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Preface by Anatoly G. Yagola

This volume contains the papers presented by invited speakers of the first inter-
national workshop “Optimization and Regularization for Computational Inverse
Problems and Applications”. The workshop was organized under the auspices of
the Chinese Academy of Sciences in the Institute of Geology and Geophysics,
located in Beijing, the capital of China, and held during July 21–25, 2008, just
before the opening of the Olympic Games. The workshop was sponsored by the
National Natural Science Foundation of China, China-Russia Cooperative Re-
search Project RFBR-07-01-92103-NFSC and the National “973” Key Basic Re-
search Developments Program of China. The main goal of the workshop was to
teach about 60 young Chinese participants (mostly geophysicists) how to solve
inverse and ill-posed problems using optimization procedures. Eminent special-
ists from China, Russia (partially sponsored by the Russian Foundation of Basic
Research), USA and Austria were invited to present their lectures. Some of them
could not participate personally but all invited speakers found a possibility to
write papers especially for this publication.
The book covers many directions in the modern theory of inverse and ill-

posed problems – the variational approach, iterative methods, using a priori
information for constructing regularizing algorithms, etc. But the most important
for the papers is to show how these methods can be applied to effectively solving
of practical problems in geophysics, astrophysics, vibrational spectroscopy, and
image processing. This issue should encourage specialists in the inverse problems
field not only to investigate mathematical methods and propose new approaches
but also to apply them to processing of real experimental data. I would like to
wish all of them great successes!

Lomonosov Moscow State University Anatoly G. Yagola
Moscow, Russia
March 2010





Preface by Editors

The field of inverse problems has existed in many branches of physics, earth sci-
ence, engineering and mathematics for a long time. From the beginning of the
birth of the inversion theory, inverse problem with its modeling design and op-
timization becomes a multi-disciplinary subject, which has received much more
attention nowadays. The aim of the inverse problems, modeling design and opti-
mization is to provide a better, more accurate, and more efficient simulation in
practical applications. Many methodologies for solving inverse problems employs
optimization algorithms. At the same time, optimization community that employ
methods of inverse modeling design could reduce the number of time-consuming
analyses required by the typical optimization algorithms substantially. This book
provides readers who do research in computational/applied mathematics, engi-
neering, geophysics, medical science, image processing, remote sensing and atmo-
spheric science a background of using regularization and optimization techniques
for solving practical inverse problems.
The book covers advances of inversion theory and recent developments with

practical applications. Particularly, it emphasizes combining optimization and
regularization for solving inverse problems. The methods include standard reg-
ularization theory, Fejér processes for linear and nonlinear problems, balancing
principle, extrapolated regularization, nonstandard regularization, nonlinear gra-
dient method, nonmonotone (Barzilai-Borwein) method, subspace method and
Lie group method. The practical applications include reconstruction problem for
inverse scattering, molecular spectra data processing, quantitative remote sens-
ing inversion, seismic inversion by Lie group method and gravitational lensing
problem.
Uniqueness of this book is that it provides novel methods for both standard

and nonstandard regularization and practical applications in frontiers of sciences.
Each chapter is written by renown researchers in their research field respectively.
Illustrations and tables are provided for better understanding of their ideas. Sci-
entists, researchers, engineers and as well as graduate students engaged in applied
mathematics, engineering, geophysics, medical science, image processing, remote
sensing and atmospheric science will benefit from the contents of the book since
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the book incorporates a background of using regularization and optimization
techniques for solving practical inverse problems.

Chinese Academy of Sciences, Beijing Yanfei Wang
Lomonosov Moscow State University, Moscow Anatoly G. Yagola
Chinese Academy of Sciences, Beijing Changchun Yang
May 2010
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Chapter 1

Inverse Problems, Optimization and
Regularization: A Multi-Disciplinary
Subject

Yanfei Wang and Changchun Yang

Abstract. Inverse problems, optimization, regularization and scientific comput-
ing as a multi-disciplinary subject are introduced in this introductory chapter.

1.1 Introduction

The field of inverse problems has existed in many branches of physics (geo-
physics), engineering and mathematics (actually the majority of the natural
scientific problems) for a long time. Inverse problems theory has been widely
developed within the past decades due partly to its importance of applications,
the arrival on the scene of large computers and the reliable numerical methods.
Examples like deconvolution in seismic exploration, image reconstruction, tomog-
raphy and parameter identification, all require powerful computers and reliable
solution methods to carry out the computation [27, 12, 17, 19, 1, 24].
Inverse problems consist in using the results of actual observations or indirect

measurements to infer the model or the values of the parameters characterizing
the system under investigation. A problem is ill-posed according to the French
mathematician Hadamard [4] if the solution does not exist, or is not unique,
or if it is not a continuous function of the data. Practical inverse problems are
typically related with the case that noise in the data may give rise to significant
errors in the estimate. Therefore, to suppress the ill-posedness, designing the
proper inversion model and developing proper regularization and optimization
algorithms play a vital role [12, 19, 15].
From the beginning of the birth of the inversion theory, inverse problem with

its modeling design and optimization becomes a multi-disciplinary subject, which
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4 Y. F. Wang and C. C. Yang

has become more and more important nowadays [19] because the modeling de-
sign theory in applied science is not well known in the optimization community
and there are no optimization algorithms that employ methods of inverse mod-
eling design. The aim of the inverse problems modeling design and optimization
is to provide a better, more accurate, and more efficient simulation in practical
applications. Many methodologies for solving inverse problems employ optimiza-
tion algorithms. At the same time, optimization algorithms that employ methods
of inverse modeling design could potentially substantially reduce the number of
time-consuming analyses required by the typical optimization algorithms sub-
stantially.

1.2 Examples about mathematical inverse problems

Example 1.2.1. Fredholm integral equations of the first kind

This is a very useful and practical description of the inverse problems: given
the kernel function k(x, y), the input f(x), desire the output h(x) through the
integral equation ∫

k(x, y)f(y) = h(x). (1.2.1)

Inverse problem is to infer what f represents through an inverse process of the
above equation. Problems like seismic migration, deconvolution, light attenuation
require solving the above equations, please refer to [27, 19, 16, 18, 21] for practical
examples.

Example 1.2.2. Ill-conditioning linear algebraic problems

This can be regarded as discrete ill-posed problems. Actually any inverse prob-
lems, computationally, can be reduced to solve a linear algebraic problem in the
form

Ax = b, (1.2.2)

where A ∈ R
M×N , x ∈ RN and b ∈ RM . There are three cases of the problem:

Case 1: M = N , yielding a square system. If A is nonsingular (full rank), then
A−1b is the unique solution to the linear equation. On the other hand, if A is
singular, the solution to the equation either does not exist, or is not unique.
Case 2: M > N , yielding an over-determined system. If the rank of the rect-

angular matrix A is N , then the solution xlse can be found in the least squares
sense to the over-determined system of equation. And, xlse is the unique solution
to the problem with minimum norm.
Case 3: M < N , yielding an underdetermined system. Underdetermined linear

systems involve more unknowns than equations. That is, there are more unknown
parameters to be identified than the number of measurements obtained. In this
case, the solution is never unique. To solve the problem, a priori knowledge or
constraints on the solution must be incorporated [20, 22].
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Example 1.2.3. The Laplace transform

The Laplace transform is very important for many applications (e.g., syn-
chrotron radiation light attenuation problem [23]). In the notation of integral
equations, the problem of Laplace transform of a signal can be written as

(Af)(s) =
∫ tmax

tmin

k(s, t)f(t)dt = g(s), s ∈ [smin, smax], (1.2.3)

where the integral kernel is k(s, t) = exp(−st), f an input signal and g the
observations.
Inverse Laplace transform is to estimate the input f from measurements g.

1.3 Examples in applied science and engineering

Example 1.3.1. Atmospheric inversion

We focus on atmospheric aerosols inverse problems. It is well-known that the
characteristics of the aerosol particle size, which can be represented as a size
distribution function in the mathematical formalism, say n(r), play an important
role in climate modeling due to their uncertainty. So, the determination of particle
size distribution function becomes a basic task in aerosol research [10, 3].
For sun-photometer, the attenuation of the aerosols can be written as the

integral equation of the first kind

τaero(λ) = d(λ) + �(λ)
= (Kn)(λ) + �(λ)

:=
∫ ∞

0

πr2Qext(r, λ, η)n(r)dr + �(λ), (1.3.1)

where K defines an operator from parameter space F to the observation space
O; r is the particle radius; n(r) is the columnar aerosol size distribution (i.e. the
number of particles per unit area per unit radius interval in a vertical column
through the atmosphere); η is the complex refractive index of the aerosol parti-
cles; λ is the wavelength; �(λ) is the error/noise; and Qext(r, λ, η) is the extinction
efficiency factor from Mie theory. Since aerosol optical thickness (AOT) can be
obtained from the measurements of the solar flux density with sun-photometers,
one can retrieve the size distribution by the inversion of AOT measurements
through the above equation. This type of method is called extinction spectrome-
try, which is not only the earliest method applying remote sensing to determining
atmospheric aerosol size characteristics, but also the most mature method thus
far.
Determining the particle size distribution function is an inverse problem, recent

advances employing regularization strategies can be found in [16, 18, 21, 11, 2].
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Example 1.3.2. Geophysical inversion

Geophysical inverse problems are not new issues. However to put the advanced
inverse and optimized techniques into practice is still underdeveloped. Roughly
speaking, the inversion in geophysical problems is to adjust models (parame-
terized models) to minimize the difference between theoretical and observation
values as far as possible using different norms in different spaces. Geophysical
inverse problems are closely related with deconvolution, where the operators are
designed to bring the predicted output to the actual output as close as possible
using different norms in different spaces. The essence is to recover the unknowns
from the measured data, e.g., in reflection seismics, try to recover the reflectivity
function knowing the seismic records (Fig. 1.1). Mathematically, the observed
time series d(t) can be expressed by the Fredholm integral equations of the first
kind

d(t) =
∫

Ω

K(t, τ)m(τ)dτ, (1.3.2)

wherem(t) is the model and k(t, τ) is the kernel function. On the assumption that
the mapping kernel k(t, τ) is time shift-invariant, the above equation becomes

d(t) =
∫

Ω

k(τ)m(t− τ)dτ, (1.3.3)

which is equivalent to

d(t) =
∫

Ω

k(t− τ)m(τ)dτ. (1.3.4)

If we regard k(t) as a seismic source wavelet, m(t) as an impulse function, then
d(t) is a seismic trace which can be recorded by using geophones, and the problem
can be formulated as a source-dependent operator form

d(t) = Ks(m)(t). (1.3.5)

Solving m(t) = K−1
s d(t) is a deconvolution problem. If, sometimes, the source is

unknown, then solving m(t) is called the blind source deconvolution. If solve the
source k(t) with the knowledge of data d(t) and a proper inverse operator K−1,
i.e., k(t) = K−1d(t), then the problem is called an inverse source problem.

Fig. 1.1 Generating seis-
mic records.
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Note that the above model is a general description. Different geophysical in-
verse problems have different concrete forms and different physical meanings. For
example, the operator equations can be referred to as inverse problems in gravity
field, magnetic field, electromagnetic field and seismic wave field with different
forms of kernel operators, model parameters and data, respectively [27].

Example 1.3.3. Inversion in Lidar sensing

Airborne laser scanning (ALS) is an active remote sensing technique which is
also often referred to as lidar or laser radar. Due to the increasing availability
of sensors, ALS has been receiving increasing attention in recent years (e.g., see
[13]). In ALS a laser emits short infrared pulses towards the Earth’s surface and
a photodiode records the backscattered echo. With each scan, measurements are
taken at the round-trip time of the laser pulse, the received echo power and at
the beam angle in the locator’s coordinate system. The round-trip time of the
laser pulse allows calculating the range (distance) between the laser scanner and
the object that generated the backscattered echo. Thereby, information about
the geometric structure of the Earth’s surface is obtained. The received power
provides information about the scattering properties of the targets, which can be
exploited for object classification and for modeling of the scattering properties.
Airborne laser scanning utilizes a measurement principle firstly strongly re-

lated to radar remote sensing. The fundamental relation to explain the signal
strength in both techniques is the radar equation ([14]):

Pr(t) =
D2

r

4πR4β2
t

Pt

(
t− 2R

vg

)
σ, (1.3.6)

where t is the time, R is the range, Dr is the aperture diameter of the receiver
optics, βt is the transmitter beam width, Pt is the transmitted power of the laser
and σ denotes the scattering cross-section. The time delay is equal to t′ = 2R/vg

where vg is the group velocity of the laser pulse in the atmosphere. Fig. 1.2
displays the geometry and parameters for laser scanner.
Taking the occurrence of multiple scatterers into account and regarding the

impulse response Γ(t) of the system’s receiver, we get [14]

Pr(t) =
N∑

i=1

D2
r

4πR4β2
t

Pt(t) 	 σ′i(t) 	 Γ(t), (1.3.7)

where 	 denotes the convolution operator. Since convolution is commutative, we
can set Pt(t) 	 σ′i(t) 	 Γ(t) = Pt(t) 	 Γ(t) 	 σ′i(t) = S(t) 	 σ′i(t), i.e. it is possible
to combine both the transmitter and the receiver characteristics to a single term
S(t). This term is referred to as the system waveform ([14]). Thus, we are able
to write our problem in the form

h(t) =
N∑

i=1

(f 	 g)(t). (1.3.8)
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Fig. 1.2 Geometry and
parameters for laser scan-
ner.

where h is the incoming signal recorded by the receiver, f denotes a mapping
which specifies the kernel function or point spread function and g is the unknown
cross-section.
The received pulse consists of an effective wave heff (t) and an additive noise

n(t), i.e.,
h(t) = heff (t) + n(t).

Therefore, it is quite important to stably retrieve the cross-section from equation
(1.3.8) and suppress the perturbation simultaneously. We may write heff (t) in
the form

f 	 geff = heff , (1.3.9)

where geff denotes the actual backscatter cross-section.
Now the problem is how to deconvolve the convolution equation (1.3.8) to get

the approximation to the actual cross-section geff . If we can identify an operator
b(t) which is the inverse of f(t), then

b(t) 	 heff (t) = f−1(t) 	 f(t) 	 geff (t) = δ(t) 	 geff (t) = geff (t),

Though this is perfect in theory, this approach may not work well in practice.
Numerically, the inverse of f(t) is hard to obtain.

Example 1.3.4. Geochemical inversion

This is also a large topic, it can not be complete. For the marine geophysics and
remote sensing, the inverse problem is to determine the bio-geochemical param-
eters of the water body from the upwelling radiance spectrum, or equivalently,
from the spectral normalized water-leaving radiance or the spectral remote sens-
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ing reflectance. Of course this is an ill-posed problem since we only know the
radiance at the surface in a few directions.
For the subsurface aquifer systems, modeling reactive geochemical transport

is a powerful tool for understanding and interpreting geochemical processes in
it. A mathematical and numerical methodology for solving the inverse problem
of water flow, heat transport, and multicomponent reactive solute transport in
variably saturated media is very important in quantitative geochemistry. With
proper inverse model, quantitative description of aqueous complexation, acid-
base and redox reactions, cation exchange, proton surface complexation, and
mineral dissolution and precipitation; identifying relevant geochemical processes;
and estimating key reactive transport parameters from available hydrogeochemi-
cal data, can be obtained. Inverse modeling and optimized solution methods can
provide optimum estimates of transmissivities, leakage rates, dispersivities, cation
exchange capacity, cation selectivities, and initial and boundary concentrations
of selected chemical components.
For the river water system, geochemistry utilizes (major and trace) elements,

isotopes, and equations, to study various Earth and environmental processes. A
combination of the experimental tools (elements and isotopes) with theoretical
tools (equations) provides penetrating insights into the Earth and environmental
processes. For example, with constraints on the parameters like Cl, Na, Sr, Ca
and Mg, and solving the budget equations using inversion technique, the quan-
tification of the elements originating from atmosphere and rock weathering can
be obtained, and hence the end-members can be identified.

Example 1.3.5. Inverse problems in astronomy

Astronomy is by its essence an inverse problem in the sense that astronomers
are attempting to determine the structure of the universe from remotely sensed
data. The radio astronomy consists in the determination of the shape of celestial
objects emitting radio waves, from the radio waves received by radio telescope
on the surface of the Earth.
A typical example we are all familiar with is the astonishing hearten news

about Hubble space telescope image restoration. It views the heavens without
looking through the Earth’s atmosphere. It can take pictures and analyze light.
Discussion about the inverse problems in astronomy is a huge topic. It deals

with inverse problems of instrumentation and signal analysis, dynamics and os-
cillations, source distributions, spectral and polarimetric problems.
Solving the inverse problems in astronomy is difficult and at most of the time

the problems are in large-scale. Hence robust optimization techniques are needed.

Example 1.3.6. Inversion in economy and finance

Inverse problems in econometric and finance are very important for human
lives. In economics, functions are not usually explicitly given, but are assumed
to have characteristic qualitative properties. The problems are meaningful and
often generate important insights into economic behavior. Inverse problems in
economics are often ill-posed, due to endogeneity (e.g., unobserved product in-
formation) and model misspecification problem (poor modeling).
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The forward economic model is the generation of data Yi. The general model
is in the form of

Yi = Γ(Xi) + εi, (1.3.10)

where (Yi, Xi) for all i are paired observation, i = 1, · · · , n; the εi are inde-
pendent, normally distributed random variables with equal variance σ2; Γ is an
unspecified function, which is usually assumed to be smooth. It can be also non-
smooth for some special applications. There is a variety of estimation methods
for the function Γ, including local polynomial estimators, spline regression and
series estimators. The model (1.3.10) is usually called nonparametric because
of the unspecified function Γ. A very familiar model to us is the choice of the
function Γ as a polynomial function [24]:

Yi = β0 + β1Xi + · · ·+ βpXi + εi (1.3.11)

for fixed p ≥ 1. This is known as a linear parametric regression model.
The inverse problem is to estimate the unknown constant regression coefficients

βi, i = 1, · · · , p.
Nowadays, financial problem has entered human being’s daily life. Especially

in recent years, financial markets and financial safety have become hot topics.
Information on the major securities can be found easily in the daily press or on
internet. Researchers also paid a great attention to this problem [19]. The well-
known problem is the identification of the price-dependent volatilities from given
option price data. A description of the relationship is the stochastic process

dX

X
= μ(X)dt+ σ(X)dWt, (1.3.12)

where X is the price of the underlying asset; μ is the parameters drift; σ is the
local volatility; Wt denotes a standard Wiener process. An European call option
gives the holder the right to buy the underlying asset at the expiration date (or
maturity) T for the strike price (or exercise price) K independent of the actual
price X of the asset at time T .
We denote by f(X, t, K, T ) the (fair) market price of a call option as a function

of the variable asset price X , time t ≥ 0, strike price K and expiration date T ≥ t.
For fixed strike price K and expiration date T , the market price f satisfies the
so-called Black-Scholes equation

∂f

∂t
+r(t)X

∂f

∂X
+
1
2
σ2(X)X2 ∂2f

∂X2
−r(t)f = 0, (t, X) ∈ [0, T )× (0,∞), (1.3.13)

where r(t) denotes the interest rate of a risk-less investment and is assumed to
be known, and the final condition f(X, T, K, T ) = max(X−K, 0) for X ∈ (0,∞)
holds.
We see that the volatility σ plays an important role in option pricing. It is

suggested to introduce a mapping from the Black-Scholes equation
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σ −→ f(X, T, K, T ). (1.3.14)

Now the forward problem is that to calculate option prices by a given volatility
σ; the inverse problem is to identify the corresponding volatility function σ from
given option price data.
A more general case is the volatility σ is a function as well of the asset price X

as of the time t. Knowing the prices of European call options for all strike prices
K > 0 and all maturities T > t we can determine the corresponding volatility
accordingly.

Example 1.3.7. Earth surface parameters inversion

Inverse problems in quantitative remote sensing are nowadays hot topics. Both
modeling and model-based inversion are important for quantitative remote sens-
ing [20, 22]. Hundreds of models related to vegetation and radiation have been
established during past decades. The model-based inversion in atmospheric sci-
ence has been well understood. However, the model-based inverse problems for
land surface received much attention from scientists only in recent years. Com-
pared to modeling, model-based inversion is still in the stage of exploration.
This is because intrinsic difficulties exist in the application of a priori informa-
tion, inverse strategy and inverse algorithm. The appearance of hyperspectral
and multiangular remote sensor enhanced the exploration means, and provided
us more spectral and spatial dimension information than before. However, how
to utilize these information to solve the problems faced in quantitative remote
sensing to make remote sensing really enter the time of quantification is still an
arduous and urgent task for remote sensing scientists.

Example 1.3.8. Inversion in high energy physics

Using synchrotron radiation for detection of X-Ray Absorption Fine Struc-
ture (XAFS) is an important problem in high energy physics. The XAFS refers
to modulations in X-ray absorption coefficient around an X-ray absorption edge.
XAFS is often divided into “EXAFS” (Extended X-ray Absorption Fine Struc-
ture) and “XANES” (X-ray Absorption Near Edge Structure). The physical ori-
gin of EXAFS and XANES is basically the same. X-ray absorption probability
can be calculated using standard quantum theory. In recent years, attenuation
filter method receives much more attention. It is because on one side, the exper-
iment can be simply established, on the other side, numerical simulations using
computers can be easily performed. Different experiment filter setup may lead
to different operator equations, but the essence is the same. We recall a EXAFS
equation for a single-component material established in [7]

(Ag)(k) :=
∫ ∞

0

NK(k, r)g(r)dr = χ(k), (1.3.15)

where A is a mapping operator, g(r) is the atomic radial distribution function,
N is the coordination number, χ(k) is the oscillatory part of the observed X-ray
spectrum in the EXAFS energy region, K(k, r) is a kernel function given by
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K(k, r) =
S2

0(k)F (k, r)
k

g(r)
r2

e−2r/λ(k) sin(2kr + φ(k, r)), (1.3.16)

where S2
0(k) is the many-electron overlap factor, F (k, r) is the effective backscat-

tering amplitude, r is the distance from the center of the excited atom, λ(k) is
the energy-dependent mean free path of the photoelectron, φ(k) is the phase shift
due to the atomic potentials, and k is the photoelectron wave number.
Solving g(r) is an inverse problem. For different types of atoms rj and the

measurement spectrum data vector χ(k) for wave vector k, the above problem
can be solved numerically. However, the solution is highly unstable because of
the ill-posedness. Regularization techniques should be included if need be.

Example 1.3.9. Inversion in life sciences

Life sciences is a fast growing field for mathematical modeling. An important
step in modeling is to determine parameters from measurements. Inverse protein
folding problems are a bit classical inverse problems in life sciences. Solving the
inverse problems in life sciences usually leads to large-scale inverse problems,
e.g., the simultaneous determination of hundreds of rate constants in very large
reaction diffusion systems. We emphasize that many mathematical models in the
life sciences are just now being developed, therefore, much more work needs to
be done.

1.4 Basic theory

The basic theory for solving the inverse problems is the regularization, which
had been established in the last century [8, 9, 6, 5]. It involves solving operator
equations of the first kind

Kf = h (1.4.1)

by regularization strategies, where K : F → H is a linear or nonlinear compact
operator between Hilbert spaces F and H . The details and variations of the
Tikhonov regularization will be discussed in the following chapters.

1.5 Scientific computing

Practical inverse problems involve scientific computing, and in many cases it
may be large-scale computational problems, e.g., majority of geophysical and
atmospherical inverse problems. Scientific computing is the collection of tools,
techniques and theories which is required to solve on a computer mathematical
model of problems in science and engineering. The primary focus is the develop-
ment of algorithms and software for solving numerical problems that can enable
large-scale modeling and simulations from a variety of disciplines.
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Large-scale scientific computing as a relatively new field of science, grows very
fast due to a steady increase of collaborative researches conducted by natural sci-
entists and engineers, applied mathematicians and computer scientists, covering a
variety of disciplines from the physical and chemical sciences to many engineering
disciplines. The large scale scientific computing technique has become a motor
of development. A modern engineer needs good knowledge of numerical analysis
and scientific computing technique in order to contribute to engineering projects.
Large scale scientific computing typically solves very large-scale problems. These
problems are “large” not only in enormous variables but also in “mass data”,
e.g., the problems of geophysics and remote sensing. Solving large-scale prob-
lems requires advanced optimization technique and high performance computers
to finish the numerical computations fast enough, or to solve a problem with
enough precision within a given time [25, 26]. This consideration is more related
with economy and commercial production. For example, problems in oil and gas
detection, problems in numerical weather prediction, and problems in data as-
similation are required to couple biosphere, hydrosphere and atmosphere [19].
The goal of large-scale scientific computing is the design, verification, implemen-
tation, and analysis of numerical, symbolic, and geometrical methods for solving
large-scale direct and inverse problems with constraints, and their synergetic use
in scientific computing for real life problems of high complexity.

1.6 Conclusion

In this chapter, we briefly introduce the basic concepts of inverse problems, multi-
disciplinary applications in both mathematics and new frontiers of applied science
and engineering. Scientific computing problems arising as important tools for
numerical inversion are briefly mentioned.
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Chapter 2

Ill-Posed Problems and Methods for Their
Numerical Solution

Anatoly G. Yagola

Abstract. In the present chapter, the basic conceptions of the theory of ill-posed
problems and numerical methods for their solving under different a priori infor-
mation are described. Hadamard’s definition of well-posedness and examples of
ill-posed problems are given. Tikhonov’s definition of a regularizing algorithm
and classification of mathematical problems are described. The main properties
of ill-posed problems are discussed. As an example of a priori information appli-
cation for constructing regularizing algorithms an operator equation in Hilbert
spaces is considered. If it is known that the exact solution belongs to a compact
set then the quasisolution method can be used. An error of an approximate so-
lution can be calculated also. If it is known that there is an a priori information
concerning sourcewise representability of an exact solution with a completely con-
tinuous operator then the method of extending compacts can be applied. There
exists a possibility to calculate an a posteriori error of an approximate solution. If
strong a priori constraints are not available then the variational approach based
on minimization of the Tikhonov functional with a choice of a regularization pa-
rameter, e.g., according to the generalized discrepancy principle is recommended.
It is formulated by an equivalence of the generalized discrepancy principle and
the generalized discrepancy method resulting in a possibility of the generalized
discrepancy principle modification for solving incompatible ill-posed problems.
Possible approaches for solving nonlinear ill-posed problems and iterative meth-
ods are described briefly.
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2.1 Well-posed and ill-posed problems

Below we will describe fundamentals of the theory of ill-posed problems so as to
constitute numerical methods for their solution if different a priori information is
available. For simplicity, only linear equations in normed spaces are considered,
although, it is clear that all similar definitions can be introduced also for nonlinear
problems in more general metric (even also topological) spaces.
Let us consider an operator equation:

Az = u,

where A is a linear operator acting from a Hilbert space Z into a Hilbert space U .
It is required to find a solution of the operator equation z corresponding to a given
inhomogeneity (or right-hand side) u.
This equation is a typical mathematical model for many physical so called

inverse problems if it is supposed that unknown physical characteristics z cannot
be measured directly. As results of experiments, it is possible to obtain only data
u connected with z with help of an operator A.
French mathematician J. Hadamard formulated the following conditions of

well-posedness of mathematical problems. Let us consider these conditions for the
operator equation above. The problem of solving the operator equation is called
well-posed problem (according to Hadamard) if the following three conditions are
fulfilled:

1. the solution holds ∀u ∈ U ;
2. the solution is unique;
3. if un → u, Azn = un, Az = u, then zn → z.

Condition 2) can be realized then and only then operator A is one-to-one
(injective). Conditions 1) and 2) imply that an inverse operator A−1 exists, and
its domain D(A−1) (or the range R(A) of operator A) coincides with U . It is
equivalent to that operator A is bijective. Condition 3) means that the inverse
operator A−1 is continuous, i.e., to “small” perturbations of the right-hand side u
“small” changes of the solution z correspond to. Moreover, J. Hadamard believed
that well-posed problems only can be considered while solving practical problems.
However, there are a lot of well-known examples of ill-posed problems that should
be numerically solved when practical problems are treated. It should be noted
that stability or instability of solutions depends on definition of the space of
solutions Z. Usually, a choice of the space of solutions (including a choice of the
norm) is determined by requirements of an applied problem. A mathematical
problem can be ill-posed or well-posed depending on a choice of a norm in a
functional space.
Numerous inverse (including ill-posed) problems can be found in different

branches of physics. E.g., it is impossible for an astrophysicist to influence ac-
tively the processes in remote stars and galaxies. He is induced to make conclu-
sions about physical characteristics of very remote objects using their indirect
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manifestations measured on the Earth surface or near the Earth on space sta-
tions. Excellent examples of ill-posed problems are in medicine. Firstly, let us
point out computerized tomography. A lot of applications of ill-posed problems
are in geophysics. Indeed, it is easier and cheaper to judge about what is go-
ing on under the Earth surface for solving inverse problems than drilling deep
boreholes. Other examples are in radio astronomy, spectroscopy, nuclear physics,
plasma diagnostics, etc., etc.
The Fredholm integral equation of the 1st kind is a very well-known sample of

an ill-posed problem. Let an operator A be of the form:

Az ≡
∫ b

a

K(x, s)z(s) ds = u(x), x ∈ [c, d].

Let the kernel of the integral operator K(x, s) be a function continuously de-
pending on a set of arguments x ∈ [c, d], s ∈ [a, b], and the solution z(s) be
continuous on the segment [a, b] function. Then let us consider the operator A
as acting between the following spaces: A : C[a, b] → C[c, d]. (The space C[a, b]
consists of functions that are continuous on the segment [a, b]. The norm in this
space of the element z ∈ C[a, b] is defined as ‖z‖C[a,b] = maxs∈[a,b] |z(s)|.) Let us
show that in this case the problem is ill-posed. It is necessary to check conditions
of well-posedness:
1) Existence of a solution for any continuous [c, d] function u(x). In truth, it

is not so. There exists an infinite number of continuous functions such that the
integral equation has no solutions.
2) Uniqueness of a solution. This condition is true if and only if the kernel of

the integral operator is closed.
The first two conditions are equivalent to existence of an inverse operator A−1

with the domain D(A−1) = C[c, d]. If the kernel of the integral operator is closed
then the inverse operator exists but its domain does not coincide with C[c, d].
3) Stability of a solution. It means that for any sequence un → ū (Azn = un,

Az̄ = ū) the sequence zn → z̄. Stability is equivalent to continuity of the inverse
operator A−1 if it exists. In this case it is not true. Let us consider an example.
Let the sequence of continuous functions zn(s), n = 1, 2, . . ., s ∈ [a, b], be such
that zn(s) 	= 0 on the segment [a+b

2
− dn, a+b

2
+ dn] and equal to zero out-of-

segment, max |zn(s)| = 1, s ∈ [a, b], and a numerical sequence dn → 0 + 0. Such
functions could be chosen, e.g., as being piecewise linear. Then for any x ∈ [c, d]

|un(x)| =
∣∣∣∣∣
∫ b

a

K(x, s)zn(s) ds

∣∣∣∣∣ =
∣∣∣∣∣
∫ a+b

2 +dn

a+b
2 −dn

K(x, s)zn(s) ds

∣∣∣∣∣ ≤ K0·1·2dn → 0

as n→∞, where K0 = max |K(x, s)|, x ∈ [c, d], s ∈ [a, b].
The functional sequence un(x) uniformly (that is in norm of C[c, d]) converges

to ū = 0. Though the solution of the equation Az̄ = ū in this case is z̄ = 0 the
sequence zn does not converges to z̄ so far as ‖zn − z̄‖C[a,b] = 1.
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The integral operator A is completely continuous (compact and continuous)
while acting from L2[a, b] into L2[c, d], from C[a, b] into L2[c, d] and from C[a, b]
into C[c, d]. (The functional space L2[a, b] consists of functions which are square
integrable on the segment [a, b]. The norm z ∈ L2[a, b] is defined as ‖z‖L2[a,b] =
{∫ b

a
z2(s) ds}1/2). It means that the operator transforms any bounded sequence to

a compact sequence. By definition, from any subsequence of a compact sequence
it is possible to select a converging subsequence. It is easy to indicate a sequence
zn, ‖zn‖L2[a,b] = 1, from which it is impossible to select a converging in C[a, b]
subsequence. For instance,

zn(x) =
(

2
b− a

)1/2

sin
πn(x− a)

b− a
, n = 1, 2, . . . .

Norms of all terms of this sequence are equal to 1 in L2[a, b], so the sequence is
bounded. But from any subsequence of the sequence it is impossible to select a
converging subsequence because ‖zi − zj‖ =

√
2, i 	= j. Obviously, all functions

zn(x) are continuous on [a, b], and the sequence zn(x), n = 1, 2, . . ., is uniformly
(in norm of C[a, b]) bounded. From this sequence it is impossible to select a
converging in C[a, b] subsequence (then it converges also in L2[a, b] as far as
convergence in average follows from uniform convergence). Let us suppose that
the operator A−1 is continuous. It is very easy to arrive at a contradiction. If A
is an injective operator then an inverse operator exists. Evidently, if an operator
B: C[c, d] → C[a, b], is continuous and an operator A is completely continuous
then the operator BA: C[a, b]→ C[a, b], is completely continuous also. Since for
any n

A−1Azn = zn,

the sequence zn is compact, and that is not true. An operator that is inverse to
a completely continuous operator cannot be continuous. A similar proof can be
provided for any infinite dimensional Banach (i.e. full normed) space.
Since the problem of solving the Fredholm integral equation of the 1st kind is

ill-posed in the above mentioned spaces, even very small errors in the right-hand
side u(x) can produce a result that the equation is not solvable or the solution
exists but it differs ad lib strongly from the exact solution.
Thus, a completely continuous operator acting in infinite dimensional Banach

spaces has an inverse operator that is not continuous (not bounded). Moreover,
a range of a completely continuous operator acting between infinite dimensional
Banach spaces is not closed. Therefore, in any neighborhood of the right-hand
side u(x) such that the equation has a solution, there exists infinite number of
right-hand sides such that the equation is not solvable.
A mathematical problem can be ill-posed in connection also with errors in an

operator. The simplest example gives the problem to find a normal pseudosolution
of a system of linear algebraic equations. Instability of this problem is determined
by errors in a matrix.
Let us consider a system of linear algebraic equations (SLAE):
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Ax = b, x ∈ R
n, b ∈ R

m, A : R
n → R

m.

The system can be solvable or unsolvable. In the beginning of the 19th century
Gauss and Legendre independently proposed the least squares method. Instead of
solving SLAE, they suggested to minimize a quadratic functional (discrepancy):

Φ(x) = ‖Ax− b‖2 = (A∗Ax, x)− 2 · (A∗b, x) + (b, b),

A∗ is a conjugate (transposed) matrix. The matrix A∗A is nonnegatively definite,
so Φ(x) is a convex functional. For a convex differentiable functional the problem
to find minx∈Rn Φ(x) is equivalent to that to find a stationary point, notably
solving an equation Φ′(x) = 0. It easy to see that Φ′(x) = 2 · (A∗Ax − A∗b),
Φ′′(x) = 2·A∗A ≥ 0. Then an equation Φ′(x) = 0 (the gradient of the discrepancy
is equal to zero) is turned into a system of linear algebraic equations with a square
nonnegatively definite matrix (system of normal equations):

A∗Ax = A∗b.

In a finite dimensional case it easy to prove that the system of normal equations
has a solution for any vector b (it maybe does not exist for the original SLAE).
This solution is called a pseudosolution (or least squares solution) of the SLAE
Ax = b. The pseudosolution can be nonunique if the determinant det(A∗A) = 0.
If det(A∗A) 	= 0 then the pseudosolution is unique. The set of pseudosolutions is
an affine (or linear) subspace in Rn, it is convex and closed.
If the system Ax = b has a solution then it coincides with a solution of the

system A∗Ax = A∗b. In this case, minx∈Rn Φ(x) = μ = 0. But if minx∈Rn Φ(x) =
μ > 0, then the system Ax = b has no solutions, though as shown above there
exists a pseudosoltion (maybe nonunique). The number μ is called a measure of
incompatibility of the system Ax = b.

Definition 2.1.1. A normal pseudosolution xn of the system Ax = b is a pseu-
dosolution with a minimal norm, i.e., it is a solution of extreme problem: find
minimum minx:A∗Ax=A∗b ‖x‖.
It easy to prove that a normal pseudosolution exists and is unique. We can

formulate a problem: it is given a vector b. Let us find a correspondence to its
normal pseudolution xn. An operator A+ that realizes this correspondence is
linear. It is called a pseudoinverse to A operator: xn = A+b. If a solution of the
original system Ax = b exists and is unique for any vector b then A+ = A−1. If
there exists a unique solution of the systemA∗Ax = A∗b for any vector b (it means
that the operator A∗A is invertible) then A+ = (A∗A)−1 ·A∗. In a general case,
an expression for A+ has the following form: A+ = limα→0+0(A∗ ·A+α·E)−1 ·A∗.
If instead of a vector b a vector b̃ is given such that: ‖b̃ − b‖ ≤ δ, δ ≥ 0,

and xn = A+b, x̃n = A+ b̃, then ‖x̃n − xn‖ ≤ ‖A+‖ · δ (it proves stability of a
normal pseudosolution for disturbances in a right-hand side). So, the problem of
finding a normal pseudosolution is well-posed if a pseudoinverse operator can be
calculated exactly. But the problem of a pseudoinverse operator calculation can
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be ill-posed. It means that the problem to find xn = A+b may be unstable for
errors in A.

Example. Let us consider a system:{
x+ y = 1,
x+ y = 1.

Obviously, the system has an infinite number of solutions, and (1/2, 1/2) is its

normal solution. In this case, A =
(
1 1
1 1

)
, b =

(
1
1

)
.

Let the matrix contain an error:{
(1 + ε)x+ y = 1,
x+ y = 1, ε 	= 0,

Such approximate system has a unique “approximate” solution xε = 0, yε = 1,
which does not depend on ε. Moreover, as ε→ 0 it does not converge to the exact

normal pseudosolution
(
1/2
1/2

)
. Assuming that all four entries of the matrix have

errors it is easy to construct examples of convergence of “approximate” solutions
to different vectors as errors tend to zero.
Let us change a vector b and consider a system:{

x+ y = 1/2,
x+ y = 3/2.

It has no solutions. Its normal pseudosolution is the same as in the previous case:(
1/2
1/2

)
. It is no problem to construct examples of its instability.

Sometimes, it is more convenient to consider a problem of solving an operator
equation as a problem of calculating values of an unbounded and not every-
where defined operator A−1: z = A−1u. In such a form, it is usually considered a
problem of differentiation: z(x) = du

dx
. Obviously, if consider an operator of differ-

entiation as acting from C[0, 1] into C[0, 1] then the problem of calculating values
of its operator is ill-posed because the first and the third conditions of Hadamard
are not fulfilled. If consider the same operator as acting from C(1)[0, 1] into
C[0, 1] then the problem of calculating values of its operator is well-posed. (The
space C(1)[a, b] consists of continuously differentiable [a, b] functions. The norm
of z ∈ C(1)[a, b] is defined as ‖z‖C(1)[a,b] = maxs∈[a,b] |z(s)|+maxs∈[a,b] |z′(s)|.)

2.2 Definition of the regularizing algorithm

Let us give an operator equation:
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Az = u,

where A is an operator acting between normed spaces Z and U . In 1963
A.N. Tikhonov formulated a famous definition of the regularizing algorithm (RA)
that is a basic conception in the modern theory of ill-posed problems.

Definition 2.2.1. Regularizing algorithm (regularizing operator) is called an op-
erator R(δ, uδ) ≡ Rδ(uδ) possessing two properties:

1. Rδ(uδ) is defined for any δ > 0, uδ ∈ U , and is mapping (0,+∞)×U into Z.
2. For any z ∈ Z and for any uδ ∈ U such that Az = u, ‖u − uδ‖ ≤ δ, δ > 0,

zδ = Rδ(uδ)→ z as δ → 0.

A problem of solving an operator equation is called regularizable if there exists
at least one regularizing algorithm. Directly from the definition it follows that if
there exists one regularizing algorithm then number of them is infinite.
At the present time, all mathematical problems can be divided into the fol-

lowing classes:

1. well-posed problems;
2. ill-posed regularizable problems;
3. ill-posed nonregularizable problems.

All well-posed problems are regularizable as it can be taken Rδ(uδ) = A−1.
Let us note that knowledge of δ > 0 is not obligatory in this case.
Not all ill-posed problems are regularizable, depending on a choice of spaces Z,

U . Russian mathematician L.D. Menikhes constructed an example of an integral
operator with a continuous closed kernel acting from C[0, 1] into L2[0, 1] such
that an inverse problem (that is, solving a Fredholm integral equation of the 1st

kind) is nonregularizable. It depends on properties of the space C[0, 1]. Below it
would be shown that if Z is the Hilbert space, and an operator A is bounded and
injective, then the problem of solving of the operator equation is regularizable.
This result is valid for some Banach spaces, not for all (for reflexive Banach
spaces only). Particularly, the space C[0, 1] does not belong to such spaces.
An equivalent definition of the regularizing algorithm is the following. Giving

an operator (mapping) Rδ(uδ) defined for any δ > 0, uδ ∈ U , and reflecting
(0,+∞) × U into Z. An accuracy of solving an operator equation in a point
z ∈ Z using an operator Rδ(uδ) under condition that the right-hand side defined
with an error δ > 0 is defined as Δ(Rδ , δ, z) = supuδ∈U :‖uδ−u‖≤δ, Az=u ‖Rδuδ−z‖.
An operator Rδ(uδ) is called a regularizing algorithm (operator) if for any z ∈ Z
Δ(Rδ, δ, z)→ 0 as δ → 0. This definition is equivalent to the definition above.
Similarly, a definition of the regularizing algorithm can be formulated for a

problem of calculating values of an operator (see the end of the previous section),
that is for a problem of calculating values of mapping G: D(G)→ Y , D(G) ⊆ X
under condition that an argument of G is specified with an error (X , Y are
metric or normed spaces). Of course, if A is an injective operator then a problem
of solving an operator equation can be considered as a problem of calculating
values of A−1.
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It is very important to get an answer to the following question: is it possible
to solve an ill-posed problem (i.e., to construct a regularizing algorithm) without
knowledge of an error level δ?
Evidently, if a problem is well-posed then a stable method of its solution can

be constructed without knowledge of an error δ. E.g., if an operator equation is
under consideration then it can be taken zδ = A−1uδ → z = A−1u as δ → 0.
It is impossible if a problem is ill-posed. A.B. Bakushinsky proved the following
theorem for a problem of calculating values of an operator. An analogous theorem
is valid for a problem of solving operator equations.

Theorem 2.2.2. If there exists a regularizing algorithm for calculating values
of an operator G on a set D(G) ⊆ X, and the regularizing algorithm does not
depend on δ (explicitly), then an extension of G from D(G) ⊆ X to X exists,
and this extension is continuous on D(G) ⊆ X.

So, construction of regularizing algorithms not depending on errors explicitly
is feasible only for well-posed on its domains problems.
The next very important property of ill-posed problems is impossibility of

error estimation for a solution even if an error of a right-hand side of an operator
equation or an error of an argument in a problem of calculating values of an
operator is known. This basic result was also obtained by A.B. Bakushinsky for
solving operator equations.

Theorem 2.2.3. Let Δ(Rδ , δ, z) = supuδ∈U :‖uδ−u‖≤δ, Az=u ‖Rδuδ−z‖ ≤ ε(δ)→
0 as δ → 0 for any z ∈ D ⊆ Z. Then a contraction of the inverse operator on
the set AD: A−1|AD⊆U is continuous on AD.

So, a uniform on z error estimation of an operator equation on a set D ⊆
Z exists then and only then if the inverse operator is continuous on AD. The
theorem is valid also for nonlinear operator equations, in metric spaces at that.
From the definition of the regularizing algorithm it follows immediately if one

exists then there is infinite number of them. While solving ill-posed problems, it is
impossible to choose a regularizing algorithm that finds an approximate solution
with the minimal error. It is impossible also to compare different regularizing
algorithms according to errors of approximate solutions. Only including a priori
information in a statement of the problem can give such a possibility, but in
this case a reformulated problem is well-posed in fact. We will consider examples
below.
Regularizing algorithms for operator equations in infinite dimensional Banach

spaces could not be compared also according to convergence rates of approximate
solutions to an exact solution as errors of input data tend to zero, which was
obtained by V.A. Vinokurov.
In conclusion, let us formulate a definition of the regularizing algorithm in the

case when an operator can also contain an error, i.e., instead of an operator A it
is given a bounded linear operator Ah: Z → U such that ‖Ah − A‖ ≤ h, h ≥ 0.
Briefly, let us note a pair of errors δ, h as η = (δ, h).
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Definition 2.2.4. Regularizing algorithm (regularizing operator) is called an op-
erator R(η, uδ, Ah) ≡ Rη(uδ, Ah) possessing two properties:

1. Rη(uδ, Ah) is defined for any δ > 0, h ≥ 0, uδ ∈ U , Ah ∈ L(Z, U), and is
mapping (0,+∞)× [0,+∞)× U × L(Z, U) into Z;

2. for any z ∈ Z, for any uδ ∈ U such that Az = u, ‖u− uδ‖ ≤ δ, δ > 0 and for
any Ah ∈ L(Z, U) such that ‖Ah − A‖ ≤ h, h ≥ 0, zη = Rη(uδ, Ah) → z as
η → 0.

Here L(Z, U) is a space of linear bounded operators acting from Z into U with
the usual operator norm.

Similarly, it is possible to define whether it is a regularizing algorithm if an
operator equation is considered on a set D ⊆ Z, i.e., a priori information that
an exact solution z ∈ D ⊆ Z is available.
For ill-posed SLAE A.N. Tikhonov was the first to prove impossibility to con-

struct a regularizing algorithm that does not depend explicitly on h.

2.3 Ill-posed problems on compact sets

Let us consider an operator equation:

Az = u,

A is a linear injective operator acting between normed spaces Z and U . Let z̄ be
an exact solution of an operator equation, Az̄ = ū, u is an exact right-hand side,
and it is given an approximate right-hand side such that ‖ū− uδ‖ ≤ δ, δ > 0.
A set Zδ = {zδ : ‖Azδ − uδ‖ ≤ δ} is a set of approximate solutions of the op-

erator equation. For linear ill-posed problems diamZδ = sup{‖z1 − z2‖ : z1, z2 ∈
Zδ} =∞ for any δ > 0 since the inverse operator A−1 is not bounded.
The question is that: is it possible to use a priori information in order to

restrict a set of approximate solutions or (it is better) to reformulate a problem
to be well-posed? A. N. Tikhonov proposed the following idea: if it is known that
the set of solutions is a compact then a problem of solving an operator equation
is well-posed under condition that an approximate right-hand side belongs to the
image of the compact. A. N. Tikhonov proved this assertion using as basis the
following theorem.

Theorem 2.3.1. Let an injective continuous operator A be mapping: D ∈ Z →
AD ∈ U , where Z, U are normed spaces, D is a compact. Then the inverse
operator A−1 is continuous on AD.

The theorem is true for nonlinear operators also. So, a problem of solving an
operator equation is well-posed under condition that an approximate right-hand
side belongs to AD. This idea made M.M. Lavrentiev possible to introduce a
conception of a well-posed problem according to A. N. Tikhonov mathematical
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problem (it is supposed that a set of well-posedness exists), and V.K. Ivanov
possible to define a quasisolution of an ill-posed problem.
The theorem above is not valid if uδ /∈ R(A). So, it should be generalized.

Definition 2.3.2. An element zδ ∈ D such that zδ = argminz∈D ‖Az −
uδ‖ is called a quasisolution of an operator equation on a compact D (zδ =
argminz∈D ‖Az − uδ‖ means that ‖Azδ − uδ‖ = min{‖Az − uδ‖ : z ∈ D}).
A quasisolution exists but maybe is nonunique. Though, any quasisolution

tends to an exact solution: zδ → z̄ as δ → 0. In this case, knowledge of an error
δ is not obligatory. If δ is known then:

1. any element zδ ∈ D satisfying an inequality: ‖Azδ−uδ‖ ≤ δ, can be chosen as
an approximate solution with the same property of convergence to an exact
solution (δ-quasisolution);

2. it is possible to find an error of an approximate solution solving an extreme
problem:
find max ‖z−zδ‖maximizing on all z ∈ D satisfying an inequality: ‖Az−uδ‖ ≤
δ (it is obvious that an exact solution satisfies the inequality).

Thus, the problem of quasisolving an operator equation does not differ sharply
from a well-posed problem. A condition of uniqueness only maybe is not satisfied.
If an operator A is specified with an error then the definition of a quasisolution

can be modified changing an operator A to an operator Ah.

Definition 2.3.3. An element zη ∈ D such that zη = argminz∈D ‖Ahz − uδ‖ is
called a quasisolution of an operator equation on a compact D.

Any element zη ∈ D satisfying an inequality: ‖Azη − uδ‖ ≤ δ + h‖zη‖ can be
chosen as an approximate solution (η-quasisolution).
If Z and U are Hilbert spaces then many numerical methods of finding quasiso-

lutions of linear operator equations are based on convexity and differentiability
of the discrepancy functional ‖Az − uδ‖2. If D is a convex compact then finding
a quasisolution is a problem of convex programming. The inequalities mentioned
above and defining approximate solutions can be used as stopping rules for min-
imizing the discrepancy procedures. The problem of calculating errors of an ap-
proximate solution is a nonstandard problem of convex programming because it
is necessary to maximize (not to minimize) a convex functional.
Some sets of correctness are very well known in applied sciences. First of all, if

an exact solution belongs to a family of functions depending on finite number of
bounded parameters then the problem of finding parameters can be well-posed.
The same problem without such a priori information can be ill-posed.
If an unknown function z(s), s ∈ [a, b], is monotonic and bounded then it is

sufficient to define a compact set in the space L2[a, b]. After finite-dimensional
approximation the problem of finding a quasisolution is a quadratic programming
problem. For numerical solving, known methods such a method of projections of
conjugate gradients or a method of conditional gradient can be applied. Similar
approach can be used also when the solution is monotonic and bounded, or
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monotonic and convex, or has given number of maxima and minima. In these
cases, an error of an approximate solution can be calculated.

2.4 Ill-posed problems with sourcewise represented
solutions

Let an operator A be linear injective continuous and mapping Z → U ; Z, U are
normed spaces. Let the following a priori information be valid: it is known that
an exact solution z̄ for an equation ū = Az̄ is represented in the form Bv̄ = z̄,
v̄ ∈ V ; B : V → Z; B is an injective completely continuous operator; V is
a Hilbert space. Suppose that an approximate right-hand side uδ is such that
‖ū− uδ‖ ≤ δ, and its error δ > 0 is known. Such a priori information is typical
of many physical problems.
V.K. Ivanov and I. N. Dombrovskaya proposed an idea of a method of extend-

ing compacts. Let’s describe a version of this method below.
Let’s preset an iteration number n = 1, and define a closed ball in the space

V : Sn(0) = {v : ‖v‖ ≤ n}. Its image Zn = BSn(0) is a compact since B is a
completely continuous operator and V is a Hilbert space. After that let us find
min ‖Az − uδ‖z∈B(Sn(0)), where uδ is given approximate right-hand side ‖ū −
uδ‖ ≤ δ, δ > 0. Existence of the minimum is guaranteed by compactness of Zn

and continuity of A. If minz∈B(Sn(0)) ‖Az − uδ‖ ≤ δ, then the iteration process
should be stopped, and the number n(δ) = n defined. An approximate solution
of the operator equation can be chosen as any element zn(δ) : zn(δ) ∈ B(Sn(δ)(0))
satisfying ‖Azn(δ) − uδ‖ ≤ δ. If minz∈B(Sn(0)) ‖Az − uδ‖ > δ then the compact
should be extended. For this purpose n changes to n+1, and the process repeats.

Theorem 2.4.1. The process described above converges: n(δ) < +∞. There
exists δ0 > 0 (generally speaking, depending on z̄) such that n(δ) = n(δ0) ∀δ ∈
(0, δ0]. Approximate solutions zn(δ) strongly converge to the exact solution z̄ as
δ → 0.

It is clear why the method is referred to as “an extending compacts method”.
It appears that using this method, the so-called an a posteriori error estimate can
be defined. It means that there exists a function χ(uδ, δ) such that χ(uδ, δ)→ 0
as δ → 0, and χ(uδ, δ) ≥ ‖zn(δ) − z̄‖ at least for sufficiently small δ > 0. As an a
posteriori error estimate χ(uδ, δ) = max{‖zn(δ) − z‖ : z ∈ Zn(δ), ‖Az − uδ‖ ≤ δ}
can be taken.
An a posteriori error estimate is not an error estimate in a general sense, error

estimates cannot be constructed for ill-posed problems. However, for sufficiently
small δ > 0 (notably ∀δ ∈ (0, δ0]) an a posteriori error estimate is an error
estimate for a solution of an ill-posed problem if an a priori information about
sourcewise representability is available.
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This approach was generalized to cases when both operators A and B are
specified with errors, also to nonlinear ill-posed problems under condition of
sourcewise representation of an exact solution.
Numerical methods for solving linear ill-posed problems under condition of

sourcewise representation were constructed, including methods for an a posteriori
error estimation. To use a sequence of natural numbers as radii of balls in the
space V is not obligatory. Any unbounded monotonically increasing sequence of
positive numbers can be taken.

2.5 Variational approach for constructing regularizing
algorithms

The variational approach for constructing regularizing algorithms firstly was pro-
posed by A.N. Tikhonov. Tikhonov regularizing algorithm based on minimization
of smoothing functional (or Tikhonov functional) is described below.
Let us give an operator equation:

Az = u,

where A is a linear injective bounded operator acting from a Hilbert space Z
into a Hilbert space U . Suppose that an exact solution z̄ ∈ D ⊆ Z, where D
is a closed convex set such that 0 ∈ D. The set D is defined by known a pri-
ori constraints. If constraints lack then D = Z. In this section the constraints
maybe are not so strong as in previous sections. Application of the quasisolu-
tions method or the method of extending compacts is not possible. Though, it is
strongly recommended while solving inverse problems to include in a statement
of a problem all given constraints. E.g., what are typical of solutions of many
physical problems are the following constraints: non-negativeness, boundedness
from the above or/and from the below, etc.
Let the exact right-hand side of the operator equation Az̄ = ū be not known;

it is given its approximation uδ such that ‖ū− uδ‖ ≤ δ, and an error δ > 0. Let
the operator A be also specified with an error, that is given a linear bounded
operator Ah : Z → U ; ‖Ah − A‖ ≤ h; and an error h ≥ 0. For brevity, let us
note η = (δ, h). The problem of constructing a regularizing algorithm consists
in: using given set of data {uδ, Ah, η} construct an approximate solution zη ∈ D
such that zη → z̄ as η → 0, or zη = Rη(uδ, Ah) ∈ D, zη → z̄ as η → 0, where
Rη(uδ, Ah) is a regularizing algorithm.
A.N. Tikhonov proposed the following approach to construct regularizing al-

gorithms. He introduced the functional (Tikhonov functional). The simplest form
of this functional is: Mα[z] = ‖Ahz − uδ‖2 + α · ‖z‖2, α > 0 is a regularization
parameter. Let us consider an extreme problem: find minz∈D Mα[z]. Under con-
ditions formulated in the beginning of the section there exists a unique minimizer
zα

η = argminz∈D Mα[z].
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Numerical methods for minimizing the Tikhonov functional when a regulariza-
tion parameter is fixed are based in general on the two following approaches: 1) If
no constraints (D = Z) then a necessary and sufficient condition for minimum
is the equality of the gradient of the functional to zero. So, it appears the Euler
equation for the Tikhonov functional: (Mα[z])′ = 0. After finite-dimensional ap-
proximation an SLAE turned, it should be solved numerically. For some special
problems different transforms can be applied to simplification of SLAE solving,
e.g., convolution type equations (typical of image processing), including multi-
dimensional, fast discrete Fourier transform successfully applied. 2) With con-
straints or without them direct methods for minimization of the Tikhonov func-
tional can be used ( method of conjugate gradients, Newton method, etc.).
If constraints are absent then the problem finding a minimizer of the Tikhonov

functional can be reduced to solving the equationA∗hAhz+αz = A∗huδ. If operator
A is positively definite and self-adjoint, and Z = U , a regularized approximation
can be found from the equation Az + αz = uδ (Lavrentiev method).
For constructing a regularizing algorithm, a choice of a regularization param-

eter α should be determined. The regularization parameter if the problem is
ill-posed should depend explicitly on errors. If it is not so then according to the-
orems of A.B. Bakushinsky and A.N. Tikhonov only well-posed problems can
be solved. Numerous examples show that the most known “error-free methods”
“L-curve method” and “generalized cross-validation (GCV) method” (GCV) can-
not be applied to the solution of ill-posed problems and fail in solving simplest
well-posed problems.
Methods of a choice of the regularization parameter can be conditionally di-

vided into a priori and a posteriori. The first a priori method was proposed by
A.N. Tikhonov. Some of its generalization is described below. Let us give a rate
of decreasing a regularization parameter: a) α(η) → 0 as η → 0; b) (δ+h)2

α(η)
→ 0

as η → 0, that is α(η) → 0 slower than (δ + h)2. Then it can be proved that
z

α(η)
η → z̄ as η → 0. If operator A is not injective then the regularized solution
converges to the exact solution with minimal norm (normal solution).
In practice, applications of a priori methods of the regularization parameter

choice cause great difficulties because while solving applied problems it is neces-
sary to find an approximate solution when errors are fixed. As an example of an
a posteriori method let us describe the generalized discrepancy principle (GDP)
proposed and substantiated by A.V. Goncharsky, A. S. Leonov, A.G. Yagola.
GDP is a generalization of V.A. Morozov discrepancy principle worked out for
the case of exactly given operator (h = 0).

Definition 2.5.1. The measure of incompatibility of an operator equation with
approximate data on the set D ⊂ Z is called

μη(uδ, Ah) = inf
z∈D

‖Ahz − uδ‖.

Obviously, μη = 0 if uδ ∈ AhD.
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Lemma 2.5.2. If ‖uδ−ū‖ ≤ δ, ū = Az̄, z̄ ∈ D, ‖A−Ah‖ ≤ h, then μη(uδ, Ah)→
0 as η → 0.

If the measure of incompatibility is calculated with an error κ ≥ 0 fitted with
errors h then instead of μη(uδ, Ah) it is given μκ

η(uδ, Ah) satisfying inequalities:
μη(uδ, Ah) ≤ μκ

η(uδ, Ah) ≤ μη(uδ, Ah) + κ; κ = κ(η)→ 0 as η → 0.

Definition 2.5.3. The function of the regularization parameter α > 0:

ρκ
η(α) = ‖Ahzα

η − uδ‖2 − (δ + h‖zα
η ‖)2 − (μκ

η(uδ, Ah))2

is named the generalized discrepancy.

The following method of the regularization parameter choice is named the
generalized discrepancy principle. Let the condition ‖uδ‖2 > δ2 + (μκ

η(uδ , Ah))2

be not true, then an approximate solution is zη = 0. If the condition above is true
then the generalized discrepancy has a positive root α∗ > 0, that is ρκ

η(α∗) = 0,
or ‖Ahzα∗

η − uδ‖2 = (δ + h‖zα∗
η ‖)2 + (μκ

η(uδ, Ah))2.
In this case, an approximate solution is defined as zη = zα∗

η and is unique. It
can be proved that zη → z̄ as η → 0. If operator A is not injective then it takes
place convergence to the solution with minimal norm (normal solution).
For finding a root of the generalized discrepancy its properties can be used:

1. ρκ
η(α) is continuous and monotonically nondecreasing for α > 0.

2. lim
α→+∞ ρκ

η(α) = ‖uδ‖2 − δ2 − (μκ
η(uδ , Ah))2.

3. lim
α→0+0

ρκ
η(α) ≤ −δ2.

From properties 1)–3) it follows immediately that if ‖uδ‖2 > δ2+(μκ
η(uδ , Ah))2

then a root of the generalized discrepancy exists. It can be calculated using
well known numerical methods of finding monotonic continuous functions (e.g.,
a secant method).
Let us try to understand which approximate solution is chosen in accordance

with the generalized discrepancy principle, and consider the following extremum
problem. It is named the generalized discrepancy method (GDM): find inf ‖z‖,

z ∈ {z : z ∈ D, ‖Ahz − uδ‖2 ≤ (δ + h‖z‖)2 + (μκ
η(uδ, Ah))2

}
.

Theorem 2.5.4. Let A, Ah be linear bounded operators acting from a Hilbert
space Z into a Hilbert space U ; D is a closed convex set containing 0, D ⊆ Z;
‖A− Ah‖ ≤ h, ‖uδ − ū‖ ≤ δ, ū = Az̄, z̄ ∈ D. Then the generalized discrepancy
principle and the generalized discrepancy method are equivalent, that is a solution
of an operator equation chosen in accordance with GDP and a solution of an
extremum problem GDM coincide.

If consider a set{
z : z ∈ D, ‖Ahz − uδ‖2 ≤ (δ + h‖z‖)2 + (μκ

η (uδ, Ah))2
}
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as a set of approximate solutions of an operator equation with approximate data
(an exact solution z̄ is an element of the set under conditions of the theorem)
then an approximate solution chosen by GDP is an approximate solution with a
minimal norm (an element with a normal from the set above). Particularly, if Z =

W 1
2 [a, b] (a norm in this space is defined as ‖z‖ =

{∫ b

a
z2(s) ds+

∫ b

a
(z′(s))2 ds

}1/2

,
a derivative is included into a definition of a norm), then it is possible to say that
the “smoothest” solution is chosen.
If there exists a priori information that an exact solution is close to a given

element z0 GDP can be easily adapted to the case of finding an approximate
solution with shortest distance (norm) from z0. For this purpose it is sufficient
to change an unknown solution to z− z0 changing a right-hand side respectively.
Numerous versions of GDP exist. E.g., a generalized discrepancy can be con-

sidered in the form: ρκ
η(α) = ‖Ahzα

η − uδ‖2− (δ+ h‖zα
η ‖)2 without calculation of

a measure of incompatibility. In this case, existence of a positive root of a gen-
eralized discrepancy cannot be guaranteed. If a root lacks then an approximate
solution should be found as zη = limα→0+0 zα

η . Then GDP and GDM generally
speaking are not equivalent.
GDP cannot be applied directly to solving incompatible problems (finding

their pseudosolutions or normal pseudosolutions). Though, it can be modified
for this case also. It is necessary to change a generalized discrepancy and use
an upper estimate of a measure of incompatibility proposed by A.M. Levin. He
developed also numerical methods for calculation of this estimate. This problem
can be ill-posed. Let us give one algebraic equation with one unknown variable:
0 · x = 1. Obviously, a measure of incompatibility is equal to 1. But any small
changes of an “operator” (a coefficient before an unknown value) result in that
a measure of incompatibility is equal to zero. The Levin upper estimate has a
form: μ̂η = infz∈D(δ + h‖z‖+ ‖Ahz − uδ‖).
Let z̄ ∈ D be an exact pseudosolution of an operator equation Az = u on

a set D corresponding to a right-hand side ū, that is ‖Az̄ − ū‖ = μ̄, where
μ̄ = infz∈D ‖Az − ū‖.
Lemma 2.5.5. μ̂η ≥ μ̄, μ̂η → μ̄ as η → 0.

A generalized discrepancy for solving compatible so as incompatible ill-posed
problems have a form: ρ̂κ

η(α) = ‖Ahzα
η − uδ‖2 − (δ + h‖zα

η ‖ + μ̂κ
η(uδ , Ah))2. As

mentioned above, it is supposed that an upper estimate of a measure of incom-
patibility is calculated with an error κ = κ(η)→ 0 as η → 0. GDP is formulated
in the following way. Let a condition ‖uδ‖ > δ+ μ̂κ

η(uδ, Ah) be not valid, then an
approximate solution zη = 0. Otherwise, a generalized discrepancy has a positive
root α∗ > 0, that is ρ̂κ

η(α∗) = 0, or ‖Ahzα∗
η − uδ‖ = δ+ h‖zα∗

η ‖+ μ̂κ
η(uδ, Ah). An

approximate solution zη = zα∗
η is unique. It can be proved that zη → z̄ as η → 0,

where z̄ ∈ D is an exact pseudosolution. If an operator A is not injective then
zη → z̄ as η → 0, where z̄ ∈ D is an exact normal pseudosolution. It is clear that
the method can be applied to compatible problems also.
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The Tikhonov variational approach can be generalized in the case when Z is a
reflexive Banach space, and U is a normed Banach space. Regretfully, generally
speaking it cannot be applied if Z is not a reflexive Banach space.

2.6 Nonlinear ill-posed problems

All results formulated above can be generalized in a case when an operator A is
nonlinear. If an operator is given exactly then it can be defined as above without
any changes no matter whether it is a quasisolution or an approximate solution on
a compact set. A definition of a quasisolution in the case when an approximate
operator Ah is given is almost the same. Only it is necessary to define if it is
an error of an operator. Usually for description of proximity of an approximate
operator Ah to an exact operator A a parameter h ≥ 0 and a function ψ(h, z) ≥ 0
should be introduced such that ‖Ahz−Az‖ ≤ ψ(h, z), ψ(h, z)→ 0 monotonically
on h as h→ 0, and under special conditions on the second argument depending
on a specific problem. In a linear case usually ψ(h, z) = h‖z‖. The main difficulty
produces minimization of a discrepancy functional on a compact set of constraints
because this functional generally is not convex. Regretfully, there are no general
recommendations for how to solve this problem. Every time a special investigation
should be conducted.
A method of extending compacts if an operator A is nonlinear is investigated

completely similarly to a linear case and can be generalized in a case when both
operators are specified with errors.
A.N. Tikhonov applied a variational approach based on minimization of a

smoothing functional to nonlinear ill-posed problem also. Though, in this case it
is not enough to suppose continuity and injectiveness of an operator A only. It
is necessary to demand stronger continuity of an operator A (weakly converging
sequences in a space Z are transformed by an operator A into strongly converging
sequences in a space U) or to use a scheme with three spaces (a scheme of
compact embedding): V → Z → U . An operator A : Z → U is continuous, a
space V is embedded into a space Z, and an embedding operator B is completely
continuous at that. After that, the Tikhonov functional Mα[v] = ‖AhBv−uδ‖2+
α · ‖v‖2 can be considered in order to find z = Bv. Such scheme was proposed
by A.N. Tikhonov in his first publications on the theory of regularization of
ill-posed problems for spaces V = W 1

2 [a, b], Z = C[a, b], U = L2[c, d]. Later
A.B. Bakushinsky proved that for constructing regularizing algorithms for linear
ill-posed problems it is sufficient to use two spaces (a space of solutions is Hilbert
or reflexive Banach) only.
A choice of regularization parameter in accordance with a posteriori princi-

ples not only induces a calculation of its value but also finds a certain extremal
function because functions of a regularization parameter (e.g., a generalized dis-
crepancy) can be discontinuous, and extremal functions are not unique. In linear
case under conditions formulated above Tikhonov functional has a unique ex-
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tremal function. This problems are treated in publications by A.V. Goncharsky,
A. S. Leonov, A.G. Yagola.
In nonlinear case it is possible to construct regularizing algorithm such as

GDM. Enhancement of conditions on an operator or using a scheme of compact
embedding is obligatory. Equivalence of GDP and GDM that is valid in a linear
case is not true generally.

2.7 Iterative and other methods

Since this chapter has no enough length it has no sense to describe all possible
approaches to construct regularizing algorithms. All of them can be described in
frame of a general scheme of point-wise approximation of an inverse operator and
matching an approximation parameter with data errors.
In a case when it is known (or can be calculated) as a spectral decomposition

of an operator then a spectral “cut-off” can be applied, that is reconciliation
between “higher frequencies” and data errors.
For SLAE regularized versions of singular values decomposition were developed

using agreement between cutting-off minimal singular values with errors in a
matrix and a right-hand side. A method of minimal pseudoinverse matrix is very
interesting. In this method proposed by A. S. Leonov the matrix with minimal
norm should be chosen from a set of pseudoinverse matrices corresponding to
a given approximate matrix of SLAE and its error. After that an approximate
normal pseudosolution of SLAE can be calculated.
M.M. Lavrentiev, O.M. Alifanov, A.B. Bakushinsky, H. Engl, G.M. Vainikko,

V.V. Vasin and many other authors proposed and developed the so-called iter-
ative methods for solving ill-posed problems. For these methods an iteration
number can be a “regularization parameter”, and a “stopping rule” should be
defined connecting an iteration number with data errors. The simplest iterative
method is a simple iteration method. Let spaces Z and U be Hilbert, and Z = U ,
an operator A is self-adjoint, positively definite, completely continuous, ‖A‖ < 1,
and an equation Az = u is solvable. Then the equation can be rewritten in a
form of z = z − (Az − u) and fixing an initial approximation z(0) the following
iterative process (simple iteration method) can start: z(k+1) = z(k)− (Az(k)−u).
The process converges to a normal solution of an operator equation. If ‖A‖ ≥ 1,
then a normalizing factor should be introduced beforehand. If an operator equa-
tion is rewritten in a form: Az + βz = βz + u, β > 0, z = (A + βI)−1(βz + u),
where I is a unit operator, then it is possible to organize an iterative process:
z(k+1) = (A+βI)−1(βz(k)+u), that is called an implicit iterative scheme. It con-
verges to a normal solution of an operator equation without a condition ‖A‖ < 1.
If an operator A is not self-adjoint and positively definite, for organizing iterative
processes an equation should be transformed to A∗Az = A∗u preliminarily. If a
problem is ill-posed and input data are given with errors then stopping rules
should be formulated (e.g., a discrepancy principle or a generalized discrepancy
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principle). Both iteration processes described above are from a class of linear
iterative processes. As examples of nonlinear iterative processes applied to solv-
ing ill-posed problems there are generalizations of methods of steepest descent,
minimal discrepancies and others. In accordance with a principle of iterative
regularization many classical methods intending in general to minimize a dis-
crepancy functional (Newton method, conjugate gradients method and others)
can be transformed to regularizing algorithms using regularizing corrections.
Below is a list of basic monographs and textbooks devoted to different parts

of the theory of ill-posed and numerical methods of their solution. Of course, this
list is not complete.
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Chapter 3

Inverse Problems with A Priori Information

Vladimir V. Vasin

Abstract. For the last thirty years in the theory of ill–posed problems the
direction of investigations was formed that joins with solving the ill–posed prob-
lems with a priori information. This is the class of problems, for which, together
with the basic equation, additional information about the solution to be found is
known, and this information is given in the form of some relations and restrictions
that contains important data about the object under consideration. Inclusion of
this information into algorithm plays the crucial role in increasing the accuracy
of solution of the ill–posed (unstable) problem. It is especially important in the
case when solution is not unique, since it allows one to select a solution that
corresponds to reality. In this work, the review of methods for solving such prob-
lems is presented. Though the author touches all approaches known to him in this
scope, the main attention is paid to the methodology that is developed by the
Author and based on iterative processes of the Fejér type, which give flexible and
effective realization for a wide class of a priori restrictions. In the final section,
description of several applied inverse problems with the a priori information and
numerical algorithms for their solving are given.

3.1 Introduction

Consider a (non)linear operator equation of the first kind as an abstract model
of the ill–posed problem

Au = f (3.1.1)

Vladimir V. Vasin
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on a pair if Hilbert spaces U and F with discontinuous and, possibly, multi–valued
mapping A−1 and the solution set M 	= ∅. Absence of continuous dependence of
solution on the input data does not allow one to approximate reliably solution
of equation (3.1.1) on the basis of traditional computational algorithms in the
frames of usual concept of approximate solution as one of equation (3.1.1) with
approximate data.
In the path-breaking works by M. M. Lavren’t’ev [22, 23], V.K. Ivanov [18,

19], and A.N. Tikhonov [35-37], the crucial breakthrough was made in solving
this problem. The step made joins with introduction of the regularized family of
approximate solutions and the regularizing algorithm. This had opened the way to
constructing the regular (stable with respect to disturbances) methods for solving
ill–posed problems at known level of inaccuracy of the input data. These explorers
had also concluded that any method of solving the ill–posed problem can have
whatever slow rate of convergence with respect to the controlling parameters, and
only having some a priori information on belonging solution to the correctness
set, can one obtain some approximate solution with the guaranteed accuracy.
At the first stage of developing the ill–posed problems theory, the main ap-

proach to solving the problem of stability was contracting the admissible set of
solutions; on such a set, operator A of equation (3.1.1) has the continuous in-
verse one. For this, A.N. Tikhonov [35] used the topological Hausdorf lemma on
homeomorphism of a continuous, one–to–one mapping on a compactum and gave
examples of such sets to the inverse problems of geophysics.
But the problem continued to be yet unsolved that joins with the presence

of disturbances at the right–hand side of equation (3.1.1): the disturbances can
get the solution out of the compactum. Under this situation, it is not possible
already to guarantee the stability of the approximate solution.
This problem was solved in works [18, 19, 22, 23]. Namely, M.M. Lavren’t’ev

in [22, 23] suggested the method of regularization by the shift

Au+ αu = fδ, ‖f − fδ‖ � δ (3.1.2)

that generates the strong approximation of the solution u0 = Bv0 belonging to
the compactum M = {u : u = Bv, ‖v‖ � r} by the sequence of approximate
solutions uα of equation (3.1.2) under α(δ) → 0, δ/α(δ)→ 0, and δ → 0. Under
this, the following estimate of the error holds:

‖u0 − uα‖ � ω(α) + δ/α.

Here, ω is the modulus of continuity of the operatorA−1 on the set N = AM , A is
the positive operator, B is linear completely continuous operator permutational
with A, and u0 is a solution of equation (3.1.1) for some right–hand part f ∈ AM ,
but, now, the condition of belonging fδ ∈ AM is not necessary.
Note that, in this approach, one assumes the existence of a solution for equa-

tion (3.1.1) on the compactum M . It joins with the fact that there do not exist
any effective criteria of solvability of the operator equation (3.1.1) on its given
right–hand side.
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To overcome this difficulty, V.K. Ivanov in [18, 19] generalized the notion of
the solution by means of his introduced the quasi–expansion as an element û that
realizes the minimum of the residual

min{‖Au− f‖ : u ∈ Q} = ‖Aû− f‖ (3.1.3)

on the compact set Q. Thus, in the case of insolvability of equation(3.1.1), it is
possible to work with its natural generalization. i.e., quasi–expansion. Note that
this generalization (for the linear one–to–one operator A) satisfies the classical
Hadamard conditions of correctness, and, hence, allows one to apply effective
methods of its finding. In other words, the passage to the quasi–solution allows
one to solve both the problem of solution existence and the problem of construct-
ing the stable approximate solution.
Accomplishment of creation of methodology for solving the ill–posed problems

was given in Tikhonov’s works [36] and [37], where the notions of the regularized
family of solutions and the regularizing algorithm (see, (3.1.6)) were formulated
and, also, the variational method for regularization of the ill–posed problems was
suggested that nowadays carries the Tikhonov name

min{‖Au− f‖2 + αΩ(u) : u ∈ U}. (3.1.4)

Here, the Lebesgue sets ΩC = {u : Ω(u) � C} of the stabilizing functional Ω are
compact in some topology. It means that, in the Tikhonov method, some a priori
qualitative information about the solution is used, since compactness of the sets
ΩC assumes presence of the additional smoothness of the solution in comparison
with the elements (functions) of the space U .
If to compare two variational methods (3.1.3) and (3.1.4), then from the point

of view of their numerical realization, application of the Tikhonov method (3.1.4)
is preferable, since we deal with the problem of unconstrained minimization that
allows one in the case of linear operator and quadratic functional Ω(u) to reduce
the problem to solving a system of linear algebraic equations.
In the method of quasi–solutions we are impelled to solve a problem on con-

ditional extremum that, no doubt, is a more difficult problem. But the essential
advantage of this method is the opportunity to apply more detailed information
about the solution by means of giving corresponding a priori set of restrictions
Q. Though in all methods for solving the ill–posed problems various information
on the initial data and the solution is used. The term “problems with a priori
information” [39, 44] or “descriptive regularization” [29] has been introduced to
select and describe the situation when additional structural information about
the solution is known, for example, the fixed sign property, monotonicity, con-
vexity, presence of the δ–wise forms, fractures, discontinuities, and, also, various
bounding relations in the forms of equalities or inequalities.
It is also important to underline that the Tikhonov method (3.1.4) gives more

wide choice of the stabilizing functional Ω, in particular, in the form of the Sobolev
norm
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Ω(u) =
∫

D

(|u(x)|2 + |u(n)(x)|2)dx (3.1.5)

that corresponds to regularization of the n-th order. In the pithy review by
A.N. Tikhonov and F.P. Vasil’ev [38], many other opportunities for choice of the
stabilizer Ω ([38], p. 319) are given, for instance, in the form of the non-smooth
Lipschitz norm or

Ω(u) = ‖u‖L1 + V (u),

where V (u) is the function variation over the segment [a, b]. So, in our opinion,
it is absolutely unjustified to call the variational method (3.1.4) in the choice of
Ω(u) in the form of L1–norm and the generalized variation of the function not the
Tikhonov method but the “bounded variation penalty method” or “regularization
by total bounded control”, as it is done by authors of other works [1, 6, 49], which
regard (on some reason) that the Tikhonov regularization includes only the case
of the quadratic functional (3.1.5).
To complete the introduction regarding the foundations of the ill–posed prob-

lems theory, let us discuss another important problem, namely, the problem of
regularizability. Existence of at least one regularizing family of linear operators
{Rδ}means the opportunity of existence of the stable approximation for solutions
of the initial equation (3.1.1), i.e.,

lim
δ→0

sup
‖Au−f‖�δ

‖Rδf − u‖ = 0. (3.1.6)

In this case, one says about linear Tikhonov regularizability of problem (3.1.1).
Otherwise, the problem is called unregularizable.
For the first sight, it seems that the problems that can not be regularizable

are not met in practice and are of rather “exotic” type. But it was discovered
that there exist very routine nonregularizable ill–posed problems (see, [27, 48]).
For example, in work [27] the following interesting fact was established for the
integral Fredholm equation

Au ≡
∫ 1

0

K(t, s)u(s)ds = f(t) (3.1.7)

with the smooth kernel Ker(t, s), where A : C[0, 1] → L2[0, 1]. If the invertible
operator A has continuous extension A from C[0, 1] onto L2[0, 1] with the kernel
Ker(A) that is finite–dimensional (in particular, Ker(A) = {0}), then equation
(0.7) is regularizable. But if dimKer(A) =∞, then, as the examples show, this
equation can be nonregularizable.
The main goal of the chapter is to describe the basic approaches to solving

the ill–posed problems (under conditions when the solution is not unique) that
are formulated in the form of a operator equation with the a priori information
about belonging solution to be sought to some convex closed set Q. The main
contents of the chapter are devoted to methodology of solving such problems on
the basis of iterative processes that take into account the a priori restrictions by
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means of the Fejér mappings. Effectiveness of such algorithms is illustrated by
examples of several applied inverse problems.
The chapter has the following structures: 3.1. Introduction; 3.2. Formulation

of the problem with a priori information; 3.3. The main classes of mappings of
the Fejér type and their properties; 3.4. Convergence theorems of the successive
approximations method for the pseudo–contractive operators; 3.5. Examples of
operators of the Fejér type; 3.6. Fejér processes for nonlinear equations; 3.7.
Applied problems with the a priori information and methods for solving; 3.8.
Conclusions.

3.2 Formulation of the problem with a priori information

We shall call basic the initial equation (3.1.1). This is a linear one with the
bounded operator A acting on the pair of the Hilbert spaces U, F , for which
the inverse operator A−1 is discontinuous and, in general, multi–valued. The
additional a priori information about the solution is included into the problem
by means of a convex closed set Q, to which the solution to be found belongs.
Thus, we come to the following problem: find a solution of the system

Au = f, u ∈ Q. (3.2.1)

For simplicity, we assume that only the right–hand side is known with the error
‖f − fδ‖ � δ. The general case, when operator A is given approximately, does
not contain any principal difficulties for building the methods.
In applied problems, inclusion of the a priori information is caused by neces-

sity of obtaining more qualitative solution that describes the searching object
(phenomenon). The additional restrictions can describe some important charac-
teristics of the solution that join with the form of the object described, more
detailed properties of smoothness, various peculiarities, and the subtle structure
following from the physical essence of the problem. Inclusion of the a priori re-
strictions is especially important in investigations of models with non–unique
solution of the basic equation. They allow one to select (to approximate) a so-
lution satisfying some concrete physical demands from all others in the set of
possible solutions.
One of possible approaches to constructing the stable approximate solutions in

the problem with the a priori information was widely used on the first stages of
investigations of this problem. The approach is based on the idea of the two–step
algorithm (see, [29, 39]).
At the first step, the initial formulation (3.2.1) with the linear operator A is

reduced also to the minimization problem (for the method of quasi–solutions, see,
[18, 19])

min{‖Au− fδ‖2 : u ∈ Q} (3.2.2)
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with the compact set Q, or to minimization of the Tikhonov functional with
restrictions

min{‖Au− fδ‖2 + αΩ(u) : u ∈ Q}, (3.2.3)

where Q is the convex, closed, but not obligatory compact set.
At the second step, to solve well–posed extremal problems, one can apply

any of the traditional methods, such as the method of the conditional reduced
gradient, the gradient projections method, the method of linearization, or the
algorithms specially oriented on some certain class of a priori restrictions.
But these methods can be justified and effectively realized only for a narrow

class of the a priori restrictions, actually, for the sets that are defined by a sys-
tem of linear inequalities. Here, it is worthy to mention monograph [39], in which
problem (3.2.2) was investigated in detail on the sets of the fixed–sing, mono-
tone, and convex (concave) functions (in various combinations) and economical
numerical algorithms were described.
Another approach based on the idea of the iterative regularization [4] con-

sists in substitution of problem (3.2.1) by the problem of solving the following
variational inequality:

〈Au− fδ, u− v〉 � 0 ∀ v ∈ Q. (3.2.4)

Here, in general, A is the nonlinear monotone operator.
For solving the variational inequality (3.2.4), the iterative process is used in

the form
uk+1 = PQ[uk − γk(Auk + αkuk − fδ)], (3.2.5)

for which, with special choice of the sequences {γk}, {αk} and the stopping rule,
convergency of iterations (3.2.5) exists, i.e., the process generates the regularizing
algorithm. Note that presence of the projecting operator PQ in (3.2.5) essentially
hampers the numerical realization of the iterative method, since in each step it is
necessary to solve additionally the problem of quadratic or convex programming
if Q is given by a system of linear or convex inequalities.
In the next section we consider the approach to solving the problems with

the a priori information that was suggested by the Author in works [40,42] and
described in monographs [44, 46]. This approach is based on using the techniques
of the Fejér mappings [9–11] to take account of the a priori restrictions in the form
of convex inequalities. The mappings possessing the Fejér property allow one to
construct the iterative processes by taking into account the a priori restrictions
of rather general form and, in contrast to the metrical projection, adopt effective
realization.
The main idea is that the step operator in such iterative methods is constructed

in the form of superposition of the step operator of some classical iterative scheme
for solving equation (3.1.1) and the Fejér mapping responsible for the a priori
restrictions. In each step, this mapping implements the shift to direction of the set
Q, and, as a result, convergency of iterations to the solution of system (3.2.1) is
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provided, i.e., to the solution of equation (3.1.1) satisfying the a priori restrictions
in the form x ∈ Q.

