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Preface

In broad terms, the purpose of this book is twofold. First, we present a
theoretical basis for mathematical modelling of nonlinear systems which can
be described from observations of their input-output signals only. Second,
we give specified computational methods which follow from the general
theoretical framework. The term “nonlinear system” means a device which
transforms signals. The setting is often rather abstract but is carefully
detailed. This is implied by our desire to embrace a wide spectrum of
possible types of nonlinear systems and to provide a rigorous analysis of
topics we study.

While our work is mainly motivated by research in systems theory, we
are very concerned with mathematical framing for problems under con-
sideration. This is because the subjects considered in the book represent
an absorbing blend of special areas in approximation theory, numerical
methods, mathematical statistics and optimal filtering of stochastic sig-
nals. Many of the questions we ask are new (see Overview). In many
cases, our view of problems we consider is quite specific, and therefore we
assume the reader’s willingness to accept new terminology.

The book marks the coming together of two basic interlacing research
streams. One stream consists of work on operator approximation with a
given accuracy and operator interpolation, and has its origin in the work
of P. Prenter, V. Istratescu, V. Bruno and I. Daugavet around 1980. These
pioneering researchers generally worked on rather general problems. We
present new, recently developed methods which have been motivated by
their fundamental results and which generalize them. The second stream,
which studies the best operator approximation techniques, began with
Wiener, Hotelling, Karhunen, Loeve, Bode and Shannon around 1940 and
1950. We provide new methods that have been initiated with their pioneer-
ing results and which advance them to solution of more general problems.
Those methods have been published very recently.

vii



viii PREFACE

Often a book summarizes knowledge in the field. While our book
presents very recent accomplished achievements in the area with their rig-
orous theoretical justification, it may also be viewed as a report on the
work in progress where a number of questions are still open.

The book contains a number of numerical examples. In many cases,
we used data obtained at http://sipi.usc.edu/database/. This data is the
digital basis for a number of images that we have used and that have been
used a number of times in the open literature. We have made a concerted
effort to locate the source of the original images but unfortunately have
not been completely successful.

We wish to acknowledge many debts. A. Torokhti is grateful to I.
Daugavet and V. Malozemov (both are with the St. Petersburg State
University, St. Petersburg, Russia) for many discussions and useful com-
ments related to the first stream of the book. Both co-authors wish to
thank P. Pudney (the University of South Australia, Adelaide, Australia)
for his enormous time spent assisting us with numerical simulations. We
are specifically grateful to our colleagues in the School of Mathematics and
Statistics at the University of South Australia for supporting us in many
aspects of the work in this book.

Finally, we are pleased to thank the Australian Research Council (the
Large Research Grant A49943121 for 1999-2002 and the ARC Discovery
Grant DP0453236 for 2004-2006) and the University of South Australia
(a number of internal research grants in 1996-2005) for supporting the
research provided here.
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Chapter 1

Overview

In this book, we study theoretical and practical aspects of computational
methods for mathematical modelling of nonlinear systems. A number of
computational techniques are considered, such as

methods of operator approximation with any given accuracy,

e operator interpolation techniques including a non-Lagrange interpo-

lation,

methods of system representation subject to constraints associated
with concepts of causality, memory and stationarity,

methods of system representation with an accuracy that is the best
within a given class of models,

methods of covariance matrix estimation,

methods for low-rank matrix approximations,

e hybrid methods based on a combination of iterative procedures and

best operator approximation, and

methods for information compression and filtering under condition
that a filter model should satisfy restrictions associated with causality
and different types of memory.

As a result, the book represents a blend of new methods in general
computational analysis, and specific, but also generic, techniques for study
of systems theory ant its particular branches, such as optimal filtering and
information compression.

We are interested in the following basic questions:

1.

Suppose a nonlinear system can be described from observations of its
input-output signals only. What is a constructively defined mathe-
matical model of such a system?

. What is the accuracy of such a model?

1



2 1. OVERVIEW

3. How can we compute this model?

The following example illustrates a motivation for the problems under
consideration. Suppose that z,y and u are functions of discrete time so
that x(k),y(k) and u(k) are values of z,y and u at ¢, with k = 1,2,....
Consider the discrete-time time-invariant system [15]

u(k+1) = Glu(k),(k),
y(k) = Flu(k),e(k)], u(0) = u, (L.1)

where G, F : R™ x R™ — R™, u(k) is the state vector, ug is the initial
state, z(k) and y(k) are the input and output, G is the one-step ahead
state transition operator and F' is the input-output map. “The function F’
that describes the input-output of the system is of primary importance in
systems theory because this is all an external observer can see” [15].

This book, firstly, brings together and systematizes known results in
the branch of general computational analysis associated with modelling of
nonlinear systems and, secondly, presents a number of new results which
are natural but very specific extensions of known techniques.

In practice, one has to be content with an approximate solution to
the problem. As a rule, an exact solution to the problem can only be
obtained when the problem is completely described by a finite number
of input and output data. While “The best material model of a cat is
another, or preferably the same, cat” (N. Wiener, Philosophy of Science,
1945), the difficulty is that we may not have “a cat” in hand and even a
complete description is often not available. In practice, we wish to model a
system which is known only partially and indeed is often known only from
the observed input-output characteristics. Such observations are typically
incomplete. In reality, the observations are stochastic and are disrupted by
noise. Moreover, inputs are often unknown and the model may use only
sampled observation of the output and some available (a priori) knowledge
of the system. The models in this book are developed both for the case
of “deterministic” spaces and for the case of probability spaces under the
practical assumption that description of the system is only realized via
observed “external” information.

In broad terms, we set two aims for ourselves. Firstly, we wish to
develop a system of general conceptions which allows us to formulate and
solve problems related to a representation of models which should have
properties associated with properties of real world phenomenon such as
causality, memory, stationarity, etc. Secondly, we wish to elaborate the
general conceptions to specific techniques which can be applied to practical
problems.
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In our view, it is possible to develop a unified way to the solution of
many problems in modelling of nonlinear systems. In this book we present
a number of techniques, many of which are united by one basic idea: to
increase degrees of freedom via different types of nonlinearity.

In Chapter 2, we study models of nonlinear systems formed by opera-
tor polynomials. More precisely, a nonlinear system is treated as a nonlin-
ear operator, and we study its approximation by operator polynomials. It
should be noted that nonlinear operator approximation is an intensively de-
veloped branch of general computational analysis. In recent decades, there
have been a number of significant achievements in this area spread through
diverse publications. From a theoretical point of view, methods in operator
approximation theory [45]-[156] are important since they generalize classi-
cal results in function approximation theory. The practical importance of
results in nonlinear operator approximation arises directly from a demand
in the modelling of nonlinear systems [98], [106]-[151]. We consider both
existence theorems for approximating operators of preassigned accuracy
and numerical schemes for their practical realization.

Chapter 2 is organized as follows. In Section 2.2, the general formulation
of the problem is presented. In Sections 2.3 and 2.4, we describe methods
of nonlinear operator approximation in the space C([0,1]) and in Banach
spaces as elaborated by Gallman and Narendra [45], Daugavet and Lanne
[23] and Daugavet [24]—[26]. These methods are not widely known and the
results presented in Sections 2.3 and 2.4 draw attention to these effective
procedures.

A generic approach to operator approximation in topological vector
spaces is considered in Section 2.5 and is elaborated in Sections 2.5.5—
2.7. In Section 2.5.5, we give theorems on the existence of an operator
approximating an operator defined on a compact set in a topological vector
space. In Section 2.6 the technique of Section 2.5.5 is modified to establish
some theorems on constructive approximation on noncompact sets. In
Section 2.7, the results of Sections 2.5.5 and 2.6 are specified in terms
of moduli of continuity.

In Chapter 3, we consider some fundamental principles of the general
theory for nonlinear operator interpolation. Interpolating operators are
naturally connected to modelling of nonlinear systems. If a system is given
by finite sets of input-output signals, then an interpolating operator pro-
vides a model of such a system. We give both an extension of the Lagrange
procedure to the case of interpolation in Hilbert space, and consider a spe-
cific interpolation method for the case when the Lagrange interpolation
idea does not work.
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So-called realistic operators are the subject of study in Chapter 4. The
class of operators described in this chapter generalizes causal operators,
operators with finite memory, stationary operators, etc. The generaliza-
tion is given in the form of special operators which we call R-continuous
operators and approximately R-continuous operators. This study is moti-
vated by the necessity of formalizing and modeling of physical properties
of realistic nonlinear systems.

All the next chapters are devoted to the study of different forms for
best computational methods, that is the methods with a highest possible
accuracy. In Chapter 5, the methods of best approximation for the system
acting in “deterministic” and probability spaces are considered. We are
specifically concerned with different types on nonlinear models and give a
rigorous analysis of their accuracy. In particular, we study the so called
Hadamard-quadratic model, the r-degree model, the best causal model, and
the so-called hybrid method for finding models which combine advantages
of best approximation techniques and iterative procedures.

Computational methods for optimal filtering stochastic signals are given
in Chapter 6. Here, we consider generalizations of the Wiener filter to the
optimal linear filters in Hilbert spaces, and linear and nonlinear optimal
filters with different types of memory. This includes optimal causal linear
filtering with piecewise constant memory, optimal causal polynomial filter-
ing with arbitrarily variable memory and optimal unconstrained nonlinear
filtering based on an extension of the hybrid method studied in Chapter 5.
Our methodology is based on the Wiener-Kolmogorov approach. In this re-
gard, Sorenson ([142], p. 14) points out that the “pioneering work of Wiener
and Kolmogorov” enabled us to “bridge the gap between communication
engineers and statisticians” and observes that the introduction of “commu-
nication engineering and mathematical concepts” assisted “the synthesis of
ideas from both fields in order to obtain a more powerful technique”. Our
extensions of the Wiener-Kolmogorov ideas exploit an underlying Volterra
functional form, which has been studied extensively by many authors. See
for example [16, 92, 95, 112, 136, 159, 175, 182].

At the same time, our treatment of techniques associated with the
Volterra series differs essentially from the known approaches. Firstly, our
estimator has the specific structure to accommodate both causality and
finite memory. Secondly, we establish an equivalence between the original
problem (6.66) formulated in terms of the vectors x and y and the collec-
tion of problems (6.74) formulated in terms of the components of x and
y. This allows us to represent the estimator in a natural coordinate form
(6.62). Such a representation implies a significant computational benefit
related to the small sizes of matrices to be computed in 6.77).
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The results described in Chapter 6 are new and are based on a substan-
tial extension of our earlier results [153]-[160].

Many known results assume the relevant covariance matrices are invert-
ible. Such an assumption is quite restrictive from a computational point
of view and is often associated with numerical instability. We avoid such a
drawback by using generalized inverse operators [6] which always exist.

In Chapter 7, computational methods for optimal compression and re-
construction of random data are studied. We begin with the standard Prin-
cipal Component Analysis (PCA) and Karhunen-Loéve transform (KLT),
and give a generalized PCA-KLT. Then these techniques are extended to
an optimal hybrid transform based on Hadamard-quadratic approximation,
an optimal transform formed by a combination of nonlinear operators and
an optimal generalized hybrid transform.

To be more specific, we list the following questions to be studied. These
questions are completely or partially answered in the book.

1. What is a computationally realizable nonlinear model of a nonlinear
system in spaces which are algebras? We say that the space is an
algebra if the operation of multiplication can be defined in the space.

2. Is there a way to provide a similar model in a space which is not an
algebra?

3. What kind of restrictions should be imposed on the spaces above?

4. Can we find a nonlinear model that approximates the system with
any given accuracy?

5. Can we provide a nonlinear model that approximates a system which
transforms signals belonging to a non-compact set?

6. If the answer to the above question is “yes”, what type of a space
should be chosen? For instance, should it be a Banach space or a
Hilbert space? What kind of topology should be chosen there?

7. Can the Lagrange’s idea of real function interpolation be extended
to the case of nonlinear operator interpolation? What kind of spaces
should we use?

8. What are the limitations for such an extension?

9. How can we overcome those limitations?

10. What is a unified definition of causality, memory and stationarity in
operator terms?

11. Can we determine a system model which is “equipped” with the prop-
erties mentioned in the preceding question, so that this model approx-
imates the system with any given accuracy?
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13.

14.

15.

16.

17.

18.

19.

20.

21.
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What kind of spaces should be chosen to determine such a system?
Can we use Banach spaces or even linear topological spaces? What
kind of limitations should be imposed on associated topologies?
What kind of nonlinearity should be chosen for the model which real-
izes an approximation of the system with a highest possible accuracy?
Such a model is called the best model.

Suppose the nonlinear model is chosen in the form of an operator
polynomial of an arbitrary degree. Then the degree of the operator
polynomial is the only degree of freedom in the model performance.
Can we choose a different way in a model determination so that the
model has more than one degree of freedom?

Is the best model unique? If not, what are conditions for its unique-
ness?

What are different types of memory in realistic systems? How can
we formalize them?

How and what particularities in the structure of the model should be
chosen to satisfy different types of memory?

Can we find a best model which is “equipped” with specific type of
memory?

What is a generic representation for the linear transform of stochastic
vectors subject to constraint on its rank?

Is such a representation unique? If not, what is an analytical form
for a family of such transforms?

Can we find nonlinear transforms with a better compression ratio
and associated accuracy than those for linear rank-constrained trans-
forms?

We believe that this book could give an opportunity to compare differ-
ent methods, including a number of new ones, to choose the best suitable
algorithm for applications, and will initialize a future theoretical develop-
ment of the presented results.

Finally, the way for referring to material within the book is as follows.
Theorems, lemmas, definitions, equations, et. are separately numbered for
each chapter. A reference to material within the same chapter does not
name the chapter. A reference to material in a different chapter names the
chapter.
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Methods of Operator
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Chapter 2

Nonlinear Operator
Approximation with
Preassigned Accuracy

2.1. Introduction

2.2. Generic Formulation of the Problem

2.3. Operator Approximation in Space CJ0, 1]

2.4. Operator Approximation in Banach Spaces by Operator Polynomials
2.5. Approximation on Compact Sets in Topological Vector Spaces

2.6. Approximation on Noncompact Sets in Hilbert Spaces

2.7. Special Results for Maps into Banach Spaces

2.8. Concluding Remarks

2.1 Introduction

Nonlinear systems theory is a direct area of applications for the methods
of nonlinear operator approximation. Gallman and Narendra [45] appear
to have been the first to propose an application of the Stone-Weierstrass
theorem generalization to the modelling of nonlinear systems. Further
development in nonlinear operator approximation techniques and their ap-
plication to nonlinear systems has been made by a number of authors. We
list references [12], [15]-[17], [22]-[26], [57, 60, 65, 98, 99, 104], [106]-[108],
[117]-[131], [148, 153, 154, 157] as examples of such methods.

9



10 2. NONLINEAR OPERATOR APPROXIMATION

In this chapter, we consider both existence theorems for approximating
operators of preassigned accuracy and numerical schemes for their practical
realization.

The chapter is organized as follows. A general formulation of the prob-
lem is given in Section 2.2. In Sections 2.3 and 2.4, we describe methods
of nonlinear operator approximation in the space C([0,1]) and in Banach
spaces as elaborated by Gallman and Narendra [45], Daugavet and Lanne
[23], and Daugavet [24]-[26]. These methods are not widely known and the
results presented in Sections 2.3 and 2.4 draw attention to these effective
procedures.

A generic approach to operator approximation in topological vector
spaces is considered in Section 2.5 and is further elaborated in Section
2.6. In Section 2.5.5, we give theorems on the existence of an operator
approximating an operator defined on a compact set in a topological vector
space. In Section 2.6, the technique of Section 2.5 is modified to establish
some theorems on constructive approximation on noncompact sets. In
Section 2.7, the results of Sections 2.5 and 2.6 are specified in terms of
modulus of continuity.

2.2 Generic Formulation of the Problem.

We begin with some remarks on a general formulation of the problem for
nonlinear operator approximation.

Let X and Y be locally convex topological vector spaces, with K C X
a subset and F': K — Y a continuous map.

The problem is to prove that for a given neighbourhood of zero 7 C Y,
there exists a constructively—defined operator S : X — Y and a neighbour-
hood of zero ¢ C X such that, for all z € K and all 2’ € X with

¥ —zerT,

we have
F(z)—S(z') er.

This general statement contains a few issues which must be clarified. Firstly,
it is necessary to establish some restrictions on the subset K. Should K be
a compact set? If so, what kind of restrictions should then be imposed on X
and Y ¢ Next, suppose K is bounded but not necessarily compact. What
kind of topology should then be used for X and Y ?

Secondly, a locally convex topological vector space is not an algebra,
as the ordinary multiplication operation cannot be defined for this space.
This causes corresponding difficulties for the structure of an approximating
operator S.
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In the following sections, we give and discuss a variety of possible solu-
tions to this problem depending on the specific type of spaces X, Y, set K
and approximating operator S.

2.3 Operator Approximation in Space C([0, 1]).

The case where X and Y are the space C' = C([0, 1]) of continuous functions
on the interval [0,1] C R and K, C C' a compact subset, allows a specific
structure for the operator S. The method has been presented in [45, 23].

Let F : K. — C([0,1]) be continuous. It is assumed that F(Q) = O if
O € K., where O is the zero element in C([0,1]).

In the next theorem we shall need some notation. We denote by Z,
the set of positive integers and by C,, an m—dimensional subspace of C,
with P,, € L(C,C,,) given by P,,(x) = x,,. The functions g; : Cp, = Cp,
(j=1,...,N) are assumed continuous and S,, y € L(Cy,, CYY) is given by

Sm,N(xm) = (91(xm), - 9N (Tm)).

The operator @ : CN — C is continuous and such that

Q(gl (xm)7 s 79N(wm)) = Z Ajryeosjn [gl (xm)]jl ce [gN(mm)]jN7

with
aj,...jy €ER, jr >0 and Z]k > 0.

Theorem 1. [23] For any € > 0, there exist § > 0, N € Z, and operators
P, Smn and Q such that, for all x € K. and u € C satisfying the
condition

[z —ul <9,

we have the inequality
[F(2) = QSm,nPm(uw)|| <e.

The proof in [23] depends greatly on the structure of the operator Sy, v
To be specific, the operator S, y must be such that

1. if u,, # O, then
Sm,N(um)(t) # oV

for all ¢ € [0,1], where OV is the zero element in CV;

2. if
S, (uy)) (t1) = S, (ufa)) (B2),
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then either
ul) =u® =0 or ull) =u®

and tl = t2.

A special study of operators S, y with the above properties is provided in
[24]. In particular, it is shown that there always exists an S, y satisfying
these conditions.

Note that Theorem 1 is the generalization of a similar theorem by Gall-
man and Narendra [45].

The space C' is an algebra, since multiplication of elements takes place
in C'. This is essentially exploited for the structure of the approximating
operator in Theorem 1; namely, the operator @) is constructed from the
product of functions gy, (2., )’*.

Nevertheless the structure of the approximating operator above is quite
complicated. A desire to study the possibility of simpler structures for an
approximating operator has motivated Theorems 2 and 3 [25] below.

Let C = C(T), where T is metric and compact. Set

A(u) = Lo+ Lyu+ Lou® + ...+ Lyu™, (2.1)

where Ly € C, Ly, € L(C,C) is a linear operator and u* = [u(t)]*. The
class of operators A is denoted by A.

An important feature in the structure of the operator A is that Ly is
linear but not a k—linear operator as commonly supposed. See the following
sections in this connection.

We write N for the set of natural numbers, R™ for the set of real positive
numbers and Z for the set of integers.

Theorem 2. [25] Let C,, be a m—dimensional subspace of C(T) with basis

m
©1(t), ..., om(t) such that, for any N € N, all functions ngfj (t) are
j=1
linearly independent, where k; € N fori=1,...,m and k1 + ... + k,, =
N. Let K,, be a compact subset in Cp,. Then any continuous mapping
F : K, = C can be approximated by an operator of class A with any
prescribed accuracy.

Note that the assumption of the theorem is not very restrictive. The
following example [25] describes a subspace of C(T) satisfying this condi-
tion.

Example 1. Let ay,...,q,, € RT be such that

q1a1+~~~+Qmam:0
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implies
G =...=qm =0,

where q1,...,qm € Z. Then all numbers ki + ...+ kmouy, are different if
ki,...,km € Nand k1 + ...+ k,,, = N. Therefore the functions

e1(t) =t o, () =t
satisfy the assumption in Theorem 2 because of linear independence.

Theorem 2 is recast in [25] in terms of the modulus of continuity. We
give the definition first.

Definition 1. Let K. be a compact subset of C(T) and F : K. — C(T) a
continuous mapping. The function

w(F;0) = sup [F(21) = F(x2)||

z1,22€K: ||l —x2]| <6
1s called the modulus of continuity for F.

Theorem 3. [25] Let K. C C([0,1]) be a compact set. For any ¢ > 0,
there exists a continuous operator Q. : K. — C([0,1]) such that, for all
r € K,

1Q=(2) — x| <e,

and then for any continuous F : K. — C([0,1]) there exists A € A such
that

1F(@) ~ AQu(e))] < gw(F:de) +<.

Remark 1. [25] It might be taken from Theorems 2 and 3 that class A
s a reasonable approximation tool. Unfortunately this is not so, since an
operator A € A can be unstable to small disturbances of its argument.

2.4 Operator Approximation in Banach Spaces by
Operator Polynomials

The structures of approximating operators considered in the preceding sec-
tion cannot directly be extended to the approximation of operators acting
on abstract Banach spaces. In this and subsequent sections we present some
possible forms of approximating operators acting on spaces more general
than C.

We begin with the following definition.



14 2. NONLINEAR OPERATOR APPROXIMATION

Definition 2. Let X and Y be Banach spaces and B(X*,Y) a set of con-
tinuous k—linear operators. Let Ly € Y, Ly, € B(X*,Y) and Li(z*) =
Li(z,...,x). The operator P, defined by

———

k
P.(z) = Lo+ L1 + Lox® + ...+ Lp,a" (2.2)
18 called an operator polynomial of degree n.

The structure of the operator P, is quite general. A popular choice of
k—linear operators Lj, are multiple Volterra integrals [117]. The k—linear
operators in (2.2) can also be designed from superpositions of sigmoidal
functions ([22], [4]), radial functions [98] or wavelets.

Prenter [104] first used an operator polynomial to prove the Stone—
Weierstrass theorem for operators on Hilbert space.

Let H be a real, separable Hilbert space, K a compact subset of H,
and let H(K, H) denote the family of continuous operators from K into H
together with the uniform norm topology

IF = G|l = max || F(z) — G(z)]

where F,G € H(K). Prenter proved the following theorem.

Theorem 4. (Prenter, [104]) The the family of continuous finite rank
polynomial operators {P,} on H, restricted to K, is dense in H(K, H)
restricted to K.

Istratescu [65] and Bruno [12] extended Prenter’s result respectively to
operators on Banach spaces and topological vector spaces.

Theorem 5. (Istratescu, [65]) Let K be a compact set in a Banach space
X. Given € > 0, there exists an operator polynomial P, such that, for all
x € K, the inequality

[1F(z) — Pa(z)| <e

holds.

The extension [12] of the Stone-Weierstrass theorem to topological vec-
tor spaces is based on the following concepts.

Definition 3. Let X be a topological vector space and let L(X, X,,) be the
set of all continuous linear mappings from X into X,,, where X,, C X is
a subspace of dimension m. Let {Gp, }m=12,.. be a sequence of continuous
linear operators Gy, € L(X,X,,). The sequence {Gp}m=1,2,.. 15 said to
be equicontinuous on compacta, if for any given compact set K C X and
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any given neighbourhood of zero p C X we can find a neighbourhood of
zero 0 = () C X such that G (x1) — G(z2) € p for allm = 1,2, ...
whenever x1,x2 € K and r1 — x93 € 0.

Definition 4. [133] We say that X possesses the Grothendieck property of
approzimation if there exists a sequence {Gm}m:1,2,... of continuous linear
operators G, € L(X,X,,) such that the operators G, are equicontinu-
ous on compacta and uniformly convergent to unit operators on the same
compactal.

Remark 2. The conditions in Definition 4 are related. The condition that
the sequence of operators is equicontinuous on a compact set implies that
a uniformly convergent subsequence can be found. On the other hand, if
the sequence of operators converges uniformly to the unit operator on a
compact set, then the sequence is equicontinuous.

See also reference [108] in this connection.
Let X and Y be topological vector spaces. We denote by C(X,Y) the
family of continuous operators from X into Y in compact open topology.

Theorem 6. (Bruno, [12]) Let X andY be real Hausdorff topological vector
spaces with the Grothendieck property of approximation. Then operator
polynomials P, : X =Y of finite rank are dense on C(X,Y).

A related fundamental result is due to Fréchet [86].

Fréchet Theorem [86] Any functional defined and continuous on a space
of functions is representable as a limit of a sequence of polynomial integral
functions on any bounded subset of this space.

In [26], the Fréchet Theorem is generalized to continuous operator ap-
proximation on an arbitrary set in a separable Banach space.

For an open subset of a separable Banach space X, the generalization
of the Fréchet Theorem is as follows.

Theorem 7. [26] Suppose Q@ C X is an open subset of a separable Ba-
nach space X and F : Q0 — Y a continuous operator. Then there exists a
sequence of operator polynomials P, : X — Y such that

P, > F

for all x € Q.

L The sequence {Gm} is said to converge uniformly on the compact set K C X to
the unit operator on K if for any given neighbourhood of zero p C X we can find M > 0
such that Gm(z) — x € p whenever x € K and m > M.
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The proof is mainly based on the following theorem by Istratescu [65].

The class of sets 2 in Theorem 7 can be extended so that continuous
operators defined on them can be approximated, in the sense of pointwise
convergence, by operator polynomials. In particular, if the set  C X is
such that any continuous operator defined on §2 can be extended contin-
uously to the complete space X, or at least to a neighbourhood 2, then
for such a set () the statement of Theorem 7 holds. For example, convex
closed bodies in & belong to the above-mentioned class of sets €).

An extension of Theorem 7 to the case where € is an arbitrary set in X
requires an essential constraint for F' as follows.

Theorem 8. [26] Let Q2 be an arbitrary set in X and F : Q@ = Y a uni-
formly continuous operator. Then there exists a sequence {P,} of operator
polynomials such that P, — F for all x € Q).

Without loss of generality, it can be assumed that €2 is closed, since
any operator uniformly continuous on 2 can be extended with respect to
continuity onto its closure.

Further, not every operator defined and uniformly continuous on a
closed bounded set in a Banach space can be arbitrarily uniformly approx-
imated by generalized polynomials. An example of such a functional on
the unit ball of a Hilbert space is given in [94]. Another, perhaps simpler,
example, is given in [26].

Example 2. [26] Let X be the space of sequences

r = (51752,...)

with €, — 0 and set
]| = max €.

Suppose that Q) C X consists of all sequences of the form
Yy = (0’1,0’2,...,0%,0,0,...),

where a; is +1 or —1. The set ) belongs to the unit ball of the space X and
is closed.

We define a functional f on £ by
fly) =o102...0.
Since we have
Iy — 9"l =1

for distinct points y',y" € Q, the functional f is uniformly continuous.
It is easily extended to the wunit ball in X with preservation of uniform
continuity.
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Let
Xm:{33251,-..757”,0,0,-.-)}

be a subspace of X. We make no distinction between this space and the
space I5°. The restriction of a polynomial functional p, of degree n on X,
s a polynomial in m variables of degree not greater than n. Therefore if

QO COANX,,

is the set of vertices of the M —dimensional cube [—1,1]™ and if fp, is the
restriction of the functional f to Q.,, then for any polynomial p,, of degree
n and for any m, the inequality

sup {|f(z) — pn(z)| for v € Q} > Ep(fin)

holds, where E,(fm) is the best uniform approzimation of f, by polynomi-
als in m variables of degree n.

The function fn, is odd with respect to each argument, and in the set
of all best—approximation polynomials of this function, there also exists an
odd polynomial with respect to each argument. In particular, for m > n
the zero polynomial is the best approzximation polynomial, since this is the
unique polynomial of degree n of m wvariables which is odd with respect to
all arguments, and therefore

En(fm) =1

form >n.
Thus for any polynomial function p,, we have

sup {|f(x) — pn(x)| for x € Q} > 1.

2.5 Approximation on Compact Sets in Topological
Vector Spaces

In this section, we consider a systematic theoretical procedure for the con-
structive approximation of non-linear operators and show how this pro-
cedure can be applied to the modelling of dynamical systems. There are
several properties which we have sought to preserve in the modelling pro-
cess. In many cases the only given information about such a system is
information pertaining to an abstract operator F. We wish to construct
an approximating operator S which can be realized in physical terms, will
approximate F with a given accuracy and must be stable to small dis-
turbances. The operator S defines our model of the real system and will



18 2. NONLINEAR OPERATOR APPROXIMATION

be constructed from an algebra of elementary continuous functions by a
process of finite arithmetic. For this reason we regard S as computer-
processable.

A number of specific examples are presented for the particular purpose
of illustrating the theoretical results. Although the examples have been
simplified for computational convenience and are somewhat artificial they
are none-the-less representative of real situations. In these examples we
have used an underlying polynomial algebra but we note that this is simply
a matter of theoretical convenience. A suitable wavelet algebra could be
used instead. Another currently popular alternative is an algebra generated
by superpositions of a sigmoidal function. Such algebras are discussed in
detail by Cybenko [22] and Barron [4]. In general we require only that the
underlying algebra satisfy the conditions of Stone’s Algebra [113]. For the
purposes of this Section we have assumed that the elementary continuous
functions which generate the algebra can be evaluated by a process of finite
arithmetic. While this assumption may not be strictly correct the errors
involved are limited only by machine accuracy and in principle do not
disrupt our analysis.

The study in this Section has been motivated by a desire to understand
the nature of the modelling process for simulation of a real dynamical
system. A dynamical system is defined by a mapping that transforms a
set of input signals to a corresponding set of output signals. A signal is
normally defined by a set of real number parameters. In practice these
parameter sets could be uncountably infinite. For a computer simulation
of the system each signal must be represented by a finite set of real number
parameters and the mapping must be represented by a finite arithmetical
process. We must nevertheless show that the simulated system is a good
approximation to the real system.

To justify the approximation process we impose a basic topological
structure and use the consequent notions of continuity to establish theorems
of Weierstrass type. In the case of a general continuous map F : X — Y
where X, Y are locally convex topological vector spaces we will show that
the approximation procedure can be used on any given compact subset
K C X. Indeed if we assume that F' is known only on K then for some
suitable neighbourhood € of zero in X the construction of an extended op-
erator S : K+¢ C X — Y is an important ingredient in our approximation
procedure. The extension of the domain allows us to consider the effect of
a small disturbance in the input signal. Such disturbances are unavoidable
in the modelling process.

This section describes a generic approach and is concerned with ap-
plicable conditions that will allow the simulated system to represent the
real system to within an arbitrarily prescribed accuracy. The problem of
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relating the various error bounds to the dimensions of the model is not
considered and may be more effectively resolved in a specific context. One
could certainly consider these questions at the level of our particular ex-
amples.

There are other aspects of the approximation process which we do not
consider here. A real system is normally causal and may also be stationary
or have finite memory. These systems are studied in Section 3.

2.5.1 Relation to previous studies

The extension of the classical Stone-Weierstrass theorem to the approxi-
mation of continuous mappings on topological vector spaces by polynomial
mappings has been known for some time and was developed by Prenter [104],
Istratescu [65], Prolla and Machado [108] and Bruno [12]. In these papers
the approximation procedure relies directly on the classical theorem via an
underlying algebra of real valued polynomials.

Our procedure is essentially an elaboration of the procedure used by
Bruno but is more explicitly constructive and we believe more directly
related to the representation of real dynamical systems. In particular we
show that the model is stable to small disturbances in the input signal. We
have also considered the role of parameters in the representation process
and have adapted our methods accordingly. Our procedure is not limited
to polynomial approximation. On the other hand our analysis is restricted
to locally convex topological vector spaces. The present work is developed
from an approach used by Torokhti [151, 152, 153, 154].

2.5.2 A remark on the compactness condition

The assumption of compactness for the set K on which the operator F
is to be approximated is an important part of the modelling process and
cannot be totally removed. For a continuous real valued function on the
real line it is well known that uniform approximation by a polynomial can
be guaranteed only on a compact subset.

We believe that the compactness assumption is reasonable in practice.
Suppose the dynamical system is defined by an operator F': X — Y where
X and Y are topological vector spaces. Some knowledge of the operator is
necessary if we wish to simulate the given system. It may happen that F
is known only on the basis of a finite subset

{(Xnsyn) | 2n € X and y, = F(z,) €Y forn=1,..., N} C X xY (2.3)
or alternatively on a set

{(zy,yy) | zy € X and y, = F(z,) €Y fory e TCR"} C X xY (2.4)
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where I" is compact. Such knowledge may be empirical or based on a
restricted analysis of the system concerned. Of course there may be some
situations where the compactness assumption is not reasonable. If the
set on which the approximation is required is not compact then a stronger
continuity condition is needed. In a subsequent section we will use stronger
topological assumptions to consider this more difficult problem.

2.5.3 Generic approximant representation in topological
vector spaces

The constructive approximation of nonlinear operators in topological vector
spaces encounters some special difficulties. First, a topological vector space
is not an algebra, as the ordinary multiplication operation is not defined.
This necessitates using the structure (2.2) for the approximating operator.
Secondly, the structure (2.2) is quite general. It is not clear what specific
kind of k—linear operator is preferable in (2.2). In the studies [151]-[57] by
Torokhti and Howlett, these difficulties have been overcome by the further
elaboration of the ideas of Prenter [104] and Bruno [12].

One of the main aims in [151]-[57] is the constructive definition of an
operator S to approximate the operator F': K — Y given on the the com-
pact set K of the topological vector space X possessing the Grothendieck
property of approximation (see Definition 4 above), with values in the topo-
logical vector space Y. Furthermore there are certain properties that must
be satisfied by S if we wish to construct a useful model of a real nonlinear
system.

The generic structure of the approximating operator S in [151]-[57] is
as follows.

Let X and Y be topological vector spaces with the Grothendieck prop-
erty of approximation and with approximating sequences {Gy, }m=1,2,... and
{H,}n=1,2,.. of continuous linear operators

Gm € L(X,X,,) and H, € L(Y,Y,),
where X,, C X,Y,, C Y are subspaces of dimension m,n as described in
Definition 14. Write

m
X, = xm€X|xm=E a;ju;
=1

and

<
I

{yn ey | Yn = Zbkvk}a
k=1
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where
a=(ay,ag,...,am) ER™, b= (by,ba,...,b,) €R"

and
{Uj}T:p {ok oo
are bases in X,,,Y,, respectively. Let {¢g} = G be an algebra of continuous

functions g : R™ — R that satisfies the conditions of Stone’s Algebra [113].
Define the operators

Qe L(Xm,R™), Z:R™—R" and W e L(R",Y,)

by the formulae
Q(xm) =a, Z(a) = (g1(a),g2(a),...,gn(a)) and W(z) = szvk, (2.5)
k=1

where each g, € G and z; = gi(a).
Then S : X — Y, is defined by the composition

S = WZQG,y. (2.6)

In the following sections, it will be shown that subject to an appropriate
choice of the functions {gx} € G, the operator S supplies an approximation
to F' with any preassigned accuracy on both a compact set and noncom-
pact set in the corresponding topological vector spaces. Moreover [57] the
generic structure (2.6) of operator S provides so—called weak interpolation
to a nonlinear mapping in the space C([0, 1]).

A diagram for the realization of the approximating operator S is given
in Section 1.8.

2.5.4 Preliminaries

We begin with some preliminary results.

Definition 5. Let X,Y be real Hausdorff topological vector spaces and let
A be a subset of X. The map F : A — 'Y is uniformly continuous on A if
for each open neighbourhood of zero®> T C'Y we can find a neighbourhood
of zero 0 C X such that

Fllx+o0)NA CF(x)+7 (2.7)
for all x € A.

2In a topological vector space a set T with O € int(T) will be called a neighbourhood
of zero.
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Lemma 1. Let X,Y be real Hausdorff topological vector spaces and let K
be a compact subset of X. If FF : K — Y is continuous on K then it is
uniformly continuous on K.

Proof. Let T be a neighbourhood of zero in Y. Choose a neighbourhood of
zero v C Y with v — v C 7. For each x € K we choose a neighbourhood of
zero p(x) C X such that

Fl(z+ u(z))N K] C F(z) +v. (2.8)

Now choose a neighbourhood of zero o(x) C X such that o(z) 4+ o(x) C
pu(x). We write

Qz) =z +0o(z). (2.9)
Since
K< Q@) (2.10)
ceK
and since K is compact we can find a finite subcollection Q1,$9,...,,

(where we write Q; = x; + 04,0; = o(z;) and p; = p(z;)) such that

K C U 0. (2.11)

o=()oi (2.12)

It is clear that o is an open neighbourhood of zero in X. If we choose any
x € K then we can find k such that x € Q. Thus

F(z) € F(ag) +v. (2.13)
Since
z+o0c C Qp+o
- (l‘k + ka) + og
C zp+ uk

it follows that

Fl(zx+0)NK]C F(z) +v (2.14)
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and hence
Fllz+o)NK]—F(z) = {Fllx4+0)NK]— F(xx)}
—{F(x) = F(xx)}
C v—v
c T (2.15)
Therefore
Fl(z+0)NK]C F(x)+T. (2.16)
The lemma is proven. O

Lemma 2. Let X be a normal® topological vector space and let Y be a
locally convex topological vector space. Let K be a compact subset of X
and F : K - 'Y a continuous map. For each convex neighbourhood of zero
T CY there exists a neighbourhood of zero o C X and a continuous map
Fo: K+0—Y in the form

r

Folu) = ki(u)F(z;) (2.17)

i=1
where x; € K for each i = 1,2,...,r and where k; : K + 0 — R is
continuous with

(i) ri(w) € 0,1, and
(i) 3 wilw) =1,

such that
F(z)—Fy(u) €T (2.18)

whenever xr € K and x —u € 0.

Proof. . Choose a neighbourhood of zero ;x C X so that for all z € K
Fllx+p)NK|CF(x)+T1 (2.19)

and choose a neighbourhood of zero 0 C X witho+0 C u. Let Q, = x+0.
Since

Kc (2.20)
rzeK

3 A topological vector space is said to be normal if for each pair of disjoint closed
sets A, B C X there exists a pair of disjoint open sets U,V C X with A CU and BC V.
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we can find a finite subcollection 21,5, ..., €, such that
Kl (2.21)
i=1

Since X is a normal topological vector space we can construct a collection
of continuous functions «; : K + o — R for each i = 1,2,...,r with the
properties that

1. ki(u) €10,1],
2. 30 ki(u) =1, and
3. ki(u) =0 for u ¢ ;.
We define a map F, : K + 0 — Y by the formula

r

Folu) = ki(u)F(;). (2.22)

i=1

Now x;(u) # 0 implies v € Q; and if © — u € o then we have z € x; + p.
Hence if x € K then

F(z)— F(x;) e (2.23)
and so
F(z) = Folu) = _ Ki(u)[F(z) — F(x;)]

= > ki(w)[F(z) - F(:)]
{i|r; (u)#0}
- (2.24)

since the right hand side is a convex combination and 7 is a convex set. [J

Corollary 1. Ifin addition to the conditions of Lemma 6 we have F(0) = 0
then we can choose F; : K+ 0 = Y such that F} satisfies the conditions
of Lemma 6 and also satisfies F(0) = 0.

Proof. Choose a neighbourhood of zero o9 C X such that F(og) C 7.
Choose another neighbourhood of zero ¢ C X such that ¢ + o C oy and
such that

F(z)— Fo(u) €T (2.25)
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whenever z € K and x —u € 0. In accordance with Urysohn’s Lemma [31]
there is a continuous function f : X — [0, 1] such that f(0) = 0 and such
that f(u) =1 when u ¢ 0. Let

Fo(u) = f(u)Fo(u). (2.26)
When u ¢ o we have
F(z) = Fy(u) = F(x) = Fo(u)
SE

and when v € 0 we have x € gy and hence

Fx) =F;(u) = [1—=f(w]F(z)+ f(w)[F(z) = Fo(u)]
e T,

since

F(z)er and F(r)—F,(u)er
and the right hand side is a convex combination. O

Remark 3. The condition F(0) = 0 in Corollary 1 can be interpreted as
follows. If the operator F' is the mathematical model of some dynamical
system then the output y is related to the input v by y = F(x). Thus the
condition F(0) =0 means that a zero input produces a zero output.

2.5.5 Constructive determination of approximating
operator S on compact set of locally convex
topological vector space

Recall that our aim has been the constructive determination of an operator
S to approximate the given operator F. Furthermore there are certain
properties that must be satisfied by S if we wish to construct a useful
model of the real system.

Subject to an appropriate choice of the functions {gx} € G we now show
that S given by (2.6) supplies the required approximation to F.

Theorem 9. Let X,Y be locally convex topological vector spaces with the
Grothendieck property of approximation and let X be normal. Let K C X
be a compact set and F : K — Y a continuous map. For a given convex
neighbourhood of zero 7 C'Y there exists a neighbourhood of zero o C X
with an associated continuous operator S : X —'Y,, in the form

S =WZQG,,
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and a neighbourhood of zero € C X such that for allx € K and all 2’ € X
with ¥’ — x € € we have

F(z) - S(@') e (2.27)

Remark 4. This theorem can be regarded as a generalization of the well
known Weierstrass approximation theorem.

To prove the theorem we need to establish that certain sets are compact.
Since G, € L(X, X,,,) is continuous and since K is compact it follows that
G (K) is compact. To show that the set QGy, (K) is compact we need to
establish that @ € £(X,,,R™). Since

QY _aju;) =a
j=1

we need to show that there exists a constant Mg and a seminorm p : X — R
with
m
lall < Mop(d_ ajuy).
j=1

We have the following preliminary results.

Lemma 3. Let X be a locally convex topological vector space and let X,
be the subspace defined above. We can find a sequence {ps}s=1,2, r of
seminorms ps : X — R where v < m such that the function p : X — R
defined by

2

p(w) = [Z{ps(x)}zl (2.28)
s=1
18 a norm on X,,.

Proof. Let {ps}s=1,2... r be a sequence of seminorms and let p: X — R be
the function defined above. Let

Ny, ={z |z € X,, and ps(z) = 0}

foreach s =1,2,...,randlet N = {z | x € X,,, and p(z) = 0}. It is easily
shown that

1. p is a seminorm,

2. Ny is a subspace of X, for each s =1,2,...,r, and
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3. N= ﬂ Ny is also a subspace of X,,.
s=1

Since X is a locally convex linear topological space we can choose a
sequence {ps}s=1,2, ., of seminorms so that 7 < m and N = {0}. In this
case the function p : X — R defined above is the required norm on X,,. O

Lemma 4. Let X be a locally convex topological vector space and let X,
be the subspace defined above. If p: X — R is a norm on X,, then we can
find o > 0 such that

m
p(D_ aju;) = alal (2.29)
j=1
for each a € R™.
Proof. 1t is sufficient to prove that there exists some o > 0 with
m
p(Y_ajuy) >« (2.30)
j=1

whenever ||a|| = 1. If not we can find {a(p) }p=1,2,... such that

- 1
p(3 " aPuy) < - (2.31)
— p
J
and ||a®”|| = 1. Thus we can find a convergent subsequence (which for

yeen

some a € R™. It now follows that

p(D_ aju;) =0
j=1

and also that ||a|| = 1. But

p(z ajuj) =0 = Zajuj =0
j=1 j=1

= a=0.

Since ||a|| = 1 this is a contradiction. O

We are now able to prove Theorem 11.
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Proof. By the approximation property of the space X, for any neighbour-
hood of zero £ C X and for all z € K, we can find M = M(£) > 0 such

that
Gm('r) —xc 5

for m > M. By Lemma 6 we can choose o and a continuous map F, :

K + 0 — Y given by

r

Folu) =) wi(w)F(z;)

i=1
with the property that

Flz) — Folu) € %

when = — u € ¢ and hence if we choose £ C ¢ and m > M then
F(z) — FoGm(z) € 2

for each x € K. If we write
Gm(z) =) aju;
j=1
then

faG’m(x) = fU(Z CLjUj)
=1

T

Z”i(z ajug)F(x)

i=1

and hence

r

Zbk Zm(Zajuj)F(xi) Vg,
k=1 j=1

=1

Hp,FoGp(x)

I
NE

fr(a)vg.

k=1

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

We note that F, G, (K) C Y is a compact subset. By the approximation
property of the space Y, for any given neighbourhood of zero v C Y, we

can choose N,,, > 0 so that

H,F,Gn(z) — FoGm(x) €V

(2.38)
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for all x € K when n > N,,. We also note that

H,FoGp(z) — S(x) = H,FoGp(x) —WZQG,,(x)

n

= D _lfs(0) — gx(@)]on (2.39)

k=1

If we suppose that the algebra G satisfies the conditions of Stone’s Algebra
then since a € QG,,(K) and since QG,,,(K) is compact it follows that we
can choose {gk}r=12...n € G so that

.....

H,FoGp(z) — S(z) €. (2.40)

Thus, if we choose v C £, then

T T
oGm(z)— S —+ -
F (x) (x) € 3 + 3
T
C —
- 4
and hence
F(z) - S(z) € % +
T
c -
- 2
Finally we note that
S(z) = S(x+Azx) = Y [ge(a) — gela+ Aa)lvy
k=1
c T
2

where Aa € R™ is defined by
m
Gm(x + Azx) = Z a; + Aaj)u;, (2.41)
Jj=1

provided we choose Az € € where ¢ is a sufficiently small neighbourhood
of zero in X. Now it follows that

F(z) — S(2) 5175

€
c

where ' = z + Ax. O
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L.
92 1
x;Gm:meci%ZW - S(x)
.
dn -
s

Figure 2.1: Block diagram for realization of S.

Theorem 11 can have the following interpretation. The operator S
represents a mathematical model of the real system [109, 152, 56, 57]. A
diagram for the realization of the approximating operator S is given Fig.
1.

In this context x is the input signal, F/(z) is the output signal from the
real system, Az is the noise that is added to the input signal in practice,
and S(z + Az) is the output signal from the constructed system. Thus S
is a practical realization of the given abstract operator F. Note that the
noise term in the input signal could result from truncation of the parametric
description.

We illustrate this theorem with examples.

2.5.6 Examples

Example 3. Let X =Y = C[—1,1] be the Banach space of continuous
functions on [—1, 1] with the uniform norm

Ifll = sup [f(t)].

te[—1,1]
For each v = (y1,72,73) € R? define

2 (t) = 71 cos(vat 4 73)
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and
Y+ (t) = (71 cosv3)* cosh(7at)
and let K C X be the compact set given by

K={z|z=ux, for someyeT =10,1] x [%, 1] x [0,27] C R3}.  (2.42)
Let the non-linear operator
F:K—-L=FK)CY
be defined by the formula
F(zy) =y, (2.43)

and consider the dynamical system described by the mapping F : K — L.

We wish to construct a practical model of the given system. We sup-
pose that the input signal is disturbed by an additional noise term that is
essentially unrelated in structure to the true input signal. In this example
we choose to approximate the input signal by a polynomial and hence it is
convenient for the noise term to be modelled by a polynomial of the same
degree. Thus we assume that the actual input signal ©' is given by

¥ =x+4+Ar=x,+ Az (2.44)

for some v € T' where Ax = h is an appropriate polynomial. We will also
approzimate the output signal by a polynomial.

For some given tolerance o > 0 and a corresponding restriction h € €
on the magnitude of the noise term (in this context € is some suitable
neighbourhood of zero) we wish to find an operator S : K +¢ — Y such
that

1F(z) = S@)| < o (2.45)

forallz € K and all 2’ — x € €.

To construct the operator S it is necessary to extend the given set K of
input signals to include the additional noise terms. Some initial discussion
of calculation procedures is therefore desirable. To this end let Py denote the
space of polynomials with real coefficients and of degree at most s —1. We
define a Chebyshev projection operator g : C[—1,1] — Py by the formula

Hs(u) = ch(u)Tj_l (246)

where
Tj_1(cos @) = cos(j —1)0
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is the Chebyshev polynomial of the first kind and where the coefficients
¢; = ¢j(u) are defined by the formulae

L

2 /1 u(t)Ty_1 (t)dt

and

Cj:*

T V(1 —1?)
foreachj =2,3,...,s. In this example we will not use the integral formulae
but will calculate approrimate Chebyshev coefficients where necessary by
using a standard economization procedure [38].

Let Xp, = Py and Y, = P,,. We define linear operators G, : X — X,
and H, :' Y =Y, by setting

Gy, =1,, and H,=1I,,

respectively. For convenience we will use the following approximate calcu-
lation procedure to determine

X (xy) = z[y,m| for z,€K

and
Hy(yy) = yly,n] for y, € L.

For any given values of u,v > 0 we can choose m = m(u),n = n(v) and
polynomials P, @m € Pm and v, € Py, with

(5] [254]

= Z P2 1T, gm(T) = Z g2 70T
j=1 j=1

and
(23] _
rn(T) = Z rgj_l'r?j*z
j=1
such that
[P (T) — cos 7| + |gm () —sinT| <
and

|rn(7) — coshr| < v
for all T € [—=1,1]. Now define x[y,m] € P,, and y[y,n] € P, by

z[y, m|(t) = 71 [(cos¥3)pm (Yat) — (SIn¥3)qm (721)]

= Zaj% ¢t
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and

n

yly,n)(t) = (71 cosy3) ra(at) = ij [y,n]t" ™ (2.47)

and note that

.y (8) — 2y, m)(8)] < u (2.48)

and

ly5 () = yly, ()] < v (2.49)

forallt € [-1,1].
By observing that

Gm(p)=p and H,(q) =¢

when p € P, q € Py and by using the linearity of the operators G, Hy,
we can extend the above calculation procedure to polynomial neighbourhoods
of K, L.

Since the hypothetical input signal x, € K is approzimated by a poly-
nomial x|y, m| € P, we suppose that the noise term is also modelled by a
polynomial h € Py,. Thus we assume that

h(t) = iwjtj—l. (2.50)
j=1

where w = (w1, Wa, ..., W) € R™ is an unknown constant.

At this stage we need to point out that we will not follow the specific
construction procedure described in our theoretical development. In this
example the compact set K is described by a parameter v € I' and the pre-
ceding theory suggests that we should choose an appropriate neighbourhood
of zero o C X and construct an operator

Foe  K+o0o—Y

ceey

priate partition of unity. In practice it is often easier to choose a neigh-
bourhood of zero ( C X,, C X and use direct methods to construct an
operator

Re:Gu(K+¢) = Gn(K)+(
— Y,
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which effectively replaces the operator F, used in the theoretical develop-
ment by providing an approzimate representation of the formal composition
angGmfl. We will show that the operator

R:Gn(K)— Hy(L)
given by
R(z[y,m]) = y[v,n] (2.51)

can be extended to provide the desired approrimation. To define R we note
that

k-1 o
2" (cosys)pr if k is odd
akly,m] = { iR V(sinqg)ge if k s even (2.52)
and
4, k-1 4 ey
f Mt (cosys)try  if ks odd
bely,m] = { 0 if k is even. (2.53)
In particular we note that
arly,m]\* ( axly,m]
bi[v, m] = ( : ) ( : )rk (2.54)
b1 Pk

for each k =1,2,... n. Therefore if we define

wor=(52) (5)

for each k=1,2,...,n and set
1. G(zy) = z[y,m],
2. Q(zly,m]) = (arlv,m], az[y,m], ..., am[y,m]) = aly,m],
3. Z(a) = (g1(a), g2(a), . .., gn(a)) = g(a), and
4. W(bly,n]) =yly,n].

then the desired operator
R:Gn(K)— H,(L)

is given by
R=WZQ.

For any fixed neighbourhood of zero ( € P, the extended operator
RC : Gm(K—I—C) —Y,

is simply defined by noting that
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1. Gp(xy +h) =2x[y,m]+ h, and
2. Q(m[’%m] + h) = (alhlvm] + wq, a2[7a m] + wa, ... 7am['77m] + wm)
The operator S : K + ( — Y, is now given by the composition
S =WZQG,,.

We note that
S(zly,m]) = y[v,n]

and that
xlv.m _ - (al[’%m]"i_wl ? ak[%m]+wk
s - (st (sten)
X rith (2.56)

Suppose that the actual level of approzimation required is given by
|F(z) — S(a")| < .01. (2.57)

Of course it is necessary to understand that the achievable level of ap-
prozimation will be limited by the magnitude of h. By the same token
we can only quantify this limitation when we have decided on the precise
structure of S. To begin the process we let m = n = 3 and construct
the necessary polynomial approrimations by applying a standard Chebyshev
economization procedure [38] to the appropriate Maclaurin series. We have

COST =~ 177;2+T;1*T76
T 2 T 94 720
1763 353 19 1
- Ty (7) — T — T (r) — T,
5301 007 ~ 1536 22 (1) F 3356 74(7) ~ 33550 T6(7)
1763 353
~ T (r) = 2220
5301 0(7) ~ 1536 2(7)
4585 353
= — — =T
4608 768
= p3(7), (2.58)
sint &~ —i+i
T T T 10
169 5 1
= 102 (1)~ g B+ 1535 T5(7)
169
~ @Tl(T)
_ 169
192

= q3(7), (2.59)
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and

7_2 7_4 7_6

h ~ 1+—+—4+ ==
COSHT Ty T T 70
2917 139 7 1

- =in 20 7 -
2302 07 + 5 1207 + 1 T + 3010

2917 139
T iy
5301 L0(7) + 5 T2(7)

4583 139

1608~ 256
= ra(7). (2.60)

TG(T)

Q

With these approximations it can be seen that
|p3(7) — cos 7| + |g3(7) — sinT| < .05 (2.61)
and
|rs(7) — cosh 7| < .006 (2.62)
for all T € [-1,1]. It follows that
o, — l7,3]]) < .05
and
19 =yl 3]l < .006.

Now we have

1. z[y, 3)(t) = 12851 cosyg — 1894 yo(sinys)t — 232,452 (cos y5)t?

2. aly,3] = (425571 cos s, — 185 y172 sin g, — 22341757 cos y3),

_ /4583x(4608)® 4 139X 768x (4608)% 3
3. g9(a) = (555", 0, 256 %353 % (4585)% 41 az), and

4.yl 3)(t) = 1382 (y1 cosys)* — 123 (1 cosy3)1ya2t2.

In this particular example we suppose that the noise term has the form
h(t) = wt? where |w| < .002. Therefore

139 x 768 x 4608

3 2
¢ 2.63
556 x 353 x 4585 11 008 8) W (2.63)

S(z")(t) = ylv, 3)(t) +

and hence

15(2") = ylv, 3|l < .003. (2.64)
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Therefore

1F(2) = S| 1y =yl 31l + llyly, 3] = S ()]

<
< .006 +.003
< 0L (2.65)

In the above example we note that the input signal depends on a finite
number of real parameters. It is natural to investigate what happens when
the error in the input signal is caused by an inherent uncertainty in our
knowledge of the parameter values. We will motivate further discussion by
considering a second example.

Example 4. We consider the system described in Example 6 and suppose
that the error in the input signal is due entirely to an inherent uncertainty
A~y in our knowledge of the value of v. For convenience we write

Y =7+Ay and 2’ =uz.,.

For a sufficiently small neighbourhood of zero § C R3 and with the same
definitions as we used in Example 6 we can define an operator

S:Kryg — Y
such that
S(xy) =yl ] (2.66)
whenever v — v € 6. Since
F(zy) = S(a") = yy —yly,n] (2.67)
it follows that
1 (2y) = S@II < Nlyy = gl + My =yl ]l (2.68)

It is now easy to see that the achievable level of approximation is limited
by the uncertainty in ~y. In particular we note that
w® =10~ FEO0n+ SO+ 5080
= 471 cos7s)®(cosys)(coshyat) Ay
+ (71 cos y3)* (sinh ot )t Ay
—4(y1 cosy3)®v1 (siny3)(coshyat) Ayz  (2.69)

and hence calculate that

Y4 — Yoyl < v/(32cosh® 1 + sinh® 1)]| A
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If we suppose that ||A~| < .0005 we have

Iy — ol < 042. (2.70)
Suppose the actual level of approzimation required is given by

|F(x) — S(2')| < .05. (2.71)
If we let m =n = 3 as we did in the previous example then we again obtain

lyy = ylv, ]Il < .006 (2.72)
and hence

|F(z) — S(2')| < .042+ .006

< .05.

Remark 5. The problem of parameter estimation in signal analysis is
well known to electrical engineers and has been studied extensively. The
determination of a suitable estimate 4 for the parameter v € R3 in the
above examples is a classic single-tone estimation problem and is discussed
in detail by Rife and Boorstyn [111]. The estimation procedure is based on
the following observation. If we define

1 [t ‘ .
E(C) = 5/ |71 GXP[Z('Y2t + ’Yg)] —C1 exp[z(CQt + CB)Hth (2.73)
—1
for each ¢ € R® then
E(c) = 712
e [sin[(CQ —72) + (c3 —v3)] —sin[(ca — y2) — (c3 — ¥3)]
C2 =72
+Cl2

and it is now easy to establish that

minE(c) = E(c1,c¢2,73)
c3
sin(cy —
= 7’ -2va {(272)] + a1, (2.74)
C2 — 72
HzinE(Cl,CQ,')/,?,) = E(c1,72,73)
= 712 — 2’)/101 =+ C12 (275)
and
min E(c1,72,73) = E(7)
C1

= 0.
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The estimate 4 for «y is found by an elementary search over a suitably cho-
sen finite set {c} C R3. On the basis of the above analysis the search proce-
dure can be seen to consist of three consecutive one dimensional searches.
When the full signal v1 exp[i(yat + 73)] is not known we define

1 /1
Ei(c)= = / [v1 cos(Yat 4 v3) — ¢1 cos(cat + ¢3)]?dt (2.76)

2/,
and search over {c} C R? to find the minimum value E1(y) = 0. The
search is a true three dimensional search because the problem is no longer
separable. On the other hand if the signal v cos(vyat + v3) is observed for
all t € (—o0,00) then we have

% 71 cos(72t +73)

dt 2.
-1 (2.77)

) 1
Ysin(y2s +73) = —
™ — 00
which reconstructs the full signal and allows us to use the original method.
Although our explanation does not consider the influence of noise on the
estimation process the above procedure is valid in the presence of additive
Gaussian noise.

2.5.7 Simplification of the canonical structure in the
approximating operator

Consider application of the above approach in the approximation of real
non-linear dynamical systems where the system is completely described by
a finite number of real parameters.

Let X,Y be locally convex topological vector spaces and let

F:KCX—=Y

be a given continuous map. As above we will consider F' as an abstract
model of some dynamical system where the sets K and L = F(K) C Y
are understood to be the sets of input and output signals respectively.
It may be that both sets depend continuously on a finite number of real
parameters. In this regard we will therefore assume the existence of closed
and bounded intervals I' C R™ and A C R™ and continuous maps

p:I'—>Kr and v:A—=>La=1L

Kr =K' ¢(y) =z, (2.78)
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and
V(0) = ys (2.79)
where
F(z,) = ys. (2.80)

If we also assume that v is a homeomorphism (thus we assume that v is
a one to one map and that ¢~! is continuous) then we effectively assume
the existence of a continuous map

R:T—A
defined by the composition
R=4vy"'Fy

which describes the continuous dependence 6 = R(y) of the output pa-
rameters on the input parameters. The non-linear system described by the
continuous map F : Kpr — La where

Kr ={z |z =2, where yeTI} (2.81)
and
La={yly=ys where €A} (2.82)

can now be represented in alternative form on the compact set I' C R™ by
the continuous map R : ' — A.

For each neighbourhood of zero n C R™ we can use Lemma 6 to find a
neighbourhood of zero ¢ C R™ and a continuous map

Re:T'+¢—R"

such that
R(v) —R¢(¥) €n

whenever v € I' and v —4 € (. We choose ( to be closed and bounded and
assume that the map R, can be represented approximately on the compact
set I' + ¢ by a continuous map

Z:T+(¢—R"

with the property that
Z(3) — Re(4) €
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whenever 4 € I' 4+ ¢. This representation is normally constructed from a
given algebra {g} = G of continuous functions g : R™ — R™ that satisfies
the conditions of Stone’s Algebra [113].

In practice our knowledge of the parameter values is subject to system-
atic and pseudo-random instrumental errors. Thus the assumed parameter
value is given by v/ = v+ A~ where + is the true value and where the error
A~ is bounded by A~ € 6 for some known neighbourhood of zero § C R™.
We will assume that 6 + 60 C (.

In addition to the problem of instrumental errors it may be necessary to
use some prescribed method of approximate calculation to determine the
parameter values from measurements of the input signal. To this end we
assume that for each 6 we can choose a neighbourhood of zero £ C § and a
continuous operator R

Vv& : Kp+9 — '+ C

which is used to calculate the parameter value v and for which the calcu-
lated value v/ = V¢(x,/) satisfies the constraint

v - €¢

for all 7/ € T+ 6. Thus 7/ € T + (.
To describe the system we define an operator

S Kriog— La+T
in the form of a composition
S=WZ2V. (2.83)
We can now state the following theorem.
Theorem 10. Let X,Y be locally convex linear topological spaces and let
F:KrCX —>LACY

be a continuous map as described above. Then, for each given neighbour-
hood of zero T CY, we can find neighbourhoods of zero & C 6§ C R™ and
an operator

S’ :Kryg > La+T1

in the form of a composition
S=w2zV;
such that
F(zy)—S(zy)er (2.84)
whenever y €T and v/ — v € 0.
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Proof. In terms of the notation introduced above we define W = ¢ and let
_ -1
n=1v""(v)
where the neighbourhood of zero v C Y is chosen so that
v+vCrT.

We also suppose that the neighbourhoods of zero £ C # C X are chosen in
the manner suggested in the above preamble.
Now we can write

F(zy) — WRC‘A/&(“T'W) = ¢[¢71F¢}(7) - "/’RCV‘é(z’y')
= Y[R(7) = Re(¥Y)]. (2.85)

We choose ( so that

R(7) = R¢(v) € (2.86)
whenever v € I' and ';’ — v € (. Hence

Y[R(Y) — Re(Y)] € v. (2.87)

Since *;’ e I' 4+ ( it follows that

Re(Y)—Z(Y)€en (2.88)
and hence
F(zy) - S(x"/’) = [F(zy) - WRCVS(x"/’)]

+[WRC‘A/E(I’Y') - S(Iv’)]
= Y[R(Y) = Rc(Y)] + U[Re(v) = Z(7)]
e v+v
S

T.

This completes the proof. O

Remark 6. Practical considerations allow us, as a rule, to determine R
on a set I' + ¢ for some neighbourhood of zero ( C R™ and hence we can
set R¢ = R.
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Below, a specification of the above technique will be given for the case of
Hilbert space. Such a specialization is motivated by a number of practical
modelling problems for real dynamical systems where the input-output
mapping is known only on some bounded subset of the input space.

Our main result can be regarded as an extension of the classical Stone-
Weierstrass Theorem.

2.6 Approximation on Noncompact Sets in Hilbert
Spaces

In this section, we consider the constructive approximation of a non-linear
operator that is known on a bounded but not necessarily compact set. To
justify our proposed construction we introduce an appropriate topology for
each of the various vector spaces and assume that the given mapping is
uniformly continuous in the introduced topology.

We will assume that the dynamical system is defined by an abstract
non-linear operator

F:BCX =Y

where X and Y are suitable vector spaces and B is a bounded subset of X.
In such cases it is desirable to construct a model of the real system with
a complete input-output map that preserves, in some approximate sense,
the known mapping. The model is normally constructed from an algebra
of elementary continuous functions. In particular we wish to construct an
operator

S: X-=Y

which will approximate F' with a given accuracy on B and will be stable to
small disturbances. The operator S defines our model of the real system.

