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Preface

The book presents some results of the authors’ investigations in the area of
iterative methods for approximating the fixed points of operators possessing a
property of quasi-contractivity (the Fejér property). There exists a huge num-
ber of references devoted to investigations on convergence of iterative pro-
cesses for finding the fixed points under various assumptions about classes of
operators and spaces. Therefore, it is a very difficult matter to write even a
glance review over this literature.

The principal difference of the material presented in this book from the over-
whelming majority of works on the topics is in the following:

1) the authors completely concentrate on the investigation of problems in
Hilbert spaces and, even mainly, in the finite-dimensional Euclidean space R

n;

2) the main focus is not on obtaining the most generalized theorems on
convergence, but rather on constructing concrete mappings; on the basis of
these mappings, iterative processes are generated that approximate solutions
of a wide set of proper and improper problems of mathematical programming,
well- and ill-posed problems with presence of additional a priori constraints;

3) for constructing iterative procedures, the authors widely use one very im-
portant property of the class of the quasi-contractive mappings; this property
consists in their closure with respect to superpositions of some type; this pro-
vides an opportunity to implement a natural decomposition of the problem and
to decompose the algorithm into some simpler procedures.

The quasi-contractivity of operators is met in various forms in many works
(see, for example, (Martinet, 1972; Maruster, 1977; Moreau, 1965)) and are
coupled with investigations of theorems on existence and approximations of
fixed points. Here, the terminology is not established yet. By this reason, in
Section 1 of Chapter I we give definitions of the main classes of nonlinear
mappings using for this two terminologies. The origins of this terminology
are, from one side, in works from numerical functional analysis and, from
the other side, in works from the mathematical programming, in which the
term “Fejér mapping” (named such in the honor of the outstanding Hungarian
mathematician L. Fejér, 1880–1959) is widely known. The origin of this term,
which we prefer in this book, has its own history discussed below.
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Fejér had introduced the following definition (Fejér, 1922).

Let M be a closed set of points in R
n. If p and p1 are points in R

n such

that kp� qk > kp1 � qk for any q 2 M , then p1 is said to be pointwise closer

to M than p. If p is such that there is no point p1 which is pointwise closer to

M than p, then p is called the closest point to the set M .

He made the interesting observation that the set of points closest to M is
identical to the closed convex hull conv.M/ of the set M . From this property
it follows that if a point p does not belong to conv.M/, then it is possible to
find a point p1 which is closer to M than p.

On the base of this geometrical fact, in the work (Motzkin and Schoen-
berg, 1954) the notion of a Fejér monotone sequence xk (with xk ¤ xkC1,
kxkC1 � qk 6 kxk � qk for any k and q 2 M ) was introduced and the relax-
ation method was constructed for the approximate solution of systems of linear
inequalities. So the Fejér approach had been applied to solve systems of linear
inequalities. Later, these techniques were developed for solving problems of
convex programming.

This property happened to be rather important, and it appeared in investiga-
tions of problems in which the set of their solutions plays the role of the setM .
For instance, it can be the solution set of a system of linear equations, the set of
optimal solutions for problems of linear programming, of ill-posed problems
of mathematical physics, and of many others. These all are problems, in which
non-uniqueness of solutions is a typical situation.

The problems mentioned occupy the end positions in the historical chain
of development of mathematical simulation problems and of expanding the
classes of problems to be solved. We speak about a chain of classes with
their peculiarities: the uniqueness of solution and its stability (well-posedness)
�! nonuniqueness and instability (ill-posedness) �! insolvability (in a more
general case, improperty �! poor formalizability).

For such problems new and innovating approaches are necessary on sim-
ulating and solving the problems related, in particular, with the synthesis of
techniques and methods elaborated in the classic settings.

The notion of Fejér convergence has played an important role. As it was
mentioned above, in the beginning it was used in the works (Motzkin and
Schoenberg, 1954; Armon, 1954) for the construction of iterative methods for
solving linear inequalities. Somewhat later, investigations of methods of such
a type were carried out in (Merzlyakov, 1962; Bregman, 1965; Gurin, Polayk,
and Raik, 1967; Eremin, 1965a). In the next works (Eremin, 1965a, 1966b,
1966c, 1968a, and others), more generalized notions and terms connected with
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the Fejér’s name were introduced. Those were: Fejér mappings (one- and
multi-valued), Fejér methods, and others.

Large number of theorems and auxiliary facts were proved that gave a wide
range of possibilities of constructing iterative methods for solving problems
of various types: systems of convex inequalities and problems of convex pro-
gramming, ill-posed problems of mathematical physics in the presence of ad-
ditional functional constraints, and so on.

Let us pay attention to another circumstance related to the iterative nature
of the Fejér operator, for example T , which is put into correspondence to the
problem of finding the solution of a system of linear and convex inequalities.
The iterative process xkC1 D T .xk/, k D 0; 1; 2; : : : can be convergent even
the mentioned system of inequalities is inconsistent. In this case the limit has
an approximative meaning. Such cases are quite important, and their iden-
tifications and investigations is an actual topic. Some cases of that type are
presented in Sections 2, 3, and 6 of Chapter IV.

To avoid ambiguity, let us make one note on a phrase often met in the text
of this book: “. . . let a set M be given . . . ” from R

n or H . This or that iden-
tification of this set can be either simple or difficult. In this sense it is possible
to speak about explicit and implicit presentations of this set. For example,
let the set M � R

n be a polyhedron that can be given in two ways: M D
convfpj gm

j D1 or M D fx W Ax 6 bg.
The first presentation is explicit and has the following properties: it is simple

to find Nx 2 M , but it is difficult to check Nx 2 M .
The second way is implicit and has the following properties: it is difficult to

find Nx 2 M , but it is simple to check Nx 2 M .
These two ways of presentation are dual. They can be seen in other prob-

lems. Since practically everywhere in the text the set M , meaningfully, is an
element of some object to be found, it is necessary to give the sense of the im-
plicit presentation to the setM . Note that the above mentioned terms “simple”
and “difficult” are used not in the exact sense, but in a pithy indirect meaning.
It is easy understood in the example given above in the case of an analytical
description of the (bounded) polyhedron from R

n.
Now briefly consider the contents of the book.

In Section 1 of Chapter I the main classes of nonlinear mappings (of Fe-
jér type) are defined, and their general properties are studied. Further, these
properties are used for construction and investigation of iterative processes. In
particular:

– the very important property of closure of these classes with respect to some
transformations (multiplication and convex summation) is established;
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– theorems on the strong (Section 2) and weak (Section 3) convergence of
the successive approximation method with step-operators of the Fejér type are
formulated, and meaningful applications are discussed;

– the Browder fixed point principle (Browder, 1967) is considered for nonex-
pansive operators, and the strongly convergent method of the correcting mul-
tipliers is formulated (Subsection 4.2, Section 4); the idea of this method be-
longs to Halperin (Halperin, 1967);

– the asymptotic rule for stopping the iterations is defined, and this rule guar-
antees the stable approximation of solutions of ill-posed problems for approx-
imately given input data (Subsection 4.3, Section 4).

In the last three sections of this chapter, Fejér mappings and processes are
investigated both for one-valued and multi-valued operators, the approach of
constructing such mappings is described on the basis of dividing couples, and
the basic constructions of Fejér mappings are discussed.

In Chapter II, linear and nonlinear operator equations in Hilbert spaces are
discussed. For linear equations, properties of an iterative operator in the ˛-
process is analyzed, whose concrete realizations lead to the methods of steep-
est descent, minimal residuals, and minimal error (Section 4). In the nonlin-
ear case, the following methods are investigated: Newton–Kantorovich (Sec-
tion 2), Levenberg–Marquardt, and linearized versions of the gradient methods
(Sections 5 and 6). The local (in the neighborhood of a solution) conditions on
the original operator are formulated, which are sufficient for the step-operator
to belong to the class of the pseudo-contractive mappings that, in general case,
guarantee weak convergence of iterations. The superposition principle for op-
erators of Fejér type allows one to solve not only the operator equations, but,
also, systems of nonlinear equations together with a system of convex inequal-
ities (Section 3).

In Section 7, the considered methods are applied to ill-posed problems hav-
ing additional a priori constraints when the solution iterative operator is con-
structed as the superposition of some classical method, for example of one
mentioned above, and a Fejér mapping, which is responsible for the con-
straints. Several applied problems are described that are reduced for solving
integral (one- and two-dimensional) equations of the first kind with a priori

information on the solution, and the results of numerical experiments are dis-
cussed from the viewpoint of effectiveness of the suggested method.

In its essence, Chapter III illustrates and deepens the contents of Sections 5–
7 of Chapter I by examples of objects, which are very important for mathe-
matical programming: systems of linear and convex inequalities both consis-
tent and inconsistent. In Section I the basic constructions of Fejér mappings
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are considered for systems of linear and convex inequalities. The case of the
mirror relaxation is discussed in the Fejér process for a system of linear in-
equalities (Section 2). In Section 4 the important case of the Fejér process
is investigated for a finite system of convex sets with an empty intersection.
The convergence of the cyclic process of projecting to the cycle of immobil-
ity is proved. Section 6 is devoted to aspects of the topic “Fejér methods and
nonsmooth optimization”. The aspects of the convergence rate of the Fejér
processes (Section 5) and their stability (Section 7) are considered.

Chapter IV has six sections and presents some special topics associated with
the Fejér processes, in particular: methods of their parallelization (Section 1),
randomization (Section 2), the Fejér processes for consistent and inconsistent
systems and improper problems of linear programming of the first, second, and
third kind (Sections 3–4). In Sections 5–6 some topics of procedures for the
problem of point projection onto a convex closed set from R

n are considered.

The authors highly appreciate the work of colleagues from the Institute
of Mathematics and Mechanics, Ural Branch of Russian Academy of Sci-
ences (RAS), L. D. Popov and B. D. Skarin, who read the book in preparing
the Russian publication and provided useful comments. The authors express
deep gratitude to G. F. Kornilova who provided a computer preparation of the
manuscript and spent many efforts for its improvement.

This book is the translation of a monograph edited in Russian by the Ural
Brach of RAS (Ekaterinburg, 2005).

April 2009 V. V. Vasin, I. I. Eremin
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Introduction

The book suggested to an interested reader is devoted to iterative methods
for solving some classes of problems (ill-posed ones, linear operator equa-
tions, systems of linear and convex inequalities, problems of linear and convex
programming) that are generated by operator of the nonexpansive types. In
the latter types we consider strongly M -nonexpansive (or M -Fejér), quasi-
nonexpensive, pseudo-contractive, and some others.

The minimal and natural requirement on any iterative process is the decreas-
ing of the norm of deviation of the iteration point from the solution to be found
or from the set of solutions as the number of iteration increases. This requires
the condition of strong nonexpansibility (or Fejér-type property) onto the op-
erator. The need to obtain convergence of iterations to some solution in a
sufficiently wide space leads to a stronger requirement onto the step operator
that can be expressed by some property of pseudo-contractivity.

The M -Fejér property of a mapping T W H ! H (here, H is a Hilbert
space) means that the image T .x/ of an element x … M lies closer to any
point y fromM , and thusM D Fix.T /. Firstly, note the constructive character
of generating such operators in application to the problem mentioned above;
second, the logic and arithmetic structure of such operators is rather simple
and has wide internal parallelism that is important for solving problems on
contemporary multi-processor computers on the basis of parallelization.

The importance of such operators lies in the fact that the Fejér property
(pseudo-contractivity) remains valid under constructing their superpositions
and convex combinations. This provides a large range of possibilities for con-
structing various, rather flexible and economic procedures for solving prob-
lems of different nature that are reduced to finding a fixed point of such a
mapping. Here, it is necessary to note the universality of these procedures that
comes from the fact that insolvability (improperty) of a problem is not an ob-
stacle for their application. In such a case, approximation of some generalized
solution holds, and the solution is found by a rather natural way.

Moreover, there is another reasoning that underlines importance of investi-
gations of such operators. Namely, when solving ill-posed problems, it is cru-
cial to take into account all additional information on the solution to be found.
The most actual is accounting a priori constraints in the case of nonuniqueness
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of a solution, since its localization gives an opportunity to separate the solution
satisfying the properties following from the physical sense of the problem. It
is turned out that a wide number of a priori constraints arising in applications
can be taken into account in a very simple and flexible way by means of special
Fejér mappings.

It allows to construct iterative processes on the basis of a modification of
classic schemes by means of appropriate mappings of the Fejér type that is
responsible for the a priori relations described, for instance, by a system of
linear or convex inequalities. Examples given in Chapter II demonstrate high
efficiency of such an approach to solving important ill-posed problems with
simple a priori constraints in the form of linear inequalities.

By authors’ opinion, the solution of problems on the basis of iterative con-
structions of Fejér type now has no noticeable propagation in contemporary
computational mathematics. The authors hope that systematic description of
the Fejér processes implemented in this book will facilitate more wide implan-
tation of this techniques into practice of numerical analysis.
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General properties of nonlinear operators of

Fejér type

1 The main classes of nonlinear mappings

Let X be a linear normed space and T W X ! X be a mapping (operator)
acting in this space. We use the notation Fix.T / for the set of fixed points of
the mapping T , i.e.,

Fix.T / D fx W x 2 D.T /; T .x/ D xg;

where D.T / is the domain of definition of the operator T in the space X. In
some cases for convenience and brevity of writing, we use the denotation M
instead of Fix.T / for the set of fixed points. In general D.T / is not assumed
to coincide with X; nevertheless, if it does not cause ambiguity, we also use
the notation T W X ! X instead of T W D.T / � X ! X and “8x 2 X”
instead of “8x 2 D.T / � X”.

1.1 (Quasi-)nonexpansive and pseudo-contractive operators

Definition 1.1. A mapping T W X ! X is called weakly M -Fejér or M -
quasi-nonexpansive, if M D Fix.T / ¤ ¿ and

kT .x/ � zk � kx � zk 8x 2 X 8 z 2 M: (1.1)

Denote the class of such operators by K
M

.

Definition 1.2. A mapping T W X ! X is called M -Fejér or strictly M -

quasi-nonexpansive, if M D Fix.T / ¤ ¿ and

kT .x/ � zk < kx � zk 8x 2 X; x … M; z 2 M: (1.2)

Denote this class by F
M

.

In the case of a Hilbert space we use the denotation H instead of X.
Relations (1.2) which hold for an operator of metric projection onto a convex

closed subset M of a Hilbert space H , are characteristic; i.e., if in a normed
strictly convex space the operation of metric projection satisfies the relations
(1.2), then this space is a Hilbert space as V. S. Balaganskii had shown.
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Definition 1.3. Let X D H be a Hilbert space. A mapping T W H ! H is
called M -pseudo-contractive (or strongly M -Fejér), ifM D Fix.T / ¤ ¿ and
there exists a constant � > 0 such that

kT .x/ � zk2 � kx � zk2 � � kT .x/ � xk2 8x 2 X 8 z 2 M: (1.3)

Denote this class by P
�

M
.

It is worth to note that for � D 1, inequality (1.3) is equivalent to the follow-
ing one:

kT .x/ � zk2 � .T .x/� z; x � z/; (1.4)

where .�; �/ denotes the inner (scalar) product in H .

Definition 1.4. A mapping T W X ! X is called nonexpansive (nonexpan-

ding), if
kT .x/ � T .v/k � kx � vk 8x; v 2 X: (1.5)

We denote this class by K .

Definition 1.5. Let X D H be a Hilbert space. A mapping T W H ! H

is called pseudo-contractive if there exists a constant � > 0 such that the
following inequality holds:

kT .x/ � T .v/k2 � kx � vk2 � � kx � T .x/ � .v � T .v//k2

8x; v 2 H :
(1.6)

We denote this class by P
� .

It is evident that if M D Fix.T / ¤ ¿, then for v D z 2 M inequality (1.5)
transforms into (1.1), and inequality (1.6) transforms into (1.3). Thus, in this
case K

M
� K , P

�
M

� P
�.

Since relation (1.2) implies (1.1) and relation (1.3) implies (1.2), the follow-
ing inclusions hold:

P
�

M
� F

M
� K

M
;

and, as some examples show (see, for instance, (Vasin and Ageev, 1993)), these
inclusions are strict.

Denote the identity operator by I .

Lemma 1.6. If T W H ! H , T 2 P
�

M
, then T D 1

1C�
V C �

1C�
I; where

V 2 K
M

. Conversely, if V 2 K
M

, then for � 2 .0; 1/ the mapping T D
�V C .1 � �/ I belongs to the class P

�
M

for � D .1 � �/ =�.
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Proof. It is reduced to a direct check. For example, let us verify that the fol-
lowing inclusion holds: �V C.1��/ I � P

�
M

for � D .1��/ =�. For x 2 H

and z 2 M we have

k�V.x/C .1 � �/ x � zk2 � kx � zk2

C 1 � �
�

kx � .� V .x/C .1 � �/ x/k2

D k� .V .x/� z/C .1 � �/.x � z/k2 � kx � zk2

C � .1 � �/ k.x � z/C .z � V.x//k2

D � .kV.x/� zk2 � kx � zk2/ � 0;

since V 2 K
M

.

The analogous statement holds for the classes K and P
� .

Lemma 1.7. If T W H ! H , T 2 P
� , then T D 1

1C�
V C �

1C�
I , where V 2

K . Inversely, if V 2 K , then for � 2 .0; 1/ the mapping T D �V C .1 � �/ I
belongs to the class P

� for � D .1 � �/ =�.

Thus, for 0 < � < 1, the operator T� D �T C .1 � �/ I satisfies a
stronger contractivity condition than the original operator T , and in addition
Fix.T / D Fix.T�/. We shall widely use these properties in the study of itera-
tive processes.

Theorem 1.8. Let Ti W H ! H , Ti 2 P
�i

Mi
and M D

Tm
iD1Mi ¤ ¿. Then:

1) T D TmTm�1 : : : T1 2 P
�

M
, where � D min

1�i�m
f�ig = 2m�1I

2) T D
mP

iD1
˛iTi 2 P

�
M

, where ˛i > 0;
mP

iD1
˛i D 1; � D min

1�i�m
f�ig.

Proof. First, consider the operator T D TmTm�1 : : : T1. It is evident that
M � Fix.T /. Let us verify that the inverse inclusion is valid. For this, it is
sufficient to consider the case m D 2. Let now x 2 Fix.T /, where T D T2T1.
Assume the contrary, namely, that x … M1 \M2. Then two cases are possible:
1) x … M1 and 2) x … M2, x 2 M1.

In case 1) for z 2 M we have

kx � zk2 D kT2T1.x/� zk2 � kT1.x/� zk2 � �2kx � T2T1.x/k2

� kx � zk2 � �1kx � T1.x/k2 < kx � zk2;
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and in case 2)

kx � zk2 D kT2T1.x/ � zk2 D kT2.x/ � zk2

� kx � zk2 � �2kT2.x/� xk2 < kx � zk2;

i.e., we obtain a contradiction.
For the operator T D ˛1T1 C ˛2T2, the assumption that x 2 Fix.T /, x …

M1 \M2, also leads to the following impossible inequality:

kx � zk D k˛1T1.x/C ˛2T2.x/� zk
� ˛1kT1.x/� zk C ˛2kT2.x/� zk < kx � zk;

since P
�i

Mi
� F

Mi
, and we have either x … M1, or x … M2. Now discuss the

proof of the fact that T D T2T1 � P
�

M
. Applying the theorem condition that

Ti 2 P
�i

Mi
(i D 1; 2), and convexity of the square of the norm, we have for

z 2 M D M1 \M2, x 2 X:

kT .x/ � zk2 D kT2T1.x/� zk2

� kT1.x/� zk2 � �2k.I � T2/T1.x/k2

� kx � zk2 � �1kx � T1.x/k2 � �2k.I � T2/T1.x/k2

� kx � zk2 � .minf�1; �2g = 2/ kx � T2T1.x/k2;

i.e., T D T2T1 2 P
�

M
, where � D minf�1; �2g = 2.

If T D ˛1T1 C ˛2T2, where ˛i 2 .0; 1/, ˛1 C ˛2 D 1, then for any z 2
M D M1 \M2 and x 2 X, the following relations hold:

kT1.x/ � zk2 � kx � zk2 � �1kx � T1.x/k2;

kT2.x/ � zk2 � kx � zk2 � �2kx � T2.x/k2:

Multiplying the first inequality by ˛1 and the second one by ˛2, and summing
the left- and right-hand sides, we obtain

kT .x/ � zk2 � ˛1kT1.x/� zk2 C ˛2kT2.x/� zk2

� kx � zk2 � �1˛1kx � T1.x/k2 � �2˛2kx � T2.x/k2

� kx � zk2 � minf�1; �2g kT .x/ � zk2;

i.e., T D ˛1T1 C ˛2T2 2 P
�

M
, where � D minf�1; �2g.

By induction on m, we complete the statement of the theorem.
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Remark 1.9. The statement of the theorem is valid for any order of indices in
the superposition T D Tj1Tj2 : : : Tjm

.

Definition 1.10. An operator (mapping) T W H ! H is called monotone, if

.T .x/ � T .v/; x � v/ � 0 8x; v 2 H :

Theorem 1.11. If T W D.T / D H ! H and T 2 K , then the operator

F D I � T is monotone, and the following property is valid:

xj + x; xj � T .xj / ! 0 H) x D T .x/; (1.7)

where the symbol “+” means weak convergence.

Proof. The monotonicity of this operator follows from the relation

.F.x/� F.v/; x � v/ D kx � vk2 � .T .x/ � T .v/; x � v/ � 0:

Let now the assumption in (1.7) be satisfied. Then for any element u 2 H we
have

lim
j !1

.F.u/ � F.xj /; u � xj / D .F.u/; u � x/ � 0:

In particular, for ut D x C tw, where t > 0 and w is an arbitrary element
from H , we have t.F.ut /; w/ � 0. Cancelling the last expression by t and
passing to the limit as t ! 0, we obtain .F.x/;w/ � 0, from which F.x/ D
x � T .x/ D 0, i.e., x 2 Fix.T /.

1.2 Structure of the set of fixed points

Before the formulation of the main result on the existence of fixed points, let
us clarify the structure of the set of fixed points for a large class of mappings,
namely, for the class K

M
.

Lemma 1.12. If T 2 K
M

, then the set MDFix.T / is closed and convex.

Proof. Let x0; x1 2 Fix.T / D M and x� D .1 � �/x0 C �x1. Then from the
lemma conditions, we have

kT .x�/ � x0k � kx� � x0k;
kT .x�/ � x1k � kx� � x1k:
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On the other side, we have

kx0 � x1k � kx0 � T .x�/k C kT .x�/ � x1k
� kx� � x0k C kx� � x1k
D �kx0 � x1k C .1 � �/kx0 � x1k D kx0 � x1k;

i.e., T .x�/ 2 Œx0; x1�. From the first two relations, it follows that T .x�/ 2
Œx0; x��, T .x�/ 2 Œx�; x1�, i.e., T .x�/ D x�.

Let x be a limit point of the set M and x … M , i.e., T .x/ ¤ x. Then there
exists an element z 2 M , for which 2kx � zk < kT .x/ � xk. From this

kT .x/ � xk � kT .x/ � zk C kz � xk � 2kx � zk < kT .x/ � xk;

that is impossible. Therefore, x 2 M , i.e., the set M is closed.

Corollary 1.13. If T 2 F
M

or T 2 P
�

M
, then M D Fix.T / is convex and

closed.

1.3 Existence of fixed points

We now establish existence of the fixed points for nonexpansive operators
(Browder, 1967).

Theorem 1.14. Let D be a convex closed bounded subset of the Hilbert space

H and T be a nonexpansive operator acting from D into D . Then the set

Fix.T / is nonempty, convex, and closed.

Proof. Introduce the notation Vs.x/ D sT .x/ C .1 � s/v0, where 0 < s < 1
and v0 is a fixed element from D . Then Vs is a contractive mapping (with
constant s < 1) that acts from D into D . Thus, by the known principle of
contractive mappings, Vs has a unique fixed point xs in D . Since D is closed
and bounded, the set fxs W 0 < s < 1g is weakly compact, and therefore there
exists a sequence xj D xsj

that converges weakly to some element x0 2 D

for sj ! 1, j ! 1. We show that x0 2 Fix.T /.
If x is some point from X, then

kxj � xk2 D k.xj � x0/C .x0 � x/k2

D kxj � x0k2 C kx0 � xk2 C 2.xj � x0; x0 � x/;
(1.8)

where 2.xj � x0; x0 � x/ ! 0, since xj + x0.
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Since sj ! 1 for j ! 1, this implies

T .xj / � xj D fsjT .xj /C .1 � sj /v0g � xj C .1 � sj /fT .xj / � v0g
D fVsj

.xj / � xj g C .1 � sj /fT .xj / � v0g (1.9)

D .1 � sj /fT .xj / � v0g ! 0;

using the boundedness of fT .xj /g � D .
Substituting x D T .x0/ into (1.8) and passing to the limit, we obtain

lim
j !1

fkxj � T .x0/k2 � kxj � x0k2g D kx0 � T .x0/k2: (1.10)

Taking into account that T is a nonexpansive mapping, we obtain the fol-
lowing inequalities:

kxj � T .x0/k � kxj � T .xj /k C kT .xj / � T .x0/k
� kxj � T .xj /k C kxj � x0k;

from which, keeping in mind (1.9), we find

lim sup
j !1

.kxj � T .x0/k � kxj � x0k/ � 0:

The latter relation implies the inequality

lim sup
j !1

.kxj � T .x0/k2 � kxj � x0k2/ � 0;

which together with (1.10) gives kx0 � T .x0/k D 0, i.e., x0 is a fixed point of
the mapping T in D .

Convexity and closure of the set Fix.T / follow from Lemma 1.12.

2 Strong convergence of iterations for

quasi-nonexpansive operators

For the approximation of fixed points of nonlinear mappings T , i.e., for the
solution of the equation

x D T .x/; (2.1)

the following two main iterative processes will be studied: the method of suc-

cessive approximations

xkC1 D T .xk/; k D 0; 1; : : : (2.2)
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and the process

xkC1 D �T .xk/C .1 � �/xk; k D 0; 1; : : : ; (2.3)

which is in fact the method of successive approximations for the operator T� D
�T C .1 � �/I .

2.1 The case of demi-compact operators

To prove strong convergence, several conditions for the operator T will be
needed additionally to the property of affiliation of T to the class K .

Definition 2.1. A mapping T W X ! X is called demi-compact on D if it has
the following property: existence of a strongly converging subsequence xnk

!
x follows from the fact that fxng is a bounded subsequence and T .xn/�xn !
0.

Theorem 2.2. Let H be a Hilbert space, and let an operator T W H ! H

from the class K map the convex closed bounded set D into itself, and in

addition let T be demi-compact. Then the set Fix.T / of fixed points of T in D

is nonempty, and for any x0 2 D , the sequence xk defined by process (2.3)
converges strongly to x 2 Fix.T / � D .

Proof. By Theorem 1.14, the set Fix.T / ¤ ¿ is convex and closed. By
Lemma 1.7, the operator T� D �T C .1 � �/I belongs to the class P

�

for � D � = .1 � �/; therefore, relation (1.6) holds. Substituting x D xk,
v 2 Fix.T / D Fix.T�/ in this operator, we obtain the following relation:

kxkC1 � vk2 � kxk � vk2 � � = .1 � �/ kxk � T�.x
k/k2;

from which the boundedness of xk and the strong convergence follow:

lim
k!1

kxk � T�.x
k/k D 1 � �

�
lim

k!1
fkxk � vk2 � kxkC1 � vk2g D 0:

Together with the demi-compactness of the operator T and T 2 K , this
implies xkj ! x, T .xkj / ! T .x/ D x. Thus, convergence of the sequence
xk to a fixed point x follows from the monotonicity, i.e., kxkC1 �xk < kxk �
xk.

Corollary 2.3. If an operator T can be represented in the form T D S C U ,

where U is a compact operator (see Definition 2.7), and S is such that .I �
S/�1 exists and is continuous on the domain of values R .I � S/, then T is

demi-compact.
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Proof. In fact, let xn be a bounded sequence such that T .xn/ � xn ! 0. By
virtue of the compactness, there exists a subsequence xni

, for which U.xni
/ !

v 2 X. Then

wni
D .I � S/xni

D xni
� T .xni

/C U.xni
/

converges strongly. Since the operator .I � S/�1 is continuous, then xnk
D

.I � S/�1wn also converges strongly. The demi-compactness of T is proved.

Remark 2.4. If S is a linear bounded operator with the norm kSk < 1, then
by the Banach theorem about the inverse operator, the operator .I�S/�1 exists
and is bounded; therefore, S satisfies the conditions of Corollary 2.3.

2.2 The case of a linear operator

The assumption on demi-compactness of the operator T in Theorem 2.2 on
convergence is a rather burdensome condition, which, as a rule, is not satisfied
for ill-posed problems. The following theorem shows that this condition is not
needed for a linear operator.

Definition 2.5. A linear normed space X is called uniformly convex, if the
following property holds:

8 " > 0 9ı."/ > 0 W 8x; v 2 X; kxk D kvk D 1;

k.x C v/ = 2k > 1 � ı."/ H) kx � vk < ":

As it is known, the spaces Lp of integrable with the p-power functions and
the Sobolev spaces W n

p for 1 < p < 1 are uniformly convex.

Theorem 2.6. Let X be uniformly convex (e.g., a Hilbert space), and let T W
X ! X be a linear operator from the class K . Then the sequence xk defined

by process (2.3) converges strongly to a fixed point of the operator T .

Proof. We restrict ourselves to the case of a Hilbert space (the general case can
be found in (Dotson, 1970)). Since T 2 K , the operator T� D �TC.1��/I 2
P

�
M

(as in Lemma 1.7), whereM D Fix.T / D Fix.T�/ ¤ ¿, because the zero
element 0 satisfies 0 2 M by virtue of the linearity of T . From that it follows
that the inequality

kT�x � zk2 � kx � zk2 � � kx � T�xk2
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is satisfied for any x 2 X, z 2 M . For x D T n
�
v and from this inequality the

following relation results:

T T n
� v � T n

� v ! 0 8v 2 X:

Then, by linearity and continuity of T , we have

T 2T k
� v � T k

� v D T .T T k
� v � T k

� v/C .T T k
� v � T k

� v/ ! T .0/C 0 D 0:

By induction we obtain

TmT�v � T�v ! 0; n ! 1; 8x 2 X; m D 0; 1; : : : :

From the linearity, the representation

T k
� D Œ�T C .1 � �/I �k D

kX

j D0

C k
j .1 � �/k�j�jT j

follows, i.e., T k
�

is a linear combination of I; T; T 2; : : : ; T k, and

kT k
� k �

kX

j D0

C k
j .1 � �/k�j�j kT kj � 1 8n:

Moreover, since T k
�

is a polynomial in the operator T , we obtain TmT k
�

D
T k

�
Tm, and, therefore, T k

�
Tmv � T k

�
v ! 0 as n ! 1 for any v 2 X.

Keeping in mind that fT k
�
x0g belongs to a weakly compact set fv W kvk �

kx0kg, this sequence has a weak limit point z. Then from the Eberlein ergodic
theorem (Eberlein, 1949), it follows that xkC1 D T k

�
x0 ! z and z 2 Fix.T /;

and moreover, Tmz D z, m D 0; 1; 2; : : : .

2.3 Iterative processes for linear equations of the first kind

In previous subsections the problem of iterative approximation of solutions for
equations of the second kind (2.1) was considered. An operator equation of
the first kind

Ax D y (2.4)

can be formally written in the form of the second kind equation

x D x � .Ax � y/ � T .x/ (2.5)

and, further, the following iterative process can be studied:

xkC1 D xk � .Axk � y/; (2.6)

which we call the method of a simple iteration for equation (2.4).
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Definition 2.7. An operator (in general a nonlinear one/ acting on a pair of
Banach spaces X; Y is called compact if it transforms each bounded set into a
precompact one (on the notion of compactness, see, for instance, (Kolmogorov
and Fomin, 1976)).

Definition 2.8. Let M be a set of solutions for some problem and v0 be an
element of a Hilbert space X. Then the element Ox satisfying the condition

k Ox � v0k D inffkz � v0k W z 2 M g

is called the v0-normal solution of this problem.

If v0 is a zero element, then we use the term normal solution. In this case
we mean a solution with the minimal norm.

Theorem 2.9. Let A W H ! H be a selfadjoint positive semidefinite (i.e.,

.Ax; x/ � 0 8x 2 H ) compact operator, kAk � 1, and equation (2.4) be

solvable. Then for any initial approximation x0 2 H , the iterative process

(2.6) converges to the v0-normal solution Ox of equation (2.4).

Proof. By the Hilbert–Schmidt theorem for a linear self-adjoint compact oper-
ator A, there exists an orthonormal basis feig of this separable Hilbert space H

which consists of eigenvectors of this operator. Since the operator A is positive
semidefinite, its eigenvalues �i are nonnegative, and in addition 0 � �i � 1.
Let us assume them to be ordered increasingly.

Expand x0 and y by the basis feig. Taking into account that Aei D �iei ,
we have the representation

xkC1 D .I � A/xk C y D .I � A/2xk�1 C .I � A/y C y

D .I � A/kC1x0 C
kX

j D0

.I � A/jy (2.7)

D
1X

iD1

.1 � �i /
kC1x0

i ei C
1X

iD1

h kX

j D0

.1 � �i /
j
i
yiei :

We next find an expression for a solution Nx of equation (2.4). Substituting
the expansion

x D
1X

iD1

Nxiei ;
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in this equation, we obtain

Ax D
1X

iD1

NxiAei D
1X

iD1

�i Nxiei D
1X

iD1

yiei ;

from which we find Nxi D yi =�i if xi ¤ 0; here, Nxi is arbitrary if �i D 0, and
then yi D 0.

Now representation (2.7) can be written in the form

xkC1 D
X

i2I0

.1 � �i /
kC1x0

i ei C
X

i2I1

.1 � �i/
kC1x0

i ei

C
X

i2I1

1 � .1 � �i /
kC1

�i
yiei ;

(2.8)

where I0 D fi W �i D 0g, I1 D fi W �i ¤ 0g.
Let us show now that for k ! 1, the following convergence holds:

xkC1 ! Ox D
X

i2I0

x0
i ei C

X

i2I1

yi

�i
ei :

In fact, the second term in relation (2.8) tends to zero, since in the representa-
tion
X

i2I1

.1 � �i/
kC1x0

i ei D
X

i2I1; i�N

.1 � �i /
kC1x0

i ei C
X

i2I1; i>N

.1 � �i /
kC1x0

0ei

the first sum tends to zero by virtue of 0 < �i < 1, and the second sum can
be made arbitrary small for sufficiently large N , since the following estimate
holds: 

X

i2I1; i>N

.1 � �i /
kC1x0

i ei


2

�
1X

iDN C1

jx0
i j2:

Using an analogous reasoning, we see that, as k ! 1,

X

i2I1

1 � .1 � �i /
kC1

�i
yiei �!