3.3 The main classes of mappings of the Fejér type and
their properties

Before the passage to definition of classes of the nonexpansive mappings, note that
the different terminology for definition of the same classes of nonlinear mappings
has been formed in the functional analysis [25, 26, 28, 44] and in the mathematical
programming [9–11]. Thus, in the definitions suggested below for denotation of
various types of quasi–contractivity of operators, we give their names from both
mentioned scopes, but in the text, we prefer one or other terminology dependent
on the subject under discussion.
Take the denotations Fix(T ) = {u : u ∈ U , u = T (u)} for the set of fixed

points of the operator (mapping) T ; we use the writing T : U → U even in the
case when T is defined only on D(T ) ⊆ U .

Definition 3.3.1. The mapping T : U → U is called M–quasi–nonespansive or
weak M–Fejér if M = Fix(T ) 	= ∅ and

‖T (u)− z‖ � ‖u− z‖ ∀u ∈ X, ∀z ∈M ;

denote this class by KM .

Definition 3.3.2. The mapping T : U → U is called strictly M–quasi–nonex-
pansive or M–Fejér if M = Fix(T ) 	= ∅ and ‖T (u)−z‖ < ‖u−z‖ for any z ∈M
and u ∈ U , u /∈M ; denote this class by FM .

Definitions 3.3.1 and 3.3.2 have the sense for any arbitrary normed space. In
the sequel, if the contrary is not declared, we assume U to be the Hilbert space.

Definition 3.3.3. The mapping T : U → U is called M–pseudo–contractive or
strongly M–Fejér if M = Fix(T ) 	= ∅ and there exists a constant ν > 0 such
that

‖T (u)− z‖2 � ‖u− z‖2 − ν‖u− T (x)‖2

for any u ∈ H and z ∈M ; we denote this class by Pν
M .

Directly from this definition, the inclusions follow Pν
M ⊂ FM ⊂ KM and, as

the examples show, they are strict.
In the following lemma, we establish relations between the classes defined

above useful in applications [42, 44, 46].

Lemma 3.3.4. Let T : U → U , T ∈ Pν
M . Then T = 1

1+ν V + ν
1+ν I, where V ∈

KM . Inversely, if V ∈ KM , then under λ ∈ (0, 1) the mapping T = λV +(1−λ)I
belongs to the class Pν

M under ν = (1− λ)/λ.
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Definition 3.3.5. The mapping T : U → U is called nonexpansive (nonexpand-
ing) if

‖T (u)− T (v)‖ � ‖u− v‖ ∀v ∈ X ;

we denote this class by K.

Definition 3.3.6. The operator T : U → U is called pseudo–contractive if there
exists a constant ν > 0 such that the inequality holds

‖T (u)− T (v)‖2 � ‖u− v‖2 − ν‖u− T (u)− (v − T (v))‖2

for any u, v ∈ H; we denote this class by Pν.

Evidently, if M = Fix(T ) 	= ∅, then KM ⊂ K, Pν
M ⊂ Pν ; moreover, Lemma

3.3.4 is valid by changing the class Pν
M by Pν and KM by K, i.e., under T ∈ Pν

the representation holds

T =
1

1 + ν
V +

ν

1 + ν
I,

where V ∈ K, but if V ∈ K, then

T = λV + (1− λ)I ⊂ Pν, ν = (1 − λ)/λ.

The latter inequality is widely used in iterative processes. It is stipulated by
the fact that Fix(T ) = Fix(V ) and the operator T ∈ Pν

M ⊂ Pν having more
strong condition of contractivity generates the converging process (see, Theorem
3.4.1, below)

uk+1 = T (uk) ≡ λV (uk) + (1 − λ)uk, T ∈ P(1−λ)/λ, (3.3.1)

to some element û ∈ Fix(V ) = Fix(T ), but the iterative process

uk+1 = V (uk) (3.3.2)

with the step operator V ∈ KM is not obligatory convergent.
The class P1, i.e., Pν under ν = 1 was introduced in work [25], and there, the

theorem on the weak convergence was formulated. Investigations of properties of
mappings from the more wide class Pν were continued in the Author’s works [41,
42].
Note that in Definitions 3.3.1–3.3.3 for classes of nonlinear mappings we use

the double terminology, which originates, on one hand, from the works in the
scope of numerical functional analysis [25, 26, 28, 44] and, on the other hand,
from those in the scope of mathematical programming where the “Fejér mapping”
is the widely used term.
Before the passage to investigation of properties of operators from the classes

defined above, stop for a little while on the history of appearance of the term the
“”Fejér mapping”. This appears in works by I.I. Eremin [9, 11, 46] in honor of the
widely known Hungarian mathematician L. Fejér (1880–1959). The foundation
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for this term was the Fejér work [12] where the following notions and definitions
were introduced.

Definition 3.3.7. Let En be the Euclidian space, M be some subset, and p, p1

be two points from En. If

‖p− a‖ > ‖p1 − a‖ ∀a ∈M,

then we say that p1 is closer to M than p. If the point p is such that there do not
exist points p1, which are closer to the set M than p, then the point p is called
closest to M .

Having introduced this notion, L. Fejér characterized the set of the points
closest to M (this coincides with the closure of convex hull of the set M). From
this fact, it follows that if the point p does not belong to conv(M), then it is
possible to find the point p1 that will be closer to the set M than the point p.
Hence, if M is the convex set of solutions of some problem, then the principle
opportunity appears for constructing an (iterative) algorithm for its solving.
Further, in work [30] authors (with reference to [12]) had given the definition

of the monotone Fejér sequence as one satisfying the conditions

‖qi − a‖ � ‖qi+1 − a‖ ∀a ∈M, (3.3.3)

where qi 	= qi+1, and suggested the relaxation method for solving a system of
linear inequalities.
At last, as mentioned above, in works [9–11] the following were introduced the

notions of the Fejér mapping (see, Definition 3.3.2), the Fejér method, and the
Fejér sequence {qi} as one, for which in (3.3.3) the strict inequality holds. For
the author of this chapter it seems more natural that the Fejér property of some
operator (or a sequence) is defined by the strict inequality.
From the point of view of convergency of iterative processes, the operators

from the classes PM and FM are of the most interest; for these operators we
shall use the general term “Fejér operator (mapping)” or “operator of the Fejér
type” and for the corresponding processes with the step operators of the Fejér
type we shall use the term “Fejér processes (methods)”.
These classes possess a remarkable property, namely, the property of closedness

with respect to the operations of superposition and convex summation [42, 44,
46].

Theorem 3.3.8. Let Ti : H → H, H be the Hilbert space, and Ti ∈ Pνi

Mi
,

M=
m⋂

i=1

Mi 	=∅. Then

1) T = TmTm−1 . . . T1 ∈ Pν
M , where ν = min

1�i�m
{νi}/2m−1;

2) T =
m∑

i=1

αiTi ∈ Pν
M , where αi > 0,

m∑
i=1

αi = 1, ν = min{νi}.
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Theorem 3.3.9. Let Ti : X → X, Ti ∈ FMi , M =
m⋂

i=1

Mi 	= ∅. Then each of

the mappings T defined by formulas

T = TmTm−1 . . . T1, T =
m∑

i=1

αiTi,
(
αi > 0,

m∑
i=1

αi = 1
)

belongs to the class of the FM M–Fejér mappings.

Remark 3.3.10. The statements of these theorems are valid under any order of
the indices in the superposition T = Ti1Ti2 . . . Tim .

Corollary 3.3.11. If Ti ∈ Pνi

M (Ti ∈ FM ), then the operators of the form

T =
m∑

i=1

αiT
ni1
i1

T
ni2
i2

. . . T
nim

im

also belong to the class Pν
M (correspondingly, to FM ); here, αi > 0,

m∑
i=1

αi = 1,

nik
are the integers, and (i1, i2, . . . im) is an arbitrary transposition of the indices

(1, 2, . . . , m).

Remark 3.3.12. In solving a problem, including an ill–posed one, by the method
of successive approximations

uk+1 = T (uk), (3.3.4)

uk+1 = λT (uk) + (1− λ)uk (3.3.5)

the initial formulation is preliminary reduced to the equivalent problem of finding
a fixed point of some mapping T , i.e., to solving the equation

u = T (u). (3.3.6)

For example, solution of the linear equation

Au = f

is equivalent to finding the fixed point of the operator

T (u) = u− β[A∗Au−A∗f ], β > 0

or
T (u) = (A∗A+ αI)−1(αu+A∗f), α > 0,

which are the step operators for the method of simple iteration and the iterated
version of the Tikhonov method, respectively.
The problem of minimization of a convex differentiable functional on the con-

vex closed set Q
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min{f(u) : u ∈ Q}
is reduced to solving the equation

u = PQ[u− β∇f(u)] ≡ T (u), β > 0,

i.e., to find a fixed point of the operator T . Particularly, problem (3.1.3) (see,
Introduction) of finding a quasi–solution is equivalent to problem of finding the
fixed point of the operator T defined by the formula

u = PQ[u − β(A∗Au−A∗u)] ≡ T (u),

where under 0 < β, 2/‖A‖2, T is a nonexpansive operator from the class Pv
M .

The problem of finding the saddle point of the convex–concave function L(u, v),
L : U × U → R1,

min
u
max

v
L(u, v)

is equivalent to finding the fixed point of the pseudo–contracting mapping [32]

Λ : (z, w)→ argmin
u
max

v

{
L(u, v) + 0.5‖u− z‖2 − 0.5‖v − w‖2

}
. (3.3.7)

The statements presented above open wide opportunity, on one hand, for con-
structing many new step operators in the method of successive approximations
to approximate u ∈ Fix(T ), i.e., for solving equation (3.3.6) (Corollary 3.3.11).
On the other hand, from Theorems 3.3.8 and 3.3.9, it follows that if problem
(3.3.6) can be presented in the form of the system

u = Ti(u), i = 1, 2, . . . , m,

where Ti ∈ Pνi

Mi
(or Ti ∈ FMi),

m⋂
i=1

Mi = M = Fix(T ), then the constructions

of operators in the form of the superposition Ti and their convex combination
containing in these theorems give a wide opportunity for building the algorithms
of parallelizing the solving operator T in the method of successive approximations
(concrete schemes can be found in [46]).
As a simple but pithy example, consider the system of linear algebraic equa-

tions
〈ai, x〉 − qi = 0, i = 1, 2, . . . , m.

Define Ti(u) = PMi(u), where PMi is the operator of the metric projection into
the hyperplane Li = {u : 〈ai, x〉 − qi = 0}, and the operator is described by the
explicit formula

PMi(u) = u− (〈ai, x〉 − qi)ai/‖ai‖2.
Then the iterative processes
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uk+1 = T1(T2 . . . (Tm(uk))), uk+1 =
m∑

i=1

λiTi(uk),

0 < λi < 1,
m∑

i=1

λi = 1

give the Kaczmarz algorithms for solving the system of linear algebraic equations
[21].
Actually, the same processes are appropriate for solving linear inequalities (see,

Section 3.5), since the operator of projecting for them is computed by the same
formulas.

3.4 Convergence theorems of the method of successive
approximations for the pseudo–contractive operators

In theorems presented below, it is established that for the operators T from the
class Pν

M , in the general case, it is possible to guarantee only the weak convergence
of the successive approximations method (3.3.4) (the symbol “⇁” is taken for
denotation of the weak convergence).

Theorem 3.4.1. Let the operator T : U → U , T ∈ Pν
M (T ∈ KM ) and satisfy

the condition
uk ⇁ u, T (uk)− uk → 0⇒ u ∈ Fix(T ). (3.4.1)

Then for iterations (3.3.4),
(
and (3.3.5)

)
the following properties are valid:

1) uk ⇁ û ∈ Fix(T );
2) inf

z
{ lim

k→∞
‖uk − z‖ : z ∈ Fix(T )} = lim

k→∞
‖uk − û‖;

3) either ‖uk+1 − û‖ < ‖uk − û‖ for any k, or {uk} is stationary beginning
from some number k0;
4) the estimate is valid

∞∑
k=0

‖uk+1 − uk‖2 � ‖u0 − z‖2/ν ∀z ∈ Fix(T ).

The proofs of various versions of this theorem can be found in [25, 42, 44].

Corollary 3.4.2. The theorem statement is valid if instead of T : U → U the
operator T : D → D is given, where D is a convex closet subset of the space U .

Corollary 3.4.3. Let Pλ
Q = I−λ(I−PQ), where PQ is the metric projection onto

the convex closed subset Q of the Hilbert space, 0 < λ < 2. Then Fix(Pλ
Q) = Q,

P λ
Q ∈ P(2−λ)/λ

Q , condition (3.1) is satisfied, and, hence, for T = P λ
Q the conclusion

of Theorem 3.4.1 is valid; this guarantees the weak convergence of the iterations.
Moreover, if Q is a compact set, then the strong convergence holds.
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Note that the inclusion Pλ
Q ∈ P(2−λ)/λ

Q was established in [46, Chapter 1,
Lemma 3.2]. Condition (3.4.1) for P λ

Q follows from the properties of the projec-
tion PQ, for which, in turn, this property follows from the known fact for the
nonexpansive mappings (see, for instance, [44, Chapter 1, Lemma 2.1]).

Corollary 3.4.4. Let the domain D(T ) of definition of the operator T be convex
and closed, then Theorem 3.4.1 is valid if instead of condition (3.4.1) the weak
closedness of the operator T : xk ⇁ x, xk ∈ D(T ), T (xk) ⇁ y ⇒ x ∈ D(T ),
T (x) = y holds.

Remark 3.4.5. Under conditions of Theorem 3.1, in the general case, it is
impossible to prove the strong convergence of the iterations. This follows from
work [13], where the corresponding example of the convex closed bounded set D ⊂
l2 and the mapping T : D → D from the class Pν

M was constructed, for which the
sequence converges weakly but not strongly.

Assume that the iterations in process (3.3.4) are calculated with an error, i.e.,

zk+1 = T (zk) + ξk, ‖ξk‖ � εk.

Theorem 3.4.6. Let conditions of Theorem 3.4.1 be satisfied for the operator T

and
∞∑

k=0

εk < ∞. Then for the sequence {zk}, the following properties are valid:

1) zk ⇁ ẑ ∈M = Fix(T ); 2) lim
k→∞

‖zk+1 − zk‖ = 0.

The proof of this statement for various conditions is in [32, 40, 41].

Definition 3.4.7. The operator T : U → F , in the general case multi–valued, is
called closed if its graph Γ = {(u, T (u)) : u ∈ U} is closed in U × F .

Definition 3.4.8. The operator T : U → F is called completely continuous if
from uk ⇁ u it follows lim

k→∞
‖uk − û‖ = 0.

Theorem 3.4.9. Let T : U → U , where U is the Hilbert space, T is the M–Fejér
operator, i.e., T ∈ FM (Definition 3.3.2) and one of the following conditions is
satisfied:
1) one–to–one operator T is strongly continuous;
2) U is finite–dimensional, T is closed, possibly, multi–valued operator.
Then for {uk} in the successive approximations method defined in the multi–

valued case by the relation uk ∈ T (uk), the convergence holds: lim
k→∞

‖uk− û‖ = 0,

where û ∈M

Remark 3.4.10. Investigations joined with the Fejér operators of the class FM ,
the iterative processes of the Fejér type, and their applications to a wide circle of
problems of mathematical programming were implemented in works [9− 11] (see,
also [46]).
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Remark 3.4.11. In work [26] (and, also [46]) the sufficient conditions are inves-
tigated for systems of nonlinear equations, under which assumptions of Theorem
3.4.9 for the step operators T of the gradient method and the Newton method are
satisfied.

Consider now the main problem formulated in Section 3.2, namely, solving the
problem with the a priori information (3.2.1) that can be reformulated in the
following way.

Problem 3.4.12. Find the element

u ∈M
⋂

Q 	= ∅,

where M is the set of solutions of the basic equation Au = f , Q is the set of
a priori restrictions. This problem is reduced to finding a fixed point of some
mapping T with Fix(T ) = M

⋂
Q.

To construct the approximative sequence, consider the iterative processes from
[40, 41, 42]

uk+1 = P (V (uk)) ≡ T (uk), uk+1 = λP (uk) + (1 − λ)V (uk) ≡ T (uk), (3.4.2)

where 0 < λ < 1, P, V : U → U .

Theorem 3.4.13. Let P ∈ Pν
Q, V ∈ Pμ

M and these mappings satisfy condition
(3.4.1). Then
a) the iterations uk defined by processes (3.4.2) satisfy properties 1)–4) from

Theorem 3.4.1;
b) if iterations (3.4.2) are calculated with the error ξk, where ‖ξk‖ � εk,

εk > 0,
∞∑

k=0

εk <∞, then the conclusion of Theorem 3.4.6 is valid.

As mentioned above (Remark 3.4.5), under conditions of Theorem 3.4.1 (and,
hence, of Theorem 3.4.13, point a)), in the general case it is impossible to guar-
antee convergence by the norm of the space H . But under some additional as-
sumptions it is possible to obtain the strong convergence.

Corollary 3.4.14. If Q is a compactum, P = PQ is the metric projection onto
the set Q or P = P λ

Q = I − λ(I − PQ) is the projection with the relaxation
(0 < λ < 2), then under the exact computation of processes (3.4.2) (Theorem
3.4.13, point a)) the strong convergence of the iterations uk to some û ∈M

⋂
Q

holds.

Give now some examples of compact sets.
In the spaces of functions of one variable

Q1 = {u(x) : u ∈W 1
p [a, b], ‖u‖W1

p
� r}, 1 < p <∞

is compact in the spaces Lp[a, b] and C[a, b];
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Q2 = {u(x) : u ∈
b∨
a

, ‖u‖ b∨
a

� r}

is compact in the spaces Lp[a, b], 1 < p <∞;

Q3 = {u(x) : |u(x)| � C, u is monotone}

is compact in the spaces Lp.
In the spaces of functions of n variables

Q4 =
{

u(x) : u ∈ C[Π], max |u(x)|+ sup
x1,x2∈Π

|u(x1)− u(x2)|
‖x1 − x2‖μRn

� r

}
is compact in the spaces of continuous functions C[Π] and, hence, in Lp[Π]; here,
Π is a closed bounded subset in Rn,

Q5 = {u(x) : ‖u‖L1(D) + J(u) � r},

where J is the generalized variation (see, [15]),

J(u) = sup
{∫

D

u(x) Divv(x)dx : v ∈ C1
0 (D, Rn), |v(x)| � 1

}
is relatively compact in the space Lp(D) under p < n(n− 1).
In each of examples considered under p = 2 we obtain the Hilbert space and

corresponding (pre)compact sets Qi in it.
The strong convergence of iterations can be achieved in some cases by modi-

fication of processes (3.4.2) with the correcting multipliers [17]

uk+1 = γkT (uk) + (1− γk)v0, (3.4.3)

where 0 < γk−1 < γk < 1, γk → 1 and satisfy some additional conditions [17]
(see, also [44]).

Theorem 3.4.15. Let the step operator T in processes (3.4.3) be nonexpansive
and map the convex closed set D into itself, Fix(T ) = M 	= ∅, and γk be an
admissible sequence [17], v0 ∈ D.

Then the iterative sequence uk converges strongly to the element û ∈ M
⋂

Q
with the minimal deviation from v0.

Remark 3.4.16. Process (3.4.3) has the regularizing property, namely, if T̃ ∈ K
is a disturbed operator satisfying the condition of approximation

‖T̃ (x) − T (x)‖ � ϕ(δ) (ϕ(δ)→ 0 under δ → 0)

on some ball Sr, then the process with corrupted data

ũk+1 = γkT̃ (ũk) + (1− γk)v0
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converges to the same solution û ∈ M
⋂

Q with choice of the number k(δ) of
iterations accordingly to the rule ϕ(δ) · k(δ)→ 0 for δ → 0.

Under conditions of Theorem 3.4.15, the sequence of correcting multipliers γk

is chosen to be a priori and some conditions onto the asymptotic of behavior are
necessary. Actually, it is possible to suggest a posteriori choice of γk [46].
Introduce denoting Tγk

(u) = γkT (u)+(1−γk)v0, uγk
= γkT (uγk

)+(1−γk)v0,
i.e., uγk

is the fixed point of the operator Tγk
. Since 0 < γk < 1 and ‖Tγk

(u) −
Tγk

(v)‖ � γk‖u − v‖, and under fixed γk and the initial approximation u0, the
iterative process

un
0 = T n

γk
(u0), n = 0, 1, . . .

converges to uγk
. Then by virtue of the inequality ‖Tγk

(u)− uγk
‖ � γk‖u− uγk

‖
with sufficiently large number n for dγ(u) = ‖u−Tγ(u)‖, the following inequality
is provided:

dγk
(un

0 ) � δ.

Lemma 3.4.17. Let dγ(u) � δ and γ, δ, ε be obeyed to the relation δ/(1−γ) � ε.
Then

‖u− uγ‖ � ε.

The considerations given above allow one to construct the following computa-
tional process for approximation of the fixed point of the operator T :
1) give the sequence of positive parameters εk, γk, and δk, satisfying the rela-

tion δk/(1− γk) � δk;
2) give some initial approximation u0 and compute the element uk1

0 = T k1
γ1
(u0),

for which the inequality holds

dγ1(u
k1
0 ) � δ1,

and put u1 = uk1
0 ;

3) let un−1 be built, then we take un−1 as the initial approximation and
calculate the element ukn

n−1 = T kn
γn
(un−1), for which the condition is valid

dγn(u
kn
n−1) � δn,

and put un = ukn
n−1.

3.5 Examples of operators of the Fejér type

In the iterative processes (3.4.2), the step operator T is the superposition of two
mappings V and P , where V is the step operator of some iterative method for
solving equation (3.1.1) with Fix(U) = M and M is the set of solutions of the
basic equation Au = f . The fact that the operator V belongs to the classes
PM , FM , or K allows one to apply the convergence Theorem 3.4.13 or 3.4.15.
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Examples of such classical iterative methods with the step operator from the
class P1

M are given below:

V (u) = u− β(A∗Au−A∗f), β � 1/‖A‖2, (3.5.1)

this one corresponds to the step operator in the method of simple iteration;

V (u) = (A∗A+ αI)−1(αu +A∗f), α > 0, (3.5.2)

this one defines the iterated version of the Tikhonov method;

V (u) = u− ‖S(u))‖
2

‖AS(u)‖2 S(u), S(u) = A∗(Au − f), (3.5.3)

V (u) = u, if S(u) = 0, this one gives the method of the steepest descent;

V (u) = u− ‖Au− f)‖2
‖S(u)‖2 S(u), (3.5.4)

where V (u) = u, if Au − f = 0, is the operator of the nonlinear method of the
minimal error.
If operator A is self–adjoint and positively defined, then

V (u) = u− 〈AαΔ,Δ〉
〈Aα+1Δ,Δ〉Δ, Δ = Au − f 	= 0, (3.5.5)

where V (u) = u with Δ = 0 generates α–processes, which, in particular, includes
the methods of the minimal residuals, of the steepest descent, and of the minimal
error.
Note that the operators defined by formulas (3.5.1) and (3.5.2) are not only

M–Fejér, but also nonexpansive. So, under the condition that the mapping P is
also from the class K, modification of methods (3.4.2) is possible with the help
of the correcting multipliers (see, (3.4.3)), and such a modification can allow one
to obtain the strong convergence (Theorem 3.4.15).
As noted in Corollary 3.4.3, the metric projection or the projection with re-

laxation could play the role of operator P in processes (3.4.2). This operator is
defined by an explicit formula and is easy computed only in some particular cases
(of a priori restrictions) that often are met in applications

Q1 ={u : u ∈ L2, u � 0}, Q2 = {u : u ∈ U, ‖u‖ � r},
Q3 ={u : u ∈ Rn, a � u � b}, Q4 = {u : u ∈ U, 〈u, v〉 − q = 0},
Q5 ={u : u ∈ U, 〈u, v〉 − q � 0}.

Here, U is the Hilbert space, 〈 , 〉 denotes the inner product.
For example, the metric projection for the set Q5 is defined by the formula
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PQ5(u) = u− (〈u, v〉 − q)+v

‖v‖2 ,

and, under this, if the a priori set is given by the system of linear inequalities

Q = {u : 〈u, vi〉 − qi � 0, i = 1, 2, . . . , m},

then Q is the pseudo–contractive (Fejér) mapping and can be built in the form

PQ = PQ1(PQ2 . . . (PQm)) or PQ =
m∑

i=1

λiPQi ,

m∑
i=1

λi = 1, 0 < λi < 1,

(see, Theorem 3.3.9), where PQi is the projection into the half–space defined by
the i–th inequality.
But if the a priori restrictions are given by the system of convex inequalities

Q = {u : u ∈ U, gi(u) � 0, i = 1, 2, . . . , m}, (3.5.6)

then to find the metric projection, it is necessary to solve a problem of convex
programming, so, we need to search for new alternative approaches.
For finding solutions of systems of convex inequalities with differentiable (in

the general case, subdifferentiable) functionals, I.I. Eremin in [9–11] had sug-
gested constructions of mappings from the class FQ, where Fix(T ) = Q and Q
is the solutions set of system (3.5.6). This allowed one to formulate the conver-
gence theorems for various classes of problems of mathematical programming. It
was discovered ([42, 44]) that these mappings have the more strong property of
contractivity. Namely, they belong to the class Pν

Q. This means that they can be
applied to processes (3.4.2) for solving the ill–posed problem with the a priori
information.
Moreover, just as in FQ, the class Pν

Q possesses the property of closedness with
respect to operations of superposition and convex combination (see, Theorem
3.3.8 and Corollary 3.3.11). Therefore, when applying PQ ∈ Pν

Q and V ∈ Pμ
M ,

processes (3.4.2) adopt wide parallelizing of algorithms.
The basic construction of the Fejér mapping from the class Pν

Q for the set Q
given by the system of inequalities (3.5.6) has the form

T (u) = u− d+(u)e(u)/‖e(u)2‖, (3.5.7)

where d(u) � 0 is the convex functional and Fix(T ) = {u : u ∈ U, d(u) � 0},
e : U → U .
Write out concrete realizations of the functional d and the mappings e from

formula (3.5.7)

d(u) =
m∑

i=1

ki[g+
i (u)]

μi , e(u) =
m∑

i=1

kiμi[g+
i (u)]

μi−1∇gi(u), (3.5.8)
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where ki > 0, μi � 1, ∇gi is the gradient or subgradient of the functional gi,
and, under this, for μi = 1, summation in the latter sum is bounded by the set
S(u) = {j : gj(u) > 0},

d(u) = max
1�i�m

gi(u), e(u) = ∇gi(u), i(u) ∈ {j : gj(u) = d(u)}. (3.5.9)

Taking account of the properties of the mappings T from the class Pv
Q estab-

lished in Theorem 3.3.8 and the fact that the set Q in (3.5.6) can be represented

in the form Q =
m⋂

i=1
Qi, let us write other two families of the mappings T ∈ Pv

Q :

T = Tj1Tj2 . . . Tjm , T =
m∑

i=1

λiTi, 0 < λ < 1, (3.5.10)

where j1, j2, . . . , jm, is an arbitrary permutation of the indices {1, 2, . . . , m}, 0 <

λi < 1,
m∑

i=1
λi = 1, and the mapping Ti is defined by the formula

Ti(u) = u− λg+
i (u)∇gi(u)/‖∇gi(u)‖2, 0 < λ < 2. (3.5.11)

Note that these are the constructions of the Fejér mappings of forms (3.5.10)
and (3.5.11) that allow one to use various technologies of parallelization in real-
izations of the iterative methods. These topics are in detail considered in book
[46, Chapter 4].

3.6 Fejér processes for nonlinear equations

In the previous sections of this article in solving a problem with the a priori
information, equation (3.1.1) with the linear bounded operator A was discussed
as the basic one. Consider now the case when the basic equation is nonlinear

A(u) = f (3.6.1)

and has the differentiable operator acting on a pair of the Hilbert spaces U and
F . As in the linear case, we shall denote by M the set of solutions of equation
(3.6.1).
When necessary, one can pass to the more general formulation. i.e., to mini-

mization of the residual

min{1
2‖A(u)− f‖2 : u ∈ U}. (3.6.2)

Denoting in (3.6.2) the goal function by Φ(u), we come to the necessary condition
of extremum in problem (3.6.2)
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∇Φ(u) = A′(u)∗(A(u)− f) = S(u) = 0.

Thus, the iterative processes of the form

uk+1 = uk − βk[A′(uk)∗(A(uk)− f)] ≡ T (uk) (3.6.3)

are to be regarded as the methods of the gradient type.
Since βk = β from (3.6.3), we obtain the gradient method with the constant

step (the Landweber method).
Using the principles of the choice of the parameter β, from the condition of

minimum of the residual and the error for operator A linearized at the point uk,
we come to the processes (S(u) = A′(u)∗(Au− f))

uk+1 = uk − ‖S(uk)‖2
‖A′(uk)S(uk)‖2 S(uk) ≡ T (uk), (3.6.4)

uk+1 = uk − ‖A(u
k)− f‖2

‖S(uk)‖2 S(uk) ≡ T (uk) (3.6.5)

that, analogically to the linear case, is called the method of the steepest descent
and the method of the minimal residual, respectively (see, [8, 31, 33].
One can formulate the sufficient condition, which guarantees that the step

operator in the gradient methods belongs to the class of the pseudo–contractive
operators Pν

M .

Theorem 3.6.1. Let sup{‖A′(u)‖ : u ∈ Sρ(z)} � N1 and under some κ > 0
in the neighborhood Sρ(z) of the solution z of equation (3.6.1), the following
condition can be satisfied:

‖A(u)−A(z)‖2 � κ〈A(u) −A(z), A′(u)(u − z)〉. (3.6.6)

Then under βk ≡ β < 2
κN2

1
in the method of gradients (3.6.3) and under κ < 2

in methods (3.6.4) and (3.6.5), the step operators belong to the class Pν
M under

ν = 2
βN2

1
− 1 and under ν = 2

κ
− 1, respectively.

Consider now the modified Levenberg–Marquardt method (with the additional
parameter β > 0, see, [46])

uk+1 = uk − β[A′(uk)∗A′(uk) + αkI]−1S(uk) ≡ Tk(uk). (3.6.7)

Introduce the Hilbert norm

‖u‖2k = 〈Bku, u〉, Bk = A′(uk)∗A(uk) + αkI,

that is equivalent (uniformly in k) to the main norm of the space U under αk �
α > 0.

Theorem 3.6.2. Let sup{‖A′(u)‖} � N1 <∞ and condition (3.6.6) be satisfied.
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Then under 0 < β < 2α/κN2
1 for the sequence of the operators Tk(u) =

u − βB−1
k S(u) in the variable norm, the condition of pseudo–contractivity is

satisfied at the iterative points, i.e.,

‖Tkuk − z‖2k � ‖uk − z‖2k − ν‖uk − Tk(uk)‖2k
for some ν > 0.

By Theorems 3.6.1, 3.6.2, and 3.4.1, the following corollaries are valid.

Corollary 3.6.3. Let the assumptions of Theorems 3.6.1 and 3.6.2 be satisfied
and the relation hold

uk ⇁ u, S(uk)→ 0⇒ S(u) = 0 (A(u) = f).

Then the iterative sequences {uk} generated by processes (3.6.4), (3.6.5), and
(3.6.7), converges weakly to a solution of equation (3.6.1) and, in addition,
limk→∞ ‖Auk − f‖ = 0.

Corollary 3.6.4. If together with the basic equation (3.6.1) we have the a priori
information û ∈ Q and PQ is the mapping of the Fejér type, for example, this is
from the class Pν

Q with condition (3.4.1), then under condition of Theorem 3.6.2
and Corollary 3.6.3 the iterative processes

uk+1 = PQTk(uk), uk+1 = λPQ(uk) + (1− λ)Tk(uk) (3.6.8)

weakly converge to û ∈ Q
⋂

M , where M is the solutions set of equation (3.6.1),
Tk is the step operator in method (3.6.7).

Note that even in the case of the unique solvability of equation (3.6.1), pro-
cesses (3.6.8) could be more effective by the accuracy than method (3.6.7) if the
mapping PQ adopts an economical realization.
Consider the process

ũk+1 = PQTk(ũk),

where Tk is defined by (3.6.7) or Tk = T from (3.6.4), (3.6.5) and in these
processes f is changed by fδ : ‖f−fδ‖ � δ, where Q is the compact set containing
the solution û.

Lemma 3.6.5. Let equation (3.6.1) be uniquely solved and for any δ < δ0 the
number k(δ)→∞ exists that is defined by the relation

‖A(uk+1)− fδ‖ � τδ < ‖A(ũk)− fδ‖, k = 1, 2, . . . , k(δ)− 1, τ > 1.

Then lim
δ→0
‖ũk(δ) − û‖ = 0.

Remark 3.6.6. The main condition for operator A that guarantees the pseudo–
contractivity and the weak convergence is defined by relation (3.6.6), in which
the solution z to be sought enters. This fact hampers the verification in practical
problems. But one can demand the more strong condition [31]
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‖A(u)−A(ũ)−A′(u)(u− ũ)‖2 � η‖A(u)−A(ũ)‖ ∀u, ũ ∈ Sρ(u0), (3.6.9)

which, as it is easy seen, implies (3.6.6) under κ = 2/(1 − η2) (η < 1/2) and
does not contain the solution z explicitly.

Moreover, the following operators satisfy condition (3.6.9) (and, hence, (3.6.6),
also) (see, [8, 31, 33]):

— the nonlinear operator A generated by the inverse coefficients problem for the
differential equation

−(a(s)u(s)s)s = f(s), s ∈ (0, 1)

with the boundary conditions u(0) = g0, u(1) = g1;
— the operator A in the nonlinear Volterra equation

A(u) ≡
∫ t

0

ϕ(u(s))ds = f(t), ϕ ∈ C2(R), A : W 1
2 [0, 1]→ L2[0, 1],

where W 1
2 is the Sobolev space with the norm (3.1.5) (n = 1).

— the integral operator A : L2[a, b]→ L2[a, b] in the plane problem of gravimetry
[14]

A(u) ≡
∫ b

a

ln
(t− s)2 +H2

(t− s)2 + (H − u(s))2
ds = f(t);

— the nonlinear operator A generated by the problem of identification of the
parameter q(x) (for a function) for the differential equation of the second
order [20]

∂2u

∂t2
− ∂2u

∂x2
= q(x)u(x, t) + f(x, t), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

Remark 3.6.7. In contrast to condition (3.6.6) that implies the weak conver-
gence, the strong convergence of methods (3.6.3)–(3.6.5) and (3.6.7) (see, [8, 31])
holds if condition (3.6.9) is satisfied.

In conclusion, consider the problem of conditional convex minimization

min{f(u) : u ∈ Q}

with the non–empty solutions set M . The mapping P given by the relation

P : v → argmin{f(u) + α‖u− v‖2 : u ∈ Q} (α > 0)

is called the prox–mapping (see, [25, 28, 32, 44]), and under this P ∈ P1 and
Fix(P ) = M . This allows one to apply the process uk+1 = P (uk) to approxima-
tion of elements u ∈ M . Under f(u) = ‖Au − f‖2, Q = U , the process passes
into the iterated version of the Tikhonov method (see, (3.5.2)). These processes
give the opportunity to work (under the constant α > 0) with the strong convex
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functional, i.e., with the problem that is correct according to Tikhonov method.
This is especially important for using the subgradient methods in the case of the
non–smooth functional f(u) (for instance, of the functional obtained under the
Tikhonov regularization with the non–smooth stabilizer). The mapping Λ defined
by formula (3.3.7) has analogous properties.

3.7 Applied problems with a priori information and
methods for solution

3.7.1 Atomic structure characterization

In investigation of the atomic structure (the close order of the atoms placing) of
the one–component non–ordered (amorphous) materials by the Röntgen–spectral
analysis, the Fredholm integral equation of the first kind appears

Ag ≡
∫ b

a

K(k, r)g(r)dr = X (k), c � k � d, (3.7.1)

where X (k) is the absorption coefficient of a bunch of the monochromatic Röntgen
rays in the material under investigation made experimentally, g(r) is the function
of the radial distribution of the atoms to be defined. This function is the main
structural characteristic of the material (see details in [2, 44]).
From its definition and physical sense, the function g(r) satisfies the following

conditions:

g(r) � 0, 〈g, v〉 ≡ 3
b3 − a3

∫ b

a

r2g(r)dr = 1. (3.7.2)

Thorough numerical analysis [44] has shown that the kernel of operator A
is nontrivial, hence, equation (3.7.1) has non–unique solution. The approximate
solution built on the basis of the classical Tikhonov method

gα : min{‖Ag −X‖2 + α‖g‖2W1
2 (or L2)

}, (3.7.3)

appears to be absolutely non–physical (it is negative on the most part of the
argument interval). This means that the normal solution reconstructed by method
(3.7.3) does not satisfy conditions (3.7.2).
To obtain physically meaning solution, the iterated version of the Tikhonov

method together with projecting onto the a priori sets (restrictions) was applied.
To do this, the prox–mapping (the step operator of the basic method) is defined

V : v → argmin{‖Ag −X‖2L2
+ α‖g − v‖2W1

2 (or L2)
}

and the iterative process is constructed (see (3.4.2))
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gk+1 = PV (gk) ≡ T (gk), (3.7.4)

where P = PQ2PQ1 , PQ1 is the metric projection onto the set Q1 = {g : 〈g, v〉 =
1}, PQ2 is the projection onto the set Q2 = {g : g � 0}. Here, the step operator T
is the superposition of two pseudo–contractive mappings P with Fix(T ) = Q =
Q1

⋂
Q2 and V with Fix(V ) = M that is the solutions set of problem (3.7.1);

and, under this, Fix(T ) = M
⋂

Q. Thus, we have satisfied conditions of Theorem
3.4.13.
Representative numerical experiment with model and real data has shown that

taking account of the a priori restrictions in algorithm (3.7.4) with using the pro-
jections, we obtain solution of good quality. Details of the numerical simulation
are given in book [44] (see, also, the references there).
It is worthy to note that the solution also is reconstructed with the satisfying

accuracy if to use, as the operators V , ones generated by the methods of the
steepest descent, the method of the minimal error, and the method of the conju-
gated gradients with the same mapping P .

3.7.2 Radiolocation of the ionosphere

Consider the oblique radiolocation of the ionosphere from the ground surface
when the vertical profile of the electron concentration has to be defined along
the epicentral distances (as the function of the beam parameter) obtained on two
frequencies. In this process, the so-called problem of the waveguides appears as a
result of violation of the monotone dependence of the electron concentration along
the hight. In this case the uniqueness of the solution is violated, and, moreover,
the traditional methodic (inversion of the integral of the Abel type) allows one
to define the concentration only at the beginning of the waveguide (i.e., of the
path with violation of the monotonicity).
In work [3], the problem of the waveguides has been solved and it was estab-

lished that it is impossible to define the electron concentration in the unique way
in the waveguide, but one can define the “measure of the waveguide”, the mea-
sure of the Lebesgue sets for the refraction coefficient from the Fredholm–Stiltjes
equation of the form ∫ b

a

K(p, r)dF (r) = R(p), (3.7.5)

where K(p, r) is some given function, R(p) is the function to be defined from
the experiment, F (r) is the measure of the waveguide to be sought. Moreover,
by using the function F (r), the computational procedure was constructed for
defining the electron concentration above the waveguide (see details in [3]).
If use the Tikhonov regularization method of the first order in the standard

form, the quality of the solution of equation (3.7.5) is low. But if take account of
the a priori data about the solution F in the form
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F (a) = 0, F ′(b) = 0, F ′(r) � 0, F (r) � 0

and apply the iterative process in form (3.7.4), then it is succeeded to increase
sufficiently the quality of the approximate solution. Under this, P = PQ2PQ1 ,
where PQ1 is the mapping of forms (3.5.7), (3.5.8) for the system of linear in-
equalities obtained after discretization of the condition F ′(r) � 0 and PQ2 is the
projection onto the positive orthant.

3.7.3 Image reconstruction

The problem of reconstructing the image is corrupted by the hardware function
of the measuring device and the additive error is reduced to solving the two–
dimensional integral equation of the first kind of the convolution type

Au ≡
∫ 1

0

∫ 1

0

K(x− t, y − s)u(t, s)dt ds = f(x, y). (3.7.6)

The numerical experiments (see, for example, [49]) show that in problems
(3.7.6) joined with reconstruction of images application of the Tikhonov regu-
larization of the first order (with the stabilizer Ω(u) = ‖u‖2

W1
2
) is not always

advisable because of the strong smoothing of the non-smooth solution. Applica-
tion of the stabilizer

Ω(u) = ‖u‖pLp
+ J(u) (3.7.7)

with the variation J(u) of this or that form (see, [49]) usually leads to the better
results. Particularly, the following total variation [15] is used as the functional
J(u):

J(u) = sup
{∫ 1

0

∫ 1

0

u(x, y) Divv(x, y)dx dy : v ∈ C1
0 (Π, R2), |v| � 1

}
.

For solving the regularized problem

min{‖Au− fδ‖2Lp
+ αΩ(u) : u ∈ U} = Φ∗ (3.7.8)

with the nondifferentiable stabilizer Ω(u) of form (3.7.7), the following approach
was suggested in works [43, 45]. Assume that some estimate Φ̃ for Φ∗ is known,
i.e.,

Φ̃ � Φ∗ + ε, ε > 0,

together with the a priori information of the form ũ � 0. Now, instead of (3.7.8)
it is possible to solve the system of convex inequalities

Φα(u)− Φ̃ � 0, u � 0, (3.7.9)
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where Φα is the goal functional in (3.7.8).
The following iterative process of the subgradient type was constructed by the

methodic of Section 3.5 for system (3.7.9):

uk+1 = P+

{
uk − λ

[Φα(uk)− Φ̃]+ + ∂Φα(uk)
‖∂Φα(uk)‖2

}
, 0 < λ < 2.

Here, P+ is the projection onto the positive orthant and ∂Φα(uk) is an arbitrary
subgradient of the functional Φα. This process solves problem (3.7.8) rather suf-
ficiently [45].
Another different approach to the numerical solution of the problem of non–

smooth minimization of (3.7.8) (see, [24, 43, 49]) is based on the preliminary ap-
proximation of the non–smooth stabilizer Ω by some family of the differentiable
functionals Ωβ with further application of the methods of smooth optimization.

3.7.4 Thermal sounding of the atmosphere

In the inverse problems of the thermal sounding the atmosphere that join with
defining the temperature T (h) and concentration n(h) of the green-house gases
(CO, CO2, CH4) as function of the hight, the spectra are used that were mea-
sured by the satellite sensor. In these problems, the following nonlinear integral
equation has to be solved

A(u) ≡
∫ +∞

−∞
W (ν′)F (ν − ν′)dν′ = Φ(ν),

which is the convolution of the spectrum of the high resolution W with the
hardware function F . The function W depends on the absorption coefficient
Bν(T (h), n(h)) that nonlinearly depends on the parameters u(h) = (T (h), n(h))
to be defined.
Usually, only a part of the parameters (for example, the temperature and

methane, the temperature, water vapor, and CO2) are defined, but others are
assumed to be fixed and their values are chosen from the data base for the region
under investigation and the chosen time and the observation conditions.
Problems of such a type have one peculiarity, namely, there often exists rather

precious a priori information about the solution to be found in the form of the
two-sided inequalities

Q = {u : u(h) � u(h) � u(h)}. (3.7.10)

Sufficiently good results are obtained by using the iteratively regularized
methods of the Gauss–Newton type, particularly, by application of the modi-
fied Levenberg–Marquart method (see (3.6.7))
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uk+1 = PQ[uk − β(A′(uk)∗A′(uk) + αkI)−1(A′(uk)∗(A(uk)− Φ))]

with the operator PQ of projection onto the n–dimensional parallelepiped (3.7.10)
(see [16, 47]).

3.7.5 Testing a wellbore/reservoir

Under investigation and interpretation of productivity of a wellbore/reservoir
system the problem of the solution of the convolution Volterra equation [34]
arises ∫ 1

0

q(t− τ)g(τ) dτ = Δp(t), Δp(t) = p0 − p(t), t ∈ [0, T ]. (3.7.11)

Here, p(t) and q(t) are the pressure and the flow rate, respectively; p0 is the initial
reservoir pressure; g(t) = dpu(t)/dt, where pu(t) is the so-called constant–unit–
rate pressure response. The functions pu(t) and g(t) are unknown and should be
reconstructed by Δp(t) and q(t) that are given with noise. The functions pu(t)
and g(t) are used for analysis of a wellbore/reservoir system [5].
As it is known [7], the function g(t) satisfies the following constraints

C � g(t) � 0, g(t) � 0, g′(t) � 0, g′′(t) � 0. (3.7.12)

So, we must solve the system

Ag = Δp. g ∈M, (3.7.13)

where M = { g : 0 � g � C, g′(t) � 0, g′′(t) � 0 }.
Now the following iterative processes

either
gk+1 = PM (gk − β(A∗Agk −A∗Δp)), 0 � β � 2/‖A‖2,
or
gk+1 = PM (A∗A+ αI)−1(αgk +A∗Δp)

(3.7.14)

are appropriate for solving system (3.7.13). The mapping PM from (3.7.14) is
given, for example, by formulas (3.5.7)–(3.5.9) or (3.5.10), (3.5.11) from Section
3.5.
Since the set of functions M̄ given by inequalities (3.7.12) is compact in

L2[0, T ], we can also use the Ivanov quasi-solution method [18, 19]

min{‖Ag −Δp‖2 : g ∈ M̄}. (3.7.15)
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After discretization of problem (3.7.15) by finite-difference method, we arrive at
minimization of quadratic function with linear constraints, which can be solved
by methods of the gradient type.
Another approach to solving equation (3.7.11) is based on the preliminary

transition from the linear equation (3.7.11) to the nonlinear one

A(z) =
∫ log10 t

−∞
q(t− 10σ) 10σdσ = Δp(t), t ∈ [0, T ] (3.7.16)

after changing the variable τ and the function g(t) as follows: σ = log10 τ , z(σ) =
log10(τg(τ)). Now for solving (3.7.16), we can apply the iterative processes in the
form

gk+1 = PMV (gk),

where V is the step operator of the iterative method of the Gauss–Newton type
(f.e., (3.6.7)) and PM is a Fejér mapping responding for constraints (3.7.12) (see
Section 3.5).

3.8 Conclusions

This chapter presents the review of methods for solving linear and nonlinear
operator equations of the first kind with a priori information. The approach
discussed in detail is based on iterative processes with operators of the Fejér
type. The description of algorithms is given for solving some inverse problems
that are met in various scopes of the mathematical physics.
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Chapter 4

Regularization of Naturally Linearized
Parameter Identification Problems and the
Application of the Balancing Principle

Hui Cao and Sergei Pereverzyev

Abstract. The chapter is a survey on recently proposed technique for parameter
identification in partial differential equations. This technique combines natural
linearization of an identification problem with the Tikhonov scheme, where the
regularization parameter is chosen adaptively by means of the so-called balancing
principle. We describe the natural linearization approach and show how it can be
treated within the framework of Tikhonov regularization as a problem with noisy
operator and noisy data. Then the balancing principle is discussed in the context
of such a problem. We demonstrate the performance of proposed technique in
some typical parameter identification problems.

4.1 Introduction

Natural linearization (NL) was introduced in [14] as an alternative to output
least-squares (OLS) approach to nonlinear parameter identification problems for
partial differential equations. OLS are known as a powerful tool for solving such
inverse problems, but require a subroutine to solve the forward problem that
can handle the nonlinearity of the differential equation, and since hundreds of
forward problems may have to be solved during the minimization of OLS cost
functional (or its regularized version), this method has a tendency to become
very expensive.
NL, as presented in [14], has the following advantages over OLS: original non-

linear inverse problem is reduced to a finite sequence of linear ones; resulting
linear problem is one-dimensional while the underlying process can depend on
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several time and space variables; sometimes only a single call of the solver for
corresponding forward problem is necessary.
At first glance these advantages are due to a specific structure of the iden-

tification problem discussed in [14], where a parabolic system with unknown
nonlinearity in the boundary condition has been considered. But as we will see in
the sequel, NL scheme can also be successfully implemented for the identification
problems in both elliptic system and parabolic system. It seems now that there
is a class of nonlinear parameter identification problems that can be treated by
NL technique. At this point it is worthy to stress once again that speaking about
natural linearization we have in mind a reduction of original nonlinear inverse
problem to a final sequence of linear ill-posed problems, when a regularized so-
lution of preceding problem is used as data for succeeding one. For both such
problems no information concerning the smoothness of their solutions is usually
given. Then, as a consequence of their ill-posedness, no reliable estimations for the
error of the approximate solution can be obtained. But an approximation error
for the preceding problem plays a role of data noise level for the next one. As far
as it is unknown, no consistent regularization strategy for succeeding problem can
be proposed, as it follows from Theorem 3.3 [15] known also as a Bakushinskii’s
negative result.
At the same time, for some problems from the above mentioned ill-posed prob-

lems sequence (at least for the first of them) data noise level is usually given, or
can be in principle estimated. Therefore, one can regularize other problems relat-
ing regularization parameters with data noise level known for preceding problem.
One of the goals of the present work is to propose a regularization strategy based
on this idea.
Concisely speaking, an adaptive strategy of regularization parameter choice,

which is known as the balancing principle, is studied relying on either the es-
timated noise level (see Section 1.1.3) or the value of perturbation level known
for the preceding linear ill-posed problem (see Section 1.1.4). Therefore, balanc-
ing principle will be presented first in a basic style, then in an extended form. In
both cases, such a posteriori regularization parameter choice strategy can provide
order-optimal regularization error estimates.
In this context, we choose the following parameter identification problems

as prototype problems for the application of Natural linearization, as well as
Balancing principle, since they are typical nonlinear inverse problems no matter
whether the corresponding forward problems are linear or not.

Problem 4.1.1 (Parameter identification in elliptic equation–(P1)). Consider
the boundary value problem

−� (a� u) = f in Ω,

u = g on ∂Ω. (4.1.1)

We are interested in identifying the coefficient a = a(x) from the noisy measure-
ment uδ of the solution u. Here Ω is a convex domain with Lipschitz boundary,
f ∈ L2(Ω), g ∈ H

3
2 (∂Ω), and for some fixed noise level δ we have
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‖uδ − u‖L2(Ω) ≤ δ. (4.1.2)

Problem 4.1.2 (Parameter identification in quasi-linear parabolic system–(P2)).
Consider the problem of identifying the diffusion coefficient a(τ) in a quasi-linear
parabolic system

∂u

∂t
−∇ · (a(u)∇u) = G(t, x) in [0, T ]× Ω,

a(u)
∂u

∂n
= g(t, x) on [0, T ]× ∂Ω,

u(0, x) = uin(x) in Ω,

(4.1.3)

from noisy short-time observation uδ(t, x) of the solution u(t, x), i.e.,

uδ(t, x) = u(t, x) + δξ(t, x), (t, x) ∈ [T − σ, T ]× Ω. (4.1.4)

Here Ω is a bounded, simply-connected domain with sufficiently smooth boundary
∂Ω and all the functions G, g and uin are assumed to be known.

The identification problems (P1) and (P2) can find a wide range of applica-
tions, since the partial differential systems (4.1.1) and (4.1.3) serve as mathe-
matical models for many processes in engineering and industry. They have been
extensively discussed in the literature as model problems for parameter identifi-
cation (e.g.[2, 3, 13, 16, 19, 28, 47]).
Before further discussion, we briefly make the following assertions for (P1).

• On the forward problem of solving (4.1.1): If Ω is a convex domain
with Lipschitz boundary, for a ∈ L∞(Ω) bounded away from zero, and f ∈
L2(Ω), g ∈ H

3
2 (∂Ω), (4.1.1) has a unique weak solution u ∈ H1(Ω).

• Uniqueness for the inverse problem in the ideal case: If a is known
on the boundary ∂Ω and ∇u is bounded away from zero then by the basic
theory for hyperbolic boundary value problems (see, e.g. [4]), a is uniquely
determined on the whole domain Ω by (4.1.1).

The last assertion is established theoretically in the ideal case. In this context, we
only assume that the search-for parameter a for the unperturbed parameter iden-
tification problems exists. Based on such assumption, our effort here is devoted to
the nonlinear ill-posed problem of identifying a(x) from the noisy measurement
uδ of u with ‖uδ − u‖L2(Ω) ≤ δ.
As for (P2), similarly, we have the following facts: (see [23, Chapter 9]).

• On the forward problem of solving (4.1.3): Assume that Ω yields
to the condition described in (4.1.3). For G(t, ·) ∈ L2(Ω), uin ∈ L2(Ω),
g(t, x), ∂g/∂t ∈ L2([0, T ]) ⊗ H

1
2 (∂Ω), (4.1.3) has a unique weak solution

u ∈ C([0, T ])⊗H1(Ω).
• Uniqueness for the inverse problem in the ideal case: If g(t, x), ∂g/∂t ≥
0 (and not identically zero) on (0, T ) × ∂Ω, then the coefficient a can be
uniquely identified.



68 H. Cao and S. Pereverzyev

4.2 Discretized Tikhonov regularization and estimation of
accuracy

In each step of NL, we will meet with the problem of the regualrization of a
linear operator equation, where both the operator and the right-hand side term
are subject to error. Now, we aim at the estimation of accuracy of such kind
of regularization. At first, we will give the general model of the regularization
problem and describe the algorithm of the discretized Tikhonov regularization.
Then, the theory of operator monotone functions as an auxiliary tool is studied
to draw the final result concerning the estimation of accuracy .
Let X and Y be separable Hilbert spaces over the reals. We denote the inner

products in these spaces by 〈·, ·〉, and corresponding norms by ‖ · ‖. Moreover,
a symbol ‖ · ‖ stands also for a standard operator norm. It will be always clear
from the context whose space or norm is being considered, if not specified.
In this section we briefly summarize a concept of the regularization of linear

ill-posed operator equations
Ās = r̄ (4.2.1)

with approximately known operator and right-hand side term, which means that
we are given A, r instead of Ā, r̄ such that

‖Ā−A‖ ≤ ε1, (4.2.2)
‖r̄ − r‖ ≤ ε2, (4.2.3)

where the operators Ā, A act compactively between X and Y , r̄ ∈ Range(Ā) ⊂ Y ,
r ∈ Y , ε1, ε2 ∈ (0, 1). Recall that equation (4.2.1) is classified as essentially ill-
posed problem if Range(Ā) is not closed in Y . Facing such an equation, what one
usually looks for is a stable approximation for the Moore-Penrose generalized
solution of (4.2.1) defined as an element s̄ ∈ X with minimal X-norm such that

‖Ās̄− r̄‖ = inf{‖Ās− r̄‖, s ∈ X}.

4.2.1 Generalized source condition

Using a singular value decomposition

Ā =
∞∑

k=1

λk〈uk, ·〉wk (4.2.4)

of the operator Ā one can represent s̄ as

s̄ =
∞∑

k=1

λ−1
k 〈wk, r̄〉uk, (4.2.5)
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where {uk}, {wk} are orthonormal systems of eigenvectors of the operators Ā∗Ā :
X → X and ĀĀ∗ : Y → Y , λ2

k, k = 1, 2, · · · , are corresponding eigenvalues
(decreasing with k), and Ā∗ : Y → X is the adjoint of the operator Ā.
In view of the representation (4.2.5) it is natural to measure a smoothness

of the Moore-Penrose solution s̄ against the decay rate of the Fourier coeffi-
cients 〈wk, r̄〉. A well-known Picard criterion asserts that s̄ has a zero smoothness
(merely s̄ ∈ X) if and only if

∞∑
k=1

λ−2
k 〈wk, r̄〉2 <∞.

If a smoothness of s̄ is higher than a conventional one, then the Fourier coeffi-
cients 〈wk, r̄〉 should decay much faster than λk. More precisely, not only Picard
criterion but also a stronger condition

∞∑
k=1

〈wk, r̄〉2
λ2

kφ2(λ2
k)

<∞

should be satisfied, where φ is some continuous function defined on the interval
[0, a). Here we assume that φ(0) = 0 and a is a fixed positive number with
{λk} ⊂ [0, a), i.e., a > b, b = λ2

1 = ‖Ā∗A∗‖. Then

w =
∞∑

k=1

〈wk, r̄〉
λkφ(λ2

k)
uk ∈ X,

and in view of (4.2.5)

s̄ =
∞∑

k=1

φ(λ2
k)〈uk, w〉uk = φ(Ā∗Ā)w ∈ X.

Thus, additional smoothness of s̄ can be expressed as an inclusion

s̄ ∈ Āφ,R := {s ∈ X : s = φ(Ā∗Ā)w, w ∈ X, ‖w‖ ≤ R}, (4.2.6)

that goes usually under the name of source condition. In this context the function
φ is called index function. Ill-posed inverse problems under such general source
conditions can be found throughout work [24], and also in [1, 12, 21, 48]. Recent
progress has been reported in [6, 36, 39, 40].
Source conditions given in terms of powers φ(λ) = λμ were studied extensively.

Selected references from the huge literature are [15, 49]. For severely ill-posed
problems, where φ(λ) = log−μ 1

λ , we can refer to [22, 33, 43].
Moreover, recently in [34] it has been observed that for any s ∈ X and compact

operator A : X → Y there are an index function φ and a number R such that s ∈
Aφ,R. From this view point the smoothness assumption (4.2.6) is not restrictive
at all.
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4.2.2 Discretized Tikhonov regularization

As we know, for obtaining a stable approximate solution of an ill-posed problem
(4.2.1) regularization procedure should be employed, and Tikhonov regularization
is the most popular one. Recall that in accordance with (4.2.2) only a perturbed
equation

As = r (4.2.7)

is accessible, and it may have no solution.
Within the framework of Tikhonov regularization scheme it is substituted for

uniquely solvable equation

αs+A∗As = A∗r, α > 0. (4.2.8)

But in general this regularization procedure becomes numerically feasible only
after appropriate discretization. In the present context a discretization means a
substitution of (4.2.8) for a problem in some n-dimensional space Vn ⊂ X . Let Pn

be the orthogonal projector from X onto Vn. A discretized Tikhonov regularized
solution is defined as sα,n = gα(B∗B)B∗r, where B = APn, gα(λ) = 1/(α + λ)
is Tikhonov regularization function. In other words, sα,n ∈ Vn solves

αs+B∗Bs = B∗r, α > 0.

Another way to look at this is the following: we seek for the solution of (4.2.8)
in a weak formulation: find sα,n ∈ Vn such that for all s ∈ Vn

〈αsα,n +A∗Asα,n, s〉 = 〈A∗r, s〉. (4.2.9)

Let {Φi}ni=1 be some basis of Vn. Then

sα,n =
n∑

i=1

βiΦi,

and we have the following system of linear algebraic equations for the vector
β = {βi} of the coefficients:

(M + αGΦ)β = F, (4.2.10)

where
GΦ = {〈Φi,Φj〉}ni,j=1,
M = {〈AΦi, AΦj〉}ni,j=1,
F = {〈AΦi, r〉}ni=1.

(4.2.11)

We would like to note that the adjoint operator A∗, which sometimes has a
rather complicated implicit definition, is not involved in the construction of sα,n.
As to AΦi, they can theoretically be either computed exactly or precomputed
numerically in advance for any given basis Φi. Observe also that we do not need
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each element AΦi in an explicit form, but only their inner products as in M and
F , which can be computed much more accurately than AΦi itself. In any way,
the computation error in M and F can be made much smaller than error levels
ε1 and ε2.

4.2.3 Operator monotone index functions

Recall the properties of the function gα = 1/(α + λ) associated with Tikhonov
regularization. It is well known that

sup
λ>0

√
λ|gα(λ)| ≤ 1

2
√

α
, (4.2.12)

and
sup
λ>0

λp|1− λgα(λ)| ≤ αp (4.2.13)

holds only for 0 ≤ p ≤ 1.
To proceed further we should specify the assumptions concerning index func-

tion φ. From [37] it follows that when dealing with the discretized Tikhonov
scheme, it is convenient to assume that the smoothness index function φ is op-
erator monotone (increasing)(see the definition below), because this assumption
covers all types of smoothness studied so far in the theory of Tikhonov method.

Definition 4.2.1. A function φ is operator monotone on (0, a), if for any pair
of self-adjoint operators U , V with spectra in (0, a), such that U ≤ V , we have
φ(U) ≤ φ(V ) (i.e. ∀f ∈ X, 〈φ(U)f, f〉X ≤ 〈φ(V )f, f〉X).

It follows from Löwner Theorem (see, e.g. [20, Section 2]) that each operator
monotone function φ with φ(0) = 0 admits an integral representation as a Pick
function

φ(ζ) = α̃ζ +
∫ [

1
λ− ζ

− λ

λ2 + 1

]
μ(dλ),

for some α̃ ≥ 0 and finite positive measure μ on R, satisfying
∫
(λ2+1)−2μ(dλ) <

∞. This can be considered as a kind of criterion concerning operator monotony.
A more applicable version is also given in [20], and tells us that on any interval
(0, a), a monotone function is operator monotone if its analytic continuation in
the corresponding strip of upper half-plane has imaginary part which is always
positive. We refer the detailed analysis on this concept to [20, 38].

Proposition 4.2.2. If φ : [0, a)→ R
+ ∪ {0} is operator monotone on (0, a) and

φ(0) = 0, then

sup
0≤λ≤b

|1− λgα(λ)|φ(λ) ≤ cφ(α), α ≤ b, (4.2.14)
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where the numbers a and b are defined as before (b = ‖Ā∗Ā‖ < a) and the
constant c does not depend on α.

Proof. Considering the function λ �→ |1− λgα(λ)|φ(λ), we need to show that on
[0, b] it is uniformly bounded by the right-hand side in (4.2.14) for any value of
α. We distinguish two cases.
First if λ ≤ α, then the required bound follows from monotonicity of φ, since

supλ>0 |1− λgα(λ)| ≤ 1.
Consider the case α ≤ λ ≤ b. Since φ is operator monotone on (0, a) ⊃ (0, b]

and φ(0) = 0, then as in [38], such φ can be represented as a sum of two non-
negative functions φ = φ0+φ1, where φ0 is a concave function, φ1 meets Lipschitz
condition with Lipschitz constant c1, and φ0(0) = φ1(0) = 0. Then φ0(b)/b ≤
φ0(λ)/λ ≤ φ0(α)/α whenever α ≤ λ ≤ b. Thus, we have

φ(λ)
λ

=
(φ0(λ) + φ1(λ))

λ
≤ φ0(λ)

λ
+ c1.

Now, put c := (c1b/φ0(b) + 1), we conclude that for α ≤ λ ≤ b

φ(λ)
λ
≤ (c1

b

φ0(b)
+ 1)

φ0(α)
α

≤ c
φ(α)

α
(4.2.15)

Then

|1− λgα(λ)|φ(λ) = |1− λgα(λ)|λφ(λ)
λ

≤ α sup
α≤λ≤b

φ(λ)
λ
≤ αc

φ(α)
α

= cφ(α).

The last assertion is based on (4.2.13) with p = 1 and (4.2.15). ��
Proposition 4.2.3 ([38]). Let φ : [0, a) → R

+ ∪ {0} be operator monotone on
(0, a), satisfying φ(0) = 0. For each 0 < c < a there is a constant C, such that
for any pair of non-negative self-adjoint operators U , V with ‖U‖, ‖V ‖ ≤ c we
have

‖φ(U)− φ(V )‖ ≤ φ(‖U − V ‖) + C‖U − V ‖, (4.2.16)

where the constant C depends only on φ.

Proposition 4.2.4. Under the conditions of the propositions above, for any pair
of self-adjoint operators U, V with spectra on [0, b]

‖φ(U)− φ(V )‖ ≤ dφ(‖U − V ‖), (4.2.17)

where d depends only on φ.

Proof. As above, we make use of decomposition φ = φ0+φ1. From the concavity
of φ0, it follows that for any given constant C, there exists another constant
C ′ = bC/φ0(b) such that for any t ∈ [0, b], Ct ≤ C ′φ0(t). Thus,
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C‖U − V ‖ ≤ C′φ0(‖U − V ‖) ≤ C ′φ(‖U − V ‖). (4.2.18)

Now (4.2.16) and (4.2.18) lead to (4.2.17) with d = 1 + C ′. ��
In the sequel, we will assume that index function φ is operator monotone on

[0, b], b = ‖Ā‖2. We define the following function class

F := {φ, φ : (0, b]→ R+, φ(0) = 0, φ is operator monotone} .

Then as [36] we assume more specifically, either φ2(λ) to be concave, or φ(λ) ≤
c
√

λ. The classes of such operator monotone functions will be denoted by F0 and
F1/2 respectively. Observe that up to a certain extent these classes complement
each other, because for any φ ∈ F0, φ(0) = 0, φ2(λ) ≥ φ2(b)λ/b = cλ, and thus
φ(λ) ≥ c

√
λ. Note that index functions

φ(λ) = λμ, λ > 0, for 0 < μ ≤ 1,
φ(λ) = log−p(1/λ), 0 < λ < 1, for p > 0,

traditionally used in the regularization theory [12] are contained in F0 ∪ F1/2.
For the sake of simplicity we normalize index functions φ in such a way that

φ(b) =
√

b. Namely,

F0 :=
{

φ ∈ F , φ(b) =
√

b, φ2 is concave
}

,

F1/2 :=
{

φ ∈ F , φ(b) =
√

b, φ(λ) ≤
√

λ
}

.

4.2.4 Estimation of the accuracy

The following proposition was proven in [36].

Proposition 4.2.5. Let φ(λ) be any increasing index function from F0 ∪ F1/2.
Then for the orthogonal projector Pn from X onto n-dimensional subspace Vn ⊂
X,

‖Pnφ(Ā∗Ā)Pn − φ(PnĀ∗ĀPn)‖ ≤ d1φ(‖Ā(I − Pn)‖2), (4.2.19)

where the constant d1 depends only on φ. Moreover, for s = φ(Ā∗Ā)ν, ‖ν‖ ≤ R,

‖(I − Pn)s‖ ≤
{

Rφ(‖Ā(I − Pn)‖2), φ ∈ F0;
R‖Ā(I − Pn)‖, φ ∈ F1/2.

(4.2.20)

Now we arrive at the main result of this chapter.

Theorem 4.2.6. Assume that the Moore-Penrose generalized solution s̄ of the
equation (4.2.1) belongs to the set Āφ,R given by (4.2.6) with φ ∈ F0 ∪ F1/2. If
A, r and n are such that ‖Ā−A‖ ≤ ε1, ‖r̄ − r‖ ≤ ε2 and



74 H. Cao and S. Pereverzyev

‖Ā(I − Pn)‖ ≤ min
{√

α,
ε√
α

}
, ε = max{ε1, ε2}, (4.2.21)

then the following error bound holds true

‖s̄− sα,n‖ ≤ c1φ(α) + c2φ(ε) + cR
ε√
α

, (4.2.22)

where cR = (R
√

b+ 3)/2, and the constants c1, c2 do not depend on α, n and ε.

Proof. Note that

‖s̄− sα,n‖ = ‖s̄− gα(B∗B)B∗r‖
≤ ‖s̄− gα(B∗B)B∗Bs̄‖+ ‖gα(B∗B)B∗(Bs̄− r)‖.

Moveover,

‖Bs̄− r‖
≤ ‖APns̄− ĀPns̄‖+ ‖ĀPns̄− Ās̄‖+ ‖Ās̄− r‖
≤ ‖Ā−A‖‖s̄‖+ ‖r̄ − r‖ + ‖Ā(I − Pn)‖‖(I − Pn)s̄‖
≤
√

bRε1 + ε2 + ‖Ā(I − Pn)‖‖(I − Pn)s̄‖,

since s̄ ∈ Āφ,R implies that ‖s̄‖ ≤ φ(b)R =
√

bR. Then (4.2.12) and Proposition
4.2.5 give us

‖gα(B∗B)B∗(Bs̄− r)‖

≤

⎧⎪⎨⎪⎩
1

2
√

α

(
(
√

bR+ 1)ε+R‖Ā(I − Pn)‖φ(‖Ā(I − Pn)‖2)
)

, φ ∈ F0,

1
2
√

α

(
(
√

bR+ 1)ε+R‖Ā(I − Pn)‖2
)

, φ ∈ F1/2.

Keeping in mind (4.2.14), we can continue

‖s̄− gα(B∗B)B∗Bs̄‖
≤ ‖(I − Pn)s̄‖+ ‖(I − gα(B∗B)B∗B)φ(B∗B)ν‖
+ ‖(I − gα(B∗B)B∗B)(Pnφ(Ā∗Ā)− φ(B∗B))ν‖
≤ Rcφ(α) + ‖(Pnφ(Ā∗Ā)− φ(B∗B))ν‖ + ‖(I − Pn)s̄‖.

The last term has been estimated in Proposition 4.2.5, and we proceed with the
remainder as follows:

‖(Pnφ(Ā∗Ā)− φ(B∗B))ν‖
≤ R‖(I − Pn)φ(Ā∗Ā)‖+R‖Pnφ(Ā∗Ā)Pn − φ(PnĀ∗ĀPn)‖
+ R‖φ(PnĀ∗ĀPn)− φ(PnA∗APn)‖.
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The first two terms here have been also estimated in Proposition 4.2.5, and to
estimate the last one we use the property (4.2.17).

‖φ(PnĀ∗ĀPn)− φ(PnA∗APn)‖
≤ φ(‖PnĀ∗ĀPn − PnA∗APn‖).
≤ φ(d2‖Ā−A‖) ≤ ([d2] + 1)φ(ε),

where d2 is a positive constant, and [·] denotes the integer part of a positive
number.
Summing up we obtain the following inequalities

‖s̄− sα,n‖
≤ Rcφ(α) +Rφ(‖Ā(I − Pn)‖2) + d1Rφ(‖Ā(I − Pn)‖2) +R([d2] + 1)φ(ε)

+
1

2
√

α

(
(
√

bR + 1)ε+R‖Ā(I − Pn)‖φ(‖Ā(I − Pn)‖2)
)

, if φ ∈ F0,

‖s̄− sα,n‖
≤ Rcφ(α) +R‖Ā(I − Pn)‖+ d1Rφ(‖Ā(I − Pn)‖2) +R([d2] + 1)φ(ε)

+
1

2
√

α

(
(
√

bR+ 1)ε+ ‖Ā(I − Pn)‖2
)

, if φ ∈ F1/2.

These inequalities together with (4.2.21) give us the statement (4.2.22). ��

4.3 Parameter identification in elliptic equation

4.3.1 Natural linearization

Consider the boundary value problem

−� (a� u) = f in Ω,

u = g on ∂Ω. (4.3.1)

We are interested in recovering the (unknown) diffusion coefficient a = a(x)
from noisy measurements uδ of the solution u. Here Ω is a convex domain with
Lipschitz boundary, f ∈ L2(Ω), g ∈ H

3
2 (∂Ω), and for some fixed noise level δ we

have

‖uδ − u‖L2(Ω) ≤ δ. (4.3.2)

Using an initial guess a0 which is bounded away from zero, one can rewrite
system (4.3.1) as follows:
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−� (a0 � (u − u0)) = �((a− a0)� u) in Ω,

u− u0 = 0 on ∂Ω, (4.3.3)

where u0 solves

−� (a0 � u0) = f in Ω,

u0 = g on ∂Ω. (4.3.4)

Then we obtain the following linear operator equation:

Ās = r̄, (4.3.5)

where s = a− a0 is the difference between unknown parameter a and the initial
guess a0, r̄ = u− u0, and the operator Ā maps any given s ∈ L2(Ω) to the weak
solution z of

−� (a0 � z) = �(s� u) in Ω,

z = 0 on ∂Ω. (4.3.6)

Observe that in the implicit definition of the operator Ā and in the right-hand
side term of (4.3.6) the unknown exact solution u is involved.
Therefore, replacing u by a smoothed version uδ

sm of uδ such that ∇uδ
sm ∈ L∞,

we switch to the equation

As = r, (4.3.7)

with the perturbed operator A = A(uδ
sm) and noisy right-hand side r = uδ − u0,

where A maps s to the weak solution z of the problem

−� (a0 � z) = �(s� uδ
sm) in Ω,

z = 0 on ∂Ω. (4.3.8)

The error in the operator A and in the free term r can be in principle esti-
mated in terms of the initial noise level δ. Then the solution of equation (4.3.5)
can be recovered from its noisy counterpart (4.3.7) by means of an appropriate
regularization strategy, which will be studied later in this section.
Note that in [26] noisy equation (4.3.7) was treated by some modified form of

OLS method. As a result, its linearity was not fully utilized there. Particularly, a
theoretical justification was done only under a priori assumption concerning the
smoothness of unknown diffusion coefficient a.
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4.3.2 Data smoothing and noise level analysis

To apply the natural linearization (NL), data mollification should be carried out
in an appropriate way to make the implicitly defined operator A in (4.3.8) well-
defined and to make the noise level for ‖Ā − A‖ ≤ ε1 and ‖r̄ − r‖ ≤ ε2 be
controlled in terms of initial noise level δ. Indeed, data smoothing is already part
of the regularization of our ill-posed parameter identification problem, which also
determines how far the perturbed equation (4.3.7) deviates from the standard
equation (4.3.5).
The following condition should be satisfied.

∇uδ
sm ∈ L∞(Ω). (4.3.9)

Condition (4.3.9) guarantees that the weak solution of (4.3.8) is well-defined
for s ∈ L2(Ω). Therefore, As is also well-defined as long as

a0 ∈ L∞(Ω) with a0(x) > a > 0 a.e.

Note that it is not necessary to demand the search-for parameter a to satisfy
such a condition.
Once As is well defined by the procedure above, we can always seek for the

solution z of (4.3.8) in H1
0 (Ω), which means that A acts from L2(Ω) to L2(Ω)

with Range(A) ⊆ H1
0 (Ω). This leads to the compactness of the operator A, and

makes (4.3.7) ill-posed.
Now we discuss the estimate ‖Ā−A‖ ≤ ε1.
If {λk} and {uk} are respectively eigenvalues and orthogonal eigenfunctions

of the differential operator ∇(a0∇(·)) with zero boundary condition on ∂Ω, i.e.
∇(a0∇uk) = λkuk, uk = 0 on ∂Ω, then

(Ā−A)s =
∑

k

λ−1
k uk〈uk,∇(s∇(u − uδ

sm))〉,

where 〈·, ·〉 is the standard inner product in L2(Ω). Now it is clear that ε1 depends
on the approximation of ∇u by ∇uδ

sm. If, for example, a0 is such that

c2(a0,Ω) :=
∑

k

λ−2
k ‖∇uk‖2L∞(Ω) <∞, (4.3.10)

then
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‖(Ā−A)s‖2L2(Ω)

=
∑

k

λ−2
k 〈uk,∇(s∇(u − uδ

sm))〉2

=
∑

k

λ−2
k 〈∇uks,∇(u− uδ

sm)〉2

≤ c2(a0,Ω)‖s‖2L2(Ω)‖∇(u− uδ
sm)‖2L2(Ω),

and

ε1 ≤ c(a0,Ω)‖∇(u− uδ
sm)‖L2(Ω).

Note that (4.3.10) holds, in particular, for Ω = [0, 2π], a0 ≡ 1, ∇(a0∇u) = u′′,
because in this case uk(x) = π−1/2 sin kx, λk = −k2, ‖∇uk‖L∞ = ‖u′k‖L∞[0,2π] =
kπ−1/2.
In [26] a smoothed approximation uδ

sm has been constructed in such a way
that ‖∇(u − uδ

sm)‖L2(Ω) ≤ c
√

δ under the assumption that the exact solution
u ∈ H2(Ω) ∩W 1,∞(Ω) with triangulation mesh size hsm ∼

√
δ. In this case one

can take ε1 = c
√

δ. At the same time, if the above mentioned assumptions are
not satisfied, or some other approximation uδ

sm is used, then the relation between
ε1 and δ changes. Therefore, in the sequel we will assume only that ε1 is known
and it is much larger than δ, i.e, ε1 >> δ.
On the other hand, in view of the structures of r̄ and r

ε2 = ‖r̄ − r‖L2(Ω) = ‖u− uδ‖ ≤ δ.

As a result, if we apply the estimation of accuracy established in Theorem
4.2.6, ε = max{ε1, ε2} in (4.2.21) can be just taken as the order of

√
δ.

4.3.3 Estimation of the accuracy

Proposition 4.3.1. Let Ā be an operator defined by (4.3.5) and (4.3.6), where
Ω is a convex domain with Lipschitz boundary, a0 is bounded away from zero,
and �a0 ∈ L∞(Ω), u ∈ H2(Ω) ∩ W 1,∞(Ω). If Pn is the orthogonal projector
from L2(Ω) onto n-dimensional space of piece-wise linear continuous functions
corresponding to triangulation of Ω with mesh size hn, then

‖Ā(I − Pn)‖ ≤ chn, (4.3.11)

where the constant c does not depend on hn.

Proof. The adjoint operator of Ā is given by

Ā∗ψ = ∇u · ∇ψ̃, (4.3.12)
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where ψ̃ solves boundary value problem

−� (a0 � ψ̃) = ψ in Ω, (4.3.13)
ψ̃ = 0 on ∂Ω.

For L2-right hand side ψ in (4.3.13), in view of the conditions on a0, ψ̃ belongs
to H2(Ω). Since u ∈ H2(Ω) ∩ W 1,∞(Ω), we have that Ā∗ acts from L2(Ω) to
H1(Ω), as a linear bounded operator. Approximation Theory provides us with
the following Jackson type inequality:

‖I − Pn‖H1(Ω)→L2(Ω) ≤ dhn. (4.3.14)

Then

‖Ā(I − Pn)‖
= ‖(I − Pn)Ā∗‖
≤ ‖I − Pn‖H1(Ω)→L2(Ω)‖Ā∗‖L2(Ω)→H1(Ω)

≤ chn.�

��
We establish the following proposition on estimation of accuracy, which can

be seen as the corollary from Theorem 4.2.6 and has more instructive meaning
in numerical application.

Proposition 4.3.2. Let α ≥ ε2, hn ∼ min
{√

α,
ε√
α

}
or hn ∼ ε. Then under

the conditions of Proposition 4.3.1 and Theorem 4.2.6 the estimation of accuracy
(4.2.22) holds true, i.e.,

‖s̄− sα,n‖ ≤ c1φ(α) + c2φ(ε) + cR
ε√
α

.

Proof. From our assumption it follows that min
{√

α,
ε√
α

}
≥ ε. On the other

hand, under the condition of Proposition 4.3.1, ‖Ā(I − Pn)‖ ∼ hn, and for hn

chosen as in the statement of the proposition the assumption (4.2.21) is satisfied
that gives us (4.2.22). ��
Note that the assumption α ≥ ε2 is not restrictive. It simply means that the

term
ε√
α
from the error estimation (4.2.22) is smaller than 1, which is rather

natural.
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4.3.4 Balancing principle

Here we will develop a strategy for the choice of the regularization parameter α
which adapts to unknown smoothness of s = a − a0, i.e., the index function φ.
The essence is derived from the general adaptive strategy from [36].
Assume that hn is chosen as in Proposition 4.3.2 with n = n(α, ε). Let sα,ε =

sα,n(α,ε).
In view of the expression of error estimation in Theorem 4.2.6 (also in Proposi-

tion 4.3.1), the optimal choice of the regularization parameter would be α = αopt

for which

Ξε(αopt) = cR
ε√
αopt

, (4.3.15)

where Ξε(·) := c1φ(·) + c2φ(ε). Due to the monotonicity of the functions Ξε(·),
1√· , this optimal choice is achieved at the crossing point of two monotonous

curves (Fig. 4.1).

Fig. 4.1 Adaptive choice
of α by the balancing
principle.

Proposition 4.3.3. Let Θε(α) := Ξε(α)
√

α, then

‖s̄− sαopt,ε‖ ≤ 2Ξε(Θ−1
ε (cRε)). (4.3.16)

Of course, for unknown φ this optimal choice can not be realized in practice.
Thus, an a posteriori adaptive strategy is needed.
To describe this strategy we introduce

ΔN := {αk = α0q
k, k = 0, 1, . . . , N}

with α0 = ε2, q > 1; N is an integer number such that αN−1 ≤ b ≤ αN .
Then the regularized solutions sαk,ε will be studied successively as long as
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‖sαi,ε − sαk,ε‖ ≤ cRε

(
3√
αi

+
1√
αk

)
for k = 1, · · · , i− 1.

The procedure terminates with

α+ = (4.3.17)

max
{

αi ∈ ΔN : ‖sαi,ε − sαk ,ε‖ ≤ cRε

(
3√
αi

+
1√
αk

)
, k = 1, · · · , i− 1

}
.

Fig. 4.1 illustrates the choice α = α+.

Proposition 4.3.4. Under the conditions of Proposition 4.3.2

‖s̄− sα+,ε‖ ≤
6
√

qcRε√
αopt

.

Proof. Since αopt may not be an element of ΔN we introduce

α∗ = max{α ∈ ΔN ,Θε(α) ≤ cRδ}.

Then, if α∗ = αl for some l, 1 < l < N , it is easy to verify that αl ≤ αopt ≤ αl+1.
Now we show that

α∗ ≤ α+ (4.3.18)

In fact, by construction,

‖sα∗,ε − sαk,ε‖
≤ ‖s− sα∗,ε‖+ ‖s− sαk,ε‖
≤ Ξε(αl) + cR

ε√
αl

+ Ξε(αk) + cR
ε√
αk

≤ cRε

(
3√
αl

+
1√
αk

)
for k = 1, · · · , l− 1. By the definition of α+, (4.3.18) holds true.
Meanwhile, if α+ = αm for some m ≥ l, then

‖s̄− sα+,ε‖
≤ ‖s− sα∗,ε‖+ ‖sαm,ε − sαl,ε‖
≤ Ξε(α∗) + cR

ε√
α∗

+ 3cR
ε√
αm

+ cR
ε√
αl

≤ 6cR
ε√
α∗
≤ 6cR

ε√
q−1αopt

.

The proof is complete. ��
Remark 4.3.5. An error bound given by Proposition 4.3.4 can be represented in
the form
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‖s̄− sα+,ε‖ ≤ 6
√

qΞε(Θ−1
ε (cRε)). (4.3.19)

It means that the adaptive regularization parameter choice strategy (4.3.17) pro-
vides us with an error bound which is worse only by a constant factor 3

√
q than

a benchmark (4.3.16).

Theorem 4.3.6. Under the conditions of Theorem 4.2.6 and Proposition 4.3.2
for α+ chosen as in (4.3.19), we have

‖s̄− sα+,ε‖ ≤ C(φ(Θ−1(ε)) + φ(ε)), (4.3.20)

where the constant C does not depend on ε.

