation limit toward the incompletely parabolic equilibrium sys-
tem (6) [4]. It is worth observing that this relaxation limit can be viewed
as the passage from a model of viscoelasticity with memory to a model
of viscoelasticity of the rate type. Indeed, the stress z in (5) is given by
z=tyu— fioo E%e_ta;; (4u—o(u)) ()dr, while in the limit (6), it becomes
2 = o(u) + pv,. We shall prove the H'! stability of solutions to the semilinear
system (5) by means of standard energy estimates, which in turns implies the
global existence of these solutions and their strong convergence in L} . for
any p > 2 [d].

Theorem 2. Let (ue,ve, 2:)(x,t) be the solution to (5) with initial condition
(u,v,2)(-,0) € HY(R). Suppose that the function o satisfies condition (7).
Then, the following inequality holds for any t >0

t
|z ()3 gy + [lue ()1 F ) + llv=(0) 17wy +/0 12 () 17y ds
< (2120 s g + 14(0) s gy + 0O s gy €, (1)

where C is a positive constant depending only on sup |0’ (u)|. In particular,
u€eR

u: — u, e — v strongly in LY ([0,T] xR), for any 2 < p < +o0, and (u,v)

is the solution of (6) with (u,v)(-,0) as nitial condition.

Proof (Sketch). The system (5) admits a symmetrizer, which is positive defi-
nite for small values of €, namely

£ 0
=0 4-
-1 0

-1
10
1

Hence, denoting with W*¢ the (column) vector of the solutions (ue, ve, 2¢), we
define the energy

+oo
EE(We) = (BEW67W€)L2(R) = / L%ug — QU ze + (6% — 1) v? 4 zf} dx

— 00
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and we obtain (11) from the energy estimates for £ (W¢) and £° (W3).

The last part of the theorem comes from standard compactness arguments
and form the uniqueness of the solutions of (6). n
Finally, let u®,v®, 25 be solutions of (5) with initial data u§, v§, z5 € H'(R)
and (u,v) be solutions of (6) with initial data ug, v9 € H?(R). Then the
differences @ = u® —u, v =v° — v, Z = 2° — z, z = o(u) + pv,, satisfies

Uy — Ty =0
Ty —Zy =0
T — ATy =—2— & [2 —(c(@+u) — o(u))] .

15 €

The above system has the same principal part of (5) and therefore we can
repeat the arguments of Theorem 2 to control directly the differences w, v
and Z in L? and justify the relaxation limit, for well-prepared initial data,
that is for |lug — uollr2(r) + |v§ — vollL2(r) +€ll2§ — 20llz2®) — O as e | 0.

4 Multidimensional viscoelasticity and modulated energy

In this section we examine the three-dimensional model (10) by means of
modulated energy techniques. Indeed, we shall prove that, for ¢ < 1, the
following high—order energy gives a natural tool to control the relaxation limit

1 1 1
En = 5 (|v|2 + |F|2) + ev;0pv; + 552/\|5‘tv|2 + 56)\,LL|VQ”U|2 + X0 Tin (F).

Theorem 3. Any smooth solution of (8) verifies

at‘cf’rn - aoc [UiT’ia(F) + M’Uiaavi + EAuatUiaavi + EAatviT‘ia(F)]
0T (F)

2 J— .
+ (uvav| eNOLY; 9F,,

851)]) +e(A = 1)|0:0|* = 00vi(Fio — Tia(F)),
(12)
where X\ is an arbitrary constant.
Moreover, if VpT(F) = V%W (F) < I'I for any F, then, fore < eo(p, I'),
() = / (IO + | F (2, )2 + 200, DI + el Vav(e, ) )dw < O(T),
R3

(13)
for any t € [0,T7.

Proof (Sketch). We multiply (10); by Fj, and (10)2 by v; to obtain
1
Oy {2 (\F\Z + \U\Z) + €'Uiatvi:| — 0 [Ty (F) + 1:000i] + p|Vav|? — |dyv]?

= 9,01(Fio — Tia(F)). (14)
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The above relation does not give a coercive energy which dissipates along the
relaxation and we need to correct it with an higher order acoustic energy. To
this end, we multiply (10)2 by eAd;v; and we have

1
8155 [€2 M0 *+e M|V ov|*] =00 [eEARO ;00 v5])+EN0p0]* —eXNDyv;06 Tin (F) = 0.
(15)
We interchange the ¢ and x derivatives in the last term of (15) as follows
—88{1]1‘6@Tia (F) = —saav,»atTw (F) + s@t [6anTia (F)] — a&a [@viTm (F)]
oT,

a0 2T b ) OuviTin (F)] — £0a[000iTi(F)
aFjg

and we sum the resulting identity to (6) to obtain (12).
Moreover, if e < min{%, £z} and A\ > 1 is properly chosen, we have

<,u|Vav|2 - €>\8QU¢6?:;®35U]') > 0(1)|Vaul?, / Em = O(L)3(2).
iB R3

Thus, the Gronwall Lemma implies (13), that is, the L? stability of the relax-
ation process for smooth solutions of (8). "

Finally, we can repeat the above arguments to control the relative modulate
energy

1 . 1
Em =5 (|v Gt |F - F|2) 205 = 0)9: (0 = ) + 52N 0h (v = 9)

+ %nga(u —0)[> 4+ e (vi — 0:)(Tia (F) — Tia(F))

between smooth solutions (F,v) of (10) and smooth solutions (F',?) of its
equilibrium (9). The resulting estimate reads as follows
OiErm — Oal(vi = 0)(Tia(F) — Tia(F)) + pu(v; — 0;)8a (v — 0;)
+ eMudy (v; — ;)00 (vi — T3) + eXO (Vs — B;) (Tia (F) — Ty (F))]

# (11l =9 = 220 0= 5 T2 000, -5,

+e(A=1D)[0(v - )I
= 0a(vi = 0)(Fia = Fia = (Tia(F)) = Tia(F)))
— E@t 1}1‘(1}1‘ — Ui) — & )\626,‘875(1)1' — i}\l)

4 END, ( Z) (aTwc( ) 8Tza(ﬁ)> atﬁjﬁ,

O0F}3 O0F}3

which has the same structure of (12).
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Thus, proceeding as before, we obtain the rigorous justification in L? of
the relaxation limit in the regime of smooth solutions and for well-prepared
initial data, that is for ¢4(0) — 0 as € | 0, where

vat)i= [ (lo=3P +1F = FP + 0,0~ D + 2|Valo - 9 )
R3

Remark 1. It is worth to observe that the lack of convexity of the stored energy
W (F) does not play any role in the present relaxation limit. This is due to the
fact that, thanks to the (partial) diffusion present in the limit, it is possible to
construct the modulated energy &, (and the relative modulated energy &,.,,)
multiplying (10); by Fi, instead of Tio(F'). In this way we obtain a coercive
energy disregarding the nature of W(F') and the extra error we produce is
indeed controlled in terms of || F||z2 and ||Vav|| 2.
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Summary. It has been shown that the equation of diffusion, linear and nonlinear,
can be obtained in a suitable scaling limit by a two-velocity model of the Boltz-
mann equation [7] . Several numerical approximations were introduced in order to
discretize the corresponding multiscale hyperbolic systems [8, 1, 4]. In the present
work we consider relaxed approximations for multiscale kinetic systems with asymp-
totic state represented by nonlinear diffusion equations. The schemes are based on
a relaxation approximation that permits to reduce the second order diffusion equa-
tions to first order semi-linear hyperbolic systems with stiff terms. The numerical
passage from the relaxation system to the nonlinear diffusion equation is realized
by using semi-implicit time discretization combined with ENO schemes and central
differences in space. Finally, parallel algorithms are developed and their performance
evaluated. Application to porous media equations in one and two space dimensions
are presented.

1 Relaxation approximation of nonlinear diffusion

The main aim of this work is to approximate solutions of a nonlinear, degen-

erate parabolic equation
Ju

o = Alg(w) (1)

forzreRcRe d>1, t> 0, with suitable boundary conditions and initial
condition u(x,0) = ug(z), where g is a non-decreasing Lipschitz continuous
function on R, the degenerate case corresponding to g(0) = 0. This framework
is so general that it includes the porous medium equation and the Stefan
problem as well as a wide class of mildly nonlinear parabolic equations. Using
the same idea which is at the basis of the well-known relaxation schemes for
hyperbolic conservation laws [5], it is possible to develop stable numerical
schemes for diffusion and for transport reaction-diffusion equations. In the
case of the nonlinear diffusion operator, by introducing an additional variable
v(z,t) € R? and the positive parameter €, we have the following relaxation
system
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{ 9u 4 div(v) =0

4+ 1vg(u) = —1v

(2)

Formally, in the small relaxation limit, € — 07, the system (2) approximates to
leading order equation (1). In order to have a non singular transport operator,
by using a suitable parameter ¢ we can rewrite system (2) as

{ g 4 div(v) =0

3
%‘t, + &*Vg(u) = —1v+ (#? — 1) Vg(u) (3)

Then, using an auxiliary variable w(z,t) € R we get

9u 4 div(v) =0
XL PV =—1v+ (92— 1) Vuw (4)
G +div(v) = —L(w — g(u))

In the previous systems the parameter ¢ has physical dimensions of a time
and represents the relaxation time, i.e. the characteristic time to reach the
equilibrium point in the evolution of the variable v governed by the stiff sec-
ond equation of (4). For consistency, w has the same dimensions as u, while
each component of v has the dimension of u times a velocity; finally @ is a ve-
locity. Equations (4) form a semilinear hyperbolic system with characteristic
velocities 0, +@. The parameter @ allows the use of this system with non-stiff
velocities (in fact, when @ = 0 these velocities are instead 0,41).

One of the main advantages of this approach resides in the semilinearity of the
system, that is all the nonlinearities are in the (stiff) source terms, while the
differential operator is linear. Moreover we point out that degenerate parabolic
equations often model physical situations with free boundaries or discontinu-
ities: we expect that schemes for hyperbolic systems will be able to reproduce
faithfully these details of the solution. Finally, the relaxation approximation
does not exploit the form of the nonlinear function g and hence it gives rise
to a numerical scheme that, to a large extent, is independent of it, resulting
in a very versatile tool.

In the following section we will describe the scheme that we used to integrate
the relaxed version of (4), i.e. when € = 0, and we will discuss its properties.
Numerical results for 1D and 2D cases will be presented in section 3 together
with the performance of the parallel implementation.

2 The numerical scheme

For simplicity, we will consider a regular rectangular grid on R?. For d = 1
this consists of a set of equally spaced grid points x;;1/2, i = ..., —1,0,1,...,
with uniform mesh width Az = x;,1/5 —2;_1/2. When d > 1, we consider the
obvious generalization and ¢ will represent a multi-index of d integers. The
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discrete time levels t" for n = 0,1,2,... (t° = 0) are also spaced uniformly
with time step At. As usual we denote by U;* the approximate value of U at
the centre of the cell [xi,l/g, xiH/Q] at time t". The spatial discretization of
the relaxation system and the corresponding numerical fluxes is realized here
by using ENO techniques [10]. This allows us to get highly accurate spatial
reconstruction of the solution. The resulting semi-discrete approximation of
(4) is of the form

8Zi (t
ot ) + F(zi—r<t)7 R Zi-‘rS(t)) = G(Zi—T(t)’ R Zi-‘rS(t)) (5)
where z denotes the collection (u, vy, ...,vq, w) of all the variables appearing

in (4) and the stencil used for approximating z; is r+ s+ 1 points wide. In (5),
F' is a discretization of the linear differential operator appearing on the left
hand side of (4), while G is a discretization of the non-linear and stiff source
terms of (4).

In order to avoid severe restrictions on the time step, we need to couple this
high order in space scheme with a time integrator of equal accuracy. More-
over, due to the structure of (5) sketched above, we wish to treat implicitly
the time integration of G, which is stiff, and explicitly the one of F', which
is linear. This is achieved with IMEX schemes tailored to relaxation systems
(2, 9].

Numerical tests [5, 8] suggest that the difference between the results obtained
with € < 1 and those with € = 0 are negligible. However the relaxed scheme
(with € = 0) gives immediately the projection of the solution onto the equi-
librium state in the relaxation step; hence it is simpler to implement. For this
reason we consider here only the relaxed scheme.

2.1 Implicit relaxed step

The structure of the system to be solved implicitly is of particular importance.
By using simply the backward Euler formula, the values (ul(»l), vgl),wgl)) of

the solutions of the system z; = G(z) with initial data (u}, v}, w]’) may be
computed by solving

1) _.n

ut—y"
At =0

(1) n (1) o

vt —v™ _ _w 2 1 (1)
At - € + (Q5 e) Vw

w® ™ _w(l)_g(u(l))
At - €

where we have suppressed the spatial index ¢ for clarity and V is a suitable
discretization of the spatial gradient. Formally, in the limit ¢ — 0%, this
reduces to

u® =y, W = —ve® ™ = g(u(l)). (6)

We note here that the first equation is immediately solved and the remaining
two decouple. Hence even in the implicit step, we do not need an implicit
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solver. Up to second order precision is space, the usual 3-point central dif-
ference approximation of the derivative is suitable. For degree 3 and 4 one
needs however the 5-point approximation or otherwise the quality of the solu-
tion and rate of convergence is degraded. Formula (6) represent the relaxation
step of our relaxed schemes.

2.2 Explicit step

For each explicit step of the IMEX scheme one has to advance from time ¢"
to time t"T! the system z; + F(z) =0, i.e.

u 010 u
g v +§ 0082 | [v] =0 (7)
t\w T \o10/) \w

with initial data set to the values (u(.l) oM M

;v ,w;’) obtained from the relax-
ation step, as described previously. The characteristic variables U, V, W move
at speed @, —® and 0 respectively. By changing variables to diagonalize the
system we need to reconstruct via ENO only the two fields U(z) and V(x)
and calculate the corresponding numerical fluxes.

In two space dimensions, the above system generalizes as

U 0100 u 0100 U

0 'U(l) 0 000@2 ’U(l) 0 000 O ’U(l) o
9 |ve | Tar {0000 | [ | Ty [000@ | |ug |0 ©
w 0100 w 0100 w

where v = (v(1),v(2)) and similarly in higher dimensions. We note that only

one of the fields v(;) appear in the differential operator along the it direction.
One may then calculate the fluxes separately for each spatial direction by us-
ing the aforementioned ENO reconstructions on the fields v fori =1,...,d.
In order to analyse some stability properties of the scheme we consider the lin-
ear case g(u) = u. Moreover we adopt the simplest IMEX scheme represented
by the combination of a backward Euler timestep for z; = G(z) followed by a
forward Euler timestep for z:+F(z) = 0. For example when F is approximated
with upwind fluxes and linear reconstructions and the spatial derivative in G
with the central differences formula, this results in a scheme for the variable
u for which a simple Von Neumann analysis reveals the necessity of a CFL
condition of the form At ~ CAx? with the numerical estimate C' < 0.875 for
the constant C. In Figure 1 we show an example of stability regions obtained
with the Von Neumann analysis cited above.

