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Preface

Hyperbolic conservation laws describe a number of interesting physical problems
in diverse areas such as fluid dynamics, solid mechanics, and astrophysics. Our
emphasis in this book is on nonlinearities in these problems, especially those that
lead to the development of propagating discontinuities. These propagating disconti-
nuities can appear as the familiar shock waves in gases (the “boom” from explosions
or super-sonic airplanes), but share many mathematical properties with other waves
that do not appear to be so “shocking” (such as steep changes in oil saturations in
petroleum reservoirs). These nonlinearities require special treatment, usually by
methods that are themselves nonlinear. Of course, the numerical methods in this
book can be used to solve linear hyperbolic conservation laws, but our methods will
not be as fast or accurate as possible for these problems. If you are only interested
in linear hyperbolic conservation laws, you should read about spectral methods and
multipole expansions.

This book grew out of a one-semester course I have taught at Duke University
over the past decade. Quite frankly, it has taken me at least 10 years to develop the
material into a form that I like. I may tinker with the material more in the future,
because I expect that I will never be fully satisfied.

I have designed this book to describe both numerical methods and their applica-
tions. As a result, I have included substantial discussion about the analytical solution
of hyperbolic conservation laws, as well as discussion about numerical methods. In
this course, I have tried to cover the applications in such a way that the engineering
students can see the mathematical structure that is common to all of these problem
areas. With this information, I hope that they will be able to adapt new numerical
methods developed for other problem areas to their own applications. I try to get the
mathematics students to adopt one of the physical models for their computations
during the semester, so that the numerical experiments can help them to develop
physical intuition.

xvii
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I also tried to discuss a variety of numerical methods in this text, so that students
could see a number of competing ideas. This book does not try to favor any one
particular numerical scheme, and it does not serve as a user manual to a software
package. It does have software available, to allow the reader to experiment with
the various ideas. But the software is not designed for easy application to new
problems. Instead, I hope that the readers will learn enough from this book to make
intelligent decisions on which scheme is best for their problems, as well as how to
implement that scheme efficiently.

There are a number of very good books on related topics. LeVeque’s Finite
Volume Methods for Hyperbolic Problems [97] is one that covers the mathematics
well, describes several important numerical methods, but emphasizes the wave
propagation scheme over all. Other books are specialized for particular problem
areas, such as Hirsch’s Numerical Computation of Internal and External Flows
[73], Peyret and Taylor’s Computational Methods for Fluid Flow [131], Roache’s
Computational Fluid Dynamics [137] and Toro’s Riemann Solvers and Numerical
Methods for Fluid Dynamics [159]. These books contain very interesting techniques
that are particular for fluid dynamics, and should not be ignored.

Because this text develops analytical solutions to several problems, it is possible
to measure the errors in the numerical methods on interesting test problem. This
relates to a point I try to emphasize in teaching the course, that it is essential in
numerical computation to perform mesh refinement studies in order to make sure
that the method is performing properly. Another topic in this text is that numerical
methods can be compared for accuracy (error for a given mesh size) and efficiency
(error for a given amount of computational time). Sometimes people have an inate
bias toward higher-order methods, but this may not be the most cost-effective
approach for many problem. Efficiency is tricky to measure, because subtle pro-
gramming issues can drive up computational time. I do not claim to have produced
the most efficient version of any of the schemes in this text, so the efficiency com-
parisons should be taken “with a grain of salt.”

The numerical comparisons produced some surprises for me. For example, I
was surprised that approximate Riemann problem solvers often produce better
numerical results in Godunov methods than “exact” Riemann solvers. Another
surprise is that there is no clear best scheme or worst scheme in this text (although
I have omitted discussions of schemes that have fallen out of favor in the literature
for good reasons). There are some schemes that generally work better than most
and some that often are less efficient than most, but all schemes have their niche
in which they perform well. The journal literature, of course, is full of examples
of the latter behavior, since the authors get to choose computational examples that
benefit their method.
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During the past ten years, I have watched numerical methods evolve, computers
gain amazing speed, and students struggle harder with programming. The evolution
of the methods lead me to develop the course material into a form that students
could access online. In that way, I could insert additional text for ready access by
the students. The speed of current desktop machines allows us to make some rea-
sonably interesting computations during the semester, seeing in a few minutes what
used to require overnight runs on supercomputers. During that time, however, the
new operating systems have separated the students ever farther from programming
details.

As I gained experience with online text generation, I started to ask if it would
be possible to develop an interactive text. First, I wanted students to be able to
view the example programs while they were reading the text online. Next, I wanted
students to be able to examine links to information available on the web. Then, I
decided that it would be really nice if students could perform “what if” experiments
within the text, by running numerical methods with different parameters and seeing
the results immediately. Because I continue to think that only “real” programming
languages (i.e., C, C++ and Fortran) should be used for the material such as this, I
rejected suggestions that I rewrite the programs in Matlab or Java. Eventually, our
department systems programmer, Andrew Schretter, found a way to make things
work for me, provided that I arrange for all parameter entry through graphical
user interfaces. Our senior systems programmer, Yunliang Yu, did a lot of the
development of the early form of the graphical user interface. One of my former
graduate students, Wenjun Ying, programmed carefully the many cases for the
marching cubes algorithm for visualizing level surfaces in three dimensions. I am
greatly indebted to Andrew, Wenjun and Yunliang for their help.

This text is being published in two forms: traditional paper copy and a PDF file on
a companion CD. The electronic form of the text contains links between equation or
theorem references and the original statements. Similar links lead to bibliography
citations or to occurrences of key words in the index. There are electronic links
in the online text to source code and executables on the CD. This allows students
to view computer implementations of the algorithms developed in the book, and
to perform “what if” experiments with program and model parameters. However,
since the text is the same for both versions of the book, this means that the paper
text contains instructions to click on electronic links.

The graphical user interface (GUI) makes it easy for students to change param-
eters (and, in fact, to see all of the input parameters). The GUI also complicates
the online programs. There is a danger that students may think that they have to
program GUI’s in order to solve these problems. That is not my intent. I have pro-
vided several example programs in the online version of chapter 2 to show students
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how they can write simple programs (that produce data sets for post processing)
or slightly more complex programs (that display numerical results during the com-
putation to look like movies), or very sophisticated programs (that use GUI’s for
input parameters). I would be happy if all students could program successfully in
the first style. After all, CLAWPACK is a very successful example of that simple
and direct style of programming.

It is common that students in this class are taking it in order to learn programming
in Fortran or C++, as much as they want to learn about the numerical methods. Both
of these languages have advantages and disadvantages. Fortran is very good with
arrays (subscripts can start at arbitrary values, which is useful for “ghost cells” in
many methods) and has a very large set of intrinsic functions (for example, max
and min with more than two arguments for slope limiters). Fortran is not very
good with memory allocation, or with pointers in general. I use C++ to perform all
memory allocation, and for all interactive graphics, including GUIs. When users
select numerical methods through a GUI, then I set values for function pointers and
pass those as arguments to Fortran routines. I do not recommend such practices
for novice programmers. On the other hand, students who want to expand their
programming skills can find several interesting techniques in the codes.

I do try to emphasize defensive programming when I teach courses that involve
scientific computing. By this term, I mean the use of programming practices that
make it easier to prevent or identify programming errors. It is often difficult to
catch the use of uninitialized variables, the access of memory out of bounds, or
memory leaks. The mixed-language programs all use the following defensive steps.
First, floating-point traps are enabled in unoptimized code. Second, floating-point
array values are initialized to IEEE infinity. Third, a memory debugger handles all
memory allocation by overloading operator new in C++. When the program
makes an allocation request, the memory debugger gets even more space from the
heap, and puts special bit patterns into the space before and after the user memory. As
a result, the programmer can ask the memory debugger to check individual pointers
or all pointers for writes out of bounds. This memory debugger is very fast, and does
not add significantly to the overal memory requirements. The memory debugger
also informs the programmer about memory leaks, providing information about
where the unfreed pointer was allocated.

Unfortunately, mixing Fortran and C++ allows the possibility of truly bizarre
programming errors. For example, declaring a Fortran subroutine to have a return
value in a C++ extern “C” block can lead to stack corruption. I don’t have a
good defensive programming technique for that error.

But this book is really about numerical methods, not programming. I became
interested in hyperbolic conservation laws well after graduate school, and I am
indebted to several people for helping me to develop that interest. John Bell and
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Gregory Shubin were particularly helpful when we worked together at Exxon
Production Research. At Lawrence Livermore National Laboratory, I learned much
about Godunov methods from both John Bell and Phil Colella, and about object
oriented programming from Bill Crutchfield and Mike Welcome. I want to thank
all of them for their kind assistance during our years together.

Finally, emotional support throughout a project of this sort is essential. I want
to thank my wife, Becky, for all her love and understanding throughout our years
together. I could not have written this book without her.





1

Introduction to Partial Differential Equations

Partial differential equations arise in a number of physical problems, such as fluid
flow, heat transfer, solid mechanics and biological processes. These equations often
fall into one of three types. Hyperbolic equations are most commonly associated
with advection, and parabolic equations are most commonly associated with dif-
fusion. Elliptic equations are most commonly associated with steady states of
either parabolic or hyperbolic problems.

Not all problems fall easily into one of these three types. Advection–diffusion
problems involve important aspects of both hyperbolic and parabolic problems.
Almost all advection problems involve a small amount of diffusion.

It is reasonably straightforward to determine the type of a general second-order
partial differential equation. Consider the equation

d∑
j=1

d∑
i=1

Ai j
∂2u

∂xi∂x j
+

d∑
i=1

bi
∂u

∂xi
+ cu = 0.

Without loss of generality, we can assume that A is symmetric, by averaging the
coefficients of the i, j and j, i derivative terms. By performing a linear coordinate
transformation

ξ = Fx

we hope to transformation the equation into a simpler form. We will find a way to
choose the transformation matrix F below.

Note that
∂ξi

∂x j
= Fi j

∂u

∂xi
=

d∑
j=1

∂u

∂ξ j

∂ξ j

∂xi
=

d∑
j=1

∂u

∂ξ j
F j i

∂2u

∂xi x j
=

d∑
�=1

d∑
k=1

∂ξk

∂xi

∂2u

∂ξk∂ξ�

∂ξ�

∂x j
=

d∑
�=1

d∑
k=1

Fki
∂2u

∂ξk∂ξ�

F�j

1
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After the coordinate transformation, the differential equation takes the form

0 =
d∑

j=1

d∑
i=1

Ai j

[
d∑

�=1

d∑
k=1

Fki
∂2u

∂ξk∂ξ�

F�j

]
+

d∑
i=1

bi

[
d∑

j=1

∂u

∂ξ j
F j i

]
+ cu

=
d∑

�=1

d∑
k=1

[
d∑

j=1

d∑
i=1

Fki Ai j F�j

]
∂2u

∂ξk∂ξ�

+
d∑

j=1

[
d∑

i=1

F j i bi

]
∂u

∂ξ j
+ cu.

We would like to choose the matrix F so that D = FAF� is diagonal. Recall
that we can diagonalize a symmetric matrix by means of an orthogonal change of
variables. In other words, we can choose F to be an orthogonal matrix.

If D has nonzero diagonal entries all of the same sign, the differential equation
is elliptic. The canonical example of an elliptic equation is the Laplace equation
∇x · ∇xu = 0. If D has nonzero diagonal entries with one entry of different sign from
the others, then the differential equation is hyperbolic. The canonical example of
a hyperbolic equation is the wave equation ∂2u

∂t2 − ∇x · ∇xu = 0. We will discuss
simple hyperbolic equations in Chapter 2, and general hyperbolic equations in
Chapter 4. If D has one zero diagonal entry, the equation may be parabolic. The
canonical example of a parabolic equation is the heat equation ∂u

∂t + ∇x · ∇xu = 0.

Example 1.0.1 Consider the differential equation

∂2u

∂x2
1

+ ∂2u

∂x2
2

− ∂2u

∂x3∂x4
= 0

which arises in the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation for
biomedical imaging. In this case, the coefficient matrix is

A =


1 0 0 0
0 1 0 0
0 0 0 −1/2
0 0 −1/2 0

 .

A coordinate transformation that diagonalizes A is given by

F =


1 0 0 0
0 1 0 0
0 0 1/

√
2 1/

√
2

0 0 −1/
√

2 1/
√

2


and the new coefficient matrix is

D =


1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 −1/2

 .

In this case, we see that the KZK equation is hyperbolic.
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This book will discuss analytical and numerical methods for solving hyperbolic
equations. Our emphasis will be on numerical methods and nonlinear problems, but
a knowledge of some analytical approaches will be very useful for computation.
Generally, our hyperbolic equations will arise from a physical law describing the
conservation of some quantity, such as mass, momentum or energy. These will
take a special form, which we will build into our numerical methods, so that our
computations conserve these physical quantities as well.

Here is an outline of the analytical approaches in this book, whether they are
applied to problems or numerical methods. In Chapter 2 we will study linear hyper-
bolic conservation laws in a single unknown. We will learn how the solution of such
problems depends on initial and boundary data, so that we can construct numerical
methods that respect this dependence. We will also develop some simple methods
for analyzing the behavior of the numerical methods. First, we will use calculus
to see how the approximations in the numerical method cause us to be solving a
differential equation that is slightly different from the problem that was posed. This
approach, called a modified equation analysis, gives us a qualititative feel for how
the method should perform in practice. Second, we will use Fourier analysis to
see how the methods propagate waves, and use this analysis to develop the very
important Lax equivalence theorem.

In Chapter 3 we will begin our study of nonlinear hyperbolic conservation laws.
We will learn about the development and propagation of discontinuities, and see
that an understanding of infinitesimal diffusive effects is essential to understand-
ing how nature selects certain solutions to these problems. We will also begin to
learn how to build numerical diffusion into our computational methods, so that
we can expect to compute the physically correct solutions as well. This numeri-
cal diffusion will arise in subtle ways, depending on how how numerical schemes
use upwinding and averaging techniques. Some approaches will concentrate on
building important analytical information about the wave propagation into the
method, while other schemes will assiduously avoid such analytical work. We
will apply these methods to problems in traffic flow and oil recovery/contaminant
cleanup.

Chapter 4 will discuss hyperbolic systems of conservation laws. This is where
the discussion becomes most practical, because the physical applications are so
interesting. Once we understand the basic principles underlying the analytical
solution of hyperbolic systems, we will perform case studies of shallow water,
compressible gas dynamics, magnetohydrodynamics, solid mechanics and flow
in porous media. The analytical solution of the equations of motion for these
problems for special initial data (Riemann problems) can be very useful in build-
ing some of our numerical methods. Unfortunately, this analytical information is
often expensive to compute and difficult to program, when it is available. As a
result, we will find methods to approximate the solution of Riemann problems.
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Amazingly enough, several of these approximate Riemann solvers produce better
numerical results than the analytical methods, and at far less cost with far simpler
programs.

In Chapter 5 we will try to analyze the numerical methods, and use the analysis
to design better methods. We will run into an obstacle due to Godunov: linear
schemes that preserve monotonicity are at best first-order accurate. In order to
achieve higher-order accuracy, we will design nonlinear schemes, even for use
on linear problems. These schemes will be very useful for solving problems with
propagating discontinuities. They will not be the most effective schemes for solving
linear problems with smooth solutions. We will extend these higher-order numerical
schemes to solve hyperbolic systems in Chapter 6, and to solve problems in multiple
dimensions in Chapter 7.

But this book is not just about analysis of problems and methods. In each chapter,
there are discussions of numerical results and comparisons of numerical methods.
It is important that the student learn how to judge when a numerical method is
working properly, sometimes by understanding its numerical stability, and often
by performing mesh refinement studies to verify the correct order of convergence.
Numerical methods can differ greatly in their achieved accuracy even when they
have the same nominal order of accuracy. Methods can also differ greatly in their
efficiency, meaning how much it costs us to achieve a given accuracy. Unfortunately,
there is no best method in this book, that applies to all problems and is always most
(or nearly most) efficient.

In order to assist the student in gaining knowledge about the design and perfor-
mance of numerical methods, we have provided an interactive form of this book.
Fortunately, you are currently reading that version. In this way, students can view
computer programs to learn about code organization. Students can also run the
programs from inside the book, and adjust parameters that control the numerical
performance. Through the use of interactive graphics, the student can see the evo-
lution of the numerical solution; this really helps in understanding instability and
the spread of discontinuities due to numerical diffusion.

In order to execute programs from inside this book, it was necessary to use
graphical user interfaces. These make the selection of program parameters easy
once the code is written, but makes the example code somewhat larger than it needs
to be just to solve the problem. In order to help the student here, we have provided
a series of programs in Section 2.2.3 of Chapter 2. These programs start with
short Fortran programs, proceed through more modular Fortran to mixed language
programs, and end up with the more complicated program containing interactive
graphics and graphical user interfaces. Students can write their own programs in
any of these styles, as is appropriate for their experience or the expectations of their
instructor.
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If the student can learn about mixed language programming, then the discus-
sion on adaptive mesh refinement in Chapter 8 should be interesting. This chapter
describes the basic principles behind Marsha Berger’s structured adaptive mesh
refinement, and describes the basic ideas in the design of the author’s adaptive
mesh refinement program. The hope is that after study of the applications of adap-
tive mesh refinement to oil recovery, linear elasticity and gas dynamics, the student
can apply adaptive mesh refinement to other research problems.



2

Scalar Hyperbolic Conservation Laws

In numerical analysis or scientific computing courses, it is common to examine
ordinary differential equations and some basic numerical methods to solve these
problems. In this chapter we will develop several basic numerical methods to solve
initial value problems arising from a particular class of partial differential equations,
namely scalar hyperbolic conservation laws. In some cases, we will be able to
transform the solution of partial differential equations into ordinary differential
equations. However, in many practical problems there are physical effects, such as
diffusion, that prevent such analytical reductions. These ideas will be developed in
Section 2.1.

The design of numerical methods for scalar conservation laws involves princi-
ples that are different from those commonly considered in the solution of ordinary
differential equations. Some experimentation with obvious numerical discretiza-
tions in Section 2.2 will produce surprises, and illustrate the utility of interactive
graphical displays in programming. Analysis of these basic numerical methods
using Taylor series and Fourier transforms in Sections 2.3 and 2.5 will yield some
basic numerical principles, and the limitations of the simple numerical methods.

2.1 Linear Advection

Linear advection describes the motion of some conserved quantity along a constant
velocity field. This is the simplest conservation law, but it illustrates many of the
important features we will see in more complicated conservation laws.

2.1.1 Conservation Law on an Unbounded Domain

The unbounded linear advection problem takes the form

∂u

∂t
+ ∂cu

∂x
= 0 for all x ∈ R for all t > 0, (2.1a)

u(x, 0) = u0(x) for all x ∈ R. (2.1b)

6
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x

t

x − ct = constant

u

x

t = 0  t > 0

(a) Characteristic line (b) Evolution

Fig. 2.1 Characteristics in linear advection

In this initial-value problem, we assume that the velocity c is constant. Then the
differential equation (2.1a) can be rewritten in the form

0 = [
1, c

] [
∂u
∂t
∂u
∂x

]
for all x ∈ R for all t > 0.

This equation says that the gradient of u is orthogonal to a constant vector. It follows
that u is constant on lines parallel to that constant vector:

for all (x0, t0) for all τ u(x0 + cτ, t0 + τ ) = constant.

Choosing τ = t − t0 gives us

u(x0 + c(t − t0), t) = u(x0 − ct0, 0) ≡ u0(x0 − ct0).

Given x , choose x0 = x − ct + ct0 to get

u(x, t) = u0(x − ct).

This is a formula for the solution of problem (2.1). It is clear from this formula that
the characteristic lines

x − ct = constant

are especially important. Along a characteristic line, the solution of the conservation
law at time t > 0 is equal to the initial value at time t = 0. These ideas are illustrated
in Figure 2.1.

There is an easy way to verify this solution. Suppose that we define the new
variables

ξ = x − ct, τ = t (2.2)
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and the function

ũ(ξ, τ ) ≡ u(x, t). (2.3)

Then the chain rule implies that

∂u

∂t
= ∂ ũ

∂τ
− ∂ ũ

∂ξ
c and

∂u

∂x
= ∂ ũ

∂ξ
.

It follows that ũ solves the initial value problem

0 = ∂u

∂t
+ c

∂u

∂x
= ∂ ũ

∂τ
,

ũ(ξ, 0) = u0(ξ ).

The differential equation for ũ shows that ũ is a function of ξ alone. In summary,
after we change to characteristic coordinates the original partial differential equation
becomes a system of ordinary differential equations, parameterized by ξ . Further,
these ordinary differential equations have the trivial solution

ũ(ξ ) = u0(ξ ).

2.1.2 Integral Form of the Conservation Law

In general, a conservation law in one dimension takes the form

∂u

∂t
+ ∂ f

∂x
= 0. (2.4)

Here u is the conserved quantity, and f is the flux. For example, the linear advection
flux is f = cu.

There is a physical reason for calling Equation (2.4) a conservation law. By
integrating over the space-time rectangle (a, b) × (0, t) and applying the divergence
theorem, we obtain∫ b

a
u(x, t) dx =

∫ b

a
u(x, 0) dx +

∫ t

0
f (a, τ ) dτ −

∫ t

0
f (b, τ ) dτ. (2.5)

We can interpret the conservation law (2.5) as follows. The quantity u represents a
density, i.e., the conserved quantity per length. Thus the spatial integrals represent
the total conserved quantity in the interval (a, b) at some advanced time t and the
initial time 0. The temporal integrals represent the total amount of the conserved
quantity flowing through ends of the interval in space during the given interval in
time. Thus equation (2.5) says that the total conserved quantity in the interval (a, b)
at time t is equal to the total conserved quantity in the same interval initially, plus
what flows into the interval on the left and minus what flows out on the right.



2.1 Linear Advection 9

2.1.3 Advection–Diffusion Equation

Many physically realistic problems actually involve some amount of diffusion. For
example, the miscible displacement problem described in Section 3.2.2 is a lin-
ear advection problem involving a physical diffusion. In general, one-dimensional
linear advection with constant diffusion takes the form

∂u

∂t
+ ∂cu

∂x
= ∂

∂x

(
ε
∂u

∂x

)
for all x ∈ R for all t > 0, (2.6a)

u(x, 0) = u0(x) for all x ∈ R. (2.6b)

Here, we assume that the diffusion coefficient satisfies ε > 0, so that the conser-
vation law is well-posed. The need for this restriction on ε will become obvious in
Equation (2.8) below.

Let us transform again to characteristic coordinate ξ = x − ct and time τ = t
as in Equation (2.2) and define the solution ũ in terms of these coordinates as in
(2.3). Then substitution into the advection–diffusion equation (2.6) leads to

∂ ũ

∂τ
= ε

∂2ũ

∂ξ 2
for all ξ ∈ R for all τ > 0,

ũ(ξ, 0) = u0(ξ ) for all ξ ∈ R. (2.7)

This is the one-dimensional heat equation on an unbounded interval. If the initial
data u0 grow sufficiently slowly for large values of its argument, then it is well
known that the analytical solution of this equation is

ũ(ξ, τ ) =
∫ ∞

−∞

1√
4πετ

e−(ξ−y)2/(4ετ )u0(y)dy ≡
∫ ∞

−∞
G(ξ − y, τ )u0(y)dy. (2.8)

Here

G(ξ, τ ) = 1√
4πετ

e−ξ 2/(4ετ )

is called the Green’s function. Because the diffusion constant ε is positive, the
Green’s function is real-valued. Here ũ is smooth for t > 0 because derivatives of
ũ involve derivatives of the smooth Green’s function G, and not derivatives of the
initial data u0.

It follows that the solution of the linear advection–diffusion problem (2.6) is

u(x, t) =
∫ ∞

−∞

1√
4πεt

e−(x−ct−y)2/(4εt)u0(y)dy.

The lines x − ct = constant are still important, in that they carry the bulk of the
initial information for small diffusion, but they are no longer lines along which the
solution u is constant.
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Note that the Green’s function G approaches a delta-function as the diffusion
coefficient ε → 0. On the other hand, after sufficiently large time even a small
diffusion will spread the effect of disturbances in the initial data over significant
intervals in space. If the initial data is zero outside some bounded interval, then at
very large times the solution ũ will decay to zero. These observations are important,
because in many practical situations we are interested in the solution of conservation
laws obtained in the limit as the diffusion tends to zero. The study of the interplay
between small diffusion and large times is an appropriate matter for asymptotics,
and would take the current discussion too far astray.

It is sometimes useful to note that the linear advection–diffusion equation (2.6a)
is a conservation law. In fact, we can rewrite it in the form

∂u

∂t
+ ∂

∂x

(
cu − ε

∂u

∂x

)
= 0 for all x ∈ R for all t > 0.

Here the flux f (x, t) ≡ cu − ε ∂u
∂x is the difference of the advective flux cu and the

diffusive flux ε ∂u
∂x . We can develop an integral form of this conservation law by

using (2.5).

2.1.4 Advection Equation on a Half-Line

Here is another important modification to the problem (2.1). For both practical and
computational purposes, we might be interested in solving a semi-infinite problem
with boundary data:

∂u

∂t
+ ∂(cu)

∂x
= 0 for all x > 0 for all t > 0, (2.9a)

u(0, t) = v(t) for all t > 0, (2.9b)

u(x, 0) = u0(x) for all x > 0. (2.9c)

If we transform to characteristic coordinates as in Equation (2.2), we see that
the solution of (2.9) depends on the data v(t) at the left-hand boundary only for
x − ct < 0. If c < 0, this inequality cannot be satisfied for any (x, t) in the problem
domain; in other words, no points in the problem domain will depend on the data at
the left-hand boundary. Thus in this case we assume that the velocity c is positive:
c > 0. Since the solution of (2.9) is constant along characteristics, we can easily
solve to get

u(x, t) =
{

u0(x − ct), x − ct > 0
v(t − x/c), x − ct < 0.
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x

t
u(x,t) = v(t − x/c) u(x,t) = u0 (x − ct)

Fig. 2.2 Characteristics in linear advection on a quarter-plane

This solution is illustrated in Figure 2.2. In other words, the solution in part of
the domain, namely points that can be reached by characteristics from the positive
x-axis, is given by the initial data; the solution in the remainder of the domain is
given by tracing back along characteristics to the boundary data on the positive
t-axis.

2.1.5 Advection Equation on a Finite Interval

In practice, we will not want to compute on an unbounded domain. Instead, we will
typically work with a problem on a bounded domain

∂u

∂t
+ ∂(cu)

∂x
= 0 for all a < x < b for all t > 0, (2.10a)

u(a, t) = v(t) for all t > 0, (2.10b)

u(x, 0) = u0(x) for all a < x < b. (2.10c)

Here we have assumed for simplicity that the velocity c satisfies c > 0. Note that
we do not specify a value for u at the right-hand boundary, since the characteristics
show us that these values are determined by the initial data and the data on the
left-hand boundary.

It is interesting to note that if we added diffusion to this problem, as in
Equation (2.6a), then we would have to specify u at the right-hand side of the
domain. In this case, the analytical solution of the advection–diffusion problem on
a finite interval would typically involve a boundary layer at the right-hand side,
unless the boundary data there is chosen very carefully.
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Exercises for 2.1

2.1.1 Consider the variable coefficient conservation law

∂u

∂t
+ ∂(uc)

∂x
= 0, for all x ∈ R for all t > 0

u(x, 0) = u0(x), for all x ∈ R

where c is a function of x . Assume that c(x) 	= 0 for all x .
(a) Let f (x, t) = u(x, t)c(x) and show that f satisfies the partial differential equation

∂ f

∂t
+ c

∂ f

∂x
= 0.

(b) If b(x) satisfies db/dx = 1/c(x), let ξ (x, t) = t − b(x) and show that w(ξ (x, t), t) ≡
f (x, t) satisfies the partial differential equation

∂w

∂t
= 0.

(c) If b(x) has an inverse function, show that

u(x, t) = c(b−1(b(x) − t))

c(x)
u0(b−1(b(x) − t))

satisfies the original differential equation.
(d) Find the solution of the variable-coefficient linear advection problem if c(x) = a + bx with

constant a and constant b 	= 0.

2.2 Linear Finite Difference Methods

2.2.1 Basics of Discretization

In order to approximate the solution to the linear advection problem (2.10), we will
discretize space by a finite increasing sequence of grid points

a = x−1/2 < x1/2 < · · · < xI− 3
2

< xI−1/2 = b

and time points

0 = t0 < t1 < . . . < t N−1 < t N = T .

We will define the computational grid cells to be the intervals (xi−1/2, xi+1/2), with
cell widths


xi ≡ xi+1/2 − xi−1/2 for all 0 ≤ i < I.

We will also define the timesteps to be


tn+1/2 ≡ tn+1 − tn for all 0 ≤ n < N .

See Figure 2.3 for an illustration of spatial and temporal discretization.
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a b

0

T

x xi + 1/2i − 1/2
x
−1/2

x I − 1/2

tn

tn+1

t N

Fig. 2.3 Spatial and temporal discretization

As in section 2.1.2, we can integrate the differential equation (2.10a) over the
space-time rectangle (xi−1/2, xi+1/2) × (tn, tn+1) to find that for all 0 ≤ i < I and
all 0 ≤ n < N∫ xi+1/2

xi−1/2

u(x, tn+1) dx =
∫ xi+1/2

xi−1/2

u(x, tn) dx

+
∫ tn+1

tn

cu(xi−1/2, t) dt −
∫ tn+1

tn

cu(xi+1/2, t) dt. (2.11)

This equation involves no approximations. For the more general nonlinear scalar
conservation law (2.4) we obtain the similar equation∫ xi+1/2

xi−1/2

u(x, tn+1) dx =
∫ xi+1/2

xi−1/2

u(x, tn) dx

+
∫ tn+1

tn

f (u(xi−1/2, t)) dt −
∫ tn+1

tn

f (u(xi+1/2, t)) dt. (2.12)

Equation (2.12) suggests that we construct numerical approximations to cell
averages of the conserved quantity in the conservation law. Our numerical scheme
will involve discrete quantities un

i that approximate the cell averages in the following
sense:

un
i ≈ 1


xi

∫ xi+1/2

xi−1/2

u(x, tn) dx for all 0 ≤ i < I. (2.13)
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Similarly, we will work with discrete quantities f n+1/2
i+1/2 that approximate time aver-

ages of the flux in the conservation law:

f n+1/2
i+1/2 ≈ 1


tn+1/2

∫ tn+1

tn

f (u(xi+1/2, t)) dt for all 0 ≤ i < I.

As suggested by Equation (2.12) we will require our discretization to satisfy

un+1
i = un

i − 
tn+1/2


xi

[
f n+1/2
i+1/2 − f n+1/2

i−1/2

]
for all 0 ≤ i < I. (2.14)

Once we relate the fluxes f n+1/2
i+1/2 to the solution values un

i and un+1
i , this will have

the form of a recurrence relation.
If we sum equation (2.14) over all spatial intervals, we obtain a telescoping sum

that simplifies to

I−1∑
i=0

un+1
i 
xi =

I−1∑
i=0

un
i 
xi − 
tn+1/2

[
f n+1/2

I−1/2 − f n+1/2
−1/2

]
for all 0 ≤ n < N .

If there is no flux at the boundaries (that is, if f−1/2 = 0 = f n+1/2
I−1/2 ), then this

equation shows that the total discrete amount of u is conserved. As a result, schemes
of the form (2.14) are called conservative schemes. Conservative finite difference
schemes for solving the conservation law are distinguished solely by their choices
for the numerical fluxes f n+1/2

i+1/2 , for 0 ≤ i < I and 0 ≤ n < N .
Initial values for our numerical method are chosen to be the cell averages of the

initial data:

u0
i = 1


xi

∫ xi+1/2

xi−1/2

u0(x) dx for all 0 ≤ i < I.

At the left-hand boundary x−1/2 = a we define the numerical fluxes by time averages
of the boundary data:

f n+1/2
−1/2 = 1


tn+1/2

∫ tn+1

tn

f (v(t)) dt for all 0 ≤ n < N . (2.15)

2.2.2 Explicit Upwind Differences

The simplest numerical approximation to the linear advection equation is the
explicit upwind difference method

un+1
i = un

i − [
un

i − un
i−1

] c
tn+1/2


xi
, 0 < i < I (2.16a)

un+1
0 = un

0 −
[
cun

0 − f n+1/2
−1/2

] 
tn+1/2


xi
. (2.16b)
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t

t

xx x xj − 3/2 j − 1/2 j + 1/2 j + 3/2

xx x xj − 3/2 j − 1/2 j + 1/2 j + 3/2

n

n + 1

t

t

xx x xj − 3/2 j − 1/2 j + 1/2 j + 3/2

xx x xj − 3/2 j − 1/2 j + 1/2 j + 3/2

n

n + 1

(a) CFL < 1 (b) CFL > 1

Fig. 2.4 Explicit upwind stencil

This is a conservative difference scheme in which the numerical fluxes are computed
by f n+1/2

i+1/2 = cun
i for all 0 ≤ i < I , and by Equation (2.15) at the inflow boundary

i = 0.
For explicit upwind differences away from the left boundary, the new solu-

tion un+1
i depends solely on the previous data un

i and un
i−1 (the so-called sten-

cil of the scheme). Note that these are averages over the intervals (xi− 3
2
, xi−1/2)

and (xi− 1
2
, xi+1/2), respectively. Thus the domain of dependence of un+1

i is the
interval (xi− 3

2
, xi+1/2). Recall that the physical domain of dependence is the interval

(xi−1/2 − c
tn+1/2, xi+1/2 − c
tn+1/2), which corresponds to tracing the endpoints
of the interval (xi−1/2, xi+1/2) backward along characteristics from tn+1 to tn . It
follows that the numerical domain of dependence contains the physical domain
of dependence if and only if the timestep satisfies the Courant–Friedrichs–Levy
condition (also known as the CFL condition)

c
tn+1/2 ≤ min
i

{
xi }. (2.17)

These ideas are illustrated in Figure 2.4.

The explicit upwind difference scheme (2.16) and the CFL condition (2.17)
suggest that we define the dimensionless Courant–Friedrichs–Levy number, usually
abbreviated to CFL number, namely

γ
n+1/2
i ≡ c
tn+1/2


xi
. (2.18)

If the timestep is chosen so that the CFL number satisfies γ
n+1/2
i ≤ 1 for all i , then

the explicit upwind scheme can be rewritten as the weighted average

un+1
i = un

i

(
1 − γ

n+1/2
i

) + un
i−1γ

n+1/2
i , 0 < i < I.
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Because the new solution is an average of the previous values when the CFL number
is at most one, the extreme value of the solution at the new time lies between the
extreme values of the previous solution. This implies that the upwind difference
scheme is stable when the CFL condition (2.17) is satisfied.

Finally, let us note that the explicit upwind scheme depends on the assumption
that the velocity c is positive. In general, the explicit upwind scheme chooses the
numerical flux to be

f n+1/2
i+1/2 =

{
cun

i , c ≥ 0 for all 0 ≤ i < I,
cun

i+1, c < 0 for all − 1 ≤ i < I − 1.

Furthermore, if c < 0 then we have to change the boundary condition (2.10b) and
define fluxes f n+1/2

I−1/2 similar to Equation (2.15).

2.2.3 Programs for Explicit Upwind Differences

Explicit upwind differences are easy to program. Nevertheless, in order to assist
the student with code organization, visualization and debugging, we have provided
five example programs. These programs will increase the complexity in the main
program and makefile, but typically share subroutines that compute the solution
of the conservation law. When we begin to experiment with different integration
schemes and differential equations, we will use the the last of these programs.

To prepare to obtain copies of these codes, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “mkdir scalar-law” to make a directory to contain the program code in

this chapter.
(iii) Type “cd scalar-law” to enter the new directory.
(iv) Download Program 2.2-1: tarfile from the web page.
(v) Type “tar -xvf tarfile” to unbundle the codes in your new scalar-law

directory.
(vi) Type “rm tarfile” to remove the code bundle in your scalar-law directory.

The unbundled code will remain.

2.2.3.1 First Upwind Difference Program

The first program is designed to be as simple as possible. It consists of the single
main program Program 2.2-2: main.f, written in Fortran. This program is specifically
designed to solve the linear advection problem with a positive advection velocity. It
also uses a uniform mesh, specifies a fixed value for the solution at the left bound-
ary, and uses piecewise-constant initial data. The time evolution of the solution
is terminated by exceeding either a specified number of timesteps or a specified
simulation time. The program prints the final results for use by a separate plotting

http://www.math.duke.edu/~johnt/math226/scalar_law/tarfile
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM0/main.f
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program. Instructions for using the program can be found in the accompanying
Program 2.2-3: README.

To run this code, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “cd scalar-law/PROGRAM0” to enter the directory for the first program.

(iii) Type “g77 main.f” build the program executable.
(iv) Type “a.out > output” to run the program and direct the output to the file names

“output.”
(v) Type “xmgrace output” to plot the computational results.

This information is contained in the README file.

2.2.3.2 Second Upwind Difference Program

The second program is designed to be more modular than the first program. This
program consists of several pieces:

� Program 2.2-4: linaddmain.f Fortran main program for solving a linear advection problem
over some specified time or number of timesteps.

� Program 2.2-5: riemprob.f Fortran routines for initializing the solution and mesh, and
handling boundary conditions;

� Program 2.2-6: linearad.f Fortran routines for computing characteristic speeds and solving
Riemann problems;

� Program 2.2-7: upwind.f Fortran routine to compute a numerical approximation to the
time integral of the flux at a cell side;

� Program 2.2-8: consdiff.f Fortran routine to apply conservative differences;
� Program 2.2-9: linearad.i Fortran common block for parameters used in the linear advec-

tion model and Riemann problem;
� Program 2.2-10: const.i Fortran common block for machine dependent parameters, and

parameter statements for some common constants;
� Program 2.2-11: GNUmakefile Makefile to compile and load the Fortran files.

It is strongly suggested that the student maintain this basic style of organization for
the code. The separation of initial and boundary conditions from the time integration
will make the experimentation with alternative numerical schemes easier. It will
also make it easier for us to apply the methods to a variety of differential equations,
or to different initial values or boundary conditions. Furthermore, the modular
organization will assist the transition to adaptive mesh refinement in Chapter 8.

File riemprob.f contains three routines, initsl, bcmesh and bccells.
Subroutine initsl initializes the conserved quantity and mesh for a scalar law,
such as linear advection. Subroutine bcmesh sets values for the mesh outside
the physical domain, in case these are need for boundary conditions. Subroutine

http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM0/README
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/linaddmain.f
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/riemprob.f
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/linearad.f
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/upwind.f
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/consdiff.f
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/linearad.i
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/const.i
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM1/GNUmakefile
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bccells sets values for the conserved quantity outside the physical domain, using
the user-specified physical boundary condition. The only tricky aspect of this routine
is the array addressing. In order to simplify the treatment of boundary conditions,
we may begin array addresses with negative indices, determined by the value of
the integer arguments (fc,lc etc.) to the routine. This simplifies the treatment of
boundary conditions because index 0 in the Fortran array corresponds to the first
cell inside the domain; this corresponds to the way in which we have written the
difference scheme in this text.

File linearad.f contains two routines, fluxderv and riemann. Initially,
we will not use either of these routines. The subroutine fluxderv computes the
characteristic speeds, and riemann solves a Riemann problem. We will discuss
these issues later.

File upwind.f uses upwind differencing to compute the time integrals of the
numerical flux at the cell sides. File consdiff.f applies the conservative differ-
ence to compute the solution of the differential equation at the new time.

Note that these Fortran files have been designed to organize the various problem-
dependent parts of the code. File consdiff.f should be the same for all scalar
conservation laws in one dimension. File upwind.f could be replaced to change
the scheme without changing the differential equation. File riemprob.f would
have to be changed if we change the initial or boundary conditions, or change the
differential equation.

To run a copy of this code, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “cd scalar-law/PROGRAM1” to enter the directory for this program.

(iii) Type “make” to compile the program files and make the executable flinearad.
(iv) Type “flinearad > output”; flinearad runs the program and > output

redirects the results to the file output.
(v) Type “xmgrace output” to plot the computational results.

The final step will show a graph of the numerical solution plotted as a function of
space, at the final time in the simulation.

There are several difficulties with this simple Fortran code. One is that when-
ever we want to change the input parameters, such as the number of grid cells or
timesteps, we have to recompile the main program. Another problem is that the
arrays have to be given a fixed size, because Fortran 77 does not perform dynamic
memory allocation. We will fix these problems with the next program.

2.2.3.3 Third Upwind Difference Program

Our third program is more sophisticated, employing a mixture of C++ and Fortran.
This program consists of several pieces that we have already seen, namely
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riemprob.f, linearad.f, upwind.f, consdiff.f, linearad.i
and const.i. However, we have a different main program, a different make file
and a new input file:

� Program 2.2-12: LinearAdvectionMain.C C++ main program;
� Program 2.2-13: GNUmakefile Makefile to compile and load the mixed-language program;
� Program 2.2-14: input the input file for executing the program.

The C++ file,LinearAdvectionMain.C, has several important features. Since
C++ is strongly typed, this file contains function prototypes for the Fortran routines;
these can be found in the extern “C” block. Next, this C++ file also defines
C++structures for the Fortran common blocks, namely linearad-common and
machine-common; these allow us to refer to the data in the Fortran common
blocks from within the main program.

Inside the main program itself, we provide values for the machine-dependent
constants in the Fortran common block machine, and default values for the
problem-dependent constants in the linearad common block. Afterward, we
read the parameters from the input file.

After this preliminary work, the main program is prepared for computation.
It allocates memory for the computational arrays, and defines array bounds for
the Fortran subroutine calls. Next, the main program initializes the array entries to
IEEE infinity; if the program uses an entry before it is given a proper value, then the
resulting values will be obviously wrong. This initialization is useful in debugging;
think of it as defensive programming.

Now that the problem parameters are known and the data arrays have been
allocated, the main program calls initsl to set the initial values, and bcmesh
to set boundary values for the mesh. Since the characteristic speed is fixed in
linear advection, the main program calls stabledt once to compute the stable
step size. At the end of the computation, the main program writes out the final
results.

To run a copy of this code, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “cd scalar-law/PROGRAM2” to enter the directory for this program.

(iii) Type “make” to compile the program files and make the executable linearad.
(iv) Type “linearad input > output” to run the program and redirect the results

to the file output.
(v) Type “xmgrace output” to plot the computational results.

There are still difficulties with this program. Since we cannot see the numerical
results during execution, it is difficult to see the time evolution ofthe computation.

http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM2/LinearAdvectionMain.C
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM2/GNUmakefile
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM2/input


20 Scalar Hyperbolic Conservation Laws

Further, we are not fully able to perform other important aspects of defensive
programming that we will introduce in the next program.

2.2.3.4 Fourth Upwind Difference Program

Our fourth program is even more sophisticated, employing a mixture of C++ and
Fortran, together with some references to external libraries. This program con-
sists of several pieces that we have already seen, namely riemprob.f,
linearad.f, upwind.f, consdiff.f, linearad.i and const.i.
However, the main program, input file and make file are different:

� Program 2.2-15: LinearAdvectionMain.C C++ main program;
� Program 2.2-16: GNUmakefile Makefile to compile the mixed-language program and link

with libraries;
� Program 2.2-17: input the input file for executing the program.

The first change in LinearAdvectionMain.C is that we construct a Mem-
oryDebugger to watch for out-of-bounds writes and unfreed pointers. Later, we
define InputParameters for everything we would like to read from our input
file. Each InputParameter knows the location of the variable to be assigned,
a character string identifier and lower/upper bounds on permissible values. After
defining the InputParameters, we read the parameters from the input file.

The biggest change to the main program is our use of interactive graphics to plot
the solution. To do this, we compute the upper and lower bounds on the mesh and
the solution. Then we construct an XYGraphTool that will plot our results. The
arguments to the XYGraphTool constructor are the title to appear on the graphics
window, the user coordinates for the window, a pointer to the colormap, and the
desired size of the window as a fraction of the screen size. Next, we set the colors
for the background and foreground, and draw the axes. Afterward, we draw plus
signs at the cell centers for the numerical solution. During the loop over timesteps,
we also plot the new results.

The makefile is necessarily complicated, because we are linking with other
libraries for memory debugging, graphics, and graphical user interfaces. At
the beginning of makefile, we include macros.gnu, which contains machine-
dependent macros to describe the compiler names and options. Next, we set some
internal macros for compiling and linking. Afterward, we make a list of routines
needed by our program.

The trickiest part of the makefile is how we provide different targets to construct
code for debugging or optimized performance. We can choose whether we will make
debug or optimized code by setting the OPT-OPTIONS flag in GNUmakefile.
The choice d will generate code for debugging with no optimization, while the
choice owill generate optimized code. During code development, you will want to

http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM3/LinearAdvectionMain.C
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM3/GNUmakefile
http://www.math.duke.edu/~johnt/math226/scalar_law/PROGRAM3/input
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work with debug code. Once your code has been tested, you can create optimized
code for greater execution speed.

To run a copy of this code, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “cd scalar-law/PROGRAM3” to enter the directory for this program.

(iii) Type “make” to compile the program files and make the executable 1d/linearad.
(iv) Type “1d/linearad input” to run the program.

When the program is run, the user will see a movie of the simulation, showing the
conserved quantity plotted as a function of space at each time in the movie.

The directory 1d refers to code written in one dimension, for debugging. Opti-
mized code is compiled and loaded in directory 1o. Figure 2.5 contains some
example results with this program, at the final time in each simulation.

In order to capture the graphics into a file for printing, you can create a shell
script, such as Program 2.2-18: eps4paper This command first copies the contents of
a window to a .gif file, then converts that file to .pdf form.

2.2.3.5 Fifth Upwind Difference Program

Our fifth and final version of our upwind finite difference program is designed
to be run from within this book. For this purpose, it is necessary that the user
be able to change all input parameters interactively, from within a graphical user
interface. This program consists of several pieces that we have already seen, namely
riemprob.f, linearad.f, consdiff.f, linearad.i and const.i.
However, the main program, input file and make file are different:

� Program 2.2-19: GUILinearAdvectionMain.C C++ main program and C++ auxiliary
procedures;

� Program 2.2-20: GNUmakefile Makefile to compile the mixed-language program and link
with libraries;

� Program 2.2-21: input the input file for executing the program.

In order to work with the graphical user interface, the main program basically
performs some preliminary work before entering an event loop. The event loop calls
various routines in response to user interaction with the graphical user interface.
One of these callback routines isrunMain inGUILinearAdvectionMain.C;
this routine contains most of the statements that appeared in the main program of
the previous example. The event loop allows the user to perform one simulation,
adjust the input parameters, and then perform another simulation, all in the same
run of the program. However, because of the separate threads used for the events,
such a program is more difficult to debug than the previous examples.

http://www.math.duke.edu/~johnt/math226/scalar_law/eps4paper
http://www.math.duke.edu/~johnt/math226/scalar_law/GUILinearAdvectionMain.C
http://www.math.duke.edu/~johnt/math226/scalar_law/GNUmakefile
http://www.math.duke.edu/~johnt/math226/scalar_law/input
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(a) CFL = 0.1 (b) CFL = 0.5

(c) CFL = 0.0 (d) CFL = 1.0

Fig. 2.5 Explicit upwind for linear advection (red = exact, blue = numerical
solution)

To run a copy of this code, perform the following steps:

(i) Type “cd” to return to your home directory.
(ii) Type “cd scalar-law” to enter the directory for this program.

(iii) Type “make” to compile the program files and make the executable
1d/guilinearad.

(iv) Type “1d/guilinearad input” to run the program.

The directory 1d refers to code written in one dimension, for debugging.
Optimized code is compiled and loaded in directory 1o. You can also run the
executable by clicking on the following: Executable 2.2-1: guilinearad The latter
will use a graphical user interface for parameter input. Pull down on “View” and
release the mouse on “Main”. Click on any of the arrows to see current values
of either the “Riemann Problem Parameters”, “Linear Advection

http://www5.math.duke.edu/cgi-bin/startvnc?run=scalar_law_guilinearad
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Parameters”, “Numerical Method Parameters” or “Graphics”
parameters. After selecting your values, click on “Start Run Now” in the
original graphical user interface. As with the executable “1d/guilinearad”,
you will get a window displaying a movie of the conserved quantity plotted as a
function of space during simulation time.

2.2.4 Explicit Downwind Differences

Now that we have examined one useful scheme for integrating the linear advection
equation, let us consider the development of alternative numerical schemes. The
explicit upwind difference scheme (2.16a) can be viewed as a finite difference
approximation to the linear advection equation (2.10a). In fact, we can rewrite
explicit upwind differences as

un+1
i − un

i


tn+1/2
+ cun

i − cun
i−1


xi
= 0, 0 < i < I.

Note that the spatial difference is a first-order approximation to ∂cu/∂x .
When we view the numerical method solely in terms of order of approximation

of difference quotients to derivatives, we do not have any reason to prefer one
first-order difference to another. We might be tempted to try the finite difference
approximation

un+1
i − un

i


tn+1/2
+ cun

i+1 − cun
i


xi
= 0, 0 < i < I,

which uses a different first-order approximation to the spatial derivative in the linear
advection equation. We can rewrite this explicit downwind difference scheme in
the form

un+1
i = un

i − [un
i+1 − un

i ]
c
tn+1/2


xi
, 0 ≤ i < I.

In other words, the explicit downwind difference scheme is a conservative difference
scheme in which the numerical flux is chosen to be f n+1/2

i+1/2 = cun
i+1.

If we look carefully at this scheme, we can see that it ignores the boundary data
at the left, and does not know how to compute the new solution in the last grid cell
on the right. An optimist might hope that these flaws could be overcome by special
treatment. Actually, these are indicators of a much more serious flaw.

It is easy to see that in the explicit downwind scheme, the new cell average
un+1

u depends on the cell averages un
i and un

i+1. Thus, the domain of dependence of
un+1

i is the interval (xi−1/2, xi+ 3
2
). Recall that the physical domain of dependence

for the solution at (x, tn+1) is the point (x − c
tn+1/2, tn), so the physical domain
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of dependence of the cell average
∫ xi+1/2

xi−1/2
u(x, tn+1) dx is the interval (xi−1/2 −

c
tn+1/2, xi+1/2 − c
tn+1/2). Thus for downwind differences, the numerical domain
of dependence never contains the physical domain of dependence, no matter what
the size of the timestep 
tn+1/2 may be. This indicates that, in general, the explicit
downwind difference scheme cannot converge to the physical solution.

If the CFL number γ
n+1/2
i is given by (2.18), then the downwind scheme can be

rewritten in terms of the CFL number γ
n+1/2
i = c
tn+1/2/
xi as follows:

un+1
i = un

i + c
tn+1/2


xi
[un

i − un
i−1] = un

i (1 + γ
n+1/2
i ) − un

i−1γ
n+1/2
i , 0 ≤ i < I − 1.

Because the new solution involves amplification of un
i , the upwind scheme allows

for instability to develop. We will present two different discussions of this instability
in Sections 2.3 and 2.5 below.

Figure 2.6 contains some example results with this scheme. These results can
be obtained by running Executable 2.2-1 with scheme set to explicit down-
wind. Since this scheme is unstable, the program should be run with a very small
number of timesteps.

2.2.5 Implicit Downwind Differences

Let us continue to experiment with first-order discretizations of the space and time
derivatives in the linear advection equation (2.10). The explicit downwind scheme
uses first-order temporal differencing and first-order downwind spatial differencing
at the old time. If instead we evaluate the spatial downwind difference at the new
time, we obtain the implicit downwind difference scheme

un+1
i − un

i


tn+1/2
+ cun+1

i+1 − cun+1
i


xi
= 0, 0 ≤ i < I − 1.

This is a conservative difference scheme in which the numerical fluxes are chosen
to be f n+1/2

i+1/2 = cun+1
i+1 .

Note that we can rewrite the scheme in the form

(1 − γ
n+1/2
i )un+1

i + γ
n+1/2
i un+1

i+1 = un
i , 0 ≤ i < I − 1.

This gives us a right-triangular system of equations for the new solution. Back-
solution of this linear system shows that un+1

i depends on cell averages un
j at the

previous time for all j ≥ i . Thus the domain of dependence of un+1
i is the union of

the cells (x j−1/2, x j+1/2 for all j ≥ i , or in other words the interval (xi−1/2, xI−1/2) =
(xi−1/2, b), at the previous time. This interval does not contain the physical domain
of dependence (xi−1/2 − c
tn+1/2, xi+1/2 − c
tn+1/2) for any 
tn+1/2 > 0. As a
result, implicit downwind differences cannot be convergent.
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Step 1 Step 2

Step 3 Step 4

Fig. 2.6 Explicit downwind for linear advection (monotone curve = exact, oscil-
latory curve = numerical solution): first four steps at CFL = 0.9

The implicit downwind scheme does not use the boundary data at the left, and
has trouble defining the solution at the right-hand (outflow) boundary. These obser-
vations are further indication of trouble with this scheme. However, it is possible
to show (see Section 2.5.4 below) that this scheme is stable for sufficiently large
timesteps, namely those for which the CFL numbers satisfy γ

n+1/2
i ≥ 1. Thus sta-

bility is not the only consideration in choosing a numerical method; convergence
to the physically correct solution is also important.

2.2.6 Implicit Upwind Differences

Our next example of a fully first-order discretization of the linear advection equation
involves evaluating the upwind spatial difference at the new time. This implicit
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upwind difference scheme can be written

un+1
i − un

i


tn+1/2
+ cun+1

i − cun+1
i−1


xi
= 0, 0 < i < I. (2.19a)

un+1
i = un

i − [cun+1
i − f n+1/2

i−1/2 ]

tn+1/2


xi
, i = 0. (2.19b)

This is a conservative difference scheme in which the numerical flux is chosen to
be f n+1/2

i+1/2 = cun+1
i for 0 ≤ i < I .

Note that we can rewrite the scheme in the form

(1 + γ
n+1/2
i )un+1

i − γ
n+1/2
i un+1

i−1 = un
i , 0 < i < I.

This gives us a left-triangular system of equations for the new solution. As a result,
un+1

i depends on un
j for j ≤ i . It follows that the domain of dependence of un+1

i

is (x−1/2, xi+1/2) = (a, xi+1/2), plus the boundary data on the left. This interval
contains the physical domain of dependence for all 
tn+1/2 > 0.

In Section 2.5.4 below we will see that this scheme is unconditionally stable.
In comparison, remember that the explicit upwind scheme is stable for γ

n+1/2
i ≤

1. If stability were the only consideration, we would clearly prefer the implicit
upwind scheme. However, we will see in Sections 2.3 and 2.5.4 that this scheme
introduces more numerical diffusion than explicit upwind differences, and involves
greater numerical cost (namely the cost of solving a linear system of equations
for un+1

i ).
Figure 2.7 contains some example results with this scheme. These results can

be obtained by running Executable 2.2-1 with the scheme set to implicit
upwind. Note that the spreading of the numerical discontinuity increases as the
Courant number increases. In other words, taking larger timesteps decreases the
accuracy of the implicit upwind scheme; this result stands in contrast to our exper-
iments with the explicit upwind scheme, in which the accuracy improved as the
size of the timestep was increased. This is important to remember, because the
temptation is to take larger timesteps with the implicit upwind method in order to
decrease the cost of the scheme.

2.2.7 Explicit Centered Differences

Our final example of finite difference schemes for linear advection will use a
second-order spatial difference. In order to determine this second-order spatial
approximation, we will use the cell averages un

i to form a quadratic approxima-
tion to the integral of u, and differentiate that quadratic at a cell side. We con-
struct a divided difference table by first forming columns, of spatial positions
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CFL = 0.1 CFL = 1.0

CFL = 5.0 CFL = 10

Fig. 2.7 Implicit upwind for linear advection (red = exact, blue = numerical
solution)

x j+1/2 and corresponding spatial integrals
∑ j

k=i un
k 
xk , and then computing divided

differences:
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k=i un
k 
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xi un
i
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k=i un
k 
xk u[xi , xi+1]
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k 
xk

Here we have used divided difference notation for one term in the table, namely

u[xi , xi+1] ≡ un
i+1 − un

i


xi+1 + 
xi
,
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even though this difference quotient is not the same as that found in numerical
analysis textbooks. This gives us the quadratic interpolation∫ x

xi−1/2

u(x) dx ≈ un
i (x − xi−1/2) + u[xi , xi+1](x − xi−1/2)(x − xi+1/2).

If we differentiate this quadratic and evaluate it at xi+1/2, we obtain an approxima-
tion for u at the cell side:

d

dx

∫ x

xi−1/2

u(x) dx |xi+1/2 ≈ un
i + u[xi , xi+1]
xi

= un
i


xi+1


xi + 
xi+1
+ un

i+1

xi


xi + 
xi+1
.

In the explicit centered difference scheme for linear advection, we evaluate
the fluxes for a conservative difference by using our approximation to u at the cell
side:

f n+1/2
i+1/2 = c

un
i 
xi+1 + un

i+1
xi


xi + 
xi+1
.

The new solution is then computed by the conservative difference

un+1
i = un
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tn+1/2


xi

[
f n+1/2
i+1/2 − f n+1/2

i−1/2

]
.

This can be rewritten in the form of a weighted average
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xi + 
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. (2.20)

On a uniform grid, the fluxes simplify to the more common formula f n+1/2
i+1/2 =

c(un
i + un

i+1)/2, and the new solution can be evaluated by

un+1
i = un

i − c
tn+1/2


xi
[un

i+1 − un
i−1].

Note that there is a difficulty in determining the solution un+1
I−1 at the right-hand

boundary; if this were the only problem with this scheme, it might be overcome by
using explicit upwind differences there.

We do not gain useful information by examining the domain of dependence of
the explicit centered difference scheme. Note that un+1

i depends on un
i−1, un

i and
un

i+1. Thus the numerical domain of dependence is (xi− 3
2
, xi+ 3

2
). This domain of

dependence contains the physical domain of dependence if and only if the timestep
is chosen so that |c
tn+1/2/
xi−1| ≤ 1 for every grid cell. This seems to indicate
that the explicit centered difference scheme could be conditionally convergent.
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We can get some indication that this scheme is unstable by examining the
weighted average form of the scheme (2.20). Note that the coefficient of un

i+1

is always negative; this will lead to instability. In fact, we will demonstrate in
sections 2.3.3 and 2.5.4 that this scheme is unconditionally unstable.

Explicit centered differences are easy to program, except for the treatment of
the downstream boundary. This fact, together with the lure of second-order spatial
accuracy, is so compelling that careless people are sometimes attracted to this
scheme.

Exercises for 2.2

2.2.1 Consider the linear advection problem on the interval (a, b) = (0, 1) with initial data u(x, 0) = 2
for x < 0.1 and u(x, 0) = 1 for x > 0.1 and boundary data u(0, t) = 2 for t > 0. Determine
the analytical solution to this problem, and write a program to plot this analytical solution as a
function of x for any t > 0.

2.2.2 Run the explicit upwind scheme for CFL numbers 0.1, 0.5, 1.0 and 1.1 with c = 1, (a, b) =
(0, 1) and 
x = 0.01. Stop each simulation at time t = 0.55. Plot the numerical results together
with the analytical solution from the previous exercise, labeling each CFL number case carefully.
Describe the qualitative differences in the numerical results. Which results look sharp? Which
results look unstable?

2.2.3 Program the explicit downwind scheme for the problem in the first exercise. In order to treat
boundary data, take u = 2 on the left, and u = 1 on the right. Plot the numerical results after 5, 10
and 20 timesteps with each of the CFL numbers in the previous exercise. Describe the qualitative
differences in the numerical results. How does the CFL number affect the instability?

2.2.4 Program the implicit upwind scheme for the problem in the first exercise. Plot the numerical
results together with the analytical solution, labeling each CFL number case carefully. Describe
the qualitative differences in the numerical results. How does the CFL number affect the sharpness
of the results?

2.2.5 There are several very interesting test problems for numerical schemes applied to linear advection,
suggested by Zalesak [180]:

square pulse for 0.1 ≤ x ≤ 0.2 u(x, 0) = 2, otherwise u(x, 0) = 1;
triangular pulse for 0.1 ≤ x ≤ 0.2 u(x, 0) = 2 − 20|x − 0.15|, otherwise u(x, 0) = 1;
smooth Gaussian pulse for 0.1 ≤ x ≤ 0.2 u(x, 0) = 1 + exp(−104(x − 0.15)2) − exp(−25),

otherwise u(x, 0) = 1;
quadratic pulse for 0.1 ≤ x ≤ 0.2 u(x, 0) = 1 +

√
1 − 400(x − 0.15)2, otherwise u(x, 0) = 1.

Each problem should be solved with 100 cells on a uniform grid, so that the initial disturbance
is described in a fixed number of grid cells. Solve each of these problems by the explicit upwind
scheme, using CFL = 1.0, 0.9, 0.5 and 0.1. Plot the analytical solution with a continuous curve,
and the numerical solution with discrete markers. Be sure to compute the initial data for the
scheme as the cell average of the given data.

2.2.6 Repeat the previous exercise using the implicit upwind scheme. How do the results compare, both
for accuracy and computational speed?
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2.3 Modified Equation Analysis

The examples in section 2.2 indicate that we need to develop some methods for
assessing the qualitative behavior of finite difference schemes. In this section, we
will discover that the numerical solution of linear advection by finite differences
actually solves a partial differential equation that is slightly different from the
original problem. We will examine a heuristic method for determining which partial
differential equation the numerical method is actually approximating, and what
effect the modification might have.

Please note that we will continue to assume that the advection velocity satisfies
c > 0.

2.3.1 Modified Equation Analysis for Explicit Upwind Differences

Lemma 2.3.1 Suppose that the discrete values un
i satisfy the explicit upwind

difference

un+1
i = un

i − c
t


x
[un

i − un
i−1].

Further suppose that

un
i = ũ(i
x, n
t) + o(
t2) + o(
x2) + o(
t
x),

where ũ is twice continuously differentiable in x and t, and ũ satisfies a modified
equation of the form

∂ ũ

∂t
+ ∂cũ

∂x
= e = O(
t) + O(
x). (2.21)

Then the modification e satisfies

e = c
x

2

(
1 − c
t


x

)
∂2ũ

∂x2
+ o(
t) + o(
x).

Proof Since ũ is twice continuously differentiable,

un+1
i = ũ(x, t + 
t) + o(
t2) + o(
x2) + o(
t
x)

= ũ(x, t) + ∂ ũ

∂t

t + 1

2

∂2ũ

∂t2

t2 + o(
t2) + o(
x2) + o(
t
x),

un
i−1 = ũ(x − 
x, t) + o(
t2) + o(
x2) + o(
t
x)

= ũ(x, t) − ∂ ũ

∂x

x + ∂2ũ

∂x2


x2

2
+ o(
t2) + o(
x2) + o(
t
x).
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In these expressions, the partial derivatives are all evaluated at (x, t). Since ũ satisfies
the modified equation (2.21),

∂2ũ

∂t2
= ∂

∂t

(
e − ∂cũ

∂x

)
= ∂e

∂t
− c

∂

∂x

(
e − ∂cũ

∂x

)
= c2 ∂2ũ

∂x2
+ ∂e

∂t
− c

∂e

∂x
.

When we substitute the Taylor series approximations into the explicit upwind dif-
ference scheme, we get the equation

0 = un+1
i − un

i


t
+ c

un
i − un

i−1


x
= ∂ ũ

∂t
+ ∂cũ

∂x
+ 
t

2

∂2ũ

∂t2
− c
x

2

∂2ũ

∂x2
+ o(
t) + o(
x)

= ∂ ũ

∂t
+ ∂cũ

∂x
− c
x

2

(
1 − c
t


x

)
∂2ũ

∂x2
+ 
t

2

(
∂e

∂t
− c

∂e

∂x

)
+ o(
t) + o(
x)

= ∂ ũ

∂t
+ ∂cũ

∂x
− c
x

2

(
1 − c
t


x

)
∂2ũ

∂x2
+ o(
t) + o(
x).

This equation determines the error term to be

e = c
x

2

(
1 − c
t


x

)
∂2ũ

∂x2
+ o(
t) + o(
x).

�

If c > 0 and c
t ≤ 
x the modified equation shows that the upwind scheme
is actually solving an advection–diffusion equation with a small diffusion. This
numerical diffusion is proportional to the product of the cell width and one minus the
CFL number. It is interesting to note that the upwind scheme involves no diffusion
if we choose γ = c
t/
x = 1. In this case, the explicit upwind scheme is exact
(although we did not determine this fact from the modified equation analysis). In
fact, the explicit upwind scheme itself shows that when c
t/
x = 1, then un+1

i =
un

i−1. In other words, un
i = u0

i−n; if the initial data for the scheme is chosen to
be u0

i = u0(i
x), then un
i = u0([i − n]
x) = u0(i
x − cn
t), and the scheme is

exact.

2.3.2 Modified Equation Analysis for Explicit Downwind Differences

Lemma 2.3.2 Suppose that the discrete values un
i satisfy the explicit downwind

difference

un+1
i = un

i − c
t


x
[un

i+1 − un
i ],

Further suppose that

un
i = ũ(i
x, n
t) + o(
t2) + o(
x2) + o(
t
x),
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where ũ is twice continuously differentiable in x and t, and ũ satisfies a modified
equation of the form (2.21). Then the modification e satisfies

e = −c
x

2

(
1 + c
t


x

)
∂2ũ

∂x2
+ o(
t) + o(
x).

Proof Using Taylor series and the modified equation assumption (2.21), we obtain

0 = un+1
i − un

i


t
+ c

un
i+1 − un

i


x
= ∂ ũ

∂t
+ ∂cũ

∂x
+ 
t

2

∂2ũ

∂t2
+ c
x

2

∂2ũ

∂x2
+ o(
t) + o(
x)

= ∂ ũ

∂t
+ ∂cũ

∂x
+ c
x

2

(
1 + c
t


x

)
∂2ũ

∂x2
+ o(
t) + o(
x).

In this case the error term in the modified equation is

e = −c
x

2

(
1 + c
t


x

)
∂2ũ

∂x2
= −c
x

2
(1 + γ )

∂2ũ

∂x2
+ o(
t) + o(
x).

�

Since c > 0, the downwind scheme is anti-diffusive for all CFL numbers γ ≡
c
t/
x > 0. This anti-diffusion leads to instability. In fact, the analytical solution
for the advection-diffusion equation in Section 2.1.3 does not apply to this modified
equation, because the diffusion coefficient is negative. Rather, an examination of
the Fourier series solution for this modified equation would show that all wave
numbers lead to growth, and the growth increases with the square of the wave
number. We will perform a Fourier analysis of this scheme in Section 2.5.4.

2.3.3 Modified Equation Analysis for Explicit Centered Differences

The modified equation analyses of the explicit upwind and explicit downwind
schemes were very similar. However, in order to study the explicit centered dif-
ference scheme we will need to make the additional assumption that the modified
equation error has an asymptotic expansion.

Lemma 2.3.3 Suppose that the discrete values un
i satisfy the explicit centered

difference

un+1
i = un

i − c
t

2
x
[un

i+1 − un
i−1].

Further suppose that

un
i = ũ(i
x, n
t) + o(
t2) + o(
x3) + o(
t
x2),
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where ũ is twice continuously differentiable in x and t, and ũ satisfies a modified
equation of the form (2.21). Then the modification e satisfies

e = −c2
t

2

∂2ũ

∂x2
+ o(
t) + o(
x2).

Proof If we substitute Taylor series expansions into the linear advection equation,
we obtain

0 = un+1
i − un

i


t
+ c

un
i+1 − un

i−1

2
x

= ∂ ũ

∂t
+ ∂cũ

∂x
+ 
t

2

∂2ũ

∂t2
+ 1

3
c
x2 ∂3ũ

∂x3
+ o(
t) + o(
x2) + o(
t
x)

= ∂ ũ

∂t
+ ∂cũ

∂x
+ 
t

2

(
c2 ∂2ũ

∂x2
+ ∂e

∂t
− c

∂e

∂x

)
+ 1

3

x2 ∂3ũ

∂x3
+ o(
t) + o(
x2) + o(
t
x).

It follows that

e = −
t

2

(
c2 ∂2ũ

∂x2
+ ∂e

∂t
− c

∂e

∂x

)
+ o(
t) + o(
x2) + o(
t
x).

This defines e implicitly. The dominant term in the expansion for e is the first; it
implies that

e ≈ −c2
t

2

∂2ũ

∂x2
+ o(
t) + o(
t
x) + o(
x2).

�

Note that the dominant term in the modified equation error e is anti-diffusive for
all 
t , no matter what the sign of the velocity c. This anti-diffusion indicates that
the explicit centered difference scheme is unconditionally unstable.

2.3.4 Modified Equation Analysis Literature

There are several interesting papers on modified equation analysis. Hedstrom [70]
showed that the modified equation analysis is valid for general diffusive difference
approximations to scalar linear equations with discontinuous initial data. Majda
and Ralston [115] used modified equation analysis for first-order schemes and
weak shocks in nonlinear systems to provide necessary and sufficient conditions to
guarantee physical (or non-physical) discrete shock profiles. Engquist and Osher
[49] gave examples of steady wave profiles for Riemann problems for which the
modified equation analysis fails. However, in this case the schemes involved are
not diffusive when linearized around the sonic points. Goodman and Majda [60]
proved that the modified equation analysis is valid for upwind differencing on scalar
nonlinear conservation laws.
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Exercises for 2.3

2.3.1 Perform a modified equation analysis of the implicit upwind scheme. Compare its numerical
diffusion to that of the explicit upwind scheme.

2.3.2 Perform a modified equation analysis of the implicit downwind scheme. Under what circumstances
is it diffusive?

2.3.3 Suppose that we want to perform an explicit upwind difference on a non-uniform grid. We assume
that there are constants c and c and a scalar h so that

ch ≤ 
xi ≤ ch for all i

as the mesh widths decrease to zero.
(a) Perform a modified equation analysis of the scheme

un+1
i = un

i − c
t


xi
[un

i − un
i−1].

to show that the error is O(1). Note that

un
i − un

i−1 ≈ ∂u

∂x


xi + 
xi−1

2
.

(b) Show that the scheme

un+1
i = un

i − 2c
t


xi + 
xi−1
[un

i − un
i−1]

is first-order but not conservative.
(c) To construct a first-order scheme on a non-uniform grid, we can define the numerical fluxes

to be given by a Newton interpolation to the flux at the cell centers:

f n
i+1/2 = f (un

i ) + f (un
i ) − f (un

i−1)


xi + 
xi−1

xi .

First show that

f n
i+1/2 ≈ f n

i + ∂ f

∂x


xi

2
− ∂2 f

∂x2

(
xi + 
xi−1)
xi

8

and

f n
i−1/2 ≈ f n

i − ∂ f

∂x


xi

2
− ∂2 f

∂x2
α

whereα = O(h2). Perform a modified equation analysis of the conservative difference scheme

un+1
i = un

i − 
t


xi
[ f n

i+1/2 − f n
i−1/2]

to show that it is first-order in both space and time. Also show that on a uniform grid this
scheme is second order in space.
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2.3.4 Perform a modified equation analysis of Leonard’s scheme [92] (without second-order time
correction)

un+1
i = un

i − c
t


x
[un

i+1/2 − un
i−1/2],

where

un
i+1/2 = un

i + 2un
i+1 − un

i − un
i−1

6

to determine the order of the scheme. Under what circumstances is this scheme diffusive?

2.4 Consistency, Stability and Convergence

The modified equation analysis gives us a qualitative measurement of the behavior
of numerical methods. With some minor modification of that analysis and some
additional assumptions, we can prove the convergence to solutions of partial dif-
ferential equations.

First, let us describe what we mean by linear explicit two-step schemes. We
assume that the numerical method can be written

un+1 = Qnun

where Qn is some operator on the solution vector. Note that the solution vector may
be defined at an infinite number of points, for the purposes of this analysis. It will
typically be convenient to use the shift operators

(S+u)n
i = un

i+1 and (S−u)n
i = un

i−1,

to define Qn in specific schemes.

Example 2.4.1 The explicit upwind scheme can be written

un+1
i =

(
1 − γ

n+ 1
2

i

)
un

i + γ
n+ 1

2
i un

i−1,

where γ
n+ 1

2
i = c
tn+ 1

2 /
xi is the CFL number. In this case, we have

Qn = I
(

1 − γ
n+ 1

2
i

)
+ S−γ

n+ 1
2

i .

Example 2.4.2 The implicit upwind scheme can be written(
1 + γ

n+ 1
2

i

)
un+1

i − γ
n+ 1

2
i un+1

i−1 = un
i .
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In this case, we have

Qn =
[

I (1 + γ
n+ 1

2
i ) − S−γ

n+ 1
2

i

]−1
.

Next, let ‖ · ‖ represent some norm on the solution vector. For example, we could
use the �∞ norm

‖un‖ ≡ sup
i

|un
i |

or the �1 norm

‖un‖ ≡
∑

i

|un
i |
xi .

The induced norm on Qn is defined by

‖Qn‖ ≡ sup
un

‖Qnun‖
‖un‖ .

Example 2.4.3 If the CFL number satisfies 0 < γ
n+ 1

2
i = c
tn+ 1

2 /
xi ≤ 1, then in
the max norm the solution operator Qn for the explicit upwind scheme satisfies

‖Qnun‖ = max
i

∣∣∣un
i (1 − γ

n+ 1
2

i ) + un
i−1γ

n+ 1
2

i

∣∣∣
≤ max

{
|un

i |(1 − γ
n+ 1

2
i ) + |un

i−1|γ
n+ 1

2
i

}
≤ max

i
{|un|} max

i

{(
1 − γ

n+ 1
2

i

)
+ γ

n+ 1
2

i

}
= max

i
|un

i | ≡ ‖un‖.

Thus in this case, ‖Qn‖ ≤ 1 whenever the CFL number is at most one.

Example 2.4.4 Recall that in the implicit upwind scheme we have

Qn =
[

I
(

1 + γ
n+ 1

2
i

)
− S−γ

n+ 1
2

i un
i−1

]−1
.

From the definition of this scheme, we see that for any norm

‖un‖ =
∥∥∥(

1 + γ
n+ 1

2
i

)
un+1

i − γ
n+ 1

2
i un+1

i−1

∥∥∥
≥ ‖un+1‖

(
1 + γ

n+ 1
2

i

)
− ‖S−un+1‖γ n+ 1

2
i

= ‖un+1‖
(

1 + γ
n+ 1

2
i

)
− ‖un+1‖γ n+ 1

2
i = ‖un+1‖.
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Thus ‖Qnun‖ ≤ ‖u‖, so ‖Qn‖ ≤ 1 for all norms and all positive CFL
numbers.

The following important theorem proves that linear explicit two-step schemes
are convergent under reasonable assumptions, and provides an estimate for the error
in the numerical solution.

Theorem 2.4.5 (Lax) Assume that

(i) un+1 = Qnun is a scheme to approximate the solution of some linear partial differential
equation

(ii) given a final time T and a maximum number of timesteps n > 0, we perform n steps
with this scheme, using timesteps 
tm+ 1

2 satisfying

for all T > 0 for all n > 0
n−1∑
m=0


tm+ 1
2 ≤ T and

for all T > 0 there exists α > 0 such that n max
0≤m<n


tm+ 1
2

≤ T α

(iii) the scheme is stable, meaning that

there exists C > 0 for all n ‖Qn‖ ≤ 1 + C
tn+ 1
2

(iv) the scheme has order p in time and order 1 in space, meaning that if u is the
exact solution of the partial differential equation, then the local truncation error εn

satisfies

there exists Ct > 0 there exists p > 0 there exists Cx > 0 there exists q > 0 for all 
tn+ 1
2 for all 
xi

εn ≡ 1


tn+1/2
‖u(xi , tn) − Qnu(·, tn)‖ ≤ Ct

(

tn+ 1

2

)p
+ Cx (
xi )

q

Then the error in the approximate solution satisfies

‖u(·, tn) − un‖ ≤ eCT ‖u(·, 0) − u0‖ + αT eCT

[
Ct max

n
(
tn+ 1

2 )p + Cx max
i

(
xi )
q

]
.

Proof For all timesteps satisfying the assumptions,

‖u(·, tn) − un‖ ≤ ‖u(·, tn) − Qn−1u(·, tn−1)‖ + ‖Qn−1u(·, tn) − Qn−1un−1‖
≤ εn−1 + ‖Qn−1‖‖u(·, tn−1) − un−1‖.
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We can solve this recurrent inequality to get

‖u(·, tn) − un‖ ≤
{

n−1∏
k=0

‖Qk‖
}

‖u(·, t0) − u0‖ +
n−1∑
�=0

{
n−1∏
k=�

‖Qk‖
}

ε�

≤
{

n−1∏
k=0

‖Qk‖
}

‖u(·, t0) − u0‖ + max
�

ε�
n−1∑
�=0

n−1∏
k=�

‖Qk‖

≤ ‖u(·, t0) − u0‖
n−1∏
k=0

(
1 + C
t k+ 1

2

)
+ n max

�
ε�

n−1∏
k=�

(
1 + C
t�+ 1

2

)
≤ ‖u(·, t0) − u0‖eC

∑n−1
k=0 
t k+ 1

2

+ eC
∑n−1

k=� 
t�+ 1
2 max

k,i

{
n
t k+ 1

2

[
Ct (
t k+ 1

2 )p + Cx (
xi )
q
]}

≤ eCT ‖u(·, t0) − u0‖ + αT eCT

[
Ct max

n
(
tn+ 1

2 )p + Cx max
i

(
xi )
q

]
.

�

Example 2.4.6 The same Taylor series expansions that were used in the modified
equation analysis of the explicit upwind scheme can be used to show that the local
truncation error for the explicit upwind scheme is

εn
i ≡ u(xi , tn+1) −

{
u(xi , tn) − γ

n+ 1
2

i [u(xi , tn) − u(xi−1, tn)]
}

= 
tn+ 1
2

{
−∂2u

∂t2


tn+ 1
2

2
+ ∂2u

∂x2

c
xi

2

}
.

Recall that in Example 2.4.1 we showed that the explicit upwind scheme is stable
in the max norm provided that the timesteps are chosen so that the CFL number is
always at most one. If the second partial derivatives of u are uniformly bounded
for all states within the range of the problem of interest, then Theorem 2.4.5 proves
that the explicit upwind scheme is first-order accurate in both space and time.

Exercise for 2.4

2.4.1 Prove that the implicit upwind scheme for linear advection is first-order accurate in both space
and time.

2.5 Fourier Analysis of Finite Difference Schemes
In Section 2.3 we developed the modified equation analysis as a heuristic tool
for understanding the qualitative behavior of finite difference schemes. We found
that the modified equation analysis was useful in understanding the order of the
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scheme, and comparing the numerical diffusion employed by different schemes.
The modified equation analysis is reasonably general, in that it can be applied to
linear schemes for nonlinear differential equations on bounded domains.

In this section, we will develop a different tool for analyzing finite difference
schemes. We will use Fourier transforms to study the dissipation and dispersion

introduced by linear schemes in solving linear problems on unbounded domains.
The Fourier analysis will give us useful information about the inter-relationship
between dissipation and dispersion in controlling numerical oscillations. However,
Fourier analysis can only be used to study linear schemes applied to linear problems.

For a second source of some of the information in this section, the reader can
consult [151].

2.5.1 Constant Coefficient Equations and Waves

Let us consider the linear partial differential equation

∂u

∂t
+ c

∂u

∂x
= ru + d

∂2u

∂x2
+ f

∂3u

∂x3
for all x ∈ R for all t > 0 (2.22a)

u(x, 0) = u0(x). (2.22b)

In order to understand the behavior of this problem, we will define the Fourier
transform of an integrable function to be

û(ξ, tn) =
∫ ∞

−∞
u(x, tn)e−ıξ x dx .

It is well-known [139] that if both u and û are integrable in x and ξ , respectively,
then the appropriate inversion formula for the Fourier transform is

u(x, tn) = 1

2π

∫ ∞

−∞
û(ξ, tn)eıξ x dξ (2.23)

almost everywhere. If we take the Fourier transform in space of (2.22a), we obtain
an ordinary differential equation that is parameterized by the Fourier variable ξ :

∂ û

∂t
= ([

r − dξ 2
] − i

[
cξ + f ξ 3

])
û(ξ, t).

The solution of this ordinary differential equation is

û(ξ, t) = e[r−dξ 2]t−i[cξ+ f ξ 3]t û0(ξ ).

If the initial data has Fourier transform û(ξ, 0) = αδ(ξ − β), then the Fourier inver-
sion formula (2.23) shows that u(x, 0) = α

2π
eiβx . Thus the initial data consists of a

single wave number β; a wave number is equal to 2π over the wavelength. It is
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also easy to use the inverse Fourier transform to find that the solution of (2.22) is

u(x, t) = e[r−dβ2]t−i[cβ+ fβ3]t u(x, 0).

It is common to define the frequency

ω = −(βc + β3 f ) + i(−r + β2d).

so that u(x, t) = eiωt u(x, 0). Note that the frequency ω has units of one over time.
We can provide several important examples of frequencies, by considering

Equation (2.22a) with only one nonzero coefficient and initial data consisting of a
single wave number.

advection: If r = 0, d = 0 and f = 0 then the frequency is ω = −cβ and the
solution of (2.22) is u(x, t) = αeiβ(x−ct). In this case, all wave numbers β

travel with the same speed c.
reaction: If c = 0, d = 0 and f = 0 then the frequency of the wave is ω = −ir ,

and the solution of (2.22) is u(x, t) = αert eiβx . All wave numbers β remain
stationary, and the amplitude of the wave either grows (r > 0) or decays
(r < 0) in time.

diffusion: If c = 0, r = 0 and f = 0 then the frequency is ω = iβ2d and the
solution of (2.22) is u(x, t) = αe−β2dt eiβx . In this case, all wave numbers
remain stationary. If d > 0 all nonzero wave numbers decay, and large wave
numbers decay faster than small wave numbers. If d < 0 then all nonzero
wave numbers grow, and large wave numbers grow faster than small wave
numbers.

dispersion: If c = 0, r = 0 and d = 0 then the frequency of the wave is ω = −β3 f
and the solution of (2.22) is u(x, t) = αeiβ(x−β2 f t). This says that different
wave numbers travel with different speeds, and high wave numbers travel
faster than slow wave numbers.

2.5.2 Dimensionless Groups

Another collection of interesting partial differential equations involves the time
derivative and two other terms in (2.22a). There are five interesting cases among
the six possibilities:

convection–diffusion: Suppose that r = 0 and f = 0. Given some useful length
L (such as the problem length or the grid cell width), we can define a dimen-
sionless time coordinate τ = ct/L and a dimensionless spatial coordinate
η = (x − ct)/L . We then change variables by defining ũ(η, τ ) = u(x, t).
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These lead to the transformed diffusion equation

∂ ũ

∂τ
= d

cL

∂2ũ

∂η2
.

Here the ratio cL/d of convection to diffusion is called the Peclet number.
convection–dispersion: If r = 0 and d = 0 we can define τ = ct/L , η = (x −

ct)/L and ũ(η, τ ) = u(x, t) to obtain the dispersion equation

∂ ũ

∂τ
= f

cL2

∂3ũ

∂η3
.

The dimensionless ratio cL2/ f of convection to dispersion does not have a
commonly used label.

convection–reaction: If d = 0 and f = 0 we can define τ = ct/L , η = (x −
ct)/L and ũ(η, τ ) = u(x, t) to obtain the system of ordinary differential equa-
tions (parameterized by η)

∂ ũ

∂τ
= r L

c
ũ.

reaction–diffusion: If c = 0 and f = 0 we can define τ = r t , ξ = x/L and
eτ ũ(ξ, τ ) = u(x, t) to obtain the diffusion equation

∂ ũ

∂τ
= d

r L2

∂2ũ

∂ξ 2
.

reaction–dispersion: If c = 0 and d = 0 we can define τ = r t , ξ = x/L and
u(x, t) = eτ ũ(ξ, τ ) to obtain the dispersion equation

∂ ũ

∂τ
= f

r L3

∂3ũ

∂ξ 3
.

2.5.3 Linear Finite Differences and Advection

Although Fourier analysis is applicable to general linear partial differential equa-
tions, in this section we are interested only in linear advection. Recall that
the Fourier transform of the solution of the linear advection equation satisfies
û(ξ, t) = e−icξ t û0(ξ ). Thus

û(ξ, t + 
t) = e−iξc
t û(ξ, t),

so the exact solution merely involves multiplying the Fourier transform by a fixed
ratio. Let us define γ to be the (dimensionless) CFL number

γ = c
t


x
,
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and θ the (dimensionless) mesh wave number

θ = ξ
x .

Then the solution ratio is e−iξc
t = e−iθγ .
Next, let us consider a linear finite difference scheme∑

k

akun+1
j+k =

∑
k

bkun
j+k (2.24)

on an equally spaced space-time mesh tn = n
t , x j = j
x . We will assume that
the numerical scheme is nonzero only for x ∈ (−a, a) over all timesteps of interest;
as a result,

for all 0 ≤ n ≤ N = T/
t, for all | j | > J = a/
x un
j = 0.

We will define the finite Fourier transform of this discrete data to be

ûn(ξ ) =
J∑

j=−J

un
j e

−ı j
xξ 
x .

This finite Fourier transform of the discrete data is a midpoint rule approximation
to the Fourier transform of u(x, tn). Note that the corresponding inversion formula
for the finite Fourier transform is

un
j = 1

2π

∫ π/
x

−π/
x
ûn(ξ )eı j
xξ dξ. (2.25)

Also note that if we define the shift operators S+ and S− by

(S+u)n
j = un

j+1 and (S−u)n
j = un

j−1,

then it is easy to see that

(̂S+u)
n = eıξ
x ûn and (̂S−u)

n = e−ıξ
x ûn.

Thus, if we take the finite Fourier transform of the linear finite difference scheme
(2.24), we obtain[∑

k

akeikξ
x

]
ûn+1(ξ ) =

[∑
k

bkeikξ
x

]
ûn(ξ ).

Consequently, the finite Fourier transform at the new time satisfies

ûn+1(ξ ) =
∑

k bkeikξ
x∑
k akeikξ
x

ûn(ξ ).
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We define the numerical solution ratio by

z(θ ) = ûn+1(ξ )

ûn(ξ )
=

∑
k bkeikθ∑
k akeikθ

. (2.26)

We will say that the scheme (2.24) is dissipative if and only if |z| < 1 for all θ 	= 0
and dispersive if and only if arg(z)/θ depends on θ . Recall that if the complex
number z has the polar form z = |z|eiψ , then arg(z) ≡ ψ .

In order to assess the cumulative effect of numerical dissipation and dispersion
over several timesteps, we will compare the numerical solution to the analytical
solution at the time required for the wave to cross a grid cell. The number of
timesteps required for this crossing is 1/γ . The analytical solution at this time is

û(ξ, (n + 1/γ )
t) = û(ξ, n
t)e−iξc
t/γ = û(ξ, n
t)e−iθ ,

and the numerical solution is

ûn+1/γ (ξ ) = ûn(ξ )z(θ )1/γ .

These results give us quantitative measures of the errors introduced by numerical
methods. The total numerical dissipation error in the time required for the wave
to cross a grid cell is

|e−iθ | − |z(θ )|1/γ = 1 − |z(θ )|1/γ .

The total numerical dispersion is measured by the phase error

1 − arg
(
z(θ )1/γ

)
/ arg

(
e−iθ

) = 1 + arg
(
z(θ )1/γ

)
/θ.

The phase error measures the relative error in how fast information associated with a
specific mesh wave number moves in a single timestep, while the dissipation error
measures how much the amplitude of that information changes in one timestep.
Positive phase errors indicate that information associated with the particular mesh
wave number is moving slower than it should. Negative dissipation errors mean
that the amplitude is larger than it should be, and indicates instability.

Numerical schemes can be related to rational trigonometric polynomial approx-
imations of the form

z(θ ) ≡
∑

k bkeikθ∑
k akeikθ

≈ e−iγ θ .

The order of the scheme is the power p such that

z(θ ) − e−iγ θ = O(θ p+1). (2.27)

The order of the scheme contains information about the extent to which the scheme
is consistent with the differential equation; when we say that a scheme has positive
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order we mean that its local truncation tends to zero as the mesh size approaches
zero. However, a scheme can have positive order without being convergent.

An ideal scheme would have nearly no dispersion or dissipation over all wave
numbers. Since this is impossible, it is common to look for schemes that have
dissipation that matches dispersion in some useful sense, so that as waves are
dispersed away from some wave-front and appear as oscillations, there is sufficient
numerical dissipation to reduce the amplitude of these oscillations to acceptably
small levels.

2.5.4 Fourier Analysis of Individual Schemes

Let us consider explicit upwind differences for linear advection:

un+1
j = un

j − c
t


x
[un

j − un
j−1] = (1 − γ )un

j + γ un
j−1.

The Fourier transform of this scheme is

ûn+1(ξ ) = (1 − γ )ûn(ξ ) + γ e−iθ ûn(ξ ).

Thus the solution ratio is

z(θ ) = 1 − γ + γ e−iθ = [1 − γ (1 − cos θ )] − iγ sin θ. (2.28)

Note that the graph of z(θ ) in Figure 2.8 is a circle in the complex plane with center
1 − γ and radius γ . This circle is contained within the unit circle if and only if
γ ≤ 1.

Alternatively, we can compute the modulus of the solution ratio

|z(θ )|2 = [1 − γ (1 − cos θ )]2 + [γ sin θ ]2 = 1 − 4γ (1 − γ ) sin2(θ/2).

Thus the scheme is dissipative (i.e., for all θ we have |z(θ )| ≤ 1) if and only if
γ ≤ 1. The smallest solution ratio is associated with θ = π . At this value of θ the
wave number is ξ = π/
x ; in this case, the wavelength is on the order of the mesh
width. For a fixed mesh wave number θ , the solution ratio goes to one as γ → 1.
However the dissipation error

1 − |z(θ )|1/γ = 1 − [1 − 4γ (1 − γ ) sin2(θ/2)]1/(2γ )

does not go to zero uniformly as γ → 0.
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Fig. 2.8 Explicit upwind solution ratio

In order to determine the order of the explicit upwind scheme, we note that

z(θ ) − e−iγ θ = 1 − γ + γ cos θ − iγ sin θ − cos γ θ + i sin γ θ

= 1 − γ + γ

[
1 − 1

2
θ2 + O(θ4)

]
− iγ [θ − O(θ3)]

−
[

1 − 1

2
γ 2θ2 + O(γ 4θ4)

]
+ i[γ θ − O(γ 3θ3)]

= −1

2
γ (1 − γ )θ2 + O(θ3)

This shows that the explicit upwind scheme has order 1 for γ < 1.
Next, let us investigate the dispersion in the explicit upwind scheme. Note that

(2.28) shows that

tan(arg z(θ )) = −γ sin θ

1 − 2γ sin2(θ/2)
.

For large wave numbers θ → ±π we have that tan z(θ ) → 0. This says that high
wave numbers are nearly stationary. For small θ ,

arg z(θ ) = tan−1

[ −γ sin θ

1 − 2γ sin2(θ/2)

]
≈ −γ θ

[
1 − 1

6
(1 − 2γ )(1 − γ )θ2

]
+ o(θ3).

Thus for 1
2 < γ < 1 and small θ we have arg z(θ ) < −γ θ ; this says that low wave

numbers are dispersed behind for CFL greater than one half. For 1
2 > γ > 0 we

have arg z(θ ) > −γ θ ; this says that low wave numbers are dispersed ahead for CFL
less than one half.

Two values of the CFL number are special. For γ = 1 we have z(θ ) = e−iθ . In
this case, the explicit upwind scheme has zero dissipation and zero phase error;
in fact, in this case the scheme is exact for these input data. For γ = 1

2 , we have
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θ θ

(a) Dissipation error (b) Phase error

Fig. 2.9 Fourier analysis for explicit upwind differences. CFL values for the curves
are 0.9 (red), 0.7 (blue), 0.6 (green), 0.5 (yellow), 0.4 (cyan), 0.15 (magenta), 0.01
(black)

z(θ ) = 1
2 (1 + e−iθ ). In this case, we have

tan(arg z(θ )) = −sin θ

1 + cos θ
= tan(−θ/2) = tan(−γ θ ),

so again the scheme has zero phase error. These two choices of γ are very useful
in computation. We can keep both numerical dissipation and dispersion small by
taking γ to be slightly less than one; on the other hand, we can introduce numerical
dissipation (and smear numerical fronts) without dispersion (numerical oscillations)
by taking γ = 1

2 . For most problems, CFL numbers close to one give the best results.
Figure 2.9 shows the dissipation error 1 − |z(θ )|1/γ and phase error 1 +

arg(z(θ )1/γ )/θ for the explicit upwind scheme. This figure was produced by using
the C++ main program Program 2.5-22: fourierMain.C and Fortran subroutine Program
2.5-23: fourier.f. Students can produce error curves for individual values of the CFL
number by choosing scheme equal to 0 while running Executable 2.5-2: guifourier.

Next, recall explicit downwind differences for linear advection:

un+1
j = un

j − c
t


x
[un

j+1 − un
j ] = (1 + γ )un

j − γ un
j+1.

In this case the solution ratio is

z(θ ) = 1 + γ − γ eiθ . (2.29)

http://www.math.duke.edu/~johnt/math226/scalar_law/fourierMain.C
http://www.math.duke.edu/~johnt/math226/scalar_law/fourier.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=scalar_law_guifourier


2.5 Fourier Analysis of Finite Difference Schemes 47

(a) Dissipation error (b) Phase error

Fig. 2.10 Fourier analysis for explicit downwind differences. CFL values for the
curves are 0.99, 0.85, 0.6, 0.5, 0.4, 0.3 and 0.1; these appear in order from top to
bottom on the right in the dissipation errors, and from top to bottom in the middle
of the phase errors. Negative dissipation errors indicate instability.

Note that z(θ ) is the equation for a circle with center 1 + γ and radius γ . This circle
is never contained inside the unit circle. As a result, the explicit downwind scheme
is anti-dissipative.

This anti-dissipation appears as numerical instability. Numerical oscillations will
grow until they become too large to represent on the machine. Such a method is not
convergent, even though in this case the order of the scheme is 1. Here, it is useful to
recall that the order of a scheme, as defined in Equation (2.27) measures only how
the numerical solution ratio differs from the true solution ratio as the dimensionless
mesh wave number tends to zero. Figure 2.10 shows the results of a Fourier analysis
of the explicit downwind scheme. Note that the dissipation error is negative at all
mesh wave numbers for all values of CFL; this indicates unconditional instability.
Students can produce error curves for individual values of the CFL number by
choosing scheme equal to 1 while running Executable 2.5-2 with the scheme set
to explicit downwind.

Recall explicit centered differences for linear advection:

un+1
j = un

j − c
t

2
x
[un

j+1 − un
j−1] = 1

2
γ un

j−1 + un
j − 1

2
γ un

j+1.

In this case the solution ratio is

z(θ ) = 1

2
γ e−iθ + 1 − 1

2
γ eiθ = 1 − iγ sin θ.
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(a) Dissipation error (b) Phase error

Fig. 2.11 Fourier analysis for explicit centered differences. CFL values for the
curves are 0.99, 0.85, 0.6, 0.5, 0.4, 0.3 and 0.1; these appear in order from bottom
to top in the middle of the dissipation errors, and from top to bottom in the middle
of the phase errors. Negative dissipation errors indicate instability.

Note that

|z(θ )|2 = 1 + γ 2 sin2 θ.

Thus this scheme is anti-dissipative for all CFL numbers γ . Its order is 1.
The Fourier analysis of the explicit centered difference scheme is shown in
Figure 2.11. Students can produce error curves for individual values of the CFL
number by choosing scheme equal to explicit centered while running
Executable 2.5-2.

Let us consider implicit upwind differences for linear advection:

un+1
j = un

j − λ
t


x
[un+1

j − un+1
j−1].

This can be rewritten

(1 + γ )un+1
j − γ un+1

j−1 = un
j .

Thus the solution ratio is

z(θ ) = 1

1 + γ − γ e−iθ
.

Note that 1/z(θ ) is the equation for a circle with center 1 + γ and radius γ . Thus
this circle lies outside the unit circle for all γ , so z(θ ) lies inside the unit circle.
It follows that the scheme is dissipative. The dissipation increases (z(θ ) moves
farther into the interior of the unit circle) as γ increases. It is possible to see
that this scheme is more dissipative than explicit upwind differencing for small
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(a) Dissipation error (b) Phase error

Fig. 2.12 Fourier analysis for implicit upwind differences. CFL values for the
curves are 0.99, 0.85, 0.6, 0.5, 0.4, 0.3 and 0.1; these appear in order from bottom
to top on the right in the dissipation errors, and from top to bottom in the middle
of the phase errors.

θ at the same CFL number γ . The Fourier analysis of this scheme is shown in
Figure 2.12 Students can produce error curves for individual values of the CFL
number by choosing scheme equal to implicit upwind while running Exe-
cutable 2.5-2.

Let us consider implicit downwind differences for linear advection:

un+1
j = un

j − λ
t


x
[un+1

j+1 − un+1
j ].

This can be rewritten

γ un+1
j + (1 − γ )un+1

j = un
j .

Thus the solution ratio is

z(θ ) = 1

1 − γ + γ eiθ
.

Note that 1/z(θ ) is the equation for a circle with center 1 − γ and radius γ . Thus
this circle lies outside the unit circle for all γ > 1, so z(θ ) lies inside the unit
circle under these circumstances. It follows that the scheme is dissipative whenever
γ > 1.

Let us consider the Lax–Wendroff scheme for linear advection:

un+1
j = un

j − c
t

2
x
[un

j+1 − un
j−1] + 1

2

(
c
t


x

)2

[un
j+1 − 2un

j + un
j−1]

= 1

2
γ (1 + γ )un

j−1 + (1 − γ 2)un
j − 1

2
γ (1 − γ )un

j+1.
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θ θ

(a) Dissipation error (b) Phase error

Fig. 2.13 Fourier analysis for the Lax–Wendroff scheme. Dissipation error is small
for all wave numbers with CFL = 0.99, and increases at large wave number as
CFL decreases (0.85, 0.6, 0.5, 0.4), then decreases slightly at high wave number
for smaller CFL (0.3, 0.1); phase error is essentially zero for CFL = 0.99, then
becomes negative at large wave number (CFL = 0.85 and 0.6), then becomes zero
for all wave numbers at CFL = 0.5, and becomes positive for smaller CFL

Thus the solution ratio is

z(θ ) = 1

2
γ (1 + γ )e−iθ + 1 − γ 2 − 1

2
γ ((1 − γ )eiθ .

This implies that

|z(θ )|2 = 1 − 4γ 2(1 − γ 2)(sin θ/2)4

and the scheme is dissipative for γ < 1. The dissipation and phase errors for this
scheme are shown in Figure 2.13. Note that for CFL near one, both the dissipation
and phase errors are uniformly small for all mesh wave numbers. Students can
produce error curves for individual values of the CFL number by choosingscheme
equal to lax wendroff while running executable 2.5-2.

Finally, let us consider the leap-frog scheme for linear advection:

un+1
j = un−1

j − c
t


x
[un

j+1 − un
j−1].

Thus

vn+1 ≡
[

ûn+1

ûn

]
=

[−2ıγ sin θ 1
1 0

] [
ûn

ûn−1

]
≡ Avn.
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The matrix A in this expression has eigenvalues

λ = ±
√

1 − γ 2 sin2 θ − ıγ sin θ ;

in fact,

AX ≡
[−2ıγ sin θ 1

1 0

] [√
1 − γ 2 sin2 θ − ıγ sin θ −

√
1 − γ 2 sin2 θ − ıγ sin θ

1 1

]

=
[√

1 − γ 2 sin2 θ − ıγ sin θ −
√

1 − γ 2 sin2 θ − ıγ sin θ

1 1

]
[√

1 − γ 2 sin2 θ − ıγ sin θ −
√

1 − γ 2 sin2 θ − ıγ sin θ

1 1

]
≡ X�.

It follows that

vn = Anv0 = X�n X−1v0.

In other words,

ûn =
(√

1 − γ 2 sin2 θ − ıγ sin θ

)n

α +
(

−
√

1 − γ 2 sin2 θ − ıγ sin θ

)n

β

for some coefficients α and β that depend on the initial data for the scheme.
Since there is no well-defined solution ratio for the leap-frog scheme, we need

to find other ways in which to discuss its performance as a result of its Fourier
analysis. Note that for either eigenvalue of A,

|λ| = 1.

This result implies that if the initial data were chosen so that exactly one of α or
β were nonzero, then |ûn| would be constant for all n. In this sense, the leap-frog
scheme involves zero dissipation. On the other hand, this scheme does involve
phase errors, which we could examine in the special cases where exactly one of
α or β is nonzero. Students can produce error curves for individual values of the
CFL number by choosing scheme equal to leap frogwhile running executable
2.5-2.

It is possible to use energy estimates [151] to show that the leap-frog scheme is
stable for γ < 1.

Table 2.1 summarizes the results of our Fourier analyses.
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Table 2.1 Fourier Analysis Results

Dissipation error Phase error Order

explicit upwind dissipative for γ ∈ (0, 1)


negative for γ ∈ ( 1

2 , 1)
positive for γ ∈ (0, 1

2 )
zero for γ = 1

2 , 1
1

explicit downwind anti-dissipative for all γ positive for γ ∈ (0, 1) 1
explicit centered anti-dissipative for all γ positive for γ ∈ (0, 1) 1
implicit upwind dissipative for all γ positive for γ ∈ (0, 1) 1
implicit downwind dissipative for γ > 1 1

Lax–Wendroff dissipative for γ ∈ (0, 1)


negative for γ ∈ ( 1

2 , 1)
positive for γ ∈ (0, 1

2 )
zero for γ = 1

2 , 1
2

leap-frog dissipative for γ ∈ (0, 1) positive for γ ∈ (0, 1) 2

Exercises for 2.5

2.5.1 Plot the total dissipation 1 − |z(θ )|1/γ and the phase error |1 + arg(z(θ )1/γ )/θ | as functions of
the mesh wave number θ for −π ≤ θ ≤ π and γ = 0.9, 0.6, 0.5, 0.4 and 0.1 for each of the
following schemes
(a) explicit upwind
(b) explicit downwind
(c) explicit centered differences
Discuss which features of the plots indicate stability, and which features indicate order of con-
vergence.

2.5.2 Repeat the previous exercise for Eulerian-Lagrangian localized adjoint method [25, 172]

1

6
un+1

i+1 + 2

3
un+1

i + 1

6
un+1

i−1 = 1

6
(1 − α)3ui−�γ �−2 + 1

6
(4 − 6α2 + 3α3)ui−�γ �−1

+ 1

6
(1 + 3α + 3α2 − 3α3)ui−�γ � + 1

6
α3ui−�γ �+1

where

α = 1 − (γ − �γ �)

and

γ = c
t


x
.

Since this scheme is implicit, it is potentially competitive with explicit schemes only if it can take
larger timesteps than the explicit schemes. Therefore, pay particular attention to the behavior of
this scheme for CFL numbers γ > 1.
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2.5.3 The discontinuous Galerkin method [134] for linear advection

∂u

∂t
+ ∂(cu)

∂x
= 0

with c > 0 is determined by the weak form

0 =
∫ xi+1/2

xi−1/2

w(x)

[
∂u

∂t
+ ∂(cu)

∂x

]
dx

= d

dt

∫ xi+1/2

xi−1/2

w(x)ui (x, t) dx + w(xi+1/2)cui (xi+1/2, t)

− w(xi−1/2)cui−1(xi−1/2, t) −
∫ xi+1/2

xi−1/2

dw

dx
cui (x, t) dx .

Here ui (x, t) is a polynomial of degree at most p in x for each t , and w(x) is a basis function
for the set of all polynomials of degree at most p. In this formula, we used upwind values for the
fluxes at cell sides.
(a) If p = 0, then we can take w(x) = 1 and ui (x, t) = ui (t) and integrate in time by forward

Euler. Show that the resulting scheme is explicit upwind.
(b) If p = 1, then w0(x) = 1 and w1(x) = (x − xi )/
xi are orthogonal basis functions for first-

degree polynomials on (xi−1/2, xi+1/2). Use modified Euler time integration (y′ = f (y)
approximated by yn+1/2 = yn + (
t/2) f (yn), and yn+1 = yn + 
t f (yn+1/2)). Program the
resulting scheme, and test it for piecewise constant initial data.

(c) Perform a Fourier analysis on the scheme, and plot its dissipation and dispersion. What do
the results tell you about the scheme?

2.5.4 Choose one of either the Lax–Wendroff scheme, the leap-frog scheme, or the Eulerian–
Lagrangian localized adjoint method described above, and perform the following:
(a) Modify the GNUmakefile so that Program 2.5-24: fourierMain.C. calls the Fortran subroutine

fourier from whichever of Program 2.5-25: lax-wendroff.f, Program 2.5-26: leap-frog.f or
Program 2.5-27: ellam.f is appropriate for your choice of scheme. Plot the fourier analysis of
your scheme.

(b) Select interesting values of CFL for your scheme, and make runs with your scheme for
Riemann problem initial data and at most 100 grid cells. Explain why you chose these values
of CFL, and describe how your numerical results correspond to the results of the fourier
analysis.

2.6 L2 Stability for Linear Schemes

Let us recall Parseval’s identity for the finite Fourier transform

1

2π

∫ π/
x

−π/
x
|ûn(ξ )|2 dξ =

π/
x∑
j=−π/
x

|un
j |2
x ≡ ‖un‖2


x . (2.30)

http://www.math.duke.edu/~johnt/math226/scalar_law/fourierMain.C
http://www.math.duke.edu/~johnt/math226/scalar_law/lax_wendroff.f
http://www.math.duke.edu/~johnt/math226/scalar_law/leap_frog.f
http://www.math.duke.edu/~johnt/math226/scalar_law/ellam.f
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The corresponding Parseval identity for the Fourier transform is

1

2π

∫ ∞

−∞
|ûn(ξ )|2 dξ =

∫ ∞

−∞
|u(x)|2 dx . (2.31)

Then the definition (2.26) of the numerical solution ratio and Parseval’s identity
(2.30) imply that

J∑
j=−J

(un+1
j )2
x = 1

2π

∫ π/
x

−π/
x
|z(ξ
x)ûn(ξ )|2 dξ

≤ max
θ |≤π

{|z(θ )|}2 1

2π

∫ π/
x

−π/
x
|ûn(ξ )|2 dξ.

If max|θ |≤π {|z(θ )|} ≤ 1, then we see that

‖un+1‖2 ≡
√√√√ J∑

j=−J

(un+1
j )2
x ≤ max

|θ |≤π
{|z(θ )|} 1

2π

∫ π/
x

−π/
x
|ûn(ξ )|2

≤ 1

2π

∫ π/
x

−π/
x
|ûn(ξ )|2 =

√√√√ J∑
j=−J

(un
j )

2
x = ‖un‖2.

This shows that the L2 norm of the solution cannot grow whenever the modulus of
z is bounded above by 1.

Fourier analysis is seldom used for studying the convergence of linear schemes
on linear problems. However, it will be useful to examine how the dissipation and
phase errors affect the error in the numerical solution. From our Fourier inversion
formulas,

u( j
x, tn+1) − un+1
j = 1

2π

[∫ ∞

−∞
û(ξ, tn+1)eıxξ dξ −

∫ π/
x

−π/
x
ûn+1(ξ )eı j
xξ dξ

]
= 1

2π

[∫
|ξ |>π/
x

û(ξ, tn+1)eıxξ dξ

+
∫ π/
x

−π/
x
{û(ξ, tn)e−ıc
tξ eıxξ − ûn(ξ )z(ξ
x)eı j
xξ } dξ

]
= 1

2π

[∫
|ξ |>π/
x

û(ξ, tn+1)eıxξ dξ

+
∫ π/
x

−π/
x
z(ξ
x){û(ξ, tn)e−ıc
tξ − ûn(ξ )eı j
xξ } dξ

+
∫ π/
x

−π/
x
{e−ıc
tξ − z(ξ
x)}û(ξ, tn)eıxξ dξ

]
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The first term on the right is small if the solution involves very little high-frequency
information. The second term is small for all timesteps if z has modulus less than
one and the errors in the initial data for the numerical method are small. The third
term is small if z(ξ
x) is close to e−ıc
tξ ; for smooth initial data, only low wave
number information is important. This motivates our definition (2.27) of the order
of the scheme.

2.7 Lax Equivalence Theorem

For more information about the material in this section see, for example, Strikwerda
[154].

In Section 2.5 we considered the Fourier analysis of linear schemes for linear
advection. In this section, we will use Fourier analysis to examine more general
linear partial differential equations of the form

Pu ≡ ∂u

∂t
− Q

(
∂

∂x

)
u = 0. (2.32)

Here Q is some linear operator. If we take the Fourier transform of equation (2.32)
in space, we obtain

p

(
ξ,

∂

∂t

)
û(ξ, t) ≡ ∂ û

∂t
− q(ξ )û = 0 (2.33)

where q(ξ ) is whatever comes out of the Fourier transform of the spatial derivatives
in the partial differential equation. The function p(ξ, s) = s − q(ξ ) is called the
symbol in (2.32). Note that

p(ξ, q(ξ )) = 0.

It is also useful to note that the function wξ,s(x, t) ≡ est eıξ x is an eigenfunction of
the differential operator in (2.32); in other words,

Pwξ,s = [s − q(ξ )]wξ,s .

Example 2.7.1 The symbol for the linear advection operator ∂u
∂t + c ∂u

∂x is p(ξ, s) =
s + ıcξ . In this case, q(ξ ) = −ıcξ .

Example 2.7.2 The symbol for the linear diffusion operator ∂u
∂t − ∂

∂x

(
d ∂u

∂x

) = 0 is
p(ξ, s) = s + dξ 2. In this case, q(ξ ) = −dξ 2.

Next, suppose that we have a linear explicit two-step numerical scheme of the
form

P
x,
t u
n ≡

∑
k

akun+1
j+k −

∑
k

bkun
j+k = 0 (2.34)
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which is assumed to approximate the partial differential equation (2.32). If we take
the finite Fourier transform of this scheme, we obtain[∑

k

akeıkξ
x

]
ûn+1(ξ ) −

[∑
k

bkeıkξ
x

]
ûn(ξ ) = 0.

It is useful to define

wn
j = wξ,s( j
x, n
t) = esn
t eıξ j
x ,

which are the mesh values of the eigenfunction of the differential operator in (2.32).
Since

P
x,
tw
n
j =

{[∑
k

akeıkξ
x

]
es
t −

[∑
k

bkeıkξ
x

]}
wn

j ≡ p
x,
t (ξ, s)wn
j , (2.35)

we see that the mesh function wn
j is an eigenfunction of the difference operator

P
x,
t in the numerical scheme (2.34). Here p
x,
t (ξ, s) is called the symbol of
the numerical scheme. The solution ratio is the ratio

z(ξ
x) ≡
∑

k bkeıkξ
x∑
k akeıkξ
x

= ûn+1(ξ )

ûn(ξ )
.

Note that s = ln z(ξ
x)/
t is a zero of the symbol p
x,
t :

p
x,
t

(
ξ,

1


t
ln z(ξ
x)

)
= 0.

Example 2.7.3 The symbol for the explicit upwind scheme applied to linear
advection is p
x,
t (ξ, s) = es
t − [(1 − γ ) + γ eıξ
x ] and the solution ratio is
z(ξ
x) = (1 − γ ) + γ eıξ
x .

For computations that occur below, it will be useful to compute

∂p
x,
t

∂s
(ξ, s) = 
tes
t

∑
k

akeıkξ
x .

In particular, it will be useful to note that

∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
= 
t z(ξ
x)

∑
k

akeıkξ
x = 
t
∑

k

bkeıkξ
x .

Thus the zeros of
∂p
x,
t

∂s (ξ, 1

t ln z(ξ
x)) are the zeros of the trigonometric poly-

nomial
∑

k bkeıkξ
x , or equivalently, of the solution ratio z(ξ
x) considered as a
function of ξ .

Example 2.7.4 The solution ratio for the explicit upwind scheme applied to linear
advection with velocity c is z(ξ
x) = 1 − γ + γ eıξ
x , where γ = c
t/
x . In order



2.7 Lax Equivalence Theorem 57

for z to be zero, we must have (1 − γ )/γ = ±1, since |e−ıξ
x | = 1. The only
solution is γ = 1

2 and ξ = ±π/
x .

Definition 2.7.5 We will say that the scheme P
x,
t un = 0 is consistent with the
partial differential equation Pu = 0 if and only if

for all φ ∈ C∞ for all j ∈ Z for all n ∈ Z+ for all ε > 0 there exists 
x0 > 0

there exists 
t0 > 0 for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

|P
x,
tφ( j
x, n
t) − (Pφ)( j
x, n
t)| < ε.

Definition 2.7.6 We will say that the scheme P
x,
t un = 0 has order α in time and
order β in space if and only if the local truncation error satisfies

there exists α > 0 there exists β > 0 for all φ ∈ C∞ for all j ∈ Z for all n ∈ Z+
there exists Cα > 0 there exists Cβ > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

|P
x,
tφ( j
x, n
t) − (Pφ)( j
x, n
t)| ≤ Cα
tα + Cβ
tβ.

We expect that if the scheme is consistent with the partial differential equation,
then the zero s = 1


t ln z(ξ
x) of the symbol p
x,
t (ξ, s) of the numerical scheme
should be close to the zero s = q(ξ ) of the symbol p(ξ, s) of the partial differential
equation. The following lemma discusses one sense in which this is true.

Lemma 2.7.7 Suppose that the scheme P
x,
t un = 0 is consistent with the partial
differential equation Pu = 0. Further, suppose that the symbol p
x,
t (ξ, s) of the
scheme is continuously differentiable in s, and

∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0.

Then eq(ξ )
t − z(ξ
x) = o(
t); in other words,

for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0 for all δ>0 there exists 
x0 >0 there exists 
t0 >0

for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0] |eq(ξ )
t − z(ξ
x)| ≤ δ
t.

Proof Since s = q(ξ ) is a zero of the symbol p of the differential equation, the
definition of consistency 2.7.5 with φ(x, t) = eıxξ eq(ξ )t implies that

for all j ∈ Z for all n ∈ Z+ for all δ > 0 there exists 
x0 > 0

there exists 
t0 > 0 for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

δ > |p
x,
t (ξ, q(ξ ))eı jξ
x eq(ξ )n
t − p(ξ, q(ξ ))eı jξ
x eq(ξ )n
t |
= |p
x,
t (ξ, q(ξ ))|eq(ξ )n
t .
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Since s = 1

t ln z(ξ
x) is a zero of the symbol p
x,
t of the scheme,

e−q(ξ )n
tδ >

∣∣∣∣p
x,
t (ξ, q(ξ )) − p
x,
t

(
ξ,

1


t
ln z(ξ
x)

)∣∣∣∣
=

∣∣∣∣∫ q(ξ )

ln z(ξ
x)/
t

∂p
x,
t

∂s
(ξ, s) ds

∣∣∣∣
≥

∣∣∣∣q(ξ ) − 1


t
ln z(ξ
x)

∣∣∣∣ min
s∈ int(ln z(ξ
x)/
t,q(ξ ))

∣∣∣∣∂p
x,
t

∂s
(ξ, s)

∣∣∣∣ .
It follows that∣∣∣∣eq(ξ )
t − z(ξ
x)


t

∣∣∣∣ = 1


t

∣∣∣∣∫ q(ξ )
t

ln z(ξ
x)
es ds

∣∣∣∣
≤

∣∣∣∣q(ξ ) − 1


t
ln z(ξ
x)

∣∣∣∣ emax{q(ξ )
t,ln z(ξ
x)}

< δ
e−q(ξ )n
t emax{q(ξ )
t,ln z(ξ
x)}

mins∈ int(ln z(ξ
x)/
t,q(ξ ))

∣∣∣ ∂p
x,
t

∂s (ξ, s)
∣∣∣ .

Now choose ξ so that
∂p
x,
t

∂s is nonzero, and choose ε. The continuity of
∂p
x,
t

∂s
implies that

there exists γ > 0 there exists 
x0 > 0 there exists 
t0 for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

min
s∈ int(ln z(ξ
x)/
t,q(ξ ))

∣∣∣∣∂p
x,
t

∂s
(ξ, s)

∣∣∣∣ < γ.

Further, the continuity of q and z implies that

there exists β > 0 there exists n > 0 there exists 
x0 > 0 there exists 
t0

for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0] e−q(ξ )n
t emax{q(ξ )
t,ln z(ξ
x)} < β.

Since δ is arbitrary, we can choose δ < εγ/β so that the conclusion of the lemma
is satisfied. �

Corollary 2.7.8 Suppose that the scheme P
x,
t un = 0 is consistent with the par-
tial differential equation Pu = 0 of order α in time and β in space. Further, suppose
that the symbol p
x,
t (ξ, s) of the scheme is continuously differentiable in s, and

∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0.
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Then [eq(ξ )
t − z(ξ
x)]/
t = O(
tα) + O(
xβ); in other words,

for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0 there exists Cα > 0 there exists Cβ > 0

there exists 
x0 > 0 there exists 
t0 > 0 for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]∣∣∣∣eq(ξ )
t − z(ξ
x)


t

∣∣∣∣ ≤ Cα
tα + Cβ
xβ.

Proof Replace ε in the previous proof with Cα
tα + Cβ
xβ . �

Now that we have discussed consistency, let us turn to stability.

Definition 2.7.9 We will say that the scheme P
x,
t un = 0 is a stable finite dif-
ference approximation to the partial differential equation Pu = 0 if and only if

there exists 
x0 > 0 there exists 
t0 > 0 for all T > 0 there exists CT > 0

for all 
t ∈ (0, 
t0] for all n
t ∈ [0, T ] for all 
x ∈ (0, 
x0]

‖un‖2

x ≡ 
x

∞∑
j=−∞

|un
j |2 ≤ CT 
x

∞∑
j=−∞

|u0
j |2 ≡ CT ‖u0‖2


x . (2.36)

We expect that if the scheme is stable, then the solution ratio is bounded close to
one.

Lemma 2.7.10 Suppose that the scheme P
x,
t un = 0 is a finite difference approx-
imation to the partial differential equation Pu = 0, and that the solution ratio
z(ξ
x) for the scheme is continuous. Then the scheme is a stable finite difference
approximation to the partial differential equation if and only if z(ξ
x) bounded
close to one in the following sense:

there exists K > 0 there exists 
x0 > 0 there exists 
t0 > 0 for all 
t ∈ (0, 
t0]

for all 
x ∈ (0, 
x0] for all θ |z(θ )| ≤ 1 + K 
t. (2.37)

Proof First, we will prove that the bounded solution ratio condition implies stability.
By Parseval’s identity (2.30) and the fact that ûn+1(ξ ) = z(ξ
x)ûn(ξ ), inequality
(2.37) implies

‖un‖2

x =

∫ π/
x

−π/
x
|z(ξ
x)|2n|û0(ξ )|2 dξ ≤ (1 + K 
t)2n‖û0‖2


x

≤ [
(1 + K 
t)T/
t

]2 ‖û0‖2

x ≤ e2K T ‖û0‖2


x

This shows that the scheme is stable.
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Next, we will show that if inequality (2.37) cannot be satisfied, then the scheme
is not stable. The negation of (2.37) is

for all K > 0 for all 
x0 > 0 for all 
t0 > 0 there exists 0 < 
t ≤ 
t0

there exists 0 < 
x ≤ 
x0 there exists θ such that |z(θ )| > 1 + K 
t.

Since z is continuous,

for all K > 0 for all 
x0 > 0 for all 
t0 > 0 there exists 0 < 
t ≤ 
t0

there exists 0 < 
x ≤ 
x0 there exists θ1 < θ2 for all θ1 < θ < θ2 |z(θ )| > 1 + K 
t.

Given K and the corresponding 
x , θ1 and θ2, define the initial data in terms of its
finite Fourier transform by

û0(ξ ) =
{√


x/(θ2 − θ1), θ1 < ξ
x < θ2

0, otherwise.

Note that Parseval’s identity (2.30) implies that

‖u0‖2

x = ‖û0‖2 =

∫ θ2/
x

θ1/
x


x

θ2 − θ1
dξ = 1.

For any T > 0 and for n
t near T we have

‖un‖2

x =

∫ π/
x

−π/
x
|z(ξ
x)|2n|û0(ξ )|2 dξ =

∫ θ2/
x

θ1/
x
|z(ξ
x)|2n 
x

θ2 − θ1
dξ

≥ (1 + K 
t)2n ≥ 1

2
e2K T = 1

2
e2K T ‖u0‖2


x .

Since K is arbitrary, this shows that the negation of the stability definition (2.36)
holds, namely

for all 
x0 > 0 for all 
t0 > 0 there exists T > 0 for all CT > 0 there exists 0 < 
t ≤ 
t0

there exists 0 ≤ n
t ≤ T there exists 0 < 
x ≤ 
x0 such that ‖un‖2

x > CT ‖u0‖2


x

is satisfied with CT < 1
2 e2K T . �

Our next goal will be to study the connections between consistency, stability
and convergence. In order to do so, we will make use of two new devices. The
interpolation operator I
x : L2(Z
x) → L2(R) is defined for any grid function
v j in terms of its finite Fourier transform v̂ by

(I
xv)(x) = 1

2π

∫ π/
x

−π/
x
eıxξ v̂(ξ ) dξ. (2.38)
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Note that the interpolation operator takes a grid function and returns a function of
space that agrees in value with the grid function at the cell centers; in this way, it
interpolates the values at the cell centers at all points in space. This definition and
the Fourier inversion formula (2.25) implies that

Î
xv(ξ ) =
{

v̂(ξ ), |ξ | ≤ π/
x
0, |ξ | > π/
x .

Also, the truncation operator T
x : L2(R) → L2(Z
x) is defined for any L2 func-
tion u(x) in terms of its Fourier transform û by

(T
x u) j = 1

2π

∫ π/
x

−π/
x
eı j
xξ û(ξ ) dξ.

The truncation operator takes a function of space and returns a grid function that
agrees in value with its argument at the cell centers. Note that the finite Fourier
transform of T
x u satisfies

for all |ξ | ≤ π


x
T̂
x u(ξ ) = û(ξ ).

Both the interpolation operator and the truncation operator are linear.
These definitions lead to the following simple lemmas.

Lemma 2.7.11 If un
j is a grid function, then the interpolation operator (2.38)

satisfies

‖I
x un‖ = ‖un‖
x .

Proof Parseval’s identities (2.30) and (2.31) imply that

‖I
x un‖2 =
∫ ∞

−∞
|(I
x un)(x)|2 dx = 1

2π

∫ ∞

−∞
| Î
x un(ξ )|2(ξ ) dξ

= 1

2π

∫ π/
x

−π/
x
|û(ξ )|2(ξ ) dξ =

π/
x∑
j=−π/
x

|u j |2
x = ‖u‖2

x .

�

Lemma 2.7.12 Suppose that u ∈ L2(R) and the grid function v j are given. Then
the truncation operator (2.7) satisfies

for all 
x > 0, ‖T
x u − v‖
x ≤ ‖u − I
xv‖.
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Proof Using Parseval’s identities (2.30) and (2.31), we compute

‖T
x u − v‖2

x = 
x

π/
x∑
j=−π/
x

|(T
x u) j − v j |2 =
∫ π/
x

−π/
x
|T̂
x u(ξ ) − v̂(ξ )|2 dξ

=
∫ π/
x

−π/
x
|û(ξ ) − v̂(ξ )|2 dξ

≤
∫ π/
x

−π/
x
|û(ξ ) − v̂(ξ )|2 dξ +

∫
|ξ |>π/
x

|û(ξ )|2 dξ

=
∫ ∞

−∞
|û(ξ ) − Î
xv(ξ )|2 dξ = ‖u − I
xv‖2

�

Lemma 2.7.13 Suppose that u ∈ L2(R). Then Fourier interpolation applied to
truncation approaches the original function as the mesh is refined:

for all ε > 0 there exists 
x0 > 0 for all 0 < 
x ≤ 
x0, ‖u − I
x (T
x u)‖ < ε.

Proof We compute

‖u − I
x (T
x u)‖2 =
∫ ∞

−∞
|̂u(ξ ) − ˆI
x (T
x u)(ξ )|2 dξ

=
∫ π/
x

−π/
x
|û(ξ ) − T̂
x u(ξ )|2 dξ +

∫
|ξ |>π/
x

|û(ξ )|2 dξ

=
∫

|ξ |>π/
x
|û(ξ )|2 dξ.

Since u ∈ L2(R), the right-hand side of this inequality tends to zero as 
x → 0.
�

These results lead us to the following important theorem.

Theorem 2.7.14 (Lax Equivalence Part I: Stability Implies Convergence) Suppose
that the scheme P
x,
t un = 0 is defined by (2.34), and is consistent with the partial
differential equation Pu = 0, which is defined by (2.32). Further, suppose that the
symbol p
x,
t (ξ, s) of the scheme is defined by (2.35), is continuously differentiable
in s, and

∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0.

We also assume that the solution ratio z(ξ
x) for the scheme is continuous. We
assume that the symbol of the partial differential equation P is defined by (2.33),
and has the form p(ξ, s) = s − q(ξ ) where q(ξ ) is continuous. In addition, we
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assume that the partial differential equation Pu = 0 is stable, in the sense that

for all T > 0 there exists CT > 0 for all 0 ≤ t ≤ T for all ξ, |eq(ξ )t | ≤ CT . (2.39)

Finally, we assume that the initial data for the scheme is convergent to the true
initial data, in the sense that the interpolation operator (given by (2.38)) applied
to the initial data for the scheme approaches the true data in the following sense:

for all u0 ∈ L2(R) for all δ > 0 there exists 
x0 > 0 for all 0 < 
x ≤ 
x0

‖u0 − I
x u0‖ < δ (2.40)

Under these conditions, if the scheme is stable (see condition (2.36)) then it is
convergent, meaning that

for all u0 ∈ L2(R) for all ε > 0 for all T > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 0 < 
t ≤ 
t0 for all 0 ≤ n
t ≤ T for all 0 < 
x < 
x0 ‖u(·, n
t) − I
x un‖ < ε.

(2.41)

Proof Given any u0 ∈ L2(R), suppose that the grid function wn
j satisfies the scheme

P
x,
tw
n = 0 with initial data w0 = T
x u0. Using the finite Parseval identity (2.30)

we compute

‖u(·, n
t) − I
xw
n‖2

= 1

2π

∫ ∞

−∞
|û(·, n
t)(ξ ) − Î
xwn(ξ )|2 dξ

= 1

2π

∫ π/
x

−π/
x
|eq(ξ )n
t − z(ξ
x)n|2|û0(ξ )|2 dξ +

∫
|ξ |>π/
x

|eq(ξ )n
t û0(ξ )|2 dξ

≡ 1

2π

∫ ∞

−∞
φ
x (ξ ) dξ.

Here we have defined

φ
x (ξ ) ≡
{

|eq(ξ )n
t − z(ξ
x)n|2|û0(ξ )|2, |ξ | < π/
x

|eq(ξ )n
t |2|û0(ξ )|2, |ξ | ≥ π/
x .

Since the scheme is stable, Lemma 2.7.10 implies that the solution ratio is bounded
in the following sense:

there exists K > 0 there exists 
x0 > 0 there exists 
t0 > 0 for all 0 < 
t ≤ 
t0

for all 0 < 
x ≤ 
x0 for all θ |z(θ )| ≤ 1 + K 
t.
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This may place our first restrictions on 
x and 
t . Since the scheme is consistent,
Lemma 2.7.7 implies that

for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0

for all δ > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 0 < 
x ≤ 
x0 for all 0 < 
t ≤ 
t0 |eq(ξ )
t − z(ξ
x)| ≤ δ
t.

This places further restrictions on 
x0 and 
t , and possibly a restriction on ξ . These
last two inequalities imply that

there exists K > 0 for all δ > 0 for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0

there exists 
x0 > 0 there exists 
t0 > 0 for all 0 < 
x ≤ 
x0 for all 0 < 
t ≤ 
t0

|eq(ξ )
t | ≤ |eq(ξ )
t − z(ξ
x)| + |z(ξ
x)| ≤ 1 + (K + δ)
t.

The bounds on |z(θ )| and |eq(ξ )
t | imply

there exists K > 0

for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0 for all n ≥ 0

there exists 
x0 > 0

there exists 
t0 > 0

for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

|eq(ξ )n
t − z(ξ
x)n| =
∣∣∣∣∣(eq(ξ )
t − z(ξ
x))

n−1∑
k=0

eq(ξ )(n−k)
t z(ξ
x)k

∣∣∣∣∣
≤ |eq(ξ )
t − z(ξ
x)|n[1 + (K + δ)
t]n[1 + K 
t]n

≤ δn
te(2K+δ)n
t .

Thus φ
x (ξ ) → 0 almost everywhere as 
x, 
t → 0:

there exists K > 0 for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0 for all n ≥ 0

there exists 
x0 > 0 there exists 
t0 > 0

for all 
x ∈ (0, 
x0] for all 
t ∈ (0, 
t0]

φ
x (ξ ) ≤
{

(δn
t)2e2(2K+δ)n
t |û0(ξ )|2, |ξ | < π/
x
e2(K+δ)n
t |û0(ξ )|2, |ξ | ≥ π/
x .

Lebesgue’s dominated convergence theorem implies that

for all δ > 0 for all n > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 0 < 
x ≤ 
x0 for all 0 < 
t ≤ 
t0

‖u(·, n
t) − I
xw
n‖2 =

∫ ∞

−∞
φ
x (ξ ) dξ < δ. (2.42)
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For the general scheme with initial data u0
j we use the triangle inequality

‖u(·, n
t) − I
x un‖ ≤ ‖u(·, n
t) − I
xw
n‖ + ‖I
xw

n − I
x un‖. (2.43)

Lemma 2.7.11 implies that the second term on the right is ‖I
xw
n − I
x un‖ =

‖wn − un‖
x . Since both wn
j and un

j are grid functions generated by a stable linear
scheme

there exists K > 0 for all n > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 0 < 
t ≤ 
t0 for all 0 < 
x ≤ 
x0

‖wn − un‖2

x = 1

2π

∫ π/
x

−π/
x
|ŵn(ξ ) − ûn(ξ )|2 dξ

= 1

2π

∫ π/
x

−π/
x
|z(ξ
x)|2n|ŵ0(ξ ) − û0(ξ )|2 dξ

≤ (1 + K 
t)2n

2π

∫ π/
x

−π/
x
|ŵ0(ξ ) − û0(ξ )|2 dξ

≤ e2K n
t

2π

∫ π/
x

−π/
x
|ŵ0(ξ ) − û0(ξ )|2 dξ

= e2K n
t‖w0 − u0‖2

x .

Since the grid function wn
j uses initial data w0 = T
x u0, Lemma 2.7.12 together

with inequalities (2.43), (2.42) and (2.40) implies that

there exists K > 0 for all n > 0 there exists 
x0 > 0 there exists 
t0 > 0

for all 0 < 
t ≤ 
t0 for all 0 < 
x ≤ 
x0

‖u(·, n
t) − I
x un‖ ≤ ‖u(·, n
t) − I
xw
n‖ + eK n
t‖T
x u0 − u0‖
x

≤ ‖u(·, n
t) − I
xw
n‖ + eK n
t‖u0 − I
x u0‖
x .

We showed in inequality (2.42) that for any initial data and any ε > 0 and any n > 0
we can choose 
x and 
t so that the first of the two terms on the right hand side
is less than ε/2. Since we assumed in inequality (2.40) that the error in the initial
data can be chosen to be small, for any initial data and any ε > 0 we can further
restrict 
x so that the second of these two terms is less than ε/2. This proves the
conclusion (2.41) of our theorem, that stability implies convergence. �

Here is the second part of the Lax equivalence theorem.

Theorem 2.7.15 (Lax Equivalence Part II: Convergence implies stability) Suppose
that the scheme P
x,
t un = 0 is defined by (2.34), and is consistent with the partial
differential equation Pu = 0, which is defined by (2.32). Further, suppose that the
symbol p
x,
t (ξ, s) of the scheme is defined by (2.35), is continuously differentiable
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in s, and

∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0.

We also assume that the solution ratio z(ξ
x) for the scheme is continuous. We
assume that the symbol of the partial differential equation P is defined by (2.33),
and has the form p(ξ, s) = s − q(ξ ) where q(ξ ) is continuous. In addition, we
assume that the partial differential equation Pu = 0 is stable, in the sense that
condition (2.39) holds. Finally, we assume that the initial data for the scheme is
convergent to the true initial data, in the sense that the interpolation operator (given
by (2.38)) applied to the initial data for the scheme approaches the true data in the
following sense that condition (2.40) holds. Under these conditions, if the scheme
is not stable then it is not convergent.

Proof We will prove this by constructing initial data u0(x) so that the numerical
solutionwn

j , satisfying P
x,
tw
n = 0 andw0

j = T
x u0, does not converge to u(x, t).
Note that the negation of the stability condition in Lemma 2.7.10 says that the

solution ratio satisfies

for all K > 0 for all 
x0 > 0 for all 
t0 > 0 there exists 0 < 
t ≤ 
t0

there exists 0 < 
x ≤ 
x0 there exists θ such that |z(θ )| > 1 + K 
t.

Since the solution ratio z is assumed to be continuous, this negation of stability
implies that

for all K > 0 for all 
x0 > 0 for all 
t0 > 0 there exists 0 < 
t ≤ 
t0

there exists 0 < 
x ≤ 
x0 there exists ξK there exists ηK > 0 for all |ξ − ξK | ≤ ηK

|z(ξ
x)| > 1 + 1

2
K 
t.

In particular, we may further restrict the choices as follows:

for all K ∈ Z+ there exists 0 < 
tK < 
tK−1 there exists 0 < 
xK < 
xK−1 there exists ξK

there exists 0 < ηK ≤ 1/K 2 for all |ξ − ξK | ≤ ηK

|z(ξ
x)| > 1 + 1

2
K 
t. (2.44)

We now claim that for K > 1, the interval �K = [ξK − ηK , ξK + ηK ] can be
chosen to be disjoint from the previous intervals �1, . . . , �K−1. Note that this claim
is obviously satisfied for K = 1. We will prove the claim is true by induction and
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contradiction. Suppose that K > 1 is the first so that IK cannot be disjoint from the
previous intervals. In other words,

there exists K ∈ Z+ there exists 0 < 
tK < 
tK−1 there exists 0 < 
xK < 
xK−1

if there exists ξK there exists ηK > 0 for all ξ ∈ [ξK − ηK , ξK + ηK ] |z(ξ
x)| > 1 + 1

2
K 
t

then there exists J < K such that [ξK − ηK , ξK + ηK ] ⊂ [ξJ − ηJ , ξJ + ηJ ]

Then we must have the following bound on z outside the union of the previous
intervals:

there exists K ∈ Z+ there exists 0 < 
tK < 
tK−1

there exists 0 < 
xK < 
xK−1 such that for all ξ 	∈ ∪N<K IN ,

|z(ξ
x)| ≤ 1 + K 
tK .

Since the scheme is consistent, Lemma 2.7.7 implies that

for all ξ such that
∂p
x,
t

∂s

(
ξ,

1


t
ln z(ξ
x)

)
	= 0

for all ε > 0 there exists 
x∗ > 0 there exists 
t∗ > 0 such that

for all 0 < 
x ≤ 
x∗ for all 0 < 
t ≤ 
t∗∣∣∣∣eq(ξ )
t − z(ξ
x)


t

∣∣∣∣ ≤ ε.

As we noted above, the exclusions on ξ at the zeros of
∂p
x,
t

∂s are identical with
excluding ξ at zeros of z; these can be ignored for ξ ∈ ⋃

N<K IN , because z is large
there. Since

⋃
N<K IN is a union of closed bounded intervals and since q and z are

continuous,

there exists 
x∗ < 
xK there exists 
t∗ < 
tK

there exists C∗ > 0 for all ξ ∈ ∪N<K IN for all 0 < 
x ≤ 
x∗

for all 0 < 
t ≤ 
t∗

∣∣∣∣eq(ξ )
t − z(ξ
x)


t

∣∣∣∣ ≤ C∗.

Since the partial differential equation is assumed to be stable, inequality (2.39)
implies that

for all T > 0 there exists CT ≥ 1 for all 
t > 0

for all 0 ≤ n
t ≤ T for all M ≥ (C1/n
T − 1)/
t for all ξ

|eq(ξ )
t | = |eq(ξ )n
t |1/n ≤ C1/n
T ≤ 1 + M
t.
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Thus for sufficiently fine mesh and ξ 	∈ ∪N<K IN , |z(ξ
x)| is bounded by 1 + K 
t ,
while for ξ ∈ ∪N<K IN we can bound

|z(ξ
x)| ≤ |eq(ξ )
t | + 
t

∣∣∣∣eq(ξ )
t − z(ξ
x)


t

∣∣∣∣ ≤ (1 + M
t) + C∗
t.

Thus

there exists 
x∗ < 
xK there exists 
t∗ < 
tK there exists C∗ > 0

for all ξ for all 0 < 
x ≤ 
x∗ for all 0 < 
t ≤ 
t∗
|z(ξ
x)| ≤ 1 + max{K , C∗ + M}
t.

This contradicts our assumption that the scheme is unstable. Thus the intervals can
be chosen to be disjoint.

Next, let us use these disjoint intervals to define initial data for the partial differ-
ential equation. We choose

u0(x) =
∞∑

K=1

wK (x)

where the Fourier transform of wK is given by

ŵK (ξ ) =
{

1
K

√
ηK

, |ξ − ξK | ≤ ηK

0, otherwise.

Note that∫ ∞

−∞
|u0(x)|2 dx =

∞∑
K=1

1

2π

∫ ∞

−∞
|ŵK (ξ )|2 dξ = 1

π

∞∑
K=1

1

K 2ηK
ηK = 1

π

π2

3
= π

3
,

so u0 ∈ L2(R).
We now claim that the scheme does not converge for these initial data. First, we

note that

for all T > 0 there exists n > 0 there exists K ≥ 1
T

2
≤ n 
tK ≤ T and

CT − 1

K
≤ T

8
.

Next, note that for all ξ ∈ [ξK − ηK , ξK + ηK ], inequality (2.39) and then inequality
(2.44) imply that

|eq(ξ )n
t − z(ξ
xK )n| ≥ |z(ξ
xK )|n − CT ≥
(

1 + 1

2
K 
tK

)n

− CT .
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Lemma 2.7.12 and the inequality (1 + x)n ≥ 1 + nx (which holds for all x > 0 and
n ≥ 1) imply that

‖I
x un − u(·, tn)‖2 ≥ ‖un − T
x u(·, tn)‖2

x

= 1

2π

∫ ∞

−∞
|z(ξ
x)n − eq(ξ )n
t |2|û0(ξ )|2 dξ

= 1

2π

∞∑
N=1

∫ ∞

−∞
|z(ξ
x)n − eq(ξ )n
t |2|ŵN (ξ )|2 dξ

≥ 1

2π

∫ ξK +ηK

ξK −ηK

|z(ξ
x)n − eq(ξ )n
t |2|ŵK (ξ )|2 dξ

= 1

2π

[(
1 + 1

2
K 
tK

)n

− CT

]2 1

K 2ηK
2ηK

= 1

π

[
(1 + 1

2 K 
tK )n − CT ]2

K

]2

≥ 1

π

[
1 + 1

2 K n
tK − CT ]2

K

]2

≥ 1

π
(T/8)2.

We have shown that there exists initial data u0 so that for any time T > 0 there is an
error tolerance ε = T 2/(64π ) so that for all sufficiently fine mesh the error in the
numerical solution at time at most T is greater than ε. This proves that instability
implies non-convergence. �

The Lax equivalence theorem explains the importance of stability in the design
of convergent numerical methods. However, it is also important for the student
to remember the limitations of the assumptions in the theorem. In particular, the
theorem only applies to linear schemes for linear partial differential equations in
one spatial dimension. On the other hand, the theorem is very general, because it
makes no assumption about the type of the differential equation; it applies equally
well to linear advection and diffusion equations.

2.8 Measuring Accuracy and Efficiency

Different numerical schemes have different convergence properties, even when they
have the same order of convergence. It is important to compare the performance
of numerical schemes, in order to construct efficient numerical methods. For our
purposes, we will measure efficiency by comparing the computational time required
to achieve a specified numerical accuracy. This means that we will have to determine
how to measure the accuracy of numerical methods.
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The first difficulty we face in measuring the accuracy of finite difference methods
is that our numerical results have point values on a grid, while the solution of the
differential equation is defined on an interval in space. We could overcome this
problem by restricting the solution of the differential equation to points on the
grid, or by extending the numerical solution to all of the problem domain, and then
applying standard norms. The truncation operator in (2.7) and interpolation operator
in (2.38) served these purposes in section 2.7, in combination with L2 norms in space
or on a grid. However, the use of L2 norms for studying hyperbolic equations is
uncommon (especially for nonlinear problems). Also, L∞ norms (i.e., max norms)
are uncommon. Instead, we will typically use L1 norms in our comparisons. These
are still not ideal; in fact, theoreticians have not yet determined the norms that are
appropriate for proving existence or uniqueness of multidimensional hyperbolic
systems of conservation laws.

In Section 2.2 we developed conservative finite difference methods by construct-
ing various approximations to the time integrals of the flux in the integral form
of the conservation law. The numerical solution values were taken to be approx-
imations to the cell averages of the solution in equation (2.13). Thus it seems
reasonable to define the average of a function w(x) over a cell (xi−1/2, xi+1/2)
by

A(w)i ≡ 1

xi+1/2 − xi−1/2

∫ xi+1/2

xi−1/2

w(x) dx

and use the L1 norm

‖un − A(u(·, tn))‖1 ≡
I−1∑
i=0

∣∣∣∣∣un
i − 1


xi

∫ xi+1/2

xi−1/2

u(x, tn) dx

∣∣∣∣∣ 
xi

=
I−1∑
i=0

∣∣∣∣∣
∫ xi+1/2

xi−1/2

un
i − u(x, tn) dx

∣∣∣∣∣ , (2.45)

or the L∞ norm

‖un − A(u(·, tn))‖∞ ≡ max
0≤i<I

∣∣∣∣∣un
i − 1


xi

∫ xi+1/2

xi−1/2

u(x, tn) dx

∣∣∣∣∣ 
xi

= max
0≤i<I

∣∣∣∣∣
∫ xi+1/2

xi−1/2

un
i − u(x, tn) dx

∣∣∣∣∣ 1


xi
, (2.46)
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(a) Cell average vs. position (b) Discrete L1 error in cell average vs. time

Fig. 2.14 Explicit upwind scheme for linear advection at CFL = 0.9, velocity =
1.0, 100 grid cells, Riemann problem initial data with jump at x = 0.1

or the L2 norm

‖un − A(u(·, tn))‖2
2 ≡

I−1∑
i=0

∣∣∣∣∣un
i − 1


xi

∫ xi+1/2

xi−1/2

u(x, tn) dx

∣∣∣∣∣
2


xi

=
I−1∑
i=0

∣∣∣∣∣
∫ xi+1/2

xi−1/2

un
i − u(x, tn) dx

∣∣∣∣∣
2

1


xi
. (2.47)

Alternatively, we could define dimensionless relative errors by dividing the norms
above by the corresponding norms of the solution. These norms will determine the
accuracy of our methods.

Let us examine the use of these norms for the explicit upwind difference scheme.
In Figure 2.14 we show the numerical solution computed with a CFL number of
0.9 and 100 grid cells at time 0.5, superimposed with the true cell averages, in the
left-hand image. In the right-hand image of the same figure, we also show the L1

norm of the error, defined by Equation (2.45), versus time. Generally speaking, the
error increases with time, but does not increase monotonically. This is because the
L1 norm of the error is principally determined by the errors in just a couple of the
grid cells, and the positioning of the front within these grid cells. The results in
Figure 2.15 were computed with a CFL number of 0.1. Note that the resolution of the
propagating discontinuity is worse in this simulation, and the L1 norm of the error
in the computed results is larger. We expect the explicit upwind scheme to be more
accurate as the CFL number approaches one. These results were obtained by running
Executable 2.8-3: guilinearerror with initial-data equal to riemann, scheme
equal to explicit upwind and cfl equal to 0.9 or 0.1. Students will find

http://www5.math.duke.edu/cgi-bin/startvnc?run=scalar_law_guilinearerror
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(a) Cell average vs. position (b) Discrete L1 error in cell average vs. time

Fig. 2.15 Explicit upwind scheme for linear advection at CFL = 0.1, velocity =
1.0, 100 grid cells, Riemann problem initial data with jump at x = 0.1

(a) Log10 Error vs. -Log10 Cell Width (b) Log10 Error vs. Log10 Time

Fig. 2.16 Refinement Study with Explicit Upwind Scheme for Linear Advection
at CFL = 0.9

similar numerical results for square pulse, triangular pulse, smooth
Gaussian or quadratic pulse initial data. The plots of error versus time
are somewhat smoother when more grid cells are used (e.g. ncells = 1000).

It is also useful to examine how the computational errors behave as the mesh
is refined. In Figure 2.16 we show the results of a mesh refinement study for the
explicit upwind scheme. These results used Riemann problem initial data, and a CFL
number of 0.9. One interesting observation is that the error is roughly proportional
to

√

x , even though the explicit upwind scheme is supposedly first-order accurate.

The plot of error versus computational time shows somewhat erratic behavior for
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(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.17 Refinement Study with Explicit Upwind Scheme for Linear Advection
Square Pulse at CFL = 0.9

coarse mesh, due to the inherent inaccuracy in the available system timing routines.
For more refined computations, however, this figure seems to indicate that the
error is roughly proportional to the computational time raised to the power 0.25.
These results were obtained by running executable 2.8-3 with initial-data
equal to riemann, scheme equal to explicit upwind, cfl equal to 0.9 and
ncells equal to 0. This seemingly nonsensical value for the number of grid cells
is a signal for the executable to perform a mesh refinement study.

Figure 2.17 shows the results with the explicit upwind scheme for linear advection
of a square pulse. This figure will give the student an idea of how this scheme
converges during mesh refinement. Figure 2.18 shows how the implicit upwind
scheme converges for linear advection of a square pulse at CFL = 2. Figure 2.19
shows computational results for the implicit upwind scheme for linear advection of
a square pulse with various choices for CFL. Note that the results are significantly
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(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.18 Refinement study with implicit upwind scheme for linear advection
square pulse at CFL = 2.0

smeared for all values of CFL; the differences show up in the computational time,
because large values of CFL correspond to larger timesteps, which means fewer
timesteps and less computational time.

Figure 2.20 shows the results of mesh refinement for linear advection of a square
pulse with the Lax–Wendroff scheme. Note that the resolution of the pulse is better
than with either explicit or implicit upwind, but there are significant oscillations to
the left of each discontinuity in the pulse.

Figure 2.21 shows the error in the explicit upwind scheme, plotted against compu-
tational time for several values of the CFL number. From this picture, it is clear that
the explicit upwind scheme becomes more efficient as the CFL number approaches
1. In other words, the schemes requires less computational time to reach a given
level of accuracy as the CFL number is increased. The efficiency of the implicit
upwind scheme for this linear advection problem seems to be greatest for CFL
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(a) CFL = 0.9 (b) CFL = 2.0

(c) CFL = 5.0 (d) CFL = 10.0

Fig. 2.19 Study with implicit upwind scheme for linear advection square pulse
(100 cells)

numbers between 0.5 and 2. Low CFL numbers increase the cost of the implicit
upwind scheme while reducing the numerical spreading of the discontinuities. On
the other hand, high CFL numbers reduce the cost of the scheme while increasing the
numerical spreading of the discontinuities. Figure 2.22 shows the error refinement
study for the explicit upwind scheme at an efficient CFL number of 0.9, together
with the error refinement study for implicit upwind at its efficient CFL number of
1. This figure indicates that the explicit upwind scheme is more efficient than the
implicit upwind scheme for the linear advection problem with square pulse initial
data.

Our previous examples have involved linear advection with discontinuous initial
data. Since the analytical solution is not smooth, the numerical methods do not
reach their expected order of accuracy. It is reasonable to ask if the methods would
perform differently on a smooth problem. Figure 2.23 shows numerical results
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(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.20 Refinement study with Lax–Wendroff scheme for linear advection square
pulse at CFL = 0.9

Fig. 2.21 Refinement study with explicit upwind scheme for linear advection,
square pulse initial data, bottom: CFL = 0.9; middle: CFL = 0.5; top: CFL = 0.1
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Fig. 2.22 Refinement studies comparing explicit upwind scheme for linear advec-
tion, square pulse initial data

(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.23 Refinement study with explicit upwind scheme for linear advection
smooth Gaussian at CFL = 0.9
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(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.24 Refinement study with implicit upwind scheme for linear advection
smooth Gaussian at CFL = 2.0

for the explicit upwind scheme applied to linear advection with initial data given
by a narrow smooth Gaussian. Note that the peak value of the solution is not
very accurate in these simulations. However, the explicit upwind scheme does
significantly better than the implicit upwind scheme, for which the results are
shown in Figure 2.24. As expected, the Lax–Wendroff scheme does much better
than either of these schemes; see Figure 2.25. So, it is not surprising that when
we plot the errors for these schemes in Figure 2.26, we see that the Lax–Wendroff
scheme is the most accurate and efficient of the three. Furthermore, the accuracy
figure shows that the Lax–Wendroff scheme is indeed second-order, and the explicit
upwind scheme is first-order. If the mesh were refined even more, we would see
that the implicit upwind scheme is first-order accurate for the smooth Gaussian, as
well.



(a) 100 cells (b) 200 cells

(c) 400 cells (d) 800 cells

Fig. 2.25 Refinement study with Lax–Wendroff scheme for linear advection of a
smooth Gaussian at CFL = 0.9

Log(error) vs. Log(number cells) Log(error) vs. Log(computer time)

Fig. 2.26 Refinement studies comparing schemes for linear advection, smooth
Gaussian initial data (lower curves: Lax–Wendroff, middle curves: explicit
upwind, upper curves: implicit upwind



80 Scalar Hyperbolic Conservation Laws

It is tricky to compare numerical schemes for efficiency. The parameters that
make an individual scheme operate efficiently cannot be assumed to be the best
parameters for another scheme. Computational times can be affected by program-
ming care and the choice of computing machinery.

Some general observations may apply. It is reasonable to expect that implicit
numerical schemes are more efficient than explicit numerical schemes only if the
former can take timesteps much larger than the latter for a given level of accuracy.
This is because the implicit numerical schemes involve greater numerical cost in
solving the linear systems for the implicit treatment.

It is also reasonable to expect that high-order numerical schemes should be
more efficient than low-order numerical schemes when high accuracy is required.
This is because the low-order scheme produces small errors only by using small
mesh widths. Of course, this observation is problem-dependent. For example,
the Lax–Wendroff scheme is O(

√

x) for linear advection problems involv-

ing propagating discontinuities, first-order for problems with continuous but not
continuously differentiable initial data, and second-order accurate for smooth ini-
tial data. These results were obtained by running executable 2.8-3 with scheme
equal to lax wendroff. Figure 2.22 also shows the results of two mesh refine-
ment studies for the explicit upwind scheme and the Lax–Wendroff scheme for
smooth Gaussian initial data. Both schemes were run at CFL = 0.9. The results
show that the second-order Lax–Wendroff scheme is more efficient than the first-
order explicit upwind scheme for this problem at any of the mesh sizes in the
study.

Exercise for 2.8

2.8.1 The modified equation analysis in Section 2.3.1 showed that the explicit upwind difference scheme
is approximately solving a diffusion equation with diffusion coefficient proportional to the mesh
width. The discussion of convection–diffusion equations in Section 2.5.2 showed how to transform
a convection diffusion equation into a diffusion equation. Note that the analytical solution of the
diffusion equation involves a Green’s function that is proportional to one over the square root
of the diffusion coefficient. Use the analytical solution of the diffusion equation to explain why
the numerical solution of the linear advection problem with Riemann problem initial data should
have an error that decreases proportional to the square root of the mesh width.
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The linear advection equation is very easy to solve analytically, but somewhat tricky
to solve well numerically. We could design high-quality numerical methods that
would work particularly well for linear advection; for example, we could transform
to characteristic coordinates and solve ordinary differential equations. A number of
high-order pseudo-spectral [61] and collocation methods also work well for linear
advection. However, we will want to solve other more complicated problems. The
most challenging physical problems are nonlinear, because these develop propa-
gating discontinuities known as shocks. The mathematical foundations of shock
formation and propagation are discussed in Section 3.1. Several practical examples
of nonlinear scalar conservation laws are presented in Section 3.2. The chapter
concludes with several important numerical methods that are useful for solving
nonlinear scalar conservation laws.

3.1 Nonlinear Hyperbolic Conservation Laws

An excellent reference for the material in this section is the monograph by Lax
[89]. An alternative reference is LeVeque’s book [96], which also covers the theory
of numerical methods.

3.1.1 Nonlinear Equations on Unbounded Domains

The general nonlinear scalar conservation law on an unbounded domain takes the
form:

∂u

∂t
+ ∂ f (u)

∂x
= 0 for all t > 0 for all x ∈ R, (3.1a)

u(x, 0) = u0(x) for all x ∈ R. (3.1b)

81
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In these equations, u represents the density of some conserved quantity, and f (u)
represents the flux of that conserved quantity. Note that f (u) must have units of
velocity times units of u.

Example 3.1.1 The most common example of a nonlinear scalar conservation law
is Burgers’ equation [24], for which the flux function is

f (u) = 1

2
u2. (3.2)

This conservation law is not terribly important in practice, but it is useful in illus-
trating important concepts.

If we integrate Equation (3.1a) over a region a < x < b, we obtain

d

dt

∫ b

a
u(x, t) dx = − f (u(b, t)) + f (u(a, t)). (3.3)

This equation says that the rate of change of the conserved quantity in the fixed
region (a, b) is equal to the net flux into the interval. This equation should be
viewed as a fundamental physical principle, which is assumed to hold even in the
presence of discontinuities inside the interval (a, b). Actually, Equation (3.3) is the
most careful statement of a physical conservation law, and the partial differential
Equation (3.1a) is actually derived from the integral form (3.3) where appropriate.
We will discuss the meaning of “appropriate” in Section 3.1.4 below.

In order to develop numerical schemes, we often integrate this conservation law
over an interval (t1, t2) in time to obtain∫ b

a
u(x, t2) dx =

∫ b

a
u(x, t1) dx −

∫ t2

t1

f (u(b, t)) dt +
∫ t2

t1

f (u(a, t)) dt.

This equation says that the total conserved quantity at the new time t2 is equal to
the total at the old time, plus the total flux into the interval minus the total flux out.

3.1.2 Characteristics

The partial differential equation (3.1a) has quasilinear form

0 = ∂u

∂t
+ d f

du

∂u

∂x
= [

1 d f
du

] [
∂u
∂t
∂u
∂x

]
. (3.4)

Let us use the notation

λ(u) = d f

du
.

Note that λ has units of velocity. We will call λ the characteristic speed. If u(x, t)
has differentiable initial data u0(x), then the quasilinear form of the conservation
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law (3.4) shows that the gradient of u is orthogonal to the vector [1 λ(u)]. This
fact implies that u is constant along trajectories x = x(t) that propagate with speed
dx
dt = λ(u(x, t)), since

d

dt
u(x(t), t) = ∂u

∂t
+ ∂u

∂x

dx

dt
= ∂u

∂t
+ ∂u

∂x

∂ f

∂u
= 0.

As a result, a solution of the differential equation (3.4) is

u(x, t) = u0(x − tλ(u(x, t))). (3.5)

Note that this equation defines u(x, t) implicitly.

Lemma 3.1.2 If u0 is continuously differentiable in x, and the solution u(x, t) of
the initial value problem

∂u

∂t
+ ∂ f (u)

∂x
= 0 for all x ∈ R for all t > 0

u(x, 0) = u(x) for all x ∈ R

is continuously differentiable in x and t, then u is defined implicitly by (3.5), where
λ(u) ≡ d f

du .

Proof To check the solution (3.5) to problem (3.4), we will use implicit differen-
tiation:

∂u

∂t
=

{
−λ − t

∂λ

∂u

∂u

∂t

}
u′

0 =⇒ ∂u

∂t
= −λu′

0

1 + tu′
0

∂λ
∂u

, (3.6a)

∂u

∂x
=

{
1 − t

∂λ

∂u

∂u

∂x

}
u′

0 =⇒ ∂u

∂x
= u′

0

1 + tu′
0

∂λ
∂u

. (3.6b)

These equations imply that the solution (3.5) satisfies the quasilinear form (3.4),
provided that the initial data u0 is differentiable, and the denominator 1 + tu′

0
∂λ
∂u is

nonzero for all time t up to the time of interest. �

Example 3.1.3 The linear advection equation (2.1a) has flux f (u) = cu where c is a
constant. In this case, the characteristic speed is λ = d f

du = c. Since the characteristic
speed is constant, it is easy to see that the solution of the conservation law is

u(x, t) = u0(x − ct).

Example 3.1.4 Recall that Burgers’ equation has flux f (u) = 1
2 u2. In this case,

the characteristic speed is λ(u) = u, so the solution

u(x, t) = u0(x − tu(x, t))

is implicitly defined through the initial data u0.
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3.1.3 Development of Singularities

Since the solution (3.5) generally defines u implicitly, we need to find circumstances
under which we can solve this equation for u. We have used (3.6) to solve for the
partial derivatives of u when the initial data is differentiable. These equations allow
us to make several observations.

convex flux: Suppose that dλ
du > 0 for all u. In this case, Equations (3.6) show that

∂u
∂t and ∂u

∂x are bounded for all t if and only if u′
0(x) ≥ 0 for all x . In other words,

for convex flux functions, the temporal and spatial derivatives of the solution
are bounded for all time if and only if the initial data is a nondecreasing
function of x .

concave flux: Next, suppose that ∂λ
∂u < 0 for all u. In this case, ∂u

∂t and ∂u
∂x are

bounded for all t if and only if u′
0(x) ≤ 0 for all x . In other words, for concave

flux functions, the temporal and spatial derivatives of the solution are bounded
for all time if and only if the initial data is a nonincreasing function of x .

linear flux: Next, suppose that ∂λ
∂u = 0 for all u. In this case, ∂u

∂t = −λu′
0 and ∂u

∂x =
u′

0 are bounded for all t .

Example 3.1.5 Let us consider Burgers’ equation again. Here the flux function is
f (u) = 1

2 u2, so the characteristic speed is λ(u) = u and ∂λ
∂u = 1 > 0 for all u. Thus

the Burgers’ flux is convex. We expect the first-order partial derivatives of u to be
bounded for all t if and only if the initial data u0(x) is non-decreasing.

Suppose we are given the nonincreasing initial data

u0(x) =


1, x ≤ 0
1 − x, 0 ≤ x ≤ 1

0, 1 ≤ x,

as shown in Figure 3.1a. For x < 0, the characteristic lines intersecting the x axis
are given by x − t · 1 = const < 0; along these curves the solution is u(x, t) = 1.
For x > 1, the characteristic lines intersecting the x axis are given by x − t · 0 =
const > 1; along these curves the solution is u(x, t) = 0. For 0 < x < 1 the
characteristic lines intersecting the x axis are given by x − t · (1 − x0) = x0 ∈
(0, 1), which can be rewritten x(t) = x0(1 − t) + t . At t = 1, we have x(1) = 1
for any initial value x0 ∈ (0, 1). Thus all of these characteristic lines intersect
at x = 1, t = 1. Along these curves the solution of the conservation law is
u(x(t), t) = 1 − x(t) = (1 − x0)(1 − t) for 0 ≤ x0 ≤ 1 and 0 ≤ t ≤ 1. The charac-
teristics are shown in Figure 3.1b, and the solution at a time 0 < t < 1 is depicted in
Figure 3.1c.
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u

x x

t

(a) Initial Data (b) Characteristics

u

x

(c) Solution at time t < 1

Fig. 3.1 Decreasing data for Burgers’ equation

For 0 < x < 1 we have that u′
0 = −1 and ∂λ

∂u = 1; it follows that 1 + u′
0t ∂λ

∂u =
1 − t . Equation (3.6) shows that the partial derivatives of u become infinite at t = 1.
It follows that the solution (3.5) cannot be continuous for t ≥ 1.

3.1.4 Propagation of Discontinuities

As we have seen, hyperbolic conservation laws can develop discontinuities, even
when provided with continuous initial data. We would like to determine how a
discontinuity will propagate once it is formed. In developing the formula for the
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propagation of a discontinuity, we will use the notation limx↓z f (x) for the one-
sided limit from the right of f at z, and limx↑z f (x) for the one-sided limit from
the left of f at z.

Lemma 3.1.6 Suppose that u(x, t) satisfies the integral form of the conservation
law

d

dt

∫ b

a
u(x, t) dx = f (u(a, t)) − f (u(b, t)) for all 0 < t < T .

If u is discontinuous along the space-time curve (z(t), t) that moves with speed
dz
dt , then the jumps across the discontinuity satisfy the Rankine–Hugoniot jump
condition

for all 0 < t < T lim
x↓z(t)

f (u(x, t)) − lim
x↑z(t)

f (u(x, t))

=
{

lim
x↓z(t)

u(x, t) − lim
x↑z(t)

u(x, t)

}
dz

dt
. (3.7)

Proof We compute

f (u(a, t)) − f (u(b, t))

= d

dt

∫ b

a
u(x, t) dx

= d

dt

∫ z(t)

a
u(x, t) dx + d

dt

∫ b

z(t)
u(x, t) dx

=
∫ z(t)

a

∂u

∂t
dx + lim

x↑z(t)
u(x, t)

dz

dt
+

∫ b

z(t)

∂u

∂t
dx − lim

x↓z(t)
u(x, t)

dz

dt

=
∫ z(t)

a
−∂ f

∂x
dx +

∫ b

z(t)
−∂ f

∂x
dx +

{
lim

x↑z(t)
u(x, t) − lim

x↓z(t)
u(x, t)

}
dz

dt

=
{

f (u(a, t)) − lim
x↑z(t)

f (u(x, t))

}
+

{
lim

x↓z(t)
f (u(x, t)) − f (u(b, t))

}
+

{
lim

x↑z(t)
u(x, t) − lim

x↓z(t)
u(x, t)

}
dz

dt

= { f (u(a, t)) − f (u(b, t))} +
{

lim
x↓z(t)

f (u(x, t)) − lim
x↑z(t)

f (u(x, t))

}
+

{
lim

x↑z(t)
u(x, t) − lim

x↓z(t)
u(x, t)

}
dz

dt
.

After canceling the expression on the original left-hand side across the equation to
the final right-hand side, we obtain the claimed result. �
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The Rankine–Hugoniot jump condition says that the jump in the flux across the
discontinuity is equal to the jump in the density of the conserved quantity times the
speed of the discontinuity. It is customary to represent the jump in some quantity by
square brackets, and the discontinuity speed by σ . Thus for some function w(x, t)
with a jump at (z(t), t),

[w] ≡ lim
x↓z(t)

w(x, t) − lim
x↑z(t)

w(x, t),

and a discontinuity speed σ = dz
dt , the Rankine–Hugoniot jump condition (3.7) can

be written in the terse form

[ f ] = [u]σ.

Example 3.1.7 Consider the Burgers’ equation in example 3.1.5. We know that at
time t = 1 the solution of this equation must develop a discontinuity at x = 1. On
the right side of this discontinuity, the solution of the conservation law is u = 0,
as determined by tracing characteristics back to the initial condition at x > 1. On
the left side of the discontinuity, the solution of the conservation law is u = 1.
According to the Rankine–Hugoniot condition, the speed of the discontinuity once
it forms is

σ = [ f ]

[u]
= f (0) − f (1)

0 − 1
= 1

2
.

It follows that for 0 ≤ t ≤ 1 the solution of the conservation law is

u(x, t) =


1, t ≥ x
1−x
1−t , t ≤ x ≤ 1

0, 1 ≤ x,

and for 1 ≤ t the solution is

u(x, t) =
{

1, 1 + t > 2x
0, 1 + t < 2x .

Example 3.1.8 Next, consider Burgers’ equation with nondecreasing discontinu-
ous initial data

u0(x) =
{

0, x < 0
1, x > 0.

Figure 3.2 shows that the characteristics for these initial data do not intersect. If we
trace back to the axis at x < 0, the characteristics have the form x(t) = x0 < 0. If
we trace back to the other half of the axis at x > 0, the characteristics have the form
x(t) − t = x0 > 0. Thus the characteristics do not provide any information about
the solution of the conservation law in the region 0 < x < t . It appears that the
solution of this problem might not be unique. For example, the initial discontinuity
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u

x x

t

(a) Initial data (b) Characteristics

Fig. 3.2 Discontinuous decreasing data for Burgers’ equation

could continue to propagate with speed σ = [ f ]/[u] = 1
2 :

u(x, t) =
{

0, t > 2x
1, t < 2x .

On the other hand, the initial discontinuity could evolve into a continuous solution

u(x, t) =


0, x ≤ 0
x/t, 0 ≤ x ≤ t

1, x ≥ t.

The form of this solution for 0 ≤ x ≤ t can be determined as follows. The
solution must be constant along characteristics through the origin, and the speed of
the trajectory is λ = d f

du = u. Thus the characteristic has the form x − u(x, t)t = 0;
this implies that u(x, t) = x/t .

Example 3.1.9 Consider the following two forms of Burgers’ equation:

∂u

∂t
+ ∂ 1

2 u2

∂x
= 0,

and

∂(uk/k)

∂t
+ ∂(uk+1/(k + 1))

∂x
= 0,

both with discontinuous initial data

u0(x) =
{

u−, x < 0
u+, x > 0.
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The second form of the conservation law can be obtained by multiplying the first
form of Burgers’ equation by uk−1. Note that we get the same characteristic speeds
for both problems:

∂ 1
2 u2

∂u
= u = ∂

(
1

k+1 uk+1
)

∂u

(
∂( 1

k uk)

∂u

)−1

.

On the other hand, we get different discontinuity speeds from the Rankine–Hugoniot
jump conditions for these problems: the propagating discontinuity speeds are either[

1
2 u2

]
[u]

= 1

2

u2
+ − u2

−
u+ − u−

= 1

2
(u+ + u−),

or

[uk+1/(k + 1)]

[uk/k]
= k

k + 1

uk+1
+ − uk+1

−
uk+ − uk−

= k

k + 1

k∑
j=0

u j
+uk− j

− .

Again, we do not yet know which information correctly specifies the solution to
the problem.

3.1.5 Traveling Wave Profiles

The discussion in this section follows that in the book by Smoller [150].
As we mentioned in section 2.1.3, many hyperbolic conservation laws actually

represent the limit of a diffusion equation, in the limit as the diffusion approaches
zero. In order to determine when the solution of a conservation law involves a
propagating discontinuity, and to find the correct speed of the discontinuity, we will
return to the viscous form of the equation. The following lemma will determine
which are the correct propagating discontinuities for use in solving our nonlinear
conservation laws.

Lemma 3.1.10 Consider the viscous conservation law

∂uε

∂t
+ ∂ f (uε)

∂x
= ε

∂2uε

∂x2
for all x ∈ R for all t > 0, (3.8a)

uε(x, t) =
{

u−, x < 0
u+, x > 0.

(3.8b)

Here ε > 0 is assumed to be small. Suppose that this problem has a traveling wave
solution uε(x, t) = w( x−σ t

ε
), and that this traveling wave tends to constants at large

values of its argument:

lim
ξ→−∞

w(ξ ) = u−, lim
ξ→∞

w(ξ ) = u+.
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Then u− and u+ satisfy the Rankine–Hugoniot condition

f (u+) − f (u−) = (u+ − u−)σ (3.9)

and the traveling wave satisfies the ordinary differential equation

w′ = f (w) − f (u−) − σ (w − u−). (3.10)

If, in addition, uε(x, t) tends to a solution u(x, t) of the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0 for all x ∈ R for all t > 0,

then u− is an unstable stationary point of (3.10), u+ is a stable stationary point,
and the Lax admissibility conditions

f ′(u−) > σ > f ′(u+) (3.11)

are satisfied.

Proof Because of the diffusion, uε is smooth and the partial differential equation
(3.8) should be valid for all space and all positive time. We assume that we have a
traveling wave solution of the form

uε(x, t) = w

(
x − σ t

ε

)
.

In other words, w is a function of the variable ξ = x−σ t
ε

. If we substitute w into the
differential equation (3.8) we obtain

−σ

ε
w′ + 1

ε
f ′(w)w′ = ε

1

ε2
w′′.

Since the equation involves the same power of ε in all terms, this suggests that the
form of the traveling wave variable ξ is correct. If we cancel out ε and integrate
once with respect to ξ , we obtain

w′ = f (w) − σw + C, (3.12)

where C is independent of ξ .
In order for the traveling wave w to converge, as ε → 0, to a propagating dis-

continuity with value u− on the left of (x, 0) and u+ on the right, we have required

lim
ξ→−∞

w(ξ ) = u−, lim
ξ→∞

w(ξ ) = u+.

Since w must tend to a constant for large ξ , we obtain

0 = lim
ξ→−∞

w′(ξ ) = f (u−) − σu− + C,

0 = lim
ξ→∞

w′(ξ ) = f (u+) − σu+ + C.



3.1 Nonlinear Hyperbolic Conservation Laws 91

The former equation implies that

C = σu− − f (u−), (3.13)

and the latter equation then gives us an alternative derivation of the Rankine-
Hugoniot condition

f (u+) − f (u−) = (u+ − u−)σ.

If we substitute the value of C from Equation (3.13) into the Equation (3.12) for
the traveling wave derivative, we obtain (3.10).

Note that both w = u− and w = u+ are stationary points of the ordinary differen-
tial equation (3.10). In order for w to tend to a solution of the inviscid conservation
law with the prescribed values on either side of the discontinuity, we must find an
orbit of the ordinary differential equation (3.10) such that

lim
ξ→−∞

w(ξ ) = u−, lim
ξ→∞

w(ξ ) = u+.

We also want u− to be an unstable stationary point of this orbit, and we want u+ to
be a stable stationary point.

To determine the stability of stationary points for w, we will consider a pertur-
bation of w:

d(w + yδ)

dξ
= f (w + yδ) − f (u−) − σ (w + yδ − u−).

We can subtract the traveling wave equation for w (3.10) from this equation and
take δ to be small, in order to obtain

dy

dξ
= ( f ′(w) − σ )y.

So that u− is an unstable stationary point, and u+ is a stable stationary point, of
Equation (3.10), we must have

f ′(u−) − σ > 0, f ′(u+) − σ < 0.

These imply the Lax admissibility condition (3.11). �

Definition 3.1.11 A propagating discontinuity that satisfies the Lax admissibility
conditions (3.11) is called a shock.

The Lax admissibility conditions can be used to determine the correct solutions
to conservation laws where characteristic information may not suffice.

Example 3.1.12 Let us return to Burgers’ equation with nondecreasing discontin-
uous initial data

u0(x) =
{

0, x < 0
1, x > 0.
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If this problem involves a propagating discontinuity, the speed of the discontinuity
must be determined by the Rankine–Hugoniot condition:

σ = [ f ]/[u] = 1

2
.

We would like to determine if this propagating discontinuity is the limit as diffusion
vanishes of a solution to the viscous Burgers’ equation. Thus we must check the Lax
admissibility conditions (3.11). Note that u− = 0 and f ′(u−) = u− = 0. Thus the
left-hand admissibility condition in (3.11) is violated. This problem cannot involve
a shock. Thus the initial discontinuity evolves into a continuous solution. We will
determine the form of this continuous solution in Section 3.1.8 below.

Example 3.1.13 Recall the following two forms of Burgers’ equation:

∂u

∂t
+ ∂ 1

2 u2

∂x
= 0,

and

∂uk/k

∂t
+ ∂uk+1/(k + 1)

∂x
= 0,

with discontinuous initial data

u0(x) =
{

u−, x < 0
u+, x > 0.

Note that we cannot obtain the viscous form of the second equation by multiply-
ing the viscous form of Burgers’ equation by uk−1. Since the two problems have
different shock speeds, namely

1
2 u2

+ − 1
2 u2

−
u+ − u−

= u+ + u−
2

and

1

k + 1

uk+1
+ − uk+1

−
u+ − u−

=
∑k

j=0 uk− j
+ u j

−
k + 1

,

they also have different Lax admissibility conditions. Thus it is possible for the
two problems to have different solutions.

3.1.6 Entropy Functions

Definition 3.1.14 Given a hyperbolic conservation law with flux f (u), suppose
that we can find a continuous function s(u) and a continuous function ψ(u) so that

dψ

du
= ds

du

d f

du
. (3.14)
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Then s(u) is called an entropy function and ψ(u) is called the corresponding
entropy flux.

Lemma 3.1.15 If s(u) is an entropy function for the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

and if the solution u(x, t) of the conservation law is continuously differentiable,
then s satisfies the conservation law

∂s(u)

∂t
+ ∂ψ(u)

∂x
= 0 (3.15)

Proof We compute

∂s

∂t
+ ∂ψ

∂x
= ds

du

∂u

∂t
+ dψ

du

∂u

∂x
= ds

du

{
∂u

∂t
+ ∂ f

∂x

}
= 0.

�

Lemma 3.1.16 Suppose that s(u) is an entropy function for the conservation law

for all x ∈ R for all t > 0
∂u

∂t
+ ∂ f (u)

∂x
= 0

and uε(x, t) satisfies the viscous conservation law

for all x ∈ R for all t > 0
∂uε

∂t
+ ∂ f (uε)

∂x
= ε

∂2uε

∂x2
,

with ε > 0. Also suppose that almost everywhere in x and t, uε(x, t) → u(x, t). If
s(u) is convex and s(u(x, t)) is bounded for all x and t, then

for all φ(x, t) ≥ 0, φ ∈ C∞
0 (R × R)

−
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
s(u) + ∂φ

∂x
ψ(u) dx dt −

∫ ∞

−∞
φ(x, 0)u(x, 0) dx ≤ 0.

Proof The maximum principle shows that the viscous conservation law has at most
one solution, but the conservation law may have multiple solutions; this is the
reason for the assumption that uε converges to u. Also note that the solution uε of
the viscous conservation law is smooth for any ε > 0.

Since s(u) is an entropy function with entropy flux ψ(u) for our conservation
law, we have that

0 = ∂s

∂u

[
∂uε

∂t
+ ∂ f (uε)

∂x
− ε

∂2uε

∂x2

]
= ∂s(uε)

∂t
+ ∂ψ(uε)

∂x
− ε

∂

∂x

(
∂s

∂u

∂uε

∂x

)
+ ε

∂2s

∂u2

(
∂uε

∂x

)2

.
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Since the solution uε of the viscous conservation law is smooth, for any nonnegative
smooth φ(x, t) we can compute∫ ∞

0

∫ ∞

−∞

[
∂s(uε)

∂t
+ ∂ψ(uε)

∂x

]
dx dt = −

∫ ∞

0

∫ ∞

−∞

∂φ

∂t
s(uε) + ∂φ

∂x
ψ(uε) dx dt

−
∫ ∞

−∞
φ(x, 0)uε(x, 0) dx .

We can also compute∫ ∞

0

∫ ∞

−∞
φ

∂

∂x

(
∂s

∂u

∂uε

∂x

)
dx dt = −

∫ ∞

0

∫ ∞

−∞

∂φ

∂x

∂s(uε)

∂x
dx dt

=
∫ ∞

0

∫ ∞

−∞

∂2φ

∂x2
s(uε) dx dt

and note that the convexity of s implies that∫ ∞

0

∫ ∞

−∞
φ

∂2s

∂u2

(
∂uε

∂x

)2

dx dt ≥ 0.

Putting these results together, we obtain

0 ≥ −
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
s(uε) + ∂φ

∂x
ψ(uε) dx dt −

∫ ∞

−∞
φ(x, 0)uε(x, 0) dx

− ε

∫ ∞

0

∫ ∞

−∞

∂2φ

∂x2
s(uε) dx dt

Since s(u) is bounded and uε → u almost everywhere, the term involving a factor
of ε tends to zero as ε → 0. Taking limits as ε → 0 now produces the claimed
result. �

Often, the result of this lemma is written in the form of an inequality, which is said
to hold “weakly”:

∂s(u)

∂t
+ ∂ψ(u)

∂x
≤ 0. (3.16)

Also note that similar results can be proved if the entropy function is concave; the
obvious inequalities are reversed.

Next, let us discuss the behavior of the entropy at a discontinuity.

Lemma 3.1.17 Suppose that the solution u(x, t) of the conservation law

for all x ∈ R for all t > 0
∂u

∂t
+ ∂ f (u)

∂x
= 0

is the limit, as the diffusion tends to zero, of the corresponding viscous conservation
law. Further suppose that u(x, t) involves an isolated discontinuity located at x(t)
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and moving with speed σ = dx
dt . If the entropy s(u) is convex, then the jumps in the

entropy flux and entropy function at x(t) satisfy

[ψ] ≤ [s]σ.

Proof Suppose that φ(x, t) ∈ C∞
0 ((−∞, ∞) × (0, ∞)) and φ(x(t), t) > 0. From

Lemma 3.1.16 we have

0 ≥ −
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
s + ∂φ

∂x
ψ dx dt

= −
∫ ∞

0

∫ x(t)

−∞

[
∂
∂x

∂
∂t

] [
φψ

φs

]
dx dt +

∫ ∞

0

∫ x(t)

−∞
φ

[
∂s

∂t
+ ∂ψ

∂x

]
dx dt

−
∫ ∞

0

∫ ∞

x(t)

[
∂
∂x

∂
∂t

] [
φψ

φs

]
dx dt +

∫ ∞

0

∫ ∞

x(t)
φ

[
∂s

∂t
+ ∂ψ

∂x

]
dx dt

If the support of φ is chosen so that no other discontinuity of u lies in its support,
then Lemma 3.1.15 shows that

0 ≥ −
∫ ∞

0

∫ x(t)

−∞

[
∂
∂x

∂
∂t

] [
φψ

φs

]
dx dt −

∫ ∞

0

∫ ∞

x(t)

[
∂
∂x

∂
∂t

] [
φψ

φs

]
dx dt

Using the divergence theorem, we can rewrite this result in the form

0 ≥ −
∫ ∞

0

[
1 dx(t)

dt

] [
φψ

φs

]
|x=x(t)−0 dt +

∫ ∞

0

[
1 dx(t)

dt

] [
φψ

φs

]
|x=x(t)+0 dt

=
∫ ∞

0
φ

{
[ψ] − [s]

dx(t)

dt

}
dt.

The result follows by noting that the support of φ is arbitrary. �

3.1.7 Oleinik Chord Condition

The following result is due to Kruzkov [84].

Lemma 3.1.18 For any scalar conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

and any constant c,

sc(u) = |u − c|
is a convex entropy function with entropy flux

ψc(u) = [ f (u) − f (c)]sign(u − c).
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Proof Note that sc and ψc are continuous, sc is convex, and

dψc

du
= −d f

du
sign(u − c) = d f

du

dsc

du
.

�

The following lemma is very useful in describing the solutions of hyperbolic
conservation laws. The reader can find some pictures of this result in Figures 3.3
and 3.4 below.

Lemma 3.1.19 Suppose that u(x, t) solves the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

and that u is the limit of the solution of the viscous conservation law as the
diffusion tends to zero. If u(x, t) has a propagating discontinuity at x(t), with
uL (t) = limx↑x(t) u(x, t) and u R(t) = limx↓x(t) u(x, t), then the Oleinik chord
condition is satisfied:

f (u) − f (uL )

u − uL
≥ σ ≡ f (u R) − f (uL )

u R − uL
≥ f (u R) − f (u)

u R − u
for all u between u− and u+.

(3.17)

Proof Lemma 3.1.17 shows that

0 ≥ {ψc(u R) − ψc(uL )} − {sc(u R) − sc(uL )}σ
= { f (u R) − f (c)}sign(u R − c) − { f (uL ) − f (c)}sign(uL − c)

− {|u R − c| − |uL − c|}σ.

In the case uL < c < u R , we obtain

0 ≤ −{ f (u R) − f (c)}sign(u R − c) + { f (uL ) − f (c)}sign(uL − c)

+ {|u R − c| − |uL − c|}σ
= 2 f (c) − f (u R) − f (uL ) − {2c − u R − uL}σ.

By adding the Rankine–Hugoniot jump condition 0 = f (u R) − f (uL ) − {u R −
rL}σ to this result, we obtain

0 ≤ 2 { f (c) − f (uL ) − (c − uL )σ };
by subtracting the Rankine–Hugoniot condition we obtain

0 ≤ 2 { f (c) − f (u R) − (c − u R)σ }.
By choosing c to be an intermediate state u, we obtain (3.17). A similar argument
can be used in the case u R < uL . �
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3.1.8 Riemann Problems

As we have seen, it is interesting to consider conservation laws with piecewise-
constant initial data:

d

dt

∫ b

a
u(x, t) dx + f (u(b, t)) − f (u(a, t)) = 0 for all a < b for all t > 0, (3.18a)

u(x, 0) =
{

u−, x < 0
u+, x > 0.

(3.18b)

Initial value problems for conservation laws on the entire real line with initial data
given by two constant states are called Riemann problems. We would like to
understand the analytical solutions to these problems.

The solutions of Riemann problems are self-similar. By this, we mean that
u(x, t) is a function of x/t ; as a result, we will be able to write the solution of the
Riemann problem in the form

u(x, t) = R
(

u−, u+;
x

t

)
.

This fact will require some explanation.
If the self-similar solution w is differentiable, then

∂u

∂t
= −w′ x

t2
,

∂u

∂x
= w′ 1

t
.

In order for u(x, t) = w(x/t) to satisfy the conservation law (3.18a), we must have

0 = −w′ x

t2
+ λw′ 1

t
=

(
λ − x

t

)
w′ 1

t
.

Here λ = f ′(w) is the characteristic speed. It follows that the centered rarefac-
tion w(x/t) will satisfy the conservation law (3.18a) whenever x/t is equal to a
characteristic speed. Note that in order to have a continuous solution w the char-
acteristics must not collide; in other words, a centered rarefaction requires that
f ′(u−) < f ′(u) < f ′(u+) for all states u between u− and u+. If u− < u+, the exis-
tence of a single centered rarefaction connecting the left and right states requires the
flux function to be convex on (u−, u+); if u− > u+, a centered rarefaction between
u− and u+ requires the flux function to be concave in the interval (u+, u−).

Example 3.1.20 Let us return to Burgers’ equation with nondecreasing discontin-
uous initial data

u0(x) =
{

0, x < 0
1, x > 0.

We saw in Example 3.1.12 that this problem cannot involve a shock. Thus the initial
discontinuity evolves into a continuous solution. This continuous solution must be
self-similar, with x/t = d f

du = u inside any centered rarefaction. Thus the solution
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of this Riemann problem is

u(x, t) =


0, x ≤ 0
x/t, 0 ≤ x/t ≤ 1

1, 1 ≤ x/t.

We can always construct a discontinuous self-similar solution to a Riemann
problem:

w(x/t) =
{

u−, x < σ t
u+, x > σ t.

Here σ = [ f ]/[u] is the Rankine–Hugoniot jump speed. In order for this disconti-
nuity to be a shock, the shock speed must satisfy the Lax admissibility conditions
(3.11), i.e.,

f ′(u−) > σ > f ′(u+).

In order for this single discontinuity to remain coherent, the discontinuity must
satisfy the Oleinik chord condition (3.17).

This gives a simple rule for solving Riemann problems for general scalar flux
functions.

Algorithm 3.1.21 Scalar conservation law Riemann problem solution

(i) If u− < u+, then the solution of the Riemann problem is determined by the convex hull
of the flux function on (u−, u+). (The convex hull is the largest convex function less than
or equal to the given flux function.) Wherever the convex hull is equal to a continuous
portion of f , we have a centered rarefaction, and wherever the convex hull jumps
across points on f , we have a(n admissible) shock.

(ii) On the other hand, if u− > u+, then the solution of the Riemann problem is determined
by the concave hull of the flux function on (u+, u−). (The concave hull is the smallest
concave function greater than or equal to the given flux function.) Wherever the concave
hull is equal to a continuous portion of f , we have a centered rarefaction, and wherever
the concave hull jumps across points on f , we have a(n admissible) shock.

Example 3.1.22 Consider the general flux function in Figure 3.3. This flux function
is neither convex nor concave between the left and right states for the Riemann
problem. In this case, the left state is less than the right state, so the solution of the
Riemann problem is determined by the convex hull of the flux function between the
two states in the Riemann problem. This leads to a solution involving a rarefaction
moving rapidly to the left, followed by a shock, a transonic rarefaction (meaning
that the characteristic speeds change sign), and a shock moving to the right behind
a fast rarefaction. It is most appropriate to plot the solution of the Riemann problem
versus the self-similar coordinate x/t . When we plot the characteristic speeds for
the solution of this problem, we find that λ = x/t in rarefactions, so these curves
follow lines with unit slope through the origin. Characteristic speeds must not
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Fig. 3.3 Riemann problem for general flux function

decrease from left to right in a rarefaction, otherwise we could not draw a picture
of the conserved quantity as a function of x/t .

Example 3.1.23 We can also consider the same flux function as in the previous
example, but reverse the left and right states. This leads to Figure 3.4. In this case,
the left state is greater than the right state, so the solution follows the concave hull
of the flux function.

3.1.9 Galilean Coordinate Transformations

Occasionally it is useful to study a conservation law in a moving frame of reference.
Suppose that we have a coordinate system (ξ, τ ) moving at a fixed velocity c with
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Fig. 3.4 Riemann problem for general flux function

respect to the coordinate system (x, t):

ξ = x − ct, τ = t.

Let ũ(ξ, τ ) ≡ u(x, t) where u satisfies the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0.

Then it is easy to see that

∂ f (u)

∂x
= ∂ f (ũ)

∂ξ
and

∂u

∂t
= ∂ ũ

∂τ
− c

∂ ũ

∂ξ
.

Thus in the moving frame of reference, the conservation law takes the form

∂ ũ

∂τ
+ ∂( f (ũ) − cũ)

∂ξ
= 0.



3.1 Nonlinear Hyperbolic Conservation Laws 101

This suggests that we define the flux in the moving frame of reference to be f̃ (ũ) =
f (ũ) − cũ. In the moving frame of reference, the characteristic speeds are

λ̃ = d f̃

dũ
= f ′(ũ) − c = λ − c

and the speeds of propagating discontinuities are

σ̃ = [ f̃ ]

ũ]
= [ f ] − c[ũ]

[ũ]
= [ f ]

[u]
− c = σ − c.

Thus, we can arbitrarily adjust the speed c so that specific points in the solution
of a problem move at some desired speed. For example, for a Riemann problem
with a shock we can choose a Galilean transformation that transforms to a problem
with a stationary discontinuity.

Exercises for 3.1

3.1.1 Suppose that we want to solve Burgers’ equation with initial data u0(x) = x2 for x ≥ 0. Show
that the solution is

u(x, t) = 1

2t2
[1 + 2xt − √

1 + 4xt].

3.1.2 Show that in a Riemann problem for Burgers’ equation, the flux at the state that moves with zero
speed is

f =
{

1
2 max{uL , min{u R, 0}}2, uL < u R

1
2 max{|uL |, |ur |}2, uL ≥ u R .

3.1.3 Show that the solution to the scalar Riemann problem is u(x, t) = w(x/t) where

f (w(ξ )) − ξw(ξ ) =
{

minu−≤v≤u+ [ f (v) − ξv], u− ≤ u+
maxu+≤v≤u− [ f (v) − ξv], u− ≥ u+.

Here we use the notation ξ = x/t . (Hint: use a Galilean transformation to reduce the problem to
finding the state in the solution to the Riemann problem that moves with zero speed.)

3.1.4 Show that in the sense of distributions, the self-similar solution to the scalar Riemann problem
satisfies

w(ξ ) =
{ − d

dξ
(minu−≤v≤u+ [ f (v) − ξv]), u− ≤ u+

− d
dξ

(maxu+≤v≤u− [ f (v) − ξv]), u− ≥ u+.

3.1.5 Determine the analytical solution to Burgers’ equation with initial data [59]

u0(x) =
{ −0.5, x < 0.5

0.2 + 0.7cos(2πx), x > 0.5.
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3.2 Case Studies

Many interesting applications of hyperbolic conservation laws are nonlinear. We
have already seen one example of a nonlinear conservation law, namely Burgers’
equation, in the series of Examples 3.1.1, 3.1.5, 3.1.7, 3.1.8, 3.1.9, 3.1.12 and
3.1.13. This nonlinear conservation law is useful in certain simplified models of
gas dynamics. In this section, we would like to present some other models of
nonlinear conservation laws.

3.2.1 Traffic Flow

We will consider a simple model of traffic flow. Of course, highway traffic is
composed of discrete particles (the vehicles) that do not respond identically (some
are impatient, sluggish or inattentive). Nevertheless, we will use a continuum model
to describe the large-scale behavior of traffic. If averaged over time and applied to
reasonably heavy traffic, the models can be pretty good.

Let ρ(x, t) be the density of vehicles (say vehicles per mile), and let v(ρ) be the
velocity of the vehicles. The flux of vehicles is vρ. Assuming that we are watching
a section of the highway with no entrances or exits, conservation of mass of the
vehicles can be written

∂ρ

∂t
+ ∂ρv

∂x
= 0.

In order to specify the problem completely, we need to describe the vehicle velocity
function.

One simple model for the vehicle velocity is

v(ρ) = vmax(1 − ρ/ρmax).

Here ρmax is the maximum density of vehicles, and vmax is the maximum velocity.
The latter may be determined at times of low density, either by the topology of the
highway or the attentiveness of law enforcement. The former may be determined at
rush hour, especially when a collision impedes the flow. Thus at ρ = 0 the vehicle
speed is vmax, but the speed decreases linearly with density after that.

Another model for the velocity takes

v(ρ) = a ln(ρmax/ρ). (3.19)

Note that negative values of the density are unphysical, as are values of den-
sity greater than ρmax. In particular, in this model for the velocity, negative val-
ues for the density can make it impossible to compute the velocity. We will not
want our numerical methods to produce negative densities (or velocities) in such
cases.
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3.2.2 Miscible Displacement Model

The miscible displacement model describes the flow in a porous medium of a fluid
consisting of a single incompressible phase but multiple chemical components. This
problem occurs in modeling the flow of water-soluble contaminants in aquifers, and
of solvent-enhanced recovery of oil. For simplicity, we will assume that the fluid
is composed of two components, water and a tracer. It is assumed that the tracer
is inert; in other words, there are no chemical reactions that would transform the
water and tracer into other chemicals. Further, the tracer is transported entirely with
the water, and does not adsorb onto the surface of the porous medium.

We will denote the concentration of the tracer by c; by definition, c is the volume
of tracer divided by the total volume of the fluid in some region in space. It follows
that the concentration of water is 1 − c. Because the tracer concentration can vary,
the fluid density ρ can vary; we will assume that density is a function of tracer
concentration. Similarly, the fluid viscosity is µ(c).

The fluid moves through tiny holes in the rock. The ratio of the volume of
these holes to the total rock volume is called the porosity φ(x). Thus porosity is
dimensionless. Since the rock is incompressible, φ is independent of time, but may
vary in space.

The holes must be connected for the fluid to move through the rock. This is
measured by the permeability K (x) of the rock. It turns out that permeability has
units of area. Typically the permeability is independent of time, but varies in space.
Neither the permeability nor the porosity need be continuous functions. The velocity
of the fluid is typically modeled by Darcy’s law. This takes the form

v = K [−∇x p + gρ]
1

µ
,

where p is the pressure in the fluid and g is the gravity vector.
The flux of the components is represented in two parts. One is due to the macro-

scale flow from Darcy’s law; this part of the flux takes the form cv for the tracer,
and (1 − c)v for water. The second part of the flux represents smaller scale convec-
tive mixing of the components as they flow through irregular pore channels, and
molecular diffusion. Typically, this part of the flux is represented by Fick’s law.
The resulting flux for the tracer is

ft (c) = cv −
[

v
α�

‖v‖v� + (I v�v − vv�)
αt

‖v‖ + I
φδc

τ

]
∇xc.

Here, α� and αt are the longitudinal and transverse mixing lengths, δc is the diffu-
sivity of the tracer and τ is the tortuosity of the rock. The equation for the flux of
water is similar: we replace c by 1 − c to get

fw(c) = (1 − c)v +
[

v
α�

‖v‖v� + (I v�v − vv�)
αt

‖v‖ + I
φδc

τ

]
∇xc.
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We must have equations representing the conservation of mass for water and the
tracer. It is easy to see that the volume of tracer per bulk (rock) volume is cφ, and
the volume of water per bulk volume is (1 − c)φ. Thus conservation of the tracer
and water can be written

∂cφ

∂t
+ ∇x · ft = 0,

∂(1 − c)φ

∂t
+ ∇x · fw = 0.

If desired, an equation for the pressure can be determined by adding together the
two mass conservation laws. This leads to an elliptic partial differential equation
for pressure:

0 = ∇x · v = ∇x ·
{

K [−∇x p + gρ(c)]
1

µ(c)

}
. (3.20)

It is interesting to note that the coefficients ρ(c) and µ(c) in this problem are func-
tions of the variable tracer concentration. As a result, since the tracer concentration
c can change in time, so can the pressure p. This completes the description of the
miscible displacement model.

Next, let us restrict our discussion to one dimension. We need to manipulate
these equations into a conservation law. We can add the two mass conservation
equations to get

∂v
∂x

= 0.

This is says that the total fluid velocity is independent of position in one dimension.
Further, the transverse mixing length has no effect in one dimension, so the tracer
flux simplifies to

ft = cv −
[

|v|α� + φδc

τ

]
∂c

∂x
.

Given the total fluid velocity, the two mass conservation equations become redun-
dant. It will suffice to work with conservation of the tracer:

∂cφ

∂t
+ ∂vc

∂x
= ∂

∂x

{[
|v|α� + φδc

τ

]
∂c

∂x

}
. (3.21)

In the typical case, we specify the total fluid velocity v(t) and the tracer con-
centration c(xL , t) at inflow. In this case, the equations for conservation of mass
of the tracer (3.21) and for the fluid pressure (3.20) decouple; the solution of the
pressure equation can be determined by specifying the fluid pressure at outflow.
Suppose that we are given p(xR, t) = pR(t) at the right-hand boundary. Since the
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one-dimensional pressure equation says that

K
[
−∂p

∂x
+ gρ

]
1

µ
= v

is equal to the inflow fluid velocity, the solution of the pressure equation is

p(x, t) = pR(t) − g
∫ xR

x
ρ(c(x, t)) dx − v(t)

∫ xr

x

µ(c(x, t))

K(x)
dx.

Some common test problems choose the fluid velocity to be around 30 centime-
ters per day, the porosity to be 0.25, and the longitudinal mixing length αL to be
0.01 times the problem length. Normally, molecular diffusion is negligible unless
we are working on very fine scales (close to the scale of the rock pores), meaning
that δc � |v|τα�/φ.

For our purposes in this chapter, we will not need to compute the pressure, so
we will not need to describe the density or viscosity. Rather, we will fix the fluid
velocity v and solve equation (3.21).

3.2.3 Buckley–Leverett Model

The Buckley–Leverett model for flow of two immiscible incompressible phases in
a porous medium is important to models of oil reservoirs and contaminated aquifers.
In this model, we assume that the fluid consists of two distinct phases, oil and water.
It is assumed that the chemicals forming these two phases do not interact or move
from one phase to the other. Since the fluid is incompressible and the chemical
composition of the phases is fixed, the phase densities ρo and ρw are constants.
Since the chemical composition of each phase remains constant, the viscosities µw

and µo are constant.
The fluid moves through tiny holes in the rock. The ratio of the volume of

these holes to the total rock volume is called the porosity φ(x). Thus porosity is
dimensionless. Since the rock is incompressible, φ is a constant in time, but may
vary in space.

The holes must be connected for the fluid to move through the rock. This is
measured by the permeability K(x) of the rock. It turns out that permeability has
units of area. Typically the permeability is a constant in time, but varies in space.
Neither the permeability nor the porosity need be continuous functions.

The saturations of the phases so and sw are the ratios of the phase volumes to the
fluid volume. By definition,

sw + so = 1. (3.22)

Typically, water is the wetting phase, meaning that it prefers to move along
the surface of the rock pores. Thus oil is the non-wetting phase, and prefers to
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sit as disconnected droplets in the center of cell pores, or move as ganglia when
the droplets can connect. Thus the presence of both oil and water reduces the
flow of the other. This effect is often modeled by a relative permeability, which
is a dimensionless modification to the total permeability K. Typically, relative
permeability of a phase is chosen to be an empirical function of that phase saturation.
Thus the relative permeability of oil is κro(so), and the relative permeability of water
is κrw(sw). We must have

κro(0) = 0 = κrw(0),

because neither phase can flow if it occupies no volume in the fluid. We must also
have

κro(1) ≤ 1 and κrw(1) ≤ 1,

because neither phase can flow more easily than the total permeability permits.
Finally, we must have

κ ′
ro(so) ≥ 0 for all so ∈ [0, 1] and κ ′

rw(sw) ≥ 0 for all sw ∈ [0, 1],

because an increase in relative volume of a phase makes it easier for that phase to
flow.

The velocities of the phases are typically modeled by Darcy’s law. In
Section 3.2.2 for a single phase, Darcy’s law was written

v = K [−∇x p + gρ]
1

µ
,

where p is the pressure in the fluid and g is the gravity vector. For two-phase flow,
Darcy’s law is usually modified to take the forms

vo = K [−∇x po + gρo]
κro

µo
, vw = K [−∇x pw + gρw]

κrw

µw

.

For two-phase flow the pressures in the phases are not necessarily the same.
Instead,

po = pw + Pc(sw),

where Pc(sw) is the capillary pressure between the phases. Capillary pressure arises
from the interfacial tension between the phases and the narrow flow paths available
to the fluids. Typically, capillary pressure is a strictly decreasing function of water
saturation, and a very large pressure is required to drive the water saturation to zero.
See Figure 3.5 for a typical capillary pressure curve.

It will simplify notation if we define the phase mobilities

λo(so) ≡ κro(so)

µo
, λw(sw) ≡ κrw(sw)

µw

.
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Fig. 3.5 Capillary pressure curve

Then the two-phase modification of Darcy’s law can be written

vo = K[−∇x po + gρo]λo, vw = K[−∇x pw + gρw]λw.

Finally, we must have equations representing the conservation of mass for oil
and water. It is easy to see that the mass of oil per bulk (rock) volume is ρosoφ, and
the mass of water per bulk volume is ρwswφ. The volumetric flux of oil is ρovo, and
the flux of water is ρwvw. Thus conservation of oil and water can be written

∂ρosoφ

∂t
+ ∇x · (ρovo) = 0,

∂ρwswφ

∂t
+ ∇x · (ρwvw) = 0.

This completes the description of the Buckley–Leverett model.
Next, we need to manipulate these equations into a conservation law in one

dimension. We can divide the mass conservation equations by the constant phase
densities to get

∂soφ

∂t
+ ∂vo

∂x
= 0,

∂swφ

∂t
+ ∂vw

∂x
= 0.

Next, we can add these two equations and use equation (3.22) to get

∂vo + vw

∂x
= 0.

This is an expression of the incompressibility of the flow: the total fluid velocity has
zero divergence. Given the total fluid velocity, the two mass conservation equations
become redundant. It will suffice to work with conservation of oil.

We can use the two-phase flow modification of Darcy’s law to represent the total
fluid velocity as a function of the water phase pressure and the oil saturation:

vT ≡ vo + vw = K
[
−∂(pw + Pc)

∂x
λo − ∂pw

∂x
λw + g(ρoλo + ρwλw)

]
.
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Table 3.1 Density and Viscosity of Fluids

Fluid Density (g/cc) Viscosity (gm/sec/cm)

water 0.998 0.0114
diesel fuel 0.729 0.0062
kerosene 0.839 0.0230
prudhoe bay crude 0.905 0.6840

Since the total fluid velocity is divergence-free, in one dimension it is a constant
in space. Thus this equation can be viewed as providing a relationship between the
gradient of the water-phase pressure and the oil saturation:

−∂pw

∂x
= vT /K − g(ρoλo + ρwλw) + λo∂ Pc/∂x

λo + λw

.

This equation allows us to eliminate the pressure gradient from the expression for
the Darcy velocity for oil

vo =
[

vT + Kgλw(ρo − ρw) − K
∂ Pc

∂x
λw

]
λo

λo + λw

.

This means that conservation of oil can be written

∂soφ

∂t
+ ∂

∂x

{
[vT + Kgλw(ρo − ρw)]

λo

λo + λw

}
= ∂

∂x

(
Kλoλw

λo + λw

∂ Pc

∂x

)
. (3.23)

This has the form of a conservation law. The capillary pressure term introduces
a physical diffusion; this diffusion term is nonlinear. In most oil recovery prob-
lems, the capillary pressure gradient is small compared to the fluid pressure
gradient.

Some common test problems choose the relative permeabilities to be

κro(so) = s2
o , κrw(sw) = s2

w.

It is common to take the capillary pressure to be zero in oil recovery problems.
Oil is less dense than water and more viscous. A porosity φ = 0.25 is typi-
cal. Problem lengths might be 100 meters, with a total fluid velocity vT = 0.3
meters/day. The permeability K can be defined in terms of the gravity number
Kg(ρo − ρw)/(µwvT ). Some typical values for the densities and viscosities are
contained in Table 3.1

The Buckley–Leverett flux function is neither convex nor concave. With zero total
fluid velocity, the flux function formed solely by the action of gravity is shaped like
a script “V”. This model is especially interesting when both the total fluid velocity
and gravity are nonzero. Figure 3.6 shows some examples of the Buckley–Leverett
flux function.
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(a) vT = 1, g = 0 (b) vt = 0, g = −10

(c) vT = 1, g = −10

Fig. 3.6 Buckley–Leverett flux function: f (s) = (vT + g(1 − s)2)s2/(s2 + (1 −
s)2)µo/µw with µo/µw = 1

Exercises for 3.2

3.2.1 Compute the characteristic speed for traffic flow with velocity function given by Equation (3.19).
Plot the characteristic speed as a function of traffic density.

3.2.2 Solve the Riemann problem for traffic flow with velocity function given by equation (3.19). In
particular, find a general formula in terms of the left and right densities ρL and ρR for the state ρ

that moves with zero speed in the solution of the Riemann problem.
3.2.3 Consider the traffic flow with velocity function given by Equation (3.19). Take ρmax = 1 and

a = 100.
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(a) Suppose that we want to approximate the solution of the Riemann problem with ρ = ρmax/
√

e
on the left and ρ = 0 on the right. Show that the solution of this Riemann problem involves
a rarefaction with all characteristic speeds nonnegative.

(b) Program the following scheme for the Riemann problem just posed:

ρn+1
i = ρn

i − 
tn+1/2


xi
[(ρv)n

i − (ρv)n
i−1].

Choose the timestep to be less than the cell width 
x divided by the maximum characteristic
speed in the problem. Use 100 grid cells and a problem length of 1 for your calculations. Plot
the traffic density and characteristic speed versus position divided by time.

(c) Suppose that we want to approximate the solution of the Riemann problem with ρ = ρmax/
√

e
on the right and ρ = ρmax on the left. Show that the solution of this Riemann problem involves
a rarefaction with all characteristic speeds nonpositive.

(d) Program the following scheme for the Riemann problem just posed:

ρn+1
i = ρn

i − 
tn+1/2


xi
[(ρv)n

i+1 − (ρv)n
i ].

Choose the timestep to be less than the cell width 
x divided by the maximum characteristic
speed in the problem. Use 100 grid cells and a problem length of 1 for your calculations. Plot
the traffic density and characteristic speed versus position divided by time.

(e) Suppose that we want to approximate the solution of the Riemann problem with ρ = 0 on
the right and ρ = ρmax on the left. Show that the solution of this Riemann problem involves
a rarefaction with negative and positive characteristic speeds.

(f) What happens if you try to solve the problem just posed with the upwind method given for
the problem with all nonnegative characteristic speeds? Run your program and describe your
results.

(g) What happens if you try to solve the problem just posed with the upwind method given for
the problem with all nonpositive characteristic speeds? Run your program and describe your
results.

3.2.4 Compute the characteristic speed for the miscible displacement model (3.21). Ignore the diffusive
terms (convective mixing and molecular diffusion) when you compute the characteristic speed.
Also find a formula for the Peclet number, defined in Section 2.5.2.

3.2.5 Typically, people measure time in miscible displacement problems in terms of “pore volumes
injected.” The total pore volume is ∫ xR

xL

φ(x) dx

and the total fluid injected is ∫ T

0
v(t) dt.

If the porosity φ is constant and the injection rate v is constant, find a formula for the time at
which the volume of the total fluid injected is half the total pore volume.
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3.2.6 Program explicit upwind differences for the miscible displacement problem. Ignore convective
mixing and molecular diffusion. Choose the problem length to be 10 meters, and use 100 grid
cells. Assume that the porous medium initially has no tracer concentration, and that you inject
a fixed concentration of 0.01 on the left for all time. Plot your numerical results when one-half
pore volume has been injected. Describe how you chose your timestep.

3.2.7 Determine the characteristic speed for the Buckley–Leverett equation (3.23). Use Prudhoe Bay
crude, and choose the permeability so that the gravity number is −100. Plot the oil flux fo

and characteristic speed versus the oil saturation so. (Hint: if we ignore capillary pressure, the
quasilinear form of the equation is

φ
∂so

∂t
+ ∂ fo

∂so

∂so

∂x
= 0.

The characteristic speed can be determined from this equation.)
3.2.8 Discuss the solution of the Riemann problem for the Buckley–Leverett problem, using the perme-

ability in the previous exercise. Which kinds of flow problems produce multiple shocks? Which
kinds of flow problems correspond to injecting water to produce oil from an oil reservoir with
(nearly) no water?

3.2.9 Choose left and right states for a Buckley–Leverett Riemann problem so that all of the character-
istic speeds are positive. Program the explicit upwind scheme for this problem. Use 100 grid cells,
and plot the numerical results at 0.5 pore volumes injected. Also plot the characteristic speed.
Describe how you chose your timestep.

3.3 First-Order Finite Difference Methods

3.3.1 Explicit Upwind Differences

Suppose that we want to approximate the solution of

∂u

∂t
+ ∂ f (u)

∂x
= 0 (3.24)

by explicit upwind differences. In the special case when d f
du > 0 for all u, we can

generalize explicit upwind differences as follows:

un+1
i = un

i − 
tn+1/2


xi

[
f (un

i ) − f (un
i−1)

]
.

This is a conservative difference scheme with numerical fluxes defined by f n+1/2
i+1/2 =

f (un
i ), and for which all timesteps are chosen so that

∂ f

∂u

(
un

i

)

tn+1/2 ≤ γ 
xi



112 Nonlinear Scalar Laws

for some 0 < γ < 1. Similarly, if ∂ f /∂u < 0 for all u, the explicit upwind differ-
ence method takes the form

un+1
i = un

i − 
tn+1/2


xi

[
f
(
un

i+1

) − f
(
un

i

)]
.

This is a conservative difference scheme with numerical fluxes defined by f n+1/2
i+1/2 =

f (un
i+1), and with all timesteps chosen so that

−∂ f

∂u

(
un

i

)

tn+1/2 ≤ γ 
xi

for some 0 < γ < 1. With negative characteristic speed, the upwind state is on the
right.

However, we will have to be more clever to develop schemes for problems in
which the sign of the characteristic speed is not known. If we can find a bound c
on the absolute value of the characteristic speeds, so that for all states of interest in
our problem

−c ≤ ∂ f

∂u
≤ c,

then we can employ upwind methods to solve

∂ ũ

∂t
+ ∂ f (ũ) + cũ

∂x
= 0.

This, of course, is a Galilean transformation of the original problem. (See
Section 3.1.9.) This leads to the conservative difference

ũn+1
i = ũn

i − 
tn+1/2


xi
[( f (ũn

i ) + cũn
i ) − ( f (ũn

i−1) + cũn
i−1)],

and to the timestep restriction

[ f ′(ũn
i ) + c]
tn+1/2 ≤ γ 
xi .

Choosing c to be too large can lead to unnecessarily small timesteps.

3.3.2 Lax–Friedrichs Scheme

A very popular scheme for general nonlinear flux functions f is the Lax–Friedrichs
scheme. This scheme depends on three basic assumptions.

(i) the computational results are replaced with the piecewise constant cell averages at
times tn and tn + 1

2 
tn+1/2;
(ii) there is an upper bound λ on the characteristic speed so that for all u |d f /du| ≤ λ

(we will have to clarify just what we mean by the quantifier on u),
(iii) the timestep is chosen so that

for all i, λ
tn+1/2 < 
xi . (3.25)
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Let us introduce the notation

xi = 1

2

(
xi−1/2 + xi+1/2

)
for the grid cell centers. We will apply the divergence theorem to the conservation
law (3.24) over the space-time rectangle (xi , xi+1) × (tn, tn + 1

2 tn+1/2). Since the
solution is piecewise constant at time tn and the timestep is chosen so that waves
from the constant states do not reach the cell centers by time tn + 
tn+1/2/2, the
fluxes are constant in time at the cell centers in this application of the divergence
theorem:

0 =
∫ tn+
tn+1/2/2

tn

∫ xi+1

xi

∂u

∂t
+ ∂ f (u)

∂x
dx dt

=
∫ xi+1

xi

u

(
x, tn + 1

2

tn+1/2

)
dx −

∫ xi+1

xi

u(x, tn) dx

+
∫ tn+
tn+1/2/2

tn

f (u(xi+1, t)) dt −
∫ tn+
tn+1/2/2

tn

f (u(xi , t)) dt

=
∫ xi+1

xi

u

(
x, tn + 1

2

tn+1/2

)
dx −

[
un

i


xi

2
+ un

i+1

xi+1

2

]
+ f (un

i+1)

tn+1/2

2
− f (un

i )

tn+1/2

2

We replace the numerical results at the half-time with the cell averages. A sec-
ond half-step is similar, applying the divergence theorem over the rectangle
(xi−1/2, xi+1/2) × (tn + 1

2 tn+1/2, tn + 
tn+1/2). We obtain the following formulas
for the two half-steps:

un+1/2
i+1/2 = {

un
i 
xi + un

i+1
xi+1 − [
f
(
un

i+1

) − f
(
un

i

)]

tn+1/2

} 1


xi + 
xi+1
, (3.26a)

un+1
i =

{
un+1/2

i−1/2 + un+1/2
i+1/2 −

[
f
(
un+1/2

i+1/2

) − f
(
un+1/2

i−1/2

)] 
tn+1/2


xi

}
1

2
. (3.26b)

These are conservative differences. For example, summing the conserved quantity
at the half-time leads to the mass at the old time plus a telescoping sum of fluxes:∑

i

un+1/2
i+1/2


xi + 
xi+1

2
= 1

2

∑
i

un
i 
xi + 1

2

∑
i

un
i+1
xi+1

− 
tn+1/2
∑

i

[
f
(
un

i+1

) − f
(
un

i

)]
=

∑
i

un
i 
xi + 
tn+1/2

[
f
(
un

0

) − f
(
un

I

)]
.

The second step is similarly conservative.
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The only approximations in these equations are the replacement of the solution
at each new time by the cell averages. Of course, it is necessary to modify the
calculation at the boundary of the domain, in order to prevent the application of the
divergence theorem over a rectangle that does not lie entirely inside the problem
domain. Except for certain boundary conditions (periodic boundaries, first-order
non-reflecting boundaries and reflecting boundaries), this is a delicate topic. For
example, specifying the the flux on a boundary can make it difficult to determine
the solution at the half-time boundaries.

Example 3.3.1 For linear advection on a uniform grid, the Lax–Friedrichs scheme
can be written

un+1/2
i+1/2 = 1

2

(
un

i + un
i+1

) − λ
t

2
xi

[
un

i+1 − un
i

]
,

un+1
i = 1

2

(
un+1/2

i−1/2 + un+1/2
i+1/2

) − λ
t

2
x

[
un+1/2

i+1/2 − un+1/2
i−1/2

]
.

In other words, if γ = λ
t/
x then

un+1
i = 1

2

[
(1 − γ )un+1/2

i+1/2 + (1 + γ )un+1/2
i−1/2

]
= 1

4
(1 − γ )2un

i+1 + 1

2
(1 − γ 2)un

i + 1

4
(1 + γ )2un

i−1.

A Fourier analysis shows that the solution ratio is

z = 1

4
(1 − γ )2eiθ + 1

2
(1 − γ 2) + 1

4
(1 + γ )2e−iθ

= 1

2
(1 + γ 2) cos θ − iγ sin θ + 1

2
(1 − γ 2)

= cos2 θ

2
− γ 2 sin2 θ

2
− 2iγ sin

θ

2
cos

θ

2
.

Thus

|z|2 =
[

cos4 θ

2
− 2γ 2 cos2 θ

2
sin2 θ

2
+ γ 4 sin4 θ

2

]
+ 4γ 2 sin2 θ

2
cos2 θ

2

=
[

cos2 θ

2
+ γ 2 sin

θ

2

]2

.

It follows that the Lax–Friedrichs scheme is dissipative for γ < 1.
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A modified equation analysis of the Lax–Friedrichs scheme for linear advection
on a uniform grid shows that

un
i + ∂ ũ

∂t

t + 1

2

∂2ũ

∂t2

t2 ≈ un+1

i = 1

4
(1 − γ )2un

i+1 + 1

2
(1 − γ 2)un

i + 1

4
(1 + γ )2un

i−1.

≈ 1

4
(1 − γ )2

[
un

i + ∂ ũ

∂x

x + 1

2

∂2ũ

∂x2

x2

]
+ 1

2
(1 − γ 2)un

i

+ 1

4
(1 + γ )2

[
un

i − ∂ ũ

∂x

x + 1

2

∂2ũ

∂x2

x2

]
= un

i − ∂ ũ

∂x
γ 
x + ∂2ũ

∂x2
(1 + γ 2)


x

4
.

This can be rewritten in the form

∂ ũ

∂t
+ λ

∂ ũ

∂x
= −∂2ũ

∂t2


t

2
+ ∂2ũ

∂x2
(1 + γ 2)


x2

4
t
≡ e.

It follows from this equation that

∂2ũ

∂t2
= ∂

∂t

(
−λ

∂ ũ

∂x
+ e

)
= −λ

∂

∂x

(
−λ

∂ ũ

∂x
+ e

)
+ ∂e

∂t

= λ2 ∂2ũ

∂x2
+ ∂e

∂t
− λ

∂e

∂x
.

Thus the modified equation for the Lax–Friedrichs scheme is

∂ ũ

∂t
+ λ

∂ ũ

∂x
≈

[
−λ2
t

2
+ 
x2 + λ2
t2

4
t

]
∂2ũ

∂x2
= (1 − γ 2)


x2

4
t

∂2ũ

∂x2
.

This result shows that the scheme is diffusive for γ < 1, and that the diffusion
becomes infinite as 
t → 0.

A program to implement the Lax-Friedrichs scheme can be found in either
Program 3.3-28: laxFriedrichs.f or Program 3.3-29: Schemes.C By deleting the file name
from the browser window that displays the current web address, the user can see
a list of all of the files in the directory. In particular, the GNUmakefile will
describe which files are used to make a particular executable. Figure 3.7 shows
numerical results for the Lax-Friedrichs scheme applied to Burgers’ equation. The
numerical solution at a fixed time is plotted versus x/t . Thus it is possible to read
the shock speed from the horizontal axis. Note that the discontinuity is spread out
more as we decrease the CFL number. We obtain similar results for a rarefaction in
Figure 3.8. In this case, since the conserved quantity u is equal to the characteristic
speed for Burgers’ equation, the exact solution in the middle of the rarefaction
should be a line going through the origin with slope 1. Students can also execute

http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/laxFriedrichs.f
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/Schemes.C
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5

(a) CFL = 0.1 (b) CFL = 0.5

(c) CFL = 0.9 (d) CFL = 1.0

Fig. 3.7 Lax–Friedrichs scheme for Burgers’ shock: u vs. x/t (solid = exact,
plus = numerical solution)

the Lax Friedrichs scheme by clicking on the web link Executable 3.3-4: guiconvex1
and selecting scheme to be lax friedrichs in the View pulldown menu,
inside the Numerical Method Parameters group.

The advantage of the Lax–Friedrichs scheme is that it avoids the need to repre-
sent the wave interactions (Riemann problems) arising from the piecewise-constant
initial data. The disadvantages of the Lax–Friedrichs scheme are that it must work
on a staggered grid using half-interval timesteps, and must use some special calcu-
lations at boundaries. Let us note that the staggered mesh in the second half-step
can be avoided by averaging the staggered cell averages back onto the original
mesh [156]. The timestep must still be chosen so that waves from cell sides cannot

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvex1
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(a) CFL = 0.1 (b) CFL = 0.5

(c) CFL = 0.9 (d) CFL = 1.0

Fig. 3.8 Lax–Friedrichs scheme for Burgers’ rarefaction: u vs. x/t (solid = exact,
plus = numerical solution)

reach cell centers, and the additional averaging step introduces additional numerical
diffusion.

3.3.3 Timestep Selection

In all of the schemes for integrating conservation laws, we will identify a stability
condition of the form

λ
tn+1/2 < α
xi for all i
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where α is some stability constant, and λ is some upper bound on the largest
characteristic speed found in the problem. For the Lax–Friedrichs scheme we
found that α = 1. The value α = 1 will work for most of the schemes we will
consider.

In many cases, it is difficult for us to compute a strict upper bound λ on the
largest characteristic speed. Typically, we will sample the discrete values and
approximate

λ = max
i

∣∣∣∣d f

du
(un

i )

∣∣∣∣.
Because of the discrete sampling, the computed λ may be less than the analytical
value. In order to protect the integration, we usually reduce the timestep size by
some fixed factor ω, called the CFL number. The revised timestep selection would
take the form

λ
tn+1/2 < ω
xi for all i

where ω ≤ α.
Typically we will choose ω = 0.9 for schemes that are stable with α = 1. For

some schemes applied to difficult problems we may choose ω = 0.5. This will be
desirable when the scheme has zero phase error at at CFL number of 0.5, and the
problem has strong discontinuities. The choice of the CFL number can be guided
by the Fourier analysis of the scheme applied to linear advection.

3.3.4 Rusanov’s Scheme

In some cases, we would like to avoid the half-step complications of the Lax-
Friedrichs scheme. Suppose that for each cell side we can find an upper bound
λi+1/2 so that

for all u between un
i and un

i+1,

∣∣∣∣∂ f

5u
(u)

∣∣∣∣ ≤ λi+1/2.

Further, let

λ = max
i

{λi+1/2}.

Note that f +
i+1/2(u) ≡ f (u) + λi+1/2u is such that ∂ f +

i+1/2(u)/∂u ≥ 0 for all
u between un

i and un
i+1, and that f −

i+1/2(u) ≡ f (u) − λi+1/2u is such that
∂ f −

i+1/2(u)/∂u ≤ 0 for all u between un
i and un

i+1. Rusanov’s scheme uses the upwind
flux evaluation for each of these two parts of the flux:

f n+1/2
i+1/2 = 1

2

[
f +
i+1/2

(
un

i

) + f −
i+1/2

(
un

i+1

)] = 1

2

[
f
(
un

i

) + f
(
un

i+1

) − λi+ 1
2

(
un

i+1 − un
i

)]
.
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Thus the Rusanov flux is the explicit centered differences flux plus an additional
artificial diffusion.

Example 3.3.2 For linear advection

∂u

∂t
+ c

∂u

∂x
= 0

and with λ ≥ |c|, the Rusanov flux is

f n+1/2
i+1/2 = 1

2

[
cun

i + cun
i+1 − λ

(
un

i+1 − un
i

)] = λ + c

2
un

i − λ − c

2
un

i+1.

It follows that Rusanov’s scheme for linear advection can be written

un+1
i = un

i − 
tn+1/2


xi

[
λ + c

2
un

i − λ − c

2
un

i+1 − λ + c

2
un

i−1 + λ − c

2
un

i

]
= 
tn+1/2


xi

λ + c

2
un

i−1 +
(

1 − λ

tn+1/2


xi

)
un

i + 
tn+1/2


xi

λ − c

2
un

i+1.

Note that if λ ± c ≥ 0, then un+1
i is a weighted average of the solution at the previous

time; this lends stability to the scheme.
A modified equation analysis of Rusanov’s scheme for linear advection shows

that

un
i + ∂ ũ

∂t

t + 1

2

∂2ũ

∂t2

t2 ≈ 
t


x

λ + c

2

[
un

i − ∂ ũ

∂x

x + 1

2

∂2ũ

∂x2

x2

]
+

(
1 − λ


t


x

)
un

i + 
t


x

λ − c

2

[
un

i + ∂ ũ

∂x

x + 1

2

∂2ũ

∂x2

x2

]
= un

i − c
t
∂ ũ

∂x
+ λ
t
x

2

∂2ũ

∂x2
.

It follows that the modified equation is

∂ ũ

∂t
+ ∂ ũ

∂x
≈ |c|
x

2

(
λ

|c| − |c|
t


x

)
∂2ũ

∂x2
.

This indicates that Rusanov’s scheme is diffusive if λ >
c2
t

x . However, a Fourier

stability analysis leads to solution ratio

z = 1

2
(γ + γc)e−iθ + 1 − γ + 1

2
(γ − γc)eiθ ,

where γ = λ
t/
x is the CFL number and γc = c
t/
x is the natural CFL number.
It follows that

|z|2 = 1 − 2γ + γ 2(1 + cos2 θ ) + γ 2
c sin2 θ.
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(a) Density vs. x/t (b) Characteristic speed vs. x/t

Fig. 3.9 Rusanov scheme for traffic flow: v(ρ) = − log(ρ), CFL = 0.9 (solid =
exact, plus = numerical solution)

Since λ ≥ |c|, we see that γ ≥ |γc|. It follows that

1 − |z|2 = 2γ − γ 2(1 + cos2 θ ) − γ 2
c sin2 θ ≤ 2γ (1 − γ ).

This result indicates that in order for the Rusanov scheme to be dissipative, it is
sufficient that the CFL number satisfy 0 < γ < 1.

A program to implement the Rusanov scheme can be found in Program 3.3-30:
rusanov.f or in Program 3.3-31: Schemes.C Figure 3.9 shows some numerical results
with the Rusanov scheme for the traffic flow problem with v(ρ) = −ρ log(ρ). This
is a Riemann problem for which the analytical solution is a rarefaction. Note that
we plot both the solution ρ and the characteristic speed d(ρv(ρ))/dρ versus x/t .
Inside a rarefaction, the characteristic speed should be identical to x/t . Thus, the
graph of the characteristic speed gives us a way to check that the numerical solution
is (approximately) correct. It is useful to plot the characteristic speed versus x/t for
all Riemann problems, as an a posteriori check on the numerical results. Students
can also execute the Lax–Friedrichs scheme by clicking on the web link Executable
3.3-5: guiconvex1 and selecting scheme to be rusanov in the View pulldown
menu, inside the Numerical Method Parameters group.

3.3.5 Godunov’s Scheme

Like the Lax–Friedrichs scheme, Godunov’s scheme considers the solution at each
timestep to be piecewise-constant. Unlike the Lax–Friedrichs scheme, Godunov’s

http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/rusanov.f
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/Schemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvex1
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scheme purposely uses information from Riemann problems to determine the
numerical fluxes.

Godunov’s scheme applies the divergence theorem to the conservation law (3.24)
over the space-time rectangle (xi−1/2, xi+1/2) × (tn, tn+1) to get

un+1
i ≡ 1


xi

∫ xi+1/2

xi−1/2

u(x, tn+1) dx

= 1


xi

∫ xi+1/2

xi−1/2

u(x, tn) dx

− 1


xi

[∫ tn+1

tn

f
(
R

(
un

i , un
i+1; 0

))
dt −

∫ tn+1

tn

f
(
R

(
un

i−1, un
i ; 0

))
dt

]

≡ un
i − 
tn+1/2


xi

[
f n+1/2
i+1/2 − f n+1/2

i−1/2

]
.

Recall that R(uL , u R; λ) represents the state that moves with speed λ in the solution
of the Riemann problem with left state uL and right state u R . Godunov’s scheme
does not require that we find the complete solution to the Riemann problem; it only
requires the flux at the stationary state in the solution to the Riemann problem.

Godunov’s scheme is particularly useful for boundary conditions. For example,
suppose that we want the boundary condition to represent an unbounded domain;
then no waves should go from the boundary to the interior of the domain. This
means that we expect that there are no characteristics going from inside the domain
across the left boundary. This can be checked during the calculation of the Godunov
flux at the left boundary; in particular, the flux at the boundary should be the flux
at the state inside the domain at the boundary.

Suppose that un
i < un

i+1. Then the fastest characteristics from the individual
Riemann problems at the cell sides do not intersect other sides if the convex hull f
of the flux function f between the two states satisfies

max
un

i ≤u≤un
i+1

{∣∣∣∣d f

du
(u)

∣∣∣∣} 
tn+1/2 ≤ min {
xi , 
xi+1} for all i.

Similarly, if un
i > un

i+1 then the fastest characteristics from the individual Riemann
problems at the cell sides do not intersect other sides if the concave hull f of the
flux function f satisfies

max
un

i+1≤u≤un
i

{∣∣∣∣∣∂ f

∂u
(u)

∣∣∣∣∣
}


tn+1/2 ≤ min {
xi , 
xi+1} for all i.

However, it is possible that the interaction of the fastest waves from two Riemann
problems at neighboring sides could produce an even faster characteristic speed.
In order to avoid this difficult situation, and in order to avoid the construction of
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the convex or concave hull of the flux function at each step, we typically select the
timestep so that

max
u between un

i and un
i+1

{∣∣∣∣d f

du
(u)

∣∣∣∣} 
tn+1/2 ≤ min{
xi , 
xi+1} for all i. (3.27)

With this choice, it may be possible to pre-compute the inflection points of the flux
to find the largest possible characteristic speeds.

Example 3.3.3 Consider Godunov’s method for linear advection,

∂u

∂t
+ ∂λu

∂x
= 0.

If the velocity satisfies λ > 0, then R(uL , u R; 0) = uL . In this case, Godunov’s
scheme is

un+1
i = un

i − 
tn+1/2


xi

[
λun

i − λun
i−1

]
,

which is identical to explicit upwind differencing. Similarly, if λ < 0, Godunov’s
scheme is

un+1
i = un

i − 
tn+1/2


xi

[
λun

i+1 − λun
i

]
,

which again is upwind differencing. Thus Godunov’s scheme should be viewed as
a generalization of upwind differencing to nonlinear problems. Also note that for
linear advection, Godunov’s scheme is dissipative if |λ|
tn+1/2 < 
xi for all cells i .

Example 3.3.4 Consider Godunov’s scheme for Burgers’ equation. For Godunov’s
method, we need to find the state that moves with zero speed in the solution of the
Riemann problem. It is easy to see that the flux at that state is

f (R(uL , u R; 0)) =
{

1
2 max{uL , min{u R, 0}}2, uL < u R

1
2 max{|uL |, |ur |}2, uL ≥ u R.

Thus Godunov’s scheme is easy to implement for Burgers’ equation.

Note that the Godunov flux f (R(uL , u R; 0)) is not a continuously differentiable
function of uL and u R . This may cause difficulty in the computation of steady-state
solutions, stationary waves or transonic rarefactions. It is also interesting to note the
following formulation of Godunov’s scheme. Suppose that the timestep is chosen
so that (3.27) is satisfied. If we are given piecewise constant initial data, we can
approximate the the solution to the conservation law by the cell averages of the
analytical solution to the conservation law. Like the Lax-Friedrichs scheme, the
only approximation error in the method is due to replacing the analytical solution
by piecewise constant averages.
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(a) CFL = 0.1 (b) CFL = 0.5

(c) CFL = 0.9 (d) CFL = 1.0

Fig. 3.10 Godunov scheme for Burgers’ shock: u vs. x/t (solid = exact,
plus = numerical solution)

A program to implement the Godunov scheme can be found in Program 3.3-32:
godunov.f or in Program 3.3-33: Schemes.C The numerical flux evaluation in Godunov’s
scheme requires the solution of Riemann problems, which can be found in Program
3.3-34: burgers.f or in routine solveRiemann in Program 3.3-35: GUIConvexRieman-
nProblem1.C. These routines for solving scalar law Riemann problems are valid
only for convex or concave flux functions. Figures 3.10 and 3.11 show numeri-
cal results for Godunov’s scheme applied to a shock and a rarefaction in Burgers’
equation. Note that the numerical solution is not smeared as much as it was with
the Lax-Friedrichs scheme. Students can perform these computations interactively

http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/godunov.f
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/Schemes.C
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/burgers.f
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIConvexRiemannProblem1.C
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(a) CFL = 0.1 (b) CFL = 0.5

(c) CFL = 0.9 (d) CFL = 1.0

Fig. 3.11 Godunov Scheme for Burgers’ Rarefaction: u vs. x/t (solid = exact,
plus = numerical solution)

by clicking on Executable 3.3-6: guiconvex1 and selecting scheme to be rusanov
in the View pulldown menu, inside the Numerical Method Parameters
group.

3.3.6 Comparison of Lax–Friedrichs, Godunov and Rusanov

Of the three schemes we have just examined, the Rusanov scheme is probably the
easiest to implement, and the Godunov scheme is the least diffusive. For linear

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvex1
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advection, the modified equation analyses gave us

∂u

∂t
+ ∂cu

∂x
≈ c
x

2
(1 − γ )

∂2u

∂x2
≡ eG

for the Godunov scheme, which is equivalent to explicit upwind in this case. The
modified equation analysis for Lax–Friedrichs gave us

∂u

∂t
+ ∂cu

∂x
≈ 
x2

4
t
(1 − γ 2)

∂2u

∂x2
≡ eG

1 + γ

γ

and the modified equation analysis for Rusanov gave us

∂u

∂t
+ ∂cu

∂x
≈ c
x

2

(
λ

c
− γ

)
∂2u

∂x2
≡ eG

λ/c − γ

γ
.

From these analyses, we expect that both Lax–Friedrichs and Rusanov will be more
diffusive than Godunov.

Figures 3.12 and 3.13 show a comparison of the Lax–Friedrichs, Godunov,
Rusanov and Marquina (exercise 3.4.3) schemes for a shock and a rarefaction with
the logarithmic traffic model. All schemes were run with CFL = 0.9. Of these four
schemes, the Godunov scheme generally produces results closest to the analytical
solution, except for states close to the sonic point (where the characteristic speed
is zero in the rarefaction).

Students can perform their own comparisons of these schemes for convex conser-
vation laws by clicking on the web link Executable 3.3-7: guiconvexerror1. The main
program for this executable can be viewed by clicking on Program 3.3-36: GUICon-
vexErrorAnalysis1.C This program allows the student to compare Lax-Friedrichs,
Rusanov, Godunov and the Marquina scheme for problems involving Burgers’
equation and traffic flow. For comparisons involving Burgers’s equation and the
Buckley-Leverett model, view Program 3.3-37: GUIErrorAnalysis1.C or run the exe-
cutable Executable 3.3-8: guierror1. Individual schemes can be run for Burgers’ equa-
tion and the Buckley-Leverett model by clicking on Executable 3.3-9: guiriemann1.
The main program for this executable can be viewed at Program 3.3-38: GUIRieman-
nProblem1.C

3.4 Nonreflecting Boundary Conditions

Although boundary conditions can take many forms, there is one condition in
particular that we would like to be able to treat. This condition represents a non-
reflecting boundary. Such a boundary represents an infinite medium; waves that
cross this boundary are supposed to continue on and never be seen again.

Suppose that our numerical method assumes that we have piecewise constant
data at the end of each timestep. We also assume that our timestep is chosen so that

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvexerror1
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIConvexErrorAnalysis1.C
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIErrorAnalysis1.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guierror1
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiriemann1
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIRiemannProblem1.C
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(a) Lax–Friedrichs (b) Rusanov

(c) Godunov (d) Marquina

Fig. 3.12 Comparison of schemes for log traffic shock: u vs. x/t , CFL = 0.9,
uL = 0, uR = 0.7

the interaction of waves at individual cell sides cannot cross a cell in less than one
timestep. For simplicity, let us assume that the non-reflecting boundary is at the
right-hand side of the domain. Given the solution at the previous time, the analytical
solution of the conservation law at the right-hand boundary is

wn(x) = un
j

where j is the index of the last cell. In order that information only move to the right
out of the domain, we must have

f ′(un
j

) ≥ 0.
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(a) Lax–Friedrichs (b) Rusanov

(c) Godunov (d) Marquina

Fig. 3.13 Comparison of schemes for log traffic rarefaction: u vs. x/t, uL = 1,
rR = 0

In this case, we can use ghost cells to cause the numerical method to compute
the correct flux at the right-hand boundary. We carry extra cells j + 1, . . . , j + k
where k is the width of the finite difference stencil, and set

un
j+i = un

j , 1 ≤ i ≤ k

Similarly, at a nonreflecting boundary on the left, we can set the ghost cell values
to the value of the solution in the first cell inside the domain.

Higher-order methods typically involve a higher-order representation of the solu-
tion than the piecewise-constant function described in the previous paragraph. These
methods will usually require a more elaborate treatment of a nonreflecting boundary
to preserve their order at the boundary.
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Exercises for 3.4

3.4.1 Many texts (for example [96, page 125] and [72, page 315]) incorrectly write the Lax–Friedrichs
scheme on a uniform grid in the form

un+1
i = 1

2

(
un

i−1 + un
i+1

) − 
tn+1/2

2
x

[
f
(
un

i+1

) − f
(
un

i−1

)]
.

(a) Show that this is a conservative difference scheme with flux

f n
i+1/2 = f

(
un

i+1

) + f
(
un

i

)
2

− 
x

2
t

[
un

i+1 − un
i

]
.

(b) Show that this incorrect form of the Lax–Friedrichs scheme is such that odd-indexed values
of the solution at the new time depend only on even-indexed values of the solution at the old
time.

(c) Program this scheme and the correct Lax–Friedrichs scheme for linear advection, and compare
the results.

3.4.2 Program Lax-Friedrichs, Godunov and Rusanov for Burgers’ equation. Compare the numerical
results for the following Riemann problems:
(a) a shock with uL = 2, u R = 0 on x ∈ (−0.1, 1.0) and 0 < t ≤ 0.9
(b) a shock with uL = 0, u R = −2 on x ∈ (−1.0, 0.1) and 0 < t ≤ 0.9
(c) a rarefaction with uL = 1, u R = 2 on x ∈ (−0.2, 2.0) and 0 < t ≤ 0.9
(d) a transonic rarefaction, with uL = −1, u R = 1 on x ∈ (−1.0, 1.0) and 0 < t ≤ 0.9.

When comparing the schemes, do the following steps:
(a) use 100 grid cells in each calculation;
(b) place the initial discontinuity in the interior of your grid at x = 0;
(c) run each scheme for CFL numbers 0.9 and 0.5;
(d) plot the solution at the final time, but scale the horizontal axis by dividing the spatial coordi-

nates by the final time. (This is what is meant by “plotting the solution versus x/t”.)
3.4.3 Marquina’s flux formula [45] for scalar laws involves using the Rusanov scheme to approxi-

mate the flux in transonic Riemann problems, and Godunov’s scheme otherwise. In other words,
Marquina’s flux is given by

f n+1/2
i+1/2 =


f (uL ), f ′(u) > 0 for all u ∈ int[uL , u R]

f (u R), f ′(u) < 0 for all u ∈ int[uL , u R]
1
2 [ f (uL ) + f (u R) − (u R − uL ) maxu∈int[uL ,ur ] | f ′(u)|], otherwise.

Test this scheme on the computations in the previous problem.
3.4.4 Program Lax–Friedrich, Godunov and Rusanov for the traffic flow problem with density given

by (3.19). Compare the numerical results (see the previous problem for the instructions in the
comparison) for the following Riemann problems:
(a) a shock with ρR = ρmax/e, ρL = 0, a = 1 on x ∈ (−0.1, 1.0) and 0 < t ≤ 0.9
(b) a shock with ρR = ρmax, ρL = ρmax/e, a = e − 1 on x ∈ (−1.0, 0.1) and 0 < t ≤ 0.9
(c) a rarefaction with ρL = ρmax/e2, ρL = ρmax/e3, a = 1 on x ∈ (−0.1, 2.0) and 0 < t ≤ 0.9
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(d) a transonic rarefaction, with ρL = ρmax, ρL = ρmax/e2, a = 1 on x ∈ (−1.0, 1.0) and 0 <

t ≤ 0.9
In addition, plot the characteristic speeds versus x/t for each of these Riemann problems.

3.4.5 Program Lax–Friedrichs, Godunov and Rusanov for the miscible displacement problem with
tracer concentration given by (3.21). In order to discretize the diffusive term, use explicit centered
differences:

∂

∂x

(
D

∂c

∂x

)
≈ 1


x2

[
Di+1/2

(
cn

i+1 − cn
i

) − Di−1/2
(
cn

i − cn
i−1

)]
.

(a) Assuming that the velocity v, longitudinal mixing length α�, porosity φ, diffusivity δc and
tortuosity τ are all constant, rewrite the miscible displacement problem as a convection-
diffusion problem and determine a formula for the cell Peclet number.

(b) Perform a Fourier analysis of explicit upwind differences for the miscible displacement
problem to determine conditions on the timestep so that the scheme is diffusive.

(c) Write the upwind difference scheme for the miscible displacement problem with explicit
centered differences for the diffusive terms as a conservative difference scheme.

(d) Program the upwind difference scheme for miscible displacement. Experiment with values
of the Peclet number to determine when the numerical diffusion dominates the physical
diffusion.

3.4.6 Program Lax–Friedrichs, Godunov and Rusanov for the Buckley–Leverett problem.
3.4.7 We can plot approximate trajectories for numerical solutions of conservation laws using a contour

plotter. Suppose that we compute the numerical solution of the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

and store the numerical solution at all grid cell centers xi and all timesteps tn . This gives us a
2D lattice of numerical values un

i . Then we use a contour plotter to plot lines of constant values
of u.
(a) Explain why this contour plot would approximately produce the trajectories of u(x, t).
(b) Use this approach to plot the trajectories of the solution of Burgers’ equation with initial

data

u0(x) =
{−0.5, x < 0.5

0.2 + 0.7 cos(2πx), x > 0.5

The difficulty with this approach for plotting trajectories is that it does not plot trajectories in
regions where the solution is constant.

3.5 Lax–Wendroff Process

Modified equation analyses of any of the previous schemes we have studied indicate
that the error term is first-order in either 
t or 
x . In this section, we will see how
we can use the modified equation analysis to construct a second-order scheme.
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Consider the explicit centered difference scheme on a uniform grid

un+1
i = un

i − 
tn+1/2

2
x

[
f
(
un

i+1

) − f
(
un

i−1

)]
.

This is a conservative difference scheme in which the numerical fluxes are chosen
to be

f n+1/2
i+1/2 = 1

2

[
f
(
un

i+1

) + f
(
un

i

)]
.

As we have seen, the modified equation analysis of the explicit centered difference
method for linear advection shows that the error term is O(
x2) + O(
t). We have
also seen that the scheme is unconditionally unstable for linear advection.

Nevertheless, let us carry out a modified equation analysis for the general non-
linear scalar conservation law. We can see that

un+1
i ≈ un

i + ∂ ũ

∂t

t + 1

2

∂2ũ

∂t2

t2,

and

f
(
un

i±1

) ≈ f
(
un

i

) ± ∂ f

∂x

x + 1

2

∂2 f

∂x2

x2 ± 1

6

∂3 f

∂x3

x3.

We assume that the modified equation is

∂ ũ

∂t
+ ∂ f (ũ)

∂x
= e.

This implies that

∂2ũ

∂t2
= ∂e

∂t
− ∂

∂t

(
∂ f (ũ)

∂x

)
= ∂e

∂t
− ∂

∂x

(
d f (ũ)

dũ

∂ ũ

∂t

)
= ∂e

∂t
− ∂
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(
∂ f (ũ)

∂ ũ
e

)
+ ∂

∂x

(
d f (ũ)

dũ

∂ f (ũ)

∂x

)
.

Thus the difference equation leads to

un+1
i − un

i


t
+ f

(
un

i+1

) − f
(
un

i−1

)
2
x

≈ ∂ ũ

∂t
+ 1

2

∂2ũ

∂t2

t + ∂ f (ũ)

∂x
+ 1

6

∂3 f

∂x3

x2

= e + 1

6

∂3 f

∂x3

x2 +

{
∂e

∂t
− ∂

∂x

(
d f (ũ)

dũ
e

)
+ ∂

∂x

(
d f (ũ)

dũ

∂ f (ũ)

∂x

)}

t

2
.

Since the error term e in the modified equation analysis is O(
t), the dominant term
of order 
t is ∂

∂x ( d f (ũ)
dũ

∂ f (ũ)
∂x )
t

2 . We will approximate this term by finite differences
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in order to obtain a higher-order method, called the Lax–Wendroff method

0 = un+1
i − un

i


tn+1/2
+ f

(
un

i+1

) − f
(
un

i−1

)
2
x

− 
tn+1/2


x

[(
d f

du

)n

i+1/2

f
(
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i+1

) − f
(
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i

)
2
x

−
(

d f

du

)n

i−1/2

f
(
un

i

) − f
(
un

i−1

)
2
x

]
.

On a non-uniform mesh, we should take the Lax-Wendroff flux to be

f n+1/2
i+1/2 = f

(
un

i

)

xi+1 + f

(
un

i+1

)

xi − 
tn+1/2 d f

du

[
f
(
un

i+1

) − f
(
un

i

)]

xi + 
xi+1

. (3.28)

In this formula, we can evaluate the partial derivative of f as(
d f

du

)n

i+1/2

≡ d f

du

∣∣∣ 1
2 (un

i+1+un
i ) .

In other words, the Lax–Wendroff scheme is a conservative difference scheme with
numerical flux

f n+1/2
i+1/2 = 1

2

[
f
(
un

i+1

) + f
(
un

i

)] −
(

d f

du

)n

i+1/2

f
(
un

i+1

) − f
(
un

i

)
2
x


tn+1/2. (3.29)

It turns out that the resulting scheme is second-order in both space and time, and
linearly stable for ∣∣∣∣d f

du

∣∣∣∣ 
t ≤ 
x .

However, this scheme does not work well for general nonlinear problems, as the
next example shows.

Example 3.5.1 The Lax–Wendroff scheme computes the wrong solution for tran-
sonic rarefactions. For example, if we consider the Riemann problem initial data
for Burgers’ equation with initial data

u(x, 0) =
{−1, x < 0

1, x < 0

then the Lax–Wendroff fluxes in (3.29) will be f n+1/2
i+1/2 = 1

2 at all cell sides. The con-
servative difference (2.14) will produce no change in the solution for all timesteps.

It is more common to implement the Lax–Wendroff scheme in two steps. A
classical approach is the Richtmyer two-step Lax–Wendroff scheme

un+1/2
i+1/2 = un

i+1
xi + un
i 
xi+1 − 
tn+1/2

[
f
(
un

i+1

) − f
(
un

i

)]

xi + 
xi+1

(3.30a)

un+1
i = un

i − 
tn+1/2


xi

[
f
(
un+1/2

i+1/2

) − f
(
un+1/2

i−1/2

)]
. (3.30b)
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(a) Lax–Wendroff (b) MacCormack

Fig. 3.14 Second-order schemes for traffic flow rarefaction: CFL = 0.9

The first step is similar to the Lax–Friedrich scheme, and the second step is a
conservative difference.

Figure 3.14 shows some numerical results with the Richtmyer two-step Lax–
Wendroff scheme for a rarefaction with the traffic flow problem. Note that the
Lax–Wendroff results are significantly more accurate than the first-order schemes
in Figure 3.9. A program to implement the Lax–Wendroff scheme can be found in
Program 3.5-39: Schemes.C Students can also execute the Lax–Wendroff scheme by
clicking on the web link Executable 3.5-10: guiconvex2 and selecting scheme to be
lax wendroff in the View pulldown menu, inside the Numerical Method
Parameters group.

3.6 Other Second Order Schemes

There are several other classical second-order methods for hyperbolic equations. A
popular scheme is the MacCormack scheme [114]:

ũn+1
i = un

i − 
tn+1/2


xi

[
f
(
un

i+1

) − f
(
un

i

)]
; (3.31a)

˜̃un+2
i = ũn+1

i − 
tn+1/2


xi

[
f
(
ũn+1

i

) − f
(
ũn+1

i−1

)])
; (3.31b)

un+1
i = 1

2

[
un

i + ˜̃un+2
i

]
. (3.31c)

An alternative form of this scheme uses backward differencing in the predictor, and
forward differencing the the corrector. It is also common to alternate the forward

http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/Schemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvex2
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and backward differencing between successive steps of this scheme. Figure 3.14
shows some numerical results with the MacCormack scheme for a rarefaction with
the traffic flow problem. Note that the MacCormack computes the wrong solution
to this problem. (In classical applications of these methods, artificial diffusion was
added to reduce the likelihood of such behavior.) A program to implement the
MacCormack scheme can be found in Program 3.6-40: Schemes.C Students can also
execute the MacCormack scheme by clicking on the web link Executable 3.6-11:
guiconvex2 and selecting scheme to be mac cormack in the View pulldown
menu, inside the Numerical Method Parameters group.

There are some other second-order schemes that differ in their choice of higher-
order approximations to f n+1/2

i+1/2 and the related second-order time correction. The
Beam–Warming scheme [173]: uses the solution values un

j for j = i − 2, i − 1, i
to construct a second-order approximation to the flux at xi+1/2. This scheme needs
to be properly upwinded and combined with artificial diffusion to work properly.
We will discuss this scheme for linear advection in Section 5.5.2.

The Fromm scheme [51] is basically the average of the Lax–Wendroff and
Beam–Warming methods. This scheme also needs to be properly upwinded and
combined with artificial diffusion to work properly. We will discuss this scheme
for linear advection in Section 5.5.2.

The leap-frog scheme uses data from two previous timesteps to compute

un+1
i = un−1

i − 
tn+1/2 + 
tn−1/2

2
xi

[
f
(
un

i+1

) − f
(
un

i−1

)]
.

This scheme is neutrally stable for linear advection problems [72, p. 313]. It works
well for linear advection problems with smooth initial data, but does not work well
for nonlinear problems.

Students can perform their own comparisons of these schemes for convex con-
servation laws by clicking on the web links Executable 3.6-12: guiconvex2 Executable
3.6-13: guiconvexerror2, Executable 3.6-14: guiriemann2, and Executable 3.6-15: guier-
ror2. The main programs for these executables are Program 3.6-41: GUIConvexRie-
mannProblem2.C, Program 3.6-42: GUIConvexErrorAnalysis2.C Program 3.6-43: GUIRie-
mannProblem2.C and Program 3.6-44: GUIErrorAnalysis2.C.

Exercises for 3.6

3.6.1 Perform Fourier analyses for the Lax–Wendroff, MacCormack, and leap-frog applied to linear
advection. Plot the total dissipation and dispersion for each. Show that the leap-frog scheme has
no dissipation.

3.6.2 Perform modified equation analyses for the Lax–Wendroff, MacCormack, and leap-frog applied
to linear advection. Determine the dominant error terms in each.

http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/Schemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvex2
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconve2,
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiconvexerror2
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guiriemann2
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_scalar_law_guierror2
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIConvexRiemannProblem2.C
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIConvexErrorAnalysis2.C
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIRiemannProblem2.C
http://www.math.duke.edu/~johnt/math226/nonlinear_scalar_law/GUIErrorAnalysis2.C
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3.6.3 Program Lax–Wendroff, MacCormack, and leap-frog for linear advection. Test the schemes for
different values of the CFL number, and compare to the results of the Fourier analysis. For
example, compare the location of the oscillations in the Lax–Wendroff scheme to the dispersion
results from the Fourier analysis.

3.6.4 Program the Lax–Wendroff, MacCormack, and leap-frog schemes for Burgers’ equation. Compare
the results to Godunov’s scheme for a Riemann problem with shock moving at speed 1, and for
a stationary shock.

3.6.5 Program the Lax–Wendroff, MacCormack, and leap-frog schemes for the traffic flow problem
with logarithmic density. Compare the results to Godunov’s scheme for a Riemann problem with
shock moving at speed 1, and for a stationary shock. (Note that numerical oscillations from these
schemes could cause trouble for the logarithmic density in the traffic flow problem.)

3.6.6 Develop a second-order treatment of non-reflecting boundary conditions for the Lax–Wendroff
method.



4

Nonlinear Hyperbolic Systems

Many important problems in mathematical physics involve systems of conservation
laws. For example, gas dynamics involves equations for conservation of mass,
momentum and energy. In order to design effective numerical methods for the
solutions of conservation laws, we will need to examine the mathematical features
of the equations of motion.

4.1 Theory of Hyperbolic Systems

There are several important theoretical issues that we need to understand in order to
develop effective numerical methods for solving nonlinear hyperbolic systems of
conservation laws. In order to assist the student in understanding these issues, we
will present applications of these issues to the shallow water equations throughout
the discussion of the general theory. Later, we will present case studies of other
important physical systems, and discuss all of the theory with regard to each single
application.

4.1.1 Hyperbolicity and Characteristics

Systems of conservation laws take the form

d

dt

∫
�

u(x, t) dx +
∫

∂�

F(u(x, t))n ds =
∫

�

b(x, t) dx, (4.1)

where � ⊂ Rk , u ∈ Rm is the vector of conserved quantities, F ∈ Rm×k is the array
of fluxes of the conserved quantities, b ∈ Rm is the vector of body forces and n is
the outward normal on ∂�.

135
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Example 4.1.1 In a body of water with zero slope angle and zero friction coeffi-
cient, the equations for the motion of shallow water are [175, page 84]

d

dt

∫
�

[
h

vh

]
dx +

∫
∂�

[
hv · n

vhv · n + n 1
2 gh2

]
ds = 0. (4.2)

Here h is the height of the water, v is the velocity, g is the vertical component of
the acceleration due to gravity.

The following definition is important to the discussion of systems of conservation
laws.

Definition 4.1.2 The system of conservation laws (4.1) is hyperbolic if and only
if for any u and for any fixed unit vector n the matrix ∂F(u)n/∂u has real eigen-
values. In other words, (4.1) is hyperbolic if and only if for each u and n there is a
nonsingular matrix X(n) and Jordan canonical form �(n) with real diagonal entries
so that

∂Fn
∂u

X(n) = X(n)�(n).

The diagonal entries of �(n) are called the characteristic speeds. If the character-
istic speeds are distinct, then the system is called strictly hyperbolic.

In order to simplify the notation in the definition of characteristic speeds, we will
typically suppress the dependence of X and � on n, and write

∂Fn
∂u

X = X�.

In regions of smooth flow, the system of conservation laws can be written as a
system of partial differential equations:

∂u
∂t

+
k∑

i=1

∂Fei

∂xi
= b(x, t). (4.3)

In many cases, it is useful to consider both u and F as functions of another set of
variables w, which we will call the “flux variables.” The quasilinear form of the
conservation law in smooth flow will then be written

∂u
∂w

∂w
∂t

+
k∑

i=1

∂Fei

∂w
∂w
∂xi

= b(x, t). (4.4)

Lemma 4.1.3 Suppose that the conservation law (4.1) has a continuously differ-
entiable solution u at some point (x, t). Suppose that w is a vector of flux variables
for this equation; in other words, ∂u

∂w is nonsingular. Finally, suppose that we can
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find a nonsingular matrix Y and a Jordan canonical form � so that(
∂u
∂w

)−1
∂Fn
∂w

Y = Y�. (4.5)

Then the diagonal entries of � are the characteristic speeds for (4.1), and the
columns of X = ∂u

∂w Y are the characteristic directions.

Proof Since

∂Fn
∂u

= ∂Fn
∂w

(
∂u
∂w

)−1

it follows that
∂Fn
∂u

X ≡ ∂Fn
∂u

(
∂u
∂w

Y
)

=
(

∂u
∂w

Y
)

� ≡ X�.

�

Example 4.1.4 For the shallow water equations (4.2), it is natural to take the array
of flux variables to be

w =
[

h
v

]
.

Then the array of derivatives of the conserved quantities is

∂u
∂w

=
[

1 0
v Ih

]
and the array of flux derivatives is

∂Fn
∂w

=
[

v · n hn�

vv · n + ngh Ihv · n + vhn�

]
.

In order to determine if the shallow water conservation laws are hyperbolic,
Definition 4.1.2 requires that we find the eigenvalues of(

∂u
∂w

)−1
∂Fn
∂w

=
[

v · n hn�

ng Iv · n

]
.

Note that ∂u
∂w is singular at h = 0, so we restrict our discussion to problems in which

h > 0. Let us define the speed of sound by c = √
gh. Then{(

∂u
∂w

)−1
∂Fn
∂w

}
Y ≡

[
v · n hn�

ng Iv · n

] [−h/c 0 h/c
n N n

]

=
[−h/c 0 h/c

n N n

] v · n − c 0 0
0 Iv · n 0
0 0 v · n + c

 ≡ Y�.
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Here
[
n N

]
is an orthogonal matrix with first column equal to n. Thus the system is

hyperbolic. The characteristic speeds are v · n ± c, and v · n in multiple dimensions
k > 1. The characteristic directions are the columns of

X = ∂u
∂w

Y =
[

1 0
v Ih

] [−h/c 0 h/c
n N n

]
=

[ −h/c 0 h/c
(n − v/c)h Nh (n + v/c)h

]
.

In many applied problems, the characteristic speeds are distinct, so the problem
has a full set of characteristic directions. Shallow water in one dimension is an
example of such a system. Many physical problems have a full set of characteristic
directions even if the characteristic speeds are not distinct. Shallow water in multiple
dimensions is an example. We will also see interesting problems in which some
characteristic speeds are equal along special degenerate curves (as in the vibrating
string of Section 4.8. below). In other cases (for example, polymer flooding in
Section 4.10), � is not always diagonal.

The following definitions will be useful.

Definition 4.1.5 Given a unit vector n, an eigenvalue λi = e�
i �ei of ∂Fn

∂u is gen-
uinely nonlinear if and only if

for all u
∂λi

∂u
Xei 	= 0.

On the other hand, λi is linearly degenerate if and only if

for all u
∂λi

∂u
Xei = 0.

Linearly degenerate waves are sometimes called contact discontinuities.

When flux variables are used, a somewhat easier test for genuine nonlinearity is
∂λi
∂w Yei 	= 0, where Y is given by (4.5).

Example 4.1.6 To see that the shallow water characteristic speeds v · n ± √
gh are

genuinely nonlinear, we compute

∂λi

∂w
Yei = ∂(v · n ± √

gh)

∂w

[±√
h/g

n

]
= [± 1

2

√
g/h n�] [±√

h/g
n

]
= 3

2
.

To see that v · n is linearly degenerate in multiple dimensions, we compute

∂v · n
∂w

[
0
N

]
= [

0 n�] [
0
N

]
= 0.
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4.1.2 Linear Systems

Some interesting physical problems, such as Maxwell’s equations, are linear with
constant coefficients. It is easy to solve such problems with continuously differen-
tiable initial data in one dimension, as the next lemma shows.

Lemma 4.1.7 Consider the linear hyperbolic system for u ∈ Rm in a single spatial
variable x, namely

∂u
∂t

+ A
∂u
∂x

= 0,

u(x, 0) = u0(x),

where A is some fixed matrix. We assume that A is diagonalizable; in other words,

AX = X�

where X ∈ Rm×m is nonsingular and � ∈ Rm×m is diagonal. Then the solution to
this initial value problem is

u(x, t) =
∑

j

Xe j e�
j X−1u0(x − λ j t).

Proof Define the characteristic expansion coefficients to be c(x, t) = X−1u(x, t).
Then we can rewrite the conservation law in the form

∂c
∂t

+ �
∂c
∂x

= 0,

c(x, 0) = X−1u0(x).

In this equation, we have decoupled the system of m conservation laws into m
separate conservation laws for the components of c:

∂c j

∂t
+ λ j

∂c j

∂x
= 0,

c j (x, 0) = e�
j X−1u0(x).

We can solve for the individual components to get c j (x, t) = e�
j X−1u0(x − λ j t).

Then we can recombine these values to write the solution of the original equation
in the form

u(x, t) = Xc(x, t) =
∑

j

Xe j c j (x, t) =
∑

j

Xe j e�
j X−1u0(x − λ j t).

�

Just for fun, we will examine the solution of a linear hyperbolic system of two
conservation laws involving a nontrivial Jordan canonical form.
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Lemma 4.1.8 Suppose that

J =
[
λ 1
0 λ

]
.

is a nontrivial Jordan block, and that u0(x) is continuously differentiable. Then the
solution of the linear hyperbolic system in one spatial variable

∂u
∂t

+ J
∂u
∂x

= 0, u(x, 0) = u0(x),

is

u(x, t) =
[

e�
1 u0(x − λt) − t e�

2 u′
0(x − λt)

e�
2 u0(x − λt)

]
.

Proof If we transform to characteristic coordinates ξ = x − λt and τ = t , then
ũ(ξ, τ ) ≡ u(x, t) satisfies

∂ũ
∂τ

+
[

0 1
0 0

]
∂ũ
∂ξ

= 0.

It follows that e2 · ũ(ξ, τ ) = e2 · u0(ξ ), and that e1 · ũ(ξ, τ ) = e1 · u0(ξ ) − τe2 ·
u′

0(ξ ). After transforming back to the original coordinates x and t , we obtain the
claimed result. �

It is straightforward to generalize this solution to larger Jordan blocks. Note that
the solution of this conservation law can involve polynomial growth in time, if
the initial data is continuously differentiable; if the initial data is not continuously
differentiable, then the solution can blow up immediately.

On the other hand, it is more difficult to extend the results of either of these
two lemmas to multiple dimensions. A principal difficulty in this extension is
the complication due to wave propagation on characteristic cones; see [54] for
more details. The importance of characteristic cones for the multidimensional wave
equation is well-known; see [153] for more details.

4.1.3 Frames of Reference

In developing the conservation laws for physical various models, it will be useful
to view the fluid in various frames of reference. The Lagrangian frame views the
problem in terms of the original position of the material particles. On the other
hand, the Eulerian frame views the fluid in terms of the current position of the
material particles. The material particles move in the Eulerian frame of reference,
but are fixed in the Lagrangian frame.

Following the notation in Fung’s solid mechanics book [52], we will represent the
Lagrangian coordinates by a ∈ �0, and the Eulerian coordinates by x ∈ �t . Thus
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the current position of a particle originally at position a is x(a, t). More detailed
discussion of frames of references can be found in Truesdell’s book [167], but the
notation involves the use of many fonts for the letter “x.”

4.1.3.1 Useful Identities

Because conservation laws in multiple dimensions involve partial derivatives of
arrays and possible changes in frame of reference, it will be useful to provide some
identities from calculus and linear algebra.

If b, c ∈ Rm then

b�c = tr (bc�), (4.6)

where “tr” is the trace of a square matrix (the sum of the diagonal entries). Similarly,
if y ∈ Rk and w(y) ∈ Rk , then it is easy to see that

∇y · w = tr (∇yw�) = tr

(
∂w
∂y

)
. (4.7)

There are several identities based on the product rule for differentiation. If y ∈ Rk ,
b(y) ∈ Rk and c(y) ∈ Rm then

∇y · (bc�) = (∇y · b)c� + b�(∇yc�) = (∇y · b)c� + b�
(

∂c
∂y

)�
. (4.8)

Similarly, if y ∈ Rk , B(y) ∈ Rk×m and c(y) ∈ Rm then

∇y · (Bc) = (∇�
y B)c + (B�∇y)�c = (∇�

y B)c + tr

(
∂c
∂y

B
)

. (4.9)

If t ∈ R and F(t) ∈ Rm×m is invertible, then FF−1 = I implies that

dF−1

dt
= −F−1 dF

dt
F−1. (4.10)

Next, we will state some useful identities based on the chain rule for partial
differentiation. In order to clarify the independent variables in the formulas, we
will use subscript L for dependence on (a, t), and subscript E for dependence on
(x, t). We define the deformation gradient by

JL(a, t) ≡ ∂x
∂a

. (4.11)

If uE(x, t) ∈ Rm , let

uL(a, t) ≡ uE(x(a, t), t).
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Then the chain rule implies that

∂uL

∂a
= ∂uE

∂x
JL . (4.12)

We can transpose this equation to obtain ∇au�
L J�

L (∇xu�
E ), or take the trace to obtain

∇a · uL = tr ( ∂uE
∂x JL).

We define the velocity by

vL(a, t) = ∂x
∂t

. (4.13)

By interchanging the order of differentiation it is easy to see that

∂JL

∂t
= ∂vL

∂a
. (4.14)

The velocity and deformation gradient can also be defined in the Eulerian frame of
reference by vE(x(a, t), t) ≡ vL(a, t) and JE(x(a.t), t) ≡ JL(a, t). Equations (4.14)
and (4.12) applied to the velocity vector show that

∂JL

∂t
= ∂vE

∂x
JL . (4.15)

Using the multilinearity of the determinant, then equation (4.15) and finally the fact
that a matrix with one row a scalar multiple of another has zero determinant, we
compute

∂ det JL

∂t
=

k∑
i=1

det


e�

1 JL

...
e�

i
∂JL
∂t

. . .

e�
k JL

 =
k∑

i=1

det



e�
1 JL

...∑k
�=1 e�

i
∂vE
∂x e�e�

� JL

...
e�

k JL



=
k∑

i=1

det


e�

1 JL

...
e�

i
∂·vE
∂x ei e�

i JL

...
e�

k JL

 =
(

k∑
i=1

e�
i

∂vE

∂x
ei

)
det JL .

This result can be written

∂|JL|
∂t

= |JE |∇x · vE . (4.16)

The chain rule can also be used to derive the formula for the material
derivative (which is sometimes called the substantial derivative): if uL(a, t) =
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uE(x(a, t), t) ∈ Rm then

∂uL

∂t
= ∂uE

∂t
+ ∂uE

∂x
vE . (4.17)

Equality of mixed partial derivatives can be used to prove that

∇a · (|JL|J−1
L

) = 0. (4.18)

If BL(a, t) = BE(x(a, t), t) ∈ Rk×m then we can use the product rule (4.9), equality
of mixed partial derivatives (4.18), and the chain rule (4.12) to prove that

∇a · (|JL|J−1
L BL

) = |JE |∇x · BE . (4.19)

4.1.3.2 Change of Frame of Reference for Conservation Laws

We can use a number of identities from the previous subsection to prove the fol-
lowing lemma.

Lemma 4.1.9 Suppose that uE(x, t) ∈ Rm satisfies the (Eulerian) conservation law

d

dt

∫
�x

uE(x, t) dx +
∫

∂�x

FE(uE(x, t))nx dsx =
∫

�x

bE(x, t) dx,

Also assume that x(a, t) ∈ Rk and a ∈ Rk , vL = ∂x
∂t , JL = ∂x

∂a , �x = {x(a, t) :
a ∈ �a}, FL(a, t) = FE(x(a, t), t), and bL(a, t) = bE(x(a, t), t). Then uL(a, t) ≡
uE(x(a, t), t) satisfies the (Lagrangian) conservation law

d

dt

∫
�a

uL(a, t)|JL| da +
∫

∂�a

[(FL − uLv�
L )J−�

L |JL|na dsa =
∫

�a

bL(a, t)|JL| da.

Proof The formula for change of variables in integration implies that∫
�x

bE(x, t) dx =
∫

�a

bL(a, t)|JL| da.

Further, the divergence theorem implies that for any fixed vector z,∫
∂�x

z�FE(u(x, t))nx dsx =
∫

�x

(∇x · F�
E z) dx =

∫
�x

tr

(
∂F�

E z

∂x

)
dx

then change of variables in integration implies that

=
∫

�a

tr

(
J−1

L

∂F�
L z

∂a

)
|JL| da
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then the product rule (4.9) with B = J−1
L |JL| and c = F�

L z, together with equality
of mixed partial derivatives (4.18) imply that

=
∫

�a

tr

(
∂J−1

L F�
L z|JL|

∂a

)
da =

∫
�a

∇a · (
J−1

L F�
L z|JL|

)
da

and finally the divergence theorem implies that

=
∫

∂�a

z�FLJ−�
L na|JL| dsa.

Finally, the formula (4.17) for the material derivative implies∫
�x

∂uE

∂t
dx =

∫
�x

∂uL

∂t
− ∂uE

∂x
vE dx

then change of variables in integration and the chain rule (4.12) imply

=
∫

�a

[
∂uL

∂t
− ∂uL

∂a
J−1

L vL

]
|J| da

then the formula (4.16) for the rate of change of the Jacobian, together with the
chain rule (4.12), imply that

=
∫

�a

∂uL

∂t
|JL| + uL

[
∂|JL|
∂t

− tr

(
∂vL

∂a
J−1

L |JL|
)]

− ∂uL

∂a
J−1

L vL|JL| da

then the product rule for time differentiation, Equation (4.18), and the product rule
(4.9) with B = J−1

L |JL| and c = vL imply

=
∫

�a

∂uL|JL|
∂t

− uL ∇a · (
J−1

L vL|JL|
) − ∂uL

∂a
J−1

L vL|JL| da

and finally the transpose of (4.8) with b = J−1
L vL|JL| and c = uL implies that

=
∫

�a

∂uL|JL|
∂t

− [
∇�

a

(
J−1

L vL|JL|u�
L

)]�
da.

We can put these three equations together to obtain the claimed result. �

Note that in smooth flow, this lemma says that the conservation law

∂uE

∂t
+

k∑
i=1

∂FEei

∂xi
= bE
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is equivalent to the conservation law

∂uL|JL|
∂t

+
k∑

i=1

∂
(
FL − uLv�

L

)
J−�

L ei |JL|
∂ai

= bL|JL|. (4.20)

4.1.3.3 Change of Frame of Reference for Propagating Discontinuities

Next, we would like to determine how discontinuity speeds and normals change
when we change the frame of reference.

Lemma 4.1.10 [63] Suppose that at some point in the domain, a discontinuity
propagates with speed σE in direction nE with respect the Eulerian coordinate
system x(a, t), and with speed σL and normal nL in the Lagrangian coordinate
system a. Then

nE = J−�
L nL

1

‖J−�
L nL‖

, σE − nE · v = σL‖J�
L nL‖

where v = ∂x
∂t , JL = ∂x

∂a .

Proof Suppose that we have a propagating discontinuity surface described as the
level set of a function φE in the Eulerian frame of reference: φE(x, t) = 0. Then
the normal to the surface is nE = ∇xφE/‖∇xφE‖. The velocity of the surface in this
normal direction must be continuous across the surface. Since φE(x, t) = 0 gives us
a 1-parameter representation of a point x on the surface as a function of time t , let us
define that point xt (t) by the equation φE(xt (t), t) = 0 and the requirement that the
point move along the normal to the surface dxt

dt = nEσE . Then we can differentiate
the level set equation in time to get

0 = ∂φE

∂x
∂xt

∂t
+ ∂φE

∂t
= ∇xφE · nEσE + ∂φE

∂t
.

This implies that the normal speed of the surface is σE = − ∂φE

∂t
1

‖∇xφE ‖ .
We can also write the discontinuity surface in the Lagrangian frame as φL(a, t) =

φE(x(a, t), t) = 0. Thus the Lagrangian normal to the discontinuity surface is
nL = ∇aφL/‖∇aφL‖. Note that the chain rule for partial differentiation implies that
∇aφL = J�

L ∇xφE . where JL is the deformation gradient JL ≡ ∂x/∂a. Thus the nor-
mal directions in the two frames of reference are related as follows:

nL = ∇aφL

1

‖∇aφL‖ = J�
L ∇xφE

1

‖∇aφL‖ = J�
L nE

‖∇xφE‖
‖∇aφL‖ .

Taking norms of both sides of this equation leads to 1 = ‖J�
L nE‖‖∇xφE‖/‖∇aφL‖.

This result allows us to write

nL = J�
L nE

1

‖J�
L nE‖ or nE = J−�

L nL

1

‖J−�
L nL‖

.
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Of course, the equation φL(a, t) = 0 gives us a one-parameter representation of
the motion of points a in the surface. Let at (t) be the trajectory of a point on the
discontinuity surface moving along the normal to the surface. Since

0 = ∂φL

∂t
+ ∂φL

∂a
dat

dt
,

we see as before that the normal velocity of points on the surface is dat
dt = nLσL ,

where the normal speed of the discontinuity surface in the Lagrangian frame is

σL = −∂φL

∂t

1

‖∇aφL‖ .

The Eulerian and Lagrangian trajectories are related by the equation xt (t) =
x(at (t), t), from which it follows that

dxt

dt
= ∂x

∂a
dat

dt
+ ∂x

∂t
= JLnLσL + vL .

Now we can see that the Eulerian and Lagrangian normal discontinuity speeds are
related by

σE = −∂φE

∂t

1

‖∇xφE‖ = 1

‖∇xφE‖ (∇xφE) · dxt

dt
= nE · [JLnLσL + v]

= n�
E JLJ�

L nE

‖J�
L nE‖ σL + n�

E v = ‖J�
L nE‖σL + nE · v = ‖∇aφL‖

‖∇xφE‖σL + nE · v.

�

4.1.4 Rankine–Hugoniot Jump Condition

It is valid to write the conservation laws (4.1) as partial differential equations (4.3)
in regions of smooth flow. However, these equations could become invalid because
of a propagating discontinuity. In order to understand how the conservation laws
operate at a propagating discontinuity, we will prove the following important result,
which generalizes our previous Lemma 4.1.9 in one dimension.

Lemma 4.1.11 Suppose that we have a fixed domain � ⊂ Rk which is divided into
two sub-domains �L and �R by a single propagating discontinuity on a surface D,
associated with the conservation law

d

dt

∫
�

u dx +
∫

∂�

Fn ds =
∫

�

b dx. (4.21)

We will assume that the normal n to the discontinuity is oriented to point from �L to
�R. At any point on the discontinuity surface, let uL and uR be the values of u as we
approach the point from inside �L and �R, respectively. Similarly, let FL and FR be
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the values of F associated with the two domains on either side of the discontinuity.
Finally, let σ be the speed of the discontinuity, oriented corresponding to the normal
n. Then the Rankine–Hugoniot jump condition holds:

[FR − FL]n = [uR − uL]σ. (4.22)

Proof If y(x) is the velocity at a point x on the discontinuity surface, then the
well-known formula for the derivative of an integral leads to the equations

d

dt

∫
�L

u dx =
∫

�L

∂u
∂t

dx +
∫

D
uL n · y ds

and

d

dt

∫
�R

u dx =
∫

�R

∂u
∂t

dx −
∫

D
uR n · y ds.

Away from the discontinuity surface, the conservation law can be written as the
partial differential equation

∂u
∂t

+
k∑

i=1

∂Fei

∂xi
= b.

We use the fact that n · y = σ is the normal speed of the discontinuity to get

d

dt

∫
�

u dx =
∫

�L

b −
k∑

i=1

∂Fei

∂xi
dx +

∫
�R

b −
k∑

i=1

∂Fei

∂xi
dx

+
∫

D
uLσ ds −

∫
D

uRσ ds

then we apply the divergence theorem to get

=
∫

�

b dx −
∫

∂�L

Fn ds −
∫

∂�R

Fn ds −
∫

D
[uR − uL]σ ds.

then we use the fact that ∂�L ∪ ∂�R = ∂� ∪ D to get

=
∫

�

b dx −
∫

∂�

Fn ds +
∫

D
[FR − FL]n ds −

∫
D

[uR − uL]σ ds.

Subtracting the original form (4.21) for the conservation law, we obtain∫
D

[FR − FL]n ds =
∫

D
[uR − uL]σ ds.
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By shrinking D and � around a point, we obtain the Rankine–Hugoniot jump
condition (4.22). �

This lemma says that the jump in the normal component of the flux is equal to
the jump in the conserved quantities times the normal velocity of the discontinuity.
Note that the normal n appears in the definition of the discontinuity speed σ ; thus
reversing the sign of the normal leads to the same result.

Example 4.1.12 The Rankine–Hugoniot jump conditions for the shallow water
Equations (4.2) are

[hv · n] = [h]σ[
vhv · n + 1

2
ngh2

]
= [vh]σ.

Let ξ = σ − v · n be the velocity of the discontinuity relative to the fluid velocity.
Then the jump conditions can be rewritten

[hξ ] = 0[
1

2
ngh2 − vhξ

]
= 0.

The second of these two jump equations can be rewritten in the separate forms[
1

2
gh2 − v · nhξ

]
= 0,

[v · n⊥hξ ] = 0

where n⊥ is any vector orthogonal to n. Note that [v · n] = −[ξ ] and [hξ ] = 0, so

[v · nhξ ] = (hRξR)[v · n] = −(hRξR)[ξ ] = −[hξ 2];

thus we can further modify the jump conditions to get

[hξ ] = 0[
1

2
gh2 + hξ 2

]
= 0

[v · n⊥hξ ] = 0.

We will consider two cases, [h] = 0 and [h] 	= 0. If [h] = 0 and hL = hR > 0,
then [ξ ] = 0. Thus [v · n] = 0. We must have [v · n⊥] 	= 0, otherwise there is no
jump at all. Then ξR = ξL = 0, so the speed of the discontinuity is σ = v · n. This
is a contact discontinuity.
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On the other hand, suppose that [h] 	= 0. There are four variables in the two
equations

[hξ ] = 0[
1

2
gh2 + hξ 2

]
= 0,

namely ξL , ξR, hL and hR. We need to specify two variables to determine a solution.
Suppose that we are given hL > 0 and hR > 0. Define the relative jump in the water
height to be z = (hR − hL)/hL . Then we can rewrite the right height in terms of
the left height and z to get hR = hL(1 + z) and ξR = ξL/(1 + z). We can use this
expression for ξR to rewrite the second jump condition in the form

1

2
ghL(1 + z)2 + ξ 2

L

(1 + z)
= 1

2
ghL + ξ 2

L .

If z 	= 0, we can solve this equation to obtain

ξL = ±
√

1

2
ghR(2 + z)(1 + z) = ±

√
1

2
ghR(hR + hL)/hL .

At this point, given hL and hR, we know how to determine ξL and ξR.
If in addition we specify vL , then it follows that the discontinuity speed has two

possible values:

σ = vL · n + ξL = vL · n ±
√

g
hL + hR

2

hR

hL

.

It is interesting to note that as hR → hL , we find that σ → vL · n ± √
ghL = λ; in

other words, the speed of infinitesimal discontinuities is the same as a characteristic
speed. Alternatively, we could specify vR and compute

σ ≡ vR · n + ξR = vR · n + ξL

(1 + z)
= vR · n ±

√
1

2
ghL(hR + hL)/hR.

The locus of points satisfying the Rankine–Hugoniot jump conditions consists
of two curves in w-space. For example, we could fix the left state (hL, vL) and
determine vR(hR) as well as σ (hR):

vR = vL ± n(hR − hL)

√
g

2

(
1

hL

+ 1

hR

)
.

Alternatively, we could fix the right state (hR, vR) and determine vL(hL) and
σ (hL).
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Summary 4.1.13 Given a left state wL = (hL, vL), the points w = (h, v) on the
slow Rankine–Hugoniot locus for the shallow water equations (4.2) satisfy

v(h) = vL − n(h − hL)

√
g

2

(
1

hL

+ 1

h

)
where h > hL > 0

with discontinuity speed

σ (h) = vL · n −
√

g
hL + h

2

h

hL

.

Similarly, given a right state wR = (hR, vR), the points w = (h, v) on the fast
Rankine-Hugoniot locus satisfy

v(h) = vR − n(h − hR)

√
g

2

(
1

hR

+ 1

h

)
where h > hR > 0

with discontinuity speed

σ (h) = vR · n +
√

g
hR + h

2

h

hR

.

Across a contact discontinuity, both the water height h and the normal velocity v · n
are continuous, and the speed of a contact discontinuity is σ = v · n.

4.1.5 Lax Admissibility Conditions

Our goal here is to find conditions that will enable us to determine uniquely the
states u associated with propagating discontinuities.

Definition 4.1.14 Suppose that for all states u and all directions n, the characteris-
tic speeds obtained from ∂Fn/∂u are real and either genuinely nonlinear or linear
degenerate. Further assume that genuinely nonlinear characteristic speeds are dis-
tinct, both from other genuinely nonlinear characteristic speeds and from any lin-
early degenerate characteristic speeds. Suppose that the characteristic speeds have
been ordered so that

λ1 ≤ λ2 ≤ . . . ≤ λm . (4.23a)

Then a discontinuity moving with speed σ is a shock if and only if there is an index
j associated with a genuinely nonlinear characteristic speed λ j so that

(λ j )L > σ > (λ j )R and (λ j−1)L < σ < (λ j+1)R. (4.23b)
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These inequalities require that m − j + 1 characteristics enter the shock on the
left (namely those with indices j, . . . , m) and j characteristics enter the shock on
the right (namely those with indices 1, . . . , j). Note that the Rankine–Hugoniot
conditions

[F(uR) − F(uL)]n = [uR − uL]σ

involve 2m + 1 unknowns, namely uL , uR and σ . The Rankine-Hugoniot jump
conditions give us m equations to determine these unknowns. The Lax admissibility
conditions (4.23) provide the remaining conditions needed to completely specify
the left and right states and the shock speed.

To see why the Lax admissibility conditions (4.23) are important, we will gen-
eralize the analysis in section 3.1.5 to a system of conservation laws in one spatial
dimension. Suppose that

∂u
∂t

+ ∂f(u)

∂x
= 0, u(x, 0) =

{
uL, x < 0
uR, x > 0

where the initial data satisfies the Rankine–Hugoniot jump conditions

[f(uR) − f(uL)] = [uR − uL]σ.

Also suppose that the system is hyperbolic with a full set of characteristic directions;
then by Definition 4.1.2,

∂f
∂u

X = X�,

where � is diagonal, and its diagonal entries satisfy the Lax admissibility conditions
(4.23). Consider the viscous modification of the conservation law

∂uε

∂t
+ ∂f(uε)

∂x
= ε

∂2uε

∂x2
,

where ε > 0. We will look for traveling wave solutions of the form

uε(x, t) = w
(

x − σ t

ε

)
.

As in the case of a single conservation law, if uε satisfies the viscous conservation
law, then w satisfies the system of ordinary differential equations(

∂f
∂u

− Iσ
)

w′ = w′′.

We can integrate this equation once to obtain w′ − f(w) + wσ = c where the vector
c is constant. Taking the limit as ξ → −∞ implies that uε → uL , and consequently
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that w′ → 0. It follows that c = −f(uL) + uLσ , and that the ordinary differential
equations can be written

w′ = f(w) − f(uL) − (w − uL)σ.

Because the initial states uL and ur satisfy the Rankine–Hugoniot condition, both
of these states are stationary states of this system of ordinary differential equations
for w. Let us consider the stability of these stationary states. Note that if w = uL or
w = uR and w + yδ is a perturbed solution of the ordinary differential equations,
then

d(w + yδ)

dt
= f(w + yδ) − f(uL) − (w + yδ − uL)σ.

As δ → 0, we obtain

dy
dt

= ∂f
∂u

(w)y − yσ.

Thus

X−1 dy
dt

= (� − Iσ )X−1y.

The Lax admissibility conditions (4.23) imply that the j th entry of X−1w is linearly
unstable at uL and linearly stable at uR. Smoller [150] shows that there must be an
orbit in the system of ordinary differential equations for w that connects uL to uR.

Example 4.1.15 The slow discontinuity in the shallow water equations is admissi-
ble as long as vL · n − √

ghL > σ > vR · n − √
ghR. We can rewrite these inequal-

ities in the form

vL · n −
√

ghL > vL · n −
√

g
hR + hL

2

hR

hL

> vL · n −
√

g
hR + hL

2

[√
hR

hL

−
√

hL

hR

]
−

√
ghR.

These inequalities imply that hL <

√
hL+h R

2 hR and
√

hL+h R
2 hL < hR. These in turn

can be written 0 < (hR − hL)(hR + 2hL) and 0 < (hR − hL)(hL + 2hR). Thus the
slow shock is admissible for hR > hL . A similar analysis for the fast shock shows
that it is admissible for hR < hL .

4.1.6 Asymptotic Behavior of Hugoniot Loci

The following discussion has been taken from Lax [89]. We will restrict the
discussion in this section to one dimension. The multidimensional case is more
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complicated. See, for example, [37] for a discussion of shock reflection, or
[104, 146] for a discussion of Riemann problems for two-dimensional gas dynamics.

Lemma 4.1.16 (Lax[89]) Suppose that the hyperbolic system of m conservation
laws

∂u(w)

∂t
+ ∂f(w)

∂x
= 0

has distinct characteristic speeds � satisfying

∂f(w)

∂w
Y = ∂u

∂w
Y�,

and that the characteristic speeds satisfy the Lax admissibility conditions (4.23).
Suppose that the j th characteristic speed is genuinely nonlinear. Given a left state
wL , the locus of right states wR(ε) that can be connected to wL by an admissible
shock in the j th wave family, and the associated characteristic speed and shock
speed along this locus satisfy

λ j (ε) = λ j (0) + ε + O(ε2) (4.24a)

σ (ε) = λ j (0) + ε/2 + O(ε2) (4.24b)

dwR

dε
= Ye j + dYe j

dε

∣∣∣∣
ε=0

ε + O(ε2). (4.24c)

Proof Given a state wL , we would like to determine the flux variables wR that can
be connected to wL by a shock in the j th wave family. We claim that these states
form a one-parameter curve wR(ε) with wR(0) = wL . To see this fact, note that given
wL , the Rankine–Hugoniot conditions

[f(wR) − f(wL)] = [(u(wR) − u(wL)]σ

involve m equations for m + 1 unknowns, namely wR and σ . We will let ε represent
the remaining degree of freedom, and write wR(ε) and σ (ε) to represent the one-
parameter curve of solutions to the Rankine-Hugoniot conditions.

If we differentiate the Rankine–Hugoniot conditions with respect to ε, we get

∂f(w)

∂w

∣∣∣
wR

dwR

dε
= ∂u

∂w

∣∣∣
wR

dwR

dε
σ (ε) + [u(wR(ε)) − u(wL)]

dσ

dε
. (4.25)

At ε = 0, these equations say that

∂f(w)

∂w

∣∣∣
wL

dwR

dε

∣∣∣
ε=0

= ∂u
∂w

∣∣∣
wL

dwR

dε

∣∣∣
ε=0

σ (0).

The eigenvector equation for the characteristic speeds shows that, after adjusting
by a scalar multiple if necessary, there is some index j so that dwR

dε
|ε=0 is a scalar

multiple of Ye j , and σ (0) = λ j .
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We will assume that the genuinely nonlinear eigenvectors Yei have been nor-
malized so that for all genuinely nonlinear waves

∂λ j

∂w

∣∣∣
wL

Ye j = 1

and that for all linearly degenerate waves ‖Yei‖ = 1. This will imply that for gen-
uinely nonlinear waves j ,

dλ j (wR(ε))

dε

∣∣∣
ε=0

= ∂λ j

∂w

∣∣∣
wL

∂wR

∂ε

∣∣∣
ε=0

= ∂λ j

∂w

∣∣∣
wL

Ye j = 1.

Let us differentiate Equation (4.25) once more with respect to ε, and then set
ε = 0:

d

dε

(
∂f
∂w

∣∣∣
wR

) ∣∣∣
ε=0

Ye j + ∂f
∂w

∣∣∣
wL

d2wR

dε2

∣∣∣
ε=0

= d

dε

(
∂u
∂w

∣∣∣
wR

) ∣∣∣
ε=0

Ye jλ j + ∂u
∂w

∣∣∣
wL

d2wR

dε2

∣∣∣
ε=0

λ j + ∂u
∂w

∣∣∣
wL

Ye j
dσ

dε

∣∣∣
ε=0

2. (4.26)

We can also differentiate the definition of the j th characteristic direction and speed,

∂f
∂w

∣∣∣
wR (ε)

Y(wR(ε))e j = ∂u
∂w

Y(wR(ε))e jλ j (wR(ε)),

to get

d

dε

(
∂f
∂w

∣∣∣
wR

) ∣∣∣
ε=0

Ye j + ∂Fn
∂w

∣∣∣
wL

dYe j

dε

∣∣∣
ε=0

= d

dε

(
∂u
∂w

(wR)

) ∣∣∣
ε=0

Ye jλ j + ∂u
∂w

(wL)
dYe j

dε

∣∣∣
ε=0

λ j + ∂u
∂w

(wL)Ye j
dλ j

∂ε

∣∣∣
ε=0

.

If we subtract this equation from (4.26), we obtain

∂f
∂w

∣∣∣
wL

{
d2wR

dε2

∣∣∣
ε=0

− dYe j

dε
|ε=0

}
= ∂u

∂w

∣∣∣
wL

{
d2wR

dε2

∣∣∣
ε=0

− dYe j

dε

∣∣∣
ε=0

}
λ j + ∂u

∂w

∣∣∣
wL

Ye j

{
2

dσ

dε

∣∣∣
ε=0

− dλ j

∂ε

∣∣∣
ε=0

}
. (4.27)

We can multiply this equation by e�
j Y−1( ∂u

∂w )−1 to get

e�
j �Y−1

{
d2wR

dε2

∣∣∣
ε=0

− dYe j

dε

∣∣∣
ε=0

}
= e�

j Y−1

{
d2wR

dε2

∣∣∣
ε=0

− dYe j

dε

∣∣∣
ε=0

}
λ j + 2

dσ

dε

∣∣∣
ε=0

− dλ j

∂ε

∣∣∣
ε=0

.



4.1 Theory of Hyperbolic Systems 155

After we cancel equal terms on the two sides of this equation, we obtain

dλ j

dε

∣∣∣
ε=0

= 2
dσ

dε

∣∣∣
ε=0

.

Thus at the left state wL , the characteristic speed is changing twice as fast as the
shock speed along the Hugoniot locus.

Note that Equation (4.27) can be rewritten{
∂f
∂w

∣∣∣
wL

− ∂u
∂w

∣∣∣
wL

λ j

} {
d2wR

dε2

∣∣∣
ε=0

− dYe j

dε

∣∣∣
ε=0

}

= ∂u
∂w

(wL)Ye j

{
2

dσ

dε

∣∣∣
ε=0

− dλ j

∂ε

∣∣∣
ε=0

}
= 0.

Thus

d2wR

dε2

∣∣∣
ε=0

− dYe j

dε

∣∣∣
ε=0

= Ye jβ

for some scalar β. Because the left-hand side in this equation involves derivatives
of different order, we can parameterize ε so that β = 0. �

The last equation in (4.24) says that the shock curve is continuous to second
order with the integral curve of the characteristic direction. Recall that the Lax
admissibility condition requires for ε 	= 0,

λ j (wL) = λ j (wR(0)) > σ (ε) > λ j (wR(ε)) ≈ λ j (wL) + ε.

Thus the Hugoniot locus wR(ε) only involves parameters ε < 0. In other words,
the Hugoniot locus wR(ε) must go out from wL in the direction of decreasing
characteristic speed.

Example 4.1.17 Let us perform an asymptotic analysis of the jump conditions for
the shallow water equations. Suppose that

σ = vL ∓
√

ghL − 1

2
ε,

so that the shock speed is a small perturbation of one of the characteristic speeds.
Then the speed of the shock relative to the fluid velocity on the left is

ξL = σ − vL = ∓
√

ghL − 1

2
ε.
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From the equation for hR in Example 4.1.12 we can also see that the height of the
fluid to the right of the shock is

hR =
√

1

4
h2

L + 2hL

g

(
1

2
ε ±

√
ghL

)2

− 1

2
hL ≈

√
9

4
h2

L ± 2hL

√
hL/gε − 1

2
hL

≈ 3

2
hL

[
1 ± 4

9

ε√
ghL

]
− 1

2
hL = hL ± 2

3

√
hL

g
ε.

From this, we find that the relative shock speed on the right is

ξR = hLξL

hR

≈ hL

[∓√
ghL − 1

2ε
]

hL ± 2
3

√
hL
g ε

≈ ∓
[√

ghL ± 1

2
ε

] [
1 ± 2

3

ε√
hL g

ε

]

≈ ∓
[√

ghL ± 1

2
ε

] [
1 ∓ 2

3

ε√
hL g

ε

]
≈ ∓

√
ghL + 1

6
ε.

Also, the fluid velocity to the right of the shock is

vR = σ − ξR ≈
[
vL ∓

√
ghL − 1

2
ε

]
−

[
∓

√
ghL + 1

6
ε

]
= vL − 2

3
ε.

It follows that the characteristic speed to the right of the shock is

vR −
√

ghR ≈ vL − 2

3
ε ∓

√
ghL ± 2

3

√
ghLε ≈ vL − 2

3
ε ∓

√
ghL

√
1 ∓ 2

3

ε√
ghL

≈ vL − 2

3
ε ∓

√
ghL

(
1 ∓ 1

3

ε√
ghL

)
= vL ∓

√
ghL − ε.

This result is consistent with the general result we obtained above. We also note
that

wR =
[

hR

vR

]
≈

[
hL

vL

]
−

[∓√
hL/g
1

]
2

3
ε

is perturbed by the appropriate eigenvector of the system.

4.1.7 Centered Rarefactions

Suppose that the conservation law ∂u
∂t + ∑k

i=1
∂Fei
∂xi

= 0 has a continuously dif-
ferentiable self-similar solution involving flux variables w(x, t) = w̃(x · n/t).
Then

∂w
∂t

= −w̃′ x · n
t2

and
∂w
∂x

= w̃′ 1
t

n�.
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We can substitute these values into the conservation law to get

0 = ∂u
∂w

∂w
∂t

+
k∑

i=1

∂Fei

∂w
∂w
∂xi

=
{

∂Fn
∂w

− ∂u
∂w

x · n
t

}
w̃′ 1

t
.

It follows that w̃′ is an eigenvector of ( ∂u
∂w )−1 ∂Fn

∂w , and x · n/t is the corresponding
eigenvalue. In other words, for some index j and some scalar α w̃′ = Ye jα and
x · n/t = λ j . Since we have normalized the genuinely nonlinear eigenvectors so
that ∂λ j

∂w Ye j = 1, we have

∂λ j

∂w
w̃′ = ∂λ j

∂w
Ye jα = α.

These results motivate the following definition.

Definition 4.1.18 Consider the hyperbolic system of conservation laws

∂u(w)

∂t
+

k∑
i=1

∂F(w)ei

∂xi
= 0

where u, w ∈ Rm and for any fixed unit vector n

∂Fn
∂w

Y = Y�.

Then the function w(x, t) = w̃(x · n/t) is a centered rarefaction if and only if
there is some index 1 ≤ j ≤ m such that

w̃′ = Y(w̃)e jα (4.28)

for some function α of the similarity variable x · n/t .

According to the Lax admissibility condition, we solve this ordinary differential
equation in the direction of increasing characteristic speed.

Note that we cannot have a centered rarefaction in a linearly degenerate wave
family. Since the linearly degenerate wavespeeds are constant along integral curves
of the corresponding characteristic direction, we cannot solve (4.28) for w̃′, so we
cannot find an ordinary differential equation for w̃.

For some problems, it will be possible to find quantities that are constant along
the rarefaction curves.
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Definition 4.1.19 Consider the hyperbolic system of conservation laws

∂u(w)

∂t
+

k∑
i=1

∂F(w)ei

∂xi
= 0

where u, w ∈ Rm and for any unit vector n

∂Fn
∂w

Y = Y�.

Then r�(w) is a Riemann invariant of this system if and only if

for all n for all j 	= �
∂r�

∂w
Ye j = 0.

If we can find a full set of Riemann invariants, then we can alternatively describe
the j th centered rarefaction curve as the locus of points w where the Riemann
invariants r�(w) are constant for � 	= j .

Example 4.1.20 For the shallow water equations (4.2), centered rarefactions satisfy

d

dy

[
h
v

]
=

[∓√
h/g

n

]
2

3
.

Note that we obtained these equations for the flux variables in lemma 4.1.4 under

the assumption that h > 0. This implies that dv·n
dh = ∓

√
g
h . We can integrate this

ordinary differential equation to get

2
√

hR − 2
√

hL = ∓vR · n − vL · n√
g

,

which is equivalent to vR · n ± 2
√

ghR = vL · n ± 2
√

ghL . In other words, the quan-
tities v · n ± 2

√
gh are constant along the centered rarefaction curves.

Summary 4.1.21 The Riemann invariants for the shallow water equations (4.2)
are r± = v · n ± 2

√
gh. On fast centered rarefactions r− is constant, and on slow

centered rarefactions r+ is constant. Any transverse components of velocity (i.e. in
multiple spatial dimensions) are also constant in slow and fast centered rarefac-
tions.

Note that centered rarefaction curves cannot be constructed as functions in space
unless the characteristic speeds are increasing from left to right. In order for uL to
lie in space to the left of uR, characteristic speed λL with which it moves must be
less than λR.
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4.1.8 Riemann Problems

Many interesting test problems for numerical methods arise from one-dimensional
Riemann problems. These take the form

∂u
∂t

+ ∂f
∂x

= 0 for x ∈ R, t > 0

u(x, 0) =
{

uL, x < 0
uR, x > 0.

These problems are self-similar, meaning that the solution is a function of x/t
only. For problems satisfying the hypotheses of the Lax admissibility condition,
the solutions of the Riemann problems involve a combination of centered rarefac-
tion waves, Hugoniot loci and contact discontinuities, which are discontinuities in
linearly degenerate wave families.

To illustrate the solution of a Riemann problem, let us assume that we have two
genuinely nonlinear characteristic speeds, and that these two characteristic speeds
are the largest and smallest speeds. We construct curves in the state space given
by the flux variables w as follows. From the left state wL we construct the cen-
tered rarefaction wave in the direction of increasing smallest characteristic speed,
and we construct the Hugoniot locus in the direction of decreasing smallest char-
acteristic speed. Note that the admissibility conditions on the shock require that
the shock curve be used only in the direction of decreasing characteristic speed.
Further, so that the rarefaction can represent a continuous solution the character-
istics associated with the slowest wave must not intersect; this implies that the
rarefaction curve must be drawn in the direction of increasing characteristic speed.
From the right state wR we construct the centered rarefaction wave in the direction
of decreasing largest characteristic speed, and we construct the Hugoniot locus
in the direction of increasing largest characteristic speed. We assume that all of
state space w can be completely parameterized by these curves and the curves
λi = constant for the linearly degenerate characteristic speeds λi . This assumption
leads to a unique path from wL to wR; this path is the solution of the Riemann
problem.

The solution of two-dimensional Riemann problems is more difficult. See [104,
105, 145, 146].

4.1.9 Riemann Problem for Linear Systems

For linear hyperbolic systems, the solution of Riemann problems takes a simple
form.
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Lemma 4.1.22 Suppose that u(x, t) ∈ Rm solves the linear constant coefficient
system

∂u
∂t

+ A
∂u
∂x

= 0, u(x, 0) =
{

uL, x < 0
uR, x > 0,

where the eigenvectors and eigenvalues of A are given by AX = X� and � is
diagonal with real entries. Then if x/t 	= λi for any 1 ≤ i ≤ m, the solution of this
Riemann problem is u(x, t) = R(uL, uR, x/t) where

R(uL, uR; ξ ) = uL + 1

2
[I − sign(A − Iξ )](uR − uL)

= uR − 1

2
[I + sign(A − Iξ )](uR − uL)

= (uR + uL)
1

2
− sign(A − Iξ )(uR − uL)

1

2
.

Further, the flux evaluated at the solution of this Riemann problem is

AR(uL, uR; ξ ) = AuL + 1

2
[A − A sign(A − Iξ )](uR − uL)

= AuR − 1

2
[A + A sign(A − Iξ )](uR − uL)

= A(uR + uL)
1

2
− A sign(A − Iξ )(uR − uL)

1

2
.

In particular, even if zero is an eigenvalue of A, the flux at the state moving with
zero speed in the solution of the Riemann problem is

AR(uL, uR; 0) = A+uL + A−uR,

where

A+ ≡ 1

2
(A + |A|) and A− ≡ 1

2
(A − |A|).

Proof Let φ(ξ ) be continuously differentiable and such that φ(ξ ) = 0 for ξ < 0 and
φ(ξ ) = 1 for ξ > 1. Given left and right states uL and uR for the linear conservation
law, consider the continuously differentiable initial data

uε(x, 0) = uL +
m∑

j=1

Xe jφ

(
x − 2( j − 1)ε

ε

)
e�

j X−1(uR − uL).

Note that uε(x, 0) = uL for x < 0 and uε(x, 0) = uR for x > (2m − 1)ε. Then
Lemma 4.1.7 shows that the solution of the linear conservation law with initial
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data uε is

uε(x, t) = uL +
m∑

j=1

Xe jφ

(
x − λ j t − 2( j − 1)ε

ε

)
e�

j X−1(uR − uL).

The solution of the original Riemann problem follows by taking the limit as ε → 0.
We compute the characteristic expansion coefficients y for the jump in the solu-

tion by solving Xy = uR − uL . Each of these characteristic expansion coefficients
are associated with discontinuities moving at the different characteristic speeds.
Provided that ξ 	∈ {λ j }, the part of the solution of the Riemann problem that moves
with speed ξ can be written

R(uL, uR; ξ ) = uL +
∑

j :λ j <ξ

Xe j e�
j X−1(uR − uL)

= uL + 1

2

∑
j

Xe j [1 − sign(λ j − ξ )]e�
j X−1(uR − uL)

= uL + 1

2
[I − sign(A − Iξ )](uR − uL)

or

R(uL, uR; ξ ) = uR −
∑

j :λ j >ξ

(Xe j )(e�
j y)

= uR −
∑

j :λ j >ξ

Xe j e�
j X−1(uR − uL)

= uR − 1

2

∑
j

Xe j [sign(λ j − ξ ) + 1]e�
j X−1(uR − uL)

= uR − 1

2
[I + sign(A − Iξ )](uR − uL).

We can average these two results to get

R(uL, uR; ξ ) = (uR + uL)
1

2
− sign(A − Iξ )(uR − uL)

1

2
.

Provided that ξ 	∈ {λ j }, the flux f(u) = Au at the solution to the Riemann problem
is

f(R(uL, uR; ξ )) = AuL + 1

2
[A − A sign(A − Iξ )](uR − uL)

= AuR − 1

2
[A + A sign(A − Iξ )](uR − uL)

= A(uL + uR)
1

2
− [A sign(A − Iξ )](uR − uL)

1

2
.
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In the special case where ξ = 0, we have

f(R(uL, uR; 0)) = A(uL + uR)
1

2
− |A|(uR − uL)

1

2

= 1

2
[A + |A|]uL + 1

2
[A − |A|]uR

= A+uL + A−uR.

Here we have defined

A+ = 1

2
[A + |A|] =

∑
j

Xe j
λ j + |λ j |

2
e�

j X−1 =
∑

j

Xe j max{λ j , 0}e�
j X−1

=
∑

j :λ j >0

Xe jλ j e�
j X−1

and

A− = 1

2
[A − |A|] =

∑
j

Xe j
λ j − |λ j |

2
e�

j X−1 =
∑

j

Xe j min{λ j , 0}e�
j X−1

=
∑

j :λ j <0

Xe jλ j e�
j X−1.

Since the formula for the flux does not depend on the sign function when ξ = 0, it
is valid even if one of the eigenvalues is zero. �

4.1.10 Riemann Problem for Shallow Water

We are now able to describe the solution of the Riemann problem for the shallow
water equations. Given a left state (hL, vL) and a right state (hR, vR), define the slow
wave curve

v−(h) ≡
vL − n(h − hL)

√
g
2

(
1

hL
+ 1

h

)
, h > hL

vL + n(hL − h) 2g√
ghL+√

gh
, h ≤ hL

and the fast wave curve

v+(h) ≡
vR + n(h − hR)

√
g
2

(
1

h R
+ 1

h

)
, h > hR

vR − n(hR − h) 2g√
gh R+√

gh
, h ≤ hR.

If n · v−(h∗) = n · v+(h∗), let

ξL =
{

n · vL −
√

g hL+h∗
2

h∗
hL

, h∗ > hL

n · vL − √
ghL, h∗ ≤ hL
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and

ξ− =
{

n · vL −
√

g hL+h∗
2

h∗
hL

, h∗ > hL

n · v−(h∗) − √
gh∗, h∗ ≤ hL

be the wave speeds at the beginning and the end of the slow wave, and

ξ+ =
{

n · vR +
√

g h R+h∗
2

h∗
h R

, h∗ > hR

n · v+(h∗) + √
gh∗, h∗ ≤ hR

and

ξR =
{

n · vR +
√

g h R+h∗
2

h∗
h R

, h∗ > hR

n · vR + √
ghR, h∗ ≤ hR

be the wave speeds at the beginning and the end of the fast wave.
Given a left state (hL, vL), the Rankine-Hugoniot jump conditions satisfy the

Lax admissibility condition on the shock in the direction of increasing h: hR >

hL ; this implies decreasing n · v along the Hugoniot locus. The slow rarefaction
curve proceeds out of the left state (hL, vL) in the direction of decreasing h and
increasing n · v. Similarly, the fast wave family has characteristic speed n · v + √

gh
and Riemann invariant n · v − 2

√
gh. Given a right state (hR, vR), the Rankine–

Hugoniot jump conditions satisfy the Lax admissibility condition on the shock
in the direction of increasing h: hL > hR; this implies increasing n · v along the
Hugoniot locus. The fast rarefaction curve proceeds out of the right state (hR, vR)
in the direction of decreasing h and decreasing n · v. Thus the slow wave family
has negative slope dn · v/dh and the fast wave family always has positive slope
dn · v/dh. If

n · vL + 2
√

ghL > n · vR − 2
√

ghR,

then the slow wave curve out of (hL, vL) must intersect the water height and normal
velocity of the fast wave curve out of (hR, vR), at some point where (h∗, n · v−(h∗)) =
(h∗, n · v+(h∗)). The rest of the Riemann problem solution follows from the results
in the discussions in examples 4.1.12 and 4.1.20.

Summary 4.1.23 Given a left state (hL, vL) and a right state (hR, vR), the solution
of the one-dimensional Riemann problem for the shallow water equations (4.2)
involves (in multiple dimensions) the contact discontinuity jumping from the slow
wave curve v−(h) and the fast wave curve v+(h). There are four different structural
forms for the solution of the Riemann problem: either a slow shock or a slow
rarefaction, a contact discontinuity, and then either a fast shock or a fast rarefaction.
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Further, the state that moves with speed ξ in the Riemann problem is

(hξ , vξ ) =



(hL, vL), ξ < ξL

([ξ − ξL − 3
√

ghL]2/(9g), v−(hξ ), ξL < ξ < ξ−
(h∗, v−(h∗)), ξ− < ξ < n · v−(h∗)
(h∗, v+(h∗)), n · v+(h∗) < ξ < ξ+
([ξ − ξR + 3

√
ghR]2/(9g), v+(hξ ), ξ+ < ξ < ξR

(hR, vR), ξR < ξ

A program to solve the Riemann problem for the shallow water equations can
be found in Program 4.1-45: Riemann Solver for Shallow Water Equations This program
contains a function slowwavesw to find points on the slow wave curve given the
left state, and a function fastwavesw to find points on the fast wave curve given
the right state. The procedure solve riemann sw solves the Riemann problem
by using Newton’s method to find the water height h at which the two wave curves
intersect (i.e., have the same velocity).

You can also execute this program by clicking on Executable 4.1-16: guiShallow
Water Once you have selected the left state for the Riemann problem with the mouse,
you can click and drag in the image to select a right state for the Riemann problem,
and see how the solution of the Riemann problems varies as a function of the right
state.

In Figure 4.1 we show the analytical solution of the shallow water Riemann
problem for a problem involving two rarefactions. Note that in a rarefaction, the
characteristic speed associated with that rarefaction increases from left to right;
further, in the plot of characteristic speed versus x/t , the relevant characteristic
speed for a rarefaction plots as a straight line with slope one with zero intercept.
Figure 4.2 shows the solution of a shallow water Riemann problem involving a
rarefaction and a shock. Note that the characteristic speed decreases from left
to right in the wave family associated with the shock. Figures 4.3 and 4.4 show
solutions to shallow water Riemann problems involving a shock and a rarefaction,
or two shocks.

4.1.11 Entropy Functions

In many cases, there are physically meaningful functions associated with the selec-
tion of the admissible discontinuities. We will call these functions entropy func-
tions, although they may not necessarily have the physical units of entropy.

Given a conservation law

∂u(w)

∂t
+

k∑
i=1

∂F(w)ei

∂xi
= 0

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/shallow_water.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiShallowWater
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(a) Height vs. velocity (b) Characteristic speeds vs. x/t

(c) Height vs. x/t (d) Velocity vs. x/t

Fig. 4.1 Shallow water Riemann problem (rarefaction–rarefaction)

where w is a vector of flux variables, we want to find an entropy function S(w) and
entropy flux �(w) so that

for all x for all t > 0 for all n fixed,
∂n��

∂w
= ∂S

∂w

(
∂u
∂w

)−1
∂Fn
∂w

. (4.29)

If this equality is satisfied and u is continuously differentiable, then entropy is
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(a) Height vs. velocity (b) Characteristic speeds vs. x/t

(c) Height vs. x/t (d) Velocity vs. x/t

Fig. 4.2 Shallow water Riemann problem (rarefaction–shock)

conserved:

0 = ∂S

∂w

(
∂u
∂w

)−1
[

∂u
∂w

∂w
∂t

+
k∑

i=1

∂F(w)ei

∂w
∂w
∂xi

]
= ∂S

∂w
∂w
∂t

+
k∑

i=1

e�
i ∂�

∂w
∂w
∂xi

= ∂S

∂t
+

k∑
i=1

∂e�
i �

∂xi
. (4.30)
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(a) Height vs. velocity (b) Characteristic speeds vs. x/t

(c) Height vs. x/t (d) Velocity vs. x/t

Fig. 4.3 Shallow water Riemann problem (shock–rarefaction)

Example 4.1.24 For the shallow water equations (4.2) the total energy is E =
1
2ρ(hv · v + gh2) and the energy flux is � = ρ( 1

2 hv · v + gh2)v�. We can compute

∂ E

∂w
= ρ

[
gh + 1

2 v · v, hv�]
and

∂�

∂w
= ρ

[
( 1

2 v · v + 2gh)v · n, gh2n� + hv · nv� + 1
2 hv · vn�]

.
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(a) Height vs. velocity (b) Characteristic speeds vs. x/t

(c) Height vs. x/t (d) Velocity vs. x/t

Fig. 4.4 Shallow water Riemann problem (shock–shock)

Thus

∂ E

∂w

(
∂u
∂w

)−1
∂F
∂w

= ρ
[
gh + 1

2 v · v, hv�] [
v · n hn�

ng Iv · n

]
= ρ

[
( 1

2 v · v + 2gh)v · n, gh2n� + hv · nv� + 1
2 hv · vn�] = ∂�

∂w
.

This says that the total energy function is an entropy function for the shallow water
equations.



4.1 Theory of Hyperbolic Systems 169

To see whether the total energy function is convex, we compute the matrix of
second derivatives

∂

∂w

(
∂ E

∂w

)�
=

[
g v�

v Ih

]
ρ.

Attempting a Cholesky factorization of this matrix shows that it is positive definite
if and only if v · v < gh.

Recall that at a propagating discontinuity the Rankine-Hugoniot conditions
require

[hv · n] = [h]σ[
vhv · n + 1

2
ngh2

]
= [vh]σ.

It follows that

[E] = 1

2
ρ

[
gh2 + hv · v

] = 1

2
ρ

[
h(v · n)2 + 1

2
gh2

]
+ 1

4
ρ

[
gh2

] + 1

2
ρ[h(‖v‖2 − |v · n|2)]

= 1

2
ρ[h]σ 2 + 1

2
ρg[h]

hL + hR

2
+ [h]‖v⊥‖2

= 1

2
ρ[h]

(
σ 2 + g

hL + hR

2
+ ‖v⊥‖2

)
.

For a slow shock, the Lax admissibility condition requires that [h] > 0, which
implies that [E] > 0. In this case, the velocities of the water relative to the shock
are

n · vL − σ =
√

g
hL + hR

2

hR

hL

and n · vR − σ =
√

g
hL + hR

2

hL

hR

.

In both cases, the velocity of water relative to the shock is positive. Thus in this
case the total energy E decreases from the pre-shock state (the right state) to the
post-shock state (the left state). Similarly, for a fast wave we have [h] < 0 and then
[E] < 0. On both sides of the shock the velocity of the water relative to the shock is
negative, so this condition says that the total energy E decreases from the pre-shock
state (the left state) to the post-shock state (the right state).

Next, let us discuss how the entropy function and flux are related, even if u is
not continuously differentiable.

Lemma 4.1.25 (Lax [89]) Suppose that u(x, t) ∈ Rm solves the hyperbolic con-
servation law

∂u
∂t

+
k∑

i=1

∂F(u)ei

∂xi
= 0
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in the limit of vanishing diffusion, meaning that uε → u weakly where u solves the
viscous conservation law

∂uε

∂t
+

k∑
i=1

∂F(uε)ei

∂xi
= ε

k∑
i=1

∂2uε

∂x2
i

.

Further, suppose that there is a concave entropy function S(u) with entropy flux
�(u) so that for all fixed directions n

∂n · �(u)

∂u
= ∂S

∂u
∂F(u)n

∂u
.

If S(u) is locally bounded for all x and t, then

for all φ(x, t) ∈ C∞
0 (Rk × R), φ(x, t) ≥ 0,

−
∫ ∞

0

∫
Rk

∂φ

∂t
S(u) +

k∑
i=1

∂φ

∂xi
�(u) · ei dx dt −

∫
Rk

φ(x, 0)S(u)(x, 0) dx ≥ 0.

If S is convex, then we replace ≥ with ≤ in this inequality.

Proof As in the one-dimensional case, the maximum principle shows that the vis-
cous conservation law has at most one solution, but the conservation law may have
multiple solutions; this is the reason for the assumption that uε converges to u. Also
note that the solution uε of the viscous conservation law is smooth for any ε > 0.

Since S(u) is an entropy function with entropy flux �(u), we have that

0 = ∂S

∂u

[
∂uε

∂t
+

k∑
i=1

∂F(uε)ei

∂xi
− ε

k∑
i=1

∂2uε

∂x2
i

]

= ∂S(uε)

∂t
+

k∑
i=1

∂ei · �(uε)

∂xi
− ε

k∑
i=1

∂

∂xi

(
∂S

∂u
∂uε

∂xi

)

+ ε

k∑
i=1

(
∂uε

∂xi

)�
∂2S

∂u2

(
∂uε

∂xi

)
.

Since the solution uε of the viscous conservation law is smooth, for any nonnegative
smooth φ(x, t) we can compute∫ ∞

0

∫
Rk

φ

[
∂S(uε)

∂t
+

k∑
i=1

∂ei · �(uε)

∂xi

]
dx dt

= −
∫ ∞

0

∫
Rk

∂φ

∂t
S(uε) +

k∑
i=1

∂φ

∂xi
ei · �(uε) dx dt

−
∫

Rk
φ(x, 0)S(uε)(x, 0) dx
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We can also compute∫ ∞

0

∫
Rk

φ

k∑
i=1

∂

∂xi

(
∂S

∂u
∂uε

∂xi

)
dx dt = −

∫ ∞

0

∫
Rk

k∑
i=1

∂φ

∂xi

∂S(uε)

∂xi
dx dt

=
∫ ∞

0

∫
Rk

k∑
i=1

∂2φ

∂x2
i

S(uε) dx dt

and note that the concavity of S and nonnegativity of φ imply that∫ ∞

0

∫
Rk

φ

(
∂uε

∂x

)�
∂2S

∂u2

(
∂uε

∂x

)
dx dt ≤ 0.

Putting these results together, we obtain

0 ≤ −
∫ ∞

0

∫
Rk

∂φ

∂t
S(uε) +

k∑
i=1

∂φ

∂xi
�(uε)ei dx dt −

∫
Rk

φ(x, 0)S(uε)(x, 0) dx

− ε

∫ ∞

0

∫ ∞

Rk

k∑
i=1

∂2φ

∂x2
i

S(uε) dx dt.

Since S(u) is bounded and uε → u almost everywhere, the term involving a factor
of ε tends to zero as ε → 0. Taking limits as ε → 0 now produces the claimed
result. �

This lemma has the following useful corollary.

Corollary 4.1.26 Suppose that u(x, t) ∈ Rm solves the hyperbolic conservation
law

∂u
∂t

+
k∑

i=1

∂F(u)ei

∂xi
= 0

in the limit of vanishing diffusion, that there is a corresponding concave entropy
function S(u) with entropy flux �(u), and that S(u) is locally bounded for all x
and t. Then for all rectangles R = (a1, b1) × . . . × (ak, bk) ⊂ Rk and all intervals
(t [1], t [2]) we have∫

R

S(u(x, t [2])) dx −
∫

R

S(u(x, t [1])) dx +
∫ t [2]

t [1]

∫
∂ R

n��(u(x, t)) ds dt ≥ 0, (4.31)

where n is the outer normal to ∂ R and ds is surface measure on ∂ R.
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Proof Consider the continuous piecewise linear functions

φ0,h(t) = max

{
0, min

{
1, 1 − t [1] − t

h
, 1 − t − t [2]

h

}}
φi,h(xi ) = max

{
0, min

{
1, 1 − ai − xi

h
, 1 − xi − bi

h

}}
.

Let φh(x, t) = φ0,h(t)φ1,h(x1) . . . φk,h(xh). This function is nonnegative and contin-
uous, but not C∞. However, it can be approximated arbitrarily well by a nonnegative
smooth function with compact support. First, suppose that t [1] > 0. Then lemma
4.1.25 implies that

0 ≤ −h
∫ ∞

0

∫
Rk

∂φ

∂t
S(u) +

k∑
i=1

∂φ

∂xi
e�

i �(u) dx dt

= −
∫ t [1]

t [1]−h

∫ bk+h

ak−h
. . .

∫ b1+h

a1−h
φ1,h(x1) . . . φk,h(xk)S(u(x, t)) dx1 . . . dxk dt

+
∫ t [2]+h

t [2]

∫ bk+h

ak−h
. . .

∫ b1+h

a1−h
φ1,h(x1) . . . φk,h(xk)S(u(x, t)) dx1 . . . dxk dt

−
∫ t [2]+h

t [1]−h

∫ bk+h

ak−h
. . .

∫ b2+h

a2−h

∫ a1

a1−h
φ0,h(t)φ2,h(x2) . . . φk,h(xk)e�

1 �(u(x, t)) dx1 . . . dxk dt

+
∫ t [2]+h

t [1]−h

∫ bk+h

ak−h
. . .

∫ b2+h

a2−h

∫ b1+h

b1

φ0,h(t)φ2,h(x2) . . . φk,h(xk)e�
1 �(u(x, t)) dx1 · · · dxk dt

+ · · ·
As h → 0, we get the claimed result. If t [1] = 0, then we use the same test functions.
In this case, the integral

∫ ∞
0 . . . dt does not include the positive slope in φ0,h(t); the

contribution we would expect from this term comes from the integral of the initial
data in Lemma 4.1.25. �

Lemma 4.1.27 (Lax,[89]) Suppose that u(x, t) ∈ Rm solves the hyperbolic con-
servation law

∂u
∂t

+
k∑

i=1

∂F(u)ei

∂xi
= 0.

and is the limit, as the diffusion tends to zero, of the corresponding viscous con-
servation law. Further, suppose that there is a concave entropy function S(u) with
entropy flux �(u) so that for all fixed directions n

∂n · �(u)

∂u
= ∂S

∂u
∂F(u)n

∂u
.
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Suppose that u(x, t) involves an isolated discontinuity surface D(t) dividing Rk

into two domains �−(t) and �+(t). Let y denote the velocity of a point on the
discontinuity surface D(t) and n denote the outer normal on D(t) with respect
to �−(t). Further, assume that y points into �+(t), and its normal velocity is
σ ≡ n · y ≥ 0. Then at almost all points on the discontinuity surface we have

n · [�+ − �−] ≥ [S+ − S−]σ. (4.32)

The direction of this inequality is reversed if S is convex.

Proof Suppose that φ(x, t) ∈ C∞
0 (Rk × (0, ∞)) and φ(x(t), t) > 0; also suppose

that the support of φ is such that no other discontinuity surface of u lies in its
support, and the support does not intersect any boundary of �−(t) or �+(t) other
than D(t). From Lemma 4.1.25 we have that

0 ≤ −
∫ ∞

0

∫
Rk

∂φ

∂t
S +

k∑
i=1

∂φ

∂xi
ei · � dx dt

= −
∫ ∞

0

∫
�−(t)

[
∇�

x
∂
∂t

] [
φ�

φS

]
dx dt

+
∫ ∞

0

∫
�−(t)

φ

[
∂S

∂t
+

k∑
i=1

∂ei · �

∂xi

]
dx dt

−
∫ ∞

0

∫
�+(t)

[
∇�

x
∂
∂t

] [
φ�

φS

]
dx dt

+
∫ ∞

0

∫
�+(t)

φ

[
∂S

∂t
+

k∑
i=1

∂ei · �

∂xi

]
dx dt

The entropy conservation law (4.30) shows that

0 ≤ −
∫ ∞

0

∫
�−(t)

[
∇�

x
∂
∂t

] [
φ�

φS

]
dx dt −

∫ ∞

0

∫
�+(t)

[
∇�

x
∂
∂t

] [
φ�

φS

]
dx dt.

Using the divergence theorem, we can rewrite this result in the form

0 ≤ −
∫ ∞

0

∫
∂�−(t)

[
n�

− ν−
] [

φ�

φS

]
dsL dt −

∫ ∞

0

∫
∂�+(t)

[
n�

+ ν+
] [

φ�

φS

]
dsR dt

= −
∫

{(x,t):x∈D(t)}

[
n� −σ

] [
φ�−
φS−

]
ds −

∫
{(x,t):x∈D(t)}

[−n� σ
] [

φ�+
φS+

]
ds

=
∫

{(x,t):x∈D(t)}
n · [�+ − �−] − [S+ − S−]σ ds

The result follows by shrinking the support of φ to a point on D. �
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Entropy functions will be useful later in section 4.13.8 where we develop approxi-
mate Riemann solvers, and in section 5.2 where we discuss convergence of schemes
to physically correct solutions of nonlinear conservation laws.

Exercises for 4.1

4.1.1 Consider the wave equation

∂2u
∂t2

− c2 ∂2u
∂x2

= 0 for all x ∈ R for all t > 0

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = v0(x) for all x ∈ R

(a) Define v(x, t) = ∂u
∂t (x, t) and w(x, t) = ∂u

∂x (x, t). Explain why the wave equation can be
written in the form of the linear system of conservation laws

∂

∂t

[
v

w

]
+

[
0 −c2

−1 0

]
∂

∂x

[
v

w

]
= 0 for all x ∈ R for all t > 0

[
v

w

]
(x, 0) =

[
v0
du0
dx

]
(x) for all x ∈ R.

(b) Show that AX = X� where

A =
[

0 −c2

−1 0

]
, X =

[
c c
1 −1

]
, � =

[−c 0
0 c

]
.

(c) Use Lemma 4.1.7 to show that[
v

w

]
(x, t) =

[
c
1

]
1

2c

{
v0(x + ct) + c

du0

dx
(x + ct)

}
+

[
c

−1

]
1

2c

{
v0(x − ct) − c

du0

dx
(x − ct)

}
.

(d) Use this solution to derive d‘Alembert’s formula

u(x, t) = 1

2
{u0(x + ct) + u0(x − ct)} + 1

2c

∫ x+ct

x−ct
v0(ξ )dξ.

We remark that the solution of the wave equation in 3D is given by Kirchhoff’s formula

υ(x, t) = 1

4πc2t

∫ ∫
‖ξ−x‖=ct

∂υ

∂t
(ξ, 0) ds

+ ∂

∂t

[
1

4πc2t

∫ ∫
‖ξ−x‖=ct

υ(ξ, 0)ds

]
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and in 2D is given by

υ(x, t) = 1

2πc

∫ ∫
‖ξ−x‖≤ct

∂υ
∂t (ξ, 0)√

c2t2 − ‖ξ − x‖2
dξ

+ ∂

∂t

[
1

2πc

∫ ∫
‖ξ−x‖≤ct

υ(ξ, 0)√
c2t2 − ‖ξ − x‖2

dξ

]
These correspond to the linear conservation law

∂u
∂t

+
k∑

i=1

∂Fei

∂xi
= 0

where

u =
[
υ

w

]
and F(u) =

[
cw�

Icυ

]
.

In this case, the normal flux

F(u)n =
[

0 cn�

nc 0

] [
υ

w

]
is linear in its argument with a matrix that depends on n. Although the eigenvalues of this
matrix are independent of n, its eigenvectors are not.

4.1.2 One easy application of Lemma 4.1.9 is to study the effect of a rotation of the coordinate system.
For example, we might rotate the coordinate system so that the first coordinate direction is in the
direction of a propagating discontinuity, or the jump in a Riemann problem. If x = Qa where Q
is fixed, orthogonal and det(Q) = 1, show that the conservation law

∂uE

∂t
+

k∑
i=1

∂FE ei

∂xi
= bE

is equivalent to the conservation law

∂uL

∂t
+

k∑
i=1

∂FLQei

∂ai
= bL .

In the latter equation, uL(a, t) = uE (Qa, t), and so on.
4.1.3 The shallow water equations were presented in the Eulerian frame of reference in

Example 4.1.1.
(a) Show how to write the shallow water equations in the Lagrangian frame of reference. You

may want to use equation (4.14) to have enough evolution equations to determine all of the
variables in these equations.

(b) Perform a characteristic analysis of the Lagrangian form of the shallow water equations.
Explain how the Lagrangian characteristic speeds relate to the Eulerian characteristic
speeds.
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4.1.4 Consider the one-dimensional system of constant coefficient equations

∂u
∂t

+ A
∂u
∂x

= 0 for all a < x < b for all t > 0,

where A is diagonalizable with real eigenvalues, and u(x, 0) is given. Describe what boundary
data at x = a and x = b must be given for t > 0 in order to specify a unique solution to this
problem.

4.2 Upwind Schemes

In Section 3.3 we presented several numerical methods for nonlinear scalar con-
servation laws. In this section, we will describe the application of three of these
schemes to nonlinear systems.

4.2.1 Lax–Friedrichs Scheme

The Lax–Friedrichs scheme is applied to general one-dimensional nonlinear sys-
tems in the same way it is applied to scalar equations:

un+1/2
i+1/2 = {

un
i 
xi + un

i+1
xi+1 − [f(un
i+1) − f(un

i )]
tn+1/2
} 1


xi + 
xi+1
(4.33a)

un+1
i =

{
un+1/2

i−1/2 + un+1/2
i+1/2 − [f(un+1/2

i+1/2 ) − f(un+1/2
i−1/2 )]


tn+1/2


xi

}
1

2
. (4.33b)

The principal complication is that the flux f is often really a function of the flux
variables w, so we have to decode the conserved quantities u to obtain w after each
conservative difference.

Note that the Lax–Friedrichs scheme must choose the timestep 
tn+1/2 so that
for all i we have 
tn+1/2λi ≤ 
xi . Here λi is an upper bound on all of the absolute
values of the characteristic speeds.

Example 4.2.1 The Lax–Friedrichs scheme for shallow water begins with cell-
centered values for the flux variables

wn
i =

[
h
v

]n

i

and the conserved quantities

un
i =

[
h

vh

]n

i

.
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Note that the Lax–Friedrichs scheme must choose the timestep 
tn+1/2 so that
for all i 
tn+1/2λi ≤ 
xi , where λi is an upper bound on the absolute values of the
characteristic speeds. For shallow water, the least upper bound is λi = |vn

i | + √
ghn

i .
The first step of the Lax–Friedrichs scheme computes the cell-centered

fluxes

f(wn
i ) =

[
hv

hv2 + 1
2 gh2

]n

i

and updates the conserved quantities by

hn+1/2
i+1/2 = [

hn
i 
xi + hn

i+1
xi+1 − {
hn

i+1 − hn
i

}

tn+1/2

] 1


xi + 
xi+1

(vh)n+1/2
i+1/2 = [

(vh)n
i 
xi + (vh)n

i+1
xi+1

−
{(

hv2 + 1

2
gh2

)n

i+1

−
(

hv2 + 1

2
gh2

)n

i

}

tn+1/2

]
1


xi + 
xi+1
.

Before performing the second step of the Lax–Friedrichs scheme, it is necessary
to decode the flux variables from the conserved quantities by computing vn+1/2

i+1/2 =
(vh)n+1/2

i+1/2 /hn+1/2
i+1/2 . Then we compute the fluxes at the half-time

f
(

wn+1/2
i+1/2

)
=

[
hv

hv2 + 1
2 gh2

]n+1/2

i+1/2

,

and determine the conserved quantities at the new time

hn+1
i = 1

2

[
hn+1/2

i−1/2 + hn+1/2
i+1/2 −

{
(hv)n+1/2

i+1/2 − (hv)n+1/2
i−1/2

} 
tn+1/2


xi

]
(vh)n+1

i = 1

2

[
(vh)n+1/2

i−1/2 +(vh)n+1/2
i+1/2

−
{(

hv2+ 1

2
gh2

)n+1/2

i+1/2

−
(

hv2 + 1

2
gh2

)n+1/2

i−1/2

}

tn+1/2


xi

]
.

At this point, we need to determine the flux variables again: vn+1
i = (vh)n+1

i /

hn+1
i .

Figure 4.5 shows some numerical results with the Lax–Friedrichs scheme for
the dam break problem. This is a Riemann problem with gravity g = 1 in which
the left state is given by hL = 2, vL = 0 and the right state is hR = 1, vR = 0. The
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(a) Height vs. x/t (b) Velocity vs. x/t

(c) Total energy vs. x/t (d) Characteristic speed vs. x/t

Fig. 4.5 Lax–Friedrichs Scheme for dam break problem: 100 grid cells, CFL =
0.9, gravity = 1

numerical results are plotted versus x/t . The solution involves a rarefaction mov-
ing to the left and a shock moving to the right. Nevertheless, the graph of the
characteristic speeds indicates that the Lax–Friedrichs scheme is getting results
consistent with the correct solution. In particular, note that the slow characteris-
tic speed in the rarefaction nearly aligns with a line of slope 1 through the ori-
gin. Further, the shock involves a decrease in the fast characteristic speed as we
move from left to right. Finally, note that the total energy increases as the shock
passes.
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4.2.2 Rusanov Scheme

For general nonlinear systems in one dimension, the Rusanov scheme takes the
form

un+1
i = un

i − 
tn+1/2


xi

[
fn+1/2
i+1/2 − fn+1/2

i−1/2

]
where the fluxes are computed by

fn+1/2
i+1/2 = 1

2

[
f(un

i ) + f(un
i+1) − λi+1/2(un

i+1 − un
i )

]
.

Here λi+1/2 is an upper bound for the absolute values of the characteristic speeds
in either cell. The timestep is chosen so that λi+1/2
tn+1/2 ≤ min{
xi , 
xi+1} for
all cells i . Figure 4.6 shows some numerical results for the dam break problem
using Rusanov’s scheme. The quality of these results is similar to those with the
Lax–Friedrichs scheme, but the computation is faster because the Rusanov scheme
does not involve half-steps.

4.2.3 Godunov Scheme

Finally, we mention the Godunov scheme for nonlinear systems in one dimension.
This scheme takes the form

un+1
i = un

i − 
tn+1/2


xi

[
fn+1/2
i+1/2 − fn+1/2

i−1/2

]
where the fluxes are computed by solving a Riemann problem:

fn+1/2
i+1/2 = f

(
R(un

i , un
i+1; 0)

)
.

The timestep is chosen as in the same fashion as the Lax–Friedrichs scheme or
the Rusanov scheme. Figure 4.7 shows some numerical results with Godunov’s
method for the dam break problem. Note that the rarefaction is resolved better
with Godunov’s scheme than with either the Lax-Friedrichs scheme or the Rusanov
scheme. Unfortunately, the use of the exact Riemann solver in the Godunov scheme
increases both its computational time and programming difficulty.

Programs to perform the Lax-Friedrichs, Rusanov and Godunov schemes can be
found in Program 4.2-46: GUIRiemannProblem.C. This program calls Fortran routines
for many of the models to be discussed below. You can execute this Riemann
problem solver by clicking on the link Executable 4.2-17: guiRiemannProblem You
can select input parameters for the Riemann problem by pulling down on “View,”

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/GUIRiemannProblem.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiRiemannProblem


180 Nonlinear Hyperbolic Systems

(a) Height vs. x/t (b) Velocity vs. x/t

(c) Total Energy vs. x/t (d) Characteristic speed vs. x/t

Fig. 4.6 Rusanov scheme for dam break problem: 100 grid cells, CFL = 0.9,
gravity = 1

releasing on “Main,” and then clicking on the arrow next to “Riemann Problem
Parameters.” The particular system of conservation laws can be selected by clicking
on one of the radio buttons after “problem.” Model parameters can be selected by
clicking on the arrow next to the name of the model of interest. The particular
numerical scheme can be selected under “Numerical Method Parameters.” When
you have selected all of your input parameters, click on “Start Run Now” in the
window labeled “1d/guiRiemannProblem.”
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(a) Height vs. x/t (b) Velocity vs. x/t

(c) Total Energy vs. x/t (d) Characteristic speed vs. x/t

Fig. 4.7 Godunov scheme for dam break problem: 100 grid cells, CFL = 0.9,
gravity = 1

The next lemma explains one nice feature of Godunov’s scheme: whenever it
converges, it converges to the correct solution.

Lemma 4.2.2 If S is a convex (or concave) entropy function for some hyperbolic
conservation law in one dimension, and Godunov’s method for this conservation
laws converges, then it converges to an entropy-satisfying solution of that conser-
vation law.
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Proof Consider Godunov’s method for a conservation law with a convex entropy
function S(u). Let ũn be the exact solution to the conservation law

∂u
∂t

+ ∂f(u)

∂x
= 0

with piecewise constant initial data ũn(x, tn) = un
i for x ∈ [xi−1/2, xi+1/2]. Since

ũn is the exact solution, the total entropy can only decrease in time:

1


xi

∫ xi+1/2

xi−1/2

S(ũn(x, tn+1)) dx

≤ 1


xi

∫ xi+1/2

xi−1/2

S(u(x, tn) dx − 1


xi

[∫ tn+1

tn

�(ũn(xi+1/2, t)) dt −
∫ tn+1

tn

�(ũn(xi−1/2, t)) dt

]
.

In Godunov’s method, it is natural to define the numerical entropy flux by
�̃(w−, w+) = �(R(w−, w+; 0)), where R(w−, w+; 0) is the state that moves with
zero speed in the solution of the Riemann problem with left state w− and right state
w+. Since Jensen’s inequality states that for any convex function S,

S

(
1


xi

∫ xi+1/2

xi−1/2

w(x) dx

)
≤ 1


xi

∫ xi+1/2

xi−1/2

S(w(x)) dx,

we have

S(un+1
i ) = S

(
1


xi

∫ xi+1/2

xi−1/2

ũ(x, tn+1) dx

)

≤ 1


xi

∫ xi+1/2

xi−1/2

S(ũ(x, tn+1)) dx ≤ 1


xi

∫ xi+1/2

xi−1/2

S(u(x, tn) dx

− 1


xi

[∫ tn+1

tn

�(ũn(xi+1/2, t))dt −
∫ tn+1

tn

�(ũn(xi−1/2, t)) dt

]

= S(un
i ) − 
tn+1/2


xi
[�(un

i , un
i+1) − �(un

i−1, un
i )].

It follows that in this case (Godunov’s method for a conservation law with convex
entropy function), whenever the numerical solution converges, it converges to a
solution of the conservation law that satisfies the entropy inequality, similar to the
“weak entropy inequality” (4.31). �

The difficulty with this scheme lies in computing the solution of the Riemann
problem. We will discuss some examples of Riemann problem solutions in the case
study sections that follow, and a number of ways to approximate the solution of
Riemann problems in Section 4.13.
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4.3 Case Study: Maxwell’s Equations

Maxwell’s equations for electromagnetic wave propagation are very important in
electrical engineering and physics. Since these equations are linear, their solutions
do not involve shocks. As a result, the shock-capturing techniques in this book are
not particularly well-designed for this problem. We include this discussion because
many students are interested in these equations, and because of the connections to
the magnetohydrodynamics model in section 4.5 below.

4.3.1 Conservation Laws

In electromagnetic wave propagation, the electric displacement vector D is related
to the electric field strength vector E by

D = Eε,

and the magnetic induction vector B is related to the magnetic field strength vector
H by

B = Hµ,

where ε is the permittivity and µ is the magnetic permeability. Here D has units
of coulombs per square meter, E has units of volts per meter and ε has units of
seconds per meter-ohm. Also B has units of volt-seconds per square meter, H has
units of amps per meter and µ has units of ohm-seconds per meter. The induction
current vector J is related to the electric field strength vector E by

J = Eσ,

where σ is the conductivity. Here J has units of amps per square meter and 1/σ has
units of ohm-meters. The electric charge density ρ satisfies

ρ = ∇x · D.

Here ρ has units of coulombs per cubic meter. Since there are no free magnetic
poles in nature,

0 = ∇x · B.

The electromagnetic force on some closed circuit ∂S is∫
∂S

E · t ds = − d

dt

∫
S

B · n d S
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where n is the unit outer normal to the surface, ∂S is the closed curve that represents
the boundary of the surface S, and t is the unit tangent vector to ∂S. Stokes theorem
implies that

∫
S

[
∂B
∂t

+ ∇x × E
]

· n d S = 0.

The magnetomotive force around the circuit ∂S is

∫
∂S

H · t ds =
∫

S

[
J + ∂D

∂t

]
· n d S.

Stokes theorem implies that

∫
S

[
J + ∂D

∂t
− ∇x × H

]
· n d S = 0.

For simplicity, we will assume that the density of the electric charge is ρ = 0.
Then we can eliminate D and H to obtain

∂Eε

∂t
− ∇x × (B/µ) = −Eσ (4.34a)

∂B
∂t

+ ∇x × (E) = 0. (4.34b)

Note that if E is divergence-free at t = 0, then the former of these two equations
implies that it is divergence-free for all t > 0.

4.3.2 Characteristic Analysis

We would like to determine if Maxwell’s equations (4.34) are hyperbolic. We can
rewrite the system in the form

∂u(w)

∂t
+

3∑
i=1

∂F(w)ei

∂xi
= r
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where

w ≡



E1

E2

E3

B1

B2

B3

 , u(w) ≡



E1ε

E2ε

E3ε

B1

B2

B3

 ,

F(w) ≡



0 −B3/µ B2/µ

B3/µ 0 −B1/µ

−B2/µ B1/µ 0
0 −E3 E2

E3 0 −E1

−E2 E1 0

 , r(w) ≡



−E1σ

−E2σ

−E3σ

0
0
0

.

We can compute

∂u
∂w

=
[

Iε 0
0 I

]
and

∂Fn
∂w

=
[

0 −N 1
µ

N 0

]
,

where

N ≡
 0 −n3 n2

n3 0 −n1

−n2 n1 0

.

Note that Nx = n × x for any vector x. We can also compute

∂Fn
∂w

(
∂u
∂w

)−1

=
[

0 −N 1
µ

N 1
ε

0

]
.

The eigenvectors and eigenvalues of this matrix satisfy[
0 −N 1

µ

N 1
ε

0

] [
y
z

]
=

[
y
z

]
λ.

These equations imply that

yεµλ2 = −Nzελ = z × nελ = (Ny) × n = n × y × n = (I − nn�)y.

Since (I − nn�) is the orthogonal projection onto the space of vectors orthogo-
nal to n, its eigenvectors are n (with eigenvalue 0), and any vector orthogonal
to n (with eigenvalue 1). It follows that the eigenvalues of ∂Fn

∂w

(
∂u
∂w

)−1
are 0 and

±1/
√

εµ.
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We can put this all together in the form of an array of eigenvectors and an array
of eigenvalues of the flux derivatives. Let n⊥ be any (unit) vector that is orthogonal
to n. Define

Q =
[−n⊥ × n −n⊥ −n n n⊥ n⊥ × n

n⊥ n × n⊥ n n n × n⊥ n⊥

]
1√
2
,

X =
[

I
√

ε 0
0 I

√
µ

]
Q

and

� =



− 1√
εµ

0 0 0 0 0

0 − 1√
εµ

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1√

εµ
0

0 0 0 0 0 1√
εµ


.

Then Q is an orthogonal matrix, and ∂Fn
∂w

(
∂u
∂w

)−1
X = X�.

Summary 4.3.1 Suppose that the permittivity ε and magnetic permeability µ are
constant. Then Maxwell’s equations (4.34) are hyperbolic, with characteristic
speeds 0 and ±1/

√
εµ.

The quantity 1/
√

εµ is called the speed of light in the medium. Also note that
the matrix X of eigenvectors is easy to invert because its 3 × 3 block entries are
scalar multiples of orthogonal matrices. At any rate, we have shown that Maxwell’s
equations produce a hyperbolic system of conservation laws.

The Riemann problem for Maxwell’s equation in 3D will be associated with a
particular direction n only. The solution of the Riemann problem follows directly
from the characteristic analysis in Lemma 4.3.1 and the solution of the linear
Riemann problem in Lemma 4.1.22.

4.4 Case Study: Gas Dynamics

Some useful references for the material in this section are [27, 37, 96, 175]. The
reasons for studying fluid dynamics are that its equations are derived by important
physical considerations, the wave structure of gas dynamics illustrates many of the
basic issues of hyperbolic conservation laws, and the most sophisticated numer-
ical methods for conservation laws were originally developed for gas dynamics
applications.
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4.4.1 Conservation Laws

We will denote the velocity by v(x, t), the pressure by p(x, t), the density by ρ(x, t),
the specific internal energy (i.e. and the internal energy per mass) by e(x, t). The
acceleration due to gravity is the constant vector g.

In the Eulerian frame the arrays of conserved quantities, fluxes and body forces
are

u ≡
 ρ

vρ

(e + 1
2 v · v)ρ

 , F ≡
 ρv�

vρv� + Ip
{ρ(e + 1

2 v · v) + p}v�

 , b ≡
 0

gρ

g · vρ

. (4.35)

We obtain the system of conservation laws either in integral form

d

dt

∫
�t

u dx +
∫

∂�t

Fn ds =
∫

�t

b dx, (4.36)

or (away from discontinuities) as a system of partial differential equations

∂u
∂t

+
k∑

i=1

∂Fei

∂xi
= b. (4.37)

The first conservation law in this system represents conservation of mass, the last
represents conservation of energy, and the other equations represent conservation
of momentum.

4.4.2 Thermodynamics

The material in this section has been taken from Courant and Friedrichs [37]. In
order to save space, we will basically present their major results.

Let e denote the specific internal energy (internal energy per mass), S denote the
specific entropy (entropy per mass) and T denote the temperature. Then the second
law of thermodynamics for a closed reversible system is

de = T d S − p d(1/ρ).

This says that the change in internal energy is equal to the heat contributed plus
the work done by pressure. If the internal energy is given as a function of specific
volume and specific entropy, then the second law of thermodynamics says that

p = − ∂e

∂1/ρ

∣∣∣∣S, T = ∂e

∂S

∣∣∣∣
ρ

.

For an ideal gas, p = ρRT . Courant and Friedrichs show that this implies that
the internal energy is a function of temperature alone. If in addition there is a
constant cv, called the heat capacity at constant volume, so that e = cvT , then we
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have a polytropic gas. Courant and Friedrichs show that for a polytropic gas, the
heat capacity at constant volume is given by cv = R

γ−1 . Here R is the gas constant,
with value R = 8.314 × 107 ergs / ( gram-mole degree). The constant 1 ≤ γ ≤ 5/3
is a property of the gas; for example, γ = 7/5 for air, 5/3 for argon and 4/3 for
sulfur hexafluoride.

For a polytropic gas the specific internal energy is

e = p

(γ − 1)ρ
,

so the specific enthalpy is

h = e + p

ρ
= γ

γ − 1

p

ρ
= γ e.

The second law of thermodynamics now implies that

d S = 1

T
de + p

Tρ2
dρ = 1

Tρ(γ − 1)
dp − pγ

Tρ2(γ − 1)
dρ.

This can be reinterpreted as saying that

∂S

∂p
= 1

Tρ(γ − 1)
= R

p(γ − 1)
= cv

p

and

∂S

∂ρ
= − pγ

Tρ2(γ − 1)
= − γ

γ − 1

R

ρ
= −γ cv

ρ
.

Thus the specific entropy is given by

S − S0 = cv ln

[
p

p0

(
ρ0

ρ

)γ ]
. (4.38)

The constant S0 is arbitrary, and has no effect on the discussions to follow.
Thermodynamic stability requires that d S ≥ 0. Away from discontinuities and

in the absence of body forces and at a fixed material particle a the entropy is
independent of time:

d S

dt

∣∣∣
a

= 0.

4.4.3 Characteristic Analysis

In Lemma 4.1.3 we saw how to use the quasilinear form (4.4) of a conservation
law to compute characteristic speeds and directions. In the case of Eulerian gas
dynamics, note that u, F and b, defined in Equation (4.35), are functions of the flux
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variables

w ≡
ρ

v
p

. (4.39)

These allow us to compute

∂u
∂w

=
 1 0 0

v Iρ 0
1
2 v · v ρv� 1

γ−1

 ,

and for any fixed unit vector n

∂Fn
∂w

=
 n · v ρn� 0

v(n · v) Iρ(n · v) + vρn� n
1
2 (v · v)(n · v) ρ(e + 1

2 v · v)n� + pn� + ρ(n · v)v� γ

γ−1 (n · v)

.

For any fixed unit vector n,

(
∂u
∂w

)−1
∂Fn
∂w

=
n · v ρn� 0

0 I(n · v) n/ρ

0 γ pn� n · v

 ≡ A + I(n · v)

where A is the acoustic tensor

A =
0 ρn� 0

0 0 n1/ρ

0 γ pn� 0

.

It is easy to find the eigenvectors Y and eigenvalues � of A. Let the matrix [n, N]
be a rotation, and let c be the sound speed (i.e., c2 = γ p/ρ). Then

AY =
0 ρn� 0

0 0 n1/ρ

0 γ pn� 0

  ρ 0 1 ρ

nc N 0 −nc
ρc2 0 0 ρc2



=
 ρ 0 1 ρ

nc N 0 −nc
ρc2 0 0 ρc2




c
0

0
−c

 = Y�.

As we saw in Lemma 4.1.3, the characteristic speeds are the eigenvalues of

∂Fn
∂u

= ∂Fn
∂w

(
∂u
∂w

)−1

=
(

∂u
∂w

)
[A + I(n · v)]

(
∂u
∂w

)−1

.
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Thus the characteristic speeds for Eulerian gas dynamics are n · v and n · v ± c.
Similarly, the characteristic directions are the eigenvectors of ∂Fn

∂u , which we can
compute as X = ∂u

∂w Y.
The characteristic speeds are also functions of the flux variables ρ, v and p. Thus

the test for genuine nonlinearity in Definition 4.1.5 can be written

∂λi

∂u
Xei =

{
∂λi

∂w

(
∂u
∂w

Y
)−1

} {
∂u
∂w

Y
}

ei = ∂λi

∂w
Yei .

For example, the characteristic speed n · v + c is genuinely nonlinear, because

∂(n · v + c)

∂w
Ye1 =

[
− 1

2
c
ρ

n� 1
2

c
p

]  ρ

nc
ρc2


= −1

2
c + c + 1

2
c3 ρ

p
= 1

2
c(1 + γ ) 	= 0.

Similarly, n · v − c is genuinely nonlinear:

∂(n · v − c)

∂w
Yek+2 =

[
1
2

c
ρ

n� − 1
2

c
p

]  ρ

−nc
ρc2


= 1

2
c − c − 1

2
c3 ρ

p
= −1

2
c(1 + γ ) 	= 0.

The other characteristic speeds, namely n · v, are linearly degenerate because

∂n · v
∂w

0 1
N 0
0 0

 = [
0 n� 0

] 0 1
N 0
0 0

 = 0.

Summary 4.4.1 The Eulerian equations (4.37) for a polytropic gas are hyper-
bolic with respect to any given direction n with characteristic speeds n · v and
n · v ± c, where c = √

γ p/ρ is the speed of sound. The characteristic speed
n · v is linearly degenerate, and the characteristic speeds n · v ± c are genuinely
nonlinear.

4.4.4 Entropy Function

We derived the specific entropy for gas dynamics in equation (4.38). Thus the
derivative of the specific entropy with respect to the vector of flux variables w,
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defined by (4.39), is

∂S

∂w
= cv

[−γ /ρ, 0, 1/p
]
.

This implies that the partial derivatives of the entropy per volume are

∂Sρ

∂w
= [

S − cvγ, 0, cvρ/p
]
.

Next, we compute

∂Sρ

∂w

(
∂u
∂w

)−1
∂Fn
∂w

= [
S − cvγ 0 cvρ/p

] (n�v) ρn� 0
0 I(n�v) n1/ρ

0 γ pn� (n�v)


=

[
(S − cvγ )(n�v) Sρn� cv

ρ

p (n�v)
]

= ∂S

∂w
ρn�v + Sn� [

v Iρ 0
] = ∂S

∂w
ρn�v + Sn� ∂vρ

∂w

= ∂Sρ(n�v)

∂w
.

The work in section 4.1.11 therefore shows that Sρn · v is the entropy flux.
In order to see that the entropy function for gas dynamics is concave, we compute

∂

∂w

(
∂Sρ

∂w

)�
=

−cvγ /ρ 0 cv/p
0 0 0

cv/p 0 −cvρ/p2

.

It is easy to see that the eigenvalues of this matrix are either zero or

λ = − ρ

2p2

1 + c2

γ
±

√(
1 + c2

γ

)2

− 4
γ − 1

γ
c2

 ,

which are both nonpositive. Thus the entropy function is a concave func-
tion of ρ and p. Away from discontinuities, the Eulerian conservation law for
entropy is

∂Sρ

∂t
+ ∇x · (vSρ) = ∂Sρ

∂u
∂u
∂t

+
k∑

i=1

∂Sρei · v
∂u

∂u
∂xi

= ∂Sρ

∂u

{
∂u
∂t

+
k∑

i=1

∂Fei

∂u
∂u
∂xi

}

= ∂Sρ

∂u
b = [

S − cvγ 0 cvρ/p
]  0

gρ

g · vρ

 = cv

g · vρ2

p
.
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Summary 4.4.2 The specific entropy

S = S0 + cv

[
ln

p

p0
− γ ln

ρ

ρ0

]
is an entropy function for gas dynamics, with corresponding flux Sρv�. The specific
entropy is a concave function of p and ρ. Finally, away from discontinuities, the
Eulerian conservation law for entropy is

∂Sρ

∂t
+ ∇x · (vSρ) = cv

g · vρ2

p
.

4.4.5 Centered Rarefaction Curves

Recall equation (4.28) for a centered rarefaction wave: w̃′ = Y(w̃)e jα, w̃(0) = wL .
Here w is the vector of flux variables, and Y is the matrix of eigenvectors of
( ∂u
∂w )−1 ∂Fn

∂w , which was computed in Section 4.4.3 We will use this equation to
determine the centered rarefaction waves for the gas dynamics Equations (4.35)
and (4.37).

The centered rarefaction corresponding to the slow characteristic speed v · n − c
is the solution of the ordinary differential equation

d

dy

ρ

v
p

 =
 ρ

−nc
ρc2

 α,

where y is some measure of distance along the rarefaction curve. Note that this
system of ordinary differential equations says dp

dρ
= c2 = γ p

ρ
and dv·n

dρ
= − c

ρ
. We

can solve the former of these two equations to get p = pL( ρ

ρL
)γ . Note that this

implies that the specific entropy S = S0 + cv ln{ p
ργ } is constant. We can solve the

other ordinary differential equation to get

vL · n = v · n +
∫ ρ

ρL

c

ρ
dρ = v · n +

∫ ρ

ρL

√
γ p

ρ3
dρ = v · n +

∫ ρ

ρL

√
γ pL

ρ
γ
L

ργ−3dρ

= v · n +
√

γ pL

ρ
γ
L

2

γ − 1
ρ

1
2 (γ−1)

∣∣ρ
ρL

= v · n + 2c

γ − 1
− 2cL

γ − 1
.

It follows that v · n + 2c/(γ − 1) is also constant on this centered rarefaction
curve.

Since there are three flux variables for one-dimensional gas dynamics, and since
the slow centered rarefaction curve involves a single degree of freedom, the cen-
tered rarefaction is completely described by the conditions that both the specific
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entropy S and v · n + 2c/(γ − 1) are constant. These quantities are called Riemann
invariants. In multiple dimensions, the transverse components of velocity are also
Riemann invariants.

It is useful to treat p as the independent variable in the description of
the centered rarefaction curves. If (ρL, vL, pL) is on the centered rarefaction
curve, then ρ = ρL( p

pL
)1/γ , c = cL( p

pL
)

1
2 (1−1/γ ), v = vL − n 2

γ−1 (c − cL). Note that

as p ↓ 0, we have that ρ ↓ 0, c ↓ 0 and v ↑ vL + n 2cL
γ−1 . Also note that 2c dc

dp =
γ

dp/ρ

dp = γ ( 1
ρ

− p
ρ2

dρ

dp ) = γ

ρ2 (ρ − p ρ

γ p ) = γ−1
ρ

. Thus along the centered rarefaction

curve the rate of change of the characteristic speed is d(v·n−c)
dp = − 1

ρc + γ−1
2ρc =

− 3−γ

2ρc < 0, since section 4.4.2 gave us 1 < γ < 5/3. Thus v · n − c increases
as p decreases. Similar discussions apply to the centered rarefaction curves for
v · n + c.

Summary 4.4.3 In a polytropic gas, with sound speed c = √
γ p/ρ,

(i) a slow centered rarefaction, which is associated with characteristic speed v · n − c,
has for its Riemann invariants the specific entropy S = cv ln(p/ργ ), the quan-
tity v · n + 2c/(γ − 1), and (in multiple dimensions) the transverse components of
velocity,

(ii) and a fast centered rarefaction, which is associated with characteristic speed v · n + c,
has for its Riemann invariants the specific entropy S, the quantity v · n − 2c/(γ − 1),
and (in multiple dimensions) the transverse components of velocity.

All states on

(i) a slow rarefaction curve containing the state (ρL, vL, pL) satisfy the equations

ρ = ρL(p/pL)1/γ , c = cL(p/pL)(γ−1)/(2γ ), v = vL − n
2

γ − 1
(c − cL), (4.40)

(i) and on a fast rarefaction containing the state (ρR, vR, pR) satisfy the equations

ρ = ρR(p/pR)1/γ , c = cR(p/pR)(γ−1)/2γ ), v = vR + n
2

γ − 1
(c − cR).

Further,

(i) the slow characteristic speed v · n − c increases as p decreases,
(ii) and the fast characteristic speed v · n + c increases as p increases.

As p ↓ 0,

(i) along the slow rarefaction curve we have ρ ↓ 0, c ↓ 0 and v ↑ vL + n 2cL
γ−1 ,

(ii) and along the fast rarefaction curve we have ρ ↓ 0, c ↓ 0 and v ↓ vR − n 2cL
γ−1 .
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4.4.6 Jump Conditions

If we apply the Rankine–Hugoniot jump conditions (4.22) to the Eulerian gas
dynamics function (4.35), we obtain

[ρv · n] = [ρ]σ,

[vρ(v · n) + np] = [vρ]σ[
ρ

(
e + 1

2
v · v

)
(v · n) + pv · n

]
=

[(
e + 1

2
v · v

)
ρ

]
σ.

Let [n, N] be a rotation matrix with first column n, and let ν = n · v − σ be
the normal velocity relative to the discontinuity speed. Then we can write the
velocity in the form v = n(ν + σ ) + Nv⊥. If we multiply the normal component
of the momentum jump condition by σ and subtract from the energy jump, we
get

[ρν] = 0, (4.41a)

[p] = −[ρν2], (4.41b)

[v⊥ρν] = 0 (4.41c)[
pν

γ

γ − 1
+ 1

2
ρν3 + 1

2
v⊥ · v⊥ρν

]
= 0. (4.41d)

The mass jump condition (4.41a) implies that ρRνR = ρLνL . Let us consider the
case in which ρRνR = ρLνL is nonzero. Then ρL > 0, νR 	= 0 and

v⊥
R = v⊥

L ,

νR = νL − pR − pL

ρLνL

= ρLν
2
L − pR + pL

ρLνL

ρR = ρLνL

νR

= (ρLνL)2

ρLν2
L − pR + pL

,

0 = pRνR

γ

γ − 1
+ 1

2
ρLνLν

2
R − pLνL

γ

γ − 1
− 1

2
ρLν

3
L

= pR

{
νL − pR − pL

ρLνL

}
γ

γ − 1
+ 1

2
ρLνL

{
νL − pR − pL

ρLνL

}2

− pLνL

γ

γ − 1
− 1

2
ρLν

3
L

= pR − pL

2ρLνL

{
ρLν

2
L

2γ

γ − 1
− pR

2γ

γ − 1
− 2ρLν

2
L + pR − pL

}
.

Note that pR = pL implies that νR = νL , which in turn implies that ρR = ρL and
therefore there is no jump. Thus we can divide the fourth of these jump conditions
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by pR − pL to obtain

0 = ρLν
2
L

{
2γ

γ − 1
− 2

}
− pR

2γ

γ − 1
+ pR − pL = ρLν

2
L

2

γ − 1
− pR

γ + 1

γ − 1
− pL .

This can be rewritten

ν2
L = 1

2ρL

{pL(γ − 1) + pR(γ + 1)}

This implies that the discontinuity speed is given by

σ = n · vL − νL = n · vL ±
√

1

2ρL

{pL(γ − 1) + pR(γ + 1)}.

Let us summarize these results.

Summary 4.4.4 Suppose that n is the normal to a gas dynamics discontinuity
propagating with speed σ . Also suppose that [n, N] is a rotation. Given a left state
ρL > 0, vL = nn · vL + Nv⊥

L , pL and the right pressure pR, the gas dynamics jump
conditions imply that vR = nn · vR + Nv⊥

R where

v⊥
R = v⊥

L

σ = n · vL −
√

1

2ρL

{pL(γ − 1) + pR(γ + 1)}

νL = n · vL − σ

νR = n · vR − σ = νL − pR − pL

ρLνL

ρR = ρLνL

νR

.

By symmetry, given ρR > 0, vR, pR and pL the jump conditions imply

v⊥
L = v⊥

R

σ = n · vR +
√

1

2ρR

{pR(γ − 1) + pL(γ + 1)}

νR = n · vR − σ

νL = n · vL − σ = νR − pL − pR

ρRνR

ρL = ρRνR

νL

.

On the other hand, suppose that ρLνL = ρRνR = 0. Then the jump conditions
(4.41) imply that pR = pL but allow the transverse velocities v⊥

R and v⊥
L to be
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arbitrary. If νL = 0, then (4.41d) implies that pRνR = 0; in this case, either νR = 0
or both ρR = 0 and pR = 0. The former of these two choices corresponds to a
contact discontinuity.

Summary 4.4.5 Suppose that n is the normal to a gas dynamics discontinuity,
and that [n, N] is a rotation. Suppose that we are given a left state ρL , vL =
nn · vL + Nv⊥

L , and pL. If the discontinuity speed isσ = n · vL then the gas dynamics
jump conditions imply that

vR = nn · vL + Nv⊥
R

pR = pL

for any transverse velocity v⊥
R and any density ρR. In other words, across such a

discontinuity the only jumps are in the transverse velocity and the density.

In order to complete the solution of the gas dynamics jump conditions, we need
to consider two more cases. In the case when νL = 0 and νR 	= 0 we have ρR = 0 and
pL = pR = 0. Since both states are at zero pressure, this case is not very interesting.
The other case has ρLνL = ρRνR = 0 with νL 	= 0. This implies that ρL = 0. In order
to have any gas particles in the problem, we would have to have ρR > 0, which would
in turn imply that νR = 0. This would lead to 0 = pL = pR, so both states would be
at zero pressure. Again, this case is not very interesting.

Sometimes, it is useful to discuss the jump conditions in terms of shock strength.
Given a discontinuity propagating with speed σ < n · vL , we will define the shock
strength by

zL ≡ pR − pL

pL

.

Given ρL > 0, pL and the shock strength zL , Lemma 4.4.4 implies that the states on
either side of the discontinuity satisfy

pR = pL(1 + zL)

νL =
√

pL

ρL

{
γ − 1

2
+ 1 + zL

2
(γ + 1)

}
= cL

√
1 + zL

γ + 1

2γ

νR = 1

ρLνL

{
ρLν

2
L − pR + pL

} = 1

ρLνL

{
ρLc2

L

(
1 + zL

γ + 1

2γ

)
− pL(1 + zL) + pL

}
= c2

L

νL

{
1 + zL

γ + 1

2γ
− zL

γ

}
= c2

L

νL

{
1 + zL

γ − 1

2γ

}
ρR = ρLνL

νR

= ρLν
2
L

c2
L

1

1 + zL
γ−1
2γ

= ρL

1 + zL
γ+1
2γ

1 + zL
γ−1
2γ

.
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Given the same condition on the discontinuity speed, it is sometimes useful to define
the Mach number by ML = νL

cL
. Given ρL > 0, pL and the Mach number ML , the

states on either side of the discontinuity satisfy

νL = MLcL

pR = γ − 1

γ + 1

{
ρLν

2
L

2

γ − 1
− pL

}
= pL

γ + 1

{
2ρLν

2
L

pL

− γ + 1

}

= pL

γ + 1

{
2γ M2

L − γ + 1
} = pL

{
2γ

γ + 1
(M2

L − 1) + 1

}

νR = νL − pR − pL

ρLνL

= νL −
pL

2γ

γ+1 (M2
L − 1)

ρL MLcL

= νL − 2cL(M2
L − 1)

ML(γ + 1)
= cL

2 + M2
L (γ − 1)

ML(γ + 1)

ρR = ρLνL

νR

= ρL MLcL

cL

ML(γ + 1)

2 + M2
L (γ − 1)

= ρL

M2
L (γ + 1)

2 + M2
L (γ − 1)

.

Similar results can be obtained for a discontinuity propagating with speed
σ > n · vR.

Finally, let us discuss thermodynamic stability for propagating discontinuities.
If 0 < νL ≡ n · vL − σ , then we also have νR > 0; in this case, gas particles move
from the left (the pre-shock state) to the right (the post-shock state). Thermodynamic
stability therefore requires that

0 <
SR − SL

cv

= ln

{
pR

pL

(
ρL

ρR

)γ }
= ln

{
(1 + zL)

(
1 + zL

γ−1
2γ

1 + zL
γ+1
2γ

)γ }
≡ φ(zL).

Note that φ(0) = 1 and

dφ

dz
=

(
1 + z γ−1

2γ

1 + z γ+1
2γ

)γ

z2

(1 + z γ+1
2γ

)(1 + z γ−1
2γ

)

γ 2 − 1

4γ 2
.

Thus z > 0 implies that φ(z) > 1 and ln φ(z) > 0. Thus thermody-
namic stability for a discontinuity propagating with speed σ < n · vR
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requires

pR > pL

ρR

ρL

> 1 =⇒ ρR > ρL

νR

νL

> 1 =⇒ n · vL > n · vR

ML = νL

cL

=
√

1 + zL

γ + 1

2γ
> 1 =⇒ n · vL − cL > σ

c2
R = γ pR

ρR

= γ pL(1 + zL)

ρL

1 + zL
γ−1
2γ

1 + zL
γ+1
2γ

= c2
L (1 + zL)

1 + zL
γ−1
2γ

1 + zL
γ+1
2γ

> c2
L

and

νR − cR = c2
L

νL

(
1 + zL

γ − 1

2γ

)
−

√
γ pL

ρL

(1 + zL)
1 + zL(γ − 1)/(2γ )

1 + zL(γ + 1)/(2γ )

= cL

1 + zL(γ − 1)/(2γ )√
1 + zL(γ + 1)/(2γ )

− cL

√
(1 + zL)

1 + zL(γ − 1)/(2γ )

1 + zL(γ + 1)/(2γ )

= cL

√
1 + zL(γ − 1)/(2γ )

1 + zL(γ + 1)/(2γ )

{√
1 + zL(γ − 1)/(2γ ) −

√
1 + zL

}
> 0

We can easily derive similar results when σ > n · vR. Our discussion concludes
with the following two summaries.

Summary 4.4.6 Suppose that the normal n to a shock satisfying σ < n · vL is
oriented toward the post-shock (right) state, and the Mach number is the ratio of
the speed of the shock relative to the pre-shock velocity, divided by the pre-shock
sound speed:

ML = n · vL − σ

cL

.
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Given a state (ρL, vL, pL) with ρL > 0, define ν = n · v − σ . Then states (ρ, v, p)
on the Hugoniot locus for this shock satisfy

ν

νL

= ρL

ρ
= r ≡ 1 + 1

2 (γ − 1)M2
L

1
2 (γ + 1)M2

L

[n · v]

cL

= − 2(M2
L − 1)

(γ + 1)ML

p

pL

= 1 + 2γ

γ + 1
(M2

L − 1).

In order for the entropy to increase as the discontinuity passes a material particle,
we require any of the following equivalent inequalities:

ρ > ρL, n · v < n · vL, p > pL, c > cL or ML > 1.

In particular, the Lax admissibility condition

n · vL − cL ≥ σ ≥ n · v − c.

is satisfied by this shock.

Summary 4.4.7 Suppose that the normal n to a shock satisfying σ > n · vR is
oriented toward the pre-shock (right) state, and the Mach number is the ratio of
the speed of the shock relative to the pre-shock velocity, divided by the pre-shock
sound speed:

MR = σ − n · vR

cR

.

Given a state (ρR, vR, pR) with ρR 	= 0, define v = n · v − σ . Then states (ρ, v, p)
on the Hugoniot locus for this shock satisfy

v

vR

= ρR

ρ
= r ≡ 1 + 1

2 (γ − 1)M2
R

1
2 (γ + 1)M2

R

[n · v]

cR

= − 2(M2
R − 1)

(γ + 1)MR

p

pR

= 1 + 2γ

γ + 1
(M2

R − 1).
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In order for the entropy to increase as the discontinuity passes a material particle,
we require any of the following equivalent inequalities:

ρ > ρR, n · v > n · vR, p > pR, c > cR or MR > 1.

In particular, the Lax admissibility condition

n · v + c ≥ σ ≥ n · vR + cR.

is satisfied by this shock.

4.4.7 Riemann Problem

In sections 4.4.5 and 4.4.6 we developed the results we need to solve the Riemann
problem for gas dynamics. Let us summarize the information we will need to
describe the solution of this problem. Given a left state (ρL, vL, pL) and a right state

(ρR, vR, pR), let cL ≡
√

γ pL

ρL
and cR ≡

√
γ pR

ρR
be the sound speeds at these two states.

The solution of the Riemann problem for gas dynamics involves two intermediate
states with the same normal velocity n · v∗ and pressure p∗ at the intersection of
the slow wave curve

v−(p) ≡


vL − n p−pL

γ pL

cL√
1+ 1

2
p−pL

pL

1+γ

γ

, p > pL

vL + n 2
γ−1 cL

[
1 − ( p

pL
)(γ−1)/(2γ )

]
, p ≤ pL

and the fast wave curve

v+(p) ≡


vR + n p−pR

γ pR

cR√
1+ 1

2
p−pR

pR

1+γ

γ

, p > pR

vR − n 2
γ−1 cR

[
1 − ( p

pR
)(γ−1)/(2γ )

]
, p ≤ pR

In other words, p∗ solves the nonlinear equation

n · v−(p∗) = n · v+(p∗).

Let

ρ−(p) =


ρL

[
1 + p−pL

γ pL

1
1+ γ−1

2γ

p−pL
pL

]
, p > pL

ρL

(
p

pL

)1/γ

, p ≤ pL
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be the density as a function of pressure along the slow wave curve, and

ρ+(p) =


ρR

[
1 + p−pR

γ pR

1
1+ γ−1

2γ

p−pR
pR

]
, p > pR

ρR

(
p

pR

)1/γ

, p ≤ pR

be the density as a function of pressure along the fast wave. Finally, let

ξL =
{

n · vL − cL

√
1 + 1+γ

2γ

p∗−pL

pL
, p∗ > pL

n · vL − cL, p∗ ≤ pL

ξ− =
n · vL − cL

√
1 + 1+γ

2γ

p∗−pL

pL
, p∗ > pL

n · v(p∗) −
√

γ p∗
ρ−(p∗) , p∗ ≤ pL

be the wave speeds at the beginning and the end of the slow wave, and

ξ+ =
n · vR + cR

√
1 + 1+γ

2γ

p∗−pR

pR
, p∗ > pR

n · v+(p∗) +
√

γ p∗
ρ+(p∗) , p∗ ≤ pR

ξR =
{

n · vR + cR

√
1 + 1+γ

2γ

p∗−pR

pR
, p∗ > pR

n · vR + cR, p∗ ≤ pR

be the wave speeds at the beginning and the end of the fast wave.
Given a left state wL = (ρL, vL, pL), we construct the slow centered rarefaction

curve in the direction of decreasing p, and the Hugoniot locus in the direction of
increasing p. Similarly, given a right state wR = (ρR, vR, pR) we construct the fast
centered rarefaction curve in the direction of decreasing p, and the Hugoniot locus
in the direction of increasing p. We can draw these curves in the two-dimensional
v, p plane, and use the definitions of the centered rarefaction curves to determine
the values of the density ρ along the curves. In this case, the slow rarefaction is
the curve where n · v + 2c/(γ − 1) is constant, and the fast rarefaction is the curve
where n · v − 2c/(γ − 1) is constant.

The remainder of the details in the solution of the Riemann problem can be found
in the Summaries 4.4.1, 4.4.3, 4.4.5, 4.4.7, and 4.4.6.

Summary 4.4.8 There are six structurally different states in the solution of the gas
dynamics Riemann problem: either a slow shock or a slow rarefaction followed by
a constant state, a contact discontinuity, another constant state, and then either a
fast shock or a fast rarefaction. The state that moves with speed ξ in the Riemann
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problem is

ρξ

vξ

pξ

 =



ρL

vL

pL

 , ξ ≤ ξL


ρL

(
pξ

pL

)1/γ

vL − n 2
γ−1 (cξ − cL)

pL

(
cξ

cL

)2γ /(γ−1)

 , ξL < ξ < ξ− where cξ = γ−1
γ+1 [n · vL + 2cL

γ−1 − ξ ]

ρ−(p∗)
v−(p∗)

p∗

 , ξ− ≤ ξ ≤ n · v−(p∗) ρ+
v+(p∗)

p∗

 , n · v+(p∗) < ξ < ξ+


ρR

(
pξ

pR

)1/γ

vR + n 2
γ−1 (cξ − cR)

pR

(
cξ

cR

)2γ /(γ−1)

 , ξ+ < ξ < ξR where cξ = γ−1
γ+1 [ξ − n · vR + 2cR

γ−1 ]

ρR

vR

pR

 , ξ ≥ ξR

In rarefactions, these equations can be used to compute the variables in the order
cξ , vξ , pξ and then ρξ .

The file Program 4.4-47: gas dynamics.f contains routines that solve the gas dynam-
ics Riemann problem A simple program for visualizing the solution to the gas
dynamics Riemann problem can be executed by clicking on Executable 4.4-18: gas
DynamicsRiemannProblem. This program will open a window for users to select val-
ues of velocity and pressure for the left state in the Riemann problem by clicking
with the left mouse button. The user can push and drag the left mouse button again
to see how the solution of the Riemann problem would change as the right state is
changed. Releasing the mouse button produces graphs of the various parameters in
the Riemann problem versus self-similar coordinates x/t . A user can also execute
a different program by clicking on the link Executable 4.4-19: guiGasDynamics The
user can use the left mouse button to rotate the rectangular region of acceptable left
and right states for the Riemann problem. Then the user can press the right mouse

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/gas_dynamics.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_gasDynamicsRiemannProblem
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiGasDynamics
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(a) Pressure vs. velocity (b) Velocity vs. wave speed

(c) Pressure vs. wave speed (d) Density vs. wave speed

Fig. 4.8 Shock–shock solution to gas dynamics Riemann problem

button and move in the general direction of the coordinate axes and then release
the button to select the left state, consisting of the values for density, velocity and
pressure. Afterward, the user can perform a similar process to select the right state.
The program will show the wave curves involved in the solution of the Riemann
problem, will display plots of velocity, pressure, density, characteristic speeds and
entropy versus x/t . The user can view the latter plots by bring each to the top of
the view, and moving the windows around on the screen. When the user is finished
viewing these plots, he find the window that asks “Are you finished viewing the
results?” and click on “OK”. At this point, it will be possible to interact with the
original window where the left and right states were selected. When the user is
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(a) Pressure vs. velocity (b) Velocity vs. wave speed

(c) Pressure vs. wave speed (d) Density vs. wave speed

Fig. 4.9 Shock–rarefaction solution to gas dynamics Riemann problem

finished with this window, he should use the mouse to pull down on the “File”
label and release on “Quit”. After answering “OK” to the question “Do you want
to quit?”, the user needs to respond to the window displaying “Run finished” by
clicking on “Cleanup.” The guiGasDynamics executable is a bit more difficult
to use than thegasDynamicsRiemannProblem executable, so we recommend
the former.

The solution of the gas dynamics Riemann problem is determined by finding the
intersection of the two wave families. There are four cases. The first case involves
shocks in both families; this is illustrated in Figure 4.8. The second case involves
a slow shock and a fast rarefaction; this is illustrated in Figure 4.9. The third case
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(a) Pressure vs. velocity (b) Velocity vs. wave speed

(c) Pressure vs. wave speed (d) Density vs. wave speed

Fig. 4.10 Rarefaction–shock solution to gas dynamics Riemann problem

involves a slow rarefaction and a fast shock; this is illustrated in Figure 4.10. The
fourth case involves rarefactions in both families; this is illustrated in Figure 4.11.

4.4.8 Reflecting Walls

Let us comment on reflecting boundaries, which might represent a solid wall restrict-
ing the gas flow. At a reflecting boundary, the normal component of velocity is an
odd function of distance from the wall, while ρ, p and transverse components of
velocity are even functions of distance.
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(a) Pressure vs. velocity (b) Velocity vs. wave speed

(c) Pressure vs. wave speed (d) Density vs. wave speed

Fig. 4.11 Rarefaction–rarefaction solution to gas dynamics Riemann problem

Exercises for 4.4

4.4.1 The Lagrangian form of the conservation laws for gas dynamics is a bit complicated. First, use
Lemma 4.1.9 to convert the Eulerian conservation laws for gas dynamics to the Lagrangian
frame of reference. This will give you

uL ≡
 ρ0

vρ0

(e + 1
2 v · v)ρ0

 , FL ≡
 0

J−�|J|p
p|J|v�J−�

 , bL ≡
 0

gρ0

g · vρ0

 . (4.42)



4.4 Case Study: Gas Dynamics 207

Note that the Lagrangian flux depends on flux variables ρ0, v, p, e and the deformation gradient J.
Use Equation (4.14) to expand the system of Lagrangian conservation laws for gas dynamics so
that we have conservation laws for enough quantities to evolve the flux variables. Normally, gas
dynamics problems are solved in the Eulerian frame of reference. Not only are the conservation
laws simpler in the Eulerian frame, but also there is no problem with mesh tangling in displaying
the Lagrangian results in the viewer’s coordinate system x.

4.4.2 Find the maximum value of the ratio of the post-shock density to the pre-shock density for a
polytropic gas. Note that thermodynamic stability requires that the Mach number is greater than
1. What is this maximum value for air (γ = 7/5)?

4.4.3 Suppose that we have a discontinuity propagating with speed σ > 0 into a vacuum. In other
words, the pre-shock state has ρR = 0, pR = 0 and undefined vR. Describe the post-shock state
determined by the Rankine–Hugoniot conditions. Does this state make sense physically ?

4.4.4 Given a left state and a discontinuity speed, solve the Rankine–Hugoniot jump conditions for
Lagrangian gas dynamics to find the right state. Under what conditions is the discontinuity
thermodynamically stable?

4.4.5 Find the characteristic speeds and directions for Lagrangian gas dynamics. Show that the
Lagrangian acoustic tensor is a scalar multiple of the Eulerian acoustic tensor.

4.4.6 Describe how to solve the Riemann problem for Lagrangian gas dynamics. Write a computer
program to implement your results.

4.4.7 Show that for a centered rarefaction wave in a polytropic gas, the velocity v and the sound speed
c are linear functions of x/t . (Hint: show that x/t = v ± c, and that v ± 2c/(γ − 1) is constant.)

4.4.8 Write a computer program to evaluate the vector u of conserved quantities and vector g of fluxes,
given the flux variables w for Eulerian gas dynamics.

4.4.9 Write a computer program to evaluate the vector w of flux variables w, given the vector u of
conserved quantities for Eulerian gas dynamics.

4.4.10 Show that in the Lagrangian frame of reference away from discontinuities, conservation of
entropy is given by

d S

dt
= cv

g · vρ0

p|J| .

4.4.11 Given any left state ρL, vL, pL , write a computer program to find those states ρR, vR, pR that
can be connected to the left state by a slow shock of Mach number ML . Given any right state
ρR, vR, pR, write a computer program to find those states ρL, vL, pL that can be connected to the
right state state by a fast shock of Mach number MR.

4.4.12 Given any left state ρL, vL, pL , what conditions on the right state ρR, vR, pR will lead to a Riemann
problem such that the slow and fast wave families do not intersect? Presumably, the solution of
the Riemann problem would involve two centered rarefactions separated by a vacuum.

4.4.13 Suppose that we have a symmetric Riemann problem, in which ρ− = ρ+, v− = −v+, p− = p+.
Show that the contact discontinuity moves with zero speed in this problem. Find the flux vector
at the state that moves with zero speed. (Note that the flux vector will depend on the sign of v−.)
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4.4.14 Suppose that we have a gas with arbitrarily large density on one side of a Riemann problem
(possibly corresponding to a solid wall). To be specific, suppose that we have ρ+ → ∞, v+ = 0
and p+ = p−. If v− > 0, show that the contact discontinuity moves with zero speed, and find
the flux at the state on the left side of the contact discontinuity. Perform similar calculations for
v− < 0.

4.4.15 Program the Lax–Friedrichs scheme for polytropic gas dynamics. Plot the numerical solution
(i.e., ρ, v, p and characteristic speeds v ± c versus x/t) for the following Riemann problems:
(a) a Mach 2 shock moving to the right into air with density 1, velocity 0 and pressure 1 (i.e.,

pR = 1, vR = 0, ρR = 1; pL = 9/2, ρL = 8/3, vL = √
35/16);

(b) a stationary shock (σ = 0) in air with density 1, velocity −2 and pressure 1 on the right (i.e.,
pR = 1, vR = −2, ρR = 1; pL = 19/6, ρL = 24/11, vL = −11/12);

(c) a rarefaction moving to the right from air with density 1, pressure 1 and velocity 0 into a
vacuum. (i.e., pL = 1, vL = 0, ρL = 1; pR = 0, ρR = 0, vR = √

35).
4.4.16 Program Rusanov’s scheme for polytropic gas dynamics and apply it to the previous exercise.
4.4.17 Program Godunov’s scheme for polytropic gas dynamics and apply it to the previous exercise.
4.4.18 Program Godunov’s scheme for the Sod shock tube problem [131, page 116]. This is a Riemann

problem for air (γ = 1.4) in which the left state is given by ρL = 1, vL = 0, pL = 1 and the right
state is ρR = 0.125, vR = 0, pR = 0.1. Perform the calculation with 100 and 1000 cells. Plot ρ,
v, p and the characteristic speeds versus x/t at a time for which the fastest wave is near the
boundary of the computational domain.

4.4.19 Program Godunov’s scheme for the Colella-Woodward interacting blast wave problem [177].
The gas is assumed to be air (γ = 1.4) confined between two reflecting walls at x = 0 and x = 1.
Initially, ρ = 1 and v = 0 everywhere. The initial condition for pressure consists of three constant
states:

p =


1000., 0 < x < 0.1
0.01, 0.1 < x < 0.9
100., 0.9 < x < 1.0.

Plot the numerical results for times 0.01, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034 and 0.038.
Plot ρ, v, p and the temperature versus x . Try 100, 1000 and 10,000 cells.

4.5 Case Study: Magnetohydrodynamics (MHD)

4.5.1 Conservation Laws

An extension of gas dynamics to handle magnetic fields leads to magnetohydro-
dynamics (MHD). The system of equations has conserved quantities, fluxes and
right-hand side given by

u =


ρ

vρ

B
(e+ 1

2 v�v)ρ+ 1
2 B�B

 , F =


ρv�

vρv� + I(p + 1
2 B�B) − BB�

Bv� − vB�

{eρ+ 1
2ρv�v+B�B + p}v�−v�BB�

 , r =


0

gρ

0
g�vρ

.
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Here B is the magnetic induction vector (see Maxwell’s equations in section 4.3),
and the other variables are the same as in polytropic gas dynamics (see section 4.4).
As in Maxwell’s equations, it is common to assume that the B field is divergence-
free. Let us examine the implications of this assumption. Let k be the number
of spatial dimensions in the problem. First, we expand the quasi-linear form for
conservation of magnetic induction:

0 = ∂Bi

∂t
+

k∑
j=1

∂(Bi v j − vi B j )

∂x j
= ∂Bi

∂t
+

k∑
j=1

[
∂Bi

∂x j
v j + Bi

∂v j

∂x j
− ∂vi

∂x j
B j − vi

∂B j

∂x j

]
.

Next, we take the divergence of this equation to get

0 = ∂

∂t

(
k∑

i=1

∂Bi

∂xi

)
+

k∑
i=1

k∑
j=1

[
∂Bi

∂xi∂x j
v j + ∂Bi

∂x j

∂v j

∂xi
+ ∂Bi

∂xi

∂v j

∂x j
+ Bi

∂2v j

∂xi∂x j

− ∂2vi

∂xi∂x j
B j − ∂vi

∂x j

∂B j

∂xi
− ∂vi

∂xi

∂B j

∂x j
− vi

∂2B j

∂xi∂x j

]
.

Inside the double sum, we can switch i and j to cancel the first term against the
eighth, the second term against the sixth, the third term against the seventh, and the
fourth term against the fifth.

Summary 4.5.1 Suppose that the vector-valued functions B and v are twice con-
tinuously differentiable with respect to space and time. If for all x and all t > 0 we
have

∂Bi

∂t
+

k∑
j=1

∂(Bi v j − vi B j )

∂x j
= 0

then

∂∇x · B
∂t

= 0.

4.5.2 Characteristic Analysis

In order to determine the characteristic speeds for MHD, we will first deter-
mine the quasi-linear form for the system. For smooth flow, the conservation
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laws imply
0

gρ

0

g·vρ

 = ∂

∂t


ρ

vρ

B
p

γ−1 + ρ

2 v · v+ 1
2 B · B

 +
k∑

i=1

∂

∂xi


ρvi

vρvi + ei (p + 1
2 B · B) − BBi

Bvi − vBi

{p γ

γ−1 + 1
2ρv · v+B · B}vi −v · BBi



=


1 0 0 0

v Iρ 0 0

0 0 I 0
1
2 v · v ρv� B� 1

γ−1

 ∂

∂t


ρ

v
B
p

 +
k∑

i=1


vi

vvi

0
1
2 v · vvi

 ∂ρ

∂xi
+

k∑
i=1


0

ei

0
γ

γ−1 vi

 ∂p

∂xi

+
k∑

i=1


ρe�

i

vρe�
i + Iρvi

Be�
i − IBi

(p γ

γ−1 + 1
2ρv · v + B · B)e�

i + ρvi v� − Bi B�


∂v
∂xi

+
k∑

i=1


0

ei B� − IBi

Ivi

2vi B� − Bi v�


∂B
∂xi

.

Note that we used 0 = ∇x · B = ∑k
i=1

∂Bi
∂xi

to eliminate the terms involving ∂Bi
∂xi

.

Summary 4.5.2 If the conserved quantities in MHD are continuously differentiable
and ∇x · B = 0, then the quasilinear form of MHD is


0

gρ

0

g · vρ

 =


1 0 0 0

v Iρ 0 0

0 0 I 0
1
2 v · v ρv� B� 1

γ−1

 ∂

∂t


ρ

v
B
p



+
k∑

i=1


vi ρe�

i 0 0

vvi Iρvi + vρe�
i ei B� − IBi ei

0 Be�
i − IBi Ivi 0

v·vvi
2 [ γ p

γ−1 + ρv·v
2 + B · B]e�

i + ρvi v� − Bi B� 2vi B� − Bi v� γ vi

γ−1

 ∂

∂xi


ρ

v
B
p

 .

From the quasilinear form of MHD, we have

∂u
∂w

=


1 0 0 0
v Iρ 0 0
0 0 I 0

1
2 v · v ρv� B� 1

γ−1

.

Let [n, N] be an orthogonal matrix with first column equal to n. With the orthogonal
decompositions

v ≡ nν + Nv⊥, B ≡ nβ + NB⊥
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we have

∂Fn
∂w

=


ν ρn� 0 0
vν Iρν + vρn� nB� − Iβ n
0 Bn� − Iβ Iν 0

νv·v
2 ρνv� + [ pγ

γ−1 + ρv·v
2 + B · B]n� − βB� 2νB� − βv� γ ν

γ−1

.

The expressions for the flux derivatives can be obtained by applying a coordinate
rotation to the result of Lemma 4.5.2 using Lemma 4.1.9. It follows from the discus-
sion in Section 4.1.1 that we want to compute the eigenvalues � and eigenvectors
Y of

(
∂u
∂w

)−1
∂(Fn)

∂w
=


ν ρn� 0 0
0 Iν n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ Iν 0
0 γ pn� 0 ν



= Iν +


0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0

 ≡ Iν + M.

If we find the eigenvalues of M, then we can add the normal velocity ν to them to
get the desired eigenvalues in �.

Summary 4.5.3 Given a direction n, and flux variables

w ≡


ρ

v
B
p


define ν ≡ v · n and β ≡ B · n. The characteristic speeds of MHD are of the form
ν + λ, where λ is an eigenvalue of

M ≡
(

∂u
∂w

)−1
∂(Fn)

∂w
− I(v · n) =


0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0


We can write the eigenvector equation Mz = zλ in the partitioned form

0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0




τ

x
y
ζ

 =


τ

x
y
ζ

 λ. (4.43)
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Note that M has a column of zeros, so it has a zero eigenvalue. If λ = 0 and β 	= 0,
then the second equation in (4.43) implies that y = nη for some scalar η. This
same equation then implies that ζ = 0. The third equation implies that x = Bα for
some scalar α, and the first or fourth equation implies that α = 0. Thus we have
discovered two eigenvectors of M with zero eigenvalue:

0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0




1 0
0 0
0 n
0 0

 = 0.

The corresponding characteristic speed for MHD is ν. This characteristic speed is
linearly degenerate:

∂v · n
∂w


1 0
0 0
0 n
0 0

 = [
0, n�, 0, 0

] 
1 0
0 0
0 n
0 0

 = [
0 0

]
.

On the other hand, if λ = 0 and β = 0, then the second equation in (4.43) implies
that ζ = −B · y and the first or fourth equation implies that n · x = 0. Then if β = 0,

0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0




1 0 0
0 N 0
0 0 I
0 0 −B�

 =


0 0 0
0 0 −Iβ

ρ

0 −Nβ 0
0 0 0

 = 0

shows that we have found 2k eigenvectors of M with zero eigenvalue, where k is
the dimension of B and v. Thus when β 	= 0, the eigenvalue 0 of M has multiplicity
2, and when B · n = 0 it has multiplicity 2k. This characteristic speed for MHD is
still linearly degenerate:

∂ν

∂w


1 0 0
0 N 0
0 0 I
0 0 −B�

 = [
0, n�, 0, 0

] 
1 0 0
0 N 0
0 0 I
0 0 −B�

 = [
0, 0, 0

]
.

Summary 4.5.4 Consider the matrix

M ≡


0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0

 .
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If B · n ≡ β 	= 0, then M has a zero eigenvalue of multiplicity 2:
0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0




1 0 0
0 N 0
0 0 I
0 0 −B�

 =


0 0 0
0 0 −Iβ

ρ

0 −Nβ 0
0 0 0

 [
0 0
0 0

]
.

Otherwise, if v and B are k-vectors, then M has a zero eigenvalue of multiplic-
ity 2k. The corresponding characteristic speed ν ≡ v · n for MHD is linearly
degenerate.

Next, suppose that the eigenvalue λ of M is nonzero. Since the third equation in
(4.43) implies that we must have n · y = 0, let us try y = B × n, provided that this
vector is nonzero. (In two dimensions n ⊥ y = 0 = N ⊥ y implies y = 0.) Then
the second equation in (4.43) implies that x = nα1 + B × nα2 for some scalars α1

and α2. Since B and B × n are linearly independent when they are nonzero, the third
equation implies that α1 = 0 and −α2β = λ. Since x = B × nα2 is orthogonal to n,
the first equation implies that τ = 0 and the fourth equation implies that ζ = 0. Also,
the second equation implies that−β = α2ρλ. We now see thatα2 = ∓ sign(β)/

√
ρ,

and λ = ±ca where

ca = |B · n|/√ρ

is the the Alfvén speed. Note that if σ ≡ sign(β), then
0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn�−Iβ 0 0
0 γ pn� 0 0




0 0
B×nσ −B×nσ

B×n
√

ρ B×n
√

ρ

0 0



=


0 0

B×nσ −B×nσ

B×n
√

ρ B×n
√

ρ

0 0

[−ca 0
0 ca

]
.

so we have found two more eigenvalues and eigenvectors of M.
Let us show that the Alfvén speed is linearly degenerate. Since ρc2

a = (β)2, we
have

∂ρc2
a

∂w
= [0, 0, 2βn�, 0],

and

∂ν ± ca

∂w
= ∂ν

∂w
± 1

ρca

{
∂ρc2

a

∂w
− c2

a

∂ρ

∂w

}
=

[
∓ca

ρ
, n�,

2β

ρca
n�, 0

]
.
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Then we multiply the w-derivatives of the eigenvalue times the eigenvector to
get

∂ν ± ca

∂w


0

∓B × nσ

B × n
√

ρ

0

 =
[
∓ca

ρ
, n�,

2β

ρca
n�, 0

] 
0

∓B × nσ

B × n
√

ρ

0

 = 0.

Summary 4.5.5 Given a direction n, define the Alfvén speed ca by

ca ≡ |B · n|/√ρ (4.44)

and consider the matrix

M ≡


0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0


where β ≡ B · n. Then ±ca are two eigenvalues of M:

0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn�−Iβ 0 0
0 γ pn� 0 0




0 0
B×nσ −B×nσ

B×n
√

ρ B×n
√

ρ

0 0

=


0 0

B×nσ −B×nσ

B×n
√

ρ B×n
√

ρ

0 0

[−ca 0
0 ca

]

where σ ≡ sign(β). The MHD characteristic speeds v · n ± ca are linearly degen-
erate. These characteristic directions are not possible for flow in fewer than three
dimensions.

Next, suppose that λ 	= 0, and that y = B − nβ 	= 0. Then the third equation
in (4.43) implies that x = nα1 + Bα2 for some scalars α1 and α2. Since y 	= 0
implies that B and n are linearly independent, the third equation implies that α1 = λ.
The second equation implies that −β = α2ρλ and B · B + ζ = ρλ2. The fourth
equation implies that ρc2(βα2 + λ) = ζλ. Thus the eigenvalue satisfies c2[λ2ρ −
β2] = ζλ2 = ρλ4 − ‖B‖2λ2, which gives us a quadratic equation for λ2:

ρλ4 − (‖B‖2 + ρc2)λ2 + c2β2 = 0.

If we define ρc2
∗ = 1

2 (‖B‖2 + ρc2), then we can solve the quadratic equation for λ2

to get

λ2 = c2
∗ ±

√
c4∗ − c2c2

a.
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Let us prove that the eigenvalues λ given by this expression are real. Recall
the Schwarz inequality in the form |B · n| ≤ ‖B‖ ‖n‖, and the inequality ab ≤
1
2 (a2 + b2). It follows that

ρcac = |B · n|√ρc ≤ ‖B‖‖n‖
√

ρc2 ≤ 1

2
(‖B‖2 + ρc2) = ρc2

∗.

This inequality implies that λ2 is real, no matter which sign is chosen. Since√
c4∗ − c2

ac2 ≤ c2
∗, λ is real.

Next, we will prove some inequalities regarding these eigenvalues. Since ρc2
a =

(B · n)2 ≤ ‖B‖2, it follows that

ρ(c2
a + c2) ≤ ‖B‖2 + ρc2 = 2ρc2

∗.

This in turn implies that

(c2
∗ − c2

a)2 = c4
∗ − 2c2

∗c2
a + c4

a ≤ c4
∗ − c2

ac2.

Taking square roots, we obtain

−
√

c4∗ − c2
ac2 ≤ c2

a − c2
∗ ≤

√
c4∗ − c2

ac2.

It follows that

c2
s ≡ c2

∗ −
√

c4∗ − c2
ac2 ≤ c2

a ≤ c2
∗ +

√
c4∗ − c2

ac2 ≡ c2
f .

Finally, we will prove (4.46). Note that the Schwarz inequality implies that
(B · n)2 ≤ ‖B‖2. This implies that

1

2
γ p‖B‖2 − γ pβ2 ≥ −1

2
γ p‖B‖2.

which in turn implies that

1

4
(γ p + ‖B‖2)2 − γ pβ2 ≥ 1

4
(‖B‖2 − γ p)2.

It follows that

−
√

1

4
(γ p + ‖B‖2)2 − γ pβ2 ≤ 1

2
((‖B‖2 − γ p) ≤

√
1

4
(γ p + ‖B‖2)2 − γ pβ2.

Adding either of ± 1
2 (γ p + ‖B‖2) to all terms in this inequality gives us

0 ≤ ρc2
s ≤ min{ρc2, β2} and max{ρc2, ‖B‖2} ≤ ρc2

f .
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We have shown that the corresponding eigenvector for a nonzero eigenvalue of M
is 

τ

x
y
ζ

 =


ρ − ρ

c2
a

λ2

nλ − B β

ρλ

B − nβ

ρλ2 − ‖B‖2

 =


ρλ2−‖B‖2

c2

nλ − B β

ρλ

B − nβ

ρλ2 − ‖B‖2

.

This gives us four more eigenvalues, for a total of eight in three dimensions.

Summary 4.5.6 Given a direction n, polytropic gas constant γ and flux variables
ρ, v, B and p, define the speed of sound c by ρc2 = γ p, the Alfvén speed ca by
ρc2

a = (B · n)2 ≡ β2 and the speed c∗ by ρc2
∗ = 1

2 (B · B + ρc2). Also define the slow
speed cs by c2

s = c2
∗ − √

c4∗ − c2c2
a and the fast speed c f by c2

f = c2
∗ + √

c4∗ − c2c2
a.

Then

0 ≤ cs ≤ ca ≤ c f , (4.45)

and

0 ≤ ρc2
s ≤ min{ρc2, β2} and max{ρc2, ‖B‖2} ≤ ρc2

f . (4.46)

Further, ±cs and ±c f are four eigenvalues of

M ≡


0 ρn� 0 0
0 0 n 1

ρ
B� − Iβ

ρ
n 1

ρ

0 Bn� − Iβ 0 0
0 γ pn� 0 0


since

M


ρc2

f −‖B‖2

c2
ρc2

s −‖B‖2

c2
ρc2

s −‖B‖2

c2

ρc2
f −‖B‖2

c2

−nc f + B β

ρc f
−ncs + B β

ρcs
ncs − B β

ρcs
nc f − B β

ρc f

B − nβ B − nβ B − nβ B − nβ

ρc2
f − ‖B‖2 ρc2

s − ‖B‖2 ρc2
s − ‖B‖2 ρc2

f − ‖B‖2



=


ρc2

f −‖B‖2

c2
ρc2

s −‖B‖2

c2
ρc2

s −‖B‖2

c2

ρc2
f −‖B‖2

c2

−nc f + B β

ρc f
−ncs + B β

ρcs
ncs − B β

ρcs
nc f − B β

ρc f

B − nβ B − nβ B − nβ B − nβ

ρc2
f − ‖B‖2 ρc2

s − ‖B‖2 ρc2
s − ‖B‖2 ρc2

f − ‖B‖2



×


−c f 0 0 0

0 −cs 0 0
0 0 cs 0
0 0 0 c f

.
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The corresponding characteristic speeds for MHD are ν ± cs and ν ± c f where
ν ≡ v · n; these are not necessarily genuinely nonlinear.

Summary 4.5.7 Given a direction n, polytropic gas constant γ and flux variables
ρ, v, B and p, let [n, N] be an orthogonal matrix and define

v ≡ nν + Nw, B ≡ nβ + NB⊥.

Also define the speed of sound c by ρc2 = γ p, the Alfvén speed ca by ρc2
a = β2

and the speed c∗ by ρc2
∗ = 1

2 (B · B + ρc2). Also define the slow speed cs by c2
s =

c2
∗ − √

c4∗ − c2c2
a and the fast speed c f by c2

f = c2
∗ + √

c4∗ − c2c2
a. The equations of

MHD are hyperbolic with characteristic speeds ν, ν ± cs, ν ± ca and ν ± c f . The
characteristic speeds ν and ν ± ca are linearly degenerate. In fact,(

∂u
∂w

)−1
∂(Fn)

∂w
Y = Y{Iν + �}

where if β = 0 we have

Y =


ρc2

f −‖B‖2

c2 1 0 0
ρc2

f −‖B‖2

c2

−nc f 0 N⊥ 0 nc f

B 0 0 I B
ρc2

f − ‖B‖2 0 0 −B� ρc2
f − ‖B‖2

 , � =


−c f 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 c f


and if β 	= 0 we have σ ≡ sign(β) and

Y =


ρc2

f −‖B‖2

c2 0 ρc2
s −‖B‖2

c2 1 0 ρc2
s −‖B‖2

c2 0
ρc2

f −‖B‖2

c2

−nc f + B β

ρc f
B × nσ −ncs + B β

ρcs
0 0 ncs − B β

ρcs
−B × nσ nc f − B β

ρc f

B − nβ B × n
√

ρ B − nβ 0 n B − nβ B × n
√

ρ B − nβ

ρc2
f − ‖B‖2 0 ρc2

s − ‖B‖2 0 0 ρc2
s − ‖B‖2 0 ρc2

f − ‖B‖2



� =



−c f

−ca

−cs

0
0

cs

ca

c f


.

The Alfvén speed does not occur if v and B are two-dimensional, and the only
nonzero characteristic speeds are ν ± c if v and B are one-dimensional.
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4.5.3 Entropy Function

Recall that the specific entropy of a polytropic gas is S = S0 + cv{ln p
p0

− γ ln ρ

ρ0
}.

It follows that the derivatives of the specific entropy with respect to the MHD flux
variables are

∂S

∂w
= cv

[−γ /ρ, 0, 0, 1/p
]
.

Similarly, the partial derivatives of the entropy per volume are

∂Sρ

∂w
= [

S − cvγ, 0, 0, cvρ/p
]
.

We claim that the entropy flux for MHD is Sρv�, the same as in gas dynamics.
To justify this claim, recall from Section 4.1.11 that we must show that

∂Sn · v
∂w

= ∂Sρ

∂w

(
∂u
∂w

)−1
∂Fn
∂w

.

To this end, we compute

∂Sρ

∂w

(
∂u
∂w

)−1
∂Fn
∂w

= [
S − cvγ 0 0 cvρ/p

] 
(n · v) ρn� 0 0

0 I(n · v) n 1
ρ

B� − I B·n
ρ

n 1
ρ

0 Bn� − IB · n Iv · n 0
0 ρc2n� 0 n · v


=

[
(S − cvγ )n · v Sρn� 0 cv

ρ

p n · v
]

= ∂S

∂w
ρn · v + Sn� [

v Iρ 0 0
] = ∂S

∂w
ρn · v + Sn� ∂vρ

∂w
= ∂Sρ(n · v)

∂w
.

The entropy function for MHD is a strictly concave function of ρ and p, and a
concave function of w.

4.5.4 Centered Rarefaction Curves

Recall Equation (4.28) for a centered rarefaction wave in one dimension:

w̃′ = Y(w̃)e jα, w̃(0) = wL .

We will use this equation to determine the centered rarefaction waves for
MHD.
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The centered rarefaction corresponding to the characteristic speed v · n + λ is
the solution of the ordinary differential equation

d

dy


ρ

v
B
p

 =


(ρλ2 − ‖B‖2)/c2

nλ − Bβ/(ρλ)
B − nβ

ρλ2 − ‖B‖2

 α,

where y is some measure of distance along the rarefaction curve, and β = B · n.
Note that this system of ordinary differential equations says that

dρ

dp
= ρ

γ p
.

We can solve this equation to get

ρ = ρL

(
p

pL

)1/γ

.

Note that this implies that

S = S0 + cv ln

{
p

ργ

}
is constant. Thus the specific entropy is constant along a centered rarefaction curve.
Also note that we can multiply the third equation in the system by n� to get

dβ

dp
= 0.

Thus the normal component of B is constant as well. Since dnβ

dp = 0, the third
equation in the system can be rewritten

dB⊥

dp
= B⊥ 1

ρλ2 − ‖B‖2
.

Since B⊥ ⊥ n, the Pythagorean theorem implies that ‖B‖2 = ‖B⊥‖2 + β2. Further,
the definitions of cs , ca and c f imply that

ρλ2 − ‖B‖2 = 1

2
(γ p − ‖B⊥‖2 − β2) ±

√
1

4
(γ p + ‖B⊥‖2 + β2)2 − γ pβ2

Thus we have an ordinary differential equation for the vector B⊥.
The ordinary differential equation for v is

dv
dp

= (nρλ2 − Bβ)
1

(ρλ2 − ‖B‖2)ρλ
= {n(λ2 − c2

a) − B⊥β/ρ} λ

(ρλ2 − ‖B‖2)λ2

= {n(λ2 − c2
a) − B⊥β/ρ} λ

γ p(λ2 − c2
a)

.
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If we take the inner product of this equation with n, we obtain

dv · n
dp

= {(λ2 − c2
a)} λ

γ p(λ2 − c2
a)

= λ

γ p
.

Summary 4.5.8 In magnetohydrodynamics, two Riemann invariants for a centered
rarefaction, with characteristic speed v · n ± cs or v · n ± c f , are β ≡ B · n and
the specific entropy S = cv ln(p/ργ ). The specific entropy can be used to determine
the density as a function of pressure along a centered rarefaction; further, density
is always an increasing function of pressure along a centered rarefaction. In a
centered rarefaction, the perpendicular component of the B field, B⊥ ≡ B − nβ,
satisfies the ordinary differential equation

dB⊥

dp
= B⊥ 1

ρλ2 − ‖B‖2

where λ = ±cs or λ = ±c f are functions of p and B⊥. Further, the velocity satisfies
the ordinary differential equation

dv
dp

= {nρ(λ2 − c2
a) − B⊥β} 1

(ρλ2 − ‖B‖2)ρλ
.

In particular, the normal velocity satisfies

dv · n
dp

= λ

γ p
.

4.5.5 Jump Conditions

Recall from equation (4.22) that at a propagating discontinuity, the Rankine-
Hugoniot conditions are [FR − FL]n = [uR − uL]σ . Here, n is the normal to the
discontinuity and σ is the normal velocity of the discontinuity. If we apply these
jump conditions to MHD write the jump conditions separately, we obtain

[ρv�n] = [ρ]σ,[
vρv�n + np + n

B�B
2

− BB�n
]

= [vρ]σ,[
Bv�n − vB�n

] = [B]σ,[(
p

γ

γ − 1
+ ρ

2
v�v + B�B

)
v�n − v�BB�n

]
=

[
p

1

γ − 1
+ ρ

2
v�v + 1

2
B�B

]
σ.

While it is possible to solve these equations, the solution is pretty messy except in
special circumstances. We will omit this discussion, because we do not plan to use
the information to solve Riemann problems for MHD in numerical methods.
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The first four exercises are intended to guide the student through the analysis of
the jump conditions for MHD.

Exercises for 4.5

4.5.1 Suppose that ρLνL = ρRνR 	= 0, σ 	= 0, B⊥
R = B⊥

L (1 + α) and B⊥
R 	= 0. Show that if α = 0, then the

Rankine–Hugoniot jump conditions imply that the left and right states are the same. Otherwise,
show that the Rankine–Hugoniot jump conditions lead to a cubic equation for α, with coefficients
that are functions of the left state and the discontinuity speed σ .

4.5.2 Suppose that ρLνL = ρRνR 	= 0, σ 	= 0, B⊥
R = B⊥

L (1 + α) and B⊥
R = 0. If B⊥

L = 0, show that [p] =
0 implies that the left and right states are identical. If B⊥

L = 0 and [p] 	= 0, show that given the
left state and pR we can determine the discontinuity speed and the right state. If B⊥

L 	= 0, show
that the discontinuity is an Alfvén wave.

4.5.3 Suppose that ρLνL = ρRνR 	= 0, σ 	= 0 and that b⊥
R is not a scalar multiple of B⊥

L . Show that the
Rankine–Hugoniot jump conditions imply that B⊥

L = 0 	= B⊥
R . Then show that given the left state

and b⊥
R , the discontinuity speed is determined by a quartic equation.

4.5.4 Suppose that ρLνL = ρRνR 	= 0 and σ = 0. If B⊥
R is a linear combination of BL and v⊥

L , show
that the Rankine–Hugoniot jump conditions lead to a quartic equation for βR, from which the
remainder of the right state can be determined. Otherwise, show that the jump conditions lead to
a quadratic equation for β2

R , from which the remainder of the right state can be determined.
4.5.5 Suppose that ρLνL = ρRνR = 0 and σ 	= 0. Ignore zero density. Show that [β] = 0, and that

if βL 	= 0 then the left and right states are identical. On the other hand, if βL = 0, then the
discontinuity speed is equal to vL · n and the only jump between the two states are in the transverse
velocity and transverse B field.

4.5.6 Discuss the solution of the Rankine–Hugoniot jump conditions when ρLνL = ρRνR = 0 and
σ = 0.

4.5.7 Determine the conditions to impose on the B field at a reflecting wall. See section 4.4.8 for the
reflecting wall conditions with gas dynamics.

4.6 Case Study: Finite Deformation in Elastic Solids

Solid mechanics is a much more complicated subject than gas dynamics. The sys-
tems of conservation laws are larger, and the constitutive models are more compli-
cated. Traditionally, these problems have been solved by finite element methods.
The application of modern shock-capturing techniques to these problems is some-
what recent, and in need of additional development.

4.6.1 Eulerian Formulation of Equations of Motion for Solids

A description of the Eulerian forms of the conservation laws for finite deformation
in solid mechanics can be found in [39]. Conservation of mass can be written either
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as the continuity equation

dρ

dt
+ ρ∇x · v = 0, (4.47)

or as the conservation law

∂ρ

∂t
+ ∇x · (vρ) = 0. (4.48)

Conservation of momentum can be written either as Newton’s second law of
motion

dn · v
dt

− 1

ρ
∇x · (Sn) = n · g, (4.49)

or as a conservation law

∂n · vρ

∂t
+ ∇x · (vρn · v − Sn) = ρn · g. (4.50)

Here n is an arbitrary fixed direction, g is a body acceleration (such as gravity) and
S is the Cauchy stress tensor. In some cases, g might include the effects of viscous
forces. The Cauchy stress tensor S is symmetric in most practical problems, and
requires a constitutive law to relate it to other variables. Finally, conservation of
energy can be written either as the first law of thermodynamics

dε

dt
− 1

ρ
tr

(
S
∂v
∂x

)
= ω (4.51)

or in conservation form

∂ρ(ε + 1
2 v · v)

∂t
+ ∇x ·

{
vρ

(
ε + 1

2
v · v

)
− Sv

}
= ρ(ω + g · v). (4.52)

Here ε is the internal energy per mass, and ω is the radiative heat transfer per unit
mass. In some cases, ω might include the effects of heat diffusion.

4.6.2 Lagrangian Formulation of Equations of Motion for Solids

We can use (4.20) to discover the equivalent conservation laws in the Lagrangian
frame of reference. We will define the Lagrangian density ρL = ρ|J| and the second
Piola–Kirchhoff stress tensor SL = J−1SJ−�|J|. Here J = ∂x/∂a is the deforma-
tion gradient, defined originally in equation (4.11).

Lagrangian conservation of mass can be written as

dρL

dt
= 0. (4.53)
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Conservation of momentum can be written either as Newton’s second law of motion

dn · v
dt

− 1

ρL

∇a · (SLn) = n · g, (4.54)

or as a conservation law

∂n · vρL

∂t
− ∇a · (

SLJ�n
) = ρLn · g. (4.55)

Here JSL is the first Piola–Kirchhoff stress tensor. Note that the second Piola–
Kirchhoff stress tensor SL is symmetric whenever the Cauchy stress tensor S is
symmetric; however, the first Piola–Kirchhoff stress tensor JSL is generally not
symmetric. Finally, conservation of energy can be written either as the first law of
thermodynamics

dε

dt
− 1

ρL

tr

(
SLJ� ∂v

∂a

)
= ω (4.56)

or in conservation form

∂ρL(ε + 1
2 v · v)

∂t
− ∇a · (SLJ�v) = ρL(ω + g · v). (4.57)

Note that the Eulerian form of the conservation laws used equality of mixed
partial derivatives in the form

∂J−1

∂t
+ ∂J−1v

∂x
= 0.

If we had transformed the Lagrangian equality of mixed partial derivatives to the
Eulerian frame using (4.20), we would have obtained

∂n · Jei |J−1|
∂t

+ ∇x · (vn · Jei |J−1| − Jei |J−1|n · v) = 0.

These two conservation laws are equivalent, provided that the deformation gradient
satisfies ∇a × J = 0.

4.6.3 Constitutive Laws

In order to close the equations of motion, we need to provide a constitutive law
for the stress. We can place the model on a firm thermodynamical foundation by
assuming a hyperelastic model

SL = 2
∂ρLψ

∂C
, (4.58)
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where C = J�J is the Green deformation tensor and ψ(C) is the Helmholtz free
energy per unit mass. A particularly simple free energy function is given by the
Mooney–Rivlin model

ρLψ(C) = λ

8
[ln det(C)]2 + µ

2
tr(C) − µ

2
ln det(C). (4.59)

The constants are the shear modulus µ and the Lamé constant λ = κ − 2
3µ,

where κ is the bulk modulus. Thus a hyperelastic model considers the second
Piola–Kirchhoff stress tensor to be a function of the deformation gradient J; this
naturally implies that the Cauchy stress tensor S is a function of J.

In practice, it is more common that constitutive laws for solids are given as
a system of ordinary differential equations. These hypolelastic models take the
form

dJSL

dt
=

(
dJ
dt

+ dJ�

dt

)
µ + Iλtr

dJ
dt

. (4.60)

Again, these ordinary differential equations imply that the first Piola–Kirchhoff
stress tensor is a function of the deformation gradient J; as a result, the second
Piola–Kirchhoff stress tensor SL and the Cauchy stress tensor S are functions of the
deformation gradient.

In general, the equation of state can either be differentiated in time or expressed
directly in rate form

dJSLei

dt
= −

3∑
j=1

Hi j
dJe j

dt
+ hi

dθ

dt
.

Here θ is the absolute temperature and

Hi j = ∂JSLei

∂Je j
and hi = ∂JSLei

∂θ
.

Here Hi j is a matrix, not the i, j entry of a matrix, and hi is a vector. In many
cases, the equations of motion for solids are assumed to be isothermal, and hi = 0.
Similarly, the equation of state could either be differentiated in time or expressed
directly in rate form as

dSei

dt
= −

3∑
j=1

H̃i j J
dJ−1e j

dt
+ h̃i

dθ

dt
.
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Here

H̃i j = − ∂Sei

∂J−1e j
J−1 and h̃i = ∂Sei

∂θ
.

Typically, the internal energy is assumed to be a function of absolute temperature
θ and the deformation gradient. Then the equation for the internal energy can either
be differentiated in time or expressed directly in rate form as

dε

dt
= c j · dJe j

dt
+ γ

dθ

dt
.

Here

c�
j = ∂ε

∂Je j
and γ = ∂ε

∂θ
.

4.6.4 Conservation Form of the Equations of Motion for Solids

We can write our equations of motion in the Lagrangian frame as

d

dt

∫
�0

uL da +
∫

∂�0

FLn ds =
∫

�0

rL da

where the vector of conserved quantities, array of fluxes and vector of body forces
are

uL =



ρL

vρL

(ε + 1
2 v · v)ρL

Je1

Je2

Je3


, FL =



0

−JSL

−v�JSL

−ve�
1

−ve�
2

−ve�
3


, rL =



0
gρL

(ω + g · v)ρL

0
0
0

.

Here we have considered the most general case of three dimensions. The first three
entries in these arrays represent conservation of mass, momentum and energy, while
the remaining entries represent the equality of mixed partial derivatives,

dJ
dt

= ∂v
∂a

. (4.61)

In addition to these conservation laws, we also have the constitutive laws for stress
and internal energy.

Also note that the deformation gradient must satisfy the constraint

∇a × J� = 0.
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This may be viewed as a constraint on the initial values for the differential equation;
if this curl condition is satisfied initially, then the conservation law (4.61) guarantees
that it is satisfied for all time.

In the Eulerian frame, the conservation laws can be written

d

dt

∫
�

uE dx +
∫

∂�

FEn ds =
∫

�

rE dx

where the vector of conserved quantities, array of fluxes and vector of body forces
are

uE =



ρ

vρ

(ε + 1
2 v · v)ρ

J−1e1

J−1e2

J−1e3


, FE =



ρv�

vρv� − S

(ε + 1
2 v · v)ρv� − v�S

J−1ve�
1

J−1ve�
2

J−1ve�
3


, rE =



0

gρ

(ω + g · v)ρ

0

0

0


.

The first three entries of these arrays represent conservation of mass, momentum
and energy, while the remaining entries can be written as

∂J−1

∂t
+ ∂J−1v

∂x
= 0.

This equation can be derived from the equations

dJ−1

dt
= −J−1 dJ

dt
J−1 = −J−1 ∂v

∂x
, and ∇x × J−� = 0.

4.6.5 Jump Conditions for Isothermal Solids

For isothermal solids, there is no dependence on the absolute temperature θ , and
no need to consider conservation of energy. The Lagrangian form of the Rankine–
Hugoniot jump conditions for isothermal solids can be written

0 = [ρL]σL,

[−JSLnL] = [vρL]σL,

[−v]n�
L = [J]σL .

Note that we can multiply the last equation by the normal direction nL and obtain

−[v] = [J]nLσL .
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If the discontinuity speed σL is nonzero, then [ρL] = 0; it follows that traveling
isothermal discontinuities satisfy

[JSL]nL = [J]nLρLσ
2
L .

The constitutive law can then be used to determine the nonzero discontinuity speeds.
If the discontinuity speed σL = 0, then stationary discontinuities satisfy [v] = 0 and
[JSL]nL = 0.

Similarly, the Eulerian form of the Rankine–Hugoniot jump conditions for
isothermal solids can be written

[ρnE · v] = [ρ]σE,

[vρnE · v − SnE] = [vρ]σE,

[J|J−1|nE · v − v|J−1|n�
E J] = [J|J−1|]σE .

Recall from Section 4.1.3.3 that the discontinuity speeds are related by

σE = ‖J�nE‖σL + nE · v,

and the normal directions to the discontinuity are related by

nE = J−�nL

1

‖J−�nL‖ .

Thus the jump conditions can be rewritten

[ρ(σE − nE · v)] = 0,

−[S]nE = [vρ(σE − nE · v)],

− [
v|J−1|n�

E J
] = [

J|J−1|(σE − nE · v)
]
.

If σE = nE · v, then the normal component of velocity is continuous across the
discontinuity, [S]nE = 0 and [v|J−1|n�

E J] = 0.

4.6.6 Characteristic Analysis for Solids

In regions of smooth motion, the quasilinear form for the Lagrangian equations
of motion can be written in terms of Newton’s second law, the first law of
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thermodynamics and the rate form of the constitutive equation for stress:
IρL 0 0 0 0
0 ρLγ 0 0 0
0 −h1 I 0 0
0 −h2 0 I 0
0 −h3 0 0 I

 ∂

∂t


v
θ

JSLe1

JSLe2

JSLe3



=
3∑

j=1


0 0 −Iδ1 j −Iδ2 j −Iδ3 j

−ρLγ b�
j 0 0 0 0

−H1 j 0 0 0 0
−H2 j 0 0 0 0
−H3 j 0 0 0 0

 ∂

∂a j


v
θ

JSLe1

JSLe2

JSLe3

 =


gρL

ωρL

0
0
0

.

Here

b�
j = 1

γρL

(
e�

j SLJ� − ρLc�
j

)
, γ = ∂ε

∂θ
, c�

j = ∂ε

∂Je j
,

Hi j = ∂JSLei

∂Je j
and hi = ∂JSLei

∂θ
.

This is because the conserved quantities and flux are functions of the flux variables

wL =


v
θ

JSLe1

JSLe2

JSLe3

 .

We did not determine the quasilinear form directly from the conservation laws,
although this could be done with careful additional use of the constraint that the
deformation gradient is curl-free.

In order for these equations of motion to be hyperbolic, we require that

B =


IρL 0 0 0 0
0 ρLγ 0 0 0
0 −h1 I 0 0
0 −h2 0 I 0
0 −h3 0 0 I


−1


0 0 −In1 In2 In3

−ρLγ
∑3

j=1 n j b�
j 0 0 0 0

− ∑3
j=1 H1 j n j 0 0 0 0

− ∑3
j=1 H2 j n j 0 0 0 0

− ∑3
j=1 H3 j n j 0 0 0 0



=


0 0 −In1/ρL −In2/ρL −In3/ρL

− ∑3
j=1 n j b�

j 0 0 0 0
− ∑3

j=1(H1 j n j − h1n j b�
j ) 0 0 0 0

− ∑3
j=1(H2 j n j − h2n j b�

j ) 0 0 0 0

− ∑3
j=1(H3 j n j − h3n j b�

j ) 0 0 0 0


must have real eigenvalues.
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Let us define the acoustic tensor for a given normal n by

AL =
∑

i

ni

∑
j

(Hi j + hi b�
j )n j = ∂JSLn

∂Jn
+ ∂JSLn

∂θ

1

γρL

(
n�SLJ� − ρL

∂ε

∂Jn

)
. (4.62)

We suppose that we can find a nonsingular matrix X and a diagonal matrix �L

so that ALX = X�2
LρL . Also, let [n, N] be an orthogonal matrix, so that n�N = 0.

Then it is easy to see that the characteristic speeds are real; in three dimensions we
have

0 0 −In1/ρL −In2/ρL −In3/ρL

− ∑3
j=1 n j b�

j 0 0 0 0

− ∑3
j=1(H1 j + h1b�

j )n j 0 0 0 0

− ∑3
j=1(H2 j + h2b�

j )n j 0 0 0 0

− ∑3
j=1(H3 j + h3b�

j )n j 0 0 0 0




X�L 0 0 0 −X�L∑3
j=1 n j b�

j X 0 1 0
∑3

j=1 n j b�
j X∑3

j=1(H1 j + h1b�
j )n j X IN11 0 IN12

∑3
j=1(H1 j + h1b�

j )n j X∑3
j=1(H2 j + h2b�

j )n j X IN21 0 IN22
∑3

j=1(H2 j + h2b�
j )n j X∑3

j=1(H3 j + h3b�
j )n j X IN31 0 IN32

∑3
j=1(H3 j + h3b�

j )n j X



=



X�L 0 0 0 −X�L∑3
j=1 n j b�

j X 0 1 0
∑3

j=1 n j b�
j X∑3

j=1(H1 j + h1b�
j )n j X IN11 0 IN12

∑3
j=1(H1 j + h1b�

j )n j X∑3
j=1(H2 j + h2b�

j )n j X IN21 0 IN22
∑3

j=1(H2 j + h2b�
j )n j X∑3

j=1(H3 j + h3b�
j )n j X IN31 0 IN32

∑3
j=1(H3 j + h3b�

j )n j X




−�L 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �L

.

In the Eulerian frame of reference, the equations of motion for smooth flow
can be written as the continuity equation, Newton’s second law, the first law of
thermodynamics, the rate equations representing the constitutive law, and

∂J−1v
∂t

− J−1 ∂v
∂t

+ ∂J−1v
∂x

v = 0.

This equation follows directly from the conservation law and product rule

∂J−1

∂t
= −∂J−1v

∂x
and

∂J−1v
∂t

− J−1 ∂v
∂t

− ∂J−1

∂t
v = 0.
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Let us define

h̃i = ∂Sei

∂θ
, H̃i j = − ∂Sei

∂J−1e j
J−1, b̃

�
j = − 1

ργ

(
e�

j S + ρ
∂ε

∂J−1e j
J−1

)
.

Then we obtain the quasilinear form

I 0 0 0 0 0 0
0 Iρ 0 0 0 0 0
0 0 ργ 0 0 0 0
0 0 − h̃1 I 0 0 0
0 0 − h̃2 0 I 0 0
0 0 − h̃3 0 0 I 0
0 −J−1 0 0 0 0 I


∂

∂t



ρ

v
θ

Se1

Se2

Se3

J−1v



+
3∑

j=1



v j ρe�
j 0 0 0 0 0

0 Iρv j 0 −Iδ1 j −Iδ2 j −Iδ3 j 0

0 γρ b̃
�
j γρv j 0 0 0 0

0 −H̃1 j h̃1v j Iv j 0 0 0
0 −H̃2 j h̃2v j 0 Iv j 0 0
0 −H̃3 j h̃3v j 0 0 Iv j 0
0 0 0 0 0 0 Iv j


∂

∂x j



ρ

v
θ

Se1

Se2

Se3

J−1v


=



0
gρ

ωρ

0
0
0
0


.

If we solve the equation for the time derivatives, we see that in order for the system
to be hyperbolic, we require



v · n ρn� 0 0 0 0 0

0 Iv · n 0 −In1/ρ −In2/ρ −In3/ρ 0

0
∑3

j=1 n j b̃
�
j v · n 0 0 0 0

0 − ∑3
j=1(H̃1 j − h1b�

j )n j 0 Iv · n 0 0 0

0 − ∑3
j=1(H̃2 j − h2b�

j )n j 0 0 Iv · n 0 0

0 − ∑3
j=1(H̃3 j − h3b�

j )n j 0 0 0 Iv · n 0

0 J−1v · n 0 −J−1n1/ρ −J−1n2/ρ −J−1n3/ρ Iv · n


to have real eigenvalues. We will assume that we can find a nonsingular matrix X
and diagonal matrix �E so that

AEX ≡
{

3∑
i=1

ni

3∑
j=1

(H̃i j − h̃i b�
j )n j

}
X = X�2

Eρ. (4.63)
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Then we see that

v · n ρn� 0 0 0 0 0
0 Iv · n 0 −In1/ρ −In2/ρ −In3/ρ 0

0
∑3

j=1 n j b̃
�
j v · n 0 0 0 0

0 − ∑3
j=1(H̃1 j − h1b�

j )n j 0 Iv · n 0 0 0

0 − ∑3
j=1(H̃2 j − h2b�

j )n j 0 0 Iv · n 0 0

0 − ∑3
j=1(H̃3 j − h3b�

j )n j 0 0 0 Iv · n 0

0 J−1v · n 0 −J−1n1/ρ −J−1n2/ρ −J−1n3/ρ Iv · n




ρn�X 1 0 0 0 0 −ρn�X
X�E 0 0 0 0 0 −X�E

− ∑3
j=1 n j b̃

�
j X 0 1 0 0 0 − ∑3

j=1 n j b̃
�
j X∑3

j=1(H̃1 j − h̃1 b̃
�
j )n j X 0 0 IN11 IN12 0

∑3
j=1(H̃1 j − h̃1 b̃

�
j )n j X∑3

j=1(H̃2 j − h̃2 b̃
�
j )n j X 0 0 IN21 IN22 0

∑3
j=1(H̃2 j − h̃2 b̃

�
j )n j X∑3

j=1(H̃3 j − h̃3 b̃
�
j )n j X 0 0 IN31 IN32 0

∑3
j=1(H̃3 j − h̃3 b̃

�
j )n j X

−J−1 X (−�E + Iv · n) 0 0 0 0 I −J−1 X (�E + Iv · n)



=



ρn�X 1 0 0 0 0 −ρn�X
X�E 0 0 0 0 0 −X�E

− ∑3
j=1 n j b̃

�
j X 0 1 0 0 0 − ∑3

j=1 n j b̃
�
j X∑3

j=1(H̃1 j − h̃1 b̃
�
j )n j X 0 0 IN11 IN12 0

∑3
j=1(H̃1 j − h̃1 b̃

�
j )n j X∑3

j=1(H̃2 j − h̃2 b̃
�
j )n j X 0 0 IN21 IN22 0

∑3
j=1(H̃2 j − h̃2 b̃

�
j )n j X∑3

j=1(H̃3 j − h̃3 b̃
�
j )n j X 0 0 IN31 IN32 0

∑3
j=1(H̃3 j − h̃3 b̃

�
j )n j X

−J−1 X (−�E + Iv · n) 0 0 0 0 I −J−1 X (�E + Iv · n)




−�E + Iv · n 0 0 0 0 0 0
0 v · n 0 0 0 0 0
0 0 v · n 0 0 0 0
0 0 0 Iv · n 0 0 0
0 0 0 0 Iv · n 0 0
0 0 0 0 0 Iv · n 0
0 0 0 0 0 0 �E + Iv · n


.

In general, given any direction n we need to find a nonsingular matrix X and a
diagonal matrix �E so that

3∑
i=1

{
H̃i i n2

i + h̃oni b̃
�
i

}
X = −

{
∂Sn

∂J−1n
J−1 − ∂Sn

∂θ

1

γρ

(
n�S + ρ

∂ε

∂J−1n
J−1

)}
X

= X�2
Eρ.
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Exercises for 4.6

4.6.1 Consider the Mooney–Rivlin model in one dimension.
(a) Compute H = ∂JSL

∂J and H̃ = − ∂S
∂J−1 J−1 for this model.

(b) Find the Eulerian and Lagrangian characteristic speeds.
(c) Describe the Rankine–Hugoniot jump conditions for this model in both the Eulerian and

Lagrangian frames of reference.
(d) Program the Rusanov scheme for the Mooney–Rivlin model in the Lagrangian frame.
(e) Program the Rusanov scheme for the Mooney–Rivlin model in the Eulerian frame.

4.6.2 For the Mooney–Rivlin model in three dimensions, compute the derivatives

H = ∂JSLn
∂Jm

for arbitrary fixed directions n and m. Use your results to find the Lagrangian characteristic
speeds.

4.6.3 Find an entropy function for the Mooney–Rivlin model in three dimensions.
4.6.4 Use the Mooney-Rivlin model to compute the derivatives

H̃ = − ∂Sn
∂J−1m

J−1

for arbitrary fixed directions n and m. Use your results to find the Eulerian characteristic speeds.
Relate the Eulerian characteristic speeds to the Lagrangian speeds found in the previous problem

4.6.5 Consider the one-dimensional hypoelastic model

∂S
∂t

= ∂v
∂x

(
κ + 4µ

3

)
.

(a) Compute H = ∂JSL
∂J and H̃ = − ∂S

∂J−1 J−1 for this model.
(b) Find the Eulerian and Lagrangian characteristic speeds.
(c) Describe the Rankine–Hugoniot jump conditions for this model in both the Eulerian and

Lagrangian frames of reference.
(d) Program the Rusanov scheme for the hypoelastic model in the Lagrangian frame.
(e) Program the Rusanov scheme for the hypoelastic model in the Eulerian frame.

4.6.6 Consider the hypoelastic model

Ṡ ≡ dS
dt

+ W �S + SW,

where W is the spin tensor

W = 1

2

[
∂v
∂x

−
(

∂v
∂x

)�]
.

The derivative Ṡ is called the Jaumann stress rate.
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(a) Since W is antisymmetric, show that we can use it to generate an orthogonal matrix �(t)
defined by the initial-value problem

d�

dt
= W�, ���|t=0 = I.

(b) Show that the Jaumann stress rate satisfies

Ṡ = �
d��S�

dt
��.

This shows that the Jaumann stress is determined by rotating the rate of unrotated stress �S�.
(c) Suppose that the Jaumann stress rate is related to the rate of deformation

D = 1

2

{
∂v
∂x

+
(

∂v
∂x

)�}

through Hooke’s law in rate form:

Ṡ = D2µ + I
(

κ − 2µ

3

)
trD.

For arbitrary fixed directions n and m, compute the partial derivatives

H̃ = − ∂Sn
∂J−1m

J−1

(d) Assuming that 0 < µ < κ , and that the absolute values of the eigenvalues of S are less that
the shear modulus µ, show that the characteristic speeds are real in the Eulerian frame. (Hint:
if n = m, one of the eigenvectors of H̃ is n, with eigenvalue (κ + µ4/3)/ρ).

(e) Program the Rusanov scheme for the hypoelastic model in the Eulerian frame.

4.7 Case Study: Linear Elasticity

To illustrate the ideas presented above for general finite deformation in solids, let us
consider the simple case of linear elasticity. In this case, the deformation is assumed
to be infinitesimal, and there is no distinction between Eulerian and Lagrangian
frames of reference. The density is constant, and the material is isothermal. Our
system of conservation laws is

∂u
∂t

+
3∑

k=1

∂Fek

∂xk
= r
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where the vector of conserved quantities u, array of fluxes F and vector of body
forces r are

u =


vρ

Je1

Je2

Je3

 , F =


−S

−ve�
1

−ve�
2

−ve�
3

 , r =


gρ

0
0
0

.

The constitutive law for linear elasticity says that

S = (J + J�)µ + I
(

κ − 2

3
µ

)
tr(J), (4.64)

where κ is the bulk modulus and µ is the shear modulus. Examination of the flux
F suggests that we choose our flux variables w to be

w =


v

Se1

Se2

Se3

.

Lemma 4.7.1 Linear elasticity with stress given by (4.64) is hyperbolic. The char-
acteristic speeds are either zero, ±√

(κ + 4µ/3)/ρ or ±√
µ/ρ.

Proof Taking derivatives of (4.64) leads to

∂Sik

∂J j�
= (δi jδk� + δ jkδi�)µ + δikδ j�

(
κ − 2

3
µ

)
,

where δi j is the Kronecker delta; this can be rewritten in matrix form as

∂Sek

∂Je�

= (
Iδk� + e�e�

k

)
µ + ek

(
κ − 2

3
µ

)
e�
� .

We can also write the constitutive law in the rate form

dS
dt

=
[

∂v
∂x

+
(

∂v
∂x

)�]
µ + I

(
κ − 2

3
µ

)
tr

(
∂v
∂x

)
.

The quasilinear form of the conservation law is

∂

∂t


v

Se1

Se2

Se3

 +
3∑

j=1


0 −Iδ1 j/ρ −Iδ2 j/ρ −Iδ3 j/ρ

−∂Se1/∂Je j 0 0 0
−∂Se2/∂Je j 0 0 0
−∂Se3/∂Je j 0 0 0

 =


g
0
0
0

.
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For a given direction n, let us define the linear elasticity acoustic tensor A by

A =
3∑

i=1

ni

3∑
j=1

∂Sei

∂Je j
n j = Iµ + n

(
κ + µ

3

)
n�.

If X = [n, N] is an orthogonal matrix, then the eigenvalues and eigenvectors of the
acoustic tensor can be given by

AX = [
n N

] [
κ + 4µ

3 0
0 µ

]
= X�2ρ.

The eigenvalues and eigenvectors associated with the quasilinear form of the con-
servation law for direction n are given in the equation

0 −I n1
ρ

I n2
ρ

I n3
ρ

− ∑3
j=1

∂Se1
∂Je j

n j 0 0 0

− ∑3
j=1

∂Se2
∂Je j

n j 0 0 0

− ∑3
j=1

∂Se3
∂Je j

n j 0 0 0




X� 0 0 −X�∑3
j=1

∂Se1
∂Je j

n j X 0 0
∑3

j=1
∂Se1
∂Je j

n j X∑3
j=1

∂Se2
∂Je j

n j X 0 0
∑3

j=1
∂Se2
∂Je j

n j X∑3
j=1

∂Se3
∂Je j

n j X 0 0
∑3

j=1
∂Se3
∂Je j

n j X



=


X� 0 0 −X�∑3

j=1
∂Se1
∂Je j

n j X 0 0
∑3

j=1
∂Se1
∂Je j

n j X∑3
j=1

∂Se2
∂Je j

n j X 0 0
∑3

j=1
∂Se2
∂Je j

n j X∑3
j=1

∂Se3
∂Je j

n j X 0 0
∑3

j=1
∂Se3
∂Je j

n j X




−� 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �

.

�

The p-waves (λ =
√

(κ + 4µ

3 )ρ) travel fastest, and in them the velocity is normal

to the propagating front; the s-waves (λ = √
µ/ρ) travel slower, with the velocity

transverse to the propagating front.

4.8 Case Study: Vibrating String

In this section, we will consider the motion of a vibrating string that is constrained
to move in a plane. This problem will be a simple example of the more general solid
mechanics problem discussed in the previous section. We will see that the Riemann
problem can be solved; its solution can involve states where two characteristic
speeds are equal with no loss of characteristic directions.

4.8.1 Conservation Laws

Since a string is one-dimensional, we can consider its configuration at rest to be
parameterized by a single Lagrangian coordinate a1. Since the motion of the string
is assumed to lie in a plane in the Eulerian frame of reference, the deformation
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gradient is

J =
∂x1/∂a1 0 0

∂x2/∂a1 1 0
0 0 1

.

Since the Green deformation tensor is

C = J�J =
(∂x1/∂a1)2 + (∂x2/∂a1)2 ∂x2/∂a1 0

∂x2/∂a1 1 0
0 0 1

 ,

its trace is

tr C =
(

∂x1

∂a1

)2

+
(

∂x2

∂a1

)2

+ 2 = ‖Je1‖2 + 2.

Following Cristescu [39], we note that the second Piola–Kirchhoff stress SL is an
isotropic function of ‖Je1‖, meaning that it has the functional form

SL = I
τ (‖Je1‖)

‖Je1‖ .

Here τ is the tension. We assume that the tension is positive for all positive strain
(i.e., ‖Je1‖ > 1 implies τ > 0) and that zero strain implies zero tension (τ (1) = 0).
In order to guarantee real characteristic speeds, we also assume that the tension
increases with strain.

If we write f ≡ Je1, then the Lagrangian equations of motion can be written

ρ
∂v
∂t

− ∂

∂a1

(
f
τ (‖f‖)

‖f‖
)

= 0,

∂f
∂t

− ∂v
∂a1

= 0.

Note that f is determined by its norm φ = ‖f‖ and an angle θ :

f =
cos θ

sin θ

0

 φ.

This suggests that we choose our flux variables to be

w� ≡ [v1, v2, φ, θ ] .

In order to simplify the discussion, we will ignore the zero third components of
v and f. We will also write

n(θ ) =
[

cos θ

sin θ

]
.
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Then the conservation laws can be rewritten in the form

∂

∂t

[
vρ

n(θ )φ

]
+ ∂

∂a1

[−n(θ )τ (φ)
−v

]
= 0. (4.65)

4.8.2 Characteristic Analysis

Let us examine the characteristic speeds for the vibrating string.

Lemma 4.8.1 If τ (φ) > 0 and τ ′ > 0 for all φ > 1, then the system of conservation
laws for the vibrating string (4.65) is hyperbolic, with characteristic speeds
±√

τ ′(φ)/ρ and ±λ2 = √
τ (φ)/ρφ. The first two characteristic speeds are gen-

uinely nonlinear and the second two are linearly degenerate.

Proof We can easily compute the quasilinear form to be

[
Iρ 0 0
0 n n′φ

]
∂

∂t

v
φ

θ

 +
[

0 −nτ ′ −n′τ
−I 0 0

]
∂

∂a1

v
φ

θ

 = 0.

If φ > 0 then we can solve to get

∂

∂t

v
φ

θ

 +

 0 −n τ ′
ρ

−n′ τ
ρ

−n� 0 0
− 1

φ
(n′)� 0 0

 ∂

∂a1

v
φ

θ

 = 0.

We see that the eigenvalues and eigenvectors of this matrix take the form

BY =

 0 −n τ ′
ρ

−n′ τ
ρ

−n� 0 0
− 1

φ
(n′)� 0 0


−nλ1 −n′φλ2 n′φλ2 nλ1

1 0 0 1
0 1 1 0



=
−nλ1 −n′φλ2 n′φλ2 nλ1

1 0 0 1
0 1 1 0




λ1

λ2

−λ2

−λ1

 ≡ Y�

where the (positive) characteristic speeds are

λ1 =
√

τ ′(φ)

ρ
, λ2 =

√
τ (φ)

ρφ
.

Since the tension τ is positive and increasing, the characteristic speeds are real and
nonzero.



238 Nonlinear Hyperbolic Systems

Let us examine the characteristic speeds to see if they are genuinely nonlinear or
linearly degenerate. Note that both characteristic speeds are functions of φ alone.
Thus for any of the characteristic speeds,

∂λ

∂w
=

[
0 0 ∂λ

∂φ
0
]
.

Since this vector is orthogonal to the characteristic direction for ±λ2, this char-
acteristic speed is linearly degenerate. The other characteristic speed is genuinely
nonlinear, provided that

∂λ

∂φ
= τ ′′ 	= 0. �

Although the characteristic directions are always distinct, the characteristic
speeds are not. Consider a nonlinear tension τ with τ (1) = 0 and τ (φ) concave
for φ > 1. Then λ2ρ is either equal to the slope of the tension curve (if λ = λ1), or
the slope of the line from the origin to a point on the tension curve (if λ = λ2). It is
possible for the latter line to be tangent to the tension curve at some point; at this
point, the two positive characteristic speeds are equal.

According to Cristescu, the linearly degenerate characteristic speeds are related
to the propagation of transverse waves, or changes in the shape of the string without
changes in tension. The genuinely nonlinear characteristic speeds are associated
with longitudinal or tension waves, in which there is no change in the shape of the
string.

4.8.3 Jump Conditions

Lemma 4.8.2 In the vibrating string model (4.65), suppose that τ (φ) > 0 and
τ ′ > 0 for all φ > 1. Then there are three kinds of solutions to the Rankine-Hugoniot
jump conditions. One is a contact discontinuity, in which

τ (φR)

φR

= τ (φL)

φL

, σ = ±
√

τ (φR)

ρφR

, vR − vL = −{n(θR)φR − n(θL)φL}σ.

The second kind of solution has

θL = θR, σ = ±
√

1

ρ

τ (φR) − τ (φL)

φR − φL

, vR − vL = −n(θR)(φR − φL)σ.

The third kind of solution, called an anomalous discontinuity, satisfies

θR = θL ± π, σ = ±
√

1

ρ

τ (φR) + τ (φL)

φR + φL

, vR − vL = n(θR)(φR + φL)σ.
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Proof The Rankine–Hugoniot jump conditions require that a propagating discon-
tinuity satisfy [−nτ

−v

]
=

[
vρ

nφ

]
σ.

This implies that the jumps satisfy

[nτ ] = −[v]ρσ = [nφ]ρσ 2.

We can rewrite the outer equation in the forms

(τR − φRρσ 2) cos θR = (τL − φLρσ 2) cos θL

(τR − φRρσ 2) sin θR = (τL − φLρσ 2) sin θL .

Thus either τR − φRρσ 2 = 0 = τL − φLρσ 2 or tan θL = tan θR. The former of these
two cases corresponds to a contact discontinuity. In this case, we have

τ (φR)

φR

= τ (φL)

φL

, σ = ±
√

τ (φR)

ρφR

, vR − vL = −{n(θR)φR − n(θL)φL}σ.

In these equations, the jump in θ is arbitrary, and any jump in φ must be along the
line from (φ = 1, τ = 0) to points (φ, τ (φ)) on the tension curve. Since τ (1) = 0
and τ is increasing, these discontinuity speeds are real for φ ≥ 1. If we do not
have a contact discontinuity, then we have tan θL = tan θR. An elastic discontinuity
occurs if θR = θL and φR 	= φL . In this case, we have

σ = ±
√

1

ρ

τ (φR) − τ (φL)

φR − φL

vR − vL = −n(θR)(φR − φL)σ.

Since τ is increasing, these discontinuity speeds are real. Otherwise, if θR = θL ± π

then we have an anomalous discontinuity

σ = ±
√

1

ρ

τ (φR) + τ (φL)

φR + φL

vR − vL = n(θL)(φR + φL)σ.

Since τ and φ are nonnegative, these discontinuity speeds are real. �

The third kind of discontinuity is called “anomalous” because the left and right
values of θ correspond to the string bending back on itself.
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4.8.4 Lax Admissibility Conditions

In order for an elastic discontinuity to be a shock, we require it to satisfy the Lax
admissibility conditions. For the vibrating string, these conditions require that the
elastic characteristic speed on the left be greater than the shock speed, which must
in turn be greater than the characteristic speed on the right. For a shock with positive
speed, we require

τ ′(φL) >
τ (φR) − τ (φL)

φR − φL

> τ ′(φR)

which in turn implies that φL < φR if τ is concave (and the reverse inequality if τ

is convex). For an elastic shock with negative speed, we require

τ ′(φL) <
τ (φR) − τ (φL)

φR − φL

< τ ′(φR)

which in turn implies that φL > φR if τ is concave (and the reverse inequality if τ

is convex).
We do not consider the Lax admissibility conditions for a contact discontinuity.

Also, we ignore the Lax admissibility conditions for the anomalous discontinuity,
because we will not use it in our construction of the solution of the Riemann
problem.

4.8.5 Entropy Function

The sum of the kinetic and strain energy E ≡ 1
2ρv�v + ∫ φ

τ (η) dη is an entropy
function for the vibrating string, with energy flux � ≡ −τ (φ)v�n(θ ). To show that
this is so, we compute

∂ E

∂w
= [

ρv� τ 0
]

and

∂�

∂w
= [−τn� −τ ′v�n −τv�n′] .

Then

∂ E

∂w

(
∂u
∂w

)−1
∂F
∂w

= [
ρv� τ 0

]  0 −n τ ′
ρ

−n′ τ
ρ

−n� 0 0
− 1

φ
(n′)� 0 0


= [−τn� −τ ′v�n −τv�n′] = ∂�

∂w
,

which verifies the equation (4.29) for an entropy function and flux.
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4.8.6 Wave Families for Concave Tension

The case of concave tension is more interesting than convex tension. In this case,
there exists an equivelocity value of φ:

τ ′(φ∗) = τ (φ∗)

φ∗
.

Further, for any φ ∈ (1, φ∗) there exist a reciprocal φ ∈ (φ∗, ∞) so that

τ (φ)

φ
= τ (φ)

φ
;

in other words, both values of φ correspond to the same contact discontinuity speed.
Similarly, for any φ ∈ (φ∗, ∞) there exist a reciprocal φ ∈ (1, φ∗) so that the same
equation holds. In order to guarantee that the Riemann problem has a solution we
assume that ∫ φ √

τ ′(η) dη → ∞ as φ → ∞. (4.66)

Given any left state (vL, φL, θL) and any intermediate state values φ0, θ0, we will
consider two cases. If φ∗ < φL , then the negative contact discontinuity speed is
less than the negative elastic speed at the left state. In this case, we have three
possibilities:

SC: Ifφ0 < φL , then we have a shock moving left faster than a contact discontinuity,
and the jump conditions imply that

v−(φ0, θ0) = vL − n(θL)

√
1

ρ
{τ (φL) − τ (φ0)}(φL − φ0)

+ {n(θ0) − n(θL)}
√

1

ρ
τ (φ0)φ0.

CS: Else if φL ≤ φ0 < φL , then we have a contact discontinuity moving left no
slower than a shock, and the jump conditions imply that

v−(φ0, θ0) = vL + {n(θ0) − n(θL)}
√

1

ρ
τ (φ0)φ0

− n(θ0)

√
1

ρ
{τ (φL) − τ (φ0)}(φL − φ0).
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CR: Else φL ≤ φ0, so we have a contact discontinuity moving left no slower than
a rarefaction, and

v−(φ0, θ0) = vL + {n(θ0) − n(θL)}
√

1

ρ
τ (φ0)φ0

+ n(θ0)
∫ φ0

φL

√
1

ρ
τ ′(η) dη.

On the other hand, if φ∗ ≥ φL > 1 then the negative contact discontinuity is no less
than the negative elastic speed at the left state. We again have three possibilities:

SC: If 1 < φ0 < φL , then we have a shock moving left faster than a contact dis-
continuity, and the jump conditions imply that

v−(φ0, θ0) = vL − n(θL)

√
1

ρ
{τ (φL) − τ (φ0)}(φL − φ0)

+ {n(θ0) − n(θL)}
√

1

ρ
τ (φ0)φ0.

RC: Else if φL ≤ φ0 < φ∗, then we have a rarefaction moving left no slower than
a contact discontinuity, and the jump conditions imply that

v−(φ0, θ0) = vL + n(θL)
∫ φ0

φL

√
1

ρ
τ ′(η) dη

+ {n(θ0) − n(θL)}
√

1

ρ
τ (φ0)φ0.

RCR: Else φ∗ ≤ φ, so we have a contact discontinuity moving left in the middle
of rarefaction, and

v−(φ0, θ0) = vL + n(θL)
∫ φ∗

φL

√
1

ρ
τ ′(η) dη + {n(θ0) − n(θL)}

√
1

ρ
τ (φ∗)φ∗

+ n(θ0)
∫ φ0

φ∗

√
1

ρ
τ ′(η) dη.

Similarly, given any right state (vR, φR, θR) and any intermediate state values
φ0, θ0, we will consider two cases. If φ∗ < φR, then the positive contact discontinuity
speed is greater than the positive elastic speed at the right state. In this case, we
have three possibilities:
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CS: If φ0 < φR, then we have a shock moving right faster than a contact disconti-
nuity, and the jump conditions imply that

v+(φ0, θ0) = vR + n(θR)

√
1

ρ
{τ (φR) − τ (φ0)}(φR − φ0)

+ {n(θR) − n(θ0)}
√

1

ρ
τ (φ0)φ0.

SC: Else if φR ≤ φ0 < φR, then we have a contact discontinuity moving right no
slower than a shock, and the jump conditions imply that

v+(φ0, θ0) = vR + {n(θR) − n(θ0)}
√

1

ρ
τ (φR)φR

+ n(θ0)

√
1

ρ
{τ (φR) − τ (φ0)}(φR − φ0).

RC: Else φR ≤ φ0, so we have a contact discontinuity moving left no slower than
a rarefaction, and

v+(φ0, θ0) = vR + {n(θR) − n(θ0)}
√

1

ρ
τ (φR)φR + n(θ0)

∫ φ0

φR

√
1

ρ
τ ′(η) dη.

On the other hand, if φ∗ ≥ φR > 1 then the positive contact discontinuity is no
greater than the positive elastic speed at the left state. We again have three possi-
bilities:

CS: If 1 < φ0 < φR, then we have a shock moving right faster than a contact
discontinuity, and the jump conditions imply that

v+(φ0, θ0) = vR + n(θR)

√
1

ρ
{τ (φR) − τ (φ0)}(φR − φ0)

+ {n(θR) − n(θ0)}
√

1

ρ
τ (φ0)φ0.

CR: Else if φR ≤ φ0 < φ∗, then we have a rarefaction moving right no slower than
a contact discontinuity, and

v+(φ0, θ0) = vR − n(θR)
∫ φ0

φR

√
1

ρ
τ ′(η) dη + {n(θR) − n(θ0)}

√
1

ρ
τ (φ0)φ0.



244 Nonlinear Hyperbolic Systems

RCR: Else φ∗ ≤ φ0, so we have a contact discontinuity moving right in the middle
of rarefaction, and

v+(φ0, θ0) = vR − n(θR)
∫ φ∗

φR

√
1

ρ
τ ′(η) dη + {n(θR) − n(θ0)}

√
1

ρ
τ (φ∗)φ∗

− n(θ0)
∫ φ0

φ∗

√
1

ρ
τ ′(η) dη.

These exhaust all possible cases for values of φ and θ .
It is important to note that these wave families produce continuous functions

v−(φ0, θ0) and v+(φ0, θ0). In fact, we found that

v−(φ0, θ0) = vL + n(θL)νL(φ0) + n(θ0)νL,0(φ0) (4.67a)

v+(φ0, θ0) = vR + n(θR)νR(φ0) + n(θ0)νR,0(φ0) (4.67b)

where

νL(φ0) =


−σ (φL − φ0) − λ2(φ0)φ0, SC

−λ2(φL)φL, CS or CR∫ φ0

φL
λ1(η) dη − λ2(φ0)φ0, RC∫ φ∗

φL
λ1(η) dη − λ2(φ∗)φ∗, RCR

νL,0(φ0) =


λ2(φ0)φ0, SC or RC

λ2(φL)φL − σ (φL − φ0), CS

λ2(φL)φL + ∫ φ0

φL
λ1(η) dη, CR

λ2(φ∗)φ∗ + ∫ φ0

φ∗
λ1(η) dη, RCR

νR(φ0) =


λ2(φR)φR, SC or RC

σ (φR − φ0) + λ2(φ0)φ0, CS

− ∫ φ0

φR
λ1(η) dη + λ2(φ0)φ0, CR

− ∫ φ∗
φR

λ1(η) dη + λ2(φ∗)φ∗, RCR

and

νR,0(φ0) =


−λ2(φR)φR + σ (φR − φ0), SC

−λ2(φ0)φ0, CS or CR

−λ2(φR)φR − ∫ φ0

φR
λ1(η) dη, RC

−λ2(φ∗)φ∗ − ∫ φ0

φ∗
λ1(η) dη, RCR.

Here λ1 and λ2 are the characteristic speeds we found above, and σ is the appropriate
elastic shock speed. These equations have been written in a form that is independent
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of the convexity or concavity of τ , provided that τ is either always convex or always
concave.

We can check the continuity of νL and νL,0 as follows. We have

νL(φ0) = −λ2(φL)φL

for either a shock-contact transitioning to a rarefaction-contact (at φ0 = φL), or
a shock-contact transitioning to a contact-shock (at φ0 = φL), or a contact-shock
transitioning to a contact-rarefaction (at φ0 = φL). We also have

νL(φ∗) = −λ2(φ∗)φ∗ +
∫ φ∗

φL

λ1(η) dη

for a rarefaction-contact transitioning to a rarefaction-contact-rarefaction (at φ0 =
φ∗). Note that

νL,0(φL) = λ2(φL)φL, SC to RC or SC to CR

νL,0(φ∗) = λ2(φ∗)φ∗, RC to RCR

νL,0(φL) = λ2(φL)φL, SC to CS.

Similarly, we check the continuity of νR and νR,0. We have

νR(φ0) = λ2(φR)φR

for either a contact-shock transitioning to a contact-rarefaction (at φ0 = φR), or
a contact-shock transitioning to a shock-contact (at φ0 = φR), or a shock-contact
transitioning to a rarefaction-contact (at φ0 = φR). We also have

νR(φ∗) = λ2(φ∗)φ∗ −
∫ φ∗

φR

λ1(η) dη

for a contact-rarefaction transitioning to a rarefaction-contact-rarefaction (at φ0 =
φ∗). Note that

νR,0(φR) = −λ2(φR)φR, CS to CR or CS to RC

νR,0(φ∗) = −λ2(φ∗)φ∗, CR to RCR

νR,0(φR) = −λ2(φR)φR, CS to SC

4.8.7 Wave Family Intersections

The discussion in this section has been adapted from work by Keyfitz and Kranzer
[81], who (unfortunately) considered convex tension with τ (0) = 0.

In order to solve the Riemann problem for the vibrating string, we need to show
that for any values of vL and vR we can find values for φ0 and θ0 so that the negative
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and positive wave families intersect:

v−(φ0, θ0) = v+(φ0, θ0).

Using equations (4.67) we can rewrite this intersection condition in the form

vR − vL + n(θR)νR(φ0) − n(θL)νL(φ0) = n(θ0){νL,0(φ0) − νR,0(φ0)}
We can eliminate n(θ0) by taking the Euclidean norms of both sides of this equation.
This leads to the nonlinear scalar equation

0 = g(φ0) ≡ −‖vR − vL + n(θR)νR(φ0) − n(θL)νL(φ0)‖2 + {νL,0(φ0) − νR,0(φ0)}2. (4.68)

From the discussion in section 4.8.6 we know that g(φ0) is continuous. In order to
show that this function always has a unique zero, we will show that g(1) < 0, that
g(φ0) > 0 for sufficiently large φ0, and that g′(φ0) > 0 whenever g(φ0) = 0.

For concave tension τ , it is easy to compute

νL,0(1) = 0 = νR,0(1)

It follows that

g(1) = −‖vR − vL + n(θR)νR(1) − n(θL)νL(1)‖2.

This is negative, except for one special circumstance in which it is zero. The special
circumstance occurs precisely when

vR = vL − n(θR)

√
1

ρ
τ (φR)(φR − 1) + n(θL)

√
1

ρ
τ (φL)(φL − 1).

For large values of φ0 we have

νL(φ0) = −λ2(max{φL, φ∗})

νL,0(φ0) = λ2(max{φL, φ∗}) +
∫ φ0

max{φL ,φ∗}
λ1(η) dη

νR(φ0) = λ2(max{φR, φ∗})

νR,0(φ0) = −λ2(max{φR, φ∗}) −
∫ φ0

max{φR ,φ∗}
λ1(η) dη.

Note that assumption (4.66) guarantees that both νL,0(φ0) and νR,0(φ0) become
arbitrarily large as φ0 approaches infinity. This shows that g(φ0) > 0 for sufficiently
large φ0. Since g(φ0) is continuous and g(1) ≤ 0, g(φ0) must have at least one zero
for φ0 ≥ 1.
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Next, we would like to show that g has a positive slope whenever it is zero. To
show this, we will first prove that

νL,0(φ0) ≥ 0 (4.69a)

νR,0(φ0) ≤ 0 (4.69b)

0 ≥ ν ′
L(φ0) ≥ −ν ′

L,0(φ) (4.69c)

0 ≤ ν ′
R(φ0) ≤ −ν ′

R,0(φ) (4.69d)

for all φ0 ≥ 1. This is simply a matter of checking the cases. First, we examine the
cases to prove inequality (4.69a):

0 ≤ νL,0(φ0) =


λ2(φ0)φ0, SC or RC
(λ2(φL) − σ )φL + σφ0, CS
λ2(φL)φL + ∫ φ0

φL
λ1(η) dη, CR

λ2(φ∗)φ∗ + ∫ φ0

φ∗
λ1(η) dη, RCR.

Next, we examine the cases to prove inequality (4.69b):

0 ≥ νR,0(φ0) =


−(λ2(φR) − σ )φR − σφ0, SC
−λ2(φ0)φ0, SC or CS or CR
−λ2(φR)φR − ∫ φ0

φR
λ1(η) dη, RC

−λ2(φ∗)φ∗ − ∫ φ0

φ∗
λ1(η) dη, RCR.

In order to prove inequalities (4.69c) we will need to provide more detail.

SC: First, consider the case of a shock moving left faster than a contact disconti-
nuity. In this case λ1(φ0) > σ > λ1(φL) and σ ≥ λ2(φ0). Thus

ν ′
L(φ0) = −{σ − λ2(φ0)}{λ2

1(φ0) − σλ2(φ0)}
2σλ2(φ0)

< 0

ν ′
L,0(φ0) = λ2

1(φ0) + λ2
2(φ0)

2λ2(φ0)
> 0

ν ′
L(φ0) + ν ′

L,0(φ0) = σ 2 + λ2
1(φ0)

2σ
> 0 > 0.

CS: Next, consider the case of a contact discontinuity moving left faster than a
shock. In this case

ν ′
L(φ0) = 0

ν ′
L,0(φ0) = λ2

1(φ0) + σ 2

2σ
> 0.
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RC: Next, consider the case of a rarefaction moving left faster than a contact
discontinuity. In this case,

ν ′
L(φ0) = −{λ1(φ0) − λ2(φ0)}2

2λ2(φ0)
< 0

ν ′
L,0(φ0) = λ2

1(φ0) + λ2
2(φ0)

2λ2(φ0)
> 0

ν ′
L(φ0) + ν ′

L,0(φ0) = λ1(φ0) > 0 > 0.

CR or RCR: Finally, consider the case of a contact discontinuity moving left either
faster than a rarefaction or in the middle of a rarefaction. In this case,

ν ′
L(φ0) = 0

ν ′
L,0(φ0) = λ1(φ0) > 0.

Similarly, in order to prove inequalities (4.69d) we will examine the cases.

CS: First, consider the case of a shock moving right faster than a contact discon-
tinuity. In this case λ1(φ0) > σ > λ1(φR) and σ ≥ λ2(φ0). Thus

ν ′
R(φ0) = {σ − λ2(φ0)}{λ2

1(φ0) − σλ2(φ0)}
2σλ2(φ0)

> 0

ν ′
R,0(φ0) = −λ2

1(φ0) + λ2
2(φ0)

2λ2(φ0)
< 0

ν ′
R(φ0) + ν ′

R,0(φ0) = −σ 2 + λ2
1(φ0)

2σ
< 0.

SC: Next, consider the case of a contact discontinuity moving right faster than a
shock. In this case

ν ′
R(φ0) = 0

ν ′
R,0(φ0) = −λ2

1(φ0) + σ 2

2σ
< 0.

CR: Next, consider the case of a rarefaction moving right faster than a contact
discontinuity. In this case,

ν ′
R(φ0) = {λ1(φ0) − λ2(φ0)}2

2λ2(φ0)
> 0

ν ′
R,0(φ0) = −λ2

1(φ0) + λ2
2(φ0)

2λ2(φ0)
< 0

ν ′
R(φ0) + ν ′

R,0(φ0) = −λ1(φ0) < 0.
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RC or RCR: Finally, consider the case of a contact discontinuity moving right
either faster than a rarefaction or in the middle of a rarefaction. In this
case,

ν ′
R(φ0) = 0

ν ′
R,0(φ0) = −λ1(φ0) < 0.

Now that we have verified the inequalities (4.69) we can examine the sign of g′

at a zero of g, defined in Equation (4.68). Note that

g′(φ0) = − 2 {vR − vL + n(θR)νR(φ0) − n(θL)νL(φ0)}� {n(θR)ν ′
R(φ0) − {n(θL)ν ′

L(φ0)}
+ 2

{
νL,0(φ0) − νR,0(φ0)

} {ν ′
L,0(φ0) − ν ′

R,0(φ0)}
≥ − 2‖vR − vL + n(θR)νR(φ0) − n(θL)νL(φ0)‖{ν ′

L,0(φ0) − ν ′
R,0(φ0)}

+ 2
{
νL,0(φ0) − νR,0(φ0)

} {ν ′
L,0(φ0) − ν ′

R,0(φ0)}.

The end of this inequality is zero at a zero of g(φ0). Equality occurs only if n(θR)
and n(θL) have the same direction as vR − vL . It follows that g has nonnegative
slope at all of its zeros. Either g has a unique zero, or an interval in φ where it is
zero.

4.8.8 Riemann Problem Solution

After finding φ0 so that the wave families for the vibrating string intersect, we define
Wavespeeds ξ1 ≤ ξ2 ≤ ξ3 ≤ ξ4 ≤ 0 as follows:

SC: If we have a shock moving left faster than a contact discontinuity, then we
define

ξ1 = ξ2 = −
√

1

ρ

τ (φL) − τ (φ0)

φL − φ0
, ξ3 = ξ4 = −

√
τ (φ0)

ρφ0

[v2,3, φ2,3, θ2,3] = [vL − n(θL)
√

{τ (φL) − τ (φ0)}(φL − φ0)/ρ, φ0, θL].

CS: If we have a contact discontinuity moving left faster than a shock, then we
define

ξ1 = ξ2 = −
√

τ (φL)

ρφL

, ξ3 = ξ4 = −
√

1

ρ

τ (φL) − τ (φ0)

φL − φ0

[v2,3, φ2,3, θ2,3] = [vL + {n(θ0) − n(θL)}
√

τ (φL)φL/ρ, φL, θ0].
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RC: If we have a rarefaction moving left faster than a contact discontinuity, then
we define

ξ1 = −
√

τ ′(φL)

ρ
, ξ2 = −

√
τ ′(φ0)

ρ
, ξ3 = ξ4 = −

√
τ (φ0)

ρφ0

[v2,3, φ2,3, θ2,3] = [vL + n(θL)
∫ φ0

φL

√
τ ′(η)/ρ dη, φ0, θL].

CR: If we have a contact discontinuity moving left faster than a rarefaction, then
we define

ξ1 = ξ2 = −
√

τ (φL)

ρφL

, ξ3 = −
√

τ ′(φL)

ρ
, ξ4 = −

√
τ ′(φ0)

ρ

[v2,3, φ2,3, θ2,3] =
[
vL + {n(θ0) − n(θL)}

√
τ (φL)φL/ρ, φL, θ0

]
.

RCR: If we have a contact discontinuity moving left in the middle of a rarefaction,
then we define

ξ1 = −
√

τ ′(φL)

ρ
, ξ2 = ξ3 = −

√
τ ′(φ∗)

ρ
, ξ4 = −

√
τ ′(φ0)

ρ

[v2,3, φ2,3, θ2,3] =
[

vL + n(θL)
∫ φ∗

φL

√
τ ′(η)/ρ dη, φ∗, θL

]
.

We also define Wavespeeds 0 ≤ ξ5 ≤ ξ6 ≤ ξ7 ≤ ξ8 as follows:

CS: If we have a shock moving right faster than a contact discontinuity, then we
define

ξ5 = ξ6 =
√

τ (φ0)

ρφ0
, ξ7 = ξ8 =

√
1

ρ

τ (φR) − τ (φ0)

φR − φ0

[v6,7, φ6,7, θ6,7] = [vR + n(θR)
√

{τ (φR) − τ (φ0)}(φR − φ0)/ρ, φ0, θR].
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SC: If we have a contact discontinuity moving right faster than a shock, then we
define

ξ5 = ξ6 =
√

1

ρ

τ (φR) − τ (φ0)

φR − φ0
, ξ7 = ξ8 =

√
τ (φR)

ρφR

[v6,7, φ6,7, θ6,7] = [vR − {n(θ0) − n(θR)}
√

τ (φR)φR/ρ, φR, θ0].

CR: If we have a rarefaction moving right faster than a contact discontinuity,
then

ξ5 = ξ6 =
√

τ (φ0)

ρφ0
, ξ7 =

√
τ ′(φR)

ρ
, ξ8 =

√
τ ′(φ0)

ρ

[v6,7, φ6,7, θ6,7] = [vR − n(θR)
∫ φ0

φR

√
τ ′(η)/ρ dη, φ0, θR].

RC: If we have a contact discontinuity moving right faster than a rarefaction,
then

ξ5 =
√

τ ′(φ0)

ρ
, ξ6 =

√
τ ′(φR)

ρ
, ξ7 = ξ8 =

√
τ (φR)

ρφR

[v6,7, φ6,7, θ6,7] = [vR − {n(θ0) − n(θR)}
√

τ (φR)φR/ρ, φR, θ0].

RCR: If we have a contact discontinuity moving right in the middle of a rarefaction,
then

ξ5 =
√

τ ′(φ0)

ρ
, ξ6 = ξ7 =

√
τ ′(φ∗)

ρ
, ξ8 =

√
τ ′(φR)

ρ

[v6,7, φ6,7, θ6,7] =
[

vR − n(θR)
∫ φ∗

φR

√
τ ′(η)/ρ dη, φ∗, θR

]
.
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Given a wave speed ξ , our state w(ξ ) in the solution of the Riemann problem for
the vibrating string is given by

v
φ

θ

 (ξ ) =



vL

φL

θL

 , ξ < ξ1vL + n(θL)
∫ (τ ′)−1(ρξ 2)
φL

{τ ′(η)/ρ}1/2 dη

(τ ′)−1(ρξ 2)
θL

 , ξ1 ≤ ξ ≤ ξ2v2,3

φ2,3

θ2,3

 , ξ2 < ξ < ξ3v−(φ0, θ0) − n(θ0)
∫ φ0

(τ ′)−1(ρξ 2){τ ′(η)/ρ}1/2 dη

(τ ′)−1(ρξ 2)
θ0

 , ξ3 ≤ ξ ≤ ξ4v−(φ0, θ0)
φ0

θ0

 , ξ4 < ξ < ξ5v+(φ0, θ0) + n(θ0)
∫ φ0

(τ ′)−1(ρξ 2){τ ′(η)/ρ}1/2 dη

(τ ′)−1(ρξ 2)
θ0

 , ξ5 ≤ ξ ≤ ξ6v6,7

φ6,7

θ6,7

 , ξ6 < ξ < ξ7vR − n(θR)
∫ (τ ′)−1(ρξ 2)
φR

{τ ′(η)/ρ}1/2 dη

(τ ′)−1(ρξ 2)
θR

 , ξ7 ≤ ξ ≤ ξ8vR

φR

θR

 , ξ8 < ξ

Programs to solve the Riemann problem for the vibrating string can be found in
Program 4.8-48: string.f. You can execute this Riemann problem solver by clicking on
the link Executable 4.8-20: guiString You can select input parameters for the Riemann
problem by clicking on the arrow next to “String Parameters.” When you have
selected all of your input parameters, click on “Start Run Now” in the window
labeled “guiString.” Move the windows so that you can see them completely, then
answer “OK” to the window that asks “Are you finished viewing the results?” Click

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/string.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiString


4.8 Case Study: Vibrating String 253

(a) Deformation gradient (polar coordinates) (b) Velocity

Fig. 4.12 Solution to vibrating string Riemann problem

(a) Deformation gradient (polar coordinates) (b) Velocity

Fig. 4.13 Solution to vibrating string riemann problem

in the windows as requested to selected the left and right state for the Riemann
problem. You may drag the mouse when selecting the right state to see how the
solution of the Riemann problem changes with the right state. Figures 4.12 and
4.13 show two solutions to the vibrating string Riemann problem. In these figures,
the equivelocity value of φ is drawn as a circle in the deformation gradient graph,
and the velocity at the left state is always zero.
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Exercises for 4.8

4.8.1 Show that θ and v ± n(θ )
∫ φ

√
τ ′(η)

ρ
dη are Riemann invariants for the vibrating string associated

with the characteristic speed λ = ±
√

τ ′(φ)
ρ

.

4.8.2 We would like to examine cases in which the function g(φ0), defined in equation (4.68), has zero
derivative at its zero. We expect that in such a case, we should have φ0 = 1. Thus, we want to
examine two cases. First,

[vR, φR, φR] = [vL − n(θL){
√

τ (φR)(φR − 1)/ρ + {
√

τ (φL)(φL − 1)/ρ, φR, θL]

and

[vR, φR, φR] = [vL + n(θL){
√

τ (φR)(φR − 1)/ρ − {
√

τ (φL)(φL − 1)/ρ, φR, θL ± π ].

Do these Riemann problems have unique solutions? If you use numerical experiments to form
your conclusion, then be careful with numerical oscillations that lead to values of φ < 1, and
therefore possibly negative tension.

4.8.3 Our construction of the solution of the Riemann problem omitted the anomalous shock

[vR, φR, φR] = [vL + n(θL){
√

τ (φR + τ (φL)(φR + φL)/ρ, φR, θL ± π ]

in the wave families. What waves does our Riemann problem solution produce in such a case?
4.8.4 Suppose that τ (φ) = log(φ) and ρ = 1. Choose the left and right state for a Riemann problem

so that the solution involves
� a shock moving left faster than a contact discontinuity, and a shock moving right faster than a

contact discontinuity;
� a contact discontinuity moving left in the middle of a rarefaction, and a contact discontinuity

moving right in the middle of a rarefaction
4.8.5 Formulate the Eulerian equations of motion for the vibrating string.
4.8.6 Suppose that the tension has the form τ (φ) = τ0 + τ1φ + τ2φ

2, where τ0, τ1 and τ2 > 0. Find
the value of φ at which the two positive characteristic speeds are equal.

4.8.7 Program the Lax–Friedrichs scheme for the vibrating string and test it for problems involving
shocks, rarefactions and contact discontinuities. How can you tell which waves are shocks, which
are contact discontinuities, and which are rarefactions?

4.8.8 Repeat the previous exercise for the Rusanov scheme.
4.8.9 We would like to develop a technique to approximate the state that moves at zero speed in

the solution of a Riemann problem for the vibrating string. For weak waves (in which the
characteristic directions do not change much) we can approximate

(v1)R − (v1)L

(v2)R − (v2)L

φR − φL

θR − θL

 =
[−X� X�

I I

] [
cL

cR

]
.
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Then the state that moves with zero speed can be approximated either by
(v1)L

(v2)L

φL

θL

 +
[−X�

I

]
cL

or 
(v1)R

(v2)R

φR

θR

 −
[

X�

I

]
cR.

Show that both of these approximations give the same value. Write a program to implement this
weak wave approximation, by evaluating the characteristic directions at the average of the left
and right states.

4.8.10 Program the Godunov scheme for the vibrating string, using the weak wave approximation from
the previous problem.

4.9 Case Study: Plasticity

In this section we will consider another model for solid mechanics. This model will
incorporate an important physical effect, known as plasticity. Solid materials that
undergo finite deformation often suffer a realignment of the particles that make
up the solid. If an applied force is sufficient, the material undergoes a permanent
change in shape called a plastic deformation; if the applied force is removed, the
material does not return to its original shape. Materials such as putty and clay
can develop plastic deformation due to very small forces; materials such as steel
require much larger applied forces to develop plastic deformation. The analysis of
this model is interesting, because it necessarily involves more flux variables than
conservation laws, in order to model hysteresis.

4.9.1 Lagrangian Equations of Motion

Following [4], we will consider one-dimension of motion in the Lagrangian frame.
We will write conservation of momentum in the form

∂v

∂t
− ∂s

∂a
= 0,

where s is the first Piola–Kirchhoff stress divided by the initial density. If the
deformation gradient J has first entry J11 = 1 + ε, then equality of mixed partial
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derivatives for the particle position x can be written in the form

∂ε

∂t
− ∂v

∂a
= 0.

Since the deformation gradient must have positive determinant (the material can
never be turned inside-out), we require 1 + ε > 0. For simplicity, we will refer to
ε as the strain.

4.9.2 Constitutive Laws

For any physically realistic strain ε, there are upper and lower bounds on the stress
s, given by functions γ (ε) and τ (ε). These are called the plastic compression and
tension curves, respectively. Once the stress reaches one of these bounds, the plastic
strain π changes. Thus, between the bounds the stress is given by an elastic curve
s = e(ε, π ).

In order to construct a physically realistic model, an infinite force must be
required to totally compress the material:

ε ↓ −1 =⇒ γ (ε) ↓ −∞. (4.70)

Further, we assume that plastic compression occurs only for negative stress:

for all ε > −1, γ (ε) < 0,

and that plastic tension occurs only for positive stress:

for all ε > −1, τ (ε) > 0.

We assume that there is some lower limit on the plastic strain πmin > −1 corre-
sponding to total compression:

e(ε, π ) ↓ −∞ =⇒ ε ↓ −1 and π ↓ πmin.

We also assume that there are unique values εγ (π ) < ετ (π ) of the strain such that
the elastic and plastic curves intersect:

for all π > πmin γ (εγ (π )) = e(εγ (π ), π ),

for all π > πmin τ (ετ (π )) = e(ετ (π ), π ).

We assume that for a given value of the plastic strain, the elastic stress lies between
the values of the compression and tension yield stresses:

for all εγ (π ) < ε < ετ (π ) γ (εγ (π )) < e(ε, π ) < τ (ετ (π )).
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So that the characteristic speeds will be real, we assume that

for all π > πmin
dγ

dε
,

dτ

dε
and

∂e

∂ε
> 0, for all ε > −1.

So that the characteristic speeds will be genuinely nonlinear, we will assume that

for all ε > −1 for all π > πmin
d2γ

dε2
,

d2τ

dε2
and

∂2e

∂ε2
> 0. (4.71)

We also assume that the slopes of the plastic loading curves are less than the slopes
of the elastic loading curves at the corresponding yield points:

for all π > πmin
dγ

dε
(εγ (π )) <

∂e

∂ε
(εγ (π ), π ),

for all π > πmin
dτ

dε
(ετ (π )) <

∂e

∂ε
(ετ (π ), π ).

We assume that the elastic curves do not intersect for distinct values of π :

for all π > πmin
∂e

∂π
(ε, π ) < 0 for all εγ (π ) < ε < ετ (π ).

Thus elastic curves move to the right (i.e., toward increasing value of strain) as π

increases. For example, we can choose

γ (ε) = −0.1 − (1 + ε)−2,

τ (ε) = 1.1 − (2 + ε)−0.5,

e(ε, π ) = −0.49(1 + ε + πmin − π )−1 + (1 + ε + πmin − π )

πmin = −0.3.

During elastic response, π is fixed and s = e(ε, π ). During plastic compression,
s = γ (ε) and the plastic strain π varies so that γ (ε) = e(ε, π ). Similarly, during
plastic tension s = τ (ε) = e(ε, π ). The hysteresis rule says that plastic compres-
sion occurs if and only if the material is at yield and the time derivative of the strain
is negative:

during plastic compression ε = εγ (π ) and
∂ε

∂t

∣∣∣∣
a

< 0.

Similarly,

during plastic tension ε = ετ (π ) and
∂ε

∂t

∣∣∣∣
a

> 0.

Otherwise the material is elastic.
Finally, we assume that tensile failure is impossible, by requiring∫ ∞

0

√
dτ

dε
dε < ∞. (4.72)
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This condition will guarantee that wave families in the solution of the Riemann
problem will intersect.

4.9.3 Centered Rarefactions

During plastic tension or compression, the stress s is a function of the strain ε

only, and the plastic strain π does not affect the equations of motion. (This state-
ment is particular to our assumption that the motion is one-dimensional; in models
allowing for plastic deformation in multiple dimensions, the hysteresis parameters
usually affect the stress during plastic response.) On the other hand, during elastic
response the plastic strain π is constant. Thus in either case, it is easy to see that
the characteristic speeds are

λ = ±
√

∂s

∂ε
.

Since the stress is always an increasing function of strain, the model is hyperbolic.
Centered rarefaction curves involve smooth motion in which the velocity and

stress are function of a/t only. For centered rarefactions, we have the system of
ordinary differential equations

0 = ∂v

∂t
− ∂s

∂a
= −

{
v′ a

t
+ ∂s

∂ε
ε′

}
1

t
,

0 = ∂ε

∂t
− ∂v

∂a
= −

{
ε′ a

t
+ v′

} 1

t
.

We can use the latter equation to eliminate v′ in the former equation, to get

0 =
{

∂s

∂ε
−

(a

t

)2
}

ε′.

This result determines the characteristic speeds, and shows that the centered
rarefaction curves satisfy

v′ = ±
√

∂s

∂ε
ε′.

During an admissible rarefaction, the characteristic speeds must increase from
left to right. Thus inequality (4.71) implies that an elastic rarefaction moving to the
left in physical space from a left state (vL, εL, πL) to a right state (vR, εR, πR) must
satisfy

εγ (πL) < εL < εR ≤ ετ (πL).
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Similarly, an elastic rarefaction moving to the right satisfies

εγ (πL) ≤ εR < εL < ετ (πL).

The determination of admissible centered rarefactions and shocks during plastic
response is complicated by hysteresis. First, we will consider plastic compression;
in other words, we assume that εL = εγ (πL). Recall that the stress is given by
s = γ (ε). Also recall that during plastic response the time derivative of the dis-
placement gradient must be negative; otherwise, the material relaxes elastically.
Because εL < εR corresponds to unloading during rarefactions moving to the left,
and εL > εR corresponds to unloading during rarefactions moving to the right, cen-
tered rarefactions are impossible during plastic compression. We are left only with
shocks during plastic compression.

During plastic tension, shocks are unphysical and only rarefactions are possible;
tension rarefactions with negative wave speed satisfy

εL = ετ (πL) < εR,

and tension rarefactions with positive wave speed satisfy

−1 < εR < εL = ετ (πL).

4.9.4 Hugoniot Loci

The Rankine–Hugoniot conditions show that the left and right states at traveling
discontinuities are related by

−
[

sR − sL

vR − vL

]
=

[
vR − vL

εR − εL

]
σ,

where σ is the speed of the discontinuity. It is straightforward to solve these equa-
tions to get

σ = ±
√

sR − sL

εR − εL

.

It is fairly easy to see that our assumptions on the constitutive model guarantee that
this discontinuity speed is real whenever the two states on either side of the dis-
continuity are both undergoing the same loading conditions (compression, tension
or elastic response). The Rankine–Hugoniot conditions now show that traveling
discontinuities satisfy

vR − vL = ±
√

sR − sL

εR − εL

(εR − εL).
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During an admissible elastic shock with nonzero speed σ , we must have
[40, 107, 122, 174]

σ

[
sR − sL

εR − εL

− s(ε) − s(εL)

ε − εL

]
≤ 0 for all ε between εL and εR. (4.73)

It is straightforward to see that the admissible elastic shocks moving to the left
satisfy

εγ (πL) ≤ εR < εL < ετ (πL).

Similarly, admissible elastic shocks moving to the right satisfy

εγ (πL) < εL < εR ≤ ετ (πL).

During plastic compression, shocks with negative speed satisfy

εs(εL, πL) < εR < εL = εγ (πL),

and shocks with positive speed satisfy

εL = εγ (πL) < εR.

Here, the transition point εs(εL, πL) is defined for ετ (πL) > εL > εγ (πL) by

εs(εL, πL) ≡ sup

{
−1 < ε < εγ (πL) :

e(εL, πL) − γ (εγ (πL))

εL − εγ (πL)
≤ e(εL, πL) − γ (ε)

εL − ε

}
. (4.74)

Note that condition (4.70) implies that εs > −1. Also note that εs is a nondecreasing
function of ε for fixed π ; this can be seen by differentiating (4.74) and applying
(4.71) and the mean value theorem.

It is possible to have a shock between a state undergoing elastic response and a
state undergoing compression. If the shock speed is negative, we have

vR = vL −
√

{γ (εR) − e(εL, πL)}(εR − εL).

Admissibility for this shock requires that

−1 < εR < εs(εL, πL).

Similarly, an elastic–plastic shock with positive speed satisfies

vL = vR +
√

{γ (εL) − e(εR, πR)}(εL − εR)

and

−1 < εL < εs(εR, πR).
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4.9.5 Entropy Function

The sum of the kinetic and strain energy E ≡ 1
2v

2 + ∫ ε s(θ ) dθ is an entropy func-
tion for the plasticity model, with energy flux � ≡ −s(ε)v. To show that this is so,
we will verify Equation (4.29). We compute

∂ E

∂w
= [

v s
]

and

∂�

∂w
= [−s −v ∂s

∂ε

]
.

Then

∂ E

∂w

(
∂u
∂w

)−1
∂F
∂w

= [
v s

] [
0 ∂s

∂ε

−1 0

]
= [−s −v ∂s

∂ε

] = ∂�

∂w
.

It is easy to see that the entropy function is a convex function of the flux
variables w.

4.9.6 Riemann Problem

In all cases for waves with negative speed, given a left state the admissible right
states involve stress increasing monotonically with strain, and velocity increasing
monotonically with strain. Similarly, given a right state, admissible waves with
positive speed have stress increasing with strain and velocity decreasing with strain.
Given a left state (vL, sL) we construct the negative wave family by using rarefaction
curves in the direction of increasing stress, and shock curves in the direction of
decreasing stress. Given a right state (vR, sR) we construct the positive wave family
by using rarefaction curves in the direction of increasing stress and shock curves
in the direction of decreasing stress. The negative wave family involves all stresses
between negative infinity and the maximum tension stress, and all real velocities
because of inequality (4.72). Similarly, the positive wave family involves the same
stresses and velocities, but with negative slope dv

ds . As a result, the two wave families
must intersect. Let (v0, s0) be the velocity and stress at the intersection of the two
wave families.

For waves with negative speed, we will identify four Wavespeeds, depending on a
variety of cases. If the stress s0 at the intersection of the wave families satisfies s0 ≥
e(εL, πL), we define ε0,L and π0,L as follows. If e(εL, πL) ≤ s0 < τ (ετ (πL)) then we
take π0,L = πL and solve e(ε0,L, πL) = s0 for ε0,L . On the other hand, if τ (ετ (πL)) <

s0 then we solve τ (ε0,L) = s0 for ε0,L and then we solve e(ε0,L, π0,L) = s0
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for π0,L . We also define wavespeeds

ξ1 = −
√

∂e

∂ε
(εL, πL)

ξ2 = −
√

∂e

∂ε
(min{ε0,L, ετ (πL)}, πL)

ξ3 =
{

−
√

dτ
dε

(ετ (πL)), ε0,L > ετ (πL)

ξ2, ε0,L ≤ ετ (πL)

ξ4 =
{

−
√

dτ
dε

(ε0,L), ε0,L > ετ (πL)

ξ2, ε0,L ≤ ετ (πL)

and intermediate state

v23

ε23

π23

 =



vL + ∫ ετ (πL )
εL

√
∂e
∂ε

(ε, πL) dε

ετ (πL)
πL

 , τ (ετ (πL)) < s0

vL + ∫ ε0,L

εL

√
∂e
∂ε

(ε, πL) dε

ε0,L

πL

 , e(εL, πL) ≤ s0 < τ (ετ (πL)).

For s0 < e(εL, πL) we define ε0,L and π0,L as follows. If γ (εγ (πL)) < s0 < e(εL, πL)
then we take π0,L = πL and we solve e(ε0,L, πL) = s0 for ε0,L . On the other hand, if
s0 < γ (εγ (πL)) then we solve γ (ε0,L) = s0 for ε0,L , then we solve e(ε0,L, π0,L) = s0

for π0,L . If εs(εL, πL) ≤ ε0,L we define wavespeeds

ξ1 = −
√

e(εL, πL) − e(max{ε0,L, εγ (πL)}, πL)

εL − max{ε0,L, eγ (πL)} , ξ2 = ξ1

ξ3 =
{

−
√

γ (εγ (πL ))−γ (ε0,L )
εγ (πL )−ε0,L

, ε0,L < εγ (πL)

ξ2, εγ (πL) ≤ ε0,L

, ξ4 = ξ3

and intermediate state

v23

ε23

π23

=



vL −
√{e(εL, πL)−e(εγ (πL), πL)}(εL − εγ (πL))

εγ (πL)
πL

 , εγ (πL)) > ε0,L ≥ εs(εL, πL)vL −
√{e(εL, πL)−e(ε0,L, πL)}(εL − ε0,L)

ε0,L

πL

 , εγ (πL)) ≤ ε0,L
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On the other hand, if ε0,L < εs(εL, πL) we define wavespeeds

ξ1 = ξ2 = ξ3 = ξ4 = −
√

e(εL, πL) − γ (ε0,L)

εL − ε0,L

and intermediate state

v23

ε23

π23

 =
vL − √{e(εL, πL) − γ (ε0,L)}(εL − ε0,L)

ε0,L

ε−1
γ (γ −1(s0))

 .

Similarly, for waves with positive speed we will identify four additional
wavespeeds. For s0 ≥ e(εR, πR) we define ε0,R and π0,R as follows. If e(εR, πR) ≤
s0 < τ (ετ (πR)) then we take π0,R = πR and solve e(ε0,R, πR) = s0 for ε0,R. On the
other hand, if τ (ετ (πR)) < s0 then we solve τ (ε0,R) = s0 for ε0,R and then we solve
e(ε0,R, π0,R) = s0 for π0,R. We also define wavespeeds

ξ8 =
√

∂e

∂ε
(εR, πR)

ξ7 =
√

∂e

∂ε
(min{ε0,R, ετ (πR)}, πR)

ξ6 =
{√

dτ
dε

(ετ (πR)), ε0,R > ετ (πR)

ξ7, ε0,R ≤ ετ (πR)

ξ5 =
{√

dτ
dε

(max{ε0,R, ετ (πR)}), ε0,R > ετ (πR)

ξ7, ε0,R ≤ ετ (πR)

and intermediate state

v67

ε67

π67

 =



vR − ∫ ετ (πR )
εR

√
∂e
∂ε

(ε, πR) dε

ετ (πR)
πR

 , τ (ετ (πR)) < s0

vR − ∫ ε0,R

εR

√
∂e
∂ε

(ε, πR) dε

ε0,R

πR

 , e(εR, πR) ≤ s0 < τ (ετ (πR)).
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For s0 < e(εR, πR) we define ε0,R and π0,R as follows. If γ (εγ (πR)) < s0 < e(εR, πR)
then we take π0,R = πR and we solve e(ε0,R, πR) = s0 for ε0,R. On the other hand, if
s0 < γ (εγ (πR)) then we solve γ (ε0,R) = s0 for ε0,R, then we solve e(ε0,R, π0,R) = s0

for π0,R. If εs(εR, πR) ≤ ε0,R we define wavespeeds

ξ8 =
√

e(εR, πR) − e(max{ε0,R, εγ (πR)}, πR)

εR − max{ε0,R, εγ (πR)} , ξ7 = ξ8

ξ6 =
{√

γ (εγ (πR ))−γ (ε0,R )
εγ (πR )−ε0,R

, ε0,R < εγ (πR)

ξ7, εγ (πR) ≤ ε0,R

, ξ5 = ξ6

and intermediate state

v67

ε67

π67

 =



vR + √{e(εR, πR) − e(εγ (πR), πR)}(εR − εγ (πR))

εγ (πR)

πR

 , εγ (πR)) > ε0,R ≥ εs(εR, πR)

vR + √{e(εR, πR) − e(ε0,R, πR)}(εR − ε0,R)

ε0,R

πR

 , εγ (πR)) ≤ ε0,R

On the other hand, if ε0,R < εs(εR, πR) we define wavespeeds

ξ8 = ξ7 = ξ6 = ξ5 =
√

e(εR, πR) − γ (ε0,R)

εR − ε0,R

and intermediate state

v67

ε67

π67

 =

vR − √{e(εR, πR) − γ (ε0,R)}(εR − ε0,R)

ε0,R

ε−1
γ (γ −1(s0))

.
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Given a wave speed ξ , the state in the solution of the Riemann problem that
moves with speed ξ is given by

v

ε

π

 (ξ ) =



vL

εL

πL

 , ξ ≤ ξ1vL + ∫ ε(ξ )
εL

√
∂e
∂ε

dε

ε(ξ )
πL

 , ξ1 < ξ < ξ2 with ∂e
∂ε

(ε(ξ ), πL) = ξ 2

v23

ε23

π23

 , ξ2 ≤ ξ ≤ ξ3vL + ∫ ετ (πL )
εL

√
∂e
∂ε

dε + ∫ ε(ξ )
ετ (πL )

√
dτ
dε

dε

ε(ξ )
ε−1
τ (ε(ξ ))

 , ξ3 < ξ < ξ4 with dτ
dε

(ε(ξ )) = ξ 2

 v0

ε0,L

π0,L

 , ξ4 < ξ < 0 v0

ε0,R

π0,R

 , 0 < ξ < ξ5vR − ∫ ετ (πR )
εR

√
∂e
∂ε

dε − ∫ ε(ξ )
ετ (πR )

√
dτ
dε

dε

ε(ξ )
ε−1
τ (ε(ξ ))

 , ξ5 < ξ < ξ6 with dτ
dε

(ε(ξ )) = ξ 2

v67

ε67

π67

 , ξ6 ≤ ξ ≤ ξ7vR − ∫ ε(ξ )
εR

√
∂e
∂ε

dε

ε(ξ )
πR

 , ξ7 < ξ < ξ8 with ∂e
∂ε

(ε(ξ ), πR) = ξ 2

vR

εR

πR

 , ξ8 ≤ ξ.

For more details concerning the solution of this Riemann problem, see [163].
Programs to solve the Riemann problem for the plasticity model can be found in

Program 4.9-49: plasticity.f. You can execute this Riemann problem solver by clicking

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/plasticity.f


266 Nonlinear Hyperbolic Systems

(a) Stress vs. strain (b) Velocity vs. stress

Fig. 4.14 Solution to plasticity Riemann problem

on the link Executable 4.9-21: guiPlasticity You can select input parameters for the
Riemann problem by pulling down on “View,” releasing on “Main,” and then click-
ing on the arrow next to “Plasticity Parameters.” When you have selected all of your
input parameters, click on “Start Run Now” in the window labeled “guiPlasticity.”
Move the windows so that you can see them completely, then answer “OK” to the
window that asks “Are you finished viewing the results?” Click in the windows as
requested to selected the left and right state for the Riemann problem. Note that the
states you select must lie between the tension and compression plastic yield curves
in brown. You may drag the mouse when selecting the right state to see how the
solution of the Riemann problem changes with the right state. An example of the
analytical solution to the plasticity Riemann problem is shown in Figure 4.14.

Exercises for 4.9

4.9.1 We would like to discover conditions under which centered rarefactions are admissible waves.
Suppose that the left-hand state is given, and lies inside the elastic regime:

εγ (πL) < εL < ετ (πL).

Recall that in this regime the stress is given by s = e(ε, πL), and π = πL is constant. Also recall
that during a rarefaction, the characteristic speeds must increase from left to right. Show that an
elastic rarefaction moving to the left satisfies

vR = vL +
∫ εR

εL

√
∂e

∂ε
dε for all εγ (πL) < εL < εR < ετ (πL),

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiPlasticity
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sR = e(εR, πR) and πR = πL . Similarly, show that an elastic rarefaction moving to the right satisfies

vR = vL +
∫ εL

εR

√
∂e

∂ε
dε for all εγ (πL) < εR < εL < ετ (πL),

sR = e(εR, πR) and πR = πL .
4.9.2 Show that elastic shocks moving to the left satisfy

vR = vL −
√

(εR − εL)(e(εR, πR) − e(εL, πL)) for all εγ (πL) < εR < εL < ετ (πL),

sR = e(εR, πR) and πR = πL . Similarly, show that elastic shocks moving to the right satisfy

vR = vL −
√

(εR − εL)(e(εR, πR) − e(εL, πL)) for all εγ (πL) < εL < εR < ετ (πL),

sR = e(εR, πR) and πR = πL .
4.9.3 Since the time derivative of the strain must be negative during plastic response, show that centered

rarefactions are impossible during plastic compression.
4.9.4 Show that during plastic tension, shocks are unphysical.
4.9.5 Since π is constant during elastic response, show that jumps in the plastic strain occur only when

sR = sL and vR = vL .
4.9.6 Program the Lax–Friedrichs scheme for this plasticity model. For suggestions of test problems,

see [163].
4.9.7 Program Rusanov’s scheme for this plasticity model. For suggestions of test problems, see [163].

4.10 Case Study: Polymer Model

We already saw several examples of nonlinear hyperbolic conservation laws for
flow in porous media in Sections 3.2.2 and 3.2.3. However, these problems could
be each formulated as a single conservation law. Beginning with this section, we
will present some examples of problems for flow in porous media which involve
systems of conservation laws.

A simple model of three-component two-phase flow can be found in [132]; the
complete solution of the Riemann problem for this model in the absence of gravity
can be found in [3, 81, 132]. In essentially all oil recovery processes, water is
injected to maintain reservoir pressure and to force the oil toward production wells.
Since water is less viscous than oil, the water front can develop viscous instabilities,
which lead to the formation of “fingers.” In some cases, these viscous instabilities
are reduced by adding a polymer to the water. The polymer increases the viscosity
of water, thereby reducing the viscous instability.

The Riemann problem for the polymer model is interesting because its solution
involves states where the characteristic speeds are equal and there is a single char-
acteristic direction. This could cause problems for numerical methods that depend
too strongly on characteristic decompositions.
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4.10.1 Constitutive Laws

As in the Buckley–Leverett model, we shall assume incompressibility, so that the
mass densities of oil and water are constant and the porosity of the rock is constant.
Thus the total mass per fluid volume in the oil phase is ρoso, and the total mass per
fluid volume in the water phase is ρwsw, where so and sw are the saturations of the
phases. Recall that saturation is phase volume per fluid volume, so so + sw = 1.

In this model, polymer does not mix in the oil, but does mix in the water phase. Let
us define the polymer concentration c to be the mass of polymer per water volume
divided by the total mass per water volume. Then the mass of polymer per fluid
volume is cρwsw. Then conservation of mass for the three chemical components
(oil, polymer and water) can be written

d

dt

∫
�

 soρoφ

cswρwφ

(1 − c)swρwφ

 dx +
∫

∂�

 n · voρo

n · vwcρw

n · vw(1 − c)ρw

 ds = 0.

Here vo and vw are the Darcy phase velocities. Since the phase densities are constant,
we can divide each equation in this system by the appropriate phase density to get

d

dt

∫
�

 soφ

cswφ

(1 − c)sw

 dx +
∫

∂�

 n · vo

n · vwc
n · vw(1 − c)

 ds = 0. (4.75)

If we sum these equations, we obtain∫
∂�

n · (vo + vw) ds = 0.

This equation says that the total fluid velocity vT ≡ vo + vw is divergence-free.
Darcy’s law can be written

vo = K[−∇ p + gρo]λo(1 − sw),

vw = K[−∇ p + gρw]λw(sw, c).

The matrix K represents the rock permeability, and the vector g represents the
acceleration due to gravity. Here we have written the phase mobilities as the ratios
of relative permeability divided by viscosity:

λo(1 − sw) = κro(1 − sw)

µo
, λw(sw, c) = κrw(sw)

µw(c)
.

In these expressions, we have ignored diffusive terms, such as capillary pressure,
convective mixing and molecular diffusion.
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If we sum these phase velocities and substitute into the sum of the conservation
laws, we can obtain an elliptic equation for pressure:

∇ · {K(λo + λw)∇ p} = ∇ · {Kg(ρoλo + ρwλw)}.

With appropriate boundary conditions, this can be solved for fixed values of the
water saturation so and the polymer concentration c to find the pressure p.

In one dimension, the divergence-free condition on the total fluid velocity implies
that vT is constant in space. This suggests that in general we might rewrite the
pressure gradient in terms of the total fluid velocity as follows:

−K∇ p = vT
1

λo + λw

− Kg
ρoλo + ρwλw

λo + λw

.

We can substitute this expression into the formulas for the phase velocities to get

vw = vT
λw

λo + λw

+ Kg(ρw − ρo)
λoλw

λo + λw

.

If we are given the total fluid velocity as a function of space, then one of the
conservation laws (4.75) is redundant. We will ignore conservation of oil mass. The
remaining system of conservation laws can be written

d

dt

∫
�

[
swφ

cswφ

]
dx +

∫
∂�

[
n · vw

n · vwc

]
ds = 0.

In one dimension, this implies the partial differential equations

∂

∂t

[
swφ

cswφ

]
+ ∂

∂x

[
vw(sw, c)
cvw(sw, c)

]
= 0. (4.76)

4.10.2 Characteristic Analysis

Lemma 4.10.1 Suppose that κrw(sw) ↓ 0 as sw ↓ 0, and κ ′
rw > 0 is finite. Then the

polymer model (4.76) is hyperbolic, with characteristic speeds ∂vw

∂sw

1
φ

and vw

sw

1
φ

. The
latter characteristic speed is linearly degenerate. The two characteristic speeds are
equal along a curve in state space, and there is only one characteristic direction at
such points.

Proof It is obvious that both the conserved quantities and the fluxes are functions
of the flux variables

w =
[

sw

c

]
.
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Thus our quasilinear form of the conservation law is[
1 0
c sw

]
∂

∂t

[
sw

c

]
+

[
φ∂vw/∂sw ∂vw/∂c

c∂vw/∂sw c∂vw/∂c + vw

]
∂

∂x

[
sw

c

]
= 0.

Thus the system of conservation laws is hyperbolic if and only if the matrix

A =
[

1 0
c sw

]−1
[

∂vw/∂sw ∂vw/∂c

c∂vw/∂sw c∂vw/∂c + vw

]
1

φ
=

[
∂vw/∂sw ∂vw/∂c

0 vw/sw

]
1

φ

has real eigenvalues. Since this matrix is upper triangular, hyperbolicity is obvious.
Note that the second characteristic speed is vw/(φsw). At first glance, it would

appear that this characteristic speed could be infinite. However, vw is proportional to
the mobility λw. Since λw(sw, c) = κrw(sw)/µw(c), where the relative permeability
κrw(sw) ↓ 0 as sw ↓ 0 and κ ′

rw > 0 is finite, this characteristic speed is finite.
The first characteristic speed, ∂vw

∂sw

1
φ

, is called the Buckley Leverett speed. This
is 1/φ times the slope of the Darcy velocity of water with respect to saturation.
The second characteristic speed, called the particle velocity, is 1/φ times the
Darcy velocity chord slope of the line through the origin. Since we typically have
κ ′

rw(0) = 0 and κ ′
ro(0) = 0, this Darcy velocity curve is shaped like an “S”. As a

result, for any polymer concentration c there is at least one water saturation sw

so that the two characteristic speeds are equal. This defines a curve, called the
equivelocity curve. Note that when the two characteristic speeds are equal, there
is only one characteristic direction. �

4.10.3 Jump Conditions

Lemma 4.10.2 Suppose that κrw(sw) ↓ 0 as sw ↓ 0, and κ ′
rw > 0 is finite. Then the

Rankine–Hugoniot jump conditions for the polymer model (4.76) have two kinds
of solutions. Either

cw,R = cw,L, sw,R 	= sw,L, σ = vw,R − vw,L

sw,R − sw,L

1

φ

or

cw,R 	= cw,L, sw,R = sw,L, σ = vw,L

sw,Lφ
= vw,R

sw,Rφ
.

Proof The Rankine–Hugoniot jump conditions for the polymer flooding model
imply that [

vw,R − vw,L

cw,Rvw,R − cw,Lvw,L

]
=

[
sw,R − sw,L

cw,Rsw,R − cw,Lsw,L

]
φσ.
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where σ is the discontinuity speed. The first of these jump conditions implies that

vw,R = vw,L + (sw,R − sw,L)φσ.

Substituting this result into the second jump condition leads to

0 = (cw,R − cw,L)(vw,L − sw,Lφσ )

This requires either that cw,R = cw,L or that vw,L = sw,Lφσ.

If cw,R = cw,L , then we must have sw,R 	= sw,L in order to have a jump. In this
case, the first Rankine–Hugoniot jump condition implies that

σ = vw,R − vw,L

sw,R − sw,L

1

φ
.

This is a Buckley–Leverett discontinuity, involving a jump in saturation but no
jump in polymer concentration.

If cw,R 	= cw,L , then we must have vw,L = sw,Lφσ , which in turn implies that
σ = vw,L/(sw,Lφ). The first jump condition now implies that

vw,R = vw,L + (sw,R − sw,L)φσ = sw,Lφσ + (sw,R − sw,L)φσ = sw,Rφσ.

It follows that σ = vw,R/sw,Rφ as well. �

This discontinuity speed is the particle velocity discussed in the characteristic anal-
ysis above, and is a contact discontinuity.

4.10.4 Riemann Problem Solution

The waves in this problem can be explained graphically in terms of the velocity
curves as follows. Buckley–Leverett waves correspond to changes in saturation
for a fixed polymer concentration; these follow the convex or concave hull of the
velocity function, depending on the ordering of the saturations in the Riemann
problem. The particle velocity waves correspond to changes in concentration and
saturation; these follow line through the origin, intersecting the velocity functions
for different polymer concentrations.

The solution of the Riemann problem is complicated to describe, due to the non-
convexity of the velocity function. An interactive program to solve the Riemann
problem for polymer flooding can be executed by clicking on the link Executable
4.10-22: guiPolymer You can select input parameters for the Riemann problem by
pulling down on “View,” releasing on “Main,” and then clicking on the arrow next
to “Polymer Parameters.” When you have selected all of your input parameters,
click on “Start Run Now” in the window labeled “1d/polymer riemann.” Move the
windows so that you can see them completely, then answer “OK” to the window
that asks “Are you finished viewing the results?” Click in the windows as requested

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiPolymer
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(a) Concentration vs. saturation (b) Velocity vs. saturation

Fig. 4.15 Solution to polymer Riemann problem

to selected the left and right state for the Riemann problem. You may drag the
mouse when selecting the right state to see how the solution changes. Students
interested in the details of the solution of the Riemann problem can examine the
code in Program 4.10-50: polymer.f. Figure 4.15 shows one solution of the polymer
flooding Riemann problem.

The Riemann problem for the polymer flooding model was solved by Isaacson,
but never published. A number of petroleum engineers [71, 132] published par-
ticular solutions to polymer flooding and set forth the general principles for the
solution of the Riemann problem. A paper by Keyfitz and Kranzer [81] on the Rie-
mann problem for the vibrating string included a discussion of a general system of
two conservation laws that encompasses the polymer model, under the assumption
that the velocity function is convex. See also [53, 80] for more general solutions
involving adsorption and hysteresis.

Exercises for 4.10

4.10.1 Show that the particle velocity is linearly degenerate. Also show that since the water veloc-
ity is “S”-shaped, the Buckley–Leverett speed is neither genuinely nonlinear nor linearly
degenerate.

4.10.2 Determine equations for a centered rarefaction in the Buckley–Leverett wave family. Under what
conditions is the centered rarefaction admissible?

4.10.3 Determine the equations for the Hugoniot loci in either wave family. Under what conditions are
they admissible?

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/polymer.f
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4.10.4 Show that the polymer concentration is the Riemann invariant for the Buckley–Leverett
characteristic speed, and the particle velocity is the Riemann invariant for the other wave
family.

4.10.5 Show that S(sw, c) = swβ(c) is an entropy function for polymer model, with entropy flux
vβ(c)/φ, where β is any function of polymer concentration. Also show that this entropy function
is neither convex nor concave for any choice of β.

4.10.6 Describe the solution of the Riemann problem in the absence of gravity. For help,
see [3].

4.10.7 Program Rusanov’s scheme for the polymer flooding problem.
4.10.8 Program the Lax–Friedrichs scheme for three-phase Buckley-Leverett flow.

4.11 Case Study: Three-Phase Buckley–Leverett Flow

4.11.1 Constitutive Models

Another interesting model for flow in porous media concerns the flow of three
immiscible and incompressible phases. We shall call these phases oil, gas and
water, and ignore the obvious fact that a gas phase should be considered to be
compressible, especially at reservoir pressures. However, nearly incompressible
three-phase flow does occur in other circumstances, such as chemically-enhanced
recovery. (For example, surfactant flooding leads to greatest mobilization of the oil
when the fluid forms water, oil and microemulsion phases; further, it is possible for
the injection of carbon dioxide to involve the formation of two separate hydrocarbon
phases, in addition to water and gas.)

Since the saturations are the volume fractions of the phases, they sum to one:
sw + so + sg = 1. Since the phases are incompressible, their mass densities (i.e.,
mass of phase per phase volume) are constant; it follows that the masses per fluid
volume of the phases are ρwsw, ρoso and ρgsg. We will assume that Darcy’s law is
valid for each phase:

vw = −K(∇ p − gρw)λw(sw),

vo = −K(∇ p − gρo)λo(so),

vg = −K(∇ p − gρg)λg(sg).

Here we have ignored diffusive forces, and recalled that

λw(sw) = κrw(sw)

µw

, λw(so) = κro(so)

µo
and λw(sg) = κrg(sg)

µg
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are the phase mobilities, namely the ratios of phase relative permeability to phase
viscosity. Then conservation of mass takes the form

d

dt

∫
�

ρwsw

ρoso

ρgsg

 φ dt +
∫

∂�

n · vwρw

n · voρo

n · vgρg

 ds = 0.

As before, we can divide each of the mass conservations by the corresponding
phase density to obtain

d

dt

∫
�

sw

so

sg

 φ dt +
∫

∂�

n · vw

n · vo

n · vg

 ds = 0.

If we sum these equations, we obtain∫
∂�

n · (vw + vo + vg) ds = 0.

This equation says that the sum of the phase velocities is divergence-free. If we
substitute Darcy’s law for the phase velocities, we obtain

∇ · [K(λw + λo + λg)∇ p] = ∇ · [Kg(λwρw + λoρo + λgρg)].

This gives us an elliptic equation for the fluid pressure, given the phase saturations
(and therefore the phase mobilities).

We can also write the phase velocities in terms of the total fluid velocity vT =
vw + vo + vg:vw

vo

vg

 =
λw

λo

λg

 vT

λw + λo + λg
+

λw{λo(ρw − ρo) + λg(ρw − ρg)}
λo{λw(ρo − ρw) + λg(ρo − ρg)}
λg{λw(ρg − ρw) + λo(ρg − ρo)}

 Kg
1

λw + λo + λg
.

If the total fluid velocity vT is given, then the phase velocities can be considered to be
functions of sw and so. In particular, in one dimension the divergence-free condition
on the total fluid velocity implies that it is constant in space, and this assumption is
reasonable. In particular, in one dimension, we can simplify the conservation laws
to

∂

∂t

[
swφ

soφ

]
+ ∂

∂x

[
vw

vo

]
= 0.
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4.11.2 Characteristic Analysis

It is easy to see that the system of conservation laws is hyperbolic if and only if the
matrix

A =
[
∂vw/sw ∂vw/so

∂vo/sw ∂vo/so

]
1

φ

has real eigenvalues. The quadratic formula for the eigenvalues of Aφ shows that
the eigenvalues will be real if and only if the discriminant is positive:

0 ≤
(

∂vw

∂sw

+ ∂vo

so

)2

−
(

∂vw

∂sw

∂vo

so
− ∂vw

so

∂vo

sw

)
=

(
∂vw

∂sw

− ∂vo

so

)2

+ ∂vw

so

∂vo

sw

.

To simplify the discussion, let us ignore gravity: g = 0. In this case,(
∂vw

∂sw

− ∂vo

so

)2

+ ∂vw

so

∂vo

sw

= m�Pm.

Here we have used the notation

m ≡
µw

µo

µg

 1

λw + λo + λg

1

µwµoµg
.

We have also used the matrix

P =
κww κwo κwg

κow κoo κog

κgw κgo κgg


where the entries of P are functions of the relative permeabilities:

κww = (κ ′
roκrg + κ ′

rgκro)2,

κoo = (κ ′
rwκrg + κ ′

rgκrw)2,

κgg = (κ ′
roκrw + κ ′

rwκro)2,

κwo = −(κ ′
rgκrw + κ ′

rwκrg)(κ ′
rgκro + κ ′

roκrg) + 2κrwκro(κ ′
rg)2,

κwg = (κ ′
rwκro − κ ′

roκrw)(κ ′
rgκro + κ ′

roκrg) − 2κrwκroκ
′
rgκ

′
ro,

κog = −(κ ′
roκrw − κ ′

rwκro)(κ ′
rgκrw + κ ′

rwκro) − 2κrwκroκ
′
rgκ

′
rw.

This matrix is singular, but it does have a factorization P = L DL� where

L =
 κww 0

−κgw κ ′
rg

−κgo −κ ′
ro
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and

D =
[

1 0
0 4κrwκroκrg(κ ′

rgκ
′
roκrw + κrgκ

′
roκ

′
rw + κ ′

rgκroκ
′
rw)

]
1

κww

.

It is reasonable to assume that κrw(sw), κro(so) and κrg(sg) are all increasing
functions, taking values between zero and one, and zero at zero. It follows that if
at least two of the saturations are positive, then K is nonnegative and the system of
conservation laws is hyperbolic. It is possible to show that the three-phase Buckley–
Leverett model is hyperbolic even when gravity is included, and that the relative
permeabilities described here are the only functional forms for which this is true
for all values of gravity and the viscosities [161].

4.11.3 Umbilic Point

Note that there is a special point, called the umbilic point where the eigenvalues of
A are equal. This occurs when m�Km = 0. If at least two saturations are nonzero,
this occurs where L�m = 0. An examination of the nullspace of L� shows that this
equation is equivalent to

µw

κ ′
w

= µo

κ ′
o

= µg

κ ′
g

= α.

In other words, the saturations are defined by

sw = (κ ′
rw)−1

(µw

α

)
, so = (κ ′

ro)−1
(µo

α

)
, sg = (κ ′

rg)−1
(µg

α

)
.

Since the saturations are constrained to sum to one, α is defined by

1 = (κ ′
rw)−1

(µw

α

)
+ (κ ′

ro)−1
(µo

α

)
+ (κ ′

rg)−1
(µg

α

)
.

In the special case where

κrw(sw) = s2
w, κro(so) = s2

o , κrg(sg) = s2
g,

the umbilic point occurs at

sw = µw

µw + µo + µg
, so = µo

µw + µo + µg
, sg = µg

µw + µo + µg
.

4.11.4 Elliptic Regions

Other choices of the relative permeability functions can lead to elliptic regions.
These are regions in the saturation triangle where the characteristic speeds are not
real. Problems of this sort lead to all kinds of interesting mathematical analysis, but
are of little practical interest. Rather, we should view the difficulty as a modeling
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problem: people who develop models need to take care that their models are well-
posed (in this case, for initial-value problems). For more information regarding
three-phase flow, see [5, 8, 15, 21, 36, 74, 147, 148, 161].

Exercise for 4.11

4.11.1 Program the Rusanov scheme for three-phase Buckley–Leverett flow. Experiment with numerical
solution of Riemann problems with states chosen near the umbilic point.

4.12 Case Study: Schaeffer–Schechter–Shearer System

An example of a system of conservation laws with no known physical application
has been suggested by Schaeffer, Schecter and Shearer [143]. This model is inter-
esting because the Hugoniot loci for the wave families terminate in the middle of
state space. As a result, it is possible for the two wave families associated with the
left and right states in a Riemann problem to have no intersection. Such a problem
could cause difficulties for a numerical computation, appearing to the unwise as a
problem with the numerical method rather than with the problem.

The system of conservation laws for this model is

∂

∂t

[
p
q

]
+ ∂

∂x

[
p2 − q

1
3 p3 − p

]
= 0. (4.77)

In this case, we take the flux variables to be w = u =
[

p
q

]
.

Lemma 4.12.1 The system of conservation laws in Equation (4.77) is hyperbolic,
with genuinely nonlinear characteristic speeds p ± 1.

Proof The matrix of flux derivatives

∂f
∂u

=
[

2p −1
p2 − 1 0

]
has eigenvalues and eigenvectors given by the expression

∂f
∂u

X =
[

2p −1
p2 − 1 0

] [
1 1

p + 1 p − 1

]
=

[
1 1

p + 1 p − 1

] [
p − 1 0

0 p + 1

]
= X�.

Thus the characteristic speeds are p ∓ 1. Both characteristic speeds are genuinely
nonlinear, since

∂λi

∂u
Xei = ∂(p ± 1)

∂u

[
1

p ± 1

]
= [

1 0
] [

1
p ± 1

]
= 1.

�
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Lemma 4.12.2 Given a left state (pL, qL), the points (p, q) on the slow Rankine–
Hugoniot locus for the Schaeffer–Schechter–Shearer system (4.77) satisfy

q(p) = qL + (p − pL)

[
p + pL

2
+

√
1 − (p − pL)2

12

]
where pL > p > pL −

√
12

with shock speed

σ−(p) = p + pL

2
−

√
1 − (p − pL)2

12
.

Similarly, given a right state (pR, qR), the points (p, q) on the fast Rankine–Hugoniot
locus satisfy

q(p) = qR + (p − pR)

[
p + pR

2
−

√
1 − (p − pR)2

12

]
where pR < p < pR +

√
12

with shock speed

σ+(p) = p + pR

2
+

√
1 − (p − pR)2

12
.

Proof The jump conditions for this hyperbolic system are

[p2 − q] = [p]σ,

[
1

3
p3 − p

]
= [q]σ.

There are five variables (namely pL , pR, qL , qR and σ ) and two equations. In order
to solve the jump conditions, we will assume that we know the three variables
pL , pR and qL . Then the jump conditions imply[

1

3
p3

]
− [p] = [p2]σ − [p]σ 2.

We can divide this equation by [p] to get

1

3
(p2

R + pL pR + p2
L ) − 1 = (pR + pL)σ − σ 2.

Now let z = (pR − pL)/pL . Then we can write pR = pL(1 + z), and

1

3
p2

L

{
(1 + z)2 + (1 + z) + 1

} − 1 = pL(2 + z)σ − σ 2.
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If we solve this equation for σ , we get

σ = 1

2

[
pL(2 + z) ±

√
p2

L (2 + z)2 − 4

(
1 + z + 1

3
z2

)
p2

L + 4

]

= 1

2
(pL + pR) ±

√
1 − (pR − pL)2

12
.

We can use the jump relation [q] = [p2] − [p]σ to obtain

qR = qL + (p2
R − p2

L ) − (pR − pL)

[
pR + pL

2
±

√
1 − (pR − pL)2

12

]

= qL + (pR − pL)

[
pR + pL

2
∓

√
1 − (pR − pL)2

12

]
.

Note that as the jump in p tends to zero, the discontinuity speed tends to one of the
characteristic speeds p ± 1. On the other hand, for a given value of pL there is a
real solution for σ only for |pR − pL| ≤ √

12.
The slow discontinuity is admissible when pL − 1 > σ > pR − 1. Using our

solution to the jump conditions in that example, we see that these inequalities
imply that

0 >
[p]

2
−

√
1 − [p]2

12
+ 1 > [p].

This can be rewritten

1 + [p]

2
<

√
1 − [p]2

12
< 1 − [p]

2
. (4.78)

The outermost inequalities imply that [p] < 0. Thus it is permissible to square both
sides of the right-hand inequality in (4.78) to obtain

1 − [p]2

12
< 1 − [p] + [p]2

4
;

this can be rewritten

0 < [p]

(
[p]

3
− 1

)
.

This inequality is satisfied whenever [p] < 0. If −2 < [p] < 0, then we can square
both sides of the left inequality in (4.78) to obtain

1 − [p] + [p]2

4
< 1 − [p]2

12
;
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this can be rewritten

0 < −[p]

(
[p]

3
+ 1

)
and places no further restrictions on [p]. If [p] < −2, then we notice that the
discontinuity speed is real provided that [p] > −√

12. Thus the slow discontinuity
in this example exists and is admissible if and only if 0 > [p] > −√

12. A similar
analysis for the fast discontinuity arrives at the same admissibility condition. �

Lemma 4.12.3 The Riemann invariants for the Schaeffer–Schechter–Shearer sys-
tem (4.77) are q − p − 1

2 p2 for the slow rarefaction, and q + p − 1
2 p2 for the fast

rarefaction.

Proof Centered rarefactions for this system satisfy

d

dy

[
p
q

]
=

[
1

p ± 1

]
.

It follows that along centered rarefactions dq
dp = p ± 1. If we integrate this ordinary

differential equation, we get

qR − qL = 1

2
(p2

R − p2
L ) ± (pR − pL).

The Riemann invariant for the slow rarefaction is q − p − 1
2 p2, and the Riemann

invariant for the fast rarefaction is q + p − 1
2 p2. �

Theorem 4.12.4 (Schaeffer–Schechter–Shearer Riemann Problem) Suppose that
we are given a left state (pL, qL) and a right state (pR, qR) in a Riemann prob-
lem for the Schaeffer–Schechter–Shearer model (4.77). If a solution exists, it
involves the intermediate state (p∗, q∗) at the intersection of the slow wave
curve

q−(p) ≡


qL + (p − pL)

[ p+pL

2 + 1.
]
, p > pL

qL + (p − pL)

[
p+pL

2 +
√

1 − (p−pL )2

12

]
, pL − √

12 ≤ p ≤ pL

and the fast wave curve

q+(p) ≡


qR − (pR − p)

[ p+pR

2 − 1.
]
, p < pR

qR − (pR − p)

[
p+pR

2 −
√

1 − (pR−p)2

12

]
, pR + √

12 ≥ p ≥ pR.

Thus there are four different structural forms for the solution of the Riemann prob-
lem: either a slow shock or a slow rarefaction followed by either a fast shock or a
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fast rarefaction. Let

ξL =
 pL − 1, p∗ > pL

p∗+pL

2 −
√

1 − (pL−p∗)2

12 , pL − √
12 ≤ p∗ ≤ pL

ξ− =
 p∗ − 1, p∗ > pL

p∗+pL

2 −
√

1 − (pL−p∗)2

12 , pL − √
12 ≤ p∗ ≤ pL

be the wave speeds at the beginning and the end of the slow wave, and

ξ+ =
 pR + 1, p∗ < PR

p∗+pR

2 +
√

1 − (pR−p∗)2

12 , pR + √
12 ≥ p∗ ≥ pR

ξR =
 pR + 1, p∗ < hR

p∗+pR

2 +
√

1 − (pR−p∗)2

12 , pR + √
12 ≥ p∗ ≥ pR

be the wave speeds at the beginning and the end of the fast wave. Then the state
that moves with speed ξ in the Riemann problem is

(pξ , qξ ) =



(pL, qL), ξ < ξL

(ξ + 1, qL + (pξ − pL)
[
1 + pξ +pL

2

]
, ξL < ξ < ξ−

(p∗, q∗), ξ− < ξ < ξ+

(ξ − 1, qR + (pR − pξ )
[
1 − pξ +pR

2

]
, ξ+ < ξ < ξR

(pR, qR), ξR < ξ.

Proof This follows from the results in Lemmas 4.12.1, 4.12.2 and 4.12.3. �

Programs to solve the Riemann problem for the Schaeffer–Schechter–Shearer
model can be found in Program 4.12-51: schaeffer shearer.f. You can execute this Rie-
mann problem solver by clicking on the link Executable 4.12-23: guiSchaefferShearer.
You can select input parameters for the Riemann problem by pulling down on
“View,” releasing on “Main,” and then clicking on arrows as needed. When you
have selected all of your input parameters, click on “Start Run Now” in the window
labeled “1d/schaeffer shearer riemann.” Click in the window to select the left and
right state for the Riemann problem. You may drag the mouse when selecting the
right state to see how the solution changes. Some experimentation easily shows that
there are choices of the left and right states for which the two wave families do not
intersect, and the Riemann problem has no solution. We would expect numerical
methods to have trouble if they were given such a Riemann problem to integrate.
For example, the Riemann problem in Figure 4.16 involves wave families that come
close to intersecting, but do not.

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/schaeffer_shearer.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiSchaefferShearer
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p vs. q

Fig. 4.16 Solution to Schaeffer–Schechter–Shearer Riemann problem

The next lemma discusses entropy functions for this model.

Lemma 4.12.5 For all constants α, β and γ , S(p, q) = α[q2 + p2(1 − p2/6)] +
βp + γ q is an entropy function for (4.77) with entropy flux �(p, q) =
αp[q(p2/3 − 1) + 2p2/3(1 − p2/5)] + β(p2 − q) + γ p(p2/3 − 1).

Proof We compute

∂S

∂u
= [

αp(1 − p2/3) + β, αq + γ
]

and

∂�

∂u
= [

αq(p2 − 1) + 2αp2(1 − p2/3) + 2βp + γ (p2 − 1), −αp − β
]

Since

∂f
∂u

=
[

2p −1
p2 − 1 0

]
we have that

∂S

∂u
∂f
∂u

= [
αp(1 − p2/3) + β, αq + γ

] [
2p −1

p2 − 1 0

]
= [

αq(p2 − 1) + 2αp2(1 − p2/3) + 2βp + γ (p2 − 1), −αp − β
] = ∂�

∂u
.

�
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This form was discovered by assuming that S(p, q) = P(p) + Q(q) and using the
equation (4.29) to determine the possible forms of P and Q.

Exercises for 4.12

4.12.1 Given an arbitrary state w =
[

p
q

]
, plot the fast and slow rarefaction curves going out of w in

the directions of increasing characteristic speed. Also plot the fast and slow Hugoniot loci going
out of w in the directions of decreasing characteristic speed.

4.12.2 Give an example of a choice of left and right states for which the Riemann problem does not
have a finite intersection of the wave families.

4.12.3 How would you expect the analytical solution to this example Riemann problem to behave?
Program Rusanov’s scheme for your Riemann problem and verify your expectations.

4.13 Approximate Riemann Solvers

The solution of Riemann problems seems to make the use of Godunov’s method
more daunting than other first-order schemes. The analytical solutions of the vibrat-
ing string and polymer flooding Riemann problems are pretty difficult to program,
while the analytical solution of the three-phase Buckley–Leverett model exists only
as a proprietary software program (not ours). Fortunately, there are several good
techniques for approximating the solution of Riemann problems.

4.13.1 Design of Approximate Riemann Solvers

The discussion in this section has been adapted from the review paper by Harten
et al. [68]. Recall that the solution to the Riemann problem R(uL, uR, x/t) is the
exact solution to the initial value problem in one spatial dimension

∂u
∂t

+ ∂f(u)

∂x
= 0, u(x, 0) =

{
uL, x < 0
uR, x > 0

.

Let λmax be the largest absolute value of any characteristic speed in any part
of the solution of this Riemann problem. If we integrate the conservation
law in space over the interval (−
xL/2, 
xR/2), and in time over the interval
(0, 
t) where λmax
t < min{
xL/2, 
xR/2}, then the divergence theorem implies
that ∫ 
xR/2

−
xL/2
R

(
uL, uR,

x


t

)
dx = uL


xL

2
+ uR


xR

2
− 
t[f(uR) − f(uL)].

We can also use the divergence theorem over quadrilaterals in space and time.
For any ξ ∈ (−
xL/2
t, 
xR/2
t) we integrate over the quadrilateral with corners
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(−
xL/2, 0), (0, 0), (ξ
t, 
t) and (−
xL/2, 
t) to get

0 =
∫ ξ
t

−
xL/2
R

(
uL, uR,

x


t

)
dx − uL


xL

2
− 
tf(uL)

+
∫ 
t

0

1√
1 + ξ 2

[−ξ 1
] [

u
f

] √
1 + ξ 2 dt.

Because of the self-similarity of the solution of Riemann problems, u and f(u) are
constant along the line x = ξ t , so the integral at the far right of this equation has
the value 
t limx↑ξ t (f − uξ ). We conclude that the flux along the curve x = ξ t is
given by

lim
x↑ξ t

(f − uξ ) = f(uL) + uL


xL

2
t
− 1


t

∫ ξ
t

−
xL/2
R

(
uL, uR,

x


t

)
dx (4.79a)

Alternatively, we can apply the divergence theorem over the quadrilateral with
corners (0, 0), (
xR/2, 0), (
xR/2, 
t) and (ξ
t, 
t) to get∫ 
xR/2

ξ
t
R

(
uL, uR,

x


t

)
dx − uR


xR

2

+
∫

0

t

1√
1 + ξ 2

[
ξ −1

] [
u
f

] √
1 + ξ 2 dt − 
tf(uR) = 0,

so we conclude that the flux along the curve x = ξ t is given by

lim
x↓ξ t

(f − uξ ) = f(uR) − uR


xR

2
t
+ 1


t

∫ 
xR/2

ξ
t
R

(
uL, uR,

x


t

)
dx . (4.79b)

Now suppose that we have an approximate Riemann solver of the form

R̃(uL, uR, ξ ) = uL +
∑

j :λ j <ξ

�u j

where
∑

j �u j = uR − uL . The constraint guarantees that the approximate Rie-
mann solver reproduces the left and right states for sufficiently large (either positive
or negative) ξ . Then we can integrate the approximate Riemann solver to get∫ ξ
t

−
xL/2
R̃

(
uL, uR,

x


t

)
dx = uL

(
ξ
t + 
xL

2

)
+ 
t

∑
j

max{ξ − λ j , 0}�u j

and∫ 
xR/2

ξ
t
R̃

(
uL, uR,

x


t

)
dx = uR

(
−ξ
t + 
xR

2

)
− 
t

∑
j

max{λ j − ξ, 0}�u j .

Combining these two equations leads to∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx = 1

2
(uL
xL + uR
xR) − 
t

∑
j

λ j�u j .
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We will typically approximate the flux along the curve x = ξ t by averaging the
expressions for the flux on either side of this curve:

[f(u) − uξ ](ξ t, t) ≈ f̃ξ (uL, uR)

= 1

2

{
f(uL) + uL


xL

2
t
− 1


t

∫ ξ
t

−
xL/2
R̃

(
uL, uR,

x


t

)
dx

+ f(uR) − uR


xR

2
t
+ 1


t

∫ 
xR/2

ξ
t
R̃

(
uL, uR,

x


t

)
dx

}
= 1

2

{
f(uL) + f(uR) − (uL + uR)ξ −

∑
j

|λ j − ξ |�u j

}
. (4.80)

Note that Godunov’s method does not use the full information from the Riemann
problem solution; it averages that function on the grid at the new time. Thus, it should
be possible to approximate the solution to the Riemann problem in order to reduce
the computational work. When we do so, we need to make sure that the resulting
scheme is consistent with the original conservation law, and satisfies the entropy
condition.

Lemma 4.13.1 Suppose that R̃(uL, uR, ξ ) is consistent, meaning that for all states
u and all speeds ξ we have R̃(u, u, ξ ) = u. Also assume that R̃(uL, uR, ξ ) is con-
servative, meaning that for all states uL and uR and for all timesteps satisfying

t < 1

2 max j {|λ j |},∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx = uL
xL + uR
xR

2
− 
t[f(uR) − f(uL)].

Then with xi = 1
2 (xi+1/2 + xi−1/2) and 
xi = xi+1/2 − xi−1/2, the scheme

ũn+1
i 
xi =

∫ xi+1/2

xi

R̃
(

ũn
i , ũn

i+1,
x − xi+1/2


tn+ 1
2

)
dx

+
∫ xi

xi−1/2

R̃
(

ũn
i−1, ũn

i ,
x − xi−1/2


tn+ 1
2

)
dx (4.81)

can be rewritten as a conservative difference where the numerical flux

f̃i+ 1
2
(ũn

i , ũn
i+1) = f(ũn

i ) − 
xi

2
tn+ 1
2

ũn
i − 1


tn+ 1
2

∫ 0

−
xi /2
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

)
dx

= f(ũn
i+1) − 
xi+1

2
tn+ 1
2

ũn
i+1 + 1


tn+ 1
2

∫ 
xi+1/2

0
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

)
dx

is consistent with the original flux, meaning that for all u, f̃i+ 1
2
(u, u) = f(u).
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Proof Using the fact that R̃ is conservative, we can rewrite

ũn+1
i = 1


xi

∫ xi+1/2

xi

R̃
(

ũn
i , ũn

i+1,
x − xi+1/2


tn+ 1
2

)
dx+ 1


xi

∫ xi

xi−1/2

R̃
(

ũn
i−1, ũn

i ,
x − xi−1/2


tn+ 1
2

)
dx

= ũi 
xi +ũn
i+1
xi+1

2
xi
− 
tn+ 1

2


xi
[f(ũn

i+1)−f(ũn
i )]− 1


xi

∫ 
xi+1/2

0
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

)
dx

+ ũi−1
xi−1 + ũn
i 
xi

2
xi
− 
tn+ 1

2


xi
[f(ũn

i )−f(ũn
i−1)]− 1


xi

∫ 0

−
xi−1/2
R̃

(
ũn

i−1, ũn
i ,

x


tn+ 1
2

)
dx

= ũn
i − 
tn+ 1

2


xi

{
f(ũn

i+1)− 
xi+1

2
tn+ 1
2

ũn
i+1+

1


tn+ 1
2

∫ 
xi+1/2

0
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

)
dx

}
+
tn+ 1

2


xi

{
f(ũn

i−1) − 
xi−1

2
tn+ 1
2

ũn
i−1 − 1


tn+ 1
2

∫ 0

−
xi−1/2
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

)
dx

}
≡ ũn

i − 
tn+ 1
2


xi
[f+

i+ 1
2
(ũn

i , ũn
i+1) − f−

i− 1
2
(ũn

i−1, ũn
i )]

Since R̃ is consistent,

f+
i+ 1

2
(u, u) = f(u) − 
xi+1

2
tn+ 1
2

u + 1


tn+ 1
2

∫ 
xi+1/2

0
R̃

(
u, u,

x


tn+ 1
2

)
dx = f(u)

f−
i− 1

2
(u, u) = f(u) + 
xi−1

2
tn+ 1
2

u − 1


tn+ 1
2

∫ 0

−
xi−1/2
R̃

(
u, u,

x


tn+ 1
2

)
dx = f(u).

Further, since R̃ is conservative

f+
i+ 1

2
(uL, uR) − f−

i+ 1
2
(uL, uR)

= f(uR) − 
xi+1

2
tn+ 1
2

uR + 1


tn+ 1
2

∫ 
xi+1/2

0
R̃

(
uL, uR,

x


tn+ 1
2

)
dx

− f(uL) − 
xi

2
tn+ 1
2

uL + 1


tn+ 1
2

∫ 0

−
xi /2
R̃

(
uL, uR,

x


tn+ 1
2

)
dx = 0.

As a result, we can drop the ± superscripts from these numerical fluxes. Thus the
scheme (4.81) has been rewritten as a conservative difference. �

Note that the notions of conservative difference scheme and conservative approxi-
mate Riemann solvers are distinct. It is possible to have a conservative difference
that leads to a convergent finite difference approximation, without using a conser-
vative approximate Riemann problem solver.

Let us return to the exact solution of the Riemann problem. If there is a convex
entropy function S(u) with entropy flux �(u), then in the limit of vanishing diffusion
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the inequality

∂S(u)

∂t
+ ∂�(u)

∂x
≤ 0

holds weakly. Integrating in space and time and applying the divergence theorem
leads to∫ 
xR/2

−
xL/2
S

(
R

(
uL, uR,

x


t

))
dx ≤ S(uL)


xL

2
+ S(uR)


xR

2
− 
t[�(uR) − �(uL)]. (4.82)

Compare this result to the next lemma.

Lemma 4.13.2 Suppose that R̃(uL, uR, ξ ) is consistent and conservative. With
; xi = 1

2 (xi+1/2 + xi−1/2) and 
xi = xi+1/2 − xi−1/2, consider the scheme

ũn+1
i = 1


xi

∫ xi+1/2

xi

R̃
(

ũn
i , ũn

i+1,
x − xi+1/2


tn+ 1
2

)
dx + 1


xi

∫ xi

xi−1/2

R̃
(

ũn
i−1, ũn

i ,
x − xi−1/2


tn+ 1
2

)
dx .

(4.83)
If R̃ satisfies the entropy inequality

for all uL, uR for all 
t <
min{
xL, 
xR}
2 max j {|λ j |}∫ 
xR/2

−
xL/2
S

(
R̃

(
uL, uR,

x


t

))
dx ≥ S(uL)
xL + S(uR)
xR

2
− 
t[�(uR) − �(uL)], (4.84)

then the scheme satisfies the entropy inequality

S(ũn+1
i ) ≥ S(ũn

i ) − 
tn+1/2


xi

[
�̃i+ 1

2
(ũn

i , ũn
i+1) − �̃i− 1

2
(ũn

i−1, ũn
i )

]
where the numerical entropy flux

�̃i+ 1
2
(un

i , un
i+1) = �(un

i ) + 
xi

2
tn+ 1
2

S(un
i ) + 1


tn+ 1
2

∫ 0

−
xi /2
S

(
R̃

(
un

i , un
i+1,

x


tn+ 1
2

))
dx

= �(un
i+1) − 
xi+1

2
tn+ 1
2

S(un
i+1) + 1


tn+ 1
2

∫ −
xi+1/2

0
S

(
R̃

(
un

i , un
i+1,

x


tn+ 1
2

))
dx

is consistent with the original entropy flux, meaning that for all u we have
�̃i+ 1

2
(u, u) = �(u).
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Proof Let us examine the entropy inequality for the scheme (4.83). Since R̃ satisfies
the entropy inequality (4.84),

∫ xi+1/2

xi

S

(
R̃

(
ũn

i , ũn
i+1,

x − xi+1/2


tn+ 1
2

))

xi +

∫ xi

xi−1/2

S

(
R̃

(
ũn

i−1, ũn
i ,

x − xi−1/2


tn+ 1
2

))

xi

≥ 
xi

2
S(ũn

i ) + 
xi+1

2
S(ũn

i+1) − 
tn+ 1
2

2
[�(ũn

i+1) − �(ũn
i )]

−
∫ 
xi+1/2

0
S

(
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

))
dx

+ 
xi−1

2
S(ũn

i−1) + 
xi

2
S(ũn

i ) − 
tn+ 1
2

2
[�(ũn

i ) − �(ũn
i−1)]

−
∫ 0

−
xi+1/2
S

(
R̃

(
ũn

i−1, ũn
i ,

x


tn+ 1
2

))
dx

= S(ũn
i )
xi − 
tn+ 1

2

{
�(ũn

i+1) − 
xi+1

2
tn+ 1
2

S(ũn
i+1)

+ 1


tn+ 1
2

∫ 
xi+1/2

0
S

(
R̃

(
ũn

i , ũn
i+1,

x


tn+ 1
2

))
dx

}
+ 
tn+ 1

2

{
�(ũn

i−1) + 
xi−1

2
tn+ 1
2

S(ũn
i−1)

+ 1


tn+ 1
2

∫ 0

−
xi−1/2
S

(
R̃

(
ũn

i−1, ũn
i ,

x


tn+ 1
2

))
dx

}
≡ S(ũn

i )
xi − 
tn+ 1
2

[
�+

i+ 1
2
(ũn

i , ũn
i+1) − �−

i− 1
2
(ũn

i−1, ũn
i )

]
.

Since R̃ is consistent,

�+
i+ 1

2
(u, u)=�(u)− 
xi+1

2
tn+ 1
2

S(u) + 1


tn+ 1
2

∫ 
xi+1/2

0
S

(
R̃

(
u, u,

x


tn+ 1
2

))
dx =�(u)

�−
i− 1

2
(u, u)=�(u)+ 
xi−1

2
tn+ 1
2

S(u) + 1


tn+ 1
2

∫ 0

−
xi+1/2
S

(
R̃

(
u, u,

x


tn+ 1
2

))
dx =�(u).

Thus both �+
i+ 1

2
and �−

i− 1
2

are consistent with the original entropy flux. We can

use either one, or any average of these, to define a conservative difference for the
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entropy. Suppose that we use �+
i+ 1

2
. Then

∑
i

S(ũn+1
i ) ≥

∑
i

S(ũn
i ) − 
tn+ 1

2


xi

∑
i

[�+
i+1/2(ũn

i , ũn
i+1) − �+

i−1/2(ũn
i−1, ũn

i )]

=
∑

i

S(ũn
i ) − 
tn+ 1

2


xi

∑
i

[�+
i+1/2(ũn

i , ũn
i+1) − �+

i+1/2(ũn
i , ũn

i+1)]

=
∑

i

S(ũn
i ).

�

Definition 4.13.3 The conservative difference scheme

un+1
i = un

i − 
tn+ 1
2


xi
[f̃i+ 1

2
(un

i , un
i+1) − f̃i− 1

2
(un

i−1, un
i )]

is an upstream scheme if and only if whenever all signal speeds are positive we
have f̃i+ 1

2
(uL, uR) = f(uL) for all uL and all uR, and whenever all signal speeds are

negative we have f̃i+ 1
2
(uL, uR) = f(uR) for all uL and all uR.

Lemma 4.13.4 Suppose that R̃(uL, uR, ξ ) is consistent and conservative. Also sup-
pose that for all speeds ξ and all states uL, uR, whenever all signal speeds are
positive we have R̃(uL, uR, ξ ) = uL and whenever all signal speeds are negative
we have R̃(uL, uR, ξ ) = uR. Then the scheme

ũn+1
i = 1


xi

∫ xi+1/2

xi

R̃
(

ũn
i , ũn

i+1,
x − xi+1/2


tn+ 1
2

)
dx

+ 1


xi

∫ xi

xi−1/2

R̃
(

ũn
i−1, ũn

i ,
x − xi−1/2


tn+ 1
2

)
dx (4.85)

is an upstream scheme.

Proof The proof of Lemma 4.13.1 shows that the scheme (4.85) can be rewritten
as a conservative difference via the numerical flux

f̃i+ 1
2
(uL, uR) = f(uR) − 
xi+1

2
tn+ 1
2

uR + 1


xi

∫ 
xi+1/2

0
R̃

(
uL, uR,

x


tn+ 1
2

)
dx

= f(uL) + 
xi

2
tn+ 1
2

uL − 1


xi

∫ 0

−
xi /2
R̃

(
uL, uR,

x


tn+ 1
2

)
dx .

The lemma now follows immediately from the definition of an upstream
scheme. �
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4.13.2 Artificial Diffusion

We can write any numerical flux in the form

(f − uξ )(uL, uR) = 1

2
[f(uL) + f(uR)] − ε

2
[uL + uR] − 1

2
A sign(A − Iξ )[uR − uL] (4.86)

d(uL, uR) = A sign(A − Iξ )(uR − uL)

for some function d. The function d acts as a numerical diffusion. Let us discuss
the typical situation, in which we seek the state moving at zero speed in the solution
of the Riemann problem (ξ = 0). For convex entropy, in order to achieve perfect
resolution of stationary shocks we want

f(uL) = f(uR) and �(uR) > �(uL) =⇒ d(uL, uR) = 0.

If we can identify a particular wave family in which the shock belongs, then we can
replace the test on the entropy flux with a test on characteristic speeds: λ j (uL) >

λ j (uR). However, for transonic rarefactions, in which for the relevant wave family
we have λ j (uL) < 0 < λ j (uR), we want

f(uL) = f(uR) and �(uR) < �(uL) =⇒ d(uL, uR) 	= 0.

Thus, the choice of d is subtle.

Example 4.13.5 If f(u) = Au, then the flux in Godunov’s scheme is

(f − uξ )(uL, uR) = 1

2
[AuL + AuR] − ε

2
[uL + uR] − 1

2
A sign(A − Iξ )[uR − uL].

In this case, d(uL, uR) = A sign(A − Iξ )(uR − uL). Since there are neither shocks
nor rarefactions for this problem, there are no constraints on d to check.

Example 4.13.6 In Burgers’ equation we have f(u) = 1
2 u2, and the flux in

Godunov’s scheme is

(f − uξ )(uL, uR) =
{

1
2 max{uL, min{uR, ξ}}2 − ξ max{uL, min{uR, ξ}}, uL < uR

max{ 1
2 u2

R − uRξ, 1
2 u2

L − uLξ}, uL ≥ uR

=


1
2 u2

L − uLξ, ξ < uL < uR or 2ξ < uL + uR < 2uL

− 1
2ξ

2, uL < ξ < uR

1
2 u2

R − uRξ, uL < uR < ξ or 2uR < uL + uR < 2ξ.

In this case,

d(uL, uR) =


1
2 (uR − ξ )2 − 1

2 (uL − ξ )2, ξ < uL < uR or 2ξ < uL + uR < 2uL

1
2 (ξ − uL)2 + 1

2 (uR − ξ )2, uL < ξ < uR

1
2 (ξ − uL)2 − 1

2 (ξ − uR)2, uL < uR < ξ or 2uR < uL + uR < 2ξ.

Note that Godunov adds numerical diffusion in each case, whether the wave involves
a shock or rarefaction.
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Example 4.13.7 The flux in Rusanov’s scheme is

f(uL, uR) = 1

2
[f(uL) + f(uR)] − 1

2
max

j

{|λ j |
}

(uR − uL)

where λ j are the characteristic speeds of the conservation law. This numerical
diffusion d(uL, uR) = 1

2 max j {|λ j |}(uR − uL) is active for all jumps, even stationary
shocks and transonic rarefactions.

Example 4.13.8 One form of the Lax–Wendroff scheme takes

f(uL, uR) = 1

2
[f(uL) + f(uR)] − 1

2

∂f
∂u

(
uL + uR

2

)
[f(uR) − f(uL)]


x


t
.

A similar Lax–Wendroff flux is

f(uL, uR) = 1

2
[f(uL) + f(uR)] − 1

2

∣∣∣∣ ∂f
∂u

(
uL + uR

2

)∣∣∣∣ [uR − uL].

Both have trouble with transonic rarefactions in Burgers’ equation, because f(uL) =
f(uR) implies that

∂f
∂u

(
uL + uR

2

)
= 0,

and thus that d(uL, uR) = 0. In order to avoid this problem, van Leer has suggested
the following modification of the Lax–Wendroff scheme:

f(uL, uR) = 1

2
[f(uL) + f(uR)] − 1

4

[∣∣∣∣ ∂f
∂u

(uL)

∣∣∣∣ +
∣∣∣∣ ∂f
∂u

(uR)

∣∣∣∣] [uR − uL].

Many schemes incorporate a numerical diffusion to help spread discontinuities
and to help entropy production. One approach is to replace

f ← f + (uR − uL)αψ2(a) (4.87)

where a is some velocity associate with the problem. For example, in gas dynamics
we might choose

ψ2(a) = min{vR − vL, 0}
so that diffusion is added only in compressions (i.e., shocks). Such an numerical
diffusion makes sense for gas dynamics, but not for all systems. More generally,
one might try

ψ2(a) = max
i

{max{λi,L − λi,R, 0}},
as suggested in [13].

The parameter α in (4.87) is user-adjustable, but typically α = 0.1 works well.
Note that both of the numerical viscosities in the previous paragraph are such that
ψ(a) = O(
x), so the modification of the flux is O(
x2). Such numerical viscosities
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are called quadratic viscosities. This means that the use of these viscosities for
methods with order greater than 2 would reduce the order of the scheme.

Sometimes a linear diffusion is used, of the form

f ← f + (uR − uL)ψ(a), (4.88)

where a is some velocity associated with the problem, and ψ(a) = O(1). For exam-
ple, a Rusanov numerical diffusion would choose ψ(a) = maxi |λi |, where λi are
the characteristic speeds. A Lax–Friedrichs numerical diffusion would choose
ψ(a) = 
x


t . Another choice, due to Osher and Solomon [123] computes a weighted
average of the jumps by choosing

ψ(a) = |[f]�[u]|
[u]�[u]

.

If a convex or concave entropy function S is available, we can also use

ψ(a) = |[ ∂S
∂u ][f]|

[ ∂S
∂u ][u]

,

as suggested in [68].
Linear viscosities destroy the order of schemes of order greater than one, but

quadratic viscosities are too big for large jumps. Often, some hybrid of the two
numerical viscosities is used, perhaps by taking the minimum of the quadratic
and linear numerical diffusion coefficients, and then multiplying times the jump
uR − uL .

4.13.3 Rusanov Solver

The Rusanov scheme described in Section 4.2.2 can be interpreted as coming from
an approximate Riemann solver. Let λ be an upper bound on the characteristic
speeds in all waves associated with the Riemann problem arising from uL and uR.
The Rusanov approximate Riemann solver is

R̃(uL, uR, ξ ) =


uL, ξ < −λ

uL R, −λ < ξ < λ

uR, λ < ξ,

where the intermediate state uL R is chosen so that the the approximate Riemann
solver is conservative:∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx = uL

(
−λ
t + 
xL

2

)
+ uL R2λ
t + uR

(
−λ
t + 
xR

2

)
= (uL
xL + uR
xR)

1

2
− [fR − fL]
t.
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This equation implies that

uL R = (uL + uR)
1

2
− [fR − fL]

1

2λ
.

The flux associated with the state moving at speed ξ is given by Equation (4.80):

(f − uξ )Rusanov(uL, uR)

= 1

2
{fL + fR − (uL + uR)ξ − | − λ − ξ |(uL R − uL) − |λ − ξ |(uR − uL R)}

= 1

2

{
fL + fR − (uL + uR)ξ − (uR − uL)

|λ + ξ | + |λ − ξ |
2

+ (fR − fL)
|λ + ξ | − |λ − ξ |

2λ

}
(4.89)

The flux associated with speed ξ = 0 for this approximate Riemann solver is the
usual Rusanov flux.

We can interpret this approximate Riemann solver as decomposing the jump into
two waves associated with the relative wavespeeds −λ − ξ and λ − ξ :

(fR − uRξ ) − (fL − uLξ ) =
{

[uR − uL] − [fR − fL]
1

λ

}
1

2
(−λ − ξ )

+
{

[uR − uL] + [fR − fL]
1

λ

}
1

2
(λ − ξ ). (4.90)

This formulation will be useful for the wave propagation scheme in Section 6.2.6
below. If the jump between the states is nonzero, we can also write this flux differ-
ence as a sum of fluctuations

(fR − uRξ ) − (fL − uLξ ) =
[{(


u − 
f
1

λ

)
1

‖
u‖
}

1

2
(−λ − ξ )

{
1

‖
u‖
u�
}

+
{(


u + 
f
1

λ

)
1

‖
u‖
}

1

2
(λ − ξ )

{
1

‖
u‖
u�
}]


u

= A
u (4.91)

where 
u = uR − uL and 
f = fR − fL . This formulation will be useful for the 2D
wave propagation scheme in Section 7.1.3.

4.13.4 Weak Wave Riemann Solver

Given any linearly independent set of characteristic directions X with corresponding
speeds λ j , we might approximate the solution of the Riemann problem by

R̃(uL, uR, ξ ) = uL +
∑

j :λ j <ξ

Xe jα j ,
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where the scalars α j are determined so that the approximate Riemann solver pro-
duces the right state at large wave speed:∑

j

Xe jα j = uR − uL .

In order for this approximate Riemann solver to be conservative, it would be nec-
essary that ∑

j

Xe jα jλ j = f(uR) − f(uL).

If we solve the linear systems

Xy = uR − uL and Xz = f(uR) − f(uL)

then we can see that conservation would require that we take the wave speed λ j to
be

λ j = e j · z
e j · y

= e�
j X−1[f(uR) − f(uL)]

e�
j X−1[uR − uL]

. (4.92)

The numerical flux associated with zero wave speed would be evaluated by

f(uL, uR) =
{

f(uL) + ∑
j :λ j <0 Xe j e j · z, most wavespeeds positive

f(uR) − ∑
j :λ j >0 Xe j e j · z, most wavespeeds negative.

Although Equation (4.92) forλ j can involve significant rounding errors and possibly
division by zero, all that is really needed is the sign of λ j ; this can be determined
without dividing by zero.

A non-conservative form of the weak-wave Riemann solver is also sometimes
used. This approach takes the λ j to be the characteristic speeds associated with
the same state as the characteristic directions X. After solving Xy = uR − uL , the
numerical flux associated with zero wave speed would be evaluated by

f(uL, uR) =
{

f(uL) + ∑
j :λ j <0 Xe jλ j e j · y, most wavespeeds positive

f(uR) − ∑
j :λ j >0 Xe jλ j e j · y, most wavespeeds negative.

One common way to estimate the sign of “most of the wavespeeds” is to examine
the sign of

λ = [uR − uL] · [f(uR) − f(uL)]

[uR − uL] · [uR − uL]
.
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Example 4.13.9 Let us determine a weak wave Riemann solver flux for Burgers’
equation. The conservative form of the weak wave Riemann solver takes

λ = f(uR) − f(uL)

uR − uL

= uR + uL

2
.

Then

f(uL, uR) =
{

f(uL), λ ≥ 0
f(uR), λ < 0.

(Note that when λ = 0 it does not matter whether we use the left or right flux.)
In practice, this approximate Riemann solver does not perform well for transonic
rarefactions: see Example 4.13.15 and Section 4.13.9 below. However, with the
addition of numerical diffusion it can be reliable for small disturbances.

4.13.5 Colella–Glaz Riemann Solver

Colella and Glaz [34] suggested replacing the rarefaction curves by shock curves in
an approximate solution of the Riemann problem. This approximation is acceptable
for weak rarefactions, or for rarefactions that have spread out over the grid. Their
original purpose was to avoid a numerical integrator for the ordinary differential
equations associated with a “real gas” equation of state, namely one that includes
such effects as disassociation and recombination of air molecules. However, this
approach is still based on finding a state in the solution of the Riemann problem
at which to evaluate the flux, and depends on some knowledge of the ordering of
the waves and the determination of the state associated with propagation at a given
speed. Such information is difficult to obtain for nonstrictly hyperbolic conservation
laws, or conservation laws with local linear degeneracies. Of all our case studies,
it is reasonably easy to program this approximate Riemann solver only for shallow
water and gas dynamics.

Example 4.13.10 The Colella–Glaz approximate Riemann problem solver for a
polytropic gas is initialized by computing

C2
L = γ pLρL, WL =

√
C2

L ,

C2
R = γ pRρR, WR =

√
C2

R ,

p∗ = [WR pR + WL pL − WL WR(vR − vL)]/(WR + WL).

Afterward, a Newton iteration is used to solve vR(p∗) = vL(p∗) given by the
Rankine–Hugoniot jump conditions. This amounts to performing the following
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steps:

WL = {C2
L (1 + [p∗/pL − 1](γ + 1)/(2γ )}1/2,

WR = {C2
R (1 + [p∗/pR − 1](γ + 1)/(2γ )}1/2,

ζR = 2W 3
R

W 2
R + C2

R

, ζL = 2W 3
L

W 2
L + C2

L

,

v∗
R = vR + (pR − p∗)/WR, v∗

L = vL − (pL − p∗)/WL,

p∗ := p∗ − (v∗
R − v∗

L )ζRζL/(ζR + ζL).

Once the pressure p∗ at the contact discontinuity has been found, the velocity of
the contact discontinuity is computed by

v∗ = (ζRv∗
R + ζRv∗

L )/(ζR + ζL).

If v∗ ≤ ξ , then the state moving with speed ξ is between the contact discontinuity
and the right state; in this case, the velocity is initialized by

v± = vR, p± = pR, ρ± = ρR.

Otherwise, the state moving with speed ξ is between the contact discontinuity and
the left state; the velocity is initialized by

v± = vL, p± = pL, ρ± = ρL .

Afterword, calculations serve to identify the state on the Hugoniot locus:

c± =
√

γ p±/ρ±, W 2
± = γρ± p±{1 + (p∗/p± − 1)(γ + 1)/(2γ )},

ρ∗ = ρ±

/(
1 − γρ±(p∗ − p±)

W 2±

)
, c∗ =

√
γ p∗/ρ∗.

If p∗ ≥ p±, then the wave is a shock, and the shock speed is

λo = λi =
{

v∗ − W±/ρ∗, v∗ > ξ

v∗ + W±/ρ∗, v∗ ≤ ξ.

Otherwise the wave is a rarefaction and the characteristic speeds at the end of the
wave curve are

λi =
{

v∗ − c∗, v∗ > ξ

v∗ + c∗, v∗ ≤ ξ

λ0 =
{

v± − c±, v∗ > ξ

v± + c±, v∗ ≤ ξ.
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If (v∗ − ξ )(ξ − vi ) ≥ 0, then the solution of the Riemann problem is taken to be
the state on this wave family at the contact discontinuity:

ρ = ρ∗, p = p∗, v = v∗.

If (v∗ − ξ )(v0 − ξ ) ≥ 0, the solution of the Riemann problem is taken to be the
outer state (i.e., the appropriate left or right state in the description of the Riemann
problem):

ρ = ρ0, p = p0, v = v0.

Otherwise, the state is interpolated within the rarefaction:

α = λ0 − ξ

λ0 − λi
,

ρ = αρ∗ + (1 − α)ρ±, v = αv∗ + (1 − α)v±,

c = αc∗ + (1 − α)c±, p = c2ρ/γ.

A Fortran program implementing this approximate Riemann solver for ξ = 0 is
available in Program 4.13-52: riemnv.f.

4.13.6 Osher–Solomon Riemann Solver

Another approach to the solution of the Riemann problem for gas dynamics is
described in [123]. In order to avoid the nonlinear iteration required in the ana-
lytical solution of the Riemann problem (or in the Colella–Glaz Riemann solver
[34]), we could assume that the rarefaction curves are determined from Riemann
invariants, and approximate all waves by rarefactions or contact discontinuities.
Along a transonic rarefaction, we could use the characteristic speeds at the left
and right states as if they were associated with the respective ends of the waves
families, and use these speeds to estimate the location of internal sonic points. The
Engquist–Osher flux could be used to approximate the path integrals. The result-
ing numerical flux is a sum of fluxes at the initial left or right states, and interior
(approximate) sonic points.

Example 4.13.11 For shallow water, the rarefaction curves satisfy

n · v−(h) = n · vL + (hL − h)
2g√

ghL + √
gh

= n · vL + 2(cL − c)

n · v+(h) = n · vR − (hR − h)
2g√

ghR + √
gh

= n · vR − 2(cR − c)

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/riemnv.f
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where c = √
gh. At the intersection of these curves we have√

gh∗ = c∗ = cR + cL

2
− n · (vR − vL)

4

n · v∗ = n · (vR + vL)

2
+ cL − cR.

One difficulty is that we could have c∗ < 0. Suppose that we are given a speed ξ . If
hL > hast and n · vL − cL < ξ < n · v∗ − c∗ then we have a transonic rarefaction;
the state that moves with speed ξ satisfies√

gh = c = (n · vL + 2cL − ξ )/3

n · v = {n · vL + 2(cL + ξ )}/3.

There is no need for an Engquist–Osher approximation here. Similarly, if hR > h∗
and n · vR + cR > ξ > n · v∗ + c∗ then we have a transonic rarefaction; the state
that moves with speed ξ satisfies√

gh = c = (ξ − n · vR + 2cR)/3

n · v = {n · vR + 2(ξ − cR)}/3.

The Osher–Solomon Riemann problem solver for gas dynamics requires an
iteration to determine the intersection of the rarefaction curves, if it exists.
For non-strictly hyperbolic problems or problems with local linear degenera-
cies, the Osher-Solomon Riemann problem solver is even more difficult to
implement.

4.13.7 Bell–Colella–Trangenstein Approximate Riemann Problem Solver

The previous approximate Riemann problem solvers assumed either that the
Riemann invariants are known, or that wave curves are approximated well by Hugo-
niot loci. For problems such as gas dynamics, these techniques are very effective.
However, these approaches do not apply to many important problems, such as solid
mechanics or flow in porous media. We will describe another approach [13], which
only requires that the characteristic speeds and directions can be computed.

Suppose that we are given flux variables wL and wR. If all of the characteristic
speeds at both wL and Wr are positive (as well as at all intermediate states in the
solution of the Riemann problem), then we will evaluate

f(R(wL, wR; 0)) = f(wL).
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Similarly, if all of the characteristic speeds are negative, then we will compute

f(R(wL, wR; 0)) = f(wR).

The discussion that follows concerns the case when at least one of the characteristic
speeds changes sign between wL and wR.

First, we determine some average state w and find the generalized eigenvectors
X and eigenvalues � so that

∂f
∂w

∣∣∣∣
w

X = ∂u
∂w

∣∣∣∣
w

X�.

For example, we might choose w = 1
2 (wL + wR). Afterward, we solve

Xy = wR − wL

for the characteristic expansion coefficients y. We can approximate the path from
the left state to the right state in the solution of the Riemann problem by

wR = wL +
∑

i

Xei ei · y.

If most of the characteristic speeds at wL and wR are positive, then we will
traverse the path from wL to wR; otherwise, we go from right to left. Let us suppose
that we will traverse from left to right. Arrange the wave families i in order of
increasing characteristic speed, and let I be the largest wave family index that
involves a negative characteristic speed. For all wave families k ≤ I we compute
the intermediate states

wk = wL +
∑
i≤k

Xei ei · y.

We check that each of these states is physically realistic; if not, we will abandon the
approximate Riemann solver and use a low-order diffusive flux, such as Rusanov’s.
The final step is to determine an approximate path integral, mimicking the Engquist–
Osher flux:

f = f(wL) +
∑
k≤I

Xei

∫ ei ·y

0
min{λi (η), 0} dη.

In this expression, we will use some approximate model λi (η) for the characteristic
speed along the path. A common model is linear interpolation:

λi (η) = λi |wL + λi |wR − λi |wL

ei · y
η.

If most of the characteristic speeds are negative, then we will traverse the
path from right to left. Again, arrange the wave families i in order of increasing
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characteristic speed. Let I be the smallest wave family index that involves a nega-
tive characteristic speed. For all wave families k ≥ I we compute the intermediate
states

wk = wR −
∑
i≥k

Xei ei · y.

We check that each of these states is physically realistic; if not, we will abandon the
approximate Riemann solver and use a low-order diffusive flux, such as Rusanov’s.
The final step is to determine an approximate path integral, mimicking the Engquist-
Osher flux:

f = f(wR) −
∑
k≥I

Xei

∫ ei ·y

0
max{λi (η), 0} dη.

Example 4.13.12 Let us discuss the application of the Bell–Colella–Trangenstein
approximate Riemann solver to gas dynamics. Notice that for gas dynamics

(
∂u
∂w

)−1
∂f
∂w

=
 1 0 0

v v 0
1
2 v2 vρ 1

γ−1

−1  v ρ 0
v2 2vρ 1
1
2 v3 ρ(e + 1

2 v2) + p + v2ρ
γ

γ−1 v


=

v ρ 0
0 v 1

ρ

0 γ p v

 ≡ A + Iv.

We compute the average state w = 1
2 (wL + wR), and find the eigenvectors X and

eigenvalues � of
(

∂u
∂w

)−1 ∂f
∂w at this state:

X =
 ρ 1 ρ

−c 0 c
ρc2 0 ρc2

 , � =
−c 0 0

0 0 0
0 0 c

.

Afterward, we solve Xy = wR − wL for the characteristic expansion coefficients y.
This gives us

y =
0 −1/(2c) 1/(2ρc2)

1 0 −1/c2

0 1/(2c) 1/(2ρc2)

 ρR − ρL

vR − vL

pR − pL

 =
 1

2 (α − β)
ρ − ρα

1
2 (α + β)


where

ρ = 1

2
(ρL + ρR), p = 1

2
(pL + pR), v = 1

2
(vL + vR), c =

√
γ p/ρ,

α = [p]

γ p
, β = [v]

c
.
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We now have a path from wL to wR, using the intermediate states

w1 = wL + Xe1e1 · y =
ρL

vL

pL

 +
 ρ

−c
γ p

 1

2
(α − β),

w2 = wR − Xe3e3 · y =
ρR

vR

pR

 −
 ρ

c
γ p

 1

2
(α + β).

at either end of the contact discontinuity. If there are no changes in sign of the
characteristic speed along any of the path segments (i.e., in the genuinely nonlinear
wave from wL to w1, in the contact discontinuity from w1 to w2, or in the genuinely
nonlinear wave from w2 to wR), then we evaluate the flux at whichever of these
states in the path corresponds to zero characteristic speed. For example, if all
of the characteristic speeds are positive, we evaluate the flux at the left state. If
(v − c)|wL < 0 and (v − c)|wR < 0 but all other characteristic speeds are positive at
wL and wR, then we will evaluate the flux at the left side of the contact discontinuity,
namely w1. If we need to evaluate the flux at either w1 or w2, we require that both
the density ρ and the pressure p are positive at this state; otherwise, we will resort
to a Rusanov flux.

In the remainder of the discussion, we will assume that at least one of the
wave families involves a change in sign of the characteristic speed between wL

and wR. Because the contact discontinuity is linearly degenerate, and because the
Engquist–Osher flux is diffusive, we want to avoid using an Engquist–Osher flux
contribution for the contact discontinuity. In order to remove ambiguity, we will
say that the speed of the contact discontinuity is the velocity v at the average state
1
2 (wL + wR). If the speed of the contact discontinuity is positive, we will begin our
Engquist–Osher path integral at wL ; otherwise, we will begin at wR. Note that for gas
dynamics

w2 − w1 = Xe2e2 · y =
1

0
0

 e2 · y

so w1 and w2 have the same entries for v and p.
If we have a transonic wave, then we must determine an approximate path inte-

gral, mimicking the Engquist–Osher flux. If the speed of the contact discontinuity
is positive, we begin the path integral at the left state

f = f(wL) +
∑

i

Xei

∫ ei ·y

0
min{λi , 0} dη;
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otherwise, we begin at the right state:

f = f(wR) −
∑

i

Xei

∫ ei ·y

0
max{λi , 0} dη.

Since the waves other than the contact discontinuity are genuinely nonlinear, there
are no local extrema of the characteristic speeds. Thus in these Engquist–Osher
path integrals, it is sufficient to use a piecewise-linear approximation to λi (η):

λi (η) = λi |wL + λi |wR − λi |wL

ei · y
η.

Note that the zero of this linear model occurs at

ηi,s = λi |wL

λi |wL − λi |wR

ei · y.

Then we have four cases:

+ +: if λi |wL > 0 and λi |wR > 0 then∫ ei ·y

0
min{λi (η), 0}dη = 0,∫ ei ·y

0
max{λi (η), 0}dη = 1

2
(λi |wL + λi |wR )ei · y;

− +: if λi |wL < 0 and λi |wR > 0 then the flux integrals are approximated by∫ ei ·y

0
min{λi (η), 0} dη = 1

2
λi |wL ηi,s = −1

2

λ2
i |wL

λi |wR − λi |wL

ei · y,∫ ei ·y

0
max{λi (η), 0} dη = 1

2
λi |wR (ei · y − ηi,s) = 1

2

λ2
i |wR

λi |wR − λi |wL

ei · y;

+ −: if λi |wL > 0 and λi |wR < 0 then the flux integrals are approximated by∫ ei ·y

0
min{λi (η), 0} dη = 1

2
λi |wR (ei · y − ηi,s) = −1

2

λ2
i |wR

λi |wL − λi |wR

ei · y,∫ ei ·y

0
max{λi (η), 0} dη = 1

2
λi |wL ηi,s = 1

2

λ2
i |wL

λi |wL − λi |wR

ei · y;

− −: if λL ,i < 0 and λR,i < 0 then the flux integral would be approximated by∫ ei ·y

0
min{λi (η), 0} dη = 1

2
(λi |wL + λi |wR )ei · y,∫ ei ·y

0
max{λi (η), 0} dη = 0.
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The contributions to the path integral are summed over all waves, as necessary. Note
that for gas dynamics, the choice of the initial point for the path integral implies
that contact discontinuity makes no contribution to the sum.

4.13.8 Roe Riemann Solver

Roe [138] suggested an even simpler approximation to the solution of the Riemann
problem for gas dynamics. He showed that for gas dynamics it is possible to find a
matrix A(wL, wR) that represents an appropriate average of the flux derivative. He
then approximated the solution of the nonlinear Riemann problem by the solution
of the Riemann problem with linear flux Au.

It is possible to prove the existence of a Roe matrix for any hyperbolic system
of conservation laws with a convex or concave entropy function.

Theorem 4.13.13 [68] For any conservation law

∂u
∂t

+
k∑

i=1

∂Fei

∂xi
= 0,

with convex entropy function there is a Roe matrix Ā(wL, wR) such that

(i) [F(wR) − F(wL)]n = Ā(wL, WR)[u(wR) − u(wL)]
(ii) Ā(wL, WR)X̄ = X̄�̄ where X̄ is nonsingular and �̄ is real and diagonal

(iii) Ā(w, w) = ∂Fn
∂w

(
∂u
∂w

)−1
.

Proof Suppose that S is an entropy function with entropy flux �:

∂�n
∂w

= ∂S

∂w

(
∂u
∂w

)−1
∂Fn
∂w

.

Let

z� = ∂S

∂w

(
∂u
∂w

)−1

.

Suppose that we differentiate the entropy flux equation

∂�n
∂u j

=
m∑

i=1

∂S

∂ui

∂e�
i Fn

∂u j

with respect to uk :

∂�n
∂u j∂uk

=
m∑

i=1

∂2S

∂ui∂uk

∂e�
i Fn

∂u j
+

m∑
i=1

∂S

∂ui

∂2e�
i Fn

∂u j∂uk
.
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From the definition of z,

∂z
∂u

= ∂2S

∂u∂u
.

It follows that

∂Fn
∂z

= ∂Fn
∂u

(
∂z
∂u

)−1

= ∂Fn
∂u

(
∂2S

∂u∂u

)−1

=
[

∂�n
∂u j∂uk

−
m∑

i=1

∂S

∂ui

∂2e�
i Fn

∂u j∂uk

]
.

The first term in the right-hand side in this equation is symmetric, and the second
term on the right is a linear combination of symmetric matrices. It follows that ∂Fn

∂z
is symmetric.

Next, we write

[F(wR) − F(wL)]n =
∫ 1

0

d

dθ
F(z(wR)θ + z(wL)[1 − θ]) dθ

=
∫ 1

0

∂Fn
∂z

(z(wR)θ + z(wL)[1 − θ]) dθ [z(wR) − z(wL)]

≡ B[z(wR) − z(wL)],

and

[z(wR) − z(wL)] =
∫ 1

0

d

dθ
z(uRθ + uL[1 − θ ]) dθ

=
∫ 1

0

∂z
∂u

(uRθ + uL[1 − θ ]) dθ [uR − uL] ≡ P[uR − uL].

From the discussion in the previous paragraph, it is obvious that B is symmetric
and P is positive-definite. Then Ā = BP is similar to a symmetric matrix:

(P)−1/2BP(P)−1/2 = (P)1/2B(P)1/2.

It follows that Ā is diagonalizable with real eigenvalues. �

Lemma 4.13.14 Suppose that Ā(uL, uR) is a Roe matrix for some flux f; in other
words,

for all uL for all uR f(uR) − f(uL) = Ā(uL, uR)[uR − uL]

where Ā has real eigenvalues �̄ and real eigenvectors X̄. Then the approximate
Riemann solver

R̃(uL, uR, ξ ) = uL +
∑

j :λ̄ j <ξ

X̄e j e�
j X̄−1[uR − uL]

is consistent and conservative.
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Proof The definition of R̃ shows that it is consistent:

for all u for all ξ R̃(u, u, ξ ) = u +
∑

j :λ̄ j <ξ

X̄e j e�
j X̄−1[u − u] = u.

To show that R̃ is conservative, we compute∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx =

∫ 
xR/2

−
xL/2
uL +

∑
j :λ̄ j 
t<x

X̄e j e�
j X̄−1[uR − uL] dx

= uL


xR +
xL

2
+

m−1∑
k=1

∫ λ̄k+1
t

λ̄k
t

k∑
j=1

X̄e j e�
j X̄−1[uR − uL] dx

+
∫ 
xR/2

λ̄m
t

m∑
j=1

X̄e j e�
j X̄−1[uR − uL] dx

= uL


xR +
xL

2
+

m−1∑
k=1

k∑
j=1

X̄e j (λ̄k+1 − λ̄k)
te�
j X̄−1[uR − uL]

+
m∑

j=1

X̄e j

(
xR

2
− λ̄m
t

)
e�

j X̄−1[uR − uL]

= uL


xR + 
xL

2
+

m∑
j=1

X̄e j

(
xR

2
− λ̄ j 
t

)
e�

j X̄−1[uR − uL]

= uL


xR + 
xL

2
+ 
xR

2
[uR − uL] − 
tĀ(uL, uR)[uR − uL]

= uL


xL

2
+ uR


xR

2
− 
t[f(uR) − f(uL)]

�

Our results in Lemma 4.13.14 show us that the Roe flux associated with speed
ξ is

(f − uξ )(uL, uR) = 1
2

{
f(uL) + f(uR) − (uL + uR)ξ

− ∑m
j=1 X̄e j |λ̄ j − ξ |e�

j X̄−1[uR − uL]
}

. (4.93)

If we need to express the flux jump for wave propagation (Section 6.2.6 below),
then we write

(fR − uRξ ) − (fL − uLξ ) = X̄(�̄ − Iξ )(X̄)−1(uR − uL).

The problem with the definition of the Roe matrix in Theorem 4.13.13 is that
the matrix Ā is difficult to compute. We will usually choose different approaches
that depend on the problem.
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Example 4.13.15 Consider the scalar conservation law

∂u
∂t

+ ∂f(u)

∂x
= 0.

The Roe “matrix” for this problem must be λ̄ = [f]/[u]. The Roe approximate
Riemann solver is easily seen to be

R̃(uL, uR, ξ ) =
{

uL, λ̄ > ξ

uR, λ̄ < ξ

and the flux associated with speed ξ in this approximate Riemann solver is

(f − uξ )(uL, uR) = 1

2

{
f(uL) + f(uR) − (uL + uR)ξ − |λ̄ − ξ |[uR − uL]

}
=

{
f(uL) − uLξ, λ̄ > ξ

f(uR) − uRξ, λ̄ < ξ.

Example 4.13.16 We will develop a Roe matrix for the shallow water equations,
following the discussion in LeVeque [97, page 320ff]. Instead of using z = ∇u E as
the intermediate variable to use in computing the Roe matrix, we will use

z =
[

c
vc

]
≡

[
ζ1

z2

]
,

where c = √
gh. Then the vector of conserved quantities can be written

u =
[

ζ 2
1

z2ζ1

]
1

g
,

so

∂u
∂z

=
[

2ζ1 0
z2 Iζ1

]
1

g

is linear in the entries of z. Similarly,

F =
[

ζ1z�
2

z2z�
2 + I 1

2ζ
4
1

]
1

g

so

∂Fn
∂z

=
[

z�
2 n ζ1n�

n2ζ 3
1 Iz�

2 n + z2n�

]
1

g

involves polynomials in the entries of z as well.
Next, we define matrices B and P−1 by

B ≡ g
∫ 1

0

∂f
∂z

(zRθ + zL[1 − θ ]) dθ, P−1 ≡ g
∫ 1

0

∂u
∂z

(zRθ + zL[1 − θ ]) dθ.
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This would suggest that we compute

ζ̄1 ≡
∫ (ζ1)R

(ζ1)L
ζ1 dζ1

(ζ1)R − (ζ1)L

= 1

2
{(ζ1)R + (ζ1)L}

z̄2 ≡
∫ (z2)R

(z2)L
z2 dz2

(z2)R − (z2)L

= 1

2
{(z2)R + (z2)L}

ζ 3
1 ≡

∫ (ζ1)R

(ζ1)L
ζ 3

1 dζ1

(ζ1)R − (ζ1)L

= (ζ1)4
R − (ζ1)4

L

4[(ζ1)R − (ζ1)L]

= (ζ1)R + (ζ1)L

2

(ζ1)2
R + (ζ1)2

L

2
≡ ζ̄1

(ζ1)2
R + (ζ1)2

L

2

and use the polynomials for the partial derivatives of u and f to compute

B =
[

z̄�
2 n ζ̄1n�

n2ζ 3
1 Iz̄�

2 n + z̄2n�

]
and P−1 =

[
2ζ̄1 0
z̄2 Iζ̄1

]
.

Then

f(zR) − f(zL) = BP[u(zR) − u(zL)]

where the Roe matrix is

BP =
[

0 n�

n ζ 3
1

ζ̄1
− (z̄2/ζ̄1)(z̄2/ζ̄1)�n I(z̄2/ζ̄1)�n + (z̄2/ζ̄1)n�

]
.

If we define

v̄ ≡ z̄2

ζ̄1
= vRcR + vLcL

cR + cL

, h̄ ≡ ζ 3
1

ζ̄1
= hR + hL

2
, c̄ ≡

√
gh̄

then we can write

BP =
[

0 n�

ngh̄ − v̄v̄�n Iv̄�n + v̄n�

]
.

The eigenvectors of the Roe matrix are

X̄ =
[

1 0 1
v̄ − nc̄ N v̄ + nc̄

]
where [n, N] is an orthogonal matrix, and the eigenvalues are

�̄ =
v̄�n − c̄ 0 0

0 Iv̄�n 0
0 0 v̄�n + c̄

 .
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In order to solve the Riemann problem, Roe solves the linear system uR − uL =
X̄y for the expansion coefficients y of the waves:

y = X̄−1(uR − uL)] =
 v̄�n + c̄ −n�

−N�v̄2c̄ N�2c̄
−v̄�n + c̄ n�

 [
hR − hL

vRhR − vLhL

]
1

2c̄

=
(v̄�n + c̄)(hR − hL) − n�(vRhR − vLhL)

N�{−v̄(hR − hL) + (vRhR − vLhL)}2c̄
n�(vRhR − vLhL) − (v̄�n − c̄)(hR − hL)

 1

2c̄
.

These expansion coefficients give us an approximate path from left state to right
state. Roe approximated the flux at the state moving at speed ξ by

(f − uξ )Roe = 1

2
{fR + fL − (uR + uL)ξ −

∑
i

X̄ei |λi − ξ |yi }

= 1

2
{fL + fR − (uR + uL)ξ − X̄|�̄ − Iξ |X̄−1(uR − uL)}.

Example 4.13.17 The following discussion of a Roe solver for gas dynamics fol-
lows that in Hirsch [73, page 463ff]. Instead of using z = ∇uS as the intermediate
variable to use in computing the Roe matrix for gas dynamics, we will use

z =
 1

v
H

 √
ρ ≡

ζ1

z2

ζ3

 ,

where H ≡ e + 1
2 v · v + p/ρ is the total specific enthalpy. Then the vector of con-

served quantities can be written

u =
 ζ 2

1

z2ζ1
ζ3ζ1

γ
+ γ−1

2γ
z2 · z2


so

∂u
∂z

=
2ζ1 0 0

z2 Iζ1 0
ζ3

γ

γ−1
γ

z�
2

ζ1

γ


is linear in the entries of z. Similarly,

Fn =
 ζ1z2 · n

z2z2 · n + n(ζ1ζ3 − z2·z2
2 ) γ−1

γ

ζ3z2 · n
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so

∂Fn
∂z

=


z2 · n ζ1n� 0

nζ3
γ−1
γ

Iz2 · n + z2n� − n γ−1
γ

z�
2 n γ−1

γ
ζ1

0 ζ3n� z2 · n


is linear in the entries of z as well.

Next, we define matrices B and P−1 by

[F(zR) − F(zL)]n =
∫ 1

0

∂Fn
∂z

(zRθ + zL[1 − θ ]) dθ (zR − zL) ≡ B(zR − zL)

and

u(zR) − u(zL) =
∫ 1

0

∂u
∂z

(zRθ + zL[1 − θ ]) dθ (zR − zL) ≡ P−1(zR − zL).

This would suggest that we compute

z̄ ≡


√

ρR + √
ρL

vR

√
ρR + vL

√
ρL

HR

√
ρR + HL

√
ρL

 1

2

and use the linearity of the partial derivatives of u and Fn to compute

P−1 =


2ζ̄1 0 0

z̄2 Iζ̄1 0

ζ̄3

γ

γ−1
γ

z̄�
2

ζ̄1

γ


and

B =


z̄2 · n ζ̄1n� 0

nζ̄3
γ−1
γ

Iz̄2 · n + z̄2n� − n γ−1
γ

z̄�
2 n γ−1

γ
ζ̄1

0 ζ̄3n� z̄2 · n

.

Then

[F(zR) − F(zL)]n = BP[u(zR) − u(zL)]



310 Nonlinear Hyperbolic Systems

where the Roe matrix is

BP =


z̄2 · n ζ̄1n� 0

nζ̄3
γ−1
γ

Iz̄2 · n + z̄2n� − n γ−1
γ

z̄�
2 n γ−1

γ
ζ̄1

0 ζ̄3n� z̄2 · n




1
2ζ̄1

0 0

−z̄2
1

2ζ̄ 2
1

I 1
ζ̄1

0

(γ − 1) z̄2·z̄2

2ζ̄ 3
1

− ζ̄3

2ζ̄ 2
1

− γ−1
ζ̄ 2

1
z̄�

2
γ

ζ̄1



=


0 n� 0

n γ−1
2

z̄2·z̄2

ζ̄ 2
1

− z̄2
z̄2·n
ζ̄ 2

1
I z̄2·n

ζ̄1
+ z̄2

1
ζ̄1

n� − n γ−1
ζ̄1

z̄�
2 n(γ − 1)

−ζ̄3
z̄2·n
ζ̄ 2

1
+ (γ − 1) z̄2·z̄2

2ζ̄ 3
1

z̄2 · n ζ̄3

ζ̄1
n� − (γ − 1) z̄2·n

ζ̄ 2
1

z̄�
2 γ z̄2·n

ζ̄1

.

Next, we note that Ā = BP depends only on the average velocity

v̄ ≡ z̄2/ζ̄1 = vR

√
ρR + vL

√
ρL√

ρR + √
ρL

and the average total specific enthalpy

H̄ ≡ ζ̄3/ζ̄1 = HR

√
ρR + HL

√
ρL√

ρR + √
ρL

.

Thus we can write

Ā =


0 n� 0

n γ−1
2 v̄ · v̄ − v̄v̄ · n Iv̄ · n + v̄n� − n(γ − 1)v̄� n(γ − 1)

( γ−1
2 v̄ · v̄ − H̄ )v̄ · n H̄n� − (γ − 1)v̄ · nv̄� γ v̄ · n

.

For simplicity, we will define the average sound speed by

c̄ ≡
√

(γ − 1)

(
H̄ − 1

2
v̄ · v̄

)
.

Then we can see that the eigenvectors of the Roe matrix are

X̄ =
 1 0 1 1

v̄ − nc̄ N v̄ v̄ + nc̄
H̄ − v̄ · nc̄ v̄�N 1

2 v̄ · v̄ H̄ + v̄ · nc̄


and the eigenvalues are

�̄ =


v̄ · n − c̄ 0 0 0

0 Iv̄ · n 0 0
0 0 v̄ · n 0
0 0 0 v̄ · n + c̄

.

Here [n, N] is an orthogonal matrix.
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In order to solve the Riemann problem, Roe solves the linear system uR − uL =
X̄y for the expansion coefficients y of the waves by computing

y = X̄−1[u] =


1
2 (β1 + b · n) − 1

2 (β2v̄� + 1
c̄ n�) 1

2β2

−N�v̄ N� 0
1 − β1 β2v̄� −β2

1
2 (β1 − b · n) − 1

2 (β2v̄� − 1
c̄ n�) 1

2β2


 ρR − ρL

vRρR − vLρL

ρR(eR + 1
2 v2

R) − ρL(eL + 1
2 v2

L)

.

Here

β2 = (γ − 1)/c̄2, β1 = 1

2
β2v̄ · v̄, b = v̄/c̄.

These expansion coefficients give us an approximate path from left state to right
state. Roe approximated the flux at the state moving with speed ξ by

(f − uξ )Roe = 1

2
{fL + fR − (uR + uL)ξ − X̄|�̄ − Iξ |X̄−1(uR − uL)}.

Example 4.13.18 Let us see if we can develop a Roe solver for the Schaeffer–
Schechter–Shearer model. Recall from Equation (4.77) that this model has

u =
[

p
q

]
and f =

[
p2 − q

1
3 p3 − p

]
.

Notice that ∂f/∂u is a function of p only. We will take z = u, and compute

B =
∫ 1

0

∂f
∂u

(pRθ + pL[1 − θ ]) dθ =
[ 1

pR−pL

∫ pR

pL
2p dp −1

1
pR−pL

∫ pR

pL
p2 − 1 dp 0

]
=

[
2 p̄ −1
p2 0

]
where

p̄ = pR + pL

2
and p2 = p2

R + pR pL p2
L

3
.

Since z = u, we have P = I. Now BX̄ = X̄�̄ where

X̄ =
[

1 1
p̄ + r p̄ − r

]
and �̄ =

[
p̄ − r 0

0 p̄ + r

]
and

r =
√

1 + p̄2 − p2 =
√

1 − (pR − pL)2

12
.

Thus the Roe matrix does not have real eigenvalues if the jump between the states
is too large.

It is, in general, very difficult to construct Roe solvers for the conserva-
tion laws in our other case studies. The vibrating string, plasticity, polymer and
Buckley–Leverett models all involve nonlinear functions that greatly complicate the
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construction of the Roe average matrices B and P. Roe solvers have been discussed
for magnetohydrodynamics [23], but only for special cases (γ = 2). In general,
MHD computations approximate a Roe matrix by flux derivatives at some interme-
diate state; this is more like a weak-wave Riemann solver.

Note that if the solution to the Riemann problem consists of a single discontinu-
ity, then the Roe solver gets the exact solution. On the other hand, if the solution
to the Riemann problem involves a transonic rarefaction, then Roe’s solver typ-
ically produces an entropy-violating discontinuity. Also recall that a Roe solver
leads to a numerical flux of the form (4.93). By examining the definition of the
numerical diffusion relative to the centered differences flux in Equation (4.86), it
is easy to see that the numerical diffusion associated with a Roe solver has the
form

d(uL, uR) = |Ā(uL, uR) − Iξ |[uR − uL]. (4.94)

Typically, we are interested in those states that move with zero speed in the solution
of the Riemann problem (ξ = 0). Across a transonic rarefaction, it is common
for the Roe matrix to have a zero eigenvalue, resulting in zero diffusion and an
entropy violation. One solution to this problem is to add an numerical diffusion,
as discussed in Section 4.13.2; however, this approach typically results in a non-
conservative approximate Riemann solver. We will discuss some other alternatives
in the following sections.

4.13.9 Harten–Hyman Modification of the Roe Solver

Suppose that we use a Roe solver for some flux f, and we compute the characteristic
speeds λ j L and λ j R at the left and right states. The Roe approximate Riemann solver
takes

R̃Roe(uL, uR, ξ ) = uL +
∑
λ j <ξ

X̄e j e�
j X̄−1[uR − uL]} = uL +

∑
λ j <ξ


u j

where 
u j = X̄e j e�
j X̄−1[uR − uL]. If j is such that λ j L < ξ < λ j R, Harten and

Hyman [66] suggest that the j th jump be subdivided in the form 
u j = 
u j L +

u j R where 
u j L = 
u jβ j is associated with speed λ j L , and 
u j R = 
u j (1 −
β j ) is associated with speed λ j R. The associated approximate Riemann solver
will be

R̃H H (uL, uR, ξ ) = uL +
∑
k< j


u j + β j 
u j .
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The resulting approximate Riemann solver will still be consistent, because the
change to the solution of the Riemann problem is zero when uL = uR. The resulting
numerical flux can be evaluated as

(f − uξ )H H (uL, uR) = 1

2
[f(uL) + f(uR)] − [uL + uR]

ξ

2

−1

2

∑
k 	= j

|λk − ξ |
uk

−1

2

u j {(ξ − λ j L)β j + (λ j,R − ξ )(1 − β j )}.

From Lemma 4.13.14, we see that in order for the resulting approximate Riemann
solver to be conservative, it is sufficient to require that

λ j Lβ j + λ j R(1 − β j ) = λ̄ j .

It is easy to see that this implies β j = (λ j R − λ̄ j )/(λ j R − λ j L). We also require
0 ≤ β j ≤ 1, so we actually compute

β j = max

{
0, min

{
1,

λ j R − λ̄ j

λ j R − λ j L

}}
.

Recall that Equation (4.94) showed that the Roe solver numerical diffusion has

the form X|� − Iξ |X−1

u. In this context, the next lemma shows that the Harten–

Hyman modification to the Roe approximate Riemann solver will involve additional
numerical diffusion.

Lemma 4.13.19 If λ j L < ξ < λ j R and λ j L ≤ λ̄ j ≤ λ j R, then

(λ j R − ξ )

[
1 − λ j R − λ̄ j

λ j R − λ j L

]
− (λ j L − ξ )

[
λ j R − λ̄ j

λ j R − λ j L

]
≥ |λ̄ j − ξ |.

Proof Note that

0 ≤ 2(ξ − λ j L)(λ j R − λ̄ j )

= (λ j R − ξ )
[
λ̄ j − λ j L − (λ̄ j − ξ )

] − (λ j L − ξ )
[
λ j R − λ̄ j − (λ̄ j − ξ )

]
so if λ̄ j ≥ ξ we have

0 ≤ (λ j R − ξ )(λ̄ j − λ j L − |λ̄ j − ξ |) − (λ j L − ξ )(λ j R − λ̄ j − |λ̄ j − ξ |). (4.95)

On the other hand,

0 ≤ 2(λ j R − ξ )(λ̄ j − λ j L)

= (λ j R − ξ )
[
λ̄ j − λ j L + (λ̄ j − ξ )

] − (λ j L − ξ )
[
λ j R − λ̄ j + (λ̄ j − ξ )

]
,
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so if λ̄ j < ξ we see that inequality (4.95) is still true. This inequality implies that

(λ j R − ξ )(λ̄ j − λ j L) − (λ j L − ξ )(λ j R − λ̄ j ) ≥ |λ̄ j − ξ |(λ j R − λ j L),

from which it follows that

(λ j R − ξ )

[
1 − λ j R − λ̄ j

λ j R − λ j L

]
− (λ j L − ξ )

[
λ j R − λ̄ j

λ j R − λ j L

]
≥ |λ̄ j − ξ |.

�

Thus this modification of the Roe solver should never be performed for linearly
degenerate waves, such as the contact discontinuity in gas dynamics. This is because
the Roe solver captures discontinuities correctly, and because we do not want to
add additional numerical diffusion to contact discontinuities.

4.13.10 Harten–Lax–van Leer Scheme

A vastly simpler approximate Riemann solver is due to Harten, Lax and van Leer
[68]. They assume that we can find lower and upper bounds λ and λ on the charac-
teristic speeds in the solution of the Riemann problem involving states uL and uR.
In practice [48], these bounds are often approximated by

λ = min
j

{
min{λ j L, λ̄ j }

}
and λ = max

j

{
max{λ j R, λ̄ j }

}
where λ j L are the characteristic speeds at uL , λ j R are the characteristic speeds at
uR, and λ̄ j are the eigenvalues of the Roe matrix. The HLL approximate Riemann
solver takes the form

R̃(uL, uR, ξ ) =


uL, ξ < λ

uL R, λ < ξ < λ

uR, λ < ξ.

Here the intermediate state uL R is chosen so that R̃ is conservative. (Note that this
approach is very similar to the Rusanov solver in section 4.13.3.) Conservation
requires∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx = uL

(
λ
t + 
xL

2

)
+ uL R(λ − λ)
t + uR

(
xR

2
− λ
t

)
= 
xLuL + 
xRuR

2
− 
t[f(uR) − f(uL)].

We can solve for uL R to get

uL R = λuR − λuL

λ − λ
− f(uR) − f(uL)

λ − λ
.
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The flux at the state that moves with speed ξ in this approximate Riemann
problem solution can be computed by applying Equation (4.80):

(f − uξ )HLL(uL, uR) = 1

2
{f(uL) + f(uR) − (uL + uR)ξ − |λ − ξ |(uL R − uL) − |λ − ξ |(uR − uL R)}.

(4.96)
If ξ < λ then

(f − uξ )HLL (uL, uR)

= 1

2
{f(uL) + f(uR) − (uL + uR)ξ − (λ − ξ )(uL R − uL) − (λ − ξ )(uR − uL R)}

= 1

2
[f(uL) + f(uR) − 2uLξ + uLλ − uRλ + uL R(λ − λ)]

= 1

2
[f(uL) + f(uR) − 2uLξ + uLλ − uRλuRλ − uLλ − f(uL) + f(uR)]

= f(uL) − uLξ.

Similarly, if ξ > λ then (f − uξ )HLL(uL, uR) = f(uR) − uRξ . Otherwise λ < ξ < λ

and

(f − uξ )HLL(uL, uR)

= 1

2
{f(uL) + f(uR) − (uL + uR)ξ + (λ − ξ )(uL R − uL) − (λ − ξ )(uR − uL R)}

= 1

2
[f(uL) + f(uR) − uLλ − uRλ + uL R(λ + λ)] − uL Rξ

= [f(uL)λ − f(uR)λ + (uR − uL)λλ]
1

λ − λ
− uL Rξ.

It is interesting to note that this corresponds to decomposing the jump in the flux
as follows:

(f(uR) − uRξ ) − (f(uL) − uLξ )

= (uR − uL R)(λ − ξ ) + (uL R − uL)(λ − ξ )

= {
[f(uR) − f(uL)] − [uR − uL]λ

} λ − ξ

λ − λ

+ {
[uR − uL]λ − [f(uR) − f(uL)]

} λ − ξ

λ − λ
. (4.97)

If we need to write the flux difference as a sum of waves for wave propagation (see
section 6.2.6), then we can use equation (4.97). We can also write this equation in
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the form


f − 
uξ =
{[


f − 
uλ
] 1

‖
u‖
λ − ξ

λ − λ

1

‖
u‖
u� + [

uλ − 
f

] 1

‖
u‖
λ − ξ

λ − λ

1

‖
u‖
u�
}


u

≡ AHLL
u (4.98)

for use with wave propagation methods in multiple dimensions (section 7.1.3).
By comparing the formula (4.96) for the Harten-Lax-vanLeer flux with the defi-

nition (4.86) of numerical diffusion relative to centered differences, we see that the
HLL numerical diffusion is

d(uL, uR) = |λ − ξ |(uL R − uL) + |λ − ξ |(uR − uL R)

= |λ − ξ | − |λ − ξ |
λ − λ

[f(uR) − f(uL)] + λ|λ − ξ | − λ|λ − ξ |
λ − λ

[uR − uL] .

If we have a jump in a single wave family, so that f(uR) − f(uL) = [uR − uL] σ ,
where λ ≤ σ ≤ λ, then

d(uL, uR) = |λ − ξ |(σ − λ) + |λ − ξ |(λ − σ )

λ − λ
[uR − uL] .

Thus the HLL approximate Riemann solver adds numerical diffusion in any wave
family that has a jump, even a contact discontinuity. In general, the HLL solver adds
too much numerical diffusion to linearly degenerate waves, though not as much as
the Rusanov flux.

However, the HLL solver does satisfy an entropy inequality. Recall that the
intermediate state uL R was chosen to make R̃ conservative, Whenever S is convex,
Jensen’s inequality and inequality (4.82) show us that∫ 
xR/2

−
xL/2
S

(
R̃

(
uL, uR,

x


t

))
dx ≤ S

(∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx

)
= S

(∫ 
xR/2

−
xL/2
R

(
uL, uR,

x


t

)
dx

)
≤ 
xL S(uL) + 
xR S(uR)

2
− 
t[�(uR) − �(uL)].

4.13.11 HLL Solvers with Two Intermediate States

The HLL solver described in section 4.13.10 does a good job in resolving the
slowest and fastest waves, but not so good a job in resolving waves associated with
intermediate characteristic speeds. This is because the HLL solver is designed to
use information from those two waves only.
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A modification of the HLL solver has been developed by Linde [103], based on
extending ideas presented in [68]. The approximate Riemann solver has the form

R̃HLLM(uL, uR, ξ ) =


uL, ξ < λ

uL∗, λ < ξ < λ∗
uR∗, λ∗ < ξ < λ

uR, λ < ξ

(4.99)

where λ ≤ λ∗ ≤ λ are wavespeeds to be specified below. In order for this Riemann
solver to be conservative, we require


xLuL + 
xRuR

2
− 
t[f(uR) − f(uL)]

=
∫ 
xR/2

−
xL/2
R̃

(
uL, uR,

x


t

)
dx

= uL

(
λ
t + 
xL

2

)
+ uL∗(λ∗ − λ)
t + uR∗(λ − λ∗)
t + uR

(
xR

2
− λ
t

)
.

This condition can be simplified to

f(uR) − f(uL) = (uR − uR∗)λ + (uR∗ − uR∗)λ∗ + (uL∗ − uL)λ. (4.100)

The flux at the state that moves with speed ξ in the Riemann problem is approxi-
mated by (4.80). This produces the following formula for the modified HLL flux:

(f − uξ )HLLM(uL, uR) =


f(uL) − uLξ, 0 < λ

f(uL) + (uL∗ − uL)λ − uL∗ξ, λ < 0 < λ∗
f(uR) − (uR − uR∗)λ − uR∗ξ, λ∗ < 0 < λ

f(uR), λ < 0.

We will require uL∗ and uR∗ to satisfy uR∗ − uL∗ = (uR − uL)α for some scalar
α that will be specified below. This equation says that the jump in the intermediate
states lies in the same direction as the jump between the left and right states. If we
were willing to use information from characteristic directions, we might hope to
do better, but one purpose of this approximate Riemann solver is to avoid using
information from characteristic directions. The scalar α will be determined in such
a way that α = 1 for isolated discontinuities, and α = 0 if there is no discontinuity.

We now have a linear system for uL∗ and uR∗:[
I(λ∗ − λ) I(λ − λ∗)

−I I

] [
uL∗
uR∗

]
=

[
uRλ − uLλ − f(uR) + f(uL)

(uR − uL)α

]
.
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We can solve this linear system to get[
uL∗
uR∗

]
=

[
I I(λ∗ − λ)
I I(λ∗ − λ)

] [
uRλ − uLλ − f(uR) + f(uL)

(uR − uL)α

]
1

λ − λ

=
[

uRλ − uLλ − f(uR) + f(uL) − (uR − uL)(λ − λ∗)α
uRλ − uLλ − f(uR) + f(uL) + (uR − uL)(λ∗ − λ)α

]
1

λ − λ
.

In order to evaluate the flux, we will need to compute

uL∗ − uL = {
[uR − uL](λ(1 − α) + λ∗α) − [f(uR) − f(uL)]

}
/(λ − λ) (4.101a)

uR − uR∗ = {−[uR − uL](λ(1 − α) + λ∗α) + [f(uR) − f(uL)]
}
/(λ − λ). (4.101b)

Then equation (4.100) implies that

(f(uR) − uRξ ) − (f(uL) − uLξ ) = [f(uR) − f(uL)] − [uR − uL]ξ

= [(uR − uR∗] (λ − ξ ) + [(uR∗ − uL∗] (λ∗ − ξ ) + [(uL∗ − uL] (λ − ξ ). (4.102)

This equation can be used with wave propagation methods (see Section 6.2.6 below.)
In order to complete the evaluation of the flux, we need expressions for λ, λ, λ∗

and α. Linde assumes that a strictly convex entropy S(u) is available, and computes

λ∗ =
[

∂S
∂u (uR) − ∂S

∂u (uL)
]
[f(uR) − f(uL)][

∂S
∂u (uR) − ∂S

∂u (uL)
]
[uR − uL]

.

Next, he computes

λ = min{λ∗, λ1L , λ1R} and λ = max{λ∗, λmL , λm R},
where the eigenvalues at the left and right states have been assumed to be ordered
from smallest to largest.

The definition of λ∗ implies that[
∂S

∂u
(uR) − ∂S

∂u
(uL)

]
([f(uR) − f(uL)] − [uR − uL]λ∗) = 0.

Since S is strictly convex, we must have that ∂2 S
∂u∂u is positive definite, and that[

∂S

∂u
(uR) − ∂S

∂u
(uL)

]
= P[uR − uL]

for some positive-definite matrix P, as discussed in the proof of theorem 4.13.13.
The Pythagorean theorem implies that

1 = [uR − uL]�P[uR − uL]

[f(uR) − f(uL)]�P[f(uR) − f(uL)]
λ2

∗

+ [f(uR) − f(uL) − (uR − uL)λ∗]�P[f(uR) − f(uL) − (uR − uL)λ∗]

[f(uR) − f(uL)]�P[f(uR) − f(uL)]
.
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The first term on the right represents the relative strength of waves moving with
speed λ∗, while the second term represents the relative strength of waves moving
with different speeds. We will choose α2 to be an approximation to the first term.

The difficulty is that the matrix P is not available. Linde [103] suggests approxi-
mating P by the diagonal part P̃ of ∂2 S

∂u∂u evaluated at 1
2 (uL + uR). His final expression

is

α =
{

([u]�P̃[f])2

[f]�P̃[f][u]�P̃[u]
, [S]λ∗ − [�] ≥ 0 (shock)

0, [S]λ∗ − [�] < 0 (rarefaction)

where [u] = uR − uL , and so on.
Let us use equations (4.80) and (4.99) to summarize our results:

(f − uξ )HLLM(uL, uR) =


f(uL) − uLξ, ξ < λ

f(uL) − uLξ + (uL∗ − uL)(λ − ξ ), λ < ξ < λ∗
f(uR) − uRξ − (uR − uR∗)(λ − λ∗), λ∗ < 0 < λ

f(uR) − uRξ, λ < ξ

In these expressions, the differences involving the intermediate states can be com-
puted by equations (4.101).

An alternative when an entropy function is not available would be to take

λ∗ = [uR − uL]�[f(uR) − f(uL)]

[uR − uL]�[uR − uL]
.

This corresponds to taking P = I. Then the definition of α would become

α(uL, uR) =
{

([u]�[f])2

‖[f]‖2‖[u]‖2 , if discontinuity would be admissible
0, otherwise.

4.13.12 Approximate Riemann Solver Recommendations

Our discussion of approximate Riemann solvers has been somewhat long. In order to
give the student some guidance, we will make the following recommendations. For
problems in which the exact Riemann problem solution is inexpensive, Godunov’s
method should use the exact Riemann solver. Burgers’ equation is an example of
such a case. For those problems in which the exact Riemann problem solution is
expensive but a Roe solver is available, the Roe solver should be accompanied with
one of the modifications of the Roe solver or a numerical diffusion. Shallow water,
gas dynamics, plasticity and the Schaeffer–Schechter–Shearer model are examples
of conservation laws for which Roe solvers are available. For Lagrangian solid
mechanics, the characteristic speeds come in plus/minus pairs, and a Roe solver
is almost never available. Here the Harten–Lax–vanLeer solver or Rusanov solver
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(a) Exact (b) Harten–Hyman

(c) Harten–Lax–vanLeer (d) Linde

Fig. 4.17 Various Riemann solvers for sod shock tube problem: Density vs. x/t

could be used. Another useful option is the weak wave solver, with characteristic
directions and speeds taken from the left state for positive speeds and from the
right state for negative wave speeds. The vibrating string is an example of this
situation.

The polymer model and the three-phase Buckley–Leverett model are especially
challenging. In both cases, characteristic speeds can coalesce with a loss of a linearly
independent characteristic direction. This makes approximate Riemann solvers
especially difficult to construct. We have used the Harten–Lax–vanLeer scheme
for such problems with some success. An attempt to use characteristic directions
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(a) Exact (b) Weak wave

(c) Harten–Lax–vanLeer (d) Linde

Fig. 4.18 Various Riemann solvers for plasticity: elastic strain vs. x/t

for such problems was made in [13], but this approach has not proved to be robust
enough for general use.

Executable 4.13-24: guiGodunov has been provided for testing Riemann solvers.
The user can select input parameters by dragging down on “View” and releas-
ing on “Main.” The physical model can be selected under “Riemann Problem
Parameters.” In particular, the user can choose to work with shallow water, gas
dynamics, magnetohydrodynamics, vibrating string, plasticity, polymer flooding,
three-phase Buckley-Leverett flow or the Schaeffer-Schechter-Shearer model. Spe-
cific input parameters for the individual models can also be selected. The user can

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiGodunov
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select the approximate Riemann solver under “Numerical Method Parameters.”
These options include Godunov (if an exact Riemann problem solution is avail-
able), weak wave, Colella-Glaz, Osher-Solomon, Roe, Harten-Hyman, Harten-Lax-
vanLeer and Linde. Some options are unavailable for certain models.

Figures 4.17 and 4.18 provide evidence that most of the approximate Riemann
solvers perform fairly much the same for most of our case studies. Of course, the
Roe solvers fail for transonic rarefactions without the Harten–Hyman modification.
An exception is the plasticity model, for which only the exact Riemann problem
solver and the weak wave approximation seem to produce the correct results. Here
the failure may be due to hysteresis effects.

Details of how the Riemann solvers are implemented can be found by examin-
ing the code. The code Program 4.13-53: shallow water.f contains routines to compute
conserved quantities from the flux variables and vice versa, to compute the fluxes
from the flux variables, to compute characteristic speeds, to solve Riemann prob-
lems, to perform various approximate Riemann problem solvers, and to select initial
data for Riemann problems. Students can also view code for Program 4.13-54: gas
dynamics or Program 4.13-55: magnetohydrodynamics or Program 4.13-56: vibrating string
or Program 4.13-57: plasticity or Program 4.13-58: polymer or Program 4.13-59: three-phase
Buckley-Leverett flow or the Program 4.13-60: Schaeffer-Schechter-Shearer model. The
main program for this executable is Program 4.13-61: GUIGodunov.C. As always, a list
of all of the files in the directory can be obtained by deleting the file name from the
web link (i.e., backing up to the first “/”) in the browser window.

Exercises for 4.13

4.13.1 Describe the analogue of the weak wave Riemann solver for the shallow water equations.
Compare it to Rusanov’s scheme by programming both schemes and testing them for a problem
involving a transonic rarefaction and a problem involving a transonic shock at various values
of CFL. Use 100 grid cells in your calculations. Plot the numerical solution versus versus x/t
in all cases, at a time at which the wave has traveled across 80% of the computational domain.
Plot h, v and the characteristic speeds versus x/t . Also plot h versus v at the final timestep.

4.13.2 Trangenstein and Colella [162] suggested using the following weak wave solver for solid
mechanics. If Y is any nonsingular matrix with corresponding eigenvalues �, then solve Yd =
wR − wL for the characteristic expansion coefficients d of the jump in the flux variables. The
state in the solution of the Riemann problem moving with zero speed was approximated either
by wL + ∑

i :λi <0 Yei ei · d or by wR − ∑
i :λi >0 Yei ei · c.

(a) Describe the general approximate Riemann solver R̃(wL, wR, ξ ) being proposed here.
(b) Are the two values for the solution of the Riemann problem the same?
(c) Under what circumstances is this approximate Riemann solver conservative?

4.13.3 LeVeque [97, p. 333f] suggested using the following weak wave solver. If X is any non-
singular matrix with corresponding real eigenvalues �, then solve Xz = f(uR) − f(uL) for the

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/shallow_water.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/gas_dynamics.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/mhd.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/string.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/plasticity.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/polymer.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/buckley_leverett.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/schaeffer_shearer.f
http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/GUIGodunov.C
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characteristic expansion coefficients z of the jump in the flux. The flux at the solution of the Rie-
mann problem moving with zero speed was approximated either by f(uL) + ∑

i :λi <0 Xei ei · zi

or by f(uR) − ∑
i :λi >0 Xei ei · zi .

(a) Describe the general approximate Riemann solver R̃(uL, uR, ξ ) being proposed here.
(b) Are the two values for the flux at the solution of the Riemann problem the same?
(c) Is is possible to decide if this approximate Riemann solver is conservative?

4.13.4 The initial guess in the Colella–Glaz Riemann solver is based on a weak wave approximation.
The idea is the following. Using the results from section 4.4.3, we will decompose the jump
between the states in terms of the characteristic directions from left and right: ρL 1 ρR

−cL 0 cR

ρLc2
L 0 ρRc2

R

 y1

y2

y3

 =
ρR − ρL

vR − vL

pR − pL

.

Show that the initial guess in the Colella–Glaz Riemann solver takes v and p from the weak
wave approximation to the state at the contact discontinuity, given byρ

v
p

 =
ρL

vL

pL

 +
 ρL

−cL

ρLc2
L

 y1.

4.13.5 Show that in the Colella–Glaz Riemann solver, ζL = − dvL (p)
dp and ζR = − dvR (p)

dp . Then show
that the iteration in their Riemann solver is a Newton iteration.

4.13.6 Compare the Colella–Glaz Riemann solver to the exact solution to the Riemann problem for
the following test problems:
(a) a Mach 2 shock moving to the right into air with density 1, velocity 0 and pressure 1

(i.e., pR = 1, vR = 0, ρR = 1; pL = 9/2, ρL = 8/3, vL = √
35/16);

(b) a stationary shock (σ = 0) in air with density 1, velocity −2 and pressure 1 on the right
(i.e., pR = 1, vR = −2, ρR = 1; pL = 19/6, ρL = 24/11, vL = −11/12);

(c) a rarefaction moving to the right from air with density 1, pressure 1 and velocity 0 into a
vacuum. (i.e., pL = 1, vL = 0, ρL = 1; pR = 0, ρR = 0, vR = √

35).
(d) the Colella–Woodward interacting blast wave problem [177]. The gas is assumed to be

air (γ = 1.4) confined between two reflecting walls at x = 0 and x = 1. Initially, ρ = 1
and v = 0 everywhere. The initial condition for pressure consists of three constant states:

p =


1000., 0 < x < 0.1
0.01, 0.1 < x < 0.9
100., 0.9 < x < 1.0.

Plot the numerical results for times 0.01, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034 and
0.038. Plot ρ, v, p and the temperature versus x . Try 100, 1000 and 10,000 cells.

4.13.7 Program the Roe solver for gas dynamics, and compare it to the exact solution to the Riemann
problem. Plot the numerical solution (i.e., ρ, v, p and characteristic speeds v ± c versus x/t),
at a time for which the fastest wave is near the boundary of the computational domain, for the
following problems:
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(a) a Mach 2 shock moving to the right into air with density 1, velocity 0 and pressure 1 (i.e.,
pR = 1, vR = 0, ρR = 1; pL = 9/2, ρL = 8/3, vL = √

35/16);
(b) a stationary shock (σ = 0) in air with density 1, velocity −2 and pressure 1 on the right

(i.e., pR = 1, vR = −2, ρR = 1; pL = 19/6, ρL = 24/11, vL = −11/12);
(c) a rarefaction moving to the right from air with density 1, pressure 1 and velocity 0 into a

vacuum. (i.e., pL = 1, vL = 0, ρL = 1; pR = 0, ρR = 0, vR = √
35);

(d) the Sod shock tube problem [131, page 116]. This is a Riemann problem for air (γ = 1.4)
in which the left state is given by ρL = 1, vL = 0, pL = 1 and the right state is ρR = 0.125,
vR = 0, pR = 0.1. Perform the calculation with 100 and 1000 cells. Plot ρ, v, p and the
characteristic speeds versus x/t at a time for which the fastest wave is near the boundary
of the computational domain;

(e) the Colella-Woodward interacting blast wave problem [177]. The gas is assumed to be
air (γ = 1.4) confined between two reflecting walls at x = 0 and x = 1. Initially, ρ = 1
and v = 0 everywhere. The initial condition for pressure consists of three constant states:

p =


1000., 0 < x < 0.1
−0.01, 0.1 < x < 0.9
−100., 0.9 < x < 1.0.

Plot the numerical results for times 0.01, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034 and
0.038. Plot ρ, v, p and the temperature versus x . Try 100, 1000 and 10,000 cells.

4.13.8 Suppose that we want to develop a Roe solver for the vibrating string, described in Section 4.8.
Show that the Roe matrix should take the form

Ā =
[

0 −A12

−I 1
ρ

0

]
.

If the deformation gradients at the left and right states are fL and fR, and if

f(α) = fRα + fL(1 − α)

then show that A12 should be given by

A12 =
∫ 1

0

[
I
τ (‖f(α)‖
‖f(α)‖ + f(α)

‖f(α)‖
{
τ ′(‖f(α)‖) − τ (‖f(α)‖

‖f(α)‖
}

f(α)�

‖f(α)‖
]

dα.

How hard is it to compute α?
4.13.9 Show that the plasticity model, described in section 4.9, has Roe matrix

Ā =
[

0 −[s]/[ε]
−1 0

]
.

Here s is the stress, ε is the strain, and [u] = uR − uL is the jump in some state u.
4.13.10 Choose one of the models in the case studies, and examine the available approximate Riemann

solvers in combination with Godunov’s scheme. Test your Riemann solvers for problems
involving both shocks and rarefactions. If possible, test your solvers for a problem involving a
transonic rarefaction. Which solvers are most accurate in general? Which are most efficient?
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4.13.11 Modify the Godunov scheme to solve Riemann problems on a moving mesh, designed to expand
in a self-similar fashion. To do this, generate a uniform mesh in wave speeds covering the range
of wave speeds in your Riemann problem. Next, set the initial mesh locations to be equal to
the mesh speeds (i.e., the mesh is initialized at time t = 1). Now, run Godunov’s method with
mesh expanding at the given mesh speeds; in other words, solve the Riemann problems to find
the flux f − uξ associated with the state that moves with speed ξ , which is the speed associated
with each mesh point. In this way, the numerical method should reach a steady state on the
self-similar grid, and the numerical solution should never reach the numerical boundary.



5

Methods for Scalar Laws

In Chapters 3 and 4 we examined hyperbolic partial differential equations and some
basic numerical methods to solve these problems. In this chapter we will develop
theory to help us understand the convergence of these methods, and use the theory
to help us develop more accurate methods.

5.1 Convergence

It is important to determine analytically whether our numerical methods should
converge. This question is reasonably easy to answer for linear methods applied to
linear advection, which will be the topic for this section. Later, we will examine
whether nonlinear schemes converge, and whether they converge to the correct
solution.

5.1.1 Consistency and Order

Suppose that we want to approximate the solution of the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

by means of an explicit numerical method

un+1
i = H (un

i−k, . . . , un
i+k ; 
tn+1/2)

on a mesh with cell widths, cell centers and timesteps given by (respectively)


xi = xi+1/2 − xi−1/2, xi = 1

2
(xi−1/2 + xi+1/2), 
tn+1/2 = tn+1 − tn.

We shall say that the pointwise error in the method is en
i = un

i − u(xi , tn). We
should not expect the pointwise error to go to zero uniformly as the mesh is refined
in the neighborhood of a discontinuity. Typically, the numerical solution selects
some intermediate state as its approximate value for the solution at the discontinuity,

326
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and the error in the solution at such points does not go to zero. Instead, we will
consider other measures of the error in the solution.

Definition 5.1.1 For suitable functions w(x), the 1-norm is

‖w‖1 ≡
∫ ∞

−∞
|w(x)| dx,

and for suitable functions v(x, t) the 1-norm is

‖v‖1,T ≡
∫ T

0

∫ ∞

−∞
|v(x, t)| dx dt.

This suggests that we define the spaces of functions L1 ≡ {w(x) : ‖w‖1 < ∞} and
L1,T ≡ {v(x, t) : ‖v‖1,T < ∞}. These spaces can be taken to be the completions
of C∞

0 functions with respect to the appropriate norms.

For piecewise constant functions, such as we typically see in finite difference numer-
ical methods for conservation laws, the 1-norm of the pointwise error simplifies
to

‖en‖1 ≡
∑

i

|en
i |
xi .

In order to estimate the error in the numerical solution before it is computed, we
will investigate the error in the numerical approximation to the partial differential
equation.

Definition 5.1.2 If the solution u(x, t) of the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

is approximated by the explicit numerical method

un+1
i = H (un

i−k, . . . , un
i+k ; 
tn+1/2),

then local truncation error in the method is

for all x ∈ (xi−1/2, xi+1/2)

L(x, t ; 
t) = 1


t
[u(x, t + 
t) − H (u(xi−k, t), . . . , u(xi+k, t); 
t)].

A numerical method with local truncation error L is consistent if and only
if for all x and t in the problem, the local truncation error L(x, t ; 
t) satisfies
‖L(x, t ; 
t)‖1 → 0 as 
t → 0.
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A numerical method with local truncation error L has order p if and only if for
all sufficiently smooth initial data with compact support (meaning that the initial
data is identically zero for |x | sufficiently large), we have that

there exists T >0, there exists 
t0 > 0, there exists C > 0, such that

for all 
t < 
t0 for all 0 < t < T,

‖L(x, t ; 
t)‖1 ≤ C
t p.

5.1.2 Linear Methods and Stability

Linear methods allow us to study the local truncation error more easily than others.
By definition, these methods satisfy

for all un for all vn, H
(
un

i−k + vn
i−k, . . . , un

i+k + vn
i+k, 
t

)
=H

(
un

i−k, . . . , un
i+k, 
t

) + H
(
vn

i−k, . . . , v
n
i+k, 
t

)
.

Since we can write the exact solution in terms of the method and the truncation
error, i.e.

for all xi−1/2 < x < xi+1/2, u(x, t + 
t) = H (u(xi−k, t), . . . , u(xi+k, t) 
t) + L(x, t ; 
t)
t,

the pointwise error at the cell center xi for a linear method is

en+1
i ≡ un+1

i − u(xi , tn + 
tn+1/2)

= H
(
un

i−k − u(xi−k, tn), . . . , un
i+k − u(xi+k, tn); 
tn+1/2

)
− 
t L(xi , tn; 
tn+1/2).

The solution of this linear recurrence leads to the formula

en
i =

{
n−1∏
�=0

H (·, . . . , ·; 
t�+1/2)

}
(e0)

−
n−1∑
i=0


t i+1/2

{
n−1∏
�=i

H (·, . . . , ·; 
t�+1/2)

}
(L(·, t i ; 
t i+1/2)). (5.1)

In this formula, the products indicate composition of the linear operators
H (·, . . . , ·; 
t�+1/2); most of the arguments for these linear operators have been
omitted to simplify the expressions. We will denote the norms of these linear oper-
ators by

‖H (·, . . . , ·; 
t�+1/2)‖1 ≡ sup
u�

‖H (u�
i−k, . . . , u�

i+k ; 
t�+1/2)‖1

‖u�‖1
.

The following lemma is similar to Theorem 2.4.5.
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Lemma 5.1.3 Suppose that the scheme un+1
i = H (un

i−k, . . . , un
i+k ; 
tn+1/2)

involves a linear method H. Further, suppose that H is bounded close to 1, in
the sense

there exists 
t0 > 0 there exists α > 0 for all 
t < 
t0 ‖H (·, . . . , ·; 
t)‖1 ≤ 1 + α
t. (5.2)

Then the linear method H is Lax–Richtmyer stable meaning that

for all T > 0 there exists CT > 0 there exists 
t0 > 0 there exists n such that

if for all 0 ≤ � < n and 
t�+1/2 < 
t0 and tn =
n−1∑
�=0


t�+1/2 ≤ T

then

∥∥∥∥∥n−1∏
�=0

H (·, . . . , ·; 
t�+1/2)

∥∥∥∥∥
1

≤ CT ,

and if L is the local truncation error (see Definition 5.1.2), then the pointwise error
satisfies

for all T > 0 there exists 
t0 > 0 there exists n such that

if for all 0 ≤ � < n we have 
t�+1/2 < 
t0 and tn ≡
n−1∑
i=0


t i+1/2 ≤ T

then ‖en‖1 ≤ eαT ‖e0‖1 + T eαT max
�

{‖L(·, t�, 
t�+1/2)‖1.

Proof Assumption (5.2) implies that∥∥∥∥∥n−1∏
�=0

H (·, . . . , ·; 
t�+1/2)

∥∥∥∥∥
1

≤
n−1∏
�=0

(1 + α
t�+1/2) ≤ eα
∑n−1

�=0 
t�+1/2 ≤ eαT .

From this and the solution (5.1) of the linear recurrence for the scheme, it follows
that

‖en‖1 ≤ eαT ‖e0‖1 + eαT
n−1∑
i=0


t i+1/2‖L(·, t i ; 
t i+1/2)‖1

≤ eαT ‖e0‖1 + T eαT max
�

{‖L(·, t�; 
t�+1/2)‖1
}
.

�

Convergence up to a given time T will follow if the initial error and the maxi-
mum truncation error tend to zero, as the mesh width and timestep tends to zero.
Further, the order of the scheme (see Definition 5.1.2) will determine the rate of
convergence.
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5.1.3 Convergence of Linear Methods

Recall that in Theorems 2.7.14 and 2.7.15 we proved that stability is necessary and
sufficient for convergence. This statement is limited to consistent linear schemes
(see Definition 2.7.5) applied to scalar partial differential equations involving a
single derivative in time (and subject to modest assumptions on the symbols of the
partial differential equation and the scheme).

Example 5.1.4 Consider the explicit upwind scheme for linear advection. We
approximate the solution of the linear advection equation

∂u

∂t
+ λ

∂u

∂x
= 0

by computing the explicit upwind solution

un+1
i = un

i − λ
t


x
[un

i − un
i−1] = λ
t


x
un

i−1 +
(

1 − λ
t


x

)
un

i ≡ H (un
i−1, un

i ; 
t).

The local truncation error (see Definition 5.1.2) is

L(x, t ; 
t) = 1


t

[
u(x, t + 
t) − λ
t


x
u(x − 
x, t) −

(
1 − λ
t


x

)
u(x, t)

]
≈ 1


t

[{
u(x, t) + ∂u

∂t

t + ∂2u

∂t2


t2

2

}
− λ
t


x

{
u(x, t) − ∂u

∂x

x + ∂2u

∂x2


x2

2

}
−

(
1 − λ
t


x

)
u(x, t)

]
=

(
∂u

∂t
+ λ

∂u

∂x

)
+

(
∂2u

∂t2


t

2
− ∂2u

∂x2

λ
x

2

)
=

(
∂u

∂t
+ λ

∂u

∂x

)
+ λ

2
(λ
t − 
x)

∂2u

∂x2
.

If ‖ ∂2u
∂x2 ‖ is bounded, and if 
t → 0 as 
x → 0, then it follows that the method is

consistent.
Since the method is linear, we can easily investigate its stability. Note that if

1 > λ
t/
x then ‖H‖1 ≤ 1:

‖un+1‖1 ≡
∑

i

|un+1
i |
x =

∑
i

∣∣∣∣λ
t


x
un

i−1 +
(

1 − λ
t


x

)
un

i

∣∣∣∣
≤ λ
t


x

∑
i

|un
i−1|
x +

(
1 − λ
t


x

) ∑
i

|un
i |
x =

∑
i

|un
i |
x ≡ ‖un‖1.
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Since ‖H n‖1 ≤ 1, this shows that the method is stable if λ
t/
x < 1. Since the
explicit upwind scheme is consistent and stable for λ
t/
x < 1, the Lax equiva-
lence theorem 2.7.14 show that it is convergent under these restrictions on 
t and

x . In particular, note that 
t must approach zero at the same rate as 
x ; in other
words, 
t < 
x/λ. It is not hard to see either from the proof of the Lax Equivalence
Theorem 2.7.14 or from Lemma 5.1.3 that the scheme will have order one under
these circumstances.

Exercises for 5.1

5.1.1 Consider the scheme un+1
i = un

i for the linear advection equation.
(a) Is this a linear method?
(b) Under what conditions is this method stable?
(c) Under what conditions is this method consistent?
(d) Under what conditions is this method convergent?
(e) What is the order of this scheme?

5.1.2 Answer the questions of the first exercise for the explicit centered difference scheme applied to
the linear advection equation.

5.1.3 Answer the questions of the first exercise for the Lax–Friedrichs scheme applied to linear
advection.

5.1.4 Answer the questions of the first exercise for the Lax–Wendroff scheme applied to linear
advection.

5.2 Entropy Conditions and Difference Approximations

In Section 5.1 we studied linear finite difference methods. This study of linear
methods necessarily restricted our attention to linear conservation laws. In this
section, we will begin to develop the tools we need to understand methods for
nonlinear conservation laws.

5.2.1 Bounded Convergence

Before stating our next result, we need a couple of definitions.

Definition 5.2.1 A numerical flux function F(un
i−k+1, . . . , un

i+k) is consistent with
a physical flux f (u) if and only if for all w we have F(w, . . . , w) = f (w).

The piecewise constant function U (x, t) converges to u(x, t) in L1 if
and only if over every bounded set � = [a, b] × [0, T ] we have that when-
ever the mesh is sufficiently small then the error in the numerical solution
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is small:

for all T > 0 for all − ∞ < a < b < ∞ for all ε > 0

there exists h > 0 there exists δ > 0 there exists J ≥ b − a

h
there exists N ≥ T

δ

so that a = x−1/2 < x1/2 < . . . < xJ+1/2 = b with for all 0 ≤ i ≤ J 
xi ≡
xi+1/2 − xi−1/2 ≤ h

and 0 = t0 < t1 < . . . < t N = T with for all 0 ≤ n < N 
tn+1/2 ≡ tn+1 − tn ≤ δ

implies that
∫ T

0

∫ b

a
|U (x, t) − u(x, t)| dx dt < ε.

If so, then we write ‖U − u‖1,� → 0.

Theorem 5.2.2 (Lax–Wendroff) [90] Consider the conservative difference scheme

un+1
i = un

i − 
tn+1/2


xi

[
f̃ (un

i , un
i+1) − f̃ (un

i−1, un
i )

]
approximating the conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0.

Assume that both f and f̃ are continuous, and that the numerical flux f̃ is consistent
(Definition 5.1.2). Given any ε > 0, suppose that we can choose a mesh in space
and initial data for the scheme so that

∞∑
i=−∞

∫ xi+1/2

xi−1/2

‖u0
i − u(x, 0)‖ dx < ε.

Further, suppose that the numerical solution un
i converges to the function u in the

following sense (c.f. Definition 5.2.1): given any ε > 0 we can choose a mesh in
space and time, apply the numerical scheme and find that

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

‖un
i − u(x, t)‖ dx dt < ε. (5.3)

Finally, suppose that u is locally bounded, meaning that

for all compact K ⊂ R × (0, ∞) there exists Cu,K > 0 so that max
(x,t)∈K

‖u(x, t)‖ ≤ Cu,K ,

and that the numerical solution is locally bounded, meaning that

for all compact K ⊂ R × (0, ∞) there exists Cũ,K > 0 so that max
(xi ,tn)∈K

‖un
i ‖ ≤ Cũ,K ,

Then u(x, t) is a weak solution of the conservation law.
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Proof First, we will perform a computation to set up the integrals we need to exam-
ine for limits. Let φ(x, t) ∈ C∞

0 (R × (0, ∞)). Define φn
i = φ(xi , tn), and assume

that the support of φ is contained in the compact set K ⊂ R. Then

0 =
∞∑

n=0

∞∑
i=−∞

φn
i [un+1

i − un
i ]
xi

+
∞∑

n=0

∞∑
i=−∞


tn+1/2


xi
φn

i [ f̃ (un
i , un

i+1) − f̃ (un
i−1, un

i )]
xi

=
∞∑

i=−∞

[ ∞∑
n=1

φn−1
i un

i −
∞∑

n=0

φn
i un

i

]

xi

+
∞∑

n=0


tn+1/2

[ ∞∑
i=−∞

φn
i−1 f̃ (un

i−1, un
i ) −

∞∑
i=−∞

φn
i f̃ (un

i−1, un
i )

]

= −
∞∑

i=−∞

∞∑
n=1

φn
i − φn−1

i


tn+1/2
un

i 
xi 
tn+1/2 −
∞∑

i=−∞
φ0

i u0
i 
xi

−
∞∑

n=0

∞∑
i=−∞

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

f̃ (un
i−1, un

i )

xi−1 + 
xi

2

tn+1/2

≡ −Su − S0 − S f . (5.4)

Let us discuss the convergence of each of these sums. First, we will deal with the
initial conditions in S0. We note that

∞∑
i=−∞

φ0
i u0

i 
xi −
∫ ∞

−∞
φ(x, 0)u(x, 0) dx

=
∞∑

i=−∞

∫ xi+1/2

xi−1/2

φ(xi , 0)u0
i − φ(x, 0)u(x, 0) dx

=
∞∑

i=−∞

∫ xi+1/2

xi−1/2

φ(xi , 0)[u0
i − u(x, 0)] + [φ(xi , 0) − φ(x, 0)]u(x, 0) dx .

Given ε > 0, we can choose the mesh and initial data so that∥∥∥∥∥ ∞∑
i=−∞

∫ xi+1/2

xi−1/2

φ(xi , 0)[u0
i − u(x, 0)] dx

∥∥∥∥∥ ≤
∞∑

i=−∞

∫ xi+1/2

xi−1/2

φ(xi , 0)‖u0
i − u(x, 0)‖ dx

≤ ‖φ‖∞
∞∑

i=−∞

∫ xi+1/2

xi−1/2

‖u0
i − u(x, 0)‖ dx <

ε

6
.
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We can further restrict the mesh, if necessary, so that∥∥∥∥∥ ∞∑
i=−∞

∫ xi+1/2

xi−1/2

[φ(xi , 0) − φ(x, 0)]u(x, 0) dx

∥∥∥∥∥
≤

∞∑
i=−∞

∫ xi+1/2

xi−1/2

|φ(xi , 0) − φ(x, 0)| ‖u(x, 0)‖ dx

=
∞∑

i=−∞

∫ xi+1/2

xi−1/2

|
∫ xi

x

∂φ

∂x
(ξ, 0) dξ | ‖u(x, 0)‖ dx

≤ Cu,K

∞∑
i=−∞

∫ xi

xi−1/2

∫ xi

x

∣∣∣∣∂φ

∂x
(ξ, 0)

∣∣∣∣ dξ dx

+ Cu,K

∞∑
i=−∞

∫ xi+1/2

xi

∫ x

xi

∣∣∣∣∂φ

∂x
(ξ, 0)

∣∣∣∣ dξ dx

= Cu,K

[ ∞∑
i=−∞

∫ xi

xi−1/2

∣∣∣∣∂φ

∂x
(ξ, 0)

∣∣∣∣ ∫ ξ

xi−1/2

dx dξ

+
∞∑

i=−∞

∫ xi+1/2

xi

∣∣∣∣∂φ

∂x
(ξ, 0)

∣∣∣∣ ∫ xi+1/2

ξ

dx dξ

]

≤ Cu,K

∞∑
i=−∞

∫ xi+1/2

xi−1/2

∣∣∣∣∂φ

∂x
(ξ, 0)

∣∣∣∣ 
xi dξ ≤ Cu,K max
i

{
xi }
∥∥∥∥∂φ

∂x
(·, 0)

∥∥∥∥
1

<
ε

6
.

Thus∥∥∥∥S0−
∫ ∞

−∞
φ(x, 0)u(x, 0)dx

∥∥∥∥ ≤
∥∥∥∥∥ ∞∑

i=−∞

∫ xi+1/2

xi−1/2

φ(xi , 0)[u0
i − u(x, 0)] dx

∥∥∥∥∥
+

∥∥∥∥∥ ∞∑
i=−∞

∫ xi+1/2

xi−1/2

[φ(xi , 0) − φ(x, 0)]u(x, 0) dx

∥∥∥∥∥<
ε

3
. (5.5)

Let us examine the terms related to time derivatives of φ, namely the sum Su in
(5.4) Note that

∞∑
n=1

∞∑
i=−∞

φn
i − φn−1

i


tn−1/2
un

i 
xi 
tn+1/2 −
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
(x, t)u(x, t) dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

φn
i − φn−1

i


tn−1/2
un

i − ∂φ

∂t
(x, t)u(x, t) dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

φn
i − φn−1

i


tn−1/2
[un

i − u(x, t)] dx dt

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

[
φn

i − φn−1
i


tn−1/2
− ∂φ

∂t
(x, t)

]
u(x, t) dx dt

≡ Su1 + Su2. (5.6)
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Let us examine Su,1 first. Given ε > 0, we can further restrict the mesh so that

‖Su,1‖ =
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

φn
i − φn−1

i


tn−1/2
[un

i − u(x, t)] dx dt

∥∥∥∥∥
≤

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∣φn
i − φn−1

i


tn−1/2

∣∣∣∣∣ ‖un
i − u(x, t)‖ dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣ 1


tn−1/2

∫ tn

tn−1

∂φ

∂t
(xi , s) ds

∣∣∣∣ ‖un
i − u(x, t)‖ dx dt

≤
∥∥∥∥∂φ

∂t

∥∥∥∥
∞

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

‖un
i − u(x, t)‖ dx dt <

ε

6
. (5.7)

Next, let us bound Su,2. Since u is locally bounded, we can further restrict the mesh
so that

‖Su,2‖ =
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

[
φn

i − φn−1
i


tn−1/2
− ∂φ

∂t

]
u(x, t) dx dt

∥∥∥∥∥
≤ Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∣φn
i − φn−1

i


tn−1/2
− ∂φ

∂t

∣∣∣∣∣ dx dt

= Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣ 1


tn−1/2

∫ tn

tn−1

∂φ

∂t
(xi , s)− ∂φ

∂t
(x, t) ds

∣∣∣∣ dx dt

≤ Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∂φ

∂t
(xi , s)− ∂φ

∂t
(x, s)

∣∣∣∣ ds dx dt

+ Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∂φ

∂t
(x, s)− ∂φ

∂t
(x, t)

∣∣∣∣ ds dx dt

= Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∫ xi

x

∂2φ

∂t∂x
(ξ, s) dξ

∣∣∣∣ ds dx dt

+ Cu,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∫ s

t

∂2φ

∂t2
(x, τ ) dτ

∣∣∣∣ ds dx dt

= Bu2a + Bu2b. (5.8)
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We will change order of integration to estimate both of these bounds. First

Bu2a =
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∫ xi

x

∂2φ

∂t∂x
(ξ, s) dξ

∣∣∣∣ ds dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1/2

∣∣∣∣ ∂2φ

∂t∂x
(ξ, s)

∣∣∣∣ ∫ tn

tn−1

∫ ξ

xi−1/2

1


tn−1/2
dx dt dξ ds

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi

∣∣∣∣ ∂2φ

∂t∂x
(ξ, s)

∣∣∣∣ ∫ tn

tn−1

∫ xi+1/2

ξ

1


tn−1/2
dx dt dξ ds

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1/2

∣∣∣∣ ∂2φ

∂t∂x
(ξ, s)

∣∣∣∣ (ξ − xi−1/2) dξ ds

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi

∣∣∣∣ ∂2φ

∂t∂x
(ξ, s)

∣∣∣∣ (xi+1/2 − ξ ) dξ ds

≤
∥∥∥∥ ∂2φ

∂t∂x

∥∥∥∥
1

max
i


xi .

Next,

Bu2b =
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

1


tn−1/2

∫ tn

tn−1

∣∣∣∣∫ s

t

∂2φ

∂t2
(x, τ ) dτ

∣∣∣∣ ds dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∂2φ

∂t2
(x, τ )

∣∣∣∣ ∫ s

tn−1

∫ τ

tn−1

1


tn−1/2
dt dτ dx ds

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∂2φ

∂t2
(x, τ )

∣∣∣∣ ∫ tn

s

∫ tn

τ

1


tn−1/2
dt dτ dx ds

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∂2φ

∂t2
(x, τ )

∣∣∣∣ (τ − tn−1)(tn − τ )


tn−1/2
i dx dτ

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

∣∣∣∣∂2φ

∂t2
(x, τ )

∣∣∣∣ (τ − tn−1)(tn − τ )


tn−1/2
i dx dτ

≤ 2

∥∥∥∥∂2φ

∂t2

∥∥∥∥
1

max
n


tn−1/2.

Putting the inequality (5.8) together with the bounds on Bu2a and Bu2b, we see that
we can restrict the mesh and timesteps so that

‖Su,2‖=
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi+1/2

xi−1/2

[
φn

i − φn−1
i


tn−1/2
− ∂φ

∂t

]
u(x, t) dx dt

∥∥∥∥∥ ≤ Bu2a + Bu2b

≤ Cu,K

[∥∥∥∥ ∂2φ

∂t∂x

∥∥∥∥
1

max
i


xi + 2

∥∥∥∥∂2φ

∂t2

∥∥∥∥
1

max
n


tn−1/2

]
<

ε

6
. (5.9)
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Finally, let us examine the terms related to S f in (5.4). Note that

∞∑
n=0

∞∑
i=−∞

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

f̃ (un
i−1, un

i )

xi−1 + 
xi

2

tn−1/2

−
∫ ∞

0

∫ ∞

−∞

∂φ

∂x
(x, t) f (u(x, t)) dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

f̃ (un
i−1, un

i ) − ∂φ

∂x
(x, t) f (u(x, t)) dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

[ f̃ (un
i−1, un

i ) − f (u(x, t))]

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

+
[

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

− ∂φ

∂x

]
f (u(x, t)) dx dt

= S f 1 + S f 2. (5.10)

We can extend the numerical solution to a piecewise-constant function on the mesh
in space and time. Since the numerical method satisfies the convergence assump-
tion (5.3), the numerical solution converges to the true solution almost everywhere.
Since the numerical flux is consistent (see definition 5.1.2) and continuous, it con-
verges to the true flux almost everywhere. Since the flux is locally bounded, it is
locally integrable, especially on compact sets containing the support of φ. Since
the numerical flux is continuous and the numerical solution is locally bounded, the
numerical flux is locally integrable. As a result, we can bound the norm of the differ-
ence between the numerical flux and the true flux by a locally integrable function.
Then Lebesgue’s dominated convergence theorem [139, page 26], shows that the
integral of the norm of the error in the numerical flux tends to zero. In other words,
given δ > 0, we can choose the mesh so that if χK (x, t) is the indicator function
for the compact set K containing the support of φ, then

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

χK (x, t)‖ f̃ (un
i−1, un

i ) − f (u(x, t))‖ dx dt < δ.

Thus we can further restrict the mesh, if necessary, so that

‖S f 1‖ =
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

φn
i − φn

i−1
1
2 (
xi−1 + 
xi )

[ f̃ (un
i−1, un

i ) − f (u(x, t))] dx dt

∥∥∥∥∥
≤

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

∣∣∣∣ 2


xi−1+
xi

∫ xi

xi−1

∂φ

∂x
(ξ, tn)dξ

∣∣∣∣ ‖ f̃ (un
i−1, un

i )− f (u(x, t))‖ dx dt

≤
∥∥∥∥∂φ

∂x

∥∥∥∥
∞

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

χK (x, t)‖ f̃ (un
i−1, un

i ) − f (u(x, t))‖ dx dt‖ <
ε

6
.
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Now, let us turn our attention to S f 2 in (5.10) Since u is locally bounded and the flux
f is continuous, the flux is locally bounded. The fundamental theorem of calculus,
followed by the triangle inequality, then imply that

‖S f 2‖

=
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

[
φn

i − φn
i−1

1
2 (
xi−1 + 
xi )

− ∂φ

∂x
(x, t)

]
f (u(x, t)) dx dt

∥∥∥∥∥
≤ C f,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

xi−1

∣∣∣∣∂φ

∂x
(ξ, tn) − ∂φ

∂x
(x, t)

∣∣∣∣ dξ dx dt

≤ C f,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

xi−1

∣∣∣∣∂φ

∂x
(ξ, tn) − ∂φ

∂x
(x, tn)

∣∣∣∣ dξ dx dt

+C f,K

∞∑
n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

xi−1

∣∣∣∣∂φ

∂x
(x, tn) − ∂φ

∂x
(x, t)

∣∣∣∣ dξ dx dt

= C f,K (S f 2a + S f 2b).

Then changing the order of integration implies that

S f 2a =
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

xi−1

∣∣∣∣∂φ

∂x
(ξ, tn) − ∂φ

∂x
(x, tn)

∣∣∣∣ dξ dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ x

xi−1

∣∣∣∣∫ x

ξ

∂2φ

∂x2
(η, tn) dη

∣∣∣∣ dξ dx dt

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

x

∣∣∣∣∫ ξ

x

∂2φ

∂x2
(η, tn) dη

∣∣∣∣ dξ dx dt

≤
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∣∣∣∣∂2φ

∂x2
(η, tn)

∣∣∣∣ ∫ xi

η

∫ η

xi−1

dξ dx dη dt

+
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∣∣∣∣∂2φ

∂x2
(η, tn)

∣∣∣∣ ∫ η

xi−1

∫ xi

η

dξ dx dη dt

≤ 2 max
i


xi−1 + 
xi

2

∥∥∥∥∂2φ

∂x2

∥∥∥∥
1
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and

S f 2b =
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

2


xi−1 + 
xi

∫ xi

xi−1

∥∥∥∥∂φ

∂x
(x, tn) − ∂φ

∂x
(x, t)

∥∥∥∥ dξ dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

∫ tn

t

∣∣∣∣ ∂2φ

∂x∂t
(x, s)

∣∣∣∣ ds dx dt

=
∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

∣∣∣∣ ∂2φ

∂x∂t
(x, s)

∣∣∣∣ ∫ s

tn−1
dt dx ds

≤ max
n


tn−1/2

∥∥∥∥ ∂2φ

∂x∂t

∥∥∥∥
1

.

It follows that we can choose the mesh so that

‖S f 2‖ =
∥∥∥∥∥ ∞∑

n=1

∞∑
i=−∞

∫ tn

tn−1

∫ xi

xi−1

[
φn

i − φn
i−1

1
2 (
xi−1 + 
xi )

− ∂φ

∂x
(x, t)

]
f (u(x, t)) dx dt

∥∥∥∥∥
≤ C f,K (S f 2a + S f 2b)

≤ C f,K max
i

{
xi−1 + 
xi }
∥∥∥∥∂2φ

∂x2

∥∥∥∥
1

+ C f,K max
n


tn−1/2

∥∥∥∥ ∂2φ

∂x∂t

∥∥∥∥
1

<
ε

6
.

Putting all our results together, we have∣∣∣∣−∫ ∞

0

∫ ∞

−∞

[
∂φ

∂t
(x, t)u(x, t)+ ∂φ

∂x
(x, t) f (u(x, t))

]
dx dt+

∫ ∞

−∞
φ(x, 0)u(x, 0) dx

∣∣∣∣
≤

∣∣∣∣∣ ∞∑
i=−∞

∞∑
n=1

φn
i − φn−1

i


tn+1/2
un

i 
xi 
tn+1/2 −
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
(x, t)u(x, t) dx dt

∣∣∣∣∣
+

∣∣∣∣∣ ∞∑
i=−∞

∞∑
n=1

[φn
i − φn

i−1] f̃ (un
i−1, un

i )
tn+1/2 −
∫ ∞

0

∫ ∞

−∞

∂φ

∂x
(x, t) f (u(x, t)) dx dt

∣∣∣∣∣
+

∣∣∣∣∣ ∞∑
i=−∞

φ0
i u0

i 
xi −
∫ ∞

−∞
φ(x, 0)u(x, 0)dx

∣∣∣∣∣ <
ε

3
+ ε

3
+ ε

3
= ε.

Since ε is arbitrary, u is a weak solution of the conservation law. �

It is useful to note that the Lax–Wendroff Theorem 5.2.2 can be extended to treat
numerical fluxes of the form f̃ (un

i−k+1, . . . , un
i+k). Furthermore, it is possible to

extend the theorem to treat partial differential inequalities, such as those that might
arise from numerical approximations to entropy inequalities. However, we should
note that this theorem does not guarantee that the limit u(x, t) satisfies an entropy
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condition. In other words, it is possible that the scheme could converge to a solution
of the conservation law that does not result from vanishing diffusion.

Example 5.2.3 This example concerns the development of a Roe solver for a scalar
conservation law; see Section 4.13.8 for the corresponding development in hyper-
bolic systems. For a general nonlinear scalar conservation law we can define

A(u−, u+) = f (u+) − f (u−)

u+ − u−
.

Note that if the Riemann problem for states u− and u+ involves only a discontinuity,
then [ f ] = A(u−, u+)[u]. The Roe flux associated with a state moving at zero speed
is defined to be

f n+1/2
j+1/2 = 1

2

{
f
(
un

j

) + f
(
un

j+1

) − ∣∣A
(
un

j , un
j+1

)∣∣ (un
j+1 − un

j

)}
= 1

2

{
f
(
un

j

) + f
(
un

j+1

) −
∣∣∣∣∣ f

(
un

j+1

) − f
(
un

j

)
un

j+1 − un
j

∣∣∣∣∣ (un
j+1 − un

j

)}

=
{ 1

2 f (un
j ) + 1

2 f (un
j+1) − 1

2{ f (un
j+1) − f (un

j )}, A(un
j , un

j+1) ≥ 0
1
2 f (un

j ) + 1
2 f (un

j+1) + 1
2{ f (un

j+1) − f (un
j+1)}, A(un

j , un
j+1) < 0

=
{

f (un
j ), A(un

j , un
j+1) ≥ 0

f (un
j+1), A(un

j , un
j+1) < 0.

Note that this numerical flux function is consistent (see definition 5.1.2).
Figure 5.1 shows some numerical results obtained from Program 5.2-62: roe.f.

Note that the numerical scheme does a good job on the problem involving a shock,
but computes a combination of a stationary shock and a rarefaction in place of a
transonic rarefaction. This is an example of a problem with a scheme that converges,
but does not converge to the analytical solution in the limit of vanishing diffusion.

There are other examples of failure to converge to the correct solution of a con-
servation law. For the Buckley–Leverett model, the approximate Riemann solvers
due to Roe and Harten–Hyman both fail to compute the correct solution in cases
involving two shocks and an intermediate transonic rarefaction. For this model, the
Harten–Lax–vanLeer and Linde approximate Riemann solvers work if modified to
account for the larger characteristic speeds at inflections points.

Students can experiment with different numerical schemes for Riemann prob-
lems in a variety of models (Linear Advection, Burgers’, Traffic and Buckley–
Leverett) by clicking on Executable 5.2-25: guiriemann In the “View” menu, the user
can select input parameters for the Riemann problem, numerical method, Buckley–
Leverett model and graphics. The Riemann problem input parameters include the
left and right states, the mesh bounds and the initial jump location, and the choice of

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/roe.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann
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(x-jump)/t (x-jump)/t

(a) Shock (b) Rarefaction

Fig. 5.1 Roe solver for Burgers’ equation (solid = exact, plus = numerical
solution)

the model. The numerical method parameters include the number of grid cells and
timesteps, the max simulation time and the CFL number for selecting the timestep.
Users can also select which scheme to use. If the number of grid cells is positive,
then the program will use the first scheme selected; if the number of grid cells
is zero, then the program will perform a mesh refinement study with all selected
schemes to compare accuracy and efficiency. Errors in the schemes are computed as
the average of the absolute values in the errors in the cell averages, and the slopes of
the log error versus log mesh width are printed to indicate the rate of convergence.

5.2.2 Monotone Schemes

In this section, we will present a condition on schemes for scalar conservation laws
in one dimension that will guarantee that when the scheme converges (see definition
5.2.1), it converges to the entropy-satisfying solution of the conservation law.

Definition 5.2.4 An explicit numerical method un+1
j = H (un

j−k, . . . , un
j+k) is

monotone if and only if it preserves inequalities between sets of numerical results:

for all un
i for all vn

i

if for all i, un
i ≤ vn

i

then for all i un+1
i = H (un

i−k, . . . , un
i+k ; 
xi , 
tn+1/2)

≤ H (vn
i−k, . . . , v

n
i+k ; 
xi , 
tn+1/2)

= vn+1
i .

Here is common way to determine if a scheme is monotone.
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Lemma 5.2.5 Suppose that un+1
j = H (un

j−k, . . . , un
j+k ; 
xi , 
tn+1/2) is a mono-

tone scheme, and that H (w−k, . . . , wk ; 
x, 
t) is differentiable in each of its w�

arguments for −k ≤ � ≤ k. Then for all −k ≤ � ≤ k, ∂ H/∂w� ≥ 0. Conversely, if
∂ H/∂w� ≥ 0 for all −k ≤ � ≤ k, then un+1

j = H (un
j−k, . . . , un

j+k ; 
xi , 
tn+1/2) is
a monotone scheme.

Proof Given any initial data u0
i and ε > 0, letv0

i = u0
i + δi jε. Then since the scheme

is monotone and for all i it is true that v0
i ≥ u0

i , we have

H (un
i−k, . . . , un

i+k ; 
xi , 
tn+1/2) = u1
i ≤ v1

i = H (vn
i−k, . . . , v

n
i+k ; 
xi , 
tn+1/2).

It follows that with i + � = j for −k ≤ � ≤ k,

0 ≤ 1

ε
[H (vn

i−k, . . . , v
n
i+k ; 
xi , 
tn+1/2) − H (un

i−k, . . . , un
i+k ; 
xi , 
tn+1/2)]

= 1

ε
[H (un

i−k, . . . , un
j + ε, . . . , un

i+k ; 
xi , 
tn+1/2)

−H (un
i−k, . . . , un

j , . . . , un
i+k ; 
xi , 
tn+1/2)]

→ ∂ H

∂w�

(un
i−k, . . . , . . . , un

i+k ; 
xi , 
tn+1/2) as ε → 0.

To prove the converse, we note that the intermediate value theorem (see, for
example, [44, pages 70–71]) implies that there is some vector w on the line segment
between u and v such that

H (vn
i−k, . . . , v

n
i+k ; 
xi , 
tn+1/2) = H (un

i−k, . . . , un
i+k ; 
xi , 
tn+1/2)

+
k∑

�=−k

∂ H

∂wi+�

(wi−k, . . . , wi+k ; 
xi , 
tn+1/2)(vn
i+� − un

i+�)

Since the partial derivatives of H are all nonnegative, this equation easily shows
that the scheme is monotone. �

Monotone schemes are useful because they converge to an entropy-satisfying
solution of the conservation law, as the next lemma shows.

Theorem 5.2.6 (Harten–Hyman–Lax) [67] Consider the numerical scheme

un+1
i = un

i − 
tn+1/2


xi
[ f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)] (5.11)

≡ H (un
i−k, . . . , un

i+k ; 
xi , 
tn+1/2)

approximating the scalar conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0
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in one dimension. Assume that both f and f̃ are continuous, and that the numer-
ical flux f̃ is consistent (Definition 5.1.2). Also suppose that the scheme is mono-
tone (Definition 5.2.4). Finally, suppose that the numerical solution is locally
bounded, and that it converges (Definition 5.2.1) to a locally bounded function
u. Then u is a weak solution of the conservation law, and satisfies the weak entropy
condition

for all φ ∈ C∞
0 (R × [0, ∞)) for all z ∈ R

−
∫ ∞

0

∫ ∞

−∞

∂φ

∂t
(x, t)|u(x, t) − z| dx dt

−
∫ ∞

0

∫ ∞

−∞

∂φ

∂x
(x, t)[ f (u(x, t)) − f (z)] sign{u(x, t) − z} dx dt

−
∫ ∞

−∞
φ(x, 0)|u(x, 0) − z| dx ≤ 0.

Proof From Lemma 3.1.18, we note that for any z ∈ R s(u) ≡ |u − z| is an entropy
function for the scalar conservation law, with corresponding entropy flux ψ(u) ≡
[ f (u) − f (z)] sign(u − z). For fixed mesh cell index i , timestep n, scalar θ ∈ (0, 1]
and entropy function offset z, define

w(θ ) ≡ uθ + z(1 − θ )

w�(θ ) ≡ un
i+�θ + z(1 − θ )

vn+1
j (θ ) ≡ H

(
w−k(θ ), . . . , wk(θ ); 
xi , 
tn+1/2

)
.

Because the numerical flux f̃ is consistent,

vn+1
j (0) = z − 
tn+1/2


xi
[ f̃ (z, . . . , z) − f̃ (z, . . . , z)] = z.

Note that the definitions of the scheme (5.11) and of the interpolation function
vn+1

j (θ ) imply that

vn+1
j (1) = un

j − 
tn+1/2


xi
[ f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)] = un+1

j .

Define the numerical entropy flux by

ψ̃(un
i−k+1, . . . , un

i+�)≡
k∑

�=−k+1

|un
i+�−z|

∫ 1

0

∂ f̃

∂w�

(wi−k+1(θ ), . . . , wi+k(θ )) dθ. (5.12)
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Since the numerical flux f̃ is consistent with f (see definition 5.1.2), we can easily
show that ψ̃ is continuous and consistent with the true entropy flux ψ :

ψ̃(u, . . . , u) = sign(u − z)
∫ 1

0

k∑
�=−k+1

∂ f̃

∂w�

(w(θ ), . . . , w(θ )) (u − z) dθ

= sign(u − z)
∫ 1

0

d f̃

dθ
(w(θ ), . . . , w(θ )) dθ

= sign(u − z)[ f̃ (u, . . . , u) − f̃ (z, . . . , z)] = ψ(u).

Since sign (un+1
j − z) = sign(vn+1

j (θ ) − z) for all 0 < θ ≤ 1, we have that

s(un+1
j ) ≡ (un+1

j − z) sign(un+1
j − z)

=
∫ 1

0
sign(vn+1

j (θ ) − z)
dvn+1

j

dθ
dθ

=
k∑

�=−k

∫ 1

0
sign(vn+1

j (θ )−z)

× ∂ H

∂w�

(w−k(θ ), . . . , wk(θ ); 
xi , 
tn+1/2)(un
i+�−z)dθ.

Since sign (w�(θ ) − z) = sign(un
i+� − z) for all 0 < θ ≤ 1, the definition (5.12) of

the numerical entropy flux ψ̃ implies that

−s(un
i ) + 
tn+1/2


xi

[
ψ̃(un

i−k+1, . . . , un
i+k) − ψ̃(un

i−k, . . . , un
i+k−1)

]
= −

∫ 1

0
sign (w0(θ ) − z)

dw0

dθ
dθ

+ 
tn+1/2


xi

k∑
�=−k+1

∫ 1

0
sign (w�(θ ) − z)

∂ f̃

∂w�

(w−k+1(θ ), . . . , wk(θ )) dθ

− 
tn+1/2


xi

k−1∑
�=−k

∫ 1

0
sign (w�(θ ) − z)

∂ f̃

∂w�

(w−k(θ ), . . . , wk−1(θ )) dθ

=−
∫ 1

0

k∑
�=−k

sign (w�(θ )−z)
∂ H

∂w�

(
w−k(θ ), . . . , wk(θ ); 
xi , 
tn+1/2

)
(un

i+� − z) dθ.
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It follows that

s(un+1
j ) − s(un

i ) + 
tn+1/2


xi

[
ψ̃(un

i−k+1, . . . , un
i+k) − ψ̃(un

i−k, . . . , un
i+k−1)

]
=

k∑
�=−k

(un
i+� − z)

∫ 1

0

∂ H

∂w�

(
w−k(θ ), . . . , wk(θ ); 
xi , 
tn+1/2

)
× [ sign

(
vn+1

i (θ ) − z
) − sign (w�(θ ) − z)] dθ.

Note that for all 0 < θ ≤ 1,

(un
i+� − z)[sign

(
vn+1

i (θ ) − z
) − sign (w�(θ ) − z)]

= (un
i+� − z) sign(un+1

i − z) − |un
i+� − z|

=
{

0, sign(un+1
i − z) = sign(un

i+� − z)
−2|un

i+� − z|, sign(un+1
i − z) = −sign(un

i+� − z)
≤ 0.

Thus the monotone scheme satisfies the numerical entropy inequality

s(un+1
j ) − s(un

i ) + 
tn+1/2


xi
[ψ̃(un

i−k+1, . . . , un
i+k) − ψ̃(un

i−k, . . . , un
i+k−1)] ≤ 0.

The Lax–Wendroff theorem 5.2.2 now implies that if the scheme converges, it
converges to a solution of the weak conservation law, satisfying the weak form of
the entropy condition. �

Example 5.2.7 We will show that Godunov’s method is a monotone scheme for
Burgers’ equation. Godunov’s method is a conservative difference scheme, taking
the form

un+1
j = un

j − 
t


x
[ f n+1/2

j+1/2 − f n+1/2
j−1/2 ],

where the numerical fluxes are given by

f n+1/2
j+1/2 = F(un

j , un
j+1) ≡

{
f (max{un

j , min{un
j+1, 0}}), un

j ≤ un
j+1

f (max{|un
j |, |un

j+1|}), un
j > un

j+1

=


0, un
j < 0 < un

j+1

f (un
j ), un

j ≥ un
j+1 ≥ −un

j or 0 ≤ un
j ≤ un

j+1

f (un
j+1), −|un

j | ≥ un
j+1 or un

j ≤ un
j+1 ≤ 0.

It is easy to see that this flux is consistent (see definition 5.1.2). It is also easy to
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see that
∂ F

∂un
j

=
{

un
j , un

j ≥ un
j+1 ≥ −un

j or 0 ≤ un
j ≤ un

j+1

0, otherwise,

and
∂ F

∂un
j+1

=
{

un
j+1, −|un

j | ≥ un
j+1 or un

j ≤ un
j+1 ≤ 0

0, otherwise.

Next, we will show that the Godunov flux is monotone provided that 
t max |un
j | ≤


x for all j . The method

H (un
j−1, un

j , un
j+1) = un

j − 
t


x
[F(un

j , un
j+1) − F(un

j−1, un
j )]

depends on the three values un
j−1, un

j and un
j+1. Using the partial derivatives of the

fluxes f n+1/2
j±1/2 above, we see that

∂ H

∂un
j

= 1 − 
t


x

[{
un

j , un
j ≥ un

j+1 ≥ −un
j or 0 ≤ un

j ≤ un
j+1

0, otherwise

−
{

un
j , −|un

j−1| ≥ un
j or un

j−1 ≤ un
j ≤ 0

0, otherwise

]

=


1 − 
t


x un
j , (un

j ≥ un
j+1 ≥ −un

j or 0 ≤ un
j ≤ un

j+1) and (un
j−1 > un

j and un
j > 0)

1 + 
t

x un

j , (−|un
j−1| ≥ un

j or un
j−1 ≤ un

j ≤ 0) and

(un
j < un

j+1 or un
j+1 < −un

j ) and (un
j < 0 or un

j > un
j+1)

0, otherwise

≥ 0,

and

∂ H

∂un
j−1

= 
t


x

{
un

j−1, un
j−1 ≥ un

j ≥ −un
j−1 or 0 ≤ un

j−1 ≤ un
j

0, otherwise
≥ 0,

and

∂ H

∂un
j+1

= 
t


x

{
un

j+1, −|un
j | ≥ un

j+1 or un
j ≤ un

j+1 ≤ 0

0, otherwise
≥ 0.

Lemma 5.2.5 now shows that the method is monotone. Since Godunov’s method
is consistent (see Definition 5.1.2) and monotone for Burgers’ equation, it follows
from Lemma 5.2.6 that Godunov’s method converges to the entropy-satisfying
solution. This is not surprising, since we previously showed that Godunov’s method
converges to the correct solution in Lemma 4.2.2.

Example 5.2.8 Given the results of Theorem 5.2.6 and Example 5.2.7 we expect
that the Roe solver does not produce a monotone flux for Godunov’s method applied
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to Burgers’ equation. To verify this, we compute

∂ H

∂un
j

= 1 − 
t


x

[{
un

j , un
j+1 + un

j ≥ 0
0, otherwise

−
{

un
j , un

j + un
j−1 < 0

0, otherwise

]

=


1 − 
t


x un
j , un

j+1 + un
j ≥ 0 and un

j + un
j−1 ≥ 0

1 + 
t

x un

j , un
j+1 + un

j < 0 and un
j + un

j−1 < 0
1, otherwise.

≥ 0

This partial derivative does not pose a problem for the method. However,

∂ H

∂un
j−1

= 
t


x

{
un

j−1, un
j + un

j−1 ≥ 0
0, otherwise

and

∂ H

∂un
j+1

= − 
t


x

{
un

j+1, un
j+1 + un

j < 0
0, otherwise.

The former of these two partial derivatives fails to be nonnegative when un
j ≥

−un
j−1 > 0, and the latter fails to be nonnegative when−un

j ≥ un
j+1 > 0. The former

failure corresponds to a transonic rarefaction between un
j−1 and un

j , while the latter
failure corresponds to a transonic rarefaction between un

j and un
j+1.

Although monotone schemes have the advantages of convergence to the correct
solution of their respective conservation laws, there is the following disadvantage.

Lemma 5.2.9 Consider the numerical scheme

un+1
i = un

i − 
t


x

[
f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)

]
≡ H (un

i−k, . . . , un
i+k ; 
x, 
tn+1/2)

approximating the scalar conservation law

∂u

∂t
+ ∂ f (u)

∂x
= 0

in one dimension on a uniform mesh in space and time. Assume that both f and
f̃ are twice continuously differentiable, and that the numerical flux f̃ is consistent
(Definition 5.2.1). Further, suppose that the scheme is monotone (Definition 5.2.4)
and that 
t/
x ≡ λ is fixed as the mesh is refined. If H depends on more than one
of its arguments, then the scheme is at most first-order accurate (Definition 5.1.2).

Proof We will determine the modified equation for a monotone scheme. We assume
that un

i ≈ ũ(i
x, n
t). A Taylor expansion leads to

ũ(x, t + 
t) = ũ + 
t
∂ ũ

∂t
+ 
t2

2

∂2ũ

∂t2
+ o(
t2).



348 Methods for Scalar Laws

We assume that ũ satisfies the modified equation

∂ ũ

∂t
+ ∂ f (ũ)

∂x
= e = O(
t) + O(
x).

Then

∂2ũ

∂t2
= ∂

∂t

[
e − ∂ f (ũ)

∂x

]
= ∂e

∂t
− ∂

∂x

[
∂ f (ũ)

∂t

]
= ∂e

∂t
− ∂

∂x

[
∂ f

∂u

∂ ũ

∂t

]
= ∂e

∂t
+ ∂

∂x

[
∂ f

∂u

{
−e + ∂ f (ũ)

∂x

}]
= ∂

∂x

[(
∂ f

∂u

)2
∂ ũ

∂x
− ∂ f

∂u
e

]
+ ∂e

∂t
.

Thus

ũ(x, t + 
t) = ũ + 
t
∂ ũ

∂t
+ 
t2

2

∂

∂x

[(
∂ f

∂u

)2
∂ ũ

∂x

]
+ o(
t2)

It is a bit more intricate to treat the Taylor expansions for the spatial differences.
Note that

H (ũ(xi−k, t), . . . , ũ(xi+k, t); 
x, 
t)

= H (ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+
k∑

�=−k

∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) [ũ(xi+�, t) − ũ(xi , t)]

+ 1

2

k∑
�=−k

k∑
m=−k

∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

[ũ(xi+�, t) − ũ(xi , t)][ũ(xi+m, t) − ũ(xi , t)] + o(
x2).

Now

H (ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

= ũ(xi , t) − 
t


x
[ f̃ (ũ(xi , t), . . . , ũ(xi , t)) − f̃ (ũ(xi , t), . . . , ũ(xi , t))] = ũ(xi , t)

and
k∑

�=−k

∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) [ũ(xi+�, t) − ũ(xi , t)]

=
k∑

�=−k

∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

[
�
x

∂ ũ

∂x
+ �2
x2

2

∂2ũ

∂x2
+ o(
x2)

]

= 
x
∂ ũ

∂x

k∑
�=−k

�
∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+ 
x2

2

∂2ũ

∂x2

k∑
�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) + o(
x2)
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and

1

2

k∑
�=−k

k∑
m=−k

∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

× [ũ(xi+�, t) − ũ(xi , t)][ũ(xi+m, t) − ũ(xi , t)]

= 1

2

k∑
�=−k

k∑
m=−k

∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

×
[
�
x

∂ ũ

∂x
+ o(
x)

] [
m
x

∂ ũ

∂x
+ o(
x)

]
= 
x2

2

(
∂ ũ

∂x

)2 k∑
�=−k

k∑
m=−k

�m
∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) + o(
x2).

Thus

H (ũ(xi−k, t), . . . , ũ(xi+k, t); 
x, 
t)

= ũ(xi , t) + 
x
∂ ũ

∂x

k∑
�=−k

�
∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+ 
x2

2

[
∂2ũ

∂x2

k∑
�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+
(

∂ ũ

∂x

)2 k∑
�=−k

k∑
m=−k

�m
∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

]
+ o(
x2)

= ũ(xi , t) + 
x
∂ ũ

∂x

k∑
�=−k

�
∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+ 
x2

2

[
∂

∂x

(
∂ ũ

∂x

k∑
�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

)

+
(

∂ ũ

∂x

)2 k∑
�=−k

k∑
m=−k

(�m − �2)
∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

]
+ o(
x2).

Next, we note that

k∑
�=−k

�
∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) = − 
t


x

k∑
�=−k

(� + 1)
∂ f̃

∂w�

+ 
t


x

k∑
�=−k

�
∂ f̃

∂w�

= − 
t


x

k∑
�=−k

∂ f̃

∂w�

= − 
t


x

∂ f

∂u
.
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We can also compute

k∑
�=−k

k∑
m=−k

(�m − �2)
∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

= 1

2

k∑
�=−k

k∑
m=−k

(�m − �2)
∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+ 1

2

k∑
�=−k

k∑
m=−k

(�m − �2)
∂2 H

∂wm∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

=
k∑

�=−k

k∑
m=−k

�m − �2 + �m − m2

2

∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

= 1

2

k∑
�=−k

k∑
m=−k

(� − m)2 ∂2 H

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

= − 
t

2
x

k∑
�=−k

k∑
m=−k

(� + 1 − m − 1)2 ∂2 f̃

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

+ 
t

2
x

k∑
�=−k

k∑
m=−k

(� − m)2 ∂2 f̃

∂w�∂wm
(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) = 0.

It follows that

H (ũ(xi−k, t), . . . , ũ(xi+k, t); 
x, 
t)

= ũ(xi , t) − 
t
∂ f (ũ)

∂x

+ 
x2

2

∂

∂x

(
∂ ũ

∂x

k∑
�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

)
+ o(
x2).

Thus the modified equation is

0 = ũ(xi , t + 
t) − H (ũ(xi−k, t), . . . , ũ(xi+k, t); 
x, 
t)


t

= ∂ ũ

∂t
+ ∂ f (ũ)

∂x

+ 
t

2

∂

∂x

[(
∂ f

∂u

)2
∂ ũ

∂x

]
−

(

x


t

)2
∂

∂x

(
∂ ũ

∂x

k∑
�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t)

)
+ o(
t) + o(
x2/
t)
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which implies

∂ ũ

∂t
+ ∂ f (ũ)

∂x

= 
x2

2
t

∂

∂x

[{
k∑

�=−k

�2 ∂ H

∂w�

(ũ(xi , t), . . . , ũ(xi , t); 
x, 
t) −
(


t


x

∂ f

∂u

)2
}

∂ ũ

∂x

]
+ o(
t) + o(
x2/
t)

Note that since ∂ H/∂w� ≥ 0 for all �, the Schwarz inequality implies that

(

t


x

∂ f

∂u

)2

=
(

k∑
�=−k

�
∂ H

∂w�

)2

=
[

k∑
�=−k

(
�

√
∂ H

∂w�

) √
∂ H

∂w�

]2

≤
[

k∑
�=−k

�2 ∂ H

∂w�

] [
k∑

�=−k

∂ H

∂w�

]
=

k∑
�=−k

�2 ∂ H

∂w�

since
∑k

�=−k
∂ H
∂w�

= 1. Thus the right-hand side in the modified equation is diffusive
and first-order in 
t or 
x , assuming that these two mesh increments are held in
strict proportion. The diffusion vanishes if equality holds in the Schwarz inequality;
this occurs if and only if

there exists α so that for all �,

√
∂ H

∂w�

α = �

√
∂ H

∂w�

which implies that ∂ H/∂w� 	= 0 for at most one value of �. �

Monotone schemes are also L1 contractive, as the next lemma shows.

Lemma 5.2.10 [38, 67, 76]. Suppose that

un+1
i = un

i − 
t


x
[ f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)]

≡ H (un
i−k, . . . , un

i+k ; 
xi , 
tn+1/2)

is a monotone scheme (see Definition 5.2.4). If un
i and vn

i are generated by this
scheme using initial data u0

i and v0
i , respectively, then

for all n ≥ 0 for all m > n, ‖um − vm‖1 ≤ ‖un − vn‖1.
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Proof It suffices to prove the result for m = n + 1. We define the functions

w j (θ ) = un
jθ + vn

j (1 − θ ).

Then

H (un
i−k, . . . , un

i+k ; 
xi , 
tn+1/2) − H (vn
i−k, . . . , v

n
i+k ; 
xi , 
tn+1/2)

=
∫ 1

0

d

dθ
H (wi−k(θ ), . . . , wi+k(θ ), 
xi , 
tn+1/2) dθ

=
∫ 1

0

k∑
�=−k

∂ H

∂w�

(wi−k(θ ), . . . , wi+k(θ ); 
xi , 
tn+1/2)(un
i+� − vn

i+�) dθ.

Since the partial derivatives of H are nonnegative,

‖un+1 − vn+1‖1

=
∑

i

sign(un+1
i − vn+1

i )[H (un
i−k, . . . , un

i+k ; 
xi , 
tn+1/2)

− H (vn
i−k, . . . , v

n
i+k ; 
xi , 
tn+1/2)]
xi

≤
∑

i

k∑
�=−k

∫ 1

0

∂ H

∂w�

(wi−k(θ ), . . . , wi+k(θ ); 
xi , 
tn+1/2)|un
i+� − vn

i+�| dθ
xi

=
∑

j

|un
j − vn

j |
∫ 1

0

k∑
�=−k

∂ H

∂w�

(w j−�−k(θ ), . . . , w j−�+k(θ ); 
xi , 
tn+1/2)dθ
x j−�.

We compute

k∑
�=−k

∂ H

∂w�

(w j−�−k(θ ), . . . , w j−�+k(θ ); 
xi , 
tn+1/2)
x j−�

=
k∑

�=−k

δ�,0
x j−� − 
tn+1/2
k∑

�=−k+1

∂ f̃

∂w�−1
(w j−�−k+1, . . . , w j−�+k)

+ 
tn+1/2
k−1∑

�=−k

∂ f̃

∂w�

(w j−�−k, . . . , w j−�+k−1) = 
x j .

Thus

‖un+1 − vn+1‖1 ≤
∑

j

|un
j − vn

j |
∫ 1

0

x j dθ = ‖un − vn‖1

�



5.3 Nonlinear Stability 353

Exercises for 5.2

5.2.1 Determine circumstances under which Rusanov’s method is monotone for Burgers’ equation.
5.2.2 Determine circumstances under which Rusanov’s method is monotone for the traffic flow problem

with logarithmic flux.
5.2.3 Determine circumstances under which the Lax–Friedrichs scheme is monotone for Burgers’

equation.
5.2.4 When is Rusanov’s method monotone for the Buckley–Leverett problem?
5.2.5 When is Godunov’s method monotone for the Buckley–Leverett problem?

5.3 Nonlinear Stability

The discussion in this section follows that in LeVeque [96]. So far, we have a few
results to guide our selection of numerical methods for scalar hyperbolic conser-
vation laws. First, the Lax equivalence theorem 2.7.14 shows that for a consistent
linear scheme, stability is equivalent to convergence. However, this result says noth-
ing about nonlinear schemes (such as Godunov’s method), and does not guarantee
convergence to the entropy-satisfying solution. Next, the Lax–Wendroff theorem
5.2.2 shows that if the solution to a conservative difference scheme converges inL1,
then it converges to a weak solution of the conservation law. However, this theorem
does not guarantee that the scheme converges, and does not guarantee that the limit
is an entropy-satisfying solution. Finally, the Harten–Hyman–Lax theorem 5.2.6
shows that an explicit scheme that is monotone, conservative and consistent has an
entropy-satisfying limit, but unfortunately is at most first-order accurate.

In general, we will want to understand the circumstances under which we can
guarantee convergence, in particular to the entropy-satisfying solution. We will
also want to understand conditions under which we can obtain better than first-
order accuracy. In order to understand convergence, we will need to develop the
correct notion of compactness. We will see that one way to guarantee convergence
to the entropy-satisfying solution of the differential equation will be to build more of
the solution of the differential equation into the method, typically through approx-
imate Riemann problem solvers. Finally, in order to obtain better than first-order
convergence, we will have to forego monotonicity.

5.3.1 Total Variation

Definition 5.3.1 A set K in a normed linear space is bounded if and only if there
is some radius R such for all v ∈ K , ‖v‖ ≤ R. A set K is closed if and only if
{vk}∞k=1 ⊂ K and vk → v implies that v ∈ K . A set K in a normed linear space
is compact if and only if for any sequence {vk}∞k=1 ⊂ K there is a subsequence
{vk j } ⊂ {vk} and a limit v ∈ K so that lim j→∞ ‖vk j − v‖ = 0. The support of a
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function w(x) is the set

supp(w) = {x : w(x) 	= 0}.
It is well-known (see, for example, [83, p. 77]) that sets in Rn are compact if and
only if they are closed and bounded.

Definition 5.3.2 The total variation of a function w(x) is

T V (w) ≡ lim sup
ε→0

1

ε

∫ ∞

−∞
|w(x + ε) − w(x)| dx,

and the total variation of a function v(x, t) is

T VT (v) ≡ lim sup
ε→0

1

ε

∫ T

0

∫ ∞

−∞
|v(x + ε, t) − v(x, t)| dx dt

+ lim sup
ε→0

1

ε

∫ T

0

∫ ∞

−∞
|v(x, t + ε) − v(x, t)| dx dt.

Note that

for all w ∈ C1(−∞, ∞), T V (w) =
∫ ∞

−∞
|w′(x)| dx and

for all v ∈ C1 ((−∞, ∞) × (0, T )) , T VT (v) =
∫ T

0

∫ ∞

−∞

∣∣∣∣∂v

∂x

∣∣∣∣ +
∣∣∣∣∂v

∂t

∣∣∣∣ dx dt.

We can extend mesh-values w j to piecewise-constant functions on the mesh, and
find that the total variation in space is

T V (w) ≡
∞∑

j=−∞
|w j+1 − w j |,

or the total variation in space and time is

T V (v) ≡
N−1∑
n=0

∞∑
j=−∞

[
|vn

j+1 − vn
j |
tn+1/2 + |vn+1

j − vn
j |
x j

]
,

where
∑N−1

n=0 
tn+1/2 = T . Note that if w(x, t) has bounded total variation for
x ∈ (−∞, ∞), then w(x, t) must approach constant values as x → ±∞.

5.3.2 Total Variation Stability

The next definition help us extend the ideas of section 5.1.2 to nonlinear schemes.

Definition 5.3.3 Given initial data u0(x) with compact support and flux function
f (u), a numerical approximation un

j for the solution of the scalar law ∂u/∂t +
∂ f (u)/∂x = 0 with initial data u(x, 0) = u0(x) is TV stable on the closed time
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interval [0, T ] if and only if there exist R > 0, M > 0, 
t > 0 and N > 0 so
that for all j we have ∞ < x j < x j+1 < ∞ and 
x j+1/2 ≡ x j+1 − x j and so that
for all 0 ≤ n < N we have 0 ≤ tn < tn+1 ≤ T and 
tn+1/2 ≡ tn+1 − tn so that
T V (u) ≤ R and |x j | > M =⇒ un

j = 0.

Lemma 5.3.4 [96, page 163] Suppose that

(i) un
j is a numerical solution generated by a conservative difference scheme

un+1
j = un

j − 
tn+1/2


x j
[ f n+1/2

j+1/2 − f n+1/2
j−1/2 ] ;

(ii) the numerical flux function is given by f n+1/2
j+1/2 = F(un

j−k+1, . . . , un
j+k), where F is

Lipschitz continuous in each of its arguments with Lipschitz constant K ;
(iii) the initial data has compact support: there exist M > 0 and J > 0 such that for all

| j | > J we have |x j | > M0 and u0
j = 0;

(iv) the cell widths are bounded above proportional to the timesteps: there exists C > 0
such that for all 0 ≤ n < N we have 
x j ≤ 
tn+1/2;

(v) given t N = T > 0 and initial data u0(x) there exist constants 
t0 > 0 and R > 0 so
that for all n < N we have 
tn+1/2 < 
t0 and T V (un

· ) ≤ R.

Then

(i) for all n < N − 1, ‖un+1
· − un

· ‖1 ≤ 2kKR 
tn+1/2;
(ii) the method is TV-stable (Definition 5.3.3) on [0, T ];

(iii) if F is consistent with with a continuous function f (Definition 5.1.2), then un
j converges

to a weak solution of ∂u/∂t + ∂ f (u)/∂x = 0.

Proof To prove the first result, we note that the conservative difference, Lipschitz
continuity of the numerical flux function and bound on the total variation of un

imply

‖un+1 − un‖1 =
∑

j

∣∣∣un+1
j − un

j

∣∣∣ 
x j =
∑

j

∣∣∣ f n+1/2
j+1/2 − f n+1/2

j−1/2

∣∣∣ 
tn+1/2

≤
∑

j

K max
−k≤�<k

|un
j+�+1 − un

j+�|
tn+1/2

≤ K 
tn+1/2
k∑

�=−k

∑
j

K |un
j+1 − un

j |

= 2kK T V (un) ≤ 2kK R
tn+1/2.

Next, let us prove that the method is TV-stable. Since the assumptions imply that
the effect of the nonzero initial data can spread at most k cells per timestep, it is
easy to see that | j | > J + kn implies that un

j = 0. The assumption that the cell
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widths are bounded above implies that

xJ+kn = xJ +
n−1∑
m=0

J+k(m+1)∑
�=J+km+1

(
x�−1/2 + 
x�+1/2)
1

2
≤ xJ +

n−1∑
m=0

kC
tn+1/2

≤ xJ + kC
N−1∑
m=0


tn+1/2 = xJ + kCT

x−J−kn = x−J −
n−1∑
m=0

−J−km−1∑
�=−J−k(m+1)

(
x�−1/2 + 
x�+1/2)
1

2

≥ x−J −
n−1∑
m=0

kC
tn+1/2 ≥ x−J − kC
N−1∑
m=0


tn+1/2 = x−J − kCT .

Also, the total variation of un
j is bounded above because

T VT (u) =
N−1∑
n=0

∑
j

[
|un

j+1 − un
j |
tn+1/2 + |un+1

j − un
j |
x j

]
≤

N−1∑
n=0

[R
tn+1/2 + 2kK R
tn+1/2] = (2kK + 1)RT .

Thus the numerical solution is TV-stable.
The proof of the third result will be by contradiction. Suppose that for any weak

solution w of the conservation law, there exists ε > 0 such that for all discretizations

x j and 
tn+1/2 satisfying the hypotheses of the lemma we have ‖un

j − w‖ > ε.
Since the set of all L1 functions with bounded total variation and compact support
is compact [50], there is a convergent subsequence of numerical approximations
satisfying the hypotheses of the lemma. Let v be the limit of this convergent subse-
quence. For all sufficiently fine mesh in this subsequence, ‖u − v‖1 < ε. Since the
method is consistent and conservative, and the flux functions are continuous and
consistent, the Lax–Wendroff Theorem 5.2.2 implies that un

j converges to a weak
solution of the conservation law; this is a contradiction. �

The useful feature of this lemma is that it presents a list of circumstances under
which nonlinear stability implies convergence. The difficulty with using this lemma
is the need to verify that the third assumption is valid for all timesteps. One way
to satisfy the third assumption is to require that the total variation in the scheme
not increase from one timestep to the next; this will be the approach in Section 5.8.
Another way to satisfy the third assumption of this lemma is to design the scheme
so that the total variation has bounded growth; this approach is used by Osher and
Chakravarthy in [126] and by the ENO schemes described in section 5.13.
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5.3.3 Other Stability Notions

Note that weak solutions to scalar conservation laws are L1-contracting.

Theorem 5.3.5 (L1 Contraction) [85, 133] Suppose that

(i) u1 and u2 are piecewise-continuously differentiable solutions of the scalar conservation
law ∂u/∂t + ∂ f (u)/∂x = 0, and

(ii) the initial data u1(x, 0) and u2(x, 0) are piecewise-continuously differentiable and
L1-integrable in x.

Then two solutions u1 and u2 are L1-contracting, meaning that

for all t > 0 ‖u2(·, t) − u1(·, t)‖1 ≤ ‖u2(·, 0) − u1(·, 0)‖1,

if and only if u1 and u2 satisfy the Oleinik chord condition (3.17) at all shocks.

It is tempting to require numerical solutions to scalar conservation laws to have
similar stability properties.

Definition 5.3.6 Two mesh functions un
i and vn

i are L1-contracting if and only if

for all m ≥ n ≥ 0 ‖um − vm‖1 ≤ ‖un − vn‖1.

These mesh functions are total variation diminishing if and only if

for all m ≥ n ≥ 0 T V (um) ≤ T V (un).

Finally, these mesh functions are monotonicity-preserving if and only if

for all i un
i ≤ un

i+1 =⇒ for all m > n for all i um
i ≤ um

i+1 and

for all i un
i ≥ un

i+1 =⇒ for all m > n for all i um
i ≥ um

i+1.

For numerical schemes, some of these nonlinear stability notions are stronger
than others.

Lemma 5.3.7 [96, page 167]. Suppose that the numerical scheme

un+1
i = H (un

i−k, . . . , un
i+k ; 
x, 
tn+1/2)

on a uniform mesh is such that H does not depend explicitly on x or t. If the numer-
ical solution is L1-contracting, then the scheme is total variation diminishing.

Proof It suffices to prove the conclusion for m = n + 1. Given any un
i =

H (un
i−k, . . . , un

i+k ; 
x, 
tn+1/2) generated by the scheme, note that vn
i = un

i−1 =
H (un

i−k−1, . . . , un
i+k−1; 
x, 
tn+1/2) is also generated by the same scheme. Since
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the scheme is L1-contracting,

T V (un+1) =
∞∑

i=−∞
|un+1

i − un+1
i−1 | =

∞∑
i=−∞

|un+1
i − vn+1

i |

= 1


x
‖un+1 − vn+1‖1 ≤ 1


x
‖un − vn‖1

=
∞∑

i=−∞
|un

i − vn
i | =

∞∑
i=−∞

|un
i − un

i−1| = T V (un).

�

Lemma 5.3.8 [96, page 166]. Consider the numerical scheme

un+1
i = un

i − 
tn+1/2


xi

[
f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)

]
.

If the numerical solution is total variation diminishing, and if the numerical
solution is constant for large spatial indices, meaning that

there exists u−, u+ so that for all n > 0 there exists M > 0

so that for all i ≤ −M, un
i = u−

and for all i ≥ M, un
i = u+

then the scheme is monotonicity-preserving.

Proof It suffices to prove the conclusion for m = n + 1 and non-decreasing un
i .

Note that for i ≥ M + k,

un+1
i = un

i − 
tn+1/2


xi

[
f̃ (un

i−k+1, . . . , un
i+k) − f̃ (un

i−k, . . . , un
i+k−1)

]
= u+ − 
tn+1/2


xi
[ f̃ (u+, . . . , u+) − f̃ (u+, . . . , u+)] = u+.

Similarly, for i ≤ −M − k, un+1
i = u−. Next, we note that since un

i is non-
decreasing and T V (un+1) ≤ T V (un),

u+ − u− =
∞∑

i=−∞

[
un+1

i+1 − un+1
i

] ≤
∞∑

i=−∞

∣∣un+1
i+1 − un+1

i

∣∣ = T V (un+1) ≤ T V (un)

=
∞∑

i=−∞
|un

i+1 − un
i | =

∞∑
i=−∞

[un
i+1 − un

i ] = u+ − u−.

It follows that
∞∑

i=−∞

[
un+1

i+1 − un+1
i

] =
∞∑

i=−∞

∣∣un+1
i+1 − un+1

i

∣∣ ,
which implies that un+1

i+1 − un+1
i ≥ 0 for all i . �
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Now that we have examined the inter-relationships of some of these nonlinear
stability concepts, let us review their implications. First, a theorem due to Godunov
[57, 91] shows that any linear monotonicity-preserving scheme is at best first-
order accurate. Lemma 5.3.8 shows that total variation diminishing schemes are
monotonicity-preserving. Total variation diminishing schemes are convergent [96,
page 166], however, convergence to the entropy-satisfying solution is not guaran-
teed. Lemma 5.3.7 shows that an L1-contracting scheme is total variation dimin-
ishing. Lemma 5.2.10. shows that monotone schemes are L1-contracting, and the
Harten–Hyman–Lax theorem 5.2.6 showed that monotone schemes converge to the
entropy-satisfying solution, and are at best first-order accurate.

In summary, if we want to guarantee convergence to the entropy-satisfying
solution then we can use a monotone scheme, provided that we are satisfied
with first-order accuracy. If we want to guarantee convergence then we can use
a total variation diminishing scheme, but such a scheme will be monotonicity-
preserving and therefore first-order if it is linear. Thankfully, these are not our only
options. Our results so far indicate that if we want to achieve better than first-order
accuracy and simultaneously preserve monotonicity, then we cannot use a linear
scheme.

5.4 Propagation of Numerical Discontinuities

Our goal in this section is to examine how numerical discontinuities propagate.
Since almost all numerical schemes involve numerical diffusion in order to guar-
antee convergence to the desired physical solution, we will study the solution of a
modified equation. The simplest of these is the convection–diffusion equation. For
more discussion related to the ideas in this section, see [87, 113, 142].

We will consider the convection–diffusion equation with Riemann-problem
initial data

∂uε

∂t
+ λ

∂uε

∂x
= ε

∂2uε

∂x2
, uε(x, 0) =

{
1, x < 0
0, x > 0.

The analytical solution for ε = 0 is

u0(x, t) =
{

1, x < λt
0, x > λt,

and the analytical solution for ε > 0 and t > 0 is

uε(x, t) = erf

(
x − λt√

4εt

)
.
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The difference between the analytical solutions with and without diffusion is

‖u0(·, t) − uε(·, t)‖1 =
∫ λt

−∞

∣∣∣∣1 − erf

(
x − λt√

4εt

)∣∣∣∣ dx +
∫ ∞

λt

∣∣∣∣erf

(
x − λt√

4εt

)∣∣∣∣ dx

=
∫ 0

−∞

∣∣∣∣1 − erf

(
z√
4εt

)∣∣∣∣ dz +
∫ ∞

0

∣∣∣∣erf

(
z√
4εt

)∣∣∣∣ dz

= 2
∫ 0

−∞
erf

(
z√
4εt

)
dz = 2

√
4εt

∫ 0

−∞
erf(z) dz =

√
4εt .

Thus if a physical problem involves diffusion, we expect the initial discontinuity
to spread a distance proportional to the square root of the product of the diffusion
constant and time.

Numerical schemes typically involve numerical diffusion. For example, recall
that in example 3.3.1 we saw that the modified equation analysis for the
Lax-Friedrichs scheme produces

ε ≈ 
x2

4
t

[
1 −

(
λ
t


x

)2
]

.

Decreasing the timestep or computing to large time will increase the spreading of
the discontinuity.

No scheme is perfect. Suppose that we have a numerical scheme that spreads a
discontinuity over a fixed number k of cells, and that the greatest contribution to the
error is due to the resolution of the discontinuity. Then the error in the numerical
solution is

‖u(x j , tn) − un
j‖1 ≈

∑
j∈ discontinuity


x j |u(x j , tn) − un
j | ≤ k M
x,

where M is the size of the jump in u and 
x is an upper bound for the cell width.
This suggests that the error should be no better than first-order (see definition 5.1.2)
accurate at discontinuities.

Order p accuracy in theL1 norm at a discontinuity would require that the numer-
ical width of the discontinuity be O(
x p). This would in turn require that the posi-
tion of the discontinuity within the cell be accurately determined. In particular, this
would require a model for the variation of the solution within a grid cell, such as
in [65]. Currently, no known scheme can do this for general problems.

Exercises for 5.4

5.4.1 Consider the linear advection problem with the initial data described in this section. Define the
front width to be the distance (in x) between the points where u = 0.95 and u = 0.05. Run the
explicit upwind, Lax-Friedrichs and Lax–Wendroff schemes for various values of CFL and 
x .
Plot front width versus time and explain your results.
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5.4.2 Consider the linear advection problem with initial data described in this section. For each of
the explicit upwind, Lax-Friedrichs and Lax–Wendroff schemes, plot the logarithm of the L1

error versus the logarithm of the mesh width 
x . The results should be computed at CFL =
0.9 for the time at which the discontinuity has crossed 90% of the grid. Plot the results for

x = 2−5, 2−6 . . . 2−10. What rate of convergence do you observe from this plot?

5.5 Monotonic Schemes

In this section, we will follow a line of development due to van Leer [168, 169, 170,
171]. Since a linear monotonicity-preserving scheme is at best first-order accurate, a
monotonicity-preserving higher-order scheme must be nonlinear. We will develop a
nonlinear monotonicity-preserving scheme that is designed to obtain second-order
accuracy as much as possible.

5.5.1 Smoothness Monitor

We begin with a definition.

Definition 5.5.1 If λ > 0, a scheme for linear advection ∂u/∂t + λ∂u/∂x = 0 is
monotonic if and only if un+1

j lies between un
j−1 and un

j . An equivalent require-

ment is that un+1
j − un

j lies between 0 and un
j−1 − un

j . This can be rewritten in the
form

un
j − un

j−1 	= 0 =⇒ 0 ≤ −un+1
j − un

j

un
j − un

j−1

≤ 1.

Thus the van Leer smoothness monitor for the scheme is defined to be

rn
j = un

j − un
j−1

un
j+1 − un

j

. (5.13)

Note that a monotonic scheme is monotonicity-preserving.

Example 5.5.2 The explicit upwind difference un+1
j − un

j = −λ
tn+1/2


x j
[un

j − j n
j−1]

can be rewritten

−un+1
j − un

j

un
j − un

j−1

= λ
tn+1/2


x j
.

It follows that explicit upwind differencing for linear advection is monotonic if and
only the Courant numbers satisfy

λ
tn+1/2


x j
≤ 1

for all timesteps.
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There are several reasons why the smoothness monitor is useful. Note that rn
j < 0

implies a local extremum in the numerical solution, possibly due to a numerical
oscillation. On the other hand, rn

j > 0 implies monotonic behavior in the numer-
ical solution, either monotonically increasing or decreasing. Furthermore, rn

j ≈ 1
implies smooth behavior in the numerical solution, and rn

j ≈ 0 or ∞ indicates a
numerical discontinuity.

5.5.2 Monotonizations

Consider the Lax-Wendroff scheme for linear advection:

0 = un+1
j − un

j


t
+ λ

un
j+1 − un

j−1

2
x
− λ
t


x

λ

2

[
un

j+1 − un
j


x
− un

j − un
j−1


x

]
.

If we multiply this equation by 
t/(un
j − un

j−1), we obtain

−un+1
j − un

j

un
j − un

j−1

= γ

{
1 + 1

2
(1 − γ )

(
1

rn
j

− 1

)}
where γ = λ�T/�X . Recall from section 3.5 that this scheme has second-order
local truncation error. Since this scheme is linear and second-order, Godunov’s
theorem [96, p. 174] shows that it cannot be monotonic. However, since this scheme
is a function of the smoothness monitor rn

j and the Courant number γ , we can
consider monotonizing the Lax-Wendroff scheme as follows:

−un+1
j − un

j

un
j − un

j−1

= γ

{
1 + 1

2
(1 − γ )

(
1

rn
j

− 1

) (
1 − Q

(
1

rn
j

))}
≡ φLW (γ, rn

j ). (5.14)

Thus, in order for this scheme to be monotonic we want

for all 0 ≤ γ ≤ 1 for all r ∈ R, 0 ≤ φLW (γ, r ) ≤ 1.

Lemma 5.5.3 If 0 ≤ γ ≤ 1 and the function Q(r ) satisfies the inequality

for all r

∣∣∣∣(1

r
− 1

) (
1 − Q

(
1

r

))∣∣∣∣ ≤ 2,

which is equivalent to the inequalities

for all r min

{
r + 1

1 − r
,

1 − 3r

1 − r

}
≤ Q

(
1

r

)
≤ max

{
r + 1

1 − r
,

1 − 3r

1 − r

}
, (5.15)

then the function φLW defined by (5.14) satisfies for all 0 ≤ γ ≤ 1 for all r ∈
R 0 ≤ φLW (γ, r ) ≤ 1.
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Proof Note that φLW (0, r ) = 0 and φLW (1, r ) = 1, so φLW is at the required bounds
when γ is at either of its extreme values. It follows that we must have

for γ = 0 or 1 for all r, 0 ≤ ∂φLW

∂γ
= 1 +

[
1

2
− γ

] [
1

r
− 1

] [
1 − Q

(
1

r

)]
.

In particular,

for all r 0 ≤ ∂φLW

∂γ
(0, r ) = 1 + 1

2

(
1

r
− 1

) (
1 − Q

(
1

r

))
and (5.16a)

for all r 0 ≤ ∂φLW

∂γ
(1, r ) = 1 − 1

2

(
1

r
− 1

) (
1 − Q

(
1

r

))
. (5.16b)

Note that

∂φLW

∂γ
= (1 − γ )

∂φLW

∂γ
(0, r ) + γ

∂φLW

∂γ
(1, r ).

It follows that if both of the constraints (5.16) are satisfied, then for all 0 ≤
γ ≤ 1 for all r ∈ R 0 ≤ φ(γ, r ) ≤ 1. The requirements (5.16) can be simplified to
|( 1

r − 1)(1 − Q( 1
r ))| ≤ 2, which can be rewritten in the form (5.15). �

Note that Q(1/r ) ≡ 1 produces the upwind scheme. Also, note that the Lax–
Wendroff scheme is itself monotonic precisely when Q(1/r ) = 0 satisfies the
inequalities (5.15), that is, when −1 ≤ 1/r ≤ 3. Unfortunately, even if we mono-
tonize the Lax-Wendroff method by means of Q( 1

r ), the resulting scheme is not
conservative.

Next, consider the Beam–Warming scheme

0 = un+1
j − un

j


t
+ λ

(3un
j − un

j−1) − (3un
j−1 − un

j−2)

2
x
− λ
t


x

λ

2

[
un

j − un
j−1


x
− un

j−1 − un
j−2


x

]
,

which can be rewritten in the form

−un+1
j − un

j

un
j − un

j−1

= γ

{
1 + 1

2
(1 − γ )(1 − rn

j−1)

}
.

Again, since this scheme is linear and second-order, it cannot be monotonic. How-
ever, since this scheme is a function of the smoothness monitor rn

j−1 and the Courant
number γ , consider monotonizing the Beam–Warming scheme as follows:

−un+1
j − un

j

un
j − un

j−1

= γ

{
1 + 1

2
(1 − γ )(1 − rn

j−1)
(
1 − R(rn

j−1)
)} ≡ φBW (γ, rn

j−1). (5.17)

Following the same approach as in Lemma 5.5.3, we can easily prove the following
lemma.
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Lemma 5.5.4 If 0 ≤ γ ≤ 1 and the function R(r ) satisfies the inequalities

for all r |(1 − r ) (1 − R(r )) | ≤ 2,

which can be rewritten in the form

for all r min

{
r + 1

r − 1
,

r − 3

r − 1

}
≤ R(r ) ≤ max

{
r + 1

r − 1
,

r − 3

r − 1

}
, (5.18)

then φBW (γ, r ) defined in (5.17) satisfies for all 0 ≤ γ ≤ 1 for all r ∈ R 0 ≤
φBW (γ, r ) ≤ 1.

Note that R(r ) ≡ 1 produces the upwind scheme. Also, note that the Beam–
Warming scheme is itself monotonic precisely when R(r ) = 0 satisfies the inequal-
ities (5.15), that is, when −1 ≤ r ≤ 3. Unfortunately, even if we monotonize the
Beam–Warming method by means of R(r ), the resulting scheme is not conservative.

The Fromm scheme [51] is the average of the Lax–Wendroff and Beam–
Warming schemes, when applied to linear advection. If we average the mono-
tonized Lax–Wendroff and monotonized Beam–Warming schemes, the result will
be monotonic:

−un+1
j − un

j

un
j − un

j−1

= γ

{
1 + 1 − γ

4

[(
1

rn
j

− 1

) (
1 − Q

(
1

rn
j

))
+ (1 − rn

j−1)
(
1 − R(rn

j−1)
)]}

.

= γ

un
j − un

j−1

{
un

j + 1 − γ

4

[
(un

j+1 − un
j−1) − (un

j+1 − 2un
j + un

j−1)Q

(
1

rn
j

)]

− un
j−1 + 1 − γ

4
[−(un

j − un
j−2) − (un

j − 2un
j−1 + un

j−2)R(rn
j−1)]

}
.

This expression shows that in order for this scheme to be conservative, it suffices
to find a function S so that S(1/r ) = Q(1/r ) and S(r ) = −R(r ).

5.5.3 MUSCL Scheme

With this function S(r ) in the Fromm monotonization, Lemma 5.5.3shows that the
Lax–Wendroff scheme will be monotonic if∣∣∣∣(1

r
− 1

) (
1 − S

(
1

r

))∣∣∣∣ ≤ 2

and Lemma 5.5.4 shows that the Beam–Warming scheme will be monotonic if

|(1 − r ) (1 + S(r )) | ≤ 2.

By solving these inequalities, we see that for the average scheme to be monotonic
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Fig. 5.2 MUSCL curves: Monotonizers vs. smoothness monitor; S(r ) is thick
curve

we must require

r ≤ 0 =⇒ S(r ) = (1 + r )/(1 − r )

0 ≤ r ≤ 1 =⇒ (1 − 3r )/(1 − r ) ≤ S(r ) ≤ (1 + r )/(1 − r )

1 ≤ r =⇒ −(1 + r )/(r − 1) ≤ S(r ) ≤ −(r − 3)/(r − 1).

Next, because Q is a function of 1/r and R is a function of r , we require that
S (1/r ) = −S(r ). This is condition is satisfied for r < 0, where S has already
been defined. As a consequence of this choice, S(1) = 0. Finally, we would like to
minimize the value of the monotonizer, so that we differ from the original Fromm
scheme as little as possible. As a result, we take S(r ) = (1 − 3r )/(1 − r ) for 0 ≤
r ≤ 1/3 and S(r ) = −(r − 3)/(r − 1) for 3 ≤ r . Similarly, we take S(r ) = 0 for
1/3 ≤ r ≤ 3. In summary, our monotonizer is

S(r ) =


1+r
1−r , r ≤ 0 =⇒ upwind
1−3r
1−r , 0 ≤ r ≤ 1/3 =⇒ Beam–Warming

0, 1
3 ≤ r ≤ 3 =⇒ Fromm

− r−3
r−1 , 3 ≤ r =⇒ Lax–Wendroff.

This function is illustrated in Figure 5.2.
An equivalent formulation of this method has numerical flux

f n+1/2
j+1/2 = λ

[
un

j + 1

2
(1 − γ )sn

j

]
,
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(a) Beam-Warming (b) Lax-Wendroff (c) Fromm

(d) Upwind (e) MUSCL

Fig. 5.3 Schemes for Linear Advection (CFL=0.9) (red= exact, blue=numerical
solution)

where γ = λ
t/
x is the Courant number and

sn
j = 1

2
δn

j+1/2[1 + rn
j − (1 − rn

j )S(rn
j )]

is the MUSCL slope. If we define the side-centered slope

δn
j+1/2 = un

j+1 − un
j ,

then we can write

sn
j =

{
sign(δn

j+1/2 + δn
j−1/2) min{2|δn

j+1/2|, 2|δn
j−1/2|, 1

2 (|δn
j+1/2 + δn

j−1/2|)}, δn
j+1/2δ

n
j−1/2 ≥ 0

0, otherwise.

Here “MUSCL” is an acronym for “Monotone Upstream-centered Scheme for
Conservation Laws.” Note that we can interpret f n+1/2

j+1/2 as the flux function evalu-
ated at the state un

j + 1
2 (1 − γ )sn

j . In Section 5.9, we will generalize the MUSCL
scheme to nonlinear scalar conservation laws.

Figure 5.3 shows the computational results with various first-order and second-
order schemes. This figure was generated by Program 5.5-63: GUILinearAdvection-
Main.C. The MUSCL scheme has been implemented in Program 5.5-64: muscl.f . Stu-
dents can test and compare the upwind, Beam–Warming, Lax–Wendroff, Fromm
and MUSCL schemes for the Zalesak linear advection test problems (see exercise
2.2.5 of section 2.2) by clicking on Executable 5.5-26: guilinearad . Selecting a posi-
tive number of grid cells causes the program to run the first method selected on the

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/GUILinearAdvectionMain.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/muscl.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad
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chosen initial data, while selecting zero grid cells causes the program to perform
mesh refinement and efficiency studies on all selected programs.

Exercises for 5.5

5.5.1 Program the MUSCL scheme for linear advection. Compare it to Lax–Wendroff, Beam–Warming
and Fromm for the Zalesak initial data in Exercise 2.2.5 of Section 2.2. Which scheme pro-
duces the smallest error for a given mesh width? Which scheme is most efficient? What conver-
gence rates do the schemes produce? For which initial data are any of the schemes second-order
accurate?

5.5.2 VanLeer also suggested

S(r ) = 1 − |r |
1 + |r | .

Show that this corresponds to using harmonically averaged slopes when the numerical solution
has no local extremum.

5.6 Discrete Entropy Conditions

In section 3.1 we discussed the usefulness of an entropy function for scalar con-
servation laws. In this section we would like to study the usefulness of an entropy
function for understanding the behavior of numerical methods.

Suppose that we have an explicit conservative numerical method

un+1
j = un

j − 
tn+1/2


x j

[
f n+1/2

j+1/2 − f n+1/2
j−1/2

]
that approximates the solution of the system of conservation laws

∂u

∂t
+ ∂ f (u)

∂x
= 0.

Also suppose that η is a convex entropy function (definition 3.1.14) for the conser-
vation law, with entropy flux ψ ; in other words,

∂ψ

∂u
= ∂η

∂u

∂ f

∂u
.

Suppose that η is concave, and we can find a numerical entropy flux � that is
consistent with ψ (definition 5.1.2) and satisfies

η(un+1
j ) ≥ η(un

j ) − 
tn+1/2


x j
[�(un

j−k+1, . . . , un
j+k) − �(un

j−k, . . . , un
j+k+1)].

Then it is possible to modify the proof of the Lax–Wendroff Theorem 5.2.2 (see [96,
section 12.5]) to show that if {un

j } → u, then the total entropy
∫

η(u) dx increases
in time. Similarly, if η is concave and the inequality on � is reversed, then the total
entropy decreases in time.
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In Lemma 4.2.2, we proved that if Godunov’s method converges in one dimen-
sion, then it converges to an entropy-satisfying solution of the conservation law.
Thus exact Riemann solvers are useful in guaranteeing convergence to the entropy-
satisfying solution of initial value problems for conservation laws. The problems
with their use are their programming complexity and computational cost. It would
be useful to establish a general principle for numerical schemes which would guar-
antee convergence to the correct solution at less expense than with the true Godunov
method.

5.7 E-Schemes

Definition 5.7.1 [124]. An E-scheme is a consistent (Definition 5.1.2) conservative
(Equation (2.14)) scheme for a scalar conservation law ∂u/∂t + ∂ f (u)/∂x = 0,
with numerical flux f n+1/2

j+1/2 satisfying

for all u between un
j , un

j+1, sign(un
j+1 − un

j )
[

f n+1/2
j+1/2 − f (u)

]
≤ 0.

Another way to state this definition is that for an E-scheme,

un
j ≤ un

j+1 =⇒ f n+1/2
j+1/2 ≤ min

un
j ≤u≤un

j+1

f (u),

un
j ≥ un

j+1 =⇒ f n+1/2
j+1/2 ≥ max

un
j ≤u≤un

j+1

f (u).

Osher [124] proved the following theorem for continuous-time schemes of the
form

du j

dt
= − f j+1/2 − f j−1/2


x j
,

and Tadmor [156] proved the following theorem for the discrete-time scheme

un+1
j − un

j


tn+1/2
= − f j+1/2 − f j−1/2


x j
.

Theorem 5.7.2 If they converge, E-schemes (see Definition 5.7.1) converge to the
entropy-satisfying solution, and are at most first-order accurate.

Example 5.7.3 Godunov’s method is an E-scheme, since the Oleinik chord condi-
tion (Lemma 3.1.19) shows that the Godunov flux is

FG
j+1/2 = f (R(u j , u j+1; 0)) =

{
minu j ≤u≤u j+1 f (u), u j ≤ u j+1

maxu j ≥u≥u j+1 f (u), u j ≥ u j+1.
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Note that any flux f n+1/2
j+1/2 of the form f n+1/2

j+1/2 = f G
j+1/2 − λ(u j+1 − u j ), where

λ ≥ 0, generates an E-scheme, and all other E-scheme fluxes are bounded by the
Godunov flux. Thus the flux for an E-scheme is equal to the Godunov flux plus
a numerical diffusion. In other words, Godunov’s method is the least diffusive
E-scheme.

Example 5.7.4 The Engquist–Osher flux is

f E O
j+1/2 = 1

2

[
f (u j+1) + f (u j ) −

∫ u j+1

u j

| f ′(v)| dv

]
. (5.19)

This can be rewritten either as

f E O
j+1/2 = f (u j ) + 1

2

{
f (u j+1) − f (u j ) −

∫ u j+1

u j

| f ′(v)| dv

}

= f (u j ) +
∫ u j+1

u j

min{ f ′(v), 0} dv,

or

f E O
j+1/2 = f (u j+1) −

∫ u j+1

u j

max{ f ′(v), 0} dv.

Both of these forms can be rewritten as a sum or difference of fluxes at the end-
points and intermediate sonic points. When viewed in these forms, it is easy to
see that the Engquist–Osher scheme is an E-scheme. The Engquist-Osher scheme
has been implemented in Program 5.7-65: Schemes.C. Students can experiment with
the Engquist–Osher scheme for Riemann problems in a variety of models (Linear
Advection, Burgers’, Traffic and Buckley–Leverett) by clicking on Executable 5.7-
27: guiriemann .

Exercises for 5.7

5.7.1 Consider a scheme with Rusanov-type flux

f n+1/2
j+1/2 = 1

2

[
f (un

j ) + f (un
j+1)

] − λn
j+1/2(un

j+1 − un
j ).

Show that this flux generates an E-scheme if and only if

for all u ∈ int[un
j , un

j+1] λn
j+ 1

2
≥

1
2

[
f (un

j ) + f (un
j+1)

]
− f (u)

un
j+1 − un

j

.

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann
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5.7.2 Under what circumstances does Marquina’s flux (see also exercise 3.4.3), given by

f n+1/2
i+1/2 =


f (uL ), f ′(u) > 0 for all u ∈ int[uL , u R]
f (u R), f ′(u) < 0 for all u ∈ int[uL , u R]
1
2 [ f (uL ) + f (u R)] − (u R − uL ) maxu∈int[uL ,ur ] | f ′(u)|, otherwise

.

generate an E-scheme? (Here int[a, b] is the closed interval bounded by a and b.)
5.7.3 Under which circumstances is Murman’s scheme [120], in which

f n+1/2
j+1/2 = 1

2
[ f (u j ) + f (u j+1)] − λ j+1/2(u j+1 − u j ), λ j+1/2 = f (u j+1) − f (u j )

u j+1 − u j
,

an E-scheme? (You may want to compare this problem to Example 5.2.3.)
5.7.4 Show that for any continuously differentiable flux function f , the Engquist–Osher flux is a

sum of values of f at the states u j and/or u j+1 and critical points of f between these two
states.

5.7.5 Consider the Engquist–Osher flux for Burgers’ equation.
(a) Show that for this problem, the Engquist–Osher flux is equal to the Godunov flux, except in

the case of a transonic shock (i.e., un
j > 0 > un

j+1).
(b) Show that the Engquist–Osher flux has Lipschitz continuous partial derivatives with respect

to the states un
j and un

j+1, while the Godunov flux does not.
5.7.6 Describe the Engquist–Osher flux for the traffic flow problem with flux f (ρ) = −ρ log(ρ). (Note

that usonic = 1/e is important because f ′(1/e) = 0.)
5.7.7 Describe the Engquist–Osher flux for the Buckley–Leverett problem.

5.8 Total Variation Diminishing Schemes

5.8.1 Sufficient Conditions for Diminishing Total Variation

Recall from Section 5.3.3 that solutions of scalar conservation laws are total vari-
ation diminishing (TVD). This means that the total variation T V (u) (Definition
5.3.2) is non-increasing in time. In this section, we will determine conditions under

which a conservative difference scheme un+1
j = un

j − 
tn+1/2


x j

[
f n+1/2

j+1/2 − f n+1/2
j−1/2

]
is

total variation diminishing.
The following lemma is crucial to our development of total variation diminishing

schemes.

Lemma 5.8.1 (Harten [64]) If 
un
j+1/2 ≡ un

j+1 − un
j , and the difference scheme

un+1
j = un

j + D j+1/2
un
j+1/2 − C j−1/2
un

j−1/2

is such that

for all j 0 ≤ C j+1/2 and 0 ≤ D j+1/2 and C j+1/2 + D j+1/2 ≤ 1,

then the scheme is TVD.
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Proof The total variation at the new time is

T V (un+1)

=
∑

j

|un+1
j+1 − un+1

j |

=
∑

j

|un
j+1+D j+ 3

2

un

j+ 3
2
−C j+1/2
un

j+1/2−un
j − D j+1/2
un

j+1/2+C j−1/2
un
j−1/2|

=
∑

j

|D j+ 3
2

un

j+ 3
2
+ {1 − C j+1/2 − D j+1/2}
un

j+1/2 + C j−1/2
un
j−1/2|

≤
∑

j

D j+ 3
2
|
un

j+ 3
2
| +

∑
j

[1 − C j+1/2 − D j+1/2]|
un
j+1/2| +

∑
j

C j−1/2|
un
j−1/2|

=
∑

j

[D j+1/2 + {1 − C j+1/2 − D j+1/2} + C j+1/2]|
un
j+1/2|

=
∑

j

|
un
j+1/2| =

∑
j

|un
j+1 − un

j | = T V (un).
�

Our discussion in the remainder of this section follows the original development
due to Sweby [155]. Let us write


 f n
j+1/2 ≡ f (un

j+1) − f (un
j ) and 
un

j+1/2 ≡ un
j+1 − un

j .

Note that we can perform the flux splitting


 f n
j+1/2 =
 f +

j+1/2 + 
 f −
j+1/2

where


 f +
j+1/2 ≡−

[
f n+1/2

j+1/2 − f (un
j+1)

]
, 
 f −

j+1/2 ≡ f n+1/2
j+1/2 − f (un

j ).

Lemma 5.8.2 If f n+1/2
j+1/2 is generated by an E-scheme (Definition 5.7.1), then the

split CFL numbers

γ +
j+1/2 ≡ 2
tn+1/2


x j + 
x j+1


 f +
j+1/2


un
j+1/2

and γ −
j+1/2 ≡ − 2
tn+1/2


x j + 
x j+1


 f −
j+1/2


un
j+1/2

(5.20)

are nonnegative.

Proof Using the definitions of the split flux differences and the definition of an
E-scheme, we compute

γ +
j+1/2 = − 2
tn+1/2


x j + 
x j+1

sign(
un
j+1/2)

[
f n+1/2

j+1/2 − f (un
j+1)

]
|
un

j+1/2|
≥ 0,

γ −
j+1/2 = − 2
tn+1/2


x j + 
x j+1

sign(
un
j+1)

[
f n+1/2

j+1/2 − f (un
j )
]

|
un
j+1|

≥ 0.

�
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In order to simplify the expressions, we will define the dimensionless mesh
factors

α j+1/2 = 2
x j


x j + 
x j+1
and β j+1/2 = 2
x j+1


x j+1 + 
x j
. (5.21)

Note that α j+1/2 + β j+1/2 = 2. In fact, on a uniform grid, α j+1/2 = 1 = β j+1/2.
Also note that we can relate the flux difference to the solution difference by

2
tn+1/2


x j + 
x j+1

 f n

j+1/2 = (γ +
j+1/2 − γ −

j+1/2)
un
j+1/2.

Lemma 5.8.3 Let the mesh factors α j+1/2 and β j+1/2 be given by (5.21) and the
split CFL numbers γ +

j+1/2 and γ −
j+1/2 be given by (5.20). Then E-scheme fluxes

(Definition 5.7.1) generate a TVD conservative difference scheme if the timestep

tn+1/2 is chosen so that

γ +
j+1/2

β j+1/2
+ γ −

j+1/2

α j+1/2
≤ 1.

Proof We can write the numerical scheme in the form

un+1
j = un

j − 
tn+1/2


x j

[{
f n+1/2

j+1/2 − f (un
j )
}

−
{

f n+1/2
j−1/2 − f (un

j )
}]

= un
j − 
tn+1/2


x j

[

 f −

j+1/2 + 
 f +
j−1/2

]
= un

j + 
x j + 
x j+1

2
x j
γ −

j+1/2
un
j+1/2 − 
x j + 
x j−1

2
x j
γ +

j−1/2
un
j−1/2

= un
j + γ −

j+1/2

α j+1/2

un

j+1/2 − γ +
j−1/2

β j−1/2

un

j−1/2.

The result follows from Harten’s Lemma 5.8.1. �

The next lemma describes a more clearly understandable strategy for selecting
a timestep for the Engquist–Osher scheme.

Lemma 5.8.4 The Engquist–Osher scheme (5.19) is TVD if

for all j, 
tn+1/2 max
u between un

j , un
j+1

∣∣∣∣d f (u)

du

∣∣∣∣ ≤ min{
x j , 
x j+1}.

Proof Since the Engquist-Osher scheme is an E-scheme, γ ±
j+1/2 ≥ 0. According to

Lemma 5.8.3, we only need to prove that

γ +
j+1/2

β j+1/2
+ γ −

j+1/2

α j+1/2
≤ 1.
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For any u, the definition (5.19) of the Engquist–Osher flux can be rewritten

f n+1/2
j+1/2 = f (u) +

∫ un
j

u
max{ f ′(v), 0} dv +

∫ un
j+1

u
min{ f ′(v), 0} dv.

By choosing u = un
j+1 we obtain


 f +
j+1/2 ≡ f (un

j+1) − f n+1/2
j+1/2 =

∫ un
j+1

un
j

max{ f ′(v), 0} dv.

By choosing u = un
j we obtain


 f −
j+1/2 ≡ f n+1/2

j+1/2 − f (un
j ) =

∫ un
j+1

un
j

min{ f ′(v), 0} dv.

It follows that

γ +
j+1/2

β j+1/2
+ γ −

j+1/2

α j+1/2
= 
tn+1/2


x j+1


 f +
j+1/2


un
j+1/2

− 
tn+1/2


x j


 f −
j+1/2


un
j+1/2

= 
tn+1/2


x j+1

1

un
j+1 − un

j

∫ un
j+1

un
j

max{ f ′(v), 0} dv

− 
tn+1/2


x j

1

un
j+1 − un

j

∫ un
j+1

un
j

min{ f ′(v), 0} dv

≤ 
tn+1/2

min{
x j , 
x j+1}
1

un
j+1 − un

j

∫ un
j+1

un
j

| f ′(v)| dv

≤ 
tn+1/2

min{
x j , 
x j+1} max
u between un

j , un
j+1

∣∣∣∣d f

du

∣∣∣∣ .
�

Note that the proof of this lemma actually says that the Engquist–Osher scheme
will be TVD if the timestep is chosen to be less than the min of the cell widths
divided by the average of the absolute value of the flux derivative. If the flux
derivative has constant sign on the interval between un

j and un
j+1, then the average

of the absolute value of the flux derivative is the absolute value of the chord slope

 f n

j+1/2/
un
j+1/2. Sometimes, developers will try to take a larger timestep based

on this chord slope. However, it is possible that numerical diffusion will cause
the evolution of the scheme to generate intermediate points, some of which may
come close to a local extremum of the flux derivative. In order to keep the timestep
from varying abruptly when this happens, the timestep selection in Lemma 5.8.4 is
suggested.
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5.8.2 Higher-Order TVD Schemes for Linear Advection

We would like to extend the TVD analysis to higher-order schemes. As in the flux-
corrected transport scheme [22], we will view the higher-order flux as the sum of
a lower-order flux and a correction:

f n+1/2
j+1/2 = f L

j+1/2 + φ j
[

f H
j+1/2 − f L

j+1/2

]
.

Here f L
j+1/2 and f H

j+1/2 are the lower-order and higher-order fluxes (respectively),
and φ j is a limiter that is yet to be determined.

Consider the linear advection problem, in which f (u) = λu with λ > 0. Suppose
that we use upwind differences for our low-order scheme, and the Lax-Wendroff
method for the higher-order scheme. Then

f L
j+1/2 = λun

j and

f H
j+1/2− f L

j+1/2 =λ

(
1−λ


tn+1/2


x j

)
(un

j+1−un
j )


x j


x j+1 + 
x j

= 1

2
(α j+1/2−γ +

j+1/2)λ
un
j+1/2,

where we previously defined the mesh factor α j+1/2 in Equation (5.21) and the split
Courant number γ +

j+1/2 in equation (5.20). The limited scheme is

un+1
j = un

j − λ
tn+1/2


x j

[
un

j − un
j−1

]
− 1

2

λ
tn+1/2


x j

{
φ j (α j+1/2 − γ +

j+1/2)
un
j+1/2 − φ j−1(α j−1/2 − γ +

j−1/2)
un
j−1/2

}

= un
j −

γ +
j+ 1

2

α j+1/2

[
1+ 1

2
(α j−1/2−γ +

j−1/2)

{
φ j

(α j+1/2 − γ +
j+1/2)
un

j+1/2

(α j−1/2 − γ +
j−1/2)
un

j−1/2

−φ j−1

}]

un

j−1/2.

Note that since the characteristic speed is always positive, we wrote the scheme so
that it involves a factor times the difference 
un

j−1/2. In the notation of Harten’s
lemma 5.8.1, we have D j+1/2 = 0 and

C j−1/2 = γ +
j+1/2

α j+1/2

[
1 + 1

2

(
α j−1/2 − γ +

j−1/2

) {
φ j

(
α j+1/2 − γ +

j+1/2

)

un

j+1/2(
α j−1/2 − γ +

j−1/2

)

un

j−1/2

− φ j−1

}]
.(5.22)

So that the limited scheme is TVD, we want 0 ≤ C j−1/2 ≤ 1.
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In order to develop a general-purpose approach to the limiter, we will choose
φ j = φ(rn

j ) where

rn
j ≡

(
α j−1/2 − γ +

j−1/2

)

un

j−1/2(
α j+1/2 − γ +

j+1/2

)

un

j+1/2

(5.23)

is the smoothness monitor, which on a uniform mesh is the same as that defined
previously in Equation (5.13). The limiter function φ should have the following
properties. First φ ≥ 0, so that the limited scheme involves a nonnegative con-
tribution from the higher-order method. Second φ(r ) = 0 for r < 0, so that we
use the low-order scheme near local extrema. Third φ(1) = 1, so that we use the
higher-order scheme in regions where the solution is smooth. Finally, φ should be
as large as possible while remaining TVD, so that the scheme has as little numerical
diffusion as possible.

Lemma 5.8.5 Consider the scheme

un+1
j = un

j − γ +
j+1/2

α j+1/2

[
1 + 1

2
(α j−1/2 − γ +

j−1/2)

{
φ(rn

j )

rn
j

− φ(rn
j−1)

}]

un

j−1/2 (5.24)

for linear advection, where the mesh factors α j+1/2 are given by (5.21), the split
Courant numbers γ +

j+1/2 are given by (5.20), and the smoothness monitor rn
j is

given by (5.23). If the timestep 
tn+1/2 is chosen so that

for all j,
1

2
(
x j − 
x j+1) ≤ λ
tn+1/2 ≤ min

{

x j ,

1

2
(
x j + 
x j+1)

}
and the limiter φ(r ) is chosen so that

r ≤ 0 =⇒ φ(r ) = 0 (5.25a)

r > 0 =⇒ 0 ≤ φ(r ) ≤ min{2, 2r} (5.25b)

then the scheme (5.24) is TVD.

Proof Recall from Equation (5.22) that

C j−1/2 = γ +
j+1/2

α j+1/2

[
1 + 1

2
(α j−1/2 − γ +

j−1/2)

{
φ(rn

j )

rn
j

− φ(rn
j−1)

}]
.
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The assumed timestep restriction λ
tn+1/2 ≤ 
x j is equivalent to γ +
j+1/2 ≤ α j+1/2,

and the assumed bounds on the limiter φ imply that

C j−1/2 ≥ γ +
j+1/2

α j+1/2
{1 − α j−1/2 + γ +

j−1/2}

C j−1/2 ≤ γ +
j+1/2

α j+1/2
{1 + α j+1/2 − γ +

j+1/2}.

Note that the timestep restriction 2λ
tn+1/2 ≥ 
x j − 
x j+1 implies that γ +
j−1/2 ≥

α j+1/2 − 1, which in turn implies that C j−1/2 ≥ 0. Also, the timestep restric-
tion λ
tn+1/2 ≤ min{
x j ,

1
2 (
x j + 
x j+1)} implies that γ +

j+1/2 ≤ min{1, α j+1/2},
which in turn implies that

1 − γ +
j+1/2

α j+1/2
(1 + α j+1/2 − γ +

j+1/2) = (1 − γ +
j+1/2)(α j+1/2 − γ +

j+1/2)/α j+1/2 ≥ 0.

As a result, C j−1/2 ≤ 1. Harten’s Lemma 5.8.1 now completes the proof. �

Lemma 5.8.6 In addition to the hypotheses of Lemma 5.8.5 assume that the limiter
φ(r ) is chosen so that

r ≤ 0 =⇒ φ(r ) = 0 (5.26a)

0 < r ≤ 1 =⇒ r ≤ φ(r ) ≤ min{1, 2r} (5.26b)

1 ≤ r =⇒ 1 ≤ φ(r ) ≤ min{r, 2}. (5.26c)

Then the scheme (5.24) is TVD, has a three-point stencil, and is second-order
accurate away from local extrema in the numerical solution.

Proof Since the limited scheme is supposed to be second-order accurate and have a
three-point stencil, it follows that the limited scheme must be a weighted average of
the Lax–Wendroff and Beam–Warming schemes. Since the Lax–Wendroff scheme
corresponds to choosing φ(r ) = 1, and the Beam–Warming scheme corresponds to
choosing φ(r ) = r , we require that

φ(r ) = (1 − θ (r )) + θ (r )r = 1 + θ (r )(r − 1)

for some weighting factor θ (r ) satisfying 0 ≤ θ (r ) ≤ 1. For 0 ≤ r ≤ 1, the TVD
conditions (5.25) require that 0 ≤ φ(r ) ≤ 2r , and the assumption that 0 ≤ θ (r ) ≤ 1
imposes the additional constraint that r ≤ φ(r ) = 1 − θ (r )(1 − r ) ≤ 1. For 1 ≤ r ,
the TVD conditions (5.25) require that 0 ≤ φ(r ) ≤ 2, and the assumption that 0 ≤
θ (r ) ≤ 1 imposes the additional constraint that 1 ≤ φ(r ) = 1 + θ (r )(r − 1) ≤ r .
This gives us the conditions (5.26). �
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There are several examples of second-order limiters, corresponding to different
schemes. All of the schemes will work with the traced flux increments


 f n+1/2
j+1/2 = (α j+1/2 − γ +

j+1/2)λ
un
j+1/2.

The van Leer limiter chooses φ(r ) = (r + |r |)/(1 + |r |). This corresponds to
choosing the conservative flux to be

f n+1/2
j+1/2 = λun

j + 1

2

 f n

j , (5.27)

where the monotonized harmonic slope is defined to be


 f n
j =

{
2
 f n

j−1/2
 f n
j+1/2


 f n
j−1/2+
 f n

j+1/2
, 
 f n

j−1/2 
 f n
j+1/2 > 0

0, otherwise.

In fact, all of the TVD limiters necessarily choose the monotonized slope 
 f n
j to be

zero when the side slopes 
 f n
j−1/2 and 
 f n

j+1/2 have opposite signs. The minmod
limiter chooses φ(r ) = max{0, min{1, r}}. For this limiter, the conservative flux
(5.27) chooses the monotonized slope to be


 f n
j = sign(
 f n

j+1/2) min{|
 f n
j+1/2|, |
 f n

j−1/2|},
provided that the side slopes have the same sign. This limiter corresponds to using
the Beam–Warming scheme for r ≤ 1 and the Lax–Wendroff scheme for r ≥ 1. The
MUSCL limiter chooses φ(r ) = max{0, min{2, 2r, 1/2(1 + r )}}. For this limiter,
the monotonized slope for the conservative flux (5.27) is given by


 f n
j = sign(
 f n

j+1/2) min

{
2|
 f n

j+1/2|, 2|
 f n
j−1/2|,

∣∣∣∣1

2

(

 f n

j+1/2 + 
 f n
j−1/2

)∣∣∣∣} ,

provided that the side slopes have the same sign. Finally, the superbee lim-
iter chooses φ(r ) = max{0, min{1, 2r}, min{r, 2}}. Here the monotonized slope is
defined to be


 f n
j = sign(
 f n

j+1/2) max
{
min{|
 f n

j+1/2|, 2|
 f n
j−1/2|}, min{|
 f n

j−1/2|, 2|
 f n
j+1/2|}

}
provided that the side slopes have the same sign. Figure 5.4 shows the graph of φ

versus r , and several of the limiters.
A C++program to implement the TVD scheme for linear advection can be found

in Program 5.8-66: LinearAdvectionSchemes.C The main program is in Program 5.8-
67: GUILinearAdvectionMain2.C Students can exercise this program by clicking on
Executable 5.8-28: guilinearad2 The user can select a variety of initial values from
the Zalesak test problems in exercise 2.2.5 of section 2.2. In addition, the user can
select from a variety of limiters. By setting the number of cells to 0, the user will
cause the program to perform a mesh refinement study.

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/GUILinearAdvectionMain2.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2
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Fig. 5.4 Second-order TVD region and TVD limiters: φ versus r

5.8.3 Extension to Nonlinear Scalar Conservation Laws

Next, let us extend our development of TVD schemes to general nonlinear scalar
conservation laws. Suppose that f L

j+1/2(un
j , un

j+1) is a low-order diffusive flux, such
as an E-scheme. As before, we will define the flux differences 
 f +

j+1/2 = f (un
j+1) −

f L
j+1/2 and 
 f −

j+1/2 = f L
j+1/2 − f (un

j ). Recall that the split Courant numbers were
defined by Equation (5.20). Recall from Equation (3.28) that the Lax–Wendroff
flux is

f LW
j+1/2 = f (un

j )
x j+1 + f (un
j+1)
x j − 
tn+1/2 d f

du [ f (un
j+1) − f (un

j )]


x j + 
x j+1

= 1

2

[
α j+1/2 f (un

j+1) + β j+1/2 f (un
j )
] − 
tn+1/2 d f

du


x j + 
x j+1

[

 f +

j+ 1
2
+ 
 f −

j+ 1
2

]

= f L
j+ 1

2
+ 1

2

[
α j+1/2 − 2
tn+1/2 d f

du


x j + 
x j+1

]

 f +

j+1/2

+ 1

2

[
β j+1/2 − 
tn+1/2 d f

du


x j + 
x j+1

]

 f −

j+ 1
2
.

Here the mesh factors α j+1/2 and β j+1/2 are defined in (5.21), and the flux derivative
is approximated by difference quotients. For our purposes in this section, the flux
derivative approximations will give us the following form for the Lax–Wendroff
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flux:

f LW
j+1/2 = f L

j+1/2 + 1

2
(α j+1/2 − γ +

j+1/2)
 f +
j+1/2 − 1

2
(β j+1/2 − γ −

j+1/2)
 f −
j+1/2.

Recall that Lemma 5.8.2 showed that if f L
j+1/2 is generated by an E-scheme, then

γ +
j+1/2 and γ −

j+1/2 are nonnegative.
Next, we will modify the second-order terms by limiters. The revised numerical

flux is described in the following lemma.

Lemma 5.8.7 Suppose that we have a mesh . . . < x j−1/2 < x j+1/2 < . . . and mesh
values un

j approximating cell averages of the solution u to the conservation
law ∂u/∂t + ∂ f (u)/∂x = 0. Define the solution increments, 
un

j+1/2 = un
j+1 − un

j .
Suppose that f L

j+1/2(un
j , un

j+1) is generated by an E-scheme (definition 5.7.1). Define
the flux increments 
 f +

j+1/2 = f (un
j+1) − f L

j+1/2 and 
 f −
j+1/2 = f L

j+1/2 − f (un
j ),

the mesh factors α j+1/2 and β j+1/2 as in equation (5.21), and the split Courant
numbers as in equation (5.20). Define the smoothness monitors by

r+
j = (α j−1/2 − γ +

j−1/2)
 f +
j−1/2

(α j+1/2 − γ +
j+1/2)
 f +

j+1/2

and r−
j = (β j−1/2 − γ −

j−1/2)
 f −
j−1/2

(β j+1/2 − γ −
j+1/2)
 f −

j+1/2

.

Suppose that 1 ≤ � ≤ 2 and the limiter φ satisfies

for all r, 0 ≤ φ(r ) and for all r 	= 0, max

{
φ(r ),

φ(r )

r

}
≤ �.

If the timestep 
tn+1/2 is chosen so that

γ +
j+1/2 > 0 =⇒ |α j+1/2 − γ +

j+1/2| ≤ 2

�

γ −
j+1/2 > 0 =⇒ |β j+1/2 − γ −

j+1/2| ≤ 2

�

γ +
j+1/2

β j+1/2
+ γ −

j+1/2

α j+1/2
≤ 1

2

and the flux is given by

f n+1/2
j+1/2 = f L

j+1/2 + φ(r+
j )

1

2
(α j+1/2 − γ +

j+1/2)
 f +
j+1/2 − φ(r−

j+1)
1

2
(β j+1/2 − γ −

j+1/2)
 f −
j+1/2

(5.28)

then the conservative difference scheme

un+1
j = un

j − 
tn+1/2
[

f n+1/2
j+1/2 − f n+1/2

j−1/2

]
/
x j

is TVD.
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Proof To check that the scheme is TVD, we write

un+1
j = un

j

− 
tn+1/2


x j

[

 f −

j+1/2 + 1

2
φ(r+

j )(α j+1/2 − γ +
j+1/2)
 f +

j+1/2

− 1

2
φ(r−

j+1)(β j+1/2 − γ −
j+1/2)
 f −

j+1/2

+ 
 f +
j−1/2 − 1

2
φ(r+

j−1)(α j−1/2 − γ +
j−1/2)
 f +

j−1/2

+ 1

2
φ(r−

j )(β j−1/2 − γ −
j−1/2)
 f −

j−1/2

]
= un

j − 
un
j+1/2

α j+1/2

[
−γ −

j+1/2 + 1

2
φ(r+

j )(α j+1/2 − γ +
j+1/2)γ +

j+1/2

− 1

2
φ(r−

j+1)(β j+1/2 − γ −
j+1/2)γ −

j+1/2

]
− 
un

j−1/2

β j−1/2

[
−γ +

j−1/2 + 1

2
φ(r+

j−1)(α j−1/2 − γ +
j−1/2)γ +

j−1/2

+ 1

2
φ(r−

j )(β j−1/2 − γ −
j−1/2)γ −

j−1/2

]

= un
j − γ +

j−1/2
un
j−1/2

β j−1/2

{
1 − 1

2
(α j−1/2 − γ +

j−1/2)

[
φ(r+

j−1) − φ(r+
j )

r+
j

]}

+ γ −
j+1/2
un

j+1/2

α j+1/2

{
1 − 1

2
(β j+1/2 − γ −

j+1/2)

[
φ(r−

j+1) − φ(r−
j )

r−
j

]}
.

This suggests that we define

C j−1/2 = γ +
j−1/2

β j−1/2

{
1 − 1

2
(α j−1/2 − γ +

j−1/2)

[
φ(r+

j−1) − φ(r+
j )

r+
j

]}
(5.29a)

D j+1/2 = γ −
j+1/2

α j+1/2

{
1 − 1

2
(β j+1/2 − γ −

j+1/2)

[
φ(r−

j+1) − φ(r−
j )

r−
j

]}
. (5.29b)

Since f L
j+1/2 is generated by an E-scheme, lemma 5.8.2 shows that the split

Courant numbers γ ±
j−1/2 are nonnegative. It is easy to see that the timestep

restriction |α j+1/2 − γ +
j+1/2| ≤ 2/� implies that C j−1/2 ≥ 0, and the restriction

|β j+1/2 − γ −
j+1/2| ≤ 2/� implies that D j+1/2 ≥ 0. In order for Harten’s lemma

5.8.1 to guarantee that the scheme is TVD, we want C j+1/2 + D j+1/2 ≤ 1. Note
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that the timestep restrictions imply that

C j+1/2 + D j+1/2

≤ γ +
j+1/2

β j+1/2

{
1 + 1

2
|α j+1/2 − γ +

j+1/2|�
}

+ γ −
j+1/2

α j+1/2

{
1 + 1

2
|β j+1/2 − γ −

j+1/2|�
}

≤
[

γ +
j+1/2

β j+1/2
+ γ −

j+1/2

α j+1/2

]
2 ≤ 1.

�

Lemma 5.8.8 Suppose that the hypotheses of Lemma 5.8.7 are satisfied. In addi-
tion, suppose that f L

j+ 1
2
(un

j , j n
j+1) is given by the Engquist–Osher flux and the

timestep 
tn+1/2 is chosen so that


x j − 
x j + 
x j+1

�
≤ 
tn+1/2

∫ un
j+1

un
j

max{ f ′(u), 0} du

un
j+1 − un

j

≤ 
x j (5.30a)


x j+1 − 
x j + 
x j+1

�
≤ 
tn+1/2

∫ un
j+1

un
j

max{− f ′(u), 0} du

un
j+1 − un

j

≤ 
x j+1 (5.30b)


tn+1/2

∫ un
j+1

un
j

| f ′(u)| du

un
j+1 − un

j

max

{
1 + α j+1/2�/2


x j+1
,

1 + β j+1/2�/2


x j

}
≤ 1. (5.30c)

Then the conservative difference scheme with fluxes given by (5.28) is TVD.

Proof Since the lower-order flux is given by the Engquist-Osher flux,

γ +
j+1/2

β j+1/2
= 
tn+1/2


x j+1

∫ un
j+1

un
j

max{ f ′, 0}du

un
j+1 − un

j

γ −
j+1/2

α j+1/2
= 
tn+1/2


x j

∫ un
j+1

un
j

max{− f ′, 0}du

un
j+1 − un

j

.

From the definitions of C j+1/2 and D j+1/2 in Equations (5.29), it is easy to see that
the timestep restriction (5.30a) implies that C j+1/2 ≥ 0, and the timestep restriction
(5.30b) implies that D j+1/2 ≥ 0. Finally, the timestep restriction (5.30c) implies that

C j+1/2 + D j+1/2 ≤
∫ un

j+1

un
j

max{ f ′, 0}du + ∫ un
j+1

un
j

max{− f ′, 0}du

un
j+1 − un

j

× 
tn+1/2 max

{
1 + 1

2 (α j+1/2 − γ +
j+1/2)�


x j+1
,

1 + 1
2 (β j+1/2 − γ −

j+1/2)�


x j

}

≤
∫ un

j+1

un
j

| f ′|du

un
j+1 − un

j


tn+1/2 max

{
1 + α j+1/2�/2


x j+1
,

1 + β j+1/2�/2


x j

}
≤ 1.

The result follows from Harten’s lemma 5.8.1. �
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On a uniform grid, these requirements are satisfied whenever


tn+1/2 max
u between un

j ,u
n
j+1

max{ f ′(u), 0} ≤ 
x


tn+1/2 max
u between un

j ,u
n
j+1

max{− f ′(u), 0} ≤ 
x


tn+1/2 max
u between un

j ,u
n
j+1

| f ′(u)| ≤ 
x

1 + �/2
.

For the minmod limiter we have � = 1 and 1
1+�/2 = 2/3; for the van Leer, MUSCL

or superbee limiters we have � = 2 and 1
1+�/2 = 1/2.

A C++program to implement the TVD scheme for a variety of nonlinear scalar
conservation laws can be found in Program 5.8-68: Schemes2.C. The main program
is in Program 5.8-69: GUIRiemannProblem2.C. Students can exercise this program by
clicking on Executable 5.8-29: guiriemann2 The user can select Riemann problem
initial data for linear advection, Burgers’ equation, traffic models and the Buckley-
Leverett model. In addition, the user can select from a variety of limiters. By
setting the number of cells to 0, the user will cause the program to perform a mesh
refinement study.

Exercises for 5.8

5.8.1 Under what conditions are explicit upwind differences TVD for linear advection?
5.8.2 Which of the example limiters are such that 0 ≤ r ≤ 1 implies that 0 ≤ θ (r ) ≤ 1?
5.8.3 Program the TVD scheme for linear advection. Compare the minmod, van Leer, MUSCL and

superbee limiters at CFL = 0.1, 0.5 and 0.9 for the Zalesak test problems of Exercise 2.2.5 of
Section 2.2. In each case, plot the analytical solution with a continuous curve, and the numerical
solution with discrete markers.

5.8.4 Program the TVD scheme for the Burgers equation. Compare the minmod, van Leer, MUSCL and
superbee limiters at various values of CFL for calculations using at most 100 cells for a transonic
rarefaction, a non-stationary shock and a stationary shock.

5.9 Slope-Limiter Schemes

The flux-limiter approach in Section 5.8 required two kinds of fluxes. One was a
low-order entropy-satisfying flux f L

j+1/2 evaluated at cell sides. The other was the
flux f (un

j ), which was used to compute the anti-diffusive flux corrections. Because
of the flux splitting, the resulting scheme had a restricted timestep, depending
on the choice of the limiter (i.e., λ
t/
x ≤ 2/3 for minmod, λ
t/
x ≤ 1/2 for
MUSCL and superbee). The flux-splitting approach did avoid the solution of Rie-
mann problems. Further, since the resulting higher-order scheme was still TVD it

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/GUIRiemannProblem2.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
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was necessarily convergent, but some choices of the limiter may allow the limited
scheme to converge to an entropy-violating solution.

In this section, we will develop a second-order scheme that can take a larger
timestep than the TVD schemes. This method will consist of four basic steps. First,
piecewise polynomial reconstruction (Section 5.9.2) will be used to construct an
approximate solution function un(x) from the cell averages un

j . Second, charac-
teristic tracing (Section 5.9.4) will produce values of the solution at cell sides and
half-time by tracing characteristics back to data provided by the piecewise poly-
nomial reconstruction un(x). Third, numerical quadrature (Section 5.9.3) will
approximate time integrals of the flux at cell sides by an appropriate quadrature
rule. Finally, a conservative difference will compute the new solution by applying
the divergence theorem to the conservation law. In this scheme, higher-order accu-
racy will be the result of using a higher-order reconstruction of the solution than
the piecewise constant function used by Godunov’s method, and by using a suffi-
ciently accurate quadrature rule for the temporal integrals. The resulting scheme is
convergent, as shown in [125].

5.9.1 Exact Integration for Constant Velocity

We will motivate the development of the slope-limiter scheme by considering the
linear advection problem with piecewise constant initial data. We would like to
develop a conservative difference scheme that is exact for this problem, given
piecewise linear initial data.

Lemma 5.9.1 Suppose that we want to solve the linear advection problem
∂u/∂t + v∂u/∂x = 0 where v is constant. Let v+ = max{v, 0} and v− = min{v, 0}
be the positive and negative parts of the advection speed. Suppose that in each grid
cell we are given piecewise linear initial data at time tn:

u(x, tn) = un
i + sn

i (x − xi ), xi−1/2 < x < xi+1/2.

Suppose that the fluxes at the cell sides are given by

f n+1/2
i+1/2 = v+

[
un

i + sn
i 
xi

2

(
1 − v+
tn+1/2


xi

)]
+ v−

[
un

i+1 − sn
i+1
xi+1

2

(
1 + v−
tn+1/2


xi+1

)]
.

Then the conservative difference

un+1
i 
xi = un

i 
xi − 
tn+1/2
[

f n+1/2
i+1/2 − f n+1/2

i−1/2

]
produces exact cell averages at time tn+1.
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Proof Since the initial data is piecewise linear, the initial cell average is∫ xi+1/2

xi−1/2

u(x, tn) dx = un
i 
xi .

The exact solution of this problem is u(x, t) = u (x − v(t − tn), tn) for t ≥ tn . For
v ≥ 0 the cell average at tn+1 = tn + 
tn+1/2 is∫ xi+1/2

xi−1/2

u(x, tn+1) dx

=
∫ xi+1/2

xi−1/2

u(x − v
tn+1/2, tn) dx

=
∫ xi−1/2

xi−1/2−v
tn+1/2
un

i−1+sn
i−1(x − xi−1) dx+

∫ xi+1/2−v
tn+1/2

xi−1/2

un
i +sn

i (x − xi ) dx

= un
i−1v
tn+1/2 + 1

2
sn

i−1
x2
i−1

[
1

4
−

(
1

2
− v
tn+1/2


xi−1

)2
]

+ un
i (
xi − v
tn+1/2) + 1

2
sn

i 
x2
i

[(
1

2
− v
tn+1/2


xi

)2

− 1

4

]
= un

i 
xi − v
tn+1/2[un
i − un

i−1]

+ sn
i−1
xi−1

2
v
tn+1/2

[
1 − v
tn+1/2


xi−1

]
− sn

i 
xi

2
v
tn+1/2

[
1 − v
tn+1/2


xi

]
= un

i
xi − v
tn+1/2

{[
un

i + sn
i 
xi

2

(
1 − v
tn+1/2


xi

)]
−

[
un

i−1 + sn
i−1
xi−1

2

(
1 − v
tn+1/2


xi−1

)]}
.

Similarly, for v ≤ 0 we have∫ xi+1/2

xi−1/2

u(x, tn+1) dx

= un
i
xi − v
tn+1/2

{[
un

i+1 − sn
i+1
xi+1

2

(
1 + v
tn+1/2


xi+1

)]
−

[
un

i − sn
i 
xi

2

(
1 + v
tn+1/2


xi

)]}
.

We can combine these two results in the form∫ xi+1/2

xi−1/2

u(x, tn+1) dx = un
i 
xi

− v+
tn+1/2

{[
un

i + sn
i 
xi

2

(
1 − v+
tn+1/2


xi

)]
−

[
un

i−1 + sn
i−1
xi−1

2

(
1 − v+
tn+1/2


xi−1

)]}
− v−
tn+1/2

{[
un

i+1 − sn
i+1
xi+1

2

(
1 + v−
tn+1/2


xi+1

)]
−

[
un

i − sn
i 
xi

2

(
1 + v−
tn+1/2


xi

)]}
.

This equation has the form of a conservative difference using the fluxes given in
the lemma. �
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In order to apply these ideas to general nonlinear conservation laws, we need to
construct a piecewise linear profile from specified cell averages, and generalize the
computation of the fluxes.

5.9.2 Piecewise Linear Reconstruction

In one dimension, the piecewise linear reconstruction step in the MUSCL (Mono-
tone Upwind Scheme for Conservation Laws) takes the form

un(x) = un
j + sn

j (x − x j ) for all x ∈ (x j−1/2, x j+1/2).

As we have already seen, the cell average of this function is the same for any choice
of the slope sn

j . The choice sn
j = 0 will produce Godunov’s method.

In order to determine a value for sn
j , we will construct a cubic polynomial inter-

polant to the integral of u (because we want to respect the cell averages), and take
the average over [x j−1/2, x j+1/2] of its second derivative. The cubic polynomial
can be constructed by using Newton interpolation. If we want slopes on cells
0, . . . , J − 1, then we compute the first-order divided differences

un[xk+1, xk] ≡ un
k+1 − un

k


xk+1 + 
xk
, −1 ≤ k ≤ J

and the second-order divided differences

un[xk+1, xk, xk−1] ≡ un[xk+1, xk] − un[xk, xk−1]


xk+1 + 
xk + 
xk−1
, 0 ≤ k < J.

Then the cubic polynomial interpolating the integral of un(x) at x j−3/2, x j−1/2,
x j+1/2 and x j+3/2 is

cn
j (x) ≡ un

j−1(x − x j−3/2) + un[x j , x j−1](x − x j−1/2)(x − x j+3/2)

+ un[x j+1, x j , x j−1](x − x j+1/2)(x − x j−1/2)(x − x j−3/2).

The derivative of this Newton interpolating polynomial at x j+1/2 is

dcn
j

dx
(x j+1/2) = un

j−1 + u[x j , x j−1](2
x j + 
x j−1) + un[x j+1, x j , x j−1]
x j (
x j + 
x j−1),

and the derivative at x j−1/2 is

dcn
j

dx
(x j−1/2) = un

j−1 + u[x j , x j−1]
x j−1 − un[x j+1, x j , x j−1]
x j 
x j−1.
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It follows that the average of the second derivative of the polynomial is

s̃n
j = 1


x j

∫ x j+1/2

x j−1/2

d2cn
j

dx2
dx = 1


x j

{
dcn

j

dx
(x j+1/2) − dcn

j

dx
(x j−1/2)

}
= 1


x j
{u[x j , x j−1]2
x j + un[x j+1, x j , x j−1]
x j (
x j + 2
x j−1)}

= 2u[x j , x j−1] + un[x j+1, x j ] − un[x j , x j−1]


x j+1 + 
x j + 
x j−1
(
x j + 2
x j−1)

= u[x j , x j−1]

x j + 2
x j+1


x j−1 + 
x j + 
x j+1
+ u[x j+1, x j ]


x j + 2
x j−1


x j+1 + 
x j + 
x j−1
. (5.31)

On a uniform grid, this simplifies to

s̃n
j = u[x j−1, x j ] + u[x j , x j+1] = un

j+1 − un
j−1

2
x
.

The slopes sn
j used in the flux computation are found by applying a limiter to the

cell average slopes s̃n
j . The purpose of the limiter is to prevent new extrema in the

piecewise linear reconstruction. Specifically, if the cell averages are monotonically
increasing (i.e., un

j−1 ≤ un
j ≤ un

j+1), then we want

un
j−1 ≤ un(x j−1/2) = un

j − sn
j 
x j/2 and un

j+1 ≥ un(x j+1/2) = un
j + sn

j 
x j/2.

These inequalities imply that

s j 
x j ≤ 2 min{un
j+1 − un

j , un
j − un

j−1}.
Similarly, if the cell averages are monotonically decreasing then we want

s j 
x j ≥ 2 max{un
j+1 − un

j , un
j − un

j−1}.
If the cell averages are not monotonic, then we choose sn

j = 0 so that the piecewise
linear reconstruction does not produce any new extrema. In the MUSCL scheme,
we define the side differences


un
j+1/2 = un

j+1 − un
j ,

and compute the limited slope by the formula

sn
j 
x j =

{
sign(s̃n

j 
x j ) min{2|
un
j−1/2|, 2|
un

j+1/2|, |s̃n
j 
x j |}, 
un

j−1/2
un
j+1/2 > 0

0, otherwise.
(5.32)

Note that the MUSCL slopes actually allow the piecewise linear reconstruction
un(x) to have greater total variation than the discrete data un

j . In practice, it is
said that the MUSCL reconstruction can develop a “sawtooth” profile. Sometimes,
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people will use the minmod slopes to prevent growth in the total variation:

sn
j 
x j =

{
sign(
un

j ) min{|
un
j−1/2|, |
un

j+1/2|}, 
un
j−1/2
un

j+1/2 > 0
0, otherwise .

This choice typically leads to greater smearing of discontinuities. On the other
hand, some people have suggested the use of the superbee slopes:

sn
j 
x j = sign(
un

j ) max
{
min

{
2|
un

j−1/2|, |
un
j+1/2|

}
, min

{|
un
j−1/2|, 2|
un

j+1/2|
}}

if 
un
j−1/2
un

j+1/2 > 0, and sn
j 
x j = 0 otherwise. This choice has an even greater

tendency to develop sawtooth profiles than MUSCL, and occasionally converges
to inappropriate discontinuities.

Note that it is not necessary that T V (un(x)) ≤ T V (un
j ) for the scheme to be

TVD. This is because there is extra diffusion in computing the new cell averages
in the conservative difference. In fact, the analysis by van Leer (see section 5.5)
shows that MUSCL, minmod and superbee slopes are all TVD for linear advection.

5.9.3 Temporal Quadrature for Flux Integrals

Recall that we can integrate the conservation law over a space-time rectangle and
apply the divergence theorem to obtain∫ x j+1/2

x j−1/2

u(x, tn+1) dx =
∫ x j+1/2

x j−1/2

u(x, tn) dx

−
∫ tn+1

tn

f (u(x j+1/2, t)) dt +
∫ tn+1

tn

f (u(x j−1/2, t)) dt.

In order to compute with this integral form of the conservation law, we need to
approximate the time integrals of the flux. In the van Leer MUSCL scheme, we
will use the midpoint rule and the solution of a Riemann problem to approximate
the integrals: ∫ tn+1

tn

f (u(x j+1/2, t)) dt ≈ f n+1/2
j+1/2 
tn+1/2.

Here f n+1/2
j+1/2 ≈ f (u(x j+1/2, tn + 1

2 
tn+1/2)) where u(x, t) represents the exact solu-
tion of the conservation law with initial data given by the reconstruction un(x).
Because of the discontinuity in the piecewise linear reconstruction at the cell side
x j+1/2, this function value will require additional approximation.
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5.9.4 Characteristic Tracing

In regions of smooth behavior, we can approximate

u

(
x j ± 1

2

x j , tn + 
tn+1/2

2

)
≈ u(x j , tn) ± ∂u

∂x
(x j , tn)


x j

2
+ ∂u

∂t
(x j , tn)


tn+1/2

2

= u(x j , tn) ± ∂u

∂x
(x j , tn)


x j

2
− ∂ f

∂u
(u(x j , tn))

∂u

∂x
(x j , tn)


tn+1/2

2

= un
j ± sn

j


x j

2
− λn

j s
n
j


tn+1/2

2
= un

(
x j ± 
x j

2

[
1 ∓ λ j 
tn+1/2


x j

])
.

Thus for arbitrarily small ε > 0 we approximate

u

(
x j+1/2 − ε, tn + 1

2

tn+1/2

)
≈ un

j + 1

2

(
1 − λ j 
tn+1/2


x j

)
sn

j 
x j

u

(
x j+1/2 + ε, tn + 1

2

tn+1/2

)
≈ un

j+1 − 1

2

(
1 + λ j+1
tn+1/2


x j+1

)
sn

j+1
x j+1.

This corresponds to tracing the solution backward along characteristics to the initial
data.

Note that, depending on the sign of λ j , the characteristics could trace backward
into the wrong cell. To avoid this problem, it is common to use the characteristic
projection

uL
j+1/2 =

{
un

j + 1
2

(
1 − λ j 
tn+1/2


x j

)
sn

j 
x j , λn
j > 0

un
j , λn

j ≤ 0

u R
j+1/2 =

{
un

j+1 − 1
2

(
1 + λ j+1
tn+1/2


x j+1

)
sn

j+1
x j+1, λn
j+1 < 0

un
j+1, λn

j+1 ≥ 0.

In other words, the characteristic projection discards slope information coming
from characteristics going in the wrong direction.

When a characteristic traces the wrong way, the state determined by characteristic
projection is only first-order accurate. For example, if λn

j ≤ 0, then uL
j+1/2 = un

j is
a first-order approximation to wn(x j+1/2, tn + 1

2 
tn+1/2). If λn
j ≤ 0 and λn

j+1 ≥ 0
(corresponding to a transonic rarefaction), then both uL

j+1/2 and u R
j+1/2 will be

first-order accurate. This can significantly degrade the accuracy of the MUSCL
scheme. We have chosen not to use the characteristic projection in our numerical
experiments.
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5.9.5 Flux Evaluation

The flux in the MUSCL scheme is computed at the solution of the Riemann problem
with left and right states given by uL

j+1/2 and u R
j+1/2:

f n+1/2
j+1/2 = f (R(uL

j+1/2, u R
j+1/2; 0)).

Note that if ∂ f/∂u > 0 for all u, then

R(uL
j+1/2, u R

j+1/2; 0) = uL
j+1/2 = un

j + 1

2

(
1 − λ j 
tn+1/2


x j

)
sn

j 
x j

is second-order accurate in regions of smooth behavior; the first-order evalua-
tion u R

j+1/2 = un
j+1 had no effect on the flux. A similar statement holds in the

case when ∂ f/∂u < 0 for all u. For transonic expansions (i.e., when (∂ f/∂u) j <

0 < (∂ f )(∂u) j+1,) the characteristic projection reduces the method to Godunov’s
(first-order) method. For transonic compressions (i.e., when (∂ f/∂u) j > 0 >

(∂ f )(∂u) j+1,) the characteristic tracing is used on both sides of x j+1/2, but the
limited slopes should be zero.

Example 5.9.2 Let us describe the MUSCL scheme for Burgers’ equation on a
uniform grid. Given the values un

j , we compute λn
j = ∂ f

∂u (un
j ) = un

j , and choose

tn+1/2 so that


tn+1/2 = γ 
x min
j

{
1

|λ j |
}

.

Here 0 < γ ≤ 1 is the CFL factor, and is chosen by the user. Next, we compute
the side increments


un
j+1/2 = un

j+1 − un
j ,

the centered increments


un
j = 1

2
(
un

j+1/2 + 
un
j−1/2)

and the MUSCL slopes

sn
j 
x =

{
sign(
un

j ) min{2|
un
j−1/2|, 2|
un

j+1/2|, |
un
j |}, 
un

j+1/2
un
j−1/2 > 0

0, otherwise.

Afterward, compute the left and right states:

uL
j+1/2 = un

j + 1

2

(
1 − λn

j 
tn+1/2


x

)
sn

j 
x

u R
j+1/2 = un

j+1 − 1

2

(
1 + λn

j+1
tn+1/2


x

)
sn

j+1
x .
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These states are used to evaluate the flux at the solution of the Riemann problem
for Burgers’ equation:

f n+1/2
j+1/2 =

{ 1
2 max{|uL

j+1/2|, |u R
j+1/2|}2, uL

j+1/2 > u R
j+1/2

1
2 max{uL

j+1/2, min{u R
j+1/2, 0}}2, uL

j+1/2 ≤ u R
j+1/2.

Finally, we use a conservative difference to compute the new solution:

un+1
j = un

j − 
tn+1/2


x
[ f n+1/2

j+1/2 − f n+1/2
j−1/2 ].

A C++ program to implement the MUSCL scheme for nonlinear scalar conser-
vation laws can be found in Program 5.9-70: Schemes2.C Students can exercise this
program by clicking on Executable 5.9-30: guiriemann2 The user can select Riemann
problem initial data for linear advection, Burgers’ equation, traffic models and the
Buckley-Leverett model. In addition, the user can select from a variety of limiters
and Riemann solvers. By setting the number of cells to 0, the user will cause the pro-
gram to perform a mesh refinement study, and the user can select several different
schemes for comparison.

5.9.6 Non-Reflecting Boundaries with the MUSCL Scheme

Finally, let us discuss the treatment of a non-reflecting boundary with the MUSCL
scheme. For simplicity, let us assume that the non-reflecting boundary is at the right-
hand side of the domain. Suppose that we use ghost cells and set the solution in the
ghost cells to be equal to un

j , the solution in the last cell within the domain. Then
we will have 
un

j+1/2 = 0, and the slope in the last cell will be sn
j 
x j = 0. Charac-

teristic tracing will approximate wn(x j+1/2, tn + 
tn+1/2/2) ≈ un
j on either side of

the right-hand boundary. This gives us a first-order treatment of the nonreflecting
boundary. Since the waves should be outgoing at the nonreflecting boundary, the
first-order treatment should not significantly degrade the quality of the solution in
the interior of the domain.

Exercises for 5.9
5.9.1 Program the slope-limiter scheme for linear advection, and test it on the problems in

Exercise 2.2.5 of Section 2.2.
5.9.2 Program van Leer’s MUSCL scheme for Burgers’ equation on the domain −1 < x < 1. For

each of the following test problems, plot the logarithm of the L1 norm of the error in the solution
versus log 
x at fixed time t = 0.4:
(a) u(x, 0) = 1 for x < 0 and u(x, 0) = 2 for x > 0
(b) u(x, 0) = 2 for x < 0 and u(x, 0) = 1 for x > 0

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
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(c) u(x, 0) = 2 for x < 0 and u(x, 0) = −1 for x > 0
(d) u(x, 0) = −2 for x < 0 and u(x, 0) = 1 for x > 0.
Describe how you evaluated the L1 norm. If it is the case, describe why you did not see second-
order convergence. Also plot the error for Godunov’s method for these problems.

5.9.3 Repeat the previous exercise on a non-uniform mesh. Let 
x j = 2/(3N ) for j even and 
x j =
1/(3N ) for j odd.

5.9.4 In Exercise 4.13.11 of Section 4.13 we suggested the use of a moving mesh to capture the
solutions of Riemann problems. Describe how you could modify the MUSCL scheme to operate
on a moving mesh. Program your scheme and test it on the problems in Exercise 4.13.11

5.10 Wave Propagation Slope Limiter Schemes

Goodman and LeVeque [59] and LeVeque [97] have suggested alternative forms
of the slope limiter scheme that contains features of Sweby’s TVD scheme. These
are intended to be used for convex flux functions only, although they work well
for the Buckley–Leverett problem. There are some distinct differences in the two
approaches, so we will present them separately.

5.10.1 Cell-Centered Wave Propagation

Suppose that we want to solve ∂u/∂t + ∂ f (u)/∂x = 0 where f (u) is convex. Fol-
lowing [59] we will use a piecewise linear reconstruction

u(x, tn) ≈ un
j (x) ≡ un

j + sn
j (x − x j ), x ∈ (x j−1/2, x j+1/2)

where sn
j 
x j ≡ minmod(
un

j−1/2, 
un
j+1/2). Recall that the minmod limiter is

defined by

minmod(a, b) =
{

min{|a|, |b|}, ab > 0
0, ab ≤ 0.

It is important that the minmod limiter be used in this scheme, so that the resulting
method is TVD.

Define the values of the reconstruction at the cell sides by

uL
j+1/2 = un

j (x j+1/2) = un
j + 1

2
sn

j 
x j

u R
j+1/2 = un

j+1(x j+1/2) = un
j+1 − 1

2
sn

j+1
x j+1.

We will replace f (u) by a piecewise linear interpolant f̃ ; in regions of monotonicity
for u R

j−1/2, uL
j+1/2, u R

j+1/2 and uL
j+3/2 this piecewise linear interpolant will be a well-

defined function described below. We will approximate the solution of the original
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problem by the solution of

∂ ũ

∂t
+ ∂ f̃ (u)

∂x
= 0

ũ(x, tn) = un
j (x), x ∈ (x j−1/2, x j+1/2).

Define the slopes

f̃ ′
j =

{
[ f (uL

j+1/2) − f (u R
j−1/2)]/[uL

j+1/2 − u R
j−1/2], uL

j+1/2 − u R
j−1/2 	= 0

f ′(un
j ), uL

j+1/2 − u R
j−1/2 = 0

f̃ ′
j+1/2 =

{
[ f (u R

j+1/2) − f (uL
j+1/2)]/[u R

j+1/2 − uL
j+1/2], u R

j+1/2 − uL
j+1/2 	= 0

f ′(uL
j+1/2), u R

j+1/2 − uL
j+1/2 = 0.

Then for u ∈ int(u R
j−1/2, uL

j+1/2),

f̃ (u) = f (uL
j+1/2) + f̃ ′

j (u − uL
j+1/2) = f (u R

j−1/2) + f̃ ′
j (u − u R

j−1/2)

and for u ∈ int(uL
j+1/2, u R

j+1/2),

f̃ (u) = f (uL
j+1/2) + f̃ ′

j+1/2(u − uL
j+1/2) = f (u R

j+1/2) + f̃ ′
j+1/2(u − u R

j+1/2).

In order to compute

1


x j

∫ x j+1/2

x j−1/2

ũ(x, tn+1) dx = 1


x j

∫ x j+1/2

x j−1/2

ũ(x, tn) dx

− 
tn+1/2


x j

[
1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt − 1


tn+1/2

∫ tn+1

tn

f̃ (u(x j−1/2, t) dt

]
we need to determine the temporal integrals of the piecewise linear flux interpolant.
First, let us consider the case in which f̃ ′

j > 0 and f̃ ′
j+1 > 0. Convexity of f will

imply that f̃ ′
j+1/2 > 0 as well. Then Equation (3.5) for the solution of a scalar

nonlinear hyperbolic conservation law gives us

1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt

= 1


tn+1/2

∫ tn+1

tn

f̃ (un(x j+1/2 − [t − tn] f̃ ′(u(x j+1/2, t)))) dt

= 1


tn+1/2

∫ tn+1

tn

f (uL
j+1/2) + f̃ ′

j

[
u j (x j+1/2 − [t − tn] f̃ ′

j ) − uL
j+1/2

]
dt

= f (uL
j+1/2) + f̃ ′

j


tn+1/2

∫ tn+1

tn

{
un

j + sn
j

[
1

2

x j − [t − tn] f̃ ′

j

]
− un

j − sn
j


x j

2

}
dt

= f (uL
j+1/2) − ( f̃ ′

j )
2


tn+1/2
sn

j

∫ tn+1

tn

t − tn dt = f (uL
j+1/2) − ( f̃ ′

j )
2sn

j 
tn+1/2 ≡ f̃ L
j+1/2
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provided that f̃ ′
j 
tn+1/2 ≤ 
x j . On the other hand, if f̃ ′

j < 0 and f̃ ′
j+1 < 0, then

1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt

= 1


tn+1/2

∫ tn+1

tn

f (u R
j+1/2) + f̃ ′

j+1

[
u j+1(x j+1/2 − [t − tn] f̃ ′

j+1) − u R
j+1/2

]
dt

= f (u R
j+1/2) + f̃ ′

j+1


tn+1/2

∫ tn+1

tn

{
un

j+1 + sn
j+1

[
−1

2

x j+1 − [t − tn] f̃ ′

j+1

]
− un

j+1 + sn
j+1


x j+1

2

}
dt

= f (u R
j+1/2) − ( f̃ ′

j+1)2


tn+1/2
sn

j+1

∫ tn+1

tn

t − tn dt = f (u R
j+1/2) − ( f̃ ′

j+1)2sn
j+1
tn+1/2 ≡ f̃ R

j+1/2

provided that − f̃ ′
j+1
tn+1/2 ≤ 
x j+1.

Next, let us consider cases in which the slopes change sign. If f̃ ′
j < 0 < f̃ ′

j+1,
then we have a rarefaction at x j+1/2. If

u∗ = argmin( f )

then we can add (u∗, f (u∗)) as a interpolation point for f̃ , and get

1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt = 1


tn+1/2

∫ tn+1

tn

f̃ (u∗) dt = f (u∗).

On the other hand, if f̃ ′
j > 0 > f̃ ′

j+1, then we have a shock at x j+1/2. Because the
initial data is not constant, the speed of this shock is not constant at x j+1/2 and
t > tn . If f̃ ′

j+1/2 	= 0 and uL
j+1/2 	= u R

j+1/2, then we will use the initial motion of
the shock to determine an approximation to the flux integral:

1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt ≈
{

f̃ L
j+1/2, f̃ ′

j+1/2 > 0

f̃ R
j+1/2, f̃ ′

j+1/2 < 0.

If either f̃ ′
j+1/2 = 0 or uL

j+1/2 = u R
j+1/2, then we will approximate

1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt ≈
{

f̃ L
j+1/2, ( f̃ ′

j )
2sn

j > ( f̃ ′
j+1)2sn

j+1

f̃ R
j+1/2, otherwise.

We take the new solution to be

un+1
j = 1


x j

∫ x j+1/2

x j−1/2

ũ(x, tn) dx

− 
tn+1/2


x j

[
1


tn+1/2

∫ tn+1

tn

f̃ (u(x j+1/2, t) dt − 1


tn+1/2

∫ tn+1

tn

f̃ (u(x j−1/2, t) dt

]
.

The resulting algorithm is second-order accurate, because we used a second-order
accurate (piecewise-linear) approximation to the flux function. The timestep can
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be chosen so that


tn+1/2 max

{∣∣∣∣d f

du

∣∣∣∣} ≤ 
x j .

5.10.2 Side-Centered Wave Propagation

The next algorithm is described in even greater detail in [97, p. 118ff], and is the
basis for the CLAWPACK software. We are given the current cell averages un

j ,
mesh widths 
x j and a timestep 
tn+1/2 satisfying


tn+1/2 max

{∣∣∣∣d f

du

∣∣∣∣} ≤ 
x j .

For each cell side j + 1
2 we compute the solution increment 
un

j+1/2 = un
j+1 − un

j

and the average speed

λn
j+1/2 = f (un

j+1) − f (un
j )

un
j+1 − un

j

.

Next, for each cell side j + 1
2 we compute the limited slope


un
j+1/2 =

{
limiter(
u j−1/2, 
u j+1/2), λn

j+1/2 ≥ 0
limiter(
u j+1/2, 
u j+3/2), λn

j+1/2 < 0.

Then the flux at side j + 1
2 is

f n+1/2
j+1/2 = f (R(un

j , un
j+1; 0)) + 1

2
|λn

j+1/2|
(

1 − 2
tn+1/2


x j + 
x j+1
|λn

j+1/2|
)


un
j+1/2.

Here f (R(un
j , un

j+1; 0)) is the flux at the state that moves with zero speed in the
solution of the Riemann problem, or any numerical flux that approximates this
value. The solution is updated by a conservative difference.

LeVeque prefers to implement the scheme by decomposing the flux jump into
waves (CLAWPACK subroutine rp1),

f (un
j+1) − f (un

j ) = [ f (un
j+1) − f (R(un

j , un
j+1; 0))] − [ f (un

j ) − f (R(un
j , un

j+1; 0))]

≡ α+
j+1/2
un

j+1/2 + α−
j+1/2
un

j+1/2,

defining the second-order corrections to the flux integrals (loop 120 in CLAWPACK
subroutine step1)

˜
 f j+1/2 = |λn
j+1/2|

(
1 − 2
tn+1/2


x j + 
x j+1
|λn

j+1/2|
)


un
j+1/2
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and writing the conservative difference in the form

un+1
j = un

j − 
tn+1/2


x j

[
α+

j−1/2
un
j−1/2 + α−

j+1/2
un
j+1/2 + 1

2
( ˜
 f j+1/2 − ˜
 f j−1/2)

]
.

Some care must be taken in the evaluation of λn
j+1/2 in constant states within

the numerical solution. LeVeque also avoids computing the characteristic speeds
at the cell-centered states un

j in order to compute a stable 
tn+1/2; instead, he uses
the average speeds λn

j+1/2 and repeats a timestep if the CFL stability restriction was
violated.

A C++ program to implement the wave propagation schemes for nonlinear scalar
conservation laws can be found in Program 5.10-71: Schemes2.C Simplified versions
of these schemes for linear advection on uniform grids can be found in Program
5.10-72: LinearAdvectionSchemes.C. Students can exercise this program by clicking
on Executable 5.10-31: guiriemann2 The user can select Riemann problem initial data
for linear advection, Burgers’ equation, traffic models and the Buckley-Leverett
model. In addition, the user can select from a variety of limiters and Riemann
solvers. By setting the number of cells to 0, the user will cause the program to
perform a mesh refinement study, and the user can select several different schemes
for comparison. Students can also exercise this program for linear advection by
clicking on Executable 5.10-32: guilinearad2 The user can select a variety of initial
values from the Zalesak test problems in exercise 2.2.5 of section 2.2. In addition,
the user can select from a variety of limiters. By setting the number of cells to 0,
the user will cause the program to perform a mesh refinement study.

5.11 Higher-Order Extensions of the Lax–Friedrichs Scheme

Nessyahu and Tadmor [121] have suggested a second-order version of the Lax–
Friedrichs scheme (see Section 3.3.2) which involves no Riemann solvers, but
requires a staggered grid. The essential differences between the Nessyahu–Tadmor
scheme and classical Lax–Friedrichs are the use of a piecewise linear reconstruction
of the solution in space, and the use of second-order quadratures in time.

The method begins by computing slopes 
un
j+1/2 = un

j+1 − un
j . A limiter is then

applied to obtain cell-centered slopes 
un
j = limiter(
un

j−1/2, 
un
j+1/2). Any of the

limiters in Section 5.8.2 could be used. The cell-centered slope provides a piecewise-
linear reconstruction un

j (x) = un
j + 
un

j (x − x j )/(x j+1/2 − x j−1/2) as in the slope-
limiter scheme of Section 5.9.2. We will assume that the timestep is chosen by the
CFL condition


tn+1/2 max
u

∣∣∣∣∂ f

∂u

∣∣∣∣ ≤ min
j


x j .

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2
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Integration of the conservation law over the two half-cells x ∈ (x j , x j+1) and a
half-timestep t ∈ (tn, tn + 
tn+1/2/2) with this piecewise linear initial data leads
to∫ x j+1

x j

u(x, tn+1/2) dx =
∫ x j+1/2

x j

un
j + 
un

j

x − x j


x j
dx +

∫ x j+1

x j+1/2

un
j+1 + 
un

j+1
x − x j+1


x j+1
dx

−
∫ tn+
tn+1/2/2

tn

f (u(x j+1, t)) dt +
∫ tn+
tn+1/2/2

tn

f (u(x j , t)) dt

=
[

un
j + 
un

j

4

]

x j

2
+

[
un

j+1 − 
un
j+1

4

]

x j+1

2

−
∫ tn+
tn+1/2/2

tn

f (u(x j+1, t)) dt +
∫ tn+
tn+1/2/2

tn

f (u(x j , t)) dt.

Here u(x, t) refers to the exact solution of the conservation law with the piecewise
linear initial data. In order to approximate the flux time integrals, we will use the
midpoint rule for time integration, and a Taylor approximation for the function
value:∫ tn+
tn+1/2/2

tn

f (u(x j , t)) dt ≈ 
tn+1/2

2
f

(
u

(
x j ,


tn+1/2

4

))
≈ 
tn+1/2

2
f

(
u(x j , tn) + ∂u

∂t
(x j , tn)


tn+1/2

4

)
= 
tn+1/2

2
f (un

j ) − ∂ f

∂u
(u(x j , tn))

∂u

∂x
(x j , tn)


tn+1/2

4
.

Note that the use of a Taylor approximation is justified because u(x j , t) is smooth
for tn ≤ t < tn + 
tn+1/2/2. These results suggest the following computations for
the first half-step of the scheme. At each cell center we compute the conserved
quantity and flux

un+1/4
j = un

j − ∂ f

∂u
(un

j )
un
j


tn+1/2

4
x j
and f n+1/4

j = f (un+1/4
j ).

and then at each cell side we compute the conserved quantity

un+1/2
j+1/2 =

{[
un

j +

un

j

4

]

x j +

[
un

j+1−

un

j+1

4

]

x j+1

−
[

f n+1/4
j+1 − f n+1/4

j

]

tn+1/2

} 1


x j +
x j+1
.

The second half-step is similar. First, we compute 
un+1/2
j = un+1/2

j+1/2 − un+1/2
j−1/2.

At the cell sides, we apply the limiter to get


un+1/2
j+1/2 = limiter(
un+1/2

j , 
un+1/2
j+1 ),
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and compute the conserved quantity and flux by

un+3/4
j+1/2 = un

j+1/2 − ∂ f

∂u
(un+1/2

j+1/2)
un+1/2
j+1/2


tn+1/2

2(
x j + 
x j+1)
and f n+3/4

j+1/2 = f (un+3/4
j+1/2).

Then at each cell center we compute

un+1
j = 1

2

{[
un+1/2

j−1/2 + 
un+1/2
j−1/2

4

]
+

[
un+1/2

j+1/2 − 
un+1/2
j+1/2

4

]

−
[

f n+3/4
j+1/2 − f n+3/4

j−1/2

] 
tn+1/2


x j

}
.

In a later paper [110], Liu and Tadmor describe a third-order version of the
Lax–Friedrichs scheme. This scheme requires higher-order piecewise polynomial
reconstruction in space, and higher-order quadratures in time. Their algorithm is
designed for uniform grids only, but the algorithm described below is a natural
extension of their ideas.

Let p j (x) interpolate
∫ x

x j−3/2
u(s, tn) ds at x j±3/2 and x j±1/2. Then the Newton

form of this interpolating polynomial is

p j (x) = un
j−1(x − x j−3/2) + un[x j−1, x j ](x − x j−3/2)(x − x j−1/2)

+ un[x j−1, x j , x j+1](x − x j−3/2)(x − x j−1/2)(x − x j+1/2).

where the divided differences are

un[x j−1, x j ] = un
j − un

j−1


x j + 
x j−1
and un[x j−1, x j , x j+1] = un[x j , x j+1] − un[x j−1, x j ]


x j+1 = 
x j + 
x j−1
.

The derivative of this interpolating polynomial is

q j (x) = dp j

dx
= un

j + α j + ξ j (x)β j + 1

2
ξ j (x)2γ j where ξ j (x) ≡ x − x j


x j
.

It is easy to see that

α j = q j (x j ) − un
j = −
un

j−1/2 + 
un
j−1/2


x j + 
x j−1

{(
x j

2
+ 
x j−1

)
+ 
x j

2

}
+

[ 
un
j+1/2


x j+1 + 
x j
− 
un

j−1/2


x j + 
x j−1

]
(
x j

2 + 
x j−1)
x j

2 − (
x j

2

x j

2 ) − 
x j

2 (
x j

2 + 
x j−1)


x j+1 + 
x j + 
x j−1

= 1

4

[ 
un
j+1/2


x j+1 + 
x j
− 
un

j−1/2


x j + 
x j−1

] 
x2
j


x j+1 + 
x j + 
x j−1
.
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The derivative of q j is

q ′
j (x) = 2un[x j−1, x j ] + 2un[x j−1, x j , x j+1]{(x − x j−3/2) + (x − x j−1/2) + (x − x j+1/2)}

= β j + ξ j (x)γ j


x j

From this it is easy to compute

β j = 
x j q
′
j (x j ) = 2
x j


un
j−1/2


x j + 
x j−1

+ 2
x j

[ 
un
j+1/2


x j+1 + 
x j
− 
un

j−1/2


x j + 
x j−1

]
(
x j

2 + 
x j−1) + 
x j

2 − 
x j

2


x j+1 + 
x j + 
x j−1

= 
x j

{
2


un
j−1/2


x j + 
x j−1
+

[ 
un
j+1/2


x j+1 + 
x j
− 
un

j−1/2


x j + 
x j−1

]

x j + 2
x j−1


x j+1 + 
x j + 
x j−1

}

=
{ 
un

j−1/2


x j + 
x j−1
(2
x j+1 + 
x j ) + 
un

j+1/2


x j+1 + 
x j
(
x j + 2
x j−1)

}

x j


x j+1+
x j +
x j−1
.

The second derivative of q j is

q ′′
j (x j ) = 6un[x j−1, x j , x j+1] = γ j


x2
j

so

γ j = 6

[ 
un
j+1/2


x j+1 + 
x j
− 
un

j−1/2


x j + 
x j−1

] 
x2
j


x j+1 + 
x j + 
x j−1
= −24α j .

On a uniform grid, these simplify to

α j = 
un
j−1/2 − 
un

j+1/2

24
, β j = 
un

j+1/2 + 
un
j−1/2

2
and γ j = 
un

j+1/2 − 
un
j−1/2.

We will also need the values

q j (x j−1/2) = un
j + α j − 1

2
β j + 1

8
γ j = un

j − 2α j − 1

2
β j

q j (x j+1/2) = un
j + α j + 1

2
β j + 1

8
γ j = un

j − 2α j + 1

2
β j .

The extreme point of q j (x) occurs at x∗
j where ξ j (x∗

j ) = −β j/γ j . Note that
x∗

j ∈ (x j−1/2, x j+1/2) if and only if |ξ j (x∗
j )| ≤ 1

2 ; equivalently, 2|β j | ≤ |γ j |. Using
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the equations for β j and γ j , we see that x∗
j ∈ (x j−1/2, x j+1/2) if and only if either


un
j+1/2


x j+1 + 
x j
>


un
j−1/2


x j + 
x j−1
and


un
j+1/2


x j+1 + 
x j
>


un
j−1/2


x j + 
x j−1


x j − 
x j+1

2
x j + 
x j−1
and


un
j−1/2


x j + 
x j−1
<


un
j+1/2


x j+1 + 
x j


x j − 
x j−1

2
x j + 
x j+1

or


un
j+1/2


x j+1 + 
x j
<


un
j−1/2


x j + 
x j−1
and


un
j+1/2


x j+1 + 
x j
<


un
j−1/2


x j + 
x j−1


x j − 
x j+1

2
x j + 
x j−1
and


un
j−1/2


x j + 
x j−1
<


un
j+1/2


x j+1 + 
x j


x j − 
x j−1

2
x j + 
x j+1
.

On a uniform grid, these conditions are equivalent to either 
un
j+1/2 > 0 > 
un

j−1/2

or 
un
j+1/2 < 0 < 
un

j−1/2. Thus on a uniform grid, the quadratic reconstruction
has no extrema interior to a grid cell unless the cell averages have a local extremum
there as well.

In order to avoid introducing spurious new extrema, the scheme will work with
an average of the original quadratic and a constant:

q j (x) ≡ un
j + θ j [q j (x) − un

j ].

Here θ j ∈ [0, 1] is chosen so that if 0 ≤ min{
un
j−1/2, 
un

j+1/2} then

min

{
un

j +un
j−1

2
, q j−1(x j−1/2)

}
≤ q j (x j−1/2)

and

q j (x j+1/2) ≤ max

{
un

j +un
j+1

2
, q j+1(x j+1/2)

}
,

and if 0 ≥ max{
un
j−1/2, 
un

j+1/2} then

max

{
un

j +un
j−1

2
, q j−1(x j−1/2)

}
≥ q j (x j−1/2)
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and

q j (x j+1/2) ≥ min

{
un

j +un
j+1

2
, q j+1(x j+1/2)

}
.

Otherwise, we choose θ j = 1. These conditions suggest that we compute

M j = max
x∈[x j−1/2,x j+1/2]

q j (x) and m j = min
x∈[x j−1/2,x j+1/2]

q j (x).

If 0 ≤ min{
un
j−1/2, 
un

j+1/2} then

θ j = min

{
un

j − min{ u j +u j−1

2 , q j−1(x j−1/2)}
un

j − m j
,

max{ u j +u j+1

2 , q j+1(x j+1/2) − un
j }

M j − un
j

, 1

}

and if 0 ≥ max{
un
j−1/2, 
un

j+1/2} then

θ j = min

{
max{ u j +u j−1

2 , q j−1(x j−1/2)} − un
j

M j − un
j

,
un

j − min{ u j +u j+1

2 , q j+1(x j+1/2)}
un

j − m j
, 1

}
.

Conservation requires that∫ x j+1

x j

u

(
x, tn + 
tn+1/2

2

)
dx =

∫ x j+1/2

x j

q j (x, tn) dx +
∫ x j+1

x j+1/2

q j+1(x, tn) dx

−
∫ tn+
tn+1/2/2

tn

f (u(x j+1, t)) dt+
∫ tn+
tn+1/2/2

tn

f (u(x j , t)) dt.

The integrals of the limited quadratic reconstruction are∫ x j+1/2

x j

q j (x) dx =
∫ 1/2

0
un

j + θ j

{
α j + ξβ j + 1

2
ξ 2γ j

}
dξ
x j

= 
x j

2

{
un

j + θ jα j + θ jβ j
1

4
+ θ jγ j

1

24

}
= 
x j

2

[
un

j + 1

4
θ jβ j

]
(5.33a)∫ x j+1

x j+1/2

q j+1(x) dx =
∫ 0

−1/2
un

j+1 + θ j+1

{
α j+1 + ξβ j+1 + 1

2
ξ 2γ j+1

}
dξ
x j+1

= 
x j+1

2

[
un

j+1 − 1

4
θ j+1β j+1

]
(5.33b)
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The time integrals are approximated by Simpson’s rule∫ tn+
tn+1/2/2

tn

f (u(x j , t)) dt

≈ 
tn+1/2

12
[ f (u(x j , tn)) + 4 f (u(x j , tn + 
tn+1/2/4)) + f (u(x j , tn + 
tn+1/2/2))].

The values of u(x, t + τ ) can be provided by a Taylor expansion of the
form

u(x, t + τ ) ≈ u + τ
∂u

∂t
+ τ 2

2

∂2u

∂t2
= u − τ

∂ f

∂x
− τ 2

2

∂

∂x

(
∂ f

∂t

)

= u − τ
∂ f

∂u

∂u

∂x
+ τ 2

2

∂

∂x

([
∂ f

∂u

]2
∂u

∂x

)

= u − τ
∂ f

∂u

∂u

∂x
+ τ 2

2

([
∂ f

∂u

]2
∂2u

∂x2
+ 2

∂ f

∂u

∂2 f

∂u2

[
∂u

∂x

]2
)

.

The values of u and its derivatives are provided by the limited quadratic recon-
struction q j (x); in particular, the function value used in the Taylor series is
q j (x j ) = un

j + θα j , the slope is q ′
j (x j ) = θβ j/
x j , and the second derivative is

q ′′
j (x j ) = θγ j/
x2

j .
Recently, the piecewise quadratic reconstruction and limiting of Liu and

Tadmor has been deprecated in favor of the central WENO reconstruction
in [99].

The second-order and third-order versions of the Lax–Friedrichs scheme pro-
duce accurate solutions for the problems we have tested. However, the use of the
staggered grid requires twice as many applications of the algorithm as for our
previous schemes that use unstaggered grids. Some boundary conditions require
that the scheme be modified in a non-staggered manner at the boundaries. A C++

program to implement the higher-order versions of the Lax-Friedrichs scheme for
nonlinear scalar conservation laws can be found in Program 5.11-73: Schemes2.C
Simplified versions of these schemes for linear advection on uniform grids can
be found in Program 5.11-74: LinearAdvectionSchemes.C. Students can exercise this
program by clicking on Executable 5.11-33: guiriemann2 The user can select Riemann
problem initial data for linear advection, Burgers’ equation, traffic models and the
Buckley-Leverett model. In addition, the user can select from a variety of lim-
iters and Riemann solvers. By setting the number of cells to 0, the user will cause
the program to perform a mesh refinement study, and the user can select several
different schemes for comparison. Students can also exercise these schemes for

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
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linear advection by clicking on Executable 5.11-34: guilinearad2 The user can select
a variety of initial values from the Zalesak test problems in exercise 2.2.5 of sec-
tion 2.2. In addition, the user can select from a variety of limiters. By setting the
number of cells to 0, the user will cause the program to perform a mesh refinement
study.

Exercises for 5.11

5.11.1 Determine how to implement the Lax–Friedrichs scheme for a boundary condition on the left
with specified flux. Describe how this idea could be implemented in the higher-order versions
of the Lax–Friedrichs scheme.

5.11.2 The flux integrals in the Nessyahu–Tadmor scheme can be approximated in other ways. For
example, we could approximate

u(x, t + τ ) ≈ u − ∂ f

∂x
τ.

Here ∂ f
∂x could be approximated as a limited slope 
 f n

j in cell-centered fluxes divided by the
mesh width 
x j . Program this version of the Nessyahu–Tadmor scheme and compare it to the
version presented above.

5.11.3 The flux integrals in the Liu–Tadmor scheme can also be approximated in another way, corre-
sponding to a Runge–Kutta integration. Starting with the third-order approximation

u(x, t + τ ) ≈ un
j − ∂ f

∂x

(
x, t + τ

2

)
τ,

we compute fluxes at (x, t + τ/2) as in the previous exercise, limit slopes in these fluxes, and
then compute u(x, t + τ ) from the slopes in the fluxes at (x, t + τ/2). Program this version of
the Liu–Tadmor scheme and compare it to the version presented above.

5.11.4 At the right-hand side of a zero state, we expect |un
j+1/2| � |un

j−1/2|. In fact, un
j−1/2 could be

either positive or negative, depending on the effects of rounding error. Show that the Liu–Tadmor
limiter θ is not a continuous function of un

j−1/2 and un
j+1/2. Experiment with ways to evaluate

θ when un
j−1/2 and un

j+1/2 have opposite signs so that θ remains continuous, without destroying
the order of the scheme.

5.12 Piecewise Parabolic Method

In this section, we will develop a version of Godunov’s method that formally has
even higher order than MUSCL. The ideas are due to Colella and Woodward [35],
and will lead to other higher-order extensions in Section 5.13. The new approach
will involve a piecewise quadratic reconstruction un(x), using the cell averages
un

j . The new reconstruction will be mass-conserving and monotonicity-preserving.
The scheme will also use a more accurate quadrature for the temporal flux integrals.

http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2


5.12 Piecewise Parabolic Method 403

In each cell we will have

un(x) = α j + ξ (x){β j + [1 − ξ (x)]γ j }, where ξ (x) ≡ x − x j−1/2

x j+1/2 − x j−1/2
. (5.34)

Note that un(x j−1/2) = α j = u R
j−1/2, and un(x j+1/2) = α j + β j = uL

j+1/2, which in
turn implies that β j = uL

j+1/2 − u R
j−1/2. Also

un
j = 1


x j

∫ x j+1/2

x j−1/2

un(x) dx =
∫ 1

0
α j + ξ [β j + (1 − ξ )γ j ] dξ = α j + 1

2
β j + 1

6
γ j ,

so we require γ j = 6[un
j − α j − 1

2β j ] = 6[un
j − 1

2 (uL
j+1/2 + u R

j−1/2)]. These cal-
culations show that the piecewise quadratic reconstruction un(x) is completely
determined by the cell averages un

j and the values at the cell sides.
In order to determine a value for u j+1/2, we will construct a quartic interpolation

to
∫ x

x j −3/2 u(s, tn) ds, and evaluate the derivative of this quartic at x j+1/2 to get
un

j+1/2. The quartic polynomial can be constructed by using Newton interpolation
as in Section 5.9. The piecewise quartic reconstruction will require the first-order
divided differences

un[xk+1, xk] ≡ un
k+1 − un

k


xk+1 + 
xk
, j − 1 ≤ k ≤ j + 1

the second-order divided differences

un[xk+1, xk, xk−1] ≡ un[xk+1, xk] − un[xk, xk−1]


xk+1 + 
xk + 
xk−1
, j ≤ k ≤ j + 1

and the third-order divided difference

un[x j+2, x j+1, x j , x j−1] ≡ un[x j+2, x j+1, x j ] − un[x j+1, x j , x j−1]


x j+2 + 
x j+1 + 
x j + 
x j−1
.

Then the quartic Newton interpolating polynomial is∫ x

x
j− 3

2

u(s, tn) ds ≈ Qn
j (x)

≡ un
j−1(1 − x j−3/2) + un[x j , x j−1](x − x j−1/2)(x − x j−3/2)

+ un[x j+1, x j , x j−1](x − x j+1/2)(x − x j−1/2)(x − x j−3/2)

+ un[x j+2, x j+1, x j , x j−1](x − x j+3/2)(x − x j+1/2)(x − x j−1/2)(x − x j−3/2).
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The derivative of this interpolating polynomial at x j+1/2 is

d Qn
j

dx
(x j+1/2) = un

j+1/2

≡ un
j−1 + un[x j , x j−1](2
x j + 
x j−1)

+ un[x j+1, x j , x j−1]
x j (
x j + 
x j−1) − un[x j+2, x j+1, x j , x j−1](
x j + 
x j−1)
x j+1
x j

= un
j + u[x j , x j−1]
x j + {un[x j+1, x j ] − un[x j , x j−1]} 
x j (
x j + 
x j−1)


x j+1 + 
x j + 
x j−1

− un[x j+2, x j+1, x j , x j−1](
x j + 
x j−1)
x j 
x j+1

= un
j + u[x j+1, x j ]
x j + {un[x j+1, x j ] − un[x j , x j−1]}
x j

{
1 − 
x j + 
x j−1


x j+1 + 
x j + 
x j−1

}
− un[x j+2, x j+1, x j , x j−1](
x j + 
x j−1)
x j 
x j+1

= un
j + u[x j+1, x j ]
x j + un[x j+1, x j , x j−1]
x j 
x j+1

− {un[x j+2, x j+1, x j ] − un[x j+1, x j , x j−1]} (
x j + 
x j−1)
x j 
x j+1


x j+2 + 
x j+1 + 
x j + 
x j−1

= un
j + u[x j+1, x j ]
x j

− {
un[x j+1, x j , x j−1](
x j+2 + 
x j+1) + un[x j+2, x j+1, x j ](
x j + 
x j−1)

}
× 
x j 
x j+1


x j+2 + 
x j+1 + 
x j + 
x j−1

= un
j + u[x j+1, x j ]
x j

− 
x j 
x j+1


x j+2 + 
x j+1 + 
x j + 
x j−1

{
un[x j+1, x j ]


x j+2 + 
x j+1


x j+1 + 
x j + 
x j−1

− un[x j , x j−1]

x j+2 + 
x j+1


x j+1 + 
x j + 
x j−1
+ un[x j+2, x j+1]


x j + 
x j−1


x j+2 + 
x j+1 + 
x j

− un[x j+1, x j ]

x j + 
x j−1


x j+2 + 
x j+1 + 
x j

}
.

Using the formula (5.31) for the average s̃n
j of the second derivative of the cubic

interpolant to
∫ x

x j−3/2
un(s) ds at x j−3/2, x j−1/2, x j+1/2 and x j+3/2, we obtain

un[x j+2, x j+1] =
{

s̃n
j+1 − un[x j+1, x j ]

2
x j+2 + 
x j+1


x j+2 + 
x j+1 + 
x j

}

x j+2 + 
x j+1 + 
x j


x j+1 + 2
x j

un[x j , x j−1] =
{

s̃n
j − un[x j+1, x j ]


x j + 2
x j−1


x j+1 + 
x j + 
x j−1

}

x j+1 + 
x j + 
x j−1

2
x j+1 + 
x j
.
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As a result, we can write

un
j+1/2 = un

j + u[x j+1, x j ]
x j

− 
x j 
x j+1


x j+2 + 
x j+1 + 
x j + 
x j−1

{
un[x j+1, x j ]


x j+2 + 
x j+1


x j+1 + 
x j + 
x j−1

−
(

s̃n
j − un[x j+1, x j ]


x j + 2
x j−1


x j+1 + 
x j + 
x j−1

)

x j+2 + 
x j+1

2
x j+1 + 
x j

+
(

s̃n
j+1 − u[x j+1, x j ]

2
x j+2 + 
x j+1


x j+2 + 
x j+1 + 
x j

)

x j + 
x j−1


x j+1 + 2
x j

− un[x j+1, x j ]

x j + 
x j−1


x j+2 + 
x j+1 + 
x j

}
= un

j + u[x j+1, x j ]
x j

− u[x j+1, x j ]

x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1

×
{


x j+2 + 
x j+1


x j+1 + 
x j + 
x j−1
+ 
x j + 2
x j−1

2
x j+1 + 
x j


x j+2 + 
x j+1


x j+1 + 
x j + 
x j−1

−2
x j+2 + 
x j+1


x j+1 + 2
x j


x j + 
x j−1


x j+2 + 
x j+1 + 
x j
− 
x j + 
x j−1


x j+2 + 
x j+1 + 
x j

}
+

{
s̃n

j


x j+2 + 
x j+1

2
x j+1 + 
x j
− s̃n

j+1

x j + 
x j−1


x j+1 + 2
x j

}

x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1

= un
j + u[x j+1, x j ]
x j

− u[x j+1, x j ]
2
x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1

{

x j+2 + 
x j+1

2
x j+1 + 
x j
− 
x j + 
x j−1


x j+1 + 2
x j

}
+

{
s̃n

j


x j+2 + 
x j+1

2
x j+1 + 
x j
− s̃n

j+1

x j + 
x j−1


x j+1 + 2
x j

}

x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1
.

On a uniform mesh, these simplify to

un
j+1/2 = 1

2
(un

j + un
j+1) − 
x

6
[s̃n

j+1 − s̃n
j ].

In practice, Colella and Woodward replace the slopes s̃n
j and s̃n

j+1 with their limited
values sn

j and sn
j+1, given by formula (5.32).

These values at the cell sides must be adjusted further to produce the values
uL

j+1/2 and u R
j−1/2 used in the piecewise quadratic reconstruction. The extremum of

un
j (x) occurs at the point x∗

j where

0 = dun
j

dx
(x∗

j ) = 1


x j

(
β j + x j+1/2 − x∗

j


x j
γ j

)
− x∗

j − x j−1/2


x j

γ j


x j
,
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which implies that

x∗
j = x j−1/2 + x j+1/2

2
+ β j 
x j

2γ j
.

If β2
j ≥ |β jγ j |, then x∗

j 	∈ (x j−1/2, x j+1/2), and we have the rule

β2
j ≥ |β jγ j | =⇒ u R

j−1/2 = un
j−1/2, uL

j+1/2 = un
j+1/2.

If β2
j < −β jγ j , then (x j−1/2 + x j+1/2)/2 ≥ x∗

j > x j−1/2, so we modify uL
j+1/2 so

that we have an extremum at x j−1/2. This is equivalent to taking β j = −γ j , pro-
ducing the rule

β2
j < −β jγ j =⇒ u R

j−1/2 = un
j−1/2, uL

j+1/2 = 3un
j − 2u R

j−1/2.

If β2
j < β jγ j , then (x j−1/2 + x j+1/2)/2 ≤ x∗

j < x j+1/2, so we modify u R
j−1/2 so that

we have an extremum at x j+1/2. This is equivalent to taking β j = γ j , producing the
rule

β2
j < β jγ j =⇒ uL

j+1/2 = un
j+1/2, u R

j−1/2 = 3un
j − 2uL

j+1/2.

It remains for us to compute approximations to the flux time integrals for the
conservative difference. Colella and Woodward [35] describe their algorithm for
linear advection and gas dynamics only. The following approach appears to follow
their ideas. Recall that in smooth flow, the solution of the conservation law is
constant along characteristics; as a result,

u(x j+1/2, tn + τ ) = un(x j+1/2 − λτ )

where the characteristic speed λ solves

λ = d f

du
(u(x j+1/2 − λτ )).

Here un refers to the piecewise quadratic reconstruction, either in cell j or j + 1.
The flux at the cell side is computed by

1


tn+1/2

∫ 
tn+1/2

0
f (R(u(x j+1/2 − 0, tn + τ ), u(x j+1/2 + 0, tn + τ ); 0)) dτ

= 1


tn+1/2

∫ 
tn+1/2

0
f (R(un

j (x j+1/2 − λτ ), un
j+1(x j+1/2 − λτ ); 0)) dτ

≈ f

(
R

(
1


tn+1/2

∫ 
tn+1/2

0
un

j (x j+1/2 − λτ ) dτ,
1


tn+1/2

∫ 
tn+1/2

0
un

j+1(x j+1/2 − λτ ) dτ; 0

))
.
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Colella and Woodward apparently keep the characteristic speed constant in these
integrals. Provided that λ > 0 they compute

uL
j+1/2 = 1


tn+1/2

∫ 
tn+1/2

0
un

j (x j+1/2 − λn
jτ ) dτ

= 1


tn+1/2

∫ 
tn+1/2

0
α j +

(
1 − λτ


x j

) (
β j + λτ


x j
γ j

)
dτ

= 
x j

λn
j 
tn+1/2

∫ λn
j 
tn+1/2/dx j

0
α j + (1 − σ )(β j + σγ j ) dσ

= uL
j+1/2 − 1

2

λn
j 
tn+1/2


x j

[
β j − γ j

(
1 − 2

3

λn
j 
tn+1/2


x j

)]
;

otherwise they take uL
j+1/2 = uL

j+1/2. Provided that λ < 0 they compute

u R
j+1/2 = 1


tn+1/2

∫ 
tn+1/2

0
un

j+1(x j+1/2 − λn
j+1τ ) dτ

= 1


tn+1/2

∫ 
tn+1/2

0
α j+1 − λτ


x j+1

(
β j+1 + [

1 + λτ


x j

]
γ j+1

)
dτ

= 
x j+1

λn
j 
tn+1/2

∫ λn
j+1
tn+1/2/
x j+1

0
α j+1 − σ

(
β j+1 + [1 + σ ]γ j+1

)
dσ

= u R
j+1/2 − 1

2

λn
j+1
tn+1/2


x j+1

[
β j+1 + γ j+1

(
1 + 2

3

λn
j+1
tn+1/2


x j+1

)]
;

otherwise they take u R
j+1/2 = u R

j+1/2. The two states uL
j+1/2 and u R

j+1/2 are used in
a Riemann problem to compute the flux for the conservative difference.

A C++ program to implement the piecewise parabolic method for nonlinear
scalar conservation laws can be found in Program 5.12-75: Schemes2.C A simplified
version of this scheme for linear advection on uniform grids can be found in Program
5.12-76: LinearAdvectionSchemes.C. Students can exercise this program by clicking on
Executable 5.12-35: guiriemann2 The user can select Riemann problem initial data for
linear advection, Burgers’ equation, traffic models and the Buckley-Leverett model.
In addition, the user can select from a variety of limiters and Riemann solvers. By
setting the number of cells to 0, the user will cause the program to perform a mesh
refinement study, and the user can select several different schemes for comparison.
Students can also exercise the piecewise parabolic method for linear advection by
clicking on Executable 5.12-36: guilinearad2 The user can select a variety of initial
values from the Zalesak test problems in exercise 2.2.5 of section 2.2. In addition,

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2
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the user can select from a variety of limiters. By setting the number of cells to 0,
the user will cause the program to perform a mesh refinement study.

5.13 Essentially Non-Oscillatory Schemes

In this section we will present a scheme that is designed to reach an arbitrarily high
order of accuracy. In order to do so, it will assume that the flux function in the
conservation law has as many continuous derivatives as needed. The development
here is due to Harten, Osher and Shu [65, 69, 149].

Let w be an arbitrary function of x and define the moving cell average

w(x) = 1


x

∫ 
x/2

−
x/2
w(x + y) dy ≡ (A
xw)(x).

Note that w is smoother than w by one derivative. At points x where w is smooth,

w(x) = w(x) + O(
x2).

Next, consider an initial value problem for a nonlinear scalar conservation law
∂u/∂t + ∂ f /∂x = 0 with initial data u(x, 0) = u0(x), and solution

u(x, t) = (E(t)u0)(x).

Integrating the conservation law in space leads to the ordinary differential equations

∂u

∂t
+ 1


x

[
f
(

u
(

x + 
x

2
, t

))
− f

(
u

(
x − 
x

2
, t

))]
= 0.

The basic approach in approximating the solution to the conservation law will
be to construct a higher-order interpolant to f̃ (x, t ; u), and then apply the method
of lines to solve

∂u

∂t
= L(u) ≡ − 1


x

[
f
(

u
(

x + 
x

2
, t

))
− f

(
u

(
x − 
x

2
, t

))]
.

The analytical form of the ENO scheme is un+1
j = AE
x (
t)R(·, un

j ), where R
constructs a piecewise polynomial interpolant to the cell averages un

j , E
x evolves
the polynomial interpolant through a time increment 
t , and A averages the result
onto the mesh. For a scalar law, the exact evolution operator is monotone. For any
conservation law, the cell average is always monotone. For a scalar conservation law,
the evolution is total variation diminishing. It follows that for a scalar conservation
law

T V (un+1
j ) = T V (AE
x (
t)R(·, un

j )) ≤ T V (R(·, un
j )) ≤ T V (un

j ) + O(
xr ).
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Note that if the numerical flux satisfies

f j+1/2 = f̃ (x j+1/2, tn) + d(x j+1/2)
xr + O(
xr+1),

where d(x) is Lipschitz continuous, and if the numerical solution is given by the
conservative difference

un+1
j = u(x j , tn) − 
t


x
[ f j+1/2 − f j−1/2] ≡ (E
x (
t)u(·, tn)) j ,

then the local truncation error in the cell averages satisfies

u(x j , tn+1) − (E
x (
t)u(·, tn)) j = 
t


x
[d(x j+1/2) − d(x j−1/2)]
xr + O(
xr+1)

= O(
xr+1).

By extending the idea in the PPM reconstruction, we will show how to construct
a piecewise polynomial function R(x ; w) so that the reconstruction has order r (i.e.,
if w is smooth at x then R(x, w) = w(x) + e(x)
xr + O(
xr+1), the reconstruction
preserves cell averages (i.e. R(x j ; w) = w(x j )) and the reconstruction is essentially
non-oscillatory (ENO) (i.e., T V (R(·, w)) ≤ T V (w) + O(
xr )).

When the error coefficient e(x) = [R(x, w) − w(x)]/
xr fails to be Lipschitz
continuous at a point, then the local truncation error of ENO is only O(
xr ). For
MUSCL, this happens at local extrema of the interpolant; for ENO, this may occur
at zeros of higher derivatives of w. Due to local accumulation, the pointwise error
at t N with N = O(1/
x) is O(
xr−1). Away from these points, the global error is
O(
xr ). Shu and Osher claim that the scheme has order r − 1 in L∞, and order r
in L1, where r is the order of accuracy of the reconstruction function. In practice,
we have not observed this order of convergence for Riemann problems. Rather, we
observe first-order convergence at propagating discontinuities and second-order
convergence for rarefactions surrounded by constant states for all versions of the
ENO scheme, other than the first-order scheme.

There are two major pieces to the ENO scheme. One is an appropriate ordinary
differential equation solver to integrate ∂u/∂t(t) = L(u(t)). Let u(0) approximate
u(x, tn). For first-order ENO, the suggested ordinary differential equation solver is
the forward Euler method. For second-order ENO, the suggested ordinary differ-
ential equation solver is Heun’s method,

u(1) = u(0) + 
t L(u(0))

u(2) = 1

2
[u(0) + u(1) + 
t L(u(1))],
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producing u(2) approximating u(x, tn + 
t). The resulting scheme is stable for
CFL ≤ 1. For third-order ENO, the suggested ordinary differential equation
solver is

u(1) = u(0) + 
t L(u(0))

u(2) = 1

4
[3u(0) + u(1) + 
t L(u(1))]

u(3) = 1

3
[u(0) + 2u(2) + 2
t L(u(2))].

The resulting scheme is also stable for CFL ≤ 1. For fourth-order ENO, the sug-
gested ordinary differential equation solver is

u(1) = u(0) + 1

2

t L(u(0))

u(2) = 1

2
[u(0) + u(1)] + 
t

4
[−L̃(u(0)) + 2L(u(1))]

u(3) = 1

9
[u(0) + 2u(1) + 6u(2)] + 
t

9
[−L̃(u(0)) − 3L̃(u(1)) + 9L(u(2))]

u(4) = 1

3
[u(1) + u(2) + u(3)] + 
t

6
[L(u(1)) + L(u(3))].

The resulting scheme is stable for CFL ≤ 2/3, and the reason for the notation L̃
will be explained at the end of the next paragraph.

The second major piece of the ENO scheme is the piecewise polynomial recon-
struction. Here the goal is to construct a polynomial of degree r + 1 approxi-
mating the integral of the flux, and then evaluate the derivative of this polyno-
mial at each cell side x j+1/2. We also want to choose the index im( j) for the
start of the interpolation stencil so that the m + 1 points are chosen from the
smoothest region for w. In more recent versions of ENO, priority has been given
to making the stencil vary more smoothly with j [77, 109]. If the characteristic
speeds are all positive between un+α

j and un+α
j+1 , then we construct a divided dif-

ference table for values of the flux integral at x j−r+1/2, . . . , x j+r−1/2, computing
divided differences up to order r . Similarly, if the characteristic speeds are all
negative between un+α

j and un+α
j+1 , then we construct a divided difference table at

x j−r+3/2, . . . , x j+r+1/2. If the characteristic speeds change sign, then we construct
the former divided difference table for 1

2 [ f (u) + λu], and the latter divided differ-
ence table for 1

2 [ f (u) − λu]. The actual piecewise polynomial interpolation within
these stencils is selected by choosing the smaller divided difference of two alterna-
tives as the order of the divided difference is increased. The resulting algorithm takes
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the form

for all − r ≤ j ≤ r δ j,0 = f j

for all 1 ≤ k ≤ r

for all − r ≤ j ≤ r − k δ j,k = δ j+1,k−1 − δ j,k−1

x j+k+1/2 − x j−1/2

�0 = 0

p′
j+1/2(ξ ) = δ0,0

for all 1 ≤ k ≤ r

D = d

dx

�k−1+k∏
j=�k−1

(x − x j−1/2)|x=ξ

if |δ�k−1,k | ≥ |δ�k−1,k | then �k = �k−1 − 1 else �k = �k−1

p′
j+1/2(ξ )+ = Dδ�k ,k .

In the fourth-order version of ENO, two stages of the Runge–Kutta scheme involve
negative coefficients, so the corresponding interpolation of the flux gradient L̃ must
be computed with the stencil for − f rather than f .

A C++ program to implement the ENO schemes for a variety of nonlinear scalar
conservation laws can be found in Program 5.13-77: Schemes2.C , which calls several
Fortran subroutines in Program 5.13-78: eno.f. A simplified version of these schemes
for linear advection on uniform grids can be found in Program 5.13-79: LinearAdvec-
tionSchemes.C. Students can exercise the former program by clicking on Executable
5.13-37: guiriemann2 Students can also exercise the ENO scheme for linear advection
by clicking on Executable 5.13-38: guilinearad2 By setting the number of cells to 0,
the user will cause the program to perform a mesh refinement study.

Exercises for 5.13

5.13.1 Show that the first-order version of the ENO scheme is the same as Godunov’s method using
Marquina’s flux (see exercise 3.4.3).

5.13.2 Assuming that the characteristic speeds are all positive, show that the numerical flux in the
second-order version of the ENO scheme is f j+1/2 where

f j+1/2 − f j


x j
=


f j+1− f j


x j+1+
x j
, | f j+1− f j


x j+1+
x j
| ≤ | f j − f j−1


x j +
x j−1
|

f j − f j−1


x j +
x j−1
, | f j+1− f j


x j+1+
x j
| > | f j − f j−1


x j +
x j−1
|.

On a uniform grid, this is similar to using a minmod limiter, except that the limited slope is not
set to zero when the left and right slopes have opposite signs.

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/eno.f
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2
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5.14 Discontinuous Galerkin Methods

5.14.1 Weak Formulation

The discontinuous Galerkin method [29] is another technique for generating
arbitrarily high order schemes for hyperbolic conservation laws. This approach
rewrites the conservation law ∂u/∂t + ∂ f (u)/∂x = 0 in a weak form. For any
w(x) ∈ C∞(�) we have

0 =
∫

�

[
∂u

∂t
+ ∂ f

∂x

]
w dx =

∑
i

∫ xi+1/2

xi−1/2

[
∂u

∂t
w + ∂ f w

∂x
− f

∂w

∂x

]
dx

=
∑

i

[
d

dt

∫ xi+1/2

xi−1/2

uw dx + ( f w)|xi+1/2
xi−1/2 −

∫ xi+1/2

xi−1/2

f
∂w

∂x
dx

]
.

Several difficulties arise. One is that C∞(�) is infinite-dimensional. In practice,
we will replace the set of functions C∞(�) with a finite-dimensional space of
piecewise polynomials. Another difficulty is that the fluxes at the cell sides are
difficult to determine. In practice, we will require that the flux at the cell side xi+1/2

be evaluated at the solution of the Riemann problem taking left and right state from
the values of u(xi+1/2, t) from the neighboring cells. This will be acceptable for
a numerical timestep small enough that there are no interactions from Riemann
problems arising from other grid cells.

The discretization chooses finite dimensional subspaces Mi ⊂
C∞(xi−1/2, xi+1/2) and seeks numerical approximation U (x, t) ∈ Mi so that
for all t > 0 and for all x ∈ (xi−1/2, xi+1/2) and for all W ∈ Mi ,

0 = d

dt

∫ xi+1/2

xi−1/2

U (x, t)W (x) dx

+ f (R(U (xi+1/2 − 0, t), U (xi+1/2 + 0, t); 0))W (xi+1/2 − 0)

− f (R(U (xi−1/2 − 0, t), U (xi−1/2 + 0, t); 0))W (xi−1/2 + 0)

−
∫ xi+1/2

xi−1/2

f (U (x, t))
∂W

∂x
dx . (5.35)

Here R(uL, uR; ξ ) is the state moving at speed ξ in the solution of the Riemann
problem with left state uL and right state uR.

In order to implement the discontinuous Galerkin method, we need to choose
appropriate finite dimensional subspaces Mi ⊂ C∞(xi−1/2, xi+1/2). We also need
to determine appropriately accurate numerical quadrature rules for the integrals in
(5.35), to determine initial values for the numerical solution, and to select appro-
priate temporal integration schemes. It will also be useful to apply a limiter to the
states that are used in the Riemann problems.
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5.14.2 Basis Functions

The subspaces Mi will consist of polynomials of degree at most k. In order to
simplify the computations, we will choose orthonormal basis functions for these
polynomials, and map these basis functions from ξ ∈ [−1, 1] to x ∈ [xi−1/2, xi+1/2]
by ξi (x) = 2 x−xi


xi
. These basis functions are the well-known Legendre polynomials.

If we define p−1(ξ ) ≡ 0, p0(ξ ) ≡ 1 and

p j (ξ ) = 2 j − 1

j
ξp j−1(ξ ) − j − 1

j
p j−2(ξ ), (5.36)

then it is well-known [42] that∫ 1

−1
p j (ξ )p�(ξ ) dξ = 0 for all j 	= �,

∫ 1

−1
p j (ξ )2 dξ = 2

2 j + 1
.

The polynomials p j (x) are easily generated by the three-term recurrence (5.36).
So that our basis functions for the discontinuous Galerkin method are orthonormal,
we take

b j (ξ ) = p j (ξ )√∫ 1
−1 p j (ξ )2 dξ

= p j (ξ )

√
j + 1

2
. (5.37)

Note that for all j , b2 j (ξ ) is an even function of ξ and b2 j+1(ξ ) is an odd function
of ξ . Also note that the three-term recurrence (5.36) implies that p j (1) = 1 for
j ≥ 0.

We will represent the numerical solution in the form

U (x, t) =
k∑

j=0

ui, j (t)b j (ξi (x)) for all x ∈ (xi−1/2, xi+1/2), where ξi (x) = 2
x − xi


xi
.

It is sufficient that the Galerkin equations (5.35) be satisfied with W chosen to be
one of the basis functions. In order to simplify the resulting Galerkin equations, let
us define

ui (t) =

ui,0(t)
...

ui,k(t)

 and b(ξ ) =

b0(ξ )
...

bk(ξ )

 .
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Then the Galerkin equations can be written in the form of a system of ordinary
differential equations in each mesh interval:

0 = d

dt

∫ xi+1/2

xi−1/2

b(ξi (x)) b(ξi (x))�ui (t) dx + b(1) f (R(b(1)�ui (t), b(−1)�ui+1(t); 0))

− b(−1) f (R(b(1)�ui−1(t), b(−1)�ui (t); 0))−
∫ xi+1/2

xi−1/2

db(ξi (x))

dx
f (b(ξi (x))�ui (t)) dx .

Note that the orthonormality of the basis functions greatly simplifies the term
involving the time derivatives:

d

dt

∫ xi+1/2

xi−1/2

b(ξi (x))b(ξi (x))�u(t) dx =
∫ 1

−1
b(ξ )b(ξ )� dξ

dui

dt


xi

2
= dui

dt


xi

2
.

Eventually, a limiter will be used to replace the states in the Riemann problems.
Let us define

fi (t)

xi

2
= −b(1) f (R(b(1)�ui (t), b(−1)�ui+1(t); 0))

+ b(−1) f (R(b(1)�ui−1(t), b(−1)�ui (t); 0))

+
∫ 1

−1
b′(ξ ) f (b(ξ )�ui (t)) dξ. (5.38)

Then the system of ordinary differential equations is dui/dt = fi (t).

5.14.3 Numerical Quadrature

Note that we will need to evaluate the flux at the two cell sides, where we solve
Riemann problems, possibly approximately. For the spatial integral of the flux, it
will be advantageous to use numerical quadrature rules that involve function values
at the ends of the integration interval. These are called Lobatto quadrature rules
[82]. In general, if ξ0 = −1, ξm = 1 and ξ1, . . . , ξm−1 are the zeros of b′

m(ξ ), then
the approximation

∫ 1

−1
φ(ξ ) dξ ≈

m∑
j=0

φ(ξ j )α j
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is exact for all φ ∈ P2m−1, provided that the weights α j are chosen appropriately.
The first four rules are

∫ 1

−1
φ(x) dx ≈ φ(−1) + φ(1) (trapezoidal rule; exact for φ ∈ P1)

≈ 1

3
{φ(−1) + 4φ(0) + φ(1)} (simpson’s rule; exact for φ ∈ P3)

≈ 1

6

{
φ(−1) + 5φ

(
− 1√

5

)
+ 5φ

(
1√
5

)
+ φ(1)

}
(exact for φ ∈ P5)

≈ 1

90

{
9φ(−1) + 49φ

(
−

√
3

7

)
+ 64φ(0) + 49φ

(√
3

7

)
+ 9φ(1)

}
(exact for φ ∈ P7).

The quadrature rules are chosen so that the coefficients of the u′
i in the

Galerkin equations are integrated exactly; in other words, we use k + 1 Lobatto
quadrature points for discontinuous Galerkin methods involving polynomials of
degree at most k. These rules suggest that we pre-compute the values of b(ξ )
and b′(ξ ) at the quadrature points, since these will be the same for all grid
cells.

For time integration of du
dt = f(u), we will use the same Runge–Kutta methods

as in the ENO scheme (Section 5.13).

5.14.4 Initial Data

We will choose our initial function U (x, t) = ∑k
j=0 ui, j (t)b j (ξ (x)) at t = 0 so that

it has minimal L2 error in approximating the true initial data. The solution of this
minimization problem has error orthogonal to the space of piecewise polynomials.
In other words,

0 = 2


xi

∫ xi+1/2

xi−1/2

b(ξi (x)){u(x, 0)−b(ξi (x))�ui (0)}dx

=
∫ 1

−1
b(ξ )u

(
xi + 1

2
ξ
xi , 0

)
dξ−ui (0).

This gives us a formula for ui (0). If the initial data is sufficiently smooth, we can
approximate ui (0) by using numerical quadrature. Using the orthonormality of the
basis functions and the fact that the first basis function is constant, it is easy to see
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that this value for ui (0) conserves the initial data:∫ xi+1/2

xi−1/2

b(ξi (x))�ui (0) dx =
∫ 1

−1
b(ξ ′)�

∫ 1

−1
b(ξ )u

(
xi + ξ


xi

2
, 0

)
dξ dξ ′ 
xi

2

=
∫ 1

−1

∫ 1

−1
b(ξ ′)� dξ ′b(ξ )u

(
xi + ξ


xi

2
, 0

)
dξ


xi

2

=
∫ 1

−1

√
2e�

0 b(ξ )u
(

xi + ξ

xi

2
, 0

)
dξ


xi

2

=
∫ 1

−1
u

(
xi + ξ


xi

2
, 0

)
dξ


xi

2

=
∫ xi+1/2

xi−1/2

u(x, 0) dx .

5.14.5 Limiters

Shu and Cockburn [29] suggest that a modification of the minmod limiter be used
with the discontinuous Galerkin scheme in order to avoid degeneration of accuracy
at local extrema. They suggest that we compute the cell averages

ui (t) ≡ 1


xi

∫ xi+1/2

xi−1/2

U (x, t) dx = ui,0(t)b0

and the values of the solution at the cell boundaries

ui+1/2,L(t) ≡ U (xi+1/2 − 0, t) = b(1)�ui (t),

ui−1/2,R(t) ≡ U (xi−1/2 + 0, t) = b(−1)�ui (t).

Let 
x = maxi 
xi . If u(x, 0) ∈ C2, let M be a bound on the second spatial derivative
of the initial data near critical points. The idea is to pick some δ > 0 and choose
M > 0 so that for any critical point x∗ of u(x, 0) we have

for all |x − x∗| < δ,

∣∣∣∣d2u(x, 0)

dx2

∣∣∣∣ ≤ M.

In practice, people often experiment with M until they achieve acceptable
results.

The values at the cell sides are then modified as follows. If the polyno-
mial order k is greater than 1 and |ui+1/2,L(t) − ui (t)| ≥ M
x2, then ui+1/2,L(t)
is replaced by

∑1
j=0 ui, j (t)b j (1). If we still have |ui+1/2,L(t) − ui (t)| ≥ M
x2,

then we use the minmod limiter, which involves the following calculations. Let
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ui,+ = ui+1/2,L(t) − ui (t) and s = sign(
ui,+). Then

ui+1/2,L(t) = ui (t) +
{

s min{
ui−1/2(t), 
ui+1/2(t)}, s = sign(
ui−1/2(t)) = sign(
ui+1/2(t))
0, otherwise.

Similarly, if the polynomial order k is greater than 1 and ui (t) − |ui−1/2,R(t)| ≥
M
x2, then ui−1/2,R(t) is replaced by

∑1
j=0 ui, j (t)b j (−1). If we still have

ui (t) − |ui−1/2,R(t)| ≥ M
x2, then we use the minmod limiter. Let 
ui,− = ui (t) −
ui+1/2,R(t) and s = sign(
ui,−). Then

ui−1/2,R(t) = ui (t) −
{

s min{
ui−1/2(t), 
ui+1/2(t)}, s = sign(
ui−1/2(t)) = sign(
ui+1/2(t))
0, otherwise.

The resulting states at the cell sides are used to compute the fluxes at the solution
of Riemann problems:

fi+1/2(t) = f (R(ui+1/2,L(t), ui+1/2,R(t), 0)).

Here the flux at the solution of the Riemann problem could be given either by the flux
at the exact solution of the Riemann problem, the Engquist-Osher flux (see Example
5.7.4), the Rusanov flux (see Section 3.3.4), or the Harten–Hyman modification of
the Roe solver (see Section 4.13.9). These fluxes are used in (5.38) to compute the
right-hand side fi (t) in the ordinary differential equations dui/dt = fi (t).

5.14.6 Timestep Selection

Cockburn and Shu [29] prove that for 0 ≤ k ≤ 2, the discontinuous Galerkin scheme
described above is stable for linear advection with CFL = 1/(2k + 1).

A C++ program to implement the discontinuous Galerkin schemes for a variety
of nonlinear scalar conservation laws can be found in Program 5.14-80: Schemes2.C,
which calls several Fortran subroutines in Program 5.14-81: dgm.f. The same ver-
sion of these schemes for linear advection on uniform grids appears in Program
5.14-82: LinearAdvectionSchemes.C. Students can exercise the former program by
clicking on Executable 5.14-39: guiriemann2 Students can also exercise the discon-
tinuous Galerkin scheme for linear advection by clicking on Executable 5.14-40:
guilinearad2 By setting the number of cells to 0, the user will cause the pro-
gram to perform a mesh refinement study. In this case, the errors are computed
by summing the absolute values of the pointwise errors at the Lobatto quadrature
points, times the appropriate mesh factor. Also, the numerical solution and ana-
lytical solution are plotted throughout each mesh interval, so that the students can
see the behavior of the piecewise polynomials as time evolves, or as the mesh is
refined.

http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/Schemes2.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/dgm.f
http://www.math.duke.edu/~johnt/math226/hyperbolic_methods/LinearAdvectionSchemes.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2
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Exercises for 5.14

5.14.1 Show that the first-order discontinuous Galerkin scheme, which uses piecewise constant poly-
nomials, is the same as Godunov’s method.

5.14.2 Write down the steps in the second-order version of the discontinuous Galerkin scheme, which
uses piecewise linear polynomials.

5.15 Case Studies

In deciding which scheme to use in a particular application, it is reasonable to
examine the accuracy and efficiency of the schemes, as well as ease of programming.
For nonlinear problems, we might also want to know which of the numerical fluxes
are best. We might also ask if higher-order schemes are more efficient than lower
order schemes. The answers, of course, depend on the intended application.

For problems involving shocks, none of the schemes is better than first-order
accurate. For Riemann problems, none of the schemes is better than second-order
accurate. This is important, because Liu [108] has shown that in general the solution
of hyperbolic conservation laws for initial data with compact support evolve to
the solution of Riemann problems at large time. Thus, it might appear that the
nominal high order of some schemes will be apparent in the numerical results only
at small time for nonlinear conservation laws, or for problems also involving some
reasonable amount of physical diffusion.

In the sections below, we will describe some results with the numerical methods
in this chapter, for a variety of test problems. These results do not by any means
determine the suitability of a scheme in general. The mesh refinement studies were
performed with 100, 200, 400, 800, 1600, 3200 and 6400 grid cells. The timestep
was chosen to be 90% of the stability limit for each scheme. For the discontinuous
Galerkin scheme, the limiter factor M was chosen sufficiently large so that no
limiting was performed for any of the problems; this was because smaller values of
this factor lead to nonconvergence for Riemann problems. Also note that the errors
are measured differently for the discontinuous Galerkin method. All other methods
measure the L1 error in the cell averages, while the discontinuous Galerkin method
measures the L1 norm of the error.

5.15.1 Case Study: Linear Advection

Consider the linear advection problem with periodic boundary conditions

∂u

∂t
+ ∂u

∂x
= 0 for all x ∈ (0, 1) for all t > 0

u(1, t) = u(0, t) for all t > 0

u(x, 0) given, for all x ∈ (0, 1).



5.15 Case Studies 419

Zalesak [180] proposed several initial values for testing schemes applied to this
problem:

square pulse: u(x, 0) =
{

2, 0.1 ≤ x ≤ 0.2
1, otherwise

triangular pulse: u(x, 0) =
{

2 − 20|x − 0.15|, 0.1 ≤ x ≤ 0.2
1, otherwise

smooth Gaussian pulse: u(x, 0) =
{
1 + exp(−104(x − 0.15)2) − exp(−25), 0.1 ≤ x ≤ 0.2
1, otherwise.

Zalesak specified that each problem should be solved with 100 cells on a uniform
grid, so that the initial disturbance is described in a fixed number of grid cells. We
have performed several numerical experiments with the schemes described in this
chapter for these test problems.

For the square pulse, the upwind scheme was O(
x0.5), while the higher-order
schemes were all roughly O(
x0.7). For a given (fine) mesh, the most accurate
second-order schemes were the side-centered wave propagation, MUSCL, TVD
and the Nessyahu–Tadmor scheme. However, the schemes that obtained a given
accuracy for the least computer time were MUSCL, TVD and wave propagation.
Second-order ENO was the least accurate and least efficient, and discontinuous
Galerkin was not much better. We also compared second-order wave propagation
with the third-order schemes in this chapter. The most accurate schemes were PPM,
discontinuous Galerkin, wave propagation and the Liu–Tadmor scheme, while the
most efficient schemes were PPM, wave propagation, Liu–Tadmor and then discon-
tinuous Galerkin. The discontinuous Galerkin scheme took about 50 times more
computer time than PPM for a given accuracy, while ENO was about 350 times
more expensive.

For the triangular pulse, the upwind scheme was O(
x), while most of the higher-
order schemes were O(
x1.4). All of the second-order schemes obtained roughly the
same accuracy for a given mesh size, except the discontinuous Galerkin and ENO
schemes, which were less accurate. The second-order discontinuous Galerkin and
ENO schemes were significantly less efficient, as well. Of wave propagation and the
third-order schemes, the most accurate were discontinuous Galerkin, followed by
Liu-Tadmor, PPM, second-order wave propagation and third-order ENO. The most
accurate third-order scheme was discontinuous Galerkin, and the least accurate
was ENO. The most efficient of wave propagation and the third-order schemes
were wave propagation, PPM, Liu–Tadmor and discontinuous Galerkin; ENO was
the least efficient. ENO took roughly 1000 times as long as PPM for a given accuracy,
and discontinuous Galerkin took about 16 times the computer work.
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(a) PPM (b) Liu–Tadmor

(a) Third-order ENO (b) Third order Discontinuous Galerkin

Fig. 5.5 Comparison of schemes for linear advection Gaussian pulse, 100 grid cells

For the smooth Gaussian pulse, upwind was first-order, the second-order schemes
were all second-order, and the third-order schemes were mostly somewhat over
second order, typically around O(
x2.3). In this case, we could determine that the
second derivative of the initial data at the critical point x = 0.15 is −2 × 104, so
we took M = 2 × 104 in the discontinuous Galerkin limiter. Figure 5.5 shows the
results with several third-order schemes with 100 grid cells. Note that the peak
values of the solution are reduced substantially with PPM and the Liu–Tadmor
schemes; third-order ENO is far worse. The third-order discontinuous Galerkin
maintains the peak value of the solution pretty well, but has some undershoots before
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(a) Second order accuracy (b) Second order efficiency

(a) Third-order accuracy (b) Third-order efficiency

Fig. 5.6 Comparison of schemes for linear advection Gaussian Pulse (box =
MUSCL, diamond = TVD, box plus = wave propagation, box cross = Nessyahu-
Tadmor, diamond plus = Liu–Tadmor, diamond cross = PPM, box plus cross =
ENO, diamond plus cross = discontinuous Galerkin)

and after the pulse. Here the discontinuous Galerkin method has a competitive
advantage, in that it samples the initial data at Lobatto quadrature points in each
grid cell; the third-order scheme samples the initial data at an average of three points
per cell, versus one point per cell for the other schemes.

The least accurate and least efficient second-order schemes were ENO and dis-
continuous Galerkin, with the other schemes all roughly the same. The most accurate
third-order schemes were Liu–Tadmor, PPM and MUSCL. Discontinuous Galerkin
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(a) Accuracy (b) Efficiency

Fig. 5.7 Comparison of wave propagation and third-order schemes for linear
advection Gaussian pulse, unlimited discontinuous Galerkin (box = MUSCL,
box cross = Nessyahu–Tadmor, box plus cross = ENO, diamond plus cross =
discontinuous Galerkin)

was most accurate at coarse meshes but then the limiter caused a convergence fail-
ure; ENO was generally the least accurate third-order scheme. PPM and MUSCL
were the most efficient of these schemes. These results are displayed in Figure 5.6.
Since it is possible that our implementation of the discontinuous Galerkin limiter
has an error, to produce Figure 5.7 we took M = 2 × 109 so that the limiter never
activated, and achieved convergence for the discontinuous Galerkin method. For
this problem, wave propagation had order 1.8, PPM had order 2.3, Liu–Tadmor had
order 2.7, third-order ENO had order 1.3 and third-order discontinuous Galerkin
had order 3 for coarse mesh and 1.8 on the finest mesh tested. In this case, the dis-
continuous Galerkin method was nearly as efficient as the best third-order schemes.

Students can reproduce these results or create their own by clicking on the
following link, Executable 5.15-41: guilinearad2 By setting the number of cells to 0,
the user will cause the program to perform a mesh refinement study. Note that the
discontinuous Galerkin errors are computed by summing the absolute values of the
pointwise errors at the Lobatto quadrature points, times the quadrature weight and
the appropriate mesh factor. The errors for the other schemes are the sums of the
absolute values of the errors in the cell averages, times the mesh width.

5.15.2 Case Study: Burgers’ Equation

We compared the schemes in this chapter for Burgers’ equation,

∂u

∂t
+ ∂u2/2

∂x
= 0 for all x ∈ (0, 1) for all t > 0.

http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guilinearad2.
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(c) Shock accuracy (d) Shock efficiency

Fig. 5.8 Comparison of approximate Riemann solvers for Burgers’ transonic
rarefaction (uL = −1, uR = 1) and Shock (uL = 2, uR = −1) (box = exact,
diamond = Rusanov, box plus = Marquina, box cross = Harten–Hyman, diamond
cross = Harten–Lax-vanLeer, box plus cross = Linde, diamond plus cross =
Engquist–Osher)

First, we considered a transonic rarefaction (uL = −1, uR = 1). Of the various
choices for numerical fluxes in Godunov’s method, the most efficient were Mar-
quina’s flux, followed by the Harten–Hyman flux and the Engquist–Osher flux (see
the top of Figure 5.8). The most accurate numerical fluxes were Linde’s flux, fol-
lowed by the Engquist-Osher flux. These all performed better than the flux at the
true solution of the Riemann problem. For a strong shock (uL = 2, uR = −1), the
most efficient numerical fluxes were Harten-Hyman, Harten-Lax–vanLeer, Linde
and the flux at the the solution of the Riemann problem (in that order). The most
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(c) Third-order accuracy (d) Third-order efficiency

Fig. 5.9 Comparison of Schemes for Burgers’ Transonic Rarefaction (uL = −1,
uR = 1) (box = TVD, diamond = MUSCL, diamond cross = side-centered wave
propagation, box cross = PPM, diamond plus = Nessyahu–Tadmor, box plus
cross = Liu–Tadmor, diamond plus cross = ENO, box diamond = discontinuous
Galerkin)

accurate fluxes were Linde, Engquist–Osher, Marquina and Rusanov. These results
appear at the bottom of Figure 5.8.

Among the second-order schemes applied to the transonic rarefaction, the
MUSCL scheme was most accurate and most efficient, followed closely by the
Nessyahu–Tadmor scheme (see Figure 5.9). The ENO and discontinuous Galerkin
schemes were the least accurate and least efficient. The discontinuous Galerkin
scheme took about 3000 times longer to reach the same accuracy as the MUSCL
scheme (remember that the errors are measured differently in these two cases,
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(a) Second-order accuracy (b) Second-order efficiency

(a) Third-order accuracy (b) Third-order efficiency

Fig. 5.10 Comparison of Schemes for Burgers’ Strong Shock (uL = 2, uR = −1)
(box = TVD, diamond = MUSCL, diamond cross = side-centered wave propa-
gation, box cross = PPM, diamond plus = Nessyahu–Tadmor, box plus cross =
Liu–Tadmor, diamond plus cross = ENO, box diamond = discontinuous Galerkin)

because of the differences in the schemes). ENO took about 35 times as long as
MUSCL. Among MUSCL and the third-order schemes, MUSCL and PPM were
most accurate and efficient, while discontinuous Galerkin and Liu–Tadmor were
least accurate and efficient. In this case, the limiter destroys the accuracy of the Liu–
Tadmor scheme; third-order convergence was verified with the same algorithm on
other test problems.

Of the second-order schemes, the most accurate and efficient for a strong shock
(uL = 2, uR = −1) were MUSCL and wave propagation, while the least accu-
rate and efficient were discontinuous Galerkin and ENO (see Figure 5.10). In a
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(a) Shock (b) Rarefaction

Fig. 5.11 Comparison of approximate Riemann solver for Buckley–Leverett
shock–rarefaction–shock (uL = 0.001, uR = 0.999) (box = exact, diamond
= Rusanov, box plus = Marquina, box cross = Harten–Hyman, diamond
cross = Harten–Lax–vanLeer, box plus cross = Linde, diamond plus cross =
Engquist–Osher)

comparison of MUSCL with the third-order schemes, the most accurate and effi-
cient were MUSCL and PPM. MUSCL and PPM both capture the shock in at most
one grid cell, with essentially perfect resolution of the solution otherwise.

We also compared the schemes for a weak shock (uL = 1, uR = 0.9). All of the
approximate Riemann solvers achieved essentially the same accuracy, and nearly
the same efficiency.

The ENO and discontinuous Galerkin schemes are at a competitive disadvantage
because of their use of Runge–Kutta time integration, involving several substeps.
Runge–Kutta schemes have also been known to develop spurious oscillations and
convergence to unphysical solutions for nonlinear problems [179]. The discontinu-
ous Galerkin schemes are at a further disadvantage because of their more restrictive
stability restriction on the timesteps. These schemes are accurate for problems with
smooth initial data, but their performance on the Riemann problems we have tested
is not competitive.

Students can reproduce these results by clicking on Executable 5.15-42: guiriemann2
By setting the number of cells to 0, the user will cause the program to perform a
mesh refinement study.

5.15.3 Case Study: Traffic Flow

The traffic flow problem in Section 3.2.1 can be interesting to students because
it has more readily identifiable physical significance. In our experiments, the

http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_methods_guiriemann2


5.15 Case Studies 427

(a) PPM (b) Liu–Tadmor

(c) ENO (d) Discontinuous Galerkin

Fig. 5.12 Comparison of third-order schemes for Buckley–Leverett shock–
rarefaction–shock (uL = 0.001, uR = 0.999)

numerical methods performed much the same for traffic flow problems as for Burg-
ers’ equation. Students should experiment on their own to verify this claim.

5.15.4 Case Study: Buckley–Leverett Model

We also made comparisons of the various numerical fluxes for a Buckley-Leverett
shock-rarefaction-shock. In this comparison, all of the numerical fluxes performed
similarly, with the Harten-Hyman flux slightly more accurate and efficient, and
the Rusanov flux slightly less. These results appear in Figure 5.11 Comparisons
of schemes appear in Figure 5.12. In this case, the accuracy of the discontinuous
Galerkin scheme is poor because it appears to be converging to a solution involving
two discontinuities and an intermediate constant state (see Figure 5.13.)
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(a) Second-order accuracy (b) Second-order efficiency

(c) Third-order accuracy (d) Third-order efficiency

Fig. 5.13 Comparison of Schemes for Buckley–Leverett shock–rarefaction–Shock
(uL = 0.001, uR = 0.999) (box = TVD, diamond = MUSCL, diamond cross =
side-centered wave propagation, box cross = PPM, diamond plus = Nessyahu–
Tadmor, box plus cross = Liu–Tadmor, diamond plus cross = ENO, box diamond
= discontinuous Galerkin)

Exercises for 5.15

5.15.1 In order to verify that the schemes are operating properly, it is useful to have a smooth test
problem. Zalesak’s smooth Gaussian requires a large number of grid cells to look smooth to the
numerical computation. Choose one of the numerical methods in this chapter, and verify that it
achieves the correct order for initial data u0(x) = sin(πx). Remember to use period boundary
conditions.
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5.15.2 Choose one of the schemes in this chapter and compare its performance on linear advection with
Zalesak’s smooth Gaussian, and with initial data

u0(x) = 1 + exp(−625(x/2 − 1)2).

5.15.3 Goodman and LeVeque [59] suggested the Burgers’ equation initial data

u0(x) =
{−0.5, x < 0.5

0.2 + 0.7 cos(2πx), x > 0.5

for a problem with periodic boundary conditions.
(a) Use Equation (3.5) to determine the analytical solution for this problem. Your solution

should be in the form of an algorithm.
(b) Program the MUSCL scheme for this problem, and run the method until the solution develops

a shock.
(c) Plot the L1 error in the cell averages for your solution as a function of time. How does the

development of the shock degrade the accuracy of the scheme?
5.15.4 Cockburn and Shu [29] suggested the initial data

u0(x) = 1

4
+ 1

2
sin πx

for Burgers’ equation. Repeat the exercises of the previous problem for the second-order dis-
continuous Galerkin method.

5.15.5 LeVeque [97, page 205] shows results for traffic flow with initial data apparently given by a
smooth Gaussian

u0(x) = 0.25 + 0.75 exp(−0.25x2), |x | ≤ 30.

(a) Use equation (3.5) to determine the analytical solution for this problem. Your solution should
be in the form of an algorithm.

(b) Program the wave propagation scheme for this problem, and run the method until the solution
develops a shock.

(c) Plot the L1 error in the cell averages for your solution as a function of time. How does the
development of the shock degrade the accuracy of the scheme?

5.15.6 Repeat the previous exercise for a red light (LeVeque [97, page 206]) ρL = 0.25, ρR = 1., using
the Nessyahu–Tadmor scheme.

5.15.7 Repeat the previous exercise for a green light (LeVeque [97, page 207]) ρL = 1., ρR = 0. using
the second-order ENO scheme.

5.15.8 Suppose that the traffic flow has a spatially varying speed limit (LeVeque [97, page 369]) with
flux f (u, x) = umax(x)u(1 − u)
(a) Examine the ideas behind the analytical solution (3.5) of the conservation law for f (u) to

find an analytical solution for f (u, x) in smooth flow. What are the stationary states in this
conservation law?

(b) Develop a modification of Godunov’s method to solve this problem on a periodic domain.
Verify that your scheme is first-order accurate for umax(x) = 2 + sin(πx) and u0(x) =
sin2(πx) where x ∈ (−1, 1).
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(c) Develop a modification of the MUSCL to solve this problem. Verify that your scheme is
second-order accurate.

5.15.9 Suppose that the traffic flow has a source term due to an entrance ramp (LeVeque [97, page 396]):

∂u

∂t
+ ∂ f (u)

∂x
= Dδ(x),

where δ(x) is the Dirac delta-function.
(a) Formulate the integral form of this conservation law.
(b) Examine the ideas behind the analytical solution (3.5) of the conservation law with no source

terms to find an analytical solution for traffic flow with a source term.
(c) Develop a modification of the wave propagation scheme to solve this problem. Verify that

your scheme is first-order accurate.
(d) Is it possible to design a second-order accurate scheme for this problem with a source term?

5.15.10 Suppose that a enclosed one-dimensional oil reservoir (vT = 0, Kg(ρw − ρo) = 1) is initialized
with water on the top half and oil on the bottom half (so = 1 on the bottom or left, so = 1 on
the top or right). Program Godunov’s method for this problem, including reflecting boundary
conditions. Use your numerical solution to examine how the fluid flow will evolve until waves
bounce off a boundary and return to the middle of the reservoir. The steady-state solution
will have oil on the top and water on the bottom. Use the model parameters described in
Section 3.2.3, and ignore capillary pressure.

5.15.11 Oil is produced from reservoirs by wells. If water and oil are incompressible, then oil production
requires at least two wells, a water injector and an oil producer. In the plane between the injector
and producer, flow can look roughly one-dimensional, with the injector on the left and the
producer on the right. Suppose that we produce fluid at a specified rate vT (see Section 3.2.3)
and inject water at the same rate. If the oil reservoir currently has oil saturation so and gravity
number Kg(ρw − ρo)/vT (with ρw > ρo), determine conditions on so so that fluid flows into
the reservoir from the injector, and out of the reservoir into the producer. In other words, under
what conditions is the characteristic speed positive at the injector (so = 0) and positive at the
producer? Study the Oleinik chord condition (Lemma 3.1.19) to answer this question.

5.15.12 In order to produce oil at a specified rate, the pressure at the injector has to be adjusted so that
the desired rate is maintained. Show that the incompressibility condition ∂vT /∂x = 0 and the
formula for vT in section 3.2.3 gives us an ordinary differential equation for the pressure in
water, with coefficients that depend on the oil saturation. Find the analytical solution of this
pressure equation.

5.15.13 In the oil industry, the most common numerical method for solving the Buckley–Leverett equa-
tions is the upstream weighting method. This method depends on the special circumstances in
the formulation of the Buckley-Leverett flux, described in section 3.2.3. For both of the oil and
water phases, the potential gradient at cell side i + 1

2 is given by

ψ j,i+1/2(s) = − p j,i+1 − p j,i

xi+1 − xi
+

(
∂d

∂x

)
i+1/2

g
ρ j,i+1 + ρ j, i

2
, j = o, w

where p j,i is the phase pressure in grid cell i , d is the depth, g is the normal component of gravity
and ρ j,i is the density of phase j in cell i . Phase pressures differ by the capillary pressure, which
is ignored in this form of the Buckley–Leverett model. The upstream weighting method chooses
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the phase mobilities λ j = κr j (s j )/µ j , which are phase relative permeability divided by phase
viscosity, to be given by

λ j,i+1/2 =
{

λ j (s j,i ), ψ j,i+1/2 ≥ 0
λ j (s j,i+1), ψ j,i+1/2 < 0.

Although it is unimportant to this exercise, the permeability is harmonically averaged

κi+1/2 = 2κiκi+1

κi + κi+1
.

The flux of oil is chosen to be

fo,i+1/2 = κi+1/2

∑
j=o.w

ψ j,i+1/2λ j,i+1/2.

The oil saturation is updated by the conservative difference

sn+1
i φi = sn

i φi − 
tn


xi
[ fi+1/2 − fi−1/2] ≡ H (sn

i−1, sn
i , sn

i+1).

Show that upstream weighting is monotone (Section 5.2.2) if the timestep is chosen to be
sufficiently small [141]. Determine how the timestep should be chosen to guarantee that upstream
weighting is monotone.
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Methods for Hyperbolic Systems

The most interesting conservation laws involve nonlinear systems. However, gener-
alizing the numerical methods of Chapter 5 to hyperbolic systems poses a challenge,
because there are multiple conserved quantities and multiple characteristic speeds.
Another challenge is that the theory for hyperbolic systems is not as advanced as it
is for scalar laws; for a survey of the recent state of this theory, see [41]. As a result,
the theory of numerical methods for nonlinear systems of hyperbolic conservation
laws is even more primitive. In this chapter we will concentrate on the description
of numerical methods for hyperbolic systems, and ignore issues of convergence
theory.

6.1 First-Order Schemes for Nonlinear Systems

We would like to develop methods to solve nonlinear systems of the form

∂u
∂t

+ ∂f(u)

∂x
= 0.

We will present three first-order schemes for this problem: the Lax–Friedrichs
scheme, the random choice scheme and the Godunov (or upwind) scheme. Another
possibility is front tracking [26, 56, 98, 135, 136]. The front tracking scheme
typically requires substantially different data structures from the other schemes in
this text, and its correct implementation for general multi-dimensional problems is
very difficult.

6.1.1 Lax–Friedrichs Method

The general Lax–Friedrichs scheme was described previously in Section 4.2.1. This
scheme involves two half-steps:

un+1/2
j+1/2 = {

un
j 
x j + un

j+1
x j+1 − 
tn+1/2[f(un
j+1) − f(un

j )]
} 1


x j + 
x j+1

432
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and

un+1
j =

{
un+1/2

j−1/2 + un+1/2
j+1/2 −

[
f(un+1/2

j+1/2) − f(un+1/2
j−1/2)

] 
tn+1/2


x j

}
1

2
.

Both of these steps are conservative differences. The timestep should be chosen so
that λ
t


x ≤ 1 for all characteristic speeds λ associated with problem. In practice,
it is common to look only at the characteristic speeds associated with the discrete
states, and reduce the timestep by a safety factor (say 0.9).

Note that the only characteristic information needed for this method is a bound
on the maximum absolute value of the characteristic speeds, in order to determine a
stable timestep. In particular, no Riemann problems are solved and no characteristic
directions are used. However, the scheme is very diffusive and requires two half-
steps on a staggered grid. A Fortran implementation of the Lax-Friedrichs scheme
can be found in subroutine laxfriedrichs in Program 6.1-83: schemes.f.

6.1.2 Random Choice Method

The random choice method can be implemented in the following form. At each cell
side j + 1

2 , compute

wn+1/2
j+1/2 = R(wn

j , wn
j+1, ξ ) where ξ ∈ (−
x j/
tn+1/2, 
x j+1/
tn+1/2

)
.

Here ξ is a uniformly distributed random number. Then in each cell j compute

wn+1
j = R(wn+1/2

j−1/2, wn+1/2
j+1/2, ξ ) where ξ ∈ (−
x j/
tn+1/2, 
x j/
tn+1/2

)
where ξ is a uniformly distributed random number. The timestep is chosen as
in the Lax–Friedrichs scheme. This scheme has been implemented as subroutine
random-choice in Program 6.1-84: schemes.f.

One advantage of the random choice method is that it has no numerical diffusion.
Further, it is the only scheme for which convergence to the solution of nonlinear
systems of conservation laws has been proved [55]. On the other hand, it tends to
approximate rarefactions in a staircase fashion. The performance of the algorithm
can be improved with better sampling techniques. See [31, 151] for discussions of
these better approaches.

6.1.3 Godunov’s Method

Formally, Godunov’s method is very simple. At each cell side, we find the flux at
the solution of a Riemann problem:

fn+1/2
j+1/2 = f(R(un

j , un
j+1; 0)).

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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The scheme is completed by a conservative difference

un+1
j = un

j −
[
fn+1/2

j+1/2 − fn+1/2
j−1/2

] 
tn+1/2


x j
. (6.1)

The timestep can be chosen as in the Lax–Friedrichs scheme. We discussed methods
for solving the Riemann problem in the case studies of Chapter 4, and methods for
approximating the solution of the Riemann problem in Section 4.13. We will review
the approximate Riemann solvers below.

6.1.3.1 Godunov’s Method with the Rusanov Flux

Rusanov’s flux was described previously in Section 4.2.2. Let λ j+1/2 be an upper
bound on the maximum absolute value of the characteristic speeds for all states
involved in the Riemann problem with left state un

j and right state un
j+1. First, we

compute the fluxes at the cell centers by

f n
j = f(un

j ).

Next, we compute the speeds and fluxes at the cell sides by

λ j+1/2 = max
u between un

j ,u
n
j+1

ρ

(
∂f(u)

∂u

)
fn+1/2

j+1/2 = {
f(un

j+1) + f(un
j ) − [un

j+1 − un
j ]λ j+1/2

} 1

2
.

Here ρ refers to the spectral radius, which is the maximum absolute value of an
eigenvalue of the matrix argument. Finally, we perform conservative difference in
equation (6.1).

A Fortran version of the Rusanov flux computation is available as subroutine
rusanov-flux in Program 6.1-85: schemes.f. This flux computation is combined
with a conservative difference in procedure runScheme in Program 6.1-86: GUIRie-
mannProblem.C.

Alternatively, we could compute the fluxes at the cell centers as before, then the
speeds and flux differences at the cell sides

λ j+1/2 = max
u between un

j ,u
n
j+1

ρ

(
∂f(u)

∂u

)

f−

j+1/2 = {
f(un

j+1) − f(un
j ) − [un

j+1 − un
j ]λ j+1/2

}
/2,


f+
j+1/2 = {

f(un
j+1) − f(un

j ) + [un
j+1 − un

j ]λ j+1/2
}
/2.

Then we could perform the conservative difference in flux increment form

un+1
j = un

j − [
f−
j+1/2 + 
f+

j−1/2]

tn+1/2


x j
. (6.2)

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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Note that a very modest amount of characteristic information is used (just to com-
pute λ j+1/2 for each cell side), no Riemann problems are solved, and no staggered
mesh is used. However, the scheme is first order and diffusive (although usually
not so diffusive as the Lax–Friedrichs scheme).

6.1.3.2 Godunov’s Method with the Harten–Lax–vanLeer (HLL) Solver

In Section 4.13.10 we discussed a technique for approximating the solution of Rie-
mann problems by using a single intermediate state. We presented this approximate
Riemann solver in the form

R̃(uL, uR, ξ ) =


uL, ξ < λ

uL R, λ < ξ < λ

uR, λ < ξ

where

uL R = λuR − λuL

λ − λ
− f(uR) − f(uL)

λ − λ
.

and λ and λ are lower and upper bounds on the characteristic speeds in the solution
of the Riemann problem involving states uL and uR. We can implement this scheme
as follows. For each cell j , compute the flux

f n
j = f(un

j ),

and compute the minimum characteristic speed λn
1, j and the maximum characteristic

speed λm, j . For each cell side j + 1
2 , compute minimum and maximum average

characteristic speeds, λn
1, j+1/2 and λn

m, j+1/2 (for example, from a Roe matrix, or
from a characteristic analysis at 1

2 (un
j + un

j+1)). Also compute the lower and upper

bounds, λn
j+1/2 and λ

n
j+1/2; for gas dynamics, a good choice is

λn
j+1/2 = min{λn

1, j , λ
n
1, j+1/2}

λ
n
j+1/2 = max{λn

m, j+1, λ
n
m, j+1/2}

Also at the cell side, compute the solution increment and flux


u n
j+1/2 = u n

j+1 − u n
j

f n
j+1/2 =


f n

j , λn
j+1/2 > 0

f n
j+1, λ

n
j+1/2 < 0[

f n
j λ

n
j+1/2 − f n

j+1λ
n
j+1/2 + 
un

j+1/2λ
n
j+1/2λ

n
j+1/2

]
1

λ
n
j+1/2−λn

j+1/2
, otherwise.

Finally, for each cell j perform the conservative difference (6.1).
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A Fortran version of the Harten–Lax–vanLeer flux computation for the shal-
low water equations is available as subroutine harten-lax-vanleer-sw in
Program 6.1-87: shallow-water.f; the corresponding subroutine for gas dynamics is
subroutine harten-lax-vanleer-gd in Program 6.1-88: gas-dynamics.f. The
pointer to this function is passed to procedurerunScheme in Program 6.1-89: GUIRie-
mannProblem.C, and combined with a conservative difference.

Alternatively, we could implement this algorithm in flux increment form. For
each cell j , compute the minimum and maximum characteristic speeds λn

1, j and

λn
m, j , and flux f n

j as before. For each cell side j + 1
2 , compute λn

j+1/2 and λ
n
j+1/2 as

before. At the cell sides, also compute the increments


un
j+1/2 = u n

j+1 − un
j


f n
j+1/2 = f n

j+1 − f n
j .


f−j+1/2 =


0, λn

j+1/2 > 0


f n
j+1/2, λ

n
j+1/2 < 0

−
[


f n
j+1/2 − 
u n

j+1/2λ
n
j+1/2

]
λn

j+1/2

λ
n
j+1/2−λn

j+1/2
, otherwise


f+j+1/2 =



f n

j+1/2, λ n
j+1/2 > 0

0, λ
n
j+1/2 < 0[


f n
j+1/2 − 
u n

j+1/2λ
n
j+1/2

]
λ

n
j+1/2

λn
j+1/2−λn

j+1/2
, otherwise.

Finally in each cell j perform the conservative difference (6.2).

6.1.3.3 Godunov’s Method with the Harten–Hyman Fix for Roe’s Solver

In the special cases where a Roe solver (see Section 4.13.8) is available, such as
for shallow water or gas dynamics, we described a modification to prevent entropy
violations in transonic rarefactions. The algorithm proceeds as follows. For each
cell j , compute the fluxes f n

j = f(u n
j ) and the characteristic speeds �n

j . For each
cell side j + 1

2 , find the Roe matrix An
j+1/2 so that

f(u n
j+1) − f(un

j ) = An
j+1/2(u n

j+1 − un
j ),

and find the eigenvectors Xn
j+1/2 and eigenvalues �n

j+1/2 so that

An
j+1/2Xn

j+1/2 = Xn
j+1/2�

n
j+1/2.

Still at this cell side j + 1
2 , solve

Xn
j+1/2yn

j+1/2 = u n
j+1 − un

j

for the characteristic expansion coefficients yn
j+1/2. For each cell side j + 1/2 and

each transonic wave family i , meaning that wave i is not linearly degenerate and

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/shallow_water.f
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e�
i �n

j ei < 0 < e�
i �n

j+1ei , compute the interpolation factor βn
i, j+1/2 and component

of the wave-field decomposition coefficients e�
i an

j+1/2 by

βn
i, j+1/2 = max

{
0, min

{
1,

e�
i �n

j+1ei − e�
i �n

j+1/2ei

e�
i �n

j+1ei − e�
i �n

j ei

}}
e�

i an
j+1/2 = {|e�

i �n
j ei |βn

i, j+1/2 + |e�
i �n

j+1ei |(1 − βn
i, j+1/2)

}
e�

i yn
j+1/2.

For all other waves, the component of the vector of wave-field decomposition
coefficients an

j+1/2 is given by

e�
i an

j+1/2 = |e�
i �n

j+1/2ei |e�
i yn

j+1/2.

Finally, at the cell side assemble the flux vector

f n+1/2
j+1/2 = [

f n
j + f n

j+1 − Xn
j+1/2an

j+1/2

] 1

2
.

Next, perform the conservative difference (6.1) in each cell j .
A Fortran version of the Harten–Hyman flux computation for the shallow

water equations is available as subroutine harten-hyman-sw in Program 6.1-
90: shallow-water.f; the corresponding subroutine for gas dynamics is subroutine
harten-hyman-gd in Program 6.1-91: gas-dynamics.f. The pointer to this function
is passed to procedure runScheme in Program 6.1-92: GUIRiemannProblem.C, and
combined with a conservative difference.

Alternatively, we can implement the Harten–Hyman scheme in terms of flux
increments. Let us add the subscript i for the wave-field component. For genuinely
nonlinear transonic rarefaction waves, meaning that �n

i, j < 0 < �n
i, j+1, we have

the following prescription for entries of the vector of wave-field decomposition
coefficients:

a+
i, j+1/2 = 1

2

[
�n

i, j+1/2 − �n
i, jβ

n
i, j+1/2 + �n

i, j+1(1 − βn
i, j+1/2)

]
yn

i, j+1/2 (6.3a)

a−
i, j+1/2 = 1

2

[
�n

i, j+1/2 + �n
i, jβ

n
i, j+1/2 − �n

i, j+1(1 − βn
i, j+1/2)

]
yn

i, j+1/2 (6.3b)

For all other entries, we have

a+
i, j+1/2 =

{
�n

i, j+1/2yn
i, j+1/2, �n

i, j+1/2 > 0
0, �n

i, j+1/2 ≤ 0
(6.4a)

a−
i, j+1/2 =

{
�n

i, j+1/2yn
i, j+1/2, �n

i, j+1/2 < 0
0, �n

i, j+1/2 ≥ 0
(6.4b)

These allow us to compute the positive and negative flux increments


f−j+1/2 = Xn
j+1/2a−

j+1/2 and 
f+j+1/2 = Xn
j−1/2a+

j+1/2 (6.5)

and perform the conservative difference (6.2).

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/shallow_water.f
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Exercises for 6.1

6.1.1 Describe the use of Linde’s approximate Riemann solver (see Section 4.13.11) for nonlinear
hyperbolic systems.

6.1.2 The generalization of the Marquina flux described in exercise 3.4.3 to nonlinear hyperbolic
systems is described in [45]. The method begins by solving eigenvalue problems at the cell
centers, and finding the wave-field decompositions of the conserved variables and the flux:

∂f
∂u

(un
j )X

n
j = Xn

j�
n
j

Xn
j y

n
j = un

j

Xn
j z

n
j = f(un

j ).

Then at each cell side j + 1
2 and for each wave family i we compute the maximum wave speed

by

αi = max{|λn
i, j |, |λn

i, j+1|}
and the wave-field components of the numerical flux by

ei · z+
j+1/2 =


ei · zn

j , λn
i, j > 0 and λn

i, j+1 > 0
0, λn

i, j < 0 and λn
i, j+1 < 0

1
2 (ei · zn

j + αi, j+1/2ei · yn
j ), otherwise

ei · z−
j+1/2 =


0, λn

i, j > 0 and λn
i, j+1 > 0

ei · zn
j+1, λn

i, j < 0 and λn
i, j+1 < 0

1
2 (ei · zn

j+1 − αi, j+1/2ei · yn
j ), otherwise.

The flux at the cell side is then given by

f n+1/2
j+1/2 =

∑
i

[Xn
j ei ei · z+

j+1/2 + Xn
j+1ei ei · z−

j+1/2].

Show that this flux is consistent. Test this scheme for various problems involving shallow water.

6.2 Second-Order Schemes for Nonlinear Systems

6.2.1 Lax–Wendroff Method

For nonlinear systems, it is useful to view the Lax–Wendroff scheme as a predictor–
corrector scheme. In this case, the scheme corresponds to using Lax–Friedrichs
as a predictor, and the Godunov scheme as a corrector. This gives us the following
algorithm. For each cell j compute the flux f n

j = f(un
j ). For each cell side j + 1/2

compute the conserved quantities

un+1/2
j+1/2 = {

u n
j+1
x j + un

j 
x j+1 − [f n
j+1 − f n

j ]
tn+1/2
} 1


x j + 
x j+1
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and the flux fn+1/2
j+1/2 = f(un+1/2

j+1/2). Finally, for each cell j compute

un+1
j = un

j −
[
f n+1/2

j+1/2 − fn+1/2
j−1/2

] 
t


x j
.

The advantage of this scheme is its simplicity; the disadvantage is its lack of mono-
tonicity.

This scheme has been implemented as subroutine lax-wendroff in Program
6.2-93: schemes.f.

6.2.2 MacCormack’s Method

On even numbered steps, for each cell j compute the flux f n
j = f(un

j ), then for each
cell j compute the provisional conserved quantities

ũn+1
j = un

j − 
t


x j
[f n

j+1 − f n
j ]

and the provisional flux f̃n+1
j = f(ũn+1

j ), and finally for each cell j compute

ũn+2
j = ũn+1

j − 
t


x j
[f̃ n+1

j − f̃ n+1
j−1 ]

un+1
j = 1

2
[un

j + ũn+2
j ].

On odd numbered steps, the differencing to the left is performed first. Like the Lax-
Wendroff scheme, this scheme is simple to program, but numerical oscillations
can be destructive. In practice, this method would be combined with a numerical
diffusion (see Section 4.13.2).

This scheme has been implemented as subroutine maccormack in Program
6.2-94: schemes.f.

6.2.3 Higher-Order Lax–Friedrichs Schemes

The second-order version of the Lax–Friedrichs scheme for nonlinear systems of
conservation laws is similar to the scheme for scalar laws [121]. The scheme begins
by computing slopes 
un

j+1/2 = u n
j+1 − un

j in the flux variables at the cell sides.
Next, we compute the component-wise limited slopes in the conserved quantities
in each cell j :

e�
i 
un

j = limiter(e�
i 
un

j−1/2, e�
i 
un

j+1/2).

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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We also compute the matrices of derivatives ∂f/∂w(wn
j ) and ∂u/∂w(wn

j ), and use
these to compute the state

un+1/4
j = un

j − ∂f
∂w

(
∂u
∂w

)−1


un
j


tn+1/2

4
x j
.

Then we compute the flux variables wn+1/4
j from un+1/4

j , and the flux f n+1/4
j =

f(wn+1/4
j ). For all cell sides j + 1

2 we compute the solution at the half-time by

un+1/2
j+1/2 =

{[
un

j + 
un
j

1

4

]

x j +

[
u n

j+1 − 
un
j+1

1

4

]

x j+1

−
[
fn+1/4

j+1 − fn+1/4
j

]

tn+1/2

} 1


x j + 
x j+1
.

The second half-step is similar. We compute the slope 
un+1/2
j = un+1/2

j+1/2 − un+1/2
j−1/2

in each cell. Then at each cell side we limit the slopes component-wise by

e�
i 
un+1/2

j+1/2 = limiter(e�
i 
un+1/2

j , e�
i 
un+1/2

j+1 ).

We compute the flux variables wn+1/2
j+1/2 from un+1/2

j+1/2, use these to compute the matrices

of derivatives ∂f/∂w(wn+1/2
j+1/2) and ∂u/∂w(wn+1/2

j+1/2), and use these to compute the
advanced time state

un+3/4
j+1/2 = un+1/2

j+1/2 − ∂f
∂w

(
∂u
∂w

)−1


un+1/2
j+1/2


tn+1/2

2(
x j + 
x j+1)
.

Then we compute the flux variables wn+3/4
j+1/2 from u n+3/4

j+1/2 , and the flux f n+3/4
j+1/2 =

f(wn+3/4
j+1/2). Finally, at each cell center we compute the new solution by

un+1
j = 1

2

{[
un+1/2

j−1/2 + 
un+1/2
j−1/2

1

4

]
+

[
un+1/2

j+1/2 − 
un+1/2
j+1/2

1

4

]
−

[
f n+3/4

j+1/2 − f n+3/4
j−1/2

] 
tn+1/2


x j

}
.

This scheme has been implemented as subroutine nessyahu-tadmor in
Program 6.2-95: schemes.f.

The extension by Liu and Tadmor [110] of the Lax–Friedrichs scheme to third-
order is a bit more complicated. The piecewise quadratic reconstruction of the
solution is determined for each component of the solution vector u as in Section 5.11,
producing vectors of quadratic functions q j (x, tn) in each grid cell (x j−1/2, x j+1/2).

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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Conservation requires that∫ x j+1

x j

u
(

x, tn + 
tn+1/2

2

)
dx =

∫ x j+1/2

x j

q j (x, tn) dx+
∫ x j+1

x j+1/2

q j+1(x, tn) dx

−
∫ tn+
tn+1/2/2

tn

f(u(x j+1, t)) dt

+
∫ tn+
tn+1/2/2

tn

f(u(x j , t)) dt.

The integrals of the reconstructions are computed component-wise as in Equations
(5.33). The flux integrals are approximated by Simpson’s rule, which requires values
of the flux at u(x j , tn + τ ) for τ = 
tn+1/2/4 and τ = 
tn+1/2/2. These states are
approximated by a Taylor expansion of the form

u(x, t + τ ) ≈ u + ∂u
∂t

τ + ∂2u
∂t2

τ 2

2
. (6.6)

The principal difficulty in applying the Liu–Tadmor scheme to hyperbolic systems
has to do with evaluation of the time derivatives of u in this Taylor expansion.

Since f is a function of u, and ∂u/∂t + ∂f/∂x = 0, the chain rule implies that

∂u
∂t

= − ∂f
∂x

= − ∂f
∂u

∂u
∂x

.

Similarly, if ui is the i th component of u, then

∂2ui

∂t2
= − ∂

∂t

[
∂fi

∂x

]
= −

∑
j

∂

∂t

[
∂fi

∂u j

∂u j

∂x

]

= −
∑

j

∑
k

∂2fi

∂u j∂uk

∂uk

∂t

∂u j

∂x
−

∑
j

∂fi

∂u j

∂

∂x

[
∂u j

∂t

]

=
∑

j

∑
k

∂2fi

∂u j∂uk

∂fk

∂x

∂u j

∂x
+

∑
j

∂fi

∂u j

∂

∂x

[
∂f j

∂x

]

=
∑

j

∑
k

∑
�

∂2fi

∂u j∂uk

∂fk

∂u�

∂u�

∂x

∂u j

∂x
+

∑
j

∑
k

∂fi

∂u j

∂

∂x

[
∂f j

∂uk

∂uk

∂x

]

=
∑

j

∑
k

∑
�

∂2fi

∂u j∂uk

∂fk

∂u�

∂u�

∂x

∂u j

∂x
+

∑
j

∑
k

∑
�

∂fi

∂u j

∂2f j

∂uk∂u�

∂u�

∂x

∂uk

∂x

+
∑

j

∑
k

∂fi

∂u j

∂f j

∂uk

∂2uk

∂x2
.



442 Methods for Hyperbolic Systems

Let us define the matrices

F = ∂f
∂u

and G(k) = ∂2fk

∂u∂u
.

Note that G(k) is symmetric for each index k. Then

∂u
∂t

= −F
∂u
∂x

(6.7a)

∂2u
∂t2

=
∑

i

ei

(
∂u
∂x

)�
G(i)F

∂u
∂x

+
∑

j

Fe j

(
∂u
∂x

)�
G( j)

∂u
∂x

+ FF
∂2u
∂x2

. (6.7b)

These expressions can be used to form Taylor expansions for u(x, t + τ ).
Of course, the conserved quantity vector u and the flux vector f are actually

functions of the vector of flux variables w. Let us define the matrices

A = ∂u
∂w

, F = ∂f
∂w

, G(k) = ∂fk

∂w∂w
, B(k) = ∂uk

∂w∂w
.

Then the matrix of flux derivatives with respect to the conserved quantities is
evaluated by

F = ∂f
∂u

= ∂f
∂w

(
∂u
∂w

)−1

= FA−1. (6.8)

Since I = AA−1, we have

0 = ∂

∂wk

(
AA−1

) = ∂A
∂wk

A−1 + A∂A−1

∂wk
,

so

∂A−1

∂wk
= −A−1 A

∂wk
A−1.

We can compute the components of the matrix G(k) by

e�
i G(k)e j = ∂fk

∂ui∂u j
= ∂

∂u j

(
∂fk

∂ui

)
=

∑
�

∑
m

∂

∂w�

[
∂fk

∂wm

∂wm

∂ui

]
∂w�

∂u j

=
∑

�

∑
m

∂2fk

∂wm∂w�

∂wm

∂ui

∂w�

∂u j
+

∑
�

∑
m

∂fk

∂wm
e�

m

∂A−1

∂w�

ei
∂w�

∂u j

=
∑

�

∑
m

e�
mG(k)e�e�

mA−1ei e�
� A−1e j

−
∑

�

∑
m

∑
p

∑
q

e�
k Feme�

mA−1epe�
p

∂A
∂w�

eqe�
q A−1ei e�

� A−1e j .
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In other words,

G(k) = A−�G(k)A−1 −
∑

p

A−�B(p)A−1e�
k FA−1ep. (6.9)

We can now evaluate the Taylor series (6.6) by evaluating each of the time derivatives
of u in (6.7) through the use of the formulas for the flux derivatives in Equations
(6.8) and (6.9).

This scheme has been implemented as subroutine liu-tadmor in Program
6.2-96: schemes.f.

6.2.4 TVD Methods

Although the analytical solutions of scalar conservation laws are total variation
diminishing, this is not the case for systems. Following LeVeque [97, pp. 341ff],
we will demonstrate this fact in the next lemma.

Lemma 6.2.1 For a constant coefficient hyperbolic system

∂u
∂t

+ A
∂u
∂x

= 0

with A = X�X−1, the total variation of the characteristic expansion coefficients
y = X−1u has constant total variation, but the total variation of the solution u can
grow by a factor of the condition number of X in any given time interval.

Proof The individual characteristic expansion coefficients satisfy

∂y j

∂t
+ λ j

∂y j

∂x
= 0.

We can easily solve these scalar equations to get y j (x, t) = y j (x − λ j t, 0). Then
the total variation in the characteristic expansion coefficients satisfies

T V (y j (x, t)) =
∑

j

lim sup
ε→0

1

ε

∫ ∞

−∞
‖y j (x + ε, t) − y j (x, t)‖1 dx

= lim sup
ε→0

1

ε

∫ ∞

−∞
‖y j (x − λ j t + ε, 0) − y j (x − λ j t, 0)‖1 dx

= lim sup
ε→0

1

ε

∫ ∞

−∞
‖y j (x + ε, 0) − y j (x, 0)‖1 dx

=
∑

j

T V (y j (x, 0)).

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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However, the total variation in the solution u can increase:

∑
i

T V (ui (x, t)) = lim sup
ε→0

1

ε

∫ ∞

−∞
‖ui (x + ε, t) − ui (x, t)‖1 dx

= lim sup
ε→0

1

ε

∫ ∞

−∞
‖X[y(x + ε, t) − y j (x, t)]‖1 dx

≤ ‖X‖1 lim sup
ε→0

1

ε

∫ ∞

−∞
‖y(x + ε, t) − y j (x, t)‖1 dx

= ‖X‖1

∑
j

lim sup
ε→0

1

ε

∫ ∞

−∞
|y j (x − λ j t + ε, t) − y j (x − λ j t, t)| dx

= ‖X‖1

∑
j

lim sup
ε→0

1

ε

∫ ∞

−∞
|y j (x + ε, 0) − y j (x, 0)| dx

= ‖X‖1 lim sup
ε→0

1

ε

∫ ∞

−∞
‖y(x + ε, 0) − y(x, 0)‖1 dx

= ‖X‖1 lim sup
ε→0

1

ε

∫ ∞

−∞
‖X−1 [u(x + ε, 0) − u(x, 0)] ‖1 dx

≤ ‖X‖1‖X−1‖1 lim sup
ε→0

1

ε

∫ ∞

−∞
‖u(x + ε, 0) − u(x, 0)‖1 dx

= ‖X‖1‖X−1‖1T V (u(x, 0)).

The growth in the total variation is bounded above by the condition number of the
matrix of eigenvectors of A independent of time, but the total variation can still
grow in time. �

In designing numerical schemes, it is common to limit variations in the char-
acteristic expansion coefficients of nonlinear systems of conservation laws. This
approach is the basis of the scheme due to Sweby [155]. At each cell side j + 1

2 ,
we assume that we have a Roe decomposition

f n
j+1 − f n

j = An
j+1/2[u n

j+1 − un
j ],

where the Roe matrix is diagonalizable:

An
j+1/2 = Xn

j+1/2�
n
j+1/2(Xn

j+1/2)−1.

We compute the characteristic expansion coefficients yn
j+1/2 of the jump by solving

Xn
j+1/2yn

j+1/2 = u n
j+1 − un

j .
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Since the Roe flux can produce entropy-violating discontinuities for transonic
rarefactions, we will use the Harten-Hyman flux (see Section 4.13.9). We
compute

λ−
i, j+1/2 =


λn

i, j max
{

0, min
{

1,
λn

i, j+1−λn
i, j+1/2

λn
i, j+1−λn

i, j

}}
, λn

i, j < 0 < λn
i, j+1

λn
i, j+1/2, (λn

i, j ≥ 0 or λn
i, j+1 ≤ 0) and λn

i, j+1/2 < 0
0, (λn

i, j ≥ 0 or λn
i, j+1 ≤ 0) and λn

i, j+1/2 ≥ 0

λ+
i, j+1/2 =


λn

i, j max
{

0, min
{

1,
λn

i, j+1/2−λn
i, j

λn
i, j+1−λn

i, j

}}
, λn

i, j < 0 < λn
i, j+1

0, (λn
i, j ≥ 0 or λn

i, j+1 ≤ 0) and λn
i, j+1/2 < 0

λn
i, j+1/2, (λn

i, j ≥ 0 or λn
i, j+1 ≤ 0) and λn

i, j+1/2 ≥ 0

Then the Harten–Hyman flux is given by

fL
j+1/2 = f n

j +
∑

i

Xn
j+1/2eiλ

−
i, j+1/2e�

i yn
j+1/2 = f n

j+1 −
∑

i

Xn
j+1/2eiλ

+
i, j+1/2e�

i yn
j+1/2.

Sweby prefers to work with the flux differences


f+j+1/2 = f n
j+1 − fL

j+1/2 =
∑

i

Xn
j+1/2eiλ

+
i, j+1/2e�

i yn
j+1/2


f−j+1/2 = fL
j+1/2 − f n

j =
∑

i

Xn
j+1/2eiλ

−
i, j+1/2e�

i yn
j+1/2,

and compute the first-order solution with the Harten–Hyman flux by computing the
wave-field components by either (6.3) or (6.4), the flux increments by (6.5), and
the new low-order solution by

uL
j = un

j − [
(fL

j+1/2 − f n
j ) − (fL

j−1/2 − f n
j )

] 
tn+1/2


x j

= un
j − [


f−j+1/2 + 
f+j−1/2

]
tn+1/2


x j
.

The Lax–Wendroff process (see Section 3.5) applied to the Harten–Hyman flux
would give us

f j+1/2 =
{

f n
j 
x j+1 + f n

j+1
x j − ∂f
∂u

n

j+1/2

[
f n

j+1 − f n
j

]

tn+1/2

}
1


x j + 
x j+1
.
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In order to use the intermediate state of the Harten–Hyman approximate Riemann
solver, we will modify the Lax–Wendroff flux slightly:

fH
j+1/2 = {

f n
j 
x j+1 + f n

j+1
x j

− Xn
j+1/2

[
λ+

j+1/2(Xn
j+1/2)−1
f+j+1/2+λ−

j+1/2(Xn
j+1/2)−1
f−j+1/2

]

tn+1/2

} 1


x j +
x j+1

=
{[

fL
j+1/2 − 
f−j+1/2

]

x j+1 +

[
fL

j+1/2 + 
f+j+1/2

]

x j

− Xn
j+1/2

[
λ+

j+1/2(Xn
j+1/2)−1
f+j+1/2+λ−

j+1/2(Xn
j+1/2)−1
f−j+1/2

]

tn+1/2

} 1


x j +
x j+1

= fL
j+1/2 − Xn

j+1/2

[
I
x j+1 + λ−

j+1/2
tn+1/2
]

(Xn
j+1/2)−1
f−j+1/2

1


x j + 
x j+1

+ Xn
j+1/2

[
I
x j − λ+

j+1/2
tn+1/2
]

(Xn
j+1/2)−1
f+j+1/2

1


x j + 
x j+1

= fL
j+1/2 −

∑
i

Xn
j+1/2ei

[

x j+1 + λ−

i, j+1/2
tn+1/2
]
λ−

i, j+1/2e�
i yn

j+1/2
1


x j + 
x j+1

+
∑

i

Xn
j+1/2ei

[

x j − λ+

i, j+1/2
tn+1/2
]
λ+

i, j+1/2e�
i yn

j+1/2
1


x j + 
x j+1
.

Following the ideas for scalar laws in Section 5.8, we will form

g+
j+1/2 =

[
I
x j − �+

j+1/2
tn+1/2
]
�+

j+1/2yn
j+1/2

1


x j + 
x j+1
and

g−
j+1/2 =

[
I
x j+1 − �−

j+1/2
tn+1/2
]
�−

j+1/2yn
j+1/2

1


x j + 
x j+1
.

We will limit g+
j−1/2 and g+

j+1/2 component-wise to get g+
j ; similar limiting will

produce g−
j . Then the flux used by the TVD scheme is

f n+1/2
j+1/2 = fL

j+1/2 + Xn
j+1/2

[
g+

j − g−
j+1

]
.

Sweby prefers to use this flux in increment form:

un+1
j = un

j −
{

Xn
j+1/2

[
g+

j − g−
j+1

]
− Xn

j−1/2

[
g+

j−1 − g−
j

]} 
tn+1/2


x j
.

When this scheme was first developed, it represented a major advance over the
popular flux-corrected transport (FCT) scheme [22]. Flux-corrected transport used
a diffusive step followed by an anti-diffusive step designed to steepen fronts. The
TVD scheme performed much better than FCT, causing the latter to fall out of favor.
Lately, the MUSCL and wave propagation schemes have been more popular than
the TVD schemes.



6.2 Second-Order Schemes for Nonlinear Systems 447

The TVD scheme has been implemented as subroutine tvd in Program 6.2-97:
schemes.f.

6.2.5 MUSCL

Next, let us generalize the MUSCL scheme to nonlinear hyperbolic systems of
conservation laws. We will work with the flux variables w, and compute the char-
acteristic information at each cell center as follows:(

∂f
∂w

)n

j

Yn
j =

(
∂u
∂w

)n

j

Yn
j�

n
j .

Some authors suggest applying the slope limiting to the characteristic expansion
coefficients Y−1
w. The justification is that the characteristic expansion approx-
imately decouples the system of conservation laws into separate scalar laws, for
which it is known that the analytical solution does not produce new extrema. In this
approach, we solve

Yn
j z

n
j+1/2 = wn

j+1/2 and Yn
j z

n
j−1/2 = wn

j−1/2,

and compute the cell-centered average characteristic expansion slopes

z̃n
j =


x j +2
x j−1


x j +
x j+1
zn

j+1/2 + 
x j +2
x j+1


x j +
x j−1
zn

j−1/2


x j−1 + 
x j + 
x j+1

x j .

Then we compute the limited characteristic expansion slopes component-wise

zn
i, j =

{
sign(z̃n

i, j ) min{2|zn
i, j+1/2|, 2|zn

i, j−1/2|, |z̃n
i, j |}, (zn

i, j+1/2)(zn
i, j−1/2) ≥ 0

0, otherwise.

These slopes are used to compute left and right states for Riemann problems:

wn+1/2,L

j+1/2 = wn
j +

∑
i

Yn
j ei

[
1 − (λi )n

j 
tn+1/2


x j

]
1

2
e�

i zn
j ,

wn+1/2,R

j+1/2 = wn
j+1 −

∑
i

Yn
j+1ei

[
1 + (λi )n

j+1
tn+1/2


x j

]
1

2
e�

i zn
j+1.

This scheme has been implemented as subroutine musclwave in Program 6.2-98:
schemes.f.

Alternatively, we can compute increments in the flux variables at the cell sides:

wn
j+1/2 = wn

j+1 − wn
j ,

then we can compute a cell-centered average slope at each cell center

s̃n
j 
x j =

[
wn

j+1/2

x j + 2
x j−1


x j + 
x j+1
+ wn

j−1/2

x j + 2
x j+1


x j + 
x j−1

]

x j


x j−1 + 
x j + 
x j+1
.

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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Slope limiting in the flux variables is performed component-wise. Afterward, we
compute the characteristic expansion coefficients zn

j of the slopes:

Yn
j z

n
j = sn

j 
x j .

Our next step is to compute flux variables at the cell sides:

wn+1/2,L

j+1/2 = wn
j +

∑
i

Yn
j ei

[
1 − (λi )n

j 
tn+1/2


x j

]
1

2
e�

i zn
j ,

wn+1/2,R

j−1/2 = wn
j −

∑
i

Yn
j ei

[
1 + (λi )n

j 
tn+1/2


x j

]
1

2
e�

i zn
j .

This scheme has been implemented as subroutine musclvars in Program 6.2-99:
schemes.f.

Limiting slopes in characteristic expansion coefficients makes sense for problems
with smooth flux functions and distinct characteristic speeds, such as gas dynamics.
However, for other problems with discontinuities in the characteristic directions
or speeds, or with nearly equal characteristic speeds and nearly singular Y, the
use of the characteristic expansion coefficients in the slope limiting can introduce
other difficulties. For example, in polymer flooding the characteristic speeds can
coalesce with a single characteristic direction, and so the characteristic expansion
coefficients can become very large, corresponding to unphysical intermediate states
in the Riemann problem. Generally, it is less diffusive but more expensive to limit
the characteristic expansion coefficients.

No matter which way the limiting is performed, we use the left and right states
to solve a Riemann problem and compute a flux:

f n+1/2
j+1/2 = f

(
R(wn+1/2,L

j+1/2 , wn+1/2,R

j+1/2 ; 0)
)
.

Afterward, we apply a conservative difference scheme:

un+1
j = un

j −
{

f n+1/2
j+1/2 − fn+1/2

j−1/2

} 
tn+1/2


x j
.

6.2.6 Wave Propagation Methods

LeVeque [97] suggests an approach that combines aspects of both slope limiter and
TVD schemes. Suppose that at each cell side, we have a decomposition

f(u n
j+1) − f(un

j ) = Xn
j+1/2�

n
j+1/2an

j+1/2.

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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This means that the approximate Riemann solver has effectively provided a flux

f n
j+1/2 = f(un

j ) + Xn
j+1/2

(
�n

j+1/2

)−
an

j+1/2

= f(u n
j+1) − Xn

j+1/2

(
�n

j+1/2

)+
an

j+1/2.

The conservative difference could be written in the form

un+1
j = un

j − [
(fn

j+1/2 − f(un
j )) − (fn

j−1/2 − f(un
j ))

] 
tn+1/2


x j

= un
j −

[
Xn

j+1/2

(
�n

j+1/2

)−
an

j+1/2 + Xn
j−1/2

(
�n

j−1/2

)+
an

j−1/2

] 
tn+1/2


x j
.

In practice, we compute the first-order flux increment


fn
j = Xn

j−1/2(�n
j−1/2)+an

j−1/2 + Xn
j+1/2(�n

j+1/2)−an
j+1/2

and perform the conservative difference as follows:

un+1
j = un

j − 
f n
j


tn+1/2


x j
.

The decomposition of the flux differences into waves varies with the method
used to approximate the flux in the solution of the Riemann problem. The ideas
behind the decomposition were discussed in Section 4.13. For Rusanov’s method,
we would use Equation (4.90), for Roe’s flux we would use (4.13.8), for the Harten–
Hyman modification of Roe’s flux we would use (6.3) or (6.4) and (6.5), for the
Harten–Lax–vanLeer flux we would use (4.97), and for Linde’s flux we would use
(4.102). These computations depend on the physical model.

Next, let us describe how to form a second-order correction to this algorithm. At
each cell side j + 1

2 and for each wave family i we compute a limited wave-field
decomposition coefficient

e�
i ãn

j+1/2 =


φ

(
(Xn

j−1/2ei )�(Xn
j+1/2ei )

‖Xn
j−1/2ei ‖2 e�

i an
j−1/2, e�

i an
j+1/2

)
, e�

i �n
j+1/2ei ≥ 0

φ
(

(Xn
j+3/2ei )�(Xn

j+1/2ei )

‖Xn
j+3/2ei ‖2 e�

i an
j+3/2, e�

i an
j+1/2

)
, e�

i �n
j+1/2ei < 0

(6.10)

where φ(a, b) is some limiter. Then the second-order flux increments are computed
at each cell side by


f n+1/2
j+1/2 = Xn

j+1/2|�n
j+1/2|

(
I − |�n

j+1/2|
2
tn+1/2


x j + 
x j+1

)
ãn

j+1/2.

The scheme is completed by performing a conservative difference at cell centers:

un+1
j = un

j − 
tn+1/2


x

[

f n

j +
(


f n+1/2
j+1/2 − 
f n+1/2

j−1/2

) 1

2

]
.
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We have implemented this scheme as subroutinewave-propagation in Program
6.2-100: schemes.f.

If a Roe matrix is not available, LeVeque suggests that we could use
An

j+1/2 = ∂f
∂u (

un
j +u n

j+1

2 ) together with entropy fixes. This is equivalent to using a
form of the weak wave Riemann solver described in Section 4.13.4. Assuming that

An
j+1/2Xn

j+1/2 = Xn
j+1/2�

n
j+1/2.

we could solve

Xn
j+1/2an

j+1/2 = u n
j+1 − un

j

for an
j+1/2, and compute the first-order flux increment


fn
j =

∑
Xn

j−1/2(�n
j−1/2)+an

j−1/2 +
∑

Xn
j+1/2(�n

j+1/2)−an
j+1/2.

At each cell side j + 1/2 and for each wave family i we compute a limited wave-
field decomposition coefficient

e�
i ãn

j+1/2 =


φ

(
(Xn

j−1/2ei )�(Xn
j+1/2ei )

‖Xn
j−1/2ei ‖2 e�

i an
j−1/2, e�

i an
j+1/2

)
, e�

i �n
j+1/2ei ≥ 0

φ
(

(Xn
j+3/2ei )�(Xn

j+1/2ei )

‖Xn
j+3/2ei ‖2 e�

i an
j+3/2, e�

i an
j+1/2

)
, e�

i �n
j+1/2ei < 0

where φ(a, b) is some limiter. Then the second-order flux increments are computed
in each cell by


f n+1/2
j,R

= Xn
j+1/2|�n

j+1/2|
(

I − |�n
j+1/2|


t n+1/2


x j

)
ãn

j+1/2


f n+1/2
j,L

= Xn
j−1/2|�n

j−1/2|
(

I − |�n
j−1/2|


tn+1/2


x j

)
ãn

j−1/2.

The scheme is completed by performing a conservative difference at cell centers:

un+1
j = u n

j − 
tn+1/2


x

[

f n

j +
(


f n+1/2
j,R

+ 
f n+1/2
j,L

) 1

2

]
.

Randy LeVeque has developed a library of routines for solving hyperbolic con-
servation laws, called CLAWPACK. This library is available online from netlib at
Program 6.2-101: CLAWPACK.

6.2.7 PPM

Although Colella and Woodward [35] describe the piecewise parabolic method
only for scalar laws and gas dynamics, the ideas are easy to generalize to other

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
http://www.netlib.org
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hyperbolic systems. They compute the divided differences

wn[xk, xk−1] = wn
k − wn

k−1


xk + 
xk−1
, k = j, j + 1

and the slopes

s̃n
j = wn[x j , x j−1]

2
x j+1 + 
x j


x j+1 + 
x j + 
x j−1
+ wn[x j+1 − x j ]


x j + 2
x j−1


x j+1 + 
x j + 
x j−1

in the flux variables, then apply the MUSCL limiter component-wise as in Equation
(5.32) to get the limited slopes sn

j . Initial values for the flux variables at the cell
sides are given by

wn
j+1/2 = wn

j + wn[x j+1, x j ]
x j

− wn[x j+1, x j ]
2
x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1

{

x j+2 + 
x j+1

2
x j+1 + 
x j
− 
x j + 
x j−1


x j+1 + 2
x j

}
+

{
s̃n

j


x j+2 + 
x j+1

2
x j+1 + 
x j
− s̃n

j+1

x j + 
x j−1


x j+1 + 2
x j

}

x j+1
x j


x j+2 + 
x j+1 + 
x j + 
x j−1
.

The values wn
j+1/2 of the flux variables are then limited component-wise as in the

scalar case to produce values wR
j−1/2 and wL

j+1/2; these give the quadratic recon-
struction

wn(x) = a j + {b j + c j (1 − ξ (x))}ξ (x) where ξ (x) = x − x j−1/2


x j
,

in which a j = wR
j−1/2, b j = wL

h+1/2 − wR
j−1/2 and c j = 6wn

j − 3(wL
j+1/2 +

wR
j−1/2).
Next, we require values for the temporal averages of the flux variables at the

cell sides for states in Riemann problems. Here the computations proceed as for a
hyperbolic system with constant coefficients A = X�X−1. Lemma 4.1.7 showed
that the analytical solution of ∂u/∂t + X�X−1∂u/∂x = 0 is

u(x, t) =
∑

i

Xei e�
i X−1u(x − λi t, 0).

Our flux variables satisfy

∂w
∂t

+ Y�Y−1 ∂w
∂x

= 0
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where

∂f
∂w

Y = ∂u
∂w

Y�.

Colella and Woodward would take

1


tn+1/2

∫ 
tn+1/2

0
wn(x j+1/2 − 0, tn + τ ) dτ

≈ wL

j+1/2

= wL
j+1/2 +

∑
e�

i �n
j ei ≥0

Yn
j ei e�

i (Yn
j )

−1

[
1


tn+1/2

∫ 
tn+1/2

0
wn

j (x j+1/2−e�
i �n

j eiτ, 0) dτ −wL
j+1/2

]

= wL
j+1/2 +

∑
e�

i �n
j ei ≥0

Yn
j ei e�

i (Yn
j )

−1

{
−e�

i �n
j ei 
tn+1/2

2
x j

[
b j −c j

(
1− 2e�

i �n
j ei 
tn+1/2

3
x j

)]}

and

1


tn+1/2

∫ 
tn+1/2

0
wn(x j−1/2 + 0, tn + τ ) dτ

≈ wR

j−1/2

= wR
j−1/2 +

∑
e�

i �n
j ei ≤0

!Yn
j ei e�

i (Yn
j )

−1

[
1


tn+1/2

∫ 
tn+1/2

0
wn

j (x j−1/2−e�
i �n

j eiτ, 0) dτ −wR
j−1/2

]

= wR
j−1/2 +

∑
e�

i �n
j ei ≤0

Yn
j ei e�

i (Yn
j )

−1

{
−e�

i �n
j ei 
tn+1/2

2
x j

[
b j −c j

(
1− 2e�

i �n
j ei 
tn+1/2

3
x j

)]}
.

The flux at the solution to the Riemann problem with these two states is used in a
conservative difference to complete the scheme. We have implemented this scheme
as subroutine ppm in Program 6.2-102: schemes.f.

6.2.8 ENO

Throughout the ENO scheme, Osher and Shu compute eigenvectors and eigenval-
ues of An

j+1/2, which is an average value for ∂f/∂u. This could be done by using
Roe’s approximate Riemann solver (see Section 4.13.8), or by computing the flux
derivatives at the average of the the states in cell j and j + 1. They use An

j+1/2 to
find the characteristic directions and speeds so that

An
j+1/2Xn

j+1/2 = Xn
j+1/2�

n
j+1/2.

Throughout the algorithm, they compute the divided difference table for each
component of (Xn

j+1/2)−1f n
j+k , with the divided difference table being appropriately

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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upwinded based on the sign of the corresponding eigenvalue in �n
j+1/2. The pro-

cessing of the divided difference table for each wave-field component is the same
as in the scalar algorithm, discussed in Section 5.13 above. This divided difference
table produces values for (Xn

j+1/2)−1f n
j+1/2, and the flux is computed by

f n
j+1/2 = Xn

j

{
(Xn

j+1/2)−1f n
j+1/2

}
.

The Runge–Kutta steps for time integration are the same as in the scalar algorithm.
We have implemented this scheme inside procedurerunScheme in Program 6.2-103:
GUIRiemannProblem.C. The ENO divided difference table is computed in subroutine
eno-rf in Program 6.2-104: schemes.f.

6.2.9 Discontinuous Galerkin Method

Application of the discontinuous Galerkin method to a system of hyperbolic con-
servation laws is similar to the scalar case described in Section 5.14. For all
b(x) ∈ C∞(xL, xR), the weak formulation of the conservation law is

0 =
∫ xR

xL

[
∂u
∂t

+ ∂f(u)

∂x

]
b dx =

∑
k

∫ xk+1/2

xk−1/2

∂u
∂t

b + ∂f(u)b

∂x
− f(u)

db

dx
dx

=
∑

k

[
d

dt

∫ xk+1/2

xk−1/2

u b dx + f(u)b|xk+1/2
xk−1/2 −

∫ xk+1/2

xk−1/2

f(u)
db

dx
dx

]
.

Let b(ξ ) be the vector of orthonormal Legendre polynomials on ξ ∈ (−1, 1), defined
in equation (5.37). The Galerkin approximation will approximate the solution in
the form

for all x ∈ (xk−1/2, xk+1/2), u(x, t) = Uk(t)b(ξk(x)) where ξk(x) = 2
x − xk


xk
.

Here Uk(t) is an array of coefficients for each conserved quantity with respect to
each basis function. The weak form of the conservation law is replaced by a weak
form with b(x) replaced by an arbitrary polynomial of degree at most k. If we let
the b(ξ ) be the vector of orthonormal Legrendre polynomials, then we obtain the
Galerkin equations

0 = d

dt

∫ xk+1/2

xk−1/2

Uk(t)b (ξk(x)) b (ξk(x))� dx

+ f (R (Uk(t)b(1), Uk+1(t)b(−1); 0)) b(1)� − f (R (Uk−1(t)b(1), Uk(t)b(−1); 0)) b(−1)�

−
∫ xk+1/2

xk−1/2

f (Uk(t)b(ξk(x)))
db (ξk(x))�

dx
dx .

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/GUIRiemannProblem.C
http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/schemes.f
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The orthonormality of the entries of b(ξ ) then gives us the system of ordinary
differential equations

dUk

dt
= 2


xk

{
−f(R(Uk(t)b(1), Uk+1(t)b(−1); 0)) + f(R(Uk−1(t)b(1), Uk(t)b(−1); 0))

+
∫ 1

−1
f(Uk(t)b(ξ ))b′(ξ )� dξ

}
.

The initial value for Uk is determined by the orthogonality condition

0 =
∫ xk+1/2

xk−1/2

[u(x, 0) − Uk(0)b (ξk(x))] b(ξk(x))� dx

=
∫ 1

−1
u

(
xk + ξ
xk

2
, 0

)
b(ξ )� dξ


xk

2
− Uk(0)

∫ 1

−1
b(ξ )b(ξ )� dξ


xk

2
,

which implies that

Uk(0) =
∫ 1

−1
u

(
xk + ξ
xk

2
, 0

)
b(ξ )� dξ.

As in the scalar case, the integrals are replaced by Lobatto quadrature rules:∫ 1

−1
φ(ξ ) dξ ≈

Q∑
q=0

φ(ξq)αq, −1 = ξ0 < ξ1 < . . . < ξQ = 1.

Thus our quadrature rule approximation gives us initial values

Uk(0) =
Q∑

q=0

u
(

xk + ξq
xk

2
, 0

)
αqb(ξq)�,

and ordinary differential equations

dUk

dt
= 2


xk

{
−f (R (Uk(t)b(1), Uk+1(t)b(−1); 0))

+ f (R (Uk−1(t)b(1), Uk(t)b(−1); 0))

+
Q∑

q=0

f
(
Uk(t)b(ξq)

)
αqb′(ξq)�

}
.

Of course, most nonlinear hyperbolic systems are formulated in terms of flux vari-
ables w(x, t), with the conserved quantities given by u(w(x, t)) and the fluxes given
by f(w(x, t)). This requires several modifications of the discontinuous Galerkin for-
mulation. Initial conditions commonly provide values for the flux variables. Let

W̃k(t) =
[

w
(

xk + ξ0
xk

2
, t

)
, . . . , w

(
xk + ξQ
xk

2
, t

)]



6.2 Second-Order Schemes for Nonlinear Systems 455

be the array of flux variables at the Lobatto quadrature points for grid cell k. Then
the initial values for the discontinuous Galerkin method are

Uk(0) =
Q∑

q=0

u(W̃k(0)eq)αqb(ξq)�.

The values of the initial solution at the Lobatto quadrature points are Uk(0)b(ξq);
these are possibly different from the initial values of the conserved quantities eval-
uated as functions of the flux variables at the quadrature points. Thus we must
solve

u(Wk(0)eq) = Uk(0)b(ξq)

to get values of the flux variables that are consistent with the point values of the
initial solution. Also, the ordinary differential equations must be modified to provide
flux variables for arguments to the flux:

dUk

dt
= 2


xk

{
− f(R(Wk(t)eQ, Wk+1(t)e0; 0))

+ f(R(Wk−1(t)eQ, Wk(t)e0; 0))

+
Q∑

q=0

f(Wk(t)eq)αqb′(ξq)�
}

.

After advancing the discontinuous Galerkin method in time, the flux variables can
be determined by solving

u(Wk(t)eq) = Uk(t)b(ξq)

for the vector of flux variables at each quadrature point.
Limiting is performed on the conserved quantities component-wise, as in the

scalar case. These produce vectors uk+1/2,L(t) and uk−1/2,R(t) in each cell. From these
limited conserved quantities we can determine vectors of flux variables wk+1/2,L(t)
and wk−1/2,R(t) for use in evaluating the fluxes.

We have implemented the discontinuous Galerkin scheme for nonlinear hyper-
bolic systems inside discontinuous-galerkin in Program 6.2-105: dgm.f.

Exercise for 6.2

6.2.1 Another version of the weak wave solver involves decomposing the flux difference:
Xn

j+1/2zn
j+1/2 = f(u n

j+1) − f(un
j ). Describe how to modify the weak wave form of wave prop-

agation for this wave-field decomposition. Compare its performance to the weak wave solver
described above.

http://www.math.duke.edu/~johnt/math226/hyperbolic_system_methods/dgm.f
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6.3 Case Studies

6.3.1 Wave Equation

The wave equation

∂2u
∂t2

− c2 ∂2u
∂x2

= 0 for all x ∈ R for all t > 0

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = v0(x) for all x ∈ R

is a simple system of linear hyperbolic conservation laws, for which the analytical
solution is well known (see exercise 4.1.1). The numerical methods in this chapter
will perform well for this problem, but will not be especially efficient. Because this
problem has no shocks, it is advantageous to use high-order numerical methods
for its solution. Some useful numerical methods include spectral methods [61] and
multi-pole expansions [62]. Similar comments apply to linear elasticity (discussed
in section 4.7) and Maxwell’s equations (discussed in section 4.3).

6.3.2 Shallow Water

The shallow water equations were presented in Example 4.1.1 and analyzed in
Section 4.1. These equations are a very simple nonlinear system with practical
implications. For example, the dam break problem is a Riemann problem with
initial conditions

h(x, 0) =
{

hL, x < 0
hR, x < 0

(6.11a)

v(x, 0) = 0. (6.11b)

If gravity has the value g = 1, then the “parting of the sea” problem has initial data

v(x, 0) =
{−2, x < 0

2, x < 0
(6.12a)

h(x, 0) = 1. (6.12b)

This Riemann problem leads to two rarefactions with an intermediate state with zero
height. This problem requires some care in programming the numerical methods,
because the characteristic speed computations involve taking the square root of h;
oscillations in the numerical method produce unphysical values of h. Reducing the
initial velocities to ± 1

2 produces two rarefactions that are much easier for numerical
methods to resolve.
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(x-jump)/t (x-jump)/t

(a) Exact (b) Harten–Hyman

(x-jump)/t (x-jump)/t

(c) Harten–Lax–van Leer (d) Rusanov

Fig. 6.1 Various Riemann Solvers for Transonic Dam Break: Height vs. x/t

For a problem with two shocks, we can solve the Riemann problem

v(x, 0) =
{

1, x < 0
−1, x < 0

(6.13a)

h(x, 0) = 1. (6.13b)

Finally, to see a shock moving left and a rarefaction moving right, solve

h(x, 0) =
{

1, x < 0
2, x < 0

(6.14a)

v(x, 0) = 1. (6.14b)
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(x-jump)/t (x-jump)/t

(a) Random choice (b) Godunov with Harten–Hyman flux

(x-jump)/t (x-jump)/t

(c) Lax–Friedrichs (d) ENO 1

Fig. 6.2 Various first-order schemes for transonic dam break: Height vs. x/t

Students can create their own interesting Riemann problems by clicking on
Executable 6.3-43: guiShallowWater. Afterward, students can experiment with a vari-
ety of numerical methods by clicking on Executable 6.3-44: guiRiemannProblem.

All of the approximate Riemann problem solvers (except the unmodified Roe
solver) performed well with Godunov’s method. Figure 6.1 shows the water height
for the dam break problem in a moving frame of reference so that the rarefaction is
transonic. The exact solution of the Riemann problem produces a small jump at the
sonic point, and the Rusanov solver smears the waves quite a bit more than the other
Riemann solvers. The Linde solver and the Harten-Lax-van Leer solver produce
essentially the same results. The first-order schemes performed reasonably well for
this problem, as shown in Figure 6.2. Various second-order results are shown in
Figure 6.3.

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiShallowWater
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_system_methods_guiRiemannProblem
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(x-jump)/t (x-jump)/t

(a) MUSCL (b) Wave propagation

(x-jump)/t

(c) ENO 2 (d) DGM 2

Fig. 6.3 Various second-order schemes for transonic dam break: height vs. x/t

6.3.3 Gas Dynamics

The gas dynamics equations were studied in Section 4.4. Some interesting gas
dynamics test problems be found in [106], as well as comparisons between many
of the schemes described in this chapter, and other interesting schemes. This paper
also describes how the test codes were obtained from available sources.

Almost all of the gas dynamics test problems are for a polytropic gas with
γ = 1.4, representing air. One of the famous Riemann problems for this system is
the Sod shock tube, which involves a rarefaction and a shock:

ρ(x, 0) =
{

1, x < 0
1/8, x > 0,

v(x, 0) = 0, p(x, 0) =
{

1, x < 0
1/10, x > 0.

(6.15)
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Here are some other test problems to consider when debugging code. For two
rarefactions, try the Riemann problem

ρ(x, 0) = 1, v(x, 0) =
{−1, x < 0

1, x > 0,
p(x, 0) = 1; (6.16)

for two shocks, try

ρ(x, 0) = 1, v(x, 0) =
{

1, x < 0
−1, x > 0,

p(x, 0) = 1; (6.17)

and for a shock and a rarefaction, try

ρ(x, 0) = 1, v(x, 0) = 1, p(x, 0) =
{

1, x < 0
2, x > 0.

(6.18)

Students can shift the velocities in some of these problems in order to produce
transonic rarefactions that cause trouble for techniques such as the Roe approximate
Riemann solver. Finally, we mention the Colella-Woodward interacting blast wave
problem [177]

ρ(x, 0) = 1, v(x, 0) = 0, p(x, 0) =


1000, 0 < x < 0.1
0.01, 0.1 < x < 0.9
100, 0.9 < x < 1.0,

(6.19)

in which the gas is confined between two reflecting walls at x = 0 and x = 1. (As
we discussed in section 4.4.8, at a reflecting wall the normal component of velocity
is an odd function of position, while density, pressure and tangential components of
velocity are even functions.) This problem is particularly difficult to solve accurately
with first-order (and even second-order) methods.

In numerical experiments with the Sod shock tube problem, we found that
Godunov’s method combined with the exact Riemann solver, Roe, Harten–Hyman,
Harten–Lax van Leer and Linde solvers all produced acceptable results for timesteps
around 0.9 times the CFL timestep. Among first-order schemes using the Harten-
Hyman modification of the Roe approximate Riemann solver, Godunov was most
efficient, followed by first-order ENO, Lax–Friedrichs and discontinuous Galerkin.
Among second-order schemes, the most efficient was MUSCL, followed by wave
propagation, Lax–Friedrichs, TVD and ENO. Second-order discontinuous Galerkin
(with M = ∞ for a Riemann problem) required timesteps around 0.2 times the sta-
ble timestep in order to avoid negative density and pressure. The most efficient
third-order scheme was PPM, followed by ENO and Lax–Friedrichs (which were
roughly equivalent).
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Students can create their own test problems for gas dynamics with Riemann
problem initial data by clicking on the following link: Executable 6.3-45: guiGas
Dynamics.

6.3.4 MHD

The equations of magnetohydrodynamics were studied previously in section 4.5.
The most famous Riemann problem for these equations is the Brio and Wu shock
tube in air [23]:

ρ(x, 0) =
{

1, x < 0
1/8, x > 0

(6.20a)

v(x, 0) = 0 (6.20b)

B(x, 0) =
{ √

4π, x < 0
−√

4π, x > 0
(6.20c)

p(x, 0) =
{

1, x < 0
1/10, x > 0.

(6.20d)

This problem generalizes the Sod shock tub problem (6.15). The solution involves
a rarefaction, a compound wave consisting of an over-compressive shock and a
rarefaction, a contact discontinuity, a shock and a rarefaction.

The Brio and Wu shock tube is the default test problem for MHD in Executable
6.3-46: guiRiemannProblem. Students can also create their own test problems for
MHD.

6.3.5 Nonlinear Elasticity

We discussed nonlinear elasticity previously in Section 4.6. The application of
shock-capturing schemes to nonlinear elasticity has been developed less than other
applications. To some extent, this is because there are so many different constitutive
models that no one of them has captured the full audience. There are some analyt-
ical solutions for Goursat problems described in [157]. Wilkins [176] described a
problem involving the impact of an elastic-plastic aluminum plate described by a
nonlinear elastic response and a von Mises yield surface. Most of the interesting
problems in elasticity are multi-dimensional.

6.3.6 Cristescu’s Vibrating String

The equations for a vibrating string were studied in section 4.8. The model in that
section was modified from the one in Keyfitz and Kranzer [81] in order to provide

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiGasDynamics
http://www5.math.duke.edu/cgi-bin/startvnc?run=hyperbolic_system_methods_guiRiemannProblem
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(a) Deformation gradient (b) Velocity

Fig. 6.4 Riemann problem solution for vibrating string: Rarefaction–contact–
rarefaction and rarefaction–contact–rarefaction (vL = [0, 0], φL = 1.85914, θL =
0; vR = [0, 4.4157], φR = 1.85914, θR = 3.14159)

a more physically realistic tension. This problem is not a common test problem for
numerical methods. However, it is possible to generate rarefactions with contact
discontinuities in their middle for this problem:

v(x, 0) =


[

0
0

]
, x < 0[
0

4.4157

]
, x > 0

(6.21a)

φ(x, 0) = 1.85914 (6.21b)

θ (x, 0) =
{

0, x < 0
3.14159, x > 0.

(6.21c)

Figure 6.4 shows the solution of this Riemann problem in state space.
The analytical solution of the Riemann problem involves two contact disconti-

nuities moving at speeds in the middle of rarefactions. As a result, this Riemann
problem is not resolved well by the methods that use characteristic directions.
Figure 6.5 shows that the Godunov scheme with either the exact Riemann solver or
the Harten–Lax–van Leer approximate Riemann solver fails to capture the velocity
peaks near the left and right states with 100 grid cells. The Lax–Friedrichs scheme
has a similar difficulty. However, Figure 6.6 shows that the second-order Lax–
Friedrichs scheme of Nessyahu and Tadmor and the second-order discontinuous
Galerkin method do a better job of resolving this peak. Second-order Godunov (the
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(a) Godunov with exact Riemann solve (b) Godunov with Harten–Lax–van Leer

(c) Lax–Friedrichs

Fig. 6.5 First-order schemes for vibrating string: longitudinal velocity vs. x/t

MUSCL scheme) and wave propagation do a poor job in resolving this contact
discontinuity.

Since the vibrating string problem does not have a Roe solver, the ENO schemes
use the average of the left and right states to compute characteristic speeds and
directions. In this case, the average of the left and right deformation gradients is
zero, which represents a string compressed to zero volume. Such a string is not
under tension, and characteristic speeds for the vibrating string are meaningless.
As a result, the ENO schemes abort.

Several additional test problems can be found in the comments in Program 6.3-106:
string.f. Students can develop their own test problems with Riemann initial data by
clicking on the link Executable 6.3-47: guiString.

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/string.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiString


464 Methods for Hyperbolic Systems

(a) MUSCL with Harten–Lax–van Leer (b) Wave propagation

(c) Nessyahu–Tadmor (d) Discontinuous Galerkin 2

Fig. 6.6 Second-order schemes for vibrating string: longitudinal velocity vs. x/t

6.3.7 Plasticity

The Antman–Szymczak model for plasticity was analyzed in Section 4.9. The
solution of the Riemann problem was described by Trangenstein and Pember in
[163]. This paper contains a table of 21 Riemann problems with structurally different
solutions. Here is one of the more challenging of those problems:

v(x, 0 =
{−0.1, x < 0
−5.081, x > 0,

ε(x, 0) =
{

3.5, x < 0
0.12111, x > 0,

π (x, 0) =
{

3.25, x < 0
0.217, x > 0. (6.22)
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(a) Stress vs strain (b) Velocity vs stress

Fig. 6.7 Riemann problem solution for plasticity (vL = −0.1, εL = 3.5, πi = 3.25;
vR = −5.081, εR = 0.12111, πR = 0.217)

(a) Godunov with exact Riemann solve (b) Godunov with Harten–Lax–van Leer

Fig. 6.8 First-order schemes for plasticity: strain vs. x/t

This problem involves a shock from an elastic state to a well-compressed plastic
state, as shown in Figure 6.7.

Note that we cannot easily apply the Lax–Friedrichs scheme to the plasticity
problem. The difficulty is that the plastic strain, which acts as a hysteresis parameter,
has no natural definition during the mesh staggering. The plastic strain is integrated
along particle paths, and the Lax–Friedrichs scheme tangles the particle paths each
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(x-jump)/t (x-jump)/t

(a) MUSCL, exact Riemann solve, CFL = 0.5 (b) MUSCL, Harten–Lax–van Leer, CFL = 0.5

(x-jump)/t (x-jump)/t

(c) ENO 2 (d) Wave propagation

Fig. 6.9 Second-order schemes for plasticity: strain vs. x/t

half timestep. This scheme might take advantage of ideas for schemes for plasticity
in the Eulerian frame of reference [118, 164].

Some of the schemes perform well for this problem, and some do not. The
MUSCL schemes and discontinuous Galerkin tend to develop numerical oscilla-
tions, while wave propagation and ENO do not. It is interesting to note that restoring
the characteristic projection step in the MUSCL scheme (see Section 5.9.4) does
not remedy this problem. Results with first-order schemes are shown in Figure 6.8
and second-order schemes are shown in Figure 6.9.

All 21 of the Trangenstein-Pember Riemann problems can be found in the com-
ments of subroutine initplasticity in Program 6.3-107: plasticity.f. Students

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/plasticity.f
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(a) Concentration vs. saturation (b) Velocity vs. saturation

Fig. 6.10 Riemann problem solution for polymer oil bank (sL = 0.9, cL = 0.7;
sR = 0.7, cR = 0)

can develop their own test problems with Riemann initial data by clicking on the
link Executable 6.3-48: guiPlasticity.

6.3.8 Polymer Model

The polymer model was studied in Section 4.10. The analytical solution of the
Riemann problem for this model was described in general terms by Keyfitz and
Kranzer in [81] and Pope in [132]. Allen et al. [3] present pictures of the structurally
different solutions of the Riemann problem with and without gravity. Of the different
Riemann problems, the following water flooding problem [75] is interesting because
it develops an “oil bank” just ahead of a contact discontinuity moving at the same
speed as the leading edge of a rarefaction:

s(x, 0) =
{

0.9, x < 0
0.7, x > 0,

c(x, 0) =
{

0.7, x < 0
0.3, x > 0.

(6.23)

In this model, the mobilities are λw(sw, c) = s2
w/(µ0[1/2 + c]) and λo(so) = s2

o/µo

where the viscosity of oil is µo = 0.35. A second interesting test case [75] which
roughly corresponds to water-flooding after polymer injection is

s(x, 0) =
{

1.0, x < 0
0.3, x > 0,

c(x, 0) =
{

0.1, x < 0
0.9, x > 0.

(6.24)

http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiPlasticity
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(a) Godunov with exact Riemann solve (b) Godunov with Harten–Lax–van Leer

(c) Lax–Friedrichs (d) ENO 1

Fig. 6.11 First-order schemes for polymer oil bank: saturation vs. x/t

Most schemes develop an overshoot at the leading edge of the slow rarefaction,
and the size of the overshoot is not reduced during mesh refinement.

The solution to the polymer oil bank Riemann problem is shown in Figure 6.10.
This problem has a rarefaction with leading edge traveling at the same speed as
a contact discontinuity, with a shock moving ahead of both. The water saturation
dips between the shock and contact discontinuity, corresponding to an oil bank that
is being pushed toward a production well.

Figure 6.11 shows numerical results with several first-order schemes for the
polymer oil bank problem. The Lax–Friedrichs scheme performs the worst, but
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(a) MUSCL (b) Nessyahu–Tadmor

(c) ENO 2 (d) Discontinuous Galerkin 2

Fig. 6.12 Second-order schemes for polymer oil bank: saturation vs. x/t

none of the schemes do a good job on resolving the contact discontinuity. Results
with second-order schemes are shown in Figure 6.12. The MUSCL scheme does
the best job of resolving the oil bank, but all of the second-order schemes show
significant improvement over the first-order schemes. MUSCL is less expensive
per step than the other schemes, which involve substeps (and reduced stability
restrictions on the timestep for the discontinuous Galerkin method).

Details of the implementation of the polymer model can be found in Program 6.3-
108: polymer.f. Students can develop their own test problems with Riemann initial
data by clicking on the link Executable 6.3-49: guiPolymer .

http://www.math.duke.edu/~johnt/math226/nonlinear_hyperbolic_systems/polymer.f
http://www5.math.duke.edu/cgi-bin/startvnc?run=nonlinear_hyperbolic_systems_guiPolymer
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(a) Godunov with Harten–Lax–van Leer, t = 1 (b) Godunov with Rusanov, t = 1

(c) Lax-Friedrichs, t = 1 (d) ENO 1, t = 0.13

Fig. 6.13 First-order schemes for Schaeffer–schechter–shearer model: P vs. x/t

6.3.9 Schaeffer–Schechter–Shearer Model

Finally, let us discuss a computation involving the Schaeffer-Schechter-Shearer
model of Section 4.12. The Riemann problem

p(x, 0) =
{

3, x < 0
1, x > 0,

q(x, 0) =
{

10, x < 0
1, x > 0

(6.25)

has no solution involving waves studied in Chapter 4. Numerical methods applied
to such a problem will show a variety of results, none of which appear to represent
known behavior. The computational results could be interpreted as failures of the
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(a) P vs. x/t : 100 cells (b) P vs. x/t : 400 cells

(c) P vs. x/t : 1600 cells (d) Characteristic speeds vs. x/t : 100 cells

Fig. 6.14 Convergence study using the Nessyahu–Tadmor scheme for the
Schaeffer–Schechter–Shearer model

numerical method, rather than problems with the model. Indeed, the initial reaction
of some people to the elliptic regions in three-phase flow in porous media, reported
in [15], was to assume that the problem was in the numerical method, not the
model.

Figure 6.13 shows some numerical results with various first-order methods for
this problem. The Godunov scheme with either the Harten–Lax–van Leer or the
Rusanov flux shows some numerical oscillation in the discontinuity, while the Lax–
Friedrichs scheme smears the wave so severely (even at CFL = 0.9) that no problem
is readily apparent. The first-order ENO scheme, however, effectively blows up
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just after time 0.13; this result is perhaps more honest than the previous three
results.

In Figure 6.14 we show results with the second-order Nessyahu–Tadmor scheme
for this problem. Note that the characteristic speeds in part (d) of this figure indicate
a discontinuity of some sort in the slow wave family and a rarefaction in the fast wave
family. However, the characteristic speeds in the viscous profile of the discontinuity
go higher than the value at the left state and lower than the value at the intermediate
state. In addition, mesh refinement leads to ever-larger values in the viscous profile
of the discontinuity. This could appear to be a numerical instability, but the real
problem is that the slow wave family through the left state does not intersect the
fast wave family through the right state at any finite state.

Exercises for 6.3

6.3.1 Use the results in Example 4.1.12 to determine the left state for a shallow water Riemann problem
involving a shock moving right with speed 1 into water with height 1 and velocity 0. Assume
that g = 1. Construct a numerical method to solve this Riemann problem. Does your numerical
solution show evidence of a wave in the other wave family? How do you explain this?

6.3.2 Suppose that you have a tank of water of some fixed height and zero velocity that is given an
external velocity (“shaking the pan”). Equivalently, consider a shallow water problem in which
the water has a fixed height and nonzero initial velocity, but is is confined between two reflecting
walls. Construct a numerical scheme to solve this problem. What kind of waves occur as a result
of the first reflection from the walls? How many reflections can you model before the results are
no longer trustworthy?

6.3.3 Nonlinear resonance problems in the wave propagation scheme can occur when waves in the wrong
wave family are excited due to the use of inner products between the characteristic directions in
the limiting. LeVeque suggested a modification of the wave propagation scheme to overcome the
nonlinear resonance problem. For the Roe solver, the limited wave-field decomposition would
take the revised form

ei · ãn
j+1/2 =

{
φ(ei · (Xn

j+1/2)−1an
j−1/2, ei · (Xn

j+1/2)−1an
j+1/2), ei · �n

j+1/2ei ≥ 0
φ(ei · (Xn

j+1/2)−1an
j+3/2, ei · (Xn

j+1/2)−1an
j+1/2), ei · �n

j+1/2ei < 0.

Program this scheme and test it on the “parting sea” Riemann problem with h(x, 0) = 1 and
v(x, 0) = ±0.5.

6.3.4 How would you change the Harten–Hyman modification of the Roe solver to provide the infor-
mation needed for the modified wave-field decomposition in the previous exercise?

6.3.5 Perform the previous exercise for the Harten–Lax-van Leer approximate Riemann solver. This
scheme would apply to more general nonlinear systems of hyperbolic conservation laws, for
which Roe solvers are not available.

6.3.6 Solve the Colella–Woodward interacting blast wave problem using one of the schemes discussed
above. Plot the numerical results (ρ, v, p versus x) for times 0.01, 0.016, 0.026, 0.028, 0.030,
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0.032, 0.034 and 0.038. Perform a mesh refinement study to determine whether your solution is
well resolved.

6.3.7 Colella and Woodward [35] suggested several techniques specific to gas dynamics for improving
the resolution of shocks and contact discontinuities. Read about “discontinuity detection,” modify
the PPM scheme to incorporate this approach, and test its performance on the Sod shock tube
problem.

6.3.8 Colella [32] has suggested using fourth-order slopes in the MUSCL reconstruction step.
(a) For a scalar law, determine the average of the second derivative of the quintic interpolation

to the cell averages, instead of the cubic interpolation discussed in section 5.9.2. Test these
fourth-order slopes on the Zalesak test problems for linear advection in exercise 2.2.5.

(b) Examine the effect of fourth-order slopes on the resolution of the contact discontinuity in the
Sod shock tube problem.

6.3.9 Harten [65] has suggested a modification of the ENO scheme to improve the resolution of contact
discontinuities. Read about “sub-cell resolution,” modify the ENO scheme to incorporate this
approach, and test its performance on the Sod shock tube problem.



7

Methods in Multiple Dimensions

Most interesting physical problems involve multiple spatial dimensions. Unfortu-
nately, the theory of hyperbolic conservation laws in multiple dimensions is not
very well developed. Very little is known about the appropriate norms to use in dis-
cussing the stability and uniqueness of conservation laws in multiple dimensions.
As a result, the theory for numerical methods is also very primitive.

Nevertheless, people need to solve multidimensional problems. For complicated
nonlinear problems, the common approach is to compute numerical solutions. In
this chapter, we will discuss several numerical approaches.

7.1 Numerical Methods in Two Dimensions

7.1.1 Operator Splitting

Suppose that we want to solve the two-dimensional system of partial differential
equations

∂u
∂t

+ ∂f 1

∂x1
+ ∂f 2

∂x2
= 0.

Also suppose that for the one-dimensional problem

∂u
∂t

+ ∂f
∂x

= 0

we would use the numerical method

un+1
j = un

j −
[
f j+ 1

2
(un) − f j− 1

2
(un)

] 
t


x j
.

474
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Then in two dimensions we can apply the following computational strategy, called
first-order operator splitting:

un+1,n
i j = un

i j − [
(f 1)i+1/2, j (un) − (f 1)i−1/2, j (un)

] 
tn+1/2


x1,i
(7.1a)

un+1
i j = un+1,n

i j − [
(f 2)i, j+1/2(un+1,n) − (f 2)i, j−1/2(un+1,n)

] 
tn+1/2


x2, j
. (7.1b)

This approach is based on approximating the exact evolution operator for the dif-
ferential equation by a product of one-dimensional evolution operators, and then
approximating the evolution operators by numerical methods. Operator splitting of
the evolution operators is first-order accurate in time [38, 158]. Spatial errors (and
additional temporal errors) are due to the approximation of the one-dimensional
evolution operators.

Second-order operator splitting is often called Strang splitting [152]. This
method takes the form

un,n+1/2
i j = un

i j − [
(f 2)i, j+1/2(un) − (f 2)i, j−1/2(un)

] 
tn+1/2

2
x2, j
(7.2a)

un+1,n+1/2
i j = un,n+1/2

i j − [
(f 1)i+1/2, j (un,n+1/2) − (f 1)i−1/2, j (un,n+1/2)

] 
tn+1/2


x1,i
(7.2b)

un+1
i j = un+1,n+1/2

i j −
[
(f 2)i, j+1/2(un+1,n+1/2)−(f 2)i, j− 1

2
(un+1,n+1/2)

]
tn+1/2

2
x2, j
. (7.2c)

Any appropriate numerical flux from Chapter 6 on methods in one dimension can
be used to evaluate the numerical fluxes in these steps. It is also common to combine
the last half step of one timestep with the first half-step of the next timestep in order
to save work.

For problems on rectangular domains with simple boundary conditions, either
form of operator splitting can be very easy to implement, if a trustworthy one-
dimensional method is already available. Peyret and Taylor [131, page 73] point
out that operator splitting can take advantage of different stability restrictions in the
coordinate directions by taking multiple split steps in the direction with the more
restrictive stability condition. They also point out that the treatment of boundary
conditions for the intermediate steps of the splitting are tricky, so it is common to
use the analytical values for the boundary conditions when available. Additional
information about operator splitting techniques in general can be found in [117]
and [178].

We have implemented operator splitting in Program 7.1-109: GUIRectangle.C
Procedures runOnce and runSimulation can perform either first-order or

http://www.math.duke.edu/~johnt/math226/multidimensional/GUIRectangle.C
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second-order splitting by calling procedure runSchemeSplit in the appropri-
ate ways. This procedure is designed to loop over grid lines and call appropriate
modifications of the one-dimensional schemes for operator splitting. Of course,
some modification of the functions for the various models are necessary in mul-
tiple dimensions. For example, the shallow water equations in program Program
7.1-110: shallow water.m4 were modified to deal with a vector fluid velocity and
appropriate normal directions. Similar modifications were performed to Program
7.1-111: burgers.m4 and Program 7.1-112: gas dynamics.m4. In fact, these files were
designed to use macro processing so that the fundamental code could be written
once and implemented in different coordinate dimensions and directions as needed.
Essentially all of the computational routines were written in Fortran for easier array
addressing.

Students can execute operator splitting programs in two dimensions by click-
ing on Executable 7.1-50: guiRectangle. The student can select either of Burgers’
equations, shallow water or gas dynamics, first- or second-order operator splitting,
and either of a variety of numerical schemes. In two dimensions, the computational
results for scalar fields (such as water height in shallow water, or pressure in gas
dynamics) can be displayed either as 2D contours, 2D color fills or 3D surface
plots. The 3D graphics in the surface plot uses a trackball for rotation with the left
mouse button. The figure can be sliced along the ends of any coordinate axis using
the middle mouse button. Values at points in the figure can be determined using the
right mouse button.

By setting the number of grid cells in one of the coordinate directions to zero,
the student can perform a convergence analysis. In this case, the program performs
a fine grid computation with the given method, and measures the errors in coarser
grid results compared to the fine grid result.

Some computational results for the 2D Riemann problem with Burgers’ equation
are shown in Figure 7.1.

7.1.2 Donor Cell Methods

The conservation law

∂u
∂t

+
2∑

k=1

∂F(u)ek

∂xk
= 0

can be written in integral form as∫
�i j

u(x, tn+1) dx =
∫

�i j

u(x, tn) dx −
∫ tn+1

tn

∫
∂�i j

F(u)n ds dt.

http://www.math.duke.edu/~johnt/math226/multidimensional/shallow_water.m4
http://www.math.duke.edu/~johnt/math226/multidimensional/burgers.m4
http://www.math.duke.edu/~johnt/math226/multidimensional/gas_dynamics.m4
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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(a) Color fill plot (b) Contour plot

(c) Surface plot

Fig. 7.1 2D Riemann problem for Burgers’ equation: Second-order operator split-
ting with MUSCL on 100 × 100 grid (40 × 40 for surface plot); initial con-
dition is u = −1 for x0 > 0, x1 > 0, u = .67 for x0 < 0, x1 > 0, u = .33 for
x0 > 0, x1 < 0, u = 1 for x0 < 0, x1 < 0.

On a rectangular grid cell �i j = (x1,i−1/2, x1,i+1/2) × (x2, j−1/2, x2, j+1/2) this
integral form can be written

∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

u(x1, x2, tn+1) dx1 dx2

=
∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

u(x1, x2, tn) dx1 dx2
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−
∫ tn+1

tn

∫ x2, j+1/2

x2, j−1/2

F(u(x1,i+1/2, x2, t))e1 dx2 dt

+
∫ tn+1

tn

∫ x2, j+1/2

x2, j−1/2

F(u(x1,i−1/2, x2, t))e1 dx2 dt

−
∫ tn+1

tn

∫ x1,i+1/2

x1,i−1/2

F(u(x1, x2, j+1/2, t))e2 dx1 dt

+
∫ tn+1

tn

∫ x1,i+1/2

x1,i−1/2

F(u(x1, x2, j−1/2, t))e2 dx1 dt. (7.3)

We will typically compute cell averages

un
i j ≈ 1


x1,i 
x2, j

∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

u(x1, x2, t (n)) dx1 dx2

and flux side and time integrals

f n+1/2
i+1/2, j ≈

∫ tn+1

tn

∫ x2, j+1/2

x2, j−1/2

F(u(x1,i+1/2, x2, t))e1 dx2 dt

f n+1/2
i, j+1/2 ≈

∫ tn+1

tn

∫ x1,i+1/2

x1,i−1/2

F(u(x1, x2, j+1/2, t))e2 dx1 dt

to perform a conservative difference

un+1
i j 
x1,i 
x2, j = un

i j 
x1,i 
x2, j − f n+1/2
i+1/2, j + f n+1/2

i−1/2, j − f n+1/2
i, j+1/2 + f n+1/2

i, j−1/2. (7.4)

7.1.2.1 Traditional Donor Cell Upwind Method

Early work on unsplit methods for hyperbolic conservation laws took particu-
larly simple forms, as in [131, 137]. For example, the donor cell scheme form
of Godunov’s method would compute flux side and time integrals

f n+1/2
i+1/2, j = F(R(u(x1,i , x2, j , tn), u(x1,i+1, x2, j , tn); 0))e1 
x2, j 
tn+1/2 (7.5a)

f n+1/2
i, j+1/2 = F(R(u(x1,i , x2, j , tn), u(x1,i , x2, j+1, tn); 0))e2 
x1,i 
tn+1/2 (7.5b)

and then perform a conservative difference. Unfortunately, this very natural scheme
has a more restrictive stability restriction on its timestep than an operator split
scheme.

To understand the reason for the stability restriction, we will consider linear
advection with a constant velocity v in two dimensions:

∂u
∂t

+ v1
∂u
∂x1

+ v2
∂u
∂x2

= 0.

The donor cell scheme for this problem operates as follows. For each cell side
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i + 1
2 , j we compute a flux integral over the cell side and timestep by

f n
i+1/2, j = [un

i j v
+
1 + un

i+1, j v
−
1 ]
x2, j 
tn+1/2

= F(R(un
i j , un

i+1, j ; 0))e1
x2, j 
tn+1/2

and for each cell side i, j + 1
2 we compute

f n
i, j+1/2 = [un

i j v
+
2 + un

i, j+1v−
2 ]
x1,i 
tn+1/2

= F(R(un
i j , un

i, j+1; 0))e2
x1,i 
tn+1/2.

(As usual, the plus/minus superscripts on the velocity components denote the pos-
itive/negative parts of their values, and R denotes the solution of a Riemann prob-
lem.) Then we perform the conservative difference (7.4). Note that the donor cell
scheme for linear advection can be rewritten

un+1
i j 
x1,i 
x2, j = un

i j

(

x1,i 
x2, j − |v1|
x2, j 
tn+1/2 − |v2|
x1,i 
tn+1/2

)
+ un

i−1, j v
+
1 
x2, j 
tn+1/2 − un

i+1, j v
−
1 
x2, j 
tn+1/2

+ un
i, j−1v+

2 
x1,i 
tn+1/2 − un
i, j+1v−

2 
x1,i 
tn+1/2.

By examining the coefficients in this equation, we see that the new solution is a
weighted average of values of the previous solution provided that for all values of
the cell indices i, j the timestep satisfies[ |v1|


x1,i
+ |v2|


x2, j

]

tn+1/2 ≤ 1. (7.6)

If this inequality is violated, then the scheme is unstable. This stability restriction
caused early researchers to favor operator-split methods over unsplit methods.

7.1.2.2 First-Order Corner Transport Upwind Method

The donor cell timestep restriction can be improved by modifying the scheme
to include the effects of diagonal flow. This approach, called corner trans-
port upwind, is due to Colella [33]. First, we will develop this scheme for
linear advection. Recall that the solution of the linear advection problem is
u(x, t) = u0(x − vt). If we integrate the conservation laws over the grid cell
�i j = (x1,i−1/2, x1,i+1/2) × (x2, j−1/2, x2, j+1/2), then the corner transport upwind
scheme computes∫

�i j

un+1(x) dx =
∫

�i j

un(x − v
tn+1/2) dx =
∫

Ri j

un(x) dx

where

Ri j = (x1,i−1/2 − v1
tn+1/2, x1,i+1/2 − v1
tn+1/2)

× (x2, j−1/2 − v2
tn+1/2, x2, j+1/2 − v2
tn+1/2)
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P

Pi+1/2,j

i,j+1/2

Fig. 7.2 Corner transport upwind: solid lines enclose grid cell �i j , dashed lines
enclose transported grid cell Ri j , dotted lines mark parallelograms Pi+1/2, j and
Pi, j+1/2

represents �i j translated back in time along the velocity field. If Pi±1/2, j and Pi, j±1/2

are signed parallelograms associated with the velocity field at the cell sides, then

Ri j = �i j − Pi+1/2, j + Pi−1/2, j − Pi, j+1/2 + Pi, j−1/2.

(See Figure 7.2.) As a result,∫
�i j

un+1(x) dx =
∫

�i j

un(x) dx −
∫

Pi+1/2, j

un(x) dx +
∫

Pi−1/2, j

un(x) dx

−
∫

Pi, j+1/2

un(x) dx +
∫

Pi, j−1/2

un(x) dx. (7.7)

In order to compute these integrals, we will use the fact that un is piecewise
constant on the individual grid cells. The equation

∫
�i j

un+1(x) dx = ∫
Ri j

un(x) dx
can be written as

un+1
i j 
x1,i 
x2, j = un

i j

(

x1,i − |v1|
tn+1/2

) (

x2, j − |v2|
tn+1/2

)
+ un

i−1, j v
+
1 
tn+1/2

(

x2, j − |v2|
tn+1/2

)
+ un

i+1, j

(−v−
1 
tn+1/2

) (

x2, j − |v2|
tn+1/2

)
+ un

i, j−1

(

x1,i − |v1|
tn+1/2

)
v+

2 
tn+1/2

+ un
i, j+1

(

x1,i − |v1|
tn+1/2

) (−v−
2 
tn+1/2

)
+ un

i−1, j−1v+
1 
tn+1/2v+

2 
tn+1/2

+ un
i+1, j−1

(−v−
1 
tn+1/2

)
v+

2 
tn+1/2

+ un
i−1, j+1v+

1 
tn+1/2
(−v−

2 
tn+1/2
)

+ un
i+1, j+1

(−v−
1 
tn+1/2

) (−v−
2 
tn+1/2

)
. (7.8)
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It is easy to see that the new solution is a weighted average of old solution values
if and only if the timestep is chosen so that in every grid cell �i j

max

{ |v1|

x1,i

,
|v2|


x2, j

}

tn+1/2 ≤ 1.

This stability condition for corner transport upwind is less restrictive than the donor
cell condition (7.6), and similar to the stability restriction for operator splitting.

In order to write corner transport upwind in the form (7.7) we can expand and
collect terms in (7.8) to get

un+1
i j 
x1,i 
x2, j = un

i j 
x1,i 
x2, j

−
{[

un
i j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i, j−1v+
2


tn+1/2

2
− un

i, j+1v−
2


tn+1/2

2

]
v+

1 
tn+1/2

+
[

un
i+1 j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i+1, j−1v+
2


tn+1/2

2
− un

i+1, j+1v−
2


tn+1/2

2

]
v−

1 
tn+1/2

}
+

{[
un

i−1, j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i−1, j−1v+
2


tn+1/2

2
− un

i−1, j+1v−
2


tn+1/2

2

]
v+

1 
tn+1/2

+
[

un
i j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i, j−1v+
2


tn+1/2

2
− un

i, j+1v−
2


tn+1/2

2

]
v−

1 
tn+1/2

}
−

{[
un

i j

(

x1,i − |v1|
tn+1/2

2

)
+ un

i−1, j v
+
1


tn+1/2

2
− un

i+1, j v
−
1


tn+1/2

2

]
v+

2 
tn+1/2

+
[

un
i, j+1

(

x1,i − |v1|
tn+1/2

2

)
+ un

i−1, j+1v+
1


tn+1/2

2
− un

i+1, j+1v−
1


tn+1/2

2

]
v−

2 
tn+1/2

}
+

{[
un

i, j−1

(

x1,i − |v1|
tn+1/2

2

)
+ un

i−1, j−1v+
1


tn+1/2

2
− un

i+1, j−1v−
1


tn+1/2

2

]
v+

2 
tn+1/2

+
[

un
i j

(

x1,i − |v1|
tn+1/2

2

)
+ un

i−1, j v
+
1


tn+1/2

2
− un

i+1, j v
−
1


tn+1/2

2

]
v−

2 
tn+1/2

}
.

(7.9)

This equation allows us to interpret the corner transport upwind scheme as a con-
servative difference. We define the flux side and time integrals in the first coordinate
direction by

f n+1/2
i+1/2, j�Xz, j�tn+1/2

=
[

un
i j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i, j−1v+
2


tn+1/2

2
− un

i, j+1v−
2


tn+1/2

2

]
v+

1 
tn+1/2

+
[

un
i+1, j

(

x2, j − |v2|
tn+1/2

2

)
+ un

i+1, j−1v+
2


tn+1/2

2
− un

i+1, j+1v−
2


tn+1/2

2

]
v−

1 
tn+1/2
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=
(

un
i j − [{

un
i j v

+
2 + un

i, j+1v−
2

}

x1,i 
tn+1/2

− {
un

i, j−1v+
2 + un

i j v
−
2

}

x1,i 
tn+1/2

] 1

2
x1,i 
x2, j

)
v+

1 
tn+1/2
x2, j

+
(

un
i+1, j − [{

un
i+1, j v

+
2 + un

i+1, j+1v−
2

}

x1,i+1
tn+1/2

− {
un

i+1, j−1v+
2 + un

i+1, j v
−
2

}

x1,i+1
tn+1/2

] 1

2
x1,i+1
x2, j

)
v−

1 
tn+1/2
x2, j .

Note that the final expression shows that f n+1/2
i+1/2, j is the flux side and time integral

with flux evaluated at the solution of a Riemann problem. Similar expressions hold
for the fluxes in the second coordinate direction.

In summary, the corner transport upwind scheme for linear advection involves
the following steps. First, we compute transverse flux side and time integrals by
solving Riemann problems at the cell sides, using the cell averages:

f n
i+1/2, j = F

(
R

(
un

i j , un
i+1, j ; 0

))
e1
x2, j 
tn+1/2

f n
i, j+1/2 = F

(
R

(
un

i j , un
i, j+1; 0

))
e2
x1,i 
tn+1/2.

Then we compute left and right states at the cell sides by

un+1/2,L

i+1/2, j = un
i j − [

f n
i, j+1/2 − f n

i, j−1/2

] 1

2
x1,i 
x2, j
(7.10a)

un+1/2,R

i+1/2, j = un
i+1, j − [

f n
i+1, j+1/2 − f n

i+1, j−1/2

] 1

2
xi+1
x2, j
(7.10b)

un+1/2,L

i, j+1/2 = un
i j − [

f n
i+1/2, j − f n

i−1/2, j

] 1

2
x1,i 
x2, j
(7.10c)

un+1/2,R

i, j+1/2 = un
i, j+1 − [

f n
i+1/2, j+1 − f n

i−1/2, j+1

] 1

2
x1,i 
x2, j
. (7.10d)

These allow us to compute flux side and time integrals associated with Riemann
problems at the cell sides:

f n+1/2
i+1/2, j = F

(
R

(
un+1/2,L

i+1/2, j , un+1/2,R

i+1/2, j ; 0
))

e1
x2, j 
tn+1/2

f n+1/2
i, j+1/2 = F

(
R

(
un+1/2,L

i, j+1/2 , un+1/2,R

i, j+1/2 ; 0
))

e2
x1,i 
tn+1/2.

Finally, we can perform the conservative difference (7.4).
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7.1.2.3 Wave Propagation Form of First-Order Corner Transport Upwind

LeVeque [94] has described an alternative form of the corner transport upwind
scheme. He would rewrite (7.8) in the form

un+1
i j 
x1,i 
x2, j = un

i j 
x1,i 
x2, j

−
[(

un
i j − un

i−1, j

)
v+

1

(

x2, j − |v2|
tn+1/2

2

)

tn+1/2

+ (
un

i−1, j − un
i−1, j−1

)
v+

2

(
v+

1


tn+1/2

2

)

tn+1/2

+ (
un

i−1, j+1 − un
i−1, j

)
v+

2

(
v+

1


tn+1/2

2

)

tn+1/2

]
−

[(
un

i+1, j − un
i j

)
v−

1

(

x2, j − |v2|
tn+1/2

2

)

tn+1/2

− (
un

i+1, j − un
i+1, j−1

)
v+

2

(
v−

1


tn+1/2

2

)

tn+1/2

− (
un

i+1, j+1 − un
i+1, j

)
v−

2

(
v−

1


tn+1/2

2

)

tn+1/2

]
−

[(
un

i j − un
i, j−1

)
v+

2

(

x1,i − |v1|
tn+1/2

2

)

tn+1/2

+ (
un

i, j−1 − un
i−1, j−1

)
v+

1

(
v+

2


tn+1/2

2

)

tn+1/2

+ (
un

i+1, j−1 − un
i, j−1

)
v−

1

(
v+

2


tn+1/2

2

)

tn+1/2

]
−

[(
un

i, j+1 − un
i j

)
v−

2

(

x1,i − |v1|
tn+1/2

2

)

tn+1/2

+ (
un

i, j+1 − un
i−1, j+1

)
v+

1

(
v−

2


tn+1/2

2

)

tn+1/2

+ (
un

i+1, j+1 − un
i, j+1

)
v−

1

(
v−

2


tn+1/2

2

)

tn+1/2

]
. (7.11)

The terms in the first set of square brackets have the interpretation as the wave
through side i − 1

2 , j times the area in cell i j swept by this wave, plus corrections
for waves from sides i − 1, j − 1

2 and i − 1, j + 1
2 . The other terms in the square

brackets have similar interpretations for the other sides of cell i, j . The computation
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is actually performed as a modification of the donor cell scheme:

un+1
i j = un

i j − 
(Fe1)n
i j


tn+1/2


x1,i
− 
(Fe2)n

i j


tn+1/2


x2, j

+ 
2(Fe1)i+1/2, j

tn+1/2


x1,i
− 
2(Fe1)i−1/2, j


tn+1/2


x1,i

+ 
2(Fe2)i, j+1/2

tn+1/2


x2, j
− 
2(Fe2)i, j−1/2


tn+1/2


x2, j
.

Here the donor cell flux differences are


(Fe1)n
i j = (

un
i+1, j − un

i j

)
v−

1 + (
un

i j − un
i−1, j

)
v+

1

= [
F

(
R

(
un

i+1, j , un
i j ; 0

))
e1 − F

(
un

i j

)
e1

] + [
F

(
un

i j

)
e1 − F

(
R

(
un

i j , un
i−1, j ; 0

))
e1

]

(Fe2)n

i j = (
un

i, j+1 − un
i j

)
v−

2 + (
un

i j − un
i, j−1

)
v+

2

= [
F

(
R

(
un

i, j+1, un
i j ; 0

))
e2 − F

(
un

i j

)
e2

] + [
F

(
un

i j

)
e2 − F

(
R

(
un

i j , un
i, j−1; 0

))
e2

]
.

These are interpreted as waves (in this case differences in u) times speeds (in this
case plus/minus parts of the velocity components). The waves are computed at the
cell sides, and stored as flux differences in the grid cells. The flux corrections are


2(Fe1)i+1/2, j = (
un

i j − un
i, j−1

)
v+

1 v+
2


tn+1/2

2
x2, j
+ (

un
i+1, j − un

i+1, j−1

)
v−

1 v+
2


tn+1/2

2
x2, j

+ (
un

i, j+1 − un
i j

)
v+

1 v−
2


tn+1/2

2
x2, j
+ (

un
i+1, j+1 − un

i+1, j

)
v−

1 v−
2


tn+1/2

2
x2, j

= [{
F

(
un

i j

)
e2 − F

(
R

(
un

i j , un
i, j−1; 0

))
e2

}
+ {

F
(
R

(
un

i, j+1, un
i j ; 0

))
e2 − F

(
un

i j

)
e2

}] 
tn+1/2

2
x2, j
v+

1

+ [{
F

(
un

i+1, j

)
e2 − F

(
R

(
un

i+1, j , un
i+1, j−1; 0

))
e2

}
+ {

F
(
R

(
un

i+1, j+1, un
i+1, j ; 0

))
e2 − F

(
un

i+1, j

)
e2

}] 
tn+1/2

2
x2, j
v−

1


2(Fe2)i, j+1/2 = (
un

i j − un
i−1, j

)
v+

1 v+
2


tn+1/2

2
x1,i
+ (

un
i, j+1 − un

i−1, j+1

)
v+

1 v−
2


tn+1/2

2
x1,i

+ (
un

i+1, j − un
i j

)
v−

1 v+
2


tn+1/2

2
x1,i
+ (

un
i+1, j+1 − un

i, j+1

)
v−

1 v−
2


tn+1/2

2
x1,i

= [{
F

(
un

i j

)
e1 − F

(
R

(
un

i j , un
i−1, j ; 0

))
e1

}
+ {

F
(
R

(
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i+1, j , un
i j ; 0

))
e1 − F

(
un

i j

)
e1

}] 
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2
x1,i
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2
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F

(
un

i, j+1

)
e1 − F

(
R

(
un

i, j+1, un
i−1, j+1; 0

))
e1

}
+ {

F
(
R

(
un

i+1, j+1, un
i, j+1; 0

))
e1 − F

(
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i, j+1

)
e1

}] 
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2
x1,i
v−

2 .
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These flux corrections are assembled by looping over the cell sides, computing the
waves, and storing the effects in the appropriate side locations. A Fortran imple-
mentation of this method appears in subroutine step2 of CLAWPACK.

7.1.2.4 Second-Order Corner Transport Upwind Method

In order to form a second-order corner transport upwind method, it suffices to
compute second-order accurate approximations to the flux side and time inte-
grals in the integral form of the conservation law (7.3). Consider, for example, the
integral

f n+1/2
i+1/2, j =

∫ tn+1

tn

∫ x2, j+1/2

x2, j−1/2

F
(
u

(
x1,i+1/2, x2, t

))
e1 dx2 dt.

We can use midpoint rule quadrature for both integrals, provided that we can deter-
mine a second-order approximation to F(u(x1,i+1/2, x2, j , tn + 
tn+1/2/2))e1. To this
end, we consider the Taylor expansion

u
(

x1 + 
x1

2
, x2, t + 
t

2

)
≈ u + ∂u

∂x1


x1

2
+ ∂u

∂t


t

2

= u + ∂u
∂x1


x1

2
−

(
∂u
∂x1

v1 + ∂u
∂x2

v2

)

t

2

= u −
(

v2
t


x2

)
∂u
∂x2


x2

2
+

(
1 − v1
t


x1

)
∂u
∂x1


x1

2
.

The first term on the right is the value used by the donor cell scheme in Equation
(7.5). The first two terms provide the values used for the first-order corner transport
upwind states in Equation (7.10). The third term must be added to achieve second-
order accuracy in the corner transport upwind scheme.

Suppose that we want to solve the system of two-dimensional nonlinear conser-
vation laws

∂u
∂t

+ ∂Fe1

∂x1
+ ∂Fe2

∂x2
= 0,

where u(w) and F(w) are functions of the flux variables w. The MUSCL
implementation of the second-order corner transport upwind scheme is the
following. At the cell sides i + 1

2 , j and i, j + 1
2 compute the flux variable

increments


wn
i+1/2, j = wn

i+1, j − wn
i j and 
wn

i, j+1/2 = wn
i, j+1 − wn

i j .

In each grid cell we compute the eigenvectors Y and eigenvalues � of the flux
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derivatives:

∂Fe1

∂w
Y1 = ∂u

∂w
Y1�1 and

∂Fe2

∂w
Y2 = ∂u

∂w
Y2�2.

Of course, the matrices ∂Fe1/∂w, ∂Fe2/∂w, ∂u/∂w, Y1, Y2 and �1, �2 vary with
time and grid cell; these dependencies have been suppressed in the notation. Also
in this grid cell, solve

Y1zi+1/2, j = 
wn
i+1/2, j and Y1zi−1/2, j = 
wn

i−1/2, j

Y2zi, j+1/2 = 
wn
i, j+1/2 and Y2zi, j−1/2 = 
wn

i, j−1/2.

Compute cell-centered slopes

z̃1,i j =
{

zi+1/2, j

x1,i + 2
x1,i−1


x1,i + 
x1,i+1
+ zi−1/2, j


x1,i + 2
x1,i+1


x1,i + 
x1,i−1

}

x1,i


x1,i−1 + 
x1,i + 
x1,i+1

z̃2,i j =
{

zi, j+1/2

x2, j + 2
x2, j−1


x2, j + 
x2, j+1
+ zi, j−1/2


x2, j + 2
x2, j+1


x2, j + 
x2, j−1

}

x2, j


x2, j−1 + 
x2, j + 
x2, j+1

and componentwise the limited slopes

zn
1,i j = muscl(z̃1,i j , zi−1/2, j , zi+1/2, j ) and zn

2,i j = muscl(z̃2,i j , zi, j−1/2, zi, j+1/2).

Still in cell i, j , use characteristic information to compute the transverse flux states
at the cell sides:

wn,L
i+ 1

2 , j
= wn

i j + 1

2
(Y1)i j

[
I − (�1)i j


tn+1/2


x1,i

]
zn

1,i j

wn,R
i− 1

2 , j
= wn

i j − 1

2
(Y1)i j

[
I + (�1)i j


tn+1/2


x1,i

]
zn

1,i j

wn,L
i, j+ 1

2
= wn

i j + 1

2
(Y2)i j

[
I − (�2)i j


tn+1/2


x2, j

]
zn

2,i j

wn,R
i, j− 1

2
= wn

i j − 1

2
(Y2)i j

[
I + (�2)i j


tn+1/2


x2, j

]
zn

2,i j .

Next, we use these corner transport upwind states to compute transverse flux
integrals by solving Riemann problems at cell sides i + 1

2 , j and i, j + 1
2 :

f n
i+ 1

2 , j
= F

(
R

(
wn,L

i+ 1
2 , j

, wn,R
i+ 1

2 , j
; 0

))
e1
x2, j 
tn+1/2,

f n
i, j+ 1

2
= F

(
R

(
wn,L

i, j+ 1
2
, wn,R

i, j+ 1
2
; 0

))
e2
x1,i 
tn+1/2.
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In each grid cell i, j , we correct the previous left and right states by incorporating
the transverse fluxes:

w
n+ 1

2 ,L

i+ 1
2 , j

= wn,L
i+ 1

2 , j
−

(
∂u
∂w

)−1

i j

[
f n

i, j+ 1
2
− f n

i, j− 1
2

] 1

2
x1,i 
x2, j
(7.12a)

w
n+ 1

2 ,R

i− 1
2 , j

= wn,R
i− 1

2 , j
−

(
∂u
∂w

)−1

i j

[
f n

i, j+ 1
2
− f n

i, j− 1
2

] 1

2
x1,i 
x2, j
(7.12b)

w
n+ 1

2 ,L

i, j+ 1
2

= wn,L
i, j+ 1

2
−

(
∂u
∂w

)−1

i j

[
f n

i+ 1
2 , j

− f n
i− 1

2 , j

] 1

2
x1,i 
x2, j
(7.12c)

w
n+ 1

2 ,R

i, j− 1
2

= wn,R
i, j− 1

2
−

(
∂u
∂w

)−1

i j

[
f n

i+ 1
2 , j

− f n
i− 1

2 , j

] 1

2
x1,i 
x2, j
. (7.12d)

The conservative fluxes are computed by solving another set of Riemann prob-
lems at the sides i + 1

2 , j and i, j + 1
2 :

f
n+ 1

2

i+ 1
2 , j

= F
(
R

(
w

n+ 1
2 ,L

i+ 1
2 , j

, w
n+ 1

2 ,R

i+ 1
2 , j

; 0
))

e1
x2, j 
tn+1/2,

f
n+ 1

2

i, j+ 1
2

= F
(
R

(
w

n+ 1
2 ,L

i, j+ 1
2

, w
n+ 1

2 ,R

i, j+ 1
2

; 0
))

e2
x1,i 
tn+1/2.

Finally, we perform the conservative difference (7.4).
This second-order corner transport upwind scheme is subject to the stability

restriction


t ≤ min
i j

{
x1,i/‖�1‖∞, 
x2, j/‖�2‖∞}.

The difficulty is that the second-order corner transport upwind scheme requires
an average of four Riemann problems solutions per cell. In contrast, second-order
operator splitting has the same order and stability restriction, but requires only an
average of two Riemann problem solutions per cell, provided that the last half-step
of the prior operator split step is combined with the first half-step of the subsequent
split step.

We have implemented the second-order corner transport upwind scheme in
Program 7.1-113: ctu2d.m4. Students can execute this scheme in two dimensions by
clicking on Executable 7.1-51: guiRectangle. The student can select either of Burgers’
equation, shallow water or gas dynamics under ‘Riemann Problem Param-
eters. Students should select unsplit for the splitting under Numer-
ical Method parameters, and Godunov should have the value True. In
two dimensions, the computational results for scalar fields (such as water height
in shallow water, or pressure in gas dynamics) can be displayed either as 2D con-
tours, 2D color fills or 3D surface plots. The 3D graphics in the surface plot uses a

http://www.math.duke.edu/~johnt/math226/multidimensional/ctu2d.m4
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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trackball for rotation with the left mouse button. The figure can be sliced along the
ends of any coordinate axis using the middle mouse button. Values at points in the
figure can be determined using the right mouse button.

7.1.3 Wave Propagation

It would be straightforward to implement the MUSCL scheme above as a wave
propagation scheme, by replacing the flux differences in (7.12) and (7.4) with the
wave-field decompositions from a Riemann problem solver, as in Section 6.2.6
above. LeVeque [97] has adopted a different approach for the two-dimensional
conservation law. For each cell side he decomposes the flux differences into waves,
typically using a Roe decomposition:

(Fe1)n
i+1, j − (Fe1)n

i j = Xi+1/2, j�i+1/2, j X−1
i+1/2, j

(
un

i+1, j − un
i j

)
(Fe2)n

i, j+1 − (Fe2)n
i j = Xi, j+1/2�i, j+1/2X−1

i, j+1/2

(
un

i, j+1 − un
i j

)
These equations imply that Riemann problem solutions would provide flux
differences

F
(
R

(
un

i j , un
i+1, j ; 0

))
e1 − F

(
un

i j

)
e1 = Xi+1/2, j

(
�i+1/2, j

)− (
Xi+1/2, j

)−1 (
un

i+1, j − un
i j

)
≡ (

An
i+1/2, j

)− (
un

i+1, j − un
i j

)
F

(
un

i j

)
e1 − F

(
R

(
un

i−1, j , un
i j ; 0

))
e1 = Xi−1/2, j

(
�i−1/2, j

)+ (
Xi−1/2, j

)−1 (
un

i j − un
i−1, j

)
≡ (

An
i−1/2, j

)+ (
un

i j − un
i−1, j

)
with similar results in the second coordinate direction. In this form of the wave
propagation scheme, the matrices (An

i+1/2, j )
± are most easily understood for the

Roe approximate Riemann solver. We have provided information about how to use
interpret the fluctuation matrices A for other approximate Riemann solvers, such
as the Rusanov flux (see equation (4.91)), or the Harten–Lax–van Leer flux (see
Equation (4.98)). Note that the Harten–Hyman modification of Roe’s flux requires
special interpretation of the plus/minus parts of the eigenvalue matrix �; see Section
4.13.9 for more details.

The wave decompositions at the cell sides are used to compute the donor cell
flux differences


 (Fe1)n
i j = A−

i+1/2, j

(
un

i+1, j − un
i j

) + A+
i−1/2, j

(
un

i j − un
i−1, j

)

 (Fe2)n

i j = A−
i, j+1/2

(
un

i, j+1 − un
i j

) + A+
i, j−1/2

(
un

i j − un
i, j−1

)
.

Slope limiting is similar to the 1D wave propagation scheme in section 6.2.6. In
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the first coordinate direction, the wave-field decomposition coefficients

an
i+1/2, j = (

Xi+1/2, j
)−1 (

un
i+1, j − un

i j

)
are limited as in equation (6.10) to produce ãn

i+1/2, j . The flux corrections are com-
puted as follows:


2(Fe1)i+1/2, j = Xi+1/2, j |�i+1/2, j |
(

I − |�i+1/2, j | 2
tn+1/2


x1,i + 
x1,i+1

)
ãn

i+1/2, j

+
[
A+

i+1/2, j A
+
i, j−1/2(un

i j − un
i, j−1) + A+

i+1/2, j A
−
i, j+1/2(un

i, j+1 − un
i j )

+ A−
i+1/2, j A

+
i+1, j−1/2(un

i+1, j − un
i+1, j−1)

+ A−
i+1/2, j A

−
i+1, j+1/2(un

i+1, j+1 − un
i+1, j )

] 
tn+1/2

2
x2, j


2(Fe2)i, j+1/2 = Xi, j+1/2|�i, j+1/2|
(

I − |�i, j+1/2| 2
tn+1/2


x2, j + 
x2, j+1

)
ãn

i, j+1/2

+
[
A+

i, j+1/2A+
i−1/2, j (u

n
i j − un

i−1, j ) + A+
i, j+1/2A−

i+1/2, j (u
n
i+1, j − un

i j )

+ A−
i, j+1/2A+

i−1/2, j+1(un
i, j+1 − un

i−1, j+1)

+ A−
i, j+1/2A−

i+1/2, j+1(un
i+1, j+1 − un

i, j+1)
] 
tn+1/2

2
x2, j
.

The scheme is completed with the conservative difference

un+1
i j = un

i j − 
(Fe1)n
i j


tn+1/2


x1,i
− 
(Fe2)n

i j


tn+1/2


x2, j

+ 
2(Fe1)i+1/2, j

tn+1/2


x1,i
− 
2(Fe1)i−1/2, j


tn+1/2


x1,i

+ 
2(Fe2)i, j+1/2

tn+1/2


x2, j
− 
2(Fe2)i, j−1/2


tn+1/2


x2, j
.

The stability condition for this method is the same as for the corner transport upwind
scheme.

We have not implemented the wave propagation scheme in two dimensions.
Interested students can obtain Randy LeVeque’s code for wave propagation in
CLAWPACK, available from netlib.

7.1.4 2D Lax–Friedrichs

The Lax–Friedrichs scheme in two dimensions uses a staggered grid in two half-
steps, similar to the one-dimensional scheme in Section 6.1.1. The two half-steps
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are based on the following integral forms of the conservation law:∫ x2, j+1

x2, j

∫ x1,i+1

x1,i

u
(
x1, x2, tn+1/2

)
dx1 dx2

=
∫ x2, j+1

x2, j

∫ x1,i+1

x1,i

u
(
x1, x2, tn

)
dx1 dx2

−
∫ tn+1/2

tn

∫ x2, j+1

x2, j

F
(
w

(
x1,i+1, x2, tn

))
e1 dx2 dt

+
∫ tn+1/2

tn

∫ x2, j+1

x2, j

F
(
w

(
x1,i , x2, tn

))
e1 dx2 dt

−
∫ tn+1/2

tn

∫ x1,i+1

x1,i

F
(
w

(
x1, x2, j+1, tn

))
e2 dx1 dt

+
∫ tn+1/2

tn

∫ x1,i+1

x1,i

F
(
w

(
x1, x2, j , tn

))
e2 dx1 dt, (7.13a)∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

u
(
x1, x2, tn+1

)
dx1 dx2

=
∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

u
(
x1, x2, tn+1/2

)
dx1 dx2

−
∫ tn+1

tn+1/2

∫ x2, j+1/2

x2, j−1/2

F
(
w

(
x1,i+1/2, x2, tn

))
e1 dx2 dt

+
∫ tn+1

tn+1/2

∫ x2, j+1/2

x2, j−1/2

F
(
w

(
x1,i−1/2, x2, tn

))
e1 dx2 dt

−
∫ tn+1

tn+1/2

∫ x1,i+1/2

x1,i−1/2

F
(
w

(
x1, x2, j+1/2, tn

))
e2 dx1 dt

+
∫ tn+1

tn+1/2

∫ x1,i+1/2

x1,i−1/2

F
(
w

(
x1, x2, j−1/2, tn

))
e2 dx1 dt. (7.13b)

Unlike the one-dimensional case, the fluxes in the integrals are not necessarily con-
stant in time. Instead, these integrals will be approximated by appropriate quadra-
tures.

7.1.4.1 First-Order Lax–Friedrichs

In the first-order Lax–Friedrichs scheme in 2D, we assume that the flux variables w
are piecewise constant on the grid cells. Flux integrals in (7.13) are approximated
by forward Euler in time. This leads to the following scheme for the conserved
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quantities u:

un+1
i+1/2, j+1/2


x1,i + 
x1,i+1

2


x2, j + 
x2, j+1

2

= un
i, j
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2
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2
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2
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2

−
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2
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2

+
[
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2
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i, j )e1
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2

] 
tn+1/2

2

−
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2
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2
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2

+
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i+1, j )e1

x1,i+1

2
+ F(wn

i, j )e1
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2

] 
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2
un+1

i, j 
x1,i 
x2, j

=
[
un+1/2

i−1/2, j−1/2 + un+1/2
i+1/2, j−1/2 + un+1/2

i−1/2, j+1/2 + un+1/2
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2

− [
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+ [
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F(wn

i+1/2, j+1/2)e2 + F(wn
i−1/2, j+1/2)e2
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2
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2
.

Note that it is necessary to determine the flux variables w from the conserved
quantities u after each half-step. The stability restriction for this scheme is the
same as for the corner transport upwind scheme.

7.1.4.2 Second-Order Lax–Friedrichs

The second-order version of the Lax–Friedrichs scheme due to Nessyahu and Tad-
mor [121] was extended to 2D by Jiang and Tadmor in [78]. In this scheme, we
assume that the current solution is piecewise linear

un(x) = un
i j + Sn

i j

[ x1−x1,i


x1,i
x2−x2, j


x2, j

]
.

The columns of the slope matrix Sn
i j are computed in the same way as the limited

slopes 
u in the 1D scheme of Section 6.2.3:

Sn
i j e1 = limiter

{(
un

i j − un
i−1, j

)
,
(
un

i+1, j − un
i j

)}
Sn

i j e2 = limiter
{(

un
i j − un

i, j−1

)
,
(
un

i, j+1 − un
i j

)}
.
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Flux integrals are approximated by the midpoint rule in time and the trapezoidal
rule in space. This implies that the first half-step takes the form

un+1/2
i+1/2, j+1/2


x1,i + 
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2
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{
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[

x1,i


x2, j

]
1

4

}

x1,i

2


x2, j

2
+
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4
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{
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[
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1

4

}
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2


x2, j+1

2
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{
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1

4

}
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2
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{

(Fe1)(wn+1/4
i+1, j ) + (Fe1)(wn+1/4

i+1, j+1)
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{
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,

where the states for the midpoint rule temporal integrals of the fluxes are given by
the following Taylor’s rule approximation:

u
(

x1, x2, t + 
t

4

)
≈ u + ∂u

∂t


t

4
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(
∂Fe1
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(
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(
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− ∂Fe2
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(
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t

4
.

For the second half-step, we compute slopes

Sn+1/2
i+1/2, j+1/2e1 = limiter

{(
un+1/2

i+1/2, j+1/2 − un+1/2
i−1/2, j+1/2

)
,
(

un+1/2
i+3/2, j+1/2 − un+1/2

i+1/2, j+1/2

)}
Sn+1/2

i+1/2, j+1/2e2 = limiter
{(

un+1/2
i+1/2, j+1/2 − un+1/2

i+1/2, j−1/2

)
,
(

un+1/2
i+1/2, j+3/2 − un+1/2

i+1/2, j+1/2

)}
and states for temporal integrals
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Then the solution at the new time is given by
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i, j 
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=
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2
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.

It is helpful to note that Jiang and Tadmor include a copy of their scheme in
their paper. Also, note that the development of a third-order extension of the Lax–
Friedrichs scheme suffers from the same difficulty facing the generalizations of the
MUSCL and wave propagation schemes: the development of appropriate piece-
wise quadratic reconstructions in multiple dimensions. Some work in this direction
appears in [100, 101].

We have implemented the first- and second-order corner Lax–Friedrichs scheme
in Program 7.1-114: lf2d.m4. Students can execute this scheme in two dimensions by
clicking on Executable 7.1-52: guiRectangle. The student can select either of Burgers’
equations, shallow water or gas dynamics under ‘Riemann Problem Param-
eters. Students should selectunsplit for thesplitting underNumerical
Method parameters, andLax-Friedrichs should be the first scheme with
value True. In two dimensions, the computational results for scalar fields (such as
water height in shallow water, or pressure in gas dynamics) can be displayed either
as 2D contours, 2D color fills or 3D surface plots. The 3D graphics in the surface
plot uses a trackball for rotation with the left mouse button. The figure can be sliced
along the ends of any coordinate axis using the middle mouse button. Values at
points in the figure can be determined using the right mouse button.

http://www.math.duke.edu/~johnt/math226/multidimensional/lf2d.m4
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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7.1.5 Multidimensional ENO

The multidimensional form of the ENO scheme is straightforward. Recall that
ENO views the conservation law in terms of the method of lines:

∂u
∂t

= −∂f 1

∂x1
− ∂f 2

∂x2
.

Whenever the ordinary differential equation integrator requires the value of ∂f 1/∂x1

and ∂f 2/∂x2, we would apply the standard one-dimensional ENO scheme to each of
f 1 and f 2 in the separate coordinate directions. Since the ordinary differential equa-
tion solvers all involve multiple sub-steps, the overall scheme involves significant
coupling between grid cells, even diagonal neighbors.

We have implemented the ENO scheme in Program 7.1-115: eno2d.m4. Students can
execute this scheme in two dimensions by clicking on Executable 7.1-53: guiRectangle.
The student can select either of Burgers’ equations, shallow water or gas dynamics
underRiemann Problem Parameters. Students should selectunsplit for
the splitting under Numerical Method parameters, and ENO should
be the first scheme with value True. In two dimensions, the computational results
for scalar fields (such as water height in shallow water, or pressure in gas dynamics)
can be displayed either as 2D contours, 2D color fills or 3D surface plots. The 3D
graphics in the surface plot uses a trackball for rotation with the left mouse button.
The figure can be sliced along the ends of any coordinate axis using the middle
mouse button. Values at points in the figure can be determined using the right mouse
button.

7.1.6 Discontinuous Galerkin Method on Rectangles

The application of the discontinuous Galerkin method to a 2D rectangular grid is
a natural extension of the 1D ideas in Section 6.2.9. If β(x) is an arbitrary smooth
function, we note that the weak form of a scalar conservation law on a grid cell is

0 =
∫ x2, j+1/2

x2, j−1/2

∫ x1,i+1/2

x1,i−1/2

β

[
∂u
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]
dx1 dx2

=
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∫ x1,i+1/2
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∂βu
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− ∂β
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f2 dx1 dx2

+
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+
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http://www.math.duke.edu/~johnt/math226/multidimensional/eno2d.m4
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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Since these equations hold componentwise in the conserved quantities, it suffices
to consider a scalar law u.

We approximate our scalar conserved quantity by a linear combination of
orthonormal basis functions,

u(x1, x2, t) = b
(
ξ1,i (x1)

)�
Ui j (t)b

(
ξ2, j (x2)

)
,

where the coordinate transformations are
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)
,

and Ui j (t) is the array of unknown coefficients of the basis functions for
each conserved quantity. Taking β(x) to be any component of the array
b(ξ1,i (x1))b(ξ2, j (x2))� allows us to write the weak form of the discontinuous
Galerkin method as follows:
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Changing integration variables and using the orthonormality of the basis functions
produces

0 = dUi j

dt


x1,i

2


x2, j

2

−
∫ 1

−1

∫ 1

−1
b′(ξ1) f1

(
b(ξ1)�Ui j (t)b(ξ2)

)
b(ξ2)� dξ1


x2, j

2
dξ2

−
∫ 1

−1

∫ 1

−1
b(ξ1) f2

(
b(ξ1)�Ui j (t)b(ξ2)

)
b′(ξ2)�


x1,i

2
dξ1 dξ2
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+
∫ 1

−1
b(1) f1

(
R(b(1)�Ui, j (t)b(ξ2), b(−1)�Ui+1, j (t)b(ξ2); 0)

)
b(ξ2)�


x2, j

2
dξ2

−
∫ 1

−1
b(−1) f1

(
R(b(1)�Ui−1, j (t)b(ξ2), b(−1)�Ui, j (t)b(ξ2); 0)

)
b(ξ2)�


x2, j

2
dξ2

+
∫ 1

−1
b(ξ1) f2

(
R(b(ξ1)�Ui, j (t)b(1), b(ξ1)�Ui, j+1(t)b(−1); 0)

)
b(1)�


x1,i

2
dx1

−
∫ 1

−1
b(ξ1) f2

(
R(b(ξ1)�Ui, j−1(t)b(1), b(ξ1)�Ui, j (t)b(−1); 0)

)
b(−1)�


x1,i

2
dx1.

The remaining integrals are approximated by applying product Lobatto quadra-
ture rules arising from the 1D quadrature rule

∫ 1
−1 φ(ξ ) dξ ≈ ∑Q

q=0 φ(ξq)αq . This
gives us the continuous-in-time form of the discontinuous Galerkin scheme for
scalar laws in 2D:

0 = dUi j

dt


x1,i 
x2, j

4

−
Q∑

q2=0

Q∑
q1=0

b′(ξq1 ) f1
(
b(ξq1 )

�Ui j (t)b(ξq2 )
)

b(ξq2 )
�αq1αq2


x2, j

2

−
Q∑

q2=0

Q∑
q1=0

b(ξq1 ) f2
(
b(ξq1 )

�Ui j (t)b(ξq2 )
)

b′(ξq2 )
�αq1αq2


x1,i

2

−
Q∑

q2=0

b(1) f1
(
R

(
b(1)�Ui, j (t)b(ξq2 ), b(−1)�Ui+1, j (t)b(ξq2 ); 0

))
b(ξq2 )

�αq2


x2, j

2

+
Q∑

q2=0

b(−1) f1
(
R

(
b(1)�Ui−1 j (t)b(ξq2 ), b(−1)�Ui, j (t)b(ξq2 ); 0

))
b(ξq2 )

�αq2


x2, j

2

−
Q∑

q1=0

b(ξq1 ) f2
(
R

(
b(ξq1 )

�Ui, j (t)b(1), b(ξq1 )
�Ui, j+1(t)b(−1); 0

))
b(1)�αq1


x1,i

2

+
Q∑

q1=0

b(ξq1 ) f2
(
R

(
b(ξq1 )

�Ui, j−1(t)b(1), b(ξq1 )
�Ui, j (t)b(−1); 0

))
b(−1)�αq1


x1,i

2
.

Time integration is performed by the same Runge–Kutta schemes as in the ENO
scheme of Section 5.13.

Limiting in two dimensions is more complicated than in one dimension. It is
easy to see that the cell average is ui j (t) = e�

0 Ui j (t)e0b2
0. In the first coordinate
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direction, we compute

u(x1,i−1/2, x2, j , t) − ui j (t) = b(−1)�Ui j (t)b(0) − b0e�
0 Ui j (t)e0b0,

u(x1,i+1/2, x2, j , t) − ui j (t) = b(1)�Ui j (t)b(0) − b0e�
0 Ui j (t)e0b0.

If

max
{|u(x1,i−1/2, x2, j , t) − ui j (t)|, |u(x1,i+1/2, x2, j , t) − ui j (t)|

} ≤ M
x2
1,i

then no limiting is done in the first coordinate direction. Otherwise, we compute


u1,i j = minmod(ui+1, j (t) − ui j (t), ui, j (t) − ui−1, j (t))

where

minmod(a, b) =
{

min{|a|, |b|}sign(a), ab > 0
0, ab ≤ 0.

Then for all polynomial orders 0 < p0 < Q and 0 ≤ p1 < Q we set

e�
p0

ui j (t)ep1 =
{


u1,i j , p0 = 1 and p1 = 0
0, otherwise.

In other words, the first row of ui j (t) is unchanged, and the first entry of the second
row is the only nonzero below the first row. In the second coordinate direction, we
compute u(x1,i , x2, j+1/2, t) − ui j (t) and u(x1,i , x2, j−1/2, t) − ui j (t) using similar
expressions, to see if limiting should be done. If so, we compute 
u2,i j using
similar expressions and zero all but the first column of Ui j (t) and the first entry of
its second column. For a system of conservation laws in multiple dimensions, the
limiting is done in characteristic expansion coefficients in each coordinate direction.
This limiting is performed just after the initial data is determined, and just after
each Runge–Kutta step for time integration.

Note that for hyperbolic systems, the discontinuous Galerkin equations are cou-
pled through the flux function evaluations. Each cell side requires the solution
of Q + 1 Riemann problems, where Q + 1 is the number of quadrature points.
As we saw in Section 5.14.3, the number of Lobatto quadrature points should
be at least one plus the highest degree of the basis polynomials. The number
of Riemann problems is roughly two times the order of the method times the
number of grid cells, and the number of flux function evaluations in the inte-
rior of the grid cells is four times the square of the order times the number of
grid cells. In addition, the number of Runge–Kutta steps increases with the order
of the scheme, and the size of the stable timestep decreases with the order (see
Section 5.14.6).

We have implemented the discontinuous Galerkin scheme in Program 7.1-116:
dgm2d.m4. Students can execute this scheme in two dimensions by clicking on

http://www.math.duke.edu/~johnt/math226/multidimensional/dgm2d.m4
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Executable 7.1-54: guiRectangle.The student can select either Burgers’ equation, shal-
low water or gas dynamics under ‘Riemann Problem Parameters. Stu-
dents should select unsplit for the splitting under Numerical Method
parameters, and Discontinuous Galerkin should be the first scheme
with value True. In two dimensions, the computational results for scalar fields
(such as water height in shallow water, or pressure in gas dynamics) can be dis-
played either as 2D contours, 2D color fills or 3D surface plots. The 3D graphics
in the surface plot uses a trackball for rotation with the left mouse button. The
figure can be sliced along the ends of any coordinate axis using the middle mouse
button. Values at points in the figure can be determined using the right mouse
button.

Exercises for 7.1

7.1.1 Verify that the donor cell scheme is free-stream-preserving: if un
i jk = u for all grid cells �i jk ,

then un+1
i jk = u for all �i jk .

7.1.2 Verify that the first-order corner transport upwind scheme is free-stream-preserving.

7.2 Riemann Problems in Two Dimensions

In order to generate interesting test problems for two-dimensional calculations, we
will consider a generalization of the one-dimensional Riemann problem, consisting
of four constant states in the quadrants of the plane. In order to reduce the number
of possible cases, we will assume that neighboring constant states are associated
with one-dimensional Riemann problems in which a single wave is involved in the
evolution.

7.2.1 Burgers’ Equation

The solution of two-dimensional scalar Riemann problems was examined by
Lindquist [104, 105]. For Burgers’ equation, the flux is given by F(u) = 1

2 u2n�.
In order to simplify the discussion, we will assume that n > 0. We will order the
states counterclockwise in the plane, beginning with the upper right-hand quad-
rant. There are 24 possible orderings of these states. Along each positive or neg-
ative axis it is possible to have either a rarefaction or a shock, giving a total of
16 combinations. Two of these combinations (R21R32S34S41 and S21S32R34R41)
are impossible due to conflicts among the Lax admissibility conditions. Because
both components of n are positive, five of these combinations are related
by interchanging the axes (R21S32R34R41 =⇒ R21R32S34R41, S21R32R34R41 =⇒
R21R32R34S41, S21R32S34R41 =⇒ R21S32R34S41, S21S32R34S41 =⇒ S21R32S34S41

http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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and S21S32S34R41 =⇒ R21S32S34S41). This leaves nine distinct cases:

R21R32R34R41 :u1 > u2 > u4 > u3 or u1 > u4 > u2 > u3

R21R32R34S41 :u4 > u1 > u2 > u3

R21R32S34R41 :u1 > u2 > u3 > u4

R21S32R34R41 :u4 > u1 > u3 > u2 or u4 > u3 > u1 > u2

R21S32S34R41 :u1 > u3 > u2 > u4 or u1 > u3 > u4 > u2 or

u3 > u1 > u2 > u4 or u3 > u1 > u4 > u2

R21S32S34S41 :u3 > u4 > u1 > u2

S21R32R34S41 :u2 > u4 > u1 > u3 or u2 > u4 > u3 > u1 or

u4 > u2 > u1 > u3 or u4 > u2 > u3 > u1

S21R32S34S41 :u2 > u3 > u4 > u1

S21S32S34S41 :u3 > u2 > u4 > u1 or u3 > u4 > u2 > u1.

Within each of these cases, it is possible to generate transonic rarefactions, or
rarefactions involving all positive speeds or all negative speeds. Similarly, shocks
could have negative or positive speeds. The actual possibilities vary with the cases.

We have already displayed some numerical results for this Riemann problem in
Figure 7.1. This Riemann problem used the initial data

u2 = 0.67 u1 = −1
u3 = 1.0 u4 = 0.33

and n = [1, 1]. The solution involves only shocks.
We have implemented the 2D Riemann problem for Burgers’ equation in Program

7.2-117: GUIRectangle.C. Students can execute a variety of schemes for this problem by
clicking on Executable 7.2-55: guiRectangle. The student can select Burgers’ equation
under Riemann Problem Parameters. Students should select the desired
splitting under Numerical Method parameters, and set the boolean
flag for their desired method to True. In two dimensions, the computational results
for the solution can be displayed either as 2D contours, 2D color fills or 3D surface
plots. The 3D graphics in the surface plot uses a trackball for rotation with the left
mouse button. The figure can be sliced along the ends of any coordinate axis using
the middle mouse button. Values at points in the figure can be determined using the
right mouse button. Students can perform an error analysis, including a comparison
of schemes, by setting the number of cells in one of the coordinate directions to
0 under Numerical Method parameters. These comparisons can be very
time-consuming.

http://www.math.duke.edu/~johnt/math226/multidimensional/GUIRectangle.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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7.2.2 Shallow Water

As we showed in section 4.1.10, the shallow water model in example 4.1.1 has four
possible elementary waves with associated admissibility conditions:

R− :vR − vL = n2(
√

ghL −
√

ghR), hR ≤ hL

R+ :vR − vL = n2(
√

ghR −
√

ghL), hL ≤ hR

S− :vR − vL = −n(hR − hL)

√
g

2

(
1

hL

+ 1

hR

)
, hR > hL

S+ :vR − vL = −n(hL − hR)

√
g

2

(
1

hR

+ 1

hL

)
, hL > hR.

In the shallow water model, there is no inherent direction associated with the flux
function, so without loss of generality we may rotate the 2D Riemann problem for
shallow water so that the largest value of h occurs in the upper right-hand quadrant.
Again, we will order the states counterclockwise in the plane, beginning with the
upper right-hand quadrant. This leaves six possible orderings of the states:

h1 > h2 > h3 > h4 and h1 > h4 > h3 > h2 (7.14a)

h1 > h2 > h4 > h3 and h1 > h4 > h2 > h3 (7.14b)

h1 > h3 > h2 > h4 and h1 > h3 > h4 > h2. (7.14c)

By switching the coordinate axes, we may obtain the second set of inequalities on
each of these lines from the first set. This leaves us with three distinct orderings of
the states.

The 2D Riemann problem for shallow water may have either a rarefaction or a
shock on either the positive or negative branches of each coordinate axis. The wave
curves and admissibility conditions imply that

R21 =⇒ e�
1 (v1 − v2) > 0

S21 =⇒ e�
1 (v1 − v2) < 0

R32 =⇒ e�
2 (v2 − v3) > 0

S32 =⇒ e�
2 (v2 − v3) < 0

R34 =⇒ e�
1 (v4 − v3) > 0

S34 =⇒ e�
1 (v4 − v3) < 0

R41 =⇒ e�
2 (v1 − v4) > 0

S41 =⇒ e�
2 (v1 − v4) < 0.

For each of the three distinct orderings of the states in (7.14), there are two admis-
sible waves on each positive or negative axis, giving a total of 16 cases for each
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ordering. By comparing the signs of the components of (v1 − v2) + (v2 − v3) with
(v1 − v4) + (v4 − v3), we see that only four of the 16 cases are possible for each
ordering. This gives us a total of 12 situations to consider more carefully:

R+
21R+

32R−
34R+

41, h1 > h2 > h3 > h4 (7.15a)

R+
21S−

32R−
34S−

41, h1 > h2 > h3 > h4 (7.15b)

S−
21R+

32S+
34R+

41, h1 > h2 > h3 > h4 (7.15c)

S−
21S−

32S+
34S−

41, h1 > h2 > h3 > h4 (7.15d)

R+
21R+

32R+
34R+

41, h1 > h2 > h4 > h3 (7.15e)

R+
21S−

32R+
34S−

41, h1 > h2 > h4 > h3 (7.15f)

S−
21R+

32S−
34R+

41, h1 > h2 > h4 > h3 (7.15g)

S−
21S−

32S−
34S−

41, h1 > h2 > h4 > h3 (7.15h)

R+
21R−

32R−
34R+

41, h1 > h3 > h4 > h2 (7.15i)

R+
21S+

32R−
34S−

41, h1 > h3 > h4 > h2 (7.15j)

S−
21R−

32S+
34R+

41, h1 > h3 > h4 > h2 (7.15k)

S−
21S+

32S+
34S−

41, h1 > h3 > h4 > h2. (7.15l)

Before examining these cases in detail, we note that
√

hR − √
hL is a strictly increas-

ing function of hR and a strictly decreasing function of hL . It is also easy to show
that on a shock locus S+

(vL − vR) · n

√
2

g
= (hL − hR)

√
1

hR

+ 1

hL

is a strictly increasing function of hL and a strictly decreasing function of hR.
All but four of the cases in (7.15) are impossible. For example, the first case

(7.15a), namely R+
21R+

32R−
34R+

41 and h1 > h2 > h3 > h4 implies that[
2(

√
gh1 − √

gh2)
2(

√
gh2 − √

gh3)

]
= (v1 − v2) + (v2 − v3)

= (v1 − v4) + (v4 − v3)

=
[

2(
√

gh1 − √
gh4)

2(
√

gh3 − √
gh4)

]
.

The first component of this equation implies that
√

h2 = √
h4, which violates the

assumed ordering of the states. In the case (7.15b), the second component of the
same vector sum implies that

(h2 − h3)

√
1

h3
+ 1

h2
= (h1 − h4)

√
1

h4
+ 1

h1
; (7.16)
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since h1 > h2 > h3 > h4 this equation is impossible. Case (7.15c) is impossible
because the first vector component implies that√

h1 −
√

h4 =
√

h2 −
√

h3

under the assumption h1 > h2 > h3 > h4. Case (7.15d) is impossible because the
second vector component is the impossible equation (7.16). Case (7.15i) is impos-
sible because the first vector component implies that√

h1 −
√

h2 =
√

h3 −
√

h4

under the assumption h1 > h3 > h4 > h2. Case (7.15j) is impossible because the
first vector component implies the same impossible equation. Case (7.15k) is impos-
sible because the first vector component implies

(h3 − h4)

√
1

h3
+ 1

h4
= (h1 − h2)

√
1

h1
+ 1

h2

under the assumption h1 > h3 > h4 > h2. Case (7.15l) is impossible for the same
reason that the previous case was impossible.

The four possible cases are the following. In case (7.15e) we could have four
rarefactions, R+

21R+
32R+

34R+
41, under the conditions that h1 > h2 > h4 > h3 and√

h1 −
√

h2 =
√

h4 −
√

h3.

Given shallow water heights satisfying this equation and the velocity at one of the
states, the velocities at all of the states are determined. Secondly, in case (7.15f) we
could have two rarefactions and two shocks, R+

21S−
32R+

34S−
41, under the conditions

that h1 > h2 > h4 > h3 and√
h1 −

√
h2 =

√
h4 −

√
h3

(h2 − h3)

√
1

h3
+ 1

h2
= (h1 − h4)

√
1

h4
+ 1

h1
.

Thirdly, in case (7.15g) we could have two shocks and two rarefactions,
S−

21R+
32S−

34R+
41, under the conditions that h1 > h2 > h4 > h3 and

(h1 − h2)

√
1

h2
+ 1

h1
= (h4 − h3)

√
1

h3
+ 1

h4√
h2 −

√
h3 =

√
h1 −

√
h4.
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Finally, in case (7.15h) we could have four shocks, S−
21S−

32S−
34S−

41, under the condi-
tions that h1 > h2 > h4 > h3 and

(h1 − h2)

√
1

h2
+ 1

h1
= (h4 − h3)

√
1

h3
+ 1

h4

(h2 − h3)

√
1

h3
+ 1

h2
= (h1 − h4)

√
1

h4
+ 1

h1
.

For example, the initial conditions

w2 =
0.5625

−0.5
0

 w1 =
1

0
0


.

w3 =
.0625

−0.5
−1

 w4 =
0.25

0.0
−1


will produce four rarefactions.

We have implemented the 2D Riemann problem for shallow water in Program
7.2-118: GUIRectangle.C. Students can execute a variety of schemes for this problem
by clicking on Executable 7.2-56: guiRectangle. The student can select shallow water
under Riemann Problem Parameters. Students should select the desired
splitting under Numerical Method parameters, and set the boolean
flag for their desired method to True. In two dimensions, the computational results
for water height can be displayed either as 2D contours, 2D color fills or 3D surface
plots. The 3D graphics in the surface plot uses a trackball for rotation with the left
mouse button. The figure can be sliced along the ends of any coordinate axis using
the middle mouse button. Values at points in the figure can be determined using the
right mouse button. Students can perform an error analysis, including a comparison
of schemes, by setting the number of cells in one of the coordinate directions to
0 under Numerical Method parameters. These comparisons can be very
time-consuming.

7.2.3 Gas Dynamics

The 2D Riemann problem for gas dynamics was described by Schulz-Rinne [144].
Following [106], we will recommend six of these Riemann problems for student

http://www.math.duke.edu/~johnt/math226/multidimensional/GUIRectangle.C
http://www5.math.duke.edu/cgi-bin/startvnc?run=multidimensional_guiRectangle
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(a) Second-order Corner transport upwind (b) Second-order operator split MUSCL

(c) Second-order ENO (d) Second-order Lax-Friedrichs

Fig. 7.3 2D Riemann problem for gas dynamics: 400 × 400 grid, initial data in
Equation (7.17)

consideration. For four shocks producing a narrow jet, try

w2 =


0.5323
1.206

0
0.3

 w1 =


1.5
0
0

1.5



w3 =


0.138
1.206
1.206
0.029

 w4 =


0.5323

0.0
1.206

0.3


. (7.17)

(Recall that the flux variable vector w is ordered ρ, v then p.) Some numerical
results for this problem are shown in Figure 7.3.
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Another problem involving four shocks is the following

w2 =


0.5065
0.8939

0
0.35

 w1 =


1.1
0
0

1.1



w3 =


1.1

0.8939
0.8939

1.1

 w4 =


0.5065

0.0
0.8939

0.35


. (7.18)

The following problem involves four contact discontinuities:

w2 =


2

0.75
0.5
1

 w1 =


1

0.75
−0.5

1



w3 =


1

−0.75
0.5
1

 w4 =


3

−0.75
−0.5

1


. (7.19)

The next problem involves two shocks and two contact discontinuities:

w2 =


1

0.7276
0
1

 w1 =


0.5313

0
0

0.4



w3 =


0.8
0
0
1

 w4 =


1
0

0.7276
1


. (7.20)

The final two problems each involve two contact discontinuities, a rarefaction and
a shock; both produce interesting vortices:

w2 =


0.5197

−0.6259
−0.3
0.4

 w1 =


1

0.1
−0.3

1



w3 =


0.8
0.1

−0.3
0.4

 w4 =


0.4

0.5313
0.1

0.4276


(7.21)
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w2 =


2
0

−0.3
1

 w1 =


1
0

−0.4
1



w3 =


1.0625

0
0.2145

0.4

 w4 =


0.4

0.5197
0

−1.1259


. (7.22)

Exercises for 7.2

7.2.1 Determine initial conditions for the Burgers’ equation 2D Riemann problem so that all waves are
rarefactions, and the rarefactions between u3 and its neighbors are all transonic. Test your favorite
numerical scheme in 2D on your Riemann problem.

7.2.2 Determine initial conditions for the Burgers’ equation 2D Riemann problem so that the wave
pattern is S21R32R34S41, with both rarefactions transonic. Verify your results numerically.

7.2.3 Determine initial conditions for the 2D Riemann problem for shallow water so that all waves are
shocks. Verify your solution numerically.

7.2.4 Test your favorite numerical method on problem (7.19). Perform a mesh refinement study. What
order of accuracy is your numerical method actually achieving?

7.2.5 We did not discuss MHD in multiple dimensions because there are special issues regarding the
treatment of the ∇ · B = 0 condition. Read Tóth [160] and report to the class on the suggested
numerical approaches to this problem.

7.3 Numerical Methods in Three Dimensions

7.3.1 Operator Splitting

Suppose that we want to solve the three-dimensional system of partial differential
equations

∂u
∂t

+ ∂f 1

∂x1
+ ∂f 2

∂x2
+ ∂f 3

∂x3
= 0.

With spatial operator splitting, we would select a method for the one-dimensional
problem

∂u
∂t

+ ∂f
∂x

= 0,

which we will write as

un+
i = un

i − [f i+1/2(un) − f i−1/2(un)]

t


xi
.
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A first-order operator splitting scheme for the partial differential equation using the
one-dimensional method would take the form

un+1,n,n
i jk = un

i jk − [
(f 1)i+1/2, jk (un) − (f 1)i−1/2, jk (un)

]
(7.23a)

un+1,n+1,n
i jk = un+1,n,n

i jk − [
(f 2)i, j+1/2,k (un+1,n,n) − (f 2)i, j−1/2,k (un+1,n,n)

]
(7.23b)

un+1
i jk = un+1,n+1,n

i jk − [
(f 3)i, j,k+1/2 (un+1,n+1,n) − (f 3)i, j,k−1/2 (un+1,n+1,n)

]
. (7.23c)

No matter what the order of the one-dimensional scheme might be, the resulting
operator splitting scheme would be at most first-order accurate in time. Its spatial
order would be determined by the spatial order of the one-dimensional scheme. The
operator splitting scheme is typically stable if each of its individual steps is stable.

A second-order operator splitting of a three-dimensional conservation law might
consider the differential equation in the form

∂u

∂t
+

(
∂f 1

∂x1
+ ∂f 2

∂x2

)
+ ∂f 3

∂x3
= 0.

Other pairings of the partial derivatives would also work. Thus one timestep with
second-order operator splitting might look like

un,n,n+1/2
i jk = un

i jk − [
(f 3)i, j,k+1/2(un) − (f 3)i, j,k−1/2(un)

] 
tn+1/2

2
x3,k
,

un,n+1/2,n+1/2
i jk = un,n,n+1/2

i jk − [
(f 2)i, j+1/2,k(un,n,n+1/2)

− (f 2)i, j−1/2,k(un,n,n+1/2)
] 
tn+1/2

2
x2, j
,

un+1,n+1/2,n+1/2
i jk = un,n+1/2,n+1/2

i jk − [
(f 1)i+1/2, j,k(un,n+1/2,n+1/2)

− (f 1)i−1/2, j,k(un,n+1/2,n+1/2)
] 
tn+1/2


x1,i
,

un+1,n+1,n+1/2
i jk = un+1,n+1/2,n+1/2

i jk − [
(f 2)i, j+1/2,k(un+1,n+1/2,n+1/2)

− (f 2)i, j−1/2,k(un+1,n+1/2,n+1/2)
] 
tn+1/2

2
x2, j
,

un+1
i jk = un+1,n+1,n+1/2

i jk − [
(f 3)i, j,k+1/2(un+1,n+1,n+1/2)

− (f 3)i, j,k−1/2(un+1,n+1,n+1/2)
] 
tn+1/2

2
x3,k
.

As with the two-dimensional scheme, it is possible to combine the last update in
the third coordinate direction at the end of one timestep with the first update at the
beginning of the next timestep.

Operator splittings of even higher order are possible [58]. Such splittings
necessarily involve negative splitting coefficients, which complicate upwinding
issues and stability considerations. A different approach might be to use deferred
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correction [46]. This approach can reach a pre-determined temporal order using
lower-order schemes, such as first- or second-order operator splitting. However, this
approach requires more data storage than higher-order operator splitting schemes.
Neither of these two approaches are useful for increasing spatial order.

7.3.2 Donor Cell Methods

The integral form of the three-dimensional conservation law

∂u
∂t

+
3∑

�=1

∂F(u)e�

∂x�

= 0

is ∫
�i jk

u(x, tn+1) dx =
∫

�i jk

u(x, tn) dx −
∫ tn+1

tn

∫
∂�i jk

F(u)n ds dt,

where n is the outer normal and s is surface area. Let us denote the intervals

I1,i = (x1,i−1/2, x1,i+1/2)

I2, j = (x2, j−1/2, x2, j+1/2)

I3,k = (x3,k−1/2, x3,k+1/2).

On the rectangular grid cell �i jk = I1,i × I2, j × I3,k the integral form can be written∫
I3,k

∫
I2, j

∫
I1,i

u(x1, x2, x3, tn+1) dx1 dx2 dx3

=
∫

I3,k

∫
I2, j

∫
I1,i

u(x1, x2, x3, tn) dx1 dx2 dx3

−
∫ tn+1

tn

∫
I3,k

∫
I2, j

F(u(x1,i+1/2, x2, x3, t))e1 dx2 dx3 dt

+
∫ tn+1

tn

∫
I3,k

∫
I2, j

F(u(x1,i−1/2, x2, x3, t))e2 dx2 dx3 dt

−
∫ tn+1

tn

∫
I1,i

∫
I3,k

F(u(x1, x2, j+1/2, x3, t))e2 dx3 dx1 dt

+
∫ tn+1

tn

∫
I1,i

∫
I3,k

F(u(x1, x2, j−1/2, x3, t))e2 dx3 dx1 dt

−
∫ tn+1

tn

∫
I2, j

∫
I1,i

F(u(x1, x2, x3,k+1/2, t))e3 dx1 dx2 dt

+
∫ tn+1

tn

∫
I2, j

∫
I1,i

F(u(x1, x2, x3,k−1/2, t))e3 dx1 dx2 dt. (7.24)
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We will define cell averages

un
i jk
x1,i 
x2, j 
x3,k ≈

∫
I3,k

∫
I2, j

∫
I1,i

u(x1, x2, x3, tn) dx1 dx2 dx3

and flux side and time integrals

f n+1/2
i+1/2, jk ≈

∫ tn+1

tn

∫
I3,k

∫
I2, j

F(u(x1,i+1/2, x2, x3, t))e1 dx2 dx3 dt

f n+1/2
i, j+1/2,k ≈

∫ tn+1

tn

∫
I1,i

∫
I3,k

F(u(x1, x2, j+1/2, x3, t))e2 dx3 dx1 dt

f n+1/2
i j,k+1/2 ≈

∫ tn+1

tn

∫
I2, j

∫
I1,i

F(u(x1, x2, x3,k+1/2, t))e3 dx1 dx2 dt

in order to perform a conservative difference

un+1
i jk 
x1,i 
x2, j 
x3,k = un

i jk
x1,i 
x2, j 
x3,k + f n+1/2
i−1/2, jk − f n+1/2

i+1/2, jk + f n+1/2
i, j−1/2,k

− f n+1/2
i, j+1/2,k + f n+1/2

i j,k−1/2 − f n+1/2
i j,k+1/2. (7.25)

Individual schemes will differ in how the flux integrals are computed.
In the traditional donor cell upwind scheme, the flux integrals are given by

f n+1/2
i+1/2, jk = F

(
R

(
un

i jk, un
i+1, jk

))
e1
x2, j 
x3,k
tn+1/2 (7.26a)

f n+1/2
i, j+1/2,k = F

(
R

(
un

i jk, un
i, j+1,k

))
e2
x3,k
x1,i 
tn+1/2 (7.26b)

f n+1/2
i j,k+1/2 = F

(
R

(
un

i jk, un
i j,k+1

))
e3
x1,i 
x2, j 
tn+1/2. (7.26c)

As in the two-dimensional case, this choice leads to restricted stability, as can
easily be seen by considering the linear advection equation. If the velocity vector
v is constant and F(u) = uv�, then the donor cell upwind flux integrals are

f n+1/2
i+1/2, jk = [

un
i jkv+

1 + un
i+1, jkv−

1

]

x2, j 
x3,k
tn+1/2

f n+1/2
i, j+1/2,k = [

un
i jkv+

2 + un
i, j+1,kv−

2

]

x3,k
x1,i 
tn+1/2

f n+1/2
i j,k+1/2 = [

un
i jkv+

3 + un
i j,k+1v−

3

]

x1,i 
x2, j 
tn+1/2.

Then the cell averages are given by

un+1
i jk 
x1,i 
x2, j 
x3,k

= un
i jk
x1,i 
x2, j 
x3,k

+ {
un

i−1, jkv+
1 + un

i jkv−
1 − un

i jkv+
1 + ui+1, jkv−

1

}

x2
x3
tn+1/2

+ {
un

i, j−1,kv+
2 + un

i jkv−
2 − un

i jkv+
2 + ui, j+1,kv−

2

}

x3
x1
tn+1/2

+ {
un

i j,k−1v+
3 + un

i jkv−
3 − un

i jkv+
3 + ui j,k+1v−

3

}

x1
x2
tn+1/2
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= un
i jk

(

x1,i 
x2, j 
x3,k − |v1|
x2, j 
x3,k
tn+1/2

− |v2|
x3,k
x1,i 
tn+1/2 − |v3|
x1,i 
x2, j 
tn+1/2
)

+ [
un

i−1, jkv+
1 − un

i+1, jkv−
1

]

x2, j 
x3,k
tn+1/2

+ [
un

i, j−1,kv+
2 − un

i, j+1,kv−
2

]

x3,k
x1,i 
tn+1/2

+ [
un

i j,k−1v+
3 − un

i j,k+1v−
3

]

x1,i 
x2, j 
tn+1/2.

The coefficients in this equation are nonnegative if and only if the timestep satisfies

[ |v1|

x1,i

+ |v2|

x2, j

+ |v3|

x3,k

]

tn+1/2 ≤ 1. (7.27)

If this inequality is violated, then the donor cell upwind scheme is unstable.

7.3.3 Corner Transport Upwind Scheme

The 3D corner transport upwind scheme is described in [140]. This scheme is
most easily developed for linear advection, for which the analytical solution is
u(x, t) = ũ0(x − vt). If we integrate the conservation law over the grid cell �i jk ,
then the corner transport upwind scheme computes∫

�i jk

un+1(x) dx =
∫

�i jk

un(x − v
tn+1/2) dx =
∫

Ri jk

un(x) dx

where

Ri jk = (x1,i−1/2 − v1
tn+1/2, x1,i+1/2 − v1
tn+1/2)

× (x2, j−1/2 − v2
tn+1/2, x2, j+1/2 − v2
tn+1/2)

× (x3,k−1/2 − v3
tn+1/2, x3,k+1/2 − v3
tn+1/2)

is the rectangle formed by tracing �i jk back in time along the velocity field. The
equation

∫
�i jk

un+1(x) dx = ∫
Ri jk

un(x) dx can be written

un+1
i jk 
x1,i 
x2, j 
x3,k

= un
i jk

(

x1,i − |v1|
tn+1/2

) (

x2, j − |v2|
tn+1/2

) (

x3,k − |v3|
tn+1/2

)
+ [

un
i−1, jkv+

1 + un
i+1, jk(−v−

1 )
]


tn+1/2
(

x2, j − |v2|
tn+1/2

) (

x3,k − |v3|
tn+1/2

)
+ [

un
i, j−1,kv+

2 + un
i, j+1,k(−v−

2 )
]


tn+1/2
(

x3,k − |v3|
tn+1/2

) (

x1,i − |v1|
tn+1/2

)
+ [

un
i j,k−1v+

3 + un
i j,k+1(−v−

3 )
]


tn+1/2
(

x1,i − |v1|
tn+1/2

) (

x2, j − |v2|
tn+1/2

)
+ [

ui−1, j−1,kv+
1 v+

2 + ui+1, j−1,k(−v−
1 )v+

2 + ui−1, j+1,kv+
1 (−v−

2 ) + ui+1, j+1,k(−v−
1 )(−v−

2 )
](


tn+1/2
)2 (


x3,k − |v3|
tn+1/2
)
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+ [
ui−1, j,k−1v+

3 v+
1 + ui−1, j,k+1(−v−

3 )v+
1 + ui+1, j,k−1v+

3 (−v−
1 ) + ui+1, j,k+1(−v−

3 )(−v−
1 )

](

tn+1/2

)2 (

x2, j − |v2|
tn+1/2

)
+ [

ui, j−1,k−1v+
2 v+

3 + ui, j+1,k−1(−v−
2 )v+

3 + ui, j−1,k+1v+
2 (−v−

3 ) + ui, j+1,k+1(−v−
2 )(−v−

3 )
](


tn+1/2
)2 (


x1,i − |v1|
tn+1/2
)

+ ui−1, j−1,k−1v+
1 v+

2 v+
3

(

tn+1/2

)3 + ui+1, j−1,k−1(−v−
1 )v+

2 v+
3

(

tn+1/2

)3

+ ui−1, j+1,k−1v+
1 (−v−

2 )v+
3

(

tn+1/2

)3 + ui+1, j+1,k−1(−v−
1 )(−v−

2 )v+
3

(

tn+1/2

)3

+ ui−1, j−1,k+1v+
1 v+

2 (−v−
3 )

(

tn+1/2

)3 + ui+1, j−1,k+1(−v−
1 )v+

2 (−v−
3 )

(

tn+1/2

)3

+ ui−1, j+1,k+1v+
1 (−v−

2 )(−v−
3 )

(

tn+1/2

)3 + ui+1, j+1,k+1(−v−
1 )(−v−

2 )(−v−
3 )

(

tn+1/2

)3
.

From this equation, it is easy to see that the new solution is a weighted average of
old solution values if and only if the timestep is chosen so that in every grid cell

max

{ |v1|

x1,i

,
|v2|


x2, j
,

|v3|

x3,k

}

tn+1/2 ≤ 1.

This stability restriction is considerably better than the donor cell stability restric-
tion, and identical to the first- and second-order operator splitting stability
restrictions.

If Pi±1/2, jk , Pi, j±1/2,k and Pi j,k±1/2 are signed parallelepipeds associated with
the velocity fields at the cell sides, then

Ri jk = �i jk − Pi+1/2, jk + Pi−1/2, jk − Pi, j+1/2,k + Pi, j−1/2,k − Pi j,k+1/2 + Pi j,k−1/2.

(See Figure 7.4.) The donor cell fluxes are associated with integrating the initial
data un over the signed regions

Si+1/2, jk = (x1,i+1/2 − v1
tn+1/2, x1,i+1/2) × I2, j × I3,k

Si, j+1/2,k = I1,i × (x2, j+1/2 − v2
tn+1/2, x2, j+1/2) × I3,k

Si j,k+1/2 = I1,i × I2, j × (x3,k+1/2 − v3
tn+1/2, x3,k+1/2).

These are each completely contained within a single grid cell. Correspondingly,
each parallelepiped can in turn be decomposed as a donor cell region plus or minus
prisms associated with the cell edges (see Figure 7.4):

Pi+1/2, jk = Si+1/2, jk − Qi+1/2, j+1/2,k + Qi+1/2, j−1/2,k

− Qi+1/2, j,k+1/2 + Qi+1/2, j,k−1/2

Pi, j+1/2,k = Si, j+1/2,k − Qi, j+1/2,k+1/2 + Qi, j+1/2,k−1/2

− Qi+1/2, j+1/2,k + Qi−1/2, j+1/2,k

Pi j,k+1/2 = Si j,k+1/2 − Qi+1/2, j,k+1/2 + Qi−1/2, j,k+1/2

− Qi, j+1/2,k+1/2 + Qi, j−1/2,k+1/2.



512 Methods in Multiple Dimensions

3

2

1

3

2

1

Ri jk = �i jk ± P’s Pi+1/2, jk = Si+1/2, jk ± Q’s

3

2

1

Qi+1/2, j+1/2,k = Ei+1/2, j+1/2,k ± T ’s

Fig. 7.4 Conservative difference involves fluxes at cell sides

The prisms lie primarily in either of four grid cells around an edge, depending on
the sign of the velocity components associated with coordinate directions other than
the cell index for the edge. Further, there are two prisms at each cell edge, each
determined by having one side perpendicular to one of the two coordinate axes that
are perpendicular to the edge. The average of un is the same for both of these prisms
at a given cell edge within a given cell, but differs for all four edges within a given
cell due to the velocity field. The edge prisms can be further decomposed in terms
of prisms contained within the grid cells, and tetrahedrons associated with the cell
corners (see Figure 7.4):

Qi, j+1/2,k+1/2 = Ei, j+1/2,k+1/2 − Ti+1/2, j+1/2,k+1/2 + Ti−1/2, j+1/2,k+1/2

Qi+1/2, j,k+1/2 = Ei+1/2, j,k+1/2 − Ti+1/2, j+1/2,k+1/2 + Ti+1/2, j−1/2,k+1/2

Qi+1/2, j+1/2,k = Ei+1/2, j+1/2,k − Ti+1/2, j+1/2,k+1/2 + Ti+1/2, j+1/2,k−1/2.
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Of course, there are three tetrahedrons at each cell corner, determined by extending
a coordinate axis from a corner of �i jk to a side of Ri jk . The average of un is the
same for all three of these, so we do not distinguish them in our notation.

7.3.3.1 Linear Advection with Positive Velocity

The expressions for the corner transport upwind scheme with general velocity field
are too long to present here. In order to develop the scheme in finite difference
form, we will assume that the velocity components are all positive and use upwind-
ing considerations to lead us to the general expressions. The averages over the
prisms Qi, j±1/2,k±1/2, Qi±1/2, j,k±1/2 and Qi±1/2, j±1/2,k primarily within cell �i jk

are (respectively)

un+1/3,1
i jk = un

i jk

(
1 − v1
tn+1/2

3
x1,i

)
+ ui−1, jk

v1
tn+1/2

3
x1,i
(7.28a)

un+1/3,2
i jk = un

i jk

(
1 − v2
tn+1/2

3
x2, j

)
+ ui, j−1,k

v2
tn+1/2

3
x2, j
(7.28b)

un+1/3,3
i jk = un

i jk

(
1 − v3
tn+1/2

3
x3,k

)
+ ui j,k−1

v3
tn+1/2

3
x3,k
. (7.28c)

Using these definitions, we see that

un
i−1, j−1,k−1v1
tn+1/2v2
tn+1/2v3
tn+1/2

=
[

un+1/3,1
i, j−1,k−1 − un

i, j−1,k−1

(
1 − v1
tn+1/2

3
x1,i

)]

x1,i v2
tn+1/2v3
tn+1/2

+
[

un+1/3,2
i−1, j,k−1 − un

i−1, j,k−1

(
1 − v2
tn+1/2

3
x2, j

)]

x2, j v3
tn+1/2v1
tn+1/2

+
[

un+1/3,3
i−1, j−1,k − un

i−1, j−1,k

(
1 − v3
tn+1/2

3
x3,k

)]

x3,kv1
tn+1/2v2
tn+1/2.

Geometrically, this equation says that the sum of the integrals over the corner
regions in Ri jk − �i jk is the sum of the integrals over the prisms minus the sum
of the integrals over the edge regions. Algebraically, we are using equations (7.28)
to replace un

i−1, j−1,k−1 at the corner of the stencil with states associated with the
edges. Using the definitions of the prism averages again, we obtain

un
i−1, j−1,kv1
tn+1/2v2
tn+1/2(
x3,k − v3
tn+1/2)

+ un
i−1, j,k−1v3
tn+1/2v1
tn+1/2(
x2, j − v2
tn+1/2)

+ un
i, j−1,k−1v2
tn+1/2v3
tn+1/2(
x1,i − v1
tn+1/2)

+ un
i−1, j−1,k−1v1
tn+1/2v2
tn+1/2v3
tn+1/2
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= un+1/3,1
i, j−1,k−1
x1,i v2
tn+1/2v3
tn+1/2

+ un+1/3,2
i−1, j,k−1
x2, j v3
tn+1/2v1
tn+1/2

+ un+1/3,3
i−1, j−1,k
x3,kv1
tn+1/2v2
tn+1/2

− [
un

i−1, j−1,k + un
i−1, j,k−1 + un

i, j−1,k−1

]
v1
tn+1/2v2
tn+1/2v3
tn+1/2 2

3

=
[
un+1/3,1

i, j−1,k−1 − un+1/3,1
i, j−1,k − un+1/3,1

i j,k−1

]

x1,i v2
tn+1/2v3
tn+1/2

+
[
un+1/3,2

i−1, j,k−1 − un+1/3,2
i−1, jk − un+1/3,2

i j,k−1

]

x2, j v3
tn+1/2v1
tn+1/2

+
[
un+1/3,3

i−1, j−1,k − un+1/3,3
i−1, jk − un+1/3,3

i, j−1,k

]

x3,kv1
tn+1/2v2
tn+1/2

+ un
i−1, jkv1
tn+1/2

[(
1 − v2
tn+1/2

3
x2, j

)

x2, j v3
tn+1/2 +

(
1 − v3
tn+1/2

3
x3,k

)

x3,kv2
tn+1/2

]
+ un

i, j−1,kv2
tn+1/2

[(
1 − v1
tn+1/2

3
x1,i

)

x1,i v3
tn+1/2 +

(
1 − v3
tn+1/2

3
x3,k

)

x3,kv1
tn+1/2

]
+ un

i j,k−1v3
tn+1/2

[(
1 − v1
tn+1/2

3
x1,i

)

x1,i v2
tn+1/2 +

(
1 − v2
tn+1/2

3
x2, j

)

x2, j v1
tn+1/2

]
.

Geometrically, we are relating integrals over corner and edge regions in Ri jk to

edge prisms E and Q. Algebraically, we are using (7.28) to replace values of u
associated with edges with values associated with the sides. Next, the sum of the
integrals in Ri jk − �i jk is

un
i−1, jkv1
tn+1/2(
x2, j − v2
tn+1/2)(
x3,k − v3
tn+1/2)

+ un
i, j−1,kv2
tn+1/2(
x3,k − v3
tn+1/2)(
x1,i − v1
tn+1/2)

+ un
i j,k−1v3
tn+1/2(
x1,i − v1
tn+1/2)(
x2, j − v2
tn+1/2)

+ un
i−1, j−1,kv1
tn+1/2v2
tn+1/2(
x3,k − v3
tn+1/2)

+ un
i−1, j,k−1v3
tn+1/2v1
tn+1/2(
x2, j − v2
tn+1/2)

+ un
i, j−1,k−1v2
tn+1/2v3
tn+1/2(
x1,i − v1
tn+1/2)

+ un
i−1, j−1,k−1v1
tn+1/2v2
tn+1/2v3
tn+1/2

=
[
un+1/3,1

i, j−1,k−1 − un+1/3,1
i, j−1,k − un+1/3,1

i j,k−1

]

x1,i v2
tn+1/2v3
tn+1/2

+
[
un+1/3,2

i−1, j,k−1 − un+1/3,2
i−1, jk − un+1/3,2

i j,k−1

]

x2, j v3
tn+1/2v1
tn+1/2

+
[
un+1/3,3

i−1, j−1,k − un+1/3,3
i−1, jk − un+1/3,3

i, j−1,k

]

x3,kv1
tn+1/2v2
tn+1/2
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+ un
i−1, jkv1
tn+1/2

[

x2, j 
x3,k + v2
tn+1/2v3
tn+1/2 1

3

]
+ un

i, j−1,kv2
tn+1/2

[

x1,i 
x3,k + v1
tn+1/2v3
tn+1/2 1

3

]
+ un

i j,k−1v3
tn+1/2

[

x1,i 
x2, j + v1
tn+1/2v2
tn+1/2 1

3

]
.

The integral over Ri jk ∩ �i jk is

un
i jk

(

x1,i − v1
tn+1/2

) (

x2, j − v2
tn+1/2

) (

x3,k − v3
tn+1/2

)
= un

i jk
x1,i 
x2, j 
x3,k

− un
i jk

[
v1
tn+1/2
x2, j 
x3,k + v2
tn+1/2
x3,k
x1,i + v3
tn+1/2
x1,i 
x2, j

]
+ un

i jk

(
1 − v1
tn+1/2

3
x1,i

)

x1,i v2
tn+1/2v3
tn+1/2

+ un
i jk

(
1 − v2
tn+1/2

3
x2, j

)
v1
tn+1/2
x2, j v3
tn+1/2

+ un
i jk

(
1 − v3
tn+1/2

3
x3,k

)
v1
tn+1/2v2
tn+1/2
x3,k

= un
i jk
x1,i 
x2, j 
x3,k

− un
i jk

[
v1
tn+1/2
x2, j 
x3,k + v2
tn+1/2
x3,k
x1,i + v3
tn+1/2
x1,i 
x2, j

]
+ v1
tn+1/2
x2, j 
x3,k

{[
un+1/3,2

i jk − un
i, j−1,k

v2
tn+1/2

3
x2, j

]
v3
tn+1/2

2
x3,k

+
[

un+1/3,3
i jk − un

i j,k−1
v3
tn+1/2

3
x3,k

]
v2
tn+1/2

2
x2, j

}

+ v2
tn+1/2
x3,k
x1,i

{[
un+1/3,1

i jk − un
i−1, jk

v1
tn+1/2

3
x1,i

]
v3
tn+1/2

2
x3,k

+
[

un+1/3,3
i jk − un

i j,k−1
v3
tn+1/2

3
x3,k

]
v1
tn+1/2

2
x1,i

}
+ v3
tn+1/2
x1,i 
x2, j

{[
un+1/3,1

i jk − un
i−1, jk

v1
tn+1/2

3
x1,i

]
v2
tn+1/2

2
x2, j

+
[

un+1/3,2
i jk − un

i, j−1,k

v2
tn+1/2

3
x2, j

]
v1
tn+1/2

2
x1,i

}
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Putting all of the integrals over the pieces of Ri jk together, we obtain

un+1
i jk 
x1,i 
x2, j 
x3,k

= un
i jk
x1,i 
x2, j 
x3,k

+ v1
tn+1/2
x2, j 
x3,k

{
−un

i jk +
[
un+1/3,2

i jk − un+1/3,2
i j,k−1

] v3
tn+1/2

2
x3,k

+
[
un+1/3,3

i jk − un+1/3,3
i, j−1,k

] v2
tn+1/2

2
x2, j

}
+ v1
tn+1/2
x2, j 
x3,k

{
un

i−1, jk +
[
un+1/3,2

i−1, j,k−1 − un+1/3,2
i−1, jk

] v3
tn+1/2

2
x3,k

+
[
un+1/3,3

i−1, j−1,k − un+1/3,3
i−1, jk

] v2
tn+1/2

2
x2, j

}
+ v2
tn+1/2
x3,k
x1,i

{
−un

i jk +
[
un+1/3,1

i jk − un+1/3,1
i−1, jk

] v3
tn+1/2

2
x3,k

+
[
un+1/3,3

i jk − un+1/3,3
i, j−1,k

] v1
tn+1/2

2
x1,i

}
+ v2
tn+1/2
x3,k
x1,i

{
un

i, j−1,k +
[
un+1/3,1

i, j−1,k−1 − un+1/3,1
i, j−1,k

] v3
tn+1/2

2
x3,k

+
[
un+1/3,3

i−1, j−1,k − un+1/3,3
i, j−1,k

] v1
tn+1/2

2
x1,i

}
+ v3
tn+1/2
x1,i 
x2, j

{
−un

i jk +
[
un+1/3,1

i jk − un+1/3,1
i, j−1,k

] v2
tn+1/2

2
x2, j

+
[
un+1/3,2

i jk − un+1/3,2
i−1, jk

] v1
tn+1/2

2
x1,i

}
+ v3
tn+1/2
x1,i 
x2, j

{
un

i j,k−1 +
[
un+1/3,1

i, j−1,k−1 − un+1/3,1
i j,k−1

] v2
tn+1/2

2
x2, j

+
[
un+1/3,2

i−1, j−1,k − un+1/3,2
i j,k−1

] v1
tn+1/2

2
x1,i

}
≡ un

i jk
x1,i 
x2, j 
x3,k +
[
− un+1/2,L

i+1/2, jk + un+1/2,L

i−1/2, jk

]
v1
tn+1/2
x2, j 
x3,k

+
[
−un+1/2,L

i, j+1/2, j + un+1/2,L

i, j−1/2,k

]
v2
tn+1/2
x3,k
x1,i

+
[
−un+1/2,L

i j,k+1/2 + un+1/2,L

i j,k−1/2

]
v3
tn+1/2
x1,i 
x2, j .
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The terms in the braces in this equation are the averages over the side parallelepipeds
Pi±1/2, jk , Pi, j±1/2,k and Pi j,k±1/2.

Let us rewrite the averages over the side parallelepipeds:

un+1/2,L

i+1/2, jk = un
i jk −

[
un+1/3,2

i jk − un+1/3,2
i j,k−1

] v3
tn+1/2

2
x3,k
−

[
un+1/3,3

i jk − un+1/3,3
i, j−1,k

] v2
tn+1/2

2
x2, j

= un
i jk −

[
F(un+1/3,2

i jk ) − F(un+1/3,2
i j,k−1 )

]
e3


tn+1/2

2
x3,k
−

[
F(un+1/3,3

i jk ) − F(un+1/3,3
i, j−1,k )

]
e2


tn+1/2

2
x2, j

un+1/2,L

i, j+1/2,k = un
i jk −

[
un+1/3,1

i jk − un+1/3,1
i j,k−1

] v3
tn+1/2

2
x3,k
−

[
un+1/3,3

i jk − un+1/3,3
i−1, jk

] v1
tn+1/2

2
x1,i

= un
i jk −

[
F(un+1/3,1

i jk − F(un+1/3,1
i j,k−1 )

]
e3


tn+1/2

2
x3,k
−

[
F(un+1/3,3

i jk ) − F(un+1/3,3
i−1, jk )

]
e1


tn+1/2

2
x1,i

un+1/2,L

i j,k+1/2 = un
i jk −

[
un+1/3,1

i jk − un+1/3,1
i, j−1,k

] v2
tn+1/2

2
x2, j
−

[
un+1/3,2

i jk − un+1/3,2
i−1, jk

] v1
tn+1/2

2
x1,i

= un
i jk −

[
F(un+1/3,1

i jk ) − F(un+1/3,1
i, j−1,k )

]
e2


tn+1/2

2
x2, j
−

[
F(un+1/3,2

i jk ) − F(un+1/3,2
i−1, jk )

]
e1


tn+1/2

2
x1,i
.

Similarly, the averages over the edge prisms can be written

un+1/3,1
i jk = un

i jk − [
un

i jk − un
i−1, jk

] v1
tn+1/2

3
x1,i
= un

i jk − [
F(un

i jk) − F(un
i−1, jk)

]
e1


tn+1/2

3
x1,i

un+1/3,2
i jk = un

i jk − [
un

i jk − un
i, j−1,k

] v2
tn+1/2

3
x2, j
= un

i jk − [
F(un

i jk) − F(un
i, j−1,k)

]
e2


tn+1/2

3
x2, j

un+1/3,3
i jk = un

i jk − [
un

i jk − un
i j,k−1

] v3
tn+1/2

3
x3,k
= un

i jk − [
F(un

i jk) − F(un
i j,k−1)

]
e3


tn+1/2

3
x3,k
.

7.3.3.2 Linear Advection with Arbitrary Velocity

Next, let us extend this scheme to linear advection problems with arbitrary velocity
fields. First we compute

un+1/3,1
i jk = un

i jk − [(
un

i jkv+
1 + un

i+1, jkv−
1

) − (
un

i−1, jkv+
1 + un

i jkv−
1

)] 
tn+1/2

3
x1,i

= un
i jk − [

F
(
R

(
un

i jk, un
i+1, jk ; 0

)) − F
(
R

(
un

i−1, jk, un
i jk ; 0

))]
e1


tn+1/2

3
x1,i
.
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The expressions for un+1/3,2
i jk and un+1/3,3

i jk are similar. Then we compute

un+1/2,L

i+1/2, jk = un
i jk −

[(
un+1/3,2

i jk v+
3 + un+1/3,2

i j,k+1 v−
3

)
−

(
un+1/3,2

i j,k−1 v+
3 + un+1/3,2

i jk v−
3

)] 
tn+1/2

2
x3,k

−
[(

un+1/3,3
i jk v+

2 + un+1/3,3
i, j+1,k v−

2

)
−

(
un+1/3,3

i, j−1,k v+
2 + un+1/3,3

i jk v−
2

)] 
tn+1/2

2
x2, j

= un
i jk −

[
F

(
R

(
un+1/3,2

i jk , un+1/3,2
i j,k+1 ; 0

))
− F

(
R

(
un+1/3,2

i j,k−1 , un+1/3,2
i jk ; 0

))]
e3


tn+1/2

2
x3,k

−
[
F

(
R

(
un+1/3,3

i jk , un+1/3,3
i, j+1,k ; 0

))
− F

(
R

(
un+1/3,3

i, j−1,k , un+1/3,3
i jk ; 0

))]
e2


tn+1/2

2
x2, j

un+1/2,R

i+1/2, jk = un
i+1, jk −

[(
un+1/3,2

i+1, jk v+
3 + un+1/3,2

i+1, j,k+1v−
3

)
−

(
un+1/3,2

i+1, j,k−1v+
3 + un+1/3,2

i+1, jk

)] 
tn+1/2

2
x3,k

−
[(

un+1/3,3
i+1, jk v+

2 + un+1/3,3
i+1, j+1,kv−

2

)
−

(
un+1/3,3

i+1, j−1,kv+
2 + un+1/3,3

i+1, jk v−
2

)] 
tn+1/2

2
x2, j

= un
i jk −

[
F

(
R

(
un+1/3,2

i+1, jk , un+1/3,2
i+1, j,k+1; 0

))
− F

(
R

(
un+1/3,2

i+1, j,k−1, un+1/3,2
i+1, jk ; 0

))]
e3


tn+1/2

2
x3,k

−
[
F

(
R

(
un+1/3,3

i+1, jk , un+1/3,3
i+1, j+1,k ; 0

))
− F

(
R

(
un+1/3,3

i+1, j−1,k, un+1/3,3
i+1, jk ; 0

))]
e2


tn+1/2

2
x2, j
.

The expressions for un+1/2,L

i, j+1/2,k , un+1/2,R

i, j+1/2,k , un+1/2,L

i, j,k+1/2 and un+1/2,R

i, j,k+1/2 are similar. After-
ward, we compute the flux integrals

f n+1/2
i+1/2, jk =

[
un+1/2,L

i+1/2, jkv+
1 + un+1/2,R

i+1/2, jkv−
1

]

x2, j 
x3,k
tn+1/2

= F
(
R

(
un+1/2,L

i+1/2, jk, un+1/2,R

i+1/2, jk ; 0
))

e1
x2, j 
x3,k
tn+1/2

and the flux integrals f n+1/2
i, j+1/2,k and f n+1/2

i j,k+1/2 using similar expressions. The cor-
ner transport upwind scheme for general linear advection is completed with the
conservative difference (7.25).

7.3.3.3 General Nonlinear Problems

Now it is easy to describe the first-order corner transport upwind scheme for general
nonlinear systems in three dimensions. First, we compute the flux integrals

(f 1)n
i+ 1

2 , jk
= F

(
R

(
wn

i jk, wn
i+1, jk ; 0

))
e1
x2, j 
x3,k
tn+1/2,

and the flux integrals (f 2)n
i, j+ 1

2 ,k
and (f 3)n

i j,k+ 1
2

using similar expressions. This step
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costs a total of three Riemann problems per cell. Then we compute the states

w
n+ 1

3 ,1
i jk = wn

i jk −
(

∂u
∂w

)−1 [
(f 1)i+ 1

2 , jk − (f 1)i− 1
2 , jk

] 1

3
x1,i 
x2, j 
x3,k

and the states w
n+ 1

3 ,2
i jk and w

n+ 1
3 ,3

i jk using similar expressions. An alternative approach

would be to compute un+1/3,1
i jk in an obvious fashion, then decode w

n+ 1
3 ,1

i jk from it.
Next, we compute the flux integrals

(f 1)
n+ 1

3 ,2

i+ 1
2 , jk

= F
(
R

(
w

n+ 1
3 ,2

i jk , w
n+ 1

3 ,2
i+1, jk ; 0

))
e1
x2, j 
x3,k
tn+1/2

(f 1)
n+ 1

3 ,3

i+ 1
2 , jk

= F
(
R

(
w

n+ 1
3 ,3

i jk , w
n+ 1

3 ,3
i+1, jk ; 0

))
e1
x2, j 
x3,k
tn+1/2

with similar expressions for the flux integrals (f 2)
n+ 1

3 ,3

i, j+ 1
2 ,k

, (f 2)
n+ 1

3 ,1

i, j+ 1
2 ,k

, (f 3)
n+ 1

3 ,1

i j,k+ 1
2

and

(f 3)
n+ 1

3 ,2

i j,k+ 1
2
. This costs a total of another six Riemann problems per cell. Afterward,

we compute the transverse correction

h
n+ 1

2 ,1
i jk =

(
∂u
∂w

)−1 {[
(f 2)

n+ 1
3 ,3

i, j+ 1
2 ,k

− (f 2)
n+ 1

3 ,3

i, j− 1
2 ,k

]
+

[
(f 3)

n+ 1
3 ,2

i j,k+ 1
2
− (f 3)

n+ 1
3 ,2

i j,k− 1
2

]} 1

2
x1,i 
x2, j 
x3,k

and the states

w
n+ 1

2 ,L

i+ 1
2 , jk

= w
n+ 1

2 ,R

i− 1
2 , jk

= wn
i jk − h

n+ 1
2 ,1

i jk . (7.29)

Similar expressions hold in the other coordinate directions. Then we compute the
flux integrals

(f 1)
n+ 1

2

i+ 1
2 , jk

= F
(
R

(
w

n+ 1
2 ,L

i+ 1
2 , jk

, w
n+ 1

2 ,R

i+ 1
2 , jk

; 0
))

e1
x2, j 
x3,k
tn+1/2

and the flux integrals (f 2)
n+ 1

2

i, j+ 1
2 ,k

and (f 3)
n+ 1

2

i j,k+ 1
2

using similar expressions. This costs

another three Riemann problems per cell. Finally we perform the conservative
difference (7.25). The total algorithm costs 12 Riemann problems per cell, while
second-order operator splitting costs about four Riemann problems per step.

7.3.3.4 Second-Order Corner Transport Upwind

In order to improve the corner-transport upwind scheme to second-order accuracy,
we can perform a modified equation analysis to determine the leading terms in the
error, and then approximate those terms by finite difference approximations. If we
use midpoint-rule quadratures for the flux integrals, then we evaluate the flux in
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the first coordinate direction at

u
(

x1 + 
x1

2
, x2, x3, t + 
t

2

)
= u + ∂u

∂x1


x1

2
+ ∂u

∂t


t

2
+ O(
x2

1 ) + O(
t2)

= u + ∂u
∂x1


x1

2
−

[
∂Fe1

∂x1
+ ∂Fe2

∂x2
+ ∂Fe3

∂x3

]

t

2
+ O(
x2

1 ) + O(
t2).

The first-order corner transport upwind scheme essentially computes

un+1/2,L

i+1/2, jk = un
i jk − ∂Fe2

∂x2

(
un+1/3,3

i jk

) 
tn+1/2

2
− ∂Fe3

∂x3

(
un+1/3,2

i jk

) 
tn+1/2

2

+ O(
x2, j 
tn+1/2) + O(
x3,k
tn+1/2).

This expression needs to add an approximation for

∂u
∂x1


x1

2
− ∂Fe1

∂x1


t

2

to reach second-order accuracy. This suggests that a second-order corner transport
upwind scheme can be obtained by a simple modification of the first-order scheme.
If a characteristic analysis provides us with

∂Fe1

∂w
Y1 = ∂u

∂w
Y1�1

then we replace the computation of un+1/2,L

i+1/2, jk and un+1/2,R

i+1/2, jk in (7.29) with

w
n+ 1

2 ,L

i+ 1
2 , jk

= wn
i jk + Y1

(
I − �1


tn+1/2


x1,i

)
Y−1

1

∂w
∂x1


x1,i

2
− h

n+ 1
2 ,1

i jk

w
n+ 1

2 ,R

i− 1
2 , jk

= wn
i jk − Y1

(
I − �1


tn+1/2


x1,i

)
Y−1

1

∂w
∂x1


x1,i

2
− h

n+ 1
2 ,1

i jk .

The slope ∂w
∂x1


x1,i can be provided by the standard MUSCL slope limiting. Similar
equations hold in the other coordinate directions.

The finite difference scheme presented above does not reduce to the form used
by Colella [33] in two dimensions, because the characteristic tracing is used only

in the determination of the flux variables w
n+ 1

2 ,L ,R

i+ 1
2 , jk

. Numerical experiments in [14]

indicate that the Colella form is preferable for miscible displacement computations
in two dimensions. Thus, it might be desirable to incorporate this extra tracing
in three dimensions. The only modification would be to the states at which the

fluxes (f 1)
n+ 1

3 ,2

i+ 1
2 , jk

and (f 1)
n+ 1

3 ,3

i+ 1
2 , jk

are evaluated. If characteristic tracing is added to

these states, then we would obtain four distinct values, associated with the four cell
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edges in the first coordinate direction, replacing each of the former states wn+1/3,2
i jk

and wn+1/3,3
i jk . This would lead to a significant increase in the number of Riemann

problems being solved. Saltzman [140] also described some alternative forms of
his 3D corner transport upwind scheme.

7.3.4 Wave Propagation

The three-dimensional version of the wave propagation algorithm is described in
[88]. We will attempt to describe it succinctly here. The flux increments in the first
coordinate direction are

(Fe1)n+1/2
i+1/2, jk − (Fe1)n

i jk = A−
i+1/2, jk
un

i+1/2, jk − hi+1/2, jk

(Fe1)n+1/2
i+1/2, jk − (Fe1)n

i+1, jk = −A+
i+1/2, jk
un

i+1/2, jk − hi+1/2, jk

where the transverse flux corrections are

hi+1/2, jk =
[
A−

i+1/2, jk

(
A−

i+1, j,k+1/2
un+1/3,2
i+1, j,k+1/2 + A+

i+1, j,k−1/2
un+1/3,2
i+1, j,k−1/2

)
+ A+

i+1/2, jk

(
A−

i j,k+1/2
un+1/3,2
i j,k+1/2 + A+

i j,k−1/2
un+1/3,2
i j,k−1/2

)] 
tn+1/2

2
x3,k

+
[
A−

i+1/2, jk

(
A−

i+1, j+1/2,k
un+1/3,3
i+1, j+1/2,k + A+

i+1, j−1/2,k
un+1/3,3
i+1, j−1/2,k

)
+ A+

i+1/2, jk

(
A−

i, j+1/2,k
un+1/3,3
i, j+1/2,k + A+

i, j+1/2,k
un+1/3,3
i, j−1/2,k

)] 
tn+1/2

2
x2, j
.

These expressions require the evaluation of


un+1/3,2
i j,k+1/2 = 
un

i j,k+1/2 −
[
A−

i, j+1/2,k+1
un
i, j+1/2,k+1 + A+

i, j−1/2,k+1
un
i, j−1/2,k+1

− A−
i, j+1/2,k
un

i, j+1/2,k − A+
i, j−1/2,k
un

i, j−1/2,k

] 
tn+1/2

3
x2, j

and a similar expression for 
un+1/3,3
i, j+1/2,k . Slope information is incorporated in much

the same way as in 2D. Similar expressions are used for the flux increments in the
other coordinate directions. An implementation can be found in file step3.f of
CLAWPACK.

7.4 Curvilinear Coordinates

Sometimes it is useful to employ curvilinear coordinates in numerical computa-
tion. Two common curvilinear coordinate systems are spherical and cylindrical
coordinates. Other cases arise in specific problems, such as stream functions in
incompressible flow [11, 127]. For problems with appropriate symmetry, we can
use low-dimensional methods to compute solutions to higher-dimensional prob-
lems. The discussion that follows is adopted from [116].
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7.4.1 Coordinate Transformations

Suppose that a denotes the vector of Cartesian (rectangular) coordinates, and
y denotes the vector of curvilinear coordinates. Let H be the matrix of scale
factors

H2 ≡
(

∂a
∂y

)� (
∂a
∂y

)
.

Since H2 is symmetric and nonnegative, it has a square root H. As a result, the
matrix

Q ≡ ∂a
∂y

H−1

is orthogonal. The columns of Q are called the unit base vectors.
Suppose that we are given a vector x in the Cartesian coordinate system. In

order to write this vector in terms of the unit base vectors, we must solve Qw = x
for the physical components w of the vector x. Since Q is orthogonal, this is
easy:

w = Q�x.

Similarly, if M is a matrix that operates on Cartesian vectors x = Qw, then the
physical components of Mx are Q�Mx. Thus the matrix representation of the linear
transformation x → Mx in the curvilinear coordinate system is w → (Q�MQ)w.

Suppose that we are given a scalar ω(y), and we want to compute its gradient
∇aω in the Cartesian coordinate system. Since

∂ω

∂a
= ∂ω

∂y
∂y
∂a

= ∂ω

∂y

(
∂a
∂y

)−1

= ∂ω

∂y
(QH)−1 = ∂ω

∂y
H−1Q�,

we have

∇aω = QH−1∇yω. (7.30)

Similarly, suppose that we want to compute the matrix of Cartesian spatial deriva-
tives of a vector x = Qw, where the physical components w are known functions
of the curvilinear coordinates y. We compute

∂x
∂a

= ∂x
∂y

∂y
∂a

= ∂Qw
∂y

H−1Q�.

The physical components of this matrix are

Q� ∂x
∂a

Q = Q� ∂Qw
∂y

H−1.
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In order to compute the divergence of x, we take the trace of ∂x
∂a :

∇a · x = tr

(
∂x
∂a

)
= tr

(
∂x
∂y

∂y
∂a

)
= tr

(
∂y
∂a

∂Qw
∂y

)
.

Now, recall from Equation (4.18) that the matrix of minors is divergence-free. In
other words,

∇y ·
(

∂y
∂a

∣∣∣∣∂a
∂y

∣∣∣∣) = 0.

We can add this zero to the previous expression to obtain

∇a · x = tr

(
∂y
∂a

∂Qw
∂y

)
+ ∇y ·

(
∂y
∂a

∣∣∣∣∂a
∂y

∣∣∣∣) Qw.

Now, the product rule for differentiation shows that

∇a · x =
∣∣∣∣∂y
∂a

∣∣∣∣ ∇y ·
(

∂y
∂a

Qw

∣∣∣∣∂a
∂y

∣∣∣∣) =
∣∣∣∣∂y
∂a

∣∣∣∣ ∇y ·
(

H−1w

∣∣∣∣∂a
∂y

∣∣∣∣) . (7.31)

Finally, we will occasionally need to compute the physical components of the
divergence of an array. If S̃ ≡ Q�SQ, then

Q�(∇a · S)� = Q�
{

∇y ·
(

H−1S̃Q�
∣∣∣∣∂a
∂y

∣∣∣∣)}� ∣∣∣∣∂y
∂a

∣∣∣∣
=

∑
i

ei e�
i Q�

{
∇y ·

(
H−1S̃Q�

∣∣∣∣∂a
∂y

∣∣∣∣)}� ∣∣∣∣∂y
∂a

∣∣∣∣
=

∑
i

ei

{
∇y ·

(
H−1S̃Q�

∣∣∣∣∂a
∂y

∣∣∣∣) Qei

} ∣∣∣∣∂y
∂a

∣∣∣∣
=

∑
i

ei

{
∇y ·

(
H−1S̃Q�Qei

∣∣∣∣∂a
∂y

∣∣∣∣) − tr

(
H−1S̃Q� ∂Qei

∂y

∣∣∣∣∂a
∂y

∣∣∣∣)} ∣∣∣∣∂y
∂a

∣∣∣∣
=

∑
i

ei

{
∇y ·

(
H−1S̃ei

∣∣∣∣∂a
∂y

∣∣∣∣) − tr

(
H−1S̃Q� ∂Qei

∂y

∣∣∣∣∂a
∂y

∣∣∣∣)} ∣∣∣∣∂y
∂a

∣∣∣∣ . (7.32)

7.4.2 Spherical Coordinates

In spherical coordinates, the vector of curvilinear coordinates is

y� = [
r, θ, φ

]
,

where r is the distance from the center of the sphere, φ is a latitudinal angle, and θ

is a longitudinal angle. It follows that the Cartesian coordinate vector is

a = [
r sin θ cos φ, r sin θ sin φ, r cos θ

]
.
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From this, it is easy to compute

∂a
∂y

=
sin θ cos φ r cos θ cos φ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0


and

H2 =
(

∂a
∂y

)� (
∂a
∂y

)
=

1
r2

r2 sin2 θ

 .

Similarly, the orthogonal matrix of unit base vectors is

Q = ∂a
∂y

H−1 =
sin θ cos φ cos θ cos φ −sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ −sin θ 0

 .

Note that the curvilinear derivatives of the columns of Q are

∂Qer

∂y
= Qeθe�

θ + Qeφ sin θe�
φ ,

∂Qeθ

∂y
= −Qer e�

θ + Qeφ cos θe�
φ ,

∂Qeφ

∂y
= −

cos φ

sin φ

0

 e�
φ .

Given a vector x in Cartesian coordinates, we can compute the physical compo-
nents of x to bewr

wθ

wφ

 = w = Q�x =
x1 sin θ cos φ + x2 sin θ sin φ + x3 cos θ

x1 cos θ cos φ + x2 cos θ sin φ − x3 sin θ

−x1 sin φ + x2 cos φ

 .

Next, we compute the gradient of a scalar using Equation (7.30)

∇aω = QH−1∇yω

=
sin θ cos φ cos θ cos φ −sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ −sin θ 0

 1
1/r

1/(r sin θ )




∂ω
∂r
∂ω
∂θ

∂ω
∂φ



=


∂ω
∂r sin θ cos φ + ∂ω

∂θ

cos θ cos φ

r − ∂ω
∂φ

sin φ

r sin θ

∂ω
∂r sin θ sin φ + ∂ω

∂θ

cos θ sin φ

r + ∂ω
∂φ

cos φ

r sin θ

∂ω
∂r cos θ − ∂ω

∂θ
sin θ

r

 . (7.33)
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The deformation gradient J has physical components

Q�JQ ≡ Q� ∂x
∂a

Q = Q� ∂Qw
∂y

H−1

=


∂wr
∂r

1
r ( ∂wr

∂θ
− wθ ) 1

r sin θ
∂wr
∂φ

− wφ cos φ

r sin θ

∂wθ

∂r
1
r ( ∂wθ

∂θ
+ wr ) 1

r sin θ

∂wθ

∂φ
− wφ sin φ

r sin θ
∂wφ

∂r
1
r

∂wφ

∂θ
1

r sin θ

∂wφ

∂φ
+ wr

r + wθ cos θ

r sin θ

 =
Jrr Jrθ Jr z

Jθr Jθθ Jθ z

Jzr Jzθ Jzz

 . (7.34)

Similarly, the divergence of a vector x can be computed from Equation (7.31):

∇a · x =
∣∣∣∣∂y
∂a

∣∣∣∣ ∇y ·
(

H−1w

∣∣∣∣∂a
∂y

∣∣∣∣)
= 1

r2

∂r2wr

∂r
+ 1

r sin θ

∂wθ sin θ

∂θ
+ 1

r sin θ

∂wφ

∂φ
. (7.35)

Finally, the physical components of the divergence of an array can be computed
from Equation (7.32):

Q�(∇a · S)� = Q�
[

∇y ·
(

H−1T Q�
∣∣∣∣∂a
∂y

∣∣∣∣)]� ∣∣∣∣∂y
∂a

∣∣∣∣
=


∂r2 S̃rr

∂r
1
r2 + ∂ S̃θr sin θ

∂θ
1

r sin θ
+ ∂ S̃φr

∂φ
1

r sin θ
− S̃θθ+S̃φφ

r

∂r2 S̃rθ

∂r
1
r2 + ∂ S̃θθ sin θ

∂θ
1

r sin θ
+ ∂ S̃φθ

∂φ
1

r sin θ
+ S̃θr

r − S̃φφ cos θ

r sin θ

∂r2 S̃rφ

∂r
1
r2 + ∂ S̃θφ sin θ

∂θ
1
r + ∂ S̃φφ

∂φ
1

r sin θ
+ S̃φr +S̃φθ

r

 . (7.36)

Suppose that we are given a scalar conservation law

∂u
∂t

+ ∇x · f (u) = 0.

The physical components of the flux aref r

f θ

f φ

 =
f 1 sin θ cos φ + f 2 sin θ sin φ + f 3 cos θ

f 1 cos θ cos φ + f 2 cos θ sin φ − f 3 sin θ

−f 1 sin φ + f 2 cos φ

 .

Thus a scalar conservation law in spherical coordinates can be written in the con-
servation form

∂ur

∂t
+ ∂f rr2

∂r

1

r2
+ ∂f θ sin θ

∂θ

1

r sin θ
+ ∂f φ

∂φ

1

r sin θ
= 0.

Of course, partial differential equations for conservation laws are not as complete a
description as the integral form of the law. If we integrate the spherical coordinate
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form of the conservation law over a spherical element, we obtain

0 =
∫ t2

t1

∫ r2

r1

∫ θ2

θ1

∫ φ2

φ1

{
∂u
∂t

+ 1

r2 sin θ

[
∂f rr2 sin θ

∂r
+ ∂f θr sin θ

∂θ
+ ∂f φr

∂φ

]}
r2 sin θ dφ dθdrdt

=
∫ r2

r1

∫ θ2

θ1

∫ φ2

φ1

[u(r, θ, φ, t2) − u(r, θ, φ, t1)] dφ sin θ dθr2 dr

+
∫ t2

t1

∫ θ2

θ1

∫ φ2

φ1

[
f r (r2, θ, φ, t)r2

2 − f r (r1, θ, φ, t)r2
1

]
dφ sin θ dθ dt

+
∫ t2

t1

∫ r2

r1

∫ φ2

φ1

[f θ (r, θ2, φ, t) sin θ2 − f θ (r, θ1, φ, t) sin θ1] dφ rdr dt

+
∫ t2

t1

∫ r2

r1

∫ θ2

θ1

[
f φ(r, θ, φ2, t) − f φ(r, θ, φ1, t)

]
dθ rdr dt.

Note that the volume measure cancels the denominators in the partial differential
equations.

It is common to assume that the motion of a material is such that the physical
components are functions of r only, and there are no θ or φ component of arrays.
Thus in spherical symmetry, wθ = 0 and wφ = 0, so the Cartesian coordinates are
related to the physical components by

x =
wr sin θ cos φ

wr sin θ sin φ

wr cos θ

 .

The gradient of a scalar simplifies to

∇aω = QH−1∇yω =


∂ω
∂r sin θ cos φ

∂ω
∂r sin θ sin φ

∂ω
∂r cos θ

 .

Similarly, the divergence of a vector x in spherical symmetry is

∇a · x =
∣∣∣∣∂y
∂a

∣∣∣∣ ∇y ·
(

H−1w

∣∣∣∣∂a
∂y

∣∣∣∣) = 1

r2

∂r2wr

∂r
.

Consider a scalar conservation law in Cartesian coordinates:

∂u
∂t

+ ∇x · f (u) = 0.

If the motion is spherically symmetric, then f θ = 0 and f φ = 0. In this case, the
conservation law simplifies to

∂ur2

∂t
+ ∂f rr2

∂r
= 0.
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If we integrate the spherically symmetric form of the conservation law over a
spherical shell, we obtain

0 = 1

4π

∫ t2

t1

∫ r2

r1

∫ π

0

∫ 2π

0

[
∂u
∂t

+ 1

r2 sin θ

∂f rr2 sin θ

∂r

]
r2 sin θ dφ dθ dr dt

=
∫ r2

r1

[u(r, t2) − u(r, t1)] r2dr +
∫ t2

t1

f r (r2, t)r2
2 − f r (r1, t)r1

2 dt

7.4.2.1 Case Study: Eulerian Gas Dynamics in Spherical Coordinates

Recall that Eulerian conservation of mass in gas dynamics takes the Cartesian form

∂ρ

∂t
+ ∇x · (vρ) = 0.

We can use equation (7.35) to obtain the conservation of mass in spherical coordi-
nates:

∂ρ

∂t
+ ∂vrρr2

∂r

1

r2
+ ∂vθρ sin θ

∂θ

1

r sin θ
+ ∂vzρ

∂z

1

r sin θ
= 0.

Eulerian conservation of momentum in Cartesian coordinates is

∂vρ

∂t
+ ∇x · (vρv� + I p) = gρ.

We can use equation (7.36) to obtain conservation of momentum in spherical
coordinates:grρ

gθρ

gφρ

 ≡ Q�gρ = ∂Q�vρ

∂t
+ Q� {

∇a · (vρv� + I p)
}�

= ∂

∂t

vrρ

vθρ

vφρ

 +


∂(v2

r ρ+p)r2

∂r
1
r2 + ∂vθ vr ρ sin θ

∂θ
1

r sin θ
+ ∂vφvr ρ

∂φ
1

r sin θ
− (v2

θ+v2
φ )ρ+2p

r

∂vr vθ ρr2

∂r
1
r2 + ∂(v2

θ ρ+p) sin θ

∂θ
1

r sin θ
+ ∂vφvθ ρ

∂φ
1

r sin θ
+ vφvr ρ

r − (v2
θ ρ+p) cos θ

sin θ

∂vr vφρr2

∂r
1
r2 + ∂vθ vφρ sin θ

∂θ
1

r sin θ
+ ∂(v2

φρ+p)r
∂φ

1
r sin θ

+ vφvr ρ

r + vφvθ ρ cos θ

r sin θ

 .

Finally, conservation of energy in spherical coordinates becomes

∂ρ(e + 1
2 [v2

r + v2
θ + v2

φ])

∂t
+ ∂r2vr [p + ρ(e + 1

2 v2
r + v2

θ + v2
φ)]

∂r

1

r2

+ ∂vθ [p + ρ(e + 1
2 v2

r + v2
θ + v2

φ)] sin θ

∂θ

1

r sin θ
+ ∂vφ[p + ρ(e + 1

2 v2
r + v2

θ + v2
φ)]

∂φ

1

r sin θ

= ρ(gr vr + gθvθ + gφvφ).
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For spherically symmetric gas dynamics, source terms due to gravity are zero.
Eulerian conservation of mass in spherical symmetry is

∂ρ

∂t
+ ∂vrρr2

∂r

1

r2
= 0.

Eulerian conservation of momentum in spherical symmetry is

0 = ∂vrρ

∂t
+ ∂(v2

r ρ + p)r2

∂r

1

r2
− 2p

r
= ∂vrρ

∂t
+ ∂v2

r ρr2

∂r

1

r2
+ ∂p

∂r
.

Finally, conservation of energy in spherical coordinates becomes

∂ρ(e + 1
2 v2

r )

∂t
+ ∂r2vr [p + ρ(e + 1

2 v2
r )]

∂r

1

r2
= 0.

We can write this system in the form of a system of partial differential equations

∂

∂t

 ρ

vrρ

(e + 1
2 v2

r )ρ

 + 1

r2

∂

∂r

 vrρr2

v2
r ρr2

vr [(e + 1
2 v2

r )ρ + p]r2

 +

 0
∂p
∂r

0

 = 0,

or in integral form

∫ r j+1/2

r j−1/2

r2

 ρ

vrρ

(e + 1
2 v2

r )ρ

n+1

dr =
∫ r j+1/2

r j−1/2

r2

 ρ

vrρ

(e + 1
2 v2

r )ρ

n

dr

−
∫ tn+1

tn

 vrρ

v2
r ρ

vr [(e + 1
2 v2

r )ρ + p]


j+1/2

dt r2
j+1/2

+
∫ tn+1

tn

 vrρ

v2
r ρ

vr [(e + 1
2 v2

r )ρ + p]


j−1/2

dt r2
j−1/2

+
∫ tn+1

tn

∫ r j+1/2

r j−1/2

 0
∂p
∂r
0

 r2 dr dt.

In order to develop a discretization of these equations, let us assume that we are
given cell averages

un
j ≡

 ρ

vrρ

(e + 1
2 v2

r )ρ

n

j

≈ 3

r3
j+1/2 − r3

j−1/2

∫ r j+1/2

r j−1/2

 ρ

vrρ

(e + 1
2 v2

r )ρ

 r2 dr.
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We could compute flux integrals

f n+1/2
j+1/2 ≈

∫ tn+1

tn

 ρvr

v2
r ρ

vr [(e + 1
2 v2

r )ρ + p]

 dt

by a slope limiter scheme, as in section 6.2.5. The characteristic tracing and Riemann
problem solution would also provide a values for the pressures pn+1/2

j± 1
2

in the pressure

derivative for the momentum equation. Even the approximate Riemann solvers in
Section 4.13 can be designed so that they provide values for the conserved quantities
at the solution of the Riemann problem, from which the flux variables can be
decoded. Then our finite difference takes the form

un+1
j = un

j −
[
f n+1/2

j+1/2r2
j+1/2 − f n+1/2

j−1/2r2
j−1/2

] 3

r3
j+1/2 − r3

j−1/2

+

 0
pn+1/2

j+ 1
2

− pn+1/2
j+1/2

0

 
tn+1/2

r j+1/2 − r j−1/2
.

This scheme is similar to the approach in [35]. It is designed to be free-stream-
preserving, meaning that if vr = 0 and ρ and p are constant at time tn , then the
scheme produces the same values at tn+1. LeVeque [97, page 376] suggests that
in wave propagation schemes the source terms due to curvilinear coordinates can
be treated via operator splitting. This can also be free-stream-preserving if done
carefully.

7.4.2.2 Case Study: Lagrangian Solid Mechanics in Spherical Coordinates

Equality of mixed partial derivatives in spherical coordinates gives us

∂

∂t

Jrr Jrθ Jr z

Jθr Jθθ Jθ z

Jzr Jzθ Jzz

 = Q� ∂v
∂a

Q =


∂vr
∂r

1
r ( ∂vr

∂θ
− vθ ) 1

r sin θ
∂vr
∂φ

− vφ

r
∂vθ

∂r
1
r ( ∂vθ

∂θ
+ vr ) 1

r sin θ

∂vθ

∂φ
− vφ cos φ

r sin φ
∂vφ

∂r
1
r

∂vφ

∂θ
1

r sin θ

∂vφ

∂φ
+ vr

r + vθ cos θ

r sin θ

 .

The physical components of the Cauchy stress are

Srr Srθ Srφ

Sθr Sθθ Sθφ

Sφr Sφθ Sφφ

 ≡ S̃ = Q�SQ.
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Since S is symmetric, so is S̃. The physical components of the first Piola–Kirchhoff
stress areTrr Trθ Trφ

Tθr Tθθ Tθφ

Tφr Tφθ Tφφ


≡ T = Q�S J−�Q|J|

=
Srr Srθ Srφ

Sθr Sθθ Sθφ

Sφr Sφθ Sφφ

  JθθJφφ − JφθJθφ −Jθr Jφφ + Jφr Jθφ Jθr Jφθ − Jφr Jθθ

−JrθJφφ + JφθJrφ Jrr Jφφ − Jφr Jθφ −Jrr Jφθ + Jφr Jrθ

JrθJφθ − JθθJrφ −Jrr Jθφ + Jθr Jrφ Jrr Jθθ − Jθr Jrθ

 .

Note that T is not necessarily symmetric. Thus conservation of momentum in
spherical coordinates isgrρ

gθρ

gφρ

 = Q�gρ = ∂Q�vρ

∂t
− Q� [

∇a · (J−1|J|S)
]�

= ∂

∂t

vrρ

vθρ

vzρ

 −


∂r2Trr

∂r
1
r2 + ∂Tθr sin θ

∂θ
1

r sin θ
+ ∂Tφr

∂φ
1

r sin θ
− Tθθ+Tφφ

r
∂r2Trθ

∂r
1
r2 + ∂Tθθ sin θ

∂θ
1

r sin θ
+ ∂Tφθ

∂φ
1

r sin θ
+ Tθr

r − Tφφ cos θ

r sin θ

∂r2Trφ

∂r
1
r2 + ∂Tθφ sin θ

∂θ
1
r + ∂Tφφ

∂φ
1

r sin θ
+ Tφr +Tφθ

r

 .

Finally, Cartesian conservation of energy

∂(ε + 1
2 v · v)ρ

∂t
− ∇a · (J−1S|J|v) = (ω + g · v)ρ

becomes

∂(ε + 1
2 v · v)ρ

∂t
− 1

r2

∂(Trr vr + Tθr vθ + Tzr vz)r2

∂r

− 1

r sin θ

∂(Trθvr + Tθθvθ + Tzθvz) sin θ

∂θ

+ 1

r sin θ

∂Tr zvr + Tθ zvθ + Tzzvz

∂z
= (ω + gr vr + gθvθ + gzvz)ρ.

In spherical symmetry, the deformation gradient J = ∂x
∂a has physical components

Q� ∂x
∂a

Q =
 ∂wr

∂r 0 0
0 wr

r 0
0 0 wr

r

 .
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The physical components of a spherically symmetric Cauchy stress tensor are

Q�SQ =
S̃rr 0 0

0 S̃θθ 0
0 0 S̃φφ

 .

Because of the form of the deformation gradient, we typically have S̃θθ = S̃φφ; this
is the case, for example, in linear elasticity. Thus the physical components of the
stress divergence are

Q�(∇a · S)� =

 1
r2

∂r2S̃rr
∂r − S̃θθ+S̃φφ

r
0
0

 .

Equality of mixed partial derivatives in spherical symmetry gives us

∂

∂t

Jrr 0 0
0 Jθθ 0
0 0 Jφφ

 =
 ∂vr

∂r 0 0
0 vr

r 0
0 0 vr

r

 .

We can also write

∂|J|
∂t

= ∂

∂t

(
w2

r

r2

∂wr

∂r

)
= 2vr wr

r2

∂wr

∂r
+ w2

r

r2

∂vr

∂r
= 1

r2

∂vr w2
r

∂r
.

The physical components of the first Piola–Kirchhoff stress areTrr 0 0
0 Tθθ 0
0 0 Tφφ

 ≡ T = Q�S̃J−�Q|J|

=
S̃rr

( vr
r

)2
0 0

0 S̃θθ
vr
r

∂vr
∂r 0

0 0 S̃φφ
vr
r

∂vr
∂r

 .

Thus conservation of momentum in spherical symmetry is

grρ = ∂vrρ

∂t
− ∂Trrr2

∂r

1

r2
− Tθθ + Tφφ

r
.

Finally, cylindrically symmetric conservation of energy is

∂(ε + 1
2 v2

r )ρ

∂t
− 1

r2

∂Trr vrr2

∂r
= (ω + gr vr )ρ.
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Let us describe the computations involved in updating the equations of motion.
Assuming that Tφφ = Tθθ , we have

0 =
∫ tn+1

tn

∫ r j+1/2

r j−1/2

[
∂vrρ

∂t
− ∂Trr

∂r
− 2Trr − Tθθ − Tφφ

r
− f rρ

]
r2dr dt

=
∫ r j+1/2

r j−1/2

[
ρvr (r, tn+1) − ρvr (r, tn)

]
r2dr −

∫ tn+1

tn

∫ r j+1/2

r j−1/2

∂Trr

∂r
r2dr dt

−
∫ tn+1

tn

∫ r j+1/2

r j−1/2

[
(2Trr − Tθθ − Tφφ)r + f rρr2

]
dr dt

≈
[
(vr )n+1

j − (vr )n
j

]
ρ j

r3
j+1/2 − r3

j−1/2

3

− (Trr )n+1/2
j+1/2 − (Trr )n+1/2

j−1/2


r j

r3
j+1/2 − r3

j−1/2

3

tn+1/2

− [
(2Trr − Tθθ − Tφφ)n+1

j + (2Trr − Tθθ − Tφφ)n
j

]r2
j+1/2 − r2

j−1/2

4

tn+1/2

− f n+1/2
j ρ j

r3
j+1/2 − r3

j−1/2

3

tn+1/2.

The radial stresses (Trr )n+1/2
j+1/2 can be computed by a slope limiter algorithm, as in

Section 6.2.5. If the constitutive law can be written in the form

dTrr

dt
= hr

∂vr

∂r
+ hθ

vr

r

then the quasilinear form of isothermal Lagrangian solid mechanics is

∂

∂t

[
vr

Trr

]
+

[
0 − 1

ρ

−hr 0

]
∂

∂r

[
vr

Trr

]
=

[
f r + 2(Trr −Tθθ )

rρ

hθ
vr
r

]
.

Note that [
0 − 1

ρ

−hr 0

] [
1 1
λρ −λρ

]
=

[
1 1
λρ −λρ

] [−λ 0
0 λ

]
where

λ =
√

hr/ρ.

We solve

Y cn
j+1/2 =

[
vn

j+1 − vn
j

(Trr )n
j+1 − (Trr )n

j

]
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for the characteristic expansion coefficients, apply a limiter to determine cn
j , and

compute[
vr

Trr

]n+1/2,L

j+1/2

=
[

vr

Trr

]n

j

+
[

1
−λρ

]n

j

(
1 − λn

j 
tn+1/2


r j

)
e�
θ cn

j

2
+

[
f r + 2(Trr −Tθθ )

rρ

hθ
vr
r

]n

j


tn+1/2

2[
vr

Trr

]n+1/2,R

j−1/2

=
[

vr

Trr

]n

j

−
[

1
λρ

]n

j

(
1 − λn

j 
tn+1/2


r j

)
e�

r cn
j

2
+

[
f r + 2(Trr −Tθθ )

rρ

hθ
vr
r

]n

j


tn+1/2

2

In summary, we can perform limiting and characteristic tracing to determine
velocity and radial stress at the cell sides and half-time. The particle positions can
be updated by

(wr )n+1
j+1/2 = (wr )n

j+1/2 + (vr )n+1/2
j+1/2
tn+1/2.

The determinant of the deformation gradient is given by

|Q�JQ| = (wn
j+1/2)3

r − (wn
j−1/2)3

r

r3
j+1/2 − r3

j−1/2

and its r, r component is given by(
∂wr

∂r

)n

j

= (wn
j+1/2)r − (wn

j−1/2)r

r j+1/2 − r j−1/2
.

This gives us the information about the deformation gradient needed to determine
the full stress tensor at the new time. Then we can use the momentum equation to
update the velocity.

7.4.3 Cylindrical Coordinates

In cylindrical coordinates, the vector of curvilinear coordinates is

y� = [
r, θ, z

]
,

where r is the distance from the center of the cylinder, z is the distance along the
axis of the cylinder, and θ is the angle around the axis of the cylinder. It follows
that the Cartesian coordinate vector is

a� = [
r cos θ, r sin θ, z

]
.

From this, it is easy to compute

∂a
∂y

=
cos θ −r sin θ 0

sin θ r cos θ 0
0 0 1
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and

H2 =
(

∂a
∂y

)� (
∂a
∂y

)
=

1
r2

1

 .

Thus the orthogonal matrix of unit base vectors is

Q = ∂a
∂y

H−1 =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 .

Note that

∂Qer

∂y
= Qeθe�

θ ,
∂Qeθ

∂y
= −Qer e�

θ ,
∂Qez

∂y
= 0.

Given a vector x in Cartesian coordinates, we can compute the physical compo-
nents of x to bewr

wθ

wz

 = w = Q�x =
 cos θ sin θ 0

− sin θ cos θ 0
0 0 1

 x1

x2

x3

 =
 x1 cos θ + x2 sin θ

−x1 sin θ + x2 cos θ

x3

 .

Next, we compute the gradient of a scalar ω using Equation (7.30)

∇aω = QH−1∇yω =
cos θ − sin θ

r 0
sin θ cos θ

r 0
0 0 1




∂ω
∂r
∂ω
∂θ

∂ω
∂z

 =


∂ω
∂r cos θ − ∂ω

∂θ
sin θ

r
∂ω
∂r sin θ + ∂ω

∂θ
cos θ

r
∂ω
∂z

 .

The deformation gradient J has physical components

Q�JQ ≡ Q� ∂x
∂a

Q = Q� ∂Qw
∂y

H−1 =


∂wr
∂r

1
r(

∂wr
∂θ

−wθ ) ∂wr
∂z

∂wθ

∂r
1
r(

∂wθ

∂θ
+wr ) ∂wθ

∂z
∂wz
∂r

1
r

∂wz
∂θ

∂wz
∂z

 =
Jrr Jrθ Jr z

Jθr Jθθ Jθ z

Jzr Jzθ Jzz

 .

(7.37)

Similarly, the divergence of a vector x can be computed from equation (7.31):

∇a · x =
∣∣∣∣∂y
∂a

∣∣∣∣ ∇y ·
(

H−1w

∣∣∣∣∂a
∂y

∣∣∣∣) = 1

r

[
∂rwr

∂r
+ ∂wθ

∂θ
+ ∂rwz

∂z

]
. (7.38)
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We will also need to compute the physical components of the divergence of an array
S. Let S̃ = Q�SQ. Then equation (7.32) shows us that

Q�(∇a ·S)� =
∣∣∣∣∂y
∂a

∣∣∣∣ ∑
i

ei

{
∇y ·

(
H−1S̃ei

∣∣∣∣∂a
∂y

∣∣∣∣)−tr

(
H−1S̃Q� ∂Qei

∂y

∣∣∣∣∂a
∂y

∣∣∣∣)}

=


∂S̃rr r
∂r + ∂S̃θr

∂θ
+ ∂S̃zr r

∂z − S̃θθ

∂S̃rθr
∂r + ∂S̃θθ

∂θ
+ ∂S̃zθr

∂z + S̃θr

∂S̃r zr
∂r + ∂S̃θ z

∂θ
+ ∂S̃zzr

∂z

 1

r
. (7.39)

Suppose that we are given a scalar conservation law

∂u
∂t

+ ∇x · f (u) = 0.

The physical components of the flux aref r

f θ

f z

 =
 f 1 cos θ + f 2 sin θ

−f 1 sin θ + f 2 cos θ

f 3

 .

Thus a scalar conservation law in cylindrical coordinates can be written in the
conservation form

∂u
∂t

+ 1

r

[
∂f rr

∂r
+ ∂f θ

∂θ
+ ∂f zr

∂z

]
= 0.

However, the more useful expression is the integral form of the law. If we integrate
the cylindrical coordinate form of the conservation law over a cylindrical element,
we obtain

0 =
∫ t2

t1

∫ r2

r1

∫ θ2

θ1

∫ z2

z1

{
∂u
∂t

+ 1

r

[
∂f rr

∂r
+ ∂f θ

∂θ
+ ∂f zr

∂z

]}
r dz dθ dr dt

=
∫ r2

r1

∫ θ2

θ1

∫ z2

z1

[u(r, θ, z, t2) − u(r, θ, z, t1)] dz dθ rdr

+
∫ t2

t1

∫ θ2

θ1

∫ z2

z1

[f r (r2, θ, z, t)r2 − f r (r1, θ, z, t)r1] dz dθ dt

+
∫ t2

t1

∫ r2

r1

∫ z2

z1

[f θ (r, θ2, z, t) − f θ (r, θ1, z, t)] dz dr dt

+
∫ t2

t1

∫ r2

r1

∫ θ2

θ1

[f z(r, θ, z2, t) − f z(r, θ, z1, t)] dθ rdr dt.

It is common to assume that the motion of a material is such that the physical
components are functions of r and z only, and there is no θ component of arrays.
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Thus in cylindrical symmetry wθ = 0 and Cartesian coordinates are related to
physical components by

x� = [
wr cos θ, wr sin θ, wz

]
.

The physical components of a deformation gradient in cylindrical symmetry sim-
plify to

Q� ∂x
∂a

Q =
 ∂wr

∂r 0 ∂wr
∂z

0 wr
r 0

∂wz
∂r 0 ∂wz

∂z

 .

The physical components of the Cauchy stress are

Q�SQ =

Srr 0 Sr z

0 Sθθ 0

Szr 0 Szz

 .

Similarly, the stress divergence simplifies to

Q�(∇a · S)� =
 1

r
∂rTrr

∂r + ∂Tzr
∂z − Tθθ

r
0

1
r

∂rTrr
∂r + ∂Tzz

∂z


If the scalar conservation law is cylindrically symmetric, then f θ = 0 and the

remaining quantities are assumed to be independent of θ . The conservation law
simplifies to

∂u
∂t

+ 1

r

[
∂f rr

∂r
+ ∂f zr

∂z

]
= 0.

If we integrate the cylindrical coordinate form of the conservation law over a
cylindrical shell, we obtain

0 = 1

2π

∫ t2

t1

∫ r2

r1

∫ 2π

0

∫ z2

z1

{
∂u
∂t

+ 1

r

[
∂f rr

∂r
+ ∂f zr

∂z

]}
r dz dθ dr dt

=
∫ r2

r1

∫ z2

z1

[u(r, z, t2) − u(r, z, t1)] dz rdr

+
∫ t2

t1

∫ z2

z1

[f r (r2, z, t)r2 − f r (r1, z, t)r1] dz dt

+
∫ t2

t1

∫ r2

r1

[f z(r, z2, t) − f z(r, z1, t)] rdr dt.
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7.4.3.1 Case Study: Eulerian Gas Dynamics in Cylindrical Coordinates

Recall that Eulerian conservation of mass in gas dynamics takes the Cartesian form

∂ρ

∂t
+ ∇x · (vρ) = 0.

We can use Equation (7.38) to obtain the conservation of mass in cylindrical
coordinates:

∂ρ

∂t
+ 1

r

∂vrρr

∂r
+ 1

r

∂vθρ

∂θ
+ ∂vzρ

∂z
= 0.

Eulerian conservation of momentum in Cartesian coordinates is
∂vρ

∂t
+ ∇x · (vρv� + I p) = gρ.

We can use equation (7.39) to obtain conservation of momentum in cylindrical
coordinates:grρ

gθρ

gzρ

 ≡ Q�gρ = ∂Q�vρ

∂t
+ Q� {

∇a · (
vρv� + I p

)}�

= ∂

∂t

vrρ

vθρ

vzρ

 +


∂v2

r ρr+p
∂r

1
r + ∂vθ vr ρ

∂θ
1
r + ∂vzvr ρ

∂z − v2
θ ρ

r

∂vr vθ ρr
∂r

1
r + ∂(v2

θ ρ+p)
∂θ

1
r + ∂vzvθ ρ

∂z + vθ ρvr

r
∂vr vzρr

∂r
1
r + ∂vθ vzρ

∂θ
1
r + ∂v2

z ρ+p
∂z

 .

Finally, conservation of energy in Cartesian coordinates takes the form

∂ρ(e + 1
2 v · v)

∂t
+ ∇x ·

[
vρ

(
e + 1

2
v · v

)
+ vp

]
= ρg · v.

In cylindrical coordinates, this becomes

∂ρ(e + 1
2 [v2

r + v2
θ + v2

z ])

∂t
+ 1

r

∂rvr [p + ρ(e + 1
2 v2

r + v2
θ + v2

z )]

∂r
+ 1

r

∂vθ [p + ρ(e + 1
2 v2

r + v2
θ + v2

z )]

∂θ

+ ∂vz[p + ρ(e + 1
2 v2

r + v2
θ + v2

z )]

∂z
= ρ(gr vr + gθvθ + gzvz).

In cylindrical symmetry, mass conservation is

∂ρ

∂t
+ ∂vrρr

∂r

1

r
+ ∂vzρ

∂z
= 0.

Conservation of momentum is[
grρ

gzρ

]
=

[
∂vr ρ

∂t
∂vzρ

∂t

]
+

[
1
r

∂rρv2
r r

∂r + ∂ρvr vz

∂z + ∂p
∂r

1
r

∂ρvzvr

∂r + ∂ρv2
z

∂z + ∂p
∂z

]
.
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Energy conservation is

∂ρ(e + 1
2 [v2

r + v2
z ])

∂t
+ 1

r

∂rvr [p + ρ(e + 1
2 v2

r + v2
z )]

∂r
+ ∂vz[p + ρ(e + 1

2 v2
r + v2

z )]

∂z
= ρ(gr vr + gzvz).

In order to develop a discretization of these equations, let us work with cell
averages

un
i j ≈ 2(

r2
i+1/2 − r2

i−1/2

)

z j

∫ z j+1/2

z j−1/2

∫ ri+1/2

ri−1/2


ρ

vrρ

vzρ

(e + 1
2 [v2

r + v2
z ])ρ

 rdr dz.

We could compute flux integrals

f n+1/2
i+1/2, j ≈

∫ tn+1

tn

∫ z j+1/2

z j−1/2


ρvr

ρv2
r

ρvzvr

vr
[

p + ρ(e + 1
2 [v2

r + v2
z ])

]
 (ri+1/2, z, t) dz dt ri+1/2

f n+1/2
i, j+1/2 ≈

∫ tn+1

tn

∫ ri+1/2

ri−1/2


ρvz

ρvr vz

ρv2
z

vz
[

p + ρ(e + 1
2 [v2

r + v2
z ])

]
 (r, z j+1/2, t) rdr dt

using the corner transport upwind scheme with slope limiting. The Riemann prob-
lem solutions would also provide values for the pressures at the cell sides. The cell
averages could be updated by

un+1
i j = un

i j −
[
f n+1/2

i+1/2, j − f n+1/2
i−1/2, j + f n+1/2

i, j+1/2 − f n+1/2
i, j−1/2

] 2

(r2
i+1/2 − r2

i−1/2)
z j+1/2

−


0

pn+1/2
i+1/2, j − pn+1/2

i−1/2, j

0
0

 
tn+1/2


ri
−


0
0

pn+1/2
i, j+1/2 − pn+1/2

i, j−1/2

0

 
tn+1/2


z j

+




0
grρ

gzρ

(gr vr + gzvz)ρ


n

j

+


0

grρ

gzρ

(gr vr + gzvz)ρ


n+1

j



tn+1/2

2
.

This equation is not implicit. The density can be updated at the new time, then
combined with gravity to update the momentum. Afterward, the new density and
velocity can be combined with gravity to update the energy. Of course, if g is due
to the force of gravity, then cylindrical symmetry would require that gr = 0.
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7.4.3.2 Case Study: Lagrangian Solid Mechanics in Cylindrical Coordinates

Lagrangian conservation of mass

∂ρ

∂t
= 0

is unchanged in cylindrical coordinates. Equality of mixed partial derivatives in
cylindrical coordinates gives us

∂

∂t

Jrr Jrθ Jr z

Jθr Jθθ Jθ z

Jzr Jzθ Jzz

 = Q� ∂J
∂t

Q = Q� ∂v
∂a

Q = Q� ∂QQ�v
∂y

H−1

=


∂vr
∂r

1
r ( ∂vr

∂θ
− vθ ) ∂vr

∂z
∂vθ

∂r
1
r ( ∂vθ

∂θ
+ vr ) ∂vθ

∂z
∂vz
∂r

1
r

∂vz
∂θ

∂vz
∂z

 .

The physical components of the Cauchy stress are

S̃ = Q�SQ ≡
Srr Srθ Sr z

Sθr Sθθ Sθ z

Szr Szθ Szz

 .

Since S is symmetric, so is S̃. The physical components of the first Piola–Kirchhoff
stress are

Trr Trθ Tr z

Tθr Tθθ Tθ z

Tzr Tzθ Tzz

 ≡ T = Q�SJ−�Q|J|

=
Srr Srθ Sr z

Sθr Sθθ Sθ z

Szr Szθ Szz

  JθθJzz − JzθJθ z −Jθr Jzz + Jzr Jθ z Jθr Jzθ − Jzr Jθθ

−JrθJzz + JzθJr z Jrr Jzz − Jzr Jθ z −Jrr Jzθ + Jzr Jrθ

JrθJzθ − JθθJr z −Jrr Jθ z + Jθr Jr z Jrr Jθθ − Jθr Jrθ

 .

Note that T is not necessarily symmetric. Thus conservation of momentum in
cylindrical coordinates isgrρ

gθρ

gzρ

 = Q�gρ = ∂Q�vρ

∂t
− Q� [

∇a · (J−1|J|S)
]�

= ∂

∂t

vrρ

vθρ

vzρ

 −


r∂Trr

∂r + ∂Tθr
∂θ

+ ∂rTzr
∂z − Tθθ

∂rTrθ

∂r + ∂Tθθ

∂θ
+ ∂rTzθ

∂z + Tθr

∂rTr z
∂r + ∂Tθ z

∂θ
+ ∂rTzz

∂z

 1

r
.
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Finally, Cartesian conservation of energy

∂(ε + 1
2 v · v)ρ

∂t
− ∇a · (J−1S|J|v) = (ω + g · v)ρ

becomes

∂(ε + 1
2 v · v)ρ

∂t
− 1

r

{
∂(Trr vr + Tθr vθ + Tzr vz)r

∂r
+ ∂Trθvr + Tθθvθ + Tzθvz

∂θ

}
+ ∂Tr zvr + Tθ zvθ + Tzzvz

∂z
= (ω + gr vr + gθvθ + gzvz)ρ.

In cylindrical symmetry, equality of mixed partial derivatives gives us

∂

∂t

Jrr 0 Jr z

0 Jθθ 0
Jzr 0 Jzz

 = Q� ∂J
∂t

Q = Q� ∂v
∂a

Q =
 ∂vr

∂r 0 ∂vr
∂z

0 vr
r 0

∂vz
∂r 0 ∂vz

∂z

 .

The physical components of the Cauchy stress areSrr 0 Sr z

0 Sθθ 0
Szr 0 Szz

 ≡ S̃ = Q�SQ.

The physical components of the first Piola–Kirchhoff stress are

T = Q�SJ−�Q|J| =
Srr 0 Sr z

0 Sθθ 0
Szr 0 Szz

  JθθJzz 0 −Jzr Jθθ

0 Jrr Jzz 0
−JθθJr z 0 Jrr Jθθ


≡

Trr 0 Tr z

0 Tθθ 0
Tzr 0 Tzz

 .

Conservation of momentum in cylindrical symmetry is[
grρ

gzρ

]
= ∂

∂t

[
vrρ

vzρ

]
−

[
∂rTrr

∂r + ∂rTzr
∂z − Tθθ

∂rTr z
∂r + ∂rTzz

∂z

]
1

r
.

Finally, conservation of energy is

∂(ε + 1
2 v · v)ρ

∂t
− 1

r

∂(Trr vr + Tzr vz)r

∂r
− ∂Tr zvr + Tzzvz

∂z
= (ω + gr vr + gzvz)ρ.

A numerical scheme for cylindrically symmetric isothermal solid mechanics
might proceed as follows. We could compute the fluxes at the cell sides using a
slope limiter scheme. This would determine values for the velocity and the first
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Piola–Kirchhoff stress. Then we could update the deformation gradient by

Jn+1
i j = Jn

i j +


vr

0
vz

n+1/2

i+1/2, j

ri+1/2 −
vr

0
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 e�
r

2
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+
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0
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i+1/2, j

−
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0
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 e�
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dz j

+
 0

(vr )i+1/2, j + (vr )i−1/2, j + (vr )i, j+1/2 + (vr )i, j−1/2

0

 
tn+1/2

2(ri+1/2 + ri−1/2)
.

Afterward, we can update the stress. Then the momentum could be updated by[
ρvr

ρvz

]n+1

i j

=
[
ρvr

ρvz

]n

i j

+
{[

Trr

Tr z

]n+1/2
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−
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+
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0
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i j

}
2
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+

[
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gz

]
ρi j 
tn+1/2.

Exercises for 7.4

7.4.1 The spherically symmetric Burgers’ equation has Cartesian flux f (u, x) = 1
2 u2x/‖x‖.

(a) How would this problem be formulated in spherical coordinates?
(b) How would you formulate a free-stream-preserving numerical scheme for this problem?

7.4.2 Determine the equations describing spherically symmetric shallow water, and formulate a free-
stream-preserving numerical scheme for their numerical solution.

7.4.3 The natural formulation of the gas dynamics momentum equation in spherical coordinates is

0 = ∂vrρ

∂t
+ 1

r2

∂r2(v2
r ρ + p)

∂r
− 2p

r
.

Why did we rewrite this in the form

0 = ∂vrρ

∂t
+ 1

r2

∂r2v2
r ρ

∂r
− ∂p

∂r
?

7.4.4 Consider linear elasticity in spherical symmetry.
(a) How would we compute the strain tensor in the numerical method described above?
(b) How would we compute the stress tensor?
(c) How would we update the velocity, using a slope limiter scheme?
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7.4.5 Polar coordinates would represent a further simplification of the cylindrically symmetric problem,
in which there would be no dependence on z. Formulate gas dynamics in polar coordinates, and
describe a numerical method for its solution.

7.4.6 Determine the equations for cylindrically symmetric shallow water.

7.5 Source Terms

Because of the publication constraints, we did not have time to discuss several
advanced topics in detail. Instead, we will provide some references to guide the
reader.

In section 7.4 we saw that the use of various kinds of curvilinear coordinate
systems introduces source terms into conservation laws. Source terms arise quite
naturally in physical systems using Cartesian coordinates as well. For example,
ramps are important to modeling traffic flow [97][page 167], wells are essential in
oil recovery [6, 128, 129, 165], shallow water flow often occurs over variable topog-
raphy [86], and combustion problems are important applications of gas dynamics
[27, 79, 93, 130].

In many cases, these source terms can be treated accurately by operator splitting.
For example, capillary pressure terms in Buckley–Leverett flow can often be treated
in this way. With stiff source terms, however, such an approach can produce ficti-
tious waves. Within the context of a MUSCL scheme, Pember [130] treated the stiff
source terms implicitly in the determination of the states for the Riemann problem,
and implicitly in the update of the new solution. Jin and Levermore [79] introduced
the local equilibrium flux and an additional equation for relaxation to local equilib-
rium. The additional equation involves a user-defined relaxation parameter which
must be chosen to be appropriately large. We invite interested readers to examine
these approaches in more detail.

7.6 Geometric Flexibility

Many important physical problems involve flow around obstacles (such as gas flow
around airplanes, water flow around ships, ocean currents around land masses).
These problems require more sophisticated numerical schemes than we have had
space to discuss in this text.

If an appropriate coordinate transformation is available, sometimes an irregular
flow region can be transformed into a rectangular region, or a union of rectangles.
Stream functions can often provide these transformations. If the transformations
are sufficiently smooth, then high-order numerical methods (such as ENO and
discontinuous Galerkin) can be used on the transformed system. For linear advection
problems, the use of streamline methods [43] can convert systems of conservation
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laws into ordinary differential equations within stream-tubes, and self-similarity
can be used to map the solution on a generic stream-tube onto an arbitrary stream-
tube. Three-dimensional problems can be solved quite rapidly in this way, with no
numerical diffusion across stream surfaces.

Alternatively, we can use quadrilateral grids in two dimensions [12, 47, 95, 166].
Limiting on such grids is easiest if the mesh is reasonably smooth and the quadri-
lateral indexing is “logically rectangular,” in which case the limiting is performed
between quadrilaterals differing in only one cell index much as limiting is per-
formed on rectangular grids. Alternatively, we could use triangles or tetrahedrons
[2, 9, 30, 111]. In these cases, limiting is necessary but much more difficult [10, 30].

An alternative to gridding an irregular flow domain is the use of Cartesian grids
[16]. Here the idea is to make a first computation on a regular grid that ignores the
obstacles, then correct those results to account for the flow around the obstacles.
The corrections can usually be performed easily to achieve second-order accuracy.
If only a small fraction of the grid cells need such a correction, then this approach
can be must faster than using body-fitted grids. The new book by Li and Ito [102]
provides significant detail regarding these methods.
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Adaptive Mesh Refinement

8.1 Localized Phenomena

Many hyperbolic problems involve moving features of the solution that require
additional resolution. For example, most schemes resolve shocks and contact dis-
continuities with lower accuracy than smooth features of the flow. In order to obtain
good accuracy with such methods near the discontinuities, it is necessary to refine
the mesh. However, if the mesh is refined everywhere, the increase in computational
cost can be substantial.

Many of the methods we have examined are second-order accurate for smooth
solutions, but only first-order accurate at discontinuities. This means that if we want
to halve the error in the resolution of a shock by a formally second-order method,
we must double the number of cells in each coordinate direction. The formally
first-order methods are even worse: because of the large numerical diffusion, their
order of accuracy at discontinuities is typically O(

√

x). If we want to halve the

error in the resolution of a shock by a first-order method, we must quadruple the
number of cells in each direction.

Suppose that we are computing the solution to a system of hyperbolic equations
in d dimensions via an explicit method on a grid with n cells in each direction.
Then the cost per timestep is proportional to nd . Since the CFL condition requires
that 
t be proportional to 
x , which is in turn inversely proportional to n, the
cost to compute the solution over the time required for a wave to cross the grid is
proportional to nd+1. In three dimensions, this means that if we double the number
of cells in each direction, we have to do 16 times as much work. With a method that
is formally second-order but actually first-order near discontinuities, we do 2d+1

times as much work to halve the error in the resolution of the discontinuity. On the
other hand, if we use a first-order method, in order to reduce the error by a factor of
2, we must increase the work by a factor of 22(d+1); in three dimensions, this factor
is 256.

544
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One approach to this problem is to go to even higher order methods. Suppose that
we could construct, say, an ENO scheme of order p. The work with such a scheme is
still O(nd) per timestep, but the error is improved by a factor of 2p by doubling the
number of cells in each direction. This means that we need to increase the number
of cells in each direction by a factor of 21/p to reduce the error by a factor of 2. In d
dimensions, the work increases by a factor of 2(d+1)/p. This, of course, looks very
attractive, when compared to the results in the previous paragraph. The difficulty
is that the presence of a discontinuity often leads to a very large factor multiplying
the power of 2 in the work estimate.

General experience in dealing with ordinary differential equations found that it
is more efficient to use low-order methods and fine mesh near rough behavior, and
higher-order methods on coarse meshes for smooth behavior. Since we are now
dealing with partial differential equations, we can apply this experience only by
varying the mesh resolution in space and time near regions of rough behavior.

Suppose that we use a coarse mesh with N cells in each direction to compute the
solution, except near regions of rough behavior. In order to compute the solution
on this coarse mesh, the work is proportional to N d+1. Suppose that we have a
propagating discontinuity surface, around which we place a mesh with a fixed
number of cells normal to the surface, but refined by a factor of 2r in the other
coordinate directions. This means that there are an order of (2r N )d−1 cells in the
locally refined mesh. The CFL condition requires that we take an order of 2r N
timesteps on the locally refined grid. The total work with the locally refined grid is
proportional to (2r N )d . This means that we can increase the accuracy by a factor 2r

at a cost similar to solving a problem with one less coordinate dimension.
There are alternatives to adaptive mesh refinement. One alternative is to obtain

maximal accuracy for a fixed cost [119]. Our approach is to seek a desired level of
accuracy with nearly minimal cost.

Our approach will use nested arrays of (logically) rectangular grid patches, fol-
lowing the ideas developed by Marsha Berger [17, 18, 19, 20]. Other approaches
use variable numbers of computational cells on unstructured meshes or meshes
refined cell-by-cell; see, for example, [112].

The principal difficulty with all forms of adaptive mesh refinement is program-
ming complexity. Our computations are carried out on arrays of logically rectan-
gular patches defined in recursively finer index spaces. Each array of patches is
designed so that its union is contained in the union of the next coarser array of
patches. A fair amount of programming is required to handle the communication
between the patches on the same and coarser or finer levels of refinement. In some
problems, the behavior of this communication between scales is interesting in its
own right [28].
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The principal reason for working on logically rectangular grid patches is that
we will generate a relatively small number of significant computational assign-
ments, namely to integrate the solution of the differential equations on a grid patch.
Typically, it is far easier to generate a robust and reliable numerical method on a
regular grid. It is also easier to arrange the computations to take advantage of the
machine memory hierarchy, particularly to make good use of the cache. Our strat-
egy also makes it easier to make efficient use of pipelining and distributed memory
machines.

8.2 Basic Assumptions

We assume that we are given some initial coarse mesh and an integer refinement
ratio r . We will call this mesh the coarsest level of refinement, and denote it by L0.
Imagine finer levels L� defined recursively from the coarsest level L0 according to
several rules.

Finite Termination In order to guarantee that the algorithm terminates, we require
that there be a maximum number of levels, and a maximum number of
timesteps on each level.

Logical Rectangularity We assume that each level L� consists of some number of
patches, each of which is a logically rectangular array of cells. A “logically
rectangular” array of cells means that the array of cells can be mapped to a
rectangular grid by a coordinate transformation. The grid itself can be non-
rectangular in space; we only require that the grid be rectangular in the data
arrays.

Grid Alignment We assume that if a coarse cell is refined in any part of its physical
space, then it is refined everywhere. In other words, the boundary of a fine
patch coincides with the boundary of a logically rectangular array of coarse
grid cells.

Fixed Refinement Ratio We assume that we are given an integer refinement
ratio r . Whenever a coarse cell on level L� is refined, it is subdivided into
r cells in each coordinate direction on level L�+1. Normally, the refinement
ratio is a power of 2. Note that the assumptions of a fixed refinement ratio
and of grid alignment imply that on any level L� with � > 0, in any patch
the number of cells in any coordinate direction is an integer multiple of the
refinement ratio.

Proper Nesting We assume that the union of fine patches on level L�+1 is con-
tained in the interior of the union of coarse patches on level L�. However,
an individual fine patch is not required to lie inside any single coarse patch.
Note that this assumption implies that the coarsest level L0 must completely
cover the entire physical domain. This in turn implies that we must be able to
provide a logically rectangular grid on the coarsest domain.
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Synchronization After we advance the data on patches in level L� to some time,
we assume that the data on patches in level L�+1 are advanced by as many
timesteps as required by stability and accuracy to reach exactly the same
time as the coarser level L�. This assumption implies that coarse patches
are integrated before fine patches; it also implies that the timestepping algo-
rithm must be applied recursively within each timestep on all but the finest
level.

Fine Preference We assume that the numerical scheme for our differential equa-
tion produces better results on the fine grid than on the coarse, in regions of
the problem where both fine and coarse grid cells overlap.

Conservation We assume that the numerical scheme for our conservation law is
conservative. Where fine and coarse grids overlap, we replace the coarse grid
results with conservative coarsenings of the fine grid results; this process is
called upscaling.

Regridding We assume that we are given a regrid interval which is a predeter-
mined number of timesteps between regridding events on a coarse level. At
the end of each regrid interval, the coarse level L� selects coarse cells that
need refinement at the new time, organizes these cells into some number of
logically rectangular arrays of cells, and refines them to form the new cells on
the finer level L�+1. On any level L�+1 that is not the finest level, the number
of timesteps used for for synchronization with the coarser level L� must be
an integer multiple of the regrid interval. This is required so that regridding
can be applied recursively.

8.3 Outline of the Algorithm

The adaptive mesh refinement process can be represented by the following “pseudo
C++” algorithm:

void Level::advance(double dt˙max) {
bool time-to-sync-with-coarser-level=

(coarserLevelExists() ? coarserLevel()->timeToRegrid() : false);
double dt-sum=0.;
int step=0;

dt=findStableStepSize(dt-max,dt-sum);
while (dt-sum<dt-max) {

patch-arr->advance(dt);
step++;
dt-sum+=dt;
if (finerLevelExists()) finerLevel()->advance(dt);
if (canBeRefined() && step%regrid-interval==0) {

if (dt-sum<dt-max || !time-to-sync-with-coarser-level) {
regridFinerLevels();

}
}
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dt=findStableStepSize(dt-max,dt-sum);
}
if (coarserLevelExists()) {

patch-arr->coarsenFluxSums(coarserLevel()->patch-arr);
coarserLevel()->patch-arr->repeatConservativeDifference();
patch-arr->coarsenConservedQuantities();

}
}

We will describe these parts of the timestepping algorithm in the sections below.

8.3.1 Timestep Selection

The first task in integrating the data on the patches belonging to an arbitrary level
L� is to select the current timestep 
tc,�. If a coarser level exists, then the cell widths
on the coarser level are a factor of the refinement ratio r times the cell widths on
this level. Thus, if a coarser level exists, the maximum number of steps on this
level should be roughly r , so we should have that 
tc,� ≈ 
tc,�−1/r . Because of the
extra resolution of the fine grid, calculations of the stable timestep may suggest that
we take somewhat more than r timesteps. We assume that we can use appropriate
stability conditions to determine the largest stable timestep 
ts,� over all the cells
in all the patches on a given level L�.

It is generally a good idea to avoid rapid increases in the size of the timestep.
Rapid decreases in 
t may be required for stability, but rapid increases allow for the
algorithm to jump too far past the time when discontinuities develop. This suggests
that we require that the new timestep satisfy


t ≤ min{
tc,�, 
ts,�} f

where f is some predetermined growth factor. Typically, f = 1.1 is a good choice.
If a coarser level does not exist, we have no synchronization to perform. Assum-

ing that this coarsest level L0 can be refined, the number of timesteps we take to
reach the desired time must be an integer multiple of the regrid interval. If necessary,
we reduce 
tc,0 to reach the desired time at a regridding interval.

If a coarser level exists and we have already advanced a total time increment of

tt,� on this level, then the time remaining until synchronization is 
tc,�−1 − 
tt,�.
Thus the number of timesteps remaining until synchronization with the coarser
level is at least (
tc,�−1 − 
tt,�)/
t . The maximum number of steps on this level
is at least the number of steps already taken plus this number of steps remaining.
If the current level can be refined, then the maximum number of steps must be an
integer multiple of the regridding interval. After this adjustment, the updated value
of the current timestep is the time remaining until synchronization divided by the
number of steps remaining.
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8.3.2 Advancing the Patches

The algorithm to advance the data on the patches takes the form of the following
“pseudo C++” code:

double PatchArr::advance(double dt) {
for (int i=0;i<getNumber();i++) {

Patch *p=(*this)[i];
p->makeSpaceForData(time+dt);
level->fillBoundaryData(p,time);
p->advance(dt);

}
return getStableDt();

}

First, we make available sufficient computer memory for the computational results
at the new time. This need not involve actual memory allocation at each timestep;
rather existing memory associated with the patch is cleared and marked with the
new time. The final step is to compute a timestep that is stable for the new data
on all the cells of all the patches. This depends on the integration scheme, and is
typically based on the CFL condition. The other intermediate tasks require more
elaboration.

8.3.2.1 Boundary Data

Our adaptive mesh refinement algorithm is designed so that the data on an individual
grid patch can be advanced in time without the user worrying about the current
arrangement of the grid hierarchy. This allows the integration scheme to perform a
very regular and efficient algorithm. In order to achieve this goal, we provide ghost
cells for the data on each grid patch, and fill these extra cells with the best available
information before advancing the data in time.

The number of ghost cells is determined by the stencil of the integration scheme.
A simple scheme such as Rusanov’s method would require a single ghost cell. A
complicated scheme such as fourth-order ENO would require 16–20 ghost cells
in each direction, since the flux stencil for each of the four Runge–Kutta steps
requires 4–5 cells to either side of the intended location of the flux. Schemes with
large stencils are not typically used with adaptive mesh refinement: the large number
of ghost cells requires a large amount of communication between patches, relative
to the cost of advancing the data on a patch. Note that discontinuous Galerkin
methods do not use any ghost cells, because higher-order accuracy is achieved by
carrying information about derivatives of the solution within each grid cell.

The synchronization assumption requires that coarse patches are integrated
before fine patches, and the proper nesting assumption requires that the union
of fine patches is contained in the interior of the union of the coarse patches. Thus
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fine patches cannot provide boundary data for coarser patches. Instead, boundary
data are sought from the following sources in the following order of priority:

(i) physical boundary conditions at the outer sides of the computational domain;
(ii) data in cells on other patches in the same level of refinement;

(iii) space and time interpolation from coarser patches.

Note that the union of patches and ghost cells on level L�+1 may extend beyond the
union of patches on level L�. Thus, it may be necessary to use an algorithm that
recurses over coarser levels of refinement to find all the needed boundary data. The
alternative is to expand coarse grid patches enough to contain the fine grid patches
and their ghost cells.

Figure 8.1 illustrates the determination of boundary data for a patch. The patch
of interest sits between the boundary of the physical domain (the heavy vertical
line to the left) and another patch on the same level of refinement. Boundary data
must be found for the ghost cells (in this case four) around the outside of the patch;
the boundary of the ghost cells is drawn as a thin solid line around the patch. Part
of these boundary data are determined by the boundary conditions, and part are
provided by the data on the other patch. The remainder of the boundary data must
be obtained by refining data from the overlying coarse patches, which are illustrated
by dashed lines where no fine patches occur. Although Figure 8.1 indicates that the
remaining boundary data can be provided by the coarser level of patches, in general
it is possible that some of these refined boundary data could come from even coarser
levels.

Note that when data are provided from coarser levels, then those data must be
refined appropriately. For conserved quantities, this means that the space and time
interpolation should preserve the overall accuracy of the integration scheme.

The strategies used to fill boundary data and to regrid are interrelated. If we
required that fine patches and their ghost cells must be contained the union of the
patches on the next coarser level, then we could avoid recursion in filling the ghost
cells. However, we would require more cells on the coarser level, which would in
turn require even coarser levels to be larger.

The safe strategy is to program the adaptive mesh refinement algorithm so that
recursive filling of ghost cells is possible. By selection of a sufficiently large proper
nesting buffer, it is then possible to prevent the recursion from occurring.

8.3.2.2 Flux Computation

Once the ghost cell data are available, the fluxes can be computed with the same
subroutine used in a non-adaptive code. The choice of scheme used to integrate the
conservation law dictates the form of this subroutine.
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Fig. 8.1 Sources of boundary data during adaptive mesh refinement. The physical
boundary is the very thick vertical line at bottom; the fine patch currently seeking
boundary data is next to the physical boundary and has a boundary represented
by lines of intermediate thickness. The fine patch requires data in “ghost cells”
inside a larger rectangle (two coarse cells wider in both directions) surrounding
the patch, represented by solid lines both inside and outside the physical domain.

We have a choice of providing each patch with sufficient storage for its own cells
and the ghost cells, or of copying the data from the patch to some work space and
copying the new results back from the work space. If we choose to avoid the copies
to the work space, then the extra ghost cells on each patch represent a redundant use
of computer memory, wherever ghost cells from one patch overlap cells on another
patch in the same level. Another consequence of not having a work space is that all
patches would have to store temporary variables (such as the sound speed in gas
dynamics), leading to even greater memory requirements. An alternative is to do
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all work in the flux computation and time integration within the work space, at the
extra cost of copying the necessary input and output. An intermediate strategy in
which temporary variables are stored in a work space while others are stored on the
patch with ghost cells is also possible. We have chosen not to store any ghost cells
with the patches.

8.3.2.3 Time Integration

Essentially all schemes for hyperbolic conservation laws involve a conservative
difference for time integration. In two dimensions, this takes the form

un+1
i j = un

i j − 1

(
x1)i (
x2) j

{[
fn+1/2
i+1/2, j − fn+1/2

i−1/2, j

]
(
x2) j 
tn+1/2

−
[
fn+1/2
i, j+1/2 − fn+1/2

i, j−1/2

]
(
x2) j 
tn+1/2

}
. (8.1)

This is a simple calculation, and should use the same subroutine that would be used
in a non-adaptive algorithm.

However, if there are even finer patches, then the fine results should be preferable
to these coarse results. There are two ways in which the fine results replace the
coarse results. One is discussed in Section 8.3.5, in which the numerical solution
in a coarse cell is replaced by an appropriate upscaling of the fine results. The
other issue is discussed in Section 8.3.4, in which the coarse fluxes are replaced
by an appropriate upscaling of fine fluxes, and the coarse conservative difference
is repeated with the upscaled fluxes.

Suppose that on the next coarser level we are advancing by 
T in time. In order
to synchronize the current level with the coarser, we will take some sequence of
timesteps 
t . Symbolically, we will write 
t ∈ 
T to denote that the fine timesteps
are contained within the coarse timestep. Similarly, suppose that some coarse cell
side I + 1/2, J coincides with the boundary of a fine patch. We will denote that
a fine cell side i + 1/2, j is contained within this coarse cell side by writing i +
1/2, j ∈ I + 1/2, J . Similar notation could be used in other coordinate directions,
and in one or three dimensions.

Note that the fluxes fn+1/2
i+1/2, j (
x2) j 
tn+1/2 are numerical approximations to the

integrals
∫ t+
tn+1/2

t

∫
si+1/2, j

fn ds dt for a side si+1/2, j of patch with logical indices
i j . Then the total flux on the coarse cell side SI+1/2,J should be replaced with the
sum of fine flux integrals

∑

tn+1/2∈
T

∑
i+1/2, j∈I+1/2,J fn+1/2

i+1/2, j (
x2) j 
tn+1/2.
As a result, we compute time integrals of the flux at outer sides of each patch.

When we reflux, we will integrate these time integrals in space over all fine cell
sides contained in a coarse cell side. The result will replace the original coarse flux
integral in the refluxing step below.
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8.3.3 Regridding

Because we are interested in solving time-dependent problems, we allow the mesh
refinement to move in time. There are several design principles in this process:

Necessity: We want to locate the new fine mesh only where it is needed.
Proper Nesting: We want the union of patches on each level of refinement to be

contained in the interior of the union of patches on the next coarser level.
Infrequency: we move the mesh after a fixed number of coarser timesteps, rather

than after every timestep.

With respect to the Necessity principle, we shall use an error estimation procedure
(described below) to determine where the unacceptably large errors occur on this
level. By using an error estimator, rather than a gradient detector, we are able to
place mesh refinement where discontinuities in the motion variables are about to
form, or where the algorithm is not able to produce second-order accuracy for some
other reason, such as a lack of smoothness in the equation of state.

With respect to the Infrequency principle, we obviously do not want to move the
mesh every timestep on each level. Instead we shall move the mesh after a fixed
number of timesteps, call the regrid interval, in order to keep the cost of error
estimation within acceptable limits.

A “pseudo C++” algorithm describing the regridding process consists of the
following two procedures:

//called from Level::advance
void Level::regridFinerLevels(double efficiency-tolerance) {

findProperNestingList();
if (finerLevelExists()) {

finerLevel()->findProperNestingListFromCoarserLevel();
}

TagBoxArr dummy;
updateFinePatchArr(lplot,efficiency-tolerance,dummy);

}

In the remainder of this subsection, we will discuss these ideas in greater detail.

8.3.3.1 Proper Nesting

We want the union of the fine patches to be contained in the interior of the union of
the coarser patches. This implies that the boundary of the union of the fine patches
nowhere coincides with the boundary of the union of the coarser patches; adjacent
cells can differ by at most one refinement level. As a result, all interfaces between
coarse and fine grids are related by a fixed ratio. Furthermore, the flux integrals com-
puted on the outer sides of the fine patches are used on the next coarser level only.
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We require that the boundary of the union of the fine patches be a fixed number
of coarse cells from the boundary of the union of the coarser patches. This number
of cells is called the proper nesting buffer. If chosen properly, it can be reasonably
small and still guarantee that the interpolation needed to provide initial data on new
fine cells does not need to recurse over coarser levels.

Two “pseudo C++” procedures to compute the proper nesting lists are as follows:

void Level::findProperNestingList() {
proper-nesting-list->clear();
complement-list->clear();
patch-arr->complement(physical-box,*complement-list);
complement-list->

bufferAndReplace(physical-box,proper-nesting-buffer);
complement-list->complement(physical-box,*proper-nesting-list);

}

//recursive:
void Level::findProperNestingListFromCoarserLevel() {

if (!canBeRefined()) return;
proper-nesting-list->clear();
complement-list->clear();
const BoxList &coarse-complement-list=

*(coarserLevel()->complement-list);
int proper-nesting-buffer=getProperNestingBuffer();
complement-list->bufferAndAppendFromCoarser(coarse-complement-list,

physical-box,proper-nesting-buffer);
complement-list->complement(physical-box,*proper-nesting-list);
if (finerLevelExists()) {

finerLevel()->findProperNestingListFromCoarserLevel();
}

}

In these procedures, think of the proper nesting list and the complement list as a list
of boxes (i.e., patches without data). The complement list is initialized by finding
a list of boxes that exactly cover the complement of the union of the patches with
respect to the physical domain. Each of the boxes in this list is buffered to make
them larger by a fixed number of cells, namely the proper nesting buffer. The proper
nesting list is the list of boxes that forms the complement of the union of theses
buffered boxes.

Since we are moving the mesh after a fixed number of coarser timesteps, called
the regrid interval, it is necessary to provide a buffer region around the cells
currently requiring refinement. The purpose of the buffering is to prevent the waves
of interest from moving off the refined mesh before the next regridding step. Here,
we take advantage of the CFL condition: the explicit integration method we are
using is designed so that a wave can travel across at most one cell in a timestep.

Another purpose of the proper nesting list is to guide the selection of the patches
on finer levels. The patches on the current level have been selected so that the
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Fig. 8.2 The role of the proper nesting list during regridding: boxing of cells tagged
for refinement must lie inside the union of current patches

interesting waves will lie inside the union of the patches until the patches have
been advanced in time to synchronization with the next coarser level. We want
to construct a list of patches on each of the finer levels, so that each fine patch
lies inside the refinement of the proper nesting list belonging to its coarser level.
When the union of patches on the current level is not convex, the proper nesting
list prevents patches on the next finer level that straddle an interior corner of the
union. As an example, Figure 8.2 shows a collection of tagged cells (which are each
marked with an X) on two patches. The smallest box containing these tagged cells
(which is illustrated with a heavy dotted line) lies partly outside the union of the
patches. If this containing box were used to generate a refined patch, then some of
the fine cells would not be properly nested.
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8.3.3.2 Tagging Cells for Refinement

The next regridding step is to update the list of patches on the finer level. A “pseudo
C++” procedure to implement the ideas is the following:

//recursive:
void Level::updateFinePatchArr(double efficiency-tolerance,
TagBoxArr &coarse-tag-box-arr) {

patch-arr->tagAllPoints(FALSE);
if (finerLevelExists()) {

finerLevel()->patch-arr->tagCoarserCells(*patch-arr,TRUE);
}
findErrorCells();
TagBoxArr tag-box-arr;
patch-arr->makeBufferedTagBoxArr(error-buffer,tag-box-arr);

if (finerLevelExists()) {
if (finerLevel()->canBeRefined()) {

finerLevel()->
updateFinePatchArr(efficiency-tolerance,tag-box-arr);

}
}
if (tag-box-arr.getNumber()>0) {

tag-box-arr.bufferTags(error-buffer);
tag-box-arr.makeTagsUnique();
BoxList box-list;
tag-box-arr.findBoxesContainingTags(getShortestSide(),

max-interior-cells,refinement-ratio,max-ghost-cells,
efficiency-tolerance,box-list);

makeIntegrable(tag-box-arr,box-list);
if (finerLevelExists()) {

PatchArr *new-patch-arr=newPatchArr(finerLevel());
delete (finerLevel()->patch-arr);
finerLevel()->patch-arr=new-patch-arr;

} else {
finer-level=newLevel(this);

}
finerLevel()->patch-arr->coarsenAndTagAll(tag-box-arr);
if (getEosModel().usesRichardsonExtrapolation()) {

tag-box-arr.bufferTags(1);
}
tag-box-arr.coarsenAndCopyTagsTo(coarse-tag-box-arr);

} else if (finerLevelExists()) {
delete finer-level; finer-level=0;

}

First, cells in the patches belonging to the current level are tagged if their global
integration error is too large. This procedure uses both Richardson extrapolation
to estimate the local truncation error in the integration, and a simple device to
estimate the number of timesteps to be performed on this level of refinement. This
error estimation procedure is a standard procedure in the numerical integration
of ordinary differential equations [42]. Suppose that at each timestep we commit
an error of magnitude ε (principally the local truncation error); further, suppose
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that the computation permits a bound M on the growth of these errors. Note that
the conservative difference (8.1) shows that the computational solution essentially
amounts to applying a perturbation of the identity operator to the previous solution;
it is therefore reasonable to expect M to be close to 1 for smooth flow and sufficiently
fine mesh. Then the error en at step n satisfies

e1 ≤ ε, en ≤ ε + Men−1 for n > 1.

Then an argument by induction shows that

en ≤ ε

n−1∑
j=0

M j = ε
Mn − 1

M − 1
.

If M is close to one, then for small n the error bound will be approximately nε.
Suppose that the local truncation error satisfies

ε = C�t k+1,

where k is the expected global order of the scheme. (We are assuming that spatial
and temporal error orders are equal.) Then the error in taking one coarse step of
size r�t is

ec
n ≈ Crk+1�t k+1.

On the other hand, if we take r fine timesteps of size �t , the error is

e f
n ≈ Cr�t k+1.

This allows us to estimate the local error of a fine timestep by

ε ≈ ec
n − e f

n

r k+1 − r
= wc

n − w
f

n

r k+1 − r
,

where w is the quantity being monitored for errors. This gives us a computable esti-
mate for the local truncation error. The global error can be estimated by multiplying
the local error by the anticipated number of timesteps N . Here,

N ≈ L

s�t
,

where L is some length scale associated with the problem, s is some important
wave speed, and �t is the current timestep. Thus, cells are tagged if the relative
error

|wc
n − w

f
n |

max |w f
n |

L

(rk+1 − r )s�t
> tolerance.

If the regrid interval has the value k, the steps in the error estimation procedure
are the following:
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(i) At the current level of refinement,
(a) advance the data for one timestep, �t , and
(b) coarsen the results by a factor of k.

(ii) On a patch coarsened by a factor of k,
(a) coarsen the data from the patch at the current time minus (k − 1) timesteps, and
(b) advance the data for one timestep, k�t .

(iii) Compare the results of the two time integrations.

Note that the error estimation is performed on pseudo-patches that potentially lie
in index spaces between the current level of refinement and the next coarser level
(since the pseudo-patches are coarsened by a factor of the regrid interval, and mesh
refinement uses an integer multiple of the regrid interval). This reduces the work
in comparing the errors; in particular, we would not want to increase the work by
integrating the fine patches and comparing to the values on a coarser level, since
the results on the fine patches would have to be discarded when the patches are
moved. The ordering of the coarsening and comparison operations also makes the
algorithm simpler; if we were to compare errors on the current level of refinement
by coarsening, integrating one coarse step and then refining, we would have to
construct a high-order conservative interpolation. In particular, this interpolation
would have to be of a higher order than that used to construct predictor values for
the numerical flux computation.

It is interesting to consider the implementation of this error estimation strategy on
a recursively refined mesh. Note that errors on coarse and fine meshes are estimated
at different times. At first glance, this would appear to be undesirable. However,
the alternative of comparing errors on all levels at the same time actually leads to
much wasted work, and larger refined regions. This is because the error estimation
on the coarse mesh places the refined cells where the disturbance will be moving,
plus or minus buffer cells. Thus it is only necessary to buffer by regrid interval
minus 1 cells, since that is the number of timesteps that will be taken between the
times when the errors are estimated, and when the mesh will next be moved. If the
errors had been computed at the same times, then it would be necessary to buffer
by an additional cell on each level. Furthermore, the error estimation would have
to proceed through more than one timestep, with recursive calls to integration on
finer levels in order to provide data for finer grids. Since the mesh is going to be
moved, this is extra work being performed for data that are mostly going to be
discarded.

We want to prevent cells from being alternately coarsened and refined. If a cell is
not currently tagged, it is tagged if its global error estimate exceeds some specified
tolerance. On the other hand, if a cell is currently tagged, then it remains tagged
unless its global error estimate falls below the specified tolerance divided by the
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regrid interval. This serves to prevent much of the chatter that occurs at the edges
of refinements, where the error estimates hover around the error tolerance.

A cell is also tagged if it has an underlying fine cell. In order to determine these
cells, we recursively update the patch lists on finer levels, and tag cells on the current
level overlaying the tagged cells on the finer level.

8.3.3.3 Tag Buffering

Next, all cells sufficiently near the tagged cells are also tagged. The width of this
buffer is called the “error buffer,” and has been chosen to be equal to the regrid
interval minus 1. This is the number of timesteps between the point where the errors
were estimated and where the level will next be regridded.

8.3.3.4 Logically Rectangular Organization

The next step is to determine a list of boxes that contain the tagged cells. First, a
large box containing all of the tags is found; then “cut points” are sought in order
to split this big box into smaller boxes that cover the tagged cells more efficiently.
A histogram of the cell tags in each coordinate direction helps us to determine how
to cut the boxes. Cut points are selected according to goodness: a zero histogram
entry near the center is best; an inflection point in the histogram near the center
is next best; the mid-point is the choice of last resort. The best of these over all
coordinate directions is chosen. This procedure is due to Berger, and differs from
that in [18].

After this initial list of boxes is determined, it is further massaged. First, each
box is further subdivided, if necessary, so that it lies inside the proper nesting list.
Next, if the edge of a box falls too near a physical boundary, it is extended all the
way to the boundary. Afterward, the list of boxes is searched to see if any two share
a common side, so that they can be coalesced to make a larger box. Boxes that are
too large (i.e., they require more temporary space than we are willing to provide)
are subdivided. Once these boxes are found, they are shrunk to the smallest size
needed to contain the tagged cells, then expanded within their former boundaries
to avoid physical boundaries among the ghost cells.

8.3.3.5 Initializing Data after Regridding

The final step is to make the new patches. If there are no tagged cells, then the
current finer level is destroyed if it exists. If there are tagged cells and no current
finer level, then a new finer level is created; the data on these new fine patches
are obtained by refining the data on the overlying patches in the current level of
refinement. If there are tagged cells and a finer level already exists, then the data on
the new fine patches are determined by copying the data from the old fine patches
where they are available, and refining them from the current level otherwise. In this
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case, a temporary memory bulge can occur while the finest level data are copied
from old patches to new.

8.3.4 Refluxing

Numerical integration on an adaptively refined mesh involves communication
between coarse and fine mesh patches. We have already seen that boundary data
for fine patches may be obtained from refinement of data on coarser patches.
Conversely, fine patches produce more accurate results that can be used to cor-
rect the data on coarser patches.

This coarsening of data takes two forms. First of all, when a coarse cell overlies
finer cells, the data on the fine cells are coarsened and replace the coarse data.
The computational form of this coarsening procedure varies from one flow variable
to another, and will be discussed in section 8.3.5. However, we remark that the
coarsening of conserved quantities needs to be conservative; that is, the volume-
weighted average of the conserved variables on the fine grid replaces the conserved
variables on the overlying coarse cells. This coarsening process, by itself, could
not preserve conservation; it is also necessary to replace the coarse fluxes around
the boundary of the fine patches with the boundary and time integral of the fluxes
determined on the fine patches. In this way, the change in the values of conserved
quantities in cells overlying finer patches is compensated by changes in conserved
quantities on cells neighboring the refinement.

Because of the peculiarities of the hypoelastic equations of state for solids,
we perform this refluxing process in a form different from that in [18]. We com-
pute the time integrals of the fine fluxes, then coarsen them in space to provide
improved values of the coarse fluxes; afterward, we repeat the conservative differ-
ence (8.1). This amounts to more work than the equivalent process in [18]. How-
ever, other solid mechanics variables (such as stress) may have a nonlinear depen-
dence on the fluxes and need re-computation. This is discussed in more detail in
section 8.3.5.

8.3.5 Upscaling

Suppose that we have a coarse cell (AJ , AJ + 
xJ ) on level Lk , and we compute a
numerical result

uJ ≈ 1


xJ

∫ AJ +
xJ

AJ

u(x, t + 
tK ) dx .
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If this cell is refined, then after R timesteps on the fine grid, we also have fine grid
results

u j ≈ 1


xk+1

∫ a j +
x j

a j

u(x, t + 
tK ) dx, (a j , a j + 
x j ) C (AJ , AJ + 
xJ )

on the fine cells contained in the coarse cell (AJ , AJ + 
xk). We assume that the
fine grid results are more accurate than the coarse grid results, so we replace uJ by

uJ ← 1


xJ

∑
(a j ,a j +
x j ) C (AJ ,AJ +
xJ )

[u j 
xJ ].

8.3.6 Initialization

The beginning of the computation is somewhat different from the process presented
above. On the coarsest level, the patches are determined by subdividing the physical
domain into pieces that are not too big for the integrator; on finer levels, the patches
are assumed to be determined by the initialization process on the next coarser level.
Then, a user-supplied procedure is called to place the initial data on the patches;
this procedure also determines a stable timestep.

If the current level can be refined, then a special error estimation process is con-
ducted. Here, the initial data are advanced regrid interval timesteps and coarsened;
they are also coarsened and advanced one timestep. The two results are compared
in order to estimate the global truncation errors, and cells with unacceptably large
errors are tagged. These cells are buffered by regrid interval cells in each coordinate
direction, since that is the number of timesteps that will be taken before the first
regridding is performed.

The tagged cells are organized into patches on a new fine level just as described
above. Then the user-supplied procedure is called to determine the initial data on
the new fine patches. If the new fine level can be refined, we advance it forward one
timestep in order to provide boundary data for the recursive initialization process
on finer levels. After the finer levels have been initialized, we return to the initial
data, forgetting the results of the integrations on all of the levels, since the size of
the first timestep on each level may be affected by the work on coarser levels during
the normal integration process.

8.4 Object Oriented Programming

Adaptive mesh refinement involves much more complicated programming than
straightforward integration on regular meshes. This program complexity is reflected
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not only in the data structures used to represent the patches on various levels of
refinement, but also in the communication between the patches.

Other aspects of material models also add to the program complexity. Oftentimes
the computations in the equations of state involve a large number of temporary
variables, which could lead to large memory requirements if not handled carefully.
Users also need to perform computations in one, two or three dimensions.

It is desirable to implement adaptive mesh refinement so that the mesh hierarchy
and patch communication are independent of the equation of state and the number of
physical dimensions. In this way, adaptive mesh refinement code could be debugged
in one dimension and used in any number of dimensions.

It is also desirable that the treatment of various kinds of flow variables be driven
by requests from the equation of state. The equation of state should decide how the
variable is represented on the grid; for example, pressure in gas dynamics might
be associated with cell centers, while momentum fluxes might be associated with
cell sides. The equation of state should also decide how the variable should be
coarsened and refined. If these goals are achieved, then no modification of the
adaptive mesh refinement program is required to make changes in the equation of
state.

8.4.1 Programming Languages

Languages such as Fortran 77, which are highly efficient for computations on
rectangular arrays of data, do not provide the variety of data or programming
structures that would make the implementation of adaptive mesh refinement easy,
either for implementation or to maintenance. Fortran 90 still does not offer all
the features we need, for reasons we will describe later. As a result, we decided
to implement the adaptive mesh refinement program structure in C++, with the
numerically intensive routines written in Fortran 77.

Fortran 90 is attractive because it allows for dynamic memory allocation, and for
the development of more complex data structures (called modules). It is possible to
bundle array dimensions together with the array itself, thereby removing potential
programming errors in passing arrays to subroutines.

However, Fortran 90 modules are fundamentally different from C++ classes. For-
tran 90 does not associate subroutines with modules, in the way that C++ classes
have member functions. Fortran 90 does not have access permissions for module
data members. Further, although Fortran 90 does permit modules to be “inherited”
from other modules, Fortran 90 does not allow for run-time binding of virtual func-
tions. This point will be especially important in our development of the EosModel
class below.
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Axisedge, corner, side:

Axiscell, cell:

Outerside, outercorner:

Fig. 8.3 One-dimensional geometries for variables

8.4.2 AMR Classes

There is no commonly accepted set of C++ classes for adaptive mesh refinement.
Scott Baden [7] adopted notions of floorplans for his grid classes. Some of his
notions and the ideas in this book were merged into the SAMRAI code written by
Richard Hornung (PhD student of John Trangenstein) and Scott Kohn (PhD student
of Scott Baden) at Lawrence Livermore National Laboratory. The SAMRAI code
now exceeds by far the scope of the code we will describe below.

There are several basic classes we will use in our C++ implementation of adaptive
mesh refinement. More complicated classes will build on these classes through class
inheritance.

8.4.2.1 Geometric Indices

Variables used in the numerical solution of partial differential equations on logically
rectangular grids can be associated with various spatial locations. For example,
the conserved quantities in the conservation laws are commonly associated with
the cell centers, since their numerical values are approximations to the average
value of the exact conserved quantity in the cell. On the other hand, fluxes for
the conservation laws are generally associated with the cell sides, since these are
numerical approximations to the time integrals of the normal flux integrated over
the cell sides.

Figure 8.3 shows the geometries we use in one-dimensional calculations. On
a grid with cells indexed from first(0) to last(0), cell-centered variables
would be dimensioned

cell(first(0):last(0),nvar)
while corner-centered variables would be dimensioned

corner(first(0):last(0)+1,nvar)
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Cell:

Corner:

Fig. 8.4 Two-dimensional geometries

Variables with outerside geometry would be dimensioned
outerside(0:1,nvar)

Here, a first subscript of “0” refers to the left side and “1” refers to the right side.
The two-dimensional situation is more interesting. Cell-centered and corner-

centered variables are easy to understand from Figure 8.4. Cell-centered variables
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(such as conserved quantities) in two dimensions would be dimensioned
cell(first(0):last(0),first(1):last(1),nvar)

while corner-centered variables (such as curvilinear grid coordinates) would be
dimensioned

corner(first(0):last(0)+1,first(1):last(1)+1,nvar)
Side-centered variables (such as fluxes) are more complicated. Variables associated
with sides in the first coordinate direction would be dimensioned

side0(first(0):last(0)+1,first(1):last(1),nvar)
while variables associated with sides in the second coordinate direction would be
dimensioned

side1(first(1):last(1)+1,first(0):last(0),nvar)
In the latter case, we reverse the order of the first two subscripts in order to perform
approximate Riemann problem solutions with unit stride. Outerside-centered
variables (such as upscaled fluxes) are dimensioned

outerside0(first(1):last(1),0:1,nvar)
and

outerside1(first(0):last(0),0:1,nvar)
respectively. The axisedge geometry (useful for rectangular mesh data) is dimen-
sioned

axisedge0(first(0):last(0)+1,nvar)
and

axisedge1(first(1):last(1)+1,nvar)
We can also identify three-dimensional geometries, illustrated in Figure 8.5.
The cell-centered and corner-centered arrays are the easiest to understand.
Cell-centered variables in three dimensions would be dimensioned
cell(first(0):last(0),first(1):last(1),first(2):last(2),nvar)

while corner-centered variables would be dimensioned
corner(first(0):last(0)+1,first(1):last(1)+1,first(2):last(2)+1,nvar)

Variables associated with sides in the first coordinate direction would be dimen-
sioned

side0(first(0):last(0)+1,first(1):last(1),first(2):last(2),nvar)

variables associated with sides in the second coordinate direction would be dimen-
sioned

side1(first(1):last(1)+1,first(2):last(2),first(0):last(0),nvar)

and variables associated with sides in the third coordinate direction would be
dimensioned

side2(first(2):last(2)+1,first(0):last(0),first(1):last(1),nvar).



566 Adaptive Mesh Refinement

Fig. 8.5 Three-dimensional geometries
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Outerside geometries are similar:
outerside0(first(1):last(1),first(2):last(2),0:1,nvar)

outerside1(first(2):last(2),first(0):last(0),0:1,nvar)

outerside2(first(0):last(0),first(1):last(1),0:1,nvar).

Axisedge geometries are also easy to understand:
axisedge0(first(0):last(0)+1,nvar)

axisedge1(first(1):last(1)+1,nvar)

axisedge2(first(2):last(2)+1,nvar).

There are several C++ classes designed to implement these geometries. In gen-
eral, we want to avoid array addressing via C++, because it is potentially much
slower than Fortran array addressing. However, in some cases it is useful to form
C++ arrays associated with an individual geometry, and access array entries via
geometric indices. In this way, C++ can prevent the addressing of a cell-centered
array at a corner index, for example.

In order to implement the various indices in C++, we will use a generic
dimensionally-dependent vector of integers in Program 8.4-1: IntVect Class. The
data for this class consists of one, two or three integers, depending on the num-
ber of dimensions. Note that the implementation of IntVect is necessarily
dimensionally-dependent.

The data for a CellIndex, CornerIndex, SideIndex, OuterSideIn-
dex or EdgeIndex all involves an IntVect. For example, the definition of
the CornerIndex class is described in Program 8.4-120: CornerIndex Class and
the definition of the CellIndex class is described in Program 8.4-121: CellIndex
Class. Although the data for both of these classes consist of an IntVect, we can-
not perform arithmetic mixing these two classes because they are not derived from
IntVect. However, nearly all of the dimensionally-dependent operations on these
index classes are encapsulated in the IntVect class.

8.4.2.2 Boxes

A Box is a C++ class designed to represent a rectangular array of grid cells. As
we can see from Program 8.4-122: Box Class, the data for a Box consists of two
CornerIndex members, representing corners at the far ends of a diagonal of the
Box. Because a Box uses the CornerIndex class to describe its data members,
very few of the Box member functions need to be given dimensionally-dependent
definitions. Boxes in various dimensions are shown in Figure 8.6.

A LevelBox is a Box that contains extra data to determine its index space;
see Program 8.4-123: LevelBox Class. This extra information consists of two inte-
gers: a level-number and a multilevel-number. The level-number
corresponds to the level of refinement in adaptive mesh refinement. The

http://www.math.duke.edu/~johnt/math226/amr/IntVect.H
http://www.math.duke.edu/~johnt/math226/amr/CornerIndex.H
http://www.math.duke.edu/~johnt/math226/amr/CellIndex.H
http://www.math.duke.edu/~johnt/math226/amr/Box.H
http://www.math.duke.edu/~johnt/math226/amr/LevelBox.H
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Box in one dimension:

Box in two dimensions:

Box in three dimensions:

smallend

smallend

bigend

bigend

smallend

bigend

Fig. 8.6 Boxes
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multilevel-number corresponds to intermediate index spaces used, for exam-
ple, for Richardson error estimation.

Essentially all arrays in the adaptive mesh refinement code are dimensioned by
describing their geometry and a Box. The Box typically corresponds to the patch
that is storing the data for the variable.

8.4.2.3 Data Pointers

Memory allocation for arrays in C or C++ returns a pointer, but leaves it to the
programmer to remember the number of data entries involved in the memory allo-
cation. In order to eliminate programming errors in passing these pointers around,
we have developed a Program 8.4-124: NumPtr. class. This templated class consists of
the data pointer plus an integer that contains the number of entries in the array.

If a NumPtr is a copy of an original memory allocation, it can be used just like
a regular pointer, including operations such as operator++.

8.4.2.4 Lists

Lists can be singly-linked or doubly-linked, and intrusive or non-intrusive. We
use combinations of these two choices for various purposes in the adaptive mesh
refinement code. We do not use the standard template library lists in this code for
two reasons. First, this code was developed before the standard template libraries
were available. Second, our list functions operate faster, with controllable memory
allocation.

A singly-linked list involves members that store pointers to the next item on
the list. On the other hand, doubly-linked list members have pointers to both the
previous and next items on the list. Singly-linked lists involve less storage, but they
have difficulty with list traversal in reverse order. It is also difficult to remove an
item from the middle of a singly-linked list, unless the previous item is known.

Intrusive lists assume that every item placed on the list already contains a data
member to point to the next item on the list. Intrusive doubly-linked list members
would have pointers to both the previous and the next items. On the other hand,
non-intrusive lists form new list members by combining the data to be placed on the
list with appropriate pointers to the next and previous list members. In other words,
intrusive lists require that members already have pointers to next and previous,
while non-intrusive lists add extra storage for this information.

In our adaptive mesh refinement library, all lists are templated. For the description
of the intrusive singly-linked list, see Program 8.4-125: Intrusive Singly-Linked List
Template. The intrusive doubly-linked list is implemented in Program 8.4-126: Intrusive
Doubly-Linked List Template. The non-intrusive lists are implemented in Program
8.4-127: Non-Intrusive Singly-Linked List Template and Program 8.4-128: Non-Intrusive
Doubly-Linked List Template.

http://www.math.duke.edu/~johnt/math226/amr/NumPtr.H
http://www.math.duke.edu/~johnt/math226/amr/ISLList.H
http://www.math.duke.edu/~johnt/math226/amr/IDLList.H
http://www.math.duke.edu/~johnt/math226/amr/NISLList.H
http://www.math.duke.edu/~johnt/math226/amr/NIDLList.H
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The selection of intrusive or non-intrusive lists for specific purposes often
depends on other issues. Classes derived from two base classes designed for intru-
sive lists can get confused about the pointers to next and previous members. On the
other hand, in order to operate with items on a non-intrusive list, we need to get the
item from the list member before operating on the item.

Currently, we use intrusive singly-linked lists for graphics (GraphTool lists
and PaletteList), program timing (TimedObjectList), equation of states
EosModelList and grids (GridList). We use non-intrusive singly-linked lists
for graphics (InputParameterList and XColormapList). We use intru-
sive doubly-linked lists for FlowVariableList and keeping track of memory
allocation in MemoryDebugger. We use non-intrusive doubly-linked lists for
BoxList.

8.4.2.5 FlowVariables

Adaptive mesh refinement involves dynamically changing data structures. As the
simulation time evolves, the computer memory requirements change, and the inter-
action among the data varies with the changes in the grid patches. As a result, it
is useful for the user to describe in general ways how the data should be allocated
and communicated, once an instance of the grid patches is determined.

A FlowVariable describes the information by adaptive mesh refinement in
order to perform memory allocation and inter-patch communication. This informa-
tion consists of the variable name, the number of variables (e.g., one for pressure
and the number of spatial dimensions for velocity), the geometry of the variable
(e.g., cell-centered or side-centered) the IOSTATUS, the refinement strategy, and
the coarsening strategy. Here, Program 8.4-129: IOSTATUS is an enumeration. Some
common (self-explanatory) values of IOSTATUS are INPUT, INOUT, TEMP,
FLUX, FLUXSUM, PLOT and MESH. This basic functionality of a flow variable
is implemented in the Program 8.4-130: FlowVariableBase class. Some of this infor-
mation is further encapsulated in the Program 8.4-131: FlowVariableDimensions class.

A FlowVariableBase is derived from IDLListNode so that it can be
placed on an intrusive doubly-linked list. Lists of FlowVariableBases can
determine the total amount of data required to store everything with a specific
IOSTATUS on a Box.

To associate a data type with a flow variable, we use a Program 8.4-132: FlowVariable
template. This class is derived from FlowVariableBase, and parameterized by
type. Data types of double, int or bool are common.

Recall that some geometries (such as SIDE), necessarily involve sub-arrays
associated with the different coordinate directions in multiple dimensions. Thus
the memory required to represent a FlowVariable on a Box involves an array
of integers for the number of data values in each sub-array, and an array of data

http://www.math.duke.edu/~johnt/math226/amr/AMRTypes.H
http://www.math.duke.edu/~johnt/math226/amr/FVB.H
http://www.math.duke.edu/~johnt/math226/amr/FVD.H
http://www.math.duke.edu/~johnt/math226/amr/FV.H


8.4 Object Oriented Programming 571

pointers for each of the sub-arrays. This extra information is contained in the
Program 8.4-133: FlowVariablePointer class, derived from FlowVariableBase.

Occasionally, we would like to address the individual entries of the memory for
a FlowVariable on a Box. For this purpose, we have constructed Program 8.4-
134: Array template. Each Array owns a FlowVariablePointer to hold the
data pointers for some FlowVariable. The Array class has several member
functions that allow us to address individual numbers within the data storage for
the FlowVariable.

8.4.2.6 Timesteps

We allocate the memory for all FlowVariables with a given IOSTATUS on a
patch at the same time. The information required to and store the memory for all
FlowVariables with a given IOSTATUS on a Box is contained in a Program
8.4-135: TimestepBase. This information consists of the IOSTATUS, the array of
FlowVariables and the corresponding array of FlowVariablePointers.

A Timestep uses a specific LevelBox to allocate all the needed space for an
array ofFlowVariables with a givenIOSTATUS. Thus Program 8.4-136: Timestep
is derived from TimestepBase. It is also possible to allocate work space regions
for flow variables without pre-specifying the Box used for addressing the data.

8.4.2.7 TagBoxes

In the regridding process within adaptive mesh refinement, it is necessary to flag
those cells needing refinement, and to organize them into a list of Boxes. This
process has already been described in section 8.3.3. At this point, we would like to
focus on the design of the program to handle this process.

The Program 8.4-137: TagBox class consists of an Array of bools for each cell in
the Box. In the regridding process, we might use a patch to make a TagBox, then
set the boolean values to true for individual cells that need refinement. Afterward,
we can call a number of TagBox functions to operate on the tags.

We also have a TagBoxArr class, to work with an array of Tag-
Boxes. The TagBoxArr class has a member function, TagBoxArr::
findBoxesContainingTags, that performs a kind of pattern recognition to
determine a list of Boxes that contain the tagged cells efficiently.

8.4.2.8 DataBoxes

User problems can involve a variety of FlowVariables of different geometries
and IOSTATUSes. However, the Timestep class is designed to hold the data
for variables of the same IOSTATUS. Thus, in order to hold all the data for all
the FlowVariables associated with some patch, we need a data structure that
owns an array of Timesteps. This is implemented in Program 8.4-138: DataBox. A

http://www.math.duke.edu/~johnt/math226/amr/FVP.H
http://www.math.duke.edu/~johnt/math226/amr/Array.H
http://www.math.duke.edu/~johnt/math226/amr/Timestep.H
http://www.math.duke.edu/~johnt/math226/amr/Timestep.H
http://www.math.duke.edu/~johnt/math226/amr/TagBox.H
http://www.math.duke.edu/~johnt/math226/amr/DataBox.H
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DataBox owns an IOStatusArray, and a corresponding array of Timestep
pointers. DataBoxes have useful member functions for copying and debugging.

Some DataBoxes are also used for regridding operations, and therefore need
tags. For this reason, we have defined Program 8.4-139: DataTagBox. This class is
derived fromDataBoxbut not fromTagBox, in order to avoid multiple inheritance
of the base class LevelBox.

8.4.2.9 EOSModels

We have tried to isolate the problem-specific features of the code into a class
designed by the user. All user models are derived from the library class Program 8.4-
140: EosModel. An EosModel owns lists of FlowVariables defined by the user
in the derived class. The EosModel also has a number of virtual functions.
Many of these are pure virtual functions, meaning that the function pointer in the
EosModel class is zero. As a result, the user is required to define specific instances
of these functions in the derived class.

These virtual functions are very useful. When it is time to advance the data on
a patch, we use a pointer to the EosModel to invoke run-time binding of the
integration techniques appropriate to the material model. Because of this design
principle, the adaptive mesh refinement code does not need to know anything about
the integration techniques, the tests for error estimation, the determination of vari-
ables intended for graphical display, or even the individual FlowVariables
themselves.

This means that the user can insert new equations of state into the adaptive
mesh refinement library without modifying the library. In fact, there are only two
places where it is necessary to identify the specific user equation of state to the
adaptive mesh refinement library. The first place is where the name of the specific
user equation of state is read by the input data and used to call the correct derived
class constructor. The second place is where the problem model name is read from
a restart file before constructing the derived equation of state. For convenience,
the library provides a macro, DEFINE-MODEL-PROCEDURES to automatically
construct the user’s model; see the end of Program 8.4-141: EosModel.H.

8.4.2.10 Patch

We have already discussed the concept of the grid patch. Now it is time to make
this concept concrete, by discussing the corresponding data structure. A Patch is
derived from a DataTagBox; see Program 8.4-142: Patch.H. In addition, it owns
a pointer to an EosModel. As a result, a Patch can invoke model-specific
operations by calling the virtual functions in the EosModel class. Thus the
Patch class performs such important operations as Patch::initialize and
Patch::advance.

http://www.math.duke.edu/~johnt/math226/amr/DataTagBox.H
http://www.math.duke.edu/~johnt/math226/amr/EosModel.H
http://www.math.duke.edu/~johnt/math226/amr/EosModel.H
http://www.math.duke.edu/~johnt/math226/amr/Patch.H
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Within a given level of refinement, we can use several patches to cover the
region of physical space requiring refinement. For this purpose, we have designed
the PatchArr class; see Program 8.4-143: PatchArr.H. A PatchArr is derived
from an array of Patch pointers. It has member functions to perform a variety of
operations on Patches.

All loops over Patches are encapsulated in the PatchArr class. This is a
natural point at which to distribute the adaptive mesh refinement computations
over some collection of computer processors. The calculations on an individual
Patch involve very similar operations on regular data arrays, with communication
between Patches needed only for boundary values. It is possible to see the special
code for distributed computing in Program 8.4-144: PatchArr.C. Almost all of the
special programming for distributed computing is contained in PatchArr.C and
TagBoxArr.C. There is no need for special distributed programming in individual
user model classes, derived from EosModel.

8.4.2.11 Level

The final class of interest isLevel; see Program 8.4-145: Level.H. This class encapsu-
lates the data structures needed to perform the adaptive mesh refinement computa-
tions on an individual level of refinement. A Level is essentially a doubly-linked
list member, because it contains pointers to the next coarser and finer Levels.
More importantly, a Level contains a pointer to a PatchArr, which holds the
array of Patches on that level of refinement. A Level also contains pointers to
BoxLists for the proper nesting list and its complement.
Level class member functions contain all recursions over levels of refinement,

while PatchArrmember functions contain all loops over Patches on some level
of refinement. This encapsulation is useful to collect all similar operations into a
common location; however, it does mean that when we follow program execution,
we jump between member functions in a number of C++ classes. This makes it
difficult to follow the code in many editors.

8.5 ScalarLaw Example

It should not be necessary for a user of the adaptive mesh refinement code to be
familiar with all of the various C++ classes described above. Instead, users typically
want to know how to apply the adaptive mesh refinement code to their problem. In
this subsection, we will describe how to apply adaptive mesh refinement to a scalar
conservation, especially the Buckley–Leverett model.

If we were not writing code for adaptive mesh refinement, we might have a fairly
simple main program that calls several Fortran subroutines. Without being specific
about the arguments to these routines, the outline of the code might look like the

http://www.math.duke.edu/~johnt/math226/amr/PatchArr.H
http://www.math.duke.edu/~johnt/math226/amr/PatchArr.C
http://www.math.duke.edu/~johnt/math226/amr/Level.H
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following:

extern ”C” {
void initsl-(...);
void stabledt-(...);
void bccells-(...);
void fluxderv-(...);
void method-(...);
void consdiff-(...);

}
void main(int argc, char *argv[]) {

int ncells=...;
int nghosts=...;
double conserved[ncells+2*nghosts};
double mesh[ncells+2*nghosts};

initsl-(ncells,nghosts, conserved,mesh); // initial values
stabledt-(...); // CFL stability
for (int step=0;step<max-steps;step++) {

bccells-(...); // physical boundary values
fluxderv-(...); // characteristic speeds
method-(...); // scheme
consdiff-(...); // conservative difference
stabledt-(...); // CFL stability

}
}

When we use the adaptive mesh refinement code, we will basically call these same
routines from the the adaptive mesh refinement library. In this case, the structure
of the code looks more like

void main(int argc, char *argv[]) {
GlobalMain::run(...) {

GridList:initialize(...) {
Grid::initialize(...) {

Level::initialize(...) {
if (!coarserLevelExists()) {

PatchArr::makePatchesFrom(...) {...}
}
PatchArr::initialize(...) {

for (int i=0;i<getLength();i++) {
operator[](i)->initialize() {

EosModel::initialize() {
initsl-(...);

}
}

}
}
if (Level::canBeRefined()) {

Level::findInitialErrorCells() {...}
if (cell are tagged) {

EosModel::newLevel(...);
Level::finerLevel()->initialize(...);

}
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}
}

}
}
while ( sim-time < tmax && lmore-steps ) {

GlobalMain::advance() {
GridList::advance(...) {

Grid::advance(...) {
Level::advance(...) {

while (!Level::isLastStep()) {
PatchArr::advance(...) {
for (int i=0;i<getLength();i++) {
Level::fillModel(...);

Patch::advance(...) {
EosModel::stuffModelGhost(...) {

bccells-(...);
}
EosModel::computeFluxes(...) {

fluxderv-(...);
method-(...);

}
EosModel::conservativeDifference(...) {

consdiff-(...);
method-(...);

}
}

}
}
if (Level::finerLevelExists()) {

Level::finerLevel()->advance(...);
}
if (Level::timeToRegrid()) {

if (!isLastStep() || !time-to-sync-with-coarser-level)
{

Level::regridFinerLevels(...);
}

}
Level::findStableStepSize(...);

} // end loop over steps
if (Level::coarserLevelExists()) {

PatchArr::coarsenFluxSums(...);
coarserLevel()->patch-arr->conservativeDifference(...);
PatchArr::coarsenOldToNew();

}
} // end Level::advance

}
}

}
}

}

Thus the same user-defined Fortran routines get called in adaptive mesh refine-
ment. The difficulty for new users is that the call stack involves procedures from a
number of different C++ classes.
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We encapsulate the user-dependent code into a singleScalarLaw class, derived
from EosModel; see Program 8.5-146: ScalarLaw.H. A ScalarLaw owns several
FlowVariable pointers, in addition to the data needed to describe a computa-
tional problem. The purpose of each of these individual FlowVariables will
become clearer as we describe the member functions in the ScalarLaw class.

8.5.1 ScalarLaw Constructor

When we construct a ScalarLaw, we declare each of the FlowVariables
we will use in the computations; see Program 8.5-147: ScalarLaw::ScalarLaw. For
example, the conserved quantity consists of one variable with INOUT status
using CELL-centered data. Further, when we refine the conserved quantity, we
use conservative linear interpolation, and we use conservative averaging to coarsen
this variable. This FlowVariable constructor specifies all of the information
needed to allocate the data on any patch at any point in the simulation, and to
address that data.

The ScalarLaw constructor also specifies several InputParameters for a
Riemann problem, and for controlling the numerical method.

8.5.2 initialize

At some point in the execution of the adaptive mesh refinement code, we call
Level::initialize to initialize all of the data on a given level of refinement.
This in turn calls PatchArr::initialize, which loop over its Patches and
calls theEosModel::initialize procedure. Run-time binding of C++ virtual
functions causes the ScalarLaw::initialize procedure to be called at that
point.

The ScalarLaw::initialize procedure is basically a C++ wrapper
around a Fortran subroutine that we have used previously, name initsl. In order
to call the Fortran routine, we need to determine the dimensions of the arrays for
conserved and the mesh-var. These array dimensions are provided by macros
operating on the Patch.

In this particular implementation of ScalarLaw::initialize, we are
using the EosModel workspace to hold the output from the Fortran initializa-
tion routine initsl. Thus, we use the EosModel::getPtr function to get
the data pointer in the work space for both of the two FlowVariables. After-
ward, we use EosModel::postProcessInitialize to copy the data from
the model workspace to the Patch. For models in which ghost cell informa-
tion is not needed for initialization, we could initialize the data directly on the
Patch.

http://www.math.duke.edu/~johnt/math226/ScalarLaw/hyperbolic/ScalarLaw.H
http://www.math.duke.edu/~johnt/math226/ScalarLaw/hyperbolic/ScalarLaw.C
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The maximum size of the EosModelwork space determines the maximum size
of the Patches. This is so that all of the data for an individual Patch and its extra
boundary data can be contained in the work space. The number of cells in any coor-
dinate direction in the workspace Box is determined by the macro NSTRIP. This
must be set separately in Fortran, in the mym4.i file. EosModel::setSizes
checks that the C++ and Fortran values for these parameters are the same.

8.5.3 stableDt

After initializing the data, and during the time stepping procedures of adaptive mesh
refinement, we need to compute a stable time step using the CFL condition. This is
performed inScalarLaw::stableDt. This C++ procedure is a wrapper around
two Fortran subroutines designed to compute the flux derivatives (fluxderv) and
to apply the CFL condition (stabledt).

In this case, we work with data for conserved on the Patch; this data pointer
is obtained by the DataBoxFlowVariable::getPtrFrom procedure. Since
dfdu has IOSTATUS TEMPORARY, it is not stored on the Patch. As a result, the
computer memory for dfdu is taken from the EosModel workspace.

8.5.4 stuffModelGhost

A timestep consists of using the conserved quantities to compute the numerical
fluxes, and then applying a conservative difference. Since the computation of the
fluxes depends on the numerical scheme, and high-order schemes typically have
large computational stencils, we need information on cells beyond the interior of
the Patch in order to compute all of the fluxes on the Patch. These extra cells
are called ghost cells.

The number of ghost cells needed depends on the computational method, and
on the choice of FlowVariable. For simplicity, we will give the same number
of ghost cells to all FlowVariables with the same geometry. An even simpler
strategy is to give all FlowVariables the same number of ghost cells. The
number of ghost cells for each geometry are defined by macros that appear in
ScalarLaw.C just before ScalarLaw::ScalarLaw. The Fortran values are set
in mym4.i. In order to be sure that C++ and Fortran use the same values, we call
EosModel::setSizes in the ScalarLaw constructor.

The numerical treatment of ghost cells is the most difficult aspect of developing
the user model code. On non-adaptive meshes, the physical domain occurs in easily-
identifiable locations. As a result, it is common for users to mix the code that
assigns boundary values with the code that applies the numerical integrator. These
operations need to be kept separate for adaptive mesh refinement.
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Before calling ScalarLaw::computeFluxes, we need to provide values
for the ghost cells used in the flux computation. Because the flux computation
can involve temporary variables and almost surely involves ghost cells beyond the
Patch, we perform the flux computations in the EosModel workspace.

For those Patches that have ghost cells interior to the physical domain,
the ghost cell information is provided by Level:fillModel, called from
PatchArr::advance just before we call Patch::advance. The adaptive
mesh refinement library provided the best values for these ghost cells, in the man-
ner described in Section 8.3.2. Since physical boundary conditions are problem-
dependent, the adaptive mesh refinement library expects the user to provide these
values.

In order to fill the ghost cells outside the physical domain for computations in the
workspace, we use ScalarLaw::stuffModelGhost. There are two separate
activities in this procedure. The first (subroutine bcmesh) provides values for the
mesh outside the physical domain, and the second (bccells) provided values for
conserved outside the physical domain.

8.5.5 stuffBoxGhost

In order to refine data, the adaptive mesh refinement library typically needs data on
ghost cells in order to implement higher-order interpolation. Data might be refined
to provide ghost cell information on a fine patch at the interface with the coarse
grid, or to provide initial values for new fine patches after regridding. Since the
refinement process may be recursive, we cannot use the EosModelworkspace for
the computations with the ghost cells.

Instead, the adaptive mesh refinement library will use DataBoxes constructed
in the Level::fillBox procedure. Since some of the ghost cells for these
DataBoxes may lie outside the physical domain, we have to provide Scalar-
Law::stuffBoxGhost to set these values. If we are careful with array dimen-
sion, we can use the same Fortran routines (bcmesh and bccells) to determine
these boundary values.

8.5.6 computeFluxes

After we define the data on the Patch and its ghost cells at the beginning of a
time step, we are ready to compute the values of conserved at the end of the
time step. We do this in ScalarLaw::computeFluxes, which is called from
Patch::advance. This routine is just a C++ wrapper around two Fortran func-
tion, namely fluxderv, which computes the characteristic speeds, and method,
which in this case computes the fluxes using a second-order MUSCL scheme. Users
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can change the integration technique merely by changing the code in subroutine
method.

8.5.7 conservativeDifference

After we compute the fluxes, we compute the newconserved values via a conser-
vative difference. This is done inScalarLaw::conservativeDifference,
which is merely a C++ wrapper around the Fortran routine consdiff.
ScalarLaw::conservativeDifference is called from Patch::
advance during time stepping on some level of refinement. It is also
called from Patch::conservativeDifference, which is called by
PatchrArr::conservativeDifference from Level::advance dur-
ing refluxing; see Section 8.3.4.

8.5.8 findErrorCells

In order to decide where to place mesh refinement, the adaptive mesh refinement
depends on the user to make the ultimate decision. The adaptive mesh refinement
library will help the user by providing the results from coarse and fine integrations
for user comparison. It is up to the user to examine these two integrations and tag
cells for refinement in ScalarLaw::findErrorCells.

There are two versions of this procedure. One is a C++ wrapper around the
Fortran subroutine locshock. This routine uses a gradient detector to tag cells
for refinement. It is slightly less expensive to use this version of Scalar-
Law::findErrorCells, but the results are not always acceptable.

If the EosModel parameter use-richardson is true, then EosModel::
usesRichardsonExtrapolation will cause the adaptive mesh refinement
library to call the second form of ScalarLaw::findErrorCells. This pro-
cedure is basically a C++ wrapper around the Fortran routine errestsl. This
Fortran routine compares the coarse and fine integration results from the adaptive
mesh refinement library and decides where to tag cells for refinement. The ideas in
this routine are described in Section 8.3.3.

8.5.9 Numerical Example

In Figure 8.7 we show some numerical results for adaptive mesh refinement applied
to the Buckley–Leverett model. The size of the data markers represents the size of
the finest grid cell in that spatial region of the computation. Note that the mesh is
adaptively refined around both the shock and the left-hand edge of the rarefaction.
These are two locations where the MUSCL scheme fails to achieve second-order
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(a) Saturation (b) Characteristic speed

Fig. 8.7 Adaptive mesh refinement for Buckley–Leverett model

accuracy. Students can perform their own adaptive mesh refinement calculations
by clicking on Executable 8.5-57: cpphog. The program will open up a graphical user
interface in which the student can adjust a variety of parameters. For example, the
student could vary max-levels to control how many levels of mesh refinement
are used, refinement-ratio to control the refinement ration between the grid
levels.

8.6 Linear Elasticity Example

Next, let us briefly discuss the application of adaptive mesh refinement to lin-
ear elasticity. We are particularly interested in solving Lamb’s problem [1] for a
transient line load. Because the model is linear, the problem does not involve shocks.
However, it does involve interesting localized phenomena, including a p-wave, and
s-wave and a head wave.

In order to implement the linear elasticity model in the adaptive mesh refinement
code, we develop a C++ class called LinearElasticity. As expected, this
class is derived from EosModel; see Program 8.6-148: LE.H. This model involves
FlowVariables for displacement, deviatoric stress, pressure and velocity. The
organization of this C++ class is much the same as the ScalarLaw class, but the
Fortran routines involved in the integration are very different.

Figure 8.8 shows some numerical results for adaptive mesh refinement applied
to Lamb’s problem. We show 30 equally spaced contours of the second invariant
of the deviatoric stress, and the corresponding adaptively refined grid. The contour
plot shows the boundaries of the grid patches superimposed on the contour levels.

http://www5.math.duke.edu/cgi-bin/startvnc?run=amr_scalar_law_cpphog
http://www.math.duke.edu/~johnt/math226/LinearElasticity/LE.H
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(a) J ′
2 (b) Mesh

Fig. 8.8 Adaptive mesh refinement for Lamb’s problem

Students can perform their own adaptive mesh refinement calculations by clicking
on Executable 8.6-58: cpphog. The program will open up a graphical user interface
in which the student can adjust a variety of parameters.

8.7 Gas Dynamics Examples

Finally, let us discuss the application of adaptive mesh refinement to gas dynamics.
We will focus on the Colella–Woodward interacting blast wave problem in one
dimension [177], and on the Schulz–Rinne two-dimensional Riemann problem case
number 3 [144, 145]. Both problems are solved via the C++ class GasDynamics.
Students can view the definition of this class by clicking on Program 8.7-149: GD.H.
Of course, the program calls different Fortran routines to integrate the equations in
one dimension and two dimensions. The one-dimensional code uses the MUSCL
scheme, and the two-dimensional code uses the corner transport upwind scheme.

Figure 8.9 shows some numerical results for the blast wave problem using AMR.
In this case, there is a variety of interesting behavior over a large portion of the
domain at late time. However, a careful study of the results will see that the finest
grid is concentrated at the discontinuities. Students can perform their own adaptive
mesh refinement calculations by clicking on Executable 8.7-59: cpphog. The program
will open up a graphical user interface in which the student can adjust a variety of
parameters.

Figure 8.10 shows some numerical results for a 2D Riemann problem using
AMR. At early time, the mesh is primarily along the coordinate axes, where

http://www5.math.duke.edu/cgi-bin/startvnc?run=amr_linear_elasticity_cpphog
http://www.math.duke.edu/~johnt/math226/GasDynamics/GD.H
http://www5.math.duke.edu/cgi-bin/startvnc?run=amr_gas_dynamics_cpphog_1d


(a) t = 0.01 (b) t = 0.016

(c) t = 0.028 (d) t = 0.030

(e) t = 0.034 (f) t = 0.038

Fig. 8.9 Adaptive mesh refinement for blast wave problem: density vs. position.
AMR uses 10 cells on coarse grid, a refinement ratio of 4, and a maximum of
5 levels of mesh
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(a) Density, t = 0.5 (b) Grid, t = 0.5

(c) Density, t = 1 (d) Grid, t = 1

Fig. 8.10 Adaptive mesh refinement for 2D gas dynamics Riemann problem:
density. AMR uses 40 × 40 grid, a refinement ratio of 2, and a maximum of
five levels of mesh refinement.

the initial discontinuities are located. At later time, the solution develops some
interesting shocks, and contact discontinuities that produce a variety of physical
instabilities. The AMR algorithm refines over a substantial portion of the grid in
order to capture all of this behavior. Students can perform their own adaptive mesh
refinement calculations by clicking on Executable 8.7-60: cpphog. The program will
open up a graphical user interface in which the student can adjust a variety of
parameters.

http://www5.math.duke.edu/cgi-bin/startvnc?run=amr_gas_dynamics_cpphog_2d
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