In the preceding sections we considered the approximation of non-linear
operator ' : K C X — Y where X and Y are locally convex linear
topological spaces and K is a compact subset of X.

In this section we use stronger topological assumptions to solve an
analogous approximation problem for operators defined on bounded but
non-compact sets. To obtain the necessary topological structure and the
consequent notions of continuity required to prove a theorem in the above
form we believe it is necessary to consider an operator F : B C H — Y
where B is a bounded subset of a separable Hilbert space H and Y is a
locally convex linear topological space. By introducing a special class

A= A(H)
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of linear operators on H we define a collection of semi-norms {pa}aec.a(m)
and an associated weak topology for H. This topology is called the A-
weak topology for H and is due to Sazonov [132]. When the operator F' is
uniformly A-weak continuous on B we will show that it is possible to con-
struct an approximating operator S : H — Y with the desired properties.
This is our main result and is stated in Theorem 11. The nature of our
approximation is elaborated in more detail when the output space Y is a
Banach space. This result is given in Theorem 26.

2.6.1 Preliminaries

Let H be a separable Hilbert space. Consider the class A = A(H) of linear
operators A € L(H, H) defined by

A={A|A=T"T} (2.89)
where T' € L(H, H) and T* € L(H, H) is the adjoint operator and where

Z 1T (uj)||* < o0 (2.90)

for each complete orthonormal set

{uj}j=12,.. CH.

Operators of this type are discussed in [32]. For each A € A define a
semi-norm
pa:H—R

by the formula
pa(z) = (A(z),2)* = |T(z))| (2.91)

for all x € H where (-,-) denotes the inner product on H. We use the
following convenient notation. Let Z be the set of integers and let Z,
denote the set of positive integers. When s € Z, we write

AP ={A|A= (A, 42,... A)) (2.92)

where A, € AV k=1,2,...,s}.
When A € A° we write

pi(@) = (Ap(z),7)? = | Ti(2))|

for each k =1,2,...,s and each x € H.
We use the following notation.
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Let s € Z; and let
A= (A1,As,... A5) € A°.

For each k = 1,2,...,s let pr : H — R be the semi-norms defined above.
The function p4 : H — R? is defined by

pa(x) = (pr(2), p2(2); - ., ps(x)) (2.93)

for each A € A° and each x € H.
For each finite sequence {ay}r=1,2,.. s of real numbers we write

a=(ar,as,...,as) € R,

Let o, 8 € R°. We write o > § if and only if a; > g; for all j =1,2,...,s
and we will use the notation

R} = {a| a € R® with o > 0}. (2.94)
We make the following definitions.

Definition 6. Let s € Z;, A € A° and a € R® with a > 0. A set
oc=o0(A,a) C H in the form

oc(A,a)={u|ueH and pa(u) <a} (2.95)
will be called an A-weak neighbourhood of zero.
Note that for each p € Ry we write

po(A,a) = {pu|u€ H and pu(u)<a}

= {u|u€Hand pa(-)<a}

I3
= {u|uw€e Hand pa(u)<pa}
= o(A,pa). (2.96)

Definition 7. A set U € H is said to be an A-weak open set if for each
u € U there exists an A-weak neighbourhood of zero

oc=o0(u)=0c(A(u),a(u)) CH

such that
u+o CU.
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It can be shown that the collection U of all A-weak open sets U C H
forms a topology. Since any positive operator A € L(H, H) can be written
in the form

A=T*T
this topology is identical to the topology used by Sazonov [132] and will be
known as the A-weak topology for H. With this topology it can be shown
that H is a locally convex linear topological vector space. Henceforth we
refer to the original Hilbert space topology as the strong topology. In
general we can say that the points of H are more clearly distinguished by
the strong topology.

Definition 8. Let 0 = o(A, «) be an A-weak neighbourhood of zero. For
each set
UCH
a set
D =Dy(oc) CH

is said to be an A-weak o-net for the set U and the neighbourhood o, if for
each x € U, there exists d € D with

palz —d) < a.
We can now prove a basic preliminary result.

Lemma 5. Let B C H be a bounded subset. For each A-weak neighbour-
hood of zero 0 = o(A, ) C H there exists a finite A-weak o-net for the set
B.

Proof. We suppose that
BC{x|x € H and |z| <b}

where b > 0 is a known bound for the set B.
Let

{ujtj=12,.. CH
be a complete orthonormal set. For each x € H we note that

oo

x = Z(w,uj>uj. (2.97)

j=1
Choose an integer m such that

o0 2

> 1Ty <72 (2.98)

j=m+1
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and choose ag > 0 with

ap < (2.99)

Qg
2m||T||
for each k =1,2,...,s. Now choose ¢ € Z; so that
qop < b < (¢+ 1o

and define the finite set

D = {d|d=a«apz forall z€ H with Z:ijuj
j=1
and p; € [—¢,qJNZ foreach j=1,2,...,m}.

The set D is the desired A-weak o-net for B. We confirm this by noting
that for any * € B we have

[(z, ug)| < b
and hence we can choose d = apz € D such that

|(z,u;) — aop;| < ap

for each j =1,2,...,m.
Therefore
pr(x—d) = [[Ti(z —aoz)|
< () = aopp) Te(up) [+ | D (wyuy) Ti(wy)|
J=1 j=m+1
< Y Hwsug) — aopyl | T () |
j=1
1 1
oo 2 o0 2
+ D lwuy)P > ITk(up)l?
j=m-+1 j=m+1
< o
for each k =1,2,...,s. This completes the proof. O

Definition 9. Let Y be a topological vector space. A map F : B =Y is
called uniformly A-weak continuous on B C H if, for each open neighbour-
hood of zero T C Y, there exists a corresponding A-weak neighbourhood of
zero

oc=0(A,a) CH
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such that
Fl(x+o0)NB]C F(x)+ 71 (2.100)
forallx € B.

Example 5. In this example we exhibit a non-linear uniformly A-weak
continuous map on a set which is closed and bounded but non-compact.
We write

S = Ly([0,1) (2.101)
and define
T={ylye La(0.1) and | y(t)dt =0} (2.102)

For each x € S we define an associated function £ : R — R in the
following way. Let e; : R — R be defined by

ej(s) = V2sin jrs (2.103)

for each s € R and each j = 1,2,.... For each x € S define a corresponding
sequence of real numbers {x;};=12,.. by setting

yeen

x; :/0 z(s)ej(s)ds (2.104)

and let & : R — R be the associated function defined by

T = imjej. (2.105)
j=1
It is easily seen that
isz < 0 (2.106)
j=1
and that
&(—s) = —(s) (2.107)
and
F(s+1)=2(s—1) (2.108)

for each s € R. Furthermore it is well known that

Z(s) = z(s) (2.109)
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for almost all s € [0,1]. We say that the function & is the Fourier sine
series representation for x and note that & is the odd periodic extension of
period two for the function x.

For each y € T we define an associated function § : R — R in the
following way. Let f; : R — R be defined by

£i(t) = V2 cos jmt (2.110)

foreacht € R and each j =1,2,.... For eachy € T define a corresponding
sequence of real numbers {y;}j=12 .. by setting

1
y; = / y(t) f;(t)dt (2.111)
0
and let 5 : R — R be the associated function defined by
1= it (2.112)
j=1
It is easily seen that
Dy < oo (2.113)
j=1
and that
y(=t) = 4(t) (2.114)
and
gt+1) =gt-1) (2.115)

for each t € R. Furthermore it is well known that
y(t) = y(t) (2.116)

for almost all t € [0,1]. We say that the function § is the Fourier cosine
representation for y and note that ¢ is the even periodic extension of period
two for the function y.

We define a non-linear operator F : S — S in the following way. First
we define a linear operator A : S — T by setting

Al](t) = /O fu(s — t) — sla(s)ds
X - X(1) (2.117)
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where u : R — R is the unit step function defined by

u(s) = { (1) gz N 87 (2.118)

X :]0,1] = R is the function defined by

X(t):/O x(s)ds (2.119)

for each t € [0,1] and X is the average value of X given by
- 1
X = / X (t)dt. (2.120)
0

Note that if y = Alz] where x € S then y € T. Now for each x € S we can
define Fx] € S by the formula

Fla)(s) = %/0 (s — 1) + 3(s + O] X (D)dt. (2.121)

The function F[x] is defined by a convolution integral and can be inter-
preted as the symmetric correlation of x and Alx]. Such operators are

used frequently in the representation and analysis of non-linear systems.
In Fourier series form we have

AD el =Y ;;fj (2.122)
j=1 j=1
and
F[ime»] - i 5" . (2.123)
j=1 T _j:1 V2mj g .

We will show that F' is uniformly A-weak continuous on the unit sphere

S(0;1) = {z|zeS with|z| <1}
c S.
Note that the set S(0;1) is bounded and closed but is not compact. Let
€ > 0 be an arbitrary positive number. Choose N such that

o0

1
Y S <er’ (2.124)
j=N+1 J
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and define operators Ty, : S — S for each k =1,2,..., N by the formula
Tk(z zrjej) = Trek (2.125)
j=1

with associated semi-norms py : S — R given by
pr(x) = || (2.126)
and consider the A-weak neighbourhood of zero o C S defined by
0{h|pk(h)<\/§f0r each k=1,2,...,N}. (2.127)

Now for
x4+ h,z € S0;1) and heo

it follows that

[ + h] = Flz]|

I
()¢
D
<
_l’_
>
S
&
<
N

2,52
= 214y
N 2 )
2h ; 1
< D aEt X gam
— 242 252
=TI i iNn 2]
< e (2.128)

Thus the uniform A-weak continuity of F on the unit sphere S(0;1) is
established.

We now consider the construction of an auxiliary operator that is de-
fined on the entire space of input signals and which approximates the known
operator F': B C H — Y on the given set B in a well defined way. This
operator will be used in the proof of the main result. We suppose that B is
a bounded set. The set of uniformly A-weak continuous maps F': B —» Y
will be denoted by C4(B,Y).

Lemma 6. LetY be a locally convex topological vector space and let B C H
be a bounded set. Let F € C4(B,Y). For each convex neighbourhood of
zero T CY there exists a corresponding A-weak neighbourhood of zero

oc=0(A,a) CH
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and an associated continuous map Fy : H — Y in the form

Folu) = ri(u)F(x;) (2.129)
i=1
where ©; € B for each i = 1,2,...,7 and where k; : H — R is continuous

with
1. ki(u) €10,1], and
2. 3 i kilu) =1,
such that
F(z)—F,(v)er (2.130)

whenever x € B and x —v € 0.

Proof. Let A € A° where s € Z; with s > 0. Choose a > 0 and an
associated A-weak neighbourhood of zero 1 = 20(A, a) C H so that

Fl(x4+u)NB]C F(x)+T1 (2.131)

for all x € B. If we also define the A-weak neighbourhood of zero o =
o(A,a) C H then
o+oCpu.

Let D = D(0) = {x;}i=1,2,...» denote an A-weak o-net for the set B and
let
Qi =x; +o0.

Therefore
B (2.132)
i=1

Define continuous functions
X:R—R and 7p:H —R
for each kK =1,2,...,s by setting
\(t) = max{1 - [¢],0}
and

m() = i _pu(u 2
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and construct a collection of continuous functions A; : H — R for each
1 =1,2,...,r by setting

Ai(u) = H X (W“> . (2.133)

P! me(u) + ag

Now define A : H — R by setting

and finally define a collection of continuous functions x; : H — R for each
1=1,2,...,r given by

_ Ai(u)
ki(u) = ) (2.134)
and with the properties that
1. ki(u) €[0,1],
2. Y ki(w) =1, and
3. ki(u) =0 for u ¢ Q.
We define a map F, : H — Y by the formula
Folu) = ki(u)F (). (2.135)
i=1
Now r;(u) # 0 implies u € Q; and if  — u € o then we have
T e x;+ p.
Hence if z € B then
F(z)— F(x;) er (2.136)
and so
F(a) = Fo(u) = Y ri(u)[F(z) - F(;)]
i=1
= Y m@[F@) - Fx)
{ilsi (w)#0}
e T (2.137)

since the right hand side is a convex combination and 7 is a convex set. [J
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It is important to note that although the operator F, : H — Y is
defined on the entire space of input signals it is not necessarily an operator
that can be realised in a real system.

2.6.2 Constructive determination of approximating
operator S on noncompact set of separable Hilbert
space

In this section we establish our main theorem. To explain the statement
of the theorem it is convenient to review some standard terminology and
introduce some additional notation.

It is easy to see that a separable Hilbert space possesses the Grothendieck
property of approximation (see Definition 4 in Section 1.5).

Let {’U,j}jzl’Q’“' C H be a complete orthonormal set. For each m =
1,2,... let

Xm=A{2m |zm € H and (zp,u;) =0V j>m} (2.138)

and define a sequence {Up, }m=1,2,.. of continuous linear operators U, €
L(H, X,,) given by

Un(z) = (@, u;)u; (2.139)
j=1
for each « € H. For convenience write a; = (z,u;) foreach j =1,2,...,m.

Let Y be a topological vector space with the Grothendieck property of
approximation and with approximating sequence {V,, },,=12.... of continuous
linear operators V,, € L(Y,Y,,) where Y,, CY is a subspace of dimension n
as described in Definition 11. Write

Yo ={yn |y €Y and g, = Y bpvp} (2.140)
k=1

where b = (by,b2,...,b,) € R™ and {vg}g=1,2,..n is a basis in Y,,. Let
{g} = G be an algebra of continuous functions g : R™ — R that satisfies
the conditions of Stone’s Algebra [113]. Define the operators

Qe L(Xm,R™?, Z:R™=R" and W € LR"Y,)

by the formulae

Q(xm) =a, Z(a) = (gl(a)aQQ(a)a v agn(a))a and W(Z) = Z ZEVk
k=1

5Tt is necessary to justify the assertion that Q € £(Xy,, R™). An elementary proof
of this assertion was given in Section 1.5.
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where each g € G and 2z, = gi(a) and let S : H — Y,, be defined by the
composition

S = WZQU,,. (2.141)

The corresponding process of numerical realisation of S is discussed in
detail in Section 1.5.

Theorem 11. Let H be a Hilbert space and let B C H be a bounded subset.
Let Y be a locally convex topological vector space with the Grothendieck
property of approzimation® and let F € CA(B,Y) be a uniformly A-weak
continuous map. For a given convex neighbourhood of zero = C'Y there
exists a corresponding A-weak neighbourhood of zero 0 = o(A,a) C H
with an associated continuous operator S : H —'Y,, in the form

S=WzZQU,,

and a strong closed neighbourhood of zero € C H such that for all x € B
and all ¥’ € H with
¥ —x€e

we have

F(z)—S(') e (2.142)

Proof. First we show that for any A-weak neighbourhood of zero o =
0(A,a) and each p € Ry and all © € B we can find M = M (o, p) > 0 such
that

Un(z) —x € po
when m > M. Since the map F': B — Y can be extended by continuity
toamap F : B — Y, where B denotes the closure of B, we can suppose
without loss of generality that B is closed. Let

BC{zx|xz€ H and |z| <b}.
For any given A-weak neighbourhood of zero
oc=0(A,a) CH

where A € A® for some s € Z; with s > 0 and fixed p € Ry we can find
M = M(o,p) > 0 such that

oo 2

bag
> I <5E (2.143)
j=M+1

6 That is we suppose the ezistence of a sequence {Vy }n=1,2,... of continuous operators

Va € L(Y,Yy) as described above.

yeen
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for each K =1,2,...,s. Now for each x € B and m > M it is clear that
pa(Un(z) — ) < ra.
Thus
Un(z) —x € po.

The proof now follows the proof of the corresponding theorem given in
Section 1.5. By Lemma 6 we can choose an A-weak neighbourhood of zero
o and a continuous map

Fs:B+o—Y
given by

Fo(u) = Z ki (u) F(z;) (2.144)

i=1

with the property that

Fz)— Fy(u) € % (2.145)

when « — u € ¢ and hence if we choose p < 1 so that
poc Co and m > M(o,p)

then

F(z) — FolUm(z) € 2 (2.146)
for each z € B. If we write

Un(x) = i a;u; (2.147)

j=1

then

fUUm(x) = fd(zajuj)
j=1

T

> k(> ajup)F(x;) (2.148)
i=1 j=1
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and hence

VaFoUn(z) = Zbk z:mz:ot]u7 Vg
k=1 i=1

> frla)vr. (2.149)
k=1

Note that the set B is bounded and closed and so the set U,,(B) C X,,
is also bounded and closed. Since X,, is finite dimensional it follows that
U (B) is compact. Thus the set F,Un,(B) is also compact. By the ap-
proximation property of the space Y, for any given neighbourhood of zero
v CY, we can choose N, > 0 so that

ViFoUn(z) — FoUpn(x) € v (2.150)

for all x € B when n > N,,. We also note that

VaFoUn(z) = S(z) = VaFoUn(z) = WZQUp (2)
= ) _lfu(@) — gx(@)lor. (2.151)
k=1

If we suppose that the algebra G satisfies the conditions of Stone’s Algebra
then since a € QU,,,(B) and since QU,,(B) is compact it follows that we
can choose {gx}r=12,...n € G so that

VoFoUm(z) — S(x) € v. (2.152)

Thus, if we choose v C £, then

Folm(z)—S(z) € —+o
8 8
-
C —
- 4
and hence
T T
F(x)-S -+ =
(0)-S@) e T+7
s
c  —.
- 2

Finally we define Aa € R™ by setting

x + Azx) Z (a; + Aaj)uy, (2.153)
j=1
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and we note that

3

S(z)— Sz +Az) =

(]

[gk(a) — gr(a + Aa)]vg

—

€

w\ﬂﬁ

provided we choose Ax € € where € is a sufficiently small strong closed
neighbourhood of zero in X . In this context we note that the set U, (B +e¢)
is compact and that ||Aal| < ||Az|. Now it follows that

F(z) — S(x) +

N m
RIS
Do

where ' = z + Ax. O

Remark 7. We would like to emphasize the fact that the above theorem
shows that the operator S is stable to small disturbances Az =z’ — x.

Remark 8. The condition that the map F : B — Y be uniformly A-
weak continuous is a relatively strong condition. For example this condition
implies that F : B — Y is uniformly continuous in the strong topology.
Note that the latter condition is not sufficient to establish the finite covering
required in Lemma 8.

We can consider the main result of the present paper from a different
viewpoint. Let A € A®. If the set B is bounded in the strong topology the
argument of Lemma 8 can be used to show that the set Ty (B) C H is totally
bounded. If B is closed then Ty (B) is also closed. Since H is complete it
follows that Ty (B) is compact in the strong topology. If we can write the
map F : B—Y as a sum of compositions in the form

F= i ETy,
k=1

where Ey : Tx,(B) — Y then A-weak continuity for F is implied by conti-
nuity for each Ey, in the strong topology. Since Ty (B) is compact the latter
condition implies uniform continuity for Ey : Ty(B) = Y and this in turn
implies uniform A-weak continuity for F': B =Y.

Hence in the case where

F= i ETy
k=1
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for some Ey, : Ti,(B) = Y our approxzimation procedure for F is equivalent
to the original approximation procedure of Section 1.5 applied simultane-
ously to each E}.

2.7 Special Results for Maps into Banach Spaces

We wish to elaborate the results of the previous section in the case where
Y is a Banach space. Our specific purpose is to show how the results can
be quantified by measuring the modulus of continuity for the operator F.

Let 3 denote the collection of all A-weak neighbourhoods of zero in
H. Let B C H be a bounded set and let F' € C4(B,Y) be an A-uniformly
continuous map.

Definition 10. The function w : X9 — R given by
w(o) =sup{||F(z) — F(u)|| |t € Bju€ B and z—u€ o} (2.154)
is called the A-weak modulus of continuity for F': B — Y.

It is often useful to consider the behaviour of the modulus of continuity
when 0 = 0(A4, o) for a fixed A € A® where s € Z,.

Definition 11. Let s € Z, and A € A°. The function wa : R} — R given
by

wa(a) =wlo(4, a)] (2.155)
1s called the A-modulus of continuity for F: B =Y.

We can now restate the assertions of Lemma 6 and Theorem 11 in a
more specific form.

Lemma 7. LetY be a Banach space and let B C H be a bounded set. Let
F € CA(B,Y). For each real number 3 > 0 and each p € (0,4] C R there
exists a corresponding

a=a(8,p) >0

and associated A-weak neighbourhoods of zero

o = pu
— o(Apa)Cp
o(A,a) CH
such that

wala) < B
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and such that the continuous map F, : H — Y satisfies the inequality

[F(z) — Fo(u)|| < walpalu — ) + pal (2.156)
forallx € B.
Proof. Let

T={yly€eY and [y| <2} (2.157)

Choose an A-weak neighbourhood of zero

p=oc(Aa) CH
such that

Fllx+pu)NB|C F(x)+T1 (2.158)
for all z € B. It follows that
wala) < 6.

We now consider the A-weak neighbourhood of zero

o =pp=0(Apa)

and the associated continuous map F, : H — Y defined in Lemma 6. We
observe that
ki(u) #0 implies pa(u— ;) < pa.

Since
pa(x —z;) < pa(r—u)+palu—xz;)
< palz—u)+pa (2.159)
it follows that
x—1x; € 0(A, palz — u) + pa)
and hence
[F(z) — F(z)|| <walpa(z —u) + pal. (2.160)

Since k;(u) € [0, 1] we have
I Y r@F@-F@)ll < )  m@]|F@) - F)
{il: () £0} {il: () £0}
Y. rilwwalpale —u) + pa]
{ilwi(u)7#0}
walpa(z —u) + pal.

IN

The lemma is proven. O
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Theorem 12. Let H be a Hilbert space and let B C H be a bounded subset.
LetY be a Banach space with the Grothendieck property of approzimation”
and let F € C4(B,Y) be a uniformly A-weak continuous map. For a given
real number 3 > 0 there exists o = a() > 0 and an A-weak neighbourhood
of zero

such that

@

wala) <
with an associated continuous operator S : H —'Y,, in the form
S=WzZQU,,

and a strong neighbourhood of zero ¢ C H such that for all x € B and all
2’ € H with ¥’ — x € ¢ we have

[1F(z) = S(a)|| < wa (pA[Um(x —a)] + %) + g (2.161)
Proof. Let
T={ylyeY and |y| <z} (2.162)

From Lemma 7 it follows that we can choose a > 0 and an associated
A-weak neighbourhood of zero

«
0= U(Av Z)
such that 3
wa(a) < 5
and
«
[F(z) — Fol(u)]| < wa (pA(x —u) + Z) (2.163)
when z € B.

Consider the A-weak neighbourhood of zero

o=o0(A, %)

"Once again we suppose the ewistence of a sequence {Vptn=12 of continuous

operators Vi, € L(Y,Yn) with the appropriate properties.

yeen



62 2. NONLINEAR OPERATOR APPROXIMATION

As in the proof of Theorem 11 we can choose M = M (o) such that
Un(z)—xz €0

for each x € B when m > M. Now we know that

pA[JU - Um(x/)] < pA[$ - Um(m)] +pa [Um(ﬂi - .CC/)]
< palUnm(a — )] + % (2.164)
and hence, from the definition of w4, it follows that

IF@) = FoUn@)l < wa ({palUm@ =)+ TH+5)

= wy (pA[Um(z — )]+ %) . (2.165)
Since U, (B +¢€) C R™ is compact we can choose Ny, such that
| FoUpm(z") = Vo FoUpn (2")|| < g (2.166)
for all
' €B+e
and
n > Ny,.

We can also choose functions from the algebra G as described earlier in
Theorem 11 so that

Vo Un(a') — ()] < 2 (2.167)
for all
' € B+e
The required result follows from the previous three inequalities. O

2.8 Concluding Remarks

In this chapter, we have presented several techniques for nonlinear opera-
tor approximation with any pre-assigned accuracy. The special attention
has been given to applications of these methods to modelling of nonlinear
systems.

We have shown that realistic models for non-linear dynamical systems
can be constructed in such a way that the model provides an accurate
representation of the input-output behavior of the given system and is stable
to small disturbances.
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We have presented the constructive operator approximation methodol-
ogy that can be used to provide a useful numerical model of a non-linear
system in a realistic situation where there is limited initial information
about the system. In particular we have shown that a system defined by
an abstract operator known only on some bounded set of input signals can
nevertheless be realized by a satisfactory numerical model provided that
the operator satisfies certain reasonable continuity requirements.
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Chapter 3

Interpolation of Nonlinear
Operators

3.1. Introduction

3.2. Lagrange Interpolation in Banach Spaces
3.3. Weak Interpolation of Nonlinear Operators
3.4. Strong Interpolation

3.5. Interpolation and Approximation

3.6. Some Related Results

3.7. Concluding Remarks

3.1 Introduction

In this chapter, we consider some fundamental principles of the general
theory for nonlinear operator interpolation. Interpolating operators are
naturally connected to modelling of nonlinear systems. If a system is given
by finite sets of input-output signals, then interpolating operator provides
a model of such a system.

The most widely known formula for interpolation is the formula due to
Lagrange for real valued functions on the real line. The Lagrange formula
has since been extended to the interpolation of mappings on more general
vector spaces. Let H be a Hilbert space with inner product (-,-) and let
F : H— H be a continuous mapping. Let

{(r,yr)}r=1,2,...p C H x H,

65
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where y, = F(z,) and z, # z, for r # s be a known finite collection
of data points. In this case, Prenter [105] has proposed an extended La-
grange interpolation formula for each x € H. A similar formula can also
be used on Banach space where the inner products are replaced by suitable
linear mappings. The formula was developed in association with a system-
atic study of multi-linear mappings that formed the basis of a generalized
Weierstrass approximation theorem in Banach space.

In Section 3.2, we consider a detailed presentation of the Prenter’s re-
sults. In Section 3.3, we define and justify a non-Lagrangean procedure for
the weak interpolation of non-linear operators on C([0, 1]).

3.2 Lagrange Interpolation in Banach Spaces

Let X and Y be Banach spaces and let F' be an operator mapping X into
Y. Let ¢y, ..., ¢, be points of X. The interpolation problem is that of fund-
ing, for each sequence {z1,...,2,} of distinct points of X, a polynomial
operator P which interpolates {c1,...,c,} at {z1,...,z,}, so that

P(Il) = C;
for all = 1,...,n. We shall show that there always exists a polynomial of
degree (n — 1) which solves the interpolation problem.
3.2.1 Fréchet derivatives of operators

If L is n-linear (n > 1), we shall let 9;L denote the n > 1-linear operator
on X into £4[X,Y] defined by

OiL(1,. . T, Tty Tn) = L(T1, 0 T 1, ig, 0, ),
where
(L(9€1>---7Z‘i—17'79€i+17~-~,$n))($) = L(xl,...,mi_l,x,xi+1,...,xn).

Definition 12. Let F be an operator mapping an open subset V of a
Banach space X into a Banach space Y. Let xg € V. If there exists a
linear operator U € L£1[X,Y] such that

|1F'(z0 + Az) — F(x0) — U(Az)|| = o(|| Az]]),
then U = F'(xq) is called the Fréchet derivative of F at xg. Equivalently,

U(z) = lim F(zo+tx) — F(xo)’
t—0 t

where the convergence is uniform on the sphere {x | ||z|| = 1}.
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It follows from the definition that if L is bounded, n-linear operator on
X, and

where z" = (z,...,x), then
~——

F'(z) = ZaiL(xnfl).

In particular, if L is bilinear and
F(z) = L(z?), then F'(z) = L(z,-) + L(-, z).

If L is symmetric, then, clearly, F(z) = nL(z"~1).

We shall need the derivative of W. Let L be n-linear and let xz1,...,x,
be points of X. We let 9;WW or W/(x — x;) denote the operator on X into
L;[X,Y] defined by

OW(2)=L(z — X1,y 2 — L1, 2 — Tigly---y 2 — Tp)-
We set

oW (z) = (W/(x—wz))(2)
= W(2)/(z —z;).

It should be noted that the operator W/(x — z;) is completely independent
of the z in the denominator; the denominator (z — ;) is purely symbolic.

Theorem 13. Let L be bounded, n-linear operator. Let x1,...,x, € X,
and set

W(z)=L(x —21,...,2 — zp).
Then
W' () = Z W{(wo)/(z — )

and, in particular,

Wi(xi) = W(x)/(x— )
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Proof. Let xy be a fixed point of X. Then, using the multilinearity and
boundedness of L,

=

(zo) (Az)

Tr — I;

HW(xo + Ax) = W(zo) = >
i=1
=||L(zo — 1 + Az, ...,x0 — z, + Ax)

—L(xg —1,...,20 — Zn
n
- E L(xzg —x1,...,20 — ®i—1, AT, 20 — Tiq1,...,To — Tp)
=1

< Y Ml Az||* = of|| Ax]),

k=2
where each My, is a positive constant arising from ||L|| and from the norms
lxo — x|, withi=1,... ,n. O
3.2.2 The interpolation problem - solution

Let £,[X,Y],n=0,1,2,..., denote the set of n-linear operators on X into
Y. If X =Y, we write £,,[X] and we shall identify £o[X] with X. Let L
be a bounded n-linear operator in £, [X]; let x1, ..., x, be distinct points
of X and let

W(z) =Lz —z1,...,2 — xy).
Then W is a polynomial of degree n mapping X into X of the form
Lpaz™ + Ly 12" '+ ...+ Liz+ Lo,
where L, = L, and Ly = (—1)"L(x1,...,x,). For example, if L is bilinear,
L(z — x1,0 — 29) = L(2?) — L(21,2) — L(x, 1) + L(z1, x3).

Thus, Ly = L, Lo = L(z1, 22), and Ly = —L(z1,-) — L(, 22).
Also,

W{(x)

@— 1) =W (x)=L(x —x1,...,& — i1, & — Tit1,--., & — Tp)

is a polynomial of degree (n—1) which maps X into L;[X]. We have shown
that
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so that

W () = W) /(v — 2;) = oW ()
is a linear operator. Thus, should W'(z;) be nonsingular for i = 1,...,n,
then since

(@) = W/ (o)) W (@) ),
l; would be a linear operator-valued function having the property
li(zj) = 6;51.
Furthermore, for each xg € X, it is easily seen that
[li(x;)](20) = li(@)wo
is a polynomial operator of degree (n — 1). That is, we have proved

Theorem 14. If there exists an n-linear operator L such that [W'(z;)] ™1
exists for each i =1,...,n, where

W(z) = Llx —x1,...,x — xy),

then the Lagrange polynomial y(x) of degree (n — 1) given by

y(z) = Zli(x)ci <= Zli(I)F(mi)> ;
where -
o) = W/ ()] s = ()] 0V (),

solves the interpolation problem (interpolates the operator F at the n dis-
tinct points 1, ...,x, of X).

Thus, to solve the interpolation problem, it is enough to prove that such
an n-linear operator exists. It would actually suffice to prove the existence
of a family {L1,...,Ly,} of n-linear operators having the property that
[W/(x;)]7! exists for i = 1,...,n, where

WZ(ZE) = Lz(l‘ — L1y, L — Z[Zn)
If this were the case, we could take

) = W)

i=1

(ci)

as our interpolating polynomial. we shall prove the existence of such a
family of L;’s.
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Theorem 15. Let x1, ..., z, be distinct points of a Banach space X.
Then for each i = 1,...,n there exists an n-linear operator L; for which
[(W/(z;)]~1 exists, where

Wi(z) = Li(x — 21, ..., — xy).
Furthermore, the L;’s can be chosen so that
W{(Il) = Ia

where I is the identity operator in Lq[X].

Proof. We start with ¢ = 1. We must produce an n-linear operator L; for
which W/ (x;) exists and nonsingular, where

Wi(z) = Li(z — x1,...,2 — xp).

Recall that if such an L exists, then
Wl(l‘l)
w, = ———= =W
1(21) (@ —z1) Wi(z1)
= Ll(.vxl_x27"'7$1_‘rn)ﬂ

which belongs to £1[X]. Also, £1 : X"~ — £41[X]. With this in mind, let
X,; = span{zy — z;}.

Since each Xy, (j = 2,...,n) is one-dimensional, there exist continuous
projections P;; of X onto X;;. Define

T : X190 X X93 X ... X X1 = L4[X]
by linearity, through the equation
Tl(xl —Zoy..., 21 —Xy) = 1.
Then T} is a bounded (continuous), (n — 1)-linear operator in
L1[X12 x X13 X ... X X1, Y].
That is,

Ty (ag(zy — 22), ..., an(z1 — )|
=llag...apT(x1 — x9,...,21 — Ty)||
=lag...an|- |||

1

=l fler — @l

‘ lai (1 = @)l flan(zr = 20)|l;
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so that
1

w1 = @l . [l — znll

171 =

We extend T} to a continuous, (n — 1)-linear operator Tj : X"~ ! —
L1[X] through the projections P;;. That is, we define

Ti(y1, - s Yn—1) = T1(Proy1, - - ., PinYn—1)-

Since the operators P;; are linear and continuous, it follows that T; is
(n — 1)-linear and continuous. In particular, the map P,

PZXn_1—>X12><X13X...XX1n

given by
P(y27 s 7yn) = (P12y27 cey Plnyn)

is continuous, so that the composition
TioP=T

is continuous.
Now define the n-linear operator L; by

Ll(ylv"'ayn) = [Tl(yh»yn)}(yl)

The n-linearity of Ly follows directly from the (n — 1)-linearity of 77 and
the fact that Tj is linear and operator-valued. The boundedness of T} is
also apparent. If

] — X
Puyr, = ap——F_
21 — ol
then
[ Preyell = lak]-
Thus,
Ll(y17y2"'ayn—layn) = [Tl(y27~-~,yn)](yl)
= (=T1[Piay2, .-, Pinyn)l(y1)
B as...0an
21 — ol ... |lz1 — 24|
X[Tl(xl —T2,...,T1 — ‘rﬂ)}(yl)
as...0an
= Yi1-
21 — 22| |21 — 24|
Therefore, if
1

K

T RN



72 3. INTERPOLATION OF NONLINEAR OPERATORS

then

IL1(y1, - un)ll = Klail. . an|llyl
= K| Pyl |Prmynlllly:l
Klyilllly2ll - - - llynll,

IN

since each Pjj is a projection and

[Pyl = [Pl [|y]]-

Now let
Wi(z) = Li(z — z1,...,2 — xp).

Since L is a bounded, n-linear operator, Wi (x) is differentiable and

Wl(xl)
Wi(z1) = @—m1)
= Ll(';xlfm%"'axlfmn)
= Ti(x1—x2,...,21 — Tp)
I.

Thus, W/ (z1) is a non-singular, linear operator.
A similar line of arguments proves the existence, for each i = 1,...,n,
of an n-linear operator L; for which W/(z;) = I, where

Wi(z;) = Li(x — x1,...,0 — zp).

This completes the proof of the theorem. O

As a direct result of Theorem 15 we have

Theorem 16. The interpolation problem can always be solved by a poly-
nomial y(x) of degree (n — 1) having a Lagrange representation

y(r) = Zli(x)cia

where
o) = W/ ()] s = ()] 00 (e)
and
Wi(z) = Li(x — x1,..., 2 — Zp)

for appropriately chosen n-linear operators Ly, ..., Ly.
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In the event X is a Hilbert space with inner product (x,y), Theorem
15 also yields a representation theorem. Consider the projection P;; of X
onto X given in the proof of Theorem 15. If X is a Hilbert space, then

r1 — T 1 — Tj5
Prjy; = <yj7| ’ > | ’

lz1 — x5l / ey — 25

Thus,

<y2a Ty — $2><y3, xr1 — fE3> s <yn71’1 - Cl'n>
lz1 — 22?21 — 23] |21 — 20 [|?

Ll(yl,"'ayn): I(yl)

In particular, since W,y (z1) = 1,

Wl(x)
l = 1
1(%) O(x—xl
= Ll(-,l‘—l‘g,...,l‘—xn)

_ (x — x9,21 — x2) (T — 3,21 — T3) ... (T — Tp, X1 —xn>I
|21 — @2?ller — @3] [[z1 — 2n|]?

Analogously, one can prove that

-1
n

n
L) = |T[@—omzy—ae) | | T les —all| T
k=1 k=1
k] ki
Thus, we arrive at
Theorem 17. Let X be a Hilbert space with inner product (x,y) and let
c1, ..., cp be points of X. Then, for any distinct points x1, ..., x, of X,
the polynomial y(x) of degree (n — 1), given by

s =y T

= i)

where

n

mi(x) = H(z — Tp, Tj — Tk

=
satisfies

y(z:0 = ¢
fori=1,...,n.

Proof. The theorem is evident by inspection; however, it is interesting to
note how it followed naturally from the theory of Theorems 15 and 16. [
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3.3 Weak Interpolation of Nonlinear Operators
Suppose that the mapping F': X — Y is defined by an empirical data set
D, ={(zr,yr) | yr = Flz,] forall r =1,2,...,p} CX x Y.

The natural assumption in general is that the data points (x,,y,) are all
known elements of X x Y. However when each data point

(xr,yr) € C(]0,1]) x C([0,1])

is an ordered pair of functions and if each function pair is known only by
an evaluation vector pair

(&mr) € R™ xR,

where
&r = (xT(Si)) and 7, = (yr(tk))

then the extended Lagrange formula cannot be applied.

In this section, we consider the so called weak interpolation procedure
[?] which will avoid this difficulty.

It will be shown that the weak interpolation can become a strong inter-
polation when the image space is a finite dimensional Chebyshev subspace
of C(]0,1]) and we also show that for each € > 0 there exists § = d(e) > 0
and an output evaluation set N' = N (€) so that the corresponding weak
interpolation S[z] provides an approximation in C([0,1]) with

[S[2] —yrll <€

when
|z — .|| <6
foreachr=1,2,...,p.
The general form
S=WKQG,,

of the weak interpolation operator is motivated by the structure of the
approximating operator considered in the preceding chapter. The desire to
develop a weak interpolation procedure is motivated by the consideration
that in many practical problems the input-output pairs (.., y,) are likely
to be known only by an evaluation of each function on some finite subset
of [0,1].

The weak interpolation procedure will be illustrated by an elementary
example.
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In the case of the weak interpolation of nonlinear operators, we suppose
that the mapping
F:C([0,1]) — C([0,1])

is defined by an empirical data set
D, ={(zr,yr) | yr = Fla,] for each r = 1,2,...,p} C C([0,1]) x C([0,1])

and that the data point (z,,y,) is known only by the evaluation vectors
(xr(s;)) € R™ and (y,(tx)) € R™ on some finite collections

M={s;} C[0,1] and N = {t;} C[0,1]

of fixed points. The desired interpolation is defined by constructing a

mapping
S:C[0,1] — C[0,1]

with
Slu] = S|

when u(s;) = x(s;) for each i = 1,2,...,m and with

Slar](te) = yr(tx)

foreachr=1,2,...,pand each k =1,2,...,n.

3.3.1 Weak interpolation

We write
Slz] ~ F[z]
for all z € C([0,1]).
Let M = {s;}i=1,2,...,m where

0=851<853<...<Sp_1<8n=1
and N = {tx }k=1,2,..n where
O0=t1 <ta<...<tp1<tp,=1
be ordered collections of fixed points in the interval [0, 1] and let
Ear 2 C([0,1]) = R™

and
Ey :C([0,1]) = R"
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be the linear mappings defined by

Emlel =&, Exlyl=n (3.1)

where
€= (a(s)) €R™ and 5= (y(ty)) € R"

for each z,y € C([0,1]). When Eq[x] and Exr[y] are known we say that «
is evaluated on M and y is evaluated on N.

We note that in many situations experimental data will be determined
in this way.

Consider a mapping

F:C([0,1]) = C([0,1))

defined by

Yr = F[xr]
for each r = 1,2,...,p, where z, is evaluated on M and ¥, is evaluated on
N.

Definition 13. We will say that
S :C(]0,1]) — €([0,1])
is an (M, N) weak interpolation of
F:C([0,1]) = C([0,1))
if
1. S[u] = S[x] whenever Eaplu] = Exlx], and
2. EnSlx,] = ExFlz,] for eachr=1,2,...,p.
Let 0,7 : R — R be continuous and non-decreasing with
o(s),7(t) } 0 as s,t] —o0

and
o(s), T(t) 11 as s,t1o00.

We will use these sigmoidal functions [22] to construct an operator S which
provides an (M, N') weak interpolation of F'.
We need the following preliminary result.
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Lemma 8. Let
fiR™™ SR g: R SR
be defined by
f(@)=detX, g(¥)=detT (3.2)

where
® = (¢i;) € R™™, W = (¢hpy) € R

and where
Z: (0-2]) eRme7 T: (Tkl) GRTLXW

are given by

) o (1<) [ (k <1)
045 = { 1— ¢ij (Z > J) and Trl = { kl N ) (3'3)

Then we can find ¢, > 0 such that
f(@),9(¥) #0
when

l9ij| <o and |u|<v Y 04k

Proof. The result follows by observing that f(®), g(¥) are polynomials
with
O

Foreach j =1,2,...,mand [ =1,2,...,n define oy, 5;,7,6 € R with
o,y > 0 such that

olansi+B)=1—¢, T(mti+d)=1-1 (3.4)
and such that

olajsj—1+6;) =¢,  T(nti-1+0) =7 (3.5)
and

olagsj+B5)=1—-0, tluti+da)=1-1 (3.6)

for j,1 > 1 where ¢, > 0 are defined in Lemma 8. We also define 3 =
(0i5) € R™*™ T = (73) € R™*™ by setting

0ij = o(a;si + B5), Tt = T(itk + 01) (3.7)
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for each 4,5, k,I. Let
& = (zir) = (2r(51)) = Emlzr] € R™
and

M = (Ykr) = (yr(tr)) = Enly-] € R"
and define X € R™*P Y € R"*P by writing

X:(§17-~'a§p)’ Y:(n1a~-'anp>' (38)

Since X, T are non-singular we can find p, = (1) € R™, v, = (1y,) € R?
by solving the equations

& = By, nr =Tu, (39)

for each r = 1,2,...,p. The equations (3.9) can be written in the more
explicit form

we(s0) =Y mrolaysi+5),  wete) =Y vpm(nte +6)  (3.10)

j=1 =1

foreachi=1,2,...,mand k =1,2,...,nand each r = 1,2,...,p. On the
other hand, if we define M € R™*P, N € R"*P by writing

M= (1, ptp)y  N=1,..0,1p) (3.11)
then the equations (3.9) can be written collectively in the form
X=%M, Y =TN. (3.12)

In general, for each = € C([0,1]), we define
§ = (2(si)) = Epmla] € R™
and calculate § = (0;) € R™ by solving the equation
£=130. (3.13)

This equation can be written as a system of equations in the more explicit
form

2(si) = > Oi0(assi + ;) (3.14)

j=1

for each i = 1,2,...,m. Define a mapping G, : C([0,1]) = &,,, C C([0,1])
by the formula

Gmlz](s) = _0;0(a;s + B)) (3.15)
j=1
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and a mapping Q : X, — R™ by setting
Q(Gmlz]) = 0. (3.16)

If we assume that puq,...,u, are linearly independent in R then we can
define a mapping K : R™ — R"™ by the composition

K=NM"M)"TMT. (3.17)
Indeed we can find A = (A,) € RP so that

|MX— 9] (3.18)
is minimized by solving the equation

MTMN= M9 (3.19)
then it follows that kK = K6 € R™ can be rewritten in the form

k=N (3.20)
Next we define the mapping W : R™ — Y, C C([0,1]) by the formula

W) = 3 mer(ut +8) (3.21)
=1

and finally S : C([0,1]) — Y, by the composition
S =WKQG,. (3.22)

We have the following basic result.

Theorem 18. Let
S:c([0,1]) = Y, € C([0,1])

be the operator defined above. Then S is an (M, N') weak interpolation of
F.

Proof. Let u,z € C([0,1]) and suppose that
Emlu] = Emlz].
We must show that S[u] = S[x]. If we write

Epmul =w and Epmlz] =€



80 3. INTERPOLATION OF NONLINEAR OPERATORS

then it follows that w = £&. Now we note that

Gnlul(s) = f: p;io(a;s + ;) (3.23)
and B

Gnlz](s) = i 0io(a;s + B3;) (3.24)
where B

p=1(p;) €eR™ and 6=(0;) €R™

are determined by solving the equations

w=Xp and §&=230. (3.25)
Since

p=S"lw="1¢=9¢

it follows that G,,[u] = G, [x] and hence that

Su] = WKQG,u
WEKQG,[z]
= S[z].

We must also show that
EnS[zy] = ExFlz,]

forall  =1,2,...,p. Since

& =X, (3.26)
it follows that

Gmlz,] = Z piro(ags + B;) (3.27)
j=1
and hence that
QGm [xr] = HUr. (328)
Because
NMTM) " My, = v, (3.29)

it follows that
KQG,,[z,] = vy (3.30)
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and hence

Slx,] = Wlv,]. (3.31)
Consequently

Sl ](t) = Z Vi (it + 61). (3.32)

=1

If we use the notation z, = S[z,] and if we define ¢, = (zir) = (2-(tx)) € R™
then the equations

n
zr(ty) = Z virT(itk + 61) (3.33)
1=1
for each kK =1,2,...,n can be rewritten in the form
G =Tv, (3.34)
and since ¢, = Tv, = 0, it follows that
EnS[z,] = Enlz]
= Enxly]
= ExF[z,]
foreach r =1,2,...,p. O

Example 6. Let
Co = {z | x € C([0,1]) with z(0) = z(1) = 0}. (3.35)

Define a linear operator A : Co — C[0,1] by setting

1
Alx](t) = / [u(s —t) — s]z(s)ds (3.36)
0
where u : R — R is the unit step function given by
0 if s<0
u(s) = { 1 if s>0 (3.37)

and for each © € Cy define an associated function £ : R — R by taking
the odd periodic extension of period two for x. This extension can be easily
constructed using the Fourier sine series representation for x. Let F: Cy —
Co be the mapping defined by the formula

Fla](s) = % /0 [B(s — ) + (s + O] A[] (t)dt (3.38)
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for each s with 0 < s < 1. The function F|x] is defined by a convolution
integral and can be interpreted as the symmetric correlation of x and Alx].
Such operators are used frequently in the representation and analysis of
non-linear systems. It is useful to observe that if we represent x as a
Fourier sine series

x(s) = Z{} sin jms (3.39)
j=1
then
Ja _ SF s 4
[x](s) ; 2in sin j7s (3.40)

for each s € [0,1]. If

[ 2 if 0<s<i
21(s) { 2-2s if l<s<l1 (3.41)
and
4s if OSSS%
xa(s) =4 2—4s if ig s S% (3.42)
4s—4 if 2<s<1

3t if 0<t<3
Alz](2) (3.43)
—1+(1-1)? if i<t<1
and
§ -2t if 0<t<j
Alwo)(t) = —g+20—-3)° if 3<t<} (3.44)

Further calculations give

Flri](s) =
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S -e-DAE-@-D1 ¥ b<ssi
where we have used the notation o = |s — %| for convenience. We suppose
that the mapping is not known but that for some M and N the data vectors
Em(z1), Epm(z2), Ex(Flx1]) and Ex(F|z2]) are given. Take

0 if s<0
o(s)=¢ s if 0<s<1 (3.45)
1 if s>1
and
0 if t<0
T(t)=1< 3[l—cosmt] if 0<t<1 (3.46)
1 if t>1.
Choose
{si} = {ts} = {0, i, % Z, 1} (3.47)

and set ¢ =1 = 0. Choose oj =, = 4 for each j,l and {5;} = {&} =
{1,0,-1, -2, -3} so that

(3.48)

™

Il
— o= = =
=)
== 0 O
= =0 O O
_— o O O O

Il

~

The vectors &. = (x,.(s;)) € R® and p, = L71&, € R® for each r = 1,2 are
given by

o

&= &= NS cuz=| =1 | (3.49)

OV =N O
O = O = O
[ [ T T
|
—_
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and the vectors 0, = (y,(tx)) € R® and v, = T~'n, € R® for each r = 1,2

are given by

0 0
11 5
256 9(6)
m= 16 2 = vy =
ilﬁ ) ’rl _i b
256 96
0 0

Therefore M and N are given by

0 0 0

1 1 11

1 286

- -1 — e

-3 1 — 356
from which it follows that MT M = I and
0 0
1 0 113
NMTM)TMT = T | 0 95
0 —9
0 47

Now for a general x € C([0, 1]) we have

I

I
8 8 8 gy
—~ e~ 2
(e M N e
S S S N N

=N

and hence 0 = X71¢ is given by

(0

- | s =oth
o(d) - x(h)

z(1) —x(3)

and kK = N(MTM)=1MTo by

) —1132(0) + 1603;(%) + 66

K= e 65x(0) — 160x(%) + 30z
952(0) — 160z () — 30z

—472(0) + 160z (5) — 66x(

SRl o

(3.50)

. (3.51)

(3.52)

(3.53)
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Fort € [0, 1] we have
7(4t) = [1 — cos4mt] /2

for all t,
T(4t — 1) = [1 + cos 4nt]/2

fort>1/4,
7(4t — 2) = [1 — cos4mt]/2

fort>1/2 and
7(4t — 3) = [1 + cos 4nt]/2

fort > 3/4 with all functions equal to zero to the left of the specified points.
It can now be seen that

3573 (—1132(0) 4 1602 () + 662(3) — 160z(3) 4 47x(1))
x (1 — cos4mnt)

3075 [(—482(0) + 96z (3) — 48z(1))
+(—=178z(0) — 320z(%) — 36x(3)

+320x(2) — 142z(1)) cos 4mt]
if

3573 [(472(0) — 160x(%) + 662(5) + 160z(2) — 1132(1))

(—143x(0) — 160z (%) — 6z(3)
+160x(5) — 77x(1)) cos 4nt]

<t<

n
B
~—~

~
~—

|
=
[

IN
PN

if i<t

N

3072 [(362(0) — 72%(%) + 36x(1)) cos 4t

IN

if 1.

<t

[

3.4 Strong interpolation

We begin with a simple definition.

Definition 14. We will say that S : C([0,1]) — C([0,1]) is a strong inter-
polation of F : C([0,1]) — C([0,1]) if S[z,] = Flz,] for eachr =1,2,...,p.



86 3. INTERPOLATION OF NONLINEAR OPERATOR

To construct a strong interpolation of the operator F : C([0,1]) — C([0,1])
we need to make some more assumptions. To this end we have the following
definition.

Definition 15. Let Y, C C([0,1]) be an n-dimensional subspace of C([0,1])
with basis functions {w }i=12,. n. We define

T = (1) = (wi(tr))

and say that YV, is a Chebyshev subspace if detT # O for each collection
N = {ti}tk=1,2,..n of fized points with 0 =t <ty < ...<tp_1 <t,=1.

Note that for each y € V,, we can find v = (v;) € R" such that

y=>_ vw (3.54)
=1

and note also that v is uniquely defined and can be calculated by solving
the equations

y(te) = z": viwi(tx) (3.55)
=1

for each k = 1,2,...,n. If we define n = (y(tx)) € R™ then the equa-
tions (3.55) can be written in the form

n="Tuv. (3.56)

These observations can be used to construct a strong interpolation when
we have a mapping F' : C([0,1]) — Y, € C([0,1]). We use the same basic
idea as we used in Section 3.3.1 but use the new matrix T to find v, € R™
such that

N =Tv, (357)
for each » = 1,2,...,p. The mapping W : R” — ), C C([0,1]) is now
defined by the formula

WIk](t) = Z Kiwy (t) (3.58)

1=1
but all other definitions remain formally the same and in particular the
operator S : C([0,1]) — YV, is defined by the same formal composition

S =WKQG,. (3.59)

We have the following theorem.
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Theorem 19. Let S : C([0,1]) — Y, C C(]0,1]) be the operator defined

above. If Y, is a Chebyshev subspace then S is a strong interpolation of
the operator F : C([0,1]) — YV, C C([0,1]).

Proof. Let z. = S[z,] for each r = 1,2,...,p. By following the proof of
Theorem 18 we can show that

zr(t) = i Virw (t). (3.60)
1=1

On the other hand we know that y,. € ), implies that we can find w,. =
(mr) € R™ such that

n
yr(tk) = Zﬂ'lrwl(tk) (3.61)
1=1
for each k =1,2,...,n. Thus we have
Ny =T, (362)

and since T' is non-singular it follows from equation (3.57) that 7, = v,
and hence that z, =y, forallr =1,2,...,p. O

3.5 Interpolation and approximation

Under certain circumstances we can show that the (M, N') weak inter-
polation of Section 3.3.1 also provides an approximation to the mapping
F : C([0,1]) — €([0,1]). Although the principles of the construction are
the same as they were in Section 3.3.1 we will need to be more careful
in the way we choose the various parameters that define the interpolation
operator. We use essentially the same notation as we used in Section 3.3.1
and suppose that F : C([0,1]) — Co C C([0, 1]) where

Co = {yly € €([0,1]) with y(0) =y(1) = 0}. (3.63)

Suppose that y,. = F[z,] € Cp is known for each r = 1,2,...,p. Let ¢ > 0
and choose 01 = d1(€) > 0 so that

€

4

when [t — t*| < §;. Choose N so that

lyr () — yr (£7)] < (3.64)

|tk+1 — tk| < 0 (365)
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for each £k = 1,2,...,n — 1. Choose ¢,¥* > 0 in the way that ¢, > 0
were chosen in Lemma 8. For each ¢ € (0,4*) choose v;(v), §;(¢)) € R with
() > 0for I =1,2,...,n such that

Tt +01(¢) =1—4 (3.66)
and such that

T(n(W)ti—1 +a(¥)) =¥ (3.67)
and

Tt + o)) =1—1 (3.68)
for I > 1. Define Ty = (13:(¢0)) € R™*™ by setting

T (¥) = T(n(P)tk + & () (3.69)

for each k,I. Since T is non-singular we can find v, () = (v,-(¢)) € R®
by solving the equations

Nr = Twyr(w) (370)

for each r = 1,2,...,p. The equations (3.70) can be written in the more
explicit form

yr(te) = Y vr (0T (@)t + (1)) (3.71)
1=1

for each k = 1,2,...,n and each r = 1,2,...,p. On the other hand, if
Ny € R"*P is defined by writing

Ny = (1(¥), ., 1p(¥)) (3.72)
then the equations (3.70) can be written collectively in the form

Y =T, N,. (3.73)
Define Ty = (73;(0)) € R™*™ by setting

T (0) = { (1) Ez ; 5; (3.74)

and note that Ty, — Ty as ¢ — 0. Since Tp is non-singular we can define
vr(0) = (1,(0)) € R™ by solving the equation

1y = Tovy (0) (3.75)
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and because T\, — Ty then v, (¢)) — v,(0) as ¥ — 0. Equation (3.75) can
be rewritten in the form

k
yr(te) = > 11,(0) (3.76)
1=1
and hence
_ [ ow(t) (1=1)
l/lr(o) - { yr(tl) _ yr(tl—l) (l > 1) (377)

Define the mapping Sy : C([0,1]) — C([0, 1]) by the composition

Sy = WKyQGr, (3.78)
where Ky : R™ — R™ is defined by

Ky = Ny(MTM)"'MT (3.79)

and all other operators are defined in the same way as they were in Sec-
tion 3.3.1. Therefore

Splar](t) =Y vip (V)T (W)t + 6i(1)) (3.80)
=1

and from this equation and equation (3.71) we note that

Sylar](tr) = yr(te)
and in particular that

Sule)(0) = Syl )(1) = 0.

Now since
li(’@/]) = Kwe
= NyA
P
= > Awn(¥) (3.81)
r=1

it follows that

ki) =Y Awin(¥) (3.82)



90 3. INTERPOLATION OF NONLINEAR OPERATOR

and hence that

Wk@)(t) = > [Z)\ Vi (1 ] 1Y)tk + 6i())
=1 Lr=1
== Z >\r i Vlr tk + 5l(¢))]

Mﬁ

AeSla ) (t): (3.83)

%
I
—

It is now obvious that
Wk(¥))(0) = Wk(¥)](1) =0

and hence Sy[x] € Cp for all z € C([0,1]). In other words Sy : C([0,1]) —
Co C C([0,1]).

To show that ||Sy[z] — Flz,]|| can be made arbitrarily small when
and ||z — x| are sufficiently small and A is sufficiently fine we recall that

yr = Floy] and  Sylz:](tk) = yr(t)
and consider the inequality

1Sy[2](@) =y (O] < [Sp[2](t) = Sy [z ) ()] + [Sy[2r](t) — yr(te)|
+|yr(tk) - yr(t” (384)

where ¢t € [0,1] and k is chosen so that ¢ € [ty_1,t5]. For ¢t € [tr_1,1r] we
note that

Yr(te) — Sylz,]( ZVzr )ty + 01(¥))
—T(m()t + 61(¥))]

and since

when [ < k and

IA A IA
=
2
=
=
o
_l’_
=
S
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when [ > k then
[y (tk) = Sz, (0)] <D e ()| + [ (). (3.85)
I#£k

Since
1 ()] — 0

and
e (V)] = |y (t1) — yr(ti—1)| < €/4

for I > 1 as ¢ — 0 it follows we can find v so that

i (¥)] < €/4

forall I =1,2,...,n and if ¢ is chosen so that we also have
(n—=1)y <1
then
> v (W) + ()] < 5 (3.86)
I£k

forall k =1,2,...,n. It follows that

e (1) = Sl (0] < (3.87)

for allt € [tx_1,tx]. We now consider the value of 1 to be fixed. Incidentally
we note that our earlier choice of A/ also implies that

e (1) = (D] < (3.89)

for t € [ti—1,tr]. We note that

|2(si) — 2r(si)] < [lo — 2|

for each 1 =1,2,...,m and hence

1€ =&l < flz — 1'7"”\/7; (3.89)
Thus

16 — pell < IZ7H] |z — 2]l v/m (3.90)

and therefore

() = vell < 1Kl IE7H] 2 — zvllv/m. (3.91)
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It follows that

[Syle](t) = Sylz ()] = [Wk(®)]({#) = W ]@)]
= 1D _[s() = vl r(u(@)t + 6u(v))|
=1
S n

D Im) — vy
=1

l5(¥) = vellvn
I =] [l = ellv/mn (3.92)

for all t € [0,1] and hence if ||z — z,|| < d2 and we choose J; sufficiently
small then

1Splal = Sylerlll < 7 (3.93)

VANVAN

Since y, = F[z,], we observe that the inequalities (3.84,3.87,3.88,3.93)
imply

Sy [2](t) = Flz, ()] <€ (3.94)
for all ¢ € [0,1] and hence

|Sy[x] — Fla,]|| < e. (3.95)
We can summarize the preceding discussion in the following way.

Theorem 20. Let
Sy = WEKyQGm : €([0,1]) — Co € C([0,1])

be the operator defined above. For each € > 0 we can choose ¥ = ¥(e) > 0
sufficiently small and N = N (€) sufficiently fine and find d3 = d2(e) > 0
such that

1Sy la] = Fla || < e (3.96)

whenever ||z — x| < 02 for each r=1,2,...,p.

3.5.1 An idle comparison

Although it is inappropriate to compare the weak interpolation procedure
in this section with the Lagrangean interpolation proposed by Prenter [105]
it is nevertheless of some interest to apply the latter interpolation to our
earlier example. Of course it is now necessary to assume that the data set
is completely known in C[0, 1].
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Example 7. We use the mapping of Fxample 6 and essentially the same
data set. We suppose once again that the mapping is not known but must
now assume that the data set is completely known. Since

3

max |(z1 — x2)(s)] = ($1—$2)(Z)
3
2

we can define an associated function viz : [0,1] — [0,1] € NBV([0,1]) of
normalised bounded total variation by the formula

0 if 0<s<3
v12(s) = (3.97)
1 if 3<s<1

and a corresponding linear functional f12 € C([0,1])* by setting

fi2(z) /[0 : x(s)v(ds)

I
8
~—
e |
\._/

It is clear that

flz(xl - 12) = (Il - 12)(2)
= |lz1 — 22
3
T2

Define fo1 € C([0,1])* by setting for = —f12 and apply the extended La-
grange formula to obtain

Tr — T2 Tr — T

Rlz] = f12[m]F[$1]+f21[”$27 1”]F[3«”2]
3) (3 21 (3) — o(3
_ 2y - =) ; (4)F[x1]+7(4)3 @) play] (3.98)

2 2
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from which it follows that

in the intervals
1
2

0<t< and <t<L1

DN | =

respectively. The notation T = |t — %\ has been used for convenience. For a
given x € C([0,1]) we could compare the Lagrange interpolation R[x] of this
example with the interpolation S[x] of the previous example by evaluating
each function at selected points.

3.6 Some Related Results

W. Porter [106, 107], extended the result by Prenter [105]] to the case of
causal operators. With H a Hilbert space and {(x;,y;) : 4 =1,---,m} C
H x H a basic problem in [106] is to determine the existence and uniqueness
of causal operators, F', on H satisfying y; = F(z;) i = 1,---,m. In [106],
classes of polynomial functions are considered which minimize an opera-
tor norm. The results include explicit necessary and sufficient conditions
and an explicit synthesis procedure for realizing the resultant polynomial
operators.

A. Torokhti [151, 152] considered synthesis of set-valued interpolation
systems on the basis of a special application of some interpolation polyno-
mial operators considered in this chapter.

V. Khlobystov [74] generalized the result by W. Porter [106, 107] of
finding an interpolation polynomial in £5(a,b) with minimal norm to the
case of an abstract Hilbert space with a measure. V. Khlobystov also
obtained a solution to the extremal problem which is a generalization of
the theorem of M. Golomb and H. Weinberger [49] for a bounded set of
operator interpolants.
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In the book by V. L. Makarov and V. V. Khlobystov [91], the theory of
polynomial operators in Hilbert space due to Hermite and Hermite-Birkhoff
is studied. The necessary and sufficient conditions for the solvability of
different operator interpolation problems are given. The error analysis and
study of convergence of associated interpolation techniques are provided.

3.7 Concluding Remarks

We have developed a non-Lagrangean procedure to construct a weak inter-
polation of a non-linear mapping on C|[0, 1] defined by a finite number of
observed input-output pairs. We have shown that the weak interpolation
can become a strong interpolation in the case of a finite dimensional range
space and that when the parameters are chosen appropriately and the out-
put evaluation set is sufficiently fine it can also provide an approximation
to the original mapping in terms of the uniform norm on C([0,1]). In this
context we claim that a non-linear system described by an empirical data
set can be synthesized in the form S = WKQG,,. We have also provided
an elementary example to illustrate the weak interpolation procedure.
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Chapter 4

Realistic Operators and their
Approximation

4.1. Introduction
4.2. Formalization of Concepts Related to Description of Real-World

Objects
4.3. Approximation of R—continuous Operators

4.4. Concluding Remarks

4.1 Introduction

In the real world each object can be defined by a legend of historical in-
formation. The legend represents the complete history of the object and
specifies the state of the object at all times. The current legend speci-
fies the current state. The systematic evolution of state for a collection of
real world objects is called a dynamical system. The system is specified
by specifying each pair of initial and final states. Any such collection of
input—output pairs defines a realistic operator. There are many real world
objects that we may wish to model and some may be non-deterministic.

Example 8. FExperiments at Harvard University reported by Prof. Susan
Greenfield of Ozford University (ABC TV: Brain Story; Compass 19/2/01)
have supported the contention that when processing visual images the hu-
man brain records only key parts of the external image and uses memory
of known and apparently similar images to reconstruct appropriate back-
ground information. One might regard the input-output relationship in this
instance as only partially deterministic.

