
PIECEWISE POLYNOMIAL INTERPOLATION,
PARTICULARLY WITH CUBIC SPLINES

1. Setup. Everything we do with piecewise-polynomial approximation will be set in the following
more-or-less standard framework. We are given (n+ 1) nodes, usually numbered from left to right,

a = x0 < x1 < · · · < xn = b

which divide the interval J = [x0, xn] into n cells, the i-th being Ji = [xi, xi+1] of length hi = xi+1 − xi > 0.
Implicitly we are given a function f(x) defined on J . We seek n polynomials {pi(x) : i = 0, . . . , n−1} which
will define a function “near” f(x) by defining the “nearby” function as equal to pi(x) on the cell [xi, xi+1].
Thus there is no “single analytic definition” for the approximating function—one has to know the cell in
which x lies in order to evaluate the approximating function at x. All the polynomials pi(x) will have the
same degree, however—indeed, in the most important case they will all be cubics—and the “nearness” will
include the requirement that the piecewise polynomial function they define interpolate f(x) on the nodes,
so that

p0(x0) = f(x0) = f0, p0(x1) = p1(x1) = f(x1) = f1, . . . , pn−1(xn−1) = f(xn−1) = fn−1,

and moreover, pn−1(xn) = f(xn) = fn .

Thus each polynomial satisfies two interpolation conditions, and in addition to those there may be “end
conditions” at x0 = a and xn = b and conditions that link the “pieces” at the nodes. When we need a name
for the function defined on all of J by using the polynomial pieces, we call it s(x); the piece defined on Ji will
be called pi(x). When we need a single estimate for the lengths of the cells, we use h = maxi{|hi| : 0 ≤ i < n}.

We shall tacitly assume that the function f(x) has as much differentiability as it needs to make our
theorems make sense. In particular, functions to be interpolated by cubic splines will usually be assumed
to be twice-continuously differentiable at least, and sometimes “twice” will be replaced by “four-” or “five-
times.” People who know what these things are will realize that in some situations it would suffice that the
functions have distributional derivatives that belong to L2(J) (buzzword = Sobolëv space).

{Remark: The convention used above to number intervals Ji and increments hi numbers the intervals
by their left-hand endpoints. This convention conforms to Atkinson’s book, but you should note that Stoer
& Bulirsch [for example] number by r. h. endpoints. I feel that numbering by r. h. endpoints is better for
coding purposes, but the reason for this feeling is probably that the early versions of Fortran were unwilling
to admit zero as the value of an index. Possibly C programming would be easier with the intervals indexed
from 0 to n− 1. In all cases, though, I see no reason gratuitously to fight the textbook on this matter.}

2. Lower-degree and Uncoupled Examples. Here are some simple cases of piecewise polynomial
approximation. If all the pi(x)’s are linear, then just the requirement that pi(x) interpolate the values of
f(x) at the endpoints of Ji uniquely determines the polynomial pi(x): there is only one linear interpolant
between the two values at xi and xi+1. The function s(x) is thus uniquely determined. An estimate of its
deviation from f(x) can be made on an interval-by-interval basis: in Ji we can write

f(x) = pi(x) +
f ′′(ξx)

2!
(x− xi)(x − xi+1) .

The maximum value of |(x − xi)(x − xi+1)| is
h2
i

4
, attained at the midpoint of Ji. We thus have a global,

uniform error estimate

|f(x)− s(x)| ≤ M2

2
· h

2

4
where M2 = max{|f ′′(x)| : x ∈ J}. The object we have constructed is called the piecewise-linear inter-
polant of f(x), for obvious reasons.

The next case would be to take all the pi(x)’s quadratic, and a natural first hope would be that we
might be able to match up the first derivative of s(x) with that of f(x) at the nodes. That hope does not
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long survive the following count. If all the pi(x)’s are quadratic, then there are 3n coefficients required in
order completely to determine s(x). The requirement that pi(x) take the same values as f(x) at each node
imposes 2 conditions on each pi(x); there are n intervals, so that requires the coefficients to satisfy 2n linear
equations. If we simply want to have s′(x) continuous at each of the interior nodes x1, . . . , xn−1, we impose
an additional (n− 1) equations

p′i(xi+1) = p′i+1(xi+1), i = 0, . . . , n− 2

that the coefficients must satisfy: we have imposed 2n+(n−1) = 3n−1 linear conditions on the coefficients,
and we would expect that “there is only one degree of freedom remaining.” Certainly an attempt to make
s′(xi) = f ′(xi) at each node would add (n + 1) equations, bringing the count to 4n, and it does not seem
reasonable to expect such a heavily overdetermined a set of equations in 3n unknowns to have a solution at
all.

In fact, it is easy to see what the remaining degree of freedom is. Given an interval [α, β] and some
number γ, there is a unique quadratic polynomial q(x) that interpolates f(x) at the endpoints and has
q′(α) = γ; in Newton form that polynomial is

q(x) = f(α) + γ · (x− α) +
f [α, β]− γ
β − α · (x− α)2

as the reader may see by constructing a divided-difference table. One can now compute

q′(β) = 2 · f [α, β]− γ

directly. So if in piecewise-quadratic interpolation we specify a value for p′0(x0) = s′(x0), then p′0(x1) is
determined, and if s′(x) is to be continuous at x1 then p′1(x1) is determined . . . and so on down the line;
specifying the derivative at x0 has taken away the one degree of freedom left in the choice of s(x). {Take
[α, β] successively to equal [x0, x1], [x1, x2], . . . .} The coefficients of the pi(x)’s are “coupled” at the nodes
by the requirement that s′(x) be continuous, but they’re not coupled in a very complicated way: one can
see the single choice that one makes in order to determine the entire cubic spline uniquely move from left to
right along the interval as one computes the successive pi(x)’s in Newton form (which incidentally happens
to be the same as Taylor form in this case).

Although a piecewise quadratic can be made C1 and it is more complicated than a piecewise linear
function, it is not clear that it approximates f(x) any better; in fact, by thinking of an extremely inept
choice of s′(x0) you can easily convince yourself that it may be a worse approximation! {Suppose f(x) is
a constant function: if s′(x0) 6= 0 then the piecewise-quadratic will oscillate around the constant, while the
piecewise-linear would equal the constant. Of course that was a loaded example—but suppose f(x) wiggles
a little in J0 but is constant in [x1, xn]. Then even matching s′(x0) and f ′(x0) may not help.} If we are to
have s′(x) behave nicely with respect to f ′(x)—in addition to being continuous—it appears that we shall
need more freedom than the one degree that piecewise-quadratic functions would furnish. So on we go to
piecewise-cubic interpolation.

If all the pi(x) are to be cubics, then it will require 4n coefficients to determine all the polynomials.
The requirement that the piecewise function they define be an interpolant of f(x) imposes 2(n− 1) + 2 = 2n
conditions, all of which can be expressed linearly in the coefficients and which look as if they should be
linearly independent. In piecewise-cubic Hermite interpolation we require that the first derivative of
the i-th interpolating polynomial interpolate the derivative of f(x) at the nodes. This imposes 2n additional
conditions and determines the pi(x)’s uniquely. Indeed, finding the pi(x)’s then becomes a purely “local”
problem: one finds the cubic Hermite interpolant of f(x) on [xi, xi+1] and that is pi(x); no interaction
between cells takes place.

The whole situation is exactly analogous to piecewise-linear interpolation; all that happens is that the
first derivative is interpolated along with the function. To see what happens on a single interval, look at
Atkinson’s treatment of Hermite interpolation on a single interval [a, b], which is the example on pp. 162–163.
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Note that here we do have a good error estimate: applying Atkinson’s formula (3.6.15) piece-by-piece gives
us

|f(x)− s(x)| ≤ M4

384
· h4

where M4 = max{|f (4)(x)| : x0 ≤ x ≤ xn}. The error → 0 as h→ 0 twice as fast as the error for piecewise-

linear interpolation did, and it is nice to have the factor
1

384
≈ 10−2.6 in there to help make the error

smaller too. In general, however, one will have p′′i−1(xi) 6= p′′i (xi), i = 1, . . . , n− 1; the first derivative of the
interpolant is continuous, but there will usually be jumps in its second derivative (which is not well-defined
at the nodes).

The definition of cubic splines is made (at least partly) in order to avoid those discontinuities: the
idea is that we will force the piecewise cubic to be an interpolant of f(x) but will force the equalities

p′′i−1(xi) = p′′i (xi) i = 1, . . . , n− 1

so as to get a continuous second derivative. That already gives 2n + (n − 1) = 3n − 1 conditions on the
coefficients, so there is not enough freedom remaining to force the first derivatives to agree with f ′(x) at the
nodes. What one can do is to force the first derivatives of the cubic pieces to agree with each other at the
nodes:

p′i−1(xi) = p′i(xi) i = 1, . . . , n− 1 .

This gives n − 1 additional conditions, bringing the count up to (3n − 1) + (n − 1) = 4n − 2. While the
common values {bi : i = 1, . . . , n − 1} of the first derivatives will probably not satisfy bi = f ′(xi), we may
hope that the difference will be fairly small if f(x) is sufficiently smooth and if the {hi}n−1

i=0 are sufficiently
small. One expects that 2 additional conditions are needed if all the pieces of the piecewise cubic interpolant
are to be determined uniquely. While there is no canonical choice of these conditions, three popular choices
are

(1) The Complete Cubic Spline Interpolant, produced by choosing

p′0(x0) = f ′(x0) and p′n−1(xn) = f ′(xn) ;

“the first derivative is correct at the endpoints.”

