

COMPUTING FOR
SCIENTISTS AND
ENGINEERS

COMPUTING FOR
SCIENTISTS AND
ENGINEERS
A Workbook of Analysis,
Numerics, and Applications

WILLIAM J. THOMPSON
University of North Carolina
Chapel Hill, North Carolina

A Wiley-Interscience Publication
JOHN WILEY & SONS, INC.
New York / Chichester / Brisbane / Toronto / Singapore

This text is printed on acid-free paper.

Copyright © 1992 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.
Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the
1976 United State Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.,
605 Third Avenue, New York, NY 10158-0012

Library of Congress Cataloging in Publication Data:
Thompson, William J. (William Jackson), 1939 -

Computing for Scientists and Engineers : a workbook of analysis,
numerics, and applications /William J. Thompson.

p. cm.
Rev. ed. of: Computing in applied science. c1984.
“A Wiley-Interscience publication.”
Includes bibliographical references and indexes.
ISBN O-471-54718-2 (cloth)
1. Numerical analysis-Data processing. 2. Science-Data

processing. 3. Engineering-Data processing. I. Thompson, William
J. (William Jackson), 1939- Computing in applied science.
II. Title.
QA297.T5 1992
519.4–dc20 92-16744

Printed in the United States of America
10 9 8 7 6 5 4 3 2

PREFACE

This preface is addressed to readers who are interested in computing but who sel-
dom either consult manuals or read prefaces. So, I will be brief.

Computing requires an integrated approach, in which scientific and mathematical
analysis, numerical algorithms, and programming are developed and used together.
The purpose of this book is to provide an introduction to analysis, numerics, and
their applications. I believe that a firm grounding in the basic concepts and methods
in these areas is necessary if you wish to use numerical recipes effectively. The
topics that I develop extensively are drawn mostly from applied mathematics, the
physical sciences, and engineering. They are divided almost equally among review
of the mathematics, numerical-analysis methods (such as differentiation, integration,
and solution of differential equations from the sciences and engineering), and data-
analysis applications (such as splines, least-squares fitting, and Fourier expansions).

I call this a workbook, since I think that the best way to learn numerically ori-
ented computing is to work many examples. Therefore, you will notice and, I hope,
solve many of the exercises that are strewn throughout the text like rocks in the
stream of consciousness. I try to introduce you to a technique, show you some of
the steps, then let you work out further steps and developments yourself. I also
suggest new and scenic routes rather than overtraveled highways. There are occas-
ional diversions from the mainstream, often to point out how a topic that we are de-
veloping fits in with others in computing and its applications.

The programming language in which I present programs is C. This language is
now used extensively in systems development, data-acquisition systems, numerical
methods, and in many engineering applications. To accommodate readers who pre-
fer Fortran or Pascal, I have used only the numerically oriented parts of C and I have

v

vi

structured the programs so that they can usually be translated line-by-line to these
other languages if you insist. The appendix summarizes the correspondences be-
tween the three languages. All programs and the functions they use are listed in the
index to programs. The fully-developed programs are usually included in the pro-
jects near the end of each chapter.

This book may be used either in a regular course or for self-study. In a one-
semester course for college students at the junior level or above (including graduate
students), more than half the topics in the book could be covered in detail. There is
adequate cross-referencing between chapters, in addition to references to sources for
preparation and for further exploration of topics. It is therefore possible to be
selective of topics within each chapter.

Now that we have an idea of where we’re heading, let’s get going and compute!

Chapel Hill, July 1992
William J. Thompson

CONTENTS

1. Introduction to Applicable Mathematics and Computing
1.1 What is applicable mathematics? 1

Analysis, numerics, and applications 2
Cooking school, then recipes 3
Diversions and new routes 4
Roads not taken 4

1.2 Computing, programming, coding 5
The C language for the programs 6
Learning to program in C 7
Translating to Fortran or Pascal from C 8
The computing projects and the programs 9
Caveat emptor about the programs 10
The index to computer programs 11

1.3 One picture is worth 1000 words 11
Why and when you should use graphics 11
Impressive graphics, or practical graphics 12

1.4 Suggestions for using this book 12
Links between the chapters 13
The exercises and projects 13

References for the introduction 14
General references 14
References on learning and using C 15

2. A Review of Complex Variables
2.1 Algebra and computing with complex numbers 18

The algebra of complex numbers 18
Programming with complex numbers 20
Complex conjugation, modulus, argument 23
A program for complex conjugate and modulus 25

1

17

vi i

vi i i CONTENTS

2.2 The complex plane and plane geometry 27
Cartesian and plane-polar coordinates 28
De Moivre’s theorem and its uses 29

2.3 Functions of complex variables 31
Complex exponentials: Euler’s theorem 3 1
Applications of Euler’s theorem 32
Hyperbolic functions and their circular analogs 34
Trajectories in the complex plane 38

2.4 Phase angles, vibrations, and waves 41
Phase angles and phasors 4 1
Vibrations and waves 42

2.5 Diversion: Interpreting complex numbers 43
Are complex numbers real? 43
Analytic continuation 44

2.6 Project 2: Program to convert between coordinates 45
Stepping into the correct quadrant 45
Coding, testing, and using the program 46

References on complex numbers 49

3. Power Series and Their Applications
3.1 Motivation for using series: Taylor’s theorem 51

The geometric series 52
Programming geometric series 53
Alternating series 56
Taylor’s theorem and its proof 58
Interpreting Taylor series 59

3.2 Taylor expansions of useful functions 60
Expansion of exponentials 61
Computing the exponential series 62
Series for circular functions 65
Inverse circular functions 70
Hyperbolic function expansions 71
Logarithms in series expansions 72
Series expansion of x In(x) 73

3.3 The binomial approximation 76
Deriving the binomial approximation 76
Applications of the binomial approximation 78
Linearized square-root approximations 78
Financial interest schemes 80

3.4 Diversion: Repetition in mathematics and computing 83
Iteration 84
Recurrence 84
Recursion 84

3.5 Project 3: Testing the convergence of series 85
Coding and checking each series expansion 85
Including the hyperbolic functions 91
File output and graphics options 92
The composite program for the functions 92
Using the program to test series convergence 97

References on power series 98

51

CONTENTS i x

4. Numerical Derivatives and Integrals
4.1 The working function and its properties 100

Properties of the working function 100
A C function for Homer’s algorithm 103
Programming the working function 106

4.2 Discrete data and numerical mathematics 110
The discreteness of data 110
Numerical mathematics 111

4.3 Numerical noise in computing 111
Roundoff and truncation errors 112
Unstable problems and unstable methods 114
Errors from subtractive cancellation 116
Program for roots of quadratic equations 119

4.4 How to approximate derivatives 122
Forward-difference derivatives 123
Derivatives by central differences 125
Numerical second derivatives 126
Better algorithms for second derivatives 128

4.5 Project 4A: Computing derivatives numerically 130
Derivatives of the exponential function 130
Differentiating the cosine function 132

4.6 Numerical integration methods 133
Trapezoid formula and program for integration 135
Simpson formula and program for integrals 140
Integrals with cosines 143
Higher-order polynomial integration 144

4.7 Project 4B: Electrostatic potential from a charged wire 145
Potentials by analytical integration 147
Potentials by numerical-integration methods 148

References on numerical derivatives and integrals 151

9 9

5. Fitting Curves through Data
5.1 How to fit curves using splines 154

What is a spline? 154
Properties for spline fits 156
Deriving the spline equations 156
The spline algorithm 158

5.2 Boundary conditions for spline fitting 159
Natural splines 160

5.3 Project 5: Program for spline fitting 161
The main program, Cubic Splines 166
The function SplineFit 167

5.4 Interpolating by splines 168
Interpolating values and derivatives 168
The C function Splinelnterp 169
Interpolating working-function values and derivatives 170
Interpolating cosine values and derivatives 173

153

x CONTENTS

5.5 Integration methods using splines 175
Deriving the integration algorithm 175
The C function for spline integration 176
Integrating the working function and cosine 177

5.6 Diversion: Computers, splines, and graphics 178
References on spline fitting 179

6. Least-Squares Analysis of Data
6.1 Introduction to the least-squares criterion 182

Maximum likelihood and least squares 182
Least squares and the objective function 185

6.2 Orthogonal functions and linear least squares 185
What are orthogonal functions? 186
Orthogonality and least squares 188

6.3 Errors in both variables: Straight-line least squares 190
Weighting models 190
Constant ratio of weights 192
Properties of the least-squares slopes 196

6.4 Least-squares normalization factors 199
Normalizing fitting-function values to data 200
Normalizing data to fitting values 201
The best-fit objective function 203
Program for normalizing factors 204

6.5 Logarithmic transformations and parameter biases 208
The origin of bias 209
Probability analysis for bias 210
Dependence of bias on error distribution 212

6.6 Project 6: Program for straight-line least-squares fits 214
Organization of Straight-Line Least Squares 214
Testing and using the least-squares program 217

References on least-squares analysis 218

7. Introduction to Differential Equations
7.1 Differential equations and physical systems 222

Why are there differential equations? 222
Notation and classification 223
Homogeneous and linear equations 224
Nonlinear differential equations 225

7.2 First-order linear equations: World-record sprints 225
Kinematics of world-record sprints 226
Warming up to the problem 227
Program for analyzing sprint data 229
Women sprinters are getting faster 234

7.3 Nonlinear differential equations: Logistic growth 235
The logistic-growth curve 235
Exploring logistic-growth curves 238
Generalized logistic growth 239

181

221

C O N T E N T S x i

7.4 Numerical methods for first-order equations 241
Presenting error values 241
Euler predictor formulas 242
Testing the Euler predictors 244
Adams predictor formulas 245

7.5 Project 7: Program for solving first-order equations
Programming the differential equation solver 247
Exploring numerical first-order equations 252

References on first-order equations 255

247

8. Second-Order Differential Equations
8.1 Forces, second-order equations, resonances 258

Forces and second-order equations 258
Mechanical and electrical analogs 259
Solving and interpreting free-motion equations 261
Forced motion and resonances 265

8.2 Catenaries, cathedrals, and nuptial arches 269
The equation of the catenary 270
Catenaries of various shapes and strengths 273
Demonstrating arches 278
Practical arches and catenaries 279

8.3 Numerical methods for second-order differential equations 279
Euler-type algorithms for second-order equations 280
Removing first derivatives from second-order linear equations 284
Deriving the Noumerov algorithm for second-order equations 2 8 5

8.4 Project 8A: Progamming second-order Euler methods 287
Programming the Euler algorithms 287
Euler algorithms and the exponential function 291
Euler algorithms and the cosine function 293

8.5 Project 8B: Noumerov method for linear second-order equations 294
Programming the Noumerov method 294
Testing Noumerov for exponentials and cosines 297
The quantum harmonic oscillator 299
Noumerov solution of the quantum oscillator 301

8.6 Introduction to stiff differential equations 304
What is a stiff differential equation? 305
The Riccati transformation 306
Programming the Riccati algorithm 308
Madelung’s transformation for stiff equations 311

References on second-order equations 312

257

9. Discrete Fourier Transforms and Fourier Series
9.1 Overview of Fourier expansions 316

The uses of Fourier expansions 316
Types and nomenclature of Fourier expansions 316

315

x i i CONTENTS

9.2 Discrete Fourier transforms 3 18
Derivation of the discrete transform 318
Properties of the discrete transform 320
Exponential decay and harmonic oscillation 322

9.3 The fast Fourier transform algorithm 329
Deriving the FFT algorithm 329
Bit reversal to reorder the FFT coefficients 332
Efficiency of FFT and conventional transforms 333

9.4 Fourier series: Harmonic approximations 334
From discrete transforms to series 334
Interpreting Fourier coefficients 336
Fourier series for arbitrary intervals 336

9.5 Some practical Fourier series 337
The square-pulse function 338
Program for Fourier series 340
The wedge function 343
The window function 345
The sawtooth function 347

9.6 Diversion: The Wilbraham-Gibbs overshoot 349
Fourier series for the generalized sawtooth 350
The Wilbraham-Gibbs phenomenon 353
Overshoot for the square pulse and sawtooth 356
Numerical methods for summing trigonometric series 359

9.7 Project 9A: Program for the fast Fourier transform 360
Building and testing the FFT function 360
Speed testing the FFT algorithm 364

9.8 Project 9B: Fourier analysis of an electroencephalogram 365
Overview of EEGs and the clinical record 365
Program for the EEG analysis 368
Frequency spectrum analysis of the EEG 372
Filtering the EEG data: The Lanczos filter 373

References on Fourier expansions 375

10. Fourier Integral Transforms
10.1 From Fourier series to Fourier integrals 377

The transition from series to integrals 378
Waves and Fourier transforms 379
Dirac delta distributions 379

10.2 Examples of Fourier transforms 380
Exponential decay and harmonic oscillation 380
The square-pulse function 383
Fourier transform of the wedge function 384
Gaussian functions and Fourier transforms 386
Lorentzian functions and their properties 389
Fourier integral transform of a Lorentzian 391

10.3 Convolutions and Fourier transforms 393
Convolutions: Definition and interpretation 393
Convoluting a boxcar with a Lorentzian 394
Program for convoluting discretized functions 398

377

CONTENTS x i i i

Fourier integral transforms and convolutions 401
Convolutions of Gaussians and of Lorentzians 402
Convoluting Gaussians with Lorentzians: Voigt profile 406

10.4 Project 10: Computing and applying the Voigt profile 411
The numerics of Dawson’s integral 412
Program for series expansion of profile 413
Program for direct integration of profile 418
Application to stellar spectra 419

References on Fourier integral transforms 419

EPILOGUE 421

APPENDIX: TRANSLATING BETWEEN C, FORTRAN,
AND PASCAL LANGUAGES 423

INDEX TO COMPUTER PROGRAMS 429

INDEX 433

COMPUTING FOR
SCIENTISTS AND
ENGINEERS

Chapter 1

INTRODUCTION TO APPLICABLE
MATHEMATICS AND COMPUTING

The major goal for you in using this book should be to integrate your understanding,
at both conceptual and technical levels, of the interplay among mathematical analy-
sis, numerical methods, and computer programming and its applications. The pur-
pose of this chapter is to introduce you to the major viewpoints that I have about
how you can best accomplish this integration.

Beginning in Section 1.1, is my summary of what I mean by applicable mathe-
matics and my opinions on its relations to programming. The nested hierarchy (a
rare bird indeed) of computing, programming, and coding is described in Sec-
tion 1.2. There I also describe why I am using C as the programming language,
then how to translate from to Fortran or Pascal from C, if you insist. The text has
twelve projects on computing, so I also summarize their purpose in this section.
Section 1.3 has remarks about the usefulness of graphics, of which there are many
in this book. Various ways in which the book may be used are suggested in Sec-
tion 1.4, where I also point out the guideposts that are provided for you to navigate
through it. Finally, there is a list of general references and many references on
learning the C language, especially for those already familiar with Fortran or Pascal.

1.1 WHAT IS APPLICABLE MATHEMATICS?

Applicable mathematics covers a wide range of topics from diverse fields of mathe-
matics and computing. In this section I summarize the main themes of this book.
First I emphasize my distinctions between programming and applications of pro-
grams, then I summarize the purpose of the diversion sections, some new paths to

1

2 INTRODUCTION

familiar destinations are then pointed out, and I conclude with remarks about com-
mon topics that I have omitted.

Analysis, numerics, and applications

In computing, the fields of analysis, numerics, and applications interact in compli-
cated ways. I envisage the connections between the areas of mathematical analysis,
numerical methods, and computer programming, and their scientific applications as
shown schematically in Figure 1.1.

FIGURE 1.1 Mathematical analysis is the foundation upon which numerical methods and

computer programming for scientific and engineering applications are built.

You should note that the lines connecting these areas are not arrows flying up-
ward. The demands of scientific and engineering applications have a large impact on
numerical methods and computing, and all of these have an impact on topics and
progress in mathematics. Therefore, there is also a downward flow of ideas and
methods. For example, numerical weather forecasting accelerates the development
of supercomputers, while topics such as chaos, string theory in physics, and neural
networks have a large influence on diverse areas of mathematics.

Several of the applications topics that I cover in some detail are often found in
books on mathematical modeling, such as the interesting books by Dym and Ivey,
by Meyer, and by Mesterton-Gibbons. However, such books usually do not em-
phasize much computation beyond the pencil-and-paper level. This is not enough
for scientists, since there are usually many experimental or observational data to be
handled and many model parameters to be estimated. Thus, interfacing the mathe-
matical models to the realities of computer use and the experience of program writing
is mandatory for the training of scientists and engi neers. I hope that by working the
materials provided in this book you will become adept at connecting formalism to
practice.

1.1 WHAT IS APPLICABLE MATHEMATICS? 3

By comparison with the computational physics books by Koonin (see also Koo-
nin and Meredith), and by Gould and Tobochnik, I place less emphasis on the phys-
ics and more emphasis on the mathematics and general algorithms than these authors
provide. There are several textbooks on computational methods in engineering and
science, such as that by Nakamura. These books place more emphasis on specific
problem-solving techniques and less emphasis on computer use than I provide here.

Data analysis methods, as well as mathematical or numerical techniques that may
be useful in data analysis, are given significant attention in this book. Examples are
spline fitting (Chapter 5), least-squares analyses (Chapter 6), the fast Fourier trans-
form (Chapter 9), and convolutions (Chapter 10). My observation is that, as part
of their training, many scientists and engineers learn to apply data-analysis methods
without understanding their assumptions, formulation, and limitations. I hope to
provide you the opportunity to avoid these defects of training. That is one reason
why I develop the algorithms fairly completely and show their relation to other anal-
ysis methods. The statistics background to several of the data-analysis methods is
also provided.

Cooking school, then recipes

Those who wish to become good cooks of nutritious and enjoyable food usually go
to cooking school to learn and practice the culinary arts. After such training they are
able to use and adapt a wide variety of recipes from various culinary traditions for
their needs, employment, and pleasure. I believe that computing — including analy-
sis, numerics, and their applications — should be approached in the same way. One
should first develop an understanding of analytical techniques and algorithms. After
such training, one can usually make profitable and enlightened use of numerical
recipes from a variety of sources and in a variety of computer languages.

The approach used in this book is therefore to illustrate the processes through
which algorithms and programming are derived from mathematical analysis of scien-
tific problems. The topics that I have chosen to develop in detail are those that I be-
lieve contain elements common to many such problems. Thus, after working
through this book, when you tackle an unfamiliar computing task you will often rec-
ognize parts that relate to topics in this book, and you can then probably master the
task effectively.

Therefore I have not attempted an exhaustive (and exhausting) spread of topics.
To continue the culinary analogs, once you have learned how to make a good vanilla
ice cream you can probably concoct 30 other varieties and flavors. I prefer to exam-
ine various facets of each topic, from mathematical analysis, through appropriate nu-
merical methods, to computer programs and their applications. In this book, there-
fore, you will usually find the presentation of a topic in this order: analysis, numer-
ics, and applications.

The level I have aimed at for mathematical and computational sophistication, as
well as for scientific applications, is a middle ground. The applications themselves
do not require expert knowledge in the fields from which they derive, although I

4 INTRODUCTION

give appropriate background references. Although I present several topics that are
also in my earlier book, Computing in Applied Science (Thompson, 1984), the pre-
liminary and review materials in this book are always more condensed, while the de-
velopments are carried further and with more rigor. The background level necessary
for the mathematics used in this book is available from mathematics texts such as
that by Wylie and Barrett, and also from the calculus text by Taylor and Mann.

Diversions and new routes

In order to broaden your scientific horizons and interests, I have included a few di-
version sections. These are intended to point out the conceptual connections be-
tween the topic under development and the wider world of science, technology, and
the useful arts.

The diversions include a discussion of the interpretation of complex numbers (in
Section 2.5), the relationships between recursion in mathematics and computing
(Section 3.4), the development of computers and the growing use of spline methods
in data analysis (Section 5.6), and the Wilbraham-Gibbs overshoot in the Fourier
series of discontinuous functions (Section 9.6). Other connections are indicated in
subsections of various chapters. Although these diversions may not necessarily be
of much help in making you an expert in your field of endeavor, they will help you
to appreciate how your field fits into the larger scientific landscape.

This book also uses some seldom-traveled routes to reach known destinations,
as well as a few tracks that are quite new. These routes and their results include lin-
earized square-root approximations (Section 3.3), the relations between maximum
likelihood, least squares, and Fourier expansion methods (Sections 6.1, 6.2, 9.2),
algorithms for least-squares normalization factors (Section 6.4), logarithmic trans-
formations and parameter biases (Section 6.5), generalized logistic growth (Sec-
tion 7.3), a novel approach to catenaries (Section 8.2), the discrete and integral
Fourier transforms of the complex-exponential function (Sections 9.2 and 10.2),
and the Wilbraham-Gibbs overshoot (Section 9.6).

Roads not taken

Because this book is directed to a readership of mathematicians, scientists, engin-
eers, and other professionals who may be starting work in fields from which exam-
ples in this book are drawn, there are many byways that I have not ventured upon.
Rather, I emphasize principles and methods that are of both general validity and gen-
eral applicability.

One road not taken is the one leading to topics from linear algebra (except inci-
dentally) and matrix manipulation. Mathematics texts are replete with examples of
methods for 3 x 3 matrices, many of which will usually fail for matrices of typi-
cally interesting size of 100 x 100. I believe that matrix computation is best taught
and handled numerically by using the powerful and somewhat advanced methods
specially developed for computers, rather than methods that are simply extensions of
methods suitable for hand calculations on small matrices.

1.2 COMPUTING, PROGRAMMING, CODING 5

Symbolic calculation, also misleadingly termed “computer algebra,” is not dis-
cussed here either. I believe that it is dangerous to just “give it to the computer”
when mathematical analysis is necessary. Machines should certainly be used to
solve long and tedious problems reliably and to display results graphically. How-
ever, the human who sets up the problem for the computer should always under-
stand clearly the problem that is being solved. This is not likely to be so if most of
one’s training has been through the wizardry of the computer. I have the same ob-
jection to the overuse of applications programs for numerical work until the princi-
ples have been mastered. (Of course, that’s one reason to set oneself the task of
writing a book such as this.) In spite of my warnings, when you have the appro-
priate understanding of topics, you should master systems for doing mathematics by
computer, such as those described in Wolfram’s Mathematica.

Finally, I have deliberately omitted descriptions of computational methods that
are optimized for specialized computer designs, such as vectorized or parallel archi-
tectures. You should leam and use these methods when you need them, but most of
them are developed from the simpler principles that I hope you will learn from this
book. You can become informed on both parallel computation and matrix methods
by reading the book by Modi.

1.2 COMPUTING, PROGRAMMING, CODING

When computing numerically there are three levels that I envision in problem analy-
sis: program design, coding, and testing. They are best described by Figure 1.2.

FIGURE 1.2 Computing, programming, and coding form a nested hierarchy. An example of

this nesting activity is that of converting between coordinates (Section 2.6).

6 INTRODUCTION

In Figure 1.2 the activity of computing includes programming, which includes
coding. The right side of the figure shows the example of converting between Car-
tesian and polar coordinates — the programming project described in Section 2.6.

The aspects of computing that lie outside programming and coding are numerical
analysis and (to some degree) algorithm design. In the example, the formulas for
calculating coordinates are part of numerical analysis, while deciding how quadrants
are selected is probably best considered as part of algorithm design.

At the programming level one first has to decide what one wants to calculate, that
is, what output the program should produce. Then one decides what input is needed
to achieve this. One can then decide on the overall structure of the program; for ex-
ample, the conversions for Cartesian and polar coordinates are probably best handl-
ed by separate branches in the program. At this level the choices of computing sys-
tem and programming language usually become important.

Finally, as shown in Figure 1.2, one reaches the coding level. Here the pro-
gram is built up from the language elements. In the C language, for example, func-
tions are written or obtained from function libraries, variable types are declared, and
variables are shared between functions. Detailed instructions are coded, the inter-
faces to files or graphics are written, and the program is tested for corectness of for-
mulas and program control, such as the method used to terminate program execu-
tion. If you think of the activity of computing as a nested three-level system, as
schematized in Figure 1.2, then you will probably produce better results faster than
if you let your thoughts and actions become jumbled together like wet crabs scuttling
in a fishing basket.

In the following parts of this section, I make remarks and give suggestions about
programming as described in this book. First, I justify my choice of C as the lan-
guage for preparing the programs, then I give you some pointers for learning to pro-
gram in C, and for translating the programs in this book to Fortran or Pascal from C
(if you insist on doing this). Next, I summarize programming aspects of the pro-
jects that occur toward the end of each of Chapters 2 through 10, and I remark on
the correctness and portability of these programs. Finally in this section, I draw
your attention to a convenience, namely, that all the programs and functions pro-
vided in this book are listed by section and topic in the index to computer programs
before the main index.

The C language for the programs

I decided to write the sample programs in C language for the following reasons.
First, C is a language that encourages clear program structure, which leads to pro-
grams that are readable. My experience is that C is easier to write than Pascal be-
cause the logic of the program is usually clearer. For example, the use of a top-
down structure in the programs is closer to the way scientists and enginners tackle
real problems. In this aspect C and Fortran are similar. The C language is more de-
manding than Fortran, in that what you want to do and the meanings of the variables
must all be specified more accurately. Surprisingly, scientists (who pride them-
selves on precise language) often object to this demand from a computer. I estimate

1.2 COMPUTING, PROGRAMMING, CODING 7

that C is the easiest of the three languages in which to write programs that are
numerically oriented. Ease is indicated by the time it takes to produce a correctly
executing program in each language.

The second reason for using C in this book is that it is intermediate in complexity
between Fortran and Pascal, as illustrated by the comparison chart in the appendix.
That is, there are very few elements in the Fortran language (which makes it simple
to write but hard to understand), most of the elements of Fortran are in C, and some
of the elements of Pascal are also in C. For data handling, C is much more powerful
and convenient than Fortran because facilities for handling characters and strings
were designed into the original C language.

The third reason for my choice of C is that it is now the language of choice for
writing applications programs for workstations and personal computers. Therefore,
programs that you write in C for these machines will probably interface easily with
such applications programs. This is a major reason why C is used extensively in en-
gineering applications.

A fourth reason for using C is that its developers have tried to make it portable
across different computers. Lack of portability has long been a problem with For-
tran. Interconnectivity between computers, plus the upward mobility of programs
developed on personal computers and workstations to larger machines and super-
computers, demand program portability. Since very few large computer systems
have extensive support for Pascal, C is the current language of choice for portability.

One drawback of C lies with input and output. Some of the difficulty arises
from the extensive use of pointers in C, and some inconvenience arises from the lim-
ited flexibility of the input and output functions in the language. For these reasons, I
have written the input and output parts of the sample programs as simply as practic-
able, without any attempt to produce elegant formats. Since you probably want to
modify the programs to send the output to a file for processing by a graphics pro-
gram, as discussed in Section 1.3, for this reason also such elegance is not worth-
while in the sample programs.

Complex numbers are not part of the C language, although they are used exten-
sively in numerical applications, as discussed in Chapter 2. Our calculations that
use complex variables convert the complex numbers to pairs of real numbers, then
work with these. Extensive practice with programming using complex numbers in
this way is given in Sections 2.1 and 2.6. In Numerical Recipes in C, Press et al.
also discuss (Chapter 1 and Appendix E) handling complex numbers in C.

Learning to program in C

This book does not claim to be a guide to learning the C programming language. It
will, however, provide extensive on-the-job training for the programming of numer-
ical applications in C. If you wish to learn how to program in C, especially for the
numerically oriented applications emphasized herein, there are several suitable text-
books. Starting with books which do not assume that you have much familiarity
with progamming then moving upward, there are Eliason’s C, a Practical Learning
Guide and Schildt’s Teach Yourself C, then the text by Darne11 and Margolis, C, a

8 INTRODUCTION

Software Engineering Approach. Many of C’s more subtle and confusing aspects
are described by Koenig in C Traps and Pitfalls.

If you are familiar with other programming languages and wish to use the C pro-
grams in this book, there are several texts that should be of considerable help to you.
For general use there is the book by Gehani, which emphasizes the differences be-
tween C and other procedural programming languages. Gehani also discusses the
advanced aspects of C as implemented on UNIX systems. A second cross-cultural
book that will help you with the language barrier is Kerrigan’s From Fortran to C,
which has extensive discussions and examples of how to learn C and to reprogram
from Fortran. The book by Müldner and Steele, C as a Second Language, and that
by Shammas, Introducing C to Pascal Programmers, are especially suitable for those
who are familiar with Pascal but wish to learn to program effectively in C.

Finally, for detailed references on the C language there are C: A Reference Man-
ual by Harbison and Steele, and The Standard C Library by Plauger. You should
also consult the programming manuals for C provided with the implementation of C
for your computing environment, and the manuals that explain the connection be-
tween C and your computer’s operating system.

The references on learning to program in the C language are listed together in the
reference section at the end of this chapter. The appendix provides examples of
translating between C, Fortran, and Pascal that are drawn from the C programs in
the first chapters.

Translating to Fortran or Pascal from C

By choosing to present the example programs and the project programs in C lang-
uage, I know that I will have made a few friends but I may have alienated others.
Especially for the latter, I have tried to decrease their animosity by avoiding use of
some of the useful constructions in C that are sometimes not available or are awk-
ward to implement in other numerically oriented procedural languages. This should
make the programs easier to translate on-the-fly into Fortran or Pascal. Among my
main concessions are the following.

In arrays the [0] element is usually not used by the program, so that the used ele-
ments of the array range from [1] upward. The only confusion this may cause when
programming is that the array size must be declared one larger than the maximum el-
ement that will ever be used. For example, if you want to be able to use elements
1...100, then the maximum array size (which is always defined as MAX) should be
101. This labeling starting with [1] usually also makes the correspondence between
the mathematics and the coding simpler, because most of the summation and itera-
tion indices in formulas (k or j) begin with unity: any zeroth-index value in a
summation or iteration has usually to be treated specially. I use the [0] element in an
array only if this tightens the connections between the mathematical analysis, the al-
gorithm, and the code.

In summations and indexing, the C construction of ++ to denote incrementing
by one, and similarly - - for decrementing, is not used except in for loops. Al-
though general avoidance of ++ and - - is less efficient, it is less confusing when
translating to Fortran or Pascal, which do not allow such useful constructions.

1.2 COMPUTING, PROGRAMMING, CODING 9

The for loop in C is such a practical and convenient programming device that I
use it without concession to Fortran programmers, who are often confined to the
much clumsier DO loop. However, I use the for loop in a consistent style to which
you can readily adapt.

I have avoided go to statements, so there are no statement labels in the pro-
grams. Consequently, you will have to go elsewhere if your favorite computing
recipes include spaghetti. (The come from statement, which might rescue many a
programmer from distress, is also scrupulously avoided.) These omissions do not
make C programs difficult to write or to use.

There are a few operators in C, especially the logical operators, that look quite
different and may be confusing to Fortran and Pascal programmers. I explain these
operators where they appear in programs, especially in the early chapters. They are
listed with their Fortran and Pascal counterparts at the end of the appendix on trans-
lating between C, Fortran, and Pascal.

In C the exit function terminates execution when it is called. (Technically, it
terminates the calling process. All open output streams are flushed, all open files are
closed, and all temporary files are removed.) There is a conventional distinction,
which we follow, between exit (0) and exit (1) . The first is for successful ter-
mination and graceful exit, while the second is to signal an abnormal situation. In
some computing environments the process that refers to the terminating program
may be able to make use of this distinction.

Within the text, the font and style used to refer to names of programs, func-
tions, and variables is 10-point Monaco (since all programming involves an el-
ement of gambling). All the programs and functions are listed in the index to com-
puter programs, which is discussed below.

The computing projects and the programs

Several of the exercises and projects, as described in Section 1.1, require that you
modify programs that are in the text. By this means you will practice what is so
common in scientific and engineering computing, namely the assembling of tested
and documented stand-alone function modules to make a more powerful program
tailored for your use. One advantage of this method is that, provided you are careful
how you make the modifications, you will usually be able to check the integrity of
the program module by comparison with the stand-alone version.

The sample programs, both in the text and in the projects, are written for clarity
and efficiency of writing effort. In particular, when there are choices between algor-
ithms, as in the numerical solution of differential equations, the different algorithms
are usually coded in-line so that it is easy for you to compare them. Therefore, if
you wish to transform one of the chosen sections of in-line code into a function you
will need to be careful, especially in the type declarations of variables used.

I have not attempted to make the sample programs efficient in terms of execution
speed or use of memory. If you want to use a particular computing technique for
production work, after you have understood an algorithm by exploring with the pro-

10 INTRODUCTION

grams provided, you should use a program package specially developed for the pur-
pose and for the computer resources that you have available. At an intermediate
level of efficiency of your effort and computer time are the programs available (in C,
Fortran, and Pascal) as part of the Numerical Recipes books of Press et al.

My view of the connections among materials in this book, the C language, the
Numerical Recipes books, systems such as Mathematica, and their uses in scientific
applications is summarized in Figure 1.3.

FIGURE 1.3 Connections among topics in this book, C language, the Numerical Recipes

books, the Mathematica system, and scientific applications.

In Figure 1.3 the lines are connectors, not arrows. They indicate the strongest
two-way connections between the topics and books (names written in italics). Some
significant links have been omitted, mostly for topological reasons. For example,
many of the scientific applications examples in this book do not require C programs
or use of the Mathematica system. Also, much of the latter is programmed in C, and
it can convert its symbolic results into C (or Fortran) source code, as described in
Wolfram’s book on Mathematica.

Caveat emptor about the programs

The sample programs included in this book have been written as simply as practical
in order that they could readily be understood by the human reader and by the com-
piler. In order to keep the programs easy to read, I have not included extensive
checking of the allowed range of input variables, such as choices that control pro-
gram options. My rule of thumb has been to put in a range check if I made an input

1.3 ONE PICTURE IS WORTH 1000 WORDS 11

error while testing a program, or if lack of a check is likely to produce confusing re-
sults. There are checks for array bounds if they are simple to code and do not inter-
rupt program flow. Errors of use or input that are diagnosed by our C programs
always begin with a double exclamation, ! !, followed by an explanation of the error.
Program execution will often continue after some reasonable fix-up is attempted. A
typical fix-up is just to request another input for the troublesome variable.

Because the programs are written to be translated easily to Fortran or Pascal, as
described in a previous subsection and shown in the appendix, I have tried to avoid
nonstandard parts of C. The compiler that I use claims to follow ANSI standards. I
also checked for compatibility with the C language as described in the second edition
of Kernighan and Ritchie’s book.

In spite of all these precautions, I have two words of advice: caveat emptor — let
the buyer beware. The programs are supplied as is and are not guaranteed. For
each program you use, I suggest that you make at least the checks I have indicated.
If you can devise other tests of program correctness, I encourage you to do so.

The index to computer programs

Because this book has many computer programs with associated functions, I have
included an annotated index to all the programs and functions. They are listed, by
order of appearance, in the index that immediately precedes the regular index. The
programs and functions also appear alphabetically by name in the regular index.

1.3 ONE PICTURE IS WORTH 1000 WORDS

In this book graphical output is usually suggested as a way to improve the presenta-
tion of results, especially in the projects. Since graphics are so hardware dependent,
my suggestions for graphics in the projects are necessarily vague. You should fa-
miliarize yourself as much as practicable with techniques of graphical presentation.
If you have access to a powerful system that combines graphics and mathematics,
such as Mathematica as described by Wolfram or by Wagon, you may wish to de-
velop some of the projects by using such a system.

Why and when you should use graphics

Tufte, in his two books on displaying and envisioning quantitative information, has
given very interesting discussions and examples of effective (and ineffective) ways
of displaying quantitative information from a variety of fields. In numerical applica-
tions of mathematics, graphics are especially important because of the enormous
number of numbers that come spewing out of the computer in a stream of numerical
environmental pollution. If there are many values to be compared, or if you want to
show trends and comparisons (as we usually do), it is worth the effort to write a
graphical interface for your program. If there are just a few check values to output,

12 INTRODUCTION

it is not worth the extra coding and possible lack of clarity that graphics may
produce.

If you have access to Mathematica or some other system that combines mathe-
matics, numerics, and graphics, your learning will be enhanced if you combine the
three elements when working the exercises and projects. Wagon’s book provides
many examples of graphics techniques that would be useful in conjunction with this
workbook.

Impressive graphics, or practical graphics

In many books that relate to computing you will see elegant and impressive graphics
that have been produced by long runs on powerful computers using special-purpose
programs. Although these illustrations may improve your comprehension, and per-
haps inspire you to become a computer-graphics artist, their production is usually
not practicable for most computer users. Therefore, I urge you to find a simple
graphics system that interfaces easily to your programming environment, that is
readily available to you, and that is inexpensive to use. For example, there are about
a hundred line drawings in this book. They were all produced by using only two
applications programs (one for graphics and one for drafting). The graphics pro-
gram used input files that the C programs produced, so the numbers were seldom
touched by human hand, and the graphics output was produced on the same laser
printer that printed the text.

Many of the programs in this book produce simple output files. I most often
used these files for input to graphics, and sometimes for preparing tables. If you
make a similar interface and use it often to produce graphics (perhaps through the
intermediary of a spreadsheet), I think it will improve your comprehension of the
numerical results, without burdening you with much coding effort.

If you have convenient access to a state-of-the-art graphics system, it may be
useful for a few of the projects in this book. Just as I believe that an approach to nu-
merical computing that is completely recipe-based is unwise, I believe that using
computer-graphics systems without an understanding of their background is simi-
larly unwise. A comprehensive treatment of many aspects of computer graphics is
provided in the treatise by Foley et al. Methods for preparing high-resolution
graphics, and how to implement them in Pascal, are described in the book by Angell
and Griffith.

1.4 SUGGESTIONS FOR USING THIS BOOK

This book may be used for both self-study and for class use. I have some sugges-
tions that should help you to make most effective use of it. First I indicate the con-
ections between the remaining nine chapters, then there are remarks about the exer-
cises and the projects.

1.4 SUGGESTIONS FOR USING THIS BOOK 13

Links between the chapters

Because we cover a large amount of territory and a variety of scientific and engineer-
ing landscapes in this book, it is useful to have an indication of the connections be-
tween its nine other chapters. Table 1.1 summarizes the strength of the links be-
tween the chapters.

TABLE 1.1 Cross-reference chart for use of this book.

Key: chapter above is necessary preparation
chapter above is desirable preparation
chapter above is optional preparation

Complex variables

Power series

Numerical derivatives and integrals

Fitting curves through data

Least-squares analysis of data

Introduction to differential equations

Second-order differential equations

Discrete Fourier transforms and series

Fourier integral transforms

For example, if you plan to work through Chapter 7 (introduction to differential
equations), use of Chapters 2, 5, and 6 is optional, Chapter 3 (power series) is de-
sirable, whereas Chapter 4 (numerical derivatives and integrals) is necessary prepa-
ration. Within each chapter you should read not only the text, but also the exercises,
which are embedded in the text. Exercises containing equations are especially im-
portant to be read, since these equations often form part of the development. There-
fore, read over every exercise, even if you don’t work it through in detail.

The exercises and projects

Since this book has an overwhelming number of exercises, many of them nontrivial,
a guide to use of the exercises is appropriate. It will be clear to you that I always in-
sert an exercise whenever I don’t want to show you all the steps of a development.
This is not laziness on my part, because I assure you that I have worked through ev-
ery step. Rather, an exercise provides a checkpoint where you should pause, take
stock of what you have been reading, then test your understanding by trying the ex-
ercise. If you have difficulty with this exercise, reread all of the subsection
containing the exercise, even past the troublesome exercise. Then work the exercise

14 INTRODUCTION

once more. I believe that by doing this you will have a realistic estimate of your pro-
gress in comprehension. If you are using this book for self-study, this procedure
should help you considerably.

Some exercises are more than checkpoints, they are crossroads where concepts
and techniques developed previously are focused on relevant and interesting prob-
lems. This type of exercise, which often appears in a project toward the ends of
chapters, is always indicated. Such exercises provide very good tests of your over-
all comprehension of the material in the current and previous chapters.

The projects, of which there is at least one per chapter after this introductory
chapter, are designed to bring together many of the aspects of analysis and numerics
emphasized within the chapter. They provide you with opportunities to explore the
numerics and the science by using the number-crunching and graphical powers of
computers. Programming aspects of the projects are discussed in Section 1.2.

REFERENCES FOR THE INTRODUCTION

General references

Angell, I. O., and G. Griffith, High-Resolution Computer Graphics Using Pascal,
Macmillan Education, Basingstoke, England, 1988.

Dym, C. L., and E. S. Ivey, Principles of Mathematical Modeling, Academic Press,
New York, 1980.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics,
Addison-Wesley, Reading, Massachusetts, third edition, 1990.

Gould, H. and J. Tobochnik, An Introduction to Computer Simulation Methods,
Addison-Wesley, Reading, Massachusetts, 1988.

Koonin, S. E., Computational Physics, Addison-Wesley, Redwood City,
California, 1986.

Koonin, S. E., and D. C. Meredith, Computational Physics: FORTRAN Version,
Addison-Wesley, Redwood City, California, 1990.

Mesterton-Gibbons, M., A Concrete Approach to Mathematical Modelling,
Addison-Wesley, Reading, Massachusetts, 1989.

Meyer, W. J., Concepts of Mathematical Modeling, McGraw-Hill, New York,
1984.

Modi, J. J., Parallel Algorithms and Matrix Computation, Clarendon Press, Oxford,
England, 1988.

Nakamura, S., Computational Methods in Engineering and Science, Wiley-
Interscience, New York, 1986.

Taylor, A. E., and W. R. Mann, Advanced Calculus, Wiley, New York, third edi-
tion, 1983.

Thompson, W. J., Computing in Applied Science, Wiley, New York, 1984.

REFERENCES FOR THE INTRODUCTION 15

Tufte, E. R., The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

Tufte, E. R., Envisioning Information, Graphics Press, Cheshire, Connecticut,
1990.

Wagon, S., Mathematica in Action, W. H. Freeman, New York, 1991.
Wolfram, S., Mathematica: A System for Doing Mathematics by Computer,

Addison-Wesley, Redwood City, California, second edition, 1991.
Wylie, C. R., and L. C. Barrett, Advanced Engineering Mathematics, McGraw-

Hill, New York, fifth edition, 1982.

References on learning and using C

Darnell, P. A., and P. E. Margolis, C, a Software Engineering Approach, Springer-
Verlag, New York, 1991.

Eliason, A. L., C, a Practical Learning Guide, Macmillan, New York, 1988.
Gehani, N., C: An Advanced Introduction, Computer Science Press, Rockville,

Maryland, 1985.
Harbison, S. P., and G. L Steele, Jr., C: A Reference Manual, Prentice Hall,

Englewood Cliffs, New Jersey, third edition, 199 1.
Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Prentice

Hall, Englewood Cliffs, New Jersey, second edition, 1988.
Kerrigan, J. F., From Fortran to C, Windcrest Books, Blue Ridge Summit,

Pennsylvania, 199 1.
Koenig, A., C Traps and Pitfalls, Addison-Wesley, Reading, Massachusetts, 1989.
Miildner, T., and P. W. Steele, C us a Second Language, Addison-Wesley,

Reading, Massachusetts, 1988.
Plauger, P. J., The Standard C Library, Prentice Hall, Englewood Cliffs, New

Jersey, 1992.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

Recipes in C, Cambridge University Press, New York, 1988.
Schildt, H., Teach Yourself C, Osborne McGraw-Hill, Berkeley, California, 1990.
Shammas, N., Introducing C to Pascal Programmers, Wiley, New York, 1988.

16

Chapter 2

A REVIEW OF COMPLEX VARIABLES

The purpose of this chapter is to review your understanding of complex numbers
and complex variables, and to summarize results that are used extensively in subse-
quent chapters. Complex variables are treated elegantly and completely in many
mathematics texts, but a treatment in which the aim is to develop intuition in the sci-
entific applications of complex numbers may have much more modest goals, and is
best done from a geometrical perspective, rather than from an analytic or algebraic
viewpoint.

We start with the algebra and arithmetic of complex numbers (in Section 2.1)
including a simple program, then turn in Section 2.2 to the complex-plane represen-
tation because of its similarities to plane-polar coordinates and to planar vectors.
The simplest (and most common) functions of complex variables-complex expo-
nentials and hyperbolic functions- are reviewed in Section 2.3. Phase angles, vi-
brations, and complex-number representation of waves, which are all of great inter-
est to scientists and engineers, are summarized in Section 2.4 before we take a di-
version in Section 2.5 to discuss the interpretation of complex numbers. Project 2,
which includes program Cartesian & Polar Coordinate Interconversion
for converting between plane-polar and Cartesian coordinates, concludes the text of
this chapter. This program serves to emphasize the ambiguities in calculating polar
coordinates from Cartesian coordinates, and it will be useful in the later program-
ming applications. References on complex numbers complete the chapter.

The discussion of complex variables is limited to the above topics, and does not
develop extensively or with any rigor the topics of analytic functions in the complex
plane, their differentiation, or their integration. Although several derivations later in
this book, especially those involving integrals, would be simplified if the methods of
contour integration were used, the methods of derivation used here are usually direct
and do not require the extra formalism of contours and residues. Readers who have
experience with functions of a complex variable will often be able to substitute their
own methods of proof, which may be more direct than those provided here.

17

18 COMPLEX VARIABLES

Many of the examples and exercises in this chapter anticipate steps in our later
developments that use complex variables, especially the material on Fourier expan-
sions (Chapters 9 and 10). Since we always have a reference to the later material,
you may wish to look ahead to see how the complex variables are used.

2 . 1 ALGEBRA AND COMPUTING WITH COMPLEX NUMBERS

In this section we summarize the algebraic properties of complex numbers, their pro-
perties for numerical computation, the relation between complex numbers and plane
geometry, and the special operations on complex numbers — complex conjugation,
modulus, and argument.

When you have reviewed this section, you will have the conceptual and technical
skills for the more extensive developments of complex numbers that are presented in
the remainder of this chapter. In particular, Project 2 — the program for converting
between coordinates (Section 2.6) -requires most of the ideas from this section.
If you are experienced with complex variables, you may try the project before work-
ing this section. If you have difficulties with the mathematics in the project (as dis-
tinguished from the programming involved), return and rework this section.

The algebra of complex numbers

We indicate a complex number, z, symbolically by

(2.1)

in which x and y are understood to be both real numbers. The sign + in this form-
ula does not mean arithmetic addition, although it has many rules that are similar to
those for addition. You will have already encountered yet another meaning of + as
a sign used in the addition of vectors, which is also distinct from arithmetic addition.

In (2.1), the symbol i has the property that

(2.2)

with a unique value being assumed for i itself. In engineering contexts it is more
usual to find the symbol i replaced by the symbol j, thus avoiding possible confus-
ion when complex numbers are used to describe currents (i) in electrical circuits, as
in our Section 8.1. We will use i, recalling its origins in the initial letter of the his-
torical term “imaginary.”

Complex numbers may also be thought of as pairs of numbers, in which the or-
der in the pair is significant. Thus we might write

(2.3)

analogously to vectors in a plane. Just as the coordinates (x, y) and (y,x) are usu-
ally distinct, so are the analogous complex numbers. The notation in (2.3) avoids

2.1 ALGEBRA AND COMPUTING WITH COMPLEX NUMBERS 19

ambiguities in using the + sign and in the necessity of inventing a symbol satisfy-
ing (2.2). Further, many of the rules for manipulating complex numbers have a
strong similarity to those for vectors in a plane if the notation (2.3) is used. Al-
though we will write our results for complex-number algebra and arithmetic in the
notation (2.1), you are invited to try the number-pair notation in Exercise 2.1 (c).
This notation is also used in some programming languages that allow complex-
arithmetic operations.

The rules for manipulating complex numbers must be consistent with those for
purely real numbers (y = 0) and for purely imaginary numbers (x = 0). In the fol-
lowing, let z = x + iy generically, and let z1 = x1+ iy1, z2 = x2 + i y2 repre-
sent two particular complex numbers. Then the following properties hold:

(2.4)

Negation of a complex number is defined by

(2.5)

which is often written casually as

(2.6)

A complex number is zero only if both its real and imaginary parts are zero, which
consistent with zero being the only solution of the equation z = -z.

Addition or subtraction of two complex numbers is accomplished by

is

(2.7)

Multiplication of complex numbers is performed by

(2.8)

Reciprocal of a complex number is defined by

which has the property that z (1/z) = 1, as for the arithmetic of real numbers.

Division of one complex number into another is based
sor, and is therefore undefined if the divisor is zero:

on the reciprocal of the divi-

(2.9)

(2.10)

20 COMPLEX VARIABLES

In order to check your comprehension of these rules for complex arithmetic, try
the following exercise.

Exercise 2.1
(a) Verify that the rules (2.7) through (2.10) are consistent with those for real
arithmetic by checking them for y1 = y2 = 0.
(b) Check the consistency of (2.7) through (2.10) for purely imaginary numbers
by setting x1= x2 = 0 and noting the condition on i, (2.2).
(c) Use the notation for complex numbers as ordered-number pairs, as indicated
by (2.3), to write down the preceding complex-arithmetic rules, (2.4) through
(2.10). n

Now that we have summarized the formal basis of complex-variable algebra,
time to consider complex arithmetic, especially for computer applications.

it is

Programming with complex numbers

Few computer languages are designed to include complex-variable types in their
standard definition. They are available in Fortran, but not in C or Pascal. In Wolf-
ram’s Mathematica system for doing mathematics by computer, which has both
symbolic and numeric capabilities, complex numbers can be handled readily. An
introduction to their use is provided in Section 1.1 of Wolfram’s book.

To appreciate why computer hardware is not built and computer software is not
designed to assume that numbers they handle are complex, consider the following
exercise.

Exercise 2.2
Show that the total number of real-arithmetic operations needed for complex-
number addition and subtraction is 2, the number for multiplication is 6, and the
number for division is 11 or 14, depending on whether or not the divisor in
(2.9) is stored. n

We now show a simple program in C language for performing complex arithme-
tic by the rules given in the preceding subsection. The purpose of this program is
twofold: if you are unfamiliar with the C language the program will provide a simple
introduction, while it will also develop your understanding of complex arithmetic.

The program Complex-Arithmetic Functions takes as input x1, y1, x2, y2
for the components of two complex numbers z1 and z2. After checking that both
numbers are nonzero, it calls the functions for addition, subtraction, multiplication,
and division, namely CAdd, CSub, CMult, and CDiv, then prints the results before
returning for more input. Here is the program.

2.1 ALGEBRA AND COMPUTING WITH COMPLEX NUMBERS 21

PROGRAM 2.1 Functions for performing complex arithmetic; addition, subtraction, multipli-
cation, and division.

#include <stdio.h>
#include <math.h>

main ()
{
/* Complex-Arithmetic Functions */
double x1,x2,y1,y2,x1a2,y1a2,x1S2,y1S2,x1m2,y1m2,x1d2,y1d2;
void CAdd(),CSub(),CMult(),CDiv();

printf("Complex-Arithmetic Functions\n");
x1 = 1; y1 = 1; x2 = 1; y2 = 1;
/* Check that at least one complex numbers is not zero */
while (xl !=0 || yl != 0 || x2 != 0 || y2 != 0)

printf("\nInput x1,y1,x2,y2 (all zero to end):\n");
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
if (xl == 0 && y1 == 0 && x2 == 0 && y2 == 0)

printf("\nEnd Complex-Arithmetic Functions");
exit(0);
}

CAdd(xl,yl,x2,y2,&x1a2,&y1a2); /* complex Add */
/* returns x1a2, y1a2 */

CSub(xl,yl,x2,y2,&x1s2,&y1s2); /* complex Subtract */
/* returns x1s2, yls2 */

CMult(x1,y1,x2,y2,&x1m2,&y1m2); /* complex Multiply */

/* returns x1m2, y1m2 */
CDiv(x1,yl,x2,y2,&x1d2,&y1d2); /* complex Divide */

/* returns x1d2, y1d2 */
printf("\nz1+z2=(%lf) + i(%lf)",x1a2,y1a2);
printf("\nz1-z2=(%lf) + i(%lf)",x1s2,y1s2);
printf("\nz1*z2=(%lf) + i(%lf)",X1m2,y1m2);
printf("\nz1/z2=(%lf) + i(%lf)\n",x1d2,y1d2);

22 COMPLEX VARIABLES

void CAdd(x1,y1,x2,y2,x1a2,y1a2)
/* Complex Addition function */
double x1,y1,x2,y2,*x1a2,*y1a2;
{
*x1a2 = x1+x2; *y1a2 = y1+y2;

void CSub(x1,y1,x2,y2,x1s2,y1s2)
/* Complex Subtraction function */
double x1,y1,x2,y2,*x1s2,*y1s2;
{
*x1s2 = xl-x2; *y1s2 = y1-y2;
}

void CMult(x1,y1,x2,y2,x1m2,y1m2)
/* Complex Multiplication function */
double x1,y1,x2,y2,*x1m2,*y1m2;
{
*x1m2 = x1*x2-y1*y2;
*y1m2 = x1*y2+y1*x2;
}

void CDiv(x1,y1,x2,y2,x1d2,y1d2)
/* Complex Division function */
double x1,y1,x2,y2,*x1d2,*y1d2;
{
double den;

den = x2*x2+y2*y2;
if (den == 0)
{
printf("!! CDiv denominator = 0; dividend set to zero");
*x1d2 = 0; *y1d2 = 0;
}

else
{
*x1d2 = (x1*x2+y1*y2)/den;
*y1d2 = (y1*x2-x1*y2)/den;

The program reveals an immediate difficulty with modifying a language to in-
clude complex variables, in that two values must be returned by a complex-variable

2.1 ALGEBRA AND COMPUTING WITH COMPLEX NUMBERS 23

function. In C this cannot be done simply by a conventional function (which returns
just one value, at most). One can get around the problem by using the indirection
(dereferencing) operator, written as an asterisk (*) preceding a variable name, as
used for each of the two real-variable values returned by the program functions.

Here are some suggestions for exploring complex numbers by using the pro-
gram Complex-Arithmetic Functions.

Exercise 2.3
(a) Use several pairs of real numbers for both inputs (y1 = 0, y2 = 0) in or-
der to verify that the complex numbers contain real numbers as special cases.
(b) Input purely imaginary numbers (xl = 0, x2 = 0) to the program and
verify the correctness of the arithmetic.
(c) Show by a careful analytical proof that if the product of two complex num-
bers is zero, then at least one of the complex numbers is identically zero (both
real and imaginary parts zero). Prove that if one of a pair of complex numbers is
zero, their product is zero. Verify this by using the program. n

With this background of algebraic and arithmetic properties of complex
bers, we are prepared to review some more formal definitions and properties.

num-

Complex conjugation, modulus, argument

In complex-variable algebra and arithmetic one often needs complex quantities that
are related by reversal of the sign of just their imaginary parts. We therefore have
the operation called complex conjugation. In mathematics texts the notation for this
operation is often denoted by a bar, - , while other scientists often use an asterisk,
as * . In the latter notation the complex-conjugate value of z is

z * = x - i y (2.11)

if and only if

z = x + i y (2.12)

From the
results.

definition of complex conjugation we can readily derive several interesting

Exercise 2.4
(a) Prove that

(2.13)

where the notation Re stands for “real part of.”

24 COMPLEX VARIABLES

(b) Similarly, prove that

where Im denotes “imaginary part of.”
(c) Derive the following properties of complex conjugation:

(2.14)

(2.15)

(2.17)

which show that complex conjugation is distributive over addition, subtraction,
multiplication, and division. n

The identity

z z * = x 2 y 2
(2.18)

shows that z z * is zero only if z is identically zero, which is an example of the con-
dition from Exercise 2.3 (c) for vanishing of the product of two complex numbers.

The frequent occurrence of z z * and its connection with vectors in two dimen-
sions lead to the notation of the modulus of a complex number z, denoted by

(2.19)

Thus mod z indicates the magnitude of z if we picture it as a vector in the x - y
plane. Another name for modulus is absolute value. For example, the modulus of a
real number is just its value without regard to sign, that is, its absolute value. The
modulus of a pure imaginary number is just the value of y without regard to sign.
The modulus of a complex number is zero if and only if both its real and its imagin-
ary part are zero.

The argument of a complex number is introduced similarly to polar coordinates
for two-dimensional vectors. One defines the arg function for a complex variable
by the requirement that

(2.20)

and the requirement that

2.1 ALGEBRA AND COMPUTING WITH COMPLEX NUMBERS 25

(2.21)

which are necessary and sufficient conditions for definition of arg z to within a
multiple of 27

Exercise 2.5
Explain why the commonly given formula

(2.22)

is not sufficient to specify arg z uniquely, even to within a multiple of 27 n

In Section 2.6, in the program to convert between coordinates, we return to this
problem of ambiguous angles. The argument of a complex number is sometimes
called the phase angle, or (confusingly) the amplitude.

One aspect of the argument relates to the analogy between complex variables and
planar vectors. If the pair (x,y) formed the components of a vector, then arg z
would be the angle that the vector makes with the positive x axis. For example,
arg (Re z) = ± arg i = /2, and arg (-i) = - / 2 .

A program for complex conjugate and modulus

For applications with complex variables it is worthwhile to have available programs
for complex functions. We provide here a program that invokes functions returning
complex conjugate and modulus values. The more-involved coding for the argu-
ment function is provided in the programming project, Section 2.6. Here is the pro-
gram Conjugate & Modulus Functions.

PROGRAM 2.2 Conjugate and modulus functions for complex numbers.

#include <stdio.h>
#include <math.h>

main()

{
/* Conjugate & Modulus Functions */
double x,y,xc,yc, zmod;
void CConjugate();
double CModulus();

26 COMPLEX VARIABLES

printf("Complex Conjugate & Modulus Functions\n");
x = 1; y = 1;

/* Check for x not zero or y not zero */
while (x != 0 || y != 0)

{

printf("\nInput x,y (both
scanf("%lf%lf",&x,&y) ;
if (x == 0 && y == 0)
{
printf("\nEnd Conjugate
exit (0) ;
}

zero to end):\n");

& Modulus Functions");

CConjugate(x,y,&xc,&yc); /* conjugate x+iy */
zmod = CModulus(x,y); /* modulus of x+iy */
printf("z* = (%lf) + i(%lf)",xc,yc);
printf("\nmod [(%lf) + i(%lf)] = %lf\n",x,y,zmod);
}

void CConjugate(x,y,xc,yc)
/* Complex Conjugation function */
double x,y,*xc,*yc; /* xc & yc are returned */

{
*xc = x; "yc = -y;
}

double CModulus(x,y)
/* Complex Modulus function */
double x,y;
{
double mod;
mod = sqrt (x*x+y*y);
return mod;

Some remarks on programming the functions CConjugate and CModulus in
the C language are in order:

1. Note that complex conjugation performs an operation on a complex number, al-
beit a simple one. So it does not return a value in the sense of a C function value.
Therefore, the “function” CConjugate is declared to be “void.” The value of the

2.2 THE COMPLEX PLANE AND PLANE GEOMETRY 27

complex conjugate is returned in the argument list of CConjugate as xc and yc,
which are dereferenced variables (preceded by a *, which should not be confused
with complex conjugation, or even with / * and * / used as comment terminators).

2. On the other hand, CModulus is declared as “double” because it is a function
which returns a value, namely mod (inside CModulus), which is assigned to zmod
within the main program. Note that CModulus might also be used within an arith-
metic statement on the right-hand side of the = sign for zmod.

3. The program continues to process complex-number pairs while the input number
pair is nonzero. If the zero-valued complex number (x = 0 and y = 0) is entered,
the program exits gracefully by exit (0) rather than with the signal of an ungraceful
termination, exit (1).

With this background to programming complex conjugation and modulus, plus
the program for arguments in Section 2.6, you are ready to compute with complex
variables.

Exercise 2.6
Run several complex-number pairs through the program Conjugate & Modulus
Functions. For example, check that the complex conjugate of a complex-con-
jugate number produces the original number. Also verify that the modulus val-
ues of (x, y) and (y, x) are the same. ■

2 . 2 THE COMPLEX PLANE AND PLANE GEOMETRY

In the preceding section on algebra and computing with complex numbers we had
several hints that there is a strong connection between complex-number pairs (x, y)
and the coordinates of points in a plane. This connection, formally called a “map-
ping,” is reinforced when we consider successive multiplications of z = x + i y
by i itself.

Exercise 2.7
(a) Show that if z is represented by (x, y), then i z is (-y, x), then i2z is
(-x,-y), i3z is (y,-x), and i4z regains (x , y).
(6) Verify that in plane-polar geometry these coordinates are displaced from
each other by successive rotations through / 2, as shown in Figure 2.1. n

The geometric representation of complex numbers shown in Figure 2.1 is vari-
ously known as the complex plane, the Argand diagram, or the Gauss plane. The
relations between rotations and multiplication with complex numbers are summar-
ized in the following subsections.

28 COMPLEX VARIABLES

FIGURE 2.1 Rotations of complex numbers by /2 in the complex plane. Note that rotations

do not change the length of a complex number, as indicated by the dashed circle.

Cartesian and plane-polar coordinates

Before reviewing the connections between the complex plane and plane geometry,
let us recall some elementary relations between Cartesian and plane-polar coordin-
ates. If the polar coordinates are r, the (positive) distance from the origin along a
line to a point in the plane and the angle (positive in the anticlockwise direction)
that this line makes with the x axis, then the Cartesian coordinates are given as

in a right-handed coordinate system. The polar coordinates are indicated in Fig-
ure 2.1. Inverting these equations to determine r and which is not as trivial as it
may look, is discussed in the first part of Section 2.6.

In the complex plane we may therefore write z as

(2.24)

so that the modulus, which is also the radius, is given by

2.2 THE COMPLEX PLANE AND PLANE GEOMETRY 29

(2.25)

and the polar angle with respect to the x axis is given by

(2.26)

The principal value of the polar angle is the smallest angle lying between
and Such a specification of the principal value allows unique location of a point
in the complex plane. Other choices that limit may also be encountered, for
example, the range 0 to 27.

Complex conjugation is readily accomplished by reflecting from to since

(2.27)

In the language of physics, z, and its complex conjugate are related through a parity
symmetry in a two-dimensional space.

With this angular representation of complex variables, we can derive several in-
teresting results.

De Moivre’s theorem and its uses

A theorem on multiplication of complex numbers in terms of their polar-coordinate
representations in the complex plane was enunciated by Abraham De Moivre (1667-
1754). We derive his theorem as follows. Suppose that we have two complex
numbers. the first as

(2.28)

and the second as

(2.29)

Their product can be obtained by using the trigonometric
sines and sines of sums of angles, to obtain

identities for expanding co-

(2.30)

From this result we see that multiplication of complex numbers involves convention-
al multiplication of their moduli, the r1r2 part of (2.30), and addition of their angles.

30 COMPLEX VARIABLES

Therefore, multiplication in the complex plane, as well as addition, can readily be
shown, as in Figure 2.2.

FIGURE 2.2 Combination of complex numbers in the complex plane. The complex numbers
and their sum are indicated by the dashed lines, while their product is shown by the solid line.

Equation (2.30) can be generalized to the product of n complex numbers, as the
following exercise suggests.

Exercise 2.8
(a) Prove by the method of mathematical induction that for the product of n
complex numbers, z1,z2, ..., zn, one has in polar-coordinate form

(2.31)

(b) From this result, setting all the complex numbers equal to each other, prove
that for the (positive-integer) nth power of a complex number

(2.32)

which is called De Moivre’s theorem. n

This remarkable theorem can also be proved directly by using induction on n.
Reciprocation of a complex number is readily performed in polar-coordinate

form, and therefore so is division, as you may wish to show.

2.3 FUNCTIONS OF COMPLEX VARIABLES 31

Exercise 2.9
(a) Show that for a nonzero complex number, z, its reciprocal in polar-coordin-
ate form is given by

(2.33)

(b) From the result in (a) show that
written in polar-coordinate form as

the quotient of two complex numbers can be

(2.34)

where it is assumed that r2 is not zero, that is, z2 is not zero. n

Thus the polar-coordinate expressions for multiplication and division are much sim-
pler than the Cartesian-coordinate forms, (2.8) and (2.10).

Although we emphasized in Exercise 2.2 that complex-number multiplication
and division in Cartesian form are much slower than such operations with real num-
bers, these operations may be somewhat speedier in polar form, especially if several
numbers are to be multiplied. An overhead is imposed by the need to calculate co-
sines and sines. Note that such advantages and disadvantages also occur when us-
ing logarithms to multiply real numbers.

2.3 FUNCTIONS OF COMPLEX VARIABLES

In the preceding two sections we reviewed complex numbers from algebraic, com-
putational, and geometric viewpoints. The goal of this section is to summarize how
complex variables appear in the most common functions, particularly the exponen-
tial, the cosine and sine, and the hyperbolic functions. We also introduce the idea of
trajectories of functions in the complex plane.

Complex exponentials: Euler’s theorem

In discussing De Moivre’s theorem at the end of the preceding section we noticed
that multiplication of complex numbers may be done by adding their angles, a pro-
cedure analogous to multiplying exponentials by adding their exponents, just the
procedure used in multiplication using logarithms. Therefore, there is probably a
connection between complex numbers in polar-coordinate form and exponentials.
This is the subject of Euler’s theorem.

A nice way to derive Euler’s theorem is to write

(2.35)

32 COMPLEX VARIABLES

then to note the derivative relation

(2.36)

But the general solution of an equation of the form

(2.37)

is given by

(2.38)

Exercise 2.10
Show, by identifying (2.36) and (2.37) with the result in (2.38), that = i.
Then choose a special angle, say = 0, to show that = 1. Thus, you have
proved Euler’s theorem,

(2.39)

which is a remarkable theorem showing a profound connection between the geo-
metry and algebra of complex variables. n

It is now clear from Euler’s theorem why multiplication of complex numbers in-
volves addition of angles, because the angles are added when they appear in the ex-
ponents. Now that we have the formal derivation of Euler’s theorem out of the way,
it is time to apply it to interesting functions.

Applications of Euler’s theorem

There are several interesting and practical results that follow from Euler’s theorem
and the algebra of complex numbers that we reviewed in Section 2.1. The trigono-
metric and complex-exponential functions can be related by noting that, for real an-
gles,

(2.40)

which follows by taking complex conjugates on both sides of (2.39). On combining
(2.39) and (2.40) for the cosine we have

(2.41)

while solving for the sine function gives

2.3 FUNCTIONS OF COMPLEX VARIABLES 33

(2.42)

Both formulas are of considerable usefulness for simplifying expressions involving
complex exponentials.

Exercise 2.11
Use the above complex-exponential forms of the cosine and sine functions to
prove the familiar trigonometric identity

(2.43)

the familiar theorem of Pythagoras. n

Although our derivation of Euler’s theorem does not justify it, since is assumed to
be real in the differentiation (2.36) the theorem holds even for being a complex
variable. Thus the Pythagoras theorem also holds for complex .

Some remarkable results, which are also often useful in later chapters, are found
if multiples of /2 are inserted in Euler’s identity, (2.39). Derive them yourself.

Exercise 2.12
Use Euler’s theorem to show that

(2.44)

which gives the values for successive rotations in the complex plane by r/2.
Compare these results with Figure 2.1. n

The exponential form is generally much more symmetric and therefore is
easier to handle analytically than are the cosine and sine functions, with their awk-
ward function changes and sign changes upon differentiation compared with the
simplicity of differentiating the complex exponential. This simplicity is very power-
ful when used in discussing the solution of differential equations in Chapter 8, and
also in deriving the fast Fourier transform (FFT) algorithm in Chapter 9.3.

An interesting application of the complex-exponential function that anticipates its
use in the FFT algorithm is made in the following exercise.

Exercise 2.13
Consider the distributive and recurrence properties of the complex-exponential
function defined by

(2.45)

(a) Prove the following properties of powers of E(N):

34 COMPLEX VARIABLES

(2.46)

(2.47)

for any a, b, and for any p 0.
(b) Using these results, show that if N = 2V, where v is a positive integer,
then, no matter how many integer powers of E(N) are required, only one evalua-
tion of this complex-exponential function is required. n

As a further topic in our review of functions of complex variables, let us consid-
er the hyperbolic and circular functions.

Hyperbolic functions and their circular analogs

Exponential functions with complex arguments are required when studying the solu-
tions of differential equations in Chapters 7 and 8. A frequently occurring combina-
tion is made from exponentially damped and exponentially increasing functions.
This leads to the definition of hyperbolic functions, as follows.

The hyperbolic cosine, called “cosh,” is defined by

while the hyperbolic sine, pronounced “sinsh,” is defined by

(2.48)

(2.49)

If u is real, then the hyperbolic functions are real-valued. The name “hyperbolic”
comes from noting the identity

(2.50)

in which, if u describes the x and y coordinates parametrically by

(2.5 1)

then an x - y plot is a rectangular hyperbola with lines at /4 to the x and y axes
as asymptotes.

Exercise 2.14
(a) Noting the theorem of Pythagoras,

(2.52)

2.3 FUNCTIONS OF COMPLEX VARIABLES 35

for any (complex) u, as proved in Exercise 2.11, explain why the cosine and
sine functions are called “circular” functions.
(b) Derive the following relations between hyperbolic and circular functions

(2.53)

a n d

(2.54)

valid for any complex-valued u. n

These two equations may be used to provide a general rule
for hyperbolic functions to identities for circular functions:

relating signs in identities

An algebraic identity for hyperbolic functions is the same as that for circular
functions, except that in the former the product (or implied product) of two sinh
functions has the opposite sign to that for two sin functions.

For example, given the identity for the circular functions

(2.55)

we immediately have the identity for the hyperbolic functions

(2.56)

Exercise 2.15
Provide a brief general proof of the hyperbolic-circular rule stated above. n

Note that derivatives, and therefore integrals, of hyperbolic and circular functions do
not satisfy the above general rule. The derivatives of the hyperbolic functions are
given by

(2.57)

and by

(2.58)

in both of which the real argument, u, is in radians. There is no sign change on dif-
ferentiating the hyperbolic cosine, unlike the analogous result for the circular cosine.

36 COMPLEX VARIABLES

The differential equations satisfied by the circular and hyperbolic
differ by signs, since the cosine and sine are solutions of

functions also

which has oscillatory solutions, whereas the cosh and sinh are solutions of

(2.59)

(2.60)

which has solutions exponentially increasing or exponentially decreasing.

Exercise 2.16
(a) Prove the two derivative relations (2.57) and (2.58) by starting with the de-
fining equations for the cosh and sinh.
(b) Use the relations between hyperbolic and circular functions, (2.53) and
(2.54), to compute the derivatives of the hyperbolic functions in terms of those
for the circular functions.
(c) Verify the appropriateness of the circular and hyperbolic functions as solu-
tions of the differential equations (2.59) and (2.60), respectively. n

To complete the analogy with the circular functions, one also defines the hyper-
bolic tangent, called “tansh,” by

which is analogous to the circular function, the tangent, defined by

(2.6 1)

(2.62)

Among these six hyperbolic and circular functions, for real arguments there are
three that are bounded by ±1 (sin, cos, tanh) and three that are unbounded (sinh,
cosh, tan). Therefore we show them in a pair of figures, Figures 2.3 and 2.4, with
appropriate scales.

By displaying the bounded hyperbolic tangent on the same scale as the sine func-
tion in Figure 2.3, we notice an interesting fact- these two functions are equal to
within 10% for | x | < 2, so may often be used nearly interchangeably. The explana-
tion for their agreement is given in Section 3.2, where their Maclaurin series are
presented. Figure 2.4 shows a similar near-coincidence of the cosh and sinh func-
tions for x > 1.5, where they agree to better than 10% and the agreement improves
as x increases because they both tend to the exponential function.

2.3 FUNCTIONS OF COMPLEX VARIABLES 37

FIGURE 2.3 Bounded circular and hyperbolic functions, sine, cosine, and hyperbolic tangent.

FIGURE 2.4 The unbounded circular and hyperbolic functions, tangent, hyperbolic cosine, and
hyperbolic sine. For x greater than about 1.5, the latter two functions are indistinguishable on the
scale of this figure.

The tangent function is undefined in the limit that the cosine function in the de-
nominator of its definition (2.62) tends to zero. For example, in Figure 2.4 values
of the argument of the tangent function within about 0.1 of x = ± /2 have been
omitted.

38 COMPLEX VARIABLES

Trajectories in the complex plane

Another interesting concept and visualization method for complex quantities is that
of the trajectory in the complex plane. It is best introduced by analogy with particle
trajectories in two space dimensions, as we now summarize.

When studying motion in a real plane one often displays the path of the motion,
called the trajectory, by plotting the coordinates x (t) and y (t), with time t being
the parameter labeling points on the trajectory. For example, suppose that
x (t) = A cos (t) and y (t) = B sin (), with A and B positive, then the trajec-
tory is an ellipse with axes A and B, and it is symmetric about the origin of the X- y
coordinates. As t increases from zero, x initially decreases and y initially increas-
es. One may indicate this by labeling the trajectory to indicate the direction of in-
creasing t. The intricate Lissajous figures in mechanics, obtained by superposition
of harmonic motions, provide a more-involved example of trajectories.

Analogously to kinematic trajectories, in the complex plane real and imaginary
parts of a complex-valued function of a parameter may be displayed. For example,
in Section 8.1 we discuss the motion of damped harmonic oscillators in terms of a
real dimensionless damping parameter Expressed in polar-coordinate form, the
amplitude of oscillation is

(2.63)

where the complex “frequency” (if x represents time) is given by

(2.64)

The trajectory of v depends on the range of and on the sign associated with the
square root in (2.64).

Exercise 2.17
(a) Show that if 1, which gives rise to damped oscillatory motion, then

(2.65)

and that the trajectory of v+ is a counterclockwise semicircle in the upper half
plane, while the trajectory of v- is a clockwise semicircle in the lower half
plane. In both trajectories is given as increasing from -1 to +l.
(b) Suppose that >1, which produces exponential decay called overdamped
motion. Show that v± is then purely real and negative, so the trajectory lies
along the real axis. Show that v- increases from -1 toward the origin as in-
creases, while v+ decreases toward - as increases. n

The complex-plane trajectory, with as parameter, expressed by (2.64) is therefore
as displayed in Figure 2.5.

2.3 FUNCTIONS OF COMPLEX VARIABLES 39

FIGURE 2.5 Frequency trajectory in the complex plane according to (2.64) as a function of the
damping parameter

As a final note on this example, there is no acceptable solution for v- if < - 1
and if x > 0 is considered in (2.63), since y (x) is then divergent.

Another interesting example of a trajectory in the complex plane arises in the
problem of forced oscillations (Section 10.2) in the approximation that the energy
dependence is given by the Lorentzian

(2.66)

where c is a proportionality constant and the complex Lorentzian amplitudes L± are
given by

(2.67)

where and are dimensionless frequency and damping parameters. The analy-
sis of this example is similar to the first one.

40 COMPLEX VARIABLES

FIGURE 2.6 Frequency trajectory in the complex plane for the Lorentzian amplitude described
by (2.67).

Exercise 2.18
(a) Show that the Lorentzian amplitudes in (2.67) satisfy

(2.68)

so that the trajectories of L± lie on circles of radius l/2 in the complex plane.
(b) Investigate the details of the trajectory by showing that L+ describes the an-
ticlockwise semicircle in the lower half plane, while L- describes the clockwise
semicircle in the upper half complex plane. For both of these trajectories the di-
rections are for going from to n

The trajectories of the Lorentzian amplitudes are shown in Figure 2.6. They are
discussed more completely in Chapter 3 of the text by Pippard in the context of
Cole-Cole plots of complex-valued dielectric constants as a function of frequency.

In both of our examples the trajectories in the complex plane lie on circles. This
is neither a mere coincidence nor is it uncommon, as the following exercise should
convince you.

2.4 PHASE ANGLES, VIBRATIONS, AND WAVES 41

Exercise 2.19
Consider the following complex function z, called a linear fractional transforma-
tion of the real variable p according to

(2.69)

in which , and are complex constants, with 0. Now consider
function z’ that is obtained from z by the shift and scaling transformation

the

(2.70)

By analogy with the result in Exercise 2.18, argue that z’ lies on a circular tra-
jectory and therefore that the original z in (2.69) lies on a circular trajectory. n

Thus, the functions (2.67) and (2.69) are both special cases of the more general cir-
cular trajectory given by (2.70). From these examples we see that the notion of a
trajectory in the complex plane is useful for visualizing the properties of complex-
valued functions.

2.4 PHASE ANGLES, VIBRATIONS, AND WAVES

The angle in the complex plane often has interesting interpretations in scientific
applications, particularly in the context of vibrations and waves. In this section we
summarize some of the main results. An encyclopedic treatment is provided in Pip-
pard’s book on the physics of vibration.

The topics introduced here are developed and applied throughout this book. In
particular, Section 8.1 discusses free-motion and resonant vibrations in mechanical
and electrical systems, then the quantum oscillator is considered briefly in Sec-
tion 8.5. In Chapters 9 and 10 we develop Fourier expansions, emphasizing the
complex-exponential treatment for the discrete, series, and integral expansions.

Phase angles and phasors

Suppose that we have a (real) angle = , where is a constant angular fre-
quency, = 2 f (with f the frequency) and t denotes time. Then

(2.71)

42 COMPLEX VARIABLES

describes in the complex plane uniform circular motion of the point z1, while the
projections onto the real and imaginary axes (x and y) describe simple harmonic mo-
tions.

Exercise 2.20
Prove that the motion of z1 is periodic by showing that

(2.72)

where the period T = 2 n

If a second uniform circular motion in the complex plane is described by

(2.73)

then this motion has the same period as that described by z1, but at a given time z2

has its phase advanced by over the phase of zl.
Whether one refers to a positive value of as a lag or a lead depends on the sci-

entific field in which one is working. If > 0, in mechanics the phase of z2 is said
to lug that of zl, whereas in electrical-circuit applications z2 is said to lead zl.

A complex-plane diagram showing the magnitude of z and a relative phase (with
 t usually suppressed) is called a vibration diagram or phasor diagram. Its use
gives a visualization of complex-variable relationships which often improves com-
prehension and interpretation.

Vibrations and waves

We can broaden the discussion of phases to include both spatial as well as temporal
variation in the amplitude of a complex vibration. For example, a wave that has con-
stant amplitude of unity at all points along the x direction and at all times t can be de-
scribed by

(2.74)

in which the wavenumber, k, is given in terms of wavelength, λ, by

(2.75)

Although the wavenumber is physically a less intuitive quantity than is the wave-
length, computationally and in most applications k is a much simpler quantity to deal
with. Note that k has the dimensions of an inverse length, just as the angular freq-
uency, has the dimensions of inverse time. Thus, the argument of the exponen-
tial function in (2.74) is dimension-free, as should be the argument of any function
in mathematics.

2.5 DIVERSION: INTERPRETING COMPLEX NUMBERS 43

Recall also that the wave described by (2.74) is monochromatic (unique values
of and k) and that points of constant phase have an associated phase velocity, vp,
given by

(2.76)

Exercise 2.21
Discuss from the viewpoint of wave motion why vp in (2.76) is called the phase
velocity. n

The superposition of such waves of constant phase to build up a dispersive wave in
which components with different frequencies transport energy at different speeds is
an extension of the Fourier expansions in Chapters 9 and 10. A comprehensive and
lucid discussion is given by Baldock and Bridgeman in their book on wave motion.

In Chapters 9 and 10 on Fourier expansions we make detailed study of phenom-
ena described in terms of x or in terms of the complementary variable k, or in terms
oft and its complementary variable Clear expositions of the relations between
complex exponentials and vibrations are given in detail with many applications in
Pippard’s omnibus book. Vibrations and waves are described very completely at an
introductory level in the book by Ingard.

2.5 DIVERSION: INTERPRETING COMPLEX NUMBERS

The development of the interpretation of complex numbers provides an example of
the consequences of education and of the dominance of scientific thought by mathe-
matical representations. Since many scientists claim that a phenomenon is not under-
stood until it can be described mathematically, it is interesting to discuss the relation
between “the queen and servant of science” and the natural sciences.

Are complex numbers real?

Before the quantum physics revolution of the 192Os, scientists usually apologized
for using complex numbers, since they provided only mathematically convenient
shortcuts and shorthand for problem solving. Indeed, Leonard Euler of Euler’s the-
orem in Section 2.3 coined the Latin “imaginarius” for the quantity i = . The
first major use of complex numbers was made by C. P. Steinmetz (1865-1923), a
research electrical engineer who used them extensively (as we do in Section 8.1) to
simplify the analysis of alternating-current circuits.

In quantum mechanics, for example in the Schrödinger equation that we use in
Section 8.5, the wave function is fundamentally a complex variable that is not a
shorthand for two real quantities such as magnitude and phase. Many quantities de-
rived from wave functions, such as scattering amplitudes, are also intrinsically
complex-valued. This leads to the scientific use of “analytic continuation,” a concept
and technique familiar in mathematics but of more recent use in the natural sciences.

44 COMPLEX VARIABLES

Analytic continuation

We have displayed in Figures 2.3 and 2.4 the circular functions and the hyperbolic
functions, respectively. In terms of complex variables, however, these hyperbolic
functions are essentially just the circular functions evaluated for purely imaginary ar-
guments, or vice versa. It is therefore interesting, and sometimes useful, to think of
there being just a single set of functions, say the circular functions, which may be
evaluated along the real axis (then they are the conventional trigonometric functions)
or they may be evaluated along the imaginary axis (then they are the hyperbolic
functions, within factors of i), or they may be evaluated for the argument which
takes on a value anywhere in the complex plane.

When we make this last bold step off either the real or the imaginary axis and
into the complex plane we are making an analytic continuation of the functions.
The concept of analytic continuation and some understanding of the techniques
applied to it are best appreciated by working the following exercise.

Exercise 2.22
Consider the behavior of the complex-valued function of complex-variable ar-
gument, Z, defined as follows:

(2.77)

(a) Show that for a real argument A is just the hyperbolic cosine function dis-
cussed in Section 2.3, while for purely imaginary z it is the circular cosine
function.
(b) Sketch the graph of cos x along the real axis of the complex-z plane and
the graph of cosh y along the imaginary axis of the same plane. They look
quite different, don’t they?
(c) Devise a graphical representation of A (z) that is suitable for arbitrary com-
plex z, and make some representative sketches of the function thus graphed.
One possible form of representation is to sketch contours of constant Re A and
of constant ImA. n

In scientific research analytic continuation is often a useful technique. As an ex-
ample, experiments on wave scattering (such as in acoustics, optics, electromag-
netism, and subatomic physics) are, at best, obtained in the range of scattering an-
gles from zero to . How would the data look if they could be analytically contin-
ued into the complex-angle plane? Similarly, data obtained at real energies or fre-
quencies may be interesting to extrapolate to complex energies or complex frequen-
cies. Indeed, we explore this possibility in discussing the Lorentzian resonances in
Section 10.2.

2.6 PROJECT 2: PROGRAM TO CONVERT BETWEEN COORDINATES 45

2 . 6 PROJECT 2: PROGRAM TO CONVERT
BETWEEN COORDINATES

The program Cartesian & Polar Coordinate Interconversion developed in
this project serves both to develop your understanding of the relations between these
two coordinate systems and to give you practice with writing programs in C.

The conversion from plane-polar to Cartesian coordinates is straightforward and
unambiguous. Given r and one has immediately (as discussed in Section 2.2)

(2.78)

which can be programmed directly.

Stepping into the correct quadrant

The transformation from Cartesian coordinates to polar coordinates is less
the inverse transformation just considered. The required formulas are

direct than

(2.79)

which is straightforward to compute, and, in terms of the atan or tan-l function,

(2.80)

which is ambiguous. This formula does not uniquely determine the quadrant in
which lies because only the sign of the quotient in (2.80) is available after the di-
vision has been made. The relative signs of the circular functions in the four quad-
rants indicated in Figure 2.7 may be used to determine the angle uniquely from the
signs of x and y.

In some programming languages, including C, two functions are available for
the inverse tangent. In one, such as the atan (t) in C language (with t the argu-
ment of the function), the angle is usually returned in the range /2 to /2, and the
user of this function has to determine the appropriate quadrant by other means.

In the second function for the inverse tangent, such as atan2 (y, x) in the C
language, the angle is located in the correct quadrant by the function itself. If we
were to use at atan2 in the program, the conversion from Cartesian to polar represen-
tation would be very direct. For practice in C and to reinforce your understanding of
plane-polar coordinates we use the simpler function atan.

46 COMPLEX VARIABLES

FIGURE 2.7 Signs of the circular functions in each quadrant of the Cartesian plane.

If we begin with an angle calculated into the first quadrant by using the absolute
value of y/x, then multiples of /2 have to be added or subtracted to get the angle
into the correct quadrant. Computationally, the best way to get at the accuracy of
your computer system is to use the identity

(2.8 1)

This relation is used in this program and in many others throughout this book.

Coding, testing, and using the program

The structure of program Cartesian & Polar Coordinate Interconversion
is typical of the interactive programs listed in the index to computer programs at the
end of the book. The program is controlled by a whi1e loop that terminates when
both x and y (going from Cartesian to polar) and also r (going from polar to Carte-
sian) have been input with values of zero. Within each execution of the loop there is
a choice of input of either Cartesian coordinates (chosen by c or C) or polar (p
or P) coordinates.

The Cartesian-input option uses the function MakePolar to locate an angle in
the first quadrant and to use the signs of x and y to adjust the quadrant, as discussed
above. Some care is required for angles that coincide with the axes. The polar-input
option uses (2.78) directly in the function MakeCartesian and returns the values
of the x and y variables. The program listing is as follows.

2.6 PROJECT 2: PROGRAM TO CONVERT BETWEEN COORDINATES 47

PROGRAM 2.3 Interconversion between Cartesian and polar coordinates.

#include <stdio.h>
#include <math.h>

main ()

/* Cartesian & Polar Coordinate Interconversion */
double pi,x,y,r,theta;
char isCP;
void MakePolar(),MakeCartesian();

pi = 4*atan(l); /* pi to machine accuracy */
printf("Cartesian & Polar Coordinates\n");
x = 1; y = 1; r = 1;

while (((x != 0) && (y != 0)) || (r != 0))
{
printf("\nCartesian (C) or Polar (P) input?\n");
scanf("%s",&isCP) ;
if (isCP == 'c' || isCP == 'C')

{
printf("Input Cartesian values as x y\n");
scanf("%le %le" , &x,&y) ;
i f ((x ! = O) | | (y ! = O))

{
MakePolar(pi,x,y,&r,&theta);
printf("Polar values: r=%le, theta=%le (rad)\n",r,theta);
}

}
else

{
if (isCP == 'p' || isCP == 'P')

{
printf("Input Polar values as r theta (rad) \n");
scanf("%le %le",&r,&theta);
if (r != 0)

{
MakeCartesian(r,theta,&x,&y);
printf(Cartesian values: x=%le, y=%le\n",x,y);
}

}
}

}
printf("\nEnd Cartesian & Polar Coordinates"); &t(O);
}

48 COMPLEX VARIABLES

void MakePolar(pi,x,y,r,theta)

/* Make polar coordinates from Cartesian coordinates */

double pi,x,y; /* are input variables */
double *r,*theta; /* are calculated variables */

double angle;

*r = sqrt(x*x+y*y);
if (x == 0)

angle = pi/2;
else angle = atan(fabs(y/x));
if (x>=O && y>=O) *theta = angle; /* first quadrant */
if (x<=0 && y>=O) *theta = pi-angle; /* second quadrant */
if (x<=0 && y<=O) *theta = pi+angle; /*third quadrant */
if (x>=O && y<=O) *theta = -angle; /* fourth quadrant */

void MakeCartesian(r,theta,x,y)

/* Make Cartesian coordinates from polar coordinates */

double r,theta; /* are input variables */
double *x,y; /* are calculated variables */

*x = r*cos(theta);
*y = r*sin(theta);

}

Now that we have a source program for converting between coordinates, it is
appropriate to test and use it.

Exercise 2.23
Testprogram Cartesian & Polar Coordinate Interconversion for the
two options by using as input values combinations of x and y or of r and
that correspond to points in each of the four quadrants and along the boundaries
between quadrants, a total of 16 combinations. Also verify that the program ter-
minates if all of x, y, and r are input as zero. n

You now have two functions that are useful in converting coordinates. Extensions
of these programs may be used to interconvert spherical-polar and three-dimensional
Cartesian coordinates.

REFERENCES ON COMPLEX NUMBERS 49

REFERENCES ON COMPLEX NUMBERS

Baldock, G. R., and T. Bridgeman, Mathematical Theory of Wave Motion, Ellis
Horwood, Chichester, England, 198 1.

Ingard, K. U., Fundamentals of Waves and Oscillations, Cambridge University
Press, Cambridge, England, 1988.

Pippard, A. B., The Physics of Vibration, Cambridge University Press, Cambridge,
England, 1988.

Wolfram, S., Mathenmtica: A System for Doing Mathematics by Computer, Addi-
son-Wesley, Redwood City, California, second edition, 1991.

50

Chapter 3

POWER SERIES AND THEIR APPLICATIONS

The goal of this chapter is to understand the analysis, numerics, and applications of
power series, which form the basis for many of the powerful methods used in com-
puting. The chapter begins with a discussion of the motivation for using series,
summarizing some properties and applications of the geometric series, then enunciat-
ing and proving Taylor’s theorem on power series. This general theorem is then
used in Section 3.2 to develop expansions of useful functions-the exponential,
cosine, sine, arcsine, logarithm, and the hyperbolic cosine and sine. In this section
there are preliminary numerical and computing studies in preparation for the project
at the end of the chapter.

The binomial approximation and various of its applications are described in Sec-
tion 3.3, followed by a diversion (Section 3.4) in which we discuss iteration, re-
currence, and recursion in mathematics and computing. The computing project for
this chapter is testing the numerical convergence of the series for the functions con-
sidered in Section 3.2. References on power series then complete the chapter.

3 . 1 MOTIVATION FOR USING SERIES: TAYLOR’S THEOREM

In this section we review the properties of power series and we explore their numer-
ical properties, especially their convergence. Since the geometric series is easy to
handle algebraically but also exhibits many of the problems that power series may
exhibit, we consider it first. Then we consider the very powerful Taylor’s theorem,
which allows differentiable functions to be characterized by power series. A discus-
sion of the interpretation of Taylor series then prepares us for the several examples
in Section 3.2 of expansions of interesting and useful functions.

We emphasize the numerical convergence of series, resting assured by such
mathematics texts as those by Taylor and Mann (Chapters 19 - 21) and by Protter
and Morrey (Chapter 3) that all the series that we consider are analytically conver-

51

52 POWER SERIES

gent for the range of variables that we consider. After you have understood the ma-
terials in this chapter you will be ready to use powerful algebraic and numerical
computing systems, such as the Mathematica system described in Chapter 3.6 of
Wolfram’s book, to perform accurately and efficiently much of the work involved in
making expansions in power series.

The geometric series

The geometric series provides a good example of a power series that can be readily
investigated and that illustrates many properties of series. We quickly review its for-
mal properties, then discuss its numerical convergence properties and its relation to
other functions.

The usual definition of the geometric series to n terms is the function

(3.1)

in which the parameter r determines the convergence of the series. Although the re-
sults that we derive generally hold for complex values of r, we will discuss exam-
ples only for r a real variable. As is well known, the sum can be expressed in closed
form as

(3.2)

As one way of deriving this very useful result, try the following exercise.

Exercise 3.1
Use the method of proof by induction to derive (3.2). That is, show that if the
formula is assumed to be true for Gn, then it must be true for Gn+1. In order to
get the recurrence started show that the result is evidently true for n = 1. n

Note that the geometric series is sometimes written in forms other than (3.2). For
example, there may be a common multiplier for each term of the series, which just
multiplies the sum by this multiplier. For clarity and effect, in Figure 3.1 we have
assumed a common multiplier of r. Therefore, the series in this figure starts with r
rather than with unity.

The convergence properties of the geometric series (3.1) are quite straightfor-
ward. If |r| < 1 the series converges as n , otherwise the series diverges.
Note that if r = -1 the value of Gn alternates between 0 and +l, so there is no def-
inite limit for large n.

3.1 MOTIVATION FOR USING SERIES: TAYLOR’S THEOREM 53

FIGURE 3.1 Terms (shown by bars) and partial sums (crosses, omitting the leading term of
unity) for the geometric series. Only for multiplier r = 0.6 is the series convergent.