Proof. In [35] (see Lemma 3), it has been proven that for any operator monotone
index function φ and d > 0, there is a constant cd depending only on φ and d
such that

φ(dλ) ≤ cdφ(λ). (4.3.21)

Note also that
Θ−1(dλ) ≤ max{d2, 1}Θ−1(λ). (4.3.22)

In fact, for d ∈ (0, 1) this inequality is obvious. If d > 1 then Θ−1(dλ) ≥ Θ−1(λ),
and φ(Θ−1(dλ)) ≥ φ(Θ−1(λ)). Therefore,

d =
Θ(Θ−1(dλ))
Θ(Θ−1(λ))

=
φ(Θ−1(dλ))

√
Θ−1(dλ)

φ(Θ−1(λ))
√
Θ−1(λ)

≥
√
Θ−1(dλ)
Θ−1(λ)

,

which is equivalent to (4.3.22).
Observe now that for any λ ∈ [0, b]

Θε(λ) = (c1φ(λ) + c2φ(ε))
√

λ ≥ c1φ(λ)
√

λ = c1Θ(λ).

Then
Θ(Θ−1

ε (cRε)) ≤ c−1
1 Θε(Θ−1

ε (cRε)) =
cR

c1
ε,

and from (4.3.22) we have

Θ−1
ε (cRε) ≤ Θ−1(

cR

c1
ε) ≤ max

{(
cR

c1

)2

, 1

}
Θ−1(ε) = c̄Θ−1(ε). (4.3.23)

From (4.3.17), (4.3.21) and (4.3.23) we finally obtain

‖s− sα+,ε‖
≤ 6
√

q(c1φ(Θ−1
ε (cRε)) + c2φ(ε))

≤ 6
√

q(c1φ(c̄Θ−1(ε)) + c2φ(ε))
≤ C(φ(Θ−1(ε)) + φ(ε)).



Regularization of naturally linearized parameter identification problems 83

��
The following corollaries specify the estimation of the accuracy in concrete

cases.

Corollary 4.3.7. If φ ∈ F1/2, then

‖s̄− sα+,ε‖ ≤ Cφ(Θ−1(ε)). (4.3.24)

Proof. For φ ∈ F1/2, φ(ε) ≤ √ε. Thus, φ(ε)
√

ε ≤ ε, which means ε ≤ Θ−1(ε),
then (4.3.20) is reduced to (4.3.24). ��
Corollary 4.3.8. If index function φ ∈ F0, then

‖s̄− sα+,ε‖ ≤ Cφ(ε). (4.3.25)

At the same time, for φ(λ) = cλμ, 0 ≤ μ < 1/2, (4.3.24) holds true as well. In
this case, ‖s̄− sα+,ε‖ ≤ Cε

2μ
2μ+1 .

Proof. We prove only the last statement. It is well known (see, e.g. [49], p 93)
that for φ(λ) = cλμ, 0 ≤ μ < 1/2,

‖φ(PnĀ∗ĀPn)− φ(PnA∗APn)‖ = c‖|ĀPn)|2μ − |APn|2μ‖ ≤ C‖(Ā−A)‖2μ,

where |F | = (F ∗F )1/2. Then φ(ε) appearing in (4.2.22) and (4.3.20) will be
replaced by φ(ε2) = cε2μ. Therefore, φ(ε2) ≤ φ(Θ−1(ε)), and (4.3.24) holds
true. ��
Direct calculations show that the following statement is also true.

Corollary 4.3.9. If φ(λ) = c log−p(1/λ), c, p > 0, then (4.3.24) holds true.

Remark 4.3.10. It follows from Theorem 2.3 of [49], on page 99, that under the
assumption that ‖Ā−A‖ ≤ ε and s̄ ∈ Āφ,R, φ(λ) = λμ, μ > 0, one can construct
a regularized approximation sε such that

‖s̄− sε‖ ≤ cε
2μ

2μ+1 .

This is in agreement with (4.3.20), because for φ(λ) = λμ, we have φ(Θ−1(λ)) =
λ

2μ
2μ+1 . Thus, Corollary 4.3.7 can be seen as an extension of Theorem 2.3 of [49]

to the case of arbitrary φ ∈ F1/2.

4.3.5 Numerical examples

Two numerical examples are provided here to support and verify the theoretical
results. We use MATLAB-code in one-dimensional case, where Ω = [0, 1]. As in
[25], for such Ω, the situation described in Proposition 4.3.1 is simplified, and the
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estimation for Ā(I − Pn) is still valid. At first we take the same example as in
[25].

Example 4.3.11. Consider

a(x) =
{
1 + 1

3
sin2(π x−0.5

0.2
), x ∈ [0.3, 0.7],

1, else.

u(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x
1−0.2(2−√3)

, x ∈ [0, 0.3],⎛⎝ 0.3 + 0.2
√

3
2π (arctan(

√
3 tan(π

2
x−0.5
0.2 ))

+ arctan( 1√
3
tan(π

2
x−0.5
0.2 )) + π)

⎞⎠
1−0.2(2−√3)

x ∈ [0.3, 0.7],
x−0.2(2−√3)

1−0.2(2−√3)
x ∈ [0.7, 1],

satisfying the following one-dimensional problem of the form (4.3.1):

−(aux)x = 0 in (0, 1), (4.3.26)
u(0) = 0, u(1) = 1.

For the implementation of natural liberalization, we fix initial guess a0 ≡
1, which implies u0(x) = x. Such choice of a0 allows a lot of convenience in
computation due to the definition of the operator A.
Here we take the data noise level δ = 0.001, uδ = u + δξ, where ξ is random

variable with uniform distribution in the interval [−1, 1]. The data mollification
is done by piece-wise linear interpolation. Then in such one-dimensional case
(4.3.10) is satisfied. Thus, we have the noise level ε ∼ √δ. The number of piece-
wise linear basis elements for projection is n = 50. The components in (4.2.11)
are computed using MATLAB-code for numerical integration. To obtain the func-
tions AΦi, we need to solve a finite number of mixed boundary value problem of
the form of (4.3.8), where s is substituted for Φi. As long as these components in
(4.2.11) are precomputed, for each α, to obtain a regularized solution we simply
need to solve the algebraic system (4.2.10).
Adaptive strategy helps us to give the proper choice of the regularization

parameter. We also describe the procedure here.

Step 1 Choose α0 small enough and set k = 0.
Step 2 Calculate sαk,ε by sαk,ε = (αkI + PnA∗APn)−1PnA∗r.

Step 3 If ‖sαk,ε − sαj ,ε‖ ≤ cRε

(
3√
αk

+
1√
αj

)
for j = 1, · · · , k − 1, (for

k = 0, let this hold true) then set αk = αk+1 = qαk and go to 2;
else ⇒ break & print α̂ = αk.

Step 4 The final parameter α+ = αk−1.

In the considered example, the final regularization parameter α = 0.00013 is
produced by adaptive procedure described above, where we take α0 = 0.00008,
q = 1.1 and N = 26.
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In Fig. 4.2 (b), we enlarge the solution function u(x) by factor 10. In this case
relative error becomes smaller, and the adaptive procedure selects α = 0.00025.

Fig. 4.2 (a) Regularized approximation with α = 0.00013 (dash line) and exact param-
eter (solid line); (b) Regularized approximation with α = 0.00025 (dash line) and exact
parameter (solid line).

Example 4.3.12. Consider the problem (4.3.1) with

a(x) = (2x− 1) 2
5 ,

u(x) =
1
2
+
1
2
(2x− 1) 3

5 .

Fig. 4.3 (a) and (b) shows the results of application of the adaptive procedure
(4.3.17) with the same parameters as in Example 4.3.11. Fig. 4.3 (b) is again
obtained by enlarging the exact solution u(x) by factor 10.
It is worthy to note that in this example the exact coefficient a has a zero point

x = 1
2
. It shows that our approach can work without the additional assumption

that a(x) is bounded away from zero.

4.4 Parameter identification in parabolic equation

Consider the identification of a diffusion coefficient a(τ) in a quasi-linear parabolic
system of the form

∂u

∂t
−∇ · (a(u)∇u) = G(t, x) in [0, T ]× Ω,

a(u)
∂u

∂n
= g(t, x) on [0, T ]× ∂Ω,

u(0, x) = uin(x) in Ω,

(4.4.1)
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Fig. 4.3 (a) Regularized approximation with α = 0.0011 (dash line) and exact parameter
(solid line); (b) Regularized approximation with α = 0.21 (dash line) and exact parameter
(solid line).

from noisy observation uδ(t, x) of the solution u(t, x) of (4.4.1) given for a very
short time period [T − σ, T ] such that

uδ(t, x) = u(t, x) + δξ(t, x), (t, x) ∈ [T − σ, T ]× Ω, (4.4.2)

where δ is the noise level, and ξ is a normalized observation noise, which is
assumed to be a square summable function.
Of course, using (4.4.2), one has to be aware of the fact that a coefficient a

is identifiable only on the range of the values u(t, x) for (t, x) ∈ [T − σ, T ] × Ω.
Unless we have a priori information about this range we can only use noisy
measurements uδ(t, x) and construct an interval [u1, u2] large enough such that

u1 ≤ uδ(t, x), u(t, x) ≤ u2, (t, x) ∈ [T − σ, T ]× Ω. (4.4.3)

The natural linearization (NL) process for the identification of a coefficient a =
a(u) in (4.4.1) from data (4.4.2) can be performed in two steps:

1. NL for recovering b(x) = a(u(T, x)).
2. Regularized approximation of a diffusion coefficient a(u) as a function of one

variable.

4.4.1 Natural linearization for recovering b(x) = a(u(T, x))

The first step is similar to the linearization of the identification of a diffusion
coefficient in (4.3.1). Note that the function v(x) = u(T, x), x ∈ Ω, describing a
terminal status of a system (4.4.1), solves the following elliptic boundary value
problem
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−∇ · (b(x)∇v(x)) = GT (x), x ∈ Ω,
v(x) = u(T, x), x ∈ ∂Ω,

(4.4.4)

where b(x) = b(T, x) = a(u(T, x)), GT (x) = G(T, x)− ∂u(T, x)
∂t

.

We use initial guess b0 and rewrite (4.4.4) with v = u(T, ·) as follows

−∇ · (b0∇(u(T, ·)− v0)) = ∇ · ((b − b0)∇u(T, ·)) in Ω,
u(T, ·)− v0 = 0 on ∂Ω,

(4.4.5)

where v0 solves the boundary value problem (4.4.4) with b substituted for b0

−∇ · (b0(x)∇v(x)) = GT (x), x ∈ Ω,
v(x) = u(T, x), x ∈ ∂Ω.

Then for b0 ∈ L∞(Ω) bounded away from zero we consider the linear operator
Ā mapping s to the weak solution z of the boundary value problem

−∇ · (b0∇z) = ∇ · (s∇u(T, ·)) in Ω,
z = 0 on ∂Ω.

(4.4.6)

Similar to the NL for elliptic problem, under a mild assumption on the exact
solution u, this operator is well-defined for any s ∈ L2(Ω).
In view of (4.4.5) the difference s̄ = b− b0 between the searched-for parameter

b and the initial guess b0 can be seen as the unique solution of the linear operator
equation (4.3.5) with r̄ = u(T, ·)− v0.
As before, in (4.4.6) we replace u(T, ·) by a smoothed version uδ

sm(T, ·) of
uδ(T, ·). Then we consider the operatorA mapping s to the solution of the bound-
ary value problem

−∇ · (b0∇z) = ∇ · (s∇uδ
sm(T, ·)) in Ω,

z = 0 on ∂Ω,
(4.4.7)

and the perturbation equation
As = r̃ (4.4.8)

with r̃(x) = uδ(T, x)− v0(x).
However, r̃(x) = uδ(T, x) − v0 is not available for us, because v0 depends

on the exact data u(T, ·). Moreover, since only the values of u(t, x) (but not
derivative) are observable, the exact source term G(T, x) − ∂u(T,x)

∂t is also not
available. The latter difficulty can be resolved within the framework of some
numerical differentiation procedure applied to noisy data (4.4.2) and producing
some Duδ(T, ·) as an approximation for ∂u(T,·)

∂t
such that∥∥∥∥∂u(T, ·)

∂t
−Duδ(T, ·)

∥∥∥∥
L2

≤ ε.
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For example, from [15], we know that for u ∈ C2([T − σ, T ])⊗H2(Ω) one can
put Duδ(T, ·) = [uδ(T, ·)− uδ(T − h, ·)]/h, h =

√
δ < σ. In this case ε = c

√
δ.

Getting Duδ(T, ·), we can obtain an approximation vδ
0 for v0 as the solution

of the boundary value problem

−∇ · (b0(x)∇v(x)) = Gδ
T (x), x ∈ Ω,

v(x) = uδ(T, x), x ∈ ∂Ω,

with Gδ
T (·) = G(T, x)−Duδ(T, ·).

With this approximation in hand we substitute the right-hand side r̃ of (4.4.8)
for its numerically feasible counterpart r(x) = uδ(T, x) − vδ

0(x) that gives us an
analog of equation (4.3.7).
Following the data mollification described in [26] one can smooth the data

(4.4.2) in such a way that for u(T, ·) ∈ H2(Ω) ∩W 1,∞(Ω)

‖uδ
sm(T, ·)− u(T, ·)‖L2(Ω) ≤ cδ,

‖∇(uδ
sm(T, ·)− u(T, ·))‖L2(Ω) ≤ c

√
δ,

‖∇uδ
sm(T, ·)‖L∞(Ω) ≤ c.

(4.4.9)

Therefore, ε1 = ‖Ā−A‖ has the order of √δ.
As for the error between r̄ = u(T, ·)−v0 and r = uδ(T, ·)−vδ

0, we can estimate
it as

‖r̄ − r‖ ≤ ‖u(T, ·)− uδ(T, ·)‖+ ‖v0 − vδ
0‖.

Since ‖u(T, ·)− uδ(T, ·)‖ ≤ δ is known (initial noise level), now we concentrate
on the estimation of ‖v0 − vδ

0‖. Recalling the definitions of v0 and vδ
0 , we know

that v0 − vδ
0 solves the mixed boundary value problem

−∇ · (b0(x)∇v(x)) =
∂u(T, x)

∂t
−Duδ(T, x), x ∈ Ω,

v(x) = (uδ − u)(T, x), x ∈ ∂Ω.

Recalling our discussion concerning the error of numerical differentiation, we

can fix ε such that
∥∥∥∥∂u(T, x)

∂t
−Duδ(T, x)

∥∥∥∥ ≤ ε. Using representations of the

solutions of boundary value problems in terms of corresponding Green functions
one can easily check that ‖v0 − vδ

0‖ ≤ c̄(ε + δ), where c̄ depends on b0 and Ω.
Therefore,

‖r̄ − r‖ ≤ δ + c̄(ε+ δ).

In practically interesting cases the error of the numerical differentiation ε is much
larger than data error δ, such that ‖r̄ − r‖ ≤ c2ε, where the constant c2 does
not depend on δ. From our discussion above it follows, in particular, that for
u ∈ C2([T − σ, T ]⊗H2(Ω)), Ω = [c, d], σ >

√
δ, both ε1, ε2 from (4.2.21) are of

order
√

δ, that will be used in our numerical experiments later.
Now we have all necessary ingredients for dealing with a perturbed equation

As = r in the considered case. Applying discretized Tikhonov regularization
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we obtain a regularized approximate solution sα,n, as it has been described in
the previous section. Then the approximation for the searched-for parameter
b = s̄+ b0 can be constructed as bα,n = sα,n + b0.
Then we have the following proposition, which is an analogue of Proposition

4.3.4.

Proposition 4.4.1. Assume that the conditions of Proposition 4.3.1 are satis-
fied. Let n = n(ε) be such that hn = O(ε). Suppose that s̄ = b − b0 ∈ Āφ1,R,
φ1 ∈ F0 ∪ F1/2, where Ā is defined in (4.4.6). Then for α(ε) = α+ chosen as in
(4.3.17) and bα(ε) = sα+,ε + b0

‖b− bα(ε)‖ ≤
6
√

qcRε√
αopt

,

where αopt = Θ−1
1,ε(cRε), Θ1,ε(α) = Ξ1,ε(α)

√
α, Ξ1,ε(α) = c1φ1(α) + c2φ1(ε).

4.4.2 Regularized identification of the diffusion coefficient a(u)

As it has been mentioned in the Introduction we are going to use the equation

a(u(t, x)) = b(t, x) (4.4.10)

with t = T for the identification of a(u). Keeping in mind a structure of a quasi-
linear parabolic system (4.4.1) it is natural to suppose that a(u) is a differentiable
function. In view of (4.4.3) we will assume more specifically that a belongs at
least to the Sobolev space W 1

2 = W 1
2 (u1, u2).

The problem with equation (4.4.10) is that we know neither the exact param-
eter b = b(T, ·) nor terminal status u(T, ·). We therefore have to deal with the
following perturbed version of (4.4.10)

a(uδ
sm(T, x)) = bα(ε)(x), (4.4.11)

where uδ
sm, bα(ε) have been defined above. Of course, in general we cannot guar-

antee the existence of the function a ∈ W 1
2 (u1, u2) such that (4.4.11) is valid. For

example, if uδ
sm(T, x) takes equal value at several x ∈ Ω, equation (4.4.11) may

define a multivalued function a.
As suggested perviously, consider linear operators Ā, A which map an arbitrary

function s ∈ W 1
2 (u1, u2) into the functions

x→ s(u(T, x)) ∈ L2(Ω), x→ s(uδ
sm(T, x)) ∈ L2(Ω).

Then for t = T equation (4.4.10) can be seen as a linear operator equation Ās = r̄
with r̄ = b = b(T, ·), and with the exact solution s̄ = a ∈ W 1

2 (u1, u2). Meanwhile,
our problem now consists in solving the perturbed equationAs = r with r = bα(ε)

to find an approximation for s̄ = a.
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To use general results of the previous section, we should specify Hilbert spaces
X, Y and n−dimensional space Vn. In the present context the choice of Hilbert
spaces is obvious: X = W 1

2 (u1, u2), Y = L2(Ω).
In order to meet the requirement of (4.2.21) in Theorem 4.2.6, we assume that

the trial space Vn ⊂W 1
2 (u1, u2) is chosen such that for the orthogonal projector

Pn (now in W 1
2 (u1, u2)) onto Vn the following Jackson type inequality holds true

‖I − Pn‖W 1
2 (u1,u2)→C[u1,u2] ≤ cJn−1/2, (4.4.12)

where the constant cJ does not depend on n. This assumption is not restrictive.
Particularly, it is fulfilled for the standard approximation spaces such as algebraic
polynomials or piecewise polynomial splines. Let

Pn =
n∑

i=1

Ψi〈Ψi, ·〉W1
2
,

where the functions Ψi(u), i = 1, 2, · · · , n, form W 1
2 -orthonormal basis in Vn.

Then for any s ∈W 1
2 (u1, u2) it follows from (4.4.3), (4.4.8) that

‖Ās− ĀPns‖L2(Ω)

≤ (mes(Ω))1/2max
x∈Ω

∣∣∣∣∣s(u(T, x))−
n∑

i=1

Ψi(u(T, x))〈Ψi, s〉W1
2

∣∣∣∣∣
≤ (mes(Ω))1/2 max

u∈[u1,u2]

∣∣∣∣∣s(u)−
n∑

i=1

Ψi(u)〈Ψi, s〉W1
2

∣∣∣∣∣
= (mes(Ω))1/2‖s− Pns‖C
≤ cJ (mes(Ω))1/2‖s‖W1

2
n−1/2.

Thus,
‖Ā(I − Pn)‖W 1

2 (u1,u2)→L2(Ω) ≤ cJ(mes(Ω))1/2n−1/2, (4.4.13)

and the same estimate holds for the operatorA. This means, in particular, that Ā,
A are linear compact operators from W 1

2 (u1, u2) into L2(Ω), because the compact
operators of a finite rank ĀPn, APn converge to them in the operator norm when
n→∞. Keeping in mind that Ā, A are the operators of an infinite rank, we can
conclude that equations (4.4.10), (4.4.11) are ill-posed, and the application of
discretized Tikhonov regularization is relevant. This regularization scheme seems
to be appropriate for equations like (4.4.11), since it does not involve the adjoint
operator A∗ : L2(Ω) → W 1

2 (u1, u2) which has a rather complicated structure in
considered case (see e.g. Appendix B in [19]).
Note that for this particular problem the entries of the associated stiffness

matrix M and of the right-hand side F in (4.2.11) can be easily computed as
follows:
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〈AΦi, AΦj〉 =
∫

Ω

Φi(uδ
sm(T, x))Φj(uδ

sm(T, x))dx,

〈AΦi, f〉 =
∫

Ω

Φi(uδ
sm(T, x))bα(ε)(x)dx,

where {Φi}ni=1 is our favorite basis in Vn.
The main question now is connected with the choice of the regularization

parameter. To implement the adaptive parameter choice strategy (4.3.17) we
again need to know noise level estimates ‖Ā − A‖ ≤ ε1 and ‖r̄ − r‖ ≤ ε2. The
first of them can be easily obtained. Indeed, for any s ∈ W 1

2 (u1, u2) it follows
from (4.4.9) that

‖Ās−As‖2

=
∫

Ω

|s(u(T, x))− s(uδ
sm(T, x))|2dx

=
∫

Ω

∣∣∣∣∣
∫ u(T,x)

uδ
sm(T,x)

s′(u)du

∣∣∣∣∣
2

dx

≤
∫

Ω

∫ u2

u1

|s′(u)|2du

∣∣∣∣∣
∫ u(T,x)

uδ
sm(T,x)

du

∣∣∣∣∣ dx

≤ ‖s‖2W1
2

∫
Ω

|uδ
sm(T, x)− u(T, x)|dx

≤ ‖s‖2W1
2
(mes(Ω))1/2‖uδ

sm(T, ·)− u(T, ·)‖L2(Ω)dx

≤ c‖s‖2W1
2
(mes(Ω))1/2δ.

Thus, in the considered case

‖Ā−A‖ ≤ c(mes(Ω))1/4
√

δ = ε1. (4.4.14)

At the same time, we have a problem with an estimation of ‖r̄ − r‖. Recall that
now r̄ = b = b(T, ·) and r = bα(ε). Then under the assumptions of the Proposition
4.4.1 we have

‖r̄ − r‖ = ‖b− bα(ε)‖ ≤
6
√

qcRε√
αopt

. (4.4.15)

Moreover, from (4.3.16) we know that this estimate is order optimal. Therefore,
it is natural to assume that there is a constant c ∈ (0, 1) for which

6c
√

qcR
ε√
αopt

≤ ‖b− bα(ε)‖ ≤ 6
√

qcR
ε√
αopt

. (4.4.16)

However, we have no access to the value of αopt, since it is given in terms of
unknown index function φ. Such situation is typical of the Theory of ill-posed
problems, where no error estimations can be given without knowledge of the
compacts containing the problem solutions.
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On the other hand, the value α(ε) in (4.4.15) is known. It has been obtained
within the framework of adaptive parameter choice strategy (4.3.17), and from
the proof of Proposition 4.3.4 we know that αopt ≤ qα(ε). Keeping in mind that
the choice of the regularization parameter α = α(ε) leads to the same order of
accuracy as the optimal choice α = αopt, it is natural to assume that there is
a positive constant q̄ for which α(ε) ≤ q̄αopt. Then (4.4.16) can be rewritten as
follows

d̄
ε√
α(ε)

≤ ‖b− bα(ε)‖ ≤ d
ε√
α(ε)

. (4.4.17)

Of course, the values d̄ = 6ccR, d = 6
√

q̄qcR are not known here. The essence
of the two sided estimation (4.4.17) is that the known quantity ω = ε/

√
α(ε)

can be taken as a scale for measuring a perturbation level. As we will show in
the next section, under some additional assumptions the estimate (4.4.17) can be
used for adaptation to unknown index function in the source condition (4.2.6),
and to unknown values of d̄, d as well.

4.4.3 Extended balancing principle

Now we propose a strategy for choosing a regularization parameter in the situa-
tion when a level of data perturbation is not exactly given.
To be specific, we discuss the application of discretized Tikhonov regularization

to equation (4.4.11) treated as a perturbed operator equation As = r.
We assume that the exact searched-for parameter a(u) meets a source condi-

tion of the form (4.2.6). Keeping in mind that a solves the equation Ās = r̄ for
the operator Ā defined in the last section, and r̄ = b(T, ·), it is natural to give a
source condition in terms of this operator. Therefore, we will assume that

a ∈ Āφ2,R, φ2 ∈ F0 ∪ F1/2. (4.4.18)

Let

aα,n = (αI + PnA∗APn)−1PnA∗bα(ε),

āα,n = (αI + PnA∗APn)−1PnA∗b

be discretized Tikhonov approximation given to the perturbed and the exact
right-hand side terms respectively. Here A : a → a(uδ

sm(T, ·)) is a perturbed
version of the operator Ā : a→ a(u(T, ·)). Using spectral calculus we have

‖aα,n − āα,n‖
≤ ‖(αI + PnA∗APn)−1PnA∗‖L2(Ω)→W1

2 (u1,u2)‖b− bα(ε)‖L2(Ω)

≤ sup
λ

∣∣∣∣∣
√

λ

α+ λ

∣∣∣∣∣ ‖b− bα(ε)‖ ≤
‖b− bα(ε)‖

2
√

α
.

(4.4.19)
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Moveover, (4.4.13), (4.4.14) and (4.4.18) allow the application of the Theorem
4.2.6 with s̄ = a, sα,n = āα,n, φ = φ2, ε1 = O(

√
δ), ε2 = 0, and

n = nδ = �c2
Jmes(Ω)δ

−1� = O(δ−1), (4.4.20)

where �c� means the smallest integer that is larger than c. Then

‖a− āα,nδ
‖ ≤ c1φ2(α) + c2φ2(ε1) +

cRε1√
α

. (4.4.21)

Using this estimate together with the triangle inequality, (4.4.19), (4.4.17) and a
trivial estimate ω = ε/

√
α(ε) > ε1 = O(

√
δ), we arrive at

‖a− aα,nδ
‖ ≤ c1φ2(α) + c2φ2(ε1) + d

ω√
α

, (4.4.22)

where d = d+ cR. In view of (4.4.19) and (4.4.17) for this d we also have

‖aα,nδ
− āα,nδ

‖ ≤ d
ω√
α

. (4.4.23)

Again, to maintain the best possible error bound in (4.4.22) it is sufficient to
choose α = αopt(d) balancing the values Ξ2,ε1(α) = c1φ2(α) + c2φ2(ε1) and
dω/
√

α. In terms of the function Θ2,ε1(α) = Ξ2,ε1(α)
√

α it can be written as
αopt(d) = Θ−1

2,ε1
(dω).

Thus, under the source condition (4.4.18) we have

‖a− aαopt(d),nδ
‖ ≤ 2dω√

αopt(d)
= 2Ξ2,ε1(Θ

−1
2,ε1

(dω)), (4.4.24)

where nδ is chosen as in (4.4.20).
Moreover, with an argument like that in the proof of Proposition 4.3.4, we get

the estimate

‖a− aα(d),nδ
‖ ≤ 6

√
qdω√

αopt(d)
= 3
√

qΞ2,ε1(Θ
−1
2,ε1

(dω)), (4.4.25)

for α(d) chosen within the framework of strategy (4.3.17), where cRε is substi-
tuted for dω, i.e.

α(d) = (4.4.26)

max
{

αk ∈ ΔN : ‖aαk,nδ
− aαi,nδ

‖ ≤ dω

(
3√
αk

+
1√
αi

)
, i = 0, 1, · · · , k

}
.

At this point it is important to recall that the value of d is unknown for us. On
the other hand, it is clear that the estimates (4.4.22)–(4.4.25) remain valid if d is
substituted for any larger constant. But since Ξ2,ε1 , Θ

−1
2,ε are increasing functions

the estimates (4.4.24) and (4.4.25) worsen when d increases.
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Our goal now is to describe a procedure for adaptation to unknown value of
d. We find it pertinent to call this procedure the extended balancing principle.
It consists in combining the adaptive strategy (4.4.26) with successive testing of
the hypothesis that the constant d in (4.4.22)–(4.4.25) is not larger than some
term dj of a fixed geometric sequence

Dp = {dj = d0p
j , j = 0, 1, · · · , M}, p > 1.

For each of these hypotheses the strategy (4.4.26) selects the value α(j) = α(dj) ∈
ΔN , and it is easy to check that the sequence α(j), j = 0, 1, · · · , M, is non-
decreasing:

α(0) ≤ α(1) ≤ · · · ≤ α(j) ≤ · · · ≤ α(M) ≤ αN . (4.4.27)

To justify the extended balancing principle we need to assume that within the
regularization process the data error really propagates with the rate of order
α−1/2. In view of (4.4.23), (4.4.19) and (4.4.17) it can be written in the form of
two-sided stability estimate

cd
ω√
α
≤ ‖aα,nδ

− āα,nδ
‖ ≤ d

ω√
α

, (4.4.28)

which is assumed to be valid for some c ∈ (0, 1) and for any α ∈ ΔN .
In our subsequent analysis we rely on the assumption that there are two ad-

jacent terms dl, dl+1 ∈ Dp such that

dl ≤ cd < d ≤ dl+1. (4.4.29)

This assumption means that the term with (unknown) number l + 1 is the best
candidate among Dp putting it in place of d in (4.4.22)–(4.4.26). The basic idea
of the extended balancing principle is the following. If dj ∈ Dp is smaller than the
actual value dl in (4.4.29), then a corresponding α(j) is “too small”. It turns out
that this can be detected from approximations aαi,nδ

, αi ∈ ΔN , using a special
choice of initial terms α0, d0 and denominators q, p in geometric sequences ΔN ,
Dp. We argue that if δ is small enough then they always can be chosen such that
for a fixed design constant κ > 1

αopt(d) = Θ−1
2,ε1

(dω) > κ2qα0

(
3p2 + 7
p− 1

)2

,

cRε1 <
κ− 1

κ
(dl − dl−1)ω.

(4.4.30)

For example, if the solution u(t, x) of (4.4.1) belongs to C2[T−σ, T ]⊗H2(Ω), and
Ω is some interval of the real axis then α0 = δκ−2q−1(p − 1)2/(3p2 + 7)2 meets
the first inequality in (4.4.30). Indeed, without loss of generality we can assume
that αopt(d) > ω2. Such assumptions simply mean that the term ω/

√
αopt(d) in

the error estimations (4.4.24) is smaller than 1, which is not at all restrictive. On
the other hand, based on the previous analysis in the considered case ε = O(

√
δ).
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Then αopt(d) > ω2 = ε2/α(ε) � δ, which means that the first inequality in
(4.4.30) is satisfied with the above chosen α0. Concerning the second inequality,
it is clear, for example, that for d0 = κ/((κ− 1)(p− 1))

κ− 1
κ

(dl − dl−1)ω >
κ− 1

κ
d0(p− 1)ω = ω �

√
δ.

At the same time, cRε1 = O(
√

δ), and the same argument can be used again. We
would like to note also that (4.4.30) is only a technical assumption, and it will
be used just for the sake of presentation simplicity.

Lemma 4.4.2. Let the assumptions (4.4.18), (4.4.28), (4.4.29) hold. Assume
that δ is small enough such that the technical assumption (4.4.30) is satisfied. If
α(j) = α(dj) is chosen in accordance with (4.4.26) for d = dj ∈ Dp, and j ≤ l−1
then

α(j) < 9κ2

(
p2 + 1
p− 1

)2

α0.

Proof. Using (4.4.29) we rewrite (4.4.22) as

‖a− aα,nδ
‖ ≤ Ξ2,ε1(α) +

dl+1ω√
α

.

Then from (4.4.21), (4.4.28), and since αj ≥ α0, we obtain

‖aα(j),nδ
− aα0,nδ

‖
≥ ‖aα0,nδ

− āα0,nδ
‖ − ‖a− āα0,nδ

‖ − ‖a− aα(j),nδ
‖

≥ dlω√
α0
− Ξ2,ε1(α0)− cRε1√

α0
− Ξ2,ε1(α(j)) −

dl+1ω√
α(j)

≥ dlω − cRε1√
α0

− 2Ξ2,ε1(α(j))−
dl+1ω√

α(j)
. (4.4.31)

Now we introduce

α∗ = max
{

αi ∈ ΔN : Ξ2,ε1(α) ≤
dl+1ω√

α

}
,

and consider the cases α(j) < α∗ and α(j) ≥ α∗ separately. For α(j) < α∗,
Ξ2,ε1(α(j)) ≤ dl+1ω/

√
α(j), and using (4.4.26) with d = dj and α(j) = α(dj) we

can extend the chain of inequalities (4.4.31) as

djω

(
3√
α(j)

+
1√
α0

)
≥ ‖aα(j),nδ

− aα0,nδ
‖ ≥ dlω − cRε1√

α0
− 3dl+1ω√

α(j)
.

Keeping in mind that dj ≤ dl−1 < dl it is easy to derive the required estimate
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α(j) ≤ 9α0

(
(dl+1 + dj)ω

(dl − dj)ω − cRε1

)2

≤ 9α0

(
dl−1(p2 + 1)ω

dl−1(p− 1)ω − cRε1

)2

< 9κ2α0

(
p2 + 1
p− 1

)2

.

Note that the technical assumption (4.4.30) is also used here.
Now let us consider the remaining case α(j) ≥ α∗ and prove that it is impos-

sible.
Note that in (4.4.31) αj can be substituted for α∗. Then

‖aα∗,nδ
− aα0,nδ

‖ ≥ dlω − cRε1√
α0

− 3dl+1ω√
α∗

.

On the other hand, from the definition of αj = α(dj), one can derive the estimate

‖aα∗,nδ
− aα0,nδ

‖
≤ ‖aα(j),nδ

− aα∗,nδ
‖+ ‖aα0,nδ

− aα(j),nδ
‖

≤ djω

(
6√
α(j)

+
1√
α∗

+
1√
α0

)

≤ djω

(
7√
α∗

+
1√
α0

)
.

Thus,

djω

(
7√
α∗

+
1√
α0

)
≥ dlω − cRε1√

α0

− 3dl+1ω√
α∗

,

and repeating our previous argument we conclude that

α∗ < κ2α0

(
3p2 + 7
p− 1

)2

. (4.4.32)

At the same time, from the definition of α∗ it follows that for qα∗ ∈ ΔN

Ξ2,ε1(qα∗)
√

qα∗ = Θ2,ε1(qα∗) > dl+1ω ≥ dω = Θ2,ε1(αopt(d)).

Since Θ2,ε1(α) is an increasing function and δ is assumed to be small enough such
that (4.4.30) holds, we get the estimate

α∗ > q−1αopt(d) > κ2α0

(
3p2 + 7
p− 1

)2

, (4.4.33)

which is in contradiction with (4.4.32). ��
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Let α̂ denote the first term of the sequence {α(j)}Mj=0( see (4.4.27)) which is
above the threshold indicated in Lemma 4.4.2, i.e.

α̂ = min

{
α(j) : α(j) ≥ 9κ2

(
p2 + 1
p− 1

)2

α0

}
.

We stress that the unknown index function φ2 from the source condition (4.4.18)
and the best (unknown) approximation dl+1 of d from (4.4.22), (4.4.23) are not
involved in determining α̂. By construction α̂ = α(k) corresponds to some dk ∈
Dp.
We show now that using the value of dk one can detect at least dl+2 that is

the closest term to the best candidate dl+1.

Theorem 4.4.3. Let α̂ = α(k) ∈ ΔN . Then under the conditions of Lemma
4.4.2 dl+1 ≤ dk+1 ≤ dl+2, and for α+ = α(k + 1) we have either α+ = α(l + 1)
or α+ = α(l + 2).

Proof. Note that similar to inequality (4.3.18), one can prove α(l+1) = α(dl+1) ≥
α∗. Then from (4.4.33) we have

α(l + 1) > κ2α0

(
3p2 + 7
p− 1

)2

> 9κ2α0

(
p2 + 1
p− 1

)2

.

Therefore, from the definition â = α(k) ≤ α(l + 1). On the other hand, from
Lemma 4.4.2 one can derive the estimate α(k) > α(l − 1). In view of (4.4.27) it
means that α(k) ≥ α(l), and as a consequence

α(l) ≤ α(k) ≤ α(l + 1)⇒ α(l + 1) ≤ α(k + 1) ≤ α(l + 2).

Thus, α(k + 1) can take only the values α(k + 1) = α(l + 1), or α(k + 1) =
α(l + 2). ��
The regularized approximation of the searched-for parameter a(u) we are in-

terested in is now defined as aα+,nδ
.

Corollary 4.4.4. Assume that the conditions of Lemma 4.4.2 are satisfied. Then

‖a− aα+,nδ
‖W1

2 (u1,u2) ≤ cp,qΞ2,ε1(Θ
−1
2,ε1

(dω)), (4.4.34)

where d is the smallest constant for which (4.4.22), (4.4.23) hold, and the factor
cp,q depends only on the denominators of the geometric sequences Dp,ΔN .

Proof. From Theorem 4.4.3, it follows that dk+1 ∈ Dp corresponding to α+ =
α(k + 1) is not larger than dl+2. Using (4.4.25) with d = dl+2 we have

‖a− aα+,nδ
‖W1

2 (u1,u2) ≤ 3
√

qΞ2,ε1(Θ
−1
2,ε1

(dl+2ω)).
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Moreover, from (4.4.29) if follows that dl+2 ≤ p2d. Now the same argument as in
the proofs of (4.3.20), (4.3.22) gives

Ξ2,ε1(Θ
−1
2,ε1

(dl+2ω)) ≤ Ξ2,ε1(Θ
−1
2,ε1

(p2dω))

≤ Ξ2,ε1(p
4Θ−1

2,ε1
(dω)) ≤ c(p)Ξ2,ε1 (Θ

−1
2,ε1

(dω)).

��
It is interesting to know how the bound (4.4.34) can be expressed through

data noise level δ in (4.4.2). To make it definite we assume that the exact solution
u(t, x) of (4.4.2) belongs to C2[T − σ, T ]⊗H2(Ω), and Ω is some interval of real
axis. Then, as we already mentioned, both ε in (4.4.17) and ε1 in (4.4.21) are of
order

√
δ. In view of Proposition 4.4.1

ω =
ε√
α(ε)

≤ ε√
αopt

≤ cΞ1,ε(Θ−1
1,ε(cRε)).

Thereon with an argument like that in the proof of Corollary 4.3.1 we get the
estimate ω ≤ φ1(Θ−1

1 (
√

δ)), and as a consequence

‖a− aα+,nδ
‖W1

2 (u1,u2) ≤ cφ2(Θ−1
2 (φ1(Θ−1

1 (
√

δ)))). (4.4.35)

Here and below c is a δ-independent generic constant.
To simplify (4.4.35) we consider a special case φ1(λ) = λμ1 , φ2(λ) = λμ2 ,

1
2
≤ μ1, μ2 ≤ 1. Then (4.4.35) can be rewritten as

‖a− aα+,nδ
‖W1

2 (u1,u2) ≤ cδ
2μ1μ2

(2μ1+1)(2μ2+1) . (4.4.36)

From this estimate it follows that the best accuracy that in principle can be
guaranteed within the framework of proposed approach has the order δ2/9.
To the best of our knowledge there are only three papers [19, 28, 47] containing

error bounds for similar parameter identification problems, but none of them can
be compared with (4.4.36) directly.
In [28] the error was measured in the mixed boundary weighted norm max

t

‖(a(u(t, ·)) − ã(ũ(t, ·)))∇u(t, ·)‖L2(Ω) and estimated as O(δ1/2). Here and below
ã and ũ are the approximations for the exact coefficient a and the solution u of
(4.4.1) respectively.
In [19] the assumption that the observations (4.4.2) are given for the whole

time period [0, T ] is crucial. It corresponds to the case σ = T , while for the NL
described above σ can be even equal to zero, if as it is assumed in [47], some
approximation for ∂u(T,·)

∂t is a priori given as data. Moreover, the method from
[19] has been designed only for the case of one space variable x.
In [47] the error was measured in the standard L2-norm, with an assumption

of the positivity of ∇u, that is not necessary for our NL scheme. However, the
result [47] can be used in a heuristic explanation for our error bound O(δ2/9).
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Indeed, from Theorem 3.6 [47] it follows that for the diffusion coefficient with
a priori known smoothness given in the form of inclusion a ∈ W 3∞(u1, u2) one
can construct an approximation ã in such a way that

‖a− ã‖L2(u1,u2) ≤ cδ1/3. (4.4.37)

If ã is so smooth that a− ã also belongs to W 3∞(u1, u2) and ‖a− ã‖W3∞(u1,u2) =
O(1), then using (4.4.33) together with interpolation inequality one can estimate
the error in W 1

2 (u1, u2) as follows,

‖a− ã‖W1
2 (u1,u2) ≤ ‖a− ã‖2/3

L2(u1,u2)‖a− ã‖1/3

W3
2 (u1,u2)

≤ cδ2/9,

that coincides with (4.4.36) for μ1 = μ2 = 1.

4.4.4 Numerical examples

We present the results of several numerical experiments demonstrating the per-
formance of the NL for parameter identification in quasi-linear parabolic systems.
Following [47] we will consider only one-dimensional examples, where the do-

main Ω reduces to the standard unit interval [0, 1], since it already contains all
the important aspects of the NL.
We consider (4.4.1) with the diffusion coefficient a(u) = exp(u) and the exact

solution u(t, x) = exp(−t+ x/2). Note that in [47] noisy data were simulated in
the form uδ(t, x) = u(t, x)+ ξδ sin(πt) sin(πx), t, x ∈ [0, 1], where ξδ is some fixed
constant.
In our experiments we use the values u(0.95, x), u(1, x), x ∈ [0, 1], contam-

inated by additive random noise with the uniform distribution in the interval
[−δ, δ], δ = 0.001. It corresponds to the observation period [T − σ, T ], where
T = 1, σ = 0.05. A smoothed version uδ

sm(1, x) is constructed as a piece-wise
linear spline interpolating noisy values at points xi = i/n, i = 0, 1, · · · , n, n = 50.
The approximation for ∂u(1,x)

∂t
is taken in the form of the finite difference with

h = σ = 0.05.
In the first linearization step we approximate the function b(x) = a(u(1, x))

by bα,n(x) = sα,n + b0(x), where b0(x) ≡ 1, and sα,n(x) is a linear combination
of n = 50 piece-wise linear B-splines {Φi(x)}ni=1 corresponding to equidistant
knots. The coefficients of this linear combination are found from system (4.2.11).
In the considered case the operator A is defined by (4.4.7) with b0(x) ≡ 1, and
the functions AΦi are computed symbolically. Then the entries of the matrices
(4.2.11) are calculated using MATLAB-code for numerical integration. At the end
of the first linearization step we implement the regularization parameter choice
strategy (4.3.17) with ε =

√
δ ≈ 0.03, cR = 1, αi = (1.2)iα0, i = 0, 1, · · · , 30,

α0 = ε2 = 0.001. For these parameters the procedure chooses the value α(ε) =
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0.02. The exact function b(x) = a(u(1, x)) and its approximation bα(ε)(x) are
displayed in Fig. 4.4 (a).
In the considered case we approximate the diffusion coefficient a(u) = exp(u)

in the interval [u1, u2], u1 = exp(−1), u2 = exp(−0.5), by piece-wise linear spline
aα,n with n = 40 equidistant knots. Coefficients of this spline are found from
system (4.2.11). This time in (4.2.11) A is the operator from the representation
of equation (4.4.11) in the form of As = r.
In our experiments we test a robustness of the balancing principle using various

norms and inner products in (4.4.26), and in the formula for entries of the matrix
GΦ in (4.2.11). In the first experiment we take ‖ · ‖ = ‖ · ‖W1

2 (u1,u2), as suggested
by the theory, and use ΔN with α0 = 3 · 10−8, q = 1.3, N = 26, and Dp

with d0 = 0.02, p = 1.05, M = 30. Moreover, taking κ = 1.1 we define the

value of the threshold level 9κ2
(

p2+1
p−1

)2

α0 = 5.7767 · 10−4. Recall that after
the first linearization step we have α(ε) = 0.02. Therefore in considered case
ω = ε/

√
α(ε) = 0.2236. Applying parameter choice strategy (4.4.26) with dj ∈

Dp, j = 0, 1, · · · , 30, we obtain the following sequence of α(j) = α(dj): α(0) =
α(1) = 2.752 · 10−5, α(3) = α(4) = α(5) = 3.5776 · 10−5, α(6) = α(7) = α(8) =
4.6509 · 10−5, α(9) = α(10) = 6.0461 · 10−5, α(11) = α(12) = 7.86 · 10−5, α(13) =
1.0218·10−4, α(14) = α(15) = 1.3283·10−4, α(16) = 1.7268·10−4, α(17) = 2.2449·
10−4, α(18) = 2.9284 · 10−4, α(19) = 3.7939 · 10−4, α(20) = 6.4116 · 10−4, α(21) =
1.0836 · 10−3, α(22) = 1.8312 · 10−3, α(23) = · · · = α(26) = 4.0232 · 10−3, α(27) =
· · · = α(30) = 5.2305 · 10−3.
Note that α(20) = 6.4116 · 10−4 is the first term of this sequence which is

above the threshold 9κ2
(

p2+1
p−1

)2

α0 = 5.7767 · 10−4. Therefore, as suggested in
Theorem 4.4.3, we put α̂ = α(20), and choose the value of the regularization
parameter α+ = α(21) = 1.0836 · 10−3. The exact coefficient a(u) = exp(u) and
its approximation aα+,40(u) are displayed in Fig. 4.4 (b).

Fig. 4.4 (a) Simulated result for b(x) = a(u(1, x)) = exp(exp(−1 + 0.5x)); (b) For
function a(x) = exp(x), balancing principle operates with W 1

2 -norm.
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In the second experiment we apply (4.4.26) with ‖ · ‖ = ‖ · ‖L2(u1,u2), but keep
the inner product 〈·, ·〉 = 〈·, ·〉W 1

2 (u1,u2), for the entries of the matrix GΦ. It means
that we construct aα,n as an element of W 1

2 (u1, u2), but the accuracy is measured
in L2-norm. Since this norm is weaker than ‖ · ‖W1

2 (u1,u2) the upper bounds (but
not the lower estimations) (4.4.21)–(4.4.23) are still valid. We also try a more
rough set of regularization parameters ΔN with α0 = 10−7, q = 1.3, N = 26. In
this case the value of the threshold is 1.9255 · 10−3, and we find α+ = 2.1 · 10−3.
Using Fig. 4.5 (a), one can compare the exact coefficient and its approximation
in this case.
We also perform the test with the norm and inner product of L2(u1, u2) used

in (4.4.26) and in the formula for the entries of GΦ. It means that the treatment
of equation (4.4.11) is entirely done within the space L2(u1, u2). We again try
a more rough parameter sets ΔN with α0 = 1.5 · 10−6, q = 1.3, N = 26, and
Dp with d0 = 0.001, p = 1.1, M = 30. Then the parameter choice strategy
(4.4.9) gives us the sequence: α(0) = α(1) = 1.8 · 10−3, α(2) = · · · = α(6) =
2.3 · 10−3, α(7) = · · ·α(10) = 3 · 10−3, α(11) = · · · = α(14) = 3.9 · 10−3, α(15) =
· · · = α(18) = 5.1 · 10−3, α(19) = · · · = α(22) = 6.6 · 10−3, α(23) = · · · = α(26) =
8.6 · 10−3, α(27) = · · · = α(30) = 1.12 · 10−2.
In the considered case the value of the threshold level is 7.9 · 10−3. Therefore,

we choose α̂ = α(23) and α+ = α(24) = 8.6 · 10−3. Corresponding approximate
solution is displayed in Fig. 4.5 (b) together with the exact parameter a(u).

Fig. 4.5 (a) Application of (4.4.26) with L2-norm; (b) L2-regularization equipped with
L2-balancing principle.

Moreover, in Fig. 4.6 one can see the exact parameter together with approxi-
mate solutions corresponding to α = 0 (non-smooth line) and α = 0.01 (smooth
line).
The latter value is worth a discussion. Recall that in considered case a noise

level is estimated as ω = ε
√

α(ε) = 0.2236. If this noise estimate is accepted then
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in accordance with the theory of Tikhonov regularization the value ω2 should be
considered as a lower bound for regularization parameters (ω/

√
α→ 0 as ω → 0).

At the same time, the values of parameters chosen in accordance with the
extended balancing principle are much smaller than α = 0.01 or ω2 = 0.049.
Nevertheless, comparing Fig. 4.6 with Figs. 4.4 (b)–4.5 (b), one can see that
these values lead to much more accurate reconstruction. It shows evidence of a
reliability of the balancing principle in the situation when a noise level is not
exactly given.

Fig. 4.6 Regularization with parameters chosen on an ad hoc basis.

Our final test demonstrates the ability of the natural linearization to recover
a diffusion coefficient a(u) in the situation, when the solution u(t, x) is not a
monotonous function. In this case equations (4.4.10), (4.4.11) may define a mul-
tivalued function a(u). To avoid such situation the positivity of ∇u was assumed
in [47]. This assumption is violated for system (4.4.1) with a(u) = exp(u) and
u(t, x) = 10e−tx(1 − x). To perform our experiment we simulate noisy data and
construct uδ

sm(1, x), Duδ(1, x) as before. Then in the first linearization step the
application of the parameter choice strategy (4.3.17) gives the value α(ε) = 1.08.
The exact function b(x) and corresponding regularized approximation bα(ε)(x)
are displayed in Fig. 4.7 (a). The second linearization step is performed in the
same way as in our first experiment. In accordance with the balancing principle
the value α+ = 0.006 is chosen. The exact coefficient a(u) and corresponding
regularized approximation are displayed in Fig. 4.7 (b). This test shows evidence
of a reliability of the natural linearization.

Acknowledgements This research was supported by the Austrian Fonds Zur Förderung
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Fig. 4.7 (a) Simulated result for b(x) = a(u(1, x)) = exp(10 exp(−1)x(1 − x)); (b) Re-
construction of a diffusion coefficient for the case of non-monotone solution.
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Chapter 5

Extrapolation Techniques of Tikhonov
Regularization

Tingyan Xiao, Yuan Zhao and Guozhong Su

Abstract. The numerical solution of inverse problems using Tikhonov’s regular-
ization methods requires a huge amount of computations in iterative processes.
It can employ extrapolation techniques to accelerate the convergence process or
to improve accuracy of the regularized solution. This chapter aims to introduce
some main extrapolation methods that have been studied for solving linear in-
verse problems in detail. Our emphasis is to discuss related technical problems, to
propose a new extrapolation algorithm based on the Hermitian interpolation and
to present results of numerical experiments for showing the merits of extrapolated
regularization methods.

5.1 Introduction

Since the 60’s of last century, the theory and techniques of regularization are well
developed for linear inverse problems. So far, a great amount of research work has
focused on the development of appropriate strategies for selecting regularization
parameter with its fast numerical implementation (see [5, 11, 14] and references
therein).
Numerically, selecting or determining a reasonable regularization parameter

α∗ > 0 with some choice rules is an iterative process which results in a sequence
of the regularized solutions, say, written by {uαj}∞j=0. This is to say, we have a
mapping from {αj}∞j=0 to a set of vector-valued functions, {uαj}∞j=0. Of course,
we hope that the iterative process can be speeded up, or equivalent, the approx-
imation of the limit function uα∗ is with as high accuracy as possible and can
be obtained in only a few finite steps. From a viewpoint of scientific computing,
the employment of some acceleration techniques can serve for this purpose, since
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several extrapolation methods have been widely and successfully used in many
well-posed problems [1]. However, as Hämarik pointed out that “extrapolation
for increasing the accuracy of regularization methods is much less studied” [7].
The early stage efforts to this end may be traced back to the work of Saidurov,

1973 [13], Groetsch, 1979 [9] and Marchuk, 1983 [12]. Since then, after more than
ten years’ silence, the above idea again attracts researchers’ attention; among
which we should speak of Brezinski and Hämarik’s constributions [2, 3] and [7, 8].
Although, Marchuk,Brezinski and Hämarik used some kinds of linear com-

bination of the regularized solutions to approximate the desired solution, they
represent two different directions for applying the current extrapolation tech-
niques to regularization methods. The first direction is due to Marchuk, 1983
[12] who employs Lagrange interpolation polynomial as the extrapolation tool,
and Brezinski, 1998 [2] who adopts rational interpolation polynomial to construct
the extrapolation scheme. From the viewpoint of approximation, Brezinski’s im-
provement is obvious since the rational interpolation is usually better than the
algebraic polynomial interpolation, so it should be better for the extrapolation.
Hämarik’s work represents another direction. His extrapolation schemes are

based on a proper selection of the combination coefficients which can eliminate the
leading terms in the related error expansions and guarantee higher qualification
for extrapolated method than the original regularization method. He not only
presented a complete set of extrapolated algorithms for Lavrentiev and Tikhonov
regularization methods, and their iterative variant version, but also suggested
the rules for choosing appreciate regularization parameters in the extrapolated
formulas [7, 8], whereas these rules had not been given previously. Meanwhile,
it is reported that a Matlab regularization toolbox, based on the procedures
presented in [2], is under construction.
This chapter aims to introduce some major extrapolation methods that have

been studied for solving linear inverse problems in detail, including general ex-
trapolation procedures; several concrete extrapolated schemes and the choice cri-
terion of the extrapolation parameters. Moreover, a new extrapolation algorithm
based on Hermitian interpolation will be given and the numerical experiments
are performed to demonstrate their merits and effectiveness.
The chapter is organized as follows: Section 5.2 lists some notations and prelim-

inaries; Section 5.3 discusses about extrapolated regularization based on vector-
valued function approximation; Section 5.4 discusses about extrapolated regu-
larization based on improvement of regularizing qualification; Section 5.5 studies
the choice of parameters in the extrapolated regularizing approximation; Section
5.6 performs numerical experiments, and finally, conclusions are given in Section
5.7.
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5.2 Notations and preliminaries

Let us consider linear ill-posed inverse problem modelled as an operator equation
of the first kind

Au = f, (5.2.1)

where A is a linear compact operator between Hilbert spaces U and F , and its
range R(A) is non-closed. Instead of exact f ∈ F , noisy data f δ is available with
an error level such that ||f − f δ|| ≤ δ. Because of its nature of ill-posedness,
solving this kind of problem is a difficult task and some regularization methods
(strategies) should be employed.
A class of linear regularization methods can be described by using spectral

theory for self-adjoint operators [5]. Let {Eλ} be a spectral family for A∗A. Then
the regularized approximation for noise data f δ with ‖f−fδ‖ ≤ δ can be formed
by

uδ
α =

∫
gα(λ)dEλA∗f δ := Rαf δ. (5.2.2)

In (5.2.2), the function gα(λ) is called the generating function which is at least
piecewise continuous on [0, ‖A‖2] and satisfies the following conditions: for all
α > 0,

|λgα(λ)| ≤ c1, (5.2.3)

lim
α→0

gα(λ) = λ−1, for λ ∈ (0, ‖A‖2], (5.2.4)

sup
0≤λ≤a

|gα(λ)| ≤ c2α
−1, (5.2.5)

and
sup

0≤λ≤a
λμ|rα(λ)| ≤ c3α

μ 0 ≤ μ ≤ μ0, (5.2.6)

where a = ||A||2, μ, μ0 and ci (i = 1, 2, 3) are positive constants, and rα(λ) =
1− λgα(λ) in (5.2.6). Thus uδ

α can be computed in a stable way.
The maximum value of μ0, for which the inequality (5.2.6) holds is called the

qualification of regularization method (gα(A∗A)A∗, α) or regularization operator
Rα.
As we know, one of the most widely used methods in applications is Tikhonov

regularization in which the regularized solution is given by

uδ
α = (αI +A∗A)−1A∗f δ (5.2.7)

where gα(λ) = 1
α+λ , μ0 = 1 and I is the identity operator. The accuracy of regu-

larized approximation can be increased by iteration. Let m ∈ N be fixed integer
number and uδ

α,0 := 0 be the initial approximation. Then we get the m-iterated
Tikhonov approximation uδ

α,m through iteratively computing the approximations

uδ
α,i = (αI +A∗A)−1(A∗f δ + αuδ

α,i−1) (i = 1, . . . , m) (5.2.8)
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In this method, gα,m(λ) =
(λ+α)m−αm

λ(α+λ)m and the qualification of uδ
α,m is μ0 = m.

Below, we summarize some important properties for the above regularization
methods.

Proposition 5.2.1. With a priori choice rule of the parameter:

α(δ) = c̄(δ/ρ))
2

2μ+1 ,

the regularization method (gα(A∗A)A∗, α) is of optimal order in Xμ,ρ := {u ∈
U | u = (A∗A)μw, ||w|| ≤ ρ} for 0 < μ ≤ μ0. It means that if u ∈ Xμ,ρ and
||Au− f δ|| ≤ δ, then the error estimate

||gα(A∗A)A∗f δ − u+|| ≤ cδ
2μ

2μ+1 ρ
1

2μ+1 (5.2.9)

holds for 0 < μ ≤ μ0; here u+ is the generalized solution of (5.2.1).

Proposition 5.2.2. The regularized solution of Tikhonov’s method uδ
α deter-

mined by (5.2.7) is infinitely differentiable at every α > 0, which satisfies the
following equations:

(A∗A+ αI)
dkuδ

α

dαk
= −k

d(k−1)uδ
α

dα(k−1)
, k = 1, 2, · · · . (5.2.10)

It is not difficult to verify that the above differentiability of the regularized
solutions also holds for the iterated Tikhonov regularization solutions and the dis-
crete regularization solutions. So, the Tikhonov’s regularized solution (no matter
continuous or discrete type), as function of parameter α > 0, can be approximated
by some interpolating polynomials which can serve as the basis in constructing
extrapolation algorithms for regularization.
Now we consider extrapolation of standard regularization methods. Suppose its

generating function gα(λ) satisfies (5.2.3)–(5.2.6) with μ0 <∞. Let the sequences
of parameters 0 < αj < α (j = 1, 2 . . . k) be given with αj 	= αi for j 	= i.

According to the principle of general extrapolation [1], let dj ∈ R fulfill
k∑

j=1

dj = 1

and dj are independent of α. Consider the linear combination of regularized
approximations

uδ
k(α) =

k∑
j=1

dju
δ
αj
=
∫ k∑

j=1

djgαj (λ)dEλA∗f δ. (5.2.11)

Denoting that

gα,k(λ) =
k∑

j=1

djgαj (λ); qj = αj/α, (5.2.12)

we have rα,k(λ) = 1 − λgα,k(λ) =
∑k

j=1 djrαj (λ). Assume k is fixed, and α
is a regularization parameter. Then the function gα,k(λ) satisfies the following
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inequality for 0 ≤ μ ≤ μ0:

|λgα,k(λ)| ≤ c1

k∑
j=1

|dj | := c1Λk, (5.2.13)

lim
α→0

gα,k(λ) =
k∑

j=1

lim
α→0

djgαj (λ) = 1/λ (λ 	= 0), (5.2.14)

sup
λ∈[0,a]

|gα,k(λ)| ≤
k∑

j=1

sup
λ∈[0,a]

|djgαj (λ)| ≤ c2

k∑
j=1

|dj |(qjα)−1, (5.2.15)

and

sup
λ∈[0,a]

λμ|rα,k(λ)| ≤ c3

k∑
j=1

|dj |αμ
j = c3

k∑
j=1

(|dj |qμ
j )α

μ. (5.2.16)

So a proper choice of dj = dj(q1, q2, . . . , qk), j = 1, 2, . . . , k may guarantee condi-
tions similar to (5.2.3)–(5.2.6) and the qualification (written by μE) of the approx-
imation uδ

k(α) is higher than μ0, the qualification of initial (non-extrapolated)
Tikhonov regularization method. In other words, we will get an extrapolated
regularization method {gα,k(A∗A)A∗, α}, or, an extrapolation-type regulariza-
tion operator:

RE
α,k =

∫ k∑
j=1

djgαj (λ)dEλA∗ −→ uδ
k(α) = RE

α,kf δ, (5.2.17)

the qualification μE of RE
α,k will be no less than μ0. Of course, as a regularization

method, the regularization parameter α and the index k must be determined
properly.

5.3 Extrapolated regularization based on vector-valued
function approximation

Let us consider concrete extrapolation schemes of Tikhonov regularization
method, which, in this section, are all based on vector-valued function approxi-
mation. For convenience, we describe them in a discrete form.
After the discretization, equation (5.2.1) turns out to be the following ill-posed

system of linear equations. For simplicity, we still write it as

Au = f, A ∈ Cm×n, u ∈ Cn, f ∈ Cm. (5.3.1)

For true data f , the regularized Euler’s equation is given by
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(A∗A+ αI)uα = A∗f. (5.3.2)

Proceeding from equation (5.3.2), we describe three schemes as follows:

5.3.1 Extrapolated scheme based on Lagrange interpolation

According to Marchuk’s original idea [12], one can find a unitary matrix P and a
diagonal matrix Λ = diag(λ1 . . . λn), where λi ≥ 0, such that A∗A = PΛP ∗. Let
yα = P ∗uα, F = P ∗A∗f , then (5.3.2) is equivalent to

(Λ + αI)yα = F (5.3.3)

and the components of the vector yα are defined by yα,i = Fi/(λi + α). Note
that the function γ(α) = 1

λ+α
exists. When λ > 0, the function γ(α) is infinitely

differentiable for any α > 0 and |γ(k)(α)| ≤ k!/λk+1.
Let α1 > α2 > · · · > αk+1 be a decreasing sequence of values of α. Using the

Lagrangian formula yields[4]

γ(α) =
k∑

j=1

lj(α)γ(αj) +Q(α), (5.3.4)

where

lj(α) =
k∏

i=1 i�=j

α− αi

αj − αi
, j = 1, 2, · · · , k. (5.3.5)

Substituting αk+1 into (5.3.4), we get

γ(αk+1) =
k∑

j=1

lj(αk+1)γ(αj) +Q(αk+1). (5.3.6)

and then we can estimate the remainder: |Q(αk+1)| ≤ λ−k−1
∏k

j=1 αj .
Let λ̄ = min{λi �=0}{λi}, Applying (5.3.6) to the solution of (5.3.3) yields

yαk+1 =
k∑

j=1

lj(αk+1)yαj + q(αk+1), (5.3.7)

where

‖q‖ ≤ λ̄−k−1

⎛⎝ k∏
j=1

αj

⎞⎠ ‖F‖.
Using the above estimates and the norm-preserving property of unitary matrices
result in ‖A∗f‖ = ‖P ∗A∗f‖ = ‖F‖, ‖Pq‖ = ‖q‖, it follows that the solution of
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the regularized problem (5.3.2) obeys the relation

uαk+1 =
k∑

j=1

lj(αk+1)uαj + r(αk+1), ‖r‖ ≤ c1

k∏
j=1

αj , (5.3.8)

where c1 is a constant which does not depend on αj . Of course it is more interested
in the case of αk+1 = 0. Since u+ = limα→0 uα = u0, αk+1 = 0 yields

u+ −
k∑

j=1

λj(0)uαj = r(0); ‖r(0)‖ ≤ κ1

k∏
j=1

αj , (5.3.9)

where κ1 is a constant independent of αj .
Now we construct a linear combination of regularized solutions of (5.3.2), uδ

αj

with noise data f δ using the sequence {αj}kj=1:

vδ
α∗,k =

k∑
j=1

dju
δ
αj

(dj = lj(0), j = 1, 2, . . . , k), (5.3.10)

where α∗ = max{αj}. As to the error estimation between vδ
α∗,k and u+, we could

give a modified version of Theorem 1.2 of [12] as follows.

Theorem 5.3.1. Let u+ be the generalized solution of system (5.3.1) and an
approximate equation be in the form Au = f δ such that ||f − f δ|| ≤ δ. Let

vα∗,k =
k∑

j=1

djuαj , vδ
α∗,k and dj be as in (5.3.10), respectively. Then

‖u+ − vδ
α∗,k‖ ≤ κ1

k∏
j=1

αj +
k∑

j=1

|dj |δ/√αj (5.3.11)

Proof. Obviously, from the following equality

(A∗A+ αjI)(uαj − uδ
αj
) = A∗(f − fδ) (5.3.12)

and ‖(A∗A+ αjI)−1A∗‖ ≤ 1/√αj , we have

‖vα∗,k − vδ
α∗,k‖ = ‖

k∑
j=1

dj(uαj − uδ
αj
)‖ ≤

k∑
j=1

|dj |δ/√αj . (5.3.13)

Combining the inequality in (5.3.9), it follows immediately that

‖u+ − vδ
α∗,k‖ ≤ ‖u+ − vα∗,k‖+ ‖vα∗,k − vδ

α∗,k‖ ≤ κ1

k∏
j=1

αj +
k∑

j=1

|dj |δ/√αj .

(5.3.14)
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The proof of the theorem is finished. ��
Remark 5.3.2. Obviously, to guarantee the numerical stability of the extrapo-
lated formula (5.3.10), one should choose αj such that dj = lj(0) remains bounded
when all of the αj tend to zero. To this end Marchuk presented a general choice
rule:

αj/αj+1 ≥ θ > 1, j = 1, 2, . . . , k − 1, (5.3.15)

with θ independent of αj . We refer (5.3.15) to Marchuk condition. This condition
ensures that [12]

|dj | ≤
(

θ

θ − 1
)k

, j = 1, 2, · · · , k. (5.3.16)

Corollary 5.3.3. Suppose integer k is fixed and αj (j = 1, 2, · · · ) satisfy con-
dition (5.3.15). The other notations and conditions are the same as those in
Theorem 5.3.1. If we choose α∗ = α∗(δ) = δν , 0 < ν < 2, then we obtain

lim
δ→0

vδ
α∗(δ), k = u+. (5.3.17)

Corollary 5.3.4. Marchuk gave a numerical test for a singular and incompat-
ible system of ten linear equations with ten unknowns. With α1 = 0.01, α2 =
α1/2, α3 = α1/3, the numerical results are very satisfactory; but he did not give
a discussion over how to select parameter α1 and how to determine the integer
k. To simplify notation, we abbreviate this scheme as E-Tik-Lag.

5.3.2 Extrapolated scheme based on Hermitian interpolation

We give another form of the extrapolation method using the differentiability of
Tikhonov regularized solution in this subsection.
Letting duα = duα

dα , from (5.3.2), it follows

(A∗A+ αI)duα = −uα. (5.3.18)

Suppose {αj}kj=1 are given for positive integer k. Assume {uαj}kj=1 and their first
derivatives {duαj}kj=1 have been prescribed. Since uα and duα are vector-valued
functions with respect to variable α > 0, we can construct related Hermitian
interpolation approximation.
Hermitian interpolated polynomial is usually given by

H2k−1(α) =
k∑

j=1

(
Aj(α)uαj +Bj(α)duαj

)
, (5.3.19)

where {Aj(α)}kj=1 and {Bj(α)}kj=1 satisfy the following conditions
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Aj(αi) = δji, A′j(αi) = 0, (∀i, j),
Bj(αi) = 0, B′j(αi) = δji, (∀i, j),

in which, δji denote the Kronecker symbol. With the aid of the functions lj(α) =∏
i�=j(α− αi)/(αj − αi), we have

Aj(α) =
[
1− 2(α− αj)l′j(αj)

]
l2j (α), j = 1 : k,

Bj(α) = (α− αj)l2j (α), j = 1 : k.

So H2k−1(αj) = uαj , H ′
2k−1(αj) = duαj for j from 1 to k. Letting ξj =

Aj(0), ηj = Bj(0), we have

ξj =
[
1 + 2αj l

′
j(αj)

]
l2j (0), ηj = −αj l

2
j (0). (5.3.20)

Therefore, a new approximation to uα can be given by

vα∗, k =
k∑

j=1

(
ξjuαj + ηjduαj

)
. (5.3.21)

Similarly, we have
(Λ + αI)dyα = −yα. (5.3.22)

The components of the vector dyα are dyα,i = −yα,i/(λi + α)2.
In analogy with the inference in §5.3.1, we can obtain the following results:

Theorem 5.3.5. Let u+ be the generalized solution of (5.3.1), vα∗, k =
k∑

j=1
(ξjuαj

+ηjduαj ), where ξj , ηj are given in (5.3.20). Then

‖u+ − vα∗, k‖ ≤ κ2 ×
k∏

j=1

α2
j ≤ κ2(α∗)2k, (5.3.23)

where κ2 is a constant.

Theorem 5.3.6. If we know only Au = f δ, ‖f − fδ‖ ≤ δ and vα∗,k are as in

Theorem 5.3.5. Let vδ
α∗, k =

k∑
j=1

(ξju
δ
αj
+ ηjduδ

αj
). Then

||u+ − vδ
α∗, k|| ≤ κ2(α∗)2k +

k∑
j=1

|ξj ||δ/√αj +
k∑

j=1

|ηj |δ/αj , (5.3.24)

where κ2 is a constant as in (5.3.23).

Corollary 5.3.7. Suppose integer k is fixed, αj for all j satisfy condition
(5.3.15), α∗ = α∗(δ) = δν , 0 < ν < 1 and vδ

α∗,k is given in Theorem 5.3.6.
Then
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lim
δ→0

vδ
α∗(δ), k = u+. (5.3.25)

To be simple, we abbreviate the above scheme as E-Tik-Her.

5.3.3 Extrapolation scheme based on rational interpolation

Based on the SVD realization of the Tikhonov regularization, Brezinski presented
several extrapolation methods using rational approximation. We just introduce
one of them, Algorithm 1.a: Full case[2] which possesses lower computational
complexity than the complexity of others. Using a rational and vector-valued
function as a candidate,

Rk(α) =
k∑

i=1

1
bi + α

wi, k ≤ p, (5.3.26)

where bi’s and wi’s are unknown scales and vectors. Moreover, {wi} are linearly
independent of each other. Suppose that {αi}ki=0, αi 	= αj for i 	= j are given
and uδ

αi
for all i are corresponding solutions of (A∗A+ αiI)u = A∗f δ, i = 0 to k.

The above unknowns will be determined by imposing the interpolated conditions
of Rk(αi) = uδ

αi
, i = 0, 1, . . . , k.

We will extrapolate (5.3.26) at α = 0, i.e., we will compute

vk = Rk(0) =
k∑

i=1

wi/bi. (5.3.27)

The main task is to determine {bi} and {wi}.
First, reducing the sum in (5.3.26) to the same denominator:

Rk(α) = Pk−1(α)/Qk(α), (5.3.28)

where

Qk(α) =
∏k

i=1(bi + α) = β0 + · · ·+ βk−1α
k−1 + αk, βi ∈ R,

Pk−1(α) = γ0 + · · ·+ γk−1α
k−1, γi ∈ R.

(5.3.29)

Then it results in the following interpolating equations

uδ
αi

Qk(αi) = Pk−1(αi), i = 0, 1, . . . , k − 1 (5.3.30)

by Lagrangian formula. We have

Qk(α) =
∑k

i=0 Li(α)Qk(αi),
Pk−1(α) =

∑k−1
i=0 L̄i(α)Pk−1(αi) =

∑k−1
i=0 L̄i(α)Qk(αi)uδ

αi
,

(5.3.31)
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where {Li(α)} and {L̄i(α)} are interpolating basic functions.
For αk 	= αj , j = 0 to k − 1, the combinations of (5.3.30)–(5.3.31) give that

k−1∑
i=0

L̄i(αk)Qk(αi)uδ
αi
= Qk(αk)uδ

αk
. (5.3.32)

Let s1, s2, . . . , sp be linearly independent vectors. Scalar multiplying (5.3.32)
by sj for j = 1, 2, . . . , p and setting ci = Qk(αi)/Qk(αk) lead to the following
linear system

k−1∑
i=0

L̄i(αi)
(
uδ

αi
, sj

)
ci = (uδ

αk
, sj), j = 1, 2, . . . , p. (5.3.33)

Solving this system in the least squares sense gives c0, c1, . . . , ck−1. Since the Qk

is a monic polynomial and ck = 1, we have the supplementary condition

Qk(αk)
k∑

i=0

⎛⎝ci/
k∏

j=0,j �=i

(αi − αj)

⎞⎠ = 1. (5.3.34)

So Qk(αk) is determined and we obtain the following results

Qk(αi) = ciQk(αk),
β0 = Qk(0) =

∑k
i=0 Li(0)Qk(αi),

γ0 = Pk−1(0) =
∑k−1

i=0 L̄i(0)Qk(αi)uδ
αi

.

(5.3.35)

With the above preparations, we get the extrapolated regularization approxi-
mation

uδ
k = Rk(0) = γ0/β0. (5.3.36)

Remark 5.3.8. For the setting of {αj}, Brezenski did not give a general rule;
but for the vector of {s1, s2, . . . , sk}, he chose the canonical basis. We abbreviate
this scheme as E-Tik-Bre.

Remark 5.3.9. To select the index k, Brezenski adopted L−curve rule, and he
pointed out that “with respect to extrapolation methods, the L-curve proved to be
quite effective in the restricted case, but ineffective at all in the full case, · · · ,
an effective criterion to select the optimal value of k in the full case would be of
great interest”. Thus this problem warrants a careful consideration.
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5.4 Extrapolated regularization based on improvement of
regularizing qualification

Now we introduce more general extrapolation schemes for increasing the qualifi-
cation of regularization methods.
(1) Suppose integer k ≥ 2 is fixed and let the function gα(λ) satisfy condition
(5.2.3)–(5.2.6) with μ0 < +∞;

(2) Take a group of distinct regularization parameters: 0 < αj 	= αi < α for i 	=
j; i, j = 1, 2, . . . , k; for example αi = αi−1q, 0 < q < 1;

(3) Let dj ∈ R, j = 1, 2, . . . , k and satisfy firstly
∑k

j=1 dj = 1;
(4) Construct a linear combination of the regularized solutions:

vδ
α,k =

k∑
j=1

dju
δ
αj
=
∫ k∑

j=1

djgαj (λ)dEλA∗f δ (5.4.1)

where {uδ
αj
}kj=1 are given by (5.2.7). As §5.2 shows, gα,k(λ) =

∑k
j=1 djgαj (λ)

satisfies the inequalities (5.2.13)–(5.2.16).
Consider the choice of dj = dj(q1, q2, . . . , qk), j = 1, 2, . . . , k. Recalling the

Tikhonov regularization method and its m-iterated variant, we have 1−λgα(λ) =
(1 + λ/α)−m := (1 + ε)−m. Using the Taylor series

(1 + ε)−m =
∞∑

j=0

cjε
j, cj = (−1)j (m+ j − 1)!

(m− 1)!j! (|ε| < 1) (5.4.2)

for ε = (λ/α)−1 < 1 and l = j +m, we obtain{
1− λgα(λ) = (1 + ε−1)−m = εm(1 + ε)−m =

∑∞
l=m cl−mεl,

1− λgα,k(λ) =
∑k

i=1 di

∑∞
l=m cl−mql

iε
l =

∑∞
l=m

[∑k
i=1 diq

l
i

]
cl−mεl.

(5.4.3)

If di = di(q1, q2, . . . , qk), i = 1, 2, . . . , k are chosen as the solution of the system
of linear equations{∑k

i=1 di = 1,∑k
i=1 diq

l
i = 0, l = m, m+ 1, . . . , m+ k − 2, (5.4.4)

then 1 − λgα,k(λ) = O(εm+k−1) = O(λ/α)−(m+k−1)); hence μE = m + k − 1.
Hämarik obtained the explicit solution of the above equations as follows:

Theorem 5.4.1 ([7]). Let uδ
αi

with αi = qiα be the approximations in m−iterated
Tikhonov method. Then the combination coefficients of {dj}kj=1 in the extrapo-
lated approximation vδ

α, k are given by



Extrapolation Techniques of Tikhonov Regularization 119

di =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k∏

j=1,j �=i

(αj/(αj − αi)) , (m = 1),

Di/
n∑

j=1

Dj, Di = (−1)i−1
k∏

j=1,j �=i

αm
j

∏
k>l,k �=i,l �=i

(αk − αl) (m > 1).

(5.4.5)

Remark 5.4.2. Let μE be the qualification of the extrapolated approximation
vδ

α,k, then it can be shown that μE = m+ k − 1 = k ≥ 2. Notice that in the case
of m = 1 in the above expression, the deduced combination coefficients {dj}kj=1

are just the coefficients of extrapolated (original) Tikhonov regularization.

Remark 5.4.3. We abbreviate this scheme as E-Tik-Häm or E-Tik-Häm-m.
Compared with Section 5.3, it can be seen that the E-Tik-Lag is actually the
special case of E-Tik-Häm, i.e., E-Tik-Häm-1.

Remark 5.4.4. It is proven that if the solution is smooth and the noise level δ

is known, a proper choice of k = k(δ) guarantees the accuracy O(δ 2k
2k+1 ) for the

extrapolated Tikhonov approximation versus the accuracy O(δ 2
3 ) of the Tikhonov

approximation. The choice rules for index k and α in E-Tik-Häm-algorithms
are also given in [7, 8], which will be described in the next section.

Remark 5.4.5. The E-Tik-Häm-schemes with their analysis are also suitable
for the regularization method with self-adjoint operator, known as Lavrentiev
regularization[7, 8]. We would not go into details here.

5.5 The choice of parameters in the extrapolated
regularizing approximation

As a new type of regularization method, there of course exits the problem of
choosing regularization parameters: the positive parameter of α and the index k,
the number of terms in the combination of vδ

α,k.
Certainly, if a value of index k ≥ 2 is given, some selection rules, say, dis-

crepancy principle [7], L-curve rule [5] and the monotone error rule [7, 8] for the
Tikhonov regularization, should be employed since the extrapolated regularized
solution as the combination of regularized solutions should satisfy, for example,
the feasible condition: ‖Avδ

α, k − fδ‖ ≤ δ.
The key to the questions in selecting the extrapolation parameters (α and k),

is to give a rule to check whether vδ
α,k+1 is a more accurate than vδ

α,k when both
of them satisfied the same necessary condition (for example, the discrepancy
requirements). To this question, [7, 8] hold that one should consider the cases
separately, i.e., when one of parameters k and α is fixed, the other parameter is
regularization parameter. We will quote a main theorem from [7] later on.
It is well known that for a posteriori choice of the regularization parameter α

in the Tikhonov regularzation method, there exist several well-developed rules.
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For discrepancy principle, one chooses α such that ‖Auδ
α−f δ‖ = Cδ with C ≥ 1;

for the modified discrepancy (MD) principle [7] αMD and the monotone error
rule (ME-rule) αME are chosen by solving equations(

Auδ
α − fδ, Auδ

2,α − f δ
)
= Cδ,(

Auδ
α − fδ, Auδ

2,α − f δ
)
/‖Auδ

2,α − f δ‖ = Cδ,
(5.5.1)

respectively. Here uδ
2,α = (A∗A+ αI)−1 (

αuδ
α +A∗fδ

)
is the approximation of

the iterated Tikhonov method.
1) Give the sequences α1, α2, . . . , (α is fixed) and consider the choice of index

k in extrapolated Tikhonov approximation vδ
α,k. Denote rk = Avδ

α,k − fδ and
C = constant > 1. For E-Tik-Häm-m schemes, we have the following theorem.

Theorem 5.5.1. Let vδ
α, k =

∑k
l=1 dlu

δ
αl

with dl be determined by (5.4.5). Then
the functions

dD(k) = ‖rk‖ > 0, dME(k) =
(rk + rk+1, rk+1)

(2‖rk+1‖) > 0 (5.5.2)

are monotonously decreasing and

dD(k + 1) < dME(k) < dD(k), ∀ k. (5.5.3)

Let kD and kME be the first numbers with dD(k) ≤ Cδ, dME(k) ≤ Cδ, respec-
tively. Then kD − 1 ≤ kME ≤ kD and

‖vδ
α, k − u+‖ < ‖vδ

α, k−1 − u+‖ for k = 1, 2, . . . , kME . (5.5.4)

If the monotonically decreasing infinite sequences α1, α2, . . . satisfy conditions

∞∑
i=1

α−1
i =∞, αk ≤ const

k−1∑
i=1

α−1
i , (5.5.5)

then the existence of finite kD and kME is guaranteed; and for k ∈ {kD, kME},
‖vδ

α,k − u+‖ → 0(δ → 0), the error estimate

‖vδ
α,k − u+‖ ≤ const× δμ/(μ+1) (5.5.6)

holds for all μ > 0 under the source condition of

u∗ ∈ R((A∗A)μ/2). (5.5.7)

2) Let k ≥ 2 and q1, q2, . . . , qk+1 be given. The choice of α in extrapolated
Tikhonov approximation vδ

α,k can be determined by Theorem 2 of [8]. The
interested reader can refer to their work for more information.
So the twice checking processes must be performed alternately. Hämarik, R.

Palm and T. Raus made extensive numerical experiments [7, 8] and showed that
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the above combined checking rules were quite effective; and “the error of extrap-
olated approximation was in most cases smaller than the error of the Tikhonov
approximation” if u+ ∈ R(A).
Of course, we can fully follow the above rules to realize extrapolating regu-

larization method, but sometimes we could also put it in practice by using a
simplified implemental strategy.
Instead of performing the twice checking process, we elaborately select an

interval of [αmin, αmax] and generate a sequence: α1, α2, · · · ; then choose the
index k by Theorem 5.5.1. In other words, we apply Theorem 5.5.1 based on
some selected node-location: [interval,sequence].
For the interval selection, we suggest two types as candidates:

Interval-1: By Theorem 5.3.1 and Theorem 5.3.5, we choose

[αmin, αmax] = [0.0, δλ], 0 < λ < 2 or 0 < λ < 1. (5.5.8)

Interval-2: From [10], and after some calculations, we choose

αmax = ‖A‖2δ/(‖f δ‖ − δ), αmin = δ2/(4‖uδ
δ2‖2). (5.5.9)

Actually, the αmin can be obtained using the relationships

Mα := ‖Auα − fδ‖2 + α‖uα‖2, ∀α > 0,
Mα > ‖Auα − f δ‖2, Mα ≥ 2

√
α‖Auα − f δ‖‖uα‖, (5.5.10)

and taking ‖Auα−f δ‖ ≈ δ, ‖uα‖ ≈ ‖uδ
δ2‖, which results in 2δ√α‖uδ

δ2‖ � δ2 and
we can take αmin = δ2/(4‖uδ

δ2‖2).
Based on one of the above interval settings, the sequence of αi can be chosen

as the following four groups:
Sequence 1: α1 = αmax; αi = α1/i, i = 2, 3, · · · ;
Sequence 2: α1 = αmax, αi = αi−1q; i = 2, 3, · · · ; 0 < q < 1;
Sequence 3: α1 = αmin = c(δ/ρ)2/(2μ+1); q = 1.01; αi = αi−1 ∗ q; i = 2, 3, · · · ,

where c = c(k) and ρ = ‖u+‖ = ‖utrue‖ are constants;
Sequence 4: αj = αmin+αmax

2
+ αmax−αmin

2
cos(2j−1

2k
π), (j = 1, . . . k).