97
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For many centuries the modelling of real-world objects has been a pri-
mary interest for both natural science and philosophy. The notion of cause
was considered by Aristotle who presented a basic metaphysical view of the
material object, the essential object, the object as a body of work and the
object as a realization of purpose. The English philosopher David Hume
rejected this notion and argued that causality is a condition of constant
conjunction, proximity in space and time and succession [69]. Immanuel
Kant proposed that every event has a deterministic cause while John Stu-
art Mill related causality to the natural laws of physics [69] and argued
that it could be analysed by experimental methods. Bertrand Russell also
considered the notion of cause [114].

A qualitative theory of causality in Suppes [146] extends the notion
to probabilistic systems. On the other hand the more traditional idea
of determinism proposed by Laplace [69] suggests that knowledge of the
positions of all physical bodies and the forces acting upon them at any
instant would be sufficient to predict all future and past positions. Even
with the Laplacian view we argue that imperfect knowledge of the state will
allow or even require a probabilistic interpretation. The role of probabilistic
scenarios is central.

Brinksma et al [11], Eerola [35] and Petrovié¢ [103] used stochastic mod-
els to extend the approach by Suppes [146].

The implementation of a different approach to the representation of a
causal object has been developed, in particular, by De Santis [116] and
Porter [106].

Porter [106] applied Prenter’s theorems [104] to causal systems. Bertuzzi,
Gandolfi and Germani [8] further extended Prenter’s theorem [104] to the
causal approximation of input-output maps in Hilbert space.

A significant development in applications of approximation theory to
modelling nonlinear systems has been made by Sandberg [117]-[131]. In
particular, it has been shown in [117], [118], [119] that a causal nonlinear
input—output map can be approximated arbitrarily well in a meaningful
sense by a finite Volterra series, even though it may not have a Volterra
series expansion. Park and Sandberg [98] proved that radial-basis—function
networks are capable of universal approximation. Sandberg [120, 121]
showed that causal time—invariant maps satisfying certain continuity and
approximately finite-memory conditions can be uniformly approximated
arbitrarily well by finite sums formed from some simple linear operators.

A complete characterization of the input—output maps of causal time—
invariant systems that can be uniformly approximated by the maps of cer-
tain simple structures is given in [122]. Reference [99] concerns conditions
for the approximation of discrete time—invariant nonlinear systems that act
between bounded real sequences.
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The main theorem in [124] gives, in a certain setting, a necessary and
sufficient condition under which multidimensional shift—invariant input—
output maps with vector—valued inputs drawn from a certain large set can
be uniformly approximated arbitrarily well using a structure consisting of
a linear preprocessing stage followed by a memoryless nonlinear network.
Further extensions of these results for the approximation of input—output
maps of some special nonlinear systems are given in [125], [126].

Sandberg [117, 118, 119] generalized earlier theories of causality and
memory for approximation of nonlinear systems. Bode and Shannon in the
work [9] initiated an implementation of the causality principle into optimal
linear filters. The causal models, developed in [116] - [121], approximate
the input-output map with any given accuracy.

Daugavet [23] introduced the concept of a general mathematical for-
malism to describe a class of realistic properties such as causality, memory,
and stationarity. The extension of this methodology to encompass the no-
tion of a complete history or legend associated with each real world object
and the development and interpretation of the idea, described later in the
proposal, is due to Howlett, Torokhti and Pearce [58, 59]. The evolution of
state in dynamical systems whereby one thing affects another is expressed
through the agency of operators. Our representation of realistic operators
is inextricably linked to optimal approximation.

4.2 Formalization of Concepts Related to Description
of Real-World Objects

4.2.1 Causal operators, operators with finite memory,
and stationary operators with finite memory

Here, we give Definitions and examples of causal operators, operators with
finite memory, and stationary operators. These specific operators are mo-
tivated by the following observations.

Suppose an operator A is a mathematical model of a nonlinear system.

By the heuristic definition of causality, the present value of the output
of a system is not affected by future values of the input [116]. To determine
the output signal at time ¢q, the causal system should “remember” the input
signal up to time tg.

A system with finite memory A is “able” to determine the output signal
at time to from a fragment of the input signal on the segment [tg — A, ]
only. In other words, the system with finite memory A should “remember”
the input signal on the segment of the length A.
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A stationary system with finite memory is invariant with respect to
time. In other words, if any fragments of the input signal are the same
over different segments of the same length then the corresponding outputs
are the same as well.

The formalizations of the above concepts are given in Definitions 1-3
below.

Let X and Y be functional Banach spaces such that

X={z(@t)|t€[a b} and Y ={y(t)|tec][c d|}
where z,y : R > R, [a b] CR and [¢ d] C R.

Definition 16. Let [a b] = [c d], to € [a b] and K C X. An operator
A: K =Y is called causal if for any 1,29 € K,

Il(t) = xg(t) V te [CL to]

implies

[A(z)](t) = [A(z2)](}) ¥ t€a to].

Example 9. Let y = A(x) so that

y(to) = / ety

Then A is the causal operator.
The operator A given by

b
y(to) = / Blto. t)z(t)dt,

where B :[a b] X [a b] = [a b], is not causal.

Let C([a b]) be the space of continuous functions on segment [a b]. For
the sake of clarity, we set X = C([a b]) and Y = C([a+A b]) where A > 0.

Definition 17. Operator A: X — Y is said to be the operator with finite
memory A if for any x1,202 € K C X,

21(to—A+3s)=mz(to—A+s) V se[0 A

implies
[A(x1)](to) = [A(z2)](t0) ¥ to € [a+ A, b
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a 0 b
()

Figure 4.1: Tllustration to the definition of the causal operator. Here,
y1 = A(z1) and yo = A(x2).
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Example 10. Let y = A(z) so that

A
y(to) = /0 x(to — A+ s)ds.

Then A is the operator with finite memory A.

Definition 18. Operator A: X — Y is called the stationary operator with
finite memory A if for any 1,20 € K C X,

z1(t1 —A+s)=x2(ta—A+s) V se[0 Al and ti,t2€a+A b

implies

[A(z1)](t1) = [A(x2)](t2).

4.2.2 TR-—continuous operators
Preliminaries

To begin we make the following definition.

Definition 19. Let X and Y be separable Banach spaces. Let K C X be
a compact set and let F : K —'Y be a continuous map. The modulus of
continuity w = w[F] : Ry — Ry is given by the formula

w(0) = sup [1F(z1) = F(z2)]-

z1,22€K, [|z1—22]|<0

It is easy to see that w(0) = 0 and that w(d) < w(d’) whenever § < ¢§'.
We will show that w is also a uniformly continuous function.

Lemma 9. Let X and Y be separable Banach spaces. Let K C X be a
compact set and F : K =Y a continuous map. Let w = w[F]: Ry — Ry
be the corresponding modulus of continuity. Then for each T > 0 we can
find 0 = o (1) > 0 such that

0<w(d)—wld)<T

whenever 0 < ¢ —6 < o.

Proof.  Define AF : K x K — Y by setting

AF(xl,JCQ) = F(.I’Q) — F(iEl)
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X
0 w ‘ ! | t
a t 0" A t 0 b
(a)
X
The same fragments
0 | t
a t A t 1 tz - A tz b
(b)

Figure 4.2: (a) Illustration to the definition of the operator with finite
memory. (b) Illustration to the definition of the stationary operator.
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for each 1,25 € K. Clearly AF is continuous with respect to the norm

(@1, z2) || rex i = [l + [l

and hence, since K x K is compact, AF' is uniformly continuous. If we
define
Ds ={(z1,22) | |22 — z1[| < 6}

then Dy C K x K is compact and

w(d) = sup [|AF(zy,2,)]|

(z1,22)€Ds
for each § > 0. Fix 7 > 0 and choose o = o(7) > 0 such that
|AF (2}, 25) — AF(zy,22)|| < T

whenever
H(l’ll,l'é) - (‘rlvxZ)HKXK <.

Now suppose that
0<d —-d<o.

Find (2], 2%) € Dy with
w(d') = [|AF(x, 25)]|
and define 6 € [0, 1] so that
Oz — ]| = o.
Let

! ! ! !
Ty + Ty T+ T

(x17x2):0($/1"r/2)+(1_0)( 2 ’ 2

).
It is easy to see that
w2 —z1[| =0
and that
H(irllvxé) - (x17x2)||K><K S g.

It follows that

w(d') = [[AF(z},25)| < [|AF (21, z2)| + 7
w(d) + 7.

IN

Thus
0<w()—w@d)<r

whenever 0 < ¢’ — § < . Hence w is uniformly continuous on R . O
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Theorem 21. Let X and Y be separable Banach spaces. Let K C X be
a compact set and F : K — Y a continuous map. For any given numbers
d>0and T >0 and for all x € K and all ' € X with

lo" =z <6
there exists an operator
S=WZQG,, : X =Y

defined by finite arithmetic such that
1
15(z) = S]] < 5w[F](20) + T

Remark 9. This theorem is important for synthesis of non-linear systems
because the error ||F(x) — S(2')|| in the output for a given level § of the
noise ' — x is not dependent on the arbitrarily chosen positive real number
T.

Proof. This proof follows the methods of Daugavet [23].

It is well known that any separable Banach space is isometric and iso-
morphic to a subspace of the space C([0, 1]) of continuous functions on the
interval [0, 1]. Thus without loss of generality we assume X =Y = C(]0, 1]).

Define

p: Kx[0,1] =R

by setting
pl(x,t) = Fla](t)
for all t € [0,1]. Fix 6 > 0 and ¢ € [0, 1]. For each

u€ Ks={u]||lu—=z| <4 for some z € K}

choose
rtu] = m;{t[u], 27 [u] = xg,[u] € K
so that
o5 (wi) =pltlu,)=  max o)
and
o5 (wt) =p(a"lul,t) = _ min o)
and set

—_

wo(ust) = 55 (1) + 95 (u, )]
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Define
F5 : K5 — C([O7 1])

by setting
F5[u](t) = @s5(u,t)
for all 6 > 0 and each t € [0,1]. If u € K5 and z € K with

lu—zf| <6

then
o2, 1) — @s(u,t)] < w(26)/2
for all ¢ € [0,1] and hence it follows that

|F(@) ~ Fy(u)] < 5(20).

However Fs may not be continuous. Therefore for fixed ¢ € [0, 1] and each
pair of positive real numbers A and p we define

1
"2 ,Luvt :7/ (P+ U,t +<p— U,t dé-
(U, t) o [/\)Hru][f( )+ o¢ (u,1)]
and

F)\,,u : K,\ — C([O, 1])

by setting
Eyulu](t) = @x u(u,t)

for all t € [0,1]. If
lu =l <p

then it can be shown that
[Fapule] = Faufv]l] € ——

where

Frg = max || F(z)]].
rzeK
This shows that the operator F) , is continuous. If x € K and
|z — ul] < A
then it follows that

1F(@) ~ Fu(w)l < 5o(@)
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where v = A + p. To prove the desired result we take 7 > 0 and choose
€ > 0 so that
w26 +e€) <w(20)+ T

for all 6 > 0. Now we set A = +¢/2 and p = €/2 and note that if
[l = ul] <A
then

1 T

Let 0 =ty < -+ < ty = 1 be a partition of the interval [0,1] and define
the operator
Py € £(C([0,1]), PL([0, 1])),

where
PL([0,1]) € C([0,1])

is the subspace of piecewise linear functions, by setting
Pylz](tx) = x(tk)

for each £k =0,..., N with the partition sufficiently fine to ensure that
[z — Py(z)| < €/4

for all x € K. Let Ls denote the closure of the set Py(Ks). Since L lies
in an N + 1 dimensional subspace and is bounded and closed it follows
that Ls is compact. It can be shown that Ls C K and hence F) , is well
defined on Ls. By Theorem 9 in Section 5.5 of Chapter 1, for all v € Ls
there exists an operator Sy, : X — C(T) in the form

Sxu =WZQGr,

such that -
1F(®) = S < 2.

We can now define the operator S : X — C(T') in the form
S =WZQG,,,
where G, = G}, Py, by the equality
S(u) = Sx,u(Prlu])

for each u € K. O
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4.2.3 Main definitions and auxiliary results

We use the results discussed above to establish a systematic procedure for
the constructive approximation of realistic operators.

The notions of causality, finite memory and stationarity have been used
for many years in the engineering literature and are properties that one
may associate with realistic dynamical systems. The object of this dis-
cussion is to consider the possibility of a generic description of a realistic
system that allows us to establish general procedures with which we can
effectively simulate such systems. To include the above realistic properties
we construct special spaces with additional topological structure. The fun-
damental idea is that each element x € X must contain a corresponding
continuum of historical information. In fact we will assume that each ele-
ment is uniquely defined by this corresponding history. The definition of
an R-space follows Daugavet [23].

Definition 20. Let X and A be Banach spaces and let L(X, A) be the set
of continuous linear operators from X into A. Let T = (T, p) be a compact
metric space and let M = {M;}ier be a family of operators M; € L(X, A)
with norm

[|My|| <1 foreachteT

and such that
Mu] = Myu]  as p(s,t) =0 for each wue X.

The space X equipped with the family of operators M is called an R-space
and is denoted by
Xr=(X,AT,M).

For each x € X the collection of elements
Mz ={Mz] |t e T} C A

specifies the complete history of the element x. We assume that if M|[z]
is specified then x € X is uniquely defined. In other words each element
x € X is defined by specifying the complete history of the element!. We
will write

© = H(M]z])

where

H:M[X] =X

1This idea is an adaption of the idea that a function is defined by specifying the
complete set of function values.
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is the appropriate archival function. We wish to define a special class of
realistic operators. An R-continuous operator is an operator from one R-
space to another such that the history of the range space is continuous with
respect to the history of the domain space.

Definition 21. Let
Xr =(X,A,T,M) and Yr=(Y,B,T,N)
be R-spaces and let the closed set
ECTXxT

be an equivalence relation. Let K C X be a compact set and let v € K
and t € T. The operator F : K —'Y is R-continuous at M[x] € A if, for
each open neighbourhood of zero H C B, we can find a corresponding open
neighbourhood of zero

G=G(z,s,H) C A
such that

M, u] — My[z] € G
mmplies

N, [F(w)] - N[F(z)] € H

whenever (r,s) € E and u € K.
IfF: K =Y is R-continuous at Mg[x] € A forallz € K and s € T
then we say that F': K —'Y is an R-continuous operator.

For each t € T we observe that the set
MK])={Mi[z] |z e K} C A

is compact. Indeed, if
MK C |G,
yel

where each G is open then

KclJu,
yel’

where each U, = Mt_l[Gﬂ,] is also open. Since K is compact we can find a
finite subcollection U,,,...,U,, such that
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and hence ,
MK C |G,
i=1
Hence M,[K] is covered by a finite subcollection. It follows that M,;[K] is

compact. Let
E={s|(st) e B}CT

and note that F; is compact. We wish to show that the set
MK] = {M,[K] | s € E¢}
is also compact. We need the following result.

Lemma 10. Let s € T. If Ms[K] C G where G is an open set then we can
find 6 = 6(s,G) > 0 such that

M.[K]CG
when
p(r,s) < 6.

Proof. Suppose the result is not true. Then we can find a sequence {r;} C T
with 7, — s as ¢ — oo and a sequence {z;} C K such that M, [z;] ¢ G
for each i. Because K is compact we can assume without loss of generality
that z; — z for some x € K as i — co. Choose a neighbourhood of zero

Go={al|llall <a}c A

so that
Mz]+ G, C G.

Since || M, || <1 for all r € T it follows that
M, [u] € Go/2 whenever wu € U,/2

where
Us ={u| |Ju|| < a} C X.
If we choose i so large that

.’L'Z‘f‘TGUa/Q

and
M,, € Mj[z]+ Go/2
then
My [zi] = Mla]+ (M, [2z] — M[z]) + My, [z; — 2]
€ Mz]+ G, CG

which is a contradiction. O
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Lemma 11. For each t € T the set M[K] is a compact subset of A.

Proof. Suppose that
MK C |G,
yel’
where each G, is an open set. For each s € E;, we know that M,[K] is

compact and that

Therefore we can find a finite subset I'(s) C T and a corresponding finite
sub-collection {G},cr(s) such that

MK] < U 6
v€L(s)
= G(s).
Choose 6(s) > 0 such that M.[K] C G(s) whenever p(r,s) < d(s) and
define the open sets

R(s) = {r|p(rs) <d(s)}
c T

for each s € T. Since

E, C |J R(s)

seEy

and since Ej is compact we can find a finite sub-collection {R(sj)}jzl,g’wq
such that

j=1
Therefore
U MK CG(sy)
reR(s;)
and hence
Mt[K] = U MT[K]
reby
a [ q
= U| U MmK]|clJaGs)
j=1| reR(s;) Jj=1
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Since this is a finite sub-covering it follows that M;[K] is compact. O O

Definition 22. Let F': K — Y. If for each neighbourhood of zero, H C B
there exists a neighbourhood of zero G = G(H) such that

M, [u] — Ms[v] € G

implies

N, [Fu] — Ns[Fv] € H
whenever (r,s) € E and u,v € K, then F is called the uniformly R-
continuous operator.

A link between continuous, R-continuous and uniformly R-continuous
operators is shown in the Lemma below.

Lemma 12. Let F': K — Y be continuous and R-continuous. Then F is

uniformly R-continuous.

Proof.  Suppose the result is not true. Then for some § > 0 we can find
neighbourhoods of zero

Hg = {bl|pll <5}
C B
and
Gim = Aalllal <1/n}
c A
for each n =1, 2,... and points

Un,vp € K and r(n),s(n),t(n) €T
with r(n), s(n) € Ey,) for each n = 1,2,... such that
Mr(n) [un] - Ms(n) [Un] S G(l/n

and
Nr(n) [Fun] — Ns(n) [Fvn] ¢ H@.

Since K is compact we can suppose without loss of generality that there
exist u,v € K with

U, —u and v, > v as n — oo.
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Since T is compact we can suppose that there exist points r,s,t € T with
r(n) = r, s(n)—s and t(n)—>t

as n — oco. Note that since (r(n),t(n)) € E and (s(n),t(n)) € E and since
FE is closed it follows that

(r,t) e E and (s,t) € E.

Hence r,s € E;.
Now choose a > 0 and define the neighborhood of zero

Go = AHallal <a}
c A

Since ||M,.|| <1 for all » € T we have
M, [z] € Go/5
whenever x € U, /5 where
Ua ={z | [z <o} € X.
If we take n so large that
u—u, € Uy/5,

v—v, € Uy/5,
Mooyl = Myfu] € G 5,
Ms(n)[v] — MS[’U] S Ga/5

and
Gi/m € Ga/b
then
M, [u] = M[v] = [M,[u] = My [u]] + [Mygny[u] = My () [un]

+ [My(ny[un] = Mygny[on]] + [Mo(ny[on] = My [v]
+ [Ms(n) [U] - MS['UH
€ G

Since « is arbitrary it follows that

M, [u] — Mg[v] =0
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and since r, s € E; the R-continuity of F' implies that
N;[Fu] — Ng[Fv] = 0.
Define the neighborhood

Vs {y 'yl < B}
c v

Since
IN-| <1 forall reT

we have

Ny ly] € Hg/4

whenever y € V3/4.
Choose n so large that

Fu, — Fu e Vg/4,

Fu, — Fv € Vj/4

and
Ny(my[F'u] = Ny [Fu), Ny [Fv] — Ng[Fv] € Hg/4.

Now it follows that
Non)[Fun] = Non)[Fon] = [Ny(n)[Fn] = Np(n)[Ful]
+ [Ny [Fu] = N [Ful]
+ [N:[Fu] — N,[F]]
+ [Ns[Fv] = Ny [Fo]]
+ [Ny(n) [Fv] = Ny(n)[Fon]]
€ Hg

which is a contradiction. ]

4.3 Approximation of R—continuous Operators

4.3.1 The collection of auxiliary mappings

In order to establish a constructive R-continuous approximation to the R-
continuous mapping F' : K — Y it is convenient to define a collection of
auxilliary mappings. For each t € T we define f; : M[K] — B by setting

fi(Mila]) = Ny[F(x)]
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for each s € Fy and « € K. This is a good definition because
M, [u] = M;[z]
implies
N, [F(u)] = N [F(z)]
for each r; s € Fy and each u € K. The mapping f; : M[K] — B is contin-
uous at each point M;[zr] € M[K] because, for each open neighbourhood

of zero H C B, we can find a corresponding open neighbourhood of zero
G = G¢(z,s,H) C A such that

M, [u] — M,[z] € G
implies
Je(My[u]) = fi(M[z]) = Np[F(u)] = Ny[F(z)]
€ H
whenever r,s € E; and u € K.
Because M;[K] is compact it follows that the mapping f; : M[K] — B

is uniformly continuous. In other words, for each neighbourhood of zero
H C B, we can find a neighbourhood of zero G = G¢(H) C A such that

M, u] — M[v] € G
implies
fe(M;[u]) = fo(Ms[v]) € H
whenever r, s € E; and u,v € K. In view of Lemma 12 we know that when
F : K — Y is continuous the collection of mappings { fi}+er is uniformly
equi-continuous. That is for each open neighbourhood of zero H C B we
can find a neighbourhood of zero G = G(H) C A such that for all t € T
we have
M, [u] — Ms[v] € G
implies
fe(M,[u]) — fe(Ms[v]) € H
whenever 7, s € E; and u,v € K.

Remark 10. The continuous operator F' : K — 'Y is an R-operator in the
sense of Daugavet [23] if

M;u] — My[v] =0
implies
Ns[F(u)] = Ne[F(v)] =0
for all u,v € K and all (s,t) € E.

If F' is continuous and R-continuous operator then F is an R-operator
in the sense of Daugavet.
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4.3.2 The special R-modulus of continuity

The R-modulus of continuity will be used to characterize our constructive
approximation theorems for realistic operators.

Definition 23. Let Xg = {X,A,T,M} and Yr = {Y,B,T,N'} be R-
spaces and let E C T x T be the given equivalence relation. Let K C X be
a compact set and suppose that the map F : K — Y s an R-continuous
operator. The function

wr =wr[F]: Ry = Ry
defined by

wr(8) = sup [N [F(u)] = Ns [F(0)]]
u,weK; (r,s)EE:
(| M [u] = Mg [v] | <&
1s called the R-modulus of continuity of the operator F.
Definition 24. We say that (Xgr,YRr) is a complete R-pair if
E=TxT
and an incomplete R-pair if
E+TxT.
In the case where E = {(t,t)}+er we say that (Xr,YR) is a simple R-pair.

We make the following elementary observations about the R-modulus
of continuity.

Lemma 13. Let (Xz,YRr) is a complete R-pair and suppose that F : K —
Y is an R-continuous operator. Then the R-modulus of continuity

LUR:(UR[F] :R+—>R+

is uniformly continuous with wr(0) = 0.

Proof. Since E; =T for all t € T it follows that
MK = M K] ={M;lz] |r€e Kand s T} C A

for all t € T and we can define an auxiliary mapping f : M[K] — B by
setting
f(M[z]) = Ny[Fz]
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for each x € K and t € T. We recall from our earlier remarks about
auxiliary mappings that not only is this a good definition but also that the
mapping f : M[K] — B is uniformly continuous. The function wy : Ry —
R is the modulus of continuity of f. Lemma 9 shows us that w; is also
uniformly continuous. Since

wr(0) = sup |[f(p) = f(Q)ll
Pty
= sup [N [F(uw)] — Ns[F(v)]]

w,vEK; (r,s)EE:
| M [u] — M [v][| <8

= wr(0)

we obtain the desired result. O O

Lemma 14. Let (Xg,YR) be an incomplete R-pair and suppose that F :
K — Y is both a continuous operator and an R-continuous operator. Then
the R-modulus of continuity wg = wr[F]: Ry — Ry is uniformly contin-
uous with wg (0) = 0.

Proof.  Since (Xg,Yr) is an incomplete R-pair we consider the various
equivalence classes F; for each t € T. We have seen earlier that for each
t € T there is a auxiliary mapping f; : M;[K| — B defined by setting

fi(My[z]) = N,[F ()]

for all z € K. Let w[f:] : Ry — R4 be the modulus of continuity for the
map f; and consider the argument used in Lemma 9. Define

Afe: My[K] x My[K]

by the formula
Afe(p,q) = | fe(p) — fe(D)l

for each
(p7 Q) € Mt[K] X Mt[K]

Choose 7 > 0. From our earlier remarks about the uniform equi-continuity
of the family of auxiliary mappings {f:}+er we can choose ¢ = o(1) > 0
such that for all ¢ € T we have

[Af:(0',q) — Afilp, )|l < T
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whenever
1, d) — (@)l <o

Now it is clear from Lemma 9 that for all ¢ € T' we have

0 < w[f](0") —w[fi](0) <7

whenever
0<d§ —-d6<o.

Thus the family {w[f:]}+er is also uniformly equi-continuous. Since

wr(d) = sup w[f¢](9)
teT
it follows that
0<wr(d)—wr(d) <t

whenever 0 < ¢ — 6 < 0. O

4.3.3 Approximately R-continuous operators

In practice we may have to consider an approximately R-continuous oper-
ator which will preserve an approximately continuous sense of history.

Definition 25. Let Xr = (X, A, Tx, M) and Yr = (Y, B, Ty, N) be R-
spaces with Tx =Ty =T'. Let the closed set

ECTxT

be an equivalence relation and suppose that G C A and H C B are open
neighbourhoods of 0. Let K C X be a compact set and letv € K andt € T.
The operator F : K — Y is approzimately R-continuous with tolerance
(G, H) at Mt[’U] cA Zf

Mu] — Myjv] € G

implies
Ny [F(u)] — N [F(v)] € H

whenever v € K and (s,t) € E.

If F: K =Y is approzimately R-continuous with tolerance (G, H) at
Mv] € A for allv € K and t € T then we say that F : K — Y s an
approximately R-continuous operator with tolerance (G, H).
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Some elementary examples

Before we begin our discussion of the approximation procedure we will con-
sider some familiar examples of realistic operators from the viewpoint of our
new definitions. To prepare for the examples we note the following theorem
of M. Riesz regarding compactness criteria for a subset K C LP([0, 1]). For
each x € K we use the notation

Tyo(r) = o(r + h)
for each
r,r+ h € [0,1].

Theorem 22. The set K C LP([0,1]) is compact if and only if we can find
M > 0 with ||z||, < M and 6 = §(e) such that

|The — x|, <e

whenever
|h| <  forall xe€K.

In the case K C LP(R) the above conditions and the additional con-
dition, that for each € K we have z(t) = 0 for ¢t ¢ Ck for some fixed
compact set C'x C R, are sufficient for K to be compact.

Example 11. Let X = L'([0,1]) and Y = C([0,1]) and let
K= {x | Ja(s) — 2(t)] < |s — 1] ¥ s, € [0, 1]}
Define F: K —'Y by setting

Fx(t) = eft/ e’z(s)ds
[0,¢]

for each t € [0,1].
Set
TX :Ty = [0, ].] and A:B:C([O, ].])

and define M = {M;}yci0,1) and N = {Ni¢}iep0,1) by setting

/ x(r)ydr if s <t,
Milal(s) = {7l

xz(r)dr  otherwise,
[0,¢]

and

Nilyl(s) = { ZE:)) Zfziijefwti’se.
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Now Xg and Ygr are R-spaces. Put E = {(t,t) | t € T}. Therefore
E; = {t} for allt € T. We will say that the operator F : K =Y is a
uniformly R-continuous causal operator if for each

u,v € K and teT and for each (>0

we can find
a=a(f) >0

such that
([ Milu] — My[v]|| < @

implies
|Ne[F(u)] — Ni[F(v)]]| < B

Note that we can use integration by parts to show that

Fu(r) — Fo(r) = e 7 /[o ] e’lu(s) —v(s)]ds

/ fu(r) — v(r)]dr
[0,7]

—e 7 /[o,r] e’ [/[O,s] [u(r) — v(r)]dr] ds

for each T € [0,t] and since
[Mi[u] = My[o]]] < «

implies

\ [u(r) — v(r)]dr| < «
[0,s]

for all s € [0,t] it follows that
|Fu(r) — Fo(1)] < (7 + 1)a.
If we set a = /2 then
[M;[u] = Mi[o]|| < «

implies
[Ne[Fu] = Ne[Fol|| < B

for all t € [0,1]. Therefore F is indeed a uniformly R-continuous causal
operator.
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Example 12. Consider the R-continuous causal operator F of Example
11 and let a,, 5 € R be given positive numbers. Define open neighbourhoods
of zero Go € A and Hg C B by setting

Ga ={alllall <o} and Hg={b]|b] <p}.
Choose 3 > 0. In Example 11 we showed that
M;[u] — Mi[v] € G2

implies
Ni[F(u)] = Ne[F(v)] € Hp

for each u,v € K and each t € T. Hence, for all B > 0, we can say that F
is an approrimately R-continuous operator with tolerance (G2, Hp).

Remark 11. It is clear from the previous example that for any uniformly
R-continuous operator F and any 3 > 0 we can choose a > 0 such that F
is an approzimately R-continuous operator with tolerance (G, Hg).

The next examples show that concepts such as finite memory and sta-
tionarity can also be formulated in terms of the proposed general frame-
work.

Example 13. Let
X =L>[R), A=L>(0,A]), Y=CR), B=C(0,1+A])

and
Tx =Ty =[0,1+ A]

where A > 0 is a fived positive real number. Define
K={z|z(t)=0 fort ¢[0,1] and |z(s) —z(t)| < |s—t| ¥V s,t € R}
and consider the mapping F' = Fa : K — 'Y given by the formula

[Fu](t) = i/[tA ) u(r)dr

for eachuw € X and t € R. Define My : X — A by
Miz](r) =x(r+t—A)
for each r € [0,A] and each t € T and Ny : Y — C([0,1+ A]) by

Nifyl(r) = y(t)



122 4. APPROXIMATION OF REALISTIC OPERATORS

for all 7 € 0,14+ A] and each t € T.
Let E=T xT. Since

Ni[Fz](r) = [Fz](t)
1
= X o x(r)dr
1
= x oa M [z](r)dr
it is clear that
Ns[Fu(r) = Ne[Fol(r) = % oA [Mi[u](r) — M¢[v](r)] dr.
If
[ Ms[u] = Me[vl|| < B8
then
INs[Ful(T) = Ne[Fol(T)] < % oa |Mi[u](r) — Mi[v](r)|dr
1
< & [ IVl - Ml
< p
and hence
[ Mglu] — My[v]|| < 8
implies

[Ns[Fu] = Ne[Fo]|| < 8

for all (s,t) € E and all 8 > 0. Thus, for all 8 > 0, we can say that F
is an approximately R-continuous stationary operator of finite memory A
with tolerance (Gg, Hg).

Of course we have also shown that F' is a uniformly R-continuous sta-
tionary operator with finite memory A.

Note that the equivalence relation E =T X T allows us to consider time
pairs in the form (s,t) where s # t. This is an essential ingredient in our
description of a stationary operator.

4.3.4 A model for constructive approximation in the
class of R-continuous operators

When F' is an R-continuous operator we prove the existence of an approxi-
mating R-continuous operator S which is stable to small disturbances. The
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operator S defines a model of the real system and is constructed from an
algebra of elementary continuous functions by a process of finite arithmetic.

Definition 26. We will say that the family N of operators {Ni}tier is
pointwise normally extreme on'Y if, for eachy € Y, we can findt =t, € T
such that

N[yl = lyll-

Theorem 23. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation and let

Xr = (X,A,T,M) and Ygr = (Y,B,T,N)

be R-spaces. Suppose that (Xr,Yr) is a complete R-pair and that N is
pointwise normally extreme on Y. Let K C X be a compact set and let
the map F : K —Y be an R-continuous operator. Then for any fixed real
numbers

60>0 and 7>0

there exists an associated R-continuous operator S defined by finite arith-
metic in the form
S=WZQG: X -Y

such that for all x € K and 2’ € X with ||x — 2’| < § we have

|F(@) ~ S| < gwr(26) +7.

Proof. Since E; =T for all t € T we can define the auxiliary mapping
f: M[K] — B by setting

f(Mi[z]) = Ni[Fa]

for each x € K and t € T. We recall that not only is this a good definition
but also from Lemma 13 that the mapping f : M[K] — B is uniformly
continuous. Let A,, C A be a subspace of dimension m and B, C B be a
subspace of dimension n. We will construct a mapping ¢ : A — B in the
form

o =mvAl

where 6 € L(A, Ayp,) and X € L(A,,, R™) are given by

O(w) = i Q;C;
i=1
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and

/\(Z ozici) = ((11, P ,Ozm)

for some suitable basis ¢1, ..., ¢, in A,,, where v : R™ — R" is continuous
and where 7w € L(R™, B,,) is given by

7T(1/) = Z l/jdj
Jj=1

for some suitable basis dy,...,d, in B,. By applying Theorem 21 there
exists a continuous mapping o : A — B in the above form such that for all

w € M[K] and all o'
with
[lw—w'|| <6
we have

1£) = (@)l < Js(20) +7

where wy is the modulus of continuity of f. Since wy(a) = wr(a) for all
o € Ry we see that

1
1f (w) = o(w')]| < Gwr(20) +7
when
lw—w' < é.

Now define S : X — Y by setting
Ni[Sz] = o(M;[x])

for each x € X and each t € T.
Our indirect definition assumes that if Ni[y] € B is known for all ¢t € T
then y € Y is also known. We will follow our earlier notation and write

y =KWy

where K : N[Y] — Y is the appropriate archival function. The mapping
o : A — B is continuous and hence, for each § > 0, we can find o > 0 so
that

[[Ms[u] = My[v]|| <
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implies
lo(M;[u]) — o(Me[o])|| < 8

and
[ Ns[Su] — N [Sv][| < B

and hence S : X — Y is an R-continuous operator.
Since
[M[z = 2']|| < |z — 2]

it follows that
INi[Fz—S2')| = |f(Mifa)) — o(Mifa'))]|
< %wn(%) +7
for all t € T whenever z € K and
|z — || < 4.
Because we can choose t € T such that
[N [Fz — Sa']|| = | F(x) — S(2")]|

we must have

IF) — S(')] < gr(26) +7

whenever z € K and
|z — 2’| < 4.

The action of the operator S on an element x € X is defined by the
collection of ordered pairs

{(Mi]z], 7vAOM¢[z]) | t € T} = {(M[x], rvAOM [x])}.

Since we defined
Ny [Sz] = mv A0 M, [x]

we can now write

N[Sz] = nvAOM|z]

or equivalently

S(x) = Knv\oH '
for each x € X. If we define
G=0H""' Q=X Z=v and W=Knr

then we can see that S has the desired form. We assume that G and W can
be defined by finite arithmetic or replaced by suitable approximations. [
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To establish our next result on stable approximation in the class of
R-continuous operators we need the following elementary lemma.

Lemma 15. Let K C X be a compact set. Then for each € > 0 we can
find v > 0 such that
[Ms[a] — Mlal]l] <€

for all x € K whenever s,t € T and p(s,t) < 7.

Proof.  For each x € K let
U(z;¢/3) ={u]ue X and |Ju — x| <¢/3}.

Clearly
K C U U(z;€e/3)

zeK

and because K is compact there is a finite subcovering
U(zi;€/3),...,U(xp;€/3).

Since My[z;] is uniformly continuous in ¢ € T for each j = 1,2,...,p we
can find v > 0 so that

p(s,t) <7
implies
[ M[z;] — Mlzj]l| < e€/3

whenever s,t € T. For each « € K we can find z; such that € U(x;;¢/3)
and hence

[Mla] = Mi[z]l| < [|Ms[2 — 25| + [[M[as] — Mlas]||

+1Mi[z; — |
< 2w — 2| + || M [z;] — My[zj]|
< €
when s,t € T and p(s,t) < 7. O

Theorem 24. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation. Let

XR:(X,A,T,M) and YR:(KB,T,N)

be R-spaces and suppose that (Xr,Yr) is an incomplete R-pair and that
N is pointwise normally extreme on'Y. Let K C X be a compact set and
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let the map F : K — Y be continuous and R-continuous. Then for any
fixed real numbers
0>0 and T>0

there exists an associated operator S : X — Y defined by

N
Ni[Su] = (t)Ne[Sju]

j=1

where ; : T — R for each j =1,2,...,N and {¢1,...,¥n} is a partition
of unity and where
Sj = WijQjGj X =Y

for each j = 1,2,....N and each w € K and t € T. The mapping S is
continuous and R-continuous and is defined by a process of finite arithmetic
in such a way that for all x € K and ¥’ € X with

|l — 2" <6

we have .
|F(z) — S(2')|| < SwWr(20) + .

Proof. Let t € T. The auxilliary mapping f; : M;[K] — B is defined by
setting
fe(Milx]) = No[F(x)]

when s € F; and x € K. Let
wlfe] i Ry — Ry

be the associated modulus of continuity. We recall from Lemmas 12 and 14
that the families { f; }:er and {w[f:]}+eT are each uniformly equi-continuous.
Hence, for the given 7 > 0, it is possible to choose ¢ = ¢(7) > 0 so that

A<d+e

implies
wlfe](2A) S w[fe)(20) + 7
for all t € T. It now follows that

A<d+e

implies
wr(2A) < wr(20) + 7.
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Our choice of € can also be sufficiently to also ensure that
M [u] — M[v]]] <€

implies
N [Fu] — NG[Fvl|| < /12

whenever (r,s) € E and u,v € K. By Lemma 15 we can find v > 0 to
ensure that
[ M[z] — My[2]|| < e

for all z € K when p(s,t) < 7. Using a similar argument and by decreasing
v if necessary we can also ensure that

INL[F2] — Ny[Fa]| < /4
for all x € K when p(s,t) <. Choose a y-net
{t1,..,in} CT
such that whenever ¢t € T' we can always find some j = j(t) with
It =50 <~

and let
{(®),...,¥n ()}

where 9; : T — R for each j = 1,2,..., N be a partition of unity on T'
such that

o Y,...,¢hn € C(T),
e Y;i(t)>0forallteT,
. Z;V:1 1;(t) =1for all t € T, and
o Ui(t) = 0if plt,t5) = 7.
Let 2 € K and choose v € X with
lu — || < 6.
If p(t,t;) <y then

(M [u] = M, ]| [Mi[u] = Myl + || Mi[z] — My, [2]]

lu—z| +e€
5+ e. (4.2)

INIACIA
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By applying Theorem 21 we can define a function
gj . A— B

in the form
G‘j = FjVj)\jej

such that for all w € M;,[K] and w’ with

lw" —w|| < A
we have
1
1f5(w) = o5l < SwlflEN+ 7

1 T
Define S; : X — Y by setting
Ni[Sju] = oj(M;[u])

and S : X — Y by the formula

N
=D 0(t)o; (My[u])
j=1
forallue X andteT.
Now for z € K, wu € X with
lu— x| <o

and all t € T, we have

INi[Fa] = Ne[Sull| = || Y i () [Ne[Fa] — oy (Me[u)] ||

p(t tj)<vy

We make two observations. Firstly, for p(¢,¢;) < v we have

[Ne[Fz] — oj(M[u])|| < ||N¢[Fz] — Ny, [F]]
[Ny, [Fa] = o5 (Mo[u]) |
< |1f5 (M, [2]) — o5 (Myw) | +£

and secondly, since

[ My [a] = My[u]|| < [lu—=| +€

129

(4.3)
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it follows that

1f5 (M, [2]) — o (Mi[ul)| - < Swrlllu—zl +€) +
< —wr(20)+ -
Hence for all t € T" we have
INDF2] - NSull < [er@)+ 3] S0 i)
p(tt;) <~y
< %wn(%) +7
from which the desired result follows. O

Theorem 25. Let A and B be Banach spaces with the Grothendieck prop-
erty of approximation and let

Xr = (X,A,T,M) and Yz =(Y,B,T,N)

be R-spaces and suppose that (Xr,YR) is a complete R-pair and that N
is pointwise normally extreme on'Y. Let K C X be a compact set and let
the continuous map F : K — Y be a continuous R-operator. Then for any
fixed real numbers

60>0 and T>0

there exists an associated approximately R-continuous operator S defined
by finite arithmetic in the form

S=WZQG:X -»Y
such that for all v € K and 2’ € X with
e —a'| <6
we have 1
1P ()~ S < Swr(20) + 7
Proof.  Define the mapping f : M[K] — B by setting
f(Mifa]) = Ni[Fz]

for each x € K and t € T. By Theorem 21 we can construct a mapping in
the form
oc=mv\d:A— B
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such that for all w € M[K] and all w’ with
lw—w'|| <§
we have 1
[f(w) = o(w)] < Swr(20) +7/2

where wg (+) is the R-modulus of continuity of F.

At this stage we wish to reformulate our construction and begin by
considering an appropriate approximation to the map v : R™ — R™.

Let u € K. For each t € T we have

O(My[u]) = Z ailu](t)e;

and since
Mu] - My[u] as s—t

it follows that
afu] = (aqfu), ..., anlu]) € C(T)™.

Because
av] = afu] as v—u

and K is compact the set
Ag ={afu] |ue K} CC(T)™

is also compact and we can use the Arzela-Ascoli Theorem to deduce that
the functions afu] € Ak are uniformly equi-continuous. It follows that we
can find a bounded closed interval I C R™ such that

afu](t) = (aqful, ..., am[u])(t) € Ik

for each v € K and each t € T. The mapping v : R™ — R" is uniformly
continuous on Ix and hence we can find v > 0 such that

[v(@) = v(a)| <7/2n

whenever
la—a'| <.

As in Lemma 15 choose a finite number of points afu1],. .., afuy] such that

Ak € | N(afw);v)
=1
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and a collection {¢1,...,%,} of continuous functions
¢l : C(T)m — R
with
q
Z wl(a) =1
1=1
for all & € Ag and such that

Yi(a) 20, () >0

when
lor = afu]|| < /12
and
Yi(a) =0
when

lo = aful] =~

foreach=1,2,...,q.
It follows that

lae =" wu()afw]]| <~
=1

for each o € A
To complete the approximation we choose 1 so that

laful(s) = alul )] <~

for all u € K whenever p(s,t) <n. If {t1,...,¢,} is an n-net for T then we
can define continuous functions ¢y : T'— R with

Yoty =1
k=1

for all t € T and such that

when

and
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when
p(ttr) >n

foreach k=1,2,...,p
It can be seen that

for each v € K and all ¢t € T and hence

)—v Z Z alu](t)| < 7/2n.

If ||dj]| < 1forall j=1,2,..., n then

k=1 =1
= 1D (wilalul(®) = v; (Y~ o) Y dulaful)alul(tr)) | dyll
j=1 k=1 =1
< D lyilalul(®) = v Q)Y ilalu)alw)(t))]
j=1 k=1 =1
< 7/2

which we can rewrite in the form

bS]

lo(Me[u]) =Y on(t)

k=1

1=

&
—
=S
£
S~—"
=
£

=
=
o

S~—"
N
\]

~
N

If we define S: X —» Y by setting

N[Su] = v Z afu))ofw](ty))

i MQ
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then R
[IN:[Su] — N¢[Sul|| < 7/2

for all u € K and all t € T and hence
15 (u) = S(w)| < 7/2
for all w € K. On the other hand if ||¢;|| < 1 for all i = 1,2,...,m then

> en Z J) e ) )] cill < /3

k=1

m

[My[u] =

i=1

for all u € K and t € T. Therefore
| M[u] — M[o]|| < ~/3

implies

IIi [Z{ Zj: — er(t Zj: }az uz](tk)] all <~

=1 Lk=1
from which it follows that
||NS[S'u] — Nt[S’v]H <7/2
for each s,t € T. In other words
Ms[u] - Mt[v] € U'y/S
implies R R
NS[SU] - Nt[Sv} € VT/2

and we can say that S is an approximately continuous realistic operator
with tolerance (U, /3, V;/2).
We note that if
reK and |z—2]|<d

then

INe[Fa] = N,[S2/]| < |[Ne[Fa] — No[S2'][| + || N [Sa'] — Ny[Sa']

1
< Ewn(%) +7

for all t € T and hence

P~ $(')] < gm(26) +7
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Finally we address the structure of the operator S.
The operator S : X — Y is based on a mapping

6=n0\: X — B,

where 6 € L(X,C(T)™) is defined by

0(Miu) = aful(t)

for all
ueX and teT,

and where A : C(T)™ — R™P? is given by

Aefu]) = {eufw](tr)}

fori=1,2,...,m, k=1,2,...,pand | = 1,2,...,q, and where the map-
ping v : R™P4 — R™ is specified by

P

D({asfw](te)}) = v er(t) D ilalul)afu(ty)).
=1

k=1

Of course with a bit more effort we could do the same sort of approximation
with Ne[y]. O

4.4 Concluding Remarks

In this chapter, we have presented a unified approach to finding mathe-
matical models of a realistic dynamical system that represent the system
with any pre-assigned accuracy. The models are given by constructively
defined operators with special properties. “A realistic dynamical system”
means an object with real-world properties such as causality, memory, sta-
tionarity, etc. We presented a formalization of such properties in the form
of the R-continuous operator and the approximately R-continuous oper-
ator. The proposed models of the realistic system are R-continuous and
approximately R-continuous.
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Chapter 5

Methods of Best
Approximation for Nonlinear
Operators

5.1. Introduction

5.2. Best Operator Approximation in Banach Spaces:
”Deterministic” Case

5.3 Estimation of Mean and Covariance Matrix for Random Vectors
5.4. Best Hadamard-quadratic Approximation

5.5. Best r-Degree Polynomial Approximation

5.6. Best Causal Approximation

5.7. Best Hybrid Approximations

5.8. Concluding Remarks

5.1 Introduction

The theory of operator approximation has a direct application to the math-
ematical modelling of nonlinear systems. In recent decades, methods of con-
structive representation of nonlinear systems have been a topic of intensive
research [106]-[155]. In broad terms, the problem is to find a mathematical
model of the system which is given by an abstract operator F representing
the input-output relationship. The model must approximate the system in
a certain sense subject to some restrictions. Such restrictions follow, in par-

137
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ticular, from initial known information on the system. For example, in the
case of the system transforming deterministic signals, this information can
be given by equations describing the signals sets. A number of works in-
cluding, in particular, the fundamental results by Volterra, Wiener, Porter,
Sandberg have been devoted to the solution of this problem. The references
can be found, in particular, in [106]-[119]. The works [106]-[155] provide
models which approximate the system with any pre-assigned accuracy.

General theory of the best approximation in normed linear spaces has
been developed for many years. A number of deep theoretical results re-
lated to the investigation of existence, uniqueness and characterization of
elements of the best approximation have been established. See, for example,
[29] and the bibliography there. However, theory of the best constructive
approximation of nonlinear operators is not so well elaborated, and pio-
neering achievements in this area, such as those obtained in [76, 81, 82],
are very recent. The papers [156]-[166] also provide new methods in this
area of research.

The methods of Chapter 3 (and those in [12]-[65], [104]-[151]) for con-
structive approximation of nonlinear operators with any preassigned accu-
racy have mainly been concerned with proving the existence and uniqueness
of approximating operators, and with justifying the bounds of errors aris-
ing from the approximation methods. The assumptions used are that the
spaces of images and pre-images are deterministic and that elements of
these spaces can be represented in an analytical form, i.e. by equations.

In many applications, the spaces of images and pre-images are proba-
bilistic and their elements cannot be written analytically. Nevertheless, it
is possible to describe the elements of these spaces in terms of their nu-
merical characteristics, such as the estimates of mathematical expectation,
of covariance matrices etc. A typical example is image processing where a
digitized image, represented by a matrix, is often interpreted as the sample
of a stochastic signal.

In this chapter, we provide some new approaches to the best construc-
tive approximation of nonlinear operators in ”deterministic” and probabil-
ity spaces. In the case of approximation in probability spaces, it is assumed
that the only available information on the operator is given by certain co-
variance matrices. The approaches considered in Sections 5.2 and 5.4-5.7
below are based on the approximant produced by a polynomial opera-
tor. The approximant minimizes the mean squared error between a desired
image and the image of the approximating operator. Standard software
packages, such as Matlab, can easily be used to implement the method
(see Sections 5.4-5.7 in this regard).
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In Section 5.7, we consider a method based on a combination of the
special iterative procedure and the best operator approximation used at
each iteration.

5.2 Best Approximation of Nonlinear Operators in
Banach Spaces: ”Deterministic” Case

Let us consider the operator S = WZQG,,, considered in preceding chap-
ters.

In this section, we show how the operator S = WZQG,,, could be con-
structed to provide, in some definite sense, the best possible approximation
to a given operator F'.

Let X,Y be Banach spaces having the Grothendieck property of ap-
proximation and consider the following procedure.

Unlike the preceding Chapters, we now suppose that operator Z is given

by multidimensional polynomials g1 (cg;a), - .., gn(ck;a) in the form (5.2)
below so that Z = Z,. with

Zc(a) = (g1(c1;a), g2(c25a), . .., gn(cn; a)) (5.1)
and

gk(ckia) = cparala) (5.2)
s=0

where p = (p1,p2,...,pm) € Z}" is given and Z;, = {0,1,2,...} denotes
the set of non-negative integers and where

c=(c1,¢2,....¢n), ek ={cks}sezp and cpsER

for each k = 1,2,...,n and each permissible s € Z}". We assume that each
rs : R™ — R is continuous and that the collection {rs}sc zm generates an
algebra that satisfies the conditions of Stone’s Algebra [113]. We could for
example take

rs(a) =a® =ajta3?...a;m". (5.3)

m

Let us assume that the functions {rs}sezp are linearly independent. In-
troduce the class S of operators given by

S={S|S:X =Y,and S =S.=WZ.QGy} (5.4)

with fixed operators G,,, @, H,, and W and with fixed functions {rs}segr.
Thus the operator S. is completely defined by the coefficients {cy s}
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Let {gx(ci;a)} denote the functions which best approximate the given
functions {fx(a)} on the set

QGnm(K) CR™.
We can now state the following theorem.

Theorem 26. Let X,Y be Banach spaces with the Grothendieck property
of approzimation, let K C X be a compact set and F' : K — 'Y a continuous
map. Let the operator Z* : R™ — R™ be defined by

75 = 7. (5.5)

Then for some fized € > 0 and for all x,2’ € X with ||z’ — x| < € the
operator S* = S+ : X =Y, in the form

S*=WZ*QGn, (5.6)
satisfies the equality

sup || F(z) — §*(2')|| = inf {Sup |1F(z) — 5(I’)I|}~ (5.7)

zeK Ses \zeK

Let us now extend the application of the approach presented in the
preceding Chapters to the best approximation of non-linear dynamical sys-
tems when the system is completely described by a finite number of real
parameters.

To this end, let us consider the approximation of operator F' : K — Y
in the form

S=wzv,
where Kr and I' are the same as in Section 1.6.6. (check the section
number!!!)

We suppose that X and Y are Banach spaces, and that by analogy with
(5.1)—~(5.4), Z = Z. where

Zc(ﬂY) - (gl (Cl§ 7),92(02; 7)7 cee agn(cn; 7)) (58)

and
P
gr(cn;y) = ch,srs(’ﬂ (5.9)
s=0

where p = (p1,p2,...,pm) € 21" is fixed and where

S

rs(7) =T =T (5.10)
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The neighbourhoods of zero £,0,( C R™ can be chosen to be closed and
bounded. Fix &,6,( and the method of calculation of the parameters and
introduce the class S of operators given by

S={S|5:Kry9p—>Yand §=5.=WZ.QV¢}. (5.11)

Thus the operator S, is completely defined by the coefficients {ck.s}. We
suppose the map
Re:T'+(¢—R"

is written in the form

Re(v) = (fL(0), f2(0)5 -, fa(7) (5.12)

and let {gx(c};v)} denote the functions which best approximate the given
functions {fx(y)} on the closed and bounded interval I' + ¢ C R™.
We have the following theorem.

Theorem 27. Let X,Y be Banach spaces, let K C X be a compact set
and F : K =Y a continuous map. Let the operator Z* : R™ — R" be
defined by

7* = 7. (5.13)

Then for some fized a > 0 and for all z,2" € X with |2/ — x| < « the
operator S* =S¢« : X = Y in the form

S* =WZVg (5.14)

satisfies the equality

sup ||F(x) — 57 (a)|| = inf {sup 1F(z) — S(w’)l} : (5.15)
zeK Ses \zeK

The scheme of numerical realization of the operator S consists of the fol-
lowing steps. Firstly it is necessary to implement a method for approximate
determination of the parameter . Secondly it is necessary to construct the
functions g1, go, ..., g, and consequently the operator Z and thirdly it is
necessary to construct an appropriate operator W.

We will illustrate these procedures with an example involving parameter
estimation.

Example 14. Consider the following situation. Let X be a space of mea-
surable functions. We will suppose that a set of incoming signals has the
form K = {x,},er where each signal z, € X is completely specified by the
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value of a parameter v € I' C R™. By observing an individual signal from
this set we obtain a measurement

§=R(y) e ACR"

from which we wish to estimate the value of the unknown parameter ~y.
Therefore the natural estimation procedure can be regarded as a dynam-
ical system represented by a mapping

R:T— A

with input v € T' C R™ and output § € A C R™. We wish to construct
a best possible approximation to this system in the sense of Theorem 27.
Thus we must show that the mapping R : T' — A can be approzimated by
an operator
S:R™ — R".

Since the output from the system is the parameter § itself we have ys = §
and the general output structure is simplified.

In our example we let X = L x L where L is the space of all measurable
functions x : [0,00) — R such that

]| = /OOO 2 (t)]dt < oo, (5.16)

We assume that the observed signal has the form x, = (2y1,242) € X
where

2y1(t) = exp(—)(cosat + T2 (5.17)
and

Ty o(t) =ty 1 (1) (5.18)
and where

7= (11,72) € [-1,1] x [-1,1] =T C R?

is the unknown parameter. To estimate v we take a Fourier cosine trans-
form for x.,. In particular the transform is used to determine the DC-
component of each signal. Define X, (w) = (Xy1(w), X, 2(w)). It is easily
shown that

(o)
Xoi(w) = /0 x1(t) coswtdt

S ) L R -
o214+ (w+m)? 14 (w—m)?

1
+§ [arctan(w + 7v2) — arctan(w — 72) | (5.19)
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and
o0
Xyo(w) = / x,2(t) cos wtdt
0

_ 1[1(w+’71)2 1—(w—71)2]
1+ w+m)? 2 [T+ (=)

1 w472 w =Y
- — . (5.20
2 {1+(w+72)2 1+(w—72)2] (5:20)
Thus we calculate
6 =X,1(0) = T + arctan v, (5.21)
and
1— 2
2 = X,2(0) = 7 RESI— R (5.22)

L+72)2 147922
In effect we have defined a non-linear system which is described by a map
R:T — R? given by
5 =R(v) (5.23)

where § = (01,92) € R2. The non-linear system has input v € T' and output
0 € R(T') = A. It is clear that the above formulae for § = X,(0) can be
applied to all v € R? to define an extended map R : R? — R2,

We seek the best possible approrimation to the extended operator R in
the following sense. Let H be the Hilbert space of measurable functions
f:[-1,1] = R such that

2ds
/ \/ - (5.24)

with inner product

/ f(s 1 : 52 (5.25)

Let Py, € H be the subspace of polynomials of degree at most m — 1. For
each f € H there erists a unique polynomial py = pm(f) € Pm which
minimizes the integral

E(f.p)=If—pll>P=(f—p.f—p) (5.26)

over allp € Py,. It is well known that py, (f) = I, (f) where,, : H — Py,
1s the Chebyshev projection operator defined in Example 6. Therefore

m

Pm=>_¢Tja (5.27)
j=1
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where T;_1 is the Chebyshev polynomial of the first kind of degree j —1 and
where the coefficients c; = ¢;(f) are calculated using the integral formulae
given in Example 6. We write f ~ pm(f).

In this example we will take m = 6. Define functions { fi;}ijeq1,2y € H
by the formulae

1 1—s2
fii(s) = 1—|—782’ fi2(s) = arctan s, f21(3) = m
and
forls) = ——
22 1482

The corresponding projections {pi;}i jef1,2y € Po are given by

o= 22T (3y2- 4T+ (17y2 - 20T,
(.T071)Tp — (.2426)Ts + (.0416)Ty,

pi2 = (2v2-2)T1 - (10\/23_ 14) T5 + (58\/25_ 82)T5
(.8284)T1 — (.0474)T; + (.0049)T,
%To C(8=5vy) L (112-T9y2)

Q

Q

p21 = B 2 5 4
~ (.3536)Tp — (.4645)T5 + (.1386)Ty,
(5.28)
and
pea = (2—+/2)T1 — (10 = 7/2)T5 + (58 — 41./2)T5
(.5858)T1 — (.1005)T5 + (.0172)T5. (5.29)

The theoretical system is therefore replaced by a more practical system de-
scribed by a map Z* : R? — R? given by

5= 2°() (5.30)
where

o1 = p11(71) + p12(72) (5.31)
and

b2 = pa1(71) + p22(72)- (5.32)

In actual fact the calculations will be based on one further approrimation.
In practice we choose a large value of T and calculate o7 = Rr(7y) using

T
Sra = / 1 ()dt (5.33)
0
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and

T
§T,2 = / "E%Q(t)dt. (534)
0

Associated with each o1 there is a uniquely defined (virtual) measurement
4 defined by

5 =R (6r). (5.35)

Therefore we have a (virtual) measurement scheme defined by an operator
Vr : R? = R2 given by

Vi =R 'Ry (5.36)
and written in the form
5 = V(). (5.37)
The practical measurement system is now described by an operator
S=2Vp=Z"R 'Ry
with output given by

5 = 50
= Z'Vr()
= Z*(9). (5.38)

The operator S is the best possible approzimation in the sense of Theo-
rem 27.

To estimate the parameter v we take the (observed) value 57 = Rr(7)
of 6 and compute

Vest = Z*il(gT) = Z*ilzR’T(’Y)'

For example this could be done by using a Newton iteration to solve the
equation

Z* (Yest) = O7. (5.39)
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5.3 Estimation of Mean and Covariance Matrix for
Random Vectors

In the next Sections, methods for modelling of nonlinear systems that trans-
form stochastic signals will be considered under an assumption that their
mean and covariance matrix either are known or can be estimated. Be-
low, we present some methods for estimating the mean and the covariance
matrix.

Throughout the next Sections, (£, X, u) signifies a probability space,
where (2 is the set of outcomes, ¥ a o—field of measurable subsets A C
and p: ¥ — [0, 1] an associated probability measure on ¥ with p(Q) = 1.
Each element w € () represents the outcome of an experiment and each
subset A of ) is a set of outcomes, called an event. We say that the event
A has occurred if w € A.

5.3.1 Maximum likelihood estimates

Suppose that x € L*(Q,R™) and y € L?(2,R") are random vectors such
that x = (x1,..., xn)? and y = (y1,...,y,)7 with x;,y, € L?(Q,R) for
i=1,...,mand k=1, ...,n, respectively. Let

r=%x(w)eR™ and y=yw)eR"

be realizations of x and y so that z = (z1,...,2,)T and y = (y1,...,9yn)T
with z;,yp € Rfori=1,.... mand k=1, ..., n.
Random vectors will be denoted by bold letters.
Let us write
Blxivid = [ xi()yy()duo) < o.
E[x4] Exiy:] ... E[x1y,]
Ex]=| : |, Ekxy']= : :
Elxm] Exmyi] - ExXmy,]
and
E.y = Elxy"] - EX|E[y"].
Given N independent realizations (1), ..., ) of the random vector

X, the maximum likelihood (ML) estimates E’[x] and F,, for E[x] and E,,
respectively, under the Gaussian assumption, are known to be [1]

; LN L0
EM:NZx (5.40)
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and
1 & :
Epa NZ N(z® — Ex])T. (5.41)

In many real world situations, such estimates are difficult to use. Below,
we consider the estimating methods subject to specific realistic conditions.

5.3.2 Estimates from incomplete realizations

Often, the source of complexity in using formulas (5.40) and (5.41) is that
not every component of each realization z(*) is observed, so that (5.40)
and (5.41) cannot be used. Ad hoc modifications of these estimators are
likely to produce unsatisfactory results. For example, one couuld arbitrary
assign the value of zero to all missing components and then directly use
(5.40) and (5.41), however severe biases would occer. Another approach

1
would replace the normalizing factor i in (5.40) and (5.41) by a factor

that would vary from one component to another and which would be chosen
to give unbiased estimates. Thus, the ith component of E[x] would be the
arithmetic mean of the ith component of x over all realizations for which
it is available. Nevertheless, this procedure could result in a covariance
matrix with a negative eigenvalue.

Here, we consider the method [102] which is motivated to give maximum
likelihood estimates in an effort to improve upon the ad hoc estimates.

The specific restriction of the method is that it must be possible to order
the components of the random vector such that the set of realizations for
which the ith component is available is a subset of the set of realizations
for which the (i — 1)th component is available, for i = 2,..., M.

This restriction is satisfied in cases where a sequence of limited-resource
sensors is used, with each subsequent sensor observing a subset of objects
that were observed by the previous sensor.

Let x € L*(Q,R™) be a normal random vector with the probability
density function given by

1
p(xh . 7xm> = (QW)W'/Q[det(Eww)]l/Q

X exp _%(x _EX)TEMe— EX)|,  (542)

where det(Ey,) is the determinant of E,.,, det(E,,) # 0 and E,, is positive
definite.

The problem is to estimate the mean and the covariance matrix of x un-
der assumption that not all of the m components are necessarily observed.
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In what follows the observations are denoted by a set X illustrated in
Fig. 1:
X:{Xik|i:1,...,m, kil,...7Ni},

where 7 indicates the component of the random vector, and k is the index
of the realization.

X11 e e XIN,

X21 ... cee eee . XonN, e} e}
X:

Xml -+ Xm,N,, O e} o (0]

Fig. 1. Structure of the set comprising independent realizations
of the random vector x € L?(Q2, R™); the symbol 0 represents
missing data.

In Fig. 1, the symbol © denotes missing data and it is not zero. Thus,
Xi k, and X;,p, are statistically independent if ki # k2. The total number
of observations of the ith component is N;. It is assumed that

Npp < Nppop <00 <Ny

The solution of the problem formulated above is based on a represen-
tation of E,, via the LDLT factorization [50] and a further determination
of the probability density function p(x1,...,x;).

First, let F,, be nonsingular and let

B, = MDMT (5.43)

be the LDL™ factorization of E,, where M is lower triangular matrix with
ones on the main diagonal and D is diagonal matrix. Then

El=MTD'M'=1Tp '[!

where L = M 1.
Each matrix F : R"*™ defines an associated operator F : L?(2, R™)
— L?(Q, RP) via the equation

FIl(w) = Flx(w)] (5.44)

for each w € Q.
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Let £: L*(Q,R™) — L?(Q,R™) be the operator defined similarly to F

via (5.44) and let

and u=Lx

u = L(x)

where u € L2(Q,R™) and u = u(w).
Then we have
E[u] = LE[x]
and

El(u - Elu])(u - E[u))") = LE,,L” = D.

Because of the lower triangular structure of L, the mean and the covari-
ance matrix of the first i components of u are obtainable from the mean
and the covariance matrix of the first ¢ components of x as follows:

E[ul] 1 0 0 E[Xl]
E[UQ] L21 1 0 [N 0 E[XQ]
. = . . . . . . (5.45)
Eluy) Ly Lip Li;—1 1 Elx;]
and
Dy 0 0
0 Dy O 0
. . (5.46)
0 0 D
1 0 0 Ezlxl Efblsz‘
L21 1 0 0 Eaiz(lll oI,
Lyi  Lj L1 1 Eyn Eyx
1 L21 . Lil
0 1 La Lo
X . . . , (5.47)
0 0 0 0 1
where D1, Do, ..., D; are diagonal entries of D.
From (5.47), it follows that
Exlxl Eﬂ,’lﬂ,’Q E&C1$,‘
det h o ; = H D; (5.48)
: : : i1
Erizy  Eoo, Ezia,
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and
-1
Erizy Ezizy - Eapay
E{I/’Qérl EIQIQ EIziEi
) (5.49)
qu‘,ml EL',zz e Eﬂ?izi
1 Lo Li D 0 017"
1 L3 L 0 Dy O 0
0O O 0 0 1 0 0 D
1 0 0
Loy 1 0 o 0
x . . . . . (5.50)
Ly Lip ... Liz; 1 1

On the basis of (5.42), (5.48) and (5.50), the joint log-probability density
function® for the first 4 components of x is

i 1 o
logp(z1,...,2;) = ~3 log(27) — 3 Z log D;
j=1
i 1 ,
— ﬁ(l’] — E[uj] + lel’l + ...+ Lj,j—lxj—l) . (551)
g=1""7

Next, an expression for the log-probability density function log p(X) of
the incomplete data set X can now be obtained as follows. Let us represent
X in the form

where, for i =1,...,m,
Xi:{Xjklj:L...J, k:Ni+1+1,...,Ni}.

Here, N, +1 = 0 and if N;;1 = N; then X is the empty set.

Thus, X; comprises N; — N; ;1 realizations of the first ¢ components of
x. The x, are uncorrelated over k (representing different realizations),
while for a particular value of k, the i correlated components have a log-
probability density function of the form (5.51). Noting that the X, are

1 Also called the joint log-llikelihood function [?], [?].



5.3. ESTIMATION OF COVARIANCE MATRIX 151

uncorrelated, the log-probability density function for X is

log p(X Z Z 7%‘ log(2m) — %Zlog D;

i=1 k=N, 41+1 j=1

[

1 1
- 3 Elw;] + Ljzy + ...+ L 1x;-1)?| , (5.52)
j=1 J

which can be simplified to

[ Ni N;
logp(X) = Z {2 log(27) — 7log D;
=1
2D Z Tik — 111 + Lz + - +Li7¢_1f£7;_17k)2 . (553)

This strikingly simple formula indicates that the computation of the
log-probability density function involves applying regression operators of
length 1 through m to the largest subsets of X for which the corrrespond-
ing components are available. The regression operators, in turn, produce
uncorrelated residuals.

The maximum likelihood estimates L, D and E[u] for L, D and E|u],
respectively, follow from choosing these quantities to maximize the log-
probability density function (5.53). Estimates of the mean and the covari-
ance matrix are obtained from L, D and E[ul].

The structure of logp(X) by (5.53) implies that the problem of esti-
mating E[u;], D;, and the ith row of L are decoupled for different values
of 4. Maximizing (5.53) over E[u;] and the ¢ row of L involves solving the
following least squares problem (for example, using the QR factorization):

mlnz Tik — ul + Lz +...+ Li,iflxifl,k)% (554)

Maximizing (5.53) over D; is equivalent to choosing D; to be equal to the
minimum of (5.54), divided by N,
1 &
min ﬁz ;(xlk - E[uz] + Loz + ...+ Li7i—1xi—17k)2
fori=1,...,m.
If N; > i for all 4, so that

Ny > No >

\Y
5
Y
3
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(i.e., every component is observed at least m + 1 times), and if the true
covariance matrix is positive definite, then the D; are strictly positive (so
the estimated covariance matrix is positive definite).?

The decoupling of E[w;], D;, and the ith row of L, for different i,
facilitates the computation of the Cramer-rao bounds, since it imparts a
block-diagonal structure to the Fisher information matrix.

Example 15. It is instructive to consider in detail the bivariate case (i.e.,
m = 2). We further simplify the problem by assuming that the true mean is
zero, E[x] = 0. Here, we present the exact maximum likelihood estimates
for thr elements of the covarince matriz.

For m = 2, and with the assumption E[x] =0, it is straightforward to
obtain the maximum likelihood estimates for L and D. Then transforming
back to E, gives the following exact mazimum likelihood estimates:

1 Ny 7Zx1k
Eyizy = N E xma wlwzz N, E T1kT2k

k=1
Ex%

and

2
] 1 & 1 &
- 2 = 2
i BT
k=1 72 2 k=1 k=1
N, Lok
k=1

In summary, the above method provides the maximum likelihood esti-
mates for the mean and the covariance matrix of a random vector x with
the normal distribution. The method works under assumption that the
components of the random vector can be ordered such that the set of real-
izations for which the ith component is available is a subset of realizations
for which the (i — 1)th component is available, for ¢ = 2,...,m. When the
matrix dimension p is large than the number IV of observations available,

5.3.3 A well-conditioned estimator for large-dimensional
covariance matrices

In the next Sections, an estimate of a covariance matrix E,, € R™*™

and/or its inverse can be required, where m is large compared to the sam-

2The covariance matrix (5.43) is positive definite if and only if all the diagonal
elements of D are strictly positive.
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ple size N. In such situations, the usual estimator — the sample covariance
matrix E,, by (5.41) — is known to perform poorly. When the matrix
dimension m is large than the number N of observations available, the
sample covariance matrix EM is not even invertible. When the ratio m/N
is less than one but not negligible, E,, is invertible but numerically ill-
conditioned, which means that inverting it amplifies estimation error dra-
matically. For large m, it is difficult to find enough observations to make
m/N negligible, and therefore, it is important to develop a well-conditioned
estimator for large-dimensional covariance matrices.

To the best of our knowledge, no existing estimator is both well-conditioned
and more accurate than the sample covariance matrix. Here, we consider
the method [83] that is both well-conditioned and more accurate than the
sample covariance matrix asymptotically.

One way to to get a well-conditioned structured estimator is to im-
pose the condition that all variances are the same and all covariances are
zero. The estimator which is considered below is a weighted average of
this structured estimator and the sample covariance matriz. The estimator
inherits the good conditioning properties of the structured estimator and,
by choosing the weight optimally according to a quadratic loss function, it
is ensured that the weighted average of the sample covariance matrix and
the structured estimator is more accurate than either of them.

The only difficulty is that the true optimal weight depends on the true
covariance matrix, which is unobservable. This difficulty is solved by find-
ing a consistent estimator of the optimal weight, and show that replacing
the true optimal weight with a consistent estimator makes no difference
asymptotically.

Standard asymptotics assume that the number of variables m is finite
and fixed, while the number of observations N goes to infinity. Under stan-
dard asymptotics, the sample covariance matrix is well-conditioned (in the
limit), and has some appealing optimality properties (e.g., it is maximum
likelihood estimator for normally distributed data). However, this is a bad
approximation of many real-world situations where the number of variables
m is of the same order of magnitude as the number of observations N, and
possibly large.

In method [83], a different framework is used, called general asymp-
totics, where the number of variables m can go to infinity as well.

The only constraint is that the ratio m/N must remain bounded.

We see standard asymptotics as a special case where it is optimal to put
(asymptotically) all the weight on the sample covariance matrix and none
on the structured estimator. In the general case, however, the estimator
considered below is asypmtotically different from the sample covariance
matrix, substantially more accurate, and of course well-conditioned.
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Analysis in finite sample

The easiest way to explain the core of the method is to first analyze the
finite sample case.

Let X = {x(M ... x(™} be a set of independent and identically dis-
tributed (iid) random vectors x() € L?(Q,R™), ..., x(M) € L*(Q,R™)

with mean zero such that x*) = [ng), .. ,xﬁ,’f)]T for k =1,...,N where
xgk), . ,x,(ylf) € L?(Q,R). We call X the finite sample of random vectors.
Since xM, ..., xN) are the iid random vectors, we denote
Elx;] := E[xgl)} =...= E[X;-N)] forj=1,...,m (5.55)
and
Elx;x;] := E[xgl)xgl)] =...= E[XEN)XE.N)] fori,j=1,...,m. (5.56)
Now, we write
X =[x1,...,Xm]7,
where x1, . .., X, satisfy (5.55) and (5.56). It is clear that x has mean zero.
Let us also denote )
S = —XXx”
N

and call S the sample covariance vector. Due to (5.55) and (5.56),

E[S] = E[xxT].
Furthermore, we write
C=pil+p2S (5.57)
and
J(C) = B[| E[xx"] - C||?), (5.58)
where p1,p2 € R, I is the identity matrix and || - || is the Frobenius-like

norm defined by

tr(AAT)]"?

4= |
m
for A € R™*™.
The problem is to find p? and p{ such that
J(C%) = min J(C), (5.59)
P1,P2
where

C = P91+ pIs. (5.60)
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The solution is given by Theorem 28 below in terms of matrix F[xx”].
In this sense, C° is not a bona fide estimator. In the next subsection, a
bona fide estimator S* is developed with the same properties as C° asymp-
totically as N and m go to infinity together.

For Ay, Ay € R™™ we write (A1, Ay) = tr(A; ALY /m

Lemma 16. Let
k= (BlxT], D), o = | Bfxx"] = k1|,

% =E[|S — E[xx"]||’] <o and %= E[||S —&I|]*] < o0
Then
o 4 B =62
Proof. . We have

BlIS - xI|] = E[IS - Exx"] + Elxx"] - ||

+

]+
E[|IS — Elxx"]|?] + E[||Efxx"] — x1]%]
+2E[(S — E[xx'], E[xx'] — sI)]
E[||S - Epxx"]|?] + El|Epxx"] - £I|]
+2(E[S — E[xx"]], E[xxT] — I)
I+ EllE

= B[S - E[xx"]|? [xx"] — w1]%]

|
because E[S] = E[xxT]. O

Theorem 28. The solution to problem (5.59) is given by

o_ B
The error associated with C° is given by
a2ﬁ2
52

B[l Exx"] - C°|°] = (5.62)

Proof. By a change of variables, (5.57) and (5.59) can be rewritten as
C=pvi+(1-p)S
and

J(C%) = min J(C),

PV
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respectively. With a little algebra, we can rewrite J(C) as
El|Exx"] - C|* = p*|Exx"] —vI|?
(1 - pPE]|Exx"] - S| (5.63)

Therefore, the optimal value of v can be obtained as the solution to a
reduced problem that does not depend on p:

myin |E[xxT] — vI|?
The norm of identity is one by convention, so
|ExxT] — vI|? = | B[xxT]||> = 2v(E[xx"],I) + 1%
The first-order condition is
—2(E[xx"],I) +2v = 0.

The solution is

v = (BExx'],I)

= k.
replacing v by its optimal value x in (5.63), we have
B[ ElxxT] - CJ* = % + (1 — p)26%.

The desired p is

62
Po= 2 T2
62
Note that
o2
At the optimum, E[||E[xx”] — C%||?] becomes
T 02 > 2 o 2
El|Exx"] = CIIF] = Jzo°+ 56
O¢2ﬁ2

This completes the proof. O
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Analysis under general asymptotics

The solution (5.61) does not provide a bona fide estimator, since it requires
hindsight knowledge of E[xx”]. To avoid this difficulty, the consistent
estimators for k, o, # and § can be obtained in the following way.

First, an appropriate asymptotic framework is chosen. Standard asymp-
totics consider m fixed while N tends to infinity, implying that the optimal
shrinkage intensity vanishes in the limit. This would be reasonable for situ-
ations where m is very small in comparison to IN. However, in the problems
of interest to us m tends to be of the same order as N and can even be
larger. Hence, we consider it more appropriate to use a framework that re-
flects this condition. This is achieving by allowing the number of variables
m to go to infinity at the same “speed” as the number of observations N.
It is called gemeral asymptotics. In this framework, the optimal shrinkage
intensity generally does not vanish asymptotically but rather it tends to a
limiting constant that it is possible to estimate consistently. the idea then
is to use the estimated shrinkage intensity in order to arrive at a bona fide
estimator.

Let N =1,2,... index a sequence of statistical models. For every N,
Xy = {xM, ..., xM} is a set of independent and identically distributed
random vectors x() € L2(Q,R™~), ..., x(N) € L?(Q, R™~) with mean zero
such that x(*) = [xgk), . ,ng,)v]T for k =1,..., N where x(lk), e ,xSlf,)V €
L?(Q,R).

The number my can change and even go to infinity with the number
N, but nit too fast.

Assumption 1. There exists a constant K7 independent of N such that
mN/N S K1.

Let E[xxT] = UoUT be the eigenvalue decomposition of E[xxT]. Let
Yy =UTXy and [y, ..., y5 117 the first column of Yy.

Assumption 2. There exists a constant K5 independent of N such that
1 X
— Y E[(yN)®] < Ko.
My 3

Assumption 3.

m3 Z(i,j,k,l)eQN (COV[yﬁyﬁy;iVlym)Q
N—oo N2 Cardinal of Q

Assumption 2 states that the eight moment is bounded (in average).
Assumption 3 states that products of uncorrelated random variables are
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themselves uncorrelated (on average, in the limit). In the case where gen-
eral asymptotics degenerate into standard asymptotics (" — 0), Assump-
tion 3 is trivially verified as a consequence of Assumption 2. Assumption
3 is verified when random variables are normally or even elliptically dis-
tributed, but it is much weaker than that.

For A € R™~>*™~ “the Frobenius -like norm is defined by

tr(AAT)
A3 = ——2.
413 = Z22

We follow the notation used in the preceding Section, except that we add
the subscript IV to signal that all results hold asymptotically. In particular,
we now write C%; instead of C°. Also, let us denote

1
SN = NXNxﬁv KN = <E[XXT]51>7 O‘?\/’ = ||E[XXT] - KI”?\/W

B% = E[|Sy — E[xx"]|3] < oo and 6% = E[||Sxy — snI||%] < oo.
These four scalars are well behaved asymptotically.
Lemma 17. ry, o4, 0% and 6% remain bounded as N — oc.

We omit proofs of Lemmata and Theorems in this Section. The proofs
can be found in [83].

The most basic question is whether Sy is consistent under general
asymptotics. Specifically, we ask whether Sy converges in quadratic mean
to the true covariance matrix, that is, whether 3% vanishes. In general, the
answer is no, as shown below. The results stated below are related to spe-
cial cases of a general result proven by Yin [184]. But presented method
works under weaker assumptions than the method [184] does. Also, the
goal in [184] is to find the distribution of the eigenvalues of the sample
covariance matrix, while this method is to find an improved estimator of
the covariance matrix.

Theorem 29. Let

1 X
62 — Ny2
v = Var mN Z(%l)
Jj=1
The scalar 6% is bounded as N — oo, and

lim {E[[Sy — Exx]|[3 — S (k% — 63)} = 0.
N —oo N
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For ky, a consistent estimator is its sample counterpart as it follows
. q.m. . .
from the next Lemma. We write — to denote convergence in quadratic
mean.

Lemma 18. Let

my = (Sn, I).
Then

E[myn] = kN,
and

my an(g}O.
as N — oo.

A consistent estimator for §%; is also its sample counterpart.

Lemma 19. Let
d% = ISy —mnI|%-
Then

d3 — 6%, 25%0.

Now, note that Sy can be represented as
1
Sy = N ];X(k)x(k)T.

Since the matrices x®)x(®7T are iid across k, we can estimate the error
B2 = E[||Sny — E[xxT]||%] of their average by seeing how far each one of
them deviates from the average.

Lemma 20. Let

N

~ 1

b?v - Nz Z [Sn — X(k)x(k)TH?v
k=1

and )
b3 = min{b3, d%}.
Then R
b — 8530 and b3 — LI5S0

We note that b% < 8% by Lemma 16. In general, this constraint is rarely
binding. But it insures that the following estimator of % is nonnegative.
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Lemma 21. Let a3, = d3, — b%. Then

The next stage of the strategy is to replace the unobservable scalars in
the formula defining C° with consistent estimators, and to show that the
asymptotic properties are unchanged. This yields the bona fide estimator
of the covariance matrix:

b2 a?
0 N N
N N

The next Theorem shows that S?V has the same asymptotic properties
as C?V. Thus, we can neglect the error associated with the replacement of
the unobservable parameters ky, %, 3% and 6% by estimators.

Theorem 30. S% is a consistent estimator of C%, i.e.
q.m.
IS% — Cyllv==0.

As a consequence, S?V has the same associated asymptotic error as C(I)V,
i.e.

E[||S¥ — Cnl] — E[IICY — Cn|[}]*0.

The following result presents the estimate of the associated error of C?V
and S%; consistently.
2
— 0.
N

The final step is to demonstrate that S, which has been obtained as a
consistent estimator for CY;, possesses an important optimality property.
It follows from Theorem 28 that C%; (hence, 8% in the limit) is optimal
among the linear combinations (5.57) with nonrandom coeflicients. this
interesting, but only midly so, because it excludes the other linear shtinkage
estimators with random coeflicients.

Below, it is shown that S% is still optimal within a bigger class: the
linear combinations like (5.57) but with random coefficients. This class
includes both the linear combinations that represent bona fide estimators,
and those with coefficients that require hindsight knowledge of the true
(and unobservable) covariance matrix.

Let

Lemma 22.
ax by o}y

d3 ox

E

J(Cy) = |IExx"] - Cx I3
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and
N =p1l+pSn

where unlike p; and p3 in (5.57), p; and p; are random variables. Another
difference is the norm || - ||y instead of the norm E|| - ||y in (5.58).
Let C¥ be such that

J(CR) = min J(CY).

It turns out that C} is a function of E[xx”] therefore C} does not
constitute a bona fide estimator. By construction, C*NO has lower associated
error than C} and S% almost surely (a.s.), but asymptotically it makes
no difference.

Theorem 31. S is a consistent estimator of C, i.e.
0 *0 q.m.
ISy = Cxllv==0.

As a consequence, S?\, has the same associated asymptotic error as CR?,
i.e.

E[||SY — Cn 3] — E[ICY — Cn|3]250.

Both C(])\, and C?\? have the same asymptotic properties as S?V; there-
fore, they also have the same asymptotic properties as each other.

The most important result of this section is as follows:

The bona fide estimator S has uniformly minimum associated error
asymptotically among all linear combinations of I with Sy, including those
that are bona fide estimators, and even those that use hindsight knowledge
of the true covariance matrix.

Theorem 32. For any sequence of linear combinations Cn of I and Sy,
the estimator S% defined in (5.64) verifies

. . N 11271 _ 0 _ 7712
Jimnf {B]|Cx — EpecT|[3] — BISY — Elxx]|3]} = 0.

In addition, every Cy that performs as well as S?\, is identical to S?V m
the limait:

tim { B[y — Bpoc]|%] - BlISY — Bpex]|%]} =0

n—oo

18 equivalent to
ICx — S{lln 0.



162 5. BEST OPERATOR APPROXIMATION

Thus, S?\, is an asymptotically optimal linear shrinkage estimator of the
covariance matrix with respect to associated error under general asymp-
totics.

A distinctive feature of this result is that it provides the rigorous justi-
fication when the number of variables my exceeds the number of observa-
tions N. Not only that, but S(])\, is guaranteed to be always invertible, even
in the case my > N, where rank deficiency makes the sample covariance
matrix singular. estimating the inverse covariance matrix when variables
outnumber observations is sometimes dismissed as impossible, but the ex-
istence of (S%)~! certainly proves otherwise.

The following theorem shows that S%; is usually well-conditioned.

Theorem 33. Let the condition number of the true covariance matriz
E[xxT] be bounded, and let the normalized variables y;1/v/A; be iid across
i =1,...,N. Then the condition number of the estimator S?V is bounded
in probability.

This theorem follows from [2].

If the cross-sectional iid assumption is violated, it does not mean that
the condition number goes to infinity, but rather that it is technically too
difficult to find out anything about it. Interestingly, there is one case
where the estimator 8% is even better-conditioned than the true covariance
matrix E[xx’]: if the ill-conditioning of E[xx”] comes from eigenvalues
close to zero (multi-collinearity in the variables) and the ratio of variables
to observations my /N is not negligible. In this case, S?V is well-conditioned
because the sample observations do not provide enough information to
update our prior belief that there is no multi-collinearity.

5.3.4 Some other relevant results on estimates of
covariance matrix

The covariance matrix estimation is an area of intensive research. Below,
we mention some results which are relevant to the methods discussed above.

Calvin and Dykstra [13] considered the problem of estimating covari-
ance matrix in balanced multivariate variance components models. As with
univariate models, it is possible for the traditional estimators, based on dif-
ferences of the mean square matrices, to produce estimates that are outside
the parameter space. In fact, in many cases it is extremely likely that tradi-
tional estimates of the covariance matrices will not be non-negative definite.
In [13], Calvin and Dykstra developed an iterative procedure, satisfying a
least squares criterion, that is guaranteed to produce non-negative definite
estimates of covariance matrices and provide an analysis of convergence.
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In some applications the covariance matrix of the observations enjoys
a particular symmetry: it is not only symmetric with respect to its main
diagonal but also with respect to the anti-diagonal. The standard forward-
only sample covariance estimate does not impose this extra symmetry. In
such cases one often uses the so-called forward-backward sample covariance
estimate. Jansson and Stoica [67] performed a direct comparative study of
the relative accuracy of the two sample covariance estimates is performed.
An explicit expression for the difference between the estimation error co-
variance matrices of the two sample covariance estimates is given. This
expression shows quantitatively the gain of using the forward-backward es-
timate compared to the forward-only estimate. The results [67] are also
useful in the analysis of estimators based on either of the two sample co-
variances. As an example, in [67], spatial power estimation by means of
the Capon method [145] is considered. Using a second-order approxima-
tion, it is shown that Capon based on the forward-only sample covariance
(F-Capon) underestimates the power spectrum, and also that the bias for
Capon based on the forward-backward sample covariance is half that of
F-Capon.

Delmash [28] studied estimators, both batch and adaptive, of the eigen-
value decomposition (EVD) of centrosymmetric (CS) covariance matrices.
These estimators make use of the property that eigenvectors and eigen-
values of such structured matrices can be estimated via two decoupled
eigensystems. As a result, the number of operations is roughly halved,
and moreover, the statistical properties of the estimators are improved. In
[28], after deriving the asymptotic distribution of the EVD estimators, the
closed-form expressions of the asymptotic bias and covariance of the EVD
estimators are compared to those obtained when the CS structure is not
taken into account. As a by-product, it is shown [28] that the closed-form
expressions of the asymptotic bias and covariance of the batch and adap-
tive EVD estimators are very similar provided that the number of samples
is replaced by the inverse of the step size.

Kauermann and Carroll considered the sandwich covariance matrix es-
timation [72]. The sandwich estimator, also known as robust covariance
matrix estimator, heteroscedasticity-consistent covariance matrix estimate,
or empirical covariance matrix estimator, has achieved increasing use in the
literature as well as with the growing popularity of generalized estimating
equations. Its virtue is that it provides consistent estimates of the covari-
ance matrix for parameter estimates even when the fitted parametric model
fails to hold or is not even specified. Surprisingly though, there has been
little discussion of properties of the sandwich method other than consis-
tency. Kauermann and Carroll investigate the sandwich estimator in quasi-
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likelihood models asymptotically, and in the linear case analytically. They
show that under certain circumstances when the quasi-likelihood model is
correct, the sandwich estimate is often far more variable than the usual
parametric variance estimate. The increased variance is a fixed feature of
the method and the price that one pays to obtain consistency even when the
parametric model fails or when there is heteroscedasticity. It is shown in
[72] that the additional variability directly affects the coverage probability
of confidence intervals constructed from sandwich variance estimates. In
fact, the use of sandwich variance estimates combined with ¢-distribution
quantiles gives confidence intervals with coverage probability falling be-
low the nominal value. Kauermann and Carroll propose an adjustment to
compensate for this fact.

Kubokawa and Srivastava [80] considered the problem of estimating
the covariance matrix and the generalized variance when the observations
follow a nonsingular multivariate normal distribution with unknown mean.
They present a new method to obtain a truncated estimator that utilizes
the information available in the sample mean matrix and dominates the
James-Stein minimax estimator [66]. Several scale equivariant minimax
estimators are also given.

This method is then applied to obtain new truncated and improved
estimators of the generalized variance; it also provides a new proof to the
results of Shorrok and Zidek [138] and Sinha [139].

Champion [14] derived and evaluated an algorithm for estimating nor-
mal covariances. A particular concern in [14] is the performance of the
estimator when the dimension of the space exceeds the number of obser-
vations. The algorithm is simple, tolerably well founded, and seems to be
more accurate for its purpose than the alternatives. Other topics discussed
in [14] are the joint estimation of variances in one and many dimensions;
the loss function appropriate to a variance estimator; and its connection
with a certain Bayesian prescription.

Schneider and Willsky [133] proposed a new iterative algorithm for the
simultaneous computational approximation to the covariance matrix of a
random vector and drawing a sample from that approximation. The al-
gorithm is especially suited to cases for which the elements of the random
vector are samples of a stochastic process or random field. The proposed al-
gorithm has close connections to the conjugate gradient method for solving
linear systems of equations.

A comparison has been made between the algorithm’s structure and
complexity and other methods for simulation and covariance matrix ap-
proximation, including those based on FFTs and Lanczos methods. The



5.4. BEST HADAMARD-QUADRATIC APPROXIMATION 165

convergence of the proposed iterative algorithm is analyzed, and a precon-
ditioning technique for accelerating convergence is explored.

5.4 Best Hadamard-quadratic Approximation

In the next sections, we consider the best constructive approximation of the
input-output map of the system in a general stochastic setting when the
input-output map is an arbitrary nonlinear continuous operator, the inputs
and outputs are stochastic signals and the only information on a system is
given by certain covariance matrices formed from the input-output signals.

It is known that a nonlinear system provides more flexibility in its per-
formance than that by a linear system. Needless to say that an approx-
imator with a nonlinear structure is a natural tool in nonlinear system
modelling, because such an approximator provides, in particular, a higher
accuracy than a linear model. The question is what kind of nonlinearity
should be used for an effective approximation. The answer depends on cri-
terion which we aim to achieve in the system modelling. In the following
sections, we consider different types of nonlinear approximators.

We begin with the so called Hadamard-quadratic approximation.

5.4.1 Statement of the problem

The following preliminaries are necessary to pose the problem properly.

We interpret x as a given “idealized” input signal (without any dis-
tortion) of a nonlinear system, and y as its observed input signal. In
particular, y can be interpreted as x contaminated with noise so that no
specific relationships between signal and noise are assumed to be known.
For instance, noise can be additive or multiplicative or their combination.

Let F : L2(2,R™) — L?(Q, RP) be the input-output map of a nonlinear
system.

The terms “system” and “input-output map” will be identified.

We consider the class A of models A : L*(Q,R") — L*(Q,RP) of a
nonlinear system with A given by the equation

A(y) = Ao + Ai(y) + As(y?), (5.65)

where Ay € L2(Q,RP), Ay, Ay : L2(Q,R") — L*(Q,RP) and y? is defined
by the Hadamard product [50] so that
v =i )"
Operators A; and As are linear and are defined by matrices A4; € R
and As € RP*™ 5o that

[A1(x)](w) = Ai[x(w)]  and  [Az(x)](w) = As[x(w)]. (5.66)

pXn
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For any random vector z € L?(2,R™), we write

Bllz]?) = / l2()|Pdp(w), (5.67)

where ||z(w)]| is the Euclidean norm of z(w).
Then in accordance with (5.67),

E[|F(x) — Ay)I*) = /Q I1FG](w) = [AX)) )] dpa(w).

Hereinafter, calligraphic letters will be used to signify operators defined
similarly to F, A; and A,.
Let us denote

J(Ao, A1, A2) = E[|F(x) — AW)|]- (5.68)
We wish to find A9, A9, A so that

J(A5, A9, A9) = min  J(Ag, Ay, As) (5.69)
Ao,A1,A2

for all A; with 7 =0,1,2.

In other words, we wish to find the model A° of the system F which is
the best in the class A in the sense (5.69).

It is natural to call A° the best Hadamard-quadratic approximation to
F.

Generalizations of the Hadamard-quadratic model A are discussed in
the next Sections.

5.4.2 Auxiliary results

We denote by N (M) and R(M) the null space and range space respectively
of a matrix M, and by MT the Moore-Penrose pseudo-inverse of M.
Note that

NM)=RMT): and N(MT)=R(M)*

where R(MT)1 and R(M)* are the orthogonal compliments of R(MT)
and R(M), respectively (see, for example, [89], p. 155).

Proposition 1. For any random vector z € L*(Q,R™),

Bl|l2]*) = tr Elzz"].
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Proof. We have

Ellel®) = | law)due)
_ /Q tr {2(w)z” (w) }dpu(w)
T s /Q[Zj(w)]zdﬂ(w)
= tr{E,.},
where z” (w) = [z(w)]T. -

Lemma 23. Let P € R"*™ and @ € R"*™. Then
N(P) CN(Q) (5.70)
implies

QPP =qQ.

Proof. Tf gy € N(P), then
QP'Pqy =0

and since equation (5.70) shows that gy € N(Q), we also have Qqn = 0.
Hence

QU = P'P)qy =0,
where I is the identity matrix.

On the other hand, if gr € N(P)* = R(PT), then there exists p € R"
such that gr = PTp [89]. Hence

QP'Pgr = QP'PP'p = Qqr
and therefore
Q(I - PTP)gr = 0.

The desired result follows from the unique representation of any vector
q € R™ in the form g = qn + qr.- O

We write
s=F(x) and s=s(w),

and

z=y? and z=zw).
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Lemma 24. The following equations hold:
EyE} E,, = Ey, FE.El E, =E., (5.71)
and
E,.El E.. = E,.. (5.72)
Proof. If u € N(Ey,) then u” Eyyu = 0 and hence
El(y"u)?] = 0.
But for each w € R™ we have
W Egyul = |E[(w"s)(y"u)]]
< (Bl s)) VA E(y w?])?
= 0.
Therefore Ezyu = 0 and hence u € N'(Es,). This means that
N(By,) € N(E.,) (5.73)

and then the first equation in (5.71) follows from (5.73) on the basis of
Lemma 23. Other equations in (5.71) and (5.72) are proved similarly. [

Lemma 25. Let

B=E.. - E. E} E,.

and G =E,. — EE] E,..
Then

GB'B=G. (5.74)

Proof. Let u € N(B). Then v Bu = 0 and
u? E[(z — EzyE;yy)(zT - yTE;yEyz)]u =0.

Therefore
E{(z— By El,y)"u}?] = 0.

Next, for all v € R™ we have

(W"Gu)?? = (EP"(s - By Ej,y) (2" —y" Bl Ey.)ul)?
< Bl{v"(s - By E},y)Y’|E[{(z — By B},y) u}?]
~ 0
ie. Gu=0or u € N(G). Hence
N(B) CN(G)

and then (5.74) follows from Lemma 23. O
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Note, that B, G # O, in general. Here, O is the zero matrix. The
following elementary example illustrates this fact.

Y1

Y2
dependent random variables taking values 1 and —1. Then we have

Example 16. Lety = ( ) and x = ( y10y2 ) , where y1, yo are in-

Ely,=-11=1/2, Ely,=1]=1/2, foreach i=1,2,

g _ | E¥iys] Elyiy3l | _[0 1]
== 0 o |Tlo o]
g [ Elylys Elyy3l ] _[0 0]
W= 0 o |T|lo o]
g | Ebil Elyly)) | _[0 0]
| Elylys) Elyiyal ] [0 0]
g | Ebil Ebly) ] _[1 0]
| Elylys] Elylyd] ] [0 1]

Therefore

0 1
B[O O] and G =1.

Next, it is well known (see, for example, [10], p. 8) that for any matrix
M,

M =MT(MMT)T, (5.75)

We denote by M'/? a matrix such that M/2M/2 = M.

If M is a symmetric non-negative definite matrix then we can write
M=vsv?

where V' is orthogonal and ¥ is a non-negative diagonal matrix. We note
that
MT=veivT and MYZ2=yxl/2yT

and that consequently
(MI/Q)T _ (MT)l/Q'

Let us denote MT1/2 = (M1)1/2,
We will use (5.75) in the next Lemma.
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Lemma 26. The equations

AE})I? = (Ey — A3E.,)E} E)? (5.76)

Yy Tyy 0

A,BY? = GB'BY/? (5.77)
are respectively equivalent to

AE,, = E. — AyE,, (5.78)
AB = G. (5.79)

Proof. Let us suppose that (5.77) is true. Multiplying on the right by B'/2
gives
A;B—GB'B=0.

Then A2B — G = 0 follows on the basis of (5.74).
On the other hand, if AsB — G = 0 then multiplying on the right by
BT gives

A,BBT —GB' = 0. (5.80)
If we set A = B'/2 then (5.75) implies
Bl/2t — gl/2gt
from which it follows that
BY2p1/* = BB,
Hence, equation (5.80) can be rewritten as
A,BY?2BY?t _ Bt =0.
Multiplying on the right by B/ gives the required result
(A, — GBNBY? = .

The equivalence of (5.76) and (5.78) is proved similarly. Namely, if

(5.76) is true then multiplying on the right by E;f gives (5.78). If (5.78)

is true then multiplying on the right by E;y and applying (5.75) gives
(5.76). O
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5.4.3 The best Hadamard-quadratic model
Theorem 34. The solution to problem (5.69) is given by

A) = E[s] — AVE[y] — ASE[z)], (5.81)

AY = (B, — AYE.,)E}, + M\(I — E,E} ) (5.82)
and

AS = GB' + My(I — BBT), (5.83)

where My € RP*™ My € RP*™ qre arbitrary matrices and I is the identity
matric.

Proof.  The functional J(Ag, Ay, As) can be written as

J(Ag, A1, Ag) = Jo + J1(Ag, A1, Ag) + Jo(Aq, Aa) + J3(As),  (5.84)

where
Jo = tr{Es— EyE} E,}—A, (5.85)
A = |G(BY|P, (5.86)
Ji(Ao, A, A2) = [|Ag — (Els] = A1 Ely] — A2 E[z])||? (5.87)
Jo(Ar, A2) = (|[A1 = (Byy — A2B)EJ JE, 2| (5.88)
and
J3(Az) = |[(As —GBNHBY?|2 (5.89)

Equations (5.84)—(5.89) are deduced from the representation of the corre-
sponding functionals as follows:

Jl(Ao,Al,Ag) = tr{(AO —E[S} +A1E[ ]+A2 [Z])
x (Ao — E[s] + AiEly] + A2E[2))"}, (5.90)

Jo(A1, A2) = tr{[A1 — (Esy — A2 zy)E;y}Eyy
[Al - (Esy - A2Ezy) ]T} (5'91)

X

and
J3(As) = tr{[A2 — (Es. — EE} E,.)B'|B
x [A2 — (Es. — EgE} E,.)B""}. (5.92)
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Then on the basis of Lemma 24, we obtain

Jo + J1(Ag, A1, A2) + J2 (A1, As) + J3(Az2)
= Jo + Ji(Ao, A1, A) + tr{Dy + Dy + A E, AT
~A1Eys + AYEy AT — Eg AT + AyE, AT
+(EyE},E,.B'B— E.B'B — E, E] E,.)A]
+Ay(EyE} E,.B'BE,.B'B — E, E] E,.)"
+A3(B + E. E} E,.)AT},
where
Dy = EyE} ,E,, and D,=GB'G".
Next, taking into account Lemma 25,

Jo + J1(Ao, A1, Az) + Ja(Ar, Ag) + J3(As2)
= J0+J1(A0,A1,A2) —|—tr{D1 +D2 +A1EyyAF{ _AlEys
~Ey AT — E,AY — AyE, + AyE, AT + A B, AT

+A2E., AT}
= tr{E[(s — Ay — Ayy — Az)(s — Ag — A1y — Ax2)T]}
= J(Ap, A1, A).
It follows from (5.84) — (5.89) that J(Ag, A1, A3) is minimized when
Ao = Bls| - AEly] - AsEla), (5.98)
AE)? = (Ey - AE.,)E} E)?, (5.94)
A,BY? = GB'B'Y/? (5.95)
since
ELE = (T E
G
- (E;y)l/z
and also

B'I'BI/Z _ (Bl/Q)T

for the same reason.
By Lemma 26, the equation (5.95) is equivalent to the equation (5.79).

The necessary and sufficient conditions [6] for the equations (5.79) to have
the solution is

G=GB'B
which is true by Lemma 25. Then the solution is given [6] by (5.83).
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Next, also by Lemma 26, the equation (5.94) is equivalent to the equa-
tion (5.78) where we now set Ay = A9. The necessary and sufficient con-
ditions [6] for the equations (5.78) to have the solution is

(Esy - AgEzy)E;yEyy =By — AgEzy

which is satisfied by Lemma 24. Therefore, the solution [6] is provided by
(5.82). O

Remark 12. Matrices Ey, and B are positive semidefinite and their eigen-

values are nonnegative ([143], p. 309). Hence E;f and BY? have real
entries.

Remark 13. The solution of each matriz equation (5.79) and (5.78) is
not unique [6] and this fact is reflected by the arbitrary matrices My and
My in (5.82), (5.83): for any My and Mz, the matrices A and AS are the
solutions to the corresponding equations (5.79) and (5.78).

In this connection we note that a possible and natural choice for M;
and My in equations (5.79) and (5.78) is M7 = O and M3 = O where O is
the zero matrix, and then equations (5.79) and (5.78) are simplified.

Also note that the best operator A° defined by the equations (5.81),
(5.82) and (5.83) requires knowledge of the matrices

E[s|, Ely], Elz], E E.., Ey,, E,. and E... (5.96)

SY»
The methods for their estimation have been considered in Section 4.3.

Corollary 2. The best approzimation § of s = F(x) in the class A of the
models (5.65) is

s =A%y). (5.97)

Theorem 35. The error of approrimation of the system F by the best
Hadamard-quadratic model A° is

E[|F(x) = AP = tr{Bas} = || Boy (B,)/2)? = IG(BH) 2|2 (5.98)

Proof. The proof follows directly from equations (5.68) and (5.81)—(5.89).
O

A particular case of the model A is the first-degree model A(;) given by
Ay (y) = Ao + Ai(y). (5.99)
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Corollary 3. The best first degree model A?l), minimizing the functional
(5.68) with Ay =0, is defined by

AQ = E[s] - AJE[y] (5.100)
and

AY = By, El, + K[ — Ej)2 (B}, (5.101)

where K1 € RP*™ js an arbitrary matriz.

Corollary 4. The error of approximation of the system F by the best first
degree model A(()l) is

E[|F(x) — ALy (D)) = tr{ B} — | Eoy (Ef,) 22 (5.102)

Proof. The equation (5.102) follows from (5.100) and (5.101) on the basis
of Lemma 1. O

Remark 14. A comparison of the error equations (5.98) and (5.102) shows
that the error associated with the best Hadamard-quadratic model is less for
|G(B™)Y/2||? than the error associated with the best first degree model.

Remark 15. Knowledge of matrices E[s], Ely] and E|z] allows us to sim-
plify procedures (5.81), (5.82), (5.83) and (5.100), (5.101) above by the
replacement of s,y and z with§ =s—E[s], y =y — Fly] and 2 = z — E|[z]
respectively. Then

E[g]=0, E[§]=0 and E[z=0

and therefore equations (5.81), (5.82), (5.83) and (5.100), (5.101) with 8, ¥
and z instead of s, y and z correspondingly, are reduced to simpler forms
with

Es = E[ss”], FE,, =E[sy’], E,, =Elyy’],

E., = l?[zyT}7 E,, = E[SZT} and E., = E[ZZT].

5.4.4 Simulations

In our simulations, the performance of the proposed approach is illustrated
with an example of its application to image processing.

We suppose that the signals to be transformed by a system are given
by digitized images presented by matrices. A column of the matrix can be
considered as a realization of a stochastic signal.

The known digitized images (see sub-figures (a) and (b) in Fig. 5.1) have
been chosen to represent the sets of input and output signals. We denote by
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50 100 150 200 250
(a) Given “idealized” input.

50 100 150 . 203 . 250
(b) Desired output.

Figure 5.1: Illustration to the performance of the proposed method. These
digitized images have been taken from http://sipi.usc.edu/database/.
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50 100 150 200 250
(a) Observed input.

50 100 1 200 250
(b) Output of the model A° constructed from (5.65), (5.81)-
(5.83.

Figure 5.2: Illustration to the performance of the proposed method.
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200

150

100

50

(o] 50 100 150 200 250

Figure 5.3: Approximation (dashed line with circles) of the 205-th column
(solid line) in matrix V by (5.65), (5.81)—(5.83).

U € R?6%256 and V € R256%256 matrices which are numerical counterparts
of the images in the sub-figures (a) and (b) in Fig. 5.1, respectively.

To illustrate the performance of the presented technique for different
types of signals, the matrices U and V have been partitioned into sub-
matrices

UM =U(@1:85,:), UP=U(®86:170,:), U® =U(171:256,:)
and

VO =v(1:85,:), V@ =V(86:170,:), VO =V(171:256,:),
where U(ny : no,:) is a matrix formed by ns — ny + 1 consequent rows
of U beginning with the n;-th row. Then each sub-matrix U® has been
distorted to the matrix W () so that

W =Ry xcos(UD), WP =100Ry. xU® and WO =sin(U®),

where R; is a matrix with uniformly distributed entries in the interval
(0,1), Ry is a matrix with normally distributed entries with mean 0 and
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variance 1, cos(U®) = cos(u,(;j))7 sin(U®) = sin(u,(fj)), uSJ) is the entry of
U@ and the symbol .x denotes the Hadamard product of matrices.

The proposed method has been applied to each pair W@, V# sepa-
rately to find the best approximation A° to the operator F = F; where
F; : U% — VO for each i = 1,2,3. The approximator A° has been con-
structed from (5.65), (5.81)—(5.83), (5.97). The input of the system A° is
a column of the matrix U® and the input of the approximating system
is a column of the matrix W®. Covariance matrices have been estimated
by the known sample estimates formed by the matrices W®, V@ and
ZW =V « V@ for each i = 1,2,3. For example, for i = 1 we calculated
E,, as VWMT /85 ete. The estimation techniques have been discussed
in Section 4.3. The simple estimation method used in our simulations has
been chosen for the purpose of illustration only.

Sub-figures (b) in Fig. 5.1 and (a) in Fig. 5.2, respectively, have been
created from the matrices [V(l)T v’ V(B)T]T and [W(I)T w@" W(?’)T]T
correspondingly.

Sub-figure (b) in Fig. 5.2 is a digitized image created from matrix

T T T
[Vl(l) V1(2) Vl(g) |7 obtained by the proposed method. To illustrate the
same performance of the method in a more conspicuous way, we represent
in Fig. 5.3 a plot of the 205-th column in the matrix V and plots of the

205-th column in matrix [Vl(l)T V1(2)T Vl(g)T]T.

5.5 Best r-Degree Polynomial Approximation

While an advantage of the method considered in Section 5.4 is its computa-
tional simplicity, the method proposed here provides a significantly better
performance than the technique considered in Section 5.4 and is based on
a broad generalization of the procedure presented in Section 5.4. The re-
sults of this section supplement the general system theory which has been
developed in fundamental works by Volterra, Wiener, Sandberg, and in
works by many other authors. The relevant bibliography can be found, for
example in [117]-[131].

The proposed approach is based on the approximant produced by a
polynomial operator of the rth degree for some natural number » € N. The
approximant minimizes the mean squared error between a desired image
and the image of the approximating operator. Standard software packages
can easily be used to implement the method.

The statement of the problem is given in Section 5.5.1. Some auxil-
iary results are presented in Section 5.5.3. In Section 5.5.4 we provide a
solution to the problem and prove a theorem on the error associated with
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the solution. Some methods for matrix equations solution are considered
in Sections 5.5.5 and 5.5.5. Numerical simulations with digitized images
in Section 5.5.6 demonstrate the clear advantages of the presented method
over the method used in Section 5.4.

5.5.1 Problem formulation

Let r € N and let P, : R™ — R™ be an operator with associated input-
output map P, : L?(,R") — L*(Q,R™) such that

Pr()l(w) = Prly(w)],

and let P, be given by
Pr(y) = AQ 43 AWy, (5.103)
qg=1

Here A®) € R™ r < n, A@ : (R")9 — R™ is a g—linear operator, y? =
(y,...,y) € (R™) and (R™)? is the qth degree of R".
——

q

The operator P, is completely defined by A@ with ¢ =0,1,...,7. We
call P, a generalized polynomial operator of the rth degree.

Let F : L2(Q,R") — L2(Q,R™). The problem is to find A@ with
q=0,1,...,r such that

JA® AN A= i J(A®, 4D

_ i s AT (5.104)
A0 A A

where
J(A®), AW, AD) = B|F(x) - Po(y)|2]. (5.105)

In other words, we wish to find the best mathematical model P, (de-
fined by A AM A of the system F in the class of generalized
polynomial operators (5.103).

The problem considered in Section 5.4 is a particular case of (5.103),
(5.104) if r = 2,
Pa(y) = A® 4+ A0y 4 4@

and § defined by the Hadamard product so that § = (y%,...,42)T where
Yy= (yla"'vyn)T € R™.
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5.5.2 Approximation with any given accuracy

The problem above motivates the following question: Is there exists an
operator P, which approximates F with any given accuracy? A natural
conjecture is that the positive answer can follow from the results presented
in Chapter 1. Below, we show that this is indeed true.

Theorem 36. Let Ky be a compact set of signals in the space L?(Q,R™),
Kx = F(Ky) and F defined as above. Then for any x € Kx and e > 0
there exists P, such that

Ellx-P@)*] <e (5.106)
forallxe Kx andy € Ky .

Proof. For any g € L*(Q,R™), (E[||g||2])1/2 defined by (5.67) is the norm
lgllzz in L2(,R™) so that

(Ellgl’D'? = llgll 2.
Then
Ellx =PI’ = Ix—=Py)ll7-
IF(y) = Pr(y)]13e

and the statement of the theorem follows directly from the references [104]
or [65]. O

We note that compactness of the sets Ky and Kx is an essential con-
dition of this result. Theorem 36 is important because it constitutes the
existence of P, which estimates x with any desirable accuracy.

Let us now show that P, can be determined in the form which guaran-
tees a smallest associated error among all P,. of the same degree r.

5.5.3 Reduction of P,(y) to a matrix form representation

For our purposes, it is convenient to use a representation of the operator
P, in matrix terms. The following lemma establishes this representation.

Lemma 27. There exist matrices Ag‘f) . € R™ ™ such that

Ja—

Py) = AD+ a0y 350N gy, AWy (5.107)

=2j1=1  jq_1=1

— A0 4 40y 4 3 3 Ui Ui Ay (5.108)

q=2g—1<04-1<(¢—1)n
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where 041 = j1+...4+jq—1 and the inner sum is extended for all summands
with subscripts satisfying the inequality ¢ — 1 < o4—1 < (¢ — 1)n.

Proof. Let {ey,...,e,} be the standard basis in R™. Then

A <yq) = A(Q)(Z Yj1€jir- s Z yjqejq)

Jj1=1 Jq=1

Z Z A(q)(ejlv"'vejq)yjl w0 Y

Ji=1 Jq=1

If we write @
A(q)(ejla sy ejq) = aj(f,...,jq eR™
then we can define the matrix Ag‘f) jo_, € R™*™ by the formula
(Q) (q)
31, SJg— V= Z Gjy,.. Ja Yiqs
Jq=1

where v = (v1,...v,)T € R™. Therefore

AD (1) = Z Z Yjv -+ Yjga Za ,,,,, qujq

ji=1 Jg—1=1 Jq=1

= > Yiu - - ~yjq_1A§(f?“,7jq,ly (5.109)

g—1<04-1<(g=1)n

and the lemma is proved. O

Example 17. For r = 2, the formula (5.107) takes the form

Py(y) = AQ 4+ AWy + 3"y APy, (5.110)

ji=1
where

A(Q) { (2) }i:m’]é:n c Rmxn’ N .,A(2) — {a(2) }i:m’jzz’ﬂ c Rmxn

@i 1,528 j2=1 i,n,j244,j2=1
or

A§2) :{ (2) 1}1 m,Jl =n Rmxn"”’A%Q) :{ (2) }i:m,jlzn c RmXn

i1 15i05:= A gy nSigi=1

(2)

i are entries of the m x n x n tensor A
2J1,J2

and a;
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Let us now reduce the expression (5.107) to a more compact form which
is similar to (5.110) but will be given for r > 2.

First, we observe that the products y;, ...y;,_, are not ordered in
(5.107). Therefore, the model (5.107) contains the same factors y;, ... y;,_,
for different matrices Aﬁf?...,jq,l- For example, for r = 3, P.(y) contains
products y1y2 and y2y; which are the same. We call this issue a symmetry
effect.

This circumstance may lead to an unnecessary increase in the compu-
tation load when determining the optimal estimator. To avoid this incon-
venience, we collect together all terms with the same factors y;, ...y;,_,
and write (5.107) in the form

Py) = AO 4+ AWy 43" > YU Al i, iy (5:111)
g=2 i1+..tin=q—1
i1, rin=0,1,...,q—1
= AO 4 AMy 4 > Ui Ay iy (5.112)
‘ 111+_...+énlgr71 .
QA EinS=l

The inner sum in (5.111) and the sum in (5.112) are extended for terms
such that 47 +... +i, = ¢—1and i1 + ... + 4, < r — 1, respectively,
where i1,...,4, = 0,1,...,¢ — 1 and at least one i; is not zero for j =
1,...,n. Each product y;* ...y is written in ascending order with respect
to subscripts. Also, Ag)j,....j,.1 € R™ ™ follows from collecting similar
terms in (5.107) and Ay, . j,_, represent A ;. ;. _, which are rewritten
with different subscripts after representing the double sum (5.111) in the
form given by (5.112).

Thus, (5.111)-(5.112) has no similar terms ¢! ...y%. This circum-
stance allows us to avoid the symmetry effect mentioned above. Such an
rearrangement leads to a smaller matrix D in Theorem 37 below.

The expression P, (y) given by (5.107) contains

.....

7"—‘,—1_1
1+n+n2+...+n7":n7
n—1

terms. The number of terms in P, (y) by (5.112) is reduced to

T (e (e
:1+(”j111>-n. (5.114)

As a result, computational work needed for computation of D' in Theorem
37 is smaller than that for the matrix D' without suppressing the symmetry
effect.
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By (5.113), the expression (5.112) contains

n+r—1
N_( o >n (5.115)
matrices A;, ... ;,. If we denote them by C1, ..., Cy with the corresponding
operands denoted by uj,...,uy € R™ then we can write
4 N
> vy Ai oy = Y Chug. (5.116)
i i <r—1 j=1

iy in=0,1,...,r—1
Therefore the following is true.

Corollary 5. The polynomial operators P, and P, can respectively be writ-
ten as

N
Pry) = AQ 4+ AWy +3 " Cjuy (5.117)
j=1
and
N
Prly) = AV + AW (y) + 3 C;(uy), (5.118)
j=1

where C; : L*(Q,R™) — L?(2,R™) are defined by matrices C; in the man-
ner of (5.44).

The operator P, is represented diagrammatically in Fig. 5.4.
For any x € L*(Q,R") and v € L?(Q,R™), we denote

v = F(x).

The results in the next Lemmas will be used in the proof of Theorems 37
and 38 in the next Section.

Lemma 28. The following equations hold:

E”yEgyEw = Euy, Eu]‘yE;yEw = Ey;y and E’quE'j;«jquujuj = Eyu;-

Proof. The proof follows from the proof of Lemma 24 above. O
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1
A()

G

A P

G

Cy

Figure 5.4: Representation of the operator P,.

Lemma 29. Let

Dij = Euyu, — BuyEl By,

and
Gj = Evuj - EvyE;yEyujv

so that D;; € R™™™ and G € R™*™. Then
G;D};Di; = G;
foralli,j=1,2,...N.

(5.119)

Proof. The proof follows from the proof of Lemma 25 in Section 4.4.1(b).

Dy ... Din
Lemma 30. Let D = Do ... Doy and G = [G1 Gy ...
Dni ... Dnn
Then
GD'D =G.

Proof. We observe that

D = Eyy — EyE]

nyy“

O

Gl

(5.120)
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and

G = Eyy — EwyE]} Ey.,
where u = (uf,...u%)T. Then the proof follows from Lemma 25 in Section
4.4.1(b). O
5.5.4 Determination of A A® and ¢, Cs, ..., Cn

In accordance with Corollary 5, the problem formulated in Section 4.4.2(a)
is reduced to finding A® ¢ R™, A1) ¢ R™" and C; € R™" with
Jj =1,2,..., N which minimize the functional (5.105), Where P,(y) is in
the form (5.118) and where

J(A(O),A(l),éh...,é}\/)_ min J(A(O)7A(1)7cl77ON)(5121)
A A0 .Cy ... Cn
with
N
JAD,AD, G, Cy) = E[IF0)~(AO+AD(y)+37 ¢, ) 2.5.122)
j=1

Theorem 37. The solution to problem specified by (5.121) and (5.122) is
given by

N

AO = Elv] - ADE[y] - Y CjE[uy), (5.123)
j=1

~ N ~

AW = (BEy, =Y CjEy,)El, + Ki(I — EyyE]) (5.124)

j=1
and
[C1 Cy ... Cn] = GD' + Ky(I — DDY), (5.125)

where K1 and Ko are arbitrary matrices.

Proof.  Note that each matrix C; € R™ ™ in (5.123) - (5.125) is defined
as a corresponding m x n submatrix of matrix GD' 4+ Ko(I — DDT).
We write

Qu ... Gin
Dt — Q21 ... Qan

Qi - Qun
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where Q;; € R™*" for i,j =1,...,N.
Let us show that J(A(O) A( ) ,C1,...,CnN), given by (5.122), can be
represented as
JAO AW ¢y Cn) = Jo+ (A9, AW ¢y, Cn)
+Jo(AM Cy, ... CN) + J3(Ch, ..., CN), (5.126)

where

1/2
Jo = tr{Euw} — ||y (E)Y?)? - ZHGQ/||2

i=1

- > tr{G,;Q;1GY },

jk=1,...,N, j#k

JI(A(O)7A(1)7CI,"' aCN)

= |A©® — Ev] + AV E[y] + ZC Eu]|?, (5.127)
Jj=1
N
Jo(AW, Cy, .., Cn) = [[[AD) = (Byy = > CiEwy ) B JEIP (5128
j=1
and
J5(Cy,...,Cx) = |([C4,...,CNn] — GDTYDY?| 2. (5.129)
We have
Jo =tr{Ey, — EwyE} By, — Y G;QG} (5.130)

Jrk=1,....N
and

J(A© AW ¢y Cy)

N
= tr{AQAOT — AOERFT] + AV E[T]AD + AO N " Bf|CF

_BN]AOT 4 BB - B Ely"]AYT + (AVEly] - Biv)
X i EulCE + AVE[y]AOT — AOEy]EvT] (5.131)
k=1

N
LA B) By ]AOT + 3 0Bl (AOT — BT
k=1
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Ely"1AYT) + Y CEN|EN{]C]},
j,k=1,...,N

and

Jo(AMD Oy, ..., Cx) + J3(Ch,...,CN)
N
= tr{A(l)EyyA(l)T AVE Z B, CT) — vyA(l)T

yu; >~y

N
+> CiE AV + By Bl B+ Y CiEyu CF (5.132)
j=1 jk=1,...,N

N N
=Y CiBupw =Y Ew,Cf + Y GiQuGL}.
=1 =1 j

Then, on the basis of Lemmata 28 and 29, and combining (5.130) - (5.132),
we obtain

Jo+ Ji(AQ AW 0y On) 4+ T (AW Oy, Cn) + J5(Ch, ..., CO)
N
= tr{E[vvT] = E[v]AOT — ElvyT]ADT Z E[vu}|ct
k=1

—A(O)E[VT] + A®AOT | A(O)E[yT}A(l)T

N
A© Y EufCf — AVE[yvT) + AV Efy]ACT

N
+AWE[yy"|ANT + AON " Elyuf|cy - chE [upv?]
k=1 k=1
N N
+3 ChE[ ] AOT 4+ CrEfugy "1 AMT
k=1 k=1
+ Y CEwuiIcl}

7,k=1,...,N
= J(A© AL ¢ COn).

Thus (5.126) is true.
It follows from (5.126) - (5.129) that J(A®, AM Oy, ... Cy) is mini-
mized when

A0) — O

)
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AWEN? = (E,, Zc Eu,y)El, El? (5.133)

Yy “Tyy o

[C1Cy ... C,)DY? = GDTDY2, (5.134)

Similarly to Lemma 26, it can be shown that the equations (5.133) and
(5.134) are respectively equivalent to the equations

N
AWE,, =By — Y CjEy, (5.135)
j=1
and
[C1Cy ... Cu1D = GD. (5.136)

The necessary and sufficient conditions [6] for the equations (5.135) and
(5.136) to have solutions are

N N
Eyy — ZCjEujy = (Evy - ZOjEujy)E;SyEyy

j=1
and
G =GD'D,

respectively. They are satisfied on the basis of Lemmata 28 and 29. There-
fore, as it follows from [6], the solutions to the equations (5.135) and (5.136)
are given by (5.124) and (5.125), respectively. O

Note that a possible and natural choice for Ky and K5 in the expressions
(5.124) and (5.125) is K1 = O and K2 = O where O is the zero matrix.

Also note that the best polynomial operator P, defined by the equations
(5.123), (5.124) and (5.125) requires knowledge of the matrices E[v], Ely],
Eluy], Evy, Evu,, Eyy, Eyu, and By, . Methods for estimation of these
matrices have been considered in Section 4.3.

Theorem 38. The error of approzimation by the best polynomial operator
P, defined by (5.123)(5.125) is

E[|F(x) = Pr(y)II*)
=t1"{Ew} — 1By (E,) 211 (5.137)

fZHGQWn?g S 6{G;QuGTY.

jk=1,...,N, j#k

Proof. The proof follows directly from equations (5.123) - (5.129). O
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Comparison of (5.137) with the error associated with the method of
Section 5.4.3 (see Theorem 35 in Section 5.4.3) demonstrates the clear

advantage of the proposed method over the procedure considered in Section
4.4.1.

5.5.5 Towards methods for matrix equation solution

In the proof of Theorem 37, we show that A©, AD Cy, Cs, ,..., Cy
can be found by solving the equation (5.133) and (5.134). Their solutions
are based on a solution of the matrix equation

XEfs =By (5.138)

where f : @ — R™ and g : Q — R* are random vectors and X € R*¥*",
Since the null space of Ey; is a subset of the null space of E,; it follows
from [6] that

X =E,E;f" + F(I —EsEs 1) (5.139)

where ' € R¥*" is arbitrary.

In practice k and n may be large and consequently (5.138) becomes a
large system. For large systems, the generalized inverse may be difficult
to compute. One might reasonably expect to facilitate the solution using
the idea of Gaussian elimination [50] with full pivoting or some suitable
variant.

Here, we exploit the special structure of the original system (5.138)
to propose a new conceptual block elimination procedure that separates
the original system into two independent smaller subsystems each with
the same general form. This provides the basis for an efficient solution
algorithm that will be described in the next subsection.

Let

f:[]q)] and X:[Y Z]
where p: 2 — R™ and q : Q — R"2 with ny + ny = n are random vectors

and where Y € R**™ and Z € R**"2. Write E;; and Ey; in partitioned

form as
Epp Epq

Erp = [ ] and Egr = [ Egp Egq ]
ap qq

and hence rewrite the original equation (5.138) as

E E
Y Z Pp rq — E E .
[ ] [ ]Eqp qu ] [ gp 9q ]

The following lemma and theorem are the key to the new elimination pro-
cedure.
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Lemma 31. Let n € N and p, q € L*(Q,R"). Define R = q — Equ;pp.
Then
Err =Eqq — Equ;pqu'

Proof. We have
E., = E[(él - EQPELpﬁ) (él - EQPEI)])I?))T}
= Ela4"] - B, E[pa’ | — Elap” |E],E,,
+EQPELpE[f)IA)T]E;pEPq
E' E

= Eg¢q —Egp pp=Pq

qaq

as required. O

Theorem 39. Letp:Q — R™, q:Q — R™ and g : Q — R* be random
vectors and consider the system of equations

[y 7] [ EZZ %;Z } — [ B, Eg |- (5.140)

If we define r = q — Equppr and Y* =Y + ZIE(”OIEWJr then the original
system of equations can be rewritten equivalently as two separate systems

Y'E,, =E;, and ZE,, =Eg. (5.141)
The solutions to the separated systems are given by

V* =By R, + P(I —E,pE,,") (5.142)
and

Z =Ey,E,.' +R(I -E,E,..". (5.143)
Proof. If we make the transformation

1 (@)

vzl=wl| gy G| e

where O is the zero block, then

I (0) E E I -E,'E
Y*, Z* 94 Pq :l |: PP rq :|
[ ] [ _EQPEPPT I } { ]Eqp qu ) I
I -E,'E
= [Egplegq] { o) pz} Pa }
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and if we define r = ¢ — EquEppr and use Lemmata A1.2 and A2.1 then
the original system reduces to

vzl % g | BBl

The result is now easily established. O

It is clear that the separated systems each have the same form as the
original system. In practice the separation is designed to remove a small
system for which the solution can be easily calculated. The remaining
system takes exactly the same form as the original and so the separation
procedure can be repeated.

A recursive algorithm for solution of the matrix equation

Here, we present a new algorithm that reduces the original system of equa-
tions (5.138) to a collection of independent smaller subsystems each with
the same general form. Solution of the collection of smaller subsystems re-
quires significantly less computational work and enables greater precision
in the calculations. Hence the new algorithm is highly efficient.

Let p, : Q@ — R™ be a random vector for each 4 = 1,2,...,r and let
n =73, n; If wedefine E; ; = E[p;p] |- E[p,]E[p] ] and E; = E[gp] | —
E[g]E[pJT] and let 7 = (pT,p%....,pl] then the equation XEsr = Ey¢
can be rewritten in the partitioned form

Ei1x Ei2 -+ Eq.
Es1 Eop - Eo

(X1, X2, ..., X,] : : : = [E1,Es,...,E,].
Er 1 ]ET,Q o Er,'r'

We use the following algorithm to calculate the solution.

Solution algorithm

1. Set £:=1.

2. Set E; := Elgp]] — E[g]E[p]]

3. For all (i, ) with £ <i < j <r set E; ; := E[p,p] ] — E[p,]E[p] ].
4. For all j with £+ 1 < j <r set p; :=p; — EjygEg)ngg.

5. If £ <rset £:={¢+1 and go to Step 2.
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6. If { =7 go to Step 7.
7. Set X, := EAEZ[ + Pp(I — E&Z]E}:,e) where P, € RFX™¢ is arbitrary.
8. Set £:=/—1.

9. Set Xy = (Be— Y )_py1 BiE; 0)E] , + Po(I —E¢ (B ) where P, € RF>*ms
is arbitrary.

10. If £ > 1 go to Step 8.
11. End.

The algorithm essentially exploits the idea of Gauss—Jordan elimination
[50] and is based on the new block-elimination procedure described in the
previous subsection. The first stage reduces the system to block lower
triangular form. The algorithm moves a pointer through the matrix Ej
along the leading diagonal from the (1,1) position to the (r,r) position.
We consider what happens during stage ¢ when the pointer is in the (¢, ¢)
position. The current equations

Eg e Eeor1 oo Egp
Eerre Eeprpr - Eeprp
[pévpéJrla"-vpr] : . . = [E(,Ef+17...,ET]
ET,Z ]Er,erl te E’r‘,'r
are defined in terms of the current vectors py, Py, 1,--.,P, by the formulae

Eij = Elp;p]] — Elp;]Elp;] and E; = E[gp]]| — E[g]E[p]].

The current pivoting coefficient Eyp = E[p,p?] — E[p,JE[p!] is used to
update the remaining vectors py,1,Pspyo,---,P, and all elements in the
remaining equations

Eorrev1 Eepreve - By
Eeroe41 Eryoera - Epgop
[pe-‘,—l? p£+2a <oy Py . . .
E7.7é+1 E7.7€+2 e E?',’r'

= [E5+13E5+2a e aET’]

according to the formulae

p; i=p; — E; /Bl ,p;, Eij:=Ei; —Ei/E} By,
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and
E; :=E; — EE} Ky ;.