Thus we have the geometric series convergence property

(3.3)

The convergence conditions are quite evident in Figure 3.1. The series is therefore
declared to be divergent, even though its value is always finite. A way around this
anomaly is discussed in Exercise 3.3 below.

Programming geometric series

If you want practice in writing C programs involving series, you should code up and
run the program Geometric Series. This simple program has a function to sum
the geometric series directly, using (3.1), and it also computes the closed form
(3.2). The program does both of these calculations for a range of r values specified
as input with a fixed value of n.

54 POWER SERIES

PROGRAM 3.1 Geometric series by direct summing and by the closed form.

#include <stdio.h>
#include <math.h>

main ()
{
/* Geometric Series */
double rmin,dr,rmax,r,Sum,ClosedForm,error;
int nterms,kmax;
double GeoSum();

printf("Gecmetric Series by Summing & Closed. Form\n");
nterms; = 2;
while (nterms > 1)

{
printf("\n\nInput rmin,dr,rmax,ntermS (nterms<2 to end):\n");
scanf("%lf%lf%lf%i",&rmin,&dr,&rmax,&nterms);
if (nterms < 2)

{
printf("\nEnd Geometric Series"); exit(O);
}

kmax = nterms-1;
for (r = rmin; r <= rmax; r = r+dr)

{
if (fabs(r) >= 1)
{
printf("\n!! Warning: Divergent series |r|=%g >= l",fabs(r));
}
Sum = GeoSum(r,kmax); /* direct sum of series */
/* Formula for sum to nterms terms;

uses r to the nterms power */
ClosedForm = (l-pow(r,nterms))/(l-r);
error = ClosedForm-Sum;
printf("\n%g %g %g %g",r,ClosedForm,Sum,error);

}

double GeoSum(r,kmax)
/* Direct sum of geometric series */
double r;
int kmax;
{
double term,sum;
int k; term = 1; sum = 1; /* initialize terms & sum */

3.1 MOTIVATION FOR USING SERIES: TAYLOR’S THEOREM 55

for (k = 1; k <= kmax; k++)
{
term = r*term;
sum= sum+term;

return sum;

For the benefit of novice C programmers, we now summarize how the program
Geometric Series is organized. Program execution is controlled by the value of
n, which is denoted by nterms in the program. If there are fewer than two terms
in the geometic series (3.1), then one has only the leading term of unity, which is
scarcely an interesting series. Therefore, if the input value of nterms is less than 2
this is used to signal program termination by a graceful exit (parameter zero). If the
series is to be summed, then there are kmax = n - 1 terms to be added to the star-
ting value of unity.

For each value of the multiplier r in the input range, starting at rmin and go-
ing up to rmax by steps of dr, the program first checks whether r is beyond the
range that leads to convergent series. Although the series has a definite value for
any finite n , it is instructive to see how a warning about nonconvergence can be out-
put. Next, the function GeoSum (about which more is told in the next paragraph) is
used to sum the series directly.

The formula (3.2) is then coded in-line to produce the value ClosedForm,
which requires the C library function pow to compute the power rn . Finally, any
difference between the direct summation and closed-form values is indicated by their
difference, called error, which is printed following the r value and the two series
values.

The function GeoSum, coded after the main program of Geometric Series,
involves a simple for loop over the powers of r. The succesive terms are obtain-
ed by the recurrence relation indicated, then they are added to the partial sum. There
will be at least one iteration of the loop, since kmax is at least 1 because nmax is at
least 2. The value of sum is retumed to the function GeoSum for assignment in the
main program.

Given this program description, and some nimble fingers, you should be ready
to code, test, and use Geometric Series.

Exercise 3.2
(a) Code the program Geometric Series, listed as Program 3.1, modifying
the input and output functions for your computing environment. Then test the
program termination control (nterms < 2) and warning message for |r| 1.

56 POWER SERIES

(b) Run the program for a range of values of the multiplier r and the number of
terms nterms, to convince yourself that for a reasonable range of these parame-
ters of the geometric series the direct-summation and closed-form methods give
close numerical agreement.
(c) Examine the convergence of the series for values of r that are close to (but
less than) unity in magnitude. For example, use r = -1 + 10-3, then find out
how large nterms must be in order to get agreement with the infinite series
value of l/(1 - r) to about one part per million. It would be most convenient
to modify the program to calculate this value and compare it with the direct-
summation value. n

Alternating series

As you will have discovered by working part (c) of Exercise 3.2, series in which
successive terms are of similar magnitude but opposite sign, so-called “alternating
series,” are particularly troublesome numerically. The geometric series is particu-
larly convenient for investigating and understanding the problems that can arise with
alternating series.

For example, suppose that you had to sum the geometric series term by term for
r = -1 + , where 10-6 and is positive. By looking at the leftmost panel of
Figure 3.1 you would know that the series is convergent but it would clearly take
many terms before the remaining terms could be ignored. Numerically, by that
number of terms the roundoff error of your computer may have already over-
whelmed the significant digits in your partial sum.

Exercise 3.3
(a) Suppose that, for a multiplier an amount larger than -1, we wanted to esti-
mate how many terms, k, it takes before a geometric-series term has become 1/2
of the first term. By using (natural) logarithms and the approximation that
In (1 -) for small show that k ln(2)/ 0.7/ . Thus if one had
 = 10-6, more than one million terms would be needed for even reasonable
convergence.
(b) Show that for r = -1 + as the multiplier in the geometric series the al-
gebraic sum of the series is l/(2-). Thus show that as 0 the sum
tends to 1/2, which is just the mean value of the successive partial sums shown
on the left side of Figure 3.1, namely 1 and 0.
(c) Write down the geometric series for negative r term by term, but expressed
in terms of |r|, so that the alternating signs are explicit in the sum. Next factor
out the (1 - |r|), sum the remaining series in the geometric form, then divide
away the first factor. Show that the alternating series sums to l/(1 + |r|) ,
which is l/2 at r = -1, just as in (b). Explain why the two methods agree, and
explain whether a limit process similar to that in (b) is necessary in the second
method. n

3.1 MOTIVATION FOR USING SERIES: TAYLOR’S THEOREM 57

Notice in part (b) of Exercise 3.3 that if r were allowed to approach the limit of
-1 before the summation were attempted, then the result would be undefined, as
Figure 3.1 shows. Part (b) shows that if the limit is taken after an expression for
the sum has been obtained, then the result is well defined. This peculiarity of the
strong dependence of the series values on the order of taking limits appears again in
our investigation in Section 9.6 of the Wilbraham-Gibbs overshoot phenomenon for
Fourier series.

From the example in Exercise 3.3 we see particularly troublesome aspects of al-
ternating series. Specialized techniques have been developed for alleviating some of
their troubles, as described in the text by Taylor and Mann. An interesting result on
combining geometric series with multipliers of opposite sign is obtained in the fol-
lowing exercise.

Exercise 3.4
(a) Show analytically that for a convergent geometric series

(3.4)

(b) Make a sketch, similar to Figure 3.1, of the terms on the left and right sides
of this equation, Thereby explain the result (3.4). n

Another property of the geometric series that leads to a very interesting result is
the integral of the infinite series (3.1). In order to produce the result in standard
form, and assuming that |r|<1, replace r by -r in (3.1) and (3.2), then integrate
both l/(1 + r) and each term of the convergent series in order to produce the series
expansion

(3.5)

If we now identify the indefinite integral on the left-hand side as 1n(1 + r), one
has produced a power series expansion for the natural logarithm. This result agrees
with the Taylor-expansion method of deriving logarithms in series expansion that is
presented in Section 3.2.

Exercise 3.5
Show the steps leading to the result (3.5) for the power-series expansion of the
integral. n

Now that we have some experience with the well-behaved geometric series, it is
time to expand our horizons to power series that are more general. With this as our
goal, we should review Taylor’s theorem on power-series expansions and function
derivatives.

58 POWER SERIES

Taylor’s theorem and its proof

In later chapters, especially in Chapters 4, 5, 7, and 8, we often require polynomial
approximations to functions. If the function is smooth enough that as many deriva-
tives as needed can be calculated analytically, then Taylor’s theorem gives a unique
prescription for the polynomial coefficients. We now review the conditions for app-
licability of the theorem and we review a convenient proof of it.

Suppose that a function y(x) and its first n derivatives y(k)(a) for k = 1,2,..,n
are continuous on an interval containing the points a and x. Then Taylor’s theorem
states that

in which the remainder after n terms, Rn, is given by

(3.6)

(3.7)

In practice, one tries to choose n and a so that it is a fair approximation that Rn can
be ignored for the range of x of current interest, typically x values near a. If Rn may
be ignored, then y (x) is aproximated by an n th-order polynomial in the variable
(x - a). In order to make the statement of Taylor’s theorem plausible, consider the
following examples.

Exercise 3.6
(a) Suppose that y (x) is a polynomial of order n in the variable (x - a), so
that

(3.8)

Show that Taylor’s theorem, (3.6), is exactly satisfied and that the remainder is
identically zero because the derivative therein is zero.
(b) Suppose now that y (x) is a polynomial of order (n + 1) in the variable
(x - a). Show that the remainder after n terms is given by

which is just the (n + 1) th term of the polynomial. n

(3.9)

Therefore, we have two examples in which the theorem is true, but (just as two
swallows do not a summer make) this is not sufficient for a mathematical proof, es-
pecially because the result should not depend on the use of a polynomial which has a

3.1 MOTIVATION FOR USING SERIES: TAYLOR’S THEOREM 59

particularly simple dependence on the variable a. Notice that the statement of the
theorem contains a, but y (x) does not depend on a.

The most direct proof of Taylor’s theorem, although not an obvious proof, is by
the method of induction, a simple example of which is given in Exercise 3.1. We
will show that if the theorem is true for n, then it must be true for n + 1. By
showing that the theorem indeed holds for n = 0, we will then know that it is true
for all values of n. The proof proceeds as follows.

Since the statement of the theorem, (3.6), claims that y (x) is independent of n,
we should be able to prove that the difference between yn+1 and yn is zero.

Exercise 3.7
(a) Use (3.6) applied for n and then for n + 1 to show that

(3.10)

Now use integration by parts to show that the difference between the two re-
mainders exactly cancels the first term on the right side of this equation, so that
the result is zero and the value of the expansion is indeed independent of n.
(b) Show that for n = 0 the expression (3.10) becomes, including the calcula-
tion of the remainder,

(3.11)

so that the theorem holds for n = 0. Therefore, by
for n = 0+l, and therefore for n = 1+1, … . n

above induction, it holds

Thus we have proved Taylor’s theorem. In order to be mathematically punctilious,
we should enquire more carefully into the conditions for the required derivatives to
exist at the point x = a. Rather than delve into these points here, you may follow
up on them in texts such as Protter and Morrey or Taylor and Mann. In the next
subsection we consider some general aspects of interpreting Taylor series before we
derive Taylor expansions of some common and useful functions.

Interpreting Taylor series

Taylor’s theorem may well be true, but what’s the point of it? The first puzzle may
be to understand the meaning and use of the quantity a in a Taylor series. Formally,
this quantity is arbitrary, apart from the requirement of being able to compute the
first n derivatives at x = a. Practically, we want the power series in the variable
(x - a) that appears in (3.6) to converge rapidly for the range of x that is of interest
for a particular problem. Therefore, a should preferably be chosen in the midrange
of x values concerned.

60 POWER SERIES

Your second question may well be, what is to be done with the remainder after n
terms, R n? If it could be calculated exactly, one might as well have computed y (x)
itself. One therefore usually wants to choose the parameters a and n in the Taylor
series so that, according to some estimate of Rn, its effect on the value of y (x) is
suitably negligible.

A common choice of a is that a = 0, in which case the Taylor series is called a
Maclaurin series. An example will clarify the relations between n and the
remainder term Rn .

Exercise 3 .8
Suppose that y (x) is a polynomial of degree N in the variable x

(3.12)

Show that the coefficients ak and the derivatives of the polynomial are related by

(3.13)

in accordance with the general formula (3.6). Show also that the remainder Rn

in the Taylor expansion of this polynomial is, in general, nonzero for n < N and
is identically zero for n N. n

With this introduction to the interpretation of Taylor’s theorem, we are ready to
develop specific Taylor expansions. From these examples we will further clarify
our interpretation of Taylor and Maclaurin series. Further, they serve as the basis
for many other numerical developments that we make.

3 . 2 T A Y L O R E X P A N S I O N S O F U S E F U L F U N C T I O N S

In this section we discuss the Taylor expansions of useful functions, starting with
the exponential, exp (x), which will be our paradigm for the other functions con-
sidered. These are: the circular functions cos x and sin x, the inverse circular
function arcsin x, the natural logarithm 1n (1+x), the function x1 n (x), and the
hyperbolic functions cosh x and sinh x . The exponential will be developed in
enough detail that the techniques of Taylor expansions will become clear to you,
then the other functions will be considered in a more cursory way.

The exponential function also serves as the model for distinguishing between
analytical and numerical convergence properties of power series. Testing the numer-
ical convergence of series for the other functions that we are about to discuss is the
topic of Project 3 in Section 3.5.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 61

Expansion of exponentials

The ingredients of the analytical recipes for expanding functions by using Taylor’s
theorem, (3.6), are the choice of a and the values of the derivatives of the function
evaluated at the point x = a. For the exponential function, y (X) = exp (X), these
derivatives are especially simple because they are all equal

(3.14)

Therefore in
power-series

(3.6) there is a common factor of ea in every term of
expansion of the exponential can therefore be written

the series. The

(3.15)

in which the remainder after n terms of the expansion, Rn, is given by substituting
the derivative (3.14) into (3.6):

(3.16)

Exercise 3.9
Show that an upper bound on this remainder can be obtained by substituting the
upper bound on the exponential in the range x to a, to obtain

(3.17)

which shows
term. n

that the series will gradually converge because of the factorial

Notice in (3.15) that division throughout by the factor exp (a) produces a power
series for exp (x-a) in terms of the variable (x-a). Thus, apart from the rela-
beling of the variable (a shift of origin from zero to a), the parameter a is of no sig-
nificance here. Henceforth, we discuss only the Maclaurin expansion, which has
a = 0. In compact form the Maclaurin expansion of the exponential function is

(3.18)

By comparison with the geometric series in Section 3.1, whose range of con-
vergence is strictly limited (as shown in Figure 3.1), the exponential function Mac-
laurin series converges (at least analytically) for all values of the argument x. We
show examples of this convergence in Figure 3.2 for the same numerical values of
the arguments as used in the geometric series in Figure 3.1.

62 POWER SERIES

FIGURE 3.2 Convergence of the Maclaurin series for the exponential function. Compare with
Figure 3.1 for the geometric series with the same values of the arguments.

For all three arguments of the exponential, x = -1, 0.6, and 1.01, the power
series converges to within 0.1% of the exponential function value by n = 5 terms.
Note the key difference between the geometric series (3.1) and the exponential series
(3.18), namely that the latter has factorials in the denominator that inexorably dimin-
ish the contributions of successive terms.

We should not be completely sanguine about this rapid convergence, because we
have restricted the three examples in Figure 3.2 to small values of the argument x,
small enough that the powers of x in (3.18) do not initially overwhelm the factorials.
It is therefore worthwhile to investigate the series numerically by using a computer
program that we now devise.

Computing the exponential series

The C-language function that we write for the power-series expansion of the expo-
nential according to (3.18) also serves as the paradigm for the other power-series
functions in Project 3 in Section 3.5.

The power-series expansion of the exponential is given in Program 3.2.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 63

PROGRAM 3.2 Power-series expansion for the exponential function.

#include <stdio.h>
#include <math.h>

/* Power Series for Exponential */
double xmin,dx,xmax,x,series,error;
int int-kmax;
double PSexp();

printf("Power Series for Exponential\n");
xmax = 2;
while(xmax ! = 0).

printf("\n\nInput xmin,dx,xmax (xmax=0 to end),kmax:\n");
scanf("%lf%lf%lf%i",&xmin,&dx,&xmax,&kmax);
if (xmax == 0)

{ printf("\nEnd Power Series for Exponential"); exit(O); }
for (x = xmin; x <= xmax; x = x+dx)

{
series = PSexp(x,kmax);
error = exp(x)-series;
printf("\n%g %g %g",x,series,error);

double PSexp(x,kmax)
/* Power Series function for exponential */
double x;
int kmax;

double term,sum;
int k;

term=1; sum=l; /* initialize terms & sum */
for (k = 1; k <= kmax; k++)

term = x*term/k;
sum= sum+term;

return sum;

64 POWER SERIES

The program Power Series for Exponential has a very straightforward
structure. The input variables xmin, dx, and xmax control the range and step sizes
of the x values. For each x value the input variable kmax controls the range of
summation for the exponential series (3.18). If the maximum x value, xmax, is in-
put as zero, then program execution terminates gracefully. Otherwise, a for loop
over the x values is run. For each x the series value is computed as series, then it
is compared with the mathematical library function value exp (x) to calculate vari-
able error.

The power-series expansion for the exponential is in function PSexp. This has
a loop over the k values in the sum (3.18), in which each term is computed by recur-
rence from the immediately preceding term before being added into the partial sum.

Program Power Series for Exponential can now be used to explore the
numerical convergence of the exponential series. Since the exponential function also
serves as a test function for numerical derivatives in Section 4.5, it is worthwhile to
understand its numerical properties at this stage.

Exercise 3.10
(a) Code and test Power Series for Exponential as given in Pro-
gram 3.2. Tests may be made against tabulated values of the exponential func-
tion. The kmax you choose for a given test x value should be large enough that
convergence to significant accuracy is achieved. Therefore, start with small x
values (say 0.1) and small kmax values (say 5) before testing with larger values.
(b) For input x values in the range zero to 2, check the convergence of the expo-
nential series as a function of varying kmax. Compare your results with those in
Figure 3.2. What do you conclude about the rate of convergence of this series,
and what is the reason for this convergence property?
(c) Modify the program so that for a given x the power-series expansions of
both exp (-x) and exp (x) are computed. The program should then multiply
together the series from the two expansions and subtract the result from unity.
For positive x which series do you expect to converge faster? Is this what you
observe by changing kmax? (Recall the discussion of alternating series in Sec-
tion 3.1.) n

Figure 3.3 shows representative values of the series expansion results compared
with the exponential function calculated with the mathematical library function exp.
By kmax = 10 agreement at parts per million is achieved even for x = 2. The
factorials of k in the denominators in (3.18) help greatly in producing convergence,
because it is they which distinguish the exponential series (which converges every-
where) from the geometric series (which converges only within the unit circle).

Once we have analytical and numerical experience with power series for the ex-
ponential function, other often-used circular and hyperbolic functions can be handled
quite directly. They have nice convergence behavior similar to that of the exponen-
tial because, as we showed in Section 2.3, they are all functions belonging to the
same family.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 65

FIGURE 3.3 Convergence of the exponential-function power series. The solid line shows the
exponential function, while the dashed lines show the series summed to 2 or 4 terms.

Series for circular functions

The circular functions, cosine and sine, are used frequently, especially when solving
problems in oscillatory motion, vibrations, and waves. We discussed this in Sec-
tion 2.4 in the context of complex-variable representations of these phenomena.
The analysis and numerics of such problems can often be simplified if Taylor expan-
sions of the circular functions can be used.

The direct way of deriving the Taylor expansions using (3.6) would be to eval-
uate the indicated derivatives. This method is tedious and error-prone because the
successive derivatives switch between the cosine and sine functions, and they also
change signs. A more insightful method of deriving their series is to use the con-
nection between complex exponentials and the circular functions as stated in Euler’s
theorem, (2.39) in Section 2.3. For simplicity, let us assume that x is a real vari-
able. We write (2.39) as

(3.19)

It is now straightforward to derive the expansions for the cosine and sine.

Exercise 3.11
In (3.19) equate real and imaginary parts of the left- and rightmost expressions
in order to derive the Maclaurin expansions for the cosine and sine functions,
namely

66 POWER SERIES

(3.20)

(3.21)

which are convergent series, since they arise from the convergent series for the
exponential function. n

Note that in both these formulas the arguments of the circular functions, x, must be
in radians, not in degrees. One can see this from the fact that the Euler theorem re-
fers to angles in radians, or alternatively, that the derivatives of cosines and sines are
for arguments in radians.

The conversion factors between the two angular measures are given by radi-
ans = degrees / 180, thus we have that radians = 0.0174533 degrees and de-
grees = 57.2950 radians. Roughly (in the approximation that = 3), we have
radians degrees / 60.

The cosine series can often be put to very practical use by considering only the
first two terms of its Maclaurin expansion (3.20). This makes the approximation for
the cosine a quadratic expression in x, which is usually easy to handle. If we note
that cosine or sine need not be computed with x > /4 because of the trigonometric
formulas for complementary angles, we can see that the error in the use of a quad-
ratic approximation is surprisingly small, and is therefore adequate for many pur-
poses.

Exercise 3.12
(a) Write out the Maclaurin series for the cosine explicitly to show that

(3.22)

(b) Show that if x = /4, then by neglecting the third term one makes an error
of about 2% in the value of the cosine, which is
(c) In measuring lengths along nearly parallel lines you will have noticed that a
small error of nonparallelism does not produce significant error in a length mea-
surement. For example, a good carpenter, surveyor, or drafter can gauge paral-
lelism to within 2°. Show for this angle that the fractional error in a length mea-
surement is then about 1 part in 2000. n

The sine
in the form

series given by (3.21) also converges rapidly. It is convenient to write
it

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 67

(3.23)

Strictly speaking, this form holds only for x 0. It is usual, however, to let the
right-hand side of (3.23) be defined as the value of the left-hand-side quotient even
for x = 0, so that the ratio (sin x)/x is defined to be unity at x = 0. The angles,
x, in (3.23) are in radians, just as for the cosine power series (3.20).

By comparison with the cosine series (3.20) for given x, the sine expansion
(3.21) converges more rapidly, as the following exercise will show you.

Exercise 3.13
(a) Show that if x = /4, then by neglecting the third and higher terms in
(3.21) one makes an error of less than 0.4% in the value of (sin x)/x.

(b) Verify that the theorem of Pythagoras, (2.43), is satisfied through the terms
of order x4 in the cosine and sine as given in (3.20) and (3.21). This result pro-
vides another justification for the result in Exercise 3.12 (c). n

Rapid and accurate numerical approximations for the trigonometric functions are
of great importance in scientific and engineering applications. If one is allowed to
use both the cosine and sine series for computing either, one can reduce the value of
x appearing in the power series (3.20) and (3.21) so that it does not exceed
 /8 = 0.392699. To do this one uses the identities

(3.24)

The power series (3.20) and (3.21) through terms in x6 may be written

and in Horner polynomial form

(3.25)

For x < /8 the neglected terms in the cosine are less than 10-9 and in the sine
they are less than 10-10. You can test all these numerics by using Program 3.3.

The program Cosine & Sine has a straightforward structure. The main pro-
gram is controlled by a whi1e loop over the values of x that are used in the calcu-
lation of the cosine and sine polynomial approximations (3.25) and (3.26). Each
run of the program allows a range of x values to be evaluated, with xmax input as
zero to exit gracefully from the program.

6 8 POWER SERIES

PROGRAM 3.3 Cosine and sine in the compact form of polynomials.

#include <stdio.h>
#include <math.h>

main()
{

/* Cosine & Sine in Compact Form */
double xmin,dx,xmax,x,CosVal,CosErr,SinVal,SinErr;
double CosPoly(),SinPoly();

printf("Cosine & Sine in compact form\n");
xmax = 2;
while(xmax!=O)

{
printf("\n\nInput xmin,dx,xmax (xmax=0 to end):\n");
scanf("%lf%lf%lf",&xmin,&dx,&xmax);
if (xmax == 0)

{
printf("\nEnd Cosine & Sine in Compact Form");
exit (0);
}

for (x = xmin; x <= xmax; x = x+dx)

CosVal = 2*pow(CosPoly(x/2),2)-1;
CosErr = cos(x)-CosVal; /* compare with computer's cosine */
SinVal = 2*SinPoly(x/2)*CosPoly(x/2);
SinErr = sin(x)-SinVal; /* compare with computer's sine */
printf("\n%g %g %g %g %g",x,CosVal,CosErr,SinVal,SinErr);
}

}

}

double CosPoly(x)
/* Cosine Polynomial through x to 6-th power */
double x;
{
double y,poly;

y = x*x/2;
poly = 1 - y*(l - (y/6)*(1 - y/15));
return poly;
}

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 69

double SinPoly(x)
/* Sine Polynomial through x to 7-th power */
double x;

double y,poly;

y = x*x/2;
poly = x*(1 - (y/3)*(1 - (y/10)*(1 - y/21)));
return poly;

For each x value the program uses the identities (3.24) to halve the argument
used in the circular functions. The quantities CosVal and Sinval are obtained in
terms of the polynomial-approximation C functions used with the half angles. These
quantities are compared with the values produced by the computer mathematical lib-
rary functions, which are presumed to be exact to within computer roundoff error.

The C functions CosPoly and SinPoly are simple implementations of the
polynomial formulas (3.25) and (3.26). By precomputing x2/2 we gain some effic-
iency, as well as improving the clarity of the coding. The nested form of the poly-
nomial evaluation, the so-called Horner’s method that is further discussed in Sec-
tion 4.1, also is efficient of computer time.

Given the program it is educational to run it and explore numerically the cosine
and sine polynomial approximations.

Exercise 3.14
Code and run the program Cosine & Sine for an interesting range of the argu-
ments x. First check that the polynomials maintain the reflection (parity) symme-
try of the exact functions, namely that the cosine is an even function of x and
that the sine is an odd function of x. Then verify that for x < /8 (angles less
than 22.5°) that the accuracy is as claimed below (3.26). Finally, expand the
range of x values to find out when an unacceptably large error results, say
greater than 10-6. n

Although the polynomial approximations suggested here are remarkably accu-
rate, one can compute the circular functions more accurately in a comparable time by
using various other approximations, such as discussed extensively for the sine func-
tion in Chapter 3 of Miller’s book on the engineering of numerical software and in
the handbook by Cody and Waite. Project 3 in our Section 3.5 again examines the
convergence of power series for circular functions.

Having studied Taylor expansions of the circular functions rather exhaustively
(and maybe exhaustingly), we are well equipped to consider power series for related
functions.

70 POWER SERIES

Inverse circular functions

The inverse circular functions are of interest and importance in analysis, numerics,
and applications because problem solutions often are given in terms of arccosine or
arcsine functions. These are the two inverse functions that we consider, although
the arctangent function often also occurs in scientific and engineering problems, but
it is considerably more difficult both analytically and numerically.

Because arccosine and arcsine functions with the same argument are related by
being complementary angles (summing to /2), the value of one function implies
the other. If we wish to have a Maclaurin series (an expansion with a = 0), this
will be difficult for the arccosine, because we know that arccos (0) = /2. So we
choose to expand the arcsine function, since arcsin (0) = 0, which promises rapid
convergence of its Maclaurin series.

The general prescription for a Taylor series is given by (3.6). With a = 0 to
produce a Maclaurin series, we need the successive derivatives of the function arc-
sin x, then these derivatives are to be evaluated at x = a = 0. This will provide
good mental exercise for you.

Exercise 3.15
(a) The first derivative needed is that of the arcsine function itself. Show that

(3.27)

(b) Evaluate the second and higher derivatives of the arcsine function, that is,
the first and higher derivatives of the right-hand side of (3.27), then set x = 0
in the derivatives for the Taylor expansion (3.6) in order to obtain the power se-
ries

which is consistent
first two terms. n

with the expansion for the sine function, (3.21), through the

(3.28)

The general pattern for the coefficients of the powers occurring in the series is
not so obvious; it is clarified when we develop the program for the arcsine function
in Section 3.5. For the moment we note the close similarity of the Maclaurin series
for the sine and arcsine functions. We therefore expect similar rapid convergence of
the series (3.28). Since for real angles only values of x with magnitude less than
unity are allowed in this expansion, the expansion of the arcsine function is particu-
larly rapid. By continuity, one has arcsin (1) = /2 for angles restricted to the
first quadrant.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 71

Hyperbolic function expansions

We introduced the hyperbolic functions cosh and sinh in Section 2.3 in the context
of functions of complex variables. On the basis of analysis methods that we have
developed, there are three ways to obtain the power series expansions of these hy-
perbolic functions: we may use Taylor’s theorem directly, we may use their defini-
tions in terms of the exponential functions, or we may use the relations between hy-
perbolic and circular functions that were obtained in Exercise 2.14. The first way is
by now rather boring, so consider the other two.

Exercise 3.16
(a) Consider the definitions of cosh x and sinh x in terms of the exponentials,
as given by (2.48) and (2.49), then note the Maclaurin series for exp (x) given
by (3.18). Thus show, by combining terms from the two convergent series, that
the cosh gathers the even terms of the exponential and the sinh gathers its odd
terms, producing for the hyperbolic cosine

(3.29)

and for the hyperbolic sine

(3.30)

(b) As an alternative derivation, use relations (2.53) and (2.54) between hyper-
bolic and circular functions, and assume that the power-series expansions (3.20)
and (3.21) can be extended to complex variables, from x to ix. Thus again de-
rive the expansions (3.29) and (3.30). n

The second method shows, in terms of complex variables, where the sign changes
between the power series for circular and hyperbolic functions originate, since the
alternating signs for the former series are canceled by the factors of i 2 = -1 which
arise in forming the latter series.

The convergence properties of the cosh and sinh are very much better than those
of the cos and sin, because the sums in both (3.29) and (3.30) have only positive
terms. Therefore, given the very rapid convergence of the series for circular func-
tions, the convergence of the series for hyperbolic functions will be even more rapid
for small x. Note, however, as shown in Figure 2.4, that these hyperbolic func-
tions are unbounded rather than periodic, so the restrictions to small arguments that
we invoked for the circular functions cannot be made so realistically for them.

The numerical properties of the Maclaurin expansions for cosh and sinh are ex-
plored in Project 3 in Section 3.5. Their coding is essentially that for the cos and
sin expansions, apart from the lack of sign reversals between successive terms.

72 POWER SERIES

Logarithms in series expansions

There are many applications for power series expansions of the natural logarithm,
1n. Maclaurin expansions of 1n (x) cannot be made because the logarithm is diver-
gent as x tends to zero, and its first derivative diverges as 1/x . Instead, one usually
considers the expansion of 1n (1 + x) about x = 0.

Exercise 3.17
Show that if one wants an expansion of 1n (a + bx) about x = 0, then an ex-
pansion in terms of (1 + u), where u = bx /a, is sufficient, except that the re-
gion of convergence for u differs by the factor b/a relative to that for x, and is
therefore smaller if this factor is of magnitude greater than unity. n

A power series expansion of 1n (1 + x) is easiest made directly from Taylor’s
theorem, (3.6). The successive derivatives after the first, which is just 1/(1 + x),
are easy to evaluate. They alternate in sign and grow in a factorial manner, but they
are one step behind the Taylor-theorem factorial. Thus you can readily obtain the
series expansion

(3.31)

This series expansion converges only if |x| < 1, as can be seen by comparison with
the divergent harmonic series.

The result (3.31) and its consequences are of considerable interest.

Exercise 3.18
(a) Show in detail the steps leading to (3.31).
(b) Write down the series expansion for 1n (1 - x) by using (3.31) with the
sign of x changed, then subtract the series expansion from the expressions in
(3.31). Thereby show that

(3.32)

(c) Check the parity symmetry of the logarithm on the left side of (3.32) by
showing that it is an odd function of x, and that this result agrees with the sym-
metry of the right-side expression. Show also that the simpler expresssion in
(3.31) does not have a definite symmetry under sign reversal of x. n

As you can see from the coefficients of the powers of x in (3.31), the logarith-
mic series has quite poor convergence, mainly relying for its convergence on the de-
creasing values of the powers of x, rather than on the presence of factorials in the
denominator. We investigate the numerical convergence in more detail as part of the
computing project in Section 3.5.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 73

The power series expansion of the logarithm may be adequate in limited ranges
of the variable, especially if one is willing to interpolate within a table of logarithms.
Suppose we have a table in computer memory with entries at t - h, t, t + h, . . . ,
and that we want the interpolated logarithm at some point a distance d from t.
Clearly, it is sufficient to consider values of d such that |d/h | < 1/2. How closely
spaced do the table entries have to be in order to obtain a given accuracy, , of the
interpolated values?

Exercise 3.19
(a) Use the power-series expansion of the logarithm, (3.31), to show that

in which the error, , can be estimated as the first neglected term, which is

(3.33)

(3.34)

(b) Show that if the tabulated increments satisfy h/t 0.01, then the error will
be less than 10-7. n

Table lookup therefore provides an efficient way to obtain values of logarithms over
a small range of its argument. In this example 200 entries would give better than
part-per-million accuracy. For applications such as Monte Carlo simulations, where
there is intrinsically much approximating, this accuracy is probably sufficient.

Now that we have some experience with handling power series for logarithms, it
is interesting to try a more difficult function involving logarithms.

Series expansion of x 1n(x)

The function x 1n(x) is of interest because, although it has a Maclaurin expansion,
this cannot be obtained directly by taking successive derivatives of this function and
evaluating them at x = 0, since the derivatives of the logarithm diverge as x 0.
You should first be convinced that x 1n(x) is indeed well-behaved near the origin.
To do this, try the following exercise.

Exercise 3.20
(a) Set x = e-y, with y > 0, so that x 1n(x) = -y/ey. Thence argue that
x 0 as y , and therefore that x 1n(x) 0 from below.
(b) Make a graph of x 1n(x) for x in the range 0.05 to 2.00 by steps of 0.05,
and check that it agrees with the solid curve in Figure 3.4. Thus this function is
well-behaved over the given range of X, and is therefore likely to have a series
expansion about the origin, at least over a limited range of X. n

74 POWER SERIES

FIGURE 3.4 The function x 1n (x), shown by the solid curve, and its approximations, shown
by the dashed curves.

The derivation of the series expansion of x 1n(x), examples of which are shown
in Figure 3.4, is easiest made by considering the Taylor expansion about x = 1 of
the logarithm, written in the form

We also have the geometric series

(3.35)

(3.36)

If we now multiply the two left-side expressions in (3.35) and (3.36), and their cor-
responding series on the right sides, then we have a double series in which we can
group like powers of x as

(3.37)

This is not the conventional form of a series expansion, which usually has a single
power, k, of X. You can easily remedy this by working the following exercise.

Exercise 3.21
(a) To understand what the series (3.37) looks like, write out the first few pow-
ers of x on the right-hand side, in order to see that the coefficients are 1,
1 + 1/2, 1 + 1/2 + 1/3, etc.

3.2 TAYLOR EXPANSIONS OF USEFUL FUNCTIONS 75

(b) Set k = m + n in (3.37), then rearrange the summation variables in order
to show that

where the harmonic coefficients, hk, given by

(3.38)

(3.39)

are just the sums of the reciprocals of the first k integers. n

Thus we have an expansion about x = 1 of a series that does not seem to be par-
ticularly relevant to our purposes. But we can soon change all that, as follows.

If in (3.38) we set y = 1 - x, then write

(3.40)

By relabeling, y x, we have a power-series expansion. For any number of
terms in this expansion it coincides with the function at both x = 0 and at x = 1,
at both of which points it is zero. The expansion to the first three terms (as the dash-
ed curve) is compared with the function (the solid curve) in Figure 3.4. Note that
the agreement is fairly poor between the two anchor points, because of the slow con-
vergence of the series. The harmonic series is divergent, so the hk coefficients grow
steadily without limit. Only the decreasing powers of x (less than unity) make the
series convergent.

To reduce the poor convergence properties, we can play tricks with the logarithm
series. Suppose that we want an expansion that converges rapidly near x = a,
where a 1. By writing

(3.41)

and taking logs of this product, we can repeat the above analysis to obtain

(3.42)

Exercise 3.22
To verify the improved convergence of this expansion, which is about x = a
rather than about x = 1, choose a = 0.5 and write a small program to calculate
the series to, say, 4 terms. For x in the range 0 to 1, compare the series values
with the function values, as shown by the dotted curve in Figure 3.4. Why
does the series expansion rapidly become a poor approximation as x increases
from x = a? n

7 6 POWER SERIES

3.3 THE BINOMIAL APPROXIMATION

In analysis and numerics there are many problems that can be greatly simplified if
they can be approximated by a linear dependence on the variable of interest. One
way to produce such a linear dependence is to use the binomial approximation,
which we now discuss. Skillful application of this approximation will often produce
an orderly solution from an otherwise chaotic problem.

We first derive the binomial approximation, then we give several applications of
it and show its connection to exponentials and to problems of compounding interest.

Deriving the binomial approximation

Suppose that we need to estimate (a + b)D, where | b/a | << 1 and aD is known.
If D is an integer, this is no problem because for positive D we can use the binomial
expansion in terms of combinatorials and powers of a and b. When D is a negative
integer it may be sufficient to use the binomial expansion with ID I, then to take the
reciprocal of the result. But what if D is an arbitrary quantity: how can one reason-
ably proceed?

The binomial approximation is designed to answer such a question. First, we
cast the problem in a simplified form by noting that

(3.43)

If a and b represent quantities with units, these units must be the same, otherwise
one is adding apples to bananas. Given this condition, x is dimensionless, so its ad-
dition to a pure number (unity) is allowed. Knowing aD in (3.43), it is sufficient to
consider approximating the function (1 + x) D

. We do this by devolving the Mac-
laurin series for this function.

Exercise 3.23
Calculate the successive derivatives of the function, then evaluate them at x = 0
in order to show that

in which the series terminates after D terms if D is a positive integer. n

The binomial approximation is that

Thus we have approximated a result that usually depends nonlinearly on
that has a linear dependence, which often leads to much simpler solutions.

(3.44)

(3.45)

x by one

3.3 THE BINOMIAL APPROXIMATION 77

FIGURE 3.5 Geometric representation of the binomial approximation, shown for D = 2.

A geometrical viewpoint is appropriate to clarify the interpretation of the binom-
ial approximation. Suppose that in the function to be expanded we have D = 2 and
| x | << 1, thus satisfying the condition in (3.45). We can represent the function in a
plane (such as a page of this book) by drawing two squares, one with sides of
length unity and the other with side length 1 + x, as shown in Figure 3.5.

The two lightly shaded rectangles in Figure 3.5 are additional contributions pro-
portional to x, and are therefore included in the binomial approximation that
(1 + x)2 1 + 2x for D = 2. The heavily-shaded square is the ignored part, just
equal to x2

. Clearly this geometric correspondence can readily be generalized.

Exercise 3.24
(a) For practice, sketch the diagrams for the geometric interpretation of the bino-
mial approximation when D = 0, 1, and 3. Indicate which parts are included
and ignored in the approximation,
(b) (Challenge part) Since the interpretation is clear for the above D values,
make a sketch for intermediate values of D, such as D = 1.5 and D = 2.5, as
well as for the larger value D = 4. ■

Because this is a geometric representation, we may think of D as the dimension of
the binomial approximation exponent. The example of D = 4, the fourth dimen-
sion, may be explored by the interested reader in the introductory-level book by
Rucker.

7 8 POWER SERIES

Applications of the binomial approximation

To illustrate the power of the binomial approximation for numerical work, so much
power that you can amaze your friends with your arithmetic skills, try the following
numerical examples.

Exercise 3.25
(a) Show that the error in estimating 1.0110 by the binomial approximation is
only of order 5 parts in 1,000.
(b) Approximate 2.01-3 by first removing the known factor of 2-3 = 0.125,
then using (3.45) for the remaining factor. Show that the fractional error from
using the binomial approximation is only about 10-4.
(c) Estimate by the binomial approximation, then compare with the exact values
the ratio of 2001D to 2000D for D = 1, 5, 137, l/137, 622, and 1066. (For
the choice of the last three values, consult books on quantum mechanics, on Is-
lamic history, and on English history, respectively.) n

With this introduction to the binomial approximation, you should be convinced
of its numerical power. It is also used analytically in Chapters 4, 7, and 8 when we
develop numerical approximation methods for derivatives, integrals, and the solution
of differential equations.

Linearized square-root approximations

Many scientific calculations involve computation of square roots, for example in dis-
tance calculations in two and three dimensions. Such calculations are often part of a
quite approximate calculation, for example, the distance between two molecules in a
Monte Carlo simulation of random motions in a gas or a distance in a computer-
graphics display. So one can save computer time by making a linearized approxi-
mation to the square root. We first discuss the binomial approximation for the
square root, then we explore other linear estimates.

Suppose that we have a base distance of unit length and that we want distances,
D (x), given by

(3.46)

where xm is the maximum displacement
D that is exact at x = 0 is of the form

from unity. A linearized approximation to

(3.47)

in which the value of a depends on the linear approximation devised. The binomial
approximation uses, according to (3.45),

(3.48)

3.3 THE BINOMIAL APPROXIMATION 7 9

FIGURE 3.6 The errors in various linear approximations to the square root.

Other linear approximations can be devised. One might choose to force the ap-
proximation to be exact at the midpoint of the interval [0, xm] or at the upper end of
this interval.

Exercise 3.26
(a) Prove that if the square-root approximation is to be exact at the midpoint
x m/2, then the coefficient in (3.47) must be chosen as

(3.49)

(b) Show that if the square-root approximation is to be exact at the endpoint xm,
then the coefficient in (3.47) must be chosen as

(3.50)

(c) Choose xm = 0.1 (about a 5% variation of distances) and calculate the exact
distance, then its binomial, midpoint, and endpoint linear approximations. Do
this for x values between 0 and 0.1. Calculate the errors as exact distance minus
approximate distance. Compare your results with Figure 3.6. n

Figure 3.6 shows the errors in the various approximations for xm = 0.1. No-
tice that, among these three approximations, the endpoint approximation probably
does the best job of minimizing the error, except that the error is always such that the
approximation systematically underestimates the distance, which may not be desir-
able. The midpoint approximation does not have this latter defect, but it deviates
strongly (rather like the much poorer binomial approximation) toward the endpoint.

80 POWER SERIES

Can one make a optimum linear approximation in the least-squares sense of min-
imizing the averaged squared deviation between the exact and approximated values?
Although we justify the least-squares criterion more completely in Chapter 6, the
following analysis shows its effectiveness in constraining parameters.

Exercise 3.27
Consider the mean-square error, MSE, in fitting a linear approximation to a
square root, defined as

(3.51)

Differentiate MSE with respect to the parameter a and set this derivative to zero
for the optimum value a = amS. Next, approximate the square root under the in-
tegrand by its first three terms in powers of X. Evaluate the indicated integrals in
order to show that the value of a is then given by

(3.52)

which is shown for xm = 0.1 in Figure 3.6. n

Notice how the least-squares optimization of the linear approximation provides tight-
er bounds on the errors than do the other methods. For example, with xm = 0.1
(as in Figure 3.6) the error in this approximation for the distance is never more than
about 2 parts in 104. In Monte Carlo simulations one frequently needs the distance
between two points in a calculation involving square roots. Linearized approxima-
tions such as those derived here may be sufficiently accurate for such a simulation,
while greatly speeding up program execution. If larger inaccuracies are acceptable,
then faster approximations can be devised, as explained in Paeth’s article and im-
plementation in C code.

From this example of optimizing a linear approximation to calculation of square
roots and distances we have seen that a variety of realistic approximations is possi-
ble. We have also gained valuable practice in analyzing numerical methods.

Financial interest schemes

The crass economics of various schemes for calculating interest due in financing
might seem to be of little relevance to binomial approximations, and probably not
worth the attention of scientists. When that scientist par excellence, Isaac Newton,
was Keeper of the Mint of England, he was the first to pose and solve the problem
of exponential interest, and he used his newly-invented method of the differential
calculus to do so. Therefore, let us look at financial interest schemes and their con-
nection to series and the binomial approximation.

Consider an interest rate r, usually quoted as an annual percentage rate (APR)
paid on the principal. Thus, if the time for interest repayment, t, is in years, then
after this time the fraction of the principal that is due is 1 + rt, and the interest frac-

3.3 THE BINOMIAL APPROXIMATION 81

tion is this minus unity. Such a form of interest payment is denoted simple interest.
Thus, the simple-interest payment after time t, I1 (t), is given by

(3.53)

Such an interest payment is applied at the end of each year, rather than continuously.
Suppose that the interest is paid n times a year on the amount held during the

previous n th of one year. For n > 1 this is called compound interest. For exam-
ple, quarterly compound interest has n = 4. The interest payment after t years is
In (t), given by

(3.54)

Figure 3.7 shows simple interest and quarterly-compounded interest for a 20%
interest rate, r = 0.2. The difference is insignificant after one year, but at the end of
two years about 15% more has been paid in compound interest.

FIGURE 3.7 Simple interest (long dashes), quarterly interest (short dashes), and exponential in-
terest (solid curve) for an interest rate of 20%.

Exercise 3.28
(a) Expand (3.54) in a Maclaurin series in the variable rt/n. Show that

Thus show that the extra fraction by which interest paid n times annually has ac-
cumulated to after t years compared with simple interest is

(3.56)

(b) Use the binomial approximation to show that to this order of approximation
there is no difference between compound interest and simple interest. n

82 POWER SERIES

What happens as one increases the frequency of payments until at any instant
one has interest payment proportional to the amount currently held? That is, in
(3.54) we allow n to become very large.

Exercise 3.29
(a) Continue the Maclaurin expansion begun in Exercise 3.28 (a). Consider its
limit for very large n, so large that n (n - 1)/n2 1, and similarly for higher
powers of rt. Thus show that

(3.57)

in which the second equality comes from the Maclaurin expansion of the expo-
nential, which is given by (3.18). Thus the interest scheme becomes exponential
interest.
(b) As a more abstract way of getting to the same result, consider the function

(3.58)

Show that this function has the derivative property

(3.59)

for any positive integer n. This is a property of the exponential function. Also,
the solution of a first-order linear differential equation is unique once the value at
a single point (here at x = 0) is specified. Argue that we must therefore have

(3.60)

which again produces the result (3.57).
(c) From the results of either of the last two parts of this exercise show that ex-
ponential interest, Ie (t), is given by

(3.61)

(d) By using the first three terms of the expansion of the exponential function
with variable rt, show that exponential interest payments exceed those of simple
interest by a fraction of about rt/2. n

In Figure 3.7 we compare exponential interest, which accrues continuously with
time, for an interest rate r = 0.2. Although it accumulates to nearly 20% more than

3.4 REPETITION IN MATHEMATICS AND COMPUTING 83

simple interest, consistently with the result in Exercise 3.29 (d), after two years it is
only about 6% greater than interest compounded quarterly.

The mathematics of interest schemes is developed in an interesting book by Kel-
lison and in a module for teaching mathematics by Lindstrom. From our excursion
into schemes for calculating financial interest, you should be richer in your under-
standing of power series, the exponential function, and finite step sizes in approxi-
mating functions. This last topic is resumed in Chapter 4.

3.4 DIVERSION: REPETITION IN MATHEMATICS
AND COMPUTING

It is interesting and useful to make a distinction between three different kinds of rep-
etition patterns in mathematics and (especially) in computing. We distinguish itera-
tion, recurrence, and recursion. Although I have been careful with the usage of
these three terms in the preceding sections of this chapter, I have not yet explained
what I understand by each of them. In the following their commonalities and differ-
ences will be discussed. Figure 3.8 illustrates schematically the three types of rep-
etition.

FIGURE 3.8 Three kinds of repetition in mathematics and computing.

84 POWER SERIES

We now describe, sequentially, how I intend these three kinds of repetition to be
interpreted.

Iteration

By iteration is understood repetition of some parts of an analytical or numerical cal-
culation, reusing the same algorithm and parameters but repeating the calculation
until some criterion, such as a convergence limit, is satisfied. Summation of series
is usually done by iteration over the partial sums. Examples from programming are
the C language for and whi1e statements, the Pascal FOR statement, and the
Fortran DO loop.

The process of iteration can be indicated pictorially by the left-hand diagram in
Figure 3.8. In the iteration diagram in Figure 3.8 the elongated rectangle indicates
a sequence of program steps. The sequence is entered (top, left arrow), it is execut-
ed, then it is repeated (broken arrow re-entering at the top). Eventually, some criter-
ion is satisfied, so the iteration terminates (bottom arrow).

Recurrence

By recurrence is understood a formula to be used repeatedly to related successive
values of a function when one of its parameters changes by uniform steps. For ex-
ample, the power-series terms in Section 3.3 and 3.5 are obtained by recurrence
with respect to the parameter k. The recurrence process is indicated pictorially in
Figure 3.8. In each rectangle there is a procedure for producing this value of a
function from the preceding values. For example, the first box may have k = 1,
the second box k = 2, and so on. The procedure within each box is often the
same, only the value of the control parameter (such as k) would be changing. As
with iteration, recurrence requires a stopping criterion. Indeed, iteration and recur-
rence are very similar and so they are often not distinguished.

In mathematical analysis recurrence is logically related to the method of proof by
induction, as used for the geometric series and the proof of Taylor’s theorem in Sec-
tion 3.1. In his book on induction and analogy in mathematics, Polya discusses
clearly the inductive method.

Recursion

In recursion a formula refers to itself. This is indicated in Figure 3.8 by the nesting
of the boxes, which each describe the (same) function, In mathematical analysis an
expansion in continued fractions is an example of recursion. Among programming
languages both C and Pascal allow recursive definition of functions, but Fortran
usually does not allow recursion. In Fortran if recursive use of a function or sub-
routine is hidden from the compiler, which can be done because subroutines may be
compiled independently, such an error (which is not usually diagnosed by the com-
puter) will usually produce incorrect program execution.

3.5 TESTING THE CONVERGENCE OF SERIES 8 5

In recursive program functions, a copy of the function has to be saved for each
recursion (each box in Figure 3.8). The number of recursions must therefore be
finite, and there must be a termination path out of each function copy, as indicated
by the arrows at the bottom of each box in Figure 3.8. Recursive functions are not
used in this book. Extensive discussions of the pleasures and perils of recursion in
C programming are provided in the book by Kernighan and Ritchie, the authors of
the C language. The self-referencing nature of recursive functions gives rise to in-
teresting logical and philosophical problems, as discussed by Hofstadter in his
book.

3 . 5 PROJECT 3: TESTING THE CONVERGENCE OF SERIES

In this project we program the functions for the Maclaurin expansions of several of
the series that are derived in Section 3.2, then we use these functions to explore the
numerical convergence of series, particularly to compare and contrast analytical and
numerical convergence properties, We made a beginning on the latter topic in Sec-
tion 3.2, where we programmed and used the Maclaurin series for the exponential
function to examine its numerical convergence.

One of our main goals in this project is to practice developing computer pro-
grams by first coding and testing separate modules, then to combine these into a
complete and usable program. From this example you will readily see the advan-
tages of such a “divide and conquer” strategy for program construction and verifica-
tion.

Project 3 begins with coding and checking of five Maclaurin series expansions,
for the exponential (initiated in Section 3.2), the cosine and sine, the arcsine, and
the logarithm. Then there are suggestions for including the series expansions of the
hyperbolic functions, as well as for file output and graphics options. After you are
convinced of the correctness of each function (by experience rather than by faith),
you may combine them into a composite program Power Series Convergence.
This program includes one more function, the inverse cosine, which is efficiently
computed from the inverse-sine Maclaurin series. The programming of the arcosine
function also illustrates how to pass functions as parameters of other functions in C.
Suggestions for using the program to explore the convergence of power series are
then given.

Coding and checking each series expansion

In this subsection we summarize the coding and checking of the formulas for six
functions of interest. For each of them a main program, similar to that made for the
exponential function in Section 3.2, may be used for checking against values ob-
tained from tables of functions or from calculations with an electronic calculator.
1. Exponential function first function whose Maclaurin expansion we compu-
ted numerically was the exponential, discussed in Section 3.2. It is called PSexp
in the complete program below. The methods of programming and testing the series

86 POWER SERIES

expansions for the three functions cosine, sine, arcsine, and the natural logarithm are
similar. Numerical comparisons for the power series of the exponential function are
provided in Section 3.2 and Figure 3.3.

2. Cosine function. The cosine Maclaurin expansion may be written, by (3.20), as

(3.62)

where the terms, tk, are obtained by the recurrence relation

(3.63)

(3.64)

In (3.63) the presence of the brackets around x2 indicates that this quantity may be
computed and saved before the series is begun. In the coding shown in the next
subsection for the function PScos this argument is denoted by variable xs.

Exercise 3.30
Show that recurrence formula (3.63) for the expansion coefficients is consistent
with the Maclaurin expansion of the cosine function (3.20). n

Checking the cosine series may be done by using input values of x less than
unity. Values of kmax about 20 should give accuracy better than 1%. Also check
that your programmed cosine series is an even function of x, for any value of kmax.
If you use values of x more than unity, then convergence will be slow. For a better
computation you could use x modulo /2 and appropriate sign changes, so that
the x value for which the series was evaluated was always less than this number.

Figure 3.9 compares the Maclaurin series expansions of the cosine function for
k max = 1 and 2. Notice the very rapid convergence of the series that arises from
the approximate 1/k2 dependence of the successive terms in the series.

3. Sine function. The Maclaurin expansion is obtained from (3.21), written as

in which the successive terms are obtained by using the recurrence relation

(3.65)

(3.66)

(3.67)

Just as for the cosine series, the x2 in the brackets is to be precomputed and saved.

3.5 TESTING THE CONVERGENCE OF SERIES 87

FIGURE 3.9 Power series (dashed curves) for the Maclaurin expansion of the cosine function
(solid curve).

Exercise 3.31
Verify that formula (3.66) for the expansion coefficients of the sine functions is
consistent with the Maclaurin expansion of the sine function, (3.21). n

The sine function, PSsin, can easily be checked against values from tables or
from a pocket calculator, with a similar suggestion to that for the cosine series that
multiples of /2 (with appropriate sign changes) can be removed. The convergence
of the sine series as a function of kmax should be similar to that for the cosine se-
ries. Also, for any kmax the sine series should be an odd function of x.

In Figure 3.10 we have the power series compared against the sine function for
km a x values of 1 and 5. Just as for the cosine series, the convergence is very rapid
because of the decrease as roughly l/k2 of successive terms in the series.

FIGURE 3.10 Maclaurin series expansions for k max = 1 (short dashed curve) and the scaled
error for k max = 5 (long dashed curve) for the sine function (solid curve).

88 POWER SERIES

In Figure 3.10, rather than showing the series approximation for km a x = 5,
which could not be visually resolved from the converged series, we show the error
(exact minus series) scaled up by a factor of 107. Clearly such a truncated series ex-
pansion is very accurate, especially for x < 1. This leads to the following improve-
ment in accuracy of the power-series expansions.

Given both the cosine and the sine series, these two functions need be used only
with arguments that are less in magnitude than /4, since if x lies between this value
and /2 one may use the identity

(3.68)

and vice versa for the sine function. This is a great advantage even over the removal
of multiples of /2 for the cosine and sine function arguments. Since in the power
series for the cosine or sine, successive terms have x2 factors as large as
(/2)* = 2.47 > 1, or only as large as (/4)2 = 0.62 < 1, the latter (being less
than unity) is clearly preferable for producing rapid convergence.

Exercise 3.32
(a) Explain, in terms of the recurrence formulas (3.63) and (3.66), why it takes
only about half as many terms (km a x is halved) to obtain the same accuracy in
the powers-series expansions of the cosine and sine if the relation (3.68) is used
to limit the function arguments to less than /4 than if arguments up to /2 are
allowed.
(b) Verify the analytical estimate in (a) by numerical examples, using the func-
tions PScos and PSsin that you have programmed. n

4. Arccosine function. The arccosine function converges rapidly only for x values
where the cosine function is small in magnitude. Therefore, it has much better con-
vergence when it produces angles near /2 than angles near zero. We may write

(3.69)

which is suitable for x < = 0.707, that is, for obtaining angles less than /4.
For x > one may use

(3.70)

Exercise 3.33
In order to verify (3.69) and (3.70), sketch a right-angled triangle with hypoten-
use of length unity and base of length x. Use geometry and the theorem of Py-
thagoras to derive these two relations. n

Thus, in the function PSarccos we do not evaluate a power series for the arc-
cosine (in spite of the initial letters), but use (3.69) or (3.70) instead. As with any

3.5 TESTING THE CONVERGENCE OF SERIES 89

inverse trigonometric function, there are quadrant ambiguities in the arccosine func-
tion, as shown in Figure 2.7, Equations (3.69) and (3.70) place the angles in the
first quadrant for positive x. Note that the magnitude of x must be less than unity,
else the arcsine power series does not converge. Such a check on x is made in both
program functions.

Testing of Psarccos is best done after Psarcsin has been coded and tested.
For large kmax the two functions should return complementary angles (summing to
 /2) if they are given the same argument value x.
5. Arcsine function. The Maclaurin series for this inverse circular function was
derived in Section 3.2. We may write the power series as

(3.7 1)

with successive terms being obtained from the recurrence relation

(3.72)

(3.73)

Exercise 3.34
Show that formulas (3.72) and (3.73) give the expansion coefficients for the
Maclaurin expansion of the arcsine function (3.71). n

Figure 3.11 shows the arcsin function and power series approximations to it.

FIGURE 3.11 Arcsine function (solid curve) and its Maclaurin expansions for k max = 1 (dotted
curve) and the scaled error for kmax = 20.

90 POWER SERIES

In the function PSarcsin the power series is evaluated after checking that the
absolute value of x is less than unity. The function can be tested by using argu-
ments with simple angles, such as x = 0 for zero radians, x = 1/2 for angle π/6,
x = 1/ for angle π/4, and x = for π/3. Note that the angles are obtained
in radians. The values of kmax needed to obtain a close approximation to these
angles are large, because the series is not quickly damped out by the k dependence
in (3.72).

Notice in Figure 3.11 that the convergence is rapid until x is near unity. Thus,
in the recurrence relation for the arcsine series, (3.72), it is the x2 powers that pro-
duce the convergence, rather than the decrease with k (which is rather weak). Even
for kmax = 20 the error for the largest x values is of order 1%.

6. Natural logarithm. For this function the power series that is expanded is for the
natural logarithm ln (1 + x), with convergence requiring an absolute value of x
that is less than unity. The power series given by (3.31) can be written for the nu-
merical algorithm as

(3.74)

with the recurrence relation being

(3.75)

(3.76)

Exercise 3.35
Show that formulas (3.75) and (3.76), with the denominator in (3.74), give the
expansion coefficients for the series expansion of the natural logarithm function
(3.31). n

Program function PSln implements the formulas (3.74) through (3.76), after
checking that |x| < 1. The function may be tested by comparing its values with
those from tables or pocket calculators. Figure 3.12 shows the logarithm function
and its power-series approximations for three values of k max.

Notice from Figure 3.12 that convergence of the logarithm series is very slow,
as discussed in Section 3.2 for the function x ln (x). For x larger than about 0.8
there are power-series truncation errors of at least 10-4 even after 50 terms have
been included in the sum. A similar difficulty was encountered with the power-se-
ries expansion of the function x ln (x) in Section 3.2.

Having completed developing the algorithms, the coding, and the testing of each
of the six functions, they can be assembled into a program complete with file-hand-
ling or graphics output options, as we suggest in the next subsections.

3.5 TESTING THE CONVERGENCE OF SERIES 91

FIGURE 3.12 Logarithm function (solid curve) expanded in Taylor series about unity for 2, 5,
and 50 terms in the expansion.

Including the hyperbolic functions

The hyperbolic cosine and sine, cosh and sinh, whose analytical properties are cov-
ered extensively in Sections 2.3 and 3.2, are also interesting to study in terms of
their power-series expansions. Their Maclaurin series are almost the same (apart
from signs) as those for the circular functions, cosine and sine. Deriving the recur-
rence relations for their series terms, then coding the formulas, is therefore straight-
forward after you have completed the circular functions.

Exercise 3.36
(a) By analogy with the cosine, or by the connection (2.53), show that the Mac-
laurin series for the hyperbolic cosine can be written as

(3.77)

where the successive terms are related by the recurrence relation

(b) Similarly to (a), but for the hyperbolic sinh, show that

(3.78)

(3.79)

92 POWER SERIES

(3.80)

with the recurrence relation

(3.8 1)

(3.82)

(c) Code and test functions PScosh and PSsinh for the hyperbolic cosine and
hyperbolic sine, respectively. These hyperbolic functions can be obtained from
the exponential functions through the definitions (2.48) and (2.49). n

These two functions
gested below.

can then be incorporated in the complete program that is sug-

File output and graphics options

As you have seen from the preceding four figures, it is usually much easier to inter-
pret numerical results, especially comparison of values, if the comparison is display-
ed graphically as well as numerically. At the debugging stage numerical output was
probably sufficient for you. In order to see both the dependence of the power series
approximations on x and k max, graphics are essential. To appreciate this, realize
that about 100 numerical values are used to construct each of the figures.

In the composite program in the next subsection, I have included a simple sec-
tion for file output . One file is provided for each of the six functions, and this file
may either be written over or added to at the start of program execution. By using
six files you will not be constrained to calculate the series in any particular order.

After you have programmed the file output sections, perhaps testing your ideas
beforehand on a short program, you may either include a graphics section in this
program or interface the output in the file to a separate graphics program. The latter
was my choice, so there are no graphics commands in the following program.

The composite program for the functions

After the considerable preliminaries in the two preceding subsections, you should be
ready to join the function modules together to form the program Power Series
Convergence. In C the most straightforward, readable, and efficient way to choose
which of the functions is to be executed in a given run of the program is to use the
switch statement. This is used twice, once near the top of the program to select the
output file name, and once for each value of x to select the function to be evaluated.

3.5 TESTING THE CONVERGENCE OF SERIES 93

In the following program the functions for the hyperbolic power series have not
been included. There are therefore six choices of function rather than eight.

PROGRAM 3.4 Composite program for power-series expansions.

#include <stdio.h>
#include <math.h>

main()
{
/* Power Series Convergence */
FILE *fout;
double pi,xmin,dx,xmax,x,series,func,error;
int kmax,choice;
char wa;
double PSexp(),PScos(),PSsin(),PSarccos(),PSarcsin(),PSln();

pi = 4*atan(l.O);
printf("Power Series Convergence\n");
printf("\nChoose function:");
printf("\nl exp x 2 cos x 3 sin x");
printf("\n4 acos x 5 asin x 6 1n(l+x) : ");
scanf("%i",&choice) ;
if (choice < 1 || choice > 6)
{
printf("\n !! Choice=%i is <1 or >6",choice);
exit(l);
}

printf("\nWrite over output (w) or Add on (a): ");
scanf ("%s", &wa) ;
switch (choice)
{
case 1: fout = fopen("PSEXP",&wa); break;
case 2: fout = fopen("PSCOS",&wa); break;
case 3: fout = fopen("PSSIN",&wa); break;
case 4: fout = fopen("PSACOS",&wa); break;
case 5: fout = fopen("PSASIN",&wa); break;
case 6: fout = fopen("PSLN",&wa); break;
}

xmax = 2;
while(xmax!=O)

{
printf("\n\nInput xmin,dx,xmax (xmax=0 to end),kmax:\n");
scanf("%lf%lf%lf%i",&xmin,&dx,&xmax,&kmax);
if (xmax == 0)

{

94 POWER SERIES

printf("\nEnd Power Series Convergence");
exit (0) ;

for (x = xmin; x <= xmax; x = x+dx)
{
switch (choice)

case 1: series = PSexp(x,kmax);
func = exp(x); break;

case 2: series = PScos(x,kmax);
func = cos(x); break;

case 3: series = PSsin(x,kmx);
func = sin(x); break;

case 4: series = PSarccos(pi,x,kmax,PSarcsin);
func = acos(x); break;

case 5: series = PSarcsin(x,kmax);
func = asin(break;

case 6: series = PSln(x,kmax);
func = log(l+x); break;

error = func-series;
printf("\n%g %g %g",x,series,error);
fprintf(fout,"%g %g %g\n",x,series,error);
}

}

}

double PSexp(x,kmax)
/* Power Series for exponential */
double x;
int kmax;

double term,sum;
int k;

term=1; sum = 1; /* initialize terms & sum */
for (k =l ; k <= krmax; k++)

term = x*term/k;
sum= sum+term;

}
return sum;

}

double PScos(x,kmax)

3.5 TESTING THE CONVERGENCE OF SERIES 95

/* Power Series for cosine */
double x;
int kmax;

double xs,term,sum;
int k;

xs = x*x;
term = 1; sum = 1; /* initialize terms & sum */
for (k = 1; k <= kmax; k++)

term = -xs*term/ (2*k*(2*k-1));
sum = sum+term;

return sum;

double PSsin(x,kmax)
/* Power Series for sine */
double x;
int kmax;

double xs,term,sum;
int k;

xs = x*x;
term = 1; sum = 1; /* initialize terms & sum */
for (k = 1; k <= kmax; k++)

term = -xs*term/(2*k*(2*k+l));
sum= sum+term;

return x*sum;

double PSarccos(pi,x,kmax,arcsin)
/* Arccosine uses PSarcsin series for arcsin parameter */
double pi,x;
int kmax;
double (*arcsin) (); /* passing function pointer as parameter */

if (fabs(x) >= 1)

printf("\n\n !! In PSarccos x=%g so |x|>=l. Zero returned",x);

96 POWER SERIES

return 0;

else

if (x < 1/sqrt(2)) return pi/2-(*arcsin) (x,kmax);
else return (*arcsin) (sqrt(1-x*x) ,kmax);

double PSarcsin(x,kmax)
/* Power Series for arcsine */
double x;
int Kmax;

double xs,term,sum;
int k;

if (fabs(x) >= 1)

printf("\n\n !! In PSarcsin x=%g so |x|>=l. Set to zero",x);
return 0;
}

else

xs = x*x;
term = 1; sum = 1; /* initialize terms & sum */
for (k = 1; k <= kmax; k++)

term = xs*term*pow((2*k-1),2)/(2*k*(2*k+l));
sun= sum+term;

return x*sum;

double PSln(x,kmax)
/* Power Series for ln(1+x) */
double x;
int kmax;

double power,sum;
int k;

if (fabs(x) >= 1)

3.5 TESTING THE CONVERGENCE OF SERIES 97

print f("\n\n !! In PSln x=%g so |x|>=l. Zero returned",x);
return 0;

else

power = 1; sum = 1; /* initialize terms & sum *l
for (k = 1; k <= (kmax-1); k++)

power = -x*power;
sum = sum+power/(k+l);

return x*sum;

A few checks should be made on your completed Power Series Convergence
program. For example, check that the range of choice is correctly tested as soon as
it is input, check that the correct files are then opened, and that the correct function is
called for a given value of choice. Also check that the x loop is correctly executed
and controlled, including graceful termination if xmax is entered as zero.

With these quick and simple checks out of the way, you are ready to explore the
numerical properties of power-series expansions.

Using the program to test series convergence

Having the completed Program 3.4 for testing the convergence of power series of
useful functions, we are ready to exercise the computer (and our brains) to test the
convergence properties numerically.

Exercise 3.37
(a) For input x values in the range zero to /2 for the cosine and sine, and in the
range zero to less than unity for the arcsine and logarithm, check the converg-
ence of their power series as a function of varying the upper limit of the summa-
tion, kmax. Compare your results with those in Figures 3.9, 3.10, 3.11, and
3.12. What do you conclude about the rate of convergence of each series, and
what is the reason for this convergence behavior?
(c) Modify Power Series Convergence so that for a given x the power se-
ries for both cos x and sin x are computed. The program should then square
the series values, add them, then subtract the result from unity. As you change
kmax, how rapidly does the result approach zero, which is what the theorem of
Pythagoras, (2.43), predicts?
(d) Modify the program so that for a given x the power series expansions of
both ln (1 + x) and ln (1 - x) are computed. As you change kmax, how

98 POWER SERIES

rapidly does each power-series result approach zero, and for x > 0 (but less
than un ity) why is the convergence of the second series much slower? n

Another numerics question is worthy of exploration with this program. Namely,
how sensitive are the power series results to the effects of roundoff errors in the
computer arithmetic? If you understand numerical noise in computing, you might
investigate this topic now. It is covered in Section 4.2 as a preliminary to dis-
cussing numerical derivatives and integrals.

From our extensive discussions in this chapter on power series, from their anal-
ysis, numerics, and applications, you will appreciate their importance when comput-
ing numerically. Ideas and techniques from power series are used widely in the
chapters that follow.

REFERENCES ON POWER SERIES

Cody, W. J., and W. Waite, Software Manual for the Elementary Functions,
Prentice Hall, Englewood Cliffs, New Jersey, 1980.

Hofstadter, D. R., Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books,
New York, 1979.

Kellison, S. G., The Theory of Interest, Irwin, Homewood, Illinois, 1970.
Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Prentice

Hall, Englewood Cliffs, New Jersey, second edition, 1988.
Lindstrom, P. A., “Nominal vs Effective Rates of Interest,” UMAP Module 474, in

UMAP Modules Tools for Teaching, COMAP, Arlington, Massachusetts, 1987,
pp. 21-53.

Miller, W., The Engineering of Numerical Software, Prentice Hall, Englewood
Cliffs, New Jersey, 1984.

Paeth, A. W., “A Fast Approximation to the Hypotenuse.” in A. S. Glassner, Ed.,
Graphics Gems, Academic, Boston, 1990, pp. 427 - 431.

Polya, G., How to Solve It, Doubleday Anchor Books, New York, second edition,
1957.

Protter, M. H., and C. B. Morrey, Intermediate Calculus, Springer-Verlag, New
York, second edition, 1985.

Rucker, R., The Fourth Dimension, Houghton Mifflin, Boston, 1984.
Taylor, A. E., and W. R. Mann, Advanced Calculus, Wiley, New York, third

edition, 1983.
Wolfram, S., Mathematica: A System for Doing Mathematics by Computer,

Addison-Wesley, Redwood City, California, second edition, 1991.

Chapter 4

NUMERICAL DERIVATIVES AND INTEGRALS

The overall purpose of this chapter is to introduce you to methods that are appropri-
ate for estimating derivatives and integrals numerically. The first, and very import-
ant, topic is that of the discreteness of numerical data, discussed in Section 4.2.
This is related in Section 4.3 to the finite number of significant figures in numerical
computations and to the consequent problem of the increase in errors that may be
caused by subtractive cancellation.

With these precautions understood, we are prepared by Section 4.4 to investi-
gate various schemes for approximating derivatives and to develop a C program to
compute numerical derivatives, a topic that is explored further in Project 4A in Se-
tion 4.5. Numerical integration methods, including derivation of the trapezoid rule
and Simpson’s formula, are developed and tested in Section 4.6 and applied in Pro-
ject 4B (Section 4.7) on the electrostatic potential from a line charge. References
on numerical derivatives and integrals round out the chapter.

We must emphasize here a profound difference between differentiation and inte-
gration of functions. Analytically, for a function specified by a formula its deriva-
tives can almost always be found by using a few direct algorithms, such as those for
differentiation of products of functions and for differentiating a function of a func-
tion. By contrast, the same function may be very difficult (if not impossible) to inte-
grate analytically. This difference is emphasized in Section 3.5 of Wolfram’s book,
where he describes the types of integrals that Mathematica can and cannot do.

Numerically, the situation with respect to differentiation and integration is usual-
ly reversed. As becomes clear in Sections 4.4 and 4.5, the accuracy of numerical
differentiation is sensitive to the algorithms used and to the numerical noise in the
computer, such as the finite computing precision and subtractive cancellation errors
discussed in Section 4.3. On the other hand, almost any function that does not os-
cillate wildly can be integrated numerically in a way that is not extremely sensitive to
numerical noise, either directly or by simple transformations of the variables of inte-
gration.

99

100 NUMERICAL DERIVATIVES AND INTEGRALS

Other methods for differentiating and integrating discretized functions by using
splines are presented in Sections 5.4 and 5.5. The numerical methods developed
for differentiation in this chapter are useful for differential-equation solution in Sec-
tions 7.4 and 7.5 (first-order equations) and in Sections 8.3 - 8.5 (second-order
equations). In Section 10.4 we compute the convolution of a Gaussian distribution
with a Lorentzian distribution (the Voigt profile) by using a combination of analytical
methods and numerical integration.

4 . 1 THE WORKING FUNCTION AND ITS PROPERTIES

For purposes of comparing various methods, particularly those for numerical deriv-
atives and integrals, it is useful to have a working function and to systematize its an-
alytical properties. A polynomial, which can readily be differentiated and integrated
analytically to provide benchmark values, is more appropriate than the functions that
we investigated by power series in Section 3.2. Further, most of our approxima-
tions are based on the use of low-order polynomials, so by using such a polynomial
we can make direct analytical comparison between approximate and exact values.
The working function will stress the methods greatest if the polynomial oscillates
within the region where the derivatives and integrals are being performed, and such
oscillations can be designed into the polynomial by choosing its roots appropriately.

In this section we first derive some analytical and numerical properties of the
working function, then we develop a C function for efficient numerical evaluation of
polynomials by using Horner’s algorithm, then we include this in a program for the
working function.

Properties of the working function

We define the working function, yw(x), by a product expansion in terms of its
roots, defining it by the expression

(4.1)

which is a sixth-order polynomial having all real roots, and five of these are within
the range -0.5 O.5 over which we will explore the function properties. This
working function, yw is shown in Figure 4.1 for a slightly smaller range than this.
Outside the range of the graph, the function has another zero at x = -0.5 and one at
x = 1.0.

Although the product expansion (4.1) is convenient for controlling the positions
of roots of the working function, and thereby controlling its oscillations, it is not
convenient for analytical differentiation or integration. These can be performed by
expanding (4.1) into powers of x, then differentiating or integrating term by term.
This involves a little algebra and some numerical work, so why don’t you try it?

4.1 THE WORKING FUNCTION AND ITS PROPERTIES 101

FIGURE 4.1 The working function (4.1), a pathological polynomial having six real roots in
the interval [-0.5, 1].

Exercise 4.1
(a) Show that the polynomial for the working function, (4.1), can be expanded
into

(4.2)

where the coefficients, wk, are given in Table 4.1,
(b) Starting with the expansion (4.2) with the given wk, evaluate the successive
derivatives of yW in terms of the expansion coefficients appearing in the formu-
las

(4.3)

in which for the i th derivative, i = 1, 2, 6, the coefficients are given in
Table 4.1.
(c) Perform a similar derivation for the integral of the working function yw (x)
in order to show that its indefinite integral is given by

(4.4)

for which the coefficients Ik are given in the bottom row of Table 4.1. n

102 NUMERICAL DERIVATIVES AND INTEGRALS

TABLE 4.1 Expansion coefficients of working function (4.1) for the value, wk, for derivatives,
wi,k, and for the indefinite integral, Ik. Omitted values are zero.

0 1 2 3 4 6 7

0

6

6

0 0 1

This table, transformed into an array, is used in the program at the end of this sec-
tion. It may also be used for the programs in Sections 4.4, 4.5, and 4.6.

Derivatives of the working function, appropriately scaled, are shown in Fig-
ure 4.2. Notice that the derivatives grow steadily in magnitude, but steadily become
smoother with respect to x as the order of the derivative increases. Clearly, for our
polynomial of sixth order, derivatives past the sixth are zero, as the constancy of
y(6) in Figure 4.2 indicates.

- 0 . 5 0

FIGURE 4.2 The working polynomial, (4.1) or (4.2), and its derivatives. Note that the deriva-
tives become larger but smoother as the order of the derivative increases.

It is useful to have available a program for computing the working function (or
other polynomial) and its derivatives. Since this function, its derivatives, and its in-
tegral are all polynomials, it is practical to have an efficient means of evaluating
them. Horner’s polynomial algorithm, which we now describe and for which we
provide a C function for its implementation, is efficient, accurate, and simple.

4.1 THE WORKING FUNCTION AND ITS PROPERTIES 103

A C function for Horner’s algorithm

Polynomials occur very frequently in numerical mathematics, for example in any
Taylor expansion approximation to a function, as considered in Section 3.2. It is
therefore worthwhile to find an accurate and efficient way to evaluate polynomials
numerically. Horner’s method is one approach. Suppose that the polynomial to be
evaluated, y (x), is of order N in the variable x , so that

(4.5)

We can avoid the inefficient (and sometimes inaccurate) direct evaluation of powers
of x by starting with the highest-order term, then adding in the next-lowest coeffic-
ient plus the current value of the polynomial multiplied by x. For example, suppose
that we have the quadratic polynomial

(4.6)

We may evaluate this by successive stages as

(4.7)

(4.8)

(4.9)

In each of these stages the symbol means “assign the right side to the left side.”
After the last assignment, (4.9), we have completely evaluated the polynomial (4.5)
without computing powers of x explicitly. Clearly, this recursive procedure can be
generalized to any order of polynomial, N. The Homer method provides an exam-
ple of the effective use of repetition in computing, as we discuss in the Diversion in
Section 3.4.

Program 4.1, Horner Polynomials, implements the Horner algorithm for a
polynomial of order N, where N is restricted only by the size of the array, a[MAX] ,
used to hold the values of the ak, k = 0, 1 , N. In this program the constant
term in the polynomial, a0, is stored in a[0] , and so on for the other coefficients.
Thus, we have an exception to our practice, stated in Section 1.2, of starting arrays
at element [1]. By breaking this rule, however, we have a direct correspondence
between the formula (4.5) and the coding.

The main program consists mainly of bookkeeping to input and test the order of
the polynomial N, to test its bounds (a negative value produces a graceful exit from
the program), then to input the polynomial coefficients. Once these are chosen by
the program user, the polynomial, y, can be evaluated for as many x values as de-
sired, except that input of x = 0 is used to signal the end of this polynomial.

104 NUMERICAL DERIVATIVES AND INTEGRALS

PROGRAM 4.1 A test program and function for evaluating an Nth-order polynomial by the
Horner algorithm.

#include <stdio.h>
#include <math.h>
#define MAX 10

/* Homer Polynomals */
double a[MAX];
double x,y;
int N,k;
double Horner_Poly();

printf("Horner Polynomials\n");
N = 1;
while(N>=O)

{
printf("\nNew polynomial; Input N (N<0 to end):");
scanf("%i",&N);
i f (N < O)

{ printf("\nEnd Homer Polynomials"); exit(O); }
if(N>MAX-1)

printf("\n\n!! N=%i > maximum N=%i",N,MAX-1);
}

else

printf("\nInput a[k], k=O,...,%i (%i values)\n",N,N+l);
for (k = 0; k <= N; k++) scanf("%lf",&a[k]);
x = 1;
while(x!=0)

{
printf("\n\nInput x (x=0 to end this polynomial):");
scanf("%lf",&x);
if (x != 0).

{
y = Horner_Poly(a,N,x);
printf("y(%lf) = %lf",x,y);
}

} /*end x loop*/

} /*end N loop*/

4.1 THE WORKING FUNCTION AND ITS PROPERTIES 105

double Horner_Poly(a,N,x)
/* Horner Polynomial Expansion */
double a[],x;
int N;

double poly;
int k;

for (k = N-l; k >= 0; k--)

poly = a[k]+poly*x;

return poly;

The Horner polynomial is in function Horner-Poly, which is very compact.
Note that the for loop is not executed if N = 0, because the value of k is check-
ed before any instructions within the loop is executed. The function is therefore cor-
rect even for a zero-order polynomial.

Exercise 4.2
(a) Check the correctness of the Horner polynomial algorithm as coded in func-
tion Horner-Poly in Program 4.1 by using it to check the case N = 2 worked
in formulas (4.7) through (4.9).
(b) code program Horner Polynomials, then test it for a range of N values,
x values, and correctness for some low-order polynomials. n

Note that in the Horner algorithm the order of the polynomial, N, must be
known before the polynomial is evaluated. The algorithm is therefore of limited use
for computing power-series expansions (as in Chapter 3), unless one has decided
beforehand at what order to terminate the expansion.

Program 3.3 in Section 3.2 gives an example of this latter usage for the func-
tions CosPoly and SinPoly. On the other hand, if a convergence criterion (such
as a given fractional change in the series partial sum) is used, then the method of
generating successive terms by recurrence (Sections 3.4, 3.5) is appropriate. Pro-
gram 3.4 in Project 3 (Section 3.5) shows this usage in the functions for the six
power series.

The Horner-poly function should be of general use to you in future program
development. We apply it immediately to program the numerical evaluation of the
working function presented above.

106 NUMERICAL DERIVATIVES AND INTEGRALS

Programming the working function

The working function, described in Section 4.1, is used in Sections 4.4 and 4.5 to
test numerical derivatives and may be used in Section 4.6 for integrals. It would be
possible, but tedious (especially if you use a different polynomial), to evaluate the
numerical values by hand or with help from a pocket calculator. Also, if one wants
the derivatives of various orders or the integral this is also tedious and error-prone in
hand calculations. Here we provide a general-purpose program that, given the order
and coefficients of a polynomial, determines the polynomials that represent its non-
vanishing derivatives. Then the program allows the user to choose specific x values
for evaluating these quantities numerically.

Here we give a preliminary discussion of the program Working Function:
Value and Derivatives (henceforth abbreviated to Working Function). We
defer discussion of the functions for numerical derivatives (function names starting
with Der) to Sections 4.4 and 4.5. Working Function is structured as follows.
The main program outermost loop is over the order of the polynomial, Npoly.
Within this loop are input and testing sections for Npoly, a section for the input of
the polynomial coefficients, a section where derivative coefficients are calculated,
then a loop for choosing x values at which to evaluate the function and its first and
second derivatives.

The polynomials are evaluated using the Horner algorithm and a modified ver-
sion of the C function from the preceding subsection. Function Horner-Poly-2
has a two-dimensional array (rather than one-dimensional, as in Horner-Poly), and
an additional argument, i, to control the first index of the array. For the function
and its derivatives the array elements are the wk in (4.2) as the zeroth elements of the
array, and the Wi,k in (4.3) as the elements for the ith derivative. At the expense of a
slight awkwardness, this array is also two-dimensional, which allows the Horner-
polynomial program function to be used also to evaluate coefficients for the integral.

Note that the labeling of arrays from zero, rather than unity, in the C language is
a great advantage in Working Function. Therefore, to maintain a closeness be-
tween the analysis and the numerics, we break with our general rule (Section 1.2)
of starting arrays at unity (as is common practice among Fortran programmers).

Exercise 4.3
Code and test Working Function. For testing it may be useful to add an out-
put section for the coefficient elements w[i][k] and Int eg [0][k] . Test coef-
ficients for all these are given in Table 4.1 for the working function (4.2),
which is equivalent to (4.1). The latter provides x values at which the function,
but not its derivatives, should evaluate to zero. n

We now have a working function and a program for its numerical properties to
use in examples and tests of the numerical methods in this chapter. After listing the
program, we consider some limitations of numerical computation.

4.1 THE WORKING FUNCTION AND ITS PROPERTIES 107

PROGRAM 4.2 The working function (4.1) or (4.2): its values and derivatives.

#include <stdio.h>
#include <math.h>
#define MAXDER 7

main ()
{
/* Working Function: Value and Derivatives */

double w[MAXDER][MAXDER];
double x,ywDeriv_i,h;
double ym2.ym1.y0,yp1,yp2,yf,yC,yCCD,y3CD,y5CD;
int Npoly,k,i;
char polyOK,choose_x;
double Horner_Poly_2(),Der_1F(),De_r1C(),

Der_2CCD(),Der_23CD(),Der25CD();

printf(Working Function: Value and Derivatives\n");
Npoly = 1;
while (Npoly >= 0)

{
printf("\nNew polynomial;Input order,Npoly (<0 to end): ");
scanf("%i",&Npoly);
if(Npoly<O)

{
printf("\nEnd Working Function Value and Derivatives");
exit (0);
}

polyOK = 'y';
if (Npoly >= MAXDER)

{
printf("\n !! Order=%i>max_order=%i\n",Npoly,MAXDER-1);
polyOK = 'n';

else

printf("\nInput %i coefficients:\n", Npoly+l);
for (k = 0; k <= Npoly; k++)

scanf("%lf",&w[O][k]);

108 NUMERICAL DERIVATIVES AND INTEGRALS

/* Generate all derivative coefficients */
if (Npoly > O)

for (i = 1; i <= Npoly; i++) /* derivative order */
{
for

{
W
}

}
}

}

k = 0; k <= Npoly-i; k++)/* polynomial terms */(

[i] [k] = (k+l)*w[i-1][k+l];

if (polyOK == 'y')

/* Evaluate working function at input x values */
choose_x = 'y';
while (choose_x == 'y')

printf("\n\nWant an x (y or n)? ");
scanf("%s",&choose_x);
if (choose_x == 'y')

printf("Input x and stepsize h: ");
scanf("%lf%lf",&x,&h);
for (i = 0; i <= Npoly; i++)

ywDeriv_i = Horner_Poly_2(w,Npoly-i,i,x);
if (i == 0)
printf("\nPolynomial value is %lf",ywDeriv_i);
else
printf("\ni=%i, derivative is %lf",i,ywDeriv_i);

/* Numerical derivatives; function values first */
ym2 = Horner_Poly_2(w,Npoly,0,x-2*h);
ym1 = Horner_Poly_2(w,Npoly,0,x-h);
y0 = Horner_Poly_2(w,Npoly,0,x);
yp1 = Horner_Poly_2(w,Npoly,0,x+h);
yp2 = Horner_Poly_2 (w,Npoly,0,x+2*h);
/* First derivatives: */
yF = Der_1F(y0,yp1,h); /* Forward */
yC = Der_1C(ym1,yp1,h); /* Central */
/* Second derivatives: */
yCCD = Der_2CCD(ym2,y0,yp2,h);/* Central */
y3CD = Der_23CD(ym1,y0,yp1,h);/* 3-point */
y5CD = Der_25CD(ym2,ym1,y0,yp1,yp2,h);/* 5-point */

4.1 THE WORKING FUNCTION AND ITS PROPERTIES 109

printf("\nNumerical first derivatives:");
printf("yF = %lf, yC = %lf",yF,yC);
printf("\nNumerical second derivatives:");
printf("\nyCCD=%lf y3CD=%lf y5CD=%lf",yCCD,y3CD,y5CD);
}

} /* end while loop for x */
}

} /* end Npoly loop */
}

double Horner_Poly_2 (a,N,i,x)
/* Homer Polynomial Expansion */
/* Coefficients have two subscripts;first subscript is i */
double a[MAXDER][MAXDER],x;
int N,i;
{
double poly;
int k;
poly = a[i][N];
for (k = N-l; k >= 0; k--)

{
poly = a[i] [k]+poly*x;
}

return poly;
}

double Der_1F(y0,yp1,h)
/* Forward-difference first derivative */
double y0,yp1,h;
{
double y1F0;
y1F0 = (yp1-y0)/h;
return y1F0;
}

double Der_1C(ym1,yp1,h)
/* Central-difference first derivative */
double ym1,yp1,h;
{
double y1C0;
y1C0 = (yp1-ym1)/(2*h);
return y1C0;
}

double Der_2CCD(ym2,y0,yp2,h)

110 NUMERICAL, DERIVATIVES AND INTEGRALS

/* Central-difference first derivative */
double ym2,y0,yp2,h;

double y2CCD;
y2CCD = ((yp2-y0)-(y0-ym2)) / (4*h*h);
return y2CCD;
}

double Der_23CD(ym1,y0,yp1,h)
/* Three-point central-difference derivative */
double ym1,y0,yp1,h;
{
double y23CD;
y23CD = ((yp1-y0)+(ym1-y0)) / (h*h);
return y23CD;
}

double Der_25CD(ym2,ym1,y0,yp1,yp2,h)
/* Five-point central-difference derivative */
double ym2,ym1,y0,yp2,h;
{
double diff1,diff2,y25CD;
diffl = (yp1-y0) + (ym1-y0);
diff2 = (yp2-y0) + (ym2-y0);
y25CD = (4*diff1 - diff2/4)/(3*h*h);
return y25CD;
}

4 . 2 DISCRETE DATA AND NUMERICAL MATHEMATICS

We wish to emphasize briefly the importance of the discreteness of data and of nu-
merical mathematics. Both topics place fundamental limits on the completeness of
our interpretation of quantitative information.

The discreteness of data

In experimental work and also in numerical calculations, data are always obtained at
discrete values of the independent variables, even though we may believe that the
quantity being measured is a smooth function of the parameters (independent vari-
ables) of the problem. Similarly, in numerical applications of mathematical analysis
the values are always obtained at finite parameter spacing. Such values are often,
quite appropriately, called “numerical data.” Subsequent operations on data, such as
approximations to derivatives and integrals of the presumed smooth function under-
lying them, will always be limited in accuracy by the discreteness of the data.

4.3 NUMERICAL NOISE IN COMPUTING 111

Numerical mathematics

In this chapter, and in much of this book, we have a different emphasis than in pure
mathematics. The latter emphasizes the existence of mathematical entities, the logical
consistency of results, and the analytic solution and properties of quantities such as
derivatives and integrals. Numerical analysis, such as we are developing, must al-
ways be guided by pure mathematics, especially on questions of the existence and
convergence of quantities that we attempt to evaluate numerically. This viewpoint
explains why in Figure 1.1 we showed mathematical analysis as the foundation
upon which are built numerical methods and computer programming for various sci-
entific applications.

When evaluating a formula numerically, discrete values of the variables are al-
ways required, rather than the continuous range of values often allowed by the form-
ula definition. For practical reasons, such as minimizing computer storage and exe-
cution time, one often characterizes a function by calculating accurately as few val-
ues as possible with large stepsizes for the independent variables. Related properties
of the function, such as values at intermediate values of the variables (interpolation),
slopes (differentiation), and area under the function between two limits (integration),
are then estimated by numerical procedures.

One often refers to mathematics that emphasizes numerical properties as numeri-
cal analysis, and the process of replacing continuous functions by discrete values is
called discretization. They are to be distinguished from two other distinct branches
of mathematics, number theory and discrete mathematics.

4.3 NUMERICAL NOISE IN COMPUTING

In a digital computer, most numbers can be represented to only a finite number of
significant figures, unless they can be expressed exactly in binary (base-2) arithmetic
requiring fewer than the number of bits used for each number. For example, in a
32-bit computer word the largest integer is 232- 1 (allowing for a sign bit), and
there can be at most a precision of 1 part in 232, that is, less than 1 part in 1010. The
decimal fraction 0.5 is exactly represented, since 0.5 = 2-1, so that in base-2 arith-
metic 0.510 = 0.12. On the other hand, however, the precise decimal fraction
0.410 = 0.0110011001...2. which is an imprecise binary fraction.

The term “computer arithmetic,” in which the number of digits is finite, is often
used to make a distinction from formal or exact arithmetic. Note that errors in nu-
merical calculations introduced by computer arithmetic must be clearly distinguished
from random errors introduced in computations by computer hardware (or software)
malfunctions. The type of error that we discuss should be completely reproducible
over time, provided that you execute exactly the same program as previously. (In
the worst possible case of program bugs, this may be difficult to do unless the com-
puter is performing exactly the same from run to run.) Note that the random error
rate in the arithmetic hardware of a computer is typically less than 1 in 1012, which
is less than one error per year of continuous running.

112 NUMERICAL DERIVATIVES AND INTEGRALS

Two main methods of handling the least-significant digits after an arithmetic op-
eration are roundoff and truncation. We now discuss briefly these types of numeri-
cal noise.

Roundoff and truncation errors

When a computer uses roundoff of numbers the least-significant digit is rounded to
the nearest least-but-one significant digit. For example, 0.12345676 rounded to 7
significant figures is 0.1234568, while 0.12345674 rounded to 7 significant figures
is 0.1234567; the maximum error from such roundoff is therefore about 10-7. As
another example, the numbers 1.99999 and 2.00001 are both 2.0000 when rounded
to 5 significant figures.

In truncation, sometimes referred to as “chopping,” the least-significant digit is
dropped. For example, both 0.12345676 and 0.12345674 truncate to 0.1234567.
When converting floating-point variable values to integer-variable values, truncation
is always used by scientific programming languages. Thus, both 3.9999999 and
3.0000001 truncate to integer 3. For this reason, counting should never be pro-
grammed in terms of floating-point variables.

A simple program to determine both the number of significant figures carried in a
computer’s floating-point calculations, and also whether roundoff or truncation is
used, is given as Program 4.3. The program Significant Digits in Float-
ing Point will estimate the number of significant digits to a given base, and will
signal 'y' or 'n' depending on whether the final value was truncated or not. A
nonzero test number close to unity, value, is input, a given floating-point base
(input as base) is chosen, then a while loop is executed until value is unchang-
ed by adding in successively smaller powers. The number of digits is (approxi-
mately, for base 2) the number of significant digits carried.