It can be verified that the combination coefficients {dj} obtained from the
above sequences entirely satisfy the Marchuk’s condition (5.3.16). Any combina-
tion of the intervals and the sequences can generate a node-location; for example,
(2,4) denotes Chebyshev node-system based on the second interval setting. As
we know, the polynomial interpolation at Chebyshev node-system is nearly the
best approximation [4], so we can expect that the extrapolated schemes based on
(2,4) may reveal the merits of the above nearly best approximation.
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5.6 Numerical experiments

In order to demonstrate the merits and efficiency of the above extrapolated
schemes in this chapter, a large number of numerical experiments is arranged
and performed with Matlab 6.5 for several well-known test problems taken from
[6].
To test the impact of the smoothness of true solution on the selection of node

location ([αmin, αmax], sequence), we set uμ = (A∗A)μuT and bμ = Auμ where
uT is the true solution of Au = bT , so the smooth true solution uμ and the related
true right-hand side bμ are obtained. Obviously, μ = 0 results in u0 = uT and
b0 = bT . Moreover, the perturbations are added into bμ:

bδ
μ = bμ + τ‖bμ‖ · randn(m, 1)/

√
m,

where m = length(bμ), randn(•) is an M -function generating a random noise,
the parameter τ controls the degree of the noise, and δ = ‖bμ − bδ

μ‖2.
In numerical experiments, we employed three widely used non-extrapolated

regularization methods: Tik-dp, Tik-lc and Tik-gcv which correspond to
Tikhonov regularization with the discrepancy principle, L-curve rule and gcv-
rule to determine regularization parameters, respectively. And, the aforemen-
tioned extrapolated regularization schemes, E-Tik-Lag, E-Tik-Her, E-Tik-
Bre and E-Tik-Häm-2, are included to make a comparison. The relative er-
ror ‖utrue − uδ

approx‖/‖utrue‖ is used for measuring the approximation. For all
of the extrapolated schemes in Tables 5.1–5.3, the best performances of the
schemes are denoted by “‖utrue − uδ

opt‖/‖utrue‖ (index k)”, where k in the
parentheses is the index for which uδ

opt represents the best approximation among
{vδ

α,i; i = 2, 3, . . . , 10} in the sense of relative error.
The results of numerical experiments are summarized in Tables 5.1–5.3. If the

digital values are printed in ‘italics’, then they are considered to be the best
among the related results (Tables 5.1 and 5.2) by all of the (extrapolated and
non-extrapolated) regularization algorithms for the corresponding test problems,
or among the results by employing the five node-locations (Table 5.3) for each
test problem. In all of the tables, the notation N.L. refers to the node location;
the values in Table 5.2 marked with “ ” are used for comparison.
From Table 5.1 it can be seen, for the four tested problems, that the extrap-

olated schemes, with the small k (lower computation cost), are better than the
non-extrapolated algorithms in most cases; the more smoother the true solution
is, the more effective the extrapolated scheme will be. Especially, the E-Tik-
Bre seems to be the best one among the extrapolated schemes. Another obvious
feature is that the E-Tik-dp had failed in solving ’shaw’ problem with high
smoothness of μ = 2 and ’gravity’ problem with μ ≥ 2/3! Table 5.1 also implies
that the node location of (2,4) is feasible for solving problems regardless of lower
or higher smoothness; this observation inspires us that we can apply it to solving
practical problems.
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Table 5.1 The relative errors of extrapolated and non-extrapolated regularization solu-
tions (m = 1000; τ = 0.001 and for N.L.=(2,4)).

μ = Algorithm shaw heat foxgood gravity
Tik-dp .28e-02 .77e-02 .12e-02 .27e-02
Tik-lc .25e-02 .57e-00 .197e-01 .14e-01
Tik-gcv .12e-01 .29e-01 .43e-02 .45e-02

1/2 E-Tik-Lag .23e-02(2) .62e-02(2) .50e-03(2) .23e-02(2)
E-Tik-Her .27e-02(2) .97e-02(2) .10e-02(2) .31e-02(2)
E-Tik-Bre .23e-02(3) .49e-02(3) .16e-03(3) .17e-02(2)
E-Tik-Häm-2 .23e-02(2) .60e-02(2) .59e-03(2) .21e-02(2)
Tik-dp .26e-02 .66e-02 .12e-02 fail !!
Tik-lc .25e-01 .53e-00 .19e-01 .14e-01
Tik-gcv .12e-01 .28e-02 .41e-02 .44e-02

2/3 E-Tik-Lag .21e-02(2) .64e-02(2) .59e-03(2) .23e-02(2)
E-Tik-Her .28e-02(2) .10e-01(2) .11e-02(2) .31e-02(2)
E-Tik-Bre .18e-02(3) .50e-02(2) .28e-03(3) 12e-02(2)
E-Tik-Häm-2 .19e-02(2) .57e-02(2) .58e-03(2) .21e-02(2)
Tik-dp .25e-02 .63e-02 .12e-02 fail !!
Tik-lc .25e-01 .51e-00 .19e-01 .14e-01
Tik-gcv .12e-01 .28e-01 .41e-02 .44e-02

4/5 E-Tik-Lag .21e-02(2) .65e-02(2) .61e-03(2) .23e-02(2)
E-Tik-Her .28e-02(2) .10e-01(2) .11e-02(2) .31e-02(2)
E-Tik-Bre .13e-02(3) .30e-02(2) .38e-03(3) .11e-02(2)
E-Tik-Häm-2 .19e-02(2) .58e-02(2) .58e-03(2) .21e-02(2)

Tik-dp .25e-02 .61e-02 .12e-02 fail !!
Tik-lc .25e-01 .48e-00 .19e-01 .14e-01
Tik-gcv .12e-01 .28e-01 .41e-02 .44e-02

1 E-Tik-Lag .21e-02(2) .67e-02(2) .62e-03(2) .23e-02(2)
E-Tik-Her .28e-02(2) .11e-01(2) .11e-02(2) .31e-02(2)
E-Tik-Bre .97e-03(2) .21e-02(2) .34e-03(2) .96e-03(2)
E-Tik-Häm-2 .19e-02(2) .59e-02(2) .57e-03(2) .21e-02(2)
Tik-dp fail !! .58e-02 .12e-02 fail !!
Tik-lc .25e-01 .45e-00 .19e-01 .14e-01
Tik-gcv .12e-01 .28e-01 .41e-02 .43e-02

2 E-Tik-Lag .21e-02(2) .68e-02(2) .62e-03(2) .22e-02(2)
E-Tik-Her .28e-02(2) .11e-01(2) .11e-02(2) .31e-02(2)
E-Tik-Bre .72e-03(2) .19e-02(2) .15e-03(2) .91e-03(2)
E-Tik-Häm-2 .19e-02(2) .61e-02(2) .57e-03(2) .21e-02(2)

Table 5.2 indicates, on the whole, that node location of (2,3) is better than
(2,4), and this is affirmative because the former has used a priori information
about the true solution. But, node-location (2,3) is closely related to setting of
αmin in [αmin, αmax] which reflects smooth properties of underlying solution, and
such a choice can rarely be used in practice. Therefore, from the above analysis,
it is more practical to employ (2,4) for solving applied problems.
A drawback of (2,4) is that changing a new Chebyshev node-system in (2,4)

requires a new computation of the regularized solutions from scratch, this is not
worthwhile sometimes; but it appears that this defect can be compensated by its
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Table 5.2 The relative errors at two node-locations with and without using the smooth-
ness of true solutions (m = 1000; τ = 0.001).

μ = Algorithm heat heat foxgood foxgood
(N.L.=(2,3)) (N.L.=(2,4)) (N.L.=(2,3)) (N.L.=(2,4))

Tik-dp .77e-02 .77e-02 .12e-02 .12e-02
1/2 E-Tik-Lag .57e-02(8) .62e-02(2) .20e-03(7) .50e-03(2)

E-Tik-Her .11e-01(3) .97e-02(2) .75e-03(3) .10e-02(2)
E-Tik-Bre .57e-02(2) .49e-02(3) .21e-03(3) .16e-03(3)
E-Tik-Häm-2 .50e-02(6) .60e-02(2) .56e-03(2) .59e-03(2)
Tik-dp .66e-02 .66e-02 .12e-02 .12e-02

2/3 E-Tik-Lag .33e-02(9) .64e-02(2) .15e-03(7) .59e-03(2)
E-Tik-Her .67e-02(3) .10e-01(2) .40e-03(2) .11e-02(2)
E-Tik-Bre .36e-02(3) .50e-02(2) .15e-03(3) .28e-03(3)
E-Tik-Häm-2 .34e-02(6) .57e-02(2) .64e-03(2) .58e-03(2)
Tik-dp .63e-02 .63e-02 .12e-02 .12e-02

4/5 E-Tik-Lag .23e-02(7) .65e-02(2) .13e-03(7) .61e-03(2)
E-Tik-Her .48e-02(3) .10e-01(2) .27e-03(3) .11e-02(2)
E-Tik-Bre .25e-02(3) .30e-02(2) .13e-03(3) .38e-03(3)
E-Tik-Häm-2 .26e-02(3) .58e-02(2) .76e-03(2) .58e-03(2)
Tik-dp .61e-02 .61e-02 .12e-02 .12e-02

1 E-Tik-Lag .15e-02(7) .67e-02(2) .14e-03(6) .62e-03(2)
E-Tik-Her .31e-02(3) .11e-01(2) .17e-03(3) .11e-02(2)
E-Tik-Bre .17e-02(3) .21e-02(2) .11e-03(3) .34e-03(2)
E-Tik-Häm-2 .21e-02(2) .59e-02(2) .11e-02(2) .57e-03(2)
Tik-dp .58e-02 .58e-02 .12e-02 .12e-02

2 E-Tik-Lag .49e-03(7) .69e-02(2) .93e-04(6) .62e-03(2)
E-Tik-Her .99e-03(3) .11e-01(2) .10e-03(2) .11e-02(2)
E-Tik-Bre .49e-03(3) .19e-02(2) .89e-04(2) .15e-03(2)
E-Tik-Häm-2 .38e-02(2) .61e-02(2) .48e-02(2) .57e-03(2)

good approximation property since the k corresponding to (2,4) is usually smaller
than the k corresponding to (2,3).
From Table 5.3 we can see that most of the extrapolated schemes for most

of test problems are effective even though the realization of them is done in a
simplified way. Moreover, among the extrapolated schemes, the E-Tik-Bre seems
to be the best one; the E-Tik-Lag, E-Tik-Her and E-Tik-Häm-2 are more or
less equality.
It should be pointed out that the choice of k is not full-automatically deter-

mined in the tests. For E-Tik-Lag and E-Tik-Häm-2, the rule inTheorem 5.1
is quite effective but it can not always give the optimal index k. For E-Tik-Bre
and E-Tik-Her, we adopt roughly the discrepancy principle but the coefficient
C must be taken carefully.
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Table 5.3 The application of the extrapolated regularization schemes to several test
problems (m = 1000; τ = 0.001).

Problem N.L. E-Tik-Lag E-Tik-Her E-Tik-Bre E-Tik-Häm-2 Tik-dp
(1,1) .47e-1(10) .47e-1(9) .47e-1(5) .51e-1(10) .48e-1
(1,4) .47e-1(8) .47e-1(5) .46e-1(10) .47e-1(10) .48e-1

shaw (2,1) .47e-1(10) .47e-1(10) .52e-1(10) .55e-1(10) .48e-1
(δ = .0696) (2,2) .47e-1(10) .46e-1(10) .46e-1(9) .48e-1(10) .48e-1

(2 4) .47e-1(10) .48e-1(4) .46e-1(10) .48e-1(10) .48e-1
(1,1) .27e-1(2) .31e-1(2) .29e-1(3) .28e-1(3) .29e-1
(1,4) .32e-1(2) .43e-1(2) .31e-1(3) .31e-1(2) .29e-1

heat (2,1) .29e-1(10) .26e-1(10) .28e-1(10) .40e-1(10) .29e-1
(δ = .0014) (2,2) .94e-1(2) .14e-0(3) .29e-1(3) .94e-1(2) .29e-1

(2,4) .27e-1(8) .27e-1(5) .27e-1(9) .28e-1(10) .29e-1
(1,1) .22e-2(9) .23e-2(6) .56e-2(4) .35e-2(10) .38e-2
(1,4) .18e-2(5) .25e-2(3) .57e-2(4) .21e-2(6) .38e-2

foxgood (2,1) .43e-2(10) .24e-2(10) .53e-2(10) .86e-2(10) .38e-2
(δ = .0134) (2,2) .24e-1(2) .33e-1(2) .55e-2(3) .24e-1(2) .38e-2

(2,4) .20e-2(9) .21e-2(6) .62e-2(4) .21e-2(10) .38e-2
(1,1) .12e-1(9) .12e-1(6) .16e-1(8) .12e-1(9) .13e-1
(1,4) .12e-1(5) .12e-1(3) .12e-1(7) .12e-1(6) .13e-1

gravity (2,1) .12e-1(9) .12e-1(9) .12e-1(8) .13e-1(10) .13e-1
(δ = .1396) (2,2) .52e-1(2) .86e-1(2) .12e-1(3) .52e-1(2) .13e-1

(2,4) .12e-1(7) .12e-2(5) .11e-1(8) .12e-1(10) .13e-1

5.7 Conclusion

In conclusion, if the true solution of the problems is smooth and the extrapo-
lated parameters are selected properly, the extrapolated regularization methods
are usually better than the single Tikhonov regularization method. But for the
problems with lower smoothness, as [7] pointed out, “the positive effect of ex-
trapolation was moderate.” As a simplified version, the node-location of (2,4) is
attractive when the information about smoothness of the problem is not known at
all. Finally, more effective rules for selecting the extrapolation parameters must
be ulteriorly studied at least for E-Tik-Bre and E-Tik-Her schemes.
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Chapter 6

Modified Regularization Scheme with
Application in Reconstructing
Neumann-Dirichlet Mapping

Pingli Xie and Jin Cheng

Abstract. In this chapter, we propose a new regularization method for solving a
linear operator equation when the operator and right hand term are both known
approximately. The advantage of our method is that we just use the information
about the error level instead of assuming the reliable bounds of the unknown so-
lution. The algorithms are presented and the numerical simulation results show
the efficiency of our method. As an application, we discuss the problem of re-
constructing the Neumann-Dirichlet mapping from the discrete Neumann and
Dirichlet data. The Neumann-Dirichlet mappings are used widely in the study-
ing of inverse problems for partial differential equations.

6.1 Introduction

Tikhonov regularization is a widely used tool for solving the linear and nonlinear
ill-posed problems in the engineering sciences. There is much research on this
topic, for both the theoretical and numerical aspects. We refer to the books [2],
[6], [9] and the references in these books.
Our focus in this chapter is solving ill-posed problems of the form

A0x = y0, (6.1.1)
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where A0 ∈ L(X, Y ) is a linear, injective and bounded operator with a non-closed
rangeR(A0), X, Y are Hilbert spaces with corresponding inner products (·, ·) and
norms ‖ · ‖.
Throughout the context, we assume that the right-hand side y0 belongs to

R(A0) so that there exists a unique solution x† ∈ X to equation (6.1.1).
Such problems arise, for example, from the discretization of ill-posed problems

such as integral equations of the first kind. See, e.g., [1, 2, 4, 5] for examples and
details. In real applications, an ideal problem like (6.1.1) is seldom available, and
the following situation is more realistic:
1) Instead of the exact right-hand side y0 ∈ R(A0), noisy data yδ ∈ Y are

given with
‖y0 − yδ‖ ≤ δ. (6.1.2)

2) Instead of the exact operator A0 ∈ L(X, Y ), some approximate operator
Ah is given with

‖A0 −Ah‖ ≤ h. (6.1.3)

As mentioned in [7], for ill-posed problems, regularized total least squares
methods (RTLS) take account of additional perturbations in the operator A0 [3].
This method, however, requires a reliable bound for ‖Bx†‖, which is generally
unknown. On the other hand, in some applications, reliable bounds for the noise
levels δ and h in (6.1.2) and (6.1.3) are known. In this case, it makes sense to
look for approximations (x̂, ŷ, Â) subject to some conditions with respect to these
parameters. The method of dual regularized least squares [7] is out of such an
motivation. But then, the solution is obtained only when the constraint inequality
is replaced by equality, i.e., the solution must satisfy

Ax = y, ‖y − yδ‖ = δ, ‖A−Ah‖ = h,

which is not always the case in real applications. Notice that the noisy level of
‖y− yδ‖ is of order δ and ‖Bx‖ is bounded. Motivated by this, we propose a new
method to minimize the functional

δ2‖Bx‖2 + ‖y − yδ‖2

instead of ‖Bx‖ in [7].
Note that in the modified regularization scheme, we not only obtain the so-

lution, but also get the approximation of the operator. As an application of our
method, we discuss the reconstruction of Neumann-Dirichlet mapping for the el-
liptic equation of the second order in the plane by the Neumann and Dirichlet
data.
This chapter is organized as follows: In Section 6.2, we introduce the new

method and study its error bounds. Computational aspects are described in Sec-
tion 6.3, an iterative method for numerically computing the regularization pa-
rameters is provided. Section 6.4 contains the numerical simulation results for
our method. In Sections 6.5 and 6.6, we show how to apply our method to recon-



Modified Regularization Scheme in Neumann-Dirichlet Mapping 129

structing the Neumann-Dirichlet mapping from the given Neumann and Dirichlet
data.

6.2 Regularization method

Our regularization of the ill-posed problems is based on Tikhonov regularization
for the linear least squares problems with exact operators. In our method, an
estimate (x, y, A) for (x†, y0, A0) from known data (yδ, Ah) is determined by
solving the constrained minimization problem

δ2‖Bx‖2 + ‖y − yδ‖2 → min, subject to Ax = y, ‖A−Ah‖ ≤ h. (6.2.1)

Substituting the constraint Ax = y into the problem (6.2.1), we can get the
corresponding Lagrange multiplier formulation

L(A, x, μ) = δ2‖Bx‖2 + ‖Ax− yδ‖2 + μ(‖A−Ah‖2 − h2), (6.2.2)

where μ is the Lagrange multiplier, zero if the inequality constraint is inactive.
In the context, we always assume that is active. The solution to this problem can
be characterized by the following theorem.

Theorem 6.2.1. The solution to (6.2.1), with the inequality constraint replaced
by equality, is a solution to the problem

(AT
h Ah + αBT B + βI)x = AT

h yδ, (6.2.3)

where α and β are positive regularization parameters given by

α =
μ+ ‖x‖22

μ
δ2, (6.2.4)

β = −‖Ahx− yδ‖22
μ+ ‖x‖22

, (6.2.5)

and μ is the Lagrange multiplier in (6.2.2). Moreover, the two parameters can be
expressed as

α =
‖Ahx− yδ‖2

‖Ahx− yδ‖2 + h‖x‖2 δ2, (6.2.6)

β =
‖Ahx− yδ‖2
‖x‖2 h. (6.2.7)

Proof. We eliminate y in problem (6.2.1) and characterize the solution to (6.2.1)
by setting the partial derivatives of the Lagrange function L in (6.2.2) to zero.
Thus we can obtain
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Lx = 2δ2BT Bx+ 2AT (Ax− yδ) = 0, (6.2.8)

LA = 2(Ax− yδ)xT + 2μ(A−Ah) = 0, (6.2.9)

Lμ = ‖A−Ah‖2 − h2 = 0. (6.2.10)

From (6.2.9), we have A(xxT + μI) = μAh + yδx
T , or equivalently,

A = (μAh + yδx
T )(xxT + μI)−1

= (μAh + yδx
T )(

1
μ

I − 1
μ(μ+ ‖x‖22)

xxT ) (6.2.11)

= Ah − 1
μ+ ‖x‖22

(Ahx− yδ)xT .

Substituting this into (6.2.8) and gathering the terms, we readily arrive at the
equation

δ2BT Bx+
μ

μ+ ‖x‖22
AT

h Ahx− μ‖Ahx− yδ‖22
(μ+ ‖x‖22)2

x =
μ

μ+ ‖x‖22
AT

h yδ.

Multiplying this equation by (μ+‖x‖22)/μ implies the equivalent equation (6.2.3)
with α and β given by (6.2.4) and (6.2.5) respectively. It remains proving (6.2.6)
and (6.2.7). To this end, we recall equation (6.2.11), due to the property of ‖ ·‖F ,
i.e.,

‖xyT‖F = ‖x‖2‖y‖2, for all x ∈ Rn, y ∈ Rm,

we have

‖A−Ah‖F =
∣∣∣∣ 1
μ+ ‖x‖22

∣∣∣∣ ‖Ahx− yδ‖2‖x‖2.

This together with (6.2.10) gives

|μ+ ‖x‖22| = ‖Ahx− yδ‖2‖x‖2/h.

Thus, μ = ‖Ahx−yδ‖2‖x‖2
h −‖x‖22, if μ+‖x‖22 > 0; and μ = − ‖Ahx−yδ‖2‖x‖2

h −‖x‖22,
if μ+ ‖x‖22 < 0.
Therefore, we have two cases:
(i).

α =
‖Ahx− yδ‖2

‖Ahx− yδ‖2 − h‖x‖2 δ2, β = −‖Ahx− yδ‖2
‖x‖2 h; (6.2.12)

and (ii)

α =
‖Ahx− yδ‖2

‖Ahx− yδ‖2 + h‖x‖2 δ2, β =
‖Ahx− yδ‖2
‖x‖2 h. (6.2.13)

Since the regularization parameters are both positive, we cast the first case
out here. Thus, we get the desired result. ��
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6.3 Computational aspect

In the following, we first provide the algorithm for our new regularization method.

Algorithm 6.3.1 (Solving problem (6.2.3)). Input: ε > 0, yδ, Ah, B, δ and h.
(i) Choose some starting value x∗, and find α and β with (6.2.6) and (6.2.7).
(ii) Solve (AT

h Ah + αBT B + βI)x = AT
h yδ.

(iii) Update αnew and βnew by (6.2.6) and (6.2.7).
(iv) if |αnew − α|+ |βnew − β| ≥ ε, then α := αnew, β := βnew and goto (ii),
(v) else solve (AT

h Ah + αnewBT B + βnewI)x = AT
h yδ.

To reduce the iteration, we propose other two algorithms here. We first solve
the minimization problem with respect to operator A:

δ2‖Bx‖2 + ‖Ax− yδ‖2 → min, subject to ‖A−Ah‖ ≤ h. (6.3.1)

with any fixed point x. Similar to the above Lagrange multiplier analysis, we can
get that this functional derives its minimum at A = Ah + h

‖Ahx−yδ‖2‖x‖2 (Ahx −
yδ)xT . Substituting it into problem (6.2.1), we obtain the minimization problem
with respect to x:

δ2‖Bx‖2 + (‖Ahx− yδ‖+ h‖x‖)2 → min . (6.3.2)

Since there is a cross term 2h‖Ahx − yδ‖‖x‖ in the functional, it may not be
differentiable at zero. Here we use approximate terms to replace it. Then em-
ploy the usual method for solving minimization problem without iteration. Two
different approximations yield the following two algorithms.
Approximating the term with ‖Ahx− yδ‖2 + h2‖x‖2, we have

Algorithm 6.3.2 (Approximate method 1). Input: yδ, Ah, B, δ and h.
Solve (AT

h Ah + δ2

2
BT B + h2I)x = AT

h yδ.

Approximating the term with h‖Ahx− yδ‖2 + h‖x‖2, we have
Algorithm 6.3.3 (Approximate method 2). Input: yδ, Ah, B, δ, and h.

Solve (AT
h Ah + δ2

1+h
BT B + hI)x = AT

h yδ.

The numerical experiments below show that these two methods are not as
efficient as Algorithm 6.3.1, but obviously, they have an advantage over other
methods in computation time since no iterations are involved.

6.4 Numerical simulation results for the modified
regularization

In this section, we present some numerical examples to demonstrate the efficiency
of the new regularization method. Our computations are carried out in Matlab
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using the Regularization Tools package [5]. Below the weighted operator B is
chosen as the discrete approximation matrix to the first derivative operator.

Example 6.4.1. The first test problem we have chosen to illustrate our algorithm
is performed with i laplace((n, 1).

The function i laplace((n, 1) is a discretization of the inverse Laplace trans-
formation, written as a Fredholm integral equation of the first kind∫ b

a

K(s, t)f(t)dt = g(s), s ∈ [a, b], (6.4.1)

by means of Gauss-Laguerre quadrature. The kernel K is given by

K(s, t) = exp(−st),

and both integration intervals are [0,+∞). The corresponding function is imple-
mented with

f(t) = exp(−t/2), g(s) = 1/(s+ 0.5). (6.4.2)

The discretization points number of the kernel and the solution are chosen as
n = 64 to reduce the size of matrix A and the solution x†. The exact discrete
right-hand side is produced by y0 = Ax†. As in [5], the perturbed right hand
side is generated as yδ = (A + h‖E‖−1

F E)x† + δ‖e‖−1
2 e, where the perturbation

matrix E and the vector e are from a normal distribution with zero mean and
unit standard deviation. The exact solution and approximate solutions obtained
by different algorithms are plotted in Fig. 6.1 (a). To illustrate the stability of
different methods, we perform the experiment with 50 different noisy data yδ

generated separately. The corresponding results are given in Fig. 6.1 (b). Here
and after, we use “lu, xx, a2” and “a1” in the legend of each figure to represent

 

Fig. 6.1 (a) The comparison of different solutions in Example 6.4.1; (b) The correspond-
ing stability results in Example 6.4.1.
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the corresponding numerical results derived by the algorithm proposed in [7],
Algorithm 6.3.1, Algorithm 6.3.2 and Algorithm 6.3.3, respectively.

Example 6.4.2. The second example is based on the function baart(n).

It is a discretization of the Fredholm equation∫ π

0

es cos tf(t)dt = 2
sin s

s
, s ∈ [0, π

2
],

with the solution f(t) = sin(t). The results are plotted in Fig. 6.2. As above, the
first figure shows the different solutions and the second provides the stability of
the methods.

 

 

Fig. 6.2 (a) The comparison of different solutions in Example 6.4.2; (b) The stability
results in Example 6.4.2.

Example 6.4.3. The third example is based on the function shaw(n).

It is a discretization of the integral equation of the first kind∫ π
2

−π
2

k(s, t)f(t)dt = g(s), s ∈ [−π

2
,
π

2
],

where the kernel and the solution are given by

k(s, t) = (cos(s) + cos(t))2
(
sin(u)

u

)2

, u = π(sin(s) + sin(t)),

f(t) = a1e
−c1(t−t1)

2
+ a2e

−c2(t−t2)
2
,

a1 = 2, a2 = 1, c1 = 6, c2 = 2, t1 = 0.8, t2 = −0.5.
The corresponding results are shown in Fig. 6.3.



134 P. L. Xie and J. Cheng

 

Fig. 6.3 (a) The different solutions in Example 6.4.3; (b) The stability results in Example
6.4.3.

Example 6.4.4. The final example is based on gravity(n, example, 0, 1.0.25).

It corresponds to the Fredholm equation (6.4.2) with

K(s, t) = 0.25((0.25)2 + (s− t)2)−3/2, f(t) = sin(πt) + 0.5 sin(2πt)

discretized at the interval [0, 1] by means of a collocation scheme with n knots.
The corresponding results are shown in Fig. 6.4.

 

 

Fig. 6.4 (a) The different solutions in Example 6.4.4; (b) The stability results in Example
6.4.4.
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6.5 The Neumann-Dirichlet mapping for elliptic equation
of second order

In many practical problems, there are some possibilities that we do know the
exact structure of the domain, for example, in the case there are unknown cavi-
ties and cracks inside some materials. But we can know the governing equation
and we can measure the data on some part of boundary. This kind mathematical
formulation has been used by many mathematicians. The corresponding inverse
problems have been well studied. But from practical point of view, how to re-
construct the Neumann-Dirichlet mapping is an important topic for applying the
well established mathematical theory and algorithms. There are only few results
on this topic.
In this section, we will mainly show how to realize the reconstruction by the

regularization we proposed in the previous section. The inverse problem we study
is the determination of the unknown inclusions inside the fixed domain.
First, we give the definition of Neumann-Dirichlet mapping.
Consider the elliptic equation in the domain Ω ⊂ R2:⎧⎨⎩

− u = 0, in Ω,
∂u
∂n

= g(x, y), on ΓN ,
u = 0, on ΓD.

(6.5.1)

where ΓD and ΓN are two subset of ∂Ω, which satisfy that ΓD 	= ∅, ΓD∪ΓN = ∂Ω.

The Neumann-Dirichlet mapping is defined as

Λ : g(x, y) �→ u |ΓN .

Our purpose is to construct the Neumann-Dirichlet mapping from the Neu-
mann data g and the corresponding Dirichlte data f = u |ΓN .
Assume that we just have the discrete data (fi, gi), (i = 1, . . . , m), which are

the discrete boundary values of the solutions to the above equation.
We denote the discrete Dirichlet boundary value as fi and the discrete Neu-

mann boundary value as ∂uh

∂n
= gi.

By the regularization method we proposed, we can find the matrix K which
is the minimum solution of the following optimal problem:

1/m

m∑
i=1

‖Kgi − fi‖2 + α‖K‖2F → min, (6.5.2)

where α is the regularization parameter.
Taking the derivative for the functional with respect to K vanished, we can

have
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1/m
m∑

i=1

2(Kgi − fi)f ′i + 2αK = 0.

Then we have

K(1/m
m∑

i=1

gig
′
i + αI) = 1/m

m∑
i=1

fig
′
i.

If we take that {gi}, i = 1, · · · , n are orthogonal vectors, then(
1/m

m∑
i=1

gig
′
i + αI

)
is invertable

when α 	= 1/m
∑

g′i
∑

gi.
Therefore we can get K = 1/m

∑m
i=1 fig

′
i(1/m

∑m
i=1 gig

′
i + αI)−1.

As for our example, equation (6.5.1) is considered in the domain Ω , which has
the outer boundary unit circle. We use the second order triangle finite element
to solve the forward problems and get uh and fi.
It is well known that any function in L2[−π, π] can be expanded to a Fourier se-

ries.

6.6 The numerical results of the Neumann-Dirichlet
mapping

We notice that from the well-posedness of the forward problem, the integral of
g(x, y) on ΓN is 0.
First we transform the boundary ΓN to the interval [0, 2π]. Then the basis

functions of gi can be taken as

cos θ, sin θ, cos(2θ), sin(2θ), · · · , cos(nθ), sin(nθ),

where 0 ≤ θ ≤ 2π,.
It is obvious that these functions are orthogonal. In our examples, we all

take n = 40. We consider the following examples.

Example 6.6.1. We take Ω = {x|‖x‖ < 1}.
Since the problem becomes a Neumann problem for the Laplace equation, we

take u(−1, 0) = 0 to ensure a unique solution. The numerical results are shown
in Fig. 6.5 (a) and (b).

Example 6.6.2. We take Ω = {x|‖x‖ < 1} \ω, where ω = {x|‖x− (0.3, 0.3)‖ <
0.5}.
By taking the regularization parameter α = 10−8, we have the results shown

in Fig. 6.6 (a) and (b).
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Fig. 6.5 (a) The image of K when α = 0.8 in Example 6.6.1; (b) The mesh picture of K
when α = 0.8 in Example 6.6.1.

Fig. 6.6 (a) The image of K when α = 0.8 in Example 6.6.2; The mesh picture of K
when α = 0.8 in Example 6.6.2.

Example 6.6.3. We take Ω = {x|‖x‖ < 1}\ω, where ω = {x|‖x−(−0.3, 0.3)‖ <
0.5}.
By taking the regularization parameter α = 10−8, we have the results shown

in Fig. 6.7 (a) and (b).

6.7 Conclusion

In this chapter, we propose a modified regularization method for the ill-posed
operator equation when both operator and right hand term are known approx-
imately. The numerical algorithms are constructed. The numerical results show
that our method is efficient. As an application of our method, we discuss the prob-
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Fig. 6.7 (a) The image of K when α = 0.8 in Example 6.6.3; (b) The mesh picture of K
when α = 0.8 in Example 6.6.3.

lem of reconstructing the Neumann-Dirichlet mapping from the discrete bound-
ary data for two dimensional problems.
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Chapter 7

Gradient Methods for Large Scale Convex
Quadratic Functions

Yaxiang Yuan

Abstract. The gradient method is one of the most simple methods for solv-
ing unconstrained optimization, it has the advantages of being easy to program
and suitable for large scale problems. Different step-lengths give different gradi-
ent algorithms. In 1988, Barzilai and Borwein gave two interesting choices for the
step-length and established superlinearly convergence results for two-dimensional
convex quadratic problems. Barzilai and Borwein’s work triggered much research
on the gradient method in the past two decades. In this chapter we investigate
how the BB method can be further improved. We generalize the convergence re-
sult for the gradient method with retards. Our generalization allows more choices
for the step-lengths. An intuitive analysis is given on the impact of the step-length
for the speed of convergence of the gradient method. We propose a short BB
step-length method. Numerical results on random generated problems are given
to show that our short step technique can improve the BB method for large
scale and ill-conditioned problems, particularly when high accurate solutions are
needed.

7.1 Introduction

In this chapter we consider the gradient methods for minimizing large scale convex
quadratic functions. Most inverse problems can be formulated as

Lx = z, (7.1.1)
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where z is the given data or observations, and L is an mapping, and x is the
unknown that needs to computed. After discretization and linearization, we will
need to solve a set of linear equations

Ax = b x ∈ "n, (7.1.2)

where b ∈ "n and A ∈ "n×n is a symmetric positive definite matrix. Many
inverse problems can be formulated into (7.1.4) with a very large n and A is ill-
conditioned (for example, see[17, 18, 19, 20]). It is easy to see that linear system
(7.1.2) is equivalent to the following unconstrained optimization problem:

min
x∈Rn

f(x), (7.1.3)

with
f(x) =

1
2
xT Ax− bT x. (7.1.4)

The gradient method is one of the most simple methods for solving (7.1.3)
where f(x) is a continuously differentiable function in "n. Assume that g(x) =
∇f(x) can be obtained at every x. Given an iterate point xk, the gradient method
chooses the next iterate point xk+1 in the following form:

xk+1 = xk − αkgk, (7.1.5)

where gk = g(xk) is the gradient at xk and αk > 0 is a step-length. The gradient
method has the advantages of being easy to program and suitable for large scale
problems. Different step-lengths αk give different gradient algorithms. If αk = α∗k
where α∗k satisfies

f(xk − α∗kgk) = min
α>0

f(xk − αgk), (7.1.6)

the gradient method is the steepest descent method, which is also called the
Cauchy’s method. However, the steepest descent method, though it uses the
“best” direction and the “best” step-length, turns out to be a very bad method
as it normally converges very slowly, particularly for ill-conditioned problems.
In this chapter, we discuss the gradient method for the special case when

f(x) is a strictly convex quadratic function (7.1.4) because this special problem
appears in inverse problems very often.
We denote the eigenvalues of A by λi(i = 1, 2, . . . , n) and assume that

0 < λ1 ≤ λ2 ≤ · · · ≤ λn. (7.1.7)

The steepest descent method, which uses the exact line search step

α∗k =
gT

k gk

gT
k Agk

=
‖Axk − b‖22

(Axk − b)T A(Axk − b)
, (7.1.8)

turns out to converge very slowly when A is ill-conditioned in the sense that the
ratio of λ1/λn is very small.
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In 1988, Barzilai and Borwein[1] gave two interesting choices for the step-length
αk:

αBB1
k =

‖sk−1‖22
sT

k−1yk−1
, (7.1.9)

αBB2
k =

sT
k−1yk−1

‖yk−1‖22
, (7.1.10)

where
sk−1 = xk − xk−1 yk−1 = ∇f(xk)−∇f(xk−1). (7.1.11)

Barzilai and Borwein[1] establishes superlinear convergence results for two di-
mensional convex quadratic problems. Moreover, numerical results indicate that
for convex quadratic funtions f(x) the BB method performs much better than
the steepest descent method. Barzilai and Borwein’s work triggered much re-
search on the gradient method in the past two decades. For example, see Dai[2],
Dai and Fletcher[3], Dai and Liao[4], Dai et al.[5], Dai and Yuan[6, 7], Dai and
Zhang[8], Fletcher[9], Friedlander et al.[10], Hager and Zhang[11], Nocedal et
al.[12], Raydan[13, 14], Raydan and Svaiter[15], Vrahatis et al.[16], Yuan[21, 22]
and Zhou et al.[23]. Among the convergence properties of the BB step, major
results are the following. For n = 2, Barzilai and Browein[1] showed that the
BB step is Q-superlinear convergence for strictly convex quadratic functions. For
general n, Raydan[13] proved the global convergence of the BB method for strict
convex quadratic functions. Dai and Liao[4] proved the R-linear convergence re-
sults for strictly convex quadratic functions. There are many generalizations of
the BB method, including the alternate minimization by Dai and Yuan[6], cycli-
cal BB by Hager and Zhang[11], adaptive BB by Dai et al.[23] and Vrahatis et
al.[16], gradient method with retards by Friedlander et al.[10], and monotone BB
type method by Yuan[21].
In this chapter we consider how the the BB method can be further improved.

First we generalize the global convergence result of the gradient method with
retards, which enables us to use a wider range of step-lengths for the gradient
method. Then, we propose to use short BB step-lengths. Numerical results of
random generated problems indicate that short BB step-lengths will produce
improvement over the standard BB step-length, particularly for large-scale and
ill-conditioned problems.

7.2 A generalized convergence result

Barzilai and Borwein[1] proved the superlinear convergence of their method for
the case having only two variables. Raydan[13] established the global conver-
gence of the gradient method with BB step-lengths for general strictly convex
quadratic functions. The following general global convergence result was given
by Friedlander et al.[10]:
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Theorem 7.2.1. Let f(x) be given by (7.1.4) and A is positive definite. Let m
be a positive integer and qj ≥ 1(j = 1, 2, . . . , m) be m positive numbers. Let {xk}
be generated by the gradient method (7.1.5) with the step-length αk given by

αk =
(xv(k) − x∗)A(ρ(k)−1)(xv(k) − x∗)
(xv(k) − x∗)Aρ(k)(xv(k) − x∗)

, (7.2.1)

where x∗ = −A−1g, ρ(k) ∈ {q1, q2, . . . , qm} and v(k) ∈ {k, k − 1, . . . ,max{0, k −
m}} for k = 0, 1, 2, . . . . Then either xk = x∗ for some finite k or the sequence
{xk} converges to x∗.

For a proof of the above theorem, please see [10]. We can easily generalize the
above theorem to the following more general form:

Theorem 7.2.2. Let f(x) be given by (7.1.4) and A is positive definite. Let m
be a positive integer and γ be a positive number. Let {xk} be generated by the
gradient method (7.1.5) with the step-length αk satisfying

αk ∈

⎡⎢⎢⎢⎣ min
|ρ| ≤ γ,

max[0, k − m] ≤ j ≤ k

gjA(ρ−1)gj

gjAρgj

, max
|ρ| ≤ γ,

max[0, k − m] ≤ j ≤ k

gjA(ρ−1)gj

gjAρgj

⎤⎥⎥⎥⎦ .

(7.2.2)

Then either xk = x∗ for some finite k or the sequence {xk} converges to x∗.

Proof. Our proof is similar to that of Theorem 7.2.1 which is given by Friedlander
et al.[10].
First it is easy to see that (7.2.2) implies that

0 <
1
λn
≤ αk ≤ 1

λ1
(7.2.3)

holds for all k.
Let the orthogonal decomposition of A be as follows:

A = QΛQT , (7.2.4)

where Q = [q1, q2, . . . , qn] is an orthogonal matrix and Λ = Diag[λ1, λ2, . . . , λn].
For any given initial point x0, the gradient g0 = Ax0 + g can be expressed by

g0 =
n∑

i=1

β
(0)
i qi, (7.2.5)

where β
(0)
i ∈ "(i = 1, 2, . . . , n). Let gk =

∑n
i=1 β

(k)
i qi for all k ≥ 0. It follows

from (7.1.5), (7.1.4), (7.2.4) and (7.2.5) that
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β
(k+1)
i = (1− αkλi)β

(k)
i =

k∏
j=0

(1 − αjλi)β
(0)
i . (7.2.6)

From (7.2.6), we have that

|β(k)
1 | = |(1−αk−1λ1)β

(k−1)
1 | ≤

∣∣∣∣(1− λ1

λn

)
β

(k−1)
1

∣∣∣∣ ≤ (1−λ1/λn)k|β(0)
1 | . (7.2.7)

The above inequality shows that

lim
k→∞

β
(k)
1 = 0 . (7.2.8)

We see that the theorem is true if we can prove that

lim
k→∞

β
(k)
i = 0 , (7.2.9)

for all i = 1, 2, . . . , n. If this were not true, there would exist a positive number
δ̂ and an integer l ∈ [1, n− 1] such that (7.2.9) holds for all i = 1, . . . , l and

lim sup
k→∞

|β(k)
l+1| > δ̂ > 0 . (7.2.10)

For any given positive number δ, we have that

lim
|β(k)

l+1|≥δ,k→∞
max
|ρ| ≤ γ,

k −m ≤ j ≤ k

gT
j Aρ−1gj

gT
j Aρgj

(7.2.11)

= lim
|β(k)

l+1|≥δ,k→∞
max
|ρ| ≤ γ,

k −m ≤ j ≤ k

∑n
i=1(β

(j)
i )2λρ−1

i∑n
i=1(β

(j)
i )2λρ

i

≤ lim
|β(k)

l+1|≥δ,k→∞
max
|ρ| ≤ γ,

k −m ≤ j ≤ k

∑l+1
i=1(β

(j)
i )2λρ−1

i∑l+1
i=1(β

(j)
i )2λρ

i

=
1

λl+1
, (7.2.12)

due to the fact that (7.2.9) holds for i = 1, . . . , l and that inequality |β(k)
l+1| ≥ δ

and relation (7.2.6) imply |β(j)
l+1| ≥

(
λ1

λl+1

)m

δ holds for all j ∈ [max[0, k−m], k].

Therefore, there exists a sufficiently large integer k̂ such that

αk ≤ 11
10

1
λl+1

(7.2.13)
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for all k satisfying k ≥ k̂ and

|β(k)
l+1| ≥

λ1

λl+1

δ̂

2
. (7.2.14)

Thus, for any k ≥ k̂, if (7.2.14) holds, we have that

|β(k+1)
l+1 | = |(1− αkλl+1)||β(k)

l+1|

≤ max
[
1− λl+1

λn
,

∣∣∣∣λl+1
11
10

1
λl+1

− 1
∣∣∣∣] |β(k)

l+1|

≤ max[1− λl+1/λn, 0.1]|β(k)
l+1|. (7.2.15)

On the other hand, if (7.2.14) does not hold, from (7.2.6) we can show that

|β(k+1)
l+1 | ≤ max[1− λl+1

λn
, λl+1/λ1 − 1]|β(k)

l+1| ≤ λl+1/λ1|β(k)
l+1| ≤

δ̂

2
. (7.2.16)

It follows from (7.2.15) and (7.2.16) that

lim sup
k→∞

|β(k)
l+1| ≤

δ̂

2
(7.2.17)

which contradicts (7.2.10). This completes our proof. ��
It should be pointed out that the above result can also deduce from a more

general convergence result of Dai[2] by showing that Property (A) of Dai[2] holds.
From Dai’s results it can be shown that the gradient method with (7.2.2) con-
verges R-linearly. The reason for giving our direct and simple proof is to avoid
unnecessary lengthy analysis.
Though the generalization from (7.2.1) to (7.2.2) is very simple and straight-

forward, it does contain more choices for the step-lengths. For example, we can
let αk be the mean values of any two Raleigh ratios:

αk =
1
2

[
gT

j1
Aρ1−1gj1

gT
j1

Aρ1gj1

+
gT

j2
Aρ2−1gj2

gT
j2

Aρ2gj2

]
, (7.2.18)

or

αk =

√
gT

j1
Aρ1−1gj1

gT
j1

Aρ1gj1

gT
j2

Aρ2−1gj2

gT
j2

Aρ2gj2

. (7.2.19)

Moreover, all the known choices of αk (see (4.27)–(4.29) of Dai[2]) having Prop-
erty (A) satisfy our simple condition (7.2.2).
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7.3 Short BB steps

When we apply the gradient method to large scale problems, the most important
issue is which step-length will give a fast convergence rate. Therefore it is vitally
important to find what choices of αk in the interval (7.2.2) require less number of
iterations to reduce the gradient norm to a given tolerance. Much work has been
done on this issue. And it seems that up to now the best choice is the adaptive
BB step given by Zhou et al.[23] in which

αk = αABB
k =

{
αBB2

k , if αBB2
k /αBB1

k < κ;
αBB1

k , otherwise,
(7.3.1)

and κ ∈ (0, 1) is a parameter.
The motivation of the ABB step and its derivation can be found in Zhou et

al.[23]. Basically, The ABB step is a hybrid combination of BB1 and BB2 steps,
which mainly use the BB1 step unless αBB2

k is much smaller than αBB1.
It is trivial that αBB1

k ≥ αBB2
k , namely the BB1 step is normally longer than

the BB2 step. Numerical results favor the BB1 (the longer BB step). However,
to the author’s knowledge, there are no sound theoretical results which ensure
that BB1 is better than BB2, though most papers choose to study the BB1 step
when the BB method is studied. It seems all the theoretical results holding for
the BB1 method are also true for the BB2 method. Thus it is very interesting to
know why BB1 is better than BB2. It would be nice to produce sound theoretical
results to shed light on this question. Unfortunately, we have not yet been able
to do so. In the following paragraph, we give an intuitive analysis on the impact
of the step-lengths for the gradient method.
In order to obtain a fast convergence, we need to make all the terms

β
(k+1)
i = (1− αkλi)β

(k)
i =

k∏
j=0

(1− αjλi)β
(0)
i (i = 1, 2, . . . , n), (7.3.2)

converge to zero as fast as possible. Due to the relation (7.2.6), remembering that
we have 1/λn ≤ αk ≤ 1/λ1, we can see that a smaller αk will reduce β

(k+1)
n more

quickly, while a larger αk will reduce the other β
(k+1)
i (particularly with smaller

i) more quickly. This observation tells us that either the longer BB step (BB1) or
the shorter BB step (BB2) has its own advantage. Theoretically speaking, from
the proof of Theorem 7.2.2, it is more easy to have β

(k)
i converging to zero for

small i (for example, |β(k+1)
1 | ≤ (1− λ1/λn)|β(k)

1 | for all k). Thus, we should put
more weight for reducing βi(k) for large i, which means that we would prefer to
use a shorter step-length. This seems to contradict the fact that the larger step
(BB1) is better than the smaller step (BB2) based on many numerical tests.
For most test examples, we choose the starting point randomly, which would

implies that |qT
i (x0−x∗)|(i = 1, 2, . . . , n) are more or less of the same magnitude.
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Thus, because
β

(0)
i = λiq

T
i (x0 − x∗), i = 1, 2, . . . , n, (7.3.3)

we would have that |β(0)
n | is much larger than the other |β(0)

i | if we assume

λn � λn−1. (7.3.4)

In this case, we will see that the first iteration (with the exact line search) would
give a very small step-length α0 ≈ 1/λn. Consequently, β

(1)
n ≈ 0 while β

(1)
i ≈

β
(0)
i (i = 1, 2, . . . , n−1). Hence, from the second iteration on, it is more important
to reduce the other βi(i = 1, 2, . . . , n− 1) instead of βn. This may, in some sense,
explain that a larger αk (such as BB1) is better than a smaller αk (such as BB2).
However, we would have a different picture when an iterate point xk has the

property that |β(k−1)
i |(i = 1, 2, . . . n) are in the same order. For simplicity, we

suppose that
|β(k−1)

i |2 ≈ ‖gk−1‖22/n, (7.3.5)

for all i = 1, 2, . . . , n. Thus, we would have

αBB1
k ≈ n∑n

j=1 λi
, (7.3.6)

and

αBB2
k ≈

∑n
j=1 λi∑n
j=1 λ2

i

. (7.3.7)

These give that

αBB1
k ≈ n

λn
>>

1
λn
≈ αBB2

k . (7.3.8)

In this case, it can be easily seen that normally the shorter BB step αk = αBB2
k

would give a smaller ‖gk+1‖. Therefore, it is reasonable for us to believe the
shorter BB step (BB2) would be efficient if we want to obtain a very accurate
solution of a very large-scale and ill-conditioned problem.
Hence, we would like to investigate the behavior of the BB2 step and shorter

BB2 steps. What made us to explore the shorter steps is the curiosity on why
BB2 in general performs worse than BB1. Another motivation is our belief that
for very large scale and ill-conditioned problems a shorter step may be more
efficient than a larger step. We consider the short BB2 step:

αk = α
SBB(m)
k = min

max[0,k−m]≤j≤k
αBB2

j , (7.3.9)

where m is a given non-negative integer. If m = 0, the step-length (7.3.9) is
nothing but the BB2 step. For m > 0, αk given by (7.3.9) is not larger and may
be smaller than αBB2

k . Thus we call the method (7.1.5) with (7.3.9) the short BB
method (SBB). The step-length defined by (7.3.9) satisfies (7.2.2), which means
that the SBB method always converges for convex quadratic functions.
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7.4 Numerical results

In this section, we test our SBB method, namely the gradient method (7.1.5)
with (7.3.9). We call our SBB method with parameter m SBB(m). Different
parameters m = 1, 2, 3, 4, 9 and 19 are used. We compared our algorithms with
BB1, BB2 and the adaptive BB (ABB) of Zhou et al.[23]. For the ABB method,
κ = 0.25 is used.
The problem we used to compare the algorithms is the one suggested by

Yuan[21]. The function to be minimized has the following form:

f(x) = (x− x∗)T Diag(λ1, · · · , λn)(x − x∗). x ∈ "n. (7.4.1)

The diagonal structure of the Hessian of the objective function does not lose
generality because the gradient method is invariant with respect to orthogonal
transformations. We test problems from small scale to large scale, with n =
10i(i = 1, 2, 3, 4, 5, 6). The solution vector x∗i (i = 1, . . . , n) ∈ (−5, 5) is randomly
generated. We let λ1 = 1 and λn = Cond(= 10L, L = 1, 2, 3, 4, 5, 6) which is
the condition number of the Hessian of function f(x). λi(i = 2, · · · , n − 1) are
randomly chosen in the interval (1, λn). For all problems the initial point is the
zero vector (0, · · · , 0)T . We use two stop conditions. One is

‖gk‖2 ≤ 10−5‖g0‖2, (7.4.2)

and the other is
‖gk‖2 ≤ 10−5. (7.4.3)

The numerical results with the two different stopping conditions (7.4.2) and
(7.4.3) are reported in Table 7.1 and Table 7.2 separately. For each case (different
n and different λn), 10 runs are made and the average numbers of iterations
required by each algorithm are listed. For each case, The least average iteration
number is given in bold font to indicate the winner amongst all the algorithms.
When the stopping condition is (7.4.2), from Table 7.1 we find that the ABB

method is the winner, as it wins 14 out of the all 36 cases. Ranking by achieving
the least number of iterations, the next best algorithms are SBB(2), SBB(1) and
BB1, with winning in 7, 6 and 5 cases respectively. Table 7.1 also shows that
BB1 is much better than BB2 as expected. If we make a one-to-one comparison
between BB1 and BB2 in all the 36 cases, we find that BB2 wins only 5 cases
while BB1 wins 31 cases. These results agree with the general belief that BB1 is
better than BB2.
Now, let us discuss Table 7.2, where the results with the stopping condition

(7.4.3) are given. Since in general the stopping condition (7.4.3) is more strict
than (7.4.2), some algorithms fail to find a solution within the maximum-allowed
CPU time, which is set to 10 minutes. In Table 7.2, a number marked with a
superscript “∗” is the iteration number of a single run instead of the average of
10 runs. While “Fail” indicates that even a single run failed to find a solution
within 10 minutes.
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Table 7.1 Iteration numbers of different gradient methods (‖gk‖2 ≤ 10−5||g0||2)
n λn ABB BB1 BB2 m=2 m=3 m=4 m=5 m=10 m=20

10 10 19.1 19.1 18.1 18.7 19.0 19.8 22.0 22.5 29.9
10 102 42.7 47.8 54.5 45.1 49.9 52.2 46.5 52.9 67.7
10 103 51.9 103.2 92.9 87.8 77.7 82.6 72.1 73.6 76.2
10 104 76.2 169.6 199.3 106.6 102.4 77.4 72.3 59.0 62.8
10 105 22.2 21.6 24.0 20.9 21.0 22.5 22.2 26.5 34.2
10 106 22.1 23.2 22.1 22.4 21.8 21.6 23.0 28.0 33.9
102 10 19.4 19.4 20.0 19.0 18.9 20.8 21.2 28.3 29.8
102 102 46.6 50.9 56.8 56.5 53.2 55.7 57.1 57.2 64.8
102 103 96.3 110.2 109.0 116.0 111.0 103.2 94.3 103.5 125.0
102 104 149.9 171.6 211.1 168.8 172.9 167.7 144.1 130.3 141.9
102 105 75.8 92.5 124.9 99.2 93.1 81.0 82.1 85.1 95.1
102 106 77.9 88.2 92.0 86.1 74.4 78.0 81.5 79.0 96.7
103 10 19.0 19.0 20.3 18.7 19.0 20.5 21.0 26.7 30.0
103 102 50.1 53.7 56.5 56.4 53.4 60.0 59.7 59.9 65.5
103 103 103.3 109.2 111.8 108.7 104.3 103.3 111.5 113.2 133.5
103 104 106.7 109.2 109.3 107.7 105.6 105.5 105.0 108.6 129.3
103 105 111.4 108.1 124.9 120.8 117.2 110.4 123.2 119.2 129.3
103 106 103.2 107.3 114.1 114.8 108.8 100.6 109.5 109.2 124.9
104 10 19.0 19.0 19.9 18.8 19.0 20.2 21.0 26.3 30.0
104 102 52.6 54.0 56.3 54.9 55.2 55.7 56.3 57.9 65.2
104 103 101.4 111.3 117.2 108.1 101.5 103.7 107.7 106.9 126.0
104 104 116.6 120.0 124.5 127.0 117.5 115.8 121.4 118.3 140.9
104 105 117.7 123.0 119.0 117.5 119.4 112.0 112.3 111.8 132.8
104 106 107.6 121.6 116.0 118.3 111.1 116.2 114.7 117.6 132.5
105 10 19.0 19.0 20.0 19.0 19.0 20.0 21.0 26.0 30.0
105 102 53.7 52.7 59.0 52.2 54.4 55.0 53.6 57.1 65.0
105 103 101.9 96.5 110.9 108.5 95.9 102.0 104.4 116.5 121.0
105 104 111.6 121.8 123.8 118.2 115.5 116.7 121.7 119.9 141.8
105 105 110.9 117.2 120.0 117.7 116.7 124.4 124.1 120.8 142.4
105 106 117.6 115.5 129.6 125.3 123.7 120.9 124.3 120.9 142.6
106 10 19.0 19.0 20.0 19.0 19.0 20.0 21.0 26.0 30.0
106 102 52.0 51.3 59.5 49.8 54.4 56.0 48.1 57.0 65.0
106 103 94.5 103.1 110.7 108.4 94.0 98.1 102.3 111.3 121.0
106 104 110.8 116.8 123.6 122.2 113.1 112.4 124.3 120.3 148.7
106 105 125.5 114.4 118.6 120.8 121.1 115.6 122.8 120.3 149.0
106 106 113.6 113.9 123.6 119.1 113.6 114.7 122.3 120.3 149.0

It is surprising to find that in Table 7.2 the winner now is SBB (19), which wins
18 cases out of all the 36 cases, particularly it wins all the cases when both n and
λn are large. Please notice that the only change that makes Table 7.1 and Table
7.2 different is the stopping condition. For a given case, the 10 repeated randomly
generated problems for both Table 7.1 and Table 7.2 are also the same. This shows
that SBB(19) uses far less numbers of iterations to reduce ‖gk‖2 from 10−5‖g0‖2
to 10−5. Another interesting point is that now BB2 performs much better than
BB1, which is unexpected. If we have a one-to-one comparison between BB1 and
BB2, we find that BB2 wins 23 cases while BB1 wins only 11 cases. Particularly,
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Table 7.2 Iteration numbers of different gradient methods (‖gk‖2 ≤ 10−5)

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19

10 10 24.4 24.4 25.3 24.2 24.9 25.3 26.3 32.7 32.7
10 102 66.7 81.4 85.6 69.5 72.9 73.3 69.4 65.4 76
10 103 98.6 200.3 228.1 183.6 127.7 125.1 105.7 92.4 91.6
10 104 117.1 679.5 608.0 286.3 158.5 116.7 103.6 77.4 85.4
10 105 329.8 2235.0 1148.0 356.5 169.7 122.9 105.2 92.3 95
10 106 1011.6 3052.3 908.4 307.7 152.2 137.1 100.3 97.6 102.2
102 10 30.3 30.3 30.4 30.6 30.7 30.0 29.4 34.1 35.6
102 102 85.8 98.5 106.5 98.3 96.5 93.8 93.4 101.8 111.2
102 103 197.4 328.8 318.2 300.4 277.5 258.3 223.2 179 182.8
102 104 310.4 989.9 937.1 879.9 640.7 502.5 437.1 251.5 220.6
102 105 774.5 2872.9 1903.9 1261.4 792.5 599.5 480.6 260.3 225.6
102 106 1214.4 4522.3 2038.0 1114.8 672.7 537.7 443.8 258.2 236.4
103 10 32.2 32.2 30.5 31.8 31.8 33 31.6 36.1 38.0
103 102 101.1 109.8 104.1 109.2 106.8 105.5 107.3 106.6 121.1
103 103 286.8 343.5 385.4 341.2 305.3 319.8 283.5 217.9 216.1
103 104 530.3 1140.3 1149.2 965.8 819.9 694.3 521.0 337.4 302.3
103 105 988.9 2927.7 2443.9 1638.9 1096.4 934.0 717.8 401.5 346
103 106 1587.5 4534.8 2310.5 1590.7 1076.2 858.2 693.9 384.6 333.7
104 10 34.3 34.3 31.1 32.6 33.1 37.7 34.1 37.0 48.2
104 102 106.9 115.0 113.3 111.2 108.8 114.2 113.6 114.0 133.3
104 103 334.4 380.7 370.2 385.1 351.8 321.7 304.9 233.1 233.5
104 104 921.6 1272.5 1250.8 1071.9 888.8 742.6 646.0 387.4 338.4
104 105 1610.6 3226.1 2574.3 1827.0 1424.7 1014.5 940.8 502.0 425.1
104 106 2316.0 5954.0 3404.7 1993.3 1602.7 1271.6 1069.7 534.6 454.1
105 10 35.0 35.0 33.5 35.7 35.3 39.3 38.4 38.0 57.0
105 102 115.3 119.3 121.7 117.5 115.6 117.7 122.2 120.5 150.3
105 103 349.5 402.0 416.8 392.2 367.9 325.9 317.9 239.3 244.8
105 104 1055.7 1341.9 1195.8 1057.7 869.4 748.5 645.7 389.3 357.1
105 105 2291.1 2640∗ 2475.3 2088.8 1527.6 1217.6 979.6 559.4 461.0
105 106 2140∗ 5120∗ 3149∗ 2445.1 1924.8 1571.7 1263.5 654.9 531.5
106 10 36.9 36.9 35.2 36.7 36.5 39.4 41.0 40.0 58.0
106 102 121.1 123.4 131.5 129.3 125.3 123.0 123.1 122.3 150.3
106 103 369∗ 376∗ 461∗ 470∗ 410∗ 387∗ 303∗ 243∗ 220∗

106 104 1154∗ 1130∗ 1325∗ 1128∗ 977∗ 760∗ 613∗ 406∗ 364∗

106 105 Fail Fail Fail Fail 1557∗ 1192∗ 1023∗ 520∗ 456∗

106 106 Fail Fail Fail Fail Fail 1357∗ 1343∗ 652∗ 567∗

BB2 wins over BB1 for all the very ill-conditioned cases, when λn = 105 or
λn = 106.
Now we consider two specific distributions of the eigenvalues λi(i = 2, . . . , n−

1). The first case is

λi+1

λi
=
(

λn

λ1

) 1
n−1

, i = 1, 2, . . . , n− 1. (7.4.4)

And the second case is to have λi(i = 2, . . . , n − 1) equally distributed in the
interval (1, λn). To be more exact, we let λi+1 − λi be constant:
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λi+1 − λi =
λn − λ1

n− 1 , i = 1, 2, . . . , n− 1. (7.4.5)

In both cases, the stopping condition is

‖gk‖2 ≤ 10−6‖g0‖2. (7.4.6)

The solution is chosen by vector x∗i (i = 1, . . . , n) ∈ (−0.5, 0.5) randomly, and
the average number of iterations out of 10 runs with the fixed starting point
(0, 0, . . . , 0)T are given in Table 7.3 and Table 7.4 for the two cases respectively.
From Table 7.3, the numerical results favor our SBB method over the ABB,

BB1 and BB2 methods. Particularly, for very ill-conditioned problems, namely
problems with λn = 105, our SBB method performs much better than ABB, BB1
and BB2. Therefore, we believe that for ill-conditioned problems with λi+1/λ1 ≈
constant, the SBB method will be much faster than ABB, BB1 and BB2.

Table 7.3 Iteration numbers of different gradient methods when λi+1/λi is constant.

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10 10 25.3 25.3 25.5 24.7 25.3 25.5 26.2 34.3 32.4
103 10 25.4 25.4 26.3 25.7 25.9 23.1 24.3 32.0 32.2
105 10 25.0 25.0 26.0 25.0 26.0 23.0 25.0 32.0 33.0
10 103 178.9 173.5 169.1 149.1 113.5 103.7 95.5 101.6 132.9
103 103 200.3 245.4 246.8 230.4 230.8 211.8 212.2 187.5 179.7
105 103 196.5 215.8 240.0 236.8 202.5 202.4 213.0 193.7 222.0
10 105 836.9 802.8 720.7 203.6 130.0 118.7 127.2 136.7 179.5
103 105 1262.6 1444.1 1702.1 1391.2 1148.5 966.6 832.8 477.9 377.6
105 105 1297.5 1482.5 1447.0 1406.7 1291.2 1175.5 1025.7 678.8 437.3

From Table 7.4, we can see that all the algorithms perform more or less the
same. Actually, the ABB method, which wins when λn = 103 for n = 10, 103

and 105, can be regarded as the overall best method when the stopping condition
is (7.4.6). Similar to the phenomenon revealed in Tables 7.1 and 7.2, we also
observe that our SBB method will outperform ABB method if a more accurate

Table 7.4 Iteration numbers of different gradient methods when λi+1 − λi is constant.

n λn ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19
10 10 22.0 22.0 23.9 21.6 23.0 24.0 25.0 33.8 32.5
103 10 24.4 24.4 25.7 23.5 23.4 22.9 24.1 33.0 32.0
105 10 24.0 24.0 26.0 23.0 23.0 23.0 24.0 33.0 32.0
10 103 54.8 130.4 131.7 125.8 96.1 108.4 107.8 96.5 70.5
103 103 145.6 163.7 168.4 157.8 162.3 160.7 155.1 147.1 177.0
105 103 144.5 158.0 163.0 155.9 146.5 152.5 153.0 149.7 168.5
10 105 237.9 382.1 549.9 280.3 158.3 111.6 104.5 77.0 109.7
103 105 151.4 164.0 185.7 164.4 165.0 155.0 165.4 148.8 159.2
105 105 262.0 286.4 295.3 274.7 266.9 282.7 268.1 238.5 244.1
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solution is needed. For example, let us consider the situation when n = 103 and
λn = 103, which is the case that ABB wins for the stopping condition (7.4.6). If
the stopping condition is replaced by ‖gk‖2 ≤ 10−9‖g0‖2 the ABB method needs
263.6 iterations while the SBB(9) method needs 243.7 iterations. If we use an
even more strict stopping condition ‖gk‖2 ≤ 10−12‖g0‖2, the ABB method would
need 380.2 iterations against 304.3 iterations by the SBB(9) method. Even for the
situation when n = 10 and λn = 103, for which the ABB method preforms much
better than the other methods under the stopping condition (7.4.6), we find that
the ABB method requires 126.0 iterations comparing 117.2 iterations by SBB(9)
method if the stopping condition is replaced by ‖gk‖2 ≤ 10−13‖g0‖2. Of course,
in real applications it is unlikely to require such high accurate solutions.
For many practical problems, matrix A is obtained by finite difference ap-

proximation to Laplace’s equation[9, 23]. For such A, we can easily see that the
differences λi+1 − λi are of the same magnitude for many i. Therefore, we ex-
pect that for such problems derived from Laplace equations the best gradient
method to use is the ABB method. Indeed, we treated the Laplace1 (b) problem
of Fletcher[9] in which A is defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎣

W −I
−I W −I

−I W
. . .

. . .
. . . −I
−I W

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ "
106×106

(7.4.7)

where

W =

⎡⎢⎢⎢⎢⎢⎢⎣

T −I
−I T −I

−I T
. . .

. . . . . . −I
−I T

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ "
104×104

, T =

⎡⎢⎢⎢⎢⎢⎢⎣

6 −1
−1 6 −1
−1 6

. . .
. . . . . . −1
−1 6

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ "
102×102

.

(7.4.8)
It is known[9] for this matrix A we have λn/λ1 ≈ 4133.6. In Table 7.5, we give
the numbers of iterations needed for all the algorithms with different stopping
conditions

‖Axk − b‖2 ≤ θ‖b‖2, θ = 10−4, 10−5, 10−6, 10−7, 10−8, 10−9. (7.4.9)

The starting point is x0 = (0, 0, . . . , 0)T for all the runs.
Our results in Table 7.5 confirm the finding of Zhou et al.[23] that the ABB

method is better than the BB1 method. Moreover, for this specific problem, BB1
is much better than BB2. Though our short BB2 steps do show improvements
over the original BB2 method, the SBB methods do not perform as good as the
ABB method for this Laplace1(b) problem. Therefore it is reasonable for us to
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Table 7.5 Iterations for Laplace1 (b) with different stopping conditions.

θ ABB BB1 BB2 m=1 m=2 m=3 m=4 m=9 m=19

10−4 173 176 157 178 200 199 166 181 225
10−5 276 394 392 278 289 298 290 322 417
10−6 387 462 611 374 426 558 361 442 605
10−7 460 510 864 478 458 760 493 652 701
10−8 570 590 1017 737 601 844 645 820 759
10−9 590 611 1062 775 819 851 676 881 942

believe that if we want to find a better gradient method than the ABB method for
such problems derived from Laplace equations, we might need to explore special
step-lengths which make good use of the special eigenvalue distributions of such
matrices. This is an interesting and important problem to study because many
practical problems are derived from Laplace equations.

7.5 Discussion and conclusion

In this chapter we have generalized the convergence result for the gradient method
with retards by Friedlander et al.[10] from (7.2.1) to (7.2.2). Our simple gener-
alization allows more choices of step-lengths αk. We give an intuitive analysis
on the impact of the step-length of the gradient method for large-scale and ill-
conditioned problems, and believe that short step-lengths in the interval (7.2.2)
should perform better than long step-lengths. We propose the short BB2 (SBB)
method, which uses the smallest value of all the BB2 step-lengths in the pre-
vious m iterations as the step-length. Numerical results of large-scale and ill-
conditioned problems show that the SBB method performs better than the BB
methods and the adaptive BB method if a high accurate solution is needed. Our
numerical results also reveal that BB2 is better than BB1 when we need to find
a very high accurate solution for large-scale and ill-conditioned problems. This
is, to some extent, a surprising discovery because in general it has been widely
regarded that BB1 is better than BB2. Our numerical results also suggest that
corresponding special step-lengths might be needed to construct efficient gradient
methods for solving problems with certain special eigenvalue distributions such
as those problems derived from Laplace equations.
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Chapter 8

Convergence Analysis of Nonlinear
Conjugate Gradient Methods

Yuhong Dai

Abstract. Conjugate gradient methods are a class of important methods for
unconstrained optimization and vary only with a scalar βk. In this chapter, we
analyze general conjugate gradient method using the Wolfe line search and pro-
pose a condition on the scalar βk, which is sufficient for the global convergence.
An example is constructed, showing that the condition is also necessary in some
sense for the global convergence of general conjugate gradient method. To make
better use of the condition, we introduce a new property for conjugate gradient
methods. It is shown that many conjugate gradient methods have such property,
including the FR, PRP, HS, and DY methods and the FR-PRP, and DY-HS
hybrid methods. Consequently, convergence results are gained for these methods
under mild assumptions. In addition, an analysis is also given to a new conjugate
gradient method, which further demonstrates the usefulness of the condition and
the new property. Some discussions about the bound in the hybrid conjugate
gradient methods are also given.

8.1 Introduction

Conjugate gradient methods are a class of important methods for solving the the
unconstrained nonlinear optimization problem

min f(x), x ∈ Rn, (8.1.1)
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especially if the dimension n is large. The methods without regular restarts are
of the form

xk+1 = xk + λkdk, (8.1.2)
dk = −gk + βkdk−1, (8.1.3)

where d1 = −g1 = −∇f(x1), λk is a step-length obtained by a line search, and
βk is a scalar. The step-length λk is often required to satisfy the strong Wolfe
conditions, namely,

f(xk + λkdk)− f(xk) ≤ ρλkgT
k dk, (8.1.4)

|g(xk + λkdk)T dk| ≤ −σgT
k dk, (8.1.5)

where 0 < ρ < σ < 1. The scalar βk should be so chosen that the method (8.1.2)–
(8.1.3) reduces to the linear conjugate gradient method in the case when f is a
convex quadratic and the line search is exact. Some well-known formulae for βk

are called the FR [9], PRP [15, 16], HS [12] and DY [7] formulae, and are given
by

βFR
k = ||gk||2/||gk−1||2, (8.1.6)

βPRP
k = gT

k yk−1/||gk−1||2, (8.1.7)
βHS

k = gT
k yk−1/dT

k−1yk−1, (8.1.8)

βDY
k = ‖gk‖2/dT

k−1yk−1, (8.1.9)

respectively, where ‖ · ‖ denotes the l2−norm of Rn, and yk−1 = gk − gk−1.
Although all these methods have the quadratic termination property, their

convergence properties and numerical performances may be very different for
general objective functions. Basically, nonlinear conjugate gradient methods can
be divided into the following three categories. The first category includes the
FR, and DY methods, etc. In practical computations, this category of methods
perform worse than the second, and third categories for they may produce small
steps continuously ([17, 8]). However, their convergences can be achieved under
mild assumptions. For example, the FR method with the strong Wolfe line search
is shown to converge globally for general functions if the scalar σ in (8.1.5) is not
greater than 0.5 (for example, see [1, 5]). The DY method is globally convergent
provided that λk satisfies the Wolfe conditions, namely, (8.1.4) and

g(xk + λkdk)T dk ≥ σgT
k dk, (8.1.10)

where 0 < ρ < σ < 1 [7]. The second category includes the PRP, and HS
methods, etc. If a small step occurs, the methods in this category can generate
search directions close to the negative gradient direction and hence avoid the
propensity of small steps [17, 10]. As a result, they perform often much better
than the first category of methods. However, Powell [17] was able to show that the
PRP method with exact line searches can cycle round eight nonstationary points.
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The example also applies to the HS method since the two methods are the same
in case of exact line searches. Till 1992, Gilbert and Nocedal [10] gave the global
convergence of the PRP method with the restriction βk ≥ 0 for general functions.
The third category includes the FR-PRP, and DY-HS hybrid methods, etc. This
category was first proposed by Touati-Ahmed and Storey [20]. They suggested
the following hybrid method of the FR, and PRP methods:

βk = max{0,min{βPRP
k , βFR

k }}. (8.1.11)

Gilbert and Nocedal [10] further considered the hybrid method

βk = max{−βFR
k ,min{βPRP

k , βFR
k }}, (8.1.12)

that allows negative values. The hybrid methods (8.1.11) and (8.1.12) have the
following advantages: (i) their convergences can be achieved similar to FR; and
(ii) they can avoid the propensity of small steps like PRP. However, their numer-
ical performances are worse than PRP, though better than FR (for example, see
[10]). Dai and Yuan [8]) extended the convergence result of the DY method in
[7] to the following hybrid method:

βk = max{0,min{βHS
k , βDY

k }}. (8.1.13)

Promising numerical results were also obtained for this hybrid method [8, 4].
For a collection of medium and large-scale problems drawn from CUTE [2], it
was shown that the use of the Wolfe line search in the hybrid method (8.1.13) is
better than the use of the strong Wolfe line search, and that the method with the
Wolfe line search performs better than the PRP method with the strong Wolfe
line search for most of the test problems.
Although the already-existing results offer fascinating glimpses into the be-

havior of conjugate gradient methods, its theory still remains fragmentary [14].
A comprehensive theory of conjugate gradient methods, which is regarded in [14]
as one of the outstanding challenges in theoretical optimization, is then to be
developed. Reference [3] analyzed general conjugate gradient method with the
strong Wolfe line search, and showed that the method converges globally if ‖dk‖2
increases mostly linearly (see Lemma 8.2.3). Since it is possible to get conver-
gence results and develop efficient algorithms in the conjugate gradient field via
the Wolfe line search, as stated in the previous paragraph, we will analyze general
conjugate gradient method with the Wolfe line search in this chapter. Specifically,
since conjugate gradient methods vary only with the scalar βk, we ask the follow-
ing question: what condition on βk can ensure the global convergence of general
conjugate gradient method?
We will provide an answer to this question in Section 8.3 after giving some

preliminaries in the next section. See (8.3.5) for the condition. An example is also
constructed in Section 8.3, which shows that the condition (8.3.5) is necessary
in some sense for the global convergence of general conjugate gradient method.
To make better use of the condition, we will introduce a new property, namely,
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Property (#) , for conjugate gradient methods in Section 8.4. It is shown that
all the three categories of conjugate gradient methods may have such property.
As a result, convergence results can be obtained conveniently for these methods
under suitable assumptions. An analysis is also given to a new conjugate gradient
method in Section 8.4, which further demonstrates the usefulness of the condition
(8.3.5) and Property (#) . Some discussions about the bound in hybrid methods
are made in the last section.

8.2 Some preliminaries

Throughout this chapter, we assume that gk 	= 0 for all k ≥ 1 for otherwise
a stationary point has been found. We also assume that βk 	= 0 for all k ≥ 1.
This is because if βk = 0, the direction in (8.1.3) reduces to the negative gradient
direction. Thus either the method converges globally if βk = 0 for infinite number
of k, or one can regard some xk as the new initial point.
We give the following basic assumptions of the objective function.

Assumption 8.2.1. (i) The level set L = {x ∈ Rn : f(x) ≤ f(x1)} is bounded,
where x1 is the starting point; (ii) In some neighborhood N of L, f is continuously
differentiable, and its gradient is Lipschitz continuous; namely, there exists a
constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, for all x, y ∈ N . (8.2.1)

Under Assumption 8.2.1 on f , we state a very useful result, which was mainly
obtained by Zoutendijk [23] and Wolfe [21, 22].

Lemma 8.2.2. Suppose that Assumption 8.2.1 holds. Consider any iterative
method of the form (8.1.2), where dk satisfies gT

k dk < 0 and λk is obtained by
the Wolfe line search. Then

∞∑
k=1

(gT
k dk)2

||dk||2 < +∞. (8.2.2)

Relation (8.2.2) is normally called the Zoutendijk condition. In the case that
the sufficient descent condition holds,

−gT
k dk ≥ c‖gk‖2, for some c > 0 and all k ≥ 1, (8.2.3)

we can conclude from (8.2.2) that if ‖dk‖2 increases at most linearly,∑
k≥1

1
‖dk‖2 = +∞, (8.2.4)

the iterative method converges in the sense that
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lim inf
k→∞

‖gk‖ = 0. (8.2.5)

In fact, the sufficient descent condition (8.2.3) is often implied or required in
many convergence analyses of conjugate gradient methods, for example see [1,
10, 11, 13, 20]. However, for general method (8.1.2)–(8.1.3) with strong Wolfe
line searches, Dai et al. [3] showed that this result still holds even if the sufficient
descent condition (8.2.3) is replaced with the descent condition gT

k dk < 0.

Lemma 8.2.3. Suppose that Assumption 8.2.1 holds. Consider any iterative
method of the form (8.1.2)–(8.1.3), where dk satisfies gT

k dk < 0 and λk is obtained
by the strong Wolfe line search. Then if the condition (8.2.4) holds, then the
method gives the convergence relation (8.2.5).

In the above lemma, the condition (8.2.4) is also necessary in some sense for
the global convergence, as will be briefly discussed in Section 8.5.

8.3 A sufficient and necessary condition on βk

The purpose of this section is to provide a condition on βk, which is sufficient for
the global convergence of general conjugate gradient method with the Wolfe line
search. To do so, we will first give some analyses for general conjugate gradient
method with the strong Wolfe line search with the help of Lemma 8.2.3 (see
§8.3.1). In §8.3.2, we will give a basic lemma for any method in the form of
(8.1.2)–(8.1.3) and prove that the condition (8.3.5) can really ensure the global
convergence of general conjugate gradient method with the Wolfe line search. An
example is constructed in §8.3.3, which shows that the condition (8.3.5) is also
necessary in some sense for the global convergence.

8.3.1 Proposition of the condition

In this subsection, we assume that the step-length λk satisfies the strong Wolfe
conditions (8.1.4)–(8.1.5). By Lemma 8.2.3, we know that if the relation (8.2.4)
holds, then the method gives the convergence relation (8.2.5). Otherwise, we have
that ∑

k≥1

1
‖dk‖2 < +∞, (8.3.1)

which gives
lim

k→∞
‖dk‖ = +∞. (8.3.2)

It follows from Assumption 8.2.1 that

‖gk‖ ≤ γ̄, for some γ̄ > 0 and all k ≥ 1. (8.3.3)
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Then by (8.1.3), (8.3.2) and (8.3.3), we have that

‖dk‖ ≈ |βk| ‖dk−1‖. (8.3.4)

Thus if the scalar βk is such that

∑
k≥1

k∏
j=2

β−2
j = +∞, (8.3.5)

it is possible for us to establish (8.2.4) and then by Lemma 8.2.3 obtain a con-
tradiction to (8.3.1). We formally describe this result as follows and give a strict
proof, since the proof here is easy to understand and is quite different from the
one for the Wolfe line search.

Theorem 8.3.1. Suppose that Assumption 8.2.1 holds. Consider any method
of the form (8.1.2)–(8.1.3) with dk satisfying gT

k dk < 0 and with the strong
Wolfe line searches (8.1.4) and (8.1.5). If βk satisfies (8.3.5), we have that
lim inf
k→∞

‖gk‖ = 0.

Proof. We write (8.1.3) as follows:

dk + gk = βkdk−1. (8.3.6)

Squaring both sides of (8.3.6), we get that

‖dk‖2 = −2gT
k dk − ‖gk‖2 + β2

k‖dk−1‖2. (8.3.7)

Noting that

−2gT
k dk − ‖gk‖2 ≤ (gT

k dk)2

‖gk‖2 , (8.3.8)

it follows from this and (8.3.7) that

‖dk‖2 ≤ (gT
k dk)2

‖gk‖2 + β2
k‖dk−1‖2 (8.3.9)

Letting θk be the angle between −gk and dk, namely,

cos θk =
−gT

k dk

‖gk‖ ‖dk‖ , (8.3.10)

we get from (8.3.9) and (8.3.10) that
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‖dk‖2 ≤ (1− cos2 θk)−1β2
k‖dk−1‖2

≤ · · · · · ·

≤
k∏

j=j0

(1− cos2 θj)−1 (
k∏

j=j0

β2
j )‖dj0−1‖2, (8.3.11)

where j0 ≥ 2 is any integer. We now assume that (8.2.5) does not hold and hence
there exists some constant γ > 0 such that

‖gk‖ ≥ γ, for all k ≥ 1. (8.3.12)

Then it follows from (8.2.2), (8.3.10) and (8.3.12) that∑
k≥1

cos2 θk < +∞. (8.3.13)

The above relation clearly implies that∏
j≥j0

(1− cos2 θj) ≥ c, for some c > 0 and integer j0 ≥ 2. (8.3.14)

By (8.3.11), (8.3.14) and (8.3.5), we know that (8.2.4) holds. Thus by Lemma
8.2.3, (8.2.5) holds. This with (8.3.12) gives a contradiction, which ends the proof.

��

8.3.2 Sufficiency of (8.3.5)

In the above subsection, we propose a condition on (8.3.5) for the global conver-
gence of general conjugate gradient method with the strong Wolfe line search. Its
proof is based on Lemma 8.2.3. In this subsection, we prove that Theorem 8.3.1
still holds if the strong Wolfe conditions are replaced with the Wolfe conditions.
At first, we present a basic lemma for general method (8.1.2)–(8.1.3) without

line searches (see [6] for a similar lemma).

Lemma 8.3.2. Consider any method of the form (8.1.2)–(8.1.3). Define φk and
tk as follows:

φk :=

{
‖gk‖2, for k = 1;∏k

j=2 β2
j , for k ≥ 2

(8.3.15)

and

tk :=
‖dk‖2

φ2
k

. (8.3.16)

Then we have for all k ≥ 1,
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tk = −2
k∑

i=1

gT
i di

φ2
i

−
k∑

i=1

‖gi‖2
φ2

i

. (8.3.17)

Proof. Since d1 = −g1 and φ1 = ‖g1‖2, (8.3.17) holds for k = 1. For k ≥ 2,
dividing (8.3.7) by φ2

k and using the definitions of tk and φk, we get that

tk = tk−1 − 2gT
k dk

φ2
k

− ‖gk‖2
φ2

k

. (8.3.18)

Summing this expression for k = 2, . . . , k, we obtain

tk = t1 − 2
k∑

i=2

gT
i di

φ2
i

−
k∑

i=2

‖gi‖2
φ2

i

. (8.3.19)

Since d1 = −g1 and t1 = ‖g1‖2/φ2
1, the above relation is equivalent to (8.3.17).

So (8.3.17) holds for all k ≥ 1. ��
To show our main result, we still require the following lemma. See, for example,

Pu and Yu [19] for its proof.

Lemma 8.3.3. Suppose that {ai} and {bi} are positive number sequences, sat-
isfying

bk ≤ c1 + c2

k∑
i=1

ai, for all k, (8.3.20)

where c1 and c2 are positive constants. If the sum
∑
k≥1

ak is divergent, then∑
k≥1

ak/bk is also divergent.

Now we prove that the condition (8.3.5) on βk is sufficient for the global
convergence of any method of the form (8.1.2)–(8.1.3).

Theorem 8.3.4. Suppose that Assumption 8.2.1 holds. Consider any method
of the form (8.1.2)–(8.1.3) with dk satisfying gT

k dk < 0 and with the Wolfe line
searches (8.1.4) and (8.1.10). If βk satisfies (8.3.5), we have that lim inf

k→∞
‖gk‖ = 0.

