

Graduate Texts in Physics

For further volumes:
www.springer.com/series/8431

Graduate Texts in Physics
Graduate Texts in Physics publishes core learning/teaching material for graduate- and ad-
vanced-level undergraduate courses on topics of current and emerging fields within physics,
both pure and applied. These textbooks serve students at the MS- or PhD-level and their
instructors as comprehensive sources of principles, definitions, derivations, experiments and
applications (as relevant) for their mastery and teaching, respectively. International in scope
and relevance, the textbooks correspond to course syllabi sufficiently to serve as required
reading. Their didactic style, comprehensiveness and coverage of fundamental material also
make them suitable as introductions or references for scientists entering, or requiring timely
knowledge of, a research field.

Series Editors

Professor William T. Rhodes
Department of Computer and Electrical Engineering and Computer Science

Imaging Science and Technology Center
Florida Atlantic University
777 Glades Road SE, Room 456
Boca Raton, FL 33431
USA
wrhodes@fau.edu

Professor H. Eugene Stanley
Center for Polymer Studies Department of Physics
Boston University
590 Commonwealth Avenue, Room 204B
Boston, MA 02215
USA
hes@bu.edu

Professor Richard Needs
Cavendish Laboratory
JJ Thomson Avenue
Cambridge CB3 0HE
UK
rn11@cam.ac.uk

Simon Širca � Martin Horvat

Computational
Methods for
Physicists

Compendium for Students

Simon Širca
Faculty of Mathematics and Physics
University of Ljubljana
Ljubljana, Slovenia

Martin Horvat
Faculty of Mathematics and Physics
University of Ljubljana
Ljubljana, Slovenia

ISSN 1868-4513 ISSN 1868-4521 (electronic)
Graduate Texts in Physics
ISBN 978-3-642-32477-2 ISBN 978-3-642-32478-9 (eBook)
DOI 10.1007/978-3-642-32478-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012951441

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to our parents

Preface

This book evolved from short written homework instructions for the course in Com-
putational Physics at the Department of Physics, University of Ljubljana. The feed-
back received from the students was used to gradually supplement the instructions
by oral presentations in the classroom and additional material on the web. The her-
itage of this course, established and initially taught for a number of years by Pro-
fessor Kodre, represented a basis onto which we attempted to span an even richer
manifold, and to better elucidate the “exercises” from the mathematical, physical, as
well as programming and computational viewpoints. The somewhat spartan instruc-
tions thus evolved into a much more general textbook which is intended primarily
for third- and fourth-year physics students, and for Ph.D. students as an aid for all
courses with a mathematical physics tinge. The book might also appeal to mathe-
matics students. It was one of our local goals to modestly interweave physics and
mathematics studies, and this is why the book steers between mathematical rigidity
and more profane perspectives of numerical methods, while it tries to preserve the
colorful content of the field of mathematical physics.

We were driven by the realization that physics students are often insufficiently
prepared to face various obstacles they encounter in numerical solution or modeling
of physical problems. Only a handful of them truly know how something can “ac-
tually be computed” or how their work can be efficiently controlled and its results
reliably checked. Everyone can solve the matrix system Ax = b, but almost no one
has an idea how to estimate the error and relate this estimate to the possible true
error. They use explicit integrators of differential equations indiscriminately until
they try to look closely at solutions of a problem as simple as ẍ = −x. The direness
of the situation is compounded by many commercial tools giving a false impression
that all problems can be solved by a single keystroke. In parts of the text where basic
approaches are discussed, we insist on seemingly ballast numerical details while, on
the other hand, we did wish to offer at least some “serious” methods and illustrate
them by manageable examples. The book swings back and forth between these ex-
tremes: it tries to be neither fully elementary nor encyclopedically complete, but at
any rate representative—at least for the first-time reader.

vii

viii Preface

The book is structured exactly with such gradations in mind: additional, “non-
compulsory” chapters are marked with stars � and can be read by particularly moti-
vated students or used as reference. Similarly, the

⊙
symbols denote simpler tasks

in the end-of-chapter problems, while more demanding ones are marked by the sym-
bols

⊕
. The purpose of the appendices is not merely to remove the superfluous

contents from the main text, but to enhance programming efficiency (above all, Ap-
pendices B, C, E, I, and J). The sour apples we force our reader to bite are the lack
of detailed derivations and references to formulas placed in remote parts of the text,
although we tried to design the chapters as self-contained units. This style requires
more concentration and consultation with literature on the reader’s part, but makes
the text more concise. In turn, the book does call for an inspired course tutor. In a
typical one-semester course, she may hand-pick and fine-tune a dozen or so end-
of-chapter problems and supply the necessary background, while the students may
peruse the book as a convenient point of departure for work.

The end-of-chapter problems should resonate well with the majority of physics
students. We scooped up topics from most varied disciplines and tried to embed
them into the framework of the book. Chapters are concluded by relatively long
lists of references, with the intent that the book will be useful also as a stepping
stone for further study and as a decent vademecum.

In spite of all care, errors may have crept in. We shall be grateful to all readers
turning our attention to any error they might spot, no matter how relevant. The Er-
rata will be maintained at the book’s web-page http://cmp.fmf.uni-lj.si, which also
contains the data files needed in some of the problems.

We wish to express our gratitude to Professor Claus Ascheron, Senior Editor at
Springer, for his effort in preparation and advancement of this book, as well as to
Donatas Akmanavičius and his team for its meticulous production at VTeX.

The original text of the Slovenian edition was scrutinized by two physicists
(Professors Alojz Kodre and Tomaž Prosen) as well as four mathematicians (Asso-
ciate Professors Emil Žagar, Marjetka Krajnc, Gašper Jaklič, and Professor Valery
Romanovski, who carefully examined the section on Gröbner bases). We thank
them; from the navigation between the Scylla and Charibdis of these reviewers we
emerged as better sailors and arrived happily, after years of roaming the stormy seas,
to our Ithaca.

Simon Širca
Martin Horvat

Ljubljana, Slovenia

Contents

1 Basics of Numerical Analysis . 1
1.1 Introduction . 1

1.1.1 Finite-Precision Arithmetic 1
1.2 Approximation of Expressions 6

1.2.1 Optimal (Minimax) and Almost Optimal Approximations . 6
1.2.2 Rational (Padé) Approximation 9
1.2.3 Summation of Series by Using Padé Approximations

(Wynn’s ε-Algorithm) . 12
1.2.4 Approximation of the Evolution Operator for a

Hamiltonian System . 14
1.3 Power and Asymptotic Expansion, Asymptotic Analysis 16

1.3.1 Power Expansion . 17
1.3.2 Asymptotic Expansion . 17
1.3.3 Asymptotic Analysis of Integrals by Integration by Parts . . 19
1.3.4 Asymptotic Analysis of Integrals by the Laplace Method . 21
1.3.5 Stationary-Phase Approximation 24
1.3.6 Differential Equations with Large Parameters 27

1.4 Summation of Finite and Infinite Series 31
1.4.1 Tests of Convergence . 32
1.4.2 Summation of Series in Floating-Point Arithmetic 33
1.4.3 Acceleration of Convergence 36
1.4.4 Alternating Series . 38
1.4.5 Levin’s Transformations 42
1.4.6 Poisson Summation . 44
1.4.7 Borel Summation . 44
1.4.8 Abel Summation . 45

1.5 Problems . 46
1.5.1 Integral of the Gauss Distribution 46
1.5.2 Airy Functions . 48
1.5.3 Bessel Functions . 50

ix

x Contents

1.5.4 Alternating Series . 51
1.5.5 Coulomb Scattering Amplitude and Borel Resummation . . 52

References . 53

2 Solving Non-linear Equations . 57
2.1 Scalar Equations . 59

2.1.1 Bisection . 59
2.1.2 The Family of Newton’s Methods and the Newton–

Raphson Method . 60
2.1.3 The Secant Method and Its Relatives 64
2.1.4 Müller’s Method . 65

2.2 Vector Equations . 67
2.2.1 Newton–Raphson’s Method 67
2.2.2 Broyden’s (Secant) Method 69

2.3 Convergence Acceleration � . 72
2.4 Polynomial Equations of a Single Variable 73

2.4.1 Locating the Regions Containing Zeros 75
2.4.2 Descartes’ Rule and the Sturm Method 77
2.4.3 Newton’s Sums and in Vièto’s Formulas 79
2.4.4 Eliminating Multiple Zeros of the Polynomial 80
2.4.5 Conditioning of the Computation of Zeros 81
2.4.6 General Hints for the Computation of Zeros 81
2.4.7 Bernoulli’s Method . 82
2.4.8 Horner’s Linear Method 83
2.4.9 Bairstow’s (Horner’s Quadratic) Method 84
2.4.10 Laguerre’s Method . 87
2.4.11 Maehly–Newton–Raphson’s Method 88

2.5 Algebraic Equations of Several Variables � 89
2.6 Problems . 94

2.6.1 Wien’s Law and Lambert’s Function 94
2.6.2 Heisenberg’s Model in the Mean-Field Approximation . . . 96
2.6.3 Energy Levels of Simple One-Dimensional Quantum

Systems . 97
2.6.4 Propane Combustion in Air 99
2.6.5 Fluid Flow Through Systems of Pipes 100
2.6.6 Automated Assembly of Structures 103

References . 106

3 Matrix Methods . 109
3.1 Basic Operations . 109

3.1.1 Matrix Multiplication . 109
3.1.2 Computing the Determinant 111

3.2 Systems of Linear Equations Ax = b 111
3.2.1 Analysis of Errors . 111
3.2.2 Gauss Elimination . 113
3.2.3 Systems with Banded Matrices 115

Contents xi

3.2.4 Toeplitz Systems . 115
3.2.5 Vandermonde Systems . 116
3.2.6 Condition Estimates for Matrix Inversion 118
3.2.7 Sparse Matrices . 118

3.3 Linear Least-Square Problem and Orthogonalization 119
3.3.1 The QR Decomposition 120
3.3.2 Singular Value Decomposition (SVD) 122
3.3.3 The Minimal Solution of the Least-Squares Problem 126

3.4 Matrix Eigenvalue Problems . 127
3.4.1 Non-symmetric Problems 128
3.4.2 Symmetric Problems . 130
3.4.3 Generalized Eigenvalue Problems 133
3.4.4 Converting a Matrix to Its Jordan Form 134
3.4.5 Eigenvalue Problems for Sparse Matrices 136

3.5 Random Matrices � . 136
3.5.1 General Random Matrices 136
3.5.2 Gaussian Orthogonal or Unitary Ensemble 139
3.5.3 Cyclic Orthogonal and Unitary Ensemble 142

3.6 Problems . 144
3.6.1 Percolation in a Random-Lattice Model 144
3.6.2 Electric Circuits of Linear Elements 146
3.6.3 Systems of Oscillators . 147
3.6.4 Image Compression by Singular Value Decomposition . . . 147
3.6.5 Eigenstates of Particles in the Anharmonic Potential 148
3.6.6 Anderson Localization . 150
3.6.7 Spectra of Random Symmetric Matrices 152

References . 154

4 Transformations of Functions and Signals 159
4.1 Fourier Transformation . 159
4.2 Fourier Series . 161

4.2.1 Continuous Fourier Expansion 161
4.2.2 Discrete Fourier Expansion 163
4.2.3 Aliasing . 166
4.2.4 Leakage . 167
4.2.5 Fast Discrete Fourier Transformation (FFT) 168
4.2.6 Multiplication of Polynomials by Using the FFT 170
4.2.7 Power Spectral Density 171

4.3 Transformations with Orthogonal Polynomials 172
4.3.1 Legendre Polynomials . 174
4.3.2 Chebyshev Polynomials 178

4.4 Laplace Transformation . 181
4.4.1 Use of Laplace Transformation with Differential

Equations . 182

xii Contents

4.5 Hilbert Transformation � . 184
4.5.1 Analytic Signal . 186
4.5.2 Kramers–Kronig Relations 187
4.5.3 Numerical Computation of the Continuous Hilbert

Transform . 190
4.5.4 Discrete Hilbert Transformation 192

4.6 Wavelet Transformation � . 195
4.6.1 Numerical Computation of the Wavelet Transform 197
4.6.2 Discrete Wavelet Transform 199

4.7 Problems . 200
4.7.1 Fourier Spectrum of Signals 200
4.7.2 Fourier Analysis of the Doppler Effect 200
4.7.3 Use of Laplace Transformation and Its Inverse 201
4.7.4 Use of the Wavelet Transformation 202

References . 203

5 Statistical Analysis and Modeling of Data 207
5.1 Basic Data Analysis . 207

5.1.1 Probability Distributions 207
5.1.2 Moments of Distributions 208
5.1.3 Uncertainties of Moments of Distributions 209

5.2 Robust Statistics . 210
5.2.1 Hunting for Outliers . 212
5.2.2 M-Estimates of Location 213
5.2.3 M-Estimates of Scale . 216

5.3 Statistical Tests . 217
5.3.1 Computing the Confidence Interval for the Sample Mean . 217
5.3.2 Comparing the Means of Two Samples with Equal

Variances . 218
5.3.3 Comparing the Means of Two Samples with Different

Variances . 219
5.3.4 Determining the Confidence Interval for the Sample

Variance . 220
5.3.5 Comparing Two Sample Variances 221
5.3.6 Comparing Histogrammed Data to a Known Distribution . 223
5.3.7 Comparing Two Sets of Histogrammed Data 224
5.3.8 Comparing Non-histogrammed Data to a Continuous

Distribution . 224
5.4 Correlation . 225

5.4.1 Linear Correlation . 225
5.4.2 Non-parametric Correlation 226

5.5 Linear and Non-linear Regression 227
5.5.1 Linear Regression . 228
5.5.2 Regression with Orthogonal Polynomials 229
5.5.3 Linear Regression (Fitting a Straight Line) 230

Contents xiii

5.5.4 Linear Regression (Fitting a Straight Line) with Errors in
Both Coordinates . 232

5.5.5 Fitting a Constant . 233
5.5.6 Generalized Linear Regression by Using SVD 236
5.5.7 Robust Methods for One-Dimensional Regression 237
5.5.8 Non-linear Regression . 239

5.6 Multiple Linear Regression . 240
5.6.1 The Basic Method . 240
5.6.2 Principal-Component Multiple Regression 242

5.7 Principal-Component Analysis 244
5.7.1 Principal Components by Diagonalizing the Covariance

Matrix . 246
5.7.2 Standardization of Data for PCA 248
5.7.3 Principal Components from the SVD of the Data Matrix . . 249
5.7.4 Improvements of PCA: Non-linearity, Robustness 249

5.8 Cluster Analysis � . 249
5.8.1 Hierarchical Clustering 250
5.8.2 Partitioning Methods: k-Means 253
5.8.3 Gaussian Mixture Clustering and the EM Algorithm 256
5.8.4 Spectral Methods . 258

5.9 Linear Discriminant Analysis � 259
5.9.1 Binary Classification . 259
5.9.2 Logistic Discriminant Analysis 261
5.9.3 Assignment to Multiple Classes 262

5.10 Canonical Correlation Analysis � 263
5.11 Factor Analysis � . 265

5.11.1 Determining the Factors and Weights from the Covariance
Matrix . 266

5.11.2 Standardization of Data and Robust Factor Analysis 269
5.12 Problems . 270

5.12.1 Multiple Regression . 270
5.12.2 Nutritional Value of Food 270
5.12.3 Discrimination of Radar Signals from Ionospheric

Reflections . 271
5.12.4 Canonical Correlation Analysis of Objects in the CDFS

Area . 271
References . 273

6 Modeling and Analysis of Time Series 277
6.1 Random Variables . 278

6.1.1 Basic Definitions . 278
6.1.2 Generation of Random Numbers 279

6.2 Random Processes . 280
6.2.1 Basic Definitions . 280

6.3 Stable Distributions and Random Walks 283
6.3.1 Central Limit Theorem 283

xiv Contents

6.3.2 Stable Distributions . 284
6.3.3 Generalized Central Limit Theorem 287
6.3.4 Discrete-Time Random Walks 287
6.3.5 Continuous-Time Random Walks 290

6.4 Markov Chains � . 292
6.4.1 Discrete-Time or Classical Markov Chains 292
6.4.2 Continuous-Time Markov Chains 297

6.5 Noise . 299
6.5.1 Types of Noise . 300
6.5.2 Generation of Noise . 302

6.6 Time Correlation and Auto-Correlation 304
6.6.1 Sample Correlations of Signals 306
6.6.2 Representation of Time Correlations 308
6.6.3 Fast Computation of Discrete Sample Correlations 308

6.7 Auto-Regression Analysis of Discrete-Time Signals � 310
6.7.1 Auto-Regression (AR) Model 311
6.7.2 Use of AR Models . 314
6.7.3 Estimate of the Fourier Spectrum 316

6.8 Independent Component Analysis � 319
6.8.1 Estimate of the Separation Matrix and the FastICA

Algorithm . 321
6.8.2 The FastICA Algorithm 322
6.8.3 Stabilization of the FastICA Algorithm 323

6.9 Problems . 324
6.9.1 Logistic Map . 324
6.9.2 Diffusion and Chaos in the Standard Map 326
6.9.3 Phase Transitions in the Two-Dimensional Ising Model . . 328
6.9.4 Independent Component Analysis 329

References . 331

7 Initial-Value Problems for ODE . 335
7.1 Evolution Equations . 335
7.2 Explicit Euler’s Methods . 337
7.3 Explicit Methods of the Runge–Kutta Type 339
7.4 Errors of Explicit Methods . 340

7.4.1 Discretization and Round-Off Errors 341
7.4.2 Consistency, Convergence, Stability 342
7.4.3 Richardson Extrapolation 343
7.4.4 Embedded Methods . 344
7.4.5 Automatic Step-Size Control 346

7.5 Stability of One-Step Methods 347
7.6 Extrapolation Methods � . 349
7.7 Multi-Step Methods � . 351

7.7.1 Predictor–Corrector Methods 353
7.7.2 Stability of Multi-Step Methods 354
7.7.3 Backward Differentiation Methods 356

Contents xv

7.8 Conservative Second-Order Equations 357
7.8.1 Runge–Kutta–Nyström Methods 358
7.8.2 Multi-Step Methods . 359

7.9 Implicit Single-Step Methods . 359
7.9.1 Solution by Newton’s Iteration 362
7.9.2 Rosenbrock Linearization 363

7.10 Stiff Problems . 365
7.11 Implicit Multi-Step Methods � . 367
7.12 Geometric Integration � . 368

7.12.1 Preservation of Invariants 368
7.12.2 Preservation of the Symplectic Structure 372
7.12.3 Reversibility and Symmetry 373
7.12.4 Modified Hamiltonians and Equations of Motion 374

7.13 Lie-Series Integration � . 375
7.13.1 Taylor Expansion of the Trajectory 376

7.14 Problems . 380
7.14.1 Time Dependence of Filament Temperature 380
7.14.2 Oblique Projectile Motion with Drag Force and Wind . . 380
7.14.3 Influence of Fossil Fuels on Atmospheric CO2 Content . 381
7.14.4 Synchronization of Globally Coupled Oscillators 383
7.14.5 Excitation of Muscle Fibers 384
7.14.6 Restricted Three-Body Problem (Arenstorf Orbits) . . . 386
7.14.7 Lorenz System . 388
7.14.8 Sine Pendulum . 389
7.14.9 Charged Particles in Electric and Magnetic Fields 390
7.14.10 Chaotic Scattering . 391
7.14.11 Hydrogen Burning in the pp I Chain 392
7.14.12 Oregonator . 394
7.14.13 Kepler’s Problem . 395
7.14.14 Northern Lights . 396
7.14.15 Galactic Dynamics . 397

References . 398

8 Boundary-Value Problems for ODE 401
8.1 Difference Methods for Scalar Boundary-Value Problems 402

8.1.1 Consistency, Stability, and Convergence 404
8.1.2 Non-linear Scalar Boundary-Value Problems 405

8.2 Difference Methods for Systems of Boundary-Value Problems . . . 408
8.2.1 Linear Systems . 411
8.2.2 Schemes of Higher Orders 411

8.3 Shooting Methods . 413
8.3.1 Second-Order Linear Equations 414
8.3.2 Systems of Linear Second-Order Equations 416
8.3.3 Non-linear Second-Order Equations 418
8.3.4 Systems of Non-linear Equations 419

xvi Contents

8.3.5 Multiple (Parallel) Shooting 421
8.4 Asymptotic Discretization Schemes � 424

8.4.1 Discretization . 426
8.5 Collocation Methods � . 429

8.5.1 Scalar Linear Second-Order Boundary-Value Problems . . 430
8.5.2 Scalar Linear Boundary-Value Problems of Higher Orders . 432
8.5.3 Scalar Non-linear Boundary-Value Problems of Higher

Orders . 436
8.5.4 Systems of Boundary-Value Problems 438

8.6 Weighted-Residual Methods � . 439
8.7 Boundary-Value Problems with Eigenvalues 441

8.7.1 Difference Methods . 443
8.7.2 Shooting Methods with Prüfer Transformation 446
8.7.3 Pruess Method . 449
8.7.4 Singular Sturm–Liouville Problems 452
8.7.5 Eigenvalue-Dependent Boundary Conditions 453

8.8 Isospectral Problems � . 454
8.9 Problems . 455

8.9.1 Gelfand–Bratu Equation 455
8.9.2 Measles Epidemic . 456
8.9.3 Diffusion-Reaction Kinetics in a Catalytic Pellet 457
8.9.4 Deflection of a Beam with Inhomogeneous Elastic

Modulus . 459
8.9.5 A Boundary-Layer Problem 459
8.9.6 Small Oscillations of an Inhomogeneous String 460
8.9.7 One-Dimensional Schrödinger Equation 462
8.9.8 A Fourth-Order Eigenvalue Problem 463

References . 464

9 Difference Methods for One-Dimensional PDE 467
9.1 Discretization of the Differential Equation 469
9.2 Discretization of Initial and Boundary Conditions 471
9.3 Consistency � . 473
9.4 Implicit Schemes . 475
9.5 Stability and Convergence � . 476

9.5.1 Initial-Value Problems . 476
9.5.2 Initial-Boundary-Value Problems 479

9.6 Energy Estimates and Theorems on Maxima � 481
9.6.1 Energy Estimates . 481
9.6.2 Theorems on Maxima . 482

9.7 Higher-Order Schemes . 484
9.8 Hyperbolic Equations . 485

9.8.1 Explicit Schemes . 486
9.8.2 Implicit Schemes . 489
9.8.3 Wave Equation . 490

Contents xvii

9.9 Non-linear Equations and Equations of Mixed Type � 491
9.10 Dispersion and Dissipation � . 494
9.11 Systems of Hyperbolic and Parabolic PDE � 497
9.12 Conservation Laws and High-Resolution Schemes � 500

9.12.1 High-Resolution Schemes 502
9.12.2 Linear Problem vt + cvx = 0 504
9.12.3 Non-linear Conservation Laws of the Form

vt + [F(v)]x = 0 . 505
9.13 Problems . 505

9.13.1 Diffusion Equation . 505
9.13.2 Initial-Boundary Value Problem for vt + cvx = 0 506
9.13.3 Dirichlet Problem for a System of Non-linear

Hyperbolic PDE . 507
9.13.4 Second-Order and Fourth-Order Wave Equations 508
9.13.5 Burgers Equation . 509
9.13.6 The Shock-Tube Problem 511
9.13.7 Korteweg–de Vries Equation 512
9.13.8 Non-stationary Schrödinger Equation 513
9.13.9 Non-stationary Cubic Schrödinger Equation 515

References . 517

10 Difference Methods for PDE in Several Dimensions 519
10.1 Parabolic and Hyperbolic PDE 519

10.1.1 Parabolic Equations . 519
10.1.2 Explicit Scheme . 520
10.1.3 Crank–Nicolson Scheme 522
10.1.4 Alternating Direction Implicit Schemes 523
10.1.5 Three Space Dimensions 526
10.1.6 Hyperbolic Equations 527
10.1.7 Explicit Schemes . 527
10.1.8 Schemes for Equations in the Form of Conservation

Laws . 528
10.1.9 Implicit and ADI Schemes 529

10.2 Elliptic PDE . 530
10.2.1 Dirichlet Boundary Conditions 530
10.2.2 Neumann Boundary Conditions 532
10.2.3 Mixed Boundary Conditions 532
10.2.4 Relaxation Methods . 532
10.2.5 Conjugate Gradient Methods 537

10.3 High-Resolution Schemes � . 537
10.4 Physically Motivated Discretizations 540

10.4.1 Two-Dimensional Diffusion Equation in Polar
Coordinates . 542

10.4.2 Two-Dimensional Poisson Equation in Polar
Coordinates . 544

xviii Contents

10.5 Boundary Element Method � . 545
10.6 Finite-Element Method � . 549

10.6.1 One Space Dimension 549
10.6.2 Two Space Dimensions 553

10.7 Mimetic Discretizations � . 557
10.8 Multi-Grid and Mesh-Free Methods � 557

10.8.1 A Mesh-Free Method Based on Radial Basis Functions . 559
10.9 Problems . 560

10.9.1 Two-Dimensional Diffusion Equation 560
10.9.2 Non-linear Diffusion Equation 563
10.9.3 Two-Dimensional Poisson Equation 565
10.9.4 High-Resolution Schemes for the Advection Equation . 567
10.9.5 Two-Dimensional Diffusion Equation in Polar

Coordinates . 568
10.9.6 Two-Dimensional Poisson Equation in Polar

Coordinates . 568
10.9.7 Finite-Element Method 569
10.9.8 Boundary Element Method for the Two-Dimensional

Laplace Equation . 570
References . 571

11 Spectral Methods for PDE . 575
11.1 Spectral Representation of Spatial Derivatives 577

11.1.1 Fourier Spectral Derivatives 577
11.1.2 Legendre Spectral Derivatives 580
11.1.3 Chebyshev Spectral Derivatives 581
11.1.4 Computing the Chebyshev Spectral Derivative by

Fourier Transformation 583
11.2 Galerkin Methods . 586

11.2.1 Fourier–Galerkin . 586
11.2.2 Legendre–Galerkin . 587
11.2.3 Chebyshev–Galerkin 589
11.2.4 Two Space Dimensions 591
11.2.5 Non-stationary Problems 591

11.3 Tau Methods . 594
11.3.1 Stationary Problems 594
11.3.2 Non-stationary Problems 596

11.4 Collocation Methods . 597
11.4.1 Stationary Problems 598
11.4.2 Non-stationary Problems 599
11.4.3 Spectral Elements: Collocation with B-Splines 600

11.5 Non-linear Equations . 601
11.6 Time Integration � . 605
11.7 Semi-Infinite and Infinite Definition Domains � 606
11.8 Complex Geometries � . 607

Contents xix

11.9 Problems . 607
11.9.1 Galerkin Methods for the Helmholtz Equation 607
11.9.2 Galerkin Methods for the Advection Equation 608
11.9.3 Galerkin Method for the Diffusion Equation 609
11.9.4 Galerkin Method for the Poisson Equation: Poiseuille

Law . 611
11.9.5 Legendre Tau Method for the Poisson Equation 613
11.9.6 Collocation Methods for the Diffusion Equation I 614
11.9.7 Collocation Methods for the Diffusion Equation II . . . 616
11.9.8 Burgers Equation . 617

References . 619

Appendix A Mathematical Tools . 621
A.1 Asymptotic Notation . 621
A.2 The Norms in Spaces Lp(�) and L

p
w(�), 1 ≤ p ≤ ∞ 622

A.3 Discrete Vector Norms . 623
A.4 Matrix and Operator Norms . 625
A.5 Eigenvalues of Tridiagonal Matrices 626
A.6 Singular Values of X and Eigenvalues of XTX and XXT 627
A.7 The “Square Root” of a Matrix 628
References . 628

Appendix B Standard Numerical Data Types 629
B.1 Real Numbers in Floating-Point Arithmetic 629

B.1.1 Combining Types with Different Precisions 632
B.2 Integer Numbers . 633
B.3 (Almost) Arbitrary Precision . 634
References . 635

Appendix C Generation of Pseudorandom Numbers 637
C.1 Uniform Generators: From Integers to Reals 637
C.2 Transformations Between Distributions 638

C.2.1 Discrete Distribution 639
C.2.2 Continuous Distribution 640

C.3 Random Number Generators and Tests of Their Reliability 646
C.3.1 Linear Generators . 646
C.3.2 Non-linear Generators 648
C.3.3 Using and Testing Generators 648

References . 649

Appendix D Convergence Theorems for Iterative Methods 651
D.1 General Theorems . 651
D.2 Theorems for the Newton–Raphson Method 653
References . 654

xx Contents

Appendix E Numerical Integration . 655
E.1 Gauss Quadrature . 657

E.1.1 Gauss–Kronrod Quadrature 658
E.1.2 Quadrature in Two Dimensions 659

E.2 Integration of Rapidly Oscillating Functions 660
E.2.1 Asymptotic Method . 660
E.2.2 Filon’s Method . 662

E.3 Integration of Singular Functions 664
References . 665

Appendix F Fixed Points and Stability � 667
F.1 Linear Stability . 667
F.2 Spurious Fixed Points . 669
F.3 Non-linear Stability . 671
References . 673

Appendix G Construction of Symplectic Integrators � 675
References . 680

Appendix H Transforming PDE to Systems of ODE: Two Warnings . . 681
H.1 Diffusion Equation . 681
H.2 Advection Equation . 684
References . 686

Appendix I Numerical Libraries, Auxiliary Tools, and Languages . . . 687
I.1 Important Numerical Libraries 687
I.2 Basics of Program Compilation 690
I.3 Using Libraries in C/C++ and Fortran 691

I.3.1 Solving Systems of Equations Ax = b by Using the
GSL Library . 691

I.3.2 Solving the System Ax = b in C/C++ Language and
Fortran Libraries . 692

I.3.3 Solving the System Ax = b in Fortran95 by Using a
Fortran77 Library . 694

I.4 Auxiliary Tools . 694
I.5 Choosing the Programming Language 696
References . 697

Appendix J Measuring Program Execution Times on Linux Systems . . 699
References . 702

Index . 703

Chapter 1
Basics of Numerical Analysis

1.1 Introduction

An ever increasing amount of computational work is being relegated to computers,
and often we almost blindly assume that the obtained results are correct. At the same
time, we wish to accelerate individual computation steps and improve their accuracy.
Numerical computations should therefore be approached with a good measure of
skepticism. Above all, we should try to understand the meaning of the results and
the precision of operations between numerical data.

A prudent choice of appropriate algorithms is essential (see, for example, [1, 2]).
In their implementation, we should be aware that the compiler may have its own
“will” and has no “clue” about mathematical physics. In order to learn more about
the essence of the computation and its natural limitations, we strive to simplify com-
plex operations and restrict the tasks of functions to smaller, well-defined domains.
It also makes sense to measure the execution time of programs (see Appendix J):
large fluctuations in these well measurable quantities without modifications in run-
ning conditions typically point to a poorly designed program or a lack of under-
standing of the underlying problem.

1.1.1 Finite-Precision Arithmetic

The key models for computation with real numbers in finite precision are the
floating-point and fixed-point arithmetic. A real number x in floating-point arith-
metic with base β is represented by the approximation

fl(x) =±(
d0 + d1β

−1 + d2β
−2 + · · · + dp−1β

−(p−1)
) · βe ≡±d0.d1 . . . dp−1 · βe,

where {di}p−1
i=0 , di ∈ {0,1, . . . , β − 1}, is a set of p integers and the exponent e

is within [emin, emax]. The expression m = d0.d1 . . . dp−1 is called the significand

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_1, © Springer-Verlag Berlin Heidelberg 2012

1

2 1 Basics of Numerical Analysis

Table 1.1 The smallest and largest exponents and approximate values of some important numbers
representable in single- and double-precision floating-point arithmetic in base two, according to
the IEEE 754 standard. Only positive values are listed

Precision Single (“float”) Double (“double”)

emax 127 1023

emin = 1 − emax −126 −1022

Smallest normal number ≈1.18 × 10−38 ≈2.23 × 10−308

Largest normal number ≈3.40 × 1038 ≈1.80 × 10308

Smallest representable number ≈1.40 × 10−45 ≈4.94 × 10−324

Machine precision, εM ≈1.19 × 10−7 ≈2.22 × 10−16

Format size 32 bits 64 bits

or mantissa, while f = 0.d1 . . . dp−1 is its fractional part. Here we are mostly in-
terested in binary numbers (β = 2) which can be described by the fractional part
f alone if we introduce two classes of numbers. The first class contains normal
numbers with d0 = 1; these numbers are represented as fl(x) = 1.f · 2e, while the
number zero is defined separately as fl(0) = 1.0 · 2emin−1. The second class con-
tains subnormal numbers, for which d0 = 0. Subnormal numbers fall in the range
between the number zero and the smallest positive normal number 2emin . They can
be represented in the form fl(x) = 0.f · 2emin . Data types with single (“float”)
and double (“double”) precision, as well as algorithms for computation of basic
operations between them are defined by the IEEE 754 standard; see Table 1.1, the
details in Appendix B, as well as [3, 4].

Computations in fixed-point arithmetic (in which numbers are represented by
a fixed value of e) are faster than those in floating-point arithmetic, and become
relevant when working with a restricted range of values. They becomes useful on
very specific architectures where large speed and small memory consumption are
crucial (for example, in GPS devices or CNC machining tools). In scientific and
engineering work, floating-point arithmetic dominates.

The elementary binary operations between floating-point numbers are addition,
subtraction, multiplication, and division. We denote these operations by

+ : x ⊕ y, − : x � y, × : x ⊗ y, / : x � y.

Since floating-point numbers have finite precision, the results of the operations x +
y, x − y, x × y, and x/y, computed with exact values of x and y, are not identical
to the results of the corresponding operations in finite-precision arithmetic, x ⊕ y,
x � y, x ⊗ y, and x � y. One of the key properties of finite-precision arithmetic is
the non-associativity of addition and multiplication,

x ⊕ (y ⊕ z) 	= (x ⊕ y)⊕ z, x ⊗ (y ⊗ z) 	= (x ⊗ y)⊗ z.

This has important consequences, as demonstrated by the following examples.

1.1 Introduction 3

Fig. 1.1 Computation of (1− x)8 in the vicinity of x = 1 in double-precision floating-point arith-
metic. [Left] Formula p(x) = (1 − x)8 by using pow(1-x,8) and formula q(x) = 1 − 8x +
28x2 − · · · by using simple multiplications of x. [Right] Computation of r(x) with formula for
q(x), but by using pow functions for the powers

Example By writing a simple program in C or C++ you can convince yourself that
in the case float x= 1e9; float y=−1e9; float z= 1; with the GNU
compiler c++ and option −O2 you obtain (x⊕y)⊕z= 1, while x⊕ (y⊕z) = 0.
(Other compilers may behave differently.)

Example The effects of rounding errors can also be neatly demonstrated [5] by
observing the results of three algebraically identical, but numerically different ways
of computing the values of the polynomial (1 − x)8 in the vicinity of x = 1. Let us
denote the results of the three methods by p(x), q(x), and r(x). We first compute

p(x) = (1 − x)8

by using the standard power function pow(1-x, 8) available in C or C++. The
same polynomial can also be expanded as

q(x) = 1 − 8x + 28x2 − 56x3 + 70x4 − 56x5 + 28x6 − 8x7 + x8,

which we compute by simple multiplication, for example, x3 = x · x · x. Finally,
we compute r(x) just like q(x), each term in a row, but evaluate the powers xn by
using the pow(x, n) function. Figure 1.1 shows the results of the three methods
(be alert to the change of scale on the vertical axis).

Binary operations in floating-point arithmetic are thus performed with errors
which depend on the arguments, the type of operation, the programming language,
and the compiler. The precision of floating-point arithmetic, called the machine pre-
cision or machine epsilon, and denoted by εM, is defined as the difference between
the representation of the number 1 and the representation of the nearest larger num-
ber. In single precision, we have εM = 2−23 ≈ 1.19 × 10−7, while in double preci-
sion εM = 2−52 ≈ 2.22× 10−16. The precision of the arithmetic can also be defined
as the largest ε for which fl(1 + ε) = 1, but the value of ε obtained in this man-
ner depends on the rounding method. The IEEE standard prescribes rounding to the

4 1 Basics of Numerical Analysis

nearest representable result: in this case ε ≈ εM/2, which is known as unit round-
off. For arbitrary data or result of a basic binary operation between normal numbers
we have

∣∣fl(x) − x
∣∣ ≤ εM

2
|x|, ∣∣fl(x ◦ y)− x ◦ y

∣∣ ≤ εM

2
|x ◦ y|,

where ◦ denotes a basic binary operation. The floating-point numbers therefore be-
have as exact values perturbed by a relative error:

fl(x) = x(1 + δ), |δ| ≤ εM

2
.

When operations are performed between such numbers, a seemingly small perturba-
tion δ can greatly increase the error of the result, leading to a loss of significant digits
(one or more incorrect digits). As an example, we subtract two different numbers
x = fl(x)(1 + δ1) and y = fl(y)(1 + δ2):

x − y = (
fl(x) − fl(y)

)
(1 + h), h = fl(x)δ1 − fl(y)δ2

fl(x) − fl(y)
.

The relative error is bounded by |h| ≤ εM max{|x|, |y|}/|x−y| and can become very
large if x and y are nearby.

Considering the effects of small perturbations also helps us analyze the rela-
tive errors of other basic operations and the precision of more complex algorithms.
Special libraries like GMP [7] do allow for computations with almost arbitrary pre-
cision, but let us not use this possibility absent-mindedly: do not try to out-smart an
unstable algorithm solely by increasing the arithmetic precision!

For a detailed description of how floating- or fixed-point arithmetic behave in
typical algorithms, see [4, 8–10]; for details on floating-point data format according
to the IEEE 754 standard see Appendix B. We conclude this section by advices for
a stable and precise solution of a few seemingly trivial tasks [4, 6].

Branch Statements In programs, we tend to use simple branch statements like

if
(|xk − xk−1| < εabs

)
then . . . , (1.1)

where, for example, εabs = 10−6. But for fl(xk) = 1050 the nearest representable
number in double precision is εM fl(xk) ≈ 1034 away. By using an algorithm which
returns xk in double precision, the condition (1.1) will never be met, except in the
trivial case of equal xk and xk−1 (for example, due to rounding to zero). It is much
better to use

if
(|xk − xk−1| < εabs + εrel max{xk, xk−1}

)
then . . . ,

where εrel ≈ εM. Similarly, we repeatedly encounter sign-change tests like

if (fkfk−1 < 0) then (1.2)

1.1 Introduction 5

If fk = 10−200 and fk−1 = −10−200, we expect fkfk−1 = −10−400 < 0, but in
double precision we get an underflow fl(−10−400) = 0 and the statement (1.2)
goes the wrong way. If fk = 10200 and fk−1 = −10200, we get an overflow. Let
us rather check only the sign of the arguments! In C or C++ this can be accom-
plished by using the function template <typename T> int sign(const
T & val){ return int((val>0) - (val<0)); }, and then compar-
ing

if
(
sign(fk) 	= sign(fk−1)

)
then

Roots of the Quadratic Equation The quadratic equation ax2 + bx + c = 0 has
the roots

x± = −b ±√
b2 − 4ac

2a
= 2c

−b ∓√
b2 − 4ac

,

related by x+x− = c/a. In most cases the absolute value of one of the roots is
larger than the other and is computed with a larger relative precision in floating-
point arithmetic. Once b and

√
b2 − 4ac are known, it is therefore preferable from

the numerical viewpoint to first compute the larger root xmax and then use xmin =
c/(axmax) to compute the smaller one. In a similar spirit we compute

√
1 + x2 − 1

for |x| � 1 where subtraction and potential loss of significant digits can be avoided
by rewriting the expression as

√
1 + x2 − 1 = (

√
1 + x2 − 1)(

√
1 + x2 + 1)√

1 + x2 + 1
= x2

√
1 + x2 + 1

.

Area of Triangle Heron’s formula S =√
d(d − a)(d − b)(d − c) for the area of

a triangle with sides a ≥ b ≥ c, where d = (a + b+ c)/2, is very sensitive to round-
off errors, in particular when one of the angles is larger than 90◦ and a ≈ b + c. In
such cases it is advisable to use the following formula which is accurate to ≈10εM:

S = 1

4

√[
a + (b + c)

][
c − (a − b)

][
c + (a − b)

][
a + (b − c)

]
.

Magnitude of Complex Number, Ratio of Complex Numbers The magnitude
(absolute value) of a complex number z = x + iy is |z| = (x2 + y2)1/2. Squaring
and addition of large numbers, which both may lead to overflows, can be avoided
by using the formula

|z| =

⎧
⎪⎨

⎪⎩

|x|√1 + (|y|/|x|)2; 0 < |y| < |x|,
|y|√1 + (|x|/|y|)2; 0 < |x| < |y|,
|x|√2; otherwise.

We can exploit a similar trick to avoid overflows when computing the ratio of com-
plex numbers (a + ib)/(c + id) = (ac + bd)/(c2 + d2) + i(bc − ad)/(c2 + d2). If

6 1 Basics of Numerical Analysis

this formula is applied directly, overflow may occur even though the correct result
is within the allowed range. A safer way to compute the ratio is

a + ib

c + id
=

⎧
⎨

⎩

a+b(d/c)
c+d(d/c)

+ i b−a(d/c)
c+d(d/c)

; |d| < |c|,
b+a(c/d)
d+c(c/d)

− i a−b(c/d)
d+c(c/d)

; |d| ≥ |c|.

Natural Logarithm To compute log(1 + x) at 0 ≤ x < 3/4 we recommend

log(1 + x) =
{

x; 1 ⊕ x = 1,

x log(1+x)
(1+x)−1 ; otherwise,

(1.3)

which has an error smaller than 5εM. Such a precise calculation finds its uses in eco-
nomics for computation of interest rates where wrong results literally cost money.
Let us assume we have some funds A and a small interest rate x for a short period of
time. After n periods we have A′ = A(1 + x)n. If x � 1, errors can accumulate in
computing A′ for n � 1. It is preferable to use the formula A′ = A exp(n log(1+x))

and resort to (1.3).

Average of Two Numbers Even a simple expression like the arithmetic mean
of two floating-point numbers, x = (a + b)/2, may overflow, and one should use
x = a + (b − a)/2 or a/2 + b/2 instead.

1.2 Approximation of Expressions

Approximation is one of the key concepts of numerical analysis [11, 12]. In this
book we only refer to approximations of scalar functions and expressions involving
operators, and therefore only discuss these two examples.

1.2.1 Optimal (Minimax) and Almost Optimal Approximations

The optimal approximation of degree n of a continuous function f on the interval
[a, b] is defined as the polynomial p�

n for which E�
n ∈R exists such that

E�
n = max

a≤x≤b

∣∣p�
n(x) − f (x)

∣∣ ≤ max
a≤x≤b

∣∣pn(x) − f (x)
∣∣, (1.4)

where pn is any polynomial of degree n. We are therefore seeking a polynomial p�
n

that minimizes the maximal error with respect to the function f . Such a polynomial
represents an optimal or minimax approximation. The curve p�

8 in Fig. 1.2 (left) is
the optimal approximation of the function ex sin(3πx) by a polynomial of degree
eight (n = 8), while the corresponding curve in the right panel is the error of the
approximation.

1.2 Approximation of Expressions 7

Fig. 1.2 Approximation of f (x) = ex sin(3πx) by an optimal polynomial and by a Chebyshev
expansion. [Left] The function f , the optimal polynomial p�

8 of degree eight, and the expan-

sion in terms of Chebyshev polynomials φ8(x) = ∑8
k=0 τ̂kTk(x). [Right] Error of the approxi-

mations. The symbols • denote (n + 2) characteristic points at which the absolute value of the
error ±E�

n =±|p�
n − f | is maximal, and between which the error changes its sign (n + 1)-times.

The symbols ◦ denote the points at which Tn+1(x) =±1

The optimal polynomial approximation of a continuous function f on [a, b] can
be computed by the iterative Remes algorithm (see e.g. [13]). The basis for this pro-
cedure is the Borel equi-oscillation theorem which states that a degree-n polynomial
p�

n is the optimal approximation of f precisely when (n+2) distinct points xi exist,
arranged as a ≤ x0 < x1 < · · · < xn+1 ≤ b, for which

p�
n(xi) − f (xi) = λ(−1)iE�

n, i = 0,1, . . . , n + 1,

and where λ has a fixed value of +1 or −1. The extremes ±E�
n of the error of the op-

timal approximation p�
n therefore occur at the points xi with the signs flipping back

and forth (Fig. 1.2 (right)). This implies that the coefficients of pn(x) = ∑n
j=0 ajx

j

and the parameter En must fulfill the system of equations

n∑

j=0

ajx
j
i − f (xi) = (−1)iEn, i = 0,1, . . . , n + 1, (1.5)

n∑

j=0

ajx
j
i − f (xi) = extreme. (1.6)

If f is differentiable, we can rewrite the last equation as

n∑

j=1

jajx
j−1
i − f ′(xi) = 0. (1.7)

8 1 Basics of Numerical Analysis

The iteration is started with an initial guess for xi . We show in the following that
a very good choice for xi are the points at which the Chebyshev polynomials Tn+1
are equal to ±1, so

xi = cos

(
iπ

n + 1

)
, i = 0,1, . . . , n+ 1.

By solving the linear system (1.5) we obtain n+1 coefficients aj and the parameter
En, which are the first approximations for the coefficients of the optimal polyno-
mial and the maximum error of p − f . These parameters are then used to solve
the system (1.6) or (1.7): we search for points xi at which the error p − f has an
extreme. This is the most difficult step in the procedure, especially when it needs
to be automated. The new points xi are then again used in (1.5) and we repeat the
procedure until the difference between the consecutive values of En drops below a
desired tolerance. At the end of the iteration the {aj }nj=0 are the coefficients of the
optimal polynomial p�

n, and En = E�
n.

Actually, the power basis {1, x, x2, . . .} of p�
n is a bad choice. The condition

number of the matrix corresponding to the system (1.5) deteriorates exponentially
with increasing n. Instead of polynomials, rational functions p(x) = Pn(x)/Qm(x)

can be plugged into the Remes procedure, but the system of equations for the (n +
1) + (m + 1) coefficients and the errors E becomes non-linear; it can be solved by
linearization [14]. In the context of high-order optimal approximations, Chebyshev
polynomials are also an attractive option [15].

Even without the Remes algorithm, the Chebyshev polynomials lead to an al-
most identical goal. Instead of searching for the optimal polynomial p�

n, we may be
satisfied by finding an approximation qn for which

ε = max
a≤x≤b

∣∣p�
n(x) − qn(x)

∣∣

with some small ε. Such an approximation is called an almost optimal or near-
minimax approximation. Often it is much easier to find than the true optimal ap-
proximation. The most important among them is the approximation by Chebyshev
polynomials

f (x) ≈ φn(x) =
n∑

k=0

τ̂kTk(x), (1.8)

where the coefficients τ̂k are given in (4.39). We switch between the intervals [a, b]
and [−1,1] (on which Chebyshev polynomials are defined) by the transformations

t �→ x = 2
t − a

b − a
− 1, x �→ t = 1 − x

2
a + 1 + x

2
b.

The summation of the series (1.8) can be terminated at the same n that would be
used in the optimal approximation. The error due to the series truncation is then
determined by the term τ̂n+1Tn+1(x), which has interchanging extreme values of

1.2 Approximation of Expressions 9

±τ̂n+1 at (n + 2) points on [−1,1] and closely resembles the genuine optimal ap-
proximation (see Fig. 1.2 (left and right)).

Chebyshev polynomials have many pleasing and useful properties which we ex-
ploit heavily in function and signal transformations (Chap. 4) and spectral methods
for partial differential equations (Chap. 11). In the context of optimal approxima-
tions, an important property of Chebyshev polynomials is their point-wise orthog-
onality (4.38). There exists a whole class of polynomials which are orthogonal on
a discrete set of points, but only Chebyshev polynomials on [−1,1] oscillate uni-
formly and can be generated by so few numerical operations (see recurrence (4.37)).

The shape of the optimal approximation depends on the norm in which its er-
ror is measured. Equation (1.4) defines the uniform optimal approximation in the
“max”-norm ‖ · ‖∞. The computation of the optimal approximation for an arbitrary
function, in particular if it is given only at specific points, can be cumbersome. The
main nuisance is the large sensitivity of the Remes algorithm to individual values
f (xi) that strongly deviate from the average (e.g. outliers in discrete-time signals).
In physics we often resort to the optimal approximation in the Euclidean norm (A.2).
In this case, the optimal approximation of the function f on [a, b] is a function p�

for which E� ∈R exists such that

E� =
∫ b

a

[
p�(x) − f (x)

]2 dx ≤
∫ b

a

[
p(x) − f (x)

]2 dx (1.9)

for any polynomial p of degree n (compare this expression to (1.4)). The form (1.9)
is less sensitive to outliers mentioned above. We are of course referring to the
method of least squares which we most often encounter in its discrete form, where
we search for

min
p∈Pn

∑

i

[
p(xi)− f (xi)

]2
.

1.2.2 Rational (Padé) Approximation

Suppose that, on some interval, we wish to effectively approximate a function f

possessing a power expansion

f (z) =
∞∑

k=0

ckz
k. (1.10)

A Padé approximation of f is a rational function with a numerator of degree L and
denominator of degree M , determined such that its power expansion matches the
series (1.10) up to including the power L + M . In other words, if we can find a
polynomial PL of degree L and QM of degree M such that

f (z) = PL(z)

QM(z)
+O

(
zL+M+1)

, QM(0) = 1,

10 1 Basics of Numerical Analysis

then

[L/M]f (z) = PL(z)

QM(z)
= a0 + a1z + a2z

2 + · · · + aLzL

b0 + b1z + b2z2 + · · · + bMzM
, b0 = 1,

defines a Padé approximation of order (L,M) of the function f . The coefficients ak

and bk can be determined by equating the approximation [L/M]f with the power
series for f and reading off the coefficients of the same powers of x:

(
b0 + b1z + · · · + bMzM

)
(c0 + c1z + · · ·)

= a0 + a1z + · · · + aLzL +O
(
zL+M+1)

.

By comparing the terms with powers zL+1, zL+2, . . . , zL+M we obtain a system of
equations for the coefficients bk of the denominator QM , while by comparing terms
with powers z0, z1, . . . , zL we obtain explicit equations for the coefficients ak of the
numerator PL. For example, with L = M = 3, we get

⎛

⎝
c3 c2 c1
c4 c3 c2
c5 c4 c3

⎞

⎠

⎛

⎝
b1
b2
b3

⎞

⎠ =
⎛

⎝
−c4
−c5
−c6

⎞

⎠ ,

⎛

⎜⎜
⎝

a0
a1
a2
a3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

c0 0 0 0
c1 c0 0 0
c2 c1 c0 0
c3 c2 c1 c0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

1
b1
b2
b3

⎞

⎟⎟
⎠ .

Since b0 = 1, the first line of the equation on the right tells us that the zeroth coeffi-
cient of PL is equal to the zeroth coefficient of the power expansion of the function,
a0 = c0. The bulk of the work is hidden in the matrix system on the left. Large
Padé systems of this type are solved by robust algorithms like Gauss elimination
with complete pivoting because, in most cases, we are interested in relatively low
degrees L and M and because accuracy takes precedence over speed. In the sense
of properties mentioned in the following, diagonal Padé approximations, in which
L = M , are the most efficient.

Example (Adapted from [16], p. 4.) The function

f (z) =
√

1 + z/2

1 + 2z
=

∞∑

k=0

ckz
k = 1 − 3

4
z+ 39

32
z2 − 267

128
z3 + 7563

2048
z4 − · · · , (1.11)

has the first two diagonal Padé approximations

[1/1]f (z) = 1 + 7
8z

1 + 13
8 z

, [2/2]f (z) = 1 + 17
8 z + 61

64z2

1 + 23
8 z + 121

64 z2
.

(Compute them!) The comparison of two power expansions and these Padé approx-
imations is shown in Fig. 1.3, revealing a most delightful property: if some power
series converges to a function with a convergence radius ρ, that is, for all |z| < ρ

and 0 < ρ < ∞, then an appropriately chosen Padé approximation converges to f

1.2 Approximation of Expressions 11

Fig. 1.3 Comparison of power expansions of degree two and four for the function (1.11) and
the diagonal Padé approximations [1/1]f and [2/2]f . The curves for f and [2/2]f are barely
distinguishable in this plot

for all z ∈ R, where the domain R is larger than the domain defined by |z| < ρ.
The function f in example (1.11) has the limit limz→∞ f (z) = 1/2 and its power
series has a convergence radius of only ρ = 1/2. On the other hand, both lowest-
order diagonal Padé approximations are stable at infinity. Moreover, when the or-
der of the approximation is increased, the correct limit 1/2 is approached rapidly:
limz→∞[1/1]f (z) = 7/13 ≈ 0.5385 and limz→∞[2/2]f (z) = 61/121 ≈ 0.5041. In
other words, the Padé approximation tells us something about how the function
behaves outside of the convergence radius of its power series, and ensures better
asymptotics.

Example Take the function f (z) = ez, for which the lowest-order Padé approxima-
tions are listed in Table H.1. This table shows the Padé approximation in the context
of solving partial differential equations and also summarizes the leading error terms.
The Padé approach is also fruitful in approximating the time evolution of Hamilto-
nian operators: see example (1.17) below.

In certain cases the Padé approximation of a function f does not exist. For ex-
ample, for f (z) = 1 + z2 we would attempt to compute the Padé coefficients such
that (a0 + a1z)/(b0 + b1z) = 1 + z2 +O(z3), and by comparing coefficients with
equal powers of z we would get a0 = b0, a1 = b1 and a0 = 0. This would lead to
[1/1]f = (0 + a1z)/(0 + b1z) = 1 	= 1 + z2 +O(z3). One can encounter problems
if the denominator of the Padé approximation is zero when z = 0. For details, see
[16].

Padé approximations have numerous important transformation and invariance
properties, of which duality and unitarity are the most relevant. Duality connects
the Padé approximations for reciprocal functions:

g(z) = {
f (z)

}−1 and f (0) 	= 0 ⇔ [L/M]g(z) =
{[M/L]f (z)

}−1 ∀L,M.

12 1 Basics of Numerical Analysis

In physical applications, unitarity is even more important, in particular in the
theory of scattering matrices. Assume that f (z) = ∑∞

k=0 ckz
k is unitary, so that

f (z)f ∗(z) = 1, and that [M/M]f is its diagonal Padé approximation. Then we also
have

[M/M]f (z)[M/M]∗f (z) = 1,

where the symbol ∗ denotes complex conjugation of the coefficients of the approxi-
mation (not of the argument z). In approximations of time evolution of Hamiltonian
operators (see (1.16)), preservation of unitarity is crucial.

1.2.3 Summation of Series by Using Padé Approximations (Wynn’s
ε-Algorithm)

Summation of series is the topic of Sect. 1.4, but here we wish to discuss an im-
portant method based on the Padé approximation. We have just witnessed how this
approximation can be used to extend the convergence radius of a power series. But
this very same approximation can be used to accelerate the summation of a series
within its convergence radius. Assume that a series (in the region where it converges)
can be approximated by a rational function f which is analytical in this region and
has the form

f (z) = c0 + c1z + c2z
2 + · · · = PL(z)

QM(z)
≡ [L/M]f (z),

where PL(z) = a0 + a1z + · · · + aLzL and QM(z) = 1 + b1z + · · · + bMzM . An
efficient procedure to compute the diagonal approximations at a given z can be ob-
tained by transformations between the values of [L/M]f (z) for different L and M .
A connection between these approximations can be established which is known as
the Wynn’s ε-algorithm [17]. It can be written as a recurrence,

ε(n,m + 1) = ε(n + 1,m− 1)+ 1

ε(n + 1,m) − ε(n,m)
. (1.12)

We start the recurrence with ε(n,−1) = 0 for ∀n ≥ 0 and ε(n,0) which contain the
partial sums

ε(n,0) = Sn =
n∑

k=0

ckz
k, n ≥ 0.

The initial state of the algorithm is given by the first two columns of the ε(n,m)

table:

1.2 Approximation of Expressions 13

ε(0,−1) = 0 ε(0,0) = S0 ε(0,1) ε(0,2) ε(0,3) ε(0,4) · · ·
ε(1,−1) = 0 ε(1,0) = S1 ε(1,1) ε(1,2) ε(1,3) ε(1,4) · · ·
ε(2,−1) = 0 ε(2,0) = S2 ε(2,1) ε(2,2) ε(2,3) ε(2,4) · · ·
ε(3,−1) = 0 ε(3,0) = S3 ε(3,1) ε(3,2) ε(3,3) ε(3,4) · · ·

...
...

...
...

...
...

By repeated use of (1.12) we obtain all other entries, and these are related to Padé ap-
proximations of various orders. The diagonal approximations [p/p]f (z) at a given
z can be read off from the underlined entries with even indices m:

[p/p]f (z) = ε(0,2p), p = 0,1,

We stop the algorithm when the value of the denominator of the fraction in (1.12)
drops below a prescribed tolerance; since the convergence is very fast, this can be
set to ≈εM. Some authors recommend the Wynn procedure as the best general algo-
rithm to accelerate the summation of any slowly converging series [18].

As an exercise, compare the extremely slow convergence of the partial sums
Sn = ∑n

k=0(−1)k/(k + 1) with limn→∞ Sn = log 2 (second column of the Wynn
table) to the much faster convergence of the entries ε(0,0), ε(0,2), ε(0,4), . . . in
the first row of the table!

Example The Wynn procedure also enables us to evaluate asymptotic (divergent)
series in the sense of Sect. 1.3.2. The exponential integral f (z) = Ei(z) for large
positive z can be represented by the asymptotic series

Ei(z) =
∫ ∞

z

e−t

t
dt ∼ e−z

z

[
1 − 1!

z
+ 2!

z2
− 3!

z3
+ · · ·

]
, z →∞. (1.13)

The partial sums of (1.13),

Sn = e−z

z

n∑

k=0

k!
(−z)k

, n ≥ 0, (1.14)

do not converge for any z, as the upper two curves in Fig. 1.4 (left) indicate for z = 2
and z = 4. (At even higher z, the minimum of the error would just shift to the right
and downwards.) The lower two curves in the same Figure show the error when the
series is evaluated by the Wynn algorithm.

Example A physically more convincing use of the Wynn’s method for divergent
series is described in Problem 1.5.5. There, the function f represents the Coulomb
scattering amplitude with a divergent power series in z = cos θ :

f (θ) = 1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ)
(
e2 iσl − 1

)
. (1.15)

The errors of the partial sums of (1.15) and of the Wynn approximations with respect
to the exact amplitude are shown in Fig. 1.4 (right).

14 1 Basics of Numerical Analysis

Fig. 1.4 Evaluation of asymptotic series by the Wynn algorithm. [Left] Errors of the partial
sums (1.14) of (1.13) and of the Padé approximation [n/n]Ei with respect to the exact values
Ei(2) and Ei(4) as a function of the index n. [Right] Errors of the partial sums of (1.15) and of
[n/n]f with respect to the exact amplitude (1.71) at θ = 65◦

1.2.4 Approximation of the Evolution Operator for a Hamiltonian
System

The time evolution of a quantum Hamiltonian system from time t to time t + �t

(for example, of a wave-function �(x, t) governed by the non-stationary Schrödin-
ger equation) is given by

�(x, t +�t) = e−iH�t/��(x, t). (1.16)

In difference methods for partial differential equations (Chap. 9) we prefer to ap-
proximate the evolution operator exp[−iH�t/�] by low-order unitary approxima-
tions. If the order of the approximation is too low, the solution can become noisy and
meaningless even on short time scales. If H does not depend on time, a good way to
improve the accuracy of the difference method in its temporal part is to approximate
the exponential operator by a diagonal Padé approximation

ez =
∞∑

k=0

ckz
k = 1 + a1z + · · · + aMzM

1 + b1z + · · · + bMzM
+O

(
z2M+1)

, (1.17)

where ck = 1/k!, and the coefficients am and bm are complex in general. The coef-
ficients at a chosen order M are computed by the procedure described on p. 10. The
numerator and the denominator of (1.17) can then be factorized as [16]

ez =
M∏

s=1

(
1 − z/z

(M)
s

1 + z/z
∗(M)
s

)
+O

(
z2M+1)

, (1.18)

1.2 Approximation of Expressions 15

where z
(M)
s are the zeros of the numerator, and z

∗(M)
s the zeros of the denominator

(which are just their complex conjugates). For example, these zeros up to M = 3, in
double precision, are

z
(1)
1 = −2,

z
(2)
1,2 = −3 ± i

√
3,

z
(3)
1 = −4.6443707092521712,

z
(3)
2,3 = −3.6778146453739144 ± i3.5087619195674433.