Exercise 4.4
(a) Explain how the algorithm coded in Significant Digits in Floating
Point works.
(b) Code and run the program on your computer. Does the number of signifi-
cant binary digits and decimal digits agree with what is stated in your computer
manual? Is the floating-point arithmetic done by truncating or by rounding?
Note that you should run several nearly equal values through the test. If any of
them returns truncate = 'n', then your computer does rounding arithmetic.
Explain this remark. ■

For the double-precision variables declared in Program 4.3, my workstation
gave 63 binary bits and did truncating arithmetic. The 63 bits are presumably stored
in two 32-bit words, with one bit allowed for the sign. When using base-10 the
program declared that 19 decimal digits were carried: indeed 263 is just less than
1019, and 264 is just greater than 1019.

4.3 NUMERICAL NOISE IN COMPUTING 113

PROGRAM 4.3 A program for estimating, for the computer on which it is run, the number of
significant digits to a given base.

#include <stdio.h>
#include <math.h>

main()
{
/* Significant Digits in Floating Point */
double value,power,newvalue;
int base,digits;
char truncate;

printf("Significant Digits in Floating Point\n");
value = 1;
while (value != 0).

printf("\n\nInput test value near 1 (0 to end):");
scanf("%1f",&value);
if (value == 0)
{
printf("\nEnd Significant Digits in Floating-Point");
exit (0);
}

printf("\nInput floating-point base:");
scanf("%i",&base);
power = 1; digits = 0; newvalue = 0; truncate = 'y';
tile (value != newvalue)

power = power/base;
digits = digits+l;
newvalue = value+power;

if (newvalue > value+power*base) truncate = 'n';
printf("Number of digits is %i",digits-1);
printf("\nValue of truncate is '%c'",truncate);

The same algorithm can be used with a pocket calculator to determine its number of
significant digits and whether it uses roundoff or truncation. The most common
scheme in both computers and calculators is truncation, because this allows simpler
hardware to be used.

Now that you know the number of significant digits in your computer or calcula-
tor, it is interesting to see some consequences of the finite number of digits. This
exercise is probably easiest done on a pocket calculator rather than on a computer.

114 NUMERICAL DERIVATIVES AND INTEGRALS

Exercise 4.5
(a) Demonstrate by examples that finite-precision arithmetic does not satisfy the
associative law of addition: (a + b) + c = a + (b + c). Exhibit cases in which
the signs of a, b, and c differ.
(b) Prove that for addition the ordering that produces the smallest error from
loss of significant figures is to arrange the numbers by increasing order of mag-
nitude, that is, smallest numbers first.
(c) Demonstrate that the identity b(a/b) = a for b 0 is not always satisfied
in numerical arithmetic. For what ranges of a, b, and c are the relative errors lar-
gest in your arithmetic unit? n

Part (b) of this exercise suggests that convergence of power series, as considered in
Section 3.5, is not performed in the most accurate way. The Horner polynomial ex-
pansion, considered later in this section, which considers the highest powers of a
variable first, may often be preferred for numerical accuracy whenever feasible.

Unstable problems and unstable methods

The effects of the finite accuracy of computer arithmetic that we have just considered
arise partly from the use of unstable methods, which are sensitive to the accuracy of
the calculation steps. Examples are subtractive cancellation in calculating variances
or the solutions of quadratic equations, as we investigate in the next subsection.
Such unstable methods should be clearly distinguished from unstable problems, in
which the exact solution is very sensitive to slight variations in the data, indepen-
dently of the accuracy of the arithmetic.

An example of an unstable problem is the solution of the pair of linear equations

(4.10)

which are shown graphically in Figure 4.3 as the heavy solid and solid lines, re-
spectively. These have an exact and unique solution x = 1, y = 1, which is the
intersection point (solid circle) of the two lines in the figure.

The solution of a pair of equations that are very similar to (4.10) namely,

(4.11)

shown dotted in Figure 4.3, is at x = -1, y = 3, the intersection point (dotted
circle) in the figure. If one attempts to solve such an unstable problem numerically,
then the results will be very sensitive to numerical noise. Geometrically, we see
from Figure 4.3 that all three lines have almost the same slope, so that their intersec-
tion points are very sensitive to these slopes.

4.3 NUMERICAL NOISE IN COMPUTING 115

FIGURE 4.3 Lines that represent (4.10) (heavy solid and solid lines) and (4.11) (heavy solid and
dotted lines). Determination of their intersections is an unstable problem, since the intersection is
at (1, 1) for (4.10) but at (1,3) for (4.11).

From the viewpoint of linear algebra and the numerical solution of matrix in-
verses, the determinant of the two-by-two matrices made from the left-hand sides in
(4.10) and (4.11) is very much less than the quantities on the right-hand sides of
these equations, so that the matrices are ill-conditioned.

Exercise 4.6
(a) Generalize the above example from the equation pair (4.10) or (4.11) to the

Pair.

(4.12)

Eliminate x between this pair of equations to show that

(4.13)

in which the denominator is the determinant from the left-hand side of the pair of
equations. Explain why values of b close to 1 produce y values that are very
sensitive to the value of b.

116 NUMERICAL DERIVATIVES AND INTEGRALS

(b) Check out (4.13) by first choosing a = 2, b = 1.OOOOO1, c = 2.001, to
show that y = 1000 and therefore x = -998. Second, choose a = 2, but
b = 0.999999, c = 2.000001, to show that now y = -1, x = 3, which is a
thousand-fold change in the y solution for a change of only two parts per mil-
lion in the b coefficient.
(c) Show that the problem cannot be alleviated by first solving for x, then using
the first equation in (4.12) to calculate y. First give an algebraic demonstration,
then rotate the book through a right angle and look at Figure 4.3 to devise a geo-
metrical explanation n

In many numerical problems differences in coefficients such as those in Exer-
cise 4.6 (b) may arise from roundoff or truncation errors in steps of the computa-
tion that generate the coefficients. Because there are so many numbers flying around
in the computer, we seldom inspect the intermediate results to check on this numeri-
cal malfunction, unlike the situation when most of the calculations are done using a
pocket calculator with manual input and output for many of the steps.

Therefore, numerical methods developed in the olden days of hand-cranked cal-
culators, when numerical errors could easily be monitored and sometimes con-
trolled, are often quite unsuitable for computer applications. Nowadays, the user of
a numerical recipe might not even know how the algorithm that is being used was
coded, and whether the method used has been tested for numerical stability. This
distinction between the suitability of numerical methods for hand calculation versus
computer calculation is discussed further in Section 3.6 in the diversion on comput-
ers and spline methods.

The difficulties with unstable problems and with unstable methods are related to
instability of equilibrium and to chaos in mechanical systems, as well as to noise am-
plification and feedback in electrical systems. These topics are lucidly discussed in
Chapter 9 of Pippard’s book on the physics of vibration, and are developed in more
detail in his book on response and stability. Unstable problems and unstable meth-
ods also occur when solving differential equations numerically, often because of ex-
treme sensitivity to boundary conditions. This is discussed in Sections 8.4 and 8.6
for the second-order Euler method and for stiff differential equations, respectively.
Such mechanical, electrical, and numerical instabilities are intimately related.

Errors from subtractive cancellation

Among other problems facing those who would compute numerically are errors aris-
ing from subtractive cancellation, which is the reduction in the number of significant
figures that may occur when two numbers (assuming they have the same signs) are
subtracted. For example, if x1 = 1000000 and x2 = 999999, then their differ-
ence x1- x2 = 1, has only one significant figure, whereas x1 and x2 had about six
significant figures. We now examine two examples in which such perils of subtrac-
tive-cancellation errors may arise, variance calculations and the solution of quadratic
equations.

4.3 NUMERICAL NOISE IN COMPUTING 117

Variance calculations (and thence standard deviations) among large numbers pro-
vide good examples of difficulties from subtractive cancellation. Suppose that the
average of a set of x values is calculated as

(4.14)

The variance among this set, V, is defined by

(4.15)

Analytically, this can be expanded to produce

(4.16)

Exercise 4.7
Verify the algebraic equivalence of these two expressions for the variance, V. n

Notice that in (4.15) all N of the xj values must be input and their average must be
calculated before their variance can be calculated, whereas in (4.16) the sum of
squares and the sum of values (needed to compute the average) may be accumulated
as soon as each x value is entered. If (4.15) is used for large N, more storage than
such devices as pocket calculators have available for data will often be required. So,
for calculators the second method is almost always used, because it requires storage
only for the running sums. Numerically, the outcome of using (4.16) can be com-
plete loss of significance, as you will discover if you work the following exercise.

Exercise 4.8
(a) Use a pocket calculator to calculate the average and variance for the three
data values x1 = 999999, x2 = 1000000, x3 = 1000001. Show that using
(4.16) you should get V = 2. What result does your calculator get, and why?
(b) Reduce the order of magnitude of the three data by successive powers of 10
until the two formulas agree. From this numerical experiment estimate the num-
ber of significant figures carried by your calculator. Does this agree with its in-
struction manual? n

By using my pocket calculator and the data in Exercise 4.8 (a), I obtained a vari-
ance of zero according to (4.16). With values of 99999, 100000, and 100001,
however, I obtained the correct variance by using either (4.15) or (4.16). My calcu-
lator manual advertises 10 digits for entry or display and 12 digits for each step of a
calculation: I now believe it, but I don’t like the subtractive cancellation effects. An
extensive discussion of roundoff errors in computers is given in Chapter 1 of the
textbook by Maron.

118 NUMERICAL DERIVATIVES AND INTEGRALS

Quadratic equations provide another example where subtractive cancellation can
be a severe problem with a numerical calculation as simple as finding their roots ac-
curately. Write the quadratic equation with two real roots as

(4.17)

The choice of unity for the first root, x = x1 = 1, can always be achieved by ap-
propriate scaling of x, and is convenient when comparing the second root,
x = x2 = with the first, especially when is small in magnitude. By expanding
(4.17) into standard quadratic-equation form, we have

(4.18)

The usual way that this is solved is to write the solution as

(4.19)

Since we know the roots, we could simplify this analytically and obtain the two so-
lutions given above. Proceeding numerically, however, is quite another story. I us-
ed my pocket calculator to input then calculate the two numerical solutions in
(4.19), xn1 and xn2, as written. This calculator enters and displays 10 decimal digits
but it uses 12 digits at each step of a calculation. For values of between 10-l1 and
10-5 (and presumably for larger values) the first root, xn1, was exact, but the rela-
tive error in the second root, xn2, behaved quite erratically, as Table 4.2 shows.

TABLE 4.2 Relative errors in root of (4.18) calculated using (4.19) and a 10-digit calculator.

This example illustrates that when is less than the square root of the accuracy of
the calculator < 10-5 for a 10-digit calculator), then the smaller root cannot be
reliably computed, because the squared factor under the root in (4.19) is not
calculated accurately enough. Significant digits are then lost when the root is sub-
tracted from the first term in the denominator of (4.19).

When solving quadratic equations, how can we reduce this numerical noise from
subtractive cancellation? The easiest way is to avoid subtracting. To show how this
can be accomplished, and to cast the quadratic-equation problem in a more conven-
tional form, let us write

(4.20)

4.3 NUMERICAL NOISE IN COMPUTING 119

The general analytical solution of this quadratic when a 0 is

Exercise 4.9

(4.2 1)

(a) Multiply numerator and denominator of (4.21) by factor in
order to show that the roots of a quadratic are equivalently given by

(4.22)

in which the denominator is assumed to be nonzero.
(b) In order to make the derivation of (4.22) less ad hoc, consider the following
transformation of the quadratic equation (4.20). Assume that the roots are non-
zero (c 0), so that (4.20) can be divided throughout by x 2. You now have a
quadratic equation in the variable l/x with the roles of a and c interchanged.
Write down the solution for this quadratic by using (4.21), then take its recipro-
cal. Viola! the solution (4.22) is obtained. n

Between the use of the two equations (4.21) and (4.22) for the roots, we can avoid
subtractive cancellation completely. For, if b > 0 (4.22) may be used with the +
sign and (4.21) may be used with the - sign. If b < 0 the opposite choice of signs
is appropriate.

Program for roots of quadratic equations

The program that we now provide uses the algorithm devised in Exercise 4.9. Our
Program 4.4, Quadratic Equation Roots, computes the roots of quadratic
equations (4.20) for which the coefficients a, b, and c are each real numbers.

Program Quadratic Equation Roots has a small driver program to control
program execution, and function quadroots to solve for the roots. The main pro-
gram reads a, b, and c; then if any one of them is nonzero it attempts a solution.
Most of the function quadroots is occupied with taking care of the case a = 0,
including the subcase that gives rise to inconsistent solutions, namely b = 0. In
this subcase if the coefficients of the powers of x in (4.20) are both zero, then the
roots are indeterminate if c = 0 and the equation is inconsistent if c 0.

If a is nonzero, then subtractive cancellation can be a problem only if the square
root is real, since there is no subtraction when the real and imaginary parts of a com-
plex number have opposite signs, as discussed in Section 2.1. Therefore, a test for
a positive discriminant is made before deciding whether to use formulas (4.21) and
(4.22) for the case of real roots. For complex roots the usual form of the solution,
(4.2 l), is used for the two roots, which are related through complex conjugation.

120 NUMERICAL DERIVATIVES AND INTEGRALS

PROGRAM 4.4 Quadratic equation roots avoiding subtractive cancellation.

#include <stdio.h>
#include <math.h>

main()

/* Quadratic Equation Roots */
double a,b,c,ReXp,ImXp,ReXm,ImXm;
int error;
void quadroots();

printf("Quadratic Equation Roots\n");
a = 1;
while (a != 0 || b != 0 || c!= 0)

printf("\nInput a,b,c (all zero to end) :\n");
scanf("%lf%lf%lf",&a,&b,&c);
if (a == 0 && b == 0 && c == 0)

{
printf("\nEnd Quadratic Equation Roots"); exit(O);
}

quadroots(a,b,c,%ReXp,&ImXp,&ReXm,&ImXm,&error);
printf("\nRoots are:");
printf("(%lf)+i(%lf) & (%lf)+i(%lf)",ReXp,ImXp,ReXm,ImXm);
printf("\nError flag = %i",error);

void quadroots(a,b,c,ReXp,ImXp,ReXm,ImXm,error)
/* Quadratic equation roots; Real and Imginary */
double a,b,c,*ReXp,*ImXp,*ReXm,*ImXm;
int *error;
{
double Disc;

*ReXp= *ImXp = *ReXm = *ImXm =
error = 0; / no problems SO

if (a == 0)
{
if (b == 0)

if (c != 0) *error = 2;

0;
Far */

/* inconsistent equation */
else *error = 1; /* roots indeterminate */

4.3 NUMERICAL NOISE IN COMPUTING 121

else /* a is zero, b is not zero */
{
*ReXp = -c/b; *ReXm = *ReXp; /* degenerate */
}

}1
else /* a is not zero */

Disc = b*b-4*a*c; /* discriminant */
if (Disc >= 0) /* real roots */

{
if (b>= 0)

{
*ReXp = -2*c/(b+sqrt(Disc));
*ReXm = (-b-sqrt(Disc))/(2*a);

else /* b is negative */

*ReXp = (-bsqrt (Disc))/(2*a);
*ReXm = -2*c/ (b-sqrt(Disc));

else /* complex roots */

&ReXp = -b/(2*a); *ReXm = *ReXp;
*ImXp = sqrt(-Disc)/(2*a); *ImXm = *ImXp;

After function quadroots has been executed, the two complex numbers
ReXp + i ImXp and ReXm + i ImXm are returned, together with the integer vari-
able error, which is 0 for no problem, 1 for indeterminate roots, and 2 for an in-
consistent equation. This value is output with the roots before the program requests
another set of coefficients. If all three coefficients are input as zero, then execution
of Quadratic Equation Roots terminates.

Exercise 4.10
(a) Write down the solution of (4.20) when a = 0, and also when both a and b
are zero. Check that these solutions agree with what is coded in the function
quadroots in the program Quadratic Equation Roots.
(b) Test the program with some simple (say integer) values of a, b, and c, in-
cluding the special cases of a = 0, as well as when both a and b are zero.

122 NUMERICAL DERIVATIVES AND INTEGRALS

(c) Verify that subtractive cancellation is not a problem with the present algor-
ithm. To do this, choose in Quadratic Equation Roots values of a = 1,
b = -(1 + c = where << 1, as in the examples in Table 4.2. n

Now that we have explored subtractive cancellation with the practical examples
of variance calculations and of solving quadratic equations, we should be prepared
to recognize the possibilities for subtractive-cancellation effects as a source of noise
in many numerical computations. These effects can be especially troublesome in the
numerical approximation of derivatives (Sections 4.4, 4.5) and in the related topic
of numerical solution of differential equations (Sections 7.4, 7.5, and 8.3 - 8.6).

4 . 4 HOW TO APPROXIMATE DERIVATIVES

For computing derivatives numerically it is important to find stable methods that are
insensitive to errors from subtractive cancellation. The possibilities of such errors
are implicit in the definition of derivatives. For the first derivative of y at the point
x, y(l), one has the definition

(4.23)

From this definition we see that numerical evaluation of derivatives is inherently an
unstable problem, as defined in Section 4.3. Our challenge is to find a method that
is insensitive to such instability.

We introduce an abbreviated notation in which the ith derivative evaluated n
steps (each of equal size h) away from the point x is written as

(4.24)

If i = 0, then we are dealing with y itself, so the superscript is usually omitted. In
the notation in (4.24) it is understood that both x and h are fixed during a given cal-
culation. The stepsize h is assumed to be positive, whereas the integer n may be of
either sign. The function y is assumed to be well-behaved, in the sense that for
whatever order of derivative we wish to estimate numerically there exists a corre-
sponding analytical derivative at that x value.

The general formulas we derive are polynomial approximations, and they are
often derived from the viewpoint of fitting a polynomial through a given number of
points (N + 1, say), then finding an analytical expression for the polynomial deriv-
atives. There is no direct way of estimating the error incurred in the various deriva-
tives in such a viewpoint. On the other hand, if we consider that we are making a
Taylor expansion of a function in the neighborhood of some point and that we are

4.4 HOW TO APPROXIMATE DERIVATIVES 123

truncating the expansion after N + 1 terms, then we have an N th-order polynomial
approximation. Additionally, an estimate of the remainder term (3.7) serves to esti-
mate the error incurred. Here we use the first neglected Taylor term as an estimate
of the remainder, and therefore as an approximation to the error.

For our working function, yw (x), discussed in Section 4.1, the analytical deriv-
atives are obtained from the expansion coefficients in Table 4.1. If these derivatives
are evaluated at x = 0, they are just the coefficients in the k = 0 column. It is also
useful to record the derivatives divided by the factorial of the same order, since we
need these for our improved polynomial approximation below. These modified
derivatives are just the expansion coefficients wk with k = i from the first row of
Table 4.1, but we repeat them for convenience. Table 4.3 shows the coefficients
that are needed.

TABLE 4.3 Expansion coefficients for derivatives of the working function, evaluated at x = 0.

Now that we have notation established, and a working function with its check
values well understood, we investigate two simple schemes for approximating deriv-
atives numerically. We also discuss some programming aspects of the derivative
functions (those starting with Der) in Program 4.1.

Forward-difference derivatives

The most obvious estimate of the first derivative of y is just to consider the quantity
in the brackets on the right-hand side of (4.23), with h small but finite. Graphically,
we use the slope of the line segment FF in Figure 4.4. The function shown is ac-
tually our working function (4.1) and we have chosen x = 0 and h = 0.1. Thus
we have the forward-difference derivative estimate, given by

(4.25)

Note that the estimate clearly depends upon the value of h, but we hope that this de-
pendence is not too strong. We can check this out for the working function.

124 NUMERICAL DERIVATIVES AND INTEGRALS

FIGURE 4.4 Schemes for estimating first derivatives are shown for the working function, (4.1)
and Figures 4.1 and 4.2, near x = 0. The forward-difference derivative is taken along FF. The
central-difference derivative is taken along CC.

Exercise 4.11
(a) Use the working function (4.2), a more convenient form than (4.1) for this
purpose, to calculate its forward-difference derivative defined in (4.25) at x = 0
for the values of h in Table 4.4. If you have coded up and tested Program 4.2,
Working Function, you can get the forward-difference derivative estimate as
variable yF from the function Der_1F.
(b) Write down the first few terms of the Taylor expansion of any function
y (X + nh) in terms of the function y (x) and its derivatives at x in order to show
that the first additional term beyond the first derivative itself in the forward-dif-
ference derivative estimate (4.25) is y(2) (x) h /2.
(c) Show that this neglected term is a fair estimate of the error in the numerical
derivatives in Table 4.4, especially for the smallest h value. From Table 4.3 or
the program Working Function, the analytical derivative at x = 0 has the
value -1. n

TABLE 4.4 Forward-difference first derivatives for the working function, evaluated at x = 0.
The exact first derivative has value -1.

From Exercise 4.11 and from Figure 4.4 we can see why the forward-differ-
ence derivative estimate is inaccurate for the h values that we used. The second de-
rivative is of the opposite sign to the first derivative, so its inclusion in the forward-

4.4 HOW TO APPROXIMATE DERIVATIVES 125

difference estimate makes the magnitude of the slope too small. It is therefore ap-
propriate to make an estimate for the first derivative that is less sensitive to the pres-
ence of second derivatives.

Derivatives by central differences

In choosing a numerical estimator of the first derivative in the preceding subsection,
we could as well have used a backward difference. We would have run into similar
problems as for the forward difference. So why not make a more balanced ap-
proach, using central differences, as follows:

(4.26)

This scheme is shown graphically in Figure 4.4 by the line segment CC. It is
straightforward to extend the method of analysis made for the forward-derivative es-
timate.

Exercise 4.12
(a) Use the working function (4.2) to calculate its central-difference derivative
estimate defined by (4.26) at x = 0 for the values of h in Table 4.5. If you
have Program 4.2 (Working Function) running, you can get the central-dif-
ference derivative estimate as variable yC from the function Der_1C.
(b) Write down the first few terms of the Taylor expansion of a function
y (x + nh) in terms of the function y (x) and its derivatives at x. Thus show
that the first term beyond the first derivative itself in the central-difference deriva-
tive estimate (4.26) is y(3) (x) h2/6.
(c) Show that this neglected term is a very good estimate of the error in the nu-
merical derivatives in Table 4.5, especially for the smallest h value.
(d) Use the program Working Function to show that if one wants accuracy
of about 6 significant figures for the first derivative at x = 0, then the stepsize
for the forward-difference derivative must be about h = 10-6, whereas the same
accuracy in the central-difference derivative requires a stepsize of only about
h = 10-4. n

TABLE 4.5 Central-difference first derivatives for the working function, evaluated at x = 0.
The exact first derivative is -1.

126 NUMERICAL DERIVATIVES AND INTEGRALS

From these examples, especially from a comparison of Tables 4.4 and 4.5, we
see that the central-difference derivative estimate should be used whenever feasible.
It is less likely to run into problems from subtractive cancellation effects than is the
forward-difference method because its stepsize can be significantly larger for the
same accuracy. Occasionally, only the forward-difference (or backward-difference)
method can be used, as when the function is not defined for x values less than (or
greater than) the value at which the derivative is required. This may occur in starting
the numerical solution of differential equations or at the endpoints of runs of data
whose slopes we are trying to estimate.

In the remainder of this treatment of numerical derivatives we use only central-
difference estimates because of their superior accuracy.

Numerical second derivatives

The numerical estimation of second derivatives can be based on the analytical defini-
tion

(4.27)

Immediately we see, from the preceding discussion of first derivatives, that the nu-
merical estimation problems may be much more severe for second derivatives than
for first derivatives, especially if we take differences of numerical first derivatives
rather than doing as much of the calculation as possible by analytical methods.

One possibility is suggested by looking at Figure 4.5. Here we could estimate a
first central derivative at x + h (in the figure at x = 0.1 by the slope of C+C+),
then a similar derivative at x - h (at x = -0.1 by the slope of line C-C-).

FIGURE 4.5 Schemes for numerical second derivatives, illustrated for the working function
(4.1) and Figure 4.1 near x = 0. Consecutive central derivatives (CCD) are obtained from central-
difference first derivatives along C+C+ and C-C-. The 3CD estimate (4.35) and the 5CD estimate
(4.37) use the central 3 points and all 5 points, respectively.

4.4 HOW TO APPROXIMATE DERIVATIVES 127

This method, consecutive central derivatives, or CCD, can be analyzed algebra-
ically, as follows. First, write the formula (4.26) for central derivatives of the func-
tion which is already the first derivative, thus

(4.28)

Next, use the central-difference estimates for the first derivative, (4.26), in this ex-
pression, to obtain

(4.29)

For optimum accuracy, minimizing subtractive cancellation, it is better to compute
the second-derivative estimate this way rather than from further algebraic simplifica-
tion of the expression.

Exercise 4.13
(a) For the working function (4.2) calculate its central-difference derivative esti-
mate (4.29) at x = 0 for the values of h in Table 4.6. In Program 4.2, Work-
ing Function, this second-derivative estimate is variable yCCD from the func-
tion Der_2CCD.
(b) Write down the first few terms of the Taylor expansion of a function
y (x + nh) with n = -2, 0, and 2, in terms of the function y (x) and its deriva-
tives at x. Thus show that the first additional term beyond the second derivative
itself in the central-difference derivative estimate (4.29) is y(4) (x) h2 / 2 .
(c) Show that this neglected term is only a fair estimate of the error in the nu-
merical derivatives in Table 4.6, except for the smallest h value. (You can ob-
tain the value of the fourth derivative at x = 0 from Table 4.3.) For this ex-
ample and values of h, why is the estimate of the error inaccurate?
(d) Use the program Working Function (or a program of your own devising)
to show that if one wants an accuracy of about 6 significant figures in the second
derivative at x = 0, then the stepsize required is about h = 10-4. Show that
this agrees with the error estimate derived in (b). n

TABLE 4.6 Central-difference second derivatives for the working function, evaluated at x = 0.
The exact second derivative is 6.

128 NUMERICAL DERIVATIVES AND INTEGRALS

Compare Table 4.6 for the second derivative with Table 4.5 for the central-dif-
ference first derivative, to note that about the same value of h is required for the
same accuracy in first and second derivatives. This is not a usual behavior. By in-
specting the derivative values in Table 4.3 you can see that, although the increasing
powers of h (which is < 1) bring down the error estimates, the steadily increasing
derivatives increase them. Our choice of the wiggly sixth-order polynomial, defined
by (4.1) and shown in Figures 4.1 and 4.2, is responsible for this pathological be-
havior. By contrast, the derivatives at x = 0 for the exponential function are all
equal to unity, and the convergence is therefore much more rapid, as we discover in
Section 4.5.

Better algorithms for second derivatives

The algorithm for numerical second derivatives, (4.29), can be significantly improv-
ed without increased complexity, as we now show. The method that we use also
shows how optimized formulas can be produced and how their errors can be esti-
mated from Taylor series. We derive two formulas, one using three points and the
other using five points, all having the x value of interest as the central value.

Suppose that we go n steps, each of size h, to the left or right of the point x at
which we want a numerical estimate of the second derivative. Let us use Taylor’s
theorem (3.6) for up to five points surrounding x, as in Figure 4.5. We then have

where the coefficients

(4.30)

(4.3 1)

(4.32)

contain the desired (and undesired) derivatives. For second derivatives, we need to
eliminate the term v1 and as many higher derivatives as possible. All odd-order de-
rivatives (all vi with i odd) can be eliminated by summing values that are symmetric
about the midpoint. Thus

(4.33)

(4.34)

From these two formulas, depending on how many points are available, we obtain
various estimates for the second derivative that is hiding in v2 .

4.4 HOW TO APPROXIMATE DERIVATIVES 129

Exercise 4.14
By using (4.33) show that an estimate of the second derivative that uses three
points is y3CD, given by

(4.35)

with an error, 3CD, estimated as

(4.36)

which is the first omitted term of the Taylor expansion. n

Notice that this formula is predicted to be a factor of 6 more accurate than our CCD
formula (4.29).

If we may use all five points centered on x, as in Figure 4.5, then the estimate
of the second derivative can be significantly improved.

Exercise 4.15
Use both (4.33) and (4.34) to eliminate the fourth-derivative term between them,
and thence to show that an estimate of the second derivative that uses five points
is y5CD, given by

(4.37)

with an error, 5CD, estimated as

(4.38)

which is the first omitted term of the Taylor expansion. n

Formula (4.37) predicts many improvements over the two other estimates of the sec-
ond derivative, in that the error depends upon the sixth derivative, which is usually
smaller than the fourth derivative (except for our pathological working function!),
and scales as h 4 rather than h,2 so it will become relatively much more accurate as h
is decreased.

Now that we have done much intricate algebra, let us try out these second-
derivative formulas on our working function. The example is again for the deriva-
tive at x = 0.

130 NUMERICAL DERIVATIVES AND INTEGRALS

Exercise 4.16
(a) For the working function (4.1) calculate its central-difference derivative es-
timate (4.29) at x = 0 for the values of h in Table 4.7. In Program 4.2, Work-
ing Function, this second-derivative estimate is variable yCCD from the func-
tion Der_2CCD.
(b) Show that if you want the second derivative of the working function (4.1) at
x = 0 accurate to about 6 significant figures, then you have to choose
h 2 x 1O-4 for the three-point second derivative, but only h 1 x 10-2 for
the five-point derivative. n

TABLE 4.7 Central-difference second derivatives and error estimates for the working function
evaluated at x = 0. The exact second derivative is 6.

We now have considerable experience with estimating first and second deriva-
tives numerically for the very badly behaved working function (Figures 4.1 and
4.2). In the next section we explore the derivatives of some functions that are better
behaved.

4.5 PROJECT 4A: COMPUTING DERIVATIVES NUMERICALLY

Although in Section 4.4 we acquired considerable experience with numerical first
and second derivatives of the badly behaved working function (Section 4.1), it is
now interesting to explore the numerics with functions that are more regular. In this
project we explore two common functions that are paradigms for many other func-
tions and data, the exponential function and the cosine function. These characterize
steadily increasing (or decreasing, depending on your point of view) and oscillatory
functions, respectively.

Derivatives of the exponential function

The exponential function y = ex is straightforward to work with, especially at
the origin x = 0, because there its derivatives have value unity.

4.5 COMPUTING DERIVATIVES NUMERICALLY 131

Exercise 4.17
(a) Modify the program Working Function by replacing the sections for
polynomial evaluation (including the Horner-polynomial function) by the expo-
nential function, y = eX. Keep the five functions for estimating derivatives.
(Since all the derivatives of the exponential are just the function itself, a single
use of the function exp (x) will produce all the derivatives you need.) Add
program statements to compute the difference between these derivatives and
those obtained from the five formulas for first and second derivatives that are al-
ready programmed. Test this new program, called Exponential Function
Numerical Derivatives.
(b) Run this program with x = 0 and successively smaller values of stepsize h,
say h = 0.2, 0.1, 0.01, 0.001, calculating all five numerical derivatives and
their errors for each h. Make a log-log plot of the absolute value of the error
versus h, as in Figure 4.6.
(c) To the extent that the graph for the error in each method versus stepsize h is
a straight line on a log-log plot, argue that the error has a power-law dependence
on stepsize h, and that the overall scale of the error estimates the factor preceding
the power of h. Do the powers estimated for the five derivative methods from
your graph agree with those predicted from our Taylor series analyses? n

FIGURE 4.6 Errors in derivatives of the exponential function at x = 0 as a function of step-

size h for various derivative estimators. First-derivative estimators are forward (F) from (4.25) and

central (C) from (4.26). Second-derivative estimators are consecutive central derivatives (CCD)

from (4.29), three-point derivatives (3CD) from (4.35), and five-point derivatives (5CD) from

(4.37).

132 NUMERICAL DERIVATIVES AND INTEGRALS

Now that you have a working program for estimating numerical derivatives, by
replacing the exponential function in Exponential Function Numerical Deriv-
atives by the function of your choice, you can explore its application to various
other functions, such as the cosine function in the next subsection. Also the pro-
gram may be used directly with data (if they are equally spaced) to estimate slopes
and higher-order derivatives.

Differentiating the cosine function

The cosine function, y = cos X, is interesting to investigate because it characterizes
oscillatory behavior, such as we obtain from the numerical solution of differential
equations in Chapters 7 and 8, as well as from the Fourier expansions in Chap-
ters 9 and 10. Indeed, an understanding of numerical derivatives provides an es-
sential foundation for developing numerical solutions of differential equations.

FIGURE 4.7 Errors in derivatives of the cosine function at x = 0 as a function of stepsize h
for the first-derivative forward (F) from (4.25), and for second derivatives - consecutive central
derivatives (CCD) from (4.29) three-point derivatives (3CD) from (4.35) and five-point derivatives
(5CD) from (4.37). The errors in the central-difference first-derivative estimate (4.26) are zero.

The procedure for the second part of Project 4A is similar to that in the first part,
and it can be done almost effortlessly.

Exercise 4.18
(a) Modify either the program Working Function or (more readily) the pro-
gram Exponential Function by writing sections for evaluating the cosine
function, y = cos x, for its value, for its first derivative -sin x, and for its sec-
ond derivative -cos x. Keep the five functions for estimating derivatives. In-
clude program statements to compute the difference between these derivatives
and those obtained from the five formulas for first and second derivatives.that
are already programmed. Test this new program, called Cosine Function
Numerical Derivatives, for example against hand calculations.

4.6 NUMERICAL INTEGRATION METHODS 133

(b) Run the program with x = 0 and successively smaller values of stepsize h,
say h = 0.2, 0.1, 0.01, 0.001, calculating all five numerical derivatives and
their errors for each h. Except for the central-difference first derivative (which
has zero error at x = 0), make a table and a log-log plot of the absolute value of
the error against h, as in Table 4.8 and Figure 4.7.
(c) Assuming that the graph for each method on a log-log plot is a straight line,
show that the error has a power-law dependence on stepsize h, and that the over-
all scale of the error estimates the factor preceding the power of h. How well do
the powers estimated for the five derivative methods from your graph agree with
those predicted from our Taylor-series analyses? n

TABLE 4.8 Central-difference first and second derivatives errors for the cosine function evaluated

at x = 0. The exact second derivative is -1.

Notice in Figure 4.7 that the most accurate numerical method, the five-point central-
difference second derivative, does not continue to improve as rapidly as predicted
when h becomes of order 10-3. For this small an h value the error in the numerical
approximation approaches my computer’s roundoff error of about 10-14.

Now that you have experience in numerical differentiating with the badly behav-
ed working function, with a monotonic exponential, and with the oscillatory cosine,
you should be confident to tackle many functions and the differentiation of numerical
data.

There are several other practical methods for numerical estimating derivatives.
For example, cubic-spline fitting through a set of points will also produce, as part of
the process, first through third derivatives, as described in Section 5.4. Another
very effective method is to consider the derivatives as functions of the stepsize h,
then to extrapolate the derivative values at finite h to the limit h 0. This method,
called Richardson extrapolation, is described in Section 7.2 of Maron’s book.

4.6 NUMERICAL INTEGRATION METHODS

We remarked at the beginning of this chapter that integrals of functions are much
less likely to be able to be calculated analytically than are derivatives, but that integ-
ration is usually a more stable problem (in the sense discussed in Section 4.3) than

134 NUMERICAL DERIVATIVES AND INTEGRALS

is differentiation. We therefore seek efficient numerical-integration methods because
we will probably have to do many such integrals (absent analytical results), but a
fairly simple numerical algorithm may perform surprisingly well.

The differentiation-integration question can be approached from another view-
point, namely that the integral of a function is formally the “antiderivative” of that
function. Since we saw in Section 4.4 that successively higher-order derivatives
become numerically more difficult, therefore (at least formally) successive integrals
should become numerically less difficult. As we discussed for derivatives at the be-
ginning of Section 4.4, we also base our integration formulas on Taylor expansions
of the integrand. If we truncate the expansion to a given order, N, we are using an
Nth-order polynomial approximation. The first neglected term in the Taylor expan-
sion serves to estimate the error in the polynomial approximation.

The working function, introduced at the beginning of this chapter as (4.1), is
used for tests and for comparisons of the methods we develop. Recall that this func-
tion was designed as a highly oscillatory but bounded function near x = 0, as
shown in Figures 4.1 and 4.2. The expansion of its integral is given by (4.4), us-
ing the coefficients Ik in Table 4.1. The coefficients of the derivatives of various
orders, also in this table, are useful for estimating errors in integral approximations.

We derive the two most common integration formulas, the trapezoid and Simp-
son approximations. The emphasis in our discussion is on understanding how to
derive these formulas and how to estimate their errors, with a view to indicating how
to generalize the procedure for such approximations. Our approach is also consis-
tent with that used in Section 4.4 for obtaining the derivative estimates.

Integration algorithms using constant stepsize h are readily derived by using a
Taylor expansion of the integrand within the region to be integrated. Suppose that
the integration is centered on x0, so that the appropriate Taylor expansion of an inte-
grand, y (x), through the nth power of (x - x0) can be obtained by using Taylor’s
theorem, (3.6), as

(4.39)

in which the derivative is evaluated at x0 and the remainder, Rn, is formally given by
(3.7), but it may be approximated by the next term in the power series, which is
what we shall use. The indefinite integral over x of y (x) is obtained by term-by-
term integration of the series (4.39), a procedure which is usually valid for integrals
of interest.

Exercise 4.19
Show that integration of the series terms in (4.39) leads to

(4.40)

for the indefinite integral. n

4.6 NUMERICAL INTEGRATION METHODS 135

The presence of n derivatives in this formula, ignoring the remainder integral, re-
quires that y be known at (n + 1) values for each basic integral. We now show the
construction explicitly for n = 1 (trapezoid rule) and for n = 2 (Simpson rule).

Trapezoid formula and program for integration

Trapezoid rule formula. The lowest-order formula obtained using (4.40) is for
n = 1, but let us carry the expressions to n = 2 then neglect the integral over the re-
mainder. The n = 2 term will then be an estimate of the error in the n = 1 approx-
imation. Suppose that we wish to integrate from x = a to x = a + h. The most
rapid convergence of the series (4.40) will then probably be achieved by choosing
x 0 =a + h/2.

Exercise 4.20
(a) Make the indicated substitutions of variables in (4.40) in order to show that

(4.41)

in which derivatives of fourth and higher order have been neglected.
(b) Write out the Taylor expansions (4.39) of y (a) and y (a + h) about
x0 = a + h /2, then solve for y (a + h /2) in terms of these y values and the
second derivative at a + h/2. Thus show that (4.41) becomes

(4.42)

which, with neglect of the derivative term, is the basic trapezoid formula.
(c) Show that if y is linear in x, then the trapezoid rule is exact. n

This derivation might seem a bit long-winded, because all we have ended up do-
ing is to average the y values at the beginning and end of the integration interval,
then multiplying by the length of the interval, which is h. However, if we did not
use the more complete analysis that you have just made (haven’t you?), then we
would not be able to estimate the error in the approximation.

Notice that this error is better than you might have guessed, since the effects of
the first derivative at the midpoint of the interval has vanished, leaving the second
derivative as the leading term in the error estimate. By using the midpoint of the in-
tegration interval as the expansion point, all odd-order derivatives vanish from the
integration formula. Therefore, the next neglected term in the integral, and therefore
in our error estimate, involves y(4)h5 .

136 NUMERICAL DERIVATIVES AND INTEGRALS

FIGURE 4.8 Integration formulas, illustrated for the working function (4.1) with stepsize
h = 0.1 in [-O.l, 0.1]. The trapezoid rule uses a straight-line segment in each panel. The Simp-
son rule uses the parabolic section (dashed) over two panels.

Graphical interpretation of the trapezoid rule clarifies the analysis. Figure 4.8
shows our working function, (4.1), near x = 0, the same region where we investi-
gate derivatives in Sections 4.4 and 4.5. The geometric interpretation of Exer-
cise 4.20 (c) is that we approximate the function between the tabulated values at
x = a and x = a + h by a straight-line segment. For example, in Figure 4.8 we
have a trapezoid between x = -0.1 and x = 0, with another between x = 0 and
x = 0.1.

Starting from the basic trapezoid formula (4.42), we may use additivity of integ-
ration to find an approximation to the integral between x = a and x = a + nh.
Thereby we produce the composite trapezoid formula

(4.43)

in which the error estimate is

(4.44)

Here the second derivative is not larger in magnitude than the maximum second de-
rivative in the entire interval. The error scales as the quantity ny(2) h 3/y, so halv-
ing the stepsize h (while doubling n to cover the same x range) should produce
about a factor of 4 greater accuracy in the integral estimated by the trapezoid rule.

Trapezoid rule program. Programming the trapezoid function is quite straightfor-
ward. As usual, the code for the driver program to make the function testable is
longer for the code than for the function itself. Also, we anticipate including the
Simpson rule in the next subsection, so some code is included for this. Here we
emphasize parts relevant to the trapezoid rule.

4.6 NUMERICAL, INTEGRATION METHODS 137

PROGRAM 4.5 Trapezoid and Simpson integrals, composite formulas, applied to the working
function (4.1).

#include <stdio.h>
#include <Math.h>

main()

{
/* Trapezoid and Simpson Integrals */
double a,h,IntAnalyt,IntByTrap,error,IntBySimp;
int n,NTrap,NSimp;
double SimpInt(),TrapInt(),y(),YWInt();

printf("Trapezoid and Simpson Integrals\n");
n = 2;
while(n!=O)

printf("\n\nInput n, a, h (n=O to end): ");
scanf("%i%lf%lf",&n,&a,&h);
if (n == 0)

printf("\nEnd Trapezoid and Simpson Integrals");
exit (0) ;
}

NTrap = n;
if (n == 2*(n/2)) NSimp = n;
else NSimp = O;/* to bypass Simpson for n odd */
IntAnalyt = YWInt(a+n*h)-YWInt(a);
printf("Analytica1 integral=%lg",IntAnalyt);
InByTrap = TrapInt(a,NTrap,h);/* trapezoid rule */
error = IntAnalyt-IntByTrap;
printf("\nTrapezoid integral=%lg",IntByTrap);
printf(" Error=%lg",error);
if (NSimp != 0)

IntBySimp = SimpInt(a,NSimp,h);/* Simpson rule */
error = IntAnalyt-IntBySimp;
printf("\nSimpson integral=%lg",IntBySimp);
printf(" Error=%lg",error);

} /*end n loop */

138 NUMERICAL DERIVATIVES AND INTEGRALS

double SimpInt(a,n,h)
/* Simpson integral */
double a,h;
int n;

double sum;

double y();
int n2,j;
n2 = n/2;
if ((2*n2 != n) || (n2 == 1))

{
printf("\n !! SimpInt has n=%i; not allowed",n);
return 0;

}
else

sum= 0;
for (j = 1; j < n2; j++)

{
sum = sum+y(a+2*j*h)+2*y(a+(2*j-l)*h);

return h*(y(a)+4*y(a+(n-l)*h)+y(a+n*h)+2*sum)/3;

double TrapInt(a,n,h)
/* Trapezoid integral */
double a,h;
int n;

{
double sum;
double y();
int j;
sum = (y(a) + y(a+n*h))/2;
for (j = 1; j < n; j++)

{
sum = sum+y(a+j*h);

}
return h*sum;

4.6 NUMERICAL INTEGRATION METHODS 139

double y(x)
/* Working function value*/
double x;

double prod;
prod=12O*(x+0.5)*(x+0.25)*x*(x-(l.0/3.0))*(x-0.2)*(x-1);
return prod;

double YWInt (x)
/* Working function integral */
double x;

double sum;
sum=(-0.5+x+(23.0/4.0)*x*x-10.2*pow(x,3)

-(47.0/3.0)*pow(x,4)+(120.0/7.0)*pow(x,5))*x*x;
return sum;

The structure of Trapezoid and Simpson Integrals can be summarized as
follows. The program uses a while loop controlled by n, the number of steps in
the integration interval, with a zero for n being used to terminate program execu-
tion. The analytical value for the working-function integral, IntAnalyt, is obtained
from (4.4) and Table 4.1, which are coded in function YWInt. The trapezoid rule
is coded in function TrapInt and its value in the main program is IntByTrap.

The function TrapInt integrates the function y, which here is coded as the
working-function expression (4.1). In the C function for y, the roots are given ei-
ther as exact decimals or as ratios of (floating-point) integers. The roots are thereby
computed to machine accuracy. Similarly, maximum accuracy is gained in the C
function YWInt for the working-function integral.

Exercise 4.21

(a) Code and test the trapezoid parts of program Trapezoid and Simpson
Integrals. You can test the program by temporarily substituting for the work-
ing function any linear function of x, and substituting in the analytic-integral
function the corresponding integral. The safest way to code these temporary
changes is to add them just before the return statements in the two C func-
tions. By doing this you do not have to disturb the code for the working func-
tion. Integration of a linear function should produce results accurate to machine
roundoff error.
(b) Run the program for the integral from a = - 0.2 up to 0.2, which Fig-
ure 4.1 suggests has a very small value because of the zero of the function at
x = 0. Thus, for h = 0.1 you need to input n = 4, and so on for three suc-
cessively halved values of h. Check your results against mine in Table 4.9.

140 NUMERICAL DERIVATIVES AND INTEGRALS

(c) Use (4.44) to estimate the error in the trapezoidal rule for each choice of n
and h, using the second derivative given in Table 4.3, namely the value at
x = 0, as an estimator of the appropriate derivative. Show that this over-predicts
the actual error by a factor of about 6. Suggest why. n

TABLE 4.9 Trapezoid integrals for the working function (4.1) from -0.2 to 0.2 with various

stepsizes h. The analytical value of the integral is 9.9109 x 10-3.

Notice, from comparing Table 4.9 with Table 4.4, relatively how much more
accurate the simplest formula for numerical integration (trapezoid rule) is compared
with the simplest formula for numerical differentiation (central-difference formula).
This justifies our remarks at the start of this section about integrals being considered
as antiderivatives.

We return to the trapezoid rule and consider its application to functions that are
less pathological than our working function at the end of the next subsection, where
it is also compared with the Simpson rule.

Simpson formula and program for integrals

In the trapezoid integration formula we assumed straight-line segments between
pairs of “knots” (points where the function is to be evaluated), and this collapsed the
general integration formula to the basic trapezoid formula. If we instead assume
parabolic segments between triples of knots, as shown in Figure 4.8, we can derive
the Simpson formula and an estimate of its error.

Simpson rule formula. The method of deriving this formula is the same as for the
trapezoid formula (Exercise 4.20), except that having three values of the function
allows more of the (usually) unknown derivatives to be eliminated. Try it and see.

Exercise 4.22
(a) To derive the Simpson integration rule, start from the general integral ex-
pression (4.40), expand about x0 = a + h, then solve for the second derivative
in terms of the function values at x = a, x = a + h, and x = a + 2h. Keep

4.6 NUMERICAL INTEGRATION METHODS 141

the term containing the fourth derivative. Thus derive the basic Simpson for-
mula for integration

(4.45)

(b) Show that if y is a cubic or lower-order polynomial, then the Simpson for-
mula is exact.
(c) Use additivity of integration and the basic integration formula (4.45) to de-
rive the composite Simpson rule for n intervals, where n must be even,

 (4 . 4 6)

where n2 = n /2, and the error estimate for the composite Simpson rule is

(4.47)

in which the second derivative is bounded by its maximum value in the interval
x = a to x = a + nh. n

The parabolic shape that the Simpson formula assumes for the function in the basic
interval of width 2h is shown as the dashed curve in Figure 4.8 for our working
function (4.1). A different parabola is assumed for each triple of points, so that the
rather poor fit of the dashed to the solid curve outside the range [-O.1,O.l] is not of
immediate concern. The discontinuities of the parabolic curves between successive
panels of width 2h that occur in the Simpson formula are removed if one uses the
cubic-spline technique developed in Chapter 5.

Simpson rule program. The overall program structure for Trapezoid and Simp-
son Integrals was described in the preceding subsection on the trapezoid formula
and program, so here we describe only parts specific to the Simpson formula. On
input the value of n is checked; only if n is even is the Simpson algorithm used to
produce the value IntBySimp, which is compared with IntAnalyt to obtain the
value error for output.

The function SimpInt uses the composite Simpson rule (4.46) to estimate nu-
merically the integral of the function y. In case this function is to be used in another
program, there is a trap to ensure that the number of points, n, is even. For the
composite rule (4.46) n > 2 is also required by the program. (For n = 2 the
basic Simpson formula (4.45) may be used.) The check for even n in SimpInt

142 NUMERICAL DERIVATIVES AND INTEGRALS

can be tested by temporarily disabling the test made in the main program. Note that
the function is coded to resemble closely the formula (4.46), rather than to be very
efficient. If you need a speedy version, you should recode most of SimpInt.

Now that you know how the Simpson integration formula is supposed to work,
it’s time to plug and play.

E x e r c i s e 4 . 2 3
(a) Test the Simpson rule parts of the program Trapezoid and Simpson In-
tegrals. Temporarily substitute for the working function any function of x as
high as third order, and substitute in the analytic-integral function the corre-
sponding integral. Code these temporary changes just before the return
statements in the two C functions, so as not to disturb the code for the working
function. Integration of a cubic or lower-order polynomial should produce re-
sults accurate to machine roundoff error, according to (4.47).
(b) Run the program for the Simpson integral from a = -0 . 2 up to 0 . 2,
which has a very small value because of the zero of the working function at
x = 0, as seen in (4.1) and Figure 4.1. For h = 0.1 input n = 4, and so on
for three successively halved values of h. Check your results against those in
Table 4.10.
(c) Use (4.47) to estimate the error in the Simpson rule for each choice of n
and h, using the fourth derivative in Table 4.3 at x = 0 as an estimator of the
appropriate derivative. Show that this overpredicts the actual error by a factor
of about 2. Suggest why. n

TABLE 4.10 Simpson-rule integrals for the working function (4.1) from -0.2 to 0.2 with vari-

ous stepsizes h. The analytical integral has value 9.9109 x 10-3.

By comparing Tables 4.9 and 4.10 for the trapezoid and Simpson formulas, re-
spectively, notice how the latter improves much more rapidly than the former as h
decreases, since there is an h 5 dependence of the error in the Simpson rule, compar-
ed with an h 3 dependence in the trapezoid-rule error. This occurs in spite of the
much larger fourth derivative than second derivative (Table 4.3) for the very wiggly
polynomial that is our working function.

4.6 NUMERICAL INTEGRATION METHODS 143

Integrals with cosines

Now that we have a working program that has been torture tested against a badly
behaved function, it is interesting to try a more-usual function such as the cosine.
Since the cosine has derivatives that are bounded in magnitude by unity, the error
estimates for the trapezoid and Simpson rules, (4.44) and (4.47), will be dominated
by their dependence on h. How about trying your integration program on the cosine
function?

Exercise 4.24
(a) Modify the program Trapezoid and Simpson Integrals by replacing in
the C function y (x)
y

each h. Make a table and a log-log plot of the absolute value of the error against
h, as in Table 4.11 and Figure 4.9.
(b) Assume that the graph for each method (trapezoid and Simpson) on the log-
log plot is a straight line. Thus show that the error has a power-law dependence
on stepsize h, and that the overall scale of the error estimates the factor preceding
the power of h. Show that the trapezoid formula error is consistent with an h 3

dependence, as in the estimate (4.44), and with a value of the second derivative
of about -0.5, just half the maximum-magnitude value of -1 (at x = 0).
(c) Similarly, for the Simpson formula error show that there is an h 5 depen-
dence, consistent with estimate (4.47), and show that an average fourth deriva-
tive of about 0.5 (again half the maximum value) would make a good match
between prediction and calculation. n

TABLE 4.11 Trapezoid and Simpson integrals for the cosine function from -2 to 2 with various

stepsizes h. The analytical integral has value 2 sin (2) = 1.8 1859.

In Section 4.5 we investigated the numerical first derivative of the cosine func-
tion, and we showed (Table 4.8 and Figure 4.7) that an accuracy of a few parts in
105 is attained for a method comparable to the Simpson integrator (central deriva-
tives, CCD) only for h of order 10-2, whereas for integration h = 0.25 gives
about the same accuracy (Table 4.11). This contrast emphasizes the much greater
difficulty of computing accurate numerical derivatives than numerical integrals.

144 NUMERICAL DERIVATIVES AND INTEGRALS

FIGURE 4.9 Errors in the integral of the cosine from -2 to 2 for various stepsizes h. The
trapezoid-rule errors are indicated by the dashed line, and the Simpson-rule errors are shown by the
solid line.

Higher-order polynomial integration

The numerical-integration technique of approximating a function by a polynomial of
a given order, then evaluating the integral of this polynomial can be made quite gen-
eral. If one does not require an estimate of the error involved, then a Lagrange inter-
polating polynomial, as described in Sections 6.1 and 7.1 of Maron’s book, may be
useful. Various recipes for polynomial integration algorithms, with error estimates
of the kind that we derived, are derived in Chapter 4 of the text by Nakamura and
listed in the handbook of Abramowitz and Stegun. The spline method of integration
we describe in Section 5.5 allows a low-order polynomial to be used for each step-
size, but accuracy is achieved by requiring continuity of values and derivatives
across adjacent steps.

The technique of evaluating the integrals as a function of h, then taking the limit
as h 0 analytically, is called Romberg integration, and it can be very effective,
especially if the integrands are difficult to calculate, so that the number of integrand
values that one wishes to evaluate is to be minimized. Romberg integration is dis-
cussed in detail in Vandergraft’s text on numerical computation.

If unequal steps of the integrand are allowed and the integrand can be evaluated
to arbitrary accuracy at any points, then the technique of Gaussian quadrature is cap-
able of providing great accuracy efficiently. Chapter 4 of Nakamura’s text on ap-
plied numerical methods has a description of such integration algorithms, and Chap-
ter 4 of the numerical recipes book of Press et al. has a function that performs
Gaussian quadrature. A compendium of numerical-integration methods by Davis
and Rabinowitz includes modem techniques (such as the use of splines) and very
complete coverage of the whole spectrum of methods.

4.7 ELECTROSTATIC POTENTIAL FROM A CHARGED WIRE 145

4.7 PROJECT 4B: ELECTROSTATIC POTENTIAL
FROM A CHARGED WIRE

It is interesting to compute the electrostatic potential from a charged wire because it
involves analysis, numerics, and application to a scientific problem. It is also simple
enough that you can understand the science without extensive physics background.
Suppose that we have electric charge distributed along a finite segment of the y axis,
as shown in the insert to Figure 4.10.

In the figure insert the charge is indicated as being uniformly distributed along
the wire, but we assume only that its distribution, (y), goes from y = -1 to
y = 1 and is zero for y beyond this and for any nonzero x. Our task is to compute
the potential at any point in space, (x, y), not including the wire itself. Such points
are called field points.

From Coulomb’s law of electrostatic interactions, a small element of charge on a
segment of length of wire located near y’ on the wire produces at (x, y) a po-
tential where r is the distance between the charge element and
the field point. (In various systems of electrical units there will be an overall factor
between charge and potential, which we ignore, but electricians should not.) The
total potential at this point is obtained by superimposing the potentials from all points
along the wire in the limit that the lengths of the segments shrink to zero. Thus, the
potential is the Riemann integral of (y‘)/r. Explicitly, the potential is given by

(4.48)

in which we used the theorem of Pythagoras to express r in terms of the coordinates.

FIGURE 4.10 Potential from a wire having a uniform distribution of charge along the wire, as

indicated in the insert. The potential is shown as a function of x distance from the wire for three

different heights, y, above the center of the wire.

146 NUMERICAL DERIVATIVES AND INTEGRALS

Now that the physics problem has been set up, we should concern ourselves
with evaluating this integral. Suppose that the charge density has a simple power-
law dependence on position along the wire as

(4.49)

where p is any integer that is not negative. The potential formula can readily be
transformed so that it is expressed in terms of some simpler integrals.

Exercise 4.25
(a) Make a change of variables in (4.48) and (4.49) in order to simplify the de-
nominator in (4.48), namely, set

(4.50)

(x = 0 doesn’t occur in this problem), then show that the scaled potential,Vs, is
given by

(4.5 1)

where the binomial expansion is used to expand (y + XZ)P. The units of
and therefore of Vs, depend upon the exponent p. The integrals Ik are defined
by

(4.52)

in which k is an integer. The potential problem has been replaced by the actual
problem of evaluating these integrals.
(b) Show (by your own analytical skills, by consulting a table of integrals, or
by using a computer-algebra system) that the indefinite integrals in (4.52) for
k = 0 and 1 are given by

(4.53)

(4.54)

(c) To derive the analytical form of the integral for higher values of k, write the
factor z k in (4.52) as z x z k-1. Then use integration by parts, the result for I1

in (4.54), and some algebraic manipulations, to derive the recurrence relation

4.7 ELECTROSTATIC POTENTIAL FROM A CHARGED WIRE 147

(4.55)

Check this result by differentiating both sides with respect to z in order to verify
that you recover the integrand in (4.52). n

From the results of this exercise we have the component integrals that can be com-
bined by using (4.51), after inserting the limits in (4.52), to produce the total scaled
potential Vs at any field point (x, y).

We now have a choice of methods for calculating the electrostatic potential, ana-
lytical or numerical. The former method, although it has the elegant results from Ex-
ercise 4.25 at its command, is restricted to integer powers p. On the other hand any
positive p may be used with numerical integration of (4.48), provided that |y'|,
rather than y', is used in (4.49). However analytical integration is useful for testing
the accuracy of the numerical methods, so we start with it.

Potentials by analytical integration

The simplest analytical potentials are obtained if the electric charge is distributed uni-
formly along the wire. Then in the above integrals we have k = p = 0 only. The
scaled potential is then given by

 (4.56)

This potential is plotted in Figure 4.10 as a function of x for three values of y, half-
way up the wire (y = 0.5), above the level of the wire (y = 1.5), and far above the
wire (y = 2.5). As you would guess from Coulomb’s law of the inverse-distance
dependence of the potential, Vs dies away rapidly as the field point is moved farther
away from the source of the charge on the wire.

If the electric charge is distributed linearly along the wire (which would have to
be made of a nonconducting material, so that the charges didn’t flow and neutralize
each other), with positive charges along the top half and negative charges along the
bottom half, then the scaled potential can be calculated from the integral expansion
(4.5 1).

Exercise 4.26
(a) Write a small C function to evaluate the analytical potential, Vs (x,y), for the
linear charge distribution (p = 1) in terms of the integrals Ik obtained in Exer-
cise 4.25 and the expression (4.51) for Vs.
(b) Make a plot similar to Figure 4.10 for the potential due to this linear distrib-
ution of charge. n

With two check cases in hand, we are ready to develop the numerical applications.

148 NUMERICAL DERIVATIVES AND INTEGRALS

Potentials by numerical-integration methods

In the preceding subsection we showed that analytical expressions for the potentials
from a line charge with various (positive-integer) power-law distributions for the
charge, given by (4.49), can be derived. In the numerical-integration methods we
use these as test cases, then explore the situation with noninteger power laws.

First we need a way to handle the numerics. It is straightforward to modify Pro-
gram4.5, Trapezoid and Simpson Integrals, to do this. The resulting pro-
gram, Electrostatic Potentials by Numerical Integration,is given in the
following program.

PROGRAM 4.6 Electrostatic potentials by numerical integration, trapezoidal and Simpson

formulas, for a uniform charge distribution.

#include <stdio.h>
#include <math.h>

main()

{
/* Electrostatic Potentials

by Numerical Integration */
double X,Y,zmin,zmax,h,VAnl,VByTrap,error,VBySimp;
int n;
double Vs(),SimpInt(),TrapInt(),y();

printf("Potentials by Numerical Integration\n");
x = 1;
while(X!=O)

printf("\n\nInput X, Y, n (X=0 to end): ");
scanf("%lf%lf%i",&X,&Y,&n) ;
if (X == 0)

{
printf("\nEnd Potentials by Numerical Integration");
exit (0) ;

n = 2*(n/2); /* truncate n to nearest even value */
zmin = (X-1)/Y; zmax = (X+1)/Y;
h = (zmax-zmin)/n;
VAnl = Vs(X,Y);
printf("Analytica1 potential=%lg",VAnl);
VByTrap = TrapInt(zmin,n,h);/* trapezoid rule */
error = VAnl-VByTrap;
printf("\nTrapezoid integral=%lg",VByTrap);
printf(" Error=%lg",error);
VPySimp = SimpInt(zmin,n,h);/* Simpson rule */

4.7 ELECTROSTATIC POTENTIAL FROM A CHARGED WIRE 149

error = VAnl-VBySimp;
printf("\nSimpson integral=%lg",VBySimp);
printf(" Error=%lg",error);
} /*end x loop*/

double SimpInt(a,n,h)
/* Simpson integral */
double a,h;
int n;

double sum;
double y();
int n2,j;
n2 = n/2;
if ((2*n2 != n) || (n2 == 1))

{
printf("\n !! SimpInt has n=%i; not allowed",n);
return 0;
}

else

sum= 0;
for (j = 1; j < n2; j++)

sum = sum+y(a+2*j*h)+2*y(a+(2*j-l)*h);

return h*(y(a)+4*y(a+(n-l)*h)+y(a+n*h)+2*sum)/3;

double TrapInt(a,n,h)
/* Trapezoid integral */
double a,h;
int n;

double sum;
double y*();
int j;
sum = (y(a) + y(a+n*h))/2;
for (j = 1; j < n; j++)

sum = sum+y(a+j*h);
}

return h*sum;

150 NUMERICAL DERIVATIVES AND INTEGRALS

double y(x)
/* Potential integrand value*/
double x;

double prod;
prod = l/sqrt(x*x+l);
return prod;

double Vs(x,y)
/* Analytical potential integral */
double x,y;

double sum;
sum = -log(sqrt(pow((x+l)/y,2)+1)-(x+1)/y)

-log(sqrt(pow((x-1)/y,2)+l)+(x-l)/y);
return sum;

In Program 4.6 there has been some renaming of variables in the main program,
slight modifications of input, but no changes to integrator, functions SimpInt and
TrapInt. These two functions may therefore be copied from their parent, Prog-
ram 4.5. The price paid for this is that the variable names do not agree with those
used in formulating our electrostatic-potential problem, so care is needed if the pro-
grams are modified. Note that the method of signalling termination of program exe-
cution, input x = 0, is convenient rather than necessary. Provided that |y| > 1, so
the field point is not touching the wire (how shocking!), the potential is well-defined
on the x axis. If you don’t like this way of stopping execution, devise your own.

The functions for the potential integrand, y (x) , and for the analytical potential,
Vs (x , y) , have been coded to agree with (4.48) and (4.56), respectively, for the
case p = 0. Now you should be ready to code and test the potential program.

Exercise 4.27
(a) Code and test Electrostatic Potentials by Numerical Integra-
tion. The program can be tested by coding below the formulas in y (x) and
Vs (x, y) an integrand and an analytic integral, respectively, that can easily be
checked by hand, such as a low-order polynomial.
(b) Run the program for the coded example of the uniform charge density and a
reasonable stepsize, say h = 0.1, to check your results against those displayed
in Figure 4.10 at y = 0.5, 1.5, and 2.5 for x > 0.
(c) If you have a program that displays contours, modify Electrostatic Po-
tentia1s to compute a mesh of(x , y)points fine enough that smooth con-
tours (equipotentials) are produced by the Simpson method. Thus generate the
contours for the potential from a uniformly charged wire. Do the contours make
physical sense, in that electrostatic energy would be constant along a contour?

REFERENCES ON NUMERICAL DERIVATIVES AND INTEGRALS 151

(d) Modify the program to allow positive integer powers, p, for the charge
density (4.49). This requires only minor changes to the potential-integrand
function y (x) , but substantial changes are needed to the potential integral func-
tion, Vs (x, y) , to include the recurrence formula (4.56) and the summation
(4.51). (You may have already done this in Exercise 4.26.) Then this function
has to be used for both limits of integration. The numerical integration functions
should be scarcely modified, and thereby they serve to identify any errors in
your analytical results. As p is increased, the charges should pile up (positive
and negative) at the two ends of the wire, and the potential should resemble that
from two point charges of opposite sign at the two ends of the wire. Is this what
you find?
(e) As a final topic of exploration, turn off the analytical solution and try the nu-
merical integrations with noninteger values of p, such as p = 0.5, 0.75, and a
charge distributed as |y|p rather than yp, in order to avoid complex results. Your
results should roughly interpolate between those for adjacent integer values of p,
such as p = 0, 1. To make such a comparison you will need to modify the
solutions to accommodate the change in the charge-distribution formula (4.49)
from yp to |y|p. For example, just split the integral into contributions from
above and below the origin. n

With the experience in numerical integration that you have gained from this ap-
plied-physics project and from the exercises in Sections 4.4 - 4.6, you should be
confident to compute many kinds of numerical derivatives and integrals.

REFERENCES ON NUMERICAL DERIVATIVES AND INTEGRALS

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1964.

Davis, P. J., and P. Rabinowitz, Methods of Numerical Integration, Academic
Press, Orlando, Florida, second edition, 1984.

Maron, M. J., Numerical Analysis, Macmillan, New York, second edition, 1987.
Nakamura, S., Applied Numerical Methods with Software, Prentice Hall, Engle-

wood Cliffs, New Jersey, 1991.
Pippard, A. B., Response and Stability, Cambridge University Press, Cambridge,

England, 1985.
Pippard, A. B., The Physics of Vibration, Cambridge University Press, Cambridge,

England, 1989.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

Recipes in C, Cambridge University Press, New York, 1988.
Vandergraft, J. S., Introduction to Numerical Computations, Academic Press, New

York, 1978.
Wolfram, S., Mathematica: A System for Doing Mathematics by Computer, Addi-

son-Wesley, Redwood City, California, second edition, 199 1.

152

Chapter 5

FITTING CURVES THROUGH DATA

In this chapter we emphasize making essentially exact fits of curves through data
values, as if the data were mathematically precise. Therefore, you will notice as you
skim the section headings that the applications (interpolation, derivatives, integrals)
take the data as found and estimate other quantities from them. This emphasis is dif-
ferent from data-fitting methods developed in Chapter 6, where the best-fit curves do
not usually pass through each data value, and where our attitude is that the data are
imprecise and we make our best effort to find a more exact representation of them.

Spline fitting and least-squares fitting are thus complementary. For example, a
spline fit may be used to preprocess data, for example to interpolate them so that data
from different sources have their independent variables sampled at the same points,
then a least-squares fit will be made on the interpolated data. (It is feasible, but com-
plicated, to combine the two methods and to make a spline-least-squares fit.)

For the exact fits to data considered in this chapter, one method would be to use
a truncated Taylor series to approximate y(x) and to fit a single polynomial of order
n - 1 through the n points, then to estimate the desired properties from the polyno-
mial. Although this method is hallowed by tradition (see, for example, Abramowitz
and Stegun), it has the severe disadvantage that if n becomes large the polynomial fit
will generally have more and more wiggles in it, especially if the data are experimen-
tal or arise from an approximate numerical procedure. We encountered this problem
with polynomials in Sections 4.1 and 4.4 - 4.6.

Exercise 5.1
Explain why, both from analytical and graphical considerations, a polynomial of
order n may have as many as n - 1 changes of direction over its whole range of
variation. n

For example, the working function (4.1), a sixth-order polynomial all of whose
roots are real and lie in the interval [-0.5, 1], has four changes of direction in the in-
terval [-0.5,0.5), as seen in Figure 4.1. Such wiggly behavior, sometimes called

153

154 FITTIING CURVES THROUGH DATA

the “polynomial wiggle problem,” is usually inconsistent with the problem at hand.
Can we develop a curve-fitting method that guarantees a smooth fit through a seq-
uence of points, and whose behavior does not change much as we add data?

In this chapter we develop the method of curve fitting by splines. For simplic-
ity, while still being practicable, we consider the cubic spline, in which the behavior
of the fitting polynomial is a cubic in the interval between consecutive points, but
there is a different cubic polynomial in successive intervals. The major reason why
the local fitting polynomial is of order three (a cubic) is that this order guarantees
continuity of the slopes of the spline tangents at the knots.

Exercise 5.2
Show that a necessary and sufficient condition for a piecewise polynomial to
have a continuous second derivative (slope of its tangent) at the matching knots
is that it be at least of third order. n

If we used a polynomial of order higher than third the spline equations would be
more complex to solve and to use, usually without much gain in accuracy of the ap-
proximation except for the higher-order derivatives.

This chapter is organized as follows. We derive the fitting algorithm in Section
5.1, and we investigate in Section 5.2 how the results depend on the spline behavior
near the endpoints. In Project 5 (Section 5.3) you are shown how to program the
algorithm derived in Sections 5.1 and 5.2, and there are exercises so that you can
check the program correctness. We show in Section 5.4 how to interpolate with
cubic splines and how to use them to estimate derivatives, then in Section 5.5 we
show their usefulness for integration and provide several examples.

As a diversion, we discuss in Section 5.6 the close relation between the devel-
opment of computers and the extensive growth in the use of spline methods in appli-
cations from data analysis through the design of type fonts for printing and the des-
cription of surfaces in computer graphics. References on spline fitting round out the
chapter.

5 . 1 HOW TO FIT CURVES USING SPLINES

In this section we derive the properties that a spline fit is required to satisfy, then we
derive and solve the spline equations and develop an algorithm for spline fitting that
can readily be coded in the C language. The code itself is presented and first used in
Section 5.3.

What is a spline?

The various methods of spline fitting are the numerical analogs of using a thin, uni-
form, flexible strip (a drafting spline) to draw smooth curves through and between
points on a graph. The cubic spline method that we develop is locally smooth and is

5.1 HOW TO FIT CURVES USING SPLINES 155

insensitive to adding data. We begin by introducing some terminology used in
spline fitting. When needed, we will be mathematically more precise in the formula
derivations.

A spline of N th order is one in which N + 1 adjacent points define a polyno-
mial of order N to pass through the middle point. For example, one most often
uses a cubic spline (N = 3), in which the spline behaves locally as a cubic poly-
nomial. However, there will be different cubics going through successive
points. Therefore, the spline is a composite curve, as shown in Figure 5.1.

The knots of the spline are the points through which the spline curve is required
to pass. A sample of n data therefore has n knots. Thus, spline algorithms as-
sume exact fitting at the knots, rather than the compromise made in least-squares
methods.

Spline endpoint conditions are the constraints imposed on the behavior of the
spline near the first and last data points. You can see that some special con-
straints are needed, because if you try to use a drafting spline you can bend it at
the ends without changing the fit near its middle very much. Usually, a drafting
spline just sticks out straight at the ends, so it has second derivatives zero. This
is called the natural-spline endpoint condition.

Examples of spline fits with two different endpoint conditions are shown in Fig-
ures 5.1 and 5.2. We investigate spline boundary conditions in detail in Sec-
tion 5.2.

FIGURE 5.1 The pathological working function (4.1) and its fit by a cubic spline through five

knots (indicated by the circles) using natural endpoint conditions. The solid curve is the working

function and the dashed curves are the cubics used between each pair of knots. Each cubic is shown

beyond the region in which it is used in order to show the continuity of the spline curvature.

156 FITTING CURVES THROUGH DATA

If the curvature of the spline fit (which is indicated by the second derivative) is to
be smooth, but we are willing to compromise on higher derivatives implied by the
y(x), then local approximation by a cubic spline, s(x), is appropriate. Our develop-
ment assumes that the spline is of third order and (for simplicity of explanation and
ease of use) that the knots are equally spaced.

With the definitions taken care of, we are ready to analyze the spline properties,
then to set up and solve the spline equations.

Properties for spline fits

We require for a cubic-spline fit that the fitting function, s(x), satisfy the following
properties:

1. Within each subinterval s(x) is a cubic poly-
nomial.

2. Each of the derivatives with respect to x, namely s, s (l), s (2), is continuous
over the whole range

3. At each knot, x = xj, the spline fit goes exactly through the data, so that
s(xj) = yj, j = 1,2,..., n.

You can see in Figure 5.1 the cubics that are used to go through each pair of points,
and how the slopes of successive splines match at the knots. Note, however, that
each cubic is used for only two points. In the figure the extensions beyond the
knots are drawn to indicate how use of a given cubic segment outside its range
would often give a poor representation of the curve.

With the above three conditions on the spline fit, we are ready to derive an ap-
propriate algorithm. For simplicity, and as often encountered in practice, we assume
equal spacing of the independent variable values xj by an amount h.

Deriving the spline equations

Since the fitting conditions relate to derivatives, we make Taylor (polynomial) ex-
pansions (Sections 3.1, 3.2) in the variable x about the point xj for the j th interval.
For a cubic polynomial, derivatives past the third are zero, so we can immediately
calculate the third derivative at xj in terms of the second derivatives at the knots:

Thus, the cubic spline can be written in terms of its first
the requirement that it pass through the knot value yj,

two derivatives, using also

(5.1)

(5.2)

Our goal is to solve for the derivatives in terms of the yj by using the spline continu-
ity conditions, item (2) in the above list. By differentiating (5.2) we obtain

5.1 HOW TO FIT CURVES USING SPLINES 157

(5.3)

and, on differentiating this slope equation,

(5.4)

We can relate the first derivatives at the knots by using (5.3) with x = xj -1, to find
that

(5.5)

Using property (3) enables us to equate the datum yj +1 with the spline fit at xj +l, so
that in (5.2) we have

(5.6)

Stepping back one point gives similarly

(5.7)

We can now obtain a relation between adjacent spline second derivatives by subtract-
ing the second equation from the first, substituting (5.5), and rearranging, to obtain
for j = 2,3,n - 1

(5.8)

where the second differences of the data are

(5.9)

at the jth point. This formula is arranged so that roundoff errors are minimized
without increasing the number of arithmetic operations, as discussed in Section 4.4.

The equations in (5.8) form a set of n - 2 linear equations which can be solved
once the derivatives at the endpoints have been chosen by the user. As we discuss
in more detail in Section 5.2, the most natural spline is one in which these deriva-
tives are zero, that is, the fit sticks out straight at each end. Whatever our choice of
endpoints, the same method of solving the equations (5.8) can be used. We may
think of the relations (5.8) as defining the elements of matrices, with those on the
left forming a banded matrix, with elements only on the diagonal, j, and one place
above and below the diagonal, j ± 1. This property has arisen because we are us-
ing a spline of cubic order, whereas, one of higher order would have more off-diag-
onal elements. Because, also for simplicity, we are assuming equally spaced data, it
is straightforward to solve the equations directly, rather than using the full power of
methods useful for matrix inversion.

158 FITTING CURVES THROUGH DATA

We solve equations (5.8) iteratively by first eliminating between pairs of
these equations. Then we set

(5.10)

(5.11)

The spline equations (5.8) then become

(5.12)

From this, starting at j = n - 1 and working downward to smaller j, we find the
spline second derivatives at the knots

(5.13)

The reader who is experienced in matrix operations may notice that we have just per-
formed Gaussian elimination to find the inverse of a tridiagonal matrix. This con-
nection is used in more general treatments of spline fitting, such as those in the
monographs by De Boor and by Schumaker.

Exercise 5.3 Verify all of the above steps in the spline-fitting derivation.
(Spare the spline and spoil the child.) n

We have now completed the analysis required for deriving cubic-spline fits, and
it is time to cast the formulas into an algorithm suitable for programming.

The spline algorithm

The algorithm for cubic spline fitting of n data values y1,y2,...,yn can now be sum-
marized as follows:
(1) Compute the coefficients aj according to the iteration scheme

(5.14)

These spline coefficients depend only on the number of data points, n, and not on
the data values. They could be computed and stored for reuse, provided that n did
not change.
(2) With j increasing compute the first differences among the data values

and thence the second-difference quantities

(5.15)

(5.16)

5.2 BOUNDARY CONDITIONS FOR SPLINE FITTING 159

(5.17)

(5.18)

and the coefficients

(5.19)

Note that the second derivatives at the boundaries must be supplied. They are zero
for the natural cubic spline.

(3) With j decreasing, compute the second derivatives at the spline knots

(5.20)

(4) With j increasing, compute the first derivatives at the knots

(5.21)

(5.22)

and the third derivatives at the same points

(5.23)

(5.24)

(5.25)

Steps (1) through (4) summarize the algorithm for generating the spline-fitting coef-
ficients. In the next two sections we discuss the boundary conditions for cubic-
spline fits, then the coding and testing of a program in the C language.

5.2 BOUNDARY CONDITIONS FOR SPLINE FITTING

Because a spline is a piecewise-continuous function, but with different coefficients
for the cubic between each pair of knots, the derivatives at the boundaries x1 and xn

(which are usually called the “endpoints”) have significant effects on the behavior of
the fit even at the interior points. Therefore, we have to discuss the boundary condi-
tions for spline fitting, for example (for a cubic spline) the second derivatives at each
endpoint.

160 FITTING CURVES THROUGH DATA

Natural splines

If you use a flexible strip of wood and force it to pass through several points on a
curve, it bends between the points but it sticks out straight at both ends, so that its
second derivatives are zero. This condition, when applied at both ends, is called the
natural-spline endpoint condition. Note that this naturalness comes from the drafting
analogy, rather than being related to the properties of the underlying function that we
are trying to approximate.

An interesting property of cubic splines with the natural endpoint conditions im-
posed is that they have a minimal value of the curvature, C, where C is defined by

(5.26)

For the natural-spline fit, sn (x), let us call the curvature CN, so that

(5.27)

Our claim is then that C CN for any cubic-spline fit. This condition is also called
“minimum tension” because it corresponds to a the behavior of a flexible strip (the
mechanical drafting spline) when constrained to touch the knots but otherwise to be
unconstrained.

Exercise 5.4
Derive the following result for the second derivatives (curvature) of spline fits:

(5.28)

To do this, compute the second integral on the right-hand side by expanding the
square, then split the integral into a sum of integrals over segments of length h,
integrate by parts, and resum. Complete the proof by using the natural-spline
endpoint conditions. n

Thus, since the integral of the squared difference of spline curvatures in (5.28) is ne-
cessarily nonnegative, the least curvature is obtained when the spline fit, s, coincides
with the natural-spline fit, sN, at all x in the range of integration.

The effects of the endpoint conditions on the overall closeness of the spline fit
can be seen for the pathological case of our working function (4.1) with its closely
spaced roots and consequent very wiggly behavior over a small range of x values.
With natural endpoint conditions the spline fit is as shown in Figure 5.1. By com-
parison, Figure 5.2 shows the working function with the same knots fitted by the
cubic spline with the exact endpoint second derivatives, obtained by using in (4.3)
the coefficients w2,k from Table 4.1.

5.3 PROGRAM FOR SPLINE FITTING 161

FIGURE 5.2 The working function (4.1) and its fit by a cubic spline through five knots

(indicated by the circles) using exact endpoint conditions. The solid curve is the working function

and the dashed curves are the cubics used between each pair of knots, with the cubic shown beyond
the region in which it is used, thus showing the continuity of the spline curvature.

We make further comparisons of natural-spline and exact endpoint conditions,
for both the badly behaved working function and the well-behaved cosine function,
in Sections 5.4 and 5.5.

5 . 3 PROJECT 5: PROGRAM FOR SPLINE FITTING

We now have the spline algorithm summarized at the end of Section 5.1, together
with some understanding of endpoint conditions (Section 5.2). Therefore, we are
ready to program, test, and use the program for spline fitting presented as Pro-
gram 5.1.

PROGRAM 5.1 Cubic-spline interpolation, differentiation, and integration with equally spaced

knots and user-controlled endpoint conditions.

#include <stdio.h>
#include <math.h>
#define MAX 101

main()

{

/* Cubic Splines */
double ylist[MAX],sdl[MAX],sd2[MAX],sd3[MAX];
double xmin,xmax,h,x,sx,sdlx,sd2x,sd3x;

162 FITTING CURVES THROUGH DATA

double ywl,yw2,yw3,yerr,ylerr,y2err,y3err;
double xL,xU,Intx,yInterr;
int n,j;
char Interp,Integ;
void SplineFit(),SplineInterp();
double yw(),SplineInt(),ywInt();

printf("Cubic Splines");
n = 3;
while (n>O)

printf("\nInput n <=%i (n=O to end): ",MAX-1);
scanf ("%i", &n) ;
i f (n < l)

printf("\nEnd Cubic Splines") ; exit(O);
}

if(n>MAX-1)

printf("\n !! More than MAX = %i data points\n", MAX-l);

else
{
if (n < 4)

{
printf("\n !! Fewer than 4 data points\n");

else

printf("\nInput %i data: ",n);
for (j = 1; j <= n; j++)

scanf ("%lf",&ylist[j]) ;

printf("\nInput second derivatives at j=l & j=%i: ",n);
scanf("%lf%lf",&sd2[1], &sd2[n]) ;
printf("\nInput minimum & maximum x: ");
scanf ("%lf%lf",&xmin,&xrmx) ;
h = (xmax-xmin)/(n-1); /* uniform step size */
SplineFit(n,h,ylist,sdl,sd2,sd3);
x = (xmin+max)/2;
while (x >= xmin && x <= xmax)

printf("\nInterpolate? (y or n)
if (Inter-p == 'y')

"); scanf("%s",&Interp)

5.3 PROGRAM FOR SPLINE FITTING 163

printf("Input x (x<%g or x>%g to end): ",xmin,xmax);
scanf("%lf",&x) ;
if (x >= xmin && x <= xmax)

{
SplineInterp(x,xmin,h,ylist,sd1,sd2,sd3,

&sx, &sd1x, &sd2x, &sd3x) ;
printf("Interpolated s=%g, s'=%g, s' '=%g, s' ' '=%g\n",

sx, sd1x, sd2x, sd3x) ;
yerr = yw(x,&yw1,&yw2,&yw3)-sx; ylerr = ywl-sd1x;
y2err = yw2-sd2x; y3err = yw3-sd3x;
printf("Error in y=%g, y'=%g, y''=%g, in y'''=%g\n",

yerr,y1err,y2err,y3err);
}

}
printf("\nIntegrate? (y or n) :"); scanf("%s",&Integ) ;
if (Integ == 'y')

{
printf("Input xL (>=%g) xU (<=%g) : ",xmin,xmax);
scanf("%lf%lf",&xL,&xU) ;
if (xL >= xmin && xU <= xmax)

{
if (xU >= xL)

{
Intx = SplineInt(xL,xU,h,xmin,ylist,sd1,sd2,sd3);
yInterr = (ywInt(xU)-ywInt(xL))-Intx;
printf("Integra1 = %g & error = %g\n",Intx,yInterr);
}

else
printf("\n !! Negative range (%g to %g)\n",xL,xU);

}
else printf("\n !! A limit is outside spline range\n");

if ((Interp != 'y') && (Integ != 'Y'))
{
x
}

}/*
}

}
} /* end

}

= 2*(fabs(xmin)+fabs(xmax)); /* forces x loop exit */

end while x interpolation loop */

while n loop */

void SplineFit(n,h,ylist,sd1,sd2,sd3)
/* Cubic spline fit; uniform step size (h) in x */
double ylist[],sdl[],sd2[],sd3[];
double h;

164 FITTING CURVES THROUGH DATA

int n;
{
double as[MAX],es[MAX],ds[MAX],bs[MAX];
double hfact,hd2;
int j;

hfact = 6/(h*h); hd2 = h/2;
/* Spline coefficients */
as[2] = 4;
for (j = 3; j < n; j++)

{
as[j] = 4-l/as[j-1];

for (j = 2; j <= n; j++)
{ /* First differences */
es[j] = ylist[j]-ylist[j-1];

for (j = 2; j < n ; j++)
{ /* Second differences */
ds[j] = hfact*(es[j+l]-es[j]);
}

ds[n-1] = ds[n-l]-sd2[n];
/* Make b coefficients */
bs[2] = ds[2]-sd2[1];
for (j = 3; j < n; j++)

{
bs[j] = ds[j]-bs[j-l]/as[j-1];
}

/* Second derivatives of spline */
sd2[n-1] = bs[n-l]/as[n-1];
for (j = n-2; j >= 2; j--) /* downward recurrence */

{
sa[j] = (bs[j]-sd2[j+l])/as[j];

/* First derivatives of spline */
sd1[l] = es[2]/h-(sd2[1]/3+sd2[2]/6)*h;
for (j = 2; j <= n; j++)

{
sd1[j] = sd1[j-l]+(sd2[j-l]+sd2[j])*hd2;
}

/* Third derivatives of spline */
for (j = 1; j < n; j++)

{
sd3[j] = (sd2[j+l]-sd2[j])/h;
}

sd3[n] = sd3[n-1];

5.3 PROGRAM FOR SPLINE FITTING 165

void SplineInterp(x,xmin,h,ylist,sdl1sd2,sd3,
sx, sd1x, sd2x, sd3x)

/* Cubic spline interpolation */
double ylist[],sdl[],sd2[],sd3[];
double x,xmin,h;
double *sx,*sdlx,*sd2x,*sd3x; /* interpolated values */
{
double e; /* distance above i-th point */
int i; /* interpolation index */

i = (x-xmin)/h+l.l; e = x-xmin-(i-l)*h;
/* Interpolated value, sx, */
*sx = ylist[i]+(sd1[i]+(sd2[i]/2+sd3[i]*e/6)*e)*e;
*sd1x = sd1[i]+(sd2[i]+sd3[i]*e/2)*e; /* first derivative */
*sd2x = sd2[i]+sd3[i]*e; /* second derivative */
sd3x = sd3[i]; / third derivative */
}

double SplineInt(xL,xU,h,xmin,ylist,sd1,sd2,sd3)
/* Cubic spline integral */
double ylist[l,sd1[],sd2[],sd3[];
double xL, xU, h, xmin;

double eL, eU,ysum, suml, sum2, sum3 ;
double yU,s1U,s2U,s3U,yL,s1L,s2L,s3L,splint;
int jL,jU,j;
double Horner4Poly();

jL = (xL-xmin)/h+l.Ol; eL = xL-xmin-(jL-l)*h;
jU = (xU-xmin)/h+l.Ol; eU = xU-xmin-(jU-l)*h;
ysum = sum1 = sum2 = sum3 = 0; /* sums over whole strips */
for (j = jL; j < jU; j++)

ysum = ysum + ylist[j];
sum1 = sum1 + sd1[j];
sum2 = sum2 + sd2[j];
sum3 = sum3 + sd3[j];
}

splint = Horner4Poly(ysum,suml,sum2,sum3,h);
/* Contributions from partial strips at ends */
yU = ylist[jU]; s1U = sd1[jU]; s2U = sd2[jU]; s3U = sd3[jU];
yL = ylist[jL]; s1L = sd1[jL]; s2L = sd2[jL]; s3L = sd3[jL];
splint = splint + Horner4Poly(yU,s1U,s2U,s3U,eU)

- Horner4Poly(yL,s1L,s2L,s3L,eL);

166 FITTING CURVES THROUGH DATA

return splint;
}

double Horner4Poly(y,s1,s2,s3,e)
/* Homer 4th-order polynomial algorithm */
double y,sl,s2,s3,e;
{
double poly;
poly = (y+(sl/2+(s2/6+s3*e/24)*e)*e)*e;
return poly;

double yw(x,yw1,yw2,yw3)
/* Working function and its first 3 derivatives */
double x,*ywl,*yw2,*yw3;
{
double y;
y = 120*(x+0.5)*(x+0.25) *x*(x-(1.0)/(3.0))*(x-0.2)*(x-l);
*yw1 = -1+(6+(69+(-204+(-470+720*x)*x)*x)*x)*x;
*yw2 = 6+(138+(-612+(-1880+3600*x)*x)*x)*x;
*yw3 = 138+(-1224+(-5640+14400*x)*x)*x;
return y;

double ywInt(x)
/* Working function integral */
double x;
{
double yint;
yint = (-0.5+(1+(5.75+(-10.2+((-47.0/3.0)

+(120.0/7.0)*x)*x)*x)*x)*x)*x*x;
return yint;

We now describe the structure of the major parts of the spline program, which
are the main program and the fitting function SplineFit. Detailed discussions of
the interpolation function, SplineInterp, and of the integration function, Spline-
Int, are deferred to the sections in which they are used, namely Sections 5.4 and
5.5, respectively.

The main program, Cubic Splines

The structure of Cubic Splines is as follows. The control loop in the main pro-
gram is controlled by n, the number of points in the fit. Since at least 4 points are
needed to describe a cubic, we input n < 1 to signal program termination.

5.3 PROGRAM FOR SPLINE FITTING 167

If n is greater than the number of points assigned for the arrays (starting at 1 to
follow Fortran usage) or if 0 < n < 4, then a new value of n is requested. Other-
wise, it’s time to input the n data values to be splined. Then the second-derivatives
at the endpoints, sd2 [1] and sd2 [n] , are input. If you want natural splines, just
give both of these derivatives as zero. The final input quantities are the minimum
and maximum x values, Since the program already knows the number of steps and
they are uniform, the stepsize (h) is readily computed from xmin and xmax.

Exercise 5.5

(a) Code and compile program Cubic Splines. At this stage you may wish to
bypass coding or use of the integration function SplineInt. If so, replace it by
a “stub,” which will either just print a message that the function was entered or
will return a value of zero, or both.

(b) Run the program in order to test a variety of combinations of the control
loops, such as the allowed and terminating values of n, the allowed range of x
for interpolation (which is, by definition, in the interval [xmin , xmax]), and
(for the same reason) the range allowed for integration. In addition, in order to
simplify programming, the upper limit on an integral, xU, is not allowed to be
less than the lower limit, XL, even though this is mathematically permissible and
could be programmed, at some increase in coding complexity. n

The function SplineFit

The function SplineFit, which does the main work, is organized very much as the
spline algorithm subsection in Section 5.1 describes. The only aspect of coding the
algorithm that may be unusual to Fortran programmers is in computing the second
derivatives of the spline. As (5.20) and (5.21) show, at this stage in the algorithm
one makes a downward recurrence on j . Since the C language allows for loops
to decrement, it is most natural to use the decrementing operation (coded as j - -).
The required results can also be achieved, with great loss of clarity and naturalness,
by using an incrementing loop-control variable (a DO loop in Fortran), then comput-
ing the decrementing array index from this variable. It’s messy and error-prone, be-
lieve me.

We now describe the control structures for using the function Spline Interp.
In Section 5.4 we discuss how to program this function. Because splines provide a
means of interpolating, it is reasonable to control the interpolation loop by terminat-
ing its execution if the x value at which the spline is to be interpolated is beyond the
input-data range [xmin , xmax] , which is how the while loop over x in the
main program is controlled. At any chosen x within this range the function
SplineInterp returns the interpolated value, and also the interpolated first, sec-
ond, and third derivatives. They are then printed by the main program before it re-
quests input of another value of x.

168 FITTING CURVES THROUGH DATA

Exercise 5.6
Modify the Cubic Splines program, Program 5.1, to be convenient for
your computing environment. In particular, the simple but general-purpose in-
put given there is not convenient for many interactive systems. A practical alter-
native is to input the data from files or from a spreadsheet. Similarly, modify the
output so that it is convenient for your system and graphics software. n

Now that we have an algorithm and an understanding of the main parts of Cu-
bic Splines, we are ready to learn how to use it to interpolate, differentiate, and
integrate — techniques that we develop and practice in the next three sections.

5.4 INTERPOLATING BY SPLINES

Spline fitting is a very useful technique, because it allows us to make a fit to the data
which is locally smooth and that has decreasing influence from points further away.
It is therefore particularly suitable for interpolation between data before using other
techniques for data massaging and analysis.

Interpolating values and derivatives

To estimate values at a point x in the range x1 to xn, locate the appropriate interpola-
tion index i by

(5.29)

Next, find the remainder,

(5.30)

The interpolated value is then simply obtained from

(5.31)

The first derivative from the spline interpolation is obtained from (5.31) (noting that
the derivative with respect to x is the same as the derivative with respect to e)

The second derivative estimate is thence obtained from (5.32) as

(5.32)

(5.33)

5.4 INTERPOLATING BY SPLINES 169

Finally (for
val, so that

a cubic), the third derivative estimate is merely a constant in each inter-

(5.34)

and it is usually discontinuous across intervals.