Proof. Define φk as in (8.3.15). It follows from (8.3.5) that∑
k≥1

1
φ2

k

= +∞. (8.3.21)

Using (8.3.8) in (8.3.17), we can get

tk ≤
k∑

i=1

(gT
i di)2

‖gi‖2φ2
i

. (8.3.22)
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Since tk ≥ 0, we also have by (8.3.17) that

−2
k∑

i=1

gT
i di

φ2
i

≥
k∑

i=1

‖gi‖2
φ2

i

. (8.3.23)

Noting that

−4gT
k dk − ‖gk‖2 ≤ 4

(gT
k dk)2

‖gk‖2 (8.3.24)

for any k, we obtain from this and (8.3.23) that

4
k∑

i=1

(gT
i di)2

‖gi‖2φ2
i

≥ −4
k∑

i=1

gT
i di

φ2
i

−
k∑

i=1

‖gi‖2
φ2

i

≥
k∑

i=1

‖gi‖2
φ2

i

. (8.3.25)

Now we proceed by contradiction and assume that (8.3.12) holds. Then by
(8.3.25), (8.3.21) and (8.3.12), we have that

∑
k≥1

(gT
k dk)2

‖gk‖2φ2
k

= +∞. (8.3.26)

Using relations (8.3.22), (8.3.26) and Lemma (8.3.3), we then obtain

∑
k≥1

(gT
k dk)2

‖gk‖2φ2
k

1
tk

=
∑
k≥1

(gT
k dk)2

‖gk‖2‖dk‖2 =
∑
k≥1

cos2 θk = +∞, (8.3.27)

which contradicts (8.3.13). The contradiction shows the truth of (8.2.5). ��
Thus we have proved that the condition on βk is sufficient for the global

convergence of general conjugate gradient method with the Wolfe line search.
Instead of the sufficient descent condition (8.2.3), only the descent condition
dT

k gk < 0 is used in the Theorem. Since different nonlinear conjugate gradient
methods vary with the scalar βk and condition (8.3.5) only concerns βk, we believe
that Theorem 8.3.4 is very powerful in the convergence analyses of conjugate
gradient methods, as will partly be shown in the coming section.
From the proof to Theorem 8.3.4, we can see that the relation (8.3.22) gives an

upper bound for the quantity tk = ‖dk‖2/φ2
k, whereas (8.3.25) estimates the lower

bound of a quantity related to gT
k dk. Both the relations (8.3.22) and (8.3.25) are

derived from (8.3.17). Then by the two relations and Lemma 8.3.3, we are able
to prove the sufficiency of (8.3.5) for the global convergence of general conjugate
gradient method with the Wolfe line search.
For some conjugate gradient method, we know that if the sequence {‖dk‖2}

increases mostly linearly,
‖dk‖2 ≤ c1 + c2k, (8.3.28)

where c1 and c2 are positive constants, and if the sufficient descent condition
(8.2.3) holds for all k, then we can conclude the global convergence by the Zou-
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tendijk condition (8.2.2) and the contradiction principle. Such approach is often
used in the convergence analyses of many conjugate gradient methods, for ex-
ample, the analyses of the FR method in Al-Baali [1] and the ones of the PRP
method in Gilbert and Nocedal [10]. From the proof to Theorem 8.3.4, we see that
the sufficient descent condition (8.2.3) is not necessary, but the roles of (8.3.22)
and (8.3.25) are similar to those of (8.3.28) and (8.2.3).
For convenience in use, we give the following corollary of Theorem 8.3.4 at the

end of this subsection.

Corollary 8.3.5. Suppose that Assumption 8.2.1 holds. Consider any method
of the form (8.1.2)–(8.1.3) with dk satisfying gT

k dk < 0 and with the Wolfe line
searches (8.1.4) and (8.1.10). If there exist nonnegative constants c1 and c2 such
that

k∏
j=2

β2
j ≤ c1 + c2k, (8.3.29)

we have that lim inf
k→∞

‖gk‖ = 0.

Proof. Since (8.3.29) implies that (8.3.5) holds, the statement follows Theorem
8.3.4. ��

8.3.3 Necessity of (8.3.5)

In this subsection, we consider the necessity of the condition (8.3.5). To make
our analyses more general, we assume that the line search is exact, namely,

gT
k+1dk = 0, for all k. (8.3.30)

We also assume that the iterations {xk; k = 2, 3, . . .} fall into a region Ω where
f is a quadratic function with the unit Hessian,

f(x) =
1
2
xT x, x ∈ Ω ⊂ Rn. (8.3.31)

Then by (8.1.3) and (8.3.30), we have that

dT
k gk = −‖gk‖2, (8.3.32)

‖dk‖2 = ‖gk‖2 + β2
k‖dk−1‖2. (8.3.33)

It follows from (8.1.2), (8.1.3) and (8.3.31) that

gk+1 = gk + αkdk, (8.3.34)

which with (8.3.30) and (8.3.32) gives
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αk = − gT
k dk

‖dk‖2 =
‖gk‖2
‖dk‖2 . (8.3.35)

By squaring both sides of (8.3.34) and using (8.3.32), (8.3.35) and (8.3.33), we
get that

‖gk+1‖2 = ‖gk‖2+2αkgT
k dk +α2

k‖dk‖2 = ‖gk‖2
[
1− ‖gk‖2

‖dk‖2
]
= β2

k

‖dk−1‖2
‖dk‖2 ‖gk‖2.

(8.3.36)
The recursion of the above relation yields

‖gk+1‖2 =
⎛⎝ k∏

j=2

β2
j

⎞⎠ · ‖d1‖2
‖dk‖2 · ‖g2‖2. (8.3.37)

Still define φk and tk as in Lemma 8.3.2. Then we see that (8.3.37) is equivalent
to

‖gk+1‖2 = t−1
k ‖d1‖2‖g2‖2. (8.3.38)

On the other hand, we have from (8.3.17), (8.3.32) and d1 = −g1 that

tk =
k∑

i=1

‖gi‖2
φ2

i

. (8.3.39)

Note from the second equality in (8.3.36) that the sequence {‖gk‖2; k = 2, 3, . . .}
is monotonically decreasing. Thus have that

‖gk‖ ≤ ‖g2‖, for all k ≥ 2. (8.3.40)

Therefore if (8.3.5) is false, namely,

∑
k≥2

k∏
j=2

β−2
j < +∞, (8.3.41)

we have from the definition of φk , (8.3.40) and (8.3.39) that

tk ≤M, for some positive constant M . (8.3.42)

Relations (8.3.42) and (8.3.38) indicate that

‖gk‖ ≥M−1‖d1‖2‖g2‖2, for all k, (8.3.43)

which implies that the iterations can not approach the unique minimizer x∗ = 0
of the function in (8.3.31). By contrast, if (8.3.5) is true, we have by the definition
of φk, (8.3.39) and (8.3.38) that tk → +∞ and lim

k→∞
‖gk‖ = 0. Therefore, in this
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example, any method of the form (8.1.2)–(8.1.3) converges globally if and only if
the condition (8.3.5) holds.

8.4 Applications of the condition (8.3.5)

In the above section, we have presented a sufficient condition, namely, (8.3.5),
on βk for the global convergence of general conjugate gradient method using the
Wolfe line search. As a matter of fact, the previous analyses do not depend on
the choice of βk and hence apply to any method of the form (8.1.2)–(8.1.3). To
make better use of the condition in the conjugate gradient field, we will introduce
a new property, namely, Property (#), in §4.1. Such property may apply to all
the three categories of conjugate gradient methods. Consequently, by Theorem
8.3.4 and Property (#), convergence results can conveniently be gained for some
known conjugate gradient methods (see §4.2). An analysis is also given to a new
conjugate gradient method, which further shows the usefulness of Theorem 8.3.4
and Property (#) (see §4.3).

8.4.1 Property (#)

In [10], Gilbert and Nocedal proposed the so-called Property (∗) for the second
category of conjugate gradient methods and brought about the convergence re-
sults for the PRP, and HS methods with the restriction βk ≥ 0. The purpose
of this subsection is to define a new property, that may apply to all the three
categories of conjugate gradient methods.
Denoting sk−1 = xk − xk−1, we define Property (#) as follows:

Property (#). Consider a method of the form (8.1.2)–(8.1.3), and suppose that

0 < γ ≤ ‖gk‖ ≤ γ̄, for all k. (8.4.1)

Under this assumption we say that the method has Property (#) if there exist a
positive and uniformly bounded sequence {ψk}, and constants b ≥ 1 and λ > 0
such that for all k:

(1) |βk| ≤ b ψk

ψk−1
; (8.4.2)

(2) if ‖sk−1‖ ≤ λ, then |βk| ≤ 1
b

ψk

ψk−1
. (8.4.3)

The above Property (#) clearly has Property (∗) in [10] as its special case.
Under the same assumption (8.4.1), Property (∗) requires that there exist con-
stants b > 1 and λ > 0 such that |βk| ≤ b and if ‖sk−1‖ ≤ λ, then |βk| ≤ 1

2b . So
if Property (∗) holds, Property (#) must be true with ψk ≡ 1.
Similar to [10], we now present an analysis of the PRP method. Let
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b =
2γ̄2

γ2
, λ =

γ2

Lγ̄b
, ψk ≡ 1, (8.4.4)

where L is the Lipschitz constant in (8.2.1). Then by (8.1.7), (8.4.1) and (8.2.1),
we can get that

|βPRP
k | ≤ (‖gk‖+ ‖gk−1‖)‖gk‖

‖gk−1‖ ≤ 2γ̄2

γ2
= b

ψk

ψk−1
, (8.4.5)

and if ‖sk−1‖ ≤ λ,

|βPRP
k | ≤ ‖yk−1‖ ‖gk‖

‖gk−1‖ ≤ Lγ̄‖sk−1‖
γ2

≤ Lλγ̄

γ2
=
1
b

ψk

ψk−1
. (8.4.6)

So Property (#) holds with the b, λ and ψk in (8.4.4). If we reduce the above λ
by half, then Property (∗) in [10] also holds.
Since the ψk in Property (#) can be any bounded sequence, and since the

factor 1
2 of Property (∗) is missing in (8.4.3), Property (#) may apply to not

only the second category of methods but the first and third categories. In fact,
for the FR method, which belongs to the first category, we can choose

b = 1, ψk = ‖gk‖2, and λ is any positive number. (8.4.7)

By the definition (8.1.6) of βFR
k , (8.4.2)–(8.4.3) clearly holds. In addition, (8.4.1)

implies that ψk = ‖gk‖2 is uniformly bounded. Thus the FR method has Property
(#). For the DY method with the Wolfe line search, we can get by multiplying
(8.1.3) with gk and using (8.1.9) that

gT
k dk =

‖gk‖2
dT

k−1yk−1
gT

k−1dk−1. (8.4.8)

The above relation and (8.1.9) give an equivalent formula of βDY
k (see also [7]):

βDY
k =

gT
k dk

gT
k−1dk−1

. (8.4.9)

Further, we have from this, (8.4.8), (8.4.1) and (8.1.10) that

−gT
k dk ≤ (1− σ)−1‖gk‖2 ≤ (1− σ)−1γ̄2. (8.4.10)

Thus for the DY method, Property (#) holds with

b = 1, ψk = −gT
k dk, and any λ > 0. (8.4.11)

For the FR-PRP, and DY-HS hybrid methods, that belong to the third category,
we have by (8.1.11), (8.1.12) and (8.1.13) that |βk| ≤ βFR

k or βk ∈ [0, βDY
k ].
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Hence these hybrid methods have also Property (#) , as will be seen in the
proof of Corollaries 8.4.2 and 8.4.3.
To sum up, Property (#) includes Property (∗) in [10] as its special case, and

may apply to all the three categories of conjugate gradient methods.

8.4.2 Applications to some known conjugate gradient methods

In this subsection, we will discuss how to use Theorem 8.3.4 and Property (#)
to analyze the global convergence of some known conjugate gradient methods.
At first, we have the following theorem for those methods for which Property

(#) holds with b = 1.

Theorem 8.4.1. Suppose that Assumption 8.2.1 holds. Consider any method of
the form (8.1.2)–(8.1.3), where the scalar βk has Property (#) with b = 1. If the
step-length λk satisfies the Wolfe conditions (8.1.4) and (8.1.10) and the descent
condition gT

k dk < 0, then we have that lim inf
k→∞

‖gk‖ = 0.

Proof. We proceed by contradiction, assuming that (8.3.12) holds. Then we know
by (8.3.12) and (8.3.3) that (8.4.1) is true. By Property (#) with b = 1, we then
have that

k∏
j=2

β2
j =

ψ2
k

ψ2
1

, (8.4.12)

which with the boundedness of ψk implies that (8.3.29) holds. Thus by Corollary
8.3.5, we have lim inf

k→∞
‖gk‖ = 0, contradicting (8.3.12). The contradiction shows

the truth of this theorem. ��
By the above theorem, we can analyze the global convergence of some conju-

gate gradient methods in the first and third categories. For example, we have the
following result for the FR method and its related hybrid methods.

Corollary 8.4.2. Suppose that Assumption 8.2.1 holds. Consider the method
(8.1.2)–(8.1.3) with |βk| ≤ βFR

k . If the step-length λk satisfies the Wolfe condi-
tions (8.1.4) and (8.1.10) and the descent condition gT

k dk < 0, then we have that
lim inf
k→∞

‖gk‖ = 0.

Proof. Noting that the method is such that (8.4.2)–(8.4.3) holds with the param-
eters in (8.4.7), the statement follows Theorem 8.4.1. ��
The above corollary clearly covers the FR method and the hybrid methods

(8.1.11) and (8.1.12). If the strong Wolfe conditions (8.1.4)–(8.1.5) are used, and
if σ ≤ 0.5, we can prove any method (8.1.2)–(8.1.3) with |βk| ≤ βFR

k generates a
descent direction at every iteration. Then by Corollary 8.4.2, we know that there
is the global convergence, and hence obtain again those corresponding results in
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[1, 5, 10] for the FR method. For the DY method and its related hybrid method,
we also have the following corollary. See also [8] for the result.

Corollary 8.4.3. Suppose that Assumption 8.2.1 holds. Consider the method
(8.1.2)–(8.1.3) with βk = rkβDY

k . If the step-length λk satisfies the Wolfe condi-
tions (8.1.4) and (8.1.10), and if

rk ∈
[
σ − 1
1 + σ

, 1
]

, (8.4.13)

then we have that lim inf
k→∞

‖gk‖ = 0.

Proof. First, we prove by induction that gT
k dk < 0 for all k. In fact, since d1 =

−g1, it is obvious that gT
1 d1 < 0. Suppose that gT

k−1dk−1 < 0. Then we have by
(8.1.10) that

lk :=
gT

k dk−1

gT
k−1dk−1

≤ σ. (8.4.14)

It follows from (8.1.3) and βk = rkβDY
k that

gT
k dk = −‖gk‖2 + rkβDY

k gT
k dk−1, (8.4.15)

from (8.4.13) and (8.4.14), we obtain

gT
k dk =

1 + (rk − 1)lk
lk − 1 ‖gk‖2 ∈ [− 1

1 + σ
‖gk‖2, 0). (8.4.16)

So gT
k dk < 0. By the induction principle, gT

k dk < 0 for all k.
Further, by βk = rkβDY

k , (8.4.15) and the definition of lk, we get that

βk =
rk

1 + (rk − 1)lk
gT

k dk

gT
k−1dk−1

, (8.4.17)

from (8.4.13) and (8.4.14), we can obtain

|βk| ≤ gT
k dk

gT
k−1dk−1

. (8.4.18)

This relation and (8.4.16) indicate that Property (#) holds with the parameters
in (8.4.11). Therefore the result follows Theorem 8.4.1. ��
To use Property (#) to analyze the second category of conjugate gradient

methods, we now provide the following general lemma. In the lemma, we denote
N∗ to be the set of positive integers and

Kλ
k,Δ := {i ∈ N∗ : k ≤ i ≤ k +Δ− 1, ‖si−1‖ ≥ λ}, (8.4.19)

and let |Kλ
k,Δ| be the number of elements of the set Kλ

k,Δ.
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Lemma 8.4.4. Suppose that Assumption 8.2.1 holds. Consider any method
(8.1.2)–(8.1.3) having Property (#), where the step-length λk satisfies the Wolfe
conditions (8.1.4) and (8.1.10) and the descent condition gT

k dk < 0. If there exist
Δ ∈ N∗ and integer k0 such that

|Kλ
k,Δ| ≤

Δ
2

, for any k ≥ k0, (8.4.20)

we have that lim inf
k→∞

‖gk‖ = 0.

Proof. For any i ≥ 1, denote

pi := |Kλ
k0,iΔ|. (8.4.21)

It follows by (8.4.20) and the arbitrariness of k ≥ k0 in the relation that

pi ≤ iΔ
2

. (8.4.22)

This means that in the range [k0, k0 + iΔ− 1) there are exactly pi indices j such
that ‖sj−1‖ > λ, and thus there are (iΔ − pi) indices with ‖sj−1‖ < λ. Using
this fact, (8.4.2), (8.4.3) and (8.4.22), we obtain for any i ≥ 1

k0+iΔ−1∏
j=k0

β2
j ≤ b2pi (

1
b
)2(iΔ−pi)

k0+iΔ−1∏
j=k0

ψ2
j

ψ2
j−1

≤ b2(2pi−iΔ)
ψ2

k0+iΔ−1

ψ2
k0−1

≤ ψ2
k0+iΔ−1

ψ2
k0−1

. (8.4.23)

Since {ψk} is uniformly bounded, the above relation indicates that (8.3.5) holds.
Thus the result follows Theorem 8.3.4. ��
Now we prove a general result for any method with Property (#) and βk ≥ 0.

The restriction that βk ≥ 0 was first suggested by Powell [18] for the PRP method
and later used by Gilbert and Nocedal [10] in getting the convergence result for
algorithms related to the PRP method.

Theorem 8.4.5. Suppose that Assumption 8.2.1 holds. Consider any method
(8.1.2)–(8.1.3) with Property (#) and βk ≥ 0. If the step-length λk satisfies the
Wolfe conditions (8.1.4) and (8.1.10) and the descent condition gT

k dk < 0, then
we have either

lim inf
k→∞

‖dk‖ < +∞, (8.4.24)

or the convergence relation (8.2.5) holds.

Proof. Suppose that (8.1.10) is false. Then we have that

lim
k→∞

‖dk‖ = +∞. (8.4.25)
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Since gT
k dk < 0, we have that dk 	= 0. Define uk := dk/‖dk‖,

ρk :=
−gk

‖dk‖ and δk :=
βk‖dk−1‖
‖dk‖ . (8.4.26)

From (8.1.3), we have for k ≥ 2:

uk = ρk + δkuk−1. (8.4.27)

Note that ‖uk‖ = ‖uk−1‖ = 1 and by (8.3.3) and (8.4.25), lim
k→∞

‖ρk‖ = 0. Hence,

by (8.4.27),
lim

k→∞
|δk| = 1, (8.4.28)

which with (8.4.27) and the condition δk ≥ 0 implies that

lim
k→∞

‖uk − uk−1‖ = lim
k→∞

‖ρk + (δk − 1)uk−1‖ = 0. (8.4.29)

In addition, using (8.1.2) and the definition of uk, we can write for any indices
l, k, with l ≥ k:

xl−xk−1 =
l∑

i=k

‖si−1‖ui−1 =
l∑

i=k

‖si−1‖uk−1+
l∑

i=k

‖si−1‖(ui−1−uk−1). (8.4.30)

So we have that

l∑
i=k

‖si−1‖ ≤ ‖xl − xk−1‖+
l∑

i=k

‖si−1‖‖ui−1 − uk−1‖

≤ 2B +
l∑

i=k

‖si−1‖ ‖ui−1 − uk−1‖, (8.4.31)

where B is a bound of the level set L.
We now proceed by contradiction and assume that lim inf

k→∞
‖gk‖ 	= 0. Then by

Lemma 8.4.4, for any Δ and integer k0, there exists an index k ≥ k0 such that

|Kλ
k,Δ| >

Δ
2

. (8.4.32)

Let Δ := �8B/λ�. For this Δ, by (8.4.29), we can choose k0 such that

‖uk − uk−1‖ ≤ 1
2Δ

, for all k ≥ k0. (8.4.33)

Then for any i ∈ [k, k +Δ− 1], we have by (8.4.29) and (8.4.33) that



174 Y. H. Dai

‖ui−1 − uk−1‖ ≤
i−1∑
j=k

‖uj − uj−1‖ ≤ Δ ·
(

1
2Δ

)
=
1
2
. (8.4.34)

Using (8.4.34) and (8.4.32) in (8.4.31), with l = k +Δ− 1, we obtain

2B ≥ 1
2

k+Δ−1∑
i=k

‖si−1‖ >
λ

2
|Kλ

k,Δ| >
λΔ
4

. (8.4.35)

Thus Δ < 8B/λ, which contradicts the definition of Δ. Therefore (8.2.5) holds,
which ends our proof. ��
Note that if (8.4.24) holds, then (8.2.4) must be true. Thus by Lemma 8.2.3,

we know that the convergence relation (8.2.5) holds if the Wolfe line search in
Theorem 8.4.5 is replaced with the strong Wolfe line search. Consequently, we
have the following corollary for the PRP method with βk ≥ 0. See also [3] for
this result.

Corollary 8.4.6. Suppose that Assumption 8.2.1 holds. Consider the method
(8.1.2)–(8.1.3) with βk = max{βPRP

k , 0}. If the step-length λk satisfies the strong
Wolfe conditions (8.1.4)–(8.1.5) and the descent condition gT

k dk < 0, we have
that lim inf

k→∞
‖gk‖ = 0.

Proof. Suppose that this corollary is false and (8.3.12) holds. Then, noting that
βk is nonnegative and that Property (#) holds with the parameters in (8.4.4), we
have by Theorem 8.4.5 that relation (8.4.24) holds. It follows that (8.2.4) is true.
Therefore by Lemma 8.2.3, we obtain lim inf

k→∞
‖gk‖ = 0, contradicting (8.3.12). The

contradiction shows the truth of this corollary. ��
Noting that relations (8.2.2), (8.2.3) and (8.3.12) indicate the truth of (8.4.25),

we know that there is also the global convergence if the descent condition gT
k dk <

0 in Theorem 8.4.5 is replaced with the sufficient descent condition (8.2.3). Thus
we can prove the following result for the HS method with βk ≥ 0 ([10]). The
proof here is different from the one in [10].

Corollary 8.4.7. Suppose that Assumption 8.2.1 holds. Consider the method
(8.1.2)–(8.1.3) with βk = max{βHS

k , 0}. If the step-length λk satisfies the Wolfe
conditions (8.1.4) and (8.1.10) and the sufficient descent condition (8.2.3), then
we have that lim inf

k→∞
‖gk‖ = 0.

Proof. We proceed by contradiction and assume that (8.3.12) holds. Define

b =
2γ̄

cγ(1− σ)
, ψk = −gT

k dk, λ =
cγ(1− σ)

Lb
. (8.4.36)

Then it follows by (8.1.8), (8.3.12), (8.3.3), (8.1.10), (8.2.3) and (8.2.1) that
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|βHS
k | ≤ 2γ̄‖gk‖

(σ − 1)gT
k−1dk−1

≤ bgT
k dk

gT
k−1dk−1

= b
ψk

ψk−1
, (8.4.37)

and if ‖sk−1‖ ≤ λ,

|βHS
k | ≤ Lλ‖gk‖

(σ − 1)gT
k−1dk−1

≤ gT
k dk

bgT
k−1dk−1

=
1
b

ψk

ψk−1
. (8.4.38)

In addition, the line search condition (8.1.10) and gT
k−1dk−1 < 0 imply that

|gT
k dk−1| ≤ |dT

k−1yk−1|. (8.4.39)

By (8.1.3), (8.1.8) and (8.3.3), we have that

−gT
k dk = ‖gk‖2 − gT

k dk−1

dT
k−1yk−1

gT
k yk−1 ≤ ‖gk‖2 + |gT

k yk−1| ≤ 3γ̄2. (8.4.40)

The above relation implies that the ψk is a bounded sequence. So Property (#)
holds. Since βk ≥ 0, we have by Theorem 8.4.5 and (8.3.12) that (8.4.24) is
true. However, we have from (8.2.2), (8.2.3) and (8.3.12) that lim

k→∞
‖dk‖ = +∞,

contradicting (8.4.24). The contradiction shows the truth of this corollary. ��

8.4.3 Application to a new conjugate gradient method

To further show the usefulness of Property (#) in the convergence analyses of
conjugate gradient methods, we will consider a new conjugate gradient method
in this subsection.
For any method of the form (8.1.2)–(8.1.3), noting that

dT
k gk = −‖gk‖2 + βkgT

k dk−1, (8.4.41)

we know that dk is a descent direction if the (k − 1)-th line search is enough
exact. Since exact line searches are expensive, and since the line search is only to
minimize the objective function in the one-dimensional subspace {xk−1+αdk−1},
it is preferable to do some inexact line search in practical computations. Suppose
that the Wolfe line search is used and dk−1 is a descent direction. In this case, to
ensure the descent property of dk, we know from (8.4.41) that the choice of βk

should satisfy
βkgT

k dk−1 < ‖gk‖2. (8.4.42)

Assuming that

βk =
‖gk‖2

gT
k dk−1 + τk

, (8.4.43)

where τk satisfies
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gT
k dk−1 + τk > 0, (8.4.44)

the condition (8.4.42) is equivalent to

τk > 0. (8.4.45)

If we choose τk = −gT
k−1dk−1, then it follows from the descent property of dk−1

and the second Wolfe condition (8.1.10) that the relations (8.4.44) and (8.4.45)
hold. This method is just the DY method, for which we have proved its descent
property and global convergence (see [7] or Corollary 8.4.3). Another possible
choice is that

τk = ‖gk−1‖2, (8.4.46)

which with (8.4.43) gives

βk =
‖gk‖2

gT
k dk−1 + ‖gk−1‖2

. (8.4.47)

For such method, we can really prove that it can produce a descent direction at
every iteration if the parameter σ in (8.1.10) is not greater than 0.25. However,
due to the good numerical performances of the hybrid method (8.1.13), we are
only interested in the following hybrid method of (8.4.47):

βk =
max{0,min{gT

k yk−1, ‖gk‖2}}
gT

k dk−1 + ‖gk−1‖2 . (8.4.48)

Under mild assumptions, we can prove that the method (8.4.48) produces a
descent direction at every iteration and converges globally. The proof is mainly
based on Theorem 4.5.

Theorem 8.4.8. Suppose that Assumption 8.2.1 holds. Consider the methods
(8.1.2), (8.1.3), (8.4.48), where the step-length λk satisfies the Wolfe conditions
(8.1.4) and (8.1.10). If the parameter σ is such that

σ ≤ 0.25, (8.4.49)

we have that for all k ≥ 1,

−2‖gk‖2 ≤ gT
k dk < 0. (8.4.50)

Further, we have that lim inf
k→∞

‖gk‖ = 0.

Proof. Defining

ξk = max
{
0,min

{
gT

k yk−1

‖gk‖2 , 1
}}

, (8.4.51)

the formula (8.4.48) for βk can be rewritten as
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βk =
ξk‖gk‖2

gT
k dk−1 + ‖gk−1‖2 . (8.4.52)

Multiplying (8.1.3) by −gk and using (8.4.52), we can get

−gT
k dk =

(1− ξk)gT
k dk−1 + ‖gk−1‖2

gT
k dk−1 + ‖gk−1‖2 ‖gk‖2. (8.4.53)

We now prove by induction that (8.4.50) holds for all k ≥ 1. In fact, since
d1 = −g1, (8.4.50) holds for k = 1. Suppose that (8.4.50) holds for some k − 1.
Then by (8.1.10), (8.4.49) and the induction hypothesis, we get

gT
k dk−1 ≥ σgT

k−1dk−1 ≥ −12‖gk−1‖2. (8.4.54)

Then it follows from (8.4.53), (8.4.54) and ξk ∈ [0, 1] that

−gT
k dk

‖gk‖2 =
(1− ξk)

gT
k dk−1
‖gk−1‖2 + 1

gT
k dk−1

‖gk−1‖2 + 1
≥ min

{
ξ̄kak + 1
ak + 1

: ak ≥ −12 , ξ̄k ∈ [0, 1]
}
= 2.

(8.4.55)
The above relation implies that (8.4.50) holds for k. By induction, (8.4.50) holds.
So each dk is a descent search direction.
Now we show that the method has Property (#). In fact, using (8.4.53), we

can also write βk as

βk =
ξk(−gT

k dk)
(1− ξk)gT

k dk−1 + ‖gk−1‖2 . (8.4.56)

By (8.4.50), (8.4.54) and the fact that ξk ∈ [0, 1], we have

(1− ξk)gT
k dk−1 + ‖gk−1‖2 ≥ 1

2
‖gk−1‖2 ≥ 1

4
(−gT

k−1dk−1), (8.4.57)

which with (8.4.56) implies that

|βk| ≤ 4ξk
gT

k dk

gT
k−1dk−1

. (8.4.58)

Let b = 4, λ = γ/(16L) and ψk = −gT
k dk. It follows by (8.4.58) and ξk ∈ [0, 1]

that (8.4.2) holds. If ‖sk−1‖ ≤ λ, we have from the definition (8.4.51) of ξk,
(8.2.1) and (8.4.1) that

|ξk| ≤ ‖yk−1‖
‖gk‖ ≤ Lλ

γ
=
1
b
. (8.4.59)

Thus (8.4.3) is also true. In addition, (8.4.50) and (8.3.3) imply that ψk is uni-
formly bounded. So Property (#) holds.
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We now proceed by contradiction, assuming (8.3.12). In this case, by Theorem
8.4.5, we know that lim inf

k→∞
‖dk‖ < +∞ and hence there must exist constant M >

0 such that
‖dki‖ ≤M (8.4.60)

holds for some infinite subsequence {ki} ⊂ N∗. It follows by this and (8.3.3) that

gT
ki+1dki ≤ ‖gki+1‖ ‖dki‖ ≤ γ̄M. (8.4.61)

Applying (8.4.61) and (8.3.12) in (8.4.53) (with k replaced by ki + 1), we obtain

−gT
ki+1dki+1 ≥ γ4

γ̄M + γ2
, (8.4.62)

which with the Zoutendijk condition means that

lim
i→∞

‖dki+1‖ = +∞. (8.4.63)

On the other hand, we have by (8.4.56), ξk ∈ [0, 1], (8.4.54), (8.3.12) and (8.3.3)
that

|βk| ≤ 2‖gk‖2
‖gk−1‖2 ≤

2γ̄2

γ2
. (8.4.64)

By (8.1.3), (8.4.64) and (8.3.3), we can prove

‖dki+1‖ ≤ γ̄ +
2γ̄2

γ2
‖dki‖. (8.4.65)

Thus by (8.4.60) and (8.4.63), we obtain a contradiction by letting i → ∞ in
(8.4.65). The contradiction shows that lim inf

k→∞
‖gk‖ = 0. ��

According to our numerical experiences with the hybrid method (8.1.13) with
the Wolfe line search [4, 8], the parameter σ in (8.1.10) can be chosen as 0.1. Thus,
to some extent, we would be satisfied with the condition (8.4.49) in Theorem
8.4.8.

8.5 Discussion

In this chapter we have analyzed nonlinear conjugate gradient methods, where
the step-length is computed by the Wolfe line search under the assumption that
all the search directions are descent. A general condition on the scalar βk, that is
(8.3.5), was proposed which is sufficient for the global convergence. Since different
conjugate gradient methods vary with the scalar βk, we believe that the result is
very powerful in the convergence analyses of conjugate gradient methods.
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To use the result better, we have presented a new property, that is Property
(#), for conjugate gradient methods. It was also shown that such property may
apply to all the three categories of conjugate gradient methods, including the
FR, PRP, HS and DY methods and the hybrid methods (8.1.11), (8.1.12) and
(8.1.13). As a result, convergence analyses were provided for these methods under
mild assumptions.
The result in Section 8.3 can also be used to analyze the bound in the hybrid

conjugate gradient methods. Denote rk = βk/βFR
k and consider any method

(8.1.2)–(8.1.3) related to the FR method. Assume that the line search satisfies
the Wolfe conditions (8.1.4) and (8.1.10) and the descent condition gT

k dk < 0. If

∑
k≥2

k∏
j=2

r−2
j = +∞, (8.5.1)

we have by this, the definition of rk, (8.1.6) and (8.3.3) that

∑
k≥2

k∏
j=2

β−2
j =

∑
k≥2

‖g1‖4
‖gk‖4

k∏
j=2

r−2
j ≥ ‖g1‖4

γ̄4

k∏
j=2

r−2
j = +∞. (8.5.2)

Then we can conclude the global convergence by Theorem 8.3.4 and the contra-
diction principle. On the other hand, if

∑
k≥2

k∏
j=2

r−2
j < +∞, (8.5.3)

we can make use of the example in §8.3.3 that the method (8.1.2)–(8.1.3) with ex-
act line searches need not converge. In fact, it follows from (8.3.37), the definition
of rk, (8.1.6), the monotonical decreasing of ‖gk‖ and d1 = −g1 that

‖gk‖2
‖dk‖2 =

‖g1‖2
‖g2‖2

‖gk+1‖2
‖gk‖2

k∏
j=2

r−2
j ≤ ‖g1‖2

‖g2‖2
k∏

j=2

r−2
j . (8.5.4)

Thus we know from the above relation and (8.5.3) that

∑
k≥1

‖gk‖2
‖dk‖2 < +∞, (8.5.5)

which with the second equality of (8.3.36) implies that for all k,

‖gk+1‖2 = ‖g1‖2
k∏

i=1

(1− ‖gi‖2
‖di‖2 ) ≥ c′, (8.5.6)
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where c′ is some positive constant. Therefore (8.5.1) is also necessary in some
sense for the global convergence of general method (8.1.2)–(8.1.3) related to the
FR method. A direct corollary to this result is that for any c > 1, any method
(8.1.2)–(8.1.3) with the restriction |rk| ≤ c need not converge. This result is
stronger than Proposition 3.3 in [15], where Nocedal proved that there exists
some constant c > 1 such that the method (8.1.2)–(8.1.3) with |rk | ≤ c need not
converge.
Here we also note that if ∑

k≥1

1
‖dk‖2 < +∞, (8.5.7)

it follows by this and the boundness of ‖gk‖2 that relation (8.5.5) holds. Then
we also have (8.5.6). Since exact line searches are used in the example of §8.3.3,
we know that the condition (8.2.4) is also necessary in some sense for the global
convergence.
As an illustrative example, in this chapter we have also analyzed a hybrid

conjugate gradient method, namely, the method (8.1.2)–(8.1.3) with βk given
by (8.4.48). With the help of Theorem 8.4.5, the descent property and global
convergence of the method are proved under the Wolfe conditions with σ ≤ 0.25.
We wonder whether the method (8.4.48) is also efficient in practice or we can
obtain a more efficient conjugate gradient algorithm by combining (8.4.48) and
(8.1.13). This question still remains under studies.
Finally, we would like to mention that although most of the analyses in this

chapter use the Wolfe line search, they are also efficient for the strong Wolfe line
search. As is known, there is still lack of a similar theory for conjugate gradient
methods using the strong Wolfe line search. We also expect that this chapter will
arouse more attention to the use of the Wolfe line search in conjugate gradient
methods, even from the aspect of numerical computation.
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Chapter 9

Full Space and Subspace Methods for Large
Scale Image Restoration

Yanfei Wang, Shiqian Ma and Qinghua Ma

Abstract. In this chapter, we discuss about the full space and subspace methods
for ill-posed image restoration problems. Image restoration refers to minimizing
the degradation which is caused by sensing environment, say CCD camera misfo-
cus, nonuniform motion, atmospheric aerosols and atmospheric turbulence. For
image restoration problems, a key matter is to solve a quadratic programming
problem. We study numerical solution methods in full space by limited memory
of BFGS method and the subspace trust region method. We develop a novel ap-
proach for reducing the cost of sparse matrix-vector multiplication when applying
the full space and subspace methods to atmospheric image restoration. Also the
projection technique for the regularized convex quadratic functional is developed
in the iteration for ensuring nonnegativity. Numerical experiments indicate that
these methods are useful for large-scale image restoration problems.

9.1 Introduction

Image restoration is a major problem in digital image processing, which attracts
more and more attention in recent years in different kinds of research fields[11, 10,
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20, 17, 9, 2, 27, 28]. Image restoration refers to restoration of degradation which
may be degraded by senor noise, misfocus of CCD camera, nonuniform motion,
atmospheric aerosols, random atmospheric turbulence and so on. For example,
in remote sensing applications, we are often required to recover the true signal or
image f with resolution N ×N by direct ground measurements or by receiving
response from satellite sensors and giving the information about the modulation
transfer function (MTF) or the point spread function (PSF) of the system. The
perfect case for the PSF of the sensor should be the Gaussian. A key problem in
remotely sensed image restoration is to restore the image by solving a blurring
model and removing noise. This is because the signal (reflection) transferring from
the land surface to the satellite sensors is inevitably interfered by atmosphere,
say, atmospheric turbulence, aerosols, this process also leads to the blurring of
the original signal. But remotely sensed image recovery is more complicated.
Since it needs geometric correction, radiometric correction (removal of clouds
and aerosols), we can do the work on restoration of degradation by PSF or MTF
filtering.
Astronomical images obtained are usually corrupted or distorted by blurring

and noise[19]. The blurring is characterized by a point spread function or impulse
response, the noise is usually assumed to be additive, say, Gaussian random
noise, Poisson noise, background noise and so forth. For astronomical images
acquisition, the cost of a space telescope is high, so image restoration algorithms
and/or adaptive optics have become an important research area in astronomical
imaging. Considerable progress has been achieved over the past two decades in
improving results of Earth-based observation. Telescopic surveillance of objects
and scenes at ground level or anywhere in the atmosphere suffers from similar
problems more severely; in this case, image restoration (or adaptive optics) is the
only means of improvement, since the problems cannot be eliminated simply by
leaving the atmosphere behind.
It indicates that the power distribution in the image plane due to a point

source in the object plane can be expressed as follows:

h(x, y) = k(x, y) 	 f(x, y) + n(x, y), (9.1.1)

where, h(x, y) denotes the recorded blurred image, f(x, y) denotes the original
object, their unique relation in the spatial domain is given by the two-dimensional
point spread function (PSF) k(x, y). 	 is the convolution operator, x and y are
the spatial coordinates and n(x, y) denotes an additive noise term. The above
expression is commonly modelled as a first kind integral equation in the form

h(x, y) =
∫ ∫

R2
k(x− ξ, y − η)f(ξ, η)dξdη + n(x, y). (9.1.2)

The image restoration problem is recovering f according to the knowledge of h
and k.
In digital image restoration, a discrete model of (9.1.2) is a must. The dis-

cretization can be performed by discrete quadrature rule, say, midpoint quadra-
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ture method, rectangular quadrature method and so on. We do not want to
discuss about the discretization in detail and assume that after discretization, we
have obtained the following linear system:

h = Kf + n, (9.1.3)

where K ∈ R
N2×N2

, f ,h,n ∈ RN2
. The noise n cannot be ignored and the matrix

K is usually badly conditioned, so we cannot solve this linear system by algebra
strategy easily.
In practice, the vector f records the image pixel values, so the components

of f must be nonnegative [2, 10, 17]. Thus we can express the image restoration
problem as

min Ψ(f) := 1
2
‖Kf − h‖2,

s.t. f ≥ 0. (9.1.4)

The remaining task is to solve (9.1.4) efficiently and accurately. It is clear that
(9.1.4) is equivalent to a constrained convex quadratic programming problem

min Ψ(f) := 1
2
fT Af − hTKf ,

s.t. f ≥ 0, (9.1.5)

where A := KTK. There exists a large amount of methods for solving the con-
vex quadratic programming (see [16] and the references therein). Overall, there
exists two groups of methods: the Newton types methods and the gradient types
methods. Each kind of method has its own properties. We focus on the Newton
type method, particularly the quasi-Newton method in this chapter.
We discuss about the full space and subspace methods for ill-posed image

restoration problems. Particularly, we study numerical solution methods in full
space by limited memory of BFGS method and the subspace trust region method.

9.2 Image restoration without regularization

The task of image restoration is to recover the original image f by the given
observation vector h and the blurring operator K. A direct approach, given K,
is to find an approximation fappr to f which minimizes error in the fit to the
observation data through minimization of the norm of the residual h−Kf . As is
noted in Section 1, the approximation fappr to the true image f which minimizes
the energy of the noise/error n is formulated as

fappr = argmin
f
‖n‖ = argmin

f
Ψ(f). (9.2.1)

For noisy data, however, this does not result in a usable restoration due to the
associated severe oscillation of the solution which is amplified by the noise in the



186 Y. F. Wang, S. Q. Ma and Q. H. Ma

observation and the small singular values of the blurring operator. The reason
of the occurrence of this phenomenon is that the inversion process of the image
restoration problem is extremely ill-posed [21, 25]. Therefore in order to recover
a low noise solution, we have to resort to other a priori information about the
smoothness of the solution. There are different ways of incorporating a priori
information, including statistical information and non statistical information.
This results in a regularized problem, which receives much more attention in
recent years[21, 29].

9.3 Image restoration with regularization

For the regularization for image restoration problem, refer to the following un-
constrained minimization problem

fRegu = argmin
f
Ψ(f) + αΩ[f ], (9.3.1)

where Ω[f ] is the regularized term which provides the a priori information on f ,
α is the regularization parameter which governs the tradeoff between the fit to
the observation data and the smoothness of the restoration. There are different
ways of choosing the regularized term Ω[f ]. We consider the smooth regularizer
in this chapter. For example, we can choose Ω[f ] in the l2 norm as Ω[f ] = ‖Lf‖2l2
or Ω[f ] = (Lf , f), with L being a (positive) semi-definite scale matrix; or choose
Ω[f ] as a discretization of ‖f‖2W1,2 in W 1,2 Sobolev space.
For smooth regularization, since the role of the regularizer is to suppress the

ill-posed nature induced by the small singular values of the discrete PSF kernel,
we consider the simple case, i.e., Ω[f ] = 1

2 (Lf , f) with L ≡ I (here I is the
identity).
In this case, the regularized solution fRegu can be obtained by minimizing the

regularized quadratic functional

J [f ] :=
1
2
fT Af +

α

2
fT f − hTKf . (9.3.2)

The gradient and Hessian of J [f ] are given by

g[f ] = (A+ αI)f −KT h,

H [f ] = A+ αI.

respectively. Many kinds of optimization methods can be used to solve the min-
imization problem, say, iterative regularization method[14] and the recently de-
veloped trust region method and truncated conjugate gradient method (refer to
[22, 23] and the references therein).
Considering the physical meaning of the pixel values of the images, i.e., non-

negativity, we solve the constrained regularized problem
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min J [f ],
s.t. f ≥ 0. (9.3.3)

Now the problem remains solving (9.3.3) efficiently.

9.4 Optimization methods for solving the smoothing
regularized functional

9.4.1 Minimization of the convex quadratic programming problem
with projection

The minimization problem (9.3.3) is a special case of the convex quadratic pro-
gramming problem[6]

min q(x) := 1
2
xT Ax− bT x,

s.t. l ≤ x ≤ u,
(9.4.1)

where A ∈ Rm×m is a semi-definite symmetric matrix, and b, l, u are vectors in
R

m. One can easily identify that if we set x := f , A := A + αI = KTK + αI,
b := KT h, l := 0 and u :=∞, then equation (9.4.1) reduces to (9.3.3). Therefore
in the following, we will use equation (9.4.1) for algorithm description.
Let us define the feasible set of (9.4.1) as

Ω = {x ∈ R
n : l ≤ x ≤ u}.

Ideally, the projection PΩ should be chosen such that

PΩ(x) = argmin
z
‖x− z‖. (9.4.2)

As for our problems with l = 0 and u = ∞, the set Ω = {x : 0 ≤ x < ∞}
is bounded below and convex, therefore, there exists an orthogonal projection
operator PΩ onto Ω such that

PΩ : R
m → Ω

and
P ∗Ω = PΩ, P 2

Ω = PΩ.

Our choice of the projection PΩ is that

PΩ(x) = argminz‖x− z‖.

The projection can be easily calculated. It is related closely to the space-limiting
operator or bandlimited operator [1], where the projection operator associated
with a bounded domain Ω is defined by
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(PΩx)(t) = χΩ(t)x(t)

where χΩ(t) is the characteristic function of the domain Ω. This operator projects
onto the subspace of all functions which are zero outside the domain Ω. The i-th
component of PΩ(x) is

[PΩ(x)]i = max(xi, 0) =
{

xi, if xi ≥ 0,
0, otherwise.

Assume that the current iterate xk is feasible, then the next point can be obtained
by

xk+1 = PΩ(xk + αkdk), (9.4.3)

where dk is the search direction and αk is the step length. It deserves noting that
this gradient projection method has been considered by several authors in recent
researches, e.g., [3, 5] and so forth.

9.4.2 Limited memory BFGS method with projection

There exists a large amount of methods for solving (9.4.1). Perhaps, the largest
class of methods belongs to the Newton’s and quasi-Newton’s methods. Newton’s
method is an iterative process where the solution to the problem is updated as
follows:

xk+1 = xk − αkA−1gk, (9.4.4)

where xk+1 is the updated solution at iteration k + 1, gk the gradient at the
current iterate xk, αk the step length computed by a line search that ensures a
sufficient decrease of q(x) and A the Hessian. In many circumstances the inverse
of the Hessian can not be computed directly. It happens for example when the
matrix A is too big or A comes from a discretization of the ill-posed operator
equations, which leads to the ill-conditioning of A.
A possible update of the Hessian is given by the BFGS technique [30, 8]. The

BFGS update is given by

Hk+1 = Hk − HkyksT
k + skyT

k Hk

yT
k sk

+
(
1 +

yT
k Hkyk

sT
k yk

)sksT
k

sT
k yk

(9.4.5)

and A−1 is approximated by the iteration of Hk. In (9.4.5), the iterates are
denoted by xk, and we define sk = xk+1 − xk and yk = gk+1 − gk.
The limited memory strategy avoids two bottlenecks specified above in the

Newton algorithm when applied to big systems, the storage and the inversion of
big matrices. Here although a quasi-Newton algorithm is used, the inverse of the
Hessian matrix is never built up, but directly the product of the inverse of the
Hessian matrix by the gradient. Then, no Hessian diagonalization is required.
What makes this method powerful is that in order to update this matrix product
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only information of last m steps is used. In this way only the geometry and
gradient of the last m steps have to be stored. When a BFGS update formula is
used this procedure is called L-BFGS. This method was developed by [18, 15]

Hk+1 =
(
I − skyT

k

sT
k yk

)
Hk

(
I − yksT

k

sT
k yk

)
+

sksT
k

sT
k yk

. (9.4.6)

The source code can be obtained free of charge from the web.
Now we give a precise description of the L-BFGS method. We follow the de-

scription in the form [30]

Hk+1 = V T
k HkVk + ρksksT

k , (9.4.7)

where ρk = 1
sT

k yk
, and

Vk = I − ρkyksT
k .

Usually the L-BFGS method is implemented with a line search for the step
length αk to ensure a sufficient decrease of the misfit function. Assume that x∗k+1

is an approximate solution for problem (9.4.1) at xk. Convergence properties
of the L-BFGS method are guaranteed if the steplength αk in equation (9.4.3)
satisfies the Wolfe line search conditions along dk = x∗k+1 − xk[13]

q(xk + αkdk) ≤ q(xk) + γ1αkgT
k dk, (9.4.8)

|g(xk + αkdk)T dk| ≤ γ2|g(xk)T dk|, (9.4.9)

where γ1 and γ2 are constants to be chosen a priori. The line search condition
can ensure that the iterates remain in the feasible region.
We give the L-BFGS algorithm as follows:

Algorithm 9.4.1. (Projected L-BFGS algorithm for image restoration)

Step 1 Choose x0, m, 0 < γ1 < 1
2
, γ1 < γ2 < 1, and a symmetric positive

definite starting matrix H0; Set k := 0.
Step 2 If the stopping rule is satisfied, STOP; Otherwise, GOTO Step 3.
Step 3 Compute

dk = −Hkgk, (9.4.10)
xk+1 = PΩ(xk + αkdk), (9.4.11)

where αk satisfies the above Wolfe conditions (9.4.8)–(9.4.9).
Step 4 Let m̂ = min{k, m− 1}, check if yT

k sk > 0.
If NO: Hk+1 = I (steepest descent step) and delete the pairs

{yi, si}ki=k−m̂;

If YES: Update H0 m̂ + 1 times using the pairs {yi, si}ki=k−m̂, i.e.,
let
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Hk+1 = (V T
k V T

k−1 · · ·V T
k−m̂)H0(Vk−m̂ · · ·Vk−1Vk)

+ ρk−m̂(V T
k V T

k−1 · · ·V T
k−m̂+1)sk−m̂sT

k−m̂(Vk−m̂+1 · · ·Vk−1Vk)

+ ρk−m̂+1(V T
k V T

k−1 · · ·V T
k−m̂+2)sk−m̂+1s

T
k−m̂+1(Vk−m̂+2 · · ·Vk−1Vk)

...
+ ρksksT

k .

Step 5 Set k := k + 1 and GOTO Step 2.

Remark 9.4.2. In Step 1 of Algorithm 9.4.1, the initial guess for the Hessian
H0 is the identity matrix I. In the algorithm proposed by Liu and Nocedal (1989),
the initial symmetric positive definite H0 need to be scaled as follows:

H
′
0 =

yT
0 s0

‖y0‖2 H0 =
yT
0 s0

‖y0‖2 I.

Then after one iteration is completed, all methods update H
′
0 instead of H0. This

scaling greatly improves the performances of the method.
In Step 2, the choice of the stopping rule must be careful. As is known, the

algorithm considered in this chapter can be regarded as a kind of iterative reg-
ularization method. Since the image restoration involves controlling the noise
propagation, there must be a saturation of the iterations, i.e., it is improbable to
solve the true solution such that the norm of the noise equals zero. Our stopping
rule is chosen such that the algorithm iterates until the condition

‖g(xk)‖ > ζ ·max{1, ‖g(x0)‖}

is violated, where ζ is the tolerance of break of the iteration cycle. This choice of
the stopping rule is reasonable in practice. Since for application problems such as
image restorations, we can not expect ‖g(xk)‖ approach zero since the right-hand
side is always noisy, the usual stopping rule if ‖g(xk)‖ ≤ ε (here ε is a sufficiently
small number) then stop the iteration can not be employed. Therefore, only a
low accuracy in the solution is required. Empirically, at least in this chapter, we
recommend choosing ζ = 1.0e− 3 for small noise level and ζ = 1.0e− 2 for large
noise level.

In Step 4, the condition yT
k sk > 0 guarantees the positive definiteness of the

L-BFGS matrix. However, this is not always the case[7]. If it is violated, a simple
reparation is conducting a steepest descent step.

Remark 9.4.3. We note that in the L-BFGS method, the storing of the matrices
Hk is unnecessary, instead, a prefixed number (say m) of vectors pairs {sk, yk}
that define define them implicitly are stored. Therefore, during the first m iter-
ations the L-BFGS and the BFGS methods are identical, but when k > m only
information from the m previous iterations is used to obtain Hk. The number m
of BFGS corrections that must be kept can be specified by the users. Moreover, in
the L-BFGS the product Hkgk which represents the search direction is obtained
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by means of a recursive formula involving gk and the most recent vectors pairs
{sk, yk}.

9.4.3 Subspace trust region methods

Trust region method has been recently proved to be a kind of regularization
[23, 24]. We apply it to solving ill-posed image restoration problems.
Trust region methods are usually formulated for non-quadratic nonlinear pro-

gramming problem. Consider, for example, an unconstrained non-quadratic min-
imization problem minf∈Rn Γ(f). The trust region method requires solving a trust
region subproblem

min
s
Υ(s) := (g(f), s) +

1
2
(H(f)s, s),

s.t. ‖s‖ ≤ Δ,

where g(f) and H(f) denote the gradient and Hessian of Γ(f), respectively. In
each step, a trial step s is computed to decide whether it is acceptable or not.
The decision rule is based on the ratio ρ between the actual reduction in the
objective functional and the predicted reduction in the approximate model. And
the trust region iterative step remains unchanged if ρ ≤ 0, where

ρ =
Ared(f)
Pred(f)

,

and Ared(f) and Pred(f) are defined by Γ(f)−Γ(f + s) and Υ(0)−Υ(s), respec-
tively.
For the model in (9.1.5), since it is in a quadratic form, the ratio ρ is always

equal to 1. This means the trial step s, no matter it is good or not, will be always
accepted. But the model is ill-posed, this seems to be unreasonable. To overcome
this shortcoming, we propose the following modified trust region scheme when
the model is a quadratic programming problem. We note that the approximate
accuracy is characterized by the discrepancy between the observation and the
true data; therefore variations of the norm of the discrepancy may reflect the
degree of approximation. Based on these considerations, we propose to accept or
reject the trial step sk at the k-th step by the ratio

ρk =
Ψ(fk+1)
Ψ(fk)

=
Ψ(fk + sk)
Ψ(fk)

,

where Ψ(fk+1) and Ψ(fk) are the reductions in norm of the discrepancy at k+1-th
and k-th steps, respectively.
Because of the nonnegativity of the problem (9.1.4), the first order Karush-

Kuhn-Tucker optimality condition for (9.1.4) can be expressed as
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D(f)∇Ψ(f) = 0, (9.4.12)

where ∇Ψ(f) = KT (Kf − hn) is the gradient of Ψ(f) in (9.1.4) and D(f) is a
diagonal matrix whose diagonal elements are given by

(D(f))ii =
{

fi if (∇Ψ(f))i > 0,
1 if (∇Ψ(f))i ≤ 0. (9.4.13)

Our subspace trust region model for (9.1.4) is

min Φ(s) := gT
k s+ 1

2s
TKTKs,

s.t. ‖D−1
k s‖ ≤ Δk,

s ∈ Sk,
(9.4.14)

where gk = KT (Kfk − hn), Dk is defined as D(fk) which is a scaling matrix to
restrict the step s, Δk is the radius of the trust region and Sk is a subspace
chosen so that (9.4.14) can be solved cheaply.
After getting a trial step sk (see [26] for computational details), we decide to

accept or reject sk. Our rule is whether the function value Ψ(fk + sk) has some
reductions compared to Ψ(fk). We denote the ratio of Ψ(fk + sk) and Ψ(fk) as
ρf

k :

ρf
k =

Ψ(fk + sk)
Ψ(fk)

. (9.4.15)

In our algorithm, we will accept sk if ρf
k < η and reject it otherwise, where

η ∈ (0, 1). The reason we adopt this stopping rule is that (9.4.15) uses discrepancy
between the observation and the model, which is more physically meaningful
([25]).
It is worth noting that s̄tr

k will tend to the scaled gradient direction when
the radius of the trust region Δk approaches zero. So the update of Δk is also
important when generating the good trial step. But Δk should not be expected
to restrict the point stay interior. In fact, it is important to allow the trial step
to pass the boundary of the trust region as long as it is still satisfying the bound
constraints. In our algorithm, we use a similar approach proposed in [4] to update
Δk.
Based on the above discussion, we recall a subspace trust-region algorithm

recently developed in [26] as follows:

Algorithm 9.4.4. (A subspace trust-region algorithm)

Step 1 Give ε, βc, γ0 ∈ (0, 1), 1 = μ2 ≥ μ1 ≥ η > 0, γ2 ≥ γ1 > 1, x0 ∈
int(F), Δ0 > 0 and set k := 0.

Step 2 If ‖Dkgk‖ < ε, stop.
Step 3 Compute Ψ(fk) and gk;

Define the quadratic model Φ as (9.4.14).
Step 4 Compute the trial step sk from (9.4.14).
Step 5 Compute ρf

k by (9.4.15).
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If ρf
k < η then set fk+1 := fk + sk. Otherwise fk+1 := fk.

Step 6 Set k := k + 1; Update Δk as follows and then go to Step 2.

• If ρf
k ≥ μ2 then Δk+1 = γ0Δk.

• If μ1 ≤ ρf
k < μ2 then Δk+1 ∈ [Δk, γ1Δk].

• Otherwise, Δk+1 ∈ [γ1Δk, γ2Δk].

In Step 4, the computation for the trial step sk from (9.4.14) can be performed
in a two dimensional space. We refer to [26] for details. The convergence of the
algorithm is proved in [26].

9.5 Matrix-Vector Multiplication (MVM)

We suppose the PSF kernel function in (9.1.2) is spatially invariant, i.e., the
kernel is separable and can be reformulated as

k(x− ξ, y − η) = kx(x− ξ)ky(y − η). (9.5.1)

This indicates that the blurring is identical in all parts of the image and is
separated into pure horizontal and pure vertical components.
Numerically, assume that the discretization of kx and ky is Kx and Ky respec-

tively, then the matrix K is a tensor of Kx and Ky, i.e., the Kronecker product
of Kx and Ky,

K = Kx ⊗ Ky. (9.5.2)

“vec(·)” notation is a useful tool to simplify the expression of the matrix-vector
multiplication. Given an array U ∈ Rmx×my , one can obtain a vectorU ∈ Cmxmy

by stacking the columns of U . This defines a linear mapping vec : Rmx×my −→
Rmxmy ,

vec(U) = [U11, · · · , Umx1, U12, · · · , Umx2, · · · , U1my , · · · , Umxmy ]
T .

Therefore equation (9.1.4) can be rewritten as

min Ψ(f) := 1
2
‖(Kx ⊗Ky)vec(f)− vec(h)‖2

s.t. vec(f) ≥ 0. (9.5.3)

9.5.1 MVM: FFT-based method

It is obvious that the main cost of computation in our projected L-BFGS algo-
rithm for image restoration is the matrix-vector multiplication (MVM), so it is
necessary to give an efficient algorithm to compute the matrix-vector multipli-
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cation. Generally speaking, a classical matrix-vector multiplication accounts for
the 2m2 flops if we regard the length of the signal f as m.
Note that both Kx and Ky are matrices of Toeplitz type. Therefore their Kro-

necker product K in (9.1.4) is a block Toeplitz with Toeplitz blocks (BTTB). By
extending the BTTB into a block circulant with circulant blocks matrix (BCCB),
we can use the two dimensional discrete Fourier transform to compute the matrix
vector multiplication.
The BCCB matrix can be decomposed as

K = F�ΛF ,

where F is the two dimensional discrete Fourier transform matrix, and Λ is a
diagonal matrix containing the eigenvalues of K. And the eigenvalues of K can
be obtained by computing a two dimensional discrete Fourier transform (DFT)
of the first column of K, so we can compute Kx by F�ΛFx.
DFT’s can be computed at a low computational cost by utilizing the fast

Fourier transform (FFT). The Fourier transform of an m-vector (signal) can be
computed in O(m log2 m) operations.

9.5.2 MVM with sparse matrix

In atmospheric image restoration, the PSF is usually modelled by Gaussian.
Actually, the Gaussian function simulates well the convolution process of the
true signal with the PSF operator. Both the blurring by aerosols and turbulence
can be taken as Gaussian, which are in the form

k(x, y) =
1

2πσ2
exp

(
− 1
2
(x2 + y2

σ2

))
, (9.5.4)

where σ is a positive constant. The larger we choose σ, the more f gets smoothed.
So by the same argument, the smaller we choose σ, the more the convolution
result resembles f .
In our numerical experiments, we use the Gaussian point spread function as

the integral kernel k in (9.1.2), so K can be represented by a kronecker product
of two low order matrices as K = A ⊗ B with A ∈ R

m×m, B ∈ Rn×n. For the
blurring process, A and B are usually taken as sparse banded matrices [12], which
means only pixels within a distance band− 1 contribute to the blurring. So we
can use a very economic algorithm proposed by [27, 28]. Let us take band = 2
and 3 as examples. Similar discussion can be made for other bands of matrices.
Suppose band = p, then A, B are 2p − 1 diagonal matrices. Pixels within a

distance p− 1 of A and B contribute to the blurring. The different elements of K
are only C = A(1 : p, 1)⊗ B(1 : p, 1). The resulting matrix K is a sparse BTTB
with each block being a 2p− 1 diagonal matrix. If we define
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · ap−1 · · · 0

a1 a0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . ap−1

ap−1
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . a0 a1

0 0 ap−1 · · · a1 a0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 b1 · · · bp−1 · · · 0

b1 b0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . bp−1

bp−1
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . b0 b1

0 0 bp−1 · · · b1 b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then C := (a0b0, a0b1, · · · , a0bp−1, · · · , ap−1b0, ap−1b1, · · · , ap−1bp−1)T . Thus, we
can write the matrix-vector multiplication y = (A⊗B)x as follows:

y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

ap−1Bx1
ap−1Bx2

...
ap−1Bxm−p+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · +

⎛⎜⎜⎜⎝
0

a1Bx1
...

a1Bxm−1

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
a0Bx1
a0Bx2

...
a0Bxm

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
a1Bx2

...
a1Bxm

0

⎞⎟⎟⎟⎠+ · · · +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap−1Bxp

ap−1Bxp+1
...

ap−1Bx2p−1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where x = (x1, x2, . . . , xm)T , xi = (xi1, xi2, . . . , xim)T . Then each component of
y, for example a0Bx1, can be evaluated as

a0bp−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0

x1p

...
x1,n−p+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ · · · + a0b1

⎛⎜⎜⎜⎝
0

x11
...

x1,n−1

⎞⎟⎟⎟⎠

+ a0b0

⎛⎜⎜⎜⎝
x11
x12
...

x1n

⎞⎟⎟⎟⎠+ a0b1

⎛⎜⎜⎜⎝
x12
...

x1n

0

⎞⎟⎟⎟⎠+ · · · + a0bp−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1p

...
x1n

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

the same to others. Thus the matrix-vector multiplication reduces a lot.
Suppose band = 5, then A, B are 9 diagonal matrices. Pixels within a distance

4 of A and B contribute to the blurring. The different elements of K are only
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C = A(1 : 5, 1) ⊗ B(1 : 5, 1). The resulting matrix K is a sparse BTTB with
each block being a five-diagonal matrix. For the 9 diagonal matrices, the cost of
the MVM computation would be 25mn. Whereas for FFT-based matrix-vector
computation, the cost is O(5mn log2 mn), which is greater than 25mn for banded
matrix-vector multiplication for large m and n, say, m = n = 256, 512 or more.
As an example, we suppose band = 2, then A, B are tridiagonal matrices.

Pixels within a distance 1 of A and B contribute to the blurring. The different
elements of K are only C = A(1 : 2, 1)⊗B(1 : 2, 1). The resulting matrix K is a
sparse BTTB with each blocking a tridiagonal matrix. If we define

A =

⎛⎜⎜⎜⎝
a0 a1 · · · 0
a1 a0 · · · 0
...

...
. . . a1

0 0 a1 a0

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎝
b0 b1 · · · 0
b1 b0 · · · 0
...
...
. . . b1

0 0 b1 b0

⎞⎟⎟⎟⎠ ,

then C := (C1, C2, C3, C4)T = (a0b0, a0b1, a1b0, a1b1)T . Thus, we can write the
matrix-vector multiplication as follows:

y =

⎛⎜⎜⎜⎝
0

a1Bx1

...
a1Bxm−1

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
a0Bx1

a0Bx2

...
a0Bxm

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
a1Bx2

...
a1Bxm

0

⎞⎟⎟⎟⎠ ,

where

x =

⎛⎜⎜⎜⎝
x1

x2

...
xm

⎞⎟⎟⎟⎠ , xi =

⎛⎜⎜⎜⎝
xi1

xi2

...
xin

⎞⎟⎟⎟⎠ .

Then

a0Bx1 =

⎛⎜⎜⎜⎝
0

C2x11

...
C2x1,n−1

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
C1x11

C1x12

...
C1x1n

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
C2x12

...
C2x1n

0

⎞⎟⎟⎟⎠ ,

so we can give the matrix-vector multiplication algorithm in a Matlab code as
follows:

Algorithm 9.5.1. (Banded BTTB Matrix-Vector Multiplication)

function y=MatVecTri(m,n,C,x)
y=blockmulti(m,n,C(1:2),x);
x=blockmulti(m,n,C(3:4),x);
y(1:n*(m-1))=y(1:n*(m-1))+x(n+1:m*n);
y(n+1:m*n)=y(n+1:m*n)+x(1:n*(m-1));



Full Space and Subspace Methods 197

function b=blockmulti(m,n,D,x)
b=zeros(m*n,1);
tmp=D(2)*x;
b(1:m*n-1)=tmp(2:m*n);
b(n:n:m*n)=0;
b=D(1)*x+b;
tmp(2:m*n)=tmp(1:m*n-1);
tmp(1:n:m*n)=0;
b=b+tmp;

In Algorithm 9.5.1, y=MatVecTri(m,n,C,x) is a main function, which calls the
block multiplication function b=blockmulti(m,n,D,x) to finish the BTTB matrix-
vector multiplication.

9.6 Numerical experiments

In this section, we give examples for the restoration of atmospheric image. The
blurring process is modelled by a Gaussian point spread function:

k(x− ξ, y − η) =
1

2πρρ̄
exp(−1

2
(
x− ξ

ρ
)2 − 1

2
(
y − η

ρ̄
)2). (9.6.1)

In our test, we choose ρ = ρ̄ = 0.7. And the noise level is denoted by level, i.e.,

n =
level

N
‖h‖ × randn(N 2, 1),

where N is the size of the image, randn(N2, 1) is the Gaussian normal distributed
random vector, and we set randn(′state′, 0) in our Matlab codes to insure the
same random vector is generated every time.
The image for testing is a cropland with size equalling 256 × 256 (Fig. 9.1).

The resulting PSF matrix is a BTTB with size equalling 65, 536 × 65, 536. To
simulate the blurring, we choose the band which is equal to 5. This induces a
severe atmospheric or turbulence blurring. The condition number of the discrete
Kronecker kernel K is equal to 1.2985 × 1030. Therefore, the matrix K is very
badly conditioned. On occasion that the weather is not too bad, one may choose
a small band value. The noisy blurred images for different noise levels are plotted
in Figs. 9.2 and 9.3. The deblurred restored images by fast subspace algorithms
are illustrated in Figs. 9.4 and 9.5.
In computer computations, we set the maximum iteration number as kmax =

200. the choice of the maximum iteration number kmax is empirical. The rea-
son we choose a maximum iteration number is that we do not consider that
further iterations are necessary after reaching such a number kmax. However,
such a regulation is never activated. Our algorithm converges before reaching the
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Fig. 9.1 The noise-free
remotely sensed image.

Fig. 9.2 The blurred
images for noise level.
level = 0.005.

Fig. 9.3 The blurred
images for noise level.
level = 0.01.
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Fig. 9.4 Restored images
for ε = 10−3 and level =
0.005.

Fig. 9.5 Restored images
for ε = 10−3 and level =
0.01.

maximum iteration number. The iteration results by the projected L-BFGS
method and the subspace trust region method for different noise levels are listed
in Table 9.1. Note that the choice of the value of ζ for projected L-BFGS method
is related with the noise levels. In our experiments, we find that for small noise
levels (less than or equal to 0.01), the ζ equalling 1.0e-3 is large enough, however
for large noise levels (greater than 0.01), this value of ζ is not suitable, since more

Table 9.1 Comparison of efficiency of the projected L-BFGS method with the subspace
trust region method.

noise level steps CPU (seconds)
0.005 18 80.5860s

Projected L-BFGS 0.01 23 98.7020s
0.005 2 7.0469 s

Subspace method 0.01 2 7.5938 s
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noise is involved in the iteration than the useful information due to enormous
iterations. Therefore, we choose the ζ equalling 1.0e-2. In this case, reasonable
relative errors are obtained.

9.7 Conclusions

In this chapter we address a limited memory of BFGS method with projection and
a subspace trust region method for solving large scale ill-posed image restoration
problems.
It deserves noting that there exists a large group of optimization methods, say,

Newton types of methods, gradient types of methods and statistical optimiza-
tion methods. Each method possesses its own advantages. Therefore, a complete
comparison of these methods to the ill-posed image restoration deserves further
investigating. Besides, our algorithm is about to restore images with smooth
regularizer. Incorporating non-smooth regularizer in the algorithm for special
application problems deserves special studying.
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Chapter 10

Some Reconstruction Methods for Inverse
Scattering Problems

Jijun Liu and Haibing Wang

Abstract. Inverse scattering problems are one of the main research areas in
the optimization techniques. The main purpose of inverse scattering problems is
to detect the physical properties of an obstacle from some information related
to the scattered waves of the obstacle for given incident wave. Generally, if the
incident plane waves are given from the finite number of directions, which are
indeed the practical situations, there is no uniqueness for reconstructing the ob-
stacle properties such as the boundary shape. In these cases, the optimization
techniques can be applied to reconstructing the obstacle approximately. That is,
the obstacle shape is approximated by a minimizer of some cost functional which
measures the defect between the measurement data of the scattered wave and the
computational scattered wave related to the approximate obstacle. Of course, for
this optimization problems in infinite dimensional space, some regularizing term
should be introduced to the cost functional.
Although these general optimization techniques have been applied widely in

the last century, they also suffer from many disadvantages theoretically and nu-
merically. From the theoretical point of view, the lack of uniqueness makes the ob-
tained approximate obstacle from the optimization procedure ambiguous, namely,
we do not know whether or not the computational result indeed approximates
the true one. From the numerical respects, such an optimization procedure needs
to solve the direct scattering problem at each iteration step, which entails huge
time cost. Moreover, to get the convergence of the iteration, a good initial guess is
required. Even if in the case of convergence, the approximate sequence generally
approaches to some local minimizer. These shortcomings of the direct optimiza-
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tions used in inverse scattering problems cause some problems for the numerical
reconstruction of the obstacles.
In recent years, some modified version of optimization algorithms based on

the potential methods for inverse scattering problems are proposed, in the sense
that the direct problems are not required to solve in the iteration procedures. On
the other hand, some new schemes combining the advantages of optimizations
with the exact reconstruction formulas have been developed for inverse scattering
problems. In this chapter, we give an overview on these two directions. We begin
with a brief introduction to the physical background to acoustic scattering prob-
lems as well as some well-known inverse scattering models. Then we review some
classical and recently developed inversion methods for detecting the information
about the unknown scatterer from a knowledge of the far-field pattern u∞ for
one or several incident plane waves. For each method, the basic idea is described,
and some main results are presented. To test their validity, the numerical im-
plementation of all inversion methods needs to be studied. So we finally focus
on the numerical realizations of these existing methods, pointing out the main
difficulties encountered in numerical realization. In addition, the advantages and
disadvantages of these methods are also analyzed.

10.1 Introduction

For the purposes of exposition, we focus our attention to the case of acoustic
waves. Particularly, we consider an acoustic incident wave propagating in a ho-
mogeneous isotropic medium. When this incident wave meets an obstacle D, it
will be scattered. In this case, we express the total field outside D as the sum-
mation of the original incident wave and the scattered wave. Here the behavior
of the scattered wave depends on both the incident wave and the nature of the
obstacle.
To be more precise, consider the scattering of a time-harmonic acoustic wave

by a bounded object D ⊂ R
3, embedded in homogeneous isotropic medium with

density ρ and sound speed c. Denote by U(x, t) for x ∈ R3 \ D the velocity
potential, then the wave motion is governed by the wave equation

∂2U

∂t2
= c2ΔU, (10.1.1)

where Δ is the Laplacian operator in R3. For time-harmonic acoustic waves
with frequency ω, the time dependence is factored into the form U(x, t) =
"{u(x)e−iωt

}
, and thus the complex valued amplitude u(x) satisfies the

Helmholtz equation
Δu+ k2u = 0 (10.1.2)
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in R3 \ D, where the wave number k = ω/c. To describe the scattering proce-
dure, we must distinguish two cases, namely, D is an impenetrable object and a
penetrable one.
Consider the scattering of a given incident wave ui by an impenetrable obstacle

D. Then the total wave u = ui + us with us the scattered wave must satisfy the
Helmholtz equation outside D. Furthermore, if the obstacle is sound-soft, then
the total wave vanishes on the boundary, which implies that the total wave meets
the Dirichlet boundary condition

u = 0 on ∂D. (10.1.3)

Similarly, the scattering from a sound-hard obstacle leads to a Neumann boundary
condition

∂u

∂ν
= 0 on ∂D, (10.1.4)

where ν is the unit outward normal to ∂D, since in this case the normal velocity
of the acoustic wave vanishes on the boundary. More generally, if the normal
velocity on the boundary is proportional to the excess pressure on the boundary,
then we get an impedance boundary condition of the form

∂u

∂ν
+ iλu = 0 on ∂D (10.1.5)

with boundary impedance coefficient λ(x) satisfying "λ ≥ 0.
In the case of D being a penetrable inhomogeneous obstacle with slowly vary-

ing density ρD = ρD(x) and sound speed cD = cD(x) different from ρ and c
in the surrounding medium R3 \D, the scattering by D leads to a transmission
problem. Here, in addition to the scattered field us in R3 \ D, we also have a
transmitted wave v in D satisfying

Δv + k2n(x)v = 0 (10.1.6)

with the wave number k = ω/c, where n(x) = c2/c2
D(x) is the index of refrac-

tion. From the continuity of the pressure and normal velocity across the obstacle
boundary, the following transmission conditions on the boundary hold

u = v,
1
ρ

∂u

∂ν
=

1
ρD

∂v

∂ν
on ∂D.

For the scattered wave us, the Sommerfeld radiation condition

lim
r→∞ r

(
∂us

∂r
− ikus

)
= 0, r = |x| (10.1.7)

is required. Physically, (10.1.7) characterizes the outgoing waves, while from the
mathematical point of view this condition ensures the uniqueness for the solutions
to the scattering problems.
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Using the Green’s formula and the radiation condition, it is easy to show that

us(x) =
∫

∂D

{
us(y)

∂Φ(x, y)
∂ν(y)

− ∂us(y)
∂ν(y)

Φ(x, y)
}

ds(y), x ∈ R
3 \D, (10.1.8)

where Φ(x, y) is the radiating fundamental solution to the Helmholtz equation
defined by

Φ(x, y) :=
1
4π

eik|x−y|

|x− y| , x 	= y. (10.1.9)

From (10.1.8) and the asymptotic behavior of Φ(x, y), we obtain that

us(x) =
eik|x|

|x|
{

u∞(x̂) +O

(
1
|x|
)}

, x̂ =
x

|x| (10.1.10)

as |x| → ∞, where u∞ is usually known as the far-field pattern or scattering
amplitude of the scattered field us, with the representation

u∞(x̂) =
1
4π

∫
∂D

{
us(y)

∂e−ikx̂·y

∂ν(y)
− ∂us(y)

∂ν(y)
e−ikx̂·y

}
ds(y), x̂ ∈ S(unit sphere).

(10.1.11)
Obviously, u∞ is an analytic function of x̂ on the unit sphere S. As one of the

most important tools in the scattering theory, the Rellich’s lemma establishes the
one-to-one correspondence between a radiating scattered wave us and its far-field
pattern u∞, which is stated in [17].

Lemma 10.1.1 (Rellich). Assume that the bounded set D is the open complement
of an unbounded domain and let u ∈ C2(R3 \D) be a solution to the Helmholtz
equation satisfying

lim
r→∞

∫
|x|=r

|u(x)|2ds = 0. (10.1.12)

Then u ≡ 0 in R
3 \D.

The inverse scattering problems aim to detect the property of an obstacle from
the far-field pattern for the incident plane waves. However, the relations between
scattered wave for incident plane waves and the one of point-source are of great
importance in the recently developed inversion method. In the sequel, we always
denote the scattered field for an incident plane wave ui(x, d) := eikx·d with unit
incident direction d ∈ S by us(x, d), x ∈ R3 \D, and the corresponding far-field
pattern by u∞(x̂, d), x̂ ∈ S. If the incident field is a point-source Φ(·, z) with
source location z ∈ R3 \D, then the scattered field is denoted by Φs(·, z) and the
corresponding far-field pattern by Φ∞(x̂, z), x̂ ∈ S.
We begin with the reciprocity principles for the scattering procedure, which

play an important role in some inversion methods, such as point source method
and singular sources method.

Theorem 10.1.2 (Far-field reciprocity relation). The far-field patterns for scat-
tering of plane waves by a sound-soft scatterer satisfy the reciprocity relation
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u∞(x̂, d) = u∞(−d,−x̂), x̂, d ∈ S. (10.1.13)

For the proof, we refer to [17]. In the derivation of (10.1.13), only the Helmholtz
equation for the incident field in R

3 and for the scattered field in R
3 \D and the

radiation condition are used, so the reciprocity relation (10.1.13) is valid for the
obstacle with three kinds of boundary conditions.

Theorem 10.1.3 (Mixed reciprocity relation [63]). For acoustic scattering of
plane waves ui(·, d), d ∈ S and point source Φ(·, z), z ∈ R3 \D from an obstacle
with sound-soft, sound-hard or impedance boundary condition, we have

Φ∞(x̂, z) =
1
4π

us(z,−x̂), z ∈ R
3 \D, x̂ ∈ S. (10.1.14)

For the direct scattering problem, the scatterer and the incident wave ui are
assumed to be given, so the aim is to compute the scattered field or its far-field
pattern, respectively. However, the inverse scattering problem that we will mainly
concern in this chapter is to detect the information about D from a knowledge of
u∞(x̂, d) for x̂, d ∈ S and fixed wave number k. Some classical inverse scattering
models can be stated as follows.

• Model problem I: Let u = ui + us be a solution to (10.1.2) in R3 \ D satis-
fying one of the boundary conditions: (10.1.3), (10.1.4) or (10.1.5). From the
knowledge of the far-field pattern u∞, one tries to determine the shape and
location of obstacle D.
Such problems have been researched thoroughly, which will be discussed in
next sections.

• Model problem II: Let u = ui+us be a solution to (10.1.2) in R3 \D satisfying
the impedance boundary condition (10.1.5) with "λ ≥ 0. From the knowledge
of the far-field pattern u∞, determine boundary impedance λ = λ(x) and ∂D.
These problems are related to the antenna design for specific purposes and
the hostile decoy in military applications. For example, the hostile decoy in
practice can become a perfect conductor coated by a thin dielectric layer, in
this case, the shape of the decoy is known in advance. Therefore the surface
impedance serves as a target signature [1, 7, 16, 75].

• Model problem III: Let u = ui + us be a solution to (10.1.2) in R3 \D. The
boundary ∂D has different properties in its different components, that is,

u = 0 on ∂DD, (10.1.15)

and
∂u

∂ν
+ iλu = 0 on ∂DI (10.1.16)

with some impedance λ, where ∂DD and ∂DI are open surfaces on ∂D satis-
fying

∂D = ∂DD ∪ ∂DI , ∂DD ∩ ∂DI = ∅.
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This mixed boundary value problem typically models the scattering procedure
by an obstacle coated by a thin layer of material on part ∂DI of the boundary.
In general, it is not known a priori whether or not the scattering obstacle
is coated, and if so, what is the extent of the coating? So the corresponding
inverse scattering problem is to determine the shape of obstacle D, to identify
∂DD and ∂DI , and to reconstruct the surface impedance λ(x) on ∂DI from a
knowledge of the far-field data {u∞(x̂, d) : x̂, d ∈ S} [5, 6, 23, 52, 53, 54, 58].

• Model problem IV: Let u = ui + us be a solution to the Helmholtz equation

Δu(x) + k2n(x)u(x) = 0 (10.1.17)

for x ∈ R
3, where

n(x) :=
c2
0

c2(x)
(10.1.18)

is the index of refraction, us satisfies the Sommerfeld radiating condition
(10.1.7). On the boundary ∂D, we assume that both u and its normal deriva-
tive are continuous. The inverse problem is to determine the refractive index
from a knowledge of u∞.
This model comes from the media scattering problem. The inhomogeneity of
the media is represented by the index of refraction n(x), which is assumed to be
the one in R3 \D and different from the one in D. If the medium is absorbing,
then the refractive index has an imaginary component, that is, n(x) is of the
form

n(x) = n1(x) + i
n2(x)

k
. (10.1.19)

For more introductions to the inverse scattering models, we refer to [16, 17, 60].

10.2 Iterative methods and decomposition methods

This section is devoted to the classical iterative methods and decomposition meth-
ods, as well as the hybrid methods combining the ideas of Newton iterations and
decomposition methods.

10.2.1 Iterative methods

The direct scattering problem for given incident plane wave ui defines an operator

A : ∂D �→ u∞,

which maps the boundary ∂D of the scatterer onto the far-field pattern u∞ of
the scattered wave. In terms of this operator, the inverse scattering problem can
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be abstracted as solving a nonlinear ill-posed operator equation

A(∂D) = u∞ (10.2.1)

for the unknown surface ∂D. Hence it is natural to use some iterative methods
such as regularized Newton method, Landweber iteration or conjugate gradient
method. For this purpose, we need to further investigate the operator A. Choose
a fixed reference domain D of class C2 and consider a set of scatterers Dh with
the boundaries of the form

∂Dh = {x+ h(x) : x ∈ ∂D},

where h : ∂D → R
3 is of class C2 and sufficiently small in the sense of C2-norm

on ∂D. Thus, we can consider the operator A as a mapping from V := {h ∈
C2(∂D) : ‖h‖C2 < a} with a sufficiently small radius a > 0 into L2(S). For
simplicity, we devote our attention to the case of a starlike domain Dr with

∂Dr = {r(x̂)x̂ : x̂ ∈ S}, (10.2.2)

where r : S→ R
+ represents the radial distance from the origin. Then A can be

interpreted as a mapping

A : r ∈ {r ∈ C2(S) : r > 0} �→ u∞ ∈ L2(S). (10.2.3)

Consequently, the inverse obstacle scattering problem is to solve

A(r) = u∞ (10.2.4)

for the unknown radial function r.
Based on these parameterizations, the operator A can be proven to be Fréchet

differentiable ([17]).

Theorem 10.2.1. The boundary to far-field mapping A : r �→ u∞ is Fréchet
differentiable and the derivative is given by

A′(r) : q �→ v∞, (10.2.5)

where v∞ is the far-field pattern of the radiation solution v to the Dirichlet prob-
lem for the Helmholtz equation in R3 \Dr satisfying the boundary condition

v = −ν · x̂∂u

∂ν
q on ∂Dr (10.2.6)

with u = ui + us being the total wave for scattering from the domain Dr.

Rigorous foundations for the Fréchet differentiability were established by
Kirsch [41] in the sense of a domain derivative via variational methods and by
Potthast [73] via boundary integral equation techniques. Based on the Green’s
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theorem and a factorization of the difference of the far-field for the domains Dr

and Dr+q, Kress and Päiärinta provided an alternative proof in [47].
In terms of the Fréchet derivatives A′(r), we may linearize the nonlinear op-

erator as
A(r + q) = A(r) +A′(r)q +O(q2).