(2) The Natural Cubic Spline Interpolant, produced by choosing the {bi} so that

p′′0(x0) = 0 and p′′n−1(xn) = 0 ;

“no curvature is present at the endpoints.” It can be argued that this is not at all natural, since f ′′(x)
need not be zero at the endpoints, and indeed the error estimates for this interpolant are not as small as
those for the complete spline. (While it is not obvious that this condition can be produced by a suitable
choice of the {bi}, we shall see later that it can be.)

(3) The Periodic Cubic Spline Interpolant, produced by choosing the {bi} so that

p′0(x0) = p′n(xn) and p′′0(x0) = p′′n(xn) ;

it is most natural to use these conditions with a function for which f(x0) = f(xn), so that the function
f(x) “wants to have a periodic extension” to the real line with period cells that are the translates of J .
{Of course a function can have periodic derivatives without itself being periodic; the interested reader
may want to contemplate the situation further.}
Atkinson (pp. 166–176) deals with the natural cubic spline interpolant, (2) above. These notes will deal

with the complete cubic spline interpolant, (1) above; error estimates are fairly straightforward to make and
make best possible, and the natural spline can then be treated as a perturbed version of the complete spline.
Periodic splines will largely be left to the reader.
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3. Notational Differences Between these notes and Atkinson pp. 166–176.

Atkinson denotes the function value at xi by yi; these notes use fi.

Atkinson writes, but never uses, the form

s(x) = ai + bix+ cix
2 + dix

3 for xi−1 ≤ x ≤ xi ; .

We shall implicitly use, but rarely write, the form

pi(x) = fi + bi(x− xi) + ci(x − xi)2 + di(x− xi)3

for the i-th polynomial written in Taylor form with base point equal to xi, the left endpoint of the i-th cell.
Note that the equations

Atkinson | These notes

yi = s(xi) = fi

s′(xi) = bi

Mi = s′′(xi) = 2! · ci

s(3)(xi) = 3! · di
connect the values and derivatives of the spline with the coefficients of pi(x) when the latter is written in
Taylor form.

4. Cubic Spline Interpolants as the Solution of a Variational Problem. It is a remarkable
fact that the existence and uniqueness of cubic spline interpolants, as well as some of their approximation
properties, can be established in a nonconstructive way. {Why do something nonconstructive in a course in
numerical analysis? Because it illustrates the idea of finding solutions by solving variational problems, which
is an important idea in applied mathematics generally, and one which recurs in the finite-element method
for numerical solution of boundary value problems of differential equations.} The basic lemma is sometimes
called Holladay’s identity.}

Lemma: In the general setup of these notes, let f(x) be twice continuously differentiable. Suppose s(x)
is a cubic spline interpolant of f(x) that satisfies either the natural-interpolant endpoint conditions

s′′(x0) = 0 and s′′(xn) = 0 ,

the complete-interpolant endpoint conditions

s′(x0) = f ′(x0) and s′(xn) = f ′(xn) ,

or the periodic endpoint conditions (assuming also that f(x0) = f(xn))

s′(x0) = s′(xn) and s′′(x0) = s′′(xn) .

If g(x) is any C2-function that interpolates f(x) at the nodes {xi} (including f(x) itself), then∫ xn

x0

|g′′(x)|2 dx =
∫ xn

x0

|s′′(x)|2 dx+
∫ xn

x0

|s′′ − g′′|2 dx

holds when s(x) satisfies the natural-interpolant endpoint conditions. The same is true for the complete spline
interpolant s(x) if g(x) also satisfies the “complete endpoint conditions” g′(x0) = f ′(x0) and g′(xn) = f ′(xn),
and is true for the periodic spline interpolant if g′(x0) = g′(xn).
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Non-Digression Before the Proof. Having spent some time in Hilbert space, we should recognize

that anything involving the integral of the square of a function, like
∫ xn

x0

|g′′(x)|2 dx, really involves an “inner

product,” in this case having the form

〈f, g〉 =
∫ xn

x0

f ′′(x)g′′(x) dx .

This is not (strictly speaking) an inner product, but rather a “quadratic form” defined on pairs of functions
f, g—which for our present purposes(1) we can take as belonging to C2([a, b]). Unlike the familiar inner
product that does not involve derivatives, this inner product can give a zero norm to nonzero functions. All

one can deduce from knowing that
∫ xn

x0

|g′′(x)|2 dx = 0 is that g′′(x) ≡ 0, which does not imply that f ≡ 0

but rather that f ′′(x) ≡ 0 and thus that f ′(x) ≡ A and f(x) ≡ Ax + B for some constants A, B ∈ R.
However, everything else we know about inner products will work pretty well with this one. In particular,
we can see what really makes “Holladay’s identity” go:

Sub-lemma: Let σ(x) ∈ C2([a, b]) satisfy the “Dirichlet(2) node conditions” σ(xi) = 0 at all of the
nodes {xi : 0 ≤ i ≤ n}. Let s(x) be any cubic spline with nodes at the {xi}—that is, a function s ∈ C2([a, b])
whose restriction to each subinterval Ji = [xi, xi+1] is a cubic polynomial. Then 〈s, σ〉 = 0 under any of the
following three additional hypotheses:

(1) s(x) satisfies the “natural end conditions” s′′(x0) = 0 = s′′(xn) (and no end conditions, other than
taking the value zero, need be imposed on σ(x));

(2) No end conditions are imposed on s(x), but σ(x) satisfies the “Neumann complete end conditions”
σ′(x0) = 0 = σ′(xn);

(3) s(x) satisfies the “periodic end condition” s′′(x0) = s′′(xn) and σ(x) satisfies the “periodic end condition”
σ′(x0) = σ′(xn).

Proof. Consider the part of the integral 〈s, σ〉 =
∫ xn

x0

s′′(x)σ′′(x) dx over the interval [xi, xi+1], and

integrate by parts twice, letting “u” always be the derivative of s and “dv” always be the derivative of σ.
One obtains∫ xi+1

xi

s′′(x)σ′′(x) dx = s′′(x)σ′(x)

]xi+1

xi

−
∫ xi+1

xi

s(3)(x)σ′(x) dx

= s′′(x)σ′(x)

]xi+1

xi

−
{
s(3)(x)σ(x)

]xi+1

xi

−
∫ xi+1

xi

s(4)(x)σ(x) dx

}

= s′′(x)σ′(x)

]xi+1

xi

− s(3)(x)σ(x)

]xi+1

xi

because s(4)(x) ≡ 0 .

Because s′′(x) is continuous on [a, b]—it “takes the same value from the left at each node xi as it does from
the right”—if we add these equations for i = 0 to n−1 the contributions from the first term on the last set-off
line will “telescope.” The contributions from the second term on that line will be zero, because σ(xi) = 0 at
all nodes. Therefore

〈s, σ〉 =
∫ b

a

s(x)σ(x) dx =
n−1∑
i=0

[s′′(xi+1)σ′(xi+1)− s′′(xi)σ′(xi)]

= s′′(b)σ′(b)− s′′(a)σ′(a) .

(1)
Strictly speaking, this is a “sesquilinear form” because it is conjugate-linear, rather than linear, in the argument g. However, we

shall only deal with real-valued functions, so the complex-conjugation will really never have an effect.
(2)

“Homogeneous boundary conditions”—requiring functions to take the value zero (possibly in some generalized sense) at the

boundary of a region—traditionally bear the name Dirichlet.
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In case (1), clearly 〈s, σ〉 = s′′(b)σ′(b)− s′′(a)σ′(a) = 0− 0 = 0, and similarly in case (2) where σ′(a) = 0 =
σ′(b). While it may not be the case that both terms of s′′(b)σ′(b)− s′′(a)σ′(a) are zero in the third case, the
terms will cancel if s′′(a) = s′′(b) and σ′(a) = σ′(b).

Proof of the lemma. Write g = s − (s − g), let σ(x) denote s(x) − g(x), and observe that if 〈s, σ〉 = 0
then we can write ∫ b

a

|g′′(x)|2 dx = 〈g, g〉 = 〈s, s〉 − 2〈s, σ〉+ 〈σ, σ〉 = 〈s, s〉+ 〈σ, σ〉

=
∫ b

a

|s′′(x)|2 dx+
∫ b

a

|s′′(x) − g′′(x)|2 dx

which is the conclusion of the lemma. If s′′(x) is a natural cubic spline interpolant of f(x), then since
σ(xi) = 0 at all the nodes, we are in case (1) of the sublemma and 〈s, σ〉 = 0. If s(x) is a complete cubic
spline interpolant of f(x), then σ(x) = s(x) − g(x) satisfies σ′(x) = s′(x) − f ′(x) = 0 for x = x0 and
x = xn, so we are in case (2) of the sublemma and 〈s, σ〉 = 0. Finally, if s(x) satisfies the end conditions
s′(x0) = s′(xn) and s′′(x0) = s′′(xn) (as well as the interpolation condition s(x0) = f(x0) = f(xn) = s(xn)),
then σ′(x) = s′(x) − g′(x) takes equal values at x0 and xn also, so we are in case (3) of the sublemma and
〈s, σ〉 = 0. Thus the conclusion of the lemma holds in all cases.

Corollary: The natural cubic spline interpolant of f(x) (if it exists) minimizes
∫ b

a

|g′′(x)|2 dx over the

class of all C2 interpolants g(x) of f(x) that equal f(x) at all nodes. The complete cubic spline interpolant
of f(x) (if it exists) minimizes the same integral over the class of all C2 interpolants of f(x) that equal f(x)
at all nodes and satisfy the endpoint conditions g′(x0) = f ′(x0) and g′(xn) = f ′(xn). Same for the periodic
interpolant. In all these cases, the spline is the unique minimizing function.(3)

Proof. In all these cases, the appropriate case of Holladay’s identity says∫ b

a

|g′′(x)|2 dx =
∫ b

a

|s′′(x)|2 dx+
∫ b

a

|s′′ − g′′|2 dx .