Exercise 5.7
(a) Verify the correctness of each of the derivative formulas (5.32) — (5.34)
starting with the spline equation (5.31).
(b) Suppose that y (x) is exactly a cubic in the range of spline fitting. Verify
that the spline derivatives and the derivatives of y are the same, at least analyti-
cally. n

The C function SplineInterp

The function SplineInterp is coded to compute formulas (5.29) through (5.34).
Both the formulas and the code are written in the Horner-polynomial form (Sec-
tion 4.1) for efficiency. This function also illustrates the use in C of dereferencing,
so that the values of the interpolated derivative estimates, * sd1 , * sd2 , * sd3, are
passed back through the function to the program using them. Here are some sug-
gestions for testing the interpolation function.

Exercise 5.8
(a) Patch in some code in function yw just above the return statement. This
code should look like that immediately above, but you should use formulas for a
function that is a simple cubic or lower-order polynomial whose values and de-
rivatives you can check easily and accurately by hand calculations. Then com-
pile and run this version of Cubic Spline, including the interpolation option.
The interpolated and input values should agree within computer roundoff errors.
Explain why.
(b) A nice way to see the input values at desired x values is to give a list of ze-
ros as input to be fitted. Then the error in the interpolated fit at the knots will
just be the values of your cubic (or lower-order) polynomial. Clever, eh?
(c) If your test runs fail to give agreement with a cubic, drop off the cubic term
contributions from the value and derivative formulas, then try again. If discrep-
ancies beyond computer roundoff error persist, keep decreasing the order of the
test polynomial. The coding bug will be in the derivative one order higher than
the lowest successful order. Note carefully that you must use exact endpoint
conditions for each order polynomial. n

Once the interpolation sections of Cubic Spline are running correctly, it is time to
test them on our working function presented in Section 4.1.

170 FITTING CURVES THROUGH DATA

Interpolating working-function values and derivatives

As our first test of spline interpolation, consider the working function (4.1), which
was also considered extensively in Sections 4.1 and 4.4. Program 5.1, Cubic
Splines, contains the function yw that evaluates the working function and its first
three derivatives and passes them to the main program.

For testing interpolation by cubic splines, it is clear from Figures 5.1 and 5.2,
which used only five knots, that reasonable accuracy of values and derivatives for
such a wiggly (sixth-order) polynomial requires considerably more points, even if
exact endpoint second derivatives (which are usually not known) are used, as Fig-
ure 5.2 shows. The choice of n = 9 knots is a compromise between ease of input
and accuracy of interpolated values and some derivatives of the working function.
Theknotsarechosenat x = -0.4 bystepsof h = 0.1 up to x = 0.4. We in-
terpolate values to points midway between the knots. Either exact (subscript E on
the error) or natural-spline (Section 5.2, subscript N on the error) boundary condi-
tions are used.

Table 5.1 shows the results numerically, and they are displayed graphically in
Figure 5.3.

TABLE 5.1 Nine-point cubic spline input yw, errors in interpolated values using exact endpoint

second derivatives (eE) and natural-spline endpoints (eN).

Notice from Table 5.1 and Figure 5.3 that the errors in fitting the function val-
ues are largest near the endpoints, where there is least information about the func-
tion. Thus, whenever reliable second derivatives are available near the endpoints
they should be used. For our pathological working function and small number of
spline knots, using exact endpoint conditions (eE in Figure 5.3) results in almost
one order of magnitude better fit to the function than obtained using natural end-
points (eN).

5.4 INTERPOLATING BY SPLINES 171

FIGURE 5.3 Spline interpolation using nine points of the working function, yw. Scaled errors

are shown for the natural-spline fit (dashed curve, eN) and for the exact-endpoint spline fit (dotted

curve, eE).

Exercise 5.9
Run the program Cubic Splines using the values of the working function at
the nine knots, as given in Table 5.1. First make a run with exact second deriv-
atives at the endpoints, then make a second run with zero endpoint derivatives
for the natural splines. Second derivatives can be obtained as suggested in Exer-
cise 5.8 (b). Verify the two sets of numerical results for the errors, as given in
Table 5.1. n

Now that we have some idea how spline fitting works for function values, let us
learn how to estimate function derivatives by splines. Spline fitting provides a par-
ticularly simple, convenient, and accurate way of estimating derivatives of functions
or of data, because the method is derived from considerations of matching deriva-
tives at the knots, as discussed in Section 5.1. Notice that the interpolated third de-
rivative will jump between adjacent knots, often quite quickly, as for our working
function, since it has nonzero derivatives up through sixth order.

As our first, and very demanding, test of spline derivatives we use the working
function,(4.1) or (4.2), a sixth-order polynomial whose properties are discussed ex-
tensively in Section 4.1. The coefficients for calculating its analytical derivatives
are given in Table 4.1. In Section 4.4 we explored polynomial approximations for
first and second derivatives of functions, including the working function. The re-
sults appear in Tables 4.4- 4.7. We can now use the spline methods to estimate
the same derivatives, so that we can judge the relative merits of the two techniques.

With the same nine-point spline as used for interpolating values, one obtains the
first derivatives at the knots summarized in Table 5.2 and Figure 5.4.

172 FITTING CURVES THROUGH DATA

TABLE 5.2 First derivatives of the working function estimated by a nine-point cubic-spline fit

using either exact endpoints (errors eE) or natural-spline endpoints (errors eN) .

Notice in Table 5.2 and Figure 5.4 that by using exact endpoint second deriva-
tives one obtains nearly a one order of magnitude improvement in the first deriva-
tives at the knots, and that with both boundary conditions the accuracy of the first
derivatives is much better near the middle of the spline range than near the ends.

FIGURE 5.4 Spline derivatives using nine points of the working function, yw. The exact first

derivative is shown by the solid curve. Scaled errors are shown for the natural-spline derivatives

(dashed curve) and for the exact-endpoint spline derivatives (dotted curve).

Exercise 5.10
Use the program Cubic Splines to make a nine-point cubic-spline fit to the
data in the second column of Table 5.2, which are the working-function values
at the knots. Run two sets of data, one with exact endpoint derivatives and the
other with natural-spline endpoints. Verify that the errors in the first derivatives
are as given in Table 5.2 and compare these derivatives graphically with those
shown in Figure 5.4. n

5.4 INTERPOLATING BY SPLINES 173

You may be pessimistic about the accuracy of spline fitting, on the basis of the
low accuracy of the spline descriptions of the working function (4.1). This is, how-
ever, a pathological function, with derivatives that keep on increasing through the
sixth derivative. Its main use is to stress-test the methods and to make inaccuracies
of approximations glaringly obvious. We now switch to a more harmonious func-
tion, the cosine, and explore how well it and its derivatives can be described by
spline fitting.

Interpolating cosine values and derivatives

In Project 4A (Section 4.5) we explored the numerical derivatives of the cosine
function at x = 0, using methods based on power series around the point where the
derivatives are required. We now repeat the analysis for an extended range of x,
namely 0 to /2, and we compare the accuracy of the two methods.

Exercise 5.11
(a) Consider the cosine function in the range 0 to /2. Use exact endpoint con-
ditions of second derivatives equal to -1 and zero, respectively. Give the exact
values of the cosine at x = j /16, where j = 0, 1, 8, so that there are 9
knots. Compare the spline estimates of the first and second derivatives with the
analytical derivatives at the same points, -sin x and -cos x, respectively. The
results are listed in Table 5.3 and are displayed in Figure 5.5.
(b) Compare the spline estimates of derivatives with the results for numerical
differentiation of the cosine at x = 0 obtained by the methods in Section 4.5.
Those estimates of the first and second derivatives are given in Table 4.8. n

Table 5.3 Cubic-spline 9-knot fit to the cosine function between x = 0 and x = /2 with exact

endpoint conditions. The errors in first derivatives have superscript (1) and in second derivatives the

superscript is (2).

174 FITTING CURVES THROUGH DATA

FIGURE 5.5 Spline interpolation using nine points of the cosine function, as shown. Scaled

errors in first derivatives (dotted curve) and in second derivatives (dashed curves) are shown for the

exact-endpoint spline fit.

The standard deviation of the errors in the first derivatives in Table 5.3 is
2 x 10-5, which is about the same as the error in the cosine first derivative from the
three-point central-derivative method at x = 0, given in Table 4.8 for a stepsize
h = 0.2, which is about the spacing between the data /16 = 0.196350) given in
Table 5.3. Similarly for the errors in the second derivatives, the standard deviation
of these in Table 5.3 is 2 x 10-3, comparable to that for the three-point method at
x = 0. Overall, a cubic-spline fit of a well-behaved function such as a cosine (a
rapidly convergent series, as explored in Section 3.2) is three orders of magnitude
more accurate than a fit to our badly behaved working function considered in the
preceding subsection.

We have also discovered that derivatives computed using cubic splines can easily
be of comparable accuracy to those obtained from the power-series methods in Sec-
tions 4.4 and 4.5. Although the spline fitting initially requires more number crun-
ching than do the power-series methods, once the spline coefficients have been
found the computation of derivatives is very speedy.

The unstable problem (Section 4.3) of differentiation solved by an unstable
method involving subtractive cancellation has apparently been bypassed. This merit
of splines is more apparent than real because the spline-algorithm formulas (5.15) —
(5.18) show that we must take first and second differences of the yj ; therefore,

subtractive-cancellation errors are possible. However, such errors are less likely
with splines because the spline procedure does not involve (either explicitly or im-
plicitly) finding a limiting value of the differences as the spacing between the knots
decreases to zero.

5.5 INTEGRATION METHODS USING SPLINES 175

5.5 INTEGRATION METHODS USING SPLINES

Even though spline fitting usually emphasizes interpolation properties (as in Sec-
tion 5.4), splines are also very useful for integration, which is especially straight-
forward for the cubic spline. In this section we derive the algorithm for integration
by cubic splines with equal spacing of the knots. We then test the formulas and ap-
ply them to the working function and to the cosine. This allows us to compare the
relative accuracy of splines with the trapezoid and Simpson formulas in Section 4.6.

Deriving the integration algorithm

Equation (5.31) shows that the spline fit in thejth interval, s(x), can be expressed as

(5.35)

where e is given by (5.30). Therefore, in order to integrate the spline fit from xL to
xU we need only integrate s(x) over each subinterval, then sum the results. The in-
definite integral of sj for any x in the range xj to xj+l is

(5.36)

In this formula we have expressed it efficiently in the Homer-polynomial algorithm
form (Section 4.1), at the expense of loss of clarity in the typography. An estimate
of the total integral from xL to xU that involves no further approximation can there-
fore be obtained by summing the partial integrals given by (5.36).

Note several improvements of cubic spline integration over the trapezoidal or
Simpson rules in Section 4.6, namely:

Within each interval the spline uses a higher-order polynomial — a cubic rather
than linear over the interval (trapezoidal rule) or quadratic over double intervals
(Simpson rule).
Spline fitting provides smooth connections between intervals: there are no such
constraints for the other methods.
Integration with splines uses approximations that are consistent between interpo-
lation and estimation of derivatives. So, if these operations are also required,
splines may be the method of choice.

The cost of spline methods compared with the other integration methods is that the
initial fitting algorithm is more time-consuming. This may not be a penalty overall,
since for a specified accuracy of the integral the stepsize h can usually be chosen
much larger in this method than in the others, resulting in fewer yi values being
needed. Therefore, if the yi are costly to obtain, either as experimental data or as
computed values, spline methods will often be preferred. Such methods have been
under extensive development recently, as described in Chapter 2 of the compendium
on numerical-integration methods by Davis and Rabinowitz, which also gives refer-
ences to appropriate computer programs.

176 FITTING CURVES THROUGH DATA

The C function for spline integration

Now that we have an algorithm for integration by using cubic splines, we describe
the functions SplineInt,Horner4Poly, and ywInt in program Cubic Splines
(Program 5.1). Equation (5.36) gives the integral from the start of the j th segment
to a distance e into the segment. A direct way to combine the integrals from several
segments is indicated in Figure 5.6.

FIGURE 5.6 Segments and partial segments for the spline integration.

The integration segments are combined as follows. In the notation used in Fig-
ure 5.6 and in function SplineInt, the integration is to be from xL to xu, and the
main program has already checked that these lie within the input range
[xmin, xmax] and that xu is not less than xL. The function therefore first computes
the integer knot positions jL and ju and the extra pieces eL and eU, both of which are
positive, because conversion to integers is done by truncation. The next step is to
make the sums over the whole strips, each of which is of the same stepsize h, It is
therefore most efficient (for both programmers and computers) first to combine coef-
ficients of the powers of h, then to use the Homer polynomial algorithm to compute
the integral contribution, called splint in SplineInt. Then the function adds
the contribution above j U (which is of length eU) and subtracts the contribution from
the lower segment of length eL to obtain the complete integral.

The function Horner4Poly is a customized version of the algorithm described
and programmed in Section 4.1. It is adapted to express the integral of a polynom-
ial in terms of its value at the start of the interval of integration (y) , the first through
third spline derivatives (sl, s2, s3), and the interval e, according to (5.36). The
last function needed for tests of integration is ywInt, the comparison analytical for-
mula for the working-function indefinite integral, obtained from (4.4) and
Table 4.1.

Exercise 5.12
Code the integration routines, following Program 5.1. Then test the routines as
follows. First, use a constant input function of value equal to unity, and as
many knots as you wish. The integral should be equal to the length of the inter-
val (even if this length is not a integer number of steps h) and it should be exact
to within roundoff errors. If this test is successful, use any cubic polynomial
and give the exact endpoint second derivatives. Again results should agree with
analytical integrals to within roundoff. n

With coding and testing completed, it is time to use the spline-integration function.

5.5 INTEGRATION METHODS USING SPLINES 177

Integrating the working function and cosine

We investigate two examples of integrating by cubic splines, the pathological work-
ing function and the well-behaved cosine. Both of these functions are integrated by
the trapezoid and Simpson methods in Section 4.6, where the results are given in
Tables 4.9 — 4.11. Here we repeat some of these integrals so that we can compare
the accuracy and convenience of the algorithms. On the basis of our discussion and
experience in Chapter 4 that numerical integration should be more accurate than nu-
merical differentiation, we may expect agreeable results.

In Table 5.4 we show the results of integrating the working and cosine func-
tions using the nine-knot cubic-spline fits that are shown in Figures 5.3 and 5.5, re-
spectively.

TABLE 5.4 Nine-knot cubic-spline integrals for working function and cosine with indicated end-

point conditions. The analytical value of the working-function integral is 9.9109 x 10e3.

Exercise 5.13
Run Cubic Splines (Program 5.1) as a nine-point fit from -0.4 to 0.4 to
check out the numerical results in Table 5.4 for the working function, yw, and
for the cosine function. Use both exact and natural-spline endpoint conditions.
Choose the integration ranges as shown to allow comparison with results for the
trapezoidal and Simpson rules in Section 4.6. n

By comparing the spline-integration errors for the working function in Table 5.4
with those in Tables 4.9 and 4.10 for the trapezoid and Simpson methods (errors of
0.2989 x 10-3 and 0.1669 x 10-3, respectively, for stepsize h = O.l), we see
that for either endpoint condition the spline method is a factor of 5 more accurate
than Simpson’s rule and a factor of nearly 10 better than the trapezoid rule. Admit-
tedly there is much more arithmetic involved in the spline fitting, but it will also al-
low interpolating, estimating derivatives, as well as integrating.

We have now learned how to fit curves through data using a method that produc-
es fits that are locally very smooth, and that allows interpolation, estimation of
derivatives, and integration to be carried out reliably. With all this power of spline
fits, it is interesting to enquire why such methods have not been emphasized as part
of the repertoire of numerical methods.

178 FITTING CURVES THROUGH DATA

5.6 DIVERSION: COMPUTERS, SPLINES, AND GRAPHICS

The practical applications of curve fitting by splines have been closely related to the
development of computers. To understand why, notice that the five steps involved
in spline fitting require a computing device with significant random-access memory,
because for an n-point spline about 9n quantities are computed, and more than half
of these must be available after the fourth step, Further, unlike polynomial interpol-
ation formulas, which have coefficients depending only upon the order of the poly-
nomial assumed, in spline fitting the last four steps must be completely recomputed
whenever even a single function value, yj, is changed. In hand calculations, using
pencil and paper, memory is at a premium and frequent re-recording of intermediate
steps is to be avoided.

Before electronic computers, the large number of arithmetic operations required
in spline fitting was a severe hindrance, since any error propagates through the cal-
culation in a complicated way that is difficult to correct. Spline methods were there-
fore seldom used for practical work until computers were widely available and con-
venient to use.

Historically, splines were given most attention in pure mathematics, until about
1960 when using digital computers became practical and common. Thus, the formal
mathematics of splines is very well developed, as exemplified in the monographs by
Schultz and by Schumaker. The practical applications of splines are still under in-
tensive development, as described in the influential book by De Boor, which con-
tains extensive Fortran programs. The near disjointness of the two sets of literature
on splines, in pure mathematics and in computing, makes their juxtaposition on lib-
rary bookshelves confusing if not amusing. A history of the development of spline
methods is given in Schumaker’s book.

Computer graphics and computer-aided design make extensive use of a variety
of splines in one or more variables. Splines for interpolating and smoothing curves
and surfaces are described in Chapter 11 of the treatise on computer graphics by
Foley et al., in Farin’s practical guide to curves and surfaces for computer-aided ge-
ometric design, and in the extensive treatment by Bartels et al. Fast interpolation
formulas for cubic splines with Bézier control points is described in the article by
Rasala. A treatment of these topics that is more mathematically oriented is provided
in the book by Lancaster and Salkauskas. For representing surfaces in three dimen-
sions one requires so-called bicubic splines with two independent variables, or
splines with other properties than those we have developed. The design and des-
cription of type fonts for printing, a specialized application of two-dimensional
graphics, also makes use of spline curves and their variants, as you can read in
Chapter 4 of Rubinstein’s book on digital typography.

By contrast with splines, Fourier expansion techniques (such as we present in
Chapters 9 and 10) started in the early 1800s in applied mathematics and were only
later developed in mathematical rigor and generality. From the two examples of
splines and Fourier expansions we see that the three disciplines of mathematical an-
alysis, computing, and applications form a research triangle, each contributing to the
development of the others.

REFERENCES ON SPLINE FITTING 179

A lesson to be learned from the history of splines is that, generally speaking, nu-
merical methods developed in the days of laborious hand calculation will often not
be optimal for computer calculation. Older numerical methods usually emphasize
minimum storage, easy error detection and correction, and minimal logical complex-
ity. On the other hand, digital-computer methods may be relatively profligate of
storage, they should be numerical robust because the intermediate results are seldom
inspected, and they may have quite involved logic — provided that it can be rigorous-
ly checked to ensure correctness.

REFERENCES ON SPLINE FITTING

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1964.

Bartels, R. H., J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling, Morgan Kaufmann, Los Altos,
California, 1987.

Davis, P. J., and P. Rabinowitz, Methods of Numerical Integration, Academic
Press, Orlando, Florida, second edition, 1984.

De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
Farin, G., Curves and Surfaces for Computer Aided Geometric Design, Academic

Press, San Diego, California, 1988.
Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics,

Addison-Wesley, Reading, Massachusetts, third edition, 1990.
Lancaster, P., and K. Salkauskas, Curve and Surface Fitting, Academic Press, New

York, 1986.
Rasala, R., “Explicit Cubic Spline Interpolation Formulas,” in A. S. Glasner, Ed,,

Graphics Gems, Academic, Boston, 1990, pp. 579 - 584.
Rubinstein, R., Digital Typography, Addison-Wesley, Reading, Massachusetts,

1988.
Schultz, M. H., Spline Analysis, Prentice Hall, Englewood Cliffs, New Jersey,

1973.
Schumaker, L. L., Spline Functions: Basic Theory, Wiley, New York, 1981.

180

Chapter 6

LEAST-SQUARES ANALYSIS OF DATA

In Chapters 4 and 5 we considered derivatives, integrals, and curve fitting of func-
tions such that at each x = xj the fitted values are required to agree exactly with the
given y (xj) = yj. By contrast, in applications the yj are usually data from meas-
urements with associated uncertainties that should influence the fit made to them.
Therefore, the most realistic fitted curve to the whole set of data may not necessarily
pass through each yj. For example, if we expect that the data would lie on a straight
line in the absence of any measurement uncertainty, then a fit that passes near the
data but not through them may be acceptable.

The emphasis in this chapter is therefore on analyzing data in which we take into
account some sources of data uncertainty, namely random errors in measurement.
We therefore discuss criteria for a best fit (Section 6.l), the use of orthogonal func-
tions in least-squares fitting (Section 6.2) and we derive formulas for straight-line
least squares when both variables have errors (Section 6.3). In Section 6.4 we
pose and solve the important problem of normalization factors determined from a
least-squares fit. Logarithmic transformations of data are very common in science
and engineering, and Section 6.5 shows how such a transformation biases the fitted
parameters and how such bias may often be removed. At last, in Project 6 (Sec-
tion 6.6) there is a program for straight-line least squares, based on the formulas in
Section 6.3, as well as suggestions for using the program. We round out the chap-
ter with references on least-squares analysis.

Background to this chapter, with emphasis on the underlying statistics and prob-
ability ideas is found in the books by Barlow, by Siegel, and by Snell. Required
reading for all those who would use (or misuse) statistics is the book by Jaffe and
Spirer. The monograph by Draper and Smith on applied regression analysis has
several interesting examples and interpretations. Many basic techniques for error
analysis in the physical sciences are described in the books by Taylor and by Lich-
ten, as well as in the practical guide by Lyons. For topics in advanced physics, es-
pecially high-energy physics, the book by Lyons is suitable.

181

182 LEAST-SQUARES ANALYSIS OF DATA

6.1 INTRODUCTION TO THE LEAST-SQUARES CRITERION

If we give up the condition that the fitted function must pass through each data point,
then we must decide on objective criteria for a best fit. Let the fitting function be
Y(x). Suppose that our best-fit criterion were to minimize the (signed) difference
between the y data, yj, and the fitting values Yj = Y(xj).

Exercise 6.1
Prove that if the signed difference between data and fitting function is to be mini-
mized, then the best-fit function is just Yj = , the average of the y data, the
same value at all points. n

The average of a set of data values is not, however, usually a good representative of
the behavior of the data. For example, the annual average temperature in the town of
Yakutsk on the Lena River in Siberia is a comfortable 10°C, but with a range from
-40°C to +2O°C.

Thus, given that signed differences are usually inappropriate, how about absol-
ute values of differences? Unfortunately, this fitting criterion is fraught with diffi-
cult mathematical analysis, since the fitting methods are based on derivatives and the
absolute value function is singular at the origin, which is the point that a perfect fit
would reach. We therefore turn to a reasonable alternative, namely minimizing sums
of differences squared.

Minimization of a sum of squares of differences between data and fitting func-
tion is called a least-squares fit. The method was developed by Gauss and Legendre
in the early nineteenth century in their analysis of astronomical orbits from imprecise
observations” Gauss also related the least-squares principle to the theory of proba-
bility, as we now outline in the context of maximum-likelihood analysis.

Maximum likelihood and least squares

We first introduce the Gaussian probability distribution, which is often called the
normal distribution in statistics. Under quite general and plausible conditions (see,
for example, Snell’s book) the probability that the value of variable v is obtained if it
has true average value is P (v), given by

(6.1)

Here is the standard deviation of v, with the mean-square deviation of the v val-
ues from is 2. Also, P (v) is normalized so that the total probability over all v
values is unity. Strictly speaking, P is a probability density. In accord with com-
mon practice, we will use the term probability. One way to characterize a probability
distribution, P(v), is to specify its moments, which are the values of the positive
integer powers of v, weighted by P (v), then averaged over all values of v. Thus,
for a continuous distribution (such as the Gaussian) the nth moment about the mean,
Mn, is given by

6.1 INTRODUCTION TO THE LEAST-SQUARES CRITERION 183

(6.2)

in which the origin of v has been moved to coincide with its average value. Notice
that if the probability distribution is symmetric, which is quite common, then all the
moments for odd values of n must be zero; you don’t need to attempt the integration
to see this. For the even moments, there are often clever methods of calculating
them, as suggested in Exercise 6.2 (c). There are several interesting and relevant
properties of the Gaussian distribution, which you may like to derive in the follow-
ing exercise.

Exercise 6.2
(a) In order to calculate the mean-square deviation (the second moment) of the
Gaussian, consider the value of v2P(v) integrated over v from - to . By
using the method of parametric integration (described in many calculus books),
show that this integral is 2, as claimed below (6.1).
(b) Show that the Full Width at Half Maximum (FWHM) of the Gaussian distri-
bution, the range of v over which it goes from half maximum through maximum
to half maximum again, is
(c) Use the technique of parametric integration to derive a formula for the even
moments of the Gaussian distribution, namely the integrals of v2nP(v) with n a
positive integer. n

The Gaussian distribution, with its FWHM, is illustrated in Figure 6.1.

FIGURE 6.1 The Gaussian probability distribution with unity total probability and unity
standard deviation.

184 LEAST-SQUARES ANALYSIS OF DATA

Now that we have some understanding of a probability distribution that will be
associated with errors in data, let us apply it to relate random errors in x and y data
to the derivation of a fitting criterion. Suppose that at the jth data point a measure-
ment gives values xj and yj with standard deviations and respectively. We
also suppose that their average values over many measurements would be Xj and Yj

respectively, just the fitting values of x and y that we would like to know. Thus, we
assume that there are no systematic errors and that the data, if free of their random
errors, could be exactly describable by the fitting function. In the real world, it is
seldom true that either assumption is likely to be strictly justifiable. By assuming
further that uncertainties in x and y measurements are independent, the probability of
obtaining such values is obtained as Pj given by

(6.3)

What is the likelihood, L, that n independent measurements, j = 1,2,..., n, would
produce the data actually obtained? This likelihood is just

(6.4)

Exercise 6.3
Show that maximizing the likelihood function L in (6.3) for Gaussian distribu-
tions of xj and yj values is equivalent to minimizing the x2 function, given by

(6.5)

if it is assumed that the standard deviations are not fitting parameters. n

Thus, we have derived the least-squares criterion, minimization of the sum of
squares in (6.4), from the assumptions of independent measurements from point to
point and independent Gaussian-distributed random errors at each point. Note that
both x and y variables may have errors, so that we do not make any distinction be-
tween independent and dependent variables. This is a common situation in the life
sciences and in astronomy, where pairs of observations are associated. In physics
and engineering one can often control x relatively well (xj Xj), so that it becomes
the independent variable, and x2 in (6.4) collapses to the y-dependent terms. For
generality, we retain the full form (6.4) in the following. The relation between prob-
ability distributions and random errors (“stochastic processes”) is developed in
Chapter 10 of Solomon’s book.

One disadvantage of a least-squares best-fit criterion arises from data with rela-
tively small errors that, if not included in the fit, would lie far from the best-fit func-
tion value. When included in the fitting, such “outliers” may have a very strong in-
fluence on the fitting function because they contribute as the square of their distance
from it. Although this is as it should be for independent random Gaussian errors

6.2 ORTHOGONAL FUNCTIONS AND LINEAR LEAST SQUARES 185

that are correctly estimated, real data and their errors may not satisfy all the condi-
tions discussed above that are necessary to relate X2 to the maximum-likelihood cri-
terion. Therefore, the presence of outliers are usually considered quite problematic
in least-squares fitting.

Least squares and the objective function

Although the maximum-likelihood model for normally-distributed errors leads to a
least-squares condition when the weights are chosen as the inverses of the data vari-
ances, this is not the only justification for a least-squares criterion. For example, the
Gaussian error distribution is not appropriate when the errors arise from counting
statistics. Then one has Poisson error distributions (Chapter 3 in Barlow, Chap-
ter 6 in Solomon), for which an estimate of the standard deviation for a mean value
of y counts is I have discussed elsewhere (Thompson, 1992) Poisson statistics
in the context of finding least-squares normalization factors.

In many experiments one adjusts the measurement procedure so that the statisti-
cal uncertainties are proportional to the measured values, that is, one has constant
percentage errors. Under this condition the analysis often becomes tractable, as we
find for the analysis of parameter bias in logarithmic transformations in Section 6.5.

The function to be minimized is therefore usually generalized from x2 in (6.4) to
the objective function, , defined by

(6.6)

in which wxj and wyj are weights assigned to the jth x and y points, respectively.
The maximum-likelihood formula (6.4) is recovered if the weights are equal to the
inverses of the squares of the standard deviations. Only then is = X2 the func-
tion occurring in statistics to which confidence limits (C.L.) can be assigned. If
weights other than inverses of error variances are used, then any overall scaling fac-
tor applied to them or to does not affect the values of Xj and Yj at which the min-
imum will occur. The statistical significance of the value of the objective function
depends strongly on how relative weights are assigned, as well as on their overall
magnitude. This fact is often ignored by scientists and engineers, especially by
physicists.

Because we have gone beyond the probability origin for least-squares fitting, al-
ternative motivations for using a least-squares criterion are worth discussing, as we
do in the next section.

6.2 ORTHOGONAL FUNCTIONS AND LINEAR LEAST SQUARES

The general least-squares condition, minimization of the objective function defined
by (6.5), serves as the starting point for least-squares fitting using common func-
tions. Of greatest practical importance are orthogonal functions. They also con-

186 LEAST-SQUARES ANALYSIS OF DATA

nect least-squares fitting with the Fourier expansions discussed in Chapters 9 and
10. In this section we introduce orthogonal functions, then show their connection to
least-squares fitting.

What are orthogonal functions?

Orthogonal functions are sets of functions such that with weight factor wj and sum-
mation over the n observation points labeled by j, any two functions in the set are
constrained by

(6.7)

For example, in Fourier expansions the K (x) are the complex-exponential func-
tions eiKx, or cos (Kx) and sin (Kx), which can all be made orthogonal over the xj

range if the xj are equally spaced and if the weights are all equal. You are probably
already familiar with orthogonality in the context of vector geometry. To understand
the analogy, work the following exercise.

Exercise 6.4
Suppose that k and I are two three-dimensional vectors with components ex-
pressed in Cartesian coordinates.
(a) Write down, in a form analogous to (6.6), the orthogonality condition for
these two vectors.
(b) If k is a fixed vector, what is the set of all vectors orthogonal to k? n

In the following subsection we relate this orthogonality property to the key concepts
of least-squares fitting.

For linear least-squares fits with polynomials it is advantageous that the poly-
nomials be orthogonal, but this property does not hold if just simple powers of the
independent variable x are used. You can investigate this problem and its cure in the
following exercise.

Exercise 6.5
(a) Make a sketch of the powers of x, L(x) = xL, for x between -1 and +l,
then use this to indicate why these polynomials cannot be orthogonal over this
range if positive weights are assumed.
(b) Generate polynomials of orders L = 0,1,2,... by the following recurrence
relations, called the Schmidt orthogonalization procedure:

(6.8)

6.2 ORTHOGONAL FUNCTIONS AND LINEAR LEAST SQUARES 187

(6.9)

where the coefficients are

(6.10)

with the denominator sum given by

and the second set of coefficients is given by

(6.11)

(6.12)

The normalization scale of these polynomials is such that the power of xL has
unit coefficient.
(c) Prove that the polynomials generated in (b) are orthogonal by applying, for a
given L, the method of induction over I to the sequence of sums over the data

(6.13)

Thus we have a general procedure for generating orthogonal polynomials, with
their coefficients depending on the weights associated with each datum. n

This result may seem rather abstract, but it may surprise you that it provides a
straightforward route to the Legendre polynomials, a favorite set of fitting functions,
especially in problems which involve three-dimensional polar coordinates, where
usually x = cos and is the polar angle. Another reason for using Legendre
polynomials is that, with a suitable choice of weight factors and on replacement of
summation by integration in the above equations, they form orthogonal polynomials
suitable for linear least squares, as you can readily discover.

Exercise 6.6
(a) Show by generating the lowest-order orthogonal polynomials having
L = 0,1,2, that if the weight factors are all unity and if the orthogonality sum-
mation over data values xj is replaced by integration over x from -1 to +1, then
 (x) can be taken to be the Legendre polynomial of order L, PL (x), namely

188 LEAST-SQUARES ANALYSIS OF DATA

(6.14)

The standard normalization of the Legendre polynomials is PL (1) = 1.
(b) Verify the approximate correctness of the orthogonality condition (6.13) by
using some Legendre polynomials in the numerical-integration programs in Sec-
tion 4.6 to integrate products of the functions over the range -1 to +l. Notice
that if you use the trapezoid rule for integration (Section 4.6), then the summa-
tion and integration are equivalent, if the xj are equally spaced and if end-point
corrections are negligible. n

Orthogonal functions are much used in analysis and applications. In particular,
if the orthogonal functions are polynomials (such as those of Chebyshev, Hermite,
Laguerre, Legendre, and other ancient heroes), a general classification of their prop-
erties can be made. An extensive and accessible treatment of orthogonal polynomi-
als, including applications to numerical analysis, partial differential equations, and
probablity theory and random processes, is provided in the monograph by Beck-
mann.

Orthogonality and least squares

Suppose that all the parameters to be determined, aL with L = 1,2,..., N (if there are
N parameters), appear linearly in the definition of the fitting function, Y, as

(6.15)

We call the process by which the aL in (6.15) are adjusted so as to minimize the ob-
jective function in (6.6) a linear-least-squares fit. This is to be distinguished from
the more-restrictive least-squares fit to a straight line (Section 6.3), in which
Y(x) = a1 + a2x, so that 1(x) = 1 and 2(x) = x.

To find the fitting parameters that minimize requires that the derivative of
with respect to each of the aL be zero. In the situation that the xj are precise, this re-
quires from (6.6) that

By inserting the linear expansion (6.15) into this equation we get

(6.16)

6.2 ORTHOGONAL FUNCTIONS AND LINEAR LEAST SQUARES 189

This is a set of N linear equations for the coefficients aK that minimize the objective
function. In general, these equations have to be solved by matrix methods. Further,
adjustment of one coefficient propagates its influence to the values of all the other
coefficients.

The use of orthogonal functions for the (xj) greatly simplifies the solution of
the equations (6.17) as you may immediately prove.

Exercise 6.7
Show that if the functions (xj) satisfy the orthogonality condition (6.13), then
the left-hand side of (6.17) collapses to a single nonzero term for each L, result-
ing in an immediate formula for the linear-least-squares coefficients aL , namely

(6.18)

so that each coefficient is obtained by an independent calculation, but all coeffic-
ients are interrelated through the data values yj and their weights wj. n

Thus, if appropriate orthogonal functions can be found, their use greatly simpli-
fies the least-squares fitting, because each coefficient is found independently of the
others. For example, if a different number of fitting functions is decided upon (for
example if N is increased) there is no need to recalculate all the coefficients, because
formula (6.18) does not depend upon the value of N. The quality of the fit, how-
ever, does depend on N. Because of this linear independence of the fitting coeffi-
cients, each of them can be uniquely associated with its corresponding function. For
example, in Fourier expansions, if x is the time variable, then the aL are the ampli-
tudes of the successive harmonics of L times the fundamental frequency.

One must be careful with the application of orthogonal functions when weights are
involved, for the following reason: A given type of function is orthogonal for a set
of xj only for a particular choice of weights. For example, the cosine and sine func-
tions for Fourier expansions (Chapters 9 and 10) are orthogonal over the range 0 to
2 if the weight factors are unity (or constant). In data analysis such a choice of
weights usually conflicts with the probability-derived weights discussed in Sec-
tion 6.1, in which the weights are inversely proportional to standard deviations of
measurements. A common compromise is to use (6.13) in formal work and in situa-
tions where the functions are orthogonal with weight factors of unity, but to use the
general linear-least-squares formula when other weighting schemes or choices of xj

are made. Unpredictable results will be obtained if formulas derived from different
weighting models are combined.

With the above general background, which also serves as the foundation for
Fourier expansions in Chapters 9 and 10, we are ready to study the special case of
straight-line least squares, which is of very common use in scientific and engineer-
ing applications.

190 LEAST-SQUARES ANALYSIS OF DATA

6.3 ERRORS IN BOTH VARIABLES:
STRAIGHT-LINE LEAST SQUARES

In least-squares fitting models there are two related components that are usually dis-
cussed in only a cursory way. The first component is a model for the errors in the
variables, and the second component is a model for the weight that each datum has
in the fitting. In Section 6.1 we indicated in the context of maximum likelihood the
connection between a possible error model (Gaussian distributions of independent
errors from point to point) and the weighting values in (6.6). The subject of least-
squares fitting when both variables contain errors is perennially interesting, with
many pitfalls and possibilities. They have been summarized in an article by Mac-
donald and Thompson.

In the following we discuss a variety of weighting models for straight-line least-
squares fitting, we then particularize to the case in which there is a constant ratio of
x-data weights to y-data weights from point to point, then we derive some interest-
ing yet useful symmetry and scaling properties for this weighting model.

Weighting models

The ideas behind generalized weighting models can be illustrated by a mechanical
analogy that will be very familiar to readers with a background in physics or engin-
eering. Suppose that we are making a straight-line least-squares fit, so that in (6.6)
the Xj and Yj define the best-fit straight line. If we literally hung weights wxj and
wyj at the data points (xj,yj), then the objective function (6.6) would be proportional
to the moment of inertia of the distribution of mass about the line defined by the (Xj,
Yj). The best-fit straight line would then be that which minimizes the moment of in-
ertia about this line.

As an example of weighting of both x and y data, we choose the four (x, y) data
pairs in Table 6.1, which apparently have large errors, so that the distinction be-
tween the various weighting models is accentuated.

TABLE 6.1 Data and weights for straight-line least squares with weighting model IDWMC,

which has a constant ratio of x-data weights to y-data weights, from point to point, as shown in

Figure 6.2. Here = 0.5.

6.3 STRAIGHT-LINE LEAST SQUARES 191

FIGURE 6.2 Various weighting schemes for least-squares fitting, shown for fits to a straight

line. The conventional fitting method is OLS - y:x with y weights (dashed verticals) only. For x

weights only (dashed horizontals) the fitting method is OLS - x:y. For weights on both x and y

data that are in a constant ratio from point to point the fitting method is IDWMC. If the weight ra-

tio is not constant. then we have IDWM.

Figure 6.2 shows graphically the ideas behind different weighting schemes. In
order to motivate your interest in proceeding with the tedious analysis that follows,
we first explain this figure, then we tackle the algebra. The best-fit straight lines
shown are obtained using Program 6.2 developed in Section 6.6. We now inter-
pret the various weighting schemes shown.

In Figure 6.2 ordinary least squares (OLS - y:x) is conventional least squares,
in which the x values are assumed to be known precisely (xj = Xj), so that the
weighting is applied in the y direction only. For the four data illustrated this pro-
duces a fairly flat line if all the y data have equal weights. Alternatively, if the y val-
ues are assumed to be precise, then the weighting is in the x direction only, and a
much steeper line results, as shown by OLS - x:y in Figure 6.2.

The most-general possibility for a weighting model is that the weights from point
to point are independent and not simply related: We call this the independent diagon-
al weighting model (IDWM), using the nomenclature in Macdonald and Thomp-
sons’ article. To illustrate it we make the length of the weighting rectangle at each
datum proportional to the weight wxj and the height of the rectangle proportional to
the weight wyj. A general method for solving such a least-squares problem approx-
imately was given by Deming, and an exact method for straight-line fits was de-
scribed by York and by Reed.

192 LEAST-SQUARES ANALYSIS OF DATA

Constant ratio of weights

Within IDWM there is an especially simple weighting model for which the ratio of x
to y weights is constant from point to point. We call this IDWMC, with the C de-
noting a constant weight ratio, as illustrated in Figure 6.2. We express this as
follows:

(6.19)

Thus, for the IDWMC data in Table 6.1, = 0.5, because the x weights are half the
y weights and this ratio of weights is constant for all four data points. We now de-
rive the formula and some interesting results for straight-line fits in the IDWMC.

Write for the straight-line least-squares fit the model function as

(6.20)

and consider in (6.6) the contribution to the objective function from uncertainies in
both the xj and the yj. There are two contributions to the error in the observed yj.
The first is from the uncertainty in measuring the y value, (yj), and the second is
from the uncertainty in the x value, (xj). For independent errors the total uncer-
tainty at the jth point has a standard deviation

(6.21)

It is therefore appropriate to use the inverse of this quantity for the weight wyj in
(6.6). With this method of setting up the objective function, , the (xj - xj)

2

terms in (6.6) contribute just a constant, (xj)
2, to the objective function, and do

not affect its minimization. Thus, the quantity to be minimized is the y-data contri-
bution to the objective function, given by

(6.22)

where the contribution from the jth point is

(6.23)

and the squared and weighted difference between data and prediction at this point is

in terms of the predicted value at the jth point

6.3 STRAIGHT-LINE LEAST SQUARES 193

(6.25)

and the weight coming from the variance in the y data at the jth datum

(6.26)

In this weighting model the contribution to the objective function from the data that
are not modeled (here the xj) is just the total number of data points, n.

Exercise 6.8
Verify each of the steps in the derivation of (6.22) for the objective function in
the IDWMC model (Figure 6.3), starting with the objective function (6.6) and
going through the steps from (6.19) onwards. n

All this algebra has a purpose, which becomes clearer when you look at Fig-
ure 6.3. Namely, the least-squares minimization that we are performing corres-
ponds to minimizing the sums of the squares of the shortest distances (perpendicu-
lars) from the data points to the best-fit straight line, as we now demonstrate.

FIGURE 6.3 Geometry of the IDWMC model. The local coordinates are the x and y data di-

vided by their errors. The perpendicular distance from the data values (xj, yj) to the fit that is

minimized is Oj ,in terms of the scaled coordinates x* = and y* =

194 LEAST-SQUARES ANALYSIS OF DATA

In order to justify the claim that minimization of defined by (6.6) is equiva-
lent to minimizing sums of squares of perpendiculars, we need to consider the di-
mensions and units of the variables x and y, and of the slope parameter a2. If we
just plotted y against x and discussed perpendiculars, the best fit would depend on
the units used for x and y. In particular, the value of the slope (a2) changes if their
units change. An appropriate way around this difficulty for our weighting model is
to define local dimensionless coordinates, the data divided by their standard devia-
tions, as shown in Figure 6.3. Note that the slope in terms of
variables becomes

(6.27)

Exercise 6.9
Use the geometry of the triangles in Figure 6.3 to show that (6.23) through
(6.27) are equivalent to the relation between the vertical and perpendicular dis-
tances in the figure. Hint: Use the identity l/(1 + tan2) = cos2 . n

Note that this result does not depend on the assumption of constant weight ratios,
(the IDWMC model), but it holds for the more general independent diagonal weight-
ing model (IDWM in Figure 6.2).

We have obtained a visually appealing and intuitive criterion for fitting. Also, it
is apparent from this geometric construction that the same straight line should be ob-
tained if we plot x on y rather than y on x, because the perpendicular is invariant un-
der this change of axes. This claim is validated in the following algebraic derivation
of the slope and intercept formulas.

In the following let

(6.28)

By setting the derivative of in (6.22) with respect to a1 to zero, you will readily
find that that the intercept on the y axis is given by

(6.29)

where the weighted averages of x and y values are

(6.30)

This result for a1 is not immediately usable, since it contains the unknown slope, a2.
We may use it, however, to calculate the differences between data, yj, and fit, yj, in
(6.24) as

(6.3 1)

6.3 STRAIGHT-LINE LEAST SQUARES 195

The calculation in terms of differences from the mean also has the advantage of mini-
mizing subtractive-cancellation effects, as discussed in detail in Exercise 4.8 in Sec-
tion 4.3. Now compute the sums of products

(6.32)

(6.33)

(6.34)

These are the key quantities used to calculate interesting properties of the straight-
line fit.

Exercise 6.10
(a) Derive the least-squares equation for the slope of y on x, a2, by substituting
(6.3 1) in the formula (6.16) for the derivative of the objective function with
respect to a2 to show that

(6.35)

where, the ratio of x weights to y weights, is given by (6.19).
(b) Show that this equation predicts that the best-fit slope for x on y is just l/a2.
To do this, demonstrate the symmetry of this equation under interchange of x
and y, recalling that under such an interchange is replaced by . n

The quadratic equation for the slope, (6.35), has a solution that is insensitive to sub-
tractive cancellation (as discussed fully in Section 4.3) when computed in the form

(6.36)

for Sxx > Syy, for example when x errors are relatively negligible. The slope
should be computed in the form

for Sxx , < Syy, as when y errors are relatively negligble (0).

(6.37)

196 LEAST-SQUARES ANALYSIS OF DATA

Exercise 6.11
Use the results in Exercise 4.9 and the discussion below it to show that the ap-
propriate formulas have been selected for solution (6.36) or (6.37) of the slope
equation (6.35). n

To summarize our derivation for a constant ratio of weights, IDWMC: The
slope is given by (6.36) or (6.37), then the intercept is simply obtained from (6.29).
We next consider some properties of the straight-line least-squares slopes, then we
derive a compact expression for the minimized objective function.

Properties of the least-squares slopes

When both variables have errors, even if these are in the constant ratio given by
(6.19), there is an additional parameter in the straight-line least-squares analysis,
namely the ratio of x to y weights, It is therefore important to understand how
influences the fit, as we investigate in the following.

An interesting limit of the result (6.36) for the slope is for negligible x errors,
(OLS-y: x in Figure 6.2), for which (6.36) has as its limit

(6.38)

Similarly, for negligible y errors = 0 (OLS - x:y in Figure 6.2) formula (6.37)
has the limit

(6.39)

Now to verify the result suggested by Figure 6.3, that is, either

or the slopes are limited by

(6.40)

(6.41)

so that the slope for any value of lies between that for y on and that for x
on y, a2(0).

Exercise 6.12
To derive the inequalities (6.40) or (6.41), consider the quantity under the
square-root sign in the denominator of (6.36), then apply the Schwartz inequal-
i t y to show that a2 Sxy/Sxx, = a2(0) if Sxy > 0. Then,
since a2(0) and are reciprocal, the second inequality follows immediate-
ly. The inequalities are reversed if Sxy < 0, which is (6.41). n

6.3 STRAIGHT-LINE LEAST SQUARES 197

Since a value of the slope intermediate between the two extremes is attained for
any ratio of y to x weights, you might guess that the geometric mean of the ex-
treme values of would often give an appropriate value for the slope a2.

Exercise 6.13
(a) Consider the slope as a function of the ratio of weights, . By using
the results in (6.39) and (6.38) for a2(0) and show that their geometric
mean is with sign that of Sxy,
(b) Insert this result for the slope into the defining equation (6.35) for a2 to
show that this choice of the geometric mean corresponds to a specific choice of
the relative weights, namely

(6.42)

This value is determined by the data and not by any estimates of the relative er-
rors. So the geometric-mean choice of slopes is usually not appropriate. n

The weighting-model parameter defined in (6.19) should be estimated, for ex-
ample, by repeated measurements of some x and y values in order to estimate their
standard deviations, which should then be used in (6.19). Because this is a tedious
process, which scientists in the heat of discovery are seldom willing to spend much
time on, it is of interest to investigate the dependence of the slope on Within the
IDWMC model (Figure 6.2), this can be done without reference to particular data
by appropriately scaling the variables. To this end, we introduce the weighted corre-
lation coefficient between x and y variables, p, defined by

(6.43)

From the Schwartz inequality we have that |p| < 1. Further, introduce the ratio
between weights and the geometric weight, v, defined by

(6.44)

By using the dimension-free variables p and v just defined, we can derive from the
slope equation (6.35) the more-general form, which is again free of all dimensional
considerations:

(6.45)

198 LEAST-SQUARES ANALYSIS OF DATA

Exercise 6.14
(a) In (6.35) eliminate the S variables in favor of the variables appearing in
(6.43) and (6.44) in order to derive (6.45).
(b) Show algebraically that if the factor greatly exceeds its geometric-mean es-
timate then the slope ratio in (6.45) tends to p.
(c) Show that if is much less than its geometric-mean estimate then the
slope ratio in (6.45) tends to l/p. n

From this exercise we see that the ratio of slopes exhibits complete reflection sym-
metry with respect to the weighting ratio v about the value v = 1. The relationship
(6.45) for interesting values of the correlation coefficient p is illustrated in Fig-
ure 6.4. This figure and the formula (6.45) have a simple explanation, as follows.
For p = 0.1, x and y are only weakly correlated, so the slope is strongly dependent
on the weights. For p = 0.9, they are strongly correlated, so the slope becomes al-
most independent of the weight ratio.

As a final topic in straight-line least squares with errors in both variables, we
give the first form of the minimum value obtained by the y contribution to the objec-
tive function, in (6.22), namely

(6.46)

FIGURE 6.4 Dependence of the least-squares slope on the ratio of x weights to y weights in the

IDWMC weighting model (Figure 6.2) according to (6.45). The slope dependence is shown for

three values of the weighted correlation coefficient p = 0.1 (weakly correlated data), p = 0.5

(moderate correlation), and p = 0.9 (strong correlation).

6.4 LEAST-SQUARES NORMALIZATION FACTORS 199

Actually, this formula provides an unstable method (in the sense of Section 4.3) for
computing for the following reason. We know that the limit is
just that for negligible y errors (OLS - x:y in Figure 6.2) and is obtained by using
the second slope formula (6.37), which is well-behaved as Therefore we
are not dealing with an unstable problem in the sense discussed in Section 4.3. In
(6.46), however, the denominator is divergent in the limit Part (b) of Ex-
ercise 6.15 shows you how to remove this difficulty.

Exercise 6.15
(a) Substitute in expressions (6.22) for the objective function and (6.37) for the
best-fit slope a2 in order to derive (6.46).
(b) Since, as just discussed, the behavior in (6.46) cannot hold analyti-
cally (as contrasted to numerical behavior), the best way to avoid this unstable
method is to eliminate from this expression by solving for it from (6.35), then
substituting its solution in (6.46). By performing some algebraic simplification,
show that the y contribution to the minimum objective function can be rewritten
simply as

(6.47)

(c) Show that if (negligible y errors), then, by using (6.37) for a2, this
contribution to the objective function vanishes and only the part from any x er-
rors remains. Is this result expected? n

Formula (6.47) is used in the straight-line least-squares-fit function in Program 6.2
(Section 6.6). Note that the minimum value of the objective function obtained by
using (6.47) depends upon the overall scale factor for the weights. Even if the
weight sum Sw given in (6.28) is divided out, one still usually does not have the
statistical chi-squared, because of the weighting scheme used. Therefore, interpre-
tations of the probability content of such an objective function (such as physicists’
favorite claim for a good fit that “the chi-squared per point is less than one”) are of-
ten not meaningful.

Estimating the uncertainties in the slope and the intercept when both variables
have errors involves some advanced concepts from statistics. Derivations of such
estimation formulas are given in the article by Isobe et al., and the formulas are
compared with Monte Carlo simulations in the article by Babu and Feigelson.

6.4 LEAST-SQUARES NORMALIZATION FACTORS

A common problem when analyzing data is to obtain a realistic estimate of best-fit
normalization factors between data and fitting-function values. Such a factor may be
applied to the fit values as an overall normalization, Nf, that best matches the data or
it may be applied to the data, as Nd, to best match the fitting values. Under most
best-fit criteria Nd is not the reciprocal of Nf If the normalization is assumed to be

200 LEAST-SQUARESANALYSISOFDATA

independent of other parameters in the fitting (as when data are scaled to a model to
calibrate an instrument), the procedures that we derive here will decrease the number
of fitting parameters by one. Indeed, I worked up this section of the text after realiz-
ing while writing Section 7.2 on world-record sprints that one of the fitting parame-
ters (the acceleration A) was linearly related to the data. The formula is seldom de-
rived in books on statistics or data analysis, and then only for the case of errors in
the y variables.

In this section we derive simple expressions for Nf and Nd that can be used
with weighted least squares when there are errors in both variables. The formulas
are of general applicability and are not restricted to straight-line or linear least-
squares fitting. Also, they do not depend strongly on other assumptions about the
fitting procedure, such as the weighting models used. The formulas are not special
cases of determining the slope in a straight-line least-squares fit of the Yj to the yj,
or vice versa, because here we constrain the intercept to be zero, whereas in a
straight-line fit the analysis determines the intercept. After the best-fit normalizations
have been computed, the corresponding best-fit objective function can be obtained
from a simple formula that we derive. We work in the context of bivariate problems
(x and y independent variables), then at the end indicate the extension to multivari-
ate analyses.

In the first subsection we set up the problem and the method of solution for find-
ing Nf. The same procedure is then indicated for Nd. We next derive the formula
for the resulting minimized value of the objective function. In the final subsection
we develop Least Squares Normalization for computing the normalizations
and objective functions, together with suggestions for testing and applying it.

Normalizing fitting-function values to data

As you will recall from (6.6) in Section
in a least-squares fit is usually chosen as

6.1, the objective function to be minimized

(6.48)

in which the weights may be chosen in various ways, as discussed in Section 6.3.
In (6.48) the (x, y) pairs are the data and the (X, Y) pairs are the corresponding fit-
ting values. Suppose that for each of the data points the fitting function is renormal-
ized by a common factor Nf That is,

(6.49)

where the Y value on the right-hand side is assumed to have normalization factor of
unity, which explains the superscript (1) on it. We want a formula for a value of Nf,
common to all the N data points, so that is minimized. This requires using only
straightforward calculus and algebra, so why not try it yourself?

6.4 LEAST-SQUARES NORMALIZATION FACTORS 201

Exercise 6.16
(a) Substitute (6.49) in (6.48), differentiate the resulting expression with respect
to Nf, then equate this derivative to zero. Thus derive the expression for Nf that
produces an extremum of namely

(6.50)

(b) Take the second derivative of with respect to Nf and show that this deriv-
ative is always positive (assuming, as usual, that all the weights are positive).
Thus argue that the extremum found for must be a minimum. n

Formula (6.50) is a general-purpose result for normalizing the fitting function, Y, to
best match the data, y. It is used by the program in Section 7.2 for fitting data on
world-record sprints.

A simple check to suggest the correctness of (6.50) is that for a single data point,
N = 1, it gives Nf = y1/Y1

(1), the fit for the y variables is exact, and only differ-
ences in x values (if any) contribute to the objective function This seemingly
trivial result is quite useful for checking out the program Least Squares Normal-
ization that is developed below.

Normalizing data to fitting values

It is important to know that the overall best-fit normalization constant to be applied to
data, Nd, is usually not simply obtained as the reciprocal of Nf obtained from (6.50).
Rather, if data are to be normalized to the fitting function, we must interchange the
roles of yj and Yj in describing the normalization. Therefore, we set

(6.5 1)

in which the y data on the right-hand side are assumed to have unity for normaliza-
tion, as indicated by the superscript (1). The procedure for determining the optimum
Nd value is very similar to that in the preceding subsection, so it’s left for you to
work out.

Exercise 6.17
(a) Substitute (6.51) in (6.48) and differentiate the expression with respect to
Nd. By equating this derivative to zero, derive the expression for the normaliza-
tion of the data, Nd, needed to produce an extremum of namely

(6.52)

202 LEAST-SQUARES ANALYSIS OF DATA

(b) Differentiate once more with respect to Nd to show that this derivative is
always negative if all the weights are positive. Thus show that the extremum
found for is a minimum.
(c) Show by comparison of the formulas (6.52) and (6.50) that Nd and Nf are
generally not reciprocal. Show that a sufficient condition for reciprocity is that
the fitting-function values Yj and the data values yj are all proportional to each
other with the same proportionality constant. Show that another sufficient con-
dition for reciprocity is that there be only one data point, N = 1. n

The first condition derived in part (c) of this exercise is not particularly relevant,
since it implies that after normalization the Y fit and they data coincide at all data
points, which is an unlikely situation. If this were true, then the only contributions
to the objective function (6.48) would come from discrepancies between the values
of the xj and Xj. Both conditions for reciprocity are helpful, however, in checking
the correctness of programs for the optimum normalization values. This observation
indicates how results that are trivial in mathematics are sometimes useful when com-
puting for scientists and engineers.

In applications one uses data renormalization when, for a fixed instrumentation
setup, one can make a set of measurements for which the model is reliable but an in-
strument needs to be calibrated in terms of an overall normalization. Then the only
sources of uncertainty are systematic and random errors in the data. The latter errors
should be taken into account by appropriately choosing weights in (6.48).

The alert reader will have noticed that I have slipped by a point that needs to be
discussed. Namely, the weights depend upon the data, as we acknowledge by writ-
ing them as wyj rather than wj. How does this affect the analysis? Why not find
out yourself?

Exercise 6.18
(a) Show that formula (6.50) for the fitting-function value normalization, Nf, is
unaffected by the dependence of the weights on the data values.
(b) Prove that if the weights depend on the data as a single power of the data,

and if the definition of the objective function is modified so that it in-
cludes division by the sum of all the weights, then formula (6.52) for Nd is unal-
tered. n

You can see intuitively why the data normalization formula will be different if
division by total weight is not included, because if the weights depend on inverse
powers of the data, then is reduced partly by scaling up the data values as they
appear in the weights. One good reason not to include the total weight as a divisor
in the objective function is that when the weights are just inversely proportional to
the data, then we have Poisson statistics and is proportional to the
statistical chi-squared, for which many properties and interpretations are known. I
have discussed elsewhere (Thompson, 1992) the particularly common weighting
model with Poisson statistics. For consistency with the rest of our treatment, and

6.4 LEAST-SQUARES NORMALIZATION FACTORS 203

with the works of others, the slightly wrong (but convenient) formula (6.52) for Nd

will be maintained as-is. Alternatively, the formula for Nd becomes correct at the
expense of a different formula for as shown in Exercise 6.18 (b).

For the X and x variables that appear in the objective function (6.48) the proce-
dures for finding best-fit normalizations require only replacement of y and Y by x
and X in (6.50) or (6.52). Indeed, by use of such formulas one may have any pair
of renormalization factors drawn from (x,X), (Xx), (y,Y), or (Y,y), where the no-
tation means that the first of the pair is normalized to the second of the pair. These
options are available in the program Least Squares Normalization that we de-
velop below.

You may be wondering what has happened to the effects of correlations in the
data. These are implicit in the weight factors, which certainly do have major effects
on the values of normalization constants, as (6.50) and (6.52) indicate and as you
can verify by using the program with different weight factors.

The best-fit objective function

The final analysis topic in this section on least-squares normalization factors is to de-
rive an expression for the minimized objective function, that is obtained after
renormalization of either the fitting-function values or the data values.

A brute-force numerical method would be to use the normalization factors to re-
compute the normalized values, then to insert these in expression (6.48) for the ob-
jective function. If we do some algebra ahead of time, we can be accumulating the
necessary sums while performing the summations for the normalization factors, thus
improving computational efficiency and reducing the amount of code needed. So
why don’t you try some more algebra?

Exercise 6.19
Consider the case of normalizing the fitting function Y to the data y, for which
the normalization factor is given by (6.50). In the objective function (6.48) ex-
pand the square of the differences of y values and expand this sum into three
separate sums. Next, replace each Yj by the substitution (6.49) in terms of the
unnormalized values. Finally, use the result for Nf given by (6.50) to eliminate
one of the sums in order to obtain the minimum objective function

(6.53)

in which all the summations involve only values before normalization. n

By appropriately relabeling variables, this formula is applicable to normalization of y
data, x data, or x fits. Indeed, by the use of function references in a program, even
this is not necessary, as the next subsection shows.

204 LEAST-SQUARES ANALYSIS OF DATA

From our example with the two independent variables x and y, you can see how
to generalize the treatment from a bivariate system to a multivariate one. Those vari-
ables that are normalized, such as y or Y, get a reduced value of their contribution to
the objective function. Those that are not normalized, such as x or X, make an un-
changed contribution to . This simple extension arises from the assumed indepen-
dence of the variables and their weightings.

Program for normalizing factors

The program Least Squares Normalization is designed to illustrate using the
formulas derived earlier in this section for computing the normalization factor (6.50)
and the resulting minimum objective function (6.53). Although the function Nor-
mObj that computes these is written in terms of normalizing the fit to the data, the
variable choice in the main program lets you use the same function to compute any
of the other three combinations of x or y quantities.

PROGRAM 6.1 Least-squares normalization factors and their minimum objective functions.

#include <stdio.h>
#include <math.h>
#define MAX 101

/* Least Squares Normalization */
/* to test function NormObj */
double xd[MAX] ,xw[MAX],xf[MAX];
double yd[MAX],yw[MAX],yf[MAX];
double norm[4];
double xdin,xwin,xfin,ydin,ywin,yfin,omin;
int N, j,choice;
double NormObj();

printf("Least Squares Normalization\n");
N = 1;
while(N>O)

{
printf("\nHow many data, N (N=O to end)? "); scanf("%i",&N);
if (N == 0)

{
printf("\nEnd Least Squares Normalization"); exit(O);
}

if(N>MAX-1)
printf("!! N=%i > array size %i\n",N,MAX-1);

6.4 LEAST-SQUARES NORMALIZATION FACTORS 205

else
{
printf("\nInput j=l to %i sets as\n",N);
printf("xdata,mweight,xfit,ydata,yweight,yfit");
for (j = 1; j <= N; j++)

{
printf("\n%i: ",j);
scanf("%lf%lf%lf",&xdin,&xwin,&xfin);
scanf("%lf%lf%lf",&ydin,&ywin,&yfin);
xd[j] = xdin; xw[j] = xwin; xf[j] = xfin;
yd[j] = ydin; yw[j] = ywin; yf[j] = yfin;
}

choice = 1;
while (choice > 0)

printf("\n\nNorrmlization choice: (0 for new data set)\n");
printf("1: xdata to xfit 2: xfit to xdata\n");
printf("3: ydata to yfit 4: yfit to ydata\n");
scanf("%i",&choice) ;
if (choice != 0)

{
if (choice <0 || choice > 4)
printf("\n !!choice=%i is out of range (1-4)\n",choice);

else
{
switch(choice)

{
case 1: norm[l] = NormObj(xw,xf,xd,yw,yd,yf,N,&omin);

break;
case 2: norm[2] = NormObj(xw,xd,xf,yw,yd,yf,N,&omin);

break;
case 3: norm[3] = NormObj (yw,yf,yd,xw,xd,xf,N,&omin);

break;
case 4: norm[4] = NormObj(yw,yd,yf,xw,xd,xf,N,&omin);

break;
}

printf("Normalization[%i]=%le\n",choice,norm[choice]);
printf("Minimum objective function=%le",omin) ;
}

}
} /*end while choice loop */

} /* end while N>O loop */

206 LEAST-SQUARES ANALYSIS OF DATA

double NormObj(yw,yd,yf,xw,xd,xf,N,omin)
/* Least-squares best fit for normalization

and minimum objective function */
/* Written as if normalizing yf(=yfit) to yd(=ydata) */
double yw[],yd[],yf[],xw[],xd[],xf[];
double *omin;
int N;

double norm,ywyf,num,den,xdif,obj1;
int j;

num = 0; den= 0; obj1 = 0;
for (j = 1; j <= N; j++) /* loop over the N data */

ywyf = yw[j]*yf[j];
num = num+ywyf*yd[j];
den = den+ywyf*yf[j];
xdif = xd[j]-xf[j];
obj1 = obj1+xw[j]*xdif*xdif+yw[j]*yd[j]*yd[j];

norm = num/den; /* is normalization of yfit to ydata */
*omin = obj1-norm*norm*den;/* minimum objective function */
return norm;

The over all structure of the program Least Squares Normalization is as
follows. The outermost loop is controlled by the number of data points N, with pro-
gram execution being terminated only if N is input as zero. If the usable array size,
MAX - 1, where MAX is in a preprocessor definition, is exceeded by N, then a warn-
ing is issued and another value of N is requested. The subtraction of unity from
MAX is necessary because, in keeping with general practice in this book, the arrays
start at [1] (as is common in Fortran) rather than at [0] (as in C). Given that N is
within limits, N sets of six data items each are to be input. The program is now
ready to calculate normalization factors for various combinations of x and y data.

There are four choices of normalization, as the program output describes. If the
value of input variable choice is zero, then the loop of choices is terminated, and if
the value input is negative or greater than 4, a warning message (!!) is issued. For a
given choice, the function NormObj makes the appropriate normalization calcula-
tion, as presented in the preceding subsection, then the normalization and minimum
objective function, (6.53), are output. A new choice of normalization for the same
data is then requested.

Function NormObj is a direct implementation of (6.50) and (6.53), coded as if
the fitted y values are being normalized to the y data. The normalization factor,
norm, is returned as the value of the function, and the minimum objective function,
omin, is passed back through the argument list of the function.

6.4 LEAST-SQUARES NORMALIZATION FACTORS 207

The program Least Squares Normalization maybetestedforcorrectness
by running a single data point sample N = 1, as suggested below Exercise 6.17,
and by checking that (for any number of data points) if the data and fit values are ex-
actly proportional to each other then Nd and Nf are reciprocal, as derived in Exer-
cise 6.17 (c). Further, under such proportionality there is no contribution to
from the data-pair values that are normalized.

As an example of using Least Squares Normalization, consider the six y
data with their weights in Table 6.2, which are also shown in Figure 6.5 as data
and errors.

TABLE 6.2 Data (yj). weights (wyj), and fit values (Yj) for the least-squares normalization ex-

ample discussed in the text.

The fitting function used in Table 6.2 is Yj = 1 + j. In order to control the
analysis, the data are generated as in terms of the errors
I generated these errors by using the Chapel Hill telephone directory to choose ran-
dom numbers as the least significant digit of six directory entries, while their signs
were chosen from six other entries and assigned as + for digits from 0 to 4 and —
for digits from 5 to 9. The data weights, wyj, are 100 times the reciprocal squares
of the errors.

If the data are normalized to the fit, Least Squares Normalization produces
a normalization factor Nd = 0.36364 (l/Nd = 2.7500) and a minimum objective
function = 99.78. Alternatively, if the fit is normalized to the data, then the
least-squares normalization factor is Nf = 2.1418 with = 58.77. In the ab-
sence of errors we should obtain exactly Nd = 0.5, Nf = 2, and zero for the objec-
tive functions. The data, errors, and fits are shown in Figure 6.5.

Strictly speaking, when displaying renormalized values in Figure 6.5 we should
apply the factor Nd to the data, but it is easier to display the comparison of data nor-
malized to fit versus fit normalized to data by dividing the fit by Nd, as shown in the
figure. The important point is that the two methods of estimating normalization fac-
tors produce normalizations that differ from each other by about 25%. Note that the
normalization factors would not change if we changed all the errors (and therefore all
the weights) by the same factor.

208 LEAST-SQUARES ANALYSIS OF DATA

FIGURE 6.5 Least-squares normalization factors for the data in Table 6.2. The solid line is the

fit before normalization. The dashed line is the best fit after the fit has been normalized to the data.

The dotted line compares the scaled fit after the data have been normalized to the fit, but the normal-

ization factor Nd has been divided into the data to simplify comparison.

Now that you see how the method is applied, how about trying it yourself?

Exercise 6.20
(a) Code program Least Squares Normalization, adapting the input and
output functions to be convenient for your computing environment.
(b) Test all the program control options (by N and choice) for correct termi-
nation of all the whi1e loops.
(c) Check the program using the tests for correctness suggested above.
(d) Use the data given in Table 6.2 to compare your normalization-factor values
with those given above. Display the data and fits as in Figure 6.5. n

With the understanding that you have gained from this analysis of least-squares
normalization factors, and with the function NormObj now being available for use
in your other data-fitting programs, you have one more useful and versatile tool for
comparing data and fits by least-squares methods.

6.5 LOGARITHMIC TRANSFORMATIONS
AND PARAMETER BIASES

We now turn to another topic in least-squares analysis, namely an example of the ef-
fects of transforming variables. In order to obtain a tractable solution, we revert to
the conventional approximation that the x data are known exactly but the y values are
imprecise. The transformation that we consider is that of taking logarithms in order
to linearize an exponential relationship.

6.5 LOGARITHMIC TRANSFORMATIONS AND PARAMETER BIASES 209

Exponential growth and decay are ubiquitous in the natural sciences, but by the
simple device of taking logarithms we can reduce a highly nonlinear problem to a
linear one, from which estimates of the slope (exponent) and intercept (pre-exponen-
tial) can be readily obtained by using a linear-least-squares fitting program. This
seemingly innocuous procedure of taking logs usually results in biased values of fit-
ting parameters, but we show now that such biases can often be simply corrected.
This problem is mentioned but not solved in, for example, Taylor’s introduction to
error analysis.

The origin of bias

A moment of reflection will show why biasing occurs in logarithmic transforma-
tions. Consider the example of data that range-from l/M through unity up to M, as
shown in Figure 6.6.

FIGURE 6.6 The origin of bias in logarithmic transformations. The top line shows the real

line from 0 to M, with M = 4. Under logarithmic transformation the interval from l/ M to 1 maps

into the same length as the interval from 1 to M.

For large M there are two subranges of data in Figure 6.6, having lengths roughly
unity and M, respectively. After taking (natural) logs the subranges are each of
length In(M), so that the smallest values of the original data have been unnaturally
extended relative to the larger values.

Exercise 6.2 1
Take any set of data (real or fictitious) in which the dependent variables, y (x),
are approximately exponentially related to the independent variables, x, and are
roughly equally spaced. The range of the y values should span at least two
decades. First make a linear plot of y against x, then plot 1n (y) against x.
Verify that the plots of the original and transformed independent variables differ
as just described. n

The effect of the logarithmic transformation is therefore to make derived parame-
ter estimates different from the true values. Although such parameter bias is evident,
textbooks on statistical and data-analysis methods usually do not even mention it.
Here we make an analysis that is realistic and that allows simple corrections for para-
meter bias to be made in many situations of interest. We also suggest a Monte Carlo
simulation exercise by which you may confirm the analytical estimates.

210 LEAST-SQUARES ANALYSIS OF DATA

Probability analysis for bias

Suppose that the fitting function, Y, is defined in terms of the independent variable,
x, by the exponential relation

(6.54)

in which the fitting parameters are the pre-exponential A and the exponent B (posi-
tive for growth, negative for decay). Suppose that the data to be described by the
function in (6.54) are y(xj); that is,

(6.55)

in which ej is the unknown random error for the jth datum. Only random errors,
rather than systematic errors also, are assumed to be present. Under logarithmic
transformation (6.54) and (6.55) result in

(6.56)

If the errors ej were ignored, this would be a linear relation between the transformed
data and the independent variable values xj. If (6.54) is substituted into (6.56), A
and B appear in a very complicated nonlinear way that prevents the use of linear least
squares methods.

To procede requires an error model (Sections 6.1, 6.3) for the dependence of
the distribution of the errors ej upon the xj. The only possibility in (6.56) that al-
lows straightforward estimates of bias and that is independent of the xj is to assume
proportional random errors, that is,

(6.57)

in which is the same standard deviation of ej/Y (xj) at each j. The notation
P(0,Ij) is to be interpreted as follows. In statistics P(0,I) denotes an independent
probability distribution, P, having zero mean and unity standard deviation at each j.
Since I is a unit vector, Ij = 1 for all j, and P(0,Ij) is a random choice from
P(0,I) for each j. For example, the Gaussian distribution in Figure 6.1 has

(6.58)

where vj is a random variable parametrizing the distribution of errors at each data
point. Proportional errors (constant percentage errors from point to point) are com-
mon in many scientific measurements by appropriate design of the experiment. Ex-
ceptions to proportional errors occur in radioactivity measurements in nuclear phys-
ics and photon counting in astronomy and other fields, both of which have Poisson
statistics with square-root errors unless counting intervals are steadily
increased to compensate count rates that decrease with time. From the connection

6.5 LOGARITHMIC TRANSFORMATIONS AND PARAMETER BIASES 211

between error models and weighting models (Sections 6.1 and 6.3), note that pro-
portional errors correspondingly imply inverse-squared proportional weights.

Before (6.56) and (6.57) can be used for fitting, we have to take expectation
values, E in statistical nomenclature, on both sides, corresponding to many repeated
measurements of each datum. This concept is clearly discussed in Chapter 6.3 of
Snell’s introductory-level book on probability We assume that each xj is precise,
so that we obtain

(6.59)

in which the biased estimate of the intercept, Ab, is given by

(6.60)

The use of I rather than Ij is a reminder that the expectation value is to be taken over
all the data. Even when only a single set of observations is available, it is still most
appropriate to correct the bias in the estimate of A by using (6.60) in the way des-
cribed below. An estimate of the fractional standard deviation can be obtained ex-
perimentally by choosing a representative xj and making repeated measurements of
yj,. Computationally, an error estimate can be obtained from the standard deviation
of the least-squares fit.

Equation (6.60) shows that a straightforward least-squares fit of data trans-
formed logarithmically gives us a biased estimate for A, namely Ab, and that the
amount of bias depends both upon the size of the error and on its distribution
(P) but, most important, not at all on the xj. Note also that in this error model the
exponent B (which is often of primary interest) is unbiased.

The bias in A can be estimated by expanding the logarithm in (6.60) in a Mac-
laurin series, then evaluating the expectation values term by term. The unbiased
value, A, can be estimated from the extracted biased value Ab in (6.60) by solving
for A to obtain

(6.6 1)

where the bias term, Lb(P), is given by

(6.62)

with the sum that depends upon the error distribution being given by

(6.63)

where Em denotes the mth moment of the distribution P. The first term in the Mac-
laurin series vanishes because P is to have zero mean, while the second term con-
tributes since P is to have unity standard deviation (second moment about the
mean).

212 LEAST-SQUARES ANALYSIS OF DATA

Exercise 6.22
Work through the steps in the derivation of the bias expressions (6.54) through
(6.63). n

Thus we have obtained for proportional errors a prescription for removing the bias
induced by a logarithmic transformation of data. We now show that this bias is only
weakly dependent on the probability distribution function satisfied by the errors.

Dependence of bias on error distribution

In the bias term, Lb (P) in (6.62), the sum, S(P), depends upon the error distribu-
tion, P. For many common probability distributions, only the even moments are
nonzero, so then all the terms in the sum in (6.63) are strictly positive and higher
moments must necessarily increase the bias.

Consider the commonly assumed Gaussian probability distribution P = PG, dis-
cussed in Section 6.1, which is also called the normal distribution. Its third mo-
ment vanishes because of its symmetry about the mean value. The fourth moment of
the Gaussian gives

(6.64)

Another convenient and commonly used, but slightly unrealistic, distribution is
the uniform probability distribution, P = Pu, shown in Figure 6.7.

Exercise 6.23
Show that the height and width of the standardized uniform probability distribu-
tion are as indicated in Figure 6.7. n

FIGURE 6.7 The uniform probability distribution, Pu (0,I), also called the rectangular distri-

bution. The distribution shown has zero mean, unity normalization, and unity standard deviation.

For the uniform distribution P = Pu, one obtains
bution) the exponent of the bias factor given by

6.5 LOGARITHMIC TRANSFORMATIONS AND PARAMETER BIASES

(similarly to the Gaussian distri-

213

(6.65)

through the fourth moment of the distribution. For a given standard deviation the
fourth moment contributes 30% (6/20) more for PG than for Pu, primarily because
the wings of the Gaussian distribution include larger values of vj for a given .
Other error models can be incorporated in the estimates of the pre-exponential for
proportional errors if their probability distributions can be calculated.

Exercise 6.24
(a) Verify the correctness of the second terms of the bias factors Lb in (6.64)
and (6.65) for the Gaussian and uniform distributions, respectively, by calculat-
ing the corresponding fourth moments of their probability distributions.
(b) As numerical examples of the bias induced in the pre-exponential A by a log-
arithmic transformation, show that A needs to be corrected upward by 0.5% for
data with 10% standard deviation and upward by about 5% for data
with 30% random errors n

Mathematically punctilious readers should object to the analysis of the Gaussian
distribution, because the argument of the ln function in the error model may become
negative, even though this is very improbable if is small. (For the prob-
ability is about 3 × 10-7.) Therefore, in the analytical treatment for the Gaussian,
(6.63) represents an asymptotic series which eventually diverges. In the Monte
Carlo simulation suggested in Exercise 6.25 if the sample size is very large the
chance of getting a negative argument increases, and the program should include a
trap for this condition.

Formally, we can circumvent the problem with the logarithmic transformation
for a Gaussian distribution of errors by defining suitably truncated distributions
whose low-order moments are nearly the same as the complete distributions, so that
there are no practical consequences for the bias estimates. For a uniform distribu-
tion, the problem arises only if = 0.58 (see Figure 6.7), which would
usually be considered too large an error to justify anything more than a cursory fit to
the data.

The simple corrections given by (6.61) and (6.62) are worth making if the as-
sumption of proportional random errors, (6.57), is realistic. It is also reassuring
that the exponent B is unbiased under this assumption. For any other error model
the logarithmic transformation induces biases in both the exponent B and the pre-ex-
ponent A which cannot easily be corrected. As a final remark, data taken with a
small number of samples, typically with fewer than fifty samples, will have errors
dominated by the statistics of the data, which overwhelm any effects of the transfor-
mation bias that we have just investigated.

214 LEAST-SQUARES ANALYSIS OF DATA

As a way of confirming the analysis of the bias in taking logarithms for analyz-
ing exponential behavior, try a Monte Carlo simulation of a Gaussian random-error
distribution, as suggested in the following exercise.

Exercise 6.25
(a) Use a computer random-number generator to provide a sample of say
10,000 values from a Gaussian distribution, and force this sample to have zero
mean and unity standard deviation, as the above analysis uses. Then sort the
sample into 100 bins.
(b) Choose = 0.2 (an average 20% error for each y datum), then make from
the sampled Gaussian in (a) the distribution ln as appears in
(6.60). The Monte Carlo estimate of the bias is just the negative of the mean
value (expectation value, E) of this distribution. How good is the agreement
with our analytic estimate, Lb(PG) obtained from (6.64)? n

In Sections 6.4 and 6.5 we explored two common and useful aspects of fitting
imprecise data, to wit, normalization factors and logarithmic transformations. In the
next section we return to straight-line least squares with errors in both variables,
emphasizing the numerics of this problem.

6.6 PROJECT 6: PROGRAM FOR STRAIGHT-LINE
LEAST-SQUARES FITS

Our aim in this section is to implement a program that makes a straight-line least-
squares fit to data in which there are errors in both variables, following the algorithm
developed in Section 6.3. We use the Independent Diagonal Weighting Model with
Constant ratio of x to y weights from point to point, called IDWMC, as illustrated in
Figure 6.2. This model for the weights is often quite realistic, and it also allows the
simple formulas (6.36) or (6.37) to be used to estimate the slope of the best-fit line
in terms of the data, the weights at each datum, and the ratio of x weights to y
weights,

Organization of Straight-Line Least Squares

Theorganizationandimplementation of Straight-Line Least Squares are
quite straightforward, so we describe the features of the code, then we present it.
The overall structure of Straight-Line Least Squares is very simple. A
whi1e loop over the number of data points, n, is used to input the number of data
points. A value of n = 0 is used to terminate execution, while a value larger than
the array bounds, NMAX - 1 (since the [0] element is not used), causes an error
message (! !). A value of n < 2 is also diagnosed as an error because the problem
is then undetermined, since one data point can’t determine two parameters.

6.6 PROGRAM FOR STRAIGHT-LINE LEAST-SQUARES FITS 215

If the input n value is acceptable, the parameter for the ratio of x weights to y
weights, is input, followed by n triples of x values, y values, and y weights.
Then the program invokes function Least Squares, which returns the intercept
(al), the slope (a2), the y-fit contribution to the minimum objective function
(oymin), and the correlation coefficient between x and y values (rho).

The C function Least Squares is a direct coding of formulas in Section 6.3.
The discussion in Section 6.3 of the properties of the least-squares slopes and Fig-
ure 6.4 should convince you that once becomes small its value is not important.
Try it in the program and see. The quadratic equation for the slope has two forms of
solution, in order to avoid errors from subtractive cancellation, either (6.36) or
(6.37).

PROGRAM 6.2 Straight-line least squares with errors in both variables. but with a constant ra-

tio of x weights to y weights.

#include <stdio.h>
#include <Math.h>
#define MAX 101

main()

{

/* Straight-Line Least Squares
/* Weighted fit with errors in
double xlist[MAX], ylist[MAX],

*/
both variables */
wght[MAX]; /* data & weights */

double a1,a2,aymin,rho;/* intercept,slope,objective,correlation */
double lambda; /* ratio of x weights to y weights */
double xin, yin, win; /* temporaries for input */
int j, n; /* data counter, number of data sets */
void LeastSquares();

printf("Straight Line Least Squares\n");
n = 2;
while(n>O)

printf("\nInput n (n=O to end): "); scanf("%i",&n);
if (n <= 0)

printf("\nEnd Straight Line Least Squares"); exit(O);

if (n > MAX-1) printf("\n !! More than %i data sets\n",MAX-1);
else

216 LEAST-SQUARES ANALYSIS OF DATA

if (n < 2) printf("\n !!Fewer than 2 data sets\n");
else

{
printf("Input ratio of x weights to y weights, lambda: ");
scanf("%lf",&lambda);
printf("Input %i triples of x, y, y weight:\n",n);
for (j = 1; j <= n; j++)

{
scanf("%lf%lf%lf",&xin,&yin,&win);
xlist[j] = xin; ylist[j] = yin; wght[j] = win;
}

LeastSquares(xlist,ylist,wght,lambda,n,&a1,&a2,&oymin,&rho) ;
printf("Intercept a1 = %g and slope a2 = %g\n",a1,a2);
printf("Minimized y objective function = %g\n", oymin);
printf("Correlation coefficient = %g\n",rho);
}

}
} /* end while n loop */

void LeastSquares(xlist,ylist,wght,lambda,n,al,a2,oymin,rho)
/* Straight-line weighted least squares */
double xlist[],ylist[],wght[];
double lambda;
double *al,*a2,*oymin,*rho;
int n;

double sw,sx,sy,xav,yav,xk,yk,sxx,sxy,syy,quad;
int j;

SW = 0; sx = 0; sy = O;/* Weighted averages of x and y *l
for (j = 1; j <= n; j++)

{ /* sum weights, then sum weighted x and y values */
sw = sw+wght[j];
sx = sx+xlist[j]*wght[j]; sy = sy+ylist[j]*wght[j];
}

xav = sx/sw; yav = sy/sw;
/* Make weighted bilinear Sums */
sxx = o;
for (j =1; j <= n; j++)

{
xk = xlist[j]-xav; yk = ylist[j]-yav;
sxx = sxx+xk*xk*wght[j];
sxy = sxy+xk*yk*wght[j];

6.6 PROGRAM FOR STRAIGHT-LINE LEAST-SQUARES FITS 217

syy = syy+yk*yk*wght[j];
}

quad = sxx*lambda-syy; /* Stable formulas for slope */
if (quad > O)

*a2 = 2*sxy*lambda/(sqrt(quad*quad+4*sxy*lambda)+quad);
else
*a = (-quad+sqrt(quad*quad+4*sxy*sxy*lambda))/ (2*sxy);

*al = yav-(*a2)*xav; /* intercept */
*oymin = syy-(*a2)*sxy; /* minimized y objective function */
*rho = sxy/sqrt(sxx*syy); /* correlation coefficient */

Testing and using the least-squares program

Now that you know from the preceding subsection how Straight -Line Least
Squares is supposed to work, try adapting it and running it in your computing en-
vironment.

Exercise 6.26
(a) Implement the program Straight-Line Least Squares for your com-
puter. For the first tests of program correctness check out the whi1e loop in
the main program by giving it the escape value, n = 0, and also the forbidden
values n > 100 (for MAX = 101 as defined) and n = 1. Then try small data
samples, say n = 2, for which the fit must be exact, so that oymin = 0.
(b) Check the reciprocity properties of x on y slopes and y on x slopes when the
value of lambda is inverted, as discussed in Section 6.3. Also consider large,
small, and intermediate values of lambda in order to verify (6.36) and (6.37).
(c) Improve your understanding of the dependence of the slopes on the ratio of
x to y weights by generating some of the points on Figure 6.4. Analytically the
dependence is given by (6.45). How closely do your numerical values of the
slopes agree with this relation? n

Although graphical comparison of the fitted line with the data is not provided in
Straight -Line Least Squares, your insight into least-squares analyses will be
significantly increased if you make an appropriate program interface to make graphi-
cal output of data, weights, and best-fit lines, similarly to Figure 6.2. Since (as dis-
cussed in Section 1.3) the implementation of graphics is very dependent on the
computing environment, I have not provided such an interface.

As an application of the methods for least-squares analyses that you have learned
in this chapter, I suggest that you take from your own field of endeavor a small set
of data for which the underlying model relating them predicts a linear relationship,
and for which errors in x and y variables may realistically be considered to be in a
constant ratio and of comparable size as a fraction of the data values. You will find
it interesting to process these data using the program Straight -Line Least

218 LEAST-SQUARES ANALYSIS OF DATA

Squares, varying to see the effects on the values of slope, intercept, and mini-
mum objective function.

In this chapter we have emphasized using analytical formulas to estimate best-fit
parameters, especially for straight-line fits (Sections 6.3,6.6), normalization factors
(Section 6.4), and for logarithmic transformation of exponentials (Section 6.5). It
is also possible, and often desirable, to remove some of the constraints that we im-
posed in our least-squares fitting (such as linear parameterizations) by using Monte
Carlo simulation techniques to model the distribution of errors, as is suggested in
Exercise 6.25. With adequate computing power, such techniques can allow for
arbitrary distributions of errors and correlations between fitting parameters. Intro-
ductions to such methods, including the “bootstrap” technique, are provided in the
Scientific American article by Diaconis and Efron, in the article by Kinsella, and in
Chapters 16 and 17 of Whitney’s book. Application of the bootstrap technique to a
very large database of 9000 measurements and their errors, in which there are highly
nonlinear relations between parameters and data, is made in a review article by
Varner et al.

Least-squares methods may be combined with spline methods (Chapter 5) at the
expense of much more analysis and complexity. Smoothing of noisy data may
thereby by achieved. Appropriate methods are described in the article by Woltring.

REFERENCES ON LEAST-SQUARES ANALYSIS

Babu, G. J., and E. D. Feigelson, “Analytical and Numerical Comparisons of Six
Different Linear Least Squares Fits,” Communications in Statistics — Simulation
and Computation, 21, 533 (1992).

Barlow, R. J., Statistics: A Guide to the Use of Statistical Methods in the Physical
Sciences, Wiley, Chichester, England, 1989.

Beckmann, P., Orthogonal Polynomials for Engineers and Physicists, Golem Press,
Boulder, Colorado, 1973.

Deming, W. E., Statistical Adjustment of Data, Wiley, New York 1943; reprinted
by Dover, New York, 1964.

Diaconis, P., and B. Efron, “Computer-Intensive Methods in Statistics,” Scientific
American, 248, May 1983, p. 116.

Draper, N. R., and H. Smith, Applied Regression Analysis, Wiley, New York,
second edition, 1981.

Isobe, T., E. D. Feigelson, M. G. Akrita, and G. J. Babu, “Linear Regression in
Astronomy.I,” Astrophysical Journal, 364, 104 (1990).

Jaffe, A. J., and H. F. Spirer, Misused Statistics, Marcel Dekker, New York, 1987.
Kinsella, A., “Numerical Methods for Error Evaluation,” American Journal of

Physics, 54, 464 (1986).
Lichten, W., Data and Error Analysis in the Introductory Physics Laboratory, Allyn

and Bacon, Boston, 1988.

REFERENCES ON LEAST-SQUARES ANALYSIS 219

Lyons, L., A Practical Guide to Data Analysis for Physical Science Students,
Cambridge University Press, Cambridge, England, 199 1.

Lyons, L., Data Analysis for Nuclear and Particle Physics, Cambridge University
Press, New York, 1986.

Macdonald, J. R., and W. J. Thompson, “Least Squares Fitting When Both Vari-
ables Contain Errors: Pitfalls and Possibilities,” American Journal of Physics,
60, 66 (1992).

Reed, B. C., “Linear Least Squares When Both Variables Have Uncertainties,”
American Journal of Physics, 57, 642 (1989); erratum ibid, 58, 189 (1990).

Siegel, A. F., Statistics and Data Analysis, Wiley, New York, 1988.
Snell, J. L., Introduction to Probability, Random House, New York, 1987.
Solomon, F., Probability and Stochastic Processes, Prentice Hall, Englewood

Cliffs, New Jersey, 1987.
Taylor, J. R., An Introduction to Error Analysis, University Science Books, Mill

Valley, California, 1982, pp. 166, 167.
Thompson, W. J., and J. R. Macdonald, “Correcting Parameter Bias Caused by

Taking Logs of Exponential Data,” American Journal of Physics, 59, 854
(1991).

Thompson, W. J., “Algorithms for Normalizing by Least Squares,” Computers in
Physics, July 1992.

Varner, R. L., W. J. Thompson, T. L. McAbee, E. J. Ludwig, and T. B. Clegg,
Physics Reports, 201, 57 (1991).

Whitney, C. A., Random Processes in Physical Systems, Wiley-Interscience, New
York, 1990.

Woltring, H. J., “A Fortran Package for Generalized Cross-Validatory Spline
Smoothing and Validation,” Advances in Engineering Software, 8, 104 (1986).

York, D., “Least-Squares Fitting of a Straight Line,” Canadian Journal of Physics,
44, 1079 (1966).

220

Chapter 7

INTRODUCTION TO
DIFFERENTIAL EQUATIONS

Differential equations are ubiquitous in science and engineering. The purpose of this
chapter is to provide an introduction to setting up and solving such differential equa-
tions, predominantly as they describe physical systems. Both analytical and numeri-
cal techniques are developed and applied.

Our approach is to develop the methods of solution of differential equations from
the particular to the general. That is, a scientifically interesting problem will be cast
into differential equation form, then this particular equation will be solved as part of
investigating general methods of solution. Then the more general method of solu-
tion will be discussed. This order of presentation will probably motivate you better
than the reverse order that is typical (and perhaps desirable) in mathematics texts, but
quite untypical in scientific applications. You may also recall that in the seventeenth
century Isaac Newton invented the differential calculus in order to help him compute
the motions of the planets. Only later was the mathematical edifice of differential
calculus, including differential equations, developed extensively.

The applications in this chapter are broad; the kinematics of world-record sprints
and the improving performance of women athletes provide an example of first-order
linear equations (Section 7.2), while nonlinear differential equations are represented
by those that describe logistic growth (Section 7.3). Numerical methods are intro-
duced in Section 7.4, where we derive the algorithms. We present the programs for
the first-order Euler method and of the Adams predictor as Project 7 in Section 7.5.
Many examples and exercises on testing the numerical methods are then provided.
References on first-order differential equations round out the chapter. Second-order
differential equations are emphasized in Chapter 8, which contains further examples
and develops the numerical methods introduced in this chapter.

221

222 INTRODUCTION TO DIFFERENTIAL EQUATIONS

7.1 DIFFERENTIAL EQUATIONS AND PHYSICAL SYSTEMS

We first survey how differential equations arise in formulating and solving problems
in the applied sciences. In pure mathematics the emphasis in studying differential
equations is often on the existence, limitations, and the general nature of solutions.
For the field worker in applied science it is most important to recognize when a
problem can be cast into differential equation form, to solve this differential equa-
tion, to use appropriate boundary conditions, to interpret the quantities that appear in
it, and to relate the solutions to data and observations.

Why are there differential equations?

In physical systems, such as the motion of planets, the phenomena to which differ-
ential equations are applied are assumed to vary in a continuous way, since a differ-
ential equation relates rates of change for infinitesimal changes of independent vari-
ables. Nineteenth-century research using the differential calculus focused on mech-
anics and electromagnetism, while in the late twentieth century there have been the
major developments of microelectronics and photonics. Both the principles and
practical devices derived from these principles require for their design and under-
standing extensive use of differential equations.

We now recall some of the main ideas of differential equations. Formally speak-
ing, a differential equation is an equation (or set of equations) involving one or more
derivatives of a function, say y (x), and an independent variable x. We say that we
have solved the differential equation when we have produced a relation between y
and x that is free of derivatives and that gives y explicitly in terms of x. This solu-
tion may be either a formula (analytical solution) or a table of numbers that relate y
values to x values (numerical solution).