3 Numerical results

As a numerical test we consider the porous media equation, which corresponds
to the choice g(u) = u? in (1) and we use relaxed schemes, i.e. € = 0. We adopt
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Fig. 1. An example of the stability regions for linear diffusion, g(u) = u.

periodic boundary conditions but more general boundary conditions may be
easily implemented. In order to perform some test for the accuracy of the
proposed schemes we consider numerical solutions in comparison with the
exact 2D Barenblatt solution. The contour plot of the numerical solution at
time T = 2 with 200 x 200 grid points is given in In Figure 3 we show the

Fig. 2. Contour plot of the numerical solution for porous media equation.

behaviour of the free boundary, points for the passage from positive to zero
value, of the numerical solution and of the Barenblatt solution. In Figure 3 the
continuous line represents the exact solution, while the stars are the numerical
front. The error between the true front and the approximate front appears of
order Az (the dashed line is at distance Az from the exact front).

3.1 Parallel code

The parallel implementation has been realized through a decomposition of
the computational domain by a balanced subdivision of the nodes among the
processors set at the beginning of the program. Each processor solves its local
problem, using MPI communications to get the boundary data needed. Since
both the ENO subroutines and the program to solve (1) with the relaxed
scheme do not involve nonlinear solvers of any kind (see Section 3), we expect
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*  numerical
exact
36 — — —exact +dx

free boundary position
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time

Fig. 3. Approximation of the free boundary with 200 grid points along a cross
section.

a linear scaling of the solution time with the number of processors. For porta-
bility and easy extension, both the ENO library and the program are written
exploiting the PETSC libraries In Figure 4 we report the scaling plot for our
parallel code. The algorithm shows a good, almost linear, scaling behaviour,

Scaling on the cluster ULISSE

u
g
> N\

Mflops/sec
&

175
150 .
125 7
1 /

75

T2 s 4 5 s 7 s

Number of processors
Fig. 4. Scaling of the parallel code on a Linux cluster with 72 Intel Xeon proces-
sors. When the subproblems assigned to each processor become too small, the time

spent exchanging MPI messages among the processors become predominant and the
overhead of MPI communications shows up as reduced speedup on the smaller grid.

until the subproblems assigned to each processor become too small and MPI
communications slow the code down.

3.2 Comparison with another method

We compared our numerical results with those obtained with a linear method
proposed and studied, among others, by Berger, Brezis, Rogers [3] and by
Magenes, Nochetto and Verdi [7]. Their method is based on the non-linear
Chernoff formula and it does not give an explicit formula for the solution,
which is instead found by solving a linear problem. It is thus more costly then
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Fig. 5. Comparison of two numerical solutions of the porous media equation ob-
tained with the relaxation and the BBRMNV method, together with the exact
Barenblatt solution. 100 grid points were used. We show particulars of the areas
around the maximum point (left hand figure) and around the moving front (right
hand figure).

N |[BBRMNV [rel

100 [4.21e-3 2.75¢-3
200 | 7.73c-4 2.58¢-4
400 |1.98¢-4 6.51c-5 .
800 |5.05¢-5 1.83¢-5

X
0w

Jox
,

Fig. 6. Comparison of the 1-norm of the error of the relaxation and the BBRMNV
method. The exact Barenblatt solution at time ¢ = 2 was used as reference to
compute the errors. The dotted line is a reference decay of second order.

our method where only matrix-vector products are needed. In the following we
refer to this method as the BBRMNV method. In Figure 5 we present a com-
parison of two numerical solutions of the porous medium equation (g(u) = u?)
and the exact self-similar solution due to Barenblatt. The final time of all the
simulations is 7' = 2. One may see that the higher numerical diffusion of the
BBRMNYV method shows up both as a lesser accuracy in the neighbourhood
of the maximum at x = 0 and as a lower precision in the neighbourhood of the
front. The solution represented by dots in Figure 5 was obtained with the re-
laxation method described in this paper, using spatial ENO reconstructions of
degree 2 and an IMEX timestepping procedure with the same accuracy. Both
methods under comparison are of second order, as shown by the table and the
plot of the 1-norm of the error against the number of grid points that is shown
in Figure 6. In any case we point out that the BBRMNYV method, however,
has been studied more extensively than our technique based on relaxation
and adaptive versions should now be implementable. Finally, both methods
are easily generalizable to different functions g(u) and also to equations of the
form uy — A(g(u)) = f.
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4 Concluding remarks

In this work we briefly described a class of relaxed schemes for nonlinear and
degenerate diffusion problems in any space dimension and in a rectangular
domain. Using suitable relaxation approximation we are able to formulate
a general diffusion equation into the form of a semilinear system. Then we
coupled ENO schemes and IMEX approach for spatial and, respectively, time
discretization. We can develop high order methods and we proposed a “black-
box” scheme: it does not exploit the form of nonlinear term g(u) for the so-
lution. Moreover, in this scheme we avoid the use of nonlinear solvers and, in
the relaxed IMEX version, we don’t need solvers at all. The numerical meth-
ods can be easily extended from 1D to higher dimensions and parallelized. A
comparison with another method is also shown and differences in computa-
tional cost and accuracy are outlined. In forthcoming works we will perform
theoretical study of the stability of relaxed schemes in the nonlinear case and
we will explore the possibility to introduce non structured (rectangular) grids
near fronts. Finally, the parallel implementation of WENO reconstructions
are under study with interesting preliminary numerical results.
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Summary. In this communication, presented in the minisymposium on Degener-
ated Parabolic Equations, we are interested in the mathematical analysis of a strati-
graphic model concerning geologic basin formation. Firstly, we present the physical
model and the mathematical formulation, which lead to an original degenerated
parabolic - hyperbolic conservation law. Then, the definition of a solution and some
mathematical tools in order to resolve the problem are given. At last, we present
numerical illustrations in the 1 — D case and we give some open problems.

1 Introduction and presentation of the model

In this paper, we are interested in the mathematical study of a stratigraphic
model. It concerns geologic basin formation by the way of erosion and sedi-
mentation and leads to mathematical questions within the framework of de-
generated parabolic - hyperbolic free-boundary problems.

By taking into account large scale in time and space and by knowing
a priori, the tectonics, the eustatism and the sediments flux at the basin
boundary, the model has to state about the transport of sediments.

Let us consider in the sequel a sedimentary basin with base {2 considered
as a smooth, bounded domain in R? (d = 1,2); for any positive T, note
Q@ =]0,T[x {2 and denote by u the topography of the basin.

Then, the model proposed initially by R. Eymard et al. [4] and D. Granjeon
et al. [6] is based on two considerations:

i) In the meaning of Darcy, the sediments flux ¢ is assumed to be pro-
portional to Vu,

and

ii) the erosion speed, d;u in its nonpositive part, is underestimated by —F,
where F is a given nonnegative bounded measurable function in @ (a weath-
ering limited process depending on the climate and the age of the sediments):
i.e. eu+ E >0 a.e. in Q.

In order to join together the constraint and a conservative formulation, D.
Granjeon et al. propose in [6] to correct the diffusive flux —Vu by introducing
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a dimensionless multiplier A. One gets a new definition of the flux, given by
—AVu, where X is an unknown function with values a priori in [0, 1].

In order to simplify this academic study, one considers in the sequel homo-
geneous Dirichlet conditions on the boundary I'. Therefore, the mathematical
modelling has to express respectively:

the mass balance of the sediment: d;u — div(A\Vu) =0 in @, (1)
the boundary condition: u =0 on ]0,T[xI, (2)
the moving obstacle condition: dyu > —E in @, (3)
the initial condition: u(0,.) =ug in £2, (4)

where g is assumed to be in Hg (£2) N L>(£2).

In order to give a mathematical modelling of A\, R. Eymard et al. propose
in [4] to consider the following global constraint:

Ou+E>0, 1-X>0 and (Qu+E)(1—A)=0 inQ. (5)

It means that if the erosion rate constraint is inactive, the flux is equal to the
diffusive one. Obviously, the boundary of the set {(¢,2) € Q, A = 1} is a free
one and such a constraint (5) is non standard.

Then S. N. Antontsev et al. in [1, 2], G. Gagneux et al. in [5] and G.
Vallet [7] propose the following original conservative formulation that contains
implicitly the constraint (5): If H denotes the maximal monotone graph of
the Heaviside function, then (u, A) is formally a solution to:

0= 0w — div(A\Vu) where A€ H(Oiu+ FE) inQ. (6)
In other words, since H is a graph, one considers the differential inclusion:
0 € dyu — div{H(dyu + E)Vu} inQ.

Let us give a remark on the equation: 0 = Jyu — div{a(@tu)Vu}, where,
for example, a is assumed to be a continuous function such that a(xz) = 0 if
x <0 and 0 < a(z) <1 for any positive real x with a(z) = 1 for any x > 1
(imagine a continuous approximation of the heaviside function H).

2 A locally hyperbolic behaviour

Note that informally, 0 = d,u — {a'(Ou)Vu}VIu — a(dyu)Au. Thus, the

’ 2
discriminant A satisfies —M < 0 and the equation is of degenerated

hyperbolic type on free boundaries since A may vanish if o’'(0;u) = 0 or
Vu = 0 in a non-negligible £1 subset in Q.

Let us illustrate this remark by considering travelling-wave solutions of
equation
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O = 0, {a(Ou)dpu}, x € 2 =] —1,1]. (7)
For any real &, let us note f(£) = €a(€), and consider 3 = f~1 in 0, +o0],

Y
B(s) = 0if s < 0 and B(y) = f;}* Xz,
Then, if one assumes that fol % < 400, y = B7! is a global classical

solution to the ordinary differential equation

y =B(55) R FIv= y(0)=0 (8)

such that y(&) > 0 for any positive &.

Remark 1. Note that the hypothesis fol % < 400 is really observed in prac-
tice when a(r) = min(kz®,1) in RT for any positive o and k.

Then, for any positive A\, u(t,z) = y(t+ Az) is a travelling-wave solution to
(7) for the initial datum given by ug(x) = y(Ax) and the boundary conditions

u(t,—1) =yt —XN) and wu(t,1)=y(t+ A).

At last, note that ug(z) = 0 in ] — 1,0] and that u possesses the property of
finite speed of propagation (from nonzero disturbances) in the following sense:

u(z,t) =0, - < —z <1

> =+

3 Definition of a solution and existence results for a
discretized problem

Definition 1. For any ug in H}(2) N L>®(82), a solution to the Cauchy-
Dirichlet problem (2-4-6) is a pair (u,\) in [HY(Q) N L>(0,T; H}(2))] x
L>(Q) such that:

AeHOwuw+E), ut=0)=uyinf2, Ou+FE=0inQ, (9)
Vv € HY (), / {Ouwv + AVuVo}dz =0 a.e. t €]0,T]. (10)
Ie;

Remark 2. Assume that E =0, up < 0 with Aug > 0 in D’(2). Then:

on the one hand, the pair (ug,0) is a solution to (9)—(10),

on the other hand, a second solution is given by (6, 1), where € is the solution
in H1(Q) N L>(0,T; H}(£2)) of the heat equation with initial datum wug.
Thus, the solution to the problem is not unique and in the meaning of the
entropic solution, a physically relevant solution would be the one given by A as
close as possible to 1; i.e. the diffusive flux has to be the less possible corrected.
Then, in the above definition of a solution, one is looking for a maximal A
in the sense: if (w,p) is another solution then p < A; mathematical result
difficult to obtain.
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3.1 The sedimentation case and some surprising behaviours

Let us consider in this subsection the sedimentation process, i.e. £ = 0, and
give some qualitative properties of the solutions. In particular, for understand-
ing the total degeneracy of an equation that seems to be parabolic.

Proposition 1. Assume that (u, \) is any solution to (9)-(10).
Then, AVut =0 a.e. in Q and for any t, ut(t,.) = ud a.e. in .

Proof. 1t is proved by using the test-function v = u™ and since d;u > 0. [

Note that, if ug > 0 in §2, for any ¢, u*(t,.) = ug a.e. in 2. Thus, for
any solution (u,A) to (9)—(10), one gets, u(t,.) = ug a.e. in 2. Moreover, if
Vug # 0 in 2, the problem has to degenerate by taking null values for A.

Corollary 1. (Barrier effect and dead-zone) Assume that there exists a com-
pact set K and an open set w with K C w C 2 and w\K C {ug > 0};
then, for any t, u(t,.) = ug in w.

Proof. By considering any v in H{(£2) such that 1 < v < 1, one gets that
S Orudr <0 and dyu = 0 a.e. in w. n

This expresses that any zone surrounded by a zone where ug > 0 is sta-
tionary in time. One may find in the last section some numerical illustrations
of this total degeneracy.

3.2 An implicit time discretization method

A standard way to prove the existence of a solution is to consider an implicit
time - discretization scheme. One proposes in this section the analysis of such
a method, coupled with a technique of artificial viscosity and of regularisation
of H. One invites the reader interested by the details of the demonstrations
to consult G. Gagneux et al. [5].

In the sequel one assumes that £ € L?(0,T, H*(£2)). Let us consider two
positive real parameters € and h = %, where N is an integer whose vocation
is to tend to infinity. Denotes by Ej = ﬁ f](k—l)h,(k+1)h E(s,.)ds and by H.
any lipschitzian-continuous function satisfying

(1-¢)
€

Vz € R, max[e, min( m—l—l, 1)] < H.(z) < max[e, min( x—l—s, 1)].

(1-¢
€

At last, set A.(z) = [ He(o) do, x € R.

Let us first focus our attention on the construction of iteration (u1, A1).
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Proposition 2. For any ug in H}(2) N L>®(2) and any nonnegative E in
H($2), there exists a unique u. in H}(§2) such that

Vo € HY (1), /{UE_UOU+HE(
ol h

Ue — Uy

0+ E)Vu..Voldr=0. (11)
Moreover, infgess ug < U <Supess ug.
Q

Proof. The existence of a solution is obtained by using Schauder-Tykonov
fixed point theorem in the framework of separable Hilbertian spaces and the
uniqueness is proved by using a classical L' T - contraction method. [

By passing to limits with respect to €, one gets that

Proposition 3. For any ug in H}(2) N L*>(2) and any nonnegative E in
H(0), there exists (u,\) in H(£2) x L>=(£2) such that X € H(u —huo +E)
and

Vo € HX(92), / £ _h“° v+ AVu.Vo} dz = 0. (12)
2

Moreover, inf(;ass ug < u <supess ug and u > ug — hE a.e. in 2.
[7)

In order to prove this result, let us first give some a priori estimates.

Proof. Denote by w, = “=3=¢ + E.

On the one hand, by using v = w. — E as a test function, one gets that (w.)
and (A:(w.)) are bounded generalised sequences respectively in L?(§2) and
HY($).

Then, on the other hand, since v = —(w. + &)~ € HZ({2), one proves that
(w-)~ converges towards 0 in L?(£2) when ¢ goes to 0.