Note that the remaining elements E; ¢y1,Ep ¢42,..., Fpr in row £ of the
coefficient matrix are eliminated at this stage because Lemma A1.2 (Ap-
pendix 1 and [154]) shows us that

Ee; — Ee B} B ; = O,

where O is the zero matrix.

The pointer now moves forward one place to the (¢4 1,¢+ 1) position.
Our earlier results show us that the updated system at stage /+1 retains the
same relative structure as the original system at stage £. In particular we
preserve the relationships E; ; = E[p;p] ] — E[p,]E[p] ] and E; = E[gp] | —
E[g|E[p]].

The second stage of the algorithm is a block back substitution. In
general we can see from the lower triangular form of the system at stage ¢
that

X = |Eq - Z XjEjq ]Ez];,q + PL1<I - Eq7q]E:;,q>
J=q+1

where P, € R¥*™ is arbitrary.

5.5.6 Simulations

We wish to demonstrate the advantages of the methods considered in Sec-
tions 5.5.4 and 5.5.5 with the simulation of systems transforming digitized
images.

Let matrices X € R2%6%256 and V € R256%256 he counterparts of the
image presented in Fig. 1 (a) and the known image “Lenna,” respectively.
We partition X and V into 128 submatrices X;j,V;; € R1®*32 with ¢ =
1,...,16 and j = 1,...,8 so that X = {X;;} and V = {V};}. Let F}; :
Xi; — Vij. Each submatrix X;; has been treated as a set of 32 realizations
of a random signal with columns representing realizations. The operator
Fy; © Xi; — Vij is interpreted as the mathematical model of a nonlinear
system, where a column of X;; is the input signal and the corresponding
column of V;; is the output signal.
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s PSS 3

50 100 150 200 250
(a) Given “idealized” inputs X;;. This digitized image has
been taken from http://sipi.usc.edu/database/.

50 100 150 - 00 250
(b) Observed inputs Yi(jl).

Figure 5.5: Illustration to the performance of the considered method.
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' l \ _ Ill“i
“'1flﬁ nm

il “U ]H

1"

I/

i

50 100 150 200 250
1)
(b) Outputs of P2 g

Figure 5.6: Illustration to the performance of the considered method. The
digitized image has been taken from http://sipi.usc.edu/database/.
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(b) Errors associated with 152(}1)7 (Yi_(jl)).

Figure 5.7: Illustration to errors associated with the considered method.
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Table 1.
. &) (%)
k Observed inputs max Ay’ max Ay
%] ’ 1] ’
v = 20R{Y X000 + 500 || 1.4074 x 10° || 7.7375 x 10~*
2 vP = x;RY +20Q7 6.0448 x 10* || 2.4749 x 10~
3 v = oV X + Xy RY 24671 x 10° || 1.2915 x 10~ 11

In practice, input signals are contaminated with noise. We simulated
three different types of noisy input signal in the form Yig-k) with £ =1,2,3

presented in Table 1, where Rgf) is a matrix with normally distributed
entries with mean 0 and variance 1 and Ql(?) is a matrix with uniformly
distributed entries in the interval (0,1). In Table 1,

k w(k k k
A = 1F (X))~ )2 and AL

1] 2,13

~(k k
= || Fii(Xi)— B (v I 12,

2,ij
where H 2-(;-6) is the best approximation for F;; by the method [151] and PQ(IZ
is the best approximation of the second degree for F;; constructed from
(5.110), (5.118), (5.123)-(5.125) with r = 2.

ﬁgﬁ) (ngk)) and ]52(12 (ngk)) have been calculated with Matlab for each
i,7 and k (i.e. the method has been tested 384 times). We put K; = Ky =
0 in (5.124), (5.125).

The figures illustrate the performance of the methods for k =1, i.e. for

Yig»l) in Table 1. The matrices for the digitized images in Figs. (b)-(d) have
been composed from sub-matrices Yigl), f[;).l)(}/;gl)) and ]52(11)] (Kgl)) corre-
spondingly. The expectations and covariance matrices in (5.123)-(5.125)

have been estimated from known simple equations [174]. For instance, for

o . k o ok
each 7, j and k we estimated F,., as Vij(Zi(j))T/32 - Vij(Zi(j))T, where

(k) _ (k) (g (Y : R) Y : P
Zy0 =Y, (diagY;;”(q,)), diagY;;”(g,:)) is a diagonal n}atmx with the
elements from the gth row of ng) on the diagonal, and M means a vec-
tor formed from means of the rows of a matrix M. These simple estimates
have been chosen to illustrate the performance of the considered method.

Special estimates have been considered in Section 4.3.

Fig. 5.7 represents the matrices {Ag’)ij} and {Agkzj} of errors associated
with the best approximations Hff )(Yij) by [151] and the best approxima-

pi) (Y3;) by (5.118), (5.123)- (5.125) with r = 2, respectively.

tions Pz(m
We see from Table 1 and the figures that the best approximations ﬁQ(klz

give significant improvements in the accuracy of approximation to F;; com-
pared with the best approximations by [151]: the error associated with the
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considered method with 7 = 2 is at least 10'C times less than the error as-
sociated with the method [151]. In fact, this is an illustration of Theorem
38.

In summary, the approach presented in this Section, is based on the
solution of the best approximation problem for the input-output map. It is
supposed that the observed input is distorted by an unknown effect. The
approximant is given by the special polynomial operator of the rth degree
with » = 1,2, ... and minimizes the mean squared error between the desired
output and the output of the approximating system.

5.6 Best Causal Approximation

In Chapter 3, we have considered a new concept for the representation of
realistic systems with any pre-assigned accuracy. In this section, we provide
a new technique for the best causal representation of nonlinear systems in
the sense of minimizing an associated error.

The approach presented here develops some ideas from [9] - [159] and
is based on the best constrained approximation of mapping F in proba-
bility spaces by polynomial operator P, of degree . The operator P, is
designed from matrices of a special form. This allows us to solve the best
approximation problem with the constraints on the matrix structures. The
special matrix structures imply the incorporation of the causality concept
into the models. As a result, the approximant preserves the causality prin-
ciple and minimizes the mean square difference between a desired output
F(x) and the output P,(y) of the approximating model P,.. It is supposed
that the observable input y represents an idealized input x contaminated
with noise. Unlike the known approaches to the modelling of nonlinear
systems, it is not assumed here that x and y can be presented as analytical
expressions. The inputs and outputs of the system under consideration
are elements of the probability spaces and therefore relationships between
them are assumed to be given by some covariance matrices only. Another
difference is that we consider the best causal model of nonlinear systems. In
other words, the model that we provides guarantees the smallest associated
error in the entire class of models under consideration.

In Section 5.6.1, we present the model of the nonlinear system, refor-
mulate and extend the heuristic definition of causality and show how the
model is adjusted to the causality concept. In particular, we define so
called (9, €)-causality which is closer to realistic conditions than the earlier
notion of ‘idealized’ causality. To satisfy the causality concept, the model
is reduced to a representation by matrices of special form.

The rigorous statement of the problem is given in Section 5.6.2.
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In Section 5.6.3, we provide a solution to the problem, i.e. we obtain the
equations for the matrices which determine the optimal model P°. We also
establish the error equation associated with PY. Tt is shown that the model
has a degree of freedom, the degree r of the operator P,.. In particular,
we establish that the error is decreased if the degree r of PY is increased.
This fact gives us the degree of freedom in manipulating with the model
adjustment.

Simulations are described in Section 5.6.4.

5.6.1 Causality

Suppose that x € L?(Q,R™), y € L*(Q,R™) and u € L?*(Q,R™) are
random vectors with realizations x(w) € R™, y(w) € R™ and u(w) € R™,
respectively. As before, we denote z = x(w), y = y(w) and u = u(w).

Let P, : R™ — R™ be given by (5.107), i.e. by

Pr(y) = A© +A(1)y+z Z Ajhmvjq—lZj17~'~»jq—1 /(5.144)

9=2 | g—1<04_1<(¢—1)n

where A(O) S Rm, A(l) S Rmxm’ Aj1,.<.,jqf1 (S R"Lxm, Zj1sedqor = Yjp e+
Yiq_ ¥ with ji,... g1 =1,...,mandq=2,...,r,and where 041 = j1+
...+ jg—1 and the inner sum is extended for all summands with subscripts
satisfying the inequality ¢ — 1 < g4-1 < (¢ — 1)m.

Let P, : L%(Q,R™) — L?(£2,R™) be given by

[Pr(¥)l(w) = Prly(w)].

We write
P1(Y15 5 Ym)

Prly) = : ;
pm(yla A ym)
where p; : L?(Q,R™) — L?(, R).
Next, let us denote h = P, (y) where h = (h; ... h,,)T € L?(Q,R™).
This equation can be rewritten as the set of equations

h; =p;(y1s - Yim)
for i = 1,...,m. Note that each component h; (or y;) can be interpreted as
a value of h (or y, respectively) at time ¢;.

We recall that by the heuristic definition of causality, the present value
of the output of a physical system is not affected by future values of the
input [116]. Since the operator P, is treated as a model of the system, we
formalize the causality concept in terms of the operator P,..
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Definition 27. We call the operator P, causal if h; is determined from
components yq, ...,y with k <i, i.e. if fori=1,...,m,

h’i = pi(Yl) ) Yk) with  k <.
An alternative definition is as follows.

Definition 28. The operator P,. is called causal if for anyv = (vq ... viu)T
€ L2(Q,R™) and w = (wy ... w,)T € L2(Q,R™),

T

(vi o vie)t = (wy .o wi)T

implies
p;(vi ... vi) = p; (W1 ... wy),

where k < 1.

In other words, P, is causal if matrix fljlqufl = {ag;} is such that
agg =0foralll =1,...,mif k=1,...,j5 — 1 where j = max{j1,...,Jq-1},
and also agy = 0if k= 5,5+ 1,...,m and k < [. Such a matrix is called
j-lower trapezoidal.

An example of 4 x 4 3-lower trapezoidal matrix is as follows:

0 0 0 0

0 0 0 0

azy azxx azz 0

a41 Q42 Q43 Q44

In particular, if P, is linear, i.e. P, is a matrix A, then P,. is causal if
A is lower triangular.

The class of j-lower trapezoidal matrices is denoted by 7;. Note that
the 1-lower trapezoidal matrix is lower triangular.

The above implies the following definition.

Definition 29. The operator P, is called causal if matrix fljl s J-
lower trapezoidal where j = max{j1, ..., jg—1}-

g

In the real world, information is often obtained with some error, caused
in particular, by the influence of external factors, data and instrument
inexactness, etc. In this sense, the definition above is rather idealistic. A
more realistic definition of causality for the operator P, is as follows.

Definition 30. The operator P, is called (0,¢)-causal if for any 6 > 0
there exists € > 0 such that for arbitrary v = (vy ... v,)T € R™ and w =
(wy ... wy)T €R™,

(w1 e )T = (wr wp) TP <6
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mmplies
‘pi(vl vk) _pi(wl wk)| <eg,
where k < 1.

It is clear that the (0, 0)-causal operator is causal in the sense of Defi-
nition 1.

Proposition 2. If matriz Ajl...jqfl is j-lower trapezoidal for each j then
P, is the (0, €)-causal operator.

Proof. The proof follows directly from the above definitions. O

Next, similarly to (5.111)—(5.118), it is shown that

N
Z A]l ----- Ja—1%J1,dq—1 — ZAzHUu
Jiteda1<(a—1)m i1
N
Pr(y) = Ao+ Ay + Y Aiju (5.145)
i=1
and
N
Prly) = Ao+ Aily) + D A (w), (5.146)
=1

where N is defined similarly to that in (5.115), and matrices A;1; € R™*™,
vectors u; € R™ and w; € L?(Q,R™), and operators A;.1 : L*(Q,R™) —
L?(Q,R™) are defined in the manner of matrices Cj, vectors u; and uy,
and operators C; in (5.117) and (5.118), respectively.

5.6.2 Statement of the problem

We identify a nonlinear system with the continuous operator F : L?(Q, R™)
— L?(Q,R™). It is supposed that a structure of F is either unknown or
is difficult to compute. It is also assumed that a relationship between the
input x of the system F and an observable input y is not known.

‘We wish to find a causal optimal model of the system F which minimizes
the associated error.

Let

(Ao, Aty s Ani1) = E[|lF(x) = P3|,

where A; € T for j=1,..., N + 1.
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The problem is to find AJ, AY, ... A%, such that

J(AD, AL, AN ) = min  J(Ag, A1, ..., Any1) (5.147)
Ao, A1, ANt
subject to
Ag €7; foreach j=1,.,N+1 (5.148)

Let us denote P = PY(A§, AY, ..., A% |,). By Proposition 2, the condi-
tion Ag €7, for j=1,..,N + 1 implies (6, ¢)-causality of PY.

We note that the only restriction imposed on F is its continuity. It is
not supposed that some properties of F, such as causality, memory, etc.,
are known but we wish that P? is (4, €)-causal and constructively defined.

5.6.3 Best causal polynomial model of the system

In this section, we provide a solution to the problem posed above and also
present an error analysis associated with the solution.
Let

s=F(x), s=F(z), u=(ug ... uy)’, G = Eqy — EsyE;yEyu7 (5.149)

D=Ey, — EwE! E,., H=GD!cR™"N

yy
and
Qu ... @Qin
_Dl/2 = with Qij S Rme’
QN1 ... QnnN

where E;y and DT are the pseudo-inverses of E,, and D respectively, and
where sub-matrices @);; are assumed to be nonsingular for all ¢,7 =1, ..., N.

Let matrices Q; = Q; Q% be positive definite for all i = 1, ..., N so that
there exists the Cholesky factorization [50] for Q;,

Qi = LiL{, (5.150)

where L; is lower triangular. We write [H; ... Hy] = H where H; € R™*™,
and

N
(Hi— Y (AY — Hp)QriQy;" ) Li = Kyi + Kp; + Kai,  (5.151)
k=1 keti

where A9 41 is defined by the following Theorem 40, Ky; is i-lower trape-
zoidal, K3, is strictly upper triangular (i.e. with the zero entries on the
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main diagonal) and K7; is a matrix which supplements K»; to lower trian-
gular matrix.

ail 0 0 0
For example, matrix aél a(z)z 8 8 supplements 4 x 4 3-lower
0 0 0 0

trapezoidal matrix to the lower triangular matrix.
We also suppose that £, is positive definite, therefore E;y = Ey’yl, and
there exists the Cholesky factorization for E,,,

Ey, = RRT, (5.152)

where R is lower triangular.
Each matrix can be presented as a sum of lower triangular and strictly
upper triangular matrices. We write

N
(Esy = > AR 1 Buyy)R™" = My + M, (5.153)
k=1

where M is lower triangular and M, is strictly upper triangular.

Theorem 40. Under the assumptions above, the best (9, €)-causal model
PO of the system F is given by

N
P(y) = AQ+ Ay + > AY, s, (5.154)
=1
where
N
AY = Els] - AVE[y] = Y Ap1 Eluy), (5.155)
k=1
AY = MR~ (5.156)

and for eachi=1,..., N,
Alpy = KoLyt (5.157)
Proof. 1t follows from Proposition 6.9 and Section ... that
J(Ao, A1,y ANt1) = Jo + J1 + T2 + s,

where
Jo = |EL2I1” = | Eey (B, 21 = |G(DT)2) 1%,
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2

N
Ao — E[s] + A1 Ely) + > Av1 Elug]||
k=1
N 2
‘ Ay — sy ZAk+1EUky)Eyy E1/2
k=1
and
1/2 2
Js = ({42 Awia] = ) D2
We have
N
Jo = tr{ Ay — ( sy ZAk+1Euky> By | Byy
k=1
N T
Ay — ( sy ZAkHEuw) Eyyl
k=1
= trf[A R — M, — Mp][R" AT — M — M]]}
= tr{[AsR — My|[RTAT — M]]} — tr{ A, RMT
+M,RT AT}
+tr{ Mo M{' + My My + MM}
= tr{[AiR - My][RTAT — MT)}
= ||AiR - M|
where
tr{A,RMT + M,RTAT} =0
and

tr{ Mo M + M, M} + MyMIY =0

since A; is lower triangular.
Hence (5.156) is true. Next,

2

N N
Jso= D (A1 — HO)Qr1y - > (Argr — Hk)QkN]
k=1 k=1
N 2 N
= (Ap+1 — Hi) Q1 A 1D (Aki — Hy)Qun
k=1 k=1

N
= ZJ 1),

j=1
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where
N 2
(A1) = (A = | Hy =D _[Aen — HilQiQ55' | | Qi
=
k#j
= tr[dj Ly — (K + Koy + Ka)|[L] A
(K1 + K3, + K3)]
= tr{[(Aj1L; — Kyj) — (Ku; + K3j)] (L] AT, — K3))
—(K]; + K3;)}
= tr{(A;1L; — Koj)(L] AT,y — K3))}
= [Aj41L; — Ky
since
tr{ (A1 L; — Koj) (K, + K3;)} = 0,
tr{ (K + Ks;) (L] ATy, — K3;)} =0
and

Thus matrices A?H with j = 1,..., N minimize Js, and therefore (5.157) is
true.

Matrices AY and AY, ; defined by (5.156) and (5.157) are lower trian-
gular and ¢-lower trapezoidal, respectively. It implies the (4, £)-causality of
the operator PV.

The theorem is proven. O

‘We note that the operator 73?. defined by Theorem 40 is constructive, i.e.
732 is numerically realizable with the standard software packages. Matrices
AY,, for i =1,...,N are determined form the set of equations (5.157).

Theorem 41. The error associated with the best (6,¢)-causal model P°
presented by Theorem 40, is

E(|Fx) =PiWIP] = IE:L1? ~ 1By (B2
—|GDH2|2. (5.158)

Proof. The proof follows directly from the above. O

Corollary 6. The error E[||F(x)—P(y)||?] associated with the best repre-
sentation PY of the system F is decreased if the degree r of Pg is increased.
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Proof. It follows from Theorem 1 that A? ; turns to zero the functional
J(A;41) for each i =1,..., N. But

N
T3 = J(Ai1)
i=1

therefore A9, ..., A}, | turn to zero J3. This means that
(A9 ... AY.,] = GDT, (5.159)

where G and D are subject to conditions (5.150)—(5.153). Next, it follows
from (5.159) that ||GD'| is increased with an increase of N. Since N =
m+m?+...m" !, then the right hand side of (5.158) is decreased if degree
7 of P is increased. O

Thus the degree r of the model 792 is a degree of freedom which allow
us to adjust the model to an accuracy which is defined by conditions of a
particular modelling problem.

5.6.4 Simulations

To illustrate the performance of the considered method, we simulate the
inputs and outputs of the system F in the form of matrices X = {x;;} and
S = {s;;} respectively, where

x5 = (exp(t;) + a;j exp(—t;)) sin(10¢;)

and
Sij = bj sin(lOti) Sil’l(ti)

with ti = ti71 + 0017 a; = a1 + 05, bj = bjfl + 05, 1 = ].,. o ,500,
j=1,...,100,tg =0, ap = 0 and by = —30. We note that ‘trigonometric’
signals are often exploited in real-world data processing.

Columns of X and S represent realizations of the random vectors x and
s = F(x) correspondingly. The observed inputs of the system have been
simulated in the form of the matrix Y = M. * X C' where C' is a diagonal
matrix with the nonzero entries ¢; = ¢;_1 +0.5, j = 1,...,100, ¢o = —20,
M = {p;;} is a matrix with normally distributed entries with mean 0 and
variance 1, and the symbol .x means the Hadamard product.

We model the system F in the form of operator P?, given by Theorem
40, for r = 1 and r = 2 so that

P{(y) = Ay + Aty (5.160)
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(b) Output of the model P.
Figure 5.9: Illustration to performance of considered method.
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(a) Output p2 of the model PJ.
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(b) Fragments of outputs s (solid line) and p2 (line with circles).
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Figure 5.10: Illustration to performance of considered method.
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and

PY(y) =AY+ AQy + 3" A%z =AY+ A%y + 3" A% u;  (5.161)

ji=1 i=1

with z;, = y;,y = u; for each ji,4 = 1,...,m (see (5.146) and (5.145))
where A), AY, ..., A% ., have been determined from (5.155)—(5.157).

In these simulations, the expectations and covariance matrices used in
(5.149) — (5.157), have been estimated from the entire samples X, S and
Y of x, s and y, respectively.?

The figures 5.8— 5.10 present results of the simulations for a; = 90,
b; =1 and ¢; = 0.5.

The figures demonstrate the significant improvement in quality of mod-
elling when the degree r of the model P? is increased.

5.7 Best Hybrid Approximations

In this section, we consider a new approach to constructive representation
of nonlinear systems which is based on a combination of ideas of the best
approximation and iterative procedures.

The motivation for such an approach is as follows. Best—approximation
methods have the aim of obtaining the best solution within a certain class,
and therefore the solution cannot be improved by these techniques in cases
when the approximation is not satisfactory. In contrast, iterative methods
are normally convergent, but the error associated with each iteration of the
particular method is not the smallest possible. As a result, convergence can
be quite slow for a rather wide variety of problems. Moreover, in practice
only a finite number of iterations can be carried out, and therefore the final
approximate solution is often unsatisfactorily inaccurate.

A natural idea is to combine the above techniques to exploit their ad-
vantageous features. We present a method which realizes this idea. First, a
special iterative procedure is considered with the aim of improving the ac-
curacy of F approximation with each consequent iteration. Second, on each
iteration, the best approximation problem is solved providing the smallest
associated error within the chosen class of approximations for each itera-
tion.

We show that the combination of these techniques allows us to build
a computationally efficient and flexible method which has three degrees of
freedom. See Remarks 19 and 20 in Section 5.7.7 in this connection. In

3The special methods of the estimation and related references are given in Section
4.3.
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particular, we prove that the error in approximating F by the considered
method decreases with an increase in the number of iterations.

This section delivers a substantially more effective methodology com-
pared to the primary methods considered in Sections 5.4 and 5.5.

5.7.1 Some preliminaries

Before a formal statement of the problem, we describe the motivating idea.

Let F be the input-output map of a nonlinear system, and x and s the
stochastic input and stochastic output of F, respectively. Let y be the
noise-corrupted version of x. It is supposed that the input of the system,
which approximates F, is y and that information on F is given in terms
of the statistical characteristics of s and y such as the mean, covariance
matrices etc.

To find a system which approximates F, the idea of a concatenation of
approximating subsystems can be exploited in the following way. Let Bg
approximate F in a certain sense. We call By a subsystem. The output of
By is used as the input of the subsequent approximating subsystem B; that
has to be determined, and then the procedure is repeated. As a result, the
link between y and s is modelled from the concatenation

Pk:BkOBk_lo...OBo

with £ = 0,1,.... This device initiates the problem as follows. Find a
constructive approximation Py for F such that each Bj approximates F
with a minimal possible error for every kK = 0,1, ..., and further, the error is
decreased when k is increased. Since Py is determined by By, Bx_1, ..., Bo,
the more precise formulation in terms of the approximating subsystem By,
is given in the Section 5.7.2.

We note that while the system concatenation is a natural idea, the
methodology of an optimal determination of the parameters of each sub-
system is not obvious. In particular, we point out that the nonlinearity
of each approximating subsystem B; is essential. No improvement in the
accuracy can be achieved by the following subsystem B, if B;41 is linear.
This observation is justified in Remark 21 of Section 5.7.7.

Suppose that x € L2(2,R™), y € L*(Q,R") are random vectors with
realizations x(w) € R™ and y(w) € R™.

Let the input-output map F : L*(Q,R™) — L?(Q,RP) be such that
[F(x)](w) = Flx] for each w €  so that

s=F(x) and s=F(x)

where F € L?(R™,RP).
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The approach described in Section 2.1, is implemented through the
following device.

Let s € L?(Q,RP), s;, = si(w) and let us suppose that sy, is known for
k=0,1,2,... where sy =y. We set

Sk+1 — Pk(y), (5162)

where k = 0,1,..., and the nonlinear operator P, € L?*(R",RP) is deter-
mined by

Py(y) = Bi(sk), (5.163)
where
Bi(sk) = A + > A7 (s1) (5.164)
g=1

and where /IECO) € RP, fl;‘n : (R”)? — RP is the g-linear operator with v =n
fork=0andv=pfork=12,....

Let By : L2(Q,R™) — L2(2,RP) be defined by [Bi(sk)](w) = Br(sk)
with

Bi(sk) = A + Z A (s1) (5.165)
q=1
and
Bulsn) = AL + 3" A0(s1) (5.166)
q=1
where

AP (s1) = [AD(sD](w), sl =sl(w), AY:L*Q,(RY)?) - L3 (Q,R)

and v is as above.

5.7.2 Statement of the problem

It follows from the above that the subsystem By is defined by flgco), .21;1),

e .2\5:). Therefore it is natural to state the problem in the following form.
Let

JAD, AV AT = B[ F(x) — Bi(si) |- (5.167)
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For each k =0, 1, ..., find the vector fl,(go) and operators Af:), e thf) such

that
JAQ AV A7 = min (A9, A9 AP (5.168)
A A Al

Thus, the solution will completely define By,.

5.7.3 Method for the solution of problem (5.168)

In this section, we present the general structure of the considered method
and its particularities, that is, a solution of the best approximation problem
and the algorithm for a numerical realization.

The considered approach (5.162)—(5.168) implies the solutions of the
sequence of the problems (5.167), (5.168) for each k = 0,1, ... with sg =
y and sgy; in the form (5.162)-(5.164). For each kth iteration of the

procedure (5.162)—(5.167), the operator By, represents the best polynomial
approximant of the rth degree for F. Note that (5.163) can be written as

Pi(y) = Br,o By_10...0By(sg). (5.169)

We begin with a representation of By and (5.168) in a different form.
For ¢ =1,...,r, let us represent A,(fq) in the form

ASC(I) — R](CCI) o TIS(I)

where T,i(I) : (RV)? — R! is the g-linear operator with v defined in Section
2.2, and R,(f) : R! — RP. In particular, [ = p.

The reason for such a representation is twofold. First, we wish to deter-
mine T,gq) in a way which simplifies the computational procedure for By

Second, we wish to optimize this simplified procedure by determining R,(Cq)
so that the associated error is minimized.

Next, Tél), cen T,ET) are multi-linear operators, i.e. the tensors. For
our purposes, it is convenient to use a representation of the operator By in
terms of linear operators, i.e. in matrix terms.

We proceed with this device in the following way. Lemma 32 below
gives a matrix representation of By. In fact, Lemma 32 is a reformulation
of Lemma 27 of Section 4.4.2(b). Section 4.4.2(d) provides procedures for
determining the operator T,EQ) in terms of operator fo 1 which is intro-
duced by (5.171)—(5.173) below. As a result, we reformulate the problem
(5.168) in special matrix terms (5.186).

We write si = (Sp1,--5Skw)? € RY, Zkji . juss = Skijy - Skjy_15k»
where g=2,...,7and j; =1, ...,vfori=1,...,q— 1.



214 5. BEST OPERATOR APPROXIMATION

Lemma 32. There exist matrices T,E,qj)h_”yjq_l e R¥*! such that
Bk(sk) = A;CO) + R](cl)Tlgl)Sk

+3 RY ST e | (5170)
q=2

0q-1<(q—1)v

where 0q—1 = j1+...4+jq—1 and the inner sum is extended for all summands
with subscripts satisfying the inequality oq—1 < (¢ — 1)v.
; (9) _ pl@ple) .
Next, let us write Qk7j17---;jq—1 =R, Tk,jl,...,jq,l' Similarly to (5.111)—
(5.118), we can reduce (5.170) to a representation with a lesser number of
terms. Namely, we set

r N+1
> > Qz(ﬁ-l,...,jq_lZk,jl,...,jqfl =Y DM ur;, (571
=2 o4_1<(q—1)v Jj=2

where matrices C,gj )D,(Cj ) and operands ug ;—1 € R” denote matrices R,gq)
xT,Eij)l,__. e and vectors zgj, ... j._,, respectively, in the manner of that
used in (5.116). The number N is defined similarly to (5.115).

We also set C’]il)D,(cl) = R,(Cl)T,gl) and ugg = s,. Then

N
Bi(si) = AY + 3 07Dy, (5.172)
j=0
and
N . .
Bi(si) = ALY + > e DI (uy,), (5.173)
§=0

where [D2?+1)(ukj)}(w) = D,ijﬂ)ukj, and C,(jﬂ) is defined similarly.

5.7.4 Orthogonality of random vectors

We recall that for any x € L?(2,R™) and y € L%(92,R"), we denote
E,, = E[xy'] = {E[Xiyj]}zl,jzl and E,, = E[xy’] — E[x|E[y"],

where

Blxiy,;] / xi(@)y; (@)dp(w).
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Definition 31. Let u, € L?*(Q,R") and vi, = Zi(ug). The operators
21,..., 2, are called pairwise orthonormal if

0, i#j .
JEW,:{ I: z'=j7 foranyi,j=1,...,p.

Here, O and I are the zero matrix and identity matriz, respectively.
If
Evivj:@) fOT 27&]7 i>j:1»---ap7

and if By, is not necessarily equal to I for i = j then Z1,...,2Z, are
called pairwise orthogonal.

The vectors vi,...,v, will also be called orthonormal and orthogonal,
respectively.

If M is a square matrix then we write M'/2 for a matrix such that
MY2MY2 = M.

For the case when matrix E,,,, is invertible for any & = 1,...,p, the
orthonormalization procedure is as follows. For uy, € L?(Q,R"), we write
[Zk(up)](w) = Zpug (w), (5.174)

where Z € R™™ ™. For ug,v;,w; € L*(Q,R"), we also define operators
Sukv].,é’;jlvj : L2(,R™) — L?(Q,R™) by the equations

[gulc'Uj (WJ)](W) = Eukvj W (W) (5]_75)
and

(€00, (Wl(w) = B, wi(w), (5.176)
respectively.

Lemma 33. Let

i—1
wi=u and w;=u; — Zguiwkgfuiwk (Wg) (5.177)
k=1
wherei=1,...,p and E;iwk exists. Then
(1) the vectors w1, ..., w, are pairwise orthogonal, and
(1) the vectors v1,..., vy, defined by
with
Zi(w) = (E45,) 7 (wi) (5.179)

fori=1,...,p, are pairwise orthonormal.



216 5. BEST OPERATOR APPROXIMATION

Proof.  Let us write
i—1
wi;=u; and w;=u; — Zuik(wk) for i=1,...,p,
k=1
with Uy : L2(,R™) — L?(Q,R™) chosen so that, for k= 1,...,i — 1,
Epw, =0 if ik (5.180)

We wish (5.180) is true for any k, i.e.

Ewiwk = Ew iwE E[WZ]E[Wz]
= Zuzl wi))wi | Zuzl wy))E[w]]
= Buw, — Uit Buyw, — Ewi] Elwi] + E[Wk]E[W@
= ]Euiwk - Uik]Ewkwk
0.
Thus, Uy, = E,, wkE;kwk, and the statement (i) is true.

It is clear that vectors vi,...,v,, defined by (5.178), are orthogonal.
For Zj, defined by (5.179), we have Z, = (EX/2, )~! and

WEWE
Epor = ElEY,) " wewi (E2,) ")
E[(E}l)/;f’wk)_lwk]E[ (E’Lll)/)fwk)_l]
= (IE’LIU/kak ) - 1Ewk W (IE’LIU/kak ) -1
= I
Hence, v1,...,V,, defined by (5.178), are orthonormal. O
For the case when matrix E,, ,, is singular for k = 1,...,p, the orthog-
onalizing operators Z1,..., 2, are determined by Lemma 34 below. An-
other difference from Lemma 33 is that the vectors vi,...,v, in Lemma
34 are pairwise orthogonal but not orthonormal.
Lemma 34. Let
V; = Zz (uz)
fori=1,...,p, where Z1,...,2Z, are such that
i—1
Zi(w) =w and Zi(w)=wi—»_ Zip(vi) (5.181)

k=1
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fori=2,...,p with Z; : L*>(Q,R") — L%(,R") defined by

Zit = By, EY o+ Aip(I — Epp0, BN ) (5.182)
with Ay, € R™™ arbitrary. Then the vectors vi,. .. , Vp are pairwise or-
thogonal.

Proof. We wish that E,,,, = O for i # k. If Z;; has been chosen so that
this condition is true for all kK =1,...,7 — 1 then we have
i—1 i—1
El(u; - Z Zil(vl))vg] = By, — Z ZiEuyo,
=1 =1
= Euivk - ZikEUk’Uk = ©'
Thus,
ZikEvkvk = Euivk- (5183)

The necessary and sufficient condition [6] for the solution of the matrix
equation (5.183) is given by
Eu,o E

VeV

By Lemma 24, (5.184) is true. Then, on the basis of [6], the general solution
to (5.183) is given by (5.182). O

We note that Lemma 34 does not require invertibility of matrix E,,,, .
At the same time, if E;klvk exists, then vectors wy,...,wp and vq,...,vp
defined by (5.177) and Lemma 34 respectively, coincide.

Remark 16. Orthogonalization of random vectors is not, of course, a new
idea. In particular, generalizations of the Gram-Schmidt orthogonalization
procedure have been considered in [92,49]. The considered orthogonalization
preedures in Lemmata 33 and 34 are different from those in [92, 49].

5.7.5 Reformulation of the problem

It follows from the above Section that random vectors ugg,...,ury €
L2(,RY) in (5.173) are always reduced to the pairwise orthogonal vec-
tors vig, ..., Vgn so that for k=0,1,...,and j =0,..., N,
i+1
vig =D (wy), (5.185)
where operators D,(Cj 1 are constructed from operators Zy; given by Lem-

mata 33 and 34.
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Hereinafter, ’D,(cjﬂ) means the operator which converts ugg, ..., Urn
from (5.172) into the pairwise orthogonal vectors vio, ..., Vin.

Without loss of generality we now also assume that all random vectors
have zero mean.
As a result, the problem given by (5.167) and (5.168) is now presented
in the following form.
Let N=1,...,N. Foreach k =0,1,..., find A and(i',(:)7 ...7@,(CN+1)
such that
JAR.GY, e

= i (0) ~) (N+1)
CA© C(gllncwﬂ) JAT GG ), (5.186)
k Yk o VE

N
JAY, e, e = Bl Fx) — (A + e (vig)l?] (5.187)

j=0
and vy, ..., Vg are pairwise orthogonal vectors constructed from Lemma
34 and (5.185).
5.7.6 Solution of problem (5.186)
First, by Lemma 24 of Section 4.4.1, we have
Eav, Bl o Bojory = Bsv, - (5.188)

Now we are in a position to solve the problem (5.186).

Theorem 42. Let s = F(x). The minimum in (5.186) is achieved if

fléo) = 0Opx1 and
A(G+1)
cy = Bay, Bl o, + Miy(I = Byyyo B ) (5.189)

with My; arbitrary, k=0,1,... and 5 =0,...,N .
Proof. Let us denote J = J(A,(CO),(,’,(:)7 . ,C,(CNH)). We have

N
J = tr{Bes + AV AN =N "By Bl L, B
=0

N
i1
+Ztr{(clgj ) - EsvkjEltkj’ukj)Evkjvkj
7=0

) (CYTIT B By}

VkjVkj
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which is true on the basis of (5.188). Then

N
0)1/2
T = B2 + A2 )2 = B, (B

VkjVkyj
Jj=0

)1/2H2

N

j+1
DT = Beuy Bl VB, I (5.190)
j=0

Hence, J is minimized when A,(CO) = 0px1 and

CUTVEY?  — Eg Bl o EY? =0y,

VkjVkj VkjVkj ™ VkjVkj

The solution to the latter equation is given in (5.189). O

Note that a possible and natural choice for My, in (5.189) is My; =
Opxu-

Remark 17. The attractive feature of the solution presented in Theorem

42 is that (i’,(:), e é;cN—H) are subsequently determined from the sequence
of the simple single independent equations (5.189). This is achieved by ex-
ploiting the orthogonalization procedure by Lemma 34. Otherwise matrices
C~’,(€1), e C’,ENH) which minimize (5.168) should be determined from a sys-
tem of matrix equations. Such a solution would require substantially more

computational work.

Description of the algorithm. It follows from the above that the numerical
realization of the operator Py, consists of the iteration procedure (5.162)—
(5.164), (5.172) with the vector orthogonalization given by Lemma 34, and
computation of the matrices C',gl), cey C’,ENH) by (5.189) on each stage of
the procedure (5.162)— (5.164), (5.172).

The device of numerical realization for the operator Py is summarized
as follows.

Initial parameters: s € L*(Q,RP), y € L?(2,R™), N,q € N.

Final parameter: Py(y).

Algorithm:
®* 50:=y;
e for k:=0 to ¢ do
begin
Vko 1= Uko;

(here and below, uy; is defined in accordance with (5.171))
O for j:=0to N do
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begin

ijl = EUMUMEUMUH + KJI(I E'Uk,l'Ukl,E’Iklvkl);

j = Uk — E Ziji(vr);

end;
(+1) ;
C J = Esv;” .Ev)uvkJ + Mkj (I - EvkjvkjEikjvkj)v
ZC(]H) (Vis);
S = Bk(sk),

end;
o Py(y) == By(sq)-

The number of iterations, ¢ can be determined by the stopping criterion:
if |[sg+1 — k% is not less than ||s; — sk_1]|? then the algorithm should be
stopped.

5.7.7 Error analysis associated with the operator P;

Theorem 43. The error of F approzimation by the operator Py, is

B ~Pu] = IELLIP = I Bl
k
ZZ”E‘SUJLEZJIL/UQJL”Qa (5191)
j=01=1
where k =0,1,....

Proof. We write

~ ~(1) ~
Ellls —spia |2 = J(A9,¢,.,....C,

It follows from (5.190) that

Ellls = sk1l®] = 1B — | Bos BLEZI® — Alsk), (5.192)

SkSk

where
N

A(sk) = Z HEskaEliJ/ka”Q

j=1
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For k = 0, the theorem follows from (5.192) directly. To prove that (5.191)
is true for any k£ = 1,2, ..., we denote

Wi =[cV .. .cN Y]

and
wy, = [viy ... vin]T
so that
Wiwi = We(wi)](w)
where

Wi : L2(Q,RVNVHD) 5 L2(Q,RP).
Then the minimum of the functional E[||s — Wy (wy)|?] is achieved for

Wi = Esw Bl . + Ki(I = Buypw, EL 00) (5.193)

W Wk W Wk

with K arbitrary. We note that (5.193) is true since

lz's’w;c = lgswklz‘T Ewk’wlc

Wr Wk

by Lemma 24. The associated error is

Eflls = Wi(wi) 1P = 1 BN — 1 B, Bl |1

Wi Wk
Therefore

Ellls = sk1l]

E[||s — Wi(w)||?]
= |BX2? — || B, ELV2 |12
IEL2)? = || Ees T2 — Alsi). (5.194)

SkSk

Let us suppose that the theorem is true for kK =i — 1. Then

Ells=sil’] = IELI 1 Bswi s EL S, I1?

Wi —1Wi—1
1—1
B2 — | B EL2IE =S Als)): (5.195)
=0

It is easy to show that
HES&:EHNHZ = ||ES'U)i—1ET1/2 ”2

8i8i Wi—1W4q—1

Thus on the basis of (5.195),

Ellls sl = IELIP — I1Ess, BLIP - Alsi) (5.196)
NELN? = N Bowi s EL 1P = Alsi) (5.197)

1—1
= |EM2P — | B BRI =D Alsy) — Alsi). (5.198)
7=0
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Hence the theorem is proven. O

Remark 18. [t follows from (5.191) that the error decreases if both the

number of iterations k and the number N of the coefficient matrices CN’,il),
oy O nereases.

» Vg
Remark 19. It follows from (5.191) that the accuracy of approzimation
associated with the considered method can be adjusted by a variation of the
two degrees of freedom, namely the degree r of the operator By and the
number of iterations k.

Remark 20. Another degree of freedom is a form of the polynomial By (s)
for each k in (5.165). For example, By(sx) can be chosen in the form of
the Hadamard-quadratic polynomial considered in Section 4.4.1.

Remark 21. It follows from (5.191) that ifC’,in) =0 forallj=1,...,N
then for any k=1,2,...,
E[|F(x) = Pu)II?] = 1ELN? = 1 Esy By 211 (5.199)

Yy

Since the right hand side in (5.199) does not depend on k, this means that
the error E[|F(x) — P(y)||?] remains the same for any k if C,ng) =0
for all j = 1,...,N. In other words, nonlinearity of Py, which is im-
plied by C',(Cjﬂ) is an essential ingredient of the considered procedure. No
improvement in accuracy of P11 over Py can be reached if Pyy1 is linear.

Remark 22. The idea of this method has been outlined but not justified
in the reference [156]. The above method presented by (5.162)—(5.164),
(5.172), (5.189) provides a broad generalization and substantial improve-
ment both in the technique [156] and its modifications considered in [156].

5.7.8 Simulations

To illustrate the performance of the considered approach, we use data from
Section 4.4.1 (d).

The considered method has been applied to each pair of matrices W,
V() (see Section 4.4.1 (d)) separately to find the best approximation in the
form (5.169), (5.172), (5.173), (5.181), (5.185) to the operator F' = F; where
F; : U® — V®.) To compare the method considered in this Section with
the method of Sections 4.4.1(a)-(d) from which the data is used, By has
been constructed from the Hadamard-quadratic polynomial (5.65), (5.81)—
(5.83) for each k, in accordance with Remark 20. The input of the system
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50 100 150 200 250
(a) Output of the model P;.

50 100 . 150 200 250
(b) Output of the model Pug.

Figure 5.11: Illustration to the performance of the considered method. The
digitized image has been taken from http://sipi.usc.edu/database/.
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200

150

100

50

i i i i i
0 50 100 150 200 250

(a) Approximation (dashed line with circles) of the 205-th column (solid line) in
matrix V' by the procedure (5.169), (5.172), (5.173), (5.181), (5.185) with k = 49.

of & |

I I I I I I I I I I
150 160 170 180 190 200 210 220 230 240 250 260

(b) A bigger scale of the fragment of sub-figure (a) above.

Figure 5.12: Illustration to the performance of the considered method.
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By is a column of the matrix U® and the input of the approximating
system is a column of the matrix W (). Covariance matrices have been
estimated by the known sample estimates formed by the matrices W,
V@ and Z0) = VO « V@ for each i = 1,2, 3.

We denote by Vk(_?l the best approximation of V() (in the sense (5.186))
obtained in the k—th iteration of the procedure (5.169) with s and s
substituted by V®) and Vk(l) respectively.

Subfigures (a) and (b) in Fig. 5.11 are digitized images created from
matrices [VQ(l)T V2(2)T VQ(?’)T]T and [1/5(01 " 1/5(02 " Vs(o3 )T]T respectively.

In Fig. 5.12, we represent a plot of the 205-th column in the matrix
V and plots of the 205-th column in matrices [VI(I)T V1(2)T Vl(?’)T]T and

W @ T
Vso. Vso Vso' I

Fig. 5.12 (b) represents the part of Fig. 5.12 (a) in a bigger scale.

A comparison with Fig. 5.2 and Fig. 5.3 of Section 4.4.1(d) clearly
demonstrates the efficiency of the method presented above.

5.8 Concluding Remarks

In this chapter, we have presented different approaches to the best con-
structive approximation of nonlinear operators and have given rigorous
analysis of their properties. The major part of the chapter is devoted to
approximating methods in probability spaces but in Section 5.2, we have
also considered the best operator approximation technique for the so called
”deterministic” case. In Sections 5.4-5.7, the specific methods for nonlin-
ear operator approximation have been given. It is assumed that covari-
ance matrices associated with those methods or their estimates are known.
Therefore, in Section 5.3, some methods for a covariance matrix estimation
have been considered. Applications to modelling of nonlinear systems have
been discussed.
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Chapter 6

Computational Methods for
Optimal Filtering of Stochastic
Signals

6.1. Introduction

6.2. Optimal Linear Filtering in Finite Dimensional Vector Spaces

6.3. Optimal Linear Filtering in Hilbert Spaces

6.4. Optimal Causal Linear Filtering with Piecewise Constant Memory

6.5. Optimal Causal Polynomial Filtering with Arbitrarily Variable
Memory

6.6. Optimal Nonlinear Filtering with no Memory Constraint

6.7. Concluding Remarks

6.1 Introduction

In this chapter, we consider different approaches and computational meth-
ods for constructing mathematical models for optimal filtering of stochas-
tic signals. In Sections 6.2-6.4, we give wide generalizations of the known
Wiener filter to the cases when an associated linear operator is not invert-
ible, noise is arbitrary, and the filter should satisfy conditions of causality
and different types of memory. In Sections 6.5-6.6, we provide further
generalizations of those approaches to the case of nonlinear models.

229
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Throughout this chapter, we use the same notation for a probability
space (£2,%, u) as in Chapter 4: Q is the set of outcomes, ¥ a o—field of
measurable subsets A C Q and g : ¥ — [0,1] an associated probability
measure on X with p(Q2) = 1. Each element w € (2 represents the outcome
of an experiment and each subset A of €2 is a set of outcomes, called an
event. We say that the event A has occurred if w € A.

6.2 Optimal Linear Filtering in Finite Dimensional
Vector Spaces

The Wiener filtering problem has received a great deal of attention since
the time when Wiener published his pioneering work [179]. In the next
Sections 6.2-6.4, we present a wide generalization of the original Wiener
problem and provide its solution.

6.2.1 Statement of the problem

Let x € L*(Q,R™) and y € L*(Q,R") be a reference stochastic signal and
an observable data, respectively.

Similar to preceding chapters, for a matrix A € R™*", we define a
linear operator A : L2(Q,R™) — L?(2,R™) by the formula

[AY)](w) = Aly(w)] (6.1)
for all y € L?(Q,R") and w € Q, so that
x = Aly)

is an estimate of x.
For any x € L?(Q,R™), y € L?(Q,R") and a continuous A, let

J(A) = B [|x— Ax)I?], (6.2)
where

E[lx - Ay)*] = /Q Ix(w) = [A)] (@) dp(w) (6.3)
with || - || the Euclidean norm.

The problem is to find a linear continuous operator A° such that

ﬂAD:Aﬁngm) (6.4)

Here, [A%(y)](w) = A%y (w)].
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The problem (6.4) is a generalization of the known Wiener filtering
problem [179]. Unlike [179] it is not assumed that the operator A is invert-
ible, and that y = x + & where £ is noise. Instead, it is assumed that

(i) x is unknown and no relationship between x and y is known except
covariance matrices or their estimates formed from subvectors of y and x,
and

(ii) the operator A can be singular.

We note that that the assumption concerning covariance matrices is
conventional for the known methods [9, 37, 60, 115, 142, 152, 153, 154,
155, 156, 157, 179] of the best operator approximation. The methods of a
covariance matrix estimation can be found in Section 4.3.

6.2.2 Solution of the problem: optimal linear filter

Below, we give the solution to the problem (6.4) in terms of the pseudo-
inverse matrix Eny;;y This means that the solution always exists.

Theorem 44. The operator A° which satisfy (6.4) is determined by
A’ = B El, + M(I - EyE] ), (6.5)

where M € R™*™ is an arbitrary matriz.

Proof. If we choose Ay = O and As = © in Theorem 34 of Section 5.4 then
the proof follows directly from the proof of Theorem 34. O

We would like to point out that the model A° is not unique due to an
arbitrary M in (6.5). A natural practical choice for M is M = Q.

Numerical simulations associated with the model (6.5) are given in Sec-
tion 6.6.

6.3 Optimal Linear Filtering in Hilbert Spaces

Let u be a random signal with realizations u(w) = z in an infinite di-
mensional vector space X for each outcome w from the set of all possible
outcomes. We seek an estimate of the signal u by observing an associated
random signal v and we suppose that the outcome of the observed data
signal v(w) = y is realized as an element of some finite dimensional sub-
space Y C X. Our goal is to find the best possible estimate @1 of u using a
linear filter on v.
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6.3.1 A generic example

For the beginning, we show that an elementary random signal is equiva-
lent to a random vector with realizations in an infinite dimensional vector
space. This generic example will be used later in the paper to illustrate
the proposed optimal filter. It is well-known that a signal z : [0,1] = R
for which

/l[x(t)]th < 00
0

can be represented by a Fourier sine series
(oo}
x(t) = Z T V/2sin krt
k=1

or equivalently by an infinite dimensional vector

T = (x13x27‘r37 o ')T

where
o0
Z lzk|? < oo.
k=1

In this case we say that the vector x € X = [?. For the purpose of
practical calculations with these signals it is necessary to use a suitable
finite dimensional approximation. Thus we write

T~ (m17x27"'7xn70707"')T

for some fixed value of n.

We can generate random vectors with realizations in an infinite dimen-
sional Hilbert space by thinking of each coeflicient zj, in the Fourier sine
series as the realization of a real valued random variable. If Q is the set
of all possible outcomes and uy : 2 — R is a real valued random variable
then u,(w) =z, € R and we obtain a realization

o0
u(w,t) = Z ug(w)V2sin krt
k=1
of the random signal u(-,t), or equivalently a realization

u(w) = (n (W), up (W), uz(w), )"
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of the infinite dimensional random vector u(-) for each outcome w € Q. For
the above realizations to be meaningful it is of course necessary that

o0
D luw) < oo
k=1

for almost all w € €. That is for all w except possibly a set of measure
zero. This statement is understood in terms of the associated probability
measure p :  — [0,1] where p(A) = P{w € A} € [0,1] is well defined for
each suitable event A C Q.

6.3.2 Random vectors in Banach space

In this section, we outline a theoretical basis for the description of ran-
dom vectors with realizations in Banach space. We follow the methods of
Halmos [51], Dunford and Schwartz [31] and Yosida [185]. Although many
of the results are natural extensions of the results for real-valued random
variables, the extensions are nontrivial. This material is essential for a
proper understanding of the expectation operator.

The Bochner integral

Suppose E; € ¥ (j = 1,...,n) are mutually disjoint sets and &; € X (a
Banach space) for j = 1,2,...,n. We may define a finitely—valued function
u:— X by

uw) =Y x4, (6.6)
j=1

where x; : Q — {0, 1}, the characteristic function of the set E;, is given by

1 WEEj

ww={g 958

A function u : 2 — X is said to be strongly Y>—measurable if there exists a
sequence {uy, },>1 of finitely—valued functions u, : @ — X such that

[u(w) —up(W)|| =0 as n— oo

for almost all w € Q. The value u(w) of a strongly Y—measurable function
u depends on the outcome w € €2 of the experiment and we refer to u



234 6. OPTIMAL FILTERING

as a random vector. When u is finitely—valued, the Bochner p—integral
Z(u) € X is prescribed by

When u is strongly ¥—measurable, we say that u is Bochner py—integrable
if there exists a sequence {uy, },>1 of finitely-valued functions u,, : Q@ — X
with

[un(w) —ua(w)| —0

for p—almost all w € 2 in such a way that

/ () — (@)l (d) = 0
Q

as n — o0o. In this case the Bochner p—integral is defined by

7w) = | uin(s)
where Z(u) € X is the unique element with
1Z(w) = Z(u,)[| = 0

as n — o0o. In general, for each set F € ¥, we define

[ wtnts) = [ xetpun(a),

Q

where x is the characteristic function of the set E. The following general
results can be found in Yosida [185].

Theorem 45. A strongly X—measurable function u is Bochner u—integrable
if and only if ||u|| is p—integrable.

Corollary 7. If ||ul| is u—integrable, then
| [ wtom@a < [ puotuca
Q Q
Corollary 8. Let X and Y be Banach spaces and A € L(X,Y) a bounded

linear map. If u: Q — X is Bochner u—integrable in X and if v = Alu],
then v : Q0 — Y is Bochner u—integrable on Y and

[ veomtan = 4| [ umta)|.
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Definition 32. Suppose X and Y are Banach spaces. Let u: Q — X be
a Bochner p—integrable random wvector in X. The expected value of u is
defined by

Elu] = /Q u(w)p(dw).
We note from Corollary 7 that
€Ml < E[[lull).

When A € £(X,Y) is a bounded linear map, it follows from Corollary 8
that

6.3.3 Random vectors in Hilbert space

The theory of random vectors in Hilbert space is an extension of the theory
of random vectors in Banach space. Of particular interest are properties
relating to the scalar product. These properties are used directly in defining
the special operators for the optimal filter.

Suppose X is a Hilbert space with scalar product (-,-). Let x;, E;
(j =1,...,n) be as in Section 6.3.2 and let u be the finitely—valued random
vector given by (6.6). Since

lu(w)]* = ZX] M,

it follows that if A € £(X,X) is a bounded linear map, then

([ @), [ Aulua) = 33 uE b6 Al

j=1k=1
= AN D ulEy)p(Er)1]
j=1k=1
1€k ||
< HAIIZ 211&511?
< HAHZM &I

14] / Ju(w) |2 (dw).
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By taking appropriate limits, we can easily extend the above argument to
establish the following general results. These results are used to justify the
construction of the optimal filter.

Theorem 46. If u : Q — X is strongly ¥-measurable and ||ul||* is p—
integrable, then u is Bochner p—integrable and for each bounded linear map
A€ L(X,X) we have

([ wmtdo). [ At ) < 141 [ u)lPatis)

Corollary 9. If u : Q — X is strongly X -measurable and ||u|? is u-

integrable, then
2
| [ wmta| < [ i)

The results of this subsection can be rewritten in terms of expected
values. Let A € £(X,X) and let u: Q — X be a random vector. If |lul?
is pu—integrable, then

(€u], £[A)]) < [IAIE]ull?)

and in particular

I1€[]|* < Efllul?).

We write L?(Q, X) for the set of all strongly Y-measurable functions u
Q — X with &[||u)|?] < o0

6.3.4 Finite-dimensional maps on Hilbert space

In this section we review some basic structural results for bounded linear
maps with finite-dimensional ranges on Hilbert space. These results are
used directly in our construction of the optimal estimates. We assume that
X is a separable Hilbert space and Y C X is a finite-dimensional subspace,
with dimension n, say. The material on Hilbert—Schmidt operators follows
Balakrishnan [3].

We consider a bounded linear map A € L(X,Y).

Let R(A) C Y denote the range space of A and suppose R(A) has
dimension r < n. Let N (A) C X denote the null space of A. The bounded
linear map AT : Y — X is defined uniquely by the equation

(AT (y),x) = (y, A(z))
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for each y € Y.

We write R(AT) C X for the range space of AT. Since R(A) has
dimension r < n, it follows that R(A”) also has dimension r.

Let N(AT) C Y denote the null space of AT. Since R(A) is finite—
dimensional and therefore closed, it follows that

Y =R(A) @ N(AT)
and that each y € Y can be written uniquely in the form

Y =Yr +yn,

where yr € R(A) and ynr € N(AT) and where (yz,yn) = 0. In a similar
fashion
X =R(AT) o N(A4)

and each z € X can be written uniquely in the form
T=IR+IN,
where zr € R(AT), znr € N(A) and (zg,zp) = 0.

The generalized inverse AT € L(Y,X) of A is a bounded linear map
defined as follows. Let y € Y, put

Y=yr tyn
and choose z € X such that A(z) = yg. Write
T =ITR + TN

and define
AT(?/) =TR-

The bounded linear operators
ATA e £(X,X) and AAT € L(V,Y)
are positive—definite and self-adjoint. Since
ATA:R(AT) = R(AT) and AAT : R(A) — R(A),

we can find orthonormal vectors {e;}7_; forming a basis for R(AT) and
{fi}i_, forming a basis for R(A) which satisfy

AT Ae; = s;%e; and AAT £, = 5.2 f;
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for each 1 =1,2,...,r. Here s; > s9 > -+ > s, > 0 are real numbers and
1 1
fi = —Aei and e; = *ATfl
Si Si
for each 1 =1,2,...,r. Because X is separable, the orthonormal sets

{ei}icy and {fi}i

can be extended to form complete orthonormal sets

{ei}i2y and  {fi}i2

in X and the operators A and A7 are Hilbert-Schmidt operators because

(o)
1AlGs = D llAe]?
=1

T
= E Si2
i=1

< o0

and

1ATI5s = D IATAI?
i=1

T
= E 32'2
i=1

< ©0oQ.

It follows that the operators ATA and AA”T are nuclear operators with
finite traces given by

tr(ATA) = i(ATA% e;)

and

r(AAT) = Y (AATfi, fi)
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6.3.5 The correlation and covariance operators

Let X be a separable Hilbert space and suppose that Y is a finite-dimensional
subspace of X.

To define the correlation and covariance operators we begin by consid-
ering an auxiliary mapping. For each x € X, define a bounded linear map
J: € L(R, X) by

Jz () = ax.

The adjoint mapping J,” € £(X,R) is given by
To " (y) = (2.y).
Now J,TJ, € L(R,R) satisfies
LT (o) = J. (ax)
= (z,ax)

ol

and clearly

1o Tl = [l
On the other hand, J,.J,7 € £(X, X) is prescribed by
oot (y) = Jo((z,y))
= (z,y)z
and hence, once again,
[ Jada || = [l

Let {e;} be a complete orthonormal set in X. We have

[e.9] o0

Z<Ja:JmT(€i), €i> = Z<x’ ei>2

=1 =1
oo
-y
i=1
= |z|?

and
J:ETJGE(I) = Hl‘H2

Hence we see that JITJI and J, JIT are both nuclear operators with finite
trace given by

tr(J.TJ) = tr(Jedt)

= Il
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If Ae £(X,Y) and B € L(Y, X) then
Jaz =AJ, and Jpy, = BJ,

forallz € X and all y € Y.
Let u: Q — X and v: Q — Y be random vectors with

Elul?) < oo and E[v]?] < oc.
Lemma 35. Suppose q € Y is a fized vector. Then the vectors
JudoTq: Q=X and J,J,"q: Q=Y
defined by
a1, ql(w) = (V@) guw) and [1,17qw) = (vw), g v(w)
for each w € Q are strongly ¥ —measurable with

ENlJuduTqll] <00 and E[||JsJuTql|] < oco.

Proof. Let {u,} and {v,} be sequences of finitely—valued random vectors
with

[un (@) —u(w)| =0 and  [[v,(w) = v(w)] =0
as n — oo for almost all w € Q. Then {(v,(w), ¢)u,(w)} is a sequence of
finitely—valued random vectors with

[{(vn(w), Qun(w) = (v(w), gu(w)]
< [(n(w) = v(w), un (W) + [[(v(w), ¢)[un(w) — u(w)]]|
< val(w) = v(@)l - llgll - fa(@)l + V@)l - llgll - [un(w) = u(w)]]
—0
as n — oo for almost all w € Q.

From the definition of strong measurability ([11], page 130) we see
that J,J,Tq is strongly >-measurable. Similarly JyJ,Tq is strongly S-
measurable.

It follows that

€[ glI? (&l {v, qull])?
gl (Ellhull - [IvI])?
lglPElul*IENvI]

oo

VAN VAN VAN VAN

and likewise that
I1E[ToTu " q]]1* < oo

This completes the proof. O
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Definition 33. The correlation operators
E[T, T € L(X,Y) and E[J.J,T] € L(Y, X)
are defined by setting
EWulIp = E(u,p)v] and  E[JuJ, g = E[(v, q)u]
foreachpe X andqe Y.

It follows that

(p,€[Judu"]a) = (p,El(v,q)ul)
= El{p,u)(v,q)]
= (E[(p,u)v],q)
= (E[JuJuT]p, q)

and hence

E[Tu I T = €[0T

Definition 34. The self-adjoint covariance operator £[J,J, ] € L(Y,Y)
is defined by setting
E[To I Ja = E[(v, q)v]

for each q €Y.

Note that since

oo

Y (EuT e, e) = E[(u, v)]

=1

and
o0

Y (M e, ei) = ElIVIP]

i=1

it follows from Appendix C that £[J,J,”] and £[J,J,T] are both nuclear
operators.

6.3.6 Statement of the problem

Suppose u € L*(Q, X) and v € L*(Q,Y). For each F € L(Y, X), the linear
transformation Mpr € L(L*(Q,Y), L?(Q, X)) is defined by

Mpv](w) = Flv(w)]
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for each w € €. Once again it is customary to write F'v rather than M pv
since we then have [Fv](w) = F[v(w)] = Fv(w) for each w € .
We wish to solve the following problem.

Let u € L?(2, X) be a random vector and v € L?(Q,Y) an observable
random vector. Suppose that £[J,J,”] and £[J,J,”] are known. Let Q :
L(Y,X) — R be defined by

QF) = ElJu— Fv|?) (6.7)
for each F € L(Y, X). We wish to find I € £(Y, X) such that

Q) <Q(F) (6:8)
for all F.

6.3.7 Solution to the problem (6.7)—(6.8)

Lemma 36. The null space N'(E[J,J,7]) of the operator
ElJ,J,T] € L(Y, X)

is a subspace of the null space N'(E[J,J,T]) of the operator

E[J. 7] € L(Y, X).

Proof.  Suppose qn € N(E[J,J,"]). Then

(an, E[(v, qn)v]) =0
and hence
E[(v,qn)?] = 0.
But for each p € X we have
(p, €y lan)l = €D, a) (v, qn)|

(Elu)X) " (E1((v,an))?)
= 0.

Therefore £[J,J, |gx = 0 and hence grr € N(E[JuJ,]). O

1/2

IN

Corollary 10.

ElJu I E[T, T, T E[ Ty T, ] = E[Tu LT
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Proof. If qxr € N'(E[JyJ,T]), then
ELTuds I ] ELTu T oy = 0
and since the previous lemma shows that gy € N(€ [Jqu,T]), we have also
E[Judy lan = 0.
On the other hand, if
qr € R(E[Ju ")) = N(E[Ju "),
then there exists k € Y such that
ar = E[Ju S Tk
Hence
ELT TS TIET, T ) E T T, ar
= E[Ju S E[ T I ) E[ T Ty T 1E[ T o T ] TR
= E[Judu" lar.

The desired result follows from the fact that any element of Y can be
written in the form ¢ = qn + qr. O

Remark 23. If w € L*(Q,X) and z = w(w) for some w € Q then the
operators JZJZT and JZTJZ are each nuclear operators and the trace is well
defined. The trace is used in establishing the next identity and the subse-
quent theorem. It is therefore mecessary to show that the operators con-

cerned are nuclear operators. Nuclear operators are discussed by Dunford
and Schwartz [31], and Yosida [185].

Theorem 47. The solution to problem (6.7)-(6.8) is given by F' = Fy
where

F = Fy+ K[I — (E[J,J, )], J, 71

and
Fo = E[J T 1E[Tu T )T

and where K € L(Y, X)) is an arbitrary bounded linear operator.
The corresponding uniquely defined minimum value of Q(F') is

Q(Fx) = Q(Fy)
= tw{&[J ST = E[T T TE[T T T E [T T ]}



244 6. OPTIMAL FILTERING

Proof. For each F € L(Y,X) we know that Ju—rodu_ry’ is a nuclear
operator. It follows that
Q(F) = &[lu—Fv|?
= g[tr(Ju—FUJu—FUT)]
= tr(&[(Ju — FI,)(J — FJ,)T])
and if we define AQ(F) = Q(F) — Q(Fp) then

AQ(F) = te{F&[J,J, |\ FT — &I, 1, 1 FT — FE[J,J,T]
+E[Tu o 1T T 1 ELT LT T}
= tr{(F - E[J L, 1E[Ty T, 1D E[ T T
X (F = E[Ju 1€, TY
= |[(F = €T 1E T TNET T D 2 s

where the norm is the Hilbert—Schmidt norm.
Hence

QF) — Q(Fp) > 0.
The minimum value is achieved if and only if
F=Fg
for some K € L(X,Y). O

Corollary 11. The best estimate u of u using a bounded linear operator
on v is given by

= Fyv + K[I — (E[Jy J," )2 (E[J, 1,71 2)v
where K € L(Y,X) is arbitrary. The minimum norm estimate is given by
u= F()V.