Exercise 7.1
(a) Given the differential equation

verify that a solution of this differential equation is

(7.1)

(7.2)

(b) Given a numerical table of x and corresponding y values that claim to repres-
ent solutions of a differential equation, what is necessarily incomplete about such
a differential equation solution? n

Generally, there will be more than one solution for a given differential equation.
For example, there is an infinite number of straight lines having the same slope, a,
but different intercepts, b. They all satisfy the differential equation

7.1 DIFFERENTIAL EQUATIONS AND PHYSICAL. SYSTEMS 223

(7.3)

The choice of appropriate solution depends strongly on constraints on the solution,
such as the value of the intercept in the example of a straight line. These constraints
are called boundary values, especially when the independent variable refers to a
spatial variable, such as the position coordinate x. The constraints may also be call-
ed initial conditions, which is appropriate if the independent variable is time. (For
those readers who are into relativistic physics, the distinction is ambiguous.)
Knowing the constraints for a particular problem is often a guide to solving the dif-
ferential equation. This is illustrated frequently in the examples that follow.

Exercise 7.2
(a) Show that the differential equation (7.1) has an infinite number of solutions,
differing from each other by different choices of overall scale factor for y.
(b) Given that a solution of the differential equation (7.3) is required to pass
through the y origin when x = 0, show that the solution is then uniquely deter-
mined once a is specified.
(c) Make a logarithmic transformation from y in (7.1) to z = 1n (y) in order to
relate the solutions to parts (a) and (b). n

Time is most often the independent variable appearing in the differential equation
examples in this chapter and the next. This probably arises from the predictive capa-
bility obtained by solving differential equations in the time variable. Thus, tomor-
row’s weather and stock-market prices can probably be better predicted if differential
equations for their dependence on time can be devised.

Notation and classification

We now briefly review notations and classifications for differential equations. We
use two notations for derivatives. The first is the compact notation that makes dif-
ferentiation look like an operation, which it is, by writing

(7.4)

This notation we use most often within the text; for example Dxy denotes the first
derivative of y with respect to x, in which (by convention) we have dropped the
superscript 1. The second notation for derivatives is dy/dx, suggestive of division
of a change in y by a change in x. We use this notation if we want to emphasize the
derivative as the limit of such a dividend, as in numerical solution of differential
equations.

The classification of differential equations goes as follows; it is mercifully
briefer than those used in biology or organic chemistry. Equations that involve total

224 INTRODUCTION TO DIFFERENTIAL EQUATIONS

derivatives (such as Dxy) are called ordinary differential equations, whereas those
involving partial derivatives (such as) are termed partial differential equa-
tions. The aim of most methods of solution of partial differential equations is to
change them into ordinary differential equations, especially in numerical methods of
solution, so we use only the latter in this book. This greatly simplifies the analytical
and numerical work. We note also that systems for doing mathematics by computer,
such as Mathematica, are restricted to ordinary differential equations, both for ana-
lytical and numerical solutions. This limitation is discussed in Section 3.9 of Wol-
fram’s book on Mathematica.

The order of a differential equation is described as follows. If the maximum
number of times that the derivative is to be taken in a differential equation, that is,
the maximum superscript in is n, then the differential equation is said to be of
nth order. For example, in mechanics if p is a momentum component, t is time, and
F is the corresponding force component (assumed to depend on no time derivatives
higher than first), then Newton’s equation, Dtp = F, is first order in t. In terms of
the mass, m, and the displacement component, x say, Newton’s equation,

 is a second-order differential equation in variable t.

Exercise 7.3
(a) Write Newton’s force equation for a single component direction as a pair of
first-order ordinary differential equations.
(b) Show how any nth-order differential equation can be expressed in terms of n
first-order differential equations. n

The result in (b) is very important in numerical methods of solving differential equa-
tions, as developed in Chapter 8. There remains one important item of terminology.

The degree of a differential equation is the highest power to which a derivative
appears raised in that equation. Thus, if one identifies the highest value of m ap-
pearing in (Dxy)m in a differential equation, one has an mth-degree differential
equation. If m = 1, one has a linear differential equation. Generally, it is prefer-
able to be able to set up differential equations as linear equations, because then one
isn’t battling algebraic and differential equations simultaneously. The distinction
between the order of a differential equation and its degree is important.

We consider mainly ordinary, first- and second-order, linear differential equa-
tions. Since there are also interesting systems that cannot be so described, we some-
times go beyond these, as for the logistic-growth equation (Section 7.3) and for
catenaries (Section 8.2).

Homogeneous and linear equations

Two distinct definitions of “homogeneous” are used in the context of differential
equations. The first definition is that a differential equation is homogeneous if it is
invariant under multiplication of x and y by the same, nonzero, scale factor. For
example, Dxy = x sin (y/x) is homogeneous according to this definition. Such

7.2 FIRST-ORDER LINEAR EQUATIONS: WORLD-RECORD SPRINTS 225

equations are not very common in the sciences, because in order to have the invari-
ance, x and y must have the same dimensions, which is uncommon if one is discus-
sing dynamical variables, as opposed to geometrical or other self-similar objects.

The other definition of a homogeneous differential equation, usually applied to
linear differential equations, is that an equation is homogeneous if constant multiples
of solutions are also solutions. For example, = - ky, the differential equation
for simple harmonic motion, is a homogeneous differential equation. The power of
such linear differential equations is that their solutions are additive, so we speak of
the linear superposition of solutions of such equations. Almost all the fundamental
equations of physics, chemistry, and engineering, such as Maxwell’s, Schrödin-
ger’s, and Dirac’s equations, are homogeneous linear differential equations.

Electronics devices are often designed to have a linear behavior, using the term
in the same sense as a linear differential equation. Such a device is termed linear if
its output is proportional to its input. For example, in signal detection the primary
amplifiers are often designed to be linear so that weak signals are increased in the
same proportion as strong signals. It is therefore not surprising that much of the
theory of electronics circuits is in terms of linear differential equations. The differ-
ential equations for mechanical and electrical systems that we discuss in Section 8.1
are linear equations.

Nonlinear differential equations

Differential equations that are nonlinear in the dependent variable, y in the above dis-
cussions, are termed nonlinear, no matter what their order or degree. In general,
such differential equations are difficult to solve, partly because there has not been
extensive mathematical investigation of them. In science, however, such nonlinear
equations are recently of much interest. This is because linear differential equations
typically describe systems that respond only weakly to an external stimulus, which
itself is not very strong. On the contrary, as an example of systems that should be
described by nonlinear equations, many optical materials respond nonlinearly when
strong laser beams are focused on them.

The example of a nonlinear differential equation that we explore in this chapter is
the logistic-growth equation in Section 7.3. It illustrates how the methods of solv-
ing nonlinear differential equations depend quite strongly on the problem at hand.

7.2 FIRST-ORDER LINEAR EQUATIONS:
WORLD-RECORD SPRINTS

We motivate our study of first-order linear differential equations by studying a real-
istic problem from athletic competition, namely the kinematics involved in sprinting.
Our analysis is phenomenological in that it is concerned only with the kinematics and
not with the dynamics, physiology, and psychology that determine the outcome of
athletic contests. So we need only a model differential equation and a tabulation of
world-record times for various distances. We do not need treadmills for the dynam-

226 INTRODUCTION TO DIFFERENTIAL EQUATIONS

ics, specimen bottles for the physiology, and post-race interviews for the psychol-
ogy. In the language of circuit theory and mathematical modeling, we are making a
“lumped-parameter” analysis.

Kinematics of world-record sprints

In 1973, J. B. Keller published an analysis of competitive running sprints in which
he showed that for world-class runners in races up to nearly 300 m distance their
speed, v, at time t into the race can be well described in terms of the acceleration
formula for world-record sprints

(7.5)

He found that for men’s world records in 1972 the appropriate constants were an ac-
celeration parameter A = 12.2 m s-2 and a “relaxation time” = 0.892 s. Instead
of A, Keller used F, which is easily confused with force. In this differential equa-
tion the net acceleration is the driving acceleration, A, minus a resistance propor-
tional to the speed at time t. The physiological justifications for this equation were
discussed by Keller and were subsequently debated by various experts.

The data on which Keller’s analysis was based are given in Table 7.1 in the col-
umn “Men 1972.” Also shown in the table are world records as of 1968 and 1991.
The shortest world-record distance now recognized is 100 m, the British system of
lengths is no longer used, and the timing is now to 0.01 s, being done electronically
rather than manually as in 1968. I have also included the data for women sprinters,
since these allow an interesting comparison of speeds and improvements.

TABLE 7.1 World-record sprint times (in seconds) for men and women. For the 200-m race the

notation (s) denotes a straight track and (t) denotes a track with a turn. From Guinness Book of

World Records (1968, 1991) and Reader’s Digest Almanac (1972). The noninteger distances are

converted from British units.

7.2 FIRST-ORDER LINEAR EQUATIONS: WORLD-RECORD SPRINTS 227

FIGURE 7.1 Distance vs time for world-record sprints. The line shows the best fit in the

Keller model using the 1972 men’s data (solid points). The triangles are the distance in the given

time minus the calculated distance for that time, scaled up by a factor of 10.

Figure 7.1 shows the distance-time data for men sprinters in 1972. It may not
be evident that its slope is increasing significantly for about the first 5 seconds. The
aims of our analysis are first to solve the linear differential equation (7.5) for the
speed and the distance covered, to repeat the analysis of Keller’s data, then to anal-
yze some of the other data in Table 7.1. This will be most efficient if we write a
program to handle the arithmetic involved while we puzzle out the best choice of pa-
rameters A and We will make weighted-least-squares fits of the data, making use
of results from Section 6.4.

Warming up to the problem

We may use familiarity with athletics, and some mathematics, to build up the so-
lution of (7.5). In track sprints the runners start from rest, so we must have the ini-
tial conditions that at t = 0 the speed v = 0. Therefore, near the start of the race we
may neglect the second term on the right-hand side of (7.5), so that v (t) At at
early times. On the other hand, if the A term in (7.5) were negligible, we would
obtain the exponential function as the solution, namely v(t) = Ce exp(-t),
where Ce is a constant. Is there a patched-up solution to the world-record sprint
problem that contains both approximations?

Exercise 7.4
(a) Show by expanding the exponential to its linear term in t that the linear com-
bination of the two linear solutions

(7.6)

gives v(t) = At for small t provided that Ce = -A.

228 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(b) By substituting in the original sprint differential equation (7.5), verify that

(7.7)

is a complete solution of the equation that is also consistent with the initial con-
ditions. n

Thus, by a combination of insight and algebra we have produced the solution to
Keller’s equation for modeling world-record sprints. You may recognize the differ-
ential equation (7.5) as an example of a linear first-order equation that can be solved
by the use of integrating factors. For this method of solution, see (for example) the
calculus text of Wylie and Barrett.

A simpler method of solution is to notice that (7.5) is also a separable differential
equation, for which (as discussed in Wylie and Barrett) this equation can now be re-
arranged as the integral over a function of v and an integral over t.

Exercise 7.5
Convert (7.5) to integral form by writing it as

(7.8)

then recognizing the left-hand-side integrand as the derivative of a logarithm.
Evaluate this logarithm for the given limits of integration, then take the exponen-
tial on both sides, show that the solution (7.7) for v (t) is obtained. n

Thus we have a second method for solving the sprint differential equation (7.5)
For our comparison with data we need an expression for the distance, D, run in

a given time T. (Actually, we would prefer the relation in the other direction, but
there is no closed expression for this.) It is also informative to calculate the runner’s
average speed during the race. We have that

(7.9)

where we have built-in the initial condition that D = 0 if = 0; that is, the runners
must toe the line.

Exercise 7.6
(a) Substitute (7.7) for v (t) then carry out the time integration in order to show

7.2 FIRST-ORDER LINEAR EQUATIONS: WORLD-RECORD SPRINTS 229

(7.10)

which predicts D for given T.
(b) The average speed during the race is just the total distance divided by the
elapsed time. Use (7.10) to show that this average speed, vav (T), is

(7.11)

(c) From (7.11) show by expanding the exponential to the third order in
that near the start of the race

(7.12)

so that the average speed increases nearly linearly with time.
(d) Show that for long times, such that T /t >> 1, the exponential term dies
away and a uniform average speed is predicted, having value

(7.13)

which is just the solution of (7.5) as the left-hand side tends
speed that gradually comes to represent the average speed. n

to zero, a steady

With all these exercises you are probably getting more of a workout than an ath-
lete, so it is time to apply Keller’s mathematical model to the world-record data. A
program is worthwhile for this purpose.

Program for analyzing sprint data

For analyzing the sprint times in Table 7.1 and for predicting average speeds and
how they vary with improvements in athletic performance, some programming effort
will allow the parameter space of A and to be explored thoroughly and efficiently.

Before outlining the program structure, examination of the equation for the dis-
tance covered, (7.10), is of interest. We notice that A appears only in the combina-
tion , which is a common normalization factor for all the data that are analyzed
using a given value of . In Section 6.4 we show that in a weighted least-squares
fit (not necessarily to straight lines) such a model normalization factor can be obtain-
ed directly from comparison between the model with the factor set to unity and the
data. Equation (6.50) is the operative formula that we use to reduce our analysis
from two parameters to a single parameter This greatly decreases the time it takes
to get an optimum fit, at the expense of only a half-dozen lines more code. The
same arithmetic also produces the minimum value of the weighted objective function
(6.53). Contrary to reality, but sufficient for our purposes, we assume that T is
precise. We use weights that vary as 1/D2

, as in Keller’s analysis.

230 INTRODUCTION TO DIFFERENTIAL EQUATIONS

As suggested by (7.10), is the relevant parameter for analysis, so this is to
be calculated and output by the analysis program. It is also interesting to see the dif-
ference between the data and the calculated distances, DR - DC , in Figure 7.1. The
average speeds, (7.1l), are not of interest until we have an optimum value, so
these can be readily be programmed on a pocket calculator or on your workstation.

The analysis program World Record Sprints has the following structure.
The first section provides options for input of sprint data files, for example, those in
Table 7.1. The next part readies matching output files, either to be written over or
to be added to. The main work of the program is in the loop to optimize and A,
which is controlled by the user. Only has to be input because A is derived auto-
matically as a normalization of the calculated distances, as explained two paragraphs
above. The output for each value chosen is sent to the console and to the output
files for later graphical interpretation. Finally, the definition of the distance formula
is provided in function DIST. If you decide that a different single-parameter model
is appropriate, you need only modify DIST. The program listing is as follows.

PROGRAM 7.1 Analysis of world-record sprints using the Keller model (7.5).

#include <stdio.h>
#include <math.h>
#define MAX 8

main()
{
/* World Record Sprints */
FILE *fin,*fout;
FILE *fopen();
double DisR[MAX],Time[IGX],DisC[M?JX];
double Din,Tin,A,Acalc,tau,Atau;
double obj,sum_yData,sum_yProd,sum_yFit,dif,weight;
int choice,ND,k;
char yn,wa;
double DIST();

printf("World Record Sprints\n");
choice = 1;
while (choice > 0)

{
printf("Choose data:\nO: Quit program\nl: Men 1968\n");
printf("2: Women 1968\n3: Men 1991\n4: Women 1991\n");
printf("5: Men 1972 (Keller)\n");
scanf("%i",&choice) ;
if (choice == 0)

{
printf("\nEnd World Record Sprints") ; &t(O) ;

7.2 FIRST-ORDER LINEAR EQUATIONS: WORLD-RECORD SPRINTS 231

if (choice < 0 || choice > 5)

printf("!! choice=%i only 1 - 5\n",choice); exit(l);

printf("How many distances?\n");
scanf("%i",&ND) ;
if(ND>MAX)

printf("!! # of Distances %i > MAX-l=%i",ND,MAX-1);
exit(l);
}

printf("Prepare input f
scanf("%s",&yn);
if (yn == 'y')

{

ile? (y or n) :\n') ;

printf("Input Distances & Times:\n");
switch (choice) /* to ready input files for data */

case 1: fout = fopen("MEN68in","w'); break;
case 2: fout = fopen("WOMEN68in","w"); break;
case 3: fout = fopen("MEN9lin","w"); break;
case 4: fout = fopen("WOMEN9lin","w"); break;
case 5: fout = fopen("MEN72in","w"); break;

for (k = 1; k <= ND; k++) /* input Distance & Time */

printf("\n%i: ",k);
scanf("%lf %lf",&Din,&Tin);
DisR[k] = Din; Time [k] = Tin;
fprintf(fout, "%lf %lf\n",Din,Tin);

fclose(fout); rewind(fout); /* Ready for reuse */
} /* end data-preparation loop */

printf("\nWrite over output (w) or Add on (a):\n");
scanf("%s",&wa);
switch (choice) /* to ready input/output files */

{
case 1: fin = fopen("MEN68in","r");

fout = fopen("MEN68out",&wa); break;
case 2: fin = fopen("WOMEN68in","r");

fout = fopen("WOMEN68out",&wa); break;
case 3: fin = fopen("MEN9lin","r");

fout = fopen("MEN9lout",&wa); break;
case 4: fin = fopen("WOMEN91in","r");

232 INTRODUCTION TO DIFFERENTIAL EQUATIONS

fout = fopen("WOMEN9lout",&wa); break;
case 5: fin = fopen("MEN72in","r");

fout = fopen(WEN72out",&wa); break;

for (k = 1; k <= ND; k++) /* Data input */

fscanf(fin, "%lf %lf\n",&Din,&Tin);
DisR[k] = Din; Time[k] = Tin;

printf("\nLoop to optimize tau & A\n");
tau = 1;
while (tau > 0)

printf("\nInput tau: (tau=O to leave loop)\n");
scanf("%le",&tau) ;
if (tau > 0)

sum_yData = 0; Sum_yProd = 0; sum_yFit = 0;
A = 1; /* for clarity in definition of DIST */
for (k = 1; k <= ND; k++) /* loop over data */

DisC[k] = DIST(Time,k,A,tau);
weight = l/(DisR[k]*DisR[k]);
sum_yData = sum_yData + weight*DisR[k]*DisR[k];
sum_yProd = sum_yProd + weight*DisR[k]*DisC[k];
sum_yFit = sum_yFit + weight*DisC[k]*DisC[k];

Acalc = sum_yProd/sum_yFit; /* best-fit */
Atau = Acalc*tau;
obj = sum_yData - Acalc*Acalc*sum_yFit;
printf("tau,A,A*tau,obj: "); /* obj is per data point */
printf("%8.21f %8.21f %8.21f %8.41e\n",

tau,Acalc,Atau,obj/ND);
for (k=l; k<=ND; k++) /* loop for normed calculation */

DisC[k] = Acalc*DisC[k];
dif = DisR[k]-DisC[k];
printf("%i %8.21f %8.21f %8.21f %8.21f\n",

k,Time[k],DisR[k],DisC[k],dif);
fprintf(fout, "%i %8.21f %8.21f %8.21f %8.21f\n",

k,Time[k],DisR[k],DisC[k],dif);
} /*end k loop*/
} /* end tau>0 loop */
} /* end while (tau>0) loop */

} /* end choice loop */

7.2 FIRST-ORDER LINEAR EQUATIONS: WORLD-RECORD SPRINTS 233

double DIST(Time,k,A,tau)
/* Distance vs Tim formula for world-record sprints */
double Time[],A,tau;
int k;

double length;
length = A*tau*(Time[k]-tau*(l-exp(-Time[k]/tau)));
return length;

As a check on the correctness of your formulas, it is a good idea to try the para-
meters that Keller used with the men’s 1972 records up to 200m. These are
 = 0.93 s and A = 12.2 m s-2, thus = 11.0 m s-1. These are the parameters
used to generate the fit shown in Figure 7.1. By running World Record Sprints
with the men’s 1972 data you may verify that there is a marginally better set of pa-
rameters for these data.

Because the model is not expected to hold past about 200 m, and because the
only official race distances are now 100 m and 200 m, one should not attempt to
find a best-fit from only these two distances. Also, there is about a 0.5-s penalty
in a 200-m race if it is held on a track with a turn. In all the analysis results quoted
here 0.5 s was subtracted from the 200-m times for races on turning tracks for both
men and women to approximate the 200-m time on a straight track, a correction jus-
tified by looking at the 200-m records for 1968.

Exercise 7.7
(a) Code, check, and run World Record Sprints for the men’s 1972 data
given in Table 7.1. Search on in order to verify that the best-fit parameters
are =O.93+0.02 s, A = 11.8 m s-2, since = 11.0 m s-1.
(b) Input the men’s 1991 records for the 100-m and 200-m sprints, adjusting
the times of the latter by subtracting 0.5 s, as justified above. Use the new
value of in order to show that the best value of A is unchanged, since still
A = 11.0 m s-1, within the validity of the model and the uncertainty in .
(c) Calculate the average speeds for the mens’ 1972 records and compare them
graphically with the Keller-model prediction (7.11). Show that the men’s aver-
age speed is about 10.5 ms-l for a 200-m dash.
(d) While I was preparing this book, Carl Lewis of the USA lowered the record
time for the 100-m sprint from 9.92 s to 9.86 s. Use this time with the other
data for men in Table 7.1 in order to see what effect this has on the best-fit
values of and A. n

234 INTRODUCTION TO DIFFERENTIAL EQUATIONS

FIGURE 7.2 Average speeds for world-record sprints as a function of time for men in 1972

(solid points and solid line), women in 1968 (crossed circles and dotted line), and for women in

1991 (asterisks and dashed line). The lines are computed using the best fits to the Keller model.

The average speeds for races that are run in a time T are shown in Figure 7.2,
Note the approximately linear increase in speed (constant acceleration) for the first
second of the race, then the smooth approach to the steady speed (no acceleration) as
the duration of the race increases.

Now that we have examined the records for the performance of male athletes, it
is of interest to complement them with an analysis of the data for top female athletes.

Women sprinters are getting faster

Although Keller did not analyse the data for women sprinters, there are adequate rec-
ords for several of the distances, both in 1968 and 1991, as given in Table 7.1.
Therefore we can make a similar analysis of the women’s records as for the men’s
records. By contrast with the men’s records, which Exercise 7.7 showed have not
resulted in improvements within the validity of the model, the women athletes have
improved by about 5% over 20 years, as we now demonstrate.

Exercise 7.8
(a) Input to the program World Record Sprints the women’s 1968 records
given in Table 7.1, subtracting 0.5 s from the time for the 200-m race to correct
for the track curvature. Show that the best value of = 0.78 s and of A is
12.1 m s-2, since = 9.45 m s-l, which is about 14% slower than the male
sprinters.

7.3 NONLINEAR DIFFERENTIAL EQUATIONS: LOGISTIC GROWTH 235

(b) Input the women’s 1991 records from Table 7.1, again correcting for the
curvature of the track. Using = 0.78 s, derive the best-fit value of A as
12.9 m s-2, since the speed has increased to = 10.1 m s-l, a 7% improve-
ment in 23 years, or about 6% if scaled uniformly for 1972 to 1991.
(c) Calculate the average speeds for the women’s 1968 and 1991 records, then
compare them graphically with the Keller-model prediction (7.1l), as in Fig-
ure 7.2. Show that the women’s average speed has increased from about
9.1 m s-1 to about 9.75 m s-l over a 200-m dash, a 7% improvement.
(d) Estimate by linear extrapolation the decade in which women’s sprint
performances are predicted to match those of men sprinters. Predict that times
for 100 m will match by about 2020 and for 200 m by about 2040. n

Athletic improvements for women compared to men are discussed by Whipp and
Ward. The pitfalls of the linear extrapolations they used have been emphasized by
Eichtenberg. The relatively slow increase in athletic performance of male sprinters
compared with that of female sprinters over the past two decades might suggest that
the speed limits of human sprinting have been essentially reached by males. This
question and other constraints to improving athletic performance are discussed in the
article by Diamond.

7 . 3 NONLINEAR DIFFERENTIAL EQUATIONS:
LOGISTIC GROWTH

In this section we set up a nonlinear differential equation that is often used to model
the growth of biological populations or other self-limiting system, such as a chemi-
cal system without feedback of chemical species. We first set up the differential
equation, then we explore its properties both analytically and numerically, before
showing how the equation may be generalized.

The logistic-growth curve

Although exponential-growth equations appear often in science, such growth cannot
continue indefinitely. The corresponding differential equations must be modified so
that increasing inhibitory effects take place as time goes by. For example, in an elec-
tronic circuit this damping could be obtained by having negative feedback propor-
tional to the output. In ecology, the population dynamics of natural species often
has self-generated or external constraints that limit the rate of growth of the species,
as described in the introductory-level article on mathematical modeling by Tuchin-
sky. Chapter 3 of the classical treatise by Thompson provides a wealth of material
on growth equations.

One interesting differential equation that models such inhibitory effects is the
nonlinear logistic-growth differential equation

(7.14)

236 INTRODUCTION TO DIFFERENTIAL EQUATIONS

in which both and are positive. The first term on the right-hand side gives the
familiar rate of increase proportional to the number present at time t, N(t), and thus
to exponential increase of N with time, since > 0. The second term on the right-
hand side is an inhibitory effect since > 0, and at any time t it increases as the
square of the current value, N(t). The competition between increase and decrease
leads to a long-time equilibrium behavior. In the biological sciences (7.14) is often
called the Verhulst equation, after the nineteenth-century mathematician.

Exercise 7.9
(a) Show that the equilibrium condition DtN = 0 is satisfied by setting the
right-hand side of (7.14) to zero to obtain the solution for the equilibrium N
value as Ne = , so that (7.14) can be rewritten as

(7.15)

(b) Noting that at early times such that N(t)/Ne << 1 we have the equation for
exponential growth, and that for long times the slope tends to zero, assume a
solution of the logistic-growth equation (7.14) of the form

(7.16)

By using the immediately preceding arguments, show that A = Ne.
(c) Show that the assumed form of the solution satisfies the original differential
equation (7.14) for any value of B.
(d) If the number present at time zero is N (0), show that this requires
B = Ne/N(0) - 1. n

If we assemble the results from this exercise, we have that the solution of the differ-
ential equation for a quadratically self-inhibiting system has the number present at
time t, N(t), is given by

(7.17)

where Ne is the equilibrium population and N(0) is the initial population. Equation
(7.17) describes logistic growth.

The function N(t) comes in various guises in various sciences. In applied math-
ematics, and ecology it is called the logistic, sigmoid, or Verhulst function. In
statistics it is the logistic distribution, and in this context t is a random variable. As
discussed in the book edited by Balakrishnan, its first derivative resembles the
Gaussian distribution introduced in Section 6.1. In statistical mechanics, t usually
represents energy, and N(t) is called the Fermi distribution. It is called this (or the
Woods-Saxon function) also in nuclear physics, where t is proportional to the dis-
tance from the center of the nucleus and the function measures the density of nuclear
matter. In this context, many of the properties of N(t) are summarized in the mono-
graph by Hasse and Myers.

In order to explore the properties of logistic growth, it is convenient to recast
(7.17) so that only dimensionless variables appear.

7.3 NONLINEAR DIFFERENTIAL EQUATIONS: LOGISTIC GROWTH 237

Exercise 7.10
(a) Define the number as a fraction of the equilibrium number as

(7.18)

and change the time unit to

(7.19)

Show that the logistic differential equation can now be written in dimensionless
form as

(7.20)

in which there are no parameters.
(b) Show that the solution to this equation can be written as

in which n (0) is obtained from (7.18). n

(7.21)

Graphs of n (t’) against t’ are shown in Figure 7.3 for several values of n(0).
If the system is started at less than the equilibrium population, that is if n(0) < 1 ,
then it grows towards equilibrium, and the opposite occurs for starting above equi-
librium, as for n(0) = 1.25 in Figure 7.3. By contrast, if there is no feedback then
the system population increases exponentially for all times, as shown in Figure 7.3
for an initial population of 0.125.

FIGURE 7.3 Solutions to the logistic differential equation (7.20) for various initial numbers as

a fraction of the equilibrium number n (0). The dotted curve shows exponential growth without

feedback for an initial number of 0.125.

238 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Now that we have understood how to model feedback by a nonlinear differential
equation, it is interesting to explore logistic growth in more detail.

Exploring logistic-growth curves

Curves of logistic growth have many interesting properties, many of which are not
self-evident because of the nonlinear nature of the differential equations (7.14) and
(7.20). Several of the properties that we derive are important in studying ecological
population dynamics, electronic feedback, and the stability of systems under distur-
bances. In order to simplify matters in the following, we use the scaled population,
n, and we relabel the dimensionless time variable as t rather than t'.

Exercise 7.11
Show that if n (0) < 1, the logistic curve n(t) has a point of inflexion (where
n” = 0) at the scaled time t = 1n l/n (0) - 1]. This behavior may be visible in
Figure 7.3, and it justifies another name often given to this curve, the S curve.
Show that if n (0) > 1, there is no point of inflection. n

Even though for the logistic-growth curve the growth is limited, the following
exercise may convince you that prediction of the final population from observations
made near the beginning of the growth period is not straightforward.

Exercise 7.12
(a) From the differential equation (7.14) show that Ne, can be predicted from the
populations N1, N2 at times t1 and t2 and the growth rates at these times N1 and
N2 according to

(7.22)

(b) Explain why an accurate value of Ne is difficult to obtain using this equation
applied to empirical data with their associated errors. Consider the discussion in
Section 4.3 about unstable problems and unstable methods. n

This exercise highlights the difficulties of deciding whether a natural species needs
to be protected in order to avoid extinction. The question becomes especially inter-
esting in the ecology of depleting resources, especially when one considers the fol-
lowing modification and application of the logistic-growth equation (7.14) to exam-
ine the question of harvesting nature’s bounty.

Exercise 7.13
Consider the harvesting of a biological resource, such as fish, which might fol-
low the logistic-growth curve (7.14) if undisturbed. Suppose, however, that the
resource is harvested at a rate proportional to its present numbers.

7.3 NONLINEAR DIFFERENTIAL EQUATIONS: LOGISTIC GROWTH 239

(a) Show that the logistic-growth differential equation is then modified to

(7.23)

where H (positive) is the harvesting fraction rate.
(b) Show that the logistic equation is regained, but with a reduced constant de-
termining the equilibrium time

(7.24)

and a reduced equilibrium population

(7.25)

(c) Verify that the model predicts that the resource will become extinct if
 Explain this result in words. n

The logistic-growth equation and its relation to the stability of iteration methods
and to chaos is considered in Chapter 5 of Hubbard and West’s book and software
system, in Chapters 4 and 8 in Beltrami’s book, and in the chapter “Life’s Ups and
Downs” in Gleick’s book. A discussion of solutions of the logistic equation, their
representation in a phase plane, and the effects of lags are given in Haberman’s book
on mathematical modeling. Quasi-chaotic behavior induced by discretizing the solu-
tion of (7.15) is examined in the article by Yee, Sweby, and Griffiths.

Generalized logistic growth

Suppose that instead of quadratic feedback to stabilize the population, as we have in
(7.14), there is feedback proportional to some power of n, say the (p + 1) th power.
That is, (7.14) becomes the generalized logistic equation

(7.26)

In mathematics this is sometimes called Bernouilli’s equation. By following
simple analytical steps, you can find directly the solution of this equation.

some

Exercise 7.14
Divide throughout (7.26) by n , then convert the derivative to a logarithmic de-
rivative and introduce a new time variable

Also define

(7.27)

(7.28)

Show that np, satisfies the differential equation

240 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(7.29)

which is a differential equation independent of the feedback power p. Thus, ar-
gue that, using the power factors given in (7.27) and (7.28), all the solutions of
the generalized logistic equation are self-similar and can be obtained from that for
p = 1, namely (7.21). n

The solution of the generalized logistic equation (7.26) may therefore be written

(7.30)

where, as in (7.18), we have n as the fraction of the equilibrium population, and t'
as the scaled time, This behavior is quite remarkable in that it is the particular
form of the first-order nonlinear differential equation (7.14) that allows such a gen-
eralized solution to be obtained.

The behavior of the generalized logistic curve as a function of the feedback
power p in (7.30) is shown in Figure 7.4 for n (0) = 0.5; that is, the initial popu-
lation is one-half the final equilibrium population. As you would guess, as p in-
creases, the population approaches the equilibrium value n = 1 more rapidly.

Exercise 7.15
Set up a calculation to compute formula (7.30) for given n (0) and p. For a
system that starts off above equilibrium population, n (0) > 1, run this calcula-
tion for a range of t' similar to that shown in Figure 7.4. Check your results
against the curve shown in Figure 7.3 for p = 1, n (0) = 1.25. n

FIGURE 7.4 Generalized logistic equation solutions (7.30) for feedback proportional to the

(p + 1) power of the number present, shown for n (0) = 0.5 and four values of p.

7.4 NUMERICAL METHODS FOR FIRST-ORDER EQUATIONS 241

The population growth as a function of time in units of is well behaved even for
a non-integer power, such as with p = 1/2 in Figure 7.4, for which the negative
feedback in (7.26) is proportional to the slower n3/2 power, which is more gradual
than n2 feedback (p = 1) in the conventional logistic-growth equation (7.14).

Our generalization of the logistic equation to (7.26), with its self-similar solution
(7.30), does not seem to have been much investigated. The function (7.30) has
been used as the Type I generalized logistic distribution, as discussed by Zeiterman
and Balakrishnan in the statistics monograph edited by the latter author. For detailed
applications in statistics, use of logistic distributions is described in the book by
Hosmer and Eemeshow.

7 . 4 NUMERICAL METHODS FOR FIRST-ORDER EQUATIONS

As we learned in the preceding sections, if an analytical solution of a differential
equation is possible, the method of solution is often specific to each equation.
Numerical methods for differential equations, by contrast, can often be applied to a
wide variety of problems. But, such methods are not foolproof and must be applied
carefully and thoughtfully. (If numerical recipes are used by those who have not
graduated from cooking school, then the dish may be quite unsavory.)

Our aim in this section is to emphasize basic principles and to develop general-
purpose methods for solving first-order differential equations. In Project 7 in Sec-
tion 7.5 we develop a program for the first-order Euler method. Numerical meth-
ods for differential equations are investigated further in Sections 8.3 - 8.6, where
we emphasize second-order equations and include second-order Euler methods.

In numerical methods for differential equations, one often speaks of “integrating
the differential equation.” The reason for this terminology is that since

(7.3 1)

we may consider solving a differential equation as an integration process. Indeed,
this is often the formal basis for developing numerical methods.

In what follows we often abbreviate derivatives using the prime notation, in
which y''(x)=Dxy(x) for the first derivative, and the number of primes indicates
the order of the derivative. Past the third derivative, numerals are used, (3), (4), etc.

Presenting error values

Errors in numerically estimated
present the actual error in the y

values can be presented in two ways. The first
value at x = xk, which we call ek and define as

is to

(7.32)

in which the first quantity is the exact value at xk and the second is the numerically
estimated value at this point. Unlike random errors of experimental data, but like
their systematic errors, the value of ek is usually reproduced when the calculation is

242 INTRODUCTION TO DIFFERENTIAL EQUATIONS

repeated. (An exception is a Monte Carlo error estimate whenever different sam-
pling of random numbers is made from one calculation to the next.) The sign of ek

is therefore significant, so we will be systematic in using definition (7.32).
The second way of presenting errors is as the relative error, rk, defined by

(7.33)

which we use only when yk is not too close to zero. Sometimes we give 100 × rk,
the percentage error, or we show errors scaled by some power of 10. Clearly, we
usually have only estimates of ek or rk, rather than exact values, as we indicate by
using the sign when appropriate. In the program Numerical DE-1 in Sec-
tion 7.5 the program presents the errors in both ways.

Euler predictor formulas

A predictor formula for the numerical solution of a differential equation is one in
which previous and current values are used to predict y values at the next x values.
The general first-order differential equation can be written

(7.34)

wheref is any well-behaved (usually continuous) function of x and y, but it should
not contain any derivatives of y with respect to x past the first derivative. Suppose
that y is known for a succession of x values (equally-spaced by an amount h, to
make things simple) up to x = xk. We now describe two basic ways of advancing
the solution at xk to that at xk+1 = xk + h. For notational simplicity we abbreviate
fk = f(xk, yk). We also use the abbreviation yk = y (xk), with a similar notation
for derivatives.

For a working example we choose a function for which the solution is well-
known and simple, but which illustrates the various methods and their errors. We
work with

(7.35)

for which we already know a solution to (7.34), namely

(7.36)

in which we have chosen the boundary condition y (0) = 1, so that actual errors and
relative errors will coincide when x is near zero. This choice off is also simple to
deal with in estimating errors because all derivatives of y are just equal to y itself.

The first methods used for our first-order differential equation (7.34) are the so-
called Euler predictor formulas. In the first version of this method we approximate
the first derivative on the left-hand side of (7.34) by the forward-difference formula
(4.25), namely

7.4 NUMERICAL METHODS FOR FIRST-ORDER EQUATIONS 243

(7.37)

If h is small enough we may get a good approximation to y at the next x value by
inserting this in (7.34) and solving for yk+l as

(7.38)

This forward-difference predictor formula we call the forward Euler predictor for a
first-order differential equation.

An estimate of the error in each step of this predictor is the next term in the Tay-
lor expansion of yk+1. From (7.34) and the general Taylor series formula (3.6), this
estimate is

(7.39)

For the working example in which we use the exponential function (7.36) note that
y (X + h) = ex+h. Therefore

(7.40)

is the actual error, which agrees with the estimate (7.39) through h2 terms.
Before turning to numerical comparisons. we consider a second Euler predictor

formula. As shown in Section 4.4, the central-difference derivative is more accu-
rate than the forward-difference derivative. We therefore expect that using the cen-
tral differences in (7.34) will produce a more-accurate prediction of the next y
value. Try it and see.

Exercise 7.16
Show that using central differences produces the predictor formula

(7.41)

in which the error estimate is

(7.42)

obtained from the first neglected term in the Taylor expansion. n

Formula (7.41) we call the central Euler predictor for solving a first-order differen-
tial equation.

For our working example of a first-order equation, with f(x,y) = y, the error
estimates are particularly simple, since the exact value, given our initial value of
y (0) = 1, is just y (x) = ex. You can therefore work out relative errors and com-
pare the efficiencies of the two methods for yourself.

244 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Exercise 7.17
(a) Consider the relative errors in the forward predictor formula (7.38), rk(f),
and in the central predictor formula (7.41), rk(c), for the working example.
Show that these error estimates for each step do not depend on x or y, and that
for h = 0.05 are about 1.25 × 1O-3 and 0.042 × 10-3, respectively.
(b) Estimate the efficiency of the central-difference method compared to the
forward-difference method for the working example as the ratio of step sizes hc
and hf required for about the same errors in both methods. Show that the rela-
tive efficiency is about and show that this is at least a factor of 5 for
hc = 0.05. n

The above formulas advance the solution of the differential equation and provide es-
timates of the error incurred at each step.

Testing the Euler predictors

We now have two predictor formulas for solving first-order differential equations,
formulas (7.38) and (7.41), together with error estimates for each step, (7.39) and
(7.42). It is time to check these out numerically.

We take a look forward to the completed program for the first-order solutions
that is given in Section 7.5, concentrating on the forward- and central-predictor
methods that we have just analyzed. We use this with the exact analytical solution
y (x) = ex for our working example, as explained above. It is probably easiest to
first enter the definition, control and input-output parts of the program Numerical
DE_1 from Section 7.5, and to write only the code cases for choice = 1 and
choice= 2, the forward and central predictors, respectively. By doing this, you
will be coding something that you understand and you will exercise your mind rather
than just exercising your fingers.

Exercise 7.18
(a) Key in all parts of the program Numerical DE_1 given in Section 7.5, ex-
cept case 3 and case 4, which we consider in Section 7.5. Note that the
main program refers to f in (7.34) as FUNC . For general use, you will eventu-
ally substitute the coding for the function of interest to you. For our working
example the function is y. Don’t be tempted to anticipate the exact value by us-
ing exp (x) instead.
(b) Run this version of the program for an interesting range of x values. For
simplicity xmin = 0, xmax = 4 . 0 , and h = 0.05, are reasonable choices for
getting started. As usual, there is a file (NuMDE-1) to record your output for use
in a spreadsheet or graphics application.
(c) Add the sections of code that allow comparison of the numerical values just
computed with analytical values for the solution of the differential equation.
These values are computed by function ANALYT. Run Numerical DE_1 with
compare = y (for ‘yes’), and check your output against the values shown
graphically in Figure 7.5. n

7.4 NUMERICAL METHODS FOR FIRST-ORDER EQUATIONS 245

FIGURE 7.5 Euler predictor solutions of the first-order differential equations (7.34), (7.35) with

boundary condition y (0) = 1. The solid line shows the analytical solution, exp (x), the dashed

line shows the percentage error in the forward-difference numerical solution, and the dotted line

shows 10 times the percentage error in the central-difference solution.

Sample output from Numerical DE_1 for the Euler predictor methods (cases 1
and 2), using the parameters suggested in Exercise 7.18, is shown in Figure 7.5.
The relative errors in the forward- and central-difference Euler predictors are also
shown, as err(f) and err(c), respectively.

As you will notice from your output and from Figure 7.5, solution of the first-
order equation by using the central-difference predictor has a much smaller accumu-
lated relative error (a factor of 60 less at x = 4) than does the forward-difference
predictor. From point to point the errors are in agreement with the estimates (7.39)
and (7.42), respectively. The accumulated error after many steps is generally much
more difficult to estimate, because errors may cancel in different regions of x. In
our working example of the monotonically-increasing function exp (x) the error just
accumulates linearly with the number of steps. This is clear from the linearity of the
two error curves in Figure 7.5.

Adams predictor formulas

In the Euler predictor formulas for numerical solution of the first-order differential
equation (7.34) that we developed and applied in the two preceding subsections, the
methods rely on estimating derivatives. An alternative is to integrate (7.34) once
with respect to x, then to approximate the integral of the right-hand side.

We now develop two examples of such formulas, beginning with the original
first-order differential equation

(7.43)

246 INTRODUCTION TO DIFFERENTIAL EQUATIONS

We integrate this equation from xk to xk+l, to obtain

(7.44)

This equation is, like many beautiful things, true but not immediately useful. Hid-
den inside the integrand are all the unknown values of y in the interval between the
k th and the (k + 1) th value, which is just what we are trying to find. Therefore,
some practical means of approximating the integral is needed.

Our first approximation of the integral rule is simply to use the trapezoid rule
from Section 4.6, namely

(7.45)

which has an error of order h3. If this approximation to the integral is used in
(7.44), then we have an implicit equation for yk+l, since it then appears on both the
right- and left-hand sides of (7.44). An iterative solution of this equation may be
tried. That is, a trial value of yk+1 is used in f to predict its value on the left-hand
side. We indicate this procedure by writing

(7.46)

where the order of the iteration, n 0. Note that iterative solution of this equation to
a given limit does not guarantee a more-correct solution of the original differential
equation than that provided by the trapezoid rule. In Section 7.5 we refer to (7.46)
as the Adams-trapezoid predictor.

If the integral in (7.44) is estimated by a formula that is more accurate, then the
solution of the differential equation will be more accurate for a given step size h.

Exercise 7.19
Use Simpson’s rule, (4.45), for the integral to derive the estimate

(7.47)

which is to be solved by iterating on n until a desired convergence of y value is
reached. n

The error in this formula, once iterated to convergence, is just the error in the Simp-
son integration rule, which is of order h5. We refer to formula (7.47) as the
Adams-Simpson predictor.

7.5 PROGRAM FOR SOLVING FIRST-ORDER EQUATIONS 247

Formulas in which combinations of integration-iteration methods are used are
called Adams closed formulas or Adams-Moulton formulas. We illustrate their use
in the following project. It would be desirable to follow the extrapolation (predictor)
step by a consistent corrector step in which the original differential equation is used
to improve the solution accuracy. Such predictor-corrector methods are described in
Chapter 8 of Vandergraft and in the book by Zill. Jain’s treatise on numerical solu-
tion of differential equations contains much more than you will probably ever use to
meet your needs.

In the next section we describe a program that you can use to explore numerical-
ly the four solution methods that we have developed.

7 . 5 PROJECT 7: PROGRAM FOR SOLVING
FIRST-ORDER EQUATIONS

In the preceding section we worked out predictor formulas for numerical solution of
first-order differential equations of the kind (7.34). We also gained experience with
the Euler forward- and central-predictor methods, anticipating the program that is
presented in this section. We now supplement these methods with the numerics and
coding of the Adams integration formulas, (7.46) and (7.47), derived in the preced-
ing subsection. We first describe the parts of the program that relate to the Adams
methods, we describe how to test the methods, then we explore use of the program
for solving differential equations numerically.

Programming the differential equation solver

The Adams predictor methods involve some extra steps in programming and coding
than are needed for the Euler predictors, so we now describe these steps.

The realities of computing require us to be more specific about the iteration pro-
cedures (7.46) and (7.47), because we must have a stopping criterion. In the pro-
gram Numerical DE_1 for cases 3 and 4 (the Adams predictors) only one of two
stopping criteria needs to be satisfied for the iteration on n to quit. The first criterion
is that no more than nmax iterations are made, where nmax is an input parameter
that forces a definite stopping of the iteration. The alternative criterion is that the
fractional change in the y value since the last iteration should be less than an input
value epsilon.

Exercise 7.20
(a) Explain why it is both inefficient and uninformative to use nmax as the only
stopping criterion in the iterations (7.46) and (7.47).
(b) Explain why it is dangerous (for the computer) to use only epsilon as the
iteration-stopping criterion. n

248 INTRODUCTION TO DIFFERENTIAL. EQUATIONS

Since either criterion used alone is ineffective, but their combination is informative
and prudent, in Numerical DE_1 if either criterion is satisfied, the iteration stops.
This explains in case 3 and 4 the while (&&) statements for the iteration
loops, where && is C-language for the logical “and” operation.

The comparison with epsilon is straightforward for the Adams-trapezoid case
(3), but for Adams-Simpson (case 4) it is more complicated because we are iterating
on two adjacent k values. A reasonable compromise that is made in the program is
to average the absolute fractional differences for these two values. Experience
shows that if only one difference is used and the fractional difference for the other is
ignored, then the error for the ignored k values tends to grow unreasonably quickly.
Averaging forces a moderating compromise.

In either Adams method, if epsilon is made comparable to the number of sig-
nificant figures that your computer is using, there will be a complicated and con-
fusing interplay between convergence of the iteration and computer limitations from
subtractive cancellation and other roundoff problems of the kinds examined in
Section 4.3.

So, with all these warnings we should be ready to plunge into the maelstrom of
numerical mathematics. Here is the complete program.

PROGRAM 7.2 Numerical solution of first-order differential equations by Euler and Adams
predictor methods.

#include <stdio.h>
#include <math.h>
#define MAX 201

/* Numerical DE_l; Euler & Adams Predictors */
/* for First-Order Differential Equations */
FILE *fout;
FILE *fopen();
double y[MAX],err[MAX],relerr[MAX];
double xmin,xmax,h,epsilon,x,ylast1,ylast2,absdiff,analytical;
int choice,Nk,nmax,k,kmin,kstep,n;
char wa;
double FUNC(),ANALYT();

printf("Numerica1 DE; First Order\n");
printf("Write over output (w) or Add on (a):\n");
scanf("%s",&wa); fout = fopen("NUMDE_1",&wa);
choice = 1;
while (choice > 0)

printf("\nChoose method of solution (zero to quit):\n");

7.5 PROGRAM FOR SOLVING FIRST-ORDER EQUATIONS 249

printf("1 Euler-forward predictor;\n");
printf("2 Euler-central predictor;\n");
printf("3 Adams-trapezoid predictor;\n");
printf("4 Adams-Simpson predictor;\n");
scanf("%i",&choice) ;
if (choice == 0)

{
printf("\nEnd Numerical DE; First Order"); exit(O);
}

if (choice < 0 || choice > 4)
{
printf("!! choice=%i only 1,2,3 or 4\n",choice);exit(l);
}

printf("Input xmin, xmax, h\n");
scanf ("%1e%1e%1e",&min,&xmax,&h) ;
Nk = (xmax-xmin)/h+l.l;
if(Nk>MAX-1)

{
printf("!! # of xsteps, %i, > %i\n",Nk,MAX-1); exit(l);

}
switch (choice) /* Boundary values */

{
case 1: /* Euler-forward predictor */

{
printf("1: Input y(xmin);\n");
scanf("%le",&y[l]);
kmin=l; kstep = 1; break;
}

case 2: /* Euler-central predictor */
{
printf ("2: Input y(xmin),y(xmin+h);\n");
scanf ("%le%le",&y[l],&y[2]);
kmin=2; kstep = 2; break;
}

case 3: /* Adams-trapezoid predictor */
{
printf("3: Input y(xmin),nmax,epsilon;\n");
scanf("%le%i%le",&y[l],&nmax,&epsilon) ;
kmin=l; kstep = 1; break;
}

case 4: /* Adam-Simpson predictor */
{
printf("4: Input y(xmin),y(xmin+h),nmax,epsilon;\n");
scanf("%le%le%i%le",&y[l],&y[2],&nmax,&epsilon);
kmin=2; kstep = 2; break;

250 INTRODUCTION TO DIFFERENTIAL EQUATIONS

x=xmin; /* Recurrence
for (k = kmin k < Nk; k = k+kstep)

{
switch (choice)

{
case 1: /*

{
y[k+l] =

}
case 2: /*

{
x = x+h;
y[k+l] =
y[k+2] =
}

case 3: /*

Euler-forward predictor */

in x */

y[k]+h*FUNC(x,y,k); break;

Euler-central predictor */

y[k-1]+2*h*FUNC(x,y,k);
y[k]+2*h*FUNC(x+h,y,k+l); break;

Adams-trapezoid predictor */
{ /* Start iteration */
y[k+l] = y[k]; n = 1; absdiff = 1;
while (n <= nmax && absdiff > epsilon) /* iterate */

{
ylast1 = y[k+1];
y[k+1] = y[k]+

(FUNC(x,y,k)+FUNC(x+h,y,k+l))*h/2;
absdiff = fabs((y[k+1]-ylast1)/ylast1);
n = n+l;
}

break;

}
case 4: /* Adams-Simpson predictor */

x = x+h; /* Start iteration */
y[k+1] = y[k]; y[k+2] = y[k]; n = 1; absdiff = 1;
while (n <= nmax && absdiff > epsilon) /* iterate */

ylast1 = y[k+l]; ylast2 = y[k+2];
y[k+1] = y[k-1]+
(FUNC(x-h,y,k-1)+4*FUNC(x,y,k)+FUNC(x+h,y,k+l))*h/3;
y[k+2] = y[k]+
(FUNC(x,y,k)+4*FUNC(x+h,y,k+l)+FUNC(x+2*h,y,k+2))*h/3;
/* For convergence average fractional diferences */
absdiff = (fabs((y[k+1]-ylast1)/ylast1)+

fabs((y[k+2]-ylast2)/ylast2))/2;

7.5 PROGRAM FOR SOLVING FIRST-ORDER EQUATIONS 251

n = n+l;
}

break;
}

}

x = x+h;
} /* end k for loop */

printf("Comparison with analytical values\n");
x=xmin;
for (k = 1; k <= Nk; k++)

analytical = ANALYT(x);/* analytical and error */
err[k] = analytical-y[k];
relerr[k] = lOO*err[k]/analytical;
x = x+h;
printf("%6.2le %10.6lg %10.6lg %10.6lg\n",

x,y[k],err[k],relerr[k]);
fprintf(fout, "%6.2le %10.6lg %10.6lg %10.6lg\n",

x,y[k],err[k],relerr[k]);
} /* end k output loop */

} /* end choice while loop */

double FUNC(x,y,k)
/* dy/dx = FUNC */
double Y[];
double x;
int k;
{
double value;

/* Using working example of f=y for FUNC */
value = y[k];
return value;
}

double ANALYT(x)
/* Analytical solution of the differential equation */
double x;
{
double value;

/* Using working example of y=exp(x) for ANALYT */
value = exp(x);

252 INTRODUCTION TO DIFFERENTIAL EQUATIONS

return value;
}

Exercise 7.21
(a) Key in those parts of Numerical DE_-1 thatrefer to case 3 and case 4,
assuming that you did Exercise 7.18. (Otherwise, key in the complete pro-
gram.) Note that the main program refers to f in (7.34) as FUNC . For use after
testing you will substitute the coding for the function of interest to you. For our
working example the function is y. Don’t anticipate the exact value by using
exp (x) instead.
(b) Run this version of the program for an interesting range of x values. For
simplicity xmin = 0,xmax = 4.O and h = 0.05, as in Exercise 7.18, are
reasonable choices. The file (NUMDE_1) will record your output for use in a
spreadsheet or graphics application. The iteration-control values used in Fig-
ure7.6 are nmax = 5 and epsilon = 10-3, with the latter convergence cri-
terion usually being satisfied after n = 3 iterations.
(c) Compare the numerical values just computed with analytical values for the
solution of the differential equation that are computed by function ANALYT. Run
Numerical DE_1 to check your output against the values shown graphically in
Figure 7.6. n

The exponential solution of our working-example differential equation is shown in
Figure 7.6 for the two Adams predictor methods, along with the relative errors for
the two integration methods (trapezoid and Simpson) shown as err(trap) and
err(Simp) respectively. Note the major error reduction, by about a factor of 100,
for Adams-trapezoid method over Euler-forward method and for Adams-Simpson
over Euler-central. This is not all gain without pain, because if n iterations are used
in the Adams methods, the computing time is increased by about the same factor.
Dependent on how complex it is to calculate FUNC f, it might sometimes be more
efficient for the same numerical accuracy to use a smaller stepsize, h, in one of the
Euler methods. Try it and compare.

Exploring numerical first-order equations

Now that we have gone to the trouble to develop a practical program for numerical
solution of first-order differential equations, Numerical DE_1, it is interesting to
explore other equations with it.

The first equation that I suggest trying is

(7.48)

This has the well-known exact solution

(7.49)

7.5 PROGRAM FOR SOLVING FIRST-ORDER EQUATIONS 253

FIGURE 7.6 Adams-predictor solutions of the first-order differential equations (7.34), (7.35)

with boundary condition y (0) = 1. The solid line shows the analytical solution, exp (x), the

dashed line shows l02 times the percentage error in the Adams-trapezoid numerical solution, and the

dotted line shows 103 times the percentage error in the Adams-Simpson solution.

Because of the oscillatory behavior and the initial decrease of the function as one
moves away from x = 0, we can see whether the error buildup is sensitive to the
oscillatory behavior, something that we could not do for the exponentially increasing
function used as the working example.

For simplicity, starting at x = 0 and going to just over x = is a good
choice. This allows us to see how nearly periodic is the numerical solution of
(7.48). Because the exact solution becomes zero if x is an odd multiple of the
output is less confusing if actual errors, ek from (7.32), are used instead of the rela-
tive errors, rk from (7.33), shown in the preceding computing exercises in this chap-
ter.

Exercise 7.22
(a) In Numerical DE_1 modify function FUNC to assign -sin(x) to value
for the first derivative, and also modify function ANALYT to assign cos (x) to
value for the analytical solution of the differential equation (7.48). Change the
file name to SINDE_1 so that the file output from this problem and from the ex-
ponential-function problem do not become jumbled.
(b) Run the modified program over an interesting range of x values, from say
xmin = 0 to xmax = 7, with h = 0.05. Use each method of solution,
choice from 1 to 4 to study the accuracy of the four predictor methods of
solving the differential equation. In methods 3 and 4 iteration-control values of
nmax = 5 and epsilon = 10-3 are reasonable. For all methods y [1] = 1,
while the program will request for methods 2 and 4 the second starting value (for
h = 0.05) y[2] = 0.9987503 to seven decimals.

254 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(c) Make a graphical comparison of the predicted y values over the range calcu-
lated. With the above accuracy parameters, these will probably be indistinguish-
able at the resolution of your graphics device. To point out the differences be-
tween the results from each method of solution, display the actual errors on a
convenient scale. If you use relative errors, there will be anomalous spikes near
the zeros of cos (x). Either believe me, or try it and see. n

Figure 7.7 displays the numerical solution of the linear differential equation (7.48)
and the actual errors from the four methods that we have developed. Note carefully
the scale factors that have ben applied before plotting the errors Generally, the er-
rors increase in magnitude as the function decreases, and the errors in the Euler
methods, which are based on derivatives (f and c), are greater than those in the
Adams methods (trap and Simp), which are based on integration-iteration.

For the Adams-Simpson method the errors indicated by err (Simp) are actually
alternating errors, for the even and odd k values in yk. The analysis of such errors
is difficult because the accuracy of the computer, of the computation of the sine
function used in function ANALYT, and of the starting value y2 are all interacting
with the errors of the numerical method. This may not be of much practical conse-
quence because all the errors are about 0.5 × 1O-7 or less, which is about a factor
of 10 million less than the value of the function that is being computed numerically.

Now that you have some experience with numerical solution of first-order differ-
ential equations, you may like to try other equations, such as the world-record-
sprints equation in Section 7.2, the logistic equation in Section 7.3, or an interest-
ing equation from your research and study.

FIGURE 7.7 Solutions of the differential equation (7.48) with boundary condition y (0) = 1.

The solid curve shows the analytical solution cos (x), The curve of long dashes shows 10 times

the error in the forward-difference Euler method, the shorter dashes show 103 times the error in the

central-difference Euler predictor, the dotted curve shows 103 times the error in the Adams-trapezoid

predictor, and the dashed band shows 107 times the error in the Adams-Simpson predictor.

REFERENCES ON FIRST-ORDER EQUATIONS 255

REFERENCES ON FIRST-ORDER EQUATIONS

Balakrishnan, N., Ed. Handbook of the Logistic Distribution, Dekker, New York,
1992.

Beltrami, E., Mathematics for Dynamic Modeling, Academic Press, Boston, 1987.
Diamond, J., “The Athlete’s Dilemma,” Discover, 12, August 1991, p. 79.
Gleick, J., Chaos: Making a New Science, Penguin Books, New York, 1987.
Haberman, R., Mathematical Models, Prentice Hall, Englewood Cliffs, New

Jersey, 1977.
Hasse, R. W., and W. D. Myers, Geometrical Relationships of Macroscopic

Nuclear Physics, Springer-Verlag, Berlin, 1988.
Hosmer, D. W., and S. Lemeshow, Applied Logistic Regression, Wiley, New

York, 1989.
Hubbard, J. H., and B. H. West, Differential Equations, Part 1, Springer-Verlag,

New York, 1991.
Hubbard, J. H., and B. H. West, MacMath: A Dynamical Systems Software

Package for the Macintosh, Springer-Verlag, New York, 1991.
Jain, M. K., Numerical Solution of Differential Equations, Wiley Eastern, New

Delhi, second edition, 1984.
Keller, J. B., “A Theory of Competitive Running, “Physics Today, September

1973, p. 43.
Lichtenberg, D. B., A. L. Julin, and P. H. Sugden, Nature, 356, 21 (1992).
Thompson, D’Arcy W., On Growth and Form, Cambridge University Press, New

York, 1943.
Tuchinsky, P. M., “Least Squares, Fish Ecology, and the Chain Rule,” UMAP

Module 670, in UMAP Modules Tools for Teaching, COMAP, Arlington,
Massachusetts, 1986, pp. 195 - 240.

Vandergraft, J. S., Introduction to Numerical Computations, Academic Press, New
York, 1978.

Whipp, B. J., and S. A. Ward, “Will Women Soon Outrun Men?,” Nature, 355,
25 (1992).

Wolfram, S., Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley, Redwood City, California, second edition, 1991.

Wylie, C. R., and L. C. Barrett, Advanced Engineering Mathematics, McGraw-
Hill, New York, fifth edition, 1982.

Yee, H. C., P. K. Sweby, and D. F. Griffiths, “Dynamical Approach Study of
Spurious Steady-State Numerical Solutions of Nonlinear Differential
Equations,” Journal of Computational Physics, 97, 249 (1991).

Zill, D. G., Differential Equations with Boundary-Value Problems, Prindle, Weber
& Schmidt, Boston, 1986.

256

Chapter 8

SECOND-ORDER DIFFERENTIAL EQUATIONS

Differential equations of second order, both linear and nonlinear, are very common
in the natural sciences and in many applications. In the physical sciences and engi-
neering Newton’s force equations are ubiquitous, and they are second-order equa-
tions in the displacement as a function of the variable x = t, where t denotes time.
In the quantum mechanics of molecules, atoms, and subatomic systems the Schrö-
dinger equation for the wave function of a time-independent state is a second-order
differential equation which is usually also linear. Thus, much of the mathematics
(and therefore much of the computing) that describes dynamics in the natural sci-
ences is encompassed by second-order differential equations.

This chapter builds on the foundation of first-order differential equations that we
laid in Chapter 7, both analytically and computationally. For example, the Euler
predictors developed in Sections 7.4 and 7.5 are now extended to second-order
equations in Sections 8.3 and 8.4. Examples of second-order equations are drawn
from both classical and quantum physics, such as the equations for resonance in
Section 8.1, generalized catenaries in Section 8.2, and the quantum harmonic oscil-
lator in Section 8.5. We introduce some new computing concepts, methods, and
programs that are especially relevant to second-order differential equations, such as
the notion of stiff differential equations (Section 8.6), the Noumerov method for
linear second-order equations (Section 8.3), and the two programming projects for
second-order Euler methods (Project 8A in Section 8.4) and for the Noumerov
method (Project 8B in Section 8.5).

By understanding the materials in this chapter and the preceding, you will have
good preparation for using a wide variety of analytical and computational techniques
involving differential equations, The background that you have acquired should be
sufficient for you to read and use the research literature on differential equations in
applied mathematics and in the natural and applied sciences.

257

258 SECOND-ORDER DIFFERENTIAL EQUATIONS

8.1 FORCES, SECOND-ORDER EQUATIONS, RESONANCES

In this section we review the relations between forces, second-order equations, and
resonances. The background and more details are given in texts such as Part 1 of
Pippard’s treatise on the physics of vibration. The analogies between the differential
equations for mechanical and electrical systems are summarized. Then second-order
equations for free motion are presented, and their solutions are derived and interpret-
ed. This analysis is preparatory to describing forced motion and resonant behavior.
The latter topic is re-examined from the Fourier-transform viewpoint in Sec-
tions 10.2 and 10.3 when discussing the transform of a Lorentzian function that de-
scribes a resonance.

Forces and second-order equations

We summarize here the relation between forces and second-order differential equa-
tions in nonrelativistic classical mechanics. For simplicity of notation, we work im-
plicitly with a single directional component of forces, momenta, and displacements.

Recall that Newton’s equation for the momentum, p, and displacement, y, of a
particle of mass M as a function of time, t, when subjected to a force F can be writ-
ten as a single second-order equation

(8.1)

or, with more information content, as a pair of first-order equations, one for the
momentum

and one for the displacement

(8.2)

(8.3)

The distinction between a single second-order equation and a pair of first-order
equations is also relevant when considering numerical methods for solving second-
order differential equations. In principle, but usually not optimally in practice, any
second-order differential equation can be treated by this two-step process. We illus-
trate the strengths and weaknesses of this procedure by adapting the first-order Euler
methods from Sections 7.4 and 7.5 to solve second-order equations in Sections 8.3
and 8.4. The one-step solution of second-order equations using specially formu-
lated methods is illustrated by the Noumerov method, which is derived in Sec-
tion 8.3 then programmed and used in Section 8.5.

8.1 FORCES, SECOND-ORDER EQUATIONS, RESONANCES 259

The greater information content in the pair of first-order equations is quite clear
in the example of forces, momenta, and displacements. The momentum (or veloc-
ity) components can be measured, and they have dynamical interpretations. Al-
though analytically the momentum can be obtained by differentiating the displace-
ment with respect to time, in a numerical context this is usually not an accurate pro-
cedure, as is clear in the discussions of numerical noise and numerical differentiation
Sections 4.3, 4.4, and 4.5.

Exercise 8.1
Make a list of basic equations in your scientific or engineering discipline. Which
of the equations usually appear as second-order differential equations? For
which of these equations is the interpretation clearer and more meaningful if the
differential equation is written as a pair of first-order equations? n

With this overview and viewpoint of second-order differential equations, we are
prepared to consider to consider specific equations for mechanical and analogous
electrical systems.

Mechanical and electrical analogs

We consider first a mechanical system to model, for example the vertical displace-
ment, y, of an automobile suspension system as the auto is driven over a bumpy
road. For simplicity, the bumping forces as a function of time, t, are approximated
as having a single angular frequency thus varying as F0cos The inertial
mass of the system we denote by M, and the system is modeled as having compres-
sional forces from a Hooke’s law spring (restoring force proportional to displace-
ment) having spring constant K and damping forces proportional to speed with pro-
portionality constant B.

Exercise 8.2
First write down Newton’s force equation, (8.1), for the mechanical system just
described, then rearrange it so that all the derivatives are on the left-hand side, in
order to obtain the differential equation

(8.4)

for the mechanical model of the automobile
derivatives with respect to time. n

suspension, where the primes denote

Now consider an AC series circuit for which we will describe the free charge in
the circuit at time t, responding to an external EMF of E0cos The in-
ductive inertia of the system we denote by L, the system has a capacitance of C, and
there is an Ohm’s law resistance (damping) with value R. The electrical analog of
relation (8.3) between mechanical displacement and momentum is given by

260 SECOND-ORDER DIFFERENTIAL EQUATIONS

(8.5)

relating the charge to the time-dependent current, I. Recall that the voltage drop
across an inductor is L dI /dt, that the drop across a resistor is RI, while the drop
across a capacitor is Q/C. This information can be used to derive a differential equa-
tion for the AC circuit containing the three elements in series.

Exercise 8.3
Write down Kirchhoff’s second law (conservation of energy) to equate the sum
of voltage drops across the three circuit elements to the source EMF, in order to
obtain the differential equation for the electrical model of the series AC circuit,

with the primes denoting derivatives with respect to time. n

(8.6)

We see immediately that the mechanical and electrical systems are completely analog-
ous and can be represented by a single second-order differential equation, namely

(8.7)

in which the derivatives are with respect to control variable x. The correspondence
between the variables in the last three differential equations is given in Table 8.1.

TABLE 8.1 Correspondence of mechanical, electrical, and general differential equation quantities.

To understand how these analogies arise, apart from the correctness of the for-
mal equations, try working the following exercise.

8.1 FORCES, SECOND-ORDER EQUATIONS, RESONANCES 261

Exercise 8.4
In Table 8.1 of the analogies between mechanical and electrical systems, consid-
er the intuitive explanations of the correspondences. To do this, discuss the fre-
quency response of the amplitude, damping, and restoring terms in the differen-
tial equations (8.6) and (8.7). n

With this preparation on setting up and interpreting the differential equations, we are
prepared to solve and interpret the linear equations that arise when the source term is
zero.

Solving and interpreting free-motion equations

The analysis of the general differential equation (8.7) is easiest to approach by first
considering the situation with no driving term, S0 = 0. Then we have a linear sec-
ond-order equation. After solving this, it will be straightforward to solve the forced-
motion equation in the next subsection. The differential equation to be solved is
now

(8.8)

We know from common experience (in the context that x represents time) that
springs undulate and circuits oscillate, but that their motion eventually damps out if
there is no driving term. This suggests that we look for solutions of the form

(8.9)

where m is complex in order to allow both damping and oscillation.
into the differential equation (8.8) one obtains directly that

By substituting

(8.10)

One solution of this equation is that y(x) = 0 for all x. In our examples the con-
trolling variable x is the time, so this solution states that if the system is initially un-
disturbed it will remain undisturbed if there are no driving terms. A solution of
(8.10) that is more interesting is to imagine that driving terms were present for some
earlier x but were removed, so that the system then evolved according to (8.8).
Then the appropriate solution of (8.10) is that the parentheses containing the m
terms must be zero.

Exercise 8.5
(a) Equate the m-dependent expression in (8.10) to zero in order to find the two
solutions for m, namely

(8.11)

262 SECOND-ORDER DIFFERENTIAL, EQUATIONS

where the discriminant, D, is given by

(8.12)

(b) Show that the most general solution of (8.8) can therefore be expressed in
terms of dimensionless variables as any linear superposition of the two basic
solutions

(8.13)

in which the natural frequency is

(8.14)

the dimensionless damping parameter is

0
and the dimensionless discriminant is

(8.15)

(8.16)

so that the corresponding dimensionless solutions are

(c) Show that the differential equation corresponding to (8.8) is

(8.17)

(8.18)

in which derivatives are taken with respect to dimensionless variable n

The expressions for the natural angular frequency of oscillation, and the damp-
ing parameter, for the mechanical and electrical systems are given in Table 8.1.
Plots of the relation (8.17) as a trajectory in the complex plane are explored in Sec-
tion 2.3.

The solution (8.11) does not cover all bases, because we know that any second-
order differential equation has two linearly-independent solutions, whereas (8.11)
collapses to a single solution when that is, when This case re-
quires special treatment.

Exercise 8.6
Verify by substitution into (8.18) that when the expression

(8.19)

solves the differential equation for any choice of the constants y+ and y-. n

8.1 FORCES, SECOND-ORDER EQUATIONS, RESONANCES 263

FIGURE 8.1 Amplitude of free motion, y. as a function of damping, using dimensionless vari-

ables. The solid curve is for damped oscillation, the dotted curve is for critical damping

and the dashed curve is for overdamped motion.

The degenerate case (8.19) is called critical damping because it is sensitive to the
amount of damping, as indicated by b in the original differential equation (8.8).
Critical damping provides a dividing line between the oscillatory and nonoscillatory
solutions of (8.8) that we now consider.

Suppose that the modified discriminant, in (8.16), is positive, so that the
square root in (8.17) is real, then the solutions are clearly oscillatory, but damped.
If is negative, the solutions are always exponentially-damped as a function of x,
since v± is then real and negative. Such solutions are called overdamped.

Thus, the free-motion solutions to the damped harmonic oscillator equation are
of three types: damped oscillatory critically damped and over-
damped They are illustrated in Figure 8.1.

Figure 8.1 shows that critical damping lies at a boundary between solutions that
oscillate with X, no matter how slowly, and solutions that die away uniformly with-
out oscillation. It might therefore be expected that the transition from oscillatory to
overdamped motion is smooth. This is not so, as you can show by working the
following exercise.

Exercise 8.7
(a) To investigate the behavior of the amplitude y as a function of parameter
in (8.13) choose they+ solution and in (8.19) choose y- = 0, y+ = 1, so that
y values are the same at Thus, continuity of values is assured. Next,
differentiate the expression for each y with respect to Show that as
from below (oscillation side) the slope is continuous, but that as from
above (overdamped side) the slope
(b) Make graphs of y against at fixed x values, say at

for in the range 0 to 2. Show that there is always a cusp at = 1. n

264 SECOND-ORDER DIFFERENTIAL EQUATIONS

FIGURE 8.2 Phase-space plot (Poincaré map) for slightly damped motion in dimen-

sionless units).

It is interesting to explore how y' = dy /dx, the analog of the speed in the me-
chanical system or the current in the electrical system, changes with y, the analog of
displacement or charge, respectively. The graph of y' against y is called a “phase-
space plot” or “Poincaré map.” Figure 8.2 shows the phase-space plot for
(dimensionless x units) and which is not much damped.

Notice in Figure 8.2 how the motion is gradually damped as the “velocity” and
“displacement” both tend to zero as x (or “time”) increases. You may improve your
understanding of the notion of phase space by making similar graphs yourself.

Exercise 8.8
(a) Prepare phase-space plots for the free-motion damped oscillator by choosing
a value of then preparing tables of y (x) against x and of y' (x) against x,
with x being in scaled units and with y' (0) = -y (0) = 1. Then
plot y' against y, as in Figure 8.2, which has = 1/4. Other suitable values
of are 1/8 (very little damping) and = 1/2 (strong damping).
(b) Show that for the phase-space plot is a straight line with slope given

by n

Extensive discussions of the phase plane and Poincaré maps are given in Pippard’s
omnibus text on response and stability, and also in Haberman’s book on mathemati-
cal models.

Now that we have investigated the solutions for free motion, it is time to investi-
gate the effects of a source term on the motion of an oscillator.

8.1 FORCES, SECOND-ORDER EQUATIONS, RESONANCES 265

Forced motion and resonances

We return to the problem posed near the beginning of this section, namely mo-
tion with a source term, as given in general form by (8.7) and exemplified for the
mechanical and electrical systems by (8.4) and (8.6) through the correspondences
shown in Table 8.1. The equation with a driving term is

(8.20)

where the parameter S0 indicates the strength of the source term, while parameter
(angular frequency if x is time, but wavenumber, k, if x is distance) indicates the
frequency of the forcing term. We assume, for simplicity, that only a single driving
frequency is present. By superposing solutions for different as indicated in
Chapter 10, one can generalize the treatment given here.

It is most convenient to work with a complex-number representation of the vari-
able, y, and the source term, S. As discussed in Sections 2.1 and 2.4, the modulus
of each complex variable indicates its magnitude and the relation between the imagin-
ary and real parts indicates its phase. So we write the source term in (8.20) as

(8.21)

with the understanding that it is the real part of this expression that counts.
From everyday experience, such as pumping a swing, we know that a mechani-

cal system under an oscillatory driving influence will settle into steady-state oscilla-
tions having the same frequency as the driver. Therefore, let’s try a steady-state so-
lution of (8.20) of the form

(8.22)

The algebra and calculus of the solution are straightforward, so work them out for
yourself.

Exercise 8.9
(a) Perform the indicated differentiations of (8.22) that are required for (8.20),
substitute them in the latter, and notice that the complex-exponential factor can be
factored out for all x, so that (8.22) is a solution of (8.20) under the condition
that the complex amplitude y0 is related to the source amplitude S0 by

(8.23)

in which the frequency for free motion without damping appears as

(8.24)

266 SECOND-ORDER DIFFERENTIAL EQUATIONS

(b) Convert (8.23) into amplitude and phase form as

(8.25)

for the amplitude, and

(8.26)

which gives the phase angle by which the response, y(x), lags the driving term,
S(x).
(c) Show that the amplitude relation (8.25) can be expressed in terms of the fre-
quency ratio and the dimensionless damping variable from (8.15), as the
dimensionless ratio

(8.27)

while the phase can be expressed in terms of the same variables as

(8.28)

which is usually displayed in the range 0 to with a continuous distribution as a
function of n

FIGURE 8.3 Resonance amplitude (dimensionless units) as a function of frequency relative to

resonance frequency for three values of the damping parameter .

FORCES, SECOND-ORDER EQUATIONS, RESONANCES 267

FIGURE 8.4 Resonance phase as a function of the ratio of frequency to resonance frequency for

three values of damping parameter from small damping to moderate damping

The amplitude and phase are shown in Figures 8.3 and 8.4 for the same values
of the damping parameter as in Figure 8.2, which shows the response of the sys-
tem under free motion for different amounts of damping. Notice that the amplitude,
A is asymmetric about = 1, with the asymmetry decreasing as the
damping decreases and the response becomes more resonant. The phase, is
nearly symmetric about = 1, and it varies more rapidly in the neighborhood
of the resonance point as the damping decreases.

Resonant oscillations are important in practical applications; for example, one
usually wants to avoid resonant oscillations of mechanical structures, but one often
wants to enhance resonant behavior in an electrical circuit. It is therefore important
to know for what driving frequency, the amplitude is a maximum.

Exercise 8.10
Differentiate expression (8.25) for the amplitude with respect to and thereby
show that the only physically meaningful solution for a maximum of A is at

 given by

(8.29)

assuming that the quantity under the square root is positive, otherwise there is no
relevant maximum. n

Notice that the amplitude has a maximum at a frequency slightly below the natural
oscillation frequency for free motion, . The maximum rate of change of the
phase, however, occurs right at this frequency for any value of the damping parame-
ter , as is clear from Figure 8.4.

268 SECOND-ORDER DIFFERENTIAL EQUATIONS

For the typical resonances that are of interest to scientists and engineers the
damping is relatively weak, that is, The amplitude formulas can then, with
only mild approximations, be made analytically much more tractable. One sets

(8.30)

and approximates the amplitude expression (8.25) by

and the phase expression (8.26) by

(8.3 1)

(8.32)

Exercise 8.11
Show the steps in the approximations that are necessary to produce (8.31) and
(8.32) from the original expressions (8.27) and (8.28). n

The function AL will be revisited in Chapter 10. Within overall normalization,
it is the square root of the Lorentzian function, with the damping parameter b being
proportional to the width, of the Lorentzian. We show in Figures 8.5 and 8.6
comparisons of the exact and approximate amplitude and phase expressions for

FIGURE 8.5 Resonance amplitude, and its Lorentzian approximation, as a func-

tion of the ratio of the frequency to the resonance frequency. Shown for damping parameter

8.2 CATENARIES, CATHEDRALS, AND NUPTIAL ARCHES 269

FIGURE 8.6 Resonance phase, and its Lorentzian approximation, as a function of

the ratio of the frequency to the resonance frequency. Shown for damping parameter

Notice that the Lorentzian function gives distributions that are symmetric about
the resonance frequency, and that the approximation is particularly good for the
phases. In applications of resonance, a value of of order l0-6 is typical, so then
the Lorentzian approximations (8.31) and (8.32) become very accurate. We explore
Lorentzian functions and their properties extensively in Sections 10.2 - 10.4, where
their relations to Fourier transforms and convolutions are emphasized. The relations
between resonances, response, stability, and chaos are discussed extensively in Pip-
pard’s text on the physics of vibration.

The study of vibrations and waves, which we introduced in the context of com-
plex variables in Chapter 2.4, is discussed extensively in the context of differential
equations in the texts by Braun et al. and by Ingard. The musical connections are
well described in the book by Backus and that by White and White.

8.2 CATENARIES, CATHEDRALS, AND NUPTIAL ARCHES

We now turn to the problem of modeling a static mechanical system, hanging chains
of various density distributions. This provides us opportunities to develop our un-
derstanding of applications of differential equations. We also bring together many
interesting and insightful results on general catenaries that have appeared in scattered
form in the research and teaching literature of the past three centuries but which are
not much appreciated by modern pedagogues.

The famous problem of the equilibrium shape of a cable or chain hanging under
gravity provides insight into setting up and solving differential equations of second
order. Also, the differential equation is nonlinear in that the quantity of interest, the
height, y, as a function of horizontal distance from the center of the cable, x, is not
linearly related to its derivatives. Once the equilibrium shapes have been deter-
mined — they’re called “catenaries” from Latin for “chains”- the same equations

270 SECOND-ORDER DIFFERENTIAL EQUATIONS

can be applied with minor changes to the optimal shapes of cathedral archways and
to the shape assumed by an arch of string uniformly levitated by balloons.

The equation of the catenary

The classical mechanics problem of finding the equilibrium shape of a flexible chain
provides an introduction to the mechanics of continuous media (“continuum mechan-
ics”) and to nonlinear second-order differential equations. If we observe a chain
hanging in a curve of given shape, what is its associated density distribution? Also,
from an engineering viewpoint, what density distribution provides a constant
strength (density-to-tension ratio), and what is the equilibrium shape of the chain?

In the following we derive a general formula for the density distribution in terms
of first and second derivatives of the shape, then we introduce dimensionless vari-
ables (scaled units) to allow general characterization of catenaries. Examples for
various shapes are then given and we examine the system under the condition of uni-
form strength.

In setting up the equations for the equilibrium of a chain, we allow the weight
per unit length of the chain, w(X), to depend on position along the chain, (X,Y).
We assume that w is an even function of X, so that the chain hangs symmetrically
about its midpoint X = 0. For the vertical coordinate, we choose Y = 0 at the mid-
point. Referring to Fig. 8.7, we see that at P = (X,Y) the conditions for equilib-
rium are that the tension T (tangential to the chain since the chain is flexible), the
weight W, and the horizontal tension H (the same constant value on each side of the
origin) are related by

FIGURE 8.7 Forces acting at the point P = (X, Y) of a chain hanging under gravity.

8.2 CATENARIES, CATHEDRALS, AND NUPTIAL ARCHES 2 7 1

(8.33)

(8.34)

In terms of the arc length along the chain, S, we have

From geometry we know that

(8.35)

and also that

(8.36)

(8.37)

Our aim is to find an expression for the weight distribution, w(X), given the shape,
Y(X). By eliminating T between (8.33) and (8.34) then differentiating the resulting
expression with respect to X and using (8.35), we find immediately that

(8.38)

Use of (8.35) and (8.36) now gives an expression for the weight distribution in
terms of the shape

(8.39)

We may verify this result for the uniform-density chain by substituting the stan-
dard equation for the catenary

(8.40)

to verify directly by substituting in (8.39) that

(8.41)

where the dimensionless variable p is a constant for the uniform-density catenary.

Exercise 8.12
Verify the result for the uniform-density chain by taking the first and second
derivatives of (8.40) for the catenary then substituting into (8.39) to produce
(8.41). n

272 SECOND-ORDER DIFFERENTIAL EQUATIONS

Dimensionless variables are helpful when comparing catenaries with various
weight distributions, because even for a uniform chain the shape depends upon the
horizontal force (H) exerted. For the remainder of our analysis we therefore change
to the following dimensionless variables in terms of an appropriate characteristic
length, L, and the horizontal force, H :

in which the weight-to-tension ratio, provides in dimensionless units the tensile
strength required for the chain at each point.

The scaled density distribution is immediately found by inserting (8.39) for w
into the definition in (8.42):

(8.43)

The tension at any point in the chain can readily be calculated by solving for T from
(8.31), then using (8.36) to eliminate the angle variable. We thus find the tension in
scaled units

(8.44)

The weight of chain below x is then, from (8.42) with similar angle elimination, in
scaled units,

(8.45)

The strength of the chain is obtained by taking the ratio of p to From (8.43) and
(8.44), in scaled units this is

(8.46)

Exercise 8 .13
Solve for T and W as suggested, then transform to the dimensionless variables

of (8.42), to verify equations (8.43) through (8.46). ■

8.2 CATENARIES. CATHEDRALS, AND NUPTIAL ARCHES 273

With the above scaling, the characteristic dimensions (such as L for a uniform-
density catenary) can be chosen such that all flexible chains will hang with the same
shape near the bottom, where the slope of y on x is zero. Their scaled density, ten-
sion, weight below the bottom, and strength will satisfy

(8.47)

provided that at the origin d2y /dx2 = 1. In order to achieve this invariance, a given
shape choice y(x) should be expanded in a Maclaurin series in x, then constants in
its formula adjusted so that the constant and first-derivative terms vanish and the
second-derivative term has unity coefficient in order to make p(0) = 1. This proce-
dure can be verified for the uniform-density catenary, (8.40), and is demonstrated
for the parabolic shape in the next subsection.

Thus, we have solved a mechanics problem and have been able to express the
significant quantities, (8.42), purely in terms of the geometry of the curve shape,
y(x). We now illustrate these scaled curves and corresponding scaled densities and
forces.

Catenaries of various shapes and strengths

In the statics problem solved above we obtained the distribution of density, tension,
weight below a point, and strength of a chain, given its shape, with the assumptions
being that the shape, y(x), is an even function of x and that its second derivative is
positive, as required in (8.38). With these mild restrictions, a large variety of realis-
tic catenaries can be investigated.

The parabolic catenary is the first shape that we examine. We write the shape
equation as Y (X) = X2/L, where L is some characteristic length. This example
will explain why Galileo was nearly correct in his assertion in his Two New Sci-
ences that a uniform-density chain hangs in a parabolic shape, and it will clarify use
of the dimensionless variables introduced at the end of the preceding subsection. In
terms of scaled lengths, we have y(x) = where the dimensionless quantity
is determined by the condition p(0) = 1, that is, unity second derivative of y at
x = 0, according to (8.43). Therefore = 1/2, and the scaled parabolic shape is

(8.48)

It is now simple to take the first and second derivatives of y and by using (8.43)
through (8.46) to compute the mechanical quantities of interest. Their formulas are
given in Table 8.2, and the corresponding distributions with respect to x are shown
as curves (1) in Figures 8.8 -8.11.

274 SECOND-ORDER DIFFERENTIAL EQUATIONS

TABLE 8.2 Examples of the relations between the shape of the equilibrium curve, the weight of

chain below each point, the local linear density of the chain, the tension at a point (x,y), and the
strength of the chain

Exercise 8 .14
For the parabolic catenary calculate the first and second derivatives, then substi-

tu te in to (8 .43) th rough (8 .46) fo r the sca led dens i ty , t ens ion , weigh t , and

strength, thus verifying the results for line (1) in Table 8.2. n

FIGURE 8.8 Equilibrium shapes of chains hanging under gravity: (1) for a parabola, (2) for a

uniform-density catenary. (3) for uniform strength. and (4) for the arc of a circle. The formulas are

given in Table 8.2.

8.2 CATENARIES, CATHEDRALS, AND NUPTIAL ARCHES 275

FIGURE 8.9 Scaled linear densities for the catenaries shown in Figure 8.8: (1) for a parabola,

(2) for a uniform-density catenary, (3) for uniform strength, and (4) for the arc of a circle.

The uniform-density catenary, the usual example, can be solved by a similar
analysis to that for the parabola to show directly that the scaled shape is given by

(8.49)

which is just (8.40) with L = 1, as you might have guessed. This shape, and the
density, tension, weight, and strength distributions that follow from application of
(8.43) through (8.46), are given in Table 8.2 and are shown in Figures 8.8 -8.11
as curves (2). Notice that by comparison with the parabola, the usual catenary be-
comes steeper as x increases. Since for this catenary the chain density is constant,
correspondingly the flatter parabola must have a decreasing density, which agrees
with the result in Table 8.2 and with curve (1) in Figure 8.9.

FIGURE 8.10 Tension as a function of x for the catenaries shown in Figure 8.8: (1) for a

parabola, (2) for a uniform-density catenary. (3) for uniform strength, and (4) for the arc of a circle.

276 SECOND-ORDER DIFFERENTIAL EQUATIONS

FIGURE 8.11 Strength as a function of x for the catenaries shown in Figure 8.8: (1) for a

parabola, (2) for a uniform-density catenary, (3) for a uniform-strength catenary, and (4) for the arc

of a circle. The formulas are given in Table 8.2.

Exercise 8.15
(a) For the uniform-density catenary calculate the first and second derivatives,
then substitute into (8.43) through (8.46) for the scaled density, tension, weight,
and strength, thus verifying the results for line (2) in Table 8.2.
(b) Write a small program then calculate and graph the x dependence of the reg-
ular catenary shape, tension, and strength, thus verifying the curves (2) in Fig-
ures 8.8-8.11. n

For a circle-arc shape, that is, a semicircle concave upward, what is the corres-
ponding density needed to produce this shape? It’s very simple, because the appro-
priate scaled circle, having zero value and unity second derivative at the x origin, is
just

(8.50)

with |x| < 1 to ensure that the chain is under tension.

Exercise 8.16
(a) For the circle-arc catenary calculate the first and second derivatives, then
substitute into (8.43) through (8.46) for the scaled density, tension, weight, and
strength, thus verifying the results for line (4) of Table 8.2.
(b) Write a program, then calculate and graph the x dependence of this catenary
shape, density, tension, and strength, thus verifying the curves (4) in Fig-
ures 8.8-8.11. n

8.2 CATENARIES, CATHEDRALS, AND NUPTIAL ARCHES 277

The circular arc is even steeper than a catenary, so its density must increase as x
increases, as Figure 8.9 shows. The tension also increases with x, but not as rapid-
ly, so the strength of the chain steadily decreases with x. As |x| tends to unity, the
density and tension must become indefinitely large in order to produce the nearly-
vertical shape. We therefore show the density and tension only up to |x| = 0.8. For
real materials their elasticity would have to be considered for large densities and ten-
sions, but this we have not included explicitly.

In two of the above examples the strength of the chain (ratio of cable weight per
unit length at a given x to the tension in the cable at x) was found to decrease with x,
so that for a large enough span the chain will exceed its elastic limit. For the third
example, the circle arc, the strength increases with x, as shown in Table 8.2 and
Figure 8.11, curve (4).

Consider a constant-strength catenary. If the strength is to be a constant with re-
spect to x, what is its shape ? Presumably, it will be intermediate between a uniform-
density catenary and a circle, curves (2) and (4) in Figure 8.11. For the scaled units
that we are using, (8.42) shows that the constant strength, must be unity every-
where, since that is its value at x = 0. From (8.46) we deduce immediately the dif-
ferential equation for the shape of the constant-strength catenary, namely

(8.5 1)

It is straightforward to verify that integrating this once produces the slope condition

in which the constant of integration is zero because the slope is to be zero at x = 0.
Integrating (8.52) once more produces

(8.53)

as can be verified by substitution in (8.52). Again, the constant of integration is
zero, because in our coordinate systemy (0) = 0.

Exercise 8.17
Carry out the steps indicated to produce the uniform-strength catenary formula
(8.53). n

The result (8.53) for the chain of uniform strength is attributed to British engineer
Davies Gilbert, who reported in 1826 his use of it in designing the first suspension
bridge across the Menai Strait in north Wales. Because he did not use scaled vari-
ables, much of his article consists of very long tables of bridge-design parameters.

From (8.53) we see that, just as for the circular arc, the uniform-strength caten-
ary is possible only for a limited range of the scaled x variable; here |x| < /2. We

278 SECOND-ORDER DIFFERENTIAL, EQUATIONS

therefore show in Figure 8.8 the uniform-strength catenary, curve (3), only up to
|x| = 1.4. Notice that for uniform strength the shape is intermediate between that
for the uniform-density catenary, curve (2), which has decreasing strength with in-
creasing x, and the circle-arc catenary, curve (4).

For the uniform-strength catenary given by (8.53) it is straightforward to use
(8.43) to (8.45) and to calculate the scaled density (which equals the scaled tension)
and the scaled weight of chain below x , to produce the formulas in Table 8.2 and
curves (3) in Figure 8.9 or 8.10. Generally, the uniform-strength catenary has me-
chanical properties intermediate between those for the uniform-density catenary and
the circle-arc catenary.

Demonstrating arches

How can you demonstrate the relation between forces on a catenary and the catenary
shape? A simple method is to follow up an idea described in an article by Honig and
to use light helium balloons attached at equal horizontal intervals to a relatively light
string. Thereby the weight distribution of the chain is replaced by the buoyancy of
the balloons, and the analysis is identical to that above, except that the sign of y is
reversed, so that inverted curves are obtained. For each shape, the size of the bal-
loons will need to be adjusted for the appropriate buoyancy, the analog of p (x).

We illustrate the setup for the circle-arc catenary because this has the most rapid
variation of density with x, as curve (4) in Figure 8.9 shows. If the balloons are
filled so that their volumes increase as 1/(1 - x2) and if the ends are fixed at hori-
zontal points, then a curve which is almost a semicircle will be formed. The shape
will be slightly different near the endpoints, where very large balloons would be
needed to pull the endpoints straight up.

FIGURE 8.12 Arc of a circle made of a light string supported by helium balloons with diame-

ters increasing to satisfy the weight relations, w(x), for line (4) in Table 8.2.

8.3 NUMERICAL METHODS FOR SECOND-ORDER DIFFERENTIAL, EQUATIONS 279

A sketch of such an arrangement is shown in Figure 8.12, where the outermost
balloons at |x| = 0.9 have diameters more than 1.7 times greater than that of the cen-
ter balloon. When the system is in static equilibrium, the midpoint of the catenary
should be above the base by half the separation of the ends. If helium is carefully
released from the outer balloons until all the balloons have the same shape, then the
graceful uniform-density “nuptial arch” referred to by Honig should form. If slight-
ly more helium is released from the outer balloons, then a parabola will form.

Practical arches and catenaries

The history of the catenary and its relation to the stability of arches and domes in
large buildings, such as cathedrals, is very interesting. Historically, the uniform-
density catenary problem was pondered by Galileo, who explained (incorrectly) that
“This [uniform] chain curves in a parabolic shape.” The first correct solution was
published (in Latin) by Johannis Bernoulli in the late seventeenth century, and he
also indicated the general relation (8.43) between the shape and the density distribu-
tion. Robert Hooke, better known for his research on elasticity (Hooke’s law) and
in microscopy, solved the uniform-density catenary problem in 1676. Later, New-
ton about 1680, Huygens about 1691, and Taylor (of Taylor’s theorem) in 17 15
also provided proofs.

After the Great Fire of London in 1666, Hooke and Christopher Wren were ar-
chitectural consultants for the rebuilding of St. Paul’s cathedral, and Hooke proba-
bly told Wren about the stability of the catenary shape for arches and domes. For a
solid arch, in the approximation that it is continuous and of uniform composition,
the tension forces will all be tangential to the surface of the arch if it is of the regular
catenary shape. This property will improve the stability of the arch. It is unlikely,
however, that Wren used his colleague’s advice when designing the cathedral dome.

