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Preface

In broad terms, the purpose of this book is twofold. First, we present a
theoretical basis for mathematical modelling of nonlinear systems which can
be described from observations of their input-output signals only. Second,
we give specified computational methods which follow from the general
theoretical framework. The term “nonlinear system” means a device which
transforms signals. The setting is often rather abstract but is carefully
detailed. This is implied by our desire to embrace a wide spectrum of
possible types of nonlinear systems and to provide a rigorous analysis of
topics we study.

While our work is mainly motivated by research in systems theory, we
are very concerned with mathematical framing for problems under con-
sideration. This is because the subjects considered in the book represent
an absorbing blend of special areas in approximation theory, numerical
methods, mathematical statistics and optimal filtering of stochastic sig-
nals. Many of the questions we ask are new (see Overview). In many
cases, our view of problems we consider is quite specific, and therefore we
assume the reader’s willingness to accept new terminology.

The book marks the coming together of two basic interlacing research
streams. One stream consists of work on operator approximation with a
given accuracy and operator interpolation, and has its origin in the work
of P. Prenter, V. Istrăţescu, V. Bruno and I. Daugavet around 1980. These
pioneering researchers generally worked on rather general problems. We
present new, recently developed methods which have been motivated by
their fundamental results and which generalize them. The second stream,
which studies the best operator approximation techniques, began with
Wiener, Hotelling, Karhunen, Loève, Bode and Shannon around 1940 and
1950. We provide new methods that have been initiated with their pioneer-
ing results and which advance them to solution of more general problems.
Those methods have been published very recently.
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viii PREFACE

Often a book summarizes knowledge in the field. While our book
presents very recent accomplished achievements in the area with their rig-
orous theoretical justification, it may also be viewed as a report on the
work in progress where a number of questions are still open.

The book contains a number of numerical examples. In many cases,
we used data obtained at http://sipi.usc.edu/database/. This data is the
digital basis for a number of images that we have used and that have been
used a number of times in the open literature. We have made a concerted
effort to locate the source of the original images but unfortunately have
not been completely successful.

We wish to acknowledge many debts. A. Torokhti is grateful to I.
Daugavet and V. Malozemov (both are with the St. Petersburg State
University, St. Petersburg, Russia) for many discussions and useful com-
ments related to the first stream of the book. Both co-authors wish to
thank P. Pudney (the University of South Australia, Adelaide, Australia)
for his enormous time spent assisting us with numerical simulations. We
are specifically grateful to our colleagues in the School of Mathematics and
Statistics at the University of South Australia for supporting us in many
aspects of the work in this book.

Finally, we are pleased to thank the Australian Research Council (the
Large Research Grant A49943121 for 1999–2002 and the ARC Discovery
Grant DP0453236 for 2004–2006) and the University of South Australia
(a number of internal research grants in 1996–2005) for supporting the
research provided here.
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Chapter 1

Overview

In this book, we study theoretical and practical aspects of computational
methods for mathematical modelling of nonlinear systems. A number of
computational techniques are considered, such as

• methods of operator approximation with any given accuracy,
• operator interpolation techniques including a non-Lagrange interpo-

lation,
• methods of system representation subject to constraints associated

with concepts of causality, memory and stationarity,
• methods of system representation with an accuracy that is the best

within a given class of models,
• methods of covariance matrix estimation,
• methods for low-rank matrix approximations,
• hybrid methods based on a combination of iterative procedures and

best operator approximation, and
• methods for information compression and filtering under condition

that a filter model should satisfy restrictions associated with causality
and different types of memory.

As a result, the book represents a blend of new methods in general
computational analysis, and specific, but also generic, techniques for study
of systems theory ant its particular branches, such as optimal filtering and
information compression.

We are interested in the following basic questions:
1. Suppose a nonlinear system can be described from observations of its

input-output signals only. What is a constructively defined mathe-
matical model of such a system?

2. What is the accuracy of such a model?

1



2 1. OVERVIEW

3. How can we compute this model?

The following example illustrates a motivation for the problems under
consideration. Suppose that x, y and u are functions of discrete time so
that x(k), y(k) and u(k) are values of x, y and u at tk with k = 1, 2, . . ..
Consider the discrete-time time-invariant system [15]

u(k + 1) = G[u(k), x(k)],
y(k) = F [u(k), x(k)], u(0) = u0, (1.1)

where G, F : Rm × Rm → Rm, u(k) is the state vector, u0 is the initial
state, x(k) and y(k) are the input and output, G is the one-step ahead
state transition operator and F is the input-output map. “The function F
that describes the input-output of the system is of primary importance in
systems theory because this is all an external observer can see” [15].

This book, firstly, brings together and systematizes known results in
the branch of general computational analysis associated with modelling of
nonlinear systems and, secondly, presents a number of new results which
are natural but very specific extensions of known techniques.

In practice, one has to be content with an approximate solution to
the problem. As a rule, an exact solution to the problem can only be
obtained when the problem is completely described by a finite number
of input and output data. While “The best material model of a cat is
another, or preferably the same, cat” (N. Wiener, Philosophy of Science,
1945), the difficulty is that we may not have “a cat” in hand and even a
complete description is often not available. In practice, we wish to model a
system which is known only partially and indeed is often known only from
the observed input-output characteristics. Such observations are typically
incomplete. In reality, the observations are stochastic and are disrupted by
noise. Moreover, inputs are often unknown and the model may use only
sampled observation of the output and some available (a priori) knowledge
of the system. The models in this book are developed both for the case
of “deterministic” spaces and for the case of probability spaces under the
practical assumption that description of the system is only realized via
observed “external” information.

In broad terms, we set two aims for ourselves. Firstly, we wish to
develop a system of general conceptions which allows us to formulate and
solve problems related to a representation of models which should have
properties associated with properties of real world phenomenon such as
causality, memory, stationarity, etc. Secondly, we wish to elaborate the
general conceptions to specific techniques which can be applied to practical
problems.



1. OVERVIEW 3

In our view, it is possible to develop a unified way to the solution of
many problems in modelling of nonlinear systems. In this book we present
a number of techniques, many of which are united by one basic idea: to
increase degrees of freedom via different types of nonlinearity.

In Chapter 2, we study models of nonlinear systems formed by opera-
tor polynomials. More precisely, a nonlinear system is treated as a nonlin-
ear operator, and we study its approximation by operator polynomials. It
should be noted that nonlinear operator approximation is an intensively de-
veloped branch of general computational analysis. In recent decades, there
have been a number of significant achievements in this area spread through
diverse publications. From a theoretical point of view, methods in operator
approximation theory [45]–[156] are important since they generalize classi-
cal results in function approximation theory. The practical importance of
results in nonlinear operator approximation arises directly from a demand
in the modelling of nonlinear systems [98], [106]–[151]. We consider both
existence theorems for approximating operators of preassigned accuracy
and numerical schemes for their practical realization.

Chapter 2 is organized as follows. In Section 2.2, the general formulation
of the problem is presented. In Sections 2.3 and 2.4, we describe methods
of nonlinear operator approximation in the space C([0, 1]) and in Banach
spaces as elaborated by Gallman and Narendra [45], Daugavet and Lanne
[23] and Daugavet [24]–[26]. These methods are not widely known and the
results presented in Sections 2.3 and 2.4 draw attention to these effective
procedures.

A generic approach to operator approximation in topological vector
spaces is considered in Section 2.5 and is elaborated in Sections 2.5.5–
2.7. In Section 2.5.5, we give theorems on the existence of an operator
approximating an operator defined on a compact set in a topological vector
space. In Section 2.6 the technique of Section 2.5.5 is modified to establish
some theorems on constructive approximation on noncompact sets. In
Section 2.7, the results of Sections 2.5.5 and 2.6 are specified in terms
of moduli of continuity.

In Chapter 3, we consider some fundamental principles of the general
theory for nonlinear operator interpolation. Interpolating operators are
naturally connected to modelling of nonlinear systems. If a system is given
by finite sets of input-output signals, then an interpolating operator pro-
vides a model of such a system. We give both an extension of the Lagrange
procedure to the case of interpolation in Hilbert space, and consider a spe-
cific interpolation method for the case when the Lagrange interpolation
idea does not work.
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So-called realistic operators are the subject of study in Chapter 4. The
class of operators described in this chapter generalizes causal operators,
operators with finite memory, stationary operators, etc. The generaliza-
tion is given in the form of special operators which we call R-continuous
operators and approximately R-continuous operators. This study is moti-
vated by the necessity of formalizing and modeling of physical properties
of realistic nonlinear systems.

All the next chapters are devoted to the study of different forms for
best computational methods, that is the methods with a highest possible
accuracy. In Chapter 5, the methods of best approximation for the system
acting in “deterministic” and probability spaces are considered. We are
specifically concerned with different types on nonlinear models and give a
rigorous analysis of their accuracy. In particular, we study the so called
Hadamard-quadratic model, the r-degree model, the best causal model, and
the so-called hybrid method for finding models which combine advantages
of best approximation techniques and iterative procedures.

Computational methods for optimal filtering stochastic signals are given
in Chapter 6. Here, we consider generalizations of the Wiener filter to the
optimal linear filters in Hilbert spaces, and linear and nonlinear optimal
filters with different types of memory. This includes optimal causal linear
filtering with piecewise constant memory, optimal causal polynomial filter-
ing with arbitrarily variable memory and optimal unconstrained nonlinear
filtering based on an extension of the hybrid method studied in Chapter 5.
Our methodology is based on the Wiener-Kolmogorov approach. In this re-
gard, Sorenson ([142], p. 14) points out that the “pioneering work of Wiener
and Kolmogorov” enabled us to “bridge the gap between communication
engineers and statisticians” and observes that the introduction of “commu-
nication engineering and mathematical concepts” assisted “the synthesis of
ideas from both fields in order to obtain a more powerful technique”. Our
extensions of the Wiener-Kolmogorov ideas exploit an underlying Volterra
functional form, which has been studied extensively by many authors. See
for example [16, 92, 95, 112, 136, 159, 175, 182].

At the same time, our treatment of techniques associated with the
Volterra series differs essentially from the known approaches. Firstly, our
estimator has the specific structure to accommodate both causality and
finite memory. Secondly, we establish an equivalence between the original
problem (6.66) formulated in terms of the vectors x and y and the collec-
tion of problems (6.74) formulated in terms of the components of x and
y. This allows us to represent the estimator in a natural coordinate form
(6.62). Such a representation implies a significant computational benefit
related to the small sizes of matrices to be computed in 6.77).
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The results described in Chapter 6 are new and are based on a substan-
tial extension of our earlier results [153]–[160].

Many known results assume the relevant covariance matrices are invert-
ible. Such an assumption is quite restrictive from a computational point
of view and is often associated with numerical instability. We avoid such a
drawback by using generalized inverse operators [6] which always exist.

In Chapter 7, computational methods for optimal compression and re-
construction of random data are studied. We begin with the standard Prin-
cipal Component Analysis (PCA) and Karhunen-Loéve transform (KLT),
and give a generalized PCA–KLT. Then these techniques are extended to
an optimal hybrid transform based on Hadamard-quadratic approximation,
an optimal transform formed by a combination of nonlinear operators and
an optimal generalized hybrid transform.

To be more specific, we list the following questions to be studied. These
questions are completely or partially answered in the book.

1. What is a computationally realizable nonlinear model of a nonlinear
system in spaces which are algebras? We say that the space is an
algebra if the operation of multiplication can be defined in the space.

2. Is there a way to provide a similar model in a space which is not an
algebra?

3. What kind of restrictions should be imposed on the spaces above?
4. Can we find a nonlinear model that approximates the system with

any given accuracy?
5. Can we provide a nonlinear model that approximates a system which

transforms signals belonging to a non-compact set?
6. If the answer to the above question is “yes”, what type of a space

should be chosen? For instance, should it be a Banach space or a
Hilbert space? What kind of topology should be chosen there?

7. Can the Lagrange’s idea of real function interpolation be extended
to the case of nonlinear operator interpolation? What kind of spaces
should we use?

8. What are the limitations for such an extension?
9. How can we overcome those limitations?

10. What is a unified definition of causality, memory and stationarity in
operator terms?

11. Can we determine a system model which is “equipped” with the prop-
erties mentioned in the preceding question, so that this model approx-
imates the system with any given accuracy?
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12. What kind of spaces should be chosen to determine such a system?
Can we use Banach spaces or even linear topological spaces? What
kind of limitations should be imposed on associated topologies?

13. What kind of nonlinearity should be chosen for the model which real-
izes an approximation of the system with a highest possible accuracy?
Such a model is called the best model.

14. Suppose the nonlinear model is chosen in the form of an operator
polynomial of an arbitrary degree. Then the degree of the operator
polynomial is the only degree of freedom in the model performance.
Can we choose a different way in a model determination so that the
model has more than one degree of freedom?

15. Is the best model unique? If not, what are conditions for its unique-
ness?

16. What are different types of memory in realistic systems? How can
we formalize them?

17. How and what particularities in the structure of the model should be
chosen to satisfy different types of memory?

18. Can we find a best model which is “equipped” with specific type of
memory?

19. What is a generic representation for the linear transform of stochastic
vectors subject to constraint on its rank?

20. Is such a representation unique? If not, what is an analytical form
for a family of such transforms?

21. Can we find nonlinear transforms with a better compression ratio
and associated accuracy than those for linear rank-constrained trans-
forms?

We believe that this book could give an opportunity to compare differ-
ent methods, including a number of new ones, to choose the best suitable
algorithm for applications, and will initialize a future theoretical develop-
ment of the presented results.

Finally, the way for referring to material within the book is as follows.
Theorems, lemmas, definitions, equations, et. are separately numbered for
each chapter. A reference to material within the same chapter does not
name the chapter. A reference to material in a different chapter names the
chapter.
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Chapter 2

Nonlinear Operator
Approximation with
Preassigned Accuracy

2.1. Introduction

2.2. Generic Formulation of the Problem

2.3. Operator Approximation in Space C[0, 1]

2.4. Operator Approximation in Banach Spaces by Operator Polynomials

2.5. Approximation on Compact Sets in Topological Vector Spaces

2.6. Approximation on Noncompact Sets in Hilbert Spaces

2.7. Special Results for Maps into Banach Spaces

2.8. Concluding Remarks

2.1 Introduction

Nonlinear systems theory is a direct area of applications for the methods
of nonlinear operator approximation. Gallman and Narendra [45] appear
to have been the first to propose an application of the Stone–Weierstrass
theorem generalization to the modelling of nonlinear systems. Further
development in nonlinear operator approximation techniques and their ap-
plication to nonlinear systems has been made by a number of authors. We
list references [12], [15]–[17], [22]–[26], [57, 60, 65, 98, 99, 104], [106]–[108],
[117]–[131], [148, 153, 154, 157] as examples of such methods.

9



10 2. NONLINEAR OPERATOR APPROXIMATION

In this chapter, we consider both existence theorems for approximating
operators of preassigned accuracy and numerical schemes for their practical
realization.

The chapter is organized as follows. A general formulation of the prob-
lem is given in Section 2.2. In Sections 2.3 and 2.4, we describe methods
of nonlinear operator approximation in the space C([0, 1]) and in Banach
spaces as elaborated by Gallman and Narendra [45], Daugavet and Lanne
[23], and Daugavet [24]–[26]. These methods are not widely known and the
results presented in Sections 2.3 and 2.4 draw attention to these effective
procedures.

A generic approach to operator approximation in topological vector
spaces is considered in Section 2.5 and is further elaborated in Section
2.6. In Section 2.5.5, we give theorems on the existence of an operator
approximating an operator defined on a compact set in a topological vector
space. In Section 2.6, the technique of Section 2.5 is modified to establish
some theorems on constructive approximation on noncompact sets. In
Section 2.7, the results of Sections 2.5 and 2.6 are specified in terms of
modulus of continuity.

2.2 Generic Formulation of the Problem.

We begin with some remarks on a general formulation of the problem for
nonlinear operator approximation.

Let X and Y be locally convex topological vector spaces, with K ⊆ X
a subset and F : K → Y a continuous map.

The problem is to prove that for a given neighbourhood of zero τ ⊆ Y ,
there exists a constructively–defined operator S : X → Y and a neighbour-
hood of zero ε ⊆ X such that, for all x ∈ K and all x′ ∈ X with

x′ − x ∈ τ,

we have
F (x)− S(x′) ∈ τ.

This general statement contains a few issues which must be clarified. Firstly,
it is necessary to establish some restrictions on the subset K. Should K be
a compact set? If so, what kind of restrictions should then be imposed on X
and Y ? Next, suppose K is bounded but not necessarily compact. What
kind of topology should then be used for X and Y ?

Secondly, a locally convex topological vector space is not an algebra,
as the ordinary multiplication operation cannot be defined for this space.
This causes corresponding difficulties for the structure of an approximating
operator S.
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In the following sections, we give and discuss a variety of possible solu-
tions to this problem depending on the specific type of spaces X, Y, set K
and approximating operator S.

2.3 Operator Approximation in Space C([0, 1]).

The case where X and Y are the space C = C([0, 1]) of continuous functions
on the interval [0, 1] ⊂ R and Kc ⊂ C a compact subset, allows a specific
structure for the operator S. The method has been presented in [45, 23].

Let F : Kc → C([0, 1]) be continuous. It is assumed that F (O) = O if
O ∈ Kc, where O is the zero element in C([0, 1]).

In the next theorem we shall need some notation. We denote by Z+

the set of positive integers and by Cm an m−dimensional subspace of C,
with Pm ∈ L(C,Cm) given by Pm(x) = xm. The functions gj : Cm → Cm

(j = 1, . . . , N) are assumed continuous and Sm,N ∈ L(Cm, CN
m ) is given by

Sm,N (xm) = (g1(xm), . . . , gN (xm)).

The operator Q : CN
m → C is continuous and such that

Q(g1(xm), . . . , gN (xm)) =
∑

aj1,...,jN
[g1(xm)]j1 . . . [gN (xm)]jN ,

with
aj1,...,jN

∈ R, jk ≥ 0 and
∑

jk ≥ 0.

Theorem 1. [23] For any ε > 0, there exist δ > 0, N ∈ Z+ and operators
Pm, Sm,N and Q such that, for all x ∈ Kc and u ∈ C satisfying the
condition

‖x− u‖ ≤ δ,

we have the inequality

‖F (x)−QSm,NPm(u)‖ < ε.

The proof in [23] depends greatly on the structure of the operator Sm,N .
To be specific, the operator Sm,N must be such that

1. if um 6= O, then
Sm,N (um)(t) 6= ON

for all t ∈ [0, 1], where ON is the zero element in CN ;

2. if
Sm,N (u(1)

m )(t1) = Sm,N (u(2)
m )(t2),
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then either
u(1)

m = u(2)
m = O or u(1)

m = u(2)
m

and t1 = t2.

A special study of operators Sm,N with the above properties is provided in
[24]. In particular, it is shown that there always exists an Sm,N satisfying
these conditions.

Note that Theorem 1 is the generalization of a similar theorem by Gall-
man and Narendra [45].

The space C is an algebra, since multiplication of elements takes place
in C. This is essentially exploited for the structure of the approximating
operator in Theorem 1; namely, the operator Q is constructed from the
product of functions gk(xm)jk .

Nevertheless the structure of the approximating operator above is quite
complicated. A desire to study the possibility of simpler structures for an
approximating operator has motivated Theorems 2 and 3 [25] below.

Let C = C(T ), where T is metric and compact. Set

A(u) = L0 + L1u + L2u
2 + . . . + Lnun, (2.1)

where L0 ∈ C, Lk ∈ L(C,C) is a linear operator and uk = [u(t)]k. The
class of operators A is denoted by A.

An important feature in the structure of the operator A is that Lk is
linear but not a k−linear operator as commonly supposed. See the following
sections in this connection.

We write N for the set of natural numbers, R+ for the set of real positive
numbers and Z for the set of integers.

Theorem 2. [25] Let Cm be a m−dimensional subspace of C(T ) with basis

ϕ1(t), . . . , ϕm(t) such that, for any N ∈ N, all functions
m∏

j=1

ϕ
kj

j (t) are

linearly independent, where ki ∈ N for i = 1, . . . ,m and k1 + . . . + km =
N. Let Km be a compact subset in Cm. Then any continuous mapping
F : Km → C can be approximated by an operator of class A with any
prescribed accuracy.

Note that the assumption of the theorem is not very restrictive. The
following example [25] describes a subspace of C(T ) satisfying this condi-
tion.

Example 1. Let α1, . . . , αm ∈ R+ be such that

q1α1 + . . . + qmαm = 0
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implies
q1 = . . . = qm = 0,

where q1, . . . , qm ∈ Z. Then all numbers k1α1 + . . . + kmαm are different if
k1, . . . , km ∈ N and k1 + . . . + km = N . Therefore the functions

ϕ1(t) = tα1 , . . . , ϕm(t) = tαm

satisfy the assumption in Theorem 2 because of linear independence.

Theorem 2 is recast in [25] in terms of the modulus of continuity. We
give the definition first.

Definition 1. Let Kc be a compact subset of C(T ) and F : Kc → C(T ) a
continuous mapping. The function

ω(F ; δ) = sup
x1,x2∈K: ‖x1−x2‖≤δ

‖F (x1)− F (x2)‖

is called the modulus of continuity for F.

Theorem 3. [25] Let Kc ⊂ C([0, 1]) be a compact set. For any ε > 0,
there exists a continuous operator Qε : Kc → C([0, 1]) such that, for all
x ∈ Kc,

‖Qε(x)− x‖ < ε,

and then for any continuous F : Kc → C([0, 1]) there exists A ∈ A such
that

‖F (x)−A(Qε(x))‖ <
1
2
ω(F ; 4ε) + ε.

Remark 1. [25] It might be taken from Theorems 2 and 3 that class A
is a reasonable approximation tool. Unfortunately this is not so, since an
operator A ∈ A can be unstable to small disturbances of its argument.

2.4 Operator Approximation in Banach Spaces by
Operator Polynomials

The structures of approximating operators considered in the preceding sec-
tion cannot directly be extended to the approximation of operators acting
on abstract Banach spaces. In this and subsequent sections we present some
possible forms of approximating operators acting on spaces more general
than C.

We begin with the following definition.
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Definition 2. Let X and Y be Banach spaces and B(Xk, Y ) a set of con-
tinuous k−linear operators. Let L0 ∈ Y, Lk ∈ B(Xk, Y ) and Lk(xk) =
Lk(x, . . . , x︸ ︷︷ ︸

k

). The operator Pn defined by

Pn(x) = L0 + L1x + L2x
2 + . . . + Lnxn (2.2)

is called an operator polynomial of degree n.

The structure of the operator Pn is quite general. A popular choice of
k−linear operators Lk are multiple Volterra integrals [117]. The k−linear
operators in (2.2) can also be designed from superpositions of sigmoidal
functions ([22], [4]), radial functions [98] or wavelets.

Prenter [104] first used an operator polynomial to prove the Stone–
Weierstrass theorem for operators on Hilbert space.

Let H be a real, separable Hilbert space, K a compact subset of H,
and let H(K,H) denote the family of continuous operators from K into H
together with the uniform norm topology

‖F −G‖ = max
x∈K
‖F (x)−G(x)‖

where F, G ∈ H(K). Prenter proved the following theorem.

Theorem 4. (Prenter, [104]) The the family of continuous finite rank
polynomial operators {Pn} on H, restricted to K, is dense in H(K,H)
restricted to K.

Istrǎţescu [65] and Bruno [12] extended Prenter’s result respectively to
operators on Banach spaces and topological vector spaces.

Theorem 5. (Istrǎţescu, [65]) Let K be a compact set in a Banach space
X. Given ε > 0, there exists an operator polynomial Pn such that, for all
x ∈ K, the inequality

‖F (x)− Pn(x)‖ < ε

holds.

The extension [12] of the Stone–Weierstrass theorem to topological vec-
tor spaces is based on the following concepts.

Definition 3. Let X be a topological vector space and let L(X,Xm) be the
set of all continuous linear mappings from X into Xm, where Xm ⊆ X is
a subspace of dimension m. Let {Gm}m=1,2,... be a sequence of continuous
linear operators Gm ∈ L(X, Xm). The sequence {Gm}m=1,2,... is said to
be equicontinuous on compacta, if for any given compact set K ⊆ X and
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any given neighbourhood of zero µ ⊆ X we can find a neighbourhood of
zero σ = σ(µ) ⊆ X such that Gm(x1) − Gm(x2) ∈ µ for all m = 1, 2, . . .
whenever x1, x2 ∈ K and x1 − x2 ∈ σ.

Definition 4. [133] We say that X possesses the Grothendieck property of
approximation if there exists a sequence {Gm}m=1,2,... of continuous linear
operators Gm ∈ L(X, Xm) such that the operators Gm are equicontinu-
ous on compacta and uniformly convergent to unit operators on the same
compacta1.

Remark 2. The conditions in Definition 4 are related. The condition that
the sequence of operators is equicontinuous on a compact set implies that
a uniformly convergent subsequence can be found. On the other hand, if
the sequence of operators converges uniformly to the unit operator on a
compact set, then the sequence is equicontinuous.

See also reference [108] in this connection.
Let X and Y be topological vector spaces. We denote by C(X, Y ) the

family of continuous operators from X into Y in compact open topology.

Theorem 6. (Bruno, [12]) Let X and Y be real Hausdorff topological vector
spaces with the Grothendieck property of approximation. Then operator
polynomials Pn : X → Y of finite rank are dense on C(X, Y ).

A related fundamental result is due to Fréchet [86].

Fréchet Theorem [86] Any functional defined and continuous on a space
of functions is representable as a limit of a sequence of polynomial integral
functions on any bounded subset of this space.

In [26], the Fréchet Theorem is generalized to continuous operator ap-
proximation on an arbitrary set in a separable Banach space.

For an open subset of a separable Banach space X, the generalization
of the Fréchet Theorem is as follows.

Theorem 7. [26] Suppose Ω ⊆ X is an open subset of a separable Ba-
nach space X and F : Ω → Y a continuous operator. Then there exists a
sequence of operator polynomials Pn : X → Y such that

Pn → F

for all x ∈ Ω.

1The sequence {Gm} is said to converge uniformly on the compact set K ⊆ X to
the unit operator on K if for any given neighbourhood of zero µ ⊆ X we can find M > 0
such that Gm(x)− x ∈ µ whenever x ∈ K and m > M .
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The proof is mainly based on the following theorem by Istrǎţescu [65].
The class of sets Ω in Theorem 7 can be extended so that continuous

operators defined on them can be approximated, in the sense of pointwise
convergence, by operator polynomials. In particular, if the set Ω ⊆ X is
such that any continuous operator defined on Ω can be extended contin-
uously to the complete space X , or at least to a neighbourhood Ω, then
for such a set Ω the statement of Theorem 7 holds. For example, convex
closed bodies in X belong to the above–mentioned class of sets Ω.

An extension of Theorem 7 to the case where Ω is an arbitrary set in X
requires an essential constraint for F as follows.

Theorem 8. [26] Let Ω be an arbitrary set in X and F : Ω → Y a uni-
formly continuous operator. Then there exists a sequence {Pn} of operator
polynomials such that Pn → F for all x ∈ Ω.

Without loss of generality, it can be assumed that Ω is closed, since
any operator uniformly continuous on Ω can be extended with respect to
continuity onto its closure.

Further, not every operator defined and uniformly continuous on a
closed bounded set in a Banach space can be arbitrarily uniformly approx-
imated by generalized polynomials. An example of such a functional on
the unit ball of a Hilbert space is given in [94]. Another, perhaps simpler,
example, is given in [26].

Example 2. [26] Let X be the space of sequences

x = (ξ1, ξ2, . . .)

with ξn → 0 and set
‖x‖ = max |ξk|.

Suppose that Ω ⊂ X consists of all sequences of the form

y = (σ1, σ2, . . . , σk, 0, 0, . . .),

where σi is +1 or −1. The set Ω belongs to the unit ball of the space X and
is closed.

We define a functional f on Ω by

f(y) = σ1σ2 . . . σk.

Since we have
‖y′ − y′′‖ ≥ 1

for distinct points y′, y′′ ∈ Ω, the functional f is uniformly continuous.
It is easily extended to the unit ball in X with preservation of uniform
continuity.
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Let
Xm = {x = ξ1, . . . , ξm, 0, 0, . . .)}

be a subspace of X. We make no distinction between this space and the
space l∞m . The restriction of a polynomial functional pn of degree n on Xm

is a polynomial in m variables of degree not greater than n. Therefore if

Ωm ⊂ Ω ∩Xm

is the set of vertices of the M−dimensional cube [−1, 1]m and if fm is the
restriction of the functional f to Ωm, then for any polynomial pn of degree
n and for any m, the inequality

sup {|f(x)− pn(x)| for x ∈ Ω} ≥ En(fm)

holds, where En(fm) is the best uniform approximation of fm by polynomi-
als in m variables of degree n.

The function fm is odd with respect to each argument, and in the set
of all best–approximation polynomials of this function, there also exists an
odd polynomial with respect to each argument. In particular, for m > n
the zero polynomial is the best approximation polynomial, since this is the
unique polynomial of degree n of m variables which is odd with respect to
all arguments, and therefore

En(fm) = 1

for m > n.
Thus for any polynomial function pn, we have

sup {|f(x)− pn(x)| for x ∈ Ω} ≥ 1.

2.5 Approximation on Compact Sets in Topological
Vector Spaces

In this section, we consider a systematic theoretical procedure for the con-
structive approximation of non-linear operators and show how this pro-
cedure can be applied to the modelling of dynamical systems. There are
several properties which we have sought to preserve in the modelling pro-
cess. In many cases the only given information about such a system is
information pertaining to an abstract operator F . We wish to construct
an approximating operator S which can be realized in physical terms, will
approximate F with a given accuracy and must be stable to small dis-
turbances. The operator S defines our model of the real system and will
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be constructed from an algebra of elementary continuous functions by a
process of finite arithmetic. For this reason we regard S as computer-
processable.

A number of specific examples are presented for the particular purpose
of illustrating the theoretical results. Although the examples have been
simplified for computational convenience and are somewhat artificial they
are none-the-less representative of real situations. In these examples we
have used an underlying polynomial algebra but we note that this is simply
a matter of theoretical convenience. A suitable wavelet algebra could be
used instead. Another currently popular alternative is an algebra generated
by superpositions of a sigmoidal function. Such algebras are discussed in
detail by Cybenko [22] and Barron [4]. In general we require only that the
underlying algebra satisfy the conditions of Stone’s Algebra [113]. For the
purposes of this Section we have assumed that the elementary continuous
functions which generate the algebra can be evaluated by a process of finite
arithmetic. While this assumption may not be strictly correct the errors
involved are limited only by machine accuracy and in principle do not
disrupt our analysis.

The study in this Section has been motivated by a desire to understand
the nature of the modelling process for simulation of a real dynamical
system. A dynamical system is defined by a mapping that transforms a
set of input signals to a corresponding set of output signals. A signal is
normally defined by a set of real number parameters. In practice these
parameter sets could be uncountably infinite. For a computer simulation
of the system each signal must be represented by a finite set of real number
parameters and the mapping must be represented by a finite arithmetical
process. We must nevertheless show that the simulated system is a good
approximation to the real system.

To justify the approximation process we impose a basic topological
structure and use the consequent notions of continuity to establish theorems
of Weierstrass type. In the case of a general continuous map F : X → Y
where X,Y are locally convex topological vector spaces we will show that
the approximation procedure can be used on any given compact subset
K ⊆ X. Indeed if we assume that F is known only on K then for some
suitable neighbourhood ε of zero in X the construction of an extended op-
erator S : K +ε ⊆ X → Y is an important ingredient in our approximation
procedure. The extension of the domain allows us to consider the effect of
a small disturbance in the input signal. Such disturbances are unavoidable
in the modelling process.

This section describes a generic approach and is concerned with ap-
plicable conditions that will allow the simulated system to represent the
real system to within an arbitrarily prescribed accuracy. The problem of
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relating the various error bounds to the dimensions of the model is not
considered and may be more effectively resolved in a specific context. One
could certainly consider these questions at the level of our particular ex-
amples.

There are other aspects of the approximation process which we do not
consider here. A real system is normally causal and may also be stationary
or have finite memory. These systems are studied in Section 3.

2.5.1 Relation to previous studies

The extension of the classical Stone-Weierstrass theorem to the approxi-
mation of continuous mappings on topological vector spaces by polynomial
mappings has been known for some time and was developed by Prenter [104],
Istratescu [65], Prolla and Machado [108] and Bruno [12]. In these papers
the approximation procedure relies directly on the classical theorem via an
underlying algebra of real valued polynomials.

Our procedure is essentially an elaboration of the procedure used by
Bruno but is more explicitly constructive and we believe more directly
related to the representation of real dynamical systems. In particular we
show that the model is stable to small disturbances in the input signal. We
have also considered the role of parameters in the representation process
and have adapted our methods accordingly. Our procedure is not limited
to polynomial approximation. On the other hand our analysis is restricted
to locally convex topological vector spaces. The present work is developed
from an approach used by Torokhti [151, 152, 153, 154].

2.5.2 A remark on the compactness condition

The assumption of compactness for the set K on which the operator F
is to be approximated is an important part of the modelling process and
cannot be totally removed. For a continuous real valued function on the
real line it is well known that uniform approximation by a polynomial can
be guaranteed only on a compact subset.

We believe that the compactness assumption is reasonable in practice.
Suppose the dynamical system is defined by an operator F : X → Y where
X and Y are topological vector spaces. Some knowledge of the operator is
necessary if we wish to simulate the given system. It may happen that F
is known only on the basis of a finite subset

{(xn, yn) | xn ∈ X and yn = F (xn) ∈ Y for n = 1, . . . , N} ⊆ X × Y (2.3)

or alternatively on a set

{(xγ , yγ) | xγ ∈ X and yγ = F (xγ) ∈ Y for γ ∈ Γ ⊆ Rn} ⊆ X × Y (2.4)
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where Γ is compact. Such knowledge may be empirical or based on a
restricted analysis of the system concerned. Of course there may be some
situations where the compactness assumption is not reasonable. If the
set on which the approximation is required is not compact then a stronger
continuity condition is needed. In a subsequent section we will use stronger
topological assumptions to consider this more difficult problem.

2.5.3 Generic approximant representation in topological
vector spaces

The constructive approximation of nonlinear operators in topological vector
spaces encounters some special difficulties. First, a topological vector space
is not an algebra, as the ordinary multiplication operation is not defined.
This necessitates using the structure (2.2) for the approximating operator.
Secondly, the structure (2.2) is quite general. It is not clear what specific
kind of k−linear operator is preferable in (2.2). In the studies [151]–[57] by
Torokhti and Howlett, these difficulties have been overcome by the further
elaboration of the ideas of Prenter [104] and Bruno [12].

One of the main aims in [151]–[57] is the constructive definition of an
operator S to approximate the operator F : K → Y given on the the com-
pact set K of the topological vector space X possessing the Grothendieck
property of approximation (see Definition 4 above), with values in the topo-
logical vector space Y. Furthermore there are certain properties that must
be satisfied by S if we wish to construct a useful model of a real nonlinear
system.

The generic structure of the approximating operator S in [151]–[57] is
as follows.

Let X and Y be topological vector spaces with the Grothendieck prop-
erty of approximation and with approximating sequences {Gm}m=1,2,... and
{Hn}n=1,2,... of continuous linear operators

Gm ∈ L(X,Xm) and Hn ∈ L(Y, Yn),

where Xm ⊆ X, Yn ⊆ Y are subspaces of dimension m,n as described in
Definition 14. Write

Xm =



xm ∈ X | xm =

m∑

j=1

ajuj





and

Yn =

{
yn ∈ Y | yn =

n∑

k=1

bkvk

}
,
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where
a = (a1, a2, . . . , am) ∈ Rm, b = (b1, b2, . . . , bn) ∈ Rn

and
{uj}mj=1, {vk}nk=1

are bases in Xm, Yn respectively. Let {g} = G be an algebra of continuous
functions g : Rm → R that satisfies the conditions of Stone’s Algebra [113].
Define the operators

Q ∈ L(Xm,Rm), Z : Rm → Rn and W ∈ L(Rn, Yn)

by the formulæ

Q(xm) = a, Z(a) = (g1(a), g2(a), . . . , gn(a)) and W (z) =
n∑

k=1

zkvk, (2.5)

where each gk ∈ G and zk = gk(a).
Then S : X → Yn is defined by the composition

S = WZQGm. (2.6)

In the following sections, it will be shown that subject to an appropriate
choice of the functions {gk} ∈ G, the operator S supplies an approximation
to F with any preassigned accuracy on both a compact set and noncom-
pact set in the corresponding topological vector spaces. Moreover [57] the
generic structure (2.6) of operator S provides so–called weak interpolation
to a nonlinear mapping in the space C([0, 1]).

A diagram for the realization of the approximating operator S is given
in Section 1.8.

2.5.4 Preliminaries

We begin with some preliminary results.

Definition 5. Let X,Y be real Hausdorff topological vector spaces and let
A be a subset of X. The map F : A→ Y is uniformly continuous on A if
for each open neighbourhood of zero2 τ ⊆ Y we can find a neighbourhood
of zero σ ⊆ X such that

F [(x + σ) ∩A] ⊆ F (x) + τ (2.7)

for all x ∈ A.

2In a topological vector space a set τ with 0 ∈ int(τ) will be called a neighbourhood
of zero.
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Lemma 1. Let X, Y be real Hausdorff topological vector spaces and let K
be a compact subset of X. If F : K → Y is continuous on K then it is
uniformly continuous on K.

Proof. Let τ be a neighbourhood of zero in Y . Choose a neighbourhood of
zero ν ⊆ Y with ν − ν ⊆ τ . For each x ∈ K we choose a neighbourhood of
zero µ(x) ⊆ X such that

F [(x + µ(x)) ∩K] ⊆ F (x) + ν. (2.8)

Now choose a neighbourhood of zero σ(x) ⊆ X such that σ(x) + σ(x) ⊆
µ(x). We write

Ω(x) = x + σ(x). (2.9)

Since

K ⊆
⋃

x∈K

Ω(x) (2.10)

and since K is compact we can find a finite subcollection Ω1, Ω2, . . . , Ωr

(where we write Ωi = xi + σi, σi = σ(xi) and µi = µ(xi)) such that

K ⊆
r⋃

i=1

Ωi. (2.11)

Define

σ =
r⋂

i=1

σi. (2.12)

It is clear that σ is an open neighbourhood of zero in X. If we choose any
x ∈ K then we can find k such that x ∈ Ωk. Thus

F (x) ∈ F (xk) + ν. (2.13)

Since

x + σ ⊆ Ωk + σ

⊆ (xk + σk) + σk

⊆ xk + µk

it follows that

F [(x + σ) ∩K] ⊆ F (xk) + ν (2.14)
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and hence

F [(x + σ) ∩K]− F (x) = {F [(x + σ) ∩K]− F (xk)}
−{F (x)− F (xk)}

⊆ ν − ν

⊆ τ. (2.15)

Therefore

F [(x + σ) ∩K] ⊆ F (x) + τ. (2.16)

The lemma is proven.

Lemma 2. Let X be a normal3 topological vector space and let Y be a
locally convex topological vector space. Let K be a compact subset of X
and F : K → Y a continuous map. For each convex neighbourhood of zero
τ ⊆ Y there exists a neighbourhood of zero σ ⊆ X and a continuous map
Fσ : K + σ → Y in the form

Fσ(u) =
r∑

i=1

κi(u)F (xi) (2.17)

where xi ∈ K for each i = 1, 2, . . . , r and where κi : K + σ → R is
continuous with

(i) κi(u) ∈ [0, 1], and

(ii)
r∑

i=1

κi(u) = 1,

such that

F (x)−Fσ(u) ∈ τ (2.18)

whenever x ∈ K and x− u ∈ σ.

Proof. . Choose a neighbourhood of zero µ ⊆ X so that for all x ∈ K

F [(x + µ) ∩K] ⊆ F (x) + τ (2.19)

and choose a neighbourhood of zero σ ⊆ X with σ+σ ⊆ µ. Let Ωx = x+σ.
Since

K ⊆
⋃

x∈K

Ωx (2.20)

3 A topological vector space is said to be normal if for each pair of disjoint closed
sets A,B ⊆ X there exists a pair of disjoint open sets U, V ⊆ X with A ⊆ U and B ⊆ V .
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we can find a finite subcollection Ω1, Ω2, . . . , Ωr such that

K ⊆
r⋃

i=1

Ωi. (2.21)

Since X is a normal topological vector space we can construct a collection
of continuous functions κi : K + σ → R for each i = 1, 2, . . . , r with the
properties that

1. κi(u) ∈ [0, 1],

2.
∑r

i=1 κi(u) = 1, and

3. κi(u) = 0 for u /∈ Ωi.

We define a map Fσ : K + σ → Y by the formula

Fσ(u) =
r∑

i=1

κi(u)F (xi). (2.22)

Now κi(u) 6= 0 implies u ∈ Ωi and if x − u ∈ σ then we have x ∈ xi + µ.
Hence if x ∈ K then

F (x)− F (xi) ∈ τ (2.23)

and so

F (x)−Fσ(u) =
r∑

i=1

κi(u)[F (x)− F (xi)]

=
∑

{i|κi(u)6=0}
κi(u)[F (x)− F (xi)]

∈ τ (2.24)

since the right hand side is a convex combination and τ is a convex set.

Corollary 1. If in addition to the conditions of Lemma 6 we have F (0) = 0
then we can choose F∗σ : K + σ → Y such that F∗σ satisfies the conditions
of Lemma 6 and also satisfies F∗σ(0) = 0.

Proof. Choose a neighbourhood of zero σ0 ⊆ X such that F (σ0) ⊆ τ .
Choose another neighbourhood of zero σ ⊆ X such that σ + σ ⊆ σ0 and
such that

F (x)−Fσ(u) ∈ τ (2.25)
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whenever x ∈ K and x−u ∈ σ. In accordance with Urysohn’s Lemma [31]
there is a continuous function f : X → [0, 1] such that f(0) = 0 and such
that f(u) = 1 when u /∈ σ. Let

F∗σ(u) = f(u)Fσ(u). (2.26)

When u /∈ σ we have

F (x)−F∗σ(u) = F (x)−Fσ(u)
∈ τ

and when u ∈ σ we have x ∈ σ0 and hence

F (x)−F∗σ(u) = [1− f(u)]F (x) + f(u)[F (x)−Fσ(u)]
∈ τ,

since
F (x) ∈ τ and F (x)−Fσ(u) ∈ τ

and the right hand side is a convex combination.

Remark 3. The condition F (0) = 0 in Corollary 1 can be interpreted as
follows. If the operator F is the mathematical model of some dynamical
system then the output y is related to the input x by y = F (x). Thus the
condition F (0) = 0 means that a zero input produces a zero output.

2.5.5 Constructive determination of approximating
operator S on compact set of locally convex
topological vector space

Recall that our aim has been the constructive determination of an operator
S to approximate the given operator F . Furthermore there are certain
properties that must be satisfied by S if we wish to construct a useful
model of the real system.

Subject to an appropriate choice of the functions {gk} ∈ G we now show
that S given by (2.6) supplies the required approximation to F .

Theorem 9. Let X, Y be locally convex topological vector spaces with the
Grothendieck property of approximation and let X be normal. Let K ⊆ X
be a compact set and F : K → Y a continuous map. For a given convex
neighbourhood of zero τ ⊆ Y there exists a neighbourhood of zero σ ⊆ X
with an associated continuous operator S : X → Yn in the form

S = WZQGm
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and a neighbourhood of zero ε ⊆ X such that for all x ∈ K and all x′ ∈ X
with x′ − x ∈ ε we have

F (x)− S(x′) ∈ τ. (2.27)

Remark 4. This theorem can be regarded as a generalization of the well
known Weierstrass approximation theorem.

To prove the theorem we need to establish that certain sets are compact.
Since Gm ∈ L(X,Xm) is continuous and since K is compact it follows that
Gm(K) is compact. To show that the set QGm(K) is compact we need to
establish that Q ∈ L(Xm,Rm). Since

Q(
m∑

j=1

ajuj) = a

we need to show that there exists a constant MQ and a seminorm ρ : X → R
with

‖a‖ ≤MQρ(
m∑

j=1

ajuj).

We have the following preliminary results.

Lemma 3. Let X be a locally convex topological vector space and let Xm

be the subspace defined above. We can find a sequence {ρs}s=1,2,...,r of
seminorms ρs : X → R where r ≤ m such that the function ρ : X → R
defined by

ρ(x) =

[
r∑

s=1

{ρs(x)}2
] 1

2

(2.28)

is a norm on Xm.

Proof. Let {ρs}s=1,2,...,r be a sequence of seminorms and let ρ : X → R be
the function defined above. Let

Ns = {x | x ∈ Xm and ρs(x) = 0}

for each s = 1, 2, . . . , r and let N = {x | x ∈ Xm and ρ(x) = 0}. It is easily
shown that

1. ρ is a seminorm,

2. Ns is a subspace of Xm for each s = 1, 2, . . . , r, and
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3. N =
r⋂

s=1

Ns is also a subspace of Xm.

Since X is a locally convex linear topological space we can choose a
sequence {ρs}s=1,2,...,r of seminorms so that r ≤ m and N = {0}. In this
case the function ρ : X → R defined above is the required norm on Xm.

Lemma 4. Let X be a locally convex topological vector space and let Xm

be the subspace defined above. If ρ : X → R is a norm on Xm then we can
find α > 0 such that

ρ(
m∑

j=1

ajuj) ≥ α‖a‖ (2.29)

for each a ∈ Rm.

Proof. It is sufficient to prove that there exists some α > 0 with

ρ(
m∑

j=1

ajuj) ≥ α (2.30)

whenever ‖a‖ = 1. If not we can find {a(p)}p=1,2,... such that

ρ(
m∑

j=1

a
(p)
j uj) <

1
p

(2.31)

and ‖a(p)‖ = 1. Thus we can find a convergent subsequence (which for
convenience we also denote by {a(p)}p=1,2,...) with a(p) → a as p → ∞ for
some a ∈ Rm. It now follows that

ρ(
m∑

j=1

ajuj) = 0

and also that ‖a‖ = 1. But

ρ(
m∑

j=1

ajuj) = 0 ⇒
m∑

j=1

ajuj = 0

⇒ a = 0.

Since ‖a‖ = 1 this is a contradiction.

We are now able to prove Theorem 11.
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Proof. By the approximation property of the space X, for any neighbour-
hood of zero ξ ⊆ X and for all x ∈ K, we can find M = M(ξ) > 0 such
that

Gm(x)− x ∈ ξ

for m > M . By Lemma 6 we can choose σ and a continuous map Fσ :
K + σ → Y given by

Fσ(u) =
r∑

i=1

κi(u)F (xi) (2.32)

with the property that

F (x)−Fσ(u) ∈ τ

4
(2.33)

when x− u ∈ σ and hence if we choose ξ ⊆ σ and m > M then

F (x)−FσGm(x) ∈ τ

4
(2.34)

for each x ∈ K. If we write

Gm(x) =
m∑

j=1

ajuj (2.35)

then

FσGm(x) = Fσ(
m∑

j=1

ajuj)

=
r∑

i=1

κi(
m∑

j=1

ajuj)F (xi) (2.36)

and hence

HnFσGm(x) =
n∑

k=1

bk




r∑

i=1

κi(
m∑

j=1

ajuj)F (xi)


 vk

=
n∑

k=1

fk(a)vk. (2.37)

We note that FσGm(K) ⊆ Y is a compact subset. By the approximation
property of the space Y , for any given neighbourhood of zero ν ⊆ Y , we
can choose Nm > 0 so that

HnFσGm(x)−FσGm(x) ∈ ν (2.38)
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for all x ∈ K when n > Nm. We also note that

HnFσGm(x)− S(x) = HnFσGm(x)−WZQGm(x)

=
n∑

k=1

[fk(a)− gk(a)]vk. (2.39)

If we suppose that the algebra G satisfies the conditions of Stone’s Algebra
then since a ∈ QGm(K) and since QGm(K) is compact it follows that we
can choose {gk}k=1,2,...,n ∈ G so that

HnFσGm(x)− S(x) ∈ ν. (2.40)

Thus, if we choose ν ⊆ τ
8 , then

FσGm(x)− S(x) ∈ τ

8
+

τ

8
⊆ τ

4

and hence

F (x)− S(x) ∈ τ

4
+

τ

4
⊆ τ

2
.

Finally we note that

S(x)− S(x + ∆x) =
n∑

k=1

[gk(a)− gk(a + ∆a)]vk

∈ τ

2

where ∆a ∈ Rm is defined by

Gm(x + ∆x) =
m∑

j=1

(aj + ∆aj)uj , (2.41)

provided we choose ∆x ∈ ε where ε is a sufficiently small neighbourhood
of zero in X. Now it follows that

F (x)− S(x′) ∈ τ

2
+

τ

2
⊆ τ

where x′ = x + ∆x.
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Figure 2.1: Block diagram for realization of S.

Theorem 11 can have the following interpretation. The operator S
represents a mathematical model of the real system [109, 152, 56, 57]. A
diagram for the realization of the approximating operator S is given Fig.
1.

In this context x is the input signal, F (x) is the output signal from the
real system, ∆x is the noise that is added to the input signal in practice,
and S(x + ∆x) is the output signal from the constructed system. Thus S
is a practical realization of the given abstract operator F . Note that the
noise term in the input signal could result from truncation of the parametric
description.

We illustrate this theorem with examples.

2.5.6 Examples

Example 3. Let X = Y = C[−1, 1] be the Banach space of continuous
functions on [−1, 1] with the uniform norm

‖f‖ = sup
t∈[−1,1]

|f(t)|.

For each γ = (γ1, γ2, γ3) ∈ R3 define

xγ(t) = γ1 cos(γ2t + γ3)
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and
yγ(t) = (γ1 cos γ3)4 cosh(γ2t)

and let K ⊆ X be the compact set given by

K = {x | x = xγ for some γ ∈ Γ = [0, 1]× [
1
2
, 1]× [0, 2π] ⊆ R3}. (2.42)

Let the non-linear operator

F : K → L = F (K) ⊆ Y

be defined by the formula

F (xγ) = yγ (2.43)

and consider the dynamical system described by the mapping F : K → L.
We wish to construct a practical model of the given system. We sup-

pose that the input signal is disturbed by an additional noise term that is
essentially unrelated in structure to the true input signal. In this example
we choose to approximate the input signal by a polynomial and hence it is
convenient for the noise term to be modelled by a polynomial of the same
degree. Thus we assume that the actual input signal x′ is given by

x′ = x + ∆x = xγ + ∆x (2.44)

for some γ ∈ Γ where ∆x = h is an appropriate polynomial. We will also
approximate the output signal by a polynomial.

For some given tolerance α > 0 and a corresponding restriction h ∈ ε
on the magnitude of the noise term (in this context ε is some suitable
neighbourhood of zero) we wish to find an operator S : K + ε → Y such
that

‖F (x)− S(x′)‖ < α (2.45)

for all x ∈ K and all x′ − x ∈ ε.
To construct the operator S it is necessary to extend the given set K of

input signals to include the additional noise terms. Some initial discussion
of calculation procedures is therefore desirable. To this end let Ps denote the
space of polynomials with real coefficients and of degree at most s− 1. We
define a Chebyshev projection operator Πs : C[−1, 1]→ Ps by the formula

Πs(u) =
s∑

j=1

cj(u)Tj−1 (2.46)

where
Tj−1(cos θ) = cos(j − 1)θ
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is the Chebyshev polynomial of the first kind and where the coefficients
cj = cj(u) are defined by the formulae

c1 =
1
π

∫ 1

−1

u(t)dt√
(1− t2)

and

cj =
2
π

∫ 1

−1

u(t)Tj−1(t)dt√
(1− t2)

for each j = 2, 3, . . . , s. In this example we will not use the integral formulae
but will calculate approximate Chebyshev coefficients where necessary by
using a standard economization procedure [38].

Let Xm = Pm and Yn = Pn. We define linear operators Gm : X → Xm

and Hn : Y → Yn by setting

Gm = Πm and Hn = Πn,

respectively. For convenience we will use the following approximate calcu-
lation procedure to determine

Xm(xγ) = x[γ, m] for xγ ∈ K

and
Hn(yγ) = y[γ, n] for yγ ∈ L.

For any given values of µ, ν > 0 we can choose m = m(µ), n = n(ν) and
polynomials pm, qm ∈ Pm and rn ∈ Pn with

pm(τ) =
[ m+1

2 ]∑

j=1

p2j−1τ
2j−2, qm(τ) =

[ m+1
2 ]∑

j=1

q2jτ
2j−1

and

rn(τ) =
[ n+1

2 ]∑

j=1

r2j−1τ
2j−2

such that
|pm(τ)− cos τ |+ |qm(τ)− sin τ | < µ

and
|rn(τ)− cosh τ | < ν

for all τ ∈ [−1, 1]. Now define x[γ,m] ∈ Pm and y[γ, n] ∈ Pn by

x[γ,m](t) = γ1 [(cos γ3)pm(γ2t)− (sin γ3)qm(γ2t)]

=
m∑

j=1

aj [γ, m]tj−1
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and

y[γ, n](t) = (γ1 cos γ3)4rn(γ2t) =
n∑

j=1

bj [γ, n]tj−1 (2.47)

and note that

|xγ(t)− x[γ, m](t)| < µ (2.48)

and

|yγ(t)− y[γ, n](t)| < ν (2.49)

for all t ∈ [−1, 1].
By observing that

Gm(p) = p and Hn(q) = q

when p ∈ Pm, q ∈ Pn and by using the linearity of the operators Gm,Hn

we can extend the above calculation procedure to polynomial neighbourhoods
of K,L.

Since the hypothetical input signal xγ ∈ K is approximated by a poly-
nomial x[γ,m] ∈ Pm we suppose that the noise term is also modelled by a
polynomial h ∈ Pm. Thus we assume that

h(t) =
m∑

j=1

wjt
j−1. (2.50)

where w = (w1, w2, . . . , wm) ∈ Rm is an unknown constant.
At this stage we need to point out that we will not follow the specific

construction procedure described in our theoretical development. In this
example the compact set K is described by a parameter γ ∈ Γ and the pre-
ceding theory suggests that we should choose an appropriate neighbourhood
of zero σ ⊆ X and construct an operator

Fσ : K + σ → Y

by choosing a finite collection {γ(i)}i=1,2,...,r of points in Γ and an appro-
priate partition of unity. In practice it is often easier to choose a neigh-
bourhood of zero ζ ⊆ Xm ⊆ X and use direct methods to construct an
operator

Rζ : Gm(K + ζ) = Gm(K) + ζ

→ Yn
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which effectively replaces the operator Fσ used in the theoretical develop-
ment by providing an approximate representation of the formal composition
HnFσGm

−1. We will show that the operator

R : Gm(K)→ Hn(L)

given by

R(x[γ, m]) = y[γ, n] (2.51)

can be extended to provide the desired approximation. To define R we note
that

ak[γ, m] =
{

γ1γ2
k−1(cos γ3)pk if k is odd

−γ1γ2
k−1(sin γ3)qk if k is even (2.52)

and

bk[γ, m] =
{

γ1
4γ2

k−1(cos γ3)4rk if k is odd
0 if k is even. (2.53)

In particular we note that

bk[γ, m] =
(

a1[γ, m]
p1

)3(
ak[γ, m]

pk

)
rk (2.54)

for each k = 1, 2, . . . , n. Therefore if we define

gk(a) =
(

a1

p1

)3(
ak

pk

)
rk (2.55)

for each k = 1, 2, . . . , n and set

1. Gm(xγ) = x[γ, m],

2. Q(x[γ, m]) = (a1[γ,m], a2[γ, m], . . . , am[γ, m]) = a[γ, m],

3. Z(a) = (g1(a), g2(a), . . . , gn(a)) = g(a), and

4. W (b[γ, n]) = y[γ, n].

then the desired operator

R : Gm(K)→ Hn(L)

is given by
R = WZQ.

For any fixed neighbourhood of zero ζ ∈ Pm the extended operator

Rζ : Gm(K + ζ)→ Yn

is simply defined by noting that
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1. Gm(xγ + h) = x[γ, m] + h, and

2. Q(x[γ, m] + h) = (a1[γ,m] + w1, a2[γ, m] + w2, . . . , am[γ, m] + wm).

The operator S : K + ζ → Yn is now given by the composition

S = WZQGm.

We note that
S(x[γ,m]) = y[γ, n]

and that

S(x[γ, m] + h)(t) =
n∑

k=1

(
(a1[γ, m] + w1

p1

)3(
ak[γ, m] + wk

pk

)

× rktk−1. (2.56)

Suppose that the actual level of approximation required is given by

‖F (x)− S(x′)‖ < .01. (2.57)

Of course it is necessary to understand that the achievable level of ap-
proximation will be limited by the magnitude of h. By the same token
we can only quantify this limitation when we have decided on the precise
structure of S. To begin the process we let m = n = 3 and construct
the necessary polynomial approximations by applying a standard Chebyshev
economization procedure [38] to the appropriate Maclaurin series. We have

cos τ ≈ 1− τ2

2
+

τ4

24
− τ6

720

=
1763
2304

T0(τ)− 353
1536

T2(τ) +
19

3840
T4(τ)− 1

23040
T6(τ)

≈ 1763
2304

T0(τ)− 353
1536

T2(τ)

=
4585
4608

− 353
768

τ2

= p3(τ), (2.58)

sin τ ≈ τ − τ3

6
+

τ5

120

=
169
192

T1(τ)− 5
128

T3(τ) +
1

1920
T5(τ)

≈ 169
192

T1(τ)

=
169
192

τ

= q3(τ), (2.59)
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and

cosh τ ≈ 1 +
τ2

2
+

τ4

24
+

τ6

720

=
2917
2304

T0(τ) +
139
512

T2(τ) +
7

1280
T4(τ) +

1
23040

T6(τ)

≈ 2917
2304

T0(τ) +
139
512

T2(τ)

=
4583
4608

− 139
256

τ2

= r3(τ). (2.60)

With these approximations it can be seen that

|p3(τ)− cos τ |+ |q3(τ)− sin τ | < .05 (2.61)

and

|r3(τ)− cosh τ | < .006 (2.62)

for all τ ∈ [−1, 1]. It follows that

‖xγ − x[γ, 3]‖ < .05

and
‖yγ − y[γ, 3]‖ < .006.

Now we have

1. x[γ, 3](t) = 4585
4608γ1 cos γ3 − 169

192γ1γ2(sin γ3)t− 353
768γ1γ2

2(cos γ3)t2

2. a[γ, 3] = ( 4585
4608γ1 cos γ3,− 169

192γ1γ2 sin γ3,− 353
768γ1γ2

2 cos γ3),

3. g(a) = ( 4583×(4608)3

4585 a1
4, 0, 139×768×(4608)3

256×353×(4585)3 a1
3a3), and

4. y[γ, 3](t) = 4583
4608 (γ1 cos γ3)4 − 139

256 (γ1 cos γ3)4γ2
2t2.

In this particular example we suppose that the noise term has the form
h(t) = wt2 where |w| < .002. Therefore

S(x′)(t) = y[γ, 3](t) +
139× 768× 4608
256× 353× 4585

(γ1 cos γ3)3wt2 (2.63)

and hence

‖S(x′)− y[γ, 3]‖ < .003. (2.64)
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Therefore

‖F (x)− S(x′)‖ ≤ ‖yγ − y[γ, 3]‖+ ‖y[γ, 3]− S(x′)‖
< .006 + .003
< .01. (2.65)

In the above example we note that the input signal depends on a finite
number of real parameters. It is natural to investigate what happens when
the error in the input signal is caused by an inherent uncertainty in our
knowledge of the parameter values. We will motivate further discussion by
considering a second example.

Example 4. We consider the system described in Example 6 and suppose
that the error in the input signal is due entirely to an inherent uncertainty
∆γ in our knowledge of the value of γ. For convenience we write

γ′ = γ + ∆γ and x′ = xγ′ .

For a sufficiently small neighbourhood of zero θ ⊆ R3 and with the same
definitions as we used in Example 6 we can define an operator

S : KΓ+θ → Yn

such that

S(xγ′) = y[γ′, n] (2.66)

whenever γ′ − γ ∈ θ. Since

F (xγ)− S(x′) = yγ − y[γ′, n] (2.67)

it follows that

‖F (xγ)− S(x′)‖ ≤ ‖yγ − yγ′‖+ ‖yγ′ − y[γ′, n]‖. (2.68)

It is now easy to see that the achievable level of approximation is limited
by the uncertainty in γ. In particular we note that

yγ′(t)− yγ(t) ≈ ∂y

∂γ1
(t)∆γ1 +

∂y

∂γ2
(t)∆γ2 +

∂y

∂γ3
(t)∆γ3

= 4(γ1 cos γ3)3(cos γ3)(cosh γ2t)∆γ1

+(γ1 cos γ3)4(sinh γ2t)t∆γ2

−4(γ1 cos γ3)3γ1(sin γ3)(cosh γ2t)∆γ3 (2.69)

and hence calculate that

‖yγ′ − yγ‖ <
√

(32 cosh2 1 + sinh2 1)‖∆γ‖.
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If we suppose that ‖∆γ‖ < .0005 we have

‖yγ′ − yγ‖ < .042. (2.70)

Suppose the actual level of approximation required is given by

‖F (x)− S(x′)‖ < .05. (2.71)

If we let m = n = 3 as we did in the previous example then we again obtain

‖yγ − y[γ, 3]‖ < .006 (2.72)

and hence

‖F (x)− S(x′)‖ < .042 + .006
< .05.

Remark 5. The problem of parameter estimation in signal analysis is
well known to electrical engineers and has been studied extensively. The
determination of a suitable estimate γ̂ for the parameter γ ∈ R3 in the
above examples is a classic single-tone estimation problem and is discussed
in detail by Rife and Boorstyn [111]. The estimation procedure is based on
the following observation. If we define

E(c) =
1
2

∫ 1

−1

|γ1 exp[i(γ2t + γ3)]− c1 exp[i(c2t + c3)]|2dt (2.73)

for each c ∈ R3 then

E(c) = γ1
2

−γ1c1

[
sin[(c2 − γ2) + (c3 − γ3)]− sin[(c2 − γ2)− (c3 − γ3)]

c2 − γ2

]

+c1
2

and it is now easy to establish that

min
c3

E(c) = E(c1, c2, γ3)

= γ1
2 − 2γ1c1

[
sin(c2 − γ2)

c2 − γ2

]
+ c1

2, (2.74)

min
c2

E(c1, c2, γ3) = E(c1, γ2, γ3)

= γ1
2 − 2γ1c1 + c1

2 (2.75)

and

min
c1

E(c1, γ2, γ3) = E(γ)

= 0.
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The estimate γ̂ for γ is found by an elementary search over a suitably cho-
sen finite set {c} ⊆ R3. On the basis of the above analysis the search proce-
dure can be seen to consist of three consecutive one dimensional searches.
When the full signal γ1 exp[i(γ2t + γ3)] is not known we define

E1(c) =
1
2

∫ 1

−1

[γ1 cos(γ2t + γ3)− c1 cos(c2t + c3)]2dt (2.76)

and search over {c} ⊆ R3 to find the minimum value E1(γ) = 0. The
search is a true three dimensional search because the problem is no longer
separable. On the other hand if the signal γ1 cos(γ2t + γ3) is observed for
all t ∈ (−∞,∞) then we have

γ1 sin(γ2s + γ3) =
1
π

∫ ∞
−∞

γ1 cos(γ2t + γ3)
s− t

dt (2.77)

which reconstructs the full signal and allows us to use the original method.
Although our explanation does not consider the influence of noise on the
estimation process the above procedure is valid in the presence of additive
Gaussian noise.

2.5.7 Simplification of the canonical structure in the
approximating operator

Consider application of the above approach in the approximation of real
non-linear dynamical systems where the system is completely described by
a finite number of real parameters.

Let X, Y be locally convex topological vector spaces and let

F : K ⊆ X → Y

be a given continuous map. As above we will consider F as an abstract
model of some dynamical system where the sets K and L = F (K) ⊆ Y
are understood to be the sets of input and output signals respectively.
It may be that both sets depend continuously on a finite number of real
parameters. In this regard we will therefore assume the existence of closed
and bounded intervals Γ ⊆ Rm and ∆ ⊆ Rn and continuous maps

ϕ : Γ→ KΓ and ψ : ∆→ L∆ = L

with

KΓ = K4, ϕ(γ) = xγ (2.78)
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and

ψ(δ) = yδ (2.79)

where

F (xγ) = yδ. (2.80)

If we also assume that ψ is a homeomorphism (thus we assume that ψ is
a one to one map and that ψ−1 is continuous) then we effectively assume
the existence of a continuous map

R : Γ→ ∆

defined by the composition

R = ψ−1Fϕ

which describes the continuous dependence δ = R(γ) of the output pa-
rameters on the input parameters. The non-linear system described by the
continuous map F : KΓ → L∆ where

KΓ = {x | x = xγ where γ ∈ Γ} (2.81)

and

L∆ = {y | y = yδ where δ ∈ ∆} (2.82)

can now be represented in alternative form on the compact set Γ ⊆ Rm by
the continuous map R : Γ→ ∆.

For each neighbourhood of zero η ⊆ Rn we can use Lemma 6 to find a
neighbourhood of zero ζ ⊆ Rm and a continuous map

Rζ : Γ + ζ → Rn

such that
R(γ)−Rζ(γ̂) ∈ η

whenever γ ∈ Γ and γ− γ̂ ∈ ζ. We choose ζ to be closed and bounded and
assume that the map Rζ can be represented approximately on the compact
set Γ + ζ by a continuous map

Z : Γ + ζ → Rn

with the property that
Z(γ̂)−Rζ(γ̂) ∈ η
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whenever γ̂ ∈ Γ + ζ. This representation is normally constructed from a
given algebra {g} = G of continuous functions g : Rm → Rn that satisfies
the conditions of Stone’s Algebra [113].

In practice our knowledge of the parameter values is subject to system-
atic and pseudo-random instrumental errors. Thus the assumed parameter
value is given by γ′ = γ +∆γ where γ is the true value and where the error
∆γ is bounded by ∆γ ∈ θ for some known neighbourhood of zero θ ⊆ Rm.
We will assume that θ + θ ⊆ ζ.

In addition to the problem of instrumental errors it may be necessary to
use some prescribed method of approximate calculation to determine the
parameter values from measurements of the input signal. To this end we
assume that for each θ we can choose a neighbourhood of zero ξ ⊆ θ and a
continuous operator

V̂ξ : KΓ+θ → Γ + ζ

which is used to calculate the parameter value γ and for which the calcu-
lated value γ̂′ = V̂ξ(xγ′) satisfies the constraint

γ̂′ − γ′ ∈ ξ

for all γ′ ∈ Γ + θ. Thus γ̂′ ∈ Γ + ζ.
To describe the system we define an operator

Ŝ : KΓ+θ → L∆ + τ

in the form of a composition

Ŝ = WZV̂ξ. (2.83)

We can now state the following theorem.

Theorem 10. Let X, Y be locally convex linear topological spaces and let

F : KΓ ⊆ X → L∆ ⊆ Y

be a continuous map as described above. Then, for each given neighbour-
hood of zero τ ⊆ Y , we can find neighbourhoods of zero ξ ⊆ θ ⊆ Rm and
an operator

Ŝ : KΓ+θ → L∆ + τ

in the form of a composition

Ŝ = WZV̂ξ

such that

F (xγ)− Ŝ(xγ′) ∈ τ (2.84)

whenever γ ∈ Γ and γ′ − γ ∈ θ.
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Proof. In terms of the notation introduced above we define W = ψ and let

η = ψ−1(ν)

where the neighbourhood of zero ν ⊆ Y is chosen so that

ν + ν ⊆ τ.

We also suppose that the neighbourhoods of zero ξ ⊆ θ ⊆ X are chosen in
the manner suggested in the above preamble.

Now we can write

F (xγ)−WRζ V̂ξ(xγ′) = ψ[ψ−1Fϕ](γ)− ψRζ V̂ξ(xγ′)

= ψ[R(γ)−Rζ(γ̂′)]. (2.85)

We choose ζ so that

R(γ)−Rζ(γ̂′) ∈ η (2.86)

whenever γ ∈ Γ and γ̂′ − γ ∈ ζ. Hence

ψ[R(γ)−Rζ(γ̂′)] ∈ ν. (2.87)

Since γ̂′ ∈ Γ + ζ it follows that

Rζ(γ̂′)− Z(γ̂′) ∈ η (2.88)

and hence

F (xγ)− Ŝ(xγ′) = [F (xγ)−WRζ V̂ξ(xγ′)]

+[WRζ V̂ξ(xγ′)− Ŝ(xγ′)]

= ψ[R(γ)−Rζ(γ̂′)] + ψ[Rζ(γ̂′)− Z(γ̂′)]
∈ ν + ν

∈ τ.

This completes the proof.

Remark 6. Practical considerations allow us, as a rule, to determine R
on a set Γ + ζ for some neighbourhood of zero ζ ⊆ Rm and hence we can
set Rζ = R.
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Below, a specification of the above technique will be given for the case of
Hilbert space. Such a specialization is motivated by a number of practical
modelling problems for real dynamical systems where the input-output
mapping is known only on some bounded subset of the input space.

Our main result can be regarded as an extension of the classical Stone-
Weierstrass Theorem.

2.6 Approximation on Noncompact Sets in Hilbert
Spaces

In this section, we consider the constructive approximation of a non-linear
operator that is known on a bounded but not necessarily compact set. To
justify our proposed construction we introduce an appropriate topology for
each of the various vector spaces and assume that the given mapping is
uniformly continuous in the introduced topology.

We will assume that the dynamical system is defined by an abstract
non-linear operator

F : B ⊆ X → Y

where X and Y are suitable vector spaces and B is a bounded subset of X.
In such cases it is desirable to construct a model of the real system with
a complete input-output map that preserves, in some approximate sense,
the known mapping. The model is normally constructed from an algebra
of elementary continuous functions. In particular we wish to construct an
operator

S : X → Y

which will approximate F with a given accuracy on B and will be stable to
small disturbances. The operator S defines our model of the real system.

In the preceding sections we considered the approximation of non-linear
operator F : K ⊆ X → Y where X and Y are locally convex linear
topological spaces and K is a compact subset of X.

In this section we use stronger topological assumptions to solve an
analogous approximation problem for operators defined on bounded but
non-compact sets. To obtain the necessary topological structure and the
consequent notions of continuity required to prove a theorem in the above
form we believe it is necessary to consider an operator F : B ⊆ H → Y
where B is a bounded subset of a separable Hilbert space H and Y is a
locally convex linear topological space. By introducing a special class

A = A(H)



44 2. NONLINEAR OPERATOR APPROXIMATION

of linear operators on H we define a collection of semi-norms {ρA}A∈A(H)

and an associated weak topology for H. This topology is called the A-
weak topology for H and is due to Sazonov [132]. When the operator F is
uniformly A-weak continuous on B we will show that it is possible to con-
struct an approximating operator S : H → Y with the desired properties.
This is our main result and is stated in Theorem 11. The nature of our
approximation is elaborated in more detail when the output space Y is a
Banach space. This result is given in Theorem 26.

2.6.1 Preliminaries

Let H be a separable Hilbert space. Consider the class A = A(H) of linear
operators A ∈ L(H,H) defined by

A = {A | A = T ∗T} (2.89)

where T ∈ L(H, H) and T ∗ ∈ L(H,H) is the adjoint operator and where
∑

j

‖T (uj)‖2 <∞ (2.90)

for each complete orthonormal set

{uj}j=1,2,... ⊆ H.

Operators of this type are discussed in [32]. For each A ∈ A define a
semi-norm

ρA : H → R

by the formula

ρA(x) = 〈A(x), x〉 1
2 = ‖T (x)‖ (2.91)

for all x ∈ H where 〈·, ·〉 denotes the inner product on H. We use the
following convenient notation. Let Z be the set of integers and let Z+

denote the set of positive integers. When s ∈ Z+ we write

As = {A | A = (A1, A2, . . . , As) (2.92)

where Ak ∈ A ∀ k = 1, 2, . . . , s}.
When A ∈ As we write

ρk(x) = 〈Ak(x), x〉 1
2 = ‖Tk(x)‖

for each k = 1, 2, . . . , s and each x ∈ H.
We use the following notation.
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Let s ∈ Z+ and let

A = (A1, A2, . . . , As) ∈ As.

For each k = 1, 2, . . . , s let ρk : H → R be the semi-norms defined above.
The function ρA : H → Rs is defined by

ρA(x) = (ρ1(x), ρ2(x), . . . , ρs(x)) (2.93)

for each A ∈ As and each x ∈ H.
For each finite sequence {αk}k=1,2,...,s of real numbers we write

α = (α1, α2, . . . , αs) ∈ Rs.

Let α, β ∈ Rs. We write α > β if and only if αj > βj for all j = 1, 2, . . . , s
and we will use the notation

Rs
+ = {α | α ∈ Rs with α > 0}. (2.94)

We make the following definitions.

Definition 6. Let s ∈ Z+, A ∈ As and α ∈ Rs with α > 0. A set
σ = σ(A, α) ⊆ H in the form

σ(A,α) = {u | u ∈ H and ρA(u) < α} (2.95)

will be called an A-weak neighbourhood of zero.

Note that for each p ∈ R+ we write

pσ(A,α) = {pu | u ∈ H and ρA(u) < α}
= {u | u ∈ H and ρA(

u

p
) < α}

= {u | u ∈ H and ρA(u) < pα}
= σ(A, pα). (2.96)

Definition 7. A set U ∈ H is said to be an A-weak open set if for each
u ∈ U there exists an A-weak neighbourhood of zero

σ = σ(u) = σ(A(u), α(u)) ⊆ H

such that
u + σ ⊆ U.
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It can be shown that the collection U of all A-weak open sets U ⊆ H
forms a topology. Since any positive operator A ∈ L(H, H) can be written
in the form

A = T ∗T

this topology is identical to the topology used by Sazonov [132] and will be
known as the A-weak topology for H. With this topology it can be shown
that H is a locally convex linear topological vector space. Henceforth we
refer to the original Hilbert space topology as the strong topology. In
general we can say that the points of H are more clearly distinguished by
the strong topology.