Evidently the r. h. s. is≥
∫ b

a

|s′′|2 dx, and equality will hold if and only if the continuous function s′′(x)−g′′(x)

is identically zero on [a, b]. So the integral of |g′′|2 must be strictly larger unless the C2 function s(x)− g(x)
satisfies the differential equation y′′ = 0 on [a, b]. The solutions of that equation are the linear functions
y(x) = Ax+B. In either case, since the function s(x)− g(x) = Ax+B takes the value 0 both at x = x0 and
x = xn we must have A = 0 = B and s(x) − g(x) = 0 identically, i.e., g(x) is identical to s(x). We already
saw minimization, and that’s uniqueness.

We can use this uniqueness result to prove existence, although in a non-constructive way. The argument
goes as follows. For a given function f(x) there are 4n − 2 equations in the coefficients of the polynomials
pi(x) that must be satisfied in order for them, considered piecewise, to determine a cubic spline interpolant
of f(x):

fi = f(xi), i = 0, . . . , n− 1
pi(xi+1) = f(xi+1), i = 0, . . . , n− 1

p′i(xi+1)− p′i+1(xi+1) = 0, i = 0, . . . , n− 2
p′′i (xi+1)− p′′i+1(xi+1) = 0, i = 0, . . . , n− 2

and finally either the periodic endpoint conditions or

p′′0(x0) = 0 and p′′n−1(xn) = 0 or
p′0(x0) = f ′(x0) and p′n−1(xn) = f ′(xn) .

(3)
The integral

∫
b

a
|g′′(x)|2 dx has a quasi-physical interpretation as “the energy required to bend a linearly elastic strip of metal

into the curve that interpolates the function values.” This proposition is consequently sometimes referred to as a “minimum-energy”

characterization of cubic spline interpolants.
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The interpolation conditions are inhomogeneous equations on the {fi, bi, ci, di}; all the remaining conditions
are homogeneous (r. h. s. zero) except for the complete-spline endpoint conditions. The total equation count
is 4n, and there are 4n unknown coefficients. By a well-known theorem on systems of linear equations,
either every inhomogeneous case of these equations has a unique solution or else there exists a solution of
the system

fi = 0, i = 0, . . . , n− 1
pi(xi+1) = 0, i = 0, . . . , n− 1

p′i(xi+1)− p′i+1(xi+1) = 0, i = 0, . . . , n− 2
p′′i (xi+1)− p′′i+1(xi+1) = 0, i = 0, . . . , n− 2

and finally either
p′′0(x0) = 0 and p′′n−1(xn) = 0 or
p′0(x0) = 0 and p′n−1(xn) = 0

or the periodic endpoint conditions hold (depending on the case considered), in which not all of the numbers
{fi, bi, ci, di} equal zero. Now suppose the latter case could actually occur—that there were a solution
of these homogeneous equations. The resulting function s(x) defined by the pi(x)’s would indeed be C2,
and it would be a complete, natural or periodic spline interpolant of the function f(x) which is identically
zero. But f(x) identically zero also satisfies the defining conditions to be such a spline interpolant of itself.
By uniqueness of the spline interpolant, s(x) = 0 identically. But then each pi(x) = 0 identically, so all
its coefficients are zero, so all the {fi, bi, ci, di} are zero contrary to their choice! We conclude that the
equations which must be solved to find the coefficients of the polynomials making up a spline interpolant are
determined by 4n equations in 4n unknowns where the equations have no nontrivial homogeneous solutions;
the equations are therefore uniquely solvable for any choice of r. h. s.’s, and so they can always be solved to
yield the coefficients of the polynomials in the cubic spline interpolant of any given f(x). This establishes
the existence of cubic spline interpolants (we already had uniqueness).

We shall give an algorithm for finding the coefficients later on. Meanwhile, it is nice to know that one
is talking about things that actually exist when one proves theorems about cubic spline interpolants.

5. Setting up the equations. Determining the {bi} is actually most easily done by writing the
polynomials in Newton form and solving the following Hermite interpolation problem (the bi are not yet
known and are to be determined)

pi(xi) = fi, p
′
i(xi) = bi, pi(xi+1) = fi+1, p

′
i(xi+1) = bi+1 .

Newton interpolation then gives us pi(x) as

pi(x) = fi + pi[xi, xi](x− xi) + pi[xi, xi, xi+1](x − xi)2 + pi[xi, xi, xi+1, xi+1](x − xi)2(x− xi+1)

and the divided differences are explicitly computed in terms of the values of fi, fi+1, bi, bi+1 and f [xi, xi+1]
in the first divided-difference table of Table 1.

To get this into Taylor form is easy: rewrite the single factor (x− xi+1) in the form

x− xi+1 = x− xi + xi − xi+1 = (x− xi)− hi

and the Newton form turns into the Taylor form

pi(x) = fi + pi[xi, xi](x− xi)
+ {pi[xi, xi, xi+1]− hi · pi[xi, xi, xi+1, xi+1]}(x− xi)2

+ pi[xi, xi, xi+1, xi+1](x− xi)3 .

These calculations find pi(x) “looking right from xi.” On the other hand, “looking left from xi” almost
the same calculations would have done the interpolation problem to find pi−1(x), because cubic Hermite
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Table 1

Looking right from xi:

x f(xk) pi[·, ·] pi[·, ·, ·] pi[·, ·, ·, ·]

xi fi bi
f [xi, xi+1]− bi

hi

bi + bi+1 − 2f [xi, xi+1]
h2
i

xi fi f [xi, xi+1]
bi+1 − f [xi, xi+1]

hi
xi+1 fi+1 bi+1

xi+1 fi+1

Looking left from xi:

x f(xk) pi−1[·, ·] pi−1[·, ·, ·] pi−1[·, ·, ·, ·]

xi fi bi
f [xi−1, xi]− bi
−hi−1

bi−1 + bi − 2f [xi−1, xi]
h2
i−1

xi fi f [xi−1, xi]
bi−1 − f [xi−1, xi]

−hi−1

xi−1 fi−1 bi−1

xi−1 fi−1

interpolation imposes two conditions at each node and thus the problem of determining pi−1(x) at xi is
symmetric to that of determining pi(x) there. In Newton form, pi−1(x) must be

pi−1(x) = fi + pi−1[xi, xi](x− xi)
+ pi−1[xi, xi, xi−1](x− xi)2

+ pi−1[xi, xi, xi−1, xi−1](x− xi)2(x− xi−1) .

Again the Newton form can be put into Taylor form with base-point xi by rewriting

x− xi−1 = x− xi + xi − xi−1 = (x− xi) + hi−1

and so the Taylor form of pi−1(x) at xi is

pi−1(x) = fi + pi−1[xi, xi](x− xi)
+ {pi−1[xi, xi, xi−1] + hi−1 · pi−1[xi, xi, xi−1, xi−1]}(x− xi)2

+ pi−1[xi, xi, xi−1, xi−1](x − xi)3 .

Since these polynomials are in Taylor form with base point xi, one can read their derivatives at xi right
off their Taylor coefficients. That the 0-th and 1st Taylor coefficients are equal simply expresses the facts
that both polynomials take the value fi and that both have derivative bi at that point. The coefficients of
(x− xi)2, however, are the second derivatives of the polynomials up to a factor of 2!. Hence a necessary and
sufficient condition for the polynomials to have equal second derivatives at the break point xi is that

pi[xi, xi, xi+1]− hi · pi[xi, xi, xi+1, xi+1] = pi−1[xi, xi, xi−1] + hi−1 · pi−1[xi, xi, xi−1, xi−1]

which Table 1 tells us is

f [xi, xi+1]− bi
hi

− hi ·
bi + bi+1 − 2 · f [xi, xi+1]

h2
i

=
f [xi, xi−1]− bi
−hi−1

+ hi−1 ·
bi−1 + bi − 2 · f [xi, xi−1]

h2
i−1
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in terms of known quantities. With both sides multiplied by hi · hi−1 this is

hi−1 ·{f [xi, xi+1]−bi}−hi−1 ·{bi+bi+1−2 ·f [xi, xi+1]} = hi ·{bi−f [xi, xi−1]}+hi ·{bi−1 +bi−2 ·f [xi, xi−1]}

and this, with the unknown bi’s kept on the r. h. s. and the known quantities moved to the l. h. s., becomes
an equation

3 · hi · f [xi, xi−1] + hi−1 · f [xi, xi+1] = hi · bi−1 + (hi−1 + hi) · 2bi + hi−1 · bi+1

that is to be satisfied at each of the interior nodes, i = 1, . . . , n − 1. One more piece of beautification and
we’ll have something that’s worth trying to solve: divide the i-th equation by (hi−1 + hi) and put

µi =
hi

hi−1 + hi
, λi =

hi−1

hi−1 + hi
.

These are “convex combination coefficients”—pairs of nonnegative numbers satisfying µi+λi = 1—and with
the unknown bi’s on the l. h. s. where unknowns belong, the equations determining the bi’s take the form

µibi−1 + 2bi + λibi+1 = 3 · {µif [xi, xi−1] + λif [xi, xi+1]}

for i = 1, . . . , n− 1. We need two more equations, and we take those to be

2b0 = 2b0 (= 2f ′(x0))
2bn = 2bn (= 2f ′(xn))

which is to say that we shall be finding the coefficients in the complete cubic spline interpolant of f(x).
The factors of 2 are present only for the sake of symmetry of notation.

The equations determining the bi’s then take the form

2b0 · · · · · · = 2f ′(x0)

µ1b0 + 2b1 + λ1b2 · · · · · · = 3 · {µ1f [x1, x0] + λ1f [x1, x2]}

µ2b1 + 2b2 + λ2b3 · · · · · · = 3 · {µ2f [x2, x1] + λ2f [x2, x3]}

· · · · · · · · · . . . · · · · · ·
... · · ·

2bn = 2f ′(xn)

and are (n+ 1) linear equations in the (n+ 1) unknowns (b0, . . . , bn).

6. The R. H. Sides of the equations we have just derived are fairly easy to compute and to estimate
in terms of f ′(x) (when it exists); indeed, it should be obvious to the reader that each can only be about 3
times(4) as large as any value of f ′(x). But we don’t yet know that the equations can be solved at all, or
that (b0, . . . , bn)T will not exhibit unpleasant behavior. It is therefore a marvelous piece of luck that these
equations belong to one of the most tractable classes of linear systems: those whose matrix of coefficients
is strictly diagonally dominant.(5) Since we don’t need the most general properties of these systems,
the following lemma is enough to give us what we need now. To accomodate ancient habits we’ll write the
system in the form AX = Y , where X and Y are vectors, for the duration of this § only. Let us agree that
the norm of a vector X = (x0, . . . , xn)T will be the `∞-norm, i.e., will be given by

‖X‖∞ = max{|xi| : i = 0, . . . , n} .

(4)
In fact, if we further “normalized” these equations by dividing the top and bottom ones by 2 and the others by 3, we would see

that what these equations do is balance weighted averages of the bi’s on the l. h. sides against weighted averages of values (at nearby

points) of f ′(x) on the r. h. sides.

(5)
See the separate notes on systems of this kind for a more complete discussion of these matrices than is given here.
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Lemma: Let AX = Y be an (n + 1)× (n+ 1) system of linear equations whose matrix of coefficients
has the “tri-diagonal” form 

2 λ0 0 0 · · · 0 0

µ1 2 λ1 0 · · · 0 0

0 µ2 2 λ2 · · · 0 0

0 0 µ3 2 · · · 0 0

0
...

...
...

. . . 0 0

0 0 0 0 · · · 2 λn−1

0 0 0 0 · · · µn 2


where(6) the off-diagonal coefficients satisfy |µi|+ |λi| ≤ 1. Then for any given pair of vectors X, Y satisfying
the equations, we have ‖X‖∞ ≤ |yk|, where 0 ≤ k ≤ n is any index(7) at which the maximum defining
‖X‖∞ = max{|xi| : i = 0, . . . , n} is attained. In particular,

‖X‖∞ ≤ ‖Y ‖∞ .

Proof. Let X and Y be such vectors and A be such a matrix, and let the index k be as described. Then
(the appropriate terms being missing in the cases k = 0 and k = n) we have

µkxk−1 + 2xk + λkxk+1 = yk

2xk = yk − µkxk−1 − λkxk+1 .

Taking absolute values and using the triangle inequality, we get

2|xk| ≤ |yk|+ |µk||xk−1|+ |λk||xk+1| ≤ |yk|+ |µk||xk|+ |λk||xk|
= |yk|+ (|µk|+ |λk|)|xk| ≤ |yk|+ |xk| .

Finally, subtracting |xk| from both sides gives us

‖X‖∞ = |xk| ≤ |yk| ≤ ‖Y ‖∞

as desired.

Corollary: AX = Y has a unique solution X for every given Y (and that solution must satisfy the
norm inequality ‖X‖∞ ≤ ‖Y ‖∞).

Proof. Any solution of AX = 0 satisfies ‖X‖∞ ≤ ‖0‖∞, so X = 0. Thus the associated homogeneous
(n+ 1)× (n + 1) system AX = 0 has only the trivial (all-zero) solution. It is a standard theorem of linear
algebra that this property implies that AX = Y is solvable (and uniquely so) for each given Y .

{Remark: That corollary was proved unconstructively, but these matrices have a computational property
that enables one to show that the system AX = Y can always be solved by Gaussian elimination without
pivoting. And the Gaussian elimination is trivial: in each column there is only one sub-diagonal element.
Thus machine solution of such “tridiagonal diagonally dominant” systems is very fast compared to systems
in general. See the separate notes on diagonally dominant matrices, in which it is shown that the “strict
diagonal dominance” condition |aii| >

∑
j 6=i
|aij | is preserved as the Gaussian elimination algorithm progresses.

Strict diagonal dominance implies invertibility, by the Geršgorin theorem.}

(6)
This lemma is basically a very special case of the general Geršgorin theorem on locating the eigenvalues of a matrix—and

estimating the norm of its inverse—in terms of the diagonal elements of the matrix.

(7)
This is a “discrete maximum principle,” much like the maximum principle of potential theory.
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7. Approximation by an Interpolating Spline. Even when the interpoland f(x) is only C2, it
turns out that the spline interpolants approximate f(x) and their derivatives approximate f ′(x) quite well,
uniformly on J . For smoother interpolands, the approximations are good out to f (3)(x).

For the C2 case, the estimate employs the “minimum-energy” characterization of the cubic spline inter-
polants, and the estimates are not of the order of magnitude in h that one will learn to expect for smoother
functions. The basic tool is the Schwarz inequality for integrals, which asserts that for two (Lebesgue-
measurable) real-valued functions f and g on an interval [α, β], the inequality∫ β

α

|f(x)g(x)| dx ≤

√∫ β

α

f(x)2 dx ·

√∫ β

α

g(x)2 dx

always holds. For a proof, see the Lemma of Atkinson p. 208.

Theorem: Let f(x) be a C2 function(8) on J and s(x) a cubic spline interpolant of f . Then the estimate

|f ′(x) − s′(x)| ≤ h1/2 ·

√∫ b

a

|f ′′(t)|2 dt

holds (uniformly) for all x ∈ J .

Proof. Let x ∈ J be given, and let [xi, xi+1] be a cell to which it belongs. Then since f(t)− s(t) = 0 for
t = xi and t = xi+1, by Rolle’s theorem there exists ξ ∈ [xi, xi+1] for which f ′(ξ) − s′(ξ) = 0. We therefore
have in the case where ξ < x—and the same argument, with the direction of integration reversed, covers the
case x < ξ:

|f ′(x) − s′(x)| =
∣∣∣∣∫ x

ξ

[f ′′(t)− s′′(t)] dt
∣∣∣∣ ≤

√∫ x

ξ

1 dt ·
√∫ x

ξ

[f ′′(t)− s′′(t)]2 dt

≤ |x− ξ|1/2 ·

√∫ b

a

[f ′′(t)− s′′(t)]2 dt .

In the last line, we evaluated the integral of 1 over [ξ, x] and replaced the integral of the square-of-the-
difference of 2nd derivatives over [ξ, x] by the integral over the whole [x0, xn], which could only have made
the integral bigger. But now we can estimate both factors in the last line: it is obvious that |x−ξ|1/2 ≤ h1/2,
while if we replace g′′ by f ′′ in Holladay’s identity on pp. 4–5 above we see that the nonnegativity of the
integral of s′′2 then implies ∫ b

a

|f ′′(t)|2 dt ≥
∫ b

a

|s′′(t)− f ′′(t)|2 dt .

Using those estimates in the relation above then gives us

|f ′(x)− s′(x)| ≤ h1/2 ·

√∫ b

a

|f ′′(t)|2 dt]; ,

as desired.

Corollary: The estimate

|f(x)− s(x)| ≤ 1
2
h3/2 ·

√∫ b

a

|f ′′(t)|2 dt

holds (uniformly) for all x ∈ J .

(8)
It would suffice for this that f(x) belong to the Sobolëv space W2,2(J), which would imply that it had a continuous first derivative

but only that it had a second derivative in the “weak” or “distributional” sense that belonged to L2(J). The fact that one can assume

only this rather shadowy existence for the second derivative is the reason for the low order of approximation.
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Proof. Let x ∈ J be given, and let [xi, xi+1] be a cell to which it belongs. Then since f(t) − s(t) = 0
for t = xi and t = xi+1, we can compute f(x) − s(x) {up to its sign} by integrating f ′(t) − s′(t) from the
nearer endpoint of [xi, xi+1]—call it x∗—to x:

|f(x) − s(x)| =
∣∣∣∣∫ x

x∗
(f ′(t)− s′(t)) dt

∣∣∣∣ ≤ max{|x− x∗|} ·max{|f ′(t)− s′(t)| : t ∈ J}

≤ 1
2
h · h1/2 ·

√∫ b

a

|f ′′(t)|2 dt =
1
2
h3/2 ·

√∫ b

a

|f ′′(t)|2 dt

as advertised.

These are “modern” estimates—estimates of this type will recur at the end of the second second-semester
course, when one develops the finite-element method of solving boundary-value problems in differential
equations. However, they’re not very sharp: the exponents in h3/2 and h1/2 really “should” be 4 and 3
respectively, at least when f(x) is a sufficiently smooth function. Developing estimates of that order requires
a great deal of classical technique, and we shall demonstrate that technique in the next §. Meanwhile, even
the coarse estimates available from the “energy integral” show that as h → 0 we can expect cubic spline
interpolants of C2 functions to converge to the interpoland—and, even better, the derivatives converge also
{although “one power of h more slowly”}. That fact at least reassures us that the cubic spline interpolant
is a reasonable subject of investigation.

8. Classical Error Estimates for Cubic Splines. We can now start to estimate the difference
between the given function f(x) and its complete cubic spline interpolant in the classical way, with bounds
involving the maximum absolute values of the higher derivatives of f(x). This is time-consuming but each
step is elementary. We shall carry out the steps in the following order:

(A) Working locally (for x in a single cell [xi, xi+1]) we can rewrite the difference between f(x) and
pi(x) in the form

f(x)− pi(x) = f(x)−H(x) +H(x) − pi(x)

where H(x) is the cubic Hermite interpolant of f(x) (and f ′(x)) on [xi, xi+1], use the triangle inequality

|f(x)− pi(x)| ≤ |f(x)−H(x)|+ |H(x) − pi(x)| ,

and estimate the two terms separately. The first term is the error term from Hermite interpolation, for which
bounds are known (Atkinson p. 162, (3.6.15)).

(B) That leaves the second error term

ei(x) = pi(x)−H(x)

which is a polynomial of degree ≤ 3 satisfying

ei(xi) = 0 = ei(xi+1), e′i(xi) = bi − f ′(xi), e′i(xi+1) = bi+1 − f ′(xi+1) .

If we set
εi = e′i(xi) = bi − f ′(xi) and εi+1 = e′i(xi+1) = bi+1 − f ′(xi+1) ,

then ei can easily be estimated in terms of max{|εi|, |εi+1|}. It is clear from these definitions that ε0 = 0,
and the only consistent definition of εn is to set it = 0 also.

(C) The (n + 1)-tuple (0, ε1, . . . , εn−1, 0)T satisfies a system of (n + 1) linear equations of the form
AX = Y with the same matrix of coefficients A as the system that determined (b0, b1, . . . , bn)T . The
r. h. s. of that system can be written out explicitly and its elements estimated. Because AX = Y implies
‖X‖∞ ≤ ‖Y ‖∞, the estimate thus obtained also controls max{|ε0|, . . . , |εn|}; using the result of part (B)
above, we then make that estimate control the error cubics ei(x) (i = 0, . . . , n − 1), thus finishing the
estimation process for the complete cubic spline interpolant.
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(D) The error in the natural cubic spline interpolant, and the errors in the cubic splines produced by
other possible choices of endpoint conditions, are most easily handled by estimating the errors between those
interpolants and the complete interpolant.

Hypotheses will be introduced naturally along the way: usually they will require that f(x) have 4 or 5
continuous derivatives on J . For future reference we recall the standard notation

Mk = max{|f (k)(x)| : x0 ≤ x ≤ xn}

for all functions f(x) for which this expression makes sense. Recall also that

h = max{h0, . . . , hn} .

9. Estimate (A). Not much to do here: Atkinson’s (3.6.13) gives

|f(x)−H(x)| ≤ h4

384
·M4

which is sharp (take f(x) = x4).

10. Estimate (B). The error cubic ei(x) is a polynomial whose degree is at most 3, and it has a root
at each end of [xi, xi+1], so it must have the form

ei(x) = (x− xi)(x − xi+1)[a(x− xi) + b] .

Its derivative thus has the form

e′i(x) = (x− xi+1)[a(x − xi) + b] + (x− xi)[a(x − xi) + b] + a(x− xi)(x− xi+1) ,

and evaluation, first at xi and then at xi+1, shows that the linear function in the square brackets has to
interpolate the values

εi
−hi

at x = xi and
εi+1

hi
at x = xi+1 .

Therefore this linear factor is
εi+1(x− xi)− εi(xi+1 − x)

h2
i

, and so

ei(x) = (x− xi)(x− xi+1)
εi+1(x− xi)− εi(xi+1 − x)

h2
i

.

The product |(x−xi)(x−xi+1)| assumes its maximum at the midpoint of the cell [xi, xi+1], and the maximum
value is (h/2)2. The linear factor assumes its maximum value at an endpoint, so its maximum value can be

estimated by
max{|εi|, |εi+1|}

hi
. This gives the estimate

|ei(x)| ≤ h2
i

4
· max{|εi|, |εi+1|}

hi
=
hi
4
·max{|εi|, |εi+1|} .

We can do no better than this in general, since we may have εi = −εi+1 and then the linear factor will reduce
to a constant.

11. Estimate (C). Since we have defined

εi = e′i(xi) = bi − f ′(xi) and εi+1 = e′i(xi+1) = bi+1 − f ′(xi+1)

the equations defining the bi’s that come from the interior nodes

µibi−1 + 2bi + λibi+1 = 3 · {µif [xi, xi−1] + λif [xi, xi+1]}
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can be rewritten in the form (note that we have used 1 = µi + λi)

µiεi−1 + 2εi+λiεi+1 = µi · {3f [xi, xi−1]− f ′(xi−1)−2f ′(xi)}+λi · {3f [xi, xi+1]− f ′(xi+1)−2f ′(xi)} (11.1)

for i = 1, . . . , n− 1, and of course at the endpoints we simply have

ε0 = 0, εn = 0

since the derivative of the spline matches the derivative of f(x) at the endpoints. Because of what we know
about the matrix of coefficients of this system of equations, we know that if we find a bound for the absolute
values of all the r. h. sides of these equations, the same bound will dominate the absolute values of all the
εi’s. The first thing on the agenda, therefore, is to find a sharp bound for those r. h. sides.

One method of attack is to rewrite the differences on the r. h. sides as integrals. This method recurs
again and again in error analysis, and so it will pay us to write it up in as general a way as possible. Thus
let F (t) be a 5-times-continuously differentiable function defined on an open interval −η < t < η centered
on 0, let |h| < η, and consider

3 · F [0, h]− F ′(h)− 2 · F ′(0) =
1
h

∫ h

0

{[F ′(t)− F ′(h)] + 2 · [F ′(t)− F ′(0)]} dt . (11.2)

Integrate the term [F ′(t) − F ′(h)] dt by parts, differentiating the first factor and using as the integral of dt
the function t, which takes the value zero at the endpoint 0. Similarly integrate the term 2[F ′(t)− F ′(0)] dt
by parts, differentiating the first factor but this time using as the integral of dt the function (t − h) which
zeros out at the endpoint h. The result will be that the integral is rewritten as

−1
h

∫ h

0

{t+ 2(t− h)} · F ′′(t) dt =
−3
h

∫ h

0

(
t− 2

3
h

)
F ′′(t) dt . (11.3)

Next, express F ′′(t) in a Taylor series with base point t = 0, writing the remainder term in integral form:

F ′′(t) = F ′′(0) + F (3)(0) · t+
∫ h

0

(t− s)F (4)(s) ds . (11.4)

Plugging this in for F ′′(t) in the previous integral will show that our original 3 · F [0, h]− F ′(h) − 2 · F ′(0)
equals

−3
h

∫ h

0

(
t− 2

3
h

){
F ′′(0) + t · F (3)(0) +

∫ t

0

(t− s)F (4)(s) ds
}
dt . (11.5)

It is elementary to multiply the first two terms inside the curly brackets by (t − (2h)/3) and integrate the

results, obtaining the values
−h2

6
F ′′(0) and 0 respectively. If these values are plugged in and the order of

integration in the double integral is then reversed, the whole expression becomes

−3
h

{
−h2

6
F ′′(0) +

∫ h

0

[∫ h

s

(
t− 2

3
h

)
(t− s) dt

]
F (4)(s) ds

}
. (11.6)

It is routine to evaluate the inside integral; its value is
s(h− s)2

6
. So we finally have

3 · F [0, h]− F ′(0)− 2 · F ′(h) =
−1
h

{
−h2

2
F ′′(0) +

1
2

∫ h

0

s(h− s)2F (4)(s) ds

}
. (11.7)

One should note for future reference that the sign of the factor s(h−s)2 in the “remainder term” is the same
as the sign of h.
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At this point we are ready to attack the r. h. s. of the equation (11.1)

µiεi−1 + 2εi + λiεi+1 = µi · {3f [xi, xi−1]− f ′(xi−1)− 2f ′(xi)}+ λi · {3f [xi, xi+1]− f ′(xi+1)− 2f ′(xi)} .

Both expressions in the curly brackets have the form 3 · F [0, h] − F ′(h) − 2 · F ′(0) with F (t) = f(xi + t),

h = −hi−1 in the first and F (t) = f(xi + t), h = hi in the second. Recalling that µi =
hi

hi−1 + hi
and

λi =
hi−1

hi−1 + hi
, we can rewrite the whole r. h. side of (11.1) by using (11.7). The reader can easily check

that the two terms containing the factor F ′′(0) = f ′′(xi) cancel, and the r. h. s. takes the form (watch signs!)

1
hi−1 + hi

{
hi ·

−1
−hi−1

[
−h2

i−1

2
f ′′(xi) +

1
2

∫ −hi−1

0

s(−hi−1 − s)2f (4)(xi + s) ds

]

+hi−1 ·
−1
hi

[
−h2

i

2
f ′′(xi) +

1
2

∫ hi

0

s(hi − s)2f (4)(xi + s) ds

]}
=

−1
2(hi−1 + hi)

{
hi
hi−1

∫ 0

−hi−1

s(hi+1 + s)2f (4)(xi + s) ds+
hi−1

hi

∫ hi

0

s(hi − s)2f (4)(xi + s) ds

}
. (11.8)

A well-known mean-value theorem for integrals says that when m ≤ f(s) ≤M and g(s) ≥ 0, then for α < β

m

∫ β

α

g(s) ds ≤
∫ β

α

f(s)g(s) ds ≤M
∫ β

α

g(s) ds .

It follows (let g(s) = s(hi−1 + s)2 in the first integral, for example) that each of the the two integrals in the

curly brackets can be estimated in absolute value by
hi
hi−1

·
h4
i−1

12
·M4 and

hi−1

hi
· h

4
i

12
·M4 respectively. So

the entire r. h. side is now estimated in absolute value by the expression

1
24
· hi−1hi
hi−1 + hi

· (h2
i−1 + h2

i ) ·M4 . (11.9)

Finding the maximum value of the factor involving the hi’s is essentially the calculus problem of max-

imizing
xy(x2 + y2)

x+ y
on the square 0 ≤ x ≤ h, 0 ≤ y ≤ h. If this problem is subjected to the additional

constraint that x + y = a, then one is looking for the maximum of
x(a− x)[x2 + (a− x)2]

a
, which occurs

when x = a/2 (the derivative is
(a− 2x)3

a
), i.e., on the center-line x = y. Since x = y = h is possible, the

maximum value is h3. We have thus shown that the r. h. s. is majorized in absolute value by
h3

24
·M4.

We have just estimated the r. h. s. of an equation of the system (11.1)

µiεi−1 + 2εi + λiεi+1 = µi · {3f [xi, xi−1]− f ′(xi−1)− 2f ′(xi)}+ λi · {3f [xi, xi+1]− f ′(xi+1)− 2f ′(xi)} ,

but since 1 ≤ i ≤ n − 1 was arbitrary and ε0 = εn = 0, we have estimated the ‖ · ‖∞-norm of the vector
r. h. s. (ε0, . . . , εn−1)T of the system. By the “norm-reducing” property of the system, we can now conclude
that

max{|εi| : 0 ≤ i ≤ n} ≤ h3

24
·M4 (11.10)

and thus we have come to the end-game of (C): since (B) above now allows us to write

max{|ei(x)| : xi ≤ x ≤ xi+1} ≤
h

4
·max{|εi| : 0 ≤ i ≤ n} ≤ h

4
· h

3

24
·M4 =

h4

96
·M4 , (11.11)
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we can conclude that

|f(x)− pi(x)| ≤ |f(x)−H(x)| + |ei(x)| ≤ h4

384
·M4 +

h4

96
·M4 =

5h4

384
·M4 (11.12)

and that estimates the error of the complete cubic spline interpolant, as desired.

In order to make a worst-case estimate of the integrals above by the mean-value theorem, we had to
act as if it were possible for f (4)(x) to equal +1 on one side of xi and −1 on the other side. While in fact
f (4)(x) cannot do this if it is continuous, it is possible to find (draw pictures!) functions whose behavior is
arbitrarily close to that, so no improvement in the estimate of the {|εi|} is possible. The function x4 · sgn(x)
has that impossible 4-th derivative, and its spline interpolant (Fig. 1) demonstrates that the slope of the
interpolant can differ a good deal from that of the curve at a node. In the plot shown in Fig. 1 we have
x0 = −1, x1 = 0, x2 = 1. This function is a limiting case of 4-times continuously differentiable functions, so
they can be “arbitrarily close to this bad.”

12. Refinements. It can be shown that the constant 5/384 of the preceding § is the best possible
constant valid for arbitrary 4-times differentiable f(x) and arbitrary nodes whose maximum spacing is h > 0.
However, some improvements are possible in the case of equal increments (all hi = h). In this case, and
assuming that the function F (x) is 5-times continuously differentiable, we can replace F (4)(s) in the formula
(11.7) above by

F (4)(0) +
∫ s

0

F (5)(t) dt , (12.1)

whereupon (11.7) will read

−1
h

{
−h2

2
F ′′(0) +

1
2

∫ t

0

s(h− s)2

[
F (4)(0) +

∫ s

0

F (5)(t) dt
]
ds

}
. (12.2)

Evaluating the integral of the first term ds, interchanging the order of integration of the iterated integral,
and computing the inner integral in the new iterated integral will all combine to give

−1
h

{
−h2

2
F ′′(0) +

h4

12
F (4)(0) +

∫ h

0

[
(h− t)3

12
(3t+ h)

]
F (5)(t) dt

}
. (12.3)

Here again one should note the sign of the “kernel”
[

(h− t)3

12
(3t+ h)

]
; this time it is nonnegative on the

interval of t between 0 and h, regardless of the sign of h.

The relation (12.3) can now be used in the calculations in (11.8) above, in place of the relation (11.7)
that we previously used. It is useful in two special cases. In the special case where hi = hi−1 = h of (11.8)
above, it is easy to check that not only do the two terms containing f ′′(xi) cancel, but also the two terms
containing f (4)(xi). As a result, the r. h. s. of the i-th equation for the {εi} takes the form

−1
4h
·
{∫ 0

−h

[
(h+ t)3

12
(h− 3t)

]
F (5)(xi − t) dt+

∫ h

0

[
(h− t)3

12
(h+ 3t)

]
F (5)(xi + t) dt

}
. (12.4)

The integral of the “kernel” is
h5

30
on each of [−h, 0] and [0, h], so the entire expression (12.4) can be estimated

in absolute value by
1

4h
· 2h5

30
·M5 =

h4

60
·M5. This looks as though we have gained a whole “power-of-h”

on our former error estimate (11.12)! That is too good to be true: all we have improved is our estimate of

max{|εi| : 0 ≤ i ≤ n} ≤ h4

60
M5, and although we get to multiply by

h

4
in estimating max{|ei(x)| : x0 ≤ x ≤

xn}, we find that, as in (11.12), we still have to write

|f(x)− pi(x)| ≤ |f(x)−H(x)|+ |ei(x)| ≤ h4

384
·M4 +

h5

240
·M5 ; (12.5)
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the first term is still of order h4. Nonetheless, the second term still becomes small in comparison to the first,

so for small values of h > 0 we can manage to get our error bounded by
h4

384
·M4 · (1 +O(h))—which is

almost 5 times as optimistic as the best-generally-possible error estimate. But we shouldn’t get our hopes
up too high—even in the case of f(x) = x4, whose 5-th derivative is identically zero and for which ei(x)
vanishes identically on equally spaced nodes. The Hermite-interpolant part of the error will still produce
the deviations shown in Fig. 2 {where f(x) = 1 − x4, x0 = −1, x1 = 0, and x2 = 1} to remind us that
the piecewise cubic will only resemble a curve that is not a cubic in case the pieces are fairly short. The
“bulging” present even though the 1st and 2nd derivatives agree at the origin shows what to expect.

On the pessimistic side, we can see that for very disparate choices of hi and hi+1 we have to expect
considerable inaccuracy. Indeed, for 5-times-continuously differentiable f(x) the expression (11.8) is now

−1
2(hi−1 + hi)

{
hi
hi−1

·
−h4

i−1

12
+
hi−1

hi
· h

4
i

12
· f (4)(xi) +O(h5)

}
. (12.6)

The absolute value of the coefficient of f (4)(xi) in the leading term of this expression is∣∣∣∣ 1
24
hihi−1 · (h2

i − h2
i−1)

hi−1 + hi

∣∣∣∣ =
hihi−1|hi − hi−1|

24
. (12.7)

To estimate this, do calculus: maximize xy(y − x) on the triangle 0 ≤ x, 0 ≤ y ≤ h, y ≥ x. The
gradient of this function is (y2 − 2xy, 2xy− x2) which has no zeros interior to the triangle, so the maximum
is attained on the boundary—obviously not on the line x = 0 (!)—so therefore on the line y = h. Maximizing
hx(h − x) gives x = h/2, so the worst case of our estimate occurs for hi = h/2, hi−1 = h (or vice versa),
and is h3/96. It follows that at an xi which divides the interval [hi−1, hi+1] in the ratio 2:1, one must expect
an εi of this size. Consequently, if the nodes {xi : 0 ≤ i ≤ n} divide the interval J in ratios alternately
1:2 and 2:1, one cannot expect a bound on the error cubics ei(x) which is much smaller than the numbers
h

4
· h

3

96
· |F (4)(xi)| =

h4

384
· |F (4)(xi)|, and thus an error estimate on the order of

|f(x)− pi(x)| ≤ 2h4

384
·M4 (12.8)

would be about the best one could really plan on. Fig. 3 shows what can happen {with f(x) = 1 − x4,
x0 = −1, x1 = −1/2, x2 = 1/2, x3 = 1}. The bulge is quite unexpectedly large, and worst at a point where
f(x) is very flat, so smoothness of the function f(x) doesn’t help at all.

13. Cubic spline interpolants of f(x) have the further property that their derivatives
manage to approximate the derivatives of f(x), at least up to order 3. The work of proving this splits
into two parts as before: estimate the error for the appropriate derivative of the Hermite interpolant on
[xi, xi+1], and then estimate the size of the appropriate derivative of ei(x).

For the first derivative of the Hermite interpolant on [xi, xi+1], we have the exact error term

f [xi, xi, xi+1, xi+1, x](x − xi)2(x− xi+1)2 (13.1)

at x. Differentiating this with respect to x yields

f [xi, xi, xi+1, xi+1, x, x](x − xi)2(x − xi+1)2+
f [xi, xi, xi+1, xi+1, x]{2 (x− xi)(x− xi+1)2 + 2 (x− xi)2(x− xi+1)} ; (13.2)

then plugging the identity

f [xi, xi, xi+1, xi+1, x, x] · (x− xi) = f [xi, xi+1, xi+1, x, x]− f [xi, xi, xi+1, xi+1, x] (13.3)

into the first term on the r. h. s. turns the differentiated error term into

f [xi, xi+1, xi+1, x, x](x − xi)(x − xi+1)2 + f [xi, xi, xi+1, xi+1, x](x − xi)(x− xi+1)2 + 2(x− xi)2(x− xi+1) .
(13.4)
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Term-by-term estimation of the absolute value, with the 4-th-order divided differences estimated by M4/4!,
gives

M4

4!
· (xi+1 − x)(x − xi) · [|x− xi+1|+ |(x − xi+1) + 2(x− xi)|] =

M4

4!
· (xi+1 − x)(x − xi) · [xi+1 − x+ |3x− (xi+1 + 2xi)|] . (13.5)

Because we are seeking a bound valid for all f(x) and the geometry is symmetrical, we can restrict our

attention to the case x ≤ xi + xi+1

2
, i.e., the case in which x lies in the left half of [xi, xi+1]. There are two

cases according to whether x ≤ 2xi + xi+1

3
or not, and it is routine calculus to verify that the largest value

of the estimate occurs at the midpoint of [xi, xi+1], giving the value

M4

4!
· h

2
i

4
·
[
hi
2

+
hi
2

]
=
M4

96
· h3 . (13.6)

{Any interested reader seeking to verify this bound should move the origin of coordinates to the center
of [xi, xi+1] before doing the calculus.} This is not the sharpest-possible estimate, but the constants are
adequate and the order of magnitude certainly correct.

For the first derivative of ei(x) on [xi, xi+1], we have

h2
i ·

d

dx
ei(x) =

d

dx
{(x− xi)(x− xi+1)[εi+1(x− xi) + εi(x − xi+1)]}

= (x − xi+1)[εi+1(x − xi) + εi(x− xi+1)] + (x− xi)[εi+1(x− xi) + εi(x − xi+1)]
+ (x− xi+1)(x − xi)(εi+1 + εi)

= εi+1(x− xi)(x− 2xi+1 − xi) + εi(x− xi+1)(x − 2xi − xi+1) . (13.7)

This is majorized by

max(|εi|, |εi+1|) · [|(x − xi)(x− 2xi+1 − xi)|+ |(x− xi+1)(x− 2xi − xi+1)|] (13.8)

and it is fairly easy, working case-by-case, to maximize the expression in square brackets in (13.8), obtaining
just h2

i . The derivative of ei(x) is thus bounded in absolute value by max{|εi|, |εi+1|}. We can now estimate
the error in approximating f ′(x) with p′i(x) by routine application of the triangle inequality:

|f ′(x)− p′i(x)| ≤ |f ′(x) −H ′(x)|+ |e′i(x)|

≤ M4

96
· h3 + max{|εi|, |εi+1|} ≤

M4

96
· h3 +

M4

24
· h3 (use (11.10))

=
M4

24
· 5

4
· h3 . (13.9)

The best bound asserted in the literature is
M4

24
· h3, so this one is adequate for our purposes.

Similar approaches will give estimates for f ′′ and f (3) of the form

|f ′′(x) − p′′i (x)| ≤ K2 ·M4 · h2 (K2 some constant) (13.10)

|f (3)(x)− p(3)
i (x)| ≤ K3 ·M4 · h (K3 some constant); (13.11)

one can apply the same method as above, viz., get a bound of the correct order for the error of the k-th
derivative of the Hermite interpolant H(x) on [xi, xi+1] and get a bound of the correct order for the k-th
derivative of ei(x) (the second and third derivatives of ei(x) will involve 1/h and 1/h2 respectively). The
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details are similar to those above, and are left as an exercise for any interested reader. I do not know what
the best constants are, but K3 is probably irrational.

It should perhaps be pointed out that since the {εi} are exactly the differences {bi − f ′i} between the
derivative of the spline and the derivative of the function at the i-th node, the error p′i(xi) − f ′(xi) in
the approximation of the derivative at the nodes is on the order of h4 when f(x) is 5-times continuously
differentiable and the nodes are equally spaced. {This follows from our investigation of that case above.}
However, at points other than the nodes the order of approximation is the same as that of the derivative
of the piecewise Hermite interpolant, which is only h3. Still, this fact is occasionally useful in applications
where a good approximate derivative at some point is desired: one just makes sure that that point is a node
(and so perhaps one has to make one more measurement of an empirical f(x)).

14. Error in the Natural Spline Interpolant. This is the spline interpolant with zero curvature
at the ends defined on p. 3 above. All we need do is look at the Taylor form of pi(x) at xi (bottom of p. 7
above) and refer to Table 1 for the divided differences; we see that for i = 0 we have

1
2!
p′′0 (x0) = {f [x0, x1]− b0} −

{
b0 + b1 − 2f [x0, x1]

h0

}
(14.1)

so if we are to have p′′0(x0) = c0 (no harm in adding a little generality), that requirement replaces the 0-th
equation in the system on p. 9 above by

2b0 + b1 = 3f [x0, x1]− c0
h0

2
. (14.2)

Similarly, the n-th equation is replaced by

bn−1 + 2bn = 3f [xn−1, xn]− cn
hn
2
. (14.3)

The resulting matrix is just as strictly diagonally dominant as the one for the complete cubic spline, so it
has the same solvability and “norm-reducing” properties that the previous one did. The natural cubic spline
interpolant thus exists and is uniquely determined by f(x) (as we already knew from the minimum-energy
approach to splines).

There are some problems with the error estimates, however. We must now define ε0 and εn by adjoining
the equations

2(f ′0 + ε0) + (f ′1 + ε1) = 3f [x0, x1]− c0
h0

2
or

2ε0 + ε1 = 3f [x0, x1]− f ′(x0)− 2f ′(x1)− c0
h0

2
(14.4)

and a similar equation at xn, namely

εn−1 + 2εn = 3f [xn−1, xn]− f(xn)− 2f ′(xn−1) + cn
hn
2
. (14.5)

The r. h. sides of these equations follow a familiar pattern, and it requires no more than imitation of the
arguments above to see that they can be written in the form

2ε0 + ε1 =
−1
h0

{
−h2

0

2
f ′′(x0) +

1
2
h4

0

12
f (4)(ξ0)

}
− c0h0/2

=
h0

2
[f ′′(x0)− c0]− h3

0

24
f (4)(ξ0) (14.6)

for some sample point ξ0 ∈ [x0, x1]. A similar calculation at xn gives

εn−1 + 2εn =
−hn

2
[f ′′(xn)− cn] +

h3
n

24
f (4)(ξn) (14.7)
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for some sample point ξn ∈ [xn−1, xn]. However, it is now evident that unless the forced second derivatives
c0 and cn at the endpoints are chosen equal to the actual values of the second derivatives at the endpoints,
we’ll lose a factor of h2 in our uniform estimate of the functions |ei(x)|, i = 0, . . . , n: the r. h. s. of the system
of equations AX = Y (X = vector of εi’s—Y = r. h. sides of the equations above and the corresponding
equations above) that we must solve is only bounded by a multiple of h instead of a multiple of h3, and
therefore we can expect a uniform error estimate that is only on the order of h2 (recall the factor of h/4
that comes from the estimate in §10 above of |ei(x)| in terms of max{|εi| : i = 0, . . . , n}).

The pessimistic appearance of this estimate is deceptive: the only reason that it looks so bad is that it
is required to hold uniformly for all points x ∈ [x0, xn]. But it is unreasonable to expect good approximation
near a endpoint at which one has wilfully forced a derivative of the spline to take a value that f(x) thinks
is wrong! Indeed, if c0 and cn are chosen equal to f ′′(x0) and f ′′(xn) in the estimate above, then the O(h)-
terms drop out and the approximation becomes O(h4) as before. So in fact, the disturbance in the accuracy
of the approximation turns out to be an end effect : the difference between a spline interpolant that does
funny things at an endpoint and the complete cubic spline interpolant decays more rapidly than any power
of h {or of 1/(the distance from x to the endpoint)} as h → 0 or as x moves away from the endpoint, and
so the order-of-magnitude estimates for the errors in other interpolants become indistinguishable from the
ones we have developed for the complete cubic spline interpolant, once one gets away from the offending
endpoint.

15. End Conditions other than the Complete End Conditions. The plan for investigating the
approximation error of cubic spline interpolants with end conditions different from those of the complete
spline parallels that used for the complete spline. We begin by setting up some notation.

Let {pi(x) : 0 ≤ i < n} and {bi : 0 ≤ i ≤ n} be the polynomials and slopes that define the complete
cubic spline interpolant of the 4- or 5-times continuously differentiable function f(x) on [x0, xn]. Let another
cubic spline interpolant be defined by the cubic polynomials {qi(x) : 0 ≤ i < n} on the respective intervals
[xi, xi+1], with slopes {mi : 0 ≤ i ≤ n} at the nodes. Then their difference is a piecewise cubic function
defined by {zi(x) : 0 ≤ i < n}, with

qi(x) = pi(x) + zi(x), 0 ≤ i < n . (15.1)

This piecewise cubic is twice-continuously-differentiable, since the two competing splines are, and it takes
the value zero at all the nodes. Put

ζi = mi − bi, 0 ≤ i ≤ n . (15.2)

Then, since both the {bi : 1 ≤ i ≤ n− 1} and the {mi : 1 ≤ i ≤ n− 1} satisfy the same equations

µibi−1 + 2bi + λibi+1 = [r. h. s. depending only on f(x)]
µimi−1 + 2mi + λimi+1 = [r. h. s. depending only on f(x)]

at the interior nodes, their differences {ζi : 1 ≤ i ≤ n− 1} satisfy the homogeneous equations

µiζi−1 + 2ζi + λiζi+1 = 0, i = 1, ..., n− 1 . (15.3)

Suppose—in addition—that the {mi : 0 ≤ i ≤ n} satisfy two equations of the form

2m0 + α1m1 + · · ·+ αnmn = k0 (
∑
|αi| ≤ 1, k0 constant)

β0m0 + β1m1 + · · ·+ βn−1mn−1 + 2mn = kn (
∑
|βi| ≤ 1, kn constant). (15.4)

This format is certainly inclusive enough to include the case of the natural cubic spline interpolant in the
preceding §. Then it is again clear that the matrix of coefficients is “strongly diagonally dominant” as in the
discussion above, so the equations will have a unique solution. {Indeed, it would suffice to have

∑
|αi| < 2

and
∑
|βi| < 2 to insure the solvability of the equations, and in fact all we need in what follows is that the

equations be [uniquely] solvable for all choices of the numbers k0 and kn.}
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In this case, however, we shall not control the {ζi} and the |qi(x)| by controlling the size of all the {ζi}
uniformly. Rather, we shall control their size away from the endpoints by appealing to the equations

µiζi−1 + 2ζi + λiζi+1 = 0, i = 1, ..., n− 1 . (15.5)

For the sake of simplicity and because this is the most important case, consider the case where all hi = h,
so all µi = λi = 1/2. Then the equations all have the form

1ζi−1 + 4ζi + 1ζi+1 = 0, i = 1, ..., n− 1 . (15.6)

This is(9) a 2-nd order linear homogeneous difference equation (with constant coefficients) for the se-
quence {ζi : 1 ≤ i ≤ n − 1}. These are the discrete analogues of 2-nd order differential equations with
constant coefficients. All such equations have solutions of the form

ζi = (const.) · ri (15.7)

where the number r can be determined by plugging the trial solution ri into the difference equation, obtaining
in the present case

(ri−1 + 4ri + ri+1) = ri−1 · (r2 + 4r + 1) = 0 (15.8)

which is satisfied if and only if r satisfies the quadratic equation

(r2 + 4r + 1) = 0⇐⇒ r = r1 = −2−
√

3 or r = r2 = −2 +
√

3 . (15.9)

(It is handy that r1 = r−1
2 , and we shall use that fact without further reference). It is elementary to prove

that any sequence {ζi} constructed from r1 and r2 by taking arbitrary constants A and B and setting

ζi = A · r−i2 +B · ri2 (15.10)

satisfies the difference equation, and that every solution is of that form. {For readers who want to check
that assertion: determine A and B so that the values at i = 1 and i = 2 come out as the given sequence
does, and by recursion all the values must come out the same.}

It is easy to check that the equations governing the ζi’s are of the form

2ζ0 + α1ζ1 + · · · + · · · αnζn = K0

...
...

...
...

...
...

1
2
ζi−1 + 2ζi +

1
2
ζi+1 = 0

...
...

...
...

...
...

β0ζ0 + β1ζ1 + · · · + βn−1ζn−1 +2ζn = Kn

(15.11)

where the numbers K0 and Kn are two constants, different in general from the previous k0 and kn. Consider
the system of equations with the same coefficient matrix

2η0 · · · = 2C0

...
...

...
...

...
...

1
2
ηi−1 + 2ηi +

1
2
ηi+1 = 0

...
...

...
...

...
...

2ηn = 2Cn

(15.12)

(9)
For a thorough treatment of linear difference equations, please see the separate set of notes on this subject.
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and solve these equations in the case where the r. h. s. is the “1-st standard basis vector” (1, 0, ..., 0)T (so
C0 = 1, Cn = 0). For these equations we must have ηn = 0, η0 = 1, and for 0 ≤ i ≤ n we must have

ηi = A · r−i2 +B · ri2 (15.13)

for some constants A and B. Since these constants must satisfy

1 = η0 = A+B

0 = ηn = A · r−n2 +B · rn2 , (15.14)

it is elementary to solve for the coefficients and find that

ηi =
1

1− r2n
2

· [ri2 − r2n−i
2 ] . (15.15)

The estimate
|ηi| ≤

1√
3− 1

· 2 · |r2|i = (
√

3 + 1) · |r2|i (15.16)

is just as elementary, since 2n− i ≥ i holds for all 0 ≤ i ≤ n and |r2| < 1. This estimate shows that the |ηi|
decay exponentially as i increases, and—of crucial importance—the estimate of their size is independent of
n.

By symmetry or by repeating the argument, the solution of those equations with the r. h. s. (0, 0, ..., 0, 1)T

is subject to a similar estimate
|ηi| ≤ (

√
3 + 1) · |r2|n−i . (15.17)

It follows {the reader should be sure to understand the details!} that the solutions of the equations as given
are subject to the estimate

|ηi| ≤ (
√

3 + 1) · {|C0| · |r2|i + |Cn| · |r2|n−i} , (15.18)

the r. h. s. of which is fairly small in the middle of the range of indices. Since the equations that originally
determined the {ζi} can be rewritten in the form

2ζ0 = K0 −
∑

i αiζi
...

...
...

...
...

...
1
2
ζi−1 + 2ζi +

1
2
ζi+1 = 0

...
...

...
...

...
...

2ζn = Kn −
∑

i βiζi

(15.19)

we see that since it is known that max{|ζi|} ≤ max{K0,Kn}, the r. h. sides of the 0-th and n-th equations
are bounded in absolute value by 2 · max{K0,Kn}, and so finally we see that the |ζi| are subject to the
estimate

|ζi| ≤ (
√

3 + 1) ·max{K0,Kn} · [|r2|i + |r2|n−i] . (15.20)

This setting is general enough to cover the case of the natural cubic spline interpolant: in this case the i = 0
equations are

2b0 = 2f ′(x0) for the complete spline
2m0 +m1 = 3f [x0, x1] for the natural spline (15.21)
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and thus

2(b0 + ζ0) + (b1 + ζ1) = 3f [x0, x1]
2ζ0 + ζ1 = 3f [x0, x1]− 2f ′(x0)− b1

= 3f [x0, x1]− 2f ′(x0)− f ′(x1)− ε1 (15.22)

where ε1 is the familiar “error in the derivative of the complete cubic spline interpolant at the node x1”. We
know from the results of §13 above that the absolute value of the r .h. s. of this equation is actually of the
form

−h
2
f ′′(x0) +O(h3) (15.23)

so it’s certainly bounded. A similar equation and estimate are available for εn at the n-th node. Consequently
the errors {ζi : 0 ≤ i ≤ n} are subject to an estimate

|ζi| ≤ K · h · [|r2|i + |r2|n−i] (15.24)

where K > 0 is some constant that we could estimate (in terms of M2 and M4, say) if it were important to
do so.

The factor [|r2|i + |r2|n−i] is “small in the middle of the range 1 ≤ i ≤ n − 1” and we can exploit
this to make the differences {zi(x)} between the splines small, in two ways. First, suppose we want error
estimates that are valid uniformly in an interval J(δ) = [x0 + δ, xn − δ], in which we “agree to stay at least
a fixed distance δ > 0 from the endpoints.” Then in order for the cell [xi, xi+1] to be contained in J(δ)—as
a moment’s geometrical thought will show—we must have δ/h ≤ i and (δ/h) + 1 ≤ n− i. This gives

[|r2|i + |r2|n−i] ≤ (const.) · e−kδ/h (15.25)

where k = − ln |r2| ≈ 1.3169579; thus for x ∈ J(δ), we have an estimate

|ζi| ≤ (Const.) · h · e−kδ/h (15.26)

whenever the index i belongs to an interval [xi, xi+1] in which x can lie. As a result, using the estimate
developed in §10 above for the cubic on [xi, xi+1] with endpoint values 0, 0 and endpoint derivatives εi, εi+1,
but replacing the ε’s by ζ’s, we see that we have an estimate

|zi(x)| ≤ (Const.) · h
2

4
· e−kδ/h (15.27)

valid uniformly for x ∈ J(δ). Never mind the
h2

4
—look at e−kδ/h, which → 0 faster than any

power of h as h → 0! {Use L’Hôpital’s rule on ln(hae−kδ/h) for a ≥ 0—explicit bounds are also easy to
compute.} Thus the difference between the natural cubic spline interpolant of f(x) and its complete cubic
spline interpolant “damps out like e−1/h” uniformly in any fixed interval J(δ) contained in the open interval
(x0, xn). The reader can easily see that this result can be applied to any of the cubic spline interpolants of
more general type for which we set up the estimation machinery above.

Another way to look at the estimate we just derived is the following: take the estimate

|zi(x)| ≤ (Const.) · h
2

4
· e−kδ/h , (15.28)

let a small error tolerance η > 0 be given, and try to make the r. h. s. of the estimate be < h4η by taking
δ > 2h sufficiently large. {Why h4? because that is the order of the error in the complete cubic spline, and
since we are estimating error as measured from that interpolant, there is no hope of improving the order of
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the error estimate beyond that point. Why 2h? Because we want to get into the ”inside” of the interval J .}
Standard manipulation of

(Const.) · h
2

4
· e−kδ/h < h4η (15.29)

for h < 1 (so lnh = −| lnh|) leads to

−kδ/h < ln(4η/(Const.))− 2| lnh| or

δ >
1
k
· h · [2| lnh| − ln(4η/(Const.))] . (15.30)

Because the expression in square brackets→∞ as h→ 0, we can make the r. h. s. of this inequality be > 2h
by taking h sufficiently small; and because − ln(4η/(Const.)) is large and positive for small η > 0, once h
is “sufficiently small” for such an it is also ”sufficiently small” for all smaller η’s. On the other hand, since
h| lnh| → 0 as h → 0, we can make the whole r. h. s. small by taking h > 0 sufficiently small. Thus there
is a function of h—the r. h. s. of this inequality—which is of the order O(h ln h), such that for sufficiently
small h, if x ∈ [x0, xn] stays as far from x0 and xn as specified by that inequality, then the estimate

|f(x)− s(x)| ≤
[
M4

384
+ η

]
· h4 (15.31)

holds, where η > 0 is any preassigned positive number. This result is valid for a large class of cubic spline
interpolants including the natural one.(10)

Estimates of this type can be extended to the derivatives of cubic spline interpolants with little trouble
by imitating the methods used for the natural spline above. The details can easily be filled in by the
interested reader.

Attached figures with numbers > 3 show how the effects of the most wrong-headed choices of b0 and bn
damp out quite quickly when the hi are chosen equal and are only moderately small.

(10)
This observation was made in the first ediction of Atkinson’s book—cf. the inequality (3.84), p. 147—but was dropped from the

second edition.
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