8.3 NUMERICAL METHODS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS

In the next four sections of this chapter we emphasize numerical methods for solving
second-order differential equations, with several worked examples and applications
of the methods. Beginning in this section, we fist extend the Euler-type algorithms
from the first-order equations developed in Sections 7.4 and 7.5 to second-order
equations. Then we set the scene for the Noumerov method by showing how first
derivatives can be removed from second-order linear equations, since the Noumerov
algorithm assumes that first derivatives are absent. This algorithm is then derived.

Project 8A (Section 8.4) is on programming and testing the Euler-type algor-
ithms, while Project 8B (Section 8.5) emphasizes programming and testing the
Noumerov algorithm, then applying it to solve numerically the differential equation
for the quantum harmonic oscillator. The problem of the numerics of stiff differen-
tial equations in Section 8.6 completes our study of numerical methods for second-
order equations.

280 SECOND-ORDER DIFFERENTIAL EQUATIONS

Euler-type algorithms for second-order equations

We now describe three Euler-type algorithms that are variants of the forward-differ-
ence predictor formula (7.38) used for first-order equations. As we see in Sec-
tion 8.4, these algorithms are not very accurate for a given stepsize h. Their utility
lies in their general applicability, because they make very few assumptions about the
type of second-order differential equation that is to be solved numerically.

The Euler methods for second-order equations are based on the fact that the sec-
ond-order differential equation

is equivalent to a pair of first-order equations, namely

and, as an identity,

(8.54)

(8.55)

(8.56)

Therefore, in principle, any second-order equation can be solved as a pair of first-
order equations. In the practice of numerical methods for estimating the solutions of
such equations, careful analysis and programming, as well as considerable skill and
experience, are necessary if accurate results are to be obtained efficiently. The diffi-
culties arise because with a finite stepsize h the numerical methods are necessarily
approximate, as (7.38) indicates.

We now describe three variants of the forward Euler predictor that may be used
for estimating the solutions of the differential-equation pair (8.55) and (8.56).
These methods are generally of increasing accuracy, as indicated by the dependence
of their error estimates on the stepsize h.

Method 1. Here we use the forward Euler predictors directly for advancing the
solutions y and y' according to (7.38) namely

(8.57)

and

(8.58)

The first equation neglects the change in F between steps k and k + 1, while the
second neglects the change of y' in this interval, so that it neglects a term of order
Fh.2 The errors in both the function and its derivative are therefore of order h2

.

8.3 NUMERICAL METHODS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS 281

Method 2. In this variant we advance the derivative according to (8.57), but we
then average the derivative just obtained with the derivative at the start of the interval
in order to predict the new y value. That is,

(8.59)

The averaging of the two derivatives allows for what physicists would call an accel-
eration, since if x is time and y is displacement, then y' is speed and F is accelera-
tion. The order of the error in y is h3 in this method.

Method 3. Here the function is advanced by using terms up through its second
derivative, that is, through F, so its error is of order h3. Then the derivative is ad-
vanced using the average of the F values at the two ends, which gives an error in the
derivative of order h3. Thus

(8.60)

then the derivative is advanced by

(8.61)

Notice that the order of evaluation is significant here if F is a function of y. Further,
in (8.57) — (8.61) mathematically there should be signs or computationally they
should be assignment statements (“:=“ in Pascal).

The three Euler-type methods are summarized in Table 8.3. The programming
of these algorithms is presented in Project 8A in Section 8.4.

TABLE 8.3 Euler-type algorithms for numerical solution of second-order differential equaions.

In method 3 the formulas must be evaluated in the order shown. The dependence of the errors on

stepsize, h, is also indicated.

282 SECOND-ORDER DIFFERENTIAL EQUATIONS

Exercise 8.18
Make Taylor expansions of y and of y' about xk in order to derive (8.57)
through (8.61). Include enough terms in each expansion that the lowest neglec-
ted power of h is indicated. Use this to show that the error estimate for each for-
mula has the approximate dependence on h that is claimed. n

A simple example will clarify these Euler-type algorithms for second-order equa-
tions. Suppose, for purposes of comparison, that we know the exact solution

(8.62)

Let us compare the exact solutions with those obtained from the three methods in
Table 8.3 when they are used to advance the solutions from x1 = 1 to x2 = 2 in a
single step with h = 1, assuming that all values are exact at x = 1. Working back-
wards, we have by differentiating (8.62) twice with respect to x that

(8.63)

Starting with y1 = 1.6667, y'1 = 2.5000, and F1 = 2.0000, the three methods
produce the values given in Table 8.4 and displayed in Figures 8.13 and 8.14.

TABLE 8.4 Example of the Euler-type methods for advancing one step of the differential-

equation solution. The second derivative is (8.63) and the exact solution is (8.62). The value of

x = 2 .

In order to check that you understand how each of the Euler-type methods
works, try the following exercise.

Exercise 8.19
Use each of the algorithms in Table 8.3 in turn to predict the values of y2 and
y2, given the exact values in the text for y1 and Using that h = 1 and that
the neglected terms can be calculated from the derivatives F' = 1 and F” = 0,
are the discrepancies between estimated and exact values correct? n

The behavior of the algorithms and their results are also shown in Figures 8.13
and 8.14 for y and its derivative y' respectively. Notice that the constancy of the

8.3 NUMERICAL METHODS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS 283

derivative of F gives rise to estimates of y2 that are the same (but not exact) for
methods 2 and 3. For similar reasons, methods 1 and 2 agree (inexactly) on the
value of y', while method 3 predicts this derivative exactly because only the second
and higher derivatives of F (which are zero) have been neglected.

FIGURE 8.13 Numerical solutions by the three Euler methods for the exponential function,

which is shown as the solid curve, y (x).

This completes our derivation and preliminary discussion of the Euler-type al-
gorithms for second-order differential equations. Numerical analyses that are much
more extensive are part of Project 8A in Section 8.4.

FIGURE 8.14 Numerical solutions by the three Euler methods for the derivative of the expo-
nential function, whose derivative is shown as the solid curve, y'(x).

284 SECOND-ORDER DIFFERENTIAL EQUATIONS

Removing first derivatives from second-order linear equations

The Noumerov algorithm for second-order linear differential equations that we de-
rive in the next subsection requires that the first derivative, y', be absent. This
would seem to be a severe limitation of the algorithm, because it might not be able to
handle such interesting differential equations as that for a damped harmonic oscilla-
tor (Section 8.1) where the damping is proportional to y'. The purpose of this
subsection is to show how the first derivative in a second-order linear differential
equation can always be transformed away.

Consider the general second-order linear differential equation

(8.64)

The method of eliminating the first derivative is to find a transformation that makes
the first two terms part of a single second derivative. Consider transforming y(x)
by multiplication by some, as yet unknown, function g(x), to produce z(x)

(8.65)

(Since unknowns are piling up at a great rate, this is clearly mathematics.) Also con-
sider multiplication of the original equation (8.64) throughout by g(x). Is there a
choice of g(x) that will remove the first derivative?

Exercise 8.20
(a) Show that

(8.66)

and therefore that if we force the first- and second-derivative terms in this equa-
tion and g times the original equation to coincide, we must have

(8.67)

(b) Show that the solution of this equation is

(8.68)

in which any constant of integration may be ignored because it just affects the
overall scale of the differential equation solution.
(c) Thence show that the transformed variable z satisfies the following linear
differential equation, in which its second derivative does not occur

(8.69)

8.3 NUMERICAL METHODS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS 285

(d) Express the second derivative g” in this equation by using (8.67) in order to
derive the final form of the transformed differential equation

(8.70)

in which all variables are implicitly functions of x. n

Thus, if the original equation (8.64) has a first-derivative term, then the function g
calculated from (8.68) produces a differential equation without a first derivative,
namely (8.70) for z. From the solution of this equation the original function, y, can
be recovered by dividing z by g because of (8.65).

An example will make this formal analysis much clearer. Consider (8.64) for
the damped harmonic oscillator, with the coefficient of the second derivative divided
out for simplicity:

(8.7 1)

In the notation of (8.64) we have a(x) = b, a constant, so that a' = 0. Also,
b(x) = k, again a constant. From (8.68) the function g is therefore just

The modified differential equation (8.70) becomes

(8.72)

(8.73)

where K = k - b2 /4. By inspection, the solution for z is just a complex exponen-
tial (assuming that K is positive). Division by g produces the solution of the original
damped-oscillator equation

(8.74)

which is in agreement with (8.13). You will notice that elimination of the first deriv-
ative makes the differential equation much easier to solve analytically. As the Nou-
merov algorithm that we now derive shows, a similar result obtains for numerical
solution of these differential equations.

Deriving the Noumerov algorithm for second-order equations

Boris V. Noumerov (1891 - 1943), a prominent Russian astronomer and geophysi-
cist, derived the following algorithm as part of his numerical studies of the perturba-
tions of planetary motions. The algorithm was first published in English in the ref-
erence given at the end of this chapter. It is accurate and efficient for the solution of

286 SECOND-ORDER DIFFERENTIAL EQUATIONS

second-order linear equations with no first-derivative term. As we showed in the
preceding subsection, the latter restriction is not really an impediment.

We seek a recurrence relation relating y and its second derivative at a given xk in
terms of its values at the two preceding points, namely

(8.75)

where A, B, C, D, and E are to be chosen to minimize the remainder R. The way to
do this is indicated in the following exercise.

Exercise 8.21
(a) Expand each of yk+1 and yk-1 in Taylor expansions about yk in order to
show that choosing D = -1 in (8.75) eliminates all odd-order derivatives from it.
Now add these two values and corresponding formulas for their second de-
rivatives to obtain

(8.76)

and the recurrence for derivatives

(8.77)

(b) In (8.75), with the substitutions from the two preceding equations, equate
corresponding derivatives on the left- and right-hand sides to show that B = 2,
A = -1/12, C = 5/6, with remainder term R -h 6 y (6)

k /240. n

The original differential equation can now be written

(8.78)

which holds for any ordinary differential equation. It becomes useful, in addition to
being true, when we use the linearity condition on its right-hand side, as you may
verify as follows.

Exercise 8.22
Define the iteration quantity

(8.79)

and make a binomial expansion approximation for yk in the terms of (8.78) that
are of order h2 and higher. Thus show that (8.78) can be written as

(8.80)

where the remainder R' is of order h6. n

8.4 PROGRAMMING SECOND-ORDER EULER METHODS 287

Formula (8.80), used with (8.79) for yk and with neglect of the remainder, is
called Noumerov’s algorithm for advancing the solution of the differential equation
from k to k + 1. In Section 8.5 we develop a program containing this algorithm,
then we test its accuracy and efficiency before applying it to numerical calculations
of quantum oscillator wave functions.

8.4 PROJECT 8A: PROGRAMMING SECOND-ORDER
EULER METHODS

Our goal in this project is to convert the three Euler-type algorithms, derived in Sec-
tion 8.3 and summarized in Table 8.3, into working programs, then to test and
compare the accuracy of these algorithms in solving two simple differential equa-
tions, those for the exponential and cosine functions.

Programming the Euler algorithms

The Euler-type algorithms are straightforward to program, provided that care is
taken to code the formulas in the order indicated for each method. Recall that this is
important because the formulas are approximations for advancing the solution of the
equation from x to x + h, rather than equations that determine the y values at these
two values of the independent variable. In this sense, the = sign in the algorithms
is like the assignment operator in programming languages, the = in C and Fortran
and the := in Pascal.

For flexibility in testing and using the program, the second-derivative function,
F (x,y), is a separate function referred to by the main program that contains the
three Euler-type algorithms as choices. The function name is FUNC. Similarly,
the analytical solution to the second-order differential equation that has the same two
boundary conditions that you use in your numerical solution is to be programmed in
function ANALYT.

The overall structure of the program Numerical DE_2; Euler-Type Methods
is quite conventional. It begins with the usual opening of a file, NUMDE_2xx, to be
written over or added to in order to save the output for graphic display. The suffix
“xx” in the file name is to be substituted by the function being calculated. For use
with the exponential function the program listing has xx = exp. For the cosine
function an appropriate suffix is xx = cos. In the program supplied you have to
make new versions of the program for each new suffix. You should probably mod-
ify the file handling appropriately for your computing environment to avoid this
awkwardness.

The three Euler-type algorithms appear adjacently rather than being hidden in
their own functions. By this means, which is not generally good programming
style, you easily see the similarities and differences between the coding of the three
algorithms. If you wish to use them independently as functions, you will need care
in moving the appropriate variables into the functions.

288 SECOND-ORDER DIFFERENTIAL EQUATIONS

After the algorithm loop of the code comes the comparison with analytical val-
ues. Keeping the differential-equation solver loop separate from the comparison
loop makes the program structure clearer. Notice that we calculate both actual errors
(err) and percentage relative errors (relerr). The former are more appropriate for
functions that oscillate in sign but are bounded, such as the cosine and sine func-
tions. The second method of showing errors is better for functions with a large
range of variation, such as the exponential function computed in the next subsection.

The complete program for solving second-order differential equations by the
Euler-type methods summarized in Table 8.3 is as follows. Note that FUNC and
ANALYT are appropriate for exponential functions, being coded as F(x,y) = y and
y (x) = exp (x), respectively.

PROGRAM 8.1 Euler-type algorithms for numerical solution of second-order differential equa-

tions. The three methods are summarized in Table 8.3.

#include <stdio.h>
#include <math.h>
#define MAX 201

main()
{
/* Numerical DE_2; Euler-Type Methods */
/* for Second-Order Differential Equations */
FILE *fout;
FILE *fopen();
double y[MAX],yp[MAX],err[MAX],relerr[MAX];
double xmin,xmax,h,x,Funkh;
double Funx,Funxl2,dYkp1,Ykp1,analytical;
int choice,Nk,k;
char wa;
double FUNC() ,ANALYT();

printf("Numerical DE; Second-Order Euler-type Methods\n");
printf("Write over output (w) or Add on (a): ");
scarlf("%s",&wa); fout = fopen("NUMDE_2Eexp",&wa);
choice = 1;
while (choice > 0)

printf("\nChoose Euler method (zero to quit):\n");
printf("1, 2, or 3; ");
scanf("%i",&choice) ;
if (choice == 0)

printf("\nEnd Numerical DE_2; Euler-Type Methods"); exit(O);

8.4 PROGRAMMING SECOND-ORDER EULER METHODS 289

if (choice < 0 || choice > 3) /* || is 'or' */
{
printf("!! choice=%i only 1,2,3\n",choice); exit(l);
}

printf("Input xmin, xmax, h\n");
scanf("%le%le%le",&xmin,&xmax,&h) ;
Nk = (xmax-xmin)/h+l.l;
if(Nk>MAX-1)

{
printf("!! # of steps, %i, > %i\n",Nk,MAX-1); exit(l);

printf("Input y(xmin), y' (xmin):\n");
scanf("%le%le",&y[1],&yp[1]);

/* Euler-type algorithm; Iteration in x */
x = xmin;
for (k = 1; k <= Nk-1; k++)

{
Funkh = FUNC(x,y,k)*h;
yp[k+l] = yp[k]+Funkh;
switch (choice)

case 1: /* First method */
yp[k+l] = yp[k]+Funkh;
y[k+l] = y[k] +yp[k]*h; break;

case 2: /* Second method */
yp[k+1] = yp[k]+Funkh;
y[k+l] = y[k]+(yp[k]+yp[k+1])*h/2; break;

case 3: /* Third method */
y[k+1] = y[k]+yp[k]*h+Funkh*h/2;
yp[k+1] = yp[k]+(Funkh+FUNC(x+h,y,k+1)*h)/2;
break;

x = x+h;
}/* end k for loop & Euler-type algorithms */

printf("\nComparison with analytical values\n");
x = xmin;
for (k = 1; k <= Nk; k++)

analytical = ANALYT(x); /* analytical and error */
err[k] = analytical-y[k];
relerr[k] = lOO*err[k]/analytical;
printf("%6.2le %10.6lg %10.6lg %10.6lg\n",

x,y[k],err[k],relerr[k]);

290 SECOND-ORDER DIFFERENTIAL EQUATIONS

fprintf(fout, "%6.2le %10.6lg %10.6lg %10.6lg\n",
x,y[k],err[k],relerr[k]);

x = x+h; /* next x */
} /* end k output loop */

} /* end choice while loop */

double FUNC(x,y,k)
/* d2y/dx2 = FUNC(x,y) at y = y[k] */
double Y[];
double x;
int k;

double value;

/* Using working example of F = y for FUNC */
value = y[k];
return value;
}

double ANALYT(x)
/* Analytical solution of the differential equation */
double x;

double value;

/* Using working example of y = exp(x) for ANALYT */
value = exp(x);
return value;
}

The following exercise may be used to check the correctness of coding the pro-
gram before you start exploring use of Numerical DE_2; Euler-Type Methods
for solving differential equations, The checking also illustrates a three-stage strategy
for developing numerical algorithms and associated programs. The three stages are:

(1) Verify correctness of coding the algorithm by comparison against test examples
where it should be exact.

(2) Check appropriateness and limitations of the coded algorithm against known
functions.

(3) Use the program for solving analytically intractable problems numerically, guid-
ed by its limitations that have been investigated at stage (2).

Coding verification, stage (l), is illustrated in the following exercise.

8.4 PROGRAMMING SECOND-ORDER EULER METHODS 291

Exercise 8.23
(a) Show that each of the three Euler-type algorithms for second-order differen-
tial equations is exact if the function F (x,y) is identically zero. Similarly,
show that the second and third algorithms are exact and identical if F (x,y) is a
constant. If you have physics background, you can use the correspondence to
the equations of kinematics with constant acceleration (y is displacement, x is
time, and F is acceleration) to establish these results.
(b) Modify the function FUNC so that it returns zero, and modify the function
ANALYT so that it returns x. Run the program with xmin = 0 and initial condi-
tions y [l] = y (0) = 0, yp [1] = y' (0) = 1. Verify that all three meth-
ods give results that are exact within computer roundoff errors, with the first
derivative having the constant value of unity.
(c) Modify function FUNC so that it returns the constant value of 2, and modi-
fy function ANALYT so that it returns x2. Run the program with xmin = 0
and initial conditions y [l] = y (0) = 0, yp [l] = y' (0) = 0. Verify that
choice = 2 and choice = 3 methods give results that are exact within
roundoff errors. Also verify that the fist derivative has the value 2x. n

With this program verification completed, we are ready for stage (2). That is,
we investigate how well these algorithms handle typical differential equations whose
solutions are already known.

Euler algorithms and the exponential function

The second-order differential equation d2y /dx2 = y (x), with solution the in-
creasing exponential function, y(x) = exp (x) if y (0) = y' (0) = 1, is a fairly
demanding differential equation against which to test the three Euler-type algorithms
in Table 8.3. The same solution arises for the first-order differential equation
dy/dx = y (x) with boundary condition y (0) = 1, as is investigated in Sec-
tion 7.4, so a comparison of methods can be made. Indeed, method 1 for second-
order equations is identical to the forward-predictor method for first-order equations,
because second-derivative terms in advancing y (x) are ignored in both algorithms.

The three algorithms for the second-order equations are compared in Fig-
ure 8.15 for a step size h = 0.05. Method 1 produces an error of about 10% by
x = 4, that is after 4/0.05 = 80 steps, or an error per step of about 1.25 × 10-3.
Notice that the line labeled %err(l) in this figure is identical with that labeled
%err(f) in Figure 7.5 because they involve the same numerical methods for hand-
ling the same differential equation. Notice that the errors decrease by nearly an order
of magnitude as we go from method 1 to method 2 to method 3. The numerical ef-
fort involved hardly increases, as you can see by comparing the coding for the three
choices in Program 8.1, Numerical DE_2; Euler-Type Methods, which is
listed in the preceding subsection.

292 SECOND-ORDER DIFFERENTIAL EQUATIONS

FIGURE 8.15 Errors in three Euler-type methods for the second-order exponential equation.

In this example of the increasing exponential function, all the derivatives are
equal to the function value, so that once the function starts heading upward it contin-
ues uniformly upward. Even in method 3 derivatives beyond the second are ignor-
ed, so the error also increases uniformly, albeit slowly. Because, for all three meth-
ods, we see from Figure 8.15 that the errors increase proportionally to x (since the
error lines are straight), the fractional error per step is constant. This result can be
proved analytically for the exponential function. It is also of interest to investigate
numerically the dependence of the errors in each method on the stepsize h.

Exercise 8.24
(a) Compile Numerical DE_2; Euler-Type Methods so that FUNC returns
value y [k] and ANALYT returns value exp (x) . Then run the program for
each of the three Euler methods with xmin = 0, xmax = 4, and stepsize
h = 0.05. Input y (xmin) = y' (xmin) = 1. Examine the values of the com-
puted y [k] and the percentage relative errors in order to verify approximate
agreement with the curves in Figure 8.15.
(b) Repeat the above calculations for step sizes of h = 0 .1 and 0.025, going
out to x = 4 each time. After taking into account that the number of steps to
reach a given x is inversely proportional to h, do your estimates of the error per
step agree with the estimates summarized in Table 8.3?

This exercise should convince you that the Euler-type algorithms for second-order
differential equations are fairly inaccurate, because the error to propagate the solution
to a given x decreases one power of h more slowly than the error per step that is in-
dicated in Table 8.3. Probably only method 3 is suitable for typical applications.
The merits of the three methods when used for oscillatory functions are explored in
the next subsection.

8.4 PROGRAMMING SECOND-ORDER EULER METHODS 293

FIGURE 8.16 Errors in three Euler-type methods for the second-order harmonic equation with

solution the cosine function.

Euler algorithms and the cosine function

For oscillatory functions it is interesting to examine the buildup and decay of the er-
rors of the three Euler-type methods as the function varies. The function that exactly
solves the second-order linear differential equation d2y ldx2 = -y (x) with bound-
ary conditions y (0) = 1 and y' (0) = 0, namely y(x) = cos (x), is the same as
explored for the first-order differential equation solvers at the end of Section 7.5.
There the equation was dyldx = -sin (x) with y (0) = 1. In real applications it
would not be sensible to go to the extra trouble of solving a second-order equation if
there is a first-order equation available, but doing so here provides insight from the
comparison. We shall see immediately why there is extra trouble.

The numerical solutions using the three Euler-type algorithms with a stepsize of
h = 0.05 are shown in Figure 8.16 and may be compared directly with the first-or-
der solutions shown in Figure 7.7. Notice that only one of the second-order meth-
ods we use is more accurate than any of our first-order methods, namely method 3.
It is more accurate than the first-order forward-difference method by about a factor
of 100 and it is of comparable accuracy to the first-order central-difference and trape-
zoid methods. It is worthwhile to convince yourself of the correctness of the numer-
ical results for the second-order equation algorithms.

Exercise 8.25
(a) Rename and recompile program Numerical DE_2; Euler-Type Methods
so that FUNC now returns value - y [k] and ANALYT returns value cos (x) .
Run the modified program for each of the three Euler methods with xmin = 0,
xmax = 7, and a stepsize h = 0.05. Input the values y (xmin) = 1,
y' (xmin) = 0. Examine the values of the computed y [k] and the percentage

294 SECOND-ORDER DIFFERENTIAL EQUATIONS

relative errors in order to verify approximate agreement with the curves in Fig-
ure 8.16.
(b) Repeat these calculations for stepsizes of h = 0.1 and 0.025, going out to
x = 7 each time. (The array sizes will need to be at least MAX = 282 for the
latter calculation.) After taking into account that the number of steps to reach a
given x is inversely proportional to h, do your estimates of the error per step
agree with the estimates summarized in Table 8.3? n

We may conclude from these numerical studies that numerical solutions of low-order
differential equations are usually more accurate than the solutions obtained from
higher-order equations. The only advantage of using a second-order equation over a
first-order equation for the cosine function example is that one obtains numerical es-
timates of slopes as a by-product of estimating the values of the equation solution.

In the Euler-type methods investigated in this section and in Sections 7.4 and
7.5 there was no restriction to linear differential equations, although our examples
do not illustrate this. If the restriction to linear equations can be made, so that
F (x,y) = F (x)y in (8.54), there remains a very large range of scientifically inter-
esting differential equations, to be solved numerically. The more accurate methods,
such as Noumerov’s algorithm that we derived in Section 8.3, are then appropriate.
The numerics of this algorithm is the topic of the next section.

8 . 5 PROJECT 8B: NOUMEROV METHOD FOR LINEAR
SECOND-ORDER EQUATIONS

In this project our goal is to convert the Noumerov algorithm derived in Section 8.3
into a working program, to evaluate the method, then to apply it to a problem in
quantum mechanics. We first outline the program structure and list the program,
then provide two test functions (exponential and cosine) for evaluating the method.
In the last two subsections we apply the method and adapt the program to solve nu-
merically the quantum-mechanical Schrödinger equation for a harmonic oscillator in
one dimension.

Programming the Noumerov method

Coding and testing of the Noumerov algorithm, (8.79) and (8.80), is quite straight-
forward. For ease of presentation it is coded in-line, but it is clearly distinguished
from the main body of the program. The function that is iterated in-place is Y in
(8.79), whereas it is the desired solution, y, that is stored in an array. The starting
of the algorithm is assumed to be done by providing the first two values of y, in
y [1] and y [2] . In some uses it might be more convenient to have the initial value
of y and its first or second derivatives. These can be interconverted by use of a
Taylor expansion and of the differential equation.

8.5 NOUMEROV METHOD FOR LINEAR SECOND-ORDER EQUATIONS 295

The overall program structure is by now familiar to you. The program Numeri-
cal DE_2; Noumerov Method begins with a file-control section for preparing file
NUMDE_2 . N, which receives the output for graphical or other subsequent processing.
The file name should probably be made different for each application of the pro-
gram, for example, the exponential, cosine, or harmonic-oscillator functions investi-
gated below. The range of x values and the stepsize are requested, together with
two initial values of y. Then the algorithm discussed above is executed, followed by
comparison with analytic values made in terms of actual errors (err) and percentage
relative errors (relerr).

The function FUNC is the s-dependent function that returns the second deriva-
tive, F(x). The function ANALYT should be coded to return the analytical solution
of the differential equation that has the same boundary conditions that the starting
values of y indicate. It will be least confusing if you make new versions of the pro-
gram whenever you change the file name or either of these function names. The
versionof Numerical DE_2; Noumerov Method that we now show is setup for
testing the evolution of the cosine solution.

PROGRAM 8.2

derivative terms.

Noumerov algorithm for second-order linear differential equations without first-

#include <stdio.h>
#include <math.h>
#define MAX 201

main()

/* Numerical DE_2; Noumerov Method */
/* for Second-Order Differential Equations */
FILE *fout;
FILE *fopen();
double y[MAX],err[MAX],relerr[MAX];
double xmin,xmax,h,h2,Y1,Y2,dYk,Yk,x;
double Funx,Funx12,dYkp1,Ykp1,analytical;
int Nk,k;
char wa;
double FUNC(),ANALYT();

printf("Numerica1 DE; Second Order: Noumerov Method\n");
printf("Write over output (w) or Add on (a): ");
scanf("%s",&wa); fout = fopen("NUMDE_2.N",&wa);
printf("Input xmin, xmax, h\n");
scanf("%le%le%le",&xmin,&xmax,&h);
Nk = (xmax-xmin) /h+1.1;
if(Nk > MAX-1)

296 SECOND-ORDER DIFFERENTIAL EQUATIONS

{
printf("!! # of steps, %i, > %i\n",Nk,MAX-1); exit(l);
}

printf("Input y(xmin), y(xmin+h): ");
scanf("%le%le",&y[1],&y[2]);

/*
h2 = h*h;

Noumerov algorithm; Iteration in x */

Y1 = (1-h2*FUNC(xmin)/l2)*y[1]; /* starting Y values */
Y2 = (1+h2*FUNC(xmin+h)/l2)*y[2];
dYk = Y2-Y1; Yk = Y2; x = xmin+2*h;
for (k = 2; k <= Nk-1; k++)

Funx = h2*FUNC(x); Funxl2 = (l+Funx/l2);
dYkp1 = dYk+Funx*y[k]; /* increment in Y */
Ykp1 = Yk+dYkpl; /* new Y value */
y[k+1] = Funxl2*Ykpl; /* next y value */
x = x+h; dYk = dYkp1; Yk = Ykp1; /* recycle values */
}/* end k for loop & end Noumerov algorithm */

printf("\nComparison with analytical values\n");
x = xmin;
for (k = 1; k <= Nk; k++)

analytical = ANALYT(x); /* analytical and error */
err[k] = analytical-y[k];
relerr[k] = lOO*err[k]/analytical;
printf("%6.2le %10.6lg %10.6lg %10.6lg\n",

x,y[k] ,err[k] ,relerr[k]) ;
fprintf(fout, "%6.2le %10.6lg %10.6lg %10.6lg\n",

x,y[k] ,err[k] ,relerr[k]) ;
x = x+h; /* next x */
} /* end k output loop */

printf("\n End of Numerical DE_2; Noumerov Method");

double FUNC(x)
/* d2y/dx2 = FUNC(x) */
/* Noumerov method is second-order and linear in y */
double x;
{
double value;

/* Using working example of F = -1 for FUNC */
value = -1;

8.5 NOUMEROV METHOD FOR LINEAR SECOND-ORDER EQUATIONS 297

return value;

double ANALYT(x)
/* Analytical solution of differential equation */
double x;

double value;

/* Using working example of y = cos(x) for ANALYT */
value = cos(x);
return value;

With the program coding completed, we are ready to test it for correctness and
accuracy in the next subsection, then apply it in the final subsection.

Testing Noumerov for exponentials and cosines

We test the accuracy and efficiency of the Noumerov algorithm for second-order lin-
ear differential equations by using the same test functions, exponentials and cosines,
as in the previous tests in Chapters 7 and 8. We make the calculations over the
same range of x as previously (0 to 4), but we anticipate that the Noumerov method
will be much more accurate than both the Euler-type methods and the iteration-inte-
gration Adams methods for first-order equations. We therefore begin with twice as
large a stepsize as used previously, that is h is increased from 0.05 to 0.1. The
tests with the exponential-function solutions are straightforward to make, so I sug-
gest that you make them yourself.

Exercise 8.26
(a) Compile Numerical DE_2; Noumerov Method so that FUNC returns
value = 1 and ANALYT returns value = exp (x) . Then run the program
for the Noumerov method with xmin = 0, xmax = 4, and stepsize h = 0.1.
Input the initial values y [1] = y (xmin) = 1 and y [2] = y (xmin + h)
= exp (0.1) = 1.105171. Examine the computed y [k] and prepare a graph to
compare with the curves in Figure 8.15, which were computed using Euler-type
methods. How much more accurate is the Noumerov method than the most-ac-
curate (method 3) Euler method? (Take into account that you are using twice the
stepsize used in the Euler methods.)
(b) Repeat the above calculations for step sizes of h = 0.05 and 0.025, going
out to x = 4 each time. After taking into account that the number of steps to
reach a given x is inversely proportional to h, do your estimates of the error per
step agree in order of magnitude with the estimate derived in Section 8.3 for the
Noumerov method? n

298 SECOND-ORDER DIFFERENTIAL EQUATIONS

FIGURE 8.17 Noumerov-method solution of the second-order harmonic-oscillator differential

equation with cosine solution. The solid curve is the analytical solution, the dashed curve is the

scaled error in the numerical solution for stepsize of 0.1, and the dotted curve is the scaled error for

stepsize of 0.2.

We now return to the cosine function, examined previously for first- and sec-
ond-order differential equations by the Euler methods (Figures 7.7 and 8.16). We
make calculations over the same range of x as previously (0 to 7), but we anticipate
that the Noumerov method will be much more accurate than both the Euler-type
methods and the iteration-integration Adams methods. Therefore we begin with
twice as large a stepsize as used previously, that is, h is increased from 0.05 to 0.1.
The resulting values of y [k] and the scaled errors from the numerical integration are
shown for stepsizes of 0.1 and 0.2 in Figure 8.17.

Note the improvement by about five orders of magnitude in the accuracy of the
computation, for very little increase in complexity of the algorithm, from Euler
methods to Noumerov’s method. To be fair in the general comparison, we should
point out that the Noumerov algorithm is specially adapted to linear equations with
the first derivative eliminated, whereas the Euler-type methods can also handle non-
linear equations.

Just to show that all this improvement isn’t just smoke and mirrors, why don’t
you verify for yourself the results shown in Figure 8.17?

Exercise 8.27
(a) Rename then recompile prognrm Numerical DE_2; Noumerov Method so
that FUNC now returns value -1 and ANALYT returns value cos (x) . Run the
modified program with xmin = 0, xmax = 7, and stepsize h = 0.1. Input the
values y (xmin) = 0, y' (xmin) = 0. Examine the values of the computed
y [k] and the percentage relative errors in order to verify approximate agreement
with the curves in Figure 8.17.

8.5 NOUMEROV METHOD FOR LINEAR SECOND-ORDER EQUATIONS 299

(b) Repeat the calculations for stepsize h = 0.2, going out to x = 7. After
taking into account that the number of steps to reach a given x is inversely pro-
portional to h, show that your estimates of the error per step agree with the
0 (h6) estimates derived for the Noumerov method in Section 8.3. n

Now that we have a very accurate and efficient method for solving linear second-
order differential equations, it is worthwhile to illustrate its use in quantum mechan-
ics, where the Schrödinger equation is a linear second-order equation of wide applic-
ability for describing molecular, atomic, and nuclear phenomena.

The quantum harmonic oscillator

The one-dimensional harmonic oscillator in quantum mechanics is of basic impor-
tance, analogously to the simple pendulum in classical mechanics, as discussed (for
example) in Chapter 5 of the quantum-mechanics text by Cohen-Tannoudji et al. It
is therefore interesting to apply the Noumerov algorithm to solve the Schrödinger
equation numerically in order to verify the mathematical derivations of the quantized
energy levels that are presented in quantum mechanics textbooks. Here we summar-
ize the relevant mathematical results that are used for comparison with our numerical
results. Two textbooks and software that are of interest for computer-based quan-
tum mechanics are those by Brandt and Dahmen.

The time-independent Schrödinger equation for the wave function (x) in one
dimension for an oscillator (Hooke’s-law) potential is written in terms of the particle
mass m, the position coordinate x, and the oscillator angular frequency as

(8.81)

where h is Planck’s constant and E is the total energy. For time-independent states
the energies are quantized according to

(8.82)

where n is a non-negative integer (0,l,...) and It is most convenient to
rewrite this equation in terms of dimensionless variables, which also provides num-
bers that are conveniently scaled for computation,

Exercise 8.28
(a) Consider in the Schrodinger equation the change of variables

(8.83)

(the denominator is times the “oscillator length”), the scaling of the energy

300 SECOND-ORDER DIFFERENTIAL EQUATIONS

(8.84)

and renaming of the dependent variable from to y. Show that (8.81) becomes

(8.85)

where the function F that is appropriate for the Noumerov algorithm is given by

(8.86)

in which the variables x and E are dimension-free.
(b) Given the rule (8.82) for the quantized energies, show that in (8.86) the
scaled energy is given by

(8.87)

with n = O,l,... . n

In the quantum mechanics of bound systems the signature of a time-independent
state, also called an “energy eigenstate,” is that for large x the value of y (x) tends to
zero. Therefore the test that we will make is to use the Noumerov algorithm to solve
(8.85) with (8.86) numerically for values of E near the En. Energy eigenstates
should exhibit the claimed behavior for large x.

Analytic expressions for y (x) can be obtained for the energy eigenstates. Ap-
propriately scaled solutions of (8.85), yn(x), that are of order of magnitude unity,
are given by

(8.88)

where the Hermite polynomials of order n, Hn(x), may be obtained from

(8.89)

(8.90)

Since the solutions are polynomials times a Gaussian, they eventually die off for
large x approximately as a Gaussian, with the falloff being slower for the larger n
values associated with larger total energy.

Now that we have the analytic solutions of the differential equation (8.85) at en-
ergy eigenstates to check the accuracy of the Noumerov solutions, we are ready to
adapt the program Numerical DE_2; Noumerov Method to solve (8.85).

8.5 NOUMEROV METHOD FOR LINEAR SECOND-ORDER EQUATIONS 301

Noumerov solution of the quantum oscillator

In order to solve the modified Schrödinger equation (8.85) for the quantum oscilla-
tor, our program for the Noumerov algorithm given two subsections above should
be modified slightly in several places.

(1) First, change the output file name to NUM.SE or some distinguishing name.
(2) The next modification is to set xmin = 0 rather than making it an input vari-

able, since the differential equation solution will start at zero. To avoid coding
errors, the variable xmin should remain in the program.

(3) A convenient change is to enclose all the main program below the input of new
variable n , xmax, and h within a while loop controlled by an input variable
called energy for the scaled value of the variable E in (8.85). The program
should stay in the loop as long as energy > 0. The program can then be run
for a range of energy values near the scaled energies E,, given by (8.87).

(4) Starting values should be obtained from the analytical values, rather than input.
This is not essential, but it establishes a scale for they values which cannot oth-
erwise be determined because we are solving a linear equation. Therefore, set
y[l] = ANALYT(xmin,n); y[2] = ANALYT(xmin+h,n);

(5) Modify the coding and reference of the function F(x), called FUNC in the pro-
gram, as follows:

double FUNC (x, energy)
/* d2y/dx2 = FUNC(x,energy) */
double x, energy;

double value;

/* Schroedinger equation second derivative */
value = x*x-energy;
return value;

(6) Modify the references to ANALYT, the analytical solution of the Schrödinger
equation for quantum number n, from ANALYT (x) to ANALYT (x,n) . Rewrite
function ANALYT as follows:

double ANALYT(x,n)
/* Analytical solution of Schroedinger equation */
double x;
int n; /* energy level; n = 0,1,2,... */

double value,Hzero,Hone,Gauss,norm,Hn;
int k;

302 SECOND-ORDER DIFFERENTIAL EQUATIONS

Hzero = 1; Hone = 2*x; Gauss = exp (-x*x/2) ;
if (n==O) return Hzero*Gauss;
if (n==l) return Hone*Gauss/sqrt(2);
norm = 2;
for (k=2; k<=n; k++) /* Hn by recurrence on k */

{
Hn = 2*(x*Hone-(k-l)*Hzero);
Hzero = Hone; Hone = Hn; /* update */
norm = 2*k*norm;

return Hn*Gauss/sqrt(norm);
}

The two lowest-order Hermite polynomials and the recurrence relations for the
higher-order polynomials are as given by (8.89) and (8.90). The factor norm
comes from (8.88).

Having made these changes, with appropriate declarations of new variables, we
are ready to use the program to explore the numerical solutions of the quantum-oscil-
lator wave functions.

Exercise 8.29
Run your modified program for the Noumerov method applied to the Schrödin-
ger equation with input values n = 0, xmax = 3, h = 0.02, which are all di-
mensionless variables. Within the energy loop use values near the energy
eigenvalue, E0 = 1. Check that your results agree with Figure 8.18. n

FIGURE 8.18 Numerical solution of the quantum harmonic oscillator Schrödinger equation for

energies near the n = 0 eigenstate, using the Noumerov algorithm with stepsize h = 0.02.

8.5 NOUMEROV METHOD FOR LINEAR SECOND-ORDER EQUATIONS 303

Note that unusually small values of the stepsize h are needed to accurately track the
decaying exponential or Gaussian function. Figure 8.18 displays the numerical
wave function values y [k] that approximate y(x). The three values of the en-
ergy E are close to the energy eigenstate value of unity for n = 0. Note that (to
within ±O.002) the numerical solution that best fits the analytical solution differs
from unity by 0.025. If you vary the stepsize h you will find that the discrepancy
from unity decreases steadily as h decreases. Also, the decaying behavior of the
numerical solution is extremely sensitive to the relative accuracy of the two starting
values. Why not explore these two aspects of the numerical solution yourself?

Exercise 8.30
(a) Run your Schrödinger equation program as in Exercise 8.29, but now vary
h from say 0.1 to 0.01 with (for minimum confusion) energy fixed at the en-
ergy eigenvalue of unity. Is the solution converging toward the analytical solu-
tion as h decreases?
(b) Modify the program so that y[2] is 1 + 10-6 times the analytical value. Re-
peat the calculations made in Exercise 8.29. Verify that for large x this part-per-
million change in a starting value is amplified about 1000 times when x = 3 is
reached. n

It should now be clear to you that it is not good practice to use a numerical algor-
ithm iteratively in a direction for which the function tends to decrease overall. For
example, the increasing exponential function investigated by the Noumerov algor-
ithm in Exercise 8.26 has part-per-million accuracy, whereas the accuracy at xmax
for a decreasing exponential, as investigated in the two preceding exercises, is only
part-per-cent or worse. Therefore, iteration by numerical algorithms should, when-
ever feasible, be carried out in the direction of increasing magnitude of y.

In our present example of the quantum oscillator one could begin with the Gaus-
sian solutions at large x, then iterate inward. Unless you had selected an energy
eigenstate, the solution would diverge near the origin because of the presence of that
other solution of the second-order differential equation, the one irregular (divergent)
near the origin. Such an iteration direction should give results that are much less
sensitive to the stepsize than is the iteration direction we are using. An alternative
scheme for numerical solution of such a “stiff’ differential equation as we are trying
to solve is presented in Section 8.6.

Finally, it is interesting to take a quantum leap and try the Noumerov method for
the quantum oscillator on a state of higher energy, for which there is an oscillating
region of the wave function followed by a decaying region for larger x if E is nearly
an eigenstate value. Try it and see.

Exercise 8.31
Run the Noumerov method program for the Schrödinger equation with input
values n = 3, xmax = 3, h = 0.02, which are all dimension-free variables.
Within the energy loop use values near the energy eigenvalue, E3 = 7, ac-
cording to (8.87). Your results should be similar to those in Figure 8.19. n

304 SECOND-ORDER DIFFERENTIAL EQUATIONS

FIGURE 8.19 Numerical solution of the quantum harmonic oscillator Schrödinger equation for

energies near the n = 3 eigenstate, using the Noumerov algorithm with stepsize h = 0.02.

In Figure 8.19 the value that best fits the analytical solution is at an en-
ergy = E of 7.06, close to the analytical value of 7. The numerical solution is in-
distinguishable from the analytical solution within the resolution of the graph.
Clearly the values of E = 6.70 or E = 7.40 do not give energy eigenstates.

Now that you understand how to solve the Schrödinger equation numerically to
reasonable accuracy by using the Noumerov method, you will probably find it inter-
esting (depending on your level of experience with quantum machanics) to explore
other potentials both for bound states (as here) and for scattering states.

The subject of numerical solution of ordinary differential equations is vast. You
can learn more about the analytical and numerical aspects in, for example, Chap-
ters 9 and 10 of Nakamura’s book and in Jain’s compendium of numerical meth-
ods. Several programs in C are provided in Chapter 15 of the numerical recipes
book by Press et al.

8 . 6 INTRODUCTION TO STIFF DIFFERENTIAL EQUATIONS

When applying the Noumerov algorithm to solve the differential equations for expo-
nential-type functions in Section 8.5 we were struck by an unusual contrast.
Namely, if we iterated the numerical solution in the direction that the function was
generally increasing, as in Exercise 8.29, then the algorithm was remarkably accu-
rate, typically at least part-per-million accurate for a stepsize h = 0.1. By compari-
son, if the solution was iterated so that the function was generally decreasing, as in
Exercises 8.30 and 8.31, then even for h = 0.02 only part-per-cent accuracy was
obtained.

8.6 INTRODUCTION TO STIFF DIFFERENTIAL EQUATIONS 305

Although we suggested at the end of Section 8.5 that one way around this prob-
lem is always to iterate in the direction of x such that the function is generally in-
creasing in magnitude, this is often not possible or not practicable. Alternative
schemes are presented in this section. We first describe what is meant by a “stiff’
differential equation, then we give two prescriptions that may remove the stiffness,
due to Riccati and to Madelung.

What is a stiff differential equation?

Suppose that in the second-order differential equation

(8.91)

we have that F (x) >> 0 for a wide range of x. For any small range of x values,
small enough that F does not change appreciably over this range, the solutions of
(8.91) will be of the form

(8.92)

in which A+ and A- are constants.

Exercise 8.32
(a) Verify the correctness of this approximate form of the solution of (8.91) by
calculating the second derivative of this expression with respect to x, including
the variation of F with respect to x. Show that if

then the approximation is appropriate.
(b) Show that this condition can be weakened to

(8.93)

(8.94)

by appropriately moving the x origin and adjusting A+ and A-. n

In many scientific and numerical applications the appropriate solution of (8.91)
is the exponentially decaying one. For example, we may have the boundary condi-
tion that so that A+ = 0 is required. If inaccuracies of the nu-
merical algorithm or of roundoff error allow a small amount of exponentially-in-
creasing solution to insinuate itself into the decaying solution, this increasing solution
part will usually quickly increase. The differential equation is then “stiff’ to solve,
and its solution is an unstable problem in the sense discussed in Section 4.3.

306 SECOND-ORDER DIFFERENTIAL EQUATIONS

One way of appreciating this insidious behavior is to consider the effect of a
small error, on the right-hand side of (8.91). The error in y" (x) is then F
Since F >> 0, this amplifies the curve strongly upward or downward, depending
on whether This problem was introduced in Exercise 8.30 (b)
and the subsequent discussion. There an as small as 10-6 was found to make a
drastic change in the quantum-oscillator wave function. We now revisit this prob-
lem, but for the simpler example of the differential equation (8.91) having F(x) = 1
and initial values either increasing (stable behavior) or decreasing (unstable behav-
ior). We use the Noumerov method, for which the increasing exponential was in-
vestigated numerically in Exercise 8.26.

Exercise 8.33
(a) Compile Numerical DE_2; Noumerov Method so that FUNC retums
value = -1 and ANALYT returns value = exp(-x) . Make an input option
so that the second starting value can be multiplied by the factor Then
run the program for the Noumerov method with xmin = 0, xmax = 1, using
stepsize h = 0.05. Use as input values y [1] = y (xmin) = 1 and y [2] =

 E x a m -
ine the computed y [k] and prepare a graph to compare the analytic and numeri-
cal-solution values for values in the range 10-4 to 10-2.
(b) Repeat the above calculations for stepsizes of h = 0.025 and 0.01, going
out to x = 1 each time. Show that the strong sensitivity to the accuracy of the
second starting value persists for these smaller values of the stepsize. n

There are two remarks to be made about such an investigation of this very stiff
second-order differential-equation solution. First, it doesn’t matter at what x value
the effect of a small error is introduced, since exp (x) = exp (x1) exp (x - x1)
for any value of x1, so only the distance the error has been propagated is significant.
Second, this differential equation is particularly stiff because all the information
about the initial slope is contained in the relative values of y [1] and y [2] . It
would really be better, if possible, to have other ways of indicating whether it is the
increasing or the decreasing solution that is to be found. For example, it might be
possible to provide accurate first derivatives near the initial values.

There must be better ways to handle such stiff differential equations. The logar-
ithmic transformation of the dependent variable that we now consider is such a way.

The Riccati transformation

Consider the logarithmic transformation of y in the differential equation (8.91), that
is, let

(8.95)

8.6 INTRODUCTION TO STIFF DIFFERENTIAL EQUATIONS 307

FIGURE 8.20 The function Y(x) in (8.96) is shown by the solid curve, the exponential func-

tion is indicated by the dashed curve, while the Riccati transformation of y, R (x), is shown by the

dotted curve.

The transformation (8.95) is called the Riccati transformation of y (x). Note
that the second relation is more general than the first, because it allows negative val-
ues of y. It is therefore to be preferred, although the first relation is the one most
commonly encountered. The second relation has its own problems because y
should not be identically zero anywhere it is used.

The motivation for this transformation is shown graphically in Figure 8.20 for
the function

(8.96)

with a = 1 and b = 0.5. The choice of a and b in (8.96) is such that y (0) = 1 and
y' (0) = -1. Note that on the linear scale the different slope of y from the expo-
nentially decaying function is scarcely distinguishable, which is why a differential-
equation solver will have trouble distinguishing between them. On the other hand,
the “logarithmic derivative” R (x) = y'/y, shown in the lower part of Fig-
ure 8.20, clearly distinguishes the exponential decay of slope -a from the modulat-
ing effect of the trigonometric factor.

Exercise 8.34
(a) Differentiate (8.96) with respect to x, then divide the derivative throughout
by y in order to show that

(8.97)

so that in the logarithmic derivative there is no exponential decay.

308 SECOND-ORDER DIFFERENTIAL EQUATIONS

(b) Prepare graphs of the logarithmic derivative (8.97) for b = 0.25, 0.5, and
0.75 with a = 1 over the range 0 < x < 4. Compare with Figure 8.20 and justify
whether it is a or b that is the more significant parameter in determining the
behavior of the function R (x). n

After this pictorial introduction to the Riccati transform we need
formulate the differential equation satisfied by R (x). Suppose that

some
y is a

analysis
solution

to
of

(8.98)

This can be rewritten in terms of R as

(8.99)

Therefore, solving the second-order differential equation (8.98) can be divided into
the solution of two first-order equations. First, (8.99) is solved for R, then (8.95)
is solved for y in terms of R.

Exercise 8.35
Derive the first-order Riccati form of the differential equation (8.99) for R (x),
starting from (8.98). n

Now that we have the mathematical analysis in good shape, we
numerics and programming to check out the Riccati transformation.

should try some

Programming the Riccati algorithm

The program Numerical DE; Second order by Riccati is based on the pro-
gram Numerical DE_2; Euler-type Methods in Section 8.4. Here is the Ric-
cati program.

PROGRAM 8.3 Solution of second-order differential equations by the Riccati transform.

#include <stdio.h>
#include <math.h>
#define MAX 201

main()

/* Numerical DE; Second order by Riccati */
FILE *fout;
FILE *fopen();
double Rb[MAX],errRb[MAX],y[MAX],erry[MAX];
double xmin,xmax,h,twoh,a,b,x,analRb,analy;
int choice,Nk,nmax,k;

8.6 INTRODUCTION TO STIFF DIFFERENTIAL EQUATIONS 309

char wa;
double FUNCRb(),FUNCy(),ANALYTRb(),ANALYTy();

printf("Numerical DE; Second Order by Riccati\n");
printf("Write over output (w) or Add on (a): ");
scanf("%s",&wa) ; fout = fopen("NUMDE.NumRic.l",&wa);
printf("Input xmin, xmax, h: ");
scanf("%le%le%le",&xmin,&xmax,&h) ;
Nk = (xmax-xmin)/h+l.l;
if(Nk > MAX-1)

{
printf("!! # of xsteps, %i, > %i\n",Nk,MAX-1); exit(l);
}

twoh = 2*h;
printf("Input a,b: ") ;
scanf("%le%le",&a,&b) ;
Rb[l] = a+b; Rb[2] = (a+b-h)/(1+(a+b)*h);
x=xmin; /* Euler central for Rb */
f o r (k = 2 ; k < N k ; k = k + 2)

x = x+h;
Rb[k+l] = Rb[k-l]+twoh*FUNCRb(Rb,k);
Rb[k+2] = Rb[k]+twoh*FUNCRb(Rb,k+l);
x = x+h;
}

Y[l] = 1; y[2] = 1+b*h;
x = xmin; /* Euler central for y */
f o r (k = 2 ; k < N k ; k = k + 2)

x = x+h;
y[k+1] = y[k-1]+twoh*FUNCy(a,Rb,y,k);
y[k+2] = y[k]+twoh*FUNCy(a,Rb,y,k+l);
x = x+h;
}

printf("Comparison with analytical values\n");
x = xmin;
for (k = 1; k <= Nk; k++)

analRb = ANALYTRb(x,a,b);/* Rb analytical & error */
errRb[k] = analRb-Rb[k];
analy = ANALYTy(x,a,b);/* y analytical & error */
erry[K] = analy-y[k] ;
printf("%5.2le %6.3lg %6.3lg %6.3lg %6.3lg %6.3lg\n",
x, analRb, errRb[k] , analy,y [k] , erry [k]) ;
fprintf(fout,"%5.2le %6.3lg %6.3lg %6.3lg %6.3lg %6.3lg\n",

310 SECOND-ORDER DIFFERENTIAL EQUATIONS

x,analRb,errRb[k],analy,y[k],erry[k]);
x = x+h;

printf("\nEnd Numerical DE; Second Order by Riccati");

double FUNCRb(Rb,k)
/* dRb/dx = FUNCRb */
double Rb[];
int k;

double value;
value = Rb[k]*Rb[k
return value;

]-1;

double FUNCy(a,Rb,y,k)
/* dy/dx = FUNCy */
double Rb[],y[];
double a;
int k;
{
double value;
value = (Rb[k]-a)*y[k] ;
return value;
}

double ANALYTRb(x,a,b)
/* Analytical solution for Rb=y'/y+a for oscillator */
double x,a,b;

double value;
value = (-sin(x)+(a+b)*cos(x))/(cos(x)+(a+b)*sin(x));
return value;

double ANALYTy(x,a,b)
/* Analytical solution for damped oscillator */
double x,a,b;
{
double value;
value = exp(-a*x)*(cos(x)+(a+b)*sin(x));
return value;
}

8.6 INTRODUCTION TO STIFF DIFFERENTIAL EQUATIONS 311

The structure of Numerical DE; Second order by Riccati is straightfor-
ward and the coding is very similar to that in the Euler-type and Noumerov methods,
so you can proceed directly to implement, test, and use the program.

Exercise 8.36
(a) Codetheprogram Numerical DE; Second order by Riccati to com-
pute numerically the solution of (8.98). Test the program with F(x) = F (a
constant).
(b) Use your program to compute the numerical solution of the damped-expo-
nential equation that has solution (8.96). Compare your numerical results for
a = 1 and b = 0.5 with the analytical solution (8.96) and with the graphical
output in Figure 8.20. n

We now have some idea how stiff differential equations of the exponentially de-
creasing type can be solved numerically, so it is interesting to consider briefly
second-order differential equations with solutions that oscillate rapidly.

Madelung’s transformation for stiff equations

Suppose that in the linear second-order differential equation

(8.100)

we have F (x) << 0 for a wide range of x. The solutions of such a differential
equation will be rapidly oscillating and therefore numerically troublesome, just as
when F has the opposite sign and is large in magnitude we get a rapidly changing
stiff differential equation that can be handled numerically by the Riccati transforma-
tion that we developed in the two preceding subsections.

The Madelung transformation is designed to reduce such problems by dividing y
into an amplitude part, r, and a phase part, according to

(8.101)

where r is purely real. In order to identify real and imaginary quantities, we write

(8.102)

then insert this and (8.101) in the differential equation (8.100). The real quantities r
and then satisfy

(8.103)

and

(8.104)

312 SECOND-ORDER DIFFERENTIAL EQUATIONS

These equations can
you may wish to prove.

be simplified in the common case that F is purely real, as

Exercise 8.37
(a) Verify equations (8.103) and (8.104) by making the indicated substitutions.
(b) Show that if F is purely real, then (8.104) can be integrated to give

(8.105)

where B is a constant of integration.
(c) By substitution of this result into (8.103), show that, again only for real F,

(8.106)

so that if this equation can be integrated the resulted can be substituted into the
first-order differential equation (8.105) for
(d) Verify that if F (x) = with real, then r is a constant and, as ex-
pected, n

Therefore the Madelung transformation for real and negative F in (8.100) can re-
move the stiffness of a linear differential-equation solution in much the same way as
the Riccati transformation does for large real-positive values of F.

Our introduction to the mathematical and numerical analysis of differential equa-
tions should set you on the path to reading and understanding the extensive technical
literature. A compendium of formulas is provided in the books by Jain and by Zill,
while many formulas are listed in Abramowitz and Stegun. The problem of stiff dif-
ferential equations is given particular attention in the book by Gear.

REFERENCES ON SECOND-ORDER EQUATIONS

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1964.

Backus, J., The Acoustical Foundations of Music, Norton, New York, second
edition, 1977.

Bernoulli, J., 0pera Omnia, Marc-Michel Bousquet, Laussanne, 1742, reprinted by
George Olms, Hildesheim, Germany, 1968, edited by J. E. Hofmann; Vol. II
pp. 232, 251, Vol. IV p. 234.

Brandt, S., and H. D. Dahmen, Quantum Mechanics on the Personal Computer,
Springer-Verlag, Berlin, 1989.

Brandt, S., and H. D. Dahmen, Quantum Mechanics on the Macintosh, Springer-
Verlag, Berlin, 199 1.

REFERENCES ON SECOND-ORDER EQUATIONS 313

Braun, M., C. S. Coleman, and D. A. Drew (eds.), Differential Equation Models,
Springer-Verlag, New York, 1983.

Cohen-Tannoudji, C., B. Diu, and F. Laloë, Quantum Mechanics, Wiley-
Interscience, New York, 1977.

Galilei, G., Two New Sciences, Elzevirs, Leyden, The Netherlands, 1638,
translated by Stillman Drake, University of Wisconsin Press, Madison, 1974,
p. 143.

Gear, C. W., Applications and Algorithms in Computer- Science, Science Research
Associates, Chicago, 1978.

Gilbert, D. “On the Mathematical Theory of Suspension Bridges, with Tables for
Facilitating Their Construction,” Philosophical Transactions of the Royal Society
of London, 116, 202 (1826).

Haberman, R., Mathematical Models, Prentice Hall, Englewood Cliffs, New
Jersey, 1977.

Honig, E., “New Wine into Old Bottles: A Nuptial Arch,” American Journal of
Physics, 59, 472 (1991).

Ingard, K. U., Fundamentals of Waves and Oscillations, Cambridge University
Press, Cambridge, England, 1988.

Jain, M. K., Numerical Solution of Differential Equations, Wiley Eastern, New
Delhi, second edition, 1984.

Nakamura, S., Applied Numerical Methods with Software, Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

Noumerov, B. V., Monthly Notices of the Royal Astronomical Society, 84, 592
(1924).

Pippard, A. B., The Physics of Vibration, Cambridge University Press, Cambridge,
England, 1988,

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C, Cambridge University Press, New York, 1988.

White, H. E., and D. H. White, Physics and Music, Saunders College, Phila-
delphia, 1980.

Zill, D. G., Differential Equations with Boundary-Value Problems, Prindle, Weber,
& Schmidt, Boston, 1986.

314

Chapter 9

DISCRETE FOURIER TRANSFORMS
AND FOURIER SERIES

In this chapter and in the next we develop mathematical and computational tech-
niques applicable to describing data and functions in terms of the orthogonal func-
tions introduced in Chapter 6 for linear least-squares fitting. In particular, we use
the complex-exponential or cosine and sine functions over appropriate ranges as the
orthogonal functions. In pure mathematics the term Fourier analysis or Fourier
expansion usually refers to the more general orthogonal functions, whereas in
applied mathematics as used in science and engineering the trigonometric functions
are often those of relevance because of their interpretation in terms of simple har-
monic motions and harmonics of a fundamental frequency of oscillation.

The topics that we emphasize in this chapter are the following. In Section 9.1
we distinguish between the different kinds of Fourier expansions, the discrete trans-
form, the series, and the integral transform. Section 9.2 is used to develop the dis-
crete transform, whose practical computation is described by the Fast Fourier Trans-
form (FFT) algorithm developed in Section 9.3. We then derive in Section 9.4 the
common Fourier series from the discrete transform, and in Section 9.5 we give
some obligatory exercises with series and show some of their novel applications.
As a diversion, Section 9.6 discusses the pesky practical problems of the Wilbra-
ham-Gibbs overshoot.

Turning to practical applications, we develop a program for the FFT in Sec-
tion 9.7 as Project 9A. In Section 9.8 we implement as Project 9B a Fourier anal-
ysis of an electroencephalogram (EEG). We end the chapter with relevant references
on Fourier expansions.

Chapter 10 we devote to Fourier integral transforms, a natural extension of the
results in Chapter 9. Both mathematical and applied developments are made, with
particular reference to powerful analytical results and their use in computing deriva-
tives and integrals. We introduce convolutions and correlations, and their approxi-
mate computation by the FFT is discussed.

315

316 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Although the results that we derive are mathematically correct, we do not exam-
ine rigorously such assumptions as the convergence of Fourier series. These are
discussed with mathematical elegance in the monograph by Champeney on Fourier
theorems, and in Chapter 6 of the book by Protter and Morrey.

9.1 OVERVIEW OF FOURIER EXPANSIONS

In this section we provide an overview of the uses of Fourier expansions, the differ-
ent types of expansions, and the nomenclature used to describe them. The distinc-
tion between the different types is important both at the analysis level and in practical
numerical applications.

The uses of Fourier expansions

There are several motivations for using Fourier expansions in mathematics, science,
and engineering. A primary analytical motivation arises from the elegant mathemat-
ics of the complex-exponential function and its relation to cosine and sine functions,
as reviewed in Section 2.3. A further motivation is the association of the successive
terms in expansions, such as in successive Fourier-series terms, with harmonics of
frequencies. This connection also relates vibrations and waves (Section 2.4) with
resonances (Section 8.1).

At the level of numerics and applications, one motivation for using Fourier ex-
pansions arises from linear-least-squares fitting in terms of orthogonal functions, a
topic developed in Section 6.2. There we showed that the fitting coefficients may
be determined independently of each other if the fitting functions are orthogonal
over appropriate regions of x and with suitable weight factors. As we derive in this
chapter and the next, suitable orthogonal functions can be found for each type of
Fourier expansion.

Types and nomenclature of Fourier expansions

The distinction between the various types of Fourier expansions and their nomencla-
ture is confusing, and it is not always consistent between different authors. Our no-
menclature is summarized here and is related to subsequent sections. The chart be-
low illustrates schematically the features of the three types of Fourier expansions.

In each type of expansion the functions (x) are complex exponentials or are
cosines and sines of kx. The left-hand side of the chart indicates the three types of
Fourier expansions and their mathematical distinctions, while the right-hand side in-
dicates the fast Fourier transform algorithm for computing the discrete transform,
which is derived in Section 9.3 and programmed in Section 9.7. What are, generi-
cally, the similarities and differences between the three expansions?

9.1 OVERVIEW OF FOURIER EXPANSIONS 317

FIGURE 9.1 Schematic of the types and nomenclature of Fourier expansions.

l The discrete Fourier transform (DFT) uses summations in both stages It is
therefore completely symmetric between the discrete data in the x domain, y(xj), and
the coefficients ck in the k domain, as we show in detail in Section 9.2. The DFT
is most useful for analyzing data, especially because the Fast Fourier Transform
(FFT) algorithm (Sections 9.3 and 9.7) allows very efficient computation of the dis-
crete transform and its inverse.
l The Fourier series differs from the DFT in that the summation in computing the
coefficients is replaced by integration. The y values must therefore be defined over a
continuous range of x, which makes the Fourier series most applicable for y(x) de-
scribed by formulas, as we describe in Sections 9.4 and 9.5. Confusion between
the discrete and series transforms is likely in practical applications because the inte-
grals are often approximated by trapezoid-rule sums (Section 4.6).

318 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

l In the Fourier integral transform (FIT), also just called the Fourier transform, we
go all the way, with y(x) being given in terms of integrals over and vice versa.
The Fourier transform is often most useful for analytical work, especially because
the symmetry between y(x) and has been regained. These analytical integral
results are often approximated by summations in practical work, so there is often
confusion between the FIT and the DFT, especially when approximating the integral
transform numerically by using the FFT algorithm. The Fourier integral transform
is so mathematically tractable and has so many applications that we devote Chap-
ter 10 to exploring its properties and applications. For the complex-exponential
function it is possible to calculate both its DFT and its FFT analytically, a fact appar-
ently unknown to other authors. I therefore show in Sections 9.2 and 10.2 the cal-
culations, then you have opportunity to compare the two types of Fourier expansion.

Our order of presenting the Fourier expansions indicated in the above chart is not
inevitable. By beginning with discrete series, then taking limits to obtain integrals,
we follow the Riemann and graphical approaches to the definition of integrals. If we
began with the integral transforms and worked toward the discrete transforms, we
would have to discretize the functions by introducing Dirac delta distributions, thus
introducing additional mathematical pains without any gains. Various approaches
are described in the treatises by Körner, Bôcher, and Champeney.

9.2 DISCRETE FOURIER TRANSFORMS

The first kind of Fourier expansion that we consider is direct use of summations in
the expansion of a function or data in terms of the complex-exponential function for

 Furthermore, we assume that the x values are available at equally-spaced
points xj = jh, with the origin of the x coordinates chosen so that j = 1,2,...,N .

Derivation of the discrete transform

Let us try a Fourier expansion of the form

(9.1)

where the expansion functions are the complex exponentials

In (9.1), although the sum is over the index k, its range is not yet specified, nor has
the quantity in (9.2) been specified. Both the range and will be chosen to get

(9.2)

9.2 DISCRETE FOURIER TRANSFORMS 319

an orthogonal expansion, and the factor in (9.2) will produce orthonormality,
that is, a sum whose value is unity whenever it is nonzero. This property is derived
below.

Consider the orthogonality sum, S, corresponding to (6.13) in the least-squares
discussion. With the choice (9.2) for the expansion functions, S is given by

Exercise 9.1
(a) To evaluate S, show that the substitution
geometric-series formula (3.2), for

(9.3)

 produces the

(9.4)

(b) Thence show that for orthogonality (S = 0) one requires

(9.5)

(c) With this value of a, show for r = 1 (l = -k) that S = 1, which justifies
the normalization of the function in (9.2). n

Thus, in the linear-least-squares formula (6.18), choosing weight factors wj all
unity, we have the coefficients for the discrete Fourier transform

(9.6)

Here the coefficients have a range of k values -N to N.
The complementary expansion of the functions in terms of the Fourier coeffic-

ients is

(9.7)

This expression may be used for any value of x, not just at the points where the y
data exist, the yj.

Note that the Fourier coefficients, ck, are complex numbers even if the function
y (x) is purely real. This property and others will now be derived.

320 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Properties of the discrete transform

It is worthwhile now to derive many properties of the discrete Fourier transform,
since many of them extend to the other Fourier expansions, the series and the inte-
gral. The first property is called Parseval’s theorem:

(9.8)

In electrical engineering and physics if the k are frequencies, then the left-hand side
is a measure of the total power in a system as computed in the frequency domain,
while the right-hand side is the power computed in the time domain, so that x = t,
the time. In quantum mechanics the k usually refer to momentum space and the x to
configuration space, then the interpretation of the Parseval theorem is that total prob-
abilities are the same in both representations.

Exercise 9 .2
Use (9.8) and (9.6), with the orthonormality conditions on the to prove
Parseval’s theorem. n

Parseval’s theorem is a special case of a theorem on autocorrelations, usually attrib-
uted to Wiener and Khinchin, for which the autocorrelation may be computed in ei-
ther k or x domains, giving the same result. Parseval’s theorem is obtained from the
Wiener-Khinchin theorem by setting the lag to zero. A special kind of orthogonality
of the produces the Parseval relation directly, as you may now prove.

Exercise 9 .3

(a) Show that the Parseval theorem holds for any expansion of the form (9.1)
provided that the expansion functions satisfy

(9.9)

where the complex-conjugate operation replaces the orthogonality defined in
Section 6.2 and is the Kronecker delta, which is unity if k = l and is zero
otherwise.

(b) Show that the two definitions of orthogonality are equivalent when the
are the complex-exponential functions as in (9.2), where is given by (9.5). n

Thus, the Parseval theorem is much more general than originally indicated, and has
led us to discuss an alternative definition of orthogonality. The two definitions are
confusing in the mathematics of this area, but they agree for the exponential function
if the Kronecker delta in (9.9) is replaced by and complex conjugation.

9.2 DISCRETE FOURIER TRANSFORMS 321

One aspect of the DFT may be puzzling you. How is it that there are 2N + 1
complex-number coefficients ck but only N (generally complex) y values? The an-
swer is that the complex conjugate of each ck is obtained just by taking complex con-
jugates on both sides of (9.6). Together with the constraint (9.8) provided by the
Parseval relation, this reduces the number of real numbers needed to describe the ck

to 2N, which is generally the number of real numbers describing the N values of y.
Since data that are processed by Fourier expansions are usually real numbers, it

is worthwhile to check what simplifications arise in the DFT if the yj are real.

Exercise 9.4
Suppose that all the yj data values in the expression (9.6) for the DFT coeffic-
ients, ck, are real.
(a) Show that for real data

(9.10)

so that only the coefficients for k > 0 need to be computed.
(b) Thence show that c0 must be purely real, given by

(9.11)

in terms of the average value of the y data,
(c) Show that for real data the simplest expression for it in terms of the DFT co-
efficients is

(9.12)

In applications the average value is often subtracted before the DFT is made. n

There are two major restrictions to use of the discrete Fourier transform:
1. The data values yj = y(xj) must be obtained at equally spaced points xj, with

spacing h. If the yj are experimental data, this is usually practicable. In mathe-
matical analysis the discreteness of the data leads to relatively few interesting
properties that can be investigated directly by the DFT, because the sums in (9.6)
cannot usually be performed analytically.

2. The maximum frequency, k, for which coefficients, ck, are obtained is related to
the number of data points, N, by k < N. Although there may well be an under-
lying function with Fourier amplitudes at higher frequencies, one can never dis-
cover this by using the DFT. This fact, or variations of it, is called Shannon’s
sampling theorem or sometimes the Nyquist criterion.

322 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

The discrete Fourier transform is very convenient for computerized data analysis
because the necessary sums can easily be summed into loop structures. Within a
loop there appears to be, according to (9.6), a formidable amount of computation
with complex exponentials. The evolution of the fast Fourier transform algorithm,
together with the development of computers to handle the intricate logic involved in
it, allows for very efficient computation of the DFT, as we describe in Section 9.3.

Exponential decay and harmonic oscillation

There are very few discrete Fourier transforms that can be calculated analytically, ex-
cept for the rectangular pulse and for the train of spikes, which are not typical of
real-world problems. However, the complex-exponential function, which is often
encountered in applications (such as in Sections 6.5, 7.2, 8.1, and 8.6), can be
transformed simply and analytically. This property does not seem to have been em-
phasized previously, since such authoritative sources as Brigham or Weaver do not
mention it.

We first consider the general exponential, then specialize to exponential decay
and to harmonic oscillation. The complex exponential for x > 0 is

(9.13)

The condition on ensures convergence for positive x when the number of points in
the transfom, N, is allowed to increase indefinitely, as is done to obtain the Fourier
integral transform in Chapter 10. We first derive the transform of this exponential
in closed form, then we specialize to pure exponential decay and to harmonic oscilla-
tion. Then we have several numerical examples to illustrate these analytical results.
For convenience of analysis we modify our conventions for the transform over N
points with step h by starting at the point j = 0, rather than at j = 1, since then we
don’t have to subtract an awkward expression for the average value of the function.
Therefore we write the transform as

in which the frequency variable and the index k are related by

(9.14)

(9.15)

In most uses of the transform the choice k = 0, 1, …, N - 1 is made, but this is
not necessary in what follows, so that nonintegral k values are allowed. Equa-
tion (9.14) also differs from our previous discrete transform by the overall factor h,
which ensures convergence to the Fourier integral for large N as as shown

9.2 DISCRETE FOURIER TRANSFORMS 323

in Section 10.1. The subtracted term in this equation ensures the correctness of the
inverse transform by removing half the value at the point of discontinuity, k = 0.

The summation in (9.14) is just a geometric series (Section 3.1) with multiplier

and the series sum is given by

(9.16)

The discrete Fourier transform of the complex exponential (9.13) is therefore

(9.17)

(9.18)

unless the product of the exponents in the denominator is unity, in which case

(9.19)

which is also the value obtained by applying L’Hôpital’s rule to (9.18). Thus, we
have obtained directly a closed form for the discrete Fourier transform of the com-
plex exponential (9.13). In (9.18) N may be any positive integer, so this exact and
nontrivial expression may be used to check an FFT program, such as in Sec-
tion 9.3. The symmetry property (9.10) is also readily verified for real.

Exercise 9.5
Show that if is real, then the coefficients for positive and negative k are re-
lated through (9.10). n

Exponential decay is described by choosing in (9.13) to be real and positive.
By appropriately choosing units for a and h, the time step h can be measured in
units of so we can then set and (9.18) becomes

(9.20)

which can be separated into real and imaginary parts for numerical computation.

Exercise 9.6
(a) Multiply numerator and denominator by the complex conjugate of the de-
nominator. Then use Euler’s theorem for the complex exponential to obtain sine
and cosine expressions in the real and imaginary parts in (9.20).

324 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

(b) Write and run a simple program for this formula and compare your results
with those in Figures 9.2 and 9.3, which have step h = 1 and use integer val-
ues of k from 0 up to N - 1 for N = 32, 64, and 128. These are powers of 2
for which the FFT in Section 9.3 may be used, and n is stopped at N - 1, as
would be done in an FFT calculation. n

FIGURE 9.2 Real part of the discrete Fourier transform of the exponentially damped function

(9.13), shown for 32, 64, and 128 points in the transform.

FIGURE 9.3 Imaginary part of the discrete Fourier transform of the exponentially damped func-

tion (9.13), shown for 32, 64, and 128 points in the transform.

9.2 DISCRETE FOURIER TRANSFORMS 325

The symmetry about N/2 of Re ck and the antisymmetry of Im ck are evident in
Figures 9.2 and 9.3. This example of the discrete Fourier transform is discussed
further in Section 9.3 when we consider an efficient numerical algorithm, the FFT,
for computing the transform. It is also discussed further in Section 10.2 for the in-
tegral transform.

Harmonic oscillation is a second example of the discrete Fourier transform of
the exponential (9.13). The mathematics of complex exponentials is discussed in
Sections 2.3 and 2.4, while the science of resonances is presented in Section 8.1.
The DFT of a harmonic oscillation is obtained by setting a pure oscillator
with a single frequency (To treat this rigorously to produce convergence of the
geometric series for large N, a small positive real part, must be included in
After convergence has been achieved, one can let The analytical result for
the transform can be simplified by substituting in (9.13) then expressing
the complex exponentials in terms of half angles before converting to sines by using
Euler’s theorem on complex exponentials, (2.39). The complex amplitude may be
expressed as

where the relation between frequency and number k0 is

(9.21)

(9.22)

The second line in (9.21) is obtained either by applying L’Hôpital’s rule from differ-
ential calculus to the first line or from (9.14) directly. Notice that this transform has
no intrinsic dependence on the stepsize h used to compute it, except through the
scale factor in (9.21), which was inserted in (9.14) only to produce the appropriate
limit for the integral transform in Section 10.2, and through the conversion (9.15)
between number and frequency. Therefore, when discussing the oscillator in the
following we set h = 1.

Exercise 9.7
(a) Derive (9.21) from (9.14) by the route indicated.
(b) Apply L’Hôpital’s rule to the first line of (9.21) to produce the second line
in this equation. n

326 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

The symmetry of the discrete transform for real functions, (9.10), does not hold
for the oscillator, but there is a related symmetry, namely

(9.23)

in which we have extended the notation so that the quantity in parentheses indicates
the choice of “resonance” frequency. When k0 is an integer or halfinteger the oscil-
lator transform simplifies considerably, as can be shown by substituting the values
of the circular functions at multiples of or of For k0 an integer

(9.24)

so that the transform is discontinuous at k0. For k0 a half-integer, such as 1/2 or
15/2, we have

(9.25)

which is singular across k0. Thus, Re ck is symmetric about k0, while Im ck is
either zero or is antisymmetric about k0.

Exercise 9.8
Derive the results (9.23) through (9.25) for the discrete Fourier transform of the
harmonic oscillator. n

Notice that the Fourier transform from x domain at a single frequency produces in
the k domain a dependence that is strongest near the frequency k0. In Section 10.2
it is shown that the Fourier integral transform has a pole at k = k0.

Formula (9.21) is essentially ready to compute numerically because the real and
imaginary parts can be immediately identified in the complex exponential. The pro-
gram Discrete Fourier Transform for Oscillator implements formula
(9.21), allowing for any N value that is nonzero and including output to a file,
DFToscr, that will record the real and imaginary transform values, Re_ck and
Im_ck for each k. As coded, the discrete transform is computed for integer values
of k from 0 to N - 1, but this is easily modified if you want to look at the behavior
of the transform near the discontinuities. When programming the formula the case
k = k0 must be handled specially according to (9.24).

Exercise 9.9
(a) Code and test program Discrete Fourier Transform for Oscillator,
adapting the input/output to your computing environment. Spot check a few
values against other calculations.
(b) Modify the program, or use the output in file DFToscr, to prepare graphics
of the real and imaginary parts of ck against k, as in Figures 9.4 and 9.5.

9.2 DISCRETE FOURIER TRANSFORMS 327

(c) Compare your results with those in the figure for the indicated values of the
frequencies k0. n

PROGRAM 9.1 Discrete Fourier transforms for harmonic oscillators.

#include <stdio.h>
#include <math.h>

main()
{
/* Discrete Fourier Transform for Oscillator */
FILE *fout;
double pi,kzero;
double pi_kzero,sinzero,w,wtop,cfact,Re_ck,Im_ck;
int N,k;
char wa;

pi = 4*atan(l.0);
printf("DFT for Oscillator\n");
printf("\nWrite over output (w) or Add on (a):\n");
scanf("%s",&wa) ; fout = fopen("DFToscr",&wa);
N = 2;
while(N ! = O)
{
printf("\n\nInput kzero,N (N=O to end): ");
scanf("%lf%i",&kzero,&N) ;
if (N == 0)

printf("\nEnd DFT for Oscillator"); exit(O);

/* Constants for k loop */
pi_kzero = pi*kzero;
sinzero = sin(pi_kzero);
for (k = 0; k <= N-l; k++) /* integers for k */
{
if (k == kzero)

{
Re_ck = N-0.5; Im_ck = 0;

}
else

{
w = (pi_kzero-pi*k)/N;
wtop = pi_kzero-w;
cfact = sinzero/sin(w);
Re_ck = cos(wtop)*cfact-0.5;/* real part */

328 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Im_ck = sin(wtop)*cfact; /* imaginary part */
}

printf("\n%i %g %g",k,Re_ck,Im_ck);
fprintf(fout,"\n%i %g %g", k,Re_ck,Im_ck);
}

In Figures 9.4 and 9.5 we choose N = 16 and connect the DFT values by line
segments, except across the singularity in Im ck for k0 = 7.5. The discrete Fourier
transform of the oscillator usually does not have a singularity at k0, as the examples
in the figure show.

FIGURE 9.4 Real part of the discrete Fourier transform for harmonic oscillations at frequency

k0, for k0 = 5.2 (dotted), k0 = 10.8 (dash-dotted), k0 = 7.5 (dashed, a constant value). and for

k0 = 9 (solid, with a spike at k = 9)..

FIGURE 9.5 Imaginary part of the discrete Fourier transform for harmonic oscillations at fre-

quency k0, for k0 = 5.2 (dotted), k0 = 10.8 (dash-dotted), k0 = 7.5 (dashed, discontinuous), and
for k0 = 9 (solid line at zero).

9.3 THE FAST FOURIER TRANSFORM ALGORITHM 329

The symmetry (9.23) is made evident in Figures 9.4 and 9.5 by choosing two
k0 values whose sum is N, namely k0 = 5.2 and k0 = 10.8. Notice that for these
k0 values that are not integers or half integers there is a broad distribution of trans-
form values about the oscillator frequency. These two examples give the extremes
of bounded exponential behavior, namely, pure decay and pure oscillation. The
more general case of the damped oscillator is just (9.18), and the transform will have
a distribution of values about k0, rather than a discontinuity there if k = k0. The in-
vestigation of the damped oscillator DFT is an interesting project that you can easily
develop from the general expression (9.18) and Program 9.1.

9 . 3 THE FAST FOURIER TRANSFORM ALGORITHM

Discrete Fourier transforms, whose theory is developed in Section 9.2, are widely
used in data analysis, in imaging science, and in digital signal processing, because a
very efficient algorithm, the fast Fourier transform (FFT), has been developed for
their evaluation. The nomenclature of the FFT is misleading; the algorithm applies
to the discrete transform in Section 9.2, not to the Fourier integral transform in
Chapter 10. The distinction is indicated in Figure 9.1. By various approxima-
tions, however, one often estimates the integral transforms by the FFT.

Deriving the FFT algorithm

Here we derive a straightforward and complete derivation of the FFT algorithm ap-
propriate for real data from which the average value of y (the DC level in electrical
parlance) has been subtracted out. Equation (9.12) may then be written as

with Then, from (9.6) we have

(9.26)

(9.27)

Thus, the y values and the c values are treated symmetrically, the only difference in
their treatment being that the exponent is complex-conjugated between their two for-
mulas. Also, the summation range is between 1 and N for both, whereas for arbit-
rary data the summation range was slightly asymmetric, as shown in Section 9.2.

To continue the development, recall from Exercise 2.13 that the complex N t h
roots of unity, En, are given by

(9.28)

330 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

We can now write compactly

(9.29)

Direct computation of the ck requires a time that increases at least as fast as N2

because each coefficient requires combining N values of the yj and there are N coef-
ficients. Let us call such a direct evaluation method a conventional Fourier trans-
form (CFT) algorithm. If the calculation could be divided into two calculations each
of length N/2, the time would be halved, since 2(N/2)2 = N2/2. This divide-and-
conquer strategy of breaking the calculation of the transform into smaller tasks is the
genesis of various FFT algorithms. We now describe the simplest of these, the
radix-2 FFT.

Assuming that N is even, one way of dividing the calculation is to combine odd
values j = 1,3 ,..., N - 1 (that is, j = 2r - 1, with r = 1,..., N/2), then even val-
ues j = 2,4,..., N - 2,N (j = 2r, r =, l ,...,N/2). This pattern is illustrated in Fig-
ure 9.6 for N = 8. In this example the complex factor E8 is the eighth root of
unity, namely 8 values spaced by angles of in the complex plane, as shown.
For real yj data the location in the complex plane is appropriate for a DFT calculation
of the fundamental frequency, k = 1. The suggested division is that between the
outer level, labeled by i = 1, and the next level, i = 2.

6

FIGURE 9.6 A mandala for conceptualizing the fast Fourier transform for N = 8 data. The

positions in the complex plane of the 8 points for k = 1 are shown.

9.3 THE FAST FOURIER TRANSFORM ALGORITHM 331

With this division the formula (9.29) for the modified Fourier amplitudes Ck can
be written compactly as

(9.30)

In this equation we have used the distributive property of the complex exponential

(9.31)

and the exponentiation property

for Note also that

(9.32)

(9.33)

Exercise 9.10
Prove in detail the immediately preceding properties of the complex exponential
that are used for developing the FFT algorithm. (For complex exponentials see
Section 2.3.) n

By this level of division to the inner sum in (9.30), there are now two discrete
Fourier transforms, each of half the previous length.

The process of halving each transform can be continued as long as the number of
points to be divided in each group at each level is divisible by 2. For example, in
Figure 9.6 at level i = 3 there are 4 groups, with only two points in each. These
points are just combined with a sign difference, since they are exactly out of phase
with each other. Note that within each group along an arc the relative phase between
points is the same as at the outer level, i = 1.

For simplicity, we restrict ourselves to cases in which the total number of data
points, N, is a power of 2:

(9.34)

where v is a positive integer. This is known as a radix-2 FFT. In our worked ex-
ample in Figure 9.6 we have v = 3. Then the DFT can be halved v times, ending
with N/2 subintervals, each of length 2, as in our example.

This essentially completes our outline of the radix-2 fast Fourier transform. Af-
ter a little bookkeeping we will be ready to develop a computer program for the FFT,
as we do in Section 9.7.

332 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Bit reversal to reorder the FFT coefficients

At each step of the fast Fourier transform the values of the coefficients Ck become
reordered because of the splitting of the transform into odd and even terms. This re-
ordering is called bit reversal. We will now see how bit reversal can be efficiently
done for our radix-2 FFT. Consider the example in Figure 9.6 for N = 23 = 8.
The levels involved are i = 1,2 ,..., v, with v = 3. At the innermost level in this
example, moving inward on the semicircular arcs, the subscript of the yj values are
j = 1,5,3,7,2,6,4,8. What’s the pattern here?

When we sort a sequence into odd and even terms, the odd terms all have the
same least-significant bit in a binary representation, while the even terms all have the
same (other) least-significant bit. Consider, for example, y4, for which its index
satisfies 4 - 1 = 3 = 220 + 211 + 201, which is 011 in binary representation.
After the transform is finished y4 has been moved into the position occupied by y8.
Upon noting that 8 - 1 = 7 = 221 + 211 + 201, which is 110 in binary, it seems
that we have bit-reversed 0 11. We can formalize this example, as in the following
exercise.

Exercise 9.11
Consider the binary representation of the integers between 0 and 2v - 1, the
range of the index k - 1 for the FFT coefficients Ck. Such an integer can be
represented by

(9.35)

in which each ji is either 0 or 1. The bit-reversed integer is then jR, where

(9.36)

(a) Show that jR
as follows:

can be generated similarly to Horner’s algorithm (Section 4.1)

jT = j; jR = 0;
Iterate the next steps in integer arithmetic
For i = 1 to v

{
jD = jT/2;
ji-1 = jT - 2jD;
JR = 2jR + ji-1 ;
jT = jD;
}

End of for loop

(b) Verify this algorithm for the example k = 4, considered above. n

9.3 THE FAST FOURIER TRANSFORM ALGORITHM 333

The final step in an FFT algorithm is therefore to bit-reverse the labels on the co-
efficients according to this scheme. Note that it is k - 1, rather than k, that has to
be reversed. This is because we used a labeling scheme for the frequencies in which
they range from the first harmonic (k = 1) to the (N - 1) th harmonic, as in (9.26).
Other derivations of the FFT may use a labeling from k = 0 to k = N - 1, thus
avoiding this slight awkwardness. A related presentation of the DFT, lending itself
to derivation of the FFT, is given in the article by Peters.

Having derived an FFT algorithm, was it worth our effort and will it be worth
the effort to code it?

Efficiency of FFT and conventional transforms

We now discuss the efficiency of the FFT by comparing the times for calculating the
discrete Fourier transform of N real data points using the fast (FFT) and conven-
tional (CFT) algorithms. Our comparison is intended to estimate the dependence of
the times on N, independent of details of the computer system used.

For the FFT the total number of arithmetic steps of the form (9.30) is roughly
proportional to Nv = N log2 N. A more-detailed analysis, as presented by Brig-
ham, shows that the time, T (FFT), for the fast Fourier transform of N points in
our radix-2 algorithm is about

(9.37)

where Ta is the computer time for a typical operation in real arithmetic, such as mul-
tiplication or addition.

For the CFT algorithm the time, T(CFT), to compute N coefficients involving
N operations must scale as N2. It is estimated by Brigham to be about

(9.38)

Graphical comparison of the two algorithms is made in Figure 9.7.

Exercise 9.12
(a) On my workstation I programmed and ran the FFT algorithm and program
given in Section 9.7. I found that for N = 128 the running time was
T (FFT) = 2.1 seconds, for N = 256 T (FFT) = 4.4 seconds, while for
N = 1024 T (FFT) = 20.1 seconds. From these data, estimate a range for
Ta, and show that the FFT time for a data sample of N = 8192 = 213 points is
expected to be about 3.5 minutes.
(b) Use the estimates of Ta from (a) and (9.37) and (9.38) to show that a CFT
is estimated to take the impractically long time of about 47 hours of continuous
running to transform 8192 data points. Thus, the CFT would be about 800
times slower than the FFT. n

This exercise should help you to appreciate the practicality of the FFT for large
N values, together with the impracticality of the CFT for the same values of N. For

334 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

FIGURE 9.7 Comparative times of FFT and CFT according to (9.37) and (9.38).

small values of N, which we omit from the graph, there will be more startup time for
the FFT, and some time (proportional to N) will be required for the bit reversal. Al-
ready for N = 64 the figure shows that the FFT is predicted to be one order of mag-
nitude faster than the CFT, according to the estimates (9.37) and (9.38). You can
use the program in Section 9.7 to compare the timing for the FFT on your own
computer.

Further reading on the FFT algorithm, including its generalization to transforms
in two dimensions, which are widely used in imaging science, is provided by the
monograph of Brigham, in Oppenheim and Schafer, in the book on signal process-
ing by Roberts and Mullis. Transformation into real sums of cosines and sines,
which is particularly convenient for data, is called a Hartley transform, as discussed
in Bracewell’s book of this title. We apply the FFT algorithm in Section 9.7 to de-
velop a program which is then applied in Section 9.8 to the Fourier analysis of an
electroencephalogram.

9.4 FOURIER SERIES: HARMONIC APPROXIMATIONS

It is often convenient to obtain Fourier expansion coefficients by the procedure of in-
tegration, rather than by the summation used in the discrete Fourier transform con-
sidered in Sections 9.2 and 9.3. The main reason is that integrals are often easier to
evaluate analytically than are sums. Integration requires, however, that the function
be defined at all points in the range of integration. Therefore, Fourier series are
most appropriate for use with y defined by a function rather than the yj being dis-
crete data.

From discrete transforms to series

The transition from the discrete Fourier transform to the Fourier series is made by
letting the number of x values in the DFT, N, become indefinitely large in such a
way that

9.4 FOURIER SERIES: HARMONIC APPROXIMATIONS 335

(9.39)

and that the x increments become infinitesimal

This makes the range of x from 0 to The Fourier expansion (9.7) thus becomes

(9.41)

The Fourier series coefficients are obtained by applying the same limiting process to
(9.6). Thus, for k = -N to N, the Fourier series coefficients are

(9.42)

Exercise 9.13
Work through in detail the algebraic steps from the discrete Fourier transform to
the Fourier series. n

The more usual trigonometric form of the Fourier series is obtained by expand-
ing the exponential in the preceding formulas into sines and cosines. Thus, the
Fourier series expansion in terms of cosines and sines is written

You will find directly that the Fourier coefficients of the cosine terms are

(9.43)

(9.44)

The Fourier coefficients of the sine terms are given by

(9.45)

We have made the conventional division of the normalizing factors, putting the
uniformly in the coefficients, (9.44) and (9.45), and therefore omitting it from the
expansion (9.43).

336 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Exercise 9.14
Derive (9.44) and (9.45) from the corresponding exponential form of the Fourier
series, (9.41) and (9.42) by following the indicated steps. n

Now that we have the formulas for the Fourier series amplitudes, how are they
to be interpreted?

Interpreting Fourier coefficients

Consider equations (9.44) and (9.45) for the Fourier coefficients. The integrals for
ak and bk indicate to what degree y(x) varies like the oscillatory functions cos (kx)
and sin (kx), respectively. Both of these functions have a period of oscillation of

Thus, as k increases, the more rapidly varying parts of y(x) are the most im-
portant in determining the corresponding ak and bk. In musical notation, k = 1
gives the fundamental frequency, and all the higher frequencies are its harmonics.
An alternative name for the Fourier series expansion is the “harmonic expansion.”

Since, as (9.44) shows, the coefficient a0 is just the average value of y over the
interval 0 to it is often assumed that this average value has been subtracted out
before y is Fourier analyzed. Thus, the formulas for the ak and bk become symmet-
ric, and there need be no special treatment for the DC (k = 0) amplitude. The treat-
ment of Fourier series then becomes closer to the usual treatment of the discrete
Fourier transform.

Exercise 9.15
Show that for the Fourier series (9.43), with the expansion in the range x = 0
to x = one predicts a periodicity of y of that is, = y(x). n

This exercise shows that the Fourier series expansion that we have derived above
generates a function with the same period as the range of x values used to generate
the coefficients. This is the same property as found for the discrete Fourier trans-
form in Section 9.2, where N data values produced N coefficients. The generaliza-
tion to Fourier series for arbitrary intervals is made in the next subsection.