X

i2I1

yi

�i
ei :

It is evident that Ox is a solution of equation (2.4). Take an arbitrary solution Nx
and decompose the difference as follows,

Nx � x0 D
X

i2I0

. Nxi � x0
i /ei C

X

i2I1

�yi

�i
� x0

i

�
ei :
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On the set of all solutions Nx, the value

k Nx � x0k2 D
X

i2I0

. Nxi � x0
i /

2 C
X

i2I1

�yi

�i
� x0

i

�2

achieves the minimal magnitude for Nxi D x0
i , i 2 I0. Since

Ox � x0 D
X

i2I1

�yi

�i
� x0

i

�
ei ;

this means that the solution Nx, where the minimum of k Nx � x0k2 is achieved,
coincides with Ox.

Thus, the sequence of iterations xk of process (2.6) converges to a solution
that has minimal deviation from x0.

Remark 2.10. Since in this theorem kAk � 1, it holds 0 � �i � 1; therefore,
kI � Ak D supf1 � �i W 0 � �i � 1g � 1, so the operator T in (2.5) belongs
to the class K .

Remark 2.11. In the theorem, the selfadjointness and nonnegativity of the
operator A is assumed. To avoid this assumption, it is possible to pass prelim-
inarily from equation (2.4) to the equation

A�Ax D A�y;

which, in the case of solvability of equation (2.4), is equivalent to the original
equation and has the required properties.

The linear equation (2.4) can be formally represented in the following form:

Ax C ˛x D ˛x C y (2.9)

with the parameter ˛ > 0. For a selfadjoint, positive semidefinite opera-
tor A, the operator A C ˛I has a bounded inverse operator; this allows one
to write (2.9) in the form of the equivalent operator equation of the second
kind

x D .AC ˛I /�1.˛x C y/ � T .x/ (2.10)

with the operator T 2 K , since k.A C ˛I /�1˛k D supf˛ = .� C ˛/ W � 2
�.A/g � 1 (�.A/ is the spectrum of the operator A).

Writing the method of successive approximations for equation (2.10), we
arrive at the implicit iterative scheme

xkC1 D .AC ˛I /�1.˛xk C y/ (2.11)

for the original equation (2.4).
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Theorem 2.12. Let the assumptions of Theorem 2.9 be satisfied without the

requirement kAk � 1. Then for process (2.11), the conclusion of Theorem 2.9

on the strong convergence of iterations to x0, i.e., to the normal solution of

equation (2.4), is valid.

Proof. The proof is implemented by the method from the previous theorem.

Remark 2.13. The statements of Theorems 2.9 and 2.12 are valid for any arbi-
trary linear bounded (not necessarily compact) operator; see (Vainikko, 1980).

3 Properties of iterations for the pseudo-contractive

mappings

3.1 The main theorem on convergence of iterations

In Subsections 2.1 and 2.2 of the previous section, the step operator T� in the
process (2.3) belongs to the class P

�
M

� P
� as a convex combination of non-

expansive and identity operators. So, actually (under some additional assump-
tions), the strong convergence has been proved for the method of successive
approximations for the operator T� 2 P

�
M

. It is natural to consider the general
situation: the method of successive approximations for an arbitrary pseudo-
contractive operator T , i.e., T 2 P

�
M

. It reveals that in this case, it is possible,
generally speaking, to obtain weak convergence only (Martinet, 1972; Vasin,
1988).

Theorem 3.1. Let an operator T W H ! H be from the class P
�

M
and satisfy

the relation

xj + x; xj � T .xj / ! 0 H) x 2 Fix.T /: (3.1)

Then for the iteration process (2.2) the following properties are valid:

1) xk + Ox 2 Fix.T /;

2) inf flimk!1 kxk � zk W z 2 Fix.T /g D lim kxk � Oxk;

3) either kxkC1 � Oxk < kxk � Oxk for any k, or the sequence xk is stationary

beginning from some k0 � 0, i.e., xk0 D xk0C1 D � � � D Ox;

4) the estimate is valid

1X

kD0

kxkC1 � xkk2 � kx0 � zk2 = � 8 z 2 Fix.T /:
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Proof. Since T 2 P
�

M
(see Definition 1.3), the substitution of x D xk into

inequality (1.3) gives the relation

kxkC1 � zk2 � kxk � zk2 � � kT .xk/ � xkk2; (3.2)

from which the existence of the limits follows:

lim
k!1

kxk � zk D d.z/ � 0 8 z 2 Fix.T /; (3.3)

lim
k!1

kT .xk/ � xkk D 0: (3.4)

A summation from k D 0 to k D N in inequality (3.2) gives the following
estimate:

NX

kD0

kxkC1 � xkk2 � 1

�

NX

kD0

.kxk � zk � kxkC1 � zk2/ � kx0 � zk2

�
;

which implies property 4).
From (3.3) the boundedness of xk follows, so there exists a weakly converg-

ing subsequence
xkj + Ox: (3.5)

By virtue of condition (3.1), we conclude from (3.4) and (3.5) that Ox 2 Fix.T /.
Establish now the uniqueness of the weak limit point, i.e., the convergence

of the entire sequence xk + Ox. Let x1; x2 be two weak limit points of the
sequence xk:

xki + x1; xkj + x2; x1; x2 2 Fix.T /:

Then, accordingly to (3.3)

lim
k!1

kxk � x1k D d1; lim
k!1

kxk � x2k D d2:

From the representation

kxki � x2k2 D kxki � x1k2 C 2 .xki � x1; x1 � x2/C kx1 � x2k2

for i ! 1, we find that d 2
2 � d 2

1 � kx1 � x2k2 D 0. Changing positions of
x1; x2 and using xkj + x2, we obtain d 2

1 � d 2
2 � kx1 � x2k2 D 0; therefore,

x1 D x2.
Property 2) follows from the identity

kxk � zk2 D kxk � Oxk2 C 2 .xk � Ox; Ox � z/C k Ox � zk2;

in which it is necessary to pass to the limit with taking into account that xk +

Ox 2 Fix.T /.
Property 3) directly follows from inequality (3.2).
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Corollary 3.2. Let in the theorem T 2 K
M

be used instead of T 2 P
�

M
. Then

the statements of this theorem are valid for process (2.3).

Proof. This follows from the fact that the property T 2 K
M

implies T� D
�T C .1 � �/I 2 P

�
M

for � D .1 � �/ =�, and condition (3.1) implies the
assertions for the operator T�.

Corollary 3.3. If T 2 P
� (or T 2 K) on X and Fix.T / ¤ ¿, then for the

iterative scheme (2.2) (or (2.3)), in particular, for processes (2.6) and (2.11)
the conclusion of Theorem 3.1 is valid.

Proof. It is sufficient to establish that for the operator T relation (3.1) holds.
This fact follows from Theorem 1.11. This completes the proof.

Definition 3.4. An operator T acting on a pair of linear normed spaces X;Y

is called (sequentially) weakly closed, if from the conditions xk 2 D .T /,
xk + x and T .xk/ + y it follows x 2 D.T /, T .x/ D y.

Corollary 3.5. The statement of Theorem 3.1 remains valid if instead of con-

dition (3.1) one requires (sequential) weak closedness of the operator T .

Proof. Actually, on the basis of the assumption that T 2 P
�

M
, relations (3.4)

and (3.5) have been obtained in proving the theorem; namely,

xkj + Ox; xk � T .xk/ ! 0;

from which it follows that T .xkj / + Ox. Then by virtue of the weak closedness
of T , we conclude that Ox 2 D.T / and T . Ox/ D Ox.

Proofs of all other properties can be employed without changes.

Corollary 3.6. The theorem is valid for a multi-valued operator T . In this

case the iterations xk weakly converge to an element x that satisfies the inclu-

sion x 2 T .x/ if condition (3.1) is changed as follows:

xj + x; xj � yj ! 0;

yj 2 T .xj / H) x 2 T .x/:

Remark 3.7. Under the conditions of Theorem 3.1 and its corollaries, the re-
sult, generally speaking, can not be enhanced to obtain strong convergence for
iterations. This follows from the work (Genel and Lindenstrauss, 1975) where
an example of a set D in the space l2, a mapping T W D ! D from the
class K , and an initial approximation is given, for which process (2.3) weakly
converges, but strong convergence does not hold.
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Thus, without additional assumptions, Theorem 3.1 and its corollaries do
guarantee only weak convergence. But it is possible to show an evident case
of strong convergence of the iterations; namely, the following corollary holds.

Corollary 3.8. If the linear hull Lin fxkg1
0 has finite dimension, then the it-

erative process (2.2) converges strongly to a fixed point of the operator T .

3.2 Superpositions of pseudo-contractive operators

In some cases the original problem admits the construction of an iterative pro-
cess where the step operators are a superposition or a convex combination of
mappings that are very simple and economical in their implementation. Thus,
the problem is divided into subproblems. For each subproblem its own itera-
tive operator is constructed. Further by means of some aggregative operation,
the iterative operator for the whole problem is generated by the considered
fragments. It is therefore possible to construct a solution operator from the
same class as the generating mappings. One application of such techniques for
the pseudo-contractive operators follows from the next theorem (Vasin, 1988).

Theorem 3.9. Let M D
Tm

iD1Mi ¤ ¿, Ti 2 P
�i

Mi
, and for each operator Ti

relation (3.1) be satisfied. Then for the iterative process (2.2) where T D
TmTm�1 : : : T1 or T D

Pm
iD1 �iTi , 0 < �i < 1,

P
�i D 1, the conclusion of

Theorem 3.1 is valid.

Proof. By Theorem 1.8 the operator T D TmTm�1 : : : T1 2 P
�

M
, where � D

min1�i�mf�ig = 2m�1, or T D
Pn

iD1 �iTi 2 P
�

M
, where � D min1�i�mf�ig.

Thus, to use the reasonings of Theorem 3.1, it is necessary to be sure that
property (3.1) holds at least for the iterative sequence xk. It is sufficient to
consider only the case of m D 2.

Let z 2 M D M1 \M2, T D T2T1, then

kT2T1.x/ � zk2 � kT1.x/� zk2 � �2k.I � T2/T1.x/k2

� kx � zk2 � �1k.I � T1/xk2 � �2k.I � T2/T1.x/k2

� kx � zk2 � �kx � T2.T1.x//k2:

If now xki + x, xki � T .xki / ! 0, then from the previous collection of
inequalities for x D xki , we obtain the following relations:

xki � T1.x
ki / ! 0; zki

D T1.x
ki / + x; zki

� T2.zki
/ ! 0;
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from which, in correspondence with the theorem assumptions that for Ti con-
dition (3.1) is satisfied, we obtain

x 2 Fix.T1/ \ Fix.T2/ D M1 \M2 D M;

i.e., the claimed relation (3.1) holds for the operator T D T2T1.
If T D �1T1 C �2T2, then, since in Theorem 1.8 the following chain of

inequalities was established,

kT .x/ � zk2 � kx � zk2 � �1�1 kx � T1.x/k2 � �2�2 kx � T2.x/k2

� kx � zk2 � min f�1; �2g kT .x/ � xk2;

the verification of property (3.1) is carried out in a similar way as for the oper-
ator T D T2T1.

3.3 Examples of the pseudo-contractive operators

Consider several examples.
1. Let Q be a convex closed subset of a Hilbert space H and f be a func-

tional which is convex and weakly semi-continuous from below. Define the
mapping

Sf
Q

W v ! arg minff .x/C .1=2/ kx � vk2 W x 2 Qg;

which is called the prox-mapping. It is easy to check that the problem consid-
ered in the definition of Sf

Q
is solvable for any v 2 H ; thus, the definition Sf

Q

is correct.

Lemma 3.10. The prox-mapping Sf
Q

belongs to the class P
1, i.e., the follow-

ing relation holds for it:

kT .x/ � T .v/k2 � kx � vk2 � kT .x/ � x � .T .v/ � v/k2

8x; v 2 H :
(3.6)

Moreover, the set Fix.Sf
Q
/ of fixed points coincides with the set M of solu-

tions for the problem (in the case M ¤ ¿)

min ff .x/ W x 2 Qg:

Proof. The proof of this fact can be found in the monograph (Vasin and Ageev,
1995).
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Corollary 3.11. Sf
Q

2 P
1

M
(see Definition 1.3).

2. Consider the operator PQ of metric projection (or, shortly, metric pro-

jection) onto a closed convex set Q 2 H ,

PQ.x/ D arg minfkx � vk2 W v 2 Qg: (3.7)

It is evident that PQ is a particular case of the prox-mapping Sf
Q

for f .x/ � 0,
so we obtain the following corollary from Lemma 3.10.

Corollary 3.12. The metric projection PQ onto an arbitrary convex closed

subset Q of a Hilbert space H belongs to the class P
1. It is therefore nonex-

pansive,Q-pseudo-contractive, and a Fejér operator (see Definitions 1.2–1.4).

3. Let Q be a convex closed subset of a Hilbert space H . The metric

projection with relaxation is given by the formula

P �
Q.x/ D x � �.x � Nx/; (3.8)

where � is the coefficient of relaxation, 0 < � < 2, and Nx D PQ.x/ is the
metric projection defined by (3.7). Introduce the functional of distance �Q.x/

from the point x to the set Q. The functional �Q.x/ is differentiable at points
x … M ; for this,

r�Q.x/ D .x � Nx/ = kx � Nxk;
.r�Q.x/; z � x/ � �Q.z/ � �Q.x/:

(3.9)

Moreover, from the definition of P �
Q.x/, it follows:

�Q.x/ D kx � Nxk2 D kP �
Q.x/ � xk2 =�2 (3.10)

and Fix.P �
Q/ D Q. Note also that the functional is nondifferentiable at the

boundary of the set Q, but on the other hand it has a subdifferential at any
point of the space H (see Dem’yanov and Vasil’ev, 1981; Clark, 1988).

Lemma 3.13. The inequality

kP �
Q.x/� zk2 � kx � zk2 � 2 � �

�
kP �

Q.x/� xk2 (3.11)

holds for any x 2 H , z 2 Q, i.e., P �
Q belongs to the class P

�
Q

for � D
.2 � �/ =�.
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Proof. Taking into account relations (3.9) and (3.10), we have for z 2 Q and
x … Q

kP �
Q.x/� zk2

D kx � zk2 C �2 kx � Nxk2 C 2�
� x � Nx

kx � Nxk ; z � x
�
kx � Nxk

� kx � zk2 C �2 kx � Nxk2 C 2� .kz � Nzk � kx � Nxk/ kx � Nxk
D kx � zk2 � � .2 � �/ kx � zk2

D kx � zk2 � .2 � �/
�

kP �
Q.x/� xk2:

Here, Nz D PQ.z/, x … Q. For x 2 Q, relation (3.11) obviously holds.

4. Consider now the mapping of the form

T .x/ D

8
<
:
x � � d.x/ e.x/ke.x/k2 ; d.x/ > 0;

x; d.x/ � 0;
(3.12)

where d.x/ is a convex subdifferentiable functional given on a Hilbert space H ,
and e.x/ is its subgradient. Define the set M D fx W d.x/ � 0g ¤ ¿ so that
e.x/ ¤ 0 for any element x … M .

Lemma 3.14. For 0 < � < 2 the operator T defined by relation (3.12) be-

longs to the class P
�

M
, where � D .2 � �/ =�, 0 < � < 2.

Proof. Let z 2 M , x … M . Then, taking into account that d.x/ > 0, d.z/ � 0
and the fact that e.x/ is the subgradient of the functional d.x/, we have the
estimate

kT .x/ � zk2 D kx � zk2 � 2�
d.x/

ke.x/k2
.e.x/; x � z/C �2 d 2.x/

ke.x/k2

� kx � zk2 � 2�
d.x/

ke.x/k2
.d.x/� d.z//C �2 d 2.x/

ke.x/k2

D kx � zk2 � .2 � �/ �
d 2.x/

ke.x/k2
C 2�

d.x/ d.z/

ke.x/k2

� kx � zk2 � 2 � �
�

kx � T .x/k2:
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Remark 3.15. In the four examples shown above, it was established that all
the mappings belong to the class P

�
M

. Therefore, under the additional assump-
tion that property (3.1) is satisfied, we are in the situation of Theorem 3.1 that
guarantees weak convergence of the iterations to a fixed point. In particular,
for the operator T of form (3.12) and for a choice of d.x/ in the form

d.x/ D
mX

j D1

kj Œf
C

j .x/��; kj > 0; � � 1; (3.13)

where fj are convex functionals that are semi-continuous from below and for
which the subdifferentials @fj .x/ are bounded mappings (i.e., the image of
a bounded set is bounded), the mentioned property (3.1) holds. By the way,
the property of boundedness of the subdifferential is evidently satisfied for the
quadratic functional fj .x/ D kAjx � yk2 (Aj is a linear operator) and affine
functionals fj .x/ D .x; aj / � bj .

In the next lemma, a sufficient condition for boundedness of the subdiffer-
ential @f .x/ is given as for the mapping @f W H ! 2H .

Lemma 3.16. Let a convex functional f W H ! R be subdifferentiable on

H and bounded (i.e., the image of each bounded set is bounded). Then the

subdifferential @f .x/ is a bounded mapping, i.e., for any bounded set M � H

we have

sup fkhk W h 2 @f .x/; x 2 M g � C .M/ < 1: (3.14)

Proof. Let M be a bounded subset of the space H and x 2 M . By definition
of the subgradient h of functional f .x/ at the point x, the following relation
holds:

.h; v � x/ � f .v/� f .x/ 8 v 2 H :

Taking v D x C " h
khk , where h 2 @f .x/, " > 0, we obtain the inequality

khk � 1

"

�
f

�
x C "

h

khk

�
� f .x/

�
: (3.15)

Since by assumption the functional f is bounded, the right-hand side of
inequality (3.15) is bounded on the set M , i.e.,

sup
1

"

�
f

�
x C "

h

khk

�
� f .x/ W x 2 M; h 2 @f .x/

�
� C .M/ < 1;

that implies estimate (3.14).
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Corollary 3.17. Let a convex functional f W H ! R satisfy a Lipschitz con-

dition, i.e., for some constant c > 0

jf .x/� f .v/j � c kx � vk 8x; v 2 H : (3.16)

Then the functional f is subdifferentiable on H and its subdifferential is a

bounded mapping.

Proof. Since the Lipschitz property implies continuity, the subdifferentiability
follows from the known fact of convex analysis (Ioffe and Tikhomirov, 1974).
If M is a bounded set, then it belongs to some sphere Sr .a/. Then from
inequality (3.16), the estimate follows

jf .x/j � jf .a/j C c r;

i.e., the boundedness of the range follows.

In the general case, the subdifferential, in particular, the gradient of a convex
functional, is not necessarily a bounded mapping as the following example
shows.

5. Consider the convex functional

f .x/ D
Z 1

0
Œx0.t/�2 dt (3.17)

on the subset of functions D.f / D fx.t/ W x0 2 C Œ0; 1�; x.0/ D x.1/ D
0;
R 1

0 Œx
00.t/�2 dt < 1g of the space L2Œ0; 1�. Taking into account zero bound-

ary conditions, we obtain

lim
�!0

f .x C �h/ � f .x/
�

D 2

Z 1

0
x0.t/ h0.t/ dt D �2

Z 1

0
x00.t/ h.t/ dt:

Thus, functional (3.17) is differentiable on the set D.f / in the space L2Œ0; 1�,
and its gradient is rf .x/ D �2x00.t/. This mapping acting from D.f / �
L2Œ0; 1� into L2Œ0; 1� is unbounded, since it transfers the bounded set

M D fsinn�t; n D 1; 2; : : :g � L2Œ0; 1�

into an unbounded one, so

sup
n Z 1

0
krf .x/k2 dx W x 2 M

o

D 4 sup
n Z 1

0
Œx00.t/�2 dt W x 2 M

o
D 2 sup

n
.�n/4 D 1:
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4 Iterations with the correcting multipliers

From the results of the previous section (see Remark 3.7) it is seen that for
nonexpansive and pseudo-contractive mappings T , generally speaking, it is
not possible to construct strongly converging algorithms on the basis of the
classical iterative schemes (2.2) and (2.3). For obtaining a strong approxima-
tion of fixed points, one special modification (the iterative regularization) is
needed by means of additional varying parameters (correcting multipliers).

Consider the iterative process (Halperin, 1967)

xkC1 D kC1T .x
k/C .1 � kC1/ v0; k D 0; 1; : : : ; (4.1)

which can be regarded as a modification of scheme (2.2) by means of the cor-
recting (damping) multipliers k ; here, v0 is some fixed element from H and
0 < k < 1. It turns out that for some special choice of k, the process (4.1), in
contrast to (2.2), generates a strongly converging iterative sequence for the op-
erator T 2 K . It is natural to call such a process (4.1) the method of correcting

multipliers.

4.1 Stability of fixed points on parameter

Consider the equation

x D  T .x/C .1 � / v0 (4.2)

with the operator T 2 K and 0 <  < 1 and show that its solutions approxi-
mate some point from Fix.T / with respect to the strong topology of a Hilbert
space H (Browder, 1967).

Theorem 4.1. Let T W D.T / D H ! H be a nonexpansive mapping and

let D be a bounded, convex, and closed subset of a Hilbert space H , which

is mapped into itself by the operator. Then for any element v0 2 D and pa-

rameter 0 <  < 1, there exists a unique solution x 2 D of equation (4.2),
and for this, lim!1 kx � Oxk D 0, where Ox is a fixed point of the operator T

closest to v0, i.e., Ox is the v0-normal solution of equation (2.1).

Proof. Since the operator T .x/ D T .x/C .1 � / v0 satisfies the condition

kT .x/� T .v/k �  kT .x/ � T .v/k �  kx � vk 8x; v 2 H ;

equation (4.2) has a unique solution (a fixed point of the operator T ) x 2
D for 0 <  < 1 on the basis of the Banach principle of fixed points. By
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virtue of the weak compactness of the set D , there exists a weakly converging
subsequence

xj
+ x; j ! 1: (4.3)

Since fT .xj
/g � D , this subsequence is bounded, therefore,

xj
� T .xj

/ D xj
� fj T .xj

/C .1 � j / v0g
C .1 � j / v0 � .1 � j / T .xj

/

D .1 � j / v0 � .1 � j / T .xj
/ ! 0

(4.4)

for j ! 1. From relations (4.3), (4.4), and Theorem 1.11, we conclude that
x 2 Fix.T / � D .

Let Ox 2 Fix.T / be the fixed point with minimal deviation from v0. Such a
point exists and is unique, since by Theorem 1.14 the set Fix.T / is not empty
and closed. By definition of xj

and Ox, we have

.1 � j / xj
C j fxj

� T .xj
/g D .1 � j / v0;

.1 � j / Ox C j f Ox � T . Ox/g D .1 � j / Ox:

Subtracting term-by-term from the first equality the second one and making
the scalar product with the remainder xj

� Ox, we obtain

.1 � j / .xj
� Ox; xj

� Ox/C j .F.xj
/ � F. Ox/; xj

� Ox/
D .1 � j / .v0 � Ox; xj

� Ox/;

where F D I � T is a monotone operator according to Theorem 1.11. Taking
into account this fact, we obtain the following inequality from the last relation:

.1 � j / kxj
� Oxk2 � .1 � j / .v0 � Ox; xj

� Ox/;

which, after cancelling by .1 � j /, can be written in the form

kxj
� Oxk2 � .v0 � Ox; x � Ox/C .v0 � Ox; xj

� Ox/;

where x is the point from Fix.T /, for which xj
+ x.

Taking into account that Ox is the projection of the point v0 onto the setM D
Fix.T /, we conclude that the first term in the right-hand side of the inequality
is nonpositive. Moreover, the second term tends to zero, since xj

+ x; so

lim
j !1

kxj
� Oxk D 0:

Since Ox is the unique limit point, the whole sequence x converges to Ox.
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Remark 4.2. It is possible to weaken the condition of the theorem and to re-
quire nonexpansiveness of the operator T on the set D only. In this case
in proving the membership of the weak limit point x to the set Fix.T /, it is
necessary to use the reasoning from Theorem 1.14 instead of Theorem 1.11.
Moreover, in Section 5 of Chapter IV (see Theorems 5.6 and 5.9), analogues
of Theorem 4.1 are given about stability on parameter of solutions x of equa-
tion (4.2) for operators T from other classes, namely, F

M
, K

M
.

Remark 4.3. Theorem 4.1 allows one to formulate a two-step algorithm for
iterative approximation of the v0-normal solution Ox of equation (2.1) with the
operator T 2 K . Actually, take the accuracy " > 0 of approximation and,
on the basis of Theorem 4.1, choose an appropriate N in such a way that the
estimate k Ox�x Nk < "= 2 is valid for the solution x N of equation (4.2). Further,
for fixed N , using the method of successive approximations

NxkC1 D NT . Nxk/C .1 � N/ v0;

for sufficiently large k � N. N/ we find Nxk such that kx N � Nxkk < "= 2. Then
the final estimate is

k Ox � Nxkk � k Ox � x Nk C kx N � Nxkk < ":

4.2 One-step iterative process

No doubts, the iterative process (4.1) would be more convenient in applications
if there exists a possibility to prescribe a priori a sequence of parameters k

in such a way that the sequence of iterations xk of process (4.1) converges
strongly to the v0-normal solution of equation (2.1). It turns out that under
some conditions on k this is possible (Halperin, 1967).

Definition 4.4. A numerical sequence i is called admissible, if the following
conditions are satisfied:

1) 0 < i < 1, i D 1; 2; : : : ;

2) i < iC1, i D 1; 2; : : : ;

3) lim
i!1

i D 1 ;

4) there exists a sequence of numbers n.i/ such that n.i C 1/ > n.i/, i D
1; 2; : : : ;

5) lim
i!1

"iCn.i/ � "�1
i D 1, where "i D 1 � i ;

6) lim
i!1

n.i/ � "i D 1.
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Theorem 4.5. Let the assumptions of the Theorem 4.1 be satisfied. Then for

any initial approximation x0 2 D and any admissible sequence of k , the

iterations (4.1) converge strongly to Ox 2 Fix.T /, where Ox is the fixed point

closest to v0.

Proof. Taking into consideration that D is a bounded set, it is possible to
assume that D � Sr .0/, where Sr .0/ is a ball of radius r > 0 with the center
at the zero element. Let

xi
D i T .xi

/C .1 � i / v0;

xiC1 D iC1 T .x
i /C .1 � iC1/ v0; i D 0; 1; : : : :

Then re-denoting xi
D xi , we have the estimate

kxlC1 � xik

� klC1T .x
l/ � iT .xi /k C jlC1 � i j kv0k

� i kT .xl/ � T .xi /k C jlC1 � i j kT .xl/k C jlC1 � i j r

� i kxl � xik C 2r jn � i j

� 
j
i kxl�j C1 � xik C 2r jn � i j

j �1X

�D0

�
i

� 
j
i kxl�j C1 � xik C 2r jn � i j � .1 � i /

�1

for any n > l . From this for l D k � 1, j D k �m, m < k, we obtain

kxk � xik � k�m
i kxm � xik C 2r jk � i j .1 � i /

�1: (4.5)

In the turn form D i , k D i Cn.i/, the latter relation implies the inequality

kxiCn.i/ � xik � 2r n.i/
i C 2r .iCn.i/ � i / .1 � i /

�1

D 2r n.i/
i C ."i � "iCn.i// "

�1
i ;

in which the second term tends to zero for i ! 1 by virtue of property 5) of
admissible sequences.

Since by condition 6) from Definition 4.4,

ln n.i/
i D n.i/ ln i D n.i/ � "i

ln.1 � "i /

"i
! �1
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as i ! 1, the first term also decreases to zero, i.e.,

lim
i!1

kxiCn.i/ � xik D 0: (4.6)

Using property 4) of admissible sequences, we conclude that there exists a
unique integer j such that j C n.j / � k < j C 1 C n.j C 1/.

Now taking m D j C n.j / and i D j C 1 in equality (4.5), we arrive at the
following relation:

kxk � xj C1k

� 
k�j �n.j /
j C1 kxj Cn.j / � xj C1k C 2r .k � j C1/ � .1 � j C1/

�1

� kxj Cn.j / � xj k C kxj � Oxk C k Ox � xj C1k
C 2r ."j C1 � "j C1Cn.j C1// � "�1

j C1;

where Ox is the v0-normal solution for the equation x D T .x/.
Joining (4.6), property 5) of admissible sequences, and Theorem 4.1, we

conclude that kxn � xj C1k ! 0 as n ! 1. Since k Ox � xkk � k Ox � xj C1k C
kxj C1 � xkk, the limit is

lim
k!1

k Ox � xkk D 0:

4.3 Asymptotic rule for stopping the iterations

The problem of the approximation of a fixed point of an operator T , i.e., the
problem of solving the operator equation

x D T .x/ (4.7)

can be ill-posed. For example, for T .x/ D x � .Ax � y/ or in more general
form T .x/ D x �ˇ .A�Ax�A�y/, problem (4.7) is equivalent to solving the
equation

Ax D y

that in the case of a discontinuous (unbounded) inverse operator A�1 is an ill-
posed problem, i.e., its solution is unstable with respect to perturbations of the
initial data of A; y. In this case, if the iterative process (4.1) with the perturbed
data is applied, then for the process convergence it is necessary to formulate
the rule for stopping the iterations, by relating the number of iterations with
the level of accuracy.
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Besides the exact scheme (4.1), consider its approximate implementation

QxkC1 D kC1
eT . Qxk/C .1 � kC1/ v0 (4.8)

with the same initial point x0. Introduce the parameter ı that characterizes
inaccuracy of the input data as

keT . Qxk/ � T . Qxk/k � '.ı/; k D 0; 1; : : : (4.9)

or

keT .xk/ � T .xk/k � '.ı/; k D 0; 1; : : : ; (4.10)

where '.ı/ ! 0 for ı ! 0. We make sure that for some dependence of
the number of iterations k.ı/ on the inaccuracy ı, scheme (4.8) generates a
regularizing algorithm, i.e., a strongly converging process as ı ! 0 (Vasin,
1988).

Theorem 4.6. Let the conditions of Theorem 4.5 and conditions (4.9) or (4.10)
be satisfied, and in the latter case, let additionally, eT 2 K be satisfied.

Then for the relation k.ı/ � '.ı/ ! 0, ı ! 0, of the parameters we have

convergence: Qxk.ı/ ! Ox, where Ox is a point from Fix.T / closest to v0.

Proof. We have the representation

Ox � QxkC1 D Œ Ox � xkC1�C ŒxkC1 � QxkC1�;

where the first term in the right-hand side tends to zero by Theorem 4.5, and
for the second term (with taking into account that T 2 K , 0 < k � 1 and
condition (4.9) is satisfied) the following estimate holds,

kxkC1 � QxkC1k � kC1 kT .xk/ � T . Qxk/k C kC1 kT . Qxk/ � eT . Qxk/k

� kxk � Qxkk C '.ı/ � .k C 1/ '.ı/:

Under condition (4.10) on the approximation and eT 2 K , we have a similar
estimate for the second term,

kxkC1 � QxkC1k � kC1 kT .xk/ � eT .xk/k C kC1 keT .xk/ �eT . Qxk/k

� '.ı/C kxk � Qxkk � .k C 1/ '.ı/:

The theorem is proved.
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5 Fejér mappings and sequences

5.1 Definitions and general properties

Let X be a linear normed (real) space and T W X ! X be a mapping. In
Section 1, the definition of the Fejér mapping was given as a mapping for
which the set M D Fix.T / of fixed points is not empty and the following
relation holds,

kT .x/ � zk < kx � zk 8 z 2 M 8x … M:

For the set of all M -Fejér mappings the denoting F
M

was introduced.

Definition 5.1. A sequence xk � X is called M -Fejér, if

kxkC1 � zk < kxk � zk 8 z 2 M 8 k D 0; 1; : : :

(compare with (Motzkin and Schoenberg, 1954)).

Evidently, aM -Fejér sequence is bounded, i.e., supk kxkk < 1. This prop-
erty we shall use without further notice.

Lemma 5.2. Let X D H be a real Hilbert space. If M � H and T W H !
H , T 2 F

M
, then the set M is convex and closed.

Proof. Establish convexity of the set M . If it is not convex, then there exist
x; y 2 M such that z D .x C y/ = 2 … M . Since z belongs to the segment
Œx; y�, the equality kx�zkCkz�yk D kx�yk holds for any Hilbert space H .
By virtue of the Fejér property of the mapping T , we have

kT .z/ � xk < kz � xk; kT .z/ � yk < kz � yk:

From the shown relations it follows

kT .z/ � xk C kT .z/ � yk < kx � yk:

On the other side, by the property of the norm we have

kx � yk � kT .z/ � xk C kT .z/ � yk:

A contradiction is obtained, and this proves the convexity of the set M .
Further, let x0 be a limit point of the set M . If to suppose that x0 … M , i.e.,

T .x0/ ¤ x0, kT .x0/ � x0k D " > 0, then, taking the point y 2 M such that
2 kx0 � yk < ", we obtain

0 < " D kT .x0/ � x0k � kT .x0/ � yk C kx0 � yk < 2 kx0 � yk < "

which is impossible. Thus, the set M is closed.
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Lemma 5.3. Let M � H . If xk is an M -Fejér sequence and x0 and x00 are

two different weak limits of some of its subsequences, then

M � fx W .x0 � x00; x/ D ˛g; (5.1)

where ˛ is some constant.

Proof. By virtue of the definition of the M -Fejér sequence we have

lim
k!1

kxk � yk D lim
k!1

kxjk
� yk D lim

k!1
kxik � yk;

where xjk
+ x0, xik + x00, y 2 M . From that it follows .xjk

� y; xjk
� y/�

.xik � y; xik � y/ ! 0 as k ! 1, i.e.,

kxjk
k2 � kxik k2 � 2 .xjk

; y/C 2 .xik ; y/ ! 0; k ! 1:

Since .xjk
; y/ ! .x0; y/ and .xik ; y/ ! .x00; y/, then ˛k D .1 = 2/.kxjk

k2 �
kxik k2/ ! .x0 � x00; y/. But limk!1 ˛k D ˛ does not depend on y 2 M ;
therefore, .x0 � x00; y/ D ˛ for all y 2 M .

Corollary 5.4. If M contains interior points, then an M -Fejér sequence has

a unique weak limit point.

Corollary 5.5. The set M can not contain more than one weak limit point of

a Fejér sequence.