Example 18. The generic example of Subsection 6.3.1 will be used to
demonstrate construction of an optimal filter. In this example random sig-
nals are represented by infinite dimensional random vectors. We will show
that the optimal filter can be represented by infinite dimensional matrices
with suitable limits on the size of the matriz coefficients. Let X = I2.
Suppose that we wish to estimate the random signal

up
u=| 2 |: 0> X
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on the basis of an observed signal

< < <

[ R
O~~~
\_/\g/\_/\_/

=
&

I
<
N

with realizations in a four dimensional subspace Y C X. We assume that
v = Au where

110 0
(AL O o110
A‘(@ <O>> and An =g 5 1

100 1

and where Q is an infinite dimensional zero submatriz. Therefore v, =
u; + Uz, Vo = ug 4+ uz, v3 = ug + uy, v4 = ug +u; and v = 0 for all
k> 5.

To find the best estimate 4 of u using a linear filter on v we need to
define some special operators. For each

u: Q=12 and v:Q—1* andeach yevy,
the functions
JquTy Q=X and JvJva Q=Y
are defined by
Judy y(w) = (v(w),yhu(w) and J,J,"y(w) = (v(w), y)v(w)

for each w € Q). We suppose that the random variables uy are are pairwise
independent with

S[uk] = Pk and 5[(uk — pk)Q] = O'kQ.

In practice this could occur as a deterministic signal with coefficients {px}
and an additive noise term & = xi, — pr. We also suppose that

lpr| < Rk~
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for some fized constant R > 0. We can now calculate

o1%(y1 + ya)
022(2/1 +y2)
3% (Y2 + y3)
E[JquTy] = 042 (ys + ya)
0
1[(p1 + pz)yl + (p2 + p3)y2 + (p3 + pa)ys + (pa + p1)ya
2[(p1 + p2)yr + (2 + p3)y2 + (p3 + pa)ys + (pa + p1)yal
p3l(p1 + p2)y1 + (p2 + p3)y2 + (p3 + pa)ys + (pa + p1)y4l
T pal(pr 4 p2)yr + (p2 + p3)yz2 + (s + pa)ys + (pa + p1)yal
s[(p1 4+ p2)yr + (2 + p3)y2 + (p3 + pa)ys + (pa + p1)ya)
and
(012 + 02 )yl + 02 Yo + 0124
02%y1 + (022 4+ 032)ys + 03%y3
. 03%ys + (032 + 04> )y3+042y4
Eldy y] = o12y1 + 04%ys + (042 + 01%)ys
0
(p1+ p2)[(p1 + p2)y1 + (p2 + pz)yz + (p3 + pa)ys + (pa + p1)ya]
(p2 + p3)[(p1 + p2)y1 + (p2 + p3)y2 + (p3 + pa)ys + (pa + p1)yal
(p3 + pa)[(p1 + p2)y1 + (p2 + p3)y2 + (p3 + pa)ys + (pa + p1)yal
T (pa+p1)l(pr + p2)yr + (p2 + P3)y2 + (p3 + pa)ys + (pa + p1)ya]

for ally € Y. We are now able to write down a matriz representation
for each of these operators. Note that these representations are essentially
infinite matrices with some limit on the size of the matrix coefficients. In
this case the size of the coefficients is limited by the inequality
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If we define
Sy O T e 0 0 n
_ 11 _ 02 _ P2
S <@ @) where S11 0 0 o5 0 and p .
0 0 0 o4 :
then
E[Tu "] = [SST + ppT]AT
and

E[J,J,T] = A[SST 4 ppT) AT

We now show that the operator £[J,J,"| is not invertible and calculate the
generalized inverse. Define an orthogonal transformation

12 1/2 -1/2 12

Unt 0 -1/2 1/2 —-1/2 —1/2
UT:( 0 1) where  Un" = 1?2 1?2 1?2 —1?2
—1/2 12 1/2  1/2

and observe that

0 0 0 0 0
0 Zle 0.2 042 =092 012—032 0
Te T 0 0’42—0'22 0'22—|—0’42 0 0
UE[T, ], U = 0 012 — 032 0 12 + 052 0
0 0 0 0 0
0
Z?:l Pi
P4 — P2
+ p1 — pP3 (0 Zillm pa—p2 p1—p3 O )
0

Using an appropriate partition we can therefore write

0O 0 0
veEJL,N U = 0 P O
0O 0O 0
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where
Z?:l 0 042 — 09?017 —03?
P = 042 — 092 092+ 0,2 0
01?2 — 03? 0 012 + 032
4
Z¢:1 Pi
4
+ pa—p2 | (Xisipi pa—p2 pL—ps ).
P1—pP3
Since

4
Zi:l 0 04® -0 01? —03° s o o
0'42—0’22 0‘22+0'42 0 E 40 0; 0k >0

012 — o3 0 12 + 032 1<i<j<k<4

it follows that P~ exists and

0O 0 O
EnnTT=v o P 0 |UT.
0O 0 O

It has been shown that the best estimate 4 of u using a linear filter on the
observed signal v is given by

o= E[J,J,TE[ Ty ] 0.

In this example we have seen that this filter can be easily computed. Since
the filter involves an infinite dimensional matriz our implementation must
necessarily be a truncation of the true optimal filter. This approzimation
can be made as accurate as we please.

6.4 Optimal Causal Linear Filtering with Piecewise
Constant Memory

This section concerns the best constructive approximation of random vec-

tors subject to a specialized minimization criterion criterion associated with

the notion of piecewise-constant finite memory. The problem stems from

an observation considered in Sections 4.1 and 4.2. A formulation of the

problem is given in Section 6.4.4. The solution is provided in Section 6.4.7.
First, we need the following preliminary notation.

6.4.1 Preliminary notation

Let $,0: TxQ > Rwhere T ={tx | k=1,....,n, t; < ... <t} CR
and ) is the set of outcomes in a probability space (2,3, ). The random

IThe finite set T can be interpreted as a collection of time instants.
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variables x; : Q@ — R and y,, : Q@ — R are defined by
Xk(w) - ﬁ(tkaw) and Yk (w) - Q(tkaw)

for each w € Q where x;, and y,, are measurable functions on €2 for each k—

1,2,...,n. If x; and y, are square integrable for each k =1,2,...,n then
the square integrable random vectors x € L%(2,R") and y € L?(Q,R™)
are denoted by x = [x1,...,x,|T and y = [y,,...,y,]*.

For each given w € §2 we suppress the dependence on w and write

T — Xk (w)a Y = Y (w)a r = X(w)a y= Y(w)a (69)
T = [xla"'axn]T and y—= [yla"'ayn]T' (610)
We write
x = Aly),
where X = [X1,...,%,]7.

Next, let us partition X in such a way that

x=[al,al, ... af]7, (6.11)

~ ~ ~ T .
u; — [Xp1+---+pz‘—1+1a~"axp1+---+pi] ) 1= la“'ala Po :Oa
@ € L2(Q,RP) and p;+...+p = n.

6.4.2 The underlying problem

In many applications, similar to those presented in [9, 15, 37, 179], random
vectors y and x are interpreted as observable data and reference vector,
respectively. It is assumed that y depends on x and is contaminated with
a random noise, and it is required to find A so that A(y) approximates x
in the best possible way (usually, in terms of minimizing the mean square
error). Moreover, to determine a best @; in (6.11), the operator A may
transform no more than m; components y, ,...,y,, ., of y, where

m; = (1 +...Fpi)—s+1, si=q,¢+1.. . (p1+... +p) (612)
¢=21,12....,(pp+...+p;) and i=1,...,L

Such an operator A is called the operator with piecewise-constant memory
{m1, ..., my} (see Fig. 6.2 as an example).

The above constraint implies that the operator A and consequently the
matrix A, must have a compatible structure. Essential conditions are that
the components Xy, 4. 1p, and y, , ., have the same subscript and that
3; in (6.12) is different for each i, i.e., for each @; in (6.11). This respectively
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p+p
1 2

p+ tp
1" 10

Figure 6.1: A lower stepped matrix A.

means that all entries above the diagonal of the matrix A are zeros and
second, that for each i, there can be a zero-rectangular block in A from the
left hand side of the diagonal.

An example of such a matrix A is given in Fig. 6.4 for [ = 10 where the
shaded part designates non-zero entries and non-shaded parts denote zero
entries of A. The numbers in Fig. 6.4 denote numbers of rows of matrix
A. For example, p; + py denotes a (p; + p2)-th row.

For lack of a better name, we will refer to A similar to that in Fig. 6.4
as the lower stepped matrix. We say that non-zero entries of the matrix A
form a lower stepped part of A.

Such an unusual structure of the operator A makes the problem of find-
ing the best A quite specific. This subject has a long history [9], but to the
best of our knowledge, even for a much simpler structure of the operator A
when A is defined by a lower triangular matrix, the problem of determin-
ing the best A has only been solved under the hard assumption of positive
definiteness of an associated covariance matrix (see [9, 37, 115]). We avoid
such an assumption and solve the problem in the general case of the lower
stepped matrix (Theorem 1). The proposed technique is substantially dif-
ferent from those considered in [9, 37, 115].
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Figure 6.2: Illustration to piecewise memory associated with matrix in Fig.
1.

6.4.3 Linear causal operators with piecewise-constant
memory

To define a linear causal® operators with piecewise-constant memory, we
first need to formally define a lower stepped matrix. It is done below
with a special partition of A in such a way that its lower stepped part
consists from rectangular and lower triangular blocks as it is illustrated
in Fig. 6.3(a). As before, the shaded parts in Fig. 6.3(a) designate non-
zero entries and non-shaded parts denote zero entries of such a matrix. To
realize such a representation, we need to choose a non-uniform partition
of A in a form similar to that in Fig. 6.3(b), where a partition associated
with the representation of the lower stepped part in the form of Fig. 6.3(a)
is given. In Fig. 6.3(b), non-zero entries and zero entries are not allocated.

The block-matrix representation for A is as follows.

Let

A={A;; | Ay e RP>U5 4 =1,...,1,j=1,...,4}, (6.13)

2By the heuristic definition of causality, the present value of the reference vector
estimate is not affected by future values of observable data containing the reference
vector [117].
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| ™ |

a) A block-partition of lower stepped (b) Associated partition of A.
part of A.

Figure 6.3: Hlustration to block-partition of lower stepped matrix A.

where
pr+...+p=n and q1+...+ qs=n.
Let 0, O;; € RPF*%7 L;; € RPP*97 and R;; € RPP*%9 be the empty
block, zero block, lower triangular block and rectangular block, respectively.

Ay
We write A = : , where A; = [A;1,...,A] foreach i =
A
1,...,1. Here, A; is called the block-row.

Now, let
A1 =10,0,L13,04], A; = [0, Ri2, Liz, 0;4] and Ay = [0y, Riz, Lis, 0],

where 1 =2,...,1 — 1.

Fort=1,...,1—1, we also set
m(l) =q3, ¢z =pi, m(i+1)=git12+pit1 (6.14)
and  Git1,1 + Git1,2 = gi,1 + My, (6.15)
where g1 = 0. Then the matrix A is represented as follows:
Lys Oy
Q1 Rz Lo Oy
A= : : (6.16)
011 Ri1p Liciz Qg4

@ll Rl2 Ll3
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Definition 35. The matriz A given by (6.16) is called a lower stepped
matriz. The set of lower stepped matrices is denoted by L}},.

Definition 36. The linear operator A : L*(Q,R") — L?*(2,R") is called

a causal operator with piecewise-constant memory m = {m(1),...,m(l)}
where
q13 if =1,
M= T 6.17
’ {Qi2+Qi3 if 1=2,...,1 (6.17)

if A is defined by the lower stepped matriz A € R™*"™ given by (6.16). The
set of such operators is denoted by A7, .

6.4.4 Statement of the problem

As before, we write
J(A) = Elllx — A)[1* (6.18)

with E[||x — A(y)||?] defined by (6.3).
The problem is to find A° € A?, such that
0 .
J(AY) = Anelir}% J(A) (6.19)
for any x,y € L?(Q,R").

Here, [A%(y)](w) = A%[y(w)] and A € L.

It is assumed that x is unknown and no relationship between x and y
is known except covariance matrices or their estimates formed from sub-
vectors of y and x.

We note that the problem (6.19) is, in fact, the problem of finding the
best approximation A° to the identity mapping subject to A € A”",.

6.4.5 Partition of x and y, and compatible representation

of A(y)

If x = y than the solution is trivial: A° is the identity mapping.

In general case, the solution of the problem (6.19) given below, con-
sists of the following steps. First, vector y is partitioned in sub-vectors
V13,Va22,Vas,..., V2, V3 in a way which is compatible with the partition
of matrix A in (6.16). Then the original problem can be represented as I
independent problems (6.34)—(6.35). Second, to solve the problems (6.34)—
(6.35), orthogonalization of sub-vectors vis,vas, Vas, ..., Vi, vi3 is used.
Finally, in Theorem 1, the solution of the original problem is derived in
terms of matrices formed from orthogonalized sub-vectors.
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We begin with partitions of x and y.
Partitions of x and y which are compatible with the partition of matrix
A above are as follows.

We write
=l ul, . ul]T and x=[ul,ul,.. .  uf]" (6.20)
where u; € RPY, ug € RP?2, ..., u; € R”" are such that
up = (21,257, Uz = [Tpyrts s Tprape) s ey (6.21)
Uy = [xpl+---+pl71+17 s 7xp1+...+pl}Ta (622)
and u; € L2(Q,RP1), ug € L2(Q,RP2), ..., w € L*(Q,RP") are defined via
U1, Us, . .., u; similarly to (6.9).
Next, let
v =0, vie=0, viz=[y1,...,Ygs)" and wviq = 0.
Fori=2,...,1—1, we set
Vi1 = [y17 e yqu]T7 Vi2 = [y(]zil'i‘l? ce 7yqi,1+Q7',2]Ta
Vi3 = [yQi1+Qi2+17 ) yqu-i-qw-i'qm]T Via = [yQil +qi2+qiz+1y- - - 7yn]T
If i =1, then
i = [yla ) yqz1]T7 V2 = [yq11+1’ R yqz1+q12]T’
Vi3 = [yqz1+ql2+la cee 7yn]T7 Vg = @
Therefore
Li3vi3 Li3(v13)
Raav22 + La3vas Ra2(vaz) + La3(vas)
Ay = ) and A(y) = . (6.23)
Rioui2 + Lizugs Riz(viz) + Li3(vi3)

where £;; and R;; are defined via L;; and R;; respectively, in the manner
of A defined via A by (6.1). The vector v;; € L*(Q,R%/) are defined
similarly to those in (6.9).

Now, we can represent J(A) given by (6.18), in the form

!
J(A) = Ji(L1s) + Z Ji(Riz, Li3) (6.24)

=2

where
Ji(L1s) = E [[|uy — Ly3(v13)||]
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and
Ji(Ri2, Li3) = E [|[w; — [Ri2(vi2) + Lis(vis)]|I*] - (6.25)
We note that matrix A can be represented so that
Ay = BPy,

where B € R"*? and P € R?" with ¢ = q13 + Zé=1(qi2 + gi3) are such
that

[ L3 O O (@) (0] O 0O O
O Ry Loz O 0) O .. O O
O ) O Rss L33 O 0O 0
B=| . . (6.26)
: - - : )
@) O Rz Lisis OO
| O (0) O 0] Ry Lz |
o T
V2
U3 . Vi2
and Py = . . Here, O is the zero block, v; = v13 and v; = v
: i3
V-1
U

for i = 2,...,1 — 1. The size of each zero block is such that BPy is
represented in the form (6.23). The matrix B consists of [ x (2l — 1) blocks.

The vector v = Py consists of 2l — 1 sub-vectors vy3, v22, V23, ..., V2, V3.
The operator A can be written as
Aly) = BP(y)
where
[B(v)](w) = B[(v)(w)], v="P(y) and [P(y)](w) = P[(y)(w)]. (6.27)

6.4.6 A representation of the approximator

We recall that for any x,y € L?(2, R"), we denote
n def
E,, = Exy'] = {E[xiyj]}i7j=1 where E[x;y;] = /Qxi(w)yj(w)du(w).

In (6.24), the terms Jy(L13) and J;(R;2, L;3) is defined by the operators
L13, R;2 and L;3 and their action on the random block-vectors vi3, v;5 and
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v;3 respectively. The corresponding mutually orthogonal random vectors
are

Wi3 = Vi3, W2 = V;2 and W;3 — vingi(vig,) P = 2, e ,l,(628)
where the operator Z; : L?(2,R%2) — L2(Q, R%2) is defined by the matrix

Z; = E, ET + MZ(I - EvizvizEZizv,;g) (629)

i3Vi2 V2V

with M; € R%#*%2 arbitrary (See Section 4.4.4(d)) .

ng(w)
ng(w)
W23(u})
W32(w)
We write w(w) = | way(w) | and
ng(w)
| wiz(w) ]
[ 5 O @) O 0O O 0 ]
0O L, O @) 0O O (0)
0O —-Z, I3 O 0O 0 (©)
(0) 0) 0O Isa O O (0)
Z=1 0 0 0 -Zy Iz O 0
©) O O I, O
| O O 0 -z Iz |
where I;; is g;; X g;; identity matrix for ¢ =1,...,l and j = 2,3, and Z; is

defined by (6.29) for i = 2,...,l. The matrix Z consists of (201 —1) x (20 —1)
blocks.
Then (6.28) can be written in the matrix form as

w(w) = Zv(w)
with v given by (6.27). Matrix Z implies the operator Z : L?(2,R") —

L?(Q,R) defined in the manner of (6.1).
Since Z is invertible, we can represent A as follows:

Aly) = K[Z(P(y))] where K=BZ' (6.30)
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A matrix representation of K is

[ Lz O O O O O 0O 0
O T, Ly O O O 0O 0
O O O T3 Lss O O O

K= . . .

o ... ... ... 0 Ty Lihz O O

L o ... ... ... O (@) O T, Liz |

where
T; = Rios + LizZ; (631)

for i = 2,...,1. We note that K consists of [ x (21 — 1) blocks.
As a result, in (6.25),

Riovio(w) + Lisviz(w) = RipoWia(w) + Lig[Wis(w) + Ziwia(w)]
= Tiwia(w)+ Liswis(w)
and hence
1
J(A) = Ji(L3) + Z Ji(Ti, Lis), (6.32)
i=2

where

Ji(Ti, Lis) = El|lu; — [Tiwiz(w) + Lizwis]||?] (6.33)

with 7; defined by
[Tiwiz](w) = Ti[wiz(w)]
foralli=2,...,1.

6.4.7 Solution of the problem (6.19)

Lemma 37. For A € L}, the following is true:

l

uin J(4) = IilllglJl(Lm)+;Trj}£§3%(ﬂ,hs) (6.34)

l

Ri2,Li3
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Proof. Let A° be a solution to the problem (6.19). Let us partition
matrix A° similarly to (6.16) so that

LY, Oy
0y R, LS 04
A0 = : : (6.36)
0110 R?A,Q L?—Lg Op 14
On Ry Ly
and set
LYy O O O O @) 0O 0O ]
O 7 LYy O O (@) O 0
O 0O O 1 LYy O O O
KO - . . . . . ’
o ... ... ... 0 1, °Li;3 O O
| 0 o 0 o 1 L]
where T = RO, + L% Z; for i = 2,...,1.
Then
l
Arfeli% J(A) = (L) + z_; Ji(T}, L)
l
> i i (T: L: .
= minJi(Lis) + ; nin J,(T, Lig) (6.37)
because LY;, T? and LY, are fixed.
Next, let Li5, T;* and L5 be such that
Jl(LT3) = IBIH Jl(ng) and ‘77(,172*, L;kg) = Tmin Z(E, Lig)
13 14443
Then
1
min Jy (Luz) + Z; i Ji(T;, Li)
1
= N1(Lis) + D JiT}, Liy)
i=2
= J(A")
> min J(A), (6.38)

T Aelyn,
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LY, Oy4
021 Ry L Qa4
where A* = . The inequalities
@l—l,l Rl*71,2 Ll*fl,B ©l—1,4
On Ry Lis
(6.37) and (6.38) imply the equality (6.34). The statement (6.35) follows
from (6.32) and (6.24) O
Let us denote the Frobenius norm by || - ||F -

Lemma 38. If A € R*** and A = B+ C where b;jc;j =0 for all i,j then
1A% = IBII% + [CI%-

Proof. The proof is obvious. O

Now, we are in the position to prove the main result given in Theorem
1 below. To this end, we use the following notation.
For i =1,...,1, let \; be the rank of the matrix E,,,, € RP**P and
let3
B2, = QiU

WizWi3
be the QR-decomposition for Ei,/i,fwm where Q; € RP** and QTQ; = I
and U; € R *Pi is upper trapezoidal with rank \;. We write G; = U and
use the notation
Gi = [gi1,-- -, gin,]) € RPN

where g;; € RP? denotes the j-th column of G;. We also write
Gis = [gi1s- -+, Gis) € RPI*?

for s < \; to denote the matrix consisting of the first s columns of the
matrix G;.
The s-th row of the unit matrix I € RP#*Pi is denoted by el € RI*P:.

For a square matrix M = {m;;}';_;, we also write

M = Mg + Ma
where
Mv:{m,]|mzj:0 if Z<]}
and
MA:{mij|mij:O if ZZ]},

i.e. My is lower triangular and M is strictly upper triangular.

3We recall that by (6.14), ¢;3 = p;.
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Theorem 48. The solution to the problem (6.19) is given by the operator
A € A" defined by the lower stepped matriz A° € L, in the form (6.36)
where

0
Gia

L= and RYy=T% — L%Z; for i=1,...,1. (6.39)

0
,Pi

In (6.39), for each i = 1,2,...,1 and s = 1,2,...,p;, the s-th row E?,S 18
defined by

0 = el By Bl Gis Gl + 0 (I — Gi .G ) (6.40)

wWi3Wwi3
where bI € RYPi is arbitrary; the matriz TS is such that

ET» ; +Fi(IiEwi2wi2E’j—v

Tzo2 = Ey,w;s WinWin (641)

12Wi2 )

with F; € RP**42 grbitrary and I the g0 X qio identity matriz.
The error associated with the operator A° is given by

l i Di

Ellx-A»1 = Y |13 Y E[ T E,,. wlnglswmgl,ﬂ]

=1 s=1 j=s+1

1/2 2 1/2
+ ”Eu{ul - ||E U; W ET 1211},,3

~ 1 Buw DL

Wi2Wiq2

2. (6.42)

Proof. Since By, qw,s = GiGT, we have
Ji(L1s) = E[|lu— Li3(vis)]?]
tr { Euyuy — Boygors L1z — L13Euysuy + L13Eypo, L5
tr {(L13 — u1U13E’313U13)E'UlS'Ul3 (Lis — E11;131)13Evl3u1)}
= 0 {(L13 — Buyoio Bl 10,,)G1GT (L3 — B 0y, Boigu) §

= B [I(L13 = Buyuns Bl 00 ) Gil13] (6.43)
and in the similar manner, for i = 2,...,1,
Ti(Ty2,Liz) = E[|a; — [Tia(wiz) + Lis(wis)]||?]
0 { Buius = Buswia T = Bugwi L3 = Tia Buzu,
+ Ti2 By Tis + Ti2 FBuwiywis Lis — Liz By,

2712

+ Li3Ew73w@2T£ + Li3sz‘3wiaL%
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=tr {Eu7u7 - Euimeig - EuﬂﬂqstZ% - Ti?Ewmui
+ Ti2Buywis Ty — LisBuyu, + LisBugw,s Lis

i3Wi3-713

=tr {(Tﬁ - Em LZEIU’LQ’LU 2)E Wi2Wi2 (ng E’L o W; QEwiZUi)
+ (L13 - Euiw73 ,3w13)G GT(LZS Ejv13w73sz‘3ui)
+ Eu1u1 - EuiwwELigwigE’wizui - Eu'iwiSE’Z)igwi?,EwiSUi}
= B (T2 = Busuia Bl ) Bl 20 13 (6.44)
+ E[[(Lis = Buwis By, Gil 7] (6.45)
HIEY 2 NE = 1 Buiwis B IP = 1 B B2 5 (6.46)

For symmetry, we set w1z = vi3. Then on the basis of Lemma 38 and
the fact that the matrix L;3G; is lower triangular, (6.43) and (6.45) can be
written collectively for i = 1,...,1 as follows:

E [”(Llf’) - u7w73E:£,13ww)G‘”%"]
=FE [H( i3Gi — Eu w'LBEwlgwlgGi)v

+(LisGi — Euywiy B ., Gi) a1 7]

Ai S
s=1j=1
Ai P
s=1j=s+1

Z E |: i,s9i,s — €g EuiwigEjuigwig,gi,S)lg}

+ Z Z E[ €T By, EL ﬁwlggz,gl}

s=1 j=s+1

The first sum calculates the contribution from all elements with j < s
that are on or below the leading diagonal of the matrix (Lis—Eu,w,, Bl 4 0,,)
X G; and the second sum calculates the contribution from all elements with
J > s that are strictly above the leading diagonal. To minimize the overall
expression it would be sufficient to set the terms on or below the leading

diagonal to zero. Thus we wish to solve the matrix equation
gi,sGi,s - ezEuiwigEJuistGi,s =0

for each i = 1,2,...,l. This equation is a system of (2p; — A; + 1)A,2
equations in (p; + 1)p;/2 unknowns. Hence there is always at least one
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solution. Indeed by applying similar arguments to those used earlier in
Lemma 26 of Section 5.4.2, it can be seen that the general solution is given
by ;s = E?,s foreach i =1,2,...,1.

Next, it follows from (6.44) that minimum of

Wi2Wi2 Wi2Wiq2

E (T2 = Buwia By B 23]

is attained if

(Tiy — Buywo Bl o )EY2, =0 (6.47)

Wi2Wi2 Wi2Wi2
is true. By Lemma 26 (Section 5.4.2), this equation is equivalent to the
equation

Ti?Ewizwiz - EuiwiZ =0. (648)

The general solution [6] to (6.48) is given by (6.44). Therefore, RY% by
(6.39) is true on the basis of (6.31).
The error representation (6.42) follows from (6.44)—(6.46). O

Remark 24. The matriz G; € RPi*" has rank \; and hence has \; inde-
pendent columns. It follows that G; s € RP*** also has independent columns
and therefore also has rank s. Thus G| G s € RA > s mon-singular and

§0 G;r,s = (GZSGi,s)_lGZS- Hence

g?,s = ezE’U«iwzﬁET GiA,S(GZ:sGi,S)_lGZs + b? [I - Gi75(G2"I:SGi75)_1G3:S]

wWizWi3
foralli=1,2,... 1.

Remark 25. The results by Bode and Shannon [9], Fomin and Ruzhansky
[37], Ruzhansky and Fomin [115], and Wiener [179], which concern a linear
operator approzrimation, are particular cases of Theorem 48 above.

6.4.8 Simulations

To illustrate the proposed method, we consider the best approximator A° €
A with n = 51 and memory m = {m(1),...,m(5)}, where m(1) = 20,
m(2) = 25, m(3) = 15, m(4) = 35 and m(5) = 25.
Then the blocks of the matrix A° are
L(1)3 c RQOXQO’ R(2)2 c R10X157 L(2)3 c R10X107 (649)
R, e R L9 e R, R), e R'*®, L e R, (6.50)

R% € RP*2  and LY, € R®. (6.51)
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(a) Two typical realizations of noisy observed data y.
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(b) Two related realizations of reference vector x (solid line) and their
estimates (dashed line with circles) by the proposed approximator.

Figure 6.4: Illustration to the performance of the causal filter with
piecewise-constant memory.
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We apply A° € A®! to the random vector y under conditions as follows.
In accordance with the assumption made above, we suppose that a reference
random vector x € L?(Q,R%) is unknown and that noisy observed data
y € L?(Q,R®) is given by ¢ realizations of y in the form of a matrix
Y € R"*? with ¢ = 101. Matrices

EU17)13’ EU13U13 (652)

and matrices
Euiviss  Euvis,  Euov, and  Eyg (6.53)

for i =2,...,5, or their estimates are assumed to be known.

In practice, these matrices or their estimates are given numerically, not
analytically. Similarly to our methods presented in [61] and [156]-[162], the
proposed method works, of course, under this condition. In this example,
we model the matrices (6.52)—(6.53) and Y with analytical expressions in
the following way. First, we set X € R™*? and Y € R"*? by

X = [cos(a) + cos(0.3a)] 7 [cos(0.58) + sin(53)]

and
Y = [cos(a) @ 71 + cos(0.3a)] [cos(0.58) + sin(53) e 73],
where
a=lag, 01, yan-1], apy1 =ar+04, k=0,1,....,n—1, ap=0,
52[1607513"'1/61171]’ ﬂj+1:/8j+0~4» j:0711"'7q_17 6():07
cos(a) = [cos(aw), . .., cos(ay,)], sin(8) = [sin(Bo), ... ,sin(By—1)],

the symbol e means the Hadamard product, r; is a 1 X n normally dis-
tributed random vector and 79 is a 1 X ¢ uniformly distributed random
vector. Here, r; and o simulate noise.*

Each column of Y is a particular realization of y.

By the procedure described in Section 5.2.2(e), we partition each col-
umn of X and Y in sub-vectors uq,...,us and vy, v, V23, ..., Us2, Us3,
respectively.

Furthermore, vy3, va2, v23, v32, v33 and vy have been orthogonalized
to w11, W2, W23, W32, W33 and ws34. Matrices (649)*(651) have then been
evaluated by (6.39)—(6.44) from w1, ..., us, and w11, woa, Was, W3, was and
w34 .-

4The matrix X can be interpreted as a sample of x. By the assumptions of the
proposed method, it is not necessary to know X. We use matrix X for illustration
purposes only.
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As a result, the estimate %% has been evaluated in the form #° such
that

0
Lizwis

RO Wa2 + LO( W3
o= | BT . (6.54)

0 0
Rgywss + Lyzwss

On Fig. 6.4(a), the plots of columns 51 and 52 of the matrix Y are
presented. They are typical representatives of the noisy data under con-
sideration. On Fig. 6.4(b), the plots of columns 51 and 52 of the matrix
X (solid line) and their estimates (dashed line with circles) by our approx-
imator are given.

6.5 Optimal Causal Polynomial Filtering with
Arbitrarily Variable Memory

As before, we represent the raw data by a random vectory = (y;,...,y,,)T
€ L*(Q,R™). The reference random vector to be estimated from y is
denoted by x = (x1,...,%x,)T € L}(Q,R™).5

Unlike the method considered in the preceding section, we now consider
a case when memory may vary arbitrarily. This means that to estimate a
component X of the reference vector, an filter A uses no more than the
pr = 1,..., v most recent components Yspo- 1Yoy from the measurement
vector, where s, and vy are respectively defined by

sg=vg—pr+1 and v, =1,... k. (6.55)

We say that such an filter A has arbitrarily variable memory p = {p1,...,pm}-

In addition to motivations considered in the previous section, we also
motivated by the fact that a non-linear approximator has more degrees of
freedom than the linear approximator considered above and it is natural
to expect that an optimal non-linear filter will improve the accuracy of the
optimal estimate. It is often possible to regulate the accuracy by changing
the free parameters associated with a non-linear filter. If the filter is a
polynomial operator of degree r then it may be possible to improve the
accuracy of the approximation by increasing the degree.

As a result, another major difference from he preceding section is that
here, we propose a generalized polynomial filter of degree r to reduce the
inherent noise. The accuracy of the estimation will be regulated by the

5The index k € {1,2,...,m} may specify the time t;, € T = {t) | t1 < -+ < tm}
at which the measurement is taken.
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degree of the operator and the estimation procedure will be defined in
terms of the generalized inverse of an observed covariance matrix. An
optimal filter from this class will always exists but will be unique only if
the covariance matrix is non-singular.

To satisfy conditions of causality and finite memory p, we construct the
filter in terms of lower variable-band matrices. The optimal filter is not easy
to determine because the natural minimization procedure for the expected
square norm of the error does not preserve the embedded lower variable-
band structure. We avoid these difficulties by reformulating the problem
as a collection of linear problems on a set of new multinomial variables
yls -yl where s = s and v = vy, using observations at timest = s,. .., k
to obtain an optimal estimate of the reference vector component x;, at time
t = k. Hence the variable memory and causality restrictions are imposed
indirectly. It is a remarkable fact that the minimum value for the sum of
the square errors over all components is equal to the sum of the individual
minimum square errors. We establish the reformulation in Proposition 3
by showing that the original problem can be reduced to m independent
problems defined by estimation of the separate components x;,...,X,, of
the reference vector. The construction procedures are described in Sections
6.5.1-6.5.6.

While the problem under consideration is presented as a problem of
random vector estimation it could also be seen as a generalized form of non-
linear regression. Nevertheless our statement of the problem in Sections
6.5.4 and 6.5.5, and our solution methodology (presented in Proposition 3,
Theorems 49 and 50, and in their proofs) differ significantly from those
given in the literature. We cite [1, 5, 30, 33, 110, 137, 176, 178, 181] for
work on non-linear regression and [16], [56]-[62], [92, 95, 103], [118], [136],
[153]-[160], [175, 182] for random vector estimation.

A distinguishing feature of the presented method is that the filter should
be non-linear and causal with finite memory. The simplest particular case
of the desired filter is an optimal linear filter defined by a lower p-band
matrix (see Example 19 in Section 6.5.1).

In Sections 6.5.5 and 6.5.6, we describe a new algorithm to perform the
necessary calculations for the proposed filter model. In addition, the reduc-
tion procedure (Section 6.5.5) means that our optimal filters are defined by
matrices of reduced size. Consequently the computational load should com-
pare favorably with known methods [9, 37, 71, 88, 115, 142, 154, 161]. On
the other hand we use non-linear filters to provide improved accuracy and
it is natural to expect additional computation in problems where increased
accuracy is desired.
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6.5.1 Non-linear causal filters with arbitrarily variable
memory

We use the same notation for x and y as in Section 6.4. Using an heuristic
idea of causality we expect that the present value of the estimate is not
affected by future values of the data [103]-[112]. Since the filters under con-
sideration must have variable memory, the estimate of x; must be obtained
from the data components yy, ,...,y,, With sz and vy given by (6.55). In
the following definition we combine the concepts of causality and variable
memory.

Definition 37. Let s and vy be defined by (6.55). For eachk =1,2,...,m
and 'y € L?(Q,R™) define 75,0, : L*(Q,R™) — L?(Q,RPx) by

Tsk’Uk (Y) = (YSkaysk+17 e 7yvk)'

Let A: L*(Q,R™) — L2(Q,R™). If Ay : L*(Q,RPx) — L?(Q,R) for each
k=1,2,...,m is such that

Al (Tsl'Ul (y))
A (T 5,0, (¥))
for each y € L%(Q2,R™, then A is called a causal filter with arbitrarily
variable finite memory p = {p1,...,pm}. If px <k for somek =1,... m,

the memory is called incomplete and if pr = k and vy = k for each k =
1,...,m, the memory is said to be complete.

The relation (6.56) can be represented in the more explicit form

w = Ai(yr),
w = Ay, Ye,)
Uy, = Ap(ysma~~~ava)'

For an appropriate choice of A, the vector u can be interpreted as an
estimate of x from y. We illustrate Definition 37 for the case in which
A(y) is given by a first-order polynomial.

Example 19. Suppose, A is defined by

Aly) = a+ Bu(y),
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where a € R™ and By : L*(Q,R™) — L?(Q,R™) is defined by

[B1(y)](w) = Biy(w) (6.57)

with By € R™*™ . By Definition 37, the operator A is causal with arbitrar-
ily variable memory p if the matriz By = {by;} is such that

b =0 forj={1,....s, —1}U{ox +1,...,m}

We call B a lower p-variable-band matrix. The set of lower p-variable-
band matrices in R™ is denoted by Rj;*™", .
For instance, if

m:47 p1:17 p2:27 p3:27 p4:37
1)1:17 'U2:27 ’U3:37 U4:33

then By € Risy is given by

B =

e o o O
e o O O
OO OO

e O e o

where o denotes an entry which is not necessarily equal to zero.

In the next section, we present a model of a causal filter with with
arbitrarily variable memory p = {p1,...,pm} in the form of an r-degree
operator T .

The problem is to find an filter 7° which minimizes the associated mean
square error on the class of all causal filters of degree r with arbitrarily
variable memory p. In Section 6.5.2 we construct a general r-degree filter
T and in Section 6.5.3 we restrict this representation to include only causal
operators with arbitrarily variable memory p. A rigorous statement of the
problem is given in Sections 6.5.4 and 6.5.5. The optimal filter T{T) is given
in Section 6.5.6. We shall show that it is possible to reduce the error
associated with the optimal filter by increasing its degree.

6.5.2 Model of a general r-degree filter

We follow the procedure used in [159]. For r € N, let P,. : L?(Q,R™) —
L?(Q,R™) be given by

Prly) = a+Bi(y) + Y _ By(y%),
q=2
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where a = a(r) € R™ and B, = By(r) : L*(Q, (R™)?) — L*(Q,R™) for
g > 11is a ¢-linear operator® such that
[Bq(y)(w) = Byly“] (6.58)

where B, : (R™)? — R™ is a tensor (i.e. a ‘(¢ + 1)-dimensional’ matrix),

Y =yw)? = yWw),....yWw)) = (y,...,y) € (R™)? and (R™)? denotes
the ¢-th power of R™.

We consider P,. as an estimator of x from y. The motivation for using
P, as an estimator follows from known results [56, 57, 159] where strong es-
timating properties of P, have been justified and demonstrated. Here, and
in the rest of the section, operators acting on spaces of random vectors and
defined similarly to those in (6.57) and (6.58), are denoted by calligraphic
characters. We call P,. an r-degree operator. For ¢ > 2 note that

m m
Byly] = By Zyjlejm"'a Z Yjq—1€jq-1> Y

Ji=1 Jq—1=1

m m

— Z Z yjl"'yjq_qu[ejl"'"ejq—l’y]
m m

= Z - Z y71 LI yjqiqu%jl.-.jq,ly

where By j,...j,_, € R™*™. Thus, in matrix terminology, we write P,.(y)(w) =
P.(y) in the form

Pr(y) =a+ Bl + Z Z Z Yjv  Yjg qjl“'jq_ly' (659)

q=2j1=1 Jg—1=1

For each k = 1,2,...,m the k-th element of P,(y) is denoted by P, x(y)
and is given by

m

Pri(y) = ar + By y+z Z Z Yjr -+ Yig1 Bagijg 1 (0)Y

q=2j;1=1 Jg—1=1

=ak + Z byt
=1

JFZ Z s Z Yjr -+ Yjg qu,jl-ujq—l(kl)yl’ (6.60)

g=2j1=1  j,_1=1 =1

6The operator By is called g-linear if it is linear in each of its arguments.
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where By ;) € R and Byjije_1(k) € R denote the k-th rows of the
matrices By and By j, ..., _, respectively and by gy and by j, .. ;. (k1) denote
the elements in the kl position in the respective matrices. The expression
P, 1 (y) contains

m'tl —1

L+m+m?>+- +m' =
m—1

scalar terms.

To avoid the symmetry effect discussed in Section 5.5.3, we use the same
device as in Section 5.5.3. Namely, we collect together all terms with the

same factors y;' - - - yim into a sub-class S(i1, ..., 4,) for each combination
of non-negative integers (i1, ..., %) in the class Sy, » with i1 +-+-+ip, <7

and write (6.60) in the form

Pr(y) = ax + Yo Wy Biinmy

(ilu'“vi?‘ﬂr) S Sm,,r

where By...c = By and

Bil"'im = E Bq,jl“'jq—l

yj1'~yjq71 € S(il,...,im)
for (i1,...,im) # (0,...,0) and where By...q) and B;,...;, (r) denote the

k-th rows of the respective matrices. This reduces the number of terms in
Pr(y) to

m—1 m m+r—2
() () ()
:1+<m+r_1>'m
r—1
and allows us to avoid the symmetry effect. In operator form we have

Pri(y) =ar + > Yy Biin(y)  (6.61)

(ilv“-vinz) € Sm,m

with B, i ) @ L*(Q,R™) — L*(Q,R) defined by B;, ;, () for each
(i1, 5im) € Smr.

)
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6.5.3 Model of a causal r-degree filter with arbitrarily
variable memory

A causal r-degree filter 7, : L?(Q,R™) — L?*(Q,R™) with arbitrarily vari-
able memory p = {p1,...,pm} is constructed from (6.61) in the following
way. We set

Tr1(Tsi0, (¥)) Tra(y1)
To(y) = 7-7“72(7—8:2112 (¥) _ 7-7«,2(}’.52, yvz) L (6.62)
Tr,m (Ts;n,vm (Y)) Tr,m (ysm.7 cee 7yUm)
where for each £k = 1,...,m we have

TT,k(TSk'Uk (Y)) = ag

s iy
+ Z Vs o Yo '60--~0isk--~ivk0---0(k)(7-sk”k (Y))v (6~63)
(041,045 seeesiing 0,00,0) € S,y

where ﬁo...msk iy 0--0(k) L?(Q,RPx) — L2?(Q,R) is an appropriate restric-

tion of By, . (). Thus T, is constructed from P, when the general
j i

terms yi' -y By i, (k) (y) in (6.61) are restricted to terms of the form

yiik .. y:};k ,30.“014%..411,k0.--0(k)(7'sw;c (y))- In the usual way we write

T7'7k5(TSkUk (y))(w) = T'f7k(y$k’ s ’y’Uk)

for a particular observation. The number of scalar terms in this expression

1S
Uk — Sk Dk vg — S +1—1
(e ) () e (T )
. vk—sk—i—r.
1+< r—1 >pk~

Once again we avoid repetition of terms. According to Definition 37 the
operator T, is causal with arbitrarily variable memory {p1,...,pm}. Note
that it is possible to have different degree operators for each component.
In such cases we simply replace r by 7, in (6.63).

Example 20. We illustrate the structure of Pry and Trp. If m = 3,
r=4, vy =3 and pxy =2 for allk=1,...,4 then

Pys(y1,92,y3) = az+ |Booo) + (Y1 Bioos) + y2Boioes) + ¥3Booi(s))
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+(ny200(3) + Y192 Biioz) + y1y3Bioiz) + 953020(3) + y2u3Bo11(3)
+y§3002(3))

+(y$ Bsoos) + y1y2Baios) + Y1y Booi(3) + Y193 Bioo) + Y1¥2y3Biiis)

+Z/1y:§3102(3) + 1133030(3) + y§y33021(3) + yzygBou(:s) + y§3003(3))

Y1
X[ Y2
Y3
and [Ta3(y2, ¥3)|(w) = Tu3(y2, y3) is given by
Tys(y2,u3) = as+ |Boooes) + (2Bo10(3) + ¥3Boo1(s)) + (¥38020(3)

+y2y3B011(3) + ¥3B002(3))

03 Posocs) + yus oz ) + v2vi fora) +y§5003(3))] [ zi }

where each operator By, i,y + L*(Q,R?) — L*(Q,R) is represented by a
vector Bog,iy(3) with ﬂg;m(g) e R%. We observe that the original expres-
sion for Py3(yi,y2,ys3) in (6.60) contains 121 scalar terms and requires
O(350) flops. When the symmetry effect is removed Py 3(y1,Y2,ys) con-
tains only 61 scalar terms and this is further reduced in Ty 3(y2,y3) to 21
scalar terms. As a result, computation of Py 3(y1,Y2,ys) requires O(150)
flops while computation of Ty 3(ys,ys) requires O(50) flops.

Although Tk (ys,,---1¥y,) is a multi-linear operator on the original

variables y,,...,y,, the dependence on the key product terms yg,f . yff;’“
T, (Y) 18 linear. There are Nj, = Ni(r) such terms where

s (B s (T ) () e

We denote the terms by hjg, ., = hjs,., () and the corresponding linear
operators by n,; .l = mn; T (r) for each j = 1,2,..., Nt. The precise
ordering is not important. Thus we write

N
T?",k(Yskv s 7yw€) =ap + Z njs{vk (hjsk'Uk) = ay + ns,fgk (hsk'Uk) (6'65)

j=1
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where .0 = (0,5, Mx's) and hSka = (hlsjl;a"'vhNZsk) for each
k=1,2,...,m.

Example 21. Let us consider Ty 3(y2,ys) from Example 20. We define
the variables

Y2 Y2 Y2 2 Y2
h = h = h = h =
123 { Ys } 223 = Y2 [ s } 323 = Y3 { Ys ], 423 = Y2 { Ys ],
hsos = 123 [ 42 } he2s = 3 [ b2 } hra3 = ys [ 42 } ;
Y3 Y3

y2 ], ho2s = Ya2y3 [ Zz ] and hi 23 = Y3 [ 2 }

hsas = 12
823 = Y2Y3 [ Ys s

and the corresponding vector coefficients

77?23 = 5000(3» 77sz3 = 5010(3), 773TQg = ﬂ001(3)7 774{23 = 5020(3),
775T23 = 5011(3)7 776Tz3 = 5002(3)7 777T23 = 5030(3)7 Wg23 = 5021(3),
779Tzs = 5012(3) and 77%,23 = 5003(3)~

Remark 26. Note that T, (Ys, - - -, Yv,) does not contain repeated terms
and depends only on ys,, ..., Yv,. The number of terms Ny in Ty (Y, - - -,
Yp, ) 18 much less than the number of terms in a general r-degree poly-
nomial. Consequently a model using Ty j(Ysy- - -, Yv,) Tequires much less
computational work than a model using Py (y).

6.5.4 Formulation of the problem
Let n € N. We note that for any vector p = (py,...,p,)’ € L?(Q,R"),

|E[p:]” < Elllp|”] < o0
foralli=1,2,...,n. Let
J(Ty) = Elllx =T, )],

where T, is defined by (6.62) and (6.65). The problem is to find 7° such
that

J(T%) = min J(T,). (6.66)

r

An optimal filter 7 in the class of causal r-degree filter with arbitrarily

K
variable memory p takes the general form

T?',I(YSW' . vak)
Toy) = : : (6.67)
T{r),m(YSk’ s ayvk)



274 6. OPTIMAL FILTERING

where the component 7'2 & 1s given by

ﬁ,k(yskﬂ s 7yvk a’k + Z njsk’b'k ]Sk'Uk) = ag + ngkz:k (hskvk) (668)

for each kK = 1,...,m. Finding an optimal representative 7'? is therefore
a matter of finding optimal values a and 597 for the constants aj and

operators ns,]};k .

6.5.5 Reduction of the problem (6.66) to m independent
problems

The special structure of the operators makes direct solution of (6.66) a dif-
ficult problem. Suffice it to say that a solution is known only for the special
case where T, is linear and has complete memory [37, 115]. Moreover the
solution in [37, 115] has been obtained with a quite restrictive assumption
that the covariance matrix Elyy’] is non-singular. Indeed we observe that
direct determination of 79 from (6.66) is not straightforward because of
difficulties imposed by the embedded lower p-variable-band structure of the
matrices. To avoid these difficulties we show that the problem (6.66) can
be reduced to m independent problems. Define

Jk’(Tr,k) = EHXk - Tr‘k(yska cee 7yvk)‘2] (669)

for each k = 1,..., m where T, j, is defined by (6.65). We have the following
Proposition.

Proposition 3. Let T, and T, be given by (6.62) and (6.65) respectively.
Then

m

man me J(Trk) (6.70)

Proof.  The proof is, in fact, a consequence of the proof of Lemma 37 in
Section 6.4.7. By elementary algebra

m
)= Ji(Trp). (6.71)
k=1
Let 72 be a solution to the problem (6.66). Then from (6.71),

min J(7,) = J(TY)

r
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= Z Jk(Tg,k) (6.72)
k=1

> in J .
> ;I%Hkl k(T k)

In (6.72) the operator ﬂk is the k-th component of the optimal operator

)

Let now 7. ;. be a solution to the problem (6.69) for each k = 1,2,...,m.

Then
ZI%_liHJk(Tr,k) = ij(T:,k)
k=1 """ k=1
= J(T7) (6.73)
> minJ(T,),
where

T (Vspr- - ,yvk)T = [ o Fsir oY) T (Vs vak.)] .
The inequalities (6.72) and (6.73) establish the desired result. O

Expression (6.70) allows us to reformulate problem (6.66) in an equiv-
alent form as follows.
For each k=1,...,m find Tﬂk such that

Jk(Tg,k) = I%lil Je(Tr k) (6.74)

Any optimal operator 7'2 & is the k-th component of an optimal filter

TP Hence an optimal filter 7° can be constructed from any solutions
7'2’1, e ﬂ’gm to the m independent problems (6.74). This construction
satisfies the structural requirements of Definition 1. An additional bonus
is that each individual problem (6.74) can be solved by extending results
obtained in Section 4.4.2. In this context solution of the m problems (6.74)

is more tractable than a direct solution of the original problem (6.66).

6.5.6 Determination of the optimal causal r-degree filter
with arbitrarily variable memory p

Let n € N and let p € L?(©2,R") and q € L?(Q,R"™) be random vectors.
In general we write p = p — E[p] and q = q — E[q] and define

Ejy = E[pq'] = E[(p - Ep)(a— Ela)’]
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= Elpq’] - E[p|E[q"].

It is convenient to use a special notation in two particular cases.
We define Hy, ,, = Hg, 4, (1) and Q = Qj, 4, () by the formulae

SkUk

Hs, ., = E[h,,, h? ] — Eh,,., |EhT ] (6.75)

SEVE " SpUL SLUK

and

stvk - E[thskvk] - E[Xk]E[hT

skvk]'

(6.76)

The following theorem provides the solution to problem (6.74) for each
k=1,2,...,m

Theorem 49. For each k = 1,2,...,m an optimal causal r-degree filter
’Tg,k(ysk_,‘..,yvk) in (6.68) with arbitrarily variable memory p is defined

by
Uskvk Q%Uk skvk + Mk[ HSkkaskvk] (677)

where My, € RY>Ne s arbitrary and I, € RN-XNe s the identity matriz,
and

ay = Blxi] = 4,7, Elhs,v,]. (6.78)

Proof.  First, we note that

stkaikvk SkVk stvk (679)

Indeed, since
stvk = [thSkUk] E[Xk]E[hZ;Uk]

and
Hsk'uk:E[h hl ] E[hSkUk]E[hT ]

SEVE " Sk UE SEUE
then (6.79) follows from Lemma 23 of Section 5.4.2.
Next, we have
Jk(Tnk) = E [ka —ag — nivkhswkHQ]
= E[[l(xx — Elxt]) + (Blxs] — a — 13,0, Elbg,,])
—ﬂzkuk (hsk’l’k - E[hswk])nz]

= B[I% + (ax = ai) = nh B ]
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where we use the standard notation X, = xj — F[x)] and flskvk =hg,., —
Elh,,,,] and define o = E[xy] — nfkvkE[hswk]. Hence

Te(Tek) = 0B [(Re+ (= ar) = 0T, Bou,) (R + (n — ap)
~T
- hskvknskvk):|

~ T 1 T
= trF |: - thskvknskvk + (Oék - a’k)z - nskvkhskvkxkr

~T
T
+nskvk hSkUk hskvk nakvk:l

= E[)A(i] + (O‘k - ak)2 +tr [UZ:CU,CHSWMSWV - @Skvkns‘kﬂk
77)3;11;9(@%7%]
= Ewkwk + (ak - ak)Q +tr [(nz;vk SKUE stvk)
T
XHlkvk (nSk’Uk SkUVk stvk) QSkUkHSk’Uk Sk’l)k:|

= Exkack + (ak - ak) =+ ||(779kvk SkUk stvk>Hi£3kT”2

stvk Hskvk SKUK "

Therefore, Ji (7T ) has a minimum possible value if

= O[(]i = E[Xk] - ngkka[hSkvk]

)
>

and
T 1/2
(nskvk SkVk Qékvk)Hséva - @

Similarly to Lemma 26 of Section 5.4.2, it can be shown that the latter
equation is equivalent to the equation

775Tkvk seor — Qoo = 0,
which has the solution [6]

nskvk stvk SkUk + Mk(I HSkUkHSk’Uk)

As a result,
Jk(Tr,k)(agvngkvk) =Ezpz, — Qsjo, H skvk zkvk (6-80)
is clearly the minimum possible value for Ji (7). O

Remark 27. The covariances used in (6.77) and (6.78) and in similar
relationships below, are assumed to be known or to be estimated by the
known methods considered, in particular, in Section 4.3.
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Theorem 50. The error E[||x—T°(y)|?] for any optimal filter T° defined
by (6.68), (6.77) and (6.78) is

Ellx-TWI* = J(T3)
= > (T (6.81)

k=1
= Z [Ewkwk - stkalkvk sT,wk
k=1
Proof. The result follows from (6.80) in the previous proof. O

Corollary 12. Foreachk =1,...,m, the error E[\xk—Tgyk(ySk, oY)
decreases as the degree r of 7'27,6(y5k7 .+, Yy, ) increases.

Proof. The proof follows directly from the proof of Theorems 49 and 50. [

6.5.7 Particular cases

The proposed approach generalizes the methods considered in the preceding
Sections 5.4-5.6 and 6.4.3 as follows.

If vi, = pr, = m in (6.55) for all k = 1,...,m then the solution to the
problem (5.104) in Section 5.5.1 can be given in terms of (6.77)—(6.78). The
solution to the problem (5.69) in Section 5.4.1 is a particular case of the
model obtained in Section 5.5 and therefore, it can also been constructed
in terms of (6.77)—(6.78).

If vp = pr = k in (6.55) for all K = 1,...,m then the model (6.67)—
(6.68) is causal with complete memory (see Definition 37 in Section 6.5.1)
and hence, the causal model of Section 5.6 can be constructed from Theo-
rem 49.

Ifforall k =1,...,min (6.55), vy = k and s, is defined by (6.12) (with
i = k in (6.12)) then the linear filter with piecewise-constant memory of
Section 6.4.3 also follows from Theorem 49 for » = 1 and a; = 0.

The above demonstrates the flexibility of the proposed method and
shows that the choice of s and vy, in (6.55) provides an additional degree
of freedom for the method. At the same time, the present method may
require more computational work than those in the preceding Sections.
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6.5.8 Simulations

To illustrate the performance of the method, we apply the proposed filters
to the problem of extracting information about images of the surface of the
earth obtained by air observations. The reference matrix X € R?9%2% ¢
be estimated is a numerical representation of the image of a chemical plant”.
We consider two different cases. In the first case the data is disturbed by
additive noise and in the second by multiplicative noise. In each case the
raw data set is represented by a matrix ) € R256%256 1 the first case we
set ¥ = YU and in the second we set Y = Y@ where

YO =x+150 By and Y® =X xR,,

and where R, € R?°6%256 and Ry € R?%6%256 gre matrices of randomly
generated numbers from independent uniform distributions on the interval
(0,1). The symbol ”+” denotes the Hadamard product®

Because the procedure is formally the same in each case we will give
a generic description with X denoting the reference matrix that we wish
to estimate and ) denoting the observed data. In each case we begin the
analysis by partitioning X and ) into smaller blocks and we consider two
different schemes. In the first instance we use 64 separate blocks with
sub-matrices

32x32 3232
{Xijtij=1,.32 €R and  {Yj;j}ij=1,.32 €R
and in the second we use a more refined partition
16x16 16x16
{Xij}ij=1,.,16 €R and  {Yi;}ij=1,.16 €R

with 256 separate blocks. Since the procedure is essentially the same
whichever scheme is used our subsequent description will not distinguish
between the two.

To apply the estimation procedure to each fixed block (i,7) we set
X = X;; and Y =Yj;. The ¢-th columns

¢
20 — xl(_j) = x;;(we) = x(wp)

and ,

y O =y =y (we) = y(wr)

of X and Y respectively are regarded as the ¢-th realizations of the random
vectors x and y. To model the arbitrarily variable memory requirement we

"The data can be found in http://sipi.usc.edu/services/database/Database.html .
81f A = {a;;} € R"*™ and B = {b;;} € R"*™ then A* B = {a;;b;;} € R"*".
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assume that at each time k£ we can observe at most the seven most recent
rows of data. Thus our estimate for the k-th element x; can use only
the observed elements ys, , ..., Y, With p = 7. We have applied standard
Matlab routines to compute these estimates using our proposed optimal
causal filters of degrees one and two. For each & = 1,...,m and each
r = 1,2 the optimal filters are denoted by TTO’ » and are given by (6.68),
(6.77) and (6.78) with My = 0 in the form

Ny,
TT(’),k(ySk-v EER) yvk) = ag + anska (hjskvk)
j=1

a‘g + n(s)kz;k (hskvk )

Here, by (6.64), N = Ni(r).

The covariances have been estimated from the samples using an ele-
mentary method [44]. We have used this method for illustrative purposes
only. The results of the simulations are presented in Figures 6.5-6.7 and
Table 1. For each case in Table 1 we write

Ay = |1 X5 = T (Yig)IIP

for r = 1,2. The results are consistent with the theoretical analysis. Table
1 shows that the error associated with the second degree filter T3 is less
than that for the first degree filter T7.

Table 1. Maximum errors for the proposed filters

16 x 16 sub-matrices 32 x 32 sub-matrices
Errors by 79 and 7Y Errors by 77 and 19

Case mizjapx Ay j mi?x Ao ij mi?x Aqij Hﬁ?x Ao ij

1 1.16 x 10° | 0.02 x 105 [ 5.32 x 10° | 0.71 x 10°
2 2.85 x 10° | 0.54 x 10° || 1.05 x 10° | 0.29 x 10°

The proposed method has also been tested with other simulations in-
cluding EEG data similar to that presented in [46]. Those tests were also
consistent with the theoretical results obtained above. It is inappropriate
to compare causal filters with arbitrarily variable memory to filters that are
not restricted in this way. One would naturally expect unrestricted filters
to exhibit superior performance but there are many realistic applications
where such filters cannot be used.
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50 100 150 200 250
(a) Reference signals.

50 100 ] 150 20 250
(b) Observed data.

Figure 6.5: Illustration to performance of method of Section 6.5. This
digitized image has been taken from http://sipi.usc.edu/database/.
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50 100 150 200 250
(a) 1st degree estimates.

50 100 150 200 250
(b) 2nd degree estimates.

Figure 6.6: Illustration to performance of method of Section 6.5. This
digitized image has been taken from http://sipi.usc.edu/database/.
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6.6 Optimal Nonlinear Filtering with no Memory
Constraint

The methods considered in the preceding chapters concern various types
of approximation for operator F and its image F(x). If F is the identity
operator then such methods can be interpreted as methods for optimal
filtering. Below, we consider special types of optimal filters without re-
strictions associated with notions of causality and memory. We call them
unconstrained filters.

6.6.1 Unconstrained polynomial filter

If 7(x) = x, then the polynomial operator P, constructed in Section 5.5
of Chapter 4 is a model of the optimal filter. We illustrate the efficiency
of such a filter by its applications to processing of data given by digitized
color images.

A colour image is numerically represented by three matrices X (1), X (),
XB) ¢ RMXN where the elements in X (1) are interpreted as red intensities,
in X as green intensities, and in X () as blue intensities. The M x N x 3
tensor, composed from these matrices, is a numerical counterpart of the
colour image. We denote such a tensor by 7 = 7 (XM, X®) x®)),

The known image ‘Sailboat on lake’ ® has numerically been represented
by the tensor T(X®, X X3)) with M = N = 256. For each k = 1,2, 3,
matrix X %) has been partitioned into 2,048 sub-matrices X(k) R*4*8 ywith
i=1,...,64and j = 1,...,32 so that X») = {X } Each sub-matrix

Xl(j’C ) has been interpreted as a set of eight realizations of a random vector
with columns representing realizations.

We simulated observed data in the form Ylg ) presented in Table 2,

where RE j) is a matrix with normally distributed entries with mean 0 and

variance 1, and Qz(-f) and Ql(?k) are matrices with uniformly distributed
entries in the interval (0,1). In Table 2,

AP

1,25

k k k 0(k k
= IXF — LgN @SR, Al = 1xP - B )2,

and

¥

where LQ( 1; (Y(k))7 T, (”)(Y;gk)) and To(k) (ngk)) are the best first-degree,

Hadamard-quadratic and multiquadratic estimates for Xl(Jk ) respectively.

9The database can be found in http://sipi.usc.edu/services/database/Database.html.
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Estimates LQ(k; (Y(k)), To(ﬁ)(lﬁgk)) and ﬂg(k)(Yig-k)) have been calculated
from (5.100)-(5. 101) (5.81)-(5.83) and (5.123)-(5.125), correspondingly,
with Matlab for each 4,j and k (i.e. the method has been applied 6,144
times). We put My = My = K = Q.

The expectations and covariance matrices in (5.100)-(5.101), (5.81)-
(5.83) and (5.123)-(5.125) have been estimated from the maximum likeli-
hood estimates considered in Section 5.3 of Chapter 4. For instance, for

each i, j and k we estimated E,. as X(k)( NT/8— XU )(Z( NT | where
Z(k) Y(k) (diagY(k) (g,:)), and diagY;g-k) (q, )) is a diagonal matrix with

the elements from the gth row of Yigk) on its diagonal, and M means a
vector formed from means of the rows of the matrix M. These simple esti-
mates have only been chosen to illustrate the performance of the proposed
method.

Fig. 6.9 illustrates the performance of the method. The tensors for the
digitized images in Fig. 6.9 have been composed from sub-matrices v

ij
L%“ﬁ; (Y ) and To(k)(ngk)) respectively.

Diagrams in Fig. 6.9 (a) and (b) represent the matrices A = {Al ZJ}
and A®) = {Ag)} of errors associated with the best first-degree and mul-

tiquadratic estimates for the matrices Xf] ), whose entries are interpreted
as green intensities.

The estimates by Sorenson [142] cannot be applied here since the esti-
mates of E,, and Elyy”] are very close to singular and Matlab warned
that calculations may be inaccurate

In Table 3 and Fig. 6.10 we present the results of similar simulations
with the well known image ‘Lenna’ ? given by a tensor 7(X 1), X(2)| X (3))
with M = N = 256 (i.e. the method has been applied 67144 times again).
The notation in Table 3 is the same as in Table 2. In these simulations,
estimates by Sorenson [142] can be applied and they coincide with the best

first-degree estimates L', (

In all 12,288 applications, the best multiquadratic estimates give sig-
nificant improvements in the accuracy of X ij (k)
best first-degree estimates.

estimation compared to the
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50 w0 - 250
(a) Reference signals. This digitized image has been taken
from http://sipi.usc.edu/database/.

50 100 150 200 250
(b) Observed data.

Figure 6.8: Ilustration to unconstrained polynomial filter.
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50 . 00 50 . 200 250
(a) The best first-degree estimate L% ().

50 10 150 . 200 250
(b) The best multiquadratic estimate T°(y).

Figure 6.9: Illustration to unconstrained polynomial filter.

287
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50 100 150 200 250
(a) The best estimate by Sorenson [142].

50 100 150 200 250
(b) The best multiquadratic estimate T°(y).

Figure 6.10: Illustration to unconstrained polynomial filter. This digitized
image has been taken from http://sipi.usc.edu/database/.
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6.6.2 Unconstrained hybrid filter

The method of the best hybrid approximations considered in Section 5.7
of Chapter 4, can be extended to the case which we call the optimal hy-
brid filtering. The solution to the problem (5.186) — (5.187) in Section
5.7 of Chapter 4 for F = I, i.e. the operator Pj presented by (5.169),
(5.172), (5.189) with F = I, represents a model of the filter. This filter is
constructed from the consequent ‘blocks’ BO, el By, in accordance with
(5.169).

It is clear from Theorem 43 that the filter, defined by (5.169), (5.172),
(5.189) with F = I, possesses the obvious advantages over conventional
filters based on a least-square approximation [63], [157]. In particular,
even for k = 0, this filter produces a smaller associated error than that
for filters [63], [157]. This is due to the higher degree r of approximation
compared with the case of the approximation in [63], [157]. For the number
of iteration k greater than zero, this error is further decreased.