Then, for a current approximation r for the solution to (10.2.4), in order to obtain
an update r + q, we solve the approximate linear equation

A(r) +A′(r)q = u∞ (10.2.7)

for q instead of solving the original equation A(r + q) = u∞. As in the classical
Newton iterations this linearized procedure is done until some given stopping cri-
teria are satisfied. Here, it should be noted that the linearized equation (10.2.7)
inherits the ill-posedness of the nonlinear equation (10.2.4), therefore the reg-
ularization scheme has to be applied. For example, in the standard Tikhonov
regularization, (10.2.7) is replaced by

αq + [A′(r)]∗A′(r)q = [A′(r)]∗ {u∞ −A(r)} (10.2.8)

with some positive regularization parameter α and the L2-adjoint [A′(r)]∗ of
A′(r). However, in this case, some properties of the operator A′(r) : L2(S) →
L2(S) need to be established. For the Dirichlet and impedance boundary condi-
tion with large λ, Kress and Rundell proved that A′(r) is injective and has dense
range, while the corresponding result remains open for the Neumann boundary
condition [43].
Obviously, a common feature of the above method is of an iterative nature.

Hence, for the numerical implementation an efficient forward solver is needed at
each step and a good initial guess is required. In addition, this method is com-
putationally costly in practice. However, this approach is conceptually simple,
more important, it usually leads to highly accurate reconstructions with reason-
able stability against errors in the far-field data.

10.2.2 Decomposition methods

The basic idea of these methods is to break up the inverse scattering problem
into two steps. The first step deals with the ill-posedness, while the second step
considers the nonlinearity. We confine our analysis to a sound-soft obstacle in
R

3. The method can also be carried over for two-dimensional case and other
boundary conditions with some evident modifications.
In the classical potential method due to Kirsch and Kress [17], the first step is

to reconstruct the scattered wave us(x) from its far-field pattern u∞, which is a
linear ill-posed problem. In the second step we determine the unknown boundary
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∂D of the scatterer from the boundary condition by solving a nonlinear opti-
mization problem.
Firstly we choose an auxiliary closed C2 surface Γ contained in the unknown

scatterer D based on some a priori information about D and represent the scat-
tered field as an acoustic single-layer potential

us(x) =
∫

Γ

φ(y)Φ(x, y)ds(y) (10.2.9)

with an unknown density φ ∈ L2(Γ). From the asymptotic behavior of Φ(x, y),
it can be seen that the far-field pattern of (10.2.9) has the representation

u∞(x̂) =
1
4π

∫
Γ

φ(y)e−ikx̂·yds(y), x̂ ∈ S. (10.2.10)

Hence, if we introduce the far-field operator S∞ : L2(Γ)→ L2(S) defined by

(S∞φ)(x̂) :=
1
4π

∫
Γ

φ(y)e−ikx̂·yds(y), x̂ ∈ S, (10.2.11)

then for given far field u∞, the density function φ ∈ L2(Γ) can be solved from

(S∞φ)(x̂) = u∞(x̂), x̂ ∈ S. (10.2.12)

Obviously, the integral operator S∞ has an analytic kernel and therefore equa-
tion (10.2.12) is severely ill-posed.
Without loss of generality we assume that k2 is not the Dirichlet eigenvalue

for −Δ in the domain cycled by Γ. Then S∞ is injective and has dense range
in L2(S). Hence, we can apply the Tikhonov regularization method to solving
(10.2.12), i.e.,

αφα + S∞,∗S∞φα = S∞,∗u∞ (10.2.13)

with a regularization parameter α > 0 and the L2-adjoint S∞,∗ of S∞. Once φα

is solved, an approximation us
α for the scattered field is obtained by inserting the

density φα into (10.2.9). Here solving (10.2.13) is equivalent to the minimization
of the penalized residual

‖S∞φ− u∞‖2L2(S) + α‖φ‖2L2(Γ)

over all φ ∈ L2(Γ).
Please notice, φα converges as α → 0 if and only if the original equation

(10.2.12) is solvable, while the solvability of (10.2.12) is related to the question
of whether or not the scattered wave can be analytically extended as a solution
to the Helmholtz equation across the boundary ∂D. More precisely, (10.2.12) is
solvable if and only if u∞ is the far-field pattern of a radiating solution to the
Helmholtz equation in the exterior of Γ with the boundary data in the Sobolev
space H1(Γ). However, in general, these regularity properties of the scattered



214 J. J. Liu and H. B. Wang

wave cannot be known in advance for an unknown obstacleD. Whereas this prob-
lem can be remedied by using the range test to the far-field equation (10.2.12).
We will present the details in next section.
Define the single-layer potential operator S : L2(Γ)→ L2(Λ) by

(Sφ)(x) =
∫

Γ

φ(y)Φ(x, y)ds(y), x ∈ Λ, (10.2.14)

where Λ is a closed surface containing Γ in its interior.
Knowing us

α, we can determine the boundary ∂D of the scatterer via the
location of zeros of ui+us in a minimum norm sense. More precisely, given some
suitable class U of admissible surfaces Λ, we can approximate ∂D by solving

min
U
‖ui + us

α‖L2(Λ). (10.2.15)

Note that φα may not converge as α → 0 even if u∞ is the exact far-field
pattern, so, to remedy the problem with the convergence for ∂D, another possible
approach is to combine the linear problem for solving (10.2.13) with (10.2.15)
into one optimization problem. Thus, the final problem for determining ∂D is to
minimize

μ(φ,Λ;α) := ‖S∞φ− u∞‖2L2(S) + α‖φ‖2L2(Γ) + γ‖ui + Sφ‖2L2(Γ) (10.2.16)

over(φ,Λ) ∈ L2(Γ) × U , where α > 0 is the regularization parameter and γ > 0
is a coupling parameter.
For this nonlinear optimization problem, some theoretical results are referred

to [17, 42].
There is also the other decomposition method, namely, dual space method

([17, 42]). As in the potential method, this method also contains two steps.
In the first step we look for superpositions of incident fields with different

directions which lead to simple far-field patterns.
Express an incident wave vi as a Herglotz wave function with density g ∈

L2(S), i.e.,

vi(x) =
∫

S

eikx·dg(d)ds(d), x ∈ R
3, (10.2.17)

then its far-field pattern is given by

v∞(x̂) =
∫

S

u∞(x̂, d)g(d)ds(d), x̂ ∈ S. (10.2.18)

If we want the scattered wave to be a special radiating solution vs to the
Helmholtz equation with far-field pattern v∞, then, for given far-field patterns
u∞(·, d) for all incident directions d, we need to solve the integral equation

Fg = v∞, (10.2.19)
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where the operator F : L2(S) → L2(S) is called the far-field operator, which is
defined by

(Fg)(x̂) :=
∫

S

u∞(x̂, d)g(d)ds(d), x̂ ∈ S. (10.2.20)

Under the assumption that R
3 \ D is contained in the domain of definition

for vs, the solvability of (10.2.19) is related to the following interior Dirichlet
problem

Δvi + k2vi = 0 in D, (10.2.21)

vi + vs = 0 on ∂D. (10.2.22)

More precisely, (10.2.19) is solvable for g ∈ L2(S) if and only if the solution vi

to (10.2.21) and (10.2.22) is a Herglotz wave function with kernel g.
Since u∞ is an analytic function, (10.2.19) is severely ill-posed. So we again

apply Tikhonov regularization to obtaining an approximate solution to (10.2.19),
and therefore an approximation for the incident wave vi is given by (10.2.17).
In the second step we analogously seek the boundary ∂D as the location of

the zeros of the total field vi + vs in the minimum norm sense.
However, as pointed out in the potential method case, to obtain a satisfactory

reconstruction result, we need to combine these two steps together and minimize

μ(g,Λ;α) := ‖Fg − v∞‖2L2(S) + α‖Hg‖2L2(Λ0)
+ γ‖Hg + vs‖2L2(Λ) (10.2.23)

over (g,Λ) ∈ L2(S)×U , where Λ0 is a surface containing all surfaces of U ([17]),
and H : L2(S)→ L2(Λ) is the Herglotz operator defined by

(Hg)(x) =
∫

S

eikx·dg(d)ds(d), x ∈ Λ. (10.2.24)

If we take vi(x) = −Φ(z0, x) for some fixed z0 ∈ D, then the corresponding
scattered field and far-field pattern are given respectively by

vs(x) = Φ(z0, x), x ∈ R
3 \D and v∞(x̂) =

1
4π

e−ikx̂·z0 , x̂ ∈ S.

If z0 → ∂D, then it can be proven that ‖g‖L2(S) → ∞, which leads to the
so-called linear sampling method. The concrete description of this method will
be given in the next section.
The point source method proposed by Potthast [61, 62, 63] can also be in-

terpreted as a decomposition method. Here we state the more recent version of
this method [51, 55], which is derived from the potential theory rather than the
mixed reciprocity principle in the original version.
Firstly, for x ∈ R

3 \ D we choose a domain G such that x 	∈ G, D ⊂ G and
approximate the point source Φ(·, x) for any fixed x ∈ R3 \G by a superposition
of plane waves

Φ(z, x) =
∫

S

eikz·dgx(d)ds(d), z ∈ ∂G. (10.2.25)
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Secondly, we express us(x) outside G as a single-layer potential

us(x) =
∫

∂G

f(z)Φ(z, x)ds(z), x ∈ R
3 \G, (10.2.26)

with an unknown density f ∈ L2(∂G), and therefore its far-field pattern is given
by

u∞(x̂) =
1
4π

∫
∂G

f(z)e−ikx̂·zds(z), x̂ ∈ S. (10.2.27)

Finally, by inserting (10.2.25) into (10.2.26) and exchanging the order of inte-
gration, it follows from (10.2.27) that

us(x) = 4π
∫

S

u∞(−d)gx(d)ds(d), x ∈ R
3 \G. (10.2.28)

Using the above steps, we can reconstruct us(x) from its far-field pattern. Con-
sequently the boundary ∂D can be determined approximately from the boundary
condition.
It should be noted that equation (10.2.25) for the density may not have an ex-

act solution. However, under the assumption that k2 is not a Dirichlet eigenvalue
for the −Δ in G, the Herglotz wave functions are dense in L2(∂G), hence we can
get an approximate solution by regularization schemes. For example, the approx-
imation can be obtained by finding the minimum norm solution to (10.2.25) with
arbitrary discrepancy ε > 0.
Here, we also would like to mention that the original version of point source

method is based on the mixed reciprocity principle, and then in [51] the authors
established a relation between the classical potential method and point source
method, which suggests that the point source method can be derived from the
potential method. Such a new interpretation extends the applicable scope of this
reconstruction scheme from incident plane waves to arbitrary incident waves.
Recently further quantitative relation between these two methods is explained
in [55]. Essentially, these two methods are the same. In fact, if the regularizing
parameter for one scheme is chosen as an appropriate constant multiple of that for
the other scheme, then these two schemes will yield the exactly same solution.
This essential relation originates from the almost adjoint relation between the
Herglotz wave operator and the far-field operator, which can be explained as the
duality relation of these two schemes.
In conclusion, the basic idea of decomposition method is to separate the ill-

posedness from the nonlinearity. The main advantage is that it is not necessary
to solve the forward problem in the numerical implementation, which is required
for the iterative type method under a general framework. Of course, we cannot
also avoid the disadvantages in the optimization procedure. For example, as in
the Newton iterative method, some good a priori information about the unknown
scatterer is still needed. Moreover, the accuracy of the numerical reconstructions
is generally inferior to that of using the direct Newton iterative method.
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10.2.3 Hybrid method

In recent years, a so-called hybrid method has been developed [43, 44, 45, 46, 74],
which combines the ideas of iterative methods and decomposition methods, in-
heriting the advantages of each of them. Using this new algorithm, accurate re-
constructions are expected without the forward solver at each step. In principle,
this method can be viewed as a modification of the classical potential method,
in the sense that the auxiliary surface Γ is adjusted at each iteration step using
the known approximate shape ∂D to be updated. Then Γ is updated again by
linearizing the boundary condition around Γ. Now we simply state the main idea
behind this method.
Given a far-field pattern u∞ and a current approximation ∂Dr described by

(10.2.2) for the boundary surface, we firstly solve the following ill-posed integral
equation

1
4π

∫
∂Dr

e−ikx̂·yφ(y)ds(y) = u∞(x̂), x̂ ∈ S (10.2.29)

by standard Tikhonov regularization. Set

us(x) :=
∫

∂Dr

Φ(x, y)φ(y)ds(y)

for x ∈ R3 \ ∂Dr, then we can compute the boundary values of u = ui + us and
its derivatives on ∂Dr by the jump relations of classical potential method. In
order to find an update r + q, we solve the linearized equation of the boundary
condition u|∂Dr+q = 0, that is,

u|∂Dr + x̂ · grad u|∂Drq = 0 (10.2.30)

for q. In this way, an iterative scheme is generated with the advantage of not
requiring a forward solver at each step.
In closing this section, we want to mention another modification of the po-

tential method. Its main idea is to formulate the original inverse problem as a
system of two equations for two unknowns ([48]).
Firstly, represent the scattered wave us by

us(x) =
∫

∂D

φ(y)Φ(x, y)ds(y) (10.2.31)

with an unknown density φ ∈ L2(∂D), and therefore its far-field pattern is given
by

u∞(x̂) =
1
4π

∫
∂D

φ(y)e−ikx̂·yds(y), x̂ ∈ S. (10.2.32)

Secondly, in terms of the sound-soft boundary condition, we have
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ui(x) +
∫

∂D

φ(y)Φ(x, y)ds(y) = 0, x ∈ ∂D. (10.2.33)

Thus, (10.2.32) and (10.2.33) constitute a system of two equations for two
unknowns ∂D and φ, which can be solved by regularized Newton iterations.
As an important feature of all inversion methods introduced in this section,

the boundary type describing physical properties of boundary should be known.
This requirement can be viewed as one of the main shortcomings of optimization
type inversion scheme. In many cases, the physical property of the scatterer with
the boundary shape to be reconstructed is also unknown. That is, we need to
reconstruct both the boundary type and its geometric shape. We will view some
inversion schemes in this area in the next section.

10.3 Singular source methods

In this section, we use the term ”singular source methods” to represent different
methods which apply some indicator to detect the boundary property. Generally,
by introducing the point source, these methods construct some indicator function
of the obstacle boundary using the far-field data of incident plane waves. Near
the boundary, such indicators blow up in some way depending on the boundary
type and boundary shape. Thus the boundary property can be detected. The
mathematical essence behind these methods is the approximate computation of
the related Green function using the far-field data.
We will investigate the probe method, singular sources method, linear sampling

method, the factorization method, range test and no response test.

10.3.1 Probe method

In recent years, a new inversion scheme for reconstructing ∂D from the far-field
data called probe method has been developed [12, 14, 29, 30, 31, 32, 33, 49],
with the advantage of being an exact reconstruction formula. The key idea is to
construct the Dirichlet-to-Neumann map using the far-field data of the scattered
wave and then to compute an indicator function for suitably chosen approaching
domain and boundary value f . In fact f is the trace of the Runge approximation
of the fundamental solution to Helmholtz equation, with a detecting point z
outside D. When z → ∂D, the indicator function blows up. In this way, the
boundary ∂D of the scatterer can be reconstructed.
Here, we state this method for the inverse scattering problem caused by an

obstacle in R2 with impedance boundary condition, which can be found in [12, 49].
For the case of multiple obstacles, we refer to [14].
The inverse scattering problem can be stated as follows: For given incident

plane waves wi(x) = eikx·d with incident direction d ∈ S, the total wave w(x) =
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wi(x) + ws(x) outside an impenetrable D with impedance boundary condition
satisfies⎧⎨⎩

Δw + k2w = 0, x ∈ R
2 \D

∂w
∂ν

+ iλw = 0, x ∈ ∂D
ws(x) meets the radiation condition at ∞.

(10.3.1)

If the far-field data {w∞(x̂, d) : x̂, d ∈ S} of ws is given, we try to identify ∂D as
well as its boundary impedance λ(x).
To construct some indicator which can detect ∂D as well as its physical prop-

erty, the main idea contains the following three steps:

• Construct a Dirichlet-to-Neumann map on the approximate domain boundary.
• Use this map to construct an indicator function with suitably chosen Dirichlet
data.

• Compute the Dirichlet-to-Neumann map using the given far-field data.

Let Ω be a given domain containing the unknown obstacle, and k2 be not a
Dirichlet eigenvalue for the operator −Δ in Ω and Ω \D be connected.
For f(x) ∈ H

1
2 (∂Ω), consider the following mixed boundary value problem⎧⎨⎩

Δu+ k2u = 0, x ∈ Ω \D
∂u
∂ν + iλu = 0, x ∈ ∂D
u = f, x ∈ ∂Ω

(10.3.2)

for u ∈ H1(Ω\D), where λ is the impedance coefficient with "λ > 0 .
By (10.3.2), we can define a Dirichlet-to-Neumann map Λ∂D : H

1
2 (∂Ω) →

H− 1
2 (∂Ω) as

Λ∂D : f(x) �→ ∂νu|∂Ω. (10.3.3)

Corresponding to the case of D = ∅, we also introduce a map Λ0 : H
1
2 (∂Ω)→

H− 1
2 (∂Ω),

Λ0 : f(x) �→ ∂νu1|∂Ω, (10.3.4)

where u1 ∈ H1(Ω) satisfies{
Δu1 + k2u1 = 0, x ∈ Ω
u1 = f, x ∈ ∂Ω.

(10.3.5)

Due to the assumption of Ω, the existence and uniqueness of the solution to
(10.3.5) are ensured.

Lemma 10.3.1. Let u be the solution to problem (10.3.2) for f(x) ∈ H
1
2 (∂Ω).

Then ∂u
∂ν |∂Ω can be obtained from f(x) and far-field data {w∞(x̂, d) : x̂, d ∈ S}.

Obviously, this lemma implies that the Dirichlet-to-Neumann map can be
determined completely from the far-field patterns for all incident directions. From
this result, we see that the original inverse problem can be restated as the problem
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of reconstructing the shape and boundary impedance of the obstacle from the
map Λ∂D.
In the sequel, our main goal is to find the appropriate function f(x) ∈ H

1
2 (∂Ω)

and construct the indicator function. To this end, the Runge approximation the-
orem is needed.
For any continuous curve c = {c(t)|0 ≤ t ≤ 1}, if it satisfies c(0), c(1) ∈ ∂Ω

and c(t) ∈ Ω for 0 < t < 1, we call c a needle in Ω.

Lemma 10.3.2. Suppose that Γ is an arbitrary open set of ∂Ω. For each t > 0,
there exists a sequence {vn}n=1,2,··· in H1(Ω), which satisfies Δvn + k2vn = 0,
such that supp(vn|∂Ω) ⊂ Γ and vn → Φ(· − c(t)) in H1

loc(Ω \ {c(t′) | 0 < t′ ≤ t}),
where Φ(x, y) is the fundamental solution to the Helmholtz equation.

Since vn|∂Ω depends on c(t), we denote it by fn(·, c(t)), that is, fn(·, c(t)) :=
vn|∂Ω ∈ H1/2(∂Ω) with supp(fn(·, c(t))) ⊂ Γ.
For the given needle c ∈ Ω and 0 < t < 1, we construct the indicator function

I(t, c) = lim
n→∞〈(Λ∂D − Λ0)fn(·, c(t)), fn(·, c(t))〉, (10.3.6)

where 〈·, ·〉 is the L2-inner product on ∂Ω.
The main result of the probe method in this case can be stated as follows

([12]):

Theorem 10.3.3. For a given needle c in Ω, we have

lim
c(t)→∂D

"(I(t, c)) = −∞ (10.3.7)

and I(t, c) exists for all c(t) outside D satisfying |"(I(t, c(t)))| < +∞.

Theoretically, the probe method can be viewed as a novel method since this
reconstruction scheme is an exact formula in the sense that in principle we can
obtain the full shape of unknown obstacle D.
The natural far-field version of the probe method is analyzed in [28, 64], where

this method is proved to be identical to the singular sources method. This version
uses directly the far-field patterns to reconstruct the boundary of the obstacle in
one step, and its indicator function is equivalent to that of the original version
stated above with respect to the blow-up property.
Once the boundary ∂D is determined, the boundary impedance λ can also be

identified. For the reconstruction of λ(x) using the moment method, we refer to
[12].

10.3.2 Singular sources method

The idea of the singular sources method is to use the scattered field Φs(z, z) for
the point source Φ(·, z) with source location z ∈ R3 \D as an indicator function,
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which can be computed from the far-field data of the incident plane waves for all
incident directions. Under suitable assumptions on the unknown scatterer, the
blow-up property

|Φs(z, z)| → ∞, z → ∂D. (10.3.8)

can be shown. Consequently, the boundary ∂D can be reconstructed by probing
the area where the scatterer might be located.
In original version of singular sources method ([25, 62, 63, 64, 65]), to com-

pute Φs(z, z) from the far-field pattern, the authors use the back project operator,
which is constructed by using the mixed reciprocity relation. However, the cal-
culation of Φs(z, z) can be carried out from a formula justified directly by using
the identity (10.1.11). Now we state the modified version of this method.
Let z ∈ R3 \ D. We suitably choose the domain G such that D ⊂ G and

z ∈ R
3 \ G. Moreover, we assume that the interior Dirichlet problem in G is

uniquely solvable. In this case, due to the denseness property of the Herglotz
wave functions in L2(∂G), we can take {fn}∞n=1 and {gm}∞m=1 as sequences in
L2(S) such that

‖vfn − Φ(·, x)‖L2(∂G) → 0, n→∞, ‖vgm − Φ(·, z)‖L2(∂G) → 0, m→∞
(10.3.9)

for x, z ∈ R3\G, where vfn and vgm are the Herglotz wave functions with densities
fn and gm respectively.
Noticing that vfn , vgm , Φ(·, x) and Φ(·, z) satisfy the Helmholtz equation in

G, it is deduced from (10.3.9) that

‖vfn − Φ(·, x)‖H1(D) → 0, n→∞, ‖vgm − Φ(·, z)‖H1(D) → 0, m→∞.
(10.3.10)

Multiplying in (10.1.11) by fn(x̂)gm(d) and integrating S× S, we get∫
S

∫
S

u∞(−x̂, d)fn(x̂)gm(d)ds(x̂)ds(d)

=
1
4π

∫
∂D

{∫
S

∂eikx̂·y

∂ν(y)
fn(x̂)ds(x̂) ·

∫
S

us(y, d)gm(d)ds(d)

−
∫

S

∂us(y, d)
∂ν(y)

gm(d)ds(d) ·
∫

S

eikx̂·yfn(x̂)ds(x̂)
}

ds(y)

=
1
4π

∫
∂D

{
∂vfn(y)
∂ν(y)

vs
gm
(y)− ∂vs

gm
(y)

∂ν(y)
vfn(y)

}
ds(y). (10.3.11)

where
vs

gm
(y) :=

∫
S

us(y, d)gm(d)ds(d)

is the scattered field related to the incident field vgm . From (10.3.10) and
(10.3.11), we obtain
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lim
n→∞

∫
S

∫
S

u∞(−x̂, d)fn(x̂)gm(d)ds(x̂)ds(d)

=
1
4π

∫
∂D

{
∂Φ(y, x)
∂ν(y)

vs
gm
(y)− ∂vs

gm
(y)

∂ν(y)
Φ(y, x)

}
ds(y) =

1
4π

vs
gm
(x). (10.3.12)

Hence the well-posedness of the direct scattering problem says vs
gm
(x) →

Φs(x, z) as m→∞. These arguments lead to
Theorem 10.3.4. For x, z ∈ R3 \D, we have

Φs(x, z) = 4π lim
m→∞ lim

n→∞

∫
S

∫
S

u∞(−x̂, d)fn(x̂)gm(d)ds(x̂)ds(d) (10.3.13)

where fn and gm satisfy (10.3.9).

From the singularity of the fundamental solution, it can be deduced that
Φs(z, z) → ∞ as the source point z approaches to the boundary ∂D. Hence,
we can use

Iss(z) := Φs(z, z) (10.3.14)

as an indictor function of the singular sources method to reconstruct the bound-
ary ∂D.
For any probing point z, we firstly calculate Φs(z, z) in terms of (10.3.13), and

then decide whether or not z is near to the boundary by observing the value of
Φs(z, z). In this way, the rough shape of unknown obstacle can be reconstructed
by suitable choosing the probing points z and corresponding approximate do-
mains G.
Here we would like to point out that the probe method suggested by Ikehate

follows from the uniqueness proof of Isakov ([34]) based on an energy integral
for Φs(·, z), while the singular sources method due to Potthast follows from the
uniqueness proof of Kirsch and Kress ([37]) based on a point-wise calculation of
Φ(z, z). In essence, they are two equivalent methods with respect to the blow-
up rate of the indicator functions. Moreover, the blow-up rate is of the order of
singularity of the fundamental solution, see [28, 57] for the details.
In addition, the computation of Φs(z, z) in original version is meaningful only

for z ∈ R
3 \D, while the singular sources method for any z ∈ R3 is developed in

[28]. Now we state it in a simple way.

Definition 10.3.5. We call a bounded domain G with C2-regular boundary, such
that R3\G is connected, a non-vibrating domain, if k2 is not a Dirichlet eigenvalue
for −Δ. If this last condition is not satisfied, we say that G is vibrating.

For any given domain, we can always test whether or not it is non-vibrating
by using the Courant min-max principle. For details, we refer the reader to [59].

Definition 10.3.6 (The indicator function). Let Ω be large enough but bounded
domain containing the unknown obstacle D. For z ∈ Ω, we denote by Cz the set
of continuous curves cz which join the point z to the boundary ∂Ω. For any curve
cz ∈ Cz, we define Ωz to be a C2-regular domain contained strictly in Ω \ cz. Let
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vgn be a sequence of Herglotz waves which approximate the point source Φ(·, z)
and set

Iss(z, cz,Ωz) := 4π lim
n→∞

∫
S

∫
S

u∞(−x̂, d)gn(x̂)gn(d)ds(x̂)ds(d).

Then, we define the indicator function I(z) by

I(z) := inf
cz∈Cz

sup
{Ωz⊂(Ω\cz)}

{|Iss(z,cz ,Ωz)|}. (10.3.15)

In this definition, if Ωz is a vibrating domain, then we replace it with a larger
non-vibrating domain Ω̃z such that z 	∈ Ω̃z and then approximate Φ(·, z) on Ω̃z

and get also the same approximation on Ωz. This means that we can define the
functional Iss(z, cz,Ωz) for any C2-regular domains.

Theorem 10.3.7. The indicator function I(z) holds the two properties:
(1) If z ∈ Ω \D, then I(z) = |Φs(z, z)|;
(2) If z ∈ D, then I(z) =∞.
As a conclusion, the obstacle D is characterized by the indicator function I(z)

as follows:
D = {z ∈ Ω : I(z) =∞}.

It is also worth noticing that this theorem is based on a conjecture about the
properties of Iss(z.cz,Ωz), see Claim 3.4 in [28], while its full proof is still open.
Notice that, for the case of penetrable scatterers, the higher order multipoles

are needed, if we still use the singular sources method to detect some information
about the scatterers. Consider the scattering of acoustic waves by some inhomo-
geneous medium with the refractive index χ = 1 − n. Then the scattered field
Φs(z, z) corresponding to incident point source Φ(·, z) is bounded independently
of the location of its source point z ([63]). This implies the behavior of Φs(z, z)
does not characterize the unknown boundary. However, it has been shown by
Potthast [63, 67, 68] that the scattered field Φs

μ(z, z) for the multipoles with ap-
propriate order μ holds a singular behavior. Using this singularity we can recover
the shape of an inhomogeneous medium. Further, we can also determine the size
of the jump of χ at the boundary.
More recently, the dipoles and multipoles of order two are also applied to

reconstructing the complex obstacles in Model problem III by probing method
from the far-field patterns for many incident plane waves [52, 53, 54, 58]. Using
dipoles or multipoles of order two as point sources, we can derive the asymptotic
expansion of the indicator functions with respect to the source point. In fact,
the first (i.e. highest) order term of the real parts gives the location of this
surface and the unit normal vectors on it, while the second order terms involve
the curvature coupled, in a clear and simple way, with the imaginary part of
the surface impedance. The appearance of the curvature explains the difficulty
to reconstruct non-uniform shapes, the non convex ones in particular, without
more a priori information. In addition, this relation enables us to use the surface
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impedance (the coating coefficient) to design obstacles which can be detected in
a more (or less) accurate way by using the indicator function-based methods.
Here, we restrict ourselves to two-dimensional Helmholtz model which is a

well-known approximate model of practical three-dimensional obstacle, provided
that the obstacle in R

3 is of cylinder form [5].
Let D be a bounded domain of R2 with its boundary ∂D ∈ C2,1 and R2 \D

is connected. We assume that ∂D has the decomposition

∂D = ∂DI ∪ ∂DD, ∂DI ∩ ∂DD = ∅,

where ∂DD and ∂DI are open curves on ∂D.
For given incident plane wave ui(x) = eikd·x, we associate the total wave

u(x) = ui(x) + us(x) satisfying the following exterior problem⎧⎪⎨⎪⎩
Δu+ k2u = 0 in R2 \D,

u = 0 on ∂DD,
∂u
∂ν

+ ikσu = 0 on ∂DI ,

(10.3.16)

with ν(x) as the outward normal direction of ∂D, where the scattered fields us

satisfies the Sommerfeld radiation condition

lim
r→∞

√
r(

∂us

∂r
− ikus) = 0, r = |x|. (10.3.17)

Assume that the surface impedance σ(x) := σr(x)+iσi(x) is a complex-valued
Lipschitz continuous function, and its real part σr(x) has a uniform lower bound
σr

0 > 0 on ∂DI . The part ∂DI is referred to as the coated part of ∂D and ∂DD

is the non-coated part.
For the above scattering problem by a complex obstacle, the inverse scattering

problem is stated as follows.

Given u∞(·, ·) on S×S for the scattering problem (10.3.16)–(10.3.17), we need
to

• Reconstruct the shape of the obstacle D;
• Reconstruct some geometrical properties of ∂D such as normal directions and
the curvature;

• Distinguish the coated part ∂DI from the non-coated part ∂DD;
• Reconstruct the complex surface impedance σ(x) on ∂DI , including the real
and the imaginary parts.

The answers to the above problems are based on the following asymptotic
expansion results, see [53, 54] for more details.
The scattered field associated with the Herglotz incident field vi

g := vg(x)
defined by

vg(x) :=
∫

S

eikx·dg(d) ds(d), x ∈ R
2 (10.3.18)
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with g ∈ L2(S) is given by

vs
g(x) :=

∫
S

us(x, d)g(d) ds(d), x ∈ R
2 \D, (10.3.19)

and its far-field pattern is

v∞g (x̂) :=
∫

S

u∞(x̂, d)g(d) ds(d), x̂ ∈ S. (10.3.20)

Denote by Φ(x, z) the fundamental solution for the Helmholtz equation in R
2.

Assume that D ⊂⊂ Ω for some known Ω with smooth boundary. For a ∈ Ω \D,
denote by {zp} ⊂ Ω\D a sequence tending to a and starting from ∂Ω. For any zp,
set Dp

a a C2-regular domain such that D ⊂ Dp
a (resp. ∂D ⊂ Dp

a) with zq ∈ Ω\Dp
a

for every q = 1, 2, · · · , p and that the Dirichlet interior problem to Dp
a for the

Helmholtz equation is uniquely solvable. In this case, the Herglotz wave operator
H from L2(S) to L2(∂Dp

a) defined by

(Hg)(x) := vg(x) =
∫

S

eikx·dg(d) ds(d) (10.3.21)

is injective, compacting dense range, see [17].
For every p fixed, we construct three density sequences {gp

n}, {f j,p
m } and {hj,p

l }
in L2(S) with j = 1, 2, by the Tikhonov regularization such that∥∥vgp

n
− Φ(·, zp)

∥∥
L2(∂Dp

a)
→ 0, n→∞, (10.3.22)∥∥∥∥vf

j,p
m
− ∂

∂xj
Φ(·, zp)

∥∥∥∥
L2(∂Dp

a)

→ 0, m→∞, (10.3.23)

∥∥∥∥vhj,p
l
− ∂

∂xj

∂

∂x2
Φ(·, zp)

∥∥∥∥
L2(∂Dp

a)

→ 0, l→∞. (10.3.24)

Using these three density sequences, we construct the following three indicators

I0(zp) :=
1
γ2

lim
m→∞ lim

n→∞

∫
S

∫
S

u∞(−x̂, d) gp
m(d) gp

n(x̂) ds(x̂)ds(d), (10.3.25)

I1
j (zp) :=

1
γ2

lim
m→∞ lim

n→∞

∫
S

∫
S

u∞(−x̂, d) f j,p
m (d) gp

n(x̂) ds(x̂)ds(d), (10.3.26)

I2
j (zp) :=

1
γ2

lim
m→∞ lim

n→∞

∫
S

∫
S

u∞(−x̂, d) hj,p
m (d) gp

n(x̂) ds(x̂)ds(d), (10.3.27)

where γ2 = e
π
4 i

√
8πk

.
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For the points a ∈ ∂D, we choose the sequence {zp}p∈N included in Ca,θ, where
Ca,θ is a cone with center a, angle θ ∈ [0, π

2 ) and axis ν(a). Denote by C(a) the
curvature of ∂D at point a.

Theorem 10.3.8. Assume that the boundary ∂D is of class C2,1 and σ = σr+iσi

defined on ∂DI is a complex-valued Lipschitz function with positive real part.
Then the above three indicators have the following asymptotic formulas:

I. For pole Φ(x, z) as source, it follows that

" I0(zp) =

⎧⎪⎨⎪⎩
− 1
4π

ln |(zp − a) · ν(a)| +O(1), a ∈ ∂DI ,

+
1
4π

ln |(zp − a) · ν(a)| +O(1), a ∈ ∂DD.

(10.3.28)

# I0(zp) = O(1), a ∈ ∂D. (10.3.29)

II. Using dipoles ∂
∂xj

Φ(x, z) with j = 1, 2 as sources, it follows that

" I1
j (zp) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−νj(a)
4π|(zp − a) · ν(a)| −

νj(a)(kσi(a) + 1
2
C(a))

π
ln |(zp − a) · ν(a)|+O(1),

a ∈ ∂DI ,

νj(a)
4π|(zp − a) · ν(a)| −

νj(a)
2π

C(a) ln |(zp − a) · ν(a)|+O(1), a ∈ ∂DD.

(10.3.30)

# I1
j (zp) =

⎧⎨⎩−
νj(a)kσr(a)

π
ln |(zp − a) · ν(a)|+O(1), a ∈ ∂DI ,

O(1), a ∈ ∂DD.

(10.3.31)

III. Using multipoles of order two ∂
∂xj

∂
∂x2

Φ(x, z) with j = 1, 2, it follows that

" I2
1 (zp) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1(a)ν2(a)
4π|(zp − a) · ν(a)|2 −

ν1(a)ν2(a)
π

[kσi(a) +
3
4
C(a)] 1

|(zp − a) · ν(a)|+
O(ln |(zp − a) · ν(a)|), a ∈ ∂DI ,

−ν1(a)ν2(a)
4π|(zp − a) · ν(a)|2 −

3ν1(a)ν2(a)
4π

C(a) 1
|(zp − a) · ν(a)|+

O(ln |(zp − a) · ν(a)|), a ∈ ∂DD.
(10.3.32)



Reconstruction Methods for Inverse Scattering 227

" I2
2 (zp) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν2
2 (a)− ν2

1(a)
8π|(zp − a) · ν(a)|2 −

ν2
2(a)− ν2

1 (a)
2π

[kσi(a) +
3
4
C(a)] 1

|(zp − a) · ν(a)|+
O(ln |(zp − a) · ν(a)|), a ∈ ∂DI ,

ν2
1 (a)− ν2

2(a)
8π|(zp − a) · ν(a)|2 −

3(ν2
2(a)− ν2

1 (a))
8π

C(a) 1
|(zp − a) · ν(a)|+

O(ln |(zp − a) · ν(a)|), a ∈ ∂DD.
(10.3.33)

and

# I2
1 (zp) =

⎧⎨⎩
ν1(a)ν2(a)

π|(zp − a) · ν(a)|kσr +O(ln |(zp − a) · ν(a)|), a ∈ ∂DI ,

O(ln |(zp − a) · ν(a)|), a ∈ ∂DD.
(10.3.34)

# I2
2 (zp) =

⎧⎨⎩
ν2
2(a)− ν2

1 (a)
2π|(zp − a) · ν(a)|kσr +O(ln |(zp − a) · ν(a)|), a ∈ ∂DI ,

O(ln |(zp − a) · ν(a)|), a ∈ ∂DD.
(10.3.35)

By using these formulas, the boundary location, boundary type as well as the
boundary impedance can be identified numerically [53, 54].

10.3.3 Linear sampling method

Here we describe this method for model problem I with sound-soft boundary.
Let Φ∞0 (·, z) be the far-field pattern of the fundamental solution Φ(·, z) with

source point z ∈ R3, then it follows from the asymptotic behavior of Φ(·, z) that

Φ∞0 (x̂, z) =
1
4π

e−ikx̂·z, x̂ ∈ S. (10.3.36)

Please notice that Φ∞0 (·, z) is different from Φ∞(·, z), which denotes the far-
field pattern of the scattered field Φs(·, z) for the incident point source Φ(·, z).
Generally, they are not the same. But we have Φ∞(·, z) = −Φ∞0 (·, z) for z ∈ D
since in this case Φs(·, z) = −Φ(·, z).
The main idea of linear sampling method is to approximately solve the far-field

equation
(Fgz)(x̂) = Φ∞0 (x̂, z), x̂ ∈ S (10.3.37)

for z on a grid of points containing D, where the far-field operator F is defined by
(10.2.20), and then to look for the points where ‖gz‖L2(S) becomes unbounded.
Note that, as pointed out in the overview on dual space method, the solvability

of (10.3.37) is equivalent to the existence of the solution as a Herglotz wave
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function with the density gz to the interior Dirichlet problems (10.2.21) and
(10.2.22). However, the solution to (10.2.21) and (10.2.22) has an extension as
a Herglotz wave function across the boundary ∂D only in some very special
cases. Hence, in general there does not exist a solution to (10.3.37). Nevertheless,
due to the denseness property of the Herglotz wave functions, we can obtain an
approximate solution to (10.3.37) by applying the Tikhonov regularization.
Now the main result of the linear sampling method can be stated as follows

[22]:

Theorem 10.3.9. Assume that k2 is not a Dirichlet eigenvalue for −Δ in D.
Then

(1) For z ∈ D and a given ε > 0, there exists a function gε
z ∈ L2(S) such that

‖Fgε
z − Φ∞0 ‖L2(S) < ε (10.3.38)

and the corresponding Herglotz wave function Hgε
z converges to a solution of{

Δu+ k2u = 0, in D
u = −Φ(·, z) on ∂D

(10.3.39)

in H1(D) as ε→ 0.
(2) For z ∈ D and a fixed ε > 0, we have

lim
z→∂D

‖Hgε
z‖H1(D) =∞ and lim

z→∂D
‖gε

z‖L2(S) =∞.

(3) For z ∈ R3 \D and a given ε > 0, every gε
z ∈ L2(S) that satisfies (10.3.38)

is such that

lim
ε→0
‖Hgε

z‖H1(D) =∞ and lim
ε→0
‖gε

z‖L2(S) =∞.

From this theorem, by solving the integral equations (10.3.37) for many sam-
pling points z and scanning the values for ‖gz‖L2(S), we can expect to obtain an
approximation for ∂D. In fact, we can take it as a set of points where the norm
of gz is large enough.
The correlative discussion on the inverse medium scattering is given in [22].

For more cases and their applications, we refer to [2, 7, 8, 9, 10, 11, 18, 19, 20,
21, 23, 76].

10.3.4 Factorization method

The drawback that the integral equation (10.3.37), in general, is not solvable is
remedied by the factorization method due to Kirsch [35]. In this method, (10.3.37)
is replaced by

(F ∗F )1/4gz(·) = Φ∞0 (·, z), (10.3.40)
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where F ∗ is the L2-adjoint of F .
Here we describe the main idea of this method only for the Model problem I

with Dirichlet boundary condition ([35]).
Define an operator G : L2(∂D) → L2(S) by Gf = w∞, where w∞ is the

far-field pattern of the radiating solution to the exterior Dirichlet problem with
the boundary data f ∈ L2(∂D). Recall the single-layer potential operator S :
L2(∂D)→ L2(∂D) defined by (10.2.14), the relation between the operators F, G
and S is given by

Lemma 10.3.10. The operator F has the decomposition of F = −4πGS∗G∗,
where G∗ and S∗ are the L2-adjoint operators of G and S, respectively.

Assume that k2 is not a Dirichlet eigenvalue for −Δ in D. Then the operator F
is normal and one-to-one (Theorem 4.4 and Theorem 4.5 in [18]), and hence there
exist eigenvalues λj ∈ C of F with λj 	= 0 for j = 1, 2, · · · . The corresponding
eigenfunctions ψj ∈ L2(S) form a complete orthogonal system in L2(S). We note
that |λj | are the singular values of F and {|λj |, ψj , sign(λj)ψj} is a singular
system of F , where sign(λj) =

λj

|λj | . From the above lemma, it follows that

−4πGS∗G∗ψj = λjψj , j = 1, 2, · · · .

Define the functions φj ∈ L2(∂D) by G∗ψj = −
√

λjφj , j = 1, 2, · · · , where
we choose the branch of

√
λj such that #

√
λj > 0, then we have

GS∗φj =

√
λj

4π
ψj , j = 1, 2, · · · . (10.3.41)

It can be shown that the functions φj form a Riesz basis in the Sobolev space
H− 1

2 (∂D), i.e., H− 1
2 (∂D) consists exactly of functions φ of the form

φ =
∞∑

j=1

αjφj with
∞∑

j=1

|αj |2 <∞.

Furthermore, there exists a constant c > 1 with

1
c2
‖φ‖2

H− 1
2 (∂D)

≤
∞∑

j=1

|αj |2 ≤ c2‖φ‖2
H− 1

2 (∂D)
, ∀φ ∈ H− 1

2 (∂D). (10.3.42)

Now we can state the result for factorization method ([35]).

Theorem 10.3.11. Assume that k2 is not a Dirichlet eigenvalue for −Δ in D.
Then the ranges of G : H

1
2 (∂D)→ L2(S) are given by

R(G) =
⎧⎨⎩
∞∑

j=1

ρjψj :
∞∑

j=1

|ρj |2
σj

<∞
⎫⎬⎭ = R

(
(F ∗F )1/4

)
,
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where
{

σj , ψj , ψ̃j

}
is a singular system of F .

Particularly, on the assumption that k2 is not a Dirichlet eigenvalue for −Δ in
D, it is easy to see that Φ∞0 is in the range ofG if and only if z ∈ D. Consequently,
if we solve the operator equation (10.3.40) with noisy far-field data u∞δ by using
the Tikhonov regularization with the regularization parameter chosen by the Mo-
rozov discrepancy principle, then the norm of regularized solution ‖gδ

z‖ converges
as the noise level δ → 0 if and only if z ∈ D. Comparing (10.3.37) with (10.3.40),
these results can be explained in the sense that the operator F itself is too much
more smoothing compared with (F ∗F )1/4 due to the fact Φ∞0 (·, z) 	∈ F

(
L2(S)

)
for z ∈ D.
On the other hand, the above arguments also yield a characterization of D,

that is,

D =

⎧⎨⎩z ∈ R
3 :

∞∑
j=1

|ρz
j |2
σj

<∞
⎫⎬⎭ =

{
z ∈ R

3 : Φ∞0 (·, z) ∈ R
(
(F ∗F )1/4

)}
,

(10.3.43)
where ρz

j are the expansion coefficients of Φ∞0 (·, z) with respect to {ψj, j =
1, 2, · · · }, i.e., ρz

j = 〈Φ∞0 (·, z), ψj〉L2 . Moreover, there exists a constant c > 1 such
that

1
c2
‖Φ(·, z)‖2

H
1
2 (∂D)

≤
∞∑

j=1

|ρz
j |2
σj

≤ c2‖Φ(·, z)‖
H

1
2 (∂D)

(10.3.44)

for all z ∈ D, which describes how the value of the series blows up when z →
∂D. Indeed, we can easily show that ‖Φ(·, z)‖

H
1
2 (∂D)

behaves as 1
d(z,∂D) in R3

and ln |d(z, ∂D)| in R2, where d(z, ∂D) denotes the distance of z ∈ D from the
boundary ∂D.
To visualize the scatterer in practice, the most convenient approach is via

Picard’s criterion for the solvability of linear ill-posed operator equations in terms
of a singular system of F .
For the case of inverse medium scattering, the corresponding results are given

in [36]. In [40], Kirsch provides the version of the factorization method for
Maxwell’ equations. The extension of the factorization method to the cases of
limited far-field data and absorbing media has been carried out in [39], where a
constrained optimization problem has to be solved. On the other hand, the fac-
torization method can be viewed as an extension of the MUSIC algorithm from
signal processing. The relation between them was first studied by Cheney [15],
and further investigated by Kirsch [38]. More investigations on the factorization
method and its applications can be found in [3, 4, 26, 27].
It should be noted that the behavior of the indicator function of the linear

sampling method or factorization method with respect to the parameter is oppo-
site to that of the probe method or singular sources method since it is bounded
inside the obstacle D and becomes large when approaching to D and remains
unbounded outside D.
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The probe method, the singular sources method, the linear sampling method
and the factorization method share the advantage that no knowledge about the
boundary condition of the unknown scatterer is needed. Moreover, these methods
are still valid in the limited aperture case, where the far field data is given only
on an open subset of S. The principal disadvantage of these methods lies in the
fact that they all need to know the far-field patterns for incident plane waves
of all or many directions. However, in practice, such a large number of input
data is usually unavailable. Thus, the methods requiring only one or a few far-
field patterns are of great importance. Of course, in this case, we cannot expect
to reconstruct all properties of a scatterer if we do not have adequate a priori
information, but we can detect some special information about the unknown
scatterer, which is sufficient for practical applications in some cases.

10.3.5 Range test method

We firstly introduce the one-wave range test for model problem I with Dirichlet
boundary condition. The basic idea is to test whether or not the far-field pat-
tern is in the range of the single-layer potential operator [71, 66]. Then we can
determine the convex scattering support of a scatterer with unknown physical
properties from the far-field pattern for only one incident wave. The convex scat-
tering support is a subset of the unknown scatterer, from which we can obtain
some information about its location and rough shape.
Choose a test domain G such that the homogeneous interior Dirichlet problem

for G has only the trivial solution. Define the single-layer potential SGφ by

(SGφ)(x) :=
∫

∂G

Φ(x, y)φ(y)ds(y), x ∈ R
3, (10.3.45)

then its far-field pattern is given by

(S∞G φ)(x̂) =
1
4π

∫
∂G

e−ikx̂·yφ(y)ds(y), x̂ ∈ S. (10.3.46)

For given far-field pattern u∞, we establish the following far-field integral
equation

(S∞G φ)(x̂) = u∞. (10.3.47)

As pointed out previously, the solvability of (10.3.47) is closely related to the
question of whether or not the scattered wave us can be analytically extended
into R3 \G. Precisely, the far-field equation (10.3.47) is solvable if and only if us

can be analytically extended into R3 \G. This means the solvability of (10.3.47)
can be used as a criterion for the analytical extensibility of us into R3 \G.
We employ the classical Tikhonov regularization and define the approximate

solution to (10.3.47) as
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φα :=
(
αI + S∞,∗

G S∞G
)−1

S∞,∗
G u∞, α > 0 (10.3.48)

where S∞,∗
G denote the adjoint of S∞G .

By the standard arguments on Tikhonov regularization, it follows that

• If (10.3.47) does have a solution, then the norm ‖φα‖L2(∂G) of (10.3.48) will
be bounded for α→ 0 and converges towards the norm of the true solution;

• If (10.3.47) does not have a solution, then the norm ‖φα‖L2(∂G) will blow up
as α→ 0.

Thus, we can test the extensibility of the scattered field us by calculating
the norm ‖φα‖ for the test domain G. For sufficiently small fixed regularization
parameter α and some appropriate cut-off constant C, if ‖φα‖ ≤ C, then we
think that (10.3.47) is solvable and therefore us can be analytically extended
into R3 \ G; if ‖φα‖ > C, then we conclude that (10.3.47) is unsolvable. For a
set of test domains Gj , if the scattered field us can be analytically extended into
R3 \Gj , we call Gj a positive test domain. Taking the intersection of all positive
test domains, we obtain a subset of the unknown domain.
For the convergence and regularity of the range test, we refer to [71].
Here we point out that the range test method can be viewed as a generalization

of the factorization method to the case of only one incident wave, since the range
of the single-layer potential operator plays a key role for the blow-up property of
the density function.
Since the boundary condition should be known a priori for the iterative meth-

ods and decomposition methods, while the far-field patterns for many incident
waves are required for the probing method and linear sampling method, one of
the advantages of range test is able to detect some information about the scat-
terer with unknown physical properties from the far-field pattern with only one
incident wave. However, the range test in general cannot reconstruct the exact
shape of D from the knowledge of the far-field pattern for one incident wave.
To obtain the full reconstruction of the scatterer, the multi-wave range test is
suggested by Potthast and Schulz [72].
Giving the far-field patterns for many incident plane waves, we firstly use the

one-wave range test method for each wave to test some domain G. Assume that
the domain G is positive for all d ∈ S, then we can calculate us(x, d) for x ∈ R3\G
and d ∈ S via

us(x, d) = SG

(
(S∞G )−1u∞(x̂, d)

)
. (10.3.49)

By using the mixed reciprocity relation (10.1.14), we obtain

Φ∞(d, x) =
1
4π

SG

(
(S∞G )−1u∞(x̂,−d)

)
(10.3.50)

for x ∈ R3 \ (G ∪D
)
and d ∈ S.

Then we apply the one-wave range test to the following far-field equation
corresponding to point source
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(S∞G ψx) (d) = Φ∞(d, x). (10.3.51)

Now we give the results of the extensibility of the scattered field Φs(·, x) [72].
Theorem 10.3.12. If D ⊂ G, then the scattered field Φs(·, x) can be analytically
extended up to R3 \G uniformly for all x ∈ R3 \G. If D 	⊂ G, then the scattered
field Φs(·, x) cannot be analytically extended up to R

3 \ G uniformly for all x ∈
R3 \G.

This means that equation (10.3.51) is solvable for all x ∈ R
3\G with uniformly

bounded solution ψx only if D ⊂ G. With this characterization we can get a
reconstruction of D by taking the intersection of all test domains G for which
the supermum of the norm of ψx for some test points x ∈ R

3 \ G is sufficiently
small. In principle, the full shape of the unknown scattererD can be reconstructed
by properly choosing the set of test domains.

10.3.6 No response test method

The no response test method is firstly proposed by Luke and Potthast [56] to
locate the support of a scatterer from a knowledge of the far-field pattern for
only one incident wave. The main idea is to construct special incident waves
which are small on some test domain and then to estimate the response to these
waves. If the response is small, the unknown object is assumed to be a subset
of the test domain. Especially, this method does not depend on the information
about whether the scatterer is penetrable or impenetrable, nor does it depend on
the physical properties of the scatterer.
We present the no response test method for model problem I, and then simply

describe its multi-wave version.
Multiply (10.1.11) by g ∈ L2(S) and integrate S, then we get

I(g) :=
∫

S

u∞(−x̂)g(x̂)ds(x̂)

=
1
4π

∫
∂D

∫
S

(
us(y)

∂eiky·dg(d)
∂ν(y)

− ∂us(y)
∂ν(y)

eiky·dg(d)
)

ds(d)ds(y)

=
1
4π

∫
∂D

(
us ∂vg

∂ν
− ∂us

∂ν
vg

)
ds, (10.3.52)

where vg is the Herglotz wave function.
Let vg and its derivatives be small on some test domain G, then the above

functional I(g) should be small if D ⊂ G, while it will be arbitrarily large if G ⊂
R3 \D. This idea is used in [56] to construct an approximation for an unknown
scatterer D. It should be mentioned that the case where D ∩ (R3 \G

) 	= ∅ and
D ∩G 	= ∅ remains open [56], but it was resolved by Potthast [69]. Now we give
this further investigation as follows.
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Let G be the admissible test domain, define Iε for ε > 0 by

Iε(G) := sup
{
|I(g)| : g ∈ L2(S) such that ‖vg‖C1(G) ≤ ε

}
. (10.3.53)

Then we construct the indicator function via

I0(G) := lim
ε→0

Iε(G). (10.3.54)

Theorem 10.3.13. Let G be an admissible test domain. We have I0(G) = 0 if
the field us can be analytically extended into R

3 \ G. If u cannot be analytically
extended into R3\G, then we have Iε(G) =∞ for all ε > 0 and hence I0(G) =∞.

Based on this theorem, we can obtain some upper estimate for the set of
singular points of us by taking the intersections of the sets G for all possible
test domains G with I0(G) = 0. In this way, some special information about the
unknown scatterer D is detected. Of course, as pointed out for the range test
method, we cannot hope to reconstruct the full shape of D by this one-wave
method. However, it is possible when the far-field pattern u∞(x̂, d) is known for
a large number of incident waves with different directions d ∈ S.
Next we introduce two versions of the multi-wave no response test ([28]), which

are proved to be equivalent with respect to the convergence properties.
Multiplying (10.1.11) by f(x̂)g(d) and integrating S× S, we have

I(f, g) :=
∫

S

∫
S

u∞(−x̂, d)f(x̂)g(d)ds(x̂)ds(d)

=
1
4π

∫
∂D

{
∂vf (y)
∂ν(y)

vs
g(y)−

∂vs
g(y)

∂ν(y)
vf (y)

}
ds(y). (10.3.55)

Define the indicator function for the multi-wave no response test by

I1(G) := lim
ε→0

sup
{
I(f, g) : ‖vf‖L2(∂G) ≤ ε, ‖vg‖L2(∂G) ≤ ε

}
. (10.3.56)

For the set G of non-vibrating domains G (see Definition 10.3.5), we calcu-
late the indicator function I1(G) and take the intersection of all non-vibrating
domains G with I1(G) = 0

D1 :=
⋂

I1(G)=0

G. (10.3.57)

Now the following characterization of D from the far-field patterns can be
given [28].

Theorem 10.3.14. If D ⊂ G then I1(G) = 0; If D 	⊂ G then I1(G) =∞. Thus
the unknown scatterer is given by D = D1.

By combining the superposition principle and the range test, the second ver-
sion of the no response test is also developed [28].
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Firstly, we apply the range test to the far-field equation corresponding to the
incident Herglotz wave:

1
4π

∫
∂G

e−ikx̂·yφ(y)ds(y) = v∞g , x̂ ∈ S, (10.3.58)

where v∞g is the far-field pattern related to the incident Herglotz wave. The
regularizing solution to (10.3.58) is

φα
g :=

(
αI + S∞,∗

G S∞G
)−1

S∞,∗
G v∞g , α > 0. (10.3.59)

Secondly, we define the indicator function by

I2(G) := lim
ε→0

sup
{
lim
α→0

‖φα
g ‖L2(∂G) : g ∈ L2(S) and ‖vg‖L2(∂G) ≤ ε

}
. (10.3.60)

Finally, we calculate the indicator function I2(G) and take the intersection

D2 :=
⋂

G∈G1

G. (10.3.61)

where G1 := {G ∈ G : I2(G) = 0}.
The convergence of this multi-wave no response test can be stated as [28]

Theorem 10.3.15. If D ⊂ G then I2(G) = 0; If D 	⊂ G then I2(G) =∞. Thus,
the scatterer is characterized by D = D2.

All methods viewed in this section are based on the construction of some
indicator functions depending on a parameter point. If the parameter varies in
a certain way, then the behavior of these indicator functions changes drastically.
By these special properties, the scatterer can be characterized, and hence some
information about the unknown scatterer can be extracted.

10.4 Numerical schemes

In this section, we will focus on the numerical implementations of all inversion
methods introduced in Section 10.3. In each method, the indicator function plays
an important role, so the key to its numerical realization is to calculate the
indicator function efficiently. For simplicity, we only consider the cases in two-
dimensional space, in principle, we can generalize them to three-dimension with
proper modifications.
As the basis of our work, we firstly consider how to compute the approxi-

mations for the point sources on ∂G efficiently, since in detecting the obstacle
boundary, the approximated domain ∂G needs to be chosen for z approaching
to ∂D along all directions. If we get this approximation always by solving the
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minimum norm solution on ∂G, then the amount of computation will be quite
large.
It has been shown in [54, 63] that if the approximation domain G is con-

structed from some fixed reference domain G0 by rotation and translation, then
the approximations of the point sources on ∂G can be constructed from the re-
lated minimum norm solutions defined in the fixed domain ∂G0, using a simple
function transform depending on the rotation matrix and translation vector. By
this technique, the amount of computation for constructing the indicator function
will be decreased dramatically.
For given fixed reference domain G0 with 0 /∈ G0 and smooth boundary ∂G0,

let G be a domain generated from G0 by rotation and translation. We assume
that

G = MG0 + z0,

with an unit orthogonal matrix M = (mij)2×2 and the translation vector z0.
Consider two integral equations of the first kind

(Hg0)(x) = Φ(x, 0), x ∈ ∂G0 (10.4.1)

and
(Hg)(x) = Φ(x, z0), x ∈ ∂G. (10.4.2)

It has been proven [63] that

Lemma 10.4.1. Assume that g0(d) is the minimum norm solution of (10.4.1)
with discrepancy ε > 0. Then g(d) defined by

g(d) = g0(M−1d)e−ikd·z0 (10.4.3)

is the minimum norm solution of (10.4.2) with discrepancy ε > 0.

This result means that we can determine the density function g(d) using the
minimum norm solution in the fixed domain G0 from (10.4.3) such that

‖(Hg)(·)− Φ(·, z0)‖2L2(∂G) ≤ ε2. (10.4.4)

Next, we need to generalize this result to the cases where Φ is replaced by its
partial derivatives.
For vector-valued function (ϕ1, ϕ2)T ∈ L2(S)× L2(S) := L2(S× S), define

H [(ϕ1, ϕ2)T ](x) := ((Hϕ1)(x), (Hϕ2)(x))T .

For functions (f1, f2)T ∈ L2(Γ)× L2(Γ) := L2(Γ× Γ), we define the norm

‖(f1, f2)T‖2L2(Γ×Γ) := ‖f1‖2L2(Γ) + ‖f2‖2L2(Γ),

where Γ may be S, ∂G0 or ∂G.

Theorem 10.4.2. Assume that f j
0 (d) with j = 1, 2 are the minimum norm

solutions of
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(Hf j
0 )(x) = Φxj (x, 0), x ∈ ∂G0 (10.4.5)

with discrepancy ε > 0. Then the density function (f1, f2)T given by(
f1(d)
f2(d)

)
:= M

(
f1
0 (M

−1d)
f2
0 (M

−1d)

)
e−ikd·z0 (10.4.6)

satisfies that

‖H [(f 1, f2)T ](x̃)− (Φx̃1 ,Φx̃2)
T (x̃, z0)‖2L2(∂G) ≤ 2ε2. (10.4.7)

Compared with Lemma 10.4.1, this result is its generalization in some weak
sense, that is, we can not assert (f1(d), f2(d)) is the minimum norm solution of

H [(ϕ1, ϕ2)T ](x̃) = (Φx̃1 ,Φx̃2)
T (x̃, z0), x̃ ∈ ∂G (10.4.8)

with discrepancy
√
2ε. Fortunately, such a weak generalization is enough some-

times.
A small change of the assumptions on f j

0(d) can guarantee that (f
1(d), f2(d))

is the minimum norm solution of (10.4.8). This is the following analogy to Lemma
10.4.1.

Theorem 10.4.3. Assume that the vector-valued function (f1
0 (d), f

2
0 (d)) ∈

L2(S× S) is the minimum norm solution of

H [(ϕ1, ϕ2)T ](x) = (Φx1 ,Φx2)
T (x, 0), x ∈ ∂G0 (10.4.9)

with discrepancy ε > 0. Then the density function (f1, f2)T given by (10.4.6) is
the minimum norm solution of equation (10.4.8) with discrepancy ε > 0.

Comparing Theorem 10.4.2 and Theorem 10.4.3, both of them can be used to
construct the approximation of Φxj (x̃, z0) in ∂G from the minimum norm solution
in the reference domain ∂G0. However, in order to guarantee that (f1, f2) is the
minimum norm solution, we need to solve the density (f1

0 , f2
0 ) as the minimum

norm solution from the coupled equation (10.4.9), which will lead to large amount
of computation sinceH is defined in L2(S)×L2(S) in this case. Therefore, from the
numerical point of view, Theorem 10.4.2 is more suitable for the approximation.
For the second order derivative of the fundamental solution, we have the similar

results.

Theorem 10.4.4. Assume that hj
0(d) with j = 1, 2 are minimum norm solutions

of
(Hhj

0)(x) = Φxjx2(x, 0), x ∈ ∂G0 (10.4.10)

with discrepancy ε > 0. Then the density function (h1, h2)T given by
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h1(d)
h2(d)

)
:= (10.4.11)

M2

(
h1

0(M
−1d)

h2
0(M

−1d)

)
e−ikd·z0 −M

(
k2m21

0

)
g(M−1d)e−ikd·z0 (10.4.12)

satisfies that

‖H [(h1, h2)T ](·)− (Φx̃1x̃2 ,Φx̃2x̃2)
T (·, z0)‖2L2(∂G×∂G) ≤ (2 + k2)ε2. (10.4.13)

From the above results, we get the following

Corollary 10.4.5. Assume that g0, f
j
0 , hj

0 are the minimum norm solutions of
equations (10.4.1), (10.4.5) and (10.4.10) with discrepancy ε in the fixed refer-
ence domain ∂G0, respectively. Then the density functions g, f j, hj constructed
by (10.4.3), (10.4.6) and (10.4.11) respectively meet

‖(Hg)− Φ(·, z0)‖ ≤ ε,

‖(Hf j)− Φxj (·, z0)‖ ≤
√
2ε,

‖(Hhj)− Φxjx2(·, z0)‖ ≤
√
2 + k2ε

(10.4.14)

for j = 1, 2, where the norm is in L2(∂G) and G = MG0 + z0.

Based on these preparations, we give the numerical scheme of each method as
follows:
For simplicity, in the probe method, we take the near-field data, i.e., Dirichlet-

to-Neumann map, simulated by solving the direct problem (10.3.2) as the input
data. Without loss of generality, we complete the numerical implementation on
the following assumption:

Assumption 10.4.6. We assume that

• 0 ∈ D which determines the position of D approximately;
• diameter(D) < 1 which gives an upper bound on the size of D;
• ∂D ∈ C2 with all points can be approached by a suitable straight line outside

D.

Based on these assumptions, we can take the test domain as

Ω = {(x, y) : x2 + y2 < 1} ⊂ R
2 (10.4.15)

satisfying D ⊂ Ω, and for every point c(0) ∈ ∂Ω, the straight line needle c
connecting c(0) and 0 ∈ D has a joint point with ∂D. In this way, we can
approximate all the points on ∂D by c(t) for different straight line needles c with
c(0) ∈ ∂Ω. Then the algorithm can be stated as follows [13]:

Algorithm 10.4.7. (Probe method)

• For given needle c and point c(t) /∈ D̄, construct the test domain G(c, t) with
C2 regular boundary such that {c(t′) : 0 ≤ t′ ≤ t} ∈ Ω \G(c, t).
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It is enough to construct G(c0, t) for a special needle with c0(0) = (0, 1) since
G(c, t) for other needles can be obtained by rotation.
The key to construction of G(c0, t) is that we should keep the continuity of the
second-order derivative at the joint points with ∂Ω and have some cone-like
shape nearing {c0(t′) : 0 ≤ t′ ≤ t} ∈ Ω \ G(c0, t). To this end, we consider a
curve described by

y = Ax6 +Bx4 + Cx2 +D, |x| ≤ x0 < 1 (10.4.16)

with x0, y > 0, which touches ∂Ω at points (±x0, y0) with C2 smoothness. We
can solve A, B, D for different touching points (±x0, y0) and constant C from
the continuity of the curve at (±x0, y0) ∈ ∂Ω. The shape of the cone can be
changed by adjusting the parameter C > 0 and point (x0, y0) ∈ ∂Ω.

• Construct the Runge approximation function vn, and then calculate fn(x) =
vn|∂Ω;
Here we give the scheme to determine fn on ∂Ω by constructing the minimum
norm solution g 1

n
(c(t), ξ) to

(Hg)(x) = Φ(x, c(t)), x ∈ ∂G(c, t). (10.4.17)

with discrepancy 1
n , where Hg is the Herglotz wave function with a density g.

For any fixed c(t) 	∈ G(c, t), g 1
n
(c(t), ξ) := φ0(ξ) can be solved from the equa-

tions {‖(Hφ0)(·) − Φ(·, c(t))‖L2(∂G(c,t)) = 1
n ,

αφ0(ξ) + (H∗Hφ0)(ξ) = (H∗Φ)(ξ)
(10.4.18)

Thus, we can compute fn by

fn(x, c(t)) := (Hg 1
n
)(x) =

∫
S

eikx·ξg 1
n
(c(t), ξ)ds(ξ), x ∈ ∂Ω. (10.4.19)

• Simulate Λ∂Dfn, Λ0fn in the way given in [50] and compute the indicator
function I(t, c) approximately from (10.3.6) for n large enough;

• For some c(t∗) such that |"I(t∗, c)| = −"I(t∗, c) is large enough, we think
c(t∗) is near to ∂D. Usually, we determine c(t) to clarify whether or not it is
near to ∂D by suitably choosing some cut-off constant C.

• Rotate the needle c0 by choosing different c0(0) ∈ ∂Ω and repeat the above four
steps, then the boundary of D can be expressed as

∂D = {c(t∗) : all different needle c}.

Here, we want to point out that for the needle c generated from c0 by rotation
we can construct the corresponding domain G(c, t) and minimum norm solution
to (10.4.17) in a simple way.
Let c = (cos τ, sin(τ)) with τ ∈ [0, 2π), then it is easily shown that
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∂G(c, t) = R(τ)∂G(c0, t), (10.4.20)

where R(τ) is the unit orthogonal rotation matrix

R(τ) =
(
cos
(
τ − π

2

) − sin (τ − π
2

)
sin
(
τ − π

2

)
cos
(
τ − π

2

) ) . (10.4.21)

From Lemma 10.4.1, we can see that

g 1
n
(c, t) = g 1

n
(c0, (R(τ))−1ξ), (10.4.22)

from which the amount of computation is weakened greatly. For more details, see
[13].
Here, we would also like to mention that there are other numerical work on

the probe method for single obstacle [24, 78] and for multiple obstacles [77, 79],
where the input data is also the simulated Dirichlet-to-Neumann map. Obviously,
all these numerical implementations avoid the reconstruction of the Dirichlet-to-
Neumann map from the far field pattern. Whereas this procedure can be carried
out by combining the classical potential theory with the mixed reciprocity prin-
ciple.

Algorithm 10.4.8. (Singular sources method)

• Let Ω be some test domain. For z ∈ Ω, construct an approximate domain G(z)
by the similar approach as that in the probe method, where c(t) is replaced by
z.

• Find the minimum norm solution g 1
n

to point source equation

(Hg)(·) = Φ(·, z) on ∂G(z) (10.4.23)

with discrepancy 1
n for n large enough, which can be completed efficiently using

Lemma 10.4.1.
• Calculate

In(z) :=
√
8πke−iπ/4

∫
S

∫
S

u∞(−x̂, d)gn(x̂)gn(d)ds(x̂)ds(d) (10.4.24)

and take In(z) as an approximation for Φs(z, z).
• Find the unknown boundary ∂D as the set of points such that |I(z)| is large

enough. Choose a cut-off constant, if |I(z)| > C, then we think z is near to
∂D.

Obviously, the key step in the above scheme is to calculate the indicator func-
tion Φs(z, z), where the point source approximations are essential. However, there
is another approach to calculate the more general function Φs(x, z) for x ∈ R

2\G,
which is based on the potential method [72]. In fact, this procedure is also a key
component of the multi-wave range test, which will be given in Algorithm 10.4.11.
As to the probe method for complex obstacles, our main task is also to ap-

proximately calculate the various indicator functions for dipoles or multipoles of
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order two. To this end, we can adopt the similar scheme as that in Algorithm
10.4.8, where the point sources equation (10.4.23) is replaced by

(Hg)(x) =
∂

∂xj
Φ(x, z) on ∂G(z)

or
(Hg)(x) =

∂

∂xj

∂

∂x2
Φ(x, z) on ∂G(z)

for j = 1, 2. To decrease the amount of computation, the results in Theorem
10.4.2 and Theorem 10.4.4 are needed.
It is worth noticing that the accuracy of the minimum norm solution to

(10.4.17) or (10.4.23) in practice is not very satisfactory since the right-hand side
of them is almost a singular function. If the scatterer is of strong non-convexity,
then the construction of approximation domains will be not easy. For the case of
multiple obstacles, this difficulty is also encountered. In addition, the choice of
cut-off constant C is difficult in practice. Usually, we choose it by trial and error,
while it is not quite convincible.

Algorithm 10.4.9. (Linear sampling method and factorization method)

• Choose a sampling grid Z covering the unknown scatterer D.
• For each z ∈ Z, we solve the far-field equation (10.3.37) in the case of the

linear sampling method and (10.3.40) in the case of the factorization method
by using the classical Tikhonov regularization method with regularization pa-
rameter α.
Here, note that the u∞(x̂, d) is used as the kernel of the integral operator F ,
then the error in the input data leads to an error in the operator F . So, in
this case, the regularization parameter α can be determined by the following
generalized Morozov discrepancy principle:

‖Fgα
z − Φ∞0 ‖ = δ‖gα

z ‖ or
∥∥∥(F ∗F ) 1

4 gα
z − Φ∞0

∥∥∥ = δ ‖gα
z ‖ ,

where δ denotes the noisy level of u∞. On the other hand, for the factorization
method, we can calculate ‖gα

z ‖L2(S) directly from the spectral data of F . In fact,
let {σj , ψj , ψ̃j} be a singular system of F , then we have the representation

(F ∗F )
1
4 gz =

∞∑
j=1

√
σj〈gz, ψj〉L2ψj .

Hence, the regularized solution has the form of

gα
z =

∞∑
j=1

√
α

α+ σj
ρz

jψj ,

and its norm is given by
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‖gα
z ‖2 =

∞∑
j=1

α

(α+ σj)2
∣∣ρz

j

∣∣2
with ρz

j = 〈Φ∞0 (·, z), ψj〉L2 .
• Calculate the norm ‖gz‖L2 of the regularized solution to (10.3.37) or (10.3.40),

and then choose a cut-off constant C, which yield a rough reconstruction Drec

of D via
Drec := {z ∈ Z : ‖gz‖ ≤ C}. (10.4.25)

From the above scheme, we see that both the linear sampling method and the
factorization method share a noticeable advantage over the probing methods.
They do not involve the approximation domains, and therefore the geometrical
difficulties from the construction of these domains can be avoided. Particularly,
these two methods can be easily used for the treatment of multiple obstacles.

Algorithm 10.4.10. (One-wave range test)

• Choose a family of non-vibrating test domains Gj for j in some index set J .
• For each test domain Gj, we test the extensibility of us into R2 \Gj by calcu-

lating the regularized solution

φj
α :=

(
αI + S∞,∗

Gj
S∞Gj

)−1

S∞Gj
u∞ (10.4.26)

with small sufficiently regularization parameter α to the far-field equation
(10.3.47). Choose a cut-off constant C, then we call Gj positive if

‖φj
α‖L2(∂Gj) < C.

Here, for some simple settings, we can efficiently calculate φj
α for many test

domains. Let G0 be the reference domain and Gj be constructed from G0 by
translation

Gj := G0 + xj (10.4.27)

with vector xj, then we get

φj
α :=

(
αI + S∞,∗

G0
S∞G0

)−1
S∞,∗

G0
M∗

j u∞ (10.4.28)

with M∗
j = eikx̂·xj . For the details, we refer to [72].

• Take the intersection of the closure of all positive test domains Drec :=⋂
Gj positive Gj , which is a subset of the closure of the unknown scatterer D.

Though we cannot reconstruct the exact shape by this one-wave range test, it
is possible to detect some special information which can reflect basic properties
of the unknown scatterer.
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Algorithm 10.4.11. (Multi-wave range test)

• Choose a set of non-vibrating test domains Gj such that the far-field equation
is solvable for all incident directions, which can be carried out in principle by
using the one-wave range test.

• For each direction −d, approximately solve the far-field equation (10.3.47) by
using Tikhonov regularization method, and then calculate us(x,−d) in terms
of (10.3.45).

• Obtain Φ(d, x) from us(x,−d) by using mixed reciprocity relation.
• Apply the one-wave range test to the far-field equation corresponding to point

sources (10.3.51), its numerical scheme is the same as that in Algorithm
10.4.10.

In principle, with a proper choice of the set of test domains we can reconstruct
the full shape of the scatterer, but in practice we do not have explicit approach
to choose these test domains Gj . Furthermore, for some complex situations such
as D is of strong non-convexity, the choice of test domains might lead to quite
complicated procedures.

Algorithm 10.4.12. (No response test)

• Choose a set of test domains Gj for j in some index set J and a sufficiently
small parameter ε.

• For each test domain Gj, construct the functions vj,l
g with gl ∈ L2(S) for l in

some index set L such that ‖vj,l
g ‖ ≤ ε.

Here, vj,l
g can be constructed by solving the point source equation as that in the

probe method or singular sources method.
• For each l ∈ L, calculate Ij(gl) by (10.3.52) and take the supremum of Ij(gl)

over all l ∈ L
Ij
ε (Gj) := sup

l∈L
Ij(gl). (10.4.29)

• Choose a cut-off constant C. If |Ij
ε (Gj)| ≤ C, we call Gj positive. Then calcu-

late the intersection of all positive test domains

Drec :=
⋂

Gj positive j∈J
Gj . (10.4.30)

Generally, the set Drec is only an approximation for the set of singular points
of the scattered field us, which is a subset of the closure of D. In fact, we cannot
expect more from the knowledge of far-field pattern for only one incident if no
enough a priori information about the unknown scatterer is provided [69, 70].
In conclusion, the calculation of indicator function is crucial to the numeri-

cal realization of each inversion method. Of course, the choice of approximate
domains or test domains is also the key to the accuracy of numerical reconstruc-
tion. In addition, we cannot ignore the effect of cut-off constant C on numerical
results. In practice, if C is chosen too large, the reconstruction is too small to
exist. If C is chosen to be smaller, then the reconstruction may become larger.
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At last, we would like to mention that the choice of regularization parameter α
is also an interesting topic since all inversion methods involve the regularization
to ill-posed integral equations.
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Chapter 11

Inverse Problems of Molecular Spectra Data
Processing

Gulnara Kuramshina

Abstract. There are considered ill-posed inverse problems which arise in molec-
ular spectroscopy data processing. The main of them, the general inverse problem
of structural chemistry for free molecules is nonlinear inverse problem of molecu-
lar vibrations. The modern view on this problem joins the study of molecular force
field and geometry restoration using all available experimental data (vibrational
(IR and Raman) spectroscopy, electron diffraction, etc.), a priori constraints
and ab initio quantum mechanical calculations. The second inverse problem of
determination of intermolecular potential from the second virial coefficient is also
closely connected with molecular structure investigation.
On the basis of formulation and formalization of possible obvious (and related

to quantum mechanical results) model assumptions concerning the character of
force fields which are widely used in vibrational spectroscopy we have constructed
a principle for choosing a unique solution from the set of solutions in the frame-
work of Tikhonov’s regularization theory. The solution is chosen as the nearest
to the given matrix of force constants which satisfy all a priori assumptions con-
cerning the model characteristics of the solution.
Also there are presented stable numerical methods, based on Tikhonov’s reg-

ularization method for computing the force fields of polyatomic molecules from
experimental data as well as some numerical illustrations using real data.

11.1 Introduction

Many mathematical problems of science, technology and engineering are formu-
lated in the form of an operator equation of the first kind with operator and
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approximately known right-hand side. In many cases such problems belong to
ill-posed ones and to solve such problems it is necessary to apply the special nu-
merical methods based on regularizing algorithms. The theory of solving linear
ill-posed problems greatly advanced at present [1] is not applicable in the case
of nonlinear ill-posed problems. The special consideration of numerical methods
for solving nonlinear ill-posed problems within the Tikhonov theory of regular-
ization is presented in [2] and includes different variational approaches based
on Tikhonov’s functional, generalized principles for the choice of regularization
parameter and formulation of very general conditions for their implementation.
Below we consider ill-posed inverse problems which arise in molecular spec-

troscopy data processing. The main of them, the general inverse problem of struc-
tural chemistry for free molecules is nonlinear inverse problem of molecular vi-
brations. The modern view on this problem joins the study of molecular force
field and geometry restoration using all available experimental data (vibrational
(IR and Raman) spectroscopy, electron diffraction, etc.), a priori constraints
and ab initio quantum mechanical calculations. The second inverse problem de-
scribed below is also closely connected with molecular structure investigation —
a problem of determination of intermolecular potential from the second virial
coefficient.
Formulation and formalization of possible obvious (and related to quantum

mechanical results) model assumptions concerning the character of force fields
which are widely used in vibrational spectroscopy were presented in our publi-
cations [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. On the basis of this formalization
we have constructed a principle for choosing a unique solution from the set of
solutions in the framework of Tikhonov’s regularization theory. The solution is
chosen as the nearest to the given matrix of force constants which satisfy all a
priori assumptions concerning the model characteristics of the solution.
We also have investigated stable numerical methods, based on Tikhonov’s

regularization method, for computing the force fields of polyatomic molecules
from experimental data and we provide some numerical illustrations using real
data.

11.2 Inverse vibrational problem

A number of inverse problems arise in the data processing of experimental data
obtained by means of infrared and Raman spectroscopy. The most important
is the so-called inverse vibrational problem of determining parameters of the
molecular force field from given experimental data (vibrational frequencies, iso-
tope frequency shifts, Coriolis constants, centrifugal distortion constants, etc.).
The accumulation of data on molecular constants is necessary for prediction of
spectra and other properties of compounds not yet investigated and for develop-
ment of physical models in a theory of molecular structure.



Inverse Problems of Molecular Spectra Data Processing 251

The idea about the force field arises when molecule is considered as a mechan-
ical system of nuclei while all the interactions due to the electrons are included
in an effective potential function U(q1, q2, . . . , qn), where q1, q2, . . . , qn denote
n = 3N − 6 generalized coordinates describing mutual positions of N atomic nu-
clei of the molecule. Together with the nuclear masses, this function determines
the most important properties of a molecule. As is well known (see, e.g., [3]), the
equilibrium configuration of the molecule satisfies the relation

∂U

∂q
= 0,

and if coordinates q1, q2, . . . , qn are determined so that q1 = q2 = . . . = qn = 0 in
the equilibrium configuration, the following expansion is valid:

U(q1, . . . , qn) = U0 +
1
2

n∑
i,j=1

fijqiqj +O(‖q‖3), (11.2.1)

where U0 is a certain constant, and the force constants

fij =
∂2U

∂qi∂qj
, i, j = 1, . . . , n

in the point q1 = q2 = . . . = qn = 0 constitute a positive definite matrix F
determining all molecular characteristics connected with small vibrations. Math-
ematically, the concept of the force field may be obtained through the adiabatic
theory of perturbations with the use of a small parameter related to the ratio
of electron mass to the mass of nuclei, and it can be shown that in a certain
approximation the nuclei may be treated as particles moving in the force field
determined by the potential energy function (11.2.1).
There are two main purposes for using a molecular force field: (a) to check

validity of various model assumptions commonly used by spectroscopists for ap-
proximation of the potential function; (b) to predict the vibrational properties of
certain molecules (including those not yet observed) using fundamental properties
of the force field such as its isotopic invariance and the approximate transferabil-
ity of specific force constants in a series of related compounds.
The spectral frequencies ωi are the main type of experimental data on molec-

ular vibrations. They are connected with the matrix of force constants F by the
eigenvalue equation

GFL = LΛ, (11.2.2)

where Λ = diag {ω2
1, . . . , ω

2
n} is a diagonal matrix consisting of the squares of

the molecular normal vibrational frequencies, and G is the kinetic energy matrix
in the momentum representation which depends only on nuclear masses and the
equilibrium configuration (assumed to be known within specified limits of error).
The matrix L characterizes the form of each normal vibration, i.e., the relative
amplitudes of vibrations in terms of classical mechanics.
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From (11.2.2), it is evident that (except for diatomic molecules) the n(n+1)/2
parameters of F cannot be found from n frequencies ω1, . . . ωn in the unique
way. This has led both to attempts to use certain model assumptions concerning
the structure of the matrix F , and to applying additional experimental data.
Within the harmonic model, the molecular force field is independent of the nuclear
masses, and hence in a case of m molecular isotopic species spectra we have,
instead of (11.2.2), the next system

(GiF )Li = LiΛi, (11.2.3)

where the subscript i = 1, 2, . . . , m indicates the isotopomers. Usually, the in-
troduction of isotopomers leads to a limited number of independent equations
in system (11.2.3), thus leaving the inverse problem underdetermined. Impor-
tant additional information on the molecular force is provided by Coriolis con-
stants ζ which characterize the vibrational-rotational interaction in the molecule.
They are connected with matrix F in terms of the eigenvectors L of the problem
(11.2.2):

ζ =
1

M2
L∗AM̃A∗L, (11.2.4)

where ζ is a matrix with vector elements consisting of the Coriolis constants, M̃
is a diagonal matrix consisting of the nuclear masses, M is the sum of nuclear
masses of the molecule, and A is a matrix connecting the Cartesian displacements
of atoms with coordinates q characterizing the equilibrium configuration of the
molecule. In a similar manner we can write the dependencies of other measured
values on the matrix F , such as the mean-square amplitudes of the vibrations
(obtained from gas-phase electron diffraction [12]) which may be calculated from
the eigenvalues and eigenvectors of (11.2.2).
Recent rapid progress in the extending of quantum mechanical calculations of

vibrational spectra and harmonic force fields for moderate size molecules with
inclusion of electron correlation at MP2 and DFT levels [15, 16] provides funda-
mental new possibilities for more accurate interpretation of experimental data,
development of theoretical models of molecular structure and dynamics, and de-
termination of molecular force fields based on the joint treatment of theoretical
and experimental data. Ab initio quantum-mechanical calculations ensure obtain-
ing information that has a clear physical meaning. When performed at a high
theoretical level (taking account of electron correlation, etc.), such calculations
are capable of satisfactorily reproducing patterns of experimental structural and
vibrational spectroscopy data. However, in case of large molecular systems the
best ab initio results significantly differ from experimental values and one has to
use special empirical corrections [17].
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11.3 The mathematical formulation of the inverse
vibrational problem

Let us consider (11.2.2)–(11.2.4), or some part of them, depending on the available
experimental data, as a single operator equation

AF = Λ, (11.3.1)

where the nonlinear operator A maps the real symmetrical matrix F to the set of
eigenvalues of (11.2.2) (or (11.2.3)), the Coriolis constants, ζ, (11.2.4), the mean
square amplitudes, etc. This set of data may be represented as a vector in the
finite-dimensional space Rl, where l is a number of known experimental data. The
matrix F is considered as a vector in the finite-dimensional space Z, consisting
either of the elements of matrix F or of quantities of its parametrization. Note
that (11.3.1) in general does not satisfy [3] any of the conditions of the well-
posedness of the problem considered above.