At the lowest order (M = 1) the expression (1.18) with z =−iH�t/� simplifies to

e−iH�t/� = 1 − 1
2 iH�t/�

1 + 1
2 iH�t/�

+O
(
�t3)

.

In the context of (1.16) this can be read as
[

1 + iH�t

2�

]
�(x, t +�t) =

[
1 − iH�t

2�

]
�(x, t)

(see Problem 9.13.8). At higher orders, we get a product operator

e−iH�t/� ≈
M∏

s=1

E(M)
s , E(M)

s = 1 + (iH�t/�)/z
(M)
s

1 − (iH�t/�)/z
∗(M)
s

≡ R
(M)
s

L
(M)
s

,

which allows us to compute the time evolution as

�(x, tn+1) = E
(M)
M · · ·E(M)

2 E
(M)
1 �(x, tn), tn+1 − tn = �t.

In a practical implementation, this implies a sequence of steps

L
(M)
1 �(x, tn+1/M) = R

(M)
1 �(x, tn),

L
(M)
2 �(x, tn+2/M) = R

(M)
2 �(x, tn+1/M),

· · · · · ·
L

(M)
M �(x, tn+1) = R

(M)
M �(x, tn+(M−1)/M).

Note the symbolic notation: tn+1 = tn +�t for each n, but the time advance in each
line (tn → tn+1/M, tn+1/M → tn+2/M, . . .) is not equidistant. If H does not depend
on time, the sequence of steps is arbitrary. The band structure of matrices L and R

depends on the spatial discretization of H : if it contains the kinetic energy operator
−(�2/2m)∂2/∂x2, which is discretized in the form (9.11) on an equidistant spatial
mesh, the matrices are tridiagonal; if it is discretized as in (9.12), they are pentadi-
agonal. Details can be found in [19]; the methods for time-dependent Hamiltonians
are discussed in [20, 21].

16 1 Basics of Numerical Analysis

1.3 Power and Asymptotic Expansion, Asymptotic Analysis

Power expansion is a tool to describe the behavior of a function in the vicinity of
a specific point, while asymptotic expansion and analysis are languages in which
we express the dependence of integrals and solutions of differential equations on
parameters governing their behavior in the limit of very small or very large values.
The basic notation (symbols O, O and ∼) is given in Appendix A.1.

Example A nice instance of asymptotic analysis can
be found in the study of the system of two freely
rotating electric dipoles with an interaction of the
form

V (r,�) = μ1μ2

4πε0r3
F(�), � = (θ1, θ2, φ),

where F(�) = −2 cos θ1 cos θ2 + sin θ1 sin θ2 cosφ. One encounters such systems
in studies of orientation of nitroaniline molecules in zeoliths. The relevant quantity
is the interaction energy V weighted by the Boltzmann factor exp(−V/kT) and
averaged over all possible orientations of the dipoles �,

〈
V e−V/kT

〉 = μ1μ2

4πε0r3

∫
d�F(�) eλF(�)

∫
d� eλF(�)

, λ = μ1μ2

4πε0r3kT
,

where d� = sin θ1 sin θ2 dθ1 dθ2 dφ. By using standard collections of integrals [22,
23] the triple integrals can be reduced to a single integration [24, 25],

〈
V e−V/kT

〉 =− μ1μ2

4πε0r3

d

dλ
logK(λ), K(λ) = 8π√

3λ

∫ 2

1

sinhλx√
x2 − 1

dx.

We are interested in the behavior of K(λ) for large values of the parameter λ, i.e. at
fixed r and low temperatures T . By asymptotic analysis (see p. 23) we get

K(λ) ∼ 4π

3

e2λ

λ2

(
1 + 2

3λ
+ 1

λ2
+ 22

9λ3
+ · · ·

)
(1.19)

or

d

dλ
logK(λ) = 1

K

dK

dλ
∼ 2 − 2

λ
− 2

3λ2
+ · · · , λ →∞. (1.20)

The terms in the expansion (1.20) have clear physical meanings. The leading term
+2 does not depend on T and reflects the attraction of the dipoles in the state with
θ1 = θ2 = 0 that has the lowest energy, 〈V exp(−V/kT)〉 = −μ1μ2/2πε0r

3. The
second term (proportional to T) expresses the average potential energy of a pair
of anisotropic two-dimensional oscillators [24, 25]. The third term (proportional to
T 2) corresponds to the non-harmonic part of the potential.

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 17

1.3.1 Power Expansion

Assume that a real function f is at least (n + 1)-times differentiable in the vicinity
of the point x0. The nth order power (Taylor) expansion of f is defined as

f (x) =
n∑

k=0

f (k)(x0)

k! (x − x0)
k +Rn(x) (1.21)

with the remainder

Rn(x) =
∫ x

x0

f (n+1)(t)

n! (x − t)n dt = f (n+1)(x�)

(n + 1)! (x − x0)
n+1, x� ∈ [x0, x].

In the last step we have used the mean value theorem [26]: for any continuous func-
tion g on the interval [a, b] there exists a point a ≤ x� ≤ b such that

∫ b

a

g(x)dx = g
(
x�

)
(b − a),

and g(x�) is the average value of g. If at x0 all derivatives of f exist and are finite,
f can be expanded in the vicinity of x0 in an infinite series. This series converges
on the interval (x0 − r, x0 + r) where r is the convergence radius of the series. It is
given by the formulas (1.55).

The extension of the Taylor series to the complex plane and inclusion of negative
powers of the arguments is called the Laurent expansion:

f (z) =
∑

k∈Z
ak(z − z0)

k, ak = 1

2π i

∮

γ

f (z)

(z − z0)k+1
dz.

Here γ is an arbitrary closed contour encircling z0 in the positive sense. According
to the coefficients {a−k}k∈N of the negative powers, we have three distinct cases.
The function f is analytic if all these coefficients are zero; it is meromorphic if
there exists a minimal N such that a−k = 0 for ∀k ≥ N ; if such N does not exist,
we say that f has an essential singularity at z0.

1.3.2 Asymptotic Expansion

The asymptotic expansion of a function is a series, the partial sum of which is an
approximation of this function in the regime where the parameter describing the
asymptotics becomes large or small. The classical example, used by virtually all
textbooks (see, for example, [27]), is the gamma function. For small x we have the
Laurent expansion

�(x) = 1

x
− γ +

(
γ 2

2
+ π2

12

)
x + · · · , 0 < |x| < 1, (1.22)

18 1 Basics of Numerical Analysis

where γ ≈ 0.577216 is the Euler constant. The expansion (1.22) converges for all x

satisfying 0 < |x| < 1, and both the left and the right side are functions of x. On the
other hand, for large positive x, we have the expansion

�(x) ∼ e−xxx

√
2π

x

(
1 + 1

12x
+ 1

288x2
+ · · ·

)
, x →∞, (1.23)

which does not converge for any x! The right side of (1.23) represents an asymptotic
expansion of the function �(x) in the limit x → ∞ and is not a function of x.
It is merely a sequence of approximations for the function. The error due to the
truncation of the series at order n and fixed x does not go to zero when n is increased,
but it does vanish when x →∞ at fixed n.

An asymptotic series may converge or diverge. Colloquially, an asymptotic series
usually means a divergent series. If the series converges, it can be summed up to an
arbitrary term. But it makes no sense to sum a divergent asymptotic series; rather, we
use such a series to obtain as good as possible an approximation to the function f .
We sum the series only until the sequence of partial sums appears to converge, or
stop the summation with the term just before the smallest one. (It turns out that in
many asymptotic series the truncation error does not exceed the first omitted term.)

For a more general discussion of asymptotics at an arbitrary point x0 we choose
a sequence of functions {φk}∞k=0 with the property φk+1(x) = O(φk(x)) in the limit
x → x0 and φk(x) 	= 0 in the neighborhood of x0, excluding x0 itself. The sum∑∞

k=0 ckφk(x) is called the general asymptotic expansion of f if

f (x) =
n∑

k=0

ckφk(x) + O
(
φn(x)

)
, x → x0. (1.24)

The limit point x0 can be finite or infinite. With the chosen sequence of functions
{φk}, the expansion coefficients in (1.24) are given by

ck = lim
x→x0

f (x) − ∑k−1
m=0 cmφm(x)

φk(x)
, k = 0,1, . . . , n. (1.25)

Example (See [27], p. 30) We seek an asymptotic expansion of the function

f (x) = 1

x
+ e−x

(
1 − 1

x

)−1

, x →∞, (1.26)

based on the sequence of functions {φk(x)}∞k=0 = {1, x−1, x−2, . . .}. We compute
the coefficients ck of (1.24) by using (1.25): we get c0 = limx→∞ f (x)/φ0(x) = 0
and c1 = limx→∞(f (x) − c0φ0(x))/φ1(x) = 1, while ck = 0 for k ≥ 2. Based on
the chosen sequence {φk(x)}∞k=0, the function f has the expansion

f (x) ∼ c1φ1(x) = 1

x
, x →∞. (1.27)

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 19

The same function f can have another asymptotic expansion if a different sequence
{φk}∞k=0 is chosen. If we select {φk}∞k=0 = {1, x−1, e−x, e−xx−1, e−xx−2, . . .}, we
get for the same f as before the coefficients c0 = 0 and ck = 1 for k ≥ 1, thus

f (x) ∼ 1

x
+

∞∑

k=1

e−xx1−k, x →∞.

By reading this example backwards we realize that different functions may corre-
spond to the same asymptotic expansion. Based on the sequence {1, x−1, x−2, . . .}
both (1.26) and f (x) = 1/x have identical expansions, namely (1.27).

1.3.3 Asymptotic Analysis of Integrals by Integration by Parts

For an arbitrary function f and positive m ∈N let fm (lower case) represent its mth
derivative and Fm (upper case) its mth indefinite integral,

f0 = f, fm = dmf

dxm
,

dFm

dx
= Fm−1.

Suppose we are interested in the asymptotic behavior of the integral

I (λ) =
∫ b

a

g(λ, x)h(λ, x)dx,

where the asymptotics is determined by the parameter λ. Let g be at least n-times
differentiable and let h be integrable. By using integration by parts, I (λ) can be
written as the sum

In(λ) =
n−1∑

k=0

sk(λ) + Rn(λ),

where the terms sk and the remainder Rn are

sk(λ) = (−1)k
[
gk(λ, b)Hk+1(λ, b) − gk(λ, a)Hk+1(λ, a)

]
,

Rn(λ) = (−1)n
∫ b

a

gn(λ, x)Hn(λ, x)dx.

If g is (n + 1)-times continuously differentiable, we have Rn = sn + Rn+1, which
can be used to estimate the value of the remainder in two cases [28].

1. If g and h are real and the products gnHn and gn+1Hn+1 have constant and
equal signs on [a, b], then Rn has the same sign as sn and opposite than Rn+1,
and |Rn| ≤ |sn|. Example:

g(λ, x) = (1 + λx)−1, h(x) = exp(−x),

20 1 Basics of Numerical Analysis

Fig. 1.5 Computation of the I (λ) = ∫ b

a
e−x(1 + λx)−1 dx on [a, b] = [0,3] at small λ by asymp-

totic series. [Left] Divergent behavior of partial sums as a function of λ at n = 10, 30, and 50.
[Right] The size of the first omitted term sn and the remainder Rn as a function of n at λ = 0.02
and 0.06: we see that |Rn| ≤ |sn|. (The error |I (λ) − In(λ)| has the same qualitative behavior.)
We stop the summation when we reach the minimum in this graph. This point also determines the
smallest error one can achieve at a given λ

where 0 ≤ (−1)mRm ≤ (−1)msm. In the case a = 0 and b = ∞ we are dealing
with the Euler integral I (λ) = ∫ ∞

0 e−x(1 + λx)−1 dx, which can be represented
as a finite alternating series and the remainder

I (λ) =
n∑

k=0

(−1)kk!λk + (−λ)n+1(n+ 1)!
∫ ∞

0

e−x

(1 + λx)n+2
dx,

and which is closely related to the exponential integral Ei (see Fig. 1.5).
2. If g is real, |Hn+1| an increasing function of x, and both gn and gn+1 have con-

stant and equal signs on [a, b], or if g is real, |Hn+1| is a decreasing function
of x, and both gn and gn+1 have constant but opposite signs on [a, b], we have
|Rn| ≤ 2|sn|.
If λ is complex, we rename x �→ x/λ; thus g(x) = (1 + x)−1 and h(λ, x) =

λ−1 exp(−x/λ). Then for Reλ > 0, the functions gn, gn+1 and Hn+1 correspond
to the second criterion of item 2 above, and we have |Rn| ≤ 2|sn|. At any rate, the
remainder Rn is on the order of the first omitted term, Rn =O(sn).

The approach described above is particularly useful when h can be integrated
easily, like in the case of h(λ, x) = exp(λx) when Hm(λ,x) = h(x)/λm. This is the
foundation of the asymptotic expansion of Laplace and Fourier integrals

L(λ) =
∫ b

a

e−λxφ(x)dx, F (λ) =
∫ b

a

eiλxφ(x)dx,

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 21

in the limit λ → ±∞, which are hard to compute by other means. The asymptotic
expansion of the Fourier integral is

Fn(λ) =
n−1∑

k=0

(
i

λ

)k+1[
eiλaφ(k)(a) − eiλbφ(k)(b)

] +Rn(λ).

The remainder after the truncation of the series to n terms,

Rn(λ) =
(

i

λ

)n ∫ b

a

φ(n)(x)eiλx dx,

has an upper limit when dealing with finite intervals [a, b]. By integrating the re-
mainder by parts one more time, we get [28]

∣∣Rn(λ)
∣∣ ≤ λ−n−1

[∣∣φ(n)(a)
∣∣ + ∣∣φ(n)(b)

∣∣ +
∫ b

a

∣∣φ(n+1)(x)
∣∣ dx

]
=O

(
λ−n−1)

.

1.3.4 Asymptotic Analysis of Integrals by the Laplace Method

Here we analyze integrals of the form

I (λ) =
∫ b

a

φ(x)e−λh(x) dx (1.28)

in the limit of large positive λ, where φ and h are real functions of a real variable x.
Assume that h has a global minimum at one of the internal points ξ of the interval
[a, b], thus h′(ξ) = 0 and h′′(ξ) > 0. Therefore exp(−λh(x)) reaches its maximum
at ξ and in its vicinity we may expect the largest contribution to the integral (1.28).
We expand h in the Taylor series around ξ ,

h(x) = h(ξ) + 1

2
h′′(ξ)(x − ξ)2 +O

(
(x − ξ)3)

, (1.29)

while we take simply φ(x) ≈ φ(ξ). When these are used in the integral (1.28) and
its integration limits are extended to [−∞,+∞], we obtain

I (λ) ≈
∫ b

a

φ(ξ) e−λ[h(ξ)+h′′(ξ)(x−ξ)2/2] dx ≈ φ(ξ) e−λh(ξ)

∫ ∞

−∞
e−λh′′(ξ)x2/2 dx.

This is the Laplace approximation, which is the leading term in the asymptotic ex-
pansion

I (λ) = e−λh(ξ)

[
φ(ξ)

√
2π

λh′′(ξ)
+O

(
1

λ

)]
, λ →∞. (1.30)

22 1 Basics of Numerical Analysis

If h reaches its maximum only at x = a and h′(a) > 0, the leading term in the
asymptotic expansion becomes

I (λ) = e−λh(a)

[
φ(a)

h′(a)

1

λ
+O

(
1

λ2

)]
, λ →∞, (1.31)

while if it reaches its minimum only at x = b and h′(b) < 0, we have

I (λ) = e−λh(b)

[
− φ(b)

h′(b)

1

λ
+O

(
1

λ2

)]
, λ →∞. (1.32)

The asymptotics of the integrals of the form (1.28), where the dominant contri-
butions originate in the minima of h, is given by expressions (1.30)–(1.32) [27].
Similar formulas can be derived for the case where exp(λh(x)) appears in the inte-
gral (1.28) instead of exp(−λh(x)).

Example We seek the leading term in the asymptotic expansion of the integral

I (λ) =
∫ 1

0

exp(−λ[1 + x(1 − x)])√
x2 + 1

dx, λ →∞.

In this case h(x) = 1 + x(1 − x) and φ(x) = 1/
√

x2 + 1. The function h reaches
its minimum at both extreme points of the interval, x = a = 0 and x = b = 1, at
which h(a) = h(b) = 1, h′(a) = 1, h′(b) = −1, φ(a) = 1 and φ(b) = 1/

√
2. The

asymptotic expansion is therefore given by the sum of (1.31) and (1.32):

I (λ) = e−λ

[(
1 + 1√

2

)
1

λ
+O

(
1

λ2

)]
, λ →∞.

As an exercise, see how the integral behaves in the limit λ →−∞.

For better Laplace approximations, we need a more general expansion [29]. As-
sume that h has only one minimum on the interval [a, b], at x = a; otherwise, we
split the whole interval on suitable subintervals. Assume that h in the vicinity of
x = a (in limit x ↘ a) can be represented as

h(x) ∼ h(a) +
∞∑

s=0

as(x − a)s+α, (1.33)

where α ∈R and α > 0, a0 	= 0, while φ can be represented as

φ(x) ∼
∞∑

s=0

bs(x − a)s+β−1, (1.34)

where b0 	= 0 and we require Reβ > 0 for the constant β ∈C. Let h′ and φ be con-
tinuous around x = a (except perhaps at x = a itself). Under these assumptions, if

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 23

Fig. 1.6 Asymptotic behavior of I (λ) = ∫ ∞
0 φ(x) exp[−λh(x)]dx, where φ(x) = 1 and

h(x) = x − log(1 + x). [Left] Exact dependence on λ and the leading Laplace approximation.
[Right] The error of the approximation. The function h has a minimum at a = 0, where it can be
expanded as h(x) = x2/2 − x3/3 + x4/4 − · · · . By comparison with (1.33) and (1.34) we get
α = 2, as = (−1)s/(s + 2), β = 1, b0 = 1, and bs = 0, s ≥ 1. From here we get the coefficients
c0 = 1/

√
2, c1 = 2/3, and c2 =√

2/12 of (1.35)

the integral I (λ) absolutely converges for all large enough λ, we have the asymp-
totic expansion

I (λ) ∼ e−λh(a)
∞∑

s=0

�

(
s + β

α

)
cs

λ(s+β)/α
, λ →∞. (1.35)

The coefficients cs in the expansion (1.35) can be expressed by the coefficients ak

and bk for k ≤ s. Here we write the first three,

c0 = b0

αa
β/α

0

,

c1 =
[
b1

α
− (β + 1)a1b0

α2a0

]
a
−(β+1)/α

0 , (1.36)

c2 =
[
b2

α
− (β + 2)a1b1

α2a0
+ {

(α + β + 2)a2
1 − 2αa0a2

} (β + 2)b0

2α3a2
0

]
a
−(β+2)/α

0 ,

while the procedure to compute any ck can be found in [29] and [30]. The estimate
of the error due to the truncation of (1.35) to a finite number of terms is discussed
by [31] in Sect. 3.9. The general Laplace method is illustrated in Fig. 1.6 and by the
following example.

Example Let us revisit the calculation of the average interaction energy of two
electric dipoles and its asymptotic behavior at low temperatures (1.19). We use the

24 1 Basics of Numerical Analysis

Laplace method to analyze the integral

K(λ) = 8π√
3λ

∫ 2

1

sinhλx√
x2 − 1

dx = 4π√
3λ

[∫ 2

1

eλx

√
x2 − 1

dx

︸ ︷︷ ︸
I1(λ)

−
∫ 2

1

e−λx

√
x2 − 1

dx

︸ ︷︷ ︸
I2(λ)

]

in the limit λ = μ1μ2/(4πε0r
3kT) → ∞. By using x �→ −x the first term can be

rewritten as

I1(λ) =
∫ 2

1

eλx

√
x2 − 1

dx =
∫ −1

−2

e−λx

√
x2 − 1

dx,

so that h(x) = x and φ(x) = 1/
√

x2 − 1. The function h has a minimum at x = a =
−2, as required by the assumptions for the expansion (1.35). Since h is so simple,
its expansion (1.33) has only two terms,

h(x) = x = h(a) +
∞∑

s=0

as(x − a)s+α =−2 + a0
(
x − (−2)

)0+α + 0 + 0 + · · · ,

from which we read off α = 1, a0 = 1, and as = 0 for s ≥ 1. We expand φ around a

in the Taylor series and compare it to the expansion (1.34),

φ(x) = 1√
x2 − 1

= 1√
3
+ 2(x − a)

3
√

3
+ (x − a)2

2
√

3
+ · · · =

∞∑

s=0

bs(x − a)s+β−1,

from which we infer β = 1, b0 = 1/
√

3, b1 = 2/(3
√

3), and b2 = 1/(2
√

3). By
using the coefficients as and bs we compute cs by (1.36) and use them in the ex-
pansion (1.35). We get c0 = b0, c1 = b1, c2 = b2. Finally, we have −λh(a) = 2λ,
thus

I1(λ) = e2λ

[
1√
3λ

+ 2

3
√

3λ2
+ 1√

3λ3
+ · · ·

]
,

from which (1.19) follows. The integral I2(λ) is already in the appropriate form,
with the function h(x) = x reaching its minimum at x = a = 1. Since I2(λ) behaves
like e−λ it is negligible in comparison to I1(λ) in the limit λ →∞.

1.3.5 Stationary-Phase Approximation

The method of stationary-phase approximation is used to deduce the asymptotic
series for integrals of the form

I (λ) =
∫ b

a

φ(x) eiλh(x) dx, (1.37)

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 25

Fig. 1.7 The basic idea of stationary-phase approximation. At large λ the function exp(iλh(x))

in (1.37) rapidly oscillates around zero. In the regions of large variations of h(x) the contributions
to the integral therefore largely cancel out, while there is much less cancellation where the variation
is small (near maxima and minima)

where h is a real function of a real variable x. The integrand thus contains the expo-
nential function with an imaginary argument, and we are interested in the behavior
of the integral at |λ| � 1. In order to compute I (λ) for negative arguments, we use
the symmetry I (λ)� = I (−λ).

The approximation can be established by realizing that the leading contribution
to I (λ) for λ → ∞ comes from the integral over the points at which the phase
function h is stationary, that is, h′(x) = 0. Assume that h has only one minimum
(h′′(ξ) > 0) or one maximum (h′′(ξ) < 0) on the interval [a, b], at ξ . We insert the
expansion (1.29) into (1.37) and obtain

I (λ) ≈
∫ b

a

φ(ξ) eiλ[h(ξ)+h′′(ξ)(x−ξ)2/2] dx = φ(ξ) eiλh(ξ)

∫ b

a

eiλh′′(ξ)(x−ξ)2/2 dx.

We extend the integral on the right to the whole real axis and obtain the leading term
of the stationary-phase approximation:

I (λ) ∼ φ(ξ)

√
2π

λ|h′′(ξ)| exp

{
i

[
λh(ξ) + π

4
sign

(
h′′(ξ)

)]}
, (1.38)

where we have assumed h′′(ξ) 	= 0 and used
∫ ∞
−∞ eix2

dx =√
πe iπ/4.

Example We are interested in the leading asymptotic term of the integral

I (λ) =
∫ π

0
φ(x) eiλh(x) dx, h(x) = sin(2x) ex2/10, φ(x) = 1√

x2 + 1
,

in the limit λ → ∞. On [0,π], the function h has a maximum at ξ1 ≈ 0.8266 and
a minimum at ξ2 ≈ 2.4776 (see Fig. 1.7). At these points, h′′(ξ1) ≈ −4.0841 and
h′′(ξ2) ≈ 7.2550. The asymptotics of the integral is determined by two contributions

26 1 Basics of Numerical Analysis

of the form (1.38) which, at any λ � 1, are computed for ξ = ξ1 and ξ = ξ2, and
then summed. With λ = 20, for example, we obtain

I (20) ≈ (−0.0487 + 0.3566 i)+ (−0.4814 + 0.2781 i) =−0.5301 + 0.6347 i,

while I (20) ≈ −0.5290 + 0.6280 i by precise numerical integration. The leading-
order stationary-phase approximation to the complex value of the integral thus leads
to the error in the modulus of ≈0.5 % and in the phase of ≈ 0.2◦.

Higher terms of the stationary-phase approximation can be obtained by the gen-
eralization of this method [29]. Assume that h has a finite number of stationary
points (zeros of h′(x)) on the integration interval. We split this interval into subin-
tervals such that there is one stationary point at the lower edge of every subinterval.
Let [a, b] be such a subinterval, and let h be monotonously increasing on [a, b],
thus h′(x) > 0 for x ∈ [a, b] (in the opposite case, we transform x �→ −x). Assume
that h has the form

h(x) = h(a) + (x − a)αh1(x), h1(a) 	= 0,

where h1 is smooth on [a, b] and α ≥ 1. Let φ have the form

φ(x) = (x − a)β−1φ1(x),

where φ1 is smooth on [a, b] and β ∈ (0,1]. Then the asymptotic expansion of the
integral (1.37) in the limit λ →∞ is

I (λ) = eiλh(a)

[
N−1∑

n=0

an

(
i

λ

)(n+β)/α
]

+ R
(1)
N − eiλh(b)

[
M−1∑

n=0

bn

(
i

λ

)n+1
]

+ R
(2)
M ,

where R
(1)
N = O(λ−(N+β)/α) and R

(2)
M = O(λ−M) are the remainders due to the

truncation of the series (see [29] for details). By introducing new variables tα =
h(x) − h(a) the coefficients an can be determined as

an = 1

αn!�
(

n+ β

α

)(
d

dt

)n[(
x − a

t

)β−1

φ1(x)
dx

dt

]∣∣∣∣
t=0

,

and the coefficients bn as

bn =
(

1

h′(x)

d

dx

)n[
φ(x)

h′(x)

]∣∣∣
∣
x=b

.

Only few instances of functions h and φ allow for a simple calculation of the co-
efficients an and bn. We typically let this work be done by programs for symbolic
computation like MATHEMATICA [32] (routine InverseSeries). In connection
to the integration of rapidly oscillating functions see also Sect. E.2.

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 27

General integrals along a contour C in the complex plane

I (λ) =
∫

C
g(z) eλf (z) dz, λ →∞,

where f and g are analytic, can be computed by means of the method of steepest de-
scent and by the saddle-point method, which are both similar to the Laplace method
in spirit, but technically more complicated. For further information, we refer the
reader to [29] and [33].

1.3.6 Differential Equations with Large Parameters

Asymptotic approaches are also applicable to the analysis of differential equations.
For a physicist, second-order homogeneous equations

y′′(x) + p(x,λ)y′(x) + q(x,λ)y(x) = 0 (1.39)

in the limit λ → ∞ may be particularly relevant. By using the ansatz y(x) =
z(x) exp(− 1

2

∫
p(x,λ)dx) (1.39) can be put into the standard form

z′′(x) + h(x,λ)z(x) = 0, h(x,λ) = q(x,λ) − 1

2
p′(x,λ)− 1

4
p2(x,λ). (1.40)

Assume that h(x,λ) has the Laurent expansion

h(x,λ) = λ2k

∞∑

n=0

hn(x)λ−n, (1.41)

where k is a positive integer and h0 	= 0. By using this expansion, a large class of
problems can be treated, in spite of the seemingly restrictive character of the leading
term ∼ λ2k in (1.41). Equation (1.39) has two types of solutions [28].

The First Type of the Solution has the form

z(x,λ) = A(x,λ) eS(x,λ), (1.42)

where we have introduced the amplitude function A(x,λ) and the action function
S(x,λ). They are defined as series in the parameter λ:

A(x,λ) =
∞∑

n=0

an(x)λ−n, S(x,λ) = λk
k−1∑

n=0

bn(x)λ−n. (1.43)

When we insert (1.42) in (1.40) and collect the terms with powers λ2k−n, we get

(
b′

0

)2 + h0 = 0, (1.44)

28 1 Basics of Numerical Analysis

2b′
0b

′
m + hm +

m−1∑

n=1

b′
nb

′
m−n = 0, m = 1,2, . . . , k − 1, (1.45)

where ′ denotes the derivative with respect to x. This is a system of differential
equations for the coefficient functions bn of the action S(x,λ). Since h0 	= 0, squar-
ing in (1.44) implies two possible signs for the derivative of the leading coefficient,
b′

0 =±√−h0. These possibilities correspond to two linearly independent solutions
of (1.40), as expected for a second-order equation. We then use the computed bn in
the equations for the coefficient functions an:

2a′
0b

′
0 + a0

(

b′′
0 + hk +

k−1∑

n=1

b′
nb

′
k−n

)

= 0,

2a′
nb

′
0 +

n∑

m=0

an−mAm + 2
n∑

m=1

a′
n−mb′

m + a′′
n−k = 0, n = 1,2,

(1.46)

The functions hn, an, and bn are zero if the subscripts are outside of their ranges
required by (1.41) and (1.43), thus h−n = a−n = b−n = bk−1+n = 0 for ∀n ∈N. We
have also introduced

Am = b′′
m + hk+m +

k−1∑

l=m+1

b′
lb

′
k+m−l .

The Second Type of the Solution of (1.40) has the form

z(x,λ) = eZ(x,λ), Z(x,λ) = λk
∞∑

n=0

cn(x)λ−n, (1.47)

where k is a positive integer. When the ansatz (1.47) is used in (1.40) and the terms
with equal powers of λ are combined, we obtain

(
c′0

)2 + h0 = 0, (1.48)

2c′0c′n + hn +
n−1∑

m=1

c′mc′n−m = 0, n = 1,2, . . . , k − 1, (1.49)

2c′0c′n + hn +
n−1∑

m=1

c′mc′n−m + c′′n−k = 0, n = k, k + 1, . . . , (1.50)

while the functions c−n vanish for ∀n ∈N. By determining the phase of the leading
term (the derivative of which has two possible dependencies, c′0 = ±√−h0) this
procedure yields two linearly independent solutions of (1.40).

For subscripts 0 ≤ n ≤ k − 1 the system of equations (1.44) and (1.45) for the
functions bn is the same as the system (1.48) and (1.49) for the functions cn, so

1.3 Power and Asymptotic Expansion, Asymptotic Analysis 29

bn = cn for 0 ≤ n ≤ k − 1. By comparing (1.42) to (1.47) it becomes clear that
the amplitude function of the first-type solution is just a formal expansion of the
remainder of the action of the second-type solution,

A(x,λ) = exp

(∞∑

n=k

cn(x)λk−n

)

,

with functions {cn}∞n=k determined by (1.50).
We have assumed that h(x,λ) as a function of λ has a pole of even degree at

infinity, h(x,λ) =O(λ2k). If the pole has an odd degree, h(x,λ) =O(λk), the solu-
tions (1.42) and (1.47) are not valid. In this case we can introduce a new asymptotic
parameter λ′ = λ1/2 and use λ′ in the formulas derived above.

The procedure described here is called the WKB (Wentzel–Kramers–Brillouin)
method. The special case k = 1 coincides with the problems of the Schrödinger
equation for a particle of mass m in an one-dimensional potential V ,

− �
2

2m

∂2

∂x2
ψ(x) + [

V (x) −E
]
ψ(x) = 0. (1.51)

In the limit of large energies E → ∞ or small Planck constant �→ 0 we speak of
a semi-classical approach. The asymptotic parameter λ then represents high ener-
gies E = λ2 or the smallness of � = λ−1. The WKB method is illustrated by the
following example adapted from [27]; for details, see [34, 35].

Example The classical example of the WKB method in quantum mechanics is the
calculation of the particle’s wave-function in a space with linear potential [34].
In (1.51) this means V (x) = λ2x, and it can be rewritten as

z′′(x) − λ2xz(x) = 0 (1.52)

by a suitable change of variables. This equation is of the form (1.40) with h(x,λ) =
−λ2x, but let us pretend for a moment that h is still general and has the expan-
sion (1.41). To solve (1.52), we use the ansatz (1.42). First, we determine the leading
coefficient of the action, b0. From (1.44) it follows that

b′
0(x) =±√−h0(x), b′′

0(x) =∓ h′
0(x)

2
√−h0(x)

, b0(x) =±
∫ x

x�

√−h0(t)dt.

The lower integration limit x� will be determined in the following. We compute
the coefficient a0 of the amplitude function (1.43) by using (1.46), 2a′

0b
′
0 + a0b

′′
0 +

a0h1 = 0. This is a differential equation for a0:

da0

a0
=

(
−1

4

h′
0

h0
∓ h1

2
√−h0

)
dx.

30 1 Basics of Numerical Analysis

We use h′
0/h0 = (logh0)

′, and obtain

a0(x) = 1

[h0(x)]1/4
exp

{
∓1

2

∫ x

x�

h1(t)√−h0(t)
dt

}
.

Since k = 1, the series (1.43) for S(x,λ) contains only the term λ1b0λ
0 = λb0. The

final structure of the solution to the leading order in λ is therefore simply z(x,λ) =
a0(x) exp{λb0(x)}, but its precise form still depends on the sign of the coefficient
function h0 from the expansion (1.41).

The point x�, in which h0 has a simple zero, (h0(x
�) = 0, h′

0(x
�) 	= 0), is called

the turning or transition point, since the physical character of the solution changes
at this point. In the region where h0 > 0, the expressions written above yield two
linearly independent oscillatory solutions

z±osc(x,λ) ≈ 1

[h0(x)]1/4
exp

{
±iλ

∫ x

x�

√
h0(t)dt ± i

2

∫ x

x�

h1(t)√
h0(t)

dt

}
,

while in the region with h0 < 0 we get exponentially increasing or decreasing solu-
tions

z±exp(x,λ) ≈ 1

[|h0(x)|]1/4
exp

{
±λ

∫ x

x�

√∣∣h0(t)
∣∣ dt ∓ 1

2

∫ x

x�

h1(t)√|h0(t)| dt

}
.

In order for the WKB analysis to be valid, some authors require that the whole
function h, not just its leading term h0, should have a zero at the turning point. It
turns out that it is very hard to formulate an asymptotic analysis of the WKB type if
h has a zero in the region being discussed while h0 does not. The explicit demand
that h0 has a simple zero can thus be understood as a necessary condition for the
applicability of the WKB method.

Let us reconsider (1.52). From (1.41) we read off h0(x) = −x and hn(x) = 0
for n ≥ 1. In the exponents of z±osc(x,λ) and z±exp(x,λ) only the first term appears,
and the turning point is x� = 0. In its vicinity the WKB approximation fails (see
Fig. 1.8). The solution of (1.52) in the WKB approximation to the left of the turning
point (x < x� and h0(x) > 0) is a linear combination of the solutions z+osc and z−osc.
The solution on the right (x > x� and h0(x) < 0) is a linear combination of z+exp and
z−exp.

The method described above can be generalized to the case when h has a zero
x� of degree p. Assume that h is analytic at x� and that in the vicinity of x�, in the
limit λ →∞, it has the asymptotic expansion

h(x,λ) ∼ C λ2k
(
x − x�

)p
, C ∈R. (1.53)

By substitution x − x� = |C λ2k|−1/(2+p)t and by using (1.53) we rewrite (1.40) as

d2z(t)

dt2
+ stpz(t) = 0, s = sign(C).

1.4 Summation of Finite and Infinite Series 31

Fig. 1.8 The solution of z′′(x)− λ2xz(x) = 0 with λ = 20 in the WKB approximation. The exact
solutions (thin lines) are given by the Airy functions Ai and Bi (Problem 1.5.2). The coefficients α,
β , γ , δ and χ in the linear combinations z±osc and z±exp are determined such that the WKB solutions
match the exact solutions far from the turning point x� = 0

This equation is valid near t = 0. Its solutions are known [36] and can be expressed
in terms of the Bessel functions of the first and second kind [22] as

z(t) =√
t

{
C1J1/2q(tq/q) +C2Y1/2q(tq/q); s =+1,

C1I1/2q(tq/q) +C2K1/2q(tq/q); s =−1,

where q = 1
2 (p + 2). In seeking the solutions over a larger region, the constants C1

and C2 can be determined such that the solution near the turning point matches the
solution far from the turning point in amplitude and phase.

For details on the formulation and use of asymptotic series see [28] and [29].
Connections of asymptotic series to special functions are discussed in the classic
work [31].

1.4 Summation of Finite and Infinite Series

Physical quantities are often represented as infinite or finite series

S =
∞∑

k=0

ak, Sn =
n∑

k=0

ak, ak ∈R or ak ∈C.

The sum Sn of the first n + 1 terms of S is the nth partial sum of S. The series S

converges if the sequence {Sn} converges, i.e. if for any ε > 0 a κ ∈N can be found
such that for each p ∈ {0} ∪N we have n > κ =⇒ |Sn+p − Sn| < ε. A convergent
sequence converges to a finite limit and this limit is its one and only cluster point.
The series S is said to diverge if the sequence {Sn} has a limit at infinity, has multi-
ple cluster points or has no cluster points at all. Sometimes we carelessly interpret
divergence as “convergence” to infinity.

32 1 Basics of Numerical Analysis

General properties of series and summation methods are treated by the theory of
summability [37, 38]. Further reading on modern techniques of symbolic summation
of series to closed forms can be found in [39, 40].

1.4.1 Tests of Convergence

Tests of convergence are procedures used to identify sufficient conditions for con-
vergence of infinite series

∑∞
k=0 ak . In many tests, we disregard the signs of the

terms (if ak ∈R) or their phases (if ak ∈C) and only use their absolute values. This
simplification is based on the Cauchy inequality |∑k ak| ≤ ∑

k |ak|, from which we
infer that a series converges if the corresponding series with absolute values of terms
converges (absolute convergence). The necessary condition for the convergence of
any series is limk→∞ ak = 0.

Comparison Test For a given sequence {ak}k∈N0 , where all ak ≥ 0, we find a
sequence {bk}k∈N0 . If there exists a N ∈N0 such that 0 ≤ ak ≤ bk for all k > N and
the series

∑
k bk converges, the series

∑
k ak also converges. If at some N ∈N0 we

find 0 ≤ bk ≤ ak for all k > N and the series
∑

k bk diverges, then the series
∑

k ak

also diverges.

Quotient and Cauchy Square-Root Test In the quotient test we observe the
upper limit of the quotient of the consecutive terms of the series,

ρ = lim sup
k→∞

∣∣∣∣
ak+1

ak

∣∣∣∣,

while in the square-root test, we look at the upper limit of the square roots,

ρ = lim sup
k→∞

|ak|1/k.

The series (absolutely) converges if ρ < 1, and (absolutely) diverges if ρ > 1. In the
case ρ = 1 the test is inconclusive (the series may either converge or diverge).

Integral Test Assume we have a sequence {ak}k∈N where all ak ≥ 0, and there
exists a continuous monotonously decreasing function f such that f (k) = ak for all
k ≥ 1. Then the series

∑∞
k=1 ak and the integral

∫ ∞
1 f (x)dx either both converge or

both diverge. In the case of convergence, the difference Rn = S − Sn = ∑∞
k=n+1 ak

satisfies
∫ ∞
n+1 f (x)dx ≤ Rn ≤ ∫ ∞

n
f (x)dx.

Kummer’s and Raabe’s Test To perform the Kummer’s test, we need a sequence
{ak}k∈N0 , ak > 0, and a sequence {bk}k∈N0 , bk > 0, from which we form the limit

ρ = lim
k→∞

(
bk

ak

ak+1
− bk+1

)
.

1.4 Summation of Finite and Infinite Series 33

The series
∑

k ak converges if ρ > 0, while it diverges if ρ < 0 and the series∑
k 1/bk diverges. If ρ = 0 the criterion is useless. In the case bk = k we obtain

the Raabe’s test, where we observe the limit

ρ = lim
k→∞

(
k

ak

ak+1
− k − 1

)
= lim

k→∞

[
k

(
ak

ak+1
− 1

)]
− 1.

The series
∑

k ak converges if ρ > 0, and diverges if ρ < 0. In the case ρ = 0 the
convergence or divergence cannot be ascertained.

Limit Comparison Test To a sequence {ak}k∈N0 , ak > 0, we find a sequence
{bk}k∈N0 , bk > 0, such that the limit ρ = limk→∞ ak/bk exists. If ρ is finite and
ρ 	= 0, then both

∑
k ak and

∑
k bk either converge or diverge.

Leibniz’s Test for Alternating Series An important class of real series is rep-
resented by alternating series

∑∞
k=0(−1)kak where ak ≥ 0 (the consecutive terms

change signs). If ak decrease monotonically and limk→∞ ak = 0 holds true, the al-
ternating series converges. The remainder can be bounded as |S − Sn| ≤ an.

Most of the enumerated tests are adapted for analytic work, but very often we can
also use them numerically to determine with large certainty whether a given series
diverges or converges.

We are also interested in the convergence of the power series

∞∑

k=0

ak(z − z0)
k, ak, z, z0 ∈C, (1.54)

which is used to describe functions around a point z0. Let us consider only absolute
convergence and define the largest disk (circular region of points z in the complex
plane) {z : |z − z0| ≤ r}, within which the series (1.54) absolutely converges. The
disk radius r is the convergence radius and can be computed as

r =
(

lim sup
k→∞

|ak|1/k
)−1

or r = lim sup
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣. (1.55)

1.4.2 Summation of Series in Floating-Point Arithmetic

In floating-point arithmetic, the summation of real series
∑n

k=0 ak implies round-
ing errors. In particular for series with n → ∞, precision is of utmost importance.
Substantial work has been done in the minimization of summation errors (see [8, 41–
43]). Here we list three most widely used summation methods that do not require
more than O(n) of operations.

Simple Recursive Summation Assume that we have the values {ak}nk=0 and
wish to compute their sum S = ∑n

k=0 ak . Most obviously, this can be accom-
plished by computing Ŝ = (· · · (((a0 ⊕ a1) ⊕ a2) ⊕ a3) · · · ⊕ an−1) ⊕ an, in a loop

34 1 Basics of Numerical Analysis

Input: real numbers a0, a1, . . . , an

Ŝ = a0;
for k = 1 step 1 to n do

Ŝ = Ŝ + ak ;
end
Output: Ŝ is the numerical sum of numbers ak

The deviation of the numerical sum Ŝ from the exact sum S strongly depends on
how ak are sorted. If they are unsorted, we have

|S − Ŝ| ≤ εM

2
n

n∑

k=0

|ak| +O
(
ε2

M

)
, (1.56)

where εM is the arithmetic precision (see p. 2) [42]. In simple summation one can
therefore expect a loss of up to log10 n significant digits. The estimate for the upper
limit of the error (not the error itself) is smallest when the terms are sorted as |ak| ≤
|ak+1|. Sorting requires at least O(n logn) additional operations.

Kahan’s Algorithm A much better procedure to sum a series, by which the effect
of rounding errors is greatly diminished, was proposed by Kahan [44]:

Input: real numbers a0, a1, . . . , an

Ŝ = a0;
c = 0;
for k = 1 step 1 to n do

y = ak − c;
t = Ŝ + y;
c = (t − Ŝ) − y; // do not omit brackets
Ŝ = t ;

end
Output: Ŝ is the numerical sum of numbers ak

Algebraically, the value of c is zero, but in finite arithmetic it represents a large part
of the lost precision when summing t = Ŝ + y. It is added to the sum in the next
step and by doing this, it compensates the rounding error from the previous step.
The deviation of the numerical sum from the exact one satisfies

|S − Ŝ| ≤ (
εM +O

(
nε2

M

)) n∑

k=0

|ak|. (1.57)

According to (1.57), Kahan’s summation is more precise than simple summation for
nεM/2 ≤ 1. In practice, this applies to even larger n (see Fig. 1.9). In the implemen-
tation of the algorithm we should make sure that the compiler does not simplify it,
since the essence of its strength is hidden in the rules of floating-point arithmetic. In
C and C++ variables should be declared volatile.

1.4 Summation of Finite and Infinite Series 35

Fig. 1.9 Rounding errors in summing series with many terms. Shown is the absolute error of the
numerical partial sums Sn = ∑n

k=0(−1)k/(k + 1) with respect to the limiting value S∞ = log 2.
[Left] Summation in single-precision arithmetic. [Right] Summation in double-precision arith-
metic. The horizontal lines correspond to εM = 1.19 × 10−7 (left) and εM = 2.22 × 10−16

(right)—see p. 2

Recursive Summation of Pairs Summation is an associative and commutative
operation between real numbers. Algebraically, the order of summation is thus ir-
relevant, and this fact is exploited by the Linz procedure [45]. In the first step we
sum the consecutive pairs of terms and obtain a new series. In this series we again
sum the consecutive pairs and repeat this (r = log2 n")-times, until we are left with
only one term, which represents the final sum:

Input: real numbers a0, a1, . . . , an−1, where n = 2r , r ∈N

m = m′ = n/2;
for k = 0 step 1 to m − 1 do

S0,k = a2k + a2k+1;
end
for j = 1 step 1 to r − 1 do

m′ = m′/2;
for k = 0 step 1 to m′ − 1 do

Sj,k = Sj−1,2k + Sj−1,2k+1;
end

end
Output: Ŝ = Sr−1,0 is the numerical sum of numbers ak

Because each term ak in the sum is touched only r-times, the deviation of the sum
Ŝ from the exact value S is much smaller than in simple recursive summation:

|S − Ŝ| ≤ εM

2
log2 n

n−1∑

k=0

|ak|

36 1 Basics of Numerical Analysis

(compare to (1.56)). For the intermediate sums Sj,k we need additional computer
memory to store n/2 real numbers, which is a bit wasteful compared to the simple
and Kahan’s summation which require only O(1) of memory. Linz’s algorithm can
be improved by compensating the numerical error and selecting the pairs in a more
intricate manner. For details, consult [46].

In all three methods we specified the upper bounds for |S − Ŝ|; for a given set
of numbers {ak}, all methods may be equally precise. In general, we recommend
Linz’s method unless pairs cannot be formed or this does not make much sense
(for example, for relatively short series). On the other hand, Kahan’s method, which
is both simple and precise, never fails to enchant (see Fig. 1.9). For very precise
summation, we resort to more sophisticated but slower methods like distillation
algorithms described in [41, 47, 48].

1.4.3 Acceleration of Convergence

The convergence of the partial sums Sn = ∑n
k=0 ak to the limit S = limn→∞ Sn

may be slow. By “slow” we mean its leading behavior to be |Sn − S| = O(n−p)

(power) or |Sn − S| =O((logn)−p) (logarithmic) where p > 0 is the convergence
order. Slow convergence is not desired since it implies large numerical costs and a
potential accumulation of rounding errors.

We speak of “fast” convergence when it is better than “slow” according to the
definition given above. Ideally, one would like to have exponential (geometric) con-
vergence |Sn − S| = O(an) where a ∈ [0,1). In many cases, convergence can be
accelerated by transforming the original series into another series that converges
more rapidly. In the following, we describe a few basic approaches. A modern in-
troduction to convergence acceleration with excellent examples and many hints can
be found in [49]; for a more detailed review, see [50, 51].

Richardson Extrapolation Assume that we already know the order of conver-
gence for a series S = ∑∞

k=0 ak , so that for its partial sums Sn = ∑n
k=0 ak we have

S = Sn + α

np
+O

(
n−r

)
, r > p > 0.

We think of the “value of the series” as being the value of the partial sum plus a
correction with the known leading-order behavior α/np . By transforming

T (1)
n = 2pS2n − Sn

2p − 1
= S2n + S2n − Sn

2p − 1

the term α/np can be eliminated and the terms T
(1)
n give us a better estimate for the

sum, for which we obtain S = T (1)+O(n−r). The very same trick can be repeated—
until this makes sense—by forming new sequences,

T (2)
n = 2p+1T

(1)
2n − T

(1)
n

2p+1 − 1
, T (3)

n = 2p+2T
(2)
2n − T

(2)
n

2p+2 − 1
, · · · .

1.4 Summation of Finite and Infinite Series 37

Fig. 1.10 Acceleration of convergence of partial sums. [Left] Aitken’s method for the sum
Sn = ∑n

k=0(−1)k/(k + 1) with the limit S = limn→∞ Sn = log 2. Shown is the acceleration
of this series with very slow (logarithmic) convergence by three-fold repetition of the Aitken’s
method. For typical series usually a single step of (1.58) suffices. [Right] Kummer’s acceleration
of the sums Sn = ∑n

k=1 1/k2 with the limit S = limn→∞ Sn = π2/6 by using the auxiliary series∑∞
k=1 1/(k(k + 1))

Richardson’s procedure is an example of a linear extrapolation method X,
in which for partial sums Sn and Tn of two series we have X(λSn + μTn) =
λX(Sn) + μX(Tn). It is efficient if the partial sums Sn behave like polynomials in
some sequence hn, that is, Sn = S + c1h

p1
n + c2h

p2
n + · · · or Sn+1 = S + c1h

p1
n+1 +

c2h
p2
n+1 + · · · , where the ratio hn+1/hn is constant. If this condition is not met, lin-

ear extrapolation may become inefficient or does not work at all. In such cases we
resort to semi-linear or non-linear extrapolation [49].

Aitken’s Method Aitken’s method is one of the classical and most widely used
ways to accelerate the convergence by non-linear extrapolation. Assume that we
have a sequence of partial sums Sn with the limit S = limn→∞ Sn. We transform the
sequence Sn into a new sequence

T (1)
n = Sn − (Sn+1 − Sn)

2

Sn+2 − 2Sn+1 + Sn

, n = 0,1,2, . . . , (1.58)

where the fraction should be evaluated exactly in the given form in order to min-
imize rounding errors. (Check that the transformed sequence (1.58) is identical to
the column ε(n,2) of the Wynn’s table (1.12).) We repeat the process by using T

(1)
n

instead of Sn to form yet another, even more accelerated sequence T
(2)
n , and proceed

thus until it continues to make sense as far as the rounding errors are concerned. Fig-
ure 1.10 (left) shows the comparison of convergence speeds for the unaccelerated
partial sums Sn and the accelerated sequences T

(1)
n , T

(2)
n , and T

(3)
n .

Aitken’s method is optimally suited for acceleration of linearly convergent se-
quences, for which limn→∞(Sn+1 − S)/(Sn − S) = a with −1 ≤ a < 1. Such se-
quences originate in numerous numerical algorithms based on finite differences. In

38 1 Basics of Numerical Analysis

some cases, we apply Aitken’s formula to triplets of partial sums Sn+p , Sn, and
Sn−p , where p > 1, because sometimes the geometric convergence of a series only
becomes apparent at larger p; see also Sect. 2.3 and [52].

Kummer’s Acceleration The basic idea of the Kummer’s method of summing
a convergent series S = ∑

k ak is to subtract from it another (auxiliary) convergent
series B = ∑

k bk with the known limit B , such that

lim
k→∞

ak

bk

= ρ 	= 0.

Then the original series can be transformed to

T =
∑

k

ak = ρ
∑

k

bk +
∑

k

(ak − ρbk) = ρB +
∑

k

(
1 − ρ

bk

ak

)
ak. (1.59)

The convergence of the series on the right is faster than the convergence of that on
the left since (1 − ρbk/ak) tends to zero when k → ∞. An example is the sum
S = ∑∞

k=1 1/k2 = π2/6 from which we subtract B = ∑∞
k=1 1/(k(k + 1)) = 1, thus

ρ = limk→∞ k(k + 1)/k2 = 1. We use the terms ak and bk , as well as ρ and B ,
in (1.59), and get the transformed partial sum

T (1)
n = 1 +

∞∑

k=1

(
1 − k2

k(k + 1)

)
1

k2
,

which has a faster convergence than the original series. Again, the procedure can be
invoked repeatedly (see [53] and Fig. 1.10 (right)).

1.4.4 Alternating Series

In alternating series the sign of the terms flips periodically,

S = a0 − a1 + a2 − a3 + · · · =
∞∑

k=0

(−1)kak, Sn =
n∑

k=0

(−1)kak.

In physics such examples can be encountered e.g. in electro-magnetism in problems
with oppositely charged particles or currents flowing in opposite directions. An ex-
ample is the calculation of the electric potential U(x, y, z) of charges of opposite
signs lying next to each other at distances a along the x-axis:

U(x, y, z) ∝
∞∑

k=−∞

(−1)k
√

(x + ka)2 + y2 + z2
.

1.4 Summation of Finite and Infinite Series 39

Making a Monotonous Series Alternate For realistic physics problems, the re-
sults of series summation may be unpredictable. Simple recursive summation may
suffer from large rounding errors. On the other hand, the acceleration of alternating
series is typically more efficient than the acceleration of series with exclusively pos-
itive (or exclusively negative) terms. A monotonous sequence can be transformed
into an alternating one by using the Van Wijngaarden’s trick:

∞∑

k=0

ak =
∞∑

k=0

(−1)kbk, bk =
∞∑

j=0

2j a2j (k+1)−1.

Euler’s Transformation One of the oldest ways to accelerate the convergence of
an alternating sequence by a linear combination of its terms is the Euler transfor-
mation. We rewrite the original sum S = ∑

k(−1)kak and its partial sum as

S =
∞∑

k=0

(−1)k
�ka0

2k+1
, Sn =

n∑

k=0

(−1)k
�ka0

2k+1
, (1.60)

where

�ka0 = (−1)k
k∑

j=0

(−1)j
(

k

j

)
aj .

If there exist N ∈N and C > 0 such that |�na0| ≤ C for all n > N , the series (1.60)
converges faster than geometrically with

|S − Sn| ≤ C

2n+1
, n > N.

In practical algorithms, we first form the partial sums

s(0)
n =

n∑

k=0

(−1)kak, n = 0,1, . . . ,N − 1,

and recursively compute the partial Euler transforms

s
(j+1)
n = 1

2

(
s
(j)
n + s

(j)

n+1

)
, j = 0,1, (1.61)

The values Tn ≡ s
(n)
0 represent the improved (accelerated) approximations of the

partial sums Sn (Fig. 1.11 (left)). The procedure is numerically demanding, since it
requires O(n2) operations and O(n) of memory for a complete transformation of a
series with n terms. It turns out that the optimally precise results are obtained not
by using the transform (1.61) with j = N − 1 and n = 0, but with j = 2N/3" and
n = N/3". An efficient implementation is given in [54].

40 1 Basics of Numerical Analysis

Fig. 1.11 Examples of acceleration of alternating series. Shown are the partial sums
Sn = ∑n

k=0(−1)kak without and with acceleration. [Left] Euler’s method (1.61) for ak = 1/(k+1)

(limit S = limn→∞ Sn = log 2). [Right] Cohen–Villegas–Zagier’s algorithm 1 from p. 42 by
using Chebyshev polynomials (1.65) and algorithm 2a in [55] for ak = 1/(2k + 1) (limit
S = limn→∞ Sn = π/4). To compute the partial sum to ≈ 15 significant digits typically less than
≈10–20 terms of the accelerated series are required

Generalizing the Euler’s Method Euler’s transformation can be generalized by
using the theory of measures. In this fresh approach to the summation of alternating
series [55] we assume that for a series

∑∞
k=0(−1)kak there exists a positive function

w such that the series terms ak are its moments on the interval [0,1],

ak =
∫ 1

0
xkw(x)dx. (1.62)

The sum of the series can then be written as

S =
∞∑

k=0

(−1)kak =
∫ 1

0

(∞∑

k=0

(−1)kxkw(x)

)

dx =
∫ 1

0

w(x)

1 + x
dx.

(In the final summation formula the weight function does not appear.) In the last
step, we have used the identity

n−1∑

k=0

(−1)kxk = 1 − (−x)n

1 + x
, |x| < 1, (1.63)

in the limit n →∞. We now choose a sequence of polynomials {Pn}, where Pn has
a degree n and Pn(−1) 	= 0. To the sequence {Pn} we assign the numbers

Sn = 1

Pn(−1)

∫ 1

0

Pn(−1) − Pn(x)

1 + x
w(x)dx.

1.4 Summation of Finite and Infinite Series 41

The numbers Sn are linear combinations of the series terms ak . This can be seen by
inserting the expression for a general polynomial Pn(x) = ∑n

k=0 pk(−x)k into the
equation for Sn and observe (1.63) and ak (1.62). We obtain

Sn = 1

dn

n−1∑

k=0

(−1)kc
(n)
k ak, dn =

n∑

k=0

pk, c
(n)
k =

n∑

j=k+1

pj .

The Sn defined in this way represent the partial sums of S that converge to S when
n is increased. The difference between the partial sum Sn and the sum S can be
constrained as

|S − Sn| ≤ 1

|Pn(−1)|
∫ 1

0

|Pn(x)|
1 + x

w(x)dx ≤ Mn

|Pn(−1)| |S|,

where Mn = supx∈[0,1] |Pn(x)| is the maximum value of the polynomial Pn on
[0,1]. The sufficient condition for the convergence of the partial sums Sn to S is
therefore limn→∞ Mn/Pn(−1) = 0. The authors of [55] recommend to choose a se-
quence of polynomials {Pn} such that Mn/Pn(−1) converges to zero as quickly as
possible. The following three choices are the most fruitful.

The first type of the polynomials Pn that may cross one’s mind is

Pn(x) = (1 − x)n =
n∑

k=0

(
n

k

)
(−x)k, Pn(−1) = 2n, Mn = 1.

Namely, the corresponding partial sums are

Sn = 1

2n

n−1∑

k=0

(−1)kc
(n)
k ak, c

(n)
k =

n∑

j=k+1

(
n

j

)
, (1.64)

and they are identical to the partial sums of the Euler transform (1.60), except for a
different subscripting (the sums (1.60) with subscript n are equal to the sums (1.64)
with subscript n + 1). By this choice we obtain |S − Sn| ≤ |S|/2n. Faster conver-
gence, |S − Sn| ≤ |S|/3n, can be obtained by using the polynomials

Pn(x) = (1 − 2x)n =
n∑

k=0

2k

(
n

k

)
(−x)k, Pn(−1) = 3n, Mn = 1.

Here the partial sums have the form

Sn = 1

3n

n−1∑

k=0

(−1)kc
(n)
k ak, c

(n)
k =

n∑

j=k+1

2j

(
n

j

)
.

A third choice is a special family of Chebyshev polynomials, which have other
beneficial algebraic properties and are orthogonal. We define these polynomials im-

42 1 Basics of Numerical Analysis

plicitly by Pn(sin2 t) = cos(2nt) or explicitly by

Pn(x) = Tn(1 − 2x) =
n∑

j=0

4j n

n+ j

(
n+ j

2j

)
(−x)j ,

where Tn(x) = cos(n arccosx) are the standard Chebyshev polynomials of degree n

on [−1,1]. The polynomials of this sequence are computed by using the recurrence
Pn+1(x) = 2(1−2x)Pn(x)−Pn−1(x), which is initiated by P0(x) = 1 and P1(x) =
1 − 2x. For polynomials chosen in this way, one can show that Pn(−1) = 1

2 [(3 +√
8)n + (3 −√

8)n] and Mn = 1. The partial sums

Sn = 1

Pn(−1)

n−1∑

k=0

(−1)kc
(n)
k ak, c

(n)
k =

n∑

j=k+1

4j n

n+ j

(
n+ j

2j

)
, (1.65)

converge to the final sum as

|S − Sn| ≤ 2|S|
(3 +√

8)n
<

2|S|
5.828n

,

so we need to sum only n ≈ 1.31D terms for a precision of D significant digits!
The coefficients c

(n)
k and other constants can be computed iteratively and the whole

computation of Sn can be implemented in a very compact algorithm [55]

Input: numbers a0, a1, . . . , an−1 of an alternating series
∑n−1

k=0(−1)kak

d = (3 +√
8)n; d = (d + 1/d)/2;

b =−1; c =−d ; s = 0;
for k = 0 step 1 to n − 1 do

c = b − c;
s = s + c ak ;
b = (k + n)(k − n)b/((k + 1/2)(k + 1));

end
Output: partial sum Sn = s/d

This algorithm requires O(1) of memory and O(n) of CPU. Similar results can
be obtained by using other families of orthogonal polynomials; the paper [55] de-
scribes further algorithms in which the coefficients of the partial sums cannot be
generated as easily, but yield even faster convergence. For many types of sequences,
these algorithms allow us to achieve convergence rates of |S − Sn| ≤ |S|/7.89n, in
some cases even the breath-taking |S − Sn| ≤ |S|/17.93n. However, they require
O(n) of memory and O(n2) of CPU.

1.4.5 Levin’s Transformations

Levin’s transformations [56] are among the most generally useful, handy, and effi-
cient methods to accelerate the convergence of series by semi-linear extrapolation.

1.4 Summation of Finite and Infinite Series 43

We implement them by using divided differences which are computed recursively:

δkfn = δk−1fn+1 − δk−1fn

tn+k − tn
, δ0fn = fn,

where tn = (n + n0)
−1 and we usually take n0 = 0 or n0 = 1. To compute the ex-

trapolated partial sums we need the partial sums Sn and auxiliary functions ψ which
depend on the terms of the sequence and its character (monotonous or alternating).
We use the formula

Sk,n = δk

(
Sn

ψ(n)

)[
δk

(
1

ψ(n)

)]−1

, k = 1,2, . . . (1.66)

and take Sk,0 (with n0 = 1) or Sk,1 (with n0 = 0) as the extrapolated sum. Levin’s
transformations differ by the functional forms of ψ . The best known are

T : ψ(n) = an, U : ψ(n) = (n + n0)an, W : ψ(n) = a2
n/(an+1 − an).

The T -transformation is best for alternating series in which the partial sums behave
as Sn ∼ rn, where r is the convergence ratio. The U -transformation works well with
monotonous sequences for which Sn ∼ n−j applies. The W -transformation can be
used in either case regardless of the series type, although it is more sensitive to
rounding errors than the U - and T -methods. The U -method is recommended [49]
as a reliable way to speed up the summation of any series. The U -transformation,
including the extrapolation to the limit and providing the remainder estimates, is im-
plemented in the GSL library [57] in the gsl_sum_levin_u_accel() func-
tion.

Example Let us sum the slowly converging series Sn = ∑n
k=0(−1)k/(k + 1) with

the limit S = limn→∞ Sn = log 2. We choose the Levin’s T -method and n0 = 0, thus
tn = n−1 and ψ(n) = (−1)n/(n + 1). By using (1.66) with n = 1 we obtain

k = 1 Sk = 0.5 Sk,1 = 0.7
2 0.8333333333333334 0.6923076923076924
3 0.5833333333333334 0.6932153392330384
4 0.7833333333333333 0.6931436119116234
5 0.6166666666666667 0.6931472579962513
6 0.7595238095238096 0.6931471858853886
7 0.6345238095238096 0.6931471799439380
8 0.7456349206349208 0.6931471805844429
9 0.6456349206349208 0.6931471805603313
10 0.7365440115440117 0.6931471805598398.

While the partial sums Sk merely hint at convergence, the accelerated sum Sk,1 at
k = 10 is already precise to 12 digits. See also Fig. 1.12 (left).

44 1 Basics of Numerical Analysis

Fig. 1.12 [Left] Precision of Levin’s methods T , U , and W in accelerating the convergence of the
partial sums Sn = ∑n

k=0(−1)k/(k+ 1) with the limit S = limn→∞ Sn = log 2. [Right] Precision of
the Poisson’s summation formula (1.67) for f (x) = 1/(1 + x2) with different samplings xk = k �

on the real axis, where −n ≤ {j, k} ≤ n and n � 1

1.4.6 Poisson Summation

Often we encounter sums of function values f at equidistant points on the real axis,

S =
∑

k∈Z
f (xk), xk = k �, � = xk+1 − xk.

Assume that f is differentiable, that it decreases sufficiently fast at infinity, and that
its Fourier transform

F(y) =
∫ ∞

−∞
f (x) e−i 2πxy dx

exists. The sum of the values f (xk) and the sum of the transforms F(yj), computed
at yj = j/�, j ∈ Z, are linked by the Poisson’s summation formula (see Fig. 1.12
(right))

∞∑

k=−∞
f (xk) = 1

�

∞∑

j=−∞
F(yj). (1.67)

1.4.7 Borel Summation

Perturbative solutions in classical and quantum mechanics often appear as formally
divergent series which, by appropriate means of summation, can yield a condition-
ally valid final result. Assume we have a sequence {ak}k∈N0 with the sum

∑∞
k=0 ak

that diverges. In the case when all ak can be explicitly expressed as functions of

1.4 Summation of Finite and Infinite Series 45

the index k, the series can be summed by Borel resummation. The original sum is
resummable in the form

S = lim
ξ→∞ e−ξ

∞∑

n=0

ξn

n! Sn, Sn =
n∑

k=0

ak, (1.68)

if the corresponding limit exists. In practice, the summation parameter ξ is not al-
lowed to go to infinity; rather, we try to locate a range of its values in which the
value of S stabilizes when ξ is being increased.

The resummation (1.68) is defined in its differential form. Even more often, we
use the integral form, in which the series terms ak (not the partial sums Sn) are used:

S =
∫ ∞

0
e−ξ

(∞∑

k=0

akξ
k

k!

)

dξ.

This form is particularly useful when the function f (ξ) = ∑∞
k=0 akξ

k/k! can be
written in closed form or is well known in the region where it contributes most
significantly to the integral

∫ ∞
0 f (ξ) e−ξ dξ . To do this, we can use the Padé ap-

proximation (see Sect. 1.2.2 and Problem 1.5.5).

1.4.8 Abel Summation

Assume that the series S = ∑∞
k=0 ak formally diverges, but that the limit of the

expression S(x) = ∑∞
k=0 xkak still exists when x ↗ 1. We can also introduce an

auxiliary parameter ε such that x = e−ε and observe the limit ε ↘ 0. Then the value

SA = lim
x↗1

S(x) = lim
x↗1

∞∑

k=0

xkak = lim
ε↘0

∞∑

k=0

e−ε kak

is called the Abel’s generalized sum of the series S. Like with the Borel summation,
we introduce an intermediate parameter to regularize a divergent series and then try
to sum it in the hope that the generalized limit is finite.

Example The divergent series

S =
∞∑

k=0

k coskr = Re
∞∑

k=0

k eikr , 0 < r < 2π,

has the Abel sum

SA = Re lim
x↗1

∞∑

k=0

xkk eikr = Re lim
x↗1

∞∑

k=0

k
(
x eir)k = Re

eir

(1 − eir)2
=− 1

4 sin2 r/2
.

46 1 Basics of Numerical Analysis

As an exercise, change the parameter 0 < x < 1 (approach x↗1) and the upper
range of the sum, and watch what happens to the values S and SA.

An analogous method can be used with divergent integrals. If the integral S =∫ ∞
a

f (x)dx diverges, its generalized Abel sum is given by

SA = lim
ε↘0

∫ ∞

a

e−ε xf (x)dx.

Example The divergent integral

S =
∫ ∞

0

√
x cosαx dx, α > 0

has the generalized value

SA = lim
ε↘0

∫ ∞

0
e−ε x

√
x cosαx dx = Re lim

ε↘0

∫ ∞

0

√
x e−(ε+iα)x dx =−

√
π

(2α)3/2
.

For exercise, take α = 1. Change the upper integration limit in the expressions for S

and SA, and force the limiting parameter ε to approach zero from above. Compare
the results to the analytic limit −√

π/(2α)3/2.

1.5 Problems

1.5.1 Integral of the Gauss Distribution

The standard (Gaussian) probability distribution (1/
√

2π) exp(−x2/2) pervades all
branches of probability and statistics. Usually we need the probability over an inter-
val, which can be computed by the integral

erf(x) = 2√
π

∫ x

0
exp

(−t2)
dt, erfc(x) = 1 − erf(x). (1.69)

Let us restrict the discussion to x ≥ 0. The erf function monotonously increases and
rapidly converges to 1 for large arguments. Its values are tabulated in textbooks, but
for general purposes we wish to be able to compute them by exploiting different
representations and approximations of the erf and erfc functions. If erf(x) is known,
erfc(x) is also known (and vice versa), but it is preferable to compute the function
having a smaller argument because the error is easier to control. We can switch
between calculations of erf and erfc at the point x ≈ 0.4769362762044695 where
erf(x) = erfc(x) = 1

2 .
For small x, we can use the power expansion

erf(x) = 2x√
π

∞∑

k=0

(−1)k
x2k

k!(2k + 1)
.

1.5 Problems 47

The convergence radius of this series is infinite, but its terms alternate and without
acceleration it is not suitable for the computation of erf(x) at x much larger than 1.
For large arguments, x � 1, the asymptotic expansion is suitable:

erfc(x) ∼ e−x2

x
√

π

[

1 +
∞∑

k=1

(−1)k
(2k − 1)!!
(2x2)k

]

.

In the range of x where both the power and the asymptotic expansions provide a
poor description of erf, a rational approximation

erfc(x) = e−x2
∑7

k=0 akx
k

∑7
k=0 bkxk

(
1 + ε(x)

)

may be used. The parameters of this formula are listed in the following table.

k ak bk

0 1.000000000000013 1.000000000000000
1 1.474885681937094 2.603264849035166
2 1.089127207353042 3.026597029346489
3 0.481934851516365 2.046071816911715
4 0.133025422885837 0.873486411474986
5 0.021627200301105 0.237214006125950
6 0.001630015433745 0.038334123870994
7 −0.000000000566405 0.002889083295887

The relative precision of this parameterization is ε(x) < 10−14 on x ∈ [0,5]. An
elegant, fast, but almost impenetrable implementation of the power expansion of erf
and of the computation of erfc by means of tabulated values with a precision of 14
to 16 digits in C can be found in [58]. The algorithms in the GNU C library are also
based on rational approximations with many parameters [59, 60].⊙

Examine the applicability and usefulness of different methods to compute
erf(x). Watch the convergence of the power and asymptotic series. In the latter, sum
the terms until the series appears to be converging. Does the convergence improve
if Euler’s method or Levin’s U -transformation is used? By using all three ways of
computation, write a program to calculate erf(x) in double precision on the whole
real axis with an error less than 10−10. Try to maximize the speed of the program.
Show a comparison table of erf(x) for x = 0 (0.2)3 and erfc(x) for x = 3 (0.5)8.

The integral (1.69) can also be integrated numerically. What would be the re-
quired size of the subintervals in the Simpson’s formula (Appendix E) in order
to achieve a precision that would be comparable to the summation methods used
above?⊕

Write a program to compute the inverse function erf−1 with an absolute pre-
cision of 10−9. Now that we are in possession of an efficient procedure to compute
erf(x), the inverse can be found by finding the root of the equation

F(x) = erf(x) − y = 0

48 1 Basics of Numerical Analysis

Fig. 1.13 Airy functions Ai and Bi for real arguments. Ai is bound everywhere, while Bi diverges
at x →∞. The zeros of both functions occur only on the negative semi-axis

by using a method to solve non-linear equations. You can use bisection because
erf is monotonous, but since the derivative [erf(x)]′ = 2e−x2

/
√

π is also known,
the much faster Newton’s method can be used. Compare the computed erf−1(y) for
small values of y to the power expansion [61, 62]

erf−1(y) =
∞∑

k=0

ck

2k + 1

(√
π

2
y

)2k+1

, c0 = 1, ck≥1 =
k−1∑

m=0

cmck−1−m

(m + 1)(2m + 1)
.

1.5.2 Airy Functions

In physics, the Airy functions Ai and Bi (Fig. 1.13) appear in optics and quantum
mechanics [63]. They are defined as the independent solutions of the equation

y′′(x) − xy(x) = 0

and have the integral representations

Ai(x) = 1

π

∫ ∞

0
cos

(
t3/3 + xt

)
dt,

Bi(x) = 1

π

∫ ∞

0

[
e−t3/3+xt + sin

(
t3/3 + xt

)]
dt.

For small x the functions Ai and Bi can be expressed by the Maclaurin series

Ai(x) = αf (x) − βg(x), Bi(x) =√
3
[
αf (x) + βg(x)

]
,

1.5 Problems 49

where, at x = 0, we have α = Ai(0) = Bi(0)/
√

3 ≈ 0.355028053887817239 and
β =−Ai′(0) = Bi′(0)/

√
3 ≈ 0.258819403792806798. The series for f and g are

f (x) =
∞∑

k=0

(
1

3

)

k

3kx3k

(3k)! , g(x) =
∞∑

k=0

(
2

3

)

k

3kx3k+1

(3k + 1)! ,

where (z)n = �(z + n)/�(z) and (z)0 = 1.
For large |x| the Airy functions can be approximated by their asymptotic expan-

sions. By substituting ξ = 2
3 |x|3/2 and by using the asymptotic series

L(z) ∼
∞∑

s=0

us

zs
, P (z) ∼

∞∑

s=0

(−1)s
u2s

z2s
, Q(z) ∼

∞∑

s=0

(−1)s
u2s+1

z2s+1
,

with coefficients

us = �(3s + 1
2)

54ss!�(s + 1
2)

,

we get, for large positive x,

Ai(x) ∼ e−ξ

2
√

πx1/4
L(−ξ), Bi(x) ∼ eξ

√
πx1/4

L(ξ),

while for large negative x we have

Ai(x) ∼ 1√
π(−x)1/4

[
sin(ξ − π/4)Q(ξ) + cos(ξ − π/4)P (ξ)

]
,

Bi(x) ∼ 1√
π(−x)1/4

[− sin(ξ − π/4)P (ξ) + cos(ξ − π/4)Q(ξ)
]
.

⊙
Find an efficient procedure to compute the values of the Airy functions Ai

and Bi on the real axis with a precision better than 10−10 by using a combination of
the Maclaurin series and the asymptotic expansion. When estimating the errors, use
programs that are capable of arbitrary-precision computations, e.g. MATHEMAT-
ICA.⊕

The zeros of Ai have an important role in mathematical analysis when one
tries to determine the intervals containing zeros of other special functions and or-
thogonal polynomials [64], as well as in physics in computation of energy spectra of
quantum systems [34]. Compute the first hundred zeros {as}100

s=1 of the Airy function
Ai and the first hundred zeros {bs}100

s=1 of Bi at x < 0, and compare the computed
values to the formulas

as =−f

(
3π(4s − 1)

8

)
, bs =−f

(
3π(4s − 3)

8

)
, s = 1,2, . . . ,

50 1 Basics of Numerical Analysis

where f has the asymptotic expansion [22]

f (z) ∼ z2/3
(

1 + 5

48
z−2 − 5

36
z−4 + 77125

82944
z−6 − 108056875

6967296
z−8 + · · ·

)
.

1.5.3 Bessel Functions

Solving differential equations in circular or spherical geometry often leads to Bessel
functions of the first kind Jν and second kind Yν . A physical example which does
not belong to this group but is related to it, is the problem of the oscillations of a
freely hanging heavy rope in a constant gravitational field, as shown in the figure
below.

A rope of length L is suspended from a ceiling and
the origin of the y axis is placed at the free end of
the rope. We study small deflections z(y) of the
rope in the field of the gravitational acceleration g.
Three lowest eigenmodes are shown. The eigen-
modes are described by the equation

d

dy

(
y

dz(y)

dy

)
+ ω2

g
z(y) = 0,

where z(y) is the deflection of the rope at y

when oscillating with the angular frequency ω.
The eigenfrequencies are determined by the equa-
tion and the boundary conditions |z(0)| < ∞ (de-

flection bounded at y = 0) and z(L) = 0 (fixed end at y = L). By substitution
t = 2ω

√
y/g the differential equation can be transformed to z̈(t)+ ż(t)/t+z(t) = 0.

The solution of this equation is a linear combination of the Bessel functions J0 and
Y0. With α =√

L/g the boundary conditions become

∣∣z(t = 0)
∣∣ < ∞, z(t = 2ωα) = 0.

The second condition eliminates Y0 which is singular at the origin. The condition
for the eigenfrequencies is then

ωn = ξ0,n/(2α), n = 1,2, . . . ,

where ξ0,n is the nth zero of J0. The values of J0(x) for small x can be computed
by using the power expansion

J0(x) =
∞∑

k=0

(−1)k(x/2)2k

(k!)2
,

1.5 Problems 51

while at large enough arguments, we use the formula

J0(x) =
√

2

πx

[
P(x) cos(x − π/4) +Q(x) sin(x − π/4)

]
, x →∞,

where P(x) and Q(x) are known in terms of the asymptotic series [65]

P(x) ∼
∞∑

k=0

(−1)k
a2

2k

(2k)!(8x)2k
, Q(x) ∼

∞∑

k=0

(−1)k
a2

2k+1

(2k + 1)!(8x)2k+1

with coefficients an = (2n − 1)!!. (Note (−1)!! = 0!! = 1.) For intermediate x we
compute J0(x) by using Bessel functions of higher orders Jn. In the limit n → ∞
and constant x we have Jn(x) ∼ (x/2)n/n!, and for x ∼ 1 and n > 2x this is a very
good approximation. Suppose we wish to calculate J0(x) at given x in arithmetic
with precision εM. With the asymptotic approximation we determine an even N �
2x such that ε = JN(x) � εM. This value of JN(x) is not normalized. Let us denote
Jn temporarily by Cn and, for given x, start the iteration

CN+1 = 0, CN = ε, Cn−1(x) = 2n

x
Cn(x) −Cn+1(x).

We obtain C0(x) which differs by a factor from the true value, J0(x) = C0(x)/A.
The factor A is determined by using the identity J0(x) + 2

∑∞
k=1 J2k(x) = 1:

A = C0(x) + 2
N/2∑

k=1

C2k(x).

⊙
Write a procedure to compute J0 on the real axis to an absolute precision of

10−12 and compare it to the result of a tool of higher precision, like MATHEMATICA

or MATLAB. Determine the first N = 10000 zeros {ξ0,n}Nn=1 of J0 and compare them
to the asymptotic formula [22, 31]

ξ0,n ∼ β + 1

8β
− 31

384β3
+ 3779

15360β5
− 6277237

3440640β7 + · · · , n →∞,

where β = (n − 1/4)π . Draw the first five eigenmodes of the oscillating rope.

1.5.4 Alternating Series

Some alternating series are literally famous, for example

π

4
=

∞∑

k=0

(−1)k

2k + 1
, log 2 =

∞∑

k=0

(−1)k

k + 1
,

π2

12
=

∞∑

k=0

(−1)k

(k + 1)2
.

52 1 Basics of Numerical Analysis

Just as well-known, the natural algorithm has the expansions

logx =
∞∑

k=1

(−1)k+1

k
(x − 1)k, |x − 1| ≤ 1, x 	= 1,

logx = 2
∞∑

k=0

1

2k + 1

(
x − 1

x + 1

)2k+1

, x > 0,

(1.70)

that enable us to compute logx on the whole positive semi-axis.⊙
Compute the sums of these series to a precision of ε = 10−7 by using dif-

ferent methods applicable to alternating series, and study their convergence. (The
second series in (1.70) is an exception since it is not alternating.) Compare these
methods to simple summation. Make a detailed analysis of the rounding errors first
by using single-precision data types (type float in C or C++), and then by using
double precision (type double).⊕

Sum the series given above by using a data type that allows for variable
precision (for example, by using the GMP library mentioned in Appendix B.3).
Draw a diagram of computational (CPU) times versus the required precision ε in
the range log10 ε ∈ [−300,−4].

1.5.5 Coulomb Scattering Amplitude and Borel Resummation

An eloquent example [66] of trouble we may face by careless summation of diver-
gent series is the Rutherford scattering amplitude for Coulomb scattering

f (θ) =− η

2k sin2(θ/2)
exp

[
i
(
2σ0 − η log sin2(θ/2)

)]
. (1.71)

We know that the asymptotic expansion of this amplitude is

f (θ) ∼ 1

2ik

∞∑

l=0

(2l + 1)Pl(cos θ)
(
e2iσl − 1

)
, (1.72)

where σl is the phase shift for Coulomb scattering in the partial wave with the or-
bital angular momentum quantum number l, and Pl is the Legendre polynomial of
degree l (see (4.28)). The phase shift in the lth partial wave is

σl = arg�(l + 1 + iη).

In the limit l →∞ the phase shifts behave as σl ∼ log l, while the values Pl(cos θ)

at fixed θ fade out like Pl(cos θ) ∼ l−1/2. Therefore, for l → ∞, the terms in the
sum (1.72) oscillate within an envelope that is proportional to l1/2, and the series
diverges.

References 53

⊙
Sum the series (1.72) directly by summing the terms up to lmax =100 by

using η = 1 and k = 1 fm−1. Compute the sum for angles 30◦ ≤ θ ≤ 180◦ in steps
of 10◦ and compare the results to (1.71). Do not calculate the phase shifts by using
the gamma function. Rather, use backward recurrence: start with the value of σl at
l = lmax, for which the Stirling approximation applies:

σl ∼
(

l+ 1

2

)
β+η logα−η− sinβ

12α
+ sin 3β

360α3
− sin 5β

1260α5
+ sin 7β

1680α7 − sin 9β

1188α9
+· · · ,

where

α =
√

(l + 1)2 + η2, β = arctan

(
η

l + 1

)
.

Then use the recurrence to compute the phase shifts at lower l:

σl = σl+1 − arctan

(
η

l + 1

)
, l = lmax − 1, lmax − 2, . . . ,0.

Similarly, compute the Legendre polynomials by using the three-term recurrence
formula (l+1)Pl+1(x) = (2l+1)xPl(x)− lPl−1(x), which is initialized by P0(x) =
1 and P1(1) = x.

In addition, sum the series by Borel resummation in differential form (1.68).
Compare the exact value (1.71) to the numerical one at angles θ = 10◦, 60◦, 120◦,
and 150◦ with the parameter ξ in the range 5 ≤ ξ ≤ 100 in steps of 5.⊕

Compute the Rutherford sum by applying the Wynn algorithm (1.12). At
scattering angles θ = 10◦, 60◦, 120◦, and 150◦, calculate the diagonal Padé ap-
proximations [n/n] for 0 ≤ n ≤ 20. Stop the recurrence in the algorithm when the
denominator of the fraction on the right side of (1.12) becomes equal to zero.

References

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT
Press/McGraw-Hill, Cambridge/New York, 2001)

2. D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd edn.
(Addison-Wesley, Reading, 1997)

3. IEEE Standard 754-2008 for Binary Floating-Point Arithmetic, IEEE 2008; see also
http://grouper.ieee.org/groups/754/

4. D. Goldberg, What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. 23, 5 (1991). An up-to-date version is accessible as Appendix D of the
Sun Microsystems Numerical Computation Guide. http://docs.sun.com/source/806-3568

5. M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New
York, 2007) (Example in Appendix A.3.1)

6. D. O’Connor, Floating Point Arithmetic. Dublin Area Mathematics Colloquium, March 5,
2005.

7. GNU Multi Precision (GMP), free library for arbitrary precision arithmetic. http://gmplib.org
8. H.J. Wilkinson, Rounding Errors in Algebraic Processes (Dover, Mineola, 1994)
9. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn.

(Addison-Wesley, Reading, 1980)

54 1 Basics of Numerical Analysis

10. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathe-
matics, vol. 12 (Springer, Berlin, 2002)

11. M.J.D. Powell, Approximation Theory and Methods (Cambridge University Press, Cambridge,
1981)

12. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton,
1955), which is a pedagogical jewel; a seemingly simplistic outward appearance hides a true
treasure-trove of ideas yielding one insight followed by another

13. W. Fraser, A survey of methods of computing minimax and near-minimax polynomial approx-
imations for functions of a single variable. J. Assoc. Comput. Mach. 12, 295 (1965)

14. H.M. Antia, Numerical Methods for Scientists and Engineers, 2nd edn. (Birkhäuser, Basel,
2002); see Sects. 9.11 and 9.12

15. R. Pachón, L.N. Trefethen, Barycentric-Remez algorithms for best polynomial approximation
in the chebfun system. Oxford University Computing Laboratory, NAG Report No. 08/20

16. G.A. Baker, P. Graves-Morris, Padé Approximants, 2nd edn. Encyclopedia of Mathematics
and Its Applications, vol. 59 (Cambridge University Press, Cambridge, 1996)

17. P. Wynn, On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3,
91 (1966)

18. P.R. Graves-Morris, D.E. Roberts, A. Salam, The epsilon algorithm and related topics. J. Com-
put. Appl. Math. 12, 51 (2000)

19. W. van Dijk, F.M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger
equation. Phys. Rev. E 75, 036707 (2007)

20. K. Kormann, S. Holmgren, O. Karlsson, J. Chem. Phys. 128, 184101 (2008)
21. C. Lubich, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algo-

rithms, ed. by J. Grotendorst, D. Marx, A. Muramatsu. NIC Series, vol. 10 (John von Neumann
Institute for Computing, Jülich, 2002), p. 459

22. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mine-
ola, 1972)

23. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, New
York, 1980)

24. P.C. Abbott, Asymptotic expansion of the Keesom integral. J. Phys. A, Math. Theor. 40, 8599
(2007)

25. M. Battezzati, V. Magnasco, Asymptotic evaluation of the Keesom integral. J. Phys. A, Math.
Theor. 37, 9677 (2004)

26. T.M. Apostol, Mathematical Analysis, 2nd edn. (Addison-Wesley, Reading, 1974)
27. P.D. Miller, Applied Asymptotic Analysis. Graduate Studies in Mathematics, vol. 75 (Am.

Math. Soc., Providence, 2006)
28. A. Erdélyi, Asymptotic Expansions (Dover, New York, 1987)
29. R. Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, 2001)
30. J. Wojdylo, Computing the coefficients in Laplace’s method. SIAM Rev. 48, 76 (2006). While

[29] in Sect. II.1 describes the classical way of computing the coefficients cs by series inver-
sion, this article discusses a modern explicit method

31. F.J.W. Olver, Asymptotics and Special Functions (Peters, Wellesley, 1997)
32. S. Wolfram, Wolfram Mathematica. http://www.wolfram.com
33. N. Bleistein, R.A. Handelsman, Asymptotic Expansion of Integrals (Holt, Reinhart and Win-

ston, New York, 1975)
34. L.D. Landau, E.M. Lifshitz, Course in Theoretical Physics, Vol. 3: Quantum Mechanics, 3rd

edn. (Pergamon, Oxford, 1991)
35. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, vol. 1 (McGraw-Hill, Reading,

1953)
36. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations,

2nd edn. (Chapman & Hall/CRC, Boca Raton, 2003), p. 215
37. J. Boos, Classical and Modern Methods in Summability (Oxford University Press, Oxford,

2000)

References 55

38. T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London,
1955). The collection of formulas and hints contained in the book remains indispensable

39. A. Sofo, Computational Techniques for the Summation of Series (Kluwer Academic/Plenum,
New York, 2003)

40. M. Petkovšek, H. Wilf, D. Zeilberger, A = B (Peters, Wellesley, 1996)
41. D.M. Priest, On properties of floating-point arithmetics: numerical stability and the cost of

accurate computations. PhD thesis, University of California at Berkeley (1992)
42. N.J. Higham, The accuracy of floating point summation. SIAM J. Sci. Comput. 14, 783 (1993)
43. J. Demmel, Y. Hida, Accurate and efficient floating point summation. SIAM J. Sci. Comput.

25, 1214 (2003)
44. W. Kahan, Further remarks on reducing truncation errors. Commun. ACM 8, 40 (1965)
45. P. Linz, Accurate floating-point summation. Commun. ACM 13, 361 (1970)
46. T.O. Espelid, On floating-point summation. SIAM Rev. 37, 603 (1995)
47. I.J. Anderson, A distillation algorithm for floating-point summation. SIAM J. Sci. Comput.

20, 1797 (1999)
48. G. Bohlender, Floating point computation of functions with maximum accuracy. IEEE Trans.

Comput. 26, 621 (1977)
49. D. Laurie, Convergence acceleration, in The SIAM 100-Digit Challenge. A Study in High-

Accuracy Numerical Computing, ed. by F. Bornemann, D. Laurie, S. Wagon, J. Waldvögel
(SIAM, Philadelphia, 2004), pp. 227–261

50. C. Brezinski, M.R. Zaglia, Extrapolation Methods (North-Holland, Amsterdam, 1991)
51. C. Brezinski, Convergence acceleration during the 20th century. J. Comput. Appl. Math. 122,

1 (2000)
52. E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the

summation of divergent series. Comput. Phys. Rep. 10, 189 (1989)
53. K. Knopp, Theory and Application of Infinite Series (Blackie, London, 1951)
54. http://www.nr.com/webnotes?5. The implementation described here is particularly attractive,

as it automatically changes N and J such that the required maximum error is achieved most
rapidly

55. H. Cohen, F.R. Villegas, D. Zagier, Convergence acceleration of alternating series. Exp. Math.
9, 4 (2000)

56. H.H.H. Homeier, Scalar Levin-type sequence transformations. J. Comput. Appl. Math. 122,
81 (2000)

57. GSL (GNU Scientific Library). http://www.gnu.org/software/gsl
58. G. Marsaglia, Evaluation of the normal distribution. J. Stat. Softw. 11, 1 (2004)
59. J.F. Hart et al., Computer Approximations (Wiley, New York, 1968)
60. W.J. Cody, Rational Chebyshev approximations for the error function. Math. Comput. 23, 631

(1969)
61. J.R. Philip, The function inverfc θ . Aust. J. Phys. 13, 13 (1960)
62. L. Carlitz, The inverse of the error function. Pacific J. Math. 13 (1963)
63. O. Vallée, M. Soares, Airy Functions and Applications to Physics (Imperial College Press,

London, 2004)
64. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence, 1939)
65. G.N. Watson, Theory of Bessel Functions (Cambridge University Press, Cambridge, 1922)
66. W.R. Gibbs, Computation in Modern Physics (World Scientific, Singapore, 1994). Sec-

tions 12.4 and 10.4

Chapter 2
Solving Non-linear Equations

In all areas of physics, mathematics, and engineering, we need to solve non-linear
equations

f (x) = 0, x,f (x) ∈ X, (2.1)

where X is a vector space (X = R
n or X = C

n). We assume that the number of
unknowns in (2.1) is equal to the number of equations. In this chapter the symbol ξ
(ξ in scalar equations) denotes the exact solution of (2.1), so f (ξ) = 0.

Some famous non-linear equations have analytic solutions, like x = a + b sinx

(Kepler’s problem, see Example on p. 62 and [1]) or xex = a (solution given by the
Lambert function, see [2]), but in general non-linear equations need to be solved
numerically. Efficient methods for solving non-linear equations are built into many
numerical libraries, but to achieve greater flexibility, we may be inclined to write
our own program.

There are two groups of methods for solving non-linear equations. The first group
comprises the methods that can be written in the iterative form

xk+1 = φ(xk), (2.2)

where φ is the iteration function (mapping) and ξ is the fixed point of this mapping.
The form of the function φ in general depends on the function f and its derivatives.
The iteration yields successive approximations x1,x2, . . . of the exact solution ξ ,
and we terminate the sequence when, at chosen ε > 0, we reach

∥
∥xk+1 − φ(xk)

∥
∥ < ε.

These methods rest on the Banach contraction principle (see Appendix D), so they
are equally useful and efficient in all Banach spaces: scalar problems, X = R, are
easily generalized to vector problems, X = R

n. The typical representatives of this
class are the Newton’s method (Sect. 2.1.2) and the Müller’s method (Sect. 2.1.4).
The second group contains the methods that cannot be written in the form (2.2)
and are hard to extend to multiple dimensions, e.g. the bisection (Sect. 2.1.1) or the
secant method (Sect. 2.1.3).

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_2, © Springer-Verlag Berlin Heidelberg 2012

57

58 2 Solving Non-linear Equations

Order of Convergence In methods of the form (2.2) the convergence of the se-
quence {xk} to the fixed point ξ of φ has different speeds. We say that the sequence
{xk} converges to ξ at least with order p if for any large enough k we have

‖ek+1‖ ≤ C‖ek‖p, ek = xk − ξ , (2.3)

where 0 < C < 1 if p = 1. Ideally, we always strive to find the largest order of
convergence p and the smallest quotient C. The three lowest orders (p = 1, 2, and
3) are called linear, quadratic, and cubic, respectively. If the initial error e0 is known,
we may use (2.3) to determine the error of the kth approximation of the solution ξ :

‖ek‖ ≤ C(pk−1)/(p−1)‖e0‖pk

.

In linear convergence, the approach to the solution is exponential, and the speed
of convergence depends exclusively on the magnitude of C. At higher orders, the
approach is super-exponential and the speed also depends on p. The order and the
quotient depend on the local properties of the mapping φ (see Appendix D).

Order of the Root To each root of the equation we assign its own order. The
order r of a root of f (x) = 0 (i.e. of a zero of f) is defined as the largest r for
which there exist real positive constants α, β , and ε, such that

α‖e‖r ≤ ∥
∥f (ξ + e)

∥
∥ ≤ β‖e‖r , ‖e‖ ≤ ε. (2.4)

In general the orders of the roots are positive and real, while for analytic functions in
the complex plane they are integer and named root multiplicities. If r = 1, the root is
simple; otherwise, it is multiple. The root orders are important pieces of information
in seeking possible or optimal ways to solve the equation.

Sensitivity of the Roots to Perturbations An important issue in solving the
equation f (x) = 0 is the sensitivity of its roots to the perturbation of the function f
by another function g. Let us consider only the scalar problem

f (x) + εg(x) = 0, (2.5)

where ε ∈ R is the perturbation parameter. Let f be an analytic function with the
zero ξ of order m, and let g(x) �= 0 near ξ . In this vicinity of ξ we use the power
expansion of f , in which only terms with powers higher than m − 1 survive:

f (ξ + h) = hm f (m)(ξ)

m! +O
(

hp
)

, p > m. (2.6)

In the absence of the perturbation (ε = 0), the root ξ(ε) of (2.5) is simply ξ = ξ(0).
When ε �= 0, we insert the expansion (2.6) into (2.5) and obtain the dependence of
the root upon the perturbation: in leading order,

ξ(ε)
.= ξ + ε1/m

(

− m!g(ξ)

f (m)(ξ)

)1/m

.

2.1 Scalar Equations 59

Since the mth root is a multi-valued complex function, multiple zeros of f + εg

may shift far away (in the complex plane) from zeros of the unperturbed function
f . We are interested in the effect of numerical errors in f (x) on the precision of the
computed zero ξ . If f (x) is known to a precision of δf , it follows that

δξ ≈
∣
∣
∣
∣

m!
f (m)(ξ)

δf

∣
∣
∣
∣

1/m

.

The error of the zero, δξ , may therefore become very large if the multiplicity of the
zero, m, is large. If f is a polynomial, special estimates for the sensitivities of its
coefficients to perturbations can be derived: see Sect. 2.4.5.

2.1 Scalar Equations

Finding the roots of the equation f (x) = 0, where f is a scalar function and x is its
scalar argument, is among the oldest mathematical tasks for which a rich assortment
of methods exists; here we discuss only the most famous ones.

2.1.1 Bisection

Bisection is the simplest and the most reliable numerical procedure to find a root of
odd order. It is also used as a building block of other methods. Initially we isolate
an interval [a, b] on which the function f definitely has a zero. This means that in
one of the points from this interval, f changes its sign,

f (a)f (b) < 0.

(Recall (1.2)!) In subsequent steps we gradually narrow the intervals containing
the zero. In the kth step we use the point ck = (ak + bk)/2 to divide the interval
[ak, bk], on which f (ak)f (bk) < 0, into subintervals [ak, ck] and [ck, bk]. Only one
of them contains the zero, and the one for which f (ak+1)f (bk+1) < 0 applies, is
used as the interval [ak+1, bk+1] to be divided in the next step. This procedure is
repeated until the step n at which the condition |an −bn| ≤ ε is fulfilled, and the final
approximation of the zero is ξ ≈ (an + bn)/2. The lengths of the intervals decrease
as ek+1 = ek/2: the method has linear convergence. The approximate number of
steps N needed to determine the zero to precision ε, is

N ≈ log((b − a)/ε)

log 2
.

Bisection cannot be used to find zeros of even orders, since f (ak)f (bk) < 0 does
not hold true. Bisection can be generalized to multiple dimensions; see [3, 4].

60 2 Solving Non-linear Equations

2.1.2 The Family of Newton’s Methods and the Newton–Raphson
Method

The Newton family of methods contains methods for solving the equation f (x) = 0
based on power expansions of f and seeking its inverse f −1 around the point 0.
Assume that ξ is the zero of f and S is an open neighborhood of ξ . Let f be
at least (n + 1)-times continuously differentiable in S and at least n-times in its
closure S. The function f can be written as a Taylor series (1.21) where x, x0 ∈ S

and x� ∈ [x, x0]. If f ′ �= 0 in S, the implicit-function theorem tells us that to f there
corresponds an inverse function g on � = f (S), which is at least (n + 1)-times
continuously differentiable on � and at least n-times on the closure �, and which
has the form

g(u) = g(v) + g′(v)(u − v) + · · · + g(n)(v)

n! (u − v)n + g(n+1)(δ)

(n + 1)! (u − v)n+1.

Here u,v ∈ � and δ ∈ [u,v]. The derivatives of the inverse function are

g(n)
(

f (x)
) = lim

x0→x

dn−1

dxn−1

(
x − x0

f (x) − f (x0)

)n

;

the first derivative is g′(f (x)) = 1/f ′(x), while the second and the third are

g′′(f (x)
) = − f ′′(x)

f ′(x)3
, g′′′(f (x)

) = 3f ′′(x)2 − f ′(x)f ′′′(x)

f ′(x)5
.

We expand g around v = f (x), evaluate it at u = f (ξ) = 0, and end up with an
expression for ξ which is valid for f (x) ∈ �:

ξ = x +
n

∑

k=1

g(k)(f (x))(−f (x))k

k!
︸ ︷︷ ︸

φn(x)

+g(n+1)(δ)

(n + 1)!
(−f (x)

)n+1
, δ ∈ [

0, f (x)
]

.

The sum φn(x) can be used in the iteration of a method of order n + 1 like

xk+1 = φn(xk),

as advertised at the outset (2.2). This iteration operates equally well on the real axis
and in the complex plane, and can therefore be used to seek both real and complex
roots. (If f is real and we wish to find a complex root, the initial approximation also
needs to be complex.) The most important representatives of this family of methods
are the Newton–Raphson method (n = 1),

xk+1 = xk − f (xk)

f ′(xk)
(2.7)

2.1 Scalar Equations 61

Fig. 2.1 Searching for the approximations of the zero by using the Newton–Raphson method. At
each point of the iteration (xk, f (xk)) we compute the tangent to the function. The intersection of
the tangent with the abscissa is the new approximation of the zero xk+1. See also Fig. 2.2 (right)

(Fig. 2.1), and the modified Newton–Raphson method (n = 2), with the iteration

xk+1 = xk − f (xk)

f ′(xk)
− f ′′(xk)f (xk)

2

2f ′(xk)3
.

Methods of higher orders can be constructed by augmenting the iteration function,
but their applicability is limited as the numerical computation, or even the existence
of higher derivatives of f , are questionable. Methods of orders greater than two are
rarely used.

The Newton–Raphson method with the iteration (2.7) is the most simple, gener-
ally useful and explored method from the Newton family. The search for the zero
by using this formula is illustrated in Fig. 2.1. Due to this characteristic graphical
interpretation this procedure is also known as the tangent method.

It is clear from this construction that the Newton–Raphson iteration has a
quadratic convergence if the derivative f ′(x) exists in some open neighborhood
S of ξ and is continuous and non-zero (f ′(x) �= 0 ∀S). This can be confirmed by
expanding the iteration formula around ξ in powers of the difference ek = xk − ξ .
We get

ek+1 ≈ f ′′(ζ)

2f ′(xk)
e2
k, ζ = ζ(xk) ∈ S.

The method therefore has quadratic convergence when maxx∈S |f ′′(x)| �= 0. The
speed of convergence is essentially driven by the ratio of the second and the first
derivative evaluated at the zero of f . If the zero is multiple, the Newton–Raphson
method slows down and becomes only linearly convergent. In such cases, quadratic
convergence can be restored by writing the iteration (2.7) as

xk+1 = xk − m
f (xk)

f ′(xk)
,

62 2 Solving Non-linear Equations

Fig. 2.2 Solving Kepler’s equation by Newton’s method. [Left] The definition of the anomaly E.
[Right] Poor convergence of the approximations Ek with a strongly eccentric orbit and bad initial
approximation E0. The function f (E) = E − M − ε sinE is drawn

where m is the order of the zero of f . If the order of ξ is unknown and there is a
chance that the zero is multiple, one should not try to solve f (x) = 0 but rather

u(x) = 0, u(x) = f (x)

f ′(x)
.

When u is inserted in (2.7), we obtain an iteration of the form

xk+1 = xk − f (xk)

f ′(xk) − f (xk)f ′′(xk)/f ′(xk)
,

which also accommodates multiple zeros.
Under certain assumptions about f and the initial value x0, the Newton–Raphson

sequence is locally convergent, but it does not converge globally (for arbitrary initial
values); see Example below. For some classes of f Newton’s method can be tuned to
become globally convergent [5]. Sufficient conditions for convergence are specified
by Ostrowski theorems (Appendix D).

Example (Adapted from [6, 7]) Kepler’s equation

E = M + ε sinE (2.8)

connects the parameters of the planet’s orbital motion around the Sun: eccentric
anomaly E, average anomaly M , and eccentricity ε = √

1 − b2/a2 (Fig. 2.2 (left)).
The time dependence of M is given by M(t) = 2π(t − tp)/T , where T is the period
and tp is the time of the passage through the perihelium (the point on the elliptic
orbit closest to the Sun). Various forms of analytic solutions exist [1].

Equation (2.8) can be solved by simple iteration, Ek+1 = M + ε sinEk , which
converges very slowly. It is therefore much better if the equation is rewritten in the

2.1 Scalar Equations 63

Fig. 2.3 Newton’s method used to solve z3 − 1 = 0 in the complex plane. [Left] The phase of
the final value z as a function of the initial approximation given by the values Re z in Im z on
the abscissa and the ordinate. The three shaded areas are the basins of attraction corresponding to
the phases 0, 2π/3 ≈ 2.094395, and −2π/3 ≈ −2.094395 to which the individual initial approx-
imation is “attracted” [8]. [Right] The number of iterations needed to achieve convergence, as a
function of the initial approximation

Newton form (2.7) with the function f (E) = E − M − ε sinE. We get

Ek+1 = M − ε[Ek cosEk − sinEk]
1 − ε cosEk

, k = 0,1,2,

With a prudent choice of the initial approximation the sequence {Ek} converges
very rapidly: for ε = 0.95, M = 245◦, and the initial approximation E0 = 215◦,
we obtain the solution E ≈ 3.740501878977461 to machine precision in just three
steps; the simple iteration would require 131 steps for the same precision.

For small eccentricities, ε � 1, Newton’s method is rather insensitive to the ini-
tial approximation, as in such cases E = M + ε sinE ≈ M , and the simple guess
E0 = M does the job. For large ε, however, the sequence of the approximations
{Ek} with a poorly chosen initial value E0 may diverge. Assume that we always
set E0 = M initially. If (ε,M) = (0.991,0.13π) or (0.993,0.13π), the sequence
{Ek} converges, but for the values (0.992,0.13π) it diverges! Similar behavior can
be observed near (ε,M) = (0.99,0.2) (Fig. 2.2 (right)). The reason for the di-
vergence is the bad choice of E0 combined with the tricky form of the function
f (E) = E − M − ε sinE with almost horizontal parts where the tangent to f is
“thrown” far away (see the jumps at k = 1 and k = 4). A good approximation for
any ε, which can be used to avoid the pitfalls seen above, is E0 = π [6, 7].

Example We use Newton’s method to compute the complex roots of z3 −1 = 0. The
analytic solutions are 1, ei2π/3, and e−i2π/3. We choose the initial approximation
z0 = x0 + iy0 ∈ [−2,2] × [−2,2] and observe the value of z at the end of the
iteration zk+1 = zk − f (zk)/f

′(zk), where f (z) = z3 − 1. Figure 2.3 (left) shows
the phase of the final value of z, while Fig. 2.3 (right) shows the number of steps
needed to achieve convergence to machine precision.

64 2 Solving Non-linear Equations

2.1.3 The Secant Method and Its Relatives

Together with bisection, the secant method and its variants are the oldest known it-
erative procedures. From the pairs (xk−1, f (xk−1)) and (xk, f (xk)) with oppositely
signed f (xk−1) and f (xk) we determine the straight line intersecting the abscissa
at xk+1, and we compute the value of f at this very point, f (xk+1). The process is
repeated on the subinterval on which the function’s values at its boundary points are
oppositely signed, until convergence is achieved.

This method of finding the zero (regula falsi, see below) is just a special case
in the family of methods based on the Newton–Raphson iteration where the exact
derivative of the function is replaced by the approximate one:

f ′(x) ≈ f (xk) − f (xk−1)

xk − xk−1
.

When this approximation is inserted in (2.7), we obtain the iteration

xk+1 = xk − f (xk)(xk − xk−1)

f (xk) − f (xk−1)
= f (xk)xk−1 − f (xk−1)xk

f (xk) − f (xk−1)
. (2.9)

To compute xk+1 we need the information from two previous points, hence this
method cannot be written in the one-point form xk+1 = φ(xk). The iteration (2.9)
can be used in various ways which yield the secant method, the method of false
position (regula falsi), and the chord method. Among these, only the secant method
has super-linear convergence with the optimal order (1 + √

5)/2 ≈ 1.618. All other
methods from this family have approximately linear convergence.

Secant Method This method does not require specific initial conditions (for ex-
ample, it does not require the function to have opposite signs at the boundaries of
the interval) and therefore does not always converge, in particular if the initial val-
ues are far from the zero. The secant method works best for functions with simple
(not multiple) zeros. We use (2.9) directly; see Fig. 2.4 (left).

Regula Falsi To use this method the function should have opposite signs at the
boundary points of [a, b], f (a)f (b) < 0. Then (2.9) is used in the form

c = f (b)a − f (a)b

f (b) − f (a)
, (2.10)

where c is the new approximation of the zero. According to the value f (c) we
choose the next interval on which the zero is located, and assign a = c or b = c, just
like with bisection (see Fig. 2.4 (right)). With minimal modifications of (2.10) we
can make the regula falsi method achieve super-linear convergence: see [9].

2.1 Scalar Equations 65

Fig. 2.4 Finding the approximations of the zeros of f by using the methods from the family
defined by (2.9). [Left] Secant method. [Right] Method of false position

Chord Method This method is a simplified version of the regula falsi method.
We also require f (a)f (b) < 0 (there is at least one zero on the interval) and that on
[a, b] the sign of the second derivative of f does not change. One of the ends of the
interval may therefore be fixed and the iteration (2.9) can be refurbished according to
the endpoint at which f satisfies f (x)f ′′(x) > 0. Two possible iteration procedures
follow. If the point x = a is fixed, we iterate

xk+1 = a − (xk − a)f (a)

f (xk) − f (a)
,

while if x = b is fixed,

xk+1 = b − (b − xk)f (b)

f (b) − f (xk)
.

2.1.4 Müller’s Method

Like the secant methods, Müller’s method is a one-point iteration method with mem-
ory: in computing the approximation of the zero in the current step, one uses the
interpolation of the values f (xk) and (approximations of) derivatives f (j)(xk) at
points accessed in previous steps. Using only the values would be best, but then at
most quadratic convergence can be achieved. If derivatives are used to improve the
interpolation, arbitrary orders of convergence can be achieved in principle, but this
is not practical. For details, see [10, 11].

The most well-known form of the Müller method can be derived by general-
izing the secant method: instead of the linear interpolation through the last two
points, we use the quadratic interpolation through the last three points of the it-
eration (xk, f (xk)), (xk−1, f (xk−1)), and (xk−2, f (xk−2)). The next approximation

66 2 Solving Non-linear Equations

of the zero ξ of f is one of the zeros x± of the interpolation polynomial

y(x) = a(x − xk)
2 + 2b(x − xk) + f (xk)

with the coefficients

a =
[
f (xk) − f (xk−1)

xk − xk−1
− f (xk) − f (xk−2)

xk − xk−2

]
1

xk−1 − xk−2
,

b = 1

2

[
f (xk) − f (xk−1)

xk − xk−1
+ f (xk) − f (xk−2)

xk − xk−2
− f (xk−1) − f (xk−2)

xk−1 − xk−2

]

.

The zeros of the interpolation polynomial are

x± = xk + 1

a

[−b ±
√

b2 − af (xk)
]

and are related by x+x− = (ax2
k − 2bxk + f (xk))/a and (x+ − xk)(x− − xk) =

f (xk)/a. The iteration step of the Müller method is then

xk+1 = x± = xk − f (xk)

b ±√

b2 − af (xk)
.

We choose the sign which corresponds to the largest magnitude of the denominator
since this minimizes the rounding errors. The iteration can be initialized with an
arbitrary triplet of points x0, x1, and x2 in the vicinity of ξ , but it is advisable to
space them uniformly.

The Müller method also allows us to search for complex zeros, with an important
advantage over the secant and Newton method: we enter the complex plane even if
the initial approximation is on the real axis. On the other hand, this property may be
a nuisance if we are searching only for strictly real zeros.

In the case that f is at least three times continuously differentiable in the vicinity
of its simple zero ξ , and that the initial approximations x0, x1, and x2 have been
chosen close enough to ξ , one can show that for the sequence {xk}, obtained in the
Müller iteration the following holds true:

lim
k→∞

|xk − ξ |
|xk−1 − ξ |p =

∣
∣
∣
∣

1

6

f ′′′(ξ)

f ′(ξ)

∣
∣
∣
∣

(p−1)/2

,

where the order of convergence is p ≈ 1.83929. Since the coefficient 2b is equal to
the derivative of the interpolation polynomial at xk , Müller’s iteration can also be
defined—in analogy to the Newton method—as

xk+1 = xk − f (xk)

2b
.

This simple iteration has the same order of convergence, but it becomes useless for
b ≈ 0. It can be put to good use, however, in the immediate vicinity of the real or
complex zero or in cases where strictly real zeros are searched and we wish to avoid
the jumps into the complex plane typical of the Müller method.

2.2 Vector Equations 67

Further Reading In iterative approaches in this section, we have devoted more
attention to the discussion of one-point methods, in which the values of the function
(and its derivatives) at a single point are needed to compute the next approximation
of the zero. This is the recommended and the most widely used practice. Methods
with memory and multi-step methods are discussed in [10]. In general these methods
are only locally convergent, and locating a good initial approximation of the zero is
imperative. In very specific cases (e.g. in polynomial equations) globally convergent
“sure-fire” methods exist that withstand practically arbitrary initial approximations.
For a deeper insight see [5, 10, 12, 13].

2.2 Vector Equations

In contrast to scalar equations, the solutions of vector equations are sought in n-
dimensional (n > 1) vector spaces. Equation (2.1) should therefore be read as

f (x) = 0, f : R
n →R

n
(

or f : C
n → C

n
)

, f : x �→ f (x).

The argument x of the function f and the solution of the equation f (x) = 0, its
root ξ , are vectors, x = (x1, x2, . . . , xn)

T and ξ = (ξ1, ξ2, . . . , ξn)
T. Similarly, a n-

dimensional vector is used to represent the n scalar functions of x:

f (x) =

⎛

⎜
⎜
⎜
⎝

f1(x)

f2(x)
...

fn(x)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)

⎞

⎟
⎟
⎟
⎠

.

In iterative solution of vector equations the approach to the root is no longer confined
to a straight line. This introduces severe algorithmic complications and restricts the
set of applicable methods. Here we follow [14] and introduce a generalization of the
Newton–Raphson and secant method to multiple dimensions.

2.2.1 Newton–Raphson’s Method

In the vector variant of the Newton–Raphson method we formally proceed in the
same spirit as in the scalar case. In the vicinity of the root ξ the components of the
function f have the Taylor expansions

0 = fi(ξ) ≈ fi(x) +
∑

j

∂fi(x)

∂xj

(ξj − xj) +O
(|ξ − x|2). (2.11)

68 2 Solving Non-linear Equations

By using the Jacobi matrix of derivatives of f with respect to x,

J (x) =

⎡

⎢
⎢
⎢
⎣

∂f1(x)
∂x1

. . .
∂f1(x)
∂xn

...
. . .

...

∂fn(x)
∂x1

. . .
∂fn(x)
∂xn

⎤

⎥
⎥
⎥
⎦

,

(2.11) can be rewritten as

0 = f (ξ) ≈ f (x) + J (x)(ξ − x) + · · · .

If x is close enough to ξ , we may neglect the quadratic term in the expansion, and
proclaim the solution ζ of the equation f (x) + J (x)(ζ − x) = 0 as the improved
approximation of the root, ζ = x − J−1(x)f (x). This leads to the general iteration
step

xk+1 = xk − J−1(xk)f (xk), k = 0,1,2, . . . , (2.12)

where k is the iteration index.
It is sometimes very hard or even impossible to compute the Jacobi matrix ana-

lytically. In such cases, we resort to approximations of derivatives, like

∂fi(x)

∂xj

≈ fi(x + hjej) − fi(x)

hj

,

where ej is the unit vector along the j th coordinate axis (a n-dimensional vector
with the j th component set to 1). If the chosen hj is too small, the errors in comput-
ing the values of f (x) may become very large; if the hj is too large, the derivative
is locally poorly approximated. The optimal hj can be estimated by

h
(opt)
j

∥
∥
∥
∥

∂f (x)

∂xj

∥
∥
∥
∥

≈ √
ε
∥
∥f (x)

∥
∥ ∀j,

where ε is the relative precision of the computation of the values f (x), for example,
ε = εM. By using this estimate, both f (x) and f (x +hjej) are precise to about half
of the digits allowed by the floating-point arithmetic being used.

The vector Newton method (2.12) is exact for affine functions f . This means that
the iterated values x are invariant with respect to a linear transformation f → Af

with an arbitrary non-singular square matrix A, and that the iterated values of the
method with the function f (Ax) can be obtained by simply applying the method
with the function f (x), and multiplying the vector of the iterated values by A−1.
The subsequent approximations converge to the root under the conditions of the
Newton–Kantorovich theorem (see Appendix D and [5]).

2.2 Vector Equations 69

2.2.2 Broyden’s (Secant) Method

In vector methods of the secant type we exploit the idea that at each point of the
iteration xk the function f can locally be approximated by a linear model,

f (x) ≈ f (xk) + Bk(x − xk).

From the viewpoint of the power expansion, the optimal choice is Bk = J (xk),
which corresponds to the Newton–Raphson method. But the matrix Bk may also
be understood as an approximation of the Jacobi matrix which, at some step of the
iteration, can be determined by the linear equation

Bk(xk − xk−1) = f (xk) − f (xk−1).

If the system of equations is linear, Bk is constant, while in non-linear systems, Bk

changes during the iteration k = 0,1, The changes (or updates) of Bk may be
very general or quite small. Various methods are characterized by different ways of
constructing Bk . The most useful are known as Broyden’s methods [15–17]; they
are the generalizations of the secant method (2.9) to vector equations.

Broyden’s methods belong to the class of methods in which the matrix Bk is only
minimally changed during the steps of the iteration (least-change secant update
methods). A nice, physically intuitive insight into the genesis of these methods is
given by their author in [18]. Empirically, “good” and “bad” versions of the Broyden
methods were discovered. In the good Broyden method, the approximation Bk of the
Jacobi matrix in a single iteration step is calculated by

Bk = Bk−1 + (yk−1 − Bk−1sk−1)s
T
k−1

sT
k−1sk−1

,

where

sk−1 = xk − xk−1, yk−1 = f (xk) − f (xk−1).

The update of Bk−1 at each step has rank one: this means that Bk−1 does not change
in any direction that is orthogonal to the vector sk−1. By using the inverse of the
updated matrix, B−1

k , we then proceed with the next step of the iteration

xk+1 = xk − B−1
k f (xk). (2.13)

In the program, this is implemented as a system of equations Bkxk+1 = Bkxk −
f (xk), which we solve for xk+1. We start the iteration by specifying the initial
approximation of the solution x0, while B0 is set to be the exact or the approximate
Jacobi matrix J (x0). One can also use the updates of the inverse matrix

B−1
k = B−1

k−1 + (sk−1 − B−1
k−1yk−1)s

T
k−1B

−1
k−1

sT
k−1B

−1
k−1yk−1

, (2.14)

70 2 Solving Non-linear Equations

which is only allowed if sT
k−1B

−1
k−1yk−1 �= 0. We need to calculate only one inverse

of the matrix, B−1
0 , which we then update as in (2.14) and iterate (2.13).

If f is continuously differentiable, and we see that the approximations xk con-
verge to the root ξ (where sk from some k on are linearly independent), we also find
limk→∞ Bk = J (ξ): in the iteration Bk approaches the Jacobi matrix J (ξ) (Fig. 2.5
(right)). For a precise formulation of the theorem and its proof see [19].

Example In this classic problem, we seek the angles θ1 and
θ2 at which the robot’s arm with handles l1 and l2 reaches
to the point (x, y). We are solving a system of non-linear
equations f1(θ1, θ2) = 0, f2(θ1, θ2) = 0, with

f1(θ1, θ2) = l1 cos θ1 + l2 cos(θ1 + θ2) − x,

f2(θ1, θ2) = l1 sin θ1 + l2 sin(θ1 + θ2) − y.

The Jacobi matrix corresponding to this system is

J (θ1, θ2) =
(

∂f1/∂θ1 ∂f1/∂θ2
∂f2/∂θ1 ∂f2/∂θ2

)

.

There may be an unique solution, multiple solutions, or the solution may not even
exist. Let the lengths of the arms be l1 = l2 = 1 and the initial position of the arm be
(θ1, θ2) = (20◦,20◦). We wish to reach the point (x, y) = (0.7,1.2).

The system can be solved by Broyden’s updates (2.14) in the iteration (2.13)
or its improved version (2.16) and (2.15). Since at each point θ = (θ1, θ2)

T we
know the explicit form of the Jacobi matrix, the solution can also be computed by
Newton’s method (2.12). Figure 2.5 (left) shows the convergence of the sequence
of approximations θk for both iterations. The final position of the robotic arm is
(θ1, θ2) ≈ (105.746◦,267.994◦); if the initial approximation is (20◦,100◦) we ob-
tain the second solution ≈ (13.741◦,92.006◦). Figure 2.5 (right) shows the approach
of the Broyden matrix to the exact Jacobi matrix.

For a successful iteration it is imperative that the matrix Bk is non-singular, which
can be controlled by monitoring its determinant [20]. During the iteration, the de-
terminant changes according to

det(Bk+1) = sT
k B−1

k yk

sT
k sk

det(Bk).

In the kth step, Bk may become singular and remain singular in all subsequent steps
if sk ⊥ B−1

k yk . Even approximate orthogonality and near-vanishing of the determi-
nant may have disastrous consequences. One obtains a much better control of the
stability of the Broyden method if the iteration is generalized as

xk+1 = xk − λkB
−1
k f (xk), (2.15)

2.2 Vector Equations 71

Fig. 2.5 The solution of the robotic arm problem. [Left] The deviation of f (θk) from the values
0 as a function of the iteration index in the Newton and Broyden method. (Other initial conditions
may yield a rather different figure.) [Right] The convergence of the Broyden matrix to the exact
Jacobi matrix as a function of the iteration index (measured in the Frobenius matrix norm)

Bk = Bk−1 + ηk−1
(yk−1 − Bk−1sk−1)s

T
k−1

sT
k−1sk−1

. (2.16)

The control parameters ηk and λk can be adjusted during the iteration. Reasonable
values are ηk ∈ (0,2) and λk ∈ (0,2). If ηk is calculated as

ηk =
{

1; |γk| ≥ 1/10,

1−sign(γk)/10
1−γk

; |γk| < 1/10,
γk = sT

k B−1
k yk

sT
k sk

,

which bounds ηk ∈ [0.9,1.1], it turns out [20] that the non-singularity of Bk is guar-
anteed; in addition, we establish |det(Bk+1)| ≥ |det(Bk)|/10. The sequence of ap-
proximations xk or the deviations from the root ek = xk − ξ obtained by the gener-
alized Broyden scheme satisfy

‖ek+1‖2

‖ek‖2
≤ εk + |λk − 1|

1 − εk

,

where {εk} is a sequence for which limk→∞ εk = 0. In the basic Broyden method
(λk = 1) the right side of the inequality vanishes as k → ∞, and the method is
super-linear. This applies only near the solution. Farther away, it makes more sense
to vary λk within a line search: We seek the largest λk such that

∥
∥f (xk − λkdk)

∥
∥

2 <
∥
∥f (xk)

∥
∥

2, dk = B−1
k f (xk),

or restrict the parameter λk to assume only the values of negative powers of 2,

λk = 2−j , j = min
{

i ≥ 0 : ∥∥f (

xk − 2−idk

)∥
∥

2 <
∥
∥f (xk)

∥
∥

2

}

.

72 2 Solving Non-linear Equations

We can also search for λ that minimizes g(λ) = ‖f (xk − λdk)‖2, but if this is
implemented carelessly, we may face large numerical costs and slow convergence.
A very good estimate for the optimal value of the parameter λ can be obtained
by approximating g(λ) by a parabolic interpolant through the points g0 = g(0),
gt = g(t), t ∈ (0,1), and g1 = g(1):

g(λ) ≈ g0 + t2(g1 − g0) + g0 − gt

t (t − 1)
λ − t (g1 − g0) + g0 − gt

t (t − 1)
λ2.

Assume that λ at which g(λ) has a minimum,

λ = 1

2

t2(g1 − g0) + g0 − gt

t (g1 − g0) + g0 − gt

,

is a good approximation for the optimal value. If this approximation lies outside the
interval (0,1), we discard it and make the next step by using λ = 1.

2.3 Convergence Acceleration �

The convergence of iterative methods (and, more generally, all convergent se-
quences) can be accelerated by using Aitken’s procedures. In the following, we
present the most commonly known Aitken methods to accelerate the iterations or
sequences with linear or quadratic convergence.

Assume we are seeking the solution ξ of the equation f (x) = 0. If the sequence
{xk} of approximations of ξ converges linearly, we know that the differences ek =
xk − ξ near the root satisfy ek+1 = αek and ek+2 = αek+1. When the former of these
equations is divided by the latter, we get e2

k+1 = ekek+2. We insert ek = xk −ξ , solve
for ξ , and get an improved approximation of the root,

Xk = xk − (xk+1 − xk)
2

xk+2 − 2xk+1 + xk

, (2.17)

which can represent the final result or the initial value for the next step. (Com-
pare (2.17) and (1.58)!) In the optimal case, the sequence {Xk} converges quadrat-
ically to ξ . In general, however, one can guarantee only that the sequence {Xk}
converges faster than {xk}. Due to its characteristic form of the numerator in (2.17)
this method is known as the Aitken �2 process.

Typically we do not accelerate quadratically convergent sequences. Yet this does
become sensible when a single iteration step implies excessive numerical costs and
we wish to squeeze as much as possible from the numerical procedure. As in the
linear case, we divide the convergence equations in two subsequent steps, ek+1 =
αe2

k and ek+2 = αe2
k+1, thereby eliminating α. We get e3

k+1 = ek+2e
2
k , into which

we insert ek = xk − ξ , and end up with a quadratic equation for ξ ,

(3xk+1 − xk+2 − 2xk)ξ
2 + (−3x2

k+1 + 2xkxk+2 + x2
k

)

ξ + x2
k+1 − xk+2x

2
k = 0.

2.4 Polynomial Equations of a Single Variable 73

To compute the improved approximation of the root, we take the average of its two
solutions:

Xk = ξ+ + ξ−
2

= x2
k + 2xkxk+2 − 3x2

k+1

4xk − 6xk+1 + 2xk+2
.

2.4 Polynomial Equations of a Single Variable

Polynomials [21] are frequent guests in scientific and technical applications. In most
cases, we are dealing with real polynomials of degree n, defined as

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 =
n

∑

k=0

akx
k, (2.18)

where ak are real coefficients and an �= 0. The zeros (roots) of polynomial equations
p(x) = 0 are assigned orders (multiplicities), just as the roots of equations f (x) = 0
with general functions f —see (2.4). A real polynomial may have real or complex
zeros. Complex roots always appear in complex conjugate pairs.

Division of Polynomials One of the auxiliary tools for solving polynomial equa-
tions and simplifying polynomial expressions is the division of polynomials. When
a polynomial u is divided by a non-zero polynomial v,

u(x) = unx
n + · · · + u1x + u0, v(x) = vmxm + · · · + v1x + v0,

we obtain the quotient q and the remainder r , u(x) = q(x)v(x) + r(x), where

q(x) = qn−mxn−m + · · · + q1x + q0, r(x) = rm−1x
m−1 + · · · + r1x + r0,

and where degree(r) < degree(v). We divide the polynomials u and v by using the
algorithm for synthetic division [22]:

Input: coefficients {u0, . . . , un} and {v0, . . . , vm} of polynomials u and v

for k = n − m step −1 to 0 do
qk = um+k/vm;
for j = m + k − 1 step −1 to k do

uj = uj − qkvj−k

end
end
Output: coefficients of the remainder, {r0, . . . , rm−1} = {u0, . . . , um−1}, and

of the quotient, {q0, . . . , qn−m}

Computing the Value of the Polynomial The division of a polynomial by the
linear function x − ζ leads to an elegant and economical method to compute the
value of the polynomial at x = ζ by applying the rule p(x) = (x − ζ)q(x) + p(ζ).

74 2 Solving Non-linear Equations

We write p(ζ) in factorized form p(ζ) = (· · · ((anζ + an−1)ζ + an−2)ζ + · · ·)ζ +
a0. From this we infer that synthetic division simplifies to the Horner or Ruffini
algorithm, which can be memorized in terms of the table

an an−1 · · · a2 a1 a0
bnζ · · · b3ζ b2ζ b1ζ

bn bn−1 · · · b2 b1 b0 = p(ζ)

The first row are the coefficients ak of p. The third row contains the sums of the cor-
responding terms in the first and second rows. The second row contains the products
of ζ with the coefficients bk from the third row. The value p(ζ) is in the lower right
corner. For example, compute the value of p(x) = x3 − 2x2 + 3x − 4 at ζ = 2.
With a3 = 1, a2 = −2, a1 = 3, a0 = −4, we get b3 = a3 = 1, b2 = a2 + b3ζ = 0,
b1 = a1 + b2ζ = 3 and b0 = a0 + b1ζ = p(ζ) = 2.

In a computer implementation we may use the following algorithm which sup-
plies not only the value of the polynomial, but also its derivative at ζ :

Input: coefficients {a0, . . . , an} of the polynomial p, value of ζ

p = an; q = 0;
for i = n − 1 step −1 until 0 do

q = p + qζ ;
p = ai + pζ ;

end
Output: p(ζ) = p and p′(ζ) = q

Horner’s procedure can also be used to compute the numbers in various bases,
for example, the value of a natural number in base b:

(anan−1 . . . a1a0)b =
n

∑

k=0

akb
k, ak ∈ {0,1, . . . , b − 1}.

This method is much faster than computing the powers and requires only O(n) arith-
metic operations. The procedure can also be parallelized by splitting the polynomial
into a part with odd and a part with even powers:

p(x) = peven
(

x2)+ xpodd
(

x2), peven(t) =
�n/2�
∑

k=0

a2kt
k, podd(t) =

�n/2�−1
∑

k=0

a2k+1t
k.

The numerical cost of Horner’s scheme is optimal. However, for a generic polyno-
mial, there exists an algorithm which requires only �n/2� + 1 multiplications and
n summations, but it cannot be found easily [22]. If floating-point arithmetic with
precision εM is used (Table 1.1), the computed value pnum(ζ) differs from the exact
value p(ζ), and the difference can be bounded by

∣
∣pnum(ζ) − p(ζ)

∣
∣ < max

0≤k≤n
|ak|

[

(1 + εM)2n − 1
] |ζ |n+1 − 1

|ζ | − 1
.

2.4 Polynomial Equations of a Single Variable 75

The coefficients ak and the value ζ are assumed to be exact; the differences ap-
pear due to rounding errors in multiplication and summation. Clearly the precision
deteriorates when the degree of the polynomial or its coefficients increase.

2.4.1 Locating the Regions Containing Zeros

In general, zeros of polynomials lie in bounded regions of the complex plane. In the
following, we describe some generally useful methods used to determine the extent
of these regions [23]. The classical estimates are due to Cauchy and Fujiwara: the
magnitudes of all zeros ξj ∈ C of a polynomial of the form (2.18) are smaller than
the only real zero r of the Cauchy polynomial

g(x) = xn −
n−1
∑

k=0

∣
∣
∣
∣

ak

an

∣
∣
∣
∣
xk.

Thus r can be understood as the most conservative estimate for the radius of the disc
in the complex plane that contains all zeros ξj . Cauchy’s estimate is

r ≤ max

{∣
∣
∣
∣

a0

an

∣
∣
∣
∣
, 1 +

∣
∣
∣
∣

a1

an

∣
∣
∣
∣
, . . . ,1 +

∣
∣
∣
∣

an−1

an

∣
∣
∣
∣

}

. (2.19)

Much later, Fujiwara [24] derived the estimate

r ≤ 2 max

{∣
∣
∣
∣

a0

2an

∣
∣
∣
∣

1/n

,

∣
∣
∣
∣

a1

an

∣
∣
∣
∣

1/(n−1)

, . . . ,

∣
∣
∣
∣

an−1

an

∣
∣
∣
∣

}

, (2.20)

which may result in a narrower bound. The estimates (2.19) and (2.20) are also
applicable to complex polynomials and are thus also useful for complex zeros.

Determining the Interval with Real Zeros It can be shown [25] that arbitrary
real numbers {v1, v2, . . . , vn}, for which we define α = ∑n

k=1 vk and β = ∑n
k=1 v2

k ,
lie on a closed interval with the boundary points

1

n

[

α ±
√

(n − 1)
(

nβ − α2
)]

.

This property can be used for the determination of the interval containing real zeros
of a real polynomial. Let a real polynomial of degree n,

p(x) = an

n
∏

k=1

(x − ξk),

which is just a factorized form of (2.18), possess real zeros {ξ1, ξ2, . . . , ξn}. For the
numbers vk we choose vk(x) = (x − ξk)

−1, where x �= ξk for ∀k. It is clear from the

76 2 Solving Non-linear Equations

structure of the polynomial that α and β can be written as

α =
n

∑

k=1

vk = p′(x)

p(x)
, β =

n
∑

k=1

v2
k = −

(
p′(x)

p(x)

)′
= p′(x)2 − p(x)p′′(x)

p(x)2
.

The values vk(x) for each x thus lie on the interval with the boundary points

u±(x) = 1

np(x)

[

p′(x) ±
√
[

(n − 1)p′(x)
]2 − n(n − 1)p(x)p′′(x)

]

,

thus

u−(x) ≤ 1

x − ξk

≤ u+(x), k = 1,2, . . . , n. (2.21)

To u−, vk , and u+, we apply the functional � : f (x) �→ limx→∞ x(xf (x) − 1)

which maps u− �→ �(u−), vk �→ ξk and u+ �→ �(u+). In this mapping, the sense
of the relation (2.21) does not change. From the inequality �(u−) ≤ ξk ≤ �(u+)

we therefore infer that the zeros ξk lie on the interval [A−,A+], where

A± = �(u±) = 1

nan

[

−an−1 ±
√

(n − 1)2a2
n−1 − 2n(n − 1)anan−2

]

, (2.22)

if an > 0, or on the interval [A+,A−], if an < 0.

Determining the Interval Containing at Least One Zero For each point x we
can determine the interval [x − r, x + r] containing at least one zero of the polyno-
mial. We differentiate the sum α from the previous paragraph m times:

α(x) = p′(x)

p(x)
=

n
∑

k=1

1

x − ξk

, α(m)(x) =
n

∑

k=1

(−1)m(m + 1)!
(x − ξk)m+1

.

This tells us that the derivative α(m) is bound from above as

∣
∣α(m)(x)

∣
∣ ≤ n(m + 1)!

rm+1
,

where r measures the distance from x to the nearest zero. This inequality can be
read as the estimate for the upper bound for r :

r ≤ min
m∈N0

(
n(m + 1)!
|α(x)(m)|

)1/(m+1)

. (2.23)

A meaningful estimate for r can already be obtained at orders m = 0, 1, or 2.

Example The real polynomial of degree n = 5,

p(x) = 3
5
∏

k=1

(x − k) = 3x5 − 45x4 + 255x3 − 675x2 + 822x − 360, (2.24)

2.4 Polynomial Equations of a Single Variable 77

Fig. 2.6 Regions containing zeros of the polynomial (2.24). Arrows indicate the intervals centered
at x = 10 which contain at least one zero according to (2.23). Also shown is the interval [A−,A+]
based on (2.22) which contains all zeros

has five real zeros ξk = k, 1 ≤ k ≤ 5. Cauchy’s estimate (2.19) is almost useless, as it
tells us that all zeros are contained in the very wide interval [−275,275]. Fujiwara’s
estimate (2.20) succeeds in narrowing down this range significantly, to [−30,30].
By using (2.22) we get [A−,A+] ≈ [0.171573,5.82843].

We also estimate the interval centered at x = 10 which contains at least one
zero of p. We use (2.23) at m = 0, 1, 2, 3, and 100. At these orders, we calculate
the intervals [x − r, x + r] ≈ [3.294,16.706] (m = 0), [0.721,19.279] (m = 1),
[0.737,19.264] (m = 2), [1.098,18.902] (m = 3), and [4.682,15.318] (m = 100),
shown in Fig. 2.6. With m = 100 we clearly get a good estimate for the location
of ξ5, but computing the hundredth derivative of p′/p is unfeasible; in a practical
situation we might simply keep the m = 0 estimate.

2.4.2 Descartes’ Rule and the Sturm Method

Descartes’ rule [13] allows us to determine the maximum number of positive and
negative zeros of the polynomial of the form (2.18). According to this rule, the
number of positive zeros N+ (where each zero is counted as many times as its mul-
tiplicity) is equal to or smaller by an even integer than the number of sign changes
M+ in the sequence of coefficients {an, an−1, . . . , a1, a0},

N+ = M+ − 2i, i ∈N0.

The zero coefficients should be disregarded in the sequence. By the same token, the
number of negative zeros N− does not exceed the number of sign changes M− in
the sequence of coefficients {(−1)nan, (−1)n−1an−1, . . . ,−a1, a0},

N− = M+ − 2j, j ∈N0.

The maximum possible number of all real zeros is therefore N = N+ + N−.

78 2 Solving Non-linear Equations

To compute the number of real zeros of the polynomial lying on the chosen inter-
val [a, b], and to determine the intervals containing the individual zeros, we use the
Sturm method. Let us discuss polynomials with simple zeros only (multiple zeros
can be eliminated, see Sect. 2.4.4). We first compute the derivative p′. The divi-
sion of p by p′ yields the remainder −r1 which is used with the opposite sign in
the following step. We then divide the derivative p′ by r1, yielding the remainder
−r2, which is again taken with the opposite sign. We repeat the procedure until the
remainder is a constant:

p(x) = p′(x)q0(x) − r1(x),

p′(x) = r1(x)q1(x) − r2(x),

r1(x) = r2(x)q2(x) − r3(x),

· · · · · ·
rk−1(x) = rk(x)qk(x) − rk+1, rk+1 = const.

(2.25)

The sequence S(x) = {p(x),p′(x), r1(x), r2(x), . . .} is called the Sturm sequence.
At given x we count the number of sign changes of its terms and denote this number
by M(x). The number of zeros on [a, b], each of which is counted with the corre-
sponding multiplicity, is then N = |M(a) − M(b)|. By dividing the real axis and
computing N for such divisions, individual zeros can be isolated.

Example Define the real polynomials

p(x) =
7
∏

k=1

(x − k), p+(x) = p(x) + x3. (2.26)

The polynomial p contains the cubic term −1960x3. What happens to the real zeros
of p if the term +1x3 is added to it? The polynomial p has seven zeros on the real
axis: ξk = k, 1 ≤ k ≤ 7 (Fig. 2.7 (left)). Let us choose the interval containing all
zeros, e.g. [a, b] = [0.5,7.5]. By Sturm’s method we check that this interval indeed
contains all seven zeros. Sturm’s sequence, computed by using the procedure (2.25),
has eight terms: {p(x),p′(x), r1(x), . . . , r6(x)}. The values of the elements of this
sequence at x = a and x = b are listed in the second and third columns of Table 2.1,
respectively. In the second column we count M(a) = 7 sign changes, while there are
no sign changes in the third, M(b) = 0. Therefore, p has N = |M(a) − M(b)| = 7
zeros on [a, b].

A seemingly inconsequential perturbation +1x3 distorts p to the extent that the
perturbed polynomial p+ has only three real zeros ξ1 ≈ 0.999, ξ2 ≈ 2.085, and
ξ3 ≈ 2.630 (Fig. 2.7 (right)). Sturm’s sequence for p+ also contains eight terms, and
their values at a and b are listed in the fourth and fifth columns of Table 2.1. From
these columns, we now read off M(a) = 5 sign changes at x = a and M(b) = 2 sign
changes at x = b. On [a, b] we therefore expect only N = |M(a)−M(b)| = 3 zeros
of p+, as confirmed by Fig. 2.7 (right).

2.4 Polynomial Equations of a Single Variable 79

Table 2.1 Values of the Sturm sequence polynomials at x = a and x = b, and the number of sign
changes in this sequence for the polynomials p and p+ defined by (2.26)

f
Polynomial p Polynomial p+
f (a) f (b) f (a) f (b)

p −1055.74 1055.74 −1055.62 1477.62

p′ 4128.23 4128.23 4128.98 4296.98

r1 −1008.38 1008.38 −1008.88 670.88

r2 2048.06 2048.06 2050.37 −187.88

r3 −357.00 357.00 −118.83 −830.57

r4 503.00 503.00 −5404.29 −7278.65

r5 −54.55 54.55 −14.92 45.58

r6 36.00 36.00 283.82 283.82

M 7 0 5 2

Fig. 2.7 Polynomials of degree seven defined by (2.26). [Left] Seven real zeros of the polyno-
mial p. [Right] Three real zeros of the polynomial p+

2.4.3 Newton’s Sums and in Vièto’s Formulas

Solving polynomial equations is an important part of many physical problems, and
their solutions often reflect the symmetry properties of these problems. If the zeros
in certain expressions appear on equal footing, it may be easier to compute these
expressions by using Newton’s sums and Vièto’s formulas [26]. Both tools are also
applicable as constraints in searching for zeros. For polynomials of the form (2.18)
with zeros ξ1, ξ2, . . . , ξn Newton’s sums are defined as

Sk =
n

∑

l=1

ξk
l , k = 1,2, . . . , n.

80 2 Solving Non-linear Equations

The Sk are the sums of the powers of the zeros. For 1 ≤ k ≤ n they are related
by linear equations anSk + an−1Sk−1 + · · · + an−k+1S1 + kan−k = 0 which can be
solved recursively,

Sk = − 1

an

[an−1Sk−1 + · · · + an−k+1S1 + kan−k].

Vièto’s formulas relate the sums of the products of the zeros,

S̃k =
∑

1≤i1<···<ik≤n

ξi1 · · · ξik , (i1, i2, . . . , ik) ∈N
k
0,

which can be expressed by the coefficients of the polynomial as

S̃k = (−1)k
an−k

an

.

2.4.4 Eliminating Multiple Zeros of the Polynomial

Many methods to compute the zeros may exhibit a dramatic drop in convergence
speed and become inefficient in the case of multiple zeros. Let us discuss a m-fold
zero,

p(x) = (x − a)mq1(x),

p′(x) = (x − a)m−1[mq1(x) + (x − a)q ′
1(x)

] ≡ (x − a)m−1q2(x),

where q1 and q2 are non-constant polynomials that do not have a common divisor
with the polynomials p(x) and (x − a). We see that the common divisor of p and
p′ contains the factor (x − a)m−1, and an analogous situation can be observed for
all multiple zeros. To eliminate multiple zeros, we compute the greatest common
divisor of p and its derivative p′, and divide it out from p. The polynomial obtained
in this manner contains only simple zeros.

In principle, the greatest common divisor gcd(p,p′) of the polynomials p and
p′ can be computed by using the Euclid algorithm (2.25). The procedure is repeated
until the remainder rk+1 is equal to zero, and then

gcd
(

p,p′)(x) = rk(x);

on the other hand, if rk+1 is non-zero, the greatest common divisor of the polyno-
mials is just a real number. This procedure may be numerically unstable [5] and we
should avoid it if possible; if not, it should be accepted as necessary evil.

2.4 Polynomial Equations of a Single Variable 81

Fig. 2.8 Ill conditioning of the computation of zeros of the Wilkinson polynomial p20 of degree
20. Full squares: zeros of the exact polynomial lying on the real axis, ξj = j for 1 ≤ j ≤ 20.
Empty circles: zeros of twenty different polynomials in which the coefficients are perturbed as
ak → ak(1 + εRk), where ε = 10−7 and Rk is a normally distributed random number (zero av-
erage and unit variance). The most sensitive zero is ξ15 and has the strongest dependence on the
coefficient a15 ≈ 1.67 × 109. The problem is extremely ill-conditioned, as κ ≈ 5.1 × 1013. In spite
of the tiny change in the coefficients, real zeros shift deeply into the complex plane

2.4.5 Conditioning of the Computation of Zeros

Computing the zeros of polynomials is an ill-conditioned problem. If the coefficient
ak of the polynomial (2.18) is changed by an infinitesimal amount δak , the zero ξj

shifts by

δξj = −(δak)ξ
k
j /p′(ξj).

The sensitivity of the position of the zero with respect to the perturbations in the
coefficients can be expressed by the ratio of the relative change of the zero ξj to the
relative change of the coefficient ak ,

κ = |δξj |
|ξj |

[|δak|
|ak|

]−1

=
∣
∣
∣
∣

akξ
k−1
j

p′(ξj)

∣
∣
∣
∣
,

which plays the role of a condition number [27]. An ill-conditioned problem exhibits
large values of κ . The classical example of the Wilkinson polynomial p20(x) =
∏20

k=1(x − k) = a0 + a1x + · · · + a19x
19 + x20 is shown in Fig. 2.8.

2.4.6 General Hints for the Computation of Zeros

Multiple polynomial zeros frequently stem from the symmetry properties of the
physical problem. If this is the case, it is recommended to remove them “by hand”;
otherwise, they can be removed by the procedure from Sect. 2.4.4. By using Sturm’s
method we first locate the intervals containing the individual zeros, which are then

82 2 Solving Non-linear Equations

computed one by one by using the methods described in the following. When
some zero ξ is found, it can be used to decrease the degree of the polynomial
p(x)/(x − ξ) → p(x) and thereby reduce the complexity of further calculations,
a process known as deflation. However, deflation may be numerically unstable and
we might wish to avoid it and harness the entire polynomial instead. To stabilize
the computation, the zeros already computed can be used in the Maehly–Newton
method (Sect. 2.4.11).

If multiple zeros are anticipated, an alternative way is to divide the polynomial
p by its derivative p′, yielding a rational function R(x) = p(x)/p′(x). The zeros
of R can then be computed by using one of the general methods, for example, by
the Newton–Raphson method since the derivative of R is explicitly known, R′(x) =
1 − p(x)p′′(x)/p′(x)2.

The particular choice of methods presented in the following subsections is based
on their general usefulness and pedagogical value. The most efficient “sure-fire”
and “black-box” method currently on the market, which is implemented in major
software packages like MATHEMATICA or MATLAB, is the three-stage Jenkins–
Traub method [28, 29]. It is well-suited for the computation of zeros of real and
complex polynomials, and has more than quadratic order, but it is too complicated
to be discussed at the level of this textbook.

2.4.7 Bernoulli’s Method

Bernoulli’s method follows the same line of thought as the power methods used
to compute the eigenvalues of matrices. It can be used to compute the largest zero
(by magnitude) of the polynomial (2.18), which is in fact also the characteristic
polynomial of the difference equation

anyn+k + an−1yn+k−1 + · · · + a1yk+1 + a0yk = 0, k = 0,1, (2.27)

Assume that all zeros of the polynomial p are simple and that they are ordered
as |ξ1| > |ξ2| > · · · > |ξn|. If ξ is the root of p(x) = 0, it can be shown [30]
that yk = ξk or any linear combination of the powers of the roots yk = ∑

j bj ξ
k
j

solve (2.27). The coefficients bj are found by using the initial values y0 = c0,
y1 = c1, . . . , yn−1 = cn−1, where ck are arbitrary constants, which constitutes a sys-
tem of n linear equations with a Vandermonde coefficient matrix. If we are interested
only in the largest root (by magnitude) ξ1, we iterate

yn+k = − 1

an

[an−1yn+k−1 + · · · + a1yk+1 + a0yk], k = 0,1, . . .

with arbitrary initial values {y0, y1, . . . , yn}. The sequence {yk} then almost always
converges to this root geometrically with the ratio |ξ2/ξ1|,

yk+1

yk

= ξ1 +O
(|ξ2/ξ1|k

)

, k � 1.

2.4 Polynomial Equations of a Single Variable 83

The procedure becomes a bit more involved for multiple zeros. Assume that
{ξ1, ξ2, . . . , ξh} have multiplicities {m1,m2, . . . ,mh} and |ξ1| ≥ |ξ2| ≥ · · · ≥ |ξh|,
where

∑h
k=1 mk = n and mk ≥ 1. Then the general solution of the difference equa-

tion is

yk =
h

∑

l=1

ml−1
∑

i=0

b
(i)
l kiξ k

l .

As an example, let us discuss a double zero ξ2 = ξ∗
1 (all other zeros being simple),

such that |ξ1| = |ξ2| > |ξ3| > · · · > |ξn|. Then in yk at k � 1 two terms dominate,
yk ≈ b1ξ

k
1 + b2ξ

k
2 , where b2 = b∗

1 . We form the expressions

Ak = yk+1yk−1 − y2
k ≈ |b1|2(ξ1 − ξ2)

2(ξ1ξ2)
k−1,

Bk = yk+2yk−1 − yk+1yk ≈ |b1|2(ξ1 − ξ2)
2(ξ1 + ξ2)(ξ1ξ2)

k−1,

and observe the limits

lim
k→∞

Bk

Ak

= ξ1 + ξ2 ≡ s, lim
k→∞

Ak+1

Ak

= ξ1ξ2 ≡ t.

Finally we obtain the complex conjugate roots ξ1 and ξ2 by solving the quadratic
equation ξ2 − sξ + t = 0. For error estimates and other details see [30].

2.4.8 Horner’s Linear Method

Assume that the interval [a, b] contains an odd-order zero ξ of the polynomial p, so
that p(a)p(b) < 0. We transform the polynomial p into a new polynomial p0 such
that the root lies on [0,1]:

p0(x) = p(Lx + a), L = b − a.

In the following, we use the iteration

pk+1(x) = pk(x + dk), k = 0,1,2, . . . (2.28)

to shift the polynomial until its root coincides with the origin (see Fig. 2.9). At each
step of the iteration, pk has the form

pk(x) =
n

∑

i=0

a
(k)
i xi .

We determine the shift dk by computing the root of dka
(k)
1 + a

(k)
0 = 0, so

dk = −a
(k)
0 /a

(k)
1 .

84 2 Solving Non-linear Equations

Fig. 2.9 Linear Horner’s method. [Left] The polynomial p(x) = (x − ξ1)(x − ξ2)(x − ξ3) with
the zeros ξ1 = 1.234, ξ2 = 2.345, and ξ3 = 3.456. We attempt to compute ξ1 which is assumed
initially to lie on the interval [a, b] = [0.5,2.0]. [Right] The sequence of the rescaled polynomials
pk , whose zeros in subsequent steps of the iterations (2.28) with shifts d0 ≈ 0.297, d1 ≈ 0.146,
d2 ≈ 0.043, . . . approach the origin. Judging from the first three approximations, the zero ξ1 of p

lies at a + (b − a)(d0 + d1 + d2) ≈ 1.229

We repeat the procedure until dk becomes smaller than some required precision. The
root of the original equation is then computed as the sum of all shifts,

ξ = a + L
∑

k

dk.

This method acquired its name from the extensive use of Horner’s algorithm used
to compute the shifts of the axis origin. By Horner’s scheme, one shift is computed
in O(n2) operations, while the rescaling of the axis requires O(n).

2.4.9 Bairstow’s (Horner’s Quadratic) Method

A real polynomial p may have complex zeros which always occur in complex con-
jugate pairs. To compute such zeros we must use complex arithmetic, but most iter-
ative methods with initial approximations on the real axis do not allow to be steered
into the complex plane. Complex computation can be avoided by using the Bairstow
method. The first observation leading to this method is that the zeros ξ1,2 (ξ1 = ξ∗

2)
of the polynomial

d(x) = x2 − rx − s, (2.29)

are also zeros of the original polynomial

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0,

2.4 Polynomial Equations of a Single Variable 85

if it is divisible by d with zero remainder. By dividing p by d , we generally get

p(x) = q(x)d(x) + ux + v,

where the degree of q is n − 2. The coefficients u and v are functions of the param-
eters r and s of the polynomial d . We are therefore seeking a pair (r, s) such that
the remainder vanishes:

u(r, s) = 0, v(r, s) = 0.

This constitutes a system of non-linear equations that can be solved by the Newton
method. One step of the iteration to solve the system is

(

rk+1
sk+1

)

=
(

rk
sk

)

−
(

∂ru ∂su

∂rv ∂sv

)−1 (
u(rk, sk)

v(rk, sk)

)

, (2.30)

where k is the iteration index. The Jacobi matrix contains the derivatives

∂ru = ∂u(r, s)

∂r
, ∂su = ∂u(r, s)

∂s
, ∂rv = ∂v(r, s)

∂r
, ∂sv = ∂v(r, s)

∂s
,

which have to be computed in each step of the iteration at (r, s) = (rk, sk). We obtain
them by the following consideration: p does not depend on r or s, thus

∂p(x)

∂r
≡ 0 = d(x)

∂q(x)

∂r
− xq(x) + x

∂u

∂r
+ ∂v

∂r
,

∂p(x)

∂s
≡ 0 = d(x)

∂q(x)

∂s
− q(x) + x

∂u

∂s
+ ∂v

∂s
.

At x = ξ1 and x = ξ2 (which are the zeros of d) these equations simplify to

−ξiq(ξi) + ξi∂ru + ∂rv = 0, −q(ξi) + ξi∂su + ∂sv = 0, i = 1,2.

This is a system of four equations with four variables ∂ru, ∂rv, ∂su, and ∂sv, which
can be solved easily. The solution is even simpler if we once more divide q by d ,

q(x) = q1(x)d(x) + u1x + v1,

since by recalling d(ξ1) = d(ξ2) = 0 we obtain

q(ξi) = u1ξi + v1, i = 1,2.

Both divisions can be efficiently accomplished by using the Horner scheme at a cost
of O(2n). In the non-degenerate case ξ1 �= ξ2 = ξ∗

1 we get [5]

∂ru = ru1 + v1, ∂rv = su1, ∂su = u1, ∂sv = v1.

We run the iteration (2.30) until the sequence of the coefficients {rk} and {sk} con-
verges to the final values r∞ and s∞ to within required precision. Ultimately, the
zeros ξ1,2 of the polynomial p are calculated by solving the quadratic equation

ξ2 − r∞ξ − s∞ = 0. (2.31)

86 2 Solving Non-linear Equations

Table 2.2 Convergence of the parameters r and s of the polynomial d (2.29) and the Jacobi
matrix in the iteration (2.30). With the initial approximation (r, s) = (2,0) the iteration converges
to (r, s) = (2,−5) which, according to (2.31), corresponds to two zeros of the polynomial (2.32),
ξ1,2 = 1 ± 2 i

k r s ∂ru ∂su ∂rv ∂sv

0 2.5128 −3.3333 −65.000 35.000 0.000 −135.000

1 2.2144 −5.1768 −10.457 21.943 −73.143 −65.595

2 1.9788 −4.9591 9.170 21.782 −112.763 −39.065

3 1.9999 −4.9993 4.160 25.381 −125.864 −46.062

4 2.0000 −5.0000 4.989 25.004 −125.000 −45.015

Fig. 2.10 Three Newton steps of the approach to ξ1,2 = 1 ± 2 i and ξ3,4 = 3 ± 3 i with the initial
approximations (r, s) = (2,0) and (r, s) = (3,0), respectively

Example The polynomial

p(x) = x5 − 13x4 + 75x3 − 241x2 + 420x − 450 (2.32)

has two pairs of complex conjugate zeros, ξ1,2 = 1 ± 2 i and ξ3,4 = 3 ± 3 i, as well
as a real zero ξ5 = 5. By Bairstow’s method we first compute the pair ξ1,2. We use
the initial approximation (r, s) = (2,0) for the parameters of d (2.29) to start the
iteration (2.30). In each step we perform the division p(x) = q(x)d(x) + ux + v to
compute u and v, and q(x) = q1(x)d(x) + u1x + v1 to obtain u1 and v1, which we
use to compute the elements of the Jacobi matrix ∂ru, ∂su, ∂rv, and ∂sv (Table 2.2).
We use the final values of r and s in (2.31) to compute ξ1,2 = 1 ± 2 i. The left part
of Fig 2.10 illustrates the convergence to ξ1,2. For the next pair of zeros, ξ3,4, we act
similarly. We divide the polynomial by the computed polynomial d (the remainder
is zero), and repeat the Bairstow procedure. The convergence to the zeros ξ3,4 is
shown in the right part of Fig. 2.10.

2.4 Polynomial Equations of a Single Variable 87

2.4.10 Laguerre’s Method

To a much larger extent than the methods mentioned so far, Laguerre’s method uti-
lizes the fact that the polynomial equations involved have degrees more than 1. It
is suited for the computation of isolated simple zeros (multiple zeros may be elimi-
nated by using the procedure from Sect. 2.4.4). Let the polynomial p be given in its
factorized form

p(x) = an

n
∏

k=1

(x − ξk)

(the leading coefficient an is irrelevant in this method). We define

G(x) = −p′(x)

p(x)
= −

n
∑

k=1

1

x − ξk

, H(x) = G′(x) =
n

∑

k=1

1

(x − ξk)2
. (2.33)

When x is in the vicinity of some simple zero ξk , the kth term of the sums in (2.33)
becomes very large, while the other terms change only unsubstantially. The sums of
the remaining terms may therefore be approximated as

∑

j �=k

1

x − ξj

≈ n − 1

b
,

∑

j �=k

1

(x − ξj)2
≈ n − 1

b2
,

where b is a constant, and (2.33) rewritten as

G(x) ≈ − 1

c(x)
− n − 1

b
, H(x) ≈ 1

c(x)2
+ n − 1

b2
, c(x) = x − ξk.

We eliminate b and obtain a quadratic equation for c−1, with the solutions

1

c1,2
= −G ±√

(n − 1)(nH − G2)

n
.

By using the expressions for H and G we finally obtain

c1,2(x) = np(x)

p′(x) ±√

(n2 − n − 1)p′(x)2 − n(n − 1)p(x)p′′(x)
.

We approach the zero ξk by iterating

x
(i+1)
k = x

(i)
k − c

(

x
(i)
k

)

, lim
i→∞x

(i)
k = ξk,

where k is the index of the zero and i is the iteration index. To compute the correc-
tion c(x) we use the smaller (in magnitude) of the solutions c1(x) or c2(x).

Laguerre’s method is among the fastest available, as it converges cubically in
the case of simple zeros. It can also be used to search for complex zeros. Its only
deficiency is the diminished speed of convergence in the case of multiple zeros
where it becomes only linear.

88 2 Solving Non-linear Equations

2.4.11 Maehly–Newton–Raphson’s Method

This is a variant of the Newton–Raphson method where, in order to compute a zero
of the polynomial, all previously determined zeros are considered, thus improving
global stability. Let us discuss a polynomial p with simple zeros and assume that the
zeros ξ1, ξ2, . . . , ξj have already been found to some precision. Define the function

pj (x) = p(x)

/ j
∏

k=1

(x − ξk),

which shares the (as yet) undetermined zeros with the polynomial p and which
weakens or completely eliminates the influence of previously determined zeros of
p. In seeking the next zero, we use the Newton–Raphson method in the form

xi+1 = �j(xi), �j (x) = x − p(x)

p′(x) − pj (x)
.

This approach is useful with all functions for which the order of previously found
zeros is known. Moreover, even though previous zeros have been determined only
to finite precision, this affects neither the precision of the determination of the re-
maining zeros nor the quadratic convergence towards them. The mapping is not
well defined for all previously found zeros or their approximate values, and we try
to avoid them in subsequent computations. We do this by systematically searching
for zeros from the largest to the smallest, using the estimates from Sect. 2.4.1 to
determine the appropriate upper bounds.

The method just described is most suitable for computing the zeros of a polyno-
mial with purely real zeros. In this case it can be merged with the Newton double-
step method based on the theorem from Appendix D (see (D.6) and the correspond-
ing text). The theorem has a practical consequence. Assume that we are seeking the
largest zero ξ1 and that the starting point of the iteration is x0 > ξ1. By using the
Newton double-step method

xi+1 = xi − 2
p(xi)

p′(xi)
, i = 0,1, . . .

we obtain the sequence x0 ≥ x1 ≥ · · · ≥ xi+1 ≥ ξ1 with the limit limi→∞ xi = ξ1,
and p(x0)p(xi) ≥ 0 ∀i; or else, in some step κ , we cross the zero such that

p(x0)p(xi) > 0 (i = 0,1, . . . , κ − 1) and p(x0)p(xκ) < 0,

where x0 > x1 > · · · > xκ−1 > ξ1 > xκ > ξ2 applies. In this case we continue the
iteration with the usual Newton method

xi+1 = xi − p(xi)

p′(xi)
, x0 = xκ, i = 0,1, . . . ,

2.5 Algebraic Equations of Several Variables � 89

and obtain the sequence xi+1 ≥ xi ≥ · · · ≥ ξ1 with the limit limi→∞ xi = ξ1. The
following algorithm based on the Maehly–Newton–Raphson single- and double-
step methods has been taken from [5]. It allows us to calculate the zeros of a degree-
n polynomial possessing exclusively real zeros to a relative precision ε:

Input: polynomial p of degree n, derivative p′, upper bound for the zeros x0,
precision ε, declared (uninitialized) variables ξj (1 ≤ j ≤ n)

for j = 1 step 1 to n do
m = 2; z = x0;
ITER: x = z; s = 0;
for i = 1 step 1 to j − 1 do s = s + 1/(x − ξi);
z = x − mp(x)/[p′(x) − p(x)s];
switch m do

case 1:
emax = ε max{|x|, |z|};
e = |z − x|;
if ((z < x) ∨ (e ≥ emax)) then goto ITER;

endsw
case 2:

if (z ≥ x) then
x0 = z = x; m = 1;

end
goto ITER;

endsw
endsw
ξj = x;

end
Output: approximations of zeros ξ1, ξ2, . . . , ξn

2.5 Algebraic Equations of Several Variables �

Polynomial or algebraic equations [31] and their systems, like, for example,

x2
1 − x2 = 0, x2

1 + x2
2 = 1 (2.34)

(the solution is the intersection of a parabola and a circle), or general systems

fi(x1, x2, . . . , xn) = 0, i = 1,2, . . . ,m, (2.35)

can be solved by algorithms from previous sections, assuming that such systems
possess a finite number of solutions. Yet in some instances, their algebraic proper-
ties can be exploited so that they can be solved more elegantly. One such approach
takes us to Gröbner bases that are used in a variety of applications, e.g. in auto-
mated assembly of mechanical systems [32], in seeking intersections of volumes
in three-dimensional space, and in robot control. They are also useful in coding and

90 2 Solving Non-linear Equations

cryptography [33], as well as in logical and combinatorial problems [34]. Moreover,
the theory of Gröbner bases provides tools to “solve” also systems with infinite sets
of solutions [35].

Gröbner bases (invented by Buchberger) are a generalization of orthogonal bases
known from linear algebra to algebraic expressions. This section conveys only their
background and the basic idea. Mathematically precise definitions and pedagogi-
cally thorough introductions can be found in [36–39].

Monomials and Polynomial Terms The vantage point are polynomials in n vari-
ables {xi}ni=1 with the coefficients from a ring K , e.g. K = R or C, and the resulting
algebraic structures [40]. Let A = (α1, α2, . . . , αn) ∈ N

n
0 denote the vector in which

the value of each component may be zero or a natural number. Then we can write a
monomial

xA = x
α1
1 x

α2
2 · · ·xαn

n ,

where αj ∈ N0, 1 ≤ j ≤ n, and deg(xA) = ∑

i αi is the degree of the monomial.
The product of two monomials is xAxB = xA+B , where A + B is to be understood
as a summation of vectors, e.g.

xA = x2
1x3

2x3, xB = x1x
2
2x3

3 , xA+B = x3
1x5

2x4
3 ,

since A+B = (2,3,1)+(1,2,3) = (3,5,4). A monomial multiplied by a scalar a ∈
K , axA, is a polynomial term or simply term. By using this notation, a polynomial
in n variables is compactly written as

f (x1, . . . , xn) =
∑

A

aAxA, aA ∈ K.

These are the basic building blocks of systems like (2.34) or (2.35). All polynomials
of n variables with coefficients from K constitute a polynomial ring

K[x1, x2, . . . , xn] =
{
∑

A∈Nn
0

aAxA : ∀aA ∈ K

}

.

Ordering of Monomials There is a way to distinguish among the multitude of
variables and terms in each polynomial. To do this, one utilizes the symbols ≺ and �
to define the total order of monomials in K[x1, x2, . . . , xn] as a relation possessing
the properties: (i) a constant is the smallest monomial: xA � 1 for all xA �= 1, and
(ii) the ordering is multiplicative: xA � xB ⇒ xA+C � xB+C for all xC . The con-
ditions of total order are satisfied by various orderings of monomials. For solving
algebraic equations, the most relevant orderings are:

• Lexicographic order: xA � xB if the first non-zero component of the vector A−B

is positive. Examples: x3
1x2

2x2
3 � x2

1x4
2x4

3 and xi � xi+1.
• Graded lexicographic order: xA � xB if deg(xA) ≥ deg(xB) or deg(xA) =

deg(xB) and the first non-zero component of A − B is positive. Example:
x3

1x4
2x2

3 � x3
1x2

2x3. Another example: x2
1 � x1x2 � x2

2 � x1x3 � x2x3 � x2
3 .

2.5 Algebraic Equations of Several Variables � 91

• Graded reverse lexicographic order: xA � xB if deg(xA) ≥ deg(xB) or
deg(xA) = deg(xB) and the last non-zero component of A − B is negative. Ex-
ample: x3

1x4
2x3 � x1x

5
2x3.

With the given ordering, one can assign to any polynomial f from the ring
K[x1, x2, . . . , xn] the corresponding largest monomial, which we call the initial or
leading monomial and denote it by LT(f) = xA, where A is the maximal vector of
powers. The corresponding leading coefficient aA is denoted by LC(f) = aA.

Varieties and Ideals Let F = {fi}mi=1 be a set of polynomials from the ring
K[x1, x2, . . . , xn]. At this point we establish the connection to the primary task of
this section, which is solving systems of equations of the type (2.35). The set of all
solutions of (2.35) is called the algebraic variety of F and is denoted by

V(F) = {

x = (x1, x2, . . . , xn) ∈ Kn : f (x) = 0, ∀f ∈F
}

.

All possible (algebraic) linear combinations of polynomials in F span the subring
of K[x1, x2, . . . , xn],

〈F〉 = {

p1f1 + · · · + pmfm : fi ∈ F , ∀pi ∈ K[x1, x2, . . . , xn]
}

,

which is known as the polynomial ideal generated by F . The same ideal can be
generated by different sets of polynomials, but all polynomials from the ideal share
the property that they vanish on the algebraic variety of any set of polynomials that
generates this ideal. So in fact, V(F) = V(〈F〉), where V(〈F〉) is the variety of the
ideal F , i.e. the set of all common zeros of the polynomials of 〈F〉,

V(F) = V
(〈F〉) = {

x ∈ Kn : f (x) = 0, ∀f ∈ 〈F〉}.
The basic idea behind Gröbner bases is to find a set of generators of a polynomial
ideal that is “simple”. In many cases a Gröbner basis allows one to determine the
variety of an ideal easily.

Reduced Gröbner Basis Let I be a non-zero ideal, and let G = {g1, g2, . . . , gM}
be a finite set of non-zero elements of I . The set G is a Gröbner basis for I if the
ideal generated by the leading terms of elements in G is equal to the ideal generated
by the leading terms of elements in I (see [35], Theorem 1.2.16):

〈

LT(G)
〉 = 〈

LT(I)
〉

.

A Gröbner basis is called reduced if LC(gi) = 1 for all i and no term of gi is
divisible by any LT(gi) for j �= i (see [35], Definition 1.2.26). In loose parlance, the
reduced Gröbner basis G belonging to the ideal I , with adopted monomial ordering,
is a unique set of polynomials that generates I . If I is generated by polynomials
from F , then the sets F and G have equal algebraic varieties and equal ideals:

V(F) = V(G) and 〈F〉 = 〈G〉.

92 2 Solving Non-linear Equations

Note that the Gröbner basis can be larger that the generating set, for instance, the
ideal I = 〈x2

1 , x1x2 − x2
2〉 in lexicographic order, x1 � x2, has the Gröbner basis

G = {x2
1 , x1x2 + x2

2 , x3
2}.

Solving Equations To solve the equations, we exploit the elimination property
of Gröbner bases, which means the following. Let the variables be ordered as
x1 � x2 � · · · � xn, presuming lexicographic ordering, and let the Gröbner basis
G generate the ideal I in K[x1, x2, . . . , xn]. Then the generators of the intersec-
tion of I with the subring K[xk, xk+1, . . . , xn] are given by the intersection of the
Gröbner basis G with the subring K[xk, xk+1, . . . , xn]. A polynomial f lies in the
subring K[xk, xk+1, . . . , xn] precisely in the case that its leading term LT(f) is in
this subring.

Let I = 〈F〉 be the ideal generated by the polynomials F = {fi}mi=1 of the orig-
inal system of equations (2.35), and let G be its Gröbner basis with lexicographic
ordering. Then (2.35) can be rewritten as

gi(x1, x2, . . . , xn) = 0, i = 1,2, . . . ,M. (2.36)

In many cases the systems with polynomials gi turn out to be much simpler than
those involving fi , and this simplification is one of the main allures of Gröbner
bases. In the case of a zero-dimensional ideal, i.e. when the variety consists of a
finite number of points, the Gröbner basis (in a proper order of the elements) has the
form

g1(xn), g2(xn, xn−1), gk(xn, xn−1, xn−2),

The system of equations gi = 0 for i = 1,2, . . . ,M can then be solved recursively:
first one solves the equation g1 = 0, then its solution is used in solving the second
equation, g2 = 0, and so on.

Given the set F , the reduced Gröbner basis G of the ideal 〈F〉 can be computed
in several ways. The most widely known are the Buchberger algorithm [37, 42]
and its improved implementation, the Faugère algorithm F5 [43, 44]. These pro-
cedures are available in software packages like Singular (commands groebner
or slimgb), Magna, MATHEMATICA (command GroebnerBasis) and Maple
(command gbasis), as well as in the sympy library of Python. In these environ-
ments, Gröbner bases are implemented for symbolic solution of algebraic systems.
Yet when seeking specific solutions of complex systems of equations, it may be
preferable to avoid these built-in capabilities and utilize Gröbner bases directly. This
allows us to hand-pick and control the solutions when the equations g1 = 0, g2 = 0,
and so on, are solved in sequence.

Example Let us see how Gröbner bases are used to solve (2.34) over the real field
R[x1, x2]. In this case the Gröbner basis consists of two functions,

g1 = −1 + x2 + x2
2 , g2 = x2

1 − x2.

2.5 Algebraic Equations of Several Variables � 93

In MATHEMATICA, for example, they can be obtained from the functions

f1(x1, x2) = x2
1 − x2, f2(x1, x2) = x2

1 + x2
2 − 1,

read off from (2.34) by using the command

GroebnerBasis[{x1^2 - x2, x1^2 + x2^2 - 1}, {x1, x2}].

The default ordering in this case is lexicographic, x1 � x2, and the command returns
the Gröbner basis

{g1, g2} = {-1 + x2 + x2^2, x1^2 - x2}.

The function g1 depends solely on x2, so g1(x2) = 0 can be solved for x2 explicitly,
yielding

x2 ∈
{−1 − √

5

2
,
−1 + √

5

2

}

.

For each of these two values of x2, we then solve the equation g2(x1, x2) = 0, which
involves only the x1 variable, and realize that only x2 = (−1+√

5)/2 leads to a real
value of x1. This brings us to the solutions of the second equation,

x1 ∈ {√x2, −√
x2},

hence the two real solutions of (2.34) are approximately (0.7862,0.6180) and
(−0.7862,0.6180).

In some instances it may happen that the number of equations M in (2.36) is
exponentially larger than the number of equations m in (2.35). A typical reduced
basis, however, has a dimension M that exceeds m at most by a few orders, and this
represents only a minor problem in computations involving Gröbner bases. A much
more severe issue is revealed by the following example.

Example Let us discuss the system of equations f1 = f2 = f3 = f4 = 0 with

f1(x1, x2, x3) = 8x2
1x2

2 + 5x1x
3
2 + 3x3

1x3 + x2
1x2x3,

f2(x1, x2, x3) = x5
1 + 2x3

2x2
3 + 13x2

2x3
3 + 5x2x

4
3 ,

f3(x1, x2, x3) = 8x3
1 + 12x3

2 + x1x
2
3 + 3,

f4(x1, x2, x3) = 7x2
1x4

2 + 18x1x
3
2x2

3 + x3
2x3

3 .

The reduced Gröbner basis for the ideal generated by f1, f2, f3, and f4 over the
field of rational numbers Q[x1, x2, x3] is exceedingly simple [41]:

g1 = x2
3 , g2 = x3

2 + 1

4
, g3 = x1.

94 2 Solving Non-linear Equations

The system of equations f1 = f2 = f3 = f4 = 0 is equivalent to the system
g1 = g2 = g3 = 0 which is apparently trivial to solve. However, the size of the poly-
nomial coefficients appearing in the algorithm that produces the Gröbner basis itself
may grow exponentially. In the discussed case, the following polynomial appears in
intermediate computations:

x3
2 − 1735906504290451290764747182

The integer in the second term of this polynomial contains roughly 80000 digits,
and is actually the numerator of a fraction that contains about the same number of
digits in the denominator. This demonstrates that Gröbner bases, in particular over
the field of rational numbers, may in some cases be extremely difficult to compute,
and on the verge of being useless in practical applications. An interesting approach
to overcoming this obstacle is described in [41].

2.6 Problems

2.6.1 Wien’s Law and Lambert’s Function

The distribution of the spectral energy density of black-body radiation [45] in terms
of the wavelengths at temperature T is given by Planck’s formula:

u(λ) = 4π

c

dj

dλ
= 8πhc

λ5

1

exp(hc/λkT) − 1
,

while the distribution in terms of the frequencies is given by

u(ν) = 4π

c

dj

dν
= 8πhν3

c3

1

exp(hν/kT) − 1
.

Both distributions have maxima that shift with temperature (Fig. 2.11). Wien’s
law describes the temperature dependence of the position of these maxima, and can
be derived by solving the appropriate equations for the local extrema. In the case of
the distribution in terms of the wavelengths, this translates to

d2j

dλ2
= 0 =⇒ (xλ − 5)exλ + 5 = 0, (2.37)

while in the case of the frequency distribution, one has

d2j

dν2
= 0 =⇒ (xν − 3)exν + 3 = 0, (2.38)

2.6 Problems 95

Fig. 2.11 Planck’s law. [Left] Temperature dependence of the wavelength distribution of the spec-
tral energy density. [Right] Temperature dependence of the frequency distribution. Also shown are
the Wien curves connecting the distributions’ maxima

where we have introduced xλ = hc/λkT and xν = hν/kT . These equations can
be solved either analytically or numerically. The analytic solution is related to the
Lambert function Wk , which represents different solutions of the equation

WkeWk = z, z ∈C.

Lambert’s functions are specified by the index k. We are concerned only about val-
ues z ∈R and Wk(z) ∈ R, for which two solutions are possible,

W−1(z) at z ∈ [−1/e,0], W0(z) at z ∈ [−1/e,∞),

shown in Fig. 2.12. The solutions of (2.37) and (2.38) can be expressed as

xλ = 5 + W0
(−5e−5),

xν = 3 + W0
(−3e−3).

In the Wien law, they appear as

λmax =
(

hc

kxλ

)
1

T
≡ c

(λ)
W

T
, νmax =

(
k

h
xν

)

T ≡ c
(ν)
W T . (2.39)

⊙
Apply various numerical methods for the computation of zeros of non-

linear scalar functions to determine the values of W0. Use simple iteration, the se-
cant method, and the Newton–Raphson method. Optimize the computer program
for speed and robustness. Draw the graph of W0 for x ∈ [−1/e,2] and calculate the
constants xλ and xν appearing in Wien’s laws (2.39).

⊕
Find the power expansion of the function W0 in the vicinity of the point 0

by using the implicit-function theorem (p. 60). According to this theorem, for each

96 2 Solving Non-linear Equations

Fig. 2.12 Graphs of the Lambert functions W0 and W−1. For details see [46]

function f that is analytic near the point a, an inverse function g can be found, with
the following power expansion near f (a):

g(z) = a +
∞
∑

n=1

lim
x→a

[
dn−1

dxn−1

(
x − a

f (x) − f (a)

)n]
(z − f (a))n

n! .

For the Lambert function, f (x) = xex and g(z) = W0(z). Estimate the convergence
radius of the power expansion of W0 (use symbolic computation software).

2.6.2 Heisenberg’s Model in the Mean-Field Approximation

Exact computations of thermo-dynamical equilibria of quantum spin systems are
extremely time-consuming. One often resorts to simplified models in which knowl-
edge from classical and quantum mechanics is combined. An instructive example is
offered by the Heisenberg system of electron spins in a magnetic field [47]. The
electrons are arranged along a circle. The energy of the system is given by the
Hamiltonian

H = −
∑

ij

Jij �si · �sj + γ �B ·
∑

i

�si, γ = gμB,

where μB = e0�/(2me) is the Bohr magneton, g = 2 is the gyro-magnetic ratio
of the electron, and �si = (sx

i , s
y
i , sz

i) are the classical spin vectors with lengths
|�si | = 1/2. The coupling between the spins Jij has the property Jij = J (|i − j |).
Matter with Jij > 0 is ferromagnetic; matter with Jij < 0 is anti-ferromagnetic. In
the mean-field approximation (MFA) we substitute

�si · �sj −→ 〈�s〉 · �sj + 〈�s〉 · �si − ∣
∣〈�s〉∣∣2,

2.6 Problems 97

where 〈�s〉 is the statistical average of the spin vectors, which is a macroscopic ob-
servable of the system. We will determine it by requiring thermodynamic equilib-
rium. The z-axis is pointing along �B so that �B = (0,0,B)T ‖ (0,0, 〈sz〉)T. In the
MFA the Hamiltonian can be rewritten in the form

HMFA = −γ
∑

i

Beffs
z
i , Beff = B − J0

γ

〈

sz
〉

, J0 = 1

N

N
∑

i,j=1

Jij ,

describing a system of decoupled spins in the effective magnetic field Beff. We quan-
tize the system again and allow only sz

i ∈ {−1/2,1/2}. The statistical sum Z corre-
sponding to a single spin in a chain of N independent spins, is

Z = exp(−βγBeff/2) + exp(βγBeff/2) = 2 cosh(βγBeff/2),

where β−1 = kBT . This sum can be used to compute the statistically averaged spin

〈

sz
〉 = −1

2
tanh

(
1

2
β
(

γB − J0
〈

sz
〉)
)

,

which should be interpreted as the self-consistent equation of the system. By appro-
priate substitutions, the equation can be cast in the form

z = tanh(az − b),

where we have introduced the dimensionless quantities z ∝ 〈sz〉, a ∝ βJ0, and b ∝
βγB .

⊙
Find the solutions for the average dimensionless spin z in the range of pa-

rameters (a, b) ∈ [−2,2] × [−5,5]. Display the solutions in a manner clearly indi-
cating the transitions where the character of the solution changes. Draw the curves
of z(a, b) at b = 0, 0.1, and 0.5, by using a ∈ [0,5].

⊕
Discuss in more detail the region in the vicinity of the transition between

the ferromagnetic phase (|z| > 0) and paramagnetic phase (z = 0). A well-known
transition point is (a, b) = (1,0). Increase the strength of the magnetic field b and
locate the point a at which the transition occurs. This gives you the dependence of
a on b: plot it.

2.6.3 Energy Levels of Simple One-Dimensional Quantum Systems

Often, numerical methods are the only way to compute the spectra (eigenenergies)
of quantum systems. This problem deals with one-dimensional systems for which
the equations for the eigenenergies E or the corresponding wavenumbers k are rela-
tively simple, but their determination requires us to solve transcendental equations.
The non-relativistic Hamiltonian operator

Ĥ = − ∂2

∂x2
+ U(x),

98 2 Solving Non-linear Equations

Fig. 2.13 Examples of one-dimensional potentials

contains the kinetic and the potential term. We are solving the stationary Schrödin-
ger equation for the eigenenergies E and the eigenstates ψE ,

ĤψE = EψE, E = k2.

The spectrum may be discrete or continuous. Oscillation theorems tell us that energy
degeneracies are impossible if the spectrum is discrete. Here we focus our attention
to discrete spectra. The most simple systems involve piecewise constant potentials:
three examples are shown in Fig. 2.13. These systems are described by the following
eigenvalue equations: for a particle in the finite potential well with depth U0 and
width a (Fig. 2.13a):

tanka = 2kk′

k2 − k′2 , k′ =
√

U0 − k2;

for a particle in a semi-infinite well with a step of height U0 on one side (Fig. 2.13b):

k′ tanka = −k, k′ =
√

U0 − k2;
and for a particle in the infinite well with width a and a step of height U0 reaching
across one half of the well (Fig. 2.13c):

k′ tan
1

2
ka = −k tan

1

2
k′a, k′ =

√

k2 − U0.

We are interested in the states with energies exceeding U0 (so k2 − U0 > 0). In the
cases (a) and (b) we obtain a finite number of discrete energy states, while there are
infinitely many in the case (c).

⊙
Find the energy states of particles in at least one of the cases specified above

by using the method of bisection, the secant method, and the Newton–Raphson
method. Set U0 = 1. Compare the speed of convergence of all methods. Determine
the order of convergence by plotting log |xk+1 −xk| versus log |xk −xk−1|, where xk

is the approximation of the root of the equation and k the iteration index. Consider
the analytic structure of the equations when trying to figure out the initial approxi-
mations.

2.6 Problems 99

⊕
In the case (c) find all energy states starting from the lowest possible level

and up to the level high enough that the asymptotic behavior of the solution can be
ascertained. Confirm this behavior analytically.

2.6.4 Propane Combustion in Air

In concurrent chemical reactions proceeding in propane combustion in air,

C3H8 + R

2
(4N2 + O2) −→ products,

different amounts xi of the reaction products are formed, depending on the fraction
R of air with respect to propane: CO2 (x1), H2O (x2), N2 (x3), CO (x4), H2 (x5),
H (x6), OH (x7), O (x8), NO (x9), and O2 (x10). The variables xi correspond to
the number of moles of the ith reaction product per mole of propane. A physical
solution exists for R > 3. The equilibrium state at pressure 1 bar and temperature
2200 K is described by a system of non-linear equations [48]

x1 + x4 − 3 = 0,

2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 − R = 0, R = 4.056734,

2x2 + 2x5 + x6 + x7 − 8 = 0,

2x3 + x9 − 4R = 0,

K5x2x4 − x1x5 = 0, K5 = 0.193,

K6

√

x2x4S − x6
√

x1 = 0, K6 = 0.002597,

K7

√

x1x2S − x7
√

x4 = 0, K7 = 0.003448,

K8x1S − x4x8 = 0, K8 = 1.799 × 10−5,

K9x1

√

x3S − x4x9 = 0, K9 = 2.155 × 10−4,

K10x
2
1S − x2

4x10 = 0, K10 = 3.846 × 10−5,

where S = ∑10
i=1 xi . (This sum can be taken as exact and inserted in the system for

xi , 1 ≤ i ≤ 10, or it can be treated as an independent, eleventh equation.)
⊙

Solve the system of ten (or eleven) equations given above by using the
Newton–Raphson and Broyden method for vector equations described in Sect. 2.2.
Exploit the structure of the system in order to devise the best initial approximations
for the iteration. How sensitive is the solution to the variations of the parameters R

and Ki?⊕
With poor initial approximations, negative arguments of the square roots

may appear during the iteration. If you encounter such problems, replace

x2
i,new = xi,old, i = 1,2,3,4,

100 2 Solving Non-linear Equations

Fig. 2.14 [Left] Fluid flow in a pipe. The fluid enters at height z1 and pressure p1 with the average
velocity v1, and exits at height z2 and pressure p2 with the velocity v2. The hydraulic diameter
d for a pipe with cross-sectional area S and circumference o is defined by the ratio 4S/o. [Right]
Darcy’s friction factor f as a function of the Reynolds number Re for different relative roughnesses
e/d (simplified Moody diagram)

and repeat the calculation as before. You can also get rid of the negative arguments
by taking their absolute values under all square roots, e.g.

√|x2x4S| instead of√
x2x4S, or all equations are rewritten such that none of the xi appears under the

root sign. In all these approaches (see [48] for details), can you spot any differences
in the convergence speed of Newton’s or Broyden’s methods?

2.6.5 Fluid Flow Through Systems of Pipes

Flow through pipes is not just a technological problem: it also offers lovely math-
ematical physics insights. Assume that the flow is unidirectional and occurs due
to pressure gradients, neglecting any possible complex dynamics [49, 50]. Curved
pipes are approximated by sequences of smoothly joined straight segments of length
l and hydraulic diameter d (Fig. 2.14 (left)), along which Bernoulli’s equation ap-
plies:

p1 + 1

2
ρv2

1 + ρgz1 = p2 + 1

2
ρv2

2 + ρgz2 + �p,

where �p is the pressure drop. The average velocity of the fluid v, the cross-
sectional area of the pipe S and the density ρ determine the mass flux � = ρSv

which is constant along the pipe.
Due to the viscosity of the fluid, the velocity at the wall pipe is zero and the

velocity across the pipe diameter is not constant. The pressure drops �p along the
pipe appear because of the viscosity, the roughness of the pipe walls, and the dy-
namics in the fluid itself. Phenomenologically, the pressure drop is given by the

2.6 Problems 101

Fig. 2.15 The graph of a test pipe system. The vertices are denoted by indices in circles, and the
connections are denoted by indices in brackets. We have N connections, M vertices, and m free
ends. The remaining M ′ = M − m vertices are located at known heights hi and the losses in them
are assumed to be negligible. The pressures in the vertices are denoted by pi where i is the index
of the vertex

Darcy–Weisbach equation [51]

�p = f
l

2d
ρv|v| = R�|�|, R = f

l

2dρS2
,

where f is the Darcy friction factor and R the resistance coefficient. For long
pipes R depends only on the relative roughness e/d and the Reynolds number
Re = ρvd/μ = 4�/(πμd), where μ is the dynamical viscosity of the fluid. The
roughness e is defined as the standard deviation of the pipe radius, averaged over
its interior surface. In the laminar regime of the flow (Re < 2300) f is deter-
mined by the Hagen–Poiseuille equation, f = 64/Re, while in the intermediate
(2300 < Re < 4000) and in the turbulent regime (Re > 4000) we can read it off
from the Moody diagram (Fig. 2.14 (right)). In the turbulent regime, a good approx-
imation for f is given by the implicit Colebrook–White equation

1√
f

= −2 log10

(
e/d

3.7
+ 2.51

Re
√

f

)

.

In pipe systems the dominant pressure drops (dominant energy losses) are caused
by long pipes; relatively small losses are caused by the joining elements or sharp
turns. At the known flux � = ρSv, the pressure drop along some element is given
by the equation

�p = K
1

2
ρv|v|,

where K = f l/d is the loss coefficient (e.g. 0.35 for a 45◦ elbow or 0.75 for a 90◦
elbow).

An example of a network of pipes in the gravitational field is illustrated by the
graph of vertices and connections in Fig. 2.15. We are interested in the stationary
flow along the pipes when the pressures at the free ends of the graph are known. For

102 2 Solving Non-linear Equations

Fig. 2.16 A cartoon of the system of pipes of a mountain village

the mass flux �j in the individual segment, Darcy–Weisbach equation applies. For
the j th pipe connecting vertices i and k, it reads

Rj |�j |�j = p̃i − p̃k, p̃i = pi + ρghi,

where p̃i are the hydrostatic pressures. (The resistance coefficients Rj depend
on Re ∝ �j .) At each vertex, the sum of the incoming mass fluxes should be
equal to the sum of the outgoing mass fluxes. By defining the vector of fluxes
� = (�i)

N
i=1 all continuity equations can be written in the matrix form A� = 0,

where the matrix A ∈ R
M ′×N contains the information about the connectedness

of the graph. The hydrostatic pressures in the internal vertices {i1, . . . , iM ′ } are ar-
ranged in the vector p̃ = (p̃i1 , . . . , p̃iM ′)T. In addition, we define the diagonal matrix
�(�) = diag(Rj |�j |)Nj=1. All Darcy–Weisbach equations for the system can then

be written in the matrix form ��+ATp̃ = P , where the vector P = (P1, . . . ,PN)T

contains only the hydrostatic pressures at the free ends (ρgh for points at height h,
e.g. the lakes in Fig. 2.16). The Darcy–Weisbach and the continuity equations must
be solved simultaneously and can be rewritten as a single system of non-linear equa-
tions F(x)x = b, where

F(x) =
[

�(�) AT

A 0

]

, x =
[

�

p̃

]

, b =
[

P

0

]

.

The equation can be solved by the iteration

xn+1 = F−1
n b, Fn = F(xn).

2.6 Problems 103

Fig. 2.17 [Left] A drawing of the ith rod with its local and global reference frames. [Right] An
example of a linear structure assembled from rods of diameter d = 0.2

We form the initial matrix F0 in the laminar regime where, for the j th pipe, we have
Rj |�j | = 32μlj /(ρd2

j Sj).
⊙

A mountain village is supplied by water from three accumulations lying at
the mountain slopes. The whole village is at constant altitude. The consumption of
water in the village is negligible; the remainder of the water drains into the brook.
The cartoon of the system of pipes is shown in Fig. 2.16. The relative roughness of
the pipes is e/d = 0.01. Draw the graph of this system and compute the mass fluxes
through the individual pipes if the Colebrook–White equation is used to compute
the friction factor. Neglect all losses.

⊕
Discuss the fluid flow in a random two-dimensional pipeline on a Cartesian

grid. On this grid, select the origin whence a random walker starts his walk N -times.
The speed of the walk is one unit of length on the mesh per unit time. An individual
walk takes M units of time. We interpret all N walks as a random pipeline com-
posed of straight pipes of equal lengths. At the origin, attach a water reservoir with
a constant over-pressure p0. The loss coefficient in the pipes K is constant. (Choose
the units such that K = p0 = 1.) We are interested in the distribution of the flows in
the pipes in the cases N = M = 10, N = M = 100, and N = M = 1000. Can you
infer a scaling law from these distributions?

2.6.6 Automated Assembly of Structures

Because so many building blocks are involved, the simulation of robots, motion
and collisions of vehicles, proteins and other complex systems of bodies require
the use of automated, computer-aided assembly [32]. The manner in which individ-
ual components are connected is embodied in the equations known as constraints.
Based on these constraints, the program computes the structure of the body in three-
dimensional space. In virtually all physically relevant types of connections, the con-
straints can be written as systems of algebraic equations.

104 2 Solving Non-linear Equations

Here we discuss the assembly of a simple linear structure in the (x, y) plane in
the reference space R3 with the coordinate axes {x, y, z}. We would like to automat-
ically assemble a chain of m connected rods. We denote the rods by their indices
1 ≤ i ≤ m and their lengths by li . The (i +1)th rod should be rotated with respect to
the ith rod by the angle θi . The center-of-mass of the ith rod is the origin of its local
reference frame S i with the axes {ξi, ηi, ζi} such that the ξi axis is along the rod,
the ζi axis is aligned with the z axis of the global reference frame, and the edges of
the rod are at si± = (±li/2,0,0)T (see Fig. 2.17 (left)). The position of the ith rod is
described by the vector r i = (xi, yi, zi)T from the origin of the frame S i , while its
orientation is specified by the vector of Euler parameters ei = (ei

0, e
i
1, e

i
2, e

i
3)

T [52].
The Euler parameters e = (e0, e1, e2, e3)

T are used to define the rotation by an angle
φ around an arbitrary axis n̂ (n̂Tn̂ = 1) as

e0 = cos
φ

2
,

⎛

⎝

e1
e2
e3

⎞

⎠ = n̂ sin
φ

2
,

3
∑

ρ=0

e2
ρ = 1.

The corresponding rotation matrix R(e) = [Rij (e)]3
i,j=1 is then

Rij (e) = δi,j

(

e2
0 − ekek

)+ 2eiej + 2εijke0ek,

where δi,j is the Kronecker delta, εijk is the anti-symmetric tensor and Einstein’s
summation convention applies: at the right-hand side, we sum over all k.

All information on the ith rod are collected in the vector qi = (r i , ei) of dimen-
sion 7. The condition

R33
(

ei
)− 1 = 0 ∀i

restricts the assembly of the chain to the (x, y) plane. The joining of the end of the
ith rod by the beginning of the (i + 1)th rod is expressed by the constraint

R
(

ei
)

si+ + r i − R
(

ei+1)si+1− − r i+1 = 0.

In our case n̂ = (0,0,1)T, so the Euler parameters ei for the ith rod depend only on
the rotation angles of the individual rod, φi , and these are simply determined by the
constraints φi+1 − φi − θi = 0. These constraints are not analytic in the parameters
r i and ei ; due to the periodicity of the angles, they are also not unique. We therefore
choose slightly more complicated constraints

R11
(

ei+1)+ iR21
(

ei+1)− exp

(

i
i

∑

j=1

θj

)

(

R11
(

ei
)+ iR21

(

ei
)) = 0,

for i = 1,2, . . . ,m−1, which are analytic. We exploit the fact that the projections of
the rod’s orientation on the x and y axes are hidden in the components of the rotation
matrices R11 and R21. Without loss of generality, the first rod may be oriented along
the x axis, which implies an additional constraint R11(e

1) − 1 = 0.

2.6 Problems 105

⊙
Let the linear structure described above reside in the plane at z = 0 and let

the beginning of the first rod coincide with the origin of the global reference frame.
For some m, automatically assemble the structure corresponding to the lengths and
angles

li = sin
π i

m + 1
, θi = π i

2(m + 1)
, i = 1,2, . . . ,m.

The system can be described by the vector of positions and Euler parameters of all
rods

q = (

qi
)m

i=1

of dimension M = 7m. All constraints of the system can be collected in the vector
equation

F (q) = (

Fi(q)
)N

i=1 = 0, (2.40)

which is analytic in q with N ≥ M . The solution of this system requires us to find
the global minimum of the quantity

�(q) = F (q)TF (q), (2.41)

which, in general, is troublesome. Here, we are only seeking the local minimum, so
we are solving ∇�(q) = 0. Since � is analytic in q , its minimum can be found by
using the Newton method of unconstrained minimization [14]. This method requires
us to know the first derivative of (2.41),

D(q) = (

∂i�(q)
)M

i=1, ∂i�(q) = 2
[

∂iFj (q)
]

Fj (q),

where ∂i ≡ ∂/∂qi , as well as the second derivative, given by the Hessian matrix,

H(q) = [

∂i∂j�(q)
]M

i,j=1,

∂i∂j�(q) = 2
[

∂i∂jFk(q)
]

Fk(q) + 2
[

∂jFk(q)
]

∂iFk(q).

(Einstein’s summation convention applies throughout.) We choose a good enough
initial approximation of the solution q(0) and iterate

q(k+1) = q(k) + [

H
(

q(k)
)]−1

D
(

q(k)
)

. (2.42)

This procedure is well suited for solving small or medium-sized systems where m

is on the order of several 10 to several 100, and M on the order of 100 to 1000. We
choose m = 20. The solution should appear as a structure shown in Fig. 2.17 (right).
For larger systems, solving the system of equations

H
(

q(k)
)(

q(k+1) − q(k)
) = D

(

q(k)
)

at each iteration step (2.42) may be too time-consuming and numerically unstable.
In such cases, other methods should be called to rescue: see [14].

106 2 Solving Non-linear Equations

⊕
Another possibility to solve (2.40) leads through Gröbner bases (see

Sect. 2.5). High numerical costs of this approach restrict m to about a few times
10; we choose m = 3. For a given set of functions {Fi(q)}Ni=1 compute the re-
duced Gröbner basis G = {gi}Mi=1 with lexicographic ordering. Solve the equations
gi(q) = 0 for i = 1,2, . . . ,M in this very same index sequence, i.e. make use of
the solutions of equations with index j ∈ [1, i − 1] in computing the solution of
the equation with index i. Along the way, non-physical solutions can be eliminated.
With such an approach, each equation gi(q) = 0 depends only on a single variable,
and the index of the variable increases with the index of the equation under consid-
eration. Hence, standard methods for seeking zeros of polynomials can be applied.
If multiple solutions appear, they all describe the same spatial structure, which one
easily confirms by drawing it.

References

1. A.E. Dubinov, I.N. Galidakis, Explicit solution of the Kepler equation. Phys. Part. Nucl. Lett.
4, 213 (2007)

2. R. Luck, J.W. Stevens, Explicit solutions for transcendental equations. SIAM Rev. 44, 227
(2002)

3. G.R. Wood, The bisection method in higher dimensions. Math. Program. 55, 319 (1992)
4. W. Baritompa, Multidimensional bisection: a dual viewpoint. Comput. Math. Appl. 27, 11

(1994)
5. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Appl. Math., vol. 12

(Springer, Berlin, 2002)
6. E.D. Charles, J.B. Tatum, The convergence of Newton–Raphson iteration with Kepler’s equa-

tion. Celest. Mech. Dyn. Astron. 69, 357 (1998)
7. B.A. Conway, An improved algorithm due to Laguerre for the solution of Kepler’s equation.

Celest. Mech. 39, 199 (1986)
8. H. Susanto, N. Karjanto, Newton’s method’s basins of attraction revisited. Appl. Comput.

Math. 215, 1084 (2009)
9. J.A. Ford, Improved algorithms of Illinois-type for the numerical solution of nonlinear equa-

tions. Technical report CSM-257, University of Essex (1995)
10. A. Ralston, H.S. Wilf, Mathematical Methods of Digital Computers, vol. 2 (Wiley, New York,

1967), Chap. 9
11. J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs,

1964)
12. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

13. G. Dahlquist, Å. Björck, Numerical Methods in Scientific Computing, Vols. 1 and 2 (SIAM,
Philadelphia, 2008)

14. J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Non-
linear Equations (SIAM, Philadelphia, 1996)

15. C.G. Broyden, A class of methods for solving nonlinear simultaneous equations. Math. Com-
put. 19, 577 (1965)

16. J.J. Moré, J.A. Trangenstein, On the global convergence of Broyden’s method. Math. Comput.
30, 523 (1976)

17. D.M. Gay, Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16, 623
(1979)

References 107

18. C.G. Broyden, On the discovery of the “good Broyden” method. Math. Program., Ser. B 87,
209 (2000)

19. D. Li, J. Zeng, S. Zhou, Convergence of Broyden-like matrix. Appl. Math. Lett. 11, 35 (1998)
20. J.M. Martínez, Practical quasi-Newton methods for solving nonlinear systems. J. Comput.

Appl. Math. 124, 97 (2000)
21. P. Henrici, Applied and Computational Complex Analysis, vol. 1 (Wiley, New York, 1974)
22. D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn.

(Addison-Wesley, Reading, 1980)
23. M. Marden, The Geometry of Zeros of a Polynomial in the Complex Variable (Am. Math. Soc.,

New York, 1949)
24. M. Fujiwara, Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen

Gleichung. Tohoku Math. J. 10, 167 (1916)
25. D. Kincaid, W. Cheney, Numerical Analysis. Mathematics of Scientific Computing

(Brooks/Cole, Belmont, 1991)
26. E.B. Vinberg, A Course in Algebra (Am. Math. Soc., Providence, 2003)
27. L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997)
28. M.A. Jenkins, J.F. Traub, A three-stage variable-shift iteration for polynomial zeros and its

relation to generalized Rayleigh iteration. Numer. Math. 14, 252 (1970)
29. M.A. Jenkins, J.F. Traub, A three-stage algorithm for real polynomials using quadratic itera-

tion. SIAM J. Numer. Anal. 7, 545 (1970)
30. E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966)
31. H.J. Stetter, Numerical Polynomial Algebra (SIAM, Philadelphia, 2004)
32. E.J. Haug, Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1 (Allyn

and Bacon, Boston, 1989)
33. M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso (eds.), Gröbner Bases, Coding, and Cryp-

tography (Springer, Berlin, 2009)
34. J. Gago-Vargas et al., Sudokus and Gröbner bases: not only a divertimento, in CASC 2006, ed.

by V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov. Lecture Notes in Computer Science, vol. 4194
(Springer, Berlin, 2006), p. 155

35. V.R. Romanovski, D.S. Shafer, The Center and Cyclicity Problems: A Computational Algebra
Approach (Birkhäuser, Boston, 2009)

36. W. Adams, P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathemat-
ics, vol. 3 (Am. Math. Soc., Providence, 1994)

37. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 3rd edn. (Springer, Berlin,
2007)

38. E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, Some applications of Gröbner bases. Com-
put. Sci. Eng. May/Jun, 56 (2004)

39. E. Roanes-Lozano, E. Roanes-Macías, L.M. Laita, The geometry of algebraic systems and
their exact solving using Gröbner bases. Comput. Sci. Eng. March/April, 76 (2004)

40. S. Mac Lane, G. Birkhoff, Algebra, 3rd edn. (Am. Math. Soc., Providence, 1999)
41. V.R. Romanovski, M. Prešern, An approach to solving systems of polynomials via modular

arithmetics with applications. J. Comput. Appl. Math. 236, 196 (2011)
42. B. Buchberger, An algorithm for finding the basis elements of the residue class ring of a zero

dimensional polynomial ideal. J. Symb. Comput. 41, 475 (2006)
43. T. Stegers, Faugère’s F5 algorithm revisited. Diploma thesis, Technische Universität Darm-

stadt (2005/2007)
44. J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to

zero (F5), in Proc. International Symposium on Symbolic and Algebraic Computation, Lille,
France (2002), p. 75

45. L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)
46. F. Chapeau-Blondeau, A. Monir, Numerical evaluation of the Lambert W -function and ap-

plication to generation of generalized Gaussian noise with exponent 1/2. IEEE Trans. Signal
Process. 50, 2160 (2002)

108 2 Solving Non-linear Equations

47. H. Gould, J. Tobochnik, Statistical and Thermal Physics: With Computer Applications
(Princeton University Press, Princeton, 2010)

48. K. Meintjes, A.P. Morgan, Chemical equilibrium systems as numerical test problems. ACM
Trans. Math. Softw. 16, 143 (1990)

49. O. Reynolds, An experimental investigation of the circumstances which determine whether
the motion of water shall be direct or sinuous and of the law of resistance in parallel channels.
Proc. R. Soc. Lond. 35, 84 (1883)

50. H. Faisst, B. Eckhardt, Sensitive dependence on initial conditions in transition to turbulence
in pipe flow. J. Fluid Mech. 504, 343 (2004)

51. B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems (CRC Press, Boca
Raton, 2002)

52. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1980)

Chapter 3
Matrix Methods

For physicist’s needs, numerical linear algebra is so comprehensively covered by
classic textbooks [1, 2] that another detailed description of the algorithms here
would be pointless. To a larger extent than in other chapters we wish to merely set up
road-signs between approaches to solving systems of linear equations, least-squares
problems, and eigenvalue problems. Only Sect. 3.5 on random matrices conveys a
somewhat different tone. Above all, we shall pay attention to classes of matrices
for which analytical and numerical tools are particularly thoroughly developed and
efficient.

To numerically solve problems in linear algebra, never write your own routines!
This advice applies even to seemingly straightforward operations like matrix multi-
plication, and even more so to solving systems of equations Ax = b or eigenvalue
problems Ax = λx. For these tasks we almost invariably use specialized libraries
(see, for example, [3, 4] and Appendix I).

3.1 Basic Operations

3.1.1 Matrix Multiplication

Classical multiplication of n × n matrices in the form

Cij =
n∑

k=1

AikBkj , i, j = 1,2, . . . , n, (3.1)

where AikBkj is nested into three loops over i, j , and k, requires F = 2n3 mul-
tiplications or additions and M = n3 + 3n2 memory accesses. The optimal ratio
is F/M ≈ n/2 [1], so this method of multiplication is not optimal. (Note that M

may depend on processor architecture, peculiarities of the programming language,
implementation, and compiler.) In standard libraries BLAS3 or LAPACK (see Ap-
pendix I) multiplication is realized in block form that also requires F = 2n3 arith-
metic operations, but has a better asymptotic ratio F/M for large n. For all forms

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_3, © Springer-Verlag Berlin Heidelberg 2012

109

110 3 Matrix Methods

Fig. 3.1 Strassen’s multiplication of 8 × 8 matrices. The diagrams show the elements of A and
B which are accessed in memory in order to form the elements of C. For example, to get the
C18 element (upper right corners) we need A1k (1 ≤ k ≤ 8) and Bk8 (1 ≤ k ≤ 8) as in classical
multiplication (3.1), but a different pattern for other elements

of direct multiplication in floating-point arithmetic we have the estimate

fl(AB) = AB + E, |E| ≤ n
εM

2
|A| |B| +O

(
ε2

M

)
, (3.2)

where |A| means (|A|)ij = |Aij |. We also have

∥∥fl(AB) − AB
∥∥

1 ≤ n
εM

2
‖A‖1‖B‖1 +O

(
ε2

M

)
. (3.3)

Faster algorithms exist, e.g. Strassen’s [5] that splits the matrices A and B into
smaller blocks which are then recursively multiplied and summed. The asymptotic
cost of the algorithm is 4.70n2.81, so it really starts to soar when used with matrices
of dimensions n in the hundreds or thousands. In some cases, Strassen’s method may
exhibit instabilities, but robust versions are contained in the fast version BLAS3
[6, 7] and we should use them if speed is our absolute priority. For optimally fast
multiplication we need to understand the connection between hardware and soft-
ware; see Fig. 3.1 and [8]. We can see in the anatomically detailed paper [9] just how
deep this knowledge should be in order to design the best algorithms. For Strassen’s
multiplication the estimate (3.3) still applies while (3.2) is almost always true (see
[2] and Chap. 23 in [10]).

The currently lowest asymptotic cost is claimed by the Coppersmith–Winograd
algorithm [11] which is of order O(n2.38), but the error constant in front of n2.38 is
so large that the algorithm becomes useful only at very large n. A standard version is
described in [12] and the best adaptive implementation in [13]. The theoretical lower
limit of the numerical cost for any matrix multiplication algorithm is, of course, 2n2,
since each element of A and B needs to be accessed at least once. See also [14–16].

3.2 Systems of Linear Equations Ax = b 111

3.1.2 Computing the Determinant

The determinant of a matrix A or its permutation PA should never be computed
with the school-book method via sub-determinants. Rather, we use LU decomposi-
tion (3.7) and read off the determinant from the diagonal elements of U :

det(PA) = (−1)det(P)

n∏

i=1

Uii, det(P) = order of permutation.

3.2 Systems of Linear Equations Ax = b

This section deals with methods to solve systems of linear equations Ax = b, where
A is a n× n matrix and b and x are vectors of dimension n. The routines from good
linear algebra libraries (e.g. LAPACK) allow us to solve the system for r right-
hand sides simultaneously (we are then solving AX = B where B and X are n × r

matrices). Solving Ax = b is equivalent to “computing the inverse of A” although
A−1 almost never needs to be explicitly known or computed. Table 3.1 summarizes
some of the most widely used routines.

3.2.1 Analysis of Errors

Numerical errors in solving the problem Ax = b can be analyzed in two ways. One
way is to observe the sensitivity of the solution x to small perturbations of A or b. If
the vector x̂ solves the perturbed equation (A+δA)̂x = b+δb where ‖δA‖ ≤ ε‖A‖,
‖δb‖ ≤ ε‖b‖, and ε‖A−1‖‖A‖ < 1, the deviation x − x̂ from the exact solution can
be bounded as

‖x − x̂‖
‖x̂‖ ≤ ε

1 − ε‖A−1‖‖A‖
{∥∥A−1

∥∥‖A‖ + ‖A−1‖‖b‖
‖x‖

}
≤ 2εκ(A)

1 − εκ(A)
, (3.4)

where κ(A) ≡ ‖A−1‖‖A‖ is the condition number of A with respect to matrix
inversion (see Sect. 3.2.6). Matrices with large κ(A) are ill-conditioned, those
with small κ(A) are well-conditioned. The value of the condition number depends
on the norm in which it is measured. For example, in the Euclidean norm we
have κ2(A) = ‖A−1‖2‖A‖2 = σmax(A)/σmin(A) where σmax(A) is the largest and
σmin(A) the smallest singular value of A (see Sect. 3.3.2). For nonsingular A the
inverse value of the condition number 1/κp(A) measures the distance (in p-norm)
to the nearest singular problem [17, 18],

1

κp(A)
= min

A+�A singular

‖�A‖p

‖A‖p

.

112 3 Matrix Methods

Ta
bl

e
3.

1
A

co
lle

ct
io

n
of

do
ub

le
-p

re
ci

si
on

ro
ut

in
es

to
so

lv
e

sy
st

em
s

of
lin

ea
r

eq
ua

tio
ns

A
x

=
b

fr
om

th
e

L
A

PA
C

K
,G

S
L

an
d

N
U

M
E

R
IC

A
L

R
E

C
IP

E
S

(t
hi

rd
ed

iti
on

fo
r

C
+

+
)

lib
ra

ri
es

,f
or

di
ff

er
en

tt
yp

es
of

n
×

n
m

at
ri

ce
s
A

.R
ou

tin
es

fr
om

th
e

L
A

PA
C

K
lib

ra
ry

al
lo

w
th

e
sy

st
em

to
be

so
lv

ed
si

m
ul

ta
ne

ou
sl

y
fo

r
r

ri
gh

t-
ha

nd
si

de
s,

w
hi

le
in

G
S

L
an

d
N

R
3 E

w
e

ha
ve

r
=

1.
T

he
k

l
an

d
k

u
de

no
te

th
e

nu
m

be
r

of
su

b-
di

ag
on

al
s

an
d

su
pe

r-
di

ag
on

al
s

in
ba

nd
ed

m
at

ri
ce

s
(k

l
=

k
u
=

k
fo

r
sy

m
m

et
ri

c
m

at
ri

ce
s)

.M
an

y
ro

ut
in

es
fr

om
L

A
PA

C
K

ar
e

al
so

av
ai

la
bl

e
in

si
ng

le
pr

ec
is

io
n

(fi
rs

tl
et

te
r
S

in
st

ea
d

of
D

)
fo

r
re

al
va

ri
ab

le
s,

as
w

el
la

s
in

do
ub

le
an

d
si

ng
le

pr
ec

is
io

n
fo

r
co

m
pl

ex
va

ri
ab

le
s

(i
ni

tia
ll

et
te

rs
Z

or
C

).
Fo

r
de

ta
ils

,s
ee

[3
,4

].
T

he
G

S
L

lib
ra

ry
al

so
of

fe
rs

a
fe

w
ro

ut
in

es
fo

r
co

m
pl

ex
va

ri
ab

le
s

M
at

ri
x

ty
pe

N
um

er
ic

al
co

st
L

A
PA

C
K

G
S

L
N

R
3E

G
en

er
al

2 3
n

3
+

2n
2
r

D
G
E
S
V

g
s
l
_
l
i
n
a
l
g
_
L
U
_
d
e
c
o
m
p

L
U
d
c
m
p

D
G
E
S
V
X

g
s
l
_
l
i
n
a
l
g
_
L
U
_
s
o
l
v
e

G
en

er
al

ba
nd

ed
O

(n
k

l(
k

l
+

k
u
)
+

n
(2

k
l
+

k
u
)r

)
if

n
�

k
l,

k
u

D
G
B
S
V

/
B
a
n
d
e
c

D
G
B
S
V
X

G
en

er
al

tr
id

ia
go

na
l

O
(n

r
)

D
G
T
S
V

/
t
r
i
d
a
g

D
G
T
S
V
X

Sy
m

m
et

ri
c

in
de

fin
ite

1 3
n

3
+

O
(n

2
r
)

D
S
Y
S
V

/
/

D
S
Y
S
V
X

Sy
m

m
et

ri
c

po
s.

de
fin

ite
1 3
n

3
+

O
(n

2
r
)

D
P
O
S
V

g
s
l
_
l
i
n
a
l
g
_
c
h
o
l
e
s
k
y
_
d
e
c
o
m
p

C
h
o
l
e
s
k
y

D
P
O
S
V
X

g
s
l
_
l
i
n
a
l
g
_
c
h
o
l
e
s
k
y
_
s
o
l
v
e

Sy
m

m
.b

an
de

d
po

s.
de

fin
ite

O
(n

(k
+

1)
2
+

n
k
r
)

if
n

�
k

D
P
B
S
V

/
/

D
P
B
S
V
X

Sy
m

m
.t

ri
di

ag
.p

os
.d

efi
ni

te
O

(n
r
)

D
P
T
S
V

g
s
l
_
l
i
n
a
l
g
_
s
o
l
v
e
_
s
y
m
m
_
t
r
i
d
i
a
g

/

D
P
T
S
V
X

To
ep

lit
z

O
(n

2
)

/
/

t
o
e
p
l
z

O
(n

lo
g2

n
)

[2
3,

24
]

V
an

de
rm

on
de

O
(n

2
)

/
/

v
a
n
d
e
r

O
(n

lo
g2

n
)

[2
7–

33
]

3.2 Systems of Linear Equations Ax = b 113

Example A singular matrix has det(A) = 0, but det(A) ≈ 0 does not neces-
sarily mean that the problem Ax = b is “almost singular”. Let us elucidate
this contrast by two examples ([2], p. 82). The upper-triangular n × n matrix
Un with values of 1 along the main diagonal and −1 on all super-diagonals,
has det(Un) = 1 but κ∞(Un) = n2n−1. On the other hand, the n × n matrix
Dn = diag(10−1,10−1, . . . ,10−1) has a condition number of κp(Dn) = 1 while
det(Dn) = 10−n. Ill conditioning of the matrix (large κ) and the determinant be-
ing close to zero are therefore, in general, weakly correlated.

The bound (3.4) may over-estimate the actual error by many orders of magnitude,
which does not hurt, but there is also no benefit. The estimate [10]

‖x − x̂‖∞
‖x̂‖∞

≤ ‖|A−1|(|r| + γn+1(|A||̂x| + |b|))‖∞
‖x̂‖∞

, (3.5)

where

r = Ax̂ − b, γn = nεM

1 − nεM
,

is much more useful. To evaluate (3.5) we need to compute the remainder r and the
combination |A||̂x| + |b| (trivial), as well as |A−1||r| (non-trivial, but there is no
need to compute A−1 explicitly; see Sect. 3.2.6).

In the second way of analyzing errors we think backwards. The smallest ω for
which |δA| ≤ ω|A| and |δb| ≤ ω|b| exist such that (A + δA)̂x = b + δb, is called
the relative backward error. In other words, ω is the smallest relative change in any
element of A or b such that x̂ represents the exact solution of the perturbed problem.
The lower limit of the relative backward error is

ω = max
i

{ |ri |
(A |̂x| + b)i

}
. (3.6)

If we encounter a division of the type |ri |/0 in (3.6) we assign a value of zero to
the fraction if |ri | = 0 or ∞ otherwise. Such cases occur in problems with sparse
matrices when for some part of the matrix Aijxj = 0 for ∀j and the denominator
in (3.6) becomes zero or small enough to cause an overflow when computing the
fraction. Error estimates built into library routines avoid this problem in several
ways; see Sect. 7.7 in [10] for details.

3.2.2 Gauss Elimination

The most broadly useful algorithm to solve systems of equations Ax = b with square
matrices A without particular structure is the Gauss elimination with partial pivot-
ing (GEPP). The core of the algorithm is the decomposition of the row-permuted
matrix PA to a lower-triangular matrix L (values of 1 on the diagonal and non-zero

114 3 Matrix Methods

Fig. 3.2 Error estimates in solving the system of equations Ax = b with random matrices by Gauss
elimination with partial pivoting. [Left] Backward error versus matrix dimension. The pivot growth
factor gpp (3.8) typically does not increase faster than O(n). [Right] Hager’s estimate compared to
the true error. The error is over-estimated by about one order of magnitude; rare exceptions to this
rough rule are mentioned in [1]

elements at most below the diagonal) and an upper-triangular matrix U (non-zero
elements on the diagonal and above it) [2]:

PA = LU. (3.7)

Partial pivoting enables the algorithm to proceed and prevents the absolute values of
the elements of L to exceed unity. The condition number of A (Sect. 3.2.6) therefore
remains comparable to those of L and U . In other words, by using partial pivoting
we almost always [1] avoid numerical instabilities which might render the norm
‖PA− LU‖ comparable to ‖A‖. The measure for the stability of GEPP is the pivot
growth factor gpp ≡ ‖U‖max/‖A‖max. For GEPP we have the backward error

‖δA‖∞ ≤ 3

2
gppn

3εM‖A‖∞. (3.8)

Figure 3.2 (left) shows the upper limits for the relative backward error 3
2gppn

3εM

and 3
2nεM‖ |L| · |U | ‖∞/‖A‖∞ compared to the true error ‖Ax − b‖∞/

(‖A‖∞‖x‖∞).
GEPP in double precision is implemented in the routines DGESVX (ZGESVX in

complex) from LAPACK, gsl_linalg_LU_decomp/_solve from GSL or
LUdcmp from NR3E (Table 3.1). In rare cases in which GEPP fails, we use elim-
ination with complete pivoting (GECP) which is slower than GEPP: while GEPP
requires 2

3n3 + 2n2r operations (r is the number of right-hand sides in solving
AX = B), finding the pivots in GECP implies additional O(n3) operations (O(n2)

per step).
If A has special properties, the numerical cost may be reduced. For general

or positive definite symmetric matrices the decomposition is accomplished by

3.2 Systems of Linear Equations Ax = b 115

one of the variants of the Cholesky method which requires n3/3 + O(n2r) op-
erations. We can use the DSYSVX and DPOSVX routines from LAPACK, the
gsl_linalg_cholesky_decomp/_solve from GSL or Cholesky from
NR3E.

3.2.3 Systems with Banded Matrices

Banded matrices have kl sub-diagonals and ku super-diagonals. For general banded
matrices with a small bandwidth, (n � kl, ku) fast methods to solve Ax = b exist,
at a cost of O(nkl(kl + ku) + n(2kl + ku)) (see Table 3.1). In double precision we
recommend the use of the DGBSVX routine from LAPACK or the Bandec routine
from NR3E.

Tridiagonal matrices are a special case of banded matrices. In physics, they can
often be traced to the difference approximation of spatial or temporal differen-
tial operators on a mesh, like in (9.6) or (9.7). The three values at the neighbor-
ing mesh points appear in characteristic triplets in each matrix row. (If the differ-
ence involves more points, as in (9.12), we get a five- or more-diagonal matrix.)
The algorithms for tridiagonal matrices (DGTSV and DGTSVX from LAPACK or
tridag from NR3E) have the numerical cost of O(nr). Algorithms for sym-
metric tridiagonal positive-definite matrices (DPTSV and DPTSVX from LAPACK
and gsl_linalg_solve_symm_tridiag from GSL) require 8nr operations.
Such small costs motivate us to try to translate the physics problem such that tridi-
agonal or banded matrices appear instead of general ones.

3.2.4 Toeplitz Systems

Toeplitz matrices play a key role in problems of the theory of systems control, signal
analysis, image processing, and in many related areas [19, 20]. Two typical cases of
Toeplitz matrices are

T =

⎛

⎜⎜⎜⎜⎜⎝

t0 t1 t2 t3 · · ·
t−1 t0 t1 t2 · · ·
t−2 t−1 t0 t1 · · ·
t−3 t−2 t−1 t0 · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠
, Tk =

⎛

⎜⎜⎜⎜⎜⎝

1 t1 · · · tk−2 tk−1
t1 1 tk−2
... 1

...

tk−2 1 t1
tk−1 tk−2 · · · t1 1

⎞

⎟⎟⎟⎟⎟⎠
,

where Tk is positive definite. The common property of Toeplitz matrices is their
insensitivity to a shift along a symmetry axis of the matrix. The physics back-
ground of this invariance are temporal or spatial shifts or displacements. Due to
the characteristic appearance of these matrices we say that they possess displace-
ment structure [21, 22]. The most relevant problems involving Toeplitz matrices are

116 3 Matrix Methods

the Yule–Walker equation Tnx = −(t1, t2, . . . , tn)
T in the theory of linear prediction

(Sect. 6.7) and the solution of a general system T x = b. Spatial derivatives in spec-
tral methods for partial differential equations can also be represented by Toeplitz
matrices (look carefully at the structure of the matrix (11.12) in Sect. 11.1).

Toeplitz systems can be solved by methods with a numerical cost of O(n2).
For general purposes, we recommend the use of the toeplz routine from NR3E.
Super-fast O(n log2 n) Toeplitz methods exist [23, 24]. See also [25].

3.2.5 Vandermonde Systems

A Vandermonde matrix V ∈ R
(n+1)×(m+1) for scalars x0, x1, . . . , xn ∈ R is defined

by the elements Vij = (xj)
i where 0 ≤ i ≤ m and 0 ≤ j ≤ n. We encounter such ma-

trices in two classes of problems: interpolation and quadrature. They are illustrated
by the following two examples.

Example Assume we have a set of measurements {(xj , yj)}nj=0, the physics back-
ground of which is the function y(x) = sin(2πx) + 0.002 cos(100x) (a sine-wave
with a tiny modulation or noise). We would like to interpolate the data by a poly-
nomial p(x) = anx

n + an−1x
n−1 + · · · + a0 such that p(xj) = yj . We calculate the

vector of coefficients a = (a0, a1, . . . , an)
T by solving the system

V Ta = y, V =

⎛

⎜⎜⎜⎝

1 1 · · · 1
x0 x1 · · · xn

...
...

. . .
...

xn
0 xn

1 · · · xn
n

⎞

⎟⎟⎟⎠ , y =

⎛

⎜⎜⎜⎝

y0
y1
...

yn

⎞

⎟⎟⎟⎠ , (3.9)

where V is a square matrix. We sample the function y at n + 1 randomly chosen
points xj from the interval [0,1] and solve the system (3.9) by Gauss elimination.
The points are shown by the ◦ symbols and the corresponding polynomial by the
(ran) curve in Fig. 3.3 (left). If we use equidistant points (•) we get the (eq) curve,
and with the Chebyshev nodes (�) we get the (ceb) curve in the same figure.

On the non-symmetric interval [0,1] the interpolation works well close to the
origin, but fails elsewhere. The reason for this is the imprecise calculation of the
polynomial coefficients due to the large condition number κ2(V). By choosing the
Chebyshev points xj , κ2(V) can be greatly reduced, but interpolation is still poor.
Its reliability can be enhanced by mapping the points xj ∈ [0,1] to the symmetric
interval [−1,1] by using ξj = 2xj − 1 (Fig. 3.3 (right)). The randomly distributed
points also work well, but this should not be a taken as a rule.

Example The second class of problems with Vandermonde matrices involves
quadrature. If we know the sums {si}ni=0 of a quadrature formula si = ∑

j wjx
i
j , the

weights wj are determined by solving V w = s. Let us choose the points {xj }nj=0

3.2 Systems of Linear Equations Ax = b 117

Fig. 3.3 The quality of the polynomial interpolation for different symmetries and choices of
xj . [Left] Interpolation at {(xj , y(xj))}80

j=0 with randomly (ran) or uniformly (eq) distributed

xj ∈ [0,1]. [Right] Interpolation at {(ξj = 2xj − 1, y(xj))}80
j=0 with points ξj on a symmetric

interval [−1,1]. Also shown are the interpolation polynomials in the case when ξj are the roots of
the Chebyshev polynomial of degree 80 (ceb)

from [a, b] such that a ≤ x0 < x1 < · · · < xn−1 < xn ≤ b. We wish to determine
such weights in the equation

∫ b

a

f (x)dx ≈
n∑

j=0

wjf (xj),

that the formula will be exact for polynomials of degree n − 1 at least, so

f (x) = 1 : w0 + w1 + · · · + wn = ∫ b

a
dx = s0,

f (x) = x : w0x0 + w1x1 + · · · + wnxn = ∫ b

a
x dx = s1,

...
...

...
...

...
...

f (x) = xn−1 : w0x
n−1
0 + w1x

n−1
1 + · · · + wnx

n−1
n = ∫ b

a
xn−1 dx = sn.

The system is already in the form V w = s and can be solved, for example, by using
the vander routine from the NR3E library.

Vandermonde systems are extremely ill-conditioned; the condition number
κ2(V) grows exponentially with the matrix size. Even the lower limit of κ is known
[26]. The algorithms to solve systems of the form V Ta = y and V w = s differ
technically, but they have the same numerical cost. Systems of both types are best
solved by Gauss elimination with complete pivoting which requires O(n3) opera-
tions. Some Vandermonde systems can be solved by methods requiring only O(n2)

or even O(n log2 n) operations [27–33].

118 3 Matrix Methods

3.2.6 Condition Estimates for Matrix Inversion

The condition number of A corresponding to the sensitivity of Ax = b to perturba-
tions (A + δA)̂x = b + δb depends on the type of these perturbations and on the
matrices and vectors used in comparisons to δA and δb [10]. The error in the ‖ · ‖∞
norm, as in (3.4), corresponds to the condition number

κ∞(A) ≡ ∥∥A−1
∥∥∞‖A‖∞.

For the error (3.6) with the ‖ · ‖∞ norm, the appropriate condition numbers are

cond(A,x) = ∥∥∣∣A−1
∣∣|A||x|∥∥∞/‖x‖∞ or cond(A) = ∥∥∣∣A−1

∣∣|A|∥∥∞ ≤ κ∞(A).

Regardless of the definition we must obtain ‖A−1‖ or ‖|A−1|ξ‖ for ξ ∈ R
n

in order to compute the condition number, and we would like to do this as pre-
cisely as possible without explicitly calculating the inverse A−1 which in general
requires O(n3) operations. Several condition estimators exist with a numerical cost
of O(n2). Among the most popular is the Hager’s estimator [34] which is simple
to code and suffices for almost all uses. Its more refined form [35, 36] is used in
the LAPACK routines xyyCON and in the routines ending in the letter X from Ta-
ble 3.1. This estimator returns the inverse value of the condition number RCOND.
The comparison of the value of the estimator and the true error in solving a mul-
titude of systems involving random matrices is shown in Fig. 3.2 (right). See also
[37, 38] and Chap. 15 in [10].

Balancing If the problem Ax = b is ill-conditioned, a more precise solution can
be obtained by first solving the scaled or balanced problem (D−1

1 AD2)y = D−1
1 b

where D1 and D2 are diagonal, and then calculate x = D2y. Balancing may do more
harm than good (a nice example is given in [39]), and there is no general recipe. In
addition, balancing may be used to precondition matrices in eigenvalue problems
[40–42]. Practical routines can be found in LAPACK [3, 4].

3.2.7 Sparse Matrices

From a certain size upwards, in particular for sparse matrices, the methods of
Sect. 3.2 become too time-demanding and memory-consuming. “Large” stands for
≈ n × n = 106 × 106, a size one easily cooks up in multi-dimensional problems.
(The horizon of “large” tends to move up by a factor 10 to 100 in n about every 10
years.) A matrix is considered to be sparse if it contains enough zeros that this fact
can be exploited as the key circumstance allowing us to store the matrix and solve
the system as economically as possible. To solve large sparse systems, two large
classes of methods stand at our disposal: direct and iterative.

Direct methods for sparse matrices are much more demanding that those for
dense matrices. One always tries to rearrange the sparse structure of the matrix to a

3.3 Linear Least-Square Problem and Orthogonalization 119

more condensed form or one with greater symmetry, and only then a step like a LU

decomposition is performed. For a general introduction to direct methods for sparse
systems, see Chap. 6 in [43]. A comprehensive list of program packages is given in
[44, 45]. Benchmark comparisons of tools for large sparse symmetric systems have
been compiled by [46, 47]. See also [48, 49].

The second choice are the iterative methods. Their classical representatives are
the Gauss-Seidel and the SOR method. Among the more modern ones, we have
multi-grid methods and conjugate-gradient methods. Typical users of iterative meth-
ods are engineering professionals, for which speed and orientation towards a func-
tioning end-product are the chief guiding principles. The basic iterative methods are
discussed in Sect. 10.2 and Sect. 10.8 (Table 10.1). Serious further reading can be
found in Chaps. 8 and 9 of [43].

3.3 Linear Least-Square Problem and Orthogonalization

In the previous section we have discussed systems of the form Ax = b where A ∈
R

n×n and x, b ∈ R
n. In this section, we are dealing with over-determined systems,

in which there are more equations than unknowns, that is,

Ax = b, A ∈ R
m×n, b ∈R

m, x ∈ R
n, m ≥ n.

Solving such systems can be understood as seeking a vector x that minimizes the
remainder r = Ax − b in some vector norm, e.g. ‖r‖1, ‖r‖2, or ‖r‖∞. Due to its
analytic properties (differentiability with respect to x) the ‖ ·‖2 norm is most widely
used. The problem of minimizing ‖Ax − b‖2 is also called the linear least-squares
(LS) problem, as we attempt to minimize [∑i r

2
i]1/2.

In the following we assume that the matrix A ∈ R
m×n for m ≥ n has full rank,

so it has n linearly independent columns. For rank-deficient or nearly rank-deficient
matrices the matters become more complicated. For a matrix A with an exactly
deficient rank the solution of the least-squares problems is not unique: if rank(A) =
r < n, there exists a (n − r)-dimensional set of vectors x that minimize ‖Ax − b‖2.
From this set we have to choose the vector with the smallest norm which may be
the only one to possess physical meaning (see Sect. 3.5 in [1], Sect. 5.5 in [2] and
Sect. 3.3.3 in the following).

The basic method to solve the linear least-squares problem is to transform it to the
normal system. We seek a vector x for which the gradient of f (x) = ‖Ax − b‖2

2 =
(Ax − b)T(Ax − b) is equal to zero, that is, a vector x such that ∂f/∂xi = 0 for i =
1,2, . . . , n. A short calculation brings us to the n × n normal system ATAx = ATb

which has the solution

xLS = (
ATA

)−1
ATb. (3.10)

For matrices A ∈ R
m×n (m ≥ n) with full rank the condition number for the least-

squares problem is defined as the ratio of the largest and the smallest singular value,
κ2(A) = σmax(A)/σmin(A) (see Sect. 3.3.2). The relative error of the vector x̂LS

120 3 Matrix Methods

computed by solving the normal system with respect to the true vector xLS can be
estimated as

‖x̂LS − xLS‖2

‖xLS‖2
≈ εMκ2(A)2. (3.11)

Note that this estimate involves the square of the condition number. An additional
concern is that solving the normal system may be unstable: this means that the
computed x̂LS does not necessarily minimize the “nearby” least-squares problem
minx ‖(A + δA)x − (b + δb)‖2 where δA and δb are small perturbations. Still,
the normal-system method is recommendable for well-conditioned matrices A as
it comes at a numerical cost of just (m + n/3)n2. In the NR3E library it is im-
plemented in the Fitlin structure; see also Algorithm 5.3.1 in [2]. When higher
precision and better stability are required, we resort to QR decomposition with col-
umn pivoting or singular-value decomposition (SVD).

3.3.1 The QR Decomposition

The QR decomposition is a method to orthogonalize a matrix A ∈ R
m×n (m ≥ n)

where A is decomposed to an orthogonal matrix Q ∈ R
m×m (QTQ = QQT = I)

and an upper-triangular matrix R ∈ R
m×n such that A = QR. The method with

Q ∈ R
m×n and R ∈ R

n×n [1] is known as the “thin” variant of QR [2]. By using
the QR decomposition, we hit two birds with one stone. If A has full rank n, its
columns span a n-dimensional vector space Rn(A), and the first n columns of Q

represent an orthonormal basis for this space; the decomposition and the computa-
tion of the basis vectors in double precision is accomplished by the DGEQRF and
DORGQR routines from LAPACK. In addition, the QR decomposition also yields
the solution of the least-squares problem. This becomes clear if the solution of the
normal system (3.10) is rewritten as

xLS = (
ATA

)−1
ATb = (

RTQTQR
)−1

RTQTb = R−1(RT)−1
RTQTb = R−1QTb.

When A is QR-decomposed, we obtain the solution xLS by solving the upper-
triangular system Rx = QTb by back-substitution. The whole process is imple-
mented in the LAPACK’s routine DGELS with improvements [50], the routines
gsl_linalg_QR_decomp and _lssolve from GSL and, in the context of lin-
ear regression, Fitlin from NR3E (see Table 3.2). The lion’s share of numerical
work is hidden in the decomposition itself; the typical cost of these algorithms is
2n2(m − n/3) to solve the least-squares problem, and an equal number of opera-
tions to construct the basis vectors for Rn(A) from Q.

There are other ways to orthogonalize a matrix A ∈ R
m×n. One of them is the

classical Gram-Schmidt (GS) procedure, but it is unstable if the columns of A are
only weakly dependent. In such cases, the GS procedure generates columns of Q

which are not orthonormal, so that ‖I − QTQ‖ � ε, and should not be used! The

3.3 Linear Least-Square Problem and Orthogonalization 121

Ta
bl

e
3.

2
A

co
lle

ct
io

n
of

do
ub

le
-p

re
ci

si
on

ro
ut

in
es

to
so

lv
e

th
e

le
as

t-
sq

ua
re

s
pr

ob
le

m
an

d
its

ge
ne

ra
liz

at
io

ns
fr

om
th

e
L

A
PA

C
K

,
G

S
L

,
an

d
N

U
M

E
R

-
IC

A
L

R
E

C
IP

E
S

(t
hi

rd
ed

iti
on

fo
r

C
+

+
)

lib
ra

ri
es

.
In

al
l

ca
se

s
w

e
ha

ve
A

∈
R

m
×n

w
he

re
m

≥
n

(o
ve

r-
de

te
rm

in
ed

sy
st

em
s)

.
T

he
so

lu
tio

n
(3

.1
0)

by
th

e
no

rm
al

-s
ys

te
m

m
et

ho
ds

is
im

pl
em

en
te

d
in

th
e
F
i
t
l
i
n

ro
ut

in
e.

T
he

so
lu

tio
n

ba
se

d
on

th
e

Q
R

de
co

m
po

si
tio

n
is

im
pl

em
en

te
d

in
D
G
E
L
S

(L
A

PA
C

K
)

an
d

g
s
l
_
l
i
n
a
l
g
_
Q
R
_
d
e
c
o
m
p
/
_
s
o
l
v
e

(G
S

L
).

T
he

nu
m

er
ic

al
co

st
of

th
e

L
A

PA
C

K
Q

R
ro

ut
in

es
fo

r
co

m
pl

ex
va

ri
ab

le
s

is
ab

ou
t

fo
ur

tim
es

hi
gh

er
th

an
th

e
co

st
of

th
e

co
rr

es
po

nd
in

g
ro

ut
in

es
fo

r
re

al
va

ri
ab

le
s.

T
he

m
et

ho
ds

ex
pl

oi
tin

g
si

ng
ul

ar
-v

al
ue

de
co

m
po

si
tio

n
(l

as
tl

in
e

in
th

e
lo

w
er

ta
bl

e)
m

ay
al

so
be

ap
pl

ie
d

to
fu

ll-
ra

nk
m

at
ri

ce
s.

T
he

nu
m

er
ic

al
co

st
of

th
es

e
ro

ut
in

es
st

ro
ng

ly
de

pe
nd

s
on

th
e

im
pl

em
en

ta
tio

n
de

ta
ils

.S
ee

al
so

ca
pt

io
n

to
Ta

bl
e

3.
1

Fu
ll-

ra
nk

m
at

ri
ce

s,
ra

nk
(A

)
=

m
in

(m
,
n
)

M
in

im
iz

e
C

on
st

ra
in

t
N

um
er

ic
al

co
st

L
A

PA
C

K
G

S
L

N
R

3E

m
in

x
‖A

x
−

b
‖ 2

/
n

2
(m

+
1 3
n
)

/
/

F
i
t
l
i
n

m
in

x
‖A

x
−

b
‖ 2

/
2n

2
(m

−
1 3
n
)

D
G
E
L
S

g
s
l
_
l
i
n
a
l
g
_
Q
R
_
d
e
c
o
m
p

/

g
s
l
_
l
i
n
a
l
g
_
Q
R
_
l
s
s
o
l
v
e

m
in

x
‖A

x
−

b
‖ 2

B
x

=
c

≤2
n

2
(2

m
+

1 3
n
)

D
G
G
L
S
E

/
/

m
in

x
‖y

‖ 2
A

x
+

B
y

=
c

2(
2 3
m

3
−

1 3
n

3
)
+

4n
m

2
D
G
G
G
L
M

/
/

m
in

x
‖B

−1
(c

−
A

x
)‖ 2

B
sq

ua
re

14 3
n

3
D
G
G
G
L
M

/
/

R
an

k-
de

fic
ie

nt
m

at
ri

ce
s,

ra
nk

(A
)
<

m
in

(m
,
n
)

M
in

im
iz

e
C

on
st

ra
in

t
N

um
er

ic
al

co
st

L
A

PA
C

K
G

S
L

N
R

3E

m
in

x
‖A

x
−

b
‖ 2

m
in

x
‖x

‖ 2
≈O

(m
n

2
)
+

O
(n

3
)

([
2]

,S
ec

t.
5.

4)
D
G
E
L
S
Y

g
s
l
_
l
i
n
a
l
g
_
Q
R
P
T
_
d
e
c
o
m
p

/

g
s
l
_
l
i
n
a
l
g
_
Q
R
P
T
_
s
o
l
v
e

m
in

x
‖A

x
−

b
‖ 2

m
in

x
‖x

‖ 2
≈O

(m
n

2
)
+

O
(n

3
)

([
2]

,S
ec

t.
5.

5)
D
G
E
L
S
S

g
s
l
_
l
i
n
a
l
g
_
S
V
_
d
e
c
o
m
p

S
V
D
,

F
i
t
s
v
d

D
G
E
L
S
D

g
s
l
_
l
i
n
a
l
g
_
S
V
_
s
o
l
v
e

122 3 Matrix Methods

modified Gram-Schmidt procedure (mGS, Algorithm 5.2.5 in [2]) is much better: it
can be used to generate columns of the matrix Q1 = [q1, q2, . . . , qn] for which

QT
1 Q1 = In + EmGS, ‖EmGS‖2 ≈ εMκ2(A). (3.12)

If our requirements on orthonormality are very strict, we may use the mGS proce-
dure only in cases when the condition number κ2(A) is small (columns of A well
linearly independent). On the other hand, the mGS method is attractive due to its
small cost of ≈ 2mn2.

Previously mentioned routines are based on Householder and Givens transfor-
mations which automatically ensure stability. In analogy to solving systems of
equations Ax = b, the stability of least-squares methods is gauged by the sen-
sitivity of the solution x of the problem minx ‖Ax − b‖2 with the remainder
r = b − Ax to small perturbations of A and b. Let x̂ minimize the perturbed prob-
lem, x̂ = minx ‖(A + δA)x − (b + δb)‖2, and let r̂ = (b + δb) − (A + δA)̂x and

ε = max

{‖δA‖2

‖A‖2
,
‖δb‖2

‖b‖2

}
.

(To get a feeling for what is going on, we may simply set ε = εM.) Then the follow-
ing holds [2]:

‖x̂ − x‖2

‖x‖2
< ε

[
2‖b‖2√

‖b‖2
2 − ρ2

LS

κ2(A) + ρLS√
‖b‖2

2 − ρ2
LS

κ2(A)2
]

+O
(
ε2),

where ρLS = ‖AxLS − b‖2 and we have assumed ρLS = ‖b‖2. We see that the con-
dition number κ2(A) appears linearly and quadratically in the relative error of the
solution of the least-square problem. If the problem is well-conditioned and the re-
mainders ρLS are small, the linear term dominates and the QR decomposition gives
more precise results than the normal-system solution with the error (3.11) deter-
mined by the square of κ2(A). The QR decomposition based on Householder or
Givens transformations also relieves us of the annoying presence of κ2(A) in the
orthogonalization precision. Instead of (3.12)—see Fig. 3.4—we get

QT
1 Q1 = In + EHQR, ‖EHQR‖2 ≈ εM. (3.13)

3.3.2 Singular Value Decomposition (SVD)

Orthogonalization of a matrix by singular value decomposition (SVD) [51] is one
of the most remarkable methods of linear algebra with a limitless field of applica-
tions like data compression, linear least-square problems, and principal component
analysis. If A is a real m × n matrix, there exist orthogonal matrices

U = [u1, u2, . . . , um] ∈R
m×m and V = [v1, v2, . . . , vn] ∈R

n×n,

3.3 Linear Least-Square Problem and Orthogonalization 123

Fig. 3.4 The degree of orthonormality of the basis calculated by orthogonalizing a 30 × 30 ma-
trix with the elements Aij = 1 + 0.01R where R ∈ (−0.5,0.5) is a uniformly distributed ran-
dom number. The columns of A are weakly linearly dependent, so its condition number is large,
κ2(A) = σmax(A)/σmin(A) ≈ 6 × 104. [Left] Modified Gram–Schmidt procedure. Due to ill con-
ditioning the error ‖QT

1 Q1 − In‖ increases (3.12). [Right] QR decomposition with Householder
transformations. The error is essentially constrained by the machine precision (see (3.13))

such that A can be decomposed as

A = U�V T, � = diag(σ1, σ2, . . . , σp) ∈ R
m×n, p = min{m,n},

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. Like in the QR decomposition, SVD is also known
in its “thin” variety in which A ∈ R

m×n for m ≥ n can be decomposed as A =
U1�1V

T where U1 ∈ R
m×n and �1 = diag(σ1, σ2, . . . , σn) ∈ R

n×n. The vectors uk

(or vk) are known as left (or right) singular vectors of A, and the σk are known as
singular values of A. We have Avi = σiui and ATui = σivi for 1 ≤ i ≤ min{m,n}.
The ratio of the largest and the smallest singular value determines the condition
number of A, measured in the 2-norm,

κ2(A) = ‖A‖2
∥∥A−1

∥∥
2 = σmax(A)

σmin(A)
. (3.14)

The singular values are equal to the lengths of the semi-axes of the hyper-
ellipsoid E = {Ax : ‖x‖2 = 1}, and the condition number (3.14) is the ratio of the
longest and shortest semi-axis (the elongation) of E . We see this [52] if we represent
an element of the unit sphere in R

n by the expansion x = x1v1 + · · · + xnvn where∑n
i=1 x2

i = 1, and observe its image Ax = σ1x1u1 + · · · + σkxkuk . The vector x is
mapped to y1u1 + · · · + ykuk , where yi = σixi , and

y2
1

σ 2
1

+ y2
2

σ 2
2

+ · · · + y2
k

σ 2
k

=
k∑

i=1

x2
i ≤ 1. (3.15)

124 3 Matrix Methods

Fig. 3.5 Geometric interpretation of SVD [52] for a matrix A ∈ R
m×n with m = n = 3 and k = 2.

The mapping A collapses the (n − k) dimensions of the space R
3 (a). The unit sphere in the

remaining k dimensions (b) is deformed into an ellipsoid by stretching and shrinking. This ellipsoid
is finally embedded into R

m (c)

In other words, A maps the unit sphere in R
n into a k-dimensional hyper-ellipsoid

with semi-axes of length σi in the directions ui (Fig. 3.5). If A has full rank (k = n),
the inequality in (3.15) becomes a strict equality and Ax resides on the surface of
the hyper-ellipsoid.

The singular value decomposition unravels many important properties of a matrix
related to its rank, condition, and norm. The singular values of A with rank r < n

are equal to zero from σr onwards, σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, and
the range of the mapping corresponding to this matrix is determined by the vectors
{u1, u2, . . . , ur}. This brings us to the SVD expansion

A =
r∑

i=1

σiuiv
T
i , (3.16)

which can be used to represent the matrix A by a limited set of singular values
and vectors. The SVD expansion up to some rank r < n is at the core of classical
data reduction algorithms like, for instance, those used in image compression. An
example is shown in Fig. 3.6; see also Problem 3.6.4.

LAPACK offers two double-precision routines for SVD, DGESVD and DGESDD.
In the GSL library we have gsl_linalg_SV_decomp, while the NR3E offers
SVD. Typical numerical costs are O(mn2) for m > n and O(m2n) for m < n. If
A has full rank, SVD also yields the solution of the linear least-squares problem
minx ‖Ax − b‖2: its solution is x = V �−1UTb. The corresponding routines from
the LAPACK, GSL, and NR3E libraries are listed in Table 3.2. The numerical cost
of SVD is comparable to the cost of the QR decomposition.

Even though this is far too costly from the numerical standpoint, we may also use
SVD to solve systems of equations Ax = b with n × n matrices A, and study the
sensitivity of the solutions to perturbations in A and b. If A ∈R

n×n is non-singular,
A = U�V T is its singular value decomposition, and b ∈ R

n, we have

x = A−1b = (
U�V T)−1

b =
n∑

i=1

uT
i b

σi

vi .

Small perturbations in A and b may therefore cause large errors in x if σn and nearby
singular values are small. With respect to conditioning of certain types of matrices,

3.3 Linear Least-Square Problem and Orthogonalization 125

Fig. 3.6 Image compression by SVD. The original image is a 512×512 matrix of pixels with 256
gray levels. Shown are the approximations of rank 2 (99.6 % compression), rank 5 (99.0 %), rank
15 (97.1 %), and rank 100 (80.4 %). See Problem 3.6.4

singular values tend to have a larger “predictive power” than the usual eigenvalues
λi (see Sect. 3.4). In general, we have

σmin(A) ≤ min
i

|λi | ≤ max
i

|λi | ≤ σmax(A).

In particular with non-normal matrices, for which ATA = AAT or A†A = AA†, it
can happen that maxi,j |λi |/|λj | � κ2(A).

A large gap between the largest and the smallest singular value of a matrix is usu-
ally an indication of its ill-conditioning. For some matrices, it may occur that from
some index r upwards, the singular values are very small compared to the largest
one (but not exactly zero), or that the spectrum exhibits two clearly separated sets of
“large” and “small” singular values. Such a matrix has a numerically defective rank.
Details can be found in [2].

The singular values of a matrix A are also intimately connected to its norms. If
A ∈ R

m×n has the decomposition A = U�V T, the following holds:

126 3 Matrix Methods

‖A‖2 = σ1, ‖A‖2
F =

p∑

i=1

σ 2
i

(
p = min{m,n}),

min
x =0

‖Ax‖2

‖x‖2
= σn (m ≥ n).

Small perturbations δA of a matrix A ∈ R
m×n (m ≥ n) induce changes in the singu-

lar values which are bounded by

n∑

k=1

(
σk(A + δA) − σk(A)

)2 ≤ ‖δA‖2
F.

3.3.3 The Minimal Solution of the Least-Squares Problem

If the matrix A is rank-deficient, the solution of the least-squares problem may be-
come extremely sensitive to small perturbations b → b + δb. The condition of such
a problem can be improved by imposing an additional constraint on the solution,
known as regularization. We require that the solution has a minimal norm. The
vector x that solves the regularized problem minx ‖Ax − b‖2 is then known as the
minimal solution of the least-squares problem. The minimal solution for a singular
matrix A can be found by SVD. We decompose the matrix A ∈ R

m×n with rank
r < n and m ≥ n as

A = (
U1 U2

)(�1 0
0 0

)(
V1 V2

)T = U1�1V
T
1 ,

where �1 ∈ R
r×r is non-singular, U1 ∈R

m×r , U2 ∈ R
m×(n−r), V1 ∈ R

n×r , and V2 ∈
R

n×(n−r). All solutions x may then be written in the form

x = V1�
−1
1 UT

1 b + V2z, (3.17)

where z ∈ R
n−r is an arbitrary vector. The solution x has a minimal norm ‖x‖2

precisely when z = 0. Its norm is bounded by ‖x‖2 ≤ ‖b‖2/σmin(A). Hence the
computation of the minimal solution is well-conditioned when the smallest positive
singular value of A is not too small.

By using (3.17) the solution of the least-squares problem may be written in the
unified form

x = A+b, A+ = V �+UT, �+ =
(

�1 0
0 0

)+
=

(
�−1

1 0
0 0

)
,

where A+ is the Moore–Penrose generalized inverse or pseudo-inverse of the matrix
A ∈ Rm×n with m ≥ n. If A is rank-deficient, the solution x = A+b is unique and
has the minimum norm. Details can be found in Sect. 3.5 of [1] and in Sect. 5.5
of [2]. The generalized inverse is put to practical use in Sect. 5.6.

3.4 Matrix Eigenvalue Problems 127

3.4 Matrix Eigenvalue Problems

For a physicist, solving the linear eigenvalue problem

Ax = λx, x = 0, (3.18)

especially in the context of real symmetric matrices, amounts to diagonalizing a
matrix. In science and engineering, the eigenproblem (3.18) is ubiquitous: for ex-
ample, solving systems of differential equations ẋ(t) = Ax(t) or ẍ(t) = Ax(t) with
suitable initial conditions can be translated to problems of the form (3.18) by the
ansatz xi(t) = exp(λi t)xi(0). Equation (3.18) defines the right eigenvectors x and
the corresponding eigenvalues. We may consider x as the direction which is insen-
sitive to multiplication by A, and the corresponding eigenvalue λ is a representation
of A in the subspace spanned by x. In this subspace, multiplying a vector by a matrix
amounts to a rescaling along the eigenvector, thus

Akx = λkx.

Similar reasoning applies to the left eigenvectors y, which are solutions of the prob-
lem

y†A = λy†, y = 0.

Eigenvalues of the matrix A ∈ C
n×n are the roots of the characteristic polyno-

mial p(λ) = det(λI − A). In general, a real matrix may therefore possess complex
eigenvalues. Due to potential numerical instabilities, individual λi should never be
computed by seeking the roots of p(λ) = 0. Diagonalization algorithms convert the
matrix A to a special form suitable for the computation of the eigenvalues and eigen-
vectors. The nature of this conversion depends on the symmetry properties of A.

We should not race ahead with diagonalization as some matrices are not diago-
nalizable at all. If A ∈ C

n×n there exists a non-singular matrix X such that

X−1AX = diag(λ1I + N1, λ2I + N2, . . . , λqI + Nq), Ni ∈C
ni×ni , (3.19)

where λ1, λ2, . . . , λq are distinct and all matrices Ni are strictly upper-triangular.
The numbers ni satisfy n1 +n2 +· · ·+nq = n and express the algebraic multiplicity
of the individual λi . The geometric multiplicity of the eigenvalue λi is equal to the
number of linearly independent eigenvectors belonging to λi . If the algebraic and
the geometric multiplicities of λi are equal, the matrix A is diagonalizable or non-
defective, and we can find a matrix X ∈C

n×n such that

X−1AX = diag(λ1, λ2, . . . , λn). (3.20)

This can be done precisely when there exist scalars λ1, λ2, . . . , λn and linearly in-
dependent vectors x1, x2, . . . , xn such that Axi = λixi for 1 ≤ i ≤ n. Then

det(A) =
n∏

i=1

λi, tr(A) =
n∑

i=1

Aii =
n∑

i=1

λi.

128 3 Matrix Methods

The set of eigenvalues λ(A) = {λ1, λ2 . . . , λn} is called the spectrum. When some
algebraic multiplicity λi exceeds the geometric multiplicity, the eigenvalue is said
to be defective, and the matrix is also defective (or non-diagonalizable).

Example Check that the matrix A = ((2,0,0), (0,2,0), (0,0,2)) and the matrix
B = ((2,1,0), (0,2,1), (0,0,2)) have the same characteristic polynomial p(λ) =
(λ − 2)3 which yields the eigenvalue λ = 2 of algebraic multiplicity 3. For the ma-
trix A, the geometric multiplicity is also 3, as three independent eigenvectors, for
example e1, e2, and e3, may be assigned to this λ. On the other hand, only one in-
dependent eigenvector (e1) can be found for B , so the geometric multiplicity of λ in
this case is only 1. Hence B is deficient.

Normal matrices (AAT = ATA or AA† = A†A) are diagonalizable (the opposite
is not necessarily true), and tests of normality are frequently used as test of diago-
nalizability. This property can also be checked by using minimal polynomials [53].
Hermitian matrices (A† = A) and real symmetric matrices (AT = A) are normal,
hence also diagonalizable, and have real eigenvalues.

3.4.1 Non-symmetric Problems

The basic tool for the diagonalization of dense non-symmetric matrices A ∈ R
n×n

or A ∈ C
n×n is the iterative QR algorithm with implicit shifts [54, 55]. (The

QR iteration is not the same as the QR decomposition discussed in Sect. 3.3.1.
The QR decomposition is just its ingredient.) The QR algorithm is based on the
conversion of A to the upper Hessenberg form and on the iterative computation
of the real Schur form which ultimately yields the eigenvalues. The eigenvectors
are finally computed by inverse iteration [2]. The QR algorithm for real non-
symmetric matrices is implemented in the DGEEVX routine from LAPACK, in the
gsl_eigen_nonsymmv routine from GSL, and in the Unsymmeig routine from
NR3E. The corresponding LAPACK routine for complex matrices is ZGEEVX. The
numerical cost of the QR algorithm is O(n3). See Table 3.3.

The eigenvalues and eigenvectors of A ∈ C
n×n are sensitive to small perturba-

tions in the matrix. Let λ be a simple eigenvalue of A, and let x and y be its right and
left eigenvectors normalized to unity, ‖x‖2 = ‖y‖2 = 1. Let λ+δλ be the eigenvalue
of the perturbed matrix A + δA. Then we have [1]

|δλ| ≤ ‖δA‖
|y†x| +O

(‖δA‖2),

where κ = 1/|y†x| = 1/ cos θ(x, y) is the condition number for the eigenproblem
with this eigenvalue. In general, therefore, perturbations ‖δA‖ on the order of ≈ εM
cause errors on the order of ≈ κεM in simple eigenvalues. For multiple (degenerate)
eigenvalues, the sensitivity to perturbations δA may be much more pronounced.

3.4 Matrix Eigenvalue Problems 129

Ta
bl

e
3.

3
A

co
lle

ct
io

n
of

do
ub

le
-p

re
ci

si
on

ro
ut

in
es

to
so

lv
e

re
al

ei
ge

np
ro

bl
em

s
fr

om
th

e
L

A
PA

C
K

,G
S

L
,a

nd
N

U
M

E
R

IC
A

L
R

E
C

IP
E

S
(t

hi
rd

ed
iti

on
fo

r
C

+
+

)
lib

ra
ri

es
.(

T
he

ba
si

c
Ja

co
bi

m
et

ho
d

is
de

sc
ri

be
d

on
p.

13
0.

)
T

he
D
S
Y
E
V
D

,D
S
T
E
V
D

,D
S
Y
G
V
D

,a
nd

D
S
B
G
V
D

ro
ut

in
es

ba
se

d
on

di
vi

de
-a

nd
-c

on
qu

er
al

go
ri

th
m

s
[5

9]
an

d
th

e
D
S
Y
E
V
R

ro
ut

in
e

ba
se

d
on

re
la

tiv
el

y
ro

bu
st

re
pr

es
en

ta
tio

ns
[6

0,
61

]
ha

ve
th

e
sa

m
e

as
ym

pt
ot

ic
co

st
as

th
e

co
rr

es
po

nd
in

g
st

an
da

rd
ro

ut
in

es
(l

as
t

le
tte

r
‘X

’)
,b

ut
th

ei
r

le
ad

in
g

co
ns

ta
nt

is
m

uc
h

sm
al

le
r,

an
d

th
ey

ar
e

th
er

ef
or

e
m

uc
h

fa
st

er
.T

he
co

m
pl

ex
ro

ut
in

es
ar

e
m

en
tio

ne
d

in
th

e
m

ai
n

te
xt

.S
ee

al
so

ca
pt

io
n

to
Ta

bl
e

3.
1

Pr
ob

le
m

A
x

=
λ
x

(A
∈R

n
×n

)

M
at

ri
x

A
N

um
er

ic
al

co
st

L
A

PA
C

K
G

S
L

N
R

3E

G
en

er
al

O
(n

3
)

D
G
E
E
S
X
,
D
G
E
E
V
X

g
s
l
_
e
i
g
e
n
_
n
o
n
s
y
m
m
v

U
n
s
y
m
m
e
i
g

Sy
m

m
et

ri
c

O
(n

3
)

D
S
Y
E
V
X

g
s
l
_
e
i
g
e
n
_
s
y
m
m
v

S
y
m
m
e
i
g

D
S
Y
E
V
D

D
S
Y
E
V
R

Sy
m

m
et

ri
c

ba
nd

ed
O

(k
A
n

2
)

fo
r
λ
,
O

(n
3
)

fo
r
x

D
S
B
E
V
X

/
/

D
S
B
E
V
D

Sy
m

m
et

ri
c

tr
id

ia
go

na
l

O
(n

2
)

fo
r
λ
,
O

(n
3
)

fo
r
x

D
S
T
E
V
X

/
/

O
(n

2
)

fo
r
λ
,
O

(n
3
)

fo
r
x

D
S
T
E
V
D

O
(n

2
)

fo
r

al
lλ

an
d

x
D
S
T
E
G
R
/
D
S
T
E
V
R

Pr
ob

le
m

A
x

=
λ
B

x
(A

,
B

∈R
n
×n

,d
et

(A
−

λ
B

)
≡

0)

M
at

ri
ce

s
A

an
d

B
N

um
er

ic
al

co
st

L
A

PA
C

K
G

S
L

N
R

3E

G
en

er
al

A
,B

O
(n

3
)

D
G
G
E
S
X
,
D
G
G
E
V
X

g
s
l
_
e
i
g
e
n
_
g
e
n
v

/

Sy
m

m
et

ri
c

A
,B

B
po

s.
de

fin
ite

O
(n

3
)

D
S
Y
G
V
X

/
/

D
S
Y
G
V
D

Sy
m

m
et

ri
c

A
,B

A
ba

nd
ed

,B
po

s.
de

fin
ite

O
(k

A
n

2
)

fo
r
λ
,
O

(n
3
)

fo
r
x

D
S
B
G
V
X

/
/

D
S
B
G
V
D

130 3 Matrix Methods

Namely, a large condition number κ � 1 implies that A with a simple eigenvalue λ

is “close to” A + δA which has a multiple eigenvalue, such that

‖δA‖2

‖A‖2
≤ 1√

κ2 − 1
≈ 1

κ
.

If A is non-normal, the value of κ may be very large, while for symmetric and
Hermitian matrices, we have |y†x| = 1 and hence always κ = 1.

Example (Modified from [2]) The eigenvectors are particularly sensitive to pertur-
bations in A if its simple eigenvalues lie close to each other or if there are multiple
eigenvalues. Consider the matrices

A =
(

1.001 0.001
0.000 0.999

)
, A + δA =

(
1.001 0.001
0.000 1.000

)
.

The matrix A has eigenvalues 1.001 and 0.999. The eigenvector corresponding to
the smaller eigenvalue is (−0.44721,0.89443)T. If we slightly perturb A to A+ δA

(10−3 change in lower right corner), the perturbed matrix has eigenvalues 1.001
and 1.000. Now, the eigenvector corresponding to the smaller of the eigenvalues is
(−0.70711,0.70711)T! For details, see [56, 57].

3.4.2 Symmetric Problems

The Ax = λx eigenproblems with real symmetric matrices (A = AT) possess nu-
merous particular properties which allow for specially tailored, more efficient solu-
tion methods. The symmetry of A commonly originates in the natural symmetries
of the underlying physics problem or its mathematical formulation. All eigenvalues
of a symmetric matrix are real, and we can always find an orthogonal matrix Q such
that

QTAQ = diag(λ1, λ2, . . . , λn), λ1 ≥ λ2 ≥ · · · ≥ λn,

and ‖A‖2 = max{|λ1|, |λn|}. Symmetric matrices are never defective, and their left
eigenvectors are equal to their transposed right eigenvectors. Similarly, all eigen-
values of Hermitian matrices (A† = A) are real, and their left eigenvectors are the
Hermitian conjugates of their right eigenvectors. Symmetric tridiagonal matrices—
omnipresent in physics—with non-zero sub-diagonals can only have simple eigen-
values.

The oldest procedure to compute all eigenvalues and eigenvectors of dense sym-
metric matrices is the Jacobi method, in which a sequence of orthogonal transfor-
mations is used to gradually (to a required precision) extinguish all off-diagonal
elements. The method has a cost of O(n3) with a large leading constant, but it is
extremely robust and may compute small eigenvalues to a better relative precision

3.4 Matrix Eigenvalue Problems 131

than other, faster methods. Moreover, since the mentioned transformations are de-
coupled, it is well suited for parallelization. The basic version is implemented as
Jacobi in the NR3E library and is recommended for matrices with sizes up to
n ≈ 10. A parallel implementation is given in [2].

By a sequence of Householder transformations, any symmetric matrix can be
transformed to tridiagonal form from which eigenvalues and eigenvectors can be
extracted. Fast methods therefore attempt to convert dense symmetric matrices to
a tridiagonal form, which is then diagonalized. This conversion usually requires
4
3n3 +O(n2) operations.

The basic method to compute all eigenvalues and (if needed) all eigenvectors of
a symmetric tridiagonal matrix is the QR iteration which is a variant of the QR

iteration for non-symmetric matrices. The computation of all eigenvalues requires
≈ 36n2 +O(n) operations, while the computation of all eigenvectors takes ≈ 9n3 +
O(n2) operations. The total cost of computing all eigenvalues of a dense symmetric
matrix by tridiagonalization and QR iteration is 4

3n3 + O(n2), and the total cost
of computing all eigenvectors is 9n3 + O(n2). Based on the anticipated rounding
errors, QL iteration can be used instead of QR; consult [58] to see when this is
appropriate.

To compute double-precision eigenvalues and eigenvectors of dense symmet-
ric matrices by tridiagonalization and the QR algorithm, LAPACK offers the
DSYEVX routine. The corresponding Hermitian routine is ZHEEVX (see Table 3.3
which also lists the numerical costs). The GSL library has gsl_eigen_symmv
for real symmetric matrices and gsl_eigen_hermv for Hermitian matrices. The
NR3E offers only a real implementation Symmeig but all n × n Hermitian eigen-
value problems can be transformed to 2n × 2n real symmetric eigenvalue problem.
Namely, the eigenproblem Hz = λz with a Hermitian matrix H = A + iB means
(A + iB)(x + iy) = λ(x + iy) where A, B , x, and y are real, which can be written
as

(
A −B

B A

)(
x

y

)
= λ

(
x

y

)
.

The matrix of this system is symmetric since AT = A and BT = −B if H is Hermi-
tian (H † = H), and the eigenvalues and eigenvectors are duplicated.

A faster way to compute the eigenvalues and eigenvectors of dense real sym-
metric or Hermitian matrices leads through the “divide-and-conquer” algorithms
[59]. In LAPACK they can be found in the DSYEVD routine (real symmetric) and
the ZHEEVD (Hermitian). Methods based on relatively robust representations, RRR
[60, 61] are even more efficient. LAPACK contains the DSYEVR routine (real sym-
metric) and the ZHEEVR routine (Hermitian).

For real symmetric tridiagonal matrices, LAPACK offers DSTEVX (QR itera-
tion), DSTEVD (“divide-and-conquer”) and DSTEVR (RRR). For symmetric banded
matrices, there are DSBEVX (QR) and DSBEVD (“divide-and-conquer”) for real ma-
trices and the corresponding pair ZHBEVX and ZHBEVD for Hermitian matrices.

The sensitivity of eigenvalues and eigenvectors to small perturbations δA of the
matrix A can be measured in analogy to the non-symmetric case. Let A be sym-
metric, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and eigenvectors x1, x2, . . . , xn, and

132 3 Matrix Methods

let δA be a symmetric perturbation matrix, so that the eigenvalues of A + δA are
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n and the corresponding eigenvectors are x̂1, x̂2, . . . , x̂n. If the
perturbation is bounded by ‖δA‖2 = O(ε)‖A‖2, we have

|̂λi − λi | ≤ ‖δA‖2 = O(ε)‖A‖2, 1 ≤ i ≤ n. (3.21)

If A is normal, ‖A‖2 = maxj |λj | also applies. The sensitivity to perturbations can
also be measured by the angle θi between the eigenvector xi of the unperturbed
problem and the eigenvector x̂i of the perturbed problem. It can be shown that

1

2
sin 2θi ≤ ‖δA‖2

[
min
j =i

|̂λj − λ̂i |
]−1

. (3.22)

When the largest and the smallest eigenvalues differ by orders of magnitude, the
bounds (3.21) and (3.22) tend to strongly over-estimate the errors. See [1] for stricter
bounds.

Example We would like to compute the energy states of electrons in a two-
dimensional periodic potential V (x, y) with the period d in x- and y-directions
in the presence of a constant magnetic field defined in terms of the vector potential
A = B(0,−x,0)T. The corresponding Hamiltonian is

Ĥ = 1

2me
(p − eA)2 + V (x, y).

The ansatz for the wave-function of the electron is [62]

ψ(x, y) =
∑

n,m∈Z
anme−i2πmαx/dψ0(x − nd,y − md),

where ψ0 are the single-atom wave-functions and α = eBd2/h. The parameter α

corresponds to the number of quanta of the magnetic flux per unit cell of the mesh.
Because the Hamiltonian is periodic, the Bloch theorem [63] permits us to write
the expansion coefficients anm in the form anm = eimφan. The coupling between the
neighboring mesh points is given by the overlap integrals

Wnm =
∫∫

ψ0(x − nd,y − md) ei2πmαx/d Ĥ

∣∣∣∣
B=0

ψ0(x, y)dx dy.

By using the ansatz ψ in the Schrödinger equation Ĥψ = Eψ and considering
only the nearest-neighbor couplings (Wnm = 0 for |n| > 1 or |m| > 1) we obtain a
tridiagonal system of equations for the expansion coefficients,

an+1 + λ cos(2πnα − φ)an + an−1 = εan, 0 ≤ n ≤ q − 1. (3.23)

We introduce the dimensionless energy ε = E/W10 and the ratio of coupling
strengths in x- and y-directions, λ = 2W10/W01. The solutions of (3.23) are quali-
tatively different for rational or irrational values of α. For rational values α = p/q

3.4 Matrix Eigenvalue Problems 133

Fig. 3.7 Dimensionless eigenenergies ε of electrons in a two-dimensional periodic potential in
the presence of a magnetic field B , as a function of α = eBd2/h = p/q , using Dirichlet boundary
conditions for ψ and parameters λ = 2, φ = 0, q = 301. In a crystal with d ≈ 0.2 nm such patterns
are not expected to appear until the field densities reach B ≈ 105 T. But an almost identical image
was seen in studies of microwave propagation through waveguides possessing periodic scattering
centers [62]

the sequence of dimensionless energies {εn} has a period q , while for irrational α

the sequence {εn} constitutes a fractal. In the special case λ = 2 it is known as Hof-
stadter’s butterfly (see Fig. 3.7 and [64]).

3.4.3 Generalized Eigenvalue Problems

The textbook [1] describes the familiar physical example of masses connected by
coupled springs with damping that can be described by the system of equations

Mẍ(t) = −Bẋ(t) − Kx(t), x(0) = x0, ẋ(0) = ẋ0, (3.24)

where M is the mass matrix, B is the damping coefficient matrix and K is the
string constant matrix. By using the ansatz x(t) = exp(λt)x(0) (3.24) becomes a
quadratic eigenvalue problem (λ2M +λB +K)x = 0, but by introducing the vector
z = (x, y)T where y = ẋ, it can be transformed to the usual linear problem

(
0 I

−M−1K −M−1B

)(
x

y

)
= λ

(
x

y

)
.

If M is ill-conditioned, it is advisable to rewrite this as
(−K −B

0 I

)(
x

y

)
= λ

(
0 M

I 0

)(
x

y

)
,

which has the form of a generalized eigenvalue problem

Az = λBz, z = 0. (3.25)

134 3 Matrix Methods

Such eigenproblems can be solved by using the QZ algorithm which is a general-
ization of the QR algorithm from Sect. 3.4.1. In the case of general real matrices
A and B we can use the DGGEVX from LAPACK or the gsl_eigen_genv from
GSL. For general Hermitian matrices A and B where B is positive definite, we may
use ZGGEVX from LAPACK or gsl_eigen_genhermv from GSL.

To solve (3.25) with symmetric A and B , where B is positive definite, LAPACK
offers us the DSYGVX and DSYGVD routines. For banded A and positive definite B ,
we may take DSBGVX and DSBGVD. The corresponding Hermitian quartet of rou-
tines is ZHEGVX, ZHEGVD, ZHBGVX, and ZHBGVD. The numerical cost of these
algorithms is O(n3) (see Table 3.3). Implementations in the LAPACK library also
allow us to solve related problems of the form ABx = λx and BAx = λx. Further
reading can be found in [1] (Sect. 4.5) and [2] (Sects. 7.7 and 8.7).

Example Generalized eigenproblems are commonly found in looking for stationary
values of quadratic forms xTAx with symmetric matrices A ∈R

n×n and constraints

cTx = 0, ‖x‖2 = ‖c‖2 = 1, x, c ∈R
n. (3.26)

We use the function φ(x;λ,μ) = xTAx − λ(xTx − 1) + 2μxTc where λ and μ are
the Lagrange multipliers [65]. When φ is differentiated with respect to x, we obtain

Ax − λx + μc = 0. (3.27)

This is an inhomogeneous eigenproblem [66] but it can be transformed to the ho-
mogeneous one. We determine μ by multiplying (3.27) from the left by cT, and by
using (3.26), we get μ = −cTAx. Hence

PAx = λx, P = I − ccT, P 2 = I.

For eigenvalues of square matrices A and P we have λ(PA) = λ(P 2A) = λ(PAP).
It follows that by solving PAPz = λz, where x = Pz, we simultaneously solve the
problem (3.27). In general, the matrix PA is non-symmetric, but PAP is symmet-
ric, and to solve PAPz = λz, algorithms for symmetric eigenvalue problems can be
used.

3.4.4 Converting a Matrix to Its Jordan Form

Matrix diagonalization finds one of the most common uses in solving systems of
ordinary differential equations with constant coefficients

du

dt
= Au, A ∈ C

n×n, u ∈ C
n. (3.28)

By using a linear transformation u = Xv the system can be rewritten as

X
dv

dt
= AXv or

dv

dt
= X−1AXv = Jv. (3.29)

3.4 Matrix Eigenvalue Problems 135

If A is diagonalizable, i.e. if it can be decomposed as (3.20), the system (3.29)
decouples to dvi/dt = λivi . The general solution of this system is

vi(t) = vi(0) eλi t =⇒ u(t) =
∑

i
vi(0)xi eλi t .

If A is defective, a complete decoupling by such a linear transformation cannot be
achieved. But we can still simplify (3.28) significantly if the Jordan decomposition
of A is known. The Jordan decomposition is a special form of (3.19),

X−1AX = diag
(
Jn1(λ1), Jn2(λ2), . . . , Jnr (λr)

) = J,

where

Jni
(λi) =

⎛

⎜⎜⎜⎜⎝

λi 1 0
. . .

. . .

. . . 1
0 λi

⎞

⎟⎟⎟⎟⎠

ni×ni

,

r∑

i=1

ni = n.

The matrix J is called the Jordan canonical form, and each sub-matrix Jni
(λi) is its

Jordan block with the eigenvalue λi , where λi are not necessarily distinct. The num-
ber of blocks corresponding to an eigenvalue is equal to its geometric multiplicity,
whereas their cumulative dimension is equal to its algebraic multiplicity. The de-
composition is unique in the sense that only a permutation of the blocks Jni

along
the main diagonal of J is permissible. The general solution of (3.28) is

u(t) = X exp(tJ)X−1u(0).

The matrix exp(tJ) is block-diagonal, exp(tJ) = diag(exp(tJni
(λi)))

r
i=1, where

exp
(
tJni

(λi)
) = eλi t

⎛

⎜⎜⎜⎜⎜⎝

1 t/1! t2/2! · · · tni−1/(ni − 1)!
0 1 t/1! · · · tni−2/(ni − 2)!
...

...
...

. . .
...

0 0 0 1 t/1!
0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎠
.

Only equations belonging to the same block remain coupled, and the eigenvalue
multiplicities appear naturally. This is the main charm of the Jordan decomposition.
However, in the real world—in floating-point arithmetic—the definition of the de-
composition itself needs great care: we expect multiple eigenvalues λi on the main
diagonal of a block, exact values of 1 on its first super-diagonal, and pure zeros
elsewhere! Moreover, the numerical computation of the Jordan form is extremely
ill-conditioned [67, 68]. The standard algorithm is described in [69]. Further read-
ing on the computation of matrix exponents exp(A) and other functions of matrices
f (A) can be found in [70–72], [2] (Chap. 11), and [73].

136 3 Matrix Methods

3.4.5 Eigenvalue Problems for Sparse Matrices

Just like in solving systems of linear equations Ax = b (Sect. 3.2.7), direct methods
to compute eigenvalues and eigenvectors become too time-demanding and memory-
consuming when matrices become too large. Again, iterative methods offer a way
out. This remains true in the case of large sparse matrices unless their special struc-
ture is harnessed properly. Virtually all modern approaches to eigenproblems with
large matrices are based on the methods of Krilov subspaces. A discussion of these
methods is beyond the scope of this book. Initial reading is offered by [1]; the next
steps might lead you to [74] or [43].

3.5 Random Matrices �

Random matrices are matrices with elements that are chosen randomly. They find
their use in hypothesis confirmation in theoretical physics, as in the theory of quan-
tum chaos [75], information theory [76], finance [77], in numerical algorithms [78]
and elsewhere [79]. The theory focuses on specific classes of such matrices [80]. For
a physicist, Gaussian and cyclic (orthogonal or unitary) ensembles of random matri-
ces are the most relevant. In this section we show how such matrices are generated
and discuss their fundamental properties.

3.5.1 General Random Matrices

In certain applications we encounter square matrices with completely independent
or weakly correlated random elements. Let the matrix Mn of dimension n have
real or complex elements which are independent and identically distributed random
numbers. Assume that the distribution of these numbers has zero mean, unit vari-
ance, and that all its higher moments are bounded. In addition, let {λi}ni=1 be the
spectrum (set of eigenvalues) of Mn and

pMn(z) = 1

n

n∑

i=1

δ(z − λi), z ∈ C,

the probability density of eigenvalues in the complex plane. Then pMn(z), in the
sense of the probability that a chosen eigenvalue is found near some specific point,
converges to the uniform density on the unit circle when n is increased [81],

lim
n→∞pMn(z) =

{
π−1; |z| ≤ 1,

0; otherwise,
(3.30)

which is known as the circular law or Girko’s law [82]. (There is convincing numer-
ical evidence that the circular law also applies to other classes of random matrices,

3.5 Random Matrices � 137

Fig. 3.8 Distribution of eigenvalues λi in the complex plane and the probability density p of the
distribution of |λi | for real matrices Mn of dimension n = 4000. [Left] Completely independent
matrix elements (Mn)ij . The eigenvalues are uniformly distributed within the unit circle. [Right] If
the elements (Mn)ij are weakly correlated, the density of eigenvalues increases close to the origin
and decreases near the unit circle compared to the uniform density. In both cases 〈(Mn)ij 〉 = 0 and
〈(Mn)

2
ij 〉 = 1

for instance, to Markov matrices [83].) The validity of the law (3.30) is illustrated
in Fig. 3.8.

Marčenko–Pastur Theorem Stating this important theorem calls for some pre-
liminaries. Assume that the probability density f of a random variable is known.
The Stieltjes transformation [84] of f is

Sf (z) =
∫ ∞

−∞
f (x)

x − z
dx, Im z = 0,

while its inverse is

f (x) = 1

π
lim
ξ→0

ImSf (x + i ξ). (3.31)

Let us define a n × n Hermitian matrix of the form

Bn = An + 1

n
X†T X,

138 3 Matrix Methods

where An is a n × n Hermitian matrix. When n is increased, let the distribution of
its eigenvalues pAn almost surely converge to the distribution pA with the corre-
sponding Stieltjes transformation SA. (“Almost sure convergence” means that the
probability for the convergence of a sequence is equal to one [85].) Let X be
a m × n complex matrix with independent and identically distributed elements
Xij , with the average 〈Xij 〉 = 0 and variance 〈|Xij |2〉 = 1. The diagonal matrix
T = diag(τ1, τ2, . . . , τm) should contain elements for which almost surely a limit
probability density H(τ) exists when m → ∞.

With the assumptions listed above, the Marčenko–Pastur theorem [86] tells us
that the probability density pBn , when n is increased, almost surely converges to the
limit distribution pB , and the Stieltjes transformation SB of this distribution satisfies
the self-consistency relation

SB(z) = SA

(
z − c

∫ ∞

−∞
τH(τ)

1 + τSB(z)
dτ

)
, c = lim

n→∞
m(n)

n
> 0. (3.32)

Symmetric real or Hermitian complex matrices defined in terms of products X†X

are frequently seen in solutions of over-determined systems, in work with covariance
matrices, or in applications of the singular value decomposition. In certain cases (see
[87]) we may assume that the elements Xij of X are independent and identically dis-
tributed with zero mean and unit variance. Then the Marčenko–Pastur theorem ap-
plies with An = 0, SA(z) = ∫

δ(x)(x − z)−1 dx = −z−1, T = 1m, H(τ) = δ(τ − 1),
and Bn = 1

n
X†X. When these quantities are inserted in (3.32), we obtain a quadratic

equation zSB(z)2 +SB(z)(z−c+1)+1 = 0. We solve it for SB , and use the inverse
Stieltjes transformation (3.31) to calculate

pB(x) = max{0,1 − c}δ(x) +
√

(x − b−)(b+ − x)

2πx
I[b−,b+](x),

where b± = (1 ± √
c)2, and I[a,b](x) = 1 for x ∈ [a, b] or 0 otherwise. If X is a

n × n (square) matrix, then c = 1, and the formula above simplifies to

pB(x) = 1

2πx

√
x(4 − x)I[0,2](x).

Marčenko–Pastur theorem assists us in many ways. In singular value decom-
position of X, we find unitary matrices U and V such that X = U�V † and
� = diag(σ1, σ2, . . . , σm), where {σi ≥ 0}mi=1 is the set of singular values of X.
From the decomposition formula we see that X†X = V �2V †, so the eigenvalues of
X†X are simply the squares of the singular values of X (see also Appendix A.6).
One of the consequences is the quarter-circular law: it states that the probability
density of the distribution of singular values of 1√

n
X converges, in the sense of

probability, to

pσ (x) = 2

π

√

1 −
(

x

2

)2

I[0,2](x), (3.33)

3.5 Random Matrices � 139

Fig. 3.9 Singular values of real matrices 1√
n
X of dimension n = 4000 with uniformly distributed

elements Xij having zero mean (〈Xij 〉 = 0) and unit variance (〈X2
ij 〉 = 1). [Left] Distribution for

independent elements Xij . [Right] Distribution for weakly row-correlated Xij . Due to the redun-
dancy of the data the concentration of singular values is larger near the origin and some of them
may actually exceed the value of 2

when n is increased. In plain words, the singular values of the random matrix 1√
n
X

do not exceed the value of 2. Equation (3.33) is illustrated by Fig. 3.9.

3.5.2 Gaussian Orthogonal or Unitary Ensemble

An ensemble of matrices is defined by the set of its elements (matrices) and by their
distribution in the set. In the following, we are dealing with n × n matrices. The
Gaussian orthogonal ensemble (GOE) consists of real symmetric matrices H with
n(n+1)/2 free real parameters. The matrices from this set are distributed according
to the probability density p in the space of matrices which is invariant to orthogonal
transformations O in the sense

p(H) = p
(
OTHO

)
.

The Gaussian unitary ensemble (GUE) consists of complex Hermitian matrices with
n2 free real parameters and a probability density p which is invariant with respect
to unitary transformations U :

p(H) = p
(
U†HU

)
.

The probability density p of the matrix H should be understood as the probability
density of its independent elements. We can use the invariance condition to prove
that the most general form of the density is p(H) = exp(a tr(H 2) + b tr(H) + c)

where a and b are adjustable parameters and c is a normalization constant [75].
The ratio b/(2a) represents the center of mass of the eigenvalues of H , which we
are allowed to shift arbitrarily, so we set b = 0. The probability density of matrices
belonging to either of the two ensembles is then

p(H) = exp
(
a tr

(
H 2) + c

)
.

140 3 Matrix Methods

Fig. 3.10 Probability densities psc(x) of the rescaled eigenvalues �′ of one realization of a matrix
of dimension n = 2000 [Left] from the GOE and [Right] from the GUE. The dotted lines represent
the Wigner semi-circle (3.34)

For simplicity, let us choose a = 1/2. The elements of matrices H from the GOE or
the GUE can be randomly generated by using the formulas

GOE GUE

i < j : Hij = 2− 1
2 xij , Hij = 2− 1

2 (xij + iyij),

i = j : Hii = xii, Hii = xii,

where xij and yij are distributed normally according to N(0,1).
In the limit of large n, the spectra of matrices from GOE and GUE possess certain

well-defined statistical properties. Let Hn be a n×n matrix from GOE or GUE with
the spectrum � = {λi}ni=1, and let us rescale the spectrum by using �′ = (a/n)1/2�

in the case of GOE, or by using �′ = (a/2n)1/2� in the case of GUE. Then, if n is
increased, the probability density of the distribution of the rescaled eigenvalues �′
converges, in the sense of probability, to

psc(x) =
{

2
π

√
1 − x2; x ∈ [−1,1],

0; otherwise.
(3.34)

Equation (3.34) establishes Wigner’s semi-circular law [80], which tells us that we
should expect the magnitudes of the rescaled eigenvalues not to exceed unity (see
Fig. 3.10).

For random matrices, the fluctuations of the splittings between consecutive
eigenvalues with respect to their local averages are very instructive. It turns out that
the statistics of these fluctuations is equal to the statistics of the spectra of Hamilto-
nians corresponding to classically chaotic quantum systems [88]. The nature of the
fluctuations becomes apparent when the spectrum is unfolded.

Unfolding of Matrix Spectra Assume that the spectrum � of a real symmetric
or a Hermitian matrix is already known, and that the eigenvalues are sorted as {λi ∈

3.5 Random Matrices � 141

R : λi+1 ≥ λi}ni=1. We use the eigenvalues to construct the density

d(λ) =
n∑

i=1

δ(λ − λi)

and compute the cumulative distribution

N(λ) =
∫ λ

−∞
d
(
λ′)dλ′ = #{λi ≤ λ},

which measures the numbers of eigenvalues smaller than λ. This is a staircase-like,
monotonously increasing function of λ. By using some method of local averaging,
we split N into a smooth part N and an oscillatory part Nosc,

N(λ) = N(λ) + Nosc(λ),

so that the local average of Nosc over a few (say, 10) neighboring eigenvalues is
equal to zero or is negligible compared to the increase in N . We use the average in-
crease of the number of eigenvalues N to define the average density of eigenvalues,
d(λ) = dN(λ)/dλ. (In practice, this connection is often used in reverse to compute
N if d is known.) For a large enough � we compute the average density:

d(λ) = 1

2�

∫ �

−�

d(λ + t)dt

and define

N(λ) =
∫ λ

−∞
d
(
λ′)dλ′.

The separation of the smooth and oscillatory parts is not unique, but in the limit of
large matrices it does not influence significantly the conclusions about the statistics
of the fluctuations. By using the function N the spectrum {λi}ni=1 is unfolded into

λ̃i = N(λi), i = 1,2, . . . , n,

so that the average distance between the neighboring eigenvalues si = λ̃i+1 − λ̃i

locally (over a couple of consecutive eigenvalues) and globally equals 1. Finally, we
are interested in the probability density of this average distance after the unfolding,
which is

ps(x) = 1

n − 1

n−1∑

i=1

δ(x − si).

For large matrices from GOE (a = 1/(2n)) or GUE (a = 1/(4n)) we may approxi-
mate d by the limit density (3.34), so d(x) = npsc(x) with � → 0, and we get

N(λ) ∼ n

∫ λ

−1
psc

(
λ′)dλ′ = n

(
1 + 1

π

[
arcsinλ − λ

√
1 − λ2

])
, λ ∈ [−1,1].

142 3 Matrix Methods

Fig. 3.11 Probability densities ps of the distribution of the splittings between the subsequent
eigenvalues of one realization of a matrix with n = 2000 after unfolding. [Left] Matrix from GOE.
[Right] Matrix from GUE. The dotted curves correspond to the Wigner distributions (3.35) and
(3.36)

With increasing n, the probability density ps of the distances between neighboring
unfolded eigenvalues converges, in the sense of probability, to the distribution

pGOE
s (x)

.= π

2
x e−(π/4)x2

(3.35)

for matrices from GOE, or to the distribution

pGUE
s (x)

.= 32

π2
x2 e−(4/π)x2

(3.36)

for matrices from GUE. Formulas (3.35) and (3.36) are known as the Wigner dis-
tributions [80, 89]. Both distributions vanish at x = 0, which is a sign of the avoid-
ance of level crossing or level repulsion (repulsion between neighboring eigenval-
ues), a mechanism which is statistically relatively stronger for matrices from GUE.
Figure 3.11 shows the distributions ps for large matrices from GOE and GUE, as
well as the comparison to the forms (3.35) and (3.36). The connections between the
Wigner distributions and the spectra of quantum-mechanical systems are discussed
in Problem 3.6.7.

3.5.3 Cyclic Orthogonal and Unitary Ensemble

In certain physical problems, we need to comb the space in all orthogonal directions,
and the procedure needs to be repeated for randomly chosen sets of directions. Such
sets can be generated by a special class of random matrices discussed in this sub-
section. Again we restrict ourselves to n × n matrices.

The cyclic orthogonal ensemble (COE) consists of orthogonal matrices O(n)

while the cyclic unitary ensemble (CUE) consists of unitary matrices U(n). Their
measure is equal to the normalized Haar measure μH [80].

3.5 Random Matrices � 143

Haar Measure For a set of matrices � and the corresponding set of all its open
subsets �, the Haar measure μH : � →R is defined as

μH(�) = 1,

μH(γ S) = μH(S), ∀γ ∈ �, ∀S ∈ �.

If the parameterization of the matrices in � is known, we prefer to specify the dif-
ferential of the measure at some point, γ ∈ �, hence dμH(γ) = p(γ)dγ , where
p(γ) is the probability density of the matrices over the set �. For example, the Haar
measure for a set of one-dimensional unitary matrices is

U(1) = {
ei θ : θ ∈ [0,2π)

}
.

For 3 × 3 special orthogonal matrices, the Haar measure is

SO(3) = {
Rz(φ2)Rx(θ)Rz(φ1) : θ ∈ [0,π), φ1, φ2 ∈ [0,2π)

}
,

where Ro(α) ∈ R
3x3 is the rotation matrix for a rotation around the axis o by the

angle α. Both sets are uniquely generated, so the differential of the Haar measure in
the case of U(1) matrices is equal to

dμH(γ) = 1

2π
dθ, γ ∈ U(1),

while for the SO(3) matrices it is

dμH(γ) = 1

8π2
sin θ dθ dφ1 dφ2, γ ∈ SO(3).

Generating Matrices from COE There are many methods to generate a random
orthogonal matrix from COE that preserves the Haar measure. The simplest way is
to form a symmetric matrix A from GOE and diagonalize it,

A = ODOT, O = [Oij]ni,j=1.

By doing this, we obtain a random orthogonal matrix O ∈ O(n), plus the eigenval-
ues of A contained in D. Assume that the diagonalization has set the leading coeffi-
cient of each column of O to a positive value, like it is done by LAPACK routines
[3, 4]. This violates the condition that the matrices are chosen randomly with respect
to the Haar measure. In this case, we randomly choose the signs si ∈ {−1,1} of the
columns of O with equal probabilities P(s = ±1) = 1/2, and finally generate the
desired random orthogonal matrix from COE,

Ornd = [sjOij]ni,j=1,

which is chosen randomly with respect to the Haar measure.

144 3 Matrix Methods

Generating Matrices from CUE We proceed analogously in generating random
unitary matrices from CUE. We generate a Hermitian matrix A from GUE and per-
form the spectral decomposition

A = UDU†, U = [Uij]ni,j=1.

By decomposing A we obtain a random unitary matrix U ∈ U(n) and the diagonal
matrix D containing the eigenvalues of A. Assume that we have used a diagonaliza-
tion routine that sets the phase of the leading coefficient of individual eigenvectors
to zero. To compensate for this regularity, we randomly pick the phases {φi}ni=1 that
are uniformly distributed on [0,2π), and let them modify the phases of the columns
of U by using

Urnd = [
eiφj Uij

]n
i,j=1.

In this manner, we have generated a random unitary matrix from CUE which is
chosen randomly with respect to the Haar measure.

When used with standard implementations of diagonalization algorithms, both
methods mentioned here typically require O(n3) operations. In spite of their sim-
plicity, these procedures to generate random matrices from COE and CUE are just
by a constant factor slower than the optimal methods based on Householder re-
flections (for GOE, [90]) or QR decomposition (for GUE, [91]). When a random
orthogonal or unitary matrix X is not needed explicitly (for example, if already the
products AX or XA are sufficient), the generation requires only O(n2) operations.

Eigenvalues of orthogonal and unitary matrices reside on the unit circle. It should
therefore not surprise us that the eigenvalues of matrices from COE and CUE in the
limit of large dimensions are uniformly distributed on the unit circle. Interesting
mathematical details can be found in [75] and [80].

3.6 Problems

3.6.1 Percolation in a Random-Lattice Model

Percolation is the passage of substances from one region to another in the process
of filtering. In this Problem it is discussed in the context of random lattices which
appear frequently in the physical descriptions of gels, polymers, glasses, and other
disordered matter [92]. Mathematically, random lattices are graphs [93]. Here, we
are dealing only with discrete random lattices in fixed geometries and possessing a
certain degree of statistical disorder in their connectedness. One should distinguish
the lattice of connections, where connections are randomly chosen, from the lattice
of sites, in which the occupation of sites is random [94]. We shall study the electric
conductivity of both types of lattice.

A lattice made of conductive material is placed between electrodes to which a
constant voltage is applied. We randomly drop a fraction p of the connections from

3.6 Problems 145

Fig. 3.12 Cartesian lattices of connections between the electrodes with an applied constant volt-
age. In the full lattice with 20 × 20 sites (left) we randomly drop p = 20 % of connections (center)
and finally remove the unconnected ends (right)

the lattice, and remove the loose ends which cannot conduct. The lattice used in the
calculations is shown in Fig. 3.12 (right). We would like to compute the current I

flowing through the lattice, and determine how I changes—on the average—with p.
The lattice is in fact a circuit of N resistors {Ri}Ni=1 and voltage sources {Uj }Nj=1

connected at M nodes. Each connection can be oriented (positive direction from
its beginning to its end). A voltage source with subscript j represents a point at
the end of a free connection with a known electric potential Uj . Through a resistor
Ri , a current Ii is flowing, and the sums of the incoming and outgoing currents
should be equal at each node, which can be written as the matrix equation AI = 0
for the vector of currents I = (Ii)

N
i=1. The matrix A ∈ R

M×N with the elements
Aij ∈ {−1,1} contains all information on the connectedness of the circuit (it is the
node-edge adjacency matrix in graph theory).

For the ith connection between the potential e at the beginning of the connec-
tion and e′ at its end, Ohm’s law applies: e + RiIi = e′. At the edges of the lat-
tice, the potential is given by the external voltage source and then e or e′ are kept
in the vector U ; inside the lattice, e and e′ are collected in the vector E. For all
connections, Ohm’s law can be written in the matrix form RI + ATE = U where
R = diag(Ri)

N
i=1 is the resistance matrix, so all equations can be merged into one:

(
R AT

A 0

)(
I

E

)
=

(
U

0

)
.

⊙
Calculate the average current 〈I 〉 through 10 × 10, 20 × 20, and 50 × 50

lattices as a function of the fraction p of dropped connections. All connections have
equal conductivities. To compute the total current, sum all components of I . Com-
pute the average over 100 random lattices of equal size and normalize 〈I 〉 to the cur-
rent I0 flowing through the complete lattice. The result should look approximately
as in Fig. 3.13 (left). Draw the ratio of the number of connections Pactive actually
carrying current to the number of original connections P (Fig. 3.13 (right)). Deter-
mine the critical fraction of the dropped connections pc at which the lattice, on the
average, becomes globally unconnected and stops conducting.

146 3 Matrix Methods

Fig. 3.13 [Left] The current flowing from the lattice of resistors as a function of the fraction p

of dropped connections. [Right] The fraction of the connections actually carrying current. At the
critical value pc ≈ 0.57 the lattice no longer conducts

⊕
To implement the lattice, we can also use nodes with attached connections

spanning half of the inter-node distance. We randomly fill the sites of an empty
lattice with nodes with attached connections. Eventually, an agglomeration of nodes
builds up and the lattice is filled to a degree r . At some critical degree rc the lattice
becomes globally connected and starts to conduct. Compute 〈I 〉/I0 in dependence
of r for the same lattices as in the first part of the Problem, and estimate rc. What
are the differences between the two approaches?

At some r the lattice contains connected clusters with typical extensions of l =
max |ri − rj | where (i, j) ∈ cluster. How does the average cluster size 〈l〉 change
with r in the case of 100 × 100, 200 × 200, and 500 × 500 lattices? Compute the
average over 100 different lattices of the same size.

3.6.2 Electric Circuits of Linear Elements

Electric circuits are systems of resistors, coils, capacitors, diodes, transistors, and
other components. By Kirchhoff’s laws, the sum of the currents at each node is
zero, and the sum of the voltage drops in any closed loop of the circuit is zero. The
time evolution of circuits is hard to predict if its elements are non-linear, and may
even be chaotic [95]. If the circuit contains only linear elements, the usual relations
U = RI , U = −Lİ , and U = e/C apply, and the system is analytically solvable.⊙

Devise a connected electric circuit containing resistors, coils, and capaci-
tors. The number of the elements n should be larger than 5. By using Kirchhoff’s
laws, obtain a homogeneous system of linear differential equations for the voltage
drops {Ui}ni=1 on individual elements. Introduce new variables such that the prob-
lem can be reformulated as a single differential equation of order one. Let us de-
note all variables by {Xi}m≥n

i=1 . For the solution of the equation, we use the ansatz
Xi = exp(iωt)Yi where Yi ∈ C are constants, so we obtain a non-homogeneous
eigensystem. Find the spectrum of frequencies ω for this system by using any of the
methods described in the text. Observe the changes in the spectrum when the values
of the resistances (energy losses) are modified.

3.6 Problems 147

Fig. 3.14 A chain of n small masses connected by springs with elastic coefficients k. The chain is
attached to the walls by springs with different coefficients K

⊕
Another option is to use the ansatz Ui(t) = exp(iωt)Vi in the original equa-

tion, where Vi ∈ C are constants. This yields a linear homogeneous system of equa-
tions for the vector v = {Vi}ni=1 of the form A(ω)v = 0. We expect non-trivial so-
lutions at the frequencies ω which are zeros of the determinant of the matrix A(ω):
det(A(ω)) = 0. In general, the polynomial det(A(ω)) is complex, and its roots can
be found by general programs (see Appendix I).

3.6.3 Systems of Oscillators

Imagine a one-dimensional chain of n small spheres with masses m connected by
springs with elastic coefficients k. At its ends, the chain is attached to the wall by
springs with coefficients K (Fig. 3.14).⊙

Analyze the spectrum of oscillations of this system when the ratio k/K is
changed, and try to identify its thermodynamic limit n → ∞. Discuss the spectrum
in the case when one of the masses is heavier than the others. What happens if all
but one sphere move without friction, while a single one of them is submerged in a
liquid so that the linear drag law Fu = −6πηrv applies to it? Explore the dynamics
of the spectrum of oscillations when the damping or the ratio η/k are increased!⊕

Submerge the whole system in a liquid with viscosity η. Assume linear
drag for all spheres and watch how the spectrum changes when η is increased. Set
all elastic coefficients to be the same, k = K , and repeat the analysis.

3.6.4 Image Compression by Singular Value Decomposition

Singular value decomposition (SVD, Sect. 3.3.2) represents a particular choice of
the orthonormal basis for the domain and range of the mapping A : x �→ Ax such
that the matrix in it becomes diagonal. In one form or another, SVD lies at the heart
of many classical algorithms for data reduction by which we attempt to represent
the data with as few parameters as possible. This Problem acquaints us with using
SVD for image compression.⊙

Perform the singular value decomposition of the 512 × 512 matrix repre-
senting the black-and-white image of Nicolas Copernicus (Fig. 3.6). The pixel map

148 3 Matrix Methods

(in shades of gray) can be found at the website of the book in ASCII format. Calcu-
late the Frobenius norm of the matrix. Generate the SVD expansions (3.16) of rank
1, 2, 4, 8, 16, 32, 64, and 128. Convert the matrices of the lower ranks to the format
of the original image and see if what you see is identifiable as a face or whether it
is pleasant to the eye. How does the norm of the approximate matrix and its relative
norm with respect to the original norm change with the rank of the approximation?
Draw the magnitudes of the singular values as a function of their index. At any given
rank of the expansion (3.16), compare the amount of memory needed to store the
approximate image to the amount of memory needed to store the original image (the
compression ratio). At what rank your naked eye perceives the approximate image
as indistinguishable from the original? What does the image look like if all but the
first two components are included in the singular expansion?⊕

Perform the singular value
decomposition of the Jackson Pol-
lock’s painting Lavender Mist which
is represented by the 1024 × 749 ma-
trix (see the website of the book).
Again draw the magnitudes of the sin-
gular values as a function of their in-
dex, and calculate the relative error of
the norm of the approximate matrix.
Determine the rank needed to achieve
a 10 % relative error between the ap-
proximate and the original matrix, as measured in the Frobenius norm. Compare
your results to those obtained from the image of Copernicus. Do your conclusions
change if you take a completely random matrix?

3.6.5 Eigenstates of Particles in the Anharmonic Potential

In this Problem (adapted from [96]) we study the one-dimensional linear harmonic
oscillator (particle of mass m with kinetic energy T (p) = p2/(2m) in the quadratic
potential V (q) = mω2q2/2). The corresponding Hamiltonian is

H0 = 1

2

(
p2 + q2),

where energy is in units of �ω, momentum in units of (�mω)1/2, and linear dimen-
sions in units of (�/mω)1/2. The eigenstates |n〉 of the unperturbed Hamiltonian
H0 are known from the introductory quantum mechanics courses: in coordinate rep-
resentation, they are |n〉 = (2nn!√π)−1/2e−q2/2 Hn(q), where Hn are the Hermite
polynomials. The eigenfunctions satisfy the stationary Schrödinger equation

H0
∣∣n0〉 = E0

n

∣∣n0〉

3.6 Problems 149

with non-degenerate eigenenergies E0
n = n + 1/2 for n = 0,1,2, The matrix

〈i|H0|j 〉 is obviously diagonal, with values δi,j (i + 1/2) on the diagonal. Now let
us add the anharmonic term to the unperturbed Hamiltonian,

H = H0 + λq4.

How does this perturbation modify the eigenenergies? We are looking for the ma-
trix elements 〈i|H |j 〉 of the perturbed Hamiltonian in the basis of the unperturbed
wave-functions |n0〉. In the calculation, we make use of the expectation value of the
transition matrix element

qij = 〈i|q|j 〉 = 1

2

√
i + j + 1 δ|i−j |,1,

which embodies the selection rule for electric dipole transitions between the levels
of the harmonic oscillator. In the practical calculation the matrices qij and 〈i|H |j 〉
of course need to be limited to finite sizes N × N .⊙

Use diagonalization methods to find the lowest eigenvalues (energies) and
eigenfunctions (wave-functions) of the perturbed Hamiltonian H = H0 + λq4 with
the parameter 0 ≤ λ ≤ 1. You are solving the eigenvalue problem

H |n〉 = En|n〉.
The new (corrected) wave-functions |n〉 are, of course, linear combinations of the
old (unperturbed) wave-functions |n0〉. Make sure that En → E0

n when λ → 0. Ex-
amine the dependence of the results on the matrix dimension N and observe the
convergence of eigenvalues at large N .

Instead of computing the matrix elements qij and understanding the perturbation
matrix as [qij]4, we might also wish to compute the transition matrix elements of

the square of the coordinate, q
(2)
ij = 〈i|q2|j 〉 and understand the perturbation λq4

as the square of the corresponding matrix, or simply compute the matrix elements
of the fourth power of the coordinate, q

(4)
ij = 〈i|q4|j 〉 and take this matrix as the

perturbation, that is,

λq4 → λ[qij]4 or λq4 → λ
[
q

(2)
ij

]2 or λq4 → λ
[
q

(4)
ij

]
.

Identify the differences between these three methods! Use the equations

〈
i|q2|j 〉 = 1

2

[√
j (j − 1)δi,j−2 + (2j + 1)δi,j + √

(j + 1)(j + 2)δi,j+2
]
,

〈
i|q4|j 〉 = 1

24

√
2i i!
2j j !

[
δi,j+4 + 4(2j + 3)δi,j+2 + 12

(
2j2 + 2j + 1

)
δi,j

+ 16j
(
2j2 − 3j + 1

)
δi,j−2 + 16j

(
j3 − 6j2 + 11j − 6

)
δi,j−4

]
,

which are easy to derive from the recurrence relations for Hermite polynomials.

150 3 Matrix Methods

⊕
Compute the lowest eigenenergies and eigenfunctions for the problem in

the “Mexican-hat” potential with two minima,

H = p2

2
− 2q2 + q4

10
.

3.6.6 Anderson Localization

One of the important successes of 20th-century physics was the discovery of the lo-
calization of quantum states at impurities in magnets and disordered systems, which
restrict the diffusion through such systems [97]. In this Problem we examine the lo-
calization in a chain of N harmonic oscillators with random masses Mi > 0, which
is attached at its ends [98]. Let qi be the deflection of the ith mass from equilibrium,
pi = Miq̇i its momentum, and K the elastic constant of the springs connecting the
masses. The Hamiltonian of the system is

H = 1

2

N−1∑

i=0

p2
i

2Mi

+ K

2

N−1∑

i=0

(qi+1 − qi)
2.

The boundary condition requires q−1 = qN = 0. The equation of motion for the ith
oscillator is Miq̈i = K(qi+1 −2qi +qi−1). With the effective couplings wi = K/Mi

and substitution xi = qi/
√

wi the system can be rewritten as

d2xi

dt2
= √

wiwi+1 xi+1 − 2wixi + √
wiwi−1xi−1, i = 0,1, . . . ,N − 1,

or, in matrix form,

z̈ = −Wz, W =

⎛

⎜⎜⎝

2w0 −√
w0w1 0 0 . . .

−√
w0w1 2w1 −√

w1w2 0 . . .

0 −√
w1w2 2w2 −√

w1w3 . . .

.

⎞

⎟⎟⎠ ,

(3.37)
where z = (x0, x1, . . . , xN−1)

T. By solving the eigenvalue problem

Wz = ω2z, z = 0,

we obtain the eigenvalues (angular frequencies) {ωi}N−1
i=0 and the corresponding

eigenvectors (eigenmodes) {zi}N−1
i=0 which are normalized as ‖zi‖2 = 1. By using

the known pairs {(ωi, zi)}N−1
i=0 we can rewrite any solution of the differential equa-

tion (3.37) as the sum

x(t) =
N−1∑

i=0

[
aT
i zi e

+iωi t + bT
i zi e

−iωi t
]
,

3.6 Problems 151

Fig. 3.15 Examples of eigenmodes in a slightly disordered harmonic chain with N = 5000 in the
case when the weights wi are uniformly distributed on [0.9,1.1]

where the vectors ai, bi ∈ C
N are determined from the initial conditions x(0) and

ẋ(0). We are interested in the eigenmodes. The energies ω2
i of the eigenmodes are

homogeneous functions of the reciprocal masses wi , so (wi → λwi) ⇔ (ω2
i →

λω2
i). This enables us to fix one moment of the distribution of the values wi , for

example, its average 〈w〉 = 1. The high-energy eigenmodes typically have a limited
range, which is known as the localization of modes. Some examples are shown in
Fig. 3.15.

A physically relevant quantity is the localization length. It can be defined by the
average of any quantity f with respect to the ith eigenmode zi = (zi,k)

N−1
k=0 ,

〈f 〉α,i =
∑

k f (k)|zi,k|α∑
k |zi,k|α ,

where zi,k denotes the kth component of the ith mode, and α > 0. Assuming that
the eigenmode has an exponential localization |zi,k| ∝ exp(−|k − a|/ξi), the local-
ization length ξi may be approximated by

ξi ≈
√〈

k2
〉
α,i

− 〈k〉2
α,i .

⊙
Analyze the chains of harmonic oscillators with different distributions of

weights wi for dimensions N = 103 and 104. First use the binomial distribution: to
the weight wi assign the value W0 with probability p and the value W1 with prob-
ability 1 − p, so P(wi = W0) = p and P(wi = W1) = 1 − p. Then use the expo-
nential distribution: the weights wi are distributed with the cumulative distribution
P(wi ≤ w) = 1 − exp(−λw) at constant λ > 0. Check that for different λ the sys-
tem of eigenmodes does not change significantly, and that similar conclusions apply
for the distribution of λω2

i .
For each of these cases, draw the shapes of the eigenmodes. Plot zi , xi , and the

distribution of the energies {ω2
i }N−1

i=0 , of the average position {〈k〉α=1,i}N−1
i=0 , and of

152 3 Matrix Methods

the localization length {ξi}N−1
i=0 . Is there a statistically meaningful correlation be-

tween these quantities? To diagonalize the matrix W , use programs for tridiagonal
matrices (see Table 3.3).⊕

Study the spectral properties of a more abstract system of first-order differ-
ential equations

ẋi = −xi+1 + wixi − xi−1, i = 0,1, . . . ,N − 1,

where x−1 = xN = 0. Distribute the weights wi around the value zero (〈wi〉 = 0)
with a standard deviation of 〈w2

i 〉1/2 = 1. Find the eigenmodes by using the ansatz
xi(t) = yi exp(λt). Due to the symmetry of the matrix elements we have λ ∈ R.
Calculate the distribution of the localization lengths and eigenenergies in the case
of uniformly and normally distributed weights wi for N = 102, 103, and 104. Make
sure that all eigenmodes are localized and that their centers-of-gravity are uniformly
distributed over the modes.

3.6.7 Spectra of Random Symmetric Matrices

In quantum mechanics the state of the system is given by the vector ψ ∈C
n. Its time

evolution is described by the Schrödinger equation

i�
dψ

dt
= Ĥψ,

in which the Hamiltonian Ĥ is represented by the Hermitian matrix H . In time-
reversal symmetric systems a basis in the space of states exists such that H is real
and symmetric. Without this symmetry, H is general Hermitian.

Quantum systems whose classical analogues are chaotic behave statistically in
some aspects [75]. The paradigmatic classes of such systems are the particle in a
multi-dimensional potential well of irregular shape or the system of strongly corre-
lated particles like nucleons in heavy nuclei. In such systems, at times longer than
O(�−1), the wave-function becomes statistically similar to a random wave [99].
Moreover, the unfolded energy spectra Ei or the fluctuations of the splittings be-
tween the neighboring levels (Ei+1 −Ei) possess universal statistics (see Sect. 3.5.2
and [88]). In the case when the system is time-reversal symmetric, the splittings
obey the statistics of the GOE matrix ensemble (3.35), while if there is no such
invariance, they obey the statistics for GUE (3.36). This finding established the con-
nection between the theory of random matrices and quantum physics.⊙

Let us restrict ourselves to matrices from the GOE. Check (analytically and
numerically) that the differences between the eigenenergies of 2 × 2 matrices from
the GOE of the form ((a, b), (b, c)) are distributed according to (3.35), where a,
b/

√
2, and c are distributed randomly according to N(0,1). (Randomly generate a

large number of such matrices, compute the eigenvalues for each of them, and plot
their distribution.)

3.6 Problems 153

Fig. 3.16 [Left] Energy levels corresponding to the 30 × 30 Hamiltonian matrix in dependence of
the parameter t . [Right] A blow-up of the energy axis near its origin. The arrows indicate the most
prominent examples of the avoidance of crossing

Randomly generate the matrix H ∈ R
n×n from the GOE with a size as large

as possible (n ≈ 5000), and find its eigenenergies by any method adapted to real
symmetric matrices. Compute the distribution of the energies dp/dx where x =
E/

√
2n, and compare it to the Wigner’s semi-circular distribution

p(E) ∝
√

1 − E2/(2n).

Unfold the energy spectrum {Ei}ni=1 by following the procedure outlined in
Sect. 3.5.2: form the cumulative distribution N(E) = #{Ei ≤ E}, separate N to
its smooth and oscillatory part, N(E) = N(E)+Nosc(E), and then unfold the spec-
trum into {Ẽi = N(Ei)}ni=1 such that the average distance between the neighboring
levels S = Ẽi+1 − Ẽi becomes locally (over a few levels) and globally equal to 1.
Finally, compute the distribution density of the splittings (ps as a function of S)
between neighboring levels, and compare it to the distribution (3.35).⊕

Let A and B be n × n random matrices from the GOE. We use their linear
combination to define the Hamiltonian

H(t) =
√

n

4tr(H(t)2)
H(t), H(t) = (1 − t)A + tB, t ∈ [0,1].

Compute the spectrum of H for n = 10, 50, and 100 as a function of the parame-
ter t . You should observe the typical behavior of the energy levels similar to the one
shown in Fig. 3.16. At some places, the levels appear to approach each other and
then recede, the phenomenon known as the avoidance of crossing or level repulsion.
This is a characteristic feature of classically chaotic systems and can already be in-
ferred from the distributions (3.35) and (3.36) since p(0) = 0. Make sure that for
each t and large enough n (say, n = 2000) the distributions of energies and energy
splittings are as they should be for matrices from the GOE.

154 3 Matrix Methods

References

1. J.W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997)
2. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press,

Baltimore, 1996)
3. LAPACK, The Linear Algebra PACKage. http://www.netlib.org/lapack (version for For-

tran 77), ../lapack95 (version for Fortran 95), ../clapack (version for C), ../lapack++ (version
for C++), ../java/f2j (version for Java)

4. E. Anderson et al., LAPACK Users’ Guide, 3rd edn. (SIAM, Philadelphia, 1999)
5. V. Strassen, Gaussian elimination is not optimal. Numer. Math. 13, 354 (1969)
6. J. Demmel, N.J. Higham, Stability of block algorithms with fast level 3 BLAS. ACM Trans.

Math. Softw. 18, 274 (1992)
7. N.J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans.

Math. Softw. 16, 352 (1990)
8. S. Chatterjee, A.R. Lebeck, P.K. Patnala, M. Thottethodi, Recursive array layouts and fast

matrix multiplication. IEEE Trans. Parallel Distrib. Syst. 13, 1105 (2002)
9. K. Goto, R.A. van de Geijn, Anatomy of high-performance matrix multiplication. ACM Trans.

Math. Softw. 34, art. 12 (2008)
10. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia,

2002)
11. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions. J. Symb.

Comput. 9, 251 (1990)
12. C.C. Douglas, M.A. Heroux, G. Slishman, R.M. Smith, GEMMW: a portable level-3 BLAS

Winograd variant of Strassen’s matrix-matrix multiply algorithm. J. Comput. Phys. 110, 1
(1994)

13. P. D’Alberto, A. Nicolau, Adaptive Winograd’s matrix multiplications. ACM Trans. Math.
Softw. 36, art. 3 (2009)

14. J. Demmel, I. Dumitriu, O. Holtz, R. Kleinberg, Fast matrix multiplication is stable. Numer.
Math. 106, 199 (2007)

15. J.W. Demmel, N.J. Higham, Stability of block algorithms with fast level-3 BLAS. ACM Trans.
Math. Softw. 18, 274 (1992)

16. D.H. Bailey, K. Lee, H.D. Simon, Using Strassen’s algorithm to accelerate the solution of
linear systems. J. Supercomput. 4, 357 (1990)

17. J. Demmel, The componentwise distance to the nearest singular matrix. SIAM J. Matrix Anal.
Appl. 13, 10 (1992)

18. J.W. Demmel, On condition numbers and the distance to the nearest ill-posed problem. Numer.
Math. 51, 251 (1987)

19. R.M. Gray, Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2,
155 (2006)

20. J.R. Bunch, Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Stat.
Comput. 6, 349 (1985)

21. T. Kailath, J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block,
and Toeplitz-derived matrices. SIAM J. Matrix Anal. Appl. 15, 114 (1994)

22. T. Kailath, A.H. Sayed, Displacement structure: theory and applications. SIAM Rev. 37, 297
(1995)

23. G.S. Anmar, W.B. Gragg, Superfast solution of real positive definite Toeplitz systems. SIAM
J. Matrix Anal. Appl. 9, 61 (1988)

24. T.F. Chan, P.C. Hansen, A look-ahead Levinson algorithm for indefinite Toeplitz systems.
SIAM J. Matrix Anal. Appl. 13, 490 (1992)

25. M.K. Ng, Iterative Methods for Toeplitz Systems (Oxford University Press, Oxford, 2004)
26. W. Gautschi, G. Inglese, Lower bound for the conditional number of Vandermonde matrices.

Numer. Math. 52, 241 (1988)
27. Å. Björck, V. Pereyra, Solution of Vandermonde systems of equations. Math. Comput. 24, 893

(1970)

References 155

28. Å. Björck, T. Elfving, Algorithms for confluent Vandermonde systems. Numer. Math. 21, 130
(1973)

29. N.J. Higham, Fast solution of Vandermonde-like systems involving orthogonal polynomials.
IMA J. Numer. Anal. 8, 473 (1988)

30. D. Calvetti, L. Reichel, Fast inversion of Vandermonde-like matrices involving orthogonal
polynomials. BIT Numer. Math. 33, 473 (1993)

31. H. Lu, Fast solution of confluent Vandermonde linear systems. SIAM J. Matrix Anal. Appl.
15, 1277 (1994)

32. H. Lu, Solution of Vandermonde-like systems and confluent Vandermonde-like systems.
SIAM J. Matrix Anal. Appl. 17, 127 (1996)

33. D. Bini, V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms
(Birkhäuser, Boston, 1994), Sect. 2.4

34. W.W. Hager, Condition estimates. SIAM J. Sci. Stat. Comput. 5, 311 (1984). See also [1],
Algorithm 2.5

35. N.J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with
applications to condition estimation. ACM Trans. Math. Softw. 14, 381 (1988)

36. N.J. Higham, F. Tisseur, A block algorithm for matrix 1-norm estimation, with an application
to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21, 1185 (2000)

37. N.J. Higham, Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput. 11, 804
(1990)

38. N.J. Higham, A survey of condition number estimation for triangular matrices. SIAM Rev. 29,
575 (1987)

39. D.S. Watkins, A case where balancing is harmful. Electron. Trans. Numer. Anal. 23, 1 (2006)
40. E.E. Osborne, On pre-conditioning of matrices. J. Assoc. Comput. Mach. 7, 338 (1960)
41. B.N. Parlett, C. Reinsch, Balancing a matrix for calculation of eigenvalues and eigenvectors.

Numer. Math. 13, 293 (1969)
42. T.-Y. Chen, J.W. Demmel, Balancing sparse matrices for computing eigenvalues. Linear Al-

gebra Appl. 309, 261 (2000)
43. J.J. Dongarra, I.S. Duff, D.C. Sorensen, H.A. van der Vorst, Numerical Linear Algebra for

High-Performance Computers (SIAM, Philadelphia, 1998)
44. X. Li, Direct solvers for sparse matrices. Sept. 2006 (accessible on the web)
45. M. Heath, E. Ng, B.W. Peyton, Parallel algorithms for sparse linear systems. SIAM Rev. 33,

420 (1991)
46. N.I.M. Gould, J.A. Scott, Y. Hu, A numerical evaluation of sparse direct solvers for the solu-

tion of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33, 10
(2007)

47. J.A. Scott, Y. Hu, Experiences of sparse direct symmetric solvers. ACM Trans. Math. Softw.
33, 18 (2007)

48. E.J. Haunschmid, C.W. Ueberhuber, Direct solvers for sparse systems. TU Wien, SFB F011
“AURORA” Report, 1999

49. I.S. Duff, M.A. Heroux, R. Pozo, An overview of the sparse basic linear algebra subprograms:
the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28, 239 (2002)

50. J. Demmel, Y. Hida, E.J. Riedy, X.S. Li, Extra-precise iterative refinement for overdetermined
least squares problems. ACM Trans. Math. Softw. 35, 28 (2009). The routines xGELS offer
only the basic solution without iterative improvement. This novelty is now offered by the
xGELS_X and xGELS_RFSX routines

51. G. Golub, W. Kahan, Calculating the singular values and pseudo-inverse of a matrix. SIAM J.
Numer. Anal. B 2, 205 (1965)

52. D. Kalman, A singularly valuable decomposition: the SVD of a matrix. Coll. Math. J. 27, 2
(1996)

53. M. Abate, When is a linear operator diagonalizable? Am. Math. Mon. 104, 824 (1997)
54. D.S. Watkins, Understanding the QR algorithm. SIAM Rev. 24, 427 (1982)
55. D.S. Watkins, The QR algorithm revisited. SIAM Rev. 50, 133 (2008)

156 3 Matrix Methods

56. C. Van Loan, On estimating the condition of eigenvalues and eigenvectors. Linear Algebra
Appl. 88/89, 715 (1987)

57. J.H. Wilkinson, Sensitivity of eigenvalues. Util. Math. 25, 5 (1984)
58. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

59. J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math. 36, 177 (1981)

60. I.S. Dhillon, B.N. Parlett, Multiple representations to compute orthogonal eigenvectors of
symmetric tridiagonal matrices. Linear Algebra Appl. 387, 1 (2004)

61. I.S. Dhillon, B.N. Parlett, C. Vömel, The design and implementation of the MRRR algorithm.
ACM Trans. Math. Softw. 32, 533 (2006)

62. H.-J. Stöckmann, Quantum Chaos. An Introduction (Cambridge University Press, Cambridge,
2006)

63. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, Fort, Worth,
1976)

64. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational
magnetic fields. Phys. Rev. B 14, 2239 (1976)

65. G.H. Golub, Some modified matrix eigenvalue problems. SIAM Rev. 15, 318 (1973)
66. R.M.M. Mattheij, G. Söderlind, On inhomogeneous eigenvalue problems. Linear Algebra

Appl. 88/89, 507 (1987)
67. G.H. Golub, J.H. Wilkinson, Ill-conditioned eigensystems and the computation of the Jordan

canonical form. SIAM Rev. 18, 578 (1976)
68. A. Bujosa, R. Criado, C. Vega, Jordan normal form via elementary transformations. SIAM

Rev. 40, 947 (1998)
69. B. Kågström, A. Ruhe, An algorithm for numerical computation of the Jordan normal form of

a complex matrix. ACM Trans. Math. Softw. 6, 398 (1980)
70. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,

twenty-five years later. SIAM Rev. 45, 3 (2003)
71. C. Moler, C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix. SIAM

Rev. 20, 801 (1978)
72. N.J. Higham, The scaling and squaring method for the matrix exponential revisited. SIAM

Rev. 51, 747 (2009)
73. N.J. Higham, Functions of Matrices. Theory and Computation (SIAM, Philadelphia, 2008)
74. W. Kerner, Large-scale complex eigenvalue problem. J. Comput. Phys. 85, 1 (1989)
75. F. Haake, Quantum Signatures of Chaos, 3rd edn. (Springer, Berlin, 2006)
76. A.M. Tulino, S. Verdú, Random matrix theory and wireless communications. Found. Trends

Commun. Inf. Theory 1, 1 (2004)
77. V. Plerou et al., Random matrix approach to cross correlations in financial data. Phys. Rev. E

65, 066126 (2002)
78. A. Edelman, N.R. Rao, Random matrix theory. Acta Numer. 14, 233 (2005)
79. P. Bleher, A. Its, Random Matrix Models and Their Applications (Cambridge University Press,

Cambridge, 2001)
80. M.L. Mehta, Random Matrices, 2nd edn. (Academic Press, San Diego, 1990)
81. T. Tao, V. Vu, From the Littlewood–Offord problem to the circular law: universality of the

spectral distribution of random matrices. Bull. Am. Math. Soc. 46, 377 (2009)
82. V.L. Girko, Circular law. Theory Probab. Appl. 29, 694 (1985)
83. M. Horvat, The ensemble of random Markov matrices. J. Stat. Mech. 2009, P07005 (2009)
84. D.V. Widder, The Stieltjes transform. Trans. Am. Math. Soc. 43, 7 (1938)
85. R.M. Dudley, Real Analysis and Probability (Cambridge University Press, Cambridge, 2002)
86. V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices.

Math. USSR Sb. 1, 457 (1967)
87. R.R. Nadakuditi, Applied stochastic eigen-analysis. Doctoral dissertation. Massachusetts In-

stitute of Technology, Cambridge, 1999. Accessible at http://hdl.handle.net/1912/1647

References 157

88. O. Bohigas, M.J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and uni-
versality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

89. E.P. Wigner, On the distribution of the roots of certain symmetric matrices. Ann. Math. 67,
325 (1958)

90. G.W. Stewart, The efficient generation of random orthogonal matrices with an application to
condition estimators. SIAM J. Numer. Anal. 17, 403 (1980)

91. F. Mezzadri, How to generate random matrices from the classical compact groups. Not. Am.
Math. Soc. 54, 592 (2007)

92. S. Bunde, S. Havlin, Fractals and Disordered Systems (Springer, Berlin, 1991)
93. R.J. Wilson, J.J. Watkins, Graphs: An Introductory Approach (Wiley, New York, 1990)
94. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis,

London, 1992)
95. G. Chen, T. Ueta, Chaos in Circuits and Systems (World Scientific, Singapore, 2002)
96. W. Kinzel, G. Reents, Physics by Computer: Programming of Physical Problems Using Math-

ematica and C (Springer, Berlin, 1997)
97. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)
98. F.J. Dyson, The dynamics of a disordered linear chain. Phys. Rev. 92, 1331 (1953)
99. M.V. Berry, Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083 (1977)

Chapter 4
Transformations of Functions and Signals

4.1 Fourier Transformation

The Fourier transformation F of the function f on the real axis is defined as

F(ω) =F[f](ω) =
∫ ∞

−∞
f (x) e−iωx dx. (4.1)

The sufficient conditions for the existence of F are that f is absolutely integrable,
i.e.

∫∞
−∞ |f (x)|dx < ∞, and that f is piece-wise continuous or has a finite number

of discontinuities. The inverse transformation is

f (x) = F−1[F](x) = 1

2π

∫ ∞

−∞
F(ω) eiωx dω. (4.2)

Changing the sign of the argument x of f (flipping the space or time coordinate)
implies a change of the sign of the frequency ω in the transform:

g(x) = f (−x) ⇐⇒ G(ω) = F(−ω).

Fourier Theorem If the function f is piece-wise continuous on the interval
[−π,π], one can form the Fourier series

1

2π

∑
n∈Z

∫ π

−π

f (x) ein(ξ−x) dx = 1

2

[
f (ξ + 0) + f (ξ − 0)

]
, ξ ∈ [−π,π].

It follows from this theorem that the function f which is continuous on R and its
Fourier transform F for any a ∈R, a > 0, are related by the Poisson sum

∑
n∈Z

F(na) = 2π

a

∑
m∈Z

f

(
2πm

a

)

(see also (1.67)).

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_4, © Springer-Verlag Berlin Heidelberg 2012

159

160 4 Transformations of Functions and Signals

Parseval’s Equality The integral of the square of the function f over x and the
integral of the square of its transform F over ω are related by the Parseval’s equality

∫ ∞

−∞
∣∣f (x)

∣∣2 dx = 1

2π

∫ ∞

−∞
∣∣F(ω)

∣∣2 dω. (4.3)

This invariance of the norm means that power is preserved in the transition from the
temporal to the frequency representation of a signal. Parseval’s equality is valid for
all function expansions in Hilbert spaces; see e.g. [1].

Fourier Uncertainty Let f be normalized as
∫∞
−∞ |f (x)|2 dx = 1. Then |f |2 is

non-negative and can be understood as a probability distribution of the signal with
respect to x, with the first and second moments (average and variation)

〈x〉 =
∫ ∞

−∞
x
∣∣f (x)

∣∣2 dx, σ 2
x =

∫ ∞

−∞
[
x − 〈x〉]2∣∣f (x)

∣∣2 dx.

By (4.3) the Fourier transform of f is also normalized,
∫∞
−∞ |F(ω)|2 dω = 2π .

Hence |F(ω)|2/(2π) is the power distribution density with respect to frequencies,
with the first and second moments

〈ω〉 = 1

2π

∫ ∞

−∞
ω
∣∣F(ω)

∣∣2 dω, σ 2
ω = 1

2π

∫ ∞

−∞
[
ω − 〈ω〉]2∣∣F(ω)

∣∣2 dω.

The product of the variations in both representations of f is

σ 2
x σ 2

ω ≥ 1

4
. (4.4)

Inequality (4.4) expresses the Fourier uncertainty: spatial or temporal variations of
the signal are not independent of frequency variations. If variations decrease in the
configuration space, they increase in the transform space, and vice versa. The lower
bound of the uncertainty is achieved by Gaussian signals,

f (x) =
(

2s

π

)1/4

e−s(x−a)2
, s > 0, a ∈R. (4.5)

We say that such signals have a minimum possible width.

Example Let us compute the Fourier uncertainty of two “bell”-shaped functions.
The first example is

f (x) =
√

2

π

1

1 + x2
, F (ω) = √

2π e−|ω|.

We compute 〈x〉 = 0, σ 2
x = 1, 〈ω〉 = 0, and σ 2

ω = 1
2 , thus σ 2

x σ 2
ω = 1

2 . The second
example is a narrow Gaussian shifted from the origin (see (4.5) with s = 2 and

4.2 Fourier Series 161

a = 5):

f (x) = (4/π)1/4e−2(x−5)2
, F (ω) = e− 1

8 ω(ω+40 i).

We obtain 〈x〉 = 5, σ 2
x = 1

8 , 〈ω〉 = 0, and σ 2
ω = 2, hence σ 2

x σ 2
ω = 1

4 , which indeed is
the smallest possible product of variations, in accordance with (4.4).

Sampling Theorem Assume that the function (signal) f is continuous on the
whole real axis and that (4.1) is its Fourier transform. The signal is uniformly sam-
pled at the points spaced �x apart, like fn = f (n�x) for n ∈ Z. If the range of the
frequencies corresponding to the signal f is bounded, i.e. if

F(ω) = 0 ∀|ω| ≥ ωc = π

�x
, (4.6)

where ωc is the Nyquist (critical) frequency, the complete signal f can be recon-
structed without loss of information from the discrete sample {fn : n ∈ Z} by using
the formula

f (x) =
∑
n∈Z

fn

sinωc(x − n�x)

ωc(x − n�x)
.

More on sampling can be found in the papers [2–4].

4.2 Fourier Series

4.2.1 Continuous Fourier Expansion

Following the notation of [5], the Fourier transform of the function f which is
bounded and piece-wise continuous on the interval [0,2π], is

f̂k = 1

2π

∫ 2π

0
f (x) e−ikx dx, k = 0,±1,±2, (4.7)

The functions φk(x) = eikx and φ∗
k (x) = e−ikx are orthogonal on [0,2π],

∫ 2π

0
φj (x)φ∗

k (x)dx = 2πδj,k.

The functions φk form the basis of the space TN of trigonometric polynomials of
degree ≤ N/2. The Fourier cosine and sine transforms are the real and imaginary
parts of the transform (4.7),

ak = 1

2π

∫ 2π

0
f (x) cos kx dx, bk = 1

2π

∫ 2π

0
f (x) sin kx dx,

162 4 Transformations of Functions and Signals

where all three forms are related by f̂k = ak − ibk . In general, the functions f

and their Fourier coefficients f̂k are complex. Specific symmetry properties of the
signals correspond to specific properties of their transforms. The following cases
are the most relevant:

if f is real, f̂−k = f̂ ∗
k ;

f is real and even, f̂k is real and even;
f is real and odd, f̂k is imaginary and odd.

If f is real, the coefficients of its cosine and sine transform ak and bk are also real,
and f̂−k = f̂ ∗

k . The function f can be represented by the Fourier series

Sf (x) =
∞∑

k=−∞
f̂kφk(x), (4.8)

with the coefficients given by (4.7), or by its truncated form,

SNf (x) =
N/2−1∑

k=−N/2

f̂kφk(x). (4.9)

Remark on Notation The normalization factor (2π)−1 in (4.7) and (4.8) has
changed its place relative to (4.1) and (4.2). In both cases the inverse transforma-
tion of the transform restores the original function. Other variants are widely used,
e.g. swapping the roles of φk(x) = eikx and φ∗

k (x) = e−ikx : the opposite phases
cause only a sign change in the imaginary components. These conventions partly
originate in different interpretations of the sign of the frequencies: the Schrödinger
equation i�∂ψ/∂t = Eψ forces the physicist to associate eiωt with a quantum state
with negative energy E = −�ω, while an electronics engineer will see it as a signal
with positive frequency.

If the function f is continuous, periodic, and has a bounded variation on
[0,2π], i.e.

∫ 2π

0 |f ′(x)|dx < ∞, the series Sf (x) uniformly converges to f (x),
so limN→∞ maxx |f (x) − SNf (x)| = 0. If f has a bounded variation on [0,2π],
then SNf (x) converges to (f (x + 0) + f (x − 0))/2 for each x ∈ [0,2π]. If f is
continuous and periodic, the Fourier series does not necessarily converge at each
x ∈ [0,2π]. The Fourier series of f ∈ L2(0,2π) converges to f in the sense

lim
N→∞

∫ 2π

0

∣∣f (x) − SNf (x)
∣∣2 dx = 0.

The truncation of Sf (x) to SNf (x) containing a finite number of terms implies an
error. Its magnitude is determined by the asymptotics of the Fourier coefficients,

max
0≤x≤2π

∣∣f (x) − SNf (x)
∣∣≤ ∑

k<−N/2

|f̂k| +
∑

k>N/2−1

|f̂k|.

4.2 Fourier Series 163

If f is m-times (m ≥ 1) continuously differentiable on [0,2π] and its j th derivative
is periodic for all j ≤ m − 2, we have

f̂k =O
(|k|−m

)
, k → ∞.

There are several methods to estimate the truncation error. We quote [5] for the
estimates in function spaces L2(0,2π) and Lp(0,2π) defined in Appendix A. In
the norm in L2(0,2π), SNf is the best approximation for f among all functions
from TN . The estimate

‖f − SNf ‖L2(0,2π) ≤ CN−m
∥∥f (m)

∥∥
L2(0,2π)

is valid for m ≥ 0 for any m-times differentiable function f .

4.2.2 Discrete Fourier Expansion

The Fourier expansion of a function f for which the values on [0,2π] are known at
the points (nodes)

xj = 2πj/N, j = 0,1, . . . ,N − 1, N even, (4.10)

is represented by the coefficients of the discrete Fourier transform (DFT)

f̃k = 1

N

N−1∑
j=0

f (xj) e−ikxj , −N/2 ≤ k ≤ N/2 − 1. (4.11)

Another Remark on Notation Since N is even, f̃−N/2 = f̃N/2, and thus an
expansion with |k| ≤ N/2 is also sensible: for the coefficient at k = N/2 we then use
the normalization 1/(2N) instead of 1/N . The index k representing the frequency
ω may also run from 0 to N . The lower portion of the spectrum (1 ≤ k ≤ N/2 − 1)
then corresponds to the negative frequencies, −ωc < ω < 0, while the upper portion
(N/2 + 1 ≤ k ≤ N − 1) corresponds to the positive ones, 0 < ω < ωc, where ωc =
N/2. The value at k = 0 belongs to frequency zero (the average of the signal) while
the value at k = N maps to both ωc and −ωc, and can be omitted so that we have
precisely N distinct coefficients (Fig. 4.1).

For real functions f it holds that

f̃N−k = f̃ ∗
k , f̃0 ∈R.

The function value at the point xj is obtained by the inverse DFT, that is, by the sum

f (xj) =
N/2−1∑

k=−N/2

f̃k eikxj , j = 0,1, . . . ,N − 1. (4.12)

164 4 Transformations of Functions and Signals

Fig. 4.1 Discrete Fourier transformation. [Left] The sum of the constant 0.25 and the square wave
on [0,2π] is sampled at N = 32 points xj = 2πj/N , 0 ≤ j ≤ N − 1 (the • symbols). At the points
◦ the function is not sampled! [Right] The real and imaginary parts of the Fourier coefficients
for two different ways of indexing (−N/2 ≤ k ≤ N/2 or 0 ≤ k ≤ N − 1). The thick symbols at
k = 0 denote the zero-frequency component, which is the average of the signal—precisely the 0.25
vertical shift on the left figure (If we subtract the average of the signal, the zeroth component of its
transform is zero)

Let INf denote the interpolant of the function f at N points. The discrete Fourier
series

INf (x) =
N/2−1∑

k=−N/2

f̃k eikx (4.13)

interpolates f , hence INf (xj) = f (xj). The points xj at which the value of f

exactly coincides with the value of the interpolant INf are known as the Fourier
collocation points. The interpolant can also be written as

INf (x) =
N−1∑
j=0

f (xj)gj (x), (4.14)

where

gj (x) = 1

N
sin

N(x − xj)

2
ctg

x − xj

2
(4.15)

are the characteristic Lagrange trigonometric polynomials with the property
gj (xi) = δi,j . The first three polynomials for N = 8 are shown in Fig. 4.2. An exam-
ple of the trigonometric interpolation of a periodic function f (x) = 2/(4 − 3 cosx)

is shown in Fig. 4.3.

4.2 Fourier Series 165

Fig. 4.2 The first three Lagrange trigonometric polynomials gj (x) in the case N = 8. The maxima
are at the Fourier collocation points xj = 2πj/N (j = 0,1, . . . ,N − 1)

Fig. 4.3 Trigonometric interpolation of the function f (x) = 2/(4 − 3 cosx). [Left] The inter-
polants I4f (matching the function f at four points, symbols •) and I8f (matching at eight points,
symbols ◦). [Right] The error of the discrete Fourier series for N = 4, 8, 16, 32, and 64. Note
the exceptionally rapid drop-off of the error with the increasing number of points (right vertical
axis): it is known as spectral convergence and attains its full relevance in the spectral methods
of Chap. 11. The interpolation property INf (xj) = f (xj) is seen in the characteristic spikes of
vanishing error

The quadrature formula

1

2π

∫ 2π

0
f (x)dx = 1

N

N−1∑
j=0

f (xj)

with the Fourier points (4.10) is exact for any function of the form e−ikx for k ∈ Z,
|k| < N or any trigonometric polynomial of degree less than N which is a linear
combination of such functions. The DFT can therefore also be understood as an
approximation of the continuous Fourier transform of a periodic function f on the

166 4 Transformations of Functions and Signals

interval [0,2π]:

1

2π

∫ 2π

0
f (x) e−ikx dx = 1

N

N−1∑
j=0

f (xj) e−i2πjk/N +RN,

where RN = −f ′′(ξ)(2π)2/(12N2) and ξ ∈ [0,2π].

4.2.3 Aliasing

The coefficients of the discrete Fourier transform (4.11) and the coefficients of the
exact expansion (4.7) are related by

f̃k = f̂k +
∞∑

m=−∞
m �=0

f̂k+Nm, k = −N/2, . . . ,N/2 − 1. (4.16)

By using (4.9) and (4.13) this can be written as INf = SNf +RNf . The remainder

RNf = INf − SNf =
N/2−1∑

k=−N/2

(∞∑
m=−∞
m �=0

f̂k+Nm

)
φk (4.17)

is called the aliasing error and it measures the difference between the interpola-
tion polynomial and the truncated Fourier series. Aliasing implies that the Fourier
component with the wave-number (k + Nm) behaves like the component with the
wave-number k. Because the basis functions are periodic,

φk+Nm(xj) = φk(xj), m �= 0,

such components are indistinguishable (Fig. 4.4). In other words, on a discrete mesh,
the kth Fourier component of the interpolant INf depends not only on the kth com-
ponent of f , but also on the higher components mimicking the kth.

The aliasing error is orthogonal to the truncation error f − SNf , thus

‖f − INf ‖2 = ‖f − SNf ‖2 + ‖RNf ‖2.

The interpolation error is therefore always larger than the truncation error.

Example Knowing how to control aliasing has important practical consequences.
The signals on standard audio compact discs are sampled at the frequency of
νs = 44.1 kHz. The critical frequency (4.6) is then νc = νs/2 = 22.05 kHz. Such
fine sampling prevents aliasing in the audible part of the spectrum and there is no
distortion of the signal. Had we wished, however, to compress the signal, we should

4.2 Fourier Series 167

Fig. 4.4 A periodic signal sin(2πνt) with the frequency ν = 1 s−1 (full line) is sampled at
νs = 5 s−1 (squares): the critical frequency (4.6) is νc = ωc/(2π) = 2.5 s−1. We obtain exactly the
same function values by sampling the functions sin(2π(ν − νs)t) (dashed line) or sin(2π(ν + νs)t)

(dotted line). At this sampling rate, aliasing causes all three signals to be represented with the
frequency ν in the discrete Fourier spectrum

Fig. 4.5 Frequency spectrum of the concluding chord of the Toccata and Fugue for or-
gan in d-minor, BWV 565, of J.S. Bach. Full curve: sampling at 44.1 kHz. Dashed line:
sampling at a smaller frequency 882 Hz causes aliasing. The arrows indicate the peak at
593 Hz, which is mirrored across the critical frequency νc = 441 Hz onto the frequency
(441 − (593 − 441)) Hz = 289 Hz, and the peak at 446 Hz, which maps onto 436 Hz

not do this by simply decreasing the sampling frequency, since this would map the
high-frequency components into the low-frequency part of the spectrum and the
signal would become distorted. Instead, we should use a filter to remove the high-
frequency part of the spectrum and only then down-sample. Figure 4.5 shows the
appearance of aliasing in the frequency spectrum of an acoustic signal sampled at
44.1 kHz and 882 Hz without filtering.

4.2.4 Leakage

The discrete Fourier transformation of realistic signals of course involves only
finitely many values. From an infinite sequence we pick (multiply by one) only a

168 4 Transformations of Functions and Signals

Fig. 4.6 Leakage in the frequency spectrum in the discrete Fourier transform of a sine wave with
the frequency 1 Hz. [Left] Sampling at N = 32 points 0.25 s apart encompasses precisely four
complete waves. The only non-zero component of the transform is the one corresponding to the
frequency of 1 Hz. [Right] Sampling at N = 32 points 0.22 s apart covers only 3.52 waves. Many
non-zero-frequency components appear. The curves connect the discrete transform of the same
signals, except that the 32 original samples of the signal are followed by 224 zeros (total of 256
points). Adding zeros in the temporal domain is known as zero padding and improves the resolution
in the frequency domain. In the limit N → ∞ we approach the continuous Fourier transform

sample of length N , whereas the remaining values are dropped (multiplied by zero).
Due to this restriction, known as windowing, the frequency spectrum exhibits the
leakage phenomenon shown in Fig. 4.6 (adapted from [6]). To some extent, leak-
age can be controlled by using more sophisticated window functions that engage a
larger portion of the signal and smoothly fade out instead of crude multiplication
of the signal by one and the remainder by zero. The advantages and weaknesses of
some classical window functions are discussed in [7].

4.2.5 Fast Discrete Fourier Transformation (FFT)

The discrete Fourier transformation (4.11) is a mapping between the vector spaces
of dimensions N , FN : CN →C

N . Let us rewrite it in a more transparent form,

F = FN [f], Fk = 1

N

N−1∑
j=0

fj e−2π ijk/N , (4.18)

where we have denoted f = {fj }N−1
j=0 and F = {Fk}N−1

k=0 . Note that the indices j and
k run symmetrically, both from 0 to N − 1. The inverse transformation is

f = F−1
N [F], fj =

N−1∑
k=0

Fk e2π ijk/N .

4.2 Fourier Series 169

Then (4.18) can be written as

Fk = 1

N

N−1∑
j=0

W
kj
N fj , WN = e−2π i/N . (4.19)

To evaluate the DFT by computing this sum we need O(N2) operations. But pre-
cisely the same result can be achieved with far fewer operations by using the
Cooley–Tukey algorithm. Let N be divisible by m. Then the sum can be split into
m partial sums, and each of them runs over the elements fj of the array f with the
same modulus of the index j mod m:

Fk = 1

N

m−1∑
l=0

Wkl
N

N/m−1∑
j=0

W
kj
N/mfmj+l .

Let us denote by f (l) = {fmj+l}N/m−1
j=0 the components of the array f which have

the same modulus of the index with respect to m. We have thus recast the transform
of the original array f of dimension N as a sum of m transforms of the shorter
arrays f (l) of dimension N/m. This can be written symbolically as

FN [f]k = 1

N

m−1∑
l=0

Wkl
N

(
N

m
FN/m

[
f (l)

])
k

.

This is a recursive computation of the DFT for the array f that follows the idea
of divide-and-conquer algorithms. The array f for which the DFT should be com-
puted is gradually broken down into sub-arrays, thus reducing the amount of neces-
sary work. The optimal factorization is N = 2p (p ∈ N) in which at each step the
array is split into two sub-arrays containing elements of the original array with even
and odd indices, respectively. This method requires O(N log2 N) operations for the
full DFT instead of O(N2) by direct summation, lending it the name Fast Fourier
Transformation. Similar speeds are attainable by factorizing N to primes, e.g.

N = 2p13p2 5p37p4, pi ∈N,

which is supported by all modern FFT libraries. Good implementations of the FFT
are complicated, as the factorization should be carefully matched to the addressing
of the arrays. The most famous library is the multiple-award winning FFTW (Fastest
Fourier Transform in the West) [8]; see also [9, 10]. A comparison of the CPU cost
of the standard DFT and FFT is illustrated in Fig. 4.7 (left).

Example Due to the fewer operations, FFT is not only essentially faster than the
naive DFT; it is also more precise, as can be confirmed by a numerical experiment.
We form the array f = {f0, f1, . . . , fN−1} of random complex numbers. We apply
the DFT to compute the transform of f , to which we apply the inverse DFT. Finally,

170 4 Transformations of Functions and Signals

Fig. 4.7 [Left] The numerical cost (number of CPU cycles T) of the computation of the DFT by
the basic definition (4.19) and by using the FFT, as a function of the sample size N . [Right] The
average measure of deviation EN(h) for the computation of the DFT by definition and by using
the FFT

we compute the deviation of the resulting array from the original array:

�f = (
F−1

N ◦FN

)
f − f.

In arithmetic with precision ε, we get �f �= 0. We define the average deviation as
EN(f) = 〈‖�f ‖2/‖f ‖2〉, where the average 〈·〉 is over a large set of random arrays.
The results are shown in Fig. 4.7 (right). When the DFT is computed by (4.18), we
get EN(f) ∼ O(εN2), while the FFT gives EN(f) ∼ O(ε

√
logN) [11]. In short,

the FFT algorithm is unbeatable! All decent numerical libraries support the compu-
tation of the DFT by FFT algorithms (see Appendix I).

4.2.6 Multiplication of Polynomials by Using the FFT

Multiplication of polynomials is one of the tasks in computing with power bases,
e.g. in expansions in powers of the perturbation parameters in classical and quantum
mechanics. The multiplication of p(x) = ∑n

i=0 aix
i and q(x) = ∑m

i=0 bix
i in the

form

q(x)p(x) =
n+m∑
i=0

cix
i, ci =

i∑
k=0

akbi−k,

requires O((n + 1)(m + 1)) operations to determine the coefficients ci . If the num-
ber of terms is large (n,m � 1) this process is slow and prone to rounding errors.
A faster and a more precise way is offered by the FFT. We form two arrays of length
N = m+n+ 1. The coefficients of the polynomials p and q are stored at the begin-

4.2 Fourier Series 171

ning of these arrays while the remaining elements are set to zero:

A = {Ai}N−1
i=0 = {a0, . . . , an,0, . . . ,0︸ ︷︷ ︸

m

}, B = {Bi}N−1
i=0 = {b0, . . . , bm,0, . . . ,0︸ ︷︷ ︸

n

}.

The coefficients of the product are given by the convolution

ci =
N−1∑
k=0

AkBi−k, i = 0,1, . . . ,N − 1,

where we assume periodic boundary conditions, Ak = AN+k , Bk = BN+k . The con-
volution is then evaluated by first computing the FFT of the arrays A and B ,

Â = {Âi}N−1
i=0 = FN [A], B̂ = {B̂i}N−1

i=0 = FN [B],

multiplying the transforms component-wise into a new array Ĉ = {ÂiB̂i}N−1
i=0 , and

finally compute its inverse FFT,

C = {Ci}N−1
i=0 = NF−1

N [Ĉ].
This procedure has a numerical cost of O(N log2 N) which, for n,m � 1, is much
smaller than the cost of directly computing the sums of the products.

4.2.7 Power Spectral Density

The Fourier transformation can be seen as a decomposition of a signal to a linear
combination of the functions Aωeiωx . The quantity |Aω|2 is the signal power at the
given frequency ω. If we are dealing with real signals, we are mostly interested in
the total power at the absolute value of the frequency, |Aω|2 + |A−ω|2 for ω ≥ 0.

For a continuous signal f with the Fourier transform (4.1), we define the double-
sided power spectral density (PSD) as

S(ω) = ∣∣F(ω)
∣∣2, ω ∈R,

while the single-sided power spectral density is

S(ω) = ∣∣F(−ω)
∣∣2 + ∣∣F(ω)

∣∣2, ω ∈ R+.

Often, the double-sided spectral density of a signal is defined via the single-sided
density in which the power of a component with the frequency ω is equal to the
power of the component with the frequency −ω, and then S(ω) = 2|F(ω)|2.

For discrete data {fj } with the transform (4.18) the discrete double-sided power
spectral distribution {Sk} is defined in analogy to the continuous case,

Sk = |Fk|2, k = 0,1, . . . ,N − 1.

172 4 Transformations of Functions and Signals

The quantity Sk measures the power of the signal at the frequency 2πk/N , while
SN−k corresponds to the frequency −2πk/N , where k = 0,1, . . . ,N/2 − 1. For the
single-sided distribution we sum over the powers of negative and positive frequen-
cies. For odd N , the single-sided distribution {Sk} is defined as

S0 = |F0|2,
2Sk = |Fk|2 + |FN−k|2, k = 1,2, . . . , (N − 1)/2,

while for even N it is given by

S0 = |F0|2,
2Sk = |Fk|2 + |FN−k|2, k = 1,2, . . . ,N/2,

SN/2 = |FN/2|2.
In the discrete case, Parseval’s equality applies in the form

1

N

N−1∑
j=0

|fj |2 =
N−1∑
k=0

|Fk|2.

4.3 Transformations with Orthogonal Polynomials

Functions can also be expanded in terms of orthogonal polynomials [12]. Let us
work in PN , the space of polynomials of degree ≤ N , and restrict the discussion
to Legendre and Chebyshev polynomials. The polynomials from these families are
orthogonal on [−1,1] with respect to the weight function w. In the function space
L2

w(−1,1) we define the scalar product

〈u,v〉w =
∫ 1

−1
u(x)v(x)w(x)dx (4.20)

and the norm ‖u‖w = √〈u,u〉w , where w(x) = 1 for Legendre and w(x) = (1 −
x2)−1/2 for Chebyshev polynomials. Orthogonality means that

∫ 1

−1
pi(x)pj (x)w(x)dx =

{
const.; i = j,

0; i �= j.
(4.21)

The expansion of the function u into an infinite series of orthogonal polynomials
has the form

u(x) ≡ Su =
∞∑

k=0

ûkpk(x), ûk = 1

‖pk‖2
w

∫ 1

−1
u(x)pk(x)w(x)dx.

4.3 Transformations with Orthogonal Polynomials 173

Here ûk are the expansion coefficients which may be understood as the transforms
of u, by analogy to (4.8). For N ∈ N we have a finite series

SNu ≡
N∑

k=0

ûkpk(x).

Relation to Quadrature Formulas Orthogonal polynomials are closely related
to quadrature formulas. For any quadrature we need the collocation points or nodes
xj ∈ [−1,1] as well as the quadrature weights wj > 0 for j = 0,1, . . . ,N . With
these quantities the integral of a continuous function can be approximated by the
sum of the products of the weights and the function values at the nodes,

∫ 1

−1
f (x)w(x)dx =

N∑
j=0

f (xj)wj + RN. (4.22)

The remainder RN should be minimal or zero if f is a polynomial of a certain
maximum degree. These degrees depend on the choice of the nodes.

In Gauss quadrature the nodes x0, x1, . . . , xN are zeros of the orthogonal polyno-
mial pN+1, which lie in the interior of the interval [−1,1]. The quadrature formula
is then exact for polynomials of degree at most 2N + 1. In Gauss–Radau quadra-
ture the nodes are zeros of the polynomial q(x) = pN+1(x) + apN(x), where a is
chosen such that q(−1) = 0. Then x0 = −1, x1, x2, . . . , xN are the zeros of q and
the quadrature formula is exact for polynomials of degree at most 2N . In Gauss–
Lobatto quadrature we also include the point xN = 1. This time we are seeking
the N + 1 zeros of the polynomial q(x) = pN+1(x) + apN(x) + bpN−1(x), where
a and b are chosen such that q(−1) = q(1) = 0. The quadrature is then exact for
polynomials of degree at most 2N − 1. The weights wj depend on the class of the
orthogonal polynomials.

Discrete Transformation Following the notational conventions of [5], we define
the discrete transformation with orthogonal polynomials as

u(xj) =
N∑

k=0

ũkpk(xj), (4.23)

while its inverse is

ũk = 1

γk

N∑
j=0

u(xj)pk(xj)wj , γk =
N∑

j=0

p2
k(xj)wj . (4.24)

Equations (4.23) and (4.24) for polynomial transforms are analogous to the discrete
Fourier transforms with trigonometric polynomials.

In collocation methods (for example, for the solution of partial differential equa-
tions in Chap. 11) we can represent a smooth function u on the interval [−1,1] by its

174 4 Transformations of Functions and Signals

discrete values at the collocation points, while the derivatives of u are approximated
by the derivatives of its interpolation polynomial. The interpolation polynomial is
an element of PN , and its values at the collocation points are equal to the function
values, INu(xj) = u(xj) for 0 ≤ j ≤ N . It is formed by the sum

INu(x) =
N∑

k=0

ũkpk(x). (4.25)

It can be shown—just like in Fourier expansions—that the interpolant INu is the
projection of u on the space PN with respect to the scalar product

〈u,v〉N =
N∑

j=0

u(xj)v(xj)wj .

This means that 〈INu, v〉N = 〈u,v〉N for any continuous function v. Expres-
sion (4.23) can therefore also be read as γkũk = 〈u,pk〉N , and the orthogonality
relation as 〈pj ,pk〉N = γkδj,k for 0 ≤ k ≤ N . The relation between the discrete
polynomial coefficients and the coefficients of the continuous expansion is

ũk = ûk + 1

γk

∑
j>N

〈pj ,pk〉Nûj . (4.26)

In general 〈pj ,pk〉N �= 0 for j > N , so the kth component of the interpolant INu

depends on the kth component of u and all components with indices k > N . We can
again rewrite (4.26) in the form INu = SNu + RNu, where in

RNu = INu − SNu =
N∑

k=0

(
1

γk

∑
j>N

〈pj ,pk〉Nûj

)
pk (4.27)

we again recognize the aliasing error (compare (4.26) and (4.27) to the correspond-
ing (4.16) and (4.17) for the DFT). The aliasing error is orthogonal to the series
truncation error u − SNu, hence

‖u − INu‖2
w = ‖u − SNu‖2

w + ‖RNu‖2
w.

4.3.1 Legendre Polynomials

Legendre polynomials Pk for k = 0,1, . . . are the eigenfunctions of the singular
Sturm–Liouville problem

((
1 − x2)P ′

k(x)
)′ + k(k + 1)Pk(x) = 0, x ∈ [−1,1],

which is of the form (8.84) with p(x) = 1 − x2, q(x) = 0, and w(x) = 1. The
polynomials Pk for even (odd) k are even (odd). With the normalization Pk(1) = 1

4.3 Transformations with Orthogonal Polynomials 175

Fig. 4.8 Orthogonal polynomials used in the transformations of functions, collocation methods,
and spectral methods for partial differential equations (Chap. 11). [Left] Legendre polynomials
Pk . [Right] Chebyshev polynomials Tk . Shown are the polynomials of degree k ∈ {2,5,8,11,14}.
There is a characteristic clustering of the zeros in the vicinity of the boundary points x = −1 and
x = 1

they can be generally written as

Pk(x) = 1

2k

�k/2�∑
l=0

(−1)l
(

k

l

)(
2k − 2l

k

)
xk−2l , (4.28)

where �k/2� is the integer part of k/2. Legendre polynomials possess a three-term
recurrence relation

(k + 1)Pk+1(x) = (2k + 1)xPk(x) − kPk−1(x), P0(x) = 1, P1(x) = x,

which is a great tool to actually compute the polynomial values. Some typical poly-
nomials Pk are shown in Fig. 4.8 (left).

By using the polynomials Pk any function u ∈ L2(−1,1) can be expanded in a
series

u(x) =
∞∑

k=0

ûkPk(x), ûk = 2k + 1

2

∫ 1

−1
u(x)Pk(x)dx. (4.29)

The discrete expansion in terms of Legendre polynomials is defined by (4.23) and
(4.24) by inserting pk(x) = Pk(x), while the collocation points xj , the weights wj ,
and the normalization factors γk depend on the type of the quadrature (4.22). For
quadrature with Legendre polynomials there are no explicit formulas for the collo-
cation points xj ; we must compute the zeros of the corresponding polynomials.

Gauss For Legendre–Gauss quadrature the collocation points xj (j = 0,1,

. . . ,N) are the roots of the equation PN+1(xj) = 0, while the corresponding weights
and normalization factors are

wj = 2

(1 − x2
j)[P ′

N+1(xj)]2
, γk = 2

2k + 1
. (4.30)

176 4 Transformations of Functions and Signals

Gauss–Radau The collocation points for Legendre–Gauss–Radau quadrature are
the roots of the equation PN(xj) + PN+1(xj) = 0, and the weights are

w0 = 2

(N + 1)2
, wj = 1 − xj

(N + 1)2[PN(xj)]2
, j = 1,2, . . . ,N. (4.31)

The normalization factors are γk = 2/(2k + 1).

Gauss–Lobatto The most frequently used Legendre–Gauss–Lobatto quadrature
explicitly includes both endpoints of the interval, x0 = −1 and xN = 1, while the
interior points xj are the roots of the equation P ′

N(xj) = 0:

xj =

⎧⎪⎨
⎪⎩

−1; j = 0,

solutions of P ′
N(xj) = 0; 1 ≤ j ≤ N − 1,

1; j = N.

(4.32)

In this case the weights are

wj = 2

N(N + 1)

1

[PN(xj)]2
, j = 0,1, . . . ,N. (4.33)

The normalization factors are γk = 2/(2k + 1) for k < N and γN = 2/N .

Example Let us determine the discrete Legendre–Gauss expansion of the function

u(x) = x cos
(
(πx)2)

by using ten points (N = 9). The collocation points xj are the roots of the equation
PN+1(xj) = 0 (all values rounded to four digits):

−x0 = x9 = 0.9739, −x1 = x8 = 0.8651, −x2 = x7 = 0.6794,

−x3 = x6 = 0.4334, −x4 = x5 = 0.1489.

The weights wj are given by (4.30):

w0 = w9 = 0.0667, w1 = w8 = 0.1495, w2 = w7 = 0.2191,

w3 = w6 = 0.2693, w4 = w5 = 0.2955.

The coefficients (4.24) of the discrete expansion (4.23) are then

ũ1 = −0.1084, ũ3 = −0.1784, ũ5 = −0.4807,

ũ7 = −1.0136, ũ9 = −0.0923,

while ũ0 = ũ2 = ũ4 = ũ6 = ũ8 = 0: since the function u is odd, its expansion also
involves only odd Legendre polynomials. Figure 4.9 (left) shows the points xj , the
function u, and its interpolant INu (4.25).

4.3 Transformations with Orthogonal Polynomials 177

Fig. 4.9 Interpolation polynomials corresponding to the transformation of functions by Legendre
polynomials. [Left] Computation at the Legendre–Gauss nodes with N = 9. [Right] Computation
at the Legendre–Gauss nodes with N = 7 and N = 11

We follow the same path in Legendre–Gauss–Lobatto collocation, where the end-
points −x0 = xN = 1 are always included. Let us take eight points (N = 7). The
nodes are given by (4.32),

−x0 = x7 = 1.0000, −x1 = x6 = 0.8717,

−x2 = x5 = 0.5917, −x3 = x4 = 0.2093,

while the weights are given by (4.33),

−w0 = w7 = 0.0357, −w1 = w6 = 0.2107,

−w2 = w5 = 0.3411, −w3 = w4 = 0.4125.

The seventh-degree interpolation polynomial I7u of u is shown in Fig. 4.9 (right).
The same figure also shows the eleventh-degree interpolant I11u.

In the Gauss–Lobatto case, the polynomial INu that interpolates u and matches
it at the points xj can be written in two ways: as an expansion in Pk(x) with the co-
efficients ũk , or in the form of the expansion in Lagrange interpolation polynomials
where the coefficients are given by the values of u at xj :

INu(x) =
N∑

k=0

ũkPk(x) =
N∑

j=0

u(xj)lj (x), (4.34)

where

lj (x) = 1

N(N + 1)

x2 − 1

x − xj

P ′
N(x)

PN(xj)
(4.35)

178 4 Transformations of Functions and Signals

is the Lagrange interpolation polynomial. (At x = xj both its numerator and denom-
inator are zero and l’Hôspital is called to rescue.) In the discrete Fourier transfor-
mation we have expressed the interpolant INu by the sum (4.14) over trigonometric
polynomials (4.15). Expressions (4.34) and (4.35) are their equivalents for the dis-
crete Legendre transformation.

4.3.2 Chebyshev Polynomials

Chebyshev polynomials Tk for k = 0,1, . . . [13] are the eigenfunctions of the sin-
gular Sturm–Liouville problem

(√
1 − x2 T ′

k(x)
)′ + k2

√
1 − x2

Tk(x) = 0, x ∈ [−1,1],

which is of the form (8.84) with p(x) = (1 − x2)1/2, q(x) = 0, and w(x) = (1 −
x2)−1/2. The polynomials Tk for even (odd) k are even (odd). With the normalization
Tk(1) = 1 they are defined as

Tk(x) = cos(k arccosx) =
�k/2�∑
i=0

(
k

2i

)(
x2 − 1

)i
xk−2i . (4.36)

Some typical examples are shown in Fig. 4.8 (right). The polynomials are related
by the three-term recurrence

Tk+1(x) = 2xTk(x) − Tk−1(x), T0(x) = 1, T1(x) = x, (4.37)

which allows us to compute the values Tn(x) in just O(n) operations. Chebyshev
polynomials are orthogonal on the interval [−1,1] with respect to the weight (1 −
x2)−1/2,

∫ 1

−1
Tk(x)Tl(x)

dx√
1 − x2

=

⎧⎪⎨
⎪⎩

0; k �= l,

π/2; k = l �= 0,

π; k = l = 0,

but they also possess the peculiar property of orthogonality by points: on the discrete
set of points

xj = cos
(2j + 1)π

2N
, j = 0,1, . . . ,N − 1,

corresponding to the N zeros of the polynomial TN , Chebyshev polynomials are
orthogonal in the sense of the sum

N−1∑
j=0

Tk(xj)Tl(xj) =

⎧⎪⎨
⎪⎩

0; k �= l,

N/2; k = l �= 0,

N; k = l = 0.

(4.38)

4.3 Transformations with Orthogonal Polynomials 179

(More general formulas can be found in (1.141) and (1.144) in [13].) Any function
u ∈ L2(−1,1) can be expanded in terms of Chebyshev polynomials Tk as

u(x) =
∞∑

k=0

ûkTk(x), ûk = 2

πck

∫ 1

−1
u(x)Tk(x)w(x)dx, (4.39)

where c0 = 2 and ck = 1 for k ≥ 1. In contrast to quadrature involving Legendre
polynomials, the nodes and the weights for Chebyshev quadrature are given by ex-
plicit formulas which are given in the following. Note that the nodes are indexed
such that the values of xj decrease when j increases.

Gauss For Chebyshev–Gauss collocation the nodes and the weights are

xj = cos
(2j + 1)π

2N + 2
, wj = π

N + 1
, j = 0,1, . . . ,N,

while the factors γk in (4.24) are equal to γk = πck/2 for 0 ≤ k < N and γN = π/2.

Gauss–Radau For Chebyshev–Gauss–Radau collocation we have

xj = cos
2jπ

2N + 1
, wj =

{
π

2N+1 ; j = 0,
2π

2N+2 ; j = 1,2, . . . ,N,

while γk = πck/2 for 0 ≤ k < N and γN = π/2.

Gauss–Lobatto The most frequently used Gauss–Lobatto collocation includes
the endpoints x0 = 1 and xN = −1. Here, the nodes and the weights are given by

xj = cos
jπ

N
, wj =

{
π

2N
; j = 0,N,

π
N

; j = 1,2, . . . ,N − 1.
(4.40)

The normalization factors are γk = πck/2 for 0 ≤ k < N and γN = π .
Discrete Chebyshev transformation on the interval x ∈ [−1,1] is most often as-

sociated with Gauss–Lobatto collocation, and this is the only case we discuss hence-
forth. The expansion of the function u in a finite series has the form

INu(x) =
N∑

k=0

ũkTk(x), ũk = 2

Nck

N∑
j=0

1

cj

u(xj)Tk(xj), (4.41)

where c0 = cN = 2 and cj = 1 for j = 1,2, . . . ,N − 1. This is a discrete equivalent
of the continuous expansion defined in (4.39). At the Gauss–Lobatto quadrature
nodes (4.40) the expansion can be rewritten as

INu(xj) =
N∑

k=0

ũk cos
πjk

N
, ũk = 2

Nck

N∑
j=0

1

cj

u(xj) cos
πjk

N
,

180 4 Transformations of Functions and Signals

Fig. 4.10 The first three Lagrange interpolation polynomials lj (x) for Chebyshev–Gauss–Lobatto
collocation with N = 8. The collocation points xj = cos(πj/N), at which lj (xk) = δj,k holds,
follow from right to left for indices j = 0,1, . . . ,N

which is nothing but the cosine transform. The transliteration of the Chebyshev
transformation to the Fourier transformation makes a great impact in spectral meth-
ods (Sect. 11.1.3).

Example As in the Legendre case (4.34), the transformation with Chebyshev poly-
nomials allows us to write the interpolation polynomial in two ways: by using (4.41)
or by expanding it in terms of different interpolation polynomials,

INu(x) =
N∑

k=0

ũkTk(x) =
N∑

j=0

u(xj)lj (x),

where

lj (x) = 1

cj

(−1)j

N2

x2 − 1

x − xj

T ′
N(x) (4.42)

is the interpolation polynomial for Gauss–Lobatto collocation (4.40). The polyno-
mials l0, l1, and l2 for N = 8 are shown in Fig. 4.10. A correct choice of the col-
location points is of key importance. Namely, on the interval [−1,1], a different
Lagrange interpolation polynomial with the general form

lj (x) = qN(x)

(x − xj)q
′
N(xj)

, qN(x) =
N∏

j=0

(x − xj), (4.43)

can be spanned through any set of function values at the N + 1 nodes. But for
the chosen class of orthogonal polynomials, only one set of nodes is optimal: for
Chebyshev polynomials with Gauss–Lobatto collocation these are precisely the
points (4.40). Figure 4.11 shows the classic comparison between the interpolation
of the function at equidistant points according to (4.43) and the interpolation at the
Gauss–Lobatto points (4.40), which prevents the wild oscillations of the interpolant.

4.4 Laplace Transformation 181

Fig. 4.11 Lagrange interpolation of the function u(x) = 1/(1 + 16x2) on the interval [−1,1].
[Left] The interpolant I16u through 17 equidistant points xj = 2j/N − 1 (j = 0,1, . . . ,N). When
the number of points N is increased, the error ‖u − INu‖ exponentially increases, the annoy-
ance known as the Runge phenomenon. [Right] The interpolant I16u through 17 Gauss–Lobatto
points (4.40). By increasing N the error ‖u−INu‖ exponentially decreases, which can be exploited
in spectral methods (Chap. 11)

Table 4.1 Laplace
transforms of some common
functions. The transforms of
the products
L[θ(t − c)f (t − c)] =
e−csF (s), L[ect f (t)] =
F(s − c), and
L[(−t)nf (t)] = F (n)(s) are
also very useful. For a much
more complete list see
Sect. 29.3 in [16]

f (t) = L−1[F] F(s) = L[f] Assumptions

tp �(p + 1)/sp+1 p > −1, Re{s} > 0

eat 1/(s − a) Re{s} > a

sinat a/(s2 + a2) Re{s} > 0

cosat s/(s2 + a2) Re{s} > 0

δ(t − c) e−cs Re{s} > 0

θ(t − c) e−cs/s Re{s} > 0

4.4 Laplace Transformation

The continuous Laplace transformation of the function f is defined as

F(s) = L[f](s) =
∫ ∞

0
e−stf (t)dt, s ∈ C.

The sufficient conditions for the existence of the transform L[f] are that f is piece-
wise continuous on R+ and that f is of exponential order in the limit t → ∞: this
means that real constants C > 0, a, and T > 0 exist such that |f (t)| ≤ Ceat for
∀t > T . The transformation is linear, L[c1f1 + c2f2] = c1L[f1] + c2L[f2]. The
transforms of some typical functions are enumerated in Table 4.1. The algorithms
for the fast discrete Laplace transformation are described in [14, 15].

Laplace transforms of real functions for which we do not know the suitable ele-
mentary integral, can be computed by using the Gauss–Laguerre quadrature of high

182 4 Transformations of Functions and Signals

Fig. 4.12 [Left] The precision of the quadrature formula (4.44) for the Laplace transformation of
the function f (t) = cos t (the exact transform is F(s) = s/(s2 + 1)). [Right] The precision of the
FT algorithm from [19] to compute the inverse Laplace transform F(s) = s/(s2 + 1) to arbitrary
precision (the exact solution is f (t) = cos t). Shown is the error log10 |f (t) − L−1[F](t)| as a
function of the number of terms in the quadrature sum for two different t

order (see Fig. 4.12 (left)). Assuming that f can be sufficiently well described by a
polynomial, the transform with s > 0 can be computed as

L[f](s) = 1

s

n∑
i=1

wi f (xi/s) + Rn, Rn = (n!)2

(2n)!f
(2n)(ξ), (4.44)

where {xi}ni=1 are the zeros of the Laguerre polynomial Ln(x), {wi}ni=1 are the
quadrature weights, and ξ ∈R. From the zeros xi we compute the weights as

wi = xi

[(n + 1)Ln+1(xi)]2
.

Many modern numerical libraries include the generators of zeros and weights, and
they are mostly based on the algorithms presented in [17]. This approach allows for
a stable and precise calculation of the zeros and weights in double precision up to
order n ≈ 40 (up to n = 15 they are listed on p. 923 of [16]). The quadrature (4.44)
at small values of s fails, in particular with oscillatory functions f , because the
value f (xi/s) changes too quickly; in such cases it is preferable to use the formula

L[f](s) ≈
n∑

i=1

wi e(1−s)xi f (xi).

4.4.1 Use of Laplace Transformation with Differential Equations

One of the most fruitful application areas of the Laplace transformation is the study
of electric circuits and mechanical systems where we wish to understand the solu-

4.4 Laplace Transformation 183

tions of linear differential equations with discontinuous or impulse forcing terms.
The generic example is the equation ẍ +βẋ +ω2

0x = f (t) with the Heaviside (step)
function f (t) = θ(t) or with the impulse f (t) = δ(t). The kernel of the Laplace
transformation e−st determines the natural scale of the physical process.

Laplace transformation draws its true strength from the relations between the
transforms of the function f itself and the transforms of its derivatives. For a piece-
wise continuous f ′ we have

L
[
f ′]= sL[f] − f (0)

or, with similar assumptions for the higher derivatives [18],

L
[
f (n)

]= snL[f] − sn−1f (0) − · · · − sf (n−2)(0) − f (n−1)(0). (4.45)

By using the relation (4.45) in the initial-value problem with constant coefficients

aẍ + bẋ + cx = f (t),

with given initial conditions x(0) and ẋ(0), we obtain

a
[
s2X(s) − sx(0) − ẋ(0)

]+ b
[
sX(s) − x(0)

]+ cX(s) = F(s). (4.46)

Instead of solving the differential equation for x(t) we have succeeded in rephras-
ing the problem in terms of an algebraic equation for X(s) into which the initial
conditions have already been “built in”. From the function X(s) we then obtain the
solution x(t) by computing the inverse Laplace transform.

Formally, the inverse Laplace transform is given by the formula

L−1[F](t) = 1

2π i

∫
C

estF (s)ds, (4.47)

where C is a vertical line in the complex plane, defined by C = ξ + iη, and ξ is
chosen such that all singularities of the transform F(s) lie to the left of C. In other
words, F is analytic on the half-plane Re{s} > ξ . The sufficient conditions for the
existence of the inverse are

lim
s→∞F(s) = 0, lim

s→∞
∣∣sF (s)

∣∣< ∞.

The inverse Laplace transformation is linear.
The world of the inverse Laplace transformation is not rosy: the expression for

X(s), which we read off from (4.46), first has to be reshuffled such that in its var-
ious parts of the functions F(s) from Table 4.1 are identified, and these are then
associated with the corresponding parts of the solution x(t). For example,

X(s) = s − 1

s2 − s − 2
= 1

3

1

(s − 2)
+ 2

3

1

(s + 1)
,

184 4 Transformations of Functions and Signals

which corresponds to

x(t) = 1

3
e2t + 2

3
e−t

(see the second row of Table 4.1). This was an easy example, as the available set
of pairs F(s) and f (t) for which the table of known elementary functions and their
transforms is read from right to left, is quickly exhausted. The inverse transform
then needs to be computed numerically (see Problem 4.7.3).

The numerical computation of the inverse Laplace transform is described in an
immense body of papers. Excellent insight is offered by [20], [21, 22], and [23]. One
of the best approaches is a deformation of the curve C in the integral (4.47) such
that the integral converges as quickly as possible, and the use of the correspond-
ing quadrature formulas [24, 25]. Another good way is to rewrite the integral as a
Fourier series which can be computed by the FFT algorithm [26–29]. A very robust
and simple algorithm for the inverse transformation at arbitrary arithmetic precision
can be found in [19]; see also the example in Fig. 4.12 (right).

4.5 Hilbert Transformation �

The Hilbert transformation H of the function s : R → R is defined as the convolu-
tion of the function s with the function h(t) = 1/(πt):

ŝ(t) = H[s](t) = −(s ∗ h)(t) = 1

π
P

∫ ∞

−∞
s(τ)

τ − t
dτ, (4.48)

where ∗ denotes the convolution. The integral should be understood as the Cauchy
principal value (symbol P). The principal value integral of the function f over the
interval [a, b], on which f has a singularity at c ∈ [a, b], is defined as

P

∫ b

a

f (t)dt = lim
ε↘0

(∫ c−ε

a

f (t)dt +
∫ b

c+ε

f (t)dt

)
.

The value of the transform does not change if an arbitrary constant is added to the
function, H[s + const] = H[s]. The transform (4.48) of the function s ∈ Lp(R) for
1 < p < ∞ exists only in the case that s tends to zero at positive and negative infin-
ity [30], limt→±∞ s(t) = 0. The Hilbert transformation is linear and bounded [31]:

∥∥H[s]∥∥
p

≤ Cp‖s‖p, Cp =
{

tan(π/2p); p = 1,2,

tan(π/2p)−1; p > 2.

The inverse Hilbert transformation is

s(t) = H−1[ŝ](t) = (ŝ ∗ h)(t) = − 1

π
P

∫ ∞

−∞
ŝ(τ)

τ − t
dτ,

hence H−1 = −H and H2 = −id.

4.5 Hilbert Transformation � 185

Relation to the Fourier Transform The Fourier transforms (4.1) of the signal s,
S(ω) = F[s](ω), and of the function h(t) = 1/(πt),

H(ω) = F[h](ω) = −i sign(ω), sign(ω) =

⎧⎪⎨
⎪⎩

1; ω > 0,

0; ω = 0,

−1; ω < 0,

are related to the Hilbert transform of s by

ŝ = −F−1[SH], (4.49)

where F−1 is the inverse Fourier transformation (4.2). The norm of the function s ∈
L2(R) with the Fourier transform S ∈ L2(R) is the same in all three representations,

∫ ∞

−∞
∣∣H[s](t)∣∣2 dt = 1

2π

∫ ∞

−∞
∣∣sign(ω)S(ω)

∣∣2 dω = lim
ε↘0

(∫ −ε

−∞
+
∫ ∞

ε

)∣∣s(t)∣∣2 dt,

where we have used (4.49) and Parseval’s equality (4.3) for the Fourier transform.
The Hilbert transformation therefore preserves the total power of the signal.

A real signal s and its Hilbert transform ŝ = H[s] are orthogonal, i.e.

∫ ∞

−∞
s(t)ŝ(t)dt = i

2π

∫ ∞

−∞
sign(ω)

∣∣S(ω)
∣∣2 dω = 0,

if s, ŝ, and the Fourier transform S = F[s] are in L1(R) or L2(R) (we assumed
S(ω)∗ = S(−ω)). A similar conclusion can be made by examining (4.49) for the
Fourier modes, since for the functions cosωt and sinωt , which are orthogonal for
all ω �= 0, we have

H[cosωt] = −sign(ω) sinωt, H[sinωt] = sign(ω) cosωt. (4.50)

Warning The numerical computation of the Hilbert transform of the function f

on the whole real axis may be very problematic (see Fig. 4.13). Even small per-
turbations ε(t) that are not in the space Lp(R), p > 1 may cause a singularity in
H[f + ε]. The problems of this type are not unique to the Hilbert transformation,
but because its kernel h(t) = 1/(πt) is singular, the instabilities become more pro-
nounced. We therefore often resort to simplifications; a few guidelines can be found
in [32]. The Hilbert transform H[f](t) at large parameters t can be elegantly com-
puted by its asymptotic expansion presented in [33] (in this case the asymptotics of
f has to be known). We discuss the methods for numerical computation of the con-
tinuous Hilbert transform in Sect. 4.5.3, while the discrete transform is discussed in
Sect. 4.5.4.

186 4 Transformations of Functions and Signals

Fig. 4.13 The integrands for the computation of the Hilbert transform of f (t) = sin t/(1 + t2) for
three values τ = 1, τ = 3, and τ = 5. We integrate over the poles migrating along the real axis and
“sample” f in a very sensitive manner. See also Sect. E.3

4.5.1 Analytic Signal

Hilbert transformation is a commonly used tool in the analysis of signals where it is
used for their “complexification”. This means that to a real signal (function) s(t) is
assigned a complex function

s#(t) = s(t) − iH[s](t), (4.51)

known as the analytic signal (s and ŝ = H[s] are real functions). If the signal is
s(t) = cosωt , ω > 0, the analytic signal is s#(t) = cosωt + i sinωt = exp(iωt), as
can be inferred from (4.50). The Fourier transform of the analytic signal is

S#(ω) = S(ω)
[
1 + sign(ω)

]
,

where S(ω) = F[s](ω) is the Fourier transform (4.1) of the signal s. The function
S# is zero for negative frequencies ω < 0: this is a fundamental property of the
analytic signals. If the function s# is analytic on the upper complex half-plane and
satisfies the Cauchy integral equation

P

∫ ∞

−∞
s#(ξ)

ξ − x
dξ = iπs#(x), (4.52)

we are referring to a strongly analytic signal. In addition to analyticity, the sufficient
condition for the validity of the integral equation is that the function falls off quickly
enough in the upper complex half-plane. If the signal s# is strongly analytic, we may
insert s# = s − i ŝ into (4.52) and obtain the relations between the real and imaginary
parts of the analytic signal,

H[s] = ŝ, H[ŝ] = −s.

4.5 Hilbert Transformation � 187

The analytic signal can be represented in the complex plane as

s#(t) = A(t) eiφ(t),

where

A(t) = ∣∣s#(t)
∣∣=

√(
s(t)

)2 + (
H[s](t))2 (4.53)

is the analytic amplitude, and

φ(t) = arg
(
s#(t)

)= atan

(
Im s#(t)

Re s#(t)

)
(4.54)

is the analytic phase. In this representation we define various instantaneous quan-
tities [34], like the instantaneous signal power Ei(t) = |A(t)|2 and the instan-
taneous complex phase �i(t) = log s#(t) = logA(t) + iφ(t). By using the time
derivative of the complex phase we also define the instantaneous complex frequency
�i(t) = �̇i(t) = αi(t)+ iβi(t), where αi(t) = Ȧ(t)/A(t) is the instantaneous radial
frequency and βi(t) = φ̇(t) is the instantaneous angular frequency. These quantities
help us in unraveling the characteristics of the signal s which are not apparent from
observing just the time dependence of s(t).

Example Hilbert transformation is used as a tool in the analysis of brain potentials
for the study of brain states and functions. The signals used in the analysis are
obtained by digitizing the electro-encephalograph (EEG) recordings. An example
of the EEG recording during an epileptic seizure is shown in Fig. 4.14 (top left).
We use the sampled signal sn to form the Hilbert transform H[s]n (Fig. 4.14 (top
right)). By using (4.53) and (4.54) we then compute the analytic amplitude and
phase (Fig. 4.14 (bottom left and right)).

The actual (physiological) changes in the brain states can then be inferred from
the sudden increases or abrupt drops in the analytic amplitude, jumps in the ana-
lytic phase or from the behavior of other observables formed from the Fourier and
Hilbert transform of the original signal, for example, the instantaneous frequencies
from (4.64). (However, similar effect may be caused by time-dependent interfer-
ences between different frequency components of the signal.) A good guide to work
in this field can be found in the papers [35–38].

4.5.2 Kramers–Kronig Relations

Relations between real and imaginary parts of the Fourier transforms play prominent
roles in many areas of physics. These relations have the form of Hilbert transforms.
Let s(t) be a real signal with the complex Fourier transform S(ω) = F[s](ω) which

188 4 Transformations of Functions and Signals

Fig. 4.14 Analysis of electro-encephalograms by using Hilbert transformation. [Top left] The raw
signal s (2048 values, 256 samples per second) [39]. [Top right] The signal s and its Hilbert trans-
form H[s] at t ≈ 4 s where the nature of the signal changes. [Bottom left] The analytic amplitude
A (see (4.53)). [Bottom right] The analytic phase φ (see (4.54)). The lower part of the figure shows
the phase on the interval (−π,π), while there is no such constraint in the upper part (at each
crossing of the branch cut in the complex plane for the arctan function we add 2π to the phase)

is an analytic function on the upper half-plane of the complex variable ω. If S satis-
fies (4.52), its real and imaginary parts are related by

ReS(ω) = 1

π
P

∫ ∞

−∞
ImS(ω′)
ω′ − ω

dω′, ImS(ω) = − 1

π
P

∫ ∞

−∞
ReS(ω′)
ω′ − ω

dω′,

in short, ReS(ω) = H[ImS](ω) and ImS(ω) = −H[ReS](ω). These equations are
known as the Kramers–Kronig (dispersion) relations. Relations of this type can be
formulated for all Fourier transforms of signals which appear in the descriptions
of the system’s response to an external perturbation. They are very general: their
derivation requires only that the response of the system is causal. This means that
the signal s at times t > 0 is a consequence of the events occurring at t ≤ 0.

Example The most famous Kramers–Kronig relations connect the real and imagi-
nary parts of the electric susceptibility χ(ω) = Reχ(ω)+ i Imχ(ω) or the refraction
index N(ω) = n(ω)+ iκ(ω) [40]. The polarization P represents the linear response
of the matter to the electric field E,

P (t) = ε0

∫ ∞

−∞
χ
(
t − t ′

)
E
(
t ′
)

dt ′, χ(τ) = 0 at τ < 0.

4.5 Hilbert Transformation � 189

Fig. 4.15 Frequency dependence of the real and imaginary part of the complex refraction index of
water in the range of micrometer wavelengths. They are related by (4.56). The arrows indicate the
regions of anomalous dispersion (a sudden drop of the real part) and absorption (a rapid increase
of the imaginary part)

In the frequency representation this means P (ω) = ε0χ(ω)E(ω), where χ(ω) is
the susceptibility which depends on the frequency of the external perturbation
E(ω). Susceptibility χ satisfies the above Kramers–Kronig relations, which can
be further simplified by using symmetry properties. We have χ(ω)∗ = χ(−ω), or
Reχ(−ω) = Reχ(ω) and Imχ(−ω) = − Imχ(ω), so the integration range can be
narrowed down to positive frequencies only,

Reχ(ω) = 2

π
P

∫ ∞

0

ω′ Imχ(ω′)
ω′2 − ω2

dω′,

Imχ(ω) = − 2

π
P

∫ ∞

0

ω Reχ(ω′)
ω′2 − ω2

dω′.
(4.55)

We need only one more step to find the relations between the real (dispersive) and
the imaginary (absorption) part of the complex refraction index. In the limit of small
susceptibilities we have

N(ω) =√
1 + Reχ(ω) + i Imχ(ω) ≈ 1 + 1

2
Reχ(ω)

︸ ︷︷ ︸
n(ω)

+ i

2
Imχ(ω)

︸ ︷︷ ︸
iκ(ω)

.

From (4.55) it then follows that

n(ω) = 1 + 2

π
P

∫ ∞

0

ω′κ(ω′)
ω′2 − ω2

dω′. (4.56)

It is relatively hard to measure the frequency dependence of the real part of the
refraction index n. But by using the derived relations it can be computed from the
imaginary part κ which can be determined easily, just by measuring the ratio of the
incident and transmitted wave intensities at different frequencies. As an example,
Fig. 4.15 shows n(ω) and κ(ω) for infrared light in water.

190 4 Transformations of Functions and Signals

4.5.3 Numerical Computation of the Continuous Hilbert
Transform

The numerical computation of the Hilbert transform is almost always a tough nut
to crack, as the transformation involves the integral of a singular function. Here we
mention a few strategies for a quick and stable computation. More information can
be found in the review article [41].

Transforming the Integrand to a Sum of Orthogonal Polynomials Let us first
generalize the definition of the Hilbert transformation to integrals over the interval
I ⊂ R,

H[f](y) = 1

π
P

∫
I

f (x)

x − y
dx.

If the interval I = [a, b] is finite, we can rewrite the integral as

H[f](y) = 1

π
f (y) log

∣∣∣∣b − y

a − y

∣∣∣∣+ 1

π

∫ b

a

f (x) − f (y)

x − y
dx,

which eliminates the singularity. We write the integrand as the product of a posi-
tive weight function w and the remaining factor, f (x) − f (y) = w(x)g(x;y). With
foresight, we would like to find a particular pair (interval I , weight function w)
that corresponds to the definition domain and the weight function of some system
of orthogonal polynomials [12]. Then we could approximate the function g by the
expansion

g(x;y) ≈
n∑

j=0

dj (y)qj (x),

where {qj }j∈N0 are orthogonal polynomials, and compute the Hilbert transform as
the weighted sum of the transforms of the individual terms in this expansion:

H[wg](y) ≈
n∑

j=0

dj (y)ψj (y), ψj (y) = H[wqj](y).

All systems of orthogonal polynomials qj possess three-term recurrence rela-
tions which also apply to the functions ψj , e.g. ψj+1(x) = (Ajx + Bj)ψj (x) +
Cjψj−i (x), where Aj , Bj , and Cj are constants that do not depend on x. This
relation between qj and ψj is based on the property of the Hilbert transformation

H[xf](y) = yH[f](y) + 1

π

∫ ∞

−∞
f (x)dx

and the orthogonality of the polynomials qj to a constant,
∫∞
−∞ qj (x)w(x)dx = 0

for j > 0. Using the recurrence to compute ψj speeds up tremendously the compu-
tation of the transform H[wf](y). For the computation with the Chebyshev polyno-
mials (weight w(x) = (1 − x2)−1/2 and I = [−1,1]) see [42]; for the computation

4.5 Hilbert Transformation � 191

Fig. 4.16 The numerical computation of the Hilbert transform. [Left] The precision of the
formula (4.57) in dependence of N and the width of the interval h, for the function
f (x) = (sinx)/(1 + x2). [Right] The precision of the algorithm (4.60) with the rational ap-
proximation (4.58) in dependence of N for three different functions: (1) f (x) = 1/(1 + x2),
(2) f (x) = 1/(1 + x4), and (3) f (x) = (sinx)/(1 + x2). Since the function (3) oscillates, we
should obviously try a bit harder: see [45]

with the Hermite polynomials (w(x) = e−x2
and I = R) and the generalized La-

guerre polynomials (w(x) = xαe−x and I = R+) see [43].

Quadrature Formulas If our knowledge about the behavior of the integrand is
very limited, the Hilbert transform can be computed by using quadrature formulas.
A simple one is

H[f](y) ≈ 2

π

∑
n∈Z

f (y + (2n + 1)h)

2n + 1
, (4.57)

which has been suggested and analyzed in [44]. Of course, in a practical implemen-
tation, we restrict |n| ≤ N , see Fig. 4.16 (left).

Collocation Method A slightly different approach to the Hilbert transformation
has been charted by [46] and it exploits its spectral properties. (Note that in this part
of the text we define sign(0) = 1.) The authors use the functions

ρn(x) = (1 + ix)n

(1 − ix)n+1
, n ∈ Z, (4.58)

which satisfy H[ρn](x) = i sign(n)ρn(x) and are therefore the eigenfunctions of
the Hilbert transformation. The functions ρn on L2(R) form a complete orthogonal
basis and fulfill

∫∞
−∞ ρ∗

m(x)ρn(x)dx = πδm,n. An arbitrary function f ∈ L2(R) can
be expanded in terms of these basis functions as

f (x) =
∑
n∈Z

anρn(x), an = 1

π

∫ ∞

−∞
ρn(x)∗f (x)dx. (4.59)

192 4 Transformations of Functions and Signals

The Hilbert transform of the function f is then

H[f](x) = i
∑
n∈Z

sign(n)anρn(x) ≈ i
N−1∑

n=−N

sign(n)anρn(x). (4.60)

If the function f is real, the expansion coefficients satisfy an = a∗−n−1, so one needs
to compute only half of the coefficients an for n = 0,1, . . . ,N − 1. The coefficients
an are given by (4.59). Alternatively, one can use the substitution x = tan(φ/2) to
rewrite the very same expression as

an = 1

2π

∫ π

−π

gn(φ)dφ, gn(φ) =
(

1 − i tan
φ

2

)
f

(
tan

φ

2

)
e−inφ.

The function g is periodic on [−π,π] and limφ→±π g(φ) = 0 is assumed. The
approximation of the integral in the above expression can be obtained by vari-
ous integration methods, for example, by using the trapezoidal rule with the points
φj = πj/N for |j | < N . This results in the approximation

an ≈ 1

2N

N−1∑
j=−N+1

gn(φj).

By evaluating this formula with the fast Fourier transform we can compute the co-
efficients an for all n at once, requiring only O(N logN) operations. This approach
is reliable in cases where the coefficients an rapidly decrease as n increases. This
behavior is typical for functions f that themselves fall off rapidly at infinity (see
Fig. 4.16 (right)). Details can be found in [46].

4.5.4 Discrete Hilbert Transformation

We sample a continuous signal s equidistantly in t in steps of � and obtain the
discrete signal {sk}k∈Z to which we assign a discrete Hilbert transform {ŝk}k∈Z.
While there are several ways to do this, all of them reproduce the continuous trans-
form (4.48) in the limit � → 0 if s is smooth enough. The discrete Hilbert transform
is an arbitrarily good approximation of the continuous one.

Time-Domain Approach The discrete variant of the Hilbert transform for a
finitely long signal {sk}, specified at times tk = k�, can be cast in the form

ŝn = HN [s]n = 1

π

N∑
m=1

sn+m − sn−m

m
,

where N is the number of points in the sample to the left and right of tn which
are included in the sum. The discrete transform reverts to the continuous one when

4.5 Hilbert Transformation � 193

N → ∞ and � → 0. “Infinitely long” signals occur when there is an incessant flow
of data from the measuring apparatus and we wish to process them in real time, or if
the amount of data is large compared to the available memory. We should therefore
always estimate the extent of the signal with respect to some reference point that we
still wish to use in the computation of the transform.

It is possible to compute the discrete Hilbert transform by numerically evaluating
the integral in the continuous transform (4.48). We either use the interpolant of the
signal s or a chosen model function is fitted to the signal: both can be simply and
stably convoluted with the function h(t) = 1/(πt). By linear interpolation of the
signal values [47] we obtain the discrete transform

HN [s]n = − 1

π

{
n−2∑
k=0

skφ(k − n + 1) + (sk − sk+1)
[
1 + (n − k)φ(n − k)

]

+ sn−1 − sn+1 +
N−1∑

k=n+2

skφ(k − n)

+ (sk−1 − sk)
[
1 + (k − n)φ(k − n)

]}
,

where we sample the signal sk at k�t (k = 0,1, . . . ,N − 1) and φ(k) = log(1 −
1/k). This computation requires O(N2) operations. Boche’s approach [48] which
is tailored to signals of limited bandwidth, is also found in practice.

Fourier-Domain Approach The Fourier approach is fruitful for periodic signals
{sk}N−1

k=0 (for which sk+N = sk). The discrete Fourier transform of the signal is

Sn = FN [s]n = 1

N

N−1∑
k=0

sk e−i2πnk/N .

We define the discrete Hilbert transform for such a signal as the convolution

ŝn = HN [s]n =
N−1∑
k=0

hn−ksk =
N−1∑
k=0

hksn−k, (4.61)

where {hk}N−1
k=0 is the convolution kernel and we assume hk+N = hk , sk+N =

sk . We determine the kernel by translating the property (4.50) of the continu-
ous Hilbert transform to discrete language, namely H[e](t) = i sign(ω)e(t), where
e(t) = exp(iωt). This means

HN

[
e(k)

]
n

= i sign(N − 2k) e(k)
n , e(k)

n = exp(i 2πkn/N). (4.62)

We have already taken into account the definitions of the negative and positive fre-
quencies in the discrete Fourier transform. By using the relation between the discrete

194 4 Transformations of Functions and Signals

Fourier transform and the convolution, we can express the Hilbert transform (4.61)
as

HN [s]n = −NF−1
N [F]n, F = {HiSi}N−1

i=0 ,

where we have denoted S = FN [s] and H = FN [h]. Condition (4.62) is satisfied if
Hk = −i sign(N − 2k)/N . After using (4.62) the path to the discrete Hilbert trans-
form becomes clear: we compute the components of the Fourier transform Sk of the
signal s, multiply them by i sign(N − 2k), and compute the inverse Fourier trans-
form of the product:

HN [s]n = i
N−1∑
k=0

Sk sign(N − 2k) ei 2πnk/N . (4.63)

By analogy with the continuous case (4.51) we define the complex analytic signal
corresponding to the discrete Hilbert transform:

s#
n = sn − i ŝn, ŝn = HN [s]n.

Its real and imaginary parts can again be used to elegantly compute the instantaneous
quantities (see p. 186). For example, the instantaneous radial frequency αn and the
instantaneous angular frequency βn become

αn = s′
nsn + ŝ′

nŝn

s2
n + ŝ2

n

, βn = ŝ′
nsn − s′

nŝn

s2
n + ŝ2

n

, (4.64)

where ′ denotes the time derivative. Note that even these derivatives can be com-
puted by using the discrete Fourier transformation. If the array {fk}N−1

k=0 corresponds
to the discrete Fourier transform {Fn}N−1

n=0 , the time derivative of the component fk

is given by

f ′
k =

N−1∑
n=0

ωnFn ei 2πnk/N , ωn = 2π

N

[(
n − N

2

)
sign(N − 2n) + N

2

]
,

where the physical angular frequencies ωk belong to the individual Fourier modes.
Only O(N logN) operations are needed if FFT is used to compute the discrete
Hilbert transform (4.63).

The Fourier-domain approach is the fastest among the possibilities described
here, but it does have its deficiencies. The signal is periodic but rapid changes in
the signal may be aliased in the frequency spectrum and therefore misinterpreted
when the convolution is performed. It is not wise to use the Fourier approach if the
Hilbert transform falls off too slowly at infinity as the finite Fourier series is not
optimal for the description of the long tails. A detailed discussion of the variants of
the Hilbert transform with emphasis on signal processing applications can be found
in [34, 49, 50] and in the monumental work [51].

4.6 Wavelet Transformation � 195

Fig. 4.17 The basic idea of the continuous wavelet transform. [Top] The signal f (t) = sinωt ,
ω ∝ t . [Bottom] In this portion of the signal, the continuous wavelet transformation detects large
structures at short times (where the waves have a typical scale s ≈ 1.5) and small structures at long
times (scale s ≈ 0.3). The frequency and the scale of the oscillations are inversely proportional,
which generates the typical curvature of the transform (s ∝ ω−1 ∝ t−1)

4.6 Wavelet Transformation �

We may think of the wavelet transformation of a signal as an extension of its Fourier
analysis, through which not only the strengths of the signal’s frequency components
are determined, but also the times at which these components occur. The classic
example in Fig. 4.17 illustrates this basic idea for the signal sin(t2) whose frequency
linearly increases with time. By using the wavelet transformation we can also locate
changes in the signal that are not immediately apparent from its temporal behavior
alone (Fig. 4.18).

The continuous wavelet transform (CWT) of the function f is defined as

Lψ [f](s, t) = 1√
cψs

∫ ∞

−∞
f (τ)ψ∗

(
τ − t

s

)
dτ, t ∈ R, s �= 0,

where t is the time at which a feature of scale s is observed in the function f , and
cψ is the normalization constant. The function ψ , whose properties are given in the
following, should allow us to change the parameter s (the typical scale of a structure
in the signal f) as well as its shift t with respect to the signal f . By denoting

ψs(t) = ψ∗(−t/s)

we can rewrite the definition in the form of a convolution

Lψ [f](s, t) = 1√
cψs

∫ ∞

−∞
f (τ)ψs(t − τ)dτ. (4.65)

196 4 Transformations of Functions and Signals

Fig. 4.18 Continuous transform of a real signal with a complex Morlet wavelet (4.68) [Top] The
signal f (t) = t2 (t < 1) or f (t) = 1 + 2 log t (t ≥ 1) is continuous and has a continuous first
derivative at t = 1 while its second derivative is discontinuous. [Bottom] The phase of the wavelet
transform in the vicinity of t = 1 oscillates a couple of times, and reveals the location of the critical
point when the scale s is decreased

The function ψ should satisfy certain conditions. Its “energy” should be bounded,
which means

∫∞
−∞ |ψ(t)|2 dt < ∞, and the weighted integral of its spectral density

(the square of the Fourier transform ψ̂) should be finite:

cψ = 2π

∫ ∞

−∞
1

|ω|
∣∣ψ̂(ω)

∣∣2 dω < ∞.

The functions ψ found in the literature usually fulfill this admissibility condition by
design. Moreover, we require the functions ψ to fulfill

∫ ∞

−∞
ψ(η)dη = 0. (4.66)

The functions ψ therefore oscillate around the abscissa and fall off rapidly at large
distances from the origin, giving them the appearance of small waves and the nick-
name wavelets. The simplest wavelet is the Haar function

ψHaar(η) =

⎧⎪⎨
⎪⎩

1; 0 ≤ η < 1/2,

−1; 1/2 ≤ η < 1,

0; otherwise.

The derivative of Gaussian wavelets DOG(m) are also very simple to use. We obtain
them by successive derivatives of the Gauss function,

ψDOG(m)(η) = (−1)m+1

√
�(m + 1/2)

dm

dηm

(
e−η2/2). (4.67)

4.6 Wavelet Transformation � 197

Fig. 4.19 Examples of wavelets used in the continuous wavelet transformation. By horizontal
shifts and changes of scale the wavelet probes the features of the investigated signal and the times
at which these features appear. [Left] Haar wavelet. [Center] The DOG(2) wavelet known as the
“Mexican hat”. [Right] The DOG(6) wavelet

Another useful wavelet is the complex Morlet wavelet

ψMorlet(η) = π−1/4 eiω0η e−η2/2, ω0 ∈ [5,6]. (4.68)

(For the Morlet wavelet (4.66) is not exactly fulfilled; the absolute precision to
which the equality is valid improves when ω0 is increased, and amounts to at least
≈ 10−5 for ω0 > 5.) When complex wavelets are used, the corresponding trans-
forms should be specified in terms of their magnitudes and phases (see Fig. 4.18).
Some typical wavelets are shown in Fig. 4.19.

4.6.1 Numerical Computation of the Wavelet Transform

The continuous wavelet transform (4.65) of the discrete values of the signal fk with
the chosen scale parameter s is evaluated by computing the convolution sum [52]

Lψ [f](s, tn) = 1√
cψs

N−1∑
k=0

fkψ
∗
(

(k − n)�t

s

)
, n = 0,1, . . . ,N − 1.

We take the values of s from an arbitrary set {sm}M−1
m=0 with some M < N . The most

simple choice is sm = (m + 1)�t . The computation of the sum becomes unaccept-
ably slow for large N and M as the time cost increases as O(MN2). Since the
convolution of two functions in configuration space is equivalent to the multiplica-
tion of their Fourier transforms in the Fourier space, the CWT can be computed by
using the fast Fourier transformation (FFT).

198 4 Transformations of Functions and Signals

Wavelets Given as Continuous Functions The procedure is simple when
wavelet functions exist in closed forms and for which the analytic form of their
Fourier transforms in known. First we use the FFT to compute the Fourier trans-
form F of the signal f which has been sampled at N points with uniform spacings
�t :

Fk = FN [f]k = 1

N

N−1∑
n=0

fn e−i 2πkn/N . (4.69)

If the wavelet is given by the function ψ(t/s) in configuration space, its correlate
in Fourier space (in the continuous limit) is the function ψ̂(sω). For example, the
family of wavelets (4.67) corresponds to the family of transforms

ψ̂DOG(m)(sω) = −im√
�(m + 1/2)

(sω)m e−(sω)2/2.

The wavelet transform is then evaluated by using the inverse FFT to compute the
sum

Lψ [f](s, tn) = 1√
cψs

N−1∑
k=0

Fkψ̂
∗(sωk) eiωkn�t ,

where

ωk =
{

2πk/(N�t); k ≤ N/2,

−2πk/(N�t); k > N/2.

The numerical cost of this procedure is O(MN logN).

Wavelets Given at Discrete Points If the wavelet is not specified as an analytic
function or if its Fourier representation is not known, we need to compute both
the discrete Fourier transform of the sampled signal (4.69) and the discrete Fourier
transform of the wavelet at scale s, i.e.

Yk = FN [ψs]k = 1

N

N−1∑
n=0

ψ∗(−n�t/s) e−i 2πkn/N .

The convolution is at the heart of this procedure and the way the sampling is done
requires some attention. For even wavelets it makes sense to adopt the sampling
which preserves the symmetry of the wavelet about its origin. The wavelet and the
signal are sampled as shown in Fig. 4.20.

We obtain the wavelet transform by multiplying the arrays Fk ≡ FN [f]k and
Yk ≡ FN [ψs]k component-wise, diving the result by

√
cψs, and computing the in-

verse Fourier transform of the product array Wk :

Lψ [f](s) = NF−1
N [W], Wk ≡ 1√

cψs
FkYk.

4.6 Wavelet Transformation � 199

Fig. 4.20 Sampling at N = 32 points for the computation of the continuous wavelet transform.
[Left] Periodic sampling of the wavelet in its natural (dimensionless) scale at the maximum scaling
parameter s. The wavelet is sampled at N points on [ηmin, ηmax] = [−4,4]. When we wish to
reduce the parameter s, we insert zeros at the location marked by the thick arrow and the symbol ∗.
[Right] Sampling of the signal at N points of the physical (time) scale or the interval [0,N�t]. The
relation between the dimensionless variable η and the physical time t is η = t (ηmax −ηmin)/(N�t).
For details see [53]

The inverse procedure is at hand: we reconstruct the original signal from the contin-
uous wavelet transform by deconvolution, i.e. by dividing the Fourier representation
of the transform by the Fourier representation of the wavelet. We form the arrays
Lk ≡ FN [Lψ [f](s)]k and Yk ≡ FN [ψs]k , divide them, multiply them by

√
cψs,

and compute the inverse Fourier transform of the quotient array:

f = N−1F−1
N [F], Fk ≡ √

cψs(Lk/Yk).

(The parameter s obviously has to be chosen such that Yk �= 0 for all k.)

4.6.2 Discrete Wavelet Transform

Even though we have sampled the signal and the wavelet at discrete points only, the
transform described above can still be considered continuous, since the parameter
s and the time axis span all M × N values. The continuous wavelet transform of a
function sampled at N points has M ×N values and is therefore highly redundant. In
contrast, the wavelet transform that represents the signal uniquely at just ≈ N points,
is known as the discrete wavelet transform (DWT). It lies at the heart of modern data
(de)compression algorithms (an example with the CWT is given in Problem 4.7.4).
The treatment of the DWT is beyond the scope of this book; excellent introductory
texts are [54–57]. A comparison of the wavelet transform and the Fourier transform
is discussed in [58].

200 4 Transformations of Functions and Signals

4.7 Problems

4.7.1 Fourier Spectrum of Signals

The discrete Fourier transformation (DFT, Sect. 4.2.2) is the fundamental tool of
signal analysis. First we confirm the formulas for known pairs of periodic signals
f = {fj }N−1

j=0 and their transforms F = {Fk}N−1
k=0 = FN [f], for example,

fj = eiaj/N ⇔ Fk = 1

N

{(
eia − 1

)
/
(
ei(a−2kπ)/N − 1

)}
,

Refj , Imfj ∼ N (0,1) ⇔ ReFk, ImFk ∼ N (0,N),

where N (μ,σ 2) is the normal distribution with average μ and variance σ 2.⊙
Compute the Fourier transforms of simple signals, in which several frequen-

cies are represented. Compare the results in the case when the sample is periodic
on the interval (the chosen frequencies are integer multiples of the fundamental fre-
quency), to those cases when it is not. Observe the effect of aliasing for a sample that
includes frequencies above the critical value. Show that for real signals FN−k = F ∗

k

and that FN and F−1
N are truly inverse operations.

Perform a Fourier analysis of the sound generated by tapping on a rectangular
wood-box resonator, creating transient acoustic waves in its interior. Plot the power
spectral density and identify the eigenmodes of the resonator from its most promi-
nent peaks. Analyze the sound of the tuning fork attached to the resonator of a guitar.
(The signals can be found at the book’s web-page.)⊕

Fourier-analyze the concluding chord of the Toccata and Fugue for organ
in d-minor, BWV 565, of J.S. Bach (Fig. 4.5). The signal from the audio CD has
been sampled at 44100 Hz, 11025 Hz, 5512 Hz, 2756 Hz, 1378 Hz, and 882 Hz.
By listening to the recordings in the .mp3 format find out what happens when the
sampling frequency is reduced, then try to confirm this by Fourier analysis.

4.7.2 Fourier Analysis of the Doppler Effect

Here we discuss the experiment set up
in Salzburg, the birthplace of C. Doppler
(1805–1853). A speaker is attached to a ro-
tating wheel with radius R, and there is a mi-
crophone in the plane of rotation at a distance
L from the center of the wheel, as shown in
the figure. The rotation angular frequency is
� = v/R, where v is the tangential veloc-
ity. The radius vector r(t) describes the rela-
tive position of the microphone with respect
to the speaker. The speaker periodically ap-
proaches and recedes from the microphone
(period 2π/�).

4.7 Problems 201

Fig. 4.21 [Left] An example of the signal at v = 100 m/s, R = 10 m, L = 10.5 m, ω = 1000/s,
and c = 340 m/s. [Right] The Fourier power spectral density. The peaks in the spectrum occur
approximately at ω/(1 + v/c) = 773 Hz and ω/(1 − v/c) = 1417 Hz

The microphone is used to measure the pressure differences δp(t) given by the
formula

δp(t) = A
cos[ω(t − x(�t)/c)]

x(�t)
.

Here A is the amplitude, ω is the angular frequency of the emitted sound and c is
its velocity. The function x(t) is defined implicitly as the positive solution of the
equation l2 + r2 + 2lr sin(t − x) = x2, where l = �L/c and r = �R/c.⊙

Let v = 100 m/s and A = 1. Sample the signal δp(t) at time intervals
�t = 1/(�N) over two periods. This gives you the discrete signal fj = δp(j �t)

at j = 0,1, . . . ,N − 1. Compute the DFT and the Hilbert transform of the discrete
signal in the limits L � R, L � R, and L ≈ R, and analyze its single-sided power
spectral density (PSD), its instantaneous amplitude, and instantaneous frequency.
An example of the signal and its spectral density is shown in Fig. 4.21. Compare the
results to the classical Doppler prediction.⊕

Analyze the PSD of the signal at smaller time windows which open just
slightly ahead of the time when the speaker is nearest to the microphone, and close
just after that.

4.7.3 Use of Laplace Transformation and Its Inverse

The time dependence of the charge on a capacitor connected in series to a electric
generator, a resistor, and a coil, is described by the differential equation

L
d2Q

dt2
+ R

dQ

dt
+ 1

C
Q = Ug(t)

202 4 Transformations of Functions and Signals

or, in dimensionless form, at given R, C and L, with R
√

C/L = 1,

ẍ + ẋ + x = g(t).

With initial conditions x(0) = ẋ(0) = 0 the source generates a voltage pulse of the
form

g(t) = 1 − θ(t − π) =
{

1; 0 ≤ t < π,

0; t ≥ π.

By using the properties (4.45) and Table 4.1, and by taking the initial conditions into
account, the Laplace transform of the differential equation is

s2X(s) + sX(s) + X(s) = L[1] −L
[
θ(t − π)

]= (
1 − e−πs

)
/s

or

X(s) ≡ (
1 − e−πs

)
H(s), H(s) = 1

s(s2 + s + 1)
= 1

s
− (s + 1

2) + 1
2

(s + 1
2)2 + 3

4

.

Let us denote h(t) = L−1[H] and remember that the inverse Laplace transforma-
tion is linear. Then by looking at Table 4.1 once more and considering the property
L[ectf (t)] = F(s − c), we find the analytic solution

x(t) = L−1[X] = L−1[H] − e−πsL−1[H] = h(t) − h(t − π)θ(t − π),

where

h(t) = L−1[H] = 1 − 1

3
e−t/2

(
3 cos

√
3

2
t + √

3 sin

√
3

2
t

)
.

⊙
Use the inverse Laplace transformation to find the solution x(t) from the

function X(s) = (1 − e−πs)H(s). Since a discontinuous function g(t) appears in
the time domain, the numerical inverse should be computed by dedicated algorithms
specially tailored to such functions. You may use the methods from [27].

4.7.4 Use of the Wavelet Transformation

The continuous wavelet transformation is one of the basic tools in signal process-
ing and analysis. We use it to determine the frequency components of signals and
the instances in time when individual components actually occur: this is its main
advantage over the usual Fourier transformation.⊙

Use the continuous wavelet transformation on a simple periodic signal to
which components with higher frequencies have been admixed at certain subinter-

References 203

Fig. 4.22 [Left] The signal (4.70) with three frequency components, two of which appear only oc-
casionally. [Right] A recording of the intensity of sound caused by quickly waving a bamboo-stick
through air

vals, for example,

f (t) =

⎧⎪⎨
⎪⎩

sin t + 0.2 sin 10t; π ≤ t ≤ 2π,

sin t + 0.1 sin 20t; 4π ≤ t ≤ 5π,

sin t; otherwise

(4.70)

(see Fig. 4.22 (left)). You can additionally perturb the signal by mixing it with noise
of various amplitudes. How do such admixtures influence the quality (the resolution
capability) of the wavelet transform? Use different types of wavelet functions. What
differences can you observe?⊕

The continuous wavelet transformation also gives us some basic feeling
for the properties of compression and decompression of data. Figure 4.22 (right)
shows a typical acoustic signal. (The file can be found at the book’s web-page.)
By using the procedure described in Sect. 4.6.1 compute the continuous wavelet
transform for this signal. Set to zero all components in the transform that are below
a certain chosen threshold (for example, keep only 20, 10, or 5 % of the strongest
components). Then perform the inverse wavelet transformation and compare the
result to the original signal. How has it changed? Do you reach the same conclusion
if you repeat the exercise with the Fourier transform? (Use the FFT to map the signal
into Fourier space, keep 20, 10, or 5 % of the strongest components, and compute
the inverse FFT.)

References

1. B.D. MacCluer, Elementary Functional Analysis (Springer, New York, 2010)
2. C. Shannon, Communication in the presence of noise. Proc. IEEE 86, 447 (1998) (reprint)
3. M. Unser, Sampling-50 years after Shannon. Proc. IEEE 88, 569 (2000)

204 4 Transformations of Functions and Signals

4. H. Nyquist, Certain topics in telegraph transmission theory. Proc. IEEE 90, 280 (2002)
(reprint)

5. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Fundamentals in Sin-
gle Domains (Springer, Berlin, 2006)

6. D. Donnelly, B. Rust, The fast Fourier transform for experimentalists, part I: concepts. Com-
put. Sci. Eng. Mar/Apr, 80 (2005)

7. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform.
Proc. IEEE 66, 51 (1978)

8. M. Frigo, S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93, 216
(2005); documentation can be found at http://www.fftw.org

9. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of
Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

10. P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art. Signal
Process. 19, 259 (1990)

11. J.C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform.
SIAM J. Sci. Comput. 17, 1150 (1996)

12. G. Szegö, Orthogonal Polynomials (Am. Math. Soc., Providence, 1939)
13. T.J. Rivlin, The Chebyshev Polynomials (Wiley, New York, 1974)
14. V. Rokhlin, A fast algorithm for discrete Laplace transformation. J. Complex. 4, 12 (1988)
15. J. Strain, A fast Laplace transform based on Laguerre functions. Math. Comput. 58, 275

(1992)
16. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mine-

ola, 1972)
17. S. Zhang, J. Jin, Computation of Special Functions (Wiley-Interscience, New York, 1996)
18. W.E. Boyce, R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems,

5th edn. (Wiley, New York, 1992)
19. J. Abate, P.P. Valkó, Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng.

60, 979 (2004)
20. A.M. Cohen, Numerical Methods for Laplace Transform Inversion (Springer, New York,

2007)
21. B. Davies, B. Martin, Numerical inversion of the Laplace transform: a survey and comparison

of methods. J. Comput. Phys. 33, 1 (1979)
22. D.G. Duffy, On the numerical inversion of Laplace transforms: comparison of three new meth-

ods on characteristic problems from applications. ACM Trans. Math. Softw. 19, 333 (1993)
23. C.L. Epstein, J. Schotland, The bad truth about Laplace’s transform. SIAM Rev. 50, 504

(2008)
24. R. Piessens, Gaussian quadrature formulas for the numerical integration of Bromwich’s inte-

gral and the inversion of the Laplace transform. J. Eng. Math. 5, 1 (1971)
25. L.N. Trefethen, J.A.C. Weideman, T. Schmelzer, Talbot quadratures and rational approxima-

tions. BIT Numer. Math. 46, 653 (2006)
26. J. Abate, W. Whitt, The Fourier-series method for inverting transforms of probability distribu-

tions. Queueing Syst. 10, 5 (1992)
27. P. den Iseger, Numerical transform inversion using Gaussian quadrature. Probab. Eng. Inf. Sci.

20, 1 (2006)
28. A. Yonemoto, T. Hisikado, K. Okumura, Accuracy improvement of the FFT-based numerical

inversion of Laplace transforms. IEEE Proc., Circuits Devices Syst. 150, 399 (2003)
29. J. Abate, G.L. Choudhury, On the Laguerre method for numerically inverting Laplace trans-

forms. INFORMS J. Comput. 8, 413 (1996). This paper presents efficient algorithms based
on the expansion of the function f in terms of Laguerre polynomials and the corresponding
computation of L[f] and L−1[F]

30. E. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edn. (Clarendon, Oxford,
1948)

31. L. Grafakos, Classical and Modern Fourier Analysis (Prentice Hall, New Jersey, 2003)

References 205

32. M.L. Glasser, Some useful properties of the Hilbert transform. SIAM J. Math. Anal. 15, 1228
(1984)

33. R. Wong, Asymptotic expansion of the Hilbert transform. SIAM J. Math. Anal. 11, 92 (1980)
34. S.L. Hahn, Hilbert Transform in Signal Processing (Artech House, Boston, 1996)
35. W.J. Freeman, Origin, structure, and role of background EEG activity, part 1: analytic ampli-

tude. Clin. Neurophysiol. 115, 2077 (2004)
36. W.J. Freeman, Origin, structure, and role of background EEG activity, part 2: analytic phase.

Clin. Neurophysiol. 115, 2089 (2004)
37. W.J. Freeman, Origin, structure, and role of background EEG activity, part 3: neural frame

classification. Clin. Neurophysiol. 116, 1118 (2005)
38. W.J. Freeman, Origin, structure, and role of background EEG activity, part 4: neural frame

simulation. Clin. Neurophysiol. 117, 572 (2006)
39. M. West, A. Krystal, EEG, Duke University
40. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)
41. M. Nandagopal, N. Arunajadai, On finite evaluation of finite Hilbert transform. Comput. Sci.

Eng. 9, 90 (2007)
42. T. Hasegawa, T. Torii, Hilbert and Hadamard transforms by generalized Chebyshev expansion.

J. Comput. Appl. Math. 51, 71 (1994)
43. W. Gautschi, J. Waldvogel, Computing the Hilbert transform of the generalized Laguerre and

Hermite weight functions. BIT Numer. Math. 41, 490 (2001)
44. V.R. Kress, E. Martensen, Anwendung der Rechteckregel auf die reelle Hilberttransformation

mit unendlichem Intervall. Z. Angew. Math. Mech. 50, 61 (1970)
45. F.W. King, G.J. Smethells, G.T. Helleloid, P.J. Pelzl, Numerical evaluation of Hilbert trans-

forms for oscillatory functions: a convergence accelerator approach. Comput. Phys. Commun.
145, 256 (2002)

46. J.A.C. Weideman, Computing the Hilbert transform on the real line. Math. Comput. 64, 745
(1995). Attention: the authors use a non-standard definition sign(0) = 1; in Eq. (22) correct
1/N → 1/(2N)

47. X. Wang, Numerical implementation of the Hilbert transform. PhD thesis, University of
Saskatchewan, Saskatoon, 2006

48. H. Boche, M. Protzmann, A new algorithm for the reconstruction of the band-limited functions
and their Hilbert transform. IEEE Trans. Instrum. Meas. 46, 442 (1997)

49. A.V. Oppenheim, R.W. Schafer, Discrete-time Signal Processing, 2nd edn. (Prentice Hall,
New Jersey, 1989)

50. R. Bracewell, The Fourier Transform and Its Applications, 2nd edn. (McGraw-Hill, Reading,
1986)

51. F.W. King, Hilbert Transforms, Vols. 1 & 2. Encyclopedia of Mathematics and Its Applica-
tions, vols. 124 & 125 (Cambridge University Press, Cambridge, 2009)

52. C. Torrence, G.P. Compo, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79,
61 (1998)

53. D. Jordan, R.W. Miksad, E.J. Powers, Implementation of the continuous wavelet transform for
digital time series analysis. Rev. Sci. Instrum. 68, 1484 (1997)

54. P.S. Addison, The Illustrated Wavelet Transform Handbook (Institute of Physics, Bristol,
2002)

55. H.-G. Stark, Wavelets and Signal Processing. An Application-Based Introduction (Springer,
Berlin, 2005)

56. G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994)
57. G. Kaiser, Physical wavelets and their sources: real physics in complex space-time. J. Phys. A,

Math. Gen. 36, R291 (2003). A physicist might find particular pleasure in physical (acoustic
and electro-magnetic) wavelets discussed in this paper

58. J.F. Kirby, Which wavelet best reproduces the Fourier power spectrum? Comput. Geosci. 31,
846 (2005)

Chapter 5
Statistical Analysis and Modeling of Data

We record the outcomes of physical measurements as signals (sequences of values),
where we are not interested in each value in particular but the characteristics of the
signal as a whole. Signals can be analyzed in the statistical sense, where the time
ordering of data is irrelevant, or in the functional sense, where it becomes essential:
then we imagine that the signal (the measurement of a quantity) originates in the
source (the dynamical system), and we may be able to infer the properties of that
system from the properties of the signal. In the following two chapters we introduce
the basic methods of both approaches [1].

5.1 Basic Data Analysis

5.1.1 Probability Distributions

Figure 5.1 (left) shows the probability density function

p(x) =
√

2

π

1

σ 3
x2 exp

(−x2/2σ 2), σ = 2, (5.1)

describing the classical Maxwell velocity distribution, while Fig. 5.1 (right) shows
the corresponding cumulative distribution function P(x). Both have their usual
meanings: the value P(x) is equal to the probability P that a random variable X

has a value smaller than x,

P(x) =P(X < x), 1 − P(x) =P(X ≥ x), P (0) = 0, P (∞) = 1,

while the probability density p(x) = dP(x)/dx is a measure of probability for X

assuming a value on the interval [x, x + dx),

P(a ≤ X < b) =
∫ b

a

p(x)dx = P(b) − P(a).

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_5, © Springer-Verlag Berlin Heidelberg 2012

207

208 5 Statistical Analysis and Modeling of Data

Fig. 5.1 Maxwell’s distribution. [Left] Probability density (5.1) with the maximum (max), median
(med), and average (ave) drawn in. [Right] Cumulative distribution function P (x) = ∫ x

0 p(ξ)dξ .
Shown are the first and last decile, the first and last quartile with the inter-quartile range (IQR), and
the median

A physicist dealing with the analysis of finite-size data samples typically encoun-
ters just a handful of probability distributions. But even within this limited set she
sometimes finds it difficult to judge whether the measurements are in agreement
with this or that known distribution, or if perhaps there is an unexpected deviation
from it.

In addition to the analytic form of the probability density, Fig. 5.1 (left) also
illustrates a typical situation with two sets of measurements (full and empty circles
with uncertainties) generating the usual every-day questions. Are the two sets of
data mutually consistent? How can they be compared at all? Is the arithmetic mean
(ave), the median (med), or the maximum of the distribution (max) the best measure
of consistency? Are the two sets of data scattered similarly? Is either of the sets
consistent with the distribution that is expected (in this case, Maxwell’s)? What can
we do if a couple of data values appear to lie very far from the rest?

5.1.2 Moments of Distributions

The basic quantities that can be computed from the data set (the sample) x = {xi}n−1
i=0

gathered from a very large population, are the arithmetic mean x and the variance
(dispersion) s2

x or the standard deviation sx ,

x = 1

n

n−1∑
i=0

xi, s2
x = 1

n − 1

n−1∑
i=0

(xi − x)2, sx =
√

s2
x . (5.2)

The sample mean x is a non-biased estimate for the true average value of the whole
population, 〈x〉, and the sample variance s2

x is a non-biased estimate for the true
variance of the population, σ 2

x .

5.1 Basic Data Analysis 209

The average of an observable f with respect to the probability density p is

〈f 〉 =
∫

f (x)p(x)dx. (5.3)

If the data xi come from the population in which the elements are distributed ac-
cording to the probability density p, the measures (5.2) are the approximations of
their first two central moments

〈x〉 = lim
n→∞x, σ 2

x = 〈(
x − 〈x〉)2〉= lim

n→∞ s2
x .

The convergence of the statistical measures x and sx with increasing n depends
on the properties of the data distribution. In certain cases these measures do not
even exist. Assume that the data is spread throughout the whole real axis and that
their probability density function p falls off as O(|x|−ρ), where ρ > 1. Then the
average does not exist for ρ ≤ 