At the same time, such a filtering can be considered as a special case of
the method which we develop in Section 7.7 ”Optimal generalized hybrid
transform” of the next Chapter 7. Therefore, we refer to that section for
more details.

6.7 Concluding Remarks

In this chapter, we have presented computational methods for optimal fil-
tering of stochastic signals. The wide generalizations of the Wiener ap-
proach to linear filtering have been considered in both finite dimensional
vector spaces and the Hilbert space. For different types of memory such
as piecewise-constant memory and arbitrarily variable memory, models of
optimal filters have been provided. Methods for optimal nonlinear filtering
with no memory constraint have also been given. A rigorous theoretical
analysis of the presented methods have been presented. Algorithms for
numerical computation of the considered filters have been provided.
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Computational Methods for
Optimal Compression and
Reconstruction of Random
Data

7.1. Introduction

7.2. Standard Principal Component Analysis and Karhunen-Loeve
Transform (PCA-KLT)

7.3. Rank-constrained Matrix Approximations

7.4. A Generic Principal Component Analysis and Karhunen-Loeéve
Transform

7.5. Optimal Hybrid Transform Based on Hadamard-quadratic
Approximation

7.6. Optimal Transform Formed by a Combination of Nonlinear Operators
7.7. Optimal Generalized Hybrid Transform
7.8. Concluding Remarks

7.1 Introduction

In this chapter, we consider computational methods for simultaneous data
dimensionality reduction and filtering, and subsequent data reconstruction
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with the highest possible accuracy.

In signal processing, data dimensionality reduction (often called com-
pression) is motivated by a necessity to diminish expenditures for transmis-
sion, processing and storage of large signal arrays. The known associated
methods have also been applied successfully to the solution of problems
related to clustering, feature selection and forecasting.

In statistics, data dimensionality reduction is often identified with a
procedure for finding the so called principal components of a large random
vector, i.e. of components of a smaller vector which preserves principal
features of the original vector. In particular, this means that the original
vector can be reconstructed from the smaller one with the least possible
error.

Observed data is normally corrupted with random noise. Therefore, any
procedure of data compression (or finding principal components) should be
accompanied by filtering. We note that filtering and data compression
could be separated. Nevertheless, simultaneous filtering and compression
is more effective in the sense of minimizing the associated error (see [182],
for example).

The known methods for filtering and data compression can be applied in
either a probabilistic setting (as in [53]-[55], [63, 68, 79, 88, 92, 96, 133, 149,
150, 158, 166, 170, 182, 183]) or a deterministic setting (as in [21, 147]). The
associated techniques are often based on the use of reduced-rank operators.

In this chapter, a further advance in the development of reduced-rank
transforms is presented. We study a new approach to data dimensional-
ity reduction in a probabilistic setting based on the development of ideas
presented in [63, 133, 158, 166, 170, 183].

Computational methods considered below are based on solution of best
approximation problems, special iterative procedures and their combina-
tion.

In Section 7.2, we present the standard Principal Component Analysis
and Karhunen-Loeve transform (PCA-KLT). In Section 7.4, this method
is extended to more general cases. In Sections 7.5-7.7, more advanced
techniques are described.

In Section 7.3, methods of rank-constrained matrix approximations are
considered.

A so-called generic PCA-KLT is given in Section 7.4 and its generaliza-
tions are studied in Sections 7.5-7.7. The methods considered in Sections
7.5-7.7 are motivated by the following observation. In general, the reduced-
rank transforms for random data (such as those in [63, 133, 158, 166, 170,
183]) consist of three companion operations — filtering, compression and
reconstruction. Filtering and compression are performed simultaneously
to estimate a reference signal x with m components from noisy observed
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data y and to filter and reduce the data to a vector X with 7 components,
17 < m. The components of x are often called the principal components.
The quotient n/m is called the compression ratio. Reconstruction returns
a vector x with m components so that x should be close to the original x.
It is natural to perform these three operations so that the reconstruction
error and the related computational burden are minimal. As a result, the
performance of the reduced-rank transform is characterized by three issues
which are (i) associated accuracy, (ii) compression ratio, and (iii) compu-
tational work. The methods presented in Sections 7.5-7.7 improve those
issues compared to the techniques given in Sections 7.2 and 7.4.

7.2 Standard Principal Component Analysis and
Karhunen-Loéve Transform (PCA-KLT)

Jolliffe [68] writes: ‘Principal component analysis is probably the oldest and
best known of the techniques of multivariate analysis.” Principal compo-
nent analysis (PCA) was discovered by Pearson [100] in 1901 and then
independently developed by Hotelling [55] in 1933, by Karhunen [71] in
1947 and by Loeve [88] in 1948. Owing to its versatility in applications,
PCA has been extended in many directions (see, in particular, [63], [96],
[133], [182] and the corresponding bibliographies). In engineering litera-
ture, PCA is normally called the Karhunen-Loeve transform (KLT). We
use the abbreviation ‘PCA-KLT” for this technique.

Note that PCA-KLT can be reformulated as a technique which provides
the best linear estimator of given rank for a random vector (see [63], [134]).
The error associated with the estimators [44], [63], [68], [96] based on PCA—
KLT idea is the smallest in the corresponding class of linear estimators with
the same rank. Nevertheless, the performance of these linear estimators
may not be as good as required. See Sections 7.5-7.7 for more details.

PCA—KLT can be represented in the following way. Let

x € L*(Q,R™), E,, = E[xx"]

and let the spectral decomposition of E,, be given by
m
Erx = Z )\jujuf,
j=1

where u; and A; are corresponding eigenvectors and eigenvalues of E,,,
and FE is the expectation operator.

Given x € L%(Q,R™), PCA-KLT produces a linear operator Pqy :
L?(Q,R™) — L*(Q,R™) of maximum possible rank 7(< m) that mini-
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J(P) = Elx - P(x)||

over all linear operators P : L2(2,R™) — L?(Q,R™) of the same rank r.
Here, (see, for example, [78])

rank(P) = dim P(L*(Q,R™)).
The matrix Py, associated with operator Py, is given by
Py=UU",

where U, = [u1,ug, ..., u,].
Thus, Ul performs compression of x to a shorter vector in L?(£2,R")
and U, performs a resonstruction of the compressed vector to X so that

X = P()(X).

Components of the compressed vector are called the principal components.
The compression ratio is given by

=" (7.1)

where r is the number of principal components of vector x.

7.3 Rank-constrained Matrix Approximations

7.3.1 Classical rank-constrained matrix approximation

We start with the classical result [19, 34] concerning determination of the

matrix X € R™*" of rank = r that is nearest to matrix A € R™*" in the

Frobenius norm || - ||. The result presented in Theorem 51 below is known

as the Eckart-Young theorem [34]. We note that the work [34] involves a

number of extensions. We cite [43, 50, 76, 90] as some recent references.
Let the SVD of A be

Uxv?T = A, (7.2)
where U = [ug,...,upn] € R™™ and V = [vy,...,v,] € R"*" are orthog-
onal and ¥ = diag(o1,...,0,) € R™*" is diagonal where p = min{m,n},
and 01 > ... >0, > 0.

Let

A, =UX, V]I, (7.3)

where U = [ug,...,u,] € R™", V = [v1,...,v,] € R and ¥ =

diag(oy,...,0.) € R,
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Lemma 39. Let U € R™*™ and V € R™™" be orthogonal. Then for any
matric M € R™*"™,

Proof. Let

IUT MV = || M.

U={uij}ij=1, V=A{vij}k=1 and M = {m}5",.

Let us denote Z =

j=1k=1

and

[legerady

as required.

UTMV so that Z = {z;}_;. Then
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Lemma 40. If P € R™*™ and Q € R"™" are non-singular, then for any

X c Rmxn}

rank(PX) = rank(X Q) = rank(X).

Proof. All rows of PX are linear combinations of rows of X, therefore, the
number of linearly independent rows in PX is not greater than the number
of linearly independent rows in X, i.e.

rank(PX) < rank(X).
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Next, since P is non-singular, X = P~!(PX) implies rank(X) < rank(PX).
Hence,
rank(PX) = rank(X).

The proof of the equality
rank(X Q) = rank(X)
is similar. O

Lemma 41. For any W € R™*", and U € R™*™ and V € R™*" orthog-
onal, there exists M € R™*"™ such that

U'Wv =M < UMVT =W.

Proof. The proof is obvious. O

Theorem 51. Let A and A, be as those in (7.2) and (7.3), respectively.
Then for any X € R™*™,

JA-AJ?= min |A- X2 (7.4)
X: rank(X)=r

Proof. On the basis of Lemma 39,
IUF(A = X)V|* = A~ X
We write Y = UT X V. It follows from Lemma 40 that
rank(X) = rank(Y).
Therefore, the problem

[UTXV —%|? — min
X: rank(x)=r

is equivalent to the problem

IV =2  min . (7.5)
y: rank(y)=r
This is true because, on the basis of Lemma 41, for every X there exists Y
defined as above, and for every Y there exists X such that X = UY V7.
The solution to (7.5) is Y° = %,.. Then (7.4) follows. O
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7.3.2 Generalized rank-constrained matrix
approximations

Justification of the techniques presented in Sections 7.5-7.7 below is based
on the solution of generalized forms of the problem considered in Section
7.3.1 above. First, we study the following generalization.

Let C™*™ be the set of m x n complex valued matrices and let

J(X) = ||[My — X M|f?, (7.6)

where M, € C™*" X € C™*™ and My € C™"*™. Given M7 and M, find
X such that

J(XY) = min J(X) (7.7)
subject to
rank X = r < min{m,n}. (7.8)

An elegant solution to this problem has been obtained by S. Friedland
[43]. We present Friedland’s result! in Theorem 52 below.

Theorem 52. Let the SVD of My be
My, =UXVT,

where U € C™*™ and V € C™*™ are orthogonal, and X = diag(o1, ..., op,
0...,0) € C"*™. Let

M=MV and M=[F G

where F € C" P and G € C"*("=P)_ Let Fiy € C" P be the best rank r
approzimation of F. Then a solution to the problem (7.7)—(7.8) is given by
a family {X°} of matrices

X' =[Fn2 ' LU, (7.9)
where X, = diag(o1,...,0p) and L € C* (=) with its columns in the

column space of F, Z‘;l in order to satisfy the rank restriction.

Proof. We write
Y=XU and Y =[K L],

1The authors are grateful to S. Friedland for his generous consent to present the
solution [43] here.



298 7. METHODS FOR OPTIMAL DATA COMPRESSION

where K € C*"%" and L € C"*("=7) Then

J(X) = [|Mi— XM,
= |MV - XUSVTV|? (7.10)
= |M-YZ|?
Z, O
= |M—-[K L]| ;7 12} ?
-1z gt g ]

= |[F G- (K%, O]
IF = KZ]|1” + 1G]

where
0Oy € (CpX(n*p)7 O, € C(n*p)xp, Oy € (C(n*p)x(n*p)7 0 e ¢rx(n—p)

are the zero matrices. The term ||G||? does not depend on X. The minimum
of the term ||[K X, — F]||* subject to rank(K X,) = r is attained when

K =K° where K°=F,X "
Since X = YU7, we have
XY = [K° LT
= [FnZ, ' LUt
Here, L = K°S for some S € CP*("~P) 5o that?
rank [K° L] = rank [K° K°S] = rank K°.
O

The above approach has been further developed by Friedland and Torokhti
in [42] as follows.

Let C™*™ be set of m x n complex valued matrices, and denote by
R(m,n,k) C C™*™ the variety of all m x n matrices of rank k at most.
Fix A = [a;;];;2, € C™*". Then A* € C"*™ is the conjugate transpose
of A. Let the SVD of A be given by

A=UrX AV},
where Uy € C™*™ and V4 € C™*" are unitary matrices and

¥4 :=diag(o1(A), ..., Omin(m.n)(4)) € C™*"

2The matrix L must not increase the rank X above r. Hence, the columns of L must
be linear combinations of the columns of K©, i.e. L = K9S for some S € CP*X(n=p),
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is a generalized diagonal matrix, with the singular values o1(A4) > o2(A) >
... > 0 on the main diagonal.

Let Uy = [ug ug ...up] and V4 = [v1 v2 ...v,] be the representations
of U and V in terms of their m and n columns, respectively, and let

rank A rank A
Py = Z wiu; € C™*™  and Pap = Z vui € CMM (7.11)
i=1 =1

be the corresponding orthogonal projections onto the ranges of A and A*.
Define

k
A= (A = oi(A)uv] = UapSarViy, € C™" (7.12)
=1

for k =1,...,rank A, where

Uar = [ug uz ... ug), Xar=diag(o1(4),...,01(4)) (7.13)
and

Var = [v1 v2 ... vg]. (7.14)

For k > rank A, we write Ay := A (= Arank 4). For 1 < k < rank A,
the matrix Ay, is uniquely defined if and only if o (A) > or41(A4).

Below, we provide generalizations of both the classical minimal problem
given in (7.4) and the problem given in (7.7)—(7.8). First, we present the
result obtained in [42].

Theorem 53. [42] Let matrices A € C"™*", B € C™*P and C € CI*" be
given. Then

X = B (Pg L APc r)rCt (7.15)
18 a solution to the minimization problem

min ||A - BXC|| (7.16)
XeR(p,q,k)

with minimal norm || X||. This solution is unique if and only if either
k Z rank (PB,LAPC,R)
or

1 <k <rank (PB,LAPC,R) and Uk(PB,LAPC,R) > O'k+1(PB,LAPC,R)~
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Proof. Recall that the Frobenius norm is invariant under multiplication
from the left and the right by compatible unitary matrices. Hence

14— BXC|| = |4 - 25X 0ll,
where _ _
A:=UgAVe and X :=VgXUec.

Clearly, X and X have the same rank and the same Frobenius norm. Thus,
it is enough to consider the minimal problem

min |4 - SpXSc|.
XeR(p,q,k)

Let s = rank B and t = rank C. Clearly if B or C is a zero matrix,
then X = O is the solution to the minimal problem (7.16). In this case
either Pp 1 or Pc g are zero matrices, and the theorem holds trivially in
this case.

Let us consider the case 1 < s,1 <t. Define

B :=diag(c1(B),...,05(B)) € C***
and
Cl = diag(01(0)7 e ?Ut(c)) € (CtXt'
Partition A and X into four block matrices Aij and X;; with 4,5 = 1,2

so that A = [Aij]?,j:1 and X = [Xij}?,j:u where Aqq, X1 € C*t. (For

certain values of s and ¢, we may have to partition A or X to less than four
block matrices.) Next, observe that

7 :=%pX%c = [Zy)?

3,j=11

where Z1; = B1X11C1 and all other blocks Z;; are zero matrices. Since B
and C are invertible we deduce

rank Z = rank Z;; = rank X;; <rank X <k.
The approximation property of (A11)y yields the inequality

[[A11 — Z11|| > || A11 — (A11)]| (7.17)

for any Z1; of rank k at most. Hence, for any Z of the above form,

I1A=2Z|P = [J[An—ZullP+ D> 4Gl > [[An — (Al ?

2<i+j<4
+ Y Al
2<i+j<4
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Thus,

X = [Xi5]ij=1, (7.18)
where

Xi1 =By Y (An)kCyt and Xy =0  for all (i,5) # (1,1), (7.19)
is a solution to the problem

_min  ||[A-SpXZc| (7.20)
XeR(p,q,k)

with the minimal Frobenius form. This solution is unique if and only if the
solution

Z11 = (All)k

is the unique solution to the problem

min |\A11—le\|~
Z11ER(s,t,k)

For k > 1, this happens if and only if 0% (A11) > ok+1(411).
Let us now show that

X =35 (Ps, 1 APs. r)kZE. (7.21)
On the basis of (7.18)-(7.19), we write
T [ By (An)Crt O }

0 0
-[% o]l [ % o]
:zg{(‘%)k 8}2*0 (7.22)
Here,
v 8- 2)),

To see this is true, we write the SVD of Aq; as

A =UE, V™

ERIMERIERIIER

Then
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Therefore, we have

A O _ U 0O Yo O VvV O
O O i o 0O O 0O 0 0O O i
U, O Yo O Vi O
0O O O 0O O
_ | (Au) O
o 0) O |’
where Uy, ¥ 1 and Vj, are truncated versions of U, ¥, and V, respectively,

defined similarly to Uag, S ax and Vyg in (7.13). Thus, (7.23) is true.
Next, it follows from (7.19) and (7.22) that

[ —]

=

A O

X:zg{ 0 @ng.

Let us write
v _ vt Iss O All A12 Itt O +
f-s (6 o)A a6 o))

where I;4 is the s x s identity matrix. The SVD for X5 = { By g } is

(0)
given by
B O N
EB:UEB[ o Q}VEB.
Here Uy, = [e1,...,6em] and Vi, = [e1,...,¢ep] where e; = [0,...,0,1,0,

...,0]7 with 1 on the jth position. Therefore,

_ ¢ T Iss @
PEBL—;QQ |: [0) [0)
and by analogy,
t
_ r_ | Iu O
PECR—Z;QGZ- |: @ @ .
Thus,
|: A11 O

o o ] = Py, APs R (7.24)

and (7.21) is true.
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Next,
X = VsXU;
= VpXh(Ps, LAPs, r)kZLUS
= B'Up(Pg, UpAVePs, r)iVECT
= BIUp(UEQVe)VECT (7.25)
where

Q = Pp,L AFPc,R.
Let the SVD of Q be Q = WXgoZ*. Then we have

Up(UgQVe )i Ve = Ug(UgWEQZ* Ve )i Ve

uj 21 vy
=[uy ... Up) [wy ... wR]Bg | ¢ | [vr ... vy
U, Zn kL n
[ ujw; . uwlwyg Zivr ... 2o, v}
=[uy ... Up) ; : : ok
| W1 ... Un W ZEU1 ... ZUp vy

where g is a truncated version of ¥ constructed similar to ¥ 45 in
(7.13). Therefore,

(UBQVC kVC = Zuz Wy Zuz wk EQk

2] Zj:l V505
X 5 (7.26)

* n oy
2k 2j=1 V5]

21
= [w;... w0k
2,
= (WEQZ")k
o (7.27)

As aresult, it follows from (7.25), (7.26) and (7.27) that a solution of (7.16)
with the minimal Frobenius norm is given by (7.15).

This solution is unique if and only if either & > rank P APc r or
1 <k <rank PB,LAPC,R and O'k(PB,LAPC,R) > O'k—i-l(PB,LAPC,R)- ]
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Remark 28. First observe that the classical approximation problem given
by (7.4) is equivalent to the case m = p,n = q,B = Iy, C = In,. (Here,
Im is the m x m identity matriz.) Clearly Py, 1 = Imm, Pr,,.8 = Inn.
In this case we obtain the classical solution BT (Pg 1 APcp)rCt = Ag.
Second, if p =m, g =n and B, C are non-singular, then rank (BXC) =
rank X. In this case, Pp;1, = Iym and Por = Iy, and the solution to
(7.16) is given by X = B~1A,C~1.

Next, the above Theorem 53 can be extended as follows.

It follows from (7.17)—(7.18) that a family of solutions to the minimiza-
tion problem (7.20) with no requirement of a minimal Frobenius norm is
given by

X = Bl_l(All)kal X2
Xo1 Xoo |7

where X712, X291 and X359 should be chosen in such a way that Xc R(p,q, k).
In Theorem 54 below, we show how to choose X719, Xo1 and Xos (see (7.30))
to satisfy the condition X € R(p, ¢, k).

Theorem 54. Let P € CP=9)xs Q e C*=Y be arbitrary matrices,
Ve = Vi Vo] € CP*P, Ug = [U; U] € C?*9 where Vi € CP*® and Uy €
Ci*t, and

K =[B'B, I-B'B] [ Igl gz } { If(gcf } (7.28)
where

K2 =ViX12Uy, Ko =VaXaUf, Koo = VaX2Us, (7.29)

X2 =X1Q, Xo1=PXn, Xop=PXnQ (7.30)
and 3

X11 = By (An)kCr (7.31)

If the constraint of the minimal || X|| is omitted in the problem (7.16)
then its solution is not unique. A family of solutions to the problem (7.16)
without this constraint is given by

X = BY(Pg L APo p)kCT + K (7.32)
with K defined by (7.28)—-(7.31).

3 We note that matrices K12, K21 and Koo depend on arbitrary matrices P and Q.
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Proof. To preserve rank X < k, we should choose X712, X251 and Xoo in
a compatible form. In particular, the columns of X5 and the rows of
X51 must be linear combinations of the columns and the rows of Xiq,
respectively, while for X5, both the rows and columns must be linear
combinations of the rows and columns of X1;. To this end, we need to show
that there exist matrices P € C?=%)*5 and Q € C**(¢=*) such that, for
(4,7) # (1,1), X;; can be written in the form (7.30). The existence follows
from the next observation. By Gaussian elimination, there are matrices
P e CP=9)%s and Q e C*(@=1) guch that

X1 X2 I —Q | _| Xn O
Xo1 Xoa o I Xo1 Xoo — X01Q

and
I O X1 0) | Xu O

which is true if
)(127)(11@1(0)7 X217PX11 =0 and XQQ*XQlQ:@.(’?.?)?))

The last condition in (7.33) follows from the observation that the matrices
X1 Xz X1 0
d
[ Xo1 X2 ] an [ 0O X — Xn@Q
to ensure rank X < k, we must choose Xoo — X2:Q = 0.* Thus, (7.30)
follows.
Next, let us write

] have the same rank. Therefore,

s [ BiYAngCrt O 0 X
X = { 0 07| Xo1 Xoo
o _ + 0O X
= EB(PEByLAPZC’R)kEC T |: Xo1 Xoao :| .

This is true because of (7.21)—(7.24). Therefore,
X = VXU
0O X U
B (Pg AP, ct+ [ v 12 !
(Pp,LAPc R)C" + [V1 V2] [ Xor Xon Us
= BY(PpAPo.R)kCT + VaXo Uf + Vi X12Us + VaXooUs.

0)
Xo2 — X21Q

X(Dl)l and the rows of [X11 O], respectively, and

4Otherwise, the columns of and the rows of [0 Xao — X21Q)] are

linear combinations of the columns

then rank X could be grater than k.
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We note that
Vl*vl = Issa ‘/2 Vo = p $,p—8s UikUl = Itta U2*U2 = lg—t,qg—t»
VW + WV =1, ULUT+UU5 =1y

and
B'B=WV;y and CC'=UU;.
Thus,
X = BY(PppAPoR)kCT + (I — ViV KU U
+ V1V1*K12(I . UlUl*) + (I — V1V1*)K22(I — UlUik)
= BY(PgAPcp)xC' + (I — B'B)Ky,CCT
+ 4B'BK5(I — CC") 4 (I — B'B)Kyy (I — CCT)
= BY(PpAPcRr)C' + K. (7.34)
Thus, (7.32) is true. O

Remark 29. Let us setp=m, q=n, A= M, € C"*", B = L,;,, C =
My € C™" gnd A = AVp = [A1 Ag] where Ay € C™*t, Let Q € Ctx(n—t)
be arbitrary. Then Theorem 52 follows as a special case of Theorem 54 in
that the solution to the problem

min ||A - XC|| (7.35)
XeR(m,n,k)
is given by
= (AP R)sVECT 4 (A1) CTIQUE (I — CCT. (7.36)
Indeed, a solution to the problem
_ min  [|[A—XZ¢] (7.37)
XeER(m,n,k)

where X = [X) X2, is X = [)/(\'1 )/(:2] with )/(:1 = (ﬁl)kC’fl and )/52 =
X1Q. Then X = XU{ is the solution to the problem (7.35). We have
X = [X1 0] + [0 X3] where

Ri=(eol| G g | =KAol = (ot

Itt O

with [A; Q] = [A; Ay [ o 0

} = ZngcR. Therefore,

X = (APs p)ELUE + [0, X1QIUE.



7.3. RANK-CONSTRAINED MATRIX APPROXIMATION 307

Here,
(APs p)kSLUS = (AP p )k VECT  and [0, X,Q)US = X,QUS.
Next, let Ko = XoUs5. Then
XoU; = KyUpUj = Ko(I — UL UT) = Ko(I — CCT).

Thus, _ N
X = (APscp)ZEUS + X1QU3 (I = CCT)
and (7.36) follows.

Remark 30. The problems in the next Sections are reduced to problems
which are similar to the one considered in Theorem 54 with p =m, ¢ = n,
A= EzyE;ézT e C™" B =Ipnpy and C = E;{,Q € C™™" where we write
1/2 1/2
Ey@é = (Eyzé )T-
Let the SVD of E;éz be given by E;f = UcXUS and let

1/2 _
rank Eyé =

We write Uc = [Uy Us] where Uy € C™™", and EzyE?%QTUC = [gl gg]
where ﬁl e Cmxr,

Let Q € C™(=") be arbitrary. By Remark 29, the solution to this
particular case of the problem (7.16), without the constraint for the minimal
Frobenius norm, is given by

X = (Eo By U By + K,
where
K = (A)xCr' QU3 (I - Ey*E*), €1 = diag(01(C),...,0,(C)) € C™"

and
UQ c (Cnx(n—r) )

Here, (A1), is defined similarly to (A11)x in the proof of Theorem 53, i.e.
via a truncated SVD for Ay defined by (7.12). Moreover, E;{,QTUlUf =
E;éQT and by Lemma 43 below, E%QE%ZT = Enygy Therefore,

X = (B Ey*n Byt + K, (7.38)
where

Ky = (A)rC QU3 (I — EyyEf). (7.39)
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For the case of the minimal Frobenius norm, the unique solution is given
by
1/2 1/2
X = (EZyEyzé T)kEyzé f

and the conditions for uniqueness follow directly from Theorem 53.

Corollary 13. If the constraints of rank X < k and of the minimal || X||
are omitted in the problem (7.16) then its solution is not unique and the
family of solutions is given by

X =BlACT + K (7.40)

where K € C™*"™ s given by (7.28)—(7.29) with X11 as in (7.31), and X2,
Xo1 and Xoo arbitrary. The minimum is given by

ng}nHA—BXCHQ =||A - BBTACTC|. (7.41)

Proof. If the constraint of rank X < k is omitted then the inequality (7.17)
turns to the equality

min HAll - le” =0

Z11

with Z1; = A1 and (Aq1)r = A11. Then it follows from (7.32) that the
unconstrained minimum Ir}}n |A—BXC ||2 is achieved if

X = B'Pp APc pCT + K. (7.42)

Because the constraint that rank X < k is omitted, matrices X125, X271 and
X9 in the representation of the matrix K need not be defined by (7.30)
and indeed are arbitrary.

Next, we have

B'Pp=B' and PoprCl=Ct

therefore, (7.42) implies (7.40).
The expression (7.41) follows directly from (7.40). O

Corollary 14. The following is true:

B'BKCCT = 0. (7.43)

Proof. The proof follows immediately from (7.28). O
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Remark 31. Corollary 14 implies an interesting link between (7.40) and-
the-solution to the equation A — BXC = Q. The equality (7.41) implies that
if BBTACTC = A then H§n |A— BXC|* =0 because A— BXC = O for X

given by (7.40). It follows from (7.40) and (7.43) that X can be written as
X = BTACY + K — BFBKCC" and that in this particular case, X formally
coincides with the solution [6] to the equation A— BXC = Q. The equation
A — BXC = Q is consistent if and only if BBTACTC = A.

7.4 A Generic Principal Component Analysis and
Karhunen-Loéeve Transform

7.4.1 The generic PCA-KLT

Scharf [134] presented an extension of PCA-KLT for the case of minimizing
J(P) given by

J(P) = E[llx = P(y)I] (7.44)
subject to
rank(P) <r <m, (7.45)

where x € L2(,R™), y € L?(2,R™) and the covariance matrix Elyy”]
is nonsingular. The difference from the standard PCA-KLT is that P
transforms an arbitrary y, not x.

Yamashita and Ogawa [183] proposed and justified a version of PCA—
KLT for the case where E[yy”] is singular and y = x + w with w an
additive noise.

Hua and Liu [63] considered PCA-KLT with a formal replacement of
the inverse of matrix E[yy?] by its pseudo-inverse.

The general form of PCA-KLT in terms of the pseudo-inverse is given
in Theorem 55 below.

An attractive feature of the methods [63], [183] is that invertibility of the
covariance matrix E[yy?] is not assumed. Some other known extensions of
PCA-KLT work under the condition that E[yy?] is nonsingular, and this
restriction can impose limitations on the applicability of the method. In
many practical situations, the matrix E[yy”] is singular. See, for example,
[158, 166] and [170] in this regard.

Here, we give a rigorous generalization of the methods [63, 134, 183].

For x € L?(Q,R™) and y € L*(Q, R"), we wish to find a linear operator
FUL2(Q,R") — L2(2,R™) such that

J(F°) = min J(F) (7.46)
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subject to

rank F < k < min{m,n}. (7.47)
Here, F € R™*™,

J(F) = Ellx = F(y)|?], (7.48)
and we write F instead of P in (7.44) to distinguish between the model
which follows and the results in [63, 134, 183] associated with the problem
(7.44)~(7.45).

Solution to the problem (7.46)—(7.47)

Now, we are in the position to give a solution to the problem (7.46)—(7.47).
Let us denote

A=E, (E)?)" and C=E*

Let
rank A =1
and let the SVD of A be given by
A=UsZaVE (7.49)
where

UA:[gh...,gn]GRmxm and VA:[qh...,qn]ERnxn
are orthogonal matrices and
Xy = diag(01 (A), ceey Umin(m,n)(A)> c Rm™x"

is a generalized diagonal matrix with o1(4) > --- > o;(4) > 0 and
0141(A) = -+ = Omin(m,n) (A) = 0 on the main diagonal. Put

Uar =91, -+ 9%}y Var =q1,...,q] and X = diag(o1(A),...,01(A)).
We write A, for the truncated SVD defined as
Ay =Uan Zar Vi (7.50)

and denote

Let
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The SVD of matrix C,
C=UcScUL,

is defined in a manner similar to the above.
As before, we also denote

E., = Elxy"] - EX|E[y"].
Lemma 42. The following is true:
AREYHEL? = 4. (7.51)

Proof. As an extension of the technique presented in the proving Lemmata
23 and 24 in Section 5.4.2, it can be shown that for any matrices @1, Q2 €

mxn
R™H,

N(@Q1) CSN(Q2) = QI —QlQ1) =0, (7.52)

where AV (Q;) is the null space of Q; for i = 1,2. In regard to the equation
(7.51),

N([Ey 1) € N (Eoy[Ey,71). (7.53)
The definition of Ay implies that
N (B [EL2]) © N (A5)

and

N(EYPTT) € N (A).
On the basis of (7.52), the latter implies
ARl - (B = 0,

i.e. (7.51) is true. O

Similarly to Remark 30, we write
C1 = diag(01(C), .., 7,(C)) € R,

Uec = [Ul UQ] where Uj € Rnxr’

and o
EuyEy* Uc = [A1 A3]

where Ay = By, Eyy* UL € R™ and Ay = By By Uy € R
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Lemma 43. For any v € L?(Q,R"™),

(Ey,2)TE? = B2 (BT, (7.54)
EV2(EYHT =B, El, and El E,, = E,El,. (7.55)

Proof. Let the SVD for E,, be given by
Eyo = VIVT,

where V' is the orthogonal matrix and X' = diag(a1,...,aq,0,...,0) with
a1 > ... 2> ag >0 and ¢ the rank of E,,. Then

El, =vZivT EY2=vZ'2vT and (B =v(ZV2)ivT,
where

st =diag(arl,...,a;1,0,...,0), ZV2=diag(a}*,...,al20,..

.,0)

and
(22 = diag(ay /%, a712,0,...,0).

Thus, (7.54) follows. The proof of the relationships (7.55) is similar. O

Theorem 55. The solution to the problem (7.46)—(7.47) is not necessarily
unique and is given in general by a family of operators {}-0} determined by
the family {F°} of matrices

FO = (B, EY* L EM? + (A)kCTIQUT (I — EyyES,), (7.56)

where Q € R™*"™") is an arbitrary matriz.
The error associated with the operator F° is given by

Elllx=F I = 1B + 1Ak — Exy(Byp®)I1?
— | Eay (B2

k
1Bz =) o3 (A). (7.57)
j=1
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Proof. We have
Elllx =Fy)I*] = tr{Ewp — EeyF' — FEy + FE, F'}
= B2 — | Eay (B
HI(F — Euy B Ey?|I?
= B2 — 1 Exy (B
| Ezy (Ef)2)T — FEL?|? (7.58)
because

tol/2 1/2\1

and
EuE} By, = Eyy (7.59)

by Lemma 24 of Section 5.4.2.

In (7.58), the only term that depends on F is ||Eyy (Ey)>)t — FE?|2.
By Theorem 54 and Remark 30, its minimum is attained if F = F°. There-
fore, (7.56) follows.

The error representation (7.57) is true because of the following obser-
vation. On the basis of Lemma 42, we have

B,y (EY2)T — FOEY|?
= ||Eoy (BY?)T — Au(BY)TEY2|?
— || By (BY2)T — Ay 2

[
(]
<
=

Since
l

HETy(E;jéz)THz = ZU?(A)a

j=1

then (7.58) implies (7.57). O

We note that the crucial issues in proving Theorem 55 are Theorem 54
and the equation (7.59).

Definition 38. The set {.7:0} of operators F° is called the family of generic
Karhunen-Loéve transforms. We also say that F° provides the generic
Principal Component Analysis.



314 7. METHODS FOR OPTIMAL DATA COMPRESSION

The efficiency of PCA-KLT and its generalization (7.56) is character-
ized by the compression ratio and the accuracy of the estimate of vector
X.

Compression of vector x (in fact, filtering and compression of data y)
is provided by the matrix EAkVATk(E;f)T or by the matrix VAT,C(E;f)T.
Reconstruction of the compressed vector is performed by the matrix Ujgxy
or by the matrix UapXar. Such a transform always exists since FO i
constructed from pseudo-inverse matrices.

We would like to point out that the operator F° is not unique because
of the arbitrary matrix @ in (7.56).

The differences between the provided solution in Theorem 55 and those
in [63, 134, 183] are that the transform given by (7.56) is rigorously jus-
tified, including an analytical representation of non-uniqueness of such a
transform.

Simulations which illustrate numerical properties of the transform F°
are given in Sections 7.5.9 and 7.6.9.

7.4.2 The minimum norm generic PCA-KLT

The generic Principal Component Analysis (or the generic Karhunen-Loeéve
transform) presented by (7.56) depends on an arbitrary matrix @ and there-
fore, it is not unique. This implies a natural question: What what kind of
condition should be imposed on the statement of the problem and the solu-
tion (7.56) to make it unique?

Below, we show that uniqueness is implied if we seek the solution F°
with minimum norm.

Corollary 15. The minimum Frobenius norm solution to the problem
~0
(7.46)—(7.47) is unique and it is given by the operator F  determined by

the matriz F° such that

FO = (B, By B (7.60)
~0
The error associated with the operator F is given by (7.57).

Proof. Let R(m,n,k) C R™*"™ be the variety of all m x n matrices of rank
at most k. By Theorem 53, the minimum Frobenius norm solution to the

problem

i E, YA _ pEl/2)2
FE}%r(lrlrf}n,k)H o vy ) vy |

is given by (7.60). This follows in a way which is similar to that used in
Remark 30. In (7.58), the term HE;W(E%2)T - FE;fH2 is the only one
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which depends on F'. A representation of the error associated with the

~0
operator F follows directly from the proof of Theorem 55. Therefore,
Corollary 15 is true. O

Remark 32. It is interesting that E||F°(y)||* does not depend on the
arbitrary matriz Q in (7.56). Indeed, let us denote (see (7.56))

L=AEY*, M= (A)Cr'QUY and N =I-E,E}, =I-E)?E}l/2
Then we have

E|F(I? = tr B{[L(y) + MN(¥)]L(y) + ML(y)]"}
= tr[LE,,L" + LE,,N"M" + MNE,,L"

+MNE,,N"M7]

= tr [LE,,L"]

= LB

= [ A(E) B

= [l Ak)?
because

EnyT = Eyy[I*EgyEyy]
= 0
and
AEY B - A4

by Lemma 42.

7.5 Optimal Hybrid Transform Based on
Hadamard-quadratic Approximation

7.5.1 Motivations

For a given compression ratio, the Karhunen-Loeve transform (PCA-KLT)
considered in Sections 7.2 and 7.4 minimizes the reconstruction error over
the class of all linear reduced-rank transforms. Nevertheless, it may hap-
pen that the accuracy and compression ratio associated with PCA-KLT
are still not satisfactory. In such a case, an improvement in the accuracy
and compression ratio can be achieved by a transform with a more general
structure than that of PCA-KLT. Special non-linear transforms have been
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studied, in particular, in [23, 62, 159, 165, 168, 175, 182] using transform
structures developed from the generalized Volterra polynomials. Neverthe-
less, the transforms [23, 62, 159, 165, 168, 175, 182] imply a substantial
computational burden associated with the large number N of terms re-
quired by the underlying Volterra polynomial structure.

Here, we present the approach to constructing transforms of random
vectors which is motivated by the hybrid method considered in Section
5.7 of Chapter 4. Our objective is to justify the transform which has
advantages over methods presented in Sections 7.2 and 7.4 and in references
[23, 62, 159, 165, 168, 175, 182].

A device for the approach is a s follows. The vector is first pre-estimated
from the special iterative procedure such that each iterative loop is aimed
at a solution of the unconstrained best approximation problem with the ap-
proximant given by the Hadamard-quadratic operator. The final estimate
follows from a solution of the constrained best approximation problem with
the Hadamard-quadratic approximant.

We show that the combination of these techniques allows us to build a
more efficient and flexible method compared with PCA-KLT and its gen-
eralization given in Section 7.4. The estimation accuracy associated with
the proposed method can be adjusted by a variation of the three degrees of
freedom which are the transform degree, the number of iterations and the
rank of the special covariance matrix. In connection with this, see Remark
36 in Section 7.5.8. In contrast, the techniques based on the development
of PCA-KLT idea [63, 68, 134, 183] have the rank of covariance matrix as
the only degree of freedom.

We establish a quite unrestrictive condition (see inequality (7.134) in
Section 7.5.7 below), under which our transform provides a significantly smaller
estimation error than the error associated with PCA-KLT’s methods of
Sections 7.2-7.4 and those presented in [63, 68, 134, 183].

7.5.2 Problem formulation and method description

Let x € L?(Q,R™) be an unknown random vector and y € L*(Q,R")
observable random data such that x = (x(1), .., X(m))" andy = (y1)- - -,

y(n))T where X 1),y ;) € L*(Q,R) fork=1,...,mandi=1,...,n.
As before, for every w € ), we write
r=x(w) and y=y()
where © = (z), -, 2m)"s ¥ = Way -5 Ym)' Ty = X@y(w) and
Yoy =yY@w) for k=1,....omandi=1,...,n.
The problem is to find a nonlinear transform 7 : L?(Q,R") — L?(Q,R™)
of x from data y so that 7 provides both
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(i) a better associated error of the estimate 7 (y), for a given compres-
sion ratio, and
(ii) a better compression ratio for the fixed accuracy of the estimate
T (y), compared with the best known fixed rank linear estimator produced
by the generic PCA-KLT of Section 7.4 and that in [63, 68, 134, 183].
Hereinafter we use the Hadamard product for vectors to define 32 as
2_(,2 2 \T
y —(y(l), e y(n)) .
The proposed method of solution consists of the following device.
Let us write Tj = [U; V; W;] € R v+l U € R™, V;, W; € R™*V,
1
Tj = [OJ ‘7] W]] S Rmx(2u+1), Uj € R™, Vj,Wj S Rmxv) v = Z;

_f n if j=0
and”_{m if j=1,2,...p.

For j = 0,1,...,p, define an operator T : L?(Q,R* ™) — L2(Q,R™)

by 3
[T5(vil(w) = Tj[v;(w)]
and denote
J(Ty) = Blllx = T;(v;)|?.

Let 9 = y and let x1,%2,...,2, € R™ be determined as follows. For
7 =0, we write
1
T = To(’l)o) = [Uo V() Wo] y

y2

and find Tp from a solution of the unconstrained problem

J(Tp) = min J (Tp). (7.61)
0
For j = p — 1, we write
} } } R 1
zp =Tp1(vp—1) = [Up—1 Vp—1 Wp1] | zp—1
1‘12771

and find Tp_l from a solution of the unconstrained problem

J(Tpy1) = min J(Tp1). (7.62)

p—1

For j = p, we write

1

rper = T op) = U5 V) WY | 2,
X

P
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and find T]gr from a solution of the constrained problem

ﬂﬂ&%:%mJup (7.63)
P
subject to
rank T, <r (7.64)
with r < v.

The desired transform 7 is defined by

[TW)(w) = Ty [vp(w)). (7.65)

In other words, the desired nonlinear transform 7 of x, from data y, is
reduced to the linear constrained estimator Tgw with respect to v, formed
from the pre-estimate x,, of x. The pre-estimate x,, follows from a solution
of the p unconstrained best approximation problems (7.61)—(7.62). We call
this procedure the method of best hybrid approrimations.

The solutions to problems (7.61)—(7.62) aim to improve the known so-
lution of the customary linear least square problem due to terms U I Wj
and v;. The iterative procedure (7.61)—(7.62) is to obtain the pre-estimate
x;+1 with the accuracy better than the accuracy of pre-estimates from the
preceding iterative loops. The terms UI?, Wz? and v, in (7.63), (7.64) are
used with the purpose of improvement of the linear constrained problem
solution given in Sections 7.2 and 7.4.

Note that equation (7.65) can equivalently be rewritten as

T(y) =Uy) + Vyx, + Wias, (7.66)
i.e. T(y) can be interpreted as the second degree estimate (with respect to
xp) of .

In the next sections, we substantiate that the combination of these new
techniques allows us to obtain the nonlinear transform with a considerably
better performance in comparison with the generic PCA-KLT of Section
7.4. In particular, it will be shown that the error associated with the
proposed transform can be achieved less than the error associated with the
transforms in [63, 68, 134, 182] and Section 7.4 by exploiting the second
degree terms in (7.61)—(7.62) and by increasing the number of iterations in
(7.61)—(7.62).

It will also be shown that the proposed method does not require invert-
ibility of any matrix used for the solution of problems (7.61)—(7.64).
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7.5.3 Preliminary results

Let g and h be random vectors with realizations in R” and R" respectively,
1
and let ¢ = h? and s = | h | . Similarly to the preceding Sections, we

q
denote

E,, = Elgh”] and Ey, = E,, — E[g]E[h7T]

and we write N (Eg;,) for the null space of matrix Egp,.
For our purposes, we represent Lemmata 24 and 25 from Section 5.4.2
in the form of the following Lemmata 44 and 45, respectively.

Lemma 44. The following equations hold:
EE},Enn =Eg, and EgEl E, =Eg,. (7.67)
Lemma 45. Let Dy, = Egy — EguEl, Epy. Then
EgqD!Dan =Eqq,  EgqDl Dy =Egq  and EpgDl, Dy = Eng. (7.68)

The solution of the problems (7.61)—(7.64) will be given in terms of the
(2v+1) x (2v+1) matrix Ef,. In the next Lemma, we show that this matrix
can be calculated via smaller n X n matrices. As a result, an associated
computational load is facilitated.

Lemma 46. Let
Piy =1— P3E[h] — Pi3E[q], Pio = Pj;, Pis = —E[h"|Pys — Elq"| P33,
Py = —P22E[h] - Png[q], Py = E;r,,h - P23thELh, Pz = Pé;

Py = —P33Elq] — PoE[h], Py = —PyEQEL,, Py =D.
Then

Py P Pi3
El,=| Py Py Py |. (7.69)
Py Py Py
Proof. Let
1
t= [ N ] . Gu=1-GiER], Gis=—E[hT]Ga, (7.70)

(7.71)

Go = GlTQ, Gaa :ELh and G = [ Gu Gi } .

Ga1 Ga
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Then
El, =G. (7.72)
The validity of equation (7.72) is shown by the following observations. We
have
Q1 Q12 }
EyGEy =
e [ Q21 Q22
where
Qi = Gu+ E[hT)Gor + G12E[h] + E[hT)|Gy E[h]
= 1’
Q2 = GuER"|+ ELT]GaEL"] + GiaEwy + E[h"]GozEpy,
= E[hT),
Q21 = E[h|G11 + ExnGa1 + E[R]G12E[h] + EppGaoElh]
= E[h]7
Qa2 = FE[RGnER+ EppGa1 EIR'] + E[hGi2En, + EnnGazEnn,
= Ehh'

Hence FyGFEy = FEy, ie. the first Moore-Penrose condition is satisfied.
The remaining Moore-Penrose conditions for EJ,, defined by (7.72), are
easily verified as well, and therefore (7.72) is valid.

Next, let

Ry, = El — Ri2:EuE},, (7.73)
Ry, = RE, (7.74)
Ry = —Rz2eqE;rt (7.75)
Ry = D, (7.76)

Similarly to the above and on the basis of Lemmata 44 and 45, it can be
shown that

Ri1 Rio
El = , 7.77
5% [ Ry1  Ra } (7.77)
where
Dyt = E4q— eqEtTtth
= [Egq - thElthth
= Dy.

Then (7.69) follows from (7.77) by virtue of (7.70) - (7.76). O
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7.5.4 Solution of the problems (7.61)—(7.62)

In this section, we give solutions to the minimization problems posed above
and provide the error analysis associated with the solutions.

To make an uniform notation for problems (7.61)—(7.62) we write

J(T}) = min J(T;) (7.78)
J
with 5 =0,1,...,p.

For any matrix M we write M(:,n; : n2) to denote a matrix consisting
of mno—n1 41 successive columns of M beginning from the column numbered
by niy.

Let

K; = K;[I — Ey,o,E} , 1,

Vjvj

where K € R™*(2v+1) is an arbitrary matrix and I is the identity matrix,
and let

Ku; =K;(:,1:1), Kyvj=K;(:5,2:v+1) and Kwj; =K;(:,v+2:2v+1).

We also denote z; = m%

Uj = E[x] - VJE[x]] - WjE[zj]v VJ = (E-L.LJ - WjEijL'j)]ET (779)

TjTj

and

Wj = (Ema‘ B EMJ]ET Eszj)DT (7.80)

T ZjTj°
The following theorem provides the solution to problem (7.78) both in
terms of pseudo-inverse matrix Ef , € RE*F*E ) and in terms of

smaller pseudo-inverse matrices ELJ_I, € Rv*v, DI € R”¥. The latter
is used for a computation of the alternative representation of the estimate
zj+1 = Tjv; given by equation (7.88) below.

Theorem 56. The unconstrained minimum (7.78) is achieved for

Tj = [UJ ij W]] = EmvjET + ’Cj (781)

Vv
where

Uj=U;j+Kuj, V;=Vi+Ky; and W;=W;+Kw;. (7.82)

Proof. 1t follows from Lemma 44 that
ExvjE/IjvjEvjvj = Exvj (783)
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and then
J(T;) = Aj+6{(T) = Ezo, B o)) Eoyo, (T — Ezo, B )7}
= A+ Ty = B, EL, BV I,
where
Aj = tr{Ezs — Egy, Eq, v Ey.2}. (7.84)

The minimum of this functional is achieved if

1/2 1/2 __
T;E)/2 — Ew,Ef , E}/2 =0

VU5 Vv
which is equivalent to the equation (see Section 5.4.2)
Ty By, — By, = O. (7.85)

The necessary and sufficient condition [6] for the equation (7.85) to have a
solution is given by (7.83) which is true by Lemma 44. Therefore, it follows
from [6], pp 39-40 that the solution is given by T; = T -

Next, on the strength of Lemma 46, it is easy to see that

EiEUgEv vj [UJ f/ﬂ WJ] (786)
Then (7.82) follows from (7.81) and (7.86).
The theorem is proven. O

Corollary 16. The best estimate of x in the sense (7.78) is given by
xjp1 = T;(v)) (7.87)

where T j is defined by (7.81).

Corollary 17. The equivalent representation of the estimate (7.87) is
xj1 = U +Vj(x5) + W;(2;) (7.88)

with Uj, f/j, Wj defined by (7.82) and z; = x?. The error associated with
estimate (7.87), (7.88) is

Elfx — Xj||2] = Aj1 = tr{Ep — vaqulj,lvj,lEvjflw} (7.89)

Proof. Equation (7.89) follows directly from (7.84), (7.84) and (7.85). O

The representation of estimate x;; in form (7.88) can be computation-
ally more effective compared with the form given in (7.87).

Note, that it is natural to choose Ky7j = O, Ky; = O and Ky; = O in
equations (7.82) and (7.88), where O is the zero matrix/vector.
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Definition 39. The estimate given by equations (7.81), (7.87), (7.88) is
called the (j 4+ 1)—th unconstrained estimate of x.

Next, to find matrix 77, giving the minimum (7.63) subject to constraint
(7.64) we use the notation as follows. Let

Eqp, (E)S )T =G2QT (7.90)
be the singular value decomposition (SVD) of Ey,, (Eiﬁp)Jr where

G =191, 92041) ER™ @D and Q = [q1, ..., qory1] € REVFD*(2r+1)
are orthogonal matrices and

Y = diag(oy,...,0041) € REVFDxCril)

is a diagonal matrix with o9y > --- > 0; > 0 and 0741 = --- = 02,41 = 0.
Put G, = [¢1,---,9-), Qr = [@1,--.,¢-] and X, = diag(oy,...,0,) and
define

P.= Pr(z,vp) = GTETQz (791)

We also denote
EM2 = UcSoUE

UpUp

for the SVD of Eiﬁp, and write
Uc =[hUs], €y =diag(o1(C),...,0¢(C)) and Eu, E)2 Uo = [A1 4,

where
EC = diag(al(C), ey O'2V+1(O))

with 01(C) > -+ > 0,(C) > 0 and 0,41(C) = -+ = 02,41(C) = 0, and
Up e R®HDXE and - A, € R™.

The desired transform 7, given by equation (7.65), is defined by the
following theorem.

Theorem 57. The constrained minimum (7.63)—(7.64) is achieved for

Ty = P(B3) + (A1), O QuUI [T - B (BT )T (7.92)

UpUp \"" UpUp
where Q) € RXCvH1=1) s an arbitrary matriz, and this minimum is

J(T;?r) =Ap+ P — Ezvp(ET )1/2”2' (7.93)

VpUp
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Proof. Similarly to (7.84) we have
J(Ty) = Ap + T By — vy Bl EY2 |2 (7.94)

VpVp ™~ UpUp

By Theorem 54, and Remarks 29 and 30, the functional (7.94) achieves the
minimum subject to constraint (7.64) if T,, = 70,

Equation (7.93) follows directly from the above.

The theorem is proven. O

The methods of matrices Ey,;, Ey,q; estimation and associated error
analysis can be found in Section 5.3.

Remark 33. The (j + 1)th unconstrained estimate xj+1 of x with j =
0,1,...,p— 1, and the constrained estimate 7'2r(vp) of X, are not unique
because K; and M, are arbitrary matrices.

7.5.5 Error analysis associated with transform 7

The optimal transform 7T results in the estimate

-
= To(vp). (7.95)
Theorem 58. Let

A(;) = | (Eaz, — oy, BL , Eq 2 )(DL )22 (7.96)

ZjT 4

The error associated with the optimal transform T is

l
Ellx = T = tr{Ea} + Y 07 — By (B],) /2|2
i=r+1
p—1

= Axy). (7.97)

Jj=0

Proof. Let us first show that the error associated with the p—th uncon-
strained estimate x,, (7.87) is

E[|lx = xp1%] = tr{Eua} — [|Bay (BL,) /27 =) A(z;). (7.98)
§=0

Indeed it follows from (7.84) and ( 7.84) that
E[Hx - Xp||2] = tr{Exac - Ea:vpflElp,lq;p,lEvpflx}a (7-99)
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where on the strength of Lemma 3,

tr{EzquEip,lvp,lEvpflw} = tr{E[x}E[xT}}
HEow,  (BL o, )27 + Alzp). (7.100)
Therefore
E[llx — xp|°] = tr{Bua} — || Eaw,_, (BL . )V|I> = A(zp-1).  (7.101)

Hence, for p = 1 equation (7.98) follows directly from (7.101).

Let us assume that (7.98) is true for p = k. To prove that (7.98) is now
true for p = k + 1, we need some preliminaries.

Let us denote

T=x—-E[x], 7=x;—FE[x], % =z;— E[z],
and consider the functional
J(Us, Vi, W3) = E[||7 — (U; + ViTi + W) ||?]. (7.102)
It is easy to see that

where
JT(‘/ia WZ) = JT(@77L7 ‘/’L'a Wi)

Note that the functional J,(V;, W;) can be written as

= E[|lr - Z:b:|*] (7.104)
where Z; = [V; W;] and 6; = [ :;_ } .
Next, let
_ i

Dﬁm = Eﬁiﬁi — quiTiETm E7'ﬂ9i' (7.105)
Then matrices

Wi = (Epg, = Err, Bl Er9) D)y + Kwi (7.107)
and
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where M; € R™*2?" is arbitrary, are such that
T (Vi Wi) = min J,(V, W)
and

J-(Z;) = min J-(Z;).

Then for 7,11 defined by
Tiv1 = Vir + Wid; = Z;0;, (7.109)
we have

Bl = mial?]

tr{Err — ETeiEgieiEeiT}
= tr{Err — Brr,EL 1. Er;r} — A(ry), (7.110)
where
A(ri) = [(Epg, — ETTiE;-Z.TiETiﬁi)(D%iTi)l/QH2,
Now, on the strength of (7.98) with p = k and of (7.110) with ¢ =k — 1,

Elllz —zl?] = E[llr — mll*)

= tr{ETT - ET@k—lE;k,lek,lEak—lT
k—1

= wlBrr) — B (Bl )V~ S Ay, (11
=0

since
Epw = Brr, Bea, = By, Bow, = By and By = By (7.112)
Equations (7.108) and (7.109) imply that
Err, = E[r6i_1(Z-1)"]
= Ero.,Ej_,o,_,Bo_.7

1/2
+Ero, {1 — (Egk,lek,l)1/2E0,{,19k,1}M?

= EBro,,E} o Fo_,r-
Analogously,

Erry = ElZi10k-10;_1(Zp-1)"]

= Ero,,E}_ o _ Eo .7

As a result, we have

Err Bl . Er.r=Ero_E) o Fo_,r. (7.113)
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Thus, on the basis of (7.110) and (7.113),

Ellr —menll’] = w{Err — Err, EL 7 Er.r} — A(ry)
= tw{Brr — Ero,  E} o Eo_,7}—A(ri) (7.114)
and therefore (7.111) implies
Ellr = meall’l = Ellz = zppa ]

tr{Err} — || Err, (E;0T0)1/2||2

,_.

A(r;) — A(ry).  (7.115)
j=0

Then (7.98) with p = k+1 follows from (7.115) on the basis of (7.112). By
virtue of that, the error estimate (7.98) is proven.
Next, it follows from (7.89), (7.93) that
Bllle —ap,ll?] = J(T;)

= Efllz — ]
HIPr = Ego, ,(Bf,_,0, )2IP, (7.116)

where [50]
HPT_Ervpfl(eqp 10— 1 1/2”2 Z J (7~117)
1=r+1
Hence, (7.98), (7.116) and (7.117) prove (7.97). O

Remark 34. It follows from equation (7.97) that the error associated with
the proposed transform T is decreasing with an increase in the number of
iterations p.

Remark 35. The second degree term Wx? in (7.87), (7.88) is an important
ingredient of the transform T. Firstly, the term

A(5‘70) = H(EMO EJE«TOEwOwOE$OZO)<D20IO H2
which decreases the value E[||x — T (y)||?] in (7.97), is a result of imple-
menting the term Wa? in (7.87), (7.88). Secondly, if Wo:? = O then the
procedure (7.87), (7.95) gives no decrease in the error E[||x — T (y)||?] for
j=1,2,... since in this case, A(zx;) =0 forj=1,2,....
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7.5.6 Particular cases

The proposed approach generalizes PCA-KLT and the known methods
based on modifications of PCA-KLT idea as follows.
If in (7.92),

_ _ 0_ 0_ _
y=x, p=0, U,=0, Wy=0, and M,=0

then ng)r coincides with PCA-KLT.
The best fixed rank linear transform [134], which generalizes PCA-KLT,
follows from (7.92) as a particular case if

p=0, U)=0, W)=0

and if the matrix E[yy”] is invertible.
The transform considered in Section 7.4 where invertibility of E[yy”]
is not assumed, also follows from (7.92) if p = 0, U = O and W) = Q.
The best unconstrained transform of the second degree [158] produces
the estimate which coincides with ( (7.88) if j = 0 and Uy = O.

7.5.7 Comparative analysis of errors associated with
hybrid Hadamard-quadratic transform and the
generic PCA-KLT

Let Sy(z,y) be the truncated SVD of E,, (E;{,z)T defined similarly to equa-
tions (7.90), (7.91) but with the replacement of v, by y and of r by ~ such
that v < m.

The generic PCA-KLT considered in Section 7.4 is given by

1y = 8,0 (B2 + K [T = BB (7.118)
where K, = (Zl),.CleUg € R™*" is the matrix such that rank H, <
v < s with s the number of nonzero singular values 1, .. ., 35, of the matrix
E E1/2 +

As it has been mentioned before, the transform H, is optimal in the
class of the linear transforms and it is a particular case of the proposed
nonlinear transform 7 defined by the equations (7.65), (7.92) when p = 0,
U) =0 and W) = 0.

Let us compare the error E[||x—H (y)||]? associated with the transform
H.,, (7.118) and the error E[||x — 7 (y)||]? associated with a particular case
T of the proposed transform when U7 = 0 in (7.92), (7.95), as in Section
7.4, but for all j =1,2,...,pin (7.87), (7.88).
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The equations representing transform T follow from (7.87), (7.79) -
(7.82), (7.88), (7.90) - (7.92), (7.95) when U; = U; = = U) = 0, and they
are as follows

Xp, T(Y)
= Tpr(V)ps (7.119)
where

v, = {’Z‘j } 2; = %2,
Tpr = Praog)(Ex/a )+ MylI — Es 5, (Es,5,)], (7.120)
ij = Tjv; (7.121)
= Vjijeréja (7.122)
= [Vj Wj], (7.123)
K; = K[l —Eqys, (EMJ)T], (7.124)
Vi = (Eus, — WjBz 5 )EL 5 +K;(51:0), (7.125)
Wi = (B, EMJEZJ%EWJ.)DZ]E] +K5(v+1:20) (7.126)

and where P,.(; ;) is defined similarly to (7.91),

P o0,) = Gr5:QF (7.127)
with
Gr=191,--,0), Qvr=1Id,---,G] and X, = diag(sy,...,6,)
formed from orthogonal matrices
G =11, .. G2] ER™ QO =1[g1,...,0G2] € RZ*¥

and from diagonal matrix

Z’ = djag(é-l7 A 6-21/) c R(QV)X(QV)

with g1 > --- > ;> 0 and §;41 = --- = d9, = 0, respectively, such that
GEQT = Euo, (B ). (7.128)

Matrix D; ;z, in (7.126) is defined in accordance with (7.105). We also
denote )
Aj = |[(Baz, — Bus, EL 5 Ez,2) (DL, )22

T ZjTj
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and
p—1 s l
= A 2 )
E=Y A+ ) 8- Y b
j=0 i=y+1 k=r+1

Theorem 59. The error E[||x—T (y)||]? associated with the proposed trans-
form (7.119) - (7.127) is less than the error E[||x—H,(y)||]? associated with

the transform (7.118), for =, i.e.

Blllx - #H,W)I* = Ellx = TWII* =

p—1 s l
A § 2 § ~2
3=0 i=vy+1 k=r+1

Proof. Similarly to (7.97) we have

l
Bl = TOIP) = tr{Ea} + Y 6 = 1By (E,) "2
k=r+1

|
-

p

“YA,

Il
=]

J

The equation for the error E[[|x — H(y)|]?,

(7.129)

(7.130)

(7.131)

(7.132)

l
Ellx — Hy )2 = tr{ B} + 30 2 — [ Buy ()22 (7.133)

1=y+1

is derived from (7.118) by virtue of Lemma 44, and then (7.129) is obvious.

Corollary 18. If

l p—1 s
IBLADIEED I
k=r+1 7=0 i=y+1

Elllx = T)II* < Elllx - #, (v)III*.

Proof. The proof follows directly from the above.

O

(7.134)
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Thus, the inequality (7.134) is the condition for a better performance of
the proposed transform compared with transform (7.118), [63]. In particu-
lar, the inequality (7.134) takes place for the case when r = -, where r and
~ are numbers of principal components produced by the methods (7.119)
- (7.127) and (7.118), [63], respectively. In other words, if (7.134) is true
then for the same r and -, the error associated with our method (7.119) -
(7.127) is less than the error associated with the method (7.118).

Note that the condition (7.134) is not hardly restrictive and is normally

p—1
satisfied, mainly due to the term Z Aj.
§=0

7.5.8 A special case: the errors E[||x — H,(y)|]? and
E[|x — T (y)||]* are the same

Let us now consider the case when the errors (7.131), (7.133) associated
with the methods (7.119) - (7.127) and (7.118) are the same, and consider
the corresponding rank values r and v (i.e. the numbers r and ~ of the
corresponding principal components of the methods (7.119) - (7.127) and
(7.118) respectively).

First, note that the RHS’s of the expressions (7.131), (7.133) con-

tain the same constant term tr{E,,} — HEgcy(E;;y)1/2||27 and the terms
l p—1 l
Z 6,% — Z Aj and Z ﬁf which are variable with respect to r, p, and
k=r+1 j=0 i=y+1
.

Let us suppose that
Ellx = H,)[)* = Ellx - T[> = <.

Then equation (7.129) implies that

s 1 p—1
doBi= > =Y A, (7.135)
i=y+1 k=r+1 =0

where the LHS and RHS are the variable terms of the errors (7.131), (7.133)
associated with the methods (7.119) - (7.127) and (7.118).

We observe that the RHS in (7.135) can be reduced by increasing the
number of iterations p in our method (7.87), (7.95). The corresponding
reduction of the LHS in (7.135) can only be made by increasing the number
~ in the transform (7.118) given in Section 7.4. Hence, to achieve the same
accuracy €, the method (7.119) - (7.127) uses, in general, a smaller number
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7 of the principal components than PCA-KLT and its modification (7.118),
[63].
Moreover, for some €., where

ey = Elllx =TI

the accuracy E[||x — 7 (y)|[]> can not be achieved by the method (7.118),
[63] for any ~ in (7.118), (7.133).

Remark 36. The equations (7.97), (7.129) - (7.133), (7.135) substantiate
the remark made in the Section 7.5.1: the proposed method possesses three
degrees of freedom as follows: the number p of iteration loops in (7.87),
(7.88), the degree of the approximants T;v; and Tpvp,s and the rank r of
1Y, in (7.63), (7.64). In contrast, the performance of the generic PCA-
KLT (7.118) can be regulated by a variation of the rank v only.

Remark 37. PCA-KLT is a particular case of the generic PCA-KLT
(Section 7.4) and therefore the results of the comparative analysis above
are valid for PCA-KLT as well.

7.5.9 Numerical example

In our example, we apply the proposed method to simultaneous filtering,
compression and consequent reconstruction of a noisy digitized image. The
aim of the example is to illustrate the impact on the final image estimate
of both the method of hybrid best approximation (7.61)—(7.64), (7.87) and
the representation of the estimate as the second degree polynomial (7.66).
The original digitized image ‘Lenna’ has been given by matrix X €
R256%256 and observed noisy image has been modeled in the form

Y = 150N. % X, (7.136)

where N € R2°6x256 i5 3 matrix with normally distributed entries with
mean 0 and variance 1. Symbol .x means element-by-element matrix mul-
tiplication. The corresponding images are presented in Fig. 7.1.

Matrices X and Y have been partitioned into su-bmatrices

XU =X(1:85,:), X?=X(8:170,:), X = X(171:256,:)
and

YW =y(1:85,:), Y® =Y(86:170,:), Y@ =Y (171:256,:),

5For instance, W; = O in (7.87) and Wg # 0 in (7.65) imply the estimates of the
first degree and of the second degree correspondingly.
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where X (nq : ng,:) means a sub-matrix formed by ny —n; + 1 consequent
rows of X beginning with the n;—th raw. We interpreted X1, X @)
X ) ag realizations of different random vectors and Y1), Y2 Y3 a5
corresponding observed data.

The proposed method (7.87), (7.92), (7.95) has been applied four times
to the every pair X(*) Y(¥)  each time with the same K; =0, M, =0,
p = 50 but with a different value of r such that r = ry = 20 + 5s for
s=0,1,2,3.

The generic PCA-KLT (7.118) (Section 7.4) has also been applied four
times to the same pairs X(®) V(%) with the same rank ~ such that v = r,
where s = 0, 1, 2, 3. For comparison of the obtained results, the error ratios

egf) / egv ) are presented in the Table 2 where
k k k k
e = IX® —X[PI? and e = | X® - x|

are the errors associated with the estimate ch) by (7.118) and with the

estimate X\ by (7.87), (7.81), (7.92), (7.95), respectively.

Matrices Epy;, Evjv;y Ezy, Eyy in (7.87), (7.81), (7.92), (7.95) and
(7.118) have been estimated with the known maximum likelihood estimates
given in Section 5.3.1.

In this simulations, the ranks r and ~y of the both methods are the same,
therefore their compression ratios are equal,

7y

d ey=——.
an CH 256

r
T~ 256
Hence, it follows from the Table 1 that, for the same compression ratio,
the accuracy of the image reconstruction by the proposed method is from
153 to 311 times better that the reconstruction accuracy of the generic
PCA-KLT (7.118), depending on the parts X*), Y*) of the images.

Table 1: Ratio of errors associated with estmators (7.92) and (7.118)
for image portions X with k=1,2,3

Error ratios Rank r of Tg » and rank vy of H,
r=7=2]r=7=25[r=7y=30 ][ r=7=35
W/ 236.0 268.5 293.0 308.5
¢ /P 153.3 199.5 245.0 286.6
¢ /) 157.5 214.9 264.3 311.0

Fig. 7.2 represents the images reconstructed after simultaneous filtering
and compression by these methods.
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50 100 150 200 250
(a) Observed data Y.

50 100 150 200 250

(b) Image X to be filtered, compressed and then reconstructed
from observed data. This digitized image has been taken from
http://sipi.usc.edu/database/.

Figure 7.1: Data used in numerical example to the methods of Sections 7.4
and 7.5.
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50 100 150 200 250
(a) Image reconstructed after filtering and compression by
transform (7.118) with v = 20 applied to each pair X (k) y (k)
with k£ =1,2,3.

50 100 150 200 250

(b) Image reconstructed after filtering and compression by
method (7.87), (7.81), (7.92), (7.95) with j = 49 and r = 20
applied to each pair X*)| Y(*) with k = 1,2, 3.

Figure 7.2: The performance comparison of the methods (7.118) and (7.87),
(7.81), (7.92), (7.95).
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The Table 1 represents the values of the ratios ey / e of errors
en = | X — Xg|* and er = || X — Xp|?
associated with estimates
T T T
X = T X X

and . . .
Xp=[xp X X

of the entire image X. In this case, the error e associated with the proposed
method is from 179 to 301 times smaller than the error ey associated with
the method of Section 7.4.

Next, we wish to illustrate in a more conspicuous way the impact of the
method of hybrid best approximations (7.61)—(7.64), (7.87) and of the sec-
ond degree transform (7.66) on the superiority of the proposed estimation
procedure over the method of Section 7.4.

To do this, we fix p and choose r = 1 in (7.92), which is the worst
rank value for the quality of estimation by (7.92), (7.95) with fixed p (see
the error equation (7.97)), but is the best rank value for the compression
ratio range. In other words, in this case each sub-matrix X *) € R™»*¥k ig
compressed by the proposed method to a column in R™*,

We also choose the full rank transform presented in Section 7.4, which
gives its best quality of estimation (see the error equation (7.133)), but
provides the worst compression ratio ¢y = 1; this means that in this case
the generic PCA-KLT provides no compression. The errors

k k
IX® — XxH2 and x® — xP,IP2

associated with the both transforms are given in Table 3, where Xéjk} is the

estimate of X(®) by (7.95) with p = 50 and » = 1, and ch)fu” is the full
rank estimate by the transform of Section 7.4. ,

It follows from Table 3 that the hybrid best approximations (7.87)-
(7.78), (7.81) and the second degree transform (7.66) provide the final

error || X (%) Xq(,kiH? which is from 2.6 to 3.5 times smaller than the error

[| X F) — chfu” |2, even for the extremely worst rank condition (r = 1) for
our approach.

Summarizing the above, we would like to point out the following.

The error analysis given by the expressions (7.97), (7.129), (7.134),
(7.135) demonstrates that the advantages of the proposed approach over
PCA-KLT and the generic PCA-KLT of Section 7.4 are as follows:
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(i) under the condition (7.134), for the same rank r (i.e. for the same
number of principal components ), the error associated with our method
can be made less than the error associated with the generic PCA-KLT
(Section 7.4) both by exploiting the second degree term in (7.87), (7.95),
(7.119), (7.121) and by increasing the number of iterations p in (7.87),
(7.121); and

(ii) for the same errors associated with the method (7.87), (7.95) and
the method of Section 7.4, the method (7.87), (7.95) generates a smaller
number of principal components.

These features imply that the above technique is preferable for many
applied problems of the high dimensionality which have been considered in
Section 7.4.

7.6 Optimal Transform Formed by a Combination of
Nonlinear Operators

Our objective is to justify a new transform that may have both accuracy
and compression ratio better than those of the transforms considered in
the preceding sections.

We show that the proposed approach generalizes the Fourier series in
Hilbert space, the Wiener filter, the Karhunen-Loeve transform and the
transforms given in [158, 167, 173].

7.6.1 Method description

Achievement of the above objective is based on the presentation of the pro-
posed transform in the form of a sum with p terms (7.137) where each term
is interpreted as a particular rank-reduced transform. Moreover, terms in
(7.137) are represented as a combination of three operations Fy, Qj and
¢y, for each k =1,...,p. The prime idea is to determine F}, separately, for
each k =1,...,p, from an associated rank-constrained minimization prob-
lem similar to that in PCA-KLT. The operations Qj and ¢;, are auxiliary
for finding Fj. It is natural to expect that a contribution of each term in
(7.137) will improve the entire transform performance.

To realize such a scheme, we choose the Q. as orthogonal/orthonormal
operators (see Section 7.6.2). Then each Fj can be determined inde-
pendently for each individual problem (7.159) or (7.188) below. Next,
operators ¢, are used to reduce the number of terms from N (as in
[159, 167, 173, 182]) to p with p << N. For example, this can be done
when we choose ¢, in the form presented in Section 7.6.6. Moreover, the
composition of operators Qy, and ¢, allows us to reduce the related covari-
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ance matrices to the identity matrix or to a block-diagonal form with small
blocks. Remark 40 in Section 7.6.4 gives more details in this regard. The
computational work associated with such blocks is much less than that for
the large covariance matrices in [158, 159, 167, 173, 182].

To regulate accuracy associated with the proposed transform and its
compression ratio, we formulate the problem in the form (7.140)—(7.141)
where (7.141) consists of p constraints. It is shown in Sections 5.2.1, 5.2.2
and 5.2.4 that such a combination of constraints allows us to equip the
proposed transforms with several degrees of freedom.

The structure of our transform is presented in Section 7.6.2 and the
formal statement of the problem in Section 7.6.3. In Section 7.6.4, we
determine operators F1,...,F, (Theorems 60 and 61).

As before, we denote

x € L*(Q,R™), yeL*(Q,R"), z=xw)eR™ y=yw) R,
E,=E[x] and E.y = E[(x— E.)(y - E,)"] = Ezy — E[X]JE[y"].

7.6.2 Structure of the proposed transform
Generic form

The proposed transform 7, is presented in the form

P
F+Y FrQrei(y)

k=1
fHTF1Qiei(y) + .o+ FpQppp(y), (7.137)

Tp(y)

where
FER™ o, : L*(QR") — L*(Q,R"),
Q1,...,9,: L*(QR") = L*(Q,R") and Fj: L*(Q,R") — L*(Q,R™).

In general, one can put
x € L*(Q, Hx), y€L*Q,Hy), ,:L*Q Hy)— L*(Q, Hy),

Qy. : L}, Hy) — L*(Q, Hy) and  Fy : L2(Q, Hy,) — L*(Q, Hy)

with Hx, Hy, Hy and H, separable Hilbert spaces, and k =1,...,p.

In (7.137), the vector f and operators Fi,...,F, are determined from
the minimization problem (7.140)-(7.141) given in the Section 7.6.3. Op-
erators Qi,...,Q, in (7.137) are orthogonal (orthonormal) in the sense
of the Definition 1 in Section 7.6.3 (in this regard, see also Remark 3 in
Section 5.1).
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To demonstrate and justify flexibility of the transform 7, with respect
to the choice of ¢y,...,¢, in (7.137), we mainly study the case where
#1,---,$, are arbitrary. Specifications of ¢, ..., ¢, are presented in Sec-
tions 3.2, 5.2.4 and 5.2.5 where we also discuss the benefits associated with
some particular forms of ¢q,..., ¢,

Some particular cases

Particular cases of the model 7, are associated with specific choices of ¢,
Ok and Fj. Some examples are given below.

(i) If Hx = Hy = R" and H}, = H;, = R™ where R™" is the kth degree
of R™, then (7.137) generalizes the known transform structures [158, 166,
167, 173]. The models [158, 166, 167, 173] follow from (7.137) if

er(y) =y" where y*=(y,...,y) € L*(Q,R"),

Ok =7 where 7 is the identity operator,

and
if Fy is a k-linear operator.

It has been shown in [158, 166, 167, 173] that such a form of ¢, leads to
a significant improvement in the associated accuracy. See Section 7.6.6 for
more details.

(i) If ¢, : L?*(Q,Hy) — L?*(Q,Hx) and {uj,uy,...} is a basis in
L?(Q, Hx) then ¢, and Q) can be chosen so that

erly) =w, and Q=T

respectively. As a result, in this particular case,

P

Toly)=1+ ka(Uk).

k=1

(iii) A similar case follows if ¢, : L?(Q, Hy) = L*(2, Hy) is arbitrary
but Q. : L?(Q, Hy) — L*(Q, Hy) is defined so that

Qlpy(y) =vr withk=1,...,p

where {v1,Vs,...} is a basis in L2(Q, Hy). Then

To(y) =f+ > Frlvi).

k=1
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(iv) Let V... %) be estimates of x by the known transforms. For
instance, we could use the transforms considered in [63, 162, 169] and the
transforms given in Chapter 5. Then we can put

(p)

=x, . e (y)=xP.

P1(y)
In particular, one could choose %M = y. In such a way, the vector x is
pre-estimated from y, and therefore, the overall x estimate by 7, will be
improved. A new recursive method for finding M ,5((”) is given in
Section 7.6.6 below.

Other particular cases of the proposed transform are considered in Sec-
tions 7.6.6 and 7.6.7.

Remark 38. The particular case of T, considered in the item (iii) above
can be interpreted as an operator form of the Fourier polynomial in Hilbert
space [20]. The benefits associated with the Fourier polynomials are well
known. Initem (ii) of Section 7.6.7, this case is considered in more detail.

7.6.3 Statement of the problem

Hereinafter in this section, we suppose that Fy, is linear for all k = 1,.. . p,
the Hilbert spaces are the finite dimensional Eucledian spaces, Hx = R™
and Hy = H, = Hy, = R"™, and Qy,...,Q, are orthogonal operators by
Definition 31 and Lemmata 33 and 34 of Section 5.7.4. The latter means
that the vectors v, ..., v, defined by

vi=Qipi ()], - V= le,(y)] (7.138)

are orthogonal.
Let us denote

J(f. F1,- Fp) = Ellx = To(y)1%]- (7.139)
The problem is to determine the vector f° and operators .7-"(1), e ,fg
such that
J(fO,F,.. . F)) = ; T_i_pﬂ J(fs Fryeo s Fp) (7.140)
subject to
rank Fi <my, ..., rank Fp, <nmp, (7.141)
where

m+...+n, <n<min{m,n}.
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We write

P
Toly) =0+ Filvk) (7.142)
k=1
with
vi = Qiler(y)]-
It is supposed that covariance matrices formed from vectors Q14 (y),
- Qpp,(y) in (7.137) are known or can be estimated. Various estimation
methods can be found in Section 4.3.

Remark 39. Unlike known rank-constrained problems, we consider p con-
straints given by (7.141). The number p of the constraints and the ranks
m,...,np form the degrees of freedom for 7’2. Variation of p and m, ..., np
allows us to regulate accuracy associated with the transform Tg (see (7.149)
and (7.178) in Section 7.6.4) and its compression ratio (see (7.195) in Sec-
tion 6.5.8).

7.6.4 Determination of f°, F9,... ,]:g satisfying
(7.140)—(7.141)

The case when matrix E,,,, is invertible for i =1,...,p

First, we consider the simpler case when E,,,, is invertible for all i =
1,...,p. Then the vector f and operators ]-'(1)7 e ,.7-'2 satisfying (7.140)—
(7.141) are defined from the following Theorem 60. For each i = 1,...,p,
let U; Z;V.T' be the SVD of E,,,,

Ui ZV' = B, (7.143)
where U; € R™*", V; € R™™" are orthogonal and X; € R"*" is diagonal,

Ui =[sit, .- 8], Vi=l[di,... . din], (7.144)

Y = diag(a, - - ip) (7.145)
with ;1 > - > a4 >0, i p41 =+ =i, =0 and r = 1,...,n where

r=r(i). We set
Uim = [3i17~-'78i77i]a szm = [di17---adim]>

Eim = diag(a“, e ,Oéim)7

where Uy,, € R™" V;, € R™" and X, € R"*". Now we define
Ky, € R™™ and Ky, : L*(Q,R™) — L*(Q,R™) by

K’“?i = Ui"]i Lin, ‘/137: and [’Cim (Wl)](w) = Ky, [WL(W)L (7146)

respectively, for any w; € L?(Q, R").
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Theorem 60. Let vq,...,v, be orthogonal vectors determined by Lemma
33 of Section 5.7.4. Then the vector f° and operators .7-'?, e 7_7-'2, satisfying
(7.140)—(7.141), are determined by

P
— Y FYE[v], (7.147)
k=1
F=Kupr v Fp=Kpn,. (7.148)
The accuracy associated with transform 7'2, determined by (7.142) and
(7.147)—(7.148), is given by
P
Ellx = Ty)I] = B2 - ZZO@W (7.149)

k=1 j=1
Proof. The functional J(f, F1,...,F,) is written as

p
J(f, Fr,.. o, Fp) = tr[Baw — EX|fT =Y Epo, Ff

P p
—fEX")+ ffT+ Y EN[IF =) FEu.
=1 =1

S RENT + B R Fvi) T (7.150)
=1 =1 k=1

We remind that here and below, F; is defined by [F;(v;)](w) = Fi[v;(w)]
so that, for example,

BF(vi)xi] = FyBypa,-

In other words, the right hand side in (7.150) is a function of f, F1,...,F,
indeed.
Let us show that J(f,F1,...,Fp) can be represented as

‘](fﬁj:la"'a]:p):‘jo—"Jl_"JQy (7151)

where

Jo = IE2) — ZIIEm

: (7.152)

P

p
J=|f=ExX+> FEN]* and Jo=> [|F;—Eu,|>
1=1

i=1
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Indeed, J; and Jy are rewritten as follows

Jio= u(ff7 - +ZfE |F; + E[x]E[x"]

—E[x]f" =Y EXENIF+Y FE[v]f"

i=1 i=1
p
Y FElv +ZFEV12EV,€ ETY (7.153)
L =1 k=1

and

P
Ztr(Fi - vai)(FiT —Eu,z)

3FT) can be represented in the form

n (7.154), Z tr

p
> tr(FiF = FiByz — Ego, B + Eay,Eu,z). (7.154)
i=1
p
(FiF
=1
F,FT

Ztr( E) = tr[E(ZFquZVngT)]

p
—tr( ZFEvl > ENTIF) (7.155)
i=1 k=1

because

0, i#k,

J (7.156)

Elviv?] - ElvEWT] = {

due to the orthonormality of vectors vy, ..., vy.
Then

Jo+ J1 +J2 ZtI‘(E —E[X]E[XT])

= B Bua] + (757 — fElx +ZfE

i=1
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P

i=1

P

p
+ZFEWZEV,c 1ED) + tr[E ZFlvzzv;{Fk
k=1 =

—tr( ZFEvz ZEvk 128 itr FE,,,
=1

—FiE[Vi]E[X ]+EmFiT Elx|BV]F]

— J(f, Fr,-e, Fp).

Hence, (7.151) is true. Therefore,

T Froen Fp) = IEZ2 - Z:IIankll2

Ezleviz)
(7.157)

(7.158)

+lIf = Elx +ZFkEVk ||2+Z|\Fk Exu, |*.

It follows from (7.158) that the constrained minimum (7.140)—(7.141) is
achieved if f = f° with fO given by (7.147), and if F is such that

Ji(FY) = min Ji(Fy)
Fy,

subject to
rank(Fy) = n,

where

Je(Fr) = | Fie = Ego, ||

The solution to (7.159) is given [50] by
F = Ky,

Then

p

Efllx = Ty = IEL 1 =D (1Eaw,|I* ~

k=1

Here [50],

T
||]E513'Uk||2 = Zaij and || Ky, — zkaQ

(7.159)

(7.160)

||Kk77k - Eiwk HQ)

Z al; (7.161)

J=nk+1

with 7 = (k). Thus, (7.149) is true. The theorem is proved. O
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Corollary 19. Let vy,..., v, be determined by Lemma 33 of Section 5.7.4.
Then the vector f and operators Fi,... ,fp satisfying the unconstrained
problem (7.140), are determined by

P
= Z Elvi] and F1 = Epyy ooy Fp=Epp, (7.162)

with Fr such that [Fr(vi)|(w) = Fpvi(w) where F, € R™™ and k =

1,...,p.
The accuracy associated with transform T, given by

Toly) = F+ ) Filvi) (7.163)

1s such that

Ellx = Toy)I°] = B, - X:HEWII2 (7.164)
Proof. The proof follows directly from (7.159). O
The case when matrix Ey,, is not invertible for i =1,...,p

For ug,v;,w; € L*(Q,R"), we define operators 5%07,517% (&%%k)
L?(Q,R") — L?(Q,R™) by the expressions

[gulc'uj (WJ)](W) = Eukvj Wi (W), [g:r)jv]» (WJ)KW) = Eijvj Wi (w)(7.165)

and
(€0 (Wil w) = (BY2)] , wj(w), (7.166)
respectively.

We write M}, € R™*" for an arbitrary matrix, and define operator
My o L2(Q,R") — L%(Q,R™) by My(w)](w) = Myw(w) for any w €
L2(Q,R™).

For the case under consideration (matrix E,,,, is not invertible), we
introduce the SVD of B, (E/2 )T,

VEVk

Up Sk Vil = Epoy (E2/2 )1, (7.167)

VgV
where, as above, U, € R™*™, V}, € R™™" are orthogonal and ¥, € R"*" is
diagonal,

Uk = [Sk-la---,skn], Vk = [dkl,...,dk;n], (7.168)
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5, = diag(Br1, - - - Brn) (7.169)
with Bg1 > -+ > Brr >0, Bert1 = Pen =0, 7 =1,...,nand r = r(k).
Let us set
Une = 86155 Skme )y Vieme = [dr1, - -+, diny ] (7.170)
Dien, = diag(Br1, - - - Brny ) (7.171)

where Uy, € R™ " Vi, € R"™ and Yy, € R7™ 7. Now we define
G € R™*™ and Gy, : L2(Q,R™) = L2(Q,R™) by

Gknk = Uk"]l« Ek'r]k ij;yk and [gknk (Wk)](w) = Glﬂ?k [Wk (w)]v (7172)
respectively, for any wy, € L2(£, R").
Lemma 47. Let vy € L?(Q,R"). Then

G, (EN2VEY2 — @, (7.173)

VeV Vi Vk

Proof. This lemma is a different form of Lemma 42 given in Section 7.4.1.
O

We also write
1/2 T
E/%, = Uy Za Uik

VEVk

for the SVD of EY/2  and denote

VUL’
Uiy = Ui Umy2l, Cy = diag(oimy, - -+ 0ei))

and
Eoo BV 2 Uy = [Agyn Az,

where

Yy = diag(a(xys - - Tn(k))

with Olk) = "+ 2 Oyk) > 0 and Oir1(k) = = Oni) =0, U(k)l e R
and Ay € R™*.

If A is any matrix then we write (A),, for a matrix defined similarly to
(7.12).
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Theorem 61. Let vyq,...,v, be orthogonal vectors determined by Lemma
34 of Section 5.7.4. Then f° and F9,... fp, satisfying (7.140)—(7.141),
are determined by

p
— Y FE[vi] (7.174)
k=1
and
FY = Gy, (BT + M1 —EY2 (B2, (7.175)
FY =Gy (B2 + M[I -2 (B2 )] (7.176)

where fork=1,...,p,
My = (A1) Cry QiU fRye (7.177)

with an arbitrary matriz Qy, € R (™~Y,
The accuracy associated with transform Tg given by (7.142) and (7.174) -
(7.176) is such that

Elllx = To)I%] = B — ZZ% (7.178)

k=1j=1

Proof. If v1,...,v, are determined by Lemma 34, then J(f, F1,...,F}p) is
still represented by (7.150). Let us consider Jy, J; and Js given by

Ji=|f - Elx]+ ZFkE [vi]lI® (7.180)
k=1
and
Z IFREY2, — o (BY2, )12 (7.181)

To show that
J(f, Frseo s Fp) = Jo+ Ji+ Ja (7.182)
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with J(f, F1,...,F,) defined by (7.150), we use the relationships (see Sec-
tion 4.4.1)

El’“kEIkvkEvkvk = Eﬂwk and Ezkvkﬂi}){%k - (Eiﬁk) (7'183)
Then
Jio= tre(ffr T
1= w(ffT - FEx +Zvak Fy + E[x]E[x"]
k=1
P P
—E[f" =Y EXEN[IF +) FEVi]f"
k=1 k=1
P P P
Y FENMJEX"]+ > FE[vi] Y ENIF)  (7.184)
and
P
Jy = Ztr Egv, ’Uk’Uk)E'Uk'Uk (Fk Elk ’UkE'kaL’)
k=1
P
- Z tI' FkEvkvk FkEvk:v Emkag + ]EzvkEvkvkEvkm)a
k=1
where
P P P
Z r(FyEy, ., FT) = tr[E(Z Fivy, ZV?FZ-T)}
- P
—tr( Z FyE[vy] > ENTIF) (7.185)
k=1 =1
because
ElvivE] = E[vi)]E[vi]=0 for i#k (7.186)
due to orthogonality of the vectors vy, ..., vg,.

On the basis of (7.183)—(7.185) and similarly to (7.157)—(7.157), we
establishe that (7.182) is true. Hence,

J(f, Fiyeo s Fp) = |EX2)? - ZHEM Ey2 )2

+|f - Elx +ZFkEVk]H2 (7.187)
k=1
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+Z IFREL, — Eou, (Bo/2)%.

It follows from the last two terms in (7.187) that the constrained minimum
(7.140)—(7.141) is achieved if f = fO with f° given by (7.174), and F} is
such that

J(FY) = min Jy.(Fy) (7.188)
k

subject to
rank(Fy) = n,

where
Te(Fk) = | FREY2, — Egy, (o2 )T

VkVk VkVk

Therefore, the constrained minimum (7.140)—(7.141) is achieved if f = f°
where f is defined by (7.174), and if

Fy = F) = Gy, (B2 )T + My [I — E}/2, (B2 )1, (7.189)
The latter follows from Theorem 54 and Remarks 29 and 30. Thus, (7.175)—
(7.176) are true.

Next, similar to (7.161),

||E1"Uk (qu;ﬁk)THQ - ||G7]k - Ezvk E%%k T”Q Zﬂk] (7'190)

Then (7.178) follows from (7.187), (7.189), (7.174) and (7.190). O

Remark 40. The known reduced-rank transforms based on the Volterra
polynomial structure [159, 167, 173, 182] require the computation of a co-
variance matriz similar to E,,, where v .= [vy,... ,vp]T, but forp = N
where N is large (see Section 4.4.2 ). The relationships (7.157)—(7.159)
and (7.184)—(7.188) illustrate the nature of the proposed method and its
difference from the techniques in [159, 167, 173, 182]: due to the structure
(7.137) of the transform T, the procedure for finding f°, }'(1), cee ]-"g avoids
direct computation of E,, which could be troublesome due to large N. If
operators Q1,...,Q, are orthonormal, as in Theorem 60, then (7.156) is
true and the covariance matrix E,, is reduced to the identity. If operators
Q1,...,9, are orthogonal, as in Theorem 61, then (7.186) holds and the
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covariance matriz B, is reduced to a block-diagonal form with non-zero
blocks By, v, , - -, Ey,v, s0 that

Evo, O ... O
Eo—| O Eum 0
0O O .. E,,,

with @ denoting the zero block. As a result, the procedure for finding f°,

}"(1), ces ]—'g is reduced to p separate rank-constrained problems (7.159) or

(7.188). Unlike the methods in [159, 167, 173, 182], the operators FY, . .. JFh
are determined with much smaller m X n and n X n matrices given by
the simple formulae (7.147) and (7.174)—(7.176). This implies a reduc-
tion in computational work compared with that required by the approach
n [159, 167, 173, 182]. In Table 5 of Section 7.6.8, this observation is
tllustrated with results from numerical simulations.

Corollary 20. Let vy, ..., v, be determined by Lemma 34 of Section 5.7.4.
Then the vector f and operators Fi,...,Fp, satisfying the unconstrained
minimum (7.140), are determined by

= i (7.191)

and
Fi = EuEl , + M —-E,,El ] (7.192)
Fy = Eu,El, + Ml —E,.,E ] (7.193)

with My, ..., M, defined in Theorem 61. The associated accuracy for trans-
form T, defined by

P
+ Zﬁk(vkL
k=1
s given by

Eflx = T,()I%] = IE)1% - j{:lﬂEka1Ei£5k ). (7.194)
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Proof. It follows from (7.187) that the unconstrained minimum (7.140) is
achieved if f is defined by (7.191) and if F}, satisfies the equation

E1/2 7Emvk(E1/2 )T -0

VkVk VEVk

for each k = 1,...,p. Similar to (7.189), its general solution is given by

Fy = F, =E, Ef |+ My[I — E,0 El , ).

TV VRV

because
E1/2 (E1/2 ) :E ET

Ve Vi VE Vi ViV v *

We define Fy, by [Fi(wi)](w) = Fy[wi(w)] for all k = 1,...,p, and then
(7.192)—(7.193) are true. The relation (7.194) follows from (7.187) and
(7.191)—(7.193). m

Remark 41. The transforms given by Theorems 60 and 61 are not unique
due to arbitrary operators My, ..., My,. A natural particular choice is

Mi=..=M,=0.

7.6.5 Compression procedure by 7'2

Let us consider transform Tg given by (60), (7.174)—(7.176) with M}, =
O for k = 1,...,p where My is the matrix given in (7.189). We write
— 70 0. mpn m
[7'2(y)](w) =T)(y) with ) : R" - R
Let
B{" = S Vi, DL, and BY = DI (B2 )f

VkVk
so that B,(cl) € R™*" and B,(f) € R"™*". Here, m, ..., n, are determined
by (7.141). Then

f+ZB k Uka

where vy = vi(w) and B,(f)vk € R™ for k = 1,...,p with 1 + ... +
np < m. Hence, matrices Bf), ceey Bz(f) perform compression of the data
presented by v1,...,v,. Matrices B%l), e B(l) perform reconstruction of
the reference signal from the compressed data.

The compression ratio of transform ’Tg is given by
=(m+...+n)/m. (7.195)
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7.6.6 Special cases of transform 7,
Choice of operators ¢y, ..., ¢,

The results above have been derived for any operators ¢y, ..., ¢, in the
model 77,. Some specializations for ¢, ..., ¢, were given in Section 7.6.2.
Here and in Section 7.6.6, we consider alternative forms for ¢4, ..., ¢,

(i) Operators ¢y, ..., ¢, can be determined by a recursive procedure
as follows. First, we set ¢, (y) =y and determine estimate x( of x from
the solution of problem (7.140) (with no constraints (7.141)) by Corollaries
19 or 20 with p = 1. Next, we put

pi(y) =y and @,(y)=x",

and find estimate x(?) from the solution of unconstrained problem (7.140)
with p = 2. In general, for j = 1,...,p, we define

on(y) = X(j_l)a

where xU~1 has been determined similarly to x(?) from the previous steps.
In particular, x(© =y.

(ii) Operators ¢4, . . ., ¢, can also be chosen as elementary functions. In
item (i) of Section 7.6.2, ¢ (y) was constructed from the power functions.
An alternative possibility is to choose trigonometric functions for ¢ (y).
One can put

(W) =y and  [pg(y)](w) = [cos(kyr), ..., cos(ky,)]"  (7.196)
with y = [y1,...,yn)T and k=1,...,p— 1.

Special form of the constraint

While the statement of the problem in the form (7.140)—(7.141) with p
constraints allows us to facilitate a computational load, other forms of the
constraint can lead to some alternative advantages. In particular, if in
(7.140)—(7.141), p=¢q,q+1, ..., where ¢ = min{m,n}, and F; # O for all
j =1,...,p then even for the minimal possible ranks 9 =1, ..., g, =1
in (7.141), the compression ratio is

0:821,

q

i.e. no compression of x can be achieved. To avoid such a bottle-neck,
we consider the case when p constraints (7.141) are replaced with the one
constraint in the form

rank [Fy...F)) <r<gq. (7.197)
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Then the problem is to find f°, F7,.. .,F;} satisfying (7.140) subject to
(7.197). As in Section 7.6.3, it is supposed that the vectors vyq,...,v, in
(7.137), (7.138) and (7.140) are orthogonal.

Let the SVD of the matrix [Eyy, Eitb: ... Eyy, ESH] be
USVT = B, EIY? .. By, B, (7.198)

V1V VpUp

where U € R™*" V € R™" are orthogonal and X~ € R™™" is diagonal,

U=1s1,.-,8n), V =[d1,...,dy], (7.199)
X = diag(fi,.-.,0n) (7.200)
with gy >--->06,>0, 6411 =0,=0andl=1,...,n.
Let us set
Ur=[s1,--,8¢), Ve=][d1,...,d;] (7.201)
X, = diag(f, ..., Br), (7.202)

where U, € R™*", V,, € R™*" and X, € R™*". Now we define G, € R™*"
and G, : L2(Q, R") — L2(Q,R™) by

G, =U,5V" and [G.(w)|(w) = G, [w(w)], (7.203)

respectively, for any w € L?(Q, R™). The matrix G, can be represented in
a block form

G, =[B...B,), (7.204)

where B; = G,[:,(j — 1)n+ 1 : jn] € R™*" is a block formed by the n
subsequent columns of the matrix G, beginning from the ((j — 1)n + 1)th
column.

The family of solutions to the problem (7.140), (7.197) is given by the
following theorem.

Theorem 62. The vector f° and matrices FY, ..., FI? that satisfy (7.140)
and (7.197) are such that
P
fO=Ex - F)E[v,] (7.205)
j=1

and

F) = BE/2 + M;(I - E)2 BV, j=1,....p, (7.206)

Vv
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where M; € R™*" is an arbitrary matriz such that rank [F{ ... FJ] < r
defined similarly to M; in Theorem 61.

The error associated with the transform defined by (7.137), (7.138),
(7.205), (7.206) is given by

Elllx = To)I%] = B2 — 262 (7.207)

Proof. The proof follows from thew proof of Theorem 61 and from the fact
that

[EY/2 O ... O ]
gz_| O E)/2 ... O
| O o ... EZ |
and
TEVZ 0 ... 0 ]
1/2
g | O E/2 ... 0
o o .. E/

O

Corollary 21. The accuracy associated with transform given by Theorem
62 is better than that of the transform given by Theorem 61 if
P

> Z% < Z B;. (7.208)

k=1 j=1

Proof. The proof follows directly from the proofs of Theorems 61 and 62.
O

In Section 7.6.9, this transform is illustrated with numerical simulations.

7.6.7 Other particular cases of transform 7,: comparison
with known transforms

Optimal non-linear filtering

The transforms 7, (7.162)~(7.163) and T, (7.191)(7.193), which are
particular cases of the transforms given in Theorems 1 and 2, represent op-
timal filters that perform pure filtering with no signal compression. There-
fore they are important in their own right.
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The Fourier series as a particular case of transform 7 ,.

For the case of the minimization problem (7.140) with no constraint (7.141),
Fi,...,Fp are determined by the expressions (7.162) and (7.191)—(7.193)
which are similar to those for the Fourier coefficients [20]. The structure
of the model 7, presented by (7.137) is different, of course, from that for
the Fourier series and Fourier polynomial (i.e. a truncated Fourier series)
in Hilbert space [20]. The differences are that 7, transforms y (not x
as the Fourier polynomial does) and that 7, consists of a combination of
three operators ¢,, Qf and Fj where

Fr: L2(Q, Hy) — L*(Q, Hy)

is an operator, not a scalar as in the Fourier series [20]. The solutions
(7.162) and (7.191)—(7.193) of the unconstrained problem (7.140) are given
in terms of the observed vector y, not in terms of the basis of x as in
the Fourier series/polynomial. The special features of T, require special
computation methods as described above and in Section 7.6.8 below.

Here, we show that the Fourier series is a particular case of the transform
Tp-

Let x € L?(Q, H) with H a Hilbert space, and let {vi,vs,...} be an
orthonormal basis in L?(Q, H). For any g,h € L?(Q, H), we define the
scalar product (-,-) and the norm | - ||, in L?(Q, H) by

I
&) = [ ghdu) md el = ()" (7.209)
respectively. In particular, if H = R™ then

el = / &(@)[g@)] T du(w /ng )[2dp(w) = Ellg]?] (7.210)

i.e. E[||g|/?] is defined similarly to that in (7.139).

Let us consider the special case of transform 7, presented in item (iii)
of Section 7.6.2 and let us also consider the unconstrained problem (7.140)
formulated in terms of such a 7, where we now assume that x has the zero
mean, f = Q, p= oo, {V1,Va,...} is an orthonormal basis in L?(£2, H) and
F is a scalar, not an operator as before. We denote oy = Fj; with ai €
R. Then similar to (7.162) in Corollary 19, the solution to unconstrained
problem (7.140) is defined by é; such that

a =By, with k=1,2,....

Here,
Eyo, = Elxvi] — E[x]|E[vk] = Elxvi] = (x,Vg)
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since E[x] = 0 by the assumption. Hence, &y = E,,, is the Fourier coeffi-
cient and the considered particular case of T ,(y) with Fj determined by
Qg is given by

Z (x,vi)v (7.211)
k=1

Thus, the Fourier series (7.211) in Hilbert space follows from (7.137),
(7.140) and (7.162) when 7, has the form given in item (iii) of Section
7.6.2 with x, f, p, {v1,va,...} and Fy as above.

The Wiener filter as a particular case of transform Tp
(7.191)—(7.193)

In the following Corollaries 22 and 23, we show that the filter 7, guarantees
better accuracy than that of the Wiener filter.

Corollary 22. Letp =1, E[x] =0, Ely]=0, ¢, =1, Q=1
and M7 =0 or M = ExyEzy. Then T is reduced to the filter T such
that [T (y)](w) = T[y(w)] with

T = E,yE},. (7.212)

Proof. Let T1 be such that [T1(y)](w) = Ti[y(w)]. For E[x] = 0 and
Ely] =0, we have f = 0. If ¢p; =T and Q; = I then v =y.
Next, for A; = E,,,El . on the basis of (7.183), one has

TV1 Vv

T\ = EgyFE}, + EuyE), — B B} B, El = E, El =T.

vy vy vy
The case when A; = O is obvious. Hence, (7.212) is true. O
Remark 42. The unconstrained linear filter, given by (7.212), has been

proposed in [63]. The filter (7.212) is treated as a generalization of the
Wiener filter.

Let x, v1,...,Vp be the zero mean vectors. The transform 7_',,7 applied
to X, Vi,...,Vp, is denoted by Tw,p.

Corollary 23. The error E[||x— 'Twp( )I?] associated with the transform
Twyp is smaller than the error E[||x — T(¥)||?] associated with the Wiener

filter [63) by Z | Bzs, (B 2 T2, de
k=2

ElI% - Tw, )% = Ell% - ZHEW B2 R (r.213)
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Proof. 1t is easy to show that
~ ~ . 1/2 1/2
Ell% — T2 = | B4 — | Bz (B2, (7.214)

VU101

and then (7.213) follows from (7.194) and (7.214). O

PCA-KLT as a particular case of transform 7'2 (7.174)—(7.178).
PCA-KLT [63] follows from (7.174)—(7.178) as a particular case if

f=0, p=1 ¢,=1I, Q=1 and A; =0.

To compare the transform Tg with PCA-KLT [63], we apply Tg, repre-
sented by (7.174)—(7.178), to the zero mean vectors X, v1,...,V, as above.
We write 7, for such a version of 7—27 and T for PCA-KLT [63].

PCA—-KLT

Corollary 24. The error E[||x — T,(y)||?] associated with the transform

T, is smaller than the error E[||[X—T poa_ e (¥)|?] associated with PCA-
P M

KLT [63] by > Y 7, i.e.

k=2 j=1

Bl — T332 = ElI% — Tpenrn @I - 3368 (7.215)

k=2 j=1

Proof. The error associated with F [63] is represented by (7.178)

PCA—-KLT
forp=1,
1/9 U
Ell% = T peacscor @) = 1 EEIP = 3 525 (7.216)
j=1
Then (7.215) follows from (7.178) and (7.216). O

The transform [158] as a particular case of transform 7'2.

The transform [158] follows from (7.137) as a particular case if

f=0, p=2 ¢(y)=y, @sy)=y°> and Q1 =Qy=1

where y? is defined by y?(w) = [y?,...,%2]T. We note that transform [158]
has been generalized in [173].
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The transforms [173] as particular cases of transform 7.

The transform [173] follows from (7.137) if
Q=17, ¢.ly)=y" where y*"=(y,...,y)€ L*Q,R"™)

with R™ is the kth degree of R™, and if F}, is a k-linear operator.
To compare transform 7’2 and transform 7 [y73) [173] of rank r, we write

zj =Yy, 2Z= [zl,...,zn]T, s=[1 yT zT]T

and denote by ajy, ..., a, the non-zero singular values associated with the
truncated SVD for the matrix EIS(E;QQ)T. Such a SVD is constructed
similarly to that in (7.167)—(7.170).

Corollary 25. Let

3
=
=3

and let Ay, > 0. The error E[||x — Tg(y)HQ] associated with the transform

Tg is less tha@ the error E[||x — T 173 (y)|1?] associated with the transform
T[173] by Ap, 1.€.

Ellx = To)1%] = Ellx = Tuzs ()17 = Ap- (7.217)

Proof. Tt follows from [173] that

Ellx = T ()] = 1 E21% = D af. (7.218)
j=1
Then (7.217) follows from (7.178) and (7.218). O

We note that, in general, a theoretical verification of the condition
A, > 0 is not straightforward. At the same time, for any particular x
and y, A, can be estimated numerically. In the case when, for a given p,
the condition A, > 0 is not fulfilled, the accuracy E[||x — 7, (y)||?] can be
improved by increasing p or by applying the hybrid method presented in
Chapter 4.

As we have noted before, the method in [173] requires much more com-
putational work than that needed for transform Tg

The results of numerical experiments presented in Section 7.6.9 below
demonstrate the superiority of the proposed transforms given in Theorems
60, 61 and Corollaries 19, 20 over transforms [63, 158, 173].
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Remark 43. Unlike the technique presented in [147], the above method
implements simultaneous filtering and compression, and provides this data
processing in probabilistic setting. The idea of implicitly mapping the data
into a high-dimensional feature space [21] could be extended to the transform
presented in this paper.

7.6.8 Numerical realization

(i) Orthogonalization. Numerical realization of transforms of random vec-
tors implies a representation of observed data and estimates of covariance
matrices in the form of associated samples. For the random vector ug,
we have ¢ realizations, which are concatenated into n x ¢ matrix Ug. A
column of Uy, is a realization of u;. Thus, a sequence of vectors uy,...,u,
is represented by a sequence of matrices Uy,...,U,. Therefore the trans-
formation of uy,...,u, to orthonormal or orthogonal vectors vy, ..., v,
(by Lemmata 33 and 34 in Section 5.7.4) is reduced to a procedure for
matrices Uy,...,U, and V4,...,V,. Here, V; € R"*? is a matrix formed
from realizations of the random vector vy, for each k =1,... p.

Alternatively, matrices Vi,...,V, can be determined from known pro-
cedures for matrix orthogonalization [50]. In particular, the QR decom-
position [50] can be exploited in the following way. Let us form a matrix

U=[Uf...U'" e R"™*? where p and ¢ are chosen such that np = ¢, i.e.
U is square. Let

U=VR

be the QR decomposition for U with V' € R™*? orthogonal and R € R™*¢
upper triangular. Next, we write V = [V ... V./TT € R"P*? where V}, €
R"*Y for k = 1,...,p. The sub-matrices V1,...,V, of V are orthogonal,
ie. ViVjT = { (?’ j i?’ , for i,j=1,...,p, as required.

Other known procedures for matrix orthogonalization can be applied to
Ui,...,U, in a similar fashion.

Remark 44. For the cases when vy,..., v, are orthonormal or orthogonal
but not orthonormal, the associated accuracies (7.149), (7.164), (7.178)
and (7.194) differ for the factors depending on (IEI/2 Y. In the case of

VkVk
1/2 L
orthonormal vi,...,vp, (Evévkﬁ = I and this circumstance can lead to an
increase in the accuracy.

(ii) Covariance matrices. The expectations and covariance matrices in
Theorems 60 and 61 and Corollaries 19 and 20 can be estimated, for ex-
ample, by the techniques considered in Section 5.3 of Chapter 4.

6Matrix U can also be presented as U = [U; ... Up] with p and g such that n = pq.
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(iii) Transforms 7'2, '7'p and ’7'p for zero mean vectors. The computational
work for 79 (Theorems 60 and 61), 7, and T, (Corollaries 19 and 20,

respectively) can be reduced if 7'2, 7'p and 7_',) are applied to the zero
mean vectors X, Vi, ..., vV, given by

x=x—FE[x], V1=vi—E[vi],...,Vp=v, — E[v,].

Then f° = O and f = Q. The estimates of the original x are then given
by

and

X = E[X} + Zj:k({/k)

respectively. Here, F, Fr, and Fj, are defined similarly to (7.147), (7.162),
(7.175), (7.176), (7.192) and (7.193).

7.6.9 Simulations

Simulations to illustrate transforms by Theorem 61 and
Corollary 20

The transforms 79 (Theorem 61), T (Corollary 20) and the known trans-
forms [63], [158], [173] have been applied to compression, filtering and
subsequent restoration of the reference signal given by the matrix X €
R?96%256 " The matrix X represents the data obtained from an aerial digi-
tal photograph of a plant”.

We divide X into m x ¢ sub-matrices X;; € R™*? withi =1,...,256/m
and j = 1,...,256/¢. By assumption, the sub-matrix X;; is interpreted
as q realizations of a random vector x € L?(Q,R™) with each column
representing a realization. Observed data were modelled in the form

where the symbol e denotes the Hadamard product and )_(Z-j represents ¢
realizations of the vector x = x — E[x].

The proposed transform 79, given by (7.137) and (7.174)—(7.176) for
p = 2, and the transforms Tjg3) [63], Tj15g) [158] and T}173) [173] have been
applied to each pair X;;, Y;;.

"The database is available in http://sipi.usc.edu/services/database/Database.html.



Table 4. Performance comparison of transforms 7% and Ti63-

I m=38, q=16 |
H H Accuracy H Flops H
H cr H J[63] JS J[e:s]/z H K[GS] KT20 ‘ K[63]/KT29 H

— [5.95 x10°% [ 2.01 x 1072° | 1.34 x 10%3 ][ 1.14 x 107 | 3.20 x 107 0.36

1/2 [ 5.95 x 10° | 3.97 x 103 | 6.64 x 10° || 2.37 x 107 | 5.50 x 107 0.43

1/4 [ 5.95 x 10° | 3.30 x 10* | 5.50 x 10* || 2.35 x 107 | 5.21 x 107 0.43
H m=16, q=32 H
H H Accuracy H Flops H
[ er [ Jes J3 Jes2 || Kies Kry | Kies)/Kro |

— [[9.82x10° [ 5.09 x 10-%5 | 4.1 x 1031 [[ 2.08 x 107 | 6.03 x 107 0.35

1/2 [ 9.82 x10° | 7.10 x 10° | 1.70 x 10* || 4.34 x 107 | 9.81 x 107 0.45

1/4 [ 9.84 x 10° | 7.50 x 10* | 2.46 x 10° || 4.29 x 107 | 9.81 x 107 0.44
H m=32, q=064 H
H H Accuracy H Flops H
[er [ Jisg J3 Josz || Koy Kry | Koy/Kry ||

— [ 1.81x 107 | 1.16 x 1072* | 8.6 x 10%° || 3.95 x 107 | 1.18 x 10® 0.33

1/2 [ 1.82x 107 | 1.75 x 10* | 6.73 x 103 || 8.21 x 107 | 1.88 x 108 0.44

1/4 || 1.83 x 107 | 2.00 x 10° | 1.05 x 103 || 8.12 x 107 | 1.86 x 108 0.44

c9¢€
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Operators ¢, and ¢, in (7.137) have been defined so that
e1(y) =y and py(y) =x"

where x(1) has been determined from the procedure presented in item (i)
of Section 7.6.6. Orthogonal matrices V;, Vs for the transform 7Y have
been determined from the QR decomposition as described in Section 7.6.8.
Covariance matrices have been estimated from the associated samples with
the method given in Section 5.3.1.

We write
Jie3) = max 1 X35 — Ties) Yis 1%,
J1s8) = max 1 X35 — Thss Yasll,
Jy = max 1Xi; — T3 Yi51%,
Jjrs) = max 1Xi; — Trars) Yas I,
and

Ji63)/2 = H;ELX[HXU — Ties) Y 1P/ 1X5; — T5Yi51%1,
J[158]/2 = H%?X[HXU - T[158]Yin2/HXij - T20Yij||2}v
J[173]/2 = H%?X[HXij - T[173]Yij\|2/||Xij - T20Yij||2}-

We note that the transform Tz? is optimal in the class of transforms
defined in Section 7.6.3. The transforms Tg3) [63], Tji58) [158] and Tjy7g
[173] are each optimal in different transform classes.

The results of simulations are presented in Tables 4-6. For the same
compression ratio, the proposed transforms 79, T9 and the known trans-
forms Tigs), Tj158], T[173) are compared with respect accuracy and compu-
tational work.

The symbol ‘cr’ denotes the compression ratio. In the first column of
each table, the symbol ‘—’ denotes the case of a pure filtering with no
compression. In this case, PCA-KLT rank and the ranks of the operators
FP, ..., F£ of the transform Tg are all equal to m, i.e. n7p=m = ... =
Mp =M.

Tables 4-6 also represent the cumulative number of flops needed for pro-
cessing of data Y;; foralli =1,...,256/mand j = 1,...,256/¢q. We denote
the number by K with a subscript related to the associated transform. We
note that the number of flops, needed for the matrix orthogonalization
procedure, has been included in the overall number of flops for T%.
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68T | Q0L XUS'L | Q0L XEV'E || 0L X 21T | ;00X00% | 0L X 69°€ || ¥/1

ST | 0L XSS'T | Q0T XGI'E || 01X 19T | ;0L XGLT | (0L X 08T || &/1

16T | 0T XSUT | OUXPGT || 01X 6 | 1z OLXOTT | 0L XOUL || —
: Ly /I8etlyy 4 Sy [sstlyy : e/lsstlp r [sstl : ) :
I sdop I £oemooy I |
I 79=>b ‘zg=w |

8T 0T X 186 | 01 X 64T || 0T X €41 | 0T X 092 | (0T X 0% || ¥/1

&8l LOT X 186 | s0T X 08T || (0T X 186 | (0T X0T'L | 0T X 26T || &/T

661 L0T X €09 | ,01 X 988 || 20T X 26 | ez 0T X 60°G | 0T X GL'T || —
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Tables 4-6 are to compare accuracies of transforms 7%, Tie3) and T{15s)-
It follows from the tables that, for the same compression ratio, the accuracy
of the transform T¥ is substantially better than that for the transforms in
[63] and [158]. Although PCA-KLT requires a smaller number K3 of
flops than that of TY, the accuracy of PCA-KLT cannot be improved for
the same compression ratio. At the same time, KTzo is less than K[15g) (see
Table 5).

In Figures 7.3-7.5, we present the results of simulations for the case m =
16, ¢ = 32and cr = 1/2 taken from the Tables 4 and 5. In particular, for a
more conspicuous illustration of these results, in Fig. 7.5(b) we represent
the case of one-dimensional signals that are typical fragments of plots of
the same row in matrices {X;;} (solid line) and {79(Y;;)} (dashed line with
circles).

In Table 6, we compare performance of the proposed transform T3 with
that of the transform 7j;73;. The transform Tj;73) is based on a Volterra
polynomial of the second degree which requires N = 16 terms for X,;,Y;; €
R'6*32 This implies a substantial increase in computational work for T3
in comparison with the proposed transform 7%.

The simulations demonstrate the superiority of the considered trans-
form over known transforms Tigs), T]158) and Tji73) with respect to asso-
ciated accuracies and computational work. We note that the accuracy of
transforms Tig3) and T}15g) cannot be improved (for a fixed compression ra-
tio) and the computational work for transform 7};73 cannot be diminished
(for the same associated accuracy and fixed compression ratio). With this
method, it is possible that these measures can be improved using the free
parameters in the considered transform. This point has been discussed in
Remark 39 in Section 7.6.3.

In the case of ; and ¢, chosen from (7.196), the accuracy .J§ associated
with 72 is considerably worse than that for the original choice for ¢; and

Pa-

Simulations to illustrate transform by Theorem 62

Let the tensor (X(l), X®@), X(3)) be the numerical representation of the
known image “Tree”,® where X(*) ¢ RMXN | =12 3 and M = N = 256.
For each k = 1,2, 3, matrix X *) has been partitioned into 256 sub-matrices
X e R withi=1,...,32 and j = 1,...,8 s0 that X*) = {xM}.

8The database can be found in http://sipi.usc.edu/services/database/Database.html.
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Each sub-matrix Xi(f) has been interpreted as a set of 32 realizations
of a random signal with columns representing realizations.
Observed data has been simulated in the form

Y =10 R ¢ X 4500 RY, (7.220)

where Rgf) and 7@5;6) are matrices with uniformly distributed entries in the
interval (0,1) and normally distributed entries with mean 0 and variance
1, respectively.

In these simulations, we compare the performances of the transform
TY given by (7.137), (7.138), (7.205), (7.206) with the best transform of
the second degree P, by [158] and the optimal hybrid Hadamard-quadratic
transform T0 given by (7.87) and Theorems 56 and 57 forp =9 and r =5
(Section 7. 5) We note that the transform P generalizes PCA-KLT and is
a particular case of ngr (see Section 7.5.6). The rank has been used equal
to 5 for all the transforms.

The transforms have been applied to each pair of sub-matrices X Z(jk ) and

Ylgk) The related covariance matrices have been estimated by the known
simple estimates given in Section 5.3.1. As above, operators ¢, and ¢, for
the transform T have been defined by ¢, (y) = y and ¢, (y) = x(!) with
x(1) determined from the procedure provided in Section 7.6.6.

The results of simulations are presented in Table 7 and Figures 7.6-7.7.
In the table,

Apy = I XW-XPIIP, Arg = [ XP—X3 |? and Agg = [ XN - X
]E) and X (If)) are results of the application of the transform

Py, T0 and TQO, respectively. The matrices X[(15)2} X[(15)2] 95 X(k) Xé;g,

where X 1(30), X ;

X ®) and X have been composed from the corresponding 8 x 64 sub-
matmces snnllarly to the matrices from the preceding Section.

Table 7: Errors associated with
transforms P2, TST and T
of the same rank r = 5.

L [ 2r [ An [ An |
[ X [[22x10°% [ 3.4 %107 [[ 1.1 x10° ||
[ X; [22x10%[3.0x107 ] 1.3x 10° ]|
[ X3 [[2.7x10° [ 3.8 x107 [[ 1.2 x10° ||
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50 100 150 200 250

(a) Given reference signals {X;;}. This digitized image has
been taken from http://sipi.usc.edu/database/.

50 100 150 200 250
(b) Observed data {Yj;}.

Figure 7.3: Hlustration of simulation results from Tables 4 and 5.
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50 100 150 200 250
(a) Estimates of {X;;} by [63].

50 100 150 200 250
(b) Estimates of {X;;} by [158].

Figure 7.4: Hlustration of simulation results from Tables 4 and 5.
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50 100 150 200 250
(a) Estimates of {X;;} by T9.

0 I I I I I I
0 20 40 60 80 100 120

(b) Plots of related rows in {X;;} and 79(Y3;).

Figure 7.5: Illustration of simulation results from Tables 4 and 5.
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50 100 150 200 250
(a) Observed data (Y1), y(2) y(3)),

50 100 ‘ 150 20 250
(b) Reference signals (X1, X(2) X(3)). This digitized image
has been taken from http://sipi.usc.edu/database/.

Figure 7.6: Examples of performance of transforms Py and T5%.
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IIIL [I]] I‘I'

50 1w 150 20 250

(a) Estimates (X1(3129)’ Xl(fg), Xl(j’g)) by transform P.

50 1w 150 20 250

(b) Estimates (X;lo), X(Z) X(S)) by transform 7.

Figure 7.7: Examples of performance of transforms Py and T5.
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7.6.10 Discussion

Some distinctive features of the above techniques are as follows.

Remark 45. It follows from Theorems 60 and 61, and Corollaries 19
and 20 that the accuracy associated with the considered transform improves
when p increases.

Remark 46. Unlike the approaches based on Volterra polynomials [159,
167, 173, 182] the considered method does not require computation of pseudo-
inverses for large N X N matrices. Instead, the proposed transforms use
pseudo-inverses of n xn matriz E,, ,, . See Theorems 60 and 61. This leads
to a substantial reduction in computational work.

In summary, the approach considered in Section 7.6 is based on a rep-
resentation of a transform in the form of the sum of p reduced-rank trans-
forms. Each particular transform is formed by the linear reduced-rank
operator Fy, and by operators ¢, and Q with £k =1...,p. Such a device
allows us to improve the numerical characteristics (accuracy, compression
ration and computational work) of the known transforms based on the
Volterra polynomial structure [159, 167, 173, 182]. These objectives are
achieved due to the special “intermediate” operators ¢, ..., ¢, and Qj,
..., @p. Such operators reduce the determination of optimal linear reduced-
rank operators F (1), e .7-'2 to the computation of a sequence of relatively
small matrices (Theorems 60 and 61).

The explicit representations of the accuracy associated with the pro-
posed transforms have been rigorously justified.

It has been shown that the proposed approach generalizes the Fourier
series in Hilbert space, the Wiener filter, the Karhunen-Loeve transform
and the transforms [159, 167, 173].

7.7 Optimal Generalized Hybrid Transform

In this section, we consider an extension of the methods of Sections 7.5
and 7.6 to a more general case. An idea is to apply the transform given
by Theorems 60 and 61 to each iteration of the recurrent procedure of the
hybrid method of Section 7.5. The technique summarized in Theorems 60
and 61 is more general than the Hadamard-quadratic approximation used
in Section 7.5 and, therefore, has more degrees of freedom to improve the
performance of the transform resulted in such a device.
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7.7.1 Method description

Let x and y be as in Section 7.5, i.e. x € L?(Q,R™) and y € L?(Q,R").
The proposed transform consists of two stages which we call the recurrent
unconstrained error minimization and the constrained error minimization.

Stage one: recurrent unconstrained error minimization. Let x¢o =y and

let x1, X2, ..., X € L2(2,R™) be defined by
xj+1 =T (%)), (7.221)
where for j =0,1,...q—1,

p
Ti(x;) = fj'f'szijjS%j(Xj)

k=1
~ P ~
= fi+D Frilviy) (7.222)
k=1
with
T .72 v 2 m _ no it j=0,
T;: L*(Q,RY) — L*(Q,R™), V—{m if j=1,,...,q °

fi €R™, oy LAQRY) — L*(Q,RY),  Qpj: L*(Q,RY) — L*(Q,R™),
Frj: L*(Q,RY) = L*(Q,R™) and  vi; = Qpjlepn; (x5)]-

Here, for each j = 0,1,...,¢—1, operators ¢, ; and Q; are chosen similarly

to those in Section 7.6, and the vector fj and operators F %; are determined
from the solution of the unconstrained minimization problem

T(fi, Frjy o Fpj) = oA T Fug Fag), (7.223)
where
T(fjs F g Frj) = Bllx = T;()|)- (7.224)

The functional J(f;, F1;,...Fpj) represents the error associated with
x estimation by 7 ;, therefore, the solution to the problem (7.223) is called
the recurrent unconstrained error minimization.

Stage two: constrained error minimization. Next, for j = ¢, the vector
[ and the operators ]-"gq are determined from the solution of the rank-
constrained minimization problem

J(f2 Fye FO) = min _ J(fo. Fig,.- o Fpq) (7.225)

fqvﬁlmn-v]:pq
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subject to
rank .7-"1q <m, ..., rank j:pq < Ny, (7.226)
where
m+...+n, <n <min{m,n}.
We write
p
To(xg) = 9+ Fla(Vig)- (7.227)

k=1

7.7.2 Determination of the transform

Theorem 63. Letvyj,...,v,; be determined by Lemma 34 of Section 5.7.4
for each j =0, 1, ..., q. Then the vector f; and operators Fij,...,Fp;j,
satisfying the unconstrained minimum (7.223), are determined by

p

| = FijElvs;] (7.228)
k=1
and
Fij = Bep B, + M —Ey 0, El ], (7.229)
Fpj = Eau, Bl , +MI—Ey . El ], (7.230)
where M; € R™*™ is an arbitrary matriz for each j =1,...,p.
The associated accuracy for transform Tj, defined by (7.222) is given
by?
Elllx = T;(x)[I%] = 1B - ZZIIEL% (Ey2,)T1% (7.231)
s=0 k=1

Proof. The proof of relationships (7.228)—(7.230) follows from the proofs
of Theorem 61 and Corollary 20. The proof of the error representation
(7.231) follows from the proofs of Theorem 43 (Section 5.7.7), Theorem 61
and Corollary 20. O

9In particular, My, can be chosen as the zero operator.
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We need more notation as follows.
Let the SVD of the matrix E;_o,, (EY/2, )t be given by

VkqVkq

UngZngVity = Eagug (B2, )T, (7.232)

VkqVkq

where Uy, € R™*", V}, € R"*" are orthogonal and Xy, € R"*" is diago-
nal,

Ukg = [Sk1s -+ Skn)s Vg = [dr1, -+ -, din], (7.233)
Lkq = diag(Br, - - -, Brn) (7.234)
with Bg1 >+ > Brr >0, Bert1 = Ben =0, r=1,...,n and r = r(k).
Let us set
Uy = [Sk15 -+ Skmi )y Viense = [d1, - -+ s diony ] (7.235)
L = diag(Br, - - Brng ) (7.236)

where Uy, € R™* ™ Vi, € R™" and %, € R™* 7. Now we define
Gine € R™™ and Gy, : L2(Q,R™) — L2(Q,R™) by

G = Ukny Tk Vi a0d [Gin, (Wio)|(w) = Gy [Wiq(w)],  (7.237)

respectively, for any wy, € L*(Q,R"™).
i EV2 N L2(Q,RY) — L2(Q,R™) are defined

VkqUkq' ( VkqVUkq

The operators E
similarly to the operators £f , ,(£1/2 ) given in Section 7.6.4.

VUL ? VEVk
We write A;, € R™*" for an arbitrary matrix, and define operator My :

L2(Q,R"™) — L?(Q,R™) by [My(w)](w) = Apw(w) for any w € L?(2,R").

Theorem 64. Let vig, ..., Vpe be orthogonal vectors determined by Lemma
34 of Section 5.7.4. Then fqO and ]:?q, . ,fgq, satisfying (7.223)—(7.226),
are determined by

P
g = EBlxg] =) FEVi] (7.238)
k=1
and
FO = Gip(EY2, )T+ My [T —EY2, (EY2, ), (7.239)
Fpy = Gpn, (B2, )+ MT-EY2, (B2, )] (7.240)
where, for each j = 1,...,p, M; € R™*" is an arbitrary matriz defined

stmilarly to M; in Theorem 61.
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The accuracy associated with transform '7'0 given by (7.227) and (7.238)—
(7.240) is such that

P Nk

Elllx = ToIPT = IIEZZ217 = >° D B

k=11=1

p
D e, (B2, )P (7:241)
k=1

—

=}

@
I
=)

Proof. The proof follows from the proofs of Theorem 43 (Section 5.7.7) and
Theorem 61. 0

7.7.3 Discussion
Optimal hybrid filtering.

The transform 7 given by (7.222) and Theorem 63 represents a model
of the filter and, therefore, is important in its own right. The transform
7'j can be considered independently from the transform 7'2q. It follows
from the representation of the error (7.231) associated with the filter 7T
that its accuracy is improved with an increase in the number of iterations
j and the number of terms p. Other advantages and degrees of freedom are
associated with the transform given by Theorems 60 and 61 of Section 7.6.
This transform is used at each iteration of the recurrent procedure (7.221).

Features associated with the transform of Section 7.6.

Both transform 7-pj and transform ’qu possesses features inherited from
the transform of Section 7.6. In particular, the computational load of both
transforms is lessened in comparison with the transforms based on the
Volterra polynomial structure (see Remark 40 in Section 7.6).

The compression procedure of the transform 7'2(1 is similar to that con-
sidered in Section 6.5.8. The compression ratio is given by

=(m+...4+mp)/m (7.242)

and it can be varied according to variations in each 7 for k=1,...,p.

7.8 Concluding Remarks

In this chapter, we have presented the computational methods for data
processing of high dimensionality. In Sections 7.2 and 7.4, we have given
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a rigorous justification and generalization for the Principal Components
Analysis also known as the Karhunen-Loéve Transform (PCA-KLT). In
Section 7.3, wide generalizations of the Eckart-Young low-rank approxi-
mation theorem have been presented. In Sections 7.5-7.7, three compu-
tational methods have been provided which are diverse generalizations of
PCA-KLT. These methods are united by the idea of increasing the degrees
of freedom compared to PCA-KLT. While PCA-KLT has only one degree
of freedom (its rank), the methods given in Sections 7.5-7.7 have extra de-
grees of freedom associated with their specific structures. As a result, the
extra degrees of freedom are the number of iterations for the methods in
Sections 7.5 and 7.7, and the choice of nonlinear operators which comprise
the methods of Sections 7.6 and 7.7. Variations of the degrees of freedom
allow us to improve the performance of the methods for data processing
presented in this chapter.
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