Fourier series for arbitrary intervals

Suppose that we have a function of x and want to compute its Fourier series by us-
ing the range from x- to x+. Given the above expansion formulas for the range 0 to

 how should they be modified to account for this different range? The answer to
this question is to map the range x- to x+ by

(9.46)

which ranges over 0 to as x ranges over x- to x+. also note that

9.5 SOME PRACTICAL FOURIER SERIES 337

(9.47)

We may now use the Fourier expansion formulas (9.41) and (9.42) in terms of the
x' variable to get the Fourier series for the arbitrary interval. With a relabeling of x'
by x, the expansion formulas for the complex-exponential series are

in which the coefficients are given by

(9.48)

(9.49)

Exercise 9.16
Work through the steps from the change of variables (9.46) through formulas
(9.41) and (9.42) to verify the expansions (9.48) and (9.49) for the complex
Fourier series for arbitrary intervals. n

We have now accomplished a considerable amount of analysis for Fourier
ries. Let us work out some applications to practical and interesting examples.

se-

9.5 SOME PRACTICAL FOURIER SERIES

To illustrate the delicate superposition of high and low harmonics that is often re-
quired to achieve a good Fourier series representation of a function, we now con-
sider periodic functions with rapid variation near some values of x and much slower
variation near others. The examples of functions that we consider are the square
pulse, the wedge, the window and the sawtooth. Because of the discontinuities of
these functions, they cannot be described by the Taylor-expansion methods covered
in Chapter 3. Recall from Chapter 6.2 that we are making least-squares fits to
these unconventional but useful functions, since the trigonometric functions or com-
plex exponentials form orthogonal functions for the appropriate expansions.

The functions that we consider are real-valued; it is therefore most convenient to
use the cosine and sine series expansions (9.44) and (9.45) for their Fourier series
rather than the complex-exponential expansion (9.42). Further, various reflection
and translation symmetries of the functions (which we will derive) will result in only
cosine or only sine terms appearing in the expansions. The x interval on which we
define each example function is 0 < x < This is done primarily for conven-
ience and to obtain simple results. If you wish to use a different interval, you may
use the results at the end of Section 9.4 to make the conversion.

338 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

By sneaking a look ahead, you may have noticed that we use examples of func-
tions that have discontinuous values, and sometimes discontinuous derivatives.
Justification for this is provided in Section 9.6 in the diversion on the Wilbraham-
Gibbs overshoot phenomenon.

The square-pulse function

A square pulse may be used, for example, to describe voltage pulses as a function of
time, if y = V, the voltage (suitably scaled), and x = t, the time (in suitable units).
This square pulse function is described by

(9.50)

We can quite directly find the Fourier series coefficients ak and bk by substituting
into formulas (9.44) and (9.45) and performing the indicated integrals. The results
for the coefficients of the cosines are

and for the coefficients of the sines we have

(9.51)

(9.52)

The nonzero Fourier series coefficients, the sine coefficients of the odd harmonics,
k = 1,3,..., are displayed in Figure 9.8. Note that their envelope is a rectangular
hyperbola because of their inverse proportionality to k.

FIGURE 9.8 Fourier series coefficients, bk, for the square wave as a function of k.

9.5 SOME PRACTICAL FOURIER SERIES 339

Why do most of the Fourier coefficients vanish? If we consider the square pulse
defined by (9.50), we see that it is antisymmetric about x = It must therefore be
represented by cosine or sine functions with the same symmetry. But the cosine has
reflection symmetry about x = so the cosines cannot appear, thus their coeffi-
cients, the ak, must all be zero, as (9.51) claims. Why do the sine coefficients van-
ish for k even? Notice that the square pulse changes sign under translation of x by
 The function sin (kx) has this property only when k is odd, just as we see for the
bk in (9.52).

We conclude that reflection symmetries and translation symmetries determine to
a large degree which Fourier series coefficients will be nonzero. If such symmetry
conditions are invoked before the coefficients are evaluated, much of the effort of
integration can usually be avoided.

With the expansion coefficients given by (9.51) and (9.52), the approximate
Fourier series reconstruction of the square pulse becomes

(9.53)

where the sum up to M (taken as odd, for simplicity of expression) is

(9.54)

Note that this is the best that one can make the fit, using the least-squares criterion,
for a given value of M.

The sine series expansion (9.54) converges as a function of M as indicated in
Figure 9.9. From M = 3 to M = 31 the contribution of the last term should de-
crease by a factor of more than 10, and the approach to a square pulse shape appears
to proceeding smoothly, even if rather slowly.

FIGURE 9.9 Fourier series approximation to the square-pulse function up to the Mth harmonic,
shown for M = 3 and M = 31.

340 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Exercise 9.17
(a) Carry out all the integrations for the square-pulse Fourier-series expansion
coefficients in order to verify formulas (9.51) and (9.52).
(b) Check the symmetry conditions discussed above for the square pulse, and
verify in detail the claimed reflection and translational symmetry properties of the
square pulse and the nonzero sine terms.
(c) Verify the algebraic correctness of the expansion (9.54). n

Convergence of Fourier series is of practical importance, both for computational
software (the time involved and the accuracy of the result) and for practical devices,
such as pulse generators based on AC oscillations and their harmonics. Therefore, it
is interesting to have programs available for computing the series.

Program for Fourier series

For studying the convergence of Fourier series expansions of interesting functions,
it is helpful to have a program. Here is a simple program, Fourier Series, that
computes for given M the series expansion (9.54) for x = 0 to x =

Four cases of function--square, wedge, window, and sawtooth --are in-
cluded in Fourier Series. Other cases can easily be included by increasing the
range of values that choice takes on, and by writing a simple program function for
each case. The programming for producing an output file for use by a graphics ap-
plication is not included, since the programming depends quite strongly on the com-
puter system used. However, you won’t find a list of numerical printout very en-
lightening, so you should add some code for your own graphics output.

PROGRAM 9.2 Fourier series for square. wedge, window, and sawtooth functions.

#include <stdio.h>
#include <math.h>

main()

/* Fourier Series
for real functions; data for plots */

double pi,dx,x,y;
int M,nx,choice;
void FSsquare(),FSwedge(),FSwindow(),FSsawtooth();

pi = 4*atan(1.0);
printf("Fourier Series: Input M: ");
scanf ("%i",&M) ;
nx = 2*M+1; /* Number of x steps in 0 - 2pi */
dx = 0.5*pi/M;

9.5 SOME PRACTICAL FOURIER SERIES 341

printf("\nChoose function:\n"
"1 square, 2 wedge, 3 window, 4 sawtooth: ");

scanf("%i",&choice) ;
for (x = 0; x <= 2*pi; x = x+dx)

{
switch (choice)

case 1: FSsquare(pi,x,M,&y); break;
case 2: FSwedge(pi,x,M,&y); break;
case 3: FSwindow(pi,x,M,&y); break;
case 4: FSsawtooth(pi,x,M,&y); break;
default:

printf("\n !! No such choice\n\n");
printf("\nEnd Fourier Series"); exit(l);
}

}
printf("\n%f %f",x,y);

printf("\nEnd Fourier Series"); exit(O);

void FSsquare(pi,x,M,y)
double pi,x,*y; /* Square wave series */
int M;

double sum; int k;
sum= 0;
f o r (k = l ; k < = M ; k = k + 2)

sum = sum+sin(k*x)/k;
}

*y = 4*sum/pi;

void FSwedge(pi,x,M,y)
double pi,x,*y; /* Wedge series */
int M;

double sum; int k;
sum = 0;
f o r (k = l ; k < = M ; k = k + 2)

sum = sum+cos(k*x)/(k*k);

342 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

*y =
}

0.5-4*sum/(pi*pi);

void FSwindow(pi,x,M,y)
double pi,x,*y; /* Window series */
int M;
{
double sum; int k,phase;
sum = 0;
f o r (k = l ; k < = M ; k = k + 2)

phase = (k-1)/2;
if (phase-2* (phase/2 > 0)
sum = sum-cos(k*x)/k;

else
sum = sum+cos(k*x)/k;

*y = 0.5-2*sum/pi;

void FSsawtooth(pi,x,M,y)
double pi,x,*y; /* Sawtooth series */
int M;

double sum; int k,phase;
sum= 0;
f o r (k = l ; k < = M ; k = k + l)

phase=k-1;
if (phase-2*(phase/2) > 0)
sum = sum-sin(k*x)/k;

else
sum = sum+sin(k*x)/k;

*y = 2*sum/pi;

Based on the program, there are several interesting aspects of these series that
you may explore.

Exercise 9.18
(a) Code the program Fourier Series for your computer system and check it
for correctness as follows. When it executes without runtime errors (so that it’s
satisfying the programming rules), verify the reflection and translation symme-
tries discussed in the preceding subsection. Then spot check some of the values

9.5 SOME PRACTICAL FOURIER SERIES 343

for the square pulse (choice = 1) for reasonableness against the graphical dis-
play in Figure 9.9.
(b) Run the program for increasingly larger (odd) values of M. Sketch out both
how the overall approximation to the square pulse improves, then how the de-
tails of the fit near the discontinuity of the square pulse at x = do not improve
as increases. This “Wilbraham-Gibbs phenomenon” is discussed in detail in
Section 9.6. n

Now that we have a program to do the busywork of numerics, it is interesting to try
the Fourier series for other functions.

The wedge function

The wedge (isosceles triangle) function is of special interest for its application to im-
age enhancement, in which x (or its extension to two dimensions) is spatial position
and y (x) becomes image intensity as a function of position. Pratt’s text has an ex-
tensive discussion of this use of the wedge function.

The wedge function with unity maximum height is defined by

(9.55)

As for the square pulse in the preceding subsection, we can just plug this y (x) into
each of the integrals for the Fourier coefficients, (9.44) and (9.45).

Exercise 9.19
(a) Carry out all the integrations for the wedge-function Fourier-series coeffi-
cients in order to obtain

(9.56)

(9.57)

(b) Use the reflection symmetry of this function about x = in order to ex-
plain why sine terms are missing from this expansion.
(c) Use the translation property of the wedge function

(9.58)

to explain why only odd values of k contribute to the expansion. n

The Fourier coefficients in k space is shown in Figure 9.10. They are very
similar to those for the seemingly quite different square pulse shown in Figure 9.8.

344 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

FIGURE 9.10 Fourier series coefficients, ak, for the wedge function (9.55) as a function of k.

The wedge function may be approximately reconstructed by using the sum of the
series up to M terms, namely

(9.59)

where the sum up to M (odd, for simplicity) is

(9.60)

This series converges very rapidly to the wedge function as M increases, as shown
in Figure 9.11, where for M = 3 we have as close a representation of the wedge as
for M = 31 for the square pulse shown in Figure 9.9.

FIGURE 9.11 Fourier series approximation of the wedge function up to the M th harmonic for

M = 1 (dotted line) and for M = 3 (dashed line).

9.5 SOME PRACTICAL FOURIER SERIES 345

By running Fourier Series with choice = 2 for the wedge function, you
may explore the rate of convergence of the series as a function of M. A clue to the
rapid convergence of this Fourier series is the appearance of reciprocal squares of k
in the wedge-function Fourier amplitudes rather than just the reciprocal of k, as oc-
curs in (9.52) for the square pulse. This comparison leads to a relation between the
wedge and square functions, namely that times the derivative of the wedge func-
tion just produces the square-pulse function, as you may easily verify by compari-
son of Figures 9.9 and 9.11.

Exercise 9.20
(a) Prove the derivative relation just stated for the relation between wedge and
square functions.
(b) Use this relation to obtain the square-pulse Fourier expansion (9.54) by dif-
ferentiation of the wedge function Fourier expansion (9.60). n

Thus we realize that various Fourier expansions may be interrelated through term-
by-term comparison of their series. This is both a practical method of generating
Fourier series and a good way to check the correctness of expansions derived by
other means. Similar connections appear for the window and sawtooth functions
which we now consider.

The window function

A window, which allows a signal in a certain range of x, but blocks out the signal
outside this range, is a very important function in image and signal processing. For
example, if x denotes spatial position and y is the intensity level of an object, then
we have literally an optical window. If x = t, the time, and y = V, the voltage
across a circuit element, the window allows the voltage signal through only for a
finite time. We consider only a very simple window; more general classes of win-
dow functions are considered in the books by Oppenheim and Schafer, and by Pratt.
The window function is also called the “boxcar” function, from its resemblance to
the silhouette of a railroad boxcar.

In our example of the window function we have the somewhat artificial (but al-
gebraically convenient) window of width centered on x = For a window of
different width or height, one may use the interval scaling in (9.48) and (9.49).
Magnitude scaling is done by direct multiplication of each coefficient by the appro-
priate scale factor because Fourier expansions are linear expansions. Our window
function is

(9.61)

346 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

The quickest way to get the Fourier series coefficients for the window function
is to relate it to the square pulse (9.50), by evaluating the latter at x - dividing
it by 2, then adding 1/2. We obtain immediately

(9.62)

(9.63)

This is the first of our examples in which the coefficients alternate in sign.

Exercise 9.21
Use the integral formulas (9.44) and (9.45) directly to verify the above results
for the Fourier coefficients of the window function. n

The window function in k space is shown in Figure 9.12. Because of its simple re-
lation to the square pulse, the magnitudes of these coefficients have the same depen-
dence on k (except for the first) as do the square-wave coefficients in Figure 9.8.

The approximate reconstruction of the window function is very similar to that of
the square pulse in (9.54). By using (9.62) and (9.63) for the Fourier amplitudes,
we have immediately that

(9.64)

where (with M assumed to be odd)

(9.65)

FIGURE 9.12 Fourier series coefficients, ak, for the window function (9.61).

9.5 SOME PRACTICAL FOURIER SERIES 347

FIGURE 9.13 Fourier series reconstruction of the window function (9.61) up to the Mth har-

monic for M = 3 (dotted) and for M = 31 (dashed).

Expression (9.65) has a similar dependence on M to that of the square pulse
shown in Figure 9.9. The window is displayed in Figure 9.13 for the same M
values as used for the square pulse. By running program Fourier Series with
choice = 3, you can discover how the convergence of the series depends on the
harmonic number M.

The sawtooth function

Our last example of a Fourier series is that of the sawtooth function

(9.66)

Such a function is used, for example, in electronics to provide a voltage sweep and a
flyback (raster) in video imaging. Here y would be voltage and x time. In such ap-
plications, the number of harmonics needed to give an accurate approximation to the
sudden drop in y which occurs at x = is important.

The Fourier coefficients may be found either by direct integration using (9.44)
and (9.45) or by using the proportionality of the derivative of the sawtooth to the
square pulse, namely

(9.67)

Therefore, by integrating the square pulse with respect to x, dividing by then in-
cluding the appropriate constant of integration, you can find the sawtooth Fourier
series. It is given by

348 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

(9.68)

The Fourier amplitudes of the sawtooth can therefore be read off by inspection:
namely:

(9.69)

(9.70)

Exercise 9.22
(a) Make the indicated integration of (9.67), then find the constant of integration
(for example by insisting that y = 0 at x = 0), to derive the sawtooth Fourier
series (9.68).
(b) Verify the Fourier amplitude formulas by substituting the sawtooth function
(9.68) directly into the integral fonnulas (9.44) and (9.45). n

The sawtooth function in k space has the representation shown in Figure 9.14.
The envelope of the amplitudes is a rectangular hyperbola, Convergence of the
sawtooth series will be fairly slow compared with that for the wedge function inves-
tigated above. This is illustrated in Figure 9.15 for M = 2 and M = 20. Note for
the latter the strong oscillations (“ringing”) near the flyback at x = This is char-
acteristic of functions that have a sudden change of value, as seen for the square
pulse above and discussed more completely in Section 9.6 as the Wilbraham-Gibbs
phenomenon.

FIGURE 9.14 Fourier series coefficients for the sawtooth function (9.66) as a function of har-

monic number k.

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 349

FIGURE 9.15 Approximation of the sawtooth function (9.66) by the first two harmonics

(dotted curve) and by the first twenty harmonics (dashed line).

Exercise 9.23
Investigate the convergence of the Fourier series for the sawtooth, (9.66), by
running Fourier Series for a range of values of M and with choice = 4
in order to select the sawtooth. Comment both on the convergence as a function
of M and on the ringing that occurs near the discontinuity at x = n

The sawtooth example concludes our discussion of detailed properties of some
Fourier series. In the next section we explore two important general properties of
Fourier series that limit the accuracy of such expansions.

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT

We noticed in the preceding section, particularly for the square pulse and the saw-
tooth, that near the discontinuity there seems to be a persistent oscillation of the
Fourier series approximation about the function that it is describing. This is the so-
called “Gibbs phenomenon,” the persistent discrepancy, or “overshoot,” between a
discontinuous function and its approximation by a Fourier series as the number of
terms in the series becomes indefinitely large. What aspect of this pulse gives rise to
the phenomenon, and does it depend upon the function investigated?

Historically, the explanation of this phenomenon is usually attributed to one of
the first American theoretical physicists, J. Willard Gibbs, in the two notes publish-
ed in 1898 and 1899 that are cited in the references. Gibbs was motivated to make
an excursion into the theory of Fourier series because of an observation of Albert
Michelson that his harmonic analyzer (one of the first mechanical analog computers)
produced persistent oscillations near discontinuities of functions that it Fourier

350 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

analyzed, even up to the maximum harmonic (M = 8O) the machine could handle.
The phenomenon had, however, already been observed numerically and explained
fairly completely by the English mathematician Henry Wilbraham 50 years earlier in
correcting a remark by Fourier on the convergence of Fourier series. It is therefore
more appropriate to call the effect the “Wilbraham-Gibbs phenomenon” than the
“Gibbs phenomenon,” so that is the name used here.

The first extensive generalization of the phenomenon, including the conditions
for its existence, was provided by the mathematician Bôcher in 1906 in a treatise.
Both this treatment and those in subsequent mathematical treatises on Fourier series
are at an advanced level. A readable discussion is, however, provided in Körner’s
book. Here we investigate by a rigorous method the problem of Fourier series for
functions with discontinuities; we present the essence of the mathematical treatments
without their complexity; and we discuss how to estimate the overshoot numerically.
I have given a similar treatment elsewhere (Thompson 1992).

We first generalize the sawtooth function to include in a single formula the con-
ventional sawtooth, the square-pulse, and the wedge functions, already considered
in Section 9.5. Their Fourier amplitudes can be calculated as special cases of the
Fourier series formula that we derive to provide the starting point for understanding
the Wilbraham-Gibbs phenomenon. Finally, we give some detail on numerical
methods for estimating the overshoot values so that you can readily make calcula-
tions yourself.

Fourier series for the generalized sawtooth

The generalized sawtooth function that we introduce is sketched in Figure 9.16 (a).
It is defined by

(9.71)

in terms of the slopes on the left- and right-hand sides of the discontinuity, sL and
sR, and the extent of the discontinuity, D. From this definition we can obtain all the
functions investigated in Section 9.5; the square pulse, for which sL = sR = 0,
D = 2 ; the wedge and the sawtooth
D = 2).

For our purposes the Fourier amplitudes, ak and bk, can most conveniently be
obtained from the complex-exponential form (9.42), so that

(9.72)

Recall that, according to Section 6.2, the Fourier amplitudes, for given M, provide
the best fit in the least-squares sense of an expansion of the function y in terms of
cosines and sines. Therefore, attempts to smooth out the Wilbraham-Gibbs pheno-
menon by applying damping factors necessarily worsen the overall fit.

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 351

FIGURE 9.16 Generalized sawtooth function for discussing the Wilbraham and Gibbs phe-

nomenon. The solid lines in part (a) show the function and in part (b) they show its derivative with

respect to x.

We note immediately, and most importantly for later developments, that a dis-
continuity in any derivative of a function is no stumbling block to calculating its
Fourier series. For example, in Figure 9.16 (b) we see the discontinuity in dy/dx
that occurs for our generalized sawtooth at x = This discontinuity, of amount
sR - sL, is independent of the discontinuity in y at the same point, namely D.
Derivative discontinuities can be removed as follows. If instead of y in (9.42) we
had its nth derivative, then integration by parts n times would recover the integral as
shown, with some k-dependent factors and additional endpoint values. Therefore,
there is no Wilbraham-Gibbs phenomenon arising merely from discontinuities of
slope, but only from discontinuities of y itself. We show this explicitly towards the
end of this section for the wedge function, for which the slope discontinuity at

 but for which there is no discontinuity in value (D = 0).
With these preliminary remarks, we are ready to calculate the ck in (9.72). For

k = 0 we obtain, as always, that a0 = c0 /2, the average value of y in the interval of
integration, namely

(9.73)

For k > 0 the integrals can be performed directly by the methods in Section 9.5.
Upon taking real and imaginary parts of the resulting ck you will obtain

352 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

where the phase factor

has the property that

(9.74)

(9.75)

(9.76)

(9.77)

a result that is useful when manipulating expressions subsequently.

Exercise 9.24
Start from the generalized sawtooth (9.71) in the Fourier series formula (9.42) to
derive formulas (9.74) and (9.75) for the Fourier coefficients. n

The formulas for the Fourier amplitudes of the generalized sawtooth, (9.74) and
(9.75), can be used directly to generate the amplitudes for the examples in Sec-
tion 9.5. The appropriate slope and discontinuity values are given at the beginning
of this section, or can be read off Figure 9.16 (a). Note that we have introduced a
considerable labor-saving device by allowing all the exercises in Section 9.5 to be
compósed in a single formula. (The purpose of exercises is not, however, to save
labor but, rather, to develop fitness and skill.)

What is the value of the Fourier series right at the discontinuity, x = ? It is
obtained directly by using x = in the Fourier expansion with the ak values from
(9.74) and the sine terms not contributing. The result is simply

(9.78)

There are several interesting conclusions from this result:
(1) The Fourier series prediction at the discontinuity depends on M independent of
the extent of the discontinuity, D.

(2) For any number of terms in the sum, M, if there is no change of slope across the
discontinuity (as for the square pulse and conventional sawtooth), the series value is
just the mean value of the function, a0. For the square pulse the series value at the
discontinuity is just the average of the function values just to the left and right of the
discontinuity, namely zero.
(3) The series in (9.78) is just twice the sum over the reciprocal squares of the odd
integers not exceeding M. It therefore increases uniformly as M increases. This
convergence is illustrated for the wedge function in Figure 9.10. The limiting value

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 353

of the series can be obtained in terms of the Riemann zeta function, as
(Abramowitz and Stegun, formulas 23.2.20, 23.2.24). The Four-

ier series then approaches

(9.79)

Thus, independently of the slopes on each side of the discontinuity, the series tends
to the average value across the discontinuity -a commonsense result.

Exercise 9.25
(a) Derive the result for the Fourier series at the discontinuity, (9.79), by using
the steps indicated above that equation.
(b) Write a small program that calculates the sum in (9.78) for an input value of
M. Check it out for a few small values of M, then take increasingly larger values
of M in order to verify the convergence to
(c) Justify each of the conclusions (1) through (3) above. n

Notice that in the above we took the limit in x, then we examined the limit of the
series. The result is perfectly reasonable and well-behaved. The surprising fact
about the Wilbraham-Gibbs phenomenon, which we now examine, is that taking the
limits in the opposite order produces quite a different result.

The Wilbraham-Gibbs phenomenon

Now that we have examined a function without a discontinuity in value but only in
slope, we direct our steps to studying the discontinuity. Consider any x not at a
point of discontinuity of y. The overshoot function, defined by

(9.80)

is then well-defined, because both the series representation and the function itself are
well-defined. As we derived at the end of the last subsection, if we let x approach
the point of discontinuity with M finite, we get a sensible result. Now, however,
we stay near (but not at) the discontinuity. We will find that the value of 0M de-
pends quite strongly on both x and M. In order to distinguish between the usual os-
cillations of the series approximation about the function and a Wilbraham-Gibbs
phenomenon, one must consider the behavior of 0M for large M and identify which
parts (if any) persist in this limit.

For the generalized sawtooth shown in Figure 9.16 (a) we can substitute for the
series the expressions (9.73), (9.74) and (9.75), and for the function (9.71), to de-
rive the explicit formula for the overshoot function

354 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

where the trigonometric sums are

(9.8 1)

(9.82)

(9.83)

(9.84)

The signs in the definitions of these sums are chosen so that the sums are positive
for x close to, but less than,

Exercise 9.26
Fill in the steps in deriving the overshoot function equation (9.81), including the
trigonometric series (9.82) - (9.84). n

You may investigate the overshoot values directly as a function of the maximum
harmonic in the Fourier series, M, and as a function of the values of x near the dis-
continuity at x = We first see what progress we can make analytically. In par-
ticular, for what value of x, say xM, does 0M(x) have a maximum for x near
To investigate this, let us do the obvious and calculate the derivatives of the terms in
(9.81), which requires the derivatives of the trigonometric series, (9.82) - (9.84).
We have

(9.86)

(9.85)

(9.87)

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 355

Exercise 9.27
Carry out the indicated derivatives of the trigonometric series in order to verify
(9.85) - (9.87). n

To evaluate the latter two series in closed form, we write the cosine as the real part
of the complex-exponential function, then recognize that one has geometric series in
powers of exp (ix), which can be summed by elementary means then converted to
sine form by using the formulas in Section 2.3. Thus

(9.88)

(9.89)

In the second equation we assume that M is odd, else M + 1 is replaced by M. Since
SD is not known in closed form, there is probably no simple way to evaluate the
derivative of S- in closed form. It turns out that we will not need it.

Collecting the pieces together, we finally have the result for the derivative of the
overshoot at any

(9.90)

It is worthwhile to check out these derivations yourself.

Exercise 9.28
(a) Sum the series (9.86) and (9.87) as indicated in order to verify (9.88) and
(9.89).
(b) Verify equation (9.90) for the derivative of the overshoot function. n

The derivative in (9.90) is apparently a function of the independently chosen quanti-
ties sR, sL, D, and M. Therefore, the position of the overshoot extremum (positive
or negative) seems to depend upon all of these.

The wedge was the only example that we considered in Section 9.5 that had
 and it was well-behaved near x = because D = 0. Figure 9.17 shows

the overshoot function for the wedge, for three small values of M, namely, 1, 3, and
15. Only the S- series, (9.82), is operative for 0M, and this series converges as
1/k2 rather than as l/k for the other series. Note the very rapid convergence, which
improves about an order of magnitude between each choice of M. Clearly, there is
no persistent overshoot.

356 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

FIGURE 9.17 Oscillation of the Fourier series for the wedge function, (9.80). shown for

M = 1 (dotted curve), M = 3 (dashed curve), and M = 15 (solid curve). The overshoot function
for M = 3 has been multiplied by 10. and that for M = 15 has been multiplied by 100. The

derivative of the wedge function, but not the wedge function itself, has a discontinuity at x =

Exercise 9.29
(a) Modify the program Fourier Series in Section 9.5 so that it can prepare
output for a graphics program to make plots like those shown for the wedge se-
ries oscillations in Figure 9.17. (I found it most convenient to write a file from
the program, then to do the plotting from a separate application program. That
way, it was not necessary to recalculate the Fourier series each time I modified
the display.)
(b) Calculate 0M(x) for the wedge for a range of maximum k values, M, simi-
larly to Figure 9.17. Note that the convergence goes as 1/k2, so you should
find a very rapid approach to zero overshoot. Scaling of the function as M in-
creases, as indicated in Figure 9.17, will probably be necessary. n

Now that we have experience with the overshoot phenomenon, it is interesting to
explore the effects with functions that have discontinuities.

Overshoot for the square pulse and sawtooth

For the square-pulse function, the common example for displaying the Wilbraham-
Gibbs phenomenon, sR = sL = 0, so that in (9.90) the extremum closest to (but not
exceeding) will occur at

(9.91)

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 357

By differentiating the last term in (9.90) once more, you will find that the second
derivative is negative at xM, so this x value produces a maximum of 0M. Indeed,
from (9.90) it is straightforward to predict that there are equally spaced maxima be-
low x = with spacing Thus, the area under each excursion above
the line y = must decrease steadily as M increases.

Exercise 9.30
(a) Verify the statement that there are equally spaced maxima below x = by
successive differentiation of (9.90).
(b) After (M + 1) such derivatives you will have maxima at negative x. Explain
this result. n

The square-pulse overshoot behavior is shown in Figure 9.18, in which we see the
positive overshoot position shrinking proportionally closer to as M increases, but
reaching a uniform height that is eventually independent of M. By making numerical
calculations, using methods described in the next subsection, you may discover that
the extent of the overshoot is also remarkably independent of M for the values
shown, namely 0M (xM) = 0.179 to the number of figures given. The fact that 0M

converges to a nonzero value for large M identifies this as a genuine overshoot, as
discussed below the defining equation, (9.80).

FIGURE 9.18 Wilbraham-Gibbs overshoots for the square pulse of unit amplitude, shown for a

range of values of the upper limit of the series sum, M = 31, 63. 127, and 255. The function

(horizontal segment) has a discontinuity (vertical segment) at x =

358 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

The sawtooth function is our final example for the Wilbraham-Gibbs phenome-
non. For this function we have sR = sL = , and D = 2. If you insert these
values in (9.81) you will find exactly the same position for the location of the maxi-
mum overshoot, namely that given by (9.91).

Exercise 9.31
Verify, as indicated, that the sawtooth series maxima are predicted to occur at the
same locations as for the square-pulse series maxima. n

The sawtooth overshoot also tends to the magic value, 0.179, as you will dis-
cover if you investigate the problem numerically, as suggested in Exercise 9.32.
Other properties, such as the locations of the zero-overshoot positions on either side
of xM, will be found to depend on the parameters determining the shape of y (x) .

Exercise 9.32
Use the modified wedge-function Fourier series program suggested in Exer-
cise 9.29 to investigate the overshoot as a function of sR, with sL fixed at zero
and D = 2. Show numerically and graphically that as sR becomes very large
you begin to get an overshoot type of behavior. n

So, what’s going on here? According to (9.90), it looks as if xM should depend
on the shape of the function whose Fourier series we determine. But we discovered
that if there is a discontinuity there is no dependence on its position or on
the overshoot value, at least for the two such examples that we investigated.

The way to solve this puzzle is to take a different view of the original function
y (x), for example as given by (9.7 1). We may consider this as a linear superpos-
ition of a function with no discontinuities in its values, plus a constant (say unity)
broken by a drop of amount D at Since taking Fourier series is a linear
transformation, in that sums of functions have Fourier amplitudes which are the
sums of the amplitudes from each series separately, only the discontinuous part
gives rise to an overshoot. It is always the same overshoot, except for D as a scale
factor, as in (9.81) multiplying SD, and it is always at the same position,
below , because it arises only from the discontinuity. Because of the symme-
try of the discontinuity there will be a mirror undershoot in the opposite direction
just above The terms in (9.90) that do not involve SD are just from oscilla-
ions of the series about the function. These oscillations damp out for large enough
M, as we saw for the wedge in the preceding subsection. A very asymmetric
wedge, having D = 0, sL > 0, sR < 0, but |sR| >> sL, may be used to very
nearly reproduce the effects of a discontinuity, but this will surely have a very slow
convergence.

Thus, we conclude from our analysis and numerical explorations that as soon as
we have studied the square-pulse function, we understand all there is to the Wilbra-
ham-Gibbs phenomenon for Fourier series. Since we are learning numerics as well
as analysis, we now work out where the magic overshoot number comes from.

9.6 DIVERSION: THE WILBRAHAM-GIBBS OVERSHOOT 359

Numerical methods for summing trigonometric series

The numerical methods for investigating the Wilbraham-Gibbs phenomenon are
straightforward but require care if a large number of terms, M, is used in the series.
This is because for x near , summation over terms containing sine or cosine of kx
oscillate in sign very rapidly as k or x changes.

With the precision of my computer I found that the values of S+ and SD were
calculated accurately for M up to about 300. Past this, even with the use of double-
precision arithmetic, unreliable results were produced. In order to make this claim,
an alternative estimate of the sum is needed, as follows. The defining (9.84) for SD

can first be replaced by twice the summation over only odd values of k; then this
sum can be approximated by an integral if M is large. The result can be converted to
the integral

(9.92)

where Since we want SD evaluated at the peak value nearest to we
set x to xM given by (9.91). Then, within a correction of order 1/M, the resulting
integral is to be evaluated with an upper limit of . The integral in (9.92) can easily
be done by expanding the sine function in its Maclaurin series, dividing out the t,
then integrating term by term, to obtain

(9.93)

When the value of this integral, summed out to is substituted in the overshoot
formula (9.81) for the square pulse, we find 0M(xM) = 0.179 to three significant
figures, in complete agreement with direct calculation of the series overshoot found
for both the square pulse and the sawtooth in the preceding subsection.

Exercise 9.33
(a) Develop the integrand of (9.92) as indicated, then integrate term by term
(which is permissible for a convergent series) to derive the formula for the inte-
gral (9.93).
(b) Numerically evaluate the series in (9.93), then substitute the value in the for-
mula for 0M(xM) to verify the value of 0.179 given.
(c) Investigate the M dependence of the overshoot by using (9.89) to write
SD(xM) as an integral from to xM, note that = 0 by (9.84), then trans-
form the variable of integration to t so that the integral is from 0 to Now ex-
pand the denominator of the integrand in a Taylor series, factor out t, then use
the geometric series to get SD(xM) in terms of (9.92) and integrals of tn sin t
from 0 to Thus show that, assuming M odd,

360 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

(9.94)

where terms in 1/(M + 1)6 and smaller are neglected.
(d) Predict that the M dependence is less than 1 part per thousand for M > 13.
This dependence is surely small enough for any reasonable scientist or engineer.
(e) Check (c) and (d) numerically by using the program modification suggested
in Exercise 9.32. n

So, that’s enough analysis for a while. Let’s
transforms and apply the FFT to a practical example.

follow up on discrete Fourier

9 . 7 PROJECT 9A: PROGRAM FOR THE
FAST FOURIER TRANSFORM

In this section we develop a program that implements the FFT radix-2 algorithm for
the discrete Fourier transform, as derived in Section 9.3. Our emphasis is on pro-
ducing a working program that is similar to the algorithm derived rather than on a
program that is very efficient. For the latter, you should use an applications package
that is tailored to your computer to produce maximum speed. For example, the book
of numerical recipes by Press et al. contains a suite of FFT functions. One way to
get speed, at the expense of memory, is to use table lookup, which avoids recomput-
ing cosines and sines.

In our radix-2 FFT the number of data points, N, is assumed to be a power of 2,
N = 2v, where v is input by the user. An option in the program allows you to pre-
dict the running time of the FFT program on your computer and thereby to check out
the timing-estimate formula (9.37). The driver and testing routine is made to be a
program with bare-bones input, execution, and output. For convenience and ele-
gance you should adapt it to your computing environment.

Building and testing the FFT function

The program structure of Fast Fourier Transform has the algorithm derived in
Section 9.3 coded as function FFT. This function computes transforms in subdi-
vided intervals, then reorders these by the bit-reversing function bitrev, also pro-
grammed according to the algorithm in Section 9.3. The operation of bitrev is
independent of the computer system used, provided that N is not larger than the
maximum integer the computer can handle. Program speed could be increased by
using machine language to perform the bit reversal.

The Fast Fourier Transform program is self-testing by use of the symme-
try between the discrete Fourier transform relation (9.6) and the inverse relation
(9.7). All that needs to be done is to reverse the sign of the variable IT, which has
IT = + 1 to obtain the coefficients ck from the data yj, and IT = -1 to invert the ck

9.7 PROGRAM FOR THE FAST FOURIER TRANSFORM 361

and obtain the yj Recall that, according to Sections 9.2 and 9.3, our derivation as-
sumes that the data are real variables.

PROGRAM 9.3 Radix-2 fast Fourier transform checking program.

#include <stdio.h>
#include <math.h>
#define MAX 33

main()

{
/* Fast Fourier Transform;

radix 2; Checking program */
double yreal [MAX] ,yimag [MAX] ;
/* Fortran compatibility; arrays are used from [l] */
double yin,twopi;
int nu,N,MAX1,j,it,iftest;
void FFT();

twopi = 8*atan(1.O);
printf("FFT: Input nu: ");
scanf ("%i",&nu) ;
N = pow(2,nu); MAX1 = MAX-1;
printf("nu = %i, so # data N = %i\n",nu,N);
if(N>MAX1)

printf("\n !! N=%i > MAX1=%i?n",N,MAX1);
printf("End FFT"); exit(l);

printf("\nInput %i y data\n",N);
for (j = 1; j <= N; j++)

scanf ("%f",&yin) ;
yreal[j] = yin; yimag[j] = 0;

it = 1; /* FFT from y back into y */
/* Warning; Original y is destroyed; copy if needed */
FFT(nu,N,it,twopi,yreal,yimag);
printf("\nOutput of FFT; yreal, yimag\n");
for (j = 1; j <= N; j++)
{
printf("\n%g %g",yreal[j],yimag[j]);
}

it = -1; /* Inverse FFT from y back into y
should approximately restore y */

362 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

FFT(nu,N,it,twopi,yreal,yimag);
printf("\nOutput of FFT; yreal, yimag\n");
printf("{yimag should be zero to machine tolerance\n}");
for (j = 1; j <= N; j++)

printf("\n%g %g",yreal[j],yimag[j]);

iftest = 1; /* FFT speed test option; manual timing */
while (iftest == 1)

printf("\nInput a 1 for FFT speed test: ");
scanf("%i",&iftest);
if (iftest == 1)

printf("Input nu, < 11 : "); scanf("%i",&nu);
N = pow(2,nu);
printf("Start timing now\n");
for (j = 1; j <= N; j++)

yreal[j] = j; yimag[j] = 0;

it = 1; /* FFT */
FFT(nu,N,it,twopi,yreal,yimag);
printf("Stop timing now\n");

else

printf("End FFT"); exit(0);

} /* end iftest speed loop */

void FFT(nu,N,it,twopi,yreal,yimag)
/* Fast Fourier Transform of N data in yreal+i(yimag) */
double yreal[],yimag[];
double twopi;
int nu,N,it;

double tpn,angle,wr,wi,tempr,tempi,norm;
int ii,inu,nu1,nsub,i,j,inup1,in1,jsort;
int bitrev();

tpn = twopi/N;
ii = -it;
inu=0; nu1=nu-1; nsub=N/2; /* set up first subinterval */
/* Loop over levels; lengths N/2, N/4, . . . */

9.7 PROGRAM FOR THE FAST FOURIER TRANSFORM 363

for (i = 1; i <= nu; i++)
{
while (inu < N)

for (j = 1; j <= nsub; j++)
{ /* Transform subinterval */
angle = tpn*bitrev((inu/pow(2,nu1)),nu);
wr = cos (angle) ; wi = ii*sin(angle);
inup1 = inu+1; in1 = inup1+nsub;
tempr = yreal[in1]*wr - yimag[in1]*wi;
tempi = yreal[in1]*wi + yimag[in1]*wr;
yreal[in1] = yreal[inup1]-tempr;
yimag[in1] = yimag[inup1] -tempi;
yreal[inup1] = yreal[inup1]+tempr;
yimag[inup1] = yimag[inup1]+tempi;
inu = inu+l;

inu = inu+nsub;

inu=0; nu1=nu-1; nsub=nsub/2; /* next subinterval */

/* Reverse bit pattern and sort transform */
for (j = 1; j <= N; j++)

jsort = bitrev(j-l,nu)+ 1;
if (jsort > j)

tempr = yreal[j]; /* swap values */
yreal[j] = yreal[jsort]; yreal[jsort] = tempr;
tempi = yimag[j];
yimag[j] = yimag[jsort]; yimag[jsort] = tempi;

norm = 1/sqrt((double) N); /* Normalize */
for (j = 1; j <= N; j++)
{
yreal[j] = norm*yreal[j];
yimag[j] = norm*yimag[j];

int bitrev(j,nu)
/* Bit reverse the nu bits of j into jr */
int j,nu;

364 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

int jt,i,jd,jr;

jt = j; jr = 0;
for (i = 1; i <= nu; i++)

jd = jt/2; jr = 2*jr + jt-2*jd;
jt = jd;

return jr;

The following exercise uses the analytically-calculated discrete transform for the
harmonic oscillator (single frequency) derived in Section 9.2. It illustrates the use-
fulness of analytical special cases for checking numerics and programs.

Exercise 9.34
(a) RunBrogram9.1, Discrete Fourier Transform for Oscillator,
from Section 9.2 for N = 16, 64, and 512, with your choice of the oscillator
angular frequency k0, in order to generate the discrete Fourier transform coeffi-
cients ck for k = 0 to N - 1. Save these coefficients in a file.
(b) Run Fast Fourier Transform to compute the inverse Fourier transform
of the array of ck values generated in (a). That is, input IT = -1 and get the
data from the file. You should recover a complex exponential having angular
frequency k0. Check the accuracy of this inversion. n

Another way to check the FFT program is to generate the discrete Fourier coef-
ficients for the decaying exponential (Section 9.2), which is quite different from that
in Exercise 9.34, thus providing an alternative check of the FFT program.

Exercise 9.35
(a) Convert (9.20) into expressions for the real and imaginary parts of the ck for
exponential decay. Then code and spot check the program. For example, you
can check the symmetry condition (9.10). Use N = 16, 64, and 512, with your
choice of the stepsize h, in order to generate the discrete Fourier transform coef-
ficients ck for k = 0 to N - 1. Save these coefficients in a file.
(b) Run the program Fast Fourier Transform to compute the inverse
Fourier transform of the array of ck values generated in (a). That is, input
IT = -1 and get the data from the file created by the program for exponential
decay. You should recover a decaying exponential at the stepsize h. By taking
the natural logarithm of the resulting coefficients you can check how well the in-
verse transform perfoims. n

Speed testing the FFT algorithm

Speed testing of the FFT algorithm in order to verify the scaling rule indicated in
(9.37) is given as a worked example in Exercise 9.12. The program Fast F o u r

9.8 FOURIER ANALYSIS OF AN ELECTROENCEPHALOGRAM 365

ier Trans form has timing as an option in the main program after the self test.
You should now run the timing tests yourself.

Exercise 9.36
Use the timing (done manually) of the FFT algorithm coded in the program
Fast Fourier Transform. Use N = 128,256, and 1024 if you are using a
personal computer, Values about factors of 4 or 8 larger than these may be ap-
propriate for a workstation or for a desktop computer with an accelerator board.
(If necessary, increase the maximum array size, MAX, to accommodate the larger
values of N.) From your timing results estimate a range for Ta in (9.37) and
thus estimate the FFT time for a data sample of N = 8192 = 213 points. n

With the experience gained from running Fast Fourier Transform you
should be ready to analyze real data that do not have an obvious pattern of frequen-
cies. Such are the data from electroencephalograms.

9.8 PROJECT 9B: FOURIER ANALYSIS OF
AN ELECTROENCEPHALOGRAM

This project provides an introduction to practical Fourier analysis and it illustrates
how the discrete Fourier transform theory in Section 9.2 is applied to the analysis of
real data. The electroencephalogram (EEG, or “brainwave”) data are analyzed by the
FFT algorithm from Section 9.3 with the program provided in Section 9.7.

To the untrained observer the output voltage of the EEG as a function of time in-
dicates very little pattern. The analysis of the EEG data transforms it from the time
domain to the frequency domain, in which the dominance of a few frequencies be-
comes evident, as you will soon discover. Recall that, as shown in Sections 6.2
and 9.1, these transformed amplitudes also provide the best fit to the data (in the
least-squares sense) that can be obtained by using a linear superposition of cosines
and sines.

Data from many other physiological rhythms may also be analyzed by the
Fourier expansion methods in this chapter and Chapter 10. Among the several ex-
amples discussed in Cameron and Skofronick’s book on medical physics are magne-
toencephalograms and magnetocardiograms, which use ultrasensitive magnetometers
to measure the tiny magnetic fields from the head and heart.

Overview of EEGs and the clinical record

Since the 1920s the variation of potential differences between points on the scalp as
a function of time have been associated with electrical activity of the brain. The early
measurements were subject to much controversy, partly because of the small volt-
ages involved, in the microvolt (µV) range, and particularly because direct interpre-
tation was so subjective. The advent of computers in the 1950s enabled objective
analysis of the frequency components of brain waves, even if not objective interpre-
tation. A typical EEG of an adult human is shown in Figure 9.19.

366 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

FIGURE 9.19 Electroencephalogram (EEG) voltages over a l-second interval. The data are con-

nected by solid lines, and the approximation of the data by the first sixteen harmonics is shown dot-

ted. The effects of Lanczos filtering are not visible on this scale.

The main frequencies in an adult human EEG are 0.3 to 3.5 Hz (called
waves, predominant in sleeping adults and awake young children), 8 to 13 Hz (a
waves, predominant in awake, relaxed adults), and 18 to 30 Hz waves, appear-
ing sporadically during sleep). The interpretation of such patterns, especially for di-
agnosis of neural dysfunction, is discussed at an introductory level by Cameron and
Skofronick. Instrumentation for EEG data acquisition is described in the book by
Cromwell, Weibell, and Pfeiffer. The monograph by Spehlmann provides many ex-
amples of EEG traces and their clinical interpretation.

For our analysis of EEG data, three EEG pattems of patient MAC (Mental Apti-
tude Confidential) are provided in Table 9.1. For illustration purposes, we use only
a very short l-second interval, conveniently taken over 32 data points each separated
by 1/31 of a second. Therefore, we may use the radix-2 FFT program developed in
Section 9.7, choosing the index v = 5, since 25 = 32. In order to achieve a peri-
odic function, the first and last points of the data have been forced to be the same.
The dominant frequencies are characteristic of those of the EEGs of adult humans,
as discussed above. Indeed, you can see a dominant rhythm in Figure 9.19 by
noting a fairly regular crossing of the axis that occurs 16 times in 1 sec, so there has
to be a strong amplitude at about 8 Hz, in the -rhythm section.

Three data sets are given in Table 9.1 and displayed in Figure 9.19. As you
can see, they are nearly the same, because they differ only in the amount of noise
present in the data. I inserted the noise voltages artificially, in such a way that V1

has the least noise and V3 has the most noise.

9.8 FOURIER ANALYSIS OF AN ELECTROENCEPHALOGRAM 367

TABLE 9.1 Data sets for the EEG analysis.

I T t V1 (t) V2 (t) V3 (t)

(s) (µ V) (µ V) (µ V)

1 0 . 0 0 0 0 13.93 12.07

2 0 . 0 3 2 2 20.77 19.56

3 0 . 0 6 4 5 - 2 1 . 6 2 - 1 2 . 1 4

4 0 . 0 9 6 7 -19.28 -11.45

5 0 . 1 2 9 0 28.15 29.75

6 0 . 1 6 1 2 2 3 . 0 4 22.18

7 0 . 1 9 3 5 -32.87 - 3 2 . 3 2

8 0 . 2 2 5 8 - 2 9 . 3 0 -38.27

9 0 . 2 5 8 0 17.61 18.82

10 0 . 2 9 0 3 18.63 2 6 . 6 4

11 0 . 3 2 2 5 - 1 4 . 5 8 - 1 7 . 4 2

12 0 . 3 5 4 8 0 . 3 8 -8 .74

13 0.387 1 45.21 35.97

14 0 . 4 1 9 3 20.91 2 7 . 5 6

15 0 . 4 5 1 6 -30.27 - 2 7 . 1 9

16 0 . 4 8 3 8 - 2 5 . 3 3 -26.7 1

17 0.5161 5.17 9 . 1 4

18 0 . 5 4 8 3 -3.66 -7 .36

19 0 . 5 8 0 6 -28.17 -26.13

2 0 0 . 6 1 2 9 0 . 9 7 6 . 4 7

21 0.645 1 35.69 30.31

2 2 0 . 6 7 7 4 3 . 5 6 1.79

2 3 0 . 7 0 9 6 -28.18 - 3 0 . 3 9

2 4 0 . 7 4 1 9 - 1 1 . 3 0 -8 .54

2 5 0.774 1 14.25 10.63

2 6 0 . 8 0 6 4 4 . 5 6 -1.78

27 0 . 8 3 8 7 -0.48 -6.38

2 8 0 . 8 7 0 9 14.99 16.67

2 9 0 . 9 0 3 2 19.68 2 2 . 8 4

3 0 0 . 9 3 5 4 -2.17 1.69

31 0 . 9 6 7 7 -16.35 -20.65

32 1.0000 13.93 12.07

13.00

19.64

- 1 7 . 1 8

- 1 4 . 6 6

2 9 . 4 2

21.61

- 3 3 . 0 7

- 3 2 . 4 9

18.51

2 1 . 1 6

- 1 6 . 0 0

-2.7 1

4 0 . 3 0

2 2 . 9 4

- 2 8 . 2 6

- 2 5 . 0 2

6 . 6 8

-6 .22

- 2 6 . 8 6

4 . 2 5

3 3 . 0 0

2 . 1 5

- 2 9 . 5 8

-9.2 1

12.94

0 . 3 9

-3 .90

17.13

2 1 . 5 6

-1.71

- 1 8 . 0 0

13.00

368 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

A characteristic of noise in data is that, because it is random from one data point
to the next, it appears to have a frequency about equal to the reciprocal of the sam-
pling interval; thus, here the noise frequency should be about 30 Hz. You may test
this by seeing whether the voltages reconstructed from the Fourier amplitudes, but
omitting the high-frequency components, are in essential agreement with each other.
In these EEG data, the average value (the DC level of the EEG voltage) has been re-
moved. Thus, the a0 coefficient in the frequency spectrum should be zero. Now
that we have the EEG data, we are ready to make Fourier analyses.

Program for the EEG analysis

In this subsection we construct a program for analyzing the EEG data in Table 9.1
by modifying the FFT program developed in Section 9.7. Because there are several
data sets and filtering options to choose from, I have included file input and analysis
selections within the program.

The program EEG/ FFT consists of three main sections:

(i) Optional preparation of EEG data input to file EEGVn, where n = 1, 2, or 3.

(ii) Analysis of one of these EEG data sets, including the one just just prepared,
to obtain the Fourier amplitudes, ck. These amplitudes are written to file EEGoutN
where n = 1, 2, or 3.
(iii) Remaking of the EEG with three options for filtering:

1. No filtering.
2. Lanczos filtering, as explained in the following subsection on filtering

the EEG.
3. Truncated filtering, with equal weight up to maxf, then zero weight.

For each filtering option, the remade EEG is written to file FilterEEGn, where
n = 1, 2, or 3. The file may either be rewritten or added to. These options allow
you to explore the EEG analysis and to save the results for input to a graphics appli-
cation, as shown in Figure 9.19. The source program is as follows, with the FFT
and bit rev functions being just those given in Section 9.7, so they are omitted
from the program listing.

PROGRAM 9.4 EEG FFT analysis, with variable data and filtering options.

#include <stdio.h>
#include <math.h>
#define MAX 33

main()

/* EEG FFT analysis;
Prepare input files of Vl, V2, or V3;
Analyze from files EEGV1, EEGV2, or EEGV3;
Outfile file for plots */

9.8 FOURIER ANALYSIS OF AN ELECTROENCEPHALOGRAM 369

FILE *fin,*fout;
FILE *fopen();
double twopi,yin,sigma,arg;
double Vreal[MAX],Vimag[MAX],VFiltr[MAX],VFilti[MAX];
/* Fortran compatibility; arrays are used from [l] */
int nu,N,MAX1,j,it,choice,k,filter,maxf,maxk;
char yn,yesno,wa,waFilter;
void FFT();

twopi = 8*atan(l.O);
nu = 5; /* so */ N = 32; /* Number of time steps */
printf("EEG FFT input & analysis:\n"

"Prepare input file? (y or n) :\n");
scanf ("%s",&yn) ;
if (yn == 'y')

printf("Input EEG data set (1,2,3): ");
scanf("%i",&choice) ;
switch (choice)

case 1: fout = fopen ("EEGV1","w"); break;
case 2: fout = fopen ("EEGV2","w"); break;
case 3: fout = fopen ("EEGV3","w"); break;
default:
printf("\n !! No such input file\n\n");exit(l);
}

printf("\nInput EEG data:\n") ;
for (j = 1; j <= N; j++)

printf("\n%i: ", j);
scanf("%lf",&yin) ;
Vreal[j] = yin;
fprintf(fout,"%lf\n",yin);

fclose(fout); rewind(fout); /* Ready for reuse */

printf("\nAnalyze which EEG data set (1,2,3)? ");
scanf("%i",&choice) ;
printf("\nWrite over (w) or Add on (a): ");
scanf("%s",&wa):
switch (choice) /* Open input & output files */

case 1: fin = fopen("EEGV1","r");
fout = fopen ("EEGout1",&wa); break;

case 2: fin = fopen("EEGV2","r");

370 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

fout = fopen ("EEGout2",&wa); break;
case 3: fin = fopen("EEGV3","r");

fout = fopen ("EEGout3",&wa); break;
default:
printf("\n !! No such input file\n\n");exit(l);

for (j = 1; j <= N; j++) /* Data input */

fscanf(fin, "%lf\n",&yin) ;
Vreal[j] = yin; Vimag[j] = 0;
}

it = 1; /* FFT from V back into V */
/* Original V is destroyed */
FFT(nu,N,it,twopi,Vreal,Vimag);
printf("\nOutput of FFT; Vreal, Vimag\n");
for (k = 1; k <= N; k++) /* V has c-sub-k */

fprintf(fout, "%lf %lf\n",Vreal[k],Vimag[k]);
printf("\n%6.2lf %8.2lf",Vreal[k],Vimag[k]);

/* Remaking EEG with filter options */
yesno = 'y';
tile (yesno == 'y')

printf("\n\nFilter EEG; (y or n)? ");
scanf ("%s" ,&yn) ; yesno = yn;
if (yesno == 'y')

printf("Choose filter type:\n");
printf(" 1, no filter\n");
printf(" 2, Lanczos filter\n");
printf(" 3, truncated filter\n");
scanf("%i",&filter);
if (abs(filter-2) > 1)

printf("\n !! No such filter\n\n");exit(l);

printf
("Write (w) or Add (a) FilterEEG%i\n',choice);
scanf("%s",&waFilter) ;
switch (choice) /* Gpen file for filtered EEG */

case l:fout=fopen("FilterEEG1",&waFilter);break;
case 2:fout=fopen("FilterEEG2",&waFilter);break;
case 3:fout=fopen("FilterEEG3",&waFilter);break;

9.8 FOURIER ANALYSIS OF AN ELECTROENCEPHALOGRAM 371

if (filter == 3) /* Truncated filter */

printf("Maximum frequency (0 to %i)? ",MAX-2);
scanf("%i",&maxf); maxk = maxf+l;
if (maxk > MAX-1) maxk = MAX-l;

for (k = 1; k <= N; k++)

switch (filter)

case 1: sigma = 1; break;/* No filter */
case 2: /* Lanczos filter */

if (k == 1) { sigma = 1; break; >
else

arg = twopi*(k-1)/(4*N);
sigma = sin(arg)/arg; break;

case 3: /* Truncated filter */

if (k <= maxk) sigma = l;
else sigma = 0; break;

VFiltr[k] = sigma*Vreal[k];
VFilti[k] = 0;

it = -1; /* Remake voltages using FFT */
FFT(nu,N,it,twopi,VFiltr,VFilti);
printf("\nFiltered FFT; VFiltr,VFilti\n");
for (j = 1; j <= N; j++)
{
fprintf(fout, "%lf %lf\n" ,VFiltr[j],VFilti[j]);
printf("\n%6.2lf %8.2lf",VFiltr[j],VFilti[j]);

}/* ends if yesno=='y' */
}/* ends while yesno=='y' */

printf("\nGoodbye from this brain wave");
}/* ends main */

FFT(nu,N,it,twopi,Vreal,Vimag) /* See Program 3, Section 9.7 */
bitrev(j,nu) /* See Program 3, Section 9.7 */

372 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Exercise 9.37
(a) Code program EEG FFT Analysis, borrowing the functions FFT and bit-
rev from Program 9.3. They are not listed in Program 9.4. Test the various
options to verify that the whole program is working correctly. For debugging, it
is simplest to use a very small data set, nu = 2, so that the number of data
N = 4. This will minimize output and will obviate much retyping if you acci-
dentally destroy your EEG data files.
(b) Make another test of the FFT by using constant data, so that the Fourier co-
efficients for k > 0 should be zero. Also check that the inverse transform re-
covers the original data. n

Frequency spectrum analysis of the EEG

Since the EEG data in Table 9.1 are discrete and we are using the Fast Fourier
transform (FFT) method of analyzing the data, we will obtain from the program the
discrete Fourier transform (the DFT, Section 9.2) of the data from the time domain
to the frequency domain. Therefore, in our formalism in Section 9.2 the variable x
is to be interpreted as the time variable t (in seconds), so that the variable k is inter-
preted as the frequency in hertz (Hz), that is, per second.

The appropriate formulas for the DFT are those for the amplitudes ck, (9.6).
The square of the modulus of each ck is proportional to the power contained in that
frequency, as discussed under (9.8) for Parseval’s theorem. Therefore, we define
for each frequency, k, the power, Pk, by

(9.95)

The program outputs the Fourier amplitudes ck, but you may easily also adapt it to
produce the power. In Figure 9.20 you can see the power spectrum from the FFT
analysis of data set V1 in Table 9.1.

Now that you have seen a sample of the EEG analysis results, try your own
brain waves on the data in Table 9.1.

Exercise 9.38
(a) Select an EEG-analysis output file EEGoutchoice, where choice = 1,2,
or 3, and use it as input to a graphics application program in order to display the
power spectrum as a function of k, similarly to Figure 9.20.
(b) Is the pattern of Fourier amplitudes that you obtained as a function of fre-
quency, k, consistent with that of a normal adult human, as discussed in the in-
troduction to the EEG? If you run more than one data set, compare them and
discuss for what frequency range the analysis is relatively insensitive to noise.
Recall that the average noise level increases from V1 to V2 to V3. n

Now that we have an understanding of the basic
time to introduce some data massaging techniques.

Fourier analysis of data, it is

9.8 FOURIER ANALYSIS OF AN ELECTROENCEPHALOGRAM 373

FIGURE 9.20 Power spectrum, Pk, as a function of frequency. k, for the EEG voltage in

Table 9.1 having the lowest noise, namely V1(t).

Filtering the EEG data: The Lanczos filter

Here we explore how the reconstructed FFT can be modified by selectively down-
weighting various frequencies, usually the highest ones, that are usually associated
with noise rather than with the desired signal.

We use the code options for reconstructing V(t) by the inverse FFT. Thus, in
the coding you see that the parameter passed to function FFT is it = -1, rather
than it = 1, as used for the frequency analysis. It’s as simple as that for the dis-
crete Fourier transform. Truncation-type filtering is a simple choice.

Exercise 9.39
This exercise consists of using the program segment in EEG FFT Analysis to
reconstruct the voltage from the Fourier amplitudes computed in Exercise 9.38,
but using a choice of filtering options, either none or truncation.
(a) Use the filter type 1 (no filtering) to verify that the program reproduces the
original data, within the roundoff error of your computer and its arithmetic rou-
tines for cosines and sines.
(b) Next, choose a maximum frequency, maxf , in EEG FFT Analysis. This
frequency may not be larger than the number of data minus one, but the program
will force this requirement. Run the program, then graph the output to compare
it with the input data. (An example is shown in Figure 9.19.) Describe qualita-
tively how and why the agreement between filtered and original data changes
with maxf. For what range of maxf values do you judge that you are probably
reproducing the EEG signal, as opposed to the EEG data, which contain some
noise? n

374 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

If you followed the discussion in Section 9.6, you will object to this kind of fil-
tering, because we have introduced a discontinuity into the Fourier amplitudes, ck,
by suddenly (at maxf) effectively turning them to zeros. When we Fourier trans-
form these modified amplitudes we will get a Wilbraham-Gibbs overshoot intro-
duced into the reconstructed EEG. With such a bumpy function as our data repre-
sent and with such coarse time steps, this will not be obvious by looking at the re-
sults, but we know that the overshoot has to be there.

The Lanczos damping factors provide a smooth transition from complete inclu-
sion of the lowest frequencies in the filtered reconstruction to suppression (by a fac-
tor of about 0.64) of the highest frequency.

Exercise 9.40
Show analytically that integration of a continuous function over the range

about each point x of the function is equivalent to multiplying its k th
frequency component amplitude, ck, by the damping factor

(9.96)

These factors are called Lanczos damping factors. n

The Lanczos damping factors, are shown in Figure 9.21. Note that they are in-
dependent of the data being analyzed. In our analysis, since the major amplitudes
are concentrated around 8 Hz (Figure 9.19) suppressing higher-frequency ampli-
tudes has relatively little effect on the reconstructed amplitudes. That is why in Fig-
ure 9.19 the Lanczos-filtered and original EEG data nearly coincide. Try for your-
self the effects of Lanczos damping on the reconstruction of the EEG.

FIGURE 9.21 EEG amplitudes (with sign) as a function of frequency, k, for the EEG data set

V1 (from Table 9.1) are shown by shaded bars. The Lanczos-filter function, from (9.96) is

shown by the hollow bars.

REFERENCES ON FOURIER EXPANSIONS 375

Exercise 9.41
Explore the effects of Lanczos damping in filtering Fourier expansions by using
the program EEG FFT Analysis as follows:
(a) Use filtering option 2 (Lanczos filtering) applied to one of the EEG data sets
given in Table 9.1. (By now, you probably have typed in these three data sets.)
Make a plot comparing the original and filtered EEG. In this case, because filter-
ing effects are likely to be small, it is a good idea to plot the difference (includ-
ing sign) between the original and filtered values.
(b) Modify the program slightly so that you can input your own choice of Four-
ier amplitudes, ck. Then make a data set such that the highest frequencies are
emphasized. From this set of amplitudes reconstruct the original function by
using the inverse FFT after the program has Lanczos-filtered the amplitudes.
Now you should notice a much larger effect from Lanczos filtering than in the
EEG data. n

Filtering is further considered in the texts on signal processing by Hamming, by
Oppenheim and Schafer, and by Embree and Kimble. The last book has many al-
gorithms, plus programs written in C, for digital signal processing. A suite of pro-
grams, primarily for FFT calculations, is provided in Chapter 12 of the numerical
recipes book by Press et al. Bracewell’s text on Fourier transforms presents many
engineering examples.

REFERENCES ON FOURIER EXPANSIONS

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions,
Dover, New York, 1964.

Bôcher, M., “Introduction to the Theory of Fourier’s Series,” Annals of Mathe-
matics, 7, 81, Sect. 9 (1906).

Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill,
New York, second edition, 1986.

Bracewell, R. N., The Hartley Transform, Oxford University Press, Oxford,
England, 1986.

Brigham, E. O., The Fast Fourier Transform and Its Applications, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

Cameron, J. R., and J. G. Skofronick, Medical Physics, Wiley, New York, 1978.
Champeney, D. C., A Handbook of Fourier Theorems, Cambridge University

Press, Cambridge, England, 1987.
Cromwell, L., F. J. Weibell, and E. A. Pfeiffer, Biomedical Instrumentation and

Measurements, Prentice Hall, Englewood Cliffs, New Jersey, 1980.
Embree, P. M., and B. Kimble, C Language Algorithms for Digital Signal

Processing, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

376 DISCRETE FOURIER TRANSFORMS AND FOURIER SERIES

Gibbs, J. W., “Fourier’s Series,” Nature, 59, 200 (1898); erratum, Nature, 59,
606 (1899): reprinted in The Collected Works of J. Willard Gibbs, Laymans
Green, New York, Vol. II, Part 2, p. 258, 1931.

Hamming, R. W., Digital Filters, Prentice Hall, Englewood Cliffs, New Jersey,
third edition, 1989.

Körner, T. W., Fourier Analysis, Cambridge University Press, Cambridge,
England, 1988.

Oppenheim, A. V., and R. W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

Peters, R. D., “Fourier Transform Construction by Vector Graphics,” American
Journal of Physics, 60, 439 (1992).

Pratt, W. K., Digital Image Processing, Wiley, New York, 1978.
Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical

Recipes in C, Cambridge University Press, New York, 1988.
Protter, M. H., and C. B. Morrey, Intermediate Calculus, Springer-Verlag, New

York, second edition, 1985.
Roberts, R. A., and C. T. Mullis, Digital Signal Processing, Addison-Wesley,

Reading, Massachusetts, 1987.
Spehlmann, R., EEG Primer, Elsevier, New York, 1981.
Thompson, W. J., “Fourier Series and the Gibbs Phenomenon,” American Journal

of Physics, 60, 425 (1992).
Weaver, H. J., Applications of Discrete and Continuous Fourier Analysis, Wiley-

Interscience, New York, 1983.
Wilbraham, H., “On a Certain Periodic Function,” Cambridge and Dublin Mathe-

matics Journal, 3, 198 (1848).

Chapter 10

FOURIER INTEGRAL TRANSFORMS

In this chapter we continue the saga of Fourier expansions that we began in Chap-
ter 9 by exploring the discrete Fourier transform, the Fourier series, and the Fast
Fourier Transform (FFT) algorithm. A major goal in this chapter is to extend the
Fourier series to the Fourier integral transform, thus completing our treatment of
Fourier expansions that was outlined in Section 9.1.

The outline of this chapter is as follows. In Section 10.1 we make the transition
from Fourier series to Fourier integrals, then in Section 10.2 we give several exam-
ples of these transforms that are interesting for practical applications, especially their
application to Lorentzian and Gaussian functions. By Section 10.3 we have enough
analytical preparation that we can start to emphasis applications of Fourier integral
transforms and their numerical approximations, so we investigate convolutions cal-
culated from Fourier integral transforms, including the Voigt function that is used
extensively in analyzing optical spectra. In Project 10 (Section 10.4) we develop a
program for calculating convolutions by using the FFT, then apply it to calculate the
line profile of a stellar spectrum. References on Fourier integral transforms round
out the chapter.

10.1 FROM FOURIER SERIES TO FOURIER INTEGRALS

In the discussion of discrete Fourier transforms and Fourier series in Chapter 9, we
found that they predict a periodicity of any function expressed in terms of these two
expansions. Suppose, however, that we want to describe an impressed force, a vol-
tage pattern, or an image, that is not periodic. Can the Fourier series be adapted to
this use? It can, as we show in the following.

377

378 FOURIER INTEGRAL TRANSFORMS

The transition from series to integrals

One way to make the transition from Fourier series to Fourier integrals is to allow
the upper and lower limits of the interval for a Fourier series to lie far outside the
range of x values for which we will use the series. The periodicity of the Fourier
series will then be inconsequential. This idea also leads to the discrete hamonics, k,
in the Fourier series becoming continuous variables, thus establishing symmetry of
treatment with the x variables, as outlined in Section 9.1.

Our method of deriving the Fourier integral transform is to set x- = -L and
x+ = L, so that the interval x+- x- = 2L in the Fourier series for arbitrary inter-
vals (Section 9.4). Eventually we let to produce the integral transform
from the series. In more detail, we temporarily set in (9.46), so that
unit step of k produces the change The Fourier series expansion of a
function y (x), equation (9.48), then becomes

(10.1)

in which the Fourier coefficients are given by

(10.2)

In these two expressions, in order to achieve symmetry we have split the factors in
the denominators as shown. Now one lets L and N tend to infinity carefully (for
mathematical rigor, see Churchill’s text), so that the summation in (10.1) becomes
an integral and the variable becomes continuous. Also, we can revert to the no-
tation of k for the variable complementary to x. Now, however, k varies continu-
ously rather than discretely. Finally, we have the result for the Fourier integral
transform pair

(10.3)

and the inverse transformation

(10.4)

Both integrals in this transform pair are on an equal footing, and there is no
mathematical distinction between the variables x and k. For this reason, one will

10.1 FROM FOURIER SERIES TO FOURIER INTEGRALS 379

often see the expressions with the signs of the exponents reversed. As long as one
maintains complete consistency of sign throughout the use of a Fourier integral
transform pair, such a sign change is not significant.

Exercise 10.1
Verify all the steps between (10.1) and (10.4) for the derivation of the Fourier
integral transform. n

For the scientist and engineer, x and k describe physical measurements, so that
their dimensions must be reciprocal in order that the argument of the complex expon-
ential be dimensionless. If x is position, then k is the wavenumber, given in terms
of the wavelength, and having dimensions of reciprocal length.
When x represents time, t, then k is replaced by the complementary variable the an-
gular frequency, where T is the period and f is the frequency.
The dimensions of are radian per unit time.

Waves and Fourier transforms

Since, as just described, we usually have the transform combination kx or U. it is
interesting to consider briefly the extension of the Fourier integral transform to two
variables, namely

(10.5)

Here the complex exponential represents a monochromatic (single wavelength and
frequency) plane wave travelling along the x direction with wavenumber k at angular
frequency as we discussed in Section 2.4. Its associated amplitude is Y (k ,
Thus, the double integral over wavenumbers and frequencies, y (x,t), represents a
physical wave, called a wave packet. Suppose that the speed of the wavelet of given
frequency, given by is fixed, as it is for a light wave in vacuum,
then the double integral must collapse to a single integral, because when one of or
k is given, the other is determined. This is called a nondispersive wave. How to
handle the mathematics of this is considered below in discussing the Dirac delta dis-
tribution.

Dirac delta distributions

A rather strange integral property can be deduced from the Fourier integral transform
pair (10.3) and (10.4). Indeed, when first used by the physicist Dirac it disquieted
mathematicians so much that it took a few years to provide a sound basis for its use.
Suppose that we substitute (10.3) into (10.4), taking care to use a different variable
under the integral sign in (10.3), say k’, since it is a dummy variable of integration.
One then finds, by rearranging the integrals, that

380 FOURIER INTEGRAL TRANSFORMS

where the Dirac delta distribution is

(10.6)

(10.7)

Exercise 10.2
Work through the steps leading from (10.3) and (10.4) to the last two equations.
n

To the extent that in (10.6) Y is any reasonably well-behaved function that allows
construction of its Fourier integral transform and rearrangement of the integrals that
lead to (10.7), we have a remarkable identity. The Dirac delta distribution must be
such that it can reproduce a function right at the point k, even though its values at
many other points k’ appear under the integral. Clearly, must be distributed with
respect to k - k' such that it is concentrated near k' = k.

Recollection of a property of the discrete Fourier transform is illustrative at this
point, and it makes an analogy between the Kronecker delta and the Dirac delta. Re-
ferring to (9.9), we see that summation over the discrete data corresponds to integ-
ration over the continuous variable in (10.7). The summation leads to selection by
the Kronecker delta of discrete matching k and l values, corresponding to matching
of k and k' values that is implied for the continuous variables in the Dirac delta. Our
examples of Fourier transforms in Section 10.2, especially the integral transform of
the Gaussian function, provide examples of Dirac delta distributions.

10.2 EXAMPLES OF FOURIER TRANSFORMS

We now explore several examples of Fourier integral transforms, initially to under-
stand their relations to other Fourier expansions and to be able to use them in appli-
cations such as convolutions and calculation of spectral profiles.

Exponential decay and harmonic oscillation

We discussed in Section 9.2 the discrete Fourier transforms for exponential decay
and harmonic oscillation, and we obtained analytic expressions for both of them.
Suppose that the function to be transformed is

(10.8)

The transition to the Fourier integral transform can be made from the expression for
the general complex exponential discrete transform (9.18) by letting as

10.2 EXAMPLES OF FOURIER TRANSFORMS 381

and assuming that Re to guarantee convergence. By expanding the
denominator to lowest order in then letting we readily find that

(10.9)

where k is now a continuous variable. The transition from the sum in the discrete
transform to the integral in the integral transform is a good example of the limit pro-
cesses involved in the Riemann definition of an integral.

Exercise 10.3
Show all the steps between (9.18) and (10.9), paying particular attention to the
order in which the limits on N and h are taken. n

This integral transform of the complex exponential can now be applied to the two
limiting behaviors for If is purely real and positive, then we have exponential
decay, while for purely imaginary we have harmonic oscillation. These are just
the analytical examples considered in Section 9.2 for the discrete transform.

Exponential decay, integral transforms can be scaled, as we discussed in Sec-
tion 9.2, so that and thus k is measured in units of To understand the
transition from discrete to integral transform it is interesting to consider the case of N
large and h small but finite. You can easily calculate from (9.18) and (10.9) the ratio
of the midpoint discrete transform to the integral transform, where the midpoint fre-
quency is calculated from (9.15) as As we find that

(10.10)

For zero frequency (k = 0) and in the limit of large N, one can show simply from
(9.18) and (10.9) with that the DFT overpredicts the transform compared
with the FIT by an amount that increases as h increases.

Exercise 10.4
(a) Make graphs of the real and imaginary parts of the integral transform (10.9)
and compare them with calculations of the discrete transform for large N, say
N = 128 for h = 1. A small computer program, such as you may have written
for Exercise 9.6 (b), would be helpful for this.
(b) For the midpoint ratio of discrete to integral transforms fill in the steps in the
derivation of the result (10.10).
(c) For the zero-frequency difference between discrete and integral transforms
show that for Nh >> 1 the difference is given by

(10.11)

where the last approximation is from a Maclaurin expansion in h. n

382 FOURIER INTEGRAL TRANSFORMS

FIGURE 10.1 Ratios of the discrete Fourier transform (9.20) at the midpoint frequency k = N/2

to the Fourier integral transform at the corresponding frequency p/h, shown for discrete transforms

of lengths N = 4, 8, and 16. The dashed line is the asymptotic ratio given by (10.10).

Numerical comparisons between discrete and integral transforms of the damped
exponential at the midpoint value k = N /2 are shown in Figure 10.1 for small val-
ues of N. The dashed line in Figure 10.1 is the result (10.10). Notice that for N
and h both small the discrete transform actually gives a negative real transform at
k = N /2 that is quite different from the real part of the integral transform, which is
everywhere positive. This emphasizes the need for care in the limit process of deriv-
ing the integral transform from the discrete transform, as described above (10.3) and
worked out by the conscientious reader in Exercise 10.3.

Harmonic oscillution integral transforms are included in (10.9), as in Sec-
tion 9.2 for the discrete transform, by setting a pure oscillator with a
single frequency k0. In order to consider this rigorously, a small positive real part,
 has to be included in to produce convergence of the geometric series for N
large, as discussed above (9.21). Then one may let to obtain the following
result for the Fourier integral transform of the harmonic oscillator:

(10.12)

This shows a simple pole at the resonance frequency k0, whereas the discrete trans-
form has a distribution of values that are peaked in magnitude near k0, as shown in
Figure 9.4.

In the next examples we do not have nice functions that readily allow the discrete
and integral Fourier transforms to be compared directly and analytically. For most
of these examples the discrete transform can be computed numerically, for example
by using the FFT algorithm described in Sections 9.3 and 9.7, whereas it is the in-
tegral transform that can usually be expressed in analytical form.

10.2 EXAMPLES OF FOURIER TRANSFORMS 383

The square-pulse function

For the first example of a Fourier integral transform we choose the first example
from the Fourier series in Section 9.5, the square pulse. It has the same definition
as in (9.50), namely

(10.13)

In order to compute the integral transform in k space you need only plug this expres-
sion into (10.4). Because the integration is over all x, we have to supplement the
definition (10.13) with the constraint that

(10.14)

This function can now be used in the defining equation for the Fourier integral trans-
form, (10.4).

Exercise 10.5
Perform the indicated integration in (10.4) to show that the Fourier integral
transform of the square pulse is given by

(10.15)

and

(10.16)

for n

The correspondence of these results with those for the Fourier series coefficients
of the square pulse can be clarified as follows. For the series we used an expansion
in terms of cosines and sines, and we found in Section 9.5 that only the sine terms
are nonzero. Equation (9.52) and Figure 9.8 show that the envelope of the series
coefficients, bk l/k, and that the coefficients vanish for k an even integer. Do
these properties also hold for the Fourier integral transform, in which k varies con-
tinuously?

Exercise 10.6
(a) Use (10.16) to show that when k is an even integer, including zero,
Y (k) = 0, just as for the series.
(b) Show that the modulus of the Fourier transform, |Y (k)| l/ k when k is
an odd integer, just as for the Fourier series. n

384 FOURIER INTEGRAL TRANSFORMS

FIGURE 10.2 Fourier integral transform of the square pulse, as given by (10.16). but plotted

with the phase factor omitted. The solid points are the discrete Fourier transform values at integer

frequencies.

You will have noticed something peculiar about the k-space Fourier amplitude,
Y (k), for k near zero. As long as k is infinitesimally removed from zero (10.16)
applies and Y (k) varies smoothly with k. But right at k = 0 the amplitude must be
zero. It is, however, usual to ignore this fact and to extend the definition of Y (k)
given by (10.16) into the origin. A Maclaurin expansion of the sine function follow-
ed by division by the denominator then produces

(10.17)

On this basis, we may now graph the Fourier integral transform, apart from the
complex factor in (10.16), as shown in Figure 10.2. The values that correspond in
magnitude to the Fourier series coefficients, bk, for the square pulse are also indicat-
ed for the odd integers.

If you have some experience with diffraction of waves, you will notice that
Y (k) varies with k just like the amplitude of a wave diffracted through an aperture.
Indeed, detailed study (presented, for example, in optics texts) will show you that
this is exactly so.

Now that we have seen the similarities and differences of Fourier series and in-
tegral transforms for the square pulse, it is interesting to consider another example to
reveal other facets of integral transforms.

Fourier transform of the wedge function

The wedge function, considered for the discrete transform in Section 9.5, illustrates
how the behavior of the integral transform varies as the input function is scaled in

10.2 EXAMPLES OF FOURIER TRANSFORMS 385

shape. We therefore have a wedge whose shape is adjustable, namely

(10.18)

Although the wedge always has unit area, its width (and therefore its height) is con-
trolled by the value of L. This property makes it convenient for later investigation.

Exercise 10.7
Derive the Fourier integral transform of the wedge function by inserting the def-
inition of the wedge function, (10.18), in the formula (10.4) for the transform,
then carrying out the indicated integration. This is straightforward but tedious.
Show, after several carefully executed steps, that

Unlike the square-pulse example above, no special treatment is necessary
k = 0, except that the limit as k approaches zero must be taken carefully. n

(10.19)

for

You may surmise, correctly, that the behavior of the Fourier integral transform near
k = 0 is related to the Wilbraham-Gibbs phenomenon discussed in Section 9.6, in
that functions that have discontinuities in their values need special treatment.

Note that there is dimensional consistency between the arguments in the original
function and the arguments in the transform, as follows. Suppose, for example, that
x is a distance, then so must be L. Then in the transform (10.19) k has dimensions
of reciprocal distance, but the product kL, being the argument of the sine function,
must be dimensionless, as required for any mathematical function.

Exercise 10.8
Suppose that x = t, where t represents time, and
Show that the Fourier transform (10.19) becomes

that also a time.

(10.20)

where represents angular frequency. Is the product dimension-free, as re-
quired? n

The Fourier integral transform of the wedge function is shown in Figure 10.3
for two values of L, namely L = 1 (in the same units as x) and L = 2.

386 FOURIER INTEGRAL TRANSFORMS

0

FIGURE 10.3 Fourier integral transform of the wedge function (10.18), as given by (10.19).

Shown for a wedge of width L = 1 (solid curve) and for a wider wedge (L = 2, dashed curve) which

produces a narrower transform.

Notice immediately in Figure 10.3 that as the wedge function becomes broader
in the x space (although always keeping unit area) it becomes proportionally narrow-
er in the k space. Indeed, the Fourier integral transform as a function of L is obtain-
ed merely by scaling the k values so that the product kL is constant, because (10.19)
shows that Y(k) depends only upon this product. For example, in Figure 10.3 the
zeros of the transform occur with twice the frequency for L = 2 as for L = 1.

Exercise 10.9
Verify the following properties of the Fourier integral transform of the wedge
function:
(a) Y (k) is symmetric about k = 0.
(b) Y (k) falls to half its maximum value at k = 2.78/L.
(c) The zeros of Y(k) occur at with n a nonzero integer.
(d) A secondary maximum of Y (k) occurs near where its height is
about 0.045 that of the first maximum. n

The results from this exercise are important in the theory of wave diffraction from
apertures. See, for example, the books on vibrations and waves by Ingard and by
Pippard.

Gaussian functions and Fourier transforms

We investigated the Gaussian function in the context of maximum likelihood and
least squares in Section 6.1. We repeat its definition here as

10.2 EXAMPLES OF FOURIER TRANSFORMS 387

(10.21)

We have renamed the function, commemorating Gauss, and we have included the
standard deviation, as a parameter in the function definition to emphasize its im-
portance. Also, this Gaussian is centered on x = 0, rather than on an average value
as in Section 6.1. Such a shift of origin is not important for our current use and in-
terpretation of the Gaussian. You probably already derived some properties of the
Gaussian function by working Exercise 6.2. The Gaussian is of interest in Fourier
transforms because of its simple behavior under the integral transform. Also, it is a
smoothly varying function that is often suitable for use as a windowing or damping
function, of the kind discussed in Section 9.8.

The process of deriving the Fourier integral transform of a Gaussian is quite
tricky. It is therefore interesting to begin with some numerical explorations by Four-
ier transforming some discretized Gaussian data using the FFT program developed
in Section 9.7.

Exercise 10.10
(a) Write a simple main program that generates an array of data from the Gaus-
sian function (10.21), given the user’s choice of x range, and the index v
that determines the number of points, N, in the FFT through N = 2v. Include
an option that makes a file to output the FFT results or plotting. The program
should then use the FFT for these data.
(b) Run the program for a range of parameter values. Suitable values are

 = 1/2, 1, 2, and -2 < x < 2, and v = 7 so that N = 128.
(c) Plot the FFT output from each run. By plotting ln(FFT) versus k2, show
that, through about k 1 such a plot is linear and its slope is about n

You will notice after the calculations in this exercise that the function obtained in k
space is not very smooth when k increases beyond unity. The limiting process that
we carried out analytically to obtain the Fourier integral from the Fourier series is
therefore not so easy numerically.

This exercise has probably suggested to you that the Gaussian and its integral
transform have the same functional dependence on their arguments, x or k, and that
their width (standard-deviation) parameters are the inverse of each other. Let us de-
monstrate this analytically.

Exercise 10.11
(a) Insert the Gaussian function (10.21), which is normalized to unity when in-
tegrated over all x space, into formula (10.4) for its Fourier integral transform,
which we will call Change variables to in order to
show that

(10.22)

388 FOURIER INTEGRAL TRANSFORMS

Here the variable is given by

(10.23)

(b) Use the value for the integral over y in (10.22) from Abramowitz and Ste-
gun, equations (7.1.1) and (7.1.16), namely to show that

(10.24)

where in k space

(10.25)

is the standard deviation of the Gaussian in k space. n

This result confirms the numerical surmise made in Exercise 10.10.
Now that we have the Gaussian in both x and k spaces, we can examine some of

their properties. First, we can display both on the same graph, which is very eco-
nomical for the author and very enlightening for the student. Figure 10.4 shows
three general-purpose Gaussians that may be used for both x and k spaces. Because
of the reciprocal relations between the standard deviations, the plot for is the
same for both. Further, if in x space we choose the broadest of the
three curves, then in k space, and vice versa.

The reciprocity between widths in x and k spaces has important interpretations in
optics and quantum physics, since a narrow pulse in x space (well-localized) is nec-
essarily broad in k space (delocalized). When appropriately interpreted in quantum
mechanics, this provides an example of the Heisenberg Uncertainty Relations.

FIGURE 10.4 Gaussian distributions and their Fourier integral transforms. The distribution

with magnitude in x space transforms into that with magnitude in k space. For

 the transforms are identical.

10.2 EXAMPLES OF FOURIER TRANSFORMS 389

A further property of the Gaussian function may be introduced, namely its rela-
tion to Dirac delta distributions discussed at the end of Section 10.1. If the Gaus-
sian width is steadily decreased, the function steadily becomes more and more
concentrated towards the origin. Thus you can imagine that the limiting behavior as

 of the Gaussian is a Dirac delta distribution, because if it occurs inside an
integral with another function only the value of that function near the origin will sur-
vive in the integration, so that eventually will be obtained.

Lorentzian functions and their properties

We previously encountered the Lorentzian function in Section 8.1 when investigat-
ing forced motion and resonances. Because the Lorentzian’s properties are almost
exclusively used in connection with resonances, we express it in terms of the angu-
lar frequency, . This is the variable most often encountered in acoustics, optics,
and engineering, whereas the energy, E, usually occurs as the variable of interest in
atomic and subatomic physics.

We define the Lorentzian function by

(10.26)

where is called the resonance frequency and is called the Full Width at Half
Maximum (FWHM) of the resonance. You will understand the use of these terms
by looking at Figure 10.5 and working Exercise 10.12.

FIGURE 10.5 The Lorentzian function (10.26) as a function of frequency from the central fre-

quency, measured in units of the FWHM Shown for (dotted curve), (solid
curve), and (dashed curve).

390 FOURIER INTEGRAL TRANSFORMS

Exercise 10.12
Show that the Lorentzian decreases to half its maximum value of unity at points

 above and below the resonance frequency as seen in Figure 10.5. n

Both Gaussians and Lorentzians have convenient properties for describing data,
so they are occasionally used as alternative line shapes. They also appear commin-
gled in the Voigt function-- the convolution of a Lorentzian with a Gaussian —
whose properties are discussed in Section 10.4. It is therefore interesting to com-
pare and contrast the Gaussian and Lorentzian. In order to do this we need a com-
mon unit for the variables x and We choose the Lorentzian measured in units of
FWHM, relative to and a Gaussian with the same FWHM as the Lorentzian,
which therefore sets the value of You may wish to derive the following com-
parative properties.

Exercise 10.13
(a) Use the definition of the Gaussian, (10.21), with the definition of its
FWHM to show that if the Gaussian FWHM is to be unity, then its standard
deviation 0 . 4 2 4 6 .
(b) Show that if a Gaussian and Lorentzian are to have the same FWHM, then
the appropriate scale for the Gaussian relative to the Lorentzian scale chosen
above is = 1.665 x.
(c) Show that when its argument is two half widths on either side of the maxi-
mum the Gaussian has decreased to 1/16 of its peak value, but the Lorentzian
has decreased to only 1/5 of its peak value.
(d) Compare the second derivatives of Gaussian and Lorentzian at the peak to
their values at the peak to show that the Gaussian with unit FWHM is decreasing
as -16 ln(2) = -11.09, somewhat faster than for the Lorentzian, for which the
ratio is decreasing as -8. n

FIGURE 10.6 Comparison of Lorentzian (dashed) with Gaussian (dotted) for the same FWHM.

10.2 EXAMPLES OF FOURIER TRANSFORMS 391

These analytic properties are illustrated in Figure 10.6, in which the Lorentzian and
Gaussian are plotted on a common scale in units of the FWHM. The most notice-
able difference between them is the broader wings on the Lorentzian. When the two
functions are convolved into the Voigt function (Section 10.4) a behavior interme-
diate between the Lorentzian and Gaussian is obtained when their arguments are
measured in the units of this figure.

Now that we have compared Gaussians and Lorentzians, is the Fourier integral
transform of the Lorentzian as easy to derive as for the Gaussian?

Fourier integral transform of a Lorentzian

We have now understand some properties of the Lorentzian function (10.26), so it is
time to determine its Fourier transform. Because we are using the variable for
reasons described at the start of the preceding subsection), we denote the conjugate
variable in its Fourier transform by t, reminiscent of time.

The Fourier integral transform of the Lorentzian, (10.26), we denote by P (t).
From the definition (10.4) of the Fourier transform and by making some changes of
variables, we can write compactly

where the integral

(10.27)

(10.28)

in terms of the variables

(10.29)

and the parameter

(10.30)

Although the integral in (10.28) can readily be evaluated by the method of con-
tour integration in the complex plane, it is interesting and instructive to use another
method.

Exercise 10.14
(a) Verify the substitutions of variables made to express P (t).
(b) By differentiating I in (10.28) under the integral sign twice with respect to s,
then rearranging the integrand, show that I satisfies the differential equation

392 FOURIER INTEGRAL TRANSFORMS

(10.31)

(c) Assume that the integral in this expression can be set to its average value,
namely zero, then verify that this differential equation is satisfied by

(10.32)

(d) Show that for solutions that don’t diverge as only solutions with
exponent -|s| are acceptable.
(e) Determine the pre-exponentials in (10.32) by evaluating the integral (10.28)
explicitly for s = 0 by making use of the substitution v = tan to show that
I(0) = n

So, after all this exercising we have the Fourier integral transform of the Lorentzian
function (10.26) as

(10.33)

In order to emphasize the complementarity between the widths of functions and
the widths of their Fourier transforms, we have in Figure 10.7 the exponential part
of P (t) for the three values of the Lorentzian FWHM used in Figure 10.6. No-
tice that if the Lorentzian, L, is broad in the space, then its Fourier transform, P,
is narrow in t space, and vice versa. This is similar to the behavior of the wedge
and Gaussian functions and their transforms discussed above.

FIGURE 10.7 Magnitude of the Fourier integral transform of the Lorentzian, |P(t)|, expressed

in units of as a function of t. The exponential-decay curves are for = 1/2 (dotted), = 1

(solid), and = 2 (dashed). Notice the inverse relation between the Lorentzians, Figure 10.5, and
their transforms shown here.

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 393

A further interesting property of the Lorentzian and its transform is that although
 has a very nonlinear dependence on the resonance frequency and on the

FWHM can be simply transformed to produce a linear dependence on

Exercise 10.15
(a) Show that can be determined from the oscillations in P (t) .
(b) Show that the graph of ln P(t) against t is a straight line with slope given by

 n

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS

In this section we introduce the convolution operation, which is of broad applicabil-
ity in both mathematical analysis and numerical applications. Convolutions become
particularly simple in the context of Fourier integral transforms, in that in the trans-
form space, convolution is replaced by multiplication. We show how this result
greatly simplifies the mathematics of computing transforms, and we culminate our
analysis with the practical example, much used in optics and in astrophysics, of the
Voigt profile, which is the convolution of a Gaussian with a Lorentzian. The nu-
merics and a program for computing the Voigt profile are presented in Project 10 in
Section 10.4.

Convolutions: Definition and interpretation

Suppose that we have two functions, y1 and
struct the following integral of their product:

y2, of the same variable x. Let us con-

(10.34)

We use the special “star” notation to denote convolution. After the convolution the
result is a function of the variable x, which is kept fixed during the integration over
x' under the integral. Some books show on the left-hand side an x argument after
both y1 and y2. This is misleading, because it is the result of the convolution that is
a function of x, rather than y1 and y2 separately.

What is the interpretation of the convolution? Consider the integral of the prod-
uct of two functions evaluated at the same argument. This is just the overlap be-
tween the two functions, including their relative signs. The convolution, on the
other hand, has the arguments of the two functions shifted by an amount depending
on the variable x. The particular choice of arguments is made clear by considering
y1 as a function peaked around x' = 0. Then the integral samples only values of y2

near the particular choice of argument x.

394 FOURIER INTEGRAL TRANSFORMS

In spite of this viewpoint, the convolution is independent of the order in which
the functions are written down. That is,

(10.35)

Exercise 10.16
In the definition of the convolution, (10.34), change the variable of integration
x' by setting x' = x - x". Thus show that the convolution definition is then
satisfied if the two functions are interchanged, that is, (10.35) holds. n

This commutation property of convolutions is useful in practical calculations.

Convoluting a boxcar with a Lorentzian

As an illustration of convolution in the context of resolution of a measurement, con-
sider the “boxcar-averaging” function with unit area

(10.36)

Three examples of this boxcar are shown in Figure 10.8. (For L = 0.1 this is, to
continue our agricultural analogy, a grain silo rather than a boxcar.)

FIGURE 10.8 The boxcar (or “window”) function for convolutions, shown for widths of

L = 0.1, 1, and 2.

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 395

The Lorentzian is given by, as discussed at the end of Section 10.2,

(10.37)

Lorentzians with various widths are shown in Figure 10.5. If the boxcar and Lor-
entzian functions are inserted in the convolution definition (10.34) and the change of
variable to x - x' = is made, then the integration can be readily per-
formed to produce the convolution of a boxcar with a Lorentzian

(10.38)

If the inverse tangent is to be taken in the first quadrant, but otherwise
multiples of will need to be added to the values returned for the angle by your cal-
culator, which is in radians in (10.38).

Exercise 10.17
(a) Perform the integration with the change of variables suggested in order to
verify (10.38).
(b) Show that if that is, if the width of the averaging function is much
less than the width of the Lorentzian, then the convolution just collapses to the
original Lorentzian, y2. n

FIGURE 10.9 Convolution of a boxcar (Figure 10.8) with a Lorentzian (Figure 10.5) for a

Lorentzian FWHM shown for the three boxcar widths in Figure 10.8. namely L = 0.1, 1,

and 2.

396 FOURIER INTEGRAL TRANSFORMS

The property worked out in Exercise 10.17 (b) is shown in Figure 10.9 (which
has in which the convolution for L = 0.1 is essentially the original Lorent-
zian, as one can see because its maximum value is essentially unity and its FWHM is
nearly 2 units of x, that is, You can also see from this figure that the convo-
lution becomes broader and squatter as L increases. The decrease of peak resolu-
tion as the boxcar width, L, increases can readily be seen by considering the peak
height as a function of L.