Then, sub-sequences can be extracted and passing to limits leads to the con-
clusion (see. G. Gagneux et al. [5]). n

Given that u; has got the same properties as ug, by induction the following
result holds:

Proposition 4. There ezists a sequence (uf, \p)i in HE(£2) x L>®(£2) such

|
that A\, € H(T + E), u® = uo, ub > uF"t — hEy a.e. in 12,
uF — k-1
Vv € Hy(92), {T v+ )\kVuk.Vv} dz = 0. (13)
0

Moreover, inféess U ginfgess w1 < uF <supess uF~! <supess ug.
Q Q
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3.3 About the existence of a solution

Let us give information concerning the passing to limits with respect to the

time-step parameter h.
uk k—1

Thanks to the test-function v = + and the discrete Gronwall

lemma, one gets that,

Lemma 1. Independently of h, for any integer n, one computes that

2k e Sl b
EZH“ —u 1||%2(Q)+Hun|\§1g(n)+Z||U —u 1||§{3(Q)SC'
k=1 k=1

Therefore, if one denotes by
uk — k-1

i) an(t ) = Zg:o [f(t — kh) + w1 kh, (1)) where vt = u?,

i) An(t,2) = Sn_o M pn, e nyng and By = S0 o ExIipn (ks 1)
the following result holds:

Proposition 5. The sequence (1) is bounded in H*(Q) N L>(0,T; HL(£2)).
Thus, it is relatively compact in C([0,T], L*(£2)).
The sequence (\g) is bounded in L*°(Q). Moreover,

An € H(Owup, + Ey), Oup+ En >0 ace in@,

and for any v in L?(0,T, Hi(£2)), one has the approzimating equation of con-
tinuity:

/ {Oyanv + )\hVﬁh.Vv} dxdt = o(h). (14)
Q

On the one hand, each accumulation point provides a ”mild solution” in the
sense of Ph. Bénilan et al. [3]; on the other hand, the double weak convergence
does not allow us to pass to limits in the diffusion term | 0 ANV, Vo dedt.
Therefore,

Proposition 6. If one conjectures that A\, may converge a.e. in Q to A for
a sub-sequence, then (u,\) is a solution of the problem in the sense of the
definition 1.

Proof. This result comes from the Lebesgue’s theorem, and an argument of
positivity. [
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Fig. 1. Numerical simulation of case 1

4 Some numerical illustrations

Assume in this section that ug > 0 in | — 1,0], up < 0 and convex in [0, 1]

and let us consider some numerical illustrations of wug, at different time steps
k, obtained by a fixed point technique on the second order operator (see G.
Gagneux et al. [5]).

i) The first simulation is obtained with E = 0.

In particular, one is able to see explicitly the changing type of the equation
since one observes: a total degeneracy of the problem in | — 1,0[ (a dead-
zone); a parabolic behaviour with infinite speed of propagation in ]0.5, 1[; and
a hyperbolic behaviour with finite speed of propagation and a front given by
a free boundary in ]0,0.5].

ii) The second illustration is obtained with a positive E.

5 Conclusion and open problems

In this paper, a new conservation law coming from geological problematic
has been presented. Its general study remains still open. The solution of the
problem presented in the definition 1 is not unique in general, but, besides the
research of a maximal solution mentioned in Remark 2, an important point
lies in the obtaining of a variational solution (i.e. a solution to (9-10)).

In this paper, an heuristic simplification of the real problem has been
presented. One has now to consider the case of a realistic geological problem
with relevant boundary conditions.
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h(t)
A

Fig. 2. Numerical simulation of case 2

At last, an other problem concerns the numerical simulation and analysis
of this geological phenomenon in situations of practical importance. What
kind of method one has to use when, on the one hand, the diffusive coefficient
is a nonlinear function of the time-derivative of the unknown; on the other
hand, one has a nonlinear type changing degenerated equation involving a
maximal monotone graph?

Even if some improvement has been obtained in the 1 — D case, a gen-
eral procedure must be devoted to the construction of accurate schemes for
approximating such non standard free-boundary problems.
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Summary. We present a two-level non-overlapping additive Schwarz method for
Discontinuous Galerkin approximations of elliptic problems. In particular, a two
level-method for both symmetric and non-symmetric schemes will be considered
and some interesting features, which have no analog in the conforming case, will be
discussed. Numerical experiments on non-matching grids will be presented.

1 Introduction

In the past twenty years extensive research has been done on developing
domain decomposition (DD) methods for solving efficiently the large alge-
braic linear systems arising from various discretization of partial differential
equations. Although the theory of DD techniques for finite elements (FE)
methods (conforming, non conforming and mixed) is by now well understood
(see, e.g., [9]), only a few results can be found in the literature for discon-
tinuous Galerkin (DG) approximations (see [5, 7, 1]). Based on discontinuous
FE spaces, DG methods have deserved a substantial attention due to their
flexibility in handling meshes with hanging nodes and their high degree of
locality.

In this paper we consider, for the case of the family of DG Interior Penalty
(IP) approximations (including both the symmetric [2] and the non-symmetric
schemes [8, 4]), the additive Schwarz method proposed in [1]. In particular, a
non-symmetric additive Schwarz preconditioner for a diffusion problem, that
was proposed in [1] for the very first time, will be considered.
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An outline of the paper is as follows. In Sect. 2 we recall the DG approxi-
mations of a diffusion problem. In Sects. 3 and 4, we provide the construction
and the analysis of the additive Schwarz method. Finally, in Sect. 5 we present
some numerical results on meshes with hanging nodes.

2 Discontinuous Galerkin methods for elliptic problems

For the sake of simplicity we restrict ourselves to the model problem,
—Au=f inQ, u=0 ond, (1)

where Q C RY, d = 2,3 is assumed to be (a smooth domain or) a convex
polygon or polyhedron and f a given function in L?().

Let {7n,h > 0} be a family of shape-regular and locally quasi-uniform
partitions of the domain Q made of d-simplices or parallelograms (if d = 2) or
parallelepipeds (if d = 3), with possible hanging nodes. Denoting by hp the
diameter of the element T € 7}, we define the mesh size h := maxrer, {hr}.

An interior face (if d = 2, “face” means “edge”) of 7}, is the (non-empty)
interior of 97T N &T~, T+ and T~ being two adjacent elements of 7}, not
necessarily matching. Similarly, a boundary face of 7, is the (non-empty)
interior of AT N A2, where T is a boundary element of 7;,. We denote by &
and &8 the sets of all interior and boundary faces of 7}, respectively, and
set & = &1 U &B. We define the local mesh size h(x) := min{hp+, hp-}, if
x € OTT NOT~, and h(x) := hy if x € T is on the boundary. Let e € &7
be an interior face shared by two elements 7T and T~ with outward normal
unit vectors n*. We denote by v* and 1+ the traces of piecewise smooth
scalar-valued and vector-valued functions v and T, respectively, taken from
the interior of 9T*, and we define the following trace operators:

fol = (" +v7)/2, fod =" +17)/2,

[v] :=v nT +v 0", [t]:=1t-nT+1 -n~

Onec &8 weset {v} :=v, {1} :=1, [v] := vn and [1] := t-n . Finally, we
define the discontinuous FE space V}, := {v € L2(Q) : v|z € M*(T), VT €
T}, where M (T) is the space P (T) of polynomials of degree at most
l, > 1on T, for T a d-simplex, and the space Q% (T) of polynomials of
degree at most £, in each variable on T, if T is a parallelogram or a paral-
lelepiped.

The family of Interior Penalty (IP) approximations for problem (1) reads:
Find u € V}, such that Ay (u,v) = [, fv, Vv € Vj,, where
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(1—vy Z/@ {W}HZ/% [u] - [v] . (2)

e€es cEE

where for Y= 0,1 or 2 we obtain, respectively, the symmetric interior penalty
(SIP) method [2], the incomplete interior penalty (ITP) method [4] and the
non-symmetric interior penalty (NIP) method [8]. The penalty parameter
o > 0 is independent of h and, for the first two methods, it should be taken
large enough to guarantee the coerciveness of Ay, (see [3] for further details).

We shall denote by ay, (-, ) the symmetric part of the bilinear form* Ay (-, -),
ie., ap(u,v) = (Ap(u,v) + Ap(v,u))/2.

3 Non-overlapping Schwarz methods

In this section, we present our two-level algorithm for the family of the IP
methods. Let 7y, be the family of partitions of €2 into Ny non-overlapping
subdomains Q = Uiil Q; and let {7y, H > 0} and {7x,h > 0} be the fam-
ilies of coarse and fine partitions, respectively, with mesh sizes H and h. All
partitions are assumed to be shape-regular and locally quasi-uniform and we
further assume that they are related by Ty, C Ty C 7p,.

For each subdomain 2; of 7y, we denote by &; the set of all faces of &
belonging to Q;, and by I := Uivzl T; where T'; ;= {e € &; : e € 092, \ 90 }. For
i =1,...,N,, we define the local spaces Vi :== {v € Vj, : v =0in Q \ Q;},
and the prolongation operators®: RI : Vi — V},, DI : VV}i — VV,. Both
operators set to zero the degrees of freedom outside €2; while on e € T'; their
action is defined in the following way:

[ (Rfv)t = r | (D)t =,
= { (RT,UZ) _ 0 D: T; = { (DZTTZ)_ _1, (3)

where we denoted by (-)* the traces from the interior of the elements T+
sharing the face® e. From (3) it follows that [RIv;] = v;n; and {DT1,} =1,
on e € I';. Notice also that V}, = EBZ-A;SlRlTV,f. The restriction operators R;, D;
are defined as the transpose of R} and D! with respect to the Euclidean scalar
product. For each i =1, ..., Ny, we define the local-solvers by considering the
IP approximation to the problem: —Aw; = R;f on €;, u; = 0 on 9€);. Thus,
in view of (2), the bilinear forms of the local solvers are defined by:

A;i(ui,v;) := /Vul Vu; — Z/{{VUZ} [vi]

TeQ,; e€s;

4 Obviously, for the SIP method, one has a(u,v) = Ax(u,v).

5 With a small abuse of notation, we shall also denote by Vv, the elementwise
gradient of vy, € Vj,.

6 Taking into account (3), it follows that D Vu; # VR v;,Vv; € Vii,i=1,..., N,.
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-9 [l 47ub+ ¥ [on ful [l . @

ecs; eEs;

for u;,v; € V). Moreover, taking into account the definition of R} and DT
acting on scalar- and vector-valued functions, respectively, it follows (see [1])

Ai(ui, v;) = Ap(RTui, RTv;) , Vug,v; € VP, Yi=1,...,Ny. (5)

The last step is the construction of the coarse solver. The coarse space is
defined as Vi = V)0 := {vy € L}(Q) : vy|r € M (T),VT € Ty}, with 0 <
Ly < £y. The prolongation operators Rg : V}? — Vh, ’DZT : VV,? — VV,
are defined as before”. We define the coarse solver A : V,? X V}? — R as the
restriction of Ay, to VO x V0, i.e., Ag(ug,vo) = Ap(REug, R o), Vug,vo € V).

Algebraic Formulation and Projection Operators

We denote by Ay, A; and Ay the stiffness matrices associated with the global,
local and coarse bilinear forms A, A; and Ap, respectively. The additive
Schwarz preconditioner is defined as B := Zi\]:so RiTAflRi. Fori=0,..., Ny,
we define the Aj,-projection like operators: P; : V,, — RI'Vii C V,, by
An(Pu, RTv;) = Ap(u, RTv;), Vu; € Vi, Notice that, for all i = 0,..., N,

= [R?A;IRZ-]A;L are well-defined since both the local A; and coarse Ag
bilinear forms are coercive. Moreover, the preconditioned matrix BA, is equal
to the Schwarz operator:

P4 7ZP ZRTA 'R)A, . (6)

=0 1=0

The additive Schwarz method consists in replacing the original discrete prob-
lem Apu = f by the preconditioned system P,gu = g with g = Efvjo gi,
gi = P;g being the solution of A;(g;,v) = (f,v), Vv €V}, i=0,...,N,. This
last system is solved by means of a suitable iterative method.

On the one hand, for the SIP method, P,q is symmetric and we use the Con-
jugate Gradient (CG) method, for which the following upper bound on the
error reduction property at the k-th iteration, is known (see [6]):

k
lexll, < 2 eoll, (ﬁ%i:) | )

where e, = u; — u is the error, u being the exact solution and | - ||2 the
standard Euclidean norm. By x(P,q) we denote the condition number of P,q.
On the other hand, the lack of symmetry of the NIP and ITP methods, implies
that their Schwarz operators P,q, as defined in (6), fail to be self-adjoint

7 Notice that, in this case, they coincide with the natural injection operators.
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w.r.t. Ap. Hence, to solve the resulting preconditioned system, we use the
Generalized Minimal Residual (GMRES) method, for which one has

o\ k/2
C
[rlly < ( - C’;) lIrolly -

p
where rj := g — Paquy, is the residual at the k-th iterate and ¢, and C), are:

P,q) := inf , Cy(Paq) =
cp(Paa) ’llLI;}fO ap(u, u) p(Faa) ii% an(u,u)

(8

We stress that ¢,(Paq) > 0 is a necessary and sufficient condition for conver-
gence of GMRES in a finite number of iterations. See [6] for further details.

4 Convergence analysis

The following two results, which have been proved in [1], provide the conver-
gence for the considered two-level Schwarz method. The former one (Theo-
rem 1) concern the SIP method and provides an estimate on the condition
number of the preconditioned system. Consequently, in view of (7), the con-
vergence rates of the corresponding preconditioned iterative solver are fully
determined. The latter one (Theorem 2) provides lower and upper bounds
for the quantities ¢, and C, defined in (8) and applies to the Schwarz pre-
conditioner for the non-symmetric NIP and ITP methods. In both results, N,
denotes the maximum number of adjacent subdomains, and C' a positive con-
stant depending only on the shape regularity of 7;, and the polynomial degrees
Eh and EH.

Theorem 1. Set vy = 0 in (2) and let Ay, be the bilinear form of the SIP
method. Let Paq be its additive Schwarz operator as defined in (6). Then,

K(Paa) < C[2+ NJHKh . (9)

For the proof, we refer to [1] where the result is shown for all the symmetric
DG methods for elliptic problems present in the literature.

Theorem 2. Let P,q be the additive Schwarz method for the non-symmetric
NIP (y=2) and IIP (y = 1) methods. Then, there exist C3 = O (H/h) and
Cinin > 0 such that if 0, = minece O > CoHR™' with Cy > Chuin, then:

CCy2an(u,u) < ap(u, Paqu) , an(Paat, Paqu) < C(N. + 1)%ap (u,u) .

In [1], the proof is accomplished under a technical assumption on the penalty
parameter o... Nevertheless, as it will be shown in the numerical experiments
such a restriction is not required in practice (see [1] for further details).
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5 Numerical results

We present some numerical experiments to illustrate the performance of the
proposed non-overlapping Schwarz method on non-matching meshes (exten-
sive numerical experiments on matching grids are contained in [1]). We take
Q = (0,m)? and we choose f such that the exact solution of the model problem
(1) is given by u(z,y) = sin(z) sin(y). The subdomain partitions consist of N
squares, Ny = 4,16 (see Fig. 1 for Ny, = 4). The initial coarse and fine non-
matching Cartesian grids are depicted in Fig. 1, where we have denoted by Hy
and hg the corresponding mesh sizes, respectively. We consider n successive
global uniform refinements of these initial grids so that the resulting mesh
sizes are H,, = Hy/2" and h,, = ho/2", respectively, with n = 1,2,3. For all
the tests (except the last one), we set the penalty parameter o, = o0 = 10
Ve € &. The iterative solvers used are the CG method for the symmetric
scheme SIP, and the GMRES method for the non-symmetric NIP and IIP
methods. The tolerance is set to 107% and we allow for a maximum of 200
iterations (for the non-preconditioned ones we admit at most 1000 iterations).
All computations have been performed in MATLAB.

e
e

./’i’
p
kil

0

0 T O T

Fig. 1. Subdomain partition (N, = 4) with the initial coarse (left) and fine (right)
meshes.

We first address the scalability of the proposed Schwarz method, that
is the independence of the convergence rate of the number of subdomains.
In Tables 1(a) and 1(c) we report the condition number estimates for the
STP method on the two different subdomain partitions (N; = 4, 16) by using
piecewise bilinear polynomials both for the fine and coarse mesh spaces (¢}, =
£y = 1). The corresponding iteration counts are given in Tables 1(b) and 1(d),
respectively. The dashes indicate that 7y ¢ 75, and therefore it is meaningless
to build the preconditioner. As predicted by Theorem 1, our preconditioner
seems to be substantially insensitive on the number of the subdomains, and
the convergence rates are clearly achieved. Notice that, if we refine both the
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Table 1. SIP method: ¢, =1, £y = 1, oo = 10.

(a) Condition Number: N, = 4. (b) Iteration Counts: Ny = 4.
ho ho/2  ho/4 ho/8 ho ho/2 ho/4 ho/8
Hy 314 659 1374 278.8 Hy 28 44 76 112
Hy/2 6.3 325 674 139.1 Hp/2 15 33 52 82
Hy/4 - 6.4 32.0 67.1 Hy/4 - 16 36 54
Hy/8 - - 6.5 320 Hy/8 - - 16 34
k(Ap) 4.3e3 1.7ed 7.0ed 2.8¢5  Hiter(A,) 128 226 442 877
(c) Condition Number: Ns = 16. (d) Iteration Counts: N, = 16.
ho ho/2  ho/4 ho/8 ho  ho/2 ho/4 ho/8
Hy 29.3 655 139.6 285.2 Hjy 29 48 75 117
Hy/2 6.1 315  65.2 135.0 Hp/2 15 33 52 81
Hy/4 - 6.4 31.3 66.0 Hy/4 - 16 35 54
Hy/8 - - 6.4 318 Hy/8 - - 16 35

Kk(Ap) 4.3e3 1.7ed 7.0ed 2.8¢5  #iter(Ap) 128 226 442 877

Table 2. SIP method: ¢, = 2, o = 10.

(a) Condition Number: £y = 2. (b) Condition Number: ¢z = 1.
h() h()/2 h0/4 h()/g h() h()/2 h0/4 h()/g
Hy 78.0 172.2 350.9 705.1 H, 135.2 284.7 574.0 1152.2
Hy/2 6.4 81.1 1755 356.6 Hy/2 61.9 130.7 272.3 548.1
Hy/4 - 6.4 82.8 177.6 Hy/4 - 62.0 133.5 278.1
Hy/8 - - 6.5 83.6 Hy/8 - - 63.1 133.9

k(Ap) 3.4ed 1.4eb 5.5e5 2.2e6 k(Ap) 3.4e4 1.4e5 5.5e5 2.2¢6

fine and the coarse meshes keeping the ratio H/h constant, we observe that
both the condition numbers and the iteration counts remain substantially
unchanged. In Tables 2(a) and 2(b) we have reported the iteration counts for
the SIP method with ¢, = ¢ = 2 (piecewise biquadratic polynomials for both
the fine and the coarse mesh spaces), and with ¢;, = 2 and £ = 1, respectively.
Notice that, in both cases, the convergence rates predicted by Theorem 1 are
clearly achieved, although, it can be observed that, by choosing ¢, = ¢y =
2 our preconditioner performs better that with £, = 2 and g = 1. Now,
we address the scalability of the preconditioner for the non-symmetric IIP
method. The theoretical estimates given in Theorem 2 can be clearly observed
from Tables 3(a) and 3(b), where the iteration counts on two subdomain
partitions Ny = 4 and Ny = 16, respectively, are reported. The crosses (also in
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Table 3. IIP method: ¢, =1, ¢y =1, o = 10.

(a) Iteration Counts: N = 4. (b) Iteration Counts: N, = 16.
ho  ho/2 ho/4 ho/8 ho  ho/2 ho/4 ho/8
Hy 26 43 69 108 Hy 30 45 70 107
Hy/2 14 33 52 80 Hy/2 15 33 52 78
Hy/4 - 16 35 52 Hy/4 - 16 35 52
Hy/8 - - 15 34 Hy/8 - - 16 35
#iter(Ay) 117 207 389 x #iter(A,) 117 207 389 x

Table 4. NIP method: ¢, =1, fg =1, Ns = 16.

(a) o= 10. (b) a=2.
ho  ho/2 ho/4 ho/8 ho ho/2 ho/4 ho/8
Hy 30 46 70 106*  Hj 18 25 35 49
Hy/2 15 33 52 78 Hy/2 13 20 26 35
Hy/4 - 15 34 51 Hy/4 - 15 20 26
Hy/8 - - 15 34 Hy/8 - - 15 20

#iter(Ay) 122 210 388 x #iter(Ap) 65 107 198 x

Table 4, below) indicate that we were not able to solve the non-preconditioned
system due to the excessive GMRES memory storage requirements. In Table 4
the iteration counts for the NIP method with ¢, = ¢y =1 and a = 10 (left)
and o = 2 (right) are given; the choice oo = 2 (and also the starred value
for oo = 10 with H = Hp and h = hg/8) actually violates the assumption
in Theorem 2, but it can be clearly seen that, also in this case, the optimal
convergence rates are achieved.
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Higher Order Semi-Implicit Discontinuous
Galerkin Finite Element Schemes for Nonlinear
Convection-Diffusion Problems™*
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Charles University Prague, Faculty of Mathematics and Physics, Sokolovska 83,
186 75 Prague, Czech Republic
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Summary. We deal with the numerical solution of a scalar nonstationary nonli-
near convection-diffusion equation. We present a scheme which uses a discontinuous
Galerkin finite element method for a space semi-discretization and the resulting sys-
tem of ordinary differential equations is discretized by backward difference formulae.
The linear terms are treated implicitly whereas the nonlinear ones by a higher or-
der explicit extrapolation which preserves the accuracy of the schemes and leads
to a system of linear algebraic equations at each time step. Thenumerical examples
presented verify expected orders of convergence.

1 Introduction

Our aim is to developed a sufficiently efficient, robust and accurate numerical
scheme for simulation of unsteady viscous compressible flow which is described
by the system of Navier—Stokes equations. During the last years, the so-called
discontinuous Galerkin method (DGM) became very popular for the solu-
tion of the Navier—Stokes equations, see e.g., [2, 3, 10]. DGM is based on a
piecewise polynomial but discontinuous approximation where the interelement
continuity is replaced by additional stabilization terms.

For time-dependent problems, it is possible to use a discontinuous ap-
proximation also for the time discretization (see [11]) but the most standard
approach is the method of lines. In this case, Runge-Kutta methods are very
popular due to their simplicity and a high order of accuracy, see [2, 4, 5],
but their drawback is a strong restriction to the choice of the time step. To
avoid this disadvantage it is convenient to use an implicit time discretization.
Fully implicit schemes lead to a need to solve a nonlinear system of algebraic

* This work is a part of the research project MSM 0021620839 financed by the
Ministry of Education of the Czech Republic and it was partly supported by the
Grant No. 201/05/0005 of the Czech Grant Agency.
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equations in each time step, which is rather expensive. Therefore, we proposed
in [6] a semi-implicit method for a scalar convection-diffusion equation where
the backward and forward Euler methods were applied to the linear and non-
linear terms, respectively. This scheme was analysed in [7] and a priori error
estimates of order O(h? + 7) in the L?-norm and the H'-seminorm were de-
rived. Here h and 7 denote the space and time steps, respectively, and p is
the degree of polynomial approximation in space.

In this paper we introduce a generalization of the semi-implicit scheme
from [7] with a n't-order (n > 1) time discretization. The formal order of
accuracy of this scheme is O(h? 4+ 7™). In Section 2 we state the definition of
the method and in Section 3 we investigate the numerical orders of convergence
with respect to 7 and h. In Section 4 we give a short conclusion. The numerical
analysis of these schemes and an extension to the system of the Navier—Stokes
equations will be the subject of forthcoming papers.

2 Scalar equation

2.1 Continuous problem

Let us consider the following nonstationary nonlinear convection-diffusion

problem: Find u : Qr = 2 x (0,T) — IR such that

a < af,
0 Gy 2

—cAutg inQr, (1)

b) “|arzx(o,T) = Up;
) u(z,0) =u’(x), x €.

We assume that 2 C R? d = 2,3, is a bounded polygonal (if d = 2) or
polyhedral (if d = 3) domain with Lipschitz-continuous boundary 92 and
T > 0. The diffusion coefficient € > 0 is a given constant, g : Qr — IR,
up : I'p x (0,T) — IR, and «° : 2 — IR are given functions, fs € C*(IR),
s=1,...,d, are prescribed inviscid fluxes.

2.2 Space discretization

Let 75 (h > 0) denote a triangulation of the closure £2 of the domain {2 into
a finite number of closed triangles (if d = 2) or tetrahedra (if d = 3) K with
mutually disjoint interiors. In [8] we analysed the use of more general even
nonconvex elements.

We set h = maxger, diam(K). All elements of 7;, will be numbered so
that 7, = {K;}icr, where I is a suitable index set. If two elements K,
K; € 7;, contain a nonempty open part of their faces, we call them neigh-
bours. In this case we put I; = Ij; = 0K; N OK;. For i € I we set
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s(t) = {j € I; K; is a neighbour of K;}. The boundary 0f2 is formed by a
finite number of faces of elements K; adjacent to 0f2. We denote all these
boundary faces by S;, where j € I, is a suitable index set and put v(i) = {j €
Iy; S; is a face of K; }, Ii; = S; for K; € 7, such that S; C 0K;, j € I. For
K; not containing any boundary face S; we put (i) = (. Moreover we put
S(i) = s(i) Ux(i) and ns; = ((n4j),-- -, (ni;),) is the unit outer normal to
OK; on the face I5;.
Over the triangulation 7, we define the broken Sobolev space

H*(2,7;) = {v;v|x € HY(K) VK € T}, (2)

where H¥(K) = W*2(K) denotes the (classical) Sobolev space on element
K. For v € H(2,7;,) we set

v

r;; = trace of v|g, on I3, |, = trace of v|g; on I, (3)

1
(V)r,, = 5 <v|Fij +v|Fﬁ) and [U]Fi,j =0

_ v|
I Iy

denoting the traces, average and jump of the traces of v on I; = I';, respec-
tively.

2.3 Space semidiscretization

We use the so-called nonsymmetric interior penalty Galerkin method (NIPG)
which does not give an optimal a priori order of convergence in the L2-norm
but its advantage is a coercivity property for any positive penalty coefficient
o, see [1, 4]. This is important for the case of the Navier—Stokes equations
when numerical analysis is impossible and the choice of ¢ is rather heuristic. A
detailed definition of NIPG can be found, e.g., in [6, 8] so we present here only
the definition of an approximate solution. For u, v € H?(£2,73,), u € L>(£2)
we define the forms

h(u,gp)—eZ{/Ki Vu-Vedz (4)

icl
-2 [ () mgle = (V) mlu) a5
jei(ii) ij
_ Z/ (Vu-n;jpdS—Ve-n;u)dS p,
Je(i)
bh(U,Sﬁ): Z / 71_jau|1_}‘mnij)90
el \jeS(4)

Bt}

131
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Ji (u, ) = Z/ o] dS + Z/ cupdS 'y,

il ]es( ) Jjev(i)

o)) = [ atpdr e Y [ (Vorngup+oupe)as
il jey /T

where o is defined by o|r,, = 1/diam([7;), j € S(i), i € I and (-,-) denotes a
L2-scalar product.

The convective terms are approximated with the aid of a numerical flux
H = H(u,v,n) known from the theory of finite volume methods, see e.g., [9].

The approximate solution of problem (1),a)—c) is sought in the space of
discontinuous piecewise polynomial functions S} defined by

Sy = SPH02,T;,) = {v;v|g € PP(K)VK € Tp,},

where p is a positive integer and PP(K) denotes the space of all polynomials
on K of degree at most p. Obviously, S, C H?(§2,7).
Now we can introduce the semidiscrete problem.

Definition 1. Function uy, is a semidiscrete solution of the problem (1), if
a) up € C'([0,T); Sn), (5)
Oup,(t) o
b) o 0 Ph + bn(un(t), on) + an(un(t), on) + eJi (un(t), on)
( () Y op € Sh, VtE(O,T),

¢) Uh(O) u%

where u$) € Sy, denotes an Sp-approzimation of the initial condition u®.

The above discrete problem has been obtained by means of the method of
lines, i.e. the spatial semidiscretization. In the next section we discus the full
space-time discretization.

2.4 Space-time discretization
First-order scheme

In [7] we analysed the following full space-time variant of (5), a)—c). Let 0 =
to < t1 < --- < t. =T be a partition of the time interval (0,7) and 7, =
tor1 —tg, E=0,...,r—1.

Definition 2. We define the approximate solution of problem (1) as functions
uk |ty € [0,T), satisfying the conditions
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a) quH € Sy, (6)
k1 k
b) | — vy | 4 an (el o) + by (uf, vp)

+€J}f(u’fb+1,vh) =Llp(vp) (tht1) Yop € Sh, Vigyr € (0,7,

c¢) ul) is Sy approzimation of u°.
The function uﬁ is called the approrimate solution at time ty.

This means that the linear and nonlinear terms are discretized implicitly and
explicitly with respect to the time, respectively. Therefore, for each time step
we solve a system of linear algebraic equations. Numerical experiments show
that the scheme (6) is practically unconditionally stable with respect to the
choice of 7.

We derived in [7] the following a priori error estimates in the L?-norm and
the H'-seminorm (for a constant time step 7 =74, k=0,...,r — 1):

llw — IT" up | o (0,7 02(2)) = O(RP +7), (7)
llw — IT" up | p2 0,7y 11 (02)) = O(RP + 7),

where u is the exact solution of (1) and IT! uy, : (0,T) — Sy, is piecewise linear
function such that IT1 up(ty) = uf, k=0,...,r.

Higher order schemes

Our aim is now to increase the degree of approximation with respect to time
in (5), b). We define a sum of all linear forms by

Ah(ui,vh) = ah(uﬁ,vh) —i—eJ;‘Z(qu,vh) — Lp(vp)(tr), uﬁ,vh € Sh. (8)

The time derivative term in (6), b) is approximated by a high degree multi-
step approximation and for the first argument of the nonlinear form by (-, -)
in (6), b) we use an explicit higher order extrapolation. Therefore, we define
a n-step scheme (n € IN, n > 1) by Definition 2, where relation (6), b) is
replaced by

1 n 3 n 3
-~ <Z arul ! 17%) + A (W 0y) + by, (Z Bkt l,w) =0, (9)
=0 =1

where the coefficients ay, [ =0,...,nand §;, [ =1,...,n depend on the time
steps Tx—;, L =0,...,n—1. Since the choice of o and (; for nonconstant time
step is rather complicated and the final relations are long, we present only
the values of oy and 3, for constant time steps (1 =74, k=0,...,r—1) and
n =1,2,3, see Table 2.

Based on results from [7] obtained for n = 1, we expect that the formal
orders of convergence of scheme (9) are
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Table 1. Values of the coefficients «; and 3; for constant time step

n‘ a, 1=0,....n ‘Bl,lzl,...,n
1, -1 |1
I N
3| 8 -3 3 3]s -3 1
v = unll L (0,1);2(2)) = O(WP +77), (10)

[ = wnll 2oy (2)) = O(RF + 7).

A rigorous numerical analysis of these schemes will be the subject of future
papers. Here we present a numerical verification of the estimates (10).

3 Numerical results

3.1 Convergence with respect to T

We solve the problem (1), a) — ¢) with 2 = (0,1)%, fs(u) = u?/2, s = 1,2,
T =1, e = 0.01 and the functions up, ug and g are chosen in such a way that
the exact solution has the form

elOt —1

'U,(x171'2,t) =16 6107_1

xl(l—xl)xg(l—xg). (11)

The computations were carried out on a triangular mesh having 4219 el-
ements with piecewise cubic approximation in space and for 6 different time
steps: 1/20, 1/40, 1/80, 1/160, 1/320, 1/640. Fig. 1 shows the computational
errors at t = 1" and the corresponding orders of convergence with respect to 7
in L2-norm and H!-seminorm for schemes (9) with n =1, n = 2 and n = 3.
The expected order of convergence O(7™) is observed in each case.

3.2 Convergence with respect to h

We solve the problem (1), a) — ¢) as in Section 3.1 but with € = 0.1 and the
functions up, ug and g are chosen in such a way that the exact solution has
the form

2z — 1)>

u(xy, xe,t) = (1 — 6710t) [xlxg — x% exp (
€

_1 2 _
oy exp (3<Izs)> \ exp (W)] .

The computations were carried out by a third order scheme with respect
to time on 7 different triangular meshes having 148, 289, 591, 1056, 2360, 4219
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Fig. 1. Computational errors and orders of convergence in the L?>-norm (left) and
the H'-seminorm (right) for schemes (9) with n = 1 (full line), n = 2 (dashed line)

and n = 3 (dotted line).

and 9872 elements. Fig. 2 shows the computational errors at ¢ = T and the
corresponding orders of convergence with respect to h in the L?-norm and
the H!'-seminorm for schemes (9) with piecewise linear Py, quadratic P, and
cubic P3 approximations. We observe the order of convergence O(hP*!) for
p=1,3 and O(hP) for p = 2 in L>norm and O(hP) in H'-seminorm. These
results are in agreement with those of other authors, see [1].
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Fig. 2. Computational errors and orders of convergence in the L?-norm (left) and
the H'-seminorm (right) for schemes (9) with P; (full line), P> (dashed line) and
P; (dotted line) approximations.
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4 Conclusion

We presented a higher order method with respect to space and time for a
scalar convection-diffusion equation. The scheme is stable without an essential
restriction for a time step and at each time level we solve only linear system of
equations. Numerical experiments verify the expected orders of convergence.
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On Some Aspects of the Discontinuous
Galerkin Method*

Miloslav Feistauer
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186 75 Praha 8, Czech Republic
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Summary. The paper is concerned with some aspects of the discontinuous Galerkin
finite element method (DGFEM) for the numerical solution of convection-diffusion
problems and compressible flow. In particular, theoretical analysis of the space-
time discontinuous Galerkin discretization is briefly discussed. The robustness of
the DGFEM is demonstrated by its application to the simulation of compressible
low Mach number flows.

1 Continuous problem

The DGFEM uses piecewise polynomial approximations of the sought solution
on a FE mesh without any requirement on the continuity between neighbour-
ing elements and can be considered as a generalization of finite volume and
finite element methods. It allows to construct higher order schemes for the
solution of conservation laws and singularly perturbed problems in a natural
way. For a survey of DG methods, see e.g. [1].

Here we shall apply the DGFEM to the numerical solution of the following
initial-boundary value convection-diffusion-reaction problem. Let 2 C IR?
(d = 2 or 3) be a bounded polyhedral domain and T' > 0. We want to find
u: Qr =2 x(0,T) — IR such that

0
ai:—l—v-Vu—eAu—&—cu:g in Qr,
u=up on 92" x(0,T),
0
58—:; =uy on 9" x (0,T),
u(z,0) = u’(x), =€
We assume that 02 = 02~ UON2T, where the sets 27 and 92~ are defined

* This work is a part of the research project MSM 0021620839 financed by the
Ministry of Education of the Czech Republic and partly supported by the grant
No. 201/04/1503 of the Czech Grant Agency.
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in such a way that v(z,¢) -n(z) < 0 on 92~ and v(z,t) - n(z) > 0 on ONT,

for all t € [0,T]. Here n(x) is the unit outer normal to the boundary 92 of

2. In the case e = 0 we put uy = 0 and ignore the Neumann condition (3).
Assumptions on data (A)

We assume that the data satisfy the following conditions:

g € C([0,T]; L*(£2)),

Ug € L2(Q)7

up is the trace of some u* € C([0,T]; H*(£2))NL>®(Qr) on 92~ x (0,T),

v e C(0,T]; W= (0)),

¢ € C([0,T); L>(£2)),

c— %divv >0 > 0 in Qr with a constant o,

uN € C([07 T]; L2(80+))7

e > 0.

N

Sroeao TR

N —

2 Discretization of the problem

Let 7p = Uje,, Ki (where i, C {0,1,2,...} is a suitable index set) be a
standard triangulation of the closure of the domain {2 into a finite number of
closed triangles (d = 2) or tetrahedra (d = 3). If K; N K; = I; = I); is a
common face of K; and K}, we call these elements neighbours. We denote all
boundary faces on 012 by S;, where j € I, C {—1,—2,...}. For i € i), we set

s(i) = {j € ip; Kj is a neighbour of K;}, (5)

Fij = Sj for K; € 7, such that Sj CcC OK; N 8(2,] € Ipp. (6)

For K € 7}, we denote by hx and px the diameter of K and the diameter of
the largest ball inscribed in K, respectively. We set h = maxge7, hi.
We introduce the so-called broken Sobolev space

H*(2,T) = {¢;¢lx € HY(K) VK € T} (7)

and define the seminorm

1/2
lelar 0. = (Z |@|?{’°(K)> : (8)

KeT,

For ¢ € H(£2,7;,) we introduce the following notation:

¢|r,, = the trace of |k, on Iy, ¢|r;, = the trace of @[k, on I'; = I}y,
1
<QD>F1LJ‘ = 5 (QD I;; + SD‘I‘”) ) [90]1“”- = Pir; — 90|qu:7 (9)

n;; = the unit outer normal to OK; on the face I7;.

Further, for i € i, we set OK; (t) = {z € 0K;; v(x,t) - n(z) < 0},0K; () =
{z € O0K;; v(x,t)-n(x) > 0}. (Here, n denotes the unit outer normal to Kj.)
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2.1 Space semidiscretization

In [6] we analyzed the spatially semidiscrete problem of finding a function
up € C([0,T); S) such that

(8% ) + An(un(t), on) = n(en)(t)  Von € SVt € (0,T),  (10)

a "
(un(0),0n) = (u’, o) Vi € S, (11)
where
Ap(u, ) = ap(u, @) + bp(u, @) + cn(u, @) + eJp(u, ), (12)
Sk ={p € L*(2);¢lx € PP(K) VK € Tp}, (13)

p > 1is an integer and PP(K) is the space of polynomials of degree at most
p on K. The bilinear forms (-, ), ap, by, cp, Jn are defined as follows:

(u, ) = /ugodx (14)
(u, @) —EZ/ Vu-Vodz
1€,

=3 > [ (el = (96 g ) as

i€in jEs(1),5<i

—c Z / (Vu-n)p — (Ve -n)u) dS, (15)
ic Jor; oo
n(: ) Z/ ’UVugodx—Z/ (v-n)updS
1€ i€ip ﬂa.Q
>/ )l dS, (16)
1€ 8K \89
Ch(u7(,0):/ C'U/QDd.’E (17)
2
i€in jEs(i) Tij
+ Z Z diam(Fij)_l/ uapdS, (18)
i€ip j:I;;CON~ Ij
In(e / teds + / (t)pdS
N0 = ; K+ﬂ89
e / oup(t)pdS +e / t)(Ve - n)dS
iezi; oK, Non ol zezz; K] narz
N Z/ (v-m)up(t)pdS. (19)
OK,; NN

1€
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This means that the nonsymmetric interior and boundary penalty formulation
of the diffusion terms is used.
In [6] we proved that the error e, = uj, — u satisfies the estimate

te(0,T

T T
s len(O)ll2o) + VE, | [ len (@ ngam,) 40+ [ Inlen(d).en(v)) v
0 0

< ChP(Ve+Vh) (20)

with a constant C' independent of A~ > 0 and ¢ > 0.

2.2 Discontinuous Galerkin discretization in space and time

In practical computations it is necessary to carry out time discretization as
well. In computational fluid dynamics explicit Runge-Kutta schemes are pop-
ular, but they are conditionally stable and the length of the time step is
strongly limited by the CFL condition.

In order to construct a stable, high-order accurate time discretization,
it is possible to apply the discontinuous Galerkin method in space as well
as in time. For this purpose, we consider a partition 0 = ¢35 < t; <

. < tyr = T of the time interval [0,7] and define I, = (tm—1,tm), Tm =
tm — tm—1,m = 1,..., M. For a function ¢ defined in [0, 7], discontinuous in
general at t,,,m = 1,..., M — 1, we introduce the notation ¢= = p(t,,+£) =
tii{xli o(t) and {p}m = @ — ¢, For each time interval I,,, m = 1,..., M,

we shall consider, in general, a different triangulation 7j., = {Ki}ics, .
of the domain 2. Therefore, for different intervals I,, we have different
Sh > @homs O Thoms Unmy Anms ete. The definition of S} now becomes

Sﬁm ={p e L*(N);¢|x € PP(K)VK € Thom} (21)

and in the definitions of Ay, ., and Iy, “i € 43”7 is changed into “i € ip .

We set h,,, = MaxKeT;, . hr, h =max;—1, . a hm and 7 = maxy,—1,... M Tm-
Let p, ¢ > 1 be integers. We define the space

q
Skt = {90 € L*(Qr);plr, = Y t'ei withp; € ST m=1,.. -,M}
1=0

(22)
and the forms
B(u,v) (23)

o ou M
= Z/ <<8tav) +Ah,m(u,v)> dt+ Z({u}m_l’v;71)+(u;§"v6‘r)7
m=1"Im m=2

M
L(v) = z/} U m (v) dt + (ug, vg).
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Then the space-time DG approximate solution is defined as a function U €
S satisfying
B(U,p) =L(p) VYpe Syl (24)

3 Error estimates

In order to estimate the error e = U —u, we consider a system of triangulations
Thom, m=1,..,M, h € (0, hy), which is shape regular: there exists a constant
C'7 independent of K, m and h such that

hk

— <Cr, KeThm m=1,.,M, he(0,hg). (25)

PK

The derivation of the error estimates is rather technical. We can mention

here only some of the most important steps. (Details can be found in [5].) As
important tools we use the multiplicative trace inequality (see [3]), the inverse
inequality and the Sj I-interpolation. It is defined similarly as in [8]:

U € Sﬁ:z, (26)

* * ,q—1
/I(ﬂ'u—u,go)dt:() Vo*r e SpiTY,

mu(ly,) = Hnulty,),

for m = 1,...,M, where II,, is L?-projection on Sh m in space. Let us set
n=u—TU.
The basis for the error analysis is the following abstract error estimate.

Theorem 1. Let us denote

lollo.r = </F v 7 @zdt)m for I' € OK;, (27)
om = (=l o7,y + 20l1032(0) + £ hm(7,1) (28)
1/2
5 2 Ul oninon + 13 o von) |+ VERIIE2@2 70
e 1/2 1/2
S e | X e,
i€in.m i€inm

and

[0]|%,m = 5\”@11(9,%%) + 70||UH%2(Q) + eJh,m (v, v) (29)
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1
+5 2 (vldoxinoe + 1013 ok o0):

’L’Ei}hm
Then o " M1
3 / o3 mdt < S / R dt+C Y Il (30)
m=1v1im m=1"+m m=1

The estimation of the right-hand side in (30) is carried out under the
assumption that the exact solution satisfies the regularity condition

u €M =HTH0,T; H' (2)) nC(0,T]; H**'(12)) (31)

and that there exist constants Clg, C’S such that

1
C’ hx <1m < Cshg, KEThm, m=1,...M, he (O,ho). (32)
S

Then

/ i @, At < CHPlulla v ) + Ol P lulfon 1, ()

m

2p+2
/ ||77||2L2(K) dt < Chz?Jr \U|2L2(Im;Hp+1(K)) + CTT%Lq+2|u‘?{f1+1(Im;L2(K))7

K € Thm,

/1 In,m(n,m) dt < Ch2p|u|2L2(1m;Hp+1(Q)) + CTgmq(‘u|in+1(lm;L2(Q))
+T72n|u|%1‘1+1(lm;H1(Q)))7

| X

m 7;61;}7,,777,

v.oKinon + ||[77]||r2073K;\39) dt < CP*P* M ullo(r ooy

+CT133+1{|U|12L1q+1(1m;L2(9)) + hTm|U|§Jq+1(1m;H1(Q))}7

/1 12 (2,75, At < OB DNl sy + Cradluligaes (1,5 (2

m

M-1
Z 17202y < C'h2p+1HU||2C([0,T];HP+1(Q))~ (33)

m=1
The abstract error estimate and the above relations imply the main result.

Theorem 2. Let the assumptions (A) on the data, and (13), (31) and (32)
be satisfied. Then the error e = U — u satisfies the estimate

M
3 / lell3n dt
m=171Im

< Ch2p|u\20([o,T];Hp+1(n)) + CTzq|U|§1q+l(o,T;H1(Q))- (34)

The estimate holds true even if e = 0 (hyperbolic case).
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4 Application of the DGFEM to compressible flow with
a wide range of mach numbers

Standard finite volume methods have difficulties with the solution of flows
with very low Mach numbers. Therefore, various modifications of the Euler
(Navier—Stokes) equations have been introduced in order to enable the finite
volume solution of compressible flow at the incompressible limit. See, e. g. [7].
In [2] a robust, efficient DG technique for the solution of compressible flow is
presented. This method has been extended so that it allows the solution of
high-speed flow as well as low Mach number flow at the incompressible limit,
using conservative variables without any modification of the governing equa-
tions. The main ingredients of this technique are the semi-implicit version of
the DGFEM, GMRES method with diagonal preconditioning for the solution
of large linear algebraic systems, the use of the homogeneity of inviscid fluxes
and the use of the Vijayasundaram numerical flux, characteristic treatment
of the boundary conditions in inviscid terms, hp approach to the limiting of
order of accuracy in order to avoid the Gibbs phenomenon, proposed in [4]
and the use of isoparametric elements at curved boundaries.

As an example we consider a stationary inviscid flow past a circular
cylinder with far field velocity parallel to the axis x; and Mach number
My = 10~%. We present here the comparison of the DG approximate com-
pressible solution with exact incompressible flow. The maximal density varia-
tion and the maximum of the density gradient of the approximate solution are
Pmax —Pmin = 2.3-1078 and max e, Vo k| < 1.99-1075, respectively, which
indicates that the compressible approximate solution behaves practically as
an incompressible one.

5 Conclusion

We tried to show that the DGFEM is a robust, accurate method for the
numerical solution of convection-diffusion problems and compressible flow.

Fig. 1. Velocity isolines: compressible flow (left) incompressible flow (right)
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Fig. 2. Velocity distribution along the cylinder (full line — compressible flow, dotted
line — icompressible flow)

There are still some open questions as, for example

— investigation of the optimality of the obtained error estimates,
— development of the space-time hp adaptivity,

— analysis of the effect of the numerical integration,

— extension of the semi-implicit schemes to nonstationary compressible viscous

flow.
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Summary. We will address the problem of finding the minimal necessary stabiliza-
tion for a class of Discontinuous Galerkin (DG) methods in mixed form. In particular,
we will present a new stabilized formulation of the Bassi-Rebay method (see [2] for
the original unstable method) and a new formulation of the Local Discontinuous
Galerkin (LDG) method (see [5] for the original LDG method).

It will be shown that, in order to reach stability, it is enough to add jump terms
only over a part of the boundary of the domain, instead of over all the skeleton of
the mesh, as it is usually done (see [1], for instance).

1 DG methods

We consider the model problem:
—Au = f inf2, uw = g on 012,
where (2 is assumed to be a convex polygonal domain, 2 C R%, d = 1, 2;
f € L*N2)and g € HY?(992) are given.
To obtain the associated weak formulation we rewrite the above problem
as:

o = —-Vu in? dive = f inf2, u = g onJdf. (1)

If I € T, then from (1) we get

/U~de:/Vu-de,

I I

—/div(a)vdx:/fvdm,
I I

where 7 and v are smooth test functions.
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Thus, integrating by parts, we obtain

/0’~7'dgc—i-/udiv(7')dgc—[uT-nds:O7 (2)

I I oI

/0'~Vvdx—/0'~vnds:/fvdx.
I oI I

See [1] for further details.

1.1 Discrete formulation

In order to introduce the formulation of the Bassi-Rebay and the LDG meth-
ods, we need to define the numerical fluzes, which are discrete approximations
of o and u on the skeleton of 7.

Let &€ = ;¢ 1, 9 be the skeleton of 7 (i.e., the union of all the
subdivision points or edges, if d = 1, 2, respectively, of our mesh), £? = £\012
and €9 = £\ &% ifq € T(€) :=[l; ¢ 7, L*(8I), we define the average
{{q}} and the jump [[g]] operators on £ as follows: if K; and K are elements
of 7;, sharing a point (edge) e € &Y n; is the unit normal vector pointing
exterior to K; and q; = qlok;, ¢ = 1,2; if q is a vector-valued function we
set

Hatp =222 dl=ai  m+a  m o

if ¢ is a scalar valued function we set

Ha =252, () = m+gne one,

(see [1] or [4] for further details).
So we are ready to define the numerical fluxes on £°:

(- () (%) (e
where C1; and Cj2 are coefficients that will be suitably chosen.

The Dirichlet boundary conditions are imposed through particular choices
of the numerical fluxes on £9:

5':a+—011(u+n++gn_), a:gv

where the superscripts + and — stand for the interior and exterior of the
domain, respectively.

In order to deal with the discrete formulation of our model problem, we
define the following spaces

Vi={w, € L}(Q) s.t.oylr € PHDYYT € T}, Xp=[Vi]"
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We also define the averages and jumps on £ in a suitable way: if wy, is an
approximation in V3, of the solution u of (1), we define

ffwnd} =22 ]l = (wn — g)n one € €7,

where n is the unit normal vector external to (2; if vy, is a test function we set
Un
{{on}} = > ([vn]] = van one € &°.

Starting from (2) and replacing the traces on the skeleton of 7; by the
numerical fluxes, we obtain the so-called flux formulation:

Find (ah,uh) € Xy x VstV (Th,vh) e Xy xVy (3)
/ on -Tpdr — / uy, div(r,) de — / up, [[Tr]] ds
2 e, J1 o

7\/ ahTh~1’1dS:0,
o

/O'h - Vi(vp) do — / on [[vn]] dsf/ oy - v;LndS:/ fopdz.
7] £o 1o, Q

As in [1] and [3], we define the following lifting operators:
R: [Ll(E)]d — 3, is defined by

/QR(HU}L] - Th dT = — eezg/ uh {T}l}} ds V1€ Xh,
Lg : [LM(€)]" — ) is defined by
/ Lo([funl]) - do == 3 0 (]l ds ¥ 7 € S,
(9] ecgo’e

with @ € R9. So using these lifting operators, it is easy to see that (3) is
equivalent to the so-called primal formulation:

Findu;,, € Vpst. Vo, € Vp (4)
/Q(thh + R([[un]]) + La([[unl])) - (Vavn + R({[vn]]) + Ls([[vn]])) dz

+ /5011 ([un]] - th]]d‘s:/gfvhdx’

with 8 = — Cy5 from now on.

The Bassi-Rebay method

If we choose C1; = 0 and Cy2 = 0, (3) and (4) define the original Bassi-
Rebay method (see [2]). Such a method is unstable.
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The local discontinuous Galerkin method

If we choose C;; = Cor Cpp = %, with C' > 0, and C15 € R9, then (3)
and (4) are the flux and the primal formulation of the Local Discontinuous
Galerkin method, respectively (see [1, 4, 5] and [6]).

2 Minimal stabilization

We say that a bilinear form B( -, - ) is stable respect to a norm || - || in a
space V if
3C > 0st.B(v,v) > C|p|> Vv € V.

If we define ||lup||lp = /B( up, up ), where

B(Umvh)==/Q(VhUh+R(Huh]])+Lﬁ([[UhH))'(VWHR([[UH])+L3([[vhﬂ))dl‘
+ / Cur [[un)]- lonllds ¥ un, v € Vi
&
it is clear that if || - || g is a norm, then B( -, - ) is stable with respect to this
norm in the space V},. The following result holds true.

Proposition 1. If Cy; = 0, then there is up in Vi, up # 0, such that
llun|[z = 0.

Proof. As in [1], we define the kernel of the bilinear form B(-,-) as
Ker(B) ={v, € Vi st. B(op, 2, ) =0V 2, € Vi}
={vn € Vist. Vaon + R({[on]]) + La([[on]]) = 0}
Therefore v, € Ker(B(.,.)) if, and only if,

o [jungdz =0 Vq € P*YI) VI € Ty,
o {{un}} =B -[lwn]lle=0 Ve € &°

These conditions do not imply v, = 0, as it is easy to prove considering
the degrees of freedom of an element of the space V} and imposing the two
conditions above (see Fig. 1). "

Theorem 1. (Stability: the one-dimensional case). Let d =1 and 2 = [a,b]
be the domain of our model problem; if C11 > 0in I, C;; = 0in EN\T,
then the method is stable for the following choices of I'

I = {b} ’ifclg 2 0 or I = {(L} ifC112 S 0.
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A
o2} { o2

o+ + + + + + 4 o M//*»\ﬁ» + +
02} { 02
-0af 4 -0s

Fig. 1. Function v, € Ker(B) with 2 = [0,1] and (a) C11 = Ci12 = 0, (b)
Ci1 = 0, Cia=1

Proof. If ||up||p = 0, then u, = 0 on I" because of the hypothesis on Ci;.
Thus Proposition 1 and easy calculations show that u;, = 0, and this
completes the proof. [

In order to study the two-dimensional case, we consider a domain 2 C R?
and a triangulation 7, and define the set G in the following way

G = TLgJTh{eeaT:cu-n<0}

where n is the unit normal vector pointing exterior to the element 7.
We are now ready to show the following results.

Theorem 2. (Stability of the Bassi-Rebay method: the-two-dimensional case).
Let 2 C R? be the domain of our model problem, if I' = {e},e € &2, and
we choose C11 > 0in I, Cyy = 0inE\T, C12 = 0 in &, then the method
is stable.

Theorem 3. (Stability of the LDG method: the two-dimensional case). Let
2 C R? be the domain of our model problem and int(2) := 2\ 90 (i.e. the
interior of the domain), if we define

r = |J {ecornon : aTnint(2) < G}

TeT)

and we choose C11 > 0in I, C;; = 0in&EN\I, Cia # 0in &, then the
method is stable.

Proof. The proof is analogous to the one of Theorem 1 extended to the two-
dimensional case. u
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Remark 1. If we consider an element T' € 7;, and an edge e € 9T NEY, we can
rewrite the condition {{vp}}—B-[[vn]]le = 0, introduced in the proof of Prop.
1,asvi|. = avf|., where I and E mean interior and exterior to the element
T, respectively, and o depends on the coefficient C15. We speak about outflow
stabilization if |a| > 1 (i.e., if [vi]c| < ¢, then [vF].| < €) and we choose I"
considering all the element 7' € 7}, such that for all the edges e € 9T NEY the
condition of outflow stabilization holds. If C';2 = 0 this condition never holds,
so we are free to choose I' = {e}, for any e € £9.

Remark 2. In Theorems 1, 2 and 3 we have found conditions on the parameters
(11 and C12 which make the method stable. Unlike the usual stabilizations
of the Bassi-Rebay method and the standard LDG method, we consider the
stability term only over a part of the boundary of the domain, instead of over
the skeleton of the entire mesh, that is why we call it Minimal Stabilization.
Thus we speak of Bassi-Rebay method with Minimal Stabilization if C12 = 0,
and of a Local Discontinuous Galerkin method with Minimal Stabilization
otherwise.

3 Numerical results

We define the following norm in V/(h) = HY(7p,) + Vj:

bl = 3 9ol + X7 [ 01

K € Ty ec&

where H(T;) = {ve L*(2):v|lr € H(T) VT € T,}.
‘We now show numerical results about the error in the above discrete norm
and in the L2-norm.

3.1 One-dimensional case

We consider the problem

{ u"(z) = sin(z) ln[OW]
w(0) = u(r) =0

First of all we study the Bassi-Rebay method with Minimal Stabilization; we
suppose
I'={0}; Cyi=1lonl; Ci2=0.

From the numerical results shown in Table 1 and in others not reported here,
it is clear that the orders of convergence are the following:

C h*~1 if k is odd,
ol % if k£ is even.

luw—unllo < CH*  |llu— |l

<
lu —upllo < CRFFE |lu—up|| <
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Table 1. BR method with Minimal Stabilization: error taking k =

1, 2.

h k=11l"llo

k=11l

k=211l

k=21l

0.196349541 0.027218431
0.098174770 0.013655816
0.049087385 0.006833809
0.024543693 0.003417640
0.012271846 0.001708912
0.006135923 0.000854467
0.003067962 0.000427235

0.469291917
0.476612166
0.479697877
0.481097048
0.481760837
0.482083807
0.482243064

0.000037743
0.000004415
0.000000540
0.000000067
0.000000008
0.000000001
0.000000000

0.000871445
0.000220331
0.000055372
0.000013878
0.000003474
0.000000869
0.000000217

This difference between odd and even polynomial degrees was also noticed in

2]

for the original method.

Now we consider the Local Discontinuous Galerkin with Minimal Stabi-

lization: we take

I={r};

C’n:lonf;

1
2

Cia = .

In the numerical results of Table 2 and in others not reported here, we obtain
the same orders of convergence as the original LDG, i.e. ||u — up|lo < Ch**+!
and |||Ju —up||| < C R, VE > 1.

Table 2. LDG method with Minimal Stabilization: error taking k = 1, 2.

h k=11l k=1Ll F=2Il-llo F=2]-ll

0.196349541 0.003099825
0.098174770 0.000752208
0.049087385 0.000185748
0.024543693 0.000046182
0.012271846 0.000011515
0.006135923 0.000002875
0.003067962 0.000000718

0.042309854
0.020831067
0.010334288
0.005146926
0.002568429
0.001282959
0.000641166

0.000045792
0.000005726
0.000000718
0.000000090
0.000000011
0.000000001
0.000000000

0.000780704
0.000198182
0.000049938
0.000012534
0.000003140
0.000000786
0.000000197

3.2 Two-dimensional case

We consider the problem

—Au(z) = %2
u = 0 on 9.

sin(f(z +1))sin(F(y+1)) in 2 = [-1,1] x [-1,1],

First of all we consider the BR method with Minimal Stabilization: given an
unstructured mesh and I' (depending on the mesh) as for example shown in
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Fig. 2(a), choosing C1;7 = 1 on I', 0 otherwise, we obtain the errors shown
in Table 3(a) for £ = 1.
Next we present numerical experiments for the LDG method with Minimal

Stabilization: consider a structured mesh, if we choose C12 = (1,1/2) and
Cy1 = 1on I', I' chosen according to Theorem 3 (see Fig. 2(b) for an
example), we obtain the results shown in Table 3(b) for £ = 1.

Table 3. Error (a) for the BR method with Minimal Stabilization, (b) for the LDG
with Minimal Stabilization.

h [l-llo 111 h [1-1]o L1

0.3536 0.294685 2.010469 0.5  3.946351 21.470925
0.1768 0.068335 0.940656  0.25  0.146931 1.634253
0.0884 0.017151 0.468730  0.125 0.052945 1.190417
0.0442 0.004372 0.237118  0.0625 0.010127 0.454469
0.0221 0.001095 0.118248  0.0313 0.002685 0.243431

Fig. 2. Example of (a) an unstructured mesh and (b) a structured mesh used in
the numerical experiments.

From this numerical results and from others not reported here, we can
assume that for both methods the following inequality holds:

llu —unllo < CREFY llu — ||| < C R* VEk > 1.
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Summary. We develop an hp-version discontinuous Galerkin method for a non-
linear biharmonic equation corresponding to the two-dimensional incompressible
Navier—Stokes equations in the stream-function formulation. We linearize the equa-
tion and then we solve the resulting linear problem using a combination of the non-
symmetric discontinuous Galerkin finite element method for the biharmonic part
of the equation, and a discontinuous Galerkin finite element method with a jump-
penalty term for the hyperbolic part of the equation. Numerical experiments are
presented to demonstrate the accuracy of the method for a wide range of Reynolds
numbers.

1 Introduction

One of the most important challenges that must be addressed in the design
of high-order finite element approximations for practical problems is the con-
struction of efficient hp-adaptive algorithms, capable of delivering accurate
numerical approximations in a reliable and robust manner. The latter objec-
tive has led in recent years to the intensive study of discontinuous Galerkin
finite element methods (DGFEM) for the Navier-Stokes equations, with the
aim to develop high-order numerical algorithms for industrially relevant CFD
problems (see, for example, [5] for aerodynamic simulations).

* Partially supported by CNPq-Brazil.
t Grant from CNPg-Brazil.
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The papers of Cockburn and co-workers (see [4] for a review) have intro-
duced, analyzed and numerically tested local discontinuous Galerkin meth-
ods for linear incompressible fluid flow. A family of DGFEMs for Stokes and
Navier—Stokes problems was formulated and analyzed recently in [3]. The
discontinuous Galerkin method is a stabilized mixed finite element method,
which is locally conservative, offers high-order accuracy and is very robust
for a wide range of Reynolds numbers. The fact that the finite element space
consists of discontinuous piecewise polynomial functions makes the method
ideally suitable for the design of hp-adaptive finite element algorithms on
irregular meshes which admit any number of hanging nodes.

A critical consideration in the construction of mixed finite element ap-
proximations of the incompressible Navier—Stokes equations in the primitive-
variable (i.e. velocity—pressure) formulation is that the finite element spaces
for the velocity and the pressure need to be compatible in the sense that
a Babuska—Brezzi type inf-sup condition is satisfied, — preferably, indepen-
dent of the discretization parameters. An alternative, at least in two space
dimensions, is to use the stream-function formulation of the incompressible
Navier—Stokes equations. This ensures that the incompressibility constraint
is automatically satisfied, though the system of Navier—Stokes equations is
transformed into a scalar nonlinear fourth-order partial differential equation
(cf. [2]). A number of authors have used this approach to solve some practical
problems and to demonstrate the effectiveness of the finite element method
in a range of geometries.

Having said this, the application of conforming finite element methods to
fourth-order partial differential equations suffers from the disadvantage that
only elements achieving global C! continuity may be employed. This difficulty
is easily avoided by using nonconforming globally C° finite element methods,
or — even more extremely — discontinuous Galerkin finite element methods
(DGFEMS). Indeed, the use of completely discontinuous finite element approx-
imations leads to easy implementation of locally high-order finite elements,
without the need for enforcing global regularity requirements; see [9].

In this paper we present the construction, validation, and application of
an hp-version discontinuous Galerkin finite element method for the numerical
solution of the Navier—Stokes equations governing two-dimensional stationary
incompressible flows.

We linearize the equation using a Picard-type fixed-point iteration and we
then solve the resulting linear problem by combining a discontinuous Galerkin
finite element method for the biharmonic equation proposed in [9] with a
discontinuous Galerkin finite element approximation of the advective terms
developed in [1].

The paper consists of four sections. Using a stream-function formulation, in
Section 2 we reduce the system of Navier—Stokes equations to a single fourth-
order nonlinear partial differential equation and consider a linearization of this
equation. Then, in Section 3, we introduce the discontinuous finite element
space, define the discontinuous Galerkin finite element method for a fourth-
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order linear advective equation and present the main result — an hp-version
error bound for the method. In Section 4, we confirm numerically the order
of convergence of the method for a wide range of Reynolds numbers, on the
so-called Kovasznay solution, [8], which, for a given Reynolds number, is a two-
dimensional analytical solution of the incompressible Navier—Stokes equations.
Finally, we consider the application of our method to the two-dimensional lid-
driven cavity problem.

2 Mathematical formulation

Let 22 € R? be a bounded convex polygonal domain with boundary 8. We
consider in {2 a steady, two-dimensional incompressible fluid flow which is
governed by the Navier—Stokes equation:

—pAV+v-Vv+Vp=F in 2 (1)
and the continuity equation
V-v=0 in £, (2)
subject to the boundary condition
v=g on 0f2. (3)

In these equations v is the velocity field, p is the pressure, p is the kinematic
viscosity of the fluid, u = 1/Re, Re is Reynolds number, F is a prescribed
external body force. We shall suppose that f = gl';f — % € L2(2) and
that the Dirichlet data g are sufficiently smooth and satisfy the compatibility
condition f 50 & 1nds =0, where n is the outward normal unit vector to 92.

Let ¢ be a stream-function related to the velocity field v as follows: v, =

8—1/’, Vg = —a—w; then, the Navier—Stokes equations can be reduced to
8&22 611
1 0 oY 0 oY .
— N2 — N | — — [ —AY | — = 0. 4
Re d}_'_ (31’2 ’(/}) 6:51 <8$1 w) 81’2 m ( )

Note that in this formulation the incompressibility constraint is automati-
cally satisfied and the pressure is excluded. However, this approach is valid
in 2D only. Due to the nonlinearities, this equation is solved iteratively by a
Picard-type fixed point iteration or by the Newton—Raphson method, using
a linearization of the equation (4). Therefore, in this work we focus on the
following boundary-value problem for the linear fourth-order elliptic equation
with advective term:

1, 3 .
%Aw+b~vwff in £2, (5)
Y = go on 012,
n-Vy =g on 02,

where f € L2(£2), b= (by,bs) € CL(2) x CY(£2).
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3 DGFEM for a 4th-order advective PDE

Let us consider a shape-regular family of triangulations {K,} of £2 of granu-
larity h, h = max hg, hx = diam(K), K € K}, such that each K € K}, is an
affine image of the master element K = (0,1)x(0,1) cR%: K = FK(IA(), K e
K. Let e denote the interior of any edge in the triangulation and let £ be the
set of (open) edges e of all elements in the mesh. Let e = {e € £ : e C N2} be
the set of all interior edges, and €9 = {e € £ : e C 942} the set of all bound-
ary edges. In what follows we will use the standard Discontinuous Galerkin
nomenclature. For example, we define the (mesh-dependent) broken Sobolev
space equipped with the corresponding broken Sobolev norm:

H%(02,K,) = {¢ € L*(2) : |, € H**(K) VK € Ky},

where s > 0 is the local Sobolev index; we introduce the finite element
space SP(12,K;,, F) = {;p €L2(2): Y|y 0 Fx € Qp (K) VK € /ch}, where

Qp(f/(\') = span{z{*z5? : 0 < ay,a2 < p}, and pg is the local polynomial
approximation degree in K for each K € Kj,.

Let us introduce the hp-version of the interior penalty discontinuous
Galerkin finite element method for the boundary value problem (5). Follow-
ing the ideas presented in [9], we shall consider the nonsymmetric formulation
corresponding to the biharmonic operator and we shall use the stabilised dis-
continuous Galerkin method introduced in [1] to approximate the advective
terms of the equation. Thus, we consider the bilinear form

Bpg (¢, ¢) = Pie[/ AwA¢dx+/ ({v (AD)Y - [¢] - [¥] - {V (A¢)}>ds
2 £
_Z (14011901 ~ [901149) s + Z (a1 I+ AIV011741 )|

+[bevode— [l ojas + [ celul - folds

n Eint Eint U Ea_

on [SP(£2, K}, F)]%. Here we have used the following notation

/ Pds = /z/st

ec A

for the integral over any subset A of the skeleton &; [-] and {-}, respectively,
denote the jump and the mean-value of a vector- or scalar-function across an
interior or boundary edge; on a boundary edge, the function to which [-] and
{-} are applied is defined to be zero outside the set {2. The functions « and
are defined, edge-wise, by the formulae o = e, B = Bc for alle € £, a, =

{p} ,59*05{ } ,ce >0|b-njoneé€ g, ce =|b-n|one € &, where
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0a, 0g and 6 are positive constants independent of e; § = 1/2 corresponds to
upwinding. Let us also define the linear functional I(-) on SP(£2, Ky, F):

— | [ 7ot = [ (-5 (20— 0] s
0 %)
+/ <@90¢+ﬁ91(V'V¢)>ds]+/6590¢d8-

Es Es

We introduce the following interior penalty Discontinuous Galerkin method.
IPDGM: Find ¢pg € SP(2, K}, F) such that

Bpe(Y¥pa,¢) = 1(¢) Vo € SP(02,Kp, F). (6)

In order to ensure the consistency of the method (and thus the Galerkin
orthogonality property), we suppose that the solution ¥ to the boundary
value problem (5) is sufficiently smooth: namely ¢ € HS(£2,Kj) with sx > 4
for all K € Ky, and [V(Ay)] = [VY] = [A¢] = [¢] = 0 on all edges e in
gint-

Let us consider the norm |- ||pg associated with the bilinear form Bpg (-, -):

1 2
1616 =g | 14618 o+ VATl -+ VBITA] | #1618 o+ IvazloliB.

where ¢ € SP(£2, K, F). To proceed, we adopt the following hypotheses.
Hypothesis H1. There exists a positive constant g such that

—V-b>7 ae. in (2.

Hypothesis H2. b- V¢ € SP(2, Ky, F) for all ¢ € SP(02, K, F).

Now, combining the hp-version error analyses of the nonsymmetric interior-
penalty DGFEM for the biharmonic equation from [9] and of a stabilized ver-
sion of the DGFEM for first-order hyperbolic equations from [1] and [7], we
arrive at the following a priori error bound for the IPDGM (3).

Theorem 1. Let p = (pr, K €K), px > 2, be an arbitrary polynomial
degree vector of bounded local variation. Let us suppose that the exact solution
1 to the problem belongs to H® (£2,KK) NH* (2) and let ypa be the solution to
the discrete problem IPDGM. Moreover, let us assume that oo >0, og >0
and that Hypotheses 1 and 2 are valid. Then, the following error bound holds:

1 thK —4 thK 1 thK
I — wDG”|DG<OZ{ s 2.5K —2e—=100 + IV - blloo, e e |19 | fiere (1015
KekKy, K Pr Pk

where g = max(3,1), 2 < tx < min(pg + 1,5x), and C depend only on the
space-dimension, the shape-reqularity constant, and on s =max sk, Sk > 4.
€eLh
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4 Numerical results

We begin by presenting a numerical experiment to confirm the a priori error
estimates derived above. For this purpose we choose the two-dimensional exact
solution to the incompressible Navier—Stokes equations derived by Kovasznay
[8]. Hence, in 2 = (—0.5,1.5) x (0.0,2.0) we solve the fourth-order linear
advective equation with the coeflicients

by = exp(Az1) cos(2mwa) (4w — A\?), by = 2i exp(Azy) sin(27z2)(\? — 47?)
™

with right-hand side f and Dirichlet boundary data gg, g1 which correspond
to Kovasznay’s exact solution: ¥ (z1,22) = x2 — 5= exp(Az1) sin(2mz2), where

A =Re/2 — /Re?/4 + 472

For the purposes of calculating the order of h-convergence, quadrilateral
meshes generated by consecutive refinements of the original computational
region were used. In each refinement, each grid cell is divided into four simi-
lar cells by connecting the midpoints of opposite edges. In Table 1, orders of
convergence of the method with respect to the DG norm || - ||pg and the H!
seminorm | - |1 are presented, for a wide range of Reynolds numbers. These
orders were calculated on the refinement-levels L = 3,4, 5, for polynomial de-
grees p = 3,4,5. As one can see from the table, the method seems robust and
the numerical results confirm the theoretical orders of convergence for all val-
ues of the Reynolds number considered. We note that the order of convergence

Table 1. Observed errors in the H' seminorm and the DG norm.

Re =10 Re = 10 Re = 103 Re = 10*
p Level [-[m [-lloc [lm I-llpc [-[m [-lloe | lm |- lpc
3 3.041 2.344 3.189 2.348 2.878 2.488 2.820 2.577
3 4 2820 2126 2.886 2.039 2.889 2.051 2.850 2.098
5 2923 2196 2.897 2.064 2963 2.056 2967 2.057
3 1.606 0.965 1.665 1.044 1.686 1.077 1.751 1.075
4 4 3912 3.405 3954 3.147 3.948 3.132 3.855 3.154
5 3.948 3213 3.98 3.060 3.983 3.051 3.973 3.053
3 5264 4.585 5.344 4500 5.348 4.491 5.216 4.556
5 4 4911 4.234 4.945 4.100 4.958 4.086 4.946 4.090
5 4953 4.256 4.923 4.094 4.983 4.081 4.984 4.081

of the method for the velocity field components is p (cf. |- |g: columns in Table
1), which is by one unit less than the corresponding order of the local discon-
tinuous Galerkin method for the (linear) Oseen equation obtained in [4]. On
the other hand, the local discontinuous Galerkin mixed finite element method
from [4] involves many more unknowns than our method here. In our second
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X' 05

Re=100
o Re=400
o Re=1000

!
0.25 0.5 0.75

Fig. 1. Profiles of the velocity component v, along the vertical mid-line (left) and
the velocity component vz along the horizontal mid-line (right), in comparison with
the results from [6].

example, we demonstrate the potentials of the DGFEM described above when
applied to the nonlinear equation (4). We consider the problem of simulating
a two-dimensional lid-driven cavity flow, a model problem which is frequently
used in the CFD literature for validation purposes. The flow-domain of in-
terest is the unit square £2 = (0,1) x (0,1) with the upper horizontal lid
moving with uniform velocity v = (1,0) T, which corresponds to the Dirichlet
boundary condition ¥ = 0,n - V¢ = 1; the homogeneous Dirichlet boundary
condition ¢ = 0,n - Vi = 0 is applied on all the other (static) walls. We
compute numerically the flow using a nonuniform rectangular mesh, refined
at each corner, composed of 2340 elements and with @3 discontinuous polyno-
mial approximation. We have used the Newton-Raphson method for solving
the global nonlinear system A(b)b = f. We chose zero as the initial guess for
b for Re = 100 and Re = 400, and for Re = 1000 the initial guess was taken
from the previous result corresponding to Re = 700. In all cases considered
no more than ten iterations were needed to obtain an approximate solution
with relative error e; = ||b; — b;_1||/||bi—1]| < 1077, where b; is the numerical
solution from iteration i. In each Newton—Raphson step the linear system was
solved using an LU factorization. Fig. 1 shows the vy velocity profile along
the vertical mid-line and the vy velocity profile along the horizontal mid-line
of the square, calculated for Re = 100,400 and 1000, in comparison with the
results from [6], in which the data were obtained on a 129 x 129 uniform grid
using a second-order accurate finite-difference scheme for both the stream-
function and vorticity equations. For all Reynolds numbers considered, the
velocity profiles computed by our method are in excellent agreement with the
tabulated data from that work. In Fig. 2 we compare velocity profiles, com-
puted by our method for p-refined and h-refined meshes with the same number
of degrees of freedom, DOF= 14400. We see that the results corresponding to
p-refinement perfectly coincide with the data from Ghia et al. [6], while the
results corresponding to h-refinement are less accurate for larger Reynolds
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Fig. 2. Profiles of the velocity components vi (left) and ve along the vertical and
horizontal mid-lines respectively for different mesh enrichments: 30 x 30 x Qs - dotted
line, 20 x 20 x Qs - circle, 15 x 15 X Q7 - solid line. The results from [6] - diamond.

numbers. So high-order DGFEMs presented here seem more appropriate for
high Reynolds numbers simulations.

To conclude, we introduced a new hp-version interior-penalty DGFEM
for the two-dimensional incompressible Navier—Stokes equations in stream-
function formulation and demonstrated the high accuracy of the method when
solving a classical benchmark problem.
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The paper deals with a combination of the Nitsche-mortaring with the Fourier-
finite-element method. The approach is applied to the Dirichlet problem of
the Poisson equation in three-dimensional axisymmetric domains with non-
axisymmetric data. The approximating Fourier method yields a splitting of the
3D-problem into 2D-problems on the meridian plane treated by the Nitsche-
finite-element method (as a mortar method). Some important properties of
the approximation scheme as well as error estimates in some H!-like norm as
well as in the Lo-norm are derived.

1 Introduction

For the efficient numerical treatment of boundary value problems (BVP) in
3D, domain decomposition methods as well as dimension decomposition meth-
ods are widely used in science and engineering. Both methods are convenient
for parallelization of the numerical solution of partial differential equations.
In this paper, we shall present a combination of the so-called Fourier-finite-
element method with the Nitsche-finite-element method as a mortar method.
The approach is applied to the Dirichlet problem of the Poisson equation,

3
—Ag,a::—Z—?:f in 2, 4=0 on 802, e R’ (1)

i=1

where the domain 2 is bounded and axisymmetric with respect to the xz-axis.
The data and the solution @ of the BVP in 3D are non-axisymmetric. If we
denote the part of the zs-axis contained in 2 by I, then the set 2\ I} is
generated by rotation of a plane polygonal meridian domain {2, about the
T3-axis.

The two methods to be combined can be characterized as follows. The
Fourier-finite-element method (FFEM, see e.g. [4, 5, 7, 8, 11]) is based on the
well-known approximating Fourier method and on the finite-element method.
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That is, trigonometric polynomials of degree < N are used in one space direc-
tion, here with respect to the rotational angle . This yields an approximate
splitting of the 3D-problem into 2N + 1 problems on the 2D domain {2, for the
parameter k = 0,+1, ..., N, with solutions uj being the Fourier coefficients
of u.

Furthermore, we employ the Nitsche-finite-element discretization as a mortar
method for solving numerically the 2D-problems on the meridian domain (2,
(cf. [2, 6, 9, 12], also [1, 3, 13] for general aspects). Along the interface I" of
the domain decomposition of {2,, non-matching meshes (cf. Fig. 1(b)) as well
as discontinuities of the approximated solutions are admitted. But compared
with the papers cited previously, the differential operator depends now on the
parameter k and has a more general form.

2
2

Q(L/

Iy

1
"’u.

- [
r T

Fig. 1. (a) Domain {2, with subdomains; (b) Non-matching triangulation

The aim of this paper is to present the combined method, which seems to
be new. This method has the advantage that the dimension of the problem
is reduced and that we have a natural parallelization of the solution process.
Moreover, the handling of non-matching meshes of triangles on the meridian
domain {2, is easier than of non-matching meshes and elements in 3D. In
the following, it is analyzed how the approximation schemes in 2D generate
the mortar approximation in 3D. Important properties of the approximation
schemes as well as results for convergence upy — wu of the Nitsche-Fourier-
finite-element approximation ujy with respect to N — oo and h — 0 (N:
length of the Fourier sum, h: mesh size on (2,) are presented, where N and h
can be chosen independently from each other. In some H!-like norm and for
regular solutions u, the convergence rate is proved to be of the type O(h +
N~1), in the Lo-norm like O(h? + N~2).

Since the domain 2 is axisymmmetric, we employ cylindrical coordinates
r,p,z (r1 =1rcos, o =rsinp,x3 = z), with r > 0 and ¢ € (—7, «|. Here, r
is the distance of a point to the z-axis, ¢ the rotational angle. For each function
O(x) with = € 2\ Iy, some function v is defined on 2 := 2, x (—m, 7] by

v(r, p, z) := 0(rcos p,rsin g, z). (2)

The boundary part I, is defined by I, := 982, \ I'y, where 942, € C%! is the
boundary of §2,, see Fig. 1(a). For getting regular solutions 4 € H?({2) of the
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BVP (1) for f € Lg(ﬁ) (Hs(ﬁ): the usual Sobolev-Slobodetskii space with
s >0, s real, H? = Ly), it is sufficient to assume that the interior angles 0 at
the corners of 942, satisfy 0 < 7, at the z3-axis even 6 < 0.726167 (cf. [4]).

We denote by X! H /2( 2) the Sobolev-type spaces of functions periodic with
respect to ¢ € (—m, w] and with the weights 2 received by the mapping (2):
HY () — X{/Q(Q) (I =0,1,2), where X1/2(Q) represents the space H'({2)
in terms of cylindrical coordinates, for details we refer to [11, 8]. According
to (2), the variational formulation of the BVP (1) in cylindrical coordinates
is given as follows. Find u € Vo(£2) := {u € X11/2(.(Z) culpy, x(—mm) = 0}

b(u,v)=f(v) Yve Vp(2), with (3)
Oudv 1 O0udv Oudv _
b(um).—/{ga + 2 090 + @&} rdrdedz, f(v) = /fvrdrdgodz.
Q

2 Fourier decomposition and mortaring in 2D

For u(r, v, 2), u € Xl/z(())7 and for f(r,p,2), f € X?/Q(Q), resp., we employ
partial Fourier analysis with respect to the rotational angle ¢ taking the
system of trigonometric functions {e*¥}rcz (i = —1; Z = {0, £1,£2,...}):

™

u(r, p, 2) :Zuk(r, 2)e*P ug(r, 2) = % /u(r, @, z) e dy for k € 7. (4)
kEZ

—Tr

Using the functionals

Ouy Ovr, ~ Ouy O k2
bk(uk,vk):/{%%Jr%%Jr ukvk}rdrdz Jr(vk) /fkvkrdrdz

QO/

for k € Z, the BVP (3) can be decomposed into a family of decoupled BVPs
in 2D written in the variational form as follows (see e.g. [4, 7, 8, 11]):

k=0:find up € Vi':  by(ug, w) = fo(w) YweVy,
k € Zy :=Z\{0}: find up € W§: bi(ug,w) = fr(w) YweW¢,

with Vi .= {v € H1/2( W) vlr, =0} W ={veVil:ve Ly _1/5(2)}
Here, H!(£2,) (resp. L2.«(£2,)) denote the spaces of functions with power
weights 7 (a real): H! (£2,):={w = w(r,2) : r*DPw € Ly(£2,), 0 < |8 < 1}
for I € {0,1,2}. It is important to note that the solutions uy (k € Z) of (5)
are the Fourier coefficients of u from (3), i.e., solving the 2D problems (5) we
get the solution u of (3), or @ of (1).

For simplicity, for the Nitsche-finite-element discretization we shall employ
a decomposition of the domain 2, into two polygonal subdomains 2}, £22 with
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0.=02.002., QIn22=0, I'=0.n%0.,sce Fig. 1(a) above. In view of
the subdivision of £2, we introduce the restrictions v* := v i of some function
v on £2¢ as well as the vectorized form v = (v!,v?), i.e. v*(2) = v(z) holds
for x € 2! (i = 1,2). It should be noted that for simplicity we use here the
same symbol v for denoting the function on §2, as well as the vector (v!,v?).
Using this notation we obtain that for each k € Z and sufficiently regular wuy
the solution of the BVPs (5) is equivalent to the solution of the following
problems: Find (u},u?) such that

2,1 2,1 i 2 .
_{8% & uy, 1%}+’f L= fiin 20, i=1,2,

or? * 022 r Or ﬁu
8ui aui . 1 2
8n1+8n2700nr’ ug, =uj on I' fork € Z, (6)

are satisfied, where n; (i = 1,2) denotes the outward normal to 92% N I
Boundary conditions are given by u} = 0 on 902! N I, ul = 0 on 2% N Iy
(only for k € Zg), and the boundary condition for u} on 92! N Iy is given
only in the variational context of (5).

Now, the solutions uj, = (ut, u3) (|k| < N) of the 2D-BVPs (6) shall be
approximated by the Nitsche-finite-element method, cf. also [2, 6, 9, 12]. First
we cover 2% (i = 1,2) as usual by a conforming triangulation 7}’ (i = 1,2)
consisting of shape regular triangles T', which are non-matching at the inter-
face I'. Let hr denote the diameter of T, h = max{hr, T € T,} UT?} the
mesh parameter. Introduce ’broken’ finite element spaces Vg, := Valh X th
and Wy, == Wk x W2 | with V¥, := {vi € C(2,) : vi € P,(T) VT € T,
vﬂanimpa =0} Wi = {vi € Vi, and U}iL|3Q(i1mpO =0} for i = 1,2, ie.,
we employ linear finite element functions which are in general not continu-
ous across I'. Further we introduce some triangulation &, of the interface I’
of domain decomposition by intervals E (E = E), i.e., I' = Ugeg, E, where
hg denotes the diameter of E. A natural choice for the triangulation &, is
Ey =&} or &, := EZ, where & (i = 1,2) denotes the trace of the triangula-
tion 7;' on I', cf. Fig. 2. The triangulations 7,}, 7,2 and &, should be consistent
on I' in a local sense, cf. [10]. We now define the Nitsche-finite-element ap-
proximation of the solutions of the family of BVPs (6) following the ideas for
BVPs in 2D as given e.g. in [2, 6, 9, 12]. They are to be adapted to the new

/]
§<
7! ~let e efe 4 72

0! r r r 22

Fig. 2. Triangulation of the mortar interface
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situation: here we have spaces with power weights r* and, moreover, owing
to the parametrization of the derivative % a new term containing the para-
meter k € Z occurs now in the sesquilinear form.

For £ = 0 and up,v, € Vg, as well as for k € Zg and up, v, € Wyp, we
introduce sesquilinear forms By, x(-,-) and linear forms Fj ,(-) depending on
k € Z and on real parameters ag,as > 0, ag + ag = 1:

B i (un, vn) :=
: i i 200 i duj, oul 1 o
;{(vuhavvh)l/2,93+k (Uh,vh)71/2’92}7<a187n17a28777,2’vh7vh>1/2~,[‘
_<a%_ ‘97"’5 1 2> + h—l(l_ 2 1 2) (7)
Yo, “2ang h T Un/1y2r 'YZ g \Un = Up, Uy = Vh)y /5 g

Ecégy,
2

Fi(on) =D (fisvi)1/2,0-

=1
Here, (-, )12, denotes a convenient duality pairing (cf.[10, p.5]), (-,)1/2, is
the weighted L 1 /2 (F)-scalar product, and for v, = (v},v?) € Van, the pairing
(*,-)1/2,r can be represented by the Ly ;/9(1")-scalar product. Moreover, v is
a sufficiently large positive constant to be restricted subsequently.
The Nitsche-finite-element approximations wugp = (uéh, ugh) € Von and ugp =
(uih,u%h) € Wan, k € Zg, of the Fourier coefficients uy = (u,lf,ui) being the
solution of (6) are defined to be the solutions of the equations

Bh i (ukh, vr) = Fn i (vn) Yor € Wan, k € Zo (Yvn € Van, k=0, resp.). (8)

First we observe the consistency of the solutions uy (k € Z) from (5) with the
variational equations (8) in the sense of By, x(ug,vn) = Fp k(vn) Yor, € Wan,
k € Zo (Yo, € Van, k=0, resp.), cf. [10]. Secondly, it can be shown that

v}, ov? |2 2 P12
> hellaagt —aag ML,y S Ol VUillL, ., for vn € Van
Ee&y i=1

holds. In the following we use the norms || - ||1,5,x (k¥ € Z), which depend on h
and k € Z, and compared with [2, 6, 9, 12], weighted norms and an additional

term k|| - ||, _,,, occur:

2

lonll} k= UIVOLIL, , aan) TR2IORIL, st +D hE lvn—illZ, , oo

i=1 E€E&y,

If the constant v in (7) is chosen independently of & and k and satisfies
v > Cf, then the inequality By, x(vp,vp) > M1||Uh||ih7k Yoy, € Wan, k € Zg
(v, € Van, k =0, resp.) holds with a positive constant pq, cf. [10].

3 Fourier-nitsche-finite-element approximation in 3D

In order to define the Fourier-Nitsche-finite-element approximation for the
3D-BVP (3), also for (1), we introduce the family of spaces Vn and for
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u,v € X (') x X{,,(£2%) the forms BjY, 7} as follows:

Vin = {o(r,0,2) = 3 vrn(r,2) €% 1 von € Van, vin €Wan, 1 < |k| < N},
[k|<N

B,Ilv(u,v):: 2 Y Bpg(ug, v, T;JLV(U) =21 > Fni(vk),
[k|<N [k|<N

with the domain decomposition in 3D: 9 := §2J x (—m, 7|, j =1,2. Then
for treating the BVP (1), i.e. (3), in 3D, the combined Fourier-Nitsche-finite-
element method is defined by the Galerkin approach

find upy € Vin such that B,]Lv(uhN,vhN) = }",le(vhN) Yurn € Van. (9)

The solution upyx of (9) is given and can be calculated numerically by
upn = (uj . uly) with u{LN = Z uih(r,z) e*¢  for j = 1,2, where
lk|<N
ugn = (up,,u2,) are the solutions of the 2D-problems (8).
The error v — upy (u from (3)) is measured in the Lo-norm || - HLQ(ﬁ) =

[ - HXf/z(Q) as well as in the H'-like norm || - ||1,5,»» Which is defined by

2

HUH%,h,Q::Z‘v]'XI (QJ)+Zh IHU _U2‘|X°/2(Ex( 7)) v’ EXll/z(Qj)»

j=1 E€gy,
with ol =030 p e =25 ok = w212, s (cf. [10)).

Theorem 1. Let u be the solution of the BVP (3), with u € X1/2(Q), and
upN its approzimation given by (9). Then the error epn := u — upn Satisfies

lennlline <C(h+N"1 flixo, (

1/2

2 llennllxo ) SC* +N7) | fllxo (o)

In order to show that the combined methods works and for observing the
convergence rates of the discretization we consider the following examples.
The meridian domain {2, generating {2 is a pentagon with the vertices (0, 0),
(1,0), (2,1), (1,2), and (0, 2), cf. Fig. 3(a), (b). The right-hand side f is chosen
so that the solution of the BVP (3) is

u(r,p,2) = =12 (r—z—1) (r + 2 — 3) (2% — 22) (p)

with @(p) = —[[p|(m + )] for ¢ € (—m,0] and P(p) := [p(m — )"
for ¢ € (0,7]. For the first example, the subdomains of {2, are given by
2L ={(r,z) € 2, : 2> 1} and 22 = {(r,2) € 2, : 2 < 1}, cf. Fig. 3(a). In
this case, we have 002. N T, # 0 for i = 1,2 and F N FO # (). For the second
example we employ the subdomains 2! = 2, \ (2 = (0.5,1) x (0.5,1.5),
cf. Fig. 3(b). Here, the mortar interface does not touch the boundary of (2,, i.e.
I'nIy =0 and I'NI, = ( hold. For the experiments, the initial meshes shown
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Fig. 3. (a) Triangulation (first example)  (b) Triangulation (second example)

in Fig. 3(a), (b) are refined globally by dividing each triangle into four equal