1. Solvability.
It is easy to see that system (11.2.3) (determined for different molecular iso-
topomers) is compatible only when the condition

detGi/ detΛi = const, i = 1, 2, . . . , m

is satisfied (m is the number of isotopomers). This condition can be violated
due to errors in experimental data Λi, and in experimental geometry used in
Gi, or due to anharmonicity of the real vibrations ignored by the operator
of (11.3.1). In these cases within harmonic model there is no matrix F re-
producing the frequencies of all isotopomers within the limits of experimental
errors.

2. The uniqueness of the solution of the problem.
If we know only the vibrational frequencies of one isotopomer of the molecule,
(11.3.1) reduces to the inverse eigenvalue problem (11.2.2); hence, when G is
not singular, it follows that as solution of (11.3.1) we may take any matrix of
the form

F = G−1/2C∗ΛCG−1/2, (11.3.2)

where C is an arbitrary orthogonal matrix. To choose a definite solution it
is necessary to use additional information or to take account of some model
assumptions.

3. The stability of the solution with respect to the perturbations of Λ and A.
An example of such instability may be easily constructed for a system of the
form (11.2.3) in a case of molecular isotopomers.

Therefore, all three conditions of well-posedness are generally not satisfied
for the considered problem and the inverse vibrational problem is an extreme
example of an ill-posed problem. The unstability and non-uniqueness of the so-
lution can lead to significant differences in the force field parameters of the same
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molecule obtained by different methods and can lead to difficulties in comparing
and transferring force fields in series of related compounds.
To elucidate any arbitrariness in the calculated force constants it is neces-

sary to use stable solutions of the inverse vibrational problem which have some
specific properties. In practical terms, chemists often employ certain model as-
sumptions arising from the classic theory of chemical structure involving such
concepts as monotone changes of the physico-chemical properties in a series of
related molecules and the preservation of the properties of separate molecular
fragments in various compounds (taking account of the nearest surrounding), all
related to the general concept of transferability of the molecular force constants.
All the necessary model assumptions may be taken into account by the choice
of some given a priori matrix F 0 (see below): e.g. some off-diagonal elements of
the matrix F may be taken to be equal to zero (the so-called valence force field)
reflecting the assumption of insignificance of some intramolecular interactions,
and/or it is possible to introduce some in-pair equalities of force constants for
similar fragments, some elements of F may be taken from preliminary calcula-
tions, etc. Therefore, the inverse vibrational problem can be formulated in the
following way [3, 4, 5, 6, 7, 8].
In the set of force constant matrices satisfying (11.3.1), we search for the

matrix which is nearest in some given metric (normal) to a priori given ma-
trix F 0 (the so-called normal solution). In the case of an inconsistent problem
(within harmonic approximation, this may happen in the case of joint treatment
of isotopomers spectra, or when we include an additional experimental data) it is
possible to find the matrix F for which the distance from AF to Λ is minimal, i.e.,
to find the so-called pseudosolution of the problem. When the pseudosolution is
also non-unique, we must proceed as in the case of non-uniqueness of the solution
— i.e., from all possible pseudosolutions to choose the one which is nearest to
the given force field matrix F 0 (the normal pseudosolution).
The general formulation of the inverse problem can be given in another way.

Suppose, we are given (11.3.1) and the operator A put into correspondence to any
symmetric, and positive definite matrix F , the set of experimental data (squares
of molecular vibration frequencies and its isotopomers), and known molecular
constants such as mean vibrational amplitudes, Coriolis constants, etc. The di-
mension of vector Λ is determined by the number of experimental data. Since the
symmetric matrix F is determined by n(n + 1)/2 elements we can consider the
unknown force constants as a vector of dimension n(n+1)/2. Then the operator
A acts from the Euclidean space R

n(n+1)/2 into the Euclidean space Rl. In these
spaces we introduce the following norms:

‖F‖ =
⎛⎝ n∑

i≤j=1

f2
ij

⎞⎠1/2

, ‖Λ‖ =
(

l∑
k=1

λ2
kρk

)1/2

,

where ρk > 0 are some positive weights; fij are the elements of matrix F ; λk

(k = 1, . . . , l) are the components of Λ.



Inverse Problems of Molecular Spectra Data Processing 255

The operator A is continuous for all considering problems. However, (11.3.1)
may have non-unique solution, or no solution at all, due to the anharmonicity of
vibrational frequencies. Suppose, we are given the matrix F 0 (vector of dimension
n(n+1)/2). It is necessary to find the normal pseudosolution of (11.3.1), that is:

• find an element F = F̄n for which min ‖F − F 0‖ is reached provided that
‖AF −Λ‖ = μ, where μ = infF∈D ‖AF −Λ‖ and D is the closed set of a priori
constraints on the values of the force constants. If no constraints are imposed,
then D = Rn(n+1)/2.

The element F 0 should be specified from a priori considerations of the possible
solutions including both the approximate quantum mechanical calculations and
other ideas (for example, the transferability of the force constants among similar
fragments in a series of related compounds).
Let us denote the solution (vector) to be found as F̄n, if this vector is non-

unique the set of such vectors is denoted as {F̄n}. If (11.3.1) is solvable then
μ = 0, and it remains finding the solution of (11.3.1) which is the nearest to
the given vector F 0. But we do not know the exact form of either the vector
Λ or operator A (the matrix G or matrices Gi). We have only the vector Λδ,
determined from experimental data such that ‖Λδ − Λ‖ ≤ δ (where δ > 0 is the
experimental error) and the operator Ah which approximates the operator A;
h ≥ 0 is a parameter characterizing the proximity of Ah to A. The uncertainty in
operator A is related to errors of determination of the matrix G (or Gi) (errors
of experimental data on the geometrical parameters). Therefore, we do not know
exact forms of A and Λ, but only their approximations Ah and Λδ and errors
(h, δ). It is necessary to find the vector Fh,δ approximating the exact solution
F̄n. The difficulties in solving this problem are related to its ill-posed character.
The modern theory of solving ill-posed problems was founded by A. N.

Tikhonov [1, 2] and developed by many authors. The main idea when design-
ing stable methods for solving ill-posed problems is that ill-posed problems are
generally underdetermined. To solve such problems it is necessary to use addi-
tional information and formulate the criteria for choosing approximate solutions.
If such criteria are formulated and mathematically formalized, we can construct
stable methods of solving ill-posed problems — the so-called regularizing algo-
rithms.

11.4 Regularizing algorithms for solving the inverse
vibrational problem

The inverse vibrational problem under investigation is nonlinear. Let us consider
again (11.3.1) in the standard form

AF = Λ, F ∈ R
n(n+1)/2, Λ ∈ R

l. (11.4.1)
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The existence of the normal (relatively to a priori given matrix F 0) pseudoso-
lution F̄n of the exact problem (11.4.1) may be guaranteed if the operator A
includes the operator of the direct vibrational problem for a single molecule. The
uniqueness of F̄n cannot be guaranteed.
How can the error of the approximate operator Ah be estimated? The estima-

tion ‖A−Ah‖ ≤ h is impossible because the nonlinear operators have no norm.
It is obvious that for the operator of the inverse vibrational problem this error is
related to errors of the G matrix. It is possible to obtain an estimate in the form
[3, 6]

‖AF −AhF‖ψ(h, F ),

where ψ is a known continuous function, which approaches 0 as the errors of the
equilibrium geometry of the molecule decrease to zero. Particularly, the estimates
may be obtained in the form

ψ(h, F ) = ψ(h, ‖F‖), ψ(h, F ) = h‖AhF‖.

The error on the right-hand side of (11.4.1) is determined previously.
We arrive at the following formulation of the inverse problem.
Problem I. Suppose we are given (11.3.1) where F ∈ D ⊆ Z, Λ ∈ U , Z and

U are finite-dimensional spaces, D is a closed set of a priori constraints of the
problem, and A is a nonlinear operator continuous in D. It is required to find
an approximate solution of (11.4.1) when instead of A and Λ, we are given their
approximations Ah and Λδ such that ‖Λ− Λδ‖ ≤ δ, ‖AF −AhF‖ ≤ ψ(h, F ) for
F ∈ D; here ψ(h, F ) is a known continuous function, which approaches zero as
h → 0 uniformly for all F ∈ D ∩ S̄(0, R), where S̄(0, R) is a closed ball with
center at F = 0 and an arbitrary radius R. The error in specifying the operator
A involves an error of determining the molecular equilibrium configuration from
experiment. Note that Problem I does not satisfy any conditions of correctness.
We shall consider now the problem of constructing a normal pseudosolution

of Problem I with exact right-hand side and operator.
Problem II. It is required to obtain

F̄n = argmin ‖F − F 0‖, F : F ∈ D, ‖AF − Λ‖ = μ,

where μ = inf ‖AF − Λ‖, F ∈ D.
The element F 0 ∈ Z should be specified from a priori requirements on the

solution, using both approximate quantum mechanical calculations and other
ideas (for example, the transferability of the force constants for similar fragments
of molecules).
In the case when a unique solution of (11.4.1) exists, it is clear that its nor-

mal pseudosolution is identical with the solution itself. Taking all the above-
mentioned into account we can formulate the following problem.
Problem III. Suppose we are given (11.4.1); it is required from the approxi-

mate data {Ah,Λδ, h, δ} to obtain approximations Fη ∈ D to the solution F̄n of
Problem II such that
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Fη → F̄n as η → 0

i.e., the algorithm for finding F should be Tikhonov regularizing.
Now we shall consider the simplest formulation of Problem I.
Problem I′. The vibrational spectrum of a single molecule is known, and in

(11.4.1) the operator A corresponds to the vector F ∈ R
n(n+1)/2 which is made

up of the elements of the symmetric matrix F of order n, the ordered set of
eigenvalues of the matrix GF . We shall use the ordered set of squares of the
molecular vibrational frequencies as the right-hand side Λ ∈ Rl.
Problem II′. It is required to find the normal solution

F̄n = argmin ‖F − F 0‖, F ∈ {F : AF = Λ}.

Problem I is always solvable, and, furthermore, solutions are nonunique (apart
from the case when n = 1).
Since the operatorA in (11.4.1) is completely defined by the specification of the

matrix G, we shall estimate the deviation of the approximately specified operator
Ah (corresponding to certain Gξ) from the exact operator A (corresponding to
G) by the error in specifying matrix G. We suppose that in a certain matrix norm
‖G−Gξ‖ ≤ ξ.
In the space Rl of the right-hand sides we shall introduce the Euclidean norm

with positive weights, while in R
n(n+1)/2 we use the Euclidean norm. Suppose

that instead of the accurate value of the right-hand side Λ we specify Λδ, such
that ‖Λ− Λδ‖ ≤ δ.
The following theorems on the stability of Problems I′ and II′ hold [3, 6].

Theorem 11.4.1. Problem I ′ is stable in the Hausdorff metric with respect to
the perturbations of the operator and the right-hand side.

Here the Hausdorf distance (metrics), ρ(A, B), is determined in the following
way: for any closed set A and B in normed space

ρ(A, B) = supx∈A infy∈B ‖x− y‖+ supy∈A infx∈B ‖x− y‖.

Theorem 11.4.2. If Problem II ′ has a unique solution, then it is stable to
perturbations of the operator and the right-hand side.

The proofs of these theorems are given in [3, 6].
The least-squares method which consists of minimizing ‖AhF −Λδ‖2 on a set

of a priori constraints is the one most often encountered in data processing of
molecular spectra. However, in the view of the ill-posed nature of the problem,
this method cannot be applied directly to solving problems with approximate
data. The method must be regularized by taking account of the possible incon-
sistency of the problem and also the non-uniqueness of its solutions. If we attempt
to find the normal pseudosolutions (with respect to a certain F 0) we arrive at
the formulation of the problem described above.
For finding a normal pseudosolution we have proposed a modification of the

generalized discrepancy principle based on the possibility to estimate the error
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of the operator in the form

‖AF −AhF‖ ≤ h‖AhF‖, h < 1, (11.4.2)

which corresponds to specification of the relative error AF and is a more conve-
nient estimate for the problem considered than the monotone function ψ.
Suppose F α

η is an extremum (possibly non-unique) of Tikhonov’s functional

Mα[F ] = ‖AhF − Λδ‖2 + α‖F − F 0‖2 (11.4.3)

in the set D. The existence of an extreme can be proved [7]. We shall introduce
the function

ρη(α) = ‖AhFα
η − Λδ‖ − 1

1− h
[μ̂η + k(δ + h‖Λδ‖)] ,

where k > 1 is a constant and

μ̂η = infF∈D {‖AhF − Λδ‖+ δ + h‖AhF‖} .

If the condition

‖AhF 0 − Λδ‖ >
1

1− h
[μ̂η + k(δ + h‖Λδ‖)] (11.4.4)

is satisfied, then the equation ρη(α) = 0 has a generalized solution αη > 0 (i.e.,
αη is such that ρη(α) > 0 when α > αη; ρη(α) < 0 when α < αη). If αη is a
point of continuity of ρη(α), we have ρη(αη) = 0. This assertion follows from the
monotonicity of ρη(α) and the limit relations (as α→ 0 and α→ +∞).
We shall formulate the algorithm for finding approximations to the normal

pseudosolutions of (11.4.1). If condition (11.4.4) is not satisfied, we take Fη = F 0

as an approximate solution; in the contrary case we find αη > 0 (the generalized
solution of the equation ρη(α) = 0), and assume Fη = Fαη . If the extreme of the
functional (11.4.3) is non-unique, we choose the one for which

‖AhF 0 − Λδ‖ ≤ 1
1− h

[μ̂η + k(δ + h‖Λδ‖)]

(the possibility of making such a choice is shown in [6]).

Theorem 11.4.3. The algorithm formulated above is Tikhonov regularizing.

The proof is given in [6].
In a case when the estimate of the error of the operator cannot be written in

the form (11.4.2), but the requirements of Problem I are satisfied we can use the
following version of the generalized discrepancy method.
Problem IV. It is required to obtain inf ‖F − F 0‖,

F ∈ Fη = {F : F ∈ D, ‖AhF − Λδ‖ ≤ δ + ψ(h, F ) + μ̂(Ah,Λδ)} ,
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where the estimate of the measure of incompatibility of the exact problem from
above is

μ̂η = inf
F∈D

{‖AhF − Λδ‖+ ψ(h, F ) + δ}.

Lemma 11.4.4. Suppose the conditions of Problem I are satisfied. Then μ̂η ≤ μ,
and μ̂η → μ = infF∈D ‖AF − Λ‖ as η → 0.

Lemma 11.4.5. Problem IV is solvable for any Λδ ∈ U such that ‖Λ−Λδ‖ ≤ δ
and for a continuous operator A such that ‖AhF −AF‖ < ψ(h, F ).

The proof of this lemma relies on the fact that for all η > 0, the set Fη is
nonempty (since F̄n ∈ Fη), closed and bounded.

Theorem 11.4.6. The algorithm defined by the extremal Problem IV is Tikhonov
regularizing for Problem I.

Details of proofs, estimates of the error of the operator and some details of
the numerical realization of the methods are given in [3, 6].

11.5 Model of scaled molecular force field

In out strategy we can include results of quantum mechanical calculations in the
statement of inverse problem and search for matrix F which is the nearest by
the chosen Euclidean norm to the given ab initio F 0, the optimized solution is
referred to as Regularized Quantum Mechanical Force Field (RQMFF) [3, 8]. In
that statement we can use the Pulay model of scaled matrix [17] which is based
on the representation of the force constant matrix as

F = BF 0B, (11.5.1)

where B is a diagonal matrix of scale factors, and F 0 is an a priori given matrix.
Such parameterization does not completely remove the ambiguity of the solution;
however, this ambiguity may be resolved using ideas of regularization by searching
for the scale matrix B closest to unit matrix or by searching for the matrix F
closest to F 0, as shown in our previous studies [3, 13].
In the course of spectroscopic and structural research, introduction of the com-

plete system of internal coordinates {qi} is the most tedious and time-consuming
procedure, especially for the large molecular systems. From quantum chemistry
we can obtain force constant matrix in Cartesian coordinates. The scaling proce-
dure itself is formally given by Eq. (11.5.1); however, as we will see later, matrix
B cannot be assumed diagonal any more. The main peculiar feature of the force
matrices in Cartesian coordinates is in fact that they are not automatically in-
dependent of the molecular position and orientation. Physically meaningful force
constant matrix should therefore satisfy a number of constraints.
Let the force matrix be represented as an array of 3 by 3 submatrices corre-

sponding to each atom:
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F =

⎛⎜⎜⎜⎝
f(11) f(12) . . . f(1N)

f(21) f(22) . . . f(2N)

...
...

. . .
...

f(N1) f(N2) . . . f(NN)

⎞⎟⎟⎟⎠ ,

where N is number of atoms in a molecule. Then the constraints are as follows
[3]:

N∑
i=1

f(ij) = 0,
N∑

i=1

Vif(ij) = 0, j = 1, 2, . . . , N, (11.5.2)

where

Vi =

⎛⎜⎝ 0 −R0
iz R0

iy

R0
iz 0 −R0

ix

−R0
iy R0

ix 0

⎞⎟⎠ ,

andR0
ix, R

0
iy, R

0
iz are Cartesian components of the i-th atom equilibrium position.

Equations (11.5.2) ensure that the force field represented by the matrix F does
not contain terms related to displacement and rotation of a molecule as a whole.
Imposing these constraints reduces the rank of matrix F to 3N − 6 (or 3N − 5
for linear molecules), thus leaving only vibrational degrees of freedom.
When the scaling procedure (11.5.1) is applied to the matrix F in Cartesian

coordinates, we may assume [14] that a priori matrix F 0 satisfies the require-
ments (11.5.2). However, this does not necessarily mean that the scaled matrix
also satisfies these requirements. To ensure that scaled matrix also contains only
vibrational degrees of freedom, the scale matrix B should satisfy certain condi-
tions. It can be shown that these conditions are as follows:

1. Matrix B should consist of the 3 × 3 unit submatrices E multiplied by some
factors:

B =

⎛⎜⎜⎜⎝
β11E β12E . . . β1NE
β21E β22E . . . β2NE
...

...
. . .

...
βN1E βN2E . . . βNNE

⎞⎟⎟⎟⎠ .

2. The factors βij (i, j = 1, . . . , N) should satisfy the conditions

βij = βji;

N∑
i=1

β1i =
N∑

i=1

β2i = . . . =
N∑

i=1

βNi = S = const. (11.5.3)

These conditions ensure that scaled matrix F will also correspond to only vi-
brational motion of a molecule. If there exist any extra constraints due to the
symmetry or model assumptions, they should be used in addition to these con-
straints. In general, matrix B depends onN(N−1)/2+1 independent parameters,
since all diagonal elements may be represented as
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βii = S −
∑
j �=i

βij .

On this way we come to the formulation of inverse vibrational problem in a form
(11.3.1) where a set of a priori constraints D on the molecular force field includes
conditions (11.5.1) and (11.5.2).
This approach was tested for the series of molecules [14] and demonstrated

very attractive advantages especially for the correction of molecular force fields
of large scale molecules.

11.6 General inverse problem of structural chemistry

We consider the general problem of extracting internal molecular parameters
(such as geometrical structure and properties of the intramolecular force field)
from the available experimental data on infrared spectroscopy, electron diffrac-
tion analysis, microwave spectroscopy, etc., guided by the ab initio calculations.
An implementation of such generalized approach is hindered by many well-known
problems. Analysis of different experimental data is often carried out using differ-
ent molecular models. For example, ab initio calculations and most spectroscopic
studies use equilibrium geometry data, while the ED studies directly provide only
thermally averaged values. Hence the results obtained for the same molecule using
different experimental techniques may prove incompatible. Spectroscopic data is
often insufficient to restore the complete force field, thus making it necessary to
introduce model assumptions restricting the molecular force fields. As for elec-
tron diffraction data they are also often insufficient to determine all structural
parameters, especially when a molecule possesses a set of similar interatomic dis-
tances; this also implies necessity of introducing external constraints on molecular
geometry. Quantum mechanical calculations often lack accuracy to match the ex-
perimentally measured values. For example, an approach of scaling an ab initio
force field is widely used to achieve a reasonable agreement between calculated
and measured frequencies. Data on vibrations anharmonicity cannot be readily
obtained from experimental data except for very small and simple molecules.
This leads to different model evaluations (or to the usage of ab initio values)
that may lack necessary precision.
We suggest the next scheme for the analysis of the molecules with relatively

small atomic excursions taking account of anharmonicity and successfully deal
with curvilinear motions which are referred to as a “small amplitude” approx-
imation, to distinguish between this scheme and a more elaborate one that is
capable of dealing with bending motions and internal rotation with fairly large
amplitudes [12, 18].
A common molecular model is created that connects molecular parameters and

experimentally measured values. Within this model, the molecular parameters to
be defined are equilibrium geometry and force field parameters. All experimen-
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tally measured values are calculated using the same set of parameters and the pa-
rameters are adjusted so as to fit the experimental evidence. It is important that
all values should be determined from the same set of parameters. For example,
the ED analysis will therefore obtain amplitudes compatible with spectroscopic
evidence, and spectroscopy analysis will obtain frequencies compatible with the
equilibrium geometry provided by the ED and microwave data.
Every time an experimental data is insufficient for the unique determination

of some or all molecular parameters, we should employ some kind of external
knowledge or experience. In accordance with the basics of regularization theory,
we suggest to choose the solution that is in a certain sense nearest to some a priori
chosen parameter set. This set may not necessarily conform to the experiment,
but should be based on data complementary to the experiment. The external
evidence may be derived from some general ideas (for example, molecular force
field models, or data on similar molecular structures), or, preferably, be based
on ab initio data. Within this approach, the results will tend to be as close to
quantum-mechanical data as the experiment allows. From mathematical point
of view, the algorithm should provide approximations to the solution that tend
to an exact solution when the experimental data becomes more extensive and
accurate.
These “soft” constraints may be combined with more rigid set of constraints

implied on the solution to obtain the unique solution. For example, when there
are close interatomic distances in a molecule, it is a common practice to deter-
mine only one of them from an ED experiment, fixing all differences between the
distances at ab initio values. This may be called a “rigid” approach. Within a
“soft” approach, it is possible to find a solution that will have the same properties
unless it does not contradict experiment (and if it does, we shall find a solution
which is the nearest to the one with that properties).
For simplicity we shall now limit the set of experimental data available by

the vibrational frequencies (ω) and normalized electron scattering intensity (M).
In a general case there may be more experimental data (rotational constants,
etc.). All experimentally measured values depend on both equilibrium geometry
(R) and force field (F ) parameters. Harmonic vibrational frequencies can be ob-
tained from the force constant matrix (the matrix of the second derivatives of
the molecular potential at the point of equilibrium). To calculate anharmonic
corrections to frequencies, we need cubic and quartic terms in the potential ex-
pansion. In many cases, however, anharmonic effects are relatively small and may
be neglected during a normal coordinate analysis. The ED intensity shows only a
moderate dependence on force field, while geometry changes are of much greater
importance. However, the ED experiment is directly related to the thermally aver-
aged interatomic distances rather than to their equilibrium values, and difference
between these two kinds of distances depends on the anharmonic terms of the
potential. Hence, calculation of ED intensity requires knowledge of the harmonic
and anharmonic terms of the molecular potential (at least cubic terms).
Before formulating a problem of determining the molecular parameters, it

makes sense to analyze what amount of data we are capable to find from a given
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set of measured data. Indeed, if we introduce a very limited set of parameters (and
thus create a very “rigid” model), we are likely to fail achieving a good fit between
experimental and calculated data. On the other hand, if a model is very flexible
(that is, contains too many adjustable parameters), we are likely to find a wide
variety of solutions that all satisfy the experiment. Even if we employ the concept
of a regularized solution, there must exist some kind of optimal parameter set
that would correspond to the available experimental data. As for the force field
determination, it is a common knowledge that (except for a limited set of small
or very symmetrical molecules) we never have enough data to restore a complete
force field. The ED data usually provides only a small additional data on force
field, so as a rule we are in the situation when there exists a wide range of force
fields compatible with spectroscopic experiment. Among the ways to reduce the
ambiguity of the force fields, we could mention the following:

1. Introducing model assumptions based on general ideas of molecular structure
(e.g. valence force field, etc.): these will result in neglecting some force con-
stants, fixing the others, and/or introducing model potentials that would be
allowed to generate force matrix depending on a small number of parameters.

2. Transferring some force field parameters from similar fragments in related
molecules and assuming they are not likely to be significantly changed in a
different environment.

3. Applying scale factors technique when all allowed force matrices to be obtained
from ab initio values by the certain scaling procedure. Here these factors may
be treated as force field parameters to be determined.

All of these ways may be formulated as the “soft” restrictions. Instead of intro-
ducing them, we may generate a force field F 0 that possesses the above properties
and attempt to find solutions nearest to F 0. For the approach based on equilib-
rium configurations, the force field anharmonicity is of great importance because
it defines difference between the equilibrium distances and thermally averaged
ones used in electron diffraction analysis. Taking the mentioned limitations into
account, we come to the following conclusions. Force field parameters — at most
— should include a matrix of the quadratic terms in potential expansion. This
set should be even more constrained by using ab initio data (as a stabilizer ma-
trix F 0 or with the use of scaling scheme). Cubic (and quartic) terms cannot be
determined from the experimental data under discussion and should be somehow
evaluated. It is possible to introduce some anharmonicity models or — prefer-
ably — use ab initio data. To maintain consistence with quadratic potential,
these terms may require adjustment when quadratic terms are changed during
the fitting procedure.
Similar problems exist for the interatomic distances determined from the ED

data. Though there are many successful results provided by this technique, it’s
evident that the accuracy of the obtained data may be insufficient in cases when
a molecule possesses a number of bond lengths that are different in chemical
nature but close to each other in their values. Here, again, we need to introduce
model assumptions that, at best, are based on the ab initio calculations. Under



264 Gulnara Kuramshina

certain unfavorable conditions, the ED data may be insufficient even to define
symmetry of the equilibrium configuration, which in this case should be obtained
from alternative sources.
Taking all this into account, we come to the following formulation of the in-

verse problem. Let Λ be a set of available experimental data, and A(R, F ) be a
procedure allowing of calculating this data from the set of molecular parameters
R and F . We may suppose that Λ is a finite-dimensional vector from the nor-
malized space R

m; parameters (R, F ) may also be chosen so as to constitute a
vector from Rn, then A is an operator acting from Rn to Rm.
Let (R0, F 0) be an a priori given set of parameters (e.g. obtained from ab

initio calculations), and we know that accuracy of experimental data Λ is such
that it deviates from the “ideal” data not more than by a given constant δ. Let us
also introduce a set of constraints D in Rn to which our solution should belong.
We need to find an approximation (R, F )δ to the exact parameters (R, F ) such
that:

1. the solution is compatible with the experimental data within the accuracy
range (R, F )δ ∈ Zδ, where

Zδ = {(R, F ) ∈ D : ‖A(R, F )− Λδ‖ ≤ δ} ;

2. among all possible solutions, we choose the one most close to (R0, F 0)

(R, F )δ = argmin(R,F )∈Zδ

∥∥(R, F )− (R0, F 0)
∥∥ ;

3. when accuracy increases, we get more accurate approximations to an exact
solution (R, F )δ → (R, F ) when δ → 0.

One of the possible implementation of the procedure is to obtain such approx-
imations based on Tikhonov functional technique when we minimize

Mα(R, F ) = ‖A(R, F )− Λδ‖2 + α
∥∥(R, F )− (R0, F 0)

∥∥2
(11.6.1)

on the set D, and regularization parameter α is chosen as a solution of the
equation

‖A(R, F )α − Λδ‖ = δ,

where (R, F )α delivers a minimum to Mα(R, F ).
Under certain conditions on the operatorA(R, F ) the existence and uniqueness

of the solution can be guaranteed. Eq. (11.6.1) shows that within this approach
the deviations of solution from an a priori given set may be treated as a penalty.
Obviously, when (R0, F 0) itself is compatible with experimental data, no further
adjustment is necessary. The formulation given above is very general; in the
implementation that follows we shall assume that R is a set of independent
equilibrium geometry parameters and F is a set of harmonic force constants
(or the Pulay scale factors).
The presented approach is aimed at a simultaneous determination of the geom-

etry and force field parameters of a molecule. It combines techniques previously
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used in IR spectroscopy and ED data analysis. Particularly, it allows using more
flexible force field models when fitting ED data, far beyond the usually employed
scaling of the ab initio force field.

11.7 Intermolecular potential

The mechanical molecular model considers atoms as spheres and bonds as springs.
Non-bonded atoms (greater than two bonds apart) interact through van der
Waals attraction, steric repulsion, and electrostatic attraction/repulsion. These
properties could be described mathematically when atoms are considered as
spheres of characteristic radii. For a given spherical potential energy function
U(R) the virial expansion up to the second power of density is written as

p

kT
= ρ+B(T )ρ2,

where B(T ) is the second virial coefficient. It can be obtained using interaction
potential function as

B(T ) = − 2π
3kT

∫ ∞

0

R3 ∂U

∂R
exp

[
−U(R)

kT

]
dR, (11.7.1)

or in equivalent form,

B(T ) = 2π
∫ ∞

0

R2

[
1− exp

(
−U(R)

kT

)]
dR. (11.7.2)

So, the second virial coefficient performs the connection between the intermolec-
ular potential and the thermodynamic relations. Various researchers used both
equations to obtain the shape of potential function U(R) from experimental data
on virial coefficients. When we have a second virial coefficient measured at differ-
ent temperatures, calculation of a potential energy function is a more complicated
problem. It involves solving a first-order Fredholm integral equation, which is an
example of typical ill-posed problem [1, 2]. In many cases, the potential function
was not found directly; instead, a certain functional on potential Δ(U) was ob-
tained following [19]. This technique was aimed at obtaining linear Fredholm’s
integral equation of the first kind with respect to Δ(U).
Equation (11.7.2) may be directly treated as nonlinear integral equation. If, for

example, functions B(T ) and U(R) belong to L2(0,∞), this problem is apparently
ill-posed and requires certain regularization technique. Previous investigations
were based on fundamental properties of the potential function that was assumed
to consist of repulsive term (monotonically decreasing function for small values
of distance R) and attractive term (negative, monotonically increasing to zero
function for large R). Well-known representatives of such functions are Lennard-
Jones or Morse potentials.
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Using restricted set of potential functions may, however, result in the well-
posed problem for determining U(R) from Eq. (11.7.2). Let us introduce the
following set of constraints D [20]:

1. U(R) is convex downwards for R < Rp, and convex upwards for R > Rp; obvi-
ously this form of potential generalizes all known empirical potential functions.

2. For R > Rp (actually starting with even smaller distances), U(R) is negative,
and monotonically approaches zero as R→∞.
Here Rp is some unknown distance. It can be shown that mentioned constraints

are sufficient to define a compact set in L2 space; this guarantees convergence of
approximate solutions of Eq. (11.7.2) to its exact solution of the problem when
data errors of B(T ) tend to zero. Solving Eq. (11.7.2) may be implemented as
finding minimum of the discrepancy functional [20]

Φ[U ] =
∫ ∞

0

[
B(T )− B̃(T )

]2
dT (11.7.3)

where B(T ) is calculated according to Eq. (11.7.2), and B̃(T ) are experimentally
measured values. Minimization is subject to constraints D.
Technically, potential function U(R) is represented on a discrete grid, and

integration in (11.7.2) is restricted to the finite interval by introducing Rmin,
Rmax such that input of the omitted intervals was negligible. Discrepancy (11.7.3)
was minimized for each value of the parameter Rp from a certain interval, and
parameter yielding minimum discrepancy was chosen as the solution.

11.8 Examples of calculations

11.8.1 Calculation of methane intermolecular potential

The second virial coefficient data was simulated for the methane system using
experimental data from [21]. A model solution was generated using the Lennard-
Jones potential with parameter σ = 4. With this potential, the second virial
coefficients were found for several temperatures, and inverse problem was solved
by minimizing (11.7.3) on the set of constraints. Since all constraints are linear,
the technique of conjugate gradients projection was applied.
Fig. 11.1 represents solutions of the inverse problem obtained for two cases:

1. When Rp parameter was close to its exact value (5.1 Å).
2. When Rp parameter was seriously in error (7.3 Å).

Note that the first solution (smooth curve with inflection point at R = 5.1 Å)
practically coincides with the exact solution, because no additional noise was
introduced into input data. However, the second solution (piecewise linear curve),
obtained under assumption that inflection point is located at R = 7.3 Å, yields
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practically the same discrepancy value (within 0.1 per cent of the relative error
in the values of B(T )). The exact model data and simulated virial coefficients
corresponding to both potentials (Fig. 11.1) are compared in Table 11.1.

Fig. 11.1 Simulated potential energy function U(R) with two initial inflection points
(5.1 [solid line] and 7.3 Å [dash line]).

Table 11.1 Simulated B(T ) (cm3 · mol−1) within different models.

T (K) B(model) B(5.1) B(7.3)
232.095 −77.61 −77.55 −77.62
250.000 −67.73 −67.76 −67.73
270.420 −58.41 −58.47 −58.40

290.016 −50.96 −51.01 −50.95
309.718 −44.60 −44.62 −44.59
331.357 −38.64 −38.62 −38.65
350.366 −34.13 −34.05 −34.13

Evidently, the limited range and number of experimental points do not allow
of accurately defining the properties of the potential function. Accurate solu-
tion of the problem requires introducing more temperature points and/or extra
constraints (e.g. on solution smoothness).

11.8.2 Prediction of vibrational spectrum of fullerene C240

Molecular design and molecular modeling for the large (nano or polymer, cluster
etc.) molecular structures are based on the two major methods used to describe
the interactions within a system — quantum mechanics and molecular mechan-
ics. These results could be followed by the techniques that use the same energy
models, including energy minimization, molecular dynamics, Monte Carlo simu-
lations and conformational analysis. Both in molecular mechanics and molecular
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dynamics the molecular potential energy (and its force field) is represented as
the sum of contributions due to bond stretching, bond bending, energy changes
accompanying internal rotation about single bonds (all describing the “inter-
nal” molecular vibrations, and this part is closely connected with empirical force
field calculations), van der Waals attractions and repulsions between nonbonded
atoms, and electrostatic interactions due to polar bonds.
For the calculations of vibrational spectra of the large size molecular sys-

tems such as polymers, nanostructures, biological systems, and clusters, the next
scheme can be proposed:

1. preliminary quantum mechanical analysis of moderate size molecules (frag-
ments of large molecular systems) chosen as key or model molecules;

2. joint treatment of ab initio and experimental data on vibrational spectra,
structural electron diffraction (ED) and microwave (MW) data for model
molecules within the regularization theory, determination the equilibrium ge-
ometry parameters and harmonic force constants;

3. determination of intermolecular potential parameters by means of stable nu-
merical methods;

4. organization of a database on structural data, force field parameters and in-
termolecular potentials transferable in a series of related compounds;

5. synthesis (construction) of a large molecular system from separate fragments
included in the database and calculation of its vibrational spectra and ther-
modynamical functions.

Here we demonstrate the application of this approach to the prediction of
vibrational spectrum of C240 fullerene molecule (Ih symmetry) presented in
Fig. 11.2. This is a hypothetical molecule of fullerene class not synthesized at
present.

Fig. 11.2 Schematic
illustration of C240
molecule.
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The molecular geometry of C240 was optimized at the HF/STO-3G level. The
equilibrium configuration of the icosahedral (Ih) symmetry molecule C240 is com-
pletely defined by five bond lengths shown in Fig. 11.3. Their optimized values
are given in Table 11.2 in comparison with experimental data on corannulene
C20H10 and fullerene C60.

Fig. 11.3 Five types of
bond lengths in C240.

Table 11.2 Optimized geometry parameters of C240.

C240 C60 C20H10

Bond (Å) HF/STO-3G X-Raya X-Rayb EDc B3LYP/6-31G∗c

R(A) 1.4336 1.432 1.419 1.410 1.417
R(B) 1.3685 1.388 1.396 1.408 1.385
R(C) 1.4581 1.441 1.448
R(D) 1.4132 1.444 1.374 1.390
R(E) 1.4320

a J. M. Hawkins et al. Science, 1991, 252, 312.
b J. C. Hanson and C. E. Nordman. Acta Crystallogr., 1976, B32, 1147.
c L. Hedberg et al. J. Phys. Chem. A, 2000, 104, 7689.

This geometry was used for the normal coordinate analysis of C240. To per-
form the calculations for this molecule we introduced 1080 of internal coordinates
consisting of 360 bond-stretching coordinates and 720 bond angles. Altogether
1080 redundant coordinates were introduced, with only 714 of them being in-
dependent. Internal coordinates were optimized automatically with the help of
special utility in the SPECTRUM program package [3].
The 714 normal vibrations of C240 are distributed by irreducible representa-

tions as
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7Ag + 5Au + 16F1g + 18F1u + 17F2g+19F2u + 24Gg + 24Gu + 31Hg + 29Hu

The list of 90 different force constants for C240 was extended by certain model
assumptions of intraball forces on a base transferred from the regularized force
constant matrices (RQMFF) of C60 and corannulene molecules. The symmetry
properties allow one to reduce the complete force constant matrix of C240 into
10 blocks with orders varying from 6 to 48 in redundant symmetry coordinates.
Symmetry coordinates were run by means of the SYMM program included into
the SPECTRUM program package. The vibrational density plots (a distribution
of calculated frequencies by a wavenumber scale) for fullerene C240 are presented
in Fig. 11.4. There are two plots for vibrations with different inversion symmetry
(g and u), one referring to the total number of frequencies active in the Raman
spectrum, the other to frequencies active in the infrared absorption spectrum.
These frequencies were used for the calculation of the thermodynamic functions
of C240 in the 100–2000 K temperature region (Table 11.2).

Fig. 11.4 Vibrational state density for C240 molecule in the infrared absorption region
between ω = 100 and 1650 cm−1.

The package SPECTRUM allows the processing of several molecules simulta-
neously (each of them possessing a few isotopic species). This is a sensible ap-
proach when the model considerations require equivalence between certain force
matrix elements. With this kind of constraint specified, these elements are held
equivalent throughout the whole process of optimization. This option is of spe-
cial value for verifying transferability properties of force constants. Additional
features of the package include the following: all constraints are applied to ma-
trices in internal coordinates; all the algorithms throughout the package allow
internal coordinates to be redundant; redundancy conditions are taken into ac-
count automatically; and the regularization parameter is chosen in accordance
with the generalized discrepancy principle. On a base of this package now we
develop data base of nitrogen-containing compounds.
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Chapter 12

Numerical Inversion Methods in Geoscience
and Quantitative Remote Sensing

Yanfei Wang and Xiaowen Li

Abstract. To estimate structural parameters and spectral component signa-
tures of Earth surface cover type, quantitative remote sensing seems to be an
appropriate way to deal with these problems. Since the real physical system that
couples the atmosphere with the land surface is very complicated and should be
continuous, sometimes it requires comprehensive parameters to describe such a
system, so any practical physical model can only be approximated by a model
which includes only a limited number of the most important parameters that
capture the major variation of the real system.
The pivot problem for quantitative remote sensing is the inversion. Inverse

problems are typically ill-posed. The ill-posed nature is characterized by (C1)
the solution may not exist; (C2) the dimension of the solution space may be
infinite; (C3) the solution is not continuous with the variation of the observed
signals. These issues exist for all quantitative remote sensing inverse problems.
For example, when sampling is poor, i.e., there are very few observations, or
directions are poorly located, the inversion process would be underdetermined,
which leads to the large condition number of the normalized systems and the
significant noise propagation. Hence (C2) and (C3) would be the chief difficulties
for quantitative remote sensing inversion.
This chapter will address the theory and methods from the viewpoint that the

quantitative remote sensing inverse problems can be represented by kernel-based
operator equations.
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12.1 Introduction

Both modeling and model-based inversion are important for geophysical problems
and quantitative remote sensing. Hundreds of models related to vegetation and
radiation have been established during past decades. The model-based inversion
in solid geophysics and atmospheric science has been well understood. However,
the model-based inverse problems for land surface received much attention from
scientists only in recent years. Compared to modeling, model-based inversion is
still in the stage of exploration. This is because intrinsic difficulties exist in the
application of a priori information, inverse strategy and inverse algorithm. The
appearance of hyperspectral and multiangular remote sensor enhanced the explo-
ration means, and provided us more spectral and spatial dimension information
than before. However, how to utilize these information to solve the problems faced
in quantitative remote sensing to make remote sensing really enter the time of
quantification is still an arduous and urgent task for remote sensing scientists. Re-
mote sensing inversion for different scientific problems in different branches is paid
more and more attention in recent years. In a series of international study pro-
jections, such as International Geosphere-Biosphere Programme (IGBP), World
Climate Research Programme (WCRP) and NASA’s Earth Observing System
(EOS), remote sensing inversion has become a focal point of study.
Remote sensing inversions are usually optimization problems with different

constraints. Therefore, how to incorporate the method developed in operation
research field into remote sensing inversion field should be clarified. In quantita-
tive remote sensing, since the real physical system that couples the atmosphere
with the land surface is very complicated and should be continuous, sometimes
it requires comprehensive parameters to describe such a system, so any practical
physical model can only be approximated by a model which includes only a lim-
ited number of the most important parameters that capture the major variation
of the real system. Generally speaking, a discrete forward model to describe such
a system is in the form

y = h(C,S), (12.1.1)

where y is single measurement, C is a vector of controllable measurement condi-
tions such as wave band, viewing direction, time, sun position, polarization and
so forth, S is a vector of state parameters of the system approximation, h is a
function which relates C and S, which is generally nonlinear and continuous.
With the ability of satellite sensors to acquire multiple bands, multiple viewing

directions, and so on, while keeping S essentially the same, we obtain the following
nonhomogeneous equation

D = h(C,S) + n, (12.1.2)

where D is a vector in R
M , which is an M dimensional measurement space with

M values corresponding to M different measurement conditions, n ∈ RM is the
vector of random noise with the same vector length M . Assume that there are m
undetermined parameters which need to recover. Clearly, if M = m, (12.1.2) is
a determined system, so it is not difficult to develop some suitable algorithms to
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solve it. If more observations can be collected than the existing parameters in the
model[25], i.e., M > m, the system (12.1.2) is overdetermined. In this situation,
the traditional solution does not exist. We must define its solution in some other
meaning, for example, the least squares error (LSE) solution. However Li [15]
pointed out that “for physical models with about ten parameters (single band),
it is questionable whether remote sensing inversion can be an overdetermined
one in the foreseeable future.” Therefore, the inversion problems in geosciences
seem to be always underdetermined in some sense. Nevertheless, the underdeter-
mined system in some cases can be always converted to an overdetermined one
by utilizing multiangular remote sensing data or by accumulating some a priori
knowledge [14].
Developed methods in literature for quantitative remote sensing inversion are

mainly statistical methods with different variation from Bayesian inference. In
this chapter, we analyze from algebraic point of view the solution theory and
methods for quantitative remote sensing inverse problems.

12.2 Examples of quantitative remote sensing inverse
problems: land surface parameter retrieval problem

As is well known, the anisotropy of the land surface can be best described by the
bidirectional reflectance distribution function (BRDF). With the progress of the
multiangular remote sensing, it seems that the BRDF models can be inverted
to estimate structural parameters and spectral component signatures of Earth
surface cover type [22], [21]. The state of the art of BRDF is the use of the linear
kernel-driven models, mathematically described as the linear combination of the
isotropic kernel, volume scattering kernel and geometric optics kernel. The infor-
mation extraction on the terrestrial biosphere and other problems for retrieval
of land surface albedos from satellite remote sensing have been considered by
many authors in recent years, for instance, the survey papers on the kernel-based
bidirectional reflectance distribution function (BRDF) models [17, 19, 18] and
references therein. The computational stability is characterized by the algebraic
operator spectrum of the kernel-matrix and the observation errors. Therefore,
the retrieval of the model coefficients is of great importance for computation of
the land surface albedos. Other than observation errors a limited or insufficient
number of observations is one of the most severe obstacles for the estimation of
BRDF. Therefore, it is very desirable to develop new techniques for the robust
estimation of the BRDF model parameters due to the scarcity of the number of
observations.
The linear kernel-based BRDF model can be described as follows [21]:

fiso + kvol(ti, tv, φ)fvol + kgeo(ti, tv, φ)fgeo = r(ti, tv, φ), (12.2.1)
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where r is the bidirectional reflectance; the kernels kvol and kgeo are the so-called
kernels, that is, known functions of illumination and of viewing geometry which
describe volume and geometric scattering respectively; ti and tv are the zenith
angle of the solar direction and the zenith angle of the view direction respectively;
φ is the relative azimuth of the sun and view direction; and fiso, fvol and fgeo

are three unknown parameters to be adjusted to fit observations. Theoretically,
fiso, fvol and fgeo are closely related to the biomass such as leaf area index (LAI),
Lambertian reflectance, sunlit crown reflectance, and viewing and solar angles.
The vital task then is to retrieve appropriate values of the three parameters.
Generally speaking, the BRDF model includes kernels of many types. However,

it was demonstrated that the combination of RossThick (kvol) and LiSparse (kgeo)
kernels had the best overall ability to fit BRDF measurements and to extrapolate
BRDF and albedo [10, 32, 16, 20]. A suitable expression for the RossThick kernel
kvol was derived from [21]. It is reported that the LiTransit kernel kTransit, instead
of the kernel kgeo, is more robust and stable than LiSparse non-reciprocal kernel
and the reciprocal LiSparse kernel ksparse (LiSparseR) where the LiTransit kernel
and the LiSparse kernel are related by

kTransit =
{

ksparse, B ≤ 2,
2
B ksparse, B > 2, (12.2.2)

and B is given

B := B(ti, tv, φ) = −O(ti, tv, φ) + sec t′i + sec t′v

in [13]. More detailed explanation about O and t′ in the definition of kTransit can
be found in [32].
To use the combined linear kernel model, a key issue is to numerically build

the inverse model in a stable way. However, it is difficult to do in practical
applications due to ill-posed nature of the inverse problem. So far, statistical
methods have been developed for solving the inverse problem, which is based
on expression of a priori knowledge of model parameter as a joint probability
density Ps(s1, s2, · · · , sk); and the expression for a priori knowledge of the model
accuracy and measurement noise should be a conditional joint probability density
PD(dobs)

PD(dobs) = PD(dobs|S)Ps(S).

By Bayesian inference formula, we have

P (s|dobs) = PD(dobs|S)Ps(S)/PD(dobs),

where PD(dobs) =
∫

S
PD(dobs|S)Ps(S)dVs, and dVs is the volume differential el-

ements in the parameter space. The PD(dobs|S) can be interpreted as the prior
knowledge of model prediction of dobs giving parameters in parameter space,
Ps(S) as the prior knowledge of parameters, and PD(dobs) as prior knowledge
of marginal density of observation. In [17, 18], the authors utilized the algebraic
QR decomposition technique and also suggested using the singular value decom-
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position for the inversion of the BRDF model. And optimal design scheme for
the angular sampling is addressed. Later in [19], they compared several inversion
techniques and uncertainty in albedo estimates from the SEVIRI/MSG observing
system by using POLDER BRDF measurements. Though the solution method is
algebraic, their description of the problem is still quite statistical.

12.3 Formulation of the forward and inverse problem

The inverse problems can be linear or nonlinear which is closely related with
forward linear or nonlinear problems. A general framework of a forward model
can be described by the following chart

Input x −→ System model/Process K −→ Output y.
Cause x −→ System model/Process K −→ Result y.
Model (model parameters) m −→ Source dependent operator K
−→ Observation (data) d.

Mathematically, the forward model can be written as

K(x) = y, K(m) = d (12.3.1)

for nonlinear problems or
Kx = y, Km = d (12.3.2)

for linear problems, where x, y, m and d are functions related with different
variables in different applied sciences.
The inverse problems can be described by the following chart

Output y −→ System model/Process K −→ Input x.
Result y −→ System model/Process K −→ Cause x.
Observation (data) d −→ Source dependent operator K
−→ Model (model parameters) m.

Accordingly, the inverse model can be written mathematically as

x = K−1(y), m = K−1(d) (12.3.3)

for nonlinear problems or

x = K−1y, m = K−1d (12.3.4)

for linear problems, where x, y, m and d are functions defined as before.
It is clear that the kernel-based land surface parameter model (12.2.1) can be

written as a linear forward model with

K =
[
1 kvol(ti, tv, φ) kgeo(ti, tv, φ)

]
,
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y = [r(ti, tv, φ)],

and
x = [fiso, fvol, fgeo]T ,

where y and the components 1, kvol(ti, tv, φ) and kgeo(ti, tv, φ) ofK can be column
vectors for multiangular data.

12.4 What causes ill-posedness

A problem is called ill-posed if the solution of unknown (to be recovered) param-
eters or functions does not exit, or is not unique, or it is not a continuous function
of the data. This means even if a solution exists, it may severely unstable, i.e., a
small perturbation of the data corresponds to a significant large perturbation of
the solution.
For quantitative remote sensing, the basis is constructing the mathematical

model which relates the remote sensing data/signal with the Earth surfaces. This
model can be written implicitly as [9]

yi = h(ai, bi, ci, di, ei, ε), (12.4.1)

where yi records the radiation signal by remote sensor; ai, bi, ci, di, ei and ε
represent the radiation source, atmospheric information, vegetation, ground and
soil, sensor and unknown noise, respectively. The inverse problem is to recover
one or several parameters of ai, bi, ci, di and ei. For example, giving data y and
measurable parameters ai, bi, di and ei to retrieve ci is called the vegetation
model inversion.
The BRDF physical model is a special case of remote sensing inverse prob-

lems. The ill-posedness arises because the linear kernel-based BRDF model is
underdetermined, for instance, when there are very few observations or poor di-
rectional range. A single angular observation may lead to an underdetermined
system whose solution set is infinite (the null space of the operator contains
nonzero vectors) or which has no solution (the rank of the coefficient matrix is
not equal to the rank of the augmented matrix). The lack of effective observation
is not only a major obstacle of remote sensing inversion, but also an obstacle of
most of the geophysical inverse problems. Another reason that leads to the ill-
posedness is that error/noise propagation is significantly enlarged in computation
due to bad algebraic spectrum distribution (see, e.g., [Wang et al., 2007]). Due to
the ill-posedness of the inversion process, uncertainties in the model and in the
reflectance measurements do not simply result in uncertainties as to the solution.
More severely, the ill-posedness may lead to jumps in the solution space, i.e., the
solution found may spread in the whole parameter space instead of being cen-
tered on the true solution (see [Xiao et al., 2003; Atzberger, 2004; Tikhonov and
Arsenin, 1977; Wang, 2007; Wang et al., 2008]). To alleviate those difficulties, it
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is necessary to impose a priori constraints on the unknown parameters and seek
for a global optimized solution.

12.5 Tikhonov variational regularization

The Tikhonov regularization method is to solve a regularized minimization prob-
lem

Jα(x) := ‖Kx− y‖22 + α‖D1/2x‖22 −→ min . (12.5.1)

In (12.5.1), α is the regularization parameter and D is a positively (semi-)definite
operator. By a variational process, the minimizer of (12.5.1) satisfies

KT Kx+ αDx = KTyn. (12.5.2)

The operator D is a scale matrix which imposes smoothness constraint on the
solution x. The scale operator D and the regularization parameter α can be
considered as some kind of a priori information, which will be discussed next.

12.5.1 Choices of the scale operator D

To regularize the ill-posed problem discussed in the previous subsection, the
choice of the scale operator D has great impact upon the performance to the
regularization. Note that the matrix D plays the role in imposing a smoothness
constraint on the parameters and in improving the condition of the spectrum of
the adjoint operator KT K. Therefore, it should be positively definite or at least
positively semi-definite. One may readily see that the identity may be a choice.
However this choice does not fully employ the assumption about the continuity
of the parameters.
We recall four classes of choosing the scale operator D developed in [31]. The

first is the smoothness constrained optimization

min Jα(x) := ρF [Kx, y] + αL(x), (12.5.3)

where ρF [Kx, y] = 1
2‖Kx − y‖2L2

, L(x) = 1
2‖x‖2W 1,2 . Assume that the variation

of x is flat near the boundary of the integral interval [a, b]. In this case, the
derivatives of x are zeros at the boundary of [a, b]. Let hr be the step size of the
grids in [a, b], which could be equidistant or adaptive. Then after discretization
of L(x), D is a tridiagonal matrix in the form



280 Yanfei Wang and Xiaowen Li

D := D1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 + 1
h2

r
− 1

h2
r

0 · · · 0
− 1

h2
r

1 + 2
h2

r
− 1

h2
r
· · · 0

...
. . . . . . . . .

...
0 · · · − 1

h2
r
1 + 2

h2
r
− 1

h2
r

0 · · · 0 − 1
h2

r
1 + 1

h2
r

⎤⎥⎥⎥⎥⎥⎥⎦ .

There are many kinds of techniques for choosing the scale matrix D appropri-
ately. In Phillips-Twomey’s formulation of regularization (see, e.g., [28]), the ma-
trix D is created by the norm of the second differences,

∑N−1
i=2 (xi−1−2xi+xi+1)2,

which leads to the following form of matrix D

D := D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 0 0 · · · 0 0 0 0
−2 5 −4 1 0 0 · · · 0 0 0 0
1 −4 6 −4 1 0 · · · 0 0 0 0
0 1 −4 6 −4 1 · · · 0 0 0 0
...

...
. . . . . . . . . . . . . . .

...
...

...
...

0 0 0 · · · 0 1 −4 6 −4 1 0
0 0 0 · · · 0 0 1 −4 6 −4 1
0 0 0 · · · 0 0 0 1 −4 5 −2
0 0 0 · · · 0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

However, the matrix D is badly conditioned and thus the solution to minimize
the functional Jα[x] with D as the smooth constraint is observed to have some
oscillations ([28]). Another option is the negative Laplacian (see, e.g., [26, 29]):
Lx := −∑n

i=1
∂2x
∂τ2

i
, for which the scale matrix D for the discrete form of the

negative Laplacian Lx is

D := D3 =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
...

...
... · · · ...

...
0 0 0 −1 2 −1
0 0 0 · · · −1 1

⎤⎥⎥⎥⎥⎥⎦ ,

in which we assume the discretization step length to be 1. The scale matrix D3

is positively semi-definite but not positively definite and hence the minimization
problem may not work efficiently for severely ill-posed inverse problems. Another
option of the scale matrix D is the identity, i.e., D := D4 = diag(e), where e
is the components of all ones, however this scale matrix is too conservative and
may lead to over-regularization.
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12.5.2 Regularization parameter selection methods

As noted above, the choice of the regularization parameter α is important to
tackle the ill-posedness. A priori choice of the parameter α allows 0 < α <
1. However the a priori choice of the parameter does not reflect the degree of
approximation that may lead to either over-estimate or under-estimate of the
regularizer.
We will use the widely used discrepancy principle [23, 24, 24] to find an optimal

regularization parameter. In fact, the optimal parameter α∗ is a root of the
nonlinear function

Ψ(α) = ‖Kxα − yn‖2 − δ2, (12.5.4)

where δ is the error level to specify the approximate degree of the observation
to the true noiseless data, xα denotes the solution of the problem in equation
(12.5.2) corresponding to the value α of the related parameter. Noting Ψ(α)
is differentiable, fast algorithms for solving the optimal parameter α∗ can be
implemented. As in [31], the cubic convergent algorithm can be applied:

αk+1 = αk − 2Ψ(αk)
Ψ′(αk) + (Ψ′(αk)

2 − 2Ψ(αk)Ψ′′(αk))
1
2
. (12.5.5)

In the above cubic convergent algorithm, the functions Ψ′(α) and Ψ′′(α) have
the following explicit expression:

Ψ′(α) = −αβ′(α),

Ψ′′(α) = −β′(α) − 2α
[
‖dxα

dα
‖2 + (xα,

d2xα

dα2
)
]
,

where β(α) = ‖xα‖2, β′(α) = 2(dxα

dα ,xα), and xα, dxα/dα and d2xα/dα2 can
be obtained by solving the following equations:

(KT K + αD)xα = KTyn, (12.5.6)

(KT K + αD)
dxα

dα
= −Dxα, (12.5.7)

(KT K + αD)
d2xα

dα2
= −2Ddxα

dα
. (12.5.8)

To solve the linear matrix-vector equations (12.5.6)–(12.5.8), we use the
Cholesky (square root) decomposition method. A remarkable characteristic of the
solution of (12.5.6)–(12.5.8) is that the Cholesky decomposition of the coefficient
matrixKT K+αD needs only once, then the three vectors xα, dxα/dα, d2xα/dα2

can be obtained cheaply.
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12.6 Solution methods

With the mathematical model relating the physical parameters, it is necessary
to develop proper solution methods. It it proved that without robust solution
methods, the retrieved parameters may be far away from the true solution or the
solution process may be quite time-consuming. This is particularly important to
numerical inversion and imaging, say, atmospheric remote sensing inversion and
data assimilate problems.
We briefly review below some important methods developed in mathematics

and applied sciences.

12.6.1 Gradient-type methods

In this subsection, we consider iterative gradient-type methods for solving linear
operator equations

Kx = y, (12.6.1)

where K, x and y have the same meaning as before.
The functional J(x) to be minimized is given by

J(x) =
1
2
‖Kx− y‖2l2 . (12.6.2)

The gradient of J(x) is given by

gradx[J(x)] = (KT K)−1x−KT y.

At the kth iterative step, the gradient of J(xk) can be expressed as gradk[J ],
which is evaluated by gradxk

[J(xk)].

12.6.1.1 Bialy iteration

The Bialy iterative method for ill-posed linear inverse problems is in the form

xk+1 = xk + τ(y −Kxk), (12.6.3)

where τ ∈ (0, 2/‖A‖) and K is linear, bounded and nonnegative. The method
can be considered as a special case of gradient method. One may readily see this
method is very similar to the method of successive-approximations from standard
textbook “numerical methods”, where a very simple way to introduce the method
is the following: consider the operator

T (x) = x+ τ(y −Kx), (12.6.4)
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where τ is the so-called relaxation parameter. Any solution of (12.6.1) is equiva-
lent to finding a fixed point of the operator T , i.e., solve x from

x = T (x). (12.6.5)

Assuming that T is a contraction mapping, then by the method of successive
approximations, we obtain the following iterative scheme

xk+1 = T (xk), (12.6.6)

i.e., iterative formula (12.6.3). Bialy algorithm converges if and only if Kx = y
has a solution. The algorithm is straightforward to be given as follows:

Algorithm 12.6.1. (Bialy iteration algorithm)

Step 1 Input K and y; Choose x0, τ ∈ (0, 2/‖K‖); Set k := 0.
Step 2 If the stopping rule is satisfied, STOP; Otherwise, GOTO Step 3.
Step 3 Iterates according to Bialy iterative formula (12.6.3).
Step 4 Set k := k + 1 and GOTO Step 2.

12.6.1.2 Landweber-Fridman iteration

Landweber and Fridman suggested rewriting the equation Kx = y in the fix
point form and iterating this equation, i.e., computing

xk+1 = xk + τ ·KT (y −Kxk), (12.6.7)

where τ ∈ (0, 2/‖AT A‖), K is linear, bounded. The algorithm is straightforward
to be given as follows:

Algorithm 12.6.2. (Landweber-Fridman iteration algorithm)

Step 1 Input K and y; Choose x0, τ ∈ (0, 2/‖ATA‖); Set k := 0.
Step 2 If the stopping rule is satisfied, STOP; Otherwise, GOTO Step 3.
Step 3 Iterates according to Landweber-Fridman iterative formula (12.6.7).
Step 4 Set k := k + 1 and GOTO Step 2.

12.6.1.3 Steepest descent iteration

Steepest descent is, perhaps, the most famous and simple method in optimization.
The formula is very similar to Landweber-Fridman iteration except that the
stepsize is changed, i.e.,

xk+1 = xk + τk ·KT (y −Kxk), (12.6.8)

where τk is obtained by line search, i.e., τk = argminτ>0J(xk − τgk) . The algo-
rithm is straightforward to be given as follows:
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Algorithm 12.6.3. (Steepest descent iteration algorithm)

Step 1 Input K and y; Choose x0; Compute τ0 by the above line search
formula; Set k := 0.

Step 2 If the stopping rule is satisfied, STOP; Otherwise, GOTO Step 3.
Step 3 Iterates according to the steepest descent iterative formula (12.6.7).
Step 4 Set k := k + 1 and GOTO Step 2.

12.6.1.4 ν-method acceleration

This is a kind of accelerated Landweber-Fridman iterative method. The method
is introduced by Brakhage[2], which belongs to a class of polynomial accelera-
tion (semi-iterative method) to find the numerical solutions of linear algebraic
systems. The iteration formula reads

xk = xk−1 + μk(xk−1 − xk−2) + ωkA∗(y −Axk−1), (12.6.9)

where μ1 = 0, ω1 = 4ν+2
4ν+1 ; ν > 0 is an a priori parameter which characterizes the

smoothness of the solution, i.e., assuming that x ∈ Range((A∗A)ν). For k ≥ 1,
we have the following iterative formulas:

μk =
(k − 1)(2k − 3)(2k + 2ν − 1)

(k + 2ν − 1)(2k + 4ν − 1)(2k + 2ν − 3) ,

ωk = 4
((2k + 2ν − 1)(k + ν − 1)
(k + 2ν − 1)(2k + 4ν − 1) .

If we set z0 = 0, x0 = 0, z1 = ω1y and x1 = A∗z1, then the iteration formula
can be simply refined as

zk = zk−1 + μk(zk−1 − zk−2) + ωkA∗(y − Azk−1),
xk = A∗zk.

(12.6.10)

Therefore, the algorithm can be given as follows:

Algorithm 12.6.4. (ν-iteration algorithm)

Step 1 Input K and y; Choose x0 = 0, z0 = 0; Set ν > 0; Compute ω1.
Step 2 Compute z1 = ω1y; x1 = A∗z1.
Step 3 Until convergence, do the iterations according to the iterative formula

(12.6.10).

12.6.1.5 Conjugate gradient method

The conjugate gradient (CG) method can be used for solving least-squares prob-
lem. The CG can be applied to the normal equation KT Kx = KTy or to the
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regularized normal equation (KT K+αDT D)x = KT y, α > 0. Here we re-outline
the algorithm for solving the regularized normal equation as follows:

Algorithm 12.6.5. (Regularized Conjugate Gradient algorithm)

Step 1 Input K, y and x0; Set res0 := KT y −KT Kx0; Choose α ∈ (0, 1).
Step 2 If res0 ≤ ε, output x0, STOP; otherwise, set s0 := res0, ρ0 := resT0 res0

and set iter := 1.
Step 3 Compute next iteration point:

αk := ρk−1/((Ksk−1)T (Ksk−1) + α(Dsk−1)T (Dsk−1)),
xk := xk−1 + αksk−1,
resk := resk−1 − αkKT Ksk−1,
ρk := resTk resk,
βk := ρk/ρk−1,
sk := resk + βksk−1.

Step 4 If resk ≤ ε or iter exceeds the maximum iterative steps, output xk,
STOP; otherwise, set iter := iter + 1, GOTO Step 3.

For the CG algorithm, in ideal situation, the iteration stops when res0 = 0
or resk = 0. But it is hard to maintain res0 = 0 or resk = 0 for noisy inverse
problems. Therefore, we modify the algorithm that it should be stopped when
res0 ≤ ε or resk ≤ ε, for ε chosen in (0, 1).

12.6.1.6 Nonmonotone gradient method

Both the steepest descent and the Landweber-Fridman iteration methods are
quite slow in convergence and are difficult to be used for practical problems[29].
Instead of using negative gradient in each iteration, the non-monotone gradient
methods are developed recently (see, e.g., [7]). The famous one is the Barzilai-
Borwein (BB) method. This method was first proposed for solving the uncon-
strained optimization problem [1]. A gradient method for solving the minimiza-
tion of J(x) calculates the next point from

xk+1 = xk − νkgrad[J ]k, (12.6.11)

where νk is the steplength that depends on the method being used. The key point
of Barzilai and Borwein’s method is the two choices of the stepsize νk

νBB1
k =

sT
k−1sk−1

sT
k−1zk−1

(12.6.12)

and

νBB2
k =

sT
k−1zk−1

zT
k−1zk−1

, (12.6.13)
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where zk = grad[J ]k+1 − grad[J ]k, sk = xk+1 − xk . The method is quite efficient
for ill-posed convex quadratic programming problem [30].
The algorithm can be easily implanted by modifying iteration formula in Al-

gorithm 12.6.3.

Algorithm 12.6.6. (Nonmonotone algorithm)

Step 1 Initialization: Given initial point m0, tolerance � > 0 and set k := 1;
Compute grad[J ]k.

Step 2 If the stopping rule is satisfied, STOP; Otherwise, set sk = −grad[J ]k.
Step 3 Compute a BB step: νk by equation (12.6.12) or (12.6.13).
Step 4 Update the current iteration point by setting xk+1 = xk + νksk.
Step 5 Compute a new search direction sk+1 = −grad[J ]k+1 and go to Step

6.
Step 6 Loop: k := k + 1 and go to Step 2.

For some of the gradient-type iterative methods, we do not provide the detailed
stopping rule. Actually this can be realized by setting the maximum iteration
numbers or by comparing the norm value of the difference of the current iteration
point to the former iteration point or by evaluating the norm value of the gradient
grad[J ]k. If these values are less than the preassigned tolerance, the iteration
process should be terminated.

12.6.2 Newton-type methods

The conventional Tikhonov regularization method is equivalent to constrained l2
minimization problem

min
x
‖x‖2, s.t. Kx = y. (12.6.14)

This reduces to solve an unconstrained optimization problem

x = argminxJα(x), Jα(x) =
1
2
‖Kx− y‖22 +

α

2
‖x‖22. (12.6.15)

The gradient and Hessian of Jα(x) are given by

gradx[J
α(x)] = (KT K + αI)−1x−KTy and Hessx[Jα(x)] = KT K + αI

respectively. Hence at the kth iterative step, the gradient and Hessian of Jα(xk)
can be expressed as gradk[Jα] and Hessk[Jα], which are evaluated by
gradxk

[Jα(xk)] and Hessxk
[Jα(xk)] respectively.
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12.6.2.1 Gauss-Newton method

This is an extension of Newton method in one-dimensional space to higher di-
mensional space. The iteration formula reads

xk+1 = xk − (Hessk[Jα])−1gradk[J
α]. (12.6.16)

The algorithm is straightforward to given as follows:

Algorithm 12.6.7. (Gauss-Newton algorithm)

Step 1 Choose x0, ε > 0; Compute grad0[J
α] and Hess0[Jα]; Set k := 0.

Step 2 If ‖gradk[Jα]‖ ≤ ε, STOP; Otherwise, GOTO Step 3.
Step 3 Iterates according to formula (12.6.16).
Step 4 Set k := k + 1, update gradk[J

α] and GOTO Step 2.

12.6.2.2 Broyden method

For finite dimensional minimization problem, probably the most used approach
is a so called secant method: at every step of an iterative process the Jacobian
R′(xk) is replaced with an approximation, obtained from R(xk+1) and R(xk).
The best known algorithm among the secant methods is the Broyden iterative
process. The iteration formula of Broyden method reads

xk+1 = xk −B−1
k R(xk), (12.6.17)

Bk+1 = Bk +
(sk, ·)
‖sk‖2 R(xk+1), (12.6.18)

B−1
k+1 = B−1

k − (sk, B−1
k ·)

(sk, B−1
k (R(xk+1)−R(xk)))

B−1
k R(xk+1), (12.6.19)

where R(xk) = K(xk) − y, sk := xk+1 − xk. This method is also called secant
method. The algorithm is straightforward to given as follows:

Algorithm 12.6.8. (Broyden algorithm)

Step 1 Choose x0, B0, ε > 0, and a symmetric positive definite starting
matrix B0; Set k := 0.

Step 2 If ‖gradk[Jα]‖ ≤ ε, STOP; Otherwise, GOTO Step 3.
Step 3 Iterates according to formulas (12.6.17)–(12.6.19).
Step 4 Set k := k + 1, update Bk and B−1

k and GOTO Step 2.

12.6.2.3 BFGS method

The method BFGS comes from four mathematicians’s work on unconstrained
optimization. The iterative formula reads
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xk+1 = xk +B−1
k Δgk, (12.6.20)

B−1
k+1 := Hk+1 = (I − skΔgT

k

sT
kΔgk

)Hk(I − ΔgksT
k

sT
k Δgk

) +
sksT

k

sT
kΔgk

, (12.6.21)

where sk := xk+1 − xk, Δgk = gk+1 − gk. The algorithm is straightforward to
given as follows:

Algorithm 12.6.9. (BFGS algorithm)

Step 1 Choose x0, B0, ε > 0, and a symmetric positive definite starting
matrix B0; Set k := 0.

Step 2 If ‖gradk[J
α]‖ ≤ ε, STOP; Otherwise, GOTO Step 3.

Step 3 Iterates according to formulas (12.6.20)–(12.6.21).
Step 4 Set k := k + 1, update Bk and B−1

k and GOTO Step 2.

12.6.2.4 L-BFGS method

This is a limited memory BFGS method, which is an efficient method for large
scale scientific computing. The key of the method lies in that it does not need
to store Hk in each iteration [30] The limited memory strategy avoids two of
the bottlenecks specified above in the Newton algorithm when applied to big
systems, the storage and the inversion of big matrices. Here although a quasi-
Newton algorithm is used, the inverse of the Hessian matrix is never built up,
but directly the product of the inverse of the Hessian by the gradient. Then, no
Hessian diagonalization is required. What makes this method powerful is that in
order to update this matrix product only information of last m steps is used. In
this way only the geometry and gradient of the last m steps have to be stored.
When a BFGS update formula is used this procedure is called L-BFGS. This
method was developed by [18, 15]

Hk+1 =
(
I − skyT

k

sT
k yk

)
Hk

(
I − yksT

k

sT
k yk

)
+

sksT
k

sT
k yk

. (12.6.22)

The source code can be obtained free of charge from the web.
Now we give a precise description of the L-BFGS method. We follow the de-

scription as is in the form [30]

Hk+1 = V T
k HkVk + ρksksT

k , (12.6.23)

where ρk = 1
sT

k yk
, and

Vk = I − ρkyksT
k .

Then, next iterative point xk+1 can be computed by

dk = −Hkgk,
xk+1 = xk + αkdk.

(12.6.24)



Inversion in Geoscience and Remote Sensing 289

Usually the L-BFGS method is implemented with a line search for the step
length αk to ensure a sufficient decrease of the misfit function. Assume that x∗k+1

is an approximate solution for problem (12.6.15) at xk. Convergence properties
of the L-BFGS method are guaranteed if the steplength αk in equation (12.6.24)
satisfies the Wolfe line search conditions along dk = x∗k+1 − xk[13]

q(xk + αkdk) ≤ q(xk) + γ1αkgT
k dk, (12.6.25)

|g(xk + αkdk)T dk| ≤ γ2|g(xk)T dk|, (12.6.26)

where γ1 and γ2 are constants to be chosen a priori. The line search condition
can ensure the iterates remaining in the feasible region.
We give the L-BFGS algorithm as follows:

Algorithm 12.6.10. (L-BFGS algorithm)

Step 1 Choose x0, m, 0 < γ1 < 1
2 , γ1 < γ2 < 1, and a symmetric positive

definite starting matrix H0; Set k := 0.
Step 2 If the stopping rule satisfied, STOP; Otherwise, GOTO Step 3.
Step 3 Compute dk and let αk satisfies the above Wolfe conditions (12.6.25)–

(12.6.26); Compute xk+1 by equation (12.6.24)
Step 4 Let m̂ = min{k, m− 1}, check if yT

k sk > 0.
If NO: Hk+1 = I (steepest descent step) and delete the pairs

{yi, si}ki=k−m̂;

If YES: Update H0 m̂ + 1 times using the pairs {yi, si}ki=k−m̂, i.e.,
let

Hk+1 = (V T
k V T

k−1 · · ·V T
k−m̂)H0(Vk−m̂ · · ·Vk−1Vk)

+ ρk−m̂(V T
k V T

k−1 · · ·V T
k−m̂+1)sk−m̂sT

k−m̂(Vk−m̂+1 · · ·Vk−1Vk)

+ ρk−m̂+1(V T
k V T

k−1 · · ·V T
k−m̂+2)sk−m̂+1s

T
k−m̂+1(Vk−m̂+2 · · ·Vk−1Vk)

...
+ ρksksT

k .

Step 5 Set k := k + 1 and GOTO Step 2.

In Step 1 of Algorithm 12.6.10, the initial guess for the Hessian H0 is the
identity matrix I. In the algorithm proposed by Liu and Nocedal (1989), the
initial symmetric positive definite H0 need to be scaled as follows:

H
′
0 =

yT
0 s0

‖y0‖2 H0 =
yT
0 s0

‖y0‖2 I.

Then after one iteration is completed, all methods update H
′
0 instead of H0. This

scaling greatly improves the performances of the method.
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In Step 4, the condition yT
k sk > 0 guarantees the positive definiteness of the

L-BFGS matrix. However, this is not always the case[7]. If it is violated, a simple
reparation is making a steepest descent step.
We note that in the L-BFGS method, the storing of the matrices Hk is unnec-

essary, instead, a prefixed number (say m) of vectors pairs {sk, yk} that define
them implicitly are stored. Therefore, during the first m iterations the L-BFGS
and the BFGS methods are identical, but when k > m only information from the
m previous iterations is used to obtain Hk. The number m of BFGS corrections
that must be kept can be specified by the users. Moreover, in the L-BFGS the
product Hkgk which represents the search direction is obtained by means of a
recursive formula involving gk and the most recent vectors pairs {sk, yk}.

12.6.2.5 Trust region method

It is the best optimization method thus far for nonlinear programming problems.
Its global convergence and regularity are proved recently[27]. In trust region
method, one adjusts the trust region radius instead of adjusting the Levenberg-
Marquardt parameter. The trust region method is indirectly solving the minimal
least squares problem

min
x∈X

J(x) :=
1
2
‖K(x)− y‖2. (12.6.27)

Instead, it takes a trial step from a subproblem at each iteration

min
ξ∈X

ψk(ξ) := (gradk[J ], ξ) +
1
2
(Hessk[J ]ξ, ξ), (12.6.28)

s. t. ‖ξ‖ ≤ Δk, (12.6.29)

where gradk[J ] is the gradient of J at the k-th iterate,

grad[J(x)] = K ′(x)∗(K(x)− yδ), (12.6.30)

Hess(J)k is the Hessian of J at the k-th iterate,

Hess[J(x)] = K ′(x)∗K ′(x) +K ′′(x)∗(K(x)− y), (12.6.31)

and Δk is the trust region radius. The trust region subproblem (TRS) (12.6.28)–
(12.6.29) is an approximation to the original optimization problem (12.6.27) with
a trust region constraint which prevents the trial step becoming too large. A trust
region algorithm generates a new point which lies in the trust region, and then
decides whether it accepts the new point or rejects it. At each iteration, the trial
step ξk is normally calculated by solving the “trust region subproblem” (12.6.28)–
(12.6.29). Here Δk > 0 is a trust region radius. Generally, a trust region algorithm
uses

rk =
Aredk

Predk
(12.6.32)
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to decide whether the trial step ξk is acceptable and how the next trust region
radius is chosen, where

Predk = ψk(0)− ψk(ξk) (12.6.33)

is the predicted reduction in the approximate model, and

Aredk = J(xk)− J(xk + ξk) (12.6.34)

is the actual reduction in the objective functional.
Now we give the trust region algorithm for solving nonlinear ill-posed prob-

lems.

Algorithm 12.6.11. (Trust region algorithm)

STEP 1 Choose parameters 0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0
and initial values x0, Δ0 > 0; Set k := 1.

STEP 2 If the stopping rule is satisfied then STOP; Else, solve (12.6.28)–
(12.6.29) to give ξk.

STEP 3 Compute rk;

xk+1 =
{

xk if rk ≤ τ0,
xk + ξk otherwise.

(12.6.35)

Choose Δk+1 that satisfies

Δk+1 ∈
{
[τ3‖ξk‖, τ4Δk] if rk < τ2,
[Δk, τ1Δk] otherwise.

(12.6.36)

STEP 4 Evaluate grad[J ]k and Hess[J ]k; k:=k+1; GOTO STEP 2.

In STEP 2, the stopping rule is based on the discrepancy principle, i.e., the
iteration should be terminated at the first occurrence of the index k such that

‖K(xk)− y‖ ≤ τδ, (12.6.37)

where τ > 1 is the dominant parameter and can be chosen by users.
The constants τi (i = 0, · · · , 4) can be chosen by users. Typical values are

τ0 = 0, τ1 = 2, τ2 = τ3 = 0.25, τ4 = 0.5. The parameter τ0 is usually zero or
a small positive constant. The advantage of using zero τ0 is that a trial step is
accepted whenever the objective function is reduced. When the objective function
is not easy to compute, it seems that we should not throw away any “good” point
that reduces the objective function (see [33] for details).
For linear inverse problems, the trust region method is straightforward. The

nonlinear model (12.6.27) reduces to the quadratic model

min
x∈X

J(x) :=
1
2
‖Kx− y‖2. (12.6.38)

The gradient and Hessian of J can be written as
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gradx[J(x)] = (KT K)−1x−KTy

and
Hessx[J(x)] = KT K

respectively. Note that (12.6.38) is the quadratic model, hence the ration rk is
always equal to 1. Therefore, if we use the trust region scheme directly, the trial
step is always accepted. The regularization is straightforward if we stop the iter-
ation step under proper termination criterion [29]. We note that the approximate
accuracy is characterized by the discrepancy between the observation and the
true data; therefore variations of the norm of the discrepancy may reflect the
degree of approximation. Based on these considerations, we propose to accept or
reject the trial step sk at the k-th step by the ratio

ρk =
J(xk+1)
J(xk)

=
J(xk + ξk)

J(xk)
,

where J(xk+1) and J(xk) are the reductions in norm of the discrepancy at k+1-th
and k-th steps, respectively. Therefore, Algorithm 12.6.11 can be easily reformu-
lated based on the above comments, we leave it for readers.

12.7 Numerical examples

Denote by M the number of measurements in the kernel-based models. Then the
linear kernel-based BRDF model can be rewritten in the following matrix-vector
form

Kx = y, (12.7.1)

where

K =

⎡⎢⎢⎢⎣
1 kgeo(1) kvol(1)
1 kgeo(2) kvol(2)
...

...
...

1 kgeo(M) kvol(M)

⎤⎥⎥⎥⎦ , x =

⎡⎣ fiso

fgeo

fvol

⎤⎦ , y =

⎡⎢⎢⎢⎣
r1

r2

...
rM

⎤⎥⎥⎥⎦ ,

in which, kgeo(k) and kvol(k) represent the values of kernel functions kgeo(ti, tv, φ)
and kvol(ti, tv, φ) corresponding to the k-th measurement for k = 1, 2, · · · ; rk

represents the k-th observation for k = 1, 2, · · · .
We use the combination of RossThick kernel and LiTransit kernel in the nu-

merical tests. In practice, the coefficient matrix K cannot be determined accu-
rately, and a perturbed version K̃ is obtained instead. Also instead of the true
measurement y, the observed measurement yn = y + n is the addition of the
true measurement y and the noise n, which for simplicity is assumed to be addi-
tive Gaussian random noise. Therefore it suffices to solve the following operator
equation with perturbation
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K̃x = yn,

where K̃ := K + δB for some perturbation matrix B and δ denotes the noise
level (upper bound) of n in (0,1). In our numerical simulation, we assume that
B is a Gaussian random matrix, and also that

‖yn − y‖ ≤ δ < ‖yn‖. (12.7.2)

The above assumption of the noise can be interpreted as that the signal-to-noise
ratio (SNR) should be greater than 1. We make such an assumption as we believe
that observations (BRDF) are not trustable otherwise. It is clear that (12.7.1) is
an underdetermined system if M ≤ 2 and an overdetermined system if M > 3.
Note that for satellite remote sensing, because of the restrictions in view and
illumination geometries, K̃T K̃ need not have bounded inverse [8, 25, 14]. We
believe that the proposed regularization method can be employed to find an
approximate solution x†α satisfying

‖K̃x†α − yn‖ −→ min .

In this test, we choose the widely used 73 data sets referred to in [14]. Among
the 73 sets of BRDF measurements, only 18 sets of field-measured BRDF data
with detailed information about the experiments are known, including biophysi-
cal and instrumental information [10, 3, 4, 5, 6, 11, 12]. These data sets cover a
large variety of vegetative cover types, and are fairly good representative of the
natural and cultivated vegetation. Table 12.1 summarizes the basic properties
of the data sets used in this chapter. For those selected field data, the obser-
vations are sufficient. If the kernel matrix K̃ is well-conditioned, the problem is
well-posed, and the regularization is unnecessary, which can also be considered a
regularization procedure with zero regularization parameter. Even for sufficient
observations, most of the kernel matrices K̃ could be ill-conditioned, and hence
the problem is discretely ill-posed. In that situation, one has to resort to reg-
ularization or preconditioning to make the proposed algorithm workable. Our
proposed method is quite adaptive no matter whether the kernel matrix K̃ is
ill-conditioned or well-conditioned.
With the nice field data, the numerical experiment can be done to test the

robustness of the algorithm by using a limited number of observations, and then
to compare the retrieval with the measurements. The ill-posed situations are
generated by significantly reducing the number of observations from the field
data in Table 12.1.
We choose one or two observations as limited number of observations and

compare the retrieval results by different regularization methods [22, 20]. Com-
parison results are given in Tables 12.2 and 12.3. We do not list all of the results
since the data sets can be used to generate an enormous number of such kinds
of ill-posed situations. In the two tables, these methods are denoted by NTSVD,
Tikh(a) (α = δ2), Tikh(b) (D is in the form of D1 and α is chosen by a posteri-
ori method addressed in Section 12.5.1), Tikh(c) (D is in the form D2 and α is
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chosen by a posteriori method addressed in Section 12.5.1), Tikh(d) (D is in the
form D3 and α is chosen by a posteriori method addressed in Section 12.5.1) and
Tikh(e) (D is in the form D4 and α is chosen by a posteriori method addressed in
Section 12.5.1). The true white sky albedo (WSA) is calculated from well-posed
situations using AMBRALS, i.e., full observation data. It deserves pointing out
that the standard operational algorithm used in AMBRALS does not work for
such severely ill-posed situations. If we regard WSA > 1 or WSA < 0 as failed
inversion, it is clear that our proposed method works for all of the cases. It follows
from the experiments that our method (Tikh(b)) (proposed in [22]) works for a
single observation, and performs better than the NTSVD (proposed in [20]) and
the standard Tikhonov regularization with a priori choice of the regularization
parameter (Tikh(a)).

Table 12.1 Data sets used in the simulation.

Data Cover Type LAI
ranson soy.827 Soy 2.9
kimes.orchgrass Orchard grass 1
Parabola.1994.asp-ifc2 Aspen 5.5

Table 12.2 Comparison of computational values of the WSAs from data sets in Table
12.1 for single observation and for two observations with the true WSAs values (multian-
gular observations) for VisRed band.

Methods Single Two True WSAs
Observation Observations

NTSVD 0.0449047 0.0442712
Tikh(a) 0.0638937 0.0386419

ranson soy.827
Tikh(b) 0.0401528 0.0560726

0.0405936
Tikh(c) 0.0633967 0.0590594
Tikh(d) -0.0009147 0.0539707
Tikh(e) 0.0476311 0.0583683
NTSVD 0.1082957 0.1058740
Tikh(a) 0.0397185 0.0860485

kimes.orchgrass
Tikh(b) 0.0753925 0.1214918

0.0783379
Tikh(c) 0.26211583 0.4365220
Tikh(d) -0.0018020 0.0383555
Tikh(e) 0.1137684 0.1707774
NTSVD 0.0364620 0.0389198
Tikh(a) 0.0447834 -0.0040831

Parabola.1994.asp-ifc2
Tikh(b) 0.0262501 0.0102457

0.0227972
Tikh(c) 0.0798633 -0.0874783
Tikh(d) -0.0006110 -0.0401510
Tikh(e) 0.0375009 0.0547068
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Table 12.3 Comparison of computational values of the WSAs from the data sets in
Table 12.1 for single observation and for two observations with the true WSAs values
(multiangular observations) for Nir band.

Methods Single Two True WSAs
Observation Observations

NTSVD 0.4469763 0.4348320
Tikh(a) 0.6359822 0.4195730

ranson soy.827
Tikh(b) 0.3996775 0.5439493

0.3653728
Tikh(c) 0.6310461 0.9247240
Tikh(d) -0.0091045 -0.0098136
Tikh(e) 0.4741162 0.6277249
NTSVD 0.3890207 0.37216767
Tikh(a) 0.2048903 0.2945934

kimes.orchgrass
Tikh(b) 0.2708260 0.4458619

0.2963261
Tikh(c) 0.9415755 1.8140732
Tikh(d) -0.0064732 0.1927318
Tikh(e) 0.4086801 0.6015300
NTSVD 0.5517209 0.5741842
Tikh(a) 0.6776356 -0.0617838

Parabola.1994.asp-ifc2
Tikh(b) 0.3972022 0.2398577

0.4240376
Tikh(c) 1.2084479 -0.8953630
Tikh(d) -0.0092437 -0.4071125
Tikh(e) 0.5674424 0.8185223

Our algorithms to the Landsat Thematic Mapper (TM) data measured in
Shunyi District of Beijing, China. The TM sensor is an advanced, multispectral
scanning, Earth resources instrument designed to achieve higher image resolution,
sharper spectral separation, improved geometric fidelity, and greater radiometric
accuracy and resolution. Fig. 12.1 plots the reflectance for band 5 on May 17,
2001. The spatial resolution for the TM sensor on band 5 is 30 meters. The white-
sky albedo (WSA) retrieved by Tikh(b) for band 5 of one observation on May
17, 2001 is plotted in Fig. 12.2 The retrieved results show that our algorithms
work for satellite data with high spatial resolutions.
Experimental results of different data sets indicate that our proposed regular-

ization method is feasible for ill-posed land surface parameter retrieval problems.
We want to emphasize that our method can generate smoothing data to help

retrieval of parameters once sufficient observations are unavailable. As we have
pointed out in [22, 20], we do not suggest discarding the useful history information
(e.g., data that is not too old) and the multiangular data. Instead, we should
fully employ such information if it is available. The key to why our algorithm
outperforms previous algorithms is that our algorithm is adaptive, accurate and
very stable, which solves kernel-based BRDF model of any order, which may be
a supplement for BRDF/albedo retrieval product.
For the remote sensor MODIS, which can generate a product by using 16 days

different observations data, this is not a strict restriction for MODIS, since it
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Fig. 12.1 Reflectance for band 5 of Landsat Thematic Mapper Data (TM) on May 17,
2001.

Fig. 12.2 White-sky albedo retrieved by proposed Tikhonov regularization method for
band 5 of Landsat Thematic Mapper Data (TM) on May 17, 2001.
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aims at global exploration. For other sensors, the period for their detection of
the same area will be longer than 20 days or more. Therefore, for vegetation in
the growing season, the reflectance and albedos will change significantly. Hence
robust algorithms to estimate BRDF and albedos in such cases are highly desired.
Our algorithm is a proper choice, since it can generate retrieval results which
quite approximate the true values of different vegetation types of land surfaces
by capturing just one time of observation.
Moreover, for some sensors with high spatial resolution, the quasi multiangular

data is impossible to obtain. This is why there are not high resolution albedo
products. But with our algorithm, we can achieve the results. This is urgently
needed in real applications.

12.8 Conclusions

In this chapter, we investigate the regularization and optimization methods for
the solution of the kernel-based remotely sensed inverse problems. We reformulate
the problem in functional space by introducing the first kind operator equations,
then the solution methods in l1 and l2 spaces are considered. The regularization
strategy and optimization solution techniques are fully described. The equivalence
between the Tikhonov regularization and Baysian statistical inference is estab-
lished. The noise/error propagation for kernel-based model problems is deduced.
We want to emphasize that there are different ways to impose a priori infor-
mation [29]. For example, (P1) the unknowns x can be bounded. This method
requires a good apriori upper bound for x; (P2) applying different weights to the
components of x, then constructing the kernel model under the constraint of the
weights; (P3) imposing historical information on x provided that such histori-
cal information exists; (P4) simplifying the physical model by solving a lp norm
problem, which means the unknowns x can be obtained at the lp scale.
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Chapter 13

Pseudo-Differential Operator and Inverse
Scattering of Multidimensional Wave
Equation

Hong Liu, Li He

Abstract. The infra-structural feature of multidimensional inverse scattering for
wave equation is discussed in this chapter. Previous studies on several disciplines
pointed out that the basic frame of multidimensional inverse scattering for wave
equation is much similar to the one-dimensional (1D) case. For 1D wave equa-
tion inverse scattering problem, four procedures are included, i.e., time-depth
conversion, Z transform, 1D spectral factorization and conversion of reflection
and transmission coefficient to the coefficient of wave equation. In multidimen-
sional or in the lateral velocity varying situation, the conceptions of 1D case
should be replaced by image ray coordinate, one-way wave operator, multidi-
mensional spectral factorization based on Witt production and the plane wave
response of reflection and transmission operator. There are some important ba-
sic components of multidimensional inverse scattering problem, namely, effective
one-way operator integral representation, differential form of wave equation in
ray coordinate, wide application of Witt product and the modern development
of multidimensional spectral factorization. The example of spectrum factorization
shows that the energy is well focused, which may benefit the velocity analysis
and the pickup of the reflection coefficients.
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13.1 Introduction

The 3D inverse scattering method is important in seismic propagation and imag-
ing mute multiples and multi-scattering. For a long time, 1D wave inverse scat-
tering methods show a good example to the solution of 3D problem. For 1D
wave equation inverse problem, Schrodinger equation plays a key rule in time-
depth convention. And, there are many other solving methods, such as Gilfend-
Levitan equation method, Marchenko equation method, Gopinash-Sandhi equa-
tion method (Bube K P and Burridge R, 1983; Liu H, Li Y M and Wu R S, 1994;
Song H B, 2002), Weiner-Hopf technique (Whittle factorization, Kolmogorov fac-
torization) (Claerbout, 1985) and Wilson-Burg factorization. Spectral factoriza-
tion, actually, is to express the reflected signal to the autocorrelation of prediction
operators (auto-regression operator). The exponential form of prediction opera-
tors and exponential form of general transmission operators are related to strati-
graphic filter (O’Doherty R F and Anstey N A, 1971) and seismic rock physics
of fracture and porous medium.
Geophysicists have sought for solving inverse scattering problem of multidi-

mensional wave equation or lateral velocity variation media since last two decades
(Rose J H and DeFacio B, 1987; Weglein A, Foster D and Matson K, 2001). In
recent years, some methods, such as multiples canceling (Matson K 2000, Ver-
schuur D J and Berkhout A J, 2005; Berkhout A J and Verschuur D J, 2005)
and multidimensional scattering methods (Prosser R T, 1969; Newton R G, 1982;
Rose J H and DeFacio B, 1987; Cheney M and Rose J H, 1988; Gray S H, 1988;
Rose J H, 1989; Chen X F, 1990) and decomposition in directional wave (de Hoop
M V, 1996; Weglein A, Foster D and Matson K, 2001), especially in the study
of reflection operator property and decomposition in directional wave (Fryer G
J and Frazer L N, 1984, 1987; Wapenaar C P A and Grimbergen J L T, 1996;
Song H B, 2002), require the infra-structural study in inverse scattering method
for multidimensional wave equation. In this chapter, we review and integrate
the previous researches and point out that the methods are much similar to 1D
wave equation problem. In the inverse scattering method for multidimensional
wave equation, time-depth conversion, Z transform, 1D spectral factorization
and reflection transmission coefficient will be replaced by ray-coordinate (Larner
K L, Hatton L and Gibson B S, 1981; Sava P and Fomel S, 2005; Iversen E
and Tygel M, 2008; Shragge J C, 2008), one-way operator (implicit scheme such
as finite-difference with LU decomposition on helix coordinator and multi-way
splitting, explicit scheme generalized screen, separable kernel representation, time
migration, residual migration, cascade migration and true amplitude migration)
(Claerbout J F, 1985; Claerbout J F and Fomel S, 2002), multidimensional spec-
tral factorization and the plane wave response of reflection operator.
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13.2 Notations of operators and symbols

Though pseudo-differential operator theory has a very wide application, we con-
centrate symbol operation on Witt product (Qi M Y, Xu C J, Wang W K
2005, Liu H, Wang X M and Zeng R, 2007) in this chapter. Thus, the “pseudo-
differential theory” means “symbol operation”. Symbol of the operators is its
plane wave response and its multiplication is similar to function multiplications.
If the velocity does not vary horizontally, they are the same; otherwise, the mul-
tiplication of symbol should be added a series of derivative modification. And
it is an important tool in structure preserving algorithm to keep the efficiency
and accuracy in the lateral velocity varying case. So far, exponent mapping and
logarithm mapping of the symbols have been found, from which we can derive
Dix-like travel-time formula and the modification of the spectral factorization.
A symbol σ(Â) of the operator Â is a function a(x, y, kx, ky), which is the sine

wave response under the pseudo-differential operator, i.e.,

a(x, y, kx, ky) ≡ σ(Â) = exp(−ikxx− ikyy)(Â(x, y, Dx, Dy) exp(ikxx+ ikyy)),
(13.2.1)

where kx, ky are the wave numbers of the plane-wave, and

Dx =
∂

i∂x
=
1
i
∂x , Dy =

∂

i∂y
=
1
i
∂y. (13.2.2)

The hat in Â stands for operator, which will be used in the following context.
Setting the symbol functions of Â and B̂ as a = σ(Â) and b = σ(B̂), the multi-
plication of symbols can be written as

a#b ≡ σ(ÂB̂) =
∑ 1

n!

[
∂a

∂kx
Db

x +
∂a

∂ky
Db

y

]n

ab, (13.2.3)

where # is symbol notation, Da
x means that Dx only operates on a and Db

x

means that Dx only operates on b. This is Witt product according to Leibniz
rule, which plays a key role in exponent mapping’s expression. Based on Witt
product, we can develop symbols of operator, such as multiplication, division,
power, exponential (Liu H, Wang X M and Zeng R, 2007), logarithm, vector
normalization and matrix diagonalization.
The definition of communicator is

[Â, B̂] = ÂB̂ − B̂Â, (13.2.4)

[Â, B̂, Ĉ] = [Â, [B̂, Ĉ]], (13.2.5)

adÂB̂ ≡ [Â, B̂], (13.2.6)

and the symbol of the communicator is defined as follows:

{a, b} = a#b− b#a = σ([Â, B̂]) = σ(ÂB̂ − B̂Â). (13.2.7)
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In travel time and amplitude calculation of high frequency approximation, first
order and zeroth order homogeneous terms of ω, kx and ky should be called the
kinematic symbol (control travel time) and amplitude-controlling symbol (control
amplitude), respectively. Letting comma in subscripts of the following formulas
stand for derivative, we have

u,ix = Dxu, (13.2.8)

u,iy = Dyu, (13.2.9)

u,kx =
∂

∂kx
u, (13.2.10)

u,ky =
∂

∂ky
u, (13.2.11)

and the Newton’s law for the elastic media can be written as

−ρω2

⎛⎝ux

uy

uz

⎞⎠ =

⎛⎝∂xτxx + ∂yτxy + ∂zτxz

∂xτxy + ∂yτyy + ∂zτyz

∂xτxz + ∂yτyz + ∂zτzz

⎞⎠ (13.2.12)

where

⎛⎝ux

uy

uz

⎞⎠ is displacement vector, ρ is density. And the Hooke’s law can be

written as ⎛⎜⎜⎜⎜⎜⎜⎝
τxx

τyy

τzz

τyz

τzx

τxy

⎞⎟⎟⎟⎟⎟⎟⎠ = M

⎛⎜⎜⎜⎜⎜⎜⎝
exx

eyy

ezz

2eyz

2ezx

2exy

⎞⎟⎟⎟⎟⎟⎟⎠= M

⎛⎜⎜⎜⎜⎜⎜⎝
∂x 0 0
0 ∂y 0
0 0 ∂z

0 ∂z ∂y

∂z 0 ∂x

∂y ∂x 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝ux

uy

uz

⎞⎠ , (13.2.13)

where

M =

⎛⎜⎜⎜⎜⎜⎜⎝
C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎞⎟⎟⎟⎟⎟⎟⎠ , (13.2.14)

where Cij is the elastic coefficient. Rather than using b =
(

u
τ

)
=

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝ux

uy

uz

⎞⎠⎛⎝ τxz

τyz

τzz

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠
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(Fryer and Frazer, 1984), we use b =

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎝ uz

τxz

τyz

⎞⎠⎛⎝ τzz

uy

uy

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (Song, 1999), and we have

∂zb =
(

T C
S T T

)
b =

(
S T T

T C

)(
0 I
I 0

)
b = ANb, (13.2.15)

where

N =
(
0 I
I 0

)
, (13.2.16)

A =
(

S T T

T C

)
(13.2.17)

and
AW = NWΛ. (13.2.18)

In the above expressions, T , C, S are 3×3 partitions and C and S are symmetric.
These matrices may be obtained from expressions given by Woodhouse (1974) if
due allowance is made for our choice of stress-displacement vector.

13.3 Description in symbol domain

The matrix A is 6× 6 in general. In order to see how to solve equation (3.2.18),
we consider the 2nd case. It was written as(

a11 (x, k) a12 (x, k)
a21 (x, k) a22 (x, k)

)
#
(

w11 (x, k)
w12 (x, k)

)
=
(
0 I
I 0

)(
w11 (x, k)
w12 (x, k)

)
#λ1 (x, k) ,

(13.3.1)
where

a11 (x, k)=σ (S) ,

a12 (x, k)=σ
(
T T
)
,

a21 (x, k)=σ (T ) ,
a22 (x, k)=σ (C) .

(13.3.2)

Let(
w11 (x, k)
w12 (x, k)

)
=
(

w11 (x, k)
w12 (x, k)

)(1)

+
(

w11 (x, k)
w12 (x, k)

)(0)

+
(

w11 (x, k)
w12 (x, k)

)(−1)

(13.3.3)

and
λ1 (x, k) =λ

(1)
1 (x, k)+λ

(0)
1 (x, k)+λ

(−1)
1 (x, k) , (13.3.4)
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where the upper scripts (0),(1) and (−1) stand for the first zeroth and the minus
first order homogeneous terms of ω, kx, ky, respectively. Through calculation we
have(

a11 (x, k) a12 (x, k)
a21 (x, k) a22 (x, k)

)(
w11 (x, k)
w12 (x, k)

)(1)

=
(
0 I
I 0

)(
w11 (x, k)
w12 (x, k)

)(1)

λ
(1)
1 (x, k)

(13.3.5)
and (

a11 (x, k) a12 (x, k)
a21 (x, k) a22 (x, k)

)(
w11 (x, k)
w12 (x, k)

)(0)

+∂k

(
a11 (x, k) a12 (x, k)
a21 (x, k) a22 (x, k)

)
Dx

(
w11 (x, k)
w12 (x, k)

)(0)

=
(
0 I
I 0

)(
w11 (x, k)
w12 (x, k)

)(0)

λ
(1)
1 (x, k)+

(
0 I
I 0

)(
w11 (x, k)
w12 (x, k)

)(1)

λ
(0)
1 (x, k)

+
(
0 I
I 0

)
∂k

(
w11 (x, k)
w12 (x, k)

)(1)

Dxλ
(1)
1 (x, k) .

(13.3.6)
Hence RT (radiation transfer) formula (Chandrasekhar S, 1960; Li X and Strahler
A, 1992) can be derived. We know that

a#wi= Nwi#λi,

a#wj= Nwj#λj ,

wT
j =σ(WT

j )

(13.3.7)

and
wT

i #a#wj= wT
i Nwj#λj ,

wT
j #a#wi= wT

j Nwi#λi.
(13.3.8)

It can be proved that

wT
i Nwj=

{
0,
qi,

i 	= j,
i = j

(13.3.9)

and
qi= wT

i Nwi,

q1 � 0,
q2 � 0.

(13.3.10)

The sign in (13.3.10) stands for the flux direction: the positive refers to the
up-going wave and the negative refers to the down-going wave. The following
formulas can also be obtained straightforwardly

W =
(

w1#q
− 1

2
1 , w2#q

− 1
2

2

)
(13.3.11)
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WT NW =
(

I 0
0 −I

)
=diag

(
I −I

)
, (13.3.12)

Λ=
(

λ1 0
0 λ2

)
,

AW = NWΛ,

(13.3.13)

F = (W )−1 (∂zW ) = NW T

(
0 I
I 0

)
(∂zW ) , (13.3.14)

F =
(

F1 FT
2

F2 F4

)
,

F1 = −FT
1 ,

F4 = −FT
4 ,

(13.3.15)

AN = NWΛ (NW )−1
,

b = NW

(
U
D

)
,

(13.3.16)

∂z

(
U
D

)
=(Λ+F )

(
U
D

)
=
((

iωΓ 0
0 −iωΓ

)
+
(

T R
R T

))(
U
D

)
, (13.3.17)

trF = 0,
det (expF )= constant.

(13.3.18)

where trF =
∑
i

Fii and expF =
∞∑

n=0

1
n!F

n. When trΛ= trσ (S + C) = 0, it can be

proved that

∂z

(
UT (z, ω)U (z,−ω)+DT (z, ω)D (z,−ω)

)
= 0, (13.3.19)

which is the result of the energy flux normalization.

13.4 Lie algebra integral expressions

Applying the idea of structure preserving computation (Feng K, 1985; Celledoni
E and Iserles A, 2001; Chen J B, Munthe-Kaas H and Qin M Z, 2002) to the
integral of one-way wave differential equation (Liu H, Yuan J H and Chen J B,
2006) and prediction operator differential equation (Liu H, He L, Liu G F and Li
B, 2008), we get the Lie algebra integral expressions one-way wave operator and
prediction operator. The Lie algebra differential equation solution η̂ indicates a
mapping f̂ → η̂(f̂) such that
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∂ζ η̂ =
adη̂

exp(adη̂)− 1 f̂

= f̂ +B1adη̂f̂ +
B2

2
adη̂adη̂f̂ +

B4

24
(adη̂)

4
f̂ +

B6

720
(adη̂)

6
f̂ · · ·

= f̂ +B1

[
η̂,f̂
]
+

B2

2

[
η̂,η̂,f̂

]
+

B4

24

[
η̂,η̂,η̂,η̂,f̂

]
+

B6

720

6︷ ︸︸ ︷
[η̂, . . . , η̂, f̂ ] · · · ,

(13.4.1)

hence
∂ζd (ζ)= f̂ (ζ) d (ζ) . (13.4.2)

The solution of the above equation can be expressed as

d (ζ) = exp
(
η
(
f̂
))

d (0) . (13.4.3)

In equation (13.4.1), Bn is the Bernoulli number, i.e.,

∞∑
n=0

Bn
tn

n!
=

t

et − 1 (13.4.4)

and

B0 = 1, B1 = −12 , B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, B5 = 0, · · · (13.4.5)

Using (13.4.1)–(13.4.3), we can prove that

exp
(
η̂(f̂)

)T

= exp
(
−η̂(−f̂T )

)
. (13.4.6)

13.5 Wave equation on the ray coordinates

The concept of time migration is related with time domain, which actually is the
non-orthogonal ray coordinates. The role of this non orthogonal coordinates in
multidimensional cases is similar to the time-depth conversion in one-dimensional
inversion. Larner (1981) and Hubral (1975) studied the transformation between
velocity function in this coordinates and velocity function in depth domain. They
cast light on the cause of anisotropy from layer dipping. Because the metric matrix
of non-orthogonal ray coordinates is not diagonal (Iversen E and Tygel M, 2008),
it is called Riemannian coordinates (Sava P and Fomel S, 2005) which gives
the way to study velocity anisotropy in time domain. Curve and body-fitting
coordinate simulation (Shragge J C, 2008) for complex maintaining area provide
new plentiful experience.
The Helmholtz wave equation for 3D ray tracing coordinate can be written as
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1
αJ

[
∂

∂ζ

(
J

α

∂W

∂ζ

)
+

∂

∂ξ

(
G

α

J

∂W

∂ξ
− F

α

J

∂W

∂η

)
+

∂

∂η

(
E

α

J

∂W

∂η
− F

α

J

∂W

∂ξ

)]
= −ω2

v2
W.

(13.5.1)
In this equation, ω is circle frequency, v is wave velocity, W is wave field. The
coefficients in this equation can be expressed by metric matrix with element gij

and its conjugate matrix with element gij , defined by

[gij ] =

⎡⎣E F 0
F G 0
0 0 α2

⎤⎦ , (13.5.2)

[
gij
]
=

⎡⎣+G/J2 −F/J2 0
−F/J2 +E/J2 0

0 0 1/α2

⎤⎦ , (13.5.3)

where J2 = EG − F 2, and the determinant of the matrix |g| = α2J2. We refer
(Sava P and Fomel S, 2005) to the geometry meaning. Equation (13.5.1) describes
the two-way wave equation propagation in ray coordinates. The physical meaning
of ζ is travel time along the ray, which is the reason why some ray tracing
coordinate is called “time domain” in seismic migration. In the ray coordinate,
the second order coefficient of ζ is equal to the one of ω2, excluding the terms of
∂
∂ζ

∂
∂ξ and

∂
∂ζ

∂
∂η . For the one-way equation, we should select the wave propagation

direction and modify the acoustic wave equation. We introduce the following
symbols

cζζ =
1
α2

, cξξ =
G

J2
, cηη =

E

J2
, cξη =

F

J2
, cζ =

1
αJ

∂

∂ζ

(
J

α

)
, (13.5.4)

cξ =
1

αJ

[
∂

∂ξ

(
G

α

J

)
− ∂

∂η

(
F

α

J

)]
(13.5.5)

and

cη =
1

αJ

[
∂

∂η

(
E

α

J

)
− ∂

∂ξ

(
F

α

J

)]
. (13.5.6)

In the case of ray coordinates, wave equation can be transformed to the symbol
domain equation

− 1
v2

k2
ζ − cξξk

2
ξ − cηηk2

η + icζkζ + icξkξ + icηkη − cξηkξkη = −ω2

v2
. (13.5.7)

To get the wave number symbol kζ in the exploration direction, we solve symbol
equation (13.5.7) and choose the minus or plus symbol corresponding to direction
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kζ = i
cζ

2cζζ
±

√√√√√
⎛⎝ω2 −

(
cζ

2cζζ

)2

−
∑

j=ξ,η

(
cjj

cζζ
k2

j − i
cj

cζζ
kj

)
− cξη

cζζ
kξkη

⎞⎠#.

(13.5.8)
In this equation, # stands for Witt product, with the meaning of square root of
a symbol shown in [22], and the additive symbol shows that the wave propagates
in the positive direction. To be simple, we express the coordinators (ξ, η, ζ) as
(x, y, ζ). The general form of (13.5.8) is given by equations (13.3.1)–(13.3.6). The
symbol of single square root is kζ = kζ(x, y, ζ, kx, ky, ω). It can determine the one
way wave operator uniquely.

13.6 Symbol expression of one-way wave operator
equations

Using ray tracing coordinates, the wave field in the surface is denoted by
W (x, y, 0, ω), and the wave field in the depth ζ is denoted by W (x, y, ζ, ω). The
extrapolation equation with the transmission term for wave field in frequency
domain can be expressed as

∂ζU = (λ1 + F1)U,
∂ζD = (λ2 + F4)D,

(13.6.1)

where U and D are up-going and down-going waves respectively. and in order to
solve equation (13.6.1), we try to find the solution of the following equation.

∂ζW (x, y, ζ, ω) =
(
−iωΓ̂ + T̂

)
W (x, y, ζ, ω),

trT̂= 0.
(13.6.2)

In a 2 by 2 matrix case, one has (by formulas (13.3.14), (13.3.15) and (13.3.18))

∂ζW (x, y, ζ, ω) = −iωΓ̂W (x, y, ζ, ω). (13.6.3)

This is the result of flux normalization.
Suppose the integral solution of the extrapolation equation is

W (ζ, ω) = ĜW (ζ = 0) = exp
(
iÂ (ζ)

)
W (x, y, ζ = 0, ω), (13.6.4)

where Ĝ = exp(iÂ(z)) is the large step one-way operator, Â(z) is the global
integral operator of single square root operator (±iωΓ̂+ T̂ ). We call it Lie algebra
integral operator because it is the result of Lie algebra differential equation (4.1).
Based on (4.1), we get:

iÂ (ζ) = η̂
(
±iωΓ̂ + T̂

)
. (13.6.5)
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We use φ to express the complex phase function of Ĝ symbol functions, that is,

exp (iφ (x, y, ζ, kx, ky, ω)) = σ
(
Ĝ(ζ)

)
= σ

(
exp

(
iÂ (ζ)

))
= σ

(
exp

(
η̂
(
−iωΓ̂ + T̂

)))
.

(13.6.6)

Thus equation (13.6.4) can be written as Fourier integral operator in the following
way:

W (x, y, z, ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp (iφ (x, y, z, kx, ky, ω))w (kx, ky, z = 0, ω) ·

exp (ikxx+ ikyy) dkxdky

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp (iφ1 − φ0)w (kx, ky, z = 0, ω) ·

exp (ikxx+ ikyy) dkxdky.

(13.6.7)

This equation means that via complex phase function φ = φ[1]+ iφ[0], the symbol
of operator exp(iA(ζ)) = exp(η̂(−iωΓ̂ + T̂ )) can be expressed as an exponent
function. The one order homogeneous φ[1] function determines the travel time,
which can be solved from Γ̂’s kinematic symbol. And the zero order homogeneous
φ[0] function determines the amplitude of the wave field, which can be gotten from
one way wave equation operator Γ̂ and transmission differential operator T̂ . The
−1 order homogeneous function φ[−1] shows the frequency-decreasing phase or
dispersion. Equation (13.6.7) can be written as

W (x, y, ζ, ω) =∫ ∞

−∞

∫ ∞

−∞

∂

∂ζ
G (x, y, ζ, x− x′, y − y′, ω)W (x, y, 0, ω)dxdy

(13.6.8)

and

∂

∂ζ
G (x, y, ζ, x− x′, y − y′, ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp (iφ (x, y, ζ, kx, ky, ω)) ·

exp (ikx(x− x′) + iky(y − y′)) dkxdky

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp

(
iφ[1] − φ[0]

)
·

exp (ikx(x− x′) + iky(y − y′)) dkxdky

= M (x, y, ζ, x− x′, y − y′, ω) exp (iωT (x, y, ζ, x− x′, y − y′, ω)) .

(13.6.9)

From the saddle point method in 2D cases, we get:

φ
[1]
,px(px0, py0) + x− x′ = 0,

φ
[1]
,py(px0, py0) + y − y′ = 0,

(13.6.10)
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T = φ[1](px0, py0) + px0(x− x′) + py0(y − y′) (13.6.11)

and

M (x, y, ζ, x− x′, y − y′, ω)

=

√
2π

ω |b′′(p0)| exp(−φ[0](px0, py0) +
iπ

4
signφ[0](px0, py0),

(13.6.12)

where φ[0](px0, py0) is the term of transmission adjustment, which can be obtained
from transmission operator term and zero order homogenous function of one-way
wave equation operator. In formulas (13.6.10)–(13.6.12), T (x, y, ζ, x−x′, y−y′, ω)
and M(x, y, ζ, x− x′, y − y′, ω) describe the travel time and amplitude of Green
function respectively. Equation (13.6.12) is the expression of Green function in
Kirchhoff integral formula.

13.7 Lie algebra expression of travel time

The expression of phase and amplitude of symbols need to be simplified for
calculation. We can get concise expression of lateral velocity variation by adopting
idea of Feng Kang’s structure preserving calculation and combining the idea of
time migration. The first step to simplify Lie algebra differential equation of one-
way wave equation is realized by transferring it to symbol domain. The second
step is to use BCH (Baker-Campbell-Hausdorff) formula (Cordes H O, 1995) for
the exponential mapping from the result of last step. The third one is to transfer
Lie algebra differential equation from the depth domain to ray tracing coordinate.
Paraxonic approximation of travel time in the lateral velocity variation cases
has non-symmetric term. Conventionally, this non-symmetric part has not been
solved by numerical calculation of the differential wave equation(wave equation,
eikonal equation or ray tracing equation) until the occurrence of the structure
preserving algorithm. The structure preserving algorithm keeps discretization in
wrong domain too early. Based on the study on Lie algebra integral and property
of ray coordinates, it is found that the recursion method or Magnus method is one
of the simple methods. That is, first get the low order Lie algebra integral, save
them and their components, and solve the high order Lie algebra integrals and
their components from the lower order ones by commutator and other operators.
We have that

s = σ(ωΓ̂± iT̂ ) = s[1] + is[0] + s[−1] + is[−2], (13.7.1)

where s[1] comes from Γ̂ only, s[0] from Γ̂ and T̂ . Kinematic symbol of one way
wave equation operator has the following expression:
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s[1] = σmain(ωΓ̂)

=
√

ω2 − cξξ

cζζ
k2

x −
cηη

cζζ
k2

y −
cξη

cζζ
kxky

= ω − 1
2ω2

(
cξξ

cζζ
k2

x +
cηη

cζζ
k2

y +
cξη

cζζ
kxky

)
+

1
8ω3

(
cξξ

cζζ
k2

x +
cηη

cζζ
k2

y +
cξη

cζζ
kxky

)2

· · · .

(13.7.2)

This is the kinematic symbol of single square root operator in ray tracing coor-
dinate. The Taylor extension of s only contains even part of kx, ky, without the
third part of them. So equation (13.7.1) could be expressed as

s = s[1] + is[0]

=
(
s
[1]
0 + s

[1]
2 + s

[1]
4 + s

[1]
6 + . . .

)
+ i
(
s
[0]
0 + s

[0]
1 + s

[0]
2 + s

[0]
3 + . . .

)
.

(13.7.3)

We use the superiors to express the whole homogeneous order, and inferior nu-
merals to show the homogeneous order of kx, ky, and have that

s[n+m]
m = ωn

m∑
i=0

s
[n+m]
m−i,i k

m−i
x ki

y , (13.7.4)

s
[1]
0 = ω, (13.7.5)

s
[1]
1 = s

[1]
3 = s

[1]
5 = 0, (13.7.6)

s
[1]
2 = − 1

2ω

(
cξξ

cζζ
k2

x +
cηη

cζζ
k2

y +
cξη

cζζ
kxky

)
, (13.7.7)

and

s
[1]
4 = − 1

8ω3

(
cξξ

cζζ
k2

x +
cηη

cζζ
k2

y +
cξη

cζζ
kxky

)2

. (13.7.8)

Thus, it is easy to get, from the property of ray coordinates, that for any symbol,
the function f satisfies {

f, s
[1]
0

}
= 0. (13.7.9)

In the depth coordinates, equation (13.7.9) is not correct because the zero order
terms of kx and ky in one-way wave equation operator change horizontally, which
makes the expression of Lie algebra complex and the multidimensional scattering
predictive equation cannot be simplified through exchanging the orders of multi-
ples and merging the exponent factors. So far, we have derived the odd term of
paraxonic expression using velocity in time domain, root of mean square velocity
and their lateral derivatives.
According to the recent results (Liu H, Yuan J H and Chen J B, 2006; Liu H,

Wang X M and Zeng R, 2007), we get
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ia = σ(iÂ) = η̂
(
σ
(
−iωΓ̂ + T̂

))
. (13.7.10)

Let a → ψ(a) represent exponential expression of operator symbol for exponent
map (Celledoni E and Iserles A, 2001). Then

exp (iψ) = σ
(
exp

(
iÂ (ζ)

))
= exp

(
σ
(
iÂ (ζ)

)
#
)
= exp (ia#) (13.7.11)

and

a = a[1] + ia[0] =
(
a
[1]
0 + a

[1]
2 + a

[1]
3 + a

[1]
4 · · ·

)
+ i
(
a
[0]
0 + a

[0]
1 + a

[0]
2 + a

[0]
3 · · ·

)
,

(13.7.12)

a[n+m]
m = ωn

m∑
i=0

a
[n+m]
m−i,i k

m−i
x ki

y , (13.7.13)

a[n+m]
m = ωn

m∑
i=0

a
[n+m]
m−i,i k

m−i
x ki

y , (13.7.14)

a
[1]
0 = ωζ, (13.7.15)

a
[1]
1 = 0, (13.7.16)

a
[1]
2 =

1
ω

(
a
[1]
2,0k

2
x + a

[1]
1,1kxky + a

[1]
0,2k

2
y

)
, (13.7.17)

a
[1]
3 =

1
ω2

(
a
[1]
3,0k

3
x + a

[1]
2,1k

2
xky + a

[1]
1,2kxk2

y + a
[1]
0,3k

3
y

)
. (13.7.18)

From the derivative procedure, we can get the coefficient of quadratic terms of
kx and ky in the global integral of square root operator on ray coordinator (time
migration domain), which is only determined by quadratic terms of kx and ky in
square root operator:

a2,0 = −12
∫ ζ

0

cξξ

cζζ
dζ a1,1 = −12

∫ ζ

0

cξη

cζζ
dζ a0,2 = −12

∫ ζ

0

cηη

cζζ
dζ . (13.7.19)

This property is not be applicable in depth coordinator. It is, in fact, the strict
theoretical base of Larner’s cascaded migration (K. L. Larner, L. Hatton and B.
S. Gibson, 1981). In equation (13.7.18),

i
(
a
[1]
3 + ia

[0]
3

)
= −1

2

∫ ζ

0

{
i
(
a

[1]
2 + ia

[0]
2

)
, i
(
s
[1]
2 + is

[0]
2

)}
dζ. (13.7.20)

Equation (13.7.20) shows that although square root operator doesn’t contain
odd part, square root operator global integral (solution of Lie algebra differential
equation) contains odd part of kx and ky, indicating that the solution of Lie
algebra differential equation has considered lateral velocity variation. We have
the following formulas:
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φn,m = ωn
m∑

i=0

φm−i,ik
m−i
x ki

y, (13.7.21)

φ[1,1] = a[1]

= a0,0ω +
1
ω

(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
+
1
ω2

(
a3,0k

3
x + a2,1k

2
xky + a1,2kxk2

y + a0,3k
3
y

)
+
1
ω3

(
a4,0k

4
x + a3,1k

3
xky + a2,2k

2
xk2

y + a1,3kxk3
y + a0,4k

4
y

) · · · ,
(13.7.22)

φ[1,2] =

1
2

⎛⎜⎜⎜⎜⎝
1
ω2

(2a2,0kx + a1,1ky)
(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,x

+
1
ω3

(
3a3,0k

2
x + 2a2,1kxky + a1,2k

2
y

) (
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,x

+
1
ω3

(2a2,0kx + a1,1ky)
(
a3,0k

3
x + a2,1k

2
xky + a1,2kxk2

y + a0,3k
3
y

)
,x

⎞⎟⎟⎟⎟⎠

+
1
2

⎛⎜⎜⎜⎜⎝
1
ω2

(a1,1kx + 2a0,2ky)
(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,y

+
1
ω3

(
a2,1k

2
x + 2a1,2kxky + 3a0,3k

2
y

) (
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,y

+
1
ω3

(a1,1kx + 2a0,2ky)
(
a3,0k

3
x + a2,1k

2
xky + a1,2kxk2

y + a0,3k
3
y

)
,y

⎞⎟⎟⎟⎟⎠
(13.7.23)

and

φ[1,3] =
1
6ω3

(
2a2,0

(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,x

+a1,1

(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,y

)
·(

a2,0k
2
x + a1,1kxky + a0,2k

2
y

)
,x

+
1
6ω3

(
2a1,1

(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,x

+2a0,2

(
a2,0k

2
x + a1,1kxky + a0,2k

2
y

)
,y

)
·(

a2,0k
2
x + a1,1kxky + a0,2k

2
y

)
,y

,

(13.7.24)

where ϕ[1,2] contains a correction term of cubic term in Lie algebra integral to
quadruplicate in phase, whereas ϕ[1,1] and ϕ[1,3] do not contain the correction
term. Now, we can use stationary phase method to get Green’s function expres-
sion from phase ϕ’s expression. In the case of the layered media travel time in
Green’s function is “Dix formula”. So, our derivation is to extend “Dix formula”
to lateral variation condition, which can be called Pseudo-Dix formula, i.e.,

T 2(x, y, ζ, x− x′, y − y′)

= φ2
0,0 +

(
c2,0 (x− x′)2 + c1,1 (x− x′) (y − y′) + c0,2 (y − y′)2

)
+
(
c3,0 (x− x′)3 + c2,1 (x− x′)2 (y − y′) + c1,2 (x− x′) (y − y′)2 + c0,3 (y − y′)3

)
,

(13.7.25)
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c2,0(x, y, ζ) = −2φ0,0

d
φ0,2, (13.7.26)

c1,1(x, y, ζ) = 2
φ0,0

d
φ1,1, (13.7.27)

c0,2(x, y, ζ) = −2φ0,0

d
φ2,0, (13.7.28)

c3,0(x, y, ζ) = −2φ0,0

d3

(
8φ3

0,2φ3,0 − 4φ1,1φ
2
0,2φ2,1 + 2φ0,2φ

2
1,1φ1,2 − φ3

1,1φ0,3

)
,

(13.7.29)

c2,1(x, y, ζ) = −2φ0,0

d3

(
−12φ2

0,2φ1,1φ3,0 +
(
4φ2

1,1φ0,2 + 8φ2,0φ
2
0,2

)
φ2,1

− (8φ0,2φ1,1φ2,0 + φ3
1,1

)
φ1,2 + 6φ2

1,1φ2,0φ0,3

)
,

(13.7.30)

c1,2(x, y, ζ) = −2φ0,0

d3

(
12φ0,2φ

2
1,1φ3,0 −

(
φ3

1,1 + 8φ2,0φ0,2φ1,1

)
φ2,1+

+
(
8φ0,2φ

2
2,0 + 4φ2

1,1φ2,0

)
φ1,2 − 12φ1,1φ

2
2,0φ0,3

)
,

(13.7.31)

c0,3(x, y, ζ) = −2φ0,0

d3

(−φ3
1,1φ3,0 + 2φ2,0φ

2
1,1φ2,1 − 4φ1,1φ

2
2,0φ1,2 + 8φ3

2,0φ0,3

)
,

(13.7.32)
and

d(x, y, ζ) = (2φ2,02φ0,2 − φ1,1φ1,1) . (13.7.33)

In complex medium, formula (13.7.25) is not correct since it lost multi-value travel
time. In this case, formulas (13.6.10)–(13.6.11) should be used. At present, we
are doing application research on phase expression of single-square-root operator
symbol and asymmetry travel time expression (Liu H and Li Y M, 2008). Asym-
metry travel time expression can be applied to post-stack and pre-stack time
migration through Kirchhoff integral method, the phase expression of single-
square-root operator Symbol can be applied to post-stack and pre-stack time
migration through PSPI method.

13.8 Lie algebra integral expression of prediction operator

From equation (13.3.17) we can get

∂ζ

(
D (ζ,−ω) U (ζ, ω)
U (ζ,−ω) D (ζ, ω)

)
=
(−iωΓ̂ (ζ, ω) + T̂ (ζ, ω) R̂ (ζ, ω)

R̂ (ζ, ω) iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

)(
D (ζ,−ω) U (ζ, ω)
U (ζ,−ω) D (ζ, ω)

)
.

(13.8.1)
Equation (13.8.1) is applicable to any function, so we can introduce an operator
expression. Suppose that
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D (ζ,−ω) U (ζ, ω)
U (ζ,−ω) D (ζ, ω)

)
=
(

F̂ (ζ,−ω) Ĝ (ζ, ω)
Ĝ (ζ,−ω) F̂ (ζ, ω)

)(
D (0,−ω) U (0, ω)
U (0,−ω) D (0, ω)

)
,

(13.8.2)

where
(

F̂ (ζ,−ω) Ĝ (ζ, ω)
Ĝ (ζ,−ω) F̂ (ζ, ω)

)
serves as the Green’s function for up- and down-

going wavefield, and

D (ζ,−ω) + U (ζ, ω)

= F̂ (ζ,−ω) (D (0,−ω) + U (0, ω)) + Ĝ (ζ, ω) (U (0,−ω) +D (0, ω)) ,
(13.8.3)

(
F̂ (0,−ω) Ĝ (0, ω)
Ĝ (0,−ω) F̂ (0, ω)

)
= I, (13.8.4)

then

∂ζ

(
F̂ (ζ,−ω) Ĝ (ζ, ω)
Ĝ (ζ,−ω) F̂ (ζ, ω)

)
=
(−iωΓ̂ (ζ, ω) + T̂ (ζ, ω) R̂ (ζ, ω)

R̂ (ζ, ω) iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

)(
F̂ (ζ,−ω) Ĝ (ζ, ω)
Ĝ (ζ,−ω) F̂ (ζ, ω)

)
.

(13.8.5)
Get the first line on both sides of equation (13.8.5) and minus each term, we
obtain

∂ζ

(
F̂ (ζ,−ω)− Ĝ (ζ, ω)

)
=(

−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)
)

F̂ (ζ,−ω) + R̂ (ζ, ω) Ĝ (ζ,−ω)

−
(
−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

)
Ĝ (ζ, ω)− R̂ (ζ, ω) F̂ (ζ, ω) .

(13.8.6)

Let
B̂ (ζ, ω) = F̂ (ζ,−ω)− Ĝ (ζ, ω) (13.8.7)

and
Ĉ (ζ, ω) = F̂ (ζ,−ω) + Ĝ (ζ, ω) , (13.8.8)

equation (13.8.6) can be converted to

∂ζB̂ (ζ, ω) =
(
−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

)
B̂ (ζ, ω)− R̂ (ζ, ω) B̂ (ζ,−ω) , (13.8.9)

where B̂ (ζ, ω) is generalized transmission operator’s inverse operator (will be ex-
plained later). Use one-way operator of Lie algebra integral expression equations
(13.4.1),(13.6.5) and (13.6.6), and assume that

B̂ (ζ, ω) = exp
(
η̂
(
−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

))
Â (ζ, ω) , (13.8.10)



318 H. Liu, L. He

Â (0, ω) = I, (13.8.11)

and use Lie algebra integral expression of transposed operator equation (13.4.6)
and transposed property of reflection, transmission and one-way operator equa-
tions (13.3.14)–(13.3.15), we get

B̂T (ζ,−ω) = ÂT (ζ,−ω) exp
(
−η̂
(
−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

))
. (13.8.12)

According to equation (13.8.10)and equation (13.8.12), we get

B̂T (ζ,−ω) B̂ (ζ, ω) = ÂT (ζ,−ω) Â (ζ, ω) , (13.8.13)

where Â (ζ, ω) is prediction operator. Substituting equation (13.8.10) into equa-
tion (13.8.9), we can get the differential equation satisfied by prediction operator

∂ζÂ (ζ, ω) = F̂ (ζ, ω) Â (ζ,−ω) , (13.8.14)

where

F̂ (ζ, ω) = − exp
(
−η̂
(
−iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

))
R̂ (ζ, ω) ·

exp
(
η̂
(
iωΓ̂ (ζ, ω) + T̂ (ζ, ω)

))
.

(13.8.15)

When ω and i in equation (13.3.17) change sign simultaneously, the Â is invariant,
that is

Â (ζ,−ω) = Â (ζ, ω)∗ . (13.8.16)

To distinguish complex numbers in Symbol, define that

Â1 (ζ, ω) = Â (ζ, ω) + Â (ζ,−ω) ,

Â2 (ζ, ω) = −i
(
Â (ζ, ω) + Â (ζ,−ω)

)
.

(13.8.17)

Then we can get prediction operator differential equation which is similar to
equation (13.4.2)

∂ζ

(
Â1 (ζ, ω)
Â2 (ζ, ω)

)
=

⎛⎝ re
(
F̂
)

im
(
F̂
)

im
(
F̂
)
− re

(
F̂
)⎞⎠( Â1 (ζ, ω)

Â2 (ζ, ω)

)
. (13.8.18)

From equations (13.4.1) and (13.4.3), the solution can be expressed as

(
Â1 (ζ, ω)
Â2 (ζ, ω)

)
= exp

⎛⎝η̂

⎛⎝ re
(
F̂
)

im
(
F̂
)

im
(
F̂
)
− re

(
F̂
)⎞⎠⎞⎠( Â1 (0, ω)

Â2 (0, ω)

)
(13.8.19)

and
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Â1 (ζ,−ω)
Â2 (ζ,−ω)

)T

=
(

Â1 (0,−ω)
Â2 (0,−ω)

)T

exp

⎛⎝−η̂

⎛⎝− re(F̂) im(F̂)
im
(
F̂
)

re
(
F̂
) ⎞⎠⎞⎠ .

(13.8.20)
Equations (13.8.19) and (13.8.20) are called Lie algebra integral expression of
prediction operator.

13.9 Spectral factorization expressions of reflection data

Spectral factorization expressions are using the autocorrelation of prediction op-
erators to express reflection data. According to property of Earth surface reflec-
tion data (Claerbout J F, 1985; Frasier C W, 1970), we have that(

D (0,−ω) U (0, ω)
U (0,−ω) D (0, ω)

)
=
(
1 + R̂ (−ω) −R̂ (ω)
−R̂ (−ω) 1 + R̂ (ω)

)
exp (ik (xH − xH,A)) ,

(13.9.1)(
D (ζ,−ω) U (ζ, ω)
U (ζ,−ω) D (ζ, ω)

)
=
(

Ê (ζ,−ω) 0
0 Ê (ζ, ω)

)
exp (ik · (xH − xH,A)) ,

(13.9.2)
and(

Ê (ζ,−ω) 0
0 Ê (ζ, ω)

)
=
(

F̂ (ζ,−ω) Ĝ (ζ, ω)
Ĝ (ζ,−ω) F̂ (ζ, ω)

)(
1 + R̂ (−ω) −R̂ (ω)
−R̂ (−ω) 1 + R̂ (ω)

)
.

(13.9.3)
In the above equations, xH and xH,A represent horizontal coordinates of receiver
and shot. Comparing the first lines on both sides of equation (13.9.3), we get

Ê (ζ,−ω) = F̂ (ζ,−ω)
(
1 + R̂ (−ω)

)
− Ĝ (ζ, ω) R̂ (−ω) , (13.9.4)

0 = −F̂ (ζ,−ω) R̂ (ω) + Ĝ (ζ, ω)
(
1 + R̂ (ω)

)
. (13.9.5)

Adding equation (13.9.4) to equation (13.9.5), we get

Ê (ζ,−ω) = B̂ (ζ, ω)
(
1 + R̂ (−ω) + R̂ (ω)

)
. (13.9.6)

By equations (13.3.18) and (13.3.19) or using reciprocity theorem of directional
wave (Wapenaar C P A and Grimbergen J L T, 1996), we get the autocorrelation
expression of reflection data by generalized transmission operator

ÊT (ζ, ω) Ê (ζ,−ω) = 1 + R̂T (−ω) + R̂ (ω) = 1 + R̂ (−ω) + R̂ (ω) . (13.9.7)

Comparing equations (13.9.6) and (13.9.7), it can be gotten that
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B̂ (ζ, ω) ÊT (ζ, ω) = I. (13.9.8)

So
ÊT (ζ, ω) = B̂ (ζ, ω)−1

. (13.9.9)

This is why B̂ (ζ, ω) is called the inverse operator of generalized transmission
operators. From equations (13.8.13), (13.9.7) and (13.9.9), one can get

1 + R̂ (−ω) + R̂ (ω) = B̂−1 (ζ, ω) B̂T (ζ,−ω)−1

= Â−1 (ζ, ω) ÂT (ζ,−ω)−1
.

(13.9.10)

Equation (13.9.10) is the expression of reflection data via autocorrelation of pre-
diction operators. Equation (13.8.19) gives an generalization to O’Doherty for-
mula (O’Doherty R F and Anstey N A, 1971) in oblique incidence condition.
A laterally invariant medium with three strong reflecting boundaries and num-

ber of fine layers is considered to verify the schemes of the prediction and elimina-
tion of multiples using the inverse scattering theory. First, we verify the forward
model: given the reflection coefficients, by equations (13.9.10) and (13.9.19), the
wave field can be predicted. Second, the multiples elimination method is verified:
given the wave field predicted above, by equations (13.9.19) and (13.8.14), the
reflection coefficients are obtained, i.e., the multiples are removed. Fig. 13.1 (a)
shows the reflection coefficients. Fig. 13.1 (b) is the prediction operator calcu-
lated by equation (13.9.10) giving the reflection coefficients shown in Fig. 13.1
(a). Substituting the prediction operator into Equation (13.9.19), the wave field
can be easily obtained as shown in Fig. 13.2 (a). Fig. 13.2 (b) is the linear Radon
transformation of the wave field shown in Fig. 13.2 (a). By 2D spectral factoriza-
tion of the wave fields shown in Fig. 13.2 (a) and (b), in offset and ray parameter,
respectively, the prediction operator can be obtained and shown in Fig. 13.3(a)
and (b). By the prediction operator shown in Fig. 13.3 (b), the reflection coeffi-
cients shown in Fig. 13.4 (a) are calculated using the inverse scattering theory.
And the linear Re-Radon transformation of the reflection coefficients is shown in
Fig. 13.4 (b). Comparing Fig. 13.4 (b) with Fig. 13.2 (a) and Fig. 13.4 (a) with
Fig. 13.3 (b), it can be easily found that all the multiples (surface multiples plus
internal multiples) are removed simultaneously and automatically.
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Fig. 13.1 (a) The reflection coefficients; (b) The prediction operator calculated by equa-
tion (13.9.10) giving the reflection coefficients.

Fig. 13.2 (a) The wave field (primaries plus multiples) of a shot gather calculated by
equation (13.9.19); (b) The linear Radon transformation of the wave field, i.e., the de-
scription of the wave field in ray parameter.
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Fig. 13.3 (a) The prediction operator calculated by equation (13.9.19) and solved by a
2D spectral factorization of the wave field shown in Fig. 13.2 (a); (b) The radon transform
of the prediction operator.

Fig. 13.4 (a) The primaries (reflection coefficients) calculated from the prediction oper-
ator shown in Fig. 13.3 (b); (b) The primaries of a shot gather Re-Radon transformed by
the primaries shown in Fig. 13.4 (a).
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13.10 Conclusions

In this chapter, the whole framework of the inverse scattering theory is presented.
On the basis of the wave field decomposition and its flux conservation law,the
pseudo-differential equation of the prediction operator is obtained. And by Lie
Group method, it can be presented by the Lie integral expression which is the
basis of the stratigraphic filter. And then it can bring a new method of the
research of the absorption and the image of the full wave, and also increase
the chance to reconstruct the real high frequency signal. The scattering wave
field can be written as auto-correlation of prediction operator. And by spectral
factorization of the wave field, the prediction operator can be obtained, which is
the basis of the multiples elimination.
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Chapter 14

Tikhonov Regularization for Gravitational
Lensing Research

Boris Artamonov, Ekaterina Koptelova, Elena Shimanovskaya and
Anatoly G. Yagola

Abstract. The gravitational lensing phenomenon can provide us with the in-
formation about luminous and dark matter in our Universe. But robust and
effective tools are needed to extract that valuable information from observations.
In this chapter, two inverse problems arising in gravitational lensing research are
considered. Both problems are ill-posed, so regularization is needed. The first
problem is the one of image reconstruction. Based on the Tikhonov regulariza-
tion approach, several modifications of the regularizing algorithm, taking account
of specific properties of gravitational lens systems, are proposed. The numerical
results show that incorporation of all available a priori information allows re-
constructing images of gravitational lens systems quite well. Furthermore, the
algorithm decomposes the images into two parts – point sources and smooth
background, that is needed for further investigations. The second problem con-
cerns reconstruction of a distant quasar light distribution based on observations
of microlensing events. In this case, a gravitational lens system as a gravitational
telescope and the Tikhonov regularization method as a tool allow getting valuable
information about the distant quasar unresolved by an instrument.
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14.1 Introduction

There are various inverse problems almost in fields of sciences. And astronomy,
as an observational science, is not an exception. Astronomers mostly deal with
observational manifestation of space objects: images, spectra, lightcurves and so
on. They have to solve various inverse problems from the image restoration to the
reconstruction of object properties based on observations. Reconstructing images
of space objects is one of the most important topics in astronomy, especially for
the gravitational lens investigation, because distances between objects are almost
equal to the resolution of a telescope.
According to the theory of general relativity developed by Albert Einstein, the

presence of matter can curve spacetime and alter the trajectory of light [4]. That
prediction was first verified during solar eclipse in 1919, when apparent positions
of stars behind the solar limb had changed temporarily under the influence of the
sun gravity [3]. Thus, if a massive body (a galaxy) is situated between a remote
bright source (a quasar) and an observer, the image of the source is distorted.
This phenomenon is called gravitational lensing. The deflecting body is called “a
lens”. A simple model of lensing is presented in Fig. 14.1 a). When the source and
the deflector (lens) are perfectly aligned, an Einstein ring is seen by the observer
(left figure). When the symmetry is broken, multiple images of the source can be
observed (right figure).
Let θ denote an angle between a beam and an optic axis, and let β denote a

position of an unlensed source. Then

β = θ − α(θ), (14.1.1)

where α(θ) is a deflection angle. Lens equation (14.1.1) describes a mapping
between the source plane and the lens plane, in general, it is irreversible. For
fixed source position β there can be several solutions θ, which correspond to
several source images. To solve the lens equation, a model of mass distribution
of the deflector is needed. Positions in the lens plane, where the Jacobian of the
lens equation is equal to zero, are called critical curves. Positions in the source
plane corresponding to critical curves are called caustics. An example of critical
curves and caustics for the isothermal sphere model of a deflector is presented in
Fig. 14.1 b).
In dependance on the relative positions and distances between source, lens

and observer, a whole zoo of lensed quasar images can be observed (Fig. 14.2).
An image of a gravitational lens system can represent some complex piecewise
continuous light distribution or it can consist of several intersecting images of
point sources (images of the lensed object). In some cases, those images are
superimposed on the image of the refracting body itself. Gravitational lensing
can provide us with information about lensing galaxies, distant sources, dark
matter and the structure of our Universe, e.g. the value of the Hubble constant.
A more detailed introduction can be found in [19].
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Fig. 14.1 a) A scheme of gravitational lensing: the Einstein ring, the double image, I1
and I2 are images of the same source S; b) critical curves (upper) and caustics (lower) of
the elliptic lens, numbers correspond to 1, 3 and 5 images of a source.

Fig. 14.2 Images of some gravitational lens systems [8].

Investigation of gravitational lensing effect is closely related to various in-
verse problems. First of all, fast and robust algorithms for reconstructing images
of gravitational lens systems acquired at the ultimate resolution are needed. A
deconvolution algorithm for images composed of point sources and smooth back-
ground, that was developed for purpose of gravitational lens image reconstruc-
tion based on Tikhonov regularization approach, is described in the next chapter.
That algorithm allows obtaining lightcurves of a lensed quasar components. Hav-
ing those lightcurves and using a unique properties of gravitational lensing we
can reconstruct an intrinsic bright distribution of a distant quasar. The prob-
lem of one-dimensional quasar profile reconstruction through the analysis of high
magnification microlensing events in components of the quadruple gravitational
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lens QSO2237+0305 is solved in the third chapter using Tikhonov regularization
method.

14.2 Regularized deconvolution of images with point
sources and smooth background

14.2.1 Formulation of the problem

The initial problem astronomers face is a need for processing images obtained
with a telescope. An example of the gravitational lens image is presented in
Fig. 14.3, in which A, B, C, and D are images of the same quasar Q2237+0305.

Fig. 14.3 An example of the CCD frame containing the image of the Q2237+0305 grav-
itational lens system (Einstein Cross).

The images obtained with ground-based telescopes are under corruption due to
atmospheric perturbations and the telescope finite resolution. The simple model
of the image formation can be represented as the Fredholm integral equation of
the first kind:

A[z](x, y) =
∫∫

B

k(x− ξ, y − η)z(ξ, η) dξdη = u(x, y). (14.2.1)
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Here A is the convolution operator, z(x, y) represents the unknown light distri-
bution of the object, or sought solution, k(x− ξ, y− η) is an instrument function
which characterizes the distortion of the image, it is also called the point spread
function (PSF), u(x, y) represents the observed light distribution, B is the frame
area, B = [0, L]× [0, L].
Let us assume the following smoothness properties of functions in (14.2.1):

u(x, y) ∈ U ≡ L2[R2], k(x, y) ∈ L1[R2] ∩ L2[R2]. The convolution operator A is
the linear operator which acts from some Hilbert space Z to the Hilbert space
of second-power-integrable functions L2. Suppose there is a unique solution of
(14.2.1) z̄(x, y) ∈ Z for some function ū(x, y) ∈ U .
Instead of exact data, we have those approximations uδ(x, y): ‖uδ− ū‖L2 ≤ δ,

and kh(x, y): ‖Ah[z] − A[z]‖L2 ≤ Ψ(h, ‖z‖), z ∈ Z(B). Let δ and Ψ(h, ‖z‖) be
known and have standard properties [12]. Thus, having at our disposal the ap-
proximate data and those inaccuracies Ah, uδ, h, δ,Ψ we have to find the approx-
imate solution of (14.2.1) that converges to the exact solution in the context of
the norm of the function space Z.

14.2.1.1 Model of the CCD image

The continuous image of the object is the light energy density. It corresponds to
the number of photons registered in every CCD (Charge-Coupled Device) cell.
The energy in some CCD cell is:

gij =
∫ ∫

Ωij

u(x, y)dxdy. (14.2.2)

The statistical model of data in the ij-th pixel of CCD can be represented as
a sum of the Poisson stochastic variable and the Normal stochastic variable:

Uij ∼ Poisson(gij) +Gauss(0, σ2). (14.2.3)

The first summand simulates a photon count, the second one simulates a back-
ground noise of the registration system. The realization of Uij will be denoted
by ûij . An array û that consists of ûij is called a discrete image.
To increase the signal-to-noise ratio, frames can be averaged. The light energy

uncertainty in every pixel for the averaged frame is calculated based on CCD
properties:

δ2
ij =

ûij

N · g +
n2

N
, (14.2.4)

where N is a number of frames to be averaged; ûij the ij-th pixel count in the
averaged frame; g the CCD gain factor; n the noise. Based on (14.2.4), the error
estimate δ for uδ(x, y) is:
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δ =
√∑

δ2
ij =

√∑
(

ûij

N · g +
n2

N
). (14.2.5)

If the ratio error of the kernel k̂ is known and is equal to p, the operator uncer-
tainty can be estimated in the following way:

h =
√∑

(p · kij)2. (14.2.6)

14.2.1.2 Model of the kernel

The kernel of equation (14.2.1) is the primary characteristic of the imaging sys-
tem. It is called an instrument function, or the Point Spread Function (PSF) –
the response of an instrument to the point source. So it can be obtained through
fitting a star in the frame with some model. For our images, the PSF is well
modeled by Gauss function:

k(x, y) =
1

2πσxσy
exp{− x′2

2σ2
x

− y′2

2σ2
y

}, (14.2.7)

x′ = x · cosϕ− y · sinϕ, (14.2.8)

y′ = x · sinϕ+ y · cosϕ. (14.2.9)

Thus, we can fit the brightness distribution of a star in the frame with the
following function:

K(x, y) = a1 · k(x− x0, y − y0) + a2. (14.2.10)

To find the unknown parameters {σx, σy, x0, y0, ϕ, a1, a2}, the least-squares
method can be used. It corresponds to the search for the minimum of the following
function:

Φ̂[σx, σy, x0, y0, ϕ, a1, a2] =
N1−1∑
i=0

N2−1∑
j=0

d2

δ2
ij

· (K̂ij [σx, σy, x0, y0, ϕ, a1, a2]− Ŝij)2,

(14.2.11)
where Ŝij is a star brightness distribution, δij the intensity error in the pixel with
coordinates (xi, yj), d a grid pitch.
Fig. 14.4 shows the results of fitting the star with the two-dimensional Gauss

function.
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Fig. 14.4 Kernel modeling: a) a star from the frame; b) the model of the instrument
function; c) simulation errors distribution.

14.2.2 Tikhonov regularization approach

The problem (14.2.1) belongs to the general class of ill-posed problems in the
sense of Hadamar [7], i.e. it violates the conditions of the well-posedness for
operator equations:

A[z] = u, z ∈ Z, u ∈ U, (14.2.12)

where Z and U are normalized spaces. The problem (14.2.12) is called well-posed
in the class of its admissible data if for any pair from the set of admissible data the
solution: 1) exists, 2) is unique, 3) is stable, i.e. continuously depends on errors
in A and u. If at least one of the requirements is not met, then the problem is
called ill-posed.
To ensure the fulfillment of the first and second conditions, one can intro-

duce a generalized solution concept. Let’s introduce a class of pseudosolutions
Z∗ ≡ arg infz∈Z ‖A[z]− u‖U and a function Ω[z], then one can choose Ω-optimal
pseudosolution z̄ = arg infz∈Z∗ Ω[z] as a generalized solution.
As a generalized solution, the so-called normal pseudosolution is often taken.

It is the solution that minimizes discrepancy and is at the minimum distance
from some fixed element of Z:

z̃ = arg inf
z∈Z∗

‖z − z0‖. (14.2.13)

It exists and is unique for any exact data of the problem (14.2.12) if A is a linear
operator acting from the Hilbert space Z to a Hilbert space U : A ∈ L(Z, U);
ū ∈ R(a)⊕R(a)⊥ and z̃ = A+[ū]. Here R(A) and R(A)⊥ denote the range of the
operator A and its orthogonal complement in U , and A+ stands for the operator
pseudoinverse to A [12].
Academician Tikhonov in his fundamental work [16] introduced an idea of the

regularizing algorithm as a way to find an approximate solution zη = R(Ah, uδ, η)
that corresponds to the input data (Ah, uδ, η) of (14.2.12), and has the conver-
gence property zη → z̄ = A+[ū] as η → 0. Since then this method has been
extensively studied and widely adopted in many fields of sciences.
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As an approximate solution of (14.2.12), the minimizer of the the smoothing
function can be taken as:

zαη = arg inf
z∈Z

Mα[z], (14.2.14)

where
Mα[z] = ‖Ah[z]− uδ‖2L2

+ α ·Ω[z] (14.2.15)

is called a smoothing function.
The first term in (14.2.15) represents the squared discrepancy and is respon-

sible for goodness of fit.
Ω[z] is called a stabilizer function. On the one hand, it is introduced for se-

lection of a pseudosolution and has to contain information about the physics of
the object, e.g. about the smoothness of the solution. On the other hand, it must
have regularization property, i.e. ensuring the existence and stability of optimal
pseudosolutions. A norm of the sought solution in some function space is often
taken as a stabilizer function. The function space is chosen based on assumptions
about smoothness of the sought solution.

α is a regularization parameter. The choice of α is crucial for solving ill-
posed problems. It has to control the trade-off between the assumptions about
smoothness of the sought solution and its consistency with the data. Generally, α
should depend on the input data, their errors, and the method of approximation
of the initial problem.

14.2.2.1 Discrepancy principle

One of the ways to coordinate the regularization parameter with the error of the
input data is the discrepancy principle: if ‖uδ‖ > 0, then α > 0 is a root of the
following equation:

ρ(α) ≡ ‖A[zα
δ ]− uδ‖U % δ. (14.2.16)

The condition means that the discrepancy is equal to the noise level of the image.
Provided that the regularization parameter α is chosen according to this rule,

zα
δ can be considered as an approximate solution which tends to the exact solution
in the context of the norm of the chosen function space as the error level of input
data tends to zero.
If it is possible to solve the minimization problem for Mα with fixed α > 0,

then the root of (14.2.16) can be solved by means of one of the standard methods.
The function ρ(α) is strictly monotonous, continuous and takes on all values from
[δ, ‖uδ‖U ), so (14.2.16) has only one root α > 0. As a lower limit for α, the noise
level δ can be taken. The upper limit for α was suggested in [5]:

α∗∗ =
M2δ

‖uδ‖L2 − δ
, (14.2.17)
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where
M =

∫ ∫
|k(x, y)|dxdy. (14.2.18)

To find the root of (14.2.16), the following algorithm can be utilized. We
specify the initial value of α so that ρ(α) > 0, for example α(0) = α∗∗. Then
we solve the Tikhonov function minimization problem, compute the discrepancy
value and check the equality (14.2.16) with the given accuracy. The next value
α(s) is chosen by formula α(s) = α(s−1)

10 . The process is repeated until ρ(α(s̃)) ≤ δ.
This α(s̃) is taken as an approximate root of equation (14.2.16). This value can
be fine tuned with the bisection method.
The discrepancy principle is a posteriori way of regularization parameter

choice. It guarantees the convergence of approximate solutions zα → z̄ and a
certain discrepancy value for the approximate solution. The regularizing algo-
rithm with the discrepancy principle converges and is optimal [12].

14.2.2.2 Generalized discrepancy principle

If it is possible to estimate the uncertainty of the kernel, the generalized discrep-
ancy principle can be adopted for the regularization parameter choice. Let us
consider the function:

ρη(α) ≡ ‖Ah[zα]− u‖2L2
+ (δ + h

√
Ω[zα])2, (14.2.19)

where η = (h, δ). The function ρη(α) is called the generalized discrepancy.
If ‖uδ‖U > δ, then ρη(α) is continuous, strictly monotone increasing and
∈ (−δ2, ‖uδ − δ2‖) for fixed η. Hence an equation

ρη(α) = 0 (14.2.20)

has a unique root α > 0 that can be found by means of one of standard methods
(the bisection method or the golden section method).
If zα

η is an extremal of Tikhonov function and αη is chosen according to the
generalized discrepancy principle, then approximate solutions converge to the
exact solution: given η → 0, limη→0‖zα − z̄‖Z = 0.

14.2.3 A priori information

To obtain stable and physically valid results of the image reconstruction, the
regularization ought to be based on a priori knowledge of the properties of the
sought solution.
The first a priori assumption about sought solution is its nonnegativity:

z(x, y) ≥ 0. (14.2.21)
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Various assumptions about the structure of the object under study can also be
taken into account. Images of many gravitational lens systems consist of multiple
overlapped quasar images superimposed on a background galaxy. So the image
can be decomposed into two constituent parts – the sum of Q δ-functions and
smooth background (galaxy):

z(x, y) = g(x, y) +
Q∑

q=1

aqδ(x − bq, y − cq), (14.2.22)

where Q is the number of point sources with coordinates (bq , cq) and intensity
aq in the frame; g(x, y) is the solution’s component corresponding to a galaxy; δ
represents Dirac function. We will look for the solution in the form (14.2.22).

Theorem 14.2.1. If the kernel K(u, v) satisfies K̂(ω1, ω2) 	= 0 for all (ω1, ω2)
(the hat corresponds to the Fourier transform), then the solution (14.2.22) is
unique.

Proof. It is sufficient to demonstrate that the homogeneous equation

k(x, y) ∗ {g(x, y) +
Q∑

q=1

aqδ(x− bq, y − cq)} = 0 (14.2.23)

has only trivial solution:

g(x, y) +
Q∑

q=1

aqδ(x − bq, y − cq) = 0, (14.2.24)

g(x, y) = 0,

and
Q∑

q=1

aqδ(x− bq , y − cq) = 0.

After Fourier transform of (14.2.23), we have:

k̂ · {ĝ +
Q∑

q=1

aq exp(−iω1bq,−iω2cq)} = 0. (14.2.25)

Hence

ĝ =
Q∑

q=1

aq exp(−iω1bq ,−iω2cq). (14.2.26)

The left part of (14.2.26) belongs to L2, but right part doesn’t. The contradiction
proves the theorem. ��
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A prior knowledge about the smoothness of the unknown solution is embedded
in the regularizing algorithm through the appropriate choice of the stabilizer
function. In most cases it is the squared norm of the solution in some function
space: Ω[z] = ‖z‖2Z. The choice of the stabilizer affects the order of convergence
of approximate solutions.

14.2.3.1 Uniform regularization in the Sobolev space W 2
2

If a priori information about sought solution allows assuming the high-order
smoothness of Z and choosing Z ≡W 2

2 , where W 2
2 is a set of L2-functions having

generalized derivatives of the second order which are second-power-integrable, the
stabilizer can be written in the following form:

Ω[z] = ‖z‖2W2
2
≡
∫∫

B

{
z2 +

(
∂2z

∂x2

)2

+ 2
(

∂2z

∂x∂y

)2

+
(

∂2z

∂y2

)2
}

dxdy.

(14.2.27)
The discrete representation of the Tikhonov function (14.2.15) is as follows:

M̂α[ẑ] =
N1−1∑
m=0

N2−1∑
n=0

⎧⎨⎩umn −
N1−1∑
i=0

N2−1∑
j=0

km−i,n−j

(
Q∑

q=1

aqδi−bq ,j−cq + gij

)⎫⎬⎭
2

+α

N1−1∑
m=0

N2−1∑
n=0

{
g2

mn +
[

∂2g

∂x2
(xm, yn)

]2

+ 2
[

∂2g

∂x∂y
(xm, yn)

]2

+
[
∂2g

∂y2
(xm, yn)

]2}
(14.2.28)

When selecting α in accordance with the discrepancy principle, approximate
solutions zα tend to the exact solution of the problem as δ tends to zero in the
context of the W 2

2 norm:

‖zα − z‖W2
2
→ 0 as δ → 0.

According to the Sobolev’s embedding theorem, W 2
2 [B] is embedded in C[B] –

the set of continuous functions on B. Thus, the convergence in the context of
the W 2

2 -norm means the convergence in the context of the norm of C[B], i.e.
regularized solutions converge to the exact solution uniformly:

max
(x,y)∈B

|zα(x, y)− z(x, y)| → 0 as δ → 0.

The results of the W 2
2 regularization are presented in Fig. 14.5.
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Fig. 14.5 Solution in the Sobolev space W 2
2 (frame size is 64× 64): a) the image (data);

b) the kernel; c) the solution; d) the solution convolved with the kernel (model); e) the
residual (data−model√

model
); f) the galaxy part of the solution in the logarithmic scale. α =

1.16 · 10−4

14.2.3.2 Piecewise uniform regularization in the space of functions of
bounded variation

Rapid intensity variations in the observed data can be processed by selection of
the function representing the light distribution of the background galaxy from
the appropriate function space. Let the smooth part of the solution belong to
the class of functions with limited total variation defined by A. Leonov [11]. In
that paper an approach to piecewise uniform regularization of two-dimensional
ill-posed problems based on TV class of functions was developed.
Let us consider an arbitrary grid SN1N2 introduced on B and define the total

variation for a function z on B as follows:

V (z, B) = sup
SN1N2

(
N1−1∑
m=1

|zm+1,1 − zm,1|+
N2−1∑
n=1

|z1,n+1 − z1,n|+

+
N1−1∑
m=1

N2−1∑
n=1

|zm+1,n+1 − zm+1,n − zm,n+1 + zm,n|, ∀SN1N2

)
.

The function for which the total variation is a finite quantity is called bounded
total variation function. It is continuous nearly everywhere with the exception,
possibly, of the points of discontinuity positioned on the countable set of gridlines.
The regularizing algorithm with the proper choice of the regularization pa-

rameter and the stabilizer function
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Ω[z] ≡ ‖z‖ν[B] = |z(0, 0)|+ V (z, B) (14.2.29)

provides piecewise uniform convergence of approximate solutions [11].

Fig. 14.6 The solution in the space of functions of bounded variation: a) the image; b)
the solution; c) the residual; d) the solution convolved with the kernel finction; e) the
quasar components part of the solution f) the galaxy part of the solution

The results of the image reconstruction are presented in Fig. 14.6. The solution
part representing the lensing galaxy (Fig. 14.6 f)) is so discontinuous that the
stabilizer for the image under consideration can not be used.

14.2.3.3 Closeness of the solution to some model

Additionally, one can penalize the unknown solution drastically different from
the certain analytical model and construct the stabilizer in the following form:

Ω[z] = ‖g − gmodel‖2G. (14.2.30)

In this work, we assume that the light distribution in the central region of the
galaxy is well modeled by generalized de Vaucouleurs profile (Sersic’s model):

gmodel(r) = I0 exp−bn( r
re

)
1
n
, (14.2.31)

where bn = 2n− 0.324 for 1 ≤ n ≤ 4.
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Fig. 14.7 The solution in the L2 space of functions close to Sersic model: a) the image;
b) the solution; c) the residual; d) the contour plot of the Sersic model; e) the contour
plot of the galaxy part of the solution; f) the galaxy part of the solution. α = 5.8 · 10−5.

Results of Q2237+0305 image reconstruction with the stabilizer function
(14.2.30) where G = L2 are presented in Fig. 14.7. The parameters of the Sersic
model were calculated at the preliminary stage using the least-squares method.
For the minimization of the smoothing function, the conjugate gradient method
was used. Regularization with that stabilizer guarantees that approximate solu-
tions converge to the exact solution in the context of the norm L2, i.e. converges
in mean (zero-order convergence):

‖zα − z̄‖L2 → 0 as δ → 0.

Summary of a priori information used for quadruple gravitational lens image
reconstruction: two-component representation of the solution – quasar compo-
nents and a galaxy, the assumption about the smoothness of the galaxy part of
the solution and its closeness to the Sersic model.
For the minimization of the Tikhonov function, the conjugate gradient method

in combination with the enumeration of possible coordinates of the quasar com-
ponents in the neighborhood of the initial points (bq0 , cq0) was used.
The developed image reconstruction algorithm allows obtaining light distri-

bution of lensing galaxy and coordinates and fluxes of quasar components. Fur-
thermore, it allows getting light curves of quasar components during observation
period (maybe years). The light curves of the Q2237+0305 “Einstein Cross” grav-
itational lens system based on Maidanak observations in 1995–2003 are presented
in Fig. 14.8. And fortunately, thanks to unique properties of gravitational lensing
phenomenon, the light curves can tell us more about the distant source · · ·
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Fig. 14.8 Combined light curves of Q2237+0305 gravitational lens system “Einstein
Cross” in the R band for 1995–2003 based on data from [17] and [9].

14.3 Application of the Tikhonov regularization approach
to quasar profile reconstruction

14.3.1 Brief introduction to microlensing

As can be seen in Fig. 14.8, fluxes of quasar components vary. The cause may
be the internal quasar variability or the microlensing variability. Microlensing
fluctuations are produced by compact sub-structures of the lensing galaxy. The
internal quasar variability manifests itself in all quasar components with some
delay, whereas the microlensing variability is observed in certain quasar compo-
nent. The microlensing variability can tell us about compact objects on the line
of sight, quasar size, quasar brightness distribution, lens mass, and more. The mi-
crolensing with high amplification is of particular interest. It occurs when a source
crosses a caustic – a map of the critical curve in the source plane (Fig. 14.1b)).
The most probable type of the microlensing is connected with intersection of the
fold caustic [18]. In this case, an additional couple of unresolved micro-images
appears (or disappears) and the significant magnification of the flux of one of the
quasar components can be observed.
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The possibility of getting information on the size and possible multiple struc-
ture of the lensed source from the light curve was discussed in [2]. Since various
approaches to reconstruct spatial structure of the quasar accretion disk have been
proposed. In [14] analytical accretion disk model fitting method was applied to
light curve of the image A of the Q2237+0305. In [6, 1, 13] the restoration of the
one-dimensional profile from the high amplification light curve by means of a reg-
ularization method was proposed. Model-independent methods of observational
data analysis can be used to test adequacy of accretion disk models employed in
theoretical studies. Further we consider the algorithm for reconstruction of the
accretion disk brightness profile based on the technique suggested in [6] using
Tikhonov regularization approach [15].

14.3.2 Formulation of the problem

Assuming small angular size of the source in comparison with the curvature of the
caustic, the caustic can be considered as a straight line. A scheme of the caustic
crossing is presented in Fig. 14.9. Let the origin of cartesian coordinates match
the source center, the x axes is perpendicular to a caustic. The magnification
factor of a point source close to a caustic line along the x axis can be expressed
as follows [2]:

A(x, xc) =
k√

xc − x
H(xc − x), (14.3.1)

where k is the caustic strength; xc = Vc(t − t0) is the position of the caustic; Vc

is the transverse velocity of the caustic, which is assumed to be constant; t0 is
the time when caustic crosses the center of the source (x=0); H(xc − x) is the
Heaviside staircase function.
A one-dimensional profile of the source brightness distribution scanned by the

caustic line along the x axis is:

P (x) = 2
∫ √R2

s−x2

0

I(x, y)dy, (14.3.2)

where Rs is the radius of the source. Caustic crossing is accompanied by drastic
magnification of the flux from one of the quasar images. The total magnification
of an extended source with the brightness distribution I(x, y) is obtained by
summation over all micro-images and integration over the source. The observed
light curve is supposed to be the convolution of the quasar brightness distribution
and the magnification pattern:

Ftot(x) =
∫ ∫

S

I(x, y)A(x, xc)dxdy

= k

∫ xc

x

P (x)√
xc − x

dx = A(x, xc) ∗ P (x).
(14.3.3)
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Fig. 14.9 A scheme of
the caustic crossing.

The parameter of the caustic k can be estimated. The dependence of the caustic
strength on the lens parameters was investigated in [20]. The uncertainty of this
parameter leads to uncertainty in determination of the brightness of the source,
i.e. we can determine the brightness distribution only to the constant factor. It
means that we can restore only the shape of the brightness distribution of the
source.

14.3.3 Implementation of the Tikhonov regularization approach

Introducing a regular grid xj on the source plane, one can represent P (x) as a
continuous piecewise-linear function:
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P (x) = Pj−1 +
Pj − Pj−1

xj − xj−1
(x− xj−1), xj−1 ≤ x ≤ xj . (14.3.4)

It allows converting the integral convolution equation into the linear equations
set [6]:

Fi =
m∑

j=1

KijPj . (14.3.5)

The dimension of the matrix K is m×n (where n is the number of observational
points,m is the number of points of the regular grid on the source plane). The ma-
trix K describes the connection between one-dimensional brightness distribution
of the source and observational light curve. The direct inversion of this equation
is impossible because the matrix K is singular. This is an ill-posed problem. The
solution may be non-unique and unstable.
To solve this set of equations, the Tikhonov regularization approach described

in Section 14.2.2 can be applied. The numerical representation of the smoothing
function is:

Mα[P ] =
m∑

i=1

1
σ2

i

(Fi −
n∑

j=1

KijPj)2 + αΩ[P ]. (14.3.6)

Here the first term represents the squared discrepancy between the model and
data, α is the regularization parameter, Ω[P ] is a stabilizer function through
which a priori information is introduced into the problem formulation. P α that
minimizes the Tikhonov function (14.3.6) will be taken as an approximate so-
lution of (14.3.5). For co-ordination of the regularization parameter with the
error of the input information we use the discrepancy principle – adoption of α
satisfying:

n∑
i=1

(
m∑

j=1

KijP
α
j − Fi)2 ≈ σ2

tot, (14.3.7)

where σtot =
√∑

σ2
i is the total error of observational data. Assuming that the

source profile is a function that has square integrable second derivatives, one can
choose the stabilizer in the following form:

Ω[P ] =
m−1∑
i=2

(Pi+1 − 2Pi + Pi−1)2. (14.3.8)

Further we describe an application of the above approach to the reconstruction
of the Q2237+0305 quasar profile.
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14.3.4 Numerical results of the Q2237 profile reconstruction

For the analysis of microlensing high magnification events with the aim of the
quasar profile reconstruction, observations of Q2237+0305 gravitational lens sys-
tem in V band by OGLE [21] and GLITP [22] collaborations were used. At the
end of 1999 the brightness of the component A reached its maximum. The anal-
ysis of the light curve showed evidence for the caustic crossing between 1999 and
2000 years [23].
The search for the solution of the ill-posed problem was performed on the

uniform grid with the number of points equal to 100 and step equal to 1 day. For
minimization of the Tikhonov function (14.3.6), the conjugate gradient method
was used. The results of the one-dimensional profile reconstruction are presented
in Fig. 14.10. The best solution corresponds to the reduced χ2 value of 1.213.

Fig. 14.10 Results of Q2237 profile reconstruction in V band, the A component mi-
crolensing event: a) the observational light curve and the light curve corresponding to the
reconstructed 1D-profile (dash line); b) the reconstructed profile of the source in V band.

The reconstructed profile allows estimation of the source size. Moreover, it
can be compared with theoretical models of an accretion disk to penetrate into
the structure of the distant quasar. More detailed analysis of high-magnification
microlensing events in Q2237+0305 with the presented approach can be found
in [10].

14.4 Conclusions

In this chapter, two illustrative examples of the application of the Tikhonov reg-
ularization approach to practical problems of gravitational lensing research are
presented. We have considered several modifications of the regularizing algorithm
for processing images of gravitational lens systems and have found that our final
approach allows successful reconstruction of images composed of point sources
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and smooth background. We presented not only encouraging results of our final
algorithm, but also several disappointing pictures we got during the evolution
of our algorithm to show an importance of incorporating all available a priori
information for solving ill-posed problems and getting the information you need.
The second example shows that unique properties of gravitational lensing phe-
nomenon and the Tikhonov regularization method allow getting information on
the internal structure of distant quasars unresolved by a telescope.

Acknowledgements The work was supported by the Russian Foundation for Basic
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