Exercise 10.18
(a) Show that the peak value of the convoluted distribution (10.38) is at x = 0,
just as for the Lorentzian.
(b) Use the formula relating tangents of doubled angles to the tangents of the
angles to show that the peak value is at the origin, where

(10.39)

(c) From the first two terms of the Taylor expansion of the arctangent function,
show that the peak value given by (10.39) can be approximated by

(10.40)

in which the leading term is just the peak value of the original Lorentzian
(10.37). n

You may wish to investigate in more detail the effect of binning on a Lorentzian
spectrum.

Exercise 10.19
Consider the effect of binning a Lorentzian-shaped spectrum extending from

 into N bins, which are sometimes called channels in the par-
lance of multichannel analyzers.
(a) Show that the fractional error from binning, E (x), defined as (convoluted —
Lorentzian) / (Lorentzian) is given by

(10.41)

(b) Use the Taylor expansion of the arctangent function to approximate this as

(10.42)

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 397

(c) Assume that the binning is done into N = 128 bins, about the lowest resolu-
tion that one would typically use. Show that the fractional error at the peak of
the Lorentzian is only -1.3 × 10-3. n

The increasing width with decreasing height of all the convolutions that we have
made explicitly suggests that convolution preserves area. This is indeed so, as can
be shown from the definition by integrating both sides with respect to x, interchang-
ing the order of integrations on the right-hand side, then changing the variable of in-
tegration for y2, keeping x' fixed, to prove the area-conserving property of a convo-
lution, namely

Exercise 10.20
Show in detail the steps indicated for proving this area-conserving property of
convolutions. n

Another observation that you may have made is that, starting with two functions
that are symmetric about the origin, such as the Lorentzian (Figure 10.5) and the
boxcar (Figure 10.8), their convolution is also symmetric about the origin. Is this a
general property for convolutions? Try it and see.

Exercise 10.21
Suppose that y1 and y2 are symmetric about the origin, yi(-x) = yi(x) for
i = 1,2. Use this property in the convolution definition (10.34), together with a
change of variable of integration from x' to -x', to show that their convolution
is also symmetric about the origin. n

The filtering and windowing of Fourier integral transforms, of which the boxcar
convolution provides an example, proceeds similarly to that discussed in Sec-
tion 9.8. The techniques are especially important in the reconstruction of three-di-
mensional images by tomography, as discussed at an introductory level by Solomon
in his teaching module. The subject of filtering is covered in, for example, Ham-
ming’s book on digital filters. Bracewell’s text on Fourier transforms and their ap-
plications makes extensive use of convolutions.

We now have some insight into the properties of convolutions and into possible
applications of them. There are few interesting examples of analytical functions
whose convolutions are straightforward to calculate from the definition (10.34).
Therefore, we proceed to two alternatives; first, numerical estimation of convolu-
tions of discretized functions, then convolutions performed analytically by using
Fourier integral transforms.

398 FOURIER INTEGRAL TRANSFORMS

Program for convoluting discretized functions

In most practical applications the functions that one wants to convolute are experi-
mental data, necessarily at discrete points. Therefore, the integral convolutions that
we have discussed so far are idealizations when applied to data. It is therefore use-
ful, and even interesting, to construct the analogous discretized convolution. This
will bear a similar relation to the integral definition of the convolution, (10.34), as
the discrete Fourier transform in Section 9.2 bears to the Fourier integral transform
in this chapter.

We write the discretized convolution as

(10.44)

where array notation is used both for the two inputs and for the output convolution.
There is an ambiguity in such a definition, because array elements less than zero (in
C, or less than unity in Fortran) are often problematic. In the program below, I
made the simplest, and often realistic, choice of ignoring terms which have the index
value [i - j] < 1. This is referred to as “truncation.” An alternative choice,
called “wraparound,” is to associate with zero or negative index values the values
read down from the highest index in the array of y2 values.

The discrete convolution function convolve_arrays given below implements
(10.44) assuming truncation. In order to test the function, the main program was
written to allow preparation of input arrays, and also output to a file for graphing the
results. The file CONARRAY contains the N values of y1, and CONARRAY2 con-
tains the values of y2. The discrete convolution is output to the console and to the
file CONV. The range of i values for which the convolution in (10.44) is computed
is from imin to imax, inclusive. No checking is done to ensure that this range is
sensible.

PROGRAM 10.1 Direct discretized convolution of two arrays according to (10.44).

#include <stdio.h>
#include <math.h>
#define MAX 513

main()

/* Convolute Arrays */
/* Input arrays then convolute them */
FILE *fin,*fout,*fin1,*fin2;
FILE *fopen();
double y1[MAX],y2[MAX],y12[MAX],yin,yin1,yin2;
int N,i,j,imin,imax;

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 399

char yn,ynfile,wa;
void convolve_arrays();

printf("Convolute Arrays: Input # of data, N:\n");
scanf("%i",&N);
if(N > MAX-1)

printf ("!! N=%i exceeds array sizes %i\n",N,MAX-1);
exit(l) ;
}

printf("Prepare input file(s)? (y or n): ");
scanf("%s",&yn) ;
if (yn == 'y')

for (i = 1; i <= 2; i++)

{
printf("\nPrepare y%i file? (y or n): ",i);
scanf("%s",&ynfile);
if (ynfile == 'y')

switch (i) /* Open file for write */

case 1: fout = fopen("CONARRAY1","w"); break;
case 2: fout = fopen("CONARRAY2","w"); break;

printf("Input %i data for file %i:\n",N,i);
for (j = 1; j <= N; j++)

printf ("%i: ",j):
scanf("%lf",&yin) ;
switch (i)

case 1: y1[j] = yin;
case 2: y2[j] = yin;
}

fprintf(fout,"%lf\n",yin);
} /* Ready to reuse */

fclose(fout); rewind(fout) ;
}

}
} /* end prepare input files */

printf("\nConvolution calculation\n");
printf("Write over output (w) or Add on (a): ");
scanf("%s",&wa);
fout = fopen("CONV",&wa);

400 FOURIER INTEGRAL TRANSFORMS

fin1 =fopen("CONARRAY1", "r") ;
fin2 = fopen("CONARRAY2", "r");
for (j = 1; j <= N; j++)
{ /* Data input from arrays */
fscanf(fin1,"%lf\n",&yin1); y1[j] = yinl;
fscanf(fin2, "%lf\n",&yin2); y2[j] = yin2;
}

printf("Choose min (>=l) & max (>=min,<=N) index:\n");
scanf ("%i%i" ,&imin,&imax);
/* Convolution */
convolve_arrays(N,imin,imax,yl,y2,y12);
for (i = imin; i <= imax; i++)
{ /* Output convolution *i
printf("\n%i %8.4lf",i,y12[i]);
fprintf(fout,"%i %lf\n",i,yl2[i]);

 }

printf("\n\nConvolution of arrays ends");

void convolve_arrays(N,imin,imax,yl,y2,y12)
/* Convolute arrays yl & y2 for index imin to imax */
/* Array indices <= 0 do not contribute */
double y1[],y2[],y12[];
int N,imin,imax;
{
int i,j;

for (i = imin; i <= imax; i++)

yl2[i] = 0;
for (j = 1; j <= N; j++) /* Accumulate convolution */

if (i > j) yl2[i] = yl2[ij+y1[j]*y2[i-j];

This convolution program, Convolute Arrays, appears to be mostly a main
program for file handling. The program will, however, be useful for performing
discretized convolutions of Gaussians and Lorentzians (whose integral transforms
we consider below) and for convoluting data that you may have.

Exercise 10.22
In order to test convolve_arrays and the main program, Convolute Arrays,
one may check that the dependence of an integral convolution, (10.34). on x

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 401

and of a discretized convolution, (10.44), on i are similar when the steps in x
are small compared to the rate of variation of the functions y1 and y2.

To do this, for y2 use the Lorentzian function with and x in the range
from -3.5 to +3.5 by steps of this has N = 36. For y1 use the box-
car function, Figure 10.8, with L = 1. After making use of the correspondence
x = -3.5 + (i - 1) verify that the shape of this curve (but not the vertical
scale) is the same as the curve for L = 1 in Figure 10.9 for the integral convol-
ution, except near the endpoints where the truncation assumption spoils the
agreement. n

An advanced treatment of convolution algorithms that is suitable for use with the
FFT is given in Nussbaumer’s book.

Now that we have some experience with numerical convolutions and insight into
their properties, let us return to the analytical developments.

Fourier integral transforms and convolutions

We now derive analytical results for convolutions that depend on properties of Four-
ier integral transforms. These results will provide a powerful means of calculating
convolutions, as we will show for Gaussian and Lorentzian functions.

The general result is the Fourier corvolution theorem. This theorem states that
the Fourier integral transform of the convolution of two functions is proportional to
the product of their Fourier transforms. In symbols the convolution theorem reads

(10.45)

where the integral

(10.46)

denotes the Fourier integral transform of the convolution of the two functions,
whose Fourier transforms are Y1(k) and Y2(k),

Exercise 10.23
To prove the convolution theorem, first write down Y1(k) and Y2(k) in terms
of their definition, (10.4), using integration variables x' and x". Then change
the x" variable to x - x' and perform the x' integration first, which produces
the convolution of y1 with y2. Show that the integral that remains is just pro-
portional to the Fourier transform of this convolution, as (10.46) claims. n

This remarkable theorem has an immediate use for calculating convolutions. By
expressing the convolution in terms of its Fourier transform using (10.45), then us-
ing the convolution theorem (10.46) for the transform you will find immediately that

402 FOURIER INTEGRAL TRANSFORMS

(10.47)

Exercise 10.24
Find this result for a convolution in terms of the Fourier integral transforms of
the two functions by carrying through the indicated steps. n

We immediately put this convolution formula to use in computing the convolu-
tion of two Gaussians or of two Lorentzians.

Convolutions of Gaussians and of Lorentzians

You probably wondered why, when working examples of convolutions at the begin-
ning of this section, we did not use the common Gaussian and Lorentzian functions,
of which I seem to be so fond. Although convolution of Gaussians can be done di-
rectly from the definition (10.34), the derivation is messy. Convolution of two Lor-
entzians can be carried out directly, but it is also tedious unless complex-variable
methods are used.

Convolution of two Gaussians by use of the convolution theorem, (10.46), is
very direct because the Fourier transform of a Gaussian is just a Gaussian, as we
showed in Section 10.2. The proof is easier done than said, so why not try it?

Exercise 10.25
(a) Use (10.46) to express the Fourier transform of the Gaussian convolution,
G12(k), in terms of the product of the two transforms, G1 and G2, where
(10.24) is used for each of these. Thus show directly that

(10.48)

where the convoluted width is obtained from

(10.49)

in terms of the standard deviations of the two Gaussians in x space.
(b) From (10.48) show immediately, by using the inverse Fourier transform re-
sult (10.47), that

(10.50)

where g is the Gaussian defined by (10.21). n

Therefore, two Gaussians convolute to a single Gaussian whose standard deviation

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 403

is given by the sum-of-squares formula (10.49). This result can readily be general-
ized, as follows:

Exercise 10.26
Use the method of mathematical induction to show that successive convolutions
of K Gaussians always produces Gaussians with total standard deviation,
obtained from the sum-of-squares fomula

(10.51)

a result which holds for widths in either x space
which space is used to perform the convolution. n

or in k space, depending on

This formula is the same as that used in statistical error analysis for K independent
and normally-distributed variables. The Gaussian (normal) distribution was intro-
duced in Section 6.1 in the context of maximum likelihood and least squares. But
what is the connection of error analysis with convolutions? If the error distribution
for the i th source of errors is Gaussian with standard deviation and if the errors
are all independent, then each point on a given error distribution has to be convo-
luted with those due to all the other sources of error in order to estimate the total er-
ror distribution. The standard deviation of this distribution is just given by (10.5 1).

We derived the convolution theorem and its application to convolution of Gaus-
sians by formal analysis. How can you be convinced that the result (10.49) is plau-
sible? Just use the program Convolute Arrays that we developed in the preced-
ing subsection.

Exercise 10.27
(a) Modify program Convolute Arrays, given above, so that CONARRAY1
and CONARRAY2 are filled with Gaussians extending well into their tails for in-
put choices of the two standard deviations. Both Gaussians should have the
same stepsize, chosen small compared with the smaller of the two standard de-
viations. Then run the program to estimate the discretized convolution (10.44).
(b) Use the trapezoidal rule to estimate the area under the resulting distribution,
then divide each point of the distribution by this area, in order to produce a func-
tion with unit area.
(c) Add some code to compare how well the discretized convolution approxi-
mates the Gaussian with standard deviation given by (10.49). Discuss the rea-
sons for discrepancies as a function of position along the distribution and the
stepsize. n

Convolution of two Lorentzians is also most easily accomplished by using the
convolution theorem (10.46) applied to the exponentials, (10.33), that result from

404 FOURIER INTEGRAL TRANSFORMS

Fourier transforming Lorentzians. Several changes of notation are required. We
write the convolution theorem as

(10.52)

Now there are several straightforward analytical steps to obtain the convolution for-
mulas.

Exercise 10.28
Substitute the expressions for the Fourier transforms P1 and P2, obtained using
(10.33), into the integral (10.46), then regroup real and imaginary exponents in
the two exponentials. Next, identify the integral as the Fourier transform of a
Lorentzian whose parameters are additive in the parameters of the original Loren-
tzians, namely

(10.53)

where the convolved Lorentzian is

in which the total FWHM is additive in the input FWHM values

as is the resonance frequency

(10.54)

(10.55)

(10.56)

Thus, Lorentzians convolve into Lorentzians with additive parameters. n

The additivity of Lorentzian widths expressed by (10.55) has a consequence for
observed spectral line widths of radiating systems, such as atoms or molecules emit-
ting (or absorbing) light or other electromagnetic radiation, as discussed at the end of
Section 10.4 and in Dodd’s book. The width that one observes is the sum of the
widths of the initial and final states between which the transition occurs. Therefore,
the lifetime for decay (which is proportional to reciprocal of the width) depends on
the widths of both initial and final states. This is discussed in the context of stellar
spectroscopy in Section 9-l of the book by Mihalas.

Note in the convolution result (10.54) that extra factors are obtained because we
chose to be conventional and scaled the initial Lorentzians to unity peak values.

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 405

Since convolutions preserve areas, as shown by (10.43), one then cannot force the
peak value of the convolved Lorentzian, L12, to be unity. In order to understand
this normalization problem for Lorentzians, it is instructive to define the normalized
Lorentzian by

(10.57)

where the normalization factor, N, is to
tive as well as positive values, is unity.

be chosen so that the integral over nega-

Exercise 10.29
Apply a tangent transformation to the variable of integration in (10.57), then
integrate to show that N must be given by

(10.58)

if the integral is to be unity. n

Thus, the normalized Lorentzian is given by

(10.59)

The convolution result for the normalized Lorentzian now reads

(10.60)

where the FWHM and resonance frequency relations are given by (10.55) and
(10.56). Convolution of such normalized Lorentzians conserves the area under each
Lorentzian.

Exercise 10.30
Use mathematical induction to prove that successive convolutions of any number
of normalized Lorentzians produces a normalized Lorentzian whose FWHM is
the sum of its component Lorentzians and whose resonance frequency is the sum
of its component resonance frequencies. n

For Lorentzians, as for the Gaussians, it is interesting to see convolution results
occurring in practice, and therefore to try a numerical example with a discretized
convolution (10.44).

Exercise 10.3 1
(a) Modify program Convolute Arrays so that the files CONARRAYl and
CONARRAY2 are filled with Lorentzians extending well into their tails for input

406 FOURIER INTEGRAL TRANSFORMS

choices of the two standard deviations. As we discussed in Section 10.2 when
comparing Gaussians and Lorentzians (Figure 10.6), this will require a wider
range of x values than for a Gaussian of the same FWHM. Both Lorentzians
should use the same stepsize, which should be chosen small compared with the
smaller FWHM. Run the program to estimate the discretized convolution
(10.44).
(b) Add some code to compare how well the discretized convolution approxi-
mates the Lorentzian with FWHM given by (10.55). Discuss the reasons for
discrepancies as a function of position along the distribution and of stepsize. n

We now have a good appreciation of the analysis, numerics, and applications of
convolving two Gaussians or two Lorentzians. It might appear that it will be as
simple to convolute a Gaussian with a Lorentzian, which is a very common example
in applications. This is not so, however, and extensive analysis and numerics are
required, as we now develop.

Convoluting Gaussians with Lorentzians: Voigt profile

As we derived in Section 8.1, a Lorentzian as a function of the frequency often
arises in the description of resonance processes in mechanical, optical, or quantal
systems. The Gaussian usually arises from random processes, such as random vib-
ration of a mechanical system or of molecules in a gas. Therefore, convolution of
Gaussians with Lorentzians will be required whenever a resonance process occurs in
a system which is also subject to random processes, such as when atoms in a very
hot gas emit light. The emission spectra of light from stars is an example we devel-
op in Section 10.4.

We now derive formulas for the convolution of a Gaussian with a normalized
Lorentzian, which is called the Voigt profile. (Woldemar Voigt, 1850 - 1919, was a
German physicist who developed the science of crystallography, discovered the Lor-
entz transformations, and coined the term “tensor.“) In Project 10 (Section 10.4)
we present the numerics and applications of the formulas for the Voigt profile. The
method we develop is most suitable for preparation of tables (in computer memory
or on paper) that have to be frequently used. If only a few values of the Gaussian
and Lorentzian parameters are to be used, then direct numerical integration of the
convolution integral may be more appropriate. The derivations that follow also re-
quire several mathematical analysis skills that are commonly needed in numerical and
scientific applications.

To perform the convolution, it is most convenient (and also instructive) to use
the convolution theorem, since we know the Fourier transforms of Gaussians,

 and of Lorentzians, P (k). If their formulas, (10.24) and (10.33), are in-
serted in the convolution formula (10.34), and if is made the variable of the con-
volution, then some redefinition of variables leads to a simple-looking expression
for the Voigt profile.

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 407

Exercise 10.32
Substitute the Gaussian and normalized Lorentzian Fourier transforms in the
convolution formula (10.34) as indicated, then make the following substitution
of variable

(10.61)

and introduce the scaled parameters

(10.62)

(10.63)

to show that the convolution of a Gaussian with a normalized Lorentzian is given

by

where H (a,v) is the Voigt function, defined by

(10.65)

in which all variables are dimensionless. n

The Voigt function is often also called the Voigt profile. Note that H (a,v) is an
even function of v, since it is the convolution of two functions that are even func-
tions of their arguments. This result is useful in numerical work, both in program-
ming and in debugging code.

It is interesting and relevant that the results about Gaussians together convoluting
to Gaussians and Lorentzians with Lorentzians producing Lorentzians implies that
Voigt functions have the same property, so that these convolutions all stay in the
same families.

Exercise 10.33
(a) Prove that the convolution of two Voigt functions is also a Voigt function.
In order to do this use the results from Exercise 10.26 that the convolution of
two Gaussians produces a Gaussian and from Exercise 10.30 that two Lorent-
zians when convolved produce a Lorentzian. In addition, you need the results
that the process of convolution is associative and commutative.
(b) Demonstrate this analytical result, at least approximately, by using Pro-
gram 10.1, Convolute Arrays, to convolute two Voigt-profile arrays that are
the outputs from Program 10.2, Voigt Profile. Compare the convolution

408 FOURIER INTEGRAL TRANSFORMS

that results with that obtained by this program, using as input an appropriate
Gaussian of total width given by (10.49) and a Lorentzian of total width from
(10.56), in terms of the widths input to form the two Voigt profiles.
(c) Generalize the result in (a) to prove that convolution of any number of Voigt
profiles produces a Voigt profile, similarly to (and dependent on) the results de-
rived in Exercises 10.26 and 10.30 for Gaussians and Lorentzians. n

These results have a very practical consequence, as follows. Suppose that there are
several sources of Gaussian-shape line broadening, and possibly several contribu-
tions to Lorentzian-type line widths, all modifying the same spectral line, with other
conditions being constant. The resulting spectral profile will be a Voigt profile that
can readily be obtained by first combining all the Gaussian widths quadratically by
(10.51) and all the Lorentzian widths additively by the generalization of (10.55),
then computing a single Voigt profile.

Computationally, the result in Exercise 10.33 is a convenience, but scientifically
it is a hindrance because it prevents one from recognizing the individual line-broad-
ening contributions, and thereby having some possibility of determining their physi-
cal origin. Sources of such line broadening in stellar environments and models for
estimating the broadening are discussed in Chapter 9 of the book by Mihalas.

The integral expression for the Voigt function H (a,v) in (10.65) generally can-
not be simplified. For any given a and v it may be estimated by numerical integra-
tion, which is one option considered in Project 10 below. A very common situation
is that the resonance, which has FWHM is very much broadened by convolution
with the Gaussian, that is, one has a << 1. It is then practical to expand H (a,v) in
a Taylor series in powers of a by

If this series converges rapidly. then it is a practical series, especially since
iary functions Hn (v) may be computed independently of the choice of a.

(10.66)

the auxil-

Exercise 10.34
(a) In the integrand of the Voigt function (10.65) make a Maclaurin expansion
of the exponential, then interchange integration and summation in order to show
that

(10.67)

(b) Differentiate this expression twice with respect to variable v, which may be
taken under the integral sign because the only dependence of the integral on v is
in the cosine function. Identify the result as proportional to the function with the
n value two larger. Thus derive the recurrence relation

10.3 CONVOLUTIONS AND FOURIER TRANSFORMS 409

(10.68)

which enables all the Hn (v) to be calculated by recurrence from H0(v) and
H1(v). n

Our computation is now reduced to finding appropriate formulas for the two lowest
H functions, then being able to differentiate these with respect to v.

The function H0 (v) may be derived either by some laborious mathematics or by
noting that it is proportional to the value of the convolution when a = 0, which is
just the Gaussian function with altered normalization. Thus we can show that

(10.69)

Exercise 10.35
For those who are skeptical of the above reasoning, derive H0(v) from the def-
inition (10.64). To do this, you will need to change variables to a complex vari-
able z, then to use the normalization integral for the Gaussian function. After
some tedious and error-prone steps you should obtain (10.69). n

Now that we have H0(v), it is straightforward to generate by differentiation the
successive Hn(v) with n even. For example, the second derivative of H0(v)
leads immediately to

(10.70)

Exercise 10.36
Carry out the indicated differentiation and normalization by using (10.69) in
(10.68) with n = 0 in order to derive (10.70). n

FIGURE 10.10 The Hn functions in (10.66) for n = 0.1.2.3. and the Dawson integral F in

(10.72), each as a function of v.

410 FOURIER INTEGRAL TRANSFORMS

For usual values of a in the expansion (10.66), Hn (v) with n > 3 is not requir-
ed, but you can produce H4, etc., if you are willing to keep on differentiating. In
Figure 10.10 you can see the exponentially damped behavior of H0 and H2.

The values of Hn(v) for n odd require more mathematical analysis, and even-
tually more computation, than for n even. Although one may calculate H1 directly
from the definition (10.67), some manipulation of the integral puts it into a form that
is more suitable for differentiating to produce the Hn(v) for larger odd-n values.
As usual, you can exercise your analysis skills by completing the intermediate steps.

Exercise 10.37
(a) Use integration by parts in (10.67) for n = 1, with cos (vx) being the quan-
tity that is differentiated. Transform variables to z = x2 on the part that is integ-
rated. Thus show that

(10.71)

where F (v) is called Dawson's integral, defined by

(10.72)

(b) From the definition, show that Dawson’s integral is an odd function of v,
and therefore that H1 (v) is an even function of v, as required.
(c) By expressing the sine function in (10.72) in terms of the complex exponen-
tial of vx by Euler’s theorem, then introducing the variable u = -ix/2 - v and
manipulating the limits of integration before using the normalization integral for
the Gaussian, show that Dawson’s integral can be written as

(10.73)

This form is more suitable than (10.72) for analysis and numerical work. n

It appears that we are sinking deeper and deeper into the quicksands of mathema-
tical complexity; fear not, we will drag ourselves out by our bootstraps. We now
have H1 in terms of a reasonable-looking integral, (10.73). For H3 we will need de-
rivatives of F (v), which are straightforward to obtain from this second form of
Dawson’s integral.

Exercise 10.38
(a) Differentiate F (v) given by (10.73) with respect to v, noting that the deriv-
ative of an integral with respect to its upper limit is just the integrand evaluated at
this limit. in order to show that

(10.74)

10.4 COMPUTING AND APPLYING THE VOIGT PROFILE 411

(b) By reusing this result, show that the second derivative of Dawson’s integral
is given by

(10.75)

Note that the first derivative is an even function of v and that the second deriva-
tive is odd in v, as required from the evenness of F under reflection of v. n

This completes our analysis of Dawson’s integral. In Project 10 we address the
practical concerns of computing this function, making use of the results that we have
just derived.

We now return to the job of obtaining formulas for the Hn. The only one that
we will require but do not yet have is H3. This can be obtained from H1 by using
the derivative relation (10.68).

Exercise 10.39
Differentiate H1 from (10.71) twice with respect to v, substitute the derivatives
of F according to (10.74) and (10.75), then use the recurrence relation (10.68)
in order to show that

(10.76)

which is again explicitly even in v. n

The functions H1 and H3, given by (10.71) and (10.76), are shown in Fig-
ure 10.10. They slowly damp out as v increases because they are basically compo-
nents of a Gaussian. The computation of F (v) that is needed for these functions is
described in Section 10.4.

We have finally produced an expression for the Voigt profile through terms in
the ratio of Lorentzian to Gaussian widths, a, up to cubic. By continuing to higher
derivatives the function H (a,v) may be expressed in terms of exponential functions
and Dawson’s integral function F (v), (10.73).

10.4 PROJECT 10: COMPUTING AND APPLYING
THE VOIGT PROFILE

In this section we develop the numerics of computing the Voigt profile, starting from
the analysis in the preceding subsection. Then we apply this profile to relate temper-
atures to the widths of atomic emission lines from stellar sources. This project also
illustrates how to make the step-by-step development and programming of algor-
ithms for numerical computation that results in effective and tested programs that can
be adapted to various uses in science and engineering.

412 FOURIER INTEGRAL TRANSFORMS

The numerics of Dawson’s integral

Dawson’s integral, the function F (v) defined as (10.72) or (10.73), arose as an in-
termediate step in our calculation of the functions Hn (v) for the series expansion in
powers of a for the Voigt profile, formula (10.66). Although we display F (v) in
Figure 10.10, we have not yet shown how to approximate it numerically.

Series expansion is the most obvious way to express F (v), since inspection of
Figure 10.10 or of tables (such as Abramowitz and Stegun, Table 7.5) shows that
it is a smooth function of small range that varies approximately proportional to v
when v is small. Further, for large v, F appears to be about 1/(2v). Appropriate
series can be found as follows.

Exercise 10.40
(a) Consider the first-order nonlinear differential equation for F, (10.75). As-
sume a series solution of odd powers of v, since we know that F (v) is an odd
function of v. Thus show that

(10.77)

(b) Express the first derivative of F with respect to v as a first derivative with
respect to 1/v, then use (10.74) to show that this quantity is finite as
only if

(10.78)

which provides the asymptotic value of Dawson’s integral. n

Although the series in v, (10.77), is appropriate for very small v, its convergence is
too slow for much practical use, since v < 2 is a fairly common argument.

Numerical integration from the formula (10.73) is a practical method for v val-
ues that are not large enough for (10.78) to be accurate. Some care needs to be
taken because both large and small exponentials appear in the integration. Computer
underflow and overflow will therefore be a problem for large enough v. One way to
reduce this problem is to rewrite (10.73) as

(10.79)

The range of exponentials that appear is then exp(-v 2/2) to exp(+v2/2).

10.4 COMPUTING AND APPLYING THE VOIGT PROFILE 413

Exercise 10.41
Show that if the maximum power of 10 that the computer can handle is PMAX,
and that a safety factor is 10 is allowed for, then the maximum value of v that
can be used with the form (10.79) is VLIM = n

This condition is checked in the function FDawson given in Program 10.2.
Another consideration in the numerical integration is that if v < 0, the integra-

tion can either not be started (v = 0) or should range over decreasing values of u.
To avoid the awkward coding involved for the latter case, one may use the fact that
F is an odd function of v, so that F (v) = (v /|v|) F (|v|). When v is nearly zero,
the integral also needs to be set to zero in order to avoid underflow in the exponential
function.

The program for Dawson’s integral can therefore be written compactly as shown
in function FDawson in the complete Voigt Profi1e program in the next subsec-
tion. For simplicitly, the trapezoidal rule, (4.43), is used for numerical integration.

Exercise 10.42

(a) Code and run as a stand-alone program FDawson, with PMAX adjusted for
your computer. Check your programming against numerical values for both
small and large v from the series expansions (10.77) and (10.78), respectively.
Table 7.5 in Abramowitz and Stegun may also be used for this purpose.
(b) Plot Dawson’s integral, F (v), against v for, say, 0 < v < 2. Check the
appearance of your graph against the curve for F (v) in Figure 10.10. n

Now that the numerics of Dawson’s integral
tions are relatively straightforward to compute.

has been covered, the Hn (v) func-

Program for series expansion of profile

The series expansion of the Voigt profile H (a,v) in powers of the ratio of Lorent-
zian to Gaussian widths, a, is given by (10.66). The functions Hn (v) for n = 0 -
3 are specified by (10.69), (10.71), (10.70), and (10.76), and for n = 1 and 3 re-

quire Dawson’s F function that we have just considered.

Exercise 10.43
(a) Program the formulas for the Hn (v), using the functions given in Voigt
profi1e below. Check values for even n against hand calculations and those
for odd n against spot checks for values of F(v) from Exercise 10.42.
(b) Plot the Hn (v) functions against v for say 0 < v < 2. Compare your
curves with those in Figure 10.10. n

are
Now that we are convinced that the component functions for the Voigt function
correct, it is time to assemble them to form the series expansion (10.66). Given

414 FOURIER INTEGRAL TRANSFORMS

that you are using the divide-and-conquer approach to program writing and verifica-
tion, this is now straightforward (especially if you copy out the Voigt Profile
code that we provide). Note that for FDawson, since each value is used twice, we
significantly improve the program efficiency by invoking this function only once,
then we save the value. The programming for H1 and H3 must be slightly different
than in Exercise 10.42, in order to accommodate this sharing of F. We also include
the code section for computing the Voigt function by direct numerical integration of
its Fourier transform as described in the next subsection.

The program Voigt Profile includes writing to an output file, "VOIGT" , in
order to save the Voigt function values for graphing. Also included are comparison
values of the appropriate Gaussian and Lorentzian functions that are also output to
the file. Our choice of units, which also reduces the complexity of coding and input,
is to set the Gaussian standard deviation

PROGRAM 10.2 Voigt profiles by series and by direct integration.

#include <stdio.h>
#include <math.h>
#define MAX 102

main()

/* Voigt Profile; Series,Integral,Gaussian,Lorentzian */
/* Gaussian standard deviation set to 1/sqrt(2) */
FILE *fout;
FILE *fopen();
double gLseries[MAX],gLtrap[MAX],g[MAX],L[MAX];
double pi,sp,gma,vmax,dv,dx,vmin,a,v,even,odd,FD;
int Nx,Niv,iv;
char wa;
double FDawson(),Hzero(),Hone(),Htwo(),Hthree(),trap();

pi = 4.0*atan(l.0);
sp = sqrt(pi);
printf("Voigt Profiles\n");
gma = 1.0; /* gma is Lorentzian FWHM */
printf("Write over output (w) or Add on (a): ");
scanf("%s",&wa) ; fout = fopen("VOIGT",&wa);
while (gma > 0)

printf ("input gma,vmax,dv,dx,Nx (gma<=0 to end):\n");
scanf("%le%lf%le%le%i",&gma,&vmax,&dv,&dx,&Nx);
if (gma > 0)

vmin = -vmax;

10.4 COMPUTING AND APPLYING THE VOIGT PROFILE 415

Niv = (vmax-vmin)/dv+l.l;
if (Niv > MAX+1)

printf("!! Niv=%i > array sizes %i\n",Niv,MAX-1);
exit (1);
}

a = gma/2;
v = vmin;
for (iv = 1; iv <= Niv; iv++)

{ /* loop over v values */
even = Hzero(v)+a*a*Htwo(v);/* even series */
FD = FDawson(v);/* odd series has Dawson */
odd = a*(Hone(sp,FD,v)+a*a*Hthree(sp,FD,v));
gLseries[iv] = (even+odd)/sp; /* series value */
/* Trapezoid integral */
gLtrap[iv]=trap(a,v,dx,Nx)/pi;
g[iv] = exp(-v*v)/sp;/* Gaussian; sigma=l/sqrt(2) */
L[iv] = (a/pi)/(v*v+a*a);/* normed Lorentzian;a=gma/2 */

printf("%6.2lf %10.6lf %10.6lf %10.6lf %10.6lf\n",
v,gLseries[iv],gLtrap[iv],g[iv],L[iv]);

fprintf(fout, "%6.2lf %10.6lf %10.6lf %10.6lf %10.6lf\n",
v,gLseries[iv],gLtrap[iv],g[iv],L[iv]);

v=v+dv;
} /*end v loop*/

} /*end gma loop */
printf("\nEnd Voigt Profile");

double FDawson(v)
/* Dawson's integral approximated by trapezoid rule */
double v;
{
double PMAX,VLIM,absv,vsq2,expv,trap,u,du,signv;
int Nu,iu;

absv = fabs(v);
du = 0.005; /* gives 5 sig.fig. accuracy for v <= 2 */
Nu = absv/du; du = absv/Nu; /* more-exact du */
PMAX = 10; /* maximum power of 10 for computer */
VLIM = sqrt(2*log(lO)*(PMAX-1)); /* max v */
if (absv < pow(l0,-PMAX))

trap = 0; return trap;

416 FOURIER INTEGRAL TRANSFORMS

}
else

signv = v/fabs(v);
if (absv > VLIM)

printf("!! |v|=%8.2lf set to VLIM=%8.2lf",absv,VLIM);
absv = VLIM;

vsq2 = absv*absv/2; expv = exp(-vsq2);
trap = expv/2;
u = du;
for (iu = 1; iu < Nu; iu++)

trap = trap+exp(u*u-vsq2); u = u+du;

trap = signv*du* (expv*trap+0.5);
return trap;

double Hzero(v) /* Zeroth-order H function */
double v;

double h;
h = exp(-v*v);
return h;

double Hone(sp,FD,v) /* First-order H function */
double sp,FD,v;

double h;
h = 2*(2*v*FD-l)/sp;
return h;
}

double Htwo(v) /* Second-order H function */
double v;

double h;
h = (l-2*v*v)*exp(-v*v);
return h;

10.4 COMPUTING AND APPLYING THE VOIGT PROFILE 417

double Hthree(sp,FD,v) /* Third-order H function */
double sp,FD,v;
{
double h;
h = 4*((3-2*v*v)*v*FD+v*v-1)/ (3*sp);
return h;

double trap(a,v,dx,Nx)
/* Trapezoid rule direct integral for Voigt profile */
double a,v,dx;
int Nx;

double x, sum;
int ix;

sum = 0.5; x = 0;
for (ix = 1; ix <= Nx; ix++)
{
x = x+dx;
sum = sum+cos(v*x)/exp(x*(a+x/4));
}

sum = dx*sum;
return sum;
}

FIGURE 10.11 The Voigt profile. (10.65). with ratio-of-widths parameter a = 0.25.

418 FOURIER INTEGRAL TRANSFORMS

Figure 10.11 illustrates the Voigt profile with a normalized Lorentzian for the
parameter a = 0.25, corresponding to a ratio of Lorentzian to Gaussian widths for
which convergence of the series expansion to about 1% accuracy is expected. As
anticipated from our discussion of the convolution of a Gaussian with a Lorentzian
and from Figure 10.11, the Voigt profile resembles a Gaussian with wings broad-
ened by the Lorentzian tails. Since the convolution preserves area, according to
(10.43), the peak value must be slightly reduced by convolution, as you see.

Now that you are convinced that the analysis and program are correct, it is a
good time for you to develop a complete program for the Voigt profile.

Exercise 10.44
(a) Adapt Voigt Profile for your computer system. Note that the parameter
PMAX in function FDawson is computer-dependent, as discussed in Exer-
cise 10.41. For check values of the functions Hn consult Exercise 10.43.
(b) Plot the output function H (a,v) against v for interesting values of a that are
somewhat less than unity, in order to assure reasonable convergence of the se-
ries expansion (10.66). Compare with the curves given in Figure 10.11. n

The series expansion method is practical if many small values of a are to be used
but the same range of v is to be covered. Then it is practical to save these values for
reuse when a is changed. For general-purpose use, direct integration of the function
in (10.65) is more appropriate.

Program for direct integration of profile

The final computing part of our Voigt profile project is to integrate the Fourier trans-
form expression directly, thereby being able to check the convergence of the expan-
sion in powers of the width-ratio parameter a, (10.62), as it appears in the series
(10.65) for H (a,v).

Exercise 10.45
Code and execute the trapezoid-rule program trap with the integrand from
(10.65). Check the convergence of the program as a function of the input step
size dx and number of steps Nx. n

For dx = 0.05 and Nx = 100, I found agreement to four decimal places between
the series expansion and the numerical integration for a = 0.25 out to |v| = 2.

A major lesson from our analysis of convolution of a Gaussian with a Lorentzian
(calculation of the Voigt profile) is that the complexity of mathematical and numerical
analysis, and consequently of programming, can increase remarkably when the
functions involved are changed in fairly simple ways. It is therefore also worth-
while to expend a reasonable effort in analysis of a problem before rushing to “give
it to the computer.” Even if the final results are primarily numerical, as for the Voigt

REFERENCES ON FOURIER INTEGRAL TRANSFORMS 419

function, the initial analysis may lead to improved understanding of the mathematics
and science.

Application to stellar spectra

The spectra of light emitted by stars and observed at the Earth may be used to char-
acterize the plasma environment from which the light was emitted. Allen’s book on
atoms, stars, and nebulae, provides the astronomy and astrophysics background.
The details are described in, for example, Chapter 9 of the book by Mihalas on
stellar atmospheres, which has a comprehensive introduction to the subject of spec-
tral-line absorption profiles and line broadening. Here is a schematic summary of
the main ideas, sufficient to indicate the order of magnitude of the quantities used to
calculate Voigt profiles for stellar spectra.

The simplest example is that of atoms radiating in a gas at temperature T. A
spectral “line” of width is then Doppler-broadened because of the thermal agitation
of the atoms, with some atoms moving towards the observer and some moving
away at the moment they emit light. For example, suppose that a spectral line such
as that for hydrogen (the predominant element in stars) is of Lorentzian line shape
with a FWHM of 0.01 nm at a wavelength of 500 nm. At T = 104K for hydro-
gen the width of the Maxwell-Boltzmann distribution describing the spread of atom
velocities in the plasma is about 4.3 × 10-5 times the speed of light.

Under these conditions, the parameter for the Voigt profile, a, given by (10.62),
is then about 0.25. The resulting Voigt profile is then that shown in Figure 10.11.
It is approximately of Gaussian shape for v in the range -0.5 to 0.5, and therefore
the shape of this region of the spectral distribution is dominated by the temperature
distribution in the stellar atmosphere. In the wings of the distribution the profile be-
comes Lorentzian in shape and is affected by the natural line width of the emitting
atoms plus effects such as collisions with electrons in the stellar plasma.

For laboratory plasmas, such as in fusion-energy devices, measurements of
spectral-line broadening may be used to characterize properties such as the tempera-
ture of the major regions of the plasma that are emitting the detected light and other
electromagnetic radiation. In such applications, as also in stellar atmospheres, the
very strong electric and magnetic fields also produce significant broadening of the
spectral lines.

REFERENCES ON FOURIER INTEGRAL TRANSFORMS

Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1964.

Allen, L. H., Atoms, Stars, and Nebulae, Cambridge University Press, Cambridge,
England, third edition, 1991.

4 2 0 FOURIER INTEGRAL TRANSFORMS

Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New
York, second edition, 1986.

Churchill, R. V., Fourier Series and Boundary Value Problems, McGraw-Hill,
New York, 1963.

Dodd, J. N., Atoms and Light: Interactions, Plenum, New York, 1991.
Hamming, R. W., Digital Filters, Prentice Hall, Englewood Cliffs, New Jersey,

third edition, 1989.
Ingard, K. U., Fundamentals of Waves and Oscillations, Cambridge University

Press, Cambridge, England, 1988.
Mihalas, D., Stellar Attmospheres, W. H. Freeman, San Francisco, second edition,

1978.
Nussbaumer, H. J., Fast Fourier Transform and Convolution Algorithms, Springer-

Verlag, New York, second edition, 1982.
Pippasd, A. B., The Physics of Vibration, Cambsidge University Press, Cambridge,

England, 1988.
Solomon, F., “Tomography: Three-Dimensional Image Reconstsruction,” UMAP

Module 318, in UMAP Modules Tools for Teaching, COMAP, Arlington,
Massachusetts, 1987, pp. 1 - 20.

EPILOGUE

Now that you have used this guidebook to learn and psactise mathematical analysis,
numerics, and their applications to the sciences and engineering, I hope that you will
be eager to explore further afield, applying your new understanding to pose and
solve problems in your own field of endeavor.

As I emphasized in Chapter 1, comprehension of the basics of analytical and
numerical techniques is necessary before one travels the smooth highways provided
by programming systems. Now that you have such comprehension, many of your
computing and graphics tasks can be handled by systems such as Wolfram’s
Mathematica. The book of Mathematica examples by Abell and Braselton will
also help you acquire proficiency in using this system. If you are using
workstations, the book by Landau and Fink should provide useful guidance.

If in your computing you wish to work at the programming level (to make a
distinction that was emphasized in Section 1.2), the books of numerical recipes by
Press et al. are convenient. They are available with C code and also in Fortran or
Pascal. For the programming of mathematical functions of the kind described in the
compendium by Absamowitz and Stegun, the handbook and programs provided by
Baker are suitable.

Tomorrow to fsesh fields and pastures new.

References

Abell, M. L., and J. P. Braselton, Mathematica by Example, Academic, New
York, 1992.

Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover,
New York, 1964.

Baker, L., C Mathematical Function Handbook, McGraw-Hill, New York, 1992.

421

422 EPILOGUE

Landau, R. H., and P. J. Fink, A Scientist’s and Engineer’s Guide to
Workstations and Super-computers, Wiley-Interscience, New York, 1992.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C, Cambridge University Press, New York, 1988.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing (FORTRAN Version), Cambridge
University Press, New York, 1989.

Press, W, H., B. P. Flannery, S. A. Teukolsky, and W. T. Vettesling, Numerical
Recipes in Pascal: The Art of Scientific Computing, Cambridge University
Press, New York, 1989.

Wolfram, S., Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley, Redwood City, California, second edition, 1991.

APPENDIX

TRANSLATING BETWEEN C, FORTRAN,
AND PASCAL LANGUAGES

Here, in tabular and example form, is an outline of the main differences between C,
Fortran, and Pascal. It is intended to help you overcome the barrier to translating
between these three languages, rather than to substitute for learning thoroughly the
language of your choice. In particular (as discussed in Section 1.2), the sample
programs in this book use only the parts of C relating to numerical applications,
which is a limited subset of the full language.

If you wish to become a competent programmer in the C language, the Refer-
ences on Learning and Using C at the end of Chapter 1 should be helpful. The
book by Gehani and that by Müldnes and Steele, are suitable if you are experienced
in other computer languages. Kerrigan’s book is specifically aimed to help the
transition from Fortran to C, while the book by Shammas introduces C to Pascal
programmers.

The material following summarizes the aspects of C language that are used in
this book, together with workable counterparts in Fortran and C. The C examples
of code segments are drawn from the sample programs, and I indicate in which pro-
gram a similar code segment can be found. The Fortran and Pascal code segments
are likely to be correct, but they have not been tested by compiling them within
complete programs. I have not attempted to indicate correspondences between the
three languages for topics that are highly dependent on the computing environment,
such as file declarations.

In the following table the items in italics are generic names that are substituted by
actual names, as shown in the examples.

423

424 APPENDIX

C Fortran Pascal

Overall Structure and Procedure Declarations

main() Program name
. .

function() function()

. .
void function() subroutine name()

. .

. .

Example; See Program 2.1

Data Type Declarations

double name ; real name
int name ; integer name

double array [SIZE]; real array (SIZE)

int array [SIZE]; int array (SIZE)

char name; character name

Example; Program 3.1

double rmin,dr; real rmin,dr

int nterms,kmax; integer nterms,kmax

Input and Output

Console:

scanf (input list); read(*, format)

input list
printf(format, write(*, format)

output list); output list

Example: Program 2.1

printf("Input x1 "); write(*,*)'Input x1' write('Input x1');

scanf("%lf",x1); read(*,*) x1 read(x1);

program name;

.
function();

.
procedure();

main program

var name : real;
var name : integer;

var array [l.. SIZE]
of real;

var array [l.. SIZE]
of integer;

var name : char;

var rmin,dr: real;

var nterms,kmax:

integer;

read(input list);

write (output
list);

APPENDIX 425

C Fortran Pascal

Files:

FILE *file name ;

FILE *fopen();

fscanf (fin, format,

input list);

fprintf (fout,format,

output list);

Example; Program 7.1

FILE *fin,fout;
FILE *fopen();
fprintf(fout,"%lf",

Din);

Control Structures

w h i l e

while (condition)
{action }

Example: Program 2.1

while (xl != 0)
{

printf ("Input xl:");

i f

if (condition)
{action }

Example: Program 2.1

if (xl == 0)
{ printf ("End");

read(unit, format) get (pointer to

input list file item);

write(unit, format) put (pointer to

output list file item);

(Require system-dependent file allocation)

write(10,F10.2) Din put(Din);

while (condition)do
begin action end;

while (xl <> 0) do
begin
writeln('Input xl');
end;

if (condition) then if (condition) then
action begin action end;

if (x1.EQ.0) then i f (x l = 0)
write (*,*) 'End' begin

writeln ("End");
end;

426 APPENDIX

C Fortran Pascal

if . . else

if (condition)
{action 1}

else
{action 2}

if (condition) then if (condition) then
action 1 begin

else action 1;
action 2 end;

else
begin

action 2;
end;

Example: Program 2.1

if (den == 0) if (den.EQ.0) then
{ x1d2 = 0; x1d2 = 0;
} else
else x1d2 =
{ x1d2 = (x1*x2+y1*y2)/den
(x1*x2+y1*y2)/den;

for

for (loop condition) (sometimes Do loop)
{ action}

Example: Program 3.1

for(k=l;k<=kmax;k++) do 2 k=l,krmax,l
{ term = r*term
term = r*term; sum= sum+term
sun= sum+term; 2 continue
}

if(den=O)
begin
x1d2 := 0;

end;
else

begin
x1d2 :=
(x1*x2+y1*y2)/den;

end;

for loopcondition do
begin action end;

for k:=l to kmax do
begin

term := r*term;
sum := sum+term;

end;

APPENDIX 427

C Fortran Pascal

switch

switch (expression)
{
case constant 1:
{action1}; break;

case constant 2:
(action2); break;

D
default: {action};

Example: Program 3.4

switch (choice)
{
case 1:

series=PSexp;
break;

case 2:
series=PScos;
break;

}

Program Operators

Arithmetic Power

pow (x,y)

goto(st 1,st 2,.),
expression

st 1 action1
st 2 action2

case condition of
1: action 1;
2: action 2;

st 1 & st 2 are
statement numbers

goto (1,2),choice
series=PSexp
series=PScos

**y (Requires function)

Assignment

variable 1 =expression ; variable 1 =expression

Increment & Decrement

++ increment by 1
-- decrement by 1

case choice of
1: series :=PSexp;
2: series :=PScos;

variable 1: =expression ;

428 APPENDIX

C Fortran Pascal

Arithmetic Compare

Equal to; ==
Not equal to; !=

Less than; <
Less than or equal; <=
Greater than; >
Greater than or equal; >=

Logical Operators

And; &&
Or; ||
Not; !

.EQ.

.NE.

.LT.

.LE.

.GT.

.GE.

.AND.

.OR.

.NOT.

=
<>
<
<=
>
>=

AND
OR
NOT

INDEX TO COMPUTER PROGRAMS

Section Program Name (Functions) Program Purpose

2.1

2.1

2.6

3.1

3.2

3.2

3.5

4.1

Complex-Arithmetic Functions
(CAdd, CSub, CMult, CDiv)

Conjugate & Modulus Functions
(CConjugate, CModulus)

Cartesian & Polar Coordinate
Interconversion
(MakePolar, MakeCartesian)

Geometric Series
(GeoSum)

Power Series for Exponential
(PSexp)

Cosine & Sine in Compact Form
(CosPoly, SinPoly)

Power Series Convergence
(PSexp, PScos, PSsin,
PSarccos, PSarcsin, PSln)

Horner Polynomials
(Horner_Poly)

Complex arithmetic

Conjugate and modulus

Convert between coordinates

Geometric series

Taylor series for exponential

Cosine and sine polynomials

Convergence of series

Horner’s algorithm

429

430 INDEX TO COMPUTER PROGRAMS

4.1

4.3

4.3

4.6

4.6

5.3

6.4

6.6

7.2

7.5

8.4

8.5

8.6

9.2

Working Function: Value
and Derivatives
(Horner_Poly_2, Der_1F,
Der_1C) , Der_2CCD, Der_23CD,
Der-25CD)

Significant Digits in Floating
Point

Quadratic Equation Roots
(quadroots)

Trapezoid and Simpson Integrals
(SimpInt, TrapInt, y, YWInt)

Electrostatic Potentials by
Numerical Integration
(Vs, SimpInt, TrapInt, y)

Value and all derivatives of
working function

Test your computer for number
of significant digits

Accurate roots of quadratic

Trapezoid and Simpson rules

Electrostatic potential from a
charged wire

Cubic Splines
(SplineFit, SplineInt,
SplineInterp, Horner4Poly,
yw, ywInt)

Cubic-spline fitting,
interpolation, derivatives,
and integrals

Least Squares Normalization Least-squares normalizing
(NormObj) factors

Straight-Line Least Squares Straight-line least-squares;
(LeastSquares) errors in both variables

World Record Sprints
(DIST)

Numerical DE_l; Euler
& Adams Predictors
(FUNC, ANALYT)

Analyze world-record sprints

First-order differential
equations

Numerical DE_2; Euler-Type
Methods
(FUNC, ANALYT)

Numerical DE_2; Noumerov Method
(FUNC, ANALYT)

Numerical DE; Second order by
Riccati
(ANALYTRb, ANALYTy,
FUNCRb, FUNCy)

Second-order differential
equations by Euler methods

Second-order differential
equations; Noumerov method

Riccati transformation for
stiff differential equations

Discrete Fourier Transform Analytical discrete
for Oscillator Fourier transform

INDEX TO COMPUTER PROGRAMS 431

9.5 Fourier Series Fourier series of functions
(FSsquare, FSwedge, FSwindow,
FSSawtooth)

9.7 Fast Fourier Transform Fast Fourier transform
(FFT, bitrev)

9.8 EEG FFT analysis EEG analysis by FFT
(FFT)

10.3 Convolute Arrays
(convolve-arrays)

Convolute discretized
transform

10.4 Voigt Profile Voigt profile by series
(FDawson, Hzero, Hone,
Htwo, Hthree, trap)

432

INDEX

Abell, M. L., 421
Abramowitz, M., 144, 151,179, 312,

353,375,412,413,419,421
AC series circuit, 259
Adams-Moulton formulas, 247
Allen, L. H., 419
alternating series, 56-57
amplitude of forced motion, 266
analysis, numerics, applications, 2-3
analytic continuation, 44
Angell. I. O., 12. 14
arccosine function:

programming series for, 88
arches, see catenary
arcsine function, programming series for, 90
Argand diagram, see complex plane
automobile suspension system, 259

Babu, G. J.. 199, 218
Backus, J., 269, 312
Baker, L., 421
Balakrishnan, N., 236, 255
Baldock, G. R., 43, 49
banded matrix in spline fitting, 157
Barlow, R. J., 181, 185, 218
Bartels, R. H., 178, 179
Beckmann, P., 188, 218
Beltrami, E., 239, 255
Bernouilli’s equation,

see generalized logistic growth
Bernoulli, J., 279, 312

Bézier control points, 178
bias, see parameter bias
binning effects on Lorentzian functions, 396
binomial approximation, 76-83

applications of, 78-80
derivation of, 76
geometrical representation, 77
linearized square roots by, 78

bit reversal for FFT, 332, 333
Bôcher, M., 318, 350, 375
bootstrap method for error estimating, 218
boundary values

of differential equations, 223
boxcar function,

see Fourier series, window function
Bracewell, R. N., 334, 375, 397, 420
brainwave, see EEG
Brandt S., 299, 312
Braun, M., 269, 313
Brigham, E. O., 322, 333, 334, 375

C language, 6-7
and Fortran, 7
and Mathematica, 10
and Numerical Recipes, 10
and Pascal, 6
exit function, 9
for Fortran programmers, 8
for Pascal programmers, 8
learning to program in, 7, 16
portability of, 7

First authors are referenced in full on the pages with numbers printed in italics.
433

434 INDEX

C language (continued)
reference manuals for, 8
simple program (geometric series), 55
translating between Fortran and C,

423-428
translating between Pascal and C,

423-428
translating to Fortran from, 8
translating to Pascal from, 8
workstations and C, 7

Cameron, J. R., 365, 375
catenary, 269-279

and redesign of St. Paul’s cathedral, 279
circle-arc, 276
constant-strength, 277
constant-strength and suspension bridge,

277
demonstrating with helium balloons, 278
density distribution, 272
dimensionless variables for, 272
equation of, 270
history of, 279
parabolic, 273
strength distribution, 272
tension distribution, 272
uniform-density, 275
weight distribution, 272
with general density distribution, 270
with uniform density distribution, 271

cathedral domes and catenaries, 279
chain, see catenary
Champeney, D. C., 318, 375
chaos and relation to unstable problems, 116
Chapel Hill, 207
chapters, links between, 13
chi-squared function, 184
Churchill, R. V., 378, 420
Cody, W. J., 69, 98
Cohen-Tannoudji, C., 299, 313
Cole-Cole plot, 40
complex conjugation, 23

in complex plane, 29
program for, 25

complex exponentials, 3 l-36
and cosine, 32
and FFT, 33
and sine, 32
Euler’s theorem for, 3 1
for discrete Fourier transforms, 3 18

complex numbers, 18-25
absolute value, 24
and programming, 19,20
argument, 24

as pairs of numbers, 18
De Moivre’s theorem for, 29
for second-order differential equations, 265
in C language, 7
modulus, 24
phase angle, 25
principal value of angle, 29
program for, 21
programming in C, 22
quadratic equation roots, 12 1
rules for, 19

complex plane, 27-29
analytic continuation in, 44
and plane geometry, 27
program to convert coordinates, 45
rotations in, 28
trajectories in, 38-41

computation in engineering, 3
computational physics, 3
computer arithmetic, 111
computer graphics and spline fitting, 178
computer-aided design

and spline fitting, 178
computing, programming, coding, 5
confidence limits, 185
consecutive central derivatives, CCD, 127
conventional Fourier transforms:

time for computing, 330, 333
convolution:

area-preserving property, 397
definition and interpretation, 393
for Fourier integral transforms, 393-411
Gaussians with Lorentzians. 411
of boxcar with Lorentzian function, 394
of discretized functions, program, 398-40l
of Gaussian distributions, 402
of Gaussian with Lorentzian, 406
of Lorentzian functions, 403
star notation, 393
symmetry properties, 397
wrap-around in,398

convolution theorem, 401
correlation coefficient and IDWMC, 197
cosine function, 65

programming series for, 86
series for small angles, 66

Coulomb’s law, 145
critical damping, singularity in, 263
Cromwell, L., 366, 375
cubic spline, see spline fitting

damping factors, Lanczos,
damping forces, 259

374-375

INDEX 435

damping parameter,
trajectory in complex plane, 38

damping parameter for free motion, 262
Darnell, P. A., 7, 15
data analysis methods, 3
Davis, P. J., 144, 151, 175, I79
Dawson’s integral, 410-411

numerical integration for, 4 12
numerical methods for, 412-413
series expansion, 4 12

De Boor, C., 158, 178, 179
De Moivre’s theorem, 29
degree of a differential equation, 224
degrees to radians, 66
Deming, W. E., 191, 218
derivatives, numerical, 122-133

3-point central derivatives, 129
5-point central derivatives, 129
as unstable problems, 122
better algorithms

for second derivatives, 128
central-difference, 125
consecutive central derivatives, 127
for cosine function, 132
for exponential function, 130
for working function, 124, 125, 127, 130
forward-difference, 123
polynomial approximations, 122
project for, 130-133
second, 126-130

Diaconis, P., 218
Diamond, J., 235, 255
differential equations, 221

and forces, 258-269
and physical systems, 222-223
boundary values, 223
classification of, 223
degree of, 224
for logistic growth, 235
homogeneous, 224
initial conditions, 223
nonlinear, 225
notation and classification, 223-224
order of, 224
ordinary, 224
partial, 224

differential equations,
first-order, numerical, 241-254

Adams predictor formulas for, 245,247
Euler predictor formulas for, 242-245
predictor-corrector methods, 247
program for, 247-254

differential equations,
second-order, numerical, 279-304

Euler predictor formulas for, 280-294
program for Euler algorithms, 287-294

differentiation and integration, distinction, 99
Dirac delta distributions, 379-380

and Gaussian distribution, 389
and Kronecker delta, 380

discrete data and numerical mathematics,
110-111

discrete Fourier transforms, 3 18-329
analytical examples of, 322-329
derivation of, 3 18-3 19
exponential decay, 323-325
general exponential, 322-323
harmonic oscillation, 325-329
independent coefficients of, 32 1
of real values, 321
overview, 317
program for oscillator, 326-329
properties of, 320-322
restrictions on use of, 321
symmetry for exponential decay, 323
symmetry for harmonic oscillation, 326

discretized functions, convolution of, 398
distance versus time

in world-record sprints, 227
diversion:

computers, splines, and graphics, 178
interpreting complex numbers, 43
purpose of, 4
repetition in mathematics

and computing, 83
Dodd, J. N., 404, 420
Doppler broadening and Voigt profile, 419
drafting spline, 154
Draper, N. R., 181, 218
Dym, C. L., 2, 14

EEG:
characteristics of, 365-366
data for Fourier analysis, 367
filtering effects, 373-375
Fourier analysis of, 365-375
frequency spectrum analysis, 372
power spectrum of, 372
program for Fourier analysis of, 368-372

electrical-mechanical analogs, 259-261
electroencephalogram, see EEG
Eliason, A. L., 7, 15
Embree, P. M., 375
endpoint conditions, see spline

436 INDEX

energy eigenstate, 300
equilibrium condition in logistic growth, 236
error model, see also probability distribution

for parameter bias estimation, 210
proportional errors, 2 10

error values, presenting for
differential equations, 24 1

errors in both variables
in straight-line least squares, 190

Euler predictors for differential equations
see predictor formulas

Euler’s theorem, 3 l-32
applications of, 32, 34

exercises, purpose of, 13,352
exit function, 9
expectation values in statistics, 211
exponential data, linearizing by

log transformation, 209
exponential decay, DFT of, 322-325

Fourier integral transform, 380-382
exponential function:

and financial interest schemes, 82
computing, 62
programming series for, 85
Taylor series, 61

extinction predicted from logistic growth,
239

Farin, G., 178, 179
fast Fourier transforms:

algorithm for, 329-334
bit reversal for coefficients, 332-333
deriving FFT algorithm, 329-333
efficiency of, 333-334
for analyzing EEG, 372
mandala for, 330
program for, 360, 365
radix-2 FFT derivation, 330-333
speed testing program for, 364

Fermi distribution, see logistic growth
FFT, see fast Fourier transforms
filtering, 397
filtering in Fourier analysis, 373-375

truncation filtering, 373
financial interest schemes, 80-83

and Isaac Newton, 80
compound interest, 81
exponential interest, 82
simple interest, 81

first-order differential equations, 225-235
numerical methods for, 24 l-247
world-record sprints, 225

Foley, J. D., 12, 14, 178, 179

forced motion and resonances, 265-269
Fortran:

and C,7
translating between Fortran and C,

423428
Fourier analysis of EEG, 365-375
Fourier expansions:

overview of, 3 16-3 18,
types and nomenclature, 3 16-3 18

Fourier integral transforms:
analytical convolutions, 401406
and Dirac delta distributions, 379
convolution of, 393-411
examples of, 380-393
for exponential decay, 380-382
for harmonic oscillation, 382
from Fourier series. 377-379
of Gaussian distribution, 386-389
of Lorentzian function, 391-393
of square-pulse function, 383
of wedge function, 384
overview, 3 18

Fourier series, 334-349
and Fourier integral transforms, 377-379
and symmetry conditions, 339
derived from DFT, 334-336
examples of, 337-349
for arbitrary intervals, 336
generalized sawtooth, 350-353
generalized sawtooth properties, 352
in complex-exponential form, 335
in cosine and sine form, 335
interpreting coefficients, 336
overview, 317
program for, 340-343
sawtooth function, 347-349
sawtooth related to square pulse, 347
square-pulse function, 338-340
wedge function, 343-345
wedge related to square pulse, 345
window function, 345-347
window related to square pulse, 346

free motion:
critical damping, 263
damping parameter for, 262
natural frequency for, 262
second-order differential equations for, 261

Full Width at Half Maximum (FWHM), 183
function in C language:
ANALYT, 251,290,297
ANALYT for Schrödinger equation, 301
ANALYTRb, 310
ANALYTy, 310

INDEX 437

function in C language (continued)
bitrev, 363
CAdd, 22
CConjugate, 26
CDiv, 22
CModulus, 26
CMult, 22
convolve_arrays, 400
CosPoly, 68
CSub, 22
Der_1C, 109
Der_1F, 109
Der_23CD, 110
Der_25CD, 110
Der_2CCD, 109
DIST, 233
FDawson, 415
FFT, 362
FSsawtooth, 342
FSsquare, 341
FSwedge, 341
FSwindow, 342
FUNC, 251,290,296
FUNC for Schrödinger equation, 301
FUNCRb, 310
FUNCy, 310
Hone, 416
Horner4Poly, 166
Horner_Poly, 105
Homer_Poly_2, 109
Hthree, 417
Htwo, 416
Hzero, 416
LeastSquares, 216
MakeCartesian, 48
MakePolar, 48
Norrr0bj, 206
PSarccos, 95
PSarcsin, 96
PScos, 94
PSexp, 94
PSln, 96
PSsin, 95
quadroots, 120
SimpInt, 138,149
SinPoly, 69
SplineFit, 163
SplineInt, 165
SplineInterp, 165
trap, 417
TrapInt, 138,149
Vs, 150
y, 139, 150

yw, 166
YWInt for trapezoid and Simpson, 139
ywInt for spline, 166

functions, index of, 429-430
fundamental frequency in Fourier series, 336
fusion-energy devices and Voigt profile, 419
FWHM:

additivity for Lorentzian convolutions, 404
of Gaussian distribution, 183
of Lorentzian function, 389

Galilei, Galileo, 273, 279, 313
Gauss, C. F., 182
Gauss plane, see complex plane
Gaussian distribution, 182-183, 210, 386

and Heisenberg Uncertainty Relations,
388

and maximum likelihood. 182
as Dirac delta distribution, 389
compared with Lorentzian function, 390
convolution of, 402
convolution with Lorentzian, 406-411
FFT of discretized, 387
Fourier integral transform of, 386-389
fourth moment of, 212

Gaussian elimination in spline fits, 158
Gaussian quadrature, 144
Gear, C. W., 312, 313
Gehani, N., 8, 15 ,423
generalized logistic equation, 239
generalized logistic growth, 239-24 1

curves of, 240
generalized sawtooth,

Fourier series for, 350-353
geometric series, 52-56

definition and properties, 52
for deriving DFT, 3 19
for DFT of general exponential, 323
integral to derive logarithm series, 57
program for, 53

Gibbs, J. W., 349, 376
Gibbs phenomenon,

see Wilbraham-Gibbs overshoot
Gilbert, D., 277, 313
Gleick. J., 239, 255
Gould, H., 3, 14
graphics, 11-12

and Mathematica, 12
Great Fire of London

and rebuilding St. Paul’s, 279

Haberman, R., 239, 255, 264, 313
Hamming, R. W., 375, 376, 397, 420

438 INDEX

Harbison, S. P., 8, 15
harmonic analyzer, 349
harmonic expansion, see Fourier series
harmonic oscillation:

discrete Fourier transform of, 325
Fourier integral transform, 382

harmonics in Fourier series, 336
Hartley transform, 334
harvesting effects on logistic growth, 238
Hasse, R. W., 236, 255
Heisenberg Uncertainty Relations, 388
Hermite polynomials, 300
Hofstadter, D. R., 85, 98
homogeneous differential equation, 224
Honig, E., 278, 279, 313
Hooke, Robert, 279
Hooke’s law, 259
Homer polynomial:

algorithm for, 103
for cosine and sine, 67
for spline integration, 176
of limited use for series, 105
program for, 104

Hosmer, D. W., 241, 255
Huygens, Christian, 279
hyperbolic functions, 34-37

cosh, 34
graphs of, 37 1
sign rule and circular functions, 35
sinh, 34
tanh, 36
Taylor series for, 71

imaginary number, 18, 19
independent diagonal weighting model

(IDWM), 192, 193, 196, 197
with constant weights (IDWMC), 192

induction:
and recurrence, 84
for convolution of Gaussians, 403
for convolution of Lorentzians, 405
for convolution of Voigt profiles, 408
geometric series by, 52
Taylor’s theorem proof by, 59

infinite loop, see loop, infinite
Ingard, K. U., 43, 49, 269, 313, 386, 420
initial conditions of differential equations,

223
integrals, analytical, by Mathematica, 99
integrals, numerical, 133-144

comparison of trapezoid
and Simpson rules, 142

for potential from a charged wire, 145

higher-order methods, 144
Simpson formula, 140
testing with cosines, 143
trapezoid formula, 135
with constant stepsize, 134-135

integration by splines, see spline integration
interpolation by splines,

see spline interpolation
inverse circular functions,

Taylor series for, 70
Isobe, T., 199, 218
iteration, 84

Jaffe, A. J., 181, 218
Jain, M. K., 247, 255 , 304, 312, 313

Keller, J. B., 226, 255
Keller model of world-record sprints, 226
Kellison, S. G., 83, 98
Kernighan, B. W., 11, 15, 85, 98
Kerrigan, J. F., 8, 15, 423
kinematics of sprinting,

see world-record sprints
Kinsella, A., 218
Kirchhoff’s second law, 260
knot, see spline
Koenig, A., 8, 15
Koonin, S. E., 3, 14
Körner, T. W., 318, 350, 376
Kronecker delta and Dirac

delta distributions. 380

L’Hôpital’s rule:
used for DFT of exponential decay, 323
used for DFT of harmonic oscillation, 325

Lancaster, P., 178, 179
Lanczos filter, 373-375
Landau, R. H., 421, 422
least-squares criterion, 182-185
least-squares fitting,

see also linear least squares:
and maximum likelihood, 182
combined with splines, 218
compared to splines, 181
disadvantages of, 184
outlier influence, 184
weights in, 185

least-squares normalization factors,
see normalization factors by least
squares

Legendre and least-squares criterion, 182
Legendre polynomials, 187
Lewis, Carl. 233

INDEX 439

Lichten, W., 181, 218
Lichtenberg, D. B., 235, 255
Lindstrom, P. A., 83, 98
linear least squares,

see also straight-line least squares:
and discrete Fourier transforms, 3 19
and orthogonal functions, 185, 188
equations for coefficients, 188

links between chapters, 13
logarithm functions:

programming series for, 90
Taylor series for, 72-75

logarithmic transformation:
of Lorentzian function, 393
parameter bias in, 208

logarithmic transformation
and parameter bias, 214

logistic distribution, logistic growth,
235-24 1

and ecology, 235
curve of, 236
differential equation for, 235
dimensionless form, 237
equilibrium condition, 236
generalized, 239-24 1
graphs of, 237
harvesting effects, 238
origins of, 235
point of inflexion, 238
predicting extinction, 239
properties of, 238-239
stability and chaos, 239
various terms for, 236

loop, infinite, see infinite loop
Lorentzian trajectory in complex plane, 39
Lorentzian function for resonance, 268
Lorentzian functions, 389-393

binning effects on, 396
compared with Gaussian distribution, 390
convolution of, 403
convolution with Gaussian, 406411
convolution with window function, 394
definition of, 389
Fourier integral transform of, 391-393
FWHM of, 389
normalized, 405
resonance frequency, 389

lumped-parameter analysis
of world-record sprints, 226

Lyons, L., 181, 219

Macdonald, J. R., 190, 191, 219
Maclaurin series, see Taylor series

Madelung transformation
for stiff differential equations, 311

mandala for FFT algorithm, 330
Maron, M. J., 117, 144, 151
Mathematica, 5, 20, 49, 52, 421:

for ordinary differential equations, 224
mathematical modeling, 2
maximum likelihood

and least-squares fitting, 182, 185
mechanical-electrical analogs, 259-261
Menai Strait, 277
Meredith, D. C., 3, 14
Mesterton-Gibbons, M., 2, 14
Meyer, W. J., 2, 14
Michelson, Albert, 349
Mihalas, D., 404, 419, 420
Miller, W., 69, 98
Modi, J. J., 5, 14
modulus, program for, 25
moment of inertia

and least-squares straight line, 190
Monte Carlo simulation:

for error estimating, 218
for parameter bias, 214

Müldner, T., 8, 15, 423

Nakamura, S., 3, 14, 144, 151, 304, 313
natural frequency for free motion, 262
natural spline, see also spline endpoint

conditions, 160-161
compared to exact endpoint conditions,

161
minimal curvature property of, 160

negative feedback and logistic growth, 235
Newton’s equation

as pair of first-order equations, 258
Newton, Isaac:

inventing differential equations, 22 1
and uniform-density catenary, 279
as Keeper of the Mint, 80

nonlinear differential equations,
225, 235-24 1

catenary equation, 270
normal distribution,

see Gaussian distribution
normalization factors by least squares,

199-208
best-fit objective function, 203
dependence on weighting, 202
for world-record sprints, 229
normalizing data to fitting function, 201
normalizing fitting function to data, 200
Poisson distribution of errors, 202

440 INDEX

normalization factors by least squares
(continued)

program for, 204-208
normalization of Lorentzian functions, 405
notations for derivatives, 223, 241
Noumerov, B. V., 285, 313
Noumerov algorithm, 285-287

program for, 294-299
numerical derivatives,

see derivatives, numerical
numerical integrals,

see integrals, numerical
numerical mathematics

compared to pure mathematics, 111
numerical noise, 111-122

computer versus hand calculator, 116
in quadratic equation solution, 118
roundoff errors, 112
truncation errors, 112

Numerical Recipes, 10, 421
numerical recipes, 3

and numerical noise, 116
unsavory dishes, 241

nuptial arch, 279
Nussbaumer, H. J., 401, 420
Nyquist criterion, 321

objective function:
definition of, 185
dependence on weights, 185
for normalization factors

by least squares, 200
Ohm’s law resistance, 259
Oppenheim, A. V., 334, 345, 375, 376
order of a differential equation, 224
ordinary differential equations, 224
ordinary least squares (OLS), 191
orthogonal functions, 185-189

and linear least squares, 188
for Fourier expansions, 3 19
Legendre polynomials, 187
Schmidt orthogonalization, 186

outliers in least-squares fitting, 184
overdamping, 263
overshoot, see Wilbraham-Gibbs overshoot

Paeth, A. W., 80, 98
parameter bias:

dependence on error model, 212
for Gaussian distribution, 212
for small samples, 2 13
for uniform distribution, 213

Gaussian distribution divergence, 213
in slope from log transformation, 211
Monte Carlo simulation, 214
origin of in log transformation, 209

parametric integration
for Gaussian moments, 183

Parseval’s theorem:
interpretation of, 320
relation to Wiener-Khinchin theorem, 320
statement of, 320

partial differential equations, 224
Pascal:

and C,6
translating between Pascal and C, 423-428

patient MAC, 366
pedagogues, modem, 269
Peters, R. D., 333, 376
phase angle, 25

in complex plane, 4 1
of forced motion, 266

phase-space plot, 264
phasor diagram, 42
pi to computer accuracy, 46
Pippard, A. B.. 40, 43, 49, 151,

258, 264, 269, 313, 386, 420
plane-polar coordinates

and complex numbers, 28
Plauger, P. J., 8, 15
Poincaré map, 264
Poisson distribution, 185

and normalization by least squares, 202
for error model, 2 10

Polya, G., 84, 98
polynomial wiggle problem, 154
potential from a charged wire, 145-151

analytical integral, 146
integral for, 145
numerical integrals, 148-151

power series, see Taylor series
power spectrum of EEG, 372
Pratt, W. K., 343, 345, 376
predictor formulas:

Adams methods, 245
Adams trapezoid predictor

for first-order equation, 246
Adams-Simpson predictor

for first-order equation, 246
central Euler predictor

for first-order equation, 243
Euler methods, 242, 280
Euler method 1

for second-order equation, 280

INDEX 441

Euler method 2
for second-order equation, 28 1

Euler method 3
for second-order equation, 281

Euler methods summarized, 28 1
example of Euler methods

for second-order equation, 282
forward Euler predictor

for first-order equation, 243
testing Euler predictors

for first-order equations, 244
testing Euler predictors

for second-order equations, 29 l-294
predictor-corrector methods, 247
Press, W. H., 7, 10, 15, 144, 151,

304, 313, 360, 375, 376, 421, 422
probability distribution, 184

Gaussian, 182
moments of, 182,211
Poisson, 185
uniform, 212

program:
complex-arithmetic functions, 21
conjugate and modulus

of complex functions, 25
convert between coordinates, 45
convoluting discretized functions, 398
cosine and sine, 67
DFT of oscillator, 326
estimating significant digits, 112
fast Fourier transform, 360
first-order differential equations, 247
Fourier analysis of EEG, 368
Fourier series, 340
geometric series, 54
Horner polynomial, 104
normalization by least squares, 204
Noumerov algorithm

for second-order equations, 294
potential from a charged wire, 148
power-series expansion, 63, 93
quantum harmonic oscillator, 301
Riccati transformation, 308
roots of quadratic equations, 119
second-order Euler algorithms, 287
Simpson integral formula, 137
spline fitting, 161
straight-line least squares, 214
trapezoid integral formula, 136
Voigt profile, 4 13
working function value, derivatives,

and integral, 107

world-record sprints, 229
programs:

caveat emptor, 10
error messages from, 11

programs and functions, index of, 429-430
project, 9-10, 14

computing derivatives numerically, 130
convert between coordinates, 45
electrostatic potential of a wire, 145
fast Fourier transform program, 360
Fourier analysis of EEG, 365
Noumerov method

for second-order equations, 294
second-order Euler methods, 287
solving first-order

differential equations, 247
spline fitting, 161
straight-line least-squares fits, 214
testing the convergence of series, 85
Voigt profile, 4 11

proportional errors,2 10
Protter, M. H., 51, 59, 98, 376
pure mathematics compared

to numerical mathematics, 111
Pythagoras, theorem of, 33

testing numerically, 97

quadrants, sign of circular functions in, 45
quadratic equation solution:

program for stable method, 119
subtractive cancellation in, 118

quantum harmonic oscillator, 299-304
Noumerov solution, 301-304

quantum leap, 303

radians to degrees, 66
Rasala, R., 178, 179
raster, 347
real number, 19
recurrence, 84
recursion, 84

logical problems with, 85
Reed, B. C., 191, 219
relative errors in differential equation

solutions, 242
relaxation time in world-record sprints, 226
repetition in mathematics and computing, 83

iteration, 84
recurrence, 84
recursion, 84

resonance, 265-269
amplitude of, 266

442 INDEX

resonance (continued)
described by Lorentzian function, 389
in Fourier transform of oscillator, 382
maximum amplitude, 267
phase of, 266

Riccati transformation, 306-311
example of, 307
program for, 308-311

Richardson extrapolation, 133
Riemann zeta function, 353
ringing, 348
Roberts, R. A., 334,376
Romberg integration, 144
roundoff errors, 112
Rubinstein, R., 178, 179
Rucker, R., 77, 98

sample programs, 9
simple example (geometric series), 55

sawtooth function Fourier series, 347-349
Schildt, H., 7, 15
Schmidt orthogonalization, 186
Schrödinger equation, 43, 225

for harmonic oscillator, 299
Schultz, M. H., 178, 179
Schumaker, L. L., 158, 178, 179
second-order differential equations, 258

and forced motion, 265
complex-number representation, 265
for free motion, 261-264
for mechanical and electrical systems, 260
removing first derivatives, 284-285

separable differential equation
for world-record sprints, 228

Shammas, N., 8, 15, 423
Shannon sampling theorem, 321
Siegel, A. F., 181, 219
sigmoid function, see logistic growth
significant digits, program for, 112
Simpson formula:

comparison with trapezoid formula, 142
composite formula, 141
derivation of, 140
error estimate, 141
for numerical integrals, 140-142
graphical interpretation, 141
program for, 137, 141
testing with cosines, 143

sine function:
programming series for, 86
series for small angles. 66
Taylor series for, 65

Snell, J. L., 181, 182, 211, 219
Solomon, F., 184, 185, 219, 397, 420
source term in second-order

differential equation, 265
Spehlmann, R., 366, 376
spline:

definition of, 154
knot of, 155
natural, 160-161
order of, 155

spline derivatives, 17 1
and unstable problems, 174
for cosines, 173
for working function, 171

spline endpoint conditions, 155, 159-161
for working function, 160
natural spline, 155

spline fitting:
algorithm for, 158
and computer graphics, 178
and computer-aided design, 178
and type fonts, 178
combined with least-squares fitting, 218
compared to least squares, 153
efficiency of, 175
equations, 156-159
exact fit to data, 153
history of, 178
of working function, 155
program for, 161
properties of fit, 156
versus polynomial fit, 153

spline integration, 175-177
compared to trapezoid

and Simpson rules, 175, 177
derivation, 175
for cosine, 177
for working function, 177
function for, 176
testing the program, 176

spline interpolation, 168-174
first derivative from, 168
for cosines, 173
for working function, 170
second derivative from, 168
third derivative from, 169
value from, 168

square root, linearized approximations, 78
square-pulse function:

Fourier integral transform of, 383
Fourier series for, 338-340

stability and chaos in logistic growth, 239

INDEX 443

standard deviation, 182
in proportional-errors model, 210
of independent Gaussian errors, 403

star notation for convolution, 393
Steinmetz, C. P., 43
stellar spectra, Voigt profile for, 419
stiff differential equations, 304-312

Madelung transformation, 311
nature of, 305
numerical example of, 306
origin of term, 305
Riccati transformation, 306

stochastic process, 184
stopping criterion for first-order

differential equations, 247
straight-line least squares, 190-199

errors in both variables, 190
program for, 214-217
testing and using program, 217
weighting models, 190

straight-line least squares
with errors in both variables:

error estimates, 199
minimum objective function, 198

subtractive cancellation, 116-119,
in quadratic equation solution 118
in spline fitting, 174
in variance calculations. 117

symmetry conditions for Fourier series, 339
system identification, see least-squares

fitting

Taylor, A. E., 4, 14, 51, 57, 59, 98
Taylor, J. R., 181, 209, 219
Taylor series, 65

for exponentials, 61
for hyperbolic functions, 71
for inverse circular functions, 70
for logarithms, 72
interpreting, 59
remainder, 60

Taylor’s theorem, 58, 59
statement and proof, 58

tensor, 406
Thompson, D’Arcy W., 235, 255
Thompson, W. J., 4, 14,

185, 202, 219, 350, 376
tomography, 397
trajectories in complex plane, 38-41

circular, 40
translating between C, Fortran.

and Pascal, 423-428

trapezoid formula:
comparison with Simpson formula, 142
composite formula, 136
error estimate, 135
for numerical integrals, 135-140
graphical interpretation, 136
program for, 136
testing with cosines, 143

trigonometric series,
summing numerically, 359-360

trigonometric series for overshoot, 355
truncation errors, 112
truncation filtering, 373
Tuchinsky, P. M., 235, 255
Tufte, E. R., 11, 15
type fonts and spline fitting, 178

uniform distribution, 212
unstable methods, 114-116
unstable problems, 114-116

and ill-conditioned matrices, 115
and linear equation solution, 114
and spline derivatives, 174
relation to unstable equilibrium

and chaos, 116
stiff differential equations are, 305

Vandergraft, J.S., 144, 151, 247, 255
vanilla ice cream, 3
variance calculations,

subtractive cancellation in, 117
Varner, R. L., 218, 219
Verhulst equation, see logistic growth
vibrations and waves, 42

differential equations for, 269
Fourier integral transforms and, 384

Voigt profile, 406-411
applied to stellar spectra, 4 19
by direct integration, 418
computation of, 411-419
expansion in H functions for, 408-411
program for series expansion, 413-418

Voigt, Waldemar, 406

Wagon, S., 11, 12, 15
Weaver, H. J., 322, 376
wedge function:

Fourier integral transform of, 384
Fourier series for, 343-345

weights in least-squares fitting. 185
for straight-line least squares, 190
mechanical analogy, 190

444 INDEX

Whipp, B. J., 235, 255
White, H. E., 269, 313
Whitney, C. A., 218, 219
Wiener-Khinchin theorem, 320
Wilbraham, H., 350, 376
Wilbraham-Gibbs overshoot, 349-360

at function discontinuity, 353-358
for sawtooth, 358
for square pulse, 356
history of, 349
not from slope discontinuities, 35 1
numerical methods for, 359-360

window function:
convolution with Lorentzian, 394
Fourier series for, 345-347

Wolfram, S., 5, 10, 11, 15, 20, 49,
52, 98, 151, 224, 255, 421, 422

Woltring, H. J., 218, 219
women sprinters, 234-235

improvements in sprints, 235
world-record sprints, 234

Woods-Saxon function, see logistic growth
working function:

analytical derivatives, 101
analytical integral, 101
program for, 106

properties, 100-102
spline fit, 155

workstations:
and C language, 7
using, 421

world-record sprints, 225-235
and speed limits, 235
average speed in, 228
Carl Lewis, 233
differential equation for, 226
distance versus time, 227
effect of track turn, 233
normalization factor, 229
program for analyzing, 229
times for men and women, 226

wraparound in convolution, 398
Wren, Christopher, 279
Wylie, C. R., 4, 15, 228, 255

Yakutsk, Siberia, 182
Yee, H. C., 239, 255
York, D., 191, 219

Zeiterman, D., 241
zeta function, 353
Zill, D. G., 247, 255, 312, 313

	CONTENTS
	1. Introduction to Applicable Mathematics and Computing
	1.1 What is applicable mathematics?
	Analysis, numerics, and applications
	Cooking school, then recipes
	Diversions and new routes
	Roads not taken

	1.2 Computing, programming, coding
	The C language for the programs
	Learning to program in C
	Translating to Fortran or Pascal from C
	The computing projects and the programs
	Caveat emptor about the programs
	The index to computer programs

	1.3 One picture is worth 1000 words
	Why and when you should use graphics
	Impressive graphics, or practical graphics

	1.4 Suggestions for using this book
	Links between the chapters
	The exercises and projects
	References for the introduction
	General references
	References on learning and using C

	2. A Review of Complex Variables
	2.1 Algebra and computing with complex numbers
	The algebra of complex numbers
	Programming with complex numbers
	Complex conjugation, modulus, argument
	A program for complex conjugate and modulus

	2.2 The complex plane and plane geometry
	Cartesian and plane-polar coordinates
	De Moivre's theorem and its uses

	2.3 Functions of complex variables
	Complex exponentials: Euler's theorem
	Applications of Euler's theorem
	Hyperbolic functions and their circular analogs
	Trajectories in the complex plane

	2.4 Phase angles, vibrations, and waves
	Phase angles and phasors
	Vibrations and waves

	2.5 Diversion: Interpreting complex numbers
	Are complex numbers real?
	Analytic continuation

	2.6 Project 2: Program to convert between coordinates
	Stepping into the correct quadrant
	Coding, testing, and using the program
	References on complex numbers

	3. Power Series and Their Applications
	3.1 Motivation for using series: Taylor's theorem
	The geometric series
	Programming geometric series
	Alternating series
	Taylor's theorem and its proof
	Interpreting Taylor series

	3.2 Taylor expansions of useful functions
	Expansion of exponentials
	Computing the exponential series
	Series for circular functions
	Inverse circular functions
	Hyperbolic function expansions
	Logarithms in series expansions
	Series expansion of x In(x)

	3.3 The binomial approximation
	Deriving the binomial approximation
	Applications of the binomial approximation
	Linearized square-root approximations
	Financial interest schemes

	3.4 Diversion: Repetition in mathematics and computing
	Iteration
	Recurrence
	Recursion

	3.5 Project 3: Testing the convergence of series
	Coding and checking each series expansion
	Including the hyperbolic functions
	File output and graphics options
	The composite program for the functions
	Using the program to test series convergence
	References on power series

	4. Numerical Derivatives and Integrals
	4.1 The working function and its properties
	Properties of the working function
	A C function for Homer's algorithm
	Programming the working function

	4.2 Discrete data and numerical mathematics
	The discreteness of data
	Numerical mathematics

	4.3 Numerical noise in computing
	Roundoff and truncation errors
	Unstable problems and unstable methods
	Errors from subtractive cancellation
	Program for roots of quadratic equations

	4.4 How to approximate derivatives
	Forward-difference derivatives
	Derivatives by central differences
	Numerical second derivatives
	Better algorithms for second derivatives

	4.5 Project 4A: Computing derivatives numerically
	Derivatives of the exponential function
	Differentiating the cosine function

	4.6 Numerical integration methods
	Trapezoid formula and program for integration
	Simpson formula and program for integrals
	Integrals with cosines
	Higher-order polynomial integration

	4.7 Project 4B: Electrostatic potential from a charged wire
	Potentials by analytical integration
	Potentials by numerical-integration methods
	References on numerical derivatives and integrals

	5. Fitting Curves through Data
	5.1 How to fit curves using splines
	What is a spline?
	Properties for spline fits
	Deriving the spline equations
	The spline algorithm

	5.2 Boundary conditions for spline fitting
	Natural splines

	5.3 Project 5: Program for spline fitting
	The main program, Cubic Splines
	The function SplineFit

	5.4 Interpolating by splines
	Interpolating values and derivatives
	The C function Splinelnterp
	Interpolating working-function values and derivatives
	Interpolating cosine values and derivatives

	5.5 Integration methods using splines
	Deriving the integration algorithm
	The C function for spline integration
	Integrating the working function and cosine

	5.6 Diversion: Computers, splines, and graphics
	References on spline fitting

	6. Least-Squares Analysis of Data
	6.1 Introduction to the least-squares criterion
	Maximum likelihood and least squares
	Least squares and the objective function

	6.2 Orthogonal functions and linear least squares
	What are orthogonal functions?
	Orthogonality and least squares

	6.3 Errors in both variables: Straight-line least squares
	Weighting models
	Constant ratio of weights
	Properties of the least-squares slopes

	6.4 Least-squares normalization factors
	Normalizing fitting-function values to data
	Normalizing data to fitting values
	The best-fit objective function
	Program for normalizing factors

	6.5 Logarithmic transformations and parameter biases
	The origin of bias
	Probability analysis for bias
	Dependence of bias on error distribution

	6.6 Project 6: Program for straight-line least-squares fits
	Organization of Straight-Line Least Squares
	Testing and using the least-squares program
	References on least-squares analysis

	7. Introduction to Differential Equations
	7.1 Differential equations and physical systems
	Why are there differential equations?
	Notation and classification
	Homogeneous and linear equations
	Nonlinear differential equations

	7.2 First-order linear equations: World-record sprints
	Kinematics of world-record sprints
	Warming up to the problem
	Program for analyzing sprint data
	Women sprinters are getting faster

	7.3 Nonlinear differential equations: Logistic growth
	The logistic-growth curve
	Exploring logistic-growth curves
	Generalized logistic growth

	7.4 Numerical methods for first-order equations
	Presenting error values
	Euler predictor formulas
	Testing the Euler predictors
	Adams predictor formulas

	7.5 Project 7: Program for solving first-order equations
	Programming the differential equation solver
	Exploring numerical first-order equations
	References on first-order equations

	8. Second-Order Differential Equations
	8.1 Forces, second-order equations, resonances
	Forces and second-order equations
	Mechanical and electrical analogs
	Solving and interpreting free-motion equations
	Forced motion and resonances

	8.2 Catenaries, cathedrals, and nuptial arches
	The equation of the catenary
	Catenaries of various shapes and strengths
	Demonstrating arches
	Practical arches and catenaries

	8.3 Numerical methods for second-order differential equations
	Euler-type algorithms for second-order equations
	Removing first derivatives from second-order linear equations
	Deriving the Noumerov algorithm for second-order equations

	8.4 Project 8A: Progamming second-order Euler methods
	Programming the Euler algorithms
	Euler algorithms and the exponential function
	Euler algorithms and the cosine function

	8.5 Project 8B: Noumerov method for linear second-order equations
	Programming the Noumerov method
	Testing Noumerov for exponentials and cosines
	The quantum harmonic oscillator
	Noumerov solution of the quantum oscillator

	8.6 Introduction to stiff differential equations
	What is a stiff differential equation?
	The Riccati transformation
	Programming the Riccati algorithm
	Madelung's transformation for stiff equations
	References on second-order equations

	9. Discrete Fourier Transforms and Fourier Series
	9.1 Overview of Fourier expansions
	The uses of Fourier expansions
	Types and nomenclature of Fourier expansions

	9.2 Discrete Fourier transforms
	Derivation of the discrete transform
	Properties of the discrete transform
	Exponential decay and harmonic oscillation

	9.3 The fast Fourier transform algorithm
	Deriving the FFT algorithm
	Bit reversal to reorder the FFT coefficients
	Efficiency of FFT and conventional transforms

	9.4 Fourier series: Harmonic approximations
	From discrete transforms to series
	Interpreting Fourier coefficients
	Fourier series for arbitrary intervals

	9.5 Some practical Fourier series
	The square-pulse function
	Program for Fourier series
	The wedge function
	The window function
	The sawtooth function

	9.6 Diversion: The Wilbraham-Gibbs overshoot
	Fourier series for the generalized sawtooth
	The Wilbraham-Gibbs phenomenon
	Overshoot for the square pulse and sawtooth
	Numerical methods for summing trigonometric series

	9.7 Project 9A: Program for the fast Fourier transform
	Building and testing the FFT function
	Speed testing the FFT algorithm

	9.8 Project 9B: Fourier analysis of an electroencephalogram
	Overview of EEGs and the clinical record
	Program for the EEG analysis
	Frequency spectrum analysis of the EEG
	Filtering the EEG data: The Lanczos filter
	References on Fourier expansions

	10. Fourier Integral Transforms
	10.1 From Fourier series to Fourier integrals
	The transition from series to integrals
	Waves and Fourier transforms
	Dirac delta distributions

	10.2 Examples of Fourier transforms
	Exponential decay and harmonic oscillation
	The square-pulse function
	Fourier transform of the wedge function
	Gaussian functions and Fourier transforms
	Lorentzian functions and their properties
	Fourier integral transform of a Lorentzian

	10.3 Convolutions and Fourier transforms
	Convolutions: Definition and interpretation
	Convoluting a boxcar with a Lorentzian
	Program for convoluting discretized functions
	Fourier integral transforms and convolutions
	Convolutions of Gaussians and of Lorentzians
	Convoluting Gaussians with Lorentzians: Voigt profile

	10.4 Project 10: Computing and applying the Voigt profile
	The numerics of Dawson's integral
	Program for series expansion of profile
	Program for direct integration of profile
	Application to stellar spectra
	References on Fourier integral transforms

	EPILOGUE
	APPENDIX: TRANSLATING BETWEEN C, FORTRAN, AND PASCAL LANGUAGES
	INDEX TO COMPUTER PROGRAMS
	INDEX

	home:
	previous:

