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Preface

This book has grown from the authors' investigations into the problem of finding consistent and efficient solutions to
estimating equations which admit multiple solutions. While there have been studies of multiple roots in likelihood
estimation, most notably by Barnett (1966), we felt that there was a need to incorporate more recent research by
studying the problem in other contexts such as semiparametrics and the construction of artificial likelihoods.

While the book began as the study of multiple roots in estimating functions, it soon expanded to become a study of
nonlinearity in estimating equations and iterative methods for the solution of these equations. Nonlinearity appears in
many different ways within a model, and in differing degrees of severity as an obstacle to statistical analysis. Some
simple forms of nonlinearity can be removed by a reparametrisation of the model. This type of nonlinearity is usually
no major obstacle to the construction of point estimators and the study of their properties. More entrenched forms of
nonlinearity cannot be removed by reparametrising the model, and may force the researcher to use more intensive
numerical methods to construct estimators. The use of root search algorithms or one-step estimators is standard for
these sorts of models. Perhaps the most severe type of nonlinearity in an estimating equation is that which affects the
monotonicity of the estimating function, making the function redescending, with the possibility of multiple roots.
When estimates are constructed by maximising an objective function, such as a likelihood or quasi-likelihood, an
analogous problem occurs when the objective function is not concave or not strongly concave. Hill climbing
algorithms which start at points of nonconcavity often have very poor convergence properties.

The approach of the book is that the properties of estimators should not be separated from the properties of the
estimating functions or objective functions which are used to construct them. In particular, by ignoring nonlinear
characteristics of the estimating function, we can overlook important information about model interpretations and
model fit. Part of the shift in viewpoint will be to see a point estimator as a dynamic object rather than a static one.
That is, we shall adopt the philosophy that a point estimator is the result of a process such as an iterated function
system, rather than simply a function on the data taking values in the parameter space. Looked at in this way,
estimating equations lead to iterative methods within the parameter space and estimates become fixed points of these
iterations. Of course, we must avoid excessive pedantry in the reinterpretation of the classical problem of point
estimation. Nevertheless, there are certain advantages to



this change of perspective within the theory of estimation. To separate estimators from the iterative methods which
produce them can lead to difficulties. We may not know, for example, how delicately the final step of the iteration is
dependent upon the starting point. Nor can we judge, on the basis of a reported statistic, whether the researcher has
terminated the algorithm with sufficient care. It is not sufficient to assume we are close to a fixed point of an iteration
simply because two successive values in an iteration are close.
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1 Introduction

1.1 Background to the problem
It is only in simple models, such as the linear model for regression or the exponential family model for parametric
inference, that ideal point estimators can be written explicitly in closed form as a function of the sample. In many other
cases, the construction of a point estimator is more computationally intensive, and involves an iteration to search for a
solution to one or more estimating equations of the form g(θ) = 0, where g(θ) is a function of the data and the
parameter. The construction of maximum likelihood estimators (MLEs), where

and L is the likelihood function, is the best-known example of this. In many models, the likelihood equations cannot
be solved explicitly, and the investigator must resort to some numerical method to construct a point estimate.

A basic numerical problem arises when the score function g(θ) or the likelihood L(θ) cannot be represented in simple
form. This can occur when the distribution of the data has no closed form representation of the density function. For
example, most symmetric stable distributions have densities which can only be represented by integrals or infinite
series. This makes the estimation of a location, scale or shape parameter of a symmetric stable distribution difficult
unless the distribution is a special case such as the normal or Cauchy. To overcome this obstacle, we can simply tackle
the difficulty head on, by attempting to evaluate the infinite series or numerical integral. Alternatively, we can attempt
to perform a likelihood analysis or to construct estimating equations in a transformed setting such as that provided by
a Fourier transform.

Even when the likelihood has a simple form, there may be other obstacles to the construction of a point estimate when
maximising the likelihood or solving the likelihood equations. After the initial enthusiasm for the method of maximum
likelihood proposed by Fisher (1922, 1925), questions arose as to the existence and uniqueness of a root of the
likelihood equation and whether that root corresponded to a maximum of the likelihood function.

For example, Huzurbazar (1948) noted that proofs of the consistency and asymptotic efficiency of the MLE were
more properly proofs of the existence of a



consistent and asymptotically efficient root of the likelihood equations. Could such a root also be a local minimum of
the likelihood function? In regular models, the answer turned out to be no. Huzurbazar (1948) showed that a
consistent root of the likelihood equation is asymptotically unique and corresponds to a local maximum of the
likelihood function. More precisely, if θ̂1 and θ̂2 are two consistent roots of the likelihood equation for a sample of size
n, then

as n → ∞, provided that the standard regularity due to H. Cramér is satisfied. It should be noted that this result of
Huzurbazar does not rule out the existence of extraneous inconsistent solutions of the likelihood equation.

Simple as this result of Huzurbazar would appear to be, the statement that consistent roots are asymptotically unique
contains mathematically problematic features. This is because a root θ̂ is not a real number, but rather a measurable
function

satisfying

So if the estimating equation has multiple roots, then it has infinitely many roots if these are understood to be infinitely
many distinct measurable functions. In particular, it will have infinitely many distinct consistent roots, understood in
the same sense.

Huzurbazar (1948) proved that all such distinct consistent roots are asymptotically equivalent. However, the precise
mathematical statement of this needs to be given with some care. Perlman (1983) provided a more precise formulation
of Huzurbazar's result, by showing that for sufficiently small δ > 0, with probability one there exists exactly one
solution to the likelihood equation in the interval [θ0 − δ, θ0 + δ] for all but finitely many n, where θ0 is the true value of
the parameter. Once again, some regularity is required to achieve this result. This regularity is usually satisfied by
standard models.

One of the simplest ways to solve an equation of the form g(θ̂) = 0 is to write it as

or more generally as

where a(θ) ≠ 0. Such an identity suggests the iteration

which is known as simple iterative substitution. Unfortunately, this method usually converges rather slowly, or may not
converge at all. Attempting to choose a(θ) to
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optimise the rate of convergence leads to Newton–Raphson iteration, where(1.1)

where ġ represents the derivative of g with respect to θ The Newton–Raphson formula also appears in the classical
derivation of the first-order asymptotics for the maximum likelihood estimate, and is a basic tool for relating the
efficiency of more general estimating equations to the asymptotics of their consistent roots. Nevertheless, there are
other choices for a(θ) which are also well motivated for estimating functions, and will be developed in this book. For
example in likelihood estimation, using

known as Fisher's scoring of parameters, is often superior to Newton–Raphson when the sample size is large and the
estimating function is not well approximated by its tangent line at θ(j). See Fisher (1925). In some cases, Fisher scoring is
also easier to compute than Newton–Raphson. There is also an argument to be made for choosing a(θ) so that the
iterative steps are smaller than the steps of Newton–Raphson at an early stage of the iteration. This follows from the
fact that Newton–Raphson is motivated by local linearity around θ̂, and may be unstable when started far from the
root.

For many estimating functions with multiple roots, Newton–Raphson can be made to converge to any root provided
the algorithm is started within an appropriate domain. So it is only iterations which start close to the true value of the
parameter which have a reasonable probability of producing a consistent root. Most available iterative methods for
root-finding all share this property with Newton–Raphson. The numerical problems of finding all the roots of the
likelihood equation were considered by Barnett (1966). In view of the advances in computation that have been made
since the 1960s, some of the comments in Barnett's paper are now dated. However, many of the basic insights into the
advantages and disadvantages of iterative searches for the roots of estimating equations remain as true today as they
were then. Barnett considered five methods for iterating toward a root of the likelihood equation, and performed a
simulation study of the likelihood equation for the Cauchy location model. Barnett (1966) considered
Newton–Raphson iteration and compared it to Fisher's scoring of parameters and the fixed-derivative Newton
method as well as the method of false positions using the Cauchy location model as a test case. The method of false
positions is of particular importance for locating a root in a single-parameter model, or in a model with several
parameters in which all but one of the parameters can be solved for explicitly. While the procedure can be generalised
into higher dimensions, the advantage of using the method of false positions is that for a continuous real-valued
estimating function, the procedure is guaranteed to converge to a root—a guarantee provided by the intermediate
value theorem.

INTRODUCTION 3



A survey of the modern theory of efficient likelihood estimation for likelihoods with multiple local maxima can be
found in Lehmann (1983, pp. 420–427). In particular, if θ̂(1) is a -consistent estimator for θ, then the one-step estimator,
θ̂(2), found by applying Newton–Raphson iteration (1.1) to θ ̂(1), will be asymptotically efficient. While this would seem to
provide a satisfactory theory for root approximation and selection, the method leaves unanswered the problem of how
to appropriately select a -consistent estimator to use as a starting point. Moreover,
asymptotic considerations can only take us so far: there are infinitely many asymptotically efficient estimators which
can be constructed even in the most regular of models. How to choose among them remains a problem.

Recently, attention has turned to the problem of multiple roots which arise with more general estimating equations. An
example is the quasi-score. Suppose that Y is a random column vector of dimension n. A standard semiparametric model
for Y assumes a known form for the mean vector and the covariance matrix

as functions of an unknown k-dimensional parameter θ. The quasi-score function is(1.2)

where once again the dot operator denotes (vector) differentiation with respect to θ, and (·)t denotes the transpose
operation. This, and other such estimating functions share certain properties with the score function: they are
unbiased(1.3)

and information unbiased(1.4)

for all θ. However, while these are standard properties of estimating functions, neither property is essential for studying
the phenomenon of multiple roots. Under mild regularity, an estimating function will have a consistent root (see
Crowder, 1986). In addition, under reasonable regularity, any consistent root of g is unique with probability tending to
one; see Tzavelas (1998) for a proof of uniqueness for quasi-score functions. Thus in these, and many other cases, our
central interest is how the consistent root of the estimating function can be determined.

While many of the multiple root issues for estimating functions are identical to multiple root problems for the
likelihood equations, the major difference is that estimating functions cannot typically be represented as the derivative
of an objective function, such as the log-likelihood. This means that it is not possible to distinguish between the roots
of a general estimating function as a likelihood does among its relative maxima. In likelihood estimation, there is a
solution to the likelihood equations which is distinguished from the others by being a global maximum of the
likelihood. Moreover, extraneous roots of the likelihood equation that
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correspond to local minima can usually be dismissed. However, for a quasi-score estimating equation, there is no
comparable procedure in general. An exception to this is the case where we have a quasi-score function for a real-
valued parameter. If θ is a real-valued parameter, it is possible to artificially construct an objective function, say λ(θ),
whose derivative is g(θ), by integrating the estimating function:(1.5)

Here θ0 is arbitrary and may be chosen for computational convenience. If g is the score function, then, up to an additive
constant, λ is the log-likelihood. On the other hand, if g is the quasi-score function, then λ, as defined by (1.5), is the
quasilikelihood. See McCullagh and Nelder (1989). However, for estimating functions other than the score function, λ(θ)
is not justified by the usual theoretical considerations which justify likelihoods directly as measures of agreement
between parameters and data. Moreover, when θ is a vector-valued parameter, the estimating function g also becomes
vector-valued, and the line integral(1.6)

where η = (η1, …, η k)t is typically path-dependent. Therefore it is not well defined. If g is the score vector, this ambiguity
is avoided, because the vector field defined by g on Θ is conservative, being the gradient vector field of the
loglikelihood. If g(θ) is a conservative vector field, then (1.6) is path-independent. However, this is not the case for
general estimating functions such as quasi-score functions and others.

1.2 Organisation of the book
This book is organised as follows. Chapter 2 gives a survey of the basic concepts of estimating functions, which are
used in subsequent chapters. In Section 2.1, the concept of unbiasedness for estimating functions is introduced as a
generalisation of the concept of an unbiased estimator. Godambe efficiency, also known as the Godambe optimality
criterion, is introduced in Section 2.2 by generalising the concept of minimum variance unbiased estimation. Under
standard regularity conditions in a parametric model, within the class of estimating functions which are unbiased and
information unbiased, the score function is characterised (Section 2.3) as the estimating function with maximal
Godambe efficiency. Extensions to the multiparameter case are given in Section 2.4, and the connection to the Riesz
representation theorem is described briefly in Section 2.5. The rest of the chapter in Section 2.6 is given over to a
number of examples from semiparametric models (Section 2.6.1), martingale estimating functions for stochastic
processes (Section 2.6.2), empirical characteristic function methods (Section 2.6.3) and quadrat sampling (Section
2.6.4). In some of these examples,
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the estimating equations can have more than one solution. However, the detailed discussion of these problems is
postponed until Chapter 4.

Chapter 3 surveys a variety of root-finding and hill-climbing algorithms that are useful for solving estimating equations
or maximising artificial likelihoods. While Newton-Raphson forms the cornerstone of many numerical methods for
estimating functions, the chapter starts with an even more basic technique known as iterative substitution. The linear
convergence of iterative substitution is illustrated in Section 3.1. Other methods, including Newton–Raphson, are
motivated as attempts to improve the rate of convergence of iterative substitution. However, there are many possible
ways to modify the Newton–Raphson algorithm, include the popular class of quasi-Newton algorithms (Section 3.6).
The method of false positions and Muller's method are introduced in Sections 3.3 and 3.4, respectively. The
contractive mapping theorem, which provides general conditions for the convergence of a multiparameter algorithm, is
stated and proved in Section 3.5. Unlike many of the algorithms discussed in the chapter, the EM-algorithm is
quintessentially statistical. Its popularity is due in part to its reliability and its applicability to data sets which can be
represented as marginalised versions of some full and more tractable data set. The EM-algorithm is described in
generality and illustrated with examples in Section 3.7. Among root-finding algorithms, the linear convergence of
iterative substitution and the EM-algorithm is considered fairly slow. In Section 3.8, Aitken's method for accelerating
linear convergence is developed, along with a refinement known as Steffensen's method. Accelerated algorithms of this
kind are sometimes not as reliable as their original slow versions, but can converge at a rate that approximates Newton-
Raphson in speed. Bernoulli's method and the quotient-difference algorithm (Section 3.9) are of secondary interest in
the solution of polynomial estimating equations, but are included because they show the close relationship between
solving polynomial equations and solving linear recursions. Often, statisticians fail to use additional tools that are
available for analysing polynomials for those special cases where the estimating functions are polynomial in nature.
Much of the rest of the chapter is concerned with special methods that can be implemented in this case. Sections 3.10
and 3.11 discuss Sturm's method and the QR-algorithm for finding and studing the roots of polynomials. In Section
3.12, the Nelder-Mead algorithm is described. The advantage of the Nelder-Mead algorithm is its flexible character in
maximising or minimising objective functions: the algorithm can converge to local maxima even when the objective
function is not differentiable. Finally, in Section 3.13, we consider the problem of matrix inversion which arises in the
solution to quasi-likelihood equations. The method of Jacobi iteration for approximate inversion of matrices is
described and applied to a problem in quadrat sampling from Chapter 2.

Chapter 4 is perhaps the most eclectic chapter in the book. Its basic purpose is to study the broad class of models
which have difficult problems of non-linearity and multiple roots. We take the theory of estimating functions out for a
test drive in some rough terrain to assess its performance capabilities. Mixture models are studied in
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Section 4.2, and the relationship between non-identifiability and multiple roots is examined. A model for bivariate
normal paired data with standardised marginals is presented in Section 4.3, where it is shown that the unusual
restriction on the marginals leads to a cubic estimating equation for the correlation coefficient with as many as three
roots. In Section 4.4, the Cauchy distribution and the symmetric stable laws are discussed in detail. The problem of
evaluating the symmetric stable densities is used as a starting point for another numerical technique: accelerating the
convergence of an infinite series using the Euler transformation. A variety of estimating functions for the location,
scale and exponent parameters are also described. The chapter takes a philosophical turn in Section 4.5, where
examples with inconsistent global maximum likelihood estimates are studied. A natural question to ask is whether the
likelihood function can be used to order the roots of the likelihood equation from the most to the least plausible. The
existence of such inconsistent MLE's raises difficult questions about the widely accepted principle that the likelihood
function gives relative ‘plausibility’ weights to the points in the parameter space. In Sections 4.6, 4.7 and 4.8, three
models, the stratified normal with common mean, regression with measurement error, and weighted likelihood, are
considered and found to have multiple roots in their estimating equations.

The task of detecting multiple roots is also important. As Section 4.9 asks, how can we be sure that an estimating
equation does not have multiple solutions or that an artificial likelihood does not have several local maxima? The Tobit
model provides an instructive example. When we find that we have more than one root, how do we know that we have
found all of them (Section 4.10)? We can also treat multiple roots as a point process (Section 4.11) and try to assess
their frequency throughout the parameter space. We can also try to modify the estimating function or the artificial
likelihood so as to remove unstable extraneous roots by smoothing (Section 4.12).

In Chapter 5, we turn our attention to the specific problem of selecting a root of an estimating equation with more
than one root. In Section 5.2, the problem of solving an estimating equation is discussed and distinguished from the
problem of estimating the interest parameter from the viewpoint of constructing an iterative algorithm. A class of
irregular estimating functions is introduced in Section 5.3, where we see that multiple roots arise due to the irregularity
of the estimating functions. It is seen that one may have a unique solution to an estimating equation if the irregularity
of the estimating function is removed. The most common method for efficient estimation—iterating using one step of
the Newton–Raphson from a consistent estimator—is described in Section 5.4. The concept of an efficient likelihood
estimator is defined and generalised to a Godambe efficient estimator for a general estimating function. Modifications
to the basic Newton–Raphson iterative procedure are suggested in Sections 5.5 and 5.6 that are particularly applicable
to estimating functions. In Section 5.5, a modified Newton–Raphson algorithm is presented and motivated by
consideration of a related dynamical system, and in Section 5.6, the information identity is used to motivate a another
modification of the basic procedure. Continuing in a vein of modifying standard
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numerical algorithms for statistical purposes, Section 5.7 proposes a modified Muller's method for root-finding.

One of the most direct ways to assess a root-selection method is to see whether its asymptotic properties are correct.
This is the approach of Section 5.8, following a suggestion of Heyde and Morton (1998). Other methods, using
weighted least squares or the information identity, are discussed in Section 5.9. The bootstrap quadratic likelihood is
introduced in Section 5.10. Following this definition, it is natural to pick the root of an estimating equation whose
bootstrap distribution is closest to χ2 in distribution, as dictated by the standard asymptotics at the true value of the
parameter. Another information theoretic approach for location models is discussed in Section 5.11 based upon the
shifted information function.

Arguably, it is not too radical to suggest that a model is a hypothetical construct whose utility to the researcher is at
least partly determined by its mathematical tractability. There are many cases of models with multiple roots in their
likelihood equations which can be extended to larger models where the root is unique. This is the strategy proposed in
Section 5.12. Section 5.13 considers the much neglected problem of estimating equations which have no solutions at
all.

Finally, Section 5.14 concerns the construction of confidence intervals using unbiased estimating functions. Section
5.14.2 shows that the computational cost can be quite substantial for setting second-order accurate confidence
intervals using traditional bootstrap methods even though the original estimating equation admits a unique solution.
The computational problem can be avoided using the method of the estimating function bootstrap introduced in
Section 5.14.3. Confidence intervals using the latter method are second-order accurate, and, in addition, have the nice
property of being transformation-respecting, a property enjoyed by more computational methods such as the BCa

method.

When an estimating equation has more than one root, the selection of a point estimator can be problematic. The
construction of test statistics can also be difficult as well. For example, a Wald test based on the root of an estimating
equation may behave poorly if the root is badly chosen. For parametric inference one may resort to the likelihood
function to order the roots according to their relative plausibiltiy as estimates. However, in general there does not exist
any objective function such that a given estimating function can be regarded as the gradient vector of the scalar
objective function. This is because an estimating function is not generally obtained by minimising a ‘risk’ function, or
by maximising a ‘plausibility weighting’ function such as a likelihood. Chapter 6 is devoted to the problem of building
an artificial objective function for use in conjunction with an estimating function. Whenever possible the problem of
selecting an appropriate root of an estimating equation using the various artificial likelihoods is discussed throughout
this chapter.

The first approach discussed in Section 6.2 is by projecting the likelihood ratio onto a possibly largest subspace so that
the projection can be computed using only the information of mean and variance functions. The derived artificial
likelihood function may be regarded as an objective function for the quasi-score based on the
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same semiparametric information. The approach of Section 6.2 is generalised in Section 6.3 where we consider the
projection of the log likelihood onto a subspace spanned by some functionally independent elementary estimating
functions. Since the projection onto this space can not be computed in general using only the first few moment
specifications, so an approximate form of the log likelihood function is used in the projection instead. This approach
results in an approximate objective function for the optimally combined estimating function using those elementary
estimating functions. The artificial projected likelihoods of Sections 6.2 and 6.3, as well as other alternative approaches
in later sections, share many properties in common with a genuine likelihood functions. The null distribution of an
approximate likelihood ratio statistic, for instance, follows a χ2 distribution with appropriate degrees of freedom.

The idea of integrating an estimating function in the parameter space is briefly discussed in Section 6.4. An objective
function defined in this fashion inevitably depends in general on the path one chooses. This approach, however, may
be of some value when only local paths are of interest or when the estimating function is nearly conservative.

In Section 6.5, an entirely different approach is taken to constructing an artificial likelihood. Since the integrated quasi-
score function is path-dependent, we examine the non-conservative vector field defined by the quasi-score. A
conservative component of this vector field is extracted using a generalised version of the Helmholtz decomposition.
It is this component which can be integrated in a path-independent manner to yield a quasi-likelihood. This technique
is not without its problems, however, because the Helmholtz decomposition is not unique. Since a non-conservative
component of the quasi-score is to be discarded, the natural way to perform the Helmoltz decomposition is to make
sure that the non-conservative component is as statistically uninformative as possible. Such a decomposition is
possible when the estimating function is linear. This motivates the discussion of quadratic local likelihoods in Sections
6.5.2–6.5.5. The generalised method of moments and quadratic inference functions are described in Section 6.6. Our
approach to quadratic inference functions follows Qu et al. (2000). This method provides another way of building an
artificial objective function for inference.

In Chapter 7, we explore the relationship between the numerical methods described in earlier chapters and the theory
of dynamical systems. Our attention will turn from the original estimating function to a dynamical estimating system,
whose domains of attraction and repulsion can be studied in relation to the estimation problem. In Section 7.1, we
define a dynamical estimating system using an estimating function. Basic terminologies on dynamical systems are
established in this section. In Section 7.2, we define the concepts of stability of a fixed point of a dynamical system.
These concepts are studied via linear dynamical systems. Stability of roots to an estimating equation can be studied
using the theories given in Section 7.2 through the linearisation method. In Section 7.3, a different method, the
Liapunov's method, is introduced and applied to the theory of dynamical estimating systems. In particular, we prove
that a consistent root of an estimating
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equation, under mild conditions, is an asymptotically stable fixed point of the associated dynamical estimating system.
In Section 7.4 we give derivations of and formal proofs for the properties of the modified Newton's methods
introduced in Sections 5.5 and 5.6. For this purpose, the Newton-Raphson method is reexamined in detail from the
perspective of the theory of dynamical systems.

While parameter estimation is usually performed in parameter spaces with real-valued parameters, the domains of
attraction of dynamical systems are often more clearly understood in the complex plane. While recognising the
spurious nature of imaginary parameter values, Section 7.5 explores the Julia sets and domains of attraction of
estimating functions, taking the estimation of the correlation coefficient for bivariate normal data as an example.

Chapter 8, the last chapter of the book, demonstrates that the numerical methods of earlier chapters are not
constrained by statistical philosophy. We shall develop the theory of Bayesian estimating functions and show that this
theory has Bayesian analogues for many of the concepts introduced in earlier chapters. While point estimation is often
considered of secondary importance to Bayesians, the Bayesian estimating function methodology does have important
applications in actuarial science, as explained in Section 8.5.
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2 Estimating functions

2.1 Basic denitions
In this chapter, we shall develop some of the basic theory of estimating functions using an information criterion that is
essentially frequentist in nature. Methods such as least squares, maximum likelihood and minimum chi-square
estimation have the common property that they involve the construction and solution to an estimating equation g(θ ̂, y) =
0, where y is the observed data whose distribution is governed by the value of θ, an unknown parameter.

In what follows, the parameter space Θ will be a k-dimensional subset of the Euclidean space Rk. While it will not be
essential to the development of the theory of estimating functions, we will usually find it convenient to assume that Θ
is an open subset of Rk. Let us also suppose that Y is a random quantity whose distribution is governed by the
parameter θ ∈ Θ. Let Y be an element of some set y, which is called the sample space. We shall usually suppose that Y
is a subset of Rn for some positive integer n. However, this need not always be the case. The quantity Y can also
represent the realised value of some continuous time stochastic process. For such an application, the sample space y
will be a space of paths.

By an estimating function, we shall mean a function

with finite second moment, in the sense that Eθg2 (θ, Y) < ∞ for all θ ∈ Θ. By constructing an appropriate estimating
function, it is our intention to find an estimator θ ̂ = θ ̂(Y) which is a solution to the estimating equation g(θ ̂, Y) = 0.

In order to ensure that the solution θ̂ to this equation is a reasonable estimator, it is usual to suppose that the
estimating function is unbiased in the sense that(2.1)

for all θ ∈ Θ. The concept of an unbiased estimating function can be traced far back in early statistical work, but was
formalised in Kendall (1951) as a concept distinct from that of the unbiasedness of an estimator. In fact, the
requirement that an estimating function g be unbiased allows us to generalise the idea of the unbiasedness of an
estimator. For example, suppose that s(Y) is an estimator for θ. Defining g(θ, Y) = s(Y)−θ, we can see that the
estimating function g is unbiased



if and only if the estimator s(Y) is unbiased. While every unbiased estimator with finite variance can be represented
as the root of an unbiased estimating function, it is not the case that the root of a general unbiased estimating function
is itself unbiased. The reason for this is that most estimating functions do not separate as a difference of the form
s(Y) −θ.

2.2 Godambe efciency: one-parameter models
There are many possible estimating functions that could be used to estimate a parameter for any particular model.
How can we choose among them? In the theory of best unbiased estimation, we restrict to the class of all unbiased
estimators of a parameter and choose that estimator from the class which has minimum variance. So it is natural to try
to do much the same thing for the class of unbiased estimating functions. Suppose that θ is a real parameter, and that
g(θ, Y) is a real-valued function of θ and Y. By analogy with best unbiased estimation, we could seek that function g
which minimises

in the class of unbiased estimating functions. However, this approach is not fruitful: if g(θ, Y) is unbiased, and c(θ) is a
real-valued function which does not depend on Y, then the product g1(θ, Y) = c(θ) g(θ) is also an unbiased estimating
function. So the function g ≡ 0 is the unbiased estimating function with minimum variance in the sense described
above. Unfortunately, such a function has no utility for statistical inference.

A better approach is to try to minimise the variance within a class of estimating functions which have been standardised
so as to prevent the zero function or other inappropriate multiples from being considered. One such standardisation is
through the expected derivative of the estimating function. For example, suppose we define gs(θ, Y) = g(θ, Y)/Eθ {ġ(θ,
Y)}. (Of course, we have to assume that g is differentiable with respect to θ for this to be meaningful.) This
standardisation leads to the following definition.

Definition 2.1 Suppose thatEθ {gs (θ, Y)}2is minimised among the class of all unbiased standardised estimating functionsgs by gs = g*s,
for all θ ∈ Θ. Then we shall say thatg*sis a Godambe efficient estimating function.

This definition can be modified to avoid direct reference to standardised estimating functions as follows.

Definition 2.2 Let g be an unbiased estimating function that is differentiable with respect to θ. We define theGodambe efficiency of g
by(2.2)
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An estimating function g* is said to be Godambe efficient if effθ(g*) ≥ effθ(g) for all differentiable g and for all θ.

The concept of Godambe efficiency was first proposed in Godambe (1960) and Durbin (1960). It is the extensive
promotion and elaboration of the consequences of this definition by V. P. Godambe that leads us attach his name to
the concept in Definitions 2.1 and 2.2.

Henceforth, we shall simplify the notation g(θ, Y) by denoting it as g(θ) with the data Y suppressed. Let us consider the
relationship between Godambe efficient estimating functions and the theory of best unbiased estimation. Suppose s(Y)
is an unbiased estimator for θ, so that g(θ) = s(Y) − θ is an unbiased estimating function. Then ġ(θ) = − 1 and

So if g*(θ) = s*(Y) − θ is Godambe efficient, it will follow that Varθ{s*(Y)} ≤ Varθ{s(Y)} for any unbiased estimator
s(Y). We can conclude that s*(Y) is the best unbiased estimator in the classical sense.

2.3 The score function: one-parameter models
Unlike best unbiased estimators, which do not exist in many models, it is always possible to find a Godambe efficient
unbiased estimating function, provided the model possesses sufficient regularity. For example, suppose that y = Rn, and
that Y has a continuous distribution with joint probability density function (PDF) f(y; θ), where θ lies in some subset of
R. The log-likelihood function for θ is defined to be ℓ(θ) = log f(y; θ) and the score function is then defined as u(θ) = ℓ̇(θ).

A maximum likelihood estimate (MLE) θ̂ is defined to be a value of θ at which the log-likelihood attains its global
maximum. This value need not exist, and even when it does exist, need not be unique. However, when it exists and is
unique, we usually speak of the maximum likelihood estimate or the MLE for short. Provided the MLE is to be found
in the interior of the parameter space, and that the log-likelihood is a differentiable function of θ, then the MLE will be
a solution of the estimating equation u(θ̂) = 0. The function u(θ) is typically unbiased, because
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For u(θ) to be unbiased, we can see that the model should be sufficiently regular as to permit the interchange of a
derivative and integral as seen above.

The score function u(θ) typically has finite second moment with I(θ) = Eθ {u2(θ)}. The function I(θ) is called the Fisher
information or the expected information. The Fisher information exists in many models even when the MLE θ̂ has infinite
second moment.

Henceforth, let us presume that the model is sufficiently regular as to allow us to interchange derivatives and integrals
as needed in the calculations which follow. With this regularity in hand, let us find the correlation between a given
unbiased estimating function g(θ) and the score function u(θ). First, we have

So the correlation between g and u is(2.3)

It follows from equation (2.3) that an unbiased estimating function g(θ) has maximum Godambe efficiency when the
correlation coefficient is ±1. This will hold if there exist functions a(θ) and b(θ) which do not depend upon y such that

In this representation, b(θ) must vanish because both u(θ) and g(θ) are unbiased. Thus g(θ) must be a multiple of u(θ).

It is immediate from this result that any stationary point (local maximum or minimum, or point of inflection) of the
likelihood will be a root of an estimating function which is Godambe efficient. If the function a(θ) is nowhere
vanishing, the converse will also hold: any root of g(θ) will be a stationary point of the likelihood. From the perspective
of estimation theory, there is no value in choosing a function a(θ) which does have roots inΘ. Any such root would be
functionally independent of the data, and would therefore have no value for inference. So, in practice, we can choose
a(θ) = 1. By maximising the efficiency criterion, we will estimate θ using the MLE θ ̂, if this is uniquely defined.
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Among the class of non-zero unbiased estimating functions g(θ) for which effθ(g) is maximum, the score function is
uniquely determined by the property that it is information unbiased. An unbiased estimating function g(θ) for a one-
parameter model is said to be information unbiased if(2.4)

For if g(θ) = a(θ) u(θ), then equation (2.4) implies that −a(θ)Eθ{u(θ)} =a2(θ)I(θ). This requires that a(θ) = 0 or a(θ) = 1
for all θ.

However, unlike the method of maximum likelihood, the Godambe efficiency criterion provides us with no easy way
to choose among the roots of g(θ) if there are more than one.

2.4 Godambe efciency: multiparameter models
The concept of a Godambe efficient estimating function can be generalised to vector-valued estimating functions for
multiparameter models. If

then we let Eθ {ġ(θ)} be the k × k matrix whose (j, k)-th element is Eθ ∂gj(θ)/∂θk
Definition 2.3 The Godambe efficiency for g(θ) is defined to be the k × k symmetric matrix(2.5)

We can also interpret this definition of efficiency as the inverse of the covariance matrix for a standardised estimating
function. We can write(2.6)

This can be written as a covariance matrix, namely

of the standardised function(2.7)

So an equivalent formulation of Definition 2.3 is the following.

Definition 2.4 The Godambe efficiency for g(θ) can also be defined to be the inverse of the k × k symmetric matrix

where gs(θ) is the standardised estimating function defined by (2.7) above.
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In the case of a one-parameter model, as discussed in the previous section, we sought to minimise the variance of a
standardised estimating function. So it is natural that for the multi-parameter case we should seek to minimise the size
of the covariance matrix of gs(θ), in some sense. Alternatively, we can try to maximise the matrix effθ(g) defined in (2.5).
To maximise or minimise such matrices requires a way of partially ordering the set of all k × k non-negative definite
symmetric matrices. A linear ordering is out of the question, as it is for most objects in dimensions greater than one.

One way to partially order matrices is to use the Loewner ordering. Let A and B be non-negative definite symmetric
matrices of dimension k × k. We say that A dominates B in the sense of Loewner ordering if the matrix A − B is non-
negative definite. It is convenient to write A ≥ B when A dominates B in this sense. Loewner ordering is a partial
ordering of the class of non-negative definite symmetric matrices in the sense that it is antisymmetric, reflexive and
transitive. Additionally, the inversion A → A−1 is antitonic in the sense that A ≥ B if and only if B−1 ≥ A−1, assuming
that the matrices are of full rank. To prove this last statement, note that if A ≥ B, then

is non-negative definite. Thus AB−1A ≥ A. Multiplying by A−1 on both the right and the left gives the desired result. A
consequence of this result is that maximising effθ(G) with respect to Loewner ordering is equivalent to minimising
{effθ(g)}−1 with respect to this ordering.

This leads us to the following definition.

Definition 2.5 An unbiased estimating function g*(θ) shall be said to be Godambe efficient if, for any other unbiased estimating
function g(θ), the matrix

is non-negative definite for all θ ∈ Θ.

An equivalent formulation of this is the following.

Definition 2.6 If a standardised multiparameter estimating function g*s(θ) has the property that the matrix

is non-negative definite for every θ and for every standardised estimating function gs(θ) then g*s(θ) is Godambe efficient.

With this concept of efficiency, Kale (1962) was able to show that the multiparameter score function
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has maximum Godambe efficiency for sufficiently regular models. Additional work on multiparameter efficiency can
be found in Ferreira (1982) and Chandrasekar (1983). In Chandrasekar and Kale (1984), it was shown that the
Loewner ordering of effθ(g) was compatible with a partial ordering based either upon the trace or the determinant of
effθ(g) in the sense that the following three conditions are equivalent:

1. effθ(g*) − effθ(g) is non-negative definite for all g and all θ
2. trace{effθ(g*)} ≥ trace{effθ(g)} for all g and all θ
3. det{effθ(g*)} ≥ det{effθ(g)} for all g and all θ.

2.5 A geometric interpretation of Godambe efciency
Some of the motivation for the concept of Godambe efficiency can be obtained from geometric considerations.
Readers who are unfamiliar with the methods of functional analysis and Hilbert space geometry can skip this section,
as it is independent of subsequent material.

Let us restrict to the case of a one-parameter model, so that k = 1 and the estimating functions are real-valued. Note
that the class of unbiased estimating functions forms a vector-space, because ag(θ) + bh(θ) is an unbiased estimating
function whenever g and h are unbiased estimating functions. The constants a and b can depend smoothly upon θ but
cannot be random.

For any two estimating functions g(θ) and h(θ), let us define the inner product

A special case occurs when g = h. Following standard vector space convention, we shall write

Let us also define a linear functional ∇θ on the set of estimating functions by

The reason for the minus sign will become clearer later. The norm of the linear functional ∇θ is then determined as(2.8)

Squaring both sides of this equation, we see that the right-hand side becomes supg effθ(g). This provides us with an
alternative interpretation of the problem of maximising the Godambe efficiency. The search for an estimating function
which maximises the efficiency is also a calculation of the norm of a linear functional. Henceforth, let us call ∇θ the score
functional.

In a complete inner product space, the Riesz Representation Theorem tells us that a linear functional with finite norm can
be represented as an inner product
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with respect to a fixed vector in the space. It is tempting to conclude immediately that this fixed vector should be the
score function, so that(2.9)

where u is the score. We can check that this formula is correct by noting that

However, the Riesz Representation Theorem cannot be immediately invoked, because the space of estimating
functions on which ∇θ has been defined is not complete—the limit of a sequence of differentiable functions need not
be differentiable. So in order to be able to apply the Riesz Representation Theorem, we have to remove the restriction
of differentiability with respect to θ, and extend ∇θ to the space of all unbiased estimating functions g(θ) such that Eθ

{g2(θ)} < ∞. We can extend ∇θ (g) to non-differentiable g by defining(2.10)

Within the space of all unbiased, square integrable estimating functions, there are two subspaces of particular interest.
The first of these subspaces is the set of all estimating functions g(θ) which are annihilated by ∇θ. We say that h(θ) is a
first-order E-ancillary function if ∇θ(h) = 0 for all θ ∈ Θ. The complementary space is the set of all estimating functions
which are orthogonal to all the first-order E-ancillary functions. That is, the set of all g(θ) such that〈g, h〉θ = 0 for all
first-order E-ancillary h(θ) and for all θ. The set of all g(θ) satisfying this property is called the set of first-order E-sufficient
functions.

As we have seen, the Godambe efficient functions are multiples a(θ) u(θ) of the score function u(θ), where a(θ) is not a
function of y. These functions form a vector subspace, which is precisely the class of first-order E-sufficient estimating
functions defined above. The complementary subspace of first order E-ancillary functions is the set of all estimating
functions h(θ) such that 〈h, u〉θ = 0.

If maximising the Godambe efficiency is equivalent to calculating the norm of the score functional, then it is natural to
consider how the concept of efficiency changes when we modify ∇θ to some other functional. For example, consider
the functional
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It can be seen that ∇θ is the limiting form of Dθ,∈ as ∈ → 0. If ∥Dθ,∈ ∥ < ∞ then Dθ,∈ will have a Riesz representation.

Let us find this Riesz representation. Suppose

Define

Then

So the function u
∈
(θ) is an unbiased square integrable estimating function. If we take the inner product of u

∈
(θ) with any

other estimating function, we see that

This provides the Riesz representation for Dθ,∈

Along with the linear functional Dθ,∈ and its Riesz representation, we have a corresponding efficiency criterion given by

which, in the limit as ∈ → 0, goes to the Godambe efficiency criterion.
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An estimating function h(θ) which is annihilated by every functional Dθ,∈, in the sense that Dθ,∈(h) = 0 for all θ and ∈ is
called an E-ancillary estimating function. The closure of the space of all such functions is called the E-ancillary subspace.
Its orthogonal complement is the class of all estimating functions g(θ) such that

for every θ ∈ Θ and every E-ancillary estimating function h. The subspace of all such functions is called the complete E-
sufficient subspace. Together, the E-ancillary subspace and the complete E-sufficient subspace form an orthogonal
decomposition of the space of all estimating functions: any estimating function can be uniquely represented as a sum
of the form g(θ) + h(θ), where h(θ) lies in the E-ancillary subspace, and g(θ) lies in the complete E-sufficient subspace.
As can be seen, the decomposition is broadly analogous to Basu's Theorem which states that a complete sufficient
statistic is independent of an ancillary statistic for a parameter. Indeed, in the special case where a complete sufficient
statistic T exists, it can be shown that the complete E-sufficient subspace is the class of T-measurable estimating
functions. However, the concept of complete sufficiency of a statistic and complete E-sufficiency of a subspace of
estimating functions are not equivalent. The complete E-sufficient subspace exists in much greater generality than does
a complete sufficient statistic for θ. Note that the first-order E-sufficient estimating functions are elements of the
complete E-sufficient subspace. This follows from the fact that any E-ancillary estimating function is a fortiori a first-
order E-ancillary estimating function.

In the presence of some regularity that we shall not develop here, it can be shown that the estimating functions
generated by the likelihood ratios span the complete E-sufficient subspace. So any estimating function in the complete
E-sufficient subspace can be represented as the limit of estimating functions of the form(2.11)

where aj(θ) does not depend upon y, and the right-hand side is required to be square-integrable. The set of centred
square-integrable likelihood ratios f(y; θ+∈)/f(y; θ) − 1, for varying ∈ is called the Bahadur basis for the complete E-
sufficient subspace.

Another basis for the complete E-sufficient subspace is obtained from a Taylor expansion of the numerator of a
typical Bahadur basis estimating function. If f(y; θ) is analytic in θ, we can write each Bahadur basis function as
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The estimating functions(2.12)

are called the Bhattacharyya basis functions for the complete E-sufficient subspace. It can be seen that the score function is
the first of these basis functions. As with the Bahadur basis, the estimating functions of the Bhattacharyya basis can be
used to expand or approximate elements in the complete E-sufficient subspace. For suitably regular models, the
estimating functions in the complete E-sufficient subspace can be represented as limits of functions of the form(2.13)

where aj(θ) does not depend on y.

One of the advantages of the geometrical approach to estimating functions is that it is possible to extend the theory to
multiple parameters without the need to use matrix algebra and partial orderings on matrices. For the geometrical
approach we continue to regard an estimating function g(θ) as a real-valued function of a vector-valued parameter θ.
(We can always assemble a vector-valued estimating function from a set of real-valued estimating functions by using
the real-valued functions as the components of a vector.) An estimating function h(θ) will be said to be first-order E-
ancillary if(2.14)

for all θ and all η → θ. An estimating function g(θ) is then said to be first-order E-sufficient if 〈g, h〉;θ = 0 for all first-
order E-ancillary functions h(θ) and for all θ ∈ θ. For regular models with a k-dimensional vector-valued parameter, the
first-order E-sufficient subspace is spanned by the k linearly independent unbiased estimating functions which are the
components of the score vector.

For more information about the geometry of estimating functions, we refer the reader to Small and McLeish (1994).

2.6 Types of estimating functions

2.6.1 QUASI-LIKELIHOOD AND SEMI-PARAMETRIC MODELS
Let us now consider the application of the theory of estimating functions to semi-parametric models in which the
parametric assumptions are only partially specified. Suppose that Y is an n × 1 vector of observations with mean μ(θ)
= Eθ(Y) and covariance matrix ∑(θ). We shall suppose that μ(θ) is a known function of the unknown parameter θ ∈ Θ
⊂ Rk. Similarly, suppose that ∑(θ) is a known function of θ. With these assumptions, the observation vector Y is said to
be governed by a semi-parametric model, in the sense that the first and second moments are specified by the
parameter, while the distribution is otherwise unspecified.
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With semi-parametric information about the distribution of Y, the class of estimating functions that can be guaranteed
to be both unbiased and square-integrable is limited. A class of estimating functions which are both unbiased and
square-integrable are those of the form g(θ) = a(θ) {Y − μ(θ)}, where a(θ) is a k × n matrix that does not depend on
the observations.

Within this class we can look for that choice of a(θ) which maximises the value of effθ(g). In this case, the score
function will not be the general solution because it will not be a function of the required linear form in Y in general.
The maximising value of a(θ) is found by setting a*(θ) = μ̇t(θ) Σ−1(θ). For a proof of this, we refer the reader to Heyde
(1997, Theorem 2.3). The resulting estimating function(2.15)

is called the quasi-score function and a solution to the equation g(θ ̂) = 0 is called a quasi-likelihood estimator.

The quasi-score function shares many important properties with the score function but also has some important
differences. The quasi-score and the score both have the properties of unbiasedness and information unbiasedness.
However, an important difference between the score function u(θ) in any parametric model and the quasi-score
function g(θ) in a semi-parametric model is found when we construct the matrix of derivatives for each function. Note
that the matrix «(θ) of partial derivatives of the components of u with respect to the components of θ is symmetric,
because u ̇(θ) is actually the matrix of second partials of the log-likelihood. In contrast, the matrix ġ(θ) is generally not
symmetric. An important statistical consequence of this failure of symmetry comes when we examine an integrated
quasi-score of the form

where ds = (ds1,…, dsk)t is some vector differential along a smooth path from θ ̂ to a given θ. The path integral under
consideration will be path independent only if the matrix ġ(θ) is symmetric. When g(θ) is the score function of a
parametric model then the symmetry of u̇(θ) makes this integral path independent. In fact, the integral becomes the
difference in the log-likelihood:(2.16)

However, the failure of ġ(θ) to be symmetric means that there is generally no analog of equation (2.16) for the quasi-
score. Since an analog of (2.16) does not exist, quasi-likelihood estimates cannot usually be interpreted as the stationary
points (local maxima, minima, or saddle points) of some scalar objective function.

An obvious exception to this occurs when the parameter θ is real-valued. In this case, ġ(θ) is a 1 × 1 matrix and trivially
symmetric. The one-dimensional
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integral(2.17)

implicitly defines a function λ(θ), known as the quasi-likelihood function, which is determined by equation (2.17) except
for an arbitrary additive constant.

To illustrate the use of quasi-likelihood functions, let us consider a data set analysed by Bissel (1972). This data set
gives the number of defects found in 32 samples of cloth of various lengths, as shown in Figure 2.1.

At a first pass, it is tempting to treat the number of defects in various samples of cloth as a Poisson process. The
number of defects appearing in a given piece of cloth would then have a Poisson distribution whose mean would be
proportional to the length of the cloth. With this assumption, the numbers of defects Yj for given cloth lengths Lj

would be independent with Poisson distributions

and where θ is an unknown constant of proportionality. Fitting the MLE for θ gives

The mean number of defects plus and minus two standard deviations are plotted in Figure 2.1 for this Poisson model.

Fig. 2.1 The number of defects found in cloth of various lengths.
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A glance at Figure 2.1 supports the idea that the mean number of defects is roughly proportional to the length.
However, for Poisson variables, the variance equals the mean, and in this respect, the data look overdispersed. One
possible cause of such overdispersion is some variation or heterogeneity in the cloth. From the standpoint of
parametric inference, the next step is probably to find a model for the Yj's which allows for greater dispersion than is
possible in the Poisson family of distributions. For example, Bissel (1972) modelled the heterogeneity of the cloth by
supposing that the parameter θ was distinct for each Yj, and has a gamma distribution. However, we can avoid any
additional parametric assumptions by using a semi-parametric model. Suppose we write

and assume that Y1,…, Yn are independent. Then the quasi-score equation (2.15) becomes

This leads to the same estimate for θ as that found for the Poisson model, and provides us with some confidence that a
point estimator for θ is not unduly affected by overdispersion for this example. While the point estimate θ̂ is
unchanged, the confidence interval for θ will be affected by the dispersion parameter α. In practice, α will be unknown,
and will have to be estimated from the data. A naive moment estimator for α is given by

A rather different situation could arise if we were to consider modelling the variance as a non-linear function of θ and
Lj. For example, if μj(θ) = θLj and , then the efficient estimating equation for θ will not admit an explict
solution. This problem, and the possible multiple solutions to estimating equations arising with certain types of non-
linearity, shall be explored in future chapters.

Further consideration of this data set will take us beyond the scope of this book. The reader is referred to Bissel (1972)
for additional details.

2.6.2 MARTINGALE ESTIMATING FUNCTIONS
Quasi-likelihood methodology has been found to be fruitful for the statistical inference on stochastic processes which
are controlled by a stochastic differential
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equation involving one or more unknown parameters. In this section, we sketch the Hutton–Nelson theory of
martingale estimating functions for inference of such stochastic processes. The reader who is unfamiliar with the
theory of stochastic integration and semi-martingales is referred to Protter (1990). This application can be safely
skipped by the reader who does not wish to invest the time on the theory of stochastic integration and semimartingale
processes.

Let Yt, 0 ≤ t ≤ T, be a continuous time real-valued stochastic process defined on the time interval [0 T], and adapted to
a filtration Ft. We shall assume that Yt admits a decomposition into a sum of two stochastic processes

where At has bounded variation and Mt is a continuous time martingale. For stochastic processes of this kind, let
〈 〈Y〉 〉t represent the predictable quadratic variation of the process Yt.

There are many applications or interpretations of such a stochastic process, especially in finance where Y might
describe the dynamic behaviour of a stock index, or in the biological sciences, where Y might denote the size of a
population of organisms. We will assume that the stochastic behaviour of Y is controlled by an unknown parameter θ.

Martingale estimating functions are themselves martingales. This can be thought of as a dynamic version of the
unbiasedness property of estimating functions.

Definition 2.7Let Yt, 0 ≤ t ≤ T, be adapted to a right continuous filtration Ft. A stochastic process gt (θ) that is indexed by the
parameter θ and adapted to Ft is said to be a martingale estimating function if go(θ) = 0 and the martingale property

holds. (Here, T1 Λ T2is the minimum of T1and T2.)

If gt(θ) is a martingale estimating function, it follows that Eθ gt(θ) = 0 for all t.

Suppose that we can decompose Y into the sum of two stochastic processes so that Yt = At + Mt, where Mt is a
continuous time martingale and At is a predictable process. As the distribution of Y is governed by the unknown value
of θ, we should write more properly(2.18)

as the particular decomposition can only be performed if a value for θ is specified. The functions which have the
form(2.19)
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where at (θ) is a given predictable process, are called Hutton–Nelson martingale estimating functions, or simply
Hutton–Nelson estimating functions. It is easy to check that they satisfy Definition 2.7. In formula (2.19), the integral
is an Itô stochastic integral. The integrand at may also depend upon Y, but does so as a predictable process. Some care
must be taken in interpreting (2.19). The decomposition of Y into a predictable and a martingale component is
performed under the stochastic model governed by θ. Thus different values of θ give different martingale components.
In order for (2.19) to be meaningful, we must assume thatMt (θ) is a semimartingale process whatever the true value θ0 of
the parameter. In particular, this semimartingale becomes a martingale when θ = θ0, a result that parallels the
unbiasedness of estimating functions considered earlier.

Within the class of Hutton–Nelson estimating functions, it is possible to find one which maximises the Godambe
efficiency. This is given by(2.20)

Example 2.8 Black–Scholes model

Consider an asset whose price Yt at time t varies continuously according to the stochastic differential equation(2.21)

where Wt is standard Brownian motion and σ > 0 is the volatility or the diffusion coefficient. According to the
Black–Scholes model, the parameter θ = r − q, where r is the risk-free interest rate, and q is a continous dividend yield.
In the simplest form of the equation, the parameter θ is constant. If we wish to estimate θ to compare its estimated
value with the constant provided by the Black–Scholes model, then we can use a martingale estimating function to do
this. Setting dAt(θ) = θ Ytdt and dMt (θ) = dYt − θ Yt dt gives us a class of estimating functions of the form

Note thatWt is not directly observed. So we cannot include it in the integrating function explicitly. Since dMt = dYt − θ
Yt dt we get M ̇t = − Ytdt. Now E(dṀt|Ft−)=Yt dt, because Yt is a predictable process. Additionally, which maximises
the Godambe efficiency is at = 1/Yt, except for a constant factor that does not depend upon Y or t. Thus
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Setting gives

This Itô integral cannot be evaluated as if it were a Riemann integral. Note that if yt = log Yt, then Itô's Lemma implies
that

where So

We can conclude that(2.22)

Some insight into the nature of this estimate can be obtained by noting that yt obeys the stochastic differential equation

which is the equation for a Brownian motion with drift θ − σ2/2 and diffusion parameter σ. So Yt is an example of
geometric Brownian motion: an exponentiated Brownian motion. From this, it can be seen that θ ̂ is a moment estimator for
θ, which can also be obtained by solving yt = Eθ(yt).

To illustrate this formula, consider Figure 2.2, which shows the values of the Toronto Stock Exchange (TSE)
Composite 300 Index from January 1984 to December 1987 inclusive. The data consist of 1009 observations of the
index taken on a daily basis from January 3, 1984 to December 31, 1987.

Included in this picture is the famous drop in the market on October of 1987, which was dubbed ‘Black-and-Blue
Monday’ by stock market analysts. If we treat the index as the realisation of a Black–Scholes process, then the
parameter θ can be estimated by formula (2.22).

Figure 2.3 shows the process yt. The increment in yt over the observed period can be used to estimate θ provided σ is
known. An important feature of such diffusion processes is that the value of σ need not be estimated, but can be
completely determined from a path of the process. This follows from the fact that, in a certain sense, a single
realisation of the process contains an infinite amount of information about σ.
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Fig. 2.2 The TSE 300 Index from 1984 to 1987.

Fig. 2.3 The logarithm of the TSE 300 Index from 1984 to 1987.
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From an observed realisation of the process, σ is determined by the formula

where the limit is taken as the mesh of the partition 0 = t0 < t1 < … < tn = T goes to zero. In practice, we can use a
mesh no finer than one day, the gap between neighbouring observations of the index. This gives a value of σ of
approximately 27.68, using one day as the unit of time. So θ ̂ = 383.72.

Examining the index, we can easily question the appropriateness of the Black–Scholes model. According to
Black–Scholes theory, the increments of yt should be normally distributed, while the increments of Yt should have a
log-normal distribution. In view of the large drop in 1987 and other increments at other times, we might be tempted to
conclude that the increments of yt have heavier distribution tails than can be explained by the normal assumption. We
shall consider this possibility next as we look at estimating functions for symmetric stable distributions.

The reader who would like to find out more about martingale estimating functions is referred to Heyde (1997).

2.6.3 EMPIRICAL CHARACTERISTIC FUNCTIONS AND STABLE LAWS
Estimating function methodology is also useful for estimation in parametric models where the densities are difficult or
intractable to calculate. One such example is the family of densities for symmetric stable laws. Stable laws arise as natural
generalisations of the normal distribution, and include the Cauchy distribution as a special case. Suppose that Y1 and Y2

are independent random variables with common distribution F.

Definition 2.9The distribution F is said to be stable if for each pair of constants a and b, there exist constants c and d such that

If F is a stable distribution, then it can be shown that there is a constant 0 < α ≤ 2, called the exponent of F, such that cα
= aα + bα. For example, a normal distribution is stable with exponent α = 2, and a Cauchy distribution is also stable
with exponent α = 1. Stable laws are generalisations of the normal laws commonly used in statistical inference. Like the
normal, the stable laws are closed as a family under linear combinations of independent random variables.

The symmetric stable laws form a special class of the stable laws, and are defined as follows.

Definition 2.10A random variable Y is said to have a symmetric stable distribution centred at θ if Y has a stable distribution and
if, additionally, the random variables Y − θ and θ − Y have the same distribution.
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Symmetric stable laws are completely determined up to location and scale by the exponent α. For example, the normal
distributions are characterised as the symmetric stable laws with exponent α = 2. The exponent α = 1 characterises the
location-scale family of Cauchy distributions. The laws with exponent α < 2 have heavier tails than the normal
distribution. So they provide an interesting alternative for modelling error distributions when it is known that the tails
of these distributions are heavy. Outlying observations are more likely to occur for stable laws with exponent α < 2
than under the normal assumption. In fact, the normal distribution is the only member of the family with finite
variance.

An example to illustrate this can be found in the fluctuations of the TSE 300 stock index that we considered earlier.
Figures 2.4 and 2.5 show the values of the logarithmic differences of the TSE 300 index over time as
measured in days. It is immediately evident that there is great volatility associated with the days around Black-and-Blue
Monday. Clearly, a normal model for the increments will not be adequate, as Figure 2.5 shows. Note that in
addition to the large drop of the stock market crash, there are also several large positive increments associated with the
increased volatility of the market. How can we make inferences about the process in the presence of such high
volatility? One approach is to model the events around Black-and-Blue Monday as anomalous. If this is truly the case,
then the observations in the tails of the distribution in Figure 2.5 can be regarded as outliers.

Fig. 2.4 Fluctuations of the logarithm of the TSE 300 index as a function of time in days.
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Fig. 2.5 Histogram of the fluctuations of yt.

However, it is problematic to detect and trim outliers from data when the number of outliers is unknown. So we could
construct a method of inference that is robust against the presence of outliers. A second approach to the presence of
such volatility is to try to build a model which includes the possibility of high volatility. Modelling yt as a stable process, i.e.
, a process of independent stable increments, has the advantage that it can explain the presence of extreme
observations in Figure 2.5 and is in reasonable accord with our knowledge of market behaviour. For example, stable
laws have a mathematical property in common with the normal distribution, namely that the linear combination of
independent symmetric stable random variables with common exponent is also symmetric stable with the same
exponent. What differs is the way in which we calculate the scale parameter for the linear combination. This property
of symmetric stable laws is useful for continuous time stochastic processes that can be regarded as having certain self-
similarity properties and independent increments. See Mandelbrot (1963). By matching quantiles, Small and McLeish
(1994, section 6.7) obtained a good fit to a symmetric stable distribution with location parameter θ = 0.000016, scale
parameter c = 0.0038, and exponent α = 1.67.

Although the density functions for the cases α = 1, the Cauchy, and α = 2, the normal, are fairly simple, the formulas
for the densities of other symmetric stable laws cannot be written in simple form. So the likelihood equations for the
location and scale parameters are just as difficult to write down. In contrast, the
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characteristic functions of symmetric stable laws are very simple. Suppose that Y has a symmetric stable law centred at
θ with exponent α. Using Definition 2.9, it can be shown that(2.23)

where c is a scale parameter. Suppose that w1, w2, …, wm are given complex numbers, and that t1, t2, …, tm are given real
numbers. We can construct an unbiased estimating function for the parameters of the symmetric stable law of Y,
namely

If Y1, …, Yn is a random sample from a symmetric stable law, then we have an estimating function of the form(2.24)

(2.25)

where φ(t; θ, c, α) is the characteristic function of the stable law, and θ̃(t) is the empirical characteristic function.

The fact that g is complex-valued introduces no additional complications here. We can return to real-valued estimating
functions by taking the real and imaginary parts of g. Note also that the family of estimating functions can be extended
by assuming that w1,…, wm are also functions of the unknown parameters θ, c and α. If this is the case, then the family
of estimating functions so defined provides flexible opportunities for estimation, because the family of trigonometric
polynomials span the space of all estimating functions with finite variance. Since the trigonometric polynomials are
almost periodic functions, it is reasonable to expect the estimating functions defined by equation (2.25) to have
multiple roots. We shall not attempt any solution to the multiple roots problems of (2.25), but shall defer this to later.

To illustrate how empirical characteristic functions can be used for estimation, let us consider the data set illustrated in
Figure 2.5. We shall restrict attention to the estimation of θ and c, supposing for the moment that α = 1.67 is given.
Setting m = 1 in (2.25), we obtain the pair of estimating equations(2.26)

and(2.27)
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In practice, it is convenient to allow different values of t in equations (2.26) and (2.27). Based upon the maximising of
an expected information, Small and McLeish (1994, Section 6.7) recommended using t = 0.49 in equation (2.26) and t
= 0.73 in (2.27). With these values, equations (2.26) and (2.27) yield the estimates θ̂ = 0.0004 and ĉ = 0.0104.
However, problems of multiple roots do arise. For example, Figure 2.6 shows the value of the estimating function in
formula (2.26) when c = ĉ. The periodic nature of the sine function ensures the presence of multiple roots.

Fortunately, we can determine which root to choose from the quantile fit of the symmetric stable law mentioned
above. As the value θ̂ = 0.0004 is positive, we can see how the estimating function has discounted the effect of the
large negative drop on Black-and-Blue Monday. However, for the particular interval of time under consideration, the
value of θ is estimated to be very close to zero. This means that it would have been difficult for an investor whose
portfolio resembled the TSE 300 stocks to make large amounts of money over the short term. Nevertheless, over a
longer period of observation, a total of 1009 days, significant positive return was achievable.

In this section, we have emphasised the application of empirical characteristic estimating function methodology to
symmetric stable laws whose density functions are difficult to obtain. It can be seen that these methods can be applied
to

Fig. 2.6 A sine estimating equation for θ using the log-increments of the TSE 300 data.

ESTIMATING FUNCTIONS 33



other models whose characteristic functions are more tractable than their densities. In particular, distributions for data
which form convolution families, but not of exponential families, are often of this type.

2.6.4 QUADRAT SAMPLING
Data in the forestry, geology and other biological and earth sciences can often be modelled as Poisson processes of
particles scattered over a region. If the actual locations of the particles within a region can be determined with
precision, then an exact likelihood function can be computed for inferential purposes. However, in a number of cases,
the exact locations of particles of a Poisson process cannot be determined, and the researcher must rely on incomplete
information about the process.

Data sets gathered in quadrat sampling are examples of this. If it is too time-consuming to record the exact locations of
the particles of a point process, it may be more practical to divide the region of observation up into subregions and to
count the number of particles in each subregion. Suppose, for example, that a regionA is subdivided into n subregions
A1,…, An. In each subregionAj a total of Yj particles is counted. Under the assumption that the individual particles are
distributed as a Poisson process across A, the count statistics Y1,…, Yn will each have a Poisson distribution with
parameters λ|A1|,…, λ|An| respectively, where λ is the intensity parameter of the process. More generally, in a non-
homogeneous Poisson process, Yj ∼ Poiss(μj(θ)), where

and θ is some parameter or vector of parameters determining the intensity function λ.

Provided that the regions Aj are disjoint, the counts Y1,…, Yn will be independent, and the MLE for θ will be found by
solving

where μ ̇(θ) is the derivative of μj(θ) with respect to θ. The sets Aj are called quadrats, the term deriving from the
common procedure of dividing up a planar region into small squares or rectangles.

In general, it may not be practical to count particles across a region by dividing the region into disjoint sets. Figure 2.7
shows one such case in which the quadrats are overlapping strips. Sampling of this kind occurs when counts are taken
by walking in a straight line through a region. If every individual ‘particle’ is counted if it is within a distance r of the
observer, then the tallies for each person walking through the region will be a count of particles in a strip of width 2r.
When the quadrats overlap, the random variables Y1,…, Yn are no longer independent, and
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Fig. 2.7 Quadrat sampling of a region using strips as quadrats.

have a multivariate Poisson distribution. If the joint probability that Yj = yj for j = 1,…, n can be calculated, then the
likelihood function for θ can be found and maximised. However, as the number of quadrats increases, and as the count
within each quadrat increases, the calculation of the likelihood function becomes increasingly difficult. So it is natural
to consider an alternative approach to the estimation of θ which is more straightforward.

Since the first, second and product moments of the Yj's can be calculated, a semi-parametric approach to estimation is
sensible. As in the independent case, we have(2.28)

We also have quite generally the covariance formula(2.29)

for the covariance between Yj and Yk.

Let Y denote the n × 1 column vector of observations, μ(θ) the corresponding n × 1 column vector of means, and ∑(θ)
the n × n covariance matrix of the Yj's. If the parameter θ is k-dimensional, then the derivative matrix μ ̇(θ) will have
dimension n × k. As in equation (2.15), the quasi-likelihood estimate for θ will be the solution to the equation(2.30)
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We shall develop some numerical methods for solving such vector-valued quasi-likelihood equations in the next
chapter when we discuss Jacobi iteration.

2.7 Bibliographical notes
The theory of efficient estimating functions was proposed by Godambe (1960) and independently by Durbin (1960).
The theory of quasi-likelihood was introduced by Wedderburn (1974, 1976), and was not initially derived using
Godambe efficient estimating functions. Rather, it was through properties such as unbiasedness and information
unbiasedness that it was recommended and motivated. However, subsequent research showed that quasi-likelihood
methods share many of the properties of likelihood methods because they are both Godambe efficient within an
appropriate class of estimating functions. Extensions of the quasi-likelihood methodology to semi-martingale
processes using the Doob-Mayer decomposition were introduced by Hutton and Nelson (1986). The reader who is
interested in a more complete description of quasi-likelihood methods is referred to Heyde (1997).

The geometric approach to estimating functions was proposed by Small and McLeish (1994). In particular, it was
demonstrated that Godambe's efficiency criterion also had an interpretation as a measure of local sufficiency of the
estimating function. For an alternative explanation of local E-sufficiency, the reader is referred to Heyde (1997).
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3 Numerical algorithms

3.1 Introduction
For estimating equations that cannot be solved explicitly, it is useful to be able to find solutions using numerical
methods. Such methods usually involve the construction of a sequence of approximations θ(1), θ(2), θ(3), … to a root of
the estimating function. Among available procedures, the Newton–Raphson algorithm is arguably the most popular
and most successful method for finding roots. However, before choosing this, or any other method, the researcher is
well served by performing a cost-benefit analysis of the available numerical methods.

A root-finding algorithm that is successful 99% of the time may seem quite satisfactory. However, if it is being used in
a simulation study to determine the variance of the estimator defined by the root of an estimating function, it could be
misleading. When algorithms fail to converge, they often produce values that are far from the root. So even a small set
of cases where the algorithm fails can have a large effect on the sample variance determined by the simulation. Unless
the researcher can detect those trials for which the algorithm fails, it is dangerous to tabulate a statistic which is so
sensitive to outlying values.

Obviously, fast algorithms are better than slow ones. However, if time is not a serious factor in the analysis, then a slow
algorithm that is guaranteed to converge may be more useful than a fast algorithm with occasional convergence
problems. It is also useful to be able to provide a lower bound on the rate of convergence. Even very fast algorithms
may have no guarantee that their rates of convergence are initially better than slow algorithms. To assess the rate of
convergence of an algorithm we must consider the error as a function of the number of iterations the algorithm runs.
In practice, it is impossible to give a sharp bound for the error of the approximation after a fixed number of iterations.
The error of an algorithm can be assessed in two ways:

1. we can either determine the asymptotic size of the error, as the number of interations goes to infinity, or
2. we can try to determine an upper bound for the size of the error.

The following example illustrates how the asymptotic error can be obtained for the zero-truncated Poisson model.



Example 3.1 Truncated Poisson model

Consider the estimation of a parameter θ from the zero-truncated Poisson distribution having probability function

where θ > 0 and y = 1, 2, 3, … The zero-truncated Poisson distribution arises in the analysis of Poisson count data
where a count is reported only when one or more events are observed. The likelihood equation for θ̂ based upon a
random sample Y1, …, Yn reduces to(3.1)

where Y = ∑Yj. To find a solution to equation (3.1), we could rewrite the equation as(3.2)

where Y = Y/n. Thus θ̂ is seen to be a sample mean that is rescaled to adjust for zero-truncation. The reformulated
identity suggests the iteration θ(1) = Y and(3.3)

for j = 1, 2, 3, …. This iteration is illustrated geometrically in Figure 3.1.

First we need to check more formally whether this converges. Note that all iterates after the first lie in the bounded
interval (0, Y). Moreover, equation (3.2) tells us that θ̂ will also lie in this interval, where it is a fixed point of the
iteration. Now(3.4)

as θ(j) → θ̂. So θ ̂ will be an attractive fixed point of the iteration if Y exp(−θ̂) < 1. Next, let us define a real number α by
writing θ̂ = αY. Since θ̂ lies strictly between 0 and Y, the constant α must lie strictly between 0 and 1. It turns out that
we can write both Y and θ̂ explicitly in terms of α. From equation (3.2) we find that

So,

But it is easily checked that

for all 0 < α < 1. Thus θ ̂ is an attractive fixed point for the iteration.
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Fig. 3.1 Iterative substitution for the truncated Poisson model displayed geometrically. Here, the desired fixed point of
the iteration is displayed as the intersection between two curves υ = u (diagonal line) and υ = Y ̄{1 − exp(−u)} (plain
curve). The dashed curve is the reflection of the plain curve about the line υ = u. Two iterations are shown, one
starting below the fixed point and one above. Both converge to the unique fixed point.

In a small neighbourhood of θ̂, equation (3.4) implies that the error θ(j) − θ̂ goes geometrically to zero with geometric
ratio Y exp(−θ ̂). It would be rather natural to say that this rate of convergence is geometric. However, this is not the
standard terminology in the literature. Following standard terminology here, we shall say that the iterative substitution
converges linearly to θ̂. The reason for this terminology is that the number of correct decimal places in the approximation is
roughly a linear function of the number of iterations.

To illustrate this, let us consider the solution to equation (3.2) for Y = 3.0, say. Using iterative substitution, we get
Table 3.1. The rightmost column of Table 3.1 shows the number of correct decimal places, which can be seen to be
increasing at an approximately linear rate.

By determining the asymptotic nature of the size of an error in an algorithm, it is sometimes possible to speed up the
algorithm. For example, when θ(j) − θ̂ converges geometrically to zero, approximately, then the values θ(j) can be
regarded as approximately equal to the partial sums of a geometric series. As infinite geometric series can be summed
exactly it is natural to try to ‘second guess’ the outcome of the iteration by fitting a geometric series to the values θ(j). We
shall discuss this when we introduce Aitken acceleration of slow algorithms. Aitken acceleration can greatly improve
the convergence of a slow algorithm.
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Table 3.1 Correct decimal places when iterating using the substitution algorithm.

Step θ Decimal accuracy
1 3.0000000000 0
2 2.8506387949 1
3 2.8265778539 2
4 2.8223545493 2
5 2.8216027120 3
6 2.8214685358 4
7 2.8214445795 4
8 2.8214403020 4
9 2.8214395382 5
10 2.8214394018 6
11 2.8214393774 8
12 2.8214393731 8
13 2.8214393723 9

The second method of error analysis is to obtain an upper bound on the error which holds not just asymptotically but
for all steps of the iteration. The advantage of being able to bound the error is that the bound can usually be
transformed into a stopping rule for the algorithm. In the following example, we see how a stopping rule can be
invoked for a polynomial estimating function from such a bound on the error.

Example 3.2 Error bound for polynomial estimating equation

Suppose that θ is real-valued and g(θ) can be written in the form

with (complex-valued) roots z1(y),z2(y),…,zm(y). Somewhere among these roots is the desired (real-valued) estimator for
θ, namely θ̂. We can write(3.5)

when a0(y) ≠ 0. So(3.6)

Suppose that we have an algorithm θ(j), for j = 1, 2, … which provides successive approximations to the root θ̂. The
particular form of this algorithm need not
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concern us here. Instead, the rule that the algorithm uses for termination will be of interest to us. Let us assume that
the algorithm checks the value of g(θ(j)) at each step j. If the absolute value of g(θ(j)) is large, then it is reasonable to
suppose that the algorithm is far from the root. On the other hand, when g(θ(j)) is close to zero the approximation θ(j)

can be presumed to be good enough. Therefore, the algorithm terminates when |g(θ(j))| is less than or equal to some
pre-specified value ∈ > 0. We shall suppose that this occurs when θ(j) equals some value θ*, say. Is there any way that we
can use the fact that |g(θ*)| ≤ ∈ to get a bound on the error of the algorithm?

It turns out that the answer is yes. Using equations (3.5) and (3.6), we get

We can take the m-th root of each side of this inequality. Since the minimum of m positive quantities is less than or
equal to their geometric mean we obtain the inequality(3.7)

Equation (3.7) can also be written as(3.8)

Inequality (3.8) establishes a bound on the relative error of θ* as an approximation to some root of the estimating
equation. Note that we would prefer to have(3.9)

However, this cannot be concluded directly unless we know that the algorithm is closer to the desired root θ ̂ than to
any other complex root of the polynomial equation. Only if the algorithm is known to converge to θ ̂ can this be
concluded for a sufficiently large number of iterations. Note also that there is no guarantee that the bound is close to
the error. So it is problematic to use the bound as a method for terminating the algorithm; it could be that the true
error is many orders of magnitude smaller than the calculated bound.

To illustrate the bound in (3.8), let us consider the roots of a simple cubic of the form

This has three real roots: one negative, one between 0 and 1, and one greater than 2. Let us suppose that the root in
the interval (0, 1) is of interest, and that an iterative substitution algorithm of the form
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Table 3.2 Error bounds for the substitution algorithm.

Step θ |g(θ)| Rel. error bound Correct rel. error
1 0.00000000 5.000000 1.000000 1.000000
2 0.71428571 0.364431 0.417717 0.087543
3 0.76634736 0.085635 0.257767 0.021037
4 0.77858097 0.021900 0.163615 0.005410
5 0.78170953 0.005712 0.104540 0.001413
6 0.78252558 0.001498 0.066907 0.000371
7 0.78273952 0.000393 0.042840 0.000097
8 0.78279568 0.000103 0.027433 0.000026
9 0.78281043 0.000027 0.017568 0.000007
10 0.78281430 0.000007 0.011250 0.000002

is initialised at θ(1) = 0 to find this root. The error analysis for the algorithm is displayed in Table 3.2. The relative error
bound is that given by the right-hand side of (3.8) using |g(θ)| for ∈. The correct relative error is the value determined
by the left-hand side of (3.9).

It can be seen from Table 3.2 that the bound is valid for all steps of the iteration shown. However, the quality of the
bound as a guide to the correct relative error rapidly deteriorates. Nevertheless, the relative error bound proceeds
geometrically to zero, although at a slower rate than the correct relative error.

The methods that we shall consider in this chapter are root-finding algorithms from the numerical analysis literature.
While much of this methodology is directly applicable to estimating functions, there are some special features of
estimating functions which require that the algorithms be modified in certain cases. For regular estimating functions,
there is a particular root of interest, namely the one which is consistent and closest to the true value of the parameter
for a sufficiently large sample size. A consequence of this fact is that statistical root searching is more specialised than
the task of simply finding the roots of an equation. In most contexts, for example, the divergence of a root-search
algorithm should be treated as a defect. However, the situation is not that clear in some statistical applications where
the statistician is interested in finding the consistent root. An algorithm that fails to converge may provide better
diagnostics for statistical purposes than one which converges to an inappropriate root.

It may be known that the consistent root will be close to some simple consistent estimator with high probability. If this
is the case, the consistent estimator is a natural value for initialising a root search algorithm. For some applications
involving location parameters, it will be known that all reasonable estimators will lie in the interval defined between the
smallest and largest observation in the data set. Algorithms that require a search over successively smaller intervals can
be initialised over the range of values defined by the data.
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Knowledge about the ergodic properties of an estimating function can also be useful in the implementation of an
algorithm. For example, an information unbiased estimating function should have sample covariance matrix and
derivatives of opposite sign and approximately equal modulus at the consistent root. Such criteria can be built into a
root searching method.

Another consideration that is particularly applicable to statistics is to avoid specious accuracy in algorithms. For
example, if asymptotic theory tells us that the difference between the true value of a parameter and an estimate is likely
to be of order 10−2, there is little point in running an algorithm to generate accuracy to six decimal places for the root.
Six digits may look very impressive in a report, but only the first three will have much relationship with reality.

3.2 The bisection method
Among all available methods for finding the root of a real-valued function of a single real variable, the bisection
method is arguably the simplest and most reliable. It also yields a simple and useful bound on the error. On the
negative side, the rate of convergence is not particularly fast, and cannot easily be accelerated. To use the bisection
method, we need a few basic conditions (Figure 3.2). Suppose that g is continuous for all θ in the interval [θ(1), θ(2)], and
that

Fig. 3.2 The bisection method.
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By the intermediate value theorem, a root must lie in the interval (θ(1), θ(2)). The bisection method decreases the size of the
interval by evaluating g(θ(3)), where

If this is non-zero, then the interval (θ(1), θ(2)) is replaced by (θ(1), θ(3)) or by (θ(3), θ(2)), so that g undergoes a sign change
over the new interval.

The algorithm proceeds in this fashion, replacing each interval with the new interval derived by bisecting the previous
interval. At any stage, if g(θ(j)) = 0, the algorithm terminates. The given subinterval at each step of the algorithm
provides a natural bound on the error of the algorithm. If the algorithm is terminated when the interval becomes
sufficiently small, then the midpoint of the last interval can be used as the best approximation to the root.

While the bisection method is very reliable, it is possible for the practitioner to go astray if insufficient care is used.
Most notably, when the function is not continuous on the interval, the bisection method can provide erroneous results.
Note also that the method provides no simple guarantee of finding all the roots within a given starting interval (θ(1), θ(2)).
A sign change over an interval is sufficient to ensure the existence of a root for a continuous function, but is not
necessary. To have a better chance to find all roots in a given interval, it is best to partition the original interval into
more than two subintervals, and to check for sign changes in all intervals.

Example 3.3 Truncated Poisson model (continued)

We can apply the bisection method to the truncated Poisson in Example 3.1 as well. As noted above, the solution to
the estimating equation

lies in the interval [0, Y]. The value θ = 0 is an extraneous root that can be ignored. Taking this interval as a start for
the bisection algorithm with Y = 3.0 once again, and iterating we get Table 3.3.

The most obvious feature displayed in Table 3.3 is that convergence is very slow, even compared to the convergence of
the substitution algorithm. In part this is due to the large size of the original interval which multiplies through as a scale
factor in the sizes of subsequent intervals. However, the virtue of the bisection method is best seen when the rate of
convergence is less important than the need to ensure a bound on the error that is guaranteed to go to zero. If speed is
even moderately important for the algorithm, then other methods should be considered.

3.3 The method of false positions
The method of false positions is also known as the regula falsi. Consider a real-valued function, having a change of sign
over an interval. If the absolute value of the function is large at one end of the interval and small at the other, then
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Table 3.3 The bisection method for the truncated Poisson model.

Step θ Decimal accuracy
1 1.50000000 0
2 2.25000000 0
3 2.62000000 0
4 2.81250000 1
5 2.90625000 0
6 2.85937500 1
7 2.83593750 1
8 2.82421875 2
9 2.81835938 1

the root is usually closer to the endpoint where the function is small than to the endpoint where it is large. This
intuition can be made rigorous if the function is approximately linear over the interval.

Suppose that g is a continuous real-valued estimating function defined for θ ∈ [a, b]. Approximating g by a linear
function passing though (a, g(a)) and (b, g(b)), we get

which has a root at(3.10)

Equation (3.10) defines the iteration associated with the method of false positions. Suppose that θ(j) and θ(j+1) are two
approximations to θ̂. We shall suppose that θ̂ lies in the interval between θ(j) and θ(j+1), and that g is positive on one of the
two iterates, and negative on the other. We define(3.11)

To update the algorithm we drop the value at which g has the same sign as at θ(j+2).

The method of false positions has been found to converge faster than the linear rate that is typical of iterative
substitution methods such as given by equation (3.3). However, it can go quite wrong as illustrated in Figure 3.4. In
this case, the slow convergence is due to the fact that the function g is fit rather poorly by a linear function on the given
interval.

Example 3.4 Truncated Poisson model (continued)

To illustrate the method of false positions, let us consider the solution to
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Fig. 3.3 The method of false positions.

Table 3.4 The method of false positions for the truncated Poisson model.

Step θ Decimal accuracy
1 1.500000000 0
2 3.000000000 0
3 2.771379081 0
4 2.820519493 2
5 2.821422832 4
6 2.821439075 6
7 2.821439367 7
8 2.821439372 9

from Example 3.1. To avoid convergence to the extraneous root θ = 0, we shall start the iteration on the interval [1.5,
3.0] found after the first step of the bisection algorithm. The results are displayed in Table 3.4.

The convergence of the method of false positions has been found to be faster than the substitution method. Table 3.4
helps illustrate this fact. The method of false positions is guaranteed to provide a sequence of nested intervals
containing a root if the function is continuous. Unfortunately, unlike the bisection method there is no guarantee that
the size of the interval will decrease by a reasonable factor at each step. As Figure 3.4 illustrates, functions which are
not approximately linear over the interval of consideration may require many steps for reasonable convergence.
Nevertheless, the method of false positions is often very successful with a rapid convergence. This is particularly useful
if it is difficult to calculate the derivative of a function that is needed for Newton–Raphson.
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Fig. 3.4 An inappropriate application of the method of false positions.

A method that is closely related to the method of false positions is the secant method. It can be regarded as a relaxation of
false positions to the case where the starting interval for approximation does not have an interval with a sign change of
the function. In such cases, formula (3.11) can still be applied. The standard rule for such cases is to keep the most
recent values of θ, i.e., θ(j+1) and θ(j+2) to compute the next value. Caution must be exercised when using the secant
method on an estimating function which is not well approximated by a secant line.

In higher dimensions, the secant method is known as the quasi-Newton method. The reason for this terminology is that
linear secant based upon the most recent iterates, θ(j) and θ(j+1), is an approximation to the tangent line through the most
recent iterate θ(j+1). So the secant method can also be interpreted as a Newton–Raphson algorithm with the derivative
ġ(θ(j+1)) replaced by a finite difference approximation. Quasi-Newton algorithms form a family of techniques that build
up information about the derivative of the estimating function using the succession of iterates that have been
computed at earlier stages.

We shall consider quasi-Newton algorithms in more detail in Section 3.6.

3.4 Muller's method
Muller's method is a natural extension of the method of false positions which can be used to resolve this difficulty.
Since the linear approximation is a poor fit to the function in Figure 3.4, we can try to improve the approximation by
fitting a quadratic to g using the three iterates θ(j), θ(j+1) and θ(j+2) to generate a fourth. We shall omit some of the details
involving fitting the required quadratic, and note that(3.12)
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where, letting

we have

and

The troublesome aspect of equation (3.12) is that there are two solutions for θ(j+3). The standard protocol for selecting a
root is to choose that value of θ(j+3) which is the closer of the two to θ(j+2). However, for estimating functions, other
selection criteria are worth considering. For example, if a -consistent estimator θ is available in closed form, then it
may be reasonable to choose the solution to (3.12) which is closer to θfor the first few iterations, until the algorithm
stabilises.

3.5 Iterative substitution and the contractive maps
Up to this point we have considered techniques for finding the root of a real-valued function of a real variable.
However, in standard statistical applications, the parameter and the estimating function are vector-valued. Although
many of the algorithms can be generalised into higher dimensions, such generalisations often lose the advantages of
their lower-dimensional versions. For example, in dimension one, the bisection method and the method of false
positions rely on the intermediate value theorem to guarantee convergence to a root. In higher dimensions there is no
simple way that a root can be ‘trapped’ in a bounded region by evaluating a function at a finite set of points.

Suppose that g is a vector-valued estimating function of a vector parameter θ. Many algorithms to solve g(θ) = 0 do so
by constructing a function h and executing an iteration of the form θ(j+1) = h(θ(j)). Provided that the iteration converges
and that the equations θ = h(θ) and g(θ) = 0 are equivalent, the algorithm will approximate roots with any required
accuracy. For example, a simple substitution algorithm is obtained by setting h(θ) = θ + g(θ). However, there is no
guarantee that the iteration

will converge. However, the following result is sufficient for the purpose.
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Proposition 3.5Let h: Θ → Θ be a function defined on a closed domain Θ ofRk. Suppose there exists a constant c < 1 such
that(3.13)

for all θ(1)and θ(2)in Θ. Then

1. the equation θ = h(Θ) has a unique solution θ ̂ ∈ Θ;
2. for any θ(1) ∈ Θ, the sequence θ(j)defined by θ(j+1) = h(θ(j)) converges to θ ̂; and
3. for all j, we have

To prove this result, we begin by noting that the sequence θ(j) is well-defined from its starting point and lies insideΘ for
all j. Proceeding by induction on equation (3.13), we get

For any j and k with k > j, we can write

So by the triangle inequality, we have

Taking the double limit as j, k → ∞, we see that

So the sequence θ(j) satisfies the Cauchy criterion for convergence. Thus it has a limit in Θ, which we can call θ ̂. Next,
we need to show that θ̂ is a solution to the equation θ = h(θ). To do this, we first note that h is a continuous function.
This follows from equation (3.13), which is a Lipschitz condition for h. So

Therefore,

as required.
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Finally, we need to show that θ ̂ is the unique fixed point of h. Suppose that θ̂ and θ̃ are two fixed points of h. By (3.13),
we must have

Since θ ̃ and θ̂ are both fixed points of h, this reduces to ‖θ ̃ − θ ̂‖ ≤ c‖θ̃ − θ̂‖. But c < 1. Therefore, ∥θ ̃ − θ ̂∥ = 0. So θ̃ =
θ̂, as was to be shown.

3.6 Newton–Raphson and its generalisations

3.6.1 NEWTON–RAPHSON AS A SUBSTITUTION ALGORITHM
The Newton–Raphson root-finding algorithm has been discussed earlier, and needs little introduction here. At this
stage, we shall consider its relationship to iterative substitution methods. We shall also see how to find flexible families
of methods which bridge the gap, so to speak, between slow and reliable methods and fast methods like
Newton–Raphson. The goal is to build iterative methods which are both reliable—in the sense of being guaranteed to
converge—and fast.

If we write an iterative substitution algorithm for an equation of the form g(θ) = 0, we obtain(3.14)

which could possibly diverge or converge at a linear rate. If convergence does occur, it is usually because the iteration is
locally a contractive mapping within some neighbourhood of the root in the sense of (3.13). The constant c can be
chosen in this iteration to ensure that the iteration is contractive. Note that (3.14) can include the multiparameter case.
In such situations the constant c will be a square matrix of appropriate dimensions.

An extension of the class of iterations defined by (3.14) is(3.15)

With this added flexibility, we are in a position to ask how the multiplying function c(θ) should be chosen so as to
ensure that the convergence in (3.15) is most rapid. We will not discuss the details of the argument at this stage.
However, it is possible to show that the rate of convergence is maximised locally about θ ̂ if we choose

which corresponds to Newton–Raphson iteration. With this choice, the convergence can be shown to be quadratic
provided g(θ) exists and is continuous.

The following modifications of Newton–Raphson are often useful:

• Whittaker's method, a modified Newton–Raphson algorithm, is based upon the fact that in the later stages of
iteration, the quantity ġ(θ(j)) does not change substantially when j is sufficiently large. If this is the case, it can be

50 NUMERICAL ALGORITHMS



useful not to waste time updating ġ for iterations beyond some integer m. While the rate of convergence of the
algorithm

is usually linear, it may be faster in practice than Newton–Raphson. This is because Newton–Raphson, whose
rate of convergence is quadratic, may not be as fast as Whittaker's method in the early stages of iteration.
Therefore, Whittaker's method can sometimes reach the required accuracy earlier than the former method.
The most obvious difficulty with Whittaker's method is that it is likely to be difficult to determine the best
value of m to use.

• Sometimes

is easier to compute or more stable than −{ġ(θ)}–1. When g is the score function, this method is known as
Fisher scoring. The rationale behind Fisher scoring is similar to Whittaker's method. Like Whittaker's method, it
converges linearly to the root, but can be faster in practice than Newton–Raphson for similar reasons. It is
particularly advantageous to use Fisher scoring early in the iteration if the algorithm is started in a domain over
which g(θ) is not approximately linear. If this is the case, then early iterations of Newton–Raphson may be far
less efficient in converging to a point close to the root. The advantages of Fisher scoring are most evident
when the average value of ġ(θ) over the domain of the iteration is better represented by Eθ{ġ(θ)} than by ġ(θ(1)).
Fisher scoring also offers advantages if each step can be computed more easily than each step of
Newton–Raphson. This will often be the case with likelihood equations where the information function can be
computed in simple form. However, there are numerous examples of models whose information functions
cannot be expressed analytically. For these models, the particular advantages of Fisher scoring may be offset by
particular computational difficulties.

• Figure 3.5 shows what happens when Newton–Raphson is used to find a root θ̂ where ġ(θ ̂) is infinite. To
compensate for this instability, it is natural to try to shrink the value of θ(j+1) back towards θ(j). The choice

with 0 < α < 1, attempts to provide the right compromise. If α is too close to one, the iteration will be unstable
as shown. However, a value of α close to zero, while stable, will converge very slowly.

• The opposite problem can occur if ġ(θ ̂) = 0, as shown in Figure 3.6. In this case, we must use α > 1 as the
desired scaling factor. Theory shows that when ġ(θ̂) = 0, and g̈(θ ̂) ≠ 0, the choice α = 2 is best, and achieves quadratic
convergence.
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Fig. 3.5 One step of Newton–Raphson iteration when ġ(θ̂) is infinite.

Fig. 3.6 One step of Newton–Raphson iteration when ġ(θ̂) is zero.

3.6.2 QUASI-NEWTON ALGORITHMS
The next modification of the basic Newton–Raphson algorithm that we shall consider is the quasi-Newton family of
algorithms. We have already seen an example of this. The secant method for finding a root can be interpreted as an
approximation to the Newton–Raphson algorithm with the derivative ġ(θ(j)) replaced by a finite difference. Quasi-
Newton algorithms are extensions of this idea into higher dimensions. Suppose that θ ∈ Rk is a vector, and that g(θ) is a
vector-valued function taking values in Rk as well. As usual, we represent θ and
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g(θ) as column vectors. A linear approximation to the function g(θ) at the point θ(j) will take the form(3.16)

where a is some matrix of dimension k × k. When a = ġ(θ(j)), then the solution θ(j+1) of the linear approximation yields
Newton–Raphson iteration. If ġ(θ(j)) is not available, then the natural analog of the secant method is to choose a matrix
a which solves(3.17)

This equation is known as the secant equation. Unfortunately, there can be more than one solution to the secant equation
when θ and g(θ) are vector-valued. It might be tempting to try to solve this problem by incorporating earlier iterates.
However, if the most recent iterates θ(j),θ(j−1),θ(j−2), and so on, lie in a flat set of low dimension, the matrix a will continue
to be under-specified.

A solution to this problem was proposed by Broyden (1965). Suppose that we have some value a(j−1) which was used to
compute θ(j), and we wish to update a(j−1) to a(j) so that we can compute θ(j+1) using the linear approximation in equation
(3.16). Broyden's recommendation was to use that solution a(j) to the secant equation (3.17) whose difference a(j) − a(j−1)
is minimised in the sense that its Frobenius norm is minimised. The particular choice that minimises the Frobenius
norm is(3.18)

which is called the Broyden update.

This still leaves the problem of finding the initial matrix a(1). The recommended strategy is to approximate ġ(θ(1)) using
finite differences and to use this approximation as a(1).

We shall consider additional modifications of Newton–Raphson in Chapter 5. These examples indicate that while the
justification for Newton–Raphson is asymptotic in the number of iterations, the algorithm used in practice will
terminate after finitely many steps. During early stages of the iteration, Newton–Raphson can be unstable, in the sense
of diverging from roots, or at least highly inefficient in step size. The methods above offer excellent practical
alternatives to Newton–Raphson, but leave many unanswered questions about how to fine tune the methods to
particular estimating functions.

3.7 The E–M algorithm

3.7.1 THE E–M ALGORITHM FOR LIKELIHOOD EQUATIONS
In some estimation problems, the ideal estimating equation is hard to solve because its computation involves
integration or a difficult summation over cases. For example, suppose that Y = (V, W) is a full data set for a statistical
problem, but
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we only observe V. The marginal likelihood function for V = v can be written as

where L(θy) is the full likelihood based upon Y = y.

To compute the marginal likelihood requires an integration that may not be simple to solve or expressible in analytically
closed form. The E–M algorithm is a tool for maximising likelihoods and solving more general equations for problems
where the solution would be easier if we knew the value of W.

Suppose we let

denote the conditional likelihood for θ given υ. Taking logarithms and differentiating with respect to θ, we find that the
marginal score function for θ is(3.19)

where u(θ; y) and u(θ; y|υ) are scores based upon y and y given υ, respectively. Under standard regularity, the conditional
score will be conditionally unbiased. Therefore,

Therefore, the marginal score based upon υ can be calculated conditionally as(3.20)

The E–M algorithm for solving the equation u(θ̂;v) = 0, is based upon this identity. We start with an initial
approximation θ(1) to the solution. The algorithm computes each value θ(j+1) from the previous θ(j) using a two-step
procedure. For the E-step of the algorithm, we calculate the function(3.21)

for each value of θ. For the M-step of the algorithm, we solve the equation(3.22)

The immediate rationale behind the algorithm can be seen by noting that if θ ̂ is a fixed point of the algorithm, then θ ̂

solves the equation u(θ̂;υ) = 0. While this algorithm has been used in specific applications for many years, the
terminology E–M algorithm derives from Dempster et al. (1977) in which a general framework was developed for
models in the exponential family.

Example 3.6 Truncated Poisson model (continued)

To illustrate the E–M algorithm, let us return to the zero-truncated Poisson distribution considered in Example 3.1.
We can regard the zero-truncated sample y
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as a marginal data set, with the full data set being (y, m), where m is the number of zeros in the data. To make the
augmented model precise, we shall suppose that sample of Poisson variables is collected using inverse sampling until
precisely n non-zero values are obtained, where n is a fixed number. The number M of zeros in the data then has a
negative binomial distribution.

The likelihood function for the augmented data is therefore

So the score function for the augmented data is

Taking the conditional expectation with respect to y, we see that

The last step follows from the fact that Y andM are independent. SinceM has a negative binomial distribution, we can
calculate its expectation to be

The E–M algorithm proceeds from θ(j) to θ(j+1) using the formula(3.23)

When we solve for θ(j+1), we find that this is precisely the algorithm proposed in (3.3).

In the next example, we shall consider the application of the E–M algorithm to calculating the maximum likelihood
estimator for a mixture model.

Example 3.7 Normal mixture

Let φ denote the probability density function for the standard normal distribution. We shall consider the mixture
density

NUMERICAL ALGORITHMS 55



obtained by averaging two normal distributions centred at θ − c and θ + c, respectively. Let Y1,…, Yn be a random
sample from f(y; θ).

After some algebraic manipulation, we can show that the likelihood equation for θ based upon y1,…, yn reduces to(3.24)

where

The likelihood equation can be interpreted as a weighted average of the likelihood equations for each of the normal
components. However, the weights themselves depend upon θ. Thus there is no simple explicit representation of θ̂ as
a weighted mean. Nevertheless, we can write(3.25)

This equation suggests the following algorithm for finding a root. We use the values wi(θ(j)) as weights for a new
weighted average of the data. So(3.26)

It turns out that this algorithm can be obtained as an E–M algorithm. To see this, we augment the data set to include a
set of independent binary random variables Z1,…, Zn. Suppose

Generate Yi so that

with all variables independent except where explicitly indicated above. The augmented data set consists of a set of n
pairs (Y1, Z1),…, (Yn, Zn). The score function for the augmented data is(3.27)

So the E–M algorithm is determined by the equation(3.28)

Solving for θ(n+1) we obtain formula (3.26).
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Conditions for ensuring that L (θ( j+1)≥L (θ( j )) were given by Dempster et al. (1977). Conditions for convergence to the
maximum likelihood estimate were studied by Boyles (1983).

While the E – M algorithm is quite reliable, its rate of convergence is usually only linear. This is not surprising, because
the E – M algorithm is based upon the same kind of substitution method that was used to define simple iterative
substitution earlier in the chapter. In the next section, we shall consider a method for accelerating the convergence of
linear iterations including the E – M algorithm.

3.7.2 THE E–M ALGORITHM FOR OTHER ESTIMATING EQUATIONS
Wang and Pepe (2000) argued that the E –M algorithm has wider applicability than solving the likelihood equations. In
this section we consider the case when u ( θ V ) is replaced by any unbiased estimating function g ( θ, V ), where υ is
the observed or incomplete data. Let g ( θ, Y ) denote the unbiased estimating function based on the hypothetical
complete data Y. Suppose that the estimating function based upon V and the estimating function based upon the
complete data Y are related by the equation

which is similar to the likelihood case described above. This equation may hold even when the complete data
estimating function g (θ, Y) is not a score function. Formally extending the ideas of last section, we solve the estimating
equation g (θ, υ) = 0 by utilising the expected estimating equation (Wang and Pepe, 2000)(3.29)

The generalised E – M algorithm now consists of the repeated use of the following two steps until convergence:

• Generalised E- step: Compute the expected estimating function ∊θ( j )(θ, υ) for a given value θ( j );
• Generalised M-step: Solve the expected estimating equation

for θ ( j+1 ) using the current value θ ( j ).

Example 3.8 Longitudinal data analysis

Wang and Pepe (2000) applied the above ideas to longitudinal data analysis when measurement errors are present.
Suppose that a sample consists of n individuals who are studied over time. A response measurement is recorded for
individual i at time tj. Suppose Yij denotes the response measurement of individual i at time tj , where i = 1,…, n and
j = 1,…, nj. Let Xij be a covariate for individual i
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at time tj. It may happen that Xij cannot be directly measured with precision, and only estimated with some quantity

where Wijk, for k = 1,…, mij are a sample of approximate measurements of Xij.

With the true covariate data, suppose estimation of θ is based upon

If only (X̂ij, Yij) are observed, then this estimating equation cannot be used directly. We can consider the Xij to be
nuisance parameters for the model with observations (X̂ij, Yij). Unfortunately, the number of such nuisance parameters
goes proportionally with the size of the sample. However, provided that each variate X ̂ij is a sufficient statistic for the
quantity Xij that it estimates, it will follow that the expected estimating equation:

will be functionally independent of the unknown covariates Xij. More generally, we can suppose that the measurements

are a random sample whose distribution is governed by the parameter Xij. If this is the case, then the expected
estimating equation

will be functionally free of the unknown covariates.

Wang and Pepe (2000) have described an E–M algorithm for estimating θ in a number of applications of this kind
based upon the solution to this expected estimating equation. We refer the reader to this paper for a number of
examples.

3.8 Aitken acceleration of slow algorithms
We have seen that iterative substitution methods and the E–M algorithm usually converge at a linear rate, while
Muller's method and Newton–Raphson are faster. In this section we shall consider a method for ‘accelerating’ the
linear convergence of some algorithms to a rate that is closer to that of Newton–Raphson.
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To motivate Aitken's formula, let us consider an iterative method for finding the root of an estimating function for a
one-parameter model. Suppose that the method produces values according to the formula

We shall also suppose that h has continuously nonvanishing derivative on some interval I, and that h(θ) ∈ I for all θ ∈ I.
For some unique value θ ̂ in the interval I, we shall assume that θ̂ = h(θ̂), and that this is the root to be sought. The
following result will be useful.

Proposition 3.9If the iteration starts at some value in I distinct from θ̂, then for all subsequent steps j, the difference θ(j) − θ̂ will be non-
zero.

That this is true follows easily from the mean value theorem, because

for some value θ* strictly between θ(j−1) and θ(j). If θ(j) ≠ θ(j−1), it follows that θ(j+1) ≠ θ(j), because (θ*) ≠ 0. If θ(j−1) − θ̂ is non-
zero, then θ(j−1) is not a fixed point of h on I. It follows that θ(j) is not a fixed point of h. Therefore, we can conclude that
θ(j) − θ̂ is also non-zero.

Next, let us consider the limiting form of the error, under the assumption that θ(j) → θ ̂. Using the mean value theorem
again, we see that

Proposition 3.10Under the assumptions of Proposition3.9, and assuming additionally that θ(j)converges to θ,̂ we obtain(3.30)

This follows from the fact that θ* must converge to θ̂. As ḣ is continuous on I, it follows that ḣ(θ*) converges to ḣ(θ̂).

Another way to write (3.30) is(3.31)

where ∈j goes to zero as j → ∞. Applying one more iteration, we get the equation(3.32)

Now let us make a simple approximation by setting ∈j, ∈j+1 ≍ 0. Subtracting (3.31) from (3.32) we get(3.33)
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If this is plugged into (3.31), we can solve for θ̂ to obtain(3.34)

The right-hand side of equation (3.34) is the Aitken acceleration of the sequence θ(j), θ(j+1), and θ(j+2. A convenient
representation of this formula uses the shift operator

Applying this operator twice gives us

So the Aitken acceleration of the original sequence can also be written as(3.35)

Example 3.11 Truncated Poisson model (continued)

To illustrate Aitken acceleration, let us return to Example 3.1 and apply the acceleration method to the sequence there.
The original sequence and the accelerated sequence are shown in Table 3.5.

An examination of Table 3.5 shows that the rate of covergence is quite fast. The six steps of the accelerated iteration
require eight steps of the original algorithm. Thus the convergence to nine decimal places has been obtained at roughly
the same

Table 3.5 Aitken acceleration of the substitution algorithm.

Step θ θ′
1 3.0000000000 2.8219575215
2 2.8506387949 2.8214554351
3 2.8265778539 2.8214398819
4 2.8223545493 2.8214393384
5 2.8216027120 2.8214393726
6 2.8214685358 2.8214393723
7 2.8214445795
8 2.8214403020
9 2.8214395382
10 2.8214394018
11 2.8214393774
12 2.8214393731
13 2.8214393723
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place as the method of false positions discussed above. As no additional information about the estimating function has
been incorporated into the algorithm, it can be argued that the increased rate of convergence has been obtained
virtually for free.

A pleasant feature of Aitken acceleration can be observed if we rewrite equation (3.35) as(3.36)

Note that this is formula remains unchanged if the order of θ(j), θ(j+1), and θ(j+2) is reversed. This means that if Aitken
acceleration is applied to a sequence that is diverging away from a desired point θ ̂, the accelerated value will be identical
to that produced by the sequence converging towards θ̂ in the reverse order.

Equation (3.33) can be used to provide an approximation to the derivative of the function h. This is particularly useful
when finding the maximum likelihood estimate. Suppose that u(θ) is the usual score function for θ and h(θ) = θ + u(θ).
Then θ ̂ is a fixed point of the iteration θ(j+1) = h(θ(j)) although not necessarily an attractive fixed point. Applying Aitken
acceleration to the iteration, we find that we can write

However, θ(j+1) − θ(j) = u(θ(j)), and

Therefore,(3.37)

which is a step in Newton–Raphson iteration. As the denominator in this iteration is approximately the negative of the
observed information about θ, we are also simultaneously calculating the approximate observed information about the
parameter.

While Newton–Raphson requires knowledge of the derivative of a function, this accelerated method seems to have
come with no cost other than the calculation of a few steps in a slow algorithm. The acceleration in speed is real, but
does have its price: we are assuming that the score function is approximately linear.

We shall close this section with a modification of Aitken acceleration known as Steffensen's method. Suppose an iteration
using the function h converges linearly. Applying Aitken's method to three iterates, we obtain θ′. It seems more sensible
to use this as the new starting point for iteration by h, rather than any of the three original values. After three iterations
starting from θ′, we can apply Aitken's
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formula again to obtain θ″, as shown below:

The sequence

is called Steffensen iteration. Under fairly general conditions, it will converge to the same set of fixed points as those of h.

3.9 Bernoulli's method and the quotient-difference algorithm
In this section and the next, we shall consider root-finding methods that are particularly applicable to polynomial
estimating functions.

Suppose that we have a polynomial estimating function g(θ) of degree m for a real-valued parameter θ. By dividing g(θ)
by its leading coefficient, we obtain an estimating function of the form(3.38)

which is equivalent to g(θ) in the sense that it has the same roots.

Consider a sequence of values, … Z−2, Z−1, Z0, Z1, Z2, …, where Zk = 0 for k < 0, Z0 = 1, and(3.39)

Suppose that the sequence of quotients qk = Zk+1/Zk converges to some value r, say. Then it is easy to see that p(r) = 0.
That is, r must be a root of the polynomial estimating equation.

Next, suppose that the roots of (3.38) are the m distinct complex numbers z1, z2, …, zm. Furthermore, let us suppose
that one of these roots, say z1, has a modulus that is strictly larger than the moduli of all other roots. That is,

It follows from this that z1 is a real, because each non-real root is paired with its complex conjugate, which is also a
root. To see which root r is, we note that equation (3.39) is a linear difference equation of order m for the sequence Zk,
and (3.38) is the characteristic polynomial for this equation. Therefore, the sequence Zk is representable in the
form(3.40)

Here, the coefficients are generally complex numbers. We shall not go into the proof of this result, but shall refer the
reader to the theory of linear difference equations. So
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As z1 has a strictly larger modulus than z2,… zm, it follows that this ratio converges to r = z1 as k→ ∞, provided c1 ≠ 0.

The algorithm that we have just described is called Bernoulli's method. It has the advantage over many algorithms that it
is guaranteed to converge to a root provided the assumptions are satisfied. Note also that we do not have to specify an
interval of parameter values in which the root search is to be conducted. However, there are some difficulties with the
algorithm as a root search method for polynomial estimating functions. First, and most importantly, there is no reason
to think that the consistent root of an estimating function is the one with the largest modulus. For example, if the true
value of a parameter is set to zero in a simulation study, the closest root to zero will a fortiori be of smallest modulus. A
second problem that needs consideration is that the argument above gives us no immediate insight into the rate of
convergence of the algorithm.

To attack the first problem, we can generalise Bernoulli's method to the quotient-difference algorithm, which simultaneously
finds all the roots of the polynomial. Rather than having a sequence of quotients qk, as in Bernoulli's algorithm, the
quotient-difference algorithm produces a set of 2m − 1 sequences labelled

for k = 1, 2, 3, …. The sequence is simply the sequence of quotients qk produced by Bernoulli's method. The other
sequences are computed using the formulas and

and

Under certain regularity conditions more general than those of Bernoulli's method, the sequences will
converge to the roots of p(θ). The proof of this and the various types of regularity required are beyond the scope of
this book. See Henrici (1958).

If the quotient-difference algorithm is initialised with real values, it is clear that it cannot converge to complex roots off
the real axis. However, it is reasonable to hope that the real roots can be found as limits of the algorithm. Under certain
conditions, this turns out to be true. The following proposition is useful. Suppose that the complex roots of p(θ) are
ordered so that

Then we have the following proposition.

Proposition 3.12 For every j such that |zj+1| > |zj| > |zj−1|,
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Furthermore, for every j such that |zj| > |zj+1|,

Note that if zj has a distinct modulus, it follows that it is real. The proposition tells us that zj can be obtained as the limit
of a real sequence such as However, the converse is not true: a real root need not have a distinct modulus. The
convergence properties of the algorithm are difficult to determine, and will not be discussed here.

The other problem that we shall consider here is the rate of convergence of the quotient-difference algorithm. It has
been found that the algorithm converges rather slowly to the roots compared to Newton–Raphson, say, when the latter
is initialised close to a root. For this reason, it is best to use the quotient-difference method to find rough
approximations to the roots by running it sufficiently long so that the algorithm stabilises. After that,
Newton–Raphson can be used to ‘finetune’ the digits of the numerical approximation. Generally, the quotient-
difference method and Newton–;Raphson work in complementary ways. Newton–Raphson has good local properties
close to a root, but behaves badly with some functions when initialised far from a root. The reverse is the case for the
quotient-difference algorithm.

3.10 Sturm's method
Suppose we wished to run a simulation study on an estimating function for a single parameter. Let us suppose that the
purpose of the study is to construct a probability histogram for the distribution of the root(s) of the function. We
might begin by dividing the real line into intervals or bins (aj, bj], j = 0, ±1, ±2, …, on which the histogram is to be
constructed. To determine the number of roots in any interval and any trial of the simulation, it is unnecessary to
compute the precise value of a root. Knowing the approximate value of a root will only determine the interval to which
it belongs if the error in the approximation is smaller than the distance to the endpoints of the interval. So many of the
algorithms discussed so far will be inefficient for this purpose.

If it is known that the estimating function is continuous, then a change of sign over the interval is sufficient to ensure
that there is a root in the interval. However, if there is an even number of roots in the interval, then the function will
not change sign over the interval. Thus there is no guarantee that roots can be detected by this method. In some cases,
there is additional information available at the endpoints of the intervals, because we can also differentiate the function.
This fact forms the basis for Sturm's method for polynomial estimating functions.

We begin with the original estimating function g(θ), where θ ∈ R, and shall assume that g is a polynomial of degree m.
Suppose that we wish to find all roots in some interval [a, b]. If g(b) = 0, then we can replace g by (θ − b)−1g(θ), which
will also be a polynomial. Continuing in this way, we eventually have g(b) ≠ 0.
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A similar argument can be used for g(a). Set g0(θ) = g(θ), and define

From there we proceed to define gj(θ) recursively. Divide gj1(θ) by gj−2(θ), leaving remainder −gj(θ), and so on. That is, we
can write(3.41)

where qj−1(θ) is a polynomial in θ and deg gj < deg gj−1. As each function gj is calculated, it can also be divided by the
absolute value of its leading coefficient as this has no effect on sign changes. This often prevents overflow or
underflow for polynomials of high degree.

We now have the following proposition, which we state without proof.

Proposition 3.13

The number of distinct roots—ignoring multiplicities—of g(θ) in (a, b) is given by the number of sign changes in the sequence

minus the number of sign changes in the sequence

For a proof of this result, the reader is referred to Barbeau (1989, p. 175).

The next example illustrates how the method can be used in the statistical analysis of epidemics.

Example 3.14 Measles epidemiology

In a family with n children, the following stochastic model is assumed for the spread of measles among the children if
one of the children comes home with measles. Each of the other n − 1 children has probability θ of catching measles
directly from the infected child. If no other child gets measles from that child the epidemic stops. If j children catch
measles from the original infection, then the probability that an uninfected child will subsequently catch measles from
one of these j is 1 − (1 − θ)j. In turn, a certain number of children, say k, will be infected from the n − j − 1 children
still at risk, and so on. Let Y be the total number of children in the family who eventually get measles. Set pin = P(Y = i).

For n = 2, we have

For n = 3, the formulas can be shown to be
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As n increases, the calculation of probabilities becomes more complex. For n = 4, we get

and

Suppose that in a study of 100 families, each with four children, it was found that exactly one child caught measles in
32 cases, exactly two in 28 cases, three in 25 cases and four in 15 cases. Such a sample can be regarded as the outcome
from 100 multinomial trials, with four possible outcomes on each trial. So the likelihood function is

Upon simplification, the score function is found to be

and the likelihood equation simplifies to(3.42)

where 0 < θ < 1.

A general quintic equation can have as many as five roots in a given interval. So it is worth checking to see if there is a
unique solution to this equation for θ between 0 and 1. The calculation of the Sturm sequence is routine and easily
implemented in a symbolic computing package such as MAPLE or MATHEMATICA. For example, MAPLE
provides the following sequence from the command sturmseq:

and

The MAPLE command sturm can then be used to calculate the number of roots in a given interval. It can be checked
that there is exactly one root in the interval (0, 1), and that this root is approximately θ ̂ = 0.2748.
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3.11 Roots and eigenvalues
The roots of a polynomial function, and the search for them, can also be related to the eigenvalues of an appropriate
matrix. Suppose that(3.43)

is an estimating equation whose roots are to be determined. If we construct the matrix(3.44)

then the eigenvalues of A are determined by its characteristic equation det(A − θI) = 0, where I is the m × m identity
matrix. Note that this characteristic equation is equivalent to (3.43).

Although the solutions to the equations are formally equivalent, there are many methods for finding eigenvalues which
do not use the characteristic equation. For example, it is possible to transform A to another matrix B = S−1AS which is
similar to A and has a convenient canonical form. Such a transformation preserves the eigenvalues. A popular
representation is upper Hessenberg form. A matrix B = (bij) is said to be in upper Hessenberg form if bij = 0 for all j ≤ i − 2.
The advantage of the upper Hessenberg form is that it permits a QR decomposition of the matrix to be performed
relatively quickly.

The QR algorithm for computing the eigenvalues of A is an iterative method. The algorithm starts with the matrix A
itself, which we presume has been converted into upper Hessenberg form. Suppose that at the kth stage of the
algorithm, a matrix A(k) has been generated. The QR decomposition allows us to write A(k) = Q(k)R(k), where Q(k) is
orthogonal, and R(k) is upper triangular. The QR algorithm then setsA(k+1) = R(k)Q(k). As eigenvalues are preserved under
orthogonal transformations, and

the step A(k) → A(k+1) preserves eigenvalues. Each step has the effect of transferring mass from the subdiagonal part of
the matrix to the superdiagonal part. The limit matrix, if it exists, is upper triangular, with the eigenvalues appearing as
the elements along the main diagonal. This algorithm for finding the roots of polynomials is now standard using the
function roots available within MATLAB.
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Example 3.15 Solving quadratic equation

As an easy example, we consider the equation θ2 − 4θ + 3 = 0 with roots θ ̂ = 1 and θ ̂ = 3. The matrix

is already in upper Hessenberg form. Performing a QR decomposition of A = A(0), we get from the MATLAB
function qr

Therefore,

Continuing in this way, we have

and so on. Of course, all these steps can be combined together. For example, the MATLAB function roots operates on
the coefficient vector [1, −4, +3] to give

≫ roots([1, −4, +3])
ans=
3
1
with the solution in the form of a column vector. Note that in addition to the steps shown, the function roots, which uses the MATLAB
function eig, attempts to balance the matrix when computing its eigenvalues. Balancing a matrix serves to minimise the effect of roundoff error
which can make large changes to eigenvalues.

3.12 The Nelder–Mead algorithm
TheNelder–Mead simplex algorithm, also known as the amoeba algorithm, falls within a class of simplex search methods that
search for an optimal value by moving the vertices of a simplex around in a region according to prescribed rules. It
should not be confused with the simplex method of linear programming with which it has little in common.

The Nelder–Mead algorithm has become enormously popular in certain applications and is incorporated as a standard
algorithm in packages such as MATLAB. Part of the reason for its popularity is that it is quite reliable, even for
searches in high dimensional spaces. However, it is not a fast algorithm. So it is
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to be preferred for problems in which there is little known about the nature of the objective function to be minimised
or maximised. For example, it may be difficult or impossible to compute the derivative matrix of a score
function—that is, the matrix of second partials of the log-likelihood—so that Newton–Raphson cannot be
implemented. Indeed the log-likelihood might have a singularity set where the derivative matrix is not defined. If this is
the case, the Newton–Raphson algorithm cannot be routinely applied.

In the standard formulation of the algorithm, a scalar-valued objective function is minimised. As we shall be more
properly concerned with the maximisation of an objective function such as a likelihood, log-likelihood or quasi-
likelihood, etc., we shall formulate the algorithm in the reverse direction from the standard formulation. The
modification is trivial, of course.

Suppose that Θ is a k-dimensional parameter space, and l(θ), θ ∈ Θ is a real-valued objective function (which need not
be a likelihood or log-likelihood) which is to be maximised. Each iteration of the algorithm begins with a simplex in Θ
determined by k + 1 vertices θ(1), …,θ(k+1). Based on the evaluation of l at these vertices, one or more vertices are
computed, and a new simplex is constructed.

In order to implement the Nelder–Mead algorithm, four tuning parameters must be chosen (Figure 3.7). These are
coefficients of

• reflection ρ > 0 (usually set to 1);
• expansion χ > 1 (usually 2);

Fig. 3.7 The reflection, expansion and contraction steps in the Nelder–Mead algorithm in two dimensions.
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• contraction 0 < γ < 1 (usually ½); and
• shrinkage 0 < σ < 1 (usually ½).

At any step of the iteration, a non-degenerate simplex with vertices θ(1),…,θ(k+1) is determined. We assume that these vertices are ordered in
decreasing values of the objective function ℓ, so that

where ℓ(j) = ℓ(θ(j)). Since the task is to maximise ℓ, we call θ(1) the best point and θ(k+1) the worst point. The algorithm seeks to replace the worst
vertex by a more appropriate one. To this end, we begin by reflecting θ(k+1) about the point which is the centroid of the other k vertices. That is, we
define θr to be

where θ = (θ(1) +… + θ(k))/k. If ℓ(k) < ℓr ≤ ℓ(1), then we have improved on the second worst vertex. The point θr replaces θ(k+1) and the iteration
is complete.

On the other hand, if ℓ(1) < ℓr, then it is appropriate to try to do even better than this reflected point. We calculate the
expansion step

If θe is better than θr we accept θe and the iterative step is complete with θe replacing θ(k+1). If θr is better than θe, then θr
replaces θ(k+1), and once again the iterative step is complete.

The case where the reflection actually makes things worse or does not improve matters enough occurs when ℓr ≤ ℓ(k).
In this case, we attempt the point which is the contraction of θmacron; towards the better of θ(n+1) and θr. If ℓ(k+1) < ℓr ≤ ℓ(k),
then an outside contraction is performed, namely

If ℓr ≤ ℓ(k+1) then an inside contraction

is performed. Either way, we end up with a contracted point, namely θc or θcc. If an outside contraction is performed
and ℓc ≥ ℓr, or if an inside contraction is performed and ℓ(k+1) < ℓcc, then the iterative step is terminated and the
contracted point replaces ℓ(k+1).

However, the step of the iteration does not necessarily end with this contracted point. If the contracted point does not
improve enough to satisfy the relevant inequality, we proceed to the final step which is shrinkage. We evaluate ℓ at the k
points determined by shrinking θ(2), …, θ(k+1) towards θ(1) using

The vertices of the next simplex are θ(1), η(2), …, η(k+1) in no particular order (Figure 3.8).
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Fig. 3.8 The final shrinkage step in the Nelder–Mead algorithm in two dimensions.

The MATLAB command fmins conducts a minimisation routine using the Nelder–Mead algorithm. As such, it is
appropriate for optimising a wide variety of functions. The initial simplex for the algorithm is constructed internally by
fmins so that the user need only specify the objective function and an initial starting point in the domain of the function.
The default accuracy of fmins is 10−4, which can be reset when calling the function. If convergence to this accuracy has
not occurred after 400 iterations, the algorithm terminates. Once again, this default value can be changed. The
function can be called with a statement of the form

≫xmin=fmins (‘function’, x0, [display, acc], [ ], 1, p2, p3, p4, …)

where function is the objective function, x0 is the initial value for the algorithm, display is a real number which causes
intermediate steps to be shown when display is non-zero, acc is a real number defining the required accuaracy for the
algorithm, and p1, p2, and so on, are real-valued parameters that can be passed to function. The value xmin that is the
output from fmins is the smallest domain variable found by the search algorithm.

While the Nelder–Mead algorithm does not require the calculation of gradients, it can fail to perform well if the
objective function has multiple extrema or is piecewise constant on certain regions. In the former case, it can converge
to a locally optimal point that is not the global solution. Similarly in the latter case, the piecewise constancy of an
objective function may ‘trick’ the algorithm into terminating prematurely.

3.13 Jacobi iteration for quasi-likelihood
In this section, we shall consider a method for inverting matrices that is useful for solving quasi-likelihood equations.
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Let Y denote an n × 1 column vector of observations, μ(θ) the corresponding n × 1 column vector of means, and ∑(θ)
the n × n covariance matrix of the Yj's. If the parameter θ is k-dimensional, then the derivative matrix μ ̇(θ) will have
dimension n × k. As in equation (2.15), the quasi-likelihood estimate for θ will be obtained by solving the
equation(3.45)

Two computational problems arise in solving equation (3.45). The first is that the matrix ∑(θ) apparently needs to be
inverted. The second problem is that, even with this inversion in hand, the equation may not have an explicit solution
for θ.̂ We shall concentrate on the problem of matrix inversion below.

The coefficient matrix a(θ) = μ ̇t(θ ̂)∑−1(θ̂) can be regarded as the solution to the set of simultaneous linear equations
provided by(3.46)

Gaussian elimination can be used to find a(θ) directly, and this is more computationally efficient than inverting ∑ in
equation (3.45) above. A simple alternative to Gaussian elimination is Jacobi iteration. Let us write ∑(θ) = Δ(θ) + Γ(θ)
where Δ = diag(σ11, …, σnn). So, applying this identity, we can rewrite equation (3.46) as

The form of this identity suggests the iteration(3.47)

Jacobi iteration consists of the application of this recursion to some starting matrix a(0). An application of the
contractive mapping theorem shows that the iteration will converge provided that the spectral radius of ΓΔ−1 is less than
one. When Y is bivariate (n = 2), then the covariance inequality can be used to prove that this is always the case.
However, when n > 2 and the observations Yj are highly correlated, Jacobi iteration can diverge for some starting
values.

To estimate θ and to invert ∑ simultaneously, one can iterate jointly over a and θ. For example, the iteration (a(j), θ(j)) →
(a(j+1), θ(j+1)) that is defined by(3.48)

(3.49)

can be used. The solution to (3.48) may be immediate or quite difficult, depending upon the particular model.
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Example 3.16 Data from quadrat sampling

In the following example, we shall consider the solution to the particular quasi-likelihood equation that was proposed
in Section 2.6.4. We shall further restrict to the case where the Poisson process is homogeneous with intensity
parameter θ. Then μj(θ) = θ|Aj|, and σjk(θ) = θ|Aj ∩ Ak|, where |B| represents the area of the set B. So (3.48) and
(3.49) become(3.50)

and(3.51)

where ν = (|A1|, …, |An|)t, 11×n is an n-dimensional row vector of ones, and

Some insight into the Jacobi iteration here can be obtained if we set a(0) = 11×n. Then(3.52)

which is the binomial expansion of 1 1×n(I + T)−1.

3.14 Bibliographical notes
Many of the properties of Newton–Raphson iteration can be found in Dennis (1996). Particular attention is paid in
that book to quasi-Newton algorithms both for solving non-linear equations and unconstrained minimisation
problems. A survey of traditional numerical analysis can be found in Henrici (1964). While the literature on numerical
analysis is extensive, there are fewer books which concentrate on the use of numerical methods specifically within
statistics. The reader is referred to Lange (1999) for the applications of numerical analysis to a variety of statistical
problems.

The Nelder–Mead algorithm was introduced by Nelder and Mead (1965). While the Nelder–Mead algorithm is not fast
compared to the Newton–Raphson algorithm, it has proved to be very reliable. Despite the limited number of
theoretical results showing that it converges successfully, the practical results have been mostly positive.
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4 Working with roots

4.1 Introduction
In this chapter, we will consider a number of examples where estimating functions lead to multiple roots. As we shall
see, an estimating function can have multiple roots for a variety of reasons. So it is not surprising that—to use a
medical analogy—the appropriate prescription for a multiple root problem requires a careful analysis of its aetiology.
In each of the examples below, we must consider several questions:

1. Is the existence of multiple roots in an estimating equation a symptom of a problem in the choice of model for
the data?

2. Is the existence of multiple roots symptomatic of a problem in the choice of the estimating function for analysing
the data?

3. Are multiple roots symptomatic of problems in the data themselves, i.e., that the data have little information
about the parameter?

We will not be able to answer all these questions at this stage. However, to continue in a medical vein, good practice
will require an extensive case book of patients on which a variety of remedies have been tried.

4.2 Non-identiable parameters in mixture models
A parameter or parametrisation is said to be identifiable if, for all pairs of distinct parameter values, say θ and θ′, the
induced distributions on the data Y ∈ Rn are also distinct. More precisely, we have the following.

Definition 4.1 A parametrisation is said to be identifiable if, for any distinct parameter values θ and θ′, there is some (measurable) set
A such that the probabilities of the event Y ∈ A assuming θ and θ′ are different.

For any parametric model, we can partition the parameter space into equivalence classes, with the elements of each
class being equivalent in the sense that they induce the same distribution on the data Y. Identifiable parametrisations
are those whose equivalence classes are singleton sets. The likelihood function will always be constant on an
equivalence class of parameter values. So if a maximum



likelihood estimate lies in an equivalence class with more than one element, it will not be unique.

If a model has a non-identifiable parametrisation, it is possible to find an identifiable submodel. However, as the
following example shows, even when the problems of non-identifiability are eliminated, the likelihood may remain
multimodal.

Example 4.2 A mixture model for fish populations

Individual fish of a particular species caught in a river live for a maximum of two years. Up to the time of death, the
growth rate for the fish is approximately linear, so that the size of the fish is roughly proportional to its age. Thus the
average size of fish spawned in the year of capture is cθ, where c is the time, measured in months since the spawning
season and θ is the rate of growth. The average size of fish spawned in the previous season is (c + 12)θ. A possible
model for the distribution of size for a randomly selected fish from the population is therefore

where the parameter σ represents individual variation within age group and the weight p represents the proportion of
the population of fish spawned in the season of capture. The growth rate parameter θ should be constrained to be a
positive real number, as should the fish sizes themselves. Therefore, we must assume that the positive probabilities
assigned to negative sizes by the model are negligible for practical purposes.

If p is assumed to lie in the closed interval [0, 1], then a problem of parameter non-identifiability occurs. This is easily
seen by noting that the parameter assignment p = 0 and θ = θ0 leads to the same distribution as p = 1 and θ = (1 +
12c−1)θ0. So for any data set, the likelihoods will be the same. For example, in Figure 4.1, the log-likelihood function is
graphed for a special case of three observations artificially set to be yj = 7, for j = 1, 2, 3. To illustrate the behaviour of
the likelihood, the parameter space has been reduced to the set where σ = 1, c = 11, and θ = 0.3(1 + 12p/c). In this
submodel, parametrized by the single parameter p, the endpoints p = 0 and p = 1 impose identical distributions on the
data, and therefore are not identifiable. Correspondingly, the log-likelihood has two equal maxima at the endpoints of
the interval. In Figure 4.2, the log-likelihood is plotted as a function of both p and θ, with c and yj as before.

It is tempting to try to restore identifiability to the parameter space by ‘pasting’ the parameter points with p = 0 to
those with p = 1, so to speak, thereby declaring the parameter space to be the set of its equivalence classes. While this
makes good sense for the distribution of the data, it is not justified in the context of the application: the cases p = 0 and
p = 1 represent quite different situations in the population biology of the fish species.

The next example that we shall consider is drawn from a study of haemophilia patients as described by Basford and
McLachlan (1985).
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Fig. 4.1 The log-likelihood function for the weight parameter p in a submodel with θ = 0.3(1 + 12p/c) and three
observations.

Fig. 4.2 The log-likelihood function Y as a function of both p and θ, with c and yi.
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Example 4.3 Haemophilia study

Habbema et al. (1974) considered the problem of discriminating between normal women and haemophilia A carriers
based upon AHF activity and AHF-like antigen. On each of 75 subjects the variables

were determined. Let yj1 and yj2 be these two variables respectively for subject j, where j = 1,…, 75. A scatterplot of the
30 known non-carriers and 45 known obligatory carriers is shown in Figure 4.3.

Pooling samples of non-carriers and carriers together, Basford and McLachlan analysed the data with an IID
homoscedastic mixture of normals of the form

where μi is a 1 × 2 row vector representing the expectation of y = (y1, y2) assuming that it comes from population i = 1,
2, respectively, and Σ is the common 2 × 2 covariance matrix for the two populations. The parameter vector for this
model is

Fig. 4.3 Scatterplot of y1 and y2 for the 30 non-carriers (*) and 45 carriers (o) of haemophilia A.
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So the parameter space has eight dimensions. In the more general heteroscedastic model, the dimensionality of the
parameter space increases to 11.

As we noted earlier for such mixture models, the parameters are not fully identifiable. Under the symmetry θ ↔ θ′,
where

the density is invariant. This implies that L(θ) = Lθ′) at such pairs of points in the parameter space. An artificial
constraint that restores parameter identifiability is the restriction (μ1)1 > (μ2)1, which shall be assumed henceforth.

Even with the problems of identifiability removed, the problems of likelihood multimodality remain. Basford and
McLachlan discovered three distinct local maxima of the likelihood. As the mixture model is obtained by pooling
together the two samples of the data set, the three local MLE's can be compared with the unique vector of estimates
for the two-sample data under correct allocation as shown in Figure 4.3. Table 4.1 shows the roots found by Basford
and McLachlan.

The first row of Table 4.1 shows estimates for means and covariances for the two-sample (ts) model using the correct
allocation of observations. The remaining three rows show the three local maxima of the likelihood for the mixture
model as discovered by Basford and McLachlan. The first of these three is the global maximum. Note that the MLE
for the two-sample model is based upon the complete data, whereas the MLE's for the mixture model are based upon
marginal data with the indicator variable for the allocation discarded. Therefore, the two-sample mean and variance
estimates are to be preferred over the three mixture estimates. A perusal of this table offers little reassurance that the
global MLE is to be preferred over the other two local maxima.

An important question is left unanswered in Basford and McLachlan (1985). Since the parameter space for the
homoscedastic model is eight dimensional, how can we be sure that all the local maxima of the likelihood have been
discovered? The dimensionality of the parameter space makes the search for local maxima like wandering in a maze.
One could miss a maximum completely if its domain of attraction in a search algorithm is very small. With eight
dimensions, we might

Table 4.1 Local maxima of the mixture likelihood found by Basford and McLachlan (1985).

θ̂ p̂ (μ ̂1)1 (μ ̂1)2 (μ ̂2)1 (μ ̂2)2 ∑̂11 ∑̂22 ∑̂12 ℓ(θ ̂)
ts 0.400 −0.135 −0.078 −0.308 −0.006 0.0226 0.0216 0.0154
1 0.716 −0.206 −0.080 −0.321 0.079 0.0265 0.0171 0.0158 75.00
2 0.528 −0.121 −0.019 −0.370 −0.052 0.0137 0.0220 0.0100 73.49
3 0.681 −0.153 0.012 −0.420 −0.135 0.0138 0.0175 0.0035 73.29
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conceivably need millions of iterations with different starting points to find all maxima. One solution to this problem is
based upon the following principle:

• Each local maximum of the likelihood is usually supported by a subset of observations for which the marginal
MLE is unique and close to that local MLE for the full data set.

We shall examine this principle, which cannot be applied too generally, in Section 4.10. On the basis of this principle we
can examine subsets of six observations, say, at a time. By dividing the six observations into two groups of three,

we obtain starting estimates for the parameters of the heteroscedastic model by setting

and

If , we switch the groups. The simplest way to initialise p is to let p(1) be chosen randomly from the interval (0, 1).
Then with this random choice, the pooled covariance for the homoscedastic model can be initialised at

From the initial parameter estimates, a variety of iterative methods are available to climb the likelihood function.
Basford and McLachlan used the E-M algorithm, which is a slow but reliable method. Newton-Raphson is faster but
less reliable. Also to be considered is the Nelder-Mead algorithm, which also reliably increases the likelihood.

Iterating from the initial estimates using the Nelder-Mead algorithm, we find that there is an additional mode of the
likelihood that is distinct from the ones found by Basford and McLachlan (1985). Our expanded table of estimates
becomes Table 4.2. As the fourth root is close to the global maximum, its presence may have been ‘masked’ by the
global maximum. Are there any other local maxima? While this investigation did not find any others in the interior of
the parameter space, the existence of yet more maxima cannot be ruled out. We shall consider the question of
undiscovered roots and local maxima in Section 4.10.
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Table 4.2 Expanded list of local maxima for Basford and McLachlan (1985).

θ̂ p̂ (μ ̂1)1 (μ ̂1)2 (μ ̂2)1 (μ ̂2)2 ∑̂11 ∑̂22 ∑̂12 ℓ(θ ̂)
ts 0.400 −0.135 −0.078 −0.308 −0.006 0.0226 0.0216 0.0154
1 0.716 −0.206 −0.080 −0.321 0.079 0.0265 0.0171 0.0158 75.00
2 0.528 −0.121 −0.019 −0.370 −0.052 0.0137 0.0220 0.0100 73.49
3 0.681 −0.153 0.012 −0.420 −0.135 0.0138 0.0175 0.0035 73.29
4 0.890 −0.212 −0.009 −0.454 −0.247 0.0235 0.0167 0.0064 73.01

What are we to conclude from the proliferation of roots in this model? The global maximum of the likelihood is quite
distant from the two-sample MLE which may be considered definitive for the data set—at least for the homoscedastic
model. The presence of multiple maxima suggests the need to analyse the data with a heteroscedastic model. In this we
concur with Basford and McLachlan (1985). However, even the heteroscedastic model has multiple maxima, with quite
distinct parameter values. It seems likely that, fundamentally, the presence of multiple maxima points to the lack of
clear information in the pooled data set about the model parameters.

4.3 Estimation of the correlation coefcient
Consider a set of independent bivariate observations (xi, yi), i = 1,…, n, from a bivariate normal distribution which is
standardised to have means μx = μy = 0 and variances . We assume that there is an unknown correlation
coefficient ρ between any xi and yi. The likelihood equation ℓ̇(ρ) = 0, where l(ρ) = log L(ρ), reduces to(4.1)

which can have as many as three real roots in the interval (−1, 1). If three roots are present, then these will correspond
to two relative maxima and one relative minimum of the likelihood.

A sufficient (but not necessary) condition for the cubic equation P(ρ) to have a unique root is that it be monotone. The
cubic P(ρ) will be monotone, and therefore have a unique real root, when the equation P ̇(ρ) = 0 has at most one real
solution. In turn, this will be true if the discriminant of the quadratic

is zero or strictly negative. From the law of large numbers, we see that D converges to 4ρ2 − 12 as n → ∞. So with
probability converging to one, the likelihood equation will have a unique root for large sample sizes.
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To analyse this cubic equation further, let us define

The pair (S1, S2) forms a minimal sufficient statistic for the estimation of ρ. Next, we perform a location shift z = ρ −
S1/3. Equation (4.1) reduces to the depressed equation(4.2)

where the coefficients

and

are functions of the data through the sample moments S1 and S2. We can study the multiple solutions to this equation
by plotting in R3 all points (a, b, z), where z is a root of equation (4.2) with given coefficients a and b. Figure 4.4 shows
the surface so obtained. The resulting surface is an example of the well-known cusp catastrophe. With this interpretation,
the coefficients a and b represent control parameters for the cusp catastrophe. In the control space, the projection of the
folds of the surface defines the separatrix, whose equation in (a, b) is

Fig. 4.4 The cusp surface with the roots as functions of the control parameters.
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The separatrix divides the control space into two regions. In the first region,

and there is a single root. In the other region where

the surface folds back on itself, so that there are three roots. The point a = b = 0 defines the control parameters of the
cusp catastrophe where the two fold lines of the separatrix meet (see Figure 4.5). The reader is referred to Gilmore
(1981, p. 61) for more on the theory of the cusp catastrophe.

The detailed analysis of the likelihood function and its extrema can be found in Stuart and Ord (1991).

If we examine the necessary and sufficient conditions in for the uniqueness of a root, we see that multiple roots will
occur if and only if 4a3 + 27b2 < 0. Equivalently, in S1 and S2 we have(4.3)

The constraint that 2|S1| ≤ S2 holds for all data sets. Setting , we can rewrite (4.3) as

Fig. 4.5 The separatrix dividing the control space into two regions.
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which is a quadratic in U. So it will have negative values for certain choices of S1 when the discriminant of this
quadratic is positive. As a function of S2, the discriminant in the variable is

From this factorisation, we see that D will be positive when S2 lies outside the interval [2, 10]. So multiple roots can
occur when S2 < 2 or S2 > 10. The case where S2 > 10, need not concern us, because the spurious roots of the
likelihood equation are outside the interval (−1, +1). So we can consider three cases:

1. S2 > 2. The likelihood equation has a unique solution in the interval (−1, +1).
2. S2 = 2. The likelihood equation has a unique and explicit solution ρ ̂ = S1. Note that E(S2) = 2 for all values of

ρ. So the assignment S2 = 2 most clearly represents the case where the data are in agreement with model
assumptions.

3. S2 < 2. The likelihood equation can have multiple solutions in the interval (−1, +1).

The value S2 = 2 is clearly the critical cutoff, both for multiple roots and for obtaining ρ̂ = S1, as the explict and
standard estimate for the correlation. This suggests that a perturbation analysis of the likelihood equation around ρ =
S1 and S2 = 2 would be helpful. Equation (4.1) can be rewritten as(4.4)

The accompanying iterative substitution is

with ρ(1) = S1. This can be Aitken accelerated.

4.4 The Cauchy distribution and stable laws
The previous example may suggest that multiple root problems are small sample issues which will disappear for
sufficiently large sample sizes. This commonly held belief is unfortunately too optimistic, as the following example
illustrates.

Definition 4.4 Suppose a sample of n random variables is drawn from a Cauchy distribution with density function(4.5)
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Then the n variables are said to come from a Cauchy location-scale model with location parameter ξ ∈ (−∞, +∞) and scale parameter c >
0.

This family of densities is characterised as the family of non-degenerate symmetric stable laws with exponent one. In
the special case where c = 1, the densities(4.6)

are said to form the Cauchy location model.

The Cauchy distribution is often considered mainly a source for counter-examples and pathologies in statistical
inference. However, it can arise in financial applications as the following example involving limit pricing illustrates.

Example 4.5 Limit pricing

Suppose Rt and St are two stocks whose fluctuations are modelled as diffusions which are functions of time t. In
particular, we suppose that Zt = log Rt and Wt = log St are Brownian motions with zero drift and diffusion parameters
σ1 and σ2 respectively. An order is placed to sell stock S at any time τ that Sτ hits a given price. On the logarithmic scale,
we might suppose that the order to sell S occurs at the earliest time τ such thatWτ = a, say. The recurrence property of
Brownian motion in one dimension with zero drift tells us that τ will be finite—that is, the stock will eventually be
sold—with probability one (Figure 4.6). What distribution does Y = Zτ have when this stock is sold?

The answer depends upon the joint distribution of the two stocks. In many cases, the pair (Zt,Wt) can be modelled as a
correlated Brownian motion in the plane. This means there exists a linear transformation

where Z′t and Wt are independent Brownian motions and Z′t also has zero drift.

Fig. 4.6 A Cauchy variable Y generated from a hitting time of Brownian motion Zt.
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Suppose that Z0 = ξ, and W0 = v, say. For any b, let τ (b) be the time untilWt hits the value v + b. The strong Markov
property of Brownian motion implies that when b, c > 0 or when b, c < 0, the distribution of τ(b + c) is the convolution
of the distributions of τ(b) and τ(c). Additionally, since the increments of Brownian motion scale as the square root of
the time variable t, it follows that

In particular, τ ∼ (a − v)2τ(1). These considerations imply that the waiting time τ has a stable distribution with exponent
1/2 that is concentrated on the positive axis. Using the reflection principle for the hitting times of random walks, we
can show that

where Φ is the CDF for the standard normal distribution. Differentiating with respect to the variable t, we obtain the
density function for τ, namely

In a similar way, it can be shown that the distribution of Zτ(b+c) (resp.Z′τ(b+c)) is the convolution of the distributions of Zτ(b)

(resp. Zτ(b)′ and Zτ(c) (resp. Z′τ(c)), with scaling law

So Zτ and Z′τ have stable distributions. The scaling law in this case implies that Zτ and Z′τ are stable with exponent one.
As Z′τ has a distribution that is symmetrical about ξ – βv and

it follows that the distribution of Zτ is symmetric about ξ + βb. However, the only symmetric stable law with exponent
one is the Cauchy distribution.

Let us turn now to the estimation of parameters for the Cauchy model. Inferentially, the Cauchy location model is quite
distinct from the location-scale model. So we shall consider these two models separately. We begin with the location
model, and shall set c = 1. If c is known and c ≠ 1, the general comments below hold true with appropriate
modification of the formulas. A sample of variables from a Cauchy location model presents a number of problems for
likelihood inference. The likelihood function for location parameter ξ is
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and the likelihood equation reduces to(4.7)

Equation (4.7) can be rearranged so that any solution ξ̂ can be represented as a weighted average of the data:(4.8)

where the weights

are positive and sum to one. The representation of ξ̂ as a weighted average suggests the iterative substitution algorithm

for finding roots. Convergence will be linear, and can be improved with Aitken acceleration.

How many roots does the likelihood equation have? Upon taking a common denominator in equation (4.7), we see
that the solution set for this equation is equivalent to that of

which is a polynomial equation of degree 2n − 1. Since the degree of the equation is odd, it will have at least one real
root, and if multiplicities of the roots are counted, the total number of real roots will always be odd number between 1
and 2n − 1. It is not hard to check that these extremes can be attained for certain data sets. For example, if yj = y, for j
= 1,…, n, then ξ̂ = y will be the only root. For extreme configurations of highly separated variates, the polynomial
equation admits a full 2n − 1 distinct solutions, corresponding to n relative maxima and n − 1 relative minima of the
likelihood. Fortunately, as Reeds (1985) has shown, this extreme situation is rare. As n → ∞, the asymptotic
distribution of the number of local maxima of the Cauchy likelihood converges to that of 1 + M, where M has a
Poisson distribution with mean 1/π. A consequence of this is that the number
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Fig. 4.7 The score function for the Cauchy location-model with an outlier producing extraneous roots.

of extraneous local maxima of the likelihood will be positive with an asymptotic probability given by

which is less than one time in three. However, the probability that extraneous roots occur does not go to zero as the
sample size gets large (Figure 4.7).

We shall now consider the Cauchy location-scale model with unknown parameters ξ and c. Unlike the location model,
the problem of multiple roots does not arise in this case. Copas (1975) showed that with probability one there is a
unique solution to the simultaneous likelihood equations

The solution to these equations fails to be unique only if exactly 50% of the data values are coincident at some y1 and
the other 50% are coincident at some other y2. The other case worthy of special consideration occurs when more than
50% of the values are coincident at a point y. In this case there is no solution to the likelihood equations, and the
likelihood is maximised on the boundary of the parameter space with ξ̂ = y and ĉ = 0. Both of these special cases have
probability zero.
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After some rearrangement, the likelihood equations reduce to(4.9)

(4.10)

where

These equations suggest the iterative substitution algorithm(4.11)

(4.12)

which can be Aitken accelerated.

The Cauchy distribution is a special case in the family of symmetric stable distributions, to which we now turn. A
general representation for symmetric stable distributions is provided by the following construction.

Proposition 4.6 Suppose that X1,…, Xn are independent random variables that are uniformly distributed in the interval [−n, + n].
Let p > 1/2. Define(4.13)

where sgn(X) is the sign of X, which is +1, 0, or − 1 as X > 0, X = 0 or X < 0, respectively. Then in the limit as n → ∞, Yn

converges in distribution to a symmetric stable law with exponent α = 1/p, centered at zero with scale parameter

To prove this result, we shall examine the characteristic function of Yn. Note first that(4.14)
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So we can write

It can be checked that the integral converges for p > 1/2. This last expression is the characteristic function for a
symmetric stable law centred at zero with scale c and exponent α.

The density functions for symmetric stable laws other than the normal and the Cauchy cannot be expressed in closed
form with elementary functions. This creates major obstacles for implementing a likelihood analysis for data from a
symmetric stable distribution. The density function for these laws can be expressed through an infinite series.
Bergström (1952) gives the formulas for the CDF(4.15)

and(4.16)

for the special case ξ = 0 and c = 1. Formula (4.15) is formally convergent for all y when α > 1, while formula (4.16)
converges for all y ≠ 0 when α < 1. These series are easily modified to account for general scale and location
parameters.

Both equations can also be formally differentiated with respect to y to obtain expansions for the density, namely(4.17)

and(4.18)

Once again, (4.17) converges when α > 1 and (4.18) converges when α < 1. Rather surprisingly, the formal
convergence properties of these series are not
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closely related to the practical utility of the series for approximating the density functions. For example, when |y − ξ| is
large and α > 1, the terms in (4.17) will only decrease to zero when n is very large. Before that, they can increase
monotonically by many orders of magnitude. On the other hand, if |y − ξ| is small and α < 1, the series, although
formally divergent, appears to converge for many terms. Similar remarks hold for formula (4.18). When |y − ξ| is
small and α < 1, the series appears to diverge although it is formally convergent. When |y − ξ| is large and α > 1, the
series appears to converge but is formally divergent.

Some explanation for this phenomenon can be found in the fact that in those cases when the series diverges, the
desired density behaves as an anti-limit of the series rather than as a limit. An anti-limit can be regarded as a point of
repulsion of the sequence of partial sums just as a limit is a point of attraction for the partial sums. For practical
purposes, (4.18) works well when |y − ξ| is large for all α, while (4.17) works well when |y − ξ| is small. In cases
where the series are formally divergent, it is important to only use terms which are decreasing early in the sequence.

There remains the difficult problem of determining which series to use for a given value of the density. In fact there
may be values of y for which neither series works in a practical sense. To ensure the best convergence results, it is
helpful to accelerate the convergence properties of such series, whenever possible. In the following example, we shall
consider an acceleration method known as the Euler transformation.

Example 4.7 Let(4.19)

be a convergent alternating series with positive aj decreasing monotonically to zero. We write

where Δaj = aj − aj−1 is the usual first difference operator. Therefore,

But the expression in parentheses is another alternating series. Therefore the same operation can be applied again.
Continuing in this fashion we obtain the expression(4.20)

Here,
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and, in general

Equation (4.20) is the Euler transformation. As the coefficients of the difference operators sum to zero, the numerators
Δja1 do not grow large, and the transformed series behaves approximately like a geometric series.

The Euler transformation is so successful at accelerating convergence, that considerable attention has been paid to
converting series to an alternating form. One such method is Van Wijngaarden's transformation which converts positive
series to alternating series. Suppose that

is a convergent series with positive terms. Define

for k = 1, 2, 3,…. Then(4.21)

The Van Wijngaarden transformation coupled with the Euler transformation often produces rapid convergence. For
example, the series becomes

An additional advantage of the Euler transformation is that it can increase the radius of convergence of some power
series. For example, the series 1 − x2 + x4− … converges for x in the interval (−1, +1). Under the Euler
transformation, the series becomes

which converges for x in . So the transformation is often useful for computing the anti-limits of series.

One last issue that needs consideration is the effect of an Euler transformation on series which are not alternating. In
such cases, the transformation usually leads to an equivalent series. If the original series has a large number of sign
changes
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among neighbouring terms, then the Euler transformation usually improves the rate of convergence. However, for
series with few sign changes, the rate of convergence may not be as good.

Returning to the problem of calculating symmetric stable densities, we can apply the Euler transformation to formula
(4.17). This increases the region of satisfactory convergence sufficiently to allow the tail formula in (4.18) to finish the
job. In Figure 4.8, we see the effect of applying the Euler transformation to the series expansion with eight terms for α
= 1.5. The expansion in (4.17) with eight terms works well when |y| < 2, but the approximation degenerates rapidly
outside that region. On the other hand, the tail formula (4.18), although formally divergent, works well when |y| > 3
using eight terms. Neither formula captures the ‘shoulders’ of the distribution between 2 and 3. However, by applying
the Euler transformation, the region of satisfactory convergence for (4.17) is extended to |y| < 4, which is more than
sufficient to cover all choices of y. It is encouraging to note that the density can be accurately approximated piecewise
with only eight terms of the appropriate series for all real y.

Figure 4.9 shows the effect of the Euler transformation on the tail formula in (4.18) for the sample distribution. Here
the improvement is more modest, but is still quite clear. The ability to accelerate the convergence from a few terms of
the

Fig. 4.8 The improvement of the Euler transformation on series (4.17). The plot shows series (4.17) and the Euler
transformed improvement of (4.17) with eight terms for each. Parameters ξ = 0, c = 1 and α = 1.5 have been used. The
large deviations of each series have been truncated in the ordinate to ensure appropriate scaling. The correct density is
also plotted for comparison purposes.
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Fig. 4.9 The improvement of the Euler transformation on series (4.18). The plot shows the series (4.18) and its Euler
transformed improvement with eight terms for each. Parameters ξ = 0, c = 1 and α = 1.5 have been used. The large
deviations of each series have been truncated in the ordinate to ensure appropriate scaling. The correct density is also
plotted for comparison purposes.

tail formula is especially useful in (4.18) because the density is the anti-limit of the formula, and cannot be
approximated with a large number of terms.

By patching the formulas together piecewise, it is possible to plot the densities completely. For example, Figure 4.10
shows the densities for values of α between 0.7 and 1.5 with ξ = 0 and c = 1.

Once densities are calculated, maximum likelihood estimation becomes possible. In much the same way as equations
(4.9) and (4.10), the likelihood equations for ξ and c can be represented as weighted least squares equations. Let ψ (y) =
log f(y; 0, 1, α). Then the likelihood equations for ξ and c transform to(4.22)

(4.23)
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Fig. 4.10 Symmetric stable densities with ξ = 0 and c = 1 for α = 0.7, 1.0 and 1.5.

where

The extension of these equations to regression models with stable errors can be found in McCulloch (1998a).

An alternative approach to calculating the stable densities is based upon the inverse Fourier transform. A stable density can
be represented as the inverse Fourier transform of the characteristic function. However, such representations generally
do not have closed forms. This requires that the integrals be evaluated numerically. Nolan (1997) has described a fast
algorithm for the approximation of densities. The current version of this algorithm uses spline approximations to the
densities in order to avoid the laborious task of density evaluation directly. A quasi-Newton hill climbing routine is
applied to maximise the likelihood. Spline interpolations of the density function have also been developed by
McCulloch
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(1998b). DuMouchel (1973, 1975) has shown that the maximum likelihood estimator has the usual asymptotic
properties by being asymptotically efficient and normally distributed.

Other methods for estimating parameters include the class of quantile or distribution fitting procedures. For example,
it is possible to use a class of unbiased estimating functions of the form(4.24)

where F̃ is the empirical CDF, and H is some appropriately chosen vector-valued integrating function whose dimension
matches the dimension of the parameter space. To avoid too much analytical difficulty, the integrating function H =
(H1,H2,H3)t can be set to some simple choice motivated by the desire to match quantiles. For example, we can use

where k1(α), k2(α) > 0. If

then the method reduces to the fitting of the median and two quantiles. As α controls the behaviour in the extreme
tails, it is helpful to fit quantiles far out from the median. For example, fitting both ∈1 = 0.05 and ∈2 = 0.01 gives a
useful measure of the decay of the tail. On the other hand, if the shape of the distribution and its ‘peakedness’ in the
centre of the distribution is of greater interest than the tail behaviour, it is reasonable to fit ∈1 = 0.25 and ∈2 = 0.1, say.
Fama and Roll (1968) noticed that the 72nd and 28th percentiles of the stable laws are fairly insensitive to variation in
the exponent α. This suggests that the location and scale parameters can be roughly estimated from the empirical
quantiles by(4.25)

(4.26)

These simple quantile estimates can be used in their own right or to initialise algorithms that converge to the maximum
likelihood estimates or other estimators.

Quantile methods and maximum likelihood estimation both involve approximations to the distributions of the stable
variates. So attention has turned to
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characteristic function fitting methods where the characteristic function can be expressed in closed form. The
characteristic function is

Paulson et al. (1975) have proposed that the parameters be estimated by minimising(4.27)

where

is the empirical characteristic function. The choice of exp(−t2) as a weighting function is motivated by the need to
ensure that this integral converges. Upon differentiating this objective function with respect to the three parameters, we
see that this method is equivalent to solving the unbiased estimating equations(4.28)

where φ̇(t) is the vector of derivatives of φ(t) with respect to the three parameters θ = (ξ, c, α). Note that the imaginary
components of the integral on the left-hand side are zero, because and . Such equations are special
cases of the family of equations of the form(4.29)

where w(t) is an appropriately chosen vector weighting function such that w(−t) = w(t). This class of estimating
functions was considered by Feuerverger and McDunnough (1981), who showed that the consistent root of this
equation is asymptotically normal with asymptotic variance

for a one-parameter model. The extension to multiparameter models is straightforward. This result, and the other
results of Feuerverger and McDunnough (1981) apply to general models beyond the stable family of distributions. The
choice of w(t) which minimises the asymptotic variance—that is, maximises the Godambe efficiency—can be found.
This turns out to be the inverse Fourier transform of the score function. The resulting estimation procedure is then
maximum likelihood. As such, there seems to be little point in using the empirical characteristic function equation with
this optimal weight because maximum likelihood estimation can be
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accomplished more directly. A more practical choice of weighting function is one which has support on a finite set of
values t1,…, tK.
Another characteristic function technique proposed by Koutrouvelis (1980) has the additional advantage that the
estimates for the parameters can be expressed as the solution to a linear regression problem. Koutrouvelis noticed that
for stable laws, the characteristic function satisfies the equation(4.30)

So υ = log(−log |φ(t)|2) is a linear function of u = log|t|. Based upon selected values t1,…, tK we can compute the
‘variates’ υ1,…, υK and the ‘covariates’ u1,…, uK and perform a regression. The slope of the fitted regression line is an
estimate of α. In turn, from this estimate of α and the υ-intercept of the regression line, an estimate for c can be
determined.

4.5 The relative likelihood principle
In the previous section, we noted that the problem of multiple solutions for the Cauchy location likelihood equation
did not disappear asymptotically. Nevertheless, we could order the roots of the score function as estimators by
calculating the likelihood at each root. The likelihood function is often interpreted as a support function that partially
orders parameters by the value of the likelihood. The most appropriate root under this criterion would be that which
globally maximises the likelihood. The rule which states that parameters can be partially ordered by the likelihood can
be called the relative likelihood principle. It is not to be confused with the weak likelihood principle or to the strong likelihood
principle. The relative likelihood principle can be stated as follows.

Definition 4.8 Let θaand θbbe two parameter values and E an observed event whose probability is controlled by the choice of θaor θb. The
relative likelihood principle (RLP) states that, based upon E, the parameter value which better explains the event—in the sense, say, that
P(E; θa) > P(E; θb—is to be preferred. Equivalently, if ℓ(θa; E) > ℓ(θb; E), then θais to be preferred over θb.

Should we believe the RLP? It seems reasonable, but we must proceed with care. The RLP is based upon the
probability of the data given values of the parameter. What we wish to know is the plausibility of values of the
parameter given the data. There would seem to be a link between these concepts. But they are not immediately
equivalent.

It is often argued that maximum likelihood estimation is justified by the fact that the global MLE is asymptotically
efficient. However, the usual Cramér conditions that are imposed for the asymptotic efficiency of the MLE only ensure
that the consistent root of the likelihood equations is efficient; there is no guarantee that the global maximum of the
likelihood corresponds to a consistent root. So, in the
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absence of any regularity on the model, it is possible for this strategy to come undone for some parametric models.
Examples due to Kraft and LeCam (1956), LeCam (1979), Bahadur (1958) and Ferguson (1982) illustrate that the
global maximum of the likelihood can correspond to an inconsistent root of the likelihood equation, while at the same
time, some other root of the likelihood equation is a consistent estimator for the parameter. See also LeCam (1990)
and Example 3.1 in Chapter 6 of Lehmann (1983). While inconsistent maximum likelihood estimates are well known
from the examples of Neyman and Scott (1948), the examples due to Kraft and LeCam and others are more
problematic for likelihood methodology. This is because they do not involve the use of nuisance parameters, and can
be made to satisfy the regularity conditions of Cramér (1946), while, at the same time, the global MLE is inconsistent.
While it is possible to invoke regularity conditions such as those of Wald (1949) to ensure that the global maximum
likelihood estimate is consistent, the conditions are difficult to check for models involving multiple roots. As the
examples above show, the Wald conditions can fail for models which are, in other respects, regular.

Example 4.9 An inconsistent global MLE

The model given by Ferguson (1982) is particularly compelling (see Figure 4.11). It has the following properties:

• The distributions are mixtures of Beta densities, which are well motivated by common statistical practice.
• The Cramér conditions are satisfied. So there is a consistent root of the likelihood equation.
• With probability one, as n → ∞, the global MLE converges to 1, whatever the true value θ0 ∈ [1/2, 1]. So the

global MLE is not consistent. Nevertheless, at the global MLE, the likelihood is continuous and differentiable.
This last condition ensures that there is no simple way to dismiss the global MLE by a local analysis of the
likelihood function.

To define Ferguson's family of densities, we set

for θ ∈ [1/2, 1]. Then(4.31)

where b(y, α, β) is a Beta density of the form

Ferguson's model fails to satisfy a strong condition due to Wald (1949) that the family of log-likelihood ratios be
uniformly integrable: there is no function K(y) ≥ 0 such that
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Fig. 4.11 A family of densities on the interval [0, 1] with an inconsistent global MLE, due to Ferguson (1982).

and

for all y and θ Here, ℓ(θ y) = log f(y; θ) is the log-likelihood.

Does Ferguson's model contradict the relative likelihood principle? It is difficult to argue that the global MLE is more
plausible than a local MLE when the former is inconsistent and the latter is consistent.

4.6 Estimating the normal mean in stratied sampling
Suppose that observations of independent random variables are divided into m strata, the jth stratum
consisting of a sample Let

denote the sample mean and variance respectively in stratum j. Suppose we are interested in estimating the common
mean ξ based on for
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j = 1, …, m. The log-likelihood function is(4.32)

Let denote the MLE for σj in the restricted model obtained by fixing the value of ξ. Then

Then the profile log-likelihood function for ξ is(4.33)

This can be maximised directly in ξ to obtain the MLE ξ̂. However, Chaubey and Gabor (1981) have noted that the
profile likelihood may well be multimodal. To see why this is the case, note first that we can also find the MLE by
differentiating the log-likelihood in (4.32) with respect to ξ and plugging in for σ1,…,σm, respectively. The
resulting equation has the form(4.34)

Equation (4.34) looks very similar in form to equation (4.7) for the Cauchy location parameter ξ, although the two
models are quite different. This tells us that we can get multiple roots here as well, when the strata means ȳ1,…, ȳm are
widely dispersed compared to the strata standard deviations s1,…,sm. Once again, the appearance of multiple roots
seems to be a bellwether for the possible lack of good model fit. As the model assumes that the strata have a common
mean, large variation between strata, as measured by the dispersion of the sample means y ̄1,…, ȳm, is an indicator that
this model assumption could be incorrect.

Another problem with maximum likelihood estimation is that the MLE for ξ is consistent but not efficient. For
instance, it is less efficient than the estimator derived from the estimating equation:(4.35)

with wi = ni − 2, as advocated by Bartlett (1936) and Neyman and Scott (1948). Likelihood theory leads to the choice wj

= nj. On the other hand, sufficiency and ancillarity arguments (Kalbfleisch and Sprott, 1970) lead to the same equation
(4.35) but with wj = nj − 1. The class of estimating equations defined in (4.35) generally admit multiple roots.
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4.7 Regression with measurement error
Stefanski and Carroll (1987) have considered generalised linear models in which the covariates cannot be observed
directly, but can only be measured with a certain amount of measurement error. Suppose that a random variable Y has
density(4.36)

where α, β and φ are unknown real parameters, u is a real covariate, and a(.), b(.) and c(., .) are known real-valued
functions. Now suppose that we cannot observe u, but that for each value of the u, we can take a measurement. We
might model this measurement X as X = u + ∈, where ∈ has a normal distribution with mean zero and variance ω̄. We
shall assume that ω̄ = a(φ)ω, where ω is known. So the density of X is

A sample (xi, yi), i = 1, …, n, of independent observations is given. For convenience we represent the full vector of
parameters (α, β, φ) by θ. The joint density of the data is(4.37)

where

When written explicitly, the right-hand side becomes

In this model, the covariates u1, …, un act as nuisance parameters for the problem of estimating θ. Unfortunately, there
are just too many of these nuisance parameters. The problem is reminiscent of the class of problems considered by
Neyman and Scott (1948). Consider the submodel for the data in which we fix the value of θ and regard u1, …, un as
the parameters. Within this submodel, the joint density in (4.37) has exponential family form in the ‘parameters’ u1, …,
un. A complete sufficient statistic for uj is

Stefanski and Carroll (1987) proposed that the nuisance parameters u1, …, un could be eliminated from the model by
conditioning on the complete sufficient statistics δ1, …, δn for u1, …, un. There are two ways that we can consider to build
estimating functions by conditioning on δ1, …, δn. One way is to calculate
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a gradient function for a conditional log-likelihood. We can write the joint log-likelihood for θ and u given y and δ = δ
(θ) as

where

It seems natural to extract the conditional component of this log-likelihood and to take its gradient with respect to θ.
For the full data set this becomes

Calculating the gradient of ℓγ|δ may look like a standard calculation of a score within a conditional model. However,
this is not the case, because δ1, …, δn depend upon the parameter of interest θ. It should be clearly understood that in
calculating this derivative with respect to θ, the statistic δ is to be treated as a constant and not as a function of θ. This
can be the source of some confusion. Note that δj = δj(θ) is a complete sufficient statistic for uj in the restricted model
where θ is given. For the purpose of calculating the gradient of the log-likelihood, δj must be treated as fixed. If we
were to treat δj as functionally dependent upon the parameter θ in differentiating we would introduce a bias into the
estimating function which could lead to inconsistent estimation. This point will be important for the example that
follows.

Example 4.10 Normal regression with measurement error

Consider the special case where Y has a normal distribution with mean α + βu and variance σ2. In the notation above,
this makes φ=σ2, a(φ)=φ and φ=(α, β, σ2). Once again, δ = x + λωβ. It can be checked that the conditional distribution
of Y given δ is

Therefore, based upon a sample (x1, y1), …, (xn, yn), the conditional log-likelihood is

For convenience, let us set
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Differentiating with respect to α and equating to zero, we get the equation

Differentiating with respect to σ we get

So far so good, as far as α and σ are concerned. However, when we differentiate with respect to β we get

The problem with this equation is that it can have multiple solutions for β̂. This can be seen by writing the equation out
in terms of the paired data (xj, yj) and simplifying. We obtain

where , and are the usual sample second moments. This equation is quadratic in β̂. We are spared the indignity
of having an equation with no solutions, because the discriminant of the quadratic is positive. However, the equation
will have two solutions from which to choose. It is tempting to interpret the roots as corresponding to a local
maximum and a local minimum of an objective function. However, this interpretation is not as well motivated as in the
calculation of an MLE. In this case, we are not maximising a likelihood or a conditional likelihood.

Simple ad hoc methods can choose a root. For example, we certainly wish to recover the standard least squares solution
when ω → 0. If we solve the equation for the roots, we get

If we want the usual least squares estimator in the limit as ω→ 0, we should take the upper root.Ad hoc considerations
such as these are usually applied when multiple root problems arise. However, such methods are no solution to the
general problem of choosing a root, because such choices will not fit within a general theory of estimation. Nor does
this selection method extend to the case of multiple regression with measurement error that is discussed below.
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Stefanski and Carroll also reported that a similar problem of multiple roots arises in logistic regression with errors in
covariates. In this case, Y is assumed to be a binary random variable with mean p, which relates to (α, β) through the
canonical link

Once again, we assume the additive error model Y = u + ∈. Further analysis of this model can be found in Hanfelt and
Liang (1995, 1997), where an objective function is constructed by a path-dependent integration approach.

For reasons of simplicity, we have only considered simple linear regression with measurement error up to this point.
Stefanski and Carroll's general model is a multiple linear regression where β is a vector of coefficients, and u is a vector
of covariates of the same dimension. The response Y is a scalar random variable whose error distribution is governed
by the density in equation (4.36) as above. The parameters α and φ remain scalars, and the functions a(·) and b(·)
remain real-valued. It is assumed that u cannot be measured exactly, and that X has a multivariate normal distribution
with mean u and covariance matrix a(φ)Ω. Much of the analysis given above generalises easily to regression with
multiple covariates. As was true for simple linear regression, error models lead to estimating equations with more than
one solution. However, in higher dimensions, there is no ‘quick fix’. Stefanski and Carroll proposed picking the root
which is closest to the naive estimator obtained by ignoring measurement error. The concept of distance between two
estimators can be treated flexibly here. It can either be defined operationally by iterating from the naive estimator using
Newton–Raphson or some other iterative method, or it can be defined by Euclidean distance. However, Stefanski and
Carroll have noted that such methods only have clear justification when the measurement error is small. Heyde and
Morton (1998) have proposed three methods for selecting a root. We shall not consider these methods in detail at this
point, as that will be discussed in detail in Sections 5.8 and 5.9.

Stefanski and Carroll (1987) also proposed another class of estimating functions for consistently estimating the
regression parameters of generalised linear measurement error models. Following Lindsay (1980, 1982), they proposed
estimating θ with a conditional score function gc(θ). This conditional score has similar problems of multiple roots that are
found with gs(θ).

4.8 Weighted likelihood equations
Markatou et al. (1998) proposed a modification of the likelihood method for data in which there is some reason to
believe that certain observations are not correctly modelled. They introduced a weighting function to the likelihood
equation which adaptively downweights those observations which appear to be inconsistent with
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the model. Their proposed weighted likelihood equations take the form(4.38)

The data y1, …, yn are assumed to be a random sample from the distribution F = Fθ and denotes the empirical
distribution function. The function g can be any appropriate estimating function for a single observation from Fθ.
However, the authors restrict their attention to the case where g is the vector-valued score function for θ based upon a
single observation from F. We have already seen that weighted equations for parameters can arise in various contexts.
In mixture models, e.g., the weights represent the probabilities for selection from each model component. These
weights appear naturally when the EM-algorithm is invoked to solve the likelihood equations. Weighted least squares
methods appear in symmetric stable law equations for location and scale parameters. In this case, the weights provide
an adjustment to least squares methods for the heaviness of the tails of the distribution. However, in the context of
Markatou et al. (1998) the weights serve a different purpose, namely to reflect the relative plausibility of the model
assumptions for each observation.

The weight function ω is assumed to take values in the closed interval [0, 1], and is chosen to be larger or smaller
according to model fit. In particular, ω(yj, θ, ) will be close to 1 provided that in a neighbourhood of the variable yj
the empirical distribution is clearly concordant with the model distribution associated with the given value θ of the
parameter. The value of ω is close to 0 when there is a clear discordance between and the model in a neighbourhood
of yj.

When the data come from a discrete distribution, such a measure of concordance and discordance is easy to define,
because each observation has a natural neighbourhood in this case: Markatou et al. (1998) defined the ‘neighbourhood
about yj’ for discrete data to be the point yj itself. A degree of concordance between the model with parameter θ and the
observation yj can be constructed from a Pearson residual, defined for a random sample of size n as ψ(yj, θ, )
where(4.39)

The Pearson residuals are unbiased estimating functions when regarded as functions of θ because
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Markatou et al. (1998) proposed the weight function w = w(yj, θ, ) given by

This may look a bit mysterious. An alternative representation is that the weight at yj is given by

where pj = Pθ(Y = yj) and p ̂j is the proportion of the data at yj. This function is symmetrical in pj and p ̂j, achieves its
maximum at one when pj = j.

In the continuous case, definition (4.39) is replaced by

where k is some smooth kernel appropriate for kernel density estimation.

Markatou et al. (1998) noted that such weighted equations can have multiple solutions for θ. For example, they
considered data of Lubischew (1962) describing bivariate measurements of two species of beetles. The data consisted
of 21 bivariate observations for the species Chaetocnema concinna and 22 bivariate observations for the species
Chaetocnema heptapotamica. To test the method, Markatou et al. (1998) artificially pooled the two species, and a weighted
likelihood estimate for the location of a bivariate normal distribution was found. The results were in agreement with
the data, because the weighting successfully separated the data by providing two roots as location estimates, one for
each species.

Even when the data agree well with the model, the weighted likelihood approach will tend to downweight certain
observations which, visually at least, are not in perfect accord with the model. A measure of this phenomenon is the
mean weighting statistic, which is the average of the weights at the parameter estimate, namely

This statistic gives an indication of the proportion of the data that has been used in estimating the parameter. The
statistic n(1 − w ̃*) is therefore the amount of data discounted in estimation. A model-based version of this statistic is the expected
downweighting parameter, defined as

For models of discrete data, the expected downweighting cannot be tuned. However, models for continuous data have
weights that are dependent upon the choice
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of kernel k(y; t). As with kernel smoothing in other applications, the precise shape of the kernel is less important than
the choice of bandwidth, that is, the spread or dispersion of the kernel. The expected downweighting parameter can be
used much like a decision to trim a certain proportion of the data with trimmed or Winsorised means. The effect is to
routinely discount the most suspect portion of the data. Unlike trimming, however, the exact proportion of the data to
be discounted is not completely under the researcher's control. This need not be a disadvantage: the method can
adaptively downweight more observations if the degree of discordancy is great.

Like other weighting methods such as weighted least squares, there is a simple algorithm for finding a solution to the
weighted likelihood equations. Given an approximation θ(k), we choose θ(k+1) to solve

The iteration can be started at the maximum likelihood estimate if this can be found in simple closed form. Markatou
et al. (1998) have shown that when the data distribution and the model distribution agree, the convergence of the
algorithm is faster than linear. The reader is cautioned that this is an asymptotic result. For fixed sample size, the
discrepancy between the model and the data is such as to ensure that the convergence is linear.

4.9 Detecting multiple roots
In this and the following sections, we shall consider a number of questions about multiple roots.

• When should the researcher be suspicious that an estimating equation has multiple solutions?
• Suppose that we regard the number of roots of an estimating function as a random variable. Can we find its

distribution? A complete answer to this question would also answer the previous question.
• When an estimating equation has multiple roots, how can we be sure that we have found all of them? Note that

this was a problem in the mixture model analysis of the haemophilia data considered in Section 4.2. In other
words, having found more than one solution, when do we stop searching?

This section shall be devoted to considering the first of these questions.

Turning the first question on its head, we begin by asking whether there are properties of likelihoods and estimating
functions which are sufficient to ensure that any solution will be unique. In a likelihood analysis, the Hessian provides
an important tool to investigate the unimodality of the likelihood. The likelihood
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equations have a unique root if the Hessian of the log-likelihood(4.40)

is negative definite for all values of θ.

General as this condition is, it is more than needs to be shown. To prove unimodality of the likelihood it is only
necessary to show that the Hessian matrix is negative definite at the stationary points of the log-likelihood. Some mild
regularity is necessary for this result.

Proposition 4.11 Suppose that the following conditions hold:

• The parameter space Θ is an open, connected subset ofRk.
• Let the log-likelihood ℓ: Θ → Rbe twice continuously differentiable on Θ.
• Suppose that the global maximum of ℓ(θ) is achieved at some point in Θ.
• Assume that ℓ(θ) → −∞ as θ goes to the boundary of Θ. (Note that the boundary may include the points at infinity if Θ is

unbounded.)
• Finally, suppose that for all θ ̂ ∈ Θ satisfying ℓ̇(θ̂) = 0, the Hessian matrix ℓ̈(θ ̂) is negative definite.

Then the equationl̇(θ̂) = 0 will have a unique solution in Θ.

We shall not concern ourselves with a rigorous proof here. However, an illustration of the argument can be found in
Figure 4.12. If a log-likelihood surface has two distinct local maxima then it must also have a saddle point somewhere
between them. But a saddle point of the likelihood surface is a stationary point: that is, the likelihood equations will be
satisfied there, without the Hessian of the log-likelihood being negative definite. It is important to note that the
concavity of

Fig. 4.12 A log-likelihood surface with two local maxima and a saddle point.
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the log-likelihood is not invariant under a reparametrisation of the parameter space. To see that this is the case, let us
consider a smooth reparametrisation τ = τ(θ). In the new parametrisation, the Hessian becomes(4.41)

If ℓ̈(θ) is negative definite, the first term on the right-hand side will also be negative definite. However, the full
expression may not be negative definite. Conversely, of course, the Hessian of the log-likelihood in the original model
may not be negative definite while the Hessian after reparametrisation may be negative definite.

However, at any solution to the likelihood equations the second term will vanish because ℓ̈(θ) = 0. So if the Hessian is
negative definite at any solution to the likelihood equations, it will also be negative definite at a solution in a
reparametrised model. This means that the assumptions of Proposition 4.11 are invariant under smooth
reparametrisations of the model.

An argument based upon ℓ̈(θ ̂) was used by Copas (1975) to show that the Cauchy location-scale model has a unique
MLE. In another example, Huzurbazar (1948) showed that linear exponential families have unique solutions to their
likelihood equations under mild regularity. This follows from a special identity that is particular to exponential families,
namely

The right-hand side is the information matrix I(θ ̂), which is positive definite under the usual regularity assumptions. So
Proposition 4.11 can be invoked to conclude that the root of the likelihood equation for an exponential family is
unique. Note that if θ is the natural parameter of the exponential family, then the identity l̈(θ) = −I(θ) holds for all θ.
However, the equation l̈(θ ̂) = −I(θ̂) holds even when θ is not the natural parameter, because the condition is invariant
under smooth reparametrisations of the parameter space.

In models where the Hessian matrix fails to be negative definite, multiple root problems need investigation. However,
the researcher should avoid the trap of presuming that the negative definiteness of the Hessian matrix is necessary for
the uniqueness of the root. An interesting case in point is provided by the Tobit model, where

for j = 1, …, n. In this model, xj is a vector of covariates, β is a coefficient vector, and ∈1, …, ∈n are independent N(0,
σ2) error terms. The random variable is not observed directly. Instead, we observe Yj. Amemiya (1973) noticed that
the Hessian matrix for the parameter vector θ = (β, σ2) is not negative definite. Thus the question of multiple roots
arose. However, Olsen (1978) showed that by letting
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the Hessian is negative definite in the new parametrisation with θ = (ζ, ξ). So multiple roots cannot occur. See
Amemiya (1973), Greene (1990), Olsen (1978), Orme (1990) and Iwata (1993) for discussion of this model. Burridge
(1981) discusses the concavity of the log-likelihood function in the case of regression with grouped data. See also Pratt
(1981).

The task of detecting multiple roots for general estimating equations is more problematic than that for the likelihood
equations, as there may not exist a statistically meaningful objective function whose stationary points correspond to
roots of the estimating equation. Some geometrical insight into the nature of an estimating function can be obtained by
interpreting a vector-valued estimating function g(θ) as a vector field on the parameter space Θ. There are two
possibilities:

The first possibility is that the matrix ġ(θ) is symmetric for all θ and all samples y1, …, yn. In this case the vector field is
conservative so that there exists a real valued function λ(θ) such that g(θ) = λ̇(θ). The function λ could be a log-
likelihood or, in the case where the estimating function g is both unbiased as in (1.3) and information unbiased as in
(1.4), may share some of the properties that are typically associated with log-likelihoods. In the case where Θ is one-
dimensional, the symmetry condition is trivially satisfied. As ġ is symmetric, its eigenvalues will all be real. Those points
θ̂ ∈ Θ at which λ has a local maximum will correspond to points where the vector field g vanishes and the eigenvalues
of ġ are all negative. Similarly, points at which λ is locally minimised will correspond to θ̂ ∈ Θ where g vanishes and the
eigenvalues will all be positive. Saddle points of λ will occur where g vanishes and the eigenvalues are mixtures of
positive and negative quantities.

The second possibility is that the matrix ġ(θ) is not symmetric in general. In this case, there will be no objective function
whose gradient is g(θ). The points inΘ where the vector field vanishes will correspond to the zeros of g(θ). Despite the
absence of an objective function, we can nevertheless determine those zeros of g(θ) which are analogs of local maxima
and other zeros which are analogs of local minima. To do this we investigate the eigenvalues of ġ(θ). Let k1(θ), k2(θ),…,
kk(θ) be the eigenvalues of ġ(θ), in arbitrary order, where k = dim (Θ). As ġ is not symmetric, these eigenvalues will
generally be complex-valued. Therefore, we can write each eigenvalue kj (θ) in terms of its real and imaginary parts as

A point θ̂ ∈ Θ where g(θ̂) = 0, and where(4.42)

are all negative is a sink for the flow of the vector field determined by g(θ). That is, we imagine that at each point θ of
the parameter space, we place a vector of length and direction corresponding to g(θ). The resulting vector field will
locally ‘flow in’ towards any sink and ‘flow out’ from any source. The latter is characterised as
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Fig. 4.13 A non-conservative vector field which vanishes at exactly two distinct points, both of which are sinks.

satisfying g(θ) = 0 and having eigenvalues kj(θ) whose real parts are all positive (Figure 4.13).

Although an objective function λ(θ) such that

does not exist when ġ(θ) is not symmetric, the sink and source of the vector field g(θ) can be regarded as analogs of
maxima and minima. A sink of a vector field corresponds to a local maximum while a source corresponds to a local
minimum. So it is natural to consider whether there is an immediate generalisation of the uniqueness result of
Proposition 4.11 that is illustrated in Figure 4.12. In other words, if a vector field is such that all point at which it
vanishes are sinks, is it true that there can be at most one such point? Unfortunately, this generalisation is false as
Figure 4.13 demonstrates. Because there is a rotational component to the vector field, i.e., a non-zero component to
the curl of the vector field, there does not exist an analog of a saddle point at which the vector field vanishes in the
parameter space.

4.10 Finding all the roots
Next, we turn our attention to the problem of detecting all roots for estimating equations which admit the possibility
of multiple roots. In principle, a careful search in the parameter space should uncover all the roots of any given
estimating
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equation. However, in practice, this may be far too time-consuming, especially if the parameter space is of high
dimension. We encountered an example of this problem early in this chapter when we considered the haemophilia data
studied by Basford and McLachlan. For that data set it was far too time-consuming to search for roots by initialising
the root search algorithm over the points of a grid covering the parameter space. It was expedient to be more selective
in the choices of starting points. In that data set, we adapted the method of Markatou et al. (1998), which involved
choosing as starting points those parameter estimates obtained from small subsamples of data points.

As this method seems applicable to a wide variety of estimating functions, we now give a brief description of the
method in a more general context. We begin by noting that the roots of an estimating equation can often be divided
into

• reasonable roots, which, upon examination, can be considered as candidates for estimation, and
• unreasonable roots, which arise in the estimating function for incidental reasons that have little to do with

estimation.

Obviously, such a classification is not meant to be understood too formally. Nevertheless, it is possible to argue that
some roots of an estimating equation arise for incidental reasons that have nothing to do with their being supported by
the data. For example, roots corresponding to saddle points or local minima of likelihoods or quasi-likelihoods fall into
this category. As we have seen, topological considerations often tell us that such roots must exist if two or more local
maxima exist. Such topological roots will only be as stable as the local maxima which determine them. In other words, we
expect that perturbations of the data which eliminate extraneous local maxima will usually eliminate these roots as well.
On the other hand, in a neighbourhood of the reasonable roots, an estimating function will often be quite regular in
appearance. The local properties of the function in a neighbourhood of the root will usually be in agreement with the
known ergodic properties of the estimating function at the true value of the parameter. For example, the non-
negativity of the Kullback–Leibler distance between densities is the ergodic counterpart of the principle that the
maximum likelihood estimator is the global maximum of the log-likelihood.

Next, let us note that, in many cases, all reasonable roots of an estimating equation are those which are supported by
some subset of the data. For example, in the case of the Cauchy location model, each relative maximum is either
‘caused’ by a visual outlier (i.e., supported by an outlying observation) or is the consistent root that is supported by the
majority of the observations which lie in the center of the Cauchy distribution. The unreasonable local minima are not
supported by observations or subsets of observations in this sense. To illustrate this idea, consider Figure 4.14. Here
we see a score function produced by four variates, of which three are in reasonable accord and one is a visual outlier.
The score function for the entire data set (above) is found by summing the scores for the individual observations
(below). The result is an estimating equation with three roots. Among
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Fig. 4.14 The empirical distribution of the Cauchy score function from Figure 4.7. The extraneous local maximum
arises from a single visual outlier.

WORKING WITH ROOTS 113



these three roots, the middle root corresponds to a local minimum of the likelihood. Therefore, it is not a reasonable
contender as a point estimate. Neither of the two other roots can be dismissed. The smallest root is obviously more
credible as an estimate, but with a small data set the largest root cannot be ruled out. However, both reasonable roots
are supported by the data: in a certain sense, the smallest root appears because of the three smallest variates, while the
largest root arises in the likelihood equation because of the presence of the visual outlier on the right.

Suppose that y1, …, yn are n independent observations from some distribution with parameter θ. Let m ≤ n be the
minimum number needed for the equation

to have a solution for all subsets of size m with probability one. Typically, m will be the dimension of the
parameter space, although counterexamples to this can be found.

Markatou et al. (1998) proposed that bootstrap samples of size m be constructed by sampling m distinct
elements of the data set y1, …, yn. For each such bootstrap sample, the root θ* found by solving

is to be used as a starting point for an appropriate algorithm which iterates to a root of the equation g(θ, y1, …, yn) = 0.

So for estimating the location parameter θ of the Cauchy location model using the likelihood equations, we will have m
= 1. As the MLE for θ based on a sample of size one is the observation θ* = yj, itself, the set of roots obtained would
be those found by using iteration from the n original sample observations. In those estimation problems where
it is possible to do an exhaustive systematic search of all such starting points by using all subsets. For Markatou
et al. (1998) reported that randomisation with 100 bootstrap samples is sufficient, in the cases they considered, to
ensure that all reasonable roots are detected.

An approach to root detection by placing a probability distribution on the parameter space has been proposed by
Finch et al. (1989). Their method provides a way to estimate the probability that an iterative search from a random
starting point (RSP) will find a root not observed in previous searches from RSPs. This is not the same as being able to
determine the proportion of undetected roots. However, it is a useful surrogate for this proportion, as it helps the
researcher to determine the efficacy of running additional iterative searches of a similar kind looking for extra roots.

Suppose that some probability distribution π is placed upon the parameter space. We begin by generating a random
sample of size r from the distribution π, and use each of these RSPs as the r initial values of an algorithm, such as
Newton-Raphson, which searches for roots. In general, these r iterative trials will converge to a number of
distinct roots of the estimating equation which we can write as θ ̂1,…, θ̂K where K ≤ r is a random variable. For each j =
1, …, K,

114 WORKING WITH ROOTS



let Dj be the domain of convergence of the algorithm to θ ̂j. In most examples, we do not know much about Dj. We
would ideally like to know something about the region

which is where the undetected roots reside. Since we cannot determine this set, perhaps the next best thing would be to
try to find the probability of this set under the sampling scheme from the distribution π. Let us write this probability
as(4.43)

As Dj is a random set and K is random, Ur is itself a random variable. The quantityUr is also unknown. However it can
be estimated. Based upon a suggestion of Good (1953), Finch et al. (1989) suggested that Ur be estimated by

where S is the number of observed θ̂j to which only one of the r RSP's converged. Strictly speaking, V1 does not
estimate Ur but rather Ur−1, the corresponding probability with one fewer trials. This is because E(V1) = E(Ur−1), which
was proved by Robbins (1968). This estimate was generalised by Starr (1979) to(4.44)

where Qi is the number of roots among the k discovered to which exactly i RSP's converged. It can be shown that
E(Vt) = E(Ur−t). We refer the reader to Starr (1979) for the proof.

Through the use of statistics such as Vt, we can estimate the probability of detecting new roots with such a random
search. So we can use such a measure to determine whether to continue searching further from additional RSPs.
However, this does not tell us whether there are roots which are extremely unlikely to be detected because the choice
of distribution π puts low probability on the domain of convergence of some root. The major hope for solving this
problem may lie in bootstrap searches such as that of Markatou et al. (1998) mentioned above.

4.11 Root functionals and measures
One way to study the zeros of an estimating function is to examine the moment measures of the point process of zeros.
Suppose thatΘ is some closed subset of Rk that has non-empty interior. The roots of an Rk-valued estimating function
g(θ)
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define a point process Ng on Θ. That is, for each set B in Θ, we can define the counting random variable

That is, Ng(B) is the number of zeros of g(θ) that lie in the set B. In all practical examples, Ng(B) is finite. The mean
measure for this root process is(4.45)

The mean measure of a point process is roughly analogous to the scalar mean of a random variable or the vector mean
of a random vector. Since a point process is a locally finite counting measure on Θ, its mean or expected value is also a
measure on Θ. Of interest to us here will be the behaviour of the mean measure locally at a point θ ∈ Θ. This can be
defined as(4.46)

where

for each ∈ > 0, the displayed product being a k-fold Cartesian product of intervals. Note that there are really two
values of the parameter θ being used to calculate ψg(θ). The other value is the one that is assumed in calculating the
expectation that is found in formula (4.45). The local intensity function ψ, called the mean intensity is defined when the
limit exists. Under standard regularity, we get

The function ψg is not without interest for the special case where the estimating function has a unique root with
probability one. For this case, it reduces to the probability density function of the root. More generally, with estimating
functions that admit multiple roots, the value of Ψg(Θ) − 1 is of interest, as this is the expected number of extraneous
roots to the estimating equation.

While the mean measure and the associated mean intensity are useful ways of describing the distributions of roots, they
have the disadvantage that they do not characterise the point process of roots. The next tool that we shall consider
overcomes this difficulty. We define the zero-probability functional of the roots to be Zg, where Zg(B) is the probability that
there are no roots in the set B. Unlike the mean measure, the zero-probability functional completely determines the
distribution of the point process of roots. However, it does not have a simple representation in the same way as the
mean measure through the mean intensity function.
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Another functional that is of some interest in the study of the root process is the probability generating functional

defined on the class Ξ of measurable functions on Θ taking values in the unit interval [0, 1]. This functional is defined
by(4.47)

Like the zero-probability functional, the functional Ag(ξ) characterises the distribution of the roots. However, it also has
no simple representation, as the class Ξ is too large for a simple determination of the values of Ag(ξ). Nevetheless, the
probability generating functional allows for considerable flexibility in studying the distribution of the roots. It should be
noted that Ag(ξ) can be extended to the case where the function ξ is unbounded provided that the expectation in
formula (4.47) remains finite. For example, when g(θ) has a unique root θ̂ and ξ is the identity function on Θ, the
functional Ag(ξ) reduces to E(θ ̂).

The probability generating functional can be used to calculate moments of the point process of roots. For example,
suppose we let IB be the indicator function which is one on the set B and zero elsewhere. Then(4.48)

For additional properties of the probability generating functional, the reader is referred to Cressie (1993).

Example 4.12 Mean intensity function for the Cauchy location-model

In the following example we shall consider how to compute the mean intensity ψg(θ) for a one-parameter model. In this
case, the set B

∈
used in equation (4.46) is an interval of real values. So it is helpful to be able to compute the number of

roots that fall in an interval without having to conduct an exhaustive search for the values of the roots. Sturm's Theorem
for polynomial estimating functions was discussed in Chapter 3, and provides us with one such tool. If a simulation is
to be performed for more than 10,000 trials, it is usually too slow to investigate the exact locations of all roots in each
trial. An alternative is to count the number of roots in successive intervals by constructing the Sturm chain and
tabulating the results in a histogram. Software designed for symbolic computation with polynomials is particularly
convenient for such simulations because the symbolic algebra required to construct the Sturm chain can be called as a
subroutine. Figure 4.15 shows the results of a simulation study using MAPLE V for 5000 trials of sample size n = 5
for the Cauchy location-model. Here the true value of θ was chosen to be zero.
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Fig. 4.15 Empirical histogram of the mean intensity for the Cauchy location-model.

The area of each histogram bar represents the average number of roots found in each interval among the trials. Certain
features are evident from the histogram. First of all, the presence of the consistent root close to zero is clear from the
large mode at zero. The curious secondary modes on each side of the primary mode can be explained by the fact that
when the likelihood equation has multiple solutions, it will have local minima between the maxima. A more detailed
investigation of the roots shows that the upcrossings of the score function are the principal cause of the secondary
modes.

The histogram in Figure 4.15 provides us with an approximation to the mean intensity function ψg(θ). However, there
are two sources of error in the histogram as an approximation to the mean intensity. The first of these arises because
the roots have been grouped into bins. To eliminate this source of error, the bin widths must go to zero. The second
source of error is due to sampling variability: the empirical averages over 5000 trials have been used rather than their
expected values. To eliminate this source of variation we must sample more. Obviously, there must be a balance
between the two. In practice, to approximate ψg(θ) we must let the bin widths go to zero and the number of trials go to
infinity so that the expected number of roots in a bin also goes to infinity.

The mean intensity function is similar to the intensity function of the point process of local maxima examined by
Skovgaard (1990). The only difference here is that we do not restrict ourselves to roots that are associated with local
maxima. For many estimating functions, it is not necessary to find the roots explicitly in order to compute the root
intensity function. Under certain regularity conditions,
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the root intensity ψg can be computed using the random vector

Suppose that the vector z has density function fg(z), where z ∈ Rk. Then it can be shown that

Note that dependence of fg and z upon the parameter θ is suppressed in this notation. The regularity conditions
necessary to validate this formula were given by Skovgaard (1990). See Small and Yang (1999) for more discussion in
connection with the problem of multiple roots. The regularity conditions required for Skovgaard's formula were
generalised by Jensen and Wood (1998).

4.12 Smoothing the likelihood function
Multiple root problems can be regarded as examples of excess variation in estimating functions. In several areas of
statistics, a standard tool to reduce variation is smoothing through the use of a moving average for a function, be it
discrete or continuous. Daniels (1960) proposed the use of such a moving average to ‘reduce the chance of selecting
one of the erratic cusps of the likelihood function’. (Daniels, 1960, p. 162.) Daniels' smoothed likelihood was applied to
the Cauchy location model by Barnett (1966, p. 164).

Suppose that θ is a real-valued parameter. Let Kn: R → R be a non-negative function such that

and

If we regard K as a density function, then the second of these two conditions is sufficient to ensure that the weight of
the density is close to zero when n is large. In the discussion that follows, the variable n will also denote the sample size.
The smoothed likelihood, with kernel Kn for sample size n, is defined to be(4.49)

where as usual ℓn(θ) = log Ln(θ). There exist obvious extensions of (4.49) for multiparameter models. The parameter
value θ̄n which maximises ℓ̄n(θ) is called a smoothed maximum likelihood estimator. We can also write θ̄n as the root of the
smoothed score(4.50)

provided we can interchange derivatives and integrals. Equation (4.50) also suggests an additional restriction on the
choice of Kn, namely that it be chosen so
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that ḡn(θ) is an unbiased estimating function. However, such a restriction tends to make the choice of Kn analytically
cumbersome in the general case. Fortunately, there are many models in which the smoothed score function will be
unbiased.

If a smoothed likelihood is used in a k-parameter model, then the score function becomes vector-valued, and the
weight function Kn becomes a real-valued function of k variables. However, in k dimensions, there is even greater
variety in the choice of smoothing function than in dimension one. For example, when Kn is a uniform density function
on some region, the region chosen could be spherical or rectangular with respect to the parametrisation. Of course,
there are many other possibilities.

We shall now consider two examples. In the first case, the smoothed likelihood is used to eliminate multiple roots in
the score function. In the second example, the pathologies in the likelihood will be more severe.

Example 4.13 Smoothed likelihood with uniform kernel

We shall consider a one-parameter model. A particularly simple choice of Kn is

for some ∈n > 0. Then θ̄n will be a solution to the equation

A simulation study by Barnett (1966) found that for the Cauchy location-model it is possible to obtain efficiencies for
θ̄n which exceed the efficiency of the MLE. In particular, a best improvement on the MLE was obtained by choosing ∈
= 2.0 for a sample of size n = 5. In this case the improvement in efficiency was found to be approximately 10%.

The value of ∈n needs to be chosen sufficiently large so that the equation L(θ + ∈n) = L(θ − ∈n) has only one solution.
However, we must also have ∈n → 0 so that θ̄n is asymptotically efficient. Making ∈n large for a continuous likelihood
function with finitely many relative extrema will ensure at most one solution, as Figure 4.16 illustrates.

Ensuring that the equation has only one solution in this manner will require that ∈ be data-dependent. On the other
hand, to ensure efficiency we must examine
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Fig. 4.16 Solving the equation L(θ + ε) = L(θ − ε) for two values of ε.

the asymptotics. We can write

under smoothness conditions, where 0 < ξ(∈) < ∈ and −∈ < ξ(−∈) < 0. So we have(4.51)

The left-hand side of (4.51) can be regarded as an estimating function with θ̄n as a root. As such, it is generally a biased
estimating function. However, if we focus our primary attention on those models for which

then the estimating function is unbiased. A location-model with a symmetric density (such as the Cauchy) will satisfy
this property. On the right-hand side, the first term is the score function, which is also unbiased under standard
regularity conditions. Under the unbiasedness assumption, the term in brackets in (4.51) will be unbiased, and
therefore will be of order However, the asymptotic efficiency of a consistent root of (4.51) will be the asymptotic
correlation between the left-hand side of (4.51) and the score function. So, if the consistent root of the smoothed
likelihood equation is to be asymptotically efficient, then the second term on the right-hand side of (4.51) must be of
smaller order than the first term. As the first term is we must have ∈ = op(1).

Choosing ∈n = op(1) runs counter to the requirement that ∈n should be large enough to guarantee a unique root. A
possible compromise is to use θ̄n as a
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starting point for Newton–Raphson iteration to a root of the score function or to define a one-step estimator. For this
to work, the estimator θ̄n need only lie in a -neighbourhood of the true parameter value, and need not be efficient.

In the next example, the likelihood will have a singularity in the form of an infinite “spike” at each data point. We shall
consider how to smooth such a likelihood.

Example 4.14 Smoothing a normal model with nuisance parameters

To illustrate the idea of smoothing, consider a sequence of n independent observations yj, where Suppose we
wish to estimate μ when the variances are unknown. The sample mean can be used as a point estimate for μ, but it
does not take into account the differing amounts of information about μ in the variables due to differing variance
parameters. Clearly, an estimate which downweights the influence of outlying values is to be preferred. The joint
likelihood is

up to a constant of proportionality. For given μ we can estimate σj by |yj − μ|. So a profile log-likelihood for μ is

up to an additive constant.

Figure 4.17 shows the plot of the profile log-likelihood obtained from a sample of n = 10 observations, where yj ∼ N(0,
j). It can be seen that the log-likelihood

Fig. 4.17 The profile log-likelihood for yj ~ N(0, j), j = 1,…, 10.
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Fig. 4.18 Smoothed versions of the profile log-likelihood with two bandwidths.

goes to infinity at each value in the data. (The rightmost singularity in the graph is actually two almost identical
singularities superimposed.)

As the log-likelihood function at these singularities is integrable, we can smooth the function using a kernel Kn: R → R
as described above. Figure 4.18 shows the effect of smoothing the log-likelihood using a kernel which is a uniform
density on [−∈, ∈,] with ∈ = 1.0 and ∈ = 2.0. Both smoothed likelihoods are maximised close to the sample median at
−1.09277. The sample mean, at −0.79685, is further to the right, and more heavily influenced by outlying values on the
right side of the data set.
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While standard likelihood asymptotics are not available for this model, it is nevertheless possible to construct exact
confidence intervals for the parameter μ. Let y1:n, y2:n, …, yn:n be the order statistics for the data. As all variables are
symmetrically distributed about μ, it follows that

So [y3:10, y8:10] = [−2.98, 0.58] is approximately a 90% confidence interval for μ.
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5 Methodologies for root selection

5.1 Introduction
We have seen in Chapter 4 that many estimating equations have more than one root for practically occurring sample
configurations. In certain cases multiple roots occur because the model under consideration is unnecessarily too
narrow. In such cases the existence of multiple roots often indicates a discrepancy between the data at hand and the
model under consideration. One approach to solving this problem is by embedding the current model into an
appropriately chosen larger model. Three examples of this sort are discussed in Section 5.12. In other applications, the
existence of multiple roots may reflect the structure of the data; the mixture model provides a case in point (Markatou
et al., 1998).

The problem of multiple roots is a wide-ranging phenomenon. With the availability of increasingly cheap and fast
computational power one tends to use more and more flexible and realistic models to analyse even moderate sized data
sets. The problem of multiple roots frequently occurs in these and other situations. It is not uncommon that the
multiple roots issue can arise even in relatively simple parametric models. In this chapter, we examine various
techniques for selecting a root as an estimate for the parameter of interest when an estimating equation has more than
one solution.

In Section 5.2 we begin by discussing the general problem of solving an estimating equation. We emphasise the point
that estimating a parameter is different from solving an estimating equation. The subsequent sections relate to this
view in various forms. Note that estimating equations in the class a(θ)g(θ, Y) = 0, where a(θ) is a full-rank matrix not
depending on data y, all have the same roots. We shall see however that a particular choice of a(θ) is sometimes
preferred to other weighting matrices. When we are interested in an iterative algorithm for obtaining a point estimator
using estimating function g, an appropriate choice of a(θ) may be crucial to ensure convergence properties of the
algorithm. When confidence regions are desired, on the other hand, a proper choice of a(θ) may depend on
distributional properties of the transformed estimating function.

In Section 5.3 we give a brief discussion of a class of irregular estimating functions. The estimating equations have
multiple roots due to the irregularity of the corresponding estimating functions. In Section 5.4 we study the problem of
solving an estimating equation by considering various iterative algorithms using



some consistent estimators. In typical parametric models using the score estimating function, a one-step estimator
gives an efficient estimator of the parameter. This efficient estimator is usually close in value to the efficient likelihood
estimator. In Section 5.4.3, the concept of an efficient likelihood estimator is extended to semiparametric models using
the Godambe efficiency of an estimating equation. The resulting Godambe efficient estimator reduces to the efficient
likelihood estimator when the estimating function is a score function.

In Section 5.5 we consider a modification to the usual Newton-Raphson type iterative algorithm so that the algorithm
will not converge to local minima and saddle points for a typical starting point. For a vector estimating function, the
concepts of local minima and saddle points for scalar objective functions generalise to sources and saddle points of the
vector field induced by the estimating function on the parameter space. Local maxima generalise to sinks of the vector
field. The algorithm that we propose avoids convergence to sources and saddle points in the general case. On the other
hand, a sink is always a fixed point of the algorithm. We show that a consistent root of the estimating equation, under
mild regularity conditions, is a sink of the vector field, and therefore is guaranteed to be found by the algorithm.

In Section 5.6 a different type of modification to the Newton-Raphson algorithm is considered. The algorithm uses the
property that an estimating function is information unbiased. This algorithm shares the same good property with the
iterative algorithm studied in Section 5.5, namely, the algorithm only converges to sinks of the vector field of an
estimating function. The algorithm considered in this section however improves the algorithm of Section 5.5 in that
only sinks satisfying further conditions will be fixed points of the algorithm.

In Section 5.7 Muller's method is modified to take the advantage of a statistical property that pertains only to an
estimating function. Namely, we shall incorporate into Muller's method the fact that an estimating function is
information unbiased or can be made so by properly rescaling the original unbiased estimating function. A quite
different strategy is discussed in Section 5.8, where the problem of multiple roots of an estimating equation is
examined by considering the asymptotic form of the estimating equation. Along the same line, we will see that, when
explicit formulas are available for the multiple roots, asymptotic inspections of the formula often shed light on the
choice of the roots.

In Section 5.9 we examine the properties of a root to an estimating equation by studying some hypotheses at the root.
Some specific hypotheses are considered in this section to examine the consistency of the root. In Section 5.10, the
approach of testing the consistency of a root is studied more formally by considering a semiparametric analogue of the
likelihood ratio test, a criterion studied in more detail in Chapter 6. The tests for root consistency use bootstrap
resampling techniques. A root θ̂ at which the distribution of the bootstrap artificial likelihood ratio is closest to the chi-
squared distribution with p degrees of freedom, where p is the dimension of the parameter of interest, is suggested to
be the estimate for the parameter. Similar kind of techniques are introduced and discussed in Chapter 6.
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In Section 5.11 we introduce the concept of shifted information, I(θ1, θ2), which reduces to the Godambe efficiency
when θ1 = θ2. The method based on the shifted information suggests choosing the root θ ̂ as an estimator of the
parameter θ0 such that În(θ ̂) attains the maximum value among all roots of the estimating equation, where În(θ̂) is an
appropriate empirical version of I(θ0, θ ̂).

In Section 5.12 we will restrict our attention to parametric models, where the modelling aspect of the multiple roots
problem is discussed. We show, by the analyses of several examples, that model embedding may be a useful technique
to overcome the problem of non-uniqueness of roots to a likelihood equation. Finally, Section 5.13 is devoted to a
brief discussion of the situation where no root exists for a given estimating equation. Non-existence of a solution is
usually due to data degeneracy. Many techniques may be considered for getting rid of data degeneracy. We will discuss
an example involving the logistic regression model, where the maximum likelihood estimator lies on the boundary of
the parameter space. We shall consider a Bayesian method by combining the likelihood function with the conjugate
beta prior for the means of binary responses.

5.2 The problem of solving an estimating equation
Before describing the various methods for choosing an appropriate root of an estimating equation, in this section, we
discuss the basic problem of estimation in the semiparametric framework based on estimating functions. Let
Y = (Y1, …, Yn) be a random vector having joint distribution function F( y) = F(θ0; y), where θ0 is the true value of the
parameter of interest θ. Since a semiparametric framework is assumed, knowing the value of θ0 does not specify F( y)
completely. In practice, often the first two moments of F( θ y) are assumed to be known functions of θ. Suppose that g (
θ, y) is an unbiased estimating function, that is, the equality Eθ{g(θ, y)} = 0 holds for any θ ∈ Θ. In particular, the
following identity holds:(5.1)

Equation (5.1) gives a necessary condition for the value of θ0 we seek to estimate. By replacing the unknown
distribution function F(y) with its empirical version using a sample y = (y1, …, yn), we arrive at the data version(5.2)

Now since y is known we can solve (5.2) for an estimate of θ0. Suppose that (5.2) has a unique solution, say θ̂n.

Such a root is a reasonable estimate of θ0 under additional mild regularity conditions. For instance, θ ̂n is -consistent
provided the following asymptotics
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are valid:

This will be the case for usual estimating functions. An example of this kind is the unbiased additive estimating function1 of
the form

The validity of the above asymptotics in this case is ensured by virtue of the law of large numbers and the central limit
theorem.

A problem arises when (5.2) has multiple roots. For example, in the parametric case, (5.2) is simply the likelihood
equation and all local extrama are possible solutions. For parametric models, fortunately, we have theories available to
solve this problem. First, under the Cramér conditions, we know that there is a consistent root among the solutions to
the likelihood equation. Next, if regularity conditions such as those of Wald (1949) are satisfied by the model, then the
root which maximises the likelihood function globally is the consistent root (but see Example 4.9 for a
counterexample). Therefore, a procedure for finding a desirable estimate involving the likelihood estimating equation
may be summarised as follows:

1. Solve g(θ, Y) = ℓ̇ (θ; Y) = 0 to get all possible roots, θ̂1, …, θ ̂k, where ℓ(θ Y) is the log-likelihood function.
2. Choose as the estimate the root θ ̂ = θ̂i at which the log likelihood attains its maximum value among values ℓ(θ̂j;

Y) for j = 1, …, k.

The procedure shown above says that the problem of constructing a point estimate from a parametric model is not
equivalent to the problem of solving the likelihood equation. The likelihood function also plays an essential role in this
procedure. Similarly, extracting a point estimate from some moment assumptions is not equivalent to the problem of
solving an optimal estimating equation. Moreover, in the semiparametric framework of estimating functions, the
second component of the above procedure is not feasible because an objective function playing the role of a log
likelihood in general does not exist.

When the plausibility of a root to an estimating equation is in doubt, we have to examine other constraints concerning
the true value θ0, in addition to the
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unbiasedness condition (5.1). These constraints, in the present context, are naturally expressed in terms of the
concerned estimating function g(θ, Y). Usually, the true value of θ0 is subject to the following types of conditions:(5.3)

where f0(x) = x corresponds to the unbiasedness condition, and fj(·) are known functions for j = 1, …, L. To see what
the other functions fj will look like, suppose that the following matrices:

exist and are known by assumption. It follows then the transformed estimating function:

is information unbiased. In most cases, therefore, the information unbiasedness is a readily available property of an
unbiased estimating function g(θ, Y). In this case, (5.3) takes the form

When these theoretical properties are available we may then search an estimate of the parameter of by solving the
following problem:(5.4)

where ∈ is a preassigned tolerance limit, and ρ(·) is an appropriate norm. In the scalar case ρ(x) can be simply the
absolute value of x. When g is a vector, ρ(x) can be the largest norm of eigenvalues of matrix x.

A root solving the first equation of (5.4) can fail to satisfy the second constraint. Asymptotically, when the sample size
grows large enough, a consistent root will also satisfy the second constraint by virtue of the law of large numbers.
Consequently, a root satisfying the second constraint of (5.4) may be more desirable than a root which does not. Some
of the iterative algorithms discussed in the sequel are based on the idea (5.4).

5.3 A class of irregular estimating functions
Let g(θ, Y) be an unbiased estimating function and θ0 be the true value of θ. Sometimes it may happen that the
following relation holds:(5.5)
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where is some subset of Θ depending on θ1 such that − {θ1} is non-empty. Equation (5.5) also defines the
subset of the parameter space Θ corresponding to θ0. The fact that contains other values besides θ0 causes the
problem when we solve the estimating equation g(y, θ) = 0. We further suppose that the model under consideration is
identifiable, that is, for θ1, θ2 ∈ and θ1 ≠ θ2, Y has different moment structure. We shall refer to an estimating function
satisfying these conditions as an irregular estimating function.

Example 5.1 Circular model

Consider a bivariate random vector X = (Y, Z)t having mean vector μ = (cos θ, sin θ)t and the identity covariance
matrix, where θ ∈ Θ = [−π, π). Let θ0 be the true value. Based on an independent sample, xj = (yj, zj)t, j = 1, …, n, the
quasi-score takes the form(5.6)

where(5.7)

Then (5.6) satisfies (5.5) with = {θ1, f(θ1)}. That the circular model is identifiable follows from the following relation

The quasi-score for the circular model (5.6) is therefore an irregular estimating function.

To see the particular feature when solving g(θ, y) = 0 using an estimating function g satisfying (5.5), suppose that Θθ =
{θ, θ − a} consists of two points for each θ ∈ Θ, where a is a known constant. Now (5.5) corresponds to the following
set of equations:(5.8)

(5.9)

In Section 5.2, we see that an estimating equation is obtained as the data version of the first moment constraint posed
on the estimating function. For the irregular estimating function satisfying (5.8) and (5.9) we are therefore required to
solve the following set of equations:(5.10)

(5.11)
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If θ ̂1 solves (5.10), then θ ̂2 = θ ̂1 + a is a solution to (5.11). We therefore obtain two solutions, one consistently
estimating θ0 and the other consistently estimating θ0 + a.

Example 5.2 Circular model (continued)

The estimating equations (5.10) and (5.11) for the quasi-score (5.6) yield the solutions

respectively, where θ ̂1 ∈ (−π/2, π/2) and f(·) is defined by (5.7). Which root is a reasonable estimate for θ?

For this problem, fortunately, we have a simple solution. First, note that there are 2n conditions concerning the
parameter of interest θ:

So, if we let

then h(θ, X) is an unbiased estimating function of dimension 2n. This function is called an elementary estimating function.
An estimate of θ can then be obtained by minimising the following criterion:(5.12)

The solution to this procedure, using sample x, can be obtained by solving the equation

yielding the (unique) answer θ̂1 = tan−1 (z̄/y ̄).

Criterion (5.12) may be regarded as an extension of the method of least squares. In Section 6.6, we will make more
general and systematic discussions on use of criterions such as (5.12).

One way to remove the irregularity of estimating functions is to construct a new estimating function so thatΘθ defined
by (5.5) is a singleton containing only the point θ. Embedding the model under consideration into a larger model can
sometimes be helpful for this purpose.

Example 5.3 Circular model (continued)

Now suppose that the mean vector of X is instead μ = (r cos θ, r sin θ)t, which contains the parameter θ and an
additional parameter r ≥ 0. The covariance
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matrix is still assumed to be the identity matrix. Note that if r0 = 0 then θ is unidentifiable. Therefore we impose the
condition that r > 0. Now the quasi-score is a two-dimensional vector given by(5.13)

(5.14)

The estimating function

is unbiased. Further, it can be checked that

The estimating function g(θ, r, x) is now a regular one. Solving g(θ, r, x) = 0 gives the following unique solution:(5.15)

Model embedding is a useful idea not limited to correcting the irregularity of an estimating function as discussed
above. In Section 5.12 we shall explore this idea further in some parametric models for which the score functions have
multiple roots.

5.4 Iterating from consistent estimators

5.4.1 INTRODUCTION
For estimating functions satisfying standard regularity conditions there is a unique isolated consistent root. So an
obvious strategy for selecting a zero of g(θ, y) is to construct a consistent, albeit inefficient, estimator θ ̃ and to choose
the root that is closest to θ̃. The concept of the closest root could be measured by Euclidean distance or other metric in
Θ. However, such a strategy does not pick a root in a parameterisation-invariant manner. That is, for a monotonic
function ξ = ξ(θ), the fact that θ̂ is closest to θ̃ in θ-space does not imply that ξ̃ = ξ(θ ̂) is closest to ξ̃ = ξ(θ ̃) in ξ-space.

Finding an estimate by iterating from appropriate consistent estimates is probably the most used and the most useful
method in solving estimating equations. The idea of approximating an efficient estimator using a consistent estimate
can be useful when an estimating equation has a unique solution or when multiple roots exist. When it is costly to solve
an estimating equation that has a unique solution, then one may apply a one-step iteration to obtain an efficient
estimator. When multiple roots are present, iterative methods can help identify the estimator that
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is both consistent and efficient. An estimator θ̂ is said to be a (weakly) consistent estimator of θ if for all θ ∈ Θ we have

That is, the probability of estimator θ̂ deviating from the parameter of interest θ by a small amount ∈, when sample
size grows, can be made as small as we wish. When this is true, θ̂ is said to converge stochastically, or in probability, to θ.
So weak consistency of θ ̂ is equivalent to convergence in probability. We shall use the 0p notation2 to indicate that θ̂ is
aconsistent estimator of θ, that is, θ̂ = θ + op(1). Similarly, we can define the concept of strong consistency, which is
equivalent to convergence of θ̂ to θ with probability one, that is

Unless otherwise stated, by consistency we shall mean weak consistency. Many estimators commonly met in practice
are in fact -consistent, meaning that

That is, is bounded in probability for every θ ∈ Θ.

We now begin with the study of one-step estimators for a scalar parameter θ.

5.4.2 EFFICIENT LIKELIHOOD ESTIMATORS
Let θ ̃ be a consistent estimator of θ. A one-step estimator for θ using θ̃ is a value defined by(5.16)

where g(θ, y) is an unbiased estimating function. In a parametric model the estimating function g(θ, y) can be a score
function ℓ̇(θ; y), where ℓ(θ; y) is a log-likelihood function. The one-step estimator (5.16) has been widely used in various
applications. The popularity of this estimator is partly due to the particularly simple form. Now we first state a result
concerning the efficiency of estimator (5.16) in one-dimensional parametric case. The more general case is treated later.

Proposition 5.4 Let Yjbe independent and identically distributed random variables having density functionf(θ; ·) for j = 1, …, n.
Suppose that the following conditions hold:

1. The parameter space is an open interval (a, b).
2. The support S of f (θ; ·) is functionally independent of θ.
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3. The third derivative (∂3/∂θ3)f(θ; y) is continuous and bounded in S, i.e.,(5.17)

where c > 0
4. The integral ∫ f(θ; y) dμ(y) is three times differentiable with respect to θ under the integral sign.
5. Finally, the Fisher information

satisfies 0 < I(θ) < ∞.

If and θ̃nis √n -consistent, then the one-step estimator(5.18)

is asymptotically efficient. That is, θ̂nis consistent and the variance of θ ̂ntents to the inverse of the Fisher information. Further, we
have(5.19)

The reader may consult Lehmann and Casella (1998, p. 454) for a proof. Since the efficiency result in (5.19) is a first-
order asymptotic property, the denominator of the one-step estimator (5.18) can be replaced by any first-order
equivalent random variable without altering the conclusion. A particularly important estimator obtained along this line
is by using the method of scoring due to Fisher (1925). This estimator is a variant of (5.18) with the denominator
replaced by its expectation evaluated at the starting point. This method is particularly useful when repeated iterations
are desired and the evaluation of the denominator of (5.18) is costly.

Corollary 5.5Suppose that the assumptions of Proposition 5.4 hold and in addition that the Fisher information I(θ) is continuous in θ.
Then the one-step estimator using Fisher's method of scoring(5.20)

is an asymptotically efficient estimator of θ.

The two estimators defined by (5.18) and (5.20) are usually different because the observed information is in general
different from its expected counterpart. Note, however, if there exists a one-dimensional sufficient statistic for θ, then
the
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expected information will be idential with the observed information evaluated at the maximum likelihood estimator.
Stuart (1958) heuristically argues that estimator (5.20) may be closer to the efficient likelihood estimator than (5.18). Here
an efficient likelihood estimator means an efficient estimator defined as a root to the likelihood equation, which need
not be the maximum likelihood estimator. Efron and Hinkley (1978) discuss the difference between the observed and
the expected information in estimating the variance of the maximum likelihood estimator; see also Lindsay and Yi
(1996).

A result stronger than that stated in Corollary 5.5 is possible for certain special models. An estimator is said Fisher-
consistent if knowledge about the whole population is used then the estimator is equal to the true value of the parameter.
Eguchi (1983) shows that, for curved exponential family model, a two-step version of (5.20) is second-order efficient (see
Section 3.4.1 of Kass and Vos, 1997 for a definition) provided that θ̂n is Fisher-consistent.

5.4.3 GENERAL CASE
Now we turn to the case of general estimating functions. Let g(θ) = g(θ, y) be an unbiased vector-valued estimating
function. The Godambe efficiency, effθ(g), a matrix depending on the sample size n, is defined by (2.5). In the
parametric case when g(θ) is a score function the Godambe efficiency reduces to the Fisher information. Since the
Godambe efficiency effθ(g) depends on the sample size n, in the following discussion it will be convenient to assume
that, when divided by n, the Godambe efficiency converges to a positive definite matrix as n → ∞, i.e.,(5.21)

To generalise Proposition 5.4, we need to extend the concept of efficient likelihood estimator to the case of estimating
functions.

Definition 5.6 An estimator θ̂nis Godambe efficient with respect to an optimum estimating function g(θ) if

where ∑θis the limiting average Godambe efficiency defined by (5.21).

Proposition 5.7Let Yjbe independent random variables for j = 1, …, n. Consider estimating function g(θ, Y), where Y = {Y1, …,
Yn}. The parameter space Θ is assumed to be an open subset ofRp. In addition, suppose that the following conditions hold:

1. The estimating function g(θ, y) can be decomposed as(5.22)
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where each summand hj = (hj1, …, hjp)tis a p-dimensional vector having mean zero. That is, EΘ {hj(θ, Yj)} = 0.
2. The estimating function g(θ, y) is twice differentiable with respect to θ, i.e., each component hjd(θ), j = 1,…, p; d = 1,…, p, is

twice differentiable. Further, the second derivatives are assumed to be bounded in probability. That is,

where yjand θ are in an open subset containing the true value θ0and Eθ|M(Y)| < ∞.
3. Assume that θ̃nbe a -consistent estimator of the true parameter θ0. That is,(5.23)

4. The Godambe efficiency effθ (g) of (5.21) exists and is positive definite.

Then the following one-step estimator is Godambe efficient:(5.24)

Proof. We shall denote the j-th component of θ, g (θ) by θj, gj(θ), and so on. It is convenient to use the same symbols to
denote the same vectors. This convention can be extended to matrices and higher-order arrays. For instance, we shall
use the notation

to denote the matrix ġ (θ) and the p × p × p array ̈ (θ), respectively.

By Taylor expansion of g θ ̂n) at θ0 we have(5.25)

where each component of θ†n is between the corresponding components of θ0 and θ̃n. In (5.25) we used the Einstein
summation convention: summation is automatically taken with respect to an index if it appears both as a subscript and
as a superscript.

Now rewrite (5.24) as(5.26)

where gja(θ) denotes the (j, a)-th component of the inverse of ġ (θ). Putting (5.25) into (5.26) and simplifying, we
get(5.27)

where 1al is the (a, l)-th element of the p × p identity matrix.
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Expanding gij(θ̃n) at θ0 gives(5.28)

where is between θ ̃ and θ0. By -consistency of θ ̃n, Assumption 2 and (5.28), we then have

Combining this fact and the following one:

we then have that the second term of (5.27) has order op (1). Therefore, we have

or in usual matrix notation(5.29)

The coefficient on the right-hand side of (5.29), by virtue of the law of large numbers, will tend to
as n → ∞. Since g(θ) is unbiased, applying the central limit theorem to we have

Slutsky's Theorem now implies that of (5.29) has a limiting normal distribution with covariance matrix

where ∑θ is defined by (5.21). That θ ̂ is Godambe efficient follows from the definition. This completes the proof. □

Note that the conditions of Proposition 5.7 to ensure Godambe efficiency of θ ̃ are only sufficient conditions. When
one or some of the conditions are violated,
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the conclusion may still be valid. For example, the conclusions of Proposition 5.7 can often hold even when Condition
1 fails to be satisfied. For specific problems, it may be less laborious to verify directly a minimum set of conditions
rather than to verify a set of general sufficient conditions such as those given in Proposition 5.7. See Heyde (1997,
Section 4.2) for a discussion on similar issues in the context of quasi-likelihood estimation.

Corollary 5.8Suppose that the conditions of Proposition 5.7 hold and in addition that Jn(θ) = − Eθ{ġ(θ, y)} is continuous in θ. Then
the one-step estimator(5.30)

is also a Godambe efficient estimator.

5.4.4 CHOOSING -CONSISTENT ESTIMATORS
The choice of an appropriate -consistent estimator is essential to the success of the method of one-step estimation
for root selection. Wolfowitz (1957), Le Cam (1969, p. 103) and Bickel et al. (1993, Section 2.5) give some general
discussions on how to construct -consistent estimators. Unfortunately, the class of -consistent estimators is a very
large one. So the choice of θ̃n within this class is critically important to the success of one-step iteration, as asymptotic
considerations may not hold until n is very large. For example, if θ̃n is -onsistent, then so is θ̃n + n−1a, no matter how
large the constant a is. Clearly, in practice, if a = 108, we would not consider θ̃n and θ̃n + n−1a both appropriate.

When there are available more than one -consistent estimators, a sensible criterion to choose a particular estimator is
to select one which has high correlation with an ideal estimator, which can be the efficient likelihood estimator if the
estimating equation under consideration is a likelihood equation. The correlation between an initial estimator θ ̃n and an
ideal estimator θ̃, in some cases, can be shown to be exactly equal to the efficiency of the initial estimator θ̃n. Here the
efficiency of an estimator θ ̃n relative to a ‘best’ estimator θ ̂ is defined to be the ratio of the variances

If θ ̂ is a minimum variance unbiased estimator of θ and θ̃n is any unbiased estimator of θ, then it can be shown
that(5.31)

where ρ(θ̃n, θ̂) is the Pearson product moment correlation coefficient between θ ̃n and θ̂. Suppose that we wish to
approximate a Godambe efficient estimator θ̂ which solves g(θ̂) = 0. If θ̃n is a -consistent estimator of θ, then
equation (5.31) will not hold exactly in general. For many regular models, we may however expect the relation (5.31) to
hold approximately.
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According to the criterion of the preceding paragraph, an often practical way of choosing an initial estimate is to use
the (unique) root of the same type of estimating equation based on some subsamples or bootstrap resamples of the
original data. In the Cauchy location model, for instance, the likelihood equation is expected to have a unique root if
the ‘outliers’ are excluded from the sample. An equally useful method is to use the same data but based on a different
strategy of estimation. A typical example is to use the moment estimator as the initial estimate in solving, for instance,
the likelihood equations, with possible exceptions such as the Cauchy location model.

5.5 A modied Newton's method

5.5.1 INTRODUCTION
In the previous section we have seen that a one-step Newton-Raphson iteration, or some variant of it, provides a
general procedure for constructing an efficient estimator from a -consistent estimator. In the likelihood case, the
one-step estimators are efficient and therefore are expected to be close to the efficient likelihood estimator. For a
general Godambe efficient estimating function, the one-step estimators are Godambe efficient. When multiple roots
exist, the root that is closest, in Euclidean distance, to this efficient estimator can then be chosen as our estimate for
the parameter of interest.

However, as noted at the end of last section, the one-step estimators often depend sensitively on the choice of the
initial consistent estimators. Nor is the one-step estimation invariant under reparameterisation. To see this, suppose
that θ is a scalar parameter and we wish to consider the problem of estimating a new parameter ξ = γ (θ) for a smooth
monotone function γ (·). Suppose that is a consistent estimator for θ. That is, = θ + op (1). Then we have

where θ† is between and θ, γ̇(θ) = (d/dθ) γ (θ), and γ̇(θ) is assumed to be bounded. It follows that is a consistent
estimator for ξ. The same arguments remain unaltered for -consistency. From the two consistent estimators and
ξ̇ we can construct two efficient one-step estimators and for θ and ξ, respectively. It can be verified, however,
that is not equal to γ ( ) in general.

Nevertheless, we can show that ξ† = γ ( ) is also a Godambe efficient estimator for . To see this, first note that, since
which is Godambe efficient by assumption, has a limiting normal distribution
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we can therefore apply the delta method to ξ† = γ(θ ̂) to show that

also has a limiting normal distribution with mean zero and variance given by(5.32)

On the other hand, the limiting average Godambe efficiency Σξ for ξ based on estimating function

for ξ is equal to

which can be calculated directly as follows:(5.33)

But Σξ given by (5.33) is simply the reciprocal of the asmptotic variance (5.32) given by the delta method. It follows
from the definition that ξ† is Godambe efficient for ξ.

5.5.2 SCALAR CASE
An alternative strategy for finding a desirable root when multiple roots exist is to devise iterative algorithms that are
robust against initial starting points. In this section and in Sections 5.6 and 5.7, we shall discuss some of the algorithms
having this desirable property. These algorithms are modifications to the Newton–Raphson method, utilising the
statistical properties of the estimating equations we wish to solve.

For scalar estimating functions, we shall initially consider the following iterative algorithm(5.34)
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where γ is a positive constant functionally independent of the data. Note that the iteration (5.34) differs from Newton's
method only in the modification of the coefficient 1 − exp{γġ(θ(j))}. When γ = +∞ and ġ < 0, the algorithm reduces to
the usual Newton's method. We shall see that the iterative algorithm defined by (5.34) has some desirable properties
over Newton's method.

A basic property concerning the iteration (5.34) is the relation between the roots to estimating equation g(θ ̂) = 0 and all
possible fixed points of the iterative algorithm. A point θ ̂ in the parameter space Θ is said to be a fixed point of the
algorithm (5.34) if(5.35)

Now suppose that θ̂ solves g(θ̂) = 0. Let θ(j) = θ̂. Then the second term on the right-hand side of equation (5.34)
vanishes regardless of the value of γ. So relation (5.35) is satisfied. In other words, every zero of the estimating fuction
g(θ) is a fixed point of the iterative algorithm (5.34), for every pair (α, γ). On the other hand, suppose that θ̂ ∈ Θ satisfy
condition (5.35). Putting (5.35) into (5.34) we have

It follows that g(θ ̂) = 0, because

In other words, each fixed point θ̂ of the algorithm (5.34) must be a solution to the estimating equation g(θ̂) = 0.

To distinguish the algorithm (5.34) from Newton's method, we now suppose, for simplicity, that g(θ) is a score
estimating function. We further suppose that regularity conditions such as those given by Wald (1949) hold for the
underlying parametric model. Under these ideal conditions we set out the program of looking for the maximum
likelihood estimator by solving the likelihood equation g(θ) = 0. Suppose that there are more than one roots to the
likelihood equation. Since the log-likelihood function is available, we may then classify the roots into two classes:

• The first class, C1, consists of all local maxima of the log likelihood function.
• The second class, C2, consists of all local minima and saddle points of the log likelihood function.

Since we know that the root we are looking for, now the maximum likelihood estimator, is in C1, we then naturally wish
the iterative algorithm (5.34) to behave differently according to whether a fixed point θ̂ is in C1 or in C2. The two
classes of fixed points C1 and C2 can be characterised as follows:(5.36)

the desirable root being in the first class C1.
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Note that the formula (5.36) now provides a general classification of roots to an estimating equation g(θ) = 0, which is
not necessarily a likelihood equation. The formula (5.36) can be generalised in a straightforward manner when g(θ) is
vector-valued. We shall study the multivariate case in the next subsection, where we shall also prove that, under mild
regularity conditions, a desriable root will necessarily be in the class C1.

From the above consideration we see that an iterative algorithm having the following properties is preferred to
Newton's method for solving an estimating equation.

1. The iterative algorithm (5.34) will converge to every θ̂ ∈ C1 starting from a point close enough in Euclidean
distance to θ̂. That is, every fixed point in C1 is an attracting fixed point.

2. The iterative algorithm (5.34) will typically diverge for a starting point θ(0) however close to θ ̂ ∈ C2. That is,
every fixed point in C2 is a repelling fixed point.

The following proposition says that these properties hold for the algorithm (5.34).

Proposition 5.9 Let g(θ) = g(θ, y) be a smooth one-dimensional estimating function. Define the following function:(5.37)

on the set {θ: ġ(θ) ≠ 0, θ ∈ Θ}, where γ is a positive constant.

Then the iterative algorithm

will have the following properties for any estimating function g(θ):

1. If θ̂ is a root of g(θ̂) = 0, which satisfies ġ(θ ̂) < 0, then there exists ɛ > 0 so that

2. If θ ̂ is a root of g(θ̂) = 0, which satisfies ġ(θ̂) > 0, then for any ɛ > 0 there exists θ(0) ∈ (θ̂ – ɛ, θ ̂ + ɛ) so that θ(j)diverges as j
→ ∞.

We shall give a proof in Section 7.4 when we study the dynamical properties of estimating functions. In fact, we will see
that the iterative algorithm (5.34) is motivated by considering an appropriate dynamical system induced by an
estimating function. Proposition 5.9 says that the following algorithm:(5.38)
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has the advantage over the traditional Newton's method in that (5.38) will not converge to any undesirable root
defined by the set C2. Divergence of the algorithm now plays the important role for checking the appropriateness of a
root.

The iteration (5.38) still leaves the value of γ > 0 unspecified. Clearly, if we choose a value of γ > 0 very close to 0, then
the second term on the right-hand side of (5.38) will be close to zero as well, implying that (5.38) will converge to
(diverge from) a fixed point θ̂ ∈ C1(C2), at a very slow rate. On the other hand, if γ > 0 is large enough, then
exp{γġ(θ(j))} will become negligible if θ(j) is close to θ ̂ ∈ C1. This implies that, for a large value of γ > 0, the iterative
algorithm (5.38) will behave essentially like the usual Newton's method for any fixed point in C1. In the meantime if θ(j)

is close to θ ̂ ∈ C2, then the value of exp{γġ(θ)(j))} will become arbitrarily large if γ is large. This means that the iterative
algorithm (5.38) will explode starting from a value at the vicinity of any fixed point in C2. From these discussions it
becomes clear that a large value of γ may be preferred in general to ensure not only the desirable properties stated in
Proposition 5.9 but also to achieve the nearly quadratic convergence rate comparable with Newton's method for fixed
points in C1. Since it holds in general that ġ(θ) = Op(n), a ‘large’ value of γ may be set to γ = 1 if n is large.

Summarising, as an alternative method to the Newton–Raphson iteration, the following algorithm:(5.39)

may be considered for use when an estimating equation has more than one solutions. The algorithm (5.39) behaves
differently according to whether a fixed point θ̂ is in C1 or in C2. Further, the algorithm (5.39) converges to any fixed
point in C1 at approximately quadratic rate when the sample size is large.

The careful reader may have already noticed a property, which holds for Newton's method, now does not hold for the
algorithm (5.38) any longer. The Newton-Raphson iteration

remains unaltered if we replace g(θ) by(5.40)

where a ≠ 0 is a constant functionally independent of θ. Or, equivalently, that a root of g(θ̂) = 0 is a repelling or
attracting fixed point of Newton's iteration is a property that is invariant under transformation (5.40). This property
however no longer holds for the algorithm (5.38), as can be verified by replacing g(θ) in (5.38) with h(θ) given by (5.40).
As a matter of fact, the iteration (5.38) has been designed deliberately in a way so that this property is destroyed. For
instance, if we change
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the sign of the log-likelihood function, then the maximum likelihood estimator (θ̂ML will become the minimum of
minus the log-likelihood function. Therefore, θ̂ML will belong to the class C2 defined by minus the score estimating
function, say, −s(θ). So the algorithm (5.38) will have different convergence properties for the same fixed point θ̂ML

according to if we use s(θ) or −s(θ). Estimating function s(θ), now a parametric score, differs from −s(θ) in that the
information identity

holds for g(θ) = s(θ) but not for g(θ) = −s(θ). This property, with other mild regularity conditions, rules out the
possibility that a desirable root will belong to C2. See Proposition 5.10 for a weaker condition than the information
identity for general estimating functions to ensure that a desirable root will belong to C1.

To conclude this section we now briefly discuss the Godambe efficiency of one-step estimators using algorithm (5.39).
Suppose that θ ̃n is a consistent estimator. In last section, we have shown that is a Godambe efficient
estimator. We now show that the one-step estimator(5.41)

is also Godambe efficient. We shall prove this fact by comparing θ ̂* with θ̂.

Suppose that the second derivative of g(θ)/n is bounded in probability, and that

exists and is a positive number. From the expansion

we see that exp which implies that . On the other hand, by definition of θ̂ and
(5.41) we have

That θ̂* is Godambe efficient follows from the following relation between the estimator θ ̂* and θ ̂:(5.42)

(5.43)

together with the fact that θ̂ is Godambe efficient. In passing from (5.42) to (5.43) we used the fact that .
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The reader is advised not to read too much into efficiency results such as the one given above. This is because an
estimator such as θ̂* is usually useful only when one is not sure that an initial estimate θ̂n is close to the target root. In
the meantime, a one-step estimators are usually trustworthy only when the initial estimators are close to the right value.
These remarks apply to one-step estimators in general.

5.5.3 MULTIVARIATE CASE
The class of algorithms defined by (5.34) can be extended to the multivariate case for a vector-valued estimating
function involving a parameter θ of dimension p. The generalised forms, similar to their univariate versions, differ
from the multivariate version of Newton's method in that these proposed algorithms favour one type of root over the
other. In the univariate case, we defined two classes of roots by (5.36). The algorithm (5.34) with appropriately chosen
values of α and γ, such as algorithm (5.39), converges to every root in C1 with properly chosen starting points.

Now we generalise the classification given by (5.36) to vector - valued estimating functions and give regularity
conditions such that a -consistent estimator will be necessarily contained in the generalised class of C1. Let θ̂ be a
root to an estimating equation g(θ ̂) = 0. Let κj(θ̂) be the complex eigenvalues of ġ(θ ̂), where j = 1,…, p. In Section 4.9,
we introduced generalisations of the concepts of local maxima, local minima and saddle points of a scalar objective
function. Recall that a root θ ̂ is a sink if R{κj(θ(̂)} < 0 for j = 1,…,p; θ ̂ is a source if R{κj(θ(̂)} ≥ 0 for j = 1,…,p, the
inequality strictly holding for at least one j; and, finally, θ̂ is a saddle point if there is at least one j and m so that
R{κj(θ(̂)} > 0 and R{κm(θ(̂)} < 0. Now (5.36) can be generalised as follows:(5.44)

Proposition 5.10 establishes conditions under which a -consistent root must belong to D1. In Section 7.4, under
similar conditions, we shall give a different proof using the Liapunov's method. In Proposition 5.10 we shall use a weaker
condition than the information identity for a score function. A p-dimensional unbiased estimating function g(θ) = g(θ, y)
is said to be first-order information unbiased if g(θ) satisfies the following condition(5.45)

In most cases condition (5.45) can be written in the form(5.46)

The equation (5.46) becomes the usual information unbiasedness condition if the right-hand side is exactly zero. In
other words, all information unbiased estimating functions are automatically first-order information unbiased.
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Proposition 5.10 Suppose the following conditions are satisfied by a p-dimensional unbiased estimating function g(θ) = g(θ, y):

(i) The estimating function g(θ) is first-order information unbiased.
(ii) There exists a root θ̂ of g(θ̂) = 0, which is -consistent.
(iii) The weak law of large numbers can be applied to the quasi-Hessian matrix ġ(θ). That is, if θ0is the unknown true value of θ and

then we have that

(iv) Finally, the limit

is assumed to exist and is positive definite.

Then θ̂ is an asymptotic sink in the sense that there exist constants ajso that 0 < aj = O(1) and

where κj(θ̂) are eigenvalues of ġ(θ̂).

Proof. By the first-order information unbiasedness, we have

which implies that

On the other hand, the weak law of large numbers leads to the following relation:(5.47)

Now let aj be the eigenvalues of the positive definite matrix ∑, then

Finally, equation (5.47) implies that

or

which is what was required to prove.
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Now we are ready to extend (5.34). Although parallelling general results can be obtained using α and γ as indices for
the family of algorithms, we shall only state the result for the case (α, γ) = (1, 1) for brevity's sake. This particularly
chosen pair of indices has some desirable properties; see the previous subsection for detailed discussions in the
univariate case. The generalised algorithm takes the form(5.48)

where I is the p × p identity matrix and the exponential of a square matrix A is defined by

Now we extend Proposition 5.9 to the case when g(θ) is a vector-valued estimating function. In this case, the
convergence properties of algorithm (5.48) essentially depend upon the properties of the quasi-Hessian matrix ġ(θ).
The term quasi-Hessian is used here in a rather informal sense. When g(θ) is not conservative, ġ(θ) is not a Hessian
matrix. In many cases, however, g(θ) is approximately conservative so that ġ(θ) has many properties resembling a
Hessian matrix in these cases.

Proposition 5.11 Let g(θ) = g(θ, γ) be an estimating function of dimension p ≥ 1. Define

on the set {θ:det{ġ(θ)} ≠ 0, θ ∈Θ Let θ̂ be a root of g(θ ̂) = 0, and κk(θ ̂), k = 1,…, p, be the complex eigenvalues of ġ(θ̂).

1. If the real parts, R{kk(θ̂)}, of κk(θ̂) for any κ, are negative, then there is an ɛ-neighbourhood Nε (θ ̂) of θ ̂ such that

2. If there exists at least one κk (θ ̂) such thatR{κk (θ ̂)} > 0, then θ(j)will diverge as j tends to infinity for a typical starting point at
the vicinity of θ.̂

A proof will be given in Section 7.4. Proposition 5.11 states that while a sink is a attracting fixed point of (5.48),
iterative algorithm (5.48) however will not converge to any source or saddle point for a typical starting point. The
meaning of a typical starting point will become clear in Chapter 7, where we study dynamical properties of estimating
functions. Since, as in the univariate case, two sinks are usually isolated, algorithm (5.48) is therefore robust against the
choice of initial starting points.
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5.5.4 AN EXAMPLE
To illustrate the algorithms introduced in this section, we now consider the Cauchy location model with the density
function

This is a sufficiently regular model so that the maximum likelihood estimator is the efficient likelihood estimator.

Let θ0 = 0 be the true value of the location parameter θ. For a pseudo random sample of size 5

the likelihood equation s(θ) = 0 has three roots

While the second root θ̂2 is a local minimum, the other two roots θ̂1 and θ ̂3 are local maxima (see Figure 5.1). The
maximum likelihood estimator is θ̂1 = 0.2. The second derivatives (Hessians) of the log likelihood evaluated at the
roots are found to be

From these values and (5.36), we see that

By Proposition 5.9 we see that both θ̂1 and θ ̂3 are attracting fixed points and θ̂2 is a repelling fixed point of the iterative
algorithm (5.39).

Fig. 5.1 The score function of the Cauchy location-model.
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Fig. 5.2 Basins of attraction of the algorithm (5.39) for the Cauchy location model using a sample of size 5. The dots
show the three roots to the likelihood equation, the smallest one being the maximum likelihood estimate.

Fig. 5.3 Basins of attraction of Newton's method for the Cauchy location-model using the same data as in Figure 5.2.
The dots show the three roots to the likelihood equation, the smallest one being the MLE.

Figures 5.2 and 5.3 show the results obatined by comparing the algorithm (5.39) with Newton's method. Shown in
these figures are one-dimensional basins of attraction for the three roots. The basin of attraction of a fixed point θ ̂ is
the set of starting points which will lead to convergence to θ ̂ under a particular iterative algorithm. Different
algorithms will therefore have different basins of attraction for the same fixed point. For our present example, the
basins of attraction for each algorithm are three disjoint sets in R. Each basin of attraction (connected
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or not) is represented in Figures 5.2 and 5.3 by a strip or several strips with a gray level different from the other two.
We used the darkest gray level to colour strips corresponding to the basins of attraction of the maximum likelihood
estimate θ̂1 = 0.2, and the lightest gray level to colour strips corresponding to the basins of attraction of the second
root, the local minimum θ̂2 = 3.2. Initial points which lead to explosion of the algorithms are coloured white. Both
Figures 5.2 and 5.3 used the same colouring convensions.

From Figure 5.2 we see that all initial starting points, in the shown interval, lead to convergence to either the first or
the third root, which contrasts sharply with Newton's method shown in Figure 5.3. A notable feature in Figure 5.2 is
that a starting point even very close to the local minimum θ̂2 leads to convergence to either θ ̂1 or θ ̂3. The points to the
left of θ ̂2 belong to the basin of attraction of θ̂1, and the points to the right of θ̂2 belong to the basin of attraction of θ̂3.
These properties are absent in Newton's method because θ̂2 is also an attracting fixed point as can be seen from Figure
5.3. As a matter of fact, Figure 5.3 shows that many starting points (strips with the lightest gray level) converge to the
local minimum of the log likelihood function. Figures 5.2 and 5.3 also seem to suggest that algorithm (5.39) has a
much wider basin of attraction for the maximum likelihood estimator than that of the usual Newton's method. This
implies that algorithm (5.39) may also have the desirable property of being more robust against the choice of initial
starting points.

5.6 An algorithm based on the information identity
The modified Newton's methods discussed in the previous section are based on the idea that roots to an estimating
equation g(θ ̂) = 0 may be classified according to (5.44) and the fact that a desirable root θ̂, when the sample size gets
alrge, must be contained in D1 as defined by (5.44). At the same time, all roots belonging to D2 are known to be
undesirable, provided regularity conditions such as those given by Proposition 5.10 can be invoked. These methods
will avoid undesirable convergence to sources and saddle points, which are inconsistent under mild conditions.
However, convergence to sinks other than the consistent root remains a possibility. From Figure 5.2 we see that the
modified iterative algorithm (5.39) converges to the undesirable local maximum (the black dot on the right) for starting
points close enough to this root. To overcome this difficulty, in this section we shall consider another modification of
Newton's method.

5.6.1 THE MODIFIED ALGORITHM
In Section 5.2, we discussed the general problem of estimation based on a regular estimating function. A regular
estimating function is one which is subject to certain moment assumptions. There we emphasised the fact that the
problem of solving an estimating equation, when difficulties arise, may necessitate the evaluation of other properties of
the estimating function besides the unbiasedness condition. The iterative algorithm we shall consider in this section
takes into account both the first
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and the second moment conditions of an estimating function. A general procedure along this line was given by (5.4).

We consider the scalar case first. Let g(θ) be an unbiased additive estimating functions. The following algorithm:(5.49)

gives an iterative method, which is motivated by considerations such as the procedure formulated in (5.4). In (5.49),
the data-dependent function υ(θ) is assumed to satisfy the following condition:(5.50)

The formula (5.50) says that υ(θ) is a quantity which gives an estimator for the leading term of the variance of g(θ).
Again the algorithm (5.49) is a modification to Newton's method. If we replace the coefficient of g(θ(j)) on the right-
hand side of (5.49), i.e. {υ(θ(j))}−1, with the quantity −{ġ(θ(j))}−1, then we recover Newton's method. The major
differences between algorithm (5.49) and Newton's method can thus be brought about by comparing the two
quantities υ(θ) and −ġ(θ).

Now suppose that θ ̂ is a solution to g(θ̂) = 0, which is a -consistent estimator of θ. We know that θ ̂ is an attracting
fixed point of Newton's method. From Proposition 5.9 we also know that θ̂is an attracting fixed point of (5.38). We
also wish the new algorithm (5.49) to converge to θ̂ with initial starting points close enough to θ̂. This will be true if we
have(5.51)

so that, when the sample size is large, the iterations defined by (5.49) will become indistinguishable from the Newton-
Raphson iterations with starting points in a proper neighbourhood of θ̂.

To see when (5.51) will be true, we first note that, by the law of large numbers, we have(5.52)

provided that θ̂ is consistent and g(θ) satisfies some mild regularity conditions under which the law of large numbers
may be applied in the above form. If we may further assume that g(θ) is approximately information unbiased so that
g(θ) satisfies

then we may deduce from (5.52) that(5.53)
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Finally, by (5.53) and (5.50), and noticing the fact that ġ(θ) is usually of Op(n), we then conclude that (5.51) will be
generally true when θ ̂ is consistent and the mild regularity conditions imposed on g(θ) in the above discussions hold
true.

The convergence to a desirable root is a basic requirement of an algorithm. How will the algorithm (5.49) behave for
other roots of the estimating eqation? As in Section 5.5, here we also wish the iterative algorithm (5.49) to respond in a
sensitive manner according to whether a root θ̂ is desirable or not. One thing, which is clear from the above
discussions, is that iterations under (5.49) will be different from Newton's method for a root at which (5.51) is violated.
Actually, we can say much more than this.

Proposition 5.12 Let g(θ) be an unbiased and first-order information unbiased estimating function. Suppose that there exists a
consistent estimator θ̂ of θ0so that g(θ̂) = 0. Let v(θ̂) be any consistent estimator of the variance of g(θ0) such that the following is satisfied

Then iterative algorithm (5.49) has the following properties.

A solution θ̃ to estimating equation g(θ̃) = 0 is an attracting fixed point of (5.49) if and only if the following condition:(5.54)

is satisfied.

We shall give a proof in Section 7.4. From Proposition 5.12 we immediately have the following results.

Corollary 5.13 Suppose that the conditions of Proposition 5.12 are satisfied. Then we have

(i) A consistent root θ̂ of g(θ̂) = 0 is an attracting fixed point of (5.49) when n is large.
(ii) If θ̃ is a root of g(θ̃) = 0 and ġ(θ̃) ≥ 0, then θ̃ is a repelling fixed point of (5.49).

Corollary 5.13 can be verified by directly checking the condition (5.54). Comparing Proposition 5.10 with Proposition
5.12 and Corollary 5.13, we see that algorithm (5.49) has the same desirable properties as algorithm (5.38) over
Newton's method. That is, while any consistent root of an estimating equation is an attracting fixed point of algorithm
(5.49), sources and saddle points are repelling fixed points of the algorithm. In addition, algorithm (5.49) has an
important advantage over algorithm (5.38) in that iterations under (5.49) will not converge to any sink θ† which violates
the condition (5.54).
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To use algorithm (5.49) we need to specify υ(θ). So far we have not discussed the issue of constructing an appropriate
estimate of variance for g(θ). For this purpose, we shall now assume that g(θ, y) is an unbiased additive estimating
function. That is, we assume that g(θ) takes the form

where hj satisfies

and the Yj's are independent. Now we can define υ(θ) as follows:(5.55)

Another possibility is to let υ(θ) to be(5.56)

Now we turn to consider the case when g(θ) is a vector-valued estimating function. Proposition 5.12 can be extended
in this case as follows. Again see Section 7.4 for a brief derivation of the results.

Proposition 5.14 Suppose that g(θ) is a p-dimensional unbiased estimating function. Further suppose that g(θ) is first-order information
unbiased satisfying the condition (5.45). Let θ̂ be a root of g(θ ̂) = 0, which is a consistent estimator of θ0. Assume that v(θ̂) be any
consistent estimator of the variance-covariance matrix of g(θ0), i.e.,

Then the iterative algorithm(5.57)

has following properties:

(i) The consistent root θ̂ of g(θ) is an attracting fixed point of (5.57) when the sample size is large.
(ii) For any root θ̃, let λjbe the eigenvalues of

where j = 1, …, p. If there exists a k such that |1 + λk| ≥ 1, then θ̃ is a repelling fixed point of (5.57).

Again, as in the univariate case, when g(θ) is an unbiased additive estimating function
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we can choose υ(θ) to be of the form

where each hj (θ, yj) is an unbiased p-dimensional function and the yj's are independent.

5.6.2 AN EXAMPLE
Now we apply algorithm (5.49), with the choice of υ(θ) given by (5.55), to the Cauchy location model with density
function

We assume that the true value of the parameter is θ0 = 0. We generated 20 pseudo random numbers from this model.
These values, arranged in ascending order, are

Table 5.1 Iterations using Muller's method and the modified Muller's method based on the empirical information
divergence. There are three roots −0.024, 3.026 and 14.302 to the Cauchy likelihood equation for an artificial sample
of size 11. Two sets (case 1 and case 2) of random starting points are used. The true value is θ0 = 0.

Modified method Muller's method

Case 1

7.837 −0.253 7.267 7.837 −0.253 7.267
0.541 7.837 −0.253 10.252 7.837 −0.253
−0.068 0.541 7.837 11.917 10.252 7.837
−0.030 −0.068 0.541 13.360 11.917 10.252
−0.024 −0.030 −0.068 13.044 13.360 11.917
−0.024 −0.024 −0.030 13.025 13.044 13.360
−0.024 −0.024 −0.024 13.026 13.025 13.044
— — — 13.026 13.026 13.025
— — — 13.026 13.026 13.026
Case 2

8.765 −0.644 2.075 8.765 −0.644 2.075
0.082 8.765 −0.644 9.380 8.765 −0.644
−0.067 0.082 8.765 11.744 9.380 8.765
−0.027 −0.067 0.082 13.465 11.744 9.380
−0.024 −0.027 −0.067 13.052 13.465 11.744
−0.024 −0.024 −0.027 13.024 13.052 13.465
−0.024 −0.024 −0.024 13.026 13.024 13.052
— — — 13.026 13.026 13.024
— — — 13.026 13.026 13.026

Using these pseudo observations, we found seven roots
−393.16 −73.20 −10.85 −1.66 −1.64 −1.25 −1.08 −0.85 −0.53 −0.44
0.20 0.24 0.36 0.54 0.67 0.89 1.08 1.12 2.05 58.21

to the likelihood equation. Figure 5.4 shows the score function near these roots.

Evaluating the quantity

at these roots gives the values
−393.11 −373.69 −73.74 −70.25 0.07 55.38 57.88
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respectively. Note that all values, except the value −0.69, which corresponds to the root θ̂ = 0.07, are outside the
stability interval (−2, 0) given by (5.54). It follows therefore that θ̂ = 0.07 is the only attracting fixed point of algorithm
(5.49).

In contrast, the Newton-Raphson method is very sensitive to initial starting points. The poor convergence property of
the Newton-Raphson algorithm to the

Fig. 5.4 The Cauchy score function near the roots for 20 pseudo random observations.

Fig. 5.5 Basins of attraction in the complex plane of Newton's method for the Cauchy location-model.

desirable root θ ̂ = 0.07 can be clearly seen from Figure 5.5. Since Newton's method is defined for complex values of θ(j)

as well, in Figure 5.5 we plotted the basins of attraction to each root using complex starting points in the square

In Figure 5.5, the Newton-Raphson iterations were run 100 times for each starting point to determine its convergence
property. The starting points converging to the
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desirable root, θ ̂ = 0.07, are plotted as red. From Figure 5.5 we see that the only region where the algorithm converges
to the desirable root is the thin strip near the origin. All other shaded regions correspond to basins of attraction for
other real roots. Basins of attraction for all complex roots are amalgamated as black, while white points denote non-
convergence with respect to the stopping rule used. An equivalent plot for the algorithm (5.49), which is not shown
here, shows that almost all complex initial starting points in the region [−800, 800] × [−800, 800] lead to convergence
to the desirable root, θ̂ = 0.07.

By plotting the domains of attraction in the complex plane, rather than solely along the real line, a much clearer picture
of the behaviour of the various algorithms is obtained. So it seems useful sometimes to extend the study of root search
algorithms into the complex plane.

5.7 A modied Muller's method
In this section, we discuss another iterative algorithm that is a modification of Muller's method introduced in Chapter
3. Muller's method does not take into account the statistical properties of the equation that is required to be solved.
Similar to the algorithms discussed in the previous two sections, the method we shall discuss in this section is an
alternative way to solve an estimating equation using the information available to us on the underlying estimating
function. Since higher-order moment specifications on estimating functions are often impractical, the essential idea is
again as formulated in (5.4).

Let g(θ, y) ∈Rp be an unbiased estimating function. Suppose that g(θ, y) is information unbiased, so that the
quantity(5.58)

is a zero matrix for any θ1 = θ2 = θ ∈Θ, that is,

where Op × p is a p × p matrix with all entries being zero. For θ1 ≠ θ2, we generally have

It is this property which makes the quantity D(θ1, θ2) a useful diagnostic tool.

For our present purpose we shall set the value θ1 = θ0, where θ0 be the true value of the parameter. When this is done,
(5.58) is a function of θ2 along. For convenience, we shall use the same symbol D to define(5.59)

which will be referred to as the information divergence from now on. The information divergence (5.59) provides a
measure of discrepancy between a value θ and the true value of the parameter. If θ is far away from θ0 in Euclidean
distance then we also expect that D(θ) will be different from the zero matrix, and vice versa.
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To use D(θ) for diagnostic purpose, we need to estimate the right-hand side of (5.59) for a given value of θ using the
available sample informations. If we may assume that g is an unbiased additive estimating function

where each hj (θ, yj) is unbiased and the yj's are independent, then the following quantity(5.60)

gives a consistent estimator for D(θ). Note that this will be true even if the y's are not identically distributed, provided
mild regularity conditions on the variances of these variables hold true. We shall call (5.60) the empirical information
divergence.

With aid of (5.60) we can compare the plausibility of roots to an estimating equation g(θ ̂) = 0 by checking the deviation
of D̂(θ ̂) from the ideal zero matrix. For this criterion to work we require that D̂(θ̂) can be made as close to the zero matrix as we wish if
θ̂ is consistent and the sample size can get arbitrarily large. That the random matrix D̂(θ̂) will tend to zero as the sample size gets large
can be appreciated by applying the law of large numbers to the right-hand side of

and then using the assumption that g(θ) is information unbiased.

Note that an equivalent criterion to D̂(θ) of (5.60) is to measure how far the following matrix(5.61)

is from the p × p identity matrix. The population counterpart of Ĝ(θ) is given by(5.62)

The assumption that g(θ) is information unbiased implies that G(θ0) is the identity matrix. Moreover, if θ ̂ is consistent
for θ0, then Ĝ(θ̂) will tend to the identity matrix for the same reasons that D̂(θ̂) will tend to the zero matrix.

One way for checking the closeness of Ĝ(θ) to the identity matrix is by investigating the eigenvalues of Ĝ(θ). Suppose
that θ̂ is a -consistent estimator of θ0. Then we can show (Small et al., 2000, Section 4.4) that(5.63)

METHODOLOGIES FOR ROOT SELECTION 157



where the λj are eigenvalues of

and ∑ ̂ and Ĥ are defined as

The above discussions suggest a modification to Muller's method for solving a non-linear estimating equation. Muller's
method makes a quadratic fit at each step using the previous three values, θ̂(j − k), k = 1, 2, 3. The next value θ̂(j) is the
one of the two solutions to a quadratic equation. The value chosen for θ̂(j) is usually the closer of the two solutions to
θ̂(j − 1). In our modification of Muller's method, we propose choosing that solution for which the empirical information divergence
(5.60) is closer to the zero matrix. Or, equivalently, G(θ) of (5.62) is closer to the identity matrix. In the scalar case, the
closeness to zero may be measured by its absolute value. For higher dimensional estimating functions a criterion for
selecting the value from each fit is no longer obvious. A possible answer is to use the result given by (5.63) as a guide to
choose the root from each quadratic fit.

To compare this method with Muller's method, we give the results of a small numerical experiment, again using the
Cauchy location-model with the true value of the location parameter set to be θ0 = 0. For 11 pseudo random
observations

there are three roots

to the likelihood equation. While θ̂2 is a local minimum, the other two roots are local maxima. The first root θ ̂1 =
−0.024 is the maximum likelihood estimate. The corresponding values of the empirical information divergence are

respectively. The MLE, as expected, has almost zero empirical information divergence.

Table 5.1 reports on the use of Muller's method and the modified method based on the empirical information
divergence criterion for finding these roots. The results of first few iterations using the following two sets of random
starting points are shown in Table 5.1:
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−199.05 0.50 −6.91 0.47 −6.69 0.44 −3.74

For the cases shown there, the modified method not only converges to the desirable root but also seems to converge
fast. We note however that one needs to be careful in using this method when complex numbers are encountered.
Although the empirical information divergence is well defined for complex numbers as well, the interpretation of this
measure is then less straightforward. A possible idea, when a complex value, say a + bi, arises, is to stop iterating and
restart the algorithm with new initial values. Or, one may replace a + bi by the real part a to continue iterating. The
convergence properties of the latter procedure would, however, be quite sophisticated.

5.8 Asymptotic examinations
An estimating function g(θ, y) is a function of the data y and the parameter of interest θ. It is sometimes possible to
write g(θ, y) in a form(5.64)
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where is the empirical distribution function and G(·|θ) is a functional of indexed by the parameter θ. Let F be
the true distribution function, and θ0 be the true value of θ. Applying the central limit theorem to the binomial variable
nF̂, we have that

It therefore follows that an estimating function possessing the structure (5.64) will asymptotically tend to a limit
depending on F(5.65)

provided G is a continuous functional. Note that the right-hand side of (5.65) vanishes if we set θ = θ0, that is

which follows from the definition of unbiasedness of g(θ, y).

When an estimating function g(θ,y) has multiple roots it often happens that the limit G(F|θ) will also have more than
one root. When this is the case, as suggested by Heyde and Morton (1998), it may be helpful to examine the structure
of the asymptotic equation(5.66)

in order to shed light on discriminating the multiple roots arising from finite sample configurations. This works
provided of course the sample size is large enough.

To illustrate how this idea may be used we consider the problem of estimating the mean of a non-normal distribution.
This example is discussed in detail by Heyde (1997) and Heyde and Morton (1998). See the next section for a different
approach.

Example 5.15 Estimation of the mean of a non-normal distribution

Let Y1,…,Yn be i.i.d. with unknown mean θ and known variance σ2. Suppose that we wish to use the following
estimating function(5.67)

to estimate θ, where a is a given constant.

Let θ0 be the true value of θ. Rewrite (5.67) as follows:(5.68)

where
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By the law of large numbers, Y → 0 and so the second and the third terms of (5.68) vanish asymptotically. It
follows then that estimating function (5.68), ignoring a factor of n, asymptotically will take the form

Setting G(F|θ) = 0, we get two asymptotic roots,(5.69)

the second one being the wrong root. Thus we may conclude that, when sample size is large enough, the solution that
exceeds the other one by an amount close to a is the undesirable root.

Now solving g(θ, y) = 0 for a fixed sample size gives two roots

where

That θ̂1 is preferred to θ̂2 as an estimator of θ follows from the fact that:

Note that in the above example the solutions are available analytically. So we could have examined the asymptotic
behaviour of the roots directly in order to judge the consistency of the roots. The approach based on examining the
asymptotic equation (5.66) is useful because equation (5.66) is often much simpler to analyse even when the finite
sample version of the estimating equation is difficult to solve. When explicit analytic solutions are available, however, it
may be more straightforward to have an analysis based on the algebraic formulae. The following example illustrates
this point in the case of estimating the correlation coefficient. In the analyses of this example we will also point out that
one needs to avoid potential pitfalls stemming from the algebraic formulae.

Example 5.16 Correlation coefficient of bivariate normal distribution

Explicit algebraic formulae exist if the estimating function can be reduced to a polynomial of degree d ≤ 4. This is the
case when we wish to estimate the correlation coefficient using the cubic estimating function of (4.1). As the estimating
equation is of degree three, we can find explicit formulas for the three roots using
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Cardano's formula:(5.70)

(5.71)

(5.72)

where

and B is given by

To investigate the asymptotics of the root associated with each formula we can apply the limits S1 → ρ,S2 → 2, as n→
∞. After some tedious algebra, we find that ρ̂1 → ρ. The roots ρ̂2 and ρ ̂3 converge to and respectively, as n
→ ∞. It follows that in most cases ρ ̂1 is the root we want.

As every cubic has at least one real root, it is tempting to suppose that ρ̂1 is real. However, the situation is not that
simple. For example, when S1 = −0.1 and S2 = 1.0 then we have

An additional problem with ρ ̂1 is that unlike the MLE, ρ ̂1 is not equivariant with respect to reflections of the data through
the x-and y-axes. To be equivariant, an estimator ρ ̂ = ρ̂(S1, S2) should satisfy the equation

However this is not the case for ρ̂1. This problem arises because Cardan'method is not itself equivariant under these
reflections (see Figure 5.6).

So even when it is possible to find an analytic formula for a consistent root of an estimating equation it is naive to
assume that this formula is the obvious estimator. Since the uniqueness of the consistent root is an asymptotic result,
two consistent root selection mechanisms may have radically different properties for a given sample size.
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Fig. 5.6 Plots of ℜ[ρ̂1(S1, S2) + ρ ̂1(−S1, S2)] for two values of S2.

5.9 Testing the consistency of roots
Suppose that there are roots θ ̂1,…,θ ̂m to an estimating equation g(θ) = 0. The problem of choosing a correct root may
be formally studied as one of testing the consistency for each root θ̂i. In other words, we wish to consider testing the
null hypotheses

for i = 1,…, m. The alternative to is that θ̂i is not -consistent. In order to make this hypothesis meaningful, we
assume that the root θ ̂i is defined simultaneously for all sample sizes, so that its asymptotic properties can be examined.
To select a root we would find that root θ̂i at which a test statistic is least significant.

Heyde (1997) and Heyde and Morton (1998) have proposed two methods for testing the consistency of roots. These
methods are

1. picking the root θ̂i for which ġ(θ) behaves asymptotically like Eθġ(θ) when evaluated at θ = θ̂i; and
2. using a least squares or goodness-of-fit criterion to select the best root.

Both of these methods can be interpreted as selecting a root using a test statistic at each root. In the first case, the
hypothesis

where Ik × k is the k × k identity matrix, is examined at θ = θ̂1,…, θ ̂m to determine at which root the test seems to be
least significant. A test statistic for H1 is based upon a comparison of ġ(θ) and Eθ{ġ(θ)}. The root that minimises the
value of the test statistic is chosen as the desired root of the estimating function. This test is reasonable because, by the
law of large numbers, ġ(θ)/n will tend to where θ0 is the true value of the parameter.

In the second case, the test is constructed more directly from the data by examining the hypotheses
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at θ = θ̂1,…,θ̂m. Here Y represents the observed data set and Pθ its distribution under the assumption that θ is the true
value of the parameter. The test statistic for H2 can be constructed by partitioning the sample space into cells and
constructing a chi-square goodness-of-fit test, or using a weighted least squares criterion such as(5.73)

using an appropriate weighting function w(θ).

In using such a test procedure, as noted by Singh and Mantel (1998), it is important to construct a criterion Q(θ Y)
such that the minimiser θ̂ of the objective function Q(θ Y) will yield a consistent estimator of θ. As an illustration of
this point let us consider a sequence of random variables, Y,…, Yn, independently distributed with the same
distribution having mean and variance θ, where the parameter spaceΘ = {θ: θ > 0} is the positive part of the real axis.
Singh and Mantel (1998) discussed a weighted least square type criterion(5.74)

The minimiser of (5.74), under the constraint that θ > 0, can be found analytically as(5.75)

Using the law of large numbers we see that

This shows that the minimiser θ̃ of the criterion (5.74) is not a consistent estimator. Such an objective function
therefore would not help in distinguishing a consistent root from a wrong one.

To see how the criterion (5.74) behaves asymptotically, let θ ̂ be any consistent estimator of the true value θ0. Let θ† =
θ̂+c, where c is a positive constant. Again by the law of large numbers we have(5.76)

(5.77)

Therefore if c < 1, then the criterion (5.74) will choose the inconsistent root θ†.
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To appreciate how the multiple root problem may arise in this situation let us consider the following quadratic
estimating function considered by Heyde and Morton (1998) and Singh and Mantel (1998)(5.78)

in estimating θ0. Solving g(θ, y) = 0 we have two roots

where and

Assuming that 1 + a > 0, then asymptotically we have that

and

So in this case θ ̂1 is consistent while θ̂2 is inconsistent. Since

by the above general discussions, the criterion (5.74) will be asymptotically smaller for any a satisfying the condition −1
< a < 0. In other words, the test statistic (5.74) will choose the wrong root when a ∈ (−1, 0).

Singh and Mantel (1998) suggested using a criterion based on minimum chi-square estimation when the latter procedure
gives a consistent estimator. These authors suggest that in some cases one may use a modified least squares test
statistic of the form(5.79)

This criterion applied to the above example suggests the use of the test statistic(5.80)

as a modification to the least squares criterion (5.74). Note that minimising (5.80) now does give a consistent estimator
of the parameter.

METHODOLOGIES FOR ROOT SELECTION 165



In Section 5.2 we discussed the general problem of estimation using an estimating function. We pointed out there that
point estimation in this framework is not equivalent to the problem of solving the corresponding estimating equation.
This is because an estimating function usually has to simultaneously satisfy several conditionas such as thoese given by
(5.3). This idea leads to the consideration of several iterative algorithms discussed in the previously sections. In Section
5.7, for instance, we defined a criterion called the empirical information divergence, D̃(θ), and discussed how Muller's
method may be improved using this criterion.

Restricted to parametric models, the first two equations corresponding to the general equations (5.3) can be written
as(5.81)

(5.82)

where ℓ(θ Y) is the log-likelihood function. The data version of equation (5.81) is the likelihood equation. The
empirical version of equation (5.82) is a special case of the empirical information divergence defined by(5.60), which
now takes the form(5.83)

Note that φ(θ) relates to the empirical information divergence in the form

For the same reasons as stated in Section 5.7, when the likelihood equation admits multiple solutions, the consistent
one, θ̂ say, is expected to satisfy the property that φ(θ̂) ≈ 0. Gan and Jiang (1999) proposed a test for the consistency of
each root based on a studentised version of φ(θ̂). The idea of using the criterion φ(θ) of (5.83) traces at least back to
White (1982), who used a similar method for testing model misspecification.

Since a test based on (5.83) involves the second moment of the score function, the accuracy of such a test may not be
very satisfactory unless the sample size is quite large. Using a random sample of size 20 from the Cauchy location-
model with θ0 = 0 we found three roots

to the likelihood equation. The corresponding values of φ(θ ̂) were found to be

For this data set, the criterion φ(θ ̂) deviates most from its ideal value of zero at the most favourable root θ ̂1 = 0.07.
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5.10 Bootstrap quadratic likelihood ratio tests
In this section, we consider a particular type of test that is computer-oriented. These tests are simple to implement and
are applicable to a wide variety of problems. Test procedures, such as those discussed in the preceding section, that
require the calculation of probabilities or expectations, may be cumbersome and inappropriate for simulation studies
involving thousands of trials. For this reason tests based upon resampling techniques become particularly appealing.

5.10.1 BOOTSTRAP QUADRATIC LIKELIHOOD
Let y = {y1,…,yn} be a random observation, where each yj is independent of yk for j ≠ k = 1,…, n. In this section, we
shall focus on additive estimating functions of the form

where, as before, each hj(θ, yj) is assumed to be unbiased. The quasi-score function, for instance, provides an example
of this sort. Note that if g(θ, y) is an additive estimating function then any function of the form a(θ)g(θ, y) is also an
additive estimating function, where a(θ) is a full-rank matrix functionally independent of y. In this section, we shall
consider a general vector-valued estimating function g, which has dimension p = dim θ ≥ 1. Sometimes there may exist
k ≥ dim θ conditions, each giving an unbiased estimating function for θ So these conditions lead to a k-dimensional
estimating function for θ As will be discussed in Section 6.6, theories are available so that the k unbiased estimating
functions can be optimally combined to give an estimating function of the same dimension as that of the parameter of
interest. We shall assume that this has already been done for g(θ, y).

The bootstrap. Let be the empirical distribution function, putting mass 1/n on each datum of y. Let be a
random variable distributed according to so that(5.84)

The sampling scheme (5.84) defines the usual non-parametric bootstrap method. Now denote by

a bootstrap sample of size n. Note that the 's are independent and identically distributed even though the yj's may not
have the same distribution. Now if we define
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then a bootstrap version of the additive estimating function g(θ, y) is given by

The generalised bootstrap. The bootstrap tests to be introduced later in this section can be generalised to estimating
functions of the form

where, as in the case of unbiased additive estimating functions, each summand

is assumed to be unbiased. In this case, a bootstrap procedure more general than the one given above can be defined in
a straightforward fashion. Let

Let be a k-valued random vector

drawn without replacement from . Now a bootstrap sample, , is an m × k random matrix given by

The bootstrap random sample (now a matrix) is then repeatedly drawn an appropriate number of B times to produce B
bootstrap matrices

which are used to approximate the distribution of a statistic, etc. Note that the generalised bootstrap reduces to the
bootstrap procedure described in the previous paragraph when k = 1. In the rest of this section we shall focus on the
case k = 1 to avoid notational complications.
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The bootstrap quadratic likelihood. Let θ and ξ be two values in the parameter space. Usually, but by no means
always, these values are assumed to be close to each other. The value of θ is usually the parameter of interest for which
inference is desired, while the value of ξ may be a rough guess or a hypothesised value of θ. At the value of ξ, we define
the following quantity associated with an unbiased estimating function g(θ, y)

which is a symmetric matrix depending on ξ as well as the observations. Note that if g(θ, y) is a score function, then J(ξ,
y) is nothing but the (minus) Hessian matrix of the log likelihood at ξ. For a general estimating function, however, the
matrix J(ξ, y) cannot be interpretated as a Hessian matrix associated with the estimating function g(θ, y). This is because
an estimating function g(θ, y) may not be the gradient of any scalar objective function.

Using J(ξ, y), we now define a function for any unbiased estimating function g(θ, y) as follows:(5.85)

We deliberately used in (5.85) the symbol ℓ, which has been reserved for the log likelihood function up to now, because
the scalar objective function ℓ(θ, ξ) has many properties resembling a genuine log likelihood function. We shall refer to
ℓ(θ, ξ) as the approximate quadratic likelihood function associated with an estimating function g(θ, y). In (5.85), ξ is assumed
to be known so that the approximate quadratic likelihood function ℓ(θ, ξ) should be interpreted as a function of θ. In
defining ℓ(θ, ξ) we have implicitly assumed that ġ(ξ, y) ≠ 0 so that J(ξ, y) does not vanish at ξ. A value of ξ satisfying this
property is sometimes called a non-singular point in the parameter space. In Section 6.5, we shall see that ℓ(θ, ξ) is
motivated by a decomposition of the vector field in the parameter space induced by the estimating function g(θ, y).
Likelihood-like properties of this function will also be studied in detail in Section 6.5.

To study properties of a root to an estimating equation using ℓ(θ, ξ) of (5.85), we shall apply the bootstrap method
introduced eariler to study distributional properties of ℓ(θ, ξ). To define the bootstrap counterpart of ℓ(θ, ξ), we replace
in (5.85) the quantities g(ξ, y) and J(ξ, y) by g*(ξ) = g(ξ, y*) and J*(ξ) = J(ξ, y*), respectively, where Y* is a bootstrap sample
according to (5.84). The bootstrap quadratic likelihood function is defined as follows:(5.86)

As in (5.85), we shall also treat ξ in (5.86) as known and regard the bootstrap quadratic likelihood function ℓ*(θ, ξ) as a
function of θ.

Since our primary interest in this section is to test formally if a root to an estimating equation is consistent, we are
therefore interested in the bootstrap quadratic likelihood ratio, which is naturally defined by(5.87)
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where ξ is known, θ̃ and θ ̃0 are the unconstrained and constrained maximisers of ℓ*(θ, ξ) for a given hypothesis.

Now suppose that θ ̂ is a solution to g(θ̂) = 0. If θ ̂ is a -consistent estimator of θ, then, for a large sample size, we
would expect that the true value of the parameter θ0 differs only slightly from the value of θ.̂ This then leads to the
consideration of the natural hypothesis

Under this hypothesis, and taking ξ = θ̂ in (5.87), we then see that the bootstrap quadratic likelihood ratio can be
written as(5.88)

where the symmetrised quasi-Hessian matrix J(θ̂, Y*) is calculated according to(5.89)

Sometimes it may be too costly to compute in (5.88) the inverse of J(θ ̂, Y*) using formula (5.89) for each bootstrap
replication. If this is the case, one may replace J(θ̂, Y*) by its bootstrap expectation. To compute the expectation of J(θ̂,
Y*) we assume that g(θ, y) is an unbiased additive estimating function so that

Under the resampling scheme (5.84), we therefore have

It follows then that the bootstrap expectation of J(θ̂, Y*) is equal to J(θ ̂, y). That is,
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The above considerations lead finally to the following criterion:(5.90)

for the problem of testing the consistency of a root to an estimating equation. The test statistic γ†(θ̂) is intuitively
appealing because it has the following familar form:(5.91)

In (5.91), g(θ, y) is an unbiased estimating function, ξ is a value usually determined from a concerned hypothesis, and
σ(θ) is an appropriate positive definite matrix, usually the covariance matrix of g(θ, y). The quantity given by (5.91) is
sometimes called a generalised score statistic. When g is a score function, ξ the value specified by a null hypothesis, and σ(ξ)
the Fisher information, then (5.91) reduces to the usual score statistic. The fact that γ†(θ̂) of (5.90) gives a bootstrap
version of a generalised score statistic partially justifies the use of ℓ(θ, ξ) given by (5.85) as an approximate likelihood
function. In Section 6.5.2, we shall formally define the generalised score and Wald statistics and study their relations
with the approximate quadratic likelihood ratios.

5.10.2 BOOTSTRAP QUADRATIC LIKELIHOOD RATIO TEST
Let E* denote the expectation under the bootstrap sampling (5.84). Let θ̂ be a root to g(θ̂) = 0. First, we note that the
bootstrap estimating function g(θ̂, Y*) is unbiased given the observations. This is because

where the first equality is due to the assumption that g is additive, and the third equality follows from the definition of
E*. Similarly, the bootstrap variance
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Σ̂ = var* {g(θ̂, Y*)} can be calculated as follows:(5.92)

where the third equality is due to independence of the Y*'s and the unbiasedness of and the fourth equality
follows directly from the definition of E*.

Now we are in a position to state a result concerning the distribution of the bootstrap quadratic likelihood ratio γ†(θ̂)
defined by (5.90). The following proposition says that the bootstrap distribution of γ†(θ̂), at any root θ ̂ of g, has an
approximate weighted chi-squared distribution as n → ∞. The proof is similar to that of Proposition 6.8 and thus is
omitted.

Proposition 5.17Assume that g(θ, y) is an unbiased additive estimating function of the form

where each hj(θ, yj) is also assumed unbiased. Suppose that θ̂ is a root to g(θ ̂, y) = 0. Let Σ̂ = var*{g(θ ̂, Y*)} be the bootstrap variance of
g(θ̂, Y*), which is given by (5.92). Let Ĵ = J(θ̂, y) be defined as before. Then, under mild regularity conditions, conditional on y, we have
that(5.93)

as n → ∞, where λ̂jare eigenvalues Σ̂ Ĵ−1.

Using the above results we now consider the appropriateness of a root θ̂ of g(θ̂) as an estimator of θ0, the true value of
the parameter. Consider testing the hypothesis(5.94)
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against the alternative that θ̂ is not consistent. We shall assume that g(θ) is first-order information unbiased.

Now define

where θ ̂ is a root of g(θ̂) = 0 satisfying (5.94). Let

both quantities being of O(1). By the first-order information unbiasedness of g, we have(5.95)

So H is symmetric to O(n−1/2). On the other hand, by the weak law of large numbers and using (5.94), we have

the last equality being due to (5.95).

Combing these results, we conclude that under (5.94) the empirical information matrices Σ̂ and Ĥ are asymptotically
equivalent, i.e.,(5.96)

where Ik×k is a p × p identity matrix. Now let λ̂j be the eigenvalues of Σ̂Ĵ−1. By (5.96), λ̂j − 1 are eigenvalues of an op(1)
matrix, implying that λ̂j = 1 + op(1). Summarising these results we then have

Proposition 5.18 Suppose that g(θ, y) is first-order information-unbiased. Assume that the conditions of Proposition 5.17 hold. Under
hypothesis (5.94), the bootstrap quadratic likelihood ratio γ†(θ ̂) of (5.90) has an approximate chi-squared distribution with p degrees of
freedom.

This result suggests a method for root selection. The root θ̂, at which the distribution of the bootstrap quadratic likelihood ratio is
closest to X2(p), is a natural estimate for the parameter. This method is applied in the following section to two cases. The first
example concerns a scalar parameter from a parametric model. The second example deals with a vector parameter in a
generalised linear model when measurement errors are present. The estimating function in the latter case is not
conservative.
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5.10.3 EXAMPLE: CAUCHY LOCATION-MODEL
We first briefly discuss the application of the bootstrap test to a relatively simple likelihood example with a scalar
parameter. We consider the Cauchy location-model with density function f(θ Y) = 1/[π{1+(y − θ)2}]. Thereare many
works on multiple roots of this model (e.g., Barnett, 1966; Reeds, 1985; Small and Yang, 1999). We have also discussed
this model from several different perspectives in the previous sections.

We take the score as our estimating function to test the performance of the root consistency test. If θ ̂ is a root
satisfying θ ̂ = Op(n), then we can show that the bootstrap quadratic likelihood ratio (5.90) at θ ̂ tends to − 2n and the
eigenvalue λ = Σ̂/Ĵ tends to −2 as n→ ∞. So the power of the root consistency test tends to unity as n→ ∞. Note that
the alternative hypothesis θ̂ = Op(n) is reasonable since ‘wrong’ roots are of the same magnitude as ‘outliers’ for this
example.

For θ0 = 0, we found five roots of the likelihood equation for a sample of size 20. Figure 5.7 shows the distributions of
(5.90) at two roots 0.07 (left) and 55.38 (right). The bootstrap distribution at the first root is much closer to X2(l) than
that at the second one. Bootstrap distributions at other three roots, 57.88, −73.74, −70.25, are similar to that at the
second one. We thus conclude that the root θ̂ = 0.07 is preferable to any other root we found.

5.10.4 EXAMPLE: LOGISTIC REGRESSION WITH MEASUREMENT ER-
RORS
In Section 4.7, we introduced the generalised linear model in which the covariates can be observed only indirectly. We
discussed in some detail how the problem of multiple roots may arise in this setting, and illustrated the point using the
normal regression with errors in variables.

Our second example in this section also falls into the category of generalised linear models with measurement errors.
Instead of normal models, we now consider the logistic regression when the covariate is observed indirectly with

Fig. 5.7 Distributions of the quadratic bootstrap likelihood ratio at two roots, θ ̂1 = 0.07 (left) and θ ̂2 = 55.38 (right), of
the Cauchy likelihood equation with θ0 = 0. The bootstrap distributions (solid curves) are compared with the
asymptotic null distribution of χ2(1) (broken curves).
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additive error,

where π is the mean of a binary response y. In this model measurements are made on z rather than on x directly. The
error is assumed to be normal, ε ˜ Np−1 (0, ψ), with known covariance matrix ψ, and is independent of y. This model is
often referred to as semiparametric or functional model since we treat x as unknown but fixed variables. It has the
advantage of avoiding the need to specify the distribution of x as is done in the so-called structural model. The latter
approach can be sensitive to the choice of the distribution of x (Fuller, 1987, Section 3.3; Schafer, 1987s; Carroll et al.
,1995).

Following Hanfelt and Liang (1995), we shall consider the following estimating function:(5.97)

for θ=(α,βt)t, where di and are given respectively by

The function (5.97) is based on a conditional score of Stefanski and Carroll (1987),

by eliminating the ‘nuisance parameters’ xi. The estimating function (5.97) is not conservative since the Jacobian ġ(θ)
with respect to θ can be shown to be an asymmetric matrix. Estimating functions similar to (5.97) often have multiple
roots, a problem which can be serious when measurement errors are large. Hanfelt and Liang (1995, 1997) suggested
an approximate likelihood ratio test based on some empirically defined paths in the parameter space. Their approach is
discussed in next chapter.

We shall now consider the case when both α and β are scalars. A Monte Carlo study has been carried out in three cases.
In the first two cases we set n = 100 and ψ = 0.8, and in the third case we set n = 50 and ψ = 0.4. In all cases we let the
true parameter θ0 = (−1.4, 1.4), a value reported in a large cohort study by Stefanski and Carroll (1985). The x values
were pseudo random numbers generated from N(0, 0.12).

Figure 5.8 shows the distributions of the bootstrap quadratic likelihood ratios (5.90) for one data set in each of the
three cases. Shown in each plot of Figure 5.8 are also the null distribution X2(2) for testing the consistency of the roots,
and the distributions of where (λ̂1λ̂2 are eigenvalues of Σ̂J-1 These values are positive at the roots shown on the
left panel for cases (a), (b) and (c)
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Fig. 5.8 Distributions of the quadratic bootstrap likelihood ratios using estimating function (5.97) arising from the
errors-in-variables logistic regression. Two roots were found for each of the three artificial samples, marked a, b and c.
The distribution of the bootstrap likelihood ratio at each root (broken curves) is compared with its asymptotic null
distribution χ2(2) (solid curves). Shown are also the approximate distributions of the test statistics using the weighted
chi-squared distributions (dotted curves).

and (positive, negative) at the corresponding roots shown on the right panel

In all cases the distributions of the bootstrap quadratic likelihood ratios (broken curves) are seen to be very close to
their theoretical approximations given by (dotted curves). The bootstrap distributions on the left panel are
much closer to the null distribution X2(2) (solid curves). This suggests that the
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roots on the left panel for cases (a), (b) and (c)

are preferred to the corresponding roots on the right panel

as estimates for the value of

These roots selected by the bootstrap quadratic likelihood ratio tests are also closer to the true value in Euclidean
distance.

5.11 An information theoretic approach
The concept of information plays an important role in various disciplines of science and technologies. The Fisher
information is a key concept in statistical inference based on parametric models. We have seen that the Godambe
efficiency, an extension of the Fisher information, plays a similar important role in the theory of estimating functions.
For a location model, the Godambe efficiency may be regarded as a special case of a more general information
measure, I(θ1, θ2) say, which we shall define shortly. We shall call I(θ1, θ2) the shifted information, which reduces to the
Godambe efficiency effθ(g) = I(θ, θ) for θ1 = θ2 = θ. Let θ0 be the true value of the parameter. The shifted information
I(θ0, θ) is then a function of θ alone. We shall see that for a number of problems the shifted information I(θ) = I(θ0, θ)
attains its maximum value at θ = θ0. That is, the Godambe efficiency effθ(g) will crosscut the shifted information I(θ) at
the true value θ = θ0 where I(θ) has its maximum value. This fact suggests a method for detecting the appropriateness
of a root to an estimating equation. We shall discuss this method for location models alone.

Let Y1, Y2, …, Yn, be independent and identically distributed random variables from a location model f(y − θ), where
f(·) is a density function. Suppose for simplicity that θ is a scalar parameter. So the score estimating function has the
form

where

Within the location model, we define the shifted information to be(5.98)
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where denotes the expectation with respect to the density f(y − θ1) and h′(x) = (d/dx)h(x). In particular, I(θ, θ) is the
Godambe efficiency at θ See Godambe (1960). In the following discussion we shall consider the special case θ1 = θ0,
where θ0 is the true value of the parameter.

Now let us assume that for all t ∈ R,(5.99)

Note that this condition is satisfied by common distributions including the Cauchy and normal. Integrating by parts,
we get

where t = θ − θ0, and in passing from the second equality to the third one we used condition (5.99). Similarly, we have

By the Cauchy-Schwarz inequality,

which is equivalent to(5.100)

Note that the Fisher information for a location model is a constant irrespective of the location parameter. The
inequality (5.100) states that the shifted information is always bounded above by the Fisher information for location
models.
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To use this inequality as a method for root selection, we need to estimate the function I(θ) = I(θ0,θ). Let θ ̂ solve the
equation g(θ ̂) = 0. We define the empirical version of I(θ) by(5.101)

If θ ̂ is consistent, then, by the law of large numbers, În(θ̂) of (5.101) will tend in probability to I(θ0). By the information
inequality (5.100), we therefore conclude that if θ ̂ is consistent then the quantity În(θ̂) will be larger with probability I
than any other value În(θ ̂′) evaluated at θ ̂′ as n tends to infinity. For heavy-tailed distribution, it is sometimes appropriate
to replace the means in (5.101) by some trimmed means.

The inequality (5.100) is similar in some respects to the inequality for the Kullback-Leibler information,

where equality holds if θ = θ0. This suggests that for certain models, the empirical version of the information for an
estimating function can replace the likelihood as an objective function to be maximised. Therefore, we could choose
the root θ̂ at which În or a trimmed analog of În is maximum. For example, a simulation of 2000 trials for samples of
size n = 10 from the Cauchy location model found that the root which maximised the trimmed version of În was the
global maximum of the likelihood approximately 97% of the time.

Maximising an information function may be most helpful when the estimating function is not the score function. For
the method to be practicable, it is necessary that the inequality (5.100) hold for an additive estimating function, where
we would define more generally(5.102)

Necessarily, in applications we need to replace (5.102) by an appropriate estimate of it.

5.12 Model enlargement

5.12.1 INTRODUCTION
A quite different view is taken in this section in dealing with the problem of multiple roots. In this section, we shall
restrict our attention to parametric models. We assume that random variables Y1,…, Yn are independent and identically
distributed from a population with density function f(θ y), where θ ∈ Θ is the
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parameter of interest. We assume that f(θ;·) is of known form so that the value of the parameter θ completely specifies
the model. That is, the probabilistic mechanism governing the data is thoroughly determined by the form of f(θ·)
together with the value of θ At preliminary stages of real data analyses, it is a usual practice to choose a
parameterisation in such a way that the dimension θ is not very large so that the problem will be kept relatively simple
at an initial stage. Accordingly, such a model contains certain amount of arbitrariness that needs to be corrected when
the discrepancy between the observations and the mathematical model is too large. More formally, the selection of a
good model may be studied by considering an appropriate criterion for model selection. Model selection is an important
element of data analyses, the treatment of which however is beyond the scope of this book.

As we shall see from the examples discussed later, multiple roots to likelihood equations can occur as a result of the
choice of too narrow a model so that the data can not be fitted satisfactorily using the specified model. Adding more
flexibility to such a model by introducing additional parameters is often a useful way to solve the problem. Again how
large a new model should be chosen is inevitably arbitrary to some extent. When such difficulty arises the principle of
parsimony may provide a useful guide: enlarge a model with as few extra parameters as possible to ensure that the
likelihood equation of the enlarged model will have a unique solution.

More formally, we start from a parametric model f(θ Y), specified by the known function f and the unknown parameter
θ belonging to a parameter spaceΘ. There are several possibilities to expand this model. We shall consider the possibly
simplest way so that the enlarged model will be specified by the same density function f but with a new set of
parameters (θ, η). With some possible abuse of notation we shall use the same symbol f to denote the enlarged model
by f(θ, η y), where θ ∈ Θ has dimension r and η ∈ Θ′ has dimension s. For each given value of η0 ∈ θ′, the family of
densities

forms a subspace in the space

We shall callM a parent model and Mθ a sub-model associated with the value η0 ∈ θ′. Our focus here is to construct such a
parent model M so that the likelihood equation for this model will have a unique solution.

5.12.2 MODEL EMBEDDING VIA MIXING
Now we discuss a general method for model embedding via the idea of mixing. Suppose that f(θ Y) is a density
function with a real-valued parameter θ. Consider a transformation t from the positive real axis to R,
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Suppose that t is a monotone function. Denote the inverse of t by t−1. The logarithm, e.g., is a function satisfying these
properties. A proper choice of t will depend on properties of the concerned density function p(θ Y). As will be seen
shortly, for some density functions, considerations on relations between the parent model and the sub-model will lead
to a natural choice of such a function.

Now let α be a mixing proportion, a real value between 0 and 1. We shall suppose that α is known. The mixture
embedding is defined as a two-parameter family specified by density functions of the form(5.103)

where c(α,θr1,θr2) is a normalising constant so that p(θ, η y) is a density function. Note that when θ = η or α(1 − α) = 0,
the mixing density (5.103) will reduce to the original sub-model given by f(θ Y).

To see how the mixing density (5.103) will look like, we discuss the problem of enlarging the Cauchy location model.
Now the sub-model is specified by the density function(5.104)

Let the mixing proportion α = ½. Then the mixing density can be written as(5.105)

Comparing (5.105) and (5.104), we see that if the mixing density p(θ,η y) is to be in the Cauchy location-scale family,
then the monotone function t will necessarily have the form(5.106)

Putting (5.106) and (5.104) into (5.105), we have(5.107)

where

From (5.107) we conclude that p(θ, η y) of (5.107), using new parameterisation (σ, ξ), must be of the form(5.108)
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because integration of p(θ, η y) with respect to y over the real axis must be unity. The density functions p(σ, ξ y) define
the Caucy location-scale family with location parameter ξ and scale parameter σ Note that if θ = η then σ = 1, so
(5.108) will reduce to the Cauchy location-model.

5.12.3 EXAMPLES
Now we shall demonstrate the technique of model enlargement as a general method to solving the problem of multiple
roots by studying several examples. In each of the following examples there exists a parent model within the same
family so that the sub-model can be embedded in this model in a natural way.

Example 5.19 Circular model

This is the example we have already studied in Section 5.3. In Example 5.2, we were interested in estimating the angle
of the mean of a bivariate random variable assuming that the mean is on the unit circle. We found that there are
multiple roots associated with the quasi-score and examined this problem through the irregularity of the underlying
estimating function. In Example 5.3 we extended the unit circle model to a larger model assuming that the mean of the
bivariate random variable is on a circle but with unknown radius r. The (regular) two-dimensional estimating function
(5.13) and (5.14) jointly gives a unique solution to the problem.

Example 5.20 Cauchy location-scale model

The Cauchy location-model is known to be prone to visual outliers. Setting the scale parameter to a predetermined
number such as unity and treating the problem in the restricted location model may be in serious conflict with the
observed data. A natural generalisation is to treat the data y1,…, yn as iid observations from the Cauchy location-scale
model having density function (5.108), which was derived as the mixing density using the function t given by (5.106).

Differentiating the total log likelihood

with respect to θ and σ, we get the score estimating functions

Solving the likelihood equations
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we can obtain all possible stationary points of the likelihood surface. Now we investigate the properties of the
likelihood surface at a stationary point.

Since a stationary point must satisfy we then have(5.109)

This relation implies that the second derivative of the log likelihood with respect to σ at any stationary point is always
negative because(5.110)

This shows that, at each θ, the likelihood surface is unimodal when it is considered as a function of σ alone by
Proposition 4.11. This is because if two such stationary points occur, they must be separated by a third stationary point
with , which contradicts (5.110)

Similarly, we can also show the unimodality of the likelihood function when it is evaluated at the maximum likelihood
estimate of σ (Copas, 1975). This is because (Copas, 1975)(5.111)

where the second equality is due to (5.109).

The likelihood surface will be unimodal if we can further show that the determinant of the Hessian matrix

is non-positive. Note that at any stationary point of the log-likelihood function we have
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and

Using these expressions we can then write σ2 Δ/4 as follows:

which is non-positive by the Cauchy-Schwarz's inequality. It then follows that the determinant Δ is also non-positive.

Consequently by Proposition 4.11, the likelihood equation for the Cauchy location-scale model will have a unique
solution. The technique of proving the uniqueness of a root to the likelihood equation demonstrated above may be
applied to other situations when an estimating function is derived from some scalar objective function. To prove that
the estimating equation has a unique root, it sometimes suffices to investigate the behaviours of the objective function
at its possible stationary points.

Example 5.21 Estimating the correlation coefficient

Consider a set of independent observations (xi, yi), i = 1,…, n, from a bivariate normal distribution, which is
standardised to have means μx = μy = 0 and variances . We assume that there is an unknown correlation
coefficient ρ between any xi and yi, and we wish to infer the value of ρ based on these observations. This problem was
given a detailed analysis in Section 4.3. There we saw how catastrophic theories may shed light on the study of the
multiple root issue. In Example 5.16 we considered the problem again, emphasising the merits and limitations of the
approach by examining the asymptotic behaviours of available analytic formulae. Now we shall discuss this problem
once again from the viewpoint of model enlargement.

The log likelihood function for the standardised bivariate normal distribution can be written as
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The likelihood equation reduces to the cubic equation

which can have as many as three real roots in the interval (− 1, 1).

A natural way of enlarging this model is to introduce an additional parameter

based on the same normal model. The joint log likelihood for this model becomes

where α and β are given by

respectively. Setting and to zero, we have

which reduce to(5.112)

(5.113)

Equations (5.112) and (5.113) jointly define a unique solution given by(5.114)

In (5.114), Σ̂2 is the pooled sample variance and ρ̂ coincides with the usual moment estimator for the correlation
coefficient.

5.13 Non-existence of roots
Up to now we have discussed varieties of methods for choosing an appropriate root from among roots to an
estimating equation. Sometimes it may happen that there does not exist any (real) solution to a given estimating
equation. By no solution we mean that there is no finite value in the parameter space, which solves the estimating
equation. This occurs, for instance, when the concerned parameter
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space Θ is unbounded and an estimating equation cannot be satisfied by any point in the interior of Θ. The latter case
often means that the observations do not contain enough information in order to reveal the structure of the
mathematical model under consideration. A case in point is when there is some degeneracy occuring in the observed
data.

It is difficult to obtain a general set of sufficient and necessary conditions for existence and uniqueness of solutions to
a general estimating equation. For parametric models, however, such conditions can be obtained if one may assume the
concavity of the log-likelihood function. Results along this line may be found in Haberman (1974), Wedderburn
(1976), Silvapulle (1981) and Kaufmann (1988).

Consider, for instance, an experiment with binary outcomes. The data are obtained as frequencies yj/mj, expressing the
fact that there are yj ‘patients’ observed among mj subjects in category j under some exposure Xj. Here Xj is a design or
covariate matrix of dimension p × n. Suppose that we wish to fit a logistic regression model

where πj is the probability of ‘contracting a disease’ when exposed to Xj, and β is the vector parameter of interest of
length p.

Wedderburn (1976) and Haberman (1977) show that if

then the existence and uniqueness of the MLE are guaranteed. Now let

Then the sufficient and necessary conditions for the existence and uniqueness of the MLE using the logistic model are
that the following systems(5.115)

have only the trivial solution β = 0, where X is a covariate matrix. See Fahrmeir and Tutz (1994, p. 42) for more details
on this point. In (5.115) the parameter is allowed to vary in the ρ-dimensional Euclidean space Rp. When conditions
(5.115) are violated, there does not exist any finite solution to the likelihood equation. Sample configurations violating
(5.115) often occur in small observational studies.

In this section, we discuss briefly how one may overcome the problem of no solution caused by data degeneracy. We
shall see that the Bayesian approach provides a useful remedy for this problem. In this approach, the problem of data
degeneracy is compensated by the introduction of some prior knowledge, which acts as a penalty to the degenerate
estimating equation. For this approach to
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work, it is important to ensure the appropriateness of the particularly chosen prior distribution.

Now we consider an example concerning the first urinary tract infections among young women. We consider a data set
(Foxman et al., 1997; available at www.cytel.com/examples/chl.html) on first urinary tract infections (UTI), also known
as cystitis or bladder infections, painful infections occurring frequently among women between late adolescence and
menopause. In the US, 6.2 million yearly office visits are for such infections. The impact of these recurring infections
on quality of life can be substantial, resulting in repeated physician visits and disability days. The major objective of
UTI studies is to locate the potential risk sexual exposures, vaginal intercourse and diaphragm use being established ones, so
that modification of them may effectively reduce the risk of UTI (Foxman et al., 1997).

There are six binary covariates for this data set represented as 0 or 1 here: age(<24), oral contraceptive use (OC),
condom use (CM), lubricated condom use (LC), spermicide use (SE) and diaphragm use (DM). These covariates form
24 covariate classes, the observed frequencies being

Among 239 subjects, 130 women had UTI. That is,

One important characteristic of this data set is that

where x6js are values corresponding to DM. In other words, all subjects with diaphragm use had UTI. We also note that
for these covariate classes mj ≤ 3. Thus the sufficient and necessary conditions for the existence of the maximum
likelihood estimate are violated by this data set: the likelihood function is maximised at the boundary of the parameter
space when applying a usual logistic fit using all six covariates.

To analysis this data set we assume that the Yj's are independent and(5.116)

A first attempt to analyse this degenerate data set may be to fit a usual logistic regression model(5.117)
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for j = 1,…,n, by excluding the last covariate DM from the analysis. So doing, we find the MLEs for the odds ratios to
be

Note that

Suggesting that OC might have little effect in causing UTI. But since DM is a known risk factor, the estimates based
on this artificial sub-model are not to be trusted unless evidence can be established otherwise.

An alternative approach is to replace the artificial sub-model (5.117) by the following model including all six
covariates:(5.118)

for j = 1, …,n, and assume that each πj has a beta prior distribution(5.119)

where a is an unknown hyper-parameter. The three components (5.116), (5.118) and (5.119) define a Bayesian logistic
regression model. Solving the posterior score estimating equation we obtain estimates for the odds ratios corresponding to
all six covariates. These estimates of course depend on the value of the hyper-parameter a.

Figure 5.9 shows the estimate exp{β̂2} as a function of a. For the uniform prior (a = 1), the estimating equation, the
posterior likelihood equation, is the same as the likelihood equation and is therefore ill conditioned. A slight increase in
a

Fig. 5.9 Estimates of the odds ratio, exp{β̂2}, as a function of a in the prior distribution β(a, a).
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pushes the estimates towards 1. A larger value of a implies a greater degree of prior belief about the parameter of
interest. Figure 5.9 shows that the estimates are insensitive to the priors. The estimates are seen to be stable around a
value much higher than the estimate obtained from the unjustified sub-model by excluding the covariate DM. The
situations for the estimation of the other parameters are similar.

There still leaves unanswered the problem of choosing the best possible value of the hyper-parameter a for the Bayesian
logistic regression model. There are many competing criteria for the purpose of model selection. The cross-validatory
approach has the advantage over many other methods in that it requires little mathematical analysis so that relatively
sophisticated models can be included into consideration. There are several versions of this approach, the leave-one-out
cross-validation being the simplest and the most useful one.

To describe the technique of the leave-one-out cross-validation in our present context, suppose that we wish to
consider a class of models containing (5.118) as the largest model. All other models in the class are obtained by
excluding some covariates from the right-hand side of (5.118). For a particular model in the class, say the kth one, we
fix the value of a, and compute the posterior mode β̂(j)(a) without the use of data from the jth covariate class. So doing,
we obtain n estimates

Based on these values, we then evaluate the log-likelihood function(5.120)

where f(β y) is the likelihood function, which in our problem is the binomial likelihood. Note that CV (a) is a function
of the hyper-parameter a alone. Let âk be the value that maximises (5.120). Repeating this procedure for each model in
the class, we obtain the values

where M is the number of models in the class. The method of leave-one-out cross-validation proposes to choose the
kth model in the class if CV (âk) is the largest among the M values.

Continuing our example of UTI study, we found that the optimal model is the one with OC removed and the
corresponding optimal value of a is estimated to be

This value of a corresponds to a prior distribution very close to the non-informative uniform distribution with a = 1
(see Figure 5.10).
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Fig. 5.10 Delete-one cross-validatory choice of the optimal value of the hyper-parameter a for the urinary tract
infections example using the Bayesian logistic regression model. The horizontal axis: the value of the hyper-parameter;
the vertical axis: the value of the delete-one cross-validation criterion.

5.14 Condence intervals using the estimating function bootstrap

5.14.1 INTRODUCTION
Up to now we have concentrated on constructing a point estimator for a parameter of interest θ based on an unbiased
estimating function g(θ, y). In particular we discussed various techniques for choosing an appropriate estimator θ̂ when
roots to estimating equation g(θ, y) = 0 have to be found numerically using some methods discussed in Chapter 3 and
when the estimating equation gives rise to multiple solutions. More often, however, confidence intervals are used instead
of point estimators for inferential purposes. In this section we discuss how confidence intervals may be constructed
using an unbiased estimating function. In Section 5.14.2 we shall see that computational cost can be substantial for the
purpose of setting an accurate confidence interval using the traditional bootstrap methods even though the original
estimating equation admits a unique solution. The computational problem is seen to be avoided using the estimating
function bootstrap introduced in Section 5.14.3. The latter confidence intervals have the same asymptotic accuracy as the
traditional ones using the bootstrap-t, or other sophisticated bootstrap methods such as the BCa method, and, in
additional, have the nice equivarience property3 under monotone transformations of the parameter.
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5.14.2 BOOTSTRAP-t INTERVALS
Throughout this section we shall assume that θ is a scalar. Most of the results however can be extended to the case of a
vector parameter with little difficulty.

An interval Iα is said a confidence interval with nominal coverage probability α, or simply an α-level confidence interval, if for
every θ ∈ Θ the following holds(5.121)

That is, when sample size n goes to infinity, the interval Iα will contain the parameter of interest θ with probability
tending to the prescribed nominal level α. Given an unbiased estimating function g(θ, y) and α ∈ (0, 1), how should we
proceed to set such an interval Iα?

The rule of thumb is as follows. One first solves the estimating equation g(θ̂, Y) = 0 for an estimator θ̂, which is
assumed to be the unique root, and then looks for an appropriate estimator, say Σ̂2/n, for the variance of θ.̂ Then an α-
level confidence interval can be constructed by virtue of the asymptotic normality of the consistent root of g(5.122)

For example, if a left-sided interval is appropriate for the problem at hand, then one may set Iα to be(5.123)

where zα is the α-th percentile of the unit normal distribution, i.e. Φ(zα) = α, where Φ(·) is the cumulative distribution
function of N(0, 1).

The normal limit in (5.122) can be shown to be accurate at O(n−½) in approximating the distribution of the studentised
quantity. That is,(5.124)

It can be deduced then that the confidence interval Iα defined by (5.123) is first-order accurate, meaning that(5.125)

This formula says that the probability of Iα to miss θ is of order O(n−½), a quantity tending to zero as fast as n−½. This
quantity is usually called the error probability, a criterion commonly used to judge the accuracy of a confidence interval.
Equation (5.125) can be easily derived using (5.124). We leave this as an exercise for the reader. Formula (5.125) gives
the order of accuracy of the asymptotically consistent confidence interval Iα in the sense of (5.121).

The first-order accurate confidence interval Iα can be improved using the boot-strap method. To apply the usual
bootstrap technique we shall assume for the
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moment that the data y = {y1,…,yn} are realisations of independent and identically distributed random variables, Y =
{Y1,…, Yn}. Let Y* = {Y*1,…, Y*n} be bootstrap samples drawn with replacement from y1,…,yn, each datum having
probability mass 1/n. The bootstrap estimating function g(θ, y*) is defined exactly as the original one g(θ, y) except that
the observations y = {y1,…, yn} are replaced by the bootstrap samples Y* = {Y*1,…, Y*n}. Solving the bootstrap
estimating equation, g(θ̂*, Y*) = 0, which again is assumed to have a unique solution, we get a bootstrap version θ ̂* of
the estimate θ̂ which solves the equation g(θ ̂, y) = 0. Let Σ̂* be defined exactly as Σ̂ except that the bootstrap sample
Y* is used instead of the original sample y. Now we define the bootstrap-t variate as follows:

and let ωα be the α-th quantile of the distribution of T*. The bootstrap-t method proposes to replace the normal interval Iα
by(5.126)

with the normal quantile zα in Iα replaced by the bootstrap quantile ωα. The interval I*α is called a bootstrap-t interval.

The rationale behind the bootstrap-t method is that while the unit normal distribution approximates the distribution F
of at the rate n-1/2, as stated in (5.124), the bootstrap distribution of T* approximates F at the faster rate n−1.
That is,(5.127)

where P* denotes probability under the bootstrap sampling. By virtue of (5.127), one can then easily derive the result
that(5.128)

Again we omit the derivation of (5.128). An interval having coverage error of order O(n−1) is called second-order accurate.
Therefore, the bootstrap-t interval I*α is second-order accurate by (5.128), improving the normal interval Iα, which, by
(5.125), is only first-order accurate.

The improved second-order accuracy of the bootstrap-t interval is achieved, nevertheless, at the expense of heavy
computation. This is because the bootstrap estimates θ̂* have to be found numerically using some root-finding
algorithm of Chapter 3 for every bootstrap replication. In a problem with small to medium sample size, the bootstrap
estimating equations usually have to be solved for about 2000 times in order to approximate the distribution of the
bootstrap-t statistic T*. This process can be costly and time-consuming. More importantly, if an
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algorithm fails to converge in one or more cases, the bootstrap variance estimates Σ̂* can be affected badly. The
success of the bootstrap-t method sensitively depends on the availability of a stable variance estimate; see Hall (1992),
Efron and Tibshirani (1993) and Davison and Hinkley (1997), etc. Accordingly, when a root-finding algorithm fails to
converge for even a small portion of times, the resulting bootstrap-t interval Iα can be quite misleading.

A second problem with the interval I*α concerns its theoretical property under reparameterisation. The interval I*α as
well as Iα, is not equivariant under reparametrisations, that is, ξ(I*α) is not the α-level bootstrap-t interval for a
transformed parameter ξ = ξ(θ), where ξ(·) is a non-linear monotone function. Second-order accurate bootstrap
intervals, such as a bias-corrected accelerated or a BCa interval, do exist, which are equivariant under reparametrisations. To
apply these methods, however, the computational problem for finding the roots of the bootstrap estimating equations
is still essential. Therefore, the convergence issue of an algorithm is again crucial for the success of such methods. For
example, to apply the BCa method, one needs to estimate two quantities called the bias-correction and the acceleration
constant. The usual practice is that the amount of bias-correction is estimated by the same bootstrap outputs and the
acceleration constant is estimated using the jackknife method. These estimates can be badly affected by one or more
cases when the algorithm fails to converge. There is a large literature on bootstrap confidence intervals, for details we
refer the reader to Davison and Hinkley (1997) and references therein.

5.14.3 THE ESTIMATING FUNCTION BOOTSTRAP
The second method for obtaining a confidence interval is to use an asymptotically pivotal estimating function
parallelling (5.122). The confidence intervals obtained using this method are equivariant under reparametrisations and
avoid the computational problems mentioned in the previous subsection.

Now we shall assume that unbiased estimating function g(θ, y) can be written in the form(5.129)

where Y1, …, Yn are independent but may have possibly different distributions as in a regression problem. In (5.129)
each component gi(θ, yi) is assumed to be unbiased as well.

Using the assumption of independence, the variance of g(θ, y) can be written as(5.130)
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Several estimates are possible are possible for estimating this variance. One such an estimate is given by(5.131)

where

Note that estimate V(θ, y) depends on θ. Similar to (5.122), under mild conditions (e.g. Billingsley, 1995, p. 357), we
may apply the central limit theorem to g(θ, y) to give(5.132)

Now we make the further assumption that gT(θ, y) is monotone in θ. For concreteness, we shall assume for the rest of
this subsection that it is monotonically decreasing in θ. By (5.132) we have

which yields the interval(5.133)

with nominal coverage probability α, where θ̂α solves the equation(5.134)

The interval Jα defined by (5.133) is a competitor of the interval Iα defined by (5.123). Under some conditions it can be
shown that the normal approximation (5.132) is in general good to order O(n−1/2). For some specific parametric models
involving symmetric distributions this order, however, can be shown to be O(n−1). One such an example is when g is the
score from the Cauchy location model. Accordingly, the confidence interval Jα is first-order accurate in general, with
occasional possibility to achieve second-order accuracy even though the corresponding Iα is first-order accurate.

The interval Jα has an important advantage over the interval Iα in that it is equivariant under reparametrisations. This
can be easily appreciated by examining the studentised quantity gT(θ, y) defined by (5.132). Under a monotone
transformation θ = θ(ξ), the estimating function for ξ becomes

and the variance estimate for g(ξ, y) using formula (5.131) differs from that for g(θ, y) by the square of the same factor,
the constants being cancelled out to give
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So if the relation ξ = ξ(θ) is monotonely increasing, then the α-level normal confidence interval for ξ is given by ξ(Jα)
using the normal approximation (5.132).

As in the previous subsection suppose that we wish to improve the interval Jα to construct a second-order accurate
confidence interval. Mimicking the bootstrap-t method, this is possible if we can improve the normal limit in (5.132)
using the distribution of a bootstrap version of gT(θ, y). To do so, let θ ̂ be the unique solution to g(θ̂, y) = 0. The
estimating function bootstrap method proposed by Hu and Kalbfleisch (2000) consists of the following steps.

1. Compute the observed summands gi(θ̂, yi),

Note that
2. Let be the empirical distribution putting probability mass 1/n at each zi. Note that has mean zero. Draw

independent bootstrap samples from ,(5.135)

3. Compute the bootstrap version of gT(θ, y),(5.136)

where .
4. Let û1−α be the (1 − α)th percentile of the distribution of . Then a left-sided α-level confidence interval is

given by(5.137)

where θ̃α solves the equation(5.138)

Note that in defining the bootstrap interval (5.137), one only need to solve equations twice for finding the estimate θ ̂
and the confidence limit θ̃α defined by (5.138). Like the naive interval Jα, the estimating function bootstrap interval J*α is
also equivariant under reparametrisations for the same reason as discussed previously. Moreover, Hu and Kalbfleisch
(2000) shows that, under certain conditions, the following holds(5.139)

a result that parallels (5.127), where P* denotes probability under the bootstrap sampling (5.135). Accordingly, the
interval of (5.137) is second-order accurate. Although the estimating function bootstrap has the nice properties
outlined in this section, it is not without its problem. One difficulty with this method is that it is not clear how to apply
this method to situations when the involved estimating function is not a monotone function in the parameter of
interest.
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5.15 Bibliographical notes
A classical treatment of the problem of multiple roots may be found in Lehmann (1983, Section 6.4). A general
discussion on estimation in parametric models, including non-uniqueness of maximum likelihood estimator, is given by
Stuart and Ord (1991, Chap. 18), where the estimation of the correlation coefficient from binormal distribution is
discussed in detail.

Barnett (1966) gave detailed discussions on how to numerically find all possible roots to a likelihood equation, and
presented detailed Monte Carlo experiments on the case of Cauchy location model using various techniques including
Daniels (1960) smoothed likelihood method (see Chapter 4). Solari (1969) and Copas (1972) discussed the problem of
multiple solutions involving some structural equations.

Recent interests in the problem of multiple roots may be found in Stefanski and Carroll (1985, 1987), McCullagh
(1991), Heyde (1997), Heyde and Morton (1998), Singh and Mantel (1998), and Small and Yang (1999), among others.
A comprehensive review is given by Small, Wang and Yang (2000).

The roots to an estimating equation do not in general correspond to local extrema of any scalar objective function.
This fact provides considerable difficulty to the problem of choosing an appropriate estimate from among roots to an
estimating equation. The problem of multiple roots, along with other problems associated with an estimating function,
has motivated a line of research for building an objective function for an estimating function; see, McLeish and Small
(1992), Li (1993), Li and McCullagh (1994), Small and McLeish (1994), Barndorff-Nielsen (1995), Hanfelt and Liang
(1995, 1997), and Wang (1999). For more information on this topic see Chapter 6, where various approaches for
building an artificial likelihood function are described in detail.

The estimating function bootstrap for setting confidence intervals discussed in Section 5.14 is based on Hu and
Kalbfleisch (2000). For more information on bootstrap confidence intervals, the interested reader may consult Hall
(1992), Efron and Tibshirani (1993), Shao and Tu (1995), Davison and Hinkley (1997), among others. The idea of
setting confidence intervals using unbiased estimating functions may be traced back to Wilks (1938), who showed that
a two-sided version of J*α based on the score function has the shortest expected length for all unbiased estimating
functions.
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6 Articial likelihoods and estimating functions

6.1 Introduction
In the previous chapters, we have seen that selecting an appropriate root as an estimate from roots to an estimating
equation g(θ) = 0 can provide a considerable challenge even for less complicated parametric models. The problem gets
more entangled when there does not exist an objective scalar function λ(θ) such that λ̇(θ) = g(θ). When this is true, there
does not exist a parametric model such that the estimating function g(θ) is the score function of the parametric model.
This case can arise only when the dimension of the estimating function g(θ) is equal to or higher than two. This is
because any scalar estimating function g(θ), under mild conditions, can always be integrated with respect to θ to give a
scalar objective function. Geometrically, when there does not exist a scalar objective function for a vector-valued
estimating function g(θ), we obtain a non-conservative vector field on the parameter space Θ defined by the estimating
function g(θ). In this chapter we shall discuss various methods for building artificial objective functions for use in
conjunction with unbiased estimating functions.

There are several advantages to constructing an objective function. For example, an objective function allows us to
weight roots of an estimating function and thereby to provide an objective ordering on the roots to assist root
selection. Additionally, an objective function may allow us to pool information from the data with prior information, be it
subjective or empirical. For example, if expert opinions were elicited to obtain probability weights π1, …, πmfor each of
m roots θ̂1, …, θ̂m, then an objective function λ, which behaves like a log-likelihood, could be combined with the expert
weights to produce posterior weights of the form

where Λ(θ) = exp{λ(θ)}.

In this chapter, we shall consider how to build an objective function from several different perspectives and shall
discuss the connection with root selection. In the absence of any knowledge about the likelihood function in a semi-
parametric model, the first approach is to construct an objective function by projecting the true likelihood ratio into a
carefully chosen subspace spanned by functions of the data



and the parameter of interest θ. How such a subspace should be chosen depends on the degree of knowledge we
possess about the data so that the projection can be practically computed. McLeish and Small (1992) show that when
the first two moments can be specified there exists a natural subspace so that the projection can be computed. This
approach is introduced in Section 6.2. The derived artificial likelihood function may be used in conjunction with the quasi-
score.

In Section 6.3 we ask the more general question of how to build an objective function for an optimal estimating
function based on a set of elementary estimating functions, which is not necessarily a quasi-score. The idea is to use a
particular approximate form of the true log likelihood function so that the projection onto the space spanned by the
elementary estimating functions can be calculated. Since an approximate form of the likelihood function is used in
obtaining the projection, the generalised projected log likelihood function does not reduce to the projected objective
function studied in Section 6.2 for quasi-scores. The two methods for quasi-scores are however locally equivalent.

In Section 6.4 we discuss the possible use of the method by performing a direct line integration of an optimal
estimating function g(θ, y). When g(θ, y) defines a conservative vector field, there is no ambiguity in the definition. But
in general line integration is path-dependent. The difficulty of the approach therefore lies in the choice of an
appropriate path. There are two situations, however, when this method may be of some merit. The first is when g(θ, y)
is nearly conservative. For example, if

then g(θ, Y) may be considered as approximately conservative. The quasi-scores belong to this class of estimating
functions. The second case is when local paths are of interest. The latter case is explored in this section.

In Section 6.5 we consider the problem for building an artificial objective function based on an unbiased estimating
function g(θ), which may or may not have the forms assumed in the previous sections. We introduce a geometrical
approach by regarding g(θ) as a vector field defined on the parameter space. The well known Helmholtz decomposition
theorem is generalised for a vector-valued estimating function of any dimension. The estimating function g(θ, y) is
decomposed into a conservative part and a residual part with zero divergence. This decomposition is not unique.
Fortunately, there is a particularly interesting decomposition for a first-order local approximation of g(θ, y). The
potential function associated with the conservative part of this decomposition is proposed as an artificial objective
function for g(θ, y).

Finally in Section 6.6, we introduce a type of objective function associated with an unbiased estimating function using
the idea of the generalised method of moments. This approach may be regarded as the generalised least squares
method. The usefulness of this approach is demonstrated through an application to the longitudinal data analysis.
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6.2 Projected likelihoods

6.2.1 INTRODUCTION
In this and the next section, we shall discuss two types of projected likelihood functions. These functions may be
regarded as semiparametric counterparts of the true likelihood functions when only low order moments are available
for the underlying random variables. One possible use of such an objective function is to interpret the values of the
function evaluated at the roots of an estimating function as measures representing the plausibility of the respective
roots. In particular, we shall be interested in projections of likelihood ratios

into an appropriate subspace, yielding a projected likelihood ratio λ̂(θ, η). To be useful in this task, a projected
likelihood ratio, say λ̂ (θ, η), must provide a consistent partial ordering of the parameter space. The following
conditions are sufficient, and would appear to be natural:

1. The ordering should be anti-symmetric:

2. The ordering should be transitive:

The projected likelihood ratio discussed in the next subsection fails the anti-symmetry condition. By contrast, the
second type of projected likelihood ratio to be introduced in the next section is constructed to be anti-symmetric.
However, it is easy to find examples where the latter objective function is not transitive; see Small et al. (2000). So
neither type of projected likelihoods can guarantee a consistent ordering of the parameter space.

Nevertheless, we do not need to compare all points in the parameter space in order to select roots. For example, if an
estimating function has only two roots, then the issue of the transitivity of the projected likelihood is irrelevant to the
problem of choosing one of these two values. In addition, the projected likelihood may well be transitive on the roots
while not being transitive on the parameter space as a whole. Finally, even if it is not transitive or anti-symmetric on the
full set of roots, a projected likelihood may still help us eliminate certain roots from consideration.

In the next section, we ask whether we can find a projection of the likelihood function or the likelihood ratio, instead
of the score function, into a properly chosen space of functions. The elements of this space are functions of data and
the parameter of interest. As in the case of quasi-score, for such a method to be useful, we should be able to define the
projection in terms of the low order moments of the ys. This approach therefore allows us to directly construct an
objective function from the start using the assumptions about lower moments.
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6.2.2 PROJECTED LIKELIHOODS
Consider independent random variables, Y1,…, Yn, each having means μi(θ) and variances , which are known
functions of the parameter of interest θ. The quasi-score

may be regarded as the projection of the true score function onto the space of linear and unbiased estimating functions
spanned by the functions

The inner product is defined by

between two unbiased estimating functions g1 and g2 See Small and McLeish (1994) and Section 2.5. As such, the quasi-
score has a number of properties in common with a genuine score function. For instance, it inherits the first two
Bartlett identities from the score function: it is unbiased and information-unbiased. This approach is available
whenever we are able to specify the first two moments of yi in order to compute the inner products.

Given such semiparametric information we now consider the projection of the true likelihood ratio

onto a proper linear space constituting all functions of the following form:(6.1)

where the sum is taken over all non-empty subsets of {1, 2, …,n} and c(θ) is functionally independent of Y1,…, Yn.
McLeish and Small (1992) show that the linear space consisting of functions (6.1) has certain maximality property. Any
function h(θY1,…, Yn) of form (6.1) has a constant mean and variance over all distributions of independent random
variables satisfying

and vice versa. For more details see Small and McLeish (1994, Chapter 6). Projecting λ(θ, η) onto this linear space by
minimising the squared distance
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gives the coefficients

Accordingly, the projected artificial likelihood ratio takes the form(6.2)

which was first obtained by McLeish and Small (1992), and treated in more detail in Small and McLeish (1994). The
artificial likelihood ratio is tangent to the quasi-score. That is,

Since we have that

the function log{λ̂(θ, η)} is therefore an exact local log-density in the sense of Severini (1998). Moreover, the projected
likelihood ratio has the property that

with equality if and only if

Note that in deriving λ̂(θ, η) the value θ is assumed to be the true value of the parameter and η is assumed to lie in a
neighbourhood of θ. Therefore, a further approximation to the likelihood ratio is by substituting the value of θ in (6.2)
by an estimate of θ.̂ For instance, θ̂ may be obtained using the quasi-score. Finally, we arrive at the following semi-
parametric approximation to the likelihood function:(6.3)

For multivariate responses, the projected artificial likelihood function (6.3) takes the following generalised form:(6.4)

where Σi(θ) is the covariance matrix of Yi. The projected artificial likelihood function was applied to stable laws using
the Toronto stock market data; for details see McLeish and Small (1992) and Small and McLeish (1994, Section 6.7).
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6.3 Generalised projected articial likelihoods

6.3.1 INTRODUCTION
The projection approach for constructing artificial likelihood functions of the last section is natural because the linear
space onto which the likelihood ratio is projected is the maximal linear vector space allowing exact calculation of the
projection under the first and the second moment specifications. In this section we extend this idea by projecting the
likelihood ratio onto another subspace, which is associated with an optimal estimating function. For this approach to
work, the central problem is again whether we can compute the desired projection using the semiparametric
assumptions of moments. It turns out in general that such projection, using the usual inner product, cannot be
calculated given the information that is used in specifying the optimal estimating function. To avoid this difficulty, we
first approximate the likelihood ratio using an appropriate Taylor expansion.

Now consider the general situation where there are k conditions available involving a parameter θ of dimension p ≤ k.
Here the number of conditions k may or may not be the sample size. Suppose that the k conditions lead to an
estimating function g(θ, y) satisfying the unbiasedness condition(6.5)

An estimating function g(θ, y) satisfying (6.5), which is used as a building block for constructing other optimal
estimating functions, is usually called an elementary estimating function.

An elementary estimating function, a column vector of length k, is usually constructed by putting together all available
information about the underlying random variables. For instance, if we can specify the means μi(θ) for the Yi, then the
ith component of g(θ, y) can be simply taken as Yi − μi(θ). In this case the dimension of the elementary estimating
function is equal to the sample size. In order to make inference about θ, we have to construct an p-dimensional
estimating function q(θ, y) using the elementary estimating function g(θ, y). Ideally, we wish q(θ, y) to be optimal in
certain sense. In Chapter 2, we introduced several fixed sample optimality criteria of estimating functions. These
criteria are stated in terms of the variance of the standardised estimating function. When the inferential focus is on
estimators of the estimating equations, however, optimality criteria in terms of the asymptotic variances of the
estimators are equally sensible. Under suitable conditions, the fixed sample optimality criterion based on the Godambe
efficiency is equivalent to the asymptotic optimality criterion based on the asymptotic variance of the consistent root to
the corresponding estimating equation; see Kale (1985) and Small and McLeish (1988). In the following discussion, by
an optimal estimating function we shall mean that the consistent root to the estimating equation will have smallest
asymptotic variance, in the sense of Loewner ordering, among all such estimators in the stated class.

Now we turn to the construction of an optimal estimating function for θ. If we can further specify the covariance
matrix of the elementary estimating function g,
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then we can show (McCullagh and Nelder, 1989, Section 9.4.2) that the optimally weighted estimating function for θ
takes the following-form:(6.6)

where

Now the estimating function q(θ, y) of (6.6) has the same dimension p as that of θ. The asymptotic variance

of a consistent root θ ̂ to q(θ̂, y) = 0 can be shown to be minimal among all roots to estimating functions of the form

where Aθ is a weight matrix of dimension p × k, which is functionally independent of the data. Note that the optimal
estimating function (6.6) reduces to the quasiscore if the ith component of g is yi − μi.

6.3.2 GENERALISED PROJECTED ARTIFICIAL LIKELIHOOD RATIOS
We have seen that the elementary estimating function g(θ, y) induces an optimal estimating function q(θ, y) for the
parameter of interest θ given by (6.6). In general, we should not expect that there is a scalar objective function whose
gradient is q(θ, y). However, similar to the case of the quasi-score, as studied in Section 6.2, we can proceed to build an
artificial objective function for use in conjunction with the optimal estimating function q(θ, y). For the quasi-scores we
focused on a vector space constructed using the elementary estimating functions

Similarly, in the present case we shall consider a vector space spanned by the k elements of g(θ, y), which are assumed
to be functionally independent. Since the inner products associated with the projection to be introduced shortly are
defined locally in the parameter space Θ, accordingly, we shall only be interested in vector spaces defined locally in the
parameter space Θ.

Let θ and η be two values in Θ. Locally at η ∈ Θ, the elements of g span an k-dimensional vector space

where a is an k-dimensional vector and b a scalar, both functionally independent of the observations but may depend
on the parameter of interest. In the previous section, we considered the projection of the likelihood ratios into a proper
linear space. For reasons which will become clear later, in this section, we shall
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consider projection of the logarithm of the likelihood ratios instead of the likelihood ratios. Let

be the log-likelihood ratio between θ and η. Note that

where λ( θ, η ) is the likelihood ratio defined in the previous section. Ideally, we would wish to project R( θ, η ) into the
linear space ℒη using the inner product

Such a projection is however not feasible in general using the semi-parametric assumptions about the random
variables.

To avoid this difficulty, we consider instead an approximate form of the log likelihood in order to compute the
projection for a general elementary estimating function g. For this purpose, we shall use the following convenient form.
This form is derived using the following first-order Taylor expansion of R( θ, η ) at η. In this form, we shall regard η as
a reference point in the parameter space. Both the log-likelihood ratio and the approximate form are considered to be
functions of θ. Let ∥ · ∥ denote the Euclidean norm. Then we have

The last equality suggests that we may work on the centred likelihood ratio

when η and θ are close to one another. The subscript η in Rη indicates that the centred likelihood ratio is derived by an
approximation of the true log-likelihood ratio R(θ, η) at η. The advantage of working with Rη( θ, η ) is that we can find
the exact projection of Rη( θ, η ) onto Lη spanned by any elementary estimating function g.
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Proposition 6.1Suppose that the first and the second moment of the unbiased elementary estimating function g(η, y) can be calculated.
Let

Then the projection of Rη(θ, η) onto Lηis given by(6.7)

Proof. It suffices to show that the following quantity:

is orthogonal to any element

in the linear space Lη. Or equivalently, the following equality:

holds for any constant vector a and scalar b. To see this, we let

and note that

Similarly, if we let

then we will have

In the last equality we used the fact that g is unbiased. The conclusion follows by combining the these calculations.
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There are two noticeable problems, however, for the projected log likelihood ratio Dη(θ, η). First, the two parameters θ
and η received asymmetrical treatments in the projection and in the process of approximating the log-likelihood
function as well. Second, the centred likelihood ratio Rη(θ, η) is only first-order accurate to the genuine log likelihood
ratio R(θ, η). Fortunately, the two issues can be dealt with simultaneously by considering an asymmetry correction to
the centred likelihood ratio by using two first-order Taylor expansions of the log-likelihood ratio.

To see how we may correct the centred likelihood ratio, again we assume that θ and η are close to one another. First,
we note that the second-order Taylor expansion of log{L(θ)/L(η)} at η may be expressed as follows:(6.8)

On the other hand, by symmetry, we have a similar expression for log{L(η)/L(θ)} at θ, namely(6.9)

Subtracting (6.9) from (6.8) and dividing by 2, we then obtain a second-order approximation to the log-likelihood
ratio(6.10)

Now if we project the centred likelihood ratio Rθ(η, θ) onto the linear space Lθ with the inner product〈·, ·〉θ then the
projection by analogy will take the form(6.11)

Correcting either Dη(θ, η) or Dθ(η, θ), the approximation (6.10) therefore suggests the following generalised projected
artificial log-likelihood ratio:(6.12)
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The artificial objective function D(θ, η) was proposed by Hanfelt and Liang (1995), who considered further
refinementsof D(θ, η) by introducing intermediate points between θ and η. Strictly speaking, the quantity D(θ, η) is not
a projection but rather a sum of two local projections.

An important special case occurs when yi − μi form the elementary estimating functions, so that we are concerned with
constructing an objective function for the quasi-score

The formula (6.12) now takes the form(6.13)

The special case (6.13) was first derived by Li (1993).

Returning to general optimal estimating functions q(θ, y), we first note that q(θ, y) is also an information-unbiased
estimating function. The Godambe efficiency, often known in this context as the quasi-Fisher information, of q(θ, y) has a
particularly simple form(6.14)

Now we state some basic properties of the artificial objective function D(θ, η); see Hanfelt and Liang (1995) for a
proof.

Proposition 6.2The following properties hold for the projected artificial log-likelihood ratios D(θ, η):

1. It is anti-symmetric:

2. Suppose that q(θ, y), C(θ, η), C(η, θ) and their first partial derivatives with respect to θ are continuous in θ. Then D(θ, η) is
locally tangent to the optimal estimating function. That is,(6.15)

In particular, if

are the elementary estimating functions, then the gradient of D(θ, η) will be locally equal to the quasi-score.
3. If the second partial derivatives of q(θ, y), C(θ, η), C(η, θ) with respect to θ are continuous in θ, then we have(6.16)
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While the projected likelihood ratio of the last section is directly connected with the quasi-score, the above properties
show that the generalised projected likelihood ratio D(θ, η) may be regarded as an artificial objective function
associated with the optimal estimating function q(θ, y). Note that the anti-symmetry property of the projected
likelihood ratio D(θ, η) does not hold for either Dη(θ, η) or Dθ(η, θ). Note also that the second derivatives of the local
projections Dη(θ, η) and Dθ (η, θ) have zero expectations. The following properties further justify the fact that D(θ, η)
may be regarded a semi-parametric analogue of a genuine log-likelihood ratio statistic; see Hanfelt and Liang (1995) for
a proof.

Proposition 6.3Suppose that the optimal estimating equation q(θ, y) = 0 has a consistent and asymptotically normal root θ〲. Let θ0
∈ Θ be a fixed value. Then the following properties hold:

1. If θ0 is the true value of the parameter, then we have

2. Let δ be a constant vector and suppose that

is the true value of the parameter. Assume that the average quasi-Fisher information of q(θ, y) tends to a positive definite matrix
asymptotically. That is

where Ω is a positive definite matrix. Then it holds that

where denotes the chi-squared distribution with p degrees of freedom and non-central parameter a.

6.3.3 MULTIPLE ROOTS
Now we discuss the use of the projected artificial objective function when there exist more than one root to the
optimal estimating equation q(θ, y) = 0. Multiple roots can occur even for large samples. We have seen such an example
involving the Cauchy location model; see Chapters 3 and 4. Another instance is when q(θ, y) satisfies the following
property:

In Chapter 5, we defined an estimating function satisfying this property as an irregular estimating function. We considered
some simple examples and demonstrated how the technique of model embedding may be used to overcome the
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multiple root problem involving irregular estimating functions. The projected artificial likelihood ratio statistic studied
in this section provides an alternative method for choosing an estimate among the roots to such an irregular estimating
function. The following result concerns a scalar parameter θ. This result was due to Li (1993) when q(θ, y) is the quasi-
score. The general result when q(θ, y) is any optimal estimating function can be found in Hanfelt and Liang (1995).

Proposition 6.4Let θ0 be the true value of θ. Let θ1 ≠ θ0. Suppose that the optimal estimating function q(θ, y) satisfies the
following conditions:

1. The estimating function satisfies the irregularity condition

2. The limiting average shifted information is negative, namely

3. The second derivative of q(θ, Y) in a neighbourhood of θ1 is bounded in probability, i.e.,

where .

Then there exists a neighbourhood N of the false value θ1 such that(6.17)

By (6.17), a false value θ1 behaves as if it is a local minimiser of the projected artificial likelihood function. On the other
hand, at the true value of the parameter, the quasi-Fisher information is positive definite,

Consequently, in a punctured neighbourhood of θ0, we have that(6.18)

In other words, the true value θ0 behaves as if it is a local maximiser of the projected artificial likelihood function. For a
large enough sample size, under the assumptions of Proposition 6.4, the sign of D(θ, η) may provide important
information about the relative plausibility of the parameter values. That is, we may prefer a root θ ̂, of q(θ, y) = 0 for
which the inequality
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holds for any other values θ that is close to θ̂. Such a rule however does not exclude possibility of picking up an
inconsistent root which behaves like a local maximiser. The method based on the quadratic artificial likelihood ratio
test discussed in Section 6.5 avoids this difficulty.

We could also use the artificial likelihood ratio, D(θ, η), to directly compare two roots. Let θ0 be the true value and θ1 ≠
θ0. Then, as expected, the projected artificial likelihood ratio almost surely favours the true value over a false one in the
limit. That is, when n → ∞, we have(6.19)

For (6.19) to hold, we need the condition

The last condition has the demerit that it may not be easy to verify for a given problem.

6.3.4 EXAMPLE: ESTIMATING THE COEFFICIENT OF VARIATION
It is sometimes of interest to compare dispersions among different populations or strata using possibly different units.
Two commonly used measures for this purpose are Gini's coefficient of concentration and Karl Pearson's coefficient of variation,
both being unitless measures of dispersion. To illustrate the use of the projected artificial log-likelihood ratio, we now
consider the problem for estimating the common coefficient of variation among K strata using independent
observations,

where yij is the observation from the jth subject of the ith stratum. The population and the sample means of the i-
stratum are denoted by

respectively. We assume a constant coefficient of variation across the strata and shall let

where σ2
i is the variance of the i-th stratum, the unbiased sample variance being given by

210 ARTIFICIAL LIKELIHOODS AND ESTIMATING FUNCTIONS



For convenience, the parameter of interest θ is taken to be the square of the coefficient of variation.

A possible approach to this problem is to assume that the yij are from Gamma distributions and to eliminate the
nuisance parameters μi from the likelihood function by conditioning on the yi, the complete sufficient statistics of the
μi. Two problems may arise with this approach. First, the assumption of the Gamma laws may be incorrect. Second,
even if the assumptions concerning the Gamma distributions are reasonable, conditioning arguments lead to a rather
cumbersome conditional score function for θ.

A semi-parametric approach is not only robust against model misspecifications, but also rather transparent for the
current problem. To see how we may construct an elementary estimating function, we first note that the traditional
moment estimator, based on data from the i-th stratum, can be obtained by solving the following equation:(6.20)

The functions u(θ, yi) are not unbiased because, by straightforward calculations, we have(6.21)

Alternative estimators to the moment estimators defined by (6.20) can be obtained by correcting the biases in
functions u(θ, yi) using information (6.21). To do so we first look for a quantity, which is a function of the data and the
parameter θ alone, so that the expectation of it will equal to the bias Eθ{u(θ, Yi)}. Several such quantities are
conceivable and a convenient one is given by

Using these quantities we then obtain an elementary estimating function for θ consisting of the following K
components:(6.22)

To proceed further from the elementary estimating function

to an optimal estimating function for θ using the theories of this section, we need to specify the variance of each h(θ, yi),
which, by (6.22), requires knowledge about the underlying distributions up to the fourth moments. Practically, it would
usually be difficult, if not impossible, to specify the fourth moments as known functions of the parameter of interest.

One way to avoid the aforementioned difficulty is to use an alternative method to construct an alternative elementary
estimating function as proposed
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by Yanagimoto and Yamamoto (1991). This method is based on the idea of conditioning. For our present example, it
suggests to use(6.23)

as the components of the elementary estimating function, provided that the conditional expectation can be
specified as a function of the data and the parameter of interest θ alone. We note that the g(θ, yi) are unbiased, by
construction, conditional on the yi. That is(6.24)

It follows therefore that the g(θ, yi) are unbiased in the usual sense as well, because we have

where the outer expectation is taken with respect to yi. Accordingly, the elementary estimating function defined by
(6.23) are unbiased both conditionally and unconditionally. See Section 8.3 for other concepts of unbiasedness of an
estimating function in Bayesian contexts.

To complete the specification of the elementary estimating function of this approach we need to specify the conditional
expectations

which require conditional knowledge up to the second moment about the underlying distributions. Here we shall
consider families of distributions satisfying the following conditions:(6.25)

For the Gamma distribution, (6.25) may be derived using the fact that the random vector

has a Dirichlet distribution and is independent of yi. See Yanagimoto and Yamamoto (1991). Using the assumptions
(6.25), we can then define the K components of an elementary estimating function, the ith component being given
by(6.26)

A property special to the choice of gi(θ, yi) defined by (6.26) is that gi(θ, yi) are unbiased unconditionally for any
distribution not necessarily satisfying the condition (6.25).
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The advantage of the conditional approach by considering only distributions satisfying the property (6.25) is that it may
be much easier to specify the conditional variance of gi(θ, yi) as a function of the data and the parameter of interest
alone (without any nuisance parameter), rather than to specify the unconditional variance of an appropriate elementary
estimating function. Hanfelt and Liang (1995) suggested the following choice of the conditional variance
functions:(6.27)

Using the variance functions (6.27), we finally arrive at the conditionally optimal estimating function for θ(6.28)

where

It is appropriate at this point to remark that the theories developed in this section remain valid if we replace the
previous unconditional expectations with appropriate conditional expectations. The reader is referred to Hanfelt and Liang
(1995) for details on the conditional version of the theories.

In the present case, the estimating function (6.28) is a scalar one, so we can integrate q(θ, y) with respect to θ to obtain
the exact objective function of q. Ignoring the constant of integration, we get the following (unique) objective function

The projected artificial likelihood ratio D(θ, λ) now takes the form(6.29)

where
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Using the Gamma distributions, Hanfelt and Liang (1995) investigated through simulations the performance of Q(θ)
and D(θ, λ) of (6.29) in constructing two-sided confidence intervals for θ. In terms of coverage errors, each method is
observed to improve the Wald confidence intervals; see table 1 of Hanfelt and Liang (1995) for details.

6.4 Articial likelihoods through integration
In the last section, we considered artificial objective functions through projection for a p-dimensional optimal
estimating function(6.30)

where g(θ, y) is a k-dimensional elementary estimating function. Perhaps, the most direct method for obtaining an
artificial objective function is by performing a line integration for q(θ, y) in the parameter spaceΘ. A problem with this
approach is that when the estimating function q(θ, y) does not define a conservative vector field in Θ, the line integrals
will depend on the paths used in the integration. A sensitivity analysis on the dependence of paths is therefore highly
recommended when applying this approach.

Before describing the general method, we first consider the quasi-score(6.31)

defined for a p-dimensional parameter θ using independent random variables y = {y1, …, yn} with mean vector μ(θ) =
(μ1, …, μn)t. The covariance matrix V(μ) is an n × n diagonal matrix, the ii-th component being Vi(μi). That is,(6.32)

A particular feature of this covariance matrix is that each variance component Vi(μi) depends on the parameter of
interest θ through its corresponding mean μi. Using the assumption (6.32), it can be verified that s ̇(θ, y) is a p × p
symmetric matrix. Consequently, the line integration of s(θ, y) with respective to θ is independent of the paths. See
McCullagh and Nelder (1989, Section 9.2) for details.

To obtain an artificial likelihood function for θ with the assumption (6.32), it suffices to work in the space of the
means. In fact, Wedderburn (1974) defined a quantity K(μi; yi) as the quasi-likelihood for θ arising from the ith
observation yi, where K(μi; yi) is a solution to the following differential equation

The solution to the above equation, ignoring the constant of integration, is given by(6.33)
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We note that the quasi-likelihood K(μi; yi) of (6.33) depends on the parameter of interest θ through the mean μi.
Wedderburn (1974) showed that K(μi; yi) is the true log likelihood function when yi comes from a one-parameter
exponential family. In general, Wedderburn (1974) showed that the objective function K(μi; yi) has a number of
properties in common with a genuine log-likelihood function. Having defined the individual quasi-likelihood function
for θ, the total quasi-likelihood K(μi; yi) based on the whole data set is then the sum of each K(μi; yi), namely(6.34)

where ξ = (ξ1, …, ξn)t and c is a constant of integration. Note that

where s(θ, y) is given by (6.31). Since the estimating function s(θ, y) defines a conservative vector field in Θ, an
alternative expression for the quasi-likelihood K(μ y) is through the following line integration in Θ-space:(6.35)

where ξ(s) is a regular curve in Θ joining the two points θ0 and θ. Here, a curve in the Θ-space means a set of points ξ(s)
for which

Such a curve is called regular if it has no double points and there exist a finite subintervals of [a, b], such that in each
subinterval we have ξi(s) ∈ C1 and

In (6.35), θ0 is regarded as a reference point and K(μ(θ); y) is interpreted as a function of θ.

Now we move from the quasi-score s(θ, y) to the optimal estimating function q(θ, y) of (6.30). A natural generalisation
of the quasi-likelihood (6.35) is to consider the following line integration(6.36)

where ξ(t) is a regular curve in the Θ-space joining the two points θ and η. Unfortunately, ambiguities arise in the
definition (6.36) when q(θ, y) does not define
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a conservative vector field in Θ. This is because the line integration Q(θ, η) for such an estimating function not only
depends on the two end points θ and η but also on the particular path joining the two points. Non-conservative
estimating functions abound. For example, the quasi-score s(θ, y) of (6.31) are usually not conservative when there are
non-zero off-diagonal elements in the covariance matrix V. Or, even when V is diagonal, s(θ, y) may still be non-
conservative if the assumption (6.32) fails to be satisfied.

Nevertheless, for an optimal estimating function q(θ, y), the effect of paths on the integration (6.36) may be small when
θ and η are close to one another. Recall that an estimating function h(θ, y) will be conservative if and only if the quasi-
Hessian ḣ(θ, y) is a symmetric matrix. The definition Q(θ, η) of (6.36) for a suitably chosen path may be used as an
artificial objective function because q(θ, y) is approximately conservative in the sense that the expectation of the quasi-
Hessian q̇(θ, y) is symmetric. That is,(6.37)

An estimating function satisfying the property (6.37) will be referred to as an E-conservative estimating function. Since, by
(6.31), we have that

which is a symmetric matrix. Therefore, the optimal estimating function q(θ, y) is E-conservative. It is a consequence
of the law of large numbers then that the quasi-Hessian of any E-conservative estimating function will be
approximately symmetric when the sample size is large. The above discussion suggest that, when the sample size is
large, one may use (6.36) to define an artificial likelihood function for a suitably chosen path.

Now let Γ be a regular curve in the parameter space such that

Then a generalised quasi-likelihood ratio (Hanfelt and Liang, 1995) between θ and η may be defined as follows(6.38)

The quantity QΓ(θ, η) is a scalar function depending on data y and the two points θ and η in Θ. Generally, QΓ(θ, η) also
depends on the particular path Γ connecting θ and η. The scalar objective function QΓ(θ, η), as suggested by Hanfelt
and Liang (1995), may be used as a semiparametric analogue of the log likelihood function. Similar to the projective
artificial log-likelihood function D(θ, η) considered in the last section, the following finite-sample properties also hold
for QΓ(θ, η); see Hanfelt and Liang (1995) for a proof.
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Proposition 6.5The generalised quasi-likelihood ratio QΓ(θ, η), where Γ is an arbitrary regular curve in Θ-space, has the following
properties.

1. It is anti-symmetric:

2. It is tangent to the optimal estimating function q(θ, y). That is, if the following quantities

are uniformly continuous in s and θ, then we have that(6.39)

3. If each component of the p × p × p array q¨(θ, y) is uniformly continuous in θ, then locally at η(6.40)

where iη is the quasi-Fisher information of q(η, y) given by (6.14).

The above proposition shows that the generalised quasi-likelihood QΓ(θ, η) and the projected artificial log-likelihood
D(θ, η) are locally equivalent to one another up to the order o(∥θ − η∥). Results on artificial likelihood ratio tests similar
to those given in Proposition 6.3 can also be obtained using the artificial objective function QΓ(θ, η). Hanfelt and Liang
(1995) show that results paralleling those given in Proposition 6.4 are also valid concerning the behaviour of the
artificial likelihood ratio tests using QΓ(θ, η). Consequently, the generalised artificial likelihood function studied in this
section provides an alternative way for choosing an appropriate root from the solutions to an estimate equation q(θ, y)
= 0.

Hanfelt and Liang (1995) also investigated the case of a logistic regression model when measurement errors are
present. They considered the case for p = 5 using a modified conditional score estimating function proposed earlier by
Stefanski and Carroll (1987). This is a case where one frequently finds multiple roots to the concerned estimating
equation. A detailed description on the derivation of this estimating function was given in Section 4.7. Using an
artificial data set with n = 200, Hanfelt and Liang (1995) performed a simulation study using QΓ(θ, η) to judge the
plausibility of the three roots associated with the data set. They found that the root closest in Euclidean distance to the
true value of the parameter is favoured by QΓ(θ, η) using two somewhat arbitrarily chosen paths. Similar findings were
reported in Hanfelt and Liang (1997) based on more intensive simulation studies.
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6.5 Quadratic articial likelihoods

6.5.1 QUADRATIC ARTIFICIAL LIKELIHOODS
In this section, we study the problem of constructing an artificial objective function from a geometrical perspective
using only the information necessary to define an optimal estimating function. Similar to the artificial objective
functions discussed in previous sections, such as the projected artificial likelihood functions, the artificial log-likelihood
function studied, in this section may also be regarded as a semiparametric analogue of a genuine log likelihood
function.

Let g(θ, y) be an estimating function for θ, which is optimal in the sense of Godambe (Section 2.4) or asymptotically
optimal in the sense of Section 6.3.1. It is therefore implicitly assumed that the dimension of g(θ, y) is equal to that of θ.
In Section 6.3.1 we saw how such an optimal estimating function may be constructed using an elementary estimating
function. In the next section, we shall again consider the case when the dimension of an estimating function is greater
than that of the parameter of interest when we discuss the generalised method of moments. In this section we shall assume
that the parameter of interest θ is vector-valued having dimension p > 1.

As we have seen in Chapter 4, a vector-valued estimating function g(θ, y) has a natural geometric interpretation as a
vector field defined in the parameter spaceΘ. Imagine that the parameter spaceΘ is filled with some flowing liquid and a
particle is placed in Θ. The locus of the particle, say Γ, then forms a smooth curve inΘ. The gradient of Γ is a p-tuple,
which depends on the location θ. If this gradient vector, at θ, is given by g(θ y), then the estimating function g(θ, y) is
said to define the vector field of the flowing substance in Θ. This view of an estimating function helps us to find an
artificial objective function for inference in conjunction with an optimal estimating function. There are other
advantages obtained by examining the theory of estimating functions from a dynamic perspective. The reader is
referred to Chapter 7 for a more systematic study of such a dynamic theory. Figure 6.1 plots the two-dimensional
estimating function (5.99) as vector fields locally at the roots to the corresponding estimating equations for three
artificially generated data sets.

There are two particularly important types of vector fields, namely, the conservative vector fields and the divergence-
free vector fields. A vector field g(θ, y) is said to be conservative (or irrotational), if ġ(θ, y) is a p × p symmetric matrix, or
the following conditions are satisfied:

where gj(θ, y) is the jth component of g(θ, y). On the other hand, a vector field g(θ, y) is said divergence-free (or solenoidal), if
the divergence of g(θ, y) vanishes
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Fig. 6.1 Estimating functions as vector fields. The non-conservative estimating function (5.99) arising from a logistic
regression model with errors in variables are plotted as vector fields in the (α, β)-plane. The vector fields are shown
near two roots for each of the three simulated samples (marked a, b and c). The roots of the estimating equations,
shown in black dots, are fixed points of the vector fields. The fixed points at the left panel are sinks, which resemble the
MLEs. Which root for each sample should we choose as our estimate for the regression parameter? This problem was
studied earlier in Section 5.10.

for any θ ∈ Θ. That is,

Geometrically, therefore, the nonexistence of an objective function for an estimating function g(θ, y) implies that the
vector field defined by g(θ, y) curls
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or rotates. Wang (1999) shows that for any p > 1, one can write(6.41)

where gc(θ, y) is conservative and gr(θ, y) is divergence-free. The decomposition (6.41) is a generalisation of the well-
known Helmholtz decomposition, which only concerns vectors of dimension three.

Having found such a decomposition, one can construct an objective function by discarding the divergence-free
component gr(θ, y) and integrating the conservative part:(6.42)

along a suitable regular path η(s) from θ to ξ. A problem with this definition of l(θ, ξ) is that the generalised Helmholtz
decomposition (6.41) is not unique. For example, suppose that g(θ, y) is conservative to begin with. Then we would
normally expect that the divergence-free part would be zero. However; with no additional guidance as to how to
perform the decomposition, there is no reason for this to be true. Since we intend to discard the divergence-free part,
it should contain as little statistical information as possible. This suggests two principles for the construction of the
generalised Helmholtz decomposition:

1. If ġ(θ, y) is symmetric, then we require(6.43)

2. If g(θ, y) is E-conservative, that is, if Eθ{ġ(θ, y)} is symmetric, then we require(6.44)

The second principle is the expected version of the first one, so it is also a natural requirement.

The solution to this problem involves the use of the geometry of differential forms—a topic that we shall not discuss
here. The interested reader is referred to Darling (1994). A form of the decomposition that would satisfy these two
principles is(6.45)

where l(θ) is a scalar function that is intended to be used as our objective function, α(θ) is an appropriate scalar
function of θ only, * is the Hodges star operator, and d here denotes the exterior derivative operator. Note that the vector
field

vanishes if g(θ, y) is conservative. Similarly, we have

if g(θ, y) is E-conservative.
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In general, there is no guarantee that such a scalar function α(θ) exists. We can show, however, that if g(θ, y) is linearin θ
then there exists such a scalar function α(θ) so that the following decomposition:

holds, with α(θ) being explicitly given by(6.46)

See Wang (1999) for further discussion on implications of the choice of (6.46).

The above arguments suggest that we may use a linear approximation to g(θ, y) locally at some parameter values of
interest. Such points of interest include, but are not restricted to, the set of zeros of g(θ, y). Suppose that ξ is a known
value in Θ. Applying (6.42), (6.45) and (6.46) to the linear approximation of g(θ, y) at ξ, we obtain the following
quadratic artificial log-likelihood function for θ:(6.47)

where

is the symmetrised quasi-Hessian. In defining (6.47) we also assumed that ξ is a non-degenerate point so that the
determinant, det {g(θ, y)}, evaluated at ξ will not vanish with probability one.

When g(θ, y) is the quasi-score, the quadratic artificial objective function (6.47) becomes

a form closely resembling the projected artificial likelihood (6.2) and the generalised projected artificial likelihood
(6.13).

6.5.2 QUADRATIC ARTIFICIAL LIKELIHOOD RATIO TESTS
The quadratic artificial log-likelihood function (6.47) depends on a value ξ ∈ Θ, which is assumed to be given. We shall
see how such a value may be chosen shortly. By analogy to the usual parametric likelihood ratio, we define the quadratic
artificial likelihood ratio by(6.48)

which depends on the data as well as the reference point ξ. In (6.48), θ̃ maximises (6.47) under a null hypothesis
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and θ ̃ maximises (6.47) under the restriction

where ΘA represents an appropriate alternative hypothesis.

We now describe some formal properties of tests using the criterion (6.48) in the context of testing a general linear
hypothesis(6.49)

against the alternative C(θ) ≠ 0. In (6.49), R is an m × p matrix and r is an m-dimensional vector, m being an integer less
or equal to the dimension p of the parameter of interest θ.

Let ξ = η be a value satisfying C(η) = 0. Putting this value of ξ into (6.48), we then obtain

Similarly, if we let ξ = θ ̂ be a root to g(θ ̂) = 0, then (6.48) specialises to

For a non-singular square matrix R, the general linear hypothesis (6.49) simplifies to

and γ(η) and γ(θ̂) become(6.50)

(6.51)

respectively.

Recall that when g(θ, y) is a score function and

is the total Fisher information, then(6.52)

defines the parametric score statistic (Cox and Hinkley, 1974, p. 315). An asymptotically equivalent form to Sp is the
maximum likelihood test statistic, more popularly known as theWald test statistic (Cox and Hinkley, 1974, p. 314)(6.53)

Comparing (6.52) with (6.50) and (6.53) with (6.51), we see that the quantities γ(θ0) and γ(θ̂) generalise the classical
score and Wald test statistics, respectively.
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Note that γ(θ0) reduces to Sp and γ(θ ̂) reduces to Wp when g(θ, y) is a genuine score and J(θ) is replaced by its
expectation in the definitions for γ(θ0) and γ(θ̂).

Returning to the problem of testing the general linear hypothesis (6.49), we may formally define the generalised score test
statistic as(6.54)

where l(θ, ξ) is the quadratic artificial log-likelihood function defined by (6.47), and θ ̃0 is the same as in (6.48). Similarly,
we can define the generalised Wald test statistic as follows:(6.55)

where the value of θ ̃ is also the same as in (6.48).

To investigate the properties of S(ξ) and W(ξ) and their relations with the quadratic artificial likelihood ratio test
statistic (6.48), we first note that θ̃ and θ̃0 can be expressed as

where λ is the Lagrange multiplier

Using these expressions for θ̃ and θ ̃0, we can first rewrite the quadratic artificial likelihood ratio (6.48) as(6.56)

where

Similarly, using the relation

the generalised score statistic (6.54) can then be expressed as(6.57)

Simplifying (6.56) and (6.57), we conclude that
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Similarly, we can show that

The likelihood ratio, the score and the Wald tests are known to be equivalent to one another when the log-likelihood
function is exactly quadratic; see Engle (1981) and Buse (1982). The above results can therefore be regarded as a
generalisation of this equivalence result in the classical parametric case. Now we state this result more formally.

Proposition 6.6 For testing the general linear hypothesis (6.49), the quadratic artificial likelihood ratio statistic (6.48), the generalised
score statistic (6.54) and the generalised Wald statistic (6.55), at any non-degenerate ξ ∈ Θ, are equivalent to one another.

6.5.3 PROFILED QUADRATIC ARTIFICIAL LIKELIHOODS
Suppose that θ is partitioned into

where both ψ and φ are vectors, ψ being the parameter of interest having dimension s, and φ being regarded as a nuisance
parameter with dimension k = p − s. Suppose that for θ there is available an optimal estimating function g(θ) = g(θ, y),
which can be written as(6.58)

where gψ(θ) has dimension s and gφ(θ) has dimension k. For convenience, the dependence of estimating functions on
data will be suppressed.

As in Godambe (1991), we shall assume that g(θ) satisfies the following two conditions:

1. Both gψ(θ) and gφ(θ) are unbiased.
2. The estimating function gψ(θ) is Godambe efficient for ψ given φ, and gφ(θ) is Godambe efficient for φ given ψ.

Suppose that φ̂ψ is the unique root solving the equation

with the value of ψ fixed. Putting the value φ̂ψ into gψ(ψ, φ) gives an approximately unbiased estimating function for
ψ(6.59)

Godambe (1991) argued that, given the above two conditions on gψ and gφ, the estimating function gψ(ψ) defined by
(6.59) is an asymptotically efficient estimating function for ψ. For convenience, we shall refer to (6.59) as the profiled
estimating function. We note, however, when g(θ) is the score for a parametric model,
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gψ (ψ) differs slightly from the score function derived from the usual profile likeli-hood function. Improvements upon gψ(ψ)
may be achieved by correcting its bias and forcing the bias-corrected function to be information-unbiased, a method
introduced by McCullagh and Tibshirani (1990) in discussing adjustments of the profile likelihood. The same authors
also pointed out that even in such parametric cases the resultant estimating function for ψ in vector cases may not be
conservative.

Now suppose that we wish to test the hypothesis(6.60)

against the alternative HA: ψ ≠ ψ0. Note that this hypothesis is a special case of (6.49). Conversely, testing a general
linear hypothesis (6.49) can be reduced to the problem of testing (6.60) by appropriately choosing the parameter of
interest ψ and the nuisance parameter φ.

Now there are two apparently different ways to define the artificial likelihood ratios for testing (6.60). The first is to
treat the problem of testing (6.60) as a special case of testing (6.49) with

where Is×s is the s×s identity matrix and Os×k is the s × k zero matrix. The second approach is to define the quadratic
artificial likelihood function based on the profiled estimating function gψ(ψ).

Fortunately, these two approaches are closely related to each other. To see this, we first establish some notation. Let

be the average expected quasi-Hessian and the covariance matrix of g(θ, y). Let H = (H + Ht)/2 be the symmetrised
quasi-Hessian matrix. We shall use the following conventions for matrix partitions:

where, for instance, Hψψ is the s × s matrix corresponding to the expected quasi-Hessian of gψ(θ, y). Similarly, Hφφ

corresponds to the expected quasi-Hessian of gφ(θ, y). The other sub-matrices can be interpreted in a similar fashion.

Proposition 6.7 For testing (6.60), let and be solutions to

respectively. Let .
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Then, the quadratic artificial likelihood ratio γ(θ0) based on g(θ) is equal to the that of γ(ψ0) based on gψ(ψ) and is given by(6.61)

Similarly, the quadratic artificial likelihood ratio γ(θ ̂) based on g(θ) is equal to that of γ(ψ̂) based on gψ(ψ) and is given by(6.62)

Proof. First, we consider the quadratic artificial likelihood ratio based on the p-dimensional estimating function g(θ, y)
evaluated at the point ξ = θ0. If θ̃ is the unrestricted maximiser of the quadratic artificial likelihood, then from the
expression for θ ̃ obtained in Section 6.5.2, we have

Similarly, for the maximiser θ̃0 under (6.60), we have

implying that θ̃0 = θ0. It therefore follows that

which implies (6.61).

Similarly, to study the quadratic artificial likelihood ratio based on g(θ, y) at the reference point ξ = θ ̂, we note that θ̃ =
θ̂ and

From these expressions we can then derive (6.62) in a straightforward manner.

On the other hand, to examine the quadratic artificial likelihood ratio based on the profiled estimating function gψ(ψ),
we first note that from the definition for θ ̂ψ

we can show that(6.63)

where the matrix ġ(θ) is partitioned using the following notation
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The inverse of ġ(θ) is partitioned similarly except that superscripts are used instead of subscripts.

By definition, the quadratic artificial likelihood for ψ at ξψ is given by(6.64)

where Hψψ can be written as

using the expression (6.63). Evaluated at ψ0 and ψ̂, the quadratic likelihood ratio(6.65)

by (6.50), (6.51) and Proposition 6.6, can be written as

respectively. Finally, by the matrix identity

we can show that γ(ψ0) and γ(ψ̂) equals (6.61) and (6.62), respectively. This completes the proof.

6.5.4 ASYMPTOTIC DISTRIBUTIONS
Now we study the distributional properties of the quadratic artificial likelihood ratios. Let θ0 be a true or hypothetical
value of θ. Let θ ̂ be a zero of g(θ). The following conditions will be frequently used later on.

[Cl] There exists a neighbourhood of θ0 so that g(θ) is twice differentiable with respect to θ.
[C2] The root θ ̂ is -consistent, i.e.,

[C3] The average of the second derivative of g(θ) is bounded in probability. That is,

where gi(θ) is the ith component of g(θ).
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[C4] The weak law of large numbers applies to ġ(θ) for any θ ∈ Θ. In particular,

where

[C5] The weak law of large numbers applies to g(θ){g(θ)}t for any θ ∈ Θ. In particular,

where

[C6] The central limit theorem applies to g(θ) for any θ ∈ Θ. In particular,

[C7] An estimating function g(θ) is said to be first-order conservative if the following relation:

holds for a scalar function λ(θ). Note that the concepts of E-conservativeness and the first-order conservativeness are
closely related to one another. An E-conservative additive estimating function is usually first-order conservative.
Conversely, an unbiased first-order conservative estimating function is often E-conservative as well.

Note that conservative estimating functions are automatically first-order conservative. So scores are first-order
conservative. That quasi-scores are also first-order conservative can be derived from the weak law of large numbers

combined with the fact that the expected quasi-Hessian

is a symmetrical matrix.

Now we consider the distributions of the quadratic likelihood ratios (6.61) and (6.62). The special cases are (6.50) and
(6.51) for testing H0: θ = θ0 against HA: θ ≠ θ0 We consider the latter cases first.

Proposition 6.8 Assume that conditions [Cl] through [C4] hold. Then we have the following results.
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(i) The test statistics (6.50) and (6.51) can be rewritten respectively as(6.66)

(6.67)

whereH = (H + Ht)/2.
(ii) If [C7] holds, then γ(θ0) and γ(θ̂) are asymptotically equivalent to(6.68)

(iii) Suppose in addition that [C5] and [C6] hold. Then both γ(θ0) and γ(θ ̂) have the same limiting null distribution(6.69)

where Zj are independent unit normal variates and γjare the eigenvalues of ∑H−l.When g(θ) is information-unbiased so that ∑ =
H, then (6.69) reduces to the chi-squared distribution X2(p) with P degrees of freedom.

Proof. Only an outline of the proof will be given. By [Cl] and [C3], a second-order Taylor expansion of g(θ ̂) at θ0 gives
the expression

which, by [C4], implies the following relation:

On the other hand, [Cl] to [C4] imply that

Using these relations, we can write γ(θ̂) as follows:

The last expression gives (6.67). The formula (6.66) can be derived along similar lines. This proves part (i) of the
proposition.
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The simplification (6.68) occurs because the asymmetric part of ġ(θ), by [C7], is negligible in the above arguments. So
we have part (ii). Finally, with the assumptions [C5] and [C6], the asymptotic distribution (6.69) can be derived using
standard arguments such as those given by Johnson and Kotz (1970, p. 149). This completes the proof.

Now we state the results when nuisance parameters are present. Let θ̂, θ0 be defined as in Proposition 6.7.

Proposition 6.9 Assume that conditions [C1] through [C4] hold. Then we have the following results:

(i) The test statistics (6.61) and (6.62) can be expressed as

respectively.
(ii) If [C7] holds, then γ(θ0) and γ(θ̂) are asymptotically equivalent to

(iii) Assume further that [C5] and [C6] hold. Then both γ(θ0) and γ(θ̂) have the same limiting null distribution(6.70)

where Zj are independent unit normal variates and γj the eigenvalues of

The simplification of the chi-squared distribution X2(s) with s degrees of freedom occurs if g(θ) is information-unbiased.

We shall omit the proof of Proposition 6.9, which is similar to that of Proposition 6.8.

The quadratic likelihood ratio tests are also consistent. To appreciate this point, let us consider, for instance, the case
(6.50). Let θA ≠ θ0 be a point belonging to the alternative hypothesis. It is easy to check that the following relations
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and

hold. The quadratic artificial likelihood ratio at ξ = θ0 therefore can be written as(6.71)

If the alternative hypothesis with θ = θA is true, then the first term of (6.71), by Proposition 6.8, has chi-squared
distribution. Therefore (6.71) must go to infinity under HA when n goes to infinity, implying that the test is consistent.

Note also that in Proposition 6.7, θ0 = (ψ0, φ̂0), where φ0 = φ̂ψ0 is determined from gφ(ψ0, φ̂0) = 0. So the eigenvalues
appearing in (6.70) depend only on ψ0, implying that the quadratic likelihood ratio tests are also similar.

6.5.5 NUMERICAL STUDIES
To see how the quadratic artificial likelihood ratios will behave, we now consider a small simulation study involving a
Bayesian logistic regression model similar to that considered in Section 5.13. We imagine that a health survey is
performed, which involves six risk factors. Assume that these factors form n = 24 covariate classes. In each covariate
class, there are yjcases among mj subjects, j = 1, …,n.

The yj are assumed to have binomial distributions

with index parameters mj and means mjπj. The response probabilities πj are assumed to be ‘canonically’ related to the
regression parameter θ in the following way:

We assume that the covariates xij are also binary, assuming the values 1 or 0 according to the presence or absence of the
ith risk factor for the jth class. We further make the assumption that the πj have a common beta distribution,

where λ > 0 is an unknown hyper-parameter. This Bayesian approach can be useful when, for instance, some of the
counts mj are small.

Let X be the 24 × 7 binary design matrix, the first column being all l's. We shall study the behaviour of the quadratic
likelihood ratios based on the posterior score,(6.72)
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where

Note that (6.72) reduces to the score function for λ = 1 corresponding to the uniform prior.

For a particular design matrix X and an index vector, (m1, …, mn), we considered two cases. First, we set ψ = θ2 and
wish to test the hypothesis that ψ = ψ0 = 0. So s = 1 in (6.70). The ‘true’ value of the parameter is set to

In the second case, we let ψ = (θ2,θ6) and wish to test the hypothesis that ψ = ψ0 = 0. So s = 2 in this case. The ‘true’
value is set to

In our numerical studies, the design matrix, the index vector and the above parameter values were chosen similar to
those in the real data analysis concerning the urinary tract infections among young women studies in Section 5.13. In
this study, some of the mj were small and the Bayesian logistic model was found appropriate. In our simulations, the
hyper-parameter was set to λ = 1.05 for the first case and λ = 1.5 for the second case.

Figure 6.2 compares the simulated null distributions of the quadratic likelihood ratios with the asymptotic
approximations (6.70) for the two cases described. The weights appearing in (6.70) were λ1 = 0.96 for the first case
(top) and λ1 = 0.92, λ2 = 0.62 for the second case (bottom). The asymptotic distributions (broken curves) are in good
agreement with the simulated true distributions (solid curves). The true distributions were simulated using 1000
pseudo random samples in each case. Other results (not shown here) confirm the results found here.

6.6 Quadratic inference functions
The last approach for constructing an objective function associated with an estimating function is intrinsically linked to
the generalised method of moments, a method popular among econometricians. We shall therefore describe the generalised
method of moments first. The last section contains an application to longitudinal data analyses.

6.6.1 THE GENERALISED METHOD OF MOMENTS
Let Y be an r-dimensional random variable with sample space y ∈ Rr Let θ be a vector parameter belonging to a
parameter space Θ ∈ Rp for p ≥ 1. Let

be a k-dimensional estimating function which is unbiased is the usual sense,

232 ARTIFICIAL LIKELIHOODS AND ESTIMATING FUNCTIONS



Fig. 6.2 Quadratic likelihood ratio tests. The behaviour of the quadratic likelihood ratios is investigated in a Bayesian
logistic regression model having seven parameters. Two cases are considered. In the first case (top), the parameter of
interest is a scalar, and in the second case (bottom), the parameter of interest is a two-dimensional vector. The solid
curves show the distributions of the quadratic likelihood ratios based on 1000 simulated samples. The broken curves
stand for the asymptotic null distributions of the weighted chi-squared distributions with weights λ1 = 0.96 (top), and λ1
= 0.92, λ2 = 0.62 (bottom), respectively.

In this section we shall consider the general situation where the dimension of the estimating function g may be greater
than the dimension of the parameter θ. That is, k ≥ p.

In the following, we shall suppose that g is twice continuously differentiable in θ and that the following matrices
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are of full rank. Note that Σ and Γ have dimensions k × k and k × p, respectively. Note also that even when k = p, Γ(θ)
need not be symmetric.

Let h(θ, y) be a k-dimensional elementary estimating function. To obtain a consistent estimator, we consider the
following extension of the weighted least squares criterion:(6.73)

where C is an appropriate k × k symmetric positive definite matrix. For independent random variables, Y1, …, Yn, the
formula (6.73) corresponds to the familiar weighted least squares criterion if we choose the jth component of h to be

and the weighting matrix to be

For a general elementary estimating function h and a positive definite matrix C, we formally define the minimiser θ̂ of
(6.73) as our estimator for θ. This method is considered by Hansen (1982), which is known as the generalised method of
moments (GMM).

Under the regularity conditions outlined above, we can show that GMM solution θ ̂ is a consistent estimator of θ. It is
remarkable that the consistency of θ̂ is independent of the choice of C, provided that C is positive definite. For
example, we may let C = Ik×k, the identity matrix. Then (6.73) simply becomes the sum of squares

With arbitrary chosen C, however, loss of efficiency for the GMM estimator θ̂ is to be anticipated.

Under the usual regularity conditions, the asymptotic normality of θ ̂ may also be established:(6.74)

where

Note that the asymptotic variance ΣA in general depends on C. In the just-identified case when k = p, however, this
dependency is redundant. This is because Γ and C are both invertible square matrices in the just-identified case, so it
turns out that

is functionally independent of C.
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6.6.2 QUADRATIC INFERENCE FUNCTIONS
We have seen that the first-order asymptotic properties of the GMM estimator in the just-identified case are
independent of the weight matrix. An equivalent approach in this case, to the first order, is to consider the following
estimating equation:(6.75)

The root solving (6.75), assumed unique, has the same asymptotic distribution as that of the GMM estimator, the
inverse of the asymptotic covariance matrix being equal to(6.76)

The quantity defined by (6.76) is simply the Godambe efficiency of the estimating function h(θ, y). Note that the
Godambe efficiency of (6.76) is well defined in both the just-identified case when k = p and in the over-identified case when
k > p.

For the over-identified case, a parallel estimating function theory to the GMM methodology starts from considering a
linear transformation of h byH h, whereH is a p × k full rank matrix. We assume thatH does not depend on data. For
unbiased estimating function h we then have that(6.77)

which reduced to effθ(h) of (6.76) whenH is an invertible square matrix. The Godambe efficiency is therefore invariant
under a linear transformation in the just-identified case but depends on the transformation in the over-identified case.

If we let

then we will have

So again, to the first order, the GMM is equivalent to the estimating function theory by considering the following class
of estimating functions:(6.78)

where H is the same as that appearing in (6.77).

Now let

and consider the following estimating equation:(6.79)
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Using (6.77), we see that

which is the Godambe efficiency in the just-identified case given by (6.76). The weight matrix of GMM corresponding
to h* is C = Σ−1. This choice of weight is efficient in the sense that the GMM estimator, the minimiser of (6.73), has the
smallest asymptotic variance at

That is,

is non-negative definite. Or, equivalently, the Godambe efficiency (6.77) is maximised at

achieving the value given by (6.76) in the class of estimating functions defined by (6.78). That is

is non-negative definite. The techniques of McCullagh and Nelder (1989, Section 9.5) can be used to prove the above
statements.

The above argument suggests the use of the following quadratic inference function (Qu et al.,2000):(6.80)

for inferential purposes based on the unbiased estimating function h. The inference function (6.80) resembles Rao'
(1947) score test statistic except that h is not a genuine score and the dimension of h is in general larger than that of θ.
Hansen (1982) shows that, if h(θ, y) is unbiased and θ̂ minimises (6.80), then the quadratic inference function Q(θ̂, Y)
evaluated at θ ̂ will asymptotically follow a χ2 distribution with k − p degrees of freedom, where p is the dimension of
the parameter θ and k is the dimension of h.

6.6.3 GENERALISED ESTIMATING EQUATIONS
Now we apply the method of quadratic inference functions to longitudinal data analyses using the generalised
estimating equations. In a typical experiment involving repeated measurements we have M subjects, each producing nj
responses

The yjt's are correlated for fixed subjects but independent across the subjects. As in the generalised linear models we
assume that the mean response of yjt is a nonlinear function of the linear predictor, i.e.,

The parameter of interest is β.
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Denote the responses of the subjects by

and their means by

respectively, where j = 1,…, M. The following estimating function:

is unbiased and has dimension . The estimating function g(β, y) will play the role as the elementary estimating
function in analysing the repeated measurements. Let

to be the covariance matrix of Yj. Because Yi and Yj are independent for i ≠ j, the covariance matrix of g(β, Y) will be
block diagonal

Note also that

So the Godambe efficient estimating function for β using (6.79) is given by(6.81)

which is the well-known generalised estimating equation proposed by Liang and Zeger (1986) for analysing longitudinal
data. The generalised estimating equation of Liang and Zeger (1986) can be recognised as a special case of the quasi-
score functions discussed throughout this book.

The quadratic inference function corresponding to (6.81) now takes the form(6.82)

One practical barrier in using the fully Godambe efficient estimating function (6.81), or the corresponding inference
function (6.82), is that the Vj's are often
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of complicated nature due to data correlation within each subject. To reduce the large number of nuisance parameters,
Liang and Zeger (1986) proposed to model Vj across the subjects using some ‘working’ correlation matrices Rj(α),
which depend on a low-dimensional nuisance parameter vector α:(6.83)

where Aj is the diagonal marginal covariance for the j-th subject. Replacing Vj by Wj in (6.82), we then arrive at a
‘working’ version of the quadratic inference function(6.84)

The inference function (6.84) is no longer efficient since the covariance matrices are in general misspecified. To
improve efficiency, Qu et al. (2000) recently proposed an alternative idea for modelling the correlation structure.
Consider the balanced case with each subject measured nj = n times, j = 1,…, M. Assume that each subject has the
same correlation structure. Now we model the common correlation matrix R using B given basis matrices as
follows:(6.85)

where the basis matrices Ji are known and the coefficients a are unknown and to be determined. As in the specification
(6.83), the representation R given by (6.85) may not contain the true correlation matrix. The class of matrices (6.85)
however is sufficiently rich to represent many practical correlation structures of interest provided that we choose the
basis matrices appropriately. Using the correlation structure (6.85), we can then form the following unbiased estimating
function:(6.86)

In (6.86) the unknown coefficients a play the same role as the nuisance parameters α in (6.84).

To construct the optimal quadratic inference function based on (6.86), we need to eliminate the nuisance parameters a.
To do so, we construct an unbiased estimating functions so that (6.86) is a linear transformation of that function. An
obvious choice of such an unbiased estimating function is as follows:(6.87)

The elementary estimating function (6.87) has dimension B × p.

238 ARTIFICIAL LIKELIHOODS AND ESTIMATING FUNCTIONS



To complete the specification of the the quadratic inference function (6.80), we need an estimate for the covariance
matrix of q(β). A natural such an estimator is given by

Finally, we arrive at the following quadratic inference function for analysing longitudinal data (Qu et al.,2000):(6.88)

Now we can estimate the regression parameter β by minimising (6.88). The minimiser of (6.88), to the first order, is
asymptotically equivalent to the consistent root of the Godambe efficient estimating function (6.86). The method
based on the objective function (6.88) however has the merit over the method using the estimating function (6.86)
when the latter estimating function has multiple roots. Using the mean squared error criterion, Qu et al. (2000) also
show in their simulation studies that the estimators by minimising the inference function of (6.88) have nearly the same
efficiency as the solutions to the generalised estimating equations with correctly specified working correlations.
However, when misspecifications occur for the working correlations in the generalised estimating equations, the
quadratic inference function approach demonstrates some advantage in terms of efficiency.

Qu et al. (2000) also established the limiting χ2 properties of tests based on the quadratic inference function (6.88).
Consider the case when nuisance parameters are present. So the parameter β is partitioned into (ψ, φ), where ψ is the
parameter of interest and φ is regarded as a nuisance parameter. Let β̂ be the minimiser of (6.88). For testing

let φ̂ψ0 be the minimiser of (6.88) with ψ fixed at ψ = ψ0. Then, under the null hypothesis, the quantity

will have the asymptotic χ2 distribution with s degrees of freedom, where s is the dimension of ψ. The quadratic
inference function under a local alternative has a noncentral χ2 distribution with an appropriate noncentrality
parameter.

6.7 Bibliographical notes
The projected artificial likelihood ratio (6.2) is due to McLeish and Small (1992) and treated more systematically in
Small and McLeish (1994). The projected log likelihood ratio for the quasi-score (6.13) was studied in Li (1993).
Hanfelt and Liang (1995) generalised this result and obtained the artificial objective function (6.12). Barndorff-Nielsen
(1995) discussed the directed likelihoods when the parameter of interest is a scalar.
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A different projection approach was taken in Li and McCullagh (1994), who proposed to project the score function
onto a subspace of conservative estimating functions. A practical problem with this approach is that, given knowledge
of the first few moments of a random variable, it is usually difficult to construct the projected conservative estimating
functions. Such estimating functions usually have to be found using some approximate methods.

The quadratic artificial likelihood discussed in Section 6.5 was considered in Wang (1999). The equivalence between
the quadratic artificial likelihood ratio and the generalised Wald statistic may be interpreted as a partial justification for
the objective function (6.47) to be regarded as an artificial log-likelihood function. This is because Wald statistic for the
score function is approximately equal to the Kullback–Leibler divergence (Kullback, 1978, p. 28). Le Cam (1990a) also
discussed the point that the Wald statistic may be regarded as a contrast measure between two distributions. The root
selection test introduced in Section 5.8 is based on a bootstrap version of the quadratic artificial likelihood ratio tests
studied in Section 6.5.

The quadratic inference function introduced in Section 6.6 is based on Qu et al. (2000). This approach suggests
removing the difficulty in estimating the working parameters α in the generalised estimating equations of Liang and
Zeger (1986) by representing the correlation matrix as a linear combination of certain base matrices. These coefficients
may then be eliminated using the generalised method of moments technique proposed by Hansen (1982). The
generalised method of moments approach may be regarded as an extension of the generalised least squares method. It
is also closely related to Neyman's minimum χ2 method, a detailed account of which can be found in Ferguson (1958).
Cramér (1946) gave an argument showing that the maximum likelihood estimator can be regarded as an approximation
to the minimum chi-squared estimator.

240 ARTIFICIAL LIKELIHOODS AND ESTIMATING FUNCTIONS



7 Root selection and dynamical systems

In Chapter 3, we considered several iterative methods for finding roots of an estimating equation. Typically, such a
method starts from a point θ(0) in the parameter space Θ and iterates as θ(j) → θ(j+1) according to some rule. In this
chapter, we shall regard such an algorithm as a dynamical system on the parameter space, which we can regard as a
phase space for the dynamical system. We can also consider related algorithms moving in continuous time as the
natural limiting form of the discrete time algorithms. This shift in perspective will lead us to new methods for root
selection by regarding an estimating function as a dynamical system. In fact, the modified Newton's methods studied in
Sections 5.5 and 5.6 have been motivated by such considerations. The purpose of this chapter is to give a systematic
overview of dynamical aspects of the theory of estimating functions.

7.1 Dynamical estimating systems
Suppose that we are interested in estimating a p-dimensional parameter θ ∈ Θ ⊂ IRP based on a random sample y =
{y1,…, yn}. We assume that each yi is generated from a probability distribution depending on θ. For instance, we may
assume that the mean of Yi is a known function of θ, such as the case in generalised linear models. Inference for θ is to
be based on an estimating function g(θ, y). We shall assume that, unless stated otherwise, the dimension of the
estimating function g is the same as that of θ.

From the dynamical viewpoint, we shall regard the parameter spaceΘ as a phase space, and the parameter θ(t) as the state
of the random mechanism at time t, where the variable t may not have any physical interpretation. The crucial
assumption concerning the random mechanism is that the state θ(t) develops according to the following time-evolution
law:(7.1)

where t appears on the right-hand side of (7.1) only through θ. Given an observation vector y, equation (7.1) defines a
continuous time dynamical system. The dynamical system (7.1) is in fact autonomous (Gilmore, 1981, Ch. 19), because



the estimating function g(θ(t), y) depends on t only through the state θ. Since g(θ, y) is an estimating function, for
convenience we shall call (7.1) as a dynamical estimating system induced by g.

The autonomous system (7.1) induces a continuous map

satisfying the following properties:(7.2)

(7.3)

We shall call a map π satisfying (7.2) and (7.3) the flow of the dynamical system (7.1). The relationship between the flow
π and the state θ(t) can be expressed by following equations:

Mathematically, it is sometimes convenient to take properties (7.2) and (7.3) as axioms and define the continuous map
π as a dynamical system defined on Θ. Note that in defining a mathematical dynamical system, the phase space Θ may
be replaced by any topological space and R by any topological group. The most important benefit by regarding the
flow as a dynamical system is that both continuous and discrete systems can be studied in the same framework. In the
discrete case, one simply replaces R by Z, the integer group. There are, however, good reasons not to explore this
advantage in the present book. The primary reason for not doing so is that the only discrete type dynamical systems we
shall discuss will be in the form of iterative algorithms, and it is more illuminating for us to study such systems in their
own right.

The flow of a dynamical system may be visualised as the path followed by a particle in a fluid field. Under certain
conditions, a theorem of Picard guarantees local existence of the flow or the integral curve of a given smooth fluid field.
Given a flow, we may obtain the notion of velocity at a given point of the flow on the phase (parameter) space. The
velocity of a flow π is said to form a vector field on Θ, which is formally defined as a map

associating each point θ ∈ Θ with a vector υ(θ) ∈ TθΘ, where TθΘ is the tangent space to Θ at θ. In our present case, υ(θ)
= g(θ, y) given y. Now it is almost a tautology to state that an estimating function g(θ, y) defines a dynamical system (7.1)
with the associated vector field defined by the same estimating function g(θ, y).

For a dynamical system such as (7.1), we are particularly interested in its time-asymptotic recurrent behaviour, namely, the
behaviour of the system when t → ∞. Among the most important such properties are the properties of the fixed
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points of a dynamical system. The fixed points of the dynamical system (7.1) are defined as the solutions to the following
equation:(7.4)

The fixed points of (7.1) defined by (7.4) are exactly the points θ satisfying the relation(7.5)

Consequently, the fixed points of the dynamical system (7.1) coincide with the roots to the estimating equation (7.5). If g is
a score function, then the maximum likelihood estimator, under the smoothness condition, is one of the fixed points
of the dynamical system induced by the score function. The above discussion suggests that certain properties of
otherwise static estimators, such as the maximum likelihood estimators, may be investigated by studying the behaviour
of the corresponding fixed points of the dynamical estimating system induced by the relevant estimating function.

7.2 Linear dynamical systems

7.2.1 LIAPUNOV STABILITY, LOCAL STABILITY
The stability property is the most important feature of a fixed point. Convergence properties of iterative algorithms
depend critically on this property. By regarding an estimating function as a dynamical system, the stability of estimators
obtained as roots to the corresponding estimating equation can be studied through the associated dynamical estimating
system. To motivate the concept of stability, first let us consider a simple example.

Suppose that a jar is filled with a nutritive solution and contaminated by some bacteria. Let the state of the jar, θ(t), be
the number of the bacteria at time t, which progresses according to the following rule:(7.6)

where b and p denote birth and death rate respectively, both assumed to be a positive constant functionally
independent of t. The dynamical system (7.6) has two fixed points, θ1 = 0 and θ2 = b/p.

Which (if either) of the two fixed points is stable or unstable? A state of a dynamical system is stable if the system
developing from any state close to it, as time evolves, ends up at the same state. In other words, if a system, when
perturbed slightly from a particular state, will be ‘pulled back’ to the same state, then the state is stable. A fixed point,
which is not stable, is said unstable. In the case of the contaminated jar, a slight change in state from θ1 = 0, the jar
being slightly polluted, then the bacteria will begin to reproduce. So the fixed point θ1 is unstable. However, when the
bacteria over-reproduce, some begin to die. Eventually an
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equilibrium state will be reached so that birth and death will balance each other, implying that θ2 is a stable fixed point.

The concept of stability is an abstraction of the above discussion on the microbe system.

Definition 7.1 A fixed point θ̂ of a dynamical estimating system

is said to be Liapunov stable, if for every neighbourhood U of θ ̂ there exists a neighbourhood V of θ̂ such that π(t, θ0) ∈ U for all t ≥ 0
whenever θ0 ∈ V, where π(t, θ) is the flow function defined by (7.2) and (7.3).

The interested reader may consult Irwin (1980, p. 128) for a definition of the Liapunov4 stability in a more general
setting. A system therefore will stay as close as desired to a Liapunov stable fixed point if the system evolves from any
state not too far away from that fixed point. A concept stronger than Liapunov stability is the local stability.

Definition 7.2 A fixed point θ ̂ of a dynamical estimating system

is said to be locally stable, or simply stable, if it is Liapunov stable and if for some neighbourhood W of θ ̂, π(t, θ0) converges to θ̂ for all
θ0 ∈ W as t → ∞. That is, for any θ0 ∈ W, we have

While Liapunov stability only ensures that a system near a Liapunov stable fixed point will not escape, a locally stable
fixed point has the property that the system developing from any state close enough to a locally stable fixed point will
eventually end up at the fixed point.

Definition 7.3 A fixed point is unstable if it is neither stable nor Liapunov stable.

7.2.2 LINEAR DYNAMICAL SYSTEMS
When is a fixed point stable? There is in general no simple criterion to test the stability of a fixed point. The issue of
stability, however, can be relatively easily settled for a linear (or affine) dynamical system(7.7)
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where A is a p × p matrix and b a p-vector, both functionally independent of θ and t. When the matrix A is not
symmetric, the linear dynamical system (7.7) induces a non-conservative vector field for p ≥ 2. The linear dynamical
system (7.7) is simple enough to allow us write down the explicit formulae (Scheinerman, 1996, Ch. 2) for the
trajectory of (7.7), so we can proceed to discuss the time-asymptotic behaviour of the system. We shall, however, not
go into the details but only recall the basic conclusions here.

Let λj, j = 1,…, p, be the complex eigenvalues of the matrix A appearing on the right-hand side of (7.7). Letℜ(θj be the
real part of λj. Assume that A is invertible. So

is the unique fixed point of (7.7).

Proposition 7.4 Consider the linear dynamical system (7.7).

(i) If

then θ ̂ is (locally) stable.
(ii) If

then θ ̂ is unstable.

We note that even whenℜ(θj) > 0 for some j, there are still possibilities for the system to converge to an unstable fixed
point θ̂, provided that the initial states θ0 fall into the special subset of the phase space. Let ξj be the eigenvector of λj, j
= 1, …, p. Assume that ξj are independent. If we let (a1,…, ap) be the coordinate of an initial state θ0 with respect to the
vectors ξj, j = 1,…, p, then the system will converge to the unstable fixed point θ ̂ starting from θ0 if aj = 0 for ℜ(θj) > 0.
But the system will typically blow up for a randomly chosen initial point in the phase space.

In Section 4.9 we informally introduced the concept of a vector field associated with an estimating function and were
able to distinguish the roots of an estimating equation according to the properties of the associated vector field locally
at the respective fixed points. Now we give a somewhat more formal description of the classification of the fixed
points for a linear dynamical system. The classification extends to non-linear dynamical systems, as was done in Section
4.9, if we locally linearise the dynamical system at the fixed points of interest.

Definition 7.5 Consider the linear dynamical system (7.7) with an invertible matrix A. Let θ ̂ be the unique fixed point of (7.7). Let
λj, j = 1,…, p, be the complex eigenvalues of A. Then the fixed points may be classified as follows.

(i) If ℜ(θj) < 0 for all j, then θ̂ is a stable fixed point and is called a sink of the vector field associated with (7.7).
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(ii) If ℜ(θj) > 0 for j = 1, …, p, then θ̂ is an unstable fixed point and is called a source of the vector field associated with (7.7).
(iii) Ifℜ(θj) > 0 for some j and ℜ(θj) > 0 for other k, then θ ̂ is an unstable fixed point and is called a saddle point of the vector field

associated with (7.7).
(iv) If ℜ(θj) > 0 for all j and for some j, then θ ̂ is Liapunov stable but not locally stable, so the system typically neither

explodes nor approaches the fixed point.

Now we give some simple examples to illustrate the various concepts introduced so far. The systems to be discussed in
the following examples all have the form(7.8)

where θ is a two-dimensional state vector and A a 2 × 2 invertible matrix. There is a unique fixed point, θ̂ = (0, 0), at
the origin for any invertible A. In the following examples we shall also plot some ‘typical’ flows passing through some
given states.

Example 7.6 A linear dynamical system with a sink

The linear dynamical system (7.8) with

has a stable fixed point at the origin because A has two negative eigenvalues, −0.2 and −0.3. Figure 7.1 shows the
corresponding vector field locally at (0, 0), together with two trajectories starting from (−4, 4) and (4, −4), respectively.
We see, locally, that the ‘particles’ of the vector field drift towards the origin, the unique sink of the vector field.

Example 7.7 A linear dynamical system with a saddle point

Consider now the system (7.8) with

Since A has a positive and a negative eigenvalues, namely, 4 and −4, the fixed point (0, 0) is unstable. Figure 7.2 shows
four trajectories starting from the following points (states)

The origin is a saddle point; the ‘particles’ drift in some directions towards and in other directions away from the
origin.
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Fig. 7.1 A linear dynamical system with a sink at the origin.

Fig. 7.2 A linear dynamical system with a saddle point at the origin.
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Fig. 7.3 A linear dynamical system with a source at the origin.

Example 7.8 A linear dynamical system with a source

Similar to the Example 7.7, the fixed point (0, 0) of the (7.8) with

is also unstable since both of the eigenvalues of A, 0.5, 0.5, are positive. The origin in this case is a source. Figure 7.3
shows two trajectories starting from (1, −2) and (−1, 2), respectively.

Example 7.9 A linear dynamical system with a Liapunov stable fixed point

The linear system (7.8) with

has a fixed point at the origin, which is Liapunov stable but not locally stable. This is because A has eigenvalues the
pure imaginary numbers, . The trajectories are concentric circles (see Figure 7.4).

Example 7.10 Logistic regression with measurement errors

In Section 5.10.4 we considered a logistic regression model when measurement errors are present. We found that the
estimating function (5.97)(7.9)
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Fig. 7.4 A linear dynamical system with a Liapunov stable fixed point at the origin.

often gives multiple roots. We considered a bootstrap test for helping selecting a root as an estimator for the regression
parameter θ. Here again we consider the case for θ = (α, β)t.

Using the same model with p = dim θ = 2 as in Section 5.10.4, an artificial sample of size 100 was generated from a
model with the true parameter value set to

We found that the estimating function (7.9) had two roots for this particular data set. Figure 7.5 shows the associated
dynamical estimating system linearised at the roots. The directions represented by the eigenvectors are also shown in
the plots. In these plots the horizontal axis and the vertical axis represent the α and β values, respectively. While the
first root (top plot), θ̂1 = (−1.05, 2.33), is a sink mimicking a maximum likelihood estimator, the second root (bottom
plot), θ ̂2 = (−0.96, 8.83), is a saddle point of the estimating system. We can show that the distribution of the bootstrap
quadratic likelihood ratio at the sink of the vector field approximates the chi-squared distribution with two degrees of
freedom very well. Thus the bootstrap test discussed in Section 5.10.4 indicates that this root is preferable to the saddle
point shown in the bottom plot.

7.3 Stability of roots to estimating equations
How, then, should we determine the stability of roots to an estimating equation? Since estimating functions are in
general non-linear, a systematic study of the
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Fig. 7.5 The dynamical estimating system induced by the estimating function (7.9) shown locally at the two fixed
points. Shown in these plots are also the eigenvectors at the respective roots.

global stability of such systems would be difficult. For this reason we shall focus on local stability of the roots, often
making use of our knowledge on linear dynamical systems.

Let g(θ) be an estimating function and θ̂ be a root of it. A small perturbation of g at θ ̂ usually will not greatly affect the
phase portrait, the partition of the phase space Θ by the orbits of the vector field. Also, we note that no singular feature
of a non-linear system will occur at regular points, states other than fixed points of the system. We therefore may study
the stability of roots by linearising a dynamical estimating system at the roots of the corresponding estimating equation.
The theory of linear dynamical systems introduced in the previous section may then be applied for this purpose.
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An alternative, and more elegant, approach is to use the celebrated Liapunov's method (Liapunov (1947), a French
translation). We shall state the Liapunov's Theorem of stability without proof. First, we introduce some basic concepts.
We shall use the same notation g(θ), with dependency on data y suppressed, to denote the vector field induced by the
same estimating function g(θ, y).

Let

be a Cr function with r ≥ 1. The derivative of h(θ) in the direction of the vector field g, or directional derivative of h(θ) with
respect to g, is a Cr−1 function Dgh defined by(7.10)

where gj(θ) is the jth component of g(θ). Since

is an autonomous system, it follows then

That is, the directional derivative (7.10) is the derivative of h(θ) with respect to time t.

Definition 7.11 A scalar function h(θ) defined on the phase space Θ is called positive definite at θ̂ ∈ Θ, if

1. h(θ) ∈ C1;
2. h(θ ̂) = 0; and
3. h(θ) > 0 if θ ≠ θ̂.

Positive semi-definiteness can be defined by replacing the third condition by h(θ) ≥ 0; negative (semi-) definiteness can be defined by changing
the directions of the inequalities.
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Definition 7.12 A scalar function h(θ) is called a Liapunov function of a vector field g(θ) at θ̂, if

1. h(θ) is positive definite at θ̂; and
2. Dgh(θ) is negative semi-definite.

In addition, we say that h(θ) is strongly Liapunov if Dgh(θ) is negative definite.

Theorem 7.13 (Liapunov's Theorem) Let g(θ) be a vector field (an estimating function) and θ ̂ an equilibrium state (a root of
g(θ) = 0). If there exists a Liapunov function h(θ) for g(θ) at θ ̂, then θ̂ is Liapunov stable. The fixed point θ ̂ will be stable if h(θ) is
strongly Liapunov.

The interested reader may consult Irwin (1980, p. 131) for a proof. Without resort to local linearisation, the elegance,
as well as the difficulty, of Liapunov's method lies in the use of the Liapunov function. It is often non-trivial to find
such a function. Another advantage of Liapunov's method is that it may be used to study the global stability of
dynamical systems, where the method of local linearisation is irrelevant.

A useful, and often constructive, way of interpreting a Liapunov function h(θ) is to think of a system developing along
the time so that h(θ) acts as an energy function dying asymptotically at the equilibrium state. A quadratic form(7.11)

thus is often useful in this respect, where ∑ is a positive definite matrix. It is obvious that the scalar function h(θ) of
(7.11) is positive definite for any g(θ) at θ̂. Whether (7.11) is a Liapunov function or not depends then on the choice of
∑.

Another complexity entering into our argument is that the vector field g(θ) = g(θ, y) depends on the data y as well. We
shall show, however, that with a mild restriction on the second moments of g(θ), the quadratic form (7.11) is a
Liapunov function at a consistent root θ ̂ of g(θ̂) = 0. That is, a consistent root θ ̂ of a regular estimating equation g(θ) = 0
will be stable with high probability when n → ∞.

First, we shall consider the much simpler case, namely, the stability of a maximum likelihood estimator, a root to a
regular likelihood system. Here the likelihood plays the role of a potential function. The Liapunov function in such a
case is particularly simple to construct.

Definition 7.14 A fixed point θ̂ is called hyperbolic if it is isolated. That is, θ̂ is hyperbolic if there exists a neighbourhood N of θ̂ so
that θ̂ is the unique fixed point in N.

Proposition 7.15 Let
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be the log likelihood based on n independent observations. Let the maximum likelihood estimator θ̂ be in the interior of the parameter space.
Assume that ℓn(θ) is differentiate with respect to θ. Let un(θ) = ℓ̇n(θ) be the score function. In addition we suppose that θ ̂ is hyperbolic.

Then θ̂ is a stable fixed point of the likelihood estimating system(7.12)

Proof. Since θ ̂ is hyperbolic, there exists a neighbourhood Nn of θ̂ so that θ̂ is the unique root of un(θ) = 0. Consider the
log likelihood ratio(7.13)

in this neighbourhood. Note that minus γn(θ) is the potential function of (7.12).

The log likelihood ratio γn(θ) is a strong Liapunov function of the likelihood estimating system (7.12) at θ ̂. This is
because γn(θ) is positive definite. To check this, we first note that the following properties:

1. γn(θ ̂) = 0
2. γn(θ) > 0, θ ̂ ≠ θ ∈ Nn

hold for γn(θ). That the directional derivative is also negative definite can be seen as follows:

That θ̂ is stable follows from Theorem 7.13. This completes the proof.

The careful reader may have noticed that consistency of θ ̂ is not required for its stability. In fact, the proof can be
slightly modified to show that each local maximum of the likelihood function is stable. The assumption that the
maximum likelihood estimator is a hyperbolic fixed point can be derived from the condition that the maximum
likelihood estimator is a consistent estimator. See the proof of Proposition 7.16.

For a general non-conservative estimating function, since the roots do not correspond to local extrema of a potential
function, the stability of a root must be proved using a Liapunov function of a different sort.

ROOT SELECTION AND DYNAMICAL SYSTEMS 253



Proposition 7.16 Let θ0 be a true value of the parameter θ. Let θ ̂ be a root to g (θ̂) = 0. Suppose that the following conditions hold:

1. The estimating function g(θ) is twice continuously differentiable in a neighbourhood N of θ0

2. The second derivatives of g(θ)/n are uniformly bounded in probability in N.
3. The root θ ̂ is -consistent.
4. The covariance matrix ∑ of is positive definite and is of constant nonsingular order.
5. The estimating function g(θ) is first-order information unbiased.

Then the root θ̂ is a stable fixed point as n goes to infinity.

Proof. Again we shall use Liapunov's method, this time in an asymptotic fashion.

By Assumption 3, namely θ ̂ is -consistent for θ0, there exists a neighbourhood Nn ⊂ N of θ0 so that θ ̂ ∈ Nn and(7.14)

We show that θ ̂ is the only fixed point in Nn. If there were two roots in Nn, then ġ(θ) must be singular at some point in
Nn since g(θ) is a smooth function by Assumption 1. We show that this is impossible. To see this, we first note that by
Assumption 5 we have(7.15)

Using (7.15) and Assumption 4, we have that ġ(θ0) is of nonsingular order Op(n). By Assumption 2, the second-order
derivatives of g(θ) in Nn are of order Op(n). A first-order Taylor expansion of ġ(θ) at θ0 inNn then shows that the leading
term is ġ(θ0) and is of nonsingular order Op(n). It follows therefore that ġ(θ) is of nonsingular order O(n).

Now consider the following quadratic form:(7.16)

in the neighbourhood Nn. Obviously, h(θ) is differentiably in θ and satisfies the property that h(θ ̂) = 0. Also, by
Assumption 4, we have

By definition, therefore, the function h(θ) is positive definite at θ ̂.

To show that h(θ) is a strong Liapunov function, we now show that the directional derivative Dgh is negative definite at
θ̂ when n goes to infinity. First, in the neighbourhood Nn, by (7.14), Assumptions 1 and 2, we have

254 ROOT SELECTION AND DYNAMICAL SYSTEMS



The quantity ġ(θ̂), in Nn, can be expressed, using Assumptions 1 and 2, as follows:

Combing these expressions, we have, in Nn, that

To show the negative definiteness of Dgh, as n goes to infinity, we compute, again in Nn, the directional derivative as
follows:(7.17)

where in passing from the second equality to (7.17) Assumptions 4 and 5 are used. It follows from (7.17), when n is
large, that h(θ) is a strong Liapunov function for the vector field g(θ) at θ ̂. By Theorem 7.13, θ ̂ is a stable fixed point
when n is large. This completes the proof.

Proposition 7.16 essentially says that consistency of a root to an information unbiased estimating equation implies its
local stability. The reverse of this is not true. For instance, every local maximum of the likelihood function is a locally
stable fixed point of the likelihood estimating system.

7.4 A modied Newton's method
In Section 3.6 we introduced Newton's method. Using the notation of this chapter, Newton's method may be rewritten
as(7.18)

with the choice of c given by(7.19)

The rate of convergence of the algorithm (7.18) will be maximised using c given by (7.19). From computational
perspectives, in Section 3.6 we also discussed several modifications to Newton's method. Whittaker's method and
Fisher's method of scoring, for instance, both concern the computation of (7.19). In Whittaker's method, it is
suggested that one use a fixed value of (7.19) in later iterations. On the other hand, in the scoring method one replaces
(7.19) by its expected value.

Newton's method was discussed further in Section 5.4, where we emphasised the advantages as well as the
shortcomings of the method when an estimating equation has possibly more than one root. In Sections 5.5 and 5.6 we
considered two
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alternative methods, each may be viewed as a modification of Newton's method, designed especially for solving an
estimating equation when multiple roots are present. In this section we study the theoretical aspects of these algorithms
from the viewpoint of dynamical systems. We begin with a brief review of Newton's method by regarding this method
as a discrete time dynamical system. The modified iterative algorithms will be generalised along this line. The notations
used in this section here differ slightly from those used in Chapter 3.

7.4.1 NEWTON's METHOD REVISITED
Let g(θ) = g(θ, y) be a scalar estimating function for θ. Suppose that g(θ) is differentiable with respect to θ. To find the
roots of g(θ) = 0 starting from an initial point θ(0), the celebrated Newton–Raphson method updates the estimate by the
rule(7.20)

where t = 0, 1,…, and ġ(θ(t)) ≠ 0. We use θ(T) as our final estimate of θ for a large value of T with regard to some
stopping rule. In Section 5.4 we saw that in many cases a one-step iteration θ ̂(1) is a reasonable estimate if θ ̂(0) is
suitably chosen.

To gain a different perspective of the algorithm (7.20), let us consider a function(7.21)

where ġ(θ) ≠ 0. The function (7.21) induces a discrete time dynamical system(7.22)

where θ is considered to be a function of t. The fixed points of the system (7.22) are defined by solutions to the following
equation:(7.23)

The set of points satisfying (7.23) is the same as the set of roots to g(θ) = 0. In other words, the problem of solving the
estimating equation g(θ) = 0 can be transformed to the problem of finding fixed points of the dynamical system
defined by (7.21) and (7.22). Since the iteration (7.22) is identical to the algorithm (7.20), we can therefore study
properties of Newton's method by studying properties of the dynamical system induced by function (7.21).

Let w(k) be the kth iteration of w, i.e.,

Then the Newton–Raphson iteration at the T-th step can be written as
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We have seen that when the sequence(7.24)

converges, it converges to one of the fixed points of (7.22). That is, it must converge to a root of g(θ) = 0. When there
are multiple roots, does the sequence (7.24) converge to the desired root, or indeed to any root θ̂ of g(θ̂) = 0 as t → ∞?
The answer obviously depends on the choice of the initial starting point θ(0).

The sequence (7.24) will tend to θ ̂ if θ(0) lies in the basin of attraction of θ̂, which is defined as follows:

Clearly, θ ̂ ∈ A(θ ̂). So the basin of attraction A(θ ̂) is not empty. What else can be said about A(θ̂)? The structure of
A(θ̂) depends on the function g(θ) and the particular algorithm (7.21). If A(θ̂) is essentially empty, or no
neighbourhood of θ̂ is contained in A(θ ̂), then a point, however close to θ̂, when iterated under (7.20), may be sent
away from the target value θ.̂ Such a point is said to be a repelling fixed point. This will not happen if θ̂ is an attracting fixed
point, a point satisfying the following condition:

for θ in a neighbourhood of θ̂.

Newton's method has the property that any root θ̂ of any smooth function g(θ) is an attracting fixed point of the
iterative algorithm (7.20). In other words, any root θ̂ of g(θ) = 0 is guaranteed to be found by algorithm (7.20) provided
that θ(0) is chosen to be close enough to θ̂.

To see why this is so, we study a general class of discrete time dynamical systems induced by the function(7.25)

where α(θ) is a scalar function of θ and α(θ) ≠ 0. The funcion h(θ) of (7.25) was used in Chapter 3 to form the iterative
algorithm (3.15). The function h(θ) reduces to w(θ) of (7.21) if

A discrete time dynamical system(7.26)

associated with (7.25) for any α(θ) enjoys the property that fixed points of (7.26) are roots to the equation g(θ) = 0.
Thus we may investigate the properties of Newton's method through properties of (7.26) by varying the choice of α(θ).
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Recall that a fixed point b of a discrete dynamical system

induced by a function r(θ) is attracting if the derivative r ̇(θ) at b has absolute value less than 1. That is,

Let g(θ̂) = 0. Then we have

Thus, for h(θ) of (7.25) to satisfy the condition |ḣ(θ ̂)| < 1, we require α(θ) to satisfy the following condition:(7.27)

Any root θ ̂ of g(θ̂) = 0 will be an attracting fixed point of the associated dynamical system using h(θ) of (7.25) if α(θ)
satisfies (7.27).

If α(θ) = − 1/ġ(θ), then we see that every fixed point of (7.22) is attracting because

It is a curious fact that the value of α(θ̂)ġ(θ̂) for Newton's method is the middle point of the permissible range (−2, 0).

Properties of Newton's method in higher dimensions can be studied along the same line. Let g(θ) be a p-dimensional
estimating function for a p-dimensional parameter θ for p ≥ 1. In this case we define a family of dynamical systems as
follows:(7.28)

where α(θ) is a p × p matrix with det{α(θ)} ≠ 0. The fixed points of (7.28) are the roots to g(θ) = 0, and vice versa. The
theory of dynamical systems shows that a fixed point θ̂ of (7.28) is attracting if any (complex) eigenvalue λ of h(θ ̂) has
absolute value less than unity, i.e., |λ| < 1. Note that

where I is the p × p identity matrix. So if we let
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to be the value for Newton's method, then ḣ(θ ̂) becomes a zero matrix having only zero eigenvalues for any root θ̂. We conclude
therefore that Newton's method in the multi-dimensional case

again has the property that every fixed point is attracting.

The above view of Newton's method helps to motivate a number of iterative algorithms useful for the purpose of
choosing an appropriate root of an estimating equation. In Sections 5.5 and 5.6 we introduced two such algorithms. In
the rest of this section we shall see how these algorithms may be derived by considering appropriate dynamical
systems. Convergence properties of these algorithms will also be proved here. See Sections 5.5 and 5.6 for further
exploration of these methods and numerical examples.

7.4.2 A METHOD WITH CONTINUITY CORRECTION
In Section 5.5 we considered a modification of Newton's method so that convergence to roots of an estimating
equation mimicking local minima or saddle points of a log likelihood function will be avoided by the modified
algorithm. We now give a derivation of the algorithm and give a proof of the convergence properties of the algorithm.
We shall discuss the scalar case first and then generalise the results to the multivariate case.

Consider a dynamical estimating system associated with an estimating function g(θ, y). Suppose that we wish to
compute the trajectories of this system. The orbits are usually not available in closed forms due to non-linearity of g in
θ. An approximate form may however be obtained by considering a first-order approximation of the system at a point
θ0(7.29)

For (7.29) to be of use, we assume that θ0 is a non-degenerate point, i.e., ġ(θ0) ≠ 0. By solving (7.29) with the initial
condition that

we find the unique trajectory of (7.29) passing through θ,0 which is explicitly given by(7.30)

Suppose that ġ(θ0) is a negative number. So as t → ∞ we have that
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which implies that the second term on the right-hand side of (7.30) vanishes. So we arrive at the following formula
when t → ∞:(7.31)

the right-hand side being identical with the one-step iteration using Newton's method. The formula (7.30) may be
regarded as a continuous version of Newton's method.

More formally, we may define the continuous version of Newton's method as follows(7.32)

where and γ is a positive constant functionally independent of the data. The algorithm (7.32) was initially considered in
Section 5.5.2; see equation (5.34). Since ġ{θ(t)} is usually Op(n), n being the sample size, iterative algorithm (7.32) differs
from the discrete Newton's method, when it converges, essentially for the first few steps.

Now we restate Proposition 5.9 using the notation of this chapter and give a proof of it.

Proposition 7.17 Let g(θ) be a smooth one-dimensional estimating function for θ and θ̂ be a root of g(θ̂) = 0. Let γ be a positive
constant. Define the following function:(7.33)

for which ġ(θ) ≠ 0.

Then the iterative algorithm θ(t + 1) = w(θ(t)) has the following properties for any estimating function g(θ):

1. If ġ(θ ̂) < 0, then θ ̂ is an attracting fixed point.
2. If ġ(θ ̂) > 0, then θ ̂ is a repelling fixed point.

Proof. We first note that the dynamical system

with w(θ) given by (7.33) has the property that each root θ ̂ of g(θ ̂) = 0 is a fixed point of the dynamical system, and vice
versa.

To investigate the stability of each fixed point θ̂ of the system, we differentiate w(θ) with respect to θ and evaluate at θ ̂
to give
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By the local linearisation method, a fixed point θ ̂ is an attracting fixed point if and only if

which is equivalent to

since γ is positive. This proves part 1 of the proposition.

On the other hand, a fixed point θ ̂ is a repelling fixed point if and only if

which is equivalent to

which proves part 2 of the proposition.

We have seen that the condition ġ(θ̂) < 0 is satisfied by a consistent root under mild moment conditions. So a desirable
root is guaranteed to be found by the algorithm (7.32). At the same time, the algorithm has the merit over Newton's
method in the presence of multiple roots in that convergence to undesirable roots with ġ(θ ̂) > 0 will be avoided. The
algorithm, for instance, will never converge to local minima of a log likelihood function. As discussed in Section 5.5.2,
practically when the sample size is large, one may simply choose γ = 1 so to use the following version of the algorithm:

which is the algorithm proposed in (5.39).

Now we show that the iterative algorithm (5.48) in multivariate cases discussed in Chapter 5 has similar convergence
properties.

Proposition 7.18 Let g(θ) be a p-dimensional estimating function. Define a discrete time dynamical system as follows:(7.34)

on the set {θ: det |ġ(θ)| ≠ 0, θ ∈ Θ}. Let θ̂ be a root of g. Let λj, j = 1,…, p, be the complex eigenvalues of ġ(θ̂).

Then the iterative algorithm defined by (7.34) has the following properties.

1. If the real parts ℜ(θj) for any j are negative, then there is an ∈-neighborhood N∈
(θ̂) of θ̂ such that
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2. If there exists at least one λjsuch that ℜ(θj) < 0 then θ(t) typically diverges as t tends to infinity.

Proof. The proof is similar to that in the scalar case. The algorithm (7.34) defines a p-dimensional discrete time
dynamical system, each fixed point θ ̂ being the root of g(θ ̂) = 0 and vice versa.

A fixed point θ̂ of (7.34) will be locally stable if and only if the absolute value of each eigenvalue ηj of w ̇(θ̂) is less than one,
and θ ̂ is repelling if and only if |ηj| > 1 for at least one ηj. Using the fact that each fixed point θ̂ of (7.34) is a root of g(θ̂) =
0, we have(7.35)

Let ξj be the eigenvector corresponding to each eigenvalue λj. Suppose that the matrix

with ξj as its j-th column vector is invertible. Then we have

Since each eigenvalue of the matrix B−1AB is also an eigenvalue of matrix A, we then conclude that

by appropriately reordering these values.

Finally, we have that θ ̂ is stable if and only if

or, equivalently,

Similarly, θ ̂ is repelling if there exists ηj such that |ηj > 0 or ℜ(θj) > 0 This completes the proof.

7.4.3 A MODIFICATION BASED ON THE INFORMATION IDENTITY
The continuous version of Newton's method discussed in the previous section is based on the fact that a consistent
root θ̂ of g(θ ̂) = 0 is an asymptotically stable fixed point of the system (d/dt)θ(t) = g(θ). Undesirable convergence to
sources and saddle points are therefore avoided by this method. However, convergence to sinks other than the
consistent root remains a possibility. To remedy this problem, we now discuss another method based on the
generalised discrete-type Newton's method. This algorithm was first introduced in Section 5.6.
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We shall focus on the scalar case. A brief discussion on the multivariate case will be given later. Consider a class of
discrete time dynamical systems induced by the functions(7.36)

indexed by a unction α(θ) ≠ 0. Each system in the class (7.36) has the property that the set of the fixed points of

using w(θ) of (7.36) equals the set of zeros of g(θ). We have seen previously that such a root θ̂ is stable if and only if α(θ)
satisfies the condition(7.37)

where θ̂ is a zero of g. The condition (7.37) is key to designing a new algorithm. An ideal function α(θ) is one so that
(7.37) will be satisfied only by a consistent root θ̂. To explore the condition (7.37), we make the assumption that g(θ) is
information unbiased to the first order. That is,

This condition is automatically satisfied by all information unbiased estimating functions. As a direct consequence of
this condition, if θ̂ is consistent and we may apply the law of large numbers to ġ(θ̂), then we have

Therefore, if we let

where υ(θ) is a consistent estimate of the variance of g(θ), then the modified Newton's method(7.38)

will have the properties stated in Proposition 5.12.

Now suppose that g(θ) is p-dimensional. Let α(θ) be a p × p non-singular matrix and define as in the scalar case w(θ) = θ
+ α(θ)g(θ). Since det{α(θ)} ≠ 0, the set of fixed points of the system θ(t + 1) = w{θ(t)} and the set of roots of g(θ) = 0
will coincide. At each root θ ̂, we then have(7.39)
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where I is the p × p identity matrix. Let λj be the (complex) eigenvalues of α(θ̂)ġ(θ ̂). The eigenvalues of w ̇(θ ̂) are then
given by 1 + λj. A root θ ̂ is stable if and only if the absolute value of 1 + λj is less than 1, i.e.

The above argument then suffices to establish the results stated in Proposition 5.14.

7.5 Complex estimating functions and Julia sets
In Sections 4.3 and 5.8 we considered estimation of the correlation coefficient for a bivariate normal distribution. The
score function, ignoring a multiplier factor, can be written

This estimating equation can be solved explicitly and we have found that the formula, which asymptotically gives the
correct answer, can have a complex-valued solution. More generally, if the estimating function is a polynomial of
degree d = d(n) in the parameter, then there exist exactly d complex roots (counting multiplicities). By considering the
complex roots of such an equation, we can learn about the number and distribution of the real roots. Moreover, if the
estimating function yields a minimal sufficient partitioning, as is the case for the score function, then the complex roots
may themselves be regarded as a minimal sufficient statistic. There are also cases where a real starting point for an
iterative algorithm will lead to an inconsistent root or not converge at all, but iterating from a slightly perturbed
complex number may lead to the consistent root.

In this section, we shall consider estimating functions defined for complex-valued parameters by analytic continuation
into the complex plane.

7.5.1 JULIA SETS
For iterative algorithms defined for complex numbers Julia sets are of basic interest. We now describe the concept of
Julia sets through a classical example. Consider a family of functions defined on the complex plane

where c is a complex number. Functions fc define a family of discrete time dynamical systems indexed by c. For each c,
wc(z) partitions the complex plane C into two disjoint regions

where
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That is, Bc consists of all values z for which the iterates stay bounded, and Uc the complementary set of Bc, i.e.,
the set of z for which explodes.

The boundary, Jc, between Bc and Uc is called the Julia set of the function wc, and Bc the filled-in Julia set of wc. Now we have
defined the (filled-in) Julia set for the specific family wc(z). Obviously the definition applies to any discrete time
dynamical system. For example, we may study Julia sets for the dynamical systems corresponding to the
Newton–Raphson method or the modified algorithms discussed in the previous section.

Of interest to us, in our present context, is the ability of an algorithm to converge to the consistent root of an
estimating equation in question. The starting points of the algorithm may lie in the real or the extended complex
parameter space. This property is summarised by the concept of basins of attraction discussed earlier. It turns out that the
concepts of Julia set and basin of attraction are closely related to each other. Therefore, visualisation of the filled-in
Julia set can provide considerable information about the convergence property of a concerned algorithm.

Now we introduce a popular algorithm called the escape-time algorithm, again through the example of wc(z) = z2 + c, for
drawing the filled-in Julia sets.

Let wc(z) = z2 + c. For each z ∈ C, z will belong to Uc if and only if as k→ ∞. So to judge whether z ∈ Uc,
an approximate algorithm is first to choose a sufficiently large integer k, then to see if

for a large M > 0. For this particular function, we let

This is because, if

then we will have

for some ∈ > 0. It is also easy to see that

It now follows that

For each z ∈ Uc, there exists a smallest integer Tz such that
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This integer Tz is called the escape-time of the point z. The escape-time of any point in Bc is infinite.

Finally, we have to determine the iteration number k. Obviously, the larger k is, the more accurate the result will be.
For the specific function wc(z), k = 20 is enough to reveal the main features of the Julia sets. Summing up, we may draw
the filled-in Julia set, for a fixed k and M, by plotting the points z if

The complementary region, Uc, may be coloured using the information of the escape-time. Figure 7.6 shows the filled-
in Julia set using the function wc(z) with See Figure 7.7 for a close-up of Figure 7.6.

7.5.2 THE CORRELATION COEFFICIENT
Now we consider the example of estimating the correlation coefficient ρ using a set of independent observations

from a bivariate normal distribution having means

and variances

and an unknown correlation coefficient ρ. The score function for ρ takes the form(7.40)

Fig. 7.6 The filled-in Julia set Bc, where
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Fig. 7.7 A close-up of Figure7.6.

where P(ρ) is a polynomial given by(7.41)

In (7.41), S1 and S2 are defined by

respectively. Note that both u(ρ) and P(ρ) depend on the data through (S1, S2), a complete sufficient statistic for ρ.

It is customary to solve for ρ the cubic equation P(ρ) = 0, which can have as many as three real roots in the interval
(−1, 1). If three roots are present, then these will correspond to two relative maxima and one relative minimum of the
likelihood. Although estimating functions (7.40) and (7.41) have the same roots, they display different convergence
properties for some iterative methods such as Newton's method. This is because an iterative algorithm associated with
the discrete dynamical system based on the following function:

is not invariant under scale transformation of g(θ). In fact, an estimating function g(θ induces a class of functions

each member in the class having the same roots. It is of interest to choose a function in Lg so that good convergence
properties can be obtained for finding the Godambe efficient root.
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Fig. 7.8 Basins of attraction of Newton's method using estimating function (7.41) for the correlation coefficient with
S1 = 0.1, S2 = 1.0.

Figures 7.8 and 7.9 show basins of attraction of roots to estimating functions for ρ based on both the cubic equation
(7.41) and likelihood equation (7.40). We have used the Newton–Raphson method for these plots using the values S1 =
0.1, S2 = 1.0. There is one real root, 0.5, and two conjugate complex roots, . The roots are plotted as
white points in the figures. The real root is the maximum likelihood estimate, basins of attraction to which are coloured
red in both Figures 7.8 and 7.9. In both figures we have coded a point that converges to none of the root as a black
point. By comparing Figures 7.8 and 7.9 we see that Newton's method has a much wider basin of attraction to the real
root for the cubic equation than for the likelihood equation.

The complete sufficient statistics was changed to S1 = 0.0001, S2 = 0.99 in Figures 7.10 and 7.11. There are three
distinct real roots, −0.09, −0.01, 0.10, of the estimating equations in this case. Of these roots, the first and the third are
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Fig. 7.9 Basins of attraction of Newton's method using likelihood equation (7.40) for the correlation coefficient with
S1 = 0.1, S2 = 1.0.

local maxima, and the second root is a local minimum. The third root, 0.10, is the maximum likelihood estimate. These
three roots are plotted as white points in the figures. Figure 7.10 plots the basins of attraction of Newton's method for
the cubic equation (7.41), and Figure 7.11 plots the basins of attraction of Newton's method for the likelihood
equation (7.40).

The coding conventions of the points in these two plots are the same as in Figures 7.8 and 7.10. For example, points
coloured red form the basins of attraction of the maximum likelihood estimate 0.01 in both Figure 7.10 and Figure
7.11. For the second artificial data set, again the cubic equation displays better convergence property than the
likelihood equation. Namely, the basin of attraction of the maximum likelihood estimate using Newton's method for
solving the cubic equation is much wider than the corresponding one when the likelihood equation is used instead.
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Fig. 7.10 Basins of attraction of Newton's method using estimating function (7.41) for the correlation coefficient with
S1 = 0.0001, S2 = 0.99.

The basins of attraction for each of the above examples divide the complex plane into three regions, each point on the
boundary bordering all three basins. The basins of attraction of an algorithm display some fractal geometrical
structure, exploration of which is beyond the scope of the present book.

The above plots were obtained using a converge-time algorithm, about which we now describe briefly. Basins of attraction
are similar to Julia sets. The filled-in Julia sets of a system w(z) contain all the points z such that iterates w(k)(z) stay
bounded. On the other hand, the basin of attraction of a root ẑ to g(z) = 0 consists of all points z such that

where
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Fig. 7.11 Basins of attraction of Newton's method using likelihood equation (7.40) for the correlation coefficient with
S1 = 0.0001, S2 = 0.99.

for a suitably chosen α(z), a function characterising the underlying iterative algorithm. For Newton's method, for
instance, we choose α(z) = 1/ġ(z). For a given precision ∈ > 0, we define the converge-time of z to be the smallest integer
kz so that

So we can distinguish each basin of attraction corresponding to each root by using different colours, and points within
the same basin by using their respective converge-times. In these plots a point that converges slowly is cloured light.

The basins of attraction in the complex plane give detailed information on the convergence properties of an algorithm.
A particularly interesting feature in these plots is that an algorithm can converge to the desirable root for many complex
starting points, which are far away in Euclidean distance from the consistent root.
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8 Bayesian estimating functions

8.1 Introduction
In the previous chapters, we found that the score function has maximal Godambe efficiency in a general class of
unbiased estimating functions for a parametric model. Since the score function is the gradient of the log-likelihood,
maximising the efficiency criterion can be regarded as a method for deriving the techniques of likelihood inference. As
the Godambe efficiency of an estimating function is defined by the expectations of functionals of the estimating
function, the approach to likelihood developed in Chapter 2 is frequentist in nature.

The concept of likelihood is also important in Bayesian inference. The fundamental difference from the classical
frequentist approach is that in Bayesian inference we make decisions by combining information from two sources: the
likelihood given the parameter and the information about the parameter prior to making observations. The first source
of information is the familiar one in the frequentist framework. We have called this the likelihood function, p(y|θ), which
is the conditional density function (or probability function in the discrete case) of an observable random variable Y
given the value of an interest parameter θ. The second source of information is often summarised in the form of a prior
distribution, p(θ), when the parameter θ is assumed to be a random variable.

Our notation in this chapter will differ slightly from the notation used so far. For example, the likelihood function
p(y|θ) was denoted by f(θ; y) or p(θ; y) in previous chapters.

By regarding the parameter as a random variable, we derive, using Bayes' Theorem, the posterior distribution of θ given data
y(8.1)

by combining the prior distribution p(θ) and the likelihood p(y|θ). In (8.1), the numerator is the joint density of the data
and the parameter, and the denominator is the marginal density of the data. The Bayesian approach in inference
postulates that the posterior distribution, p(θ|y), summarises all the relevant information for making inference about θ.

The Bayesian school of inference, originated in Bayes (1763), has a history longer than the frequentist approach to
inference. It is now a well-established



Fig. 8.1 Two binomial likelihoods with the same Beta prior.

alternative to the classical inference (O'Hagan, 1994). Recent advances in computational techniques, notably the
Markov chain Monte Carlo methods (see e.g. Gamerman, 1997), make this approach particularly popular among
practitioners.

Example 8.1 Binomial-Beta model

From (8.1) we see that the posterior density p(θ|y) is proportional to the product of the prior density and the
likelihood. So p(θ|y) will be low if either the prior or the likelihood is low. The Posterior density will be high at values
of θ at which both the prior and the likelihood are reasonably high. So the Bayes' Theorem balances the two sources of
information from the prior and the likelihood. This can be clearly seen from Figure 8.1, which compares the prior Beta
distribution Be(p, q) with density function

with the binomial likelihood

and the posterior Beta distribution Be(p + y, q + n − y − 1). In Figure 8.1, we let (p, q) = (2, 6) and set (y, n) = (2, 5) in
(a), and (y, n) = (6, 15) in (b). For better visual effects, we multiplied the binomial likelihoods by a factor free of θ.

8.2 Bayes consistency
Under mild regularity conditions, estimation of the parameter based on the posterior distribution given by (8.1) is
consistent. This means that as the sample size goes to infinity, the posterior distribution of θ will converge stochastically
to the true value of the parameter. The regularity conditions needed to ensure such consistency requires that the prior
distribution assigns a positive probability to every neighbourhood of the true value of the parameter. Bayes consistency
essentially
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Fig. 8.2 Bayes consistency.

states that data will eventually become overwhelming so that prior information is asymptotically irrelevant for
inference.

Example 8.2 Binomial-Beta model(continued)

The principle that the data eventually overwhelm the prior as the sample size goes to infinity can be illustrated by the
binomial example once again. Figure 8.2, which is similar to Figure 8.1, compares the Beta prior distribution, the
binomial likelihood and the Beta posterior distribution, with (y, n) = (2, 4) in (a) and (y, n) = (30, 60) in (b). The
posterior distribution is pulled over to the likelihood in (b) due to the large sample size.

In the frequentist framework, we are often interested in estimating θ with a point estimate θ̂ found as the root to an
estimating equation. While the Bayesian can interpret the posterior distribution of the parameter as, in some sense, the
inferential conclusion of the analysis, it is also of interest in Bayesian inference to summarise the information about the
parameter using a point estimate. As we shall consider below, the estimating equations of classical frequentist methods
have their analogs in Bayesian estimating equations. However, like their classical counterparts, Bayesian estimating
equations can have multiple solutions. So it is important to consider the consistency of any point estimate derived
using such an equation. The frequentist concept of consistency can be modified as follows to the notion of Bayes
consistency.

Definition 8.3 An estimate θ ̂nis said to be Bayes consistent if θ ̂n − θ converges in probability to zero as n→ ∞, where probabilities are
calculated using the posterior distribution of θ given y. That is,(8.2)

holds for some N given any ∈, η > 0.

Unlike the frequentist definition of consistency, where the parameter θ is fixed and the estimate θ̂ is a random variable,
the roles are reversed here. The estimate θ̂ is
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a function of the data y. Since the posterior distribution is calculated conditionally on y, the point estimate is a constant
in the posterior distribution. On the other hand, the posterior distribution is on the parameter space, and the
parameter θ is regarded as a random variable in the definition of Bayes consistency.

8.3 A Bayesian approach to estimating functions
Recall that an estimating function g(θ, y) is a function,

whereΘ and Y are the parameter space and the sample space, respectively. In Bayesian framework, Θ plays the role as
a sample space for prior probability measures p(θ).

Definition 8.4 A Bayesian estimating function g(θ, Y) is a function, g: Θ × Y → Rk; where Y is the sample space of an observable
random variable Y and Θ the sample space of an unobservable random variable θ.

It is evident from their respective definitions that classical and Bayesian estimating functions are rather general real or
vector-valued functions of the data and the parameter. The difference between a Bayesian estimating function and a
classical one is not to be found in the formal properties of the function, but in the context in which the estimating
function is derived and used.

Among the estimating functions of this definition are the estimating functions that were discussed in the previous
chapters. However, to this class of estimating functions we can add many others, such as the prior score(8.3)

or the posterior score(8.4)

Equation (8.4) follows from the fact that

where the constant of proportionality does not involve θ.

In the previous chapters, the concept of the unbiasedness of an estimating function g(θ, Y), using the notation of this
chapter, corresponded to the equation

and we saw that within certain class of unbiased estimating functions, the score function is Godambe-optimal. We shall
have a similar result about the posterior score.

First, we discuss the basic concepts of unbiasedness and information unbiasedness of Bayesian estimating functions
g(θ, y). To motivate our discussion, we consider the following simple example.
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Example 8.5 Gaussian-Gaussian model

Suppose that we have normal likelihood and normal prior

where σ2, m and τ are known. The posterior distribution p(θ|y) is again normal(8.5)

where μ and υ are given by

So the posterior score is(8.6)

By (8.5) and (8.6), and the fact that

we have(8.7)

However, it is also clear that(8.8)

So u(θ|y) is an estimating equation that is unbiased in two senses according to (8.7) and (8.8). It is also natural to ask
whether it is unbiased according to the classical frequentist definition of Chapter 2. Classical unbiasedness would
require

If we calculate this expectation, we find instead that
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which does not vanish, except in the limiting case when τ2 → ∞. The limiting form of this prior distribution is the
improper uniform prior on the entire line of R. For such an improper prior, the posterior density reduces to the
likelihood function.

The above example shows that the classical concept of unbiasedness of estimating functions needs to be modified in
the Bayesian context. Equations (8.7) and (8.8) give rise two possible definitions of unbiasedness for a Bayesian
estimating function. Using the relation between expectation with respect to a joint density and that with respect to a
conditional expectation, we can see that (8.8) implies (8.7) in general. So (8.8) is the stronger condition of the two.

Definition 8.6A Bayesian estimating function g(θ, Y) is said to be conditionally unbiased, if for all θ(8.9)

holds with probability one.

The function g(θ, Y) is said to be average unbiased if(8.10)

Now we establish a condition for (8.9) and (8.10) to hold for a posterior score in more general models. Suppose that θ
is a real-valued parameter. Let p(y|θ), p(θ) and p(θ|y) be the likelihood, prior distribution and the posterior distribution,
respectively. Denote the respective logarithms by ℓ(y|θ), ℓ(θ) and ℓ(θ|y). Again, we shall denote the derivatives of these
logarithms with respect to θ by u(y|θ), u(θ) and u(θ|y), respectively. We assume that the prior distribution p(θ) is
supported on (a b), where both a and b may be infinite. By (8.1), the posterior log likelihood and posterior score can be
written as(8.11)

(8.12)

Since the classical score function u(Y|θ) is unbiased with respect to the model density, we have

And therefore we have

Let E{u(θ)} = A where(8.13)

It follows that

if (8.13) vanishes.
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Although the posterior score function is not unbiased in the classical sense, it shares with the classical score the
property of being average unbiased. Under standard regularity conditions, it is also conditionally unbiased, for reasons
that are similar to the classical case,

Summarising the above discussion, we have the following result.

Proposition 8.7Let u(θ|Y) be any posterior score function. Then we have

1. under standard regularity, u(θ|Y) is conditionally unbiased, and
2. u(θ|Y) is average unbiased provided

where p(θ) is the prior density function with support (a b).

In the development of Bayesian estimating functions, we frequently need to combine non-Bayesian estimating
functions with prior estimating functions. For such combined estimating functions we have the following.

Proposition 8.8Let g(θ, Y) be an estimating function that is unbiased in the classical sense, so that E{g(θ, Y)|θ} = 0. Let g(θ) be a
prior estimating function satisfying E{g(θ)} = 0. Then the following Bayesian estimating function:(8.14)

is average unbiased.

In the same way that classical unbiasedness implies average unbiasedness, the property of conditional unbiasedness
implies average unbiasedness. Thus average unbiasedness is the weakest, or least restrictive of the three properties.

Now suppose that an estimating function g(θ, Y) is given. Consider the estimating functions defined by
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where a(·) and b(·) are functions of θ and Y, respectively. If g(θ, Y) is conditionally unbiased, then so is h2(θ, Y). But h1(θ,
Y) is in general not conditionally unbiased. In other words, conditional unbiasedness is not invariant under scaling
transformation by a function containing the parameter. When g(θ, Y) is average unbiased, it turns out that neither h1(θ,
Y), nor h2(θ, Y) is in general average unbiased.

Now we turn to discuss the concept of information unbiasedness. This concept, as defined in equation (2.4), plays an
important role in the theory of classical estimating functions. It plays a similar important role in the development of
Bayesian estimating functions. To begin with, we first note the following property of density functions.

Lemma 8.9Let p(y) be a density function, y ∈ (a, b) ⊂ R. Suppose that p(y) is differentiable with respect to y. Let E denote the
expectation with respect to p(y). Further, let

Then the following identity holds(8.15)

The proof is straightforward, and is therefore omitted.

Now let us compare (8.15) with information unbiasedness as in (2.4). As a direct consequence of Lemma 8.9, we have
the following property for posterior score functions.

Proposition 8.10Let u(θ|y) = (∂/∂θ) log p(θ|y) be a posterior score function. Suppose that the posterior density p(θ|y) is defined on
an open interval (a, b).Let(8.16)

Then

Definition 8.11A Bayesian estimating function g(θ, y) is said conditionally information unbiased, if the following holds:(8.17)

By Proposition 8.10, we immediately have the following result.
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Proposition 8.12A posterior score function u(θ|y) = (∂/∂θ) log p(θ|y) is conditionally information unbiased if(8.18)

Condition (8.18) is satisfied by most posterior densities. As can be directly verified, (8.18) is satisfied by the posterior
scores in both Examples 8.1 and 8.5. The following result gives a general method to achieve conditional information
unbiasedness starting from any sufficiently regular estimating function.

Proposition 8.13Let g(θ, Y) be a conditionally unbiased estimating function, which is differentiable in θ. Then

is conditionally information unbiased.

Definition 8.14Similarly to (8.17), we say that g(θ, y) is average information unbiased, if(8.19)

Again, under mild conditions, posterior scores are average information unbiased. This follows immediately from the
fact that posterior scores are conditionally information unbiased. So we have the next result.

Proposition 8.15Let p(θ) be a prior density function with support (a, b). Let u(θ|Y) be the posterior score. Then u(θ|Y) is average
information unbiased, if the following condition is met

Among estimating functions that are conditionally unbiased, it is natural to look for examples of functions which
satisfy some optimality criterion for Bayesian point estimation. As we shall see, the theory of optimal Bayesian
estimating functions is in some sense simpler than the classical theory, as the expectations which are conditional on the
data involve integrations over the parameter alone.

Let G be the class of all estimating functions g(θ, Y) which are conditionally unbiased and conditionally square
integrable, so that

If g is also differentiable with respect to θ, then it is convenient to standardise g in a manner that is analogous to the
classical case, by defining(8.20)
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Note that if g is conditionally unbiased, then so is gs. In the definition of optimality that follows, it will be convenient to
appeal to the standardised form of each estimating function. Therefore we shall impose the additional restriction that
all estimating functions in G are differentiable with respect to θ, and that

with probability one. This will ensure the existence of the standardised form of every estimating function in G.

Definition 8.16Among standardised functions, it is natural to call a function g*(θ, Y) conditionally optimal if it has minimum variance.
That is, if for all g ∈ G,(8.21)

holds with probability one.

The following proposition, which is analogous to the classical result, is due to Ghosh (1993).

Proposition 8.17Suppose that the posterior density p(θ|y) satisfies the regularity assumptions below, namely that p(θ|y) has support set
(a, b), and

1. p(θ|y) → 0 as θ → a and θ → b;
2. p(θ|y) log p(θ|y) → 0 as θ → a and θ → b; and
3. for all g ∈ G,

as θ → a and θ → b.

Then, under these conditions, the posterior score function u(θ|y) is conditionally optimal.

The roots of the classical score function can be associated with the stationary points of the likelihood. Similarly, the
roots of the posterior score can be associated with the stationary points of the posterior density. So if the solution to
the equation u(θ ̂|y) = 0 is unique, then under mild conditions, the root θ ̂ corresponds to the generalised maximum
likelihood estimator, which is a Bayesian variant of the maximum likelihood estimator.

8.4 Bayes linear and semi-parametric estimation
Subjective Bayesian inference starts with the adoption of a subjective prior distribution, p(θ), which expresses one's
personal knowledge prior to making observations. It was Savage (1954) who axiomatically argued on favour of the
Bayesian methodologies using the concept of subjective probability advocated earlier by de Finetti. In reality, however,
it is often difficult, if not impossible, to
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express one's knowledge about the parameter of interest in the form of a distribution. A practical way of overcoming
this difficulty is to specify a few functionals of the prior distribution and then to fit one of the familiar probability laws.
For example, to fit a prior distribution for the parameter θ of a binomial model, one may choose a prior Beta
distribution, Be(p, q), and estimate the two parameters p, q using assumptions on the first two moments about Be(p, q).
Replacing such summary information by a prior distribution could give rise to a sensitivity issue, that is, a small change
of the form of the prior may greatly affects the inference for the parameter. When this is the case, more robust
methods, which are insensitive to the choice of prior distributions, will be of importance.

The so-called linear Bayes or Bayes linear methods (Whittle, 1958; Stone, 1963; Hartigan, 1969; Goldstein, 1975a;
Smouse, 1984, etc.) for estimation are devised in response to this need of robustness. Bayes linear methods only make
use of prior information, be it subjective or otherwise, in the form of a few moment assumptions. As a consequence,
the standard Bayesian approach for inference based on posterior distributions must be altered, since we are no longer
able to use Bayes' Theorem to combine the prior information with the likelihood.

Now consider a scalar parameter θ and suppose that a location summary for θ is desired. The Bayes linear method
starts by considering estimates linear in Z(8.22)

where Z = z(Y) is a known column vector function of the data Y. The coefficient a and the column vector b are to be
determined by minimising the unconditional quadratic risk(8.23)

where the expectation is taken with respect to the joint distribution of Y and θ.

From (8.22) and (8.23), after some algebraic manipulation, the optimal estimate can be shown to be(8.24)

where Cov(Z, θ) is the column vector of covariances between the entries of Z and θ, and Var(Z) is the covariance
matrix for the vector Z. All expectations are calculated with respect to the joint distribution of Z and θ. The estimate
d(y) of (8.24) is called the Bayes linear estimate of θ. Note that to define a Bayes linear estimate, one needs only to specify
the first two joint moments of θ and z(Y). So estimate (8.24) is derived under more robust assumptions than an
estimate derived from a posterior distribution.

Since the unconditional quadratic risk (8.23) may also be rewritten as(8.25)

it is clear that the posterior mean E(θ|y) is the optimal estimate under a quadratic loss function. The Bayes linear
estimator (8.24) is therefore the best approximation
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to the posterior mean within the class of linear functions of z(y). Hence if the posterior mean is exactly linear, then it
equals the Bayes linear estimate.

In certain special cases, the linearity of the posterior mean uniquely specifies the class of prior distributions. Diaconis
and Ylvisaker (1979, 1985) show that, under certain conditions, if y is exponentially distributed as

then the linearity of the posterior mean E(θj|y) in zj(y) implies that the prior distribution is necessary a member of the
natural conjugate family; where

We shall now turn to the Bayesian formulation of semi-parametric models and inference. Suppose that, conditionally
on θ, Y1, Y2,…, Yn are independently distributed with means and variances

As usual, we let Y denote the column vector of Y1,…, Yn. As above, we shall seek to obtain the model robustness of a
semi-parametric framework with Bayesian assumptions. The first and second conditional moments of each Yj will be
assumed to be known; the remaining aspects of these distributions will be unspecified. Similarly, the prior distribution
of θ will also be unspecified except for its first two moments, namely,

A natural class of estimating functions for this model is the collection of all conditionally unbiased functions of the
form(8.26)

where the coefficient functions b(θ) and aj(θ), j = 1,…, n, are arbitrary.

Under the optimality condition specified in Definition 8.16, the conditionally optimal estimating function within this
class is obtained by setting

The proof of this result is similar to Godambe and Thompson (1989), and is therefore omitted.
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8.5 An application to credibility estimation in actuarial science
While Bayesian assumptions are commonly adopted for philosophical reasons, there are applications in which prior
distributions have frequentist interpretations. Examples in actuarial science are cases in point. Suppose that in
successive years an individual makes successive claims on an insurance policy. Let Yt = (Y1, Y2,…, Yn) denote the claim
expenses for the first n years. Assuming that the risk factors associated with successive claims remain constant, then
the claims Yj to the insurance company can be regarded as a sequence of identically distributed random variables. A
basic actuarial problem is to try to predict the size of the future claim expense Yn+1 in the (n + l)-st year from the
individual.

Individual policy holders are themselves grouped according to certain characteristics, such as age, location and other
factors. While the risk factors for an individual claimant may be partially determined by the group characteristics, there
is usually heterogeneity within each group. So it makes sense to apply a Bayesian model to the data on claim expenses
for an individual. So, for each claimant, there is a random unknown parameter vector θ which controls the distribution
of the claims process Y1,…, Yn. The prior distribution on θ represents the random risk factors associated with
population heterogeneity. Characteristics of the population or a predetermined subgroup of the population are then
controlled by the hyper-parameters on the prior distribution.

By a credibility estimator, we shall mean a statistic whose purpose is to estimate the value of the future claim Yn +1. Such
credibility estimators are functions d(Y) of the claims process, where the coefficients can be chosen to minimise an
expected squared error of the form

The solution to this problem has a formal similarity to the problem of Bayes linear estimation discussed in Section 8.4,
except that the parameter has been replaced by the (n + l)-st observation.

The problem of prediction can be related to the problem of estimation. Suppose that, conditionally on θ, the claims Y1,
Y2,…, are independent. In this case, we can parameterise the model so that

Then

So expected squared error is minimised by that choice of d(Y) which is the Bayes linear estimate for η.

Example 8.18 Bühlmann model

To illustrate the application of these methods to actuarial science, we shall consider the Bühlmann model, which is
perhaps the simplest and most straightforward
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model for such claims processes. Let us assume that, conditionally on θ, the claims Yj of a given policy holder are
independent and identically distributed, with mean μ(θ) and variance σ2(θ).

The Bayesian semi-parametric approach needs only the specification of the mean and variance for μ(θ) and the
specification of mean for σ2(θ). Now assume that the following quantities(8.27)

are known. From (8.27) the unconditional moment structure of the Yj can be computed. We obtain

and

With this structure, the conditionally optimal estimating function for μ (θ) becomes

where

In practice, it is common to replace σ̂2 in this equation by ν = E {σ2 (θ)}, for reasons of algebraic simplicity. With this
substitution, the equation can be solved explicitly. We can see that(8.28)

which is a shrinkage estimator.

Note that the estimator (8.28) may be rewritten as

From this form we see that the optimal Bayesian semi-parametric estimator for the mean, µ̂ formally coincides with
the posterior mean derived from the full Bayesian Gaussian-Gaussian model,

The advantage of the Bayesian semi-parametric approach is the distribution-robustness: in deriving the estimator
(8.28) neither prior knowledge in the form of a distribution nor a specific parametric model is assumed.
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8.6 Bibliographical notes
The Bayesian philosophy for inference can be traced back to Thomas Bayes' (1763) original writing, which was
published two years after his death. Bayes' Theorem, as generalised by Laplace (1814), which combines prior
knowledge with information contained in the data, forms the starting point for Bayesian inference.

The Bayes linear methods have been developed independently by a number of authors. More technical and
philosophical aspects of the methods can be found in Goldstein (1975b, 1976, 1979, 1981, 1985, 1986, 1990) and
Goldstein and O'Hagan (1996). That linearity of posterior mean implies the form (8.24) was proved by Ericson (1969).
We also note that Bayes linear estimate (8.24) may be obtained without referring to any loss function, but we have to
make instead a some-what obscure assumption that θ − {Cov (z, θ)}t {Var(z)}−1z and z are independent. See Harrison
(1996) for details.

The derivation of the posterior score as the optimal estimating function is due to Ferreira (1982b) and Ghosh (1993).
In this chapter, we have followed Ghosh's definitions and development. Ferreira defined the optimality of estimating
functions using the joint distribution of the parameter and the data, in contrast to Ghosh, whose optimality criterion
was based upon the posterior distribution. These ideas were extended to semi-parametric models by Li (1995) and
Godambe (1999). The discussion of the actuarial applications described in this chapter is based upon Li (1995).
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actuarial science 10, See alsocredibility estimation278
additive estimating function , Seeunbiased additive estimating

function128
affine dynamical system , Seelinear dynamical system239
age ; as related to urinary tract infections 187
AHF activity , Seehaemophilia study75
AHF-like antigen , Seehaemophilia study77
Aitken acceleration 6, 39, 58–62; applied to a diverging

sequence 61; approximation to a derivative using 61;
assumptions used in 61; definition of 60; for truncated
Poisson model 60–61; modified using Steffensen's
method 61–62

Amemiya, T. 109, 110, 287
amoeba algorithm , SeeNelder-Mead algorithm68
ancillary statistic 20
anti-limit 90, 91, 93
anti-symmetry 199; counterexample of 199; of generalised

quasi-likelihood ratio 207
approximate quadratic likelihood , Seequadratic artificial like-

lihood165
approximate quadratic likelihood ratio , Seequadratic artificial

likelihood ratio217
artificial likelihood 8–9, 197–198; based on GMM 232–239;

generalised projected 202–214; through integration
214–217; through projection 199–201; through vector
field decomposition 218–233

artificial likelihood function , Seeartificial likelihood213
artificial objective function , Seeartificial likelihood213
asymptotic efficiency , Seeefficiency1
asymptotic error ; for truncated Poisson model 38–39; of an

iterative algorithm 37
asymptotic examination ; of roots 159–163
attracting fixed point 38, 142, 143, 147, 148, 150–154, 257,

258, 260, 261
autonomous dynamical system 241–242
average information unbiasedness 280, See alsoinformation

unbiasedness274
average unbiasedness 277–278; definition of 277
Bühlmann model 284–285
Bahadur basis 20–21
Bahadur, R. R. 98, 287
Barbeau, E. J. 65, 287
Barndorff-Nielsen, O. E. 196, 239, 287

Barnett, V. D., v 3, 119, 120, 174, 196, 287
Bartlett identities 200
Bartlett, M. S. 100, 287
Basford, K. E. 75, 77, 78, 79, 80, 112, 287
basin of attraction 9, 10, 78, 115, 149, 150, 155, 156, 257, 265,

268, 269, 270, 271
Basu's Theorem 20
Basu, A. 292
Bayes consistency 273–275; definition of 274; regularity

conditions for 273
Bayes linear estimate 281–283; as approximation to the

posterior mean 286; definition of 282
Bayes linear method 281–283; unconditional quadratic risk for

282
Bayes' Theorem 272, 273, 282, 286
Bayes, Rev. T. 272, 286, 287
Bayesian estimating function 10; application in actuarial science

using 284–286; conditionally optimal 281; definition of
275

Bayesian inference ; personal knowledge in 281; sensitivity of
prior in 282

Bayesian logistic regression 187–190, 231, 233
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Bayesian semiparametric estimator 285
BCa method , Seebias-corrected accelerated method189
Berger, J. O. 287
Bergström, H. 89, 287
Bernoulli's method 6, 62–64
beta distribution 231, 273, 282; as a posterior 231, 273; as a

prior 127, 188, 231, 273, 274, 282; mixture of 98–99
Bhattacharyya basis 21
bias-corrected accelerated method 193
bias-correction ; in BCa method 193
Bickel, P. J. 138, 287
Billingsley, P. 194, 287
binomial distribution 231
binomial-beta model 273, 274
Birnbaum, A. 287
bisection method , Seemethod of bisection43
Bissel, A. F. 23, 24, 287
Black-and-Blue Monday , SeeToronto Stock Exchange Com-

posite 300 Index33
Black-Scholes model 26–29
Black-Scholes process 27
bootstrap methods 8, 114, 186; estimating function 8,

190–195; for constructing starting points 111–114;
traditional 8

bootstrap quadratic likelihood 8, 167–169; definition of 169
bootstrap quadratic likelihood ratio 167–177; definition of

169–170; test using 171–177
bootstrap-t interval 191–193; definition of 192
bounded variation 25
Boyles, R. A. 57, 287
Brownian motion 26, 27, 84, 85; geometric 27
Broyden update 53
Broyden, C. G. 53, 287
Burridge, J. 110, 287
Buse, A. 224, 287
canonical link function 104, 231
Carroll, R. J. 101, 104, 175, 196, 217, 288, 294
Casella, G. 134, 292
Cauchy distributions 1, 7, 29, 30, 83–97
Cauchy location model 85–87, 148–150, 154–156, 166, 174;

distribution of the number of relative maxima in 86–87;
mean intensity function for 116–119

Cauchy location-scale model 87–88, 182–184
central limit theorem 128, 137, 160, 194, 228
centred likelihood ratio ; definition of 204; projection of 205;

second-order correction of 206
Chaetocnema concinna 106
Chaetocnema heptapotamica 106
Chandrasekar, B. 17, 288
characteristic equation 67
characteristic function 5, 88, 89, 94, 96; empirical 29–34, 96;

method for fitting 95–97

Chaubey, Y. P. 100, 288
chi-square goodness-of-fit test 164
circular model 130–132, 182; embedding 131–132
claim expense 284
classical unbiasedness , Seeunbiasedness271
classification of roots 142
closest root 132
coefficient of variation 210–214; definition of 210; elementary

estimating function for 211; moment estimator for 211;
unbiased estimating function for 211–214; Wald con-
fidence interval for 214

complete E-sufficiency 20
complete E-sufficient subspace 20; as spanned by likelihood

ratio 20; Bahadur basis for 20; Bhattacharyya basis for
20–21

complete inner product space 17
complete sufficiency 20
complete sufficient statistics 20, 101, 102; for gamma

distribution 211
complex estimating functions 264–271
complex starting point 155, 271
concavity ; of log-likelihood v, 108–110, 186, 293
conditional density 272
conditional information unbiasedness ; definition of 279;

standardisation to satisfy 280
conditional likelihood function 103; in E-M algorithm 54
conditional score 54, 104, 175, 211, 217, 294
conditional unbiasedness 277–278; definition of 277
conditionally optimal estimating function ; definition of 281
conditioning ; in constructing estimating function 211–213
condom use ; as related to urinary tract infections 187
confidence intervals 8, 24; for a normal mean 124; using the

bootstrap 190–195
conservative estimating function 216, 219, 228, 240, 253, 291,

294; sufficient and necessary conditions for 216, 218
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conservative part ; in Helmholtz decomposition 219–220
conservative vector field 5, 9, 111, 197, 198, 214, 215, 216,

218, 245; sufficient and necessary conditions for 218
consistency 1, 126, 133, 137, 139, 161, 163, 166, 171, 174, 175,

234, 253, 255, 287, 288, 290, 294; Bayes , SeeBayes
consistency 273; in relation with stability 252–255

consistent estimator 4, 7, 42, 48, 98, 126, 132, 133, 136, 137,
138, 139, 144, 145, 151, 152, 153, 157, 164, 165, 170, 172,
234, 253; definition of 133

consistent root ; regularity conditions for 4; stability of 9,
249–255; uniqueness of 2, 4

contaminated jar , Seemicrobe system238
continuous time martingale 25
contraceptive use ; as related to urinary tract infections 187
contraction coefficient ; in Nelder-Mead algorithm 69–70
contractive map ; as related to substitution algorithm 48–50
contractive mapping theorem 6, 72
control parameter 81, 82
converge-time 271
converge-time algorithm 270–271
convergence ; in probability 133; stochastic 133; with

probability one 133
convergence of algorithm ; linear 6; rate of 3
convolution 34, 85
Copas, J. B. 87, 109, 183, 196, 288
correlation ; related to efficiency 138
correlation coefficient ; estimation of 80–83, 161–163,

184–185, 264, 266–271; minimal sufficient statistic for 80
count data 38
Cox, D. R. 222, 288, 292
Cramér conditions 2, 97, 98, 128
Cramér, H. 98, 240, 288, 291
credibility estimation 284–285
credibility estimator 284
Cressie, N. A. 117, 288
cross-validation 189; in model selection 189–190; leave-one-

out 189
Crowder, M. 4, 288
cubic estimating equation 7, 41, 80, 81, 161, 162, 185,

267–269See alsopolynomial estimating equation7
curved exponential family 135, 288
cusp catastrophe 81, 82
cusp surface 81
Daniels, H. E. 119, 196, 288
Darling, R. W. R. 220, 288
Davison, A. C. 193, 196, 288
Dempster, A. P. 54, 57, 288
Dennis, J. E. 73, 288
Diaconis, P. 283, 288
diaphragm use ; as related to urinary tract infections 187
differential form 220, 288
diffusion coefficient , Seevolatility26

diffusion parameter ; in Brownian motion 27, 84
Diggle, P. 288
directional derivative 251, 253, 254, 255
discrete dynamical system 242, 255, 256, 258, 267
discrete time dynamical system , Seediscrete dynamical
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distribution-robustness , Seerobustness280
divergence ; empirical information , Seeempirical information

divergence 156; information , Seeinformation diver-
gence 156; Kullback-Leibler 240; of iterative algorithms
42, 143; of vector fields 198, 218, 220definition of
218–219

divergence-free vector field ; definition of 218–219
dividend yield ; in Black-Scholes model 26
domain of attraction , Seebasin of attraction149
Doob-Mayer decomposition 36
drift ; in Brownian motion 27, 84
DuMouchel, W. H. 95, 288
Durbin. J. 13, 36, 288
dynamical estimating system 9, 10, 241–243, 244, 249, 250, 259
dynamical system 7, 9, 10, 142, 241–243, 250, 252, 256–265,

267, 291, 293; linear 243–249
E-ancillarity 20; first-order 18, 21
E-ancillary subspace 20
E-conservativeness 216, 220, 228; definition of 216; role in

constructing artificial likelihood 220
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E-M algorithm 6, 53–58, 79, 105, 287, 288; conditions for
convergence of 57; E-step in 54; for a general estimating
equation 57–58; for a likelihood equation 53–57; for
normal mixture 55–56; for truncated Poisson model
54–55; linear rate of convergence of 57; M-step in 54

Edwards, A. W. F. 288
efficiency 1, 3, 14, 97, 120, 121, 133, 134, 138, 145, 234, 238,

239, 288, 289; Godambe , SeeGodambe efficiency 5;
related to correlation 138

efficient estimator 4, 7, 126, 132, 134, 135, 138, 139, 144
efficient likelihood estimator 4, 7, 126, 133–135, 138, 139, 148;

definition of 135
Efron, B. 135, 193, 196, 288, 289
Eguchi, S. , vii, 135, 289
elementary estimating function 8, 128, 131, 198, 202–205, 207,

211–214, 218, 234, 237, 238
empirical characteristic function 5, 29–34, 96, 289
empirical information divergence 156, 158, 159
energy function 252
Engle, R. F. 224, 289
equilibrium state, See fixed point 238
equivarience property ; of confidence intervals 190
ergodic property ; of estimating functions 43, 112
Ericson, W. A. 286, 289
error bound ; for polynomial estimating equation 40–42; for

substitution algorithm 42; of an iterative algorithm 40
error probability ; of confidence intervals 191
escape-time , Seeescape-time algorithm260
escape-time algorithm 265–266
estimating equation , See alsoestimating function11; expected ,

Seeexpected estimating equation 57; generalised , Seegen-
eralised estimating equation 235; problem of solving
127–129; saddlepoint approximation for 288

estimating function ; an irregularity condition of 129–120,
209; as a vector field 218–219; Bayesian , SeeBayesian
estimating function 267; conditionally optimal , Seecondi-
tionally optimal estimating function 275; correlation with
score function 14; cubic , Seecubic estimating equation 7;
definition of 11; degenerate 8, 87, 103, 185–190; E-
ancillary 20; ergodic property of 43; excess variation in
119; first-order E-ancillary 18, 20, 21; first-order E-
sufficient 18, 20, 21; Godambe efficient 12, 13, 15, 36,
139, 237, 239, See alsoGodambe efficiency5definition of 12;
Hutton-Nelson martingale 25, 26; information unbiased
15; integration of 214–217; irregular , Seeirregular
estimating function 7; likelihood , See score estimating
function 126; martingale 5, 24–29; nonlinearity of, v
236; polynomial , Seepolynomial estimating equation 6;
score 126, 141, 144, 177, 182, 188, 217; selection of 74;
standardised 12, 280–281; transformed 1, 125, 129, 193;
triangular 32–33; unbiased 11

estimating function bootstrap 8, 190–195, 196, 290; algorithm

of 195; second-order accuracy of 195
Euler transformation 7, 90–91, 92, 93; definition of 90
expansion coefficient ; in Nelder-Mead algorithm 69
expected estimating equation 57–58, 294; definition of 57
expected information , SeeFisher information14
exponent ; of a stable law 29, 30, 31, 32, 84, 85, 88, 89, 95
exponential family 1, 34, 54, 101, 109, 135, 215, 283, 288, 290
exterior derivative 220
Fahrmeir, L. 186, 289
false positions 3, 6, 44–47, 48, 61; definition of 45; faster rate

of convergence of 45; for truncated Poisson model
45–46

Fama, E. 95, 289
Feller, W. 289
Ferguson, T. S. 98, 99, 240, 289
Ferreira, P. E. 17, 286, 289
Feuerverger, A. 96, 289
filled-in Julia set 265, See alsoJulia set10
Finch, S. J. 114, 115, 289
first-order accuracy 191, 192, 194
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first-order asymptotics 3, See alsoefficiency3
first-order conservativeness ; definition of 228
first-order E-ancillarity 18, 21
first-order E-sufficiency 18, 21
first-order information unbiasedness 145, 146, 148, 152, 153,

173, 254; definition of 145
Fisher information 14, 134, 135, 171, 177, 178, 222, 288, 292
Fisher's scoring method 3, 51, 134, 255; advantage of 51;

linear rate of convergence of 51
Fisher's scoring of parameters , SeeFisher's scoring method3
Fisher, R. A. 1, 3, 134, 288, 289
Fisher-consistency 135
fixed points ; of continuous dynamical systems 243; of

discrete dynamical systems 256; of iterative algorithms
141; stability of 9, 51, 154, 243–244, 249–255, 260

fixed-derivative Newton's method 3
flow ; of a dynamical system 242; of a vector field 110
fluid field 242
Fourier transform 1, 94, 96
Foxman, B. 187, 289
frequentist approach 11, 272, 274, 284
Frobenius norm 53
full likelihood function ; in E-M algorithm 54
Fuller, W. A. 175, 289
Gabor, G. 100, 288
Gamerman, D. 273, 289
gamma distribution 24, 211, 212, 214
Gan, L. 166, 289
Gaussian elimination 72
Gaussian-Gaussian model 276–277, 285
GEE , Seegeneralised estimating equation232
general linear hypothesis 222, 223, 224, 225
generalised E-M algorithm 57–58; for longitudinal data

analysis 57–58; generalised E-step in 57; generalised M-
step in 57

generalised estimating equation 236–239, 240; definition of
237

generalised Helmholtz decomposition ; optimal 220; definition
of 219–220; principles for constructing 220

generalised least squares 131, 198, 240
generalised linear measurement error model 7, 57, 101–103,

104, 140, 173, 174–177, 217, 248–249, 287, 289, 293, 294,
See alsoregression with measurement error103

generalised linear model ; with measurement error , Seegener-
alised linear measurement error model 7; for longitudinal
data 236–237

generalised maximum likelihood estimator 281
generalised method of moments 9, 198, 218, 232–234, 240
generalised projected artificial likelihood 202–214, 221
generalised projected artificial likelihood ratio 203–208; anti-

symmetry of 207; application to multiple roots 208–210;
application to quasi-score 207; application to the

coefficient of variation 210–214; asymptotic distribution
of 208; definition of 206; properties of 207–208

generalised projected likelihood , Seegeneralised projected
artificial likelihood198

generalised projected likelihood ratio , Seegeneralised projected
artificial likelihood ratio199

generalised quasi-likelihood 214–217
generalised quasi-likelihood ratio 216–217; definition of 216
generalised score statistic 171, 223, 224
geometric Brownian motion 27
Ghosh, M. 281, 286, 289
Gillespie, B. 289
Gilmore, R. 82, 241, 289
Gini's coefficient of concentration 210
global maximum of likelihood 4, 7, 13, 78, 79, 80, 97, 98, 108,

112, 179, 289
global stability 250, 252
Godambe efficiency 5, 7, 12–13, 14, 15–21, 26, 36, 96, 126,

127, 135–140, 144, 177, 178, 202, 235–237, 239, 272;
geometric interpretation of 17–21; in multiparameter
model 15–17; in one parameter model 12–13

Godambe efficient estimator 7, 126, 138, 139, 144, 267;
definition of 135; one-step estimator as 135–137,
144–145

Godambe optimality criterion , SeeGodambe efficiency5
Godambe, V. P. 13, 36, 178, 224, 283, 286, 289, 290, 294
Goldstein, M. 282, 286, 290
Good, I. J. 115, 290
gradient vector field 5
Greene, W. 110, 290
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Habbema, J. D. F. 77, 290
Haberman, S. J. 186, 290
haemophilia study 77–80
Hall, P. 193, 196, 290
Hanfelt, J. J. 104, 175, 196, 207, 208, 209, 213, 214, 216, 217,

239, 290
Hansen, L. P. 234, 236, 240, 290
Harrison, P. J. 286, 290
Hartigan, J. A. 282, 290
Helmholtz decomposition 9, 198, 220; generalisation of 220
Henrici, P. 63, 73, 290
Hermans, J. 290
Hessian ; negative definiteness of 110; of log-likelihood 107,

108, 109, 148, 169, 183
heteroscedastic model 78, 79, 80
Heyde, C. C, vii 8, 22, 29, 36, 104, 138, 160, 163, 165, 196, 290,

291
hill climbing algorithm, v 6, 94
Hinkley, D. V. 135, 193, 196, 222, 288, 292
hitting time ; of a random walk 84, 85
Hodges star operator 220
Holcomb, E. W. 293
homoscedastic mixture of normals 74–80, See alsonormal

mixture55
Hu, F. 195, 196, 291
Hutton, J. E. 36, 291
Hutton-Nelson estimating function , SeeHutton-Nelson mar-

tingale estimating function25
Hutton-Nelson martingale estimating function 26
Huzurbazar, V. S. 1, 2, 109, 290
hyper-parameter ; in Bayesian logistic regression model 188,

189, 190, 231, 232
hyperbolic fixed point 252, 253
identifiability 7, 74–80, 78, 130, 132; definition of 74
imaginary parameter 10, 265
improper prior 277
inconsistent estimator 2, 7, 98, 99, 102, 104, 150, 164, 165,

210, 264, 289,
infinite series ; accelerating the convergence of 7, 89–91, See

alsoEuler transformation7
information divergence 156, 158, 159, 166
information unbiasedness 4, 5, 22, 36, 143, 110, 126, 129, 145,

156, 157, 200, 207, 225, 229, 230, 255; average 280;
conditional 279–280; definition of 15; first-order 145,
146, 148, 151, 152, 153, 173, 254, 263definition of 145

inner product 17, 19, 200, 202, 203, 204, 206; definition of 17,
200

inside contraction ; in Nelder-Mead algorithm 70
insurance policy 284
integral curve 242, See alsoflow110
integrated quasi-score ; path-dependency in 22
intensity parameter ; in Poisson process 34, 73

interest rate ; in Black-Scholes model 26
intermediate value theorem 3, 44, 48
invariance under reparameterisation ; violation by one-step

estimator 139
inverse Fourier transform 94, 96
inverse sampling 55
inversion of matrices 6, 16, 72
irregular estimating function 7, 125, 129–132, 182, 208, 209;

arising in circular model 130
irrotational vector field , Seeconservative vector field193
Irwin, M. C. 244, 252, 291
Isaacson, E. 291
Itô integral 25–26
Itô stochastic integral , SeeItô integral25
Itô's Lemma 27
iterative algorithm , SeeAitken acceleration; Bernoulli's method;

E-M algorithm; false positions; Jacobi iteration; method of
bisection; Muller's method; Nelder-Mead algorithm; New-
ton's method; Sturm's method; substitution algorithm43

iterative substitution algorithm , Seesubstitution algorithm48
Iwata, S. 110, 291
Jacobi iteration 6, 36, 71–73; an example using 73
Jensen, J. L. 119, 291
Jiang, J. 166, 289
Johnson, N. L. 230, 291
joint density 101, 272, 277
Julia sets 10, 264–266, 270
just-identified case ; in generalised method of moments 234,

235, 236
Kalbfleisch, J. D. 100, 195, 196, 291
Kale, B. K. 17, 202, 288, 291
Kass, R. E. 135, 291
Kaufmann, H. 186, 291
Keller, H. B. 291
Kendall, M. G. 11, 291, 292, 294
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Klaassen, P. 287
Koopman, J. S. 289
Kotz, S. 230, 291
Koutrouvelis, I. A. 97, 291
Kraft, C. H. 98, 291
Kullback, S. 240, 291
Kullback-Leibler distance , SeeKullback-Leibler informa-

tion111
Kullback-Leibler divergence , SeeKullback-Leibler informa-

tion235
Kullback-Leibler information 112, 179, 240
Laird, N. M. 288
Lange, K. 73, 291
Laplace, P. S. 286, 291
Le Cam, L. 98, 138, 240, 291
least squares estimator 103
least squares method 11, 103, 131, 163, 165; Bayesian 293;

generalised 198, 240; weighted 8, 93, 105, 107, 164, 234
Lehmann, E. L. 4, 98, 134, 196, 291, 292
Leitch, R. 293
Li, B. 196, 207, 209, 239, 240, 292, 293
Li, X. 286, 292
Liang, K.-Y. 104, 175, 196, 207, 208, 209, 213, 214, 216, 217,

237, 238, 239, 240, 288, 290, 292
Liapunov stability , SeeLiapunov stable fixed point244
Liapunov stable fixed point 244, 246, 252; definition of 244
Liapunov's method 9, 145, 251
Liapunov's theorem 252
Liapunov, A. M. 251, 292
likelihood , Seelikelihood function267
likelihood analysis 1, 89, 107
likelihood equation , Seescore function1; weighted , Seeweighted

likelihood equation 103
likelihood estimating system 253, 255
likelihood function 1, 2, 7–9, 13, 34, 35, 54, 55, 66, 74–76, 79,

82, 85, 97, 98, 100, 110, 119–124, 127, 128, 133, 141, 144,
150, 166, 169, 183, 184, 186, 187, 189, 196–199, 201, 206,
211, 215, 216, 218, 224, 225, 253, 255, 259, 261, 272, 277,
290, 293; for augmented data 55; local minimum of 2,
103, 111, 114, 148, 150, 158, 269; multimodality of 75, 78,
100; smoothed , Seesmoothed likelihood function 119

likelihood inference 85, 272
likelihood ratio 20, 98, 126, 197, 200, 202, 203, 204, 206, 208,

221, 224, 253, 287, 289, 290; approximation by Taylor
expansion 204; definition of 199; projection of 8,
199–201

limit pricing 84–85
Lindley, D. V. 287, 292
Lindsay, B. G. 104, 135, 292, 293
line integral 5, 198, 214, 215, 216; a condition for path-

independency 214; path-dependency of 5
linear Bayes method , SeeBayes linear method276

linear convergence 6, 39, 51, 58, 61
linear dynamical system 244–249
linear functional 17, 19; norm of 17
linear model 1; generalised , Seegeneralised linear model 7
linearisation method 9, 261
linearity of posterior mean 283, See alsoposterior mean277
Lipschitz condition 49
Liu, R. Y. 292
local linearisation method 261
local log-density 201
local stability, See stability 249
locally finite counting measure 116
location model 8, 177–179, See alsoCauchy location model85
Loewner ordering 16, 17, 202
log-likelihood function , Seelikelihood function1
logistic regression ; with measurement errors 174–177,

248–249
longitudinal data analysis 57–58; expected estimating equation

for 58
Lubischew, A. 106, 292
lubricated condom use ; as related to urinary tract infections

187
Mandelbrot, B. 31, 292
Mantel, H. J. 164, 165, 196, 294
MAPLE , vii, 66, 117
marginal density 272
marginal likelihood function ; in E-M algorithm 54
marginal score 54, See alsomarginal likelihood function54
Markatou, M. 104, 105, 106, 107, 112, 114, 115, 125, 292
Markov chain Monte Carlo 273, 289
Marsh J. V. 289
martingale ; continuous time 25
martingale estimating function 5, 24–29; definition of 25
MATHEMATICA , vii, 66
MATLAB , vii, 67, 68, 71
maximal linear vector space 200
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maximum likelihood estimation 11, 93, 95, 96, 97, 100, 287,
289, 294; for stable laws 95–96; problems of 97–99

maximum likelihood estimator 1, 3, 7, 13, 55, 57, 61, 95, 98,
107, 112, 127, 135, 141, 144, 148, 149, 150, 158, 187, 196,
240, 243, 249, 252, 253, 268, 269, 287–294; a consistent
but inefficient 100; as approximation to the minimum x2

estimator 240; asymptotic efficiency of 1, 97, 288;
consistency of 1–3; for stable laws 95; generalised 281;
inconsistency of 2, 7, 98–99, 102, 287, 289, 298; marginal
78; more efficient estimators than 118–119; regularity
conditions for consistency of 97; smoothed 119; stability
of 247–248

McCullagh, P. 5, 196, 203, 214, 225, 236, 240, 292
McCulloch, J. H. 94, 292
McDunnough, P. 96, 289
McLachlan, G. J. 75, 77, 78, 79, 80, 112, 287
McLeish, D. L. , vii, 21, 31, 33, 36, 196, 198, 200, 201, 202,

239, 292, 294
Mead, R. 73, 293
mean intensity 116; for Cauchy location model 117–119
mean of a non-normal distribution ; estimation of 160–161
mean weighting statistic 106
measles epidemiology 65–66
measure of dispersion , Seecoefficient of variation206
median ; fitting of 95
Mendell, N. R. 289
method of bisection 43–44; a caution about 44; definition of

44; for truncated Poisson model 44; slow convergence of
44

method of false positions , Seefalse positions45
method of least squares , Seeleast squares method11
method of scoring , SeeFisher's scoring method131
microbe system 243–244
minimum chi-square estimation 11, 165, 240, 293
minimum variance unbiased estimator 5, 138
mixing density 181, 182
mixture embedding ; an example using 181–182; definition of

181
mixture model 6, 55–56, 74–80, 105, 107, 125, 287
mixture of normals , Seenormal mixture77
MLE , Seemaximum likelihood estimator94
model embedding , Seemodel enlargement176
model enlargement 179–185, 208–209; via mixing 180–182
model selection 74, 180, 189
modified Muller's method 8, 156–159
modified Newton's methods 10, 139–150, 241, 255–264
moment measure 115
monotonicity of estimating function, v 80, 90, 194, 195
Morton, R. 8, 104, 160, 163, 165, 196, 290
moving average 119
Muller's method 6, 8, 47–48, 58, 126; modified , Seemodified

Muller's method 8

multimodality ; of likelihood function 4, 75, 78, 80, 100
multiple roots ; arising in circular model 131; detection of

107–111; finding all 111–115; selection from 132–139,
139–150, 150–156, 156–159, 159–163, 163–166, 167–177,
177–179, 179–185

negative (semi-) definiteness , Seepositive definiteness246
negative binomial distribution 55
Nelder, J. A. 5, 73, 203, 214, 236, 292, 293
Nelder-Mead algorithm 68–71, 73, 79; advantage of 6;

contraction coefficient in 70; expansion coefficient in
69; expansion step of 70; inside contraction in 70;
outside contraction in 70; reflection coefficient in 69;
shrinkage coefficient in 70; shrinkage step in 70, 71

Nelson, P. I. 36, 291
Newton's method 3, 4, 6, 7, 10, 37, 46, 50–53, 58, 61, 64, 69,

73, 79, 104, 114, 122, 126, 139–150, 150–156, 241,
255–264, 265, 267, 268–271; as a discrete dynamical
system 256–259; as a substitution algorithm 50–52; at a
degenerate point 51–52; fixed-derivative 33; modified ,
Seemodified Newton's method 10; modified using an
information identity 150–156, 262–264; quasi- , Seequa-
si-Newton method



INDEX 305

93; with continuity correction 139–150, 259–262, See
alsomodified Newton's method10

Newton-Raphson algorithm , SeeNewton's method37
Neyman's minimum x2 method , Seeminimum chi-square

estimation11
Neyman, J. 98, 100, 101, 287, 293
Nolan, J. P. 94, 293
nominal coverage probability 191, 194
non-conservative estimating function , Seeconservative estimat-

ing function211
non-conservative vector field , Seeconservative vector field193
non-degenerate point ; in parameter space 221
nonidentifiability , Seeidentifiability74
nonsingular point 169
norm ; of a linear functional 17
normal distribution 1, 30, 55–56, 85, 101, 102–104, 192,

276–277, 285; bivariate 7, 80–83, 106, 161–163, 184–185,
196, 264, 266–271; limiting 137, 139, 140; log- 29;
mixture of , Seenormal mixture 55

normal mean ; in stratified sampling 99–100
normal mixture 55–56, 74–80, 287
nuisance parameter 58, 98, 101, 122, 175, 211, 213, 224, 225,

230, 238, 239, 288, 289, 293, See alsoprofiled quadratic
artificial likelihood220

O'Hagan, A. 273, 286, 290, 293
objective function ; nonexistence of 4, 8, 22, 110, 111, 128,

197, 219
observations ; subset of 79
Olsen, R. 109, 110, 293
one-step estimator, v 4, 122, 126, 132–139, 144, 145; definition

of 133
optimal estimating function 12–13, 13–15, 15–17, 17–21, 128,

198, 202203, 207, 211, 213, 214, 216, 218, 224, 237, 283,
285, 286; E-conservativeness of 216; equivalent con-
ditions for 17

optimally weighted estimating function , Seeoptimal estimating
function199

Ord, J. K. 82, 196, 294
ordering ; in parameter space 197, 199
Orme, C. 110, 293
outside contraction ; in Nelder-Mead algorithm 70
over-identified case ; in generalised method of moments 235
overdispersion 24; effect on interval estimation 24; effect on

point estimation 24
parameter ; as state of phase space 241; imaginary 10, 265
parameterisation-invariance 78, 109, 132, 139, 143, 193, 267;

violation of 109, 132
parent model 180, 181, 182
path-dependent integral , Seeline integral5
Paulson, A. S. 96, 293
Pearson residual 105
Pearson's coefficient of variation , Seecoefficient of varia-

tion206
Pearson, K. 210, 287, 293
Pepe, M. S. 57, 58, 294
Perlman, M. D. 2, 293
phase portrait 250
phase space 241, 242, 245, 250, 251
Phillips, L. D. 292
point process 7, 34, 115, 116, 117, 118
Poisson distribution 23, 34, 35, 86; zero-truncated 38–40, 44,

45–46, 54–55, 60–61
Poisson process 23, 34, 73; nonhomogeneous 34
polynomial estimating equation 6, 40–42, 62, 63, 64, 117
population biology of fish species 75–76
positive definiteness ; of a scalar function 251
positive semi-definiteness , Seepositive definiteness246
posterior distribution 272, 273, 274, 275, 276, 277, 282, 286
posterior mean 282, 283, 285, 286, 289; linearity of 283, 286
posterior score 188, 231, 275–281, 286; optimality of 281
posterior weights 197
potential function 198, 252, 253, 291; associated with

Helmholtz decomposition 198
Pratt, J. W. 110, 293
prediction 284
principle of parsimony 180
prior distribution 187–190, 272–274, 277, 281–284; improper

277
prior estimating function 278
prior information 197, 274, 282
prior score 275
probability generating functional 117
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problem of estimation 7, 127–129
profile likelihood function 100, 122, 123, 225; multimodality

of 100; smoothed 122–123
profiled estimating function 224–225
profiled quadratic artificial likelihood 224–227
profiled quadratic artificial likelihood ratio ; asymptotic

distribution of 227–231
projected artificial likelihood 199–201
projected artificial likelihood ratio 201
projected likelihood , Seeprojected artificial likelihood195
projected likelihood ratio , Seeprojected artificial likelihood

ratio195
Protter, P. 25, 294
QR-algorithm 6, 67, 68
Qu, A. 9, 236, 238, 239, 240, 293
quadrat ; in quadrat sampling 34
quadrat sampling 5, 6, 34–36, 73
quadratic artificial likelihood 169, 218–232; construction of

218–221; definition of 169, 221
quadratic artificial likelihood ratio ; asymptotic distribution of

227–231; definition of 221–222; test based on 221–224
quadratic estimating function 165
quadratic inference function 9, 235–236; application to GEE

236–239; definition of 236; test based on 239
quadratic risk 282
quantile ; fitting of 95; method of 95–96
quantile estimate 95
quasi-Fisher information , SeeGodambe efficiency213
quasi-Hessian 146, 147, 170, 216, 221, 225, 228
quasi-likelihood , v, 6, 9, 21–24, 35, 36, 69, 71–73, 112, 138,

214–215, 290, 291, 292, 294; generalisation of 216–217
quasi-Newton method 6, 47, 52–53, 94
quasi-score 4, 22, 24, 130, 132, 200, 201, 207, 214, 221, 228,

237; integrated 22, 214–215; objective function for
210–211

quotient-difference algorithm 6, 62–64; comparison with
Newton's method 64; rate of convergence of 64

random starting point 114, 158, 159
random walk 85
Rao, C. R. 236, 291, 293
rate of convergence ; bound on 37, 40–42, 43, 44
Reeds, J. A. 86, 174, 293
reflection coefficient ; in Nelder-Mead algorithm 69
reflection principle ; for hitting time 85
regression ; with stable error 93
regression with measurement error 101–104; conditional

inference for 101–102; logistic 104; normal 102–103
regula falsi , Seefalse positions45
regular curve 215, 216, 217
regular point ; of a dynamical system 250
regularity conditions of Wald , SeeWald conditions98
relative likelihood principle 97–99; definition of 97

reparametrisation of model, v 109
repelling fixed point 142, 143, 148, 152, 154, 257, 260, 261,

262
restricted model 100, 102
Riesz representation 19
Riesz representation theorem 5, 17, 18
risk function ; minimisation of 8
Ritov, C. A. J. 287
RLP , Seerelative likelihood principle96
Robbins, H. 115, 293
robustness ; against model misspecification 211, 283, 285;

against prior distribution 282, 283, 285; against outliers
31; against initial values 140, 147, 150

Roll, R. 95, 289
root ; as a fixed point 243; as related to eigenvalue 67–68;

classification of 141–142; modulus of 62, 63, 64, See
alsoBernoulli's method62; nonexistence of 185–190;
plausibility of 199; reasonable 112; search for all
111–115; sufficient conditions for uniqueness of 108;
topological 112; unreasonable 112; weighting of 197

root functional 115–119
root measure 115–119
root selection ; by a formal test 163–166; by asymptotic

examination
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159–163; by iterating from a consistent estimator
132–139; using a bootstrap method 167–177; using a
modified Muller's method 156–159; using a modified
Newton's method 139–150; using a shifted information
177–179; using an information-identity based algorithm
150–156; via model enlargement 179–185

RSP , Seerandom starting point113
Rubin, D. B. 288
Rubin, K. N. 289
Ruppert, D. 288
saddle point 22, 108, 110, 111, 112, 126, 141, 145, 147, 150,

152, 246, 247, 249, 259, 262
sample space ; partition of 164
Savage, L. L. 281, 287, 293
scalar objective function , Seeobjective function193
scaling law 85
Schafer, D. W. 175, 293
Scheinerman, E. R. 245, 293
score function 5, 13–15, 16, 18, 21, 22, 51, 54–56, 61, 66, 87,

96, 97, 104, 105, 113, 120, 121, 133, 148, 155, 166, 171,
196, 197, 200, 222, 225, 232, 240, 243, 253, 264, 266, 272,
276–281; definition of 13; multiple roots to 2, 7, 74, 79,
125; optimality of 14–15; unbiasedness of 13; uniqueness
of root to 1, 2, 4, 7, 8, 66, 78, 79, 80, 82, 83, 87, 107–109,
111, 180, 182, 184–186, 281, 291, 292, 294

score functional 17, 18
score statistic 222–223; generalised 223
score test statistic , Seescore statistic218
scoring , SeeFisher's scoring method51
Scott, E. L. 98, 100, 101, 293
secant equation 53
secant method 47, 52, 53
second-order accuracy 8, 192, 193, 194, 195
second-order efficiency 135
semi-parametric estimation ; in relation with Bayes linear

method 281–283
semimartingale 25, 26, 290
semiparametric model 4, 5, 21–24, 126, 127–129
sensitivity , Seerobustness276
separatrix 81, 82
Severini, T. A. 201, 293
Shao, J. 196, 293
shifted information 8, 127, 177–179, 209; definition of 177
shrinkage coefficient ; in Nelder-Mead algorithm 70
shrinkage estimator 285
Silvapulle, M. J. 186, 293
similar matrix 67
simple iterative substitution , Seesubstitution algorithm2
simplex search method 68
Singh, A. C. 164, 165, 196, 294
sink 110, 111, 126, 145, 146, 147, 150, 152, 219, 245, 246, 247,

249, 262; consistent estimator as a 146

Skovgaard, I. M. 118, 119, 294
Small, C. G. 33, 36, 119, 157, 174, 196, 198, 199, 200, 201, 202,

239, 292, 294
smoothed likelihood function 119–124; with uniform kernel

120–122
smoothed maximum likelihood estimator 119; efficiency of

120–121
smoothing ; by moving average 119; for a normal model

122–123
Smouse, E. P. 282, 294
Solari, M. 196, 294
solenoidal vector field , Seedivergence-free vector field214
source 110–111, 126, 145, 147, 150, 152, 246, 248, 262
Spear, S. 289
species of beetles 106
spectral radius 72
spermicide use ; as related to urinary tract infections 187
spline interpolation ; of density function 94
Sprott, D. A. 100, 291
stability ; Liapunov , SeeLiapunov stable fixed point 244; of
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