Definition 8. Let σ = σ(A,α) be an A-weak neighbourhood of zero. For
each set

U ⊆ H

a set
D = DU (σ) ⊆ H

is said to be an A-weak σ-net for the set U and the neighbourhood σ, if for
each x ∈ U , there exists d ∈ D with

ρA(x− d) < α.

We can now prove a basic preliminary result.

Lemma 5. Let B ⊆ H be a bounded subset. For each A-weak neighbour-
hood of zero σ = σ(A,α) ⊆ H there exists a finite A-weak σ-net for the set
B.

Proof. We suppose that

B ⊆ {x | x ∈ H and ‖x‖ ≤ b}
where b > 0 is a known bound for the set B.

Let
{uj}j=1,2,... ⊆ H

be a complete orthonormal set. For each x ∈ H we note that

x =
∞∑

j=1

〈x, uj〉uj . (2.97)

Choose an integer m such that



∞∑

j=m+1

‖Tk(uj)‖2



1
2

<
αk

2b
(2.98)
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and choose α0 > 0 with

α0 <
αk

2m‖Tk‖ (2.99)

for each k = 1, 2, . . . , s. Now choose q ∈ Z+ so that

qα0 ≤ b < (q + 1)α0

and define the finite set

D = {d | d = α0z for all z ∈ H with z =
m∑

j=1

pjuj

and pj ∈ [−q, q] ∩ Z for each j = 1, 2, . . . , m}.
The set D is the desired A-weak σ-net for B. We confirm this by noting
that for any x ∈ B we have

|〈x, uj〉| < b

and hence we can choose d = α0z ∈ D such that

|〈x, uj〉 − α0pj | < α0

for each j = 1, 2, . . . ,m.
Therefore

ρk(x− d) = ‖Tk(x− α0z)‖

≤ ‖
m∑

j=1

(〈x, uj〉 − α0pj)Tk(uj)‖+ ‖
∞∑

j=m+1

〈x, uj〉Tk(uj)‖

≤
m∑

j=1

|〈x, uj〉 − α0pj |‖Tk(uj)‖

+




∞∑

j=m+1

|〈x, uj〉|2



1
2



∞∑

j=m+1

‖Tk(uj)‖2



1
2

< αk

for each k = 1, 2, . . . , s. This completes the proof.

Definition 9. Let Y be a topological vector space. A map F : B → Y is
called uniformly A-weak continuous on B ⊆ H if, for each open neighbour-
hood of zero τ ⊆ Y , there exists a corresponding A-weak neighbourhood of
zero

σ = σ(A,α) ⊆ H
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such that

F [(x + σ) ∩B] ⊆ F (x) + τ (2.100)

for all x ∈ B.

Example 5. In this example we exhibit a non-linear uniformly A-weak
continuous map on a set which is closed and bounded but non-compact.
We write

S = L2([0, 1]) (2.101)

and define

T = {y | y ∈ L2([0, 1]) and
∫ 1

0

y(t)dt = 0}. (2.102)

For each x ∈ S we define an associated function x̂ : R → R in the
following way. Let ej : R→ R be defined by

ej(s) =
√

2 sin jπs (2.103)

for each s ∈ R and each j = 1, 2, . . .. For each x ∈ S define a corresponding
sequence of real numbers {xj}j=1,2,... by setting

xj =
∫ 1

0

x(s)ej(s)ds (2.104)

and let x̂ : R→ R be the associated function defined by

x̂ =
∞∑

j=1

xjej . (2.105)

It is easily seen that
∞∑

j=1

xj
2 <∞ (2.106)

and that

x̂(−s) = −x̂(s) (2.107)

and

x̂(s + 1) = x̂(s− 1) (2.108)

for each s ∈ R. Furthermore it is well known that

x̂(s) = x(s) (2.109)
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for almost all s ∈ [0, 1]. We say that the function x̂ is the Fourier sine
series representation for x and note that x̂ is the odd periodic extension of
period two for the function x.

For each y ∈ T we define an associated function y̌ : R → R in the
following way. Let fj : R→ R be defined by

fj(t) =
√

2 cos jπt (2.110)

for each t ∈ R and each j = 1, 2, . . .. For each y ∈ T define a corresponding
sequence of real numbers {yj}j=1,2,... by setting

yj =
∫ 1

0

y(t)fj(t)dt (2.111)

and let y̌ : R→ R be the associated function defined by

y̌ =
∞∑

j=1

yjfj . (2.112)

It is easily seen that

∞∑

j=1

yj
2 <∞ (2.113)

and that

y̌(−t) = y̌(t) (2.114)

and

y̌(t + 1) = y̌(t− 1) (2.115)

for each t ∈ R. Furthermore it is well known that

y̌(t) = y(t) (2.116)

for almost all t ∈ [0, 1]. We say that the function y̌ is the Fourier cosine
representation for y and note that y̌ is the even periodic extension of period
two for the function y.

We define a non-linear operator F : S → S in the following way. First
we define a linear operator A : S → T by setting

A[x](t) =
∫ 1

0

[u(s− t)− s]x(s)ds

= X̄ −X(t) (2.117)
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where u : R→ R is the unit step function defined by

u(s) =
{

0 if s < 0
1 if s > 0,

(2.118)

X : [0, 1]→ R is the function defined by

X(t) =
∫ t

0

x(s)ds (2.119)

for each t ∈ [0, 1] and X̄ is the average value of X given by

X̄ =
∫ 1

0

X(t)dt. (2.120)

Note that if y = A[x] where x ∈ S then y ∈ T . Now for each x ∈ S we can
define F [x] ∈ S by the formula

F [x](s) =
1
2

∫ 1

0

[x̂(s− t) + x̂(s + t)]X(t)dt. (2.121)

The function F [x] is defined by a convolution integral and can be inter-
preted as the symmetric correlation of x and A[x]. Such operators are
used frequently in the representation and analysis of non-linear systems.
In Fourier series form we have

A[
∞∑

j=1

xjej ] =
∞∑

j=1

xj

πj
fj (2.122)

and

F [
∞∑

j=1

xjej ] =
∞∑

j=1

xj
2

√
2πj

ej . (2.123)

We will show that F is uniformly A-weak continuous on the unit sphere

S(0; 1) = {x | x ∈ S with ‖x‖ ≤ 1}
⊆ S.

Note that the set S(0; 1) is bounded and closed but is not compact. Let
ε > 0 be an arbitrary positive number. Choose N such that

∞∑

j=N+1

1
j2

< επ2 (2.124)
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and define operators Tk : S → S for each k = 1, 2, . . . , N by the formula

Tk(
∞∑

j=1

xjej) = xkek (2.125)

with associated semi-norms ρk : S → R given by

ρk(x) = |xk| (2.126)

and consider the A-weak neighbourhood of zero σ ⊆ S defined by

σ = {h | ρk(h) <

√
3ε

2
for each k = 1, 2, . . . , N}. (2.127)

Now for
x + h, x ∈ S(0; 1) and h ∈ σ

it follows that

‖F [x + h]− F [x]‖ = ‖
∞∑

j=1

(xj + hj)2 − xj
2

√
2πj

ej‖

=
∞∑

j=1

(2xj + hj)2
hj

2

2π2j2

≤
N∑

j=1

2hj
2

π2j2
+

∞∑

j=N+1

1
2π2j2

≤ ε. (2.128)

Thus the uniform A-weak continuity of F on the unit sphere S(0; 1) is
established.

We now consider the construction of an auxiliary operator that is de-
fined on the entire space of input signals and which approximates the known
operator F : B ⊆ H → Y on the given set B in a well defined way. This
operator will be used in the proof of the main result. We suppose that B is
a bounded set. The set of uniformly A-weak continuous maps F : B → Y
will be denoted by CA(B, Y ).

Lemma 6. Let Y be a locally convex topological vector space and let B ⊆ H
be a bounded set. Let F ∈ CA(B, Y ). For each convex neighbourhood of
zero τ ⊆ Y there exists a corresponding A-weak neighbourhood of zero

σ = σ(A,α) ⊆ H
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and an associated continuous map Fσ : H → Y in the form

Fσ(u) =
r∑

i=1

κi(u)F (xi) (2.129)

where xi ∈ B for each i = 1, 2, . . . , r and where κi : H → R is continuous
with

1. κi(u) ∈ [0, 1], and

2.
∑r

i=1 κi(u) = 1,

such that

F (x)−Fσ(v) ∈ τ (2.130)

whenever x ∈ B and x− v ∈ σ.

Proof. Let A ∈ As where s ∈ Z+ with s > 0. Choose α > 0 and an
associated A-weak neighbourhood of zero µ = 2σ(A,α) ⊆ H so that

F [(x + µ) ∩B] ⊆ F (x) + τ (2.131)

for all x ∈ B. If we also define the A-weak neighbourhood of zero σ =
σ(A,α) ⊆ H then

σ + σ ⊆ µ.

Let D = D(σ) = {xi}i=1,2,...,r denote an A-weak σ-net for the set B and
let

Ωi = xi + σ.

Therefore

B ⊆
r⋃

i=1

Ωi. (2.132)

Define continuous functions

χ : R→ R and πk : H → R

for each k = 1, 2, . . . , s by setting

χ(t) = max{1− |t|, 0}

and
πk(u) = min

i=1,2,...,r
ρk(u− xi)
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and construct a collection of continuous functions λi : H → R for each
i = 1, 2, . . . , r by setting

λi(u) =
s∏

k=1

χ

(
2ρk(u− xi)
πk(u) + αk

)
. (2.133)

Now define λ : H → R by setting

λ(u) =
r∑

i=1

λi(u)

and finally define a collection of continuous functions κi : H → R for each
i = 1, 2, . . . , r given by

κi(u) =
λi(u)
λ(u)

(2.134)

and with the properties that

1. κi(u) ∈ [0, 1],

2.
∑r

i=1 κi(u) = 1, and

3. κi(u) = 0 for u /∈ Ωi.

We define a map Fσ : H → Y by the formula

Fσ(u) =
r∑

i=1

κi(u)F (xi). (2.135)

Now κi(u) 6= 0 implies u ∈ Ωi and if x− u ∈ σ then we have

x ∈ xi + µ.

Hence if x ∈ B then

F (x)− F (xi) ∈ τ (2.136)

and so

F (x)−Fσ(u) =
r∑

i=1

κi(u)[F (x)− F (xi)]

=
∑

{i|κi(u)6=0}
κi(u)[F (x)− F (xi)]

∈ τ (2.137)

since the right hand side is a convex combination and τ is a convex set.
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It is important to note that although the operator Fσ : H → Y is
defined on the entire space of input signals it is not necessarily an operator
that can be realised in a real system.

2.6.2 Constructive determination of approximating
operator S on noncompact set of separable Hilbert
space

In this section we establish our main theorem. To explain the statement
of the theorem it is convenient to review some standard terminology and
introduce some additional notation.

It is easy to see that a separable Hilbert space possesses the Grothendieck
property of approximation (see Definition 4 in Section 1.5).

Let {uj}j=1,2,... ⊆ H be a complete orthonormal set. For each m =
1, 2, . . . let

Xm = {xm | xm ∈ H and 〈xm, uj〉 = 0 ∀ j > m} (2.138)

and define a sequence {Um}m=1,2,... of continuous linear operators Um ∈
L(H, Xm) given by

Um(x) =
m∑

j=1

〈x, uj〉uj (2.139)

for each x ∈ H. For convenience write aj = 〈x, uj〉 for each j = 1, 2, . . . , m.
Let Y be a topological vector space with the Grothendieck property of

approximation and with approximating sequence {Vn}n=1,2,... of continuous
linear operators Vn ∈ L(Y, Yn) where Yn ⊆ Y is a subspace of dimension n
as described in Definition 11. Write

Yn = {yn | yn ∈ Y and yn =
n∑

k=1

bkvk} (2.140)

where b = (b1, b2, . . . , bn) ∈ Rn and {vk}k=1,2,...,n is a basis in Yn. Let
{g} = G be an algebra of continuous functions g : Rm → R that satisfies
the conditions of Stone’s Algebra [113]. Define the operators

Q ∈ L(Xm,Rm)5, Z : Rm → Rn and W ∈ L(Rn, Yn)

by the formulae

Q(xm) = a, Z(a) = (g1(a), g2(a), . . . , gn(a)), and W (z) =
n∑

k=1

zkvk

5It is necessary to justify the assertion that Q ∈ L(Xm,Rm). An elementary proof
of this assertion was given in Section 1.5.
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where each gk ∈ G and zk = gk(a) and let S : H → Yn be defined by the
composition

S = WZQUm. (2.141)

The corresponding process of numerical realisation of S is discussed in
detail in Section 1.5.

Theorem 11. Let H be a Hilbert space and let B ⊆ H be a bounded subset.
Let Y be a locally convex topological vector space with the Grothendieck
property of approximation6 and let F ∈ CA(B, Y ) be a uniformly A-weak
continuous map. For a given convex neighbourhood of zero τ ⊆ Y there
exists a corresponding A-weak neighbourhood of zero σ = σ(A, α) ⊆ H
with an associated continuous operator S : H → Yn in the form

S = WZQUm

and a strong closed neighbourhood of zero ε ⊆ H such that for all x ∈ B
and all x′ ∈ H with

x′ − x ∈ ε

we have

F (x)− S(x′) ∈ τ. (2.142)

Proof. First we show that for any A-weak neighbourhood of zero σ =
σ(A,α) and each p ∈ R+ and all x ∈ B we can find M = M(σ, p) > 0 such
that

Um(x)− x ∈ pσ

when m > M . Since the map F : B → Y can be extended by continuity
to a map F̄ : B̄ → Y , where B̄ denotes the closure of B, we can suppose
without loss of generality that B is closed. Let

B ⊆ {x | x ∈ H and ‖x‖ < b}.
For any given A-weak neighbourhood of zero

σ = σ(A,α) ⊆ H

where A ∈ As for some s ∈ Z+ with s > 0 and fixed p ∈ R+ we can find
M = M(σ, p) > 0 such that




∞∑

j=M+1

‖Tk(uj)‖2



1
2

<
pαk

b
(2.143)

6That is we suppose the existence of a sequence {Vn}n=1,2,... of continuous operators
Vn ∈ L(Y, Yn) as described above.
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for each k = 1, 2, . . . , s. Now for each x ∈ B and m > M it is clear that

ρA(Um(x)− x) < rα.

Thus
Um(x)− x ∈ pσ.

The proof now follows the proof of the corresponding theorem given in
Section 1.5. By Lemma 6 we can choose an A-weak neighbourhood of zero
σ and a continuous map

Fσ : B + σ → Y

given by

Fσ(u) =
r∑

i=1

κi(u)F (xi) (2.144)

with the property that

F (x)−Fσ(u) ∈ τ

4
(2.145)

when x− u ∈ σ and hence if we choose p < 1 so that

pσ ⊆ σ and m > M(σ, p)

then

F (x)−FσUm(x) ∈ τ

4
(2.146)

for each x ∈ B. If we write

Um(x) =
m∑

j=1

ajuj (2.147)

then

FσUm(x) = Fσ(
m∑

j=1

ajuj)

=
r∑

i=1

κi(
m∑

j=1

ajuj)F (xi) (2.148)
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and hence

VnFσUm(x) =
n∑

k=1

bk




r∑

i=1

κi(
m∑

j=1

ajuj)F (xi)


 vk

=
n∑

k=1

fk(a)vk. (2.149)

Note that the set B is bounded and closed and so the set Um(B) ⊆ Xm

is also bounded and closed. Since Xm is finite dimensional it follows that
Um(B) is compact. Thus the set FσUm(B) is also compact. By the ap-
proximation property of the space Y , for any given neighbourhood of zero
ν ⊆ Y , we can choose Nm > 0 so that

VnFσUm(x)−FσUm(x) ∈ ν (2.150)

for all x ∈ B when n > Nm. We also note that

VnFσUm(x)− S(x) = VnFσUm(x)−WZQUm(x)

=
n∑

k=1

[fk(a)− gk(a)]vk. (2.151)

If we suppose that the algebra G satisfies the conditions of Stone’s Algebra
then since a ∈ QUm(B) and since QUm(B) is compact it follows that we
can choose {gk}k=1,2,...,n ∈ G so that

VnFσUm(x)− S(x) ∈ ν. (2.152)

Thus, if we choose ν ⊆ τ
8 , then

FσUm(x)− S(x) ∈ τ

8
+

τ

8
⊆ τ

4

and hence

F (x)− S(x) ∈ τ

4
+

τ

4
⊆ τ

2
.

Finally we define ∆a ∈ Rm by setting

Um(x + ∆x) =
m∑

j=1

(aj + ∆aj)uj , (2.153)



58 2. NONLINEAR OPERATOR APPROXIMATION

and we note that

S(x)− S(x + ∆x) =
n∑

k=1

[gk(a)− gk(a + ∆a)]vk

∈ τ

2

provided we choose ∆x ∈ ε where ε is a sufficiently small strong closed
neighbourhood of zero in X. In this context we note that the set Um(B+ε)
is compact and that ‖∆a‖ ≤ ‖∆x‖. Now it follows that

F (x)− S(x′) ∈ τ

2
+

τ

2
⊆ τ

where x′ = x + ∆x.

Remark 7. We would like to emphasize the fact that the above theorem
shows that the operator S is stable to small disturbances ∆x = x′ − x.

Remark 8. The condition that the map F : B → Y be uniformly A-
weak continuous is a relatively strong condition. For example this condition
implies that F : B → Y is uniformly continuous in the strong topology.
Note that the latter condition is not sufficient to establish the finite covering
required in Lemma 8.

We can consider the main result of the present paper from a different
viewpoint. Let A ∈ As. If the set B is bounded in the strong topology the
argument of Lemma 8 can be used to show that the set Tk(B) ⊆ H is totally
bounded. If B is closed then Tk(B) is also closed. Since H is complete it
follows that Tk(B) is compact in the strong topology. If we can write the
map F : B → Y as a sum of compositions in the form

F =
s∑

k=1

EkTk

where Ek : Tk(B) → Y then A-weak continuity for F is implied by conti-
nuity for each Ek in the strong topology. Since Tk(B) is compact the latter
condition implies uniform continuity for Ek : Tk(B)→ Y and this in turn
implies uniform A-weak continuity for F : B → Y .

Hence in the case where

F =
s∑

k=1

EkTk
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for some Ek : Tk(B)→ Y our approximation procedure for F is equivalent
to the original approximation procedure of Section 1.5 applied simultane-
ously to each Ek.

2.7 Special Results for Maps into Banach Spaces

We wish to elaborate the results of the previous section in the case where
Y is a Banach space. Our specific purpose is to show how the results can
be quantified by measuring the modulus of continuity for the operator F .

Let Σ0 denote the collection of all A-weak neighbourhoods of zero in
H. Let B ⊆ H be a bounded set and let F ∈ CA(B, Y ) be an A-uniformly
continuous map.

Definition 10. The function ω : Σ0 → R given by

ω(σ) = sup{‖F (x)− F (u)‖ | x ∈ B, u ∈ B and x− u ∈ σ} (2.154)

is called the A-weak modulus of continuity for F : B → Y .

It is often useful to consider the behaviour of the modulus of continuity
when σ = σ(A,α) for a fixed A ∈ As where s ∈ Z+.

Definition 11. Let s ∈ Z+ and A ∈ As. The function ωA : Rs
+ → R given

by

ωA(α) = ω[σ(A,α)] (2.155)

is called the A-modulus of continuity for F : B → Y .

We can now restate the assertions of Lemma 6 and Theorem 11 in a
more specific form.

Lemma 7. Let Y be a Banach space and let B ⊆ H be a bounded set. Let
F ∈ CA(B, Y ). For each real number β > 0 and each p ∈ (0, 1

2 ] ⊆ R there
exists a corresponding

α = α(β, p) > 0

and associated A-weak neighbourhoods of zero

σ = pµ

= σ(A, pα) ⊆ µ

= σ(A,α) ⊆ H

such that
ωA(α) ≤ β
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and such that the continuous map Fσ : H → Y satisfies the inequality

‖F (x)−Fσ(u)‖ ≤ ωA[ρA(u− x) + pα] (2.156)

for all x ∈ B.

Proof. Let

τ = {y | y ∈ Y and ‖y‖ < β}. (2.157)

Choose an A-weak neighbourhood of zero

µ = σ(A,α) ⊆ H

such that

F [(x + µ) ∩B] ⊆ F (x) + τ (2.158)

for all x ∈ B. It follows that

ωA(α) ≤ β.

We now consider the A-weak neighbourhood of zero

σ = pµ = σ(A, pα)

and the associated continuous map Fσ : H → Y defined in Lemma 6. We
observe that

κi(u) 6= 0 implies ρA(u− xi) < pα.

Since

ρA(x− xi) ≤ ρA(x− u) + ρA(u− xi)
≤ ρA(x− u) + pα (2.159)

it follows that
x− xi ∈ σ(A, ρA(x− u) + pα)

and hence

‖F (x)− F (xi)‖ ≤ ωA[ρA(x− u) + pα]. (2.160)

Since κi(u) ∈ [0, 1] we have

‖
∑

{i|κi(u) 6=0}
κi(u)[F (x)− F (xi)]‖ ≤

∑

{i|κi(u)6=0}
κi(u)‖F (x)− F (xi)‖

≤
∑

{i|κi(u)6=0}
κi(u)ωA[ρA(x− u) + pα]

= ωA[ρA(x− u) + pα].

The lemma is proven.
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Theorem 12. Let H be a Hilbert space and let B ⊆ H be a bounded subset.
Let Y be a Banach space with the Grothendieck property of approximation7

and let F ∈ CA(B, Y ) be a uniformly A-weak continuous map. For a given
real number β > 0 there exists α = α(β) > 0 and an A-weak neighbourhood
of zero

σ = σ(A,
α

4
) ⊆ H

such that

ωA(α) ≤ β

2
with an associated continuous operator S : H → Yn in the form

S = WZQUm

and a strong neighbourhood of zero ε ⊆ H such that for all x ∈ B and all
x′ ∈ H with x′ − x ∈ ε we have

‖F (x)− S(x′)‖ ≤ ωA

(
ρA[Um(x− x′)] +

α

2

)
+

β

2
. (2.161)

Proof. Let

τ = {y | y ∈ Y and ‖y‖ < β}. (2.162)

From Lemma 7 it follows that we can choose α > 0 and an associated
A-weak neighbourhood of zero

σ = σ(A,
α

4
)

such that

ωA(α) <
β

2
and

‖F (x)−Fσ(u)‖ ≤ ωA

(
ρA(x− u) +

α

4

)
(2.163)

when x ∈ B.
Consider the A-weak neighbourhood of zero

σ = σ(A,
α

4
).

7Once again we suppose the existence of a sequence {Vn}n=1,2,... of continuous
operators Vn ∈ L(Y, Yn) with the appropriate properties.
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As in the proof of Theorem 11 we can choose M = M(σ) such that

Um(x)− x ∈ σ

for each x ∈ B when m > M . Now we know that

ρA[x− Um(x′)] ≤ ρA[x− Um(x)] + ρA[Um(x− x′)]

≤ ρA[Um(x− x′)] +
α

4
(2.164)

and hence, from the definition of ωA, it follows that

‖F (x)−FσUm(x′)‖ ≤ ωA

(
{ρA[Um(x− x′)] +

α

4
}+

α

4

)

= ωA

(
ρA[Um(x− x′)] +

α

2

)
. (2.165)

Since Um(B + ε) ⊆ Rm is compact we can choose Nm such that

‖FσUm(x′)− VnFσUm(x′)‖ ≤ β

4
(2.166)

for all
x′ ∈ B + ε

and
n > Nm.

We can also choose functions from the algebra G as described earlier in
Theorem 11 so that

‖VnFσUm(x′)− S(x′)‖ ≤ β

4
(2.167)

for all
x′ ∈ B + ε.

The required result follows from the previous three inequalities.

2.8 Concluding Remarks

In this chapter, we have presented several techniques for nonlinear opera-
tor approximation with any pre-assigned accuracy. The special attention
has been given to applications of these methods to modelling of nonlinear
systems.

We have shown that realistic models for non-linear dynamical systems
can be constructed in such a way that the model provides an accurate
representation of the input-output behavior of the given system and is stable
to small disturbances.
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We have presented the constructive operator approximation methodol-
ogy that can be used to provide a useful numerical model of a non-linear
system in a realistic situation where there is limited initial information
about the system. In particular we have shown that a system defined by
an abstract operator known only on some bounded set of input signals can
nevertheless be realized by a satisfactory numerical model provided that
the operator satisfies certain reasonable continuity requirements.



This page intentionally left blank



Chapter 3

Interpolation of Nonlinear
Operators

3.1. Introduction

3.2. Lagrange Interpolation in Banach Spaces

3.3. Weak Interpolation of Nonlinear Operators

3.4. Strong Interpolation

3.5. Interpolation and Approximation

3.6. Some Related Results

3.7. Concluding Remarks

3.1 Introduction

In this chapter, we consider some fundamental principles of the general
theory for nonlinear operator interpolation. Interpolating operators are
naturally connected to modelling of nonlinear systems. If a system is given
by finite sets of input-output signals, then interpolating operator provides
a model of such a system.

The most widely known formula for interpolation is the formula due to
Lagrange for real valued functions on the real line. The Lagrange formula
has since been extended to the interpolation of mappings on more general
vector spaces. Let H be a Hilbert space with inner product 〈·, ·〉 and let
F : H → H be a continuous mapping. Let

{(xr, yr)}r=1,2,...,p ⊆ H ×H,

65
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where yr = F (xr) and xr 6= xs for r 6= s be a known finite collection
of data points. In this case, Prenter [105] has proposed an extended La-
grange interpolation formula for each x ∈ H. A similar formula can also
be used on Banach space where the inner products are replaced by suitable
linear mappings. The formula was developed in association with a system-
atic study of multi-linear mappings that formed the basis of a generalized
Weierstrass approximation theorem in Banach space.

In Section 3.2, we consider a detailed presentation of the Prenter’s re-
sults. In Section 3.3, we define and justify a non-Lagrangean procedure for
the weak interpolation of non-linear operators on C([0, 1]).

3.2 Lagrange Interpolation in Banach Spaces

Let X and Y be Banach spaces and let F be an operator mapping X into
Y . Let c1, . . ., cn be points of X. The interpolation problem is that of fund-
ing, for each sequence {x1, . . . , xn} of distinct points of X, a polynomial
operator P which interpolates {c1, . . . , cn} at {x1, . . . , xn}, so that

P (xi) = ci

for all i = 1, . . . , n. We shall show that there always exists a polynomial of
degree (n− 1) which solves the interpolation problem.

3.2.1 Fréchet derivatives of operators

If L is n-linear (n > 1), we shall let ∂iL denote the n > 1-linear operator
on X into L1[X, Y ] defined by

∂iL(x1, . . . , xi−1, xi+1, . . . , xn) = L(x1, . . . , xi−1, ·, xi+1, . . . , xn),

where

(L(x1, . . . , xi−1, ·, xi+1, . . . , xn))(x) = L(x1, . . . , xi−1, x, xi+1, . . . , xn).

Definition 12. Let F be an operator mapping an open subset V of a
Banach space X into a Banach space Y . Let x0 ∈ V . If there exists a
linear operator U ∈ L1[X,Y ] such that

‖F (x0 + ∆x)− F (x0)− U(∆x)‖ = o(‖∆x‖),
then U = F ′(x0) is called the Fréchet derivative of F at x0. Equivalently,

U(x) = lim
t→0

F (x0 + tx)− F (x0)
t

,

where the convergence is uniform on the sphere {x | ‖x‖ = 1}.
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It follows from the definition that if L is bounded, n-linear operator on
X, and

F (x) = L(xn),

where xn = (x, . . . , x︸ ︷︷ ︸
n

), then

F ′(x) =
n∑

i=1

∂iL(xn−1).

In particular, if L is bilinear and

F (x) = L(x2), then F ′(x) = L(x, ·) + L(·, x).

If L is symmetric, then, clearly, F (x) = nL(xn−1).
We shall need the derivative of W . Let L be n-linear and let x1, . . . , xn

be points of X. We let ∂iW or W/(x− xi) denote the operator on X into
Li[X, Y ] defined by

∂iW (z) = L(z − x1, . . . , z − xi−1, ·, z − xi+1, . . . , z − xn).

We set

∂iW (z) = (W/(x− xi))(z)
= W (z)/(x− xi).

It should be noted that the operator W/(x−xi) is completely independent
of the x in the denominator; the denominator (x− xi) is purely symbolic.

Theorem 13. Let L be bounded, n-linear operator. Let x1, . . . , xn ∈ X,
and set

W (x) = L(x− x1, . . . , x− xn).

Then

W ′(x0) =
n∑

i=1

W (x0)/(x− xi)

and, in particular,

W ′(xi) = W (xi)/(x− xi)
= ∂iW (xi).
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Proof. Let x0 be a fixed point of X. Then, using the multilinearity and
boundedness of L,

∥∥∥∥∥W (x0 + ∆x)−W (x0)−
n∑

i=1

W (x0)
x− xi

(∆x)

∥∥∥∥∥
= ‖L(x0 − x1 + ∆x, . . . , x0 − xn + ∆x)
−L(x0 − x1, . . . , x0 − xn

−
n∑

i=1

L(x0 − x1, . . . , x0 − xi−1, ∆x, x0 − xi+1, . . . , x0 − xn)

∥∥∥∥∥

≤
n∑

k=2

Mk‖∆x‖k = o(‖∆x‖),

where each Mk is a positive constant arising from ‖L‖ and from the norms
‖x0 − xi‖, with i = 1, . . . , n.

3.2.2 The interpolation problem - solution

Let Ln[X, Y ], n = 0, 1, 2, . . ., denote the set of n-linear operators on X into
Y . If X = Y , we write Ln[X] and we shall identify L0[X] with X. Let L
be a bounded n-linear operator in Ln[X]; let x1, . . . , xn be distinct points
of X and let

W (x) = L(x− x1, . . . , x− xn).

Then W is a polynomial of degree n mapping X into X of the form

Lnxn + Ln−1x
n−1 + . . . + L1x + L0,

where Ln = L, and L0 = (−1)nL(x1, . . . , xn). For example, if L is bilinear,

L(x− x1, x− x2) = L(x2)− L(x1, x)− L(x, x1) + L(x1, x2).

Thus, L2 = L, L0 = L(x1, x2), and L1 = −L(x1, ·)− L(·, x2).
Also,

W (x)
(x− xi)

= ∂iW (x) = L(x− x1, . . . , x− xi−1, ·, x− xi+1, . . . , x− xn)

is a polynomial of degree (n−1) which maps X into L1[X]. We have shown
that

W ′(x) =
n∑

i=1

W (x)/(x− xi)



3.2. LAGRANGE INTERPOLATION 69

so that
W ′(xi) = W (xi)/(x− xi) = ∂iW (xi)

is a linear operator. Thus, should W ′(xi) be nonsingular for i = 1, . . . , n,
then since

li(x) = [W ′(xi)]−1W (x)/(x− xi),

li would be a linear operator-valued function having the property

li(xj) = δijI.

Furthermore, for each x0 ∈ X, it is easily seen that

[li(xj)](x0) = li(x)x0

is a polynomial operator of degree (n− 1). That is, we have proved

Theorem 14. If there exists an n-linear operator L such that [W ′(xi)]−1

exists for each i = 1, . . . , n, where

W (x) = L(x− x1, . . . , x− xn),

then the Lagrange polynomial y(x) of degree (n− 1) given by

y(x) =
n∑

i=1

li(x)ci

(
=

n∑

i=1

li(x)F (xi)

)
,

where

li(x) = [W ′(xi)]−1 W (x)
(x− xi)

= [W ′(xi)]−1∂iW (xi),

solves the interpolation problem (interpolates the operator F at the n dis-
tinct points x1, . . . , xn of X).

Thus, to solve the interpolation problem, it is enough to prove that such
an n-linear operator exists. It would actually suffice to prove the existence
of a family {L1, . . . , Ln} of n-linear operators having the property that
[W ′

i (xi)]−1 exists for i = 1, . . . , n, where

Wi(x) = Li(x− x1, . . . , x− xn).

If this were the case, we could take

y(x) =
n∑

i=1

[W ′
i (xi)]−1 Wi(x)

(x− xi)
(ci)

as our interpolating polynomial. we shall prove the existence of such a
family of Li’s.
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Theorem 15. Let x1, . . . , xn be distinct points of a Banach space X.
Then for each i = 1, . . . , n there exists an n-linear operator Li for which
[W ′

i (xi)]−1 exists, where

Wi(x) = Li(x− x1, . . . , x− xn).

Furthermore, the Li’s can be chosen so that

W ′
i (xi) = I,

where I is the identity operator in L1[X].

Proof. We start with i = 1. We must produce an n-linear operator L1 for
which W ′

i (xi) exists and nonsingular, where

W1(x) = L1(x− x1, . . . , x− xn).

Recall that if such an L1 exists, then

W ′
1(x1) =

W1(x1)
(x− x1)

= ∂1W1(x1)

= L1(·, x1 − x2, . . . , x1 − xn),

which belongs to L1[X]. Also, L1 : Xn−1 → L1[X]. With this in mind, let

Xij = span{x1 − xj}.
Since each X1j (j = 2, . . . , n) is one-dimensional, there exist continuous
projections P1j of X onto X1j . Define

T̃1 : X12 ×X13 × . . .×X1n → L1[X]

by linearity, through the equation

T̃1(x1 − x2, . . . , x1 − xn) = I.

Then T̃1 is a bounded (continuous), (n− 1)-linear operator in

L1[X12 ×X13 × . . .×X1n, Y ].

That is,

‖T̃1(a2(x1 − x2), . . . , an(x1 − xn))‖
= ‖a2 . . . anT̃ (x1 − x2, . . . , x1 − xn)‖
= |a2 . . . an| · ‖I‖
=

1
‖x1 − x2‖ . . . ‖x1 − xn‖‖a1(x1 − x2)‖ . . . ‖an(x1 − xn)‖,
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so that
‖T̃1‖ =

1
‖x1 − x2‖ . . . ‖x1 − xn‖ .

We extend T̃1 to a continuous, (n − 1)-linear operator T1 : Xn−1 →
L1[X] through the projections Pij . That is, we define

T1(y1, . . . , yn−1) = T̃1(P12y1, . . . , P1nyn−1).

Since the operators P1j are linear and continuous, it follows that T1 is
(n− 1)-linear and continuous. In particular, the map P,

P : Xn−1 → X12 ×X13 × . . .×X1n

given by
P (y2, . . . , yn) = (P12y2, . . . , P1nyn)

is continuous, so that the composition

T̃1 ◦ P = T1

is continuous.
Now define the n-linear operator L1 by

L1(y1, . . . , yn) = [T1(y1, . . . , yn)](y1).

The n-linearity of L1 follows directly from the (n − 1)-linearity of T1 and
the fact that T1 is linear and operator-valued. The boundedness of T1 is
also apparent. If

P1kyk = ak
x1 − xk

‖x1 − xk‖ ,

then
‖P1kyk‖ = |ak|.

Thus,

L1(y1, y2 . . . , yn−1, yn) = [T1(y2, . . . , yn)](y1)
= (−T̃1[P12y2, . . . , P1nyn)](y1)

=
a2 . . . an

‖x1 − x2‖ . . . ‖x1 − xn‖
×[T̃1(x1 − x2, . . . , x1 − xn)](y1)

=
a2 . . . an

‖x1 − x2‖ . . . ‖x1 − xn‖y1.

Therefore, if

K =
1

‖x1 − x2‖ . . . ‖x1 − xn‖ ,
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then

‖L1(y1, . . . , yn)‖ = K|a1| . . . |an|‖y1‖
= K‖P12y2‖ . . . ‖P1nyn‖‖y1‖
≤ K̄‖y1‖‖y2‖ . . . ‖yn‖,

since each P1k is a projection and

‖P1ky‖ = ‖P1k‖‖y‖.

Now let
W1(x) = L1(x− x1, . . . , x− xn).

Since L1 is a bounded, n-linear operator, W1(x) is differentiable and

W ′
1(x1) =

W1(x1)
(x− x1)

= L1(·, x1 − x2, . . . , x1 − xn)
= T̃1(x1 − x2, . . . , x1 − xn)
= I.

Thus, W ′
1(x1) is a non-singular, linear operator.

A similar line of arguments proves the existence, for each i = 1, . . . , n,
of an n-linear operator Li for which W ′

i (xi) = I, where

Wi(xi) = Li(x− x1, . . . , x− xn).

This completes the proof of the theorem.

As a direct result of Theorem 15 we have

Theorem 16. The interpolation problem can always be solved by a poly-
nomial y(x) of degree (n− 1) having a Lagrange representation

y(x) =
n∑

i=1

li(x)ci,

where

li(x) = [W ′(xi)]−1 W (x)
(x− xi)

= [W ′(xi)]−1∂iWi(x)

and
Wi(x) = Li(x− x1, . . . , x− xn)

for appropriately chosen n-linear operators L1, . . . , Ln.
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In the event X is a Hilbert space with inner product 〈x, y〉, Theorem
15 also yields a representation theorem. Consider the projection P1j of X
onto X given in the proof of Theorem 15. If X is a Hilbert space, then

P1jyj =
〈

yj ,
x1 − xj

‖x1 − xj‖
〉

x1 − xj

‖x1 − xj‖ .

Thus,

L1(y1, . . . , yn) =
〈y2, x1 − x2〉〈y3, x1 − x3〉 . . . 〈yn, x1 − xn〉
‖x1 − x2‖2‖x1 − x3‖2 . . . ‖x1 − xn‖2 I(y1).

In particular, since W,1 (x1) = I,

l1(x) = I ◦ W1(x)
(x− x1

= L1(·, x− x2, . . . , x− xn)

=
〈x− x2, x1 − x2〉〈x− x3, x1 − x3〉 . . . 〈x− xn, x1 − xn〉

‖x1 − x2‖2‖x1 − x3‖2 . . . ‖x1 − xn‖2 I.

Analogously, one can prove that

lj(x) =




n∏
k=1
k 6=j

〈x− xk, xj − xk〉







n∏
k=1
k 6=j

‖xj − xk‖




−1

I.

Thus, we arrive at

Theorem 17. Let X be a Hilbert space with inner product 〈x, y〉 and let
c1, . . . , cn be points of X. Then, for any distinct points x1, . . . , xn of X,
the polynomial y(x) of degree (n− 1), given by

y(x) =
n∑

i=1

πi(x)
πi(xi)

ci,

where

πi(x) =
n∏

k=1
k 6=j

〈x− xk, xj − xk〉

satisfies
y(xi0 = ci

for i = 1, . . . , n.

Proof. The theorem is evident by inspection; however, it is interesting to
note how it followed naturally from the theory of Theorems 15 and 16.
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3.3 Weak Interpolation of Nonlinear Operators

Suppose that the mapping F : X → Y is defined by an empirical data set

Dp = {(xr, yr) | yr = F [xr] for all r = 1, 2, . . . , p} ⊆ X × Y.

The natural assumption in general is that the data points (xr, yr) are all
known elements of X × Y . However when each data point

(xr, yr) ∈ C([0, 1])× C([0, 1])

is an ordered pair of functions and if each function pair is known only by
an evaluation vector pair

(ξr, ηr) ∈ Rm × Rn,

where
ξr = (xr(si)) and ηr = (yr(tk))

then the extended Lagrange formula cannot be applied.
In this section, we consider the so called weak interpolation procedure

[?] which will avoid this difficulty.
It will be shown that the weak interpolation can become a strong inter-

polation when the image space is a finite dimensional Chebyshev subspace
of C([0, 1]) and we also show that for each ε > 0 there exists δ = δ(ε) > 0
and an output evaluation set N = N (ε) so that the corresponding weak
interpolation S[x] provides an approximation in C([0, 1]) with

‖S[x]− yr‖ < ε

when
‖x− xr‖ < δ

for each r = 1, 2, . . . , p.
The general form

S = WKQGm

of the weak interpolation operator is motivated by the structure of the
approximating operator considered in the preceding chapter. The desire to
develop a weak interpolation procedure is motivated by the consideration
that in many practical problems the input-output pairs (xr, yr) are likely
to be known only by an evaluation of each function on some finite subset
of [0, 1].

The weak interpolation procedure will be illustrated by an elementary
example.
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In the case of the weak interpolation of nonlinear operators, we suppose
that the mapping

F : C([0, 1])→ C([0, 1])

is defined by an empirical data set

Dp = {(xr, yr) | yr = F [xr] for each r = 1, 2, . . . , p} ⊆ C([0, 1])× C([0, 1])

and that the data point (xr, yr) is known only by the evaluation vectors
(xr(si)) ∈ Rm and (yr(tk)) ∈ Rn on some finite collections

M = {si} ⊆ [0, 1] and N = {tk} ⊆ [0, 1]

of fixed points. The desired interpolation is defined by constructing a
mapping

S : C[0, 1]→ C[0, 1]

with
S[u] = S[x]

when u(si) = x(si) for each i = 1, 2, . . . , m and with

S[xr](tk) = yr(tk)

for each r = 1, 2, . . . , p and each k = 1, 2, . . . , n.

3.3.1 Weak interpolation

We write
S[x] ' F [x]

for all x ∈ C([0, 1]).
Let M = {si}i=1,2,...,m where

0 = s1 < s2 < . . . < sm−1 < sm = 1

and N = {tk}k=1,2,...,n where

0 = t1 < t2 < . . . < tn−1 < tn = 1

be ordered collections of fixed points in the interval [0, 1] and let

EM : C([0, 1])→ Rm

and
EN : C([0, 1])→ Rn
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be the linear mappings defined by

EM[x] = ξ, EN [y] = η (3.1)

where
ξ = (x(si)) ∈ Rm and η = (y(tk)) ∈ Rn

for each x, y ∈ C([0, 1]). When EM[x] and EN [y] are known we say that x
is evaluated on M and y is evaluated on N .

We note that in many situations experimental data will be determined
in this way.

Consider a mapping

F : C([0, 1])→ C([0, 1])

defined by
yr = F [xr]

for each r = 1, 2, . . . , p, where xr is evaluated onM and yr is evaluated on
N .

Definition 13. We will say that

S : C([0, 1])→ C([0, 1])

is an (M,N ) weak interpolation of

F : C([0, 1])→ C([0, 1])

if

1. S[u] = S[x] whenever EM[u] = EM[x], and

2. ENS[xr] = ENF [xr] for each r = 1, 2, . . . , p.

Let σ, τ : R→ R be continuous and non-decreasing with

σ(s), τ(t) ↓ 0 as s, t ↓ −∞

and
σ(s), τ(t) ↑ 1 as s, t ↑ ∞.

We will use these sigmoidal functions [22] to construct an operator S which
provides an (M,N ) weak interpolation of F .

We need the following preliminary result.
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Lemma 8. Let
f : Rm×m → R, g : Rn×n → R

be defined by

f(Φ) = det Σ, g(Ψ) = det T (3.2)

where
Φ = (φij) ∈ Rm×m, Ψ = (ψkl) ∈ Rn×n

and where
Σ = (σij) ∈ Rm×m, T = (τkl) ∈ Rn×n

are given by

σij =
{

φij (i < j)
1− φij (i ≥ j) and τkl =

{
ψkl (k < l)
1− ψkl (k ≥ l). (3.3)

Then we can find φ, ψ > 0 such that

f(Φ), g(Ψ) 6= 0

when
|φij | ≤ φ and |ψkl| ≤ ψ ∀ i, j, k, l.

Proof. The result follows by observing that f(Φ), g(Ψ) are polynomials
with

f(0) = g(0) = 1.

For each j = 1, 2, . . . , m and l = 1, 2, . . . , n define αj , βj , γl, δl ∈ R with
αj , γl > 0 such that

σ(α1s1 + β1) = 1− φ, τ(γ1t1 + δ1) = 1− ψ (3.4)

and such that

σ(αjsj−1 + βj) = φ, τ(γltl−1 + δl) = ψ (3.5)

and

σ(αjsj + βj) = 1− φ, τ(γltl + δl) = 1− ψ (3.6)

for j, l > 1 where φ, ψ > 0 are defined in Lemma 8. We also define Σ =
(σij) ∈ Rm×m, T = (τkl) ∈ Rn×n by setting

σij = σ(αjsi + βj), τkl = τ(γltk + δl) (3.7)
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for each i, j, k, l. Let

ξr = (xir) = (xr(si)) = EM[xr] ∈ Rm

and
ηr = (ykr) = (yr(tk)) = EN [yr] ∈ Rn

and define X ∈ Rm×p, Y ∈ Rn×p by writing

X = (ξ1, . . . , ξp), Y = (η1, . . . , ηp). (3.8)

Since Σ, T are non-singular we can find µr = (µjr) ∈ Rm, νr = (νlr) ∈ Rn

by solving the equations

ξr = Σµr, ηr = Tνr (3.9)

for each r = 1, 2, . . . , p. The equations (3.9) can be written in the more
explicit form

xr(si) =
m∑

j=1

µjrσ(αjsi + βj), yr(tk) =
n∑

l=1

νlrτ(γltk + δl) (3.10)

for each i = 1, 2, . . . , m and k = 1, 2, . . . , n and each r = 1, 2, . . . , p. On the
other hand, if we define M ∈ Rm×p, N ∈ Rn×p by writing

M = (µ1, . . . , µp), N = (ν1, . . . , νp) (3.11)

then the equations (3.9) can be written collectively in the form

X = ΣM, Y = TN. (3.12)

In general, for each x ∈ C([0, 1]), we define

ξ = (x(si)) = EM[x] ∈ Rm

and calculate θ = (θj) ∈ Rm by solving the equation

ξ = Σθ. (3.13)

This equation can be written as a system of equations in the more explicit
form

x(si) =
m∑

j=1

θjσ(αjsi + βj) (3.14)

for each i = 1, 2, . . . ,m. Define a mapping Gm : C([0, 1])→ Xm ⊆ C([0, 1])
by the formula

Gm[x](s) =
m∑

j=1

θjσ(αjs + βj) (3.15)
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and a mapping Q : Xm → Rm by setting

Q(Gm[x]) = θ. (3.16)

If we assume that µ1, . . . , µp are linearly independent in Rm then we can
define a mapping K : Rm → Rn by the composition

K = N(MT M)−1MT . (3.17)

Indeed we can find λ = (λr) ∈ Rp so that

‖Mλ− θ‖ (3.18)

is minimized by solving the equation

MT Mλ = MT θ (3.19)

then it follows that κ = Kθ ∈ Rn can be rewritten in the form

κ = Nλ. (3.20)

Next we define the mapping W : Rn → Yn ⊆ C([0, 1]) by the formula

W [κ](t) =
n∑

l=1

κlτ(γlt + δl) (3.21)

and finally S : C([0, 1])→ Yn by the composition

S = WKQGm. (3.22)

We have the following basic result.

Theorem 18. Let

S : C([0, 1])→ Yn ⊆ C([0, 1])

be the operator defined above. Then S is an (M,N ) weak interpolation of
F .

Proof. Let u, x ∈ C([0, 1]) and suppose that

EM[u] = EM[x].

We must show that S[u] = S[x]. If we write

EM[u] = ω and EM[x] = ξ



80 3. INTERPOLATION OF NONLINEAR OPERATORS

then it follows that ω = ξ. Now we note that

Gm[u](s) =
m∑

j=1

ρjσ(αjs + βj) (3.23)

and

Gm[x](s) =
m∑

j=1

θjσ(αjs + βj) (3.24)

where
ρ = (ρj) ∈ Rm and θ = (θj) ∈ Rm

are determined by solving the equations

ω = Σρ and ξ = Σθ. (3.25)

Since
ρ = Σ−1ω = Σ−1ξ = θ

it follows that Gm[u] = Gm[x] and hence that

S[u] = WKQGm[u]
= WKQGm[x]
= S[x].

We must also show that

ENS[xr] = ENF [xr]

for all r = 1, 2, . . . , p. Since

ξr = Σµr (3.26)

it follows that

Gm[xr] =
m∑

j=1

µjrσ(αjs + βj) (3.27)

and hence that

QGm[xr] = µr. (3.28)

Because

N(MT M)
−1

MT µr = νr (3.29)

it follows that

KQGm[xr] = νr (3.30)
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and hence

S[xr] = W [νr]. (3.31)

Consequently

S[xr](t) =
n∑

l=1

νlrτ(γlt + δl). (3.32)

If we use the notation zr = S[xr] and if we define ζr = (zkr) = (zr(tk)) ∈ Rn

then the equations

zr(tk) =
n∑

l=1

νlrτ(γltk + δl) (3.33)

for each k = 1, 2, . . . , n can be rewritten in the form

ζr = Tνr (3.34)

and since ζr = Tνr = ηr it follows that

ENS[xr] = EN [zr]
= EN [yr]
= ENF [xr]

for each r = 1, 2, . . . , p.

Example 6. Let

C0 = {x | x ∈ C([0, 1]) with x(0) = x(1) = 0}. (3.35)

Define a linear operator A : C0 → C[0, 1] by setting

A[x](t) =
∫ 1

0

[u(s− t)− s]x(s)ds (3.36)

where u : R→ R is the unit step function given by

u(s) =
{

0 if s < 0
1 if s > 0 (3.37)

and for each x ∈ C0 define an associated function x̂ : R → R by taking
the odd periodic extension of period two for x. This extension can be easily
constructed using the Fourier sine series representation for x. Let F : C0 →
C0 be the mapping defined by the formula

F [x](s) =
1
2

∫ 1

0

[x̂(s− t) + x̂(s + t)]A[x](t)dt (3.38)
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for each s with 0 < s < 1. The function F [x] is defined by a convolution
integral and can be interpreted as the symmetric correlation of x and A[x].
Such operators are used frequently in the representation and analysis of
non-linear systems. It is useful to observe that if we represent x as a
Fourier sine series

x(s) =
∞∑

j=1

ξj sin jπs (3.39)

then

F [x](s) =
∞∑

j=1

ξ2
j

2jπ
sin jπs (3.40)

for each s ∈ [0, 1]. If

x1(s) =
{

2s if 0 < s < 1
2

2− 2s if 1
2 < s < 1 (3.41)

and

x2(s) =





4s if 0 ≤ s ≤ 1
4

2− 4s if 1
4 ≤ s ≤ 3

4

4s− 4 if 3
4 ≤ s ≤ 1

(3.42)

then elementary calculations show that

A[x1](t) =





1
4 − t2 if 0 < t < 1

2

− 1
4 + (1− t)2 if 1

2 < t < 1
(3.43)

and

A[x2](t) =





1
8 − 2t2 if 0 < t < 1

4

− 1
8 + 2(t− 1

2 )2 if 1
4 < t < 3

4

1
8 − 2(1− t)2 if 3

4 < t < 1.

(3.44)

Further calculations give

F [x1](s) =
1
3

[
1
4
− σ2][

3
4
− σ2]
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and

F [x2](s) =





8
3 [ 1

16 − (σ − 1
4 )2][ 5

16 − (σ − 1
4 )2] if 0 ≤ s ≤ 1

2

− 8
3 [ 1

16 − (σ − 1
4 )2][ 5

16 − (σ − 1
4 )2] if 1

2 ≤ s ≤ 1

where we have used the notation σ = |s− 1
2 | for convenience. We suppose

that the mapping is not known but that for someM and N the data vectors
EM(x1), EM(x2), EN (F [x1]) and EN (F [x2]) are given. Take

σ(s) =





0 if s ≤ 0

s if 0 ≤ s ≤ 1

1 if s ≥ 1

(3.45)

and

τ(t) =





0 if t ≤ 0

1
2 [1− cos πt] if 0 ≤ t ≤ 1

1 if t ≥ 1.

(3.46)

Choose

{si} = {tk} = {0,
1
4
,

1
2
,

3
4
, 1} (3.47)

and set φ = ψ = 0. Choose αj = γl = 4 for each j, l and {βj} = {δl} =
{1, 0,−1,−2,−3} so that

Σ =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1




= T. (3.48)

The vectors ξr = (xr(si)) ∈ R5 and µr = Σ−1ξr ∈ R5 for each r = 1, 2 are
given by

ξ1 =




0
1
2
1
1
2
0




, ξ2 =




0
1
0
−1

0




, µ1 =




0
1
2
1
2
− 1

2
− 1

2




, µ2 =




0
1
−1
−1

1




(3.49)
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and the vectors ηr = (yr(tk)) ∈ R5 and νr = T−1ηr ∈ R5 for each r = 1, 2
are given by

η1 =




0
11
256

1
16
11
256

0




, η2 =




0
5
96
0

− 5
96
0




, ν1 =




0
11
256
5

256
− 5

256
− 11

256




, ν2 =




0
5
96
− 5

96
− 5

96
5
96




.

Therefore M and N are given by

M =




0 0
1
2 1
1
2 −1
− 1

2 −1
− 1

2 1




, N =




0 0
11
256

5
96

5
256 − 5

96
− 5

256 − 5
96

− 11
256

5
96




(3.50)

from which it follows that MT M = I and

N(MT M)−1MT =
1

1536




0 0 0 0 0
0 113 −47 −113 47
0 −65 95 65 −95
0 −95 65 95 −65
0 47 −113 −47 113




. (3.51)

Now for a general x ∈ C([0, 1]) we have

ξ =




x(0)
x( 1

4 )
x( 1

2 )
x( 3

4 )
x(1)




(3.52)

and hence θ = Σ−1ξ is given by

θ =




x(0)
x( 1

4 )− x(0)
x( 1

2 )− x( 1
4 )

x( 3
4 )− x( 1

2 )
x(1)− x( 3

4 )




(3.53)

and κ = N(MT M)−1MT θ by

κ =
1

1536




0
−113x(0) + 160x( 1

4 ) + 66x( 1
2 )− 160x( 3

4 ) + 47x(1)
65x(0)− 160x( 1

4 ) + 30x( 1
2 ) + 160x( 3

4 )− 95x(1)
95x(0)− 160x( 1

4 )− 30x( 1
2 ) + 160x( 3

4 )− 65x(1)
−47x(0) + 160x( 1

4 )− 66x( 1
2 )− 160x( 3

4 ) + 113x(1)




.
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For t ∈ [0, 1] we have
τ(4t) = [1− cos 4πt]/2

for all t,
τ(4t− 1) = [1 + cos 4πt]/2

for t ≥ 1/4,
τ(4t− 2) = [1− cos 4πt]/2

for t ≥ 1/2 and
τ(4t− 3) = [1 + cos 4πt]/2

for t ≥ 3/4 with all functions equal to zero to the left of the specified points.
It can now be seen that

S[x](t) =





1
3072 (−113x(0) + 160x( 1

4 ) + 66x( 1
2 )− 160x( 3

4 ) + 47x(1))
×(1− cos 4πt)

if 0 ≤ t ≤ 1
4

1
3072 [(−48x(0) + 96x( 1

2 )− 48x(1))
+(−178x(0)− 320x( 1

4 )− 36x( 1
2 )

+320x( 3
4 )− 142x(1)) cos 4πt]

if 1
4 ≤ t ≤ 1

2

1
3072 [(47x(0)− 160x( 1

4 ) + 66x( 1
2 ) + 160x( 3

4 )− 113x(1))
+(−143x(0)− 160x( 1

4 )− 6x( 1
2 )

+160x( 3
4 )− 77x(1)) cos 4πt]

if 1
2 ≤ t ≤ 3

4

1
3072 [(36x(0)− 72x( 1

2 ) + 36x(1)) cos 4πt]

if 3
4 ≤ t ≤ 1.

3.4 Strong interpolation

We begin with a simple definition.

Definition 14. We will say that S : C([0, 1])→ C([0, 1]) is a strong inter-
polation of F : C([0, 1])→ C([0, 1]) if S[xr] = F [xr] for each r = 1, 2, . . . , p.
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To construct a strong interpolation of the operator F : C([0, 1])→ C([0, 1])
we need to make some more assumptions. To this end we have the following
definition.

Definition 15. Let Yn ⊆ C([0, 1]) be an n-dimensional subspace of C([0, 1])
with basis functions {ωl}l=1,2,...,n. We define

T = (τkl) = (ωl(tk))

and say that Yn is a Chebyshev subspace if det T 6= 0 for each collection
N = {tk}k=1,2,...,n of fixed points with 0 = t1 < t2 < . . . < tn−1 < tn = 1.

Note that for each y ∈ Yn we can find ν = (νl) ∈ Rn such that

y =
n∑

l=1

νlωl (3.54)

and note also that ν is uniquely defined and can be calculated by solving
the equations

y(tk) =
n∑

l=1

νlωl(tk) (3.55)

for each k = 1, 2, . . . , n. If we define η = (y(tk)) ∈ Rn then the equa-
tions (3.55) can be written in the form

η = Tν. (3.56)

These observations can be used to construct a strong interpolation when
we have a mapping F : C([0, 1]) → Yn ⊆ C([0, 1]). We use the same basic
idea as we used in Section 3.3.1 but use the new matrix T to find νr ∈ Rn

such that

ηr = Tνr (3.57)

for each r = 1, 2, . . . , p. The mapping W : Rn → Yn ⊆ C([0, 1]) is now
defined by the formula

W [κ](t) =
n∑

l=1

κlωl(t) (3.58)

but all other definitions remain formally the same and in particular the
operator S : C([0, 1])→ Yn is defined by the same formal composition

S = WKQGm. (3.59)

We have the following theorem.
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Theorem 19. Let S : C([0, 1]) → Yn ⊆ C([0, 1]) be the operator defined
above. If Yn is a Chebyshev subspace then S is a strong interpolation of
the operator F : C([0, 1])→ Yn ⊆ C([0, 1]).

Proof. Let zr = S[xr] for each r = 1, 2, . . . , p. By following the proof of
Theorem 18 we can show that

zr(t) =
n∑

l=1

νlrωl(t). (3.60)

On the other hand we know that yr ∈ Yn implies that we can find πr =
(πlr) ∈ Rn such that

yr(tk) =
n∑

l=1

πlrωl(tk) (3.61)

for each k = 1, 2, . . . , n. Thus we have

ηr = Tπr (3.62)

and since T is non-singular it follows from equation (3.57) that πr = νr

and hence that zr = yr for all r = 1, 2, . . . , p.

3.5 Interpolation and approximation

Under certain circumstances we can show that the (M,N ) weak inter-
polation of Section 3.3.1 also provides an approximation to the mapping
F : C([0, 1]) → C([0, 1]). Although the principles of the construction are
the same as they were in Section 3.3.1 we will need to be more careful
in the way we choose the various parameters that define the interpolation
operator. We use essentially the same notation as we used in Section 3.3.1
and suppose that F : C([0, 1])→ C0 ⊆ C([0, 1]) where

C0 = {y|y ∈ C([0, 1]) with y(0) = y(1) = 0}. (3.63)

Suppose that yr = F [xr] ∈ C0 is known for each r = 1, 2, . . . , p. Let ε > 0
and choose δ1 = δ1(ε) > 0 so that

|yr(t)− yr(t∗)| < ε

4
(3.64)

when |t− t∗| < δ1. Choose N so that

|tk+1 − tk| < δ1 (3.65)
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for each k = 1, 2, . . . , n − 1. Choose φ, ψ∗ > 0 in the way that φ, ψ > 0
were chosen in Lemma 8. For each ψ ∈ (0, ψ∗) choose γl(ψ), δl(ψ) ∈ R with
γl(ψ) > 0 for l = 1, 2, . . . , n such that

τ(γ1(ψ)t1 + δ1(ψ)) = 1− ψ (3.66)

and such that

τ(γl(ψ)tl−1 + δl(ψ)) = ψ (3.67)

and

τ(γl(ψ)tl + δl(ψ)) = 1− ψ (3.68)

for l > 1. Define Tψ = (τkl(ψ)) ∈ Rn×n by setting

τkl(ψ) = τ(γl(ψ)tk + δl(ψ)) (3.69)

for each k, l. Since Tψ is non-singular we can find νr(ψ) = (νlr(ψ)) ∈ Rn

by solving the equations

ηr = Tψνr(ψ) (3.70)

for each r = 1, 2, . . . , p. The equations (3.70) can be written in the more
explicit form

yr(tk) =
n∑

l=1

νlr(ψ)τ(γl(ψ)tk + δl(ψ)) (3.71)

for each k = 1, 2, . . . , n and each r = 1, 2, . . . , p. On the other hand, if
Nψ ∈ Rn×p is defined by writing

Nψ = (ν1(ψ), . . . , νp(ψ)) (3.72)

then the equations (3.70) can be written collectively in the form

Y = TψNψ. (3.73)

Define T0 = (τkl(0)) ∈ Rn×n by setting

τkl(0) =
{

0 (k < l)
1 (k ≥ l) (3.74)

and note that Tψ → T0 as ψ → 0. Since T0 is non-singular we can define
νr(0) = (νlr(0)) ∈ Rn by solving the equation

ηr = T0νr(0) (3.75)
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and because Tψ → T0 then νr(ψ) → νr(0) as ψ → 0. Equation (3.75) can
be rewritten in the form

yr(tk) =
k∑

l=1

νlr(0) (3.76)

and hence

νlr(0) =
{

yr(t1) (l = 1)
yr(tl)− yr(tl−1) (l > 1). (3.77)

Define the mapping Sψ : C([0, 1])→ C([0, 1]) by the composition

Sψ = WKψQGm (3.78)

where Kψ : Rm → Rn is defined by

Kψ = Nψ(MT M)−1MT (3.79)

and all other operators are defined in the same way as they were in Sec-
tion 3.3.1. Therefore

Sψ[xr](t) =
n∑

l=1

νlr(ψ)τ(γl(ψ)t + δl(ψ)) (3.80)

and from this equation and equation (3.71) we note that

Sψ[xr](tk) = yr(tk)

and in particular that

Sψ[xr](0) = Sψ[xr](1) = 0.

Now since

κ(ψ) = Kψθ

= Nψλ

=
p∑

r=1

λrνr(ψ) (3.81)

it follows that

κl(ψ) =
p∑

r=1

λrνlr(ψ) (3.82)
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and hence that

W [κ(ψ)](tk) =
n∑

l=1

[
p∑

r=1

λrνlr(ψ)

]
τ(γl(ψ)tk + δl(ψ))

=
p∑

r=1

λr

[
n∑

l=1

νlr(ψ)τ(γl(ψ)tk + δl(ψ))

]

=
p∑

r=1

λrSψ[xr](tk). (3.83)

It is now obvious that

W [κ(ψ)](0) = W [κ(ψ)](1) = 0

and hence Sψ[x] ∈ C0 for all x ∈ C([0, 1]). In other words Sψ : C([0, 1]) →
C0 ⊆ C([0, 1]).

To show that ‖Sψ[x] − F [xr]‖ can be made arbitrarily small when ψ
and ‖x− xr‖ are sufficiently small and N is sufficiently fine we recall that

yr = F [xr] and Sψ[xr](tk) = yr(tk)

and consider the inequality

|Sψ[x](t)− yr(t)| ≤ |Sψ[x](t)− Sψ[xr](t)|+ |Sψ[xr](t)− yr(tk)|
+|yr(tk)− yr(t)| (3.84)

where t ∈ [0, 1] and k is chosen so that t ∈ [tk−1, tk]. For t ∈ [tk−1, tk] we
note that

yr(tk)− Sψ[xr](t) =
n∑

l=1

νlr(ψ) [τ(γl(ψ)tk + δl(ψ))

−τ(γl(ψ)t + δl(ψ))]

and since

1− ψ ≤ τ(γl(ψ)t + δl(ψ))
≤ τ(γl(ψ)tk + δl(ψ))
≤ 1

when l < k and

0 ≤ τ(γl(ψ)t + δl(ψ))
≤ τ(γl(ψ)tk + δl(ψ))
≤ ψ
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when l > k then

|yr(tk)− Sψ[xr](t)| ≤
∑

l 6=k

|νlr(ψ)|ψ + |νkr(ψ)|. (3.85)

Since
|ν1r(ψ)| → 0

and
|νlr(ψ)| → |yr(tl)− yr(tl−1)| < ε/4

for l > 1 as ψ → 0 it follows we can find ψ so that

|νlr(ψ)| < ε/4

for all l = 1, 2, . . . , n and if ψ is chosen so that we also have

(n− 1)ψ < 1

then
∑

l 6=k

|νlr(ψ)|ψ + |νkr(ψ)| < ε

2
(3.86)

for all k = 1, 2, . . . , n. It follows that

|yr(tk)− Sψ[xr](t)| < ε

2
(3.87)

for all t ∈ [tk−1, tk]. We now consider the value of ψ to be fixed. Incidentally
we note that our earlier choice of N also implies that

|yr(tk)− yr(t)| < ε

4
(3.88)

for t ∈ [tk−1, tk]. We note that

|x(si)− xr(si)| < ‖x− xr‖

for each i = 1, 2, . . . ,m and hence

‖ξ − ξr‖ < ‖x− xr‖
√

m. (3.89)

Thus

‖θ − µr‖ < ‖Σ−1‖ ‖x− xr‖
√

m (3.90)

and therefore

‖κ(ψ)− νr‖ < ‖Kψ‖ ‖Σ−1‖ ‖x− xr‖
√

m. (3.91)
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It follows that

|Sψ[x](t)− Sψ[xr](t)| = |W [κ(ψ)](t)−W [νr](t)|

= |
n∑

l=1

[κl(ψ)− νlr]τ(γl(ψ)t + δl(ψ))|

≤
n∑

l=1

|κl(ψ)− νlr|

≤ ‖κ(ψ)− νr‖
√

n

< ‖Kψ‖ ‖Σ−1‖ ‖x− xr‖
√

mn (3.92)

for all t ∈ [0, 1] and hence if ‖x − xr‖ < δ2 and we choose δ2 sufficiently
small then

‖Sψ[x]− Sψ[xr]‖ <
ε

4
. (3.93)

Since yr = F [xr], we observe that the inequalities (3.84,3.87,3.88,3.93)
imply

|Sψ[x](t)− F [xr](t)| < ε (3.94)

for all t ∈ [0, 1] and hence

‖Sψ[x]− F [xr]‖ < ε. (3.95)

We can summarize the preceding discussion in the following way.

Theorem 20. Let

Sψ = WKψQGm : C([0, 1])→ C0 ⊆ C([0, 1])

be the operator defined above. For each ε > 0 we can choose ψ = ψ(ε) > 0
sufficiently small and N = N (ε) sufficiently fine and find δ2 = δ2(ε) > 0
such that

‖Sψ[x]− F [xr]‖ < ε (3.96)

whenever ‖x− xr‖ < δ2 for each r = 1, 2, . . . , p.

3.5.1 An idle comparison

Although it is inappropriate to compare the weak interpolation procedure
in this section with the Lagrangean interpolation proposed by Prenter [105]
it is nevertheless of some interest to apply the latter interpolation to our
earlier example. Of course it is now necessary to assume that the data set
is completely known in C[0, 1].
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Example 7. We use the mapping of Example 6 and essentially the same
data set. We suppose once again that the mapping is not known but must
now assume that the data set is completely known. Since

max |(x1 − x2)(s)| = (x1 − x2)(
3
4

)

=
3
2

we can define an associated function v12 : [0, 1] → [0, 1] ∈ NBV ([0, 1]) of
normalised bounded total variation by the formula

v12(s) =





0 if 0 < s < 3
4

1 if 3
4 < s < 1

(3.97)

and a corresponding linear functional f12 ∈ C([0, 1])∗ by setting

f12(x) =
∫

[0,1]

x(s)v(ds)

= x(
3
4

).

It is clear that

f12(x1 − x2) = (x1 − x2)(
3
4

)

= ‖x1 − x2‖
=

3
2

Define f21 ∈ C([0, 1])∗ by setting f21 = −f12 and apply the extended La-
grange formula to obtain

R[x] = f12[
x− x2

‖x1 − x2‖ ]F [x1] + f21[
x− x1

‖x2 − x1‖ ]F [x2]

=
x( 3

4 )− x2( 3
4 )

3
2

F [x1] +
x1( 3

4 )− x( 3
4 )

3
2

F [x2] (3.98)
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from which it follows that

R[x](t) =





2
9 [x( 3

4 ) + 1][ 1
4 − τ2][ 3

4 − τ2]

− 16
9 [x( 3

4 )− 1
2 ][ 1

16 − (τ − 1
4 )2][ 5

16 − (τ − 1
4 )2]

2
9 [x( 3

4 ) + 1][ 1
4 − τ2][ 3

4 − τ2]

+ 16
9 [x( 3

4 )− 1
2 ][ 1

16 − (τ − 1
4 )2][ 5

16 − (τ − 1
4 )2]

in the intervals

0 ≤ t ≤ 1
2

and
1
2
≤ t ≤ 1

respectively. The notation τ = |t− 1
2 | has been used for convenience. For a

given x ∈ C([0, 1]) we could compare the Lagrange interpolation R[x] of this
example with the interpolation S[x] of the previous example by evaluating
each function at selected points.

3.6 Some Related Results

W. Porter [106, 107], extended the result by Prenter [105]] to the case of
causal operators. With H a Hilbert space and {(xi, yi) : i = 1, · · · ,m} ⊂
H×H a basic problem in [106] is to determine the existence and uniqueness
of causal operators, F , on H satisfying yi = F (xi) i = 1, · · · , m. In [106],
classes of polynomial functions are considered which minimize an opera-
tor norm. The results include explicit necessary and sufficient conditions
and an explicit synthesis procedure for realizing the resultant polynomial
operators.

A. Torokhti [151, 152] considered synthesis of set-valued interpolation
systems on the basis of a special application of some interpolation polyno-
mial operators considered in this chapter.

V. Khlobystov [74] generalized the result by W. Porter [106, 107] of
finding an interpolation polynomial in L2(a, b) with minimal norm to the
case of an abstract Hilbert space with a measure. V. Khlobystov also
obtained a solution to the extremal problem which is a generalization of
the theorem of M. Golomb and H. Weinberger [49] for a bounded set of
operator interpolants.
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In the book by V. L. Makarov and V. V. Khlobystov [91], the theory of
polynomial operators in Hilbert space due to Hermite and Hermite-Birkhoff
is studied. The necessary and sufficient conditions for the solvability of
different operator interpolation problems are given. The error analysis and
study of convergence of associated interpolation techniques are provided.

3.7 Concluding Remarks

We have developed a non-Lagrangean procedure to construct a weak inter-
polation of a non-linear mapping on C[0, 1] defined by a finite number of
observed input-output pairs. We have shown that the weak interpolation
can become a strong interpolation in the case of a finite dimensional range
space and that when the parameters are chosen appropriately and the out-
put evaluation set is sufficiently fine it can also provide an approximation
to the original mapping in terms of the uniform norm on C([0, 1]). In this
context we claim that a non-linear system described by an empirical data
set can be synthesized in the form S = WKQGm. We have also provided
an elementary example to illustrate the weak interpolation procedure.
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Chapter 4

Realistic Operators and their
Approximation

4.1. Introduction

4.2. Formalization of Concepts Related to Description of Real-World

Objects
4.3. Approximation of R−continuous Operators

4.4. Concluding Remarks

4.1 Introduction

In the real world each object can be defined by a legend of historical in-
formation. The legend represents the complete history of the object and
specifies the state of the object at all times. The current legend speci-
fies the current state. The systematic evolution of state for a collection of
real world objects is called a dynamical system. The system is specified
by specifying each pair of initial and final states. Any such collection of
input–output pairs defines a realistic operator. There are many real world
objects that we may wish to model and some may be non-deterministic.

Example 8. Experiments at Harvard University reported by Prof. Susan
Greenfield of Oxford University (ABC TV: Brain Story; Compass 19/2/01)
have supported the contention that when processing visual images the hu-
man brain records only key parts of the external image and uses memory
of known and apparently similar images to reconstruct appropriate back-
ground information. One might regard the input-output relationship in this
instance as only partially deterministic.

97
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For many centuries the modelling of real-world objects has been a pri-
mary interest for both natural science and philosophy. The notion of cause
was considered by Aristotle who presented a basic metaphysical view of the
material object, the essential object, the object as a body of work and the
object as a realization of purpose. The English philosopher David Hume
rejected this notion and argued that causality is a condition of constant
conjunction, proximity in space and time and succession [69]. Immanuel
Kant proposed that every event has a deterministic cause while John Stu-
art Mill related causality to the natural laws of physics [69] and argued
that it could be analysed by experimental methods. Bertrand Russell also
considered the notion of cause [114].

A qualitative theory of causality in Suppes [146] extends the notion
to probabilistic systems. On the other hand the more traditional idea
of determinism proposed by Laplace [69] suggests that knowledge of the
positions of all physical bodies and the forces acting upon them at any
instant would be sufficient to predict all future and past positions. Even
with the Laplacian view we argue that imperfect knowledge of the state will
allow or even require a probabilistic interpretation. The role of probabilistic
scenarios is central.

Brinksma et al [11], Eerola [35] and Petrović [103] used stochastic mod-
els to extend the approach by Suppes [146].

The implementation of a different approach to the representation of a
causal object has been developed, in particular, by De Santis [116] and
Porter [106].

Porter [106] applied Prenter’s theorems [104] to causal systems. Bertuzzi,
Gandolfi and Germani [8] further extended Prenter’s theorem [104] to the
causal approximation of input-output maps in Hilbert space.

A significant development in applications of approximation theory to
modelling nonlinear systems has been made by Sandberg [117]–[131]. In
particular, it has been shown in [117], [118], [119] that a causal nonlinear
input–output map can be approximated arbitrarily well in a meaningful
sense by a finite Volterra series, even though it may not have a Volterra
series expansion. Park and Sandberg [98] proved that radial–basis–function
networks are capable of universal approximation. Sandberg [120, 121]
showed that causal time–invariant maps satisfying certain continuity and
approximately finite–memory conditions can be uniformly approximated
arbitrarily well by finite sums formed from some simple linear operators.