Remark 5.6. If M � R
n, then all limit points of an M -Fejér sequence xk

(in this case the notions of weak and strong limits coincide) lie on the sphere
S D fx W kx�yk D Ry D limk!1 kxk �ykg, where y 2 M . Consequently,
if x0 and x00 are two different limit points of the sequence under consideration,
then M belongs to the locus of points that are on the equal distance from x0

and x00, i.e.,

M �
�
x W

�
x0 � x00; x � x0 C x00

2

�
D 0

�
: (5.2)

The mentioned properties are not obligatory for the case when H is an
infinite-dimensional space. Actually, let H D l2, where l2 be the space of
numerical sequences x D .i /

1
iD1 W

P1
iD1 

2
i < 1, M D f0g, where 0 is the
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zero element from l2, and ei D .0; : : : ; 0; i D 1; 0; : : : ; 0; : : : /. Consider the
sequence xk defined by the relations

xk D

8
<̂

:̂

�
1 C 1

k

�
ek ; k D 2s;

�
1 C 1

k

�
e1; k D 2s C 1:

It is easy to see that xk isM -Fejér, x2s + 0, and x2sC1 + e1. This shows that
in the case of an infinite-dimensional space we have the following:

1) weak limit points of the sequence xk do not obligatory lie on the sphere
S D fx W kx � yk D Ryg;

2) the hyperplane corresponding to the equation .x0 � x00; x/ D ˛ and con-
taining the set M is not obligatory passes through the center of the seg-
ment Œx0; x00�;

3) the membership of one of the weak limit points of the sequence xk to the
set M does not imply its uniqueness.

Remark 5.7. If we speak only about strong limit points of an M -Fejér se-
quence xk, then the properties formulated in Lemma 5.3 and its corollaries
remain valid but with some enhances, namely: firstly, the hyperplane corre-
sponding to the equation .x0 � x00; x/ D ˛ from (5.1) will be given by equa-
tion (5.2). Secondly, if one x0 of the strong limit points of the sequence xk

belongs to the set M , then such a point is unique, and we have xk ! x0.

5.2 Examples of Fejér mappings

1. Let H be a Hilbert space and M D fx W x 2 H ; .a; x/ � b � 0g be a
half-space in H , a ¤ 0. Introduce the denoting l.x/ D .a; x/ � b, lC.x/ D
max fl.x/; 0g. Define the mapping

P �
M .x/ D x � � l

C.x/

kak2
a; (5.3)

which, in its essence, is the metric projection of the point x onto the set M
with the coefficient of relaxation 0 < � < 2 (see formula (3.7)). Note that
for � D 1, the mapping P �

M passes into the ordinary metric projection. In
Lemma 3.13 it was established that for any arbitrary convex closed set M the
mapping P �

M
for 0 < � < 2 belongs to the class P

�
M

, therefore, this mapping
is of Fejér type.
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2. Let the following finite system of linear inequalities be given on a Hilbert
space H :

lj .x/ D .aj ; x/ � bj � 0; j D 1; 2; : : : ;m; (5.4)

where aj ¤ 0 for any j . Analogously to (5.3) suppose

Tj .x/ D x � �j

lCj .x/

kaj k2
aj ; �j 2 .0; 2/: (5.5)

Consider the mappings

T .x/ D
mX

j D1

˛jTj .x/; ˛j > 0;
mX

j D1

˛j D 1; (5.6)

T .x/ D TmTm�1 : : : T1: (5.7)

By Lemma 3.13 each of the mappings Tj is of Mj -Fejér type (moreover,
Tj 2 P

�j

Mj
), where Mj is the half-space defined by the j th inequality in sys-

tem (5.4). Let M D
Tm

j D1 Mj ¤ ¿ be the polyhedron of solutions of sys-
tem (5.4). Then each of the mappings (5.6), (5.7) is ofMj -Fejér type. This fact
follows from the following general statement for arbitrary mappings Tj 2 F

Mj
.

Theorem 5.8. If Tj 2 F
Mj

, j D 1; 2; : : : ;m, and M D
Tm

j D1Mj ¤ ¿,

then each of the mappings T defined by formulas (5.6) and (5.7) belongs to the

class F
M

of Fejér mappings.

Proof. This is checked directly by the scheme described in the proof of Theo-
rem 1.8.

Corollary 5.9. If fTj gn
1 2 F

M
, where M is an arbitrary convex closed subset

of H , then the posynom

T .x/ D
mX

iD1

˛iT
ni1
i1

T
ni2
i2

: : : T
nim

im
.x/

is a Fejér mapping; here, ˛i > 0,
Pm

iD1 ˛i D 1.

Remark 5.10. The basic constructions of the M -Fejér mappings described in
Theorem 5.8 give a broad range of possibilities for constructing new mappings
from the class F

M
. The class F

M
turns out to be closed with respect to the oper-

ations of superposition and convex combinations of any finite set of mappings
from F

M
.
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5.3 Weak-Fejér mappings and sequences

In Section 1 we introduced the class K
M

of weakly M -Fejér (M -quasi-non-
expansive) mappings T satisfying the conditions

Fix.T / D M ¤ ¿; kT .x/ � zk � kx � zk 8x 2 X 8 z 2 M:

Definition 5.11. A linear normed space X is called strongly convex (normed),
if the condition kx C vk D kxk C kvk, where x ¤ 0, v ¤ 0, implies that
v D cx, c > 0.

Lemma 5.12. Let X be a strongly convex space. If T W X ! X, T 2 K
M

,

then under 0 < � < 1 T� D �T C .1 � �/ I 2 F
M

, i.e., this is an M -Fejér

operator.

Proof. Assume the contrary. Then for any x 2 X, x … Fix.T /, z 2 Fix.T / D
M kT�.x/� zk D kx � zk ( kT�.x/� zk > kx � zk is impossible by virtue
of T� 2 K

M
). We have

kx � zk D kT�.x/ � zk D k� .T .x/� z/C .1 � �/.x � z/k
� k� .T .x/� z/k C k.1 � �/.x � z/k � kx � zk:

From the strong convexity of X, we conclude that for some c > 0

� .T .x/� z/ D .1 � �/ c .x � z/;

kT .x/ � zk D c.1 � �/
�

kx � zk;

i.e., c.1 � �/ =� D 1, c D � = .1 � �/. Substituting the found value of c into
the first equality of the two previous ones, we obtain the relation T .x/ D x

that contradicts to the condition x … Fix.T /.

Remark 5.13. The set of fixed points of a weaklyM -Fejér mapping is convex
and bounded (see Lemma 1.12).

Remark 5.14. If a nonexpansive mapping T W X ! X (i.e., kT .x/�T .v/k �
kx � vk) has at least one fixed point, i.e., M D Fix.T / ¤ ¿, then T is a
weakly M -Fejér mapping; therefore, for a strongly convex space X we have
T� D �T C .1 � �/ I 2 F

M
.

Definition 5.15. A sequence xk is called weakly M -Fejér if for all k we have
xk ¤ xkC1 and if in addition for any y 2 M the inequality kxkC1 � yk �
kxk � yk holds (compare with (Motzkin and Schoenberg, 1954)).
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For a weak M -Fejér sequence, Lemma 5.3, Corollaries 5.4 and 5.5, and
Remark 5.6 formulated for the M -Fejér sequences are valid.

6 Theorems on convergence of Fejér processes

6.1 The case of the single-valued operator

To obtain the strong convergence of iterations in a Hilbert space, we need
another additional property of the Fejér operator T .

Definition 6.1. Let an operator T act on the pair X;Y of linear normed spaces.
This operator T is called completely continuous if it transforms any sequence
xn weakly converging to x0 2 X into the sequence T .xn/ converging strongly
to T .x0/ in the space Y.

Theorem 6.2. Let H be a Hilbert space, T W H ! H , T 2 F
M

, M � H ,

and let the operator T be completely continuous. Then

xk D T k.x0/ ! x0 2 M; (6.1)

where x0 is an arbitrary element from H .

Proof. Since we have kxkC1 � zk � kxk � zk for any z 2 M , the limit
limk!1 kxk � zk D �.z/ � 0 exists. Since the sequence xk is bounded and
H is a Hilbert space, a weakly converging subsequence can be found,

xkj + x0:

By virtue of the complete continuity of the operator T , the subsequence
xkj C1 D T .xkj / converges strongly,

xkj C1 ! x00 D T .x0/:

Show now that x0 2 M . Actually, if we assume that x0 … M , then for
z 2 M the chain of inequalities

kx0 � zk � lim
j !1

kxkj � zk D lim
j !1

kT .xkj / � zk

D kT .x0/ � zk < kx0 � zk

leads to a contradiction. Thus, T .x0/ D x0 that implies xkj C1 ! x0. If Nk is the
largest number in the sequence kj C 1 satisfying the condition Nk � k, then the

inequality kxk �x0k � kx Nk �x0k is valid, from which the strong convergence
of the whole sequence xk ! x0 as k ! 1 follows.
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Corollary 6.3. If H is finite-dimensional, then from the property of continuity

of T 2 F
M

, it follows (6.1).

Corollary 6.4. Let xk be an iterative sequence generated by a continuous

M -Fejér mapping T 2 F
M

, M � H . If the linear hull of Linfxkg1
0 has

finite dimension, then (6.1) is valid.

Corollary 6.5. If a mapping T 2 F
M

is continuous, K is a convex compactum

from H ,M D M \K ¤ ¿, and

TK.x/ D PK.T .x//; (6.2)

where PK is the metric projection onto the set K, then as k ! 1

T k
K.x0/ ! x0 2 M: (6.3)

Remark 6.6. Instead of a convex compactum K in the previous corollary, it
is also possible to use any convex closed boundedly compact subset of H , i.e.,
a subset of the algebraic sumQCXn of the absolutely convex compactum Q

and the finite-dimensional subspace Xn (see Ivanov et al., 2002).

Example 6.7. Let M be a polyhedron given by a consistent system of linear
inequalities (5.4), Tj .x/ be defined according to (5.5), and T .x/ be defined
by (5.6). Since fTj gk

1 are continuous, then the operator T is also continuous.
Further, from formulas (5.5), (5.6), it is seen that the elements of the sequence
xk generated by the iterative process xkC1 D T .xk/ belongs to the linear hull
of Linfx0; aj gn

j D1. Therefore, the conditions of Corollary 6.4 are satisfied.
That provides the convergence of (6.1).

6.2 The case of the multi-valued Fejér mappings

Definition 6.8. A multi-valued mapping T W X ! 2X is called M -Fejér, if

8 z 2 M; 8x … M; 8y 2 T .x/ H) T .z/ D z; ky � zk < kx � zk:

Let us reserve the denoting F
M

for the class of the M -Fejér mappings both
for one-valued and multi-valued ones. If some concrete mapping T 2 F

M
is

multi-valued, then this fact will be noted specially.
In the case when a mapping T is multi-valued, then practically all results

formulated above for the Fejér mappings remain valid with this or that change
of the formulation.
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Definition 6.9. A multi-valued mapping T W X ! 2X is called closed, if
xk 2 D.T /, xk ! x0, yk ! y0, yk 2 T .xk/ H) x0 2 D.T /, y0 2 T .x0/.

Note that if X D R
n and T has the property

N is bounded H)
[

x2N

T .x/ is bounded;

then in the case when T is single-valued and D.T / D X, the condition of
closedness is equal to continuity.

For a multi-valued operator T 2 F
M

, the M -Fejér sequences are generated
according to the inclusion

xkC1 2 T .xk/: (6.4)

Theorem 6.10. Let X D R
n, T W R

n ! 2Rn

, T 2 F
M

, and the mapping T

be closed. Then the sequence xk generated by relation (6.4) for an arbitrary

x0 converges to x0 2 M .

Proof. The theorem is proved by analogy to Theorem 6.2; for the sake of
completeness the proof will be provided. Firstly, note that if Nx 2 T . Nx/, then
Nx D T . Nx/, i.e., Nx 2 M .

Actually, if Nx … M , then by definition of a multi-valued M -Fejér mapping,
we have for y 2 M

kz � yk < k Nx � yk

for all z 2 T . Nx/. Taking z D Nx, we obtain a contradictive inequality.
Now prove convergence of the sequence xkC1, where xkC1 2 T .xk/. From

the boundedness of xk, the existence of a converging subsequence xkj , xkj !
x0 follows. To avoid the additional separation of such a converging subse-
quence from xkj C1, let us suppose (without loss of generality) that xkj C1 !
x00. Thus, we have the situation

xkj C1 2 T .xkj /

# #
x00 x0

Then by virtue of the closedness of T , the inclusion x00 2 T .x0/ holds. If
x0 2 M , then xk ! x0 (see Corollary 5.5). But if x0 … M , then we obtain
kx00 � yk < kx0 � yk that contradicts to the idea of equal distance of the limit
points of the Fejér sequence xk from the point y 2 M (see Remark 5.6).

The theorem is proved.



Section 7 M -separating pairs andM -Fejér mappings 39

Example 6.11. For the system (5.4) of linear inequalities in R
n with the poly-

hedron M ¤ ¿ of solutions, we consider the following mapping,

T .x/ D
�
x � � d

C.x/

khk2
h W h 2 @d.x/

�
: (6.5)

Here, 0 < � < 2, d.x/ D max1�j �m lj .x/, @d.x/ is the subdifferential of
the function d.x/; then, as it is known (Shor, 1979, Theorem 1.13), @d.x/ D
convj 2J.x/faj g, J.x/ D fj W d.x/ D lj .x/g.

Mapping (6.5) is closed (see Section 7 and Theorem 7.6). The generation
of Fejér sequences with respect to the set M of solutions of system (5.4) by
means of T .x/ can be obeyed to the mapping

T0.x/ D
�
x � � d

C.x/

kaj k2
aj W j 2 J.x/

�
(6.6)

with the narrower domain of values for each fixed x. The corresponding se-
quences xkC1 2 T0.x

k/ will converge to elements from M according to The-
orem 6.10.

7 M -separating pairs and M -Fejér mappings

Let M be a convex closed subset of R
n, E be the mapping R

n ! 2Rn

, and
d.x/ be a convex function with the property fx W d.x/ � 0g D M .

Definition 7.1. A pair fd.x/;E.x/g is called M -separating if for an arbitrary
p … M the half-space corresponding to the inequality

.h; x � p/C d.p/ � 0 (7.1)

contains the set M for any h 2 E.p/.

Example 7.2. Let f .x/ be a convex function and M D fx W f .x/ � 0g ¤ ¿.
Then ff .x/; @f .x/g is anM -separating pair; here, @f .x/ is the subdifferential
of the function f .x/ at the point x, i.e.,

@f .x/ D fh W .h; y � x/ � f .y/� f .x/g

for any y 2 R
n. The validity of relation (7.1) follows directly from the defini-

tion of a subdifferential.
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Note properties of the subdifferential that are well known from convex anal-
ysis (see, for instance, (Polyak, 1983, Lemma 6, Chapter 5)): for any convex
function f W R

n ! R
1 the subdifferential @f .x/ is a non-empty, convex,

closed, and bounded set.
Now we give (in the form of lemmas) two additional important properties of

the subdifferential as a mapping @ W x ! @f .x/.

Lemma 7.3. Let f .x/ be a convex function defined on R
n and

@ W x ! @f .x/: (7.2)

If N is a bounded subset of R
n, then the set

S
x2N @f .x/ is bounded.

Proof. The proof is carried out by contradiction. Let there exist subsequences
xk � N and hk , hk 2 @f .xk/, such that khkk ! 1 for k ! 1. By virtue of
boundedness of N , the sequence xk is bounded.

Suppose hk D tksk , kskk D 1. It is evident that tk ! 1. By the property
of a subgradient of a convex function, we have

.hk ; x � xk/ � f .x/� f .xk/

for any x and k. Substituting x D xk C sk into this inequality, we obtain

tk � sup
k

jf .xk C sk/j C sup
k

jf .xk/j � k < 1:

Here, the fundamental property of a convex function is used, namely, its con-
tinuity at any point and, therefore, boundedness on any bounded closed set of
R

n.

Lemma 7.4. Let a function f .x/ defined on R
n be convex. Then the mapping

(7.2) is closed.

Proof. Actually, let xk ! x0, hk 2 @f .xk/, and hk ! h0. It is necessary to
show that h0 2 @f .x0/. Passing to the limit in the relation

.hk ; x � xk/ � f .x/� f .xk/

as k ! 1, we obtain

.h0; x � x0/ � f .x/� f .x0/;

that gives h0 2 @f .x0/. The lemma is proved.
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Let fd.x/;E.x/g be an M -separating pair. Construct the mapping (multi-
valued in the general case)

T .x/ D
�
x � � d

C.x/

khk2
h W h 2 E.x/

�
; (7.3)

where � 2 .0; 2/. In (7.3) we suppose T .x/ D x if dC.x/ D 0, i.e., d.x/ � 0.
Note that if x … M , i.e., d.x/ > 0, then for any h from E.x/ we have h ¤ 0.
Actually, if in this situation h D 0 would hold, then by property (7.1) we would
have

.0; y � x/C d.x/ � 0;

i.e., d.x/ � 0 .x 2 M/. But by the condition, d.x/ > 0, then we obtain a
contradiction. By this it is shown that (7.3) is defined correctly in the sense
that zero can not appear in the denominator for x … M , but for x 2 M , i.e.,
for d.x/ � 0, we have T .x/ D x by definition.

Lemma 7.5. The mapping T given according to (7.3) is M -Fejér, i.e., T 2
F

M
.

Proof. This follows from the definition of an M -separating pair and Lemma
3.14.

Theorem 7.6. If in (7.3) the mapping E.x/ has the property of boundedness

(i.e., it transforms a bounded set into a bounded one) and is closed, then T .x/

is closed.

Proof. Let xk ! x0, yk ! y0, yk 2 T .xk/. It is necessary to prove that
y0 2 T .x0/. Consider two cases.

1) Let x0 2 M , i.e., d.x0/ � 0. Since T 2 F
M

, then kyk �x0k � kxk �x0k,
consequently, kyk � x0k ! 0 and y0 D x0. But since x0 D T .x0/, the
inclusion y0 2 T .x0/ holds automatically.

2) Let x0 … M . Then for sufficiently large k � Nk, the inequality d.xk/ > 0
is satisfied. Since yk 2 T .xk/, we have

yk D xk � � d.xk/

khkk2
hk ; hk 2 E.xk/; (7.4)

and then, hk ¤ 0 (as it was noted above). Since the mapping E.x/ is bounded,
the sequence hk is bounded, and by this, it can be regarded converging, say
to h0. Since E is closed, it holds h0 2 E.x0/. Passing to the limit as k ! 1
in (7.4), we obtain

y0 D x0 � � d.x
0/

kh0k2
h0I (7.5)
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i.e., h0 2 E.x0/, and relation (7.5) shows the inclusion y0 2 T .x0/, which was
to be proved.

Corollary 7.7. Let f .x/ be a convex function defined on R
n and M D fx W

f .x/ � 0g ¤ ¿. Then the mapping

T .x/ D
�
x � � f

C.x/

khk2
h W h 2 @f .x/

�
(7.6)

is closed M -Fejér; by definition, for f .x/ � 0, T .x/ D x for T as in (7.6) or

in (7.3).

Proof. Actually, by virtue of Lemmas 7.3 and 7.4, all conditions of Theo-
rem 7.6 hold for the situation of Corollary 7.7.

Corollary 7.8. Under the assumptions of Corollary 7.7 for the sequence xk

generated according to the inclusion xkC1 2 T .xk/, the following conver-

gence holds:

xk ! x0 2 fx W f .x/ � 0g: (7.7)

Proof. Actually, since T is a closed mapping, convergence of (7.7) holds ac-
cording to Subsection 6.10.



Chapter II

Applications of iterative processes to

nonlinear equations

1 Gradient methods

Consider a system of n nonlinear equations with n unknowns:

fi .x/ D 0; i D 1; 2; : : : ; n; (1.1)

where fi are twice continuously differentiable functions. Below, for a short
description of system (1.1) we shall use the operator form

F.x/ D 0; (1.2)

where F W R
n ! R

n. In the case of solvability, equation (1.2) is equivalent
to the following minimization problem

min fkF.x/k2 W x 2 R
ng: (1.3)

The necessary condition of an extremum for (1.3) takes the form

r.kF.x/k2/ D 2J>.x/F.x/ D 0;

where J.x/ denotes the Fréchet derivative of operator F , coinciding with the
Jacobi matrix J.x/ D f@fi .x/ = @xj g (i; j D 1; 2; : : : ;m). By this, the method

of gradients for solving problem (1.3) takes the form

xkC1 D xk � �J>.xk/F.xk/: (1.4)

To establish the convergence of iterations, let us ensure that under some
conditions the step operator T .x/ D x � �J>.x/F.x/ belongs to the class
F

M
of Fejér mappings.

Theorem 1.1. Let z be a solution of equation (1.2) and F be a twice contin-

uously differentiable function that is vector-valued in the ball Sr.z/ D fx 2
R

n W kx � zk � rg. Assume that the following conditions are satisfied:

1) for all x 2 Sr.z/ there exists the inverse matrix J�1 and kJ�1.x/k � BI
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2) max
k;j

nP
iD1

ˇ̌
ˇ̌@

2fk.x/

@xi@xj

ˇ̌
ˇ̌ � C I

3) the constants r; B;C satisfy the inequality n3=2rBC < 2.

Then the mapping

T .x/ D x � �J>.x/F.x/

for 0 < � < 1 = max fkJ.x/k2 W x 2 Sr .z/g belongs to the class F
M

, where

M D fzg, i.e., this mapping is M -Fejér.

Proof. Denote R.x/ D J.x/.x� z/�F.x/. Taking into account that F.z/ D
0, we have from the Taylor formula

kR.x/k D kF.x/ � F.z/ � J.x/.x � z/k

� 1

2
max

�
kF 00.�/.x � z; x � z/k;

where � D zC �.x� z/, 0 < � < 1, F 00.�/ is a bilinear mapping given by the
formula

yk D
nX

i;j D1

akijxixj ; akij D @2fk.�/

@xi@xj
:

Therefore, for x 2 Sr.z/ we obtain the following estimate for kR.x/k:

kR.x/k � 1

2
max

�

h nX

kD1

� nX

i;j

@2fk.�/

@xi@xj
.xi � zi ; xj � zj /

�2i 1
2

� 1

2
max

i
jxi � zi j2 max

0<�<1

h nX

kD1

� nX

i;j

ˇ̌
ˇ@

2fk.�/

@xi@xj

ˇ̌
ˇ
�2i 1

2

� 1

2
kx � zk2 p

n max
0<�<1

max
k

nX

i;j D1

ˇ̌
ˇ@

2fk.�/

@xi@xj

ˇ̌
ˇ

� 1

2
n3=2 kx � zk2 max

0<�<1
max
k;j

nX

iD1

ˇ̌
ˇ@

2fk.�/

@xi@xj

ˇ̌
ˇ

� 1

2
n3=2 r2 C:

(1.5)
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Taking into account the conditions of the theorem, we have

kJ.x/.x � z/k � .kJ�1.x/k/�1 kx � zk
� B�1kx � zk

>
1

2
n3=2 r C kx � zk

� 1

2
n3=2 kx � zk2C � kR.x/k

(1.6)

for all x 2 Sr.z/, x ¤ z.

Since F.x/ D J.x/.x � z/CR.x/, we obtain the estimate

kT .x/ � zk2

D kx � zk2 � 2� .J>.x/F.x/; x � z/C �2kJ>.x/F.x/k2

� kx � zk2 � � .kF.x/k2 � � kJ>.x/k2 kF.x/k2/ < kx � zk2:

Here, the following inequality was used,

�2� .J>.x/F.x/; x � z/ � �� kF.x/k;

which follows from (1.6) and the condition of the theorem on the value of the
parameter �.

Uniting Corollary 6.3 from Section 6 of Chapter I with Theorem 1.1, we
obtain the following corollary.

Corollary 1.2. Under the conditions of Theorem 1.1 for any initial approxi-

mation x0 2 Sr.z/, the iterative process

xkC1 D xk � �J>.xk/F.xk/

converges to the unique solution z of equation (1.2) (of system (1.1)).

Proof. Only the uniqueness of the solution in the ball Sr .z/ has to be revealed.
Actually, the assumption on existence of another solution z0 in the ball Sr .z/

implies T .z0/ D z0 � �J 0.z0/F.z0/ D z0, i.e., kT .z0/ � T .z/k D kz0 � zk,
which contradicts the theorem conclusion that T 2 Ffzg in the ball Sr.z/.
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2 The Newton–Kantorovich method

This section is devoted to the investigation of this method to solve system (1.2).
For this purpose we use the vector norm kxk D max1�i�n jxi j instead of the
Euclidean norm. Then it is easy to check that the following estimate is valid
for the residual term R.x/ D F.x/ � F.z/ � J.x/.x � z/:

kR.x/k � 1

2
n kx � zk2 max

0<�<1
max
k; j

nX

iD1

ˇ̌
ˇ̌@

2Fk.�/

@xi@xj

ˇ̌
ˇ̌ ; (2.1)

where � D z C �.x � z/.

Theorem 2.1. Let z be a solution of the operator equation (1.2) and F be a

vector-valued function twice continuously differentiable on the ball Sr .z/. Let

the following conditions be also satisfied:

1) for all x 2 Sr.z/ the inverse matrix J�1.x/ exists and kJ�1.x/k � BI

2) max
k;i

nP
j D1

j@2fk.x/ = @xi@xj j � C I

3) the constants r; B;C satisfy the inequality nrBC < 2.

Then the function T .x/ D x � J�1.x/F.x/ belongs to the class F
M

, where

M D fzg.

Proof. From the conditions of the theorem and relation (2.1) the estimate fol-
lows:

kR.x/k � 1

2
nC kx � zk2:

Moreover, we have the relation

kJ�1.x/R.x/k � kJ�1.x/k kR.x/k < kx � zk;

which implies

kT .x/ � zk D kx � z � J�1.x/F.x/k
D kx � z � J�1.x/ ŒJ.x/.x � z/CR.x/�k
D kJ�1.x/R.x/k
< kx � zk;

i.e., T .x/ D x�J�1.x/F.x/ belongs to the class Ffzg of Fejér mappings.
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Taking into account Theorem 6.2 (Corollary 6.3) from Chapter I, we obtain
the corollary.

Corollary 2.2. If the conditions of Theorem 2.1 are satisfied, equation (1.2)
has a unique solution z in the ball Sr.z/, and the sequence xk generated by

the Newton–Kantorovich process

xkC1 D xk � J�1.xk/F.xk/; x0 2 Sr.z/;

converges to z.

The material of Sections 1 and 2 is based on the results from (Maruster,
1977).

3 Fejér processes for mixed problems

3.1 Systems of nonlinear equations and convex inequalities

In the two previous sections it was shown that the iterative operators in the
gradient method and in the Newton–Kantorovich process are of Fejér type.
This gives the opportunity for constructing Fejér processes for a more general
problem than (1.1), namely:

Find a solution of the system

fi .x/ D 0; i D 1; 2; : : : ;m; fi.x/ � 0; i D mC 1; : : : ; s; (3.1)

i.e., a system of m nonlinear equations and s �m inequalities is given.
Under the assumption of convexity and subdifferentiability of the functions

fi (i D m C 1; : : : ; s), let us associate the following mapping P with the
mentioned system (3.1) of inequalities:

P.x/ D

8
<
:
x � � d.x/e.x/ke.x/k2 ; d.x/ > 0;

x; d.x/ � 0:
(3.2)

Define the function d.x/ by one of the following formulas:

d.x/ D
sX

j DmC1

kj Œf
C

j .x/��; kj > 0; � > 1; (3.3)

d.x/ D max
mC1�j �s

fj .x/; (3.3 a)
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and take some arbitrary subgradient of the function d.x/ at the point x as the
function e.x/, i.e.,

e.x/ 2 @d.x/: (3.4)

It is clear that Q D fx W d.x/ � 0g D Fix.P /, where Q is the set of solutions
of the system of inequalities. Let M be the set of solutions of the system of
nonlinear equations in (3.1), and let M \Q ¤ ¿.

Construct the iterative process

xkC1 D P.U.xk//; (3.5)

where U is the step operator in the method of gradients (i.e., U.x/ D x �
�J>.x/F.x/) or in the Newton–Kantorovich method (i.e., U.x/ D x �
J�1.x/F.x/), and the mapping P is defined by formulas (3.2), (3.3), and
(3.4) or (3.2), (3.3 a), and (3.4).

Theorem 3.1. Let the conditions of Theorems 1.1 or 2.1 be satisfied. Then

the sequence xk generated by process (3.5) converges to a solution of system

(3.1).

Proof. Actually, on the basis of Theorems 1.1 and 2.1, the operator U belongs
to the class F

M
and is continuous (since F is twice continuously differen-

tiable). According to Lemma 7.4, Chapter I, the (multi-valued) mapping P is
closed, and by virtue of Lemma 7.5, Chapter I, it belongs to the class F

Q
. Then

PU 2 F
M\Q

, and this mapping is closed as the superposition of a continuous
operator and a closed operator. The reference to Theorem 6.10, Chapter I,
completes the proof.

Remark 3.2. Since under the conditions of Theorems 1.1 and 2.1 the solution
of the system of equations

fi .x/ D 0; i D 1; 2; : : : ;m

is unique, the system of inequalities

fi .x/ � 0; i D mC 1; : : : ; s

can be interpreted as an additional a priori constraint on the solution of the
system of equations.

An application of the process (3.5) instead of the gradient method or the
Newton–Kantorovich can be more advisable, since by a small increase of com-
putations (for the implementation of the operator P ), an additional shift in di-
rection to the solution is carried out in each step, and by this, the quality of the
solution is improved without additional computational expenditures.
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Remark 3.3. The mappings of the following form can be used as the opera-
tor P :

P.x/ D
sX

iD1

�iPi .x/; P.x/ D Pj1Pj2 : : : Pjn
.x/;

where Pi is aQi -Fejér mapping (Qi is the set of solutions of the i th inequality
in (3.1)) represented by the formula

Pi .x/ D x � �
f C

i .x/h

khk2
; 0 < � < 2;

where h 2 @fi .x/.

3.2 Linear case

Now consider in problem (3.1) the special case that a system of m linear alge-
braic equations and s � m linear inequalities is given, rewritten in the vector
form

.x; ai / � bi D 0; i D 1; 2; : : : ;m;

.x; ai / � bi � 0; i D mC 1; : : : ; s;
(3.6)

where x; ai 2 R
n, bi 2 R

1. We suppose that ai ¤ 0, i D 1; : : : ; s.
The metric projection PLi

onto the hyperplane Li D fx W .x; ai/� bi D 0g
(i D 1; 2; : : : ;m) and onto the half-space Li D fx W .x; ai/ � bi � 0g
(i D mC 1; : : : ; s) is represented by the same formula,

PLi
D

8
<
:
x � ..x; ai/ � bi / ai

kaik2 ; x … Li ;

x; x 2 Li :
(3.7)

Let i1; i2; : : : ; im be any ordering of the indices 1; 2; : : : ;m. Construct the
iterative processes

xkC1 D PLi1
PLi2

: : : PLim
.xk/; x0 2 R

n; (3.8)

xkC1 D
sX

lD1

� lPLil
.xk/;

sX

lD1

� l D 1; � l > 0; x0 2 R
n; (3.9)

which converge to a solution of system (3.6) in the case of consistency (see
Corollary 3.8 from Theorem 3.1, Chapter I). If the inequalities in problem (3.6)
are missing, then the iterative processes (3.8) and (3.9) are known as the
Kaczmarz algorithms (Kaczmarz, 1937).
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4 Nonlinear processes for linear operator equations

4.1 Iterative ˛-processes and extremal principles

In Section 2, Chapter I, the iterative processes (of the types: the simple it-
eration method and the implicit scheme, i.e., the linear methods) have been
already considered in a Hilbert space for the linear equation

Ax D y (4.1)

with an operator A such that the inverse operator A�1 does not exist or is
unbounded.

Now consider the class of nonlinear iterative methods (i.e., in which the step
operator is nonlinear) for solving equation (4.1) with a bounded, selfadjoint,
and semidefinite operator A. Such methods have the general name ˛-processes

(see (Krasnosel’skii et al., 1969)).
Let ˛ be some fixed real number from the interval Œ�1;1/. Define the

iterative sequence by means of the recurrent formula

xkC1 D

8
<
:
xk � .A˛4k ;4k/

.A˛C14k ;4k/
4k ; 4k ¤ 0;

xk; 4k D 0;
(4.2)

where 4k D Axk � y.
For ˛ D 1 we obtain the method of minimal residuals (Krasnosel’skii et

al., 1969). For ˛ D 0, process (4.2) is transformed into the known method of
steepest descent (see, for instance, (Kantorovich and Akilov, 1959)).

In the case ˛ D �1, (4.2) is the so called method of minimal errors. At first
glance it seems that this method cannot be applied since in (4.2) the inverse
operator A�1 appears. But, for an equation of the form A�Ax D A�y, this
method can be transformed to the form, which is completely appropriate for
realization (see below).

These three mentioned methods are constructed by the following common
procedure. The following iterative scheme is taken as the initial one:

xkC1 D xk � ˇk.Ax
k � y/;

and the parameter ˇk is found by means of one of the following extremal
principles.

If the parameter ˇk is found from the extremal problem

min
ˇ

kAxkC1 � yk2;
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where xkC1 D xk � ˇ .Axk � y/, then we obtain the method of minimal

residuals

xkC1 D xk � .A.Axk � y/; Axk � y/

kA.Axk � y/k2
.Axk � y/:

If ˇk is determined from the condition

min
ˇ

f.AxkC1; xkC1/ � 2 .xkC1; y/g;

then we obtain the method of steepest descent

xkC1 D xk � kAxk � yk2

.A.Axk � y/;Axk � y/
.Axk � y/:

If ˇk is determined from the condition

min kz � xkC1k2;

where z is a solution of the equation A�Ax D A�y, xkC1 D xk�ˇ .Axk�y/,
then we get the method of minimal errors,

xkC1 D xk � kAxk � yk2

kA�.Ax � y/k2
A�.Axk � y/:

It is interesting to note that it is possible to obtain the method of minimal
errors if we consider the basic Fejér mapping for the inequality

f .x/ D kAx � yk2 � 0;

which is identical with equation (4.1) in the case of solvability. Actually, in
this case the operator T defined by formula (3.11) (Section 3, Chapter I) takes
the form

T .x/ D x � � f .x/

krf .x/k2
rf .x/

D x � �

2

kAx � yk2

kA�.Ax � y/k2
A�.Ax � y/:

For � D 2 (the limit value for the Fejér mapping T ), we obtain the method of

minimal errors.
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Let us ensure that the step operator

T .x/ D

8
<
:
x � .A˛.Ax � y/;Ax � y/

.A˛C1.Ax � y/;Ax � y/.Ax � y/; Ax ¤ y;

x; Ax D y
(4.3)

for the ˛-processes (4.2) is pseudo-contractive, i.e., it belongs to the class P
1

M

and, consequently, isM -Fejér. Note that for an invertible operator A, forAx ¤
y the denominator

.A˛C1.Ax � y/;Ax � y/ ¤ 0

and

ˇ.x/ D .A˛.Ax � y/;Ax � y/
.A˛C1.Ax � y/;Ax � y/

¤ 0:

Thus, Fix.T / D f Oxg, where Ox is a solution of equation (4.1), and both the oper-
ator T and process (4.2) are correctly defined. In the case of a noninvertible op-
erator A, it is necessary to require the condition .A˛C1.Ax�y/;Ax�y/ ¤ 0
for Ax ¤ y at least at the iteration points (or to consider a preliminary regu-
larization, changing A to AC "I ).

4.2 Inequality for moments and pseudo-contractivity of the step

operator

Below, we shall need a statement that touches one fact from the theory of
moments for a selfadjoint positive semidefinite operator A.

Relations

bs D .Asx; x/ D
Z M

m

�sd .E�x; x/;

where m;M are boundaries of the spectrum of the operator A, are called the
moments of an operator A.

Let s1; s2; : : : ; sk be arbitrary numbers and ˛1; : : : ; ˛k be positive ones. The
pair of numbers f!; �g, where ! D ˛1 C � � � C ˛k , � D ˛1s1 C � � � C ˛ksk , is
called the dimension of the product b

˛1
s1 b

˛2
s2 : : : b

˛k
sk

.

Theorem 4.1. The inequality

b˛1
p1
b˛2

p2
: : : b˛k

pk
� bˇ1

s1
bˇ2

s2
(4.4)

holds, if the dimensions of both sides are equal and if

s1 < p1; : : : ; pk < s2:
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Proof. A proof can be found in the book (Krasnosel’skii et al., 1969).

Lemma 4.2. Let M be a nonempty set of solutions for equation (4.1), and let

A be a selfadjoint positive semidefinite operator acting in a Hilbert space H .

Then the operator T defined by formula (4.3) belongs to the class P
1

M
(Defini-

tion 1.3, Chapter I).

Proof. As noted in Section 1, Chapter I, relation (1.3) in the definition of the
class P

1
M

is equivalent to the inequality (1.4), Chapter I, which has the form

kT .x/ � zk2 � .T .x/ � z; x � z/ 8 z 2 M; 8x 2 H : (4.5)

Substituting relation (4.3) for the operator T into this inequality, we obtain
the expression

.A˛.Ax � y/;Ax � y/
.A˛C1.Ax � y/;Ax � y/

�
.A˛.Ax � y/;Ax � y/
.A˛C1.Ax � y/;Ax � y/

� kAx � yk2 � .Ax � y; x � z/
�

� 0:

(4.6)

Taking into account the notations introduced above for the operator moments
and the fact that

kAx � yk2 D .A0.Ax � y/;Ax � y/;
.Ax � y; x � z/ D .A�1.Ax � y/;Ax � y/;

relation (4.6) can be rewritten in the equivalent form

b˛ b0 � b�1 b˛C1:

Validity of the latter inequality follows from Theorem 4.1 if we put k D 2,
s1 D �1, s2 D ˛ C 1, p1 D ˛, p2 D 0 in relation (4.4). By this, it is proved
that relation (4.5) holds, i.e., T 2 P

1
M

.

4.3 Convergence of the ˛-processes

Now consider the condition of Theorem 3.9, Chapter I, on the weak conver-
gence of the iterations for pseudo-contractive operators, to ensure that this
theorem is valid for ˛-processes.

Lemma 4.3. Let the operator A be invertible and for any j let Axj � y ¤
0. Then the operator T defined by relation (4.3) satisfies property (3.1) of

Chapter I, i.e., xj + Nx, xj � T .xj / ! 0 ) Nx 2 Fix.T /.
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Proof. Since for Axj � y ¤ 0

jˇj j D j.A˛.Axj � y/;Axj � y/j
j.A˛C1.Ax � y/;Ax � y/j

D j.A˛.Axj � y/;Axj � y/j
jA1=2A˛=2.Axj � y/;A1=2A˛=2.Axj � y/j

� 1

kA1=2k2
;

then the relation xj � T .xj / D ˇj .Axj � y/ ! 0 implies Axj � y ! 0.
By taking into account the property of weak continuity of the operator A, from
xj + Nx we obtain A Nx D y, i.e., Nx 2 Fix.T /.

Combining Lemmas 4.2, 4.3 with Theorem 3.1, Chapter I, we arrive at the
following corollary.

Corollary 4.4. Iterative ˛-processes (4.2) converge weakly to the solution Ox
of equation (4.1).

Taking into account Theorem 3.9, Chapter I, we obtain the next corollary.

Corollary 4.5. Let Ox 2 Q (the a priori constraint), P 2 P
�

Q
, and the opera-

tor T be defined by formula (4.3). Then the iterative method

xkC1 D bT .xk/;

where bT D PT or bT D �PC .1 � �/T , 0 < � < 1, converges weakly to the

solution Ox of equation (4.1).

Remark 4.6. If the operator A is positive definite, i.e., for some c > 0 we
have .Ax; x/ � c kxk2, then ˛-processes converge strongly; see, for instance,
(Krasnosel’skii et al., 1969).

To obtain a strong approximation of a solution in the general (incorrect)
case, it is possible to proceed in the following way. Regularize equation (4.1)
by the Lavrent’ev scheme (Lavrent’ev, 1962)

Ax C "x D y: (4.7)

As it is known, for a selfadjoint, positive semidefinite operator A and " > 0,
the solution x" of equation (4.7) exists, is unique, and for " ! 0 converges
to the normal solution of equation (4.1) both for exact and approximate data;
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see (Lavrent’ev, 1962; Ivanov et al., 2002). Since the operator A" D AC "I

is positive definite .c D "/, the ˛-processes with the operator A" converge
strongly to the solution x" of equation (4.7). Thus, we obtain a two-stage
regularizing algorithm for solving the original equation (4.1).

Note that modifying the ˛-processes on the basis of the principle of the
iterative regularization, it is possible to obtain a one-stage iterative method
that converges strongly; see (Bakushinskii and Goncharskii, 1994).

5 Linearized versions of the gradient methods

5.1 The method of steepest descent

Consider the nonlinear equation

A.x/ D y (5.1)

with the Fréchet differentiable operator A acting on the pair of Hilbert spaces
H1 and H2, in the particular (finite-dimensional) case, problem (5.1) can be
represented in the form of a system of nonlinear equations (3.1). If prob-
lem (5.1) is solvable, then this is equivalent to the problem of minimization

min

�
1

2
kA.x/ � yk2 W x 2 H1

�
:

The necessary condition fo an extremum for this problem leads to the oper-
ator equation

A0.x/�.A.x/� y/ D 0; (5.2)

which contains the set of solutions of equation (5.1), but can have additional
solutions. Take the notations M and M � for the set of solutions of equations
(5.1) and (5.2), correspondingly.

Iterative processes of the form

xkC1 D xk � ˇkA
0.xk/�.A.xk/ � y/ � T .xk/ (5.3)

have to be regarded as gradient methods, since

S.x/ � A0.x/�.A.x/� y/ D r
�

1

2
kA.x/� yk2

�
:

In the classical method of steepest descent, the parameter ˇk is found from the
extremal problem

ˇk : min
ˇ

kA.xk � ˇ S.xk// � yk2;
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i.e., at each step of the implementation of the method, it is necessary to solve
a one-dimensional optimization problem. To avoid this additional procedure,
let us modify the process in the following way. Linearize the operator A at the
current point xk

A.x/ Å A.xk/C A0.xk/.x � xk/

and find the parameter ˇk by minimization the square residual for the lin-
earized equation,

ˇk : min
ˇ

kA0.xk/.xk � ˇ S.xk// � .y C A0.xk/xk � A.xk//k2;

and this gives ˇ.xk/ D kS.xk/k2 = kA0.xk/ S.xk/k2.

Thus, process (5.3) takes the form

xkC1 D

8
<̂

:̂
xk � kS.xk/k2

kA0.xk/S.xk/k2S.x
k/ � T .xk/; S.xk/ ¤ 0;

xk; S.xk/ D 0:

(5.4)

By analogy with the linear case, process (5.4) is called the method of steepest

descent (MSD) (see, for instance, (Neubauer and Scherzer, 1995)).

Introduce the additional (local) condition on the operator A. Assume that
for some constant � > 0 in the neighborhood S�.z/ of a solution z 2 M the
following inequality holds,

kA.x/� A.z/k2 � �.A.x/� A.z/; A0.x/.x � z//; (5.5)

and, also, the condition S.x/ … kerA0.x/ is satisfied for S.x/ ¤ 0. Note that
inequality (5.5) implies, particularly, coincidence of the solution sets M D
M �, and the condition S.x/ … kerA0.x/ for S.x/ ¤ 0 excludes that the
denominator in process (5.4) vanishes.

For expanding the domain of convergence of the iterative method (5.4), in-
troduce the additional control parameter  and consider the process (Vasin,
1998)

xkC1 D xk �  ˇ.xk/ S.x
k/ � T .xk/: (5.6)

Lemma 5.1. Let condition (5.5) hold. Then for  < 2
�

the step operator T of

process (5.4) belongs to the class P
�

M\S�.z/
, where � D 2 = � � 1.
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Proof. This follows from the chain of relations

kT .x/ � zk2 � kx � zk2 C � kT .x/ � xk2

D �2  ˇ.x/.S.x/; x � z/C .1 C �/ 2 ˇ2.x/ kS.x/k2

D .1 C �/ 2 ˇ.x/

�
� 2

 .1 C �/
.S.x/; x � z/C kS.x/k4

kA0.x/ S.x/k2

�

� .1 C �/ 2 ˇ.x/

�
� 2

 .1 C �/
.S.x/; x � z/C kA.x/� yk2

�

� .1 C �/ 2 ˇ.x/
�
�� .S.x/; x � z/C kA.x/ � yk2

�
� 0:

5.2 Linearized analogue of the minimal error method

As in the previous section, linearize the nonlinear operator A at the point xk.
Denote the solution of the obtained linear equation

A0.xk/x D y C A0.xk/xk � Axk

by Nz. Define the parameter ˇk in the iterative process (5.3) from the condition

ˇk : min
ˇ

kxkC1 � Nzk2;

this gives ˇk D kA.xk/ � yk2 = kS.xk/k2. We obtain the iterative process

xkC1 D xk � kA.xk/ � yk2

kS.xk/k2
A0.xk/�.A.xk/ � y/; (5.7)

which is called the method of the minimal error for a nonlinear operator equa-
tion. Introduce the additional parameter  , which regulates the step value, and,
finally, consider the process (Vasin, 1998)

xkC1 D xk �  kA.xk/ � yk2

kS.xk/k2
S.xk/ � T .xk/: (5.8)

Lemma 5.2. If condition (5.5) is satisfied, then for  < 2
�

the step opera-

tor T for process (5.8) belongs to the class P
�

M\S�.z/
of pseudo-contractive

mappings, where � D 2 = � � 1.

Proof. This is implemented by the scheme of the proof of Lemma 5.1.
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5.3 Conclusions and applications

The properties of the iterative operators established in Lemmas 5.1 and 5.2 in
the methods of the steepest descent and the minimal errors allows one:

1) on the basis of Theorem 3.1, Chapter I, to make a conclusion on the weak
convergence of these processes;

2) having an a priori information, to construct superpositions (or convex
combinations) of the projection operators or operators of type (3.2) that
are responsible for the a priori constraints;

3) to generate, together with other processes having the property of pseudo-
contractivity, new classes of iterative methods for the approximative so-
lution of equation (5.1).

Consider some examples of operators A satisfying property (5.5). First of
all, note that for the linear operator A this property is evidently satisfied.

Example 5.3. Let for the operator A the residual f .x/ D kA.x/ � yk2 be a
convex functional. Then condition (5.5) will be satisfied for � D 2, since this
is the criterion of convexity for the differentiable functional f .x/. Particularly,
if in system (1.1) the functions fi are convex and nonnegative, then the resid-
ual f .x/D kA.x/k2 for the operator A.x/D .f1.x/; f2.x/; : : : ; fn.x//

> is a
convex function, hence, condition (5.5) holds.

Example 5.4. The inverse (coefficient) problem for the differential equation

�.a us/s D f; s 2 .0; 1/ (5.9)

with boundary conditions

u.0/ D g0; u.1/ D g1 (5.10)

can be formulated in the following way:
It is necessary to find the diffusion coefficient a.s/ by the function u.s/

known on Œ0; 1�. Problem (5.9), (5.10) can be formally written as a nonlinear
operator equation

A.a/ D u.a/;

where u.a/ is a solution of the boundary problem (5.9), (5.10). It is supposed
that f 2 L2 and the operator A acts from D.A/ D fa 2 H

1Œ0; 1�; a.s/ �
a > 0g into L2Œ0; 1�.

It turns out that under these conditions the operator A satisfies the inequality

kA.x/ � A. Qx/ � A0.x/.x � Qx/k � � kA.x/ � A. Qx/k (5.11)
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for � < 1 = 2, and for all x; Qx from some ball S�.a0/; details for study of this
property can be found in (Neubauer and Scherzer, 1995; Engl et al., 1996).

It is easy to check that for Qx D z inequality (5.11) implies property (5.5)
with � D 2 = .1 � �2/; therefore, the operator A is pseudo-contractive.

Example 5.5. Consider the nonlinear Volterra equation

A.x/.t/ �
Z t

0
�.x.s// ds D y.t/ (5.12)

under the assumption that � 2 C 2.R/, A W H
2Œ0; 1� ! L2Œ0; 1�. It is directly

verified that

.A0.x/ h/.t/ D
Z 1

0
�0.x.s// h.s/ ds;

..A0.x//�u/.s/ D B�1

"
�0.x.s//

Z 1

s

u.t/ dt

#
;

where B W D.B/ D f W  2 H
1Œ0; 1�,  0.0/ D  0.1/ D 0g ! L2Œ0; 1�,

B D � 00 C  .
If �0.x/ � � > 0 for all x from the ball S�.x0/, then we have the represen-

tation
A0.v/ D Rv.x/A

0.x/ 8x; v 2 S�.x0/;

where

Rv.x/
�w D �

 
�0.v/

�0.x/

Z 1

s

w.t/ dt

!0

;

and the following estimate holds,

kRv.x/� Ik � C kv � xk 8x; v 2 S�.x0/: (5.13)

Here, C is a positive constant that does not depend on v; x.

As was established in the article (Hanke et al., 1995), property (5.13) implies
inequality (5.11), and, hence, the validity of inequality (5.5) guarantees the
pseudo-contractive property of the step operator T in the processes (5.6) and
(5.8).

Note that if inequality (5.11) holds, then the strong convergence of the steep-
est descent method and the minimal errors method is valid (see (Neubauer and
Scherzer, 1995)).
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6 The Levenberg–Marquardt method

6.1 The idea of the method

For approximately solving the nonlinear equation

A.x/ D y; (6.1)

given on a pair of Hilbert spaces H1;H2, consider an iterative process in the
form

xkC1 D xk C 4k : (6.2)

Linearize the operator A at the current point xk

A.x/ ' A.xk/C A0.xk/.x � xk/

and find the unknown correction 4k from the assumption that each next ap-
proximation xkC1 minimizes the regularized residual, i.e.,

min
4k

kA0.xk/4k �Œy � A.xk/� k2 C ˛ kxkC1 � xkk2:

From this, we obtain the following expression for 4k ,

4k D �ŒA0.xk/�A0.xk/C ˛ I ��1A0.xk/�.A.xk/ � y/

and, therefore, process (6.2) takes the form

xkC1 D xk � ŒA0.xk/�A0.xk/C ˛ I ��1A.xk/�.A.xk/ � y/I (6.3)

in the scientific literature, this process is sometimes called the Levenberg–

Marquardt method.
Note that for ˛ D 0, the Levenberg–Marquardt process becomes the classi-

cal Gauss–Newton method; thus, it is also reasonable to call this process the
regularized analogue of the Gauss–Newton method.

6.2 Weak convergence of the method

Before going to study convergence of the iterations, modify (6.3) somewhat
by introduction of the parameter ˇ that governs the step size, and assuming
the parameter ˛ to be variable. Thus, process (6.3) takes the form (Vasin and
Mokrushin, 2000)

xkC1 D xk � ˇ ŒA0.xk/�A0.xk/C ˛kI �
�1 �A.xk/�.A.xk/ � y/: (6.4)
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As in the gradient methods, the following condition (see (5.5)) for the oper-
ator A is considered,

kA.x/� yk2 � � .x � z; S.x// (6.5)

in some neighborhood Sr .z/ (r D kz�x0k) of the solution z of equation (6.1);
here, S.x/ D A.x/�.A.x/� y/.

Introduce the variable Hilbert norm

kxk2
k D .Bkx; x/; Bk D A0.xk/�A0.xk/C ˛kI: (6.6)

If we suppose that N1 D supx kA0.x/k < 1, ˛k � ˛ > 0, then from the
evident estimate

˛ kxk2 � kxk2
k � .N 2

1 C ˛/ kxk2

it follows that for any k the introduced norm kxkk is equivalent to the original
Hilbert norm of the space H1.

In the sequel, we also assume that in the ball Sr .z/ there are no other solu-
tions of equation (6.1) except z.

Theorem 6.1. Let, together with the assumptions mentioned above in this sec-

tion, the relation

xk + Nx; S.xk/ � A0.xk/
�.A.xk/ � y/ ! 0 ) S. Nx/ D 0

be satisfied. Then for 0 < ˇ < 2˛ = � N 2
1 the iterations xk generated by

process (6.4) have the following properties:

1) xk + z in the space H1, where z is a solution of equation (6.1);

2) either kxkC1 � zkk < kxk � zkk for any k, or the sequence xk is sta-

tionary under k � k0.

Proof. Introduce the notations Tk.x/ D x � ˇB�1
k
S.x/, and let M be the

set of solutions of equation (6.1). Note that with the given notations, we have
Fix.Tk/ D M for any k. Actually, for ˇ > 0 the relation Tk.x/ D x implies
B�1

k
S.x/ D 0, from which S.x/ D 0, but then Ax � y D 0 by virtue of (6.5),

i.e., x 2 M .
Now show that for � > 0 and for any k, the inequality holds

kTkx
k � zk2

k � kxk � zk2
k C � kTk.x

k/ � xkk2
k � 0: (6.7)

After substitution of the expression for the operator Tk and evident transfor-
mations, inequality (6.7) takes the form

�
� 2

.1 C �/ ˇ
.x � z; S.xk//C .S.xk/; B�1

k S.xk//

�
� 0:
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If we require the relation

"
� 2

.1 C �/ˇ
.x � z; S.x//C N 2

1

˛
kAx � yk2

#
� 0 (6.8)

for all x 2 Sr.z/, then this implies the previous inequality.
In the turn, taking into account property (6.5), inequality (6.8) will be satis-

fied if
2˛

.1 C �/ ˇ N 2
1

� �:

So it is possible to take � D 2˛
ˇN 2

1 �
� 1.

Thus, inequality (6.7) is established. From this it follows that there exists

lim
k!1

kxk � zkk D d.z/ � 0:

Then the sequence fkxkkk g is bounded, and from this, by virtue of the norm
equivalence, we obtain boundedness of f kxkk g in the space H1; therefore, for
some subsequence

xki + Nx: (6.9)

Moreover, from (6.7) it follows that

kTk.x
k/ � xkkk D ˇ kB�1

k S.xk/kk ! 0;

and from this, taking into account the conditions of the theorem, we have
S.xk/ ! 0 in the space H1. Gathering the latter relation with (6.9), we con-
clude that S. Nx/ D 0. Since the solution of equation (6.1) is unique, it implies
Nx D z and the weak convergence is valid for the whole sequence,

xk + z:

By this, property 1) is proved.
Property 2) also holds, since if Tkx

k ¤ xk, it follows from relation (6.7)

kxkC1 � zkk < kxk � zkk :

In the contrary case, if Tk0
xk0 D xk0 , then it means that xk0 D z, therefore,

for any k � k0, Tk.z/ D z � B�1
k
S.z/ D z, i.e., the sequence xk becomes

stationary.



Section 6 The Levenberg–Marquardt method 63

6.3 Strong convergence of the modified method.

Asymptotic rule for stopping the process

According to the considered notations, method (6.3) can be written in the form

xkC1 D xk � ˇ B�1
k S.xk/ � Tk.x

k/: (6.10)

If some additional information is known for equation (6.1), i.e., the solu-
tion z to be found belongs to a compact or boundedly compact set Q, then
it is possible to construct a superposition of the operator Tk with the metric
projection PQk

and to consider the process

xkC1 D .PQ/k Tk.x
k/ (6.11)

for an approximate given right-hand side of equation (6.1): ky � yık � ı.
In this case, process (6.11) is written in the form

QxkC1 D .PQ/k eT k. Qxk/: (6.12)

Here, .PQ/k is the projection operator in the space with the variable norm that
was introduced above.

Theorem 6.2. Let the conditions of Theorem 6.1 be satisfied and kA0.x/k �
N1, kA00.x/k � N2 for x 2 Q, where Q be a boundedly compact set. Let

C D Œ.N 2
1 C ˛/ ˛�1 = 2 Œ1 C 2N 3

1N2 a =˛
2 C .N 2

1 CN1N2 a/ = ˛ �;

where kxk � zk � a.

Then if the number of iterations k.ı/ is chosen such that C k.ı/ ı ! 0 for

ı ! 0, then

lim
ı!0

k Qxk.ı/ � zk D 0;

i.e., process (6.12) generates a regularizing algorithm.

Proof. Since the superposition of pseudo-contractive mappings will belong to
the same class as process (6.10), method (6.11) converges weakly to z. And
since the iterative sequence is bounded and belongs to the boundedly-compact
set Q, this implies strong convergence of xk to z.

From the triangle inequality for norms, we have

kz � QxkC1kk

� kz � xkC1kk C kxkC1 � QxkC1kk

� kz � xkC1kk

C .kTk.x
k/ � Tk. Qxk/k C kTk. Qxk/ � eT k. Qxk/k/ .N 2

1 C ˛/1 = 2:
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By virtue of the fact established above, the first term at the right-hand side
tends to zero. Estimate the second term:

kTk.x
k/ � Tk. Qxk/k

D k.xk � Qxk/ � ŒB�1
k S.xk/ � eB�1

k S. Qxk/k

� kxk � Qxkk C kB�1
k ŒS.xk/ � S. Qxk/�k C k.eB�1

k � B�1
k /S.xk/k:

Here,

kB�1
k k � 1 =˛I

kS.xk/ � S. Qxk/k D kA0.xk/� .A.xk/ � y/ � A0. Qxk/� .A0. Qxk/ � y/k

� kA0.xk/� .A.xk/ � y/ � A0. Qxk/� .A.xk/ � y/k

C kA0. Qxk/�.A. Qxk/ � A.xk//k

� N1N2 a kxk � Qxkk CN 2
1 kxk � QxkkI

kxk � zk � aI

keB�1
k � B�1

k k D keB�1
k .Bk � eBk/B

�1k � 2N1N2

˛2
k Qxk � xkkI

kS.xk/k D kA0.xk/�.A.xk/ � y/k � N 2
1 a:

Now consider the third term. We have the evident estimate

kTk. Qxk/ � eT k. Qxk/k

� keB�1
k k kA0. Qxk/�.A0. Qxk/ � y/ � A0. Qxk/�.A. Qxk/ � yı/k � N1ı

˛
:

Gathering the obtained relations, we obtain the final estimate

kxkC1 � QxkC1kk � kxk � Qxkkk C C  .ı/ �
�kC1X

iD0

C i
�
 .ı/;

where C D Œ.N 2
1 C ˛/ ˛�1 = 2 Œ1 C 2N 3

1N2 a =˛
2 C .N 2

1 C N1N2 a/ = ˛� and
 .ı/ D .N 2

1 C ˛/1 = 2N1ı = ˛; from this estimate, the necessary relation fol-
lows.
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6.4 Stopping the iterations by the residual

Let Q be a compact set. Let, for the given level of the error ı, the number of
iterations k.ı/ in process (6.11) be defined from the relations

kA. QxkC1/ � yık � � ı < kA. Qxk/ � yık;
k D 1; 2; : : : ; k.ı/ � 1; � > 1:

Under the assumption of unique solvability (i.e., the operator A is invertible) of
equation (6.1) such a number k.ı/ exists for any ı and k.ı/ ! 1 for ı ! 0,
then the sequence xk.ı/ converges to the solution z, i.e.,

lim
ı!0

k Qxk.ı/ � zk D 0:

This follows from the evident estimate

kA Qxk.ı/ � yk � kA Qxk.ı/ � yık C kyı � y0 j � .1 C �/ ı

and the known fact on continuity of the inverse mapping on a compact set for
a one-to-one continuous operator A.

7 Ill-posed problems with a priori information

7.1 Formulation of the problem and convergence theorems

In the previous sections (see Sections 1–3) of this chapter, for the considered
equations and systems of equations with additional constraints on the solution,
conditions of uniqueness and, actually, well-posedness of the basic problem
were discussed.

In this section we discuss the linear equation

Ax D y (7.1)

with the bounded operator A acting on a pair of Hilbert spaces H1, H2 and
without any assumptions about uniqueness of solution and boundedness of the
inverse operator. Thus, we shall speak about an essentially ill-posed problem

(Ivanov et al., 1978). The integral Fredholm equation of the first kind is a
typical example of such a problem,

Ax �
Z b

a

K.t; s/x.s/ ds D y.t/; c � t � d; (7.2)
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that is considered on the pair of spaces L2Œa; b�, L2Œc; d � of the functions in-
tegrable in square. Equation (7.2) plays the role of a mathematical model of
processes in various branches of the natural sciences in investigations of so
called inverse problems; see (Tikhonov and Arsenin, 1979; Ivanov et al., 2002;
Vasin and Ageev, 1995; Tikhonov et al., 1995; Bakushinskii and Goncharskii,
1994; Engl et al., 1996; Groetsch, 1993).

In the sequel, the intention is to describe more completely the mathematical
formulation of an applied problem with the aim of obtaining high quality in-
formation about the object under investigation. The leads to the consideration
(together with the basic equation) of additional relations and connections on
the solution to be found. These additional constraints, represented in the form
of equalities, inequalities or inclusions, describe important characteristics of
the solution that are joined with its subtle structure and have not been revealed
by the basic equation.

This usage of a priori information about the solution is especially important
in considering the ill-posed formulation with a nonunique solution of the basic
equation, since such an information allows to localize the solution to be found
and select one which corresponds to the physical contents of the problem. It is
also important to understand that in the case of nonuniqueness of the solution,
neither method does guarantee obtaining the solution without additional infor-
mation; this follows from the fact that, depending on the algorithm used and
the initial data taken, we obtain different solutions, including those that do not
describe the real object (phenomenon).

Thus equation (7.1) represents a mathematical model of the object under
consideration and joins the solution x to be found with the initial data of the
problem A; y, where the operator A is defined by physical principles (laws)
used in the model description, and the element (function) y corresponds to the
measured values (parameters).

Let some additional information on the solution of equation (7.1) be known
in the form of inequalities

fi .x/ � 0; i D 1; 2; : : : ;m; (7.3)

where fi are convex sub-differentiable (with bounded derivatives @fi .x/),
semi-continuous from below functionals given on the Hilbert space H1. Sys-
tem (7.3) reflects some structural characteristics of the solution that are not
described by the basic equation (7.1).

It is necessary to find the solution of equation (7.1) which satisfies sys-
tem (7.3). If we denote by M ¤ ¿ the set of solutions of equation (7.1)
and by Q the set of solutions of system (7.3), then we have to find an element
x 2 M \Q.
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To solve this problem, it is natural to consider iterative processes in the form

xkC1 D P.U.xk//; (7.4)

xkC1 D  P.xk/C .1 � /U.xk/; 0 <  < 1; (7.5)

where U is the solving iterative operator for equation (7.1), and P is Q-
pseudo-contractive or aQ-Fejér mapping that generates an iterative procedure
for solving system (7.3).

If we take the step operator from one of the versions of the simple iteration
method (see (2.6) and Remark 2.10, Chapter I) as the mapping U , i.e.,

U.x/ D x � ˇ .A�Ax � A�y/; ˇ � 1 = kAk2; (7.6)

or from the implicit iterative scheme, i.e., (see (2.11), Chapter I)

U.x/ D .A�AC ˛ I /�1 .˛ x C A�y/; ˛ > 0; (7.7)

and if we define the mapping P by formulas (3.2)–(3.4) or (3.2), (3.3 a), (3.4),
then we shall be able to satisfy the conditions of Theorem 3.9, Chapter I and
obtain the following statement.

Theorem 7.1. Under the given assumptions, the processes (7.4) and (7.5)
generate the iterative sequence xk that converges weakly to an element x 2
M \Q.

Proof. Firstly, ensure that the operator U defined by formula (7.6) belongs to
the class P

1 (see Definition 1.5, Chapter I), i.e., the following relation holds,

kUx � Uvk2 � kx � vk2 � kUx � x � .Uv � v/k2 8x; v: (7.8)

Note that (7.8) is equivalent to the following inequality,

kUx � Uvk2 � .Ux � Uv; x � v/ 8x; v:

Taking into account the linearity of the operator A and changing x � v D u,
we obtain the latter inequality in the form

k.I � ˇ A�A/uk2 � ..I � ˇA�A/u; u/ 8u;

where the operator T D I � ˇ A�A for ˇ � 1
kAk2 is positive semidefinite and

selfadjoint with the norm

kT k D sup
�2�.A�A/

jI � ˇ� j � 1:
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Therefore there exists the operator T 1=2 with the norm kT 1=2k � 1. The chain
of inequalities

kT uk2 D kT 1=2 T 1=2uk2 � kT 1=2k2 kT 1=2uk2

� kT 1=2uk2 D hTu; ui

completes the proof of the inclusion U 2 P
1. Since it is evident that Fix.U / D

M , we have U 2 P
1

M
, i.e., the operator U is M -pseudo-contractive.

By the same scheme, the inclusion U 2 P
1 is proved for the operator U

from (7.7).
By virtue of linearity of the operator A, property (3.1) from Chapter I is

evidently satisfied, and for the operator P this holds because of Remark 3.15,
Chapter I. Making use of Theorem 3.1, Chapter I, completes the proof.

Remark 7.2. In the theorem it is possible to take 0 < ˇ < 2=kAk2 (see (Vasin
and Ageev, 1995)).

To obtain a strongly converging sequence of iterations, use the method of
correcting multipliers and construct the iterative schemes

xkC1 D kC1P.U.x
k//C .1 � kC1/ v0; (7.9)

xkC1 D kC1Œ P.x
k/C .1 � /U.xk/�C .1 � kC1/ v0: (7.10)

Now let the a priori constraints (7.3) are given in the form of the system of
linear inequalities

lj .x/ � .aj ; x/ � bj � 0; j D 1; 2; : : : ;m: (7.11)

Define the mapping

Pj .x/ D x � � l
C.x/

kaj k2
aj ; � 2 .0; 2/; aj ¤ 0;

and construct the operators

P .1/.x/ D
mX

iD1

˛iPj .x/; ˛i 2 .0; 1/;
mX

iD1

˛i D 1; (7.12)

P .2/.x/ D Pj1Pj2 : : : Pjm
.x/: (7.13)

Note that since the mapping Pj is nonexpansive (see Lemma 3.1, Chapter IV),
the mappings P .1/ and P .2/ will also be nonexpansive. As it has been es-
tablished in Theorem 7.1, the operators U defined in (7.6), (7.7) are pseudo-
contractive (of the class P

1) and, therefore, nonexpansive.
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Gathering these facts, we obtain the following corollary from Theorem 4.5,
Chapter I (here, the ball with the center at the point Nx 2 M \Q plays the role
of the set D).

Corollary 7.3. For any admissible sequence k (see Definition 4.4, Chapter I)

and any element v0 2 H1, the iterations xk generated by processes (7.9) and

(7.10) strongly converge to the element x 2 M \ Q closest to v0, where the

operator P .1/ or P .2/ from (7.12), (7.13) take the role of the operator P , resp.

7.2 Properties of iterations under noisy data

As it was noted in Section 4 (Subsection 4.3), Chapter I, for the iterative ap-
proximation of a solution of an ill-posed problem with noisy data, the nec-
essary number of iterations has to be related with the given error in the data.
There, a rule for the choice of such a dependence was also formulated for the
method of correcting multipliers.

We illustrate this rule for process (7.9) when the mapping P .1/ is used as the
operator P .

Let the right-hand side y of equation (7.1) and the vector b D .b1; b2; : : : ;

bm/
> of the free terms in the inequality system (7.11) be given approximately

by the pair Qy; Qb, such that

ky � Qyk � ı; max
1�i�m

jbi � Qbi j � ı:

Introduce the following notations:

Qlj .x/ D .aj ; x/ � Qbj ; eP
j
.x/ D x � �

QlC.x/
kaj k2

aj :

Then we have the estimates

kPj .x/� eP
j
.x/k D �

kaj k jlC.x/ � QlC.x/j � �

kaj k ı;

kP .1/.x/� eP .1/.x/k D
mX

j D1

˛j kPj .x/� eP
j
.x/k � �

kak ı;

where kak D min1�j �m kaj k.
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For the operators U given by formulas (7.6) and (7.7), we find, correspond-
ingly,

kU.x/ � eU .x/k D ˇ kA�y � A� Qyk � ˇ kA�k ı;

kU.x/ � eU .x/k D k.A�AC ˛ I /�1A�.y � Qy/k � kA�k
˛

ı:

Gathering the obtained results, we have for the operator T D  P .1/ C .1 �
/U the following estimate uniform on x,

kT .x/ �eT .x/k � '.ı/;

where either '.ı/ D .� = kak C .1 � / ˇ kA�k/ ı, if U is given accordingly
to (7.6), or '.ı/ D .� = kak C .1 � / kA�k =˛/ ı, if U satisfies (7.7).

Thus, a condition for the approximation of the operator T is fulfilled that
is stronger than each of the conditions (4.9), (4.10), Chapter I. On the basis
of Theorem 4.6, Chapter I, and under relation k.ı/ � '.ı/ ! 0 as ı ! 0
of the parameters, this guarantees strong convergence of the sequence Qxk.ı/

generated by process (7.10) to the solution Ox 2 M \ Q, with P D P .1/ and
y; b are substituted by their approximations Qy; Qb with the level ı of the error.

In the more general situation when the vectors aj and the operator A are
given with the error kaj � Qaj k � ı, kA � eAk � ı, after simple calculations
and for sufficiently small ı, we obtain

kPj .x/ � eP
j
.x/k � � .1 C kxk/

kak ı;

kU.x/ � eU .x/k �
h
ˇ .kA�k C keAk/ kxk C ˇ .kyk C keA�k/

i
ı

for the operator U from (7.6), and

kU.x/ � eU .x/k �
h
h kxk C .kA�k C kyk/ = ˛ C h keA�k k Qyk

i
ı;

where h D .kAk C keA�k/ = .˛2 � ˛ .kAk C keA�k// ı, for the operator U
from (7.7).

The obtained estimates and the boundedness of xk (i.e., the iterations for ex-
act data) allow to conclude that the condition of approximation (4.10), Chap-
ter I, holds for the operator T D  P .1/C.1�/U . As above under the relation
k.ı/ � '.ı/ ! 0, this guarantees convergence of process (7.10) in the case of
noisy data (here, '.ı/ is easily written out from the presented estimates).
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7.3 Taking into account the a priori information in applied

problems

1. In the investigation of the atomic structure of one-component unordered
(amorphous) materials by the EXAFS (Extended X-ray Absorption of Fine
Structure), there appears the integral Fredholm equation of the first kind (Vasin
and Ageev, 1995, and the references therein)

Ag �
Z b

a

K.k; r/g.r/ dr D �.k/; c � k � d; (7.14)

where �.k/ is the absorption coefficient of the monochrome X-ray beam in
the material under study, which is measured experimentally; g.r/ is the radial
atomic distribution function (to be found) that is the most important structural
characteristic of the material. From the physical sense of the function g.r/, it
follows

g.r/ � 0; (7.15)

.g; v/ � 3

b3 � a3

Z b

a

r2g.r/ dr D 1: (7.16)

Theoretical and numerical analysis showed that the integral operator in
(7.14) has a non-trivial kernel, and, hence, the solution of the equation is not
unique.

The approximate regularized solution obtained by the classical Tikhonov
method (without using the a priori information (7.15), (7.16)), has no physical
sense. This means that the normal solution, which is approximated by this
method, does not satisfy conditions (7.15), (7.16).

To obtain a solution having physical sense, two approaches have been sug-
gested. In the first one, the iterated version of the Tikhonov regularization

is applied together with projecting onto a priori sets. For this purpose, the
following mapping is introduced,

U W x ! arg min
g

fkAg � �k2
L2

C ˛ kg � xk2
W 1

2 .or L2/
g

and the following iterative process is constructed,

gkC1 D PQ2PQ1U.g
k/: (7.17)

Here, PQ1 is the metric projection onto the set Q1 D fg W hg; vi D 1g, and
PQ2 is the projection onto the set Q2 D fg W g � 0g.

In the second approach, the normalization condition (7.16) is taken into
account by addition of this equation to the system obtained in the result of
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discrete approximation of equation (7.14), and the second condition (7.15) is
similar to the one shown above in the first approach.

Numerical experiments for equation (7.14) for simulated and experimental
data have shown that an application of the a priori constraints by the suggested
procedure in the algorithm allows to obtain a solution of reasonable quality.
The details of the numerical simulation can be found in (Vasin and Ageev,
1995).

2. Under violation of the monotonic dependence of the electron concentra-
tion as the function of altitude, the so called problem of waveguides appears
in the oblique radiolocation of the ionosphere from the ground surface when
the vertical profile of the electron concentration has to be defined along the
epicentral distances (as the function of the beam parameter) obtained on two
frequencies.

This is related to the fact that the solution of the problem becomes nonunique
in this case and, moreover, the traditional method allows to define the con-
centration only until beginning on the waveguide (i.e., until monotonicity is
violated). In the work (Ageev et al., 1997), it was shown that in spite of the
impossibility to define the concentration on the waveguide in the one-valued
way, one can determine the “waveguide measure” (i.e., the measure of the
Lebesgue sets for the wave refraction coefficient) if we solve the correspond-
ing Fredholm–Stieltjes equation of the form

Z b

a

K.p; r/ dF.r/ D R.p/; (7.18)

where K.p; r/ is some given function, R.p/ is a function defined experimen-
tally, and F.r/ is the waveguide measure. Moreover, the electron concentra-
tion over the waveguide can be calculated by means of the determined func-
tion F.r/.

When the Tikhonov regularization is used in the standard form, the quality
of the solution appears to be not very well. If we additionally take into account
the a priori data about the solution F in the form

F.a/ D 0; F 0.b/ D 0; F 0.r/ � 0; F .r/ � 0; (7.19)

then applying the iterative process of the form (7.17) enhances essentially the
solution quality. In this case PQ1 D P1P2 : : : Pn or PQ1 D

Pn
iD1 �iPi , where

Pi is the projection onto the half-space (see formula (3.7)) that is defined by
the i th inequality in the system BF � 0 with the two-diagonal matrix B;
this matrix is obtained after finite-difference approximation of the condition
F 0.r/ � 0. The operator PQ2 is the metric projection onto the set Q2, which
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is defined by the condition F.x/ � 0, i.e., PQ1F D FC is the positive cut-
off-function of the vector F .

Note that after integration by parts of equation (7.18) and taking into account
the boundary conditions from (7.19), we obtain the usual Fredholm equation

Z b

a

K 0
r.p; r/F.r/ dr D �R.p/; (7.20)

where it is necessary to apply an iterative scheme.
We next describe another possible way for constructing iterative processes

for solving equation (7.20). Consider some grid frig, i D 0; 1; : : : ;mC 1, and
approximate the condition F 0.r/ � 0 by the system of inequalities

F.riC1/ � F.ri / � 0; i D 0; : : : ;m; (7.21)

where F.r0/ D F.a/ D 0, F.rmC1/ D F.rm/ D 0. Introducing the artificial
variables Yi (i D 1; : : : ;m), we pass from the inequality system (7.21) to the
system of linear algebraic equations

F1 C 0 C 0 C � � � C 0 � Y1 D 0;

�F1 C F2 C 0 C � � � C 0 � Y2 D 0;

:::

0 C 0 C 0 � � � � Fm�1 C Fm C 0 C � � � C 0 � Ym D 0;

(7.22)

for which we search the solution under the condition

Z D .F1; F2; : : : ; Fm; Y1; Y2; : : : ; Ym/ � 0:

In matrix notation, the system (7.22) takes the form

CZ D 0; Z D ŒF; Y �>: (7.23)

Denote by A the matrix obtained as a result of discretization of the integral
operator in problem (7.20), and denote by b the vector that approximates the
right-hand side. Then the system of linear algebraic equations approximating
problem (7.20) can be formally written in the form

Dz D d;

where D D ŒA;O�, O is the zero matrix, d D .b; 0/>.
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Thus, the original problem is reduced to finding the nonnegative solution
z D .p; v/> � 0 of the compound system

(
Dz D d;

Cz D 0:

For the approximation of its solution, it is possible to use a broad range of
methods of the form

zkC1 D PCV.zk/;

where, for instance, V is the step operator of some explicit or implicit scheme
(see (7.6), (7.7)) with the matrix B D ŒD ; C �>, and PC is a projection onto
the positive orthant.

3. A problem of reconstruction an image corrupted by the hardware of the
measuring equipment and by an additive noise is reduced to solving the two-
dimensional integral equation of the first kind

Au �
Z 1

0

Z 1

0
K.x � t; y � s/ u.t; s/ dt ds D f .x; y/; (7.24)

this is a typical ill-posed problem. Thus, for the stable construction of an ap-
proximate solution, it is necessary to use ideas of regularization, for example,
on the basis of the Tikhonov method

min fkAu � f k2 C ˛ �.u � u0/ W u 2 U g: (7.25)

Numerical experiments, see, for instance, (Vogel, 2002), show that for prob-
lems of type (7.24) originating from the reconstruction of images, applications
of the Tikhonov stabilizers in the form

�.u/ D kuk2
W l

2 Œ…�
; … D f.x; y/ W 0 � x; y � 1g

with the norm of the Sobolev space .l � 1/ is not suitable in many cases. This
is caused by the effect of smoothing of a discontinuous solution. Application
of the stabilizing functional of the form

�.u/ D kuk2
L2

C J.u/ (7.26)

with the variation J.u/ of this or that type, see (Leonov, 1996; Acar and Vogel,
1994; Vasin, 2002), as a rule, leads to better results. In particular, the following
total variation (Giusti, 1984) can be used as the functional J.u/,

J.u/ D sup
nZ 1

0

Z 1

0
u.x; y/ div v.x; y/ dx dy W v 2 C 1

0 .…;R
2/; jvj � 1

o
;
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which in the case of a smooth function u 2 W 1
1 .…/ takes the form

J.u/ D
Z 1

0

Z 1

0
jrujdx dy:

In the general multi-dimensional case, a theorem on convergence (Vasin,
2002) for the Tikhonov method (7.25) with stabilizer (7.26) is proved, namely,

lim
ı!0

ku˛.ı/ � OukL2.…/ D 0; lim
ı!0

J.u˛.ı/ � u0/ D J. Ou � u0/;

with the relation of the parameter ı = ˛.ı/ ! 0, ˛.ı/ ! 0, where u˛ is the
solution of the extremal problem (7.25); Ou is the normal solution of the integral
equation; ı is the level of error in the input data.

To reduce problem (7.25) to a finite-dimensional problem, the discretization
of the integral operator A and the stabilizer � is implemented on the basis of
the two-dimensional analogue of the rectangular formula. After some trans-
formations (summation by parts), the finite-dimensional extremal problem is
transformed to the form

min

� X

k;l

hX

i;j

h2K.xk � ti ; yl � sj /u.ti ; sj / � fkl

i2
h2

C ˛
nX

i;j

h2u2.ti ; sj /C
X

i;j

h2
h�ui;j � ui;j �1

h

�2

C
�ui;j � ui�1;j

h

�2io 1
2 W un 2 ln2

�
: (7.27)

Denote the objective functional in problem (7.27) by ˆ˛
n.un/, and denote its

optimal value by ˆ�
n. We assume that some estimate ên of ˆ�

n is known, i.e.,
ê

n � ˆ�
n C ", " > 0. Now the problem of approximate minimization (7.27)

can be written as the solution of the inequality

ˆ˛
n.un/ � ê

n (7.28)

with a convex function of n variables. Denote by M the set of solutions of
inequality (7.28).

Since the stabilizing term in ˆ˛
n.un/ is not differentiable, it is natural to use

some subgradient method for solving equation (7.28). Taking into account an
a priori information of the form

Q D fu W u � 0g
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about the solution, we consider the iterative process

ukC1
n D PC

n
uk

n � Œˆ˛
n.u

k
n/ � ê

n�
C @ˆ˛

n.u
k
n/

k@ˆ˛
n.u

k
n/k2

o
; (7.29)

where @ˆ˛
n.u

k
n/ is an arbitrary subgradient of the function ˆ˛

n.u/ at the point
uk

n, and PC is the operator of the positive cut-off-function (i.e., the projection
operator onto the set Q).

The step operator of process (7.29) represents the superposition of two oper-
ators from the classes P

1
M

and P
1

Q
(see Lemmas 3.13 and 3.14, Chapter I) that

on the basis of Theorems 3.1 and 6.10, Chapter I, guarantees convergence of
the iterations to some solution Ou 2 M \Q.

In the work (Vasin and Serezhnikova, 2004) there is a detailed description
of the numerical results obtained by implementation of algorithm (7.29) on
the reconstruction of a corrupted image for the real data K; f taken from the
internet (Vogel and Hanke, 1998) in the form of numerical arrays on a 128�128
grid in the square 0 � x; y � 1.

This approach revealed to be rather efficient and allows to select more legi-
bly the contours of the image. Comparison of the reconstructed image with the
results obtained in the work (Leonov, 1999) where another approach was used
(this one is based on the preliminary smoothing for the nonsmooth stabilizer
and further piecewise- uniform approximation) shows their vicinity in quality.

4. For the investigation and interpretation of productivity of a wellbore/
reservoir system, the problem of the solution of the convolution Volterra equa-
tion (Schroter et al., 2001) arises:
Z t

0
q.t � �/g.�/d� D �p.t/; �p.t/ D p0 � p.t/; t 2 Œ0; T �: (7.30)

Here, p.t/ and q.t/ are the pressure and the flow rate, respectively, p0 is
the initial reservoir pressure, and g.t/ D dpu.t/=dt , where pu.t/ is the so
called constant-unit-rate pressure response. The functions pu.t/ and g.t/ are
unknown and are to be reconstructed by �p.t/ and q.t/ that are given with
noise. The functions pu.t/ and g.t/ are used for the analysis of a wellbore/
reservoir system (Bourdet et al., 1989).

As it is known (Coats et al., 1964), the function g.t/ satisfies the following
constraints:

C > g.t/ > 0; g.t/ 6 0; g0.t/ 6 0; g00.t/ > 0: (7.31)

So, we must solve the system

Ag D �p; g 2 M; (7.32)
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where M D fg W 0 6 g 6 C; g0.t/ 6 0; g00.t/ > 0g.
Now the following iterative processes

either

gkC1 D PM .g
k � ˇ.A�Agk � A��p//; 0 6 ˇ 6 2=kAk2;

or

gkC1 D PM .A
�AC ˛I /�1.˛gk C A��p/

(7.33)

are appropriate for solving system (7.32). Here, the mapping PM is given, for
example, by the formulas (7.12), (7.13) or (3.12), (3.13) from Chapter I.

Since the set of functions M given by inequalities (7.31) is compact in
L2Œ0; T �, we can also use the Ivanov quasi-solution method (Ivanov et al.,
2002)

minfkAg ��pk2 W g 2 M g: (7.34)

After discretization of problem (7.34) by a finite-difference method, we arrive
at the minimization of a quadratic function with linear constraints, which can
be solved by methods of the gradient type.

Another approach for solving equation (7.30) is based on the preliminary
transition from the linear equation (7.30) to a nonlinear one,

A.z/ D
Z log10 t

�1

q.t � 10� / 10�d� D �p.t/; t 2 Œ0; T � (7.35)

after changing of the variable � and the function g.t/ as follows:

� D log10 �; z.�/ D log10.�g.�//:

Now for solving (7.35), we can apply an iterative processes of the form

gkC1 D PMV.g
k/;

where V is the step operator of the iterative method of Gauss–Newton type
(e.g., (6.4) in Chapter II), and PM is a Fejér mapping corresponding to the
constraints (7.31) (see (1.1)–(1.5), Chapter III).

5. In the inverse problems of thermic atmosphere, it is necessary to find the
temperature T .h/ and concentration n.h/ of the green-house gases (CO, CO2,
CH4, etc.) as function of the height using spectra measured by the satellite
sensors. Here, the following integral equation arises,

A.�/ D
Z C1

�1

W.�/F.� � �0/d�0 D ˆ.�/: (7.36)
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This equation is the convolution of a spectrum W of high resolution mea-
sured with apparatus function F . The function W depends on the absorp-
tion coefficient B�.T .h// that is a nonlinear function of unknown parameters
u.h/ D .T .h/; n.h//.

Usually, only a part of parameters is found (i.e., the temperature and
methane; the temperature, water vapor, and carbon acid), but other parame-
ters are considered to be fixed and their values are chosen from the database
for the region under investigation.

Peculiarity of such a problem is in the presence of a priori information for
the unknown solution in form of the two-sided inequalities

Q D fu W u.h/ 6 u.h/ 6 u.h/g: (7.37)

For the numerical reconstruction of a solution of equation (7.34), satisfac-
tory results are obtained by using an iterative method of the regularized Gauss–
Newton type, in particular, the modified Levenberg–Marquardt method (6.4):

ukC1 D PQŒu
k � ˇ.A0.uk/�A0.uk/C ˛kI /

�1A0.uk/�.A0.uk/ �ˆ/�

where PQ is the projection operator on the n-dimensional parallelepiped (7.5)
(note that after discretization, u.h/ is an n-dimensional vector) (see (Vasin et
al., 2006)).



Chapter III

Application of Fejér methods to solve linear

and convex inequalities

1 The basic construction of M -Fejér mappings for

application to finite systems of linear inequalities

We consider the following system of linear inequalities in a Hilbert space H :

lj .x/ D .aj ; x/ � bj � 0; j D 1; : : : ;m: (1.1)

We shall suppose that aj ¤ 0 for all j . The projection PQj
.x/ of the point x

onto the half-space Qj D fx W lj .x/ � 0g with the relaxation coefficient
�j 2 .0; 2/ is defined by the formula

Tj .x/ D PQj
.x/ D x � �j

lCj .x/

kaj k2
� aj : (1.2)

The validity of the inclusion Tj 2 F
Qj

was considered in Section 5, Chap-

ter I. Assume M D
Tm

j D1Qj ¤ ¿. We consider now three basic construc-

tions of M -Fejér mappings.

1. Weighted projection construction:

T .1/.x/ D
mX

j D1

˛jTj .x/ D x �
mX

j D1

˛j�j

lCj .x/

kaj k2
� aj : (1.3)

Here, ˛j > 0,
Pm

j D1 ˛j D 1.

2. Cyclic projection construction:

T .2/.x/ D Tj1 Tj2 : : : Tjm
.x/; (1.4)

where .j1; : : : ; jm/ is an arbitrary ordering of the indices j D 1; : : : ;m.

3. Extremal projection construction:

T .3/.x/ D
�
x � � d

C.x/

kajx
k2

� ajx
W jx 2 J.x/

�
; (1.5)

� 2 .0; 2/; d.x/ D max
j
lj .x/; J.x/ D fj W d.x/ D lj .x/g:
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The mapping T .3/.x/ is a contraction of mapping (7.6), Chapter I, which is
closed and satisfies the statements of Corollary 7.7, Chapter I. The mappings
T .1/ and T .2/ are continuous. Since any process xkC1 2 T i .xk/, i D 1; 2; 3
for initial x0 operates in the finite-dimensional subspace Linfa>

j ; x0g of the
space H , the convergence of all such sequences to the element x0 2 M is
provided on the basis of Theorem 6.10, Chapter I. Thus, the following theorem
can be formulated.

Theorem 1.1. The sequence fxkg, generated by any of the mappings T .i/.x/,

i D 1; 2; 3 and for arbitrary initial x0 2 H , converges to some solution of the

consistent system (1.1).

When constructing the mapping T .1/, the weight coefficients ˛j can be
chosen in various ways; for example, it is possible to put ˛j D 1

m
, ˛j D

kaj k2
Pm

sD1 kask2 , and so on. They also can be variable, for instance, ˛j .x/ D
l

C

j
.x/

Pm
sD1 l

C
s .x/

. In the latter case in definition of the mapping T .1/, it is neces-

sary to make small change, namely,

T .1/0.x/ D
( Pm

j D1 ˛j .x/Tj .x/; x … M;
x; x 2 M:

(1.6)

Note that in (1.6) we have x 2 M � ı.x/ D
Pm

j D1 l
C
j .x/ D 0 and x … M �

ı.x/ > 0; here, “�” is the symbol of equivalency.
It is possible to check the closedness of the mapping (1.6) that implies the

validity of Theorem 1.1 for this mapping, i.e., the sequence xk defined accord-
ingly to the inclusion xkC1 2 T .1/0 .xk/ converges to some element x0 2 M .

2 Fejér processes with variable coefficient of

relaxation

For the case H D R
n, consider the process

xkC1 2 Tk.x
k/; x0 2 R

n; (2.1)

where

Tk.x/ D
�
x � �k

dC.x/

khk2
h W h 2 @d.x/

�
; (2.2)

with �k 2 Œ "; 2 � " �, " 2 .0; 1/, d.x/ being a convex function, and finally
M D fx W d.x/ � 0g ¤ ¿. The mapping (2.2) corresponds to relation (7.3),
Chapter I, for � D �k and E.x/ D @d.x/.
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2.1 The main theorem

Theorem 2.1. Under the conditions mentioned above, the process (2.1)–(2.2)
converges to x0 2 M .

Proof. Let us to carry out the proof by a new scheme different from the one of
Theorem 7.6, Chapter I.

1. If for some x
Nk we have dC.x

Nk/ D 0, i.e., x
Nk 2 M , then the sequence xk

is stabilized, and, hence, the theorem is valid.

2. Let fxkg \M D ¿ and fxkg0 \M ¤ ¿, i.e., the sequence xk contains a
subsequence xjk ! x0 2 M ; above, fxkg0 was the set of all limit points of the
sequence xk. Since in the situation under consideration xk will be M -Fejér
and x0 2 M , we have xk ! x0 according to Corollary 5.5, Chapter I. This
completes the proof.

3. The case fxkg0 \M D ¿ corresponds to the fact that limk!1 d.xk/ D
 > 0. Actually, if  D 0, then it is possible to select a subsequence xjk

converging, say, to x0, such that lim d.xjk / D d.x0/ D 0, and this gives
x0 2 M in contradiction to fxkg0 \ M D ¿. Thus,  > 0. Rewrite process
(2.1) in the transformed form

xkC1 D xk �
"
�k

d.xk/

dı.x
k/

#

„ ƒ‚ …
�0

k

�dı.x
k/

khkk2
� hk ; hk 2 @d.xk/; (2.3)

where dı.x
k/ D d.xk/ � ı, 0 < ı <  . Note that @d.xk/ D @dı.x

k/ for
any ı. Since d.xk/ � 1 D  � "1 > 0 for large k and sufficiently small
"1 > 0, we can find the following estimate for �0

k
:

�0
k D �k

d.xk/

d.xk/ � ı
D �k

�
1 C ı

d.xk/ � ı

�
� .2 � "/

�
1 C ı

1 � ı

�
:

So as 1 C ı
1�ı

! 1 for ı ! 0, then for sufficiently small ı > 0 there exists

an N" > 0 such that �0
k

� 2 � N", i.e., " � �k � �
0

k
� 2 � N" for all k D 1; 2; : : : .

Thus, the sequence xk can be regarded as a result of a scheme of type (2.1),
but in application to the mapping

Wk.x/ D
(
x � �0

k

dC
ı
.x/

khk � h W h 2 @dı.x/

)
; (2.4)
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the previous hk from @d.xk/ are taken for the generation. But since @d.xk/ D
@ıd.x

k/, the previous choice of hk will also correspond to rule (3.3). Put
Mı D fx W dı.x/ D d.x/ � ı � 0g. The set M D fx W d.x/ � 0g will be a
part of the interior of the setMı , therefore, Mı is solid, i.e., it has an nonempty
interior. So as the sequence xk will beMı -Fejér, then accordingly to Corollary
5.4, Chapter I, this sequence has a unique limit point, i.e., xk ! x0. We now
show that x0 2 M . Rewrite the realization of process (2.1) under consideration
in the form

xkC1 D xk � �k

dC.xk/

khkk2
� hk : (2.5)

From (2.5) it follows

dC.xk/ D .khkk =�k/ kxkC1 � xkk: (2.6)

Since supk khkk < C1 (see Lemma 7.3, Chapter I) and �k � ", it follows
from (2.6) that lim dC.xk/ D dC.x0/ D 0, i.e., x0 2 M .

The theorem is completely proved.

Remark 2.2. Sometimes it could be useful to determine the relaxing coeffi-
cients �k according to the rule �kC1 D � .xk/, where �.x/ is some function
that maps R

n onto the segment Œ "; 2 � " �. The choice of �k may also be
arbitrary. The validity of Theorem 2.1 is not violated here.

2.2 Fejér process with the mirror relaxation

In application to system (1.1), consider the mapping (1.5) for � D 2 and the
generated sequence xk described by the following recurrent relation:

xkC1 D xk � 2
dC.xk/

kajk
k2

� ajk
; jk 2 J.xk/; (2.7)

where J.x/ D fj W d.x/ D lj .x/g. In (2.7), the value � D 2 is taken
(that earlier was excepted) as the relaxation coefficient which is used in all
constructions of M -Fejér mappings for � 2 .0; 2/. This version is called the
mirror relaxation. In this case process (2.7) will be weakly M -Fejér in the
following sense:

8y 2 M W kxkC1 � yk � kxk � yk 8 k; (2.8)

but inequalities (2.8) will be strict for xk … M if y 2 M 0; here, for M 0, the
interiority of the polyhedron M is understood under the assumption that it is
solid.
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Process (2.7) is interesting due to the fact that under such an assumption
about the polyhedron M , this process terminates, i.e.,

9 Nk W x Nk 2 M:

We shall need one simple identity that in essence was already used in Chap-
ter I. Namely, letQ be a half-space of a Hilbert space H given by the inequal-
ity l.x/ D .a; x/ � ˛ � 0, a ¤ 0. Define the mapping

P �
Q.x/ D x � � l.x/kak2

� a; � 2 .0; 2�:

If x … Q, then P �
Q.x/ is the projection operator onto the half-space Q with

the relaxation �.

Lemma 2.3. The following identity is valid for the mapping P �
Q:

kP �
Q.x/� yk2 D kx � yk2 C 2�

l.x/l.y/

kak2
� � .2 � �/ Œl.x/�

2

kak2

with x and y from H .

Proof. The statement is checked out directly.

The following theorem holds.

Theorem 2.4. If the polyhedron M of system (1.1) is solid, then process (2.7)
terminates, i.e., at some finite step of the process we obtain a point from M .

Proof. This fact is proved by contradiction, i.e., we assume fxkg \ M D ¿.
Immediately note that the step xk ! xkC1 (according to (2.7)) is in the mirror
mapping of the point xk with respect to the hyperplane Hk D fx W .ajk

; x/ �
bjk

D 0g; so, if y 2 Hk , then

kxkC1 � yk D kxk � yk: (2.9)

Here jk 2 J.xk/.
According to the identity from Lemma 2.3 above applied to (2.7), we have

kxkC1 � yk2 D kxk � yk2 C 4
ljk
.xk/ ljk

.y/

kajk
k2

; y 2 M: (2.10)
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From this relation, for y 2 M 0 D intM (in this case ljk
.y/ < 0) it follows

kxkC1 � yk < kxk � yk; (2.11)

i.e., the sequence xk is M 0-Fejér, which by the assumption that M 0 is solid
gives convergence of the sequence xk (and the same fact follows from the
weak M -Fejér property of this sequence). Therefore, xk ! x0. Let us prove
that x0 2 M . It follows from (2.7), namely,

d.xk/ D .1 = 2/ kxkC1 � xkk � kajk
k ! 0 H) d.xk/ ! 0

H) x0 2 M;
(2.12)

because this is equivalent to d.x0/ D 0.
Let Nk be an index k, after which jk repeats infinitely. All such indices

evidently belong to the set J.x0/. Hence, by virtue of the note made in the
beginning of the proof and relation (2.9) joined with it, we have (for y D x0)
kxkC1 � x0k D kxk � x0k ¤ 0, i.e., the distances from the points xk and
xkC1 to x0 will be the same for all k > Nk, that contradicts to the convergence
xk ! x0. The theorem is proved.

3 Application of Fejér processes to a system of convex

inequalities

3.1 Systems of inequalities in R
n

Let
fj .x/ � 0; j D 1; : : : ;m (3.1)

be a system of inequalities with convex functions at the left-hand sides (a sys-
tem of convex inequalities), with the set of solutions satisfying M ¤ ¿. Sup-
pose R

n to be the domain of definition of the functions ffj .x/g. Thus, these
functions are differentiable on the whole space R

n (see (Rockafellar, 1970,
p. 23)).

Let Mj D fx W fj .x/ � 0g, j D 1; : : : ;m, and then M D
Tm

j D1Mj .
We consider the construction (7.3), Chapter I, as basis for the generation of
M -Fejér processes for (3.1); in this construction we have E.x/ D @d.x/, i.e.,

T .x/ D
�
x � � d

C.x/

khk2
� h W h 2 @d.x/

�
: (3.2)

Here, � 2 .0; 2/, d.x/ D maxj fj .x/. As before, in (3.2) T .x/ D x if
dC.x/ D 0, so we avoid the situation h D 0. Actually, for h D 0 2 @d. Nx/
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the point Nx is the point of absolute minimum of the convex function d.x/. But
since M D fx W d.x/ � 0g ¤ ¿, the inequality d. Nx/ � 0 holds, i.e., from
h D 0 2 @d.x/ it follows dC.x/ D 0.

Mapping (3.2) is closed (Theorem 7.6, Chapter I), and, therefore,

xkC1 2 T .xk/ ! x0 2 M: (3.3)

Put

Tj .x/ D
�
x � �j

f C
j .x/

khk2
� h W h 2 @fj .x/

�
I (3.4)

T .1/.x/ D
mX

j D1

˛jTj .x/; ˛j > 0;
mX

j D1

˛j D 1I (3.5)

T .2/.x/ D T1 : : : Tm.x/I (3.6)

T .3/.x/ D
�
x � � f

C.x/

khk2
� h W h 2 @f .x/

�
: (3.7)

The choice of the function f .x/ in (3.7) obeys the following conditions: f .x/
is convex and fx W f .x/ � 0g D M is the set of solutions of system (3.1).
In particular, the function f .x/ can be of the form maxj fj .x/ that will cor-
respond to the case of operator (1.5). Relation (3.6) contains the superposi-
tion of multi-valued mappings. This follows from the fact that if w1 and w2

are multi-valued mappings, then w1w2.x/ D
S

y2w2.x/w1.y/. Constructions
(3.5) and (3.6) repeat (1.3) and (1.4), and construction (3.7) corresponds to the
construction (1.5) with f .x/ D maxj fj .x/. In (3.7), the function f .x/ can
be constructed in many ways. In particular,

f .x/ D
mX

j D1

jf
C

j .x/; j > 0; j D 1; : : : ;m; (3.8)

or, for example,

f .x/ D
mX

j D1

j .f
C

j .x//�; (3.9)

where j > 0, � > 1. Note that unlike (3.8), this function is differentiable if
the functions fj .x/ are differentiable.
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For f .x/ given in such a way, the subdifferentials have the form

@max
j
fj .x/ D convf@fj .x/ W j 2 J.x/g; (3.10)

@

mX

j D1

jf
C

j .x/ D
mX

j D1

j convf@maxff C
j .x/; 0gg; (3.11)

@

mX

j D1

j .f
C

j .x//� D
mX

j D1

j � .f
C

j .x//��1 @.f C
j .x/; 0/ (3.12)

(see, for instance, (Dem’yanov and Vasil’ev, 1981, Chapter I, Section 5, and
others)). Here, J.x/ D fj W f .x/ D fj .x/g.

3.2 Systems of inequalities in a Hilbert space

As in the previous section, here we shall investigate the system of convex
inequalities (3.1), with one difference: now fj are supposed to be convex
subdifferentiable functionals defined on a Hilbert space H .

We start by recalling some definitions.

Definition 3.1. The set dom f D fx 2 H W f .x/ < 1g is called the effective

domain of the functional f .

Definition 3.2. The functional f is called proper, if dom f ¤ ¿ and f .x/ >
�1 for all x.

As it is known (Ioffe and Tikhomirov, 1974), a convex proper functional
continuous at a point x0 is subdifferentiable at this point, and its subdifferen-
tial @f .x0/ is bounded in a weak topology, hence it is bounded by the norm
(Kolmogorov and Fomin, 1974). Particularly, some usual convex function
f W R

n ! R
1 is continuous on int dom f (here, intQ is the set of the in-

terior points of the set Q), thus, this function is subdifferentiable at any point
x 2 int dom f , and its subdifferential is both bounded by norm and a bounded
mapping from R

n into R
n, i.e.,

sup
x2Q; h2@f .x/

khk � C.Q/ < 1

for any bounded set Q 2 int dom f .
We return to the mappings T .i/ (i D 1; 2; 3) represented by formulas (3.4)–

(3.12). According to the Lemmas 3.13 and 3.14, Chapter I, each of these
mapping belongs to the class P

�
M

, where M is the set of solutions of system
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(3.1) and, for this, M D Fix.T .i//. Then from Theorem 3.1, Chapter I, the
following corollary follows.

Corollary 3.3. Let the operator T W H ! 2H coincide with one of the map-

pings T .i/ (i D 1; 2; 3), and for the operator T let relation (3.1), Chapter I,

be satisfied. Then the process

xkC1 2 T .xk/; k D 0; 1; : : :

generates a sequence xk that converges weakly to some solution Ox of system

(3.1), and properties 2–4 of Theorem 3.1, Chapter I, are valid.

As it was already noted in Section 3, Chapter I (Remark 3.15), the semi-
continuity from below of the functionals fj and boundedness of their sub-
differentials guarantee validity of relation (3.1), Chapter I, that is used in the
conditions of Corollary 3.3.

4 Systems of convex inclusions

Below we discuss the finite system of inclusions

x 2 Mj ; j D 1; 2; : : : ;m; (4.1)

in which fMj gm
1 are nonempty convex subsets of R

n. Both the case M DT
j Mj ¤ ¿ and the case M D ¿ will be considered.

4.1 General properties and constructions

Denote by Pj .x/ the metric projection onto Mj , and �j .x/ is the distance
from x to Mj , i.e., �j .x/ D kx � Pj .x/k. The following properties of the
projection operator Pj .x/ are well known (see, for instance, (Berdyshev and
Petrak, 1999, Section 3)):

1) the operator Pj .x/ is single-valued and continuous;

2) the distance function �j .x/ is differentiable, and then,

5�j .x/ D x � Pj .x/

kx � Pj .x/k
8x … Mj ;

5�2
j .x/ D 2 .x � Pj .x// 8x 2 H I

9
>=
>;

(4.2)

3) kPj .x/�Pj .y/k � kx�yk 8x; y 2 H , i.e., the metric projection onto
a convex closed set in H is nonexpansive.



88 Chapter III Fejér methods for linear and convex inequalities

Let
Tj .x/ D x � �j Œx � Pj .x/�; �j 2 .0; 2/: (4.3)

Lemma 4.1. The mapping (4.3) is continuous Mj -Fejér, i.e.,

Tj .x/ 2 F
Mj
:

Proof. This follows from Lemma 3.13, Chapter I.

Consider the following mappings,

T .1/.x/ D
mX

j D1

˛jTj .x/; ˛j > 0;
mX

j D1

˛j D 1I (4.4)

T .2/.x/ D T1T2 : : : Tm.x/I (4.5)

T .3/.x/ D Tjx
.x/; (4.6)

where jx 2 J.x/ D fj W maxj �j .x/ D �jx
.x/g.

Generally speaking, the choice of jx in (4.6) is not unique, and, as a result,
mapping (4.6) is not single-valued. For simplicity we have defined it in the
form of an equality, but the following form would be more correct:

T .3/.x/ D fTj .x/ W j 2 J.x/g: (4.7)

In the sequel we consider the form (4.6).
The construction of the mappings (4.4) and (4.5) corresponds completely to

the constructions of (3.5) and (3.6). As for mapping (4.6), its correspondence
to mapping (3.7) holds, but here, some further explanations are necessary.

The operator T .3/ is constructed by mappings (4.3). Using (4.2), the latter
ones can be rewritten in the form

Tj .x/ D x � �j
�j .x/

k 5 �j .x/k2
5 �j .x/: (4.8)

In (4.8) we suppose x … Mj , otherwise as before, we suppose Tj .x/ D x.
Applying representation (4.8), operator (4.6) can be rewritten in the following
equivalent form:

T .3/.x/ D x � �jx

�jx
.x/

khxk2
hx ; (4.9)

where jx 2 J.x/, hx D 5�jx
.x/ 2 @d.x/, d.x/ D maxj �j .x/. Thus, it is

clear that (4.9) corresponds to (3.7), but in (4.9) we do not take an arbitrary h
from @d.x/, but a special one, namely, hx D 5�jx

.x/.
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Lemma 4.2. Mapping (4.6) (or in another notation, (4.7)) is closed in R
n.

Proof. Let xk ! Nx,

yk D xk � �jk
Œxk � Pjk

.xk/�; yk ! Ny; (4.10)

and then jk 2 J.xk/, i.e.,

max
j

kxk � Pj .xk/k
„ ƒ‚ …

d.xk/

D kxk � Pjk
.xk/k: (4.11)

For closedness of (4.6) it is necessary to show that Ny 2 T .3/. Nx/, i.e.,

Ny D Nx � � Nj Œ Nx � P Nj .x/�; (4.12)

and then Nj 2 J. Nx/, i.e.,

max
j

k Nx � Pj . Nx/k
„ ƒ‚ …

d. Nx/

D k Nx � P Nj . Nx/k: (4.13)

Consider now relations (4.10) and (4.11). Since the index jk takes a fi-
nite number of values, it is possible to select in the sequence fkigi a subse-
quence fki gi such that all jk coincide for k D ki , and this will be denoted
by Nj . Then relations (4.10) and (4.11) can be rewritten in the form

yki
D xki

� � Nj Œxki
� P Nj .xki

/�;

max
j

kxki
� Pj .xki

/k
„ ƒ‚ …

d.xki
/

D kxki
� P Nj .xki

/k:

Passing to the limit in this relations (with taking, naturally, into account the
continuity of the function d.x/), we obtain relations (4.12) and (4.13) needed
for the completion of the proof.

4.2 Consistent systems of inclusions

Consistency of system (4.1) means that M D
T

j Mj ¤ ¿. The mappings

T .1/.x/ and T .2/.x/ are continuous and M -Fejér, hence the statement is valid
for convergence in R

n to elements in M and for the sequences generated by
these mappings.
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Above, it was proved that the mapping T .3/.x/ is closed, therefore, accord-
ing to Theorem 6.10, Chapter I, the statement is valid for convergence of the
sequence xk that is generated by the recurrent relation

xkC1 2 T .3/.xk/;

to some element from the intersection
T

j Mj .
In the general case (of an infinite-dimensional) Hilbert space H , the pro-

cesses under consideration with the iterative operators T .i/ (i D 1; 2; 3) con-
verge weakly to some point from the set M D

T
j Mj .

Actually, the original operators Tj (formulas (4.3) and (4.8)) are both Mj -
Fejér (on the basis of results of Section 3, Chapter I) and, also, belong to the
class P

�i
Mj

of Mj -pseudo-contractive mappings. Then according to Theorem

3.9, Chapter I, the operators T .i/ (i D 1; 2; 3) defined by formulas (4.4)–(4.6)
belong to the class P

�
M

of M -pseudo-contractive mappings for some � > 0
(see Theorem 3.9, Chapter I). Since subdifferentials of the functionals fj .x/

are evidently bounded mappings (formula (4.2)), the conditions of Theorem
3.1, Chapter I, are satisfied (see Remark 3.15, Chapter I) that guarantee weak
convergence of the iterations and, additionally, the validity of properties 2–4.

To construct a strongly converging sequence of iterations for the approxima-
tion of a solution to problem (4.1), it is possible to use the method of correcting
multipliers (see formula (4.1), Chapter I). For this we use �i D 1 in formula
(4.3). Then the mapping Tj coincides with some metric projection Pj onto the
set Mj . Since Pj are nonexpansive operators, the mappings T .i/ (i D 1; 2; 3),
defined by formulas (4.4)–(4.6) will also belong to the class K of nonexpan-
sive operators.

Consider some element v0 which plays the role of the test solution and con-
tains possible information about a solution to be found (if no such informa-
tion is available, then any element from H can be taken as v0; for example,
it is possible to take v0 D 0). Denote by Nz the metric projection of the el-
ement v0 onto the set M D

Tm
j D1 Mj . Then it is evident that each of the

operators T .i/ will map the ball NSR. Nz/ into itself (here, R D kv0 � Nzk), since
kT .i/.x/� Nzk � kx � Nzk where T .i/ 2 P

1
M

� K
M

is taken into account.
Thus, we are in the framework of Theorem 4.5, Chapter I, that implies the

following corollary.

Corollary 4.3. Let k be an admissible sequence and x0 2 NSR. Nz/. Then the

sequence xk generated by the process

xkC1 D kC1T .x
k/C .1 � k/ v0;
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where the operator T D T .i/ is defined by one of the formulas (4.4)–(4.6),
converges strongly to the v0-normal solution of problem (4.1).

4.3 Convergent processes for inconsistent systems of inclusions

Generally speaking, the operators Tj .x/ D x � �j Œx � Pj .x/� are not nonex-
pansive, but for �j D 1 (in this case Tj .x/ D Pj .x/) they become such ones
(this was noted in the properties of an projection operator in Section 4.1 of this
chapter). Write the operator T .1/.x/ for the case �j D 1, j D 1; : : : ;m, then
it takes the form

T
.1/
0 .x/ D

mX

j D1

˛jPj .x/; ˛j > 0;
mX

j D1

˛j D 1: (4.14)

Note that T .1/
0 .x/ is a nonexpansive operator, i.e.,

kT .1/
0 .x/ � T .1/

0 .y/k � kx � yk 8x; y 2 R
n: (4.15)

Operator (4.14) can be changed to the form

T
.1/
0 .x/ D x � 1

2
5 f .x/; (4.16)

where f .x/ D
Pm

j D1 ˛j �
2
j .x/. From that we obtain

Fix.T .1/
0 / D fx W 5f .x/ D 0g: (4.17)

Denote fM D Fix.T .1/
0 /. The set fM may be empty. The property fM ¤ ¿

will hold under the so called condition of correctness of the sets system. This
notation is introduced next.

Definition 4.4. A system of nonempty, convex, and closed sets fMj gm
1 is

called correct, if for some "j � 0 the system of inequalities �j .x/ � "j ,
j D 1; : : : ;m; has a nonempty and bounded set of solutions. (Recall that
�j .x/ D kx � PMj

.x/k.)

The set M
"j

j D fx W �j .x/ � "j g is also called the "j -expansion of the
set Mj .

Remark to Definition 4.4 (Eremin and Astaf’ev, 1976, Lemma 24.1). Actu-
ally, if for some "j � 0 the set

T
j M

"j

j is nonempty and bounded, then for any

other ıj � 0 that provide the nonemptyness of the set
T

j M
ıj

j , boundedness
holds.
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Lemma 4.5. Let the system fMj gm
1 have the property of correctness. Then the

operation inf in the problem

Q D inf
x

mX

j D1

j�
2
j .x/; j > 0 (4.18)

is achievable, i.e., there exists Qx 2 R
n such that

mX

j D1

j�
2
j . Qx/ D Q:

Proof. Put
Pm

j D1 j�
2
j .x/ D d.x/, and let  be such that Md D fx W d.x/ �

g ¤ ¿. Now prove the boundedness of the set Md . If Nx 2 Md , then from
the inequality d. Nx/ �  it follows j�

2
j . Nx/ �  for all j , or �2

j . Nx/ � Nj
.D  = j /, j D 1; : : : ;m. From the condition of correctness for fMj gm

1 ,
the boundedness (as it was already noted) of solutions follows for the latter
system of inequalities. Since Nx is an arbitrary element from the set Md , the
boundedness of this set follows from this.

Now take some monotone sequence of numbers ık ! 0, ık > 0 and con-
sider the sequence of sets Nk D fx W d.x/ � Q C ıkg, k D 1; 2; : : : that
have the property Nk � NkC1 8 k. By virtue of convexity, closedness, and
boundedness of these sets, the intersection

T
k Nk D eN is not empty. Taking

a convergent subsequence xk , xk 2 Nk , we shall have xk ! Qx 2 eN and, for
this, d. Qx/ � Q ; and d. Qx/ D Q follows evidently, which has to be proved.

Now we can formulate the following theorem.

Theorem 4.6. Let T
.1/
0 .x/ be the operator given accordingly to (4.14); and

f .x/ D
Pm

j D1 ˛j kx � Pj .x/k2, fM D fx W 5f .x/ D 0g. If for fMj gm
1 the

condition of correctness (see Definition 4.4) is satisfied, then

1) fM D Fix.T .1/
0 / ¤ ¿I

2) T1.x/ D .1 � ˛/T .1/
0 .x/C ˛x; T1 2 FeM ; ˛ 2 .0; 1/I

3) T k
1 .x0/ ! Qx 2 fM; k ! 1.

Proof. The factfM D Fix.T .1/
0 / follows from (4.16). The nonemptyness of the

setfM is, in essence, the contents of Lemma 4.5, since the equality 5f .x/ D 0
for a convex differentiable function f .x/ is a necessary and sufficient condi-
tion for the point x to be an absolute minimizer of the function f .x/ in R

n.
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Property 2 is valid, since the projection operators Pj .x/ are nonexpansive,

and, thus, T .1/
0 .x/ is also nonexpansive. Therefore, T .1/

0 .x/ is weaklyfM -Fejér
and, so, T1 2 FeM .

As for property 3, the mentioned convergence holds by virtue of continuity
of T1.x/ and since it is fM -Fejér.

4.4 Cycles of immobility for inconsistent systems of convex

inequalities

Let Tj W R
n ! Mj , j D 1; : : : ;m. Such mappings can be the operators

Pj .x/ of projection of x onto Mj , where Mj are convex closed sets. Consider

T .x/ D T1T2 : : : Tm.x/:

Definition 4.7. An ordered system of vectors f Nx1; Nx2; : : : ; Nxmg, Nxj 2 Mj is
called a cycle of immobility T .x/ in application to system (4.1) if the following
relations hold:

Tm. Nx1/ D Nxm;

Tm�1. Nxm/ D Nxm�1;
:::

T2. Nx3/ D Nx2;

T1. Nx2/ D Nx1:

9
>>>>>=
>>>>>;

(4.19)

Relations (4.19) can be represented by the following scheme:

T1

Nx2‚ …„ ƒ

T2 : : :

Nxm�1‚ …„ ƒ
Tm�1 Tm . Nx1/„ ƒ‚ …

Nxm„ ƒ‚ …
Nx1

D Nx1

Scheme 4.1

Note that if
T

j Mj ¤ ¿, then Nx1 D Nx2 D � � � D Nxm 2
T

j Mj , and the
general value for Nxi , say, Nx, is the point of the mentioned intersection.

The notion of the cycle of immobility can be regarded as an extension of a
solution of the inclusions system (4.1).

Theorem 4.8. Let fTj gm
1 be nonexpansive operators, and let one of the sets

fMj gm
1 , say,M1, be bounded. Then there exists at least one cycle of immobility.



94 Chapter III Fejér methods for linear and convex inequalities

Proof. Actually, it is necessary to prove existence of some fixed point for
T .x/ D T1T2 : : : Tm.x/. Since the operator T .x/ D T1T2 : : : Tm.x/, firstly,
is continuous and, secondly, transfers the convex, bounded, and closed set M1

into itself, by the Schauder–Tikhonov theorem (see, for instance, (Edwards,
1969)) the operator T .x/ has at least one, say, Nx1, fixed point lying in M1.
If the element Nx1 is added to the elements Nxm; : : : ; Nx2 obtained by formulas
(4.19), then, as a result, we obtain the set f Nx1; : : : ; Nxmg which satisfies the
definition of an immobility cycle.

Corollary 4.9. If Tj .x/ D Pj .x/, and if one of the sets fMj gm
1 , say M1, is

bounded, then the statement of Theorem 4.8 is valid.

Proof. Follows from the nonexpansiveness of the operators Pj .x/ and, hence,
from the nonexpansiveness of T .x/ D P1P2 : : : Pm.x/.

Let fTj .x/gm
1 and fMj gm

1 satisfy the conditions of Theorem 4.8, T .x/ D
T1T2 : : : Tm.x/. Let fM D Fix.T /. By Theorem 4.8 we have fM ¤ ¿. By
virtue of the property of nonexpansiveness of the operator T .x/ we have:

T .y/ D y; kT .x/ � yk � kx � yk 8y 2 fM; 8x … fM;

i.e., T .x/ is weakly fM -Fejér, therefore,

T˛.x/ D .1 � ˛/T .x/C ˛x; ˛ 2 .0; 1/ (4.20)

is fM -Fejér.
Thus, the following theorem is valid.

Theorem 4.10. The operator (4.20) is a continuous fM -Fejér mapping and,

from this,

T k
˛ .x0/

. k /�! Nx1 2 fM:

Remark to Theorem 4.10. Since Fix.T / D Fix.T˛/, we have

T˛. Nx1/ D x1 D T .x1/:

Other elements of the immobility cycle are reconstructed according to formu-
las (4.19) or according to Scheme 4.1.



Section 5 On the rate of convergence of Fejér processes 95

5 On the rate of convergence of Fejér processes

The Fejér processes under consideration generated by the mappings T 2 F
M

provide a geometrical progression convergence in the following sense:

jxkC1 �M j � ‚ jxk �M j; (5.1)

where xk is the sequence given by the relation xkC1 2 T .xk/ (we take the
case of a pointwise-multiple mapping T ), and where ‚ 2 .0; 1/, jx � M j D
infy2M kx � yk.

For each of the mappings (3.5), (3.6), and (3.7), it is possible to find the rate
of the geometrical progression convergence for the sequences generated by
these mappings (under these or that nonrigid constraints). For an illustration
consider case (3.7), i.e.,

T .x/ D
�
x � � f

C.x/

khk2
h W h 2 @f .x/

�
; (5.2)

� 2 .0; 2/, h 2 @f .x/.
We are interested in the case f .x/ D maxj fj .x/, where ffj .x/gm

1 are from
system (3.1). In (5.2) we put, as before, T .x/ D x if h D 0. We shall assume
that M D fx W f .x/ � 0g ¤ ¿.

For the analysis of the methods for solving systems of linear and convex
inequalities, one often uses the so called Slater condition and the Hoffmann
lemma (Hoffmann, 1952). For the convex inequality f .x/ � 0 the first con-
dition means that there exists a p with f .p/ < 0. For the system of convex
inequalities fj .x/ � 0, j D 1; : : : ;m, this means: f .p/ D maxj fj .p/ < 0
for some p.

The statement of the Hoffmann lemma in our situation provides the existence
of a constant C > 0 such that

jx �M j � C f C.x/; x 2 S; (5.3)

where the set S is chosen by this or that way in dependence on the situation.
If for the convex inequality f .x/ � 0 the Slater condition is satisfied and S is
a convex bounded set, then relation (5.3) is valid.

In the case of the system of linear inequalities Ax � b, the Hoffmann lemma
can also be written in the following form

jx �M j � C k.Ax � b/Ck;

where M D fx W Ax � bg ¤ ¿. Here, the validity of the Slater condition
is not obligatory. Note that questions on majorizing the function f .x/ in the
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form (5.3) were considered in the work (Eremin, 1968). There, the estimates
of the convergence rate were also obtained for some Fejér sequences generated
by the operators T 2 F

M
.

By means of mapping (5.2), define the process

xkC1 D xk � � f .x
k/

khkk2
hk ; (5.4)

where � 2 .0; 2/, hk 2 @f .xk/. We shall assume that fxkg \M D ¿. In this

case 0 … fhkg. Actually, if h
Nk D 0, then from the inequality .h

Nk ; x � xk/ �
f .x/ � f .xk/ that holds for any convex function and arbitrary x, it would
follow f .xk/ � f .x/ 8x 2 R

n, and then xk would be an absolute minimizer
of the function f .x/. However, this contradicts to the fact that f .xk/ > 0
(since xk … M ) and M D fx W f .x/ � 0g ¤ ¿.

Theorem 5.1. Let the condition (5.3) be satisfied and the set convfxkg be

taken as the set S . Then for the sequence xk generated by relation (5.4),
estimate (5.1) holds for

‚ D Œ1 � � .2 � �/C�2�2
0 �1=2; (5.5)

where 0 D supk khkk.

Proof. 1. Since the sequence xk is bounded, it follows by Lemma 7.3, Chap-
ter I,

sup
k

khkk D 0 < C1: (5.6)

From condition (5.3) it follows

f 2.xk/

jxk �M j2
� C�2 8 k: (5.7)

2. We next establish estimate (5.1). Let Nxk be the projection of xk onto M ,
i.e., we have jxk �M j D kxk � Nxkk. There holds

jxkC1 �M j2 � kxkC1 � Nxkk2

D kxk � Nxkk2 C 2�
f .xk/

khkk2
.hk ; Nxk � xk/C �2 f

2.xk/

khkk2

� jxk �M j2 C 2�
f .xk/

khkk2
Œf . Nxk/ � f .xk/�C �2 f

2.xk/

khkk2
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D jxk �M j2 � �.2 � �/ f
2.xk/

khkk2

D
"

1 � � .2 � �/
khkk2

f 2.xk/

jxk �M j2

#
jxk �M j2

(5.6) & (5.7)
�

"
1 � � .2 � �/

2
0

C�2

#
jxk �M j2 D ‚2jxk �M j2:

Thus, estimate (5.1) is established, with the value ‚ given according to (5.5).

6 Fejér methods and nonsmooth optimization

Under the term “nonsmooth optimization” one understands the mathematical
techniques and methods for solving problems of mathematical programming
without properties of smoothness (differentiability) of the functions that form
these problems. The following components belong to the range of such tech-
niques: convex analysis (Rockafellar, 1970), the subdifferentiability (and its
properties), the techniques for reducing problems with constraints to non-
smooth problems without constraints, and others (Rockafellar, 1970; Shor,
1979; Polyak, 1969; Eremin, 1969; Dem’yanov and Vasi’ev, 1981; Clark,
1988; and others).

The methods of nonsmooth optimization are sufficiently well elaborated for
problems of convex programming, the latter by using the techniques of the
exact penalty functions are reduced to simple problems of the form

min
x
ˆ.x/; (6.1)

where ˆ.x/ is a non-differentiable convex function defined on R
n, and by

virtue of this, the function at each point x has the subdifferential @f .x/ ¤ ¿.
Problem (6.1) can be a maximum problem, but the function ˆ.x/ must be
concave then.

The Fejér technology is well adjusted to solving nonsmooth systems of con-
vex inequalities and problems of convex programming (Eremin, 1969).

Consider the problem of convex programming

max ff .x/ W fj .x/ � 0; j D 1; : : : ;mg (6.2)

and, separately, the system of convex inequalities

fj .x/ � 0; j D 1; : : : ;m: (6.3)

If we say that (6.2) is a problem of convex programming, then this means that
the functions f�f .x/; f1.x/; : : : ; fm.x/g are convex.
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6.1 Problem of the saddle point of the Lagrange function

In this section the linear space X of the variable x 2 X is arbitrary.
In correspondence to problem (6.2), we consider the following Lagrange

function

F.x; u/ D f .x/�
mX

j D1

ujfj .x/; (6.4)

where uj � 0, j D 1; : : : ;m, are the Lagrange multipliers. Immediately note
that if we consider in (6.2) min instead of max then the Lagrange function will
have the form

F.x; u/ D f .x/C
mX

j D1

ujfj .x/:

Definition 6.1. The point Œ Nx; Nu� 2 X � R
n, Nu � 0 is called a saddle point for

the Lagrange function (6.4) if the following inequalities are satisfied:

F.x; Nu/ �
8 x

F. Nx; Nu/ �
8 u�0

F. Nx; u/: (6.5)

The following well-known fact is valid (see, for example, (Arrow et al.,
1958)).

Theorem 6.2. Without any assumption on the linear space X and the func-

tions ff .x/; f1.x/; : : : ; fm.x/g, the following statement is valid: if Œ Nx; Nu� is

a saddle point of the function F.x; u/, then Nx 2 arg (6.2) and Nujfj . Nx/ D 0,

j D 1; 2; : : : ;m.

Proof. The proof of the theorem is very simple and will be given for complete-
ness of description.

1. Firstly, prove the admissibility of Nx with respect to the constraints in prob-
lem (6.2). Consider in more detail relation (6.5):

f .x/�
mX

j D1

Nujfj .x/ �
8 x

f . Nx/ �
mX

j D1

Nujfj . Nx/

�
8 u�0

f . Nx/ �
mX

j D1

ujfj . Nx/:
(6.6)

If for some j , say, for j D 1, the inequality f1. Nx/ > 0 holds, then tak-
ing u2 D u3 D � � � D um D 0 in the right inequality of (6.6), we obtain
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Pm
j D1 Nujfj . Nx/ � u1f1. Nx/, which gives a contradiction for sufficiently large

u1 > 0.

2. We now prove that the following relations hold

Nujfj . Nx/ D 0; j D 1; : : : ;m: (6.7)

Assume the contrary, i.e., that there exists j , say, j D 1, such that Nu1f1. Nx/ <
0. Then the right inequality in (6.6) gives for u D 0:

0 >
mX

j D1

Nujfj . Nx/ � 0;

that gives the contradiction.

3. At last, prove that Nx 2 arg (6.2). The left inequality in (6.6), by taking
into account that relations (6.7) are already proved, can be rewritten in the form
f .x/ � f . Nx/C

Pm
j D1 Nujfj .x/, and from this we obtain f .x/ � f . Nx/ for any

x 2 M D fx W fj .x/ � 0, j D 1; 2; : : : ;mg, which means that Nx is optimal
for problem (6.2). The theorem is proved.

Formulation of the inverse theorem requires the introduction of some restric-
tions. For such a theorem one usually uses the Kuhn–Tucker theorem (see, for
example, (Arrow et al., 1958)).

Theorem 6.3. Let X D R
n, and let f�f .x/; f1.x/; : : : ; fm.x/g be convex

functions, and let the corresponding system of constraints (6.3) of problem

(6.2) satisfy the condition of regularity, say, in the form of a weakened Slater

condition: there exists a solution Nx of system (6.3) such that fj . Nx/ < 0 for

nonlinear fj .x/ (from all fj .x/, j D 1; 2; : : : ;m/.
Under the formulated conditions, the following statement is valid: if Nx 2

arg (6.2), then there exists a nonnegative vector Nu 2 R
m such that the vector

Œ Nx; Nu� is a saddle point for the Lagrange function (6.4).

Proof. The proof of this theorem is based on the theorem about separability of
nonintersecting convex sets.

Remark 6.4. It is easily seen that relations (6.5) are equivalent to the equality

max
x

min
u�0

F.x; u/ D min
u�0

max
x
F.x; u/:
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Remark 6.5 (see, for instance, (Eremin, 1999)). If (6.2) is the problem of lin-
ear programming

L W maxf.c; x/ W Ax � bg
and

F0.x; u/ D .c; x/ � .u;Ax � b/
is its Lagrange function, then the conditions

10: Œ Nx; Nu� is the saddle point for the function F0.x; u/.

20: Œ Nx; Nu� 2 argL � argL�

are equivalent; here,

L� W minf.b; u/ W A>u D c; u � 0g:

6.2 Method of the exact penalty functions

A solvable problem of convex programming in the form (6.2) over an arbi-
trary linear real space with the condition of regularity can be reduced to an
equivalent nonsmooth problem of searching for the maximum of the concave
function

max
x
ˆR.x/; (6.8)

where, in particular, ˆR.x/ can be of the form

ˆR.x/ D f0.x/�
mX

j D1

Rjf
C

j .x/ (6.9)

or
ˆR.x/ D f0.x/�R0 max

j
f C

j .x/:

Here, fRk > 0gm
kD0 are positive parameters, for which an appropriate choice

provides the equivalent reducibility of a problem with constraints to a problem
without constraints. The technology of such a reduction is called the method of

the penalty functions. There exist more general constructions for the function
ˆR.x/, but we shall consider only one of them in more detail, namely (6.9).
The following theorem about the exact penalty functions is valid, see (Eremin,
1967 and 1999).

Theorem 6.6. Let Œ Nx; Nu� be a saddle point of the Lagrange function F.x; u/,

i.e., function (6.4). If R D ŒR1; : : : ; Rm� � Nu, then

opt sup
x
ˆR.x/ D opt (6.2)I (6.10)
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if R > Nu, then

arg sup
x
ˆR.x/ D arg (6.2): (6.11)

Here, opt (6.2) is the optimal value of problem (6.2), and arg (6.2) is its optimal

set.

Proof. 1. Firstly, we prove equality (6.10). According to Theorem 6.2 we
have Nx 2 arg (6.2), i.e., Nx is the optimal vector for problem (6.2), and this in
particular gives

Pm
j D1Rjf

C
j . Nx/ D 0; from this ˆR. Nx/ D f . Nx/ D opt (6.2),

hence,
sup

x
ˆR.x/ � opt (6.2): (6.12)

On the other side, for any x 2 X we have:

ˆR.x/ D f .x/�
X

Rjf
C

j .x/

.6:6/; .6:7/
� f . Nx/C

mX

j D1

Nujfj .x/�
mX

j D1

Rjf
C

j .x/

D opt (6.2) �
mX

j D1

.Rj � Nuj /f
C

j .x/

� opt (6.2)

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

(6.13)

(in the latter estimate the condition R � Nu is taken into account). Since the
inequality ˆR.x/ � opt (6.2) is valid for any x 2 X, the following inequality
is also valid,

sup
x
ˆR.x/ � opt (6.2):

From this, by taking into account (6.12), relation (6.10) follows.

2. Now prove relation (6.11). Let Qx 2 arg (6.2). But then, on one hand,
ˆR. Qx/ D f . Qx/�

Pm
j D1Rjf

C
j . Qx/ D f . Qx/ D opt (6.2) D opt supˆR.x/. On

the other hand, according to (6.13) we have

ˆR. Qx/ � opt (6.2);

from this
ˆR. Qx/ D sup

x
ˆR.x/;

i.e.,
Qx 2 arg max

x
ˆR.x/:
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Let now Qx 2 arg maxx ˆR.x/. For the inclusion Qx 2 arg (6.2) it is necessary
to prove only admissibility of the vector Qx with respect to the constraints of
problem (6.2), i.e., fj . Qx/ � 0, j D 1; : : : ;m. But according to (6.13) and the
proved relation (6.10), we have:

opt max
x
ˆR.x/ D opt (6.2) �

mX

j D1

.Rj � Nuj /f
C

j . Qx/;

that gives
Pm

j D1.Rj � Nuj /f
C

j . Qx/ D 0; from this and by virtue of the condition
R > Nu, we obtain the needed inequalities fj . Qx/ � 0, j D 1; : : : ;m.

The theorem is completely proved.

By virtue of the Kuhn–Tucker theorem (Theorem 6.3 and Theorem 6.6), the
following theorem is valid.

Theorem 6.7. If the problem of convex programming (6.2) is solvable and its

constraints satisfy the weakened Slater condition, then for the penalty function

ˆR.x/, relations (6.10) and (6.11) are fulfilled, and the vector Nu � 0 there has

the meaning of the second component of the saddle point Œ Nx; Nu� of the Lagrange

function F.x; u/, where the existence is provided by the Kuhn–Tucker theorem.

6.3 Fejér methods for the application to systems of convex

inequalities and convex programming problems without

assumptions of smoothness

Consider the problem of type (6.1), namely,

min
x
f .x/: (6.14)

Here, the choice of the function f .x/ will be related either to the problem of
searching a solution of the system of convex inequalities

fj .x/ � 0; j D 1; : : : ;m; (6.15)

or to the problem of convex programming

minff .x/ W fj .x/ � 0; j D 1; : : : ;mg: (6.16)

Here, for convenience the problem (6.2) is written in the form of a problem on
minimum search that requires convexity of the function f .x/.



Section 6 Fejér methods and nonsmooth optimization 103

We shall assume that system (6.15) and problem (6.16) are solvable and,
in addition, both system (6.15) and the system of constraints in (6.16) sat-
isfy the weakened Slater condition that by the Kuhn–Tucker theorem pro-
vides existence of the saddle point Œ Nx; Nu�, Nu � 0 for the Lagrange function
F.x; u/ D f .x/ C

Pm
j D1 ujfj .x/, u D Œu1; : : : ; um� � 0. In application

to problem (6.16), the definition of the saddle point is given (unlike of (6.5))
through satisfaction of the inequalities

F.x; Nu/ �
8 x

F. Nx; Nu/ �
8 u�0

F. Nx; u/:

Consider a reduction of the problem of solvong the system of convex in-
equalities, say, system (6.15), to problem (6.14). This is carried out trivially; it
is sufficient to consider, for example,

f .x/ D
mX

j D1

Rjf
C

j .x/; (6.17)

Rj > 0, j D 1; : : : ;m.
The following properties are evident:

1) the function f .x/ is convex;

2) the set of solutions of system (6.15) coincides with arg minx f .x/;

3) arg minx f .x/ D fx W f .x/ � 0g.
Here, a particular situation arises when for the solution of the inequality

f .x/ � 0; (6.18)

to which system (6.15) was reduced, the following iterative process (see Sec-
tion 7, Chapter I) is applied:

xkC1 2 T .xk/; k D 0; 1; 2; : : : ;

T .x/ D
�
x � � f

C.x/

khk2
h W h 2 @f .x/

�
; 0 < � < 2:

(6.19)

The following theorem is valid.

Theorem 6.8. Under the conditions mentioned above, process (6.19) con-

verges to some solution x0 of inequality (6.18), and then x0 is a solution of

system (6.15).
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In the situation of solvability of system (6.15), the minimum of the function
f .x/ is equal to zero, and we have already used this fact. It is possible to
consider a more general situation when f .x/ is an arbitrary convex function
with a finite and achievable minimum Qf D optx f .x/.

Then the problem of determining Qx 2 arg minx f .x/ can be formulated as
the problem of solving the convex inequality

f .x/ � Qf ;

that is reduced to process (6.19) with T D T
0

where

T
0

.x/ D
(
x � � f .x/� Qf

khk2
� h W h 2 @f .x/

)
; 0 < � < 2:

Now consider the reduction of problem (6.2) (in formulation for the mini-
mum search) to the problem

min
x2Rn

ˆR.x/ (6.20)

for ˆR.x/ D f0.x/C
Pm

j D1Rjf
C

j .x/, Rj > 0, j D 1; : : : ;m. If opt (6.20)
is known, then the determination of Qx 2 arg (6.20) could be reduced to the
situation just discussed. Otherwise, we have the general case of searching the
minimum of a nonsmooth convex function.

6.4 The basic process

For the beginning, consider one meaningful example.

Example (Eremin, 1962). Let the following inconsistent system of linear in-
equalities be given,

lj .x/ D .aj ; x/ � bj � 0; j D 1; : : : ;m: (6.21)

The number E D minx maxj lj .x/ > 0 is called the Chebyshev deviation of
system (6.21) (or its defect). Denote d.x/ D maxj lj .x/. The function d.x/ is
convex and piecewise-linear. The point Nx 2 arg minx d.x/ is called the point

of the Chebyshev deviation of system (6.21). To find this point, the following
iterative process was suggested in the mentioned work:

xkC1 D xk � �k d.x
k/ ajk

; k D 0; 1; : : : ; (6.22)
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where

�k � 0; �k ! 0;
1X

kD0

�k D C1;

jk 2 J.xk/ D fj W ljk
.xk/ D d.xk/g:

(6.23)

Under the made assumptions, the sequence xk generated by process (6.22)
converges to the point of the Chebyshev deviation of system (5.21), and the
sequence d.xk/ converges to the Chebyshev deviation E.

It is necessary to pay attention to the fact that the element ajk
in (6.22) is

one of the elements of the subdifferential @d.x/ of the function d.x/ at the
point xk. But the subdifferential itself is described by the formula

@d.x/ D
n
h W h D

X

j 2J.x/

˛j aj ; ˛j � 0;
mX

j D1

˛j D 1
o
:

The process of type (6.22) in the general case (i.e., in the case of problem
(6.1) under the assumption of convexity of the function ˆ.x/) can be written
in the following form (Shor, 1979),

xkC1 D xk � �k

hk

khkk
; k D 0; 1; : : : ; (6.24)

where the sequence �k satisfies conditions (6.23), hk 2 @ˆ.xk/. Process
(6.24) is called basic. The following theorem is valid (Shor, 1979, Theo-
rem 2.2).

Theorem 6.10. Let the set

fM D arg min
x
ˆ.x/ ¤ ¿

be bounded, and let for the sequence �k conditions (6.23) be fulfilled. Then:

1) if in the course of iteration for the sequence xk according to (6.22) we

have h
Nk D 0 for some Nk, then x

Nk 2 fM , and the process is finishedI
2) if hk ¤ 0 8 k, then �.xk;fM/ ! 0I here, �.xk;fM/ is the distance func-

tion from xk to fM .

Remark 6.11. If as function ˆ.x/ the function ˆR.x/ is taken (the latter is
given according to (6.20) under condition R > 0 that provides validity of
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Theorem 6.7), then in the process (6.24) applied to the function ˆR.x/ the
subgradients hk are calculated by the formula

hk D hk
0 C

mX

j D1

Rjh
k
j ; hk

0 2 @f .xk/;

hk
j 2 @fj .x

k/; j D 1; 2; : : : ;m:

9
>>>=
>>>;

(6.25)

Under differentiability of all functions ffs.x/gm
sD0, relation (6.25) takes the

form

hk D rf0.x
k/C

mX

j D1

Rj rfj .x/:

Remark 6.12. If we replace the problem minx ˆ.x/ by a more general one,

min
x2S

ˆ.x/; (6.26)

where S is a convex closed set, then Theorem 6.10 remains valid if the process
(6.24) is replaced by the process

xkC1 D PS

"
xk � �k

hk

khkk

#
:

Here PS.�/ is the metric projection onto the set S . In the case of differentiabil-
ity ofˆ.x/, this fact was established in the work (Eremin, 1966) in application
to the process

xkC1 D PS

�
xk � �k

ˆ.xk/

krˆ.xk/k2
� rˆ.xk/

�

under the additional condition ˆ.xk/ � 0 8x 2 S .

7 Aspects of stability of Fejér processes

Let T 2 F
M

, M � R
n. If T is continuous, then according to Theorem 6.2,

Chapter I,
fxtC1 D T .xt /gC1

tD0 ! x0 2 M: (7.1)

By this, the mapping x0
��! x0 is defined which puts the limit of the sequence

(7.1) in correspondence to the original element x0.
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Definition 7.1. The discrete process (7.1) is called stable at the point x0 if the
mapping �.x/ is continuous in some neighborhood of the point x0.

Theorem 7.2. If the mapping T 2 F
M

is nonexpansive, then the process (7.1)
is stable for any original point x0 2 R

n.

Proof. Let us prove the nonexpansive property of the mapping �.x/. Let x0

and y0 be arbitrary points from R
n. Since the operator T is nonexpansive

(hence, continuous), we have xt ! x0 2 M , yt ! y0 2 M (here, xt D
T t .x0/, yt D T t .y0/) and

kT t .x0/ � T t .y0/k � kT t�1.x0/ � T t�1.y0/k
� � � �
� kx0 � y0k:

From this

kx0 � y0k � kT t .x0/ � x0k C kT t .y0/ � y0k C kT t .x0/ � T t .y0/k
� kT t .x0/ � x0k C kT t .y0/ � y0k C kx0 � y0k:

(7.2)

With thus have

lim
t!C1

T t .x0/ D x0; lim
t!C1

T t .y0/ D y0;

and then passing to the limit in (7.2), we obtain

kx0 � y0k D k�.x0/ � �.y0/k � kx0 � y0k;

that gives the continuity of �.x/ at any point x0 2 R
n.





Chapter IV

Some topics of Fejér mappings and processes

1 Decomposition and parallelization of Fejér

processes

The structure of the Fejér mappings and processes generated by them gives a
wide range of possibilities for their parallelization. This is determined, firstly,
by the possibility to construct these iterative mappings by the partial mappings
related to the subsystems of the original system, and partition of the system
into the subsystems can be arbitrary. Second, the structure of the matrix of
constraints (block-wise, diagonal, block-diagonal, and so on) leads to this or
that way of constructing the mapping T 2 F

M
.

1.1 Schemes of parallelization

Consider Scheme 1.1.
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Let the system Ax � b be partitioned into the subsystems

Ajx � bj ; j D 1; : : : ; s (1.1)

with the sets of solutions Mj , thus, M D fx W Ax � bg D
Ts

j D1Mj . If
Tj 2 F

Mj
, then the M -Fejér mapping T 2 F

M
can be constructed, for exam-
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ple, by (1.3), Chapter III, with ˛j D 1 = s, T .x/ D .1 = s/
Ps

j D1 Tj .x/. In

Scheme 1.1, the computation of elements xk
j D Tj .x

k/, j D 1; : : : ; s, will
correspond to this way; the elements are put into the summation

P
, obtaining

the arithmetic mean .1 = s/
Ps

j D1 x
k
j D xkC1. But calculation of elements xk

j

can also be parallelized, for instance, on the account of parallelizing computa-
tions of the scalar products and norms kaj k used in the description of inequal-
ities of the original systems. Such a possibility is considered in Scheme 1.1.

Consider the following example of realization of the scheme for solving the
following problem of linear programming:

L W max f.c; x/ W Ax � bg:

The dual problem is

L� W min f.b; u/ W A>u D c; u � 0g:

The pair of these mutually dual problems is equivalently reduced (Eremin,
1999) to the system

S W

8
<̂

:̂

Ax � b;

A>u D c; u � 0;

.c; x/ � .b; u/ � 0:

The latter inequality in the system S can be changed by the equation .c; x/ D
.b; u/. The matrix of the system S has the following block form:

2
4
A O

O A>

c> �b>

3
5 :

We consider the correspondence of this block structure to its subsystems with
polyhedrons M D fx W Ax � bg, M � D fu � 0 W A>u D cg and
the half-space H D

˚�x
u

�
W .c; x/ � .b; u/

	
. If T 2 F

M
, T � 2 F

M� and
T .z/ D PH .z/, z D

�x
u

�
, then the parallelization of the Fejér process for the

system S for the simultaneous solution of the problems L and L� can be based
on Scheme 1.2.

An implementation of this scheme in the analytical form will have the fol-

lowing representation: if zk D
�
xk

uk

�
, then, firstly, Nxk D T .xk/, Nuk D T �.uk/

are calculated in parallel, and then zkC1 D TC
0 . Nzk/, Nzk D

� Nxk

Nuk

�
is computed.

Here, TC
0 means the positive cut-off function along the second component of
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the vector T0. Nzk/. The concluding Fejér operator generating the sequence zk

can be written in the following short form:

‰.z/ D TC
0 .T .x/; T �.u//:

The system S can be reduced to the form of a system of equations with
partially nonnegative variables:

Ax C v D b; A>u D c; .c; x/� .b; u/ D 0; Œv; u� � 0:

In connection to this and keeping in mind the general interest of this chapter,
we separately consider the parallelization of the Fejér process for a system of
the form

Ax D b; x � 0: (1.2)

We do not consider this notation in the sense of A and b used in the previously
considered context (inequality systems, the linear programming problem, and
so on). Let x 2 R

n, and let the rows faj gm
1 of the matrix A be linear inde-

pendent. Then the matrix AA> of size m � m will be nonsingular, therefore,
.AA>/�1 exists. If H D fx W Ax D bg, then for the construction of the M -
Fejér mapping for M D H \ R

n
C, one can use the known projection operator

onto H :
PH .x/ D x � A>.AA>/�1 .Ax � b/: (1.3)

This operator is H -Fejér, and T .x/ D PC
H
.x/ is M -Fejér. Since T .x/ is

continuous, we have
fT k.x0/g ! x0 2 M;

i.e., the process generated by the mapping T .x/ converges to a solution of
system (1.2). If system (1.2) has the form

Ax � b; x � 0; (1.4)
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then rewriting it in the form

Ax C v D b; x � 0; v � 0; (1.5)

one can apply the previous construction and obtain

T .z/ D Œz � NA>. NA NA>/�1 . NAz � b/�C; (1.6)

where z D
�x
v

�
, NA D

"
1

A
:: :

1

#
, here, as everywhere in the book, the

symbol > over NA means transposition. If fT k.z0/g !
�
x0v0

�
, then x0 is a

solution of system (1.4).
Note that in (1.4) it is not necessary to require linear independence of rows

of the matrix A, and in system (1.5) this is provided automatically; this fact
provides existence of the inverse matrix . NA NAT /�1 in formula (1.6).

Parallelization of computations of the projection operator T .x/ for system
(1.2) with projection onto a linear manifold can be implemented on the basis
of a partition of type (1.1). Namely, take an arbitrary partition

Ajx D bj ; j D 1; : : : ; k (1.7)

of system (1.2) into subsystems, and consider

Tj .x/ D x � A>
j .AjA

>
j /

�1 .Ajx � bj /:
These are projection operators onto the manifolds Hj D fx W Ajx D bj g,
j D 1; : : : ; k. From fTj .x/g it is possible to construct in many ways the
operator T 2 F

M
, where M D fx � 0 W Ax D bg. For example,

T .x/ D
� kX

j D1

˛jTj .x/
�C
;

where ˛j > 0,
Pk

j D1 ˛j D 1. A parallelization of the process fT k.x0/g on
the basis of a partition of the original system of equations into subsystems
corresponds to Scheme 1.2.

1.2 Schemes of parallelization for a linear programming problem

We next consider implementation of the parallelization Scheme 1.2 which cor-
responds to a partition of the system of constraints into subsystems, both in the
direct and dual problems:

L W maxf.c; x/ W Ax � b; x � 0g;

L� W minf.b; u/ W A>u � c; u � 0g:
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Rewrite them in the following form,

maxf.c; x/ W Ax C v D b; x � 0; v � 0g;

minf.b; u/ W A>u � w D c; u � 0; w � 0g:

In this situation, the reduction fL;L�g ��! S leads to the system

Ax C v D b; A>u � w D c;

.c; x/ D .b; u/;

x � 0; v � 0; u � 0; w � 0:

9
>>=
>>;

(1.8)

We now carry out a partition (in an arbitrary way, or in some other way reason-
able in concrete situations) of the matrix A into horizontal Aj , j D 1; : : : ; k,
and verticalHi , i D 1; : : : ; l , submatrices. Intersections of the submatrices Aj

and Hi are denoted by Aj i . These partitions lead to partitions of the vectors
c; x; w and b; u; v into subvectors ci ; xi ; wi and bj ; uj ; vj , correspond-
ingly. With these notations, system (1.8) is rewritten in the following form:

lX

iD1

Aj ixi C vj D bj ; j D 1; 2; : : : ; kI (1.9)1

kX

j D1

A>
j iuj � wi D ci ; i D 1; 2; : : : ; l I (1.9)2

lX

iD1

.ci ; xi / D
kX

j D1

.bj ; uj /; (1.9)3

xi � 0; vj � 0I uj � 0; wi � 0: (1.9)4

It is possible to put the manifold H 0
j (the set of solutions of system (1.9)1)

into correspondence to each j D 1; : : : ; k, and to put the manifold H 00
i (the

set of solutions of system (1.9)2) in correspondence to each i D 1; : : : ; l .
Denoting byH0 the hyperplane with equation (1.9)3, we select (constructively)
the mappings

Tj 2 F
H 0

j

; T �
i 2 F

H 00
i

; T0 2 F
H0
: (1.10)

The role of these mappings can be played, in particular, by projections onto
the corresponding manifolds. Here, the fact is important that in the numer-
ical realization of the operators (1.10), the parallelization of computations is
obtained by the considered system of partitions of matrices and vectors into
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submatrices and subvectors. In other words, the elements of parallelization are
inserted into the numerical realization of the operators (1.10), for example, in
the parallelization of such operations as .aj ; x/, and others. Composition of
all the mappings (6.10) into a sinlge one can be carried out, for instance, by
the following formula:

T .x; u; v;w/ D PC
H0

 
kX

j D1

˛jTj .x; v/;

lX

iD1

ˇiT
�
i .u;w/

!
:

Here, ˛j > 0,
Pk

j D1 ˛j D 1, ˇi > 0,
Pl

iD1 ˇi D 1; the symbol “C”

above PC
H0

means the positive cut-off function on the whole system of vari-
ables (1.9)4. The operator T is continuous (assuming continuity of the oper-
ators (1.10)), and T 2 F

M
, where M is the set of solutions of system (1.8).

Therefore,

T k.x/ �! z0 D

2
664

x0

u0

v0

w0

3
775 ;

and x0 2 arg L, u0 2 arg L�.

2 Randomization of Fejér processes

Fejér mappings playing the role of iterative operators for systems of linear
inequalities and linear programming problems are very convenient for their
combined applications. Namely, we speak about the fact that if there is a finite
collection fTj gm

1 � F
M

of M -Fejér mappings such that

T k
j .x

0/ �! x0 2 M;

then for the realization of an iterative process, application of each operator in
a given iteration can be chosen according to some mixed strategy:

xkC1 D

8
<̂

:̂

T1.x
k/ — with probability p1;

:::

Tm.x
k/ — with probability pm:

(2.1)

Here, pj � 0,
Pm

j D1 pj D 1. The vector p D Œ p1; : : : ; pm � is called a
mixed strategy for the application of the operators Tj .x/ to generate an iterative
scheme. The mixed strategy can be changed from step to step, i.e., on each
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iterative step k the strategy pk D Œ pk
1 ; : : : ; p

k
m � is used. Evolution of the

strategy pk can be defined by taking into account the role of each operator
Tj in decreasing this or that residual function d.x/ for the set M . If M is
the polyhedron of the system lj .x/ � 0, j D 1; : : : ;m, then the functions
maxj l

C
j .x/ or

P
j l

C
j .x/ (or others) can play the role of the function d.x/.

The operator taking its value accordingly to (2.1) is denoted by T p.x/. This

operator is realized for some Tjp
.x/. If p D pk, then we write T pk

.x/ D
Tjk
.x/. We now introduce the following notation.

Definition 2.1. The operator T 2 F
M

is called regular, if it satisfies relation
(5.1), Chapter III.

2.1 General theorems on convergence

Theorem 2.2. Let the following conditions be satisfied:

1) fTj gm
1 � F

M
, and at least one operator from this set is either regular or

continuous.

2) The elements of the sequence pk of mixed strategies are separated from

zero by the same distance (i.e., 9 " > 0 W pk
j � " 8 j; 8 k).

Then the sequence xk given by the recurrence relation

xkC1 D T pk

.xk/ .D Tjk
.xk//; (2.2)

converges to x0 2 M .

Proof. Let one of the operators fTj gm
1 be regular, say, T1.x/. By virtue of the

condition pk
1 � " > 0, there evidently exists a sequence xtk ! x0, such that

xtkC1 D T1.x
tk / ! x00. But if x0 2 M , then xk ! x0; and if x0 … M , then

according to condition 1 we have jxtkC1�M j D jT1.x
tk/�M j � ‚jxtk �M j,

‚ 2 .0; 1/, and from this jx00 �M j � ‚jx0 �M j < jx0 �M j. It is evident that
a vector y 2 M can be found such that kx00 � yk < kx0 � yk in contradiction
to the property of the equal distance of x0 and x00 from y (see Remark 5.6,
Chapter I).

But if one of the operators fTj gm
1 is continuous, say, T1.x/, then beginning

(as in the previous case) with xtk ! x0, xtkC1 D T1.x
tk / ! x00 and passing

to the limit in the inequality kT1.x
tk / � yk � kxtk � yk, y 2 M , we obtain

kx00 � yk D kT1.x
0/� yk � kx0 � yk. In this situation, if x0 … M , we obtain

the strict inequality kx00 � yk < kx0 � yk which is contradictory.
The theorem is proved.
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We next present two additional theorems on the convergence of randomized
processes.

Let fTj gm
j D1 � F

M
, i.e., a finite set ofM -Fejér mappings be given. We then

construct the mapping T p.x/ according to (2.1), i.e.,

T p.x/ D

8
<̂

:̂

T1.x/ — with probability p1;
:::

Tm.x/ — with probability pm:

(2.3)

Here, pj � 0 and
Pm

j D1 pj D 1.

Theorem 2.3. If at least one of the mappings fTj gm
1 � F

M
, say, T1.x/, is

closed, and if p1 > 0, then

fxkC1 2 T p.xk/g1
kD0 ! x0 2 M: (2.4)

Proof. Note, firstly, that T p 2 F
M

. Further, if for some k D Nk W x Nk 2 M , then
process (2.4) terminates and, therefore, the statement on convergence (2.4)

is valid , i.e., xk D x
Nk 8 k > Nk, and x

Nk D x0. Now let M \ fxkg D
¿, then this sequence is M -Fejér according to the definition. Since p1 >

0, the subsequence fxjk g can be selected from the sequence fxkg, and this
subsequence satisfies xjkC1 2 T1.x

jk / and moreover both fxjk g and fxjkC1g
converge, say, to x0 and x00, correspondingly. Then, by virtue of the closedness
of the mapping T1.x/, we shall have x00 2 T1.x

0/. If x0 2 M , then fxkg ! x0,
and then the theorem is valid. But if x0 … M , then for y 2 M the inequality
kx00 �yk < kx0 �yk holds which according to the property of equal distances
of the limit points from y gives a contradiction. The theorem is completely
proved.

Let Tj 2 F
Mj

, j D 1; : : : ;m, and, let M D
Tm

j D1Mj ¤ ¿. We then

construct the mappings T0.x/ D
Pm

j D1 ˛jTj .x/, ˛j > 0,
Pm

j D1 ˛j D 1 and

T p.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

T0.x/ — with probability p0;

T1.x/ — with probability p1;
:::

Tm.x/ — with probability pm:

(2.5)

Here, pj � 0, j D 0; 1; : : : ;m, and
Pm

j D0 pj D 1.

Theorem 2.4. Let the mappings fTj gm
j D1 be closed and p0 > 0. Then the

process (2.4) applied with the mapping (2.5) converges to some point x0 from

M .
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Proof. The statement is proved analogically to the one of Theorem 2.3 and
will be given here for completeness. To avoid bulky considerations, we shall
suppose that all the mappings Ts are single-valued. This together with the
condition of their closedness gives their continuity (by taking into account their
Fejér property). Note, firstly, that the sequence xk generated by mapping (2.5)
is M -Fejér if fxkg \ M D ¿. We shall suppose that possible duplications

are excluded from this sequence. If for some k D Nk we have x
Nk 2 M DTm

sD1Ms , then process (2.4) evidently terminates, and the theorem is valid.
So, we shall assume that fxkg \ M D ¿. The condition p0 > 0 allows to
choose a subsequence fxjk g � fxkg such that xjk ! x0, xjkC1 D T0.x

jk / DPm
sD1 ˛sTs.x

jk / ! x00, and then Ts.x
jk / ! x00

s , therefore,

x00 D
mX

sD1

˛sTs.x
0/: (2.6)

All these relations were written by using the M -Fejér properties of the se-
quence xk, as it was already noted above. Moreover, if x0 2 M , then xk ! x0

(see Corollary 5.5, Chapter I); therefore, the statement to be proved is valid.
Now let x0 … M . It is evident then that the relation s D Ns W x0 … MNs holds at
least once, and therefore the strict inequality kTNs.x

0/�yk < kx0 �yk, y 2 M
holds. Taking into account this inequality and relation (2.6), we have:

kx00 � yk D


mX

sD1

˛sTs.x
0/ � y

 D


mX

sD1

˛s.Ts.x
0/ � y/



�
mX

sD1

˛skTs.x
0/ � yk <

mX

sD1

˛skx0 � yk D kx0 � yk:

But since all the limit points of the M -Fejér sequence xk have the same dis-
tance from y, we obtain a contradiction. The theorem is completely proved.

2.2 Some notes on the realization of the processes

As it was already noted, modifications of a mixed strategy can be implemented
in dependence of the “input” of each Tj .x/ into decreasing the residual d.x/.
We now consider several ways for the calculation of pk.

Let Tj .x
k/ D xk

j , ık
j D Œ d.xk/�d.xk

j / �
C, where d.x/ is the residual func-

tion of the original system. Here, the cut-off function is taken since that in the
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Fejér processes, the monotone decay of the residual function is not guaranteed.
It is possible to take

pkC1
j D

ık
jPm

j D1 ı
k
j

: (2.7)

The construction of pkC1 with the coordinates pkC1
j can be carried out on the

basis of the overview of the situation on the “pre-history” interval fxk; : : : ; xtg
considered in (2.7),

ık
j D

tX

sDk

Œ d.xs/ � d.xs
j / �

C:

By using in the implementations of the Fejér processes the mentioned method
of control of a mixed strategy, numerical experiments were carried out. As a
rule, beginning from some k0, all the mappings Tj .x/ were rejected except
one, i.e.,

T pk

.xk/ D Tj 0.xk/; k � k0:

In such a situation it is reasonable to suppose that the operator Tj 0.x/ was
the most effective. We now make another observation. Additional probational
computations of the intermediate estimates of effectiveness for each Tj .x/ re-
quire their own computational expenditures which must be taken into account.
However, considering low expenditure of computations of the values Tj .x/

and d.x/ (in the class of the iterative mappings under consideration), for small
m (say, 2 � m � 4) the suggested method of selection can be considered as
completely reasonable.

The construction of a trajectory fpkg of mixed strategies (in the implemen-
tation of the Fejér process) can be carried out also on the basis of the Brown–
Robinson approach (Robinson, 1961), suggested by the authors for solving
matrix games in mixed strategies. In application to our situation, the algorithm
of recalculation of the strategy consists in the following. If pk in step k is

already implemented, and T pk

.xk/ D TjkC1.x
k/, then pkC1 is calculated by

the formula

pkC1 D k

k C 1
pk C 1

k C 1
ejkC1

�
D 1

k C 1

kC1X

sD1

ejs

�
:

Here, ejkC1 D Œ 0; : : : ; 1; : : : ; 0 � is the unit vector of the space R
n with the unit

at the place jkC1, which corresponds to the choice of a clear strategy according

to the relation T pk

.xk/ D TjkC1.x
k/. The idea of the hybrid (combined) way

of using several iterative mappings is itself rather positive.
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3 Fejér processes and inconsistent systems for linear

inequalities

Some types of M -Fejér mappings generate convergent sequences indepen-
dently on non-emptyness or emptyness of the set M D fx W Ax � bg, i.e.,
independently of consistency or inconsistency of the system of inequalities un-
der consideration. If the mapping T 2 F

M
is continuous and M D ¿, and if

in addition T k.x0/ ! x0 holds, then evidently, x0 D T .x0/. Therefore, in this
case, the set fM of fixed points for T .x/ is nonempty. It is natural to assume
that the set fM plays the role of some approximative set for the inconsistent
system of inequalities.

The Fejér mappings with the outlined property can in a natural way be ap-
plied to problems of correction for inconsistent systems of linear inequalities
and to improper problems (not having any solutions) of linear programming.

3.1 Preliminary notes and information

Recall that the mapping T W R
n ! R

m is called weakly M -Fejér, if

kT .x/ � yk � kx � yk 8y 2 M; 8x 2 R
n; Fix.T / D M:

As it was already mentioned in Chapter I,

1) if T .x/ is a weak M -Fejér mapping, then for any � 2 .0; 1/

T�.x/ D .1 � �/T .x/C �x; T� 2 F
M

I

2) if T is a nonexpansive mapping and M D fx W T .x/ D xg ¤ ¿, then
T�.x/ D .1 � �/T .x/C �x; T� 2 F

M
;

3) the projection operator onto the convex closed set M � R
n is non-

expansive.

We shall use these properties whenever necessary (without further notice).

Lemma 3.1. The mapping

T �.x/ D x � � l
C.x/

kak2
a; � 2 .0; 2/

is nonexpansive. Here, l.x/ D .a; x/ � b, a ¤ 0.
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Proof. If l.x/ � 0 and l.y/ � 0, then T �.x/ D x, T �.y/ D y; therefore,
the needed inequality holds. If l.x/ > 0, l.y/ � 0, then kT �.x/ � T �.y/k D
kT �.x/ � yk < kx � yk by virtue of T � 2 F for L D fx W l.x/ � 0g.

The case l.x/ � 0, l.y/ > 0 is analogous. Let l.x/ > 0, l.y/ > 0. Then the
needed inequality follows from the following, directly verified identity:

kT �.x/� T �.y/k2 D kx � yk2 � �.2 � �/
kak2

Œl.x/� l.y/�2:

The lemma is proved.

For the system of linear inequalities lj .x/ D .aj ; x/�bj � 0, j D 1; : : : ;m,
with the set of solutions denoted byM (this can be empty), we use the follow-
ing notations:

T .1/.x/ D x �
mX

j D1

�j˛j

lCj .x/

kaj k2
� aj ; (3.1)

T .2/.x/ D T1T2 : : : Tm.x/; (3.2)

T .3/.x/ D x � � = ı
mX

j D1

lCj .x/aj : (3.3)

Here, ˛j > 0,
Pm

j D1 ˛j D 1; �j 2 .0; 2/, � 2 .0; 2/, ı D
Pm

j D1 kaj k2, Tj ,
according to (1.2), Chapter III.

Lemma 3.1 implies the following corollary.

Corollary 3.2. The mappings (3.1)–(3.3) are nonexpansive.

Proof. Mappings (3.1) and (3.3) are convex combinations of nonexpansive
mappings of the type T �.x/ from Lemma 3.1 and, therefore, evidently are
nonexpansive. As for mapping (3.2), we have

kT .2/.x/� T .2/.y/k � kT2 : : : Tm.x/� T2 : : : Tm.y/k
� � � �
� kTm.x/� Tm.y/k � kx � yk;

that was claimed.

Lemma 3.3. Mapping (3.3) is Fejér with respect to the set

fM D arg min
x

mX

j D1

lC
2

j .x/ .¤ ¿/:



Section 3 Fejér processes and inconsistent systems for linear inequalities 121

Proof. Rewrite (3.3) in the form

T .3/.x/ D x � �

2ı
r

mX

j D1

lC
2

j .x/: (3.4)

It is seen from this that fM D fx W T .3/.x/ D xg, i.e., fM is the set of fixed
points for T .3/.x/. For the sequel, take ˛ 2 .0; 1/ such that ˛�1� D �0 2
.0; 2/. Then T .3/.x/ can be rewritten in the form

T .3/.x/ D ˛T
.3/
0 .x/C .1 � ˛/x;

where T .3/
0 .x/ D x � �0

ı

Pm
j D1 l

C
j .x/aj . By Lemma 3.1 and Corollary 3.2

the mapping T .3/
0 .x/ is nonexpansive, and, therefore, we obtain T .3/ 2 FeM

that was claimed.

Lemma 3.4. Mapping (3.1), i.e.,

T .1/.x/ D x �
mX

j D1

˛j�j

lCj .x/

kaj k2
aj ; (3.5)

where �j 2 .0; 2/, ˛j > 0,
Pm

j D1 ˛j D 1, is Fejér with respect to the set

fM D arg min
x

mX

j D1

˛j�j

lC
2

j .x/

kaj k2
.¤ ¿/:

Proof. This proof is analogous to the previous one.

3.2 Fejér processes for problems of square approximation of

inconsistent systems of linear inequalities

Theorem 3.5. The process fT k.x0/g1
kD0 for T .x/ of the form (3.3) or (3.5)

converges to x0 2 arg minx d.x/ with d.x/ D k.Ax � b/Ck2 and d.x/ D
Pm

j D1 ˛j�j
l

C2

j
.x/

kaj k2 , correspondingly.

Proof. This follows from the continuity of mappings (3.3) and (3.5) and the
fM -Fejér property.
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If the system of linear inequalities

lj .x/ D .aj ; x/ � bj � 0; j D 1; 2; : : : ;m

with the set of solutions M , possibly empty, is given on an arbitrary Hilbert
space H , then it is possible to construct weakly convergent processes for
approximatively solving problems on the basis of the correcting multipliers
method (Section 4, Chapter I). Namely, the following statement is valid.

Theorem 3.6. Let the operator T acting in the Hilbert space H be defined

by formula (3.1) (or (3.3)). Let k be an admissible sequence in the sense of

Definition 4.4, Chapter I. Then the sequence xk generated by the process

xkC1 D kT .x
k/C .1 � k/v

0;

converges strongly to v0, this is, the normal solution of the problem

min
x

mX

j D1

lC
2

j .x/

or

min
x

mX

j D1

˛j �j

lC
2

j .x/

kaj k2
;

respectively.

Proof. This follows directly from Theorem 4.5, Chapter I, Corollary 3.2 and
Lemmas 3.3 and 3.4 (this chapter).

Now we consider generalizations of the mappings T .x/ from Theorem 3.5
that are related to a mixed system of linear inequalities and equations:

lj .x/ D 0; j 2 JD;

lj .x/ � 0; j 2 J�;
(3.6)

where lj .x/ D .aj ; x/ � bj , j 2 JD [ J�. The function of the square (more
exactly, piecewise square) residual of this system will have the form

d.x/ D
X

j 2JD

l2j .x/C
X

j 2J�

lC
2

j .x/: (3.7)

The problem min d.x/ is a problem of a piecewise square approximation of
system (3.6). This problem is important itself, but such problems also result
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from linear programming problems, square-regularized problems, square pro-
gramming problems, and others. For (3.6) we now consider a mapping T .x/
which is an analogue of (3.3):

T .x/ D x � �

ı

� X

JD

lj .x/aj C
X

J�

lCj .x/aj

�
(3.8)

(D x � �
2ı

rd.x/); here, ı D
P

J kaj k2, J D JD [ J�.

Let fM D arg min d.x/. In complete correspondence with the proof of
Lemma 3.4, we can prove the following lemma.

Lemma 3.7. Mapping (3.8) is continuous fM -Fejér, and, hence,

T k.x0/ ! x0 2 fM:

3.3 Transition of results to the case of a system with additional

constraints

For the system (3.6) with the additional constraint x 2 S , where S is some
convex closed set from R

n, we now consider the problem

min
x2S

d.x/; (3.9)

where d.x/ is a convex differentiable function. Here, for example, function
(3.7) can play the role of d.x/.

Lemma 3.8. The vector Nx 2 S is optimal for the solvable problem (3.9) if and

only if

PS. Nx � rd. Nx// D Nx;  > 0: (3.10)

Proof. Exclude, as trivial, the case rd. Nx/ D 0 (this corresponds to the case
when Nx is already the point of absolute minimum of the function d.x/). Let
Nx 2 eS D arg (3.9). The hyperplane H D fx W .rd. Nx/; x � Nx/ D 0g will be
the support for S at the point Nx, and then, .rd. Nx/; x � Nx/ � 0 8x 2 S . The
point Nz D Nx � rd. Nx/ has just the same point, namely, Nx as its projections
onto S and onto H , and this corresponds to (3.10). Now conversely, let (3.10)
be satisfied. Then we have the situation of a supporting hyperplane H such
that the inequality .rd. Nx/; x � Nx/ � 0 is satisfied for all x 2 S . Since the
function d.x/ is convex, the inequality .rd. Nx/; x � Nx/ � d.x/ � d. Nx/ holds
for all x. This, together with the inequality written above, gives d.x/ � d. Nx/
for all x 2 S , i.e., Nx 2 eS .
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Now consider the operator T .x/ from (3.8) and define

T˛.x/ D .1 � ˛/PS Œ T .x/ �C ˛x; ˛ 2 .0; 1/:

Theorem 3.9. The mapping T˛.x/ is continuous and eS-Fejér, where eS D
arg (3.9). From that it follows

T k
˛ .x

0/ ! x0 2 eS:

Proof. The operators T and PS are nonexpansive and, therefore, the operator
T˛ is also nonexpansive, and in addition, arg (3.9) D Fix.T˛/ D eS . By virtue
of the continuity of T˛ and T˛ 2 F

NS
, we obtain the claimed result.

4 Fejér processes for finding quasi-solutions of

improper problems of linear programming (IP LP)

Let
L W max f.c; x/ W Ax � b; x � 0g (4.1)

be the linear programming problem, and let

L� W min f.b; u/ W A>u � c; u � 0g (4.2)

be the problem dual to L.
In correspondence to the problems L and L�, we consider the following

system of linear inequalities

S W
Ax � b; x � 0I (4.3)1

A>u � c; u � 0I (4.3)2

.c; x/ D .b; u/; (4.3)3

9
>=
>;

(4.3)

which is called symmetric.
In linear programming theory, the following fact is well known:

arg S D argL � argL�. (4.4)

In (4.4), argS is the set of solutions of the system S . If

T1 2 F
M1
; M1 D arg (4.3)1;

T2 2 F
M2
; M2 D arg (4.3)2;

T3.x; u/ D PH0.x; u/; H0 D arg (4.3)3
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and
T .x; u/ D PH .T

C
1 .x/; T

C
2 .u//; (4.5)

then T 2 FeM , where fM D arg S , i.e., T .x; u/ is a continuous Fejér mapping

with respect to the set argL � argL�. Therefore,

T k.x0; u0/ ! Œ Nx; Nu � 2 arg S: (4.6)

The choice of the mappings T1.x/ and T2.u/ can be carried out in various
ways, particularly, by the basic ways described in Section 1, Chapter III.

Let

T1.x/ D x � .� = ı1/
mX

j D1

lCj .x/aj ;

T2.u/ D u � .� = ı2/
mX

iD1

hC
i .u/hi ;

T3.x; u/ D Œ x; u �> � .c; x/� .b; u/
jcj2 C jbj2 Œ c;�b �>;

9
>>>>>>>>>>=
>>>>>>>>>>;

(4.7)

where fhi g are the rows of the matrix A, hi .u/ D ci � .hi ; u/, and ı1 DPm
j D1 kaj k2, ı2 D

Pn
iD1 khi k2, � 2 .0; 2/, Œx; u�> D

�x
u

�
, Œc;�b�> D

� c
�b
�
.

Note that the form of the mappings T1 and T2 depends on the form in which
the original linear programming problem is written. For example, if the prob-
lem L is given in the following canonical form,

min f.c; x/ W Ax D b; x � 0g; (4.8)

then the dual problem will have the form

max f.b; u/ W A>u � cg; (4.9)

and the mappings T1, T2, and T .x; u/ have the following corresponding forms,

T1.x/ D x � .� = ı1/
mX

j D1

lj .x/aj ;

T2.u/ D u � .� = ı2/
mX

j D1

Œ.hi ; u/ � ci �
Chi ;

T3.x; u/ D PH0.T1.x/; T
C
2 .u//:

9
>>>>>>>>=
>>>>>>>>;

(4.10)

The formula of T3.x; u/ contains projection operators onto H0.
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From the fact that the main constraints in (4.8) are written in the form of a
system of linear equations Ax D b (let us denote its set of solutions by H1) it
follows that T1 can be constructed on the basis of the projection operator onto
H1:

PH1.x/ D x � A>.AA>/.Ax � b/ (4.11)

(under the assumption that rankA D n). If we assume T1.x/ D PH1.x/, then
the final iterative operator T .x; u/ will have the same form as is in (4.10).

For problem (4.8) the case of a mapping T .x; u/ of the form

T .x; u; v/ D PH0.x; u
C; vC/; (4.12)

is of interest; here H0 denotes the set of solutions of the system

Ax D b; A>uC v D c; .c; x/ D .b; u/: (4.13)

This case was considered in the work (Eremin and Popov, 2002) devoted to
numerical experiments for solving problems of linear programming of large
dimension on parallel computers.

4.1 The basic approximative-Fejér process for improper linear

programming problems of the first kind

We now shall discuss some unsolvable problems of linear programming. We
start with some classifications for them.

Let M and M � be the admissible sets of the problems L and L�. The
problem L is called an improper problem of the first, the second, or the third
kind if the respective condition is satisfied:

1) M D ¿; M � ¤ ¿;

2) M ¤ ¿; M � D ¿;

3) M D ¿; M � D ¿.

The case M ¤ ¿,M � ¤ ¿ corresponds to solvability of the problem L.
If the original problem of linear programming is unsolvable, i.e., in the

terminology introduced above it is improper, then its corresponding symmet-
ric system S is inconsistent (the inverse is also valid). In such a case for this
problem it is possible to introduce the notion of the quasi-solution using the
definition of the quasi-solution of the system S . We give an illustration by
considering a linear programming problem of the form

L W max f.c; x/ W Ax � bg: (4.14)
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Its dual problem will be

L� W min f.b; u/ W A>u D c; u � 0g: (4.15)

The symmetric system S is

Ax � b; A>u D c; u � 0; .c; x/ D .b; u/: (4.16)

If L is the improper problem of the first kind, i.e.,

M D fx W Ax � bg D ¿; M � D fu W A>u D c; u � 0g ¤ ¿;

then having introduced

Z D
� �
x

u

�
W A>u D c; .c; x/ D .b; u/

�
;

d.x; u/ D k.Ax � b/Ck2 C k.�u/Ck2;

it is possible to formulate the problem

min

�
d.x; u/ W

�
x

u

�
2 Z

�
(4.17)

as an approximative problem for the inconsistent system (4.16). If
� Nx

Nu
�

2
arg (4.17), then Nx is just called the quasi-solution of system (4.16), and, in
addition, the quasi-solution of problem (4.14). If the latter is solvable, then Nx
is its usual solution. For (4.17) it is possible to write the Fejér mapping with
respect to the set arg (4.17) in the same way as in the previous section, but in
application to system (4.16) it gives:

T .x; u/ D
�
x

u

�
� .� = 2ı/rx;ud.x; u/;

‰.x; u/ D PHT .x; u/;

‰˛.x; u/ D .1 � ˛/‰.x; u/C ˛

�
x

u

�
; (4.18)

where � 2 .0; 2/, ı D
Pm

j D1 kaj k2 Cm, ˛ 2 .0; 1/.
According to Lemma 3.3, ‰˛.x; u/ is a fM -Fejér mapping with respect to

fM D arg (4.17). Therefore, the process

f‰k
˛.x0; u0/gk

converges to some vector
� Nx

Nu
�
, and then, by definition:
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– Nx is the quasi-solution of problem (4.14),

– Nu is the quasi-solution of problem (4.15).

The operator PH .�/ presented in the definition of ‰.x; u/ and then inserted
into formula (4.18), can be written according to relation (4.11), by replacing
the matrix A with the matrix

NA D
�

0 A>

c> �b>

�
;

and by replacing the vector b (in (4.11)) with the vector
�c
0

�
.

4.2 Approximative-Fejér process for improper problems of linear

programming of the second kind

We consider this question in the context of problems (4.14)–(4.16). The sit-
uation of improperty of the second kind corresponds to the case M ¤ ¿,
M � D ¿, where the sense of the symbols M and M � is the same that in
Section 3. Divide system (4.16) into two parts:

A>u D c; u � 0I (4.19)

Ax C v D b; v � 0; .c; x/ D .b; u/I (4.20)

where the system Ax � b above is changed to Ax C v D b, and v � 0 is a
usual rewriting of the system of inequalities, if needed.

Consider d.x; u; v/ D kA>u�ck2 Ck.�u/Ck2 Ck.�v/Ck2, andH0 is the
set of solutions of system (4.20). By virtue of the assumption about nonempty-
ness ofM , we have H0 ¤ ¿. In accordance with the basic construction of the
Fejér mapping ‰˛.�/ realized above for the nonlinear problems of linear pro-
gramming of the first kind, in the considered case of the nonlinear problems of
the second kind, this mapping will have the form

‰˛.x; u; v/ D PH0

8
<
:

2
4
x

u

v

3
5 � .�=2ı/rx;u;vd.x; u; v/

9
=
; : (4.21)

Here, � 2 .0; 2/, ı D
Pn

iD1 khi k2 C 2m.
The process generated by mapping (4.21) will converge to some vector

Œ Nx; Nu; Nv�, where Nx is a quasi-solution of problem (4.14), and Nu is a quasi-
solution of problem (4.15).
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4.3 Fejér process for improper problems of linear programming

of the third kind

Above we considered the inconsistency of the symmetric system S that was
put in correspondence to the original problem of linear programming, which
is supposed to be a nonlinear problem of linear programming of either the first
or second kind. The sense of approximation in the case of the system S is
in constructing its consistent subsystem from the equations and in introducing
the square residual function d.x/ for the other constraints on this system. It
is clear that this construction is nonunique. This follows from the fact that in
any concrete case, i.e., in the case of some concrete form of the problem (for
instance, in the form of a transportation problem with a block format, etc.),
the mentioned operation of selecting some subsystem can be joined with some
simple and effective numerical realization of the iterative step generated by
this operator. It is necessary to add to this that constructing the final Fejér
iterative operator will depend on the concrete form of the original problem of
linear programming. All these considerations have to be taken into account
each time when it is necessary to construct a Fejér mapping.

For the consideration of an improper problem of linear programming of the
third kind, let us consider its dual problem of linear programming and the
system S in the form (4.1)–(4.3).

Note that the final iterative mapping ‰˛.�/ is formed by the fragments T .x/,
‰.x/ D PMT .x/, and they, in the turn, are formed by M , d.�/, and ı. So,
when constructing the analogues of the mappings ‰˛.�/ for the application to
system (4.3) in the versions considered below, we shall present only the form
of the set M , the residual function d.�/, and the value of ı.

Version 1.

M1 D
��
x

u

�
W .c; x/ D .b; u/

�
;

d1.x; u/ D k.Ax � b/Ck2 C k.c � A>u/Ck2 C k.�x/Ck2 C k.�u/Ck2;

ı1 D
mX

j D1

kaj k2 C
nX

iD1

khi k2 CmC n:
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Version 2.

M2 D

8
<
:

2
4
x

u

v

3
5 W A>u � v D c; .c; x/ D .b; u/

9
=
; ;

d2.x; u; v/ D k.Ax � b/Ck2 C k.�x/Ck2 C k.�u/Ck2 C k.�v/Ck2;

ı2 D
mX

j D1

kaj k2 CmC 2n:

Version 3.

M3 D

8
<
:

2
4
x

u

v

3
5 W Ax � w D b; .c; x/ D .b; u/

9
=
; ;

d3.x; u;w/ D k.c � A>u/Ck2 C k.�x/Ck2 C k.�u/Ck2 C k.�w/Ck2;

ı3 D
nX

iD1

khi k2 C 2mC n:

Version 4.

M4 D R
n;

d4.x; u/ D j.Ax � b/Cj2 C j.c � A>u/Cj2 C j.�x/Cj2 C j.�u/Cj2;

ı4 D
mX

j D1

kaj k2 C
nX

iD1

khi k2 CmC n:

The latter version is suitable both for solvable and unsolvable problems of
any type of insolvability (of the 1st, 2nd, and 3rd kind).

5 Normalized solutions of convex inequalities

Let M be a convex closed subset of H and v … M .
The element Nv D arg minx2M kv � xk that is the metric projection v onto

M is called the v-normal element from M . If M is given by the system of
convex inequalities, say,

fj .x/ � 0; j D 1; : : : ;m; (5.1)

then the element Nv, according to Definition 2.8, Chapter I, is called the v-
normal solution of system (5.1). If v D 0, then Nv is the solution of system
(5.1) having minimal norm, and it is called normal solution.
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5.1 Auxiliary results

Lemma 5.1. An element Nv from M is the metric projection of an element v …
M if and only if for any x 2 M the following inequality holds:

.x � Nv; v � Nv/ � 0; (5.2)

see, for instance, (Berdyshev and Petrak, 1999).

We shall need an equivalent characterization of an M -Fejér mapping T 2
F

M
.

Let � be the hyperplane that is the locus of the points lying at the same
distance form x and T .x/; the equation of this hyperplane has the form

.y � Nx; x � T .x// D 0: (5.3)

Here, x … M , Nx D xCT .x/
2 , and y is a variable. By �0

� we denote the open
half-space corresponding to the inequality

.y � Nx; x � T .x// < 0; (5.4)

and by �0
C we denote the open half-space corresponding to the inequality

.y � Nx; x � T .x// > 0: (5.5)

Lemma 5.2. Let M be a convex closed subset of H . The mapping T from H

into H is M -Fejér if and only if T .y/ D y 8y 2 M and for any x … M the

following inequality holds:

.y � Nx; x � T .x// < 0; 8y 2 M: (5.6)

Here, Nx D xCT .x/
2 .

Proof. Necessity. Let T 2 F
M

, then it is necessary to show M � �0
�, i.e.,

that inequality (5.6) holds for all y 2 M . Suppose that it does not hold, i.e.,
for x … M the point y belongs either to the hyperplane � or the open half-
space �0

C. If y 2 � , then kT .x/ � yk D kx � yk (since x and T .x/ are at
the same distances from all points of the set �), but this contradicts the Fejér
property of T .x/ with respect to the set M , i.e., it contradicts to the property
kT .x/ � yk < kx � yk. But if y 2 �0

C, then T .x/ and y will lie on different
sides of the hyperplane � . Denote by z the point of intersection of the segment
ŒT .x/; y� and � . Then we shall have kT .x/� yk D kT .x/� zk C kz � yk D
kx � zk C kz � yk � kx � yk, but this also contradicts to the inequality
kT .x/ � yk < kx � yk.
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Sufficiency. Let (5.6) be satisfied together with the property T .y/ D y

8y 2 M . It is necessary to ensure that the inequality kT .x/ � yk < kx �
yk for y 2 M holds and that x … M . The transfer from x to T .x/ means
relaxation of the point x with respect to the projection of x onto � with the
relaxation coefficient � D 2, i.e., T .x/ D x � 2 .x � P�/, that gives the
equality kT .x/ � yk � kx � yk. But since y 2 M � �0

�, i.e., y does not
lie on the hyperplane � , the strict inequality kT .x/ � yk < kx � yk actually
holds which was to be shown.

The lemma is completely proved.

We consider the following mapping for T 2 F
M

and v … M :

T˛.x/ D .1 � ˛/ T .x/C ˛v; (5.7)

˛ 2 .0; 1/. Let Nv be the projection v onto the set M .

Lemma 5.3. If S D fx W kx � Nvk � rg where r D kv � Nvk, then

T˛.S/ � S;

i.e., x 2 S H) T˛.x/ 2 S .

Proof. Actually, if kx � Nvk � r , then

kT˛.x/� Nvk D k.1 � ˛/T .x/C ˛v � Nvk
D k.1 � ˛/.T .x/� Nv/C ˛.v � Nv/k
� .1 � ˛/ kx � Nvk C ˛ r � .1 � ˛/ r C ˛r D r:

Corollary 5.4. Let the operator T 2 F
M

be completely continuous. Then by

virtue of the Schauder theorem (Edwards, 1969) the mapping T˛.x/ has at

least one fixed point x˛ ,

x˛ D .1 � ˛/T .x˛/C ˛v: (5.8)

One can weaken the conditions on the operator T which guarantee existence
of the fixed points of the operator T˛ . We formulate these conditions in the
form of a corollary, since, here, the fact established in Lemma 5.3 T˛ � S is
also used.
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Corollary 5.5. Let the operator T 2 K
M

(Definition 1.1, Chapter I) acting

in the Hilbert space H be weakly closed (Definition 3.4, Chapter I). Then for

any ˛ 2 .0; 1/, equation (5.8) has a solution x˛ 2 S .

Proof. Actually, write equation (5.8) in the form

min
x2S

kx � T˛.x/k .D d/:

Let xn 2 S be a minimizing sequence. Since S D fx W kx � Nvk � rg is
bounded and T˛.S/ � S , the subsequence exists such that xnk

+ Nx 2 S ,
T˛.xnk

/ + Ny. So as T is weakly closed then T˛ is also weakly closed; there-
fore, T˛. Nx/ D Ny. Then d � k Nx � T˛. Nx/k � limk!1 kxnk

� T˛.xnk
/k D d ,

i.e., Nx is the solution of equation (5.8).

Note that the conditions on the operator T from Corollary 5.5 a fortiori

hold for the basic Fejér operators (3.12), Chapter I, since for them the stronger
property (see relation (3.1) and Remark 3.15, Chapter I) holds.

5.2 Theorems on stability of the fixed points for

quasi-contractions

In Section 4, Chapter I, for nonexpansive operators T : H ! H (the class K),
a theorem on convergence of the sequence x˛ (˛ D 1 �  ) to the v-normal
solution of the equation x D T .x/ was proved (Theorem 4.1, Chapter I). In
this section this fact is established under some additional conditions on the
mappings from the classes F

M
, K

M
(M D Fix.T /), and several examples are

discussed.

Theorem 5.6. Let the mapping T W H ! H , T 2 F
M

, be completely contin-

uous, i.e., from xk + x0, it follows T xk ! T x0. Then

x˛ ! Nv as ˛ ! 0; (5.9)

where Nv is the projection of v onto M .

Proof. 1. Denote by fx˛g0
˛ the set of limit points of subsequences of the form

fx˛k
gk, where f˛k > 0gk ! 0. Select some arbitrary sequence x˛k

such
that x˛k

+ x0 (since in H from any bounded set it is possible to select some
sequence that converges weakly). We prove that x0 2 M . Rewrite relation
(5.8), with the number ˛k being substituted by ˛:

x˛k
D .1 � ˛k/ T .x˛k

/C ˛kv; (5.10)
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k D 1; 2; : : : . Since, ˛kv ! 0, .1 � ˛k/ ! 1, and fT .x˛k
/g is a strongly

convergent sequence (by assumption T .x/ is a completely continuous map-
ping), we have x˛k

! x0, i.e., convergence in the norm of the space H holds.
Passing in (5.10) to the limit as k ! 1, we obtain T .x0/ D x0, i.e., x0 2 M .

2. We prove that x0 D Nv, i.e., that the limit point of the sequence x˛k
coin-

cides with the projection Nv of the element v onto M .
Note that x˛ … M for any ˛ 2 .0; 1/. In fact, if x˛ 2 M would hold then

from (5.8) it would follow x˛ D v, i.e., v … M , a contradiction.
From Lemma 5.2 by virtue of T 2 F

M
, the following inequality is valid:

�
y � x˛ C T .x˛/

2
; x˛ � T .x˛/

�
< 0; 8y 2 M: (5.11)

Since according to (5.8) x˛ � T .x˛/ D ˛ .v � T .x˛//, it is possible to write
(5.11) in the form

�
y � x˛ C T .x˛/

2
; v � T .x˛/

�
< 0 8y 2 M: (5.12)

Having substituted ˛ D ˛k , k D 1; 2; : : : , into (5.12), we obtain

�
y � x˛k

C T .x˛k
/

2
/; v � T .x˛k

/
�
< 0 8y 2 M: (5.13)

As it was already noted in point 1 of this proof, there holds x˛k
! x0,

T .x˛k
/ ! x0. Passing to the limit in (5.13) as k ! 1, we obtain

.y � x0; v � x0/ � 0 8y 2 M;

but this, according to Lemma 5.1, implies that x0 is the projection of v onto
M , i.e., x0 D Nv.

Thus, we have proved that any weakly convergent sequence x˛k
satisfying

relation (5.10) converges in norm to the projection Nv of v onto M .

Remark 5.7. Let us consider the situation H D R
n. In that case, Corollary

5.4 and Theorem 5.6 can be formulated as follows: If T 2 F
M

and T is
continuous, then for ˛ 2 .0; 1/ the mapping T˛.x/ D .1 � ˛/T .x/ C ˛v,
v … M , has the set of fixed points M˛ ¤ ¿, and moreover,

sup
z2M˛

kz � Nvk ! 0 as ˛ ! 0: (5.14)

If in addition the operator is nonexpansive, thenM˛ is single-point and instead
of (5.14) we have (5.9).
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Remark 5.8. If we additionally assume in Theorem 5.6 that the mapping T .x/
is nonexpansive, i.e., kT .x/�T .y/k � kx�yk for all x; y 2 H , then the set
M˛ of fixed points of the mapping T˛.x/ will consist of a single point x˛ , and

kT˛.x/ � x˛k � .1 � ˛/ kx � x˛k (5.15)

for any point x 2 H .

Note that the relations (5.15) show that under the condition of nonexpan-
siveness of the operator T .x/, the fixed point x˛ for T˛.x/ can be determined
with any desirable accuracy by means of the iterative process

xkC1 D T k
˛ .x

0/ (5.16)

that gives x˛ in the limit.
Consider several examples in the case whenM is given by systems of linear

and convex inequalities.

1. Let a system (5.1) of convex inequalities on R
n with the set of solutions

M ¤ ¿ be given. Assume that the functions ffj .x/gm
1 are differentiable.

Moreover let

T .x/ D x � �
mX

j D1

˛j

f C
j .x/

krfj .x/k2
� rfj .x/; (5.17)

� 2 .0; 2/, ˛j > 0,
Pm

j D1 ˛j D 1. In Section 7, Chapter I, it was shown that
T 2 F

M
. The convex differentiable functions are continuously differentiable,

i.e., the gradients rfj .x/ are continuous. This implies the continuity of the
mapping (5.17). For T .x/ given according to (5.17), all the conditions of
Theorem 5.6 are satisfied in the case H D R

n. Therefore, all above presented
results on v-normal solutions of the system (5.1) hold also for the mapping
T 2 F

M
.

2. LetM be given by the following finite system of linear inequalities in R
n,

lj .x/ D .aj ; x/ � bj � 0; j D 1; 2; : : : ;m; (5.18)

and let the mapping T 2 F
M

be given according to the relation

T .x/ D x � � = ı
mX

j D1

lCj .x/ � aj : (5.19)

Here, � 2 .0; 2/, ı D
Pm

j D1 kaj k2, and M is the nonempty set of solutions of
system (5.18).
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As it was already noted in Section 3, mapping (5.19) is continuous M -Fejér
and nonexpansive, therefore Remark 5.8 can be applied to this mapping. Re-
call that the remark is directly related with the realization of the computational
procedure for finding the v-normal solution of system (5.18). This is com-
pletely applicable to the case of system (5.18) with the additional constraint
x 2 S , where S is a convex closed subset of R

n. In other words, to the system

lj .x/ � 0; j D 1; 2; : : : ;m; x 2 S (5.20)

we put in correspondence the mapping

T 0.x/ D PS ŒT .x/�: (5.21)

This mapping is continuous Fejér with respect to the set M \ S ¤ ¿ and
nonexpansive, i.e., again all the conditions of Remark 5.8 hold, hence for the
operator (5.21) relation (5.15) is fulfilled.

In the next theorem, stability of the solutions x˛ of equation (5.8) w.r.t. the
parameter ˛ ! 0 is established under weaker assumptions on the operator T
than those considered in Theorem 5.6. This allows to consider some impor-
tant classes of basic Fejér constructions in the case of an infinite-dimensional
Hilbert space H .

Theorem 5.9. Let T 2 K
M

be a weakly closed operator acting in the Hilbert

space H . Then for x˛ the statement of Theorem 5.6 is valid.

Proof. According to Corollary 5.5, for any ˛ 2 .0; 1/ there exists a solution
x˛ 2 S of equation (5.8). Since S is a bounded set, one can select a subse-
quence x˛k

+ Nx 2 S that converges weakly. Moreover, we have

x˛k
� T .x˛k

/ D ˛k .v � T .x˛k
// ! 0; ˛k ! 0;

i.e., T .x˛k
/ + Nx. Taking into account the weak closedness, we obtain Nx D

T . Nx/. Let Nv be the projection of the element v onto the set M , i.e., Nv is the
fixed point of the operator T that is closest to v.

Consider the relations

˛kx˛k
C .1 � ˛k/ .x˛k

� T .x˛k
// D ˛kv;

˛k Nv C .1 � ˛k/ . Nv � T . Nv// D ˛k Nv:
Multiplying each of these equalities term-by-term with x˛k

� Nv and subtracting
term-by-term gives

˛k.x˛k
� Nv; x˛k

� Nv/C .1 � ˛k/ .x˛k
� Nv; F.x˛k

/ � F. Nv//
D ˛k.v � Nv; x˛k

� Nv/;
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where F.x/ D x � T .x/. Since T 2 K
M

, i.e., kT .x/ � zk � kx � zk
8 z 2 M D Fix.T /, we have

.F.x/� F.z/; x � z/ D kx � zk2 � .T .x/ � T .z/; x � z/
� kx � zk2 � kT .x/ � T .z/k kx � zk � 0:

Therefore, .x˛k
� Nv; F.x˛k

/ � F. Nv// � 0.
Taking this fact into account, we obtain

.x˛k
� Nv; x˛k

� Nv/ � ˛k.v � Nv; x˛k
� Nv/

D .v � Nv; x˛k
� Nx/C .v � Nv; Nx � Nv/:

By the criterion of the metric projection, the second term on the right-hand
side is nonpositive, and the first term tends to zero as ˛k ! 0 by virtue of the
weak convergence x˛k

+ Nx; therefore,

lim
k!1

kx˛k
� Nvk D 0:

Since it follows from the proof that Nv is the unique limit point, the whole
sequence x˛ converges to Nv.

As it was already mentioned above, the operators T for the basic Fejér con-
structions, for instance of form (3.12), Chapter I, have the weak closedness
property under the condition of the boundedness of the subdifferential; how-
ever, complete continuity of the operator T cannot be satisfied.

5.3 Iterative procedure for finding projection

Below we consider an iterative procedure for finding the v-normal element
from M � R

n under the assumption of nonexpansiveness of the mapping
T 2 F

M
. Example (5.19) and the example from Theorem 6.1 (see below) can

be illustrations of such a situation. The fixed point x˛ of the mapping T˛.x/ is
the unique solution of the equation

x D .1 � ˛/ T .x/C ˛v; (5.22)

so, the measure of vicinity of x to x˛ can be defined by the term

d˛.x/ D kx � T˛.x/k:

Since for T˛.x/, relation (5.15) holds, i.e.,

kT˛.x/� x˛k � .1 � ˛/ kx � x˛k;
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the process fT k
˛ .x0/gk for arbitrary initial x0 gives x˛ as the limit. Therefore,

for sufficiently large t , the following inequality is obtained,

d˛.x
t
0/ � "; where xt

0 D T t
˛.x0/; (5.23)

where " is an arbitrary small positive number.
Take ˛ 2 .0; 1/, ı > 0, and " > 0 satisfying the relation

" = ˛ � ı: (5.24)

Lemma 5.10. Let ˛, ", and ı satisfy condition (5.24) and d˛.x/ � ". Then

kx � x˛k � ı;

where x˛ is a unique solution of (5.22).

Proof. Write (5.15) in the form

kT˛.x/� T˛.x˛/k � .1 � ˛/ kx � x˛k:

From this we obtain the following estimate:

kx � x˛k D k.x � T˛.x//C .T˛.x/� x˛/k
� d˛.x/C kT˛.x/� T˛.x˛/k
� "C .1 � ˛/ kx � x˛k;

i.e.,
kx � x˛k � " = ˛ � ı;

which was to be proved.

The computational process following from the above reasonings can be de-
scribed in the following form:

1) consider sequences f˛k > 0g ! 0, fık > 0g ! 0 and f"k > 0g ! 0,
such that for each k relation (5.24) holds, i.e.,

"k =˛k � ık ; k D 1; 2; : : : I (5.24)k

2) take an initial approximation x0;

3) if xk�1 has been already computed, then find Nt such that

d˛k
.x

Nt
k/ � "k ; where x Nt

k D T
Nt

˛k
.xk/

(that is possible by virtue of (5.23));



Section 6 Fejér processes for inconsistent linear and convex inequality systems 139

4) take xk D x Nt
k
.

The following theorem is valid.

Theorem 5.11. The sequence generated according to rules 1–4 converges to

the projection Nv of v onto M .

Proof. This follows from the fact that x˛k
! Nv as ˛k ! 0 (Theorem 5.6) and

from the relations

kxk � x˛k
k � ık ; k D 0; 1; 2; : : :

(Lemma 5.10).

Remark 5.12. The choices ˛k D ık D k�1, "k D k�2 provide an example
that satisfies (5.24)k . Another example is ˛k ! 0, ık D ˛k , "k D ˛2

k
, or

˛k ! 0, ık ! 0, "k � ˛k ık.

Remark 5.13. The computational process described above is a modified ver-
sion of the method of correcting multipliers (see Subsection 4.2, Chapter I).
The difference is in the fact that here it is not necessary to put any a priori

conditions on the admissible sequence (k D 1 � ˛k), and the convergence is
achieved on the account of the appropriate choice of the number of iterations
that agrees with the value of correction and the parameter ˛.

6 Fejér processes for inconsistent linear and convex

inequality systems

Firstly, we shall only consider the cases of geometrical formulation of the prob-
lem for finding the solutions (quasi-solutions) of the system of inclusions

x 2 Mj ; j D 1; : : : ;m; (6.1)

which, not obligatory, may be consistent. Moreover, we shall be rather inter-
ested in the situation when M D

T
j Mj D ¿. Below, fMj gm

1 are nonempty,
convex, and closed subsets of R

n.
Introduce the notations: Pj .x/ is the projection of x ontoMj , that is, Pj .x/ D

arg minz2Mj
kx � zk. It is well known that

kPj .x/ � Pj .z/k � kx � zk 8x; y 2 R
n; (6.2)

i.e., Pj .x/ is a projection operator.
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Construct the operator

T .x/ D
mX

j D1

˛jPj .x/; (6.3)

˛j > 0,
Pm

j D1 ˛j D 1. Now we transform this to

T .x/ D x � 1 = 2
mX

j D1

rd˛.x/; (6.4)

where d˛.x/ D
Pm

j D1 ˛j kx � Pj .x/k2. Denoting �j .x/ D kx � Pj .x/k,
recall the formulas

r�2
j .x/ D 1 = 2 .x � Pj .x//; r�j .x/ D x � Pj .x/

�j .x/
: (6.5)

Here, the second formula is considered for x … Mj .
Introduce the condition

fM D arg inf
x
d˛.x/ ¤ ¿: (6.6)

The following condition is, for example, sufficient for (6.6): If for some  2 R

the following equality holds,

M  D fx W d˛.x/ � g ¤ ¿;

then M  is bounded. The boundedness of one of the fMj gm
1 is a particular

case of the presented condition.

Theorem 6.1. Let condition (6.6) be satisfied, � 2 .0; 1/, and

T�.x/ D .1 � �/T .x/C �x; (6.7)

where T is given by (6.4). Then

1) T�.x/ is a nonexpansive operator (and therefore is continuous);

2) T� 2 FeM .

Therefore, for an arbitrary initial x0 2 R
n, the sequence xk generated by the

relation

xkC1 D T�.x
k/ (6.8)

converges to Qx 2 fM , where fM is given by (6.6).
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Proof. Property 1 for (6.3) follows from (6.2). Consider property 2. The func-
tion d˛.x/ is convex and differentiable, and the following relation holds for
this function:

fM D fx W rd˛.x/ D 0g:

This relation represents the fact that the point Nx is a minimizer for the function
d˛.x/ if and only if rd˛. Nx/ D 0 holds, i.e., fM is the set of fixed points of the
operator T .x/. Since this operator is nonexpansive, we have T� 2 FeM .

Remark 6.2. The operator (6.7) can be written in the modified form

T� D x � .� = 2/rd˛.x/: (6.9)

Remark 6.3. If ˛j D 1 =m, 8 j D 1; : : : ;m, then the operator (6.9) can be
written in the form

T 0
� .x/ D x � .� = 2m/rd.x/;

where d.x/ D
Pm

j D1 �
2
j .x/.

Remark 6.4. If for system (6.1) we have
T

j Mj ¤ ¿, then
T

j Mj D fM ,

and in addition the sequence xk generated inductively by relation (6.8) will
converge to an element of the intersection

T
j Mj .

Consider the case of operator (6.3) when ˛j are functions of x, namely: let
˛j .x/ be nonnegative convex functions, and then ˛j .x/ > 0 for x … Mj ;
and

Pm
j D1 ˛j .x/ D 1 for x …

T
j Mj . Therefore, if

T
j Mj D ¿, thenPm

j D1 ˛j .x/ D 1 for all x 2 R
n. For example, one may take

˛j .x/ D �j .x/Pm
sD1 �s.x/

: (6.10)

This is the case we shall consider. Thus, let

T .x/ D
mX

j D1

˛j .x/Pj .x/; (6.11)

where ˛j .x/ is given according to (6.10). We shall suppose (to avoid special
remarks) that

T
j Mj D ¿. Note that ˛j .x/may also be zero: ˛j .x/ D 0 H)

x 2 Mj . Take ı.x/ D
Pm

j D1 �j .x/, i.e., ı.x/ is the denominator in (6.10), and



142 Chapter IV Some topics of Fejér mappings and processes

d.x/ D
Pm

j D1 �
3
j .x/. We transform relation (6.11) by taking into account

formulas (6.5):

T .x/ D
mX

j D1

˛j .x/Pj .x/

D x �
mX

j D1

˛j .x/.x � Pj .x//

D x � ı�1.x/

mX

j D1

�2
j .x/

x � Pj .x/

kx � Pj .x/k

D x � ı�1.x/

mX

j D1

�2
j .x/r�j .x/

D x � ı�1

3
r

mX

j D1

�3
j .x/ D x � ı�1.x/

3
rd.x/:

Just as in case (6.7) construct

T�.x/ D .1 � �/
�
x � ı�1.x/

3
rd.x/

�
C �x (6.12)

(D x � 1��
3 � ı�1.x/rd.x/), � 2 .0; 1/.

For the case of the choice of ˛j .x/ according to (6.10) and the choice of
T .x/ according to (6.11) (or in the modified form obtained from (6.12)), a
complete analogue of Theorem 6.1 is valid in the following formulation.

Theorem 6.5. Let d.x/ D
Pm

j D1 �
3
j .x/, ı.x/ D

Pm
j D1 �j .x/, and fM D

arg infx d.x/ ¤ ¿, � 2 .0; 1/. Then the mapping

T�.x/ D x � 1 � �
3

ı�1.x/rd.x/

(i.e., (6.12)) is nonexpansive (therefore, continuous), and moreover T� 2 FeM .

From this, convergence of the process generated by the relation

xkC1 D T�.x
k/

to a point from fM follows.
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Remark 6.6. If in the case of the choice of ˛j .x/ according to (6.10), the set
M D

T
j Mj is nonempty, then M D fM ; if moreover x 2 M , i.e., ı.x/ D 0,

then T�.x/ D x follows by definition.

Remark 6.7. Indeed, there are many ways for the choice of f˛j .x/gm
1 with the

conditions discussed above; only in the example of (6.10), we have illustrated
the techniques for constructing the mappings of type (6.11) with obtaining the
theorems similar to the ones formulated above.
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Notations

R
n real Euclidean space

H real Hilbert space

X real Banach space

.�; �/ inner product in R
n or H

k � k Euclidean norm

I identity operator or identity matrix

A> matrix transposed to A

A� operator conjugated to A

D.T / domain of definition of operator T

R.T / domain of values of operator T

kAk norm of operator (matrix) A

�.A/ spectrum of operator A

2X set of all subsets of set X

Fix.T / set of fixed points of operator T

NSr .�/ closed ball with radius r and center at point �

Œx0; x1� segment: Œx0; x1� D
fx W x� D �x0 C .1 � �/x1; 0 � � � 1g

conv.S/ convex hull of set S

intQ or Q0 interior of set Q

dom f effective domain of functional f :
dom f W fx 2 H W f .x/ < 1g

f C.x/ positive part of functional f .x/:
f C.x/ D maxff .x/; 0g

@f .x/ subdifferential of convex functional

rf .x/ gradient of functional
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Linfx1; x2; : : : ; xkg linear hull cretated by elements fx1; x2; : : : ; xkg
PQ.x/ metric projection of x onto set Q

.PQ/k metric projection onto set Q in space with
variable norm

P �
Q.x/ metric projection onto set Q with relaxation

coefficient �

�M .x/ or jx �M j distance from point x to set M

S
f
Q prox-mapping: Sf

Q W v !
arg minff .x/C 1

2 kx � vk2 W x 2 Qg
arg minx2Q f .x/ set of point of global minimum f .x/ on set Q

arg minx2Q f .x/ point of global minimum f .x/ on set Q

arg (6.2) optimal set of problem (6.2)

opt (6.2) optimal value of problem (6.2)

L problem of linear programming (LP) (Section 4,
Chapter IV)

L� problem dual to problem LP (Section 4,
Chapter IV)

0 zero or zero vector (element)

K
M

class of weakly M -Fejér (M -quasi-nonexpansive)
mappings (Section 1, Chapter I)

F
M

class of M -Fejér (strictly M -nonexpansive)
mappings (Section 1, Chapter I)

P
�

M
class of M -pseudo-contractive (or strongly
M -Fejér) mappings (Section 1, Chapter I)

K class of nonexpansive (nonexpanding) mappings
(Section 1, Chapter I)

P
� class of pseudo-contractive mappings (Section 1,

Chapter I)

“!” sign of strong convergence of sequence

“+” sign of weak convergence of sequence

“�” sign of identity



Index

Symbols

˛-processes, 50
"-expansion of set, 91

A

A priori information, 66

B

Boundedly compact subset, 37

C

Chebyshev deviation of system, 104
Coefficient of relaxation, 21
Construction basic, 79

of cyclic projection, 79
of extremal projection, 79
of weighted projection, 79

Cycle of immobility for operator,
93

D

Defect of system, 104
Dimension of the product, 52
Domain effective, 86

E

Equation
Fredholm of the first kind, 71
of Fredholm–Stieltjes, 72

F

Functional
of distance, 21
proper, 86

H

Hoffmann lemma, 95

I

Implicit iterative scheme, 15
Iterated version of the Tikhonov reg-

ularization, 71

L

Lagrange function, 98
Lagrange multipliers, 98

M

Mapping
M -Fejér (strictlyM -quasi-non-

expansive), 3
M -pseudo-contractive

(strongly M -Fejér), 4
weakly Fejér, 3
demi-compact, 10
multi-valued
M -Fejér, 37
closed, 38

nonexpansive (nonexpanding),
4

pseudo-contractive, 4
Method

of gradients, 43
Newton–Kantorovich, 47
of a simple iteration, 12
of correcting multipliers, 25
of Levenberg–Marquardt, 60
of successive approximations,

9
of the minimal errors, 51
of the minimal residuals, 51
of the penalty functions, 100
of the steepest descent, 51
of Tikhonov, 74
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Metric
projection, 21

with relaxation, 21
Mirror relaxation, 82
Moments of operator, 52

N

Nonsmooth optimization, 97

O

Operator
(sequentially) weakly closed, 18
compact, 13
completely continuous, 36
monotone, 7
of metric projection, 21
regular, 115

P

Pair M -separating, 39
Parallelization of Fejér processes,

109
Parallelization scheme

of linear programming problem,
112

Point
of the Chebyshev deviation, 104
saddle, 98

Posynom, 34
Problem

essentially ill-posed, 65
improper, 126

of the first kind, 126
of the second kind, 126
of the third kind, 126

Process
basic, 105
stable, 107

Prox-mapping, 20

Q

Quasi-solution of system, 126

R

Randomization of Fejér processes,
114

Regularized analogue of the Gauss–
Newton method, 60

Regularizing algorithm, 30
Rule for stopping iterations, 29

asymptotic, 63
by residual, 65

S

Scheme of parallelization, 109
Sequence

M -Fejér, 31
weakly M -Fejér, 35
admissible, 27

Slater condition, 95
weakened, 99

Solution
v-normal, 130
v0-normal, 13
normal, 13, 130

Space
strongly convex, 35
uniformly convex, 11

Square approximation of inconsis-
tent system, 121

Strategy mixed, 114
Subgradient of functional, 23
Symmetric system of linear inequal-

ities, 124
System

of inclusions, 87
of inclusions

consistent, 89
inconsistent, 91

of sets correct, 91
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T

Theorem
about the exact penalty func-

tions, 100
of Kuhn–Tucker, 99
of Schauder, 132
on Browder fixed point, 8
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