A complete characterization of the input–output maps of causal time–
invariant systems that can be uniformly approximated by the maps of cer-
tain simple structures is given in [122]. Reference [99] concerns conditions
for the approximation of discrete time–invariant nonlinear systems that act
between bounded real sequences.
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The main theorem in [124] gives, in a certain setting, a necessary and
sufficient condition under which multidimensional shift–invariant input–
output maps with vector–valued inputs drawn from a certain large set can
be uniformly approximated arbitrarily well using a structure consisting of
a linear preprocessing stage followed by a memoryless nonlinear network.
Further extensions of these results for the approximation of input–output
maps of some special nonlinear systems are given in [125], [126].

Sandberg [117, 118, 119] generalized earlier theories of causality and
memory for approximation of nonlinear systems. Bode and Shannon in the
work [9] initiated an implementation of the causality principle into optimal
linear filters. The causal models, developed in [116] - [121], approximate
the input-output map with any given accuracy.

Daugavet [23] introduced the concept of a general mathematical for-
malism to describe a class of realistic properties such as causality, memory,
and stationarity. The extension of this methodology to encompass the no-
tion of a complete history or legend associated with each real world object
and the development and interpretation of the idea, described later in the
proposal, is due to Howlett, Torokhti and Pearce [58, 59]. The evolution of
state in dynamical systems whereby one thing affects another is expressed
through the agency of operators. Our representation of realistic operators
is inextricably linked to optimal approximation.

4.2 Formalization of Concepts Related to Description
of Real-World Objects

4.2.1 Causal operators, operators with finite memory,
and stationary operators with finite memory

Here, we give Definitions and examples of causal operators, operators with
finite memory, and stationary operators. These specific operators are mo-
tivated by the following observations.

Suppose an operator A is a mathematical model of a nonlinear system.
By the heuristic definition of causality, the present value of the output

of a system is not affected by future values of the input [116]. To determine
the output signal at time t0, the causal system should “remember” the input
signal up to time t0.

A system with finite memory Δ is “able” to determine the output signal
at time t0 from a fragment of the input signal on the segment [t0 −Δ, t0]
only. In other words, the system with finite memory Δ should “remember”
the input signal on the segment of the length Δ.
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A stationary system with finite memory is invariant with respect to
time. In other words, if any fragments of the input signal are the same
over different segments of the same length then the corresponding outputs
are the same as well.

The formalizations of the above concepts are given in Definitions 1–3
below.

Let X and Y be functional Banach spaces such that

X = {x(t) | t ∈ [a b]} and Y = {y(t) | t ∈ [c d]}

where x, y : R→ R, [a b] ⊂ R and [c d] ⊂ R.

Definition 16. Let [a b] = [c d], t0 ∈ [a b] and K ⊂ X. An operator
A : K → Y is called causal if for any x1, x2 ∈ K,

x1(t) = x2(t) ∀ t ∈ [a t0]

implies
[A(x1)](t) = [A(x2)](t) ∀ t ∈ [a t0].

Example 9. Let y = A(x) so that

y(t0) =
∫ t0

a

x(t)dt.

Then A is the causal operator.
The operator A given by

y(t0) =
∫ b

a

B(t0, t)x(t)dt,

where B : [a b]× [a b]→ [a b], is not causal.

Let C([a b]) be the space of continuous functions on segment [a b]. For
the sake of clarity, we set X = C([a b]) and Y = C([a+Δ b]) where Δ ≥ 0.

Definition 17. Operator A : X → Y is said to be the operator with finite
memory Δ if for any x1, x2 ∈ K ⊂ X,

x1(t0 −Δ + s) = x2(t0 −Δ + s) ∀ s ∈ [0 Δ]

implies
[A(x1)](t0) = [A(x2)](t0) ∀ t0 ∈ [a + Δ, b].
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Figure 4.1: Illustration to the definition of the causal operator. Here,
y1 = A(x1) and y2 = A(x2).
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Example 10. Let y = A(x) so that

y(t0) =
∫ Δ

0

x(t0 −Δ + s)ds.

Then A is the operator with finite memory Δ.

Definition 18. Operator A : X → Y is called the stationary operator with
finite memory Δ if for any x1, x2 ∈ K ⊂ X,

x1(t1 −Δ + s) = x2(t2 −Δ + s) ∀ s ∈ [0 Δ] and t1, t2 ∈ [a + Δ b]

implies
[A(x1)](t1) = [A(x2)](t2).

4.2.2 R−continuous operators

Preliminaries

To begin we make the following definition.

Definition 19. Let X and Y be separable Banach spaces. Let K ⊆ X be
a compact set and let F : K → Y be a continuous map. The modulus of
continuity ω = ω[F ] : R+ → R+ is given by the formula

ω(δ) = sup
x1,x2∈K, ‖x1−x2‖≤δ

‖F (x1)− F (x2)‖.

It is easy to see that ω(0) = 0 and that ω(δ) ≤ ω(δ′) whenever δ ≤ δ′.
We will show that ω is also a uniformly continuous function.

Lemma 9. Let X and Y be separable Banach spaces. Let K ⊆ X be a
compact set and F : K → Y a continuous map. Let ω = ω[F ] : R+ → R+

be the corresponding modulus of continuity. Then for each τ > 0 we can
find σ = σ(τ) > 0 such that

0 ≤ ω(δ′)− ω(δ) ≤ τ

whenever 0 ≤ δ′ − δ ≤ σ.

Proof. Define ΔF : K ×K → Y by setting

ΔF (x1, x2) = F (x2)− F (x1)
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Figure 4.2: (a) Illustration to the definition of the operator with finite
memory. (b) Illustration to the definition of the stationary operator.
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for each x1, x2 ∈ K. Clearly ΔF is continuous with respect to the norm

‖(x1, x2)‖K×K = ‖x1‖+ ‖x2‖
and hence, since K × K is compact, ΔF is uniformly continuous. If we
define

Dδ = {(x1, x2) | ‖x2 − x1‖ ≤ δ}
then Dδ ⊆ K ×K is compact and

ω(δ) = sup
(x1,x2)∈Dδ

‖ΔF (x1, x2)‖

for each δ ≥ 0. Fix τ > 0 and choose σ = σ(τ) > 0 such that

‖ΔF (x′1, x
′
2)−ΔF (x1, x2)‖ < τ

whenever
‖(x′1, x′2)− (x1, x2)‖K×K < σ.

Now suppose that
0 ≤ δ′ − δ ≤ σ.

Find (x′1, x
′
2) ∈ Dδ′ with

ω(δ′) = ‖ΔF (x′1, x
′
2)‖

and define θ ∈ [0, 1] so that

θ‖x′2 − x′1‖ = δ.

Let

(x1, x2) = θ(x′1, x
′
2) + (1− θ)(

x′1 + x′2
2

,
x′1 + x′2

2
).

It is easy to see that
‖x2 − x1‖ = δ

and that
‖(x′1, x′2)− (x1, x2)‖K×K ≤ σ.

It follows that

ω(δ′) = ‖ΔF (x′1, x
′
2)‖ ≤ ‖ΔF (x1, x2)‖+ τ

≤ ω(δ) + τ.

Thus
0 ≤ ω(δ′)− ω(δ) ≤ τ

whenever 0 ≤ δ′ − δ ≤ σ. Hence ω is uniformly continuous on R+.
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Theorem 21. Let X and Y be separable Banach spaces. Let K ⊆ X be
a compact set and F : K → Y a continuous map. For any given numbers
δ > 0 and τ > 0 and for all x ∈ K and all x′ ∈ X with

‖x′ − x‖ ≤ δ

there exists an operator

S = WZQGm : X → Y

defined by finite arithmetic such that

||F (x)− S(x′)|| ≤ 1
2
ω[F ](2δ) + τ.

Remark 9. This theorem is important for synthesis of non-linear systems
because the error ||F (x) − S(x′)|| in the output for a given level δ of the
noise x′−x is not dependent on the arbitrarily chosen positive real number
τ .

Proof. This proof follows the methods of Daugavet [23].
It is well known that any separable Banach space is isometric and iso-

morphic to a subspace of the space C([0, 1]) of continuous functions on the
interval [0, 1]. Thus without loss of generality we assume X = Y = C([0, 1]).

Define
ϕ : K × [0, 1]→ R

by setting
ϕ(x, t) = F [x](t)

for all t ∈ [0, 1]. Fix δ > 0 and t ∈ [0, 1]. For each

u ∈ Kδ = {u | ‖u− x‖ ≤ δ for some x ∈ K}

choose
x+[u] = x+

δ,t[u], x−[u] = x−δ,t[u] ∈ K

so that
ϕ+

δ (u, t) = ϕ(x+[u], t) = max
x∈K,‖x−u‖≤δ

ϕ(x, t)

and
ϕ−δ (u, t) = ϕ(x−[u], t) = min

x∈K,‖x−u‖≤δ
ϕ(x, t)

and set
ϕδ(u, t) =

1
2

[ϕ+
δ (u, t) + ϕ−δ (u, t)].
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Define
Fδ : Kδ → C([0, 1])

by setting
Fδ[u](t) = ϕδ(u, t)

for all δ > 0 and each t ∈ [0, 1]. If u ∈ Kδ and x ∈ K with

‖u− x‖ ≤ δ

then
|ϕ(x, t)− ϕδ(u, t)| ≤ ω(2δ)/2

for all t ∈ [0, 1] and hence it follows that

‖F (x)− Fδ(u)‖ ≤ 1
2
ω(2δ).

However Fδ may not be continuous. Therefore for fixed t ∈ [0, 1] and each
pair of positive real numbers λ and μ we define

ϕλ,μ(u, t) =
1

2μ

∫

[λ,λ+μ]

[ϕ+
ξ (u, t) + ϕ−ξ (u, t)]dξ

and
Fλ,μ : Kλ → C([0, 1])

by setting
Fλ,μ[u](t) = ϕλ,μ(u, t)

for all t ∈ [0, 1]. If
‖u− v‖ < ρ

then it can be shown that

‖Fλ,μ[u]− Fλ,μ[v]‖ ≤ 2FKρ

μ

where
FK = max

x∈K
‖F (x)‖.

This shows that the operator Fλ,μ is continuous. If x ∈ K and

‖x− u‖ < λ

then it follows that

‖F (x)− Fλ,μ(u)‖ ≤ 1
2
ω(2ν)
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where ν = λ + μ. To prove the desired result we take τ > 0 and choose
ε > 0 so that

ω(2δ + ε) ≤ ω(2δ) + τ

for all δ > 0. Now we set λ = δ + ε/2 and μ = ε/2 and note that if

‖x− u‖ ≤ λ

then
‖F (x)− Fλ,μ(u)‖ ≤ 1

2
ω(2δ) +

τ

2
.

Let 0 = t0 < · · · < tN = 1 be a partition of the interval [0, 1] and define
the operator

PN ∈ L(C([0, 1]), PL([0, 1])),

where
PL([0, 1]) ⊆ C([0, 1])

is the subspace of piecewise linear functions, by setting

PN [x](tk) = x(tk)

for each k = 0, . . . , N with the partition sufficiently fine to ensure that

‖x− PN (x)‖ ≤ ε/4

for all x ∈ K. Let Lδ denote the closure of the set PN (Kδ). Since Lδ lies
in an N + 1 dimensional subspace and is bounded and closed it follows
that Lδ is compact. It can be shown that Lδ ⊆ Kλ and hence Fλ,μ is well
defined on Lδ. By Theorem 9 in Section 5.5 of Chapter 1, for all v ∈ Lδ

there exists an operator Sλ,μ : X → C(T ) in the form

Sλ,μ = WZQG�
m

such that
‖Fλ,μ(v)− Sλ,μ(v)‖ ≤ τ

2
.

We can now define the operator S : X → C(T ) in the form

S = WZQGm,

where Gm = G�
mPN , by the equality

S(u) = Sλ,μ(PN [u])

for each u ∈ Kδ.
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4.2.3 Main definitions and auxiliary results

We use the results discussed above to establish a systematic procedure for
the constructive approximation of realistic operators.

The notions of causality, finite memory and stationarity have been used
for many years in the engineering literature and are properties that one
may associate with realistic dynamical systems. The object of this dis-
cussion is to consider the possibility of a generic description of a realistic
system that allows us to establish general procedures with which we can
effectively simulate such systems. To include the above realistic properties
we construct special spaces with additional topological structure. The fun-
damental idea is that each element x ∈ X must contain a corresponding
continuum of historical information. In fact we will assume that each ele-
ment is uniquely defined by this corresponding history. The definition of
an R-space follows Daugavet [23].

Definition 20. Let X and A be Banach spaces and let L(X, A) be the set
of continuous linear operators from X into A. Let T = (T, ρ) be a compact
metric space and let M = {Mt}t∈T be a family of operators Mt ∈ L(X, A)
with norm

||Mt|| ≤ 1 for each t ∈ T

and such that

Ms[u]→Mt[u] as ρ(s, t)→ 0 for each u ∈ X.

The space X equipped with the family of operators M is called an R-space
and is denoted by

XR = (X, A, T,M).

For each x ∈ X the collection of elements

M[x] = {Mt[x] | t ∈ T} ⊆ A

specifies the complete history of the element x. We assume that if M[x]
is specified then x ∈ X is uniquely defined. In other words each element
x ∈ X is defined by specifying the complete history of the element1. We
will write

x = H(M[x])

where
H :M[X]→ X

1This idea is an adaption of the idea that a function is defined by specifying the
complete set of function values.
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is the appropriate archival function. We wish to define a special class of
realistic operators. An R-continuous operator is an operator from one R-
space to another such that the history of the range space is continuous with
respect to the history of the domain space.

Definition 21. Let

XR = (X, A, T,M) and YR = (Y, B, T,N )

be R-spaces and let the closed set

E ⊆ T × T

be an equivalence relation. Let K ⊆ X be a compact set and let v ∈ K
and t ∈ T . The operator F : K → Y is R-continuous at Ms[x] ∈ A if, for
each open neighbourhood of zero H ⊆ B, we can find a corresponding open
neighbourhood of zero

G = G(x, s, H) ⊆ A

such that
Mr[u]−Ms[x] ∈ G

implies
Nr[F (u)]−Ns[F (x)] ∈ H

whenever (r, s) ∈ E and u ∈ K.
If F : K → Y is R-continuous at Ms[x] ∈ A for all x ∈ K and s ∈ T

then we say that F : K → Y is an R-continuous operator.

For each t ∈ T we observe that the set

Mt[K] = {Mt[x] | x ∈ K} ⊆ A

is compact. Indeed, if
Mt[K] ⊆

⋃

γ∈Γ

Gγ

where each Gγ is open then

K ⊆
⋃

γ∈Γ

Uγ

where each Uγ = M−1
t [Gγ ] is also open. Since K is compact we can find a

finite subcollection Uγ1 , . . . , Uγr such that

K ⊆
r⋃

i=1

Uγi
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and hence

Mt[K] ⊆
r⋃

i=1

Gγi .

Hence Mt[K] is covered by a finite subcollection. It follows that Mt[K] is
compact. Let

Et = {s | (s, t) ∈ E} ⊆ T

and note that Et is compact. We wish to show that the set

Mt[K] = {Ms[K] | s ∈ Et}
is also compact. We need the following result.

Lemma 10. Let s ∈ T . If Ms[K] ⊆ G where G is an open set then we can
find δ = δ(s,G) > 0 such that

Mr[K] ⊆ G

when
ρ(r, s) < δ.

Proof. Suppose the result is not true. Then we can find a sequence {ri} ⊆ T
with ri → s as i → ∞ and a sequence {xi} ⊆ K such that Mri

[xi] /∈ G
for each i. Because K is compact we can assume without loss of generality
that xi → x for some x ∈ K as i→∞. Choose a neighbourhood of zero

Gα = {a | ‖a‖ < α} ⊆ A

so that
Ms[x] + Gα ⊆ G.

Since ‖Mr‖ ≤ 1 for all r ∈ T it follows that

Mr[u] ∈ Gα/2 whenever u ∈ Uα/2

where
Uα = {u | ‖u‖ < α} ⊆ X.

If we choose i so large that

xi − x ∈ Uα/2

and
Mri
∈Ms[x] + Gα/2

then

Mri [xi] = Ms[x] + (Mri [x]−Ms[x]) + Mri [xi − x]
∈ Ms[x] + Gα ⊆ G

which is a contradiction.
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Lemma 11. For each t ∈ T the set Mt[K] is a compact subset of A.

Proof. Suppose that
Mt[K] ⊆

⋃

γ∈Γ

Gγ

where each Gγ is an open set. For each s ∈ Et we know that Ms[K] is
compact and that

Ms[K] ⊆Mt[K].

Therefore we can find a finite subset Γ(s) ⊆ Γ and a corresponding finite
sub-collection {Gγ}γ∈Γ(s) such that

Ms[K] ⊆
⋃

γ∈Γ(s)

Gγ

= G(s).

Choose δ(s) > 0 such that Mr[K] ⊆ G(s) whenever ρ(r, s) < δ(s) and
define the open sets

R(s) = {r | ρ(r, s) < δ(s)}
⊆ T

for each s ∈ T . Since
Et ⊆

⋃

s∈Et

R(s)

and since Et is compact we can find a finite sub-collection {R(sj)}j=1,2,...,q

such that

Et ⊆
q⋃

j=1

R(sj).

Therefore ⋃

r∈R(sj)

Mr[K] ⊆ G(sj)

and hence

Mt[K] =
⋃

r∈Et

Mr[K]

=
q⋃

j=1

⎡
⎣ ⋃

r∈R(sj)

Mr[K]

⎤
⎦ ⊆

q⋃

j=1

G(sj)

=
q⋃

j=1

⎡
⎣ ⋃

γ∈Γ(sj)

Gγ

⎤
⎦ . (4.1)
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Since this is a finite sub-covering it follows thatMt[K] is compact. �

Definition 22. Let F : K → Y . If for each neighbourhood of zero, H ⊆ B
there exists a neighbourhood of zero G = G(H) such that

Mr[u]−Ms[v] ∈ G

implies
Nr[Fu]−Ns[Fv] ∈ H

whenever (r, s) ∈ E and u, v ∈ K, then F is called the uniformly R-
continuous operator.

A link between continuous, R-continuous and uniformly R-continuous
operators is shown in the Lemma below.

Lemma 12. Let F : K → Y be continuous and R-continuous. Then F is
uniformly R-continuous.

Proof. Suppose the result is not true. Then for some β > 0 we can find
neighbourhoods of zero

Hβ = {b | ‖b‖ < β}
⊆ B

and

G1/n = {a | ‖a‖ < 1/n}
⊆ A

for each n = 1, 2, . . . and points

un, vn ∈ K and r(n), s(n), t(n) ∈ T

with r(n), s(n) ∈ Et(n) for each n = 1, 2, . . . such that

Mr(n)[un]−Ms(n)[vn] ∈ G1/n

and
Nr(n)[Fun]−Ns(n)[Fvn] /∈ Hβ .

Since K is compact we can suppose without loss of generality that there
exist u, v ∈ K with

un → u and vn → v as n→∞.
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Since T is compact we can suppose that there exist points r, s, t ∈ T with

r(n)→ r, s(n)→ s and t(n)→ t

as n→∞. Note that since (r(n), t(n)) ∈ E and (s(n), t(n)) ∈ E and since
E is closed it follows that

(r, t) ∈ E and (s, t) ∈ E.

Hence r, s ∈ Et.
Now choose α > 0 and define the neighborhood of zero

Gα = {a | ‖a‖ < α}
⊆ A.

Since ‖Mr‖ ≤ 1 for all r ∈ T we have

Mr[x] ∈ Gα/5

whenever x ∈ Uα/5 where

Uα = {x | ‖x‖ < α} ⊆ X.

If we take n so large that

u− un ∈ Uα/5,

v − vn ∈ Uα/5,

Mr(n)[u]−Mr[u] ∈ Gα/5,

Ms(n)[v]−Ms[v] ∈ Gα/5

and
G1/n ⊆ Gα/5

then

Mr[u]−Ms[v] =
[
Mr[u]−Mr(n)[u]

]
+
[
Mr(n)[u]−Mr(n)[un]

]

+
[
Mr(n)[un]−Ms(n)[vn]

]
+
[
Ms(n)[vn]−Ms(n)[v]

]

+
[
Ms(n)[v]−Ms[v]

]

∈ Gα.

Since α is arbitrary it follows that

Mr[u]−Ms[v] = 0
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and since r, s ∈ Et the R-continuity of F implies that

Nr[Fu]−Ns[Fv] = 0.

Define the neighborhood

Vβ = {y | ‖y‖ < β}
⊆ Y.

Since
‖Nr‖ ≤ 1 for all r ∈ T

we have
Nr[y] ∈ Hβ/4

whenever y ∈ Vβ/4.
Choose n so large that

Fun − Fu ∈ Vβ/4,

Fvn − Fv ∈ Vβ/4

and
Nr(n)[Fu]−Nr[Fu], Ns(n)[Fv]−Ns[Fv] ∈ Hβ/4.

Now it follows that

Nr(n)[Fun]−Ns(n)[Fvn] =
[
Nr(n)[Fun]−Nr(n)[Fu]

]

+
[
Nr(n)[Fu]−Nr[Fu]

]

+ [Nr[Fu]−Ns[Fv]]
+
[
Ns[Fv]−Ns(n)[Fv]

]

+
[
Ns(n)[Fv]−Ns(n)[Fvn]

]

∈ Hβ

which is a contradiction.

4.3 Approximation of R−continuous Operators

4.3.1 The collection of auxiliary mappings

In order to establish a constructive R-continuous approximation to the R-
continuous mapping F : K → Y it is convenient to define a collection of
auxilliary mappings. For each t ∈ T we define ft :Mt[K]→ B by setting

ft(Ms[x]) = Ns[F (x)]
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for each s ∈ Et and x ∈ K. This is a good definition because

Mr[u] = Ms[x]

implies
Nr[F (u)] = Ns[F (x)]

for each r, s ∈ Et and each u ∈ K. The mapping ft :Mt[K]→ B is contin-
uous at each point Ms[x] ∈ Mt[K] because, for each open neighbourhood
of zero H ⊆ B, we can find a corresponding open neighbourhood of zero
G = Gt(x, s,H) ⊆ A such that

Mr[u]−Ms[x] ∈ G

implies

ft(Mr[u])− ft(Ms[x]) = Nr[F (u)]−Ns[F (x)]
∈ H

whenever r, s ∈ Et and u ∈ K.
BecauseMt[K] is compact it follows that the mapping ft :Mt[K]→ B

is uniformly continuous. In other words, for each neighbourhood of zero
H ⊆ B, we can find a neighbourhood of zero G = Gt(H) ⊆ A such that

Mr[u]−Ms[v] ∈ G

implies
ft(Mr[u])− ft(Ms[v]) ∈ H

whenever r, s ∈ Et and u, v ∈ K. In view of Lemma 12 we know that when
F : K → Y is continuous the collection of mappings {ft}t∈T is uniformly
equi-continuous. That is for each open neighbourhood of zero H ⊆ B we
can find a neighbourhood of zero G = G(H) ⊆ A such that for all t ∈ T
we have

Mr[u]−Ms[v] ∈ G

implies
ft(Mr[u])− ft(Ms[v]) ∈ H

whenever r, s ∈ Et and u, v ∈ K.

Remark 10. The continuous operator F : K → Y is an R-operator in the
sense of Daugavet [23] if

Ms[u]−Mt[v] = 0

implies
Ns[F (u)]−Nt[F (v)] = 0

for all u, v ∈ K and all (s, t) ∈ E.
If F is continuous and R-continuous operator then F is an R-operator

in the sense of Daugavet.
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4.3.2 The special R-modulus of continuity

The R-modulus of continuity will be used to characterize our constructive
approximation theorems for realistic operators.

Definition 23. Let XR = {X,A, T,M} and YR = {Y, B, T,N} be R-
spaces and let E ⊆ T × T be the given equivalence relation. Let K ⊆ X be
a compact set and suppose that the map F : K → Y is an R-continuous
operator. The function

ωR = ωR[F ] : R+ → R+

defined by

ωR(δ) = sup
u,v∈K; (r,s)∈E:
‖Mr[u]−Ms[v]‖≤δ

‖Nr[F (u)]−Ns[F (v)]‖

is called the R-modulus of continuity of the operator F .

Definition 24. We say that (XR, YR) is a complete R-pair if

E = T × T

and an incomplete R-pair if

E �= T × T.

In the case where E = {(t, t)}t∈T we say that (XR, YR) is a simple R-pair.

We make the following elementary observations about the R-modulus
of continuity.

Lemma 13. Let (XR, YR) is a complete R-pair and suppose that F : K →
Y is an R-continuous operator. Then the R-modulus of continuity

ωR = ωR[F ] : R+ → R+

is uniformly continuous with ωR(0) = 0.

Proof. Since Et = T for all t ∈ T it follows that

M[K] =Mt[K] = {Ms[x] | x ∈ K and s ∈ T} ⊆ A

for all t ∈ T and we can define an auxiliary mapping f : M[K] → B by
setting

f(Mt[x]) = Nt[Fx]
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for each x ∈ K and t ∈ T . We recall from our earlier remarks about
auxiliary mappings that not only is this a good definition but also that the
mapping f :M[K]→ B is uniformly continuous. The function ωf : R+ →
R+ is the modulus of continuity of f . Lemma 9 shows us that ωf is also
uniformly continuous. Since

ωf (δ) = sup
p,q∈M[K]:
‖p−q‖≤δ

‖f(p)− f(q)‖

= sup
u,v∈K; (r,s)∈E:
‖Mr[u]−Ms[v]‖≤δ

‖Nr[F (u)]−Ns[F (v)]‖

= ωR(δ)

we obtain the desired result. �

Lemma 14. Let (XR, YR) be an incomplete R-pair and suppose that F :
K → Y is both a continuous operator and an R-continuous operator. Then
the R-modulus of continuity ωR = ωR[F ] : R+ → R+ is uniformly contin-
uous with ωR(0) = 0.

Proof. Since (XR, YR) is an incomplete R-pair we consider the various
equivalence classes Et for each t ∈ T . We have seen earlier that for each
t ∈ T there is a auxiliary mapping ft : Mt[K]→ B defined by setting

ft(Mt[x]) = Nt[F (x)]

for all x ∈ K. Let ω[ft] : R+ → R+ be the modulus of continuity for the
map ft and consider the argument used in Lemma 9. Define

Δft : Mt[K]×Mt[K]

by the formula
Δft(p, q) = ‖ft(p)− ft(q)‖

for each
(p, q) ∈Mt[K]×Mt[K].

Choose τ > 0. From our earlier remarks about the uniform equi-continuity
of the family of auxiliary mappings {ft}t∈T we can choose σ = σ(τ) > 0
such that for all t ∈ T we have

‖Δft(p′, q′)−Δft(p, q)‖ < τ



118 4. APPROXIMATION OF REALISTIC OPERATORS

whenever
‖(p′, q′)− (p, q)‖ < σ.

Now it is clear from Lemma 9 that for all t ∈ T we have

0 ≤ ω[ft](δ′)− ω[ft](δ) ≤ τ

whenever
0 ≤ δ′ − δ ≤ σ.

Thus the family {ω[ft]}t∈T is also uniformly equi-continuous. Since

ωR(δ) = sup
t∈T

ω[ft](δ)

it follows that
0 ≤ ωR(δ′)− ωR(δ) ≤ τ

whenever 0 ≤ δ′ − δ ≤ σ.

4.3.3 Approximately R-continuous operators

In practice we may have to consider an approximately R-continuous oper-
ator which will preserve an approximately continuous sense of history.

Definition 25. Let XR = (X, A, TX ,M) and YR = (Y,B, TY ,N ) be R-
spaces with TX = TY = T . Let the closed set

E ⊆ T × T

be an equivalence relation and suppose that G ⊆ A and H ⊆ B are open
neighbourhoods of 0. Let K ⊆ X be a compact set and let v ∈ K and t ∈ T .
The operator F : K → Y is approximately R-continuous with tolerance
(G,H) at Mt[v] ∈ A if

Ms[u]−Mt[v] ∈ G

implies
Ns[F (u)]−Nt[F (v)] ∈ H

whenever u ∈ K and (s, t) ∈ E.
If F : K → Y is approximately R-continuous with tolerance (G, H) at

Mt[v] ∈ A for all v ∈ K and t ∈ T then we say that F : K → Y is an
approximately R-continuous operator with tolerance (G,H).
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Some elementary examples

Before we begin our discussion of the approximation procedure we will con-
sider some familiar examples of realistic operators from the viewpoint of our
new definitions. To prepare for the examples we note the following theorem
of M. Riesz regarding compactness criteria for a subset K ⊆ Lp([0, 1]). For
each x ∈ K we use the notation

Thx(r) = x(r + h)

for each
r, r + h ∈ [0, 1].

Theorem 22. The set K ⊆ Lp([0, 1]) is compact if and only if we can find
M > 0 with ‖x‖p ≤M and δ = δ(ε) such that

‖Thx− x‖p < ε

whenever
|h| < δ for all x ∈ K.

In the case K ⊆ Lp(R) the above conditions and the additional con-
dition, that for each x ∈ K we have x(t) = 0 for t /∈ CK for some fixed
compact set CK ⊆ R, are sufficient for K to be compact.

Example 11. Let X = L1([0, 1]) and Y = C([0, 1]) and let

K = {x | |x(s)− x(t)| ≤ |s− t| ∀ s, t ∈ [0, 1]}.
Define F : K → Y by setting

Fx(t) = e−t

∫

[0,t]

esx(s)ds

for each t ∈ [0, 1].
Set

TX = TY = [0, 1] and A = B = C([0, 1])

and define M = {Mt}t∈[0,1] and N = {Nt}t∈[0,1] by setting

Mt[x](s) =

⎧
⎪⎪⎨
⎪⎪⎩

∫

[0,s]

x(r)dr if s ≤ t,
∫

[0,t]

x(r)dr otherwise,

and

Nt[y](s) =
{

y(s) if s ≤ t,
y(t) otherwise.
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Now XR and YR are R-spaces. Put E = {(t, t) | t ∈ T}. Therefore
Et = {t} for all t ∈ T . We will say that the operator F : K → Y is a
uniformly R-continuous causal operator if for each

u, v ∈ K and t ∈ T and for each β > 0

we can find
α = α(β) > 0

such that
‖Mt[u]−Mt[v]‖ < α

implies
|Nt[F (u)]−Nt[F (v)]‖ < β.

Note that we can use integration by parts to show that

Fu(τ)− Fv(τ) = e−τ

∫

[0,τ ]

es[u(s)− v(s)]ds

=
∫

[0,τ ]

[u(r)− v(r)]dr

−e−τ

∫

[0,τ ]

es

[∫

[0,s]

[u(r)− v(r)]dr

]
ds

for each τ ∈ [0, t] and since

‖Mt[u]−Mt[v]‖ < α

implies

|
∫

[0,s]

[u(r)− v(r)]dr| < α

for all s ∈ [0, t] it follows that

|Fu(τ)− Fv(τ)| < (τ + 1)α.

If we set α = β/2 then

‖Mt[u]−Mt[v]‖ < α

implies
‖Nt[Fu]−Nt[Fv]‖ < β

for all t ∈ [0, 1]. Therefore F is indeed a uniformly R-continuous causal
operator.
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Example 12. Consider the R-continuous causal operator F of Example
11 and let α, β ∈ R be given positive numbers. Define open neighbourhoods
of zero Gα ⊆ A and Hβ ⊆ B by setting

Gα = {a | ‖a‖ < α} and Hβ = {b | ‖b‖ < β}.

Choose β > 0. In Example 11 we showed that

Mt[u]−Mt[v] ∈ Gβ/2

implies
Nt[F (u)]−Nt[F (v)] ∈ Hβ

for each u, v ∈ K and each t ∈ T . Hence, for all β > 0, we can say that F
is an approximately R-continuous operator with tolerance (Gβ/2,Hβ).

Remark 11. It is clear from the previous example that for any uniformly
R-continuous operator F and any β > 0 we can choose α > 0 such that F
is an approximately R-continuous operator with tolerance (Gα,Hβ).

The next examples show that concepts such as finite memory and sta-
tionarity can also be formulated in terms of the proposed general frame-
work.

Example 13. Let

X = L∞(R), A = L∞([0, Δ]), Y = C(R), B = C([0, 1 + Δ])

and
TX = TY = [0, 1 + Δ]

where Δ > 0 is a fixed positive real number. Define

K = {x | x(t) = 0 for t /∈ [0, 1] and |x(s)− x(t)| ≤ |s− t| ∀ s, t ∈ R}

and consider the mapping F = FΔ : K → Y given by the formula

[Fu](t) =
1
Δ

∫

[t−Δ,t]

u(r)dr

for each u ∈ X and t ∈ R. Define Mt : X → A by

Mt[x](r) = x(r + t−Δ)

for each r ∈ [0, Δ] and each t ∈ T and Nt : Y → C([0, 1 + Δ]) by

Nt[y](τ) = y(t)
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for all τ ∈ [0, 1 + Δ] and each t ∈ T .
Let E = T × T . Since

Nt[Fx](τ) = [Fx](t)

=
1
Δ

∫

[t−Δ,t]

x(r)dr

=
1
Δ

∫

[0,Δ]

Mt[x](r)dr

it is clear that

Ns[Fu](τ)−Nt[Fv](τ) =
1
Δ

∫

[0,Δ]

[Ms[u](r)−Mt[v](r)] dr.

If
‖Ms[u]−Mt[v]‖ < β

then

|Ns[Fu](τ)−Nt[Fv](τ)| ≤ 1
Δ

∫

[0,Δ]

|Ms[u](r)−Mt[v](r)|dr

≤ 1
Δ

∫

[0,Δ]

‖Ms[u]−Mt[v]‖dr

< β

and hence
‖Ms[u]−Mt[v]‖ < β

implies
‖Ns[Fu]−Nt[Fv]‖ < β

for all (s, t) ∈ E and all β > 0. Thus, for all β > 0, we can say that F
is an approximately R-continuous stationary operator of finite memory Δ
with tolerance (Gβ , Hβ).

Of course we have also shown that F is a uniformly R-continuous sta-
tionary operator with finite memory Δ.

Note that the equivalence relation E = T ×T allows us to consider time
pairs in the form (s, t) where s �= t. This is an essential ingredient in our
description of a stationary operator.

4.3.4 A model for constructive approximation in the
class of R-continuous operators

When F is an R-continuous operator we prove the existence of an approxi-
mating R-continuous operator S which is stable to small disturbances. The
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operator S defines a model of the real system and is constructed from an
algebra of elementary continuous functions by a process of finite arithmetic.

Definition 26. We will say that the family N of operators {Nt}t∈T is
pointwise normally extreme on Y if, for each y ∈ Y , we can find t = ty ∈ T
such that

‖Nt[y]‖ = ‖y‖.
Theorem 23. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation and let

XR = (X, A, T,M) and YR = (Y, B, T,N )

be R-spaces. Suppose that (XR, YR) is a complete R-pair and that N is
pointwise normally extreme on Y . Let K ⊆ X be a compact set and let
the map F : K → Y be an R-continuous operator. Then for any fixed real
numbers

δ > 0 and τ > 0

there exists an associated R-continuous operator S defined by finite arith-
metic in the form

S = WZQG : X → Y

such that for all x ∈ K and x′ ∈ X with ‖x− x′‖ ≤ δ we have

‖F (x)− S(x′)‖ ≤ 1
2
ωR(2δ) + τ.

Proof. Since Et = T for all t ∈ T we can define the auxiliary mapping
f :M[K]→ B by setting

f(Mt[x]) = Nt[Fx]

for each x ∈ K and t ∈ T . We recall that not only is this a good definition
but also from Lemma 13 that the mapping f : M[K] → B is uniformly
continuous. Let Am ⊆ A be a subspace of dimension m and Bn ⊆ B be a
subspace of dimension n. We will construct a mapping σ : A → B in the
form

σ = πνλθ

where θ ∈ L(A, Am) and λ ∈ L(Am,Rm) are given by

θ(w) =
m∑

i=1

αici
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and

λ(
m∑

i=1

αici) = (α1, . . . , αm)

for some suitable basis c1, . . . , cm in Am, where ν : Rm → Rn is continuous
and where π ∈ L(Rn, Bn) is given by

π(ν) =
n∑

j=1

νjdj

for some suitable basis d1, . . . , dn in Bn. By applying Theorem 21 there
exists a continuous mapping σ : A→ B in the above form such that for all

w ∈M[K] and all w′

with
‖w − w′‖ < δ

we have
‖f(w)− σ(w′)‖ ≤ 1

2
ωf (2δ) + τ

where ωf is the modulus of continuity of f . Since ωf (α) = ωR(α) for all
α ∈ R+ we see that

‖f(w)− σ(w′)‖ ≤ 1
2
ωR(2δ) + τ

when
‖w − w′‖ < δ.

Now define S : X → Y by setting

Nt[Sx] = σ(Mt[x])

for each x ∈ X and each t ∈ T .
Our indirect definition assumes that if Nt[y] ∈ B is known for all t ∈ T

then y ∈ Y is also known. We will follow our earlier notation and write

y = K(N [y])

where K : N [Y ] → Y is the appropriate archival function. The mapping
σ : A → B is continuous and hence, for each β > 0, we can find α > 0 so
that

‖Ms[u]−Mt[v]‖ < α
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implies
‖σ(Ms[u])− σ(Mt[v])‖ < β

and
‖Ns[Su]−Nt[Sv]‖ < β

and hence S : X → Y is an R-continuous operator.
Since

‖Mt[x− x′]‖ ≤ ‖x− x′‖
it follows that

‖Nt[Fx− Sx′]‖ = ‖f(Mt[x])− σ(Mt[x′])‖
<

1
2
ωR(2δ) + τ

for all t ∈ T whenever x ∈ K and

‖x− x′‖ < δ.

Because we can choose t ∈ T such that

‖Nt[Fx− Sx′]‖ = ‖F (x)− S(x′)‖
we must have

‖F (x)− S(x′)‖ <
1
2
ωR(2δ) + τ

whenever x ∈ K and
‖x− x′‖ < δ.

The action of the operator S on an element x ∈ X is defined by the
collection of ordered pairs

{(Mt[x], πνλθMt[x]) | t ∈ T} = {(M[x], πνλθM[x])}.
Since we defined

Nt[Sx] = πνλθMt[x]

we can now write
N [Sx] = πνλθM[x]

or equivalently
S(x) = KπνλθH−1x

for each x ∈ X. If we define

G = θH−1, Q = λ, Z = ν and W = Kπ

then we can see that S has the desired form. We assume that G and W can
be defined by finite arithmetic or replaced by suitable approximations.
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To establish our next result on stable approximation in the class of
R-continuous operators we need the following elementary lemma.

Lemma 15. Let K ⊆ X be a compact set. Then for each ε > 0 we can
find γ > 0 such that

‖Ms[x]−Mt[x]‖ < ε

for all x ∈ K whenever s, t ∈ T and ρ(s, t) < γ.

Proof. For each x ∈ K let

U(x; ε/3) = {u | u ∈ X and ‖u− x‖ < ε/3}.

Clearly
K ⊆

⋃

x∈K

U(x; ε/3)

and because K is compact there is a finite subcovering

U(x1; ε/3), . . . , U(xp; ε/3).

Since Mt[xj ] is uniformly continuous in t ∈ T for each j = 1, 2, . . . , p we
can find γ > 0 so that

ρ(s, t) < γ

implies
‖Ms[xj ]−Mt[xj ]‖ < ε/3

whenever s, t ∈ T . For each x ∈ K we can find xj such that x ∈ U(xj ; ε/3)
and hence

‖Ms[x]−Mt[x]‖ < ‖Ms[x− xj ]‖+ ‖Ms[xj ]−Mt[xj ]‖
+‖Mt[xj − x]‖

≤ 2‖u− x‖+ ‖Ms[xj ]−Mt[xj ]‖
< ε

when s, t ∈ T and ρ(s, t) < γ.

Theorem 24. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation. Let

XR = (X, A, T,M) and YR = (Y,B, T,N )

be R-spaces and suppose that (XR, YR) is an incomplete R-pair and that
N is pointwise normally extreme on Y . Let K ⊆ X be a compact set and
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let the map F : K → Y be continuous and R-continuous. Then for any
fixed real numbers

δ > 0 and τ > 0

there exists an associated operator S : X → Y defined by

Nt[Su] =
N∑

j=1

ψj(t)Nt[Sju]

where ψj : T → R for each j = 1, 2, . . . , N and {ψ1, . . . , ψN} is a partition
of unity and where

Sj = WjZjQjGj : X → Y

for each j = 1, 2, . . . , N and each u ∈ K and t ∈ T . The mapping S is
continuous and R-continuous and is defined by a process of finite arithmetic
in such a way that for all x ∈ K and x′ ∈ X with

‖x− x′‖ ≤ δ

we have
‖F (x)− S(x′)‖ ≤ 1

2
ωR(2δ) + τ.

Proof. Let t ∈ T . The auxilliary mapping ft : Mt[K]→ B is defined by
setting

ft(Ms[x]) = Ns[F (x)]

when s ∈ Et and x ∈ K. Let

ω[ft] : R+ → R+

be the associated modulus of continuity. We recall from Lemmas 12 and 14
that the families {ft}t∈T and {ω[ft]}t∈T are each uniformly equi-continuous.
Hence, for the given τ > 0, it is possible to choose ε = ε(τ) > 0 so that

λ ≤ δ + ε

implies
ω[ft](2λ) ≤ ω[ft](2δ) + τ

for all t ∈ T . It now follows that

λ ≤ δ + ε

implies
ωR(2λ) ≤ ωR(2δ) + τ.
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Our choice of ε can also be sufficiently to also ensure that

‖Mr[u]−Ms[v]‖ < ε

implies
‖Nr[Fu]−Ns[Fv]‖ < τ/12

whenever (r, s) ∈ E and u, v ∈ K. By Lemma 15 we can find γ > 0 to
ensure that

‖Ms[x]−Mt[x]‖ < ε

for all x ∈ K when ρ(s, t) < γ. Using a similar argument and by decreasing
γ if necessary we can also ensure that

‖Ns[Fx]−Nt[Fx]‖ < τ/4

for all x ∈ K when ρ(s, t) < γ. Choose a γ-net

{t1, . . . , tN} ⊆ T

such that whenever t ∈ T we can always find some j = j(t) with

‖t− tj‖ < γ

and let
{ψ1(t), . . . , ψN (t)}

where ψj : T → R for each j = 1, 2, . . . , N be a partition of unity on T
such that

• ψ1, . . . , ψN ∈ C(T ),

• ψj(t) ≥ 0 for all t ∈ T ,

• ∑N
j=1 ψj(t) = 1 for all t ∈ T , and

• ψj(t) = 0 if ρ(t, tj) ≥ γ.

Let x ∈ K and choose u ∈ X with

‖u− x‖ ≤ δ.

If ρ(t, tj) < γ then

‖Mt[u]−Mtj [x]‖ ≤ ‖Mt[u]−Mt[x]‖+ ‖Mt[x]−Mtj [x]‖
≤ ‖u− x‖+ ε

≤ δ + ε. (4.2)
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By applying Theorem 21 we can define a function

σj : A→ B

in the form
σj = πjνjλjθj

such that for all w ∈Mtj
[K] and w′ with

‖w′ − w‖ < λ

we have

‖fj(w)− σj(w′)‖ <
1
2
ω[fj ](2λ) +

τ

4

<
1
2
ωR(2λ) +

τ

4
. (4.3)

Define Sj : X → Y by setting

Nt[Sju] = σj(Mt[u])

and S : X → Y by the formula

Nt[Su] =
N∑

j=1

ψj(t)σj(Mt[u])

for all u ∈ X and t ∈ T .
Now for x ∈ K, u ∈ X with

‖u− x‖ < δ

and all t ∈ T , we have

‖Nt[Fx]−Nt[Su]‖ = ‖
∑

ρ(t,tj)<γ

ψj(t) [Nt[Fx]− σj(Mt[u])] ‖.

We make two observations. Firstly, for ρ(t, tj) < γ we have

‖Nt[Fx]− σj(Mt[u])‖ ≤ ‖Nt[Fx]−Ntj [Fx]‖
+‖Ntj

[Fx]− σj(Mt[u])‖
≤ ‖fj(Mtj

[x])− σj(Mtu)‖+
τ

4
and secondly, since

‖Mtj
[x]−Mt[u]‖ ≤ ‖u− x‖+ ε
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it follows that

‖fj(Mtj
[x])− σj(Mt[u])‖ ≤ 1

2
ωR(2[‖u− x‖+ ε]) +

τ

4

≤ 1
2
ωR(2δ) +

τ

4
.

Hence for all t ∈ T we have

‖Nt[Fx]−Nt[Su]‖ ≤ [
1
2
ωR(2δ) +

τ

2
]
∑

ρ(t,tj)<γ

ψj(t)

≤ 1
2
ωR(2δ) + τ

from which the desired result follows.

Theorem 25. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation and let

XR = (X, A, T,M) and YR = (Y,B, T,N )

be R-spaces and suppose that (XR, YR) is a complete R-pair and that N
is pointwise normally extreme on Y . Let K ⊆ X be a compact set and let
the continuous map F : K → Y be a continuous R-operator. Then for any
fixed real numbers

δ > 0 and τ > 0

there exists an associated approximately R-continuous operator Ŝ defined
by finite arithmetic in the form

Ŝ = WZQG : X → Y

such that for all x ∈ K and x′ ∈ X with

‖x− x′‖ ≤ δ

we have
‖F (x)− Ŝ(x′)‖ ≤ 1

2
ωR(2δ) + τ.

Proof. Define the mapping f :M[K]→ B by setting

f(Mt[x]) = Nt[Fx]

for each x ∈ K and t ∈ T . By Theorem 21 we can construct a mapping in
the form

σ = πνλθ : A→ B
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such that for all w ∈M[K] and all w′ with

‖w − w′‖ < δ

we have
|f(w)− σ(w′)| ≤ 1

2
ωR(2δ) + τ/2

where ωR(·) is the R-modulus of continuity of F .
At this stage we wish to reformulate our construction and begin by

considering an appropriate approximation to the map ν : Rm → Rn.
Let u ∈ K. For each t ∈ T we have

θ(Mt[u]) =
m∑

i=1

αi[u](t)ci

and since
Ms[u]→Mt[u] as s→ t

it follows that
α[u] = (α1[u], . . . , αm[u]) ∈ C(T )m.

Because
α[v]→ α[u] as v → u

and K is compact the set

AK = {α[u] | u ∈ K} ⊆ C(T )m

is also compact and we can use the Arzela-Ascoli Theorem to deduce that
the functions α[u] ∈ AK are uniformly equi-continuous. It follows that we
can find a bounded closed interval IK ⊆ Rm such that

α[u](t) = (α1[u], . . . , αm[u])(t) ∈ IK

for each u ∈ K and each t ∈ T . The mapping ν : Rm → Rn is uniformly
continuous on IK and hence we can find γ > 0 such that

‖ν(α)− ν(α′)‖ < τ/2n

whenever
‖α− α′‖ < γ.

As in Lemma 15 choose a finite number of points α[u1], . . . , α[uq] such that

AK ⊆
q⋃

l=1

N(α[ul]; γ)
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and a collection {ψ1, . . . , ψq} of continuous functions

ψl : C(T )m → R

with
q∑

l=1

ψl(α) = 1

for all α ∈ AK and such that

ψl(α) ≥ 0, ψl(α) > 0

when
‖α− α[ul]‖ < γ/12

and
ψl(α) = 0

when
‖α− α[ul]‖ ≥ γ

for each l = 1, 2, . . . , q.
It follows that

‖α−
q∑

l=1

ψl(α)α[ul]‖ < γ

for each α ∈ AK .
To complete the approximation we choose η so that

‖α[u](s)− α[u](t)‖ < γ

for all u ∈ K whenever ρ(s, t) < η. If {t1, . . . , tp} is an η-net for T then we
can define continuous functions ϕk : T → R with

p∑

k=1

ϕk(t) = 1

for all t ∈ T and such that

ϕk(t) ≥ 0, ϕk(t) > 0

when
ρ(t, tk) < η/2

and
ϕk(t) = 0
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when
ρ(t, tk) ≥ η

for each k = 1, 2, . . . , p.
It can be seen that

‖α[u](t)−
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk)‖

≤ ‖α[u](t)−
p∑

k=1

ϕk(t)α[u](tk)‖

+‖
p∑

k=1

ϕk(t)

[
α[u](tk)−

q∑

l=1

ψl(α[u])α[ul](tk)

]
‖

≤ γ/3

for each u ∈ K and all t ∈ T and hence

‖ν(α[u](t))− ν(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))‖ < τ/2n.

If ‖dj‖ ≤ 1 for all j = 1, 2, . . . , n then

‖πν(α[u](t))− πν(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))‖

= ‖
n∑

j=1

[
νj(α[u](t))− νj(

p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))

]
dj‖

≤
n∑

j=1

|νj(α[u](t))− νj(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))|

< τ/2

which we can rewrite in the form

‖σ(Mt[u])− πν(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))‖ < τ/2.

If we define Ŝ : X → Y by setting

Nt[Ŝu] = πν(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul](tk))
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then
‖Nt[Su]−Nt[Ŝu]‖ < τ/2

for all u ∈ K and all t ∈ T and hence

‖S(u)− Ŝ(u)‖ < τ/2

for all u ∈ K. On the other hand if ‖ci‖ ≤ 1 for all i = 1, 2, . . . , m then

‖Mt[u]−
m∑

i=1

[
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])αi[ul](tk)

]
ci‖ < γ/3

for all u ∈ K and t ∈ T . Therefore

‖Ms[u]−Mt[v]‖ < γ/3

implies

‖
m∑

i=1

[
p∑

k=1

{
ϕk(s)

q∑

l=1

ψl(α[u])− ϕk(t)
q∑

l=1

ψl(α[v])

}
αi[ul](tk)

]
ci‖ < γ

from which it follows that

‖Ns[Ŝu]−Nt[Ŝv]‖ < τ/2

for each s, t ∈ T . In other words

Ms[u]−Mt[v] ∈ Uγ/3

implies
Ns[Ŝu]−Nt[Ŝv] ∈ Vτ/2

and we can say that Ŝ is an approximately continuous realistic operator
with tolerance (Uγ/3, Vτ/2).

We note that if
x ∈ K and ‖x− x′‖ < δ

then

‖Nt[Fx]−Nt[Ŝx′]‖ ≤ ‖Nt[Fx]−Nt[Sx′]‖+ ‖Nt[Sx′]−Nt[Ŝx′]‖
<

1
2
ωR(2δ) + τ

for all t ∈ T and hence

‖F (x)− Ŝ(x′)‖ <
1
2
ωR(2δ) + τ.
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Finally we address the structure of the operator Ŝ.
The operator Ŝ : X → Y is based on a mapping

σ̂ = πν̂λ̂θ̂ : X → B,

where θ̂ ∈ L(X, C(T )m) is defined by

θ̂(Mtu) = α[u](t)

for all
u ∈ X and t ∈ T,

and where λ̂ : C(T )m → Rmpq is given by

λ̂(α[u]) = {αi[ul](tk)}

for i = 1, 2, . . . , m, k = 1, 2, . . . , p and l = 1, 2, . . . , q, and where the map-
ping ν̂ : Rmpq → Rn is specified by

ν̂({αi[ul](tk)}) = ν(
p∑

k=1

ϕk(t)
q∑

l=1

ψl(α[u])α[ul(tk)).

Of course with a bit more effort we could do the same sort of approximation
with Nt[y].

4.4 Concluding Remarks

In this chapter, we have presented a unified approach to finding mathe-
matical models of a realistic dynamical system that represent the system
with any pre-assigned accuracy. The models are given by constructively
defined operators with special properties. “A realistic dynamical system”
means an object with real-world properties such as causality, memory, sta-
tionarity, etc. We presented a formalization of such properties in the form
of the R-continuous operator and the approximately R-continuous oper-
ator. The proposed models of the realistic system are R-continuous and
approximately R-continuous.
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Chapter 5

Methods of Best
Approximation for Nonlinear
Operators

5.1. Introduction

5.2. Best Operator Approximation in Banach Spaces:
”Deterministic” Case

5.3 Estimation of Mean and Covariance Matrix for Random Vectors

5.4. Best Hadamard-quadratic Approximation

5.5. Best r-Degree Polynomial Approximation

5.6. Best Causal Approximation

5.7. Best Hybrid Approximations

5.8. Concluding Remarks

5.1 Introduction

The theory of operator approximation has a direct application to the math-
ematical modelling of nonlinear systems. In recent decades, methods of con-
structive representation of nonlinear systems have been a topic of intensive
research [106]–[155]. In broad terms, the problem is to find a mathematical
model of the system which is given by an abstract operator F representing
the input-output relationship. The model must approximate the system in
a certain sense subject to some restrictions. Such restrictions follow, in par-
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ticular, from initial known information on the system. For example, in the
case of the system transforming deterministic signals, this information can
be given by equations describing the signals sets. A number of works in-
cluding, in particular, the fundamental results by Volterra, Wiener, Porter,
Sandberg have been devoted to the solution of this problem. The references
can be found, in particular, in [106]–[119]. The works [106]–[155] provide
models which approximate the system with any pre-assigned accuracy.

General theory of the best approximation in normed linear spaces has
been developed for many years. A number of deep theoretical results re-
lated to the investigation of existence, uniqueness and characterization of
elements of the best approximation have been established. See, for example,
[29] and the bibliography there. However, theory of the best constructive
approximation of nonlinear operators is not so well elaborated, and pio-
neering achievements in this area, such as those obtained in [76, 81, 82],
are very recent. The papers [156]–[166] also provide new methods in this
area of research.

The methods of Chapter 3 (and those in [12]-[65], [104]-[151]) for con-
structive approximation of nonlinear operators with any preassigned accu-
racy have mainly been concerned with proving the existence and uniqueness
of approximating operators, and with justifying the bounds of errors aris-
ing from the approximation methods. The assumptions used are that the
spaces of images and pre-images are deterministic and that elements of
these spaces can be represented in an analytical form, i.e. by equations.

In many applications, the spaces of images and pre-images are proba-
bilistic and their elements cannot be written analytically. Nevertheless, it
is possible to describe the elements of these spaces in terms of their nu-
merical characteristics, such as the estimates of mathematical expectation,
of covariance matrices etc. A typical example is image processing where a
digitized image, represented by a matrix, is often interpreted as the sample
of a stochastic signal.

In this chapter, we provide some new approaches to the best construc-
tive approximation of nonlinear operators in ”deterministic” and probabil-
ity spaces. In the case of approximation in probability spaces, it is assumed
that the only available information on the operator is given by certain co-
variance matrices. The approaches considered in Sections 5.2 and 5.4–5.7
below are based on the approximant produced by a polynomial opera-
tor. The approximant minimizes the mean squared error between a desired
image and the image of the approximating operator. Standard software
packages, such as Matlab, can easily be used to implement the method
(see Sections 5.4–5.7 in this regard).
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In Section 5.7, we consider a method based on a combination of the
special iterative procedure and the best operator approximation used at
each iteration.

5.2 Best Approximation of Nonlinear Operators in
Banach Spaces: ”Deterministic” Case

Let us consider the operator S = WZQGm considered in preceding chap-
ters.

In this section, we show how the operator S = WZQGm could be con-
structed to provide, in some definite sense, the best possible approximation
to a given operator F .

Let X, Y be Banach spaces having the Grothendieck property of ap-
proximation and consider the following procedure.

Unlike the preceding Chapters, we now suppose that operator Z is given
by multidimensional polynomials g1(ck; a), . . ., gn(ck; a) in the form (5.2)
below so that Z = Zc with

Zc(a) = (g1(c1; a), g2(c2; a), . . . , gn(cn; a)) (5.1)

and

gk(ck; a) =
p∑

s=0

ck,srs(a) (5.2)

where p = (p1, p2, . . . , pm) ∈ Zm
+ is given and Z+ = {0, 1, 2, . . .} denotes

the set of non-negative integers and where

c = (c1, c2, . . . , cn), ck = {ck,s}s∈Zm
+

and ck,s ∈ R

for each k = 1, 2, . . . , n and each permissible s ∈ Zm
+ . We assume that each

rs : Rm → R is continuous and that the collection {rs}s∈Zm
+

generates an
algebra that satisfies the conditions of Stone’s Algebra [113]. We could for
example take

rs(a) = as = as1
1 as2

2 . . . asm
m . (5.3)

Let us assume that the functions {rs}s∈Zm
+

are linearly independent. In-
troduce the class S of operators given by

S = {S | S : X → Yn and S = Sc = WZcQGm} (5.4)

with fixed operators Gm, Q,Hn and W and with fixed functions {rs}s∈Zm
+

.
Thus the operator Sc is completely defined by the coefficients {ck,s}.
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Let {gk(c∗k; a)} denote the functions which best approximate the given
functions {fk(a)} on the set

QGm(K) ⊆ Rm.

We can now state the following theorem.

Theorem 26. Let X, Y be Banach spaces with the Grothendieck property
of approximation, let K ⊆ X be a compact set and F : K → Y a continuous
map. Let the operator Z∗ : Rm → Rn be defined by

Z∗ = Zc∗ . (5.5)

Then for some fixed ε > 0 and for all x, x′ ∈ X with ‖x′ − x‖ < ε the
operator S∗ = Sc∗ : X → Yn in the form

S∗ = WZ∗QGm (5.6)

satisfies the equality

sup
x∈K
‖F (x)− S∗(x′)‖ = inf

S∈S

{
sup
x∈K
‖F (x)− S(x′)‖

}
. (5.7)

Let us now extend the application of the approach presented in the
preceding Chapters to the best approximation of non-linear dynamical sys-
tems when the system is completely described by a finite number of real
parameters.

To this end, let us consider the approximation of operator F : KΓ → Y
in the form

Ŝ = WZV̂ξ,

where KΓ and Γ are the same as in Section 1.6.6. (check the section
number!!!)

We suppose that X and Y are Banach spaces, and that by analogy with
(5.1)–(5.4), Z = Zc where

Zc(γ) = (g1(c1; γ), g2(c2; γ), . . . , gn(cn; γ)) (5.8)

and

gk(ck; γ) =
p∑

s=0

ck,srs(γ) (5.9)

where p = (p1, p2, . . . , pm) ∈ Zm
+ is fixed and where

rs(γ) = γs = γ1
s1γ2

s2 . . . γm
sm . (5.10)
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The neighbourhoods of zero ξ, θ, ζ ⊆ Rm can be chosen to be closed and
bounded. Fix ξ, θ, ζ and the method of calculation of the parameters and
introduce the class Ŝ of operators given by

Ŝ = {Ŝ | Ŝ : KΓ+θ → Y and Ŝ = Ŝc = WZcQV̂ξ}. (5.11)

Thus the operator Ŝc is completely defined by the coefficients {ck,s}. We
suppose the map

Rζ : Γ + ζ → Rn

is written in the form

Rζ(γ) = (f1(γ), f2(γ), . . . , fn(γ)) (5.12)

and let {gk(c∗k; γ)} denote the functions which best approximate the given
functions {fk(γ)} on the closed and bounded interval Γ + ζ ⊆ Rm.

We have the following theorem.

Theorem 27. Let X, Y be Banach spaces, let K ⊆ X be a compact set
and F : K → Y a continuous map. Let the operator Z∗ : Rm → Rn be
defined by

Z∗ = Zc∗ (5.13)

Then for some fixed α > 0 and for all x, x′ ∈ X with ‖x′ − x‖ < α the
operator Ŝ∗ = Ŝc∗ : X → Y in the form

Ŝ∗ = WZ∗V̂ξ (5.14)

satisfies the equality

sup
x∈K
‖F (x)− Ŝ∗(x′)‖ = inf

Ŝ∈Ŝ

{
sup
x∈K
‖F (x)− Ŝ(x′)‖

}
. (5.15)

The scheme of numerical realization of the operator Ŝ consists of the fol-
lowing steps. Firstly it is necessary to implement a method for approximate
determination of the parameter γ. Secondly it is necessary to construct the
functions g1, g2, . . . , gn and consequently the operator Z and thirdly it is
necessary to construct an appropriate operator W .

We will illustrate these procedures with an example involving parameter
estimation.

Example 14. Consider the following situation. Let X be a space of mea-
surable functions. We will suppose that a set of incoming signals has the
form K = {xγ}γ∈Γ where each signal xγ ∈ X is completely specified by the
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value of a parameter γ ∈ Γ ⊆ Rm. By observing an individual signal from
this set we obtain a measurement

δ = R(γ) ∈ Δ ⊆ Rn

from which we wish to estimate the value of the unknown parameter γ.
Therefore the natural estimation procedure can be regarded as a dynam-

ical system represented by a mapping

R : Γ→ Δ

with input γ ∈ Γ ⊆ Rm and output δ ∈ Δ ⊆ Rn. We wish to construct
a best possible approximation to this system in the sense of Theorem 27.
Thus we must show that the mapping R : Γ → Δ can be approximated by
an operator

Ŝ : Rm → Rn.

Since the output from the system is the parameter δ itself we have yδ = δ
and the general output structure is simplified.

In our example we let X = L×L where L is the space of all measurable
functions x : [0,∞)→ R such that

‖x‖ =
∫ ∞

0

|x(t)|dt <∞. (5.16)

We assume that the observed signal has the form xγ = (xγ,1, xγ,2) ∈ X
where

xγ,1(t) = exp(−t)(cos γ1t +
sin γ2t

t
) (5.17)

and

xγ,2(t) = txγ,1(t) (5.18)

and where
γ = (γ1, γ2) ∈ [−1, 1]× [−1, 1] = Γ ⊆ R2

is the unknown parameter. To estimate γ we take a Fourier cosine trans-
form for xγ . In particular the transform is used to determine the DC-
component of each signal. Define Xγ(ω) = (Xγ,1(ω),Xγ,2(ω)). It is easily
shown that

Xγ,1(ω) =
∫ ∞

0

xγ,1(t) cos ωtdt

=
1
2

[
1

1 + (ω + γ1)2
+

1
1 + (ω − γ1)2

]

+
1
2

[
arctan(ω + γ2)− arctan(ω − γ2)

]
(5.19)
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and

Xγ,2(ω) =
∫ ∞

0

xγ,2(t) cos ωtdt

=
1
2

[
1− (ω + γ1)2

[1 + (ω + γ1)2]2
+

1− (ω − γ1)2

[1 + (ω − γ1)2]2

]

+
1
2

[
ω + γ2

1 + (ω + γ2)2
− ω − γ2

1 + (ω − γ2)2

]
. (5.20)

Thus we calculate

δ1 = Xγ,1(0) =
1

1 + γ1
2

+ arctan γ2 (5.21)

and

δ2 = Xγ,2(0) =
1− γ1

2

[1 + γ1
2]2

+
γ2

1 + γ2
2
. (5.22)

In effect we have defined a non-linear system which is described by a map
R : Γ→ R2 given by

δ = R(γ) (5.23)

where δ = (δ1, δ2) ∈ R2. The non-linear system has input γ ∈ Γ and output
δ ∈ R(Γ) = Δ. It is clear that the above formulae for δ = Xγ(0) can be
applied to all γ ∈ R2 to define an extended map R : R2 → R2.

We seek the best possible approximation to the extended operator R in
the following sense. Let H be the Hilbert space of measurable functions
f : [−1, 1]→ R such that

∫ 1

−1

[f(s)]2ds√
(1− s2)

<∞ (5.24)

with inner product

〈f, g〉 =
∫ 1

−1

f(s)g(s)ds√
(1− s2)

. (5.25)

Let Pm ⊆ H be the subspace of polynomials of degree at most m − 1. For
each f ∈ H there exists a unique polynomial pm = pm(f) ∈ Pm which
minimizes the integral

E(f, p) = ‖f − p‖2 = 〈f − p, f − p〉 (5.26)

over all p ∈ Pm. It is well known that pm(f) = Πm(f) where Πm : H → Pm

is the Chebyshev projection operator defined in Example 6. Therefore

pm =
m∑

j=1

cjTj−1 (5.27)
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where Tj−1 is the Chebyshev polynomial of the first kind of degree j−1 and
where the coefficients cj = cj(f) are calculated using the integral formulae
given in Example 6. We write f ∼ pm(f).

In this example we will take m = 6. Define functions {fij}i,j∈{1,2} ∈ H
by the formulae

f11(s) =
1

1 + s2
, f12(s) = arctan s, f21(s) =

1− s2

(1 + s2)2

and
f22(s) =

s

1 + s2
.

The corresponding projections {pij}i,j∈{1,2} ∈ P6 are given by

p11 =
√

2
2

T0 − (3
√

2− 4)T2 + (17
√

2− 24)T4

≈ (.7071)T0 − (.2426)T2 + (.0416)T4,

p12 = (2
√

2− 2)T1 − (10
√

2− 14)
3

T3 +
(58
√

2− 82)
5

T5

≈ (.8284)T1 − (.0474)T3 + (.0049)T5,

p21 =
√

2
4

T0 − (8− 5
√

2)
2

T2 +
(112− 79

√
2)

2
T4

≈ (.3536)T0 − (.4645)T2 + (.1386)T4,

(5.28)

and

p22 = (2−√2)T1 − (10− 7
√

2)T3 + (58− 41
√

2)T5

≈ (.5858)T1 − (.1005)T3 + (.0172)T5. (5.29)

The theoretical system is therefore replaced by a more practical system de-
scribed by a map Z∗ : R2 → R2 given by

δ = Z∗(γ) (5.30)

where

δ1 = p11(γ1) + p12(γ2) (5.31)

and

δ2 = p21(γ1) + p22(γ2). (5.32)

In actual fact the calculations will be based on one further approximation.
In practice we choose a large value of T and calculate δT = RT (γ) using

δT,1 =
∫ T

0

xγ,1(t)dt (5.33)
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and

δT,2 =
∫ T

0

xγ,2(t)dt. (5.34)

Associated with each δT there is a uniquely defined (virtual) measurement
γ̂ defined by

γ̂ = R−1(δT ). (5.35)

Therefore we have a (virtual) measurement scheme defined by an operator
V̂T : R2 → R2 given by

V̂T = R−1RT (5.36)

and written in the form

γ̂ = V̂T (γ). (5.37)

The practical measurement system is now described by an operator

Ŝ = Z∗V̂T = Z∗R−1RT

with output given by

δ = Ŝ(γ)
= Z∗V̂T (γ)
= Z∗(γ̂). (5.38)

The operator Ŝ is the best possible approximation in the sense of Theo-
rem 27.

To estimate the parameter γ we take the (observed) value δT = RT (γ)
of δ and compute

γest = Z∗−1(δT ) = Z∗−1RT (γ).

For example this could be done by using a Newton iteration to solve the
equation

Z∗(γest) = δT . (5.39)
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5.3 Estimation of Mean and Covariance Matrix for
Random Vectors

In the next Sections, methods for modelling of nonlinear systems that trans-
form stochastic signals will be considered under an assumption that their
mean and covariance matrix either are known or can be estimated. Be-
low, we present some methods for estimating the mean and the covariance
matrix.

Throughout the next Sections, (Ω, Σ, μ) signifies a probability space,
where Ω is the set of outcomes, Σ a σ–field of measurable subsets Δ ⊂ Ω
and μ : Σ → [0, 1] an associated probability measure on Σ with μ(Ω) = 1.
Each element ω ∈ Ω represents the outcome of an experiment and each
subset Δ of Ω is a set of outcomes, called an event. We say that the event
Δ has occurred if ω ∈ Δ.

5.3.1 Maximum likelihood estimates

Suppose that x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) are random vectors such
that x = (x1, . . . , xm)T and y = (y1, . . . , yn)T with xi, yk ∈ L2(Ω,R) for
i = 1, . . . , m and k = 1, . . . , n, respectively. Let

x = x(ω) ∈ Rm and y = y(ω) ∈ Rn

be realizations of x and y so that x = (x1, . . . , xm)T and y = (y1, . . . , yn)T

with xi, yk ∈ R for i = 1, . . . , m and k = 1, . . . , n.
Random vectors will be denoted by bold letters.
Let us write

E[xiyk] =
∫

Ω

xi(ω)yk(ω)dμ(ω) <∞,

E[x] =

⎡
⎢⎣

E[x1]
...

E[xm]

⎤
⎥⎦ , E[xyT ] =

⎡
⎢⎣

E[x1y1] . . . E[x1yn]
...

. . .
...

E[xmy1] . . . E[xmyn]

⎤
⎥⎦

and
Exy = E[xyT ]− E[x]E[yT ].

Given N independent realizations x(1), . . ., x(N) of the random vector
x, the maximum likelihood (ML) estimates Ê[x] and Êxx for E[x] and Exx

respectively, under the Gaussian assumption, are known to be [1]

Ê[x] =
1
N

N∑

i=1

x(i) (5.40)
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and

Êxx =
1
N

N∑

i=1

(x(i) − Ê[x])(x(i) − Ê[x])T . (5.41)

In many real world situations, such estimates are difficult to use. Below,
we consider the estimating methods subject to specific realistic conditions.

5.3.2 Estimates from incomplete realizations

Often, the source of complexity in using formulas (5.40) and (5.41) is that
not every component of each realization x(i) is observed, so that (5.40)
and (5.41) cannot be used. Ad hoc modifications of these estimators are
likely to produce unsatisfactory results. For example, one couuld arbitrary
assign the value of zero to all missing components and then directly use
(5.40) and (5.41), however severe biases would occer. Another approach

would replace the normalizing factor
1
N

in (5.40) and (5.41) by a factor
that would vary from one component to another and which would be chosen
to give unbiased estimates. Thus, the ith component of Ê[x] would be the
arithmetic mean of the ith component of x over all realizations for which
it is available. Nevertheless, this procedure could result in a covariance
matrix with a negative eigenvalue.

Here, we consider the method [102] which is motivated to give maximum
likelihood estimates in an effort to improve upon the ad hoc estimates.

The specific restriction of the method is that it must be possible to order
the components of the random vector such that the set of realizations for
which the ith component is available is a subset of the set of realizations
for which the (i− 1)th component is available, for i = 2, . . . ,M .

This restriction is satisfied in cases where a sequence of limited-resource
sensors is used, with each subsequent sensor observing a subset of objects
that were observed by the previous sensor.

Let x ∈ L2(Ω,Rm) be a normal random vector with the probability
density function given by

p(x1, . . . , xm) =
1

(2π)m/2[det(Exx)]1/2

× exp
[
−1

2
(x− E[x])T E−1

xx (x− E[x])
]

, (5.42)

where det(Exx) is the determinant of Exx, det(Exx) = 0 and Exx is positive
definite.

The problem is to estimate the mean and the covariance matrix of x un-
der assumption that not all of the m components are necessarily observed.



148 5. BEST OPERATOR APPROXIMATION

In what follows the observations are denoted by a set X illustrated in
Fig. 1:

X = {xik | i = 1, . . . , m, k = 1, . . . , Ni},
where i indicates the component of the random vector, and k is the index
of the realization.

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 . . . . . . . . . . . . . . . . . . . . . . . . x1N1

x21 . . . . . . . . . . . . . . . x2N2 ◦ . . . ◦
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xm1 . . . xm,Nm ◦ . . . ◦ . . . ◦ . . . ◦

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Structure of the set comprising independent realizations
of the random vector x ∈ L2(Ω,Rm); the symbol ◦ represents
missing data.

In Fig. 1, the symbol ◦ denotes missing data and it is not zero. Thus,
xi1k1 and xi2k2 are statistically independent if k1 = k2. The total number
of observations of the ith component is Ni. It is assumed that

Nm ≤ Nm−1 ≤ . . . ≤ N1.

The solution of the problem formulated above is based on a represen-
tation of Exx via the LDLT factorization [50] and a further determination
of the probability density function p(x1, . . . , xi).

First, let Exx be nonsingular and let

Exx = MDMT (5.43)

be the LDLT factorization of Exx where M is lower triangular matrix with
ones on the main diagonal and D is diagonal matrix. Then

E−1
xx = M−T D−1M−1 = L−T D−1L−1,

where L = M−1.
Each matrix F : Rn×m defines an associated operator F : L2(Ω,Rm)

→ L2(Ω,Rp) via the equation

[F(x)](ω) = F [x(ω)] (5.44)

for each ω ∈ Ω.
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Let L : L2(Ω,Rm)→ L2(Ω,Rm) be the operator defined similarly to F
via (5.44) and let

u = L(x) and u = Lx

where u ∈ L2(Ω,Rm) and u = u(ω).
Then we have

E[u] = LE[x]

and
E[(u− E[u])(u− E[u])T ] = LExxLT = D.

Because of the lower triangular structure of L, the mean and the covari-
ance matrix of the first i components of u are obtainable from the mean
and the covariance matrix of the first i components of x as follows:

⎡
⎢⎢⎢⎣

E[u1]
E[u2]

...
E[ui]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 . . . . . . 0
L21 1 0 . . . 0

...
...

...
...

...
Li1 Li2 . . . Li,i−1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

E[x1]
E[x2]

...
E[xi]

⎤
⎥⎥⎥⎦ (5.45)

and
⎡
⎢⎢⎢⎣

D1 0 . . . . . . 0
0 D2 0 . . . 0
...

...
...

...
...

0 . . . . . . 0 Di

⎤
⎥⎥⎥⎦ (5.46)

=

⎡
⎢⎢⎢⎣

1 0 . . . . . . 0
L21 1 0 . . . 0

...
...

...
...

...
Li1 Li2 . . . Li,i−1 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ex1x1 . . . Ex1xi

Ex2x1 . . . Ex2xi

...
...

...
Exix1 . . . Exixi

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

1 L21 . . . . . . Li1

0 1 L32 . . . Li2

...
...

...
...

...
0 0 0 0 1

⎤
⎥⎥⎥⎦ , (5.47)

where D1, D2, . . ., Di are diagonal entries of D.
From (5.47), it follows that

det

⎡
⎢⎢⎢⎣

Ex1x1 Ex1x2 . . . Ex1xi

Ex2x1 Ex2x2 . . . Ex2xi

...
...

...
...

Exix1 Exix2 . . . Exixi

⎤
⎥⎥⎥⎦ =

i∏

j=1

Dj (5.48)



150 5. BEST OPERATOR APPROXIMATION

and
⎡
⎢⎢⎢⎣

Ex1x1 Ex1x2 . . . Ex1xi

Ex2x1 Ex2x2 . . . Ex2xi

...
...

...
...

Exix1 Exix2 . . . Exixi

⎤
⎥⎥⎥⎦

−1

(5.49)

=

⎡
⎢⎢⎢⎣

1 L21 . . . . . . Li1

0 1 L32 . . . Li2

...
...

...
...

...
0 0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

D1 0 . . . . . . 0
0 D2 0 . . . 0
...

...
...

...
...

0 . . . . . . 0 Di

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎣

1 0 . . . . . . 0
L21 1 0 . . . 0

...
...

...
...

...
Li1 Li2 . . . Li,i−1 1

⎤
⎥⎥⎥⎦ (5.50)

On the basis of (5.42), (5.48) and (5.50), the joint log-probability density
function1 for the first i components of x is

log p(x1, . . . , xi) = − i

2
log(2π)− 1

2

i∑

j=1

log Dj

−
i∑

j=1

1
2Dj

(xj − E[uj ] + Lj1x1 + . . . + Lj,j−1xj−1)2. (5.51)

Next, an expression for the log-probability density function log p(X) of
the incomplete data set X can now be obtained as follows. Let us represent
X in the form

X =
m⋃

i=1

Xi,

where, for i = 1, . . . , m,

Xi = {xjk | j = 1, . . . , i, k = Ni+1 + 1, . . . , Ni}.

Here, Nm+1 = 0 and if Ni+1 = Ni then Xi is the empty set.
Thus, Xi comprises Ni −Ni+1 realizations of the first i components of

x. The xjk are uncorrelated over k (representing different realizations),
while for a particular value of k, the i correlated components have a log-
probability density function of the form (5.51). Noting that the Xi are

1Also called the joint log-llikelihood function [?], [?].
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uncorrelated, the log-probability density function for X is

log p(X) =
m∑

i=1

Ni∑

k=Ni+1+1

⎡
⎣− i

2
log(2π)− 1

2

i∑

j=1

log Dj

− 1
2

i∑

j=1

1
Dj

(xj − E[uj ] + Lj1x1 + . . . + Lj,j−1xj−1)2

⎤
⎦ , (5.52)

which can be simplified to

log p(X) =
m∑

i=1

[
−Ni

2
log(2π)− Ni

2
log Di

− 1
2Di

Ni∑

k=1

(xik − E[ui] + Li1x1k + . . . + Li,i−1xi−1,k)2

]
. (5.53)

This strikingly simple formula indicates that the computation of the
log-probability density function involves applying regression operators of
length 1 through m to the largest subsets of X for which the corrrespond-
ing components are available. The regression operators, in turn, produce
uncorrelated residuals.

The maximum likelihood estimates L̂, D̂ and Ê[u] for L, D and E[u],
respectively, follow from choosing these quantities to maximize the log-
probability density function (5.53). Estimates of the mean and the covari-
ance matrix are obtained from L̂, D̂ and Ê[u].

The structure of log p(X) by (5.53) implies that the problem of esti-
mating E[ui], Di, and the ith row of L are decoupled for different values
of i. Maximizing (5.53) over E[ui] and the i row of L involves solving the
following least squares problem (for example, using the QR factorization):

min
Ni∑

k=1

(xik − E[ui] + Li1x1k + . . . + Li,i−1xi−1,k)2. (5.54)

Maximizing (5.53) over Di is equivalent to choosing Di to be equal to the
minimum of (5.54), divided by Ni,

min
1
Ni

Ni∑

k=1

(xik − E[ui] + Li1x1k + . . . + Li,i−1xi−1,k)2

for i = 1, . . . , m.
If Ni > i for all i, so that

N1 ≥ N2 ≥ . . . ≥ Nm ≥ m
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(i.e., every component is observed at least m + 1 times), and if the true
covariance matrix is positive definite, then the Di are strictly positive (so
the estimated covariance matrix is positive definite).2

The decoupling of E[ui], Di, and the ith row of L, for different i,
facilitates the computation of the Cramer-rao bounds, since it imparts a
block-diagonal structure to the Fisher information matrix.

Example 15. It is instructive to consider in detail the bivariate case (i.e.,
m = 2). We further simplify the problem by assuming that the true mean is
zero, E[x] = 0. Here, we present the exact maximum likelihood estimates
for thr elements of the covarince matrix.

For m = 2, and with the assumption E[x] = 0, it is straightforward to
obtain the maximum likelihood estimates for L and D. Then transforming
back to Exx gives the following exact maximum likelihood estimates:

Êx1x1 =
1

N1

N1∑

k=1

x2
1k, Êx1x2 =

1
N1

N1∑

k=1

x1kx2k

1
N1

N1∑

k=1

x2
1k

1
N2

N2∑

k=1

x2
2k

and

Êx2x2 =
1

N2

N2∑

k=1

x2
2k −

[
1

N2

N2∑

k=1

x1kx2k

]2

1
N2

N2∑

k=1

x2
2k

[
1

N2

N2∑

k=1

x2
2k −

1
N1

N1∑

k=1

x2
1k

]
.

In summary, the above method provides the maximum likelihood esti-
mates for the mean and the covariance matrix of a random vector x with
the normal distribution. The method works under assumption that the
components of the random vector can be ordered such that the set of real-
izations for which the ith component is available is a subset of realizations
for which the (i− 1)th component is available, for i = 2, . . . , m. When the
matrix dimension p is large than the number N of observations available,

5.3.3 A well-conditioned estimator for large-dimensional
covariance matrices

In the next Sections, an estimate of a covariance matrix Exx ∈ Rm×m

and/or its inverse can be required, where m is large compared to the sam-
2The covariance matrix (5.43) is positive definite if and only if all the diagonal

elements of D are strictly positive.
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ple size N . In such situations, the usual estimator – the sample covariance
matrix Êxx by (5.41) – is known to perform poorly. When the matrix
dimension m is large than the number N of observations available, the
sample covariance matrix Êxx is not even invertible. When the ratio m/N
is less than one but not negligible, Êxx is invertible but numerically ill-
conditioned, which means that inverting it amplifies estimation error dra-
matically. For large m, it is difficult to find enough observations to make
m/N negligible, and therefore, it is important to develop a well-conditioned
estimator for large-dimensional covariance matrices.
To the best of our knowledge, no existing estimator is both well-conditioned
and more accurate than the sample covariance matrix. Here, we consider
the method [83] that is both well-conditioned and more accurate than the
sample covariance matrix asymptotically.

One way to to get a well-conditioned structured estimator is to im-
pose the condition that all variances are the same and all covariances are
zero. The estimator which is considered below is a weighted average of
this structured estimator and the sample covariance matrix. The estimator
inherits the good conditioning properties of the structured estimator and,
by choosing the weight optimally according to a quadratic loss function, it
is ensured that the weighted average of the sample covariance matrix and
the structured estimator is more accurate than either of them.

The only difficulty is that the true optimal weight depends on the true
covariance matrix, which is unobservable. This difficulty is solved by find-
ing a consistent estimator of the optimal weight, and show that replacing
the true optimal weight with a consistent estimator makes no difference
asymptotically.

Standard asymptotics assume that the number of variables m is finite
and fixed, while the number of observations N goes to infinity. Under stan-
dard asymptotics, the sample covariance matrix is well-conditioned (in the
limit), and has some appealing optimality properties (e.g., it is maximum
likelihood estimator for normally distributed data). However, this is a bad
approximation of many real-world situations where the number of variables
m is of the same order of magnitude as the number of observations N , and
possibly large.

In method [83], a different framework is used, called general asymp-
totics, where the number of variables m can go to infinity as well.

The only constraint is that the ratio m/N must remain bounded.
We see standard asymptotics as a special case where it is optimal to put

(asymptotically) all the weight on the sample covariance matrix and none
on the structured estimator. In the general case, however, the estimator
considered below is asypmtotically different from the sample covariance
matrix, substantially more accurate, and of course well-conditioned.
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Analysis in finite sample

The easiest way to explain the core of the method is to first analyze the
finite sample case.

Let X = {x(1), . . . , x(N)} be a set of independent and identically dis-
tributed (iid) random vectors x(1) ∈ L2(Ω,Rm), . . ., x(N) ∈ L2(Ω,Rm)
with mean zero such that x(k) = [x(k)

1 , . . . , x(k)
m ]T for k = 1, . . . , N where

x(k)
1 , . . . , x(k)

m ∈ L2(Ω,R). We call X the finite sample of random vectors.
Since x(1), . . . , x(N) are the iid random vectors, we denote

E[xj ] := E[x(1)
j ] = . . . = E[x(N)

j ] for j = 1, . . . , m (5.55)

and

E[xixj ] := E[x(1)
i x(1)

j ] = . . . = E[x(N)
i x(N)

j ] for i, j = 1, . . . , m. (5.56)

Now, we write
x = [x1, . . . , xm]T ,

where x1, . . . , xm satisfy (5.55) and (5.56). It is clear that x has mean zero.
Let us also denote

S =
1
N

XXT

and call S the sample covariance vector. Due to (5.55) and (5.56),

E[S] = E[xxT ].

Furthermore, we write

C = ρ1I + ρ2S (5.57)

and

J(C) = E[‖E[xxT ]−C‖2], (5.58)

where ρ1, ρ2 ∈ R, I is the identity matrix and ‖ · ‖ is the Frobenius-like
norm defined by

‖A‖ =
[

tr(AAT )
m

]1/2

for A ∈ Rm×m.
The problem is to find ρ0

1 and ρ0
1 such that

J(C0) = min
ρ1,ρ2

J(C), (5.59)

where

C0 = ρ0
1I + ρ0

2S. (5.60)
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The solution is given by Theorem 28 below in terms of matrix E[xxT ].
In this sense, C0 is not a bona fide estimator. In the next subsection, a
bona fide estimator S∗ is developed with the same properties as C0 asymp-
totically as N and m go to infinity together.

For A1, A2 ∈ Rm×m, we write 〈A1, A2〉 = tr(A1A
T
2 )/m.

Lemma 16. Let

κ = 〈E[xxT ], I〉, α2 = ‖E[xxT ]− κI‖2,

β2 = E[‖S− E[xxT ]‖2] <∞ and δ2 = E[‖S− κI‖2] <∞.

Then
α2 + β2 = δ2.

Proof. . We have

E[‖S− κI‖2] = E[‖S− E[xxT ] + E[xxT ]− κI‖2]
= E[‖S− E[xxT ]‖2] + E[‖E[xxT ]− κI‖2]

+2E[〈S− E[xxT ], E[xxT ]− κI〉]
= E[‖S− E[xxT ]‖2] + E[‖E[xxT ]− κI‖2]

+2〈E[S− E[xxT ]], E[xxT ]− κI〉
= E[‖S− E[xxT ]‖2] + E[‖E[xxT ]− κI‖2]

because E[S] = E[xxT ].

Theorem 28. The solution to problem (5.59) is given by

C0 =
β2

δ2
κI +

α2

δ2
S. (5.61)

The error associated with C0 is given by

E[‖E[xxT ]−C0‖2] =
α2β2

δ2
. (5.62)

Proof. By a change of variables, (5.57) and (5.59) can be rewritten as

C = ρνI + (1− ρ)S

and
J(C0) = min

ρ,ν
J(C),
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respectively. With a little algebra, we can rewrite J(C) as

E[‖E[xxT ]−C‖2 = ρ2‖E[xxT ]− νI‖2
+(1− ρ)2E[‖E[xxT ]− S‖2. (5.63)

Therefore, the optimal value of ν can be obtained as the solution to a
reduced problem that does not depend on ρ:

min
ν
‖E[xxT ]− νI‖2.

The norm of identity is one by convention, so

‖E[xxT ]− νI‖2 = ‖E[xxT ]‖2 − 2ν〈E[xxT ], I〉+ ν2.

The first-order condition is

−2〈E[xxT ], I〉+ 2ν = 0.

The solution is

ν = 〈E[xxT ], I〉
= κ.

replacing ν by its optimal value κ in (5.63), we have

E[‖E[xxT ]−C‖2 = ρ2α2 + (1− ρ)2β2.

The desired ρ is

ρ =
β2

α2 + β2

=
β2

δ2
.

Note that

1− ρ =
α2

δ2
.

At the optimum, E[‖E[xxT ]−C0‖2] becomes

E[‖E[xxT ]−C0‖2] =
β2

δ2
α2 +

α2

δ2
β2

=
α2β2

δ2
.

This completes the proof.
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Analysis under general asymptotics

The solution (5.61) does not provide a bona fide estimator, since it requires
hindsight knowledge of E[xxT ]. To avoid this difficulty, the consistent
estimators for κ, α, β and δ can be obtained in the following way.

First, an appropriate asymptotic framework is chosen. Standard asymp-
totics consider m fixed while N tends to infinity, implying that the optimal
shrinkage intensity vanishes in the limit. This would be reasonable for situ-
ations where m is very small in comparison to N . However, in the problems
of interest to us m tends to be of the same order as N and can even be
larger. Hence, we consider it more appropriate to use a framework that re-
flects this condition. This is achieving by allowing the number of variables
m to go to infinity at the same “speed” as the number of observations N .
It is called general asymptotics. In this framework, the optimal shrinkage
intensity generally does not vanish asymptotically but rather it tends to a
limiting constant that it is possible to estimate consistently. the idea then
is to use the estimated shrinkage intensity in order to arrive at a bona fide
estimator.

Let N = 1, 2, . . . index a sequence of statistical models. For every N ,
XN = {x(1), . . . , x(N)} is a set of independent and identically distributed
random vectors x(1) ∈ L2(Ω,RmN ), . . ., x(N) ∈ L2(Ω,RmN ) with mean zero
such that x(k) = [x(k)

1 , . . . , x(k)
mN ]T for k = 1, . . . , N where x(k)

1 , . . . , x(k)
mN ∈

L2(Ω,R).
The number mN can change and even go to infinity with the number

N , but nit too fast.

Assumption 1. There exists a constant K1 independent of N such that
mN/N ≤ K1.

Let E[xxT ] = UσUT be the eigenvalue decomposition of E[xxT ]. Let
YN = UT XN and [yN

11, . . . , y
N
mN 1]T the first column of YN .

Assumption 2. There exists a constant K2 independent of N such that

1
m

N

mN∑

i=1

E[(yN
i1)8] ≤ K2.

Assumption 3.

lim
N→∞

m2
N

N2

∑
(i,j,k,l)∈QN

(Cov[yN
i1yN

j1y
N
k1y

N
l1 ])2

Cardinal of QN

Assumption 2 states that the eight moment is bounded (in average).
Assumption 3 states that products of uncorrelated random variables are
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themselves uncorrelated (on average, in the limit). In the case where gen-
eral asymptotics degenerate into standard asymptotics (mN

N → 0), Assump-
tion 3 is trivially verified as a consequence of Assumption 2. Assumption
3 is verified when random variables are normally or even elliptically dis-
tributed, but it is much weaker than that.

For A ∈ RmN×mN , the Frobenius -like norm is defined by

‖A‖2N =
tr(AAT )

mN
.

We follow the notation used in the preceding Section, except that we add
the subscript N to signal that all results hold asymptotically. In particular,
we now write C0

N instead of C0. Also, let us denote

SN =
1
N

XNXT
N , κN = 〈E[xxT ], I〉, α2

N = ‖E[xxT ]− κI‖2N ,

β2
N = E[‖SN − E[xxT ]‖2N ] <∞ and δ2

N = E[‖SN − κNI‖2N ] <∞.

These four scalars are well behaved asymptotically.

Lemma 17. κN , α2
N , β2

N and δ2
N remain bounded as N →∞.

We omit proofs of Lemmata and Theorems in this Section. The proofs
can be found in [83].

The most basic question is whether SN is consistent under general
asymptotics. Specifically, we ask whether SN converges in quadratic mean
to the true covariance matrix, that is, whether β2

N vanishes. In general, the
answer is no, as shown below. The results stated below are related to spe-
cial cases of a general result proven by Yin [184]. But presented method
works under weaker assumptions than the method [184] does. Also, the
goal in [184] is to find the distribution of the eigenvalues of the sample
covariance matrix, while this method is to find an improved estimator of
the covariance matrix.

Theorem 29. Let

θ2
N = Var

⎡
⎣ 1

mN

mN∑

j=1

(yN
j1)2

⎤
⎦ .

The scalar θ2
N is bounded as N →∞, and

lim
N→∞

{E[‖SN − E[xxT ]‖2N −
mN

N
(κ2

N − θ2
N )} = 0.
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For κN , a consistent estimator is its sample counterpart as it follows
from the next Lemma. We write

q.m.−→ to denote convergence in quadratic
mean.

Lemma 18. Let
mN = 〈SN , I〉.

Then
E[mN ] = κN ,

and
mN − κN

q.m.−→0.

as N →∞.

A consistent estimator for δ2
N is also its sample counterpart.

Lemma 19. Let
d2

N = ‖SN −mNI‖2N .

Then
d2

N − δ2
N

q.m.−→0.

Now, note that SN can be represented as

SN =
1
N

N∑

k=1

x(k)x(k)T .

Since the matrices x(k)x(k)T are iid across k, we can estimate the error
β2 = E[‖SN − E[xxT ]‖2N ] of their average by seeing how far each one of
them deviates from the average.

Lemma 20. Let

b̃2
N =

1
N2

N∑

k=1

‖SN − x(k)x(k)T ‖2N

and
b2
N = min{b̃2

N , d2
N}.

Then
b̃2
N − β2

N
q.m.−→0 and b2

N − β2
N

q.m.−→0.

We note that b2
N ≤ δ2

N by Lemma 16. In general, this constraint is rarely
binding. But it insures that the following estimator of α2

N is nonnegative.
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Lemma 21. Let a2
N = d2

N − b2
N . Then

a2
N − α2

N
q.m.−→0.

The next stage of the strategy is to replace the unobservable scalars in
the formula defining C0 with consistent estimators, and to show that the
asymptotic properties are unchanged. This yields the bona fide estimator
of the covariance matrix:

S0
N =

b2
N

d2
N

mNI +
a2

N

d2
N

SN . (5.64)

The next Theorem shows that S0
N has the same asymptotic properties

as C0
N . Thus, we can neglect the error associated with the replacement of

the unobservable parameters κN , α2
N , β2

N and δ2
N by estimators.

Theorem 30. S0
N is a consistent estimator of C0

N , i.e.

‖S0
N −C0

N‖N
q.m.−→0.

As a consequence, S0
N has the same associated asymptotic error as C0

N ,
i.e.

E[‖S0
N −CN‖2N ]− E[‖C0

N −CN‖2N ]
q.m.−→0.

The following result presents the estimate of the associated error of C0
N

and S0
N consistently.

Lemma 22.

E

[∥∥∥∥
a2

Nb2
N

d2
N

− α2
Nβ2

N

δ2
N

∥∥∥∥
2

N

]
→ 0.

The final step is to demonstrate that S0
N , which has been obtained as a

consistent estimator for C0
N , possesses an important optimality property.

It follows from Theorem 28 that C0
N (hence, S0

N in the limit) is optimal
among the linear combinations (5.57) with nonrandom coefficients. this
interesting, but only midly so, because it excludes the other linear shtinkage
estimators with random coefficients.

Below, it is shown that S0
N is still optimal within a bigger class: the

linear combinations like (5.57) but with random coefficients. This class
includes both the linear combinations that represent bona fide estimators,
and those with coefficients that require hindsight knowledge of the true
(and unobservable) covariance matrix.

Let
J(C∗N ) = ‖E[xxT ]−C∗N‖2N
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and
C∗N = ρ1I + ρ1SN

where unlike ρ1 and ρ2 in (5.57), ρ1 and ρ1 are random variables. Another
difference is the norm ‖ · ‖N instead of the norm E‖ · ‖N in (5.58).

Let C∗0N be such that

J(C∗0N ) = min J(C∗N ).

It turns out that C∗0N is a function of E[xxT ] therefore C∗0N does not
constitute a bona fide estimator. By construction, C∗0N has lower associated
error than C∗N and S0

N almost surely (a.s.), but asymptotically it makes
no difference.

Theorem 31. S0
N is a consistent estimator of C∗0N , i.e.

‖S0
N −C∗0N ‖N

q.m.−→0.

As a consequence, S0
N has the same associated asymptotic error as C∗0N ,

i.e.
E[‖S0

N −CN‖2N ]− E[‖C∗0N −CN‖2N ]
q.m.−→0.

Both C0
N and C∗0N have the same asymptotic properties as S0

N ; there-
fore, they also have the same asymptotic properties as each other.

The most important result of this section is as follows:
The bona fide estimator S0

N has uniformly minimum associated error
asymptotically among all linear combinations of I with SN , including those
that are bona fide estimators, and even those that use hindsight knowledge
of the true covariance matrix.

Theorem 32. For any sequence of linear combinations ĈN of I and SN ,
the estimator S0

N defined in (5.64) verifies

lim
N0→∞

inf
N≥N0

{
E[‖ĈN − E[xxT ]‖2N ]− E[‖S0

N − E[xxT ]‖2N ]
}
≥ 0.

In addition, every ĈN that performs as well as S0
N is identical to S0

N in
the limit:

lim
n→∞

{
E[‖ĈN − E[xxT ]‖2N ]− E[‖S0

N − E[xxT ]‖2N ]
}

= 0

is equivalent to
‖ĈN − S0

N‖N
q.m.−→0.
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Thus, S0
N is an asymptotically optimal linear shrinkage estimator of the

covariance matrix with respect to associated error under general asymp-
totics.

A distinctive feature of this result is that it provides the rigorous justi-
fication when the number of variables mN exceeds the number of observa-
tions N . Not only that, but S0

N is guaranteed to be always invertible, even
in the case mN > N , where rank deficiency makes the sample covariance
matrix singular. estimating the inverse covariance matrix when variables
outnumber observations is sometimes dismissed as impossible, but the ex-
istence of (S0

N )−1 certainly proves otherwise.
The following theorem shows that S0

N is usually well-conditioned.

Theorem 33. Let the condition number of the true covariance matrix
E[xxT ] be bounded, and let the normalized variables yi1/

√
λi be iid across

i = 1, . . . , N . Then the condition number of the estimator S0
N is bounded

in probability.

This theorem follows from [2].
If the cross-sectional iid assumption is violated, it does not mean that

the condition number goes to infinity, but rather that it is technically too
difficult to find out anything about it. Interestingly, there is one case
where the estimator S0

N is even better-conditioned than the true covariance
matrix E[xxT ]: if the ill-conditioning of E[xxT ] comes from eigenvalues
close to zero (multi-collinearity in the variables) and the ratio of variables
to observations mN/N is not negligible. In this case, S0

N is well-conditioned
because the sample observations do not provide enough information to
update our prior belief that there is no multi-collinearity.

5.3.4 Some other relevant results on estimates of
covariance matrix

The covariance matrix estimation is an area of intensive research. Below,
we mention some results which are relevant to the methods discussed above.

Calvin and Dykstra [13] considered the problem of estimating covari-
ance matrix in balanced multivariate variance components models. As with
univariate models, it is possible for the traditional estimators, based on dif-
ferences of the mean square matrices, to produce estimates that are outside
the parameter space. In fact, in many cases it is extremely likely that tradi-
tional estimates of the covariance matrices will not be non-negative definite.
In [13], Calvin and Dykstra developed an iterative procedure, satisfying a
least squares criterion, that is guaranteed to produce non-negative definite
estimates of covariance matrices and provide an analysis of convergence.
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In some applications the covariance matrix of the observations enjoys
a particular symmetry: it is not only symmetric with respect to its main
diagonal but also with respect to the anti-diagonal. The standard forward-
only sample covariance estimate does not impose this extra symmetry. In
such cases one often uses the so-called forward-backward sample covariance
estimate. Jansson and Stoica [67] performed a direct comparative study of
the relative accuracy of the two sample covariance estimates is performed.
An explicit expression for the difference between the estimation error co-
variance matrices of the two sample covariance estimates is given. This
expression shows quantitatively the gain of using the forward-backward es-
timate compared to the forward-only estimate. The results [67] are also
useful in the analysis of estimators based on either of the two sample co-
variances. As an example, in [67], spatial power estimation by means of
the Capon method [145] is considered. Using a second-order approxima-
tion, it is shown that Capon based on the forward-only sample covariance
(F-Capon) underestimates the power spectrum, and also that the bias for
Capon based on the forward-backward sample covariance is half that of
F-Capon.

Delmash [28] studied estimators, both batch and adaptive, of the eigen-
value decomposition (EVD) of centrosymmetric (CS) covariance matrices.
These estimators make use of the property that eigenvectors and eigen-
values of such structured matrices can be estimated via two decoupled
eigensystems. As a result, the number of operations is roughly halved,
and moreover, the statistical properties of the estimators are improved. In
[28], after deriving the asymptotic distribution of the EVD estimators, the
closed-form expressions of the asymptotic bias and covariance of the EVD
estimators are compared to those obtained when the CS structure is not
taken into account. As a by-product, it is shown [28] that the closed-form
expressions of the asymptotic bias and covariance of the batch and adap-
tive EVD estimators are very similar provided that the number of samples
is replaced by the inverse of the step size.

Kauermann and Carroll considered the sandwich covariance matrix es-
timation [72]. The sandwich estimator, also known as robust covariance
matrix estimator, heteroscedasticity-consistent covariance matrix estimate,
or empirical covariance matrix estimator, has achieved increasing use in the
literature as well as with the growing popularity of generalized estimating
equations. Its virtue is that it provides consistent estimates of the covari-
ance matrix for parameter estimates even when the fitted parametric model
fails to hold or is not even specified. Surprisingly though, there has been
little discussion of properties of the sandwich method other than consis-
tency. Kauermann and Carroll investigate the sandwich estimator in quasi-
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likelihood models asymptotically, and in the linear case analytically. They
show that under certain circumstances when the quasi-likelihood model is
correct, the sandwich estimate is often far more variable than the usual
parametric variance estimate. The increased variance is a fixed feature of
the method and the price that one pays to obtain consistency even when the
parametric model fails or when there is heteroscedasticity. It is shown in
[72] that the additional variability directly affects the coverage probability
of confidence intervals constructed from sandwich variance estimates. In
fact, the use of sandwich variance estimates combined with t-distribution
quantiles gives confidence intervals with coverage probability falling be-
low the nominal value. Kauermann and Carroll propose an adjustment to
compensate for this fact.

Kubokawa and Srivastava [80] considered the problem of estimating
the covariance matrix and the generalized variance when the observations
follow a nonsingular multivariate normal distribution with unknown mean.
They present a new method to obtain a truncated estimator that utilizes
the information available in the sample mean matrix and dominates the
James-Stein minimax estimator [66]. Several scale equivariant minimax
estimators are also given.

This method is then applied to obtain new truncated and improved
estimators of the generalized variance; it also provides a new proof to the
results of Shorrok and Zidek [138] and Sinha [139].

Champion [14] derived and evaluated an algorithm for estimating nor-
mal covariances. A particular concern in [14] is the performance of the
estimator when the dimension of the space exceeds the number of obser-
vations. The algorithm is simple, tolerably well founded, and seems to be
more accurate for its purpose than the alternatives. Other topics discussed
in [14] are the joint estimation of variances in one and many dimensions;
the loss function appropriate to a variance estimator; and its connection
with a certain Bayesian prescription.

Schneider and Willsky [133] proposed a new iterative algorithm for the
simultaneous computational approximation to the covariance matrix of a
random vector and drawing a sample from that approximation. The al-
gorithm is especially suited to cases for which the elements of the random
vector are samples of a stochastic process or random field. The proposed al-
gorithm has close connections to the conjugate gradient method for solving
linear systems of equations.

A comparison has been made between the algorithm’s structure and
complexity and other methods for simulation and covariance matrix ap-
proximation, including those based on FFTs and Lanczos methods. The
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convergence of the proposed iterative algorithm is analyzed, and a precon-
ditioning technique for accelerating convergence is explored.

5.4 Best Hadamard-quadratic Approximation

In the next sections, we consider the best constructive approximation of the
input-output map of the system in a general stochastic setting when the
input-output map is an arbitrary nonlinear continuous operator, the inputs
and outputs are stochastic signals and the only information on a system is
given by certain covariance matrices formed from the input-output signals.

It is known that a nonlinear system provides more flexibility in its per-
formance than that by a linear system. Needless to say that an approx-
imator with a nonlinear structure is a natural tool in nonlinear system
modelling, because such an approximator provides, in particular, a higher
accuracy than a linear model. The question is what kind of nonlinearity
should be used for an effective approximation. The answer depends on cri-
terion which we aim to achieve in the system modelling. In the following
sections, we consider different types of nonlinear approximators.

We begin with the so called Hadamard-quadratic approximation.

5.4.1 Statement of the problem

The following preliminaries are necessary to pose the problem properly.
We interpret x as a given “idealized” input signal (without any dis-

tortion) of a nonlinear system, and y as its observed input signal. In
particular, y can be interpreted as x contaminated with noise so that no
specific relationships between signal and noise are assumed to be known.
For instance, noise can be additive or multiplicative or their combination.

Let F : L2(Ω,Rm)→ L2(Ω,Rp) be the input-output map of a nonlinear
system.

The terms “system” and “input-output map” will be identified.
We consider the class A of models A : L2(Ω,Rn) → L2(Ω,Rp) of a

nonlinear system with A given by the equation

A(y) = A0 +A1(y) +A2(y2), (5.65)

where A0 ∈ L2(Ω,Rp), A1,A2 : L2(Ω,Rn) → L2(Ω,Rp) and y2 is defined
by the Hadamard product [50] so that

y2 = (y2
1 , . . . , y2

n)T .

Operators A1 and A2 are linear and are defined by matrices A1 ∈ Rp×n

and A2 ∈ Rp×n so that

[A1(x)](ω) = A1[x(ω)] and [A2(x)](ω) = A2[x(ω)]. (5.66)
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For any random vector z ∈ L2(Ω,Rm), we write

E[‖z‖2] =
∫

Ω

‖z(ω)‖2dμ(ω), (5.67)

where ‖z(ω)‖ is the Euclidean norm of z(ω).
Then in accordance with (5.67),

E[‖F(x)−A(y)‖2] =
∫

Ω

‖[F(x)](ω)− [A(y)](ω)‖2dμ(ω).

Hereinafter, calligraphic letters will be used to signify operators defined
similarly to F , A1 and A2.

Let us denote

J(A0, A1, A2) = E[‖F(x)−A(y)‖2]. (5.68)

We wish to find A0
0, A0

1, A0
2 so that

J(A0
0, A

0
1, A

0
2) = min

A0,A1,A2
J(A0, A1, A2) (5.69)

for all Aj with j = 0, 1, 2.
In other words, we wish to find the model A0 of the system F which is

the best in the class A in the sense (5.69).
It is natural to call A0 the best Hadamard-quadratic approximation to

F .
Generalizations of the Hadamard-quadratic model A are discussed in

the next Sections.

5.4.2 Auxiliary results

We denote by N (M) and R(M) the null space and range space respectively
of a matrix M, and by M† the Moore-Penrose pseudo-inverse of M.

Note that

N (M) = R(MT )⊥ and N (MT ) = R(M)⊥

where R(MT )⊥ and R(M)⊥ are the orthogonal compliments of R(MT )
and R(M), respectively (see, for example, [89], p. 155).

Proposition 1. For any random vector z ∈ L2(Ω,Rm),

E[‖z‖2] = tr E[zzT ].
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Proof. We have

E[‖z‖2] =
∫

Ω

‖z(ω)‖2dμ(ω)

=
∫

Ω

tr {z(ω)zT (ω)}dμ(ω)

=
m∑

j=1

∫

Ω

[zj(ω)]2dμ(ω)

= tr {Ezz},
where zT (ω) = [z(ω)]T .

Lemma 23. Let P ∈ Rn×m and Q ∈ Rn×m. Then

N (P ) ⊆ N (Q) (5.70)

implies
QP †P = Q.

Proof. If qN ∈ N (P ), then

QP †PqN = 0

and since equation (5.70) shows that qN ∈ N (Q), we also have QqN = 0.
Hence

Q(I − P †P )qN = 0,

where I is the identity matrix.
On the other hand, if qR ∈ N (P )⊥ = R(PT ), then there exists p ∈ Rn

such that qR = P †p [89]. Hence

QP †PqR = QP †PP †p = QqR

and therefore
Q(I − P †P )qR = 0.

The desired result follows from the unique representation of any vector
q ∈ Rn in the form q = qN + qR.

We write
s = F(x) and s = s(ω),

and
z = y2 and z = z(ω).
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Lemma 24. The following equations hold:

EsyE†yyEyy = Esy, EzyE†yyEyy = Ezy (5.71)

and

EszE
†
zzEzz = Esz. (5.72)

Proof. If u ∈ N (Eyy) then uT Eyyu = 0 and hence

E[(yT u)2] = 0.

But for each w ∈ Rm we have

|wT Esyu| = |E[(wT s)(yT u)]|
≤ (E[(wT s)2])1/2(E[(yT u)2])1/2

= 0.

Therefore Esyu = 0 and hence u ∈ N (Esy). This means that

N (Eyy) ⊆ N (Esy) (5.73)

and then the first equation in (5.71) follows from (5.73) on the basis of
Lemma 23. Other equations in (5.71) and (5.72) are proved similarly.

Lemma 25. Let

B = Ezz − EzyE†yyEyz and G = Esz − EsyE†yyEyz.

Then

GB†B = G. (5.74)

Proof. Let u ∈ N (B). Then uT Bu = 0 and

uT E[(z− EzyE†yyy)(zT − yT E†yyEyz)]u = 0.

Therefore
E[{(z− EzyE†yyy)T u}2] = 0.

Next, for all v ∈ Rm we have

(vT Gu)2 = (E[vT (s− EsyE†yyy)(zT − yT E†yyEyz)u])2

≤ E[{vT (s− EsyE†yyy)}2]E[{(z− EzyE†yyy)T u}2]
= 0

i.e. Gu = 0 or u ∈ N (G). Hence

N (B) ⊆ N (G)

and then (5.74) follows from Lemma 23.
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Note, that B, G = O, in general. Here, O is the zero matrix. The
following elementary example illustrates this fact.

Example 16. Let y =
(

y1

y2

)
and x =

(
y1y2

0

)
, where y1, y2 are in-

dependent random variables taking values 1 and −1. Then we have

E[yi = −1] = 1/2, E[yi = 1] = 1/2, for each i = 1, 2,

Exz =
[

E[y3
1y2] E[y2

1y
2
2]

0 0

]
=
[

0 1
0 0

]
,

Exy =
[

E[y2
1y2] E[y1y

2
2]

0 0

]
=
[

0 0
0 0

]
,

Ezy =
[

E[y3
1] E[y2

1y2]
E[y2

1y2] E[y1y2]

]
=
[

0 0
0 0

]
,

Ezz =
[

E[y4
1] E[y3

1y2]
E[y3

1y2] E[y2
1y

2
2]

]
=
[

1 0
0 1

]
.

Therefore

B =
[

0 1
0 0

]
and G = I.

Next, it is well known (see, for example, [10], p. 8) that for any matrix
M ,

M † = MT (MMT )†. (5.75)

We denote by M1/2 a matrix such that M1/2M1/2 = M .
If M is a symmetric non-negative definite matrix then we can write

M = V ΣV T

where V is orthogonal and Σ is a non-negative diagonal matrix. We note
that

M† = V Σ†V T and M1/2 = V Σ1/2V T

and that consequently
(M1/2)† = (M†)1/2.

Let us denote M†1/2 = (M†)1/2.
We will use (5.75) in the next Lemma.
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Lemma 26. The equations

A1E
1/2
yy = (Esy −A2Ezy)E†yyE1/2

yy , (5.76)

A2B
1/2 = GB†B1/2 (5.77)

are respectively equivalent to

A1Eyy = Esy −A2Ezy, (5.78)
A2B = G. (5.79)

Proof. Let us suppose that (5.77) is true. Multiplying on the right by B1/2

gives
A2B −GB†B = 0.

Then A2B −G = 0 follows on the basis of (5.74).
On the other hand, if A2B − G = 0 then multiplying on the right by

B† gives

A2BB† −GB† = 0. (5.80)

If we set A = B1/2 then (5.75) implies

B1/2† = B1/2B†

from which it follows that

B1/2B1/2† = BB†.

Hence, equation (5.80) can be rewritten as

A2B
1/2B1/2† −GB† = 0.

Multiplying on the right by B1/2 gives the required result

(A2 −GB†)B1/2 = 0.

The equivalence of (5.76) and (5.78) is proved similarly. Namely, if
(5.76) is true then multiplying on the right by E

1/2
yy gives (5.78). If (5.78)

is true then multiplying on the right by E†yy and applying (5.75) gives
(5.76).
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5.4.3 The best Hadamard-quadratic model

Theorem 34. The solution to problem (5.69) is given by

A0
0 = E[s]−A0

1E[y]−A0
2E[z], (5.81)

A0
1 = (Esy −A0

2Ezy)E†yy + M1(I − EyyE†yy) (5.82)

and

A0
2 = GB† + M2(I −BB†), (5.83)

where M1 ∈ Rp×n, M2 ∈ Rp×n are arbitrary matrices and I is the identity
matrix.

Proof. The functional J(A0, A1, A2) can be written as

J(A0, A1, A2) = J0 + J1(A0, A1, A2) + J2(A1, A2) + J3(A2), (5.84)

where

J0 = tr{Ess − EsyE†yyEys} −Δ, (5.85)

Δ = ‖G(B†)
1
2 ‖2, (5.86)

J1(A0, A1, A2) = ‖A0 − (E[s]−A1E[y]−A2E[z])‖2 (5.87)
J2(A1, A2) = ‖[A1 − (Esy −A2Ezy)E†yy]E1/2

yy ‖2 (5.88)

and

J3(A2) = ‖(A2 −GB†)B1/2‖2. (5.89)

Equations (5.84)–(5.89) are deduced from the representation of the corre-
sponding functionals as follows:

J1(A0, A1, A2) = tr{(A0 − E[s] + A1E[y] + A2E[z])
× (A0 − E[s] + A1E[y] + A2E[z])T }, (5.90)

J2(A1, A2) = tr{[A1 − (Esy −A2Ezy)E†yy]Eyy

× [A1 − (Esy −A2Ezy)E†yy]T } (5.91)

and

J3(A2) = tr{[A2 − (Esz − EsyE†yyEyz)B†]B

× [A2 − (Esz − EsyE†yyEyz)B†]T }. (5.92)
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Then on the basis of Lemma 24, we obtain

J0 + J1(A0, A1, A2) + J2(A1, A2) + J3(A2)
= J0 + J1(A0, A1, A2) + tr{D1 + D2 + A1EyyAT

1

−A1Eys + A1EyzA
T
2 − EsyAT

1 + A2EzyAT
1

+(EsyE†yyEyzB
†B − EszB

†B − EsyE†yyEyz)AT
2

+A2(EsyE†yyEyzB
†BEszB

†B − EsyE†yyEyz)T

+A2(B + EzyE†yyEyz)AT
2 },

where
D1 = EsyE†yyEys and D2 = GB†GT .

Next, taking into account Lemma 25,

J0 + J1(A0, A1, A2) + J2(A1, A2) + J3(A2)
= J0 + J1(A0, A1, A2) + tr{D1 + D2 + A1EyyAT

1 −A1Eys

−EsyAT
1 − EszA

T
2 −A2Ezs + A2EzzA

T
2 + A1EyzA

T
2

+A2EzyAT
1 }

= tr{E[(s−A0 −A1y −A2z)(s−A0 −A1y −A2z)T ]}
= J(A0, A1, A2).

It follows from (5.84) – (5.89) that J(A0, A1, A2) is minimized when

A0 = E[s]−A1E[y]−A2E[z], (5.93)
A1E

1/2
yy = (Esy −A2Ezy)E†yyE1/2

yy , (5.94)

A2B
1/2 = GB†B1/2 (5.95)

since

E†yyE1/2
yy = ([E1/2

yy ]T E1/2
yy )†[E1/2

yy ]T

= (E1/2
yy )†

= (E†yy)1/2

and also
B†B1/2 = (B1/2)†

for the same reason.
By Lemma 26, the equation (5.95) is equivalent to the equation (5.79).

The necessary and sufficient conditions [6] for the equations (5.79) to have
the solution is

G = GB†B

which is true by Lemma 25. Then the solution is given [6] by (5.83).
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Next, also by Lemma 26, the equation (5.94) is equivalent to the equa-
tion (5.78) where we now set A2 = A0

2. The necessary and sufficient con-
ditions [6] for the equations (5.78) to have the solution is

(Esy −A0
2Ezy)E†yyEyy = Esy −A0

2Ezy

which is satisfied by Lemma 24. Therefore, the solution [6] is provided by
(5.82).

Remark 12. Matrices Eyy and B are positive semidefinite and their eigen-
values are nonnegative ([143], p. 309). Hence E

1/2
yy and B1/2 have real

entries.

Remark 13. The solution of each matrix equation (5.79) and (5.78) is
not unique [6] and this fact is reflected by the arbitrary matrices M1 and
M2 in (5.82), (5.83): for any M1 and M2, the matrices A0

1 and A0
2 are the

solutions to the corresponding equations (5.79) and (5.78).

In this connection we note that a possible and natural choice for M1

and M2 in equations (5.79) and (5.78) is M1 = O and M2 = O where O is
the zero matrix, and then equations (5.79) and (5.78) are simplified.

Also note that the best operator A0 defined by the equations (5.81),
(5.82) and (5.83) requires knowledge of the matrices

E[s], E[y], E[z], Esy, Esz, Eyy, Eyz and Ezz. (5.96)

The methods for their estimation have been considered in Section 4.3.

Corollary 2. The best approximation s̃ of s = F(x) in the class A of the
models (5.65) is

s̃ = A0(y). (5.97)

Theorem 35. The error of approximation of the system F by the best
Hadamard-quadratic model A0 is

E[‖F(x)−A0(y)‖2] = tr{Ess} − ‖Esy(E†yy)1/2‖2 − ‖G(B†)1/2‖2. (5.98)

Proof. The proof follows directly from equations (5.68) and (5.81)–(5.89).

A particular case of the model A is the first-degree model A(1) given by

A(1)(y) = A0 +A1(y). (5.99)
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Corollary 3. The best first degree model A0
(1), minimizing the functional

(5.68) with A2 = 0, is defined by

A0
0 = E[s]−A0

1E[y] (5.100)

and

A0
1 = EsyE†yy + K1[I − E1/2

yy (E1/2
yy )†], (5.101)

where K1 ∈ Rp×n is an arbitrary matrix.

Corollary 4. The error of approximation of the system F by the best first
degree model A0

(1) is

E[‖F(x)−A0
(1)(y)‖2] = tr{Ess} − ‖Esy(E†yy)1/2‖2. (5.102)

Proof. The equation (5.102) follows from (5.100) and (5.101) on the basis
of Lemma 1.

Remark 14. A comparison of the error equations (5.98) and (5.102) shows
that the error associated with the best Hadamard-quadratic model is less for
‖G(B†)1/2‖2 than the error associated with the best first degree model.

Remark 15. Knowledge of matrices E[s], E[y] and E[z] allows us to sim-
plify procedures (5.81), (5.82), (5.83) and (5.100), (5.101) above by the
replacement of s, y and z with ŝ = s−E[s], ŷ = y−E[y] and ẑ = z−E[z]
respectively. Then

E[ŝ] = 0, E[ŷ] = 0 and E[ẑ] = 0

and therefore equations (5.81), (5.82), (5.83) and (5.100), (5.101) with ŝ, ŷ
and ẑ instead of s, y and z correspondingly, are reduced to simpler forms
with

Ess = E[ssT ], Esy = E[syT ], Eyy = E[yyT ],

Ezy = E[zyT ], Esz = E[szT ] and Ezz = E[zzT ].

5.4.4 Simulations

In our simulations, the performance of the proposed approach is illustrated
with an example of its application to image processing.

We suppose that the signals to be transformed by a system are given
by digitized images presented by matrices. A column of the matrix can be
considered as a realization of a stochastic signal.

The known digitized images (see sub-figures (a) and (b) in Fig. 5.1) have
been chosen to represent the sets of input and output signals. We denote by
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(a) Given “idealized” input.

(b) Desired output.

Figure 5.1: Illustration to the performance of the proposed method. These
digitized images have been taken from http://sipi.usc.edu/database/.
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(a) Observed input.
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(b) Output of the model A0 constructed from (5.65), (5.81)–
(5.83.

Figure 5.2: Illustration to the performance of the proposed method.
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Figure 5.3: Approximation (dashed line with circles) of the 205-th column
(solid line) in matrix V by (5.65), (5.81)–(5.83).

U ∈ R256×256 and V ∈ R256×256 matrices which are numerical counterparts
of the images in the sub-figures (a) and (b) in Fig. 5.1, respectively.

To illustrate the performance of the presented technique for different
types of signals, the matrices U and V have been partitioned into sub-
matrices

U (1) = U(1 : 85, :), U (2) = U(86 : 170, :), U (3) = U(171 : 256, :)

and

V (1) = V (1 : 85, :), V (2) = V (86 : 170, :), V (3) = V (171 : 256, :),

where U(n1 : n2, :) is a matrix formed by n2 − n1 + 1 consequent rows
of U beginning with the n1-th row. Then each sub-matrix U (i) has been
distorted to the matrix W (i) so that

W (1) = R1. ∗ cos(U (i)), W (2) = 100R2. ∗ U (2) and W (3) = sin(U (3)),

where R1 is a matrix with uniformly distributed entries in the interval
(0, 1), R2 is a matrix with normally distributed entries with mean 0 and
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variance 1, cos(U (i)) = cos(u(i)
kj ), sin(U (i)) = sin(u(i)

kj ), u
(i)
kj is the entry of

U (i), and the symbol .∗ denotes the Hadamard product of matrices.
The proposed method has been applied to each pair W (i), V (i) sepa-

rately to find the best approximation A0 to the operator F = Fi where
Fi : U (i) → V (i) for each i = 1, 2, 3. The approximator A0 has been con-
structed from (5.65), (5.81)–(5.83), (5.97). The input of the system A0 is
a column of the matrix U (i) and the input of the approximating system
is a column of the matrix W (i). Covariance matrices have been estimated
by the known sample estimates formed by the matrices W (i), V (i) and
Z(i) = V (i). ∗ V (i) for each i = 1, 2, 3. For example, for i = 1 we calculated
Esy as V (1)W (1)T /85 etc. The estimation techniques have been discussed
in Section 4.3. The simple estimation method used in our simulations has
been chosen for the purpose of illustration only.

Sub-figures (b) in Fig. 5.1 and (a) in Fig. 5.2, respectively, have been
created from the matrices [V (1)T

V (2)T

V (3)T

]T and [W (1)T

W (2)T

W (3)T

]T

correspondingly.
Sub-figure (b) in Fig. 5.2 is a digitized image created from matrix

[V (1)T

1 V
(2)T

1 V
(3)T

1 ]T obtained by the proposed method. To illustrate the
same performance of the method in a more conspicuous way, we represent
in Fig. 5.3 a plot of the 205-th column in the matrix V and plots of the
205-th column in matrix [V (1)T

1 V
(2)T

1 V
(3)T

1 ]T .

5.5 Best r-Degree Polynomial Approximation

While an advantage of the method considered in Section 5.4 is its computa-
tional simplicity, the method proposed here provides a significantly better
performance than the technique considered in Section 5.4 and is based on
a broad generalization of the procedure presented in Section 5.4. The re-
sults of this section supplement the general system theory which has been
developed in fundamental works by Volterra, Wiener, Sandberg, and in
works by many other authors. The relevant bibliography can be found, for
example in [117]–[131].

The proposed approach is based on the approximant produced by a
polynomial operator of the rth degree for some natural number r ∈ N. The
approximant minimizes the mean squared error between a desired image
and the image of the approximating operator. Standard software packages
can easily be used to implement the method.

The statement of the problem is given in Section 5.5.1. Some auxil-
iary results are presented in Section 5.5.3. In Section 5.5.4 we provide a
solution to the problem and prove a theorem on the error associated with
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the solution. Some methods for matrix equations solution are considered
in Sections 5.5.5 and 5.5.5. Numerical simulations with digitized images
in Section 5.5.6 demonstrate the clear advantages of the presented method
over the method used in Section 5.4.

5.5.1 Problem formulation

Let r ∈ N and let Pr : Rn → Rm be an operator with associated input-
output map Pr : L2(Ω,Rn)→ L2(Ω,Rm) such that

[Pr(y)](ω) = Pr[y(ω)],

and let Pr be given by

Pr(y) = A(0) +
r∑

q=1

A(q)(yq). (5.103)

Here A(0) ∈ Rm, r ≤ n, A(q) : (Rn)q → Rm is a q−linear operator, yq =
(y, . . . , y︸ ︷︷ ︸

q

) ∈ (Rn)q and (Rn)q is the qth degree of Rn.

The operator Pr is completely defined by A(q) with q = 0, 1, . . . , r. We
call Pr a generalized polynomial operator of the rth degree.

Let F : L2(Ω,Rn) → L2(Ω,Rm). The problem is to find Ã(q) with
q = 0, 1, . . . , r such that

J(Ã(0), Ã(1), . . . , Ã(r)) = min
A(0),A(1),...,A(r)

J(A(0), A(1), . . . , A(r)), (5.104)

where

J(A(0), A(1), . . . , A(r)) = E[‖F(x)− Pr(y)‖2]. (5.105)

In other words, we wish to find the best mathematical model P̃r (de-
fined by Ã(0), Ã(1), . . . , Ã(r)) of the system F in the class of generalized
polynomial operators (5.103).

The problem considered in Section 5.4 is a particular case of (5.103),
(5.104) if r = 2,

P2(y) = A(0) + A(1)y + A(2)ỹ

and ỹ defined by the Hadamard product so that ỹ = (y2
1 , . . . , y2

n)T where
y = (y1, . . . , yn)T ∈ Rn.
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5.5.2 Approximation with any given accuracy

The problem above motivates the following question: Is there exists an
operator Pr which approximates F with any given accuracy? A natural
conjecture is that the positive answer can follow from the results presented
in Chapter 1. Below, we show that this is indeed true.

Theorem 36. Let KY be a compact set of signals in the space L2(Ω,Rn),
KX = F(KY ) and F defined as above. Then for any x ∈ KX and ε > 0
there exists Pr such that

E[‖x− Pr(y)‖2] ≤ ε (5.106)

for all x ∈ KX and y ∈ KY .

Proof. For any g ∈ L2(Ω,Rm), (E[‖g‖2])1/2 defined by (5.67) is the norm
‖g‖L2 in L2(Ω,Rm) so that

(E[‖g‖2])1/2 = ‖g‖L2 .

Then

E[‖x− Pr(y)‖2] = ‖x−Pr(y)‖2L2

= ‖F(y)− Pr(y)‖2L2

and the statement of the theorem follows directly from the references [104]
or [65].

We note that compactness of the sets KY and KX is an essential con-
dition of this result. Theorem 36 is important because it constitutes the
existence of Pr which estimates x with any desirable accuracy.

Let us now show that Pr can be determined in the form which guaran-
tees a smallest associated error among all Pr of the same degree r.

5.5.3 Reduction of Pr(y) to a matrix form representation

For our purposes, it is convenient to use a representation of the operator
Pr in matrix terms. The following lemma establishes this representation.

Lemma 27. There exist matrices A
(q)
j1,...,jq−1

∈ Rm×n such that

Pr(y) = A(0) + A(1)y +
r∑

q=2

n∑

j1=1

. . .
n∑

jq−1=1

yj1 . . . yjq−1A
(q)
j1,...,jq−1

y (5.107)

= A(0) + A(1)y +
r∑

q=2

∑

q−1≤σq−1≤(q−1)n

yj1 . . . yjq−1A
(q)
j1,...,jq−1

y (5.108)
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where σq−1 = j1+. . .+jq−1 and the inner sum is extended for all summands
with subscripts satisfying the inequality q − 1 ≤ σq−1 ≤ (q − 1)n.

Proof. Let {e1, . . . , en} be the standard basis in Rn. Then

A(q)(yq) = A(q)(
n∑

j1=1

yj1ej1 , . . . ,
n∑

jq=1

yjq
ejq

)

=
n∑

j1=1

. . .
n∑

jq=1

A(q)(ej1 , . . . , ejq
)yj1 . . . , yjq

.

If we write
A(q)(ej1 , . . . , ejq

) = a
(q)
j1,...,jq

∈ Rm

then we can define the matrix A
(q)
j1,...,jq−1

∈ Rm×n by the formula

A
(q)
j1,...,jq−1

v =
n∑

jq=1

a
(q)
j1,...,jq

vjq ,

where v = (v1, . . . vn)T ∈ Rn. Therefore

A(q)(yq) =
n∑

j1=1

. . .
n∑

jq−1=1

yj1 . . . yjq−1(
n∑

jq=1

a
(q)
j1,...,jq

yjq
)

=
∑

q−1≤σq−1≤(q−1)n

yj1 . . . yjq−1A
(q)
j1,...,jq−1

y (5.109)

and the lemma is proved.

Example 17. For r = 2, the formula (5.107) takes the form

P2(y) = A(0) + A(1)y +
n∑

j1=1

yj1A
(2)
j1

y, (5.110)

where

A
(2)
1 = {a(2)

i,1,j2
}i=m,j2=n

i,j2=1 ∈ Rm×n, . . . , A(2)
n = {a(2)

i,n,j2
}i=m,j2=n

i,j2=1 ∈ Rm×n

or

A
(2)
1 = {a(2)

i,j1,1}i=m,j1=n
i,j1=1 ∈ Rm×n, . . . , A(2)

n = {a(2)
i,j1,n}i=m,j1=n

i,j1=1 ∈ Rm×n

and a
(2)
i,j1,j2

are entries of the m× n× n tensor A(2).
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Let us now reduce the expression (5.107) to a more compact form which
is similar to (5.110) but will be given for r > 2.

First, we observe that the products yj1 . . . yjq−1 are not ordered in
(5.107). Therefore, the model (5.107) contains the same factors yj1 . . . yjq−1

for different matrices A
(q)
j1,...,jq−1

. For example, for r = 3, Pr(y) contains
products y1y2 and y2y1 which are the same. We call this issue a symmetry
effect.

This circumstance may lead to an unnecessary increase in the compu-
tation load when determining the optimal estimator. To avoid this incon-
venience, we collect together all terms with the same factors yj1 . . . yjq−1

and write (5.107) in the form

Pr(y) = A(0) + A(1)y +
r∑

q=2

∑
i1+...+in=q−1

i1,...,in=0,1,...,q−1

yi1
1 . . . yin

n A(q),i1,...,in
y (5.111)

= A(0) + A(1)y +
∑

i1+...+in≤r−1
i1,...,in=0,1,...,r−1

yi1
1 . . . yin

n Ai1,...,iny. (5.112)

The inner sum in (5.111) and the sum in (5.112) are extended for terms
such that i1 + . . . + in = q − 1 and i1 + . . . + in ≤ r − 1, respectively,
where i1, . . . , in = 0, 1, . . . , q − 1 and at least one ij is not zero for j =
1, . . . , n. Each product yi1

1 . . . yin
n is written in ascending order with respect

to subscripts. Also, A(q),j1,...,jq−1 ∈ Rn×n follows from collecting similar
terms in (5.107) and Aj1,...,jq−1 represent A(q),j1,...,jq−1 which are rewritten
with different subscripts after representing the double sum (5.111) in the
form given by (5.112).

Thus, (5.111)–(5.112) has no similar terms yi1
1 . . . yin

n . This circum-
stance allows us to avoid the symmetry effect mentioned above. Such an
rearrangement leads to a smaller matrix D in Theorem 37 below.

The expression Pr(y) given by (5.107) contains

1 + n + n2 + · · ·+ nr =
nr+1 − 1

n− 1

terms. The number of terms in Pr(y) by (5.112) is reduced to

1 +
[(

n− 1
0

)
+
(

n
1

)
+ · · ·+

(
n + r − 2

r − 1

)]
· n (5.113)

= 1 +
(

n + r − 1
r − 1

)
· n. (5.114)

As a result, computational work needed for computation of D† in Theorem
37 is smaller than that for the matrix D† without suppressing the symmetry
effect.
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By (5.113), the expression (5.112) contains

N =
(

n + r − 1
r − 1

)
· n (5.115)

matrices Ai1,...,in
. If we denote them by C1, . . . , CN with the corresponding

operands denoted by u1, . . . , uN ∈ Rn then we can write

∑
i1+...+in≤r−1

i1,...,in=0,1,...,r−1

yi1
1 . . . yin

n Ai1,...,in
y =

N∑

j=1

Cjuj . (5.116)

Therefore the following is true.

Corollary 5. The polynomial operators Pr and Pr can respectively be writ-
ten as

Pr(y) = A(0) + A(1)y +
N∑

j=1

Cjuj (5.117)

and

Pr(y) = A(0) +A(1)(y) +
N∑

j=1

Cj(uj), (5.118)

where Cj : L2(Ω,Rn)→ L2(Ω,Rm) are defined by matrices Cj in the man-
ner of (5.44).

The operator Pr is represented diagrammatically in Fig. 5.4.
For any x ∈ L2(Ω,Rn) and v ∈ L2(Ω,Rm), we denote

v = F(x).

The results in the next Lemmas will be used in the proof of Theorems 37
and 38 in the next Section.

Lemma 28. The following equations hold:

EvyE†yyEyy = Evy, EujyE†yyEyy = Eujy and Evuj
E†ujuj

Eujuj
= Evuj

.

Proof. The proof follows from the proof of Lemma 24 above.
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A

1

A

y)(

u 2

u 1

u N

y

CN

Pr

C1

C2

( )1

( 0)

Figure 5.4: Representation of the operator Pr.

Lemma 29. Let
Dij = Euiuj

− EuiyE†yyEyuj

and
Gj = Evuj − EvyE†yyEyuj ,

so that Dij ∈ Rn×n and Gj ∈ Rm×n. Then

GjD
†
ijDij = Gj (5.119)

for all i, j = 1, 2, . . . N.

Proof. The proof follows from the proof of Lemma 25 in Section 4.4.1(b).

Lemma 30. Let D =

⎡
⎢⎢⎣

D11 . . . D1N

D21 . . . D2N

. . . . . . . . .
DN1 . . . DNN

⎤
⎥⎥⎦ and G = [G1 G2 . . . GN ].

Then

GD†D = G. (5.120)

Proof. We observe that

D = Euu − EuyE†yyEyu
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and
G = Evu − EvyE†yyEyu,

where u = (uT
1 , . . . uT

N )T . Then the proof follows from Lemma 25 in Section
4.4.1(b).

5.5.4 Determination of Ã(0), Ã(1) and C̃1, C̃2, . . . , C̃N

In accordance with Corollary 5, the problem formulated in Section 4.4.2(a)
is reduced to finding Ã(0) ∈ Rm, Ã(1) ∈ Rm×n and C̃j ∈ Rm×n with
j = 1, 2, . . . , N which minimize the functional (5.105), where Pr(y) is in
the form (5.118) and where

J(Ã(0), Ã(1), C̃1, . . . , C̃N ) = min
A(0),A(1),C1,...,CN

J(A(0), A(1), C1, . . . , CN )(5.121)

with

J(A(0), A(1), C1, . . . , CN ) = E[‖F(x)−(A(0)+A(1)(y)+
N∑

j=1

Cj(uj)‖2].(5.122)

Theorem 37. The solution to problem specified by (5.121) and (5.122) is
given by

Ã(0) = E[v]− Ã(1)E[y]−
N∑

j=1

C̃jE[uj ], (5.123)

Ã(1) = (Evy −
N∑

j=1

C̃jEujy)E†yy + K1(I − EyyE†yy) (5.124)

and

[C̃1 C̃2 . . . C̃N ] = GD† + K2(I −DD†), (5.125)

where K1 and K2 are arbitrary matrices.

Proof. Note that each matrix C̃j ∈ Rm×n in (5.123) - (5.125) is defined
as a corresponding m× n submatrix of matrix GD† + K2(I −DD†).

We write

D† =

⎡
⎢⎢⎣

Q11 . . . Q1N

Q21 . . . Q2N

. . . . . . . . .
QN1 . . . QNN

⎤
⎥⎥⎦ ,
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where Qij ∈ Rn×n for i, j = 1, . . . , N.
Let us show that J(A(0), A(1), C1, . . . , CN ), given by (5.122), can be

represented as

J(A(0), A(1), C1, . . . , CN ) = J0 + J1(A(0), A(1), C1, . . . , CN )
+J2(A(1), C1, . . . , CN ) + J3(C1, . . . , CN ), (5.126)

where

J0 = tr{Evv} − ‖Evy(E†yy)1/2‖2 −
N∑

i=1

‖GiQ
1/2
ii ‖2

−
∑

j,k=1,...,N, j 
=k

tr{GjQjkGT
k },

J1(A(0), A(1), C1, . . . , CN )

= ‖A(0) − E[v] + A(1)E[y] +
N∑

j=1

CjE[uj ]‖2, (5.127)

J2(A(1), C1, . . . , CN ) = ‖[A(1) − (Evy −
N∑

j=1

CjEujy)E†yy]E1/2
yy ‖2 (5.128)

and

J3(C1, . . . , CN ) = ‖([C1, . . . , CN ]−GD†)D1/2‖2. (5.129)

We have

J0 = tr{Evv − EvyE†yyEyv −
∑

j,k=1,...,N

GjQjkGT
k } (5.130)

and

J1(A(0), A(1), C1, . . . , CN )

= tr{A(0)A(0)T −A(0)E[vT ] + A(0)E[yT ]A(1) + A(0)
N∑

k=1

E[uT
k ]CT

k

−E[v]A(0)T + E[v]E[vT ]− E[v]E[yT ]A(1)T + (A(1)E[y]− E[v])

×
N∑

k=1

E[uT
k ]CT

k + A(1)E[y]A(0)T −A(1)E[y]E[vT ] (5.131)

+A(1)E[y]E[yT ]A(1)T +
N∑

k=1

CkE[uk](A(0)T − E[vT ]
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+E[yT ]A(1)T ) +
∑

j,k=1,...,N

CjE[uj ]E[uT
k ]CT

k },

and

J2(A(1), C1, . . . , CN ) + J3(C1, . . . , CN )

= tr{A(1)EyyA(1)T −A(1)(Eyv −
N∑

j=1

Eyuj
CT

j )− EvyA(1)T

+
N∑

j=1

CjEujyA(1)T + EvyE†yyEyv +
∑

j,k=1,...,N

CjEujuk
CT

k (5.132)

−
N∑

j=1

CjEujv −
N∑

j=1

Evuj C
T
j +

∑

j,k=1,...,N

GjQjkGT
k }.

Then, on the basis of Lemmata 28 and 29, and combining (5.130) - (5.132),
we obtain

J0 + J1(A(0), A(1), C1, . . . , CN ) + J2(A(1), C1, . . . , CN ) + J3(C1, . . . , CN )

= tr{E[vvT ]− E[v]A(0)T − E[vyT ]A(1)T −
N∑

k=1

E[vuT
k ]CT

k

−A(0)E[vT ] + A(0)A(0)T + A(0)E[yT ]A(1)T

+A(0)
N∑

k=1

E[uT
k ]CT

k −A(1)E[yvT ] + A(1)E[y]A(0)T

+A(1)E[yyT ]A(1)T + A(1)
N∑

k=1

E[yuT
k ]CT

k −
N∑

k=1

CkE[ukvT ]

+
N∑

k=1

CkE[uk]A(0)T +
N∑

k=1

CkE[ukyT ]A(1)T

+
∑

j,k=1,...,N

CjE[ujuT
k ]CT

k }

= J(A(0), A(1), C1, . . . , CN ).

Thus (5.126) is true.
It follows from (5.126) - (5.129) that J(A(0), A(1), C1, . . . , CN ) is mini-

mized when
A(0) = Ã(0),
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A(1)E1/2
yy = (Evy −

N∑

j=1

CjEujy)E†yyE1/2
yy , (5.133)

[C1C2 . . . Cn]D1/2 = GD†D1/2. (5.134)

Similarly to Lemma 26, it can be shown that the equations (5.133) and
(5.134) are respectively equivalent to the equations

A(1)Eyy = Evy −
N∑

j=1

CjEujy (5.135)

and

[C1C2 . . . Cn]D = GD. (5.136)

The necessary and sufficient conditions [6] for the equations (5.135) and
(5.136) to have solutions are

Evy −
N∑

j=1

CjEujy = (Evy −
N∑

j=1

CjEujy)E†yyEyy

and
G = GD†D,

respectively. They are satisfied on the basis of Lemmata 28 and 29. There-
fore, as it follows from [6], the solutions to the equations (5.135) and (5.136)
are given by (5.124) and (5.125), respectively.

Note that a possible and natural choice for K1 and K2 in the expressions
(5.124) and (5.125) is K1 = O and K2 = O where O is the zero matrix.

Also note that the best polynomial operator P̃r defined by the equations
(5.123), (5.124) and (5.125) requires knowledge of the matrices E[v], E[y],
E[uk], Evy, Evuk

, Eyy, Eyuk
and Eujuk

. Methods for estimation of these
matrices have been considered in Section 4.3.

Theorem 38. The error of approximation by the best polynomial operator
P̃r defined by (5.123)–(5.125) is

E[‖F(x)− P̃r(y)‖2]
= tr{Evv} − ‖Evy(E†yy)1/2‖2 (5.137)

−
N∑

i=1

‖GiQ
1/2
ii ‖2 −

∑

j,k=1,...,N, j 
=k

tr{GjQjkGT
k }.

Proof. The proof follows directly from equations (5.123) - (5.129).
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Comparison of (5.137) with the error associated with the method of
Section 5.4.3 (see Theorem 35 in Section 5.4.3) demonstrates the clear
advantage of the proposed method over the procedure considered in Section
4.4.1.

5.5.5 Towards methods for matrix equation solution

In the proof of Theorem 37, we show that Ã(0), Ã(1), C̃1, C̃2, , . . . , C̃N

can be found by solving the equation (5.133) and (5.134). Their solutions
are based on a solution of the matrix equation

XEff = Egf (5.138)

where f : Ω → Rn and g : Ω → Rk are random vectors and X ∈ Rk×n.
Since the null space of Eff is a subset of the null space of Egf it follows
from [6] that

X = EgfEff
† + F (I − EffEff

†) (5.139)

where F ∈ Rk×n is arbitrary.
In practice k and n may be large and consequently (5.138) becomes a

large system. For large systems, the generalized inverse may be difficult
to compute. One might reasonably expect to facilitate the solution using
the idea of Gaussian elimination [50] with full pivoting or some suitable
variant.

Here, we exploit the special structure of the original system (5.138)
to propose a new conceptual block elimination procedure that separates
the original system into two independent smaller subsystems each with
the same general form. This provides the basis for an efficient solution
algorithm that will be described in the next subsection.

Let

f =
[

p
q

]
and X =

[
Y Z

]

where p : Ω→ Rn1 and q : Ω→ Rn2 with n1 + n2 = n are random vectors
and where Y ∈ Rk×n1 and Z ∈ Rk×n2 . Write Eff and Egf in partitioned
form as

Eff =
[
Epp Epq

Eqp Eqq

]
and Egf =

[
Egp Egq

]

and hence rewrite the original equation (5.138) as

[
Y Z

] [ Epp Epq

Eqp Eqq

]
=
[
Egp Egq

]
.

The following lemma and theorem are the key to the new elimination pro-
cedure.
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Lemma 31. Let n ∈ N and p, q ∈ L2(Ω,Rn). Define R = q− EqpE†ppp.
Then

Err = Eqq − EqpE†ppEpq.

Proof. We have

Err = E[(q̂− EqpE†ppp̂)(q̂− EqpE†ppp̂)T ]

= E[q̂q̂T ]− EqpE†ppE[p̂q̂T ]− E[q̂p̂T ]E†ppEpq

+EqpE†ppE[p̂p̂T ]E†ppEpq

= Eqq − EqpE†ppEpq

as required.

Theorem 39. Let p : Ω→ Rn1 , q : Ω→ Rn2 and g : Ω→ Rk be random
vectors and consider the system of equations

[
Y Z

] [ Epp Epq

Eqp Eqq

]
=
[
Egp Egq

]
. (5.140)

If we define r = q − EqpEpp
†p and Y ∗ = Y + ZEqpEpp

† then the original
system of equations can be rewritten equivalently as two separate systems

Y ∗Epp = Egp and ZErr = Egr. (5.141)

The solutions to the separated systems are given by

Y ∗ = EgpEpp
† + P (I − EppEpp

†) (5.142)

and

Z = EgrErr
† + R(I − ErrErr

†). (5.143)

Proof. If we make the transformation

[Y ∗, Z∗] = [Y,Z]
[

I O
EqpEpp

† I

]
⇔ [Y, Z] =

[
I O

−EqpEpp
† I

]

where O is the zero block, then

[Y ∗, Z∗]
[

I O
−EqpEpp

† I

] [
Epp Epq

Eqp Eqq

] [
I −Epp

†Epq

O I

]

= [Egp,Egq]
[

I −Epp
†Epq

O I

]
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and if we define r = q − EqpEpp
†p and use Lemmata A1.2 and A2.1 then

the original system reduces to

[Y ∗, Z∗]
[
Epp O
O Err

]
= [Egp,Egq] .

The result is now easily established.

It is clear that the separated systems each have the same form as the
original system. In practice the separation is designed to remove a small
system for which the solution can be easily calculated. The remaining
system takes exactly the same form as the original and so the separation
procedure can be repeated.

A recursive algorithm for solution of the matrix equation

Here, we present a new algorithm that reduces the original system of equa-
tions (5.138) to a collection of independent smaller subsystems each with
the same general form. Solution of the collection of smaller subsystems re-
quires significantly less computational work and enables greater precision
in the calculations. Hence the new algorithm is highly efficient.

Let pi : Ω → Rni be a random vector for each i = 1, 2, . . . , r and let
n =

∑r
i=1 ni. If we define Ei,j = E[pip

T
j ]−E[pi]E[pT

j ] and Ej = E[gpT
j ]−

E[g]E[pT
j ] and let fT = [pT

1 , pT
2 , . . . , pT

r ] then the equation XEff = Egf

can be rewritten in the partitioned form

[X1, X2, . . . , Xr]

⎡
⎢⎢⎢⎣

E1,1 E1,2 · · · E1,r

E2,1 E2,2 · · · E2,r

...
...

...
Er,1 Er,2 · · · Er,r

⎤
⎥⎥⎥⎦ = [E1,E2, . . . ,Er] .

We use the following algorithm to calculate the solution.

Solution algorithm

1. Set � := 1.

2. Set E
 := E[gpT

 ]− E[g]E[pT


 ]

3. For all (i, j) with � ≤ i ≤ j ≤ r set Ei,j := E[pip
T
j ]− E[pi]E[pT

j ].

4. For all j with � + 1 ≤ j ≤ r set pj := pj − Ej,
E
,

†p
.

5. If � < r set � := � + 1 and go to Step 2.
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6. If � = r go to Step 7.

7. Set X
 := E
E†
,
 + P
(I − E
,
E†
,
) where P
 ∈ Rk×m� is arbitrary.

8. Set � := �− 1.

9. Set X
 := (E
−
∑r

j=
+1 EjEj,
)E†
,
 +P
(I−E
,
E†
,
) where P
 ∈ Rk×m�

is arbitrary.

10. If � > 1 go to Step 8.

11. End.

The algorithm essentially exploits the idea of Gauss–Jordan elimination
[50] and is based on the new block-elimination procedure described in the
previous subsection. The first stage reduces the system to block lower
triangular form. The algorithm moves a pointer through the matrix Eff

along the leading diagonal from the (1, 1) position to the (r, r) position.
We consider what happens during stage � when the pointer is in the (�, �)
position. The current equations

[p
, p
+1, . . . , pr]

⎡
⎢⎢⎢⎣

E
,
 E
,
+1 · · · E
,r

E
+1,
 E
+1,
+1 · · · E
+1,r

...
...

...
Er,
 Er,
+1 · · · Er,r

⎤
⎥⎥⎥⎦ = [E
,E
+1, . . . ,Er]

are defined in terms of the current vectors p
, p
+1, . . . , pr by the formulae

Eij = E[pip
T
j ]− E[pi]E[pj ] and Ej = E[gpT

j ]− E[g]E[pT
j ].

The current pivoting coefficient E
,
 = E[p
p
T

 ] − E[p
]E[pT


 ] is used to
update the remaining vectors p
+1, p
+2, . . . , pr and all elements in the
remaining equations

[p
+1, p
+2, . . . , pr]

⎡
⎢⎢⎢⎣

E
+1,
+1 E
+1,
+2 · · · E
+1,r

E
+2,
+1 E
+2,
+2 · · · E
+2,r

...
...

...
Er,
+1 Er,
+2 · · · Er,r

⎤
⎥⎥⎥⎦

= [E
+1,E
+2, . . . ,Er]

according to the formulae

pj := pj − Ej,
E†
,
p
, Ei,j := Ei,j − Ei,
E†
,
E
,j
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and

Ej := Ej − E
E†
,
E
,j .

Note that the remaining elements E
,
+1,E
,
+2, . . . , F
,r in row � of the
coefficient matrix are eliminated at this stage because Lemma A1.2 (Ap-
pendix 1 and [154]) shows us that

E
,j − E
,
E†
,
E
,j = O,

where O is the zero matrix.
The pointer now moves forward one place to the (� + 1, � + 1) position.

Our earlier results show us that the updated system at stage �+1 retains the
same relative structure as the original system at stage �. In particular we
preserve the relationships Ei,j = E[pip

T
j ]−E[pi]E[pT

j ] and Ej = E[gpT
j ]−

E[g]E[pT
j ].

The second stage of the algorithm is a block back substitution. In
general we can see from the lower triangular form of the system at stage q
that

Xq =

⎡
⎣Eq −

r∑

j=q+1

XjEj,q

⎤
⎦E†q,q + Pq(I − Eq,qE†q,q)

where Pq ∈ Rk×mq is arbitrary.

5.5.6 Simulations

We wish to demonstrate the advantages of the methods considered in Sec-
tions 5.5.4 and 5.5.5 with the simulation of systems transforming digitized
images.

Let matrices X ∈ R256×256 and V ∈ R256×256 be counterparts of the
image presented in Fig. 1 (a) and the known image “Lenna,” respectively.
We partition X and V into 128 submatrices Xij , Vij ∈ R16×32 with i =
1, . . . , 16 and j = 1, . . . , 8 so that X = {Xij} and V = {Vij}. Let Fij :
Xij → Vij . Each submatrix Xij has been treated as a set of 32 realizations
of a random signal with columns representing realizations. The operator
Fij : Xij → Vij is interpreted as the mathematical model of a nonlinear
system, where a column of Xij is the input signal and the corresponding
column of Vij is the output signal.
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(a) Given “idealized” inputs Xij . This digitized image has
been taken from http://sipi.usc.edu/database/.
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250

(b) Observed inputs Y
(1)
ij .

Figure 5.5: Illustration to the performance of the considered method.
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(a) Outputs of H̃
(k)
ij by [151].

50 100 150 200 250
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100

150

200

250

(b) Outputs of P̃
(1)
2,ij .

Figure 5.6: Illustration to the performance of the considered method. The
digitized image has been taken from http://sipi.usc.edu/database/.
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(a) Errors associated with method [151].

(b) Errors associated with P̃
(1)
2,ij(Y

(1)
ij ).

Figure 5.7: Illustration to errors associated with the considered method.
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Table 1.

k Observed inputs max
ij

Δ(k)
H,ij max

ij
Δ(k)

2,ij

1 Y
(1)
ij = 20R(1)

ij XijQ(1)
ij + 50Q(2)

ij 1.4074× 106 7.7375× 10−4

2 Y
(2)
ij = XijR(2)

ij + 20Q(3)
ij 6.0448× 104 2.4749× 10−15

3 Y
(3)
ij = Q(4)

ij Xij + XijR(3)
ij 2.4671× 105 1.2915× 10−11

In practice, input signals are contaminated with noise. We simulated
three different types of noisy input signal in the form Y

(k)
ij with k = 1, 2, 3

presented in Table 1, where R(k)
ij is a matrix with normally distributed

entries with mean 0 and variance 1 and Q(k)
ij is a matrix with uniformly

distributed entries in the interval (0, 1). In Table 1,

Δ(k)
H,ij = ‖Fij(Xij)−H̃

(k)
ij (Y (k)

ij )‖2 and Δ(k)
2,ij = ‖Fij(Xij)−P̃

(k)
2,ij(Y (k)

ij )‖2,

where H̃
(k)
ij is the best approximation for Fij by the method [151] and P̃

(k)
2,ij

is the best approximation of the second degree for Fij constructed from
(5.110), (5.118), (5.123)-(5.125) with r = 2.

H̃
(k)
ij (Y (k)

ij ) and P̃
(k)
2,ij(Y (k)

ij ) have been calculated with Matlab for each
i, j and k (i.e. the method has been tested 384 times). We put K1 = K2 =
O in (5.124), (5.125).

The figures illustrate the performance of the methods for k = 1, i.e. for
Y

(1)
ij in Table 1. The matrices for the digitized images in Figs. (b)-(d) have

been composed from sub-matrices Y
(1)
ij , H̃

(1)
ij (Y (1)

ij ) and P̃
(1)
2,ij(Y (1)

ij ) corre-
spondingly. The expectations and covariance matrices in (5.123)-(5.125)
have been estimated from known simple equations [174]. For instance, for
each i, j and k we estimated Evzq

as Vij(Z(k)
ij )T /32 − V̂ij(Ẑ(k)

ij )T , where

Z
(k)
ij = Y

(k)
ij (diagY

(k)
ij (q, :)), diagY

(k)
ij (q, :)) is a diagonal matrix with the

elements from the qth row of Y
(k)
ij on the diagonal, and M̂ means a vec-

tor formed from means of the rows of a matrix M. These simple estimates
have been chosen to illustrate the performance of the considered method.
Special estimates have been considered in Section 4.3.

Fig. 5.7 represents the matrices {Δ(k)
H,ij} and {Δ(k)

2,ij} of errors associated

with the best approximations H̃
(k)
ij (Yij) by [151] and the best approxima-

tions P̃
(1)
2,ij(Yij) by (5.118), (5.123)- (5.125) with r = 2, respectively.

We see from Table 1 and the figures that the best approximations P̃
(k)
2,ij

give significant improvements in the accuracy of approximation to Fij com-
pared with the best approximations by [151]: the error associated with the
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considered method with r = 2 is at least 1010 times less than the error as-
sociated with the method [151]. In fact, this is an illustration of Theorem
38.

In summary, the approach presented in this Section, is based on the
solution of the best approximation problem for the input-output map. It is
supposed that the observed input is distorted by an unknown effect. The
approximant is given by the special polynomial operator of the rth degree
with r = 1, 2, . . . and minimizes the mean squared error between the desired
output and the output of the approximating system.

5.6 Best Causal Approximation

In Chapter 3, we have considered a new concept for the representation of
realistic systems with any pre-assigned accuracy. In this section, we provide
a new technique for the best causal representation of nonlinear systems in
the sense of minimizing an associated error.

The approach presented here develops some ideas from [9] - [159] and
is based on the best constrained approximation of mapping F in proba-
bility spaces by polynomial operator Pr of degree r. The operator Pr is
designed from matrices of a special form. This allows us to solve the best
approximation problem with the constraints on the matrix structures. The
special matrix structures imply the incorporation of the causality concept
into the models. As a result, the approximant preserves the causality prin-
ciple and minimizes the mean square difference between a desired output
F(x) and the output Pr(y) of the approximating model Pr. It is supposed
that the observable input y represents an idealized input x contaminated
with noise. Unlike the known approaches to the modelling of nonlinear
systems, it is not assumed here that x and y can be presented as analytical
expressions. The inputs and outputs of the system under consideration
are elements of the probability spaces and therefore relationships between
them are assumed to be given by some covariance matrices only. Another
difference is that we consider the best causal model of nonlinear systems. In
other words, the model that we provides guarantees the smallest associated
error in the entire class of models under consideration.

In Section 5.6.1, we present the model of the nonlinear system, refor-
mulate and extend the heuristic definition of causality and show how the
model is adjusted to the causality concept. In particular, we define so
called (δ, ε)-causality which is closer to realistic conditions than the earlier
notion of ‘idealized’ causality. To satisfy the causality concept, the model
is reduced to a representation by matrices of special form.

The rigorous statement of the problem is given in Section 5.6.2.
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In Section 5.6.3, we provide a solution to the problem, i.e. we obtain the
equations for the matrices which determine the optimal model P0

r . We also
establish the error equation associated with P0

r . It is shown that the model
has a degree of freedom, the degree r of the operator Pr. In particular,
we establish that the error is decreased if the degree r of P0

r is increased.
This fact gives us the degree of freedom in manipulating with the model
adjustment.

Simulations are described in Section 5.6.4.

5.6.1 Causality

Suppose that x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rm) and u ∈ L2(Ω,Rm) are
random vectors with realizations x(ω) ∈ Rm, y(ω) ∈ Rm and u(ω) ∈ Rm,
respectively. As before, we denote x = x(ω), y = y(ω) and u = u(ω).

Let Pr : Rm → Rm be given by (5.107), i.e. by

Pr(y) = A(0) +A(1)y +
r∑

q=2

⎡
⎣ ∑

q−1≤σq−1≤(q−1)n

Ãj1,...,jq−1zj1,...,jq−1

⎤
⎦ ,(5.144)

where A(0) ∈ Rm, A(1) ∈ Rm×m, Ãj1,...,jq−1 ∈ Rm×m, zj1,...,jq−1 = yj1 . . .
yjq−1y, with j1, . . . , jq−1 = 1, . . . ,m and q = 2, . . . , r, and where σq−1 = j1+
. . . + jq−1 and the inner sum is extended for all summands with subscripts
satisfying the inequality q − 1 ≤ σq−1 ≤ (q − 1)m.

Let Pr : L2(Ω,Rm)→ L2(Ω,Rm) be given by

[Pr(y)](ω) = Pr[y(ω)].

We write

Pr(y) =

⎡
⎢⎣

p1(y1, ..., ym)
...

pm(y1, ..., ym)

⎤
⎥⎦ ,

where pi : L2(Ω,Rm)→ L2(Ω,R).
Next, let us denote h = Pr(y) where h = (h1 ... hm)T ∈ L2(Ω,Rm).

This equation can be rewritten as the set of equations

hi = pi(y1, ..., ym)

for i = 1, ..., m. Note that each component hi (or yi) can be interpreted as
a value of h (or y, respectively) at time ti.

We recall that by the heuristic definition of causality, the present value
of the output of a physical system is not affected by future values of the
input [116]. Since the operator Pr is treated as a model of the system, we
formalize the causality concept in terms of the operator Pr.
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Definition 27. We call the operator Pr causal if hi is determined from
components y1, ..., yk with k ≤ i, i.e. if for i = 1, ..., m,

hi = pi(y1, ..., yk) with k ≤ i.

An alternative definition is as follows.

Definition 28. The operator Pr is called causal if for any v = (v1 ... vm)T

∈ L2(Ω,Rm) and w = (w1 ... wm)T ∈ L2(Ω,Rm),

(v1 ... vk)T = (w1 ... wk)T

implies
pi(v1 ... vk) = pi(w1 ... wk),

where k ≤ i.

In other words, Pr is causal if matrix Ãj1...jq−1 = {akl} is such that
akl = 0 for all l = 1, ..., m if k = 1, ..., j − 1 where j = max{j1, ..., jq−1},
and also akl = 0 if k = j, j + 1, ..., m and k < l. Such a matrix is called
j-lower trapezoidal.

An example of 4× 4 3-lower trapezoidal matrix is as follows:⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

a31 a32 a33 0
a41 a42 a43 a44

⎤
⎥⎥⎦ .

In particular, if Pr is linear, i.e. Pr is a matrix A, then Pr is causal if
A is lower triangular.

The class of j-lower trapezoidal matrices is denoted by Tj . Note that
the 1-lower trapezoidal matrix is lower triangular.

The above implies the following definition.

Definition 29. The operator Pr is called causal if matrix Ãj1...jq−1 is j-
lower trapezoidal where j = max{j1, ..., jq−1}.

In the real world, information is often obtained with some error, caused
in particular, by the influence of external factors, data and instrument
inexactness, etc. In this sense, the definition above is rather idealistic. A
more realistic definition of causality for the operator Pr is as follows.

Definition 30. The operator Pr is called (δ, ε)-causal if for any δ ≥ 0
there exists ε ≥ 0 such that for arbitrary v = (v1 ... vm)T ∈ Rm and w =
(w1 ... wm)T ∈ Rm,

‖(v1 ... vk)T − (w1 ... wk)T ‖2 ≤ δ
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implies
|pi(v1 ... vk)− pi(w1 ... wk)| ≤ ε,

where k ≤ i.

It is clear that the (0, 0)-causal operator is causal in the sense of Defi-
nition 1.

Proposition 2. If matrix Ãj1...jq−1 is j-lower trapezoidal for each j then
Pr is the (δ, ε)-causal operator.

Proof. The proof follows directly from the above definitions.

Next, similarly to (5.111)–(5.118), it is shown that

∑

j1+...jq−1≤(q−1)m

Ãj1,...,jq−1zj1,...,jq−1 =
N∑

i=1

Ai+1ui,

Pr(y) = A0 + A1y +
N∑

i=1

Ai+1ui (5.145)

and

Pr(y) = A0 +A1(y) +
N∑

i=1

Ai+1(ui), (5.146)

where N is defined similarly to that in (5.115), and matrices Ai+1 ∈ Rm×m,
vectors ui ∈ Rm and ui ∈ L2(Ω,Rm), and operators Ai+1 : L2(Ω,Rm) →
L2(Ω,Rm) are defined in the manner of matrices Cj , vectors uj and uj ,
and operators Cj in (5.117) and (5.118), respectively.

5.6.2 Statement of the problem

We identify a nonlinear system with the continuous operator F : L2(Ω,Rm)
→ L2(Ω,Rm). It is supposed that a structure of F is either unknown or
is difficult to compute. It is also assumed that a relationship between the
input x of the system F and an observable input y is not known.

We wish to find a causal optimal model of the system F which minimizes
the associated error.

Let
J(A0, A1, ..., AN+1) = E[‖F(x)− Pr(y)‖2],

where Aj ∈ Tj for j = 1, ..., N + 1.
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The problem is to find A0
0, A0

1, ... A0
N+1 such that

J(A0
0, A

0
1, ..., A

0
N+1) = min

A0,A1,...,AN+1
J(A0, A1, ..., AN+1) (5.147)

subject to

A0
j ∈ Tj for each j = 1, ..., N + 1. (5.148)

Let us denote P 0
r = P 0

r (A0
0, A

0
1, ..., A

0
N+1). By Proposition 2, the condi-

tion A0
j ∈ Tj for j = 1, ..., N + 1 implies (δ, ε)-causality of P0

r.
We note that the only restriction imposed on F is its continuity. It is

not supposed that some properties of F , such as causality, memory, etc.,
are known but we wish that P0

r is (δ, ε)-causal and constructively defined.

5.6.3 Best causal polynomial model of the system

In this section, we provide a solution to the problem posed above and also
present an error analysis associated with the solution.

Let

s = F(x), s = F (x), u = (u1 ... uN )T , G = Esu − EsyE†yyEyu, (5.149)

D = Euu − EuyE†yyEyu, H = GD† ∈ Rm×N

and

D1/2 =

⎡
⎣

Q11 ... Q1N

... ... ...
QN1 .... QNN

⎤
⎦ with Qij ∈ Rm×m,

where E†yy and D† are the pseudo-inverses of Eyy and D respectively, and
where sub-matrices Qij are assumed to be nonsingular for all i, j = 1, ..., N.

Let matrices Qi = QiiQ
T
ii be positive definite for all i = 1, ..., N so that

there exists the Cholesky factorization [50] for Qi,

Qi = LiL
T
i , (5.150)

where Li is lower triangular. We write [H1 ... HN ] = H where Hi ∈ Rm×m,
and

(Hi −
N∑

k=1,k 
=i

(A0
k+1 −Hk)QkiQ

−1
ii )Li = K1i + K2i + K3i, (5.151)

where A0
k+1 is defined by the following Theorem 40, K2i is i-lower trape-

zoidal, K3i is strictly upper triangular (i.e. with the zero entries on the
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main diagonal) and K1i is a matrix which supplements K2i to lower trian-
gular matrix.

For example, matrix

⎡
⎢⎢⎣

a11 0 0 0
a21 a22 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ supplements 4 × 4 3-lower

trapezoidal matrix to the lower triangular matrix.
We also suppose that Eyy is positive definite, therefore E†yy = E−1

yy , and
there exists the Cholesky factorization for Eyy,

Eyy = RRT , (5.152)

where R is lower triangular.
Each matrix can be presented as a sum of lower triangular and strictly

upper triangular matrices. We write

(Esy −
N∑

k=1

A0
k+1Euky)R−T = M1 + M2, (5.153)

where M1 is lower triangular and M2 is strictly upper triangular.

Theorem 40. Under the assumptions above, the best (δ, ε)-causal model
P0

r of the system F is given by

P 0
r (y) = A0

0 + A0
1y +

N∑

i=1

A0
i+1ui, (5.154)

where

A0
0 = E[s]−A0

1E[y]−
N∑

k=1

Ak+1E[uk], (5.155)

A0
1 = M1R

−1 (5.156)

and for each i = 1, ..., N,

A0
i+1 = K2iL

−1
i . (5.157)

Proof. It follows from Proposition 6.9 and Section ... that

J(A0, A1, ..., AN+1) = J0 + J1 + J2 + J3,

where
J0 = ‖E1/2

ss ‖2 − ‖Esy(E−1
yy )1/2‖2 − ‖G(D†)1/2‖2,
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J1 =

∥∥∥∥∥A0 − E[s] + A1E[y] +
N∑

k=1

Ak+1E[uk]

∥∥∥∥∥

2

,

J2 =

∥∥∥∥∥

[
A1 − (Esy −

N∑

k=1

Ak+1Euky)E−1
yy

]
E1/2

yy

∥∥∥∥∥

2

and

J3 =
∥∥∥([A2...AN+1]−H) D1/2

∥∥∥
2

.

We have

J2 = tr

{[
A1 −

(
Esy −

N∑

k=1

Ak+1Euky

)
E−1

yy

]
Eyy

×
[
A1 −

(
Esy −

N∑

k=1

Ak+1Euky

)
E−1

yy

]T
⎫
⎬
⎭

= tr{[A1R−M1 −M2][RT AT
1 −MT

1 −MT
2 ]}

= tr{[A1R−M1][RT AT
1 −MT

1 ]} − tr{A1RMT
2

+M2R
T AT

1 }
+tr{M2M

T
1 + M1M

T
2 + M2M

T
2 }

= tr{[A1R−M1][RT AT
1 −MT

1 ]}
= ‖A1R−M1‖2

where
tr{A1RMT

2 + M2R
T AT

1 } = 0

and
tr{M2M

T
1 + M1M

T
2 + M2M

T
2 } = 0

since A1 is lower triangular.
Hence (5.156) is true. Next,

J3 =

∥∥∥∥∥

[
N∑

k=1

(Ak+1 −Hk)Qk1, . . . ,
N∑

k=1

(Ak+1 −Hk)QkN

]∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

k=1

(Ak+1 −Hk)Qk1

∥∥∥∥∥

2

+ . . . +

∥∥∥∥∥
N∑

k=1

(Ak+1 −Hk)QkN

∥∥∥∥∥

2

=
N∑

j=1

J(Aj+1),
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where

J(Aj+1) =

∥∥∥∥∥∥∥

⎡
⎢⎣Aj+1 −

⎛
⎜⎝Hj −

N∑
k=2
k �=j

[Ak+1 −Hk]QkjQ
−1
jj

⎞
⎟⎠

⎤
⎥⎦Qjj

∥∥∥∥∥∥∥

2

= tr[Aj+1Lj − (K1j + K2j + K3j)][LT
j AT

j+1

−(KT
1j + KT

2j + KT
3j)]

= tr{[(Aj+1Lj −K2j)− (K1j + K3j)] [(LT
j AT

j+1 −KT
2j)

−(KT
1j + KT

3j)]}
= tr{(Aj+1Lj −K2j)(LT

j AT
j+1 −KT

2j)}
= ‖Aj+1Lj −K2j‖2

since
tr{(Aj+1Lj −K2j)(KT

1j + KT
3j)} = 0,

tr{(K1j + K3j)(LT
j AT

j+1 −KT
2j)} = 0

and
tr{(K1j + K3j)(KT

1j + KT
3j)} = 0.

Thus matrices A0
j+1 with j = 1, ..., N minimize J3, and therefore (5.157) is

true.
Matrices A0

1 and A0
i+1 defined by (5.156) and (5.157) are lower trian-

gular and i-lower trapezoidal, respectively. It implies the (δ, ε)-causality of
the operator P0

r.
The theorem is proven.

We note that the operator P0
r defined by Theorem 40 is constructive, i.e.

P0
r is numerically realizable with the standard software packages. Matrices

A0
i+1 for i = 1, ..., N are determined form the set of equations (5.157).

Theorem 41. The error associated with the best (δ, ε)-causal model P0
r

presented by Theorem 40, is

E[‖F(x)− P0
r (y)‖2] = ‖E1/2

ss ‖2 − ‖Esy(E−1
yy )1/2‖2

−‖G(D†)1/2‖2. (5.158)

Proof. The proof follows directly from the above.

Corollary 6. The error E[‖F(x)−P0
r (y)‖2] associated with the best repre-

sentation P0
r of the system F is decreased if the degree r of P0

r is increased.
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Proof. It follows from Theorem 1 that A0
i+1 turns to zero the functional

J(Ai+1) for each i = 1, ..., N. But

J3 =
N∑

i=1

J(Ai+1)

therefore A0
2, ..., A

0
N+1 turn to zero J3. This means that

[A0
2 ... A0

N+1] = GD†, (5.159)

where G and D are subject to conditions (5.150)–(5.153). Next, it follows
from (5.159) that ‖GD†‖ is increased with an increase of N. Since N =
m+m2 + ...mr−1, then the right hand side of (5.158) is decreased if degree
r of P0

r is increased.

Thus the degree r of the model P0
r is a degree of freedom which allow

us to adjust the model to an accuracy which is defined by conditions of a
particular modelling problem.

5.6.4 Simulations

To illustrate the performance of the considered method, we simulate the
inputs and outputs of the system F in the form of matrices X = {xij} and
S = {sij} respectively, where

xij = (exp(ti) + aj exp(−ti)) sin(10ti)

and
sij = bj sin(10ti) sin(ti)

with ti = ti−1 + 0.01, aj = aj−1 + 0.5, bj = bj−1 + 0.5, i = 1, . . . , 500,
j = 1, . . . , 100, t0 = 0, a0 = 0 and b0 = −30. We note that ‘trigonometric’
signals are often exploited in real-world data processing.

Columns of X and S represent realizations of the random vectors x and
s = F(x) correspondingly. The observed inputs of the system have been
simulated in the form of the matrix Y = M. ∗X C where C is a diagonal
matrix with the nonzero entries cj = cj−1 + 0.5, j = 1, . . . , 100, c0 = −20,
M = {μij} is a matrix with normally distributed entries with mean 0 and
variance 1, and the symbol .∗ means the Hadamard product.

We model the system F in the form of operator P 0
r , given by Theorem

40, for r = 1 and r = 2 so that

P 0
1 (y) = A0

0 + A0
1y (5.160)
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(a) Reference input x.
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(b) Observed input y.

Figure 5.8: Illustration to performance of considered method.
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(a) Reference output s.
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(b) Output of the model P 0
1 .

Figure 5.9: Illustration to performance of considered method.
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(a) Output p2 of the model P 0
2 .
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(b) Fragments of outputs s (solid line) and p2 (line with circles).

Figure 5.10: Illustration to performance of considered method.
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and

P 0
2 (y) = A0

0 + A0
1y +

m∑

j1=1

Ã0
j1

zj1 = A0
0 + A0

1y +
m∑

i=1

A0
i+1ui (5.161)

with zj1 = yj1y = ui for each j1, i = 1, . . . , m (see (5.146) and (5.145))
where A0

0, A0
1, . . ., A0

m+1 have been determined from (5.155)–(5.157).
In these simulations, the expectations and covariance matrices used in

(5.149) – (5.157), have been estimated from the entire samples X, S and
Y of x, s and y, respectively.3

The figures 5.8– 5.10 present results of the simulations for aj = 90,
bj = 1 and cj = 0.5.

The figures demonstrate the significant improvement in quality of mod-
elling when the degree r of the model P 0

r is increased.

5.7 Best Hybrid Approximations

In this section, we consider a new approach to constructive representation
of nonlinear systems which is based on a combination of ideas of the best
approximation and iterative procedures.

The motivation for such an approach is as follows. Best–approximation
methods have the aim of obtaining the best solution within a certain class,
and therefore the solution cannot be improved by these techniques in cases
when the approximation is not satisfactory. In contrast, iterative methods
are normally convergent, but the error associated with each iteration of the
particular method is not the smallest possible. As a result, convergence can
be quite slow for a rather wide variety of problems. Moreover, in practice
only a finite number of iterations can be carried out, and therefore the final
approximate solution is often unsatisfactorily inaccurate.

A natural idea is to combine the above techniques to exploit their ad-
vantageous features. We present a method which realizes this idea. First, a
special iterative procedure is considered with the aim of improving the ac-
curacy of F approximation with each consequent iteration. Second, on each
iteration, the best approximation problem is solved providing the smallest
associated error within the chosen class of approximations for each itera-
tion.

We show that the combination of these techniques allows us to build
a computationally efficient and flexible method which has three degrees of
freedom. See Remarks 19 and 20 in Section 5.7.7 in this connection. In

3The special methods of the estimation and related references are given in Section
4.3.
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particular, we prove that the error in approximating F by the considered
method decreases with an increase in the number of iterations.

This section delivers a substantially more effective methodology com-
pared to the primary methods considered in Sections 5.4 and 5.5.

5.7.1 Some preliminaries

Before a formal statement of the problem, we describe the motivating idea.
Let F be the input-output map of a nonlinear system, and x and s the

stochastic input and stochastic output of F , respectively. Let y be the
noise-corrupted version of x. It is supposed that the input of the system,
which approximates F , is y and that information on F is given in terms
of the statistical characteristics of s and y such as the mean, covariance
matrices etc.

To find a system which approximates F , the idea of a concatenation of
approximating subsystems can be exploited in the following way. Let B0

approximate F in a certain sense. We call B0 a subsystem. The output of
B0 is used as the input of the subsequent approximating subsystem B1 that
has to be determined, and then the procedure is repeated. As a result, the
link between y and s is modelled from the concatenation

Pk = Bk ◦ Bk−1 ◦ . . . ◦ B0

with k = 0, 1, . . . . This device initiates the problem as follows. Find a
constructive approximation Pk for F such that each Bk approximates F
with a minimal possible error for every k = 0, 1, . . . , and further, the error is
decreased when k is increased. Since Pk is determined by Bk,Bk−1, . . . ,B0,
the more precise formulation in terms of the approximating subsystem Bk

is given in the Section 5.7.2.
We note that while the system concatenation is a natural idea, the

methodology of an optimal determination of the parameters of each sub-
system is not obvious. In particular, we point out that the nonlinearity
of each approximating subsystem Bi is essential. No improvement in the
accuracy can be achieved by the following subsystem Bi+1 if Bi+1 is linear.
This observation is justified in Remark 21 of Section 5.7.7.

Suppose that x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn) are random vectors with
realizations x(ω) ∈ Rm and y(ω) ∈ Rn.

Let the input-output map F : L2(Ω,Rm) → L2(Ω,Rp) be such that
[F(x)](ω) = F [x] for each ω ∈ Ω so that

s = F(x) and s = F (x)

where F ∈ L2(Rm,Rp).



212 5. BEST OPERATOR APPROXIMATION

The approach described in Section 2.1, is implemented through the
following device.

Let sk ∈ L2(Ω,Rp), sk = sk(ω) and let us suppose that sk is known for
k = 0, 1, 2, . . . where s0 = y. We set

sk+1 = Pk(y), (5.162)

where k = 0, 1, ..., and the nonlinear operator Pk ∈ L2(Rn,Rp) is deter-
mined by

Pk(y) = B̃k(sk), (5.163)

where

B̃k(sk) = Ã
(0)
k +

r∑
q=1

Ã
(q)
k (sq

k) (5.164)

and where Ã
(0)
k ∈ Rp, Ã

(q)
k : (Rν)q → Rp is the q-linear operator with ν = n

for k = 0 and ν = p for k = 1, 2, . . ..
Let Bk : L2(Ω,Rm) → L2(Ω,Rp) be defined by [Bk(sk)](ω) = Bk(sk)

with

Bk(sk) = A
(0)
k +

r∑
q=1

A(q)
k (sq

k) (5.165)

and

Bk(sk) = A
(0)
k +

r∑
q=1

A
(q)
k (sq

k) (5.166)

where

A
(q)
k (sq

k) = [A(q)
k (sq

k)](ω), sq
k = sq

k(ω), A(q)
k : L2(Ω, (Rν)q)→ L2(Ω,Rp)

and ν is as above.

5.7.2 Statement of the problem

It follows from the above that the subsystem B̃k is defined by Ã
(0)
k , Ã(1)

k ,

. . ., Ã(r)

k . Therefore it is natural to state the problem in the following form.
Let

J(A(0)
k ,A(1)

k , . . . ,A(r)
k ) = E[‖F(x)− Bk(sk)‖2]. (5.167)



5.7. BEST HYBRID APPROXIMATIONS 213

For each k = 0, 1, ..., find the vector Ã
(0)
k and operators Ã(1)

k , . . ., Ã(r)

k such
that

J(Ã(0)
k , Ã(1)

k , . . . , Ã(r)

k ) = min
A

(0)
k ,A(1)

k ,...,A(r)
k

J(A(0)
k ,A(1)

k , . . . ,A(r)
k ). (5.168)

Thus, the solution will completely define B̃k.

5.7.3 Method for the solution of problem (5.168)

In this section, we present the general structure of the considered method
and its particularities, that is, a solution of the best approximation problem
and the algorithm for a numerical realization.

The considered approach (5.162)–(5.168) implies the solutions of the
sequence of the problems (5.167), (5.168) for each k = 0, 1, ... with s0 =
y and sk+1 in the form (5.162)–(5.164). For each kth iteration of the
procedure (5.162)–(5.167), the operator B̃k represents the best polynomial
approximant of the rth degree for F. Note that (5.163) can be written as

Pk(y) = B̃k ◦ B̃k−1 ◦ . . . ◦ B̃0(s0). (5.169)

We begin with a representation of Bk and (5.168) in a different form.
For q = 1, . . . , r, let us represent A

(q)
k in the form

A
(q)
k = R

(q)
k ◦ T

(q)
k

where T
(q)
k : (Rν)q → Rl is the q-linear operator with ν defined in Section

2.2, and R
(q)
k : Rl → Rp. In particular, l = p.

The reason for such a representation is twofold. First, we wish to deter-
mine T

(q)
k in a way which simplifies the computational procedure for B̃k.

Second, we wish to optimize this simplified procedure by determining R
(q)
k

so that the associated error is minimized.
Next, T

(1)
k , . . ., T

(r)
k are multi-linear operators, i.e. the tensors. For

our purposes, it is convenient to use a representation of the operator Bk in
terms of linear operators, i.e. in matrix terms.

We proceed with this device in the following way. Lemma 32 below
gives a matrix representation of Bk. In fact, Lemma 32 is a reformulation
of Lemma 27 of Section 4.4.2(b). Section 4.4.2(d) provides procedures for
determining the operator T

(q)
k in terms of operator D(j+1)

k which is intro-
duced by (5.171)–(5.173) below. As a result, we reformulate the problem
(5.168) in special matrix terms (5.186).

We write sk = (sk,1, . . . , sk,ν)T ∈ Rν , zk,j1,...,jq−1 = skj1 . . . skjq−1sk,
where q = 2, . . . , r and ji = 1, . . . , ν for i = 1, . . . , q − 1.
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Lemma 32. There exist matrices T
(q)
k,j1,...,jq−1

∈ Rν×l such that

Bk(sk) = A
(0)
k + R

(1)
k T

(1)
k sk

+
r∑

q=2

R
(q)
k

⎡
⎣ ∑

σq−1≤(q−1)ν

T
(q)
k,j1,...,jq−1

zk,j1,...,jq−1

⎤
⎦ , (5.170)

where σq−1 = j1+. . .+jq−1 and the inner sum is extended for all summands
with subscripts satisfying the inequality σq−1 ≤ (q − 1)ν.

Next, let us write Q
(q)
k,j1,...,jq−1

= R
(q)
k T

(q)
k,j1,...,jq−1

. Similarly to (5.111)–
(5.118), we can reduce (5.170) to a representation with a lesser number of
terms. Namely, we set

r∑
q=2

∑

σq−1≤(q−1)ν

Q
(q)
k,j1,...,jq−1

zk,j1,...,jq−1 =
N+1∑

j=2

C
(j)
k D

(j)
k uk,j−1, (5.171)

where matrices C
(j)
k D

(j)
k and operands uk,j−1 ∈ Rν denote matrices R

(q)
k

×T
(q)
k,j1,...,jq−1

and vectors zk,j1,...,jq−1 , respectively, in the manner of that
used in (5.116). The number N is defined similarly to (5.115).

We also set C
(1)
k D

(1)
k = R

(1)
k T

(1)
k and uk0 = sk. Then

Bk(sk) = A
(0)
k +

N∑

j=0

C
(j+1)
k D

(j+1)
k ukj (5.172)

and

Bk(sk) = A
(0)
k +

N∑

j=0

C(j+1)
k [D(j+1)

k (ukj)], (5.173)

where [D(j+1)
k (ukj)](ω) = D

(j+1)
k ukj , and C(j+1)

k is defined similarly.

5.7.4 Orthogonality of random vectors

We recall that for any x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn), we denote

Exy = E[xyT ] =
{
E[xiyj ]

}n

i,j=1
and Exy = E[xyT ]− E[x]E[yT ],

where
E[xiyj ] def=

∫

Ω

xi(ω)yj(ω)dμ(ω).



5.7. BEST HYBRID APPROXIMATIONS 215

Definition 31. Let uk ∈ L2(Ω,Rn) and vk = Zk(uk). The operators
Z1, . . . ,Zp are called pairwise orthonormal if

Evivj
=
{
O, i = j,
I, i = j

for any i, j = 1, . . . , p.

Here, O and I are the zero matrix and identity matrix, respectively.
If

Evivj
= O for i = j, i, j = 1, . . . , p,

and if Evivj
is not necessarily equal to I for i = j then Z1, . . . ,Zp are

called pairwise orthogonal.
The vectors v1, . . . , vp will also be called orthonormal and orthogonal,

respectively.

If M is a square matrix then we write M1/2 for a matrix such that
M1/2M1/2 = M.

For the case when matrix Evkvk
is invertible for any k = 1, . . . , p, the

orthonormalization procedure is as follows. For uk ∈ L2(Ω,Rn), we write

[Zk(uk)](ω) = Zkuk(ω), (5.174)

where Zk ∈ Rn×n. For uk, vj , wj ∈ L2(Ω,Rn), we also define operators
Eukvj , E−1

vjvj
: L2(Ω,Rn)→ L2(Ω,Rn) by the equations

[Eukvj (wj)](ω) = Eukvj wj(ω) (5.175)

and

[E−1
vjvj

(wj)](ω) = E−1
vjvj

wj(ω), (5.176)

respectively.

Lemma 33. Let

w1 = u1 and wi = ui −
i−1∑

k=1

Euiwk
E−1

wkwk
(wk) (5.177)

where i = 1, . . . , p and E−1
wkwk

exists. Then
(i) the vectors w1, . . . , wp are pairwise orthogonal, and
(ii) the vectors v1, . . . , vp, defined by

vi = Zi(ui) (5.178)

with

Zi(ui) = (E1/2
wiwi

)−1(wi) (5.179)

for i = 1, . . . , p, are pairwise orthonormal.
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Proof. Let us write

w1 = u1 and wi = ui −
i−1∑

k=1

U ik(wk) for i = 1, . . . , p,

with U ik : L2(Ω,Rn)→ L2(Ω,Rn) chosen so that, for k = 1, . . . , i− 1,

Ewiwk
= O if i = k. (5.180)

We wish (5.180) is true for any k, i.e.

Ewiwk
= Ewiwk

− E[wi]E[wT
k ]

= E[(ui −
i−1∑

l=1

U il(wl))wT
k ]− E[(ui −

i−1∑

l=1

U il(wl))]E[wT
k ]

= Euiwk
− UikEwkwk

− E[ui]E[wT
k ] + E[wk]E[wT

k ]
= Euiwk

− UikEwkwk

= O.

Thus, Uik = Euiwk
E−1

wkwk
, and the statement (i) is true.

It is clear that vectors v1, . . . , vp, defined by (5.178), are orthogonal.
For Zk, defined by (5.179), we have Zk = (E1/2

wkwk
)−1 and

Evkvk
= E[(E1/2

wkwk
)−1wkwT

k (E1/2
wkwk

)−1]

−E[(E1/2
wkwk

)−1wk]E[wT
k (E1/2

wkwk
)−1]

= (E1/2
wkwk

)−1Ewkwk
(E1/2

wkwk
)−1

= I.

Hence, v1, . . . , vp, defined by (5.178), are orthonormal.

For the case when matrix Evkvk
is singular for k = 1, . . . , p, the orthog-

onalizing operators Z1, . . . ,Zp are determined by Lemma 34 below. An-
other difference from Lemma 33 is that the vectors v1, . . . , vp in Lemma
34 are pairwise orthogonal but not orthonormal.

Lemma 34. Let
vi = Zi(ui)

for i = 1, . . . , p, where Z1, . . . ,Zp are such that

Z1(u1) = u1 and Zi(ui) = ui −
i−1∑

k=1

Zik(vk) (5.181)



5.7. BEST HYBRID APPROXIMATIONS 217

for i = 2, . . . , p with Zik : L2(Ω,Rn)→ L2(Ω,Rn) defined by

Zik = Euivk
E†vkvk

+ Aik(I − Evkvk
E†vkvk

) (5.182)

with Aik ∈ Rn×n arbitrary. Then the vectors v1, . . . , vp are pairwise or-
thogonal.

Proof. We wish that Evivk
= O for i = k. If Zik has been chosen so that

this condition is true for all k = 1, . . . , i− 1 then we have

E[(ui −
i−1∑

l=1

Zil(vl))vT
k ] = Euivk

−
i−1∑

l=1

ZilEvlvk

= Euivk
− ZikEvkvk

= O.

Thus,

ZikEvkvk
= Euivk

. (5.183)

The necessary and sufficient condition [6] for the solution of the matrix
equation (5.183) is given by

Euivk
E†vkvk

Evkvk
= Euivk

. (5.184)

By Lemma 24, (5.184) is true. Then, on the basis of [6], the general solution
to (5.183) is given by (5.182).

We note that Lemma 34 does not require invertibility of matrix Evkvk
.

At the same time, if E−1
vkvk

exists, then vectors w1, . . . , wp and v1, . . . , vp

defined by (5.177) and Lemma 34 respectively, coincide.

Remark 16. Orthogonalization of random vectors is not, of course, a new
idea. In particular, generalizations of the Gram-Schmidt orthogonalization
procedure have been considered in [92, 49]. The considered orthogonalization
prcedures in Lemmata 33 and 34 are different from those in [92, 49].

5.7.5 Reformulation of the problem

It follows from the above Section that random vectors uk0, . . . , ukN ∈
L2(Ω,Rν) in (5.173) are always reduced to the pairwise orthogonal vec-
tors vk0, . . . , vkN so that for k = 0, 1, . . . , and j = 0, . . . , N ,

vkj = D(j+1)
k (ukj), (5.185)

where operators D(j+1)
k are constructed from operators Zkj given by Lem-

mata 33 and 34.



218 5. BEST OPERATOR APPROXIMATION

Hereinafter, D(j+1)
k means the operator which converts uk0, . . . , ukN

from (5.172) into the pairwise orthogonal vectors vk0, . . . , vkN .
Without loss of generality we now also assume that all random vectors

have zero mean.
As a result, the problem given by (5.167) and (5.168) is now presented

in the following form.
Let N = 1, . . . , N . For each k = 0, 1, . . . , find Ã(0) and C̃(1)

k , . . . , C̃(N+1)

k

such that

J(Ã(0)
k , C̃(1)

k , . . . , C̃(N+1)

k )

= min
A

(0)
k ,C(1)

k ,...,C(N+1)
k

J(A(0)
k , C(1)

k , . . . , C(N+1)
k ), (5.186)

where

J(A(0)
k , C(1)

k , . . . , C(N+1)
k ) = E[‖F(x)− (A(0)

k +
N∑

j=0

C(j+1)
k (vkj))‖2] (5.187)

and vk0, . . . , vkN are pairwise orthogonal vectors constructed from Lemma
34 and (5.185).

5.7.6 Solution of problem (5.186)

First, by Lemma 24 of Section 4.4.1, we have

Esvkj
E†vkjvkj

Evkjvkj
= Esvkj

. (5.188)

Now we are in a position to solve the problem (5.186).

Theorem 42. Let s = F(x). The minimum in (5.186) is achieved if

Ã
(0)
k = Op×1 and

C̃
(j+1)
k = Esvkj

E†vkjvkj
+ Mkj(I − Evkjvkj

E†vkjvkj
) (5.189)

with Mkj arbitrary, k = 0, 1, . . . and j = 0, . . . , N .

Proof. Let us denote J = J(A(0)
k , C(1)

k , . . . , C(N+1)
k ). We have

J = tr{Ess + A
(0)
k A

(0)T
k −

N∑

j=0

Esvkj
E†vkjvkj

Evkjs}

+
N∑

j=0

tr{(C(j+1)
k − Esvkj

E†vkjvkj
)Evkjvkj

×(C(j+1)T
k − E†vkjvkj

Evkjs)}
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which is true on the basis of (5.188). Then

J = ‖E1/2
ss ‖2 + ‖A(0)1/2

k ‖2 −
N∑

j=0

‖Esvkj
(E†vkjvkj

)1/2‖2

+
N∑

j=0

‖(C(j+1)
k − Esvkj

E†vkjvkj
)E1/2

vkjvkj
‖2. (5.190)

Hence, J is minimized when A
(0)
k = Op×1 and

C
(j+1)
k E1/2

vkjvkj
− Esvkj

E†vkjvkj
E1/2

vkjvkj
= Op×ν .

The solution to the latter equation is given in (5.189).

Note that a possible and natural choice for Mkj in (5.189) is Mkj =
Op×ν .

Remark 17. The attractive feature of the solution presented in Theorem
42 is that C̃(1)

k , . . ., C̃(N+1)

k are subsequently determined from the sequence
of the simple single independent equations (5.189). This is achieved by ex-
ploiting the orthogonalization procedure by Lemma 34. Otherwise matrices
C̃

(1)
k , . . ., C̃

(N+1)
k which minimize (5.168) should be determined from a sys-

tem of matrix equations. Such a solution would require substantially more
computational work.

Description of the algorithm. It follows from the above that the numerical
realization of the operator Pk consists of the iteration procedure (5.162)–
(5.164), (5.172) with the vector orthogonalization given by Lemma 34, and
computation of the matrices C̃

(1)
k , . . . , C̃

(N+1)
k by (5.189) on each stage of

the procedure (5.162)– (5.164), (5.172).
The device of numerical realization for the operator Pk is summarized

as follows.

Initial parameters: s ∈ L2(Ω,Rp), y ∈ L2(Ω,Rn), N, q ∈ N.

Final parameter: Pq(y).

Algorithm:
• s0 := y;
• for k := 0 to q do

begin
vk0 := uk0;
(here and below, ukj is defined in accordance with (5.171))

♦ for j := 0 to N do
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begin
Zkjl := Eukjvkl

E†vklvkl
+ Kjl(I − Evklvkl

E†vklvkl
);

vkj := ukj −
j−1∑

l=0

Zkjl(vkl);

end;

C̃
(j+1)
k := Esvkj

E†vkjvkj
+ Mkj(I − Evkjvkj

E†vkjvkj
);

B̃k(sk) :=
N∑

j=0

C̃(j+1)

k (vkj);

sk := B̃k(sk);
end;

• Pq(y) := Bq(sq).

The number of iterations, q can be determined by the stopping criterion:
if ‖sk+1 − sk‖2 is not less than ‖sk − sk−1‖2 then the algorithm should be
stopped.

5.7.7 Error analysis associated with the operator Pk
Theorem 43. The error of F approximation by the operator Pk is

E[‖F(x)− Pk(y)‖2] = ‖E1/2
ss ‖2 − ‖EsyE†1/2

yy ‖2

−
k∑

j=0

N∑

l=1

‖Esvjl
E†1/2

vjlvjl
‖2, (5.191)

where k = 0, 1, . . . .

Proof. We write

E[‖s− sk+1‖2] = J(Ã(0)
k , C̃(1)

k , . . . , C̃(N+1)

k ).

It follows from (5.190) that

E[‖s− sk+1‖2] = ‖E1/2
ss ‖2 − ‖Essk

E†1/2
sksk
‖2 −Δ(sk), (5.192)

where

Δ(sk) =
N∑

j=1

‖Esvkj
E†1/2

vkjvkj
‖2.
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For k = 0, the theorem follows from (5.192) directly. To prove that (5.191)
is true for any k = 1, 2, . . ., we denote

Wk = [C(1)
k . . . C

(N+1)
k ]

and
wk = [vT

k0 . . . vT
kN ]T

so that
Wkwk = [Wk(wk)](ω)

where
Wk : L2(Ω,Rν(N+1))→ L2(Ω,Rp).

Then the minimum of the functional E[‖s−Wk(wk)‖2] is achieved for

W̃k = Eswk
E†wkwk

+ Kk(I − Ewkwk
E†wkwk

) (5.193)

with Kk arbitrary. We note that (5.193) is true since

Eswk
= Eswk

E†wkwk
Ewkwk

by Lemma 24. The associated error is

E[‖s− W̃k(wk)‖2] = ‖E1/2
ss ‖2 − ‖Eswk

E†1/2
wkwk

‖2.
Therefore

E[‖s− sk+1‖2] = E[‖s− W̃k(wk)‖2]
= ‖E1/2

ss ‖2 − ‖Eswk
E†1/2

wkwk
‖2

= ‖E1/2
ss ‖2 − ‖Essk

E†1/2
sksk
‖2 −Δ(sk). (5.194)

Let us suppose that the theorem is true for k = i− 1. Then

E[‖s− si‖2] = ‖E1/2
ss ‖2 − ‖Eswi−1E

†1/2
wi−1wi−1

‖2

= ‖E1/2
ss ‖2 − ‖EsyE†1/2

yy ‖2 −
i−1∑

j=0

Δ(sj). (5.195)

It is easy to show that

‖Essi
E†1/2

sisi
‖2 = ‖Eswi−1E

†1/2
wi−1wi−1

‖2.
Thus on the basis of (5.195),

E[‖s− si+1‖2] = ‖E1/2
ss ‖2 − ‖Essi

E†1/2
sisi
‖2 −Δ(si) (5.196)

= ‖E1/2
ss ‖2 − ‖Eswi−1E

†1/2
wi−1wi−1

‖2 −Δ(si) (5.197)

= ‖E1/2
ss ‖2 − ‖EsyE†1/2

yy ‖2 −
i−1∑

j=0

Δ(sj)−Δ(si). (5.198)
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Hence the theorem is proven.

Remark 18. It follows from (5.191) that the error decreases if both the
number of iterations k and the number N of the coefficient matrices C̃

(1)
k ,

. . . , C̃
(N+1)
k increases.

Remark 19. It follows from (5.191) that the accuracy of approximation
associated with the considered method can be adjusted by a variation of the
two degrees of freedom, namely the degree r of the operator Bk and the
number of iterations k.

Remark 20. Another degree of freedom is a form of the polynomial Bk(sk)
for each k in (5.165). For example, Bk(sk) can be chosen in the form of
the Hadamard-quadratic polynomial considered in Section 4.4.1.

Remark 21. It follows from (5.191) that if C
(j+1)
k = O for all j = 1, . . . , N

then for any k = 1, 2, . . . ,

E[‖F(x)− Pk(y)‖2] = ‖E1/2
ss ‖2 − ‖EsyE†1/2

yy ‖2. (5.199)

Since the right hand side in (5.199) does not depend on k, this means that
the error E[‖F(x) − Pk(y)‖2] remains the same for any k if C

(j+1)
k = O

for all j = 1, . . . , N . In other words, nonlinearity of Pk, which is im-
plied by C

(j+1)
k is an essential ingredient of the considered procedure. No

improvement in accuracy of Pk+1 over Pk can be reached if Pk+1 is linear.

Remark 22. The idea of this method has been outlined but not justified
in the reference [156]. The above method presented by (5.162)–(5.164),
(5.172), (5.189) provides a broad generalization and substantial improve-
ment both in the technique [156] and its modifications considered in [156].

5.7.8 Simulations

To illustrate the performance of the considered approach, we use data from
Section 4.4.1 (d).

The considered method has been applied to each pair of matrices W (i),
V (i) (see Section 4.4.1 (d)) separately to find the best approximation in the
form (5.169), (5.172), (5.173), (5.181), (5.185) to the operator F = Fi where
Fi : U (i) → V (i).) To compare the method considered in this Section with
the method of Sections 4.4.1(a)-(d) from which the data is used, Bk has
been constructed from the Hadamard-quadratic polynomial (5.65), (5.81)–
(5.83) for each k, in accordance with Remark 20. The input of the system
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(a) Output of the model P1.
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(b) Output of the model P49.

Figure 5.11: Illustration to the performance of the considered method. The
digitized image has been taken from http://sipi.usc.edu/database/.
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(a) Approximation (dashed line with circles) of the 205-th column (solid line) in
matrix V by the procedure (5.169), (5.172), (5.173), (5.181), (5.185) with k = 49.
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(b) A bigger scale of the fragment of sub-figure (a) above.

Figure 5.12: Illustration to the performance of the considered method.
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Bk is a column of the matrix U (i) and the input of the approximating
system is a column of the matrix W (i). Covariance matrices have been
estimated by the known sample estimates formed by the matrices W (i),
V (i) and Z(i) = V (i). ∗ V (i) for each i = 1, 2, 3.

We denote by V
(i)
k+1 the best approximation of V (i) (in the sense (5.186))

obtained in the k−th iteration of the procedure (5.169) with s and sk

substituted by V (i) and V
(i)
k respectively.

Subfigures (a) and (b) in Fig. 5.11 are digitized images created from
matrices [V (1)T

2 V
(2)T

2 V
(3)T

2 ]T and [V (1)T

50 V
(2)T

50 V
(3)T

50 ]T respectively.
In Fig. 5.12, we represent a plot of the 205-th column in the matrix

V and plots of the 205-th column in matrices [V (1)T

1 V
(2)T

1 V
(3)T

1 ]T and

[V (1)T

50 V
(2)T

50 V
(3)T

50 ]T .
Fig. 5.12 (b) represents the part of Fig. 5.12 (a) in a bigger scale.
A comparison with Fig. 5.2 and Fig. 5.3 of Section 4.4.1(d) clearly

demonstrates the efficiency of the method presented above.

5.8 Concluding Remarks

In this chapter, we have presented different approaches to the best con-
structive approximation of nonlinear operators and have given rigorous
analysis of their properties. The major part of the chapter is devoted to
approximating methods in probability spaces but in Section 5.2, we have
also considered the best operator approximation technique for the so called
”deterministic” case. In Sections 5.4–5.7, the specific methods for nonlin-
ear operator approximation have been given. It is assumed that covari-
ance matrices associated with those methods or their estimates are known.
Therefore, in Section 5.3, some methods for a covariance matrix estimation
have been considered. Applications to modelling of nonlinear systems have
been discussed.
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Chapter 6

Computational Methods for
Optimal Filtering of Stochastic
Signals

6.1. Introduction

6.2. Optimal Linear Filtering in Finite Dimensional Vector Spaces

6.3. Optimal Linear Filtering in Hilbert Spaces

6.4. Optimal Causal Linear Filtering with Piecewise Constant Memory

6.5. Optimal Causal Polynomial Filtering with Arbitrarily Variable
Memory

6.6. Optimal Nonlinear Filtering with no Memory Constraint

6.7. Concluding Remarks

6.1 Introduction

In this chapter, we consider different approaches and computational meth-
ods for constructing mathematical models for optimal filtering of stochas-
tic signals. In Sections 6.2–6.4, we give wide generalizations of the known
Wiener filter to the cases when an associated linear operator is not invert-
ible, noise is arbitrary, and the filter should satisfy conditions of causality
and different types of memory. In Sections 6.5–6.6, we provide further
generalizations of those approaches to the case of nonlinear models.
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Throughout this chapter, we use the same notation for a probability
space (Ω, Σ, μ) as in Chapter 4: Ω is the set of outcomes, Σ a σ–field of
measurable subsets Δ ⊂ Ω and μ : Σ → [0, 1] an associated probability
measure on Σ with μ(Ω) = 1. Each element ω ∈ Ω represents the outcome
of an experiment and each subset Δ of Ω is a set of outcomes, called an
event. We say that the event Δ has occurred if ω ∈ Δ.

6.2 Optimal Linear Filtering in Finite Dimensional
Vector Spaces

The Wiener filtering problem has received a great deal of attention since
the time when Wiener published his pioneering work [179]. In the next
Sections 6.2–6.4, we present a wide generalization of the original Wiener
problem and provide its solution.

6.2.1 Statement of the problem

Let x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn) be a reference stochastic signal and
an observable data, respectively.

Similar to preceding chapters, for a matrix A ∈ Rm×n, we define a
linear operator A : L2(Ω,Rm)→ L2(Ω,Rn) by the formula

[A(y)](ω) = A[y(ω)] (6.1)

for all y ∈ L2(Ω,Rn) and ω ∈ Ω, so that

x̃ = A(y)

is an estimate of x.
For any x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn) and a continuous A, let

J(A) = E
[‖x−A(y)‖2] , (6.2)

where

E
[‖x−A(y)‖2] =

∫

Ω

‖x(ω)− [A(y)](ω)‖2dμ(ω) (6.3)

with ‖ · ‖ the Euclidean norm.
The problem is to find a linear continuous operator A0 such that

J(A0) = min
A∈Rm×n

J(A). (6.4)

Here, [A0(y)](ω) = A0[y(ω)].
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The problem (6.4) is a generalization of the known Wiener filtering
problem [179]. Unlike [179] it is not assumed that the operator A is invert-
ible, and that y = x + ξ where ξ is noise. Instead, it is assumed that

(i) x is unknown and no relationship between x and y is known except
covariance matrices or their estimates formed from subvectors of y and x,
and

(ii) the operator A can be singular.
We note that that the assumption concerning covariance matrices is

conventional for the known methods [9, 37, 60, 115, 142, 152, 153, 154,
155, 156, 157, 179] of the best operator approximation. The methods of a
covariance matrix estimation can be found in Section 4.3.

6.2.2 Solution of the problem: optimal linear filter

Below, we give the solution to the problem (6.4) in terms of the pseudo-
inverse matrix EyyE†yy. This means that the solution always exists.

Theorem 44. The operator A0 which satisfy (6.4) is determined by

A0 = ExyE†yy + M(I − EyyE†yy), (6.5)

where M ∈ Rm×n is an arbitrary matrix.

Proof. If we choose A0 = O and A2 = O in Theorem 34 of Section 5.4 then
the proof follows directly from the proof of Theorem 34.

We would like to point out that the model A0 is not unique due to an
arbitrary M in (6.5). A natural practical choice for M is M = O.

Numerical simulations associated with the model (6.5) are given in Sec-
tion 6.6.

6.3 Optimal Linear Filtering in Hilbert Spaces

Let u be a random signal with realizations u(ω) = x in an infinite di-
mensional vector space X for each outcome ω from the set of all possible
outcomes. We seek an estimate of the signal u by observing an associated
random signal v and we suppose that the outcome of the observed data
signal v(ω) = y is realized as an element of some finite dimensional sub-
space Y ⊆ X. Our goal is to find the best possible estimate û of u using a
linear filter on v.
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6.3.1 A generic example

For the beginning, we show that an elementary random signal is equiva-
lent to a random vector with realizations in an infinite dimensional vector
space. This generic example will be used later in the paper to illustrate
the proposed optimal filter. It is well–known that a signal x : [0, 1] → R
for which ∫ 1

0

[x(t)]2dt <∞

can be represented by a Fourier sine series

x(t) =
∞∑

k=1

xk

√
2 sin kπt

or equivalently by an infinite dimensional vector

x = (x1, x2, x3, · · ·)T

where
∞∑

k=1

|xk|2 <∞.

In this case we say that the vector x ∈ X = l2. For the purpose of
practical calculations with these signals it is necessary to use a suitable
finite dimensional approximation. Thus we write

x ≈ (x1, x2, · · · , xn, 0, 0, · · ·)T

for some fixed value of n.
We can generate random vectors with realizations in an infinite dimen-

sional Hilbert space by thinking of each coefficient xk in the Fourier sine
series as the realization of a real valued random variable. If Ω is the set
of all possible outcomes and uk : Ω → R is a real valued random variable
then uk(ω) = xk ∈ R and we obtain a realization

u(ω, t) =
∞∑

k=1

uk(ω)
√

2 sin kπt

of the random signal u(·, t), or equivalently a realization

u(ω) = (u1(ω), u2(ω), u3(ω), · · ·)T
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of the infinite dimensional random vector u(·) for each outcome ω ∈ Ω. For
the above realizations to be meaningful it is of course necessary that

∞∑

k=1

|uk(ω)|2 <∞

for almost all ω ∈ Ω. That is for all ω except possibly a set of measure
zero. This statement is understood in terms of the associated probability
measure μ : Ω→ [0, 1] where μ(Δ) = P{ω ∈ Δ} ∈ [0, 1] is well defined for
each suitable event Δ ⊆ Ω.

6.3.2 Random vectors in Banach space

In this section, we outline a theoretical basis for the description of ran-
dom vectors with realizations in Banach space. We follow the methods of
Halmos [51], Dunford and Schwartz [31] and Yosida [185]. Although many
of the results are natural extensions of the results for real–valued random
variables, the extensions are nontrivial. This material is essential for a
proper understanding of the expectation operator.

The Bochner integral

Suppose Ej ∈ Σ (j = 1, . . . , n) are mutually disjoint sets and ξj ∈ X (a
Banach space) for j = 1, 2, . . . , n. We may define a finitely–valued function
u : Ω→ X by

u(ω) =
n∑

j=1

χj(ω)ξj , (6.6)

where χj : Ω→ {0, 1}, the characteristic function of the set Ej , is given by

χj(ω) =
{

1 ω ∈ Ej

0 ω /∈ Ej .

A function u : Ω→ X is said to be strongly Σ–measurable if there exists a
sequence {un}n≥1 of finitely–valued functions un : Ω→ X such that

‖u(ω)− un(ω)‖ → 0 as n→∞

for almost all ω ∈ Ω. The value u(ω) of a strongly Σ–measurable function
u depends on the outcome ω ∈ Ω of the experiment and we refer to u



234 6. OPTIMAL FILTERING

as a random vector. When u is finitely–valued, the Bochner μ–integral
I(u) ∈ X is prescribed by

I
⎛
⎝

n∑

j=1

χjξj

⎞
⎠ =

n∑

j=1

μ(Ej)ξj .

When u is strongly Σ–measurable, we say that u is Bochner μ–integrable
if there exists a sequence {un}n≥1 of finitely–valued functions un : Ω→ X
with

‖un(ω)− u(ω)‖ → 0

for μ–almost all ω ∈ Ω in such a way that
∫

Ω

‖un(ω)− u(ω)‖μ(dω)→ 0

as n→∞. In this case the Bochner μ–integral is defined by

I(u) =
∫

Ω

u(ω)μ(dω),

where I(u) ∈ X is the unique element with

‖I(u)− I(un)‖ → 0

as n→∞. In general, for each set E ∈ Σ, we define
∫

E

u(ω)μ(dω) =
∫

Ω

χE(ω)u(ω)μ(dω),

where χ is the characteristic function of the set E. The following general
results can be found in Yosida [185].

Theorem 45. A strongly Σ–measurable function u is Bochner μ–integrable
if and only if ‖u‖ is μ–integrable.

Corollary 7. If ‖u‖ is μ–integrable, then
∥∥∥∥
∫

Ω

u(ω)μ(dω)
∥∥∥∥ ≤

∫

Ω

‖u(ω)‖μ(dω).

Corollary 8. Let X and Y be Banach spaces and A ∈ L(X, Y ) a bounded
linear map. If u : Ω → X is Bochner μ–integrable in X and if v = A[u],
then v : Ω→ Y is Bochner μ–integrable on Y and

∫

Ω

v(ω)μ(dω) = A

[∫

Ω

u(ω)μ(dω)
]

.
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Definition 32. Suppose X and Y are Banach spaces. Let u : Ω → X be
a Bochner μ–integrable random vector in X. The expected value of u is
defined by

E [u] =
∫

Ω

u(ω)μ(dω).

We note from Corollary 7 that

‖E [u]‖ ≤ E [‖u‖].
When A ∈ L(X, Y ) is a bounded linear map, it follows from Corollary 8
that

E [A(u)] = A(E [u]).

6.3.3 Random vectors in Hilbert space

The theory of random vectors in Hilbert space is an extension of the theory
of random vectors in Banach space. Of particular interest are properties
relating to the scalar product. These properties are used directly in defining
the special operators for the optimal filter.

Suppose X is a Hilbert space with scalar product 〈·, ·〉. Let χj , Ej

(j = 1, . . . , n) be as in Section 6.3.2 and let u be the finitely–valued random
vector given by (6.6). Since

‖u(ω)‖2 =
n∑

j=1

χj(ω)‖ξj‖2,

it follows that if A ∈ L(X,X) is a bounded linear map, then
〈∫

Ω

u(ω)μ(dω),
∫

Ω

A[u(ω)]μ(dω)
〉

=
n∑

j=1

n∑

k=1

μ(Ej)μ(Ek)〈ξj , A[ξk]〉

= ‖A‖
n∑

j=1

n∑

k=1

μ(Ej)μ(Ek)‖ξj‖

×‖ξk‖

≤ ‖A‖
n∑

j=1

[μ(Ej)]2‖ξj‖2

≤ ‖A‖
n∑

j=1

μ(Ej)‖ξj‖2

= ‖A‖
∫

Ω

‖u(ω)‖2μ(dω).
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By taking appropriate limits, we can easily extend the above argument to
establish the following general results. These results are used to justify the
construction of the optimal filter.

Theorem 46. If u : Ω → X is strongly Σ–measurable and ‖u‖2 is μ–
integrable, then u is Bochner μ–integrable and for each bounded linear map
A ∈ L(X,X) we have

〈∫

Ω

u(ω)μ(dω),
∫

Ω

A[u(ω)]μ(dω)
〉
≤ ‖A‖

∫

Ω

‖u(ω)‖2μ(dω).

Corollary 9. If u : Ω → X is strongly Σ–measurable and ‖u‖2 is μ–
integrable, then

∥∥∥∥
∫

Ω

u(ω)μ(dω)
∥∥∥∥

2

≤
∫

Ω

‖u(ω)‖2μ(dω).

The results of this subsection can be rewritten in terms of expected
values. Let A ∈ L(X, X) and let u : Ω → X be a random vector. If ‖u‖2
is μ–integrable, then

〈E [u], E [A(u)]〉 ≤ ‖A‖E [‖u‖2]

and in particular
‖E [u]‖2 ≤ E [‖u‖2].

We write L2(Ω, X) for the set of all strongly Σ–measurable functions u :
Ω→ X with E [‖u‖2] <∞.

6.3.4 Finite–dimensional maps on Hilbert space

In this section we review some basic structural results for bounded linear
maps with finite–dimensional ranges on Hilbert space. These results are
used directly in our construction of the optimal estimates. We assume that
X is a separable Hilbert space and Y ⊆ X is a finite–dimensional subspace,
with dimension n, say. The material on Hilbert–Schmidt operators follows
Balakrishnan [3].

We consider a bounded linear map A ∈ L(X, Y ).
Let R(A) ⊆ Y denote the range space of A and suppose R(A) has

dimension r ≤ n. Let N (A) ⊆ X denote the null space of A. The bounded
linear map AT : Y → X is defined uniquely by the equation

〈AT (y), x〉 = 〈y, A(x)〉
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for each y ∈ Y .
We write R(AT ) ⊆ X for the range space of AT . Since R(A) has

dimension r ≤ n, it follows that R(AT ) also has dimension r.
Let N (AT ) ⊆ Y denote the null space of AT . Since R(A) is finite–

dimensional and therefore closed, it follows that

Y = R(A)⊕N (AT )

and that each y ∈ Y can be written uniquely in the form

y = yR + yN ,

where yR ∈ R(A) and yN ∈ N (AT ) and where 〈yR, yN 〉 = 0. In a similar
fashion

X = R(AT )⊕N (A)

and each x ∈ X can be written uniquely in the form

x = xR + xN ,

where xR ∈ R(AT ), xN ∈ N (A) and 〈xR, xN 〉 = 0.
The generalized inverse A† ∈ L(Y, X) of A is a bounded linear map

defined as follows. Let y ∈ Y , put

y = yR + yN

and choose x ∈ X such that A(x) = yR. Write

x = xR + xN

and define
A†(y) = xR.

The bounded linear operators

AT A ∈ L(X, X) and AAT ∈ L(Y, Y )

are positive–definite and self–adjoint. Since

AT A : R(AT )→ R(AT ) and AAT : R(A)→R(A),

we can find orthonormal vectors {ei}ri=1 forming a basis for R(AT ) and
{fi}ri=1 forming a basis for R(A) which satisfy

AT Aei = si
2ei and AAT fi = si

2fi
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for each i = 1, 2, . . . , r. Here s1 > s2 > · · · > sr > 0 are real numbers and

fi =
1
si

Aei and ei =
1
si

AT fi

for each i = 1, 2, . . . , r. Because X is separable, the orthonormal sets

{ei}ri=1 and {fi}ri=1

can be extended to form complete orthonormal sets

{ei}∞i=1 and {fi}∞i=1

in X and the operators A and AT are Hilbert–Schmidt operators because

‖A‖2HS =
∞∑

i=1

‖Aei‖2

=
r∑

i=1

si
2

< ∞
and

‖AT ‖2HS =
∞∑

i=1

‖AT fi‖2

=
r∑

i=1

si
2

< ∞.

It follows that the operators AT A and AAT are nuclear operators with
finite traces given by

tr(AT A) =
∞∑

i=1

〈AT Aei, ei〉

=
r∑

i=1

si
2

< ∞
and

tr(AAT ) =
∞∑

i=1

〈AAT fi, fi〉

=
r∑

i=1

si
2

< ∞.
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6.3.5 The correlation and covariance operators

Let X be a separable Hilbert space and suppose that Y is a finite–dimensional
subspace of X.

To define the correlation and covariance operators we begin by consid-
ering an auxiliary mapping. For each x ∈ X, define a bounded linear map
Jx ∈ L(R, X) by

Jx(α) = αx.

The adjoint mapping Jx
T ∈ L(X,R) is given by

Jx
T (y) = 〈x, y〉.

Now Jx
T Jx ∈ L(R,R) satisfies

Jx
T Jx(α) = Jx

T (αx)
= 〈x, αx〉
= α‖x‖2

and clearly
‖Jx

T Jx‖ = ‖x‖2.
On the other hand, JxJx

T ∈ L(X,X) is prescribed by

JxJx
T (y) = Jx(〈x, y〉)

= 〈x, y〉x
and hence, once again,

‖JxJx
T ‖ = ‖x‖2.

Let {ei} be a complete orthonormal set in X. We have
∞∑

i=1

〈JxJx
T (ei), ei〉 =

∞∑

i=1

〈x, ei〉2

=
∞∑

i=1

x2
i

= |x‖2

and
Jx

T Jx(1) = ‖x‖2.
Hence we see that Jx

T Jx and JxJx
T are both nuclear operators with finite

trace given by

tr(Jx
T Jx) = tr(JxJx

T )
= ‖x‖2.
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If A ∈ L(X,Y ) and B ∈ L(Y, X) then

JAx = AJx and JBy = BJy

for all x ∈ X and all y ∈ Y.
Let u : Ω→ X and v : Ω→ Y be random vectors with

E [‖u‖2] <∞ and E [‖v‖2] <∞.

Lemma 35. Suppose q ∈ Y is a fixed vector. Then the vectors

JuJv
T q : Ω→ X and JvJv

T q : Ω→ Y

defined by

[JuJv
T q](ω) = 〈v(ω), q〉u(ω) and [JvJv

T q](ω) = 〈v(ω), q〉v(ω)

for each ω ∈ Ω are strongly Σ–measurable with

E [‖JuJv
T q‖] <∞ and E [‖JvJv

T q‖] <∞.

Proof. Let {un} and {vn} be sequences of finitely–valued random vectors
with

‖un(ω)− u(ω)‖ → 0 and ‖vn(ω)− v(ω)‖ → 0

as n → ∞ for almost all ω ∈ Ω. Then {〈vn(ω), q〉un(ω)} is a sequence of
finitely–valued random vectors with

‖〈vn(ω), q〉un(ω)− 〈v(ω), q〉u(ω)‖
≤ ‖〈vn(ω)− v(ω), q〉un(ω)‖+ ‖〈v(ω), q〉[un(ω)− u(ω)]‖
≤ ‖vn(ω)− v(ω)‖ · ‖q‖ · ‖u(ω)‖+ ‖v(ω)‖ · ‖q‖ · ‖un(ω)− u(ω)‖
→ 0

as n→∞ for almost all ω ∈ Ω.
From the definition of strong measurability ([11], page 130) we see

that JuJv
T q is strongly Σ–measurable. Similarly JvJv

T q is strongly Σ–
measurable.

It follows that

‖E [JuJv
T q]‖2 ≤ (E [‖〈v, q〉u‖])2

≤ ‖q‖2(E [‖u‖ · ‖v‖])2

≤ ‖q‖2E [‖u‖2]E [‖v‖2]
< ∞

and likewise that
‖E [JvJv

T q]‖2 <∞.

This completes the proof.
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Definition 33. The correlation operators

E [JvJu
T ] ∈ L(X,Y ) and E [JuJv

T ] ∈ L(Y, X)

are defined by setting

E [JvJu
T ]p = E [〈u, p〉v] and E [JuJv

T ]q = E [〈v, q〉u]

for each p ∈ X and q ∈ Y .

It follows that

〈p, E [JuJv
T ]q〉 = 〈p, E [〈v, q〉u]〉

= E [〈p, u〉〈v, q〉]
= 〈E [〈p, u〉v], q〉
= 〈E [JvJu

T ]p, q〉
and hence

E [JuJv
T ]T = E [JvJu

T ].

Definition 34. The self–adjoint covariance operator E [JvJv
T ] ∈ L(Y, Y )

is defined by setting
E [JvJv

T ]q = E [〈v, q〉v]

for each q ∈ Y .

Note that since
∞∑

i=1

〈E [JuJv
T ]ei, ei〉 = E [〈u, v〉]

and ∞∑

i=1

〈E [JvJv
T ]ei, ei〉 = E [‖v‖2]

it follows from Appendix C that E [JuJv
T ] and E [JvJv

T ] are both nuclear
operators.

6.3.6 Statement of the problem

Suppose u ∈ L2(Ω, X) and v ∈ L2(Ω, Y ). For each F ∈ L(Y, X), the linear
transformation MF ∈ L(L2(Ω, Y ), L2(Ω, X)) is defined by

[MF v](ω) = F [v(ω)]
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for each ω ∈ Ω. Once again it is customary to write Fv rather than MF v
since we then have [Fv](ω) = F [v(ω)] = Fv(ω) for each ω ∈ Ω.

We wish to solve the following problem.

Let u ∈ L2(Ω, X) be a random vector and v ∈ L2(Ω, Y ) an observable
random vector. Suppose that E [JuJv

T ] and E [JvJv
T ] are known. Let Q :

L(Y, X)→ R be defined by

Q(F ) = E [‖u− Fv‖2] (6.7)

for each F ∈ L(Y, X). We wish to find F̂ ∈ L(Y, X) such that

Q(F̂ ) ≤ Q(F ) (6.8)

for all F .

6.3.7 Solution to the problem (6.7)–(6.8)

Lemma 36. The null space N (E [JvJv
T ]) of the operator

E [JvJv
T ] ∈ L(Y, X)

is a subspace of the null space N (E [JuJv
T ]) of the operator

E [JuJv
T ] ∈ L(Y, X).

Proof. Suppose qN ∈ N (E [JvJv
T ]). Then

〈qN , E [〈v, qN 〉v]〉 = 0

and hence
E [〈v, qN 〉2] = 0.

But for each p ∈ X we have

|〈p, E [JuJv
T ]qN 〉| = |E [〈p, u〉〈v, qN 〉]|

≤ (E [(〈p, u〉)2]
)1/2 (E [(〈v, qN 〉)2]

)1/2

= 0.

Therefore E [JuJv
T ]qN = 0 and hence qN ∈ N (E [JuJv

T ]).

Corollary 10.

E [JuJv
T ]E [JvJv

T ]†E [JvJv
T ] = E [JuJv

T ].
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Proof. If qN ∈ N (E [JvJv
T ]), then

E [JuJv
T ]E [JvJv

T ]†E [JvJv
T ]qN = 0

and since the previous lemma shows that qN ∈ N (E [JuJv
T ]), we have also

E [JuJv
T ]qN = 0.

On the other hand, if

qR ∈ R(E [JvJv
T ]) = N (E [JvJv

T )⊥,

then there exists k ∈ Y such that

qR = E [JvJv
T ]†k.

Hence

E [JuJv
T ]E [JvJv

T ]†E [JvJv
T ]qR

= E [JuJv
T ]E [JvJv

T ]†E [JvJv
T ]E [JvJv

T ]†k
= E [JuJv

T ]qR.

The desired result follows from the fact that any element of Y can be
written in the form q = qN + qR.

Remark 23. If w ∈ L2(Ω, X) and z = w(ω) for some ω ∈ Ω then the
operators JzJz

T and Jz
T Jz are each nuclear operators and the trace is well

defined. The trace is used in establishing the next identity and the subse-
quent theorem. It is therefore necessary to show that the operators con-
cerned are nuclear operators. Nuclear operators are discussed by Dunford
and Schwartz [31], and Yosida [185].

Theorem 47. The solution to problem (6.7)–(6.8) is given by F̂ = FK

where
FK = F0 + K[I − (E [JvJv

T ])1/2(E [JvJv
T ]†)1/2]

and
F0 = E [JuJv

T ]E [JvJv
T ]†

and where K ∈ L(Y, X) is an arbitrary bounded linear operator.
The corresponding uniquely defined minimum value of Q(F ) is

Q(FK) = Q(F0)
= tr{E [JuJu

T ]− E [JuJv
T ]E [JvJv

T ]†E [JvJu
T ]}.
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Proof. For each F ∈ L(Y, X) we know that Ju−FvJu−Fv
T is a nuclear

operator. It follows that

Q(F ) = E [‖u− Fv‖2]
= E [tr(Ju−FvJu−Fv

T )]
= tr(E [(Ju − FJv)(Ju − FJv)T ])

and if we define ΔQ(F ) = Q(F )−Q(F0) then

ΔQ(F ) = tr{FE [JvJv
T ]FT − E [JuJv

T ]FT − FE [JvJu
T ]

+E [JuJv
T ]E [JvJv

T ]†E [JvJu
T ]}

= tr{(F − E [JuJv
T ]E [JvJv

T ]†)E [JvJv
T ]

×(F − E [JuJv
T ]E [JvJv

T ]†)T }
= ‖(F − E [JuJv

T ]E [JvJv
T ]†)(E [JvJv

T ])1/2‖2HS

where the norm is the Hilbert–Schmidt norm.
Hence

Q(F )−Q(F0) ≥ 0.

The minimum value is achieved if and only if

F = FK

for some K ∈ L(X, Y ).

Corollary 11. The best estimate û of u using a bounded linear operator
on v is given by

û = F0v + K[I − (E [JvJv
T ])1/2(E [JvJv

T ]†)1/2]v

where K ∈ L(Y, X) is arbitrary. The minimum norm estimate is given by

û = F0v.

Example 18. The generic example of Subsection 6.3.1 will be used to
demonstrate construction of an optimal filter. In this example random sig-
nals are represented by infinite dimensional random vectors. We will show
that the optimal filter can be represented by infinite dimensional matrices
with suitable limits on the size of the matrix coefficients. Let X = l2.
Suppose that we wish to estimate the random signal

u =

⎛
⎜⎝

u1

u2

...

⎞
⎟⎠ : Ω→ X
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on the basis of an observed signal

v(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1(ω)
v2(ω)
v3(ω)
v4(ω)

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with realizations in a four dimensional subspace Y ⊆ X. We assume that
v = Au where

A =
(

A11 O
O O

)
and A11 =

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞
⎟⎟⎠

and where O is an infinite dimensional zero submatrix. Therefore v1 =
u1 + u2, v2 = u2 + u3, v3 = u3 + u4, v4 = u4 + u1 and vk = 0 for all
k ≥ 5.

To find the best estimate û of u using a linear filter on v we need to
define some special operators. For each

u : Ω→ l2 and v : Ω→ l2 and each y ∈ Y,

the functions

JuJv
T y : Ω→ X and JvJv

T y : Ω→ Y

are defined by

JuJv
T y(ω) = 〈v(ω), y〉u(ω) and JvJv

T y(ω) = 〈v(ω), y〉v(ω)

for each ω ∈ Ω. We suppose that the random variables uk are are pairwise
independent with

E [uk] = ρk and E [(uk − ρk)2] = σk
2.

In practice this could occur as a deterministic signal with coefficients {ρk}
and an additive noise term ξk = xk − ρk. We also suppose that

|ρk| ≤ Rk−1
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for some fixed constant R > 0. We can now calculate

E [JuJv
T y] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ1
2(y1 + y4)

σ2
2(y1 + y2)

σ3
2(y2 + y3)

σ4
2(y3 + y4)

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ1[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
ρ2[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
ρ3[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
ρ4[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
ρ5[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

E [JvJv
T y] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(σ1
2 + σ2

2)y1 + σ2
2y2 + σ1

2y4

σ2
2y1 + (σ2

2 + σ3
2)y2 + σ3

2y3

σ3
2y2 + (σ3

2 + σ4
2)y3 + σ4

2y4

σ1
2y1 + σ4

2y3 + (σ4
2 + σ1

2)y4

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ρ1 + ρ2)[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
(ρ2 + ρ3)[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
(ρ3 + ρ4)[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]
(ρ4 + ρ1)[(ρ1 + ρ2)y1 + (ρ2 + ρ3)y2 + (ρ3 + ρ4)y3 + (ρ4 + ρ1)y4]

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for all y ∈ Y . We are now able to write down a matrix representation
for each of these operators. Note that these representations are essentially
infinite matrices with some limit on the size of the matrix coefficients. In
this case the size of the coefficients is limited by the inequality

∞∑

i,j=1

(ρiρj)2 <
Rπ4

36
.
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If we define

S =
(

S11 O
O O

)
where S11 =

⎛
⎜⎜⎝

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

⎞
⎟⎟⎠ and ρ =

⎛
⎜⎝

ρ1

ρ2

...

⎞
⎟⎠

then

E [JuJv
T ] = [SST + ρρT ]AT

and

E [JvJv
T ] = A[SST + ρρT ]AT .

We now show that the operator E [JvJv
T ] is not invertible and calculate the

generalized inverse. Define an orthogonal transformation

UT =
(

U11
T O

O I

)
where U11

T =

⎛
⎜⎜⎝

1/2 1/2 −1/2 1/2
−1/2 1/2 −1/2 −1/2

1/2 1/2 1/2 −1/2
−1/2 1/2 1/2 1/2

⎞
⎟⎟⎠

and observe that

UE [JvJv
T ]UT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0

∑4
i=1 σi

2 σ4
2 − σ2

2 σ1
2 − σ3

2 0 · · ·
0 σ4

2 − σ2
2 σ2

2 + σ4
2 0 0 · · ·

0 σ1
2 − σ3

2 0 σ1
2 + σ3

2 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0∑4
i=1 ρi

ρ4 − ρ2

ρ1 − ρ3

0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
0

∑4
i=1 ρi ρ4 − ρ2 ρ1 − ρ3 0 · · ·

)
.

Using an appropriate partition we can therefore write

UE [JvJv
T ]UT =

⎛
⎝
O O O
O P O
O O O

⎞
⎠
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where

P =

⎛
⎝

∑4
i=1 σi

2 σ4
2 − σ2

2 σ1
2 − σ3

2

σ4
2 − σ2

2 σ2
2 + σ4

2 0
σ1

2 − σ3
2 0 σ1

2 + σ3
2

⎞
⎠

+

⎛
⎝

∑4
i=1 ρi

ρ4 − ρ2

ρ1 − ρ3

⎞
⎠( ∑4

i=1 ρi ρ4 − ρ2 ρ1 − ρ3

)
.

Since∣∣∣∣∣∣

∑4
i=1 σi

2 σ4
2 − σ2

2 σ1
2 − σ3

2

σ4
2 − σ2

2 σ2
2 + σ4

2 0
σ1

2 − σ3
2 0 σ1

2 + σ3
2

∣∣∣∣∣∣
=

∑

1≤i<j<k≤4

4σi
2σj

2σk
2 > 0

it follows that P−1 exists and

E [JvJv
T ]† = U

⎛
⎝
O O O
O P−1 O
O O O

⎞
⎠UT .

It has been shown that the best estimate û of u using a linear filter on the
observed signal v is given by

û = E [JuJv
T ]E [JvJv

T ]†v.

In this example we have seen that this filter can be easily computed. Since
the filter involves an infinite dimensional matrix our implementation must
necessarily be a truncation of the true optimal filter. This approximation
can be made as accurate as we please.

6.4 Optimal Causal Linear Filtering with Piecewise
Constant Memory

This section concerns the best constructive approximation of random vec-
tors subject to a specialized minimization criterion criterion associated with
the notion of piecewise-constant finite memory. The problem stems from
an observation considered in Sections 4.1 and 4.2. A formulation of the
problem is given in Section 6.4.4. The solution is provided in Section 6.4.7.

First, we need the following preliminary notation.

6.4.1 Preliminary notation

Let ϑ,� : T × Ω → R where T = {tk | k = 1, . . . , n, t1 ≤ . . . ≤ tn} ⊂ R
and Ω is the set of outcomes in a probability space (Ω, Σ, μ).1 The random

1The finite set T can be interpreted as a collection of time instants.
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1

p
1

101

Figure 6.1: A lower stepped matrix A.

means that all entries above the diagonal of the matrix A are zeros and
second, that for each i, there can be a zero-rectangular block in A from the
left hand side of the diagonal.

An example of such a matrix A is given in Fig. 6.4 for l = 10 where the
shaded part designates non-zero entries and non-shaded parts denote zero
entries of A. The numbers in Fig. 6.4 denote numbers of rows of matrix
A. For example, p1 + p2 denotes a (p1 + p2)-th row.

For lack of a better name, we will refer to A similar to that in Fig. 6.4
as the lower stepped matrix. We say that non-zero entries of the matrix A
form a lower stepped part of A.

Such an unusual structure of the operator A makes the problem of find-
ing the best A quite specific. This subject has a long history [9], but to the
best of our knowledge, even for a much simpler structure of the operator A
when A is defined by a lower triangular matrix, the problem of determin-
ing the best A has only been solved under the hard assumption of positive
definiteness of an associated covariance matrix (see [9, 37, 115]). We avoid
such an assumption and solve the problem in the general case of the lower
stepped matrix (Theorem 1). The proposed technique is substantially dif-
ferent from those considered in [9, 37, 115].
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1

m

9

1

m

m
7

p
1 1

p + p
2

p + ...+ p
1 10

Figure 6.2: Illustration to piecewise memory associated with matrix in Fig.
1.

6.4.3 Linear causal operators with piecewise-constant
memory

To define a linear causal2 operators with piecewise-constant memory, we
first need to formally define a lower stepped matrix. It is done below
with a special partition of A in such a way that its lower stepped part
consists from rectangular and lower triangular blocks as it is illustrated
in Fig. 6.3(a). As before, the shaded parts in Fig. 6.3(a) designate non-
zero entries and non-shaded parts denote zero entries of such a matrix. To
realize such a representation, we need to choose a non-uniform partition
of A in a form similar to that in Fig. 6.3(b), where a partition associated
with the representation of the lower stepped part in the form of Fig. 6.3(a)
is given. In Fig. 6.3(b), non-zero entries and zero entries are not allocated.

The block-matrix representation for A is as follows.
Let

A = {Aij | Aij ∈ Rpi×qij , i = 1, . . . , l, j = 1, . . . , 4}, (6.13)

2By the heuristic definition of causality, the present value of the reference vector
estimate is not affected by future values of observable data containing the reference
vector [117].
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(a) A block-partition of lower stepped
part of A.

(b) Associated partition of A.

Figure 6.3: Illustration to block-partition of lower stepped matrix A.

where
p1 + . . . + pl = n and qi1 + . . . + qi4 = n.

Let ∅, Oij ∈ Rpi×qij , Lij ∈ Rpi×qij and Rij ∈ Rpi×qij be the empty
block, zero block, lower triangular block and rectangular block, respectively.

We write A =

⎡
⎢⎣

A1

...
Al

⎤
⎥⎦ , where Ai = [Ai1, . . . , Ai4] for each i =

1, . . . , l. Here, Ai is called the block-row.
Now, let

A1 = [∅, ∅, L13,O14], Ai = [Oi1, Ri2, Li3,Oi4] and Al1 = [Ol1, Rl2, Ll3, ∅],
where i = 2, . . . , l − 1.

For i = 1, . . . , l − 1, we also set

m(1) = q13, qi3 = pi, m(i + 1) = qi+1,2 + pi+1 (6.14)
and qi+1,1 + qi+1,2 = qi,1 + mi, (6.15)

where q11 = 0. Then the matrix A is represented as follows:

A =

⎡
⎢⎢⎢⎢⎢⎣

L13 O14

O21 R22 L23 O24
...

. . . . . .
...

Ol−1,1 Rl−1,2 Ll−1,3 Ol−1,4

Ol1 Rl2 Ll3

⎤
⎥⎥⎥⎥⎥⎦

(6.16)
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Definition 35. The matrix A given by (6.16) is called a lower stepped
matrix. The set of lower stepped matrices is denoted by Ln

m.

Definition 36. The linear operator A : L2(Ω,Rn) → L2(Ω,Rn) is called
a causal operator with piecewise-constant memory m = {m(1), . . . , m(l)}
where

mi =
{

q13 if i = 1,
qi2 + qi3 if i = 2, . . . , l,

(6.17)

if A is defined by the lower stepped matrix A ∈ Rn×n given by (6.16). The
set of such operators is denoted by An

m.

6.4.4 Statement of the problem

As before, we write

J(A) = E[‖x−A(y)‖2] (6.18)

with E[‖x−A(y)‖2] defined by (6.3).
The problem is to find A0 ∈ An

m such that

J(A0) = min
A∈Ln

m

J(A) (6.19)

for any x, y ∈ L2(Ω,Rn).
Here, [A0(y)](ω) = A0[y(ω)] and A ∈ Ln

m.
It is assumed that x is unknown and no relationship between x and y

is known except covariance matrices or their estimates formed from sub-
vectors of y and x.

We note that the problem (6.19) is, in fact, the problem of finding the
best approximation A0 to the identity mapping subject to A ∈ An

m.

6.4.5 Partition of x and y, and compatible representation
of A(y)

If x = y than the solution is trivial: A0 is the identity mapping.
In general case, the solution of the problem (6.19) given below, con-

sists of the following steps. First, vector y is partitioned in sub-vectors
v13, v22, v23, . . . , vl2, vl3 in a way which is compatible with the partition
of matrix A in (6.16). Then the original problem can be represented as l
independent problems (6.34)–(6.35). Second, to solve the problems (6.34)–
(6.35), orthogonalization of sub-vectors v13, v22, v23, . . . , vl2, vl3 is used.
Finally, in Theorem 1, the solution of the original problem is derived in
terms of matrices formed from orthogonalized sub-vectors.
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We begin with partitions of x and y.
Partitions of x and y which are compatible with the partition of matrix

A above are as follows.
We write

x = [uT
1 , uT

2 , . . . , uT
l ]T and x = [uT

1 , uT
2 , . . . , uT

l ]T (6.20)

where u1 ∈ Rp1 , u2 ∈ Rp2 , . . ., ul ∈ Rpl are such that

u1 = [x1, . . . , xp1 ]T , u2 = [xp1+1, . . . , xp1+p2 ]T , . . . , (6.21)
ul = [xp1+...+pl−1+1, . . . , xp1+...+pl

]T , (6.22)

and u1 ∈ L2(Ω,Rp1), u2 ∈ L2(Ω,Rp2), . . . , ul ∈ L2(Ω,Rpl) are defined via
u1, u2, . . . , ul similarly to (6.9).

Next, let

v11 = ∅, v12 = ∅, v13 = [y1, . . . , yq13 ]T and v14 = ∅.

For i = 2, . . . , l − 1, we set

vi1 = [y1, . . . , yqi1 ]T , vi2 = [yqi1+1, . . . , yqi1+qi2 ]T ,

vi3 = [yqi1+qi2+1, . . . , yqi1+qi2+qi3 ]T, vi4 = [yqi1+qi2+qi3+1, . . . , yn]T.

If i = l, then

vl1 = [y1, . . . , yql1 ]T , vl2 = [yql1+1, . . . , yql1+ql2 ]T ,

vl3 = [yql1+ql2+1, . . . , yn]T , vl4 = ∅.
Therefore

Ay =

⎡
⎢⎢⎢⎣

L13v13

R22v22 + L23v23

...
Rl2vl2 + Ll3vl3

⎤
⎥⎥⎥⎦ and A(y) =

⎡
⎢⎢⎢⎣

L13(v13)
R22(v22) + L23(v23)

...
Rl2(vl2) + Ll3(vl3)

⎤
⎥⎥⎥⎦ (6.23)

where Lij and Rij are defined via Lij and Rij respectively, in the manner
of A defined via A by (6.1). The vector vij ∈ L2(Ω,Rqij ) are defined
similarly to those in (6.9).

Now, we can represent J(A) given by (6.18), in the form

J(A) = J1(L13) +
l∑

i=2

Ji(Ri2, Li3) (6.24)

where
J1(L13) = E

[‖u1 − L13(v13)‖2]
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and

Ji(Ri2, Li3) = E
[‖ui − [Ri2(vi2) + Li3(vi3)]‖2] . (6.25)

We note that matrix A can be represented so that

Ay = BPy,

where B ∈ Rn×q and P ∈ Rq×n with q = q13 +
∑l

i=1(qi2 + qi3) are such
that

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L13 O O O O O . . . O O
O R22 L23 O O O . . . O O
O O O R32 L33 O . . . O O
...

...
...

...
. . . . . .

... O
O . . . . . . . . . O Rl−1,2 Ll−1,3 O O
O . . . . . . . . . O O O Rl2 Ll3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.26)

and Py =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

...
vl−1

vl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. Here, O is the zero block, v1 = v13 and vi =
[

vi2

vi3

]

for i = 2, . . . , l − 1. The size of each zero block is such that BPy is
represented in the form (6.23). The matrix B consists of l× (2l−1) blocks.
The vector v = Py consists of 2l− 1 sub-vectors v13, v22, v23, . . . , vl2, vl3.

The operator A can be written as

A(y) = BP(y)

where

[B(v)](ω) = B[(v)(ω)], v = P(y) and [P(y)](ω) = P [(y)(ω)]. (6.27)

6.4.6 A representation of the approximator

We recall that for any x, y ∈ L2(Ω,Rn), we denote

Exy = E[xyT ] =
{
E[xiyj ]

}n

i,j=1
where E[xiyj ] def=

∫

Ω

xi(ω)yj(ω)dμ(ω).

In (6.24), the terms J1(L13) and Ji(Ri2, Li3) is defined by the operators
L13, Ri2 and Li3 and their action on the random block-vectors v13, vi2 and
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vi3 respectively. The corresponding mutually orthogonal random vectors
are

w13 = v13, wi2 = vi2 and wi3 = vi3−Zi(vi2), i = 2, . . . , l,(6.28)

where the operator Zi : L2(Ω,Rqi2)→ L2(Ω,Rqi3) is defined by the matrix

Zi = Evi3vi2E
†
vi2vi2

+ Mi(I − Evi2vi2E
†
vi2vi2

) (6.29)

with Mi ∈ Rqi3×qi2 arbitrary (See Section 4.4.4(d)) .

We write w(ω) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w13(ω)
w22(ω)
w23(ω)
w32(ω)
w33(ω)

...
wl2(ω)
wl3(ω)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I13 O O O O O . . . O
O I22 O O O O . . . O
O −Z2 I23 O O O . . . O
O O O I32 O O . . . O
O O O −Z3 I33 O . . . O
...

...
...

...
. . . . . .

...
O . . . . . . . . . O O Il2 O
O . . . . . . . . . O O −Zl Il3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Iij is qij × qij identity matrix for i = 1, . . . , l and j = 2, 3, and Zi is
defined by (6.29) for i = 2, . . . , l. The matrix Z consists of (2l−1)×(2l−1)
blocks.

Then (6.28) can be written in the matrix form as

w(ω) = Zv(ω)

with v given by (6.27). Matrix Z implies the operator Z : L2(Ω,Rn) →
L2(Ω,R) defined in the manner of (6.1).

Since Z is invertible, we can represent A as follows:

A(y) = K[Z(P(y))] where K = BZ−1. (6.30)
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A matrix representation of K is

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L13 O O O O O . . . O O
O T2 L23 O O O . . . O O
O O O T3 L33 O . . . O O
...

...
...

...
. . . . . .

...
...

O . . . . . . . . . O Tl−1 Ll−1,3 O O
O . . . . . . . . . O O O Tl Ll3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where

Ti = Ri2 + Li3Zi (6.31)

for i = 2, . . . , l. We note that K consists of l × (2l − 1) blocks.
As a result, in (6.25),

Ri2vi2(ω) + Li3vi3(ω) = Ri2wi2(ω) + Li3[wi3(ω) + Ziwi2(ω)]
= Tiwi2(ω) + Li3wi3(ω)

and hence

J(A) = J1(L13) +
l∑

i=2

Ji(Ti, Li3), (6.32)

where

Ji(Ti, Li3) = E[‖ui − [Tiwi2(ω) + Li3wi3]‖2] (6.33)

with Ti defined by
[Tiwi2](ω) = Ti[wi2(ω)]

for all i = 2, . . . , l.

6.4.7 Solution of the problem (6.19)

Lemma 37. For A ∈ Ln
m, the following is true:

min
A∈Ln

m

J(A) = min
L13

J1(L13) +
l∑

i=2

min
Ti,Li3

Ji(Ti, Li3) (6.34)

= min
L13

J1(L13) +
l∑

i=2

min
Ri2,Li3

Ji(Ri2, Li3). (6.35)
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Proof. Let A0 be a solution to the problem (6.19). Let us partition
matrix A0 similarly to (6.16) so that

A0 =

⎡
⎢⎢⎢⎢⎢⎣

L0
13 O14

O21 R0
22 L0

23 O24
...

. . . . . .
...

Ol−1,1 R0
l−1,2 L0

l−1,3 Ol−1,4

Ol1 R0
l2 L0

l3

⎤
⎥⎥⎥⎥⎥⎦

(6.36)

and set

K0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L0
13 O O O O O . . . O O
O T 0

2 L0
23 O O O . . . O O

O O O T 0
3 L0

33 O . . . O O
...

...
...

...
. . . . . .

...
...

O . . . . . . . . . O T 0
l−1

0Ll−1,3 O O
O . . . . . . . . . O O O T 0

l L0
l3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where T 0
i = R0

i2 + L0
i3Zi for i = 2, . . . , l.

Then

min
A∈Ln

m

J(A) = J1(L0
13) +

l∑

i=2

Ji(T 0
i , L0

i3)

≥ min
L13

J1(L13) +
l∑

i=2

min
Ti,Li3

Ji(Ti, Li3) (6.37)

because L0
13, T 0

i and L0
i3 are fixed.

Next, let L∗13, T ∗i and L∗i3 be such that

J1(L∗13) = min
L13

J1(L13) and Ji(T ∗i , L∗i3) = min
Ti,Li3

Ji(Ti, Li3).

Then

min
L13

J1(L13) +
l∑

i=2

min
Ti,Li3

Ji(Ti, Li3)

= J1(L∗13) +
l∑

i=2

Ji(T ∗i , L∗i3)

= J(A∗)
≥ min

A∈Ln
m

J(A), (6.38)
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where A∗ =

⎡
⎢⎢⎢⎢⎢⎣

L0
13 O14

O21 R∗22 L∗23 O24
...

. . . . . .
...

Ol−1,1 R∗l−1,2 L∗l−1,3 Ol−1,4

Ol1 R∗l2 L∗l3

⎤
⎥⎥⎥⎥⎥⎦

. The inequalities

(6.37) and (6.38) imply the equality (6.34). The statement (6.35) follows
from (6.32) and (6.24)

Let us denote the Frobenius norm by ‖ · ‖F .

Lemma 38. If A ∈ Rs×s and A = B + C where bijcij = 0 for all i, j then

‖A‖2F = ‖B‖2F + ‖C‖2F .

Proof. The proof is obvious.

Now, we are in the position to prove the main result given in Theorem
1 below. To this end, we use the following notation.

For i = 1, . . . , l, let λi be the rank of the matrix Ewi3wi3 ∈ Rpi×pi and
let3

E1/2
wi3wi3

= QiUi

be the QR-decomposition for E
1/2
wi3wi3 where Qi ∈ Rpi×λi and QT

i Qi = I
and Ui ∈ Rλi×pi is upper trapezoidal with rank λi. We write Gi = UT

i and
use the notation

Gi = [gi1, . . . , giλi
] ∈ Rpi×λi

where gij ∈ Rpi denotes the j-th column of Gi. We also write

Gi,s = [gi1, . . . , gis] ∈ Rpi×s

for s ≤ λi to denote the matrix consisting of the first s columns of the
matrix Gi.

The s-th row of the unit matrix I ∈ Rpi×pi is denoted by eT
s ∈ R1×pi .

For a square matrix M = {mij}ni,j=1, we also write

M = M∇ + M	

where
M∇ = {mij | mij = 0 if i < j}

and
M	 = {mij | mij = 0 if i ≥ j},

i.e. M∇ is lower triangular and M	 is strictly upper triangular.

3We recall that by (6.14), qi3 = pi.



260 6. OPTIMAL FILTERING

Theorem 48. The solution to the problem (6.19) is given by the operator
A0 ∈ An

m defined by the lower stepped matrix A0 ∈ Ln
m in the form (6.36)

where

L0
i3 =

⎡
⎢⎣


0
i,1
...


0
i,pi

⎤
⎥⎦ and R0

i2 = T 0
i2 − L0

i3Zi for i = 1, . . . , l. (6.39)

In (6.39), for each i = 1, 2, . . . , l and s = 1, 2, . . . , pi, the s-th row 
0
i,s is

defined by


0
i,s = eT

s Euiwi3E
†
wi3wi3

Gi,sG
†
i,s + bT

i (I −Gi,sG
†
i,s) (6.40)

where bT
i ∈ R1×pi is arbitrary; the matrix T 0

i2 is such that

T 0
i2 = Euiwi2E

†
wi2wi2

+ Fi(I − Ewi2wi2E
†
wi2wi2

) (6.41)

with Fi ∈ Rpi×qi2 arbitrary and I the qi2 × qi2 identity matrix.
The error associated with the operator A0 is given by

E[‖x−A0(y)‖2] =
l∑

i=1

⎡
⎣

λi∑
s=1

pi∑

j=s+1

E
[
|eT

s Euiwi3E
†
wi3wki3

gi,j |2
]

+ ‖E1/2
uiui
‖2F − ‖Euiwi2E

†1/2
wi2wi2

‖2 − ‖Euiwi3E
†1/2
wi3wi3

‖2F

⎤
⎦ . (6.42)

Proof. Since Ewi3wi3 = GiG
T
i , we have

J1(L13) = E
[‖u1 − L13(v13)‖2]

= tr
{
Eu1u1 − Ev13v13L

T
13 − L13Ev13u1 + L13Ev13v13L

T
13

}

= tr
{

(L13 − Eu1v13E
†
v13v13

)Ev13v13(LT
13 − E†v13v13

Ev13u1)
}

= tr
{

(L13 − Eu1v13E
†
v13v13

)G1G
T
1 (LT

13 − E†v13v13
Ev13u1)

}

= E
[
‖(L13 − Eu1v13E

†
v13v13

)G1‖2F
]

(6.43)

and in the similar manner, for i = 2, . . . , l,

Ji(Ti2, Li3) = E
[‖ui − [Ti2(wi2) + Li3(wi3)]‖2]

= tr
{
Euiui

− Euiwi2T
T
i2 − Euiwi

LT
i3 − Ti2Ewi2ui

+ Ti2Ewi2wi2T
T
i2 + Ti2Ewi2wi3L

T
i3 − Li3Ewi3ui

+ Li3Ewi3wi2T
T
i2 + Li3Ewi3wi3L

T
i3

}
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= tr
{
Euiui − Euiwi2T

T
i2 − Euiwi3L

T
i3 − Ti2Ewi2ui

+ Ti2Ewi2wi2T
T
i2 − Li3Ewi3ui

+ Li3Ewi3wi3L
T
i3

}

= tr
{

(Ti2 − Euiwi2E
†
wi2wi2

)Ewi2wi2(TT
i2 − E†wi2wi2

Ewi2ui
)

+ (Li3 − Euiwi3E
†
wi3wi3

)GiG
T
i (LT

i3 − E†wi3wi3
Ewi3ui

)

+ Euiui
− Euiwi2E

†
wi2wi2

Ewi2ui
− Euiwi3E

†
wi3wi3

Ewi3ui

}

= E
[
‖(Ti2 − Euiwi2E

†
wi2wi2

)E1/2
wi2wi2

‖2F
]

(6.44)

+ E
[‖(Li3 − Euiwi3E

†
wi3wi3

)Gi‖2F
]

(6.45)

+‖E1/2
uiui
‖2F − ‖Euiwi2E

†1/2
wi2wi2

‖2 − ‖Euiwi3E
†1/2
wi3wi3

‖2F . (6.46)

For symmetry, we set w13 = v13. Then on the basis of Lemma 38 and
the fact that the matrix Li3Gi is lower triangular, (6.43) and (6.45) can be
written collectively for i = 1, . . . , l as follows:

E
[‖(Li3 − Euiwi3E

†
wi3wi3

)Gi‖2F
]

= E
[‖(Li3Gi − Euiwi3E

†
wi3wi3

Gi)∇
+(Li3Gi − Euiwi3E

†
wi3wi3

Gi)	‖2F
]

=
λi∑

s=1

s∑

j=1

E
[
|(
i,sgi,j − eT

s Euiwi3E
†
wi3wi3

gi,j)|2
]

+
λi∑

s=1

pi∑

j=s+1

E
[
|eT

s Euiwi3E
†
wi3wi3

gi,j |2
]

=
pi∑

s=1

E
[
|(
i,sgi,s − eT

s Euiwi3E
†
wi3wi3

gi,s)|2
]

+
λi∑

s=1

pi∑

j=s+1

E
[
|eT

s Euiwi3E
†
wi3wi3

gi,j |2
]
.

The first sum calculates the contribution from all elements with j ≤ s
that are on or below the leading diagonal of the matrix (Li3−Euiwi3E

†
wi3wi3

)
×Gi and the second sum calculates the contribution from all elements with
j > s that are strictly above the leading diagonal. To minimize the overall
expression it would be sufficient to set the terms on or below the leading
diagonal to zero. Thus we wish to solve the matrix equation


i,sGi,s − eT
s Euiwi3E

†
wi3wi3

Gi,s = 0

for each i = 1, 2, . . . , l. This equation is a system of (2pi − λi + 1)λ/2
equations in (pi + 1)pi/2 unknowns. Hence there is always at least one
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solution. Indeed by applying similar arguments to those used earlier in
Lemma 26 of Section 5.4.2, it can be seen that the general solution is given
by 
i,s = 
0

i,s for each i = 1, 2, . . . , l.
Next, it follows from (6.44) that minimum of

E
[
‖(Ti2 − Euiwi2E

†
wi2wi2

)E1/2
wi2wi2

‖2F
]

is attained if

(Ti2 − Euiwi2E
†
wi2wi2

)E1/2
wi2wi2

= 0 (6.47)

is true. By Lemma 26 (Section 5.4.2), this equation is equivalent to the
equation

Ti2Ewi2wi2 − Euiwi2 = 0. (6.48)

The general solution [6] to (6.48) is given by (6.44). Therefore, R0
i2 by

(6.39) is true on the basis of (6.31).
The error representation (6.42) follows from (6.44)–(6.46).

Remark 24. The matrix Gi ∈ Rpi×r has rank λi and hence has λi inde-
pendent columns. It follows that Gi,s ∈ Rpi×s also has independent columns
and therefore also has rank s. Thus GT

i,sGi,s ∈ Rλi×λi is non-singular and
so G†i,s = (GT

i,sGi,s)−1GT
i,s. Hence


0
i,s = eT

s Euiwi3E
†
wi3wi3

Gi,s(GT
i,sGi,s)−1GT

i,s + bT
i [I −Gi,s(GT

i,sGi,s)−1GT
i,s]

for all i = 1, 2, . . . , l.

Remark 25. The results by Bode and Shannon [9], Fomin and Ruzhansky
[37], Ruzhansky and Fomin [115], and Wiener [179], which concern a linear
operator approximation, are particular cases of Theorem 48 above.

6.4.8 Simulations

To illustrate the proposed method, we consider the best approximator A0 ∈
An

m with n = 51 and memory m = {m(1), . . . , m(5)}, where m(1) = 20,
m(2) = 25, m(3) = 15, m(4) = 35 and m(5) = 25.

Then the blocks of the matrix A0 are

L0
13 ∈ R20×20, R0

22 ∈ R10×15, L0
23 ∈ R10×10, (6.49)

R0
32 ∈ R5×10, L0

33 ∈ R5×5, R0
42 ∈ R10×25, L0

43 ∈ R10×10. (6.50)

R0
52 ∈ R5×20 and L0

53 ∈ R5×5. (6.51)
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(a) Two typical realizations of noisy observed data y.
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(b) Two related realizations of reference vector x (solid line) and their
estimates (dashed line with circles) by the proposed approximator.

Figure 6.4: Illustration to the performance of the causal filter with
piecewise-constant memory.
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We apply A0 ∈ A51
m to the random vector y under conditions as follows.

In accordance with the assumption made above, we suppose that a reference
random vector x ∈ L2(Ω,R51) is unknown and that noisy observed data
y ∈ L2(Ω,R51) is given by q realizations of y in the form of a matrix
Y ∈ Rn×q with q = 101. Matrices

Eu1v13 , Ev13v13 (6.52)

and matrices

Euivi2 , Euivi3 , Evi2vi2 and Evi3vi3 (6.53)

for i = 2, . . . , 5, or their estimates are assumed to be known.
In practice, these matrices or their estimates are given numerically, not

analytically. Similarly to our methods presented in [61] and [156]–[162], the
proposed method works, of course, under this condition. In this example,
we model the matrices (6.52)–(6.53) and Y with analytical expressions in
the following way. First, we set X ∈ Rn×q and Y ∈ Rn×q by

X = [cos(α) + cos(0.3α)]T [cos(0.5β) + sin(5β)]

and
Y = [cos(α) • r1 + cos(0.3α)]T [cos(0.5β) + sin(5β) • r2],

where

α = [α0, α1, . . . , αn−1], αk+1 = αk + 0.4, k = 0, 1, . . . , n− 1, α0 = 0,

β = [β0, β1, . . . , βq−1], βj+1 = βj + 0.4, j = 0, 1, . . . , q − 1, β0 = 0,

cos(α) = [cos(α0), . . . , cos(αn)], sin(β) = [sin(β0), . . . , sin(βq−1)],

the symbol • means the Hadamard product, r1 is a 1 × n normally dis-
tributed random vector and r2 is a 1 × q uniformly distributed random
vector. Here, r1 and r2 simulate noise.4

Each column of Y is a particular realization of y.
By the procedure described in Section 5.2.2(e), we partition each col-

umn of X and Y in sub-vectors u1, . . . , u5 and v13, v22, v23, . . ., v52, v53,
respectively.

Furthermore, v13, v22, v23, v32, v33 and v34 have been orthogonalized
to w11, w22, w23, w32, w33 and w34. Matrices (6.49)–(6.51) have then been
evaluated by (6.39)–(6.44) from u1, . . . , u3, and w11, w22, w23, w32, w33 and
w34.

4The matrix X can be interpreted as a sample of x. By the assumptions of the
proposed method, it is not necessary to know X. We use matrix X for illustration
purposes only.
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As a result, the estimate x̂0 has been evaluated in the form x̂0 such
that

x̂0 =

⎡
⎢⎢⎢⎣

L0
13w13

R0
22w22 + L0

23w23

...
R0

52w52 + L0
53w53

⎤
⎥⎥⎥⎦ . (6.54)

On Fig. 6.4(a), the plots of columns 51 and 52 of the matrix Y are
presented. They are typical representatives of the noisy data under con-
sideration. On Fig. 6.4(b), the plots of columns 51 and 52 of the matrix
X (solid line) and their estimates (dashed line with circles) by our approx-
imator are given.

6.5 Optimal Causal Polynomial Filtering with
Arbitrarily Variable Memory

As before, we represent the raw data by a random vector y = (y1, . . . , ym)T

∈ L2(Ω,Rm). The reference random vector to be estimated from y is
denoted by x = (x1, . . . , xm)T ∈ L2(Ω,Rm).5

Unlike the method considered in the preceding section, we now consider
a case when memory may vary arbitrarily. This means that to estimate a
component xk of the reference vector, an filter A uses no more than the
pk = 1, . . . , vk most recent components ysk

, . . . , yvk
from the measurement

vector, where sk and vk are respectively defined by

sk = vk − pk + 1 and vk = 1, . . . , k. (6.55)

We say that such an filterA has arbitrarily variable memory p = {p1, . . . , pm}.
In addition to motivations considered in the previous section, we also

motivated by the fact that a non-linear approximator has more degrees of
freedom than the linear approximator considered above and it is natural
to expect that an optimal non-linear filter will improve the accuracy of the
optimal estimate. It is often possible to regulate the accuracy by changing
the free parameters associated with a non-linear filter. If the filter is a
polynomial operator of degree r then it may be possible to improve the
accuracy of the approximation by increasing the degree.

As a result, another major difference from he preceding section is that
here, we propose a generalized polynomial filter of degree r to reduce the
inherent noise. The accuracy of the estimation will be regulated by the

5The index k ∈ {1, 2, . . . ,m} may specify the time tk ∈ T = {tk | t1 < · · · < tm}
at which the measurement is taken.
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degree of the operator and the estimation procedure will be defined in
terms of the generalized inverse of an observed covariance matrix. An
optimal filter from this class will always exists but will be unique only if
the covariance matrix is non-singular.

To satisfy conditions of causality and finite memory p, we construct the
filter in terms of lower variable-band matrices. The optimal filter is not easy
to determine because the natural minimization procedure for the expected
square norm of the error does not preserve the embedded lower variable-
band structure. We avoid these difficulties by reformulating the problem
as a collection of linear problems on a set of new multinomial variables
yis

s · · · yiv
v , where s = sk and v = vk, using observations at times t = s, . . . , k

to obtain an optimal estimate of the reference vector component xk at time
t = k. Hence the variable memory and causality restrictions are imposed
indirectly. It is a remarkable fact that the minimum value for the sum of
the square errors over all components is equal to the sum of the individual
minimum square errors. We establish the reformulation in Proposition 3
by showing that the original problem can be reduced to m independent
problems defined by estimation of the separate components x1, . . . , xm of
the reference vector. The construction procedures are described in Sections
6.5.1–6.5.6.

While the problem under consideration is presented as a problem of
random vector estimation it could also be seen as a generalized form of non-
linear regression. Nevertheless our statement of the problem in Sections
6.5.4 and 6.5.5, and our solution methodology (presented in Proposition 3,
Theorems 49 and 50, and in their proofs) differ significantly from those
given in the literature. We cite [1, 5, 30, 33, 110, 137, 176, 178, 181] for
work on non-linear regression and [16], [56]–[62], [92, 95, 103], [118], [136],
[153]–[160], [175, 182] for random vector estimation.

A distinguishing feature of the presented method is that the filter should
be non-linear and causal with finite memory. The simplest particular case
of the desired filter is an optimal linear filter defined by a lower p-band
matrix (see Example 19 in Section 6.5.1).

In Sections 6.5.5 and 6.5.6, we describe a new algorithm to perform the
necessary calculations for the proposed filter model. In addition, the reduc-
tion procedure (Section 6.5.5) means that our optimal filters are defined by
matrices of reduced size. Consequently the computational load should com-
pare favorably with known methods [9, 37, 71, 88, 115, 142, 154, 161]. On
the other hand we use non-linear filters to provide improved accuracy and
it is natural to expect additional computation in problems where increased
accuracy is desired.
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6.5.1 Non-linear causal filters with arbitrarily variable
memory

We use the same notation for x and y as in Section 6.4. Using an heuristic
idea of causality we expect that the present value of the estimate is not
affected by future values of the data [103]–[112]. Since the filters under con-
sideration must have variable memory, the estimate of xk must be obtained
from the data components ysk

, . . . , yvk
with sk and vk given by (6.55). In

the following definition we combine the concepts of causality and variable
memory.

Definition 37. Let sk and vk be defined by (6.55). For each k = 1, 2, . . . , m
and y ∈ L2(Ω,Rm) define τ skvk

: L2(Ω,Rm)→ L2(Ω,Rpk) by

τ skvk
(y) = (ysk

, ysk+1, . . . , yvk
).

Let A : L2(Ω,Rm) → L2(Ω,Rm). If Ak : L2(Ω,Rpk) → L2(Ω,R) for each
k = 1, 2, . . . , m is such that

u = A(y) =

⎡
⎢⎣
A1(τ s1v1(y))

...
Am(τ smvm

(y))

⎤
⎥⎦ (6.56)

for each y ∈ L2(Ω,Rm, then A is called a causal filter with arbitrarily
variable finite memory p = {p1, . . . , pm}. If pk < k for some k = 1, . . . , m,
the memory is called incomplete and if pk = k and vk = k for each k =
1, . . . , m, the memory is said to be complete.

The relation (6.56) can be represented in the more explicit form

u1 = A1(y1),
u2 = Ap(ys2

, . . . , yv2
)

...
um = Ap(ysm

, . . . , yvm
).

For an appropriate choice of A, the vector u can be interpreted as an
estimate of x from y. We illustrate Definition 37 for the case in which
A(y) is given by a first-order polynomial.

Example 19. Suppose, A is defined by

A(y) = a + B1(y),
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where a ∈ Rm and B1 : L2(Ω,Rm)→ L2(Ω,Rm) is defined by

[B1(y)](ω) = B1y(ω) (6.57)

with B1 ∈ Rm×m. By Definition 37, the operator A is causal with arbitrar-
ily variable memory p if the matrix B1 = {bkj} is such that

bkj = 0 for j = {1, . . . , sk − 1}⋃{vk + 1, . . . , m}

We call B1 a lower p-variable-band matrix. The set of lower p-variable-
band matrices in Rm is denoted by Rm×m

p1,...,pm
.

For instance, if

m = 4, p1 = 1, p2 = 2, p3 = 2, p4 = 3,

v1 = 1, v2 = 2, v3 = 3, v4 = 3,

then B1 ∈ R4×4
1223 is given by

B1 =

⎡
⎢⎢⎣

• 0 0 0
• • 0 0
0 • • 0
• • • 0

⎤
⎥⎥⎦

where • denotes an entry which is not necessarily equal to zero.

In the next section, we present a model of a causal filter with with
arbitrarily variable memory p = {p1, . . . , pm} in the form of an r-degree
operator T r.

The problem is to find an filter T 0
r which minimizes the associated mean

square error on the class of all causal filters of degree r with arbitrarily
variable memory p. In Section 6.5.2 we construct a general r-degree filter
T r and in Section 6.5.3 we restrict this representation to include only causal
operators with arbitrarily variable memory p. A rigorous statement of the
problem is given in Sections 6.5.4 and 6.5.5. The optimal filter T 0

r is given
in Section 6.5.6. We shall show that it is possible to reduce the error
associated with the optimal filter by increasing its degree.

6.5.2 Model of a general r-degree filter

We follow the procedure used in [159]. For r ∈ N, let Pr : L2(Ω,Rm) →
L2(Ω,Rm) be given by

Pr(y) = a + B1(y) +
r∑

q=2

Bq(yq),
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where a = a(r) ∈ Rm and Bq = Bq(r) : L2(Ω, (Rm)q) → L2(Ω,Rm) for
q ≥ 1 is a q-linear operator6 such that

[Bq(yq)](ω) = Bq[yq] (6.58)

where Bq : (Rm)q → Rm is a tensor (i.e. a ‘(q + 1)-dimensional’ matrix),
yq = y(ω)q = (y(ω), . . . , y(ω)) = (y, . . . , y) ∈ (Rm)q and (Rm)q denotes
the q-th power of Rm.

We consider Pr as an estimator of x from y. The motivation for using
Pr as an estimator follows from known results [56, 57, 159] where strong es-
timating properties of Pr have been justified and demonstrated. Here, and
in the rest of the section, operators acting on spaces of random vectors and
defined similarly to those in (6.57) and (6.58), are denoted by calligraphic
characters. We call Pr an r-degree operator. For q ≥ 2 note that

Bq[yq] = Bq

⎡
⎣

m∑

j1=1

yj1ej1 , . . . ,
m∑

jq−1=1

yjq−1ejq−1 , y

⎤
⎦

=
m∑

j1=1

· · ·
m∑

jq−1=1

yj1 · · · yjq−1Bq[ej1 , . . . , ejq−1 , y]

=
m∑

j1=1

· · ·
m∑

jq−1=1

yj1 · · · yjq−1Bq,j1···jq−1y

where Bq,j1···jq−1 ∈ Rm×m. Thus, in matrix terminology, we write Pr(y)(ω) =
Pr(y) in the form

Pr(y) = a + B1(y) +
r∑

q=2

m∑

j1=1

. . .

m∑

jq−1=1

yj1 · · · yjq−1Bq,j1···jq−1y. (6.59)

For each k = 1, 2, . . . , m the k-th element of Pr(y) is denoted by Pr,k(y)
and is given by

Pr,k(y) = ak + B1(k)y +
r∑

q=2

m∑

j1=1

. . .

m∑

jq−1=1

yj1 . . . yjq−1Bq,j1···jq−1(k)y

= ak +
m∑

l=1

b1(kl)yl

+
r∑

q=2

m∑

j1=1

. . .

m∑

jq−1=1

yj1 . . . yjq−1

m∑

l=1

bq,j1...jq−1(kl)yl, (6.60)

6The operator Bq is called q-linear if it is linear in each of its arguments.
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where B1(k) ∈ R1×m and Bq,j1···jq−1(k) ∈ R1×m denote the k-th rows of the
matrices B1 and Bq,j1···jq−1 respectively and b1(kl) and bq,j1...jq−1(kl) denote
the elements in the kl position in the respective matrices. The expression
Pr,k(y) contains

1 + m + m2 + · · ·+ mr =
mr+1 − 1

m− 1

scalar terms.
To avoid the symmetry effect discussed in Section 5.5.3, we use the same

device as in Section 5.5.3. Namely, we collect together all terms with the
same factors yi1

1 · · · yim
m into a sub-class S(i1, . . . , im) for each combination

of non-negative integers (i1, . . . , im) in the class Sm,r with i1 + · · ·+ im ≤ r
and write (6.60) in the form

Pr,k(y) = ak +
∑

(i1,...,im) ∈ Sm,r

yi1
1 · · · yim

m Bi1···im(k)y

where B0···0 = B1 and

Bi1···im =
∑

yj1 ···yjq−1 ∈ S(i1,...,im)

Bq,j1···jq−1

for (i1, . . . , im) �= (0, . . . , 0) and where B0···0(k) and Bi1···im(k) denote the
k-th rows of the respective matrices. This reduces the number of terms in
Pr,k(y) to

1 +
[(

m− 1
0

)
+

(
m
1

)
+ · · ·+

(
m + r − 2

r − 1

)]
·m

= 1 +
(

m + r − 1
r − 1

)
·m

and allows us to avoid the symmetry effect. In operator form we have

Pr,k(y) = ak +
∑

(i1,...,im) ∈ Sm,r

yi1
1 . . . yim

m Bi1...im(k)(y) (6.61)

with Bi1...im(k) : L2(Ω,Rm) → L2(Ω,R) defined by Bi1...im(k) for each
(i1, . . . , im) ∈ Sm,r.
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6.5.3 Model of a causal r-degree filter with arbitrarily
variable memory

A causal r-degree filter T r : L2(Ω,Rm)→ L2(Ω,Rm) with arbitrarily vari-
able memory p = {p1, . . . , pm} is constructed from (6.61) in the following
way. We set

T r(y) =

⎡
⎢⎢⎢⎣

T r,1(τs1v1(y))
T r,2(τs2v2(y))

...
T r,m(τsmvm

(y))

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T r,1(y1)
T r,2(ys2

, yv2
)

...
T r,m(ysm

, . . . , yvm
)

⎤
⎥⎥⎥⎦ , (6.62)

where for each k = 1, . . . , m we have

T r,k(τ skvk
(y)) = ak

+
∑

(0,...,0,isk
,...,ivk

,0,...,0) ∈ Sm,r

y
isk
sk . . . y

ivk
vk β0···0isk

···ivk
0···0(k)(τ skvk

(y)), (6.63)

where β0···0isk
···ivk

0···0(k) : L2(Ω,Rpk)→ L2(Ω,R) is an appropriate restric-
tion of Bi1...im(k). Thus T r,k is constructed from Pr,k when the general
terms yi1

1 · · ·yim
m Bi1...im(k)(y) in (6.61) are restricted to terms of the form

y
isk
sk . . . y

ivk
vk β0···0isk

···ivk
0···0(k)(τ skvk

(y)). In the usual way we write

T r,k(τ skvk
(y))(ω) = T r,k(ysk

, . . . , yvk
)

for a particular observation. The number of scalar terms in this expression
is

1 +
[(

vk − sk

0

)
+

(
pk

1

)
+ · · ·+

(
vk − sk + r − 1

r − 1

)]
· pk

= 1 +
(

vk − sk + r
r − 1

)
· pk.

Once again we avoid repetition of terms. According to Definition 37 the
operator T r,k is causal with arbitrarily variable memory {p1, . . . , pm}. Note
that it is possible to have different degree operators for each component.
In such cases we simply replace r by rk in (6.63).

Example 20. We illustrate the structure of Pr,k and T r,k. If m = 3,
r = 4, vk = 3 and pk = 2 for all k = 1, . . . , 4 then

P4,3(y1, y2, y3) = a3 +

[
B000(3) + (y1B100(3) + y2B010(3) + y3B001(3))
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+(y2
1B200(3) + y1y2B110(3) + y1y3B101(3) + y2

2B020(3) + y2y3B011(3)

+y2
3B002(3))

+(y3
1B300(3) + y2

1y2B210(3) + y2
1y3B201(3) + y1y

2
2B120(3) + y1y2y3B111(3)

+y1y
2
3B102(3) + y3

2B030(3) + y2
2y3B021(3) + y2y

2
3B012(3) + y3

3B003(3))

]

×
⎡
⎣

y1

y2

y3

⎤
⎦

and [T 4,3(y2, y3)](ω) = T4,3(y2, y3) is given by

T4,3(y2, y3) = a3 +

[
β000(3) + (y2β010(3) + y3β001(3)) + (y2

2β020(3)

+y2y3β011(3) + y2
3β002(3))

+y3
2β030(3) + y2

2y3β021(3) + y2y
2
3β012(3) + y3

3β003(3))

] [
y2

y3

]

where each operator β0i1i2(3) : L2(Ω,R2) → L2(Ω,R) is represented by a
vector β0i1i2(3) with βT

0i1i2(3) ∈ R2. We observe that the original expres-
sion for P4,3(y1, y2, y3) in (6.60) contains 121 scalar terms and requires
O(350) flops. When the symmetry effect is removed P4,3(y1, y2, y3) con-
tains only 61 scalar terms and this is further reduced in T4,3(y2, y3) to 21
scalar terms. As a result, computation of P4,3(y1, y2, y3) requires O(150)
flops while computation of T4,3(y2, y3) requires O(50) flops.

Although T r,k(ysk
, . . . , yvk

) is a multi-linear operator on the original

variables y1, . . . , ym the dependence on the key product terms y
isk
sk . . . y

ivk
vk

τ skvk
(y) is linear. There are Nk = Nk(r) such terms where

Nk =
(

pk

0

)
+ · · ·+

(
vk − sk + r − 1

r − 1

)
=

(
vk − sk + r

r − 1

)
. (6.64)

We denote the terms by hjskvk
= hjskvk

(r) and the corresponding linear
operators by η T

jskvk
= η T

jskvk
(r) for each j = 1, 2, . . . , Nk. The precise

ordering is not important. Thus we write

T r,k(ysk
, . . . , yvk

) = ak +
Nk∑

j=1

η T
jskvk

(hjskvk
) = ak + η T

skvk
(hskvk

) (6.65)
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where η T
skvk

= (η T
1sk , . . . ,η T

Nksk) and h T
skvk

= (h T
1sk , . . . , h T

Nksk) for each
k = 1, 2, . . . , m.

Example 21. Let us consider T4,3(y2, y3) from Example 20. We define
the variables

h123 =
[

y2

y3

]
, h223 = y2

[
y2

y3

]
, h323 = y3

[
y2

y3

]
, h423 = y2

2

[
y2

y3

]
,

h523 = y2y3

[
y2

y3

]
, h623 = y2

3

[
y2

y3

]
, h723 = y3

2

[
y2

y3

]
,

h823 = y2
2y3

[
y2

y3

]
, h923 = y2y

2
3

[
y2

y3

]
and h10,23 = y3

3

[
y2

y3

]

and the corresponding vector coefficients

ηT
123 = β000(3), ηT

223 = β010(3), ηT
323 = β001(3), ηT

423 = β020(3),

ηT
523 = β011(3), ηT

623 = β002(3), ηT
723 = β030(3), ηT

823 = β021(3),

ηT
923 = β012(3) and ηT

10,23 = β003(3).

Remark 26. Note that Tr,k(ysk
, . . . , yvk

) does not contain repeated terms
and depends only on ysk

, . . . , yvk
. The number of terms Nk in Tr,k(ysk

, . . . ,
yvk

) is much less than the number of terms in a general r-degree poly-
nomial. Consequently a model using Tr,k(ysk

, . . . , yvk
) requires much less

computational work than a model using Pr,k(y).

6.5.4 Formulation of the problem

Let n ∈ N. We note that for any vector p = (p1, . . . , pn)T ∈ L2(Ω,Rn),

|E[pi]|2 ≤ E[‖p‖2] <∞
for all i = 1, 2, . . . , n. Let

J(T r) = E[‖x− T r(y)||2],

where T r is defined by (6.62) and (6.65). The problem is to find T 0
r such

that

J(T 0
r) = min

Tr

J(T r). (6.66)

An optimal filter T 0
r in the class of causal r-degree filter with arbitrarily

variable memory p takes the general form

T 0
r(y) =

⎡
⎢⎣
T 0

r,1(ysk
, . . . , yvk

)
...

T 0
r,m(ysk

, . . . , yvk
)

⎤
⎥⎦ , (6.67)
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where the component T 0
r,k is given by

T 0
r,k(ysk

, . . . , yvk
) = a0

k +
Nk∑

j=1

η0 T
jskvk

(hjskvk
) = a0

k + η0 T
skvk

(hskvk
) (6.68)

for each k = 1, . . . , m. Finding an optimal representative T 0
r is therefore

a matter of finding optimal values a0
k and η0 T

skvk
for the constants ak and

operators η T
skvk

.

6.5.5 Reduction of the problem (6.66) to m independent
problems

The special structure of the operators makes direct solution of (6.66) a dif-
ficult problem. Suffice it to say that a solution is known only for the special
case where T r is linear and has complete memory [37, 115]. Moreover the
solution in [37, 115] has been obtained with a quite restrictive assumption
that the covariance matrix E[yyT ] is non-singular. Indeed we observe that
direct determination of T 0

r from (6.66) is not straightforward because of
difficulties imposed by the embedded lower p-variable-band structure of the
matrices. To avoid these difficulties we show that the problem (6.66) can
be reduced to m independent problems. Define

Jk(T r,k) = E[|xk − T r,k(ysk
, . . . , yvk

)|2] (6.69)

for each k = 1, . . . , m where T r,k is defined by (6.65). We have the following
Proposition.

Proposition 3. Let T r and T r,k be given by (6.62) and (6.65) respectively.
Then

min
Tr

J(T r) =
m∑

k=1

min
Tr,k

Jk(T r,k) (6.70)

Proof. The proof is, in fact, a consequence of the proof of Lemma 37 in
Section 6.4.7. By elementary algebra

J(T r) =
m∑

k=1

Jk(T r,k). (6.71)

Let T 0
r be a solution to the problem (6.66). Then from (6.71),

min
Tr

J(T r) = J(T 0
r)
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=
m∑

k=1

Jk(T 0
r,k) (6.72)

≥
m∑

k=1

min
Tr,k

Jk(T r,k).

In (6.72) the operator T 0
r,k is the k-th component of the optimal operator

T 0
r.

Let now T ∗r,k be a solution to the problem (6.69) for each k = 1, 2, . . . , m.
Then

m∑

k=1

min
Tr,k

Jk(T r,k) =
m∑

k=1

Jk(T ∗r,k)

= J(T ∗r) (6.73)
≥ min

Tr

J(T r),

where

T ∗rk
(ysk

, . . . , yvk
)T =

[T ∗r1
(ysk

, . . . , yvk
), . . . , T ∗rm

(ysk
, . . . , yvk

)
]
.

The inequalities (6.72) and (6.73) establish the desired result.

Expression (6.70) allows us to reformulate problem (6.66) in an equiv-
alent form as follows.

For each k = 1, . . . , m find T 0
r,k such that

Jk(T 0
r,k) = min

Tr,k

Jk(T r,k). (6.74)

Any optimal operator T 0
r,k is the k-th component of an optimal filter

T 0
r. Hence an optimal filter T 0

r can be constructed from any solutions
T 0

r,1, . . . , T 0
r,m to the m independent problems (6.74). This construction

satisfies the structural requirements of Definition 1. An additional bonus
is that each individual problem (6.74) can be solved by extending results
obtained in Section 4.4.2. In this context solution of the m problems (6.74)
is more tractable than a direct solution of the original problem (6.66).

6.5.6 Determination of the optimal causal r-degree filter
with arbitrarily variable memory p

Let n ∈ N and let p ∈ L2(Ω,Rn) and q ∈ L2(Ω,Rn) be random vectors.
In general we write p̂ = p− E[p] and q̂ = q− E[q] and define

Efg = E[p̂q̂T ] = E[(p− E[p])(q− E[q])T ]
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= E[pqT ]− E[p]E[qT ].

It is convenient to use a special notation in two particular cases.
We define Hskvk

= Hskvk
(r) and Qskvk

= Qskvk
(r) by the formulae

Hskvk
= E[hskvk

hT
skvk

]− E[hskvk
]E[hT

skvk
] (6.75)

and

Qskvk
= E[xkhT

skvk
]− E[xk]E[hT

skvk
]. (6.76)

The following theorem provides the solution to problem (6.74) for each
k = 1, 2, . . . , m.

Theorem 49. For each k = 1, 2, . . . , m an optimal causal r-degree filter
T 0

r,k(ysk
, . . . , yvk

) in (6.68) with arbitrarily variable memory p is defined
by

η0 T
skvk

= Qskvk
H†skvk

+ Mk[Ik −Hskvk
H†skvk

], (6.77)

where Mk ∈ R1×Nk is arbitrary and Ik ∈ RNk×Nk is the identity matrix,
and

a0
k = E[xk]− η0 T

skvk
E[hskvk

]. (6.78)

Proof. First, we note that

Qskvk
H†skvk

Hskvk
= Qskvk

. (6.79)

Indeed, since
Qskvk

= E[xkhT
skvk

]− E[xk]E[hT
skvk

]

and
Hskvk

= E[hskvk
hT

skvk
]− E[hskvk

]E[hT
skvk

]

then (6.79) follows from Lemma 23 of Section 5.4.2.
Next, we have

Jk(T r,k) = E
[‖xk − ak − ηT

skvk
hskvk

‖2]

= E
[‖(xk − E[xk]) + (E[xk]− ak − ηT

skvk
E[hskvk

])

−ηT
skvk

(hskvk
− E[hskvk

])‖2]

= E
[
‖x̂k + (αk − ak)− ηT

skvk
ĥskvk

‖2
]
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where we use the standard notation x̂k = xk −E[xk] and ĥskvk
= hskvk

−
E[hskvk

] and define αk = E[xk]− ηT
skvk

E[hskvk
]. Hence

Jk(T r,k) = trE
[
(x̂k + (αk − ak)− ηT

skvk
ĥskvk

)(x̂k + (αk − ak)

− ĥ
T

skvk
ηskvk

)
]

= trE
[
x̂2

k − x̂kĥ
T

skvk
ηskvk

+ (αk − ak)2 − ηT
skvk

ĥskvk
x̂T

k

+ηT
skvk

ĥskvk
ĥ

T

skvk
ηskvk

]

= E[x̂2
k] + (αk − ak)2 + tr

[
ηT

skvk
Hskvk

ηskvk
−Qskvk

ηskvk

−ηT
skvk

Qskvk

]

= Exkxk
+ (αk − ak)2 + tr

[
(ηT

skvk
Hskvk

−Qskvk
)

×H†skvk
(ηT

skvk
Hskvk

−Qskvk
)T −Qskvk

H†skvk
QT

skvk

]

= Exkxk
+ (αk − ak)2 + ‖(ηT

skvk
Hskvk

−Qskvk
)H1/2 †

skvk
‖2

−Qskvk
H†skvk

QT
skvk

.

Therefore, Jk(T r,k) has a minimum possible value if

a0
k = α0

k = E[xk]− η0 T
skvk

E[hskvk
]

and
(ηT

skvk
Hskvk

−Qskvk
)H1/2 †

skvk
= O.

Similarly to Lemma 26 of Section 5.4.2, it can be shown that the latter
equation is equivalent to the equation

ηT
skvk

Hskvk
−Qskvk

= O,

which has the solution [6]

η0 T
skvk

= Qskvk
H†skvk

+ Mk(I −Hskvk
H†skvk

).

As a result,

Jk(T r,k)(a0
k, η0

skvk
) = Exkxk

−Qskvk
H†skvk

QT
skvk

(6.80)

is clearly the minimum possible value for Jk(T r,k).

Remark 27. The covariances used in (6.77) and (6.78) and in similar
relationships below, are assumed to be known or to be estimated by the
known methods considered, in particular, in Section 4.3.
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Theorem 50. The error E[‖x−T 0
r(y)‖2] for any optimal filter T 0

r defined
by (6.68), (6.77) and (6.78) is

E[‖x− T 0
r(y)‖2] = J(T 0

r)

=
m∑

k=1

Jk(T 0
r,k) (6.81)

=
m∑

k=1

[
Exkxk

−Qskvk
H†skvk

QT
skvk

]
.

Proof. The result follows from (6.80) in the previous proof.

Corollary 12. For each k = 1, . . . , m, the error E[|xk−T 0
r,k(ysk

, . . . , yvk
)|2]

decreases as the degree r of T 0
r,k(ysk

, . . . , yvk
) increases.

Proof. The proof follows directly from the proof of Theorems 49 and 50.

6.5.7 Particular cases

The proposed approach generalizes the methods considered in the preceding
Sections 5.4–5.6 and 6.4.3 as follows.

If vk = pk = m in (6.55) for all k = 1, . . . , m then the solution to the
problem (5.104) in Section 5.5.1 can be given in terms of (6.77)–(6.78). The
solution to the problem (5.69) in Section 5.4.1 is a particular case of the
model obtained in Section 5.5 and therefore, it can also been constructed
in terms of (6.77)–(6.78).

If vk = pk = k in (6.55) for all k = 1, . . . , m then the model (6.67)–
(6.68) is causal with complete memory (see Definition 37 in Section 6.5.1)
and hence, the causal model of Section 5.6 can be constructed from Theo-
rem 49.

If for all k = 1, . . . , m in (6.55), vk = k and sk is defined by (6.12) (with
i = k in (6.12)) then the linear filter with piecewise-constant memory of
Section 6.4.3 also follows from Theorem 49 for r = 1 and ak = 0.

The above demonstrates the flexibility of the proposed method and
shows that the choice of sk and vk in (6.55) provides an additional degree
of freedom for the method. At the same time, the present method may
require more computational work than those in the preceding Sections.
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6.5.8 Simulations

To illustrate the performance of the method, we apply the proposed filters
to the problem of extracting information about images of the surface of the
earth obtained by air observations. The reference matrix X ∈ R256×256 to
be estimated is a numerical representation of the image of a chemical plant7.
We consider two different cases. In the first case the data is disturbed by
additive noise and in the second by multiplicative noise. In each case the
raw data set is represented by a matrix Y ∈ R256×256. In the first case we
set Y = Y(1) and in the second we set Y = Y(2) where

Y(1) = X + 150 R1 and Y(2) = X ∗R2,

and where R1 ∈ R256×256 and R2 ∈ R256×256 are matrices of randomly
generated numbers from independent uniform distributions on the interval
(0, 1). The symbol ”∗” denotes the Hadamard product8

Because the procedure is formally the same in each case we will give
a generic description with X denoting the reference matrix that we wish
to estimate and Y denoting the observed data. In each case we begin the
analysis by partitioning X and Y into smaller blocks and we consider two
different schemes. In the first instance we use 64 separate blocks with
sub-matrices

{Xij}i,j=1,...,32 ∈ R32×32 and {Yij}i,j=1,...,32 ∈ R32×32

and in the second we use a more refined partition

{Xij}i,j=1,...,16 ∈ R16×16 and {Yij}i,j=1,...,16 ∈ R16×16

with 256 separate blocks. Since the procedure is essentially the same
whichever scheme is used our subsequent description will not distinguish
between the two.

To apply the estimation procedure to each fixed block (i, j) we set
X = Xij and Y = Yij . The 
-th columns

x(�) = x
(�)
ij = xij(ω�) = x(ω�)

and
y(�) = y

(�)
ij = yij(ω�) = y(ω�)

of X and Y respectively are regarded as the 
-th realizations of the random
vectors x and y. To model the arbitrarily variable memory requirement we

7The data can be found in http://sipi.usc.edu/services/database/Database.html .
8If A = {aij} ∈ Rn×n and B = {bij} ∈ Rn×n then A ∗B = {aijbij} ∈ Rn×n.
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assume that at each time k we can observe at most the seven most recent
rows of data. Thus our estimate for the k-th element xk can use only
the observed elements ysk

, . . . , yvk
with p = 7. We have applied standard

Matlab routines to compute these estimates using our proposed optimal
causal filters of degrees one and two. For each k = 1, . . . , m and each
r = 1, 2 the optimal filters are denoted by T 0

r,k and are given by (6.68),
(6.77) and (6.78) with Mk = 0 in the form

T 0
r,k(ysk

, . . . , yvk
) = a0

k +
Nk∑

j=1

η0 T
jskvk

(hjskvk
)

= a0
k + η0 T

skvk
(hskvk

).

Here, by (6.64), Nk = Nk(r).
The covariances have been estimated from the samples using an ele-

mentary method [44]. We have used this method for illustrative purposes
only. The results of the simulations are presented in Figures 6.5–6.7 and
Table 1. For each case in Table 1 we write

Δr,ij = ‖Xij − T 0
r (Yij)‖2

for r = 1, 2. The results are consistent with the theoretical analysis. Table
1 shows that the error associated with the second degree filter T 0

2 is less
than that for the first degree filter T 0

1 .

Table 1. Maximum errors for the proposed filters

16× 16 sub-matrices 32× 32 sub-matrices
Errors by T 0

1 and T 0
2 Errors by T 0

1 and T 0
2

Case max
ij

Δ1,ij max
ij

Δ2,ij max
ij

Δ1,ij max
ij

Δ2,ij

1 1.16× 105 0.02× 105 5.32× 105 0.71× 105

2 2.85× 105 0.54× 105 1.05× 106 0.29× 106

The proposed method has also been tested with other simulations in-
cluding EEG data similar to that presented in [46]. Those tests were also
consistent with the theoretical results obtained above. It is inappropriate
to compare causal filters with arbitrarily variable memory to filters that are
not restricted in this way. One would naturally expect unrestricted filters
to exhibit superior performance but there are many realistic applications
where such filters cannot be used.
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(a) Reference signals.
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(b) Observed data.

Figure 6.5: Illustration to performance of method of Section 6.5. This
digitized image has been taken from http://sipi.usc.edu/database/.
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(a) 1st degree estimates.
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(b) 2nd degree estimates.

Figure 6.6: Illustration to performance of method of Section 6.5. This
digitized image has been taken from http://sipi.usc.edu/database/.
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(a) Errors of the 1st degree estimates.
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(b) Errors of the 2nd degree estimates.

Figure 6.7: Illustration to performance of method of Section 6.5.
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6.6 Optimal Nonlinear Filtering with no Memory
Constraint

The methods considered in the preceding chapters concern various types
of approximation for operator F and its image F(x). If F is the identity
operator then such methods can be interpreted as methods for optimal
filtering. Below, we consider special types of optimal filters without re-
strictions associated with notions of causality and memory. We call them
unconstrained filters.

6.6.1 Unconstrained polynomial filter

If F(x) = x, then the polynomial operator P̃r constructed in Section 5.5
of Chapter 4 is a model of the optimal filter. We illustrate the efficiency
of such a filter by its applications to processing of data given by digitized
color images.

A colour image is numerically represented by three matrices X(1), X(2),
X(3) ∈ RM×N , where the elements in X(1) are interpreted as red intensities,
in X(2) as green intensities, and in X(3) as blue intensities. The M ×N ×3
tensor, composed from these matrices, is a numerical counterpart of the
colour image. We denote such a tensor by T = T (X(1), X(2), X(3)).

The known image ‘Sailboat on lake’ 9 has numerically been represented
by the tensor T (X(1), X(2), X(3)) with M = N = 256. For each k = 1, 2, 3,

matrix X(k) has been partitioned into 2,048 sub-matrices X
(k)
ij ∈ R4×8 with

i = 1, . . . , 64 and j = 1, . . . , 32 so that X(k) = {X(k)
ij }. Each sub-matrix

X
(k)
ij has been interpreted as a set of eight realizations of a random vector

with columns representing realizations.
We simulated observed data in the form Y

(k)
ij presented in Table 2,

where R(k)
ij is a matrix with normally distributed entries with mean 0 and

variance 1, and Q(k)
ij and Q(kk)

ij are matrices with uniformly distributed
entries in the interval (0, 1). In Table 2,

Δ(k)
1,ij = ‖X(k)

ij − L
0(k)
Q,ij(Y (k)

ij )‖2, Δ(k)
2,ij = ‖X(k)

ij − T
0(k)
2,ij (Y (k)

ij )‖2,

and
Δ(k)

ij = ‖X(k)
ij − T

0(k)
ij (Y (k)

ij )‖2,
where L

0(k)
Q,ij(Y (k)

ij ), T
0(k)
2,ij (Y (k)

ij ) and T
0(k)
ij (Y (k)

ij ) are the best first-degree,

Hadamard-quadratic and multiquadratic estimates for X
(k)
ij respectively.

9The database can be found in http://sipi.usc.edu/services/database/Database.html.
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Estimates L
0(k)
Q,ij(Y (k)

ij ), T
0(k)
2,ij (Y (k)

ij ) and T
0(k)
ij (Y (k)

ij ) have been calculated
from (5.100)-(5.101), (5.81)-(5.83) and (5.123)-(5.125), correspondingly,
with Matlab for each i, j and k (i.e. the method has been applied 6,144
times). We put M1 = M2 = K = O.

The expectations and covariance matrices in (5.100)-(5.101), (5.81)-
(5.83) and (5.123)-(5.125) have been estimated from the maximum likeli-
hood estimates considered in Section 5.3 of Chapter 4. For instance, for
each i, j and k we estimated Exzq as X

(k)
ij (Z(k)

ij )T /8− X̂
(k)
ij (Ẑ(k)

ij )T , where

Z
(k)
ij = Y

(k)
ij (diagY

(k)
ij (q, :)), and diagY

(k)
ij (q, :)) is a diagonal matrix with

the elements from the qth row of Y
(k)
ij on its diagonal, and M̂ means a

vector formed from means of the rows of the matrix M. These simple esti-
mates have only been chosen to illustrate the performance of the proposed
method.

Fig. 6.9 illustrates the performance of the method. The tensors for the
digitized images in Fig. 6.9 have been composed from sub-matrices Y

(k)
ij ,

L
0(k)
Q,ij(Y (k)

ij ) and T
0(k)
ij (Y (k)

ij ) respectively.

Diagrams in Fig. 6.9 (a) and (b) represent the matrices Δ(2)
1 = {Δ(2)

1,ij}
and Δ(2) = {Δ(2)

ij } of errors associated with the best first-degree and mul-

tiquadratic estimates for the matrices X
(2)
ij , whose entries are interpreted

as green intensities.
The estimates by Sorenson [142] cannot be applied here since the esti-

mates of Eyy and E[yyT ] are very close to singular and Matlab warned
that calculations may be inaccurate

In Table 3 and Fig. 6.10 we present the results of similar simulations
with the well known image ‘Lenna’ 2 given by a tensor T (X(1), X(2), X(3))
with M = N = 256 (i.e. the method has been applied 6,144 times again).
The notation in Table 3 is the same as in Table 2. In these simulations,
estimates by Sorenson [142] can be applied and they coincide with the best
first-degree estimates L

0(k)
Q,ij(Y (k)

ij ).
In all 12,288 applications, the best multiquadratic estimates give sig-

nificant improvements in the accuracy of X
(k)
ij estimation compared to the

best first-degree estimates.



286 6. OPTIMAL FILTERING

(a) Reference signals. This digitized image has been taken
from http://sipi.usc.edu/database/.
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(b) Observed data.

Figure 6.8: Illustration to unconstrained polynomial filter.
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(a) The best first-degree estimate L0
Q(y).
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(b) The best multiquadratic estimate T 0(y).

Figure 6.9: Illustration to unconstrained polynomial filter.
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(a) The best estimate by Sorenson [142].

50 100 150 200 250

50

100

150

200

250

(b) The best multiquadratic estimate T 0(y).

Figure 6.10: Illustration to unconstrained polynomial filter. This digitized
image has been taken from http://sipi.usc.edu/database/.
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6.6.2 Unconstrained hybrid filter

The method of the best hybrid approximations considered in Section 5.7
of Chapter 4, can be extended to the case which we call the optimal hy-
brid filtering. The solution to the problem (5.186) – (5.187) in Section
5.7 of Chapter 4 for F = I, i.e. the operator Pk presented by (5.169),
(5.172), (5.189) with F = I, represents a model of the filter. This filter is
constructed from the consequent ‘blocks’ B̃0, . . . , B̃k in accordance with
(5.169).

It is clear from Theorem 43 that the filter, defined by (5.169), (5.172),
(5.189) with F = I, possesses the obvious advantages over conventional
filters based on a least-square approximation [63], [157]. In particular,
even for k = 0, this filter produces a smaller associated error than that
for filters [63], [157]. This is due to the higher degree r of approximation
compared with the case of the approximation in [63], [157]. For the number
of iteration k greater than zero, this error is further decreased.

At the same time, such a filtering can be considered as a special case of
the method which we develop in Section 7.7 ”Optimal generalized hybrid
transform” of the next Chapter 7. Therefore, we refer to that section for
more details.

6.7 Concluding Remarks

In this chapter, we have presented computational methods for optimal fil-
tering of stochastic signals. The wide generalizations of the Wiener ap-
proach to linear filtering have been considered in both finite dimensional
vector spaces and the Hilbert space. For different types of memory such
as piecewise-constant memory and arbitrarily variable memory, models of
optimal filters have been provided. Methods for optimal nonlinear filtering
with no memory constraint have also been given. A rigorous theoretical
analysis of the presented methods have been presented. Algorithms for
numerical computation of the considered filters have been provided.



Chapter 7

Computational Methods for
Optimal Compression and
Reconstruction of Random
Data

7.1. Introduction

7.2. Standard Principal Component Analysis and Karhunen-Loève
Transform (PCA-KLT)

7.3. Rank-constrained Matrix Approximations

7.4. A Generic Principal Component Analysis and Karhunen-Loève
Transform

7.5. Optimal Hybrid Transform Based on Hadamard-quadratic
Approximation

7.6. Optimal Transform Formed by a Combination of Nonlinear Operators

7.7. Optimal Generalized Hybrid Transform

7.8. Concluding Remarks

7.1 Introduction

In this chapter, we consider computational methods for simultaneous data
dimensionality reduction and filtering, and subsequent data reconstruction
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with the highest possible accuracy.
In signal processing, data dimensionality reduction (often called com-

pression) is motivated by a necessity to diminish expenditures for transmis-
sion, processing and storage of large signal arrays. The known associated
methods have also been applied successfully to the solution of problems
related to clustering, feature selection and forecasting.

In statistics, data dimensionality reduction is often identified with a
procedure for finding the so called principal components of a large random
vector, i.e. of components of a smaller vector which preserves principal
features of the original vector. In particular, this means that the original
vector can be reconstructed from the smaller one with the least possible
error.

Observed data is normally corrupted with random noise. Therefore, any
procedure of data compression (or finding principal components) should be
accompanied by filtering. We note that filtering and data compression
could be separated. Nevertheless, simultaneous filtering and compression
is more effective in the sense of minimizing the associated error (see [182],
for example).

The known methods for filtering and data compression can be applied in
either a probabilistic setting (as in [53]–[55], [63, 68, 79, 88, 92, 96, 133, 149,
150, 158, 166, 170, 182, 183]) or a deterministic setting (as in [21, 147]). The
associated techniques are often based on the use of reduced-rank operators.

In this chapter, a further advance in the development of reduced-rank
transforms is presented. We study a new approach to data dimensional-
ity reduction in a probabilistic setting based on the development of ideas
presented in [63, 133, 158, 166, 170, 183].

Computational methods considered below are based on solution of best
approximation problems, special iterative procedures and their combina-
tion.

In Section 7.2, we present the standard Principal Component Analysis
and Karhunen-Loève transform (PCA–KLT). In Section 7.4, this method
is extended to more general cases. In Sections 7.5–7.7, more advanced
techniques are described.

In Section 7.3, methods of rank-constrained matrix approximations are
considered.

A so-called generic PCA–KLT is given in Section 7.4 and its generaliza-
tions are studied in Sections 7.5–7.7. The methods considered in Sections
7.5–7.7 are motivated by the following observation. In general, the reduced-
rank transforms for random data (such as those in [63, 133, 158, 166, 170,
183]) consist of three companion operations – filtering, compression and
reconstruction. Filtering and compression are performed simultaneously
to estimate a reference signal x with m components from noisy observed
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data y and to filter and reduce the data to a vector x̂ with η components,
η < m. The components of x̂ are often called the principal components.
The quotient η/m is called the compression ratio. Reconstruction returns
a vector x̃ with m components so that x̃ should be close to the original x.
It is natural to perform these three operations so that the reconstruction
error and the related computational burden are minimal. As a result, the
performance of the reduced-rank transform is characterized by three issues
which are (i) associated accuracy, (ii) compression ratio, and (iii) compu-
tational work. The methods presented in Sections 7.5–7.7 improve those
issues compared to the techniques given in Sections 7.2 and 7.4.

7.2 Standard Principal Component Analysis and
Karhunen-Loève Transform (PCA–KLT)

Jolliffe [68] writes: ‘Principal component analysis is probably the oldest and
best known of the techniques of multivariate analysis.’ Principal compo-
nent analysis (PCA) was discovered by Pearson [100] in 1901 and then
independently developed by Hotelling [55] in 1933, by Karhunen [71] in
1947 and by Loève [88] in 1948. Owing to its versatility in applications,
PCA has been extended in many directions (see, in particular, [63], [96],
[133], [182] and the corresponding bibliographies). In engineering litera-
ture, PCA is normally called the Karhunen-Loève transform (KLT). We
use the abbreviation ‘PCA–KLT’ for this technique.

Note that PCA–KLT can be reformulated as a technique which provides
the best linear estimator of given rank for a random vector (see [63], [134]).
The error associated with the estimators [44], [63], [68], [96] based on PCA–
KLT idea is the smallest in the corresponding class of linear estimators with
the same rank. Nevertheless, the performance of these linear estimators
may not be as good as required. See Sections 7.5–7.7 for more details.

PCA–KLT can be represented in the following way. Let

x ∈ L2(Ω,Rm), Exx = E[xxT ]

and let the spectral decomposition of Exx be given by

Exx =
m∑

j=1

λjuju
T
j ,

where uj and λj are corresponding eigenvectors and eigenvalues of Exx,
and E is the expectation operator.

Given x ∈ L2(Ω,Rm), PCA–KLT produces a linear operator P0 :
L2(Ω,Rm) → L2(Ω,Rm) of maximum possible rank r(≤ m) that mini-
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mizes
J (P ) = E[‖x− P(x)‖2]

over all linear operators P : L2(Ω,Rm)→ L2(Ω,Rm) of the same rank r.
Here, (see, for example, [78])

rank(P) = dim P(L2(Ω,Rm)).

The matrix P0, associated with operator P0, is given by

P0 = UrU
T
r ,

where Ur = [u1, u2, . . . , ur].
Thus, UT

r performs compression of x to a shorter vector in L2(Ω,Rr)
and Ur performs a resonstruction of the compressed vector to x̂ so that

x̂ = P0(x).

Components of the compressed vector are called the principal components.
The compression ratio is given by

c =
r

m
, (7.1)

where r is the number of principal components of vector x.

7.3 Rank-constrained Matrix Approximations

7.3.1 Classical rank-constrained matrix approximation

We start with the classical result [19, 34] concerning determination of the
matrix X ∈ Rm×n of rank = r that is nearest to matrix A ∈ Rm×n in the
Frobenius norm ‖ · ‖. The result presented in Theorem 51 below is known
as the Eckart-Young theorem [34]. We note that the work [34] involves a
number of extensions. We cite [43, 50, 76, 90] as some recent references.

Let the SVD of A be

UΣV T = A, (7.2)

where U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n are orthog-
onal and Σ = diag(σ1, . . . , σp) ∈ Rm×n is diagonal where p = min{m,n},
and σ1 ≥ . . . ≥ σp ≥ 0.

Let

Ar = UrΣrV
T
r , (7.3)

where U = [u1, . . . , ur] ∈ Rm×r, V = [v1, . . . , vr] ∈ Rn×r and Σ =
diag(σ1, . . . , σr) ∈ Rr×r.
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Lemma 39. Let U ∈ Rm×m and V ∈ Rn×n be orthogonal. Then for any
matrix M ∈ Rm×n,

‖UT MV ‖2 = ‖M‖2.

Proof. Let

U = {uij}mi,j=1, V = {vij}nl,k=1 and M = {mjk}m,n
j,k=1.

Let us denote Z = UT MV so that Z = {zil}mi,l=1. Then

zil =
m∑

j=1

n∑

k=1

uijmjkvlk

and

‖UT MV ‖2 =
m∑

i=1

m∑

l=1

z2
il

=
m∑

i=1

m∑

j=1

n∑

k=1

m∑
q=1

n∑
s=1

n∑

l=1

(uijmjkvlk)(uiqmqsvls)

=
m∑

j=1

n∑

k=1

m∑
q=1

n∑
s=1

mjkmqs

m∑

i=1

uijuiq

n∑

l=1

vlkvls

=
m∑

j=1

n∑

k=1

m∑
q=1

n∑
s=1

mjkmqsδjqδks

=
m∑

j=1

n∑

k=1

m2
jk

= ‖M‖2

as required.

Lemma 40. If P ∈ Rm×m and Q ∈ Rn×n are non-singular, then for any
X ∈ Rm×n,

rank(PX) = rank(XQ) = rank(X).

Proof. All rows of PX are linear combinations of rows of X, therefore, the
number of linearly independent rows in PX is not greater than the number
of linearly independent rows in X, i.e.

rank(PX) ≤ rank(X).
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Next, since P is non-singular, X = P−1(PX) implies rank(X) ≤ rank(PX).
Hence,

rank(PX) = rank(X).

The proof of the equality

rank(XQ) = rank(X)

is similar.

Lemma 41. For any W ∈ Rm×n, and U ∈ Rm×m and V ∈ Rn×n orthog-
onal, there exists M ∈ Rm×n such that

UT WV = M ⇐⇒ UMV T = W.

Proof. The proof is obvious.

Theorem 51. Let A and Ar be as those in (7.2) and (7.3), respectively.
Then for any X ∈ Rm×n,

‖A−Ar‖2 = min
X: rank(X)=r

‖A−X‖2. (7.4)

Proof. On the basis of Lemma 39,

‖UT (A−X)V ‖2 = ‖A−X‖2.

We write Y = UT XV. It follows from Lemma 40 that

rank(X) = rank(Y ).

Therefore, the problem

‖UT XV − Σ‖2 → min
X: rank(X)=r

is equivalent to the problem

‖Y − Σ‖2 → min
Y : rank(Y )=r

. (7.5)

This is true because, on the basis of Lemma 41, for every X there exists Y
defined as above, and for every Y there exists X such that X = UY V T .

The solution to (7.5) is Y 0 = Σr. Then (7.4) follows.
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7.3.2 Generalized rank-constrained matrix
approximations

Justification of the techniques presented in Sections 7.5–7.7 below is based
on the solution of generalized forms of the problem considered in Section
7.3.1 above. First, we study the following generalization.

Let Cm×n be the set of m× n complex valued matrices and let

J(X) = ‖M1 −XM2‖2, (7.6)

where M1 ∈ Cm×n, X ∈ Cm×n and M2 ∈ Cn×n. Given M1 and M2, find
X such that

J(X0) = min J(X) (7.7)

subject to

rank X = r ≤ min{m,n}. (7.8)

An elegant solution to this problem has been obtained by S. Friedland
1 in Theorem 52 below.

Theorem 52. Let the SVD of M2 be

M2 = UΣV T ,

where U ∈ Cn×n and V ∈ Cn×n are orthogonal, and Σ = diag(σ1, . . . , σp,
0 . . . , 0) ∈ Cn×n. Let

M = M1V and M = [F G]

where F ∈ Cn×p and G ∈ Cn×(n−p). Let F(r) ∈ Cn×p be the best rank r
approximation of F . Then a solution to the problem (7.7)–(7.8) is given by
a family {X0} of matrices

X0 = [F(r)Σ−1
p L]UT , (7.9)

where Σp = diag(σ1, . . . , σp) and L ∈ Cn×(n−p) with its columns in the
column space of F(r)Σ−1

p in order to satisfy the rank restriction.

Proof. We write
Y = XU and Y = [K L],

1The authors are grateful to S. Friedland for his generous consent to present the

solution [43 ] here.

[43 ]. We present Friedland’s result
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where K ∈ Cn×r and L ∈ Cn×(n−r). Then

J(X) = ‖M1 −XM2‖2
= ‖M1V −XUΣV T V ‖2 (7.10)
= ‖M − Y Σ‖2

= ‖M − [K L]
[

Σp O12

O21 O22

]
‖2

= ‖[F G]− [KΣp O]‖2
= ‖[F −KΣp]‖2 + ‖G‖2.

where

O12 ∈ Cp×(n−p), O21 ∈ C(n−p)×p, O22 ∈ C(n−p)×(n−p), O ∈ Cn×(n−p)

are the zero matrices. The term ‖G‖2 does not depend on X. The minimum
of the term ‖[KΣp − F ]‖2 subject to rank(KΣp) = r is attained when

K = K0 where K0 = F(r)Σ−1
p .

Since X = Y UT , we have

X0 = [K0 L]UT

= [F(r)Σ−1
p L]UT .

Here, L = K0S for some S ∈ Cp×(n−p) so that2

rank [K0 L] = rank [K0 K0S] = rank K0.

The above approach has been further developed by Friedland and Torokhti
in [42] as follows.

Let Cm×n be set of m × n complex valued matrices, and denote by
R(m,n, k) ⊆ Cm×n the variety of all m × n matrices of rank k at most.
Fix A = [aij ]m,n

i,j=1 ∈ Cm×n. Then A∗ ∈ Cn×m is the conjugate transpose
of A. Let the SVD of A be given by

A = UAΣAV ∗A,

where UA ∈ Cm×m and VA ∈ Cn×n are unitary matrices and

ΣA := diag(σ1(A), . . . , σmin(m,n)(A)) ∈ Cm×n

2The matrix L must not increase the rank X above r. Hence, the columns of L must
be linear combinations of the columns of K0, i.e. L = K0S for some S ∈ Cp×(n−p).
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is a generalized diagonal matrix, with the singular values σ1(A) ≥ σ2(A) ≥
. . . ≥ 0 on the main diagonal.

Let UA = [u1 u2 . . . um] and VA = [v1 v2 . . . vn] be the representations
of U and V in terms of their m and n columns, respectively, and let

PA,L :=
rank A∑

i=1

uiu
∗
i ∈ Cm×m and PA,R :=

rank A∑

i=1

viv
∗
i ∈ Cn×n, (7.11)

be the corresponding orthogonal projections onto the ranges of A and A∗.
Define

Ak := (A)k :=
k∑

i=1

σi(A)uiv
∗
i = UAkΣAkV ∗Ak ∈ Cm×n (7.12)

for k = 1, . . . , rank A, where

UAk = [u1 u2 . . . uk], ΣAk = diag(σ1(A), . . . , σk(A)) (7.13)

and

VAk = [v1 v2 . . . vk]. (7.14)

For k > rank A, we write Ak := A (= Arank A). For 1 ≤ k < rank A,
the matrix Ak is uniquely defined if and only if σk(A) > σk+1(A).

Below, we provide generalizations of both the classical minimal problem
given in (7.4) and the problem given in (7.7)–(7.8). First, we present the
result obtained in [42].

Theorem 53. [42] Let matrices A ∈ Cm×n, B ∈ Cm×p and C ∈ Cq×n be
given. Then

X = B†(PB,LAPC,R)kC† (7.15)

is a solution to the minimization problem

min
X∈R(p,q,k)

||A−BXC|| (7.16)

with minimal norm ||X||. This solution is unique if and only if either

k ≥ rank (PB,LAPC,R)

or

1 ≤ k < rank (PB,LAPC,R) and σk(PB,LAPC,R) > σk+1(PB,LAPC,R).
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Proof. Recall that the Frobenius norm is invariant under multiplication
from the left and the right by compatible unitary matrices. Hence

||A−BXC|| = ||Ã− ΣBX̃ΣC ||,

where
Ã := U∗BAVC and X̃ := V ∗BXUC .

Clearly, X and X̃ have the same rank and the same Frobenius norm. Thus,
it is enough to consider the minimal problem

min

˜

X∈R(p,q,k)
||Ã− ΣBX̃ΣC ||.

Let s = rank B and t = rank C. Clearly if B or C is a zero matrix,
then X = O is the solution to the minimal problem (7.16). In this case
either PB,L or PC,R are zero matrices, and the theorem holds trivially in
this case.

Let us consider the case 1 ≤ s, 1 ≤ t. Define

B1 := diag(σ1(B), . . . , σs(B)) ∈ Cs×s

and
C1 := diag(σ1(C), . . . , σt(C)) ∈ Ct×t.

Partition Ã and X̃ into four block matrices Aij and Xij with i, j = 1, 2
so that Ã = [Aij ]2i,j=1 and X̃ = [Xij ]2i,j=1, where A11, X11 ∈ Cs×t. (For
certain values of s and t, we may have to partition Ã or X̃ to less than four
block matrices.) Next, observe that

Z := ΣBX̃ΣC = [Zij ]2i,j=1,

where Z11 = B1X11C1 and all other blocks Zij are zero matrices. Since B1

and C1 are invertible we deduce

rank Z = rank Z11 = rank X11 ≤ rank X̃ ≤ k.

The approximation property of (A11)k yields the inequality

||A11 − Z11|| ≥ ||A11 − (A11)k|| (7.17)

for any Z11 of rank k at most. Hence, for any Z of the above form,

||Ã− Z||2 = ||A11 − Z11||2 +
∑

2<i+j≤4

||Aij ||2 ≥ ||A11 − (A11)k||2

+
∑

2<i+j≤4

||Aij ||2.
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Thus,

X̂ = [Xij ]i,j=1, (7.18)

where

X11 = B−1
1 (A11)kC−1

1 and Xij = O for all (i, j) 
= (1, 1), (7.19)

is a solution to the problem

min
˜X∈R(p,q,k)

||Ã− ΣBX̃ΣC || (7.20)

with the minimal Frobenius form. This solution is unique if and only if the
solution

Z11 = (A11)k

is the unique solution to the problem

min
Z11∈R(s,t,k)

||A11 − Z11||.

For k ≥ 1, this happens if and only if σk(A11) > σk+1(A11).
Let us now show that

X̂ = Σ†B(PΣB ,LÃPΣC ,R)kΣ†C . (7.21)

On the basis of (7.18)-(7.19), we write

X̂ =
[

B−1
1 (A11)kC−1

1 O
O O

]

=
[

B−1
1 O
O O

] [
(A11)k O
O O

] [
C−1

1 O
O O

]

= Σ†B

[
(A11)k O
O O

]
Σ†C . (7.22)

Here,
[

(A11)k O
O O

]
=
([

A11 O
O O

])

k

. (7.23)

To see this is true, we write the SVD of A11 as

A11 = UΣstV
∗.

Then [
A11 O
O O

]
=
[

U O
O O

] [
Σst O
O O

] [
V ∗ O
O O

]
.
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Therefore, we have
([

A11 O
O O

])

k

=
([

U O
O O

] [
Σst O
O O

] [
V ∗ O
O O

])

k

=
[

Uk O
O O

] [
Σst,k O
O O

] [
V ∗k O
O O

]

=
[

(A11)k O
O O

]
,

where Uk, Σst,k and Vk are truncated versions of U , Σst and V , respectively,
defined similarly to UAk, ΣAk and VAk in (7.13). Thus, (7.23) is true.

Next, it follows from (7.19) and (7.22) that

X̂ = Σ†B

[
A11 O
O O

]

k

Σ†C .

Let us write

X̂ = Σ†B

([
Iss O
O O

] [
A11 A12

A21 A22

] [
Itt O
O O

])

k

Σ†C

where Iss is the s × s identity matrix. The SVD for ΣB =
[

B1 O
O O

]
is

given by

ΣB = UΣB

[
B1 O
O O

]
V ∗ΣB

.

Here UΣB
= [e1, . . . , em] and VΣB

= [e1, . . . , ep] where ej = [0, . . . , 0, 1, 0,
. . . , 0]T with 1 on the jth position. Therefore,

PΣBL =
s∑

i=1

eie
T
i =

[
Iss O
O O

]

and by analogy,

PΣCR =
t∑

i=1

eie
T
i =

[
Itt O
O O

]
.

Thus,
[

A11 O
O O

]
= PΣBLÃPΣCR (7.24)

and (7.21) is true.
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Next,

X = VBX̂U∗C
= VBΣ†B(PΣB ,LÃPΣC ,R)kΣ†CU∗C
= B†UB(PΣBLU∗BAVCPΣCR)kV ∗CC†

= B†UB(U∗BQVC)kV ∗CC† (7.25)

where
Q = PB,LAPC,R.

Let the SVD of Q be Q = WΣQZ∗. Then we have

UB(U∗BQVC)kV ∗C = UB(U∗BWΣQZ∗VC)kV ∗C

= [u1 . . . um]

⎛
⎜⎝

⎡
⎢⎣

u∗1
...

u∗m

⎤
⎥⎦ [w1 . . . wm]ΣQ

⎡
⎢⎣

z∗1
...

z∗n

⎤
⎥⎦ [v1 . . . vn]

⎞
⎟⎠

k

⎡
⎢⎣

v∗1
...

v∗n

⎤
⎥⎦

= [u1 . . . um]

⎡
⎢⎣

u∗1w1 . . . u∗1wk

...
...

...
u∗mw1 . . . u∗mwk

⎤
⎥⎦ΣQk

⎡
⎢⎣

z∗1v1 . . . z∗1vn

...
...

...
z∗kv1 . . . z∗kvn

⎤
⎥⎦

⎡
⎢⎣

v∗1
...

v∗n

⎤
⎥⎦

where ΣQk is a truncated version of ΣQ constructed similar to ΣAk in
(7.13). Therefore,

UB(U∗BQVC)kV ∗C =

[
(

m∑

i=1

uiu
∗
i )wi . . . (

m∑

i=1

uiu
∗
i )wk

]
ΣQk

×

⎡
⎢⎣

z∗1
∑n

j=1 vjv
∗
j

...
z∗k
∑n

j=1 vjv
∗
j

⎤
⎥⎦ (7.26)

= [wi . . . wk]ΣQk

⎡
⎢⎣

z∗1
...

z∗k

⎤
⎥⎦

= (WΣQZ∗)k

= Qk. (7.27)

As a result, it follows from (7.25), (7.26) and (7.27) that a solution of (7.16)
with the minimal Frobenius norm is given by (7.15).

This solution is unique if and only if either k ≥ rank PB,LAPC,R or
1 ≤ k < rank PB,LAPC,R and σk(PB,LAPC,R) > σk+1(PB,LAPC,R).
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Remark 28. First observe that the classical approximation problem given
by (7.4) is equivalent to the case m = p, n = q,B = Imm, C = Inn. (Here,
Imm is the m×m identity matrix.) Clearly PImm,L = Imm, PInn,R = Inn.
In this case we obtain the classical solution B†(PB,LAPC,R)kC† = Ak.
Second, if p = m, q = n and B, C are non-singular, then rank (BXC) =
rank X. In this case, PB,L = Imm and PC,R = Inn, and the solution to
(7.16) is given by X = B−1AkC−1.

Next, the above Theorem 53 can be extended as follows.

It follows from (7.17)–(7.18) that a family of solutions to the minimiza-
tion problem (7.20) with no requirement of a minimal Frobenius norm is
given by

X̂ =
[

B−1
1 (A11)kC−1

1 X12

X21 X22

]
,

where X12, X21 and X22 should be chosen in such a way that X̂ ∈ R(p, q, k).
In Theorem 54 below, we show how to choose X12, X21 and X22 (see (7.30))
to satisfy the condition X̂ ∈ R(p, q, k).

Theorem 54. Let P ∈ C(p−s)×s, Q ∈ Ct×(q−t) be arbitrary matrices,
VB = [V1 V2] ∈ Cp×p, UC = [U1 U2] ∈ Cq×q where V1 ∈ Cp×s and U1 ∈
Cq×t, and

K = [B†B, I −B†B]
[
O K12

K21 K22

] [
CC†

I − CC†

]
, (7.28)

where

K12 = V1X12U
∗
2 , K21 = V2X21U

∗
1 , K22 = V2X22U

∗
2 , (7.29)

X12 = X11Q, X21 = PX11, X22 = PX11Q (7.30)

and 3

X11 = B−1
1 (A11)kC−1

1 . (7.31)

If the constraint of the minimal ‖X‖ is omitted in the problem (7.16)
then its solution is not unique. A family of solutions to the problem (7.16)
without this constraint is given by

X = B†(PB,LAPC,R)kC† + K (7.32)

with K defined by (7.28)–(7.31).

3We note that matrices K12, K21 and K22 depend on arbitrary matrices P and Q.
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Proof. To preserve rank X̂ ≤ k, we should choose X12, X21 and X22 in
a compatible form. In particular, the columns of X12 and the rows of
X21 must be linear combinations of the columns and the rows of X11,
respectively, while for X22, both the rows and columns must be linear
combinations of the rows and columns of X11. To this end, we need to show
that there exist matrices P ∈ C(p−s)×s and Q ∈ Ct×(q−t) such that, for
(i, j) 
= (1, 1), Xij can be written in the form (7.30). The existence follows
from the next observation. By Gaussian elimination, there are matrices
P ∈ C(p−s)×s and Q ∈ Ct×(q−t) such that

[
X11 X12

X21 X22

] [
I −Q
O I

]
=
[

X11 O
X21 X22 −X21Q

]

and [
I O
−P I

] [
X11 O
X21 X22 −X21Q

]
=
[

X11 O
O O

]

which is true if

X12−X11Q = O, X21−PX11 = O and X22−X21Q = O.(7.33)

The last condition in (7.33) follows from the observation that the matrices[
X11 X12

X21 X22

]
and

[
X11 O
O X22 −X21Q

]
have the same rank. Therefore,

to ensure rank X̂ ≤ k, we must choose X22 − X21Q = O.4 Thus, (7.30)
follows.

Next, let us write

X̂ =
[

B−1
1 (A11)kC−1

1 O
O O

]
+
[
O X12

X21 X22

]

= Σ†B(PΣB ,LÃPΣC ,R)kΣ†C +
[
O X12

X21 X22

]
.

This is true because of (7.21)–(7.24). Therefore,

X = VBX̂U∗C

= B†(PB,LAPC,R)kC† + [V1 V2]
[
O X12

X21 X22

] [
U∗1
U∗2

]

= B†(PB,LAPC,R)kC† + V2X21U
∗
1 + V1X12U

∗
2 + V2X22U

∗
2 .

4Otherwise, the columns of
O

X22 −X21Q
and the rows of [O X22 −X21Q] are

linear combinations of the columns
X11

O and the rows of [X11 O], respectively, and

then rank X̂ could be grater than k.



306 7. METHODS FOR OPTIMAL DATA COMPRESSION

We note that

V ∗1 V1 = Iss, V ∗2 V2 = Ip−s,p−s, U∗1 U1 = Itt, U∗2 U2 = Iq−t,q−t,

V1V
∗
1 + V2V

∗
2 = Ipp, U1U

∗
1 + U2U

∗
2 = Iqq

and
B†B = V1V

∗
1 and CC† = U1U

∗
1 .

Thus,

X = B†(PB,LAPC,R)kC† + (I − V1V
∗
1 )K21U1U

∗
1

+ V1V
∗
1 K12(I − U1U

∗
1 ) + (I − V1V

∗
1 )K22(I − U1U

∗
1 )

= B†(PB,LAPC,R)kC† + (I −B†B)K21CC†

+ +B†BK12(I − CC†) + (I −B†B)K22(I − CC†)
= B†(PB,LAPC,R)kC† + K. (7.34)

Thus, (7.32) is true.

Remark 29. Let us set p = m, q = n, A = M1 ∈ Cm×n, B = Imm, C =
M2 ∈ Cn×n and Ã = AVC = [Ã1 Ã2] where Ã1 ∈ Cm×t. Let Q ∈ Ct×(n−t)

be arbitrary. Then Theorem 52 follows as a special case of Theorem 54 in
that the solution to the problem

min
X∈R(m,n,k)

||A−XC|| (7.35)

is given by

X = (APC,R)kV ∗CC† + (Ã1)kC−1
1 QU∗2 (I − CC†). (7.36)

Indeed, a solution to the problem

min
˜X∈R(m,n,k)

||Ã− X̃ΣC || (7.37)

where X̃ = [X1 X2], is X̂ = [X̂1 X̂2] with X̂1 = (Ã1)kC−1
1 and X̂2 =

X̂1Q. Then X = X̂U∗C is the solution to the problem (7.35). We have
X̂ = [X̂1 O] + [O X̂2] where

X̂1 = [(Ã1)k O]
[

C−1
1 O
O O

]
= [(Ã1)k O]Σ†C = ([Ã1 O])kΣ†C

with [Ã1 O] = [Ã1 Ã2]
[

Itt O
O O

]
= ÃPΣCR. Therefore,

X = (ÃPΣCR)kΣ†CU∗C + [O, X̂1Q]U∗C .
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Here,

(ÃPΣCR)kΣ†CU∗C = (ÃPΣCR)kV ∗CC† and [O, X̂1Q]U∗C = X̂1QU∗2 .

Next, let K2 = X2U
∗
2 . Then

X2U
∗
2 = K2U2U

∗
2 = K2(I − U1U

∗
1 ) = K2(I − CC†).

Thus,
X = (ÃPΣCR)kΣ†CU∗C + X̂1QU∗2 (I − CC†)

and (7.36) follows.

Remark 30. The problems in the next Sections are reduced to problems
which are similar to the one considered in Theorem 54 with p = m, q = n,
A = ExyE

1/2†
yy ∈ Cm×n, B = Imm and C = E

1/2
yy ∈ Cn×n where we write

E
1/2†
yy = (E1/2

yy )†.
Let the SVD of E

1/2
yy be given by E

1/2
yy = UCΣU∗C and let

rank E1/2
yy = r.

We write UC = [U1 U2] where U1 ∈ Cn×r, and ExyE
1/2†
yy UC = [Ã1 Ã2]

where Ã1 ∈ Cm×r.
Let Q ∈ Cr×(n−r) be arbitrary. By Remark 29, the solution to this

particular case of the problem (7.16), without the constraint for the minimal
Frobenius norm, is given by

X = (ExyE1/2†
yy U1U

∗
1 )kE1/2†

yy + K,

where

K = (Ã1)kC−1
1 QU∗2 (I −E1/2

yy E1/2†
yy ), C1 = diag(σ1(C), . . . , σr(C)) ∈ Cr×r

and
U2 ∈ Cn×(n−r).

Here, (Ã1)k is defined similarly to (A11)k in the proof of Theorem 53, i.e.
via a truncated SVD for A1 defined by (7.12). Moreover, E

1/2†
yy U1U

∗
1 =

E
1/2†
yy and by Lemma 43 below, E

1/2
yy E

1/2†
yy = EyyE†yy. Therefore,

X = (ExyE1/2†
yy )kE1/2†

yy + K1, (7.38)

where

K1 = (Ã1)kC−1
1 QU∗2 (I − EyyE†yy). (7.39)
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For the case of the minimal Frobenius norm, the unique solution is given
by

X = (ExyE1/2†
yy )kE1/2†

yy

and the conditions for uniqueness follow directly from Theorem 53.

Corollary 13. If the constraints of rank X ≤ k and of the minimal ‖X‖
are omitted in the problem (7.16) then its solution is not unique and the
family of solutions is given by

X = B†AC† + K (7.40)

where K ∈ Cm×n is given by (7.28)–(7.29) with X11 as in (7.31), and X12,
X21 and X22 arbitrary. The minimum is given by

min
X
‖A−BXC‖2 = ‖A−BB†AC†C‖. (7.41)

Proof. If the constraint of rank X ≤ k is omitted then the inequality (7.17)
turns to the equality

min
Z11
‖A11 − Z11‖ = 0

with Z11 = A11 and (A11)k = A11. Then it follows from (7.32) that the
unconstrained minimum min

X
‖A−BXC‖2 is achieved if

X = B†PB,LAPC,RC† + K. (7.42)

Because the constraint that rank X ≤ k is omitted, matrices X12, X21 and
X22 in the representation of the matrix K need not be defined by (7.30)
and indeed are arbitrary.

Next, we have

B†PB,L = B† and PC,RC† = C†

therefore, (7.42) implies (7.40).
The expression (7.41) follows directly from (7.40).

Corollary 14. The following is true:

B†BKCC† = O. (7.43)

Proof. The proof follows immediately from (7.28).
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Remark 31.

if † †
X

2 = 0 because A−BXC = O for X

given by (7.40). It follows from (7.40) and (7.43) that X can be written as
X = B†AC†+K−B†BKCC† and that in this particular case, X formally
coincides with the solution [6] to the equation A−BXC = O. The equation
A−BXC = O is consistent if and only if BB†AC†C = A.

7.4 A Generic Principal Component Analysis and
Karhunen-Loève Transform

7.4.1 The generic PCA–KLT

Scharf [134] presented an extension of PCA–KLT for the case of minimizing
J (P ) given by

J (P ) = E[‖x− P(y)‖2] (7.44)

subject to

rank(P) ≤ r ≤ m, (7.45)

where x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rm) and the covariance matrix E[yyT ]
is nonsingular. The difference from the standard PCA-KLT is that P
transforms an arbitrary y, not x.

Yamashita and Ogawa [183] proposed and justified a version of PCA–
KLT for the case where E[yyT ] is singular and y = x + w with w an
additive noise.

Hua and Liu [63] considered PCA–KLT with a formal replacement of
the inverse of matrix E[yyT ] by its pseudo-inverse.

The general form of PCA–KLT in terms of the pseudo-inverse is given
in Theorem 55 below.

An attractive feature of the methods [63], [183] is that invertibility of the
covariance matrix E[yyT ] is not assumed. Some other known extensions of
PCA–KLT work under the condition that E[yyT ] is nonsingular, and this
restriction can impose limitations on the applicability of the method. In
many practical situations, the matrix E[yyT ] is singular. See, for example,
[158, 166] and [170] in this regard.

Here, we give a rigorous generalization of the methods [63, 134, 183].

For x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn), we wish to find a linear operator
F0 : L2(Ω,Rn)→ L2(Ω,Rm) such that

J(F 0) = min
F

J(F ) (7.46)

BB AC C = A then min ‖A−BXC‖

Corollary 14 implies an interesting link between (7.40) and 
the solution to the equation A−BXC = O. The equality (7.41) implies that
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subject to

rank F ≤ k ≤ min{m,n}. (7.47)

Here, F ∈ Rm×n,

J(F ) = E[‖x−F(y)‖2], (7.48)

and we write F instead of P in (7.44) to distinguish between the model
which follows and the results in [63, 134, 183] associated with the problem
(7.44)–(7.45).

Solution to the problem (7.46)–(7.47)

Now, we are in the position to give a solution to the problem (7.46)–(7.47).
Let us denote

A = Exy(E1/2
yy )† and C = E1/2

yy .

Let
rank A = l

and let the SVD of A be given by

A = UAΣAV T
A (7.49)

where

UA = [g1, . . . , gn] ∈ Rm×m and VA = [q1, . . . , qn] ∈ Rn×n

are orthogonal matrices and

ΣA = diag(σ1(A), . . . , σmin(m,n)(A)) ∈ Rm×n

is a generalized diagonal matrix with σ1(A) ≥ · · · ≥ σl(A) > 0 and
σl+1(A) = · · · = σmin(m,n)(A) = 0 on the main diagonal. Put

UAk = [g1, . . . , gk], VAk = [q1, . . . , qk] and ΣAk = diag(σ1(A), . . . , σk(A)).

We write Ak for the truncated SVD defined as

Ak = UAkΣAkV T
Ak (7.50)

and denote
Ak = (Exy(E1/2

yy )†)k.

Let
rank C = r.
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The SVD of matrix C,
C = UCΣCUT

C ,

is defined in a manner similar to the above.
As before, we also denote

Exy = E[xyT ]− E[x]E[yT ].

Lemma 42. The following is true:

Ak(E1/2
yy )†E1/2

yy = Ak. (7.51)

Proof. As an extension of the technique presented in the proving Lemmata
23 and 24 in Section 5.4.2, it can be shown that for any matrices Q1, Q2 ∈
Rm×n,

N (Q1) ⊆ N (Q2) ⇒ Q2(I −Q†1Q1) = O, (7.52)

where N (Qi) is the null space of Qi for i = 1, 2. In regard to the equation
(7.51),

N ([E1/2
yy ]†) ⊆ N (Exy[E1/2

yy ]†). (7.53)

The definition of Ak implies that

N (Exy[E1/2
yy ]†) ⊆ N (Ak)

and
N ([E1/2

yy ]†) ⊆ N (Ak).

On the basis of (7.52), the latter implies

Ak[I − (E1/2
yy )†E1/2

yy ] = O,

i.e. (7.51) is true.

Similarly to Remark 30, we write

C1 = diag(σ1(C), . . . , σr(C)) ∈ Rr×r,

UC = [U1 U2] where U1 ∈ Rn×r,

and
ExyE1/2†

yy UC = [Ã1 Ã2]

where Ã1 = ExyE
1/2†
yy U1 ∈ Rm×r and Ã2 = ExyE

1/2†
yy U2 ∈ Rm×(n−r) .
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Lemma 43. For any v ∈ L2(Ω,Rn),

(E1/2
vv )†E1/2

vv = E1/2
vv (E1/2

vv )†, (7.54)

E1/2
vv (E1/2

vv )† = EvvE†vv and E†vvEvv = EvvE†vv. (7.55)

Proof. Let the SVD for Evv be given by

Evv = V ΣV T ,

where V is the orthogonal matrix and Σ = diag(α1, . . . , αq, 0, . . . , 0) with
α1 ≥ . . . ≥ αq > 0 and q the rank of Evv. Then

E†vv = V Σ †V T , E1/2
vv = V Σ 1/2V T and (E1/2

vv )† = V (Σ 1/2)†V T ,

where

Σ † = diag(α−1
1 , . . . , α−1

q , 0, . . . , 0), Σ1/2 = diag(α1/2
1 , . . . , α1/2

q , 0, . . . , 0)

and
(Σ1/2)† = diag(α−1/2

1 , . . . , α−1/2
q , 0, . . . , 0).

Thus, (7.54) follows. The proof of the relationships (7.55) is similar.

Theorem 55. The solution to the problem (7.46)–(7.47) is not necessarily
unique and is given in general by a family of operators {F0} determined by
the family {F 0} of matrices

F 0 = (ExyE1/2†
yy )kE1/2†

yy + (Ã1)kC−1
1 QUT

2 (I − EyyE†yy), (7.56)

where Q ∈ Rr×(n−r) is an arbitrary matrix.
The error associated with the operator F0 is given by

E[‖x−F0(y)‖2] = ‖E1/2
xx ‖2 + ‖Ak − Exy(E1/2

yy )†‖2

−‖Exy(E1/2
yy )†‖2

= ‖E1/2
xx ‖2 −

k∑

j=1

σ2
j (A). (7.57)
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Proof. We have

E[‖x−F (y)‖2] = tr{Exx − ExyFT − FEyx + FEyyFT }
= ‖E1/2

xx ‖2 − ‖Exy(E1/2
yy )†‖2

+‖(F − ExyE†yy)E1/2
yy ‖2

= ‖E1/2
xx ‖2 − ‖Exy(E1/2

yy )†‖2

+‖Exy(E1/2
yy )† − FE1/2

yy ‖2 (7.58)

because
E†yyE1/2

yy = (E1/2
yy )†

and

ExyE†yyEyy = Exy (7.59)

by Lemma 24 of Section 5.4.2.
In (7.58), the only term that depends on F is ‖Exy(E1/2

yy )† − FE
1/2
yy ‖2.

By Theorem 54 and Remark 30, its minimum is attained if F = F 0. There-
fore, (7.56) follows.

The error representation (7.57) is true because of the following obser-
vation. On the basis of Lemma 42, we have

‖Exy(E1/2
yy )† − F 0E1/2

yy ‖2

= ‖Exy(E1/2
yy )† −Ak(E1/2

yy )†E1/2
yy ‖2

= ‖Exy(E1/2
yy )† −Ak‖2

=
l∑

j=r+1

σ2
j (A).

Since

‖Exy(E1/2
yy )†‖2 =

l∑

j=1

σ2
j (A),

then (7.58) implies (7.57).

We note that the crucial issues in proving Theorem 55 are Theorem 54
and the equation (7.59).

Definition 38. The set {F0} of operators F0 is called the family of generic
Karhunen-Loève transforms. We also say that F0 provides the generic
Principal Component Analysis.
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The efficiency of PCA–KLT and its generalization (7.56) is character-
ized by the compression ratio and the accuracy of the estimate of vector
x.

Compression of vector x (in fact, filtering and compression of data y)
is provided by the matrix ΣAkV T

Ak(E1/2
yy )† or by the matrix V T

Ak(E1/2
yy )†.

Reconstruction of the compressed vector is performed by the matrix UAk

or by the matrix UAkΣAk. Such a transform always exists since F0 is
constructed from pseudo-inverse matrices.

We would like to point out that the operator F0 is not unique because
of the arbitrary matrix Q in (7.56).

The differences between the provided solution in Theorem 55 and those
in [63, 134, 183] are that the transform given by (7.56) is rigorously jus-
tified, including an analytical representation of non-uniqueness of such a
transform.

Simulations which illustrate numerical properties of the transform F0

are given in Sections 7.5.9 and 7.6.9.

7.4.2 The minimum norm generic PCA–KLT

The generic Principal Component Analysis (or the generic Karhunen-Loève
transform) presented by (7.56) depends on an arbitrary matrix Q and there-
fore, it is not unique. This implies a natural question: What what kind of
condition should be imposed on the statement of the problem and the solu-
tion (7.56) to make it unique?

Below, we show that uniqueness is implied if we seek the solution F 0

with minimum norm.

Corollary 15. The minimum Frobenius norm solution to the problem
(7.46)–(7.47) is unique and it is given by the operator F̃0

determined by
the matrix F̃ 0 such that

F̃ 0 = (ExyE1/2†
yy )kE1/2†

yy . (7.60)

The error associated with the operator F̃0
is given by (7.57).

Proof. Let R(m,n, k) ⊆ Rm×n be the variety of all m×n matrices of rank
at most k. By Theorem 53, the minimum Frobenius norm solution to the
problem

min
F∈R(m,n,k)

‖Exy(E1/2
yy )† − FE1/2

yy ‖2

is given by (7.60). This follows in a way which is similar to that used in
Remark 30. In (7.58), the term ‖Exy(E1/2

yy )† − FE
1/2
yy ‖2 is the only one



7.5. HYBRID TRANSFORM 315

which depends on F . A representation of the error associated with the
operator F̃0

follows directly from the proof of Theorem 55. Therefore,
Corollary 15 is true.

Remark 32. It is interesting that E‖F0(y)‖2 does not depend on the
arbitrary matrix Q in (7.56). Indeed, let us denote (see (7.56))

L = AkE1/2†
yy , M = (Ã1)kC−1

1 QUT
2 and N = I−EyyE†yy = I−E1/2

yy E†1/2
yy .

Then we have

E‖F0(y)‖2 = tr E{[L(y) +MN (y)][L(y) +ML(y)]T }
= tr [LEyyLT + LEyyNT MT + MNEyyLT

+MNEyyNT MT ]
= tr [LEyyLT ]

= ‖LE1/2
yy ‖2

= ‖Ak(E1/2
yy )†E1/2

yy ‖2
= ‖Ak‖2

because

EyyNT = Eyy[I − E†yyEyy]
= O

and
Ak(E1/2

yy )†E1/2
yy = Ak

by Lemma 42.

7.5 Optimal Hybrid Transform Based on
Hadamard-quadratic Approximation

7.5.1 Motivations

For a given compression ratio, the Karhunen-Loève transform (PCA–KLT)
considered in Sections 7.2 and 7.4 minimizes the reconstruction error over
the class of all linear reduced-rank transforms. Nevertheless, it may hap-
pen that the accuracy and compression ratio associated with PCA–KLT
are still not satisfactory. In such a case, an improvement in the accuracy
and compression ratio can be achieved by a transform with a more general
structure than that of PCA–KLT. Special non-linear transforms have been
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studied, in particular, in [23, 62, 159, 165, 168, 175, 182] using transform
structures developed from the generalized Volterra polynomials. Neverthe-
less, the transforms [23, 62, 159, 165, 168, 175, 182] imply a substantial
computational burden associated with the large number N of terms re-
quired by the underlying Volterra polynomial structure.

Here, we present the approach to constructing transforms of random
vectors which is motivated by the hybrid method considered in Section
5.7 of Chapter 4. Our objective is to justify the transform which has
advantages over methods presented in Sections 7.2 and 7.4 and in references
[23, 62, 159, 165, 168, 175, 182].

A device for the approach is a s follows. The vector is first pre-estimated
from the special iterative procedure such that each iterative loop is aimed
at a solution of the unconstrained best approximation problem with the ap-
proximant given by the Hadamard-quadratic operator. The final estimate
follows from a solution of the constrained best approximation problem with
the Hadamard-quadratic approximant.

We show that the combination of these techniques allows us to build a
more efficient and flexible method compared with PCA–KLT and its gen-
eralization given in Section 7.4. The estimation accuracy associated with
the proposed method can be adjusted by a variation of the three degrees of
freedom which are the transform degree, the number of iterations and the
rank of the special covariance matrix. In connection with this, see Remark
36 in Section 7.5.8. In contrast, the techniques based on the development
of PCA–KLT idea [63, 68, 134, 183] have the rank of covariance matrix as
the only degree of freedom.

We establish a quite unrestrictive condition (see inequality (7.134) in

estimation error than the error associated with PCA–KLT’s methods of
Sections 7.2–7.4 and those presented in [63, 68, 134, 183].

7.5.2 Problem formulation and method description

Let x ∈ L2(Ω,Rm) be an unknown random vector and y ∈ L2(Ω,Rn)
observable random data such that x = (x(1), . . . , x(m))T and y = (y(1), . . . ,

y(n))T where x(k), y(i) ∈ L2(Ω,R) for k = 1, . . . , m and i = 1, . . . , n.
As before, for every ω ∈ Ω, we write

x = x(ω) and y = y(ω),

where x = (x(1), . . . , x(m))T , y = (y(1), . . . , y(n))T , x(k) = x(k)(ω) and
y(i) = y(i)(ω) for k = 1, . . . , m and i = 1, . . . , n.

The problem is to find a nonlinear transform T : L2(Ω,Rn)→ L2(Ω,Rm)
of x from data y so that T provides both

Section 7.5.7 below), under which our transform provides a significantly smaller
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(i) a better associated error of the estimate T (y), for a given compres-
sion ratio, and

(ii) a better compression ratio for the fixed accuracy of the estimate
T (y), compared with the best known fixed rank linear estimator produced
by the generic PCA–KLT of Section 7.4 and that in [63, 68, 134, 183].

Hereinafter we use the Hadamard product for vectors to define y2 as
y2=(y2

(1), . . . , y2
(n))

T .
The proposed method of solution consists of the following device.
Let us write Tj = [Uj Vj Wj ] ∈ Rm×(2ν+1), Uj ∈ Rm, Vj ,Wj ∈ Rm×ν ,

T̃j = [Ũj Ṽj W̃j ] ∈ Rm×(2ν+1), Ũj ∈ Rm, Ṽj , W̃j ∈ Rm×ν , vj =

⎡
⎣

1
xj

x2
j

⎤
⎦

and ν =
{

n if j = 0
m if j = 1, 2, . . . p.

For j = 0, 1, . . . , p, define an operator T̃ j : L2(Ω,R2ν+1) → L2(Ω,Rm)
by

[T̃ j(vj)](ω) = T̃j [vj(ω)]

and denote
J(Tj) = E[‖x− T j(vj)‖2].

Let x0 = y and let x1, x2, . . . , xp ∈ Rm be determined as follows. For
j = 0, we write

x1 = T̃0(v0) = [Ũ0 Ṽ0 W̃0]

⎡
⎣

1
y
y2

⎤
⎦

and find T̃0 from a solution of the unconstrained problem

J(T̃0) = min
T0

J(T0). (7.61)

For j = p− 1, we write

xp = T̃p−1(vp−1) = [Ũp−1 Ṽp−1 W̃p−1]

⎡
⎣

1
xp−1

x2
p−1

⎤
⎦

and find T̃p−1 from a solution of the unconstrained problem

J(T̃p−1) = min
Tp−1

J(Tp−1). (7.62)

For j = p, we write

xp+1 = T 0
pr(vp) = [U0

p V 0
p W 0

p ]

⎡
⎣

1
xp

x2
p

⎤
⎦
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and find T 0
pr from a solution of the constrained problem

J(T 0
pr) = min

Tp

J(Tp) (7.63)

subject to

rank Tp ≤ r (7.64)

with r < ν.

The desired transform T is defined by

[T (y)](ω) = T 0
pr[vp(ω)]. (7.65)

In other words, the desired nonlinear transform T of x, from data y, is
reduced to the linear constrained estimator T 0

pr, with respect to vp, formed
from the pre-estimate xp of x. The pre-estimate xp follows from a solution
of the p unconstrained best approximation problems (7.61)–(7.62). We call
this procedure the method of best hybrid approximations.

The solutions to problems (7.61)–(7.62) aim to improve the known so-
lution of the customary linear least square problem due to terms Ũj , W̃j

and vj . The iterative procedure (7.61)–(7.62) is to obtain the pre-estimate
xj+1 with the accuracy better than the accuracy of pre-estimates from the
preceding iterative loops. The terms U0

p , W 0
p and vp in (7.63), (7.64) are

used with the purpose of improvement of the linear constrained problem
solution given in Sections 7.2 and 7.4.

Note that equation (7.65) can equivalently be rewritten as

T (y) = U0
p + V 0

p xp + W 0
p x2

p, (7.66)

i.e. T (y) can be interpreted as the second degree estimate (with respect to
xp) of x.

In the next sections, we substantiate that the combination of these new
techniques allows us to obtain the nonlinear transform with a considerably
better performance in comparison with the generic PCA–KLT of Section
7.4. In particular, it will be shown that the error associated with the
proposed transform can be achieved less than the error associated with the
transforms in [63, 68, 134, 182] and Section 7.4 by exploiting the second
degree terms in (7.61)–(7.62) and by increasing the number of iterations in
(7.61)–(7.62).

It will also be shown that the proposed method does not require invert-
ibility of any matrix used for the solution of problems (7.61)–(7.64).
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7.5.3 Preliminary results

Let g and h be random vectors with realizations in Rm and Rn respectively,

and let q = h2 and s =

⎡
⎣

1
h
q

⎤
⎦ . Similarly to the preceding Sections, we

denote
Egh = E[ghT ] and Egh = Egh − E[g]E[hT ]

and we write N (Egh) for the null space of matrix Egh.
For our purposes, we represent Lemmata 24 and 25 from Section 5.4.2

in the form of the following Lemmata 44 and 45, respectively.

Lemma 44. The following equations hold:

EqhE†hhEhh = Eqh and EgqE†qqEqq = Egq. (7.67)

Lemma 45. Let Dqh = Eqq − EqhE†hhEhq. Then

EqqD†qhDqh = Eqq, EgqD†qhDqh = Egq and EhqD†qhDqh = Ehq. (7.68)

The solution of the problems (7.61)–(7.64) will be given in terms of the
(2ν+1)×(2ν+1) matrix E†ss. In the next Lemma, we show that this matrix
can be calculated via smaller n × n matrices. As a result, an associated
computational load is facilitated.

Lemma 46. Let

P11 = 1− P12E[h]− P13E[q], P12 = PT
21, P13 = −E[hT ]P23 − E[qT ]P33,

P21 = −P22E[h]− P23E[q], P22 = E†hh − P23EqhE†hh, P23 = PT
32,

P31 = −P33E[q]− P32E[h], P32 = −P33EqhE†hh, P33 = D.

Then

E†ss =

⎡
⎣

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎤
⎦ . (7.69)

Proof. Let

t =
[

1
h

]
, G11 = 1−G12E[h], G12 = −E[hT ]G22, (7.70)

G21 = GT
12, G22 = E†hh and G =

[
G11 G12

G21 G22

]
. (7.71)
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Then

E†tt = G. (7.72)

The validity of equation (7.72) is shown by the following observations. We
have

EttGEtt =
[

Q11 Q12

Q21 Q22

]

where

Q11 = G11 + E[hT ]G21 + G12E[h] + E[hT ]G22E[h]
= 1,

Q12 = G11E[hT ] + E[hT ]G21E[hT ] + G12Ehh + E[hT ]G22Ehh

= E[hT ],
Q21 = E[h]G11 + EhhG21 + E[h]G12E[h] + EhhG22E[h]

= E[h],
Q22 = E[h]G11E[hT ] + EhhG21E[hT ] + E[h]G12Ehh + EhhG22Ehh,

= Ehh.

Hence EttGEtt = Ett, i.e. the first Moore-Penrose condition is satisfied.
The remaining Moore-Penrose conditions for E†tt, defined by (7.72), are
easily verified as well, and therefore (7.72) is valid.

Next, let

R11 = E†tt −R12EqtE
†
tt, (7.73)

R12 = RT
21, (7.74)

R21 = −R22EqtE
†
tt (7.75)

R22 = D†qt. (7.76)

Similarly to the above and on the basis of Lemmata 44 and 45, it can be
shown that

E†ss =
[

R11 R12

R21 R22

]
, (7.77)

where

Dqt = Eqq − EqtE
†
ttEtq

= Eqq − EqhE†hhEhq

= Dqh.

Then (7.69) follows from (7.77) by virtue of (7.70) - (7.76).



7.5. HYBRID TRANSFORM 321

7.5.4 Solution of the problems (7.61)–(7.62)

In this section, we give solutions to the minimization problems posed above
and provide the error analysis associated with the solutions.

To make an uniform notation for problems (7.61)–(7.62) we write

J(T̃j) = min
Tj

J(Tj) (7.78)

with j = 0, 1, . . . , p.
For any matrix M we write M(:, n1 : n2) to denote a matrix consisting

of n2−n1+1 successive columns of M beginning from the column numbered
by n1.

Let
Kj = Kj [I − Evjvj

E†vjvj
],

where Kj ∈ Rm×(2ν+1) is an arbitrary matrix and I is the identity matrix,
and let

KUj = Kj(:, 1 : 1), KV j = Kj(:, 2 : ν+1) and KWj = Kj(:, ν+2 : 2ν+1).

We also denote zj = x2
j ,

Ūj = E[x]− V̄jE[xj ]− W̄jE[zj ], V̄j = (Exxj
− W̄jEzjxj

)E†xjxj
(7.79)

and

W̄j = (Exzj
− Exxj

E†xjxj
Exjzj

)D†zjxj
. (7.80)

The following theorem provides the solution to problem (7.78) both in
terms of pseudo-inverse matrix E†vjvj

∈ R(2ν+1)×(2ν+1) and in terms of
smaller pseudo-inverse matrices E†xjxj

∈ Rν×ν , D†zjxj
∈ Rν×ν . The latter

is used for a computation of the alternative representation of the estimate
xj+1 = T̃jvj given by equation (7.88) below.

Theorem 56. The unconstrained minimum (7.78) is achieved for

T̃j = [Ũj Ṽj W̃j ] = Exvj
E†vjvj

+Kj (7.81)

where

Ũj = Ūj +KUj , Ṽj = V̄j +KV j and W̃j = W̄j +KWj . (7.82)

Proof. It follows from Lemma 44 that

Exvj E
†
vjvj

Evjvj = Exvj (7.83)
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and then

J(Tj) = Λj + tr{(Tj − Exvj
E†vjvj

)Evjvj
(Tj − Exvj

E†vjvj
)T }

= Λj + ‖(Tj − Exvj
E†vjvj

)E1/2
vjvj
‖2,

where

Λj = tr{Exx − Exvj
E†vjvj

Evjx}. (7.84)

The minimum of this functional is achieved if

TjE
1/2
vjvj
− Exvj

E†vjvj
E1/2

vjvj
= O

which is equivalent to the equation (see Section 5.4.2)

TjEvjvj
− Exvj

= O. (7.85)

The necessary and sufficient condition [6] for the equation (7.85) to have a
solution is given by (7.83) which is true by Lemma 44. Therefore, it follows
from [6], pp 39-40 that the solution is given by Tj = T̃j .

Next, on the strength of Lemma 46, it is easy to see that

Exvj E
†
vjvj

= [Ūj V̄j W̄j ]. (7.86)

Then (7.82) follows from (7.81) and (7.86).
The theorem is proven.

Corollary 16. The best estimate of x in the sense (7.78) is given by

xj+1 = T̃ j(vj) (7.87)

where T̃ j is defined by (7.81).

Corollary 17. The equivalent representation of the estimate (7.87) is

xj+1 = Ũj + Ṽj(xj) + W̃j(zj) (7.88)

with Ũj , Ṽj, W̃j defined by (7.82) and zj = x2
j . The error associated with

estimate (7.87), (7.88) is

E[‖x− xj‖2] = Λj−1 = tr{Exx − Exvj−1E
†
vj−1vj−1

Evj−1x} (7.89)

Proof. Equation (7.89) follows directly from (7.84), (7.84) and (7.85).

The representation of estimate xj+1 in form (7.88) can be computation-
ally more effective compared with the form given in (7.87).

Note, that it is natural to choose KUj = O, KV j = O and KWj = O in
equations (7.82) and (7.88), where O is the zero matrix/vector.
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Definition 39. The estimate given by equations (7.81), (7.87), (7.88) is
called the (j + 1)−th unconstrained estimate of x.

Next, to find matrix T 0
pr giving the minimum (7.63) subject to constraint

(7.64) we use the notation as follows. Let

Exvp(E1/2
vpvp

)† = GΣQT (7.90)

be the singular value decomposition (SVD) of Exvp
(E1/2

vpvp)† where

G = [g1, . . . , g2ν+1] ∈ Rm×(2ν+1) and Q = [q1, . . . , q2ν+1] ∈ R(2ν+1)×(2ν+1)

are orthogonal matrices and

Σ = diag(σ1, . . . , σ2ν+1) ∈ R(2ν+1)×(2ν+1)

is a diagonal matrix with σ1 ≥ · · · ≥ σl > 0 and σl+1 = · · · = σ2ν+1 = 0.
Put Gr = [g1, . . . , gr], Qr = [q1, . . . , qr] and Σr = diag(σ1, . . . , σr) and
define

Pr = Pr(x,vp) = GrΣrQ
T
r . (7.91)

We also denote
E1/2

vpvp
= UCΣCUT

C

for the SVD of E
1/2
vpvp , and write

UC = [U1U2], C1 = diag(σ1(C), . . . , σt(C)) and ExvpE1/2
vpvp

UC = [Ã1Ã2],

where
ΣC = diag(σ1(C), . . . , σ2ν+1(C))

with σ1(C) ≥ · · · ≥ σt(C) > 0 and σt+1(C) = · · · = σ2ν+1(C) = 0, and

U1 ∈ R(2ν+1)×t and Ã1 ∈ Rm×t.

The desired transform T , given by equation (7.65), is defined by the
following theorem.

Theorem 57. The constrained minimum (7.63)–(7.64) is achieved for

T 0
pr = Pr(E1/2

vpvp
)† + (Ã1)rC

−1
1 QpU

T
2 [I − E1/2

vpvp
(E1/2

vpvp
)†] (7.92)

where Qp ∈ Rt×(2ν+1−t) is an arbitrary matrix, and this minimum is

J(T 0
pr) = Λp + ‖Pr − Exvp(E†vpvp

)1/2‖2. (7.93)
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Proof. Similarly to (7.84) we have

J(T̃p) = Λp + ‖T̃pE
1/2
vpvp
− Exvp

E†vpvp
E1/2

vpvp
‖2. (7.94)

By Theorem 54, and Remarks 29 and 30, the functional (7.94) achieves the
minimum subject to constraint (7.64) if T̃p = T 0

pr.
Equation (7.93) follows directly from the above.
The theorem is proven.

The methods of matrices Exvj
, Evjvj

estimation and associated error
analysis can be found in Section 5.3.

Remark 33. The (j + 1)th unconstrained estimate xj+1 of x with j =
0, 1, . . . , p − 1, and the constrained estimate T 0

pr(vp) of x, are not unique
because Kj and Mp are arbitrary matrices.

7.5.5 Error analysis associated with transform T
The optimal transform T results in the estimate

xp,r = T (y)
= T 0

pr(vp). (7.95)

Theorem 58. Let

Δ(xj) = ‖(Exzj − ExxjE
†
xjxj

Exjzj )(D†zjxj
)

1
2 ‖2. (7.96)

The error associated with the optimal transform T is

E[‖x− T (y)‖2] = tr{Exx}+
l∑

i=r+1

σ2
i − ‖Exy(E†yy)1/2‖2

−
p−1∑

j=0

Δ(xj). (7.97)

Proof. Let us first show that the error associated with the p−th uncon-
strained estimate xp (7.87) is

E[‖x− xp‖2] = tr{Exx} − ‖Exy(E†yy)1/2‖2 −
p−1∑

j=0

Δ(xj). (7.98)

Indeed it follows from (7.84) and ( 7.84) that

E[‖x− xp‖2] = tr{Exx − Exvp−1E
†
vp−1vp−1

Evp−1x}, (7.99)
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where on the strength of Lemma 3,

tr{Exvp−1E
†
vp−1vp−1

Evp−1x} = tr{E[x]E[xT ]}
+‖Exxp−1(E†xp−1xp−1

)1/2‖2 + Δ(xp−1). (7.100)

Therefore

E[‖x− xp‖2] = tr{Exx} − ‖Exxp−1(E†xp−1xp−1
)1/2‖2 −Δ(xp−1). (7.101)

Hence, for p = 1 equation (7.98) follows directly from (7.101).
Let us assume that (7.98) is true for p = k. To prove that (7.98) is now

true for p = k + 1, we need some preliminaries.
Let us denote

τ = x− E[x], τi = xi − E[xi], ϑi = zi − E[zi],

and consider the functional

Jτ (Ui, Vi,Wi) = E[‖τ − (Ui + Viτi + Wiϑi)‖2]. (7.102)

It is easy to see that

min
Ui,Vi,Wi

Jτ (Ui, Vi,Wi) = min
Vi,Wi

Jτ (Vi,Wi) (7.103)

where
Jτ (Vi,Wi) = Jτ (Om, Vi,Wi).

Note that the functional Jτ (Vi,Wi) can be written as

Jτ (Vi,Wi) = Jτ (Zi)
= E[‖τ − Ziθi‖2] (7.104)

where Zi = [Vi Wi] and θi =
[

τi

ϑi

]
.

Next, let

Dϑiτi
= Eϑiϑi

− Eϑiτi
E†τiτi

Eτiϑi
. (7.105)

Then matrices

V̌i = (Eττi
− W̌iEϑiτi

)E†τiτi
+KV i, (7.106)

W̌i = (Eτϑi
− EττiE

†
τiτi

Eτiϑi
)D†

ϑiτi
+KWi (7.107)

and

Ži = EτθiE
†
θiθi

+ Mi[I − E
1/2
θiθi

(E1/2
θiθi

)†] (7.108)
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where Mi ∈ Rm×2ν is arbitrary, are such that

Jτ (V̌i, W̌i) = min
Vi,Wi

Jτ (Vi,Wi)

and
Jτ (Ži) = min

Zi

Jτ (Zi).

Then for τi+1 defined by

τi+1 = V̌iτi + W̌iϑi = Žiθi, (7.109)

we have

E[‖τ − τi+1‖2] = tr{Eττ − Eτθi
E†θiθi

Eθiτ }
= tr{Eττ − EττiE

†
τiτi

Eτiτ } − Δ̌(τi), (7.110)

where
Δ̌(τi) = ‖(Eτϑi

− EττiE
†
τiτi

Eτiϑi
)(D†

ϑiτi
)1/2‖2.

Now, on the strength of (7.98) with p = k and of (7.110) with i = k − 1,

E[‖x− xk‖2] = E[‖τ − τk‖2]

= tr{Eττ − Eτθk−1E
†
θk−1θk−1

Eθk−1τ

= tr{Eττ } − ‖Eττ 0(E†τ 0τ 0
)1/2‖2 −

k−1∑

j=0

Δ̌(τ j), (7.111)

since

Exx = Eττ , Ezixi
= Eϑiτi

, Exzi
= Eτϑi

and Exixi
= Eτiτi . (7.112)

Equations (7.108) and (7.109) imply that

Eττk
= E[τθT

k−1(Žk−1)T ]

= Eτθk−1E
†
θk−1θk−1

Eθk−1τ

+Eτθk−1{I − (E†θk−1θk−1
)1/2E

1/2
θk−1θk−1

}MT
i

= Eτθk−1E
†
θk−1θk−1

Eθk−1τ .

Analogously,

Eτkτk
= E[Žk−1θk−1θ

T
k−1(Žk−1)T ]

= Eτθk−1E
†
θk−1θk−1

Eθk−1τ .

As a result, we have

Eττk
E†τkτk

Eτkτ = Eτθk−1E
†
θk−1θk−1

Eθk−1τ . (7.113)
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Thus, on the basis of (7.110) and (7.113),

E[‖τ − τk+1‖2] = tr{Eττ − Eττ k
E†τkτk

Eτkτ } − Δ̌(τk)

= tr{Eττ − Eτθk−1E
†
θk−1θk−1

Eθk−1τ } − Δ̌(τk) (7.114)

and therefore (7.111) implies

E[‖τ − τk+1‖2] = E[‖x− xk+1‖2]

= tr{Eττ } − ‖Eττ 0(E†τ 0τ 0
)1/2‖2

−
k−1∑

j=0

Δ̌(τ j)− Δ̌(τk). (7.115)

Then (7.98) with p = k + 1 follows from (7.115) on the basis of (7.112). By
virtue of that, the error estimate (7.98) is proven.

Next, it follows from (7.89), (7.93) that

E[‖x− xp,r‖2] = J(T 0
pr)

= E[‖x− xp‖2]

+‖Pr − Exvp−1(E†vp−1vp−1
)1/2‖2, (7.116)

where [50]

‖Pr − Exvp−1(E†vp−1vp−1
)1/2‖2 =

l∑

i=r+1

σ2
i . (7.117)

Hence, (7.98), (7.116) and (7.117) prove (7.97).

Remark 34. It follows from equation (7.97) that the error associated with
the proposed transform T is decreasing with an increase in the number of
iterations p.

Remark 35. The second degree term Wx2
j in (7.87), (7.88) is an important

ingredient of the transform T . Firstly, the term

Δ(x0) = ‖(Exz0 − Exx0E
†
x0x0

Ex0z0)(D†z0x0
)

1
2 ‖2

which decreases the value E[‖x − T (y)‖2] in (7.97), is a result of imple-
menting the term Wx2

0 in (7.87), (7.88). Secondly, if Wx2
j = O then the

procedure (7.87), (7.95) gives no decrease in the error E[‖x − T (y)‖2] for
j = 1, 2, . . . since in this case, Δ(xj) = 0 for j = 1, 2, . . . .



328 7. METHODS FOR OPTIMAL DATA COMPRESSION

7.5.6 Particular cases

The proposed approach generalizes PCA–KLT and the known methods
based on modifications of PCA–KLT idea as follows.

If in (7.92),

y = x, p = 0, U0
p = O, W 0

p = O, and Mp = O

then T 0
pr coincides with PCA–KLT.

The best fixed rank linear transform [134], which generalizes PCA–KLT,
follows from (7.92) as a particular case if

p = 0, U0
p = O, W 0

p = O

and if the matrix E[yyT ] is invertible.
The transform considered in Section 7.4 where invertibility of E[yyT ]

is not assumed, also follows from (7.92) if p = 0, U0
p = O and W 0

p = O.
The best unconstrained transform of the second degree [158] produces

the estimate which coincides with ( (7.88) if j = 0 and Ũ0 = O.

7.5.7 Comparative analysis of errors associated with
hybrid Hadamard-quadratic transform and the
generic PCA–KLT

Let Sγ(x,y) be the truncated SVD of Exy(E1/2
yy )† defined similarly to equa-

tions (7.90), (7.91) but with the replacement of vp by y and of r by γ such
that γ ≤ m.

The generic PCA–KLT considered in Section 7.4 is given by

Hγ = Sγ(x,y)(E1/2
yy )† + Kγ [I − E1/2

yy (E1/2
yy )†], (7.118)

where Kγ = (Ã1)rC
−1
1 QUT

2 ∈ Rm×n is the matrix such that rank Hγ ≤
γ < s with s the number of nonzero singular values β1, . . . , βsk

of the matrix
Exy(E1/2

yy )†.
As it has been mentioned before, the transform Hγ is optimal in the

class of the linear transforms and it is a particular case of the proposed
nonlinear transform T defined by the equations (7.65), (7.92) when p = 0,
U0

p = O and W 0
p = O.

Let us compare the error E[‖x−Hγ(y)‖]2 associated with the transform
Hγ (7.118) and the error E[‖x− Ť (y)‖]2 associated with a particular case
Ť of the proposed transform when U0

j = O in (7.92), (7.95), as in Section
7.4, but for all j = 1, 2, . . . , p in (7.87), (7.88).
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The equations representing transform Ť follow from (7.87), (7.79) -
(7.82), (7.88), (7.90) - (7.92), (7.95) when Ũj = Ūj = U0

p = O, and they
are as follows

x̌p,r = Ť (y)
= Ť p,r(v̌)p, (7.119)

where

v̌j =
[

x̌j

žj

]
, žj = x̌2

j ,

Ťp,r = Pr(x,v̌p)(E
1/2
v̌pv̌p

)† + Mp[I − Ev̌pv̌p(Ev̌pv̌p)†], (7.120)

x̌j+1 = Ťj v̌j (7.121)
= V̌j x̌j + W̌j žj , (7.122)

Ťj = Exv̌j
E†v̌j v̌j

+ Ǩj

= [V̌j W̌j ], (7.123)
Ǩj = Kj [I − Ev̌j v̌j

(Ev̌j v̌j
)†], (7.124)

V̌j = (Exx̌j
− W̌jEžj x̌j

)E†x̌j x̌j
+ Ǩj(:, 1 : ν), (7.125)

W̌j = (Exžj
− Exx̌j

E†x̌j x̌j
Ex̌j žj

)D†žj x̌j
+ Ǩj(:, ν + 1 : 2ν) (7.126)

and where Pr(x,v̌p) is defined similarly to (7.91),

Pr(x,v̌p) = ǦrΣ̌rQ̌
T
r (7.127)

with

Ǧr = [ǧ1, . . . , ǧr], Q̌r = [q̌1, . . . , q̌r] and Σ̌r = diag(σ̌1, . . . , σ̌r)

formed from orthogonal matrices

Ǧ = [ǧ1, . . . , ǧ2ν ] ∈ Rm×2ν , Q̌ = [ǧ1, . . . , ǧ2ν ] ∈ R2ν×2ν

and from diagonal matrix

Σ̌ = diag(σ̌1, . . . , σ̌2ν) ∈ R(2ν)×(2ν)

with σ̌1 ≥ · · · ≥ σ̌l > 0 and σ̌l+1 = · · · = σ̌2ν = 0, respectively, such that

ǦΣ̌ Q̌T = Exv̌p
(E1/2

v̌pv̌p
)†. (7.128)

Matrix Džj x̌j in (7.126) is defined in accordance with (7.105). We also
denote

Δ̌j = ‖(Exžj − Exx̌j E
†
x̌j x̌j

Ex̌j žj )(D†žj x̌j
)1/2‖2
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and

Ξ =
p−1∑

j=0

Δ̌j +
s∑

i=γ+1

β2
i −

l∑

k=r+1

σ̌2
k.

Theorem 59. The error E[‖x−Ť (y)‖]2 associated with the proposed trans-
form (7.119) - (7.127) is less than the error E[‖x−Hγ(y)‖]2 associated with
the transform (7.118), for Ξ , i.e.

E[‖x−Hγ(y)‖]2 − E[‖x− Ť (y)‖]2 = (7.129)
p−1∑

j=0

Δ̌j +
s∑

i=γ+1

β2
i −

l∑

k=r+1

σ̌2
k. (7.130)

Proof. Similarly to (7.97) we have

E[‖x− Ť (y)‖2] = tr{Exx}+
l∑

k=r+1

σ̌2
k − ‖Exy(E†yy)1/2‖2 (7.131)

−
p−1∑

j=0

Δ̌j . (7.132)

The equation for the error E[‖x−Hγ(y)‖]2,

E[‖x−Hγ(y)‖]2 = tr{Exx}+
l∑

i=γ+1

β2
i − ‖Exy(E†yy)1/2‖2 (7.133)

is derived from (7.118) by virtue of Lemma 44, and then (7.129) is obvious.

Corollary 18. If

l∑

k=r+1

σ̌2
k <

p−1∑

j=0

Δ̌j +
s∑

i=γ+1

β2
i (7.134)

then
E[‖x− Ť (y)‖]2 < E[‖x−Hγ(y)‖]2.

Proof. The proof follows directly from the above.
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Thus, the inequality (7.134) is the condition for a better performance of
the proposed transform compared with transform (7.118), [63]. In particu-
lar, the inequality (7.134) takes place for the case when r = γ, where r and
γ are numbers of principal components produced by the methods (7.119)
- (7.127) and (7.118), [63], respectively. In other words, if (7.134) is true
then for the same r and γ, the error associated with our method (7.119) -
(7.127) is less than the error associated with the method (7.118).

Note that the condition (7.134) is not hardly restrictive and is normally

satisfied, mainly due to the term
p−1∑

j=0

Δ̌j .

7.5.8 A special case: the errors E[‖x−Hγ(y)‖]2 and
E[‖x− Ť (y)‖]2 are the same

Let us now consider the case when the errors (7.131), (7.133) associated
with the methods (7.119) - (7.127) and (7.118) are the same, and consider
the corresponding rank values r and γ (i.e. the numbers r and γ of the
corresponding principal components of the methods (7.119) - (7.127) and
(7.118) respectively).

First, note that the RHS’s of the expressions (7.131), (7.133) con-
tain the same constant term tr{Exx} − ‖Exy(E†yy)1/2‖2, and the terms

l∑

k=r+1

σ̌2
k −

p−1∑

j=0

Δ̌j and
l∑

i=γ+1

β2
i which are variable with respect to r, p, and

γ.

Let us suppose that

E[‖x−Hγ(y)‖]2 = E[‖x− Ť (y)‖]2 =: ε.

Then equation (7.129) implies that

s∑

i=γ+1

β2
i =

l∑

k=r+1

σ̌2
k −

p−1∑

j=0

Δ̌j , (7.135)

where the LHS and RHS are the variable terms of the errors (7.131), (7.133)
associated with the methods (7.119) - (7.127) and (7.118).

We observe that the RHS in (7.135) can be reduced by increasing the
number of iterations p in our method (7.87), (7.95). The corresponding
reduction of the LHS in (7.135) can only be made by increasing the number
γ in the transform (7.118) given in Section 7.4. Hence, to achieve the same
accuracy ε, the method (7.119) - (7.127) uses, in general, a smaller number
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r of the principal components than PCA–KLT and its modification (7.118),
[63].

Moreover, for some εT where

εT = E[‖x− Ť (y)‖]2,

the accuracy E[‖x − Ť (y)‖]2 can not be achieved by the method (7.118),
[63] for any γ in (7.118), (7.133).

Remark 36. The equations (7.97), (7.129) - (7.133), (7.135) substantiate
the remark made in the Section 7.5.1: the proposed method possesses three
degrees of freedom as follows: the number p of iteration loops in (7.87),
(7.88), the degree of the approximants Tjvj and T̃pvp,5 and the rank r of
T 0

p,r in (7.63), (7.64). In contrast, the performance of the generic PCA–
KLT (7.118) can be regulated by a variation of the rank γ only.

Remark 37. PCA–KLT is a particular case of the generic PCA–KLT
(Section 7.4) and therefore the results of the comparative analysis above
are valid for PCA–KLT as well.

7.5.9 Numerical example

In our example, we apply the proposed method to simultaneous filtering,
compression and consequent reconstruction of a noisy digitized image. The
aim of the example is to illustrate the impact on the final image estimate
of both the method of hybrid best approximation (7.61)–(7.64), (7.87) and
the representation of the estimate as the second degree polynomial (7.66).

The original digitized image ‘Lenna’ has been given by matrix X ∈
R256×256 and observed noisy image has been modeled in the form

Y = 150N. ∗X, (7.136)

where N ∈ R256×256 is a matrix with normally distributed entries with
mean 0 and variance 1. Symbol .∗ means element-by-element matrix mul-
tiplication. The corresponding images are presented in Fig. 7.1.

Matrices X and Y have been partitioned into su-bmatrices

X(1) = X(1 : 85, :), X(2) = X(86 : 170, :), X(3) = X(171 : 256, :)

and

Y (1) = Y (1 : 85, :), Y (2) = Y (86 : 170, :), Y (3) = Y (171 : 256, :),

5For instance, W̃j = O in (7.87) and W 0
p �= O in (7.65) imply the estimates of the

first degree and of the second degree correspondingly.
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where X(n1 : n2, :) means a sub-matrix formed by n2 − n1 + 1 consequent
rows of X beginning with the n1−th raw. We interpreted X(1), X(2),
X(3) as realizations of different random vectors and Y (1), Y (2), Y (3) as
corresponding observed data.

The proposed method (7.87), (7.92), (7.95) has been applied four times
to the every pair X(k), Y (k), each time with the same Kj = O, Mp = O,
p = 50 but with a different value of r such that r = rs = 20 + 5s for
s = 0, 1, 2, 3.

The generic PCA–KLT (7.118) (Section 7.4) has also been applied four
times to the same pairs X(k), Y (k), with the same rank γ such that γ = rs

where s = 0, 1, 2, 3. For comparison of the obtained results, the error ratios
ε
(k)
H / ε

(k)
T are presented in the Table 2 where

ε
(k)
H = ‖X(k) −X

(k)
H ‖2 and ε

(k)
T = ‖X(k) −X

(k)
T ‖2

are the errors associated with the estimate X
(k)
H by (7.118) and with the

estimate X
(k)
T by (7.87), (7.81), (7.92), (7.95), respectively.

Matrices Exvj , Evjvj , Exy, Eyy in (7.87), (7.81), (7.92), (7.95) and
(7.118) have been estimated with the known maximum likelihood estimates
given in Section 5.3.1.

In this simulations, the ranks r and γ of the both methods are the same,
therefore their compression ratios are equal,

cT =
r

256
and cH =

γ

256
.

Hence, it follows from the Table 1 that, for the same compression ratio,
the accuracy of the image reconstruction by the proposed method is from
153 to 311 times better that the reconstruction accuracy of the generic
PCA–KLT (7.118), depending on the parts X(k), Y (k) of the images.

Table 1: Ratio of errors associated with estmators (7.92) and (7.118)
for image portions X(k) with k = 1, 2, 3

Error ratios Rank r of T 0
p,r and rank γ of Hγ

r = γ = 20 r = γ = 25 r = γ = 30 r = γ = 35

ε
(1)
H / ε

(1)
T 236.0 268.5 293.0 308.5

ε
(2)
H / ε

(2)
T 153.3 199.5 245.0 286.6

ε
(3)
H / ε

(3)
T 157.5 214.9 264.3 311.0

Fig. 7.2 represents the images reconstructed after simultaneous filtering
and compression by these methods.
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(a) Observed data Y.
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(b) Image X to be filtered, compressed and then reconstructed
from observed data. This digitized image has been taken from
http://sipi.usc.edu/database/.

Figure 7.1: Data used in numerical example to the methods of Sections 7.4
and 7.5.
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(a) Image reconstructed after filtering and compression by
transform (7.118) with γ = 20 applied to each pair X(k), Y (k)

with k = 1, 2, 3.
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(b) Image reconstructed after filtering and compression by
method (7.87), (7.81), (7.92), (7.95) with j = 49 and r = 20
applied to each pair X(k), Y (k) with k = 1, 2, 3.

Figure 7.2: The performance comparison of the methods (7.118) and (7.87),
(7.81), (7.92), (7.95).
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The Table 1 represents the values of the ratios εH / εT of errors

εH = ‖X −XH‖2 and εT = ‖X −XT ‖2

associated with estimates

XH = [X(1)
H

T
X

(2)
H

T
X

(3)
H

T
]T

and
XT = [X(1)

T

T
X

(2)
T

T
X

(3)
T

T
]T

of the entire image X. In this case, the error εT associated with the proposed
method is from 179 to 301 times smaller than the error εH associated with
the method of Section 7.4.

Next, we wish to illustrate in a more conspicuous way the impact of the
method of hybrid best approximations (7.61)–(7.64), (7.87) and of the sec-
ond degree transform (7.66) on the superiority of the proposed estimation
procedure over the method of Section 7.4.

To do this, we fix p and choose r = 1 in (7.92), which is the worst
rank value for the quality of estimation by (7.92), (7.95) with fixed p (see
the error equation (7.97)), but is the best rank value for the compression
ratio range. In other words, in this case each sub-matrix X(k) ∈ Rmk×νk is
compressed by the proposed method to a column in Rmk .

We also choose the full rank transform presented in Section 7.4, which
gives its best quality of estimation (see the error equation (7.133)), but
provides the worst compression ratio cH = 1; this means that in this case
the generic PCA–KLT provides no compression. The errors

‖X(k) −X
(k)
T,1‖2 and ‖X(k) −X

(k)
H,full‖2

associated with the both transforms are given in Table 3, where X
(k)
T,1 is the

estimate of X(k) by (7.95) with p = 50 and r = 1, and X
(k)
H,full is the full

rank estimate by the transform of Section 7.4.
It follows from Table 3 that the hybrid best approximations (7.87)–

(7.78), (7.81) and the second degree transform (7.66) provide the final
error ‖X(k)−X

(k)
T,1‖2, which is from 2.6 to 3.5 times smaller than the error

‖X(k)−X
(k)
H,full‖2, even for the extremely worst rank condition (r = 1) for

our approach.

Summarizing the above, we would like to point out the following.

The error analysis given by the expressions (7.97), (7.129), (7.134),
(7.135) demonstrates that the advantages of the proposed approach over
PCA–KLT and the generic PCA–KLT of Section 7.4 are as follows:
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(i) under the condition (7.134), for the same rank r (i.e. for the same
number of principal components r), the error associated with our method
can be made less than the error associated with the generic PCA–KLT
(Section 7.4) both by exploiting the second degree term in (7.87), (7.95),
(7.119), (7.121) and by increasing the number of iterations p in (7.87),
(7.121); and

(ii) for the same errors associated with the method (7.87), (7.95) and
the method of Section 7.4, the method (7.87), (7.95) generates a smaller
number of principal components.

These features imply that the above technique is preferable for many
applied problems of the high dimensionality which have been considered in
Section 7.4.

7.6 Optimal Transform Formed by a Combination of
Nonlinear Operators

Our objective is to justify a new transform that may have both accuracy
and compression ratio better than those of the transforms considered in
the preceding sections.

We show that the proposed approach generalizes the Fourier series in
Hilbert space, the Wiener filter, the Karhunen-Loève transform and the
transforms given in [158, 167, 173].

7.6.1 Method description

Achievement of the above objective is based on the presentation of the pro-
posed transform in the form of a sum with p terms (7.137) where each term
is interpreted as a particular rank-reduced transform. Moreover, terms in
(7.137) are represented as a combination of three operations Fk, Qk and
ϕk for each k = 1, . . . , p. The prime idea is to determine Fk separately, for
each k = 1, . . . , p, from an associated rank-constrained minimization prob-
lem similar to that in PCA–KLT. The operations Qk and ϕk are auxiliary
for finding Fk. It is natural to expect that a contribution of each term in
(7.137) will improve the entire transform performance.

To realize such a scheme, we choose the Qk as orthogonal/orthonormal
operators (see Section 7.6.2). Then each Fk can be determined inde-
pendently for each individual problem (7.159) or (7.188) below. Next,
operators ϕk are used to reduce the number of terms from N (as in
[159, 167, 173, 182]) to p with p << N . For example, this can be done
when we choose ϕk in the form presented in Section 7.6.6. Moreover, the
composition of operators Qk and ϕk allows us to reduce the related covari-
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ance matrices to the identity matrix or to a block-diagonal form with small
blocks. Remark 40 in Section 7.6.4 gives more details in this regard. The
computational work associated with such blocks is much less than that for
the large covariance matrices in [158, 159, 167, 173, 182].

To regulate accuracy associated with the proposed transform and its
compression ratio, we formulate the problem in the form (7.140)–(7.141)
where (7.141) consists of p constraints. It is shown in Sections 5.2.1, 5.2.2
and 5.2.4 that such a combination of constraints allows us to equip the
proposed transforms with several degrees of freedom.

The structure of our transform is presented in Section 7.6.2 and the
formal statement of the problem in Section 7.6.3. In Section 7.6.4, we
determine operators F1, . . . ,Fp (Theorems 60 and 61).

As before, we denote

x ∈ L2(Ω,Rm), y ∈ L2(Ω,Rn), x = x(ω) ∈ Rm, y = y(ω) ∈ Rn,

Ex = E[x] and Exy = E[(x− Ex)(y − Ey)T ] = Exy − E[x]E[yT ].

7.6.2 Structure of the proposed transform

Generic form

The proposed transform T p is presented in the form

T p(y) = f +
p∑

k=1

FkQkϕk(y)

= f + F1Q1ϕ1(y) + . . . + FpQpϕp(y), (7.137)

where
f ∈ Rm, ϕk : L2(Ω,Rn)→ L2(Ω,Rn),

Q1, . . . ,Qp : L2(Ω,Rn)→ L2(Ω,Rn) and Fk : L2(Ω,Rn)→ L2(Ω,Rm).

In general, one can put

x ∈ L2(Ω,HX), y ∈ L2(Ω,HY ), ϕk : L2(Ω,HY )→ L2(Ω,Hk),

Qk : L2(Ω, Hk)→ L2(Ω, H̃k) and Fk : L2(Ω, H̃k)→ L2(Ω,HX)

with HX , HY , Hk and H̃k separable Hilbert spaces, and k = 1, . . . , p.
In (7.137), the vector f and operators F1, . . . ,Fp are determined from

the minimization problem (7.140)-(7.141) given in the Section 7.6.3. Op-
erators Q1, . . . ,Qp in (7.137) are orthogonal (orthonormal) in the sense
of the Definition 1 in Section 7.6.3 (in this regard, see also Remark 3 in
Section 5.1).
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To demonstrate and justify flexibility of the transform T p with respect
to the choice of ϕ1, . . . ,ϕp in (7.137), we mainly study the case where
ϕ1, . . . ,ϕp are arbitrary. Specifications of ϕ1, . . . ,ϕp are presented in Sec-
tions 3.2, 5.2.4 and 5.2.5 where we also discuss the benefits associated with
some particular forms of ϕ1, . . . ,ϕp.

Some particular cases

Particular cases of the model T p are associated with specific choices of ϕk,
Qk and Fk. Some examples are given below.

(i) If HX = HY = Rn and Hk = H̃k = Rnk where Rnk is the kth degree
of Rn, then (7.137) generalizes the known transform structures [158, 166,
167, 173]. The models [158, 166, 167, 173] follow from (7.137) if

ϕk(y) = yk where yk = (y, . . . , y) ∈ L2(Ω,Rnk),

Qk = I where I is the identity operator,

and
if Fk is a k-linear operator.

It has been shown in [158, 166, 167, 173] that such a form of ϕk leads to
a significant improvement in the associated accuracy. See Section 7.6.6 for
more details.

(ii) If ϕk : L2(Ω,HY ) → L2(Ω,HX) and {u1, u2, . . .} is a basis in
L2(Ω,HX) then ϕk and Qk can be chosen so that

ϕk(y) = uk and Qk = I,

respectively. As a result, in this particular case,

T p(y) = f +
p∑

k=1

Fk(uk).

(iii) A similar case follows if ϕk : L2(Ω,HY ) → L2(Ω,Hk) is arbitrary
but Qk : L2(Ω, Hk)→ L2(Ω, H̃k) is defined so that

Qk[ϕk(y)] = vk with k = 1, . . . , p

where {v1, v2, . . .} is a basis in L2(Ω, H̃k). Then

T p(y) = f +
p∑

k=1

Fk(vk).
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(iv) Let x̃(1), . . . , x̃(p) be estimates of x by the known transforms. For
instance, we could use the transforms considered in [63, 162, 169] and the
transforms given in Chapter 5. Then we can put

ϕ1(y) = x̃(1), . . . , ϕp(y) = x̃(p).

In particular, one could choose x̃(1) = y. In such a way, the vector x is
pre-estimated from y, and therefore, the overall x estimate by T p will be
improved. A new recursive method for finding x̃(1), . . . , x̃(p) is given in
Section 7.6.6 below.

Other particular cases of the proposed transform are considered in Sec-
tions 7.6.6 and 7.6.7.

Remark 38. The particular case of T p considered in the item (iii) above
can be interpreted as an operator form of the Fourier polynomial in Hilbert
space [20]. The benefits associated with the Fourier polynomials are well
known. In item (ii) of Section 7.6.7, this case is considered in more detail.

7.6.3 Statement of the problem

Hereinafter in this section, we suppose that Fk is linear for all k = 1, . . . , p,
the Hilbert spaces are the finite dimensional Eucledian spaces, HX = Rm

and HY = Hk = H̃k = Rn, and Q1, . . . ,Qp are orthogonal operators by
Definition 31 and Lemmata 33 and 34 of Section 5.7.4. The latter means
that the vectors v1, . . ., vp defined by

v1 = Q1[ϕ1(y)], . . . , vp = Qp[ϕp(y)] (7.138)

are orthogonal.
Let us denote

J(f,F1, . . .Fp) = E[‖x− T p(y)‖2]. (7.139)

The problem is to determine the vector f0 and operators F0
1, . . . ,F0

p

such that

J(f0,F0
1, . . .F0

p) = min
f,F1,...,Fp

J(f,F1, . . . ,Fp) (7.140)

subject to

rank F1 ≤ η1, . . . , rank Fp ≤ ηp, (7.141)

where
η1 + . . . + ηp ≤ η ≤ min{m,n}.
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We write

T 0
p(y) = f0 +

p∑

k=1

F0
k(vk) (7.142)

with
vk = Qk[ϕk(y)].

It is supposed that covariance matrices formed from vectors Q1ϕ1(y),
. . ., Qpϕp(y) in (7.137) are known or can be estimated. Various estimation
methods can be found in Section 4.3.

Remark 39. Unlike known rank-constrained problems, we consider p con-
straints given by (7.141). The number p of the constraints and the ranks
η1, . . . , ηp form the degrees of freedom for T 0

p. Variation of p and η1, . . . , ηp

allows us to regulate accuracy associated with the transform T 0
p (see (7.149)

and (7.178) in Section 7.6.4) and its compression ratio (see (7.195) in Sec-
tion 6.5.8).

7.6.4 Determination of f0, F0
1, . . . ,F0

p satisfying
(7.140)–(7.141)

The case when matrix Evivi
is invertible for i = 1, . . . , p

First, we consider the simpler case when Evivi
is invertible for all i =

1, . . . , p. Then the vector f0 and operators F0
1, . . . ,F0

p satisfying (7.140)–
(7.141) are defined from the following Theorem 60. For each i = 1, . . . , p,
let UiΣiV

T
i be the SVD of Exvi

,

UiΣiV
T
i = Exvi , (7.143)

where Ui ∈ Rm×n, Vi ∈ Rn×n are orthogonal and Σi ∈ Rn×n is diagonal,

Ui = [si1, . . . , sin], Vi = [di1, . . . , din], (7.144)

Σi = diag(αi1, . . . , αin) (7.145)

with αi1 ≥ · · · ≥ αir > 0, αi,r+1 = · · · = αin = 0 and r = 1, . . . , n where
r = r(i). We set

Uiηi
= [si1, . . . , siηi

], Viηi
= [di1, . . . , diηi

],

Σiηi
= diag(αi1, . . . , αiηi

),

where Uiηi ∈ Rm×ηi , Viηi ∈ Rn×ηi and Σiηi ∈ Rηi×ηi . Now we define
Kiηi

∈ Rm×n and Kiηi
: L2(Ω,Rn)→ L2(Ω,Rm) by

Kiηi = UiηiΣiηiV
T
iηi

and [Kiηi(wi)](ω) = Kiηi [wi(ω)], (7.146)

respectively, for any wi ∈ L2(Ω,Rn).
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Theorem 60. Let v1, . . . , vp be orthogonal vectors determined by Lemma
33 of Section 5.7.4. Then the vector f0 and operators F0

1, . . . ,F0
p, satisfying

(7.140)–(7.141), are determined by

f0 = E[x]−
p∑

k=1

F 0
k E[vk], (7.147)

F0
1 = K1η1 , . . . , F0

p = Kpηp
. (7.148)

The accuracy associated with transform T 0
p, determined by (7.142) and

(7.147)–(7.148), is given by

E[‖x− T 0
p(y)‖2] = ‖E1/2

xx ‖2 −
p∑

k=1

ηk∑

j=1

α2
kj . (7.149)

Proof. The functional J(f,F1, . . . ,Fp) is written as

J(f,F1, . . . ,Fp) = tr[Exx − E[x]fT −
p∑

i=1

Exvi
FT

i

−fE[xT ] + ffT + f

p∑

i=1

E[vT
i ]FT

i −
p∑

i=1

FiEvix

+
p∑

i=1

FiE[vi]fT + E(
p∑

i=1

F i(vi)[
p∑

k=1

F i(vi)]T )]. (7.150)

We remind that here and below, Fi is defined by [F i(vi)](ω) = Fi[vi(ω)]
so that, for example,

E[Fk(vk)xT
k ] = FkEvkxk

.

In other words, the right hand side in (7.150) is a function of f,F1, . . . ,Fp

indeed.
Let us show that J(f,F1, . . . ,Fp) can be represented as

J(f,F1, . . . ,Fp) = J0 + J1 + J2, (7.151)

where

J0 = ‖E1/2
xx ‖2 −

p∑

i=1

‖Exvi
‖2, (7.152)

J1 = ‖f − E[x] +
p∑

i=1

FiE[vi]‖2 and J2 =
p∑

i=1

‖Fi − Exvi‖2.
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Indeed, J1 and J2 are rewritten as follows

J1 = tr(ffT − fE[xT ] +
p∑

i=1

fE[vT
i ]Fi + E[x]E[xT ]

−E[x]fT −
p∑

i=1

E[x]E[vT
i ]FT

i +
p∑

i=1

FiE[vi]fT

−
p∑

i=1

FiE[vi]E[xT ] +
p∑

i=1

FiE[vi]
p∑

k=1

E[vT
k ]FT

k ) (7.153)

and

J2 =
p∑

i=1

tr(Fi − Exvi)(F
T
i − Evix)

=
p∑

i=1

tr(FiF
T
i − FiEvix − Exvi

FT
i + Exvi

Evix). (7.154)

In (7.154),
p∑

i=1

tr(FiF
T
i ) can be represented in the form

p∑

i=1

tr(FiF
T
i ) = tr[E(

p∑

i=1

Fivi

p∑

k=1

vT
k FT

k )]

−tr(
p∑

i=1

FiE[vi]
p∑

k=1

E[vT
k ]FT

k ) (7.155)

because

E[vivT
k ]− E[vi]E[vT

k ] =
{
O, i 
= k,
I, i = k

(7.156)

due to the orthonormality of vectors v1, . . ., vp.
Then

J0 + J1 + J2 = tr(Exx − E[x]E[xT ])

−
p∑

i=1

tr[Exvi
Evix] + tr(ffT − fE[xT ] +

p∑

i=1

fE[vT
i ]Fi

+E[x]E[xT ]− E[x]fT −
p∑

i=1

E[x]E[vT
i ]FT

i

+
p∑

i=1

FiE[vi]fT −
p∑

i=1

FiE[vi]E[xT ]
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+
p∑

i=1

FiE[vi]
p∑

k=1

E[vT
k ]FT

k ) + tr[E(
p∑

i=1

Fivi

p∑

k=1

vT
k FT

k )]

−tr(
p∑

i=1

FiE[vi]
p∑

k=1

E[vT
k ]FT

k )−
p∑

i=1

tr(FiEvix

−FiE[vi]E[xT ] + Exvi
FT

i −E[x]E[vT
i ]FT

i − Exvi
Evix)

= J(f,F1, . . . ,Fp). (7.157)

Hence, (7.151) is true. Therefore,

J(f,F1, . . . ,Fp) = ‖E1/2
xx ‖2 −

p∑

k=1

‖Exvk
‖2 (7.158)

+‖f − E[x] +
p∑

k=1

FkE[vk]‖2 +
p∑

k=1

‖Fk − Exvk
‖2.

It follows from (7.158) that the constrained minimum (7.140)–(7.141) is
achieved if f = f0 with f0 given by (7.147), and if F 0

k is such that

Jk(F 0
k ) = min

Fk

Jk(Fk) (7.159)

subject to
rank(Fk) = ηk,

where
Jk(Fk) = ‖Fk − Exvk

‖2.
The solution to (7.159) is given [50] by

F 0
k = Kkηk

. (7.160)

Then

E[‖x− T 0
p(y)‖2] = ‖E1/2

xx ‖2 −
p∑

k=1

(‖Exvk
‖2 − ‖Kkηk

− Exvk
‖2).

Here [50],

‖Exvk
‖2 =

r∑

j=1

α2
kj and ‖Kkηk

− Exvk
‖2 =

r∑

j=ηk+1

α2
kj (7.161)

with r = r(k). Thus, (7.149) is true. The theorem is proved.
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Corollary 19. Let v1, . . . , vp be determined by Lemma 33 of Section 5.7.4.
Then the vector f̂ and operators F̂1, . . . , F̂p satisfying the unconstrained
problem (7.140), are determined by

f̂ = E[x]−
p∑

k=1

F̂kE[vk] and F̂1 = Exv1 , . . . , F̂p = Exvp
(7.162)

with F̂k such that [F̂k(vk)](ω) = F̂kvk(ω) where F̂k ∈ Rn×m and k =
1, . . . , p.

The accuracy associated with transform T̂ p given by

T̂ p(y) = f̂ +
p∑

k=1

F̂k(vk) (7.163)

is such that

E[‖x− T̂ p(y)‖2] = ‖E1/2
xx ‖2 −

p∑

k=1

‖Exvk
‖2. (7.164)

Proof. The proof follows directly from (7.159).

The case when matrix Evivi
is not invertible for i = 1, . . . , p

For uk, vj , wj ∈ L2(Ω,Rn), we define operators Eukvj
, E†vjvj

, (E1/2
vkvk

)† :
L2(Ω,Rn)→ L2(Ω,Rn) by the expressions

[Eukvj
(wj)](ω) = Eukvj

wj(ω), [E†vjvj
(wj)](ω) = E†vjvj

wj(ω)(7.165)

and

[(E1/2
vkvk

)†(wj)](ω) = (E1/2)†vjvj
wj(ω), (7.166)

respectively.
We write Mk ∈ Rm×n for an arbitrary matrix, and define operator

Mk : L2(Ω,Rn) → L2(Ω,Rm) by [Mk(w)](ω) = Mkw(ω) for any w ∈
L2(Ω,Rn).

For the case under consideration (matrix Evkvk
is not invertible), we

introduce the SVD of Exvk
(E1/2

vkvk
)†,

UkΣkV T
k = Exvk

(E1/2
vkvk

)†, (7.167)

where, as above, Uk ∈ Rm×n, Vk ∈ Rn×n are orthogonal and Σk ∈ Rn×n is
diagonal,

Uk = [sk1, . . . , skn], Vk = [dk1, . . . , dkn], (7.168)
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Σk = diag(βk1, . . . , βkn) (7.169)

with βk1 ≥ · · · ≥ βkr > 0, βk,r+1 = βkn = 0, r = 1, . . . , n and r = r(k).
Let us set

Ukηk
= [sk1, . . . , skηk

], Vkηk
= [dk1, . . . , dkηk

] (7.170)

Σkηk
= diag(βk1, . . . , βkηk

), (7.171)

where Ukηk
∈ Rm×ηk , Vkηk

∈ Rn×ηk and Σkηk
∈ Rηk×ηk . Now we define

Gkηk
∈ Rm×n and Gkηk

: L2(Ω,Rn)→ L2(Ω,Rm) by

Gkηk
= Ukηk

Σkηk
V T

kηk
and [Gkηk

(wk)](ω) = Gkηk
[wk(ω)], (7.172)

respectively, for any wk ∈ L2(Ω,Rn).

Lemma 47. Let vk ∈ L2(Ω,Rn). Then

Gηk
(E1/2

vkvk
)†E1/2

vkvk
= Gηk

. (7.173)

Proof. This lemma is a different form of Lemma 42 given in Section 7.4.1.

We also write
E1/2

vkvk
= U(k)Σ(k)U

T
(k)

for the SVD of E1/2
vkvk

, and denote

U(k) = [U(k)1 U(k)2], C(k) = diag(σ1(k), . . . , σt(k))

and
Exvk

E1/2
vkvk

U(k) = [Ã(k)1 Ã(k)2],

where
Σ(k) = diag(σ1(k), . . . , σn(k))

with σ1(k) ≥ · · · ≥ σt(k) > 0 and σt+1(k) = · · · = σn(k) = 0, U(k)1 ∈ Rn×t

and Ã(k)1 ∈ Rm×t.
If A is any matrix then we write (A)ηk

for a matrix defined similarly to
(7.12).
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Theorem 61. Let v1, . . . , vp be orthogonal vectors determined by Lemma
34 of Section 5.7.4. Then f0 and F0

1, . . . ,F0
p, satisfying (7.140)–(7.141),

are determined by

f0 = E[x]−
p∑

k=1

F 0
k E[vk] (7.174)

and

F 0
1 = Gη1(E1/2

v1v1
)† + M1[I − E1/2

v1v1
(E1/2

v1v1
)†], (7.175)

...
F 0

p = Gηp
(E1/2

vpvp
)† + Mp[I − E1/2

vpvp
(E1/2

vpvp
)†] (7.176)

where for k = 1, . . . , p,

Mk = (Ã(k)1)ηk
C−1

(k)QkUT
(k)2 (7.177)

with an arbitrary matrix Qk ∈ Rt×(n−t).
The accuracy associated with transform T 0

p given by (7.142) and (7.174)–
(7.176) is such that

E[‖x− T 0
p(y)‖2] = ‖E1/2

xx ‖2 −
p∑

k=1

ηk∑

j=1

β2
kj . (7.178)

Proof. If v1, . . . , vp are determined by Lemma 34, then J(f,F1, . . . ,Fp) is
still represented by (7.150). Let us consider J0, J1 and J2 given by

J0 = ‖E1/2
xx ‖2 −

p∑

k=1

‖Exvk
(E1/2

vkvk
)†‖2, (7.179)

J1 = ‖f − E[x] +
p∑

k=1

FkE[vk]‖2 (7.180)

and

J2 =
p∑

k=1

‖FkE1/2
vkvk
− Exvk

(E1/2
vkvk

)†‖2. (7.181)

To show that

J(f,F1, . . . ,Fp) = J0 + J1 + J2 (7.182)
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with J(f,F1, . . . ,Fp) defined by (7.150), we use the relationships (see Sec-
tion 4.4.1)

Exvk
E†vkvk

Evkvk
= Exvk

and E†vkvk
E1/2

vkvk
= (E1/2

vkvk
)† (7.183)

Then

J1 = tr(ffT − fE[xT ] +
p∑

k=1

fE[vT
k ]Fk + E[x]E[xT ]

−E[x]fT −
p∑

k=1

E[x]E[vT
k ]FT

k +
p∑

k=1

FkE[vk]fT

−
p∑

k=1

FkE[vk]E[xT ] +
p∑

k=1

FkE[vk]
p∑

i=1

E[vT
i ]FT

i ) (7.184)

and

J2 =
p∑

k=1

tr(Fk − Exvk
E†vkvk

)Evkvk
(FT

k − E†vkvk
Evkx)

=
p∑

k=1

tr(FkEvkvk
FT

k − FkEvkx − Exvk
FT

k + Exvk
E†vkvk

Evkx),

where
p∑

k=1

tr(FkEvkvk
FT

1 ) = tr[E(
p∑

k=1

Fkvk

p∑

i=1

vT
i FT

i )]

−tr(
p∑

k=1

FkE[vk]
p∑

i=1

E[vT
i ]FT

i ) (7.185)

because

E[vivT
k ]− E[vi]E[vT

k ] = O for i 
= k (7.186)

due to orthogonality of the vectors v1, . . ., vsk
.

On the basis of (7.183)–(7.185) and similarly to (7.157)–(7.157), we
establishe that (7.182) is true. Hence,

J(f,F1, . . . ,Fp) = ‖E1/2
xx ‖2 −

p∑

k=1

‖Exvk
(E1/2

vkvk
)†‖2

+‖f − E[x] +
p∑

k=1

FkE[vk]‖2 (7.187)
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+
p∑

k=1

‖FkE1/2
vkvk
− Exvk

(E1/2
vkvk

)†‖2.

It follows from the last two terms in (7.187) that the constrained minimum
(7.140)–(7.141) is achieved if f = f0 with f0 given by (7.174), and F 0

k is
such that

Jk(F 0
k ) = min

Fk

Jk(Fk) (7.188)

subject to
rank(Fk) = ηk,

where
Jk(Fk) = ‖FkE1/2

vkvk
− Exvk

(E1/2
vkvk

)†‖2.
Therefore, the constrained minimum (7.140)–(7.141) is achieved if f = f0

where f0 is defined by (7.174), and if

Fk = F 0
k = Gηk

(E1/2
vkvk

)† + Mk[I − E1/2
vkvk

(E1/2
vkvk

)†]. (7.189)

The latter follows from Theorem 54 and Remarks 29 and 30. Thus, (7.175)–
(7.176) are true.

Next, similar to (7.161),

‖Exvk
(E1/2

vkvk
)†‖2 − ‖Gηk

− Exvk
(E1/2

vkvk
)†‖2 =

ηk∑

j=1

β2
kj . (7.190)

Then (7.178) follows from (7.187), (7.189), (7.174) and (7.190).

Remark 40. The known reduced-rank transforms based on the Volterra
polynomial structure [159, 167, 173, 182] require the computation of a co-
variance matrix similar to Evv, where v = [v1, . . . , vp]T , but for p = N
where N is large (see Section 4.4.2 ). The relationships (7.157)–(7.159)
and (7.184)–(7.188) illustrate the nature of the proposed method and its
difference from the techniques in [159, 167, 173, 182]: due to the structure
(7.137) of the transform T p, the procedure for finding f0, F0

1, . . ., F0
p avoids

direct computation of Evv which could be troublesome due to large N . If
operators Q1, . . . ,Qp are orthonormal, as in Theorem 60, then (7.156) is
true and the covariance matrix Evv is reduced to the identity. If operators
Q1, . . . ,Qp are orthogonal, as in Theorem 61, then (7.186) holds and the
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covariance matrix Evv is reduced to a block-diagonal form with non-zero
blocks Ev1v1 , . . ., Evpvp so that

Evv =

⎡
⎢⎢⎣

Ev1v1 O . . . O
O Ev2v2 . . . O
. . . . . . . . . . . .
O O . . . Evpvp

⎤
⎥⎥⎦

with O denoting the zero block. As a result, the procedure for finding f0,
F0

1, . . ., F0
p is reduced to p separate rank-constrained problems (7.159) or

(7.188). Unlike the methods in [159, 167, 173, 182], the operators F0
1, . . . ,Fp

0

are determined with much smaller m × n and n × n matrices given by
the simple formulae (7.147) and (7.174)–(7.176). This implies a reduc-
tion in computational work compared with that required by the approach
in [159, 167, 173, 182]. In Table 5 of Section 7.6.8, this observation is
illustrated with results from numerical simulations.

Corollary 20. Let v1, . . . , vp be determined by Lemma 34 of Section 5.7.4.
Then the vector f̄ and operators F̄1, . . . , F̄p, satisfying the unconstrained
minimum (7.140), are determined by

f̄ = E[x]−
p∑

k=1

F̄kE[vk] (7.191)

and

F̄1 = Exv1E
†
v1v1

+ M1[I − Ev1v1E
†
v1v1

], (7.192)
...

F̄p = Exvp
E†vpvp

+ Mp[I − Evpvp
E†vpvp

] (7.193)

with M1, . . . , Mp defined in Theorem 61. The associated accuracy for trans-
form T̄ p, defined by

T̄ p(y) = f̄ +
p∑

k=1

F̄k(vk),

is given by

E[‖x− T̄ p(y)‖2] = ‖E1/2
xx ‖2 −

p∑

k=1

‖Exvk
(E1/2

vkvk
)†‖2. (7.194)
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Proof. It follows from (7.187) that the unconstrained minimum (7.140) is
achieved if f is defined by (7.191) and if Fk satisfies the equation

FkE1/2
vkvk
− Exvk

(E1/2
vkvk

)† = O

for each k = 1, . . . , p. Similar to (7.189), its general solution is given by

Fk = F̄k = Exvk
E†vkvk

+ Mk[I − Evkvk
E†vkvk

].

because
E1/2

vkvk
(E1/2

vkvk
)† = Evkvk

E†vkvk
.

We define F̄k by [F̄k(wk)](ω) = F̄k[wk(ω)] for all k = 1, . . . , p, and then
(7.192)–(7.193) are true. The relation (7.194) follows from (7.187) and
(7.191)–(7.193).

Remark 41. The transforms given by Theorems 60 and 61 are not unique
due to arbitrary operators M1, . . ., Mp. A natural particular choice is
M1 = . . . =Mp = O.

7.6.5 Compression procedure by T 0
p

Let us consider transform T 0
p given by (60), (7.174)–(7.176) with Mk =

O for k = 1, . . . , p where Mk is the matrix given in (7.189). We write
[T 0

p(y)](ω) = T 0
p (y) with T 0

p : Rn → Rm.
Let

B
(1)
k = Skηk

Vkηk
DT

kηk
and B

(2)
k = DT

kηk
(E1/2

vkvk
)†

so that B
(1)
k ∈ Rm×ηk and B

(2)
k ∈ Rηk×n. Here, η1, . . ., ηp are determined

by (7.141). Then

T 0
p (y) = f +

p∑

k=1

B
(1)
k B

(2)
k vk,

where vk = vk(ω) and B
(2)
k vk ∈ Rηk for k = 1, . . . , p with η1 + . . . +

ηp < m. Hence, matrices B
(2)
1 , . . . , B

(2)
p perform compression of the data

presented by v1, . . . , vp. Matrices B
(1)
1 , . . . , B

(1)
p perform reconstruction of

the reference signal from the compressed data.
The compression ratio of transform T 0

p is given by
c0 = (η1 + . . . + ηp)/m. (7.195)



7.6. COMBINED TRANSFORM 353

7.6.6 Special cases of transform T p
Choice of operators ϕ1, . . . , ϕp

The results above have been derived for any operators ϕ1, . . . , ϕp in the
model T p. Some specializations for ϕ1, . . . , ϕp were given in Section 7.6.2.
Here and in Section 7.6.6, we consider alternative forms for ϕ1, . . . , ϕp.

(i) Operators ϕ1, . . . , ϕp can be determined by a recursive procedure
as follows. First, we set ϕk(y) = y and determine estimate x(1) of x from
the solution of problem (7.140) (with no constraints (7.141)) by Corollaries
19 or 20 with p = 1. Next, we put

ϕ1(y) = y and ϕ2(y) = x(1),

and find estimate x(2) from the solution of unconstrained problem (7.140)
with p = 2. In general, for j = 1, . . . , p, we define

ϕj(y) = x(j−1),

where x(j−1) has been determined similarly to x(2) from the previous steps.
In particular, x(0) = y.

(ii) Operators ϕ1, . . . ,ϕp can also be chosen as elementary functions. In
item (i) of Section 7.6.2, ϕk(y) was constructed from the power functions.
An alternative possibility is to choose trigonometric functions for ϕk(y).
One can put

[ϕ1(y)](ω) = y and [ϕk+1(y)](ω) = [cos(ky1), . . . , cos(kyn)]T (7.196)

with y = [y1, . . . , yn]T and k = 1, . . . , p− 1.

Special form of the constraint

While the statement of the problem in the form (7.140)–(7.141) with p
constraints allows us to facilitate a computational load, other forms of the
constraint can lead to some alternative advantages. In particular, if in
(7.140)–(7.141), p = q, q + 1, . . . , where q = min{m,n}, and Fj 
= O for all
j = 1, . . . , p then even for the minimal possible ranks η1 = 1, . . . , ηp = 1
in (7.141), the compression ratio is

c =
p

q
≥ 1,

i.e. no compression of x can be achieved. To avoid such a bottle-neck,
we consider the case when p constraints (7.141) are replaced with the one
constraint in the form

rank [F1 . . . Fp] ≤ r ≤ q. (7.197)
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Then the problem is to find f0, F 0
1 , . . . , F 0

p satisfying (7.140) subject to
(7.197). As in Section 7.6.3, it is supposed that the vectors v1, . . . , vp in
(7.137), (7.138) and (7.140) are orthogonal.

Let the SVD of the matrix [Exv1E
†1/2
v1v1 . . . ExvpE

†1/2
vpvp ] be

UΣV T = [Exv1E
†1/2
v1v1

. . . Exvp
E†1/2

vpvp
], (7.198)

where U ∈ Rm×n, V ∈ Rn×n are orthogonal and Σ ∈ Rn×n is diagonal,

U = [s1, . . . , sn], V = [d1, . . . , dn], (7.199)

Σ = diag(β1, . . . , βn) (7.200)

with β1 ≥ · · · ≥ βl > 0, βl+1 = βn = 0 and l = 1, . . . , n.
Let us set

Ur = [s1, . . . , sr], Vr = [d1, . . . , dr] (7.201)

Σr = diag(β1, . . . , βr), (7.202)

where Ur ∈ Rm×r, Vr ∈ Rn×r and Σr ∈ Rr×r. Now we define Gr ∈ Rm×n

and Gr : L2(Ω,Rn)→ L2(Ω,Rm) by

Gr = UrΣrV
T
r and [Gr(w)](ω) = Gr[w(ω)], (7.203)

respectively, for any w ∈ L2(Ω,Rn). The matrix Gr can be represented in
a block form

Gr = [B1 . . . Bp], (7.204)

where Bj = Gr[:, (j − 1)n + 1 : jn] ∈ Rm×n is a block formed by the n
subsequent columns of the matrix Gr beginning from the ((j − 1)n + 1)th
column.

The family of solutions to the problem (7.140), (7.197) is given by the
following theorem.

Theorem 62. The vector f0 and matrices F 0
1 , . . ., F 0

p that satisfy (7.140)
and (7.197) are such that

f0 = E[x]−
p∑

j=1

F 0
j E[vj ] (7.205)

and

F 0
j = BjE

1/2†
vjvj

+ Mj(I − E1/2
vjvj

E1/2†
vjvj

), j = 1, . . . , p, (7.206)
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where Mj ∈ Rm×n is an arbitrary matrix such that rank [F 0
1 . . . F 0

p ] ≤ r,
defined similarly to Mj in Theorem 61.

The error associated with the transform defined by (7.137), (7.138),
(7.205), (7.206) is given by

E[‖x− T 0
p(y)‖2] = ‖E1/2

xx ‖2 −
r∑

j=1

β2
j . (7.207)

Proof. The proof follows from thew proof of Theorem 61 and from the fact
that

E1/2
vv =

⎡
⎢⎢⎣

E1/2
v1v1

O . . . O
O E1/2

v2v2
. . . O

. . . . . . . . . . . .

O O . . . E1/2
vpvp

⎤
⎥⎥⎦

and

E1/2†
vv =

⎡
⎢⎢⎣

E1/2†
v1v1

O . . . O
O E1/2†

v2v2
. . . O

. . . . . . . . . . . .

O O . . . E1/2†
vpvp

⎤
⎥⎥⎦ .

Corollary 21. The accuracy associated with transform given by Theorem
62 is better than that of the transform given by Theorem 61 if

p∑

k=1

ηk∑

j=1

β2
kj <

r∑

j=1

β2
j . (7.208)

Proof. The proof follows directly from the proofs of Theorems 61 and 62.

In Section 7.6.9, this transform is illustrated with numerical simulations.

7.6.7 Other particular cases of transform T p: comparison
with known transforms

Optimal non-linear filtering

.
The transforms T̂ p (7.162)–(7.163) and T̄ p (7.191)–(7.193), which are

particular cases of the transforms given in Theorems 1 and 2, represent op-
timal filters that perform pure filtering with no signal compression. There-
fore they are important in their own right.
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The Fourier series as a particular case of transform T̄ p.

For the case of the minimization problem (7.140) with no constraint (7.141),
F1, . . . ,Fp are determined by the expressions (7.162) and (7.191)–(7.193)
which are similar to those for the Fourier coefficients [20]. The structure
of the model T p presented by (7.137) is different, of course, from that for
the Fourier series and Fourier polynomial (i.e. a truncated Fourier series)
in Hilbert space [20]. The differences are that T p transforms y (not x
as the Fourier polynomial does) and that T p consists of a combination of
three operators ϕk, Qk and Fk where

Fk : L2(Ω, H̃k)→ L2(Ω,HX)

is an operator, not a scalar as in the Fourier series [20]. The solutions
(7.162) and (7.191)–(7.193) of the unconstrained problem (7.140) are given
in terms of the observed vector y, not in terms of the basis of x as in
the Fourier series/polynomial. The special features of T p require special
computation methods as described above and in Section 7.6.8 below.

Here, we show that the Fourier series is a particular case of the transform
T p.

Let x ∈ L2(Ω,H) with H a Hilbert space, and let {v1, v2, . . .} be an
orthonormal basis in L2(Ω,H). For any g, h ∈ L2(Ω,H), we define the
scalar product 〈·, ·〉 and the norm ‖ · ‖

E
in L2(Ω,H) by

〈g, h〉 =
∫

Ω

g(ω)h(ω)dμ(ω) and ‖g‖
E

= 〈g, g〉1/2, (7.209)

respectively. In particular, if H = Rm then

‖g‖2
E

=
∫

Ω

g(ω)[g(ω)]T dμ(ω) =
∫

Ω

‖g(ω)‖2dμ(ω) = E[‖g‖2] (7.210)

i.e. E[‖g‖2] is defined similarly to that in (7.139).
Let us consider the special case of transform T p presented in item (iii)

of Section 7.6.2 and let us also consider the unconstrained problem (7.140)
formulated in terms of such a T p where we now assume that x has the zero
mean, f = O, p =∞, {v1, v2, . . .} is an orthonormal basis in L2(Ω,H) and
Fk is a scalar, not an operator as before. We denote αk = Fk with αk ∈
R. Then similar to (7.162) in Corollary 19, the solution to unconstrained
problem (7.140) is defined by α̂k such that

α̂k = Exvk
with k = 1, 2, . . . .

Here,
Exvk

= E[xvk]− E[x]E[vk] = E[xvk] = 〈x, vk〉
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since E[x] = 0 by the assumption. Hence, α̂k = Exvk
is the Fourier coeffi-

cient and the considered particular case of T p(y) with Fk determined by
α̂k is given by

T p(y) =
∞∑

k=1

〈x, vk〉vk. (7.211)

Thus, the Fourier series (7.211) in Hilbert space follows from (7.137),
(7.140) and (7.162) when T p has the form given in item (iii) of Section
7.6.2 with x, f , p, {v1, v2, . . .} and Fk as above.

The Wiener filter as a particular case of transform T̄ p

(7.191)–(7.193)

In the following Corollaries 22 and 23, we show that the filter T̄ p guarantees
better accuracy than that of the Wiener filter.

Corollary 22. Let p = 1, E[x] = 0, E[y] = 0, ϕ1 = I, Q1 = I
and M1 = O or M1 = ExyE†yy. Then T̄ p is reduced to the filter Ť such
that [Ť (y)](ω) = Ť [y(ω)] with

Ť = ExyE†yy. (7.212)

Proof. Let T̄1 be such that [T̄ 1(y)](ω) = T̄1[y(ω)]. For E[x] = 0 and
E[y] = 0, we have f̄ = O. If ϕ1 = I and Q1 = I then v1 = y.

Next, for A1 = Exv1E
†
v1v1

, on the basis of (7.183), one has

T̄1 = ExyE†yy + ExyE†yy − ExyE†yyEyyE†yy = ExyE†yy = Ť .

The case when A1 = O is obvious. Hence, (7.212) is true.

Remark 42. The unconstrained linear filter, given by (7.212), has been
proposed in [63]. The filter (7.212) is treated as a generalization of the
Wiener filter.

Let x̃, ṽ1, . . . , ṽp be the zero mean vectors. The transform T̄ p, applied
to x̃, ṽ1, . . . , ṽp, is denoted by T̄ W,p.

Corollary 23. The error E[‖x̃−T̄ W,p(ỹ)‖2] associated with the transform
T̄ W,p is smaller than the error E[‖x̃− Ť (ỹ)‖2] associated with the Wiener

filter [63] by
p∑

k=2

‖Ex̃ṽk
(E1/2

ṽkṽk
)†‖2, i.e.

E[‖x̃− T̄ W,p(ỹ)‖2] = E[‖x̃− Ť (ỹ)‖2]−
p∑

k=2

‖Ex̃ṽk
(E1/2

ṽkṽk
)†‖2. (7.213)
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Proof. It is easy to show that

E[‖x̃− Ť (ỹ)‖2] = ‖E1/2
x̃x̃ ‖2 − ‖Ex̃ṽ1(E1/2

ṽ1ṽ1
)†‖2, (7.214)

and then (7.213) follows from (7.194) and (7.214).

PCA-KLT as a particular case of transform T 0
p (7.174)–(7.178).

PCA-KLT [63] follows from (7.174)–(7.178) as a particular case if

f = O, p = 1, ϕ1 = I, Q1 = I and A1 = O.

To compare the transform T 0
p with PCA-KLT [63], we apply T 0

p, repre-
sented by (7.174)–(7.178), to the zero mean vectors x̃, ṽ1, . . . , ṽp as above.
We write T ∗p for such a version of T 0

p, and T
P CA−KLT

for PCA-KLT [63].

Corollary 24. The error E[‖x̃ − T ∗p(ỹ)‖2] associated with the transform
T ∗p is smaller than the error E[‖x̃−T

P CA−KLT
(ỹ)‖2] associated with PCA-

KLT [63] by
p∑

k=2

ηk∑

j=1

β2
kj, i.e.

E[‖x̃− T ∗p(ỹ)‖2] = E[‖x̃− T P CA−KLT (ỹ)‖2]−
p∑

k=2

ηk∑

j=1

β2
kj . (7.215)

Proof. The error associated with F
P CA−KLT

[63] is represented by (7.178)
for p = 1,

E[‖x̃− T
P CA−KLT

(ỹ)‖2] = ‖E1/2
x̃x̃ ‖2 −

η1∑

j=1

β2
1j . (7.216)

Then (7.215) follows from (7.178) and (7.216).

The transform [158] as a particular case of transform T 0
p.

The transform [158] follows from (7.137) as a particular case if

f = O, p = 2, ϕ1(y) = y, ϕ2(y) = y2 and Q1 = Q2 = I

where y2 is defined by y2(ω) = [y2
1 , . . . , y2

n]T . We note that transform [158]
has been generalized in [173].
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The transforms [173] as particular cases of transform T p.

The transform [173] follows from (7.137) if

Qk = I, ϕk(y) = yk where yk = (y, . . . , y) ∈ L2(Ω,Rnk)

with Rnk is the kth degree of Rn, and if Fk is a k-linear operator.
To compare transform T 0

p and transform T [173] [173] of rank r, we write

zj = yjy, z = [z1, . . . , zn]T , s = [1 yT zT ]T

and denote by α1, . . . , αr the non-zero singular values associated with the
truncated SVD for the matrix Exs(E1/2

ss )†. Such a SVD is constructed
similarly to that in (7.167)–(7.170).

Corollary 25. Let

Δp =
p∑

k=1

ηk∑

j=1

β2
kj −

r∑

j=1

α2
j

and let Δp ≥ 0. The error E[‖x− T 0
p(y)‖2] associated with the transform

T 0
p is less than the error E[‖x−T [173](y)‖2] associated with the transform
T [173] by Δp, i.e.

E[‖x− T 0
p(y)‖2] = E[‖x− T [173](y)‖2]−Δp. (7.217)

Proof. It follows from [173] that

E[‖x− T [173](y)‖2] = ‖E1/2
xx ‖2 −

r∑

j=1

α2
j . (7.218)

Then (7.217) follows from (7.178) and (7.218).

We note that, in general, a theoretical verification of the condition
Δp ≥ 0 is not straightforward. At the same time, for any particular x
and y, Δp can be estimated numerically. In the case when, for a given p,
the condition Δp ≥ 0 is not fulfilled, the accuracy E[‖x−T 0

p(y)‖2] can be
improved by increasing p or by applying the hybrid method presented in
Chapter 4.

As we have noted before, the method in [173] requires much more com-
putational work than that needed for transform T 0

p.
The results of numerical experiments presented in Section 7.6.9 below

demonstrate the superiority of the proposed transforms given in Theorems
60, 61 and Corollaries 19, 20 over transforms [63, 158, 173].



360 7. METHODS FOR OPTIMAL DATA COMPRESSION

Remark 43. Unlike the technique presented in [147], the above method
implements simultaneous filtering and compression, and provides this data
processing in probabilistic setting. The idea of implicitly mapping the data
into a high-dimensional feature space [21] could be extended to the transform
presented in this paper.

7.6.8 Numerical realization

(i) Orthogonalization. Numerical realization of transforms of random vec-
tors implies a representation of observed data and estimates of covariance
matrices in the form of associated samples. For the random vector uk,
we have q realizations, which are concatenated into n× q matrix Uk. A
column of Uk is a realization of uk. Thus, a sequence of vectors u1, . . . , up

is represented by a sequence of matrices U1, . . . , Up. Therefore the trans-
formation of u1, . . . , up to orthonormal or orthogonal vectors v1, . . . , vp

(by Lemmata 33 and 34 in Section 5.7.4) is reduced to a procedure for
matrices U1, . . . , Up and V1, . . . , Vp. Here, Vk ∈ Rn×q is a matrix formed
from realizations of the random vector vk for each k = 1, . . . , p.

Alternatively, matrices V1, . . . , Vp can be determined from known pro-
cedures for matrix orthogonalization [50]. In particular, the QR decom-
position [50] can be exploited in the following way. Let us form a matrix
U = [UT

1 . . . UT
p ]T ∈ Rnp×q where p and q are chosen such that np = q, i.e.

U is square.6 Let
U = V R

be the QR decomposition for U with V ∈ Rnp×q orthogonal and R ∈ Rnp×q

upper triangular. Next, we write V = [V T
1 . . . V T

p ]T ∈ Rmp×q where Vk ∈
Rn×q for k = 1, . . . , p. The sub-matrices V1, . . . , Vp of V are orthogonal,

i.e. ViV
T
j =

{
O, i 
= j,
I, i = j,

, for i, j = 1, . . . , p, as required.

Other known procedures for matrix orthogonalization can be applied to
U1, . . . , Up in a similar fashion.

Remark 44. For the cases when v1, . . . , vp are orthonormal or orthogonal
but not orthonormal, the associated accuracies (7.149), (7.164), (7.178)
and (7.194) differ for the factors depending on (E1/2

vkvk
)†. In the case of

orthonormal v1, . . . , vp, (E1/2
vkvk

)† = I and this circumstance can lead to an
increase in the accuracy.

(ii) Covariance matrices. The expectations and covariance matrices in
Theorems 60 and 61 and Corollaries 19 and 20 can be estimated, for ex-
ample, by the techniques considered in Section 5.3 of Chapter 4.

6Matrix U can also be presented as U = [U1 . . . Up] with p and q such that n = pq.
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(iii)Transforms T 0
p, T̂ p and T̄ p for zero mean vectors. The computational

work for T 0
p (Theorems 60 and 61), T̂ p and T̄ p (Corollaries 19 and 20,

respectively) can be reduced if T 0
p, T̂ p and T̄ p are applied to the zero

mean vectors x̃, ṽ1, . . ., ṽp given by

x̃ = x− E[x], ṽ1 = v1 − E[v1], . . . , ṽp = vp − E[vp].

Then f0 = O and f̄ = O. The estimates of the original x are then given
by

x̌ = E[x] +
p∑

k=1

F0
k(ṽk), x̂ = E[x] +

p∑

k=1

F̂k(ṽk)

and

x̄ = E[x] +
p∑

k=1

F̄k(ṽk)

respectively. Here, F0
k, F̂k and F̄k are defined similarly to (7.147), (7.162),

(7.175), (7.176), (7.192) and (7.193).

7.6.9 Simulations

Simulations to illustrate transforms by Theorem 61 and
Corollary 20

The transforms T 0
2 (Theorem 61), T̃ 2 (Corollary 20) and the known trans-

forms [63], [158], [173] have been applied to compression, filtering and
subsequent restoration of the reference signal given by the matrix X ∈
R256×256. The matrix X represents the data obtained from an aerial digi-
tal photograph of a plant7.

We divide X into m×q sub-matrices Xij ∈ Rm×q with i = 1, . . . , 256/m
and j = 1, . . . , 256/q. By assumption, the sub-matrix Xij is interpreted
as q realizations of a random vector x ∈ L2(Ω,Rm) with each column
representing a realization. Observed data were modelled in the form

Yij = X̄ij • X̄ij • X̄ij , (7.219)

where the symbol • denotes the Hadamard product and X̄ij represents q
realizations of the vector x̄ = x− E[x].

The proposed transform T 0
2 , given by (7.137) and (7.174)–(7.176) for

p = 2, and the transforms T[63] [63], T[158] [158] and T[173] [173] have been
applied to each pair Xij , Yij .

7The database is available in http://sipi.usc.edu/services/database/Database.html.
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Table 4. Performance comparison of transforms T 0
2 and T[63].

m = 8, q = 16
Accuracy Flops

cr J[63] J0
2 J[63]/2 K[63] KT 0

2
K[63]/KT 0

2

− 5.95× 106 2.01× 10−25 1.34× 1033 1.14× 107 3.20× 107 0.36
1/2 5.95× 106 3.97× 103 6.64× 105 2.37× 107 5.50× 107 0.43
1/4 5.95× 106 3.30× 104 5.50× 104 2.35× 107 5.21× 107 0.43

m = 16, q = 32
Accuracy Flops

cr J[63] J0
2 J[63]/2 K[63] KT 0

2
K[63]/KT 0

2

− 9.82× 106 5.09× 10−25 4.1× 1031 2.08× 107 6.03× 107 0.35
1/2 9.82× 106 7.10× 103 1.70× 104 4.34× 107 9.81× 107 0.45
1/4 9.84× 106 7.50× 104 2.46× 103 4.29× 107 9.81× 107 0.44

m = 32, q = 64
Accuracy Flops

cr J[63] J0
2 J[63]/2 K[63] KT 0

2
K[63]/KT 0

2

− 1.81× 107 1.16× 10−24 8.6× 1030 3.95× 107 1.18× 108 0.33
1/2 1.82× 107 1.75× 104 6.73× 103 8.21× 107 1.88× 108 0.44
1/4 1.83× 107 2.00× 105 1.05× 103 8.12× 107 1.86× 108 0.44
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Operators ϕ1 and ϕ2 in (7.137) have been defined so that

ϕ1(y) = y and ϕ2(y) = x(1)

where x(1) has been determined from the procedure presented in item (i)
of Section 7.6.6. Orthogonal matrices V1, V2 for the transform T 0

2 have
been determined from the QR decomposition as described in Section 7.6.8.
Covariance matrices have been estimated from the associated samples with
the method given in Section 5.3.1.

We write
J[63] = max

ij
‖Xij − T[63]Yij‖2,

J[158] = max
ij
‖Xij − T[158]Yij‖2,

J0
2 = max

ij
‖Xij − T 0

2 Yij‖2,

J[173] = max
ij
‖Xij − T[173]Yij‖2,

and
J[63]/2 = max

ij
[‖Xij − T[63]Yij‖2]/‖Xij − T 0

2 Yij‖2],

J[158]/2 = max
ij

[‖Xij − T[158]Yij‖2/‖Xij − T 0
2 Yij‖2],

J[173]/2 = max
ij

[‖Xij − T[173]Yij‖2/‖Xij − T 0
2 Yij‖2].

We note that the transform T 0
p is optimal in the class of transforms

defined in Section 7.6.3. The transforms T[63] [63], T[158] [158] and T[173]

[173] are each optimal in different transform classes.

The results of simulations are presented in Tables 4–6. For the same
compression ratio, the proposed transforms T 0

2 , T 0
3 and the known trans-

forms T[63], T[158], T[173] are compared with respect accuracy and compu-
tational work.

The symbol ‘cr’ denotes the compression ratio. In the first column of
each table, the symbol ‘−’ denotes the case of a pure filtering with no
compression. In this case, PCA-KLT rank and the ranks of the operators
F 0

1 , . . ., F 0
p of the transform T 0

p are all equal to m, i.e. η[7] = η1 = . . . =
ηp = m.

Tables 4–6 also represent the cumulative number of flops needed for pro-
cessing of data Yij for all i = 1, . . . , 256/m and j = 1, . . . , 256/q. We denote
the number by K with a subscript related to the associated transform. We
note that the number of flops, needed for the matrix orthogonalization
procedure, has been included in the overall number of flops for T 0

2 .
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Tables 4–6 are to compare accuracies of transforms T 0
2 , T[63] and T[158].

It follows from the tables that, for the same compression ratio, the accuracy
of the transform T 0

2 is substantially better than that for the transforms in
[63] and [158]. Although PCA-KLT requires a smaller number K[63] of
flops than that of T 0

2 , the accuracy of PCA-KLT cannot be improved for
the same compression ratio. At the same time, KT 0

2
is less than K[158] (see

Table 5).
In Figures 7.3–7.5, we present the results of simulations for the case m =

16, q = 32and cr = 1/2 taken from the Tables 4 and 5. In particular, for a
more conspicuous illustration of these results, in Fig. 7.5(b) we represent
the case of one-dimensional signals that are typical fragments of plots of
the same row in matrices {Xij} (solid line) and {T 0

2(Yij)} (dashed line with
circles).

In Table 6, we compare performance of the proposed transform T 0
2 with

that of the transform T[173]. The transform T[173] is based on a Volterra
polynomial of the second degree which requires N = 16 terms for Xij , Yij ∈
R16×32. This implies a substantial increase in computational work for T[173]

in comparison with the proposed transform T 0
2 .

The simulations demonstrate the superiority of the considered trans-
form over known transforms T[63], T[158] and T[173] with respect to asso-
ciated accuracies and computational work. We note that the accuracy of
transforms T[63] and T[158] cannot be improved (for a fixed compression ra-
tio) and the computational work for transform T[173] cannot be diminished
(for the same associated accuracy and fixed compression ratio). With this
method, it is possible that these measures can be improved using the free
parameters in the considered transform. This point has been discussed in
Remark 39 in Section 7.6.3.

In the case of ϕ1 and ϕ2 chosen from (7.196), the accuracy J0
2 associated

with T 2
0 is considerably worse than that for the original choice for ϕ1 and

ϕ2.

Simulations to illustrate transform by Theorem 62

Let the tensor (X(1), X(2), X(3)) be the numerical representation of the
known image “Tree”,8 where X(k) ∈ RM×N , k = 1, 2, 3, and M = N = 256.
For each k = 1, 2, 3, matrix X(k) has been partitioned into 256 sub-matrices
X

(k)
ij ∈ R8×32 with i = 1, . . . , 32 and j = 1, . . . , 8 so that X(k) = {X(k)

ij }.

8The database can be found in http://sipi.usc.edu/services/database/Database.html.
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Each sub-matrix X
(k)
ij has been interpreted as a set of 32 realizations

of a random signal with columns representing realizations.
Observed data has been simulated in the form

Y
(k)
ij = 10 R(k)

ij •X
(k)
ij + 500 R̃(k)

ij , (7.220)

where R(k)
ij and R̃(k)

ij are matrices with uniformly distributed entries in the
interval (0, 1) and normally distributed entries with mean 0 and variance
1, respectively.

In these simulations, we compare the performances of the transform
T 0

2 given by (7.137), (7.138), (7.205), (7.206) with the best transform of
the second degree P2 by [158] and the optimal hybrid Hadamard-quadratic
transform T 0

pr given by (7.87) and Theorems 56 and 57 for p = 9 and r = 5
(Section 7.5). We note that the transform P 0

2 generalizes PCA-KLT and is
a particular case of T 0

pr (see Section 7.5.6). The rank has been used equal
to 5 for all the transforms.

The transforms have been applied to each pair of sub-matrices X
(k)
ij and

Y
(k)
ij . The related covariance matrices have been estimated by the known

simple estimates given in Section 5.3.1. As above, operators ϕ1 and ϕ2 for
the transform T 0

2 have been defined by ϕ1(y) = y and ϕ2(y) = x(1) with
x(1) determined from the procedure provided in Section 7.6.6.

The results of simulations are presented in Table 7 and Figures 7.6–7.7.
In the table,

ΔP 0
2

= ‖X(k)−X
(k)

P 0
2
‖2, ΔT 0

pr
= ‖X(k)−X

(k)
T 0

pr
‖2 and ΔT 0

2
= ‖X(k)−X

(k)

T 0
2
‖2

where X
(k)

P 0
2

, X
(k)
T 0

pr
and X

(k)

T 0
2

are results of the application of the transform

P 0
2 , T 0

pr and T 0
2 , respectively. The matrices X

(k)
[152], X

(k)
[152],9, X

(k)

P̆2
, X

(k)

P̆2,9
,

X
(k)

P̂2
and X

(k)

P̂2,9
have been composed from the corresponding 8 × 64 sub-

matrices similarly to the matrices from the preceding Section.

Table 7: Errors associated with
transforms P 0

2 , T 0
pr and T 0

2

of the same rank r = 5.
ΔP 0

2
ΔT 0

pr
ΔT 0

2

X1 2.2× 108 3.4× 107 1.1× 106

X2 2.2× 108 3.0× 107 1.3× 106

X3 2.7× 108 3.8× 107 1.2× 106
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(a) Given reference signals {Xij}. This digitized image has
been taken from http://sipi.usc.edu/database/.
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(b) Observed data {Yij}.

Figure 7.3: Illustration of simulation results from Tables 4 and 5.



7.6. COMBINED TRANSFORM 369

50 100 150 200 250

50

100

150

200

250

(a) Estimates of {Xij} by [63].
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(b) Estimates of {Xij} by [158].

Figure 7.4: Illustration of simulation results from Tables 4 and 5.
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(b) Plots of related rows in {Xij} and T 0
2(Yij).

Figure 7.5: Illustration of simulation results from Tables 4 and 5.
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(a) Observed data (Y (1), Y (2), Y (3)).

(b) Reference signals (X(1), X(2), X(3)). This digitized image
has been taken from http://sipi.usc.edu/database/.

Figure 7.6: Examples of performance of transforms P 0
2 and T 0

2 .
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) by transform P 0
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(b) Estimates (X
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) by transform T 0
2 .

Figure 7.7: Examples of performance of transforms P 0
2 and T 0

2 .
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7.6.10 Discussion

Some distinctive features of the above techniques are as follows.

Remark 45. It follows from Theorems 60 and 61, and Corollaries 19
and 20 that the accuracy associated with the considered transform improves
when p increases.

Remark 46. Unlike the approaches based on Volterra polynomials [159,
167, 173, 182] the considered method does not require computation of pseudo-
inverses for large N × N matrices. Instead, the proposed transforms use
pseudo-inverses of n×n matrix Evkvk

. See Theorems 60 and 61. This leads
to a substantial reduction in computational work.

In summary, the approach considered in Section 7.6 is based on a rep-
resentation of a transform in the form of the sum of p reduced-rank trans-
forms. Each particular transform is formed by the linear reduced-rank
operator Fk, and by operators ϕk and Qk with k = 1 . . . , p. Such a device
allows us to improve the numerical characteristics (accuracy, compression
ration and computational work) of the known transforms based on the
Volterra polynomial structure [159, 167, 173, 182]. These objectives are
achieved due to the special “intermediate” operators ϕ1, . . ., ϕp and Q1,
. . ., Qp. Such operators reduce the determination of optimal linear reduced-
rank operators F0

1, . . ., F0
p to the computation of a sequence of relatively

small matrices (Theorems 60 and 61).
The explicit representations of the accuracy associated with the pro-

posed transforms have been rigorously justified.
It has been shown that the proposed approach generalizes the Fourier

series in Hilbert space, the Wiener filter, the Karhunen-Loève transform
and the transforms [159, 167, 173].

7.7 Optimal Generalized Hybrid Transform

In this section, we consider an extension of the methods of Sections 7.5
and 7.6 to a more general case. An idea is to apply the transform given
by Theorems 60 and 61 to each iteration of the recurrent procedure of the
hybrid method of Section 7.5. The technique summarized in Theorems 60
and 61 is more general than the Hadamard-quadratic approximation used
in Section 7.5 and, therefore, has more degrees of freedom to improve the
performance of the transform resulted in such a device.
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7.7.1 Method description

Let x and y be as in Section 7.5, i.e. x ∈ L2(Ω,Rm) and y ∈ L2(Ω,Rn).
The proposed transform consists of two stages which we call the recurrent
unconstrained error minimization and the constrained error minimization.

Stage one: recurrent unconstrained error minimization. Let x0 = y and
let x1, x2, . . . , xq ∈ L2(Ω,Rm) be defined by

xj+1 = T̃ j(xj), (7.221)

where for j = 0, 1, . . . q − 1,

T̃ j(xj) = f̃j +
p∑

k=1

F̃kjQkjϕkj(xj)

= f̃j +
p∑

k=1

F̃kj(vkj) (7.222)

with

T̃ j : L2(Ω,Rν)→ L2(Ω,Rm), ν =
{

n if j = 0,
m if j = 1, , . . . , q

,

f̃j ∈ Rm, ϕkj : L2(Ω,Rν)→ L2(Ω,Rν), Qkj : L2(Ω,Rν)→ L2(Ω,Rnν),

F̃kj : L2(Ω,Rν)→ L2(Ω,Rm) and vkj = Qkj [ϕkj(xj)].

Here, for each j = 0, 1, . . . , q−1, operators ϕkj andQkj are chosen similarly
to those in Section 7.6, and the vector f̃j and operators F̃kj are determined
from the solution of the unconstrained minimization problem

J(f̃j , F̃1j , . . . F̃pj) = min
fj ,F1j ,...,Fpj

J(fj ,F1j , . . . ,Fpj), (7.223)

where

J(fj ,F1j , . . .Fpj) = E[‖x− T j(xj)‖2]. (7.224)

The functional J(fj ,F1j , . . .Fpj) represents the error associated with
x estimation by T j , therefore, the solution to the problem (7.223) is called
the recurrent unconstrained error minimization.

Stage two: constrained error minimization. Next, for j = q, the vector
f0

q and the operators F0
kq are determined from the solution of the rank-

constrained minimization problem

J(f0
q ,F0

1q, . . .F0
pq) = min

f̃q,F̃1q,...,F̃pq

J(f̃q, F̃1q, . . . , F̃pq) (7.225)
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subject to

rank F̃1q ≤ η1, . . . , rank F̃pq ≤ ηp, (7.226)

where
η1 + . . . + ηp ≤ η ≤ min{m,n}.

We write

T 0
q(xq) = f0

q +
p∑

k=1

F0
kq(vkq). (7.227)

7.7.2 Determination of the transform

Theorem 63. Let v1j , . . . , vpj be determined by Lemma 34 of Section 5.7.4
for each j = 0, 1, . . . , q. Then the vector f̃j and operators F̃1j , . . . , F̃pj,
satisfying the unconstrained minimum (7.223), are determined by

f̃j = E[xj ]−
p∑

k=1

F̄kjE[vkj ] (7.228)

and

F̃1j = Exjv1jE
†
v1jv1j

+ M1[I − Ev1jv1jE
†
v1jv1j

], (7.229)

...
F̃pj = Exjvpj

E†vpjvpj
+ Mp[I − Evpjvpj

E†vpjvpj
], (7.230)

where Mj ∈ Rm×n is an arbitrary matrix for each j = 1, . . . , p.
The associated accuracy for transform T̃ j, defined by (7.222) is given

by9

E[‖x− T̃ j(xj)‖2] = ‖E1/2
xx ‖2 −

j∑
s=0

p∑

k=1

‖Exvks
(E1/2

vksvks
)†‖2. (7.231)

Proof. The proof of relationships (7.228)–(7.230) follows from the proofs
of Theorem 61 and Corollary 20. The proof of the error representation
(7.231) follows from the proofs of Theorem 43 (Section 5.7.7), Theorem 61
and Corollary 20.

9In particular, Mk can be chosen as the zero operator.
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We need more notation as follows.
Let the SVD of the matrix Exqvkq

(E1/2
vkqvkq

)† be given by

UkqΣkqV
T
kq = Exqvkq

(E1/2
vkqvkq

)†, (7.232)

where Ukq ∈ Rm×n, Vkq ∈ Rn×n are orthogonal and Σkq ∈ Rn×n is diago-
nal,

Ukq = [sk1, . . . , skn], Vkq = [dk1, . . . , dkn], (7.233)

Σkq = diag(βk1, . . . , βkn) (7.234)

with βk1 ≥ · · · ≥ βkr > 0, βk,r+1 = βkn = 0, r = 1, . . . , n and r = r(k).
Let us set

Ukηk
= [sk1, . . . , skηk

], Vkηk
= [dk1, . . . , dkηk

] (7.235)

Σkηk
= diag(βk1, . . . , βkηk

), (7.236)

where Ukηk
∈ Rm×ηk , Vkηk

∈ Rn×ηk and Σkηk
∈ Rηk×ηk . Now we define

Gkηk
∈ Rm×n and Gkηk

: L2(Ω,Rn)→ L2(Ω,Rm) by

Gkηk
= Ukηk

Σkηk
V T

kηk
and [Gkηk

(wkq)](ω) = Gkηk
[wkq(ω)], (7.237)

respectively, for any wkq ∈ L2(Ω,Rn).
The operators E†vkqvkq

, (E1/2
vkqvkq

)† : L2(Ω,Rν) → L2(Ω,Rm) are defined
similarly to the operators E†vkvk

, (E1/2
vkvk

)† given in Section 7.6.4.
We write Ak ∈ Rm×n for an arbitrary matrix, and define operatorMk :

L2(Ω,Rn)→ L2(Ω,Rm) by [Mk(w)](ω) = Akw(ω) for any w ∈ L2(Ω,Rn).

Theorem 64. Let v1q, . . . , vpq be orthogonal vectors determined by Lemma
34 of Section 5.7.4. Then f0

q and F0
1q, . . . ,F0

pq, satisfying (7.223)–(7.226),
are determined by

f0
q = E[xq]−

p∑

k=1

F 0
kqE[vkq] (7.238)

and

F 0
1q = G1η1(E1/2

v1qv1q
)† + M1[I − E1/2

v1qv1q
(E1/2

v1qv1q
)†], (7.239)

...
F 0

pq = Gpηp
(E1/2

vpqvpq
)† + Mp[I − E1/2

vpqvpq
(E1/2

vpqvpq
)†] (7.240)

where, for each j = 1, . . . , p, Mj ∈ Rm×n is an arbitrary matrix defined
similarly to Mj in Theorem 61.
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The accuracy associated with transform T 0
pq given by (7.227) and (7.238)–

(7.240) is such that

E[‖x− T 0
pq(y)‖2] = ‖E1/2

xx ‖2 −
p∑

k=1

ηk∑

i=1

β2
ki

−
q−1∑
s=0

p∑

k=1

‖Exvks
(E1/2

vksvks
)†‖2. (7.241)

Proof. The proof follows from the proofs of Theorem 43 (Section 5.7.7) and
Theorem 61.

7.7.3 Discussion

Optimal hybrid filtering.

The transform T̃ j given by (7.222) and Theorem 63 represents a model
of the filter and, therefore, is important in its own right. The transform
T̃ j can be considered independently from the transform T 0

pq. It follows
from the representation of the error (7.231) associated with the filter T̃ j

that its accuracy is improved with an increase in the number of iterations
j and the number of terms p. Other advantages and degrees of freedom are
associated with the transform given by Theorems 60 and 61 of Section 7.6.
This transform is used at each iteration of the recurrent procedure (7.221).

Features associated with the transform of Section 7.6.

Both transform T̃ pj and transform T 0
pq possesses features inherited from

the transform of Section 7.6. In particular, the computational load of both
transforms is lessened in comparison with the transforms based on the
Volterra polynomial structure (see Remark 40 in Section 7.6).

The compression procedure of the transform T 0
pq is similar to that con-

sidered in Section 6.5.8. The compression ratio is given by

c0 = (η1 + . . . + ηp)/m (7.242)

and it can be varied according to variations in each ηk for k = 1, . . . , p.

7.8 Concluding Remarks

In this chapter, we have presented the computational methods for data
processing of high dimensionality. In Sections 7.2 and 7.4, we have given
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a rigorous justification and generalization for the Principal Components
Analysis also known as the Karhunen-Loève Transform (PCA–KLT). In
Section 7.3, wide generalizations of the Eckart-Young low-rank approxi-
mation theorem have been presented. In Sections 7.5–7.7, three compu-
tational methods have been provided which are diverse generalizations of
PCA–KLT. These methods are united by the idea of increasing the degrees
of freedom compared to PCA–KLT. While PCA–KLT has only one degree
of freedom (its rank), the methods given in Sections 7.5–7.7 have extra de-
grees of freedom associated with their specific structures. As a result, the
extra degrees of freedom are the number of iterations for the methods in
Sections 7.5 and 7.7, and the choice of nonlinear operators which comprise
the methods of Sections 7.6 and 7.7. Variations of the degrees of freedom
allow us to improve the performance of the methods for data processing
presented in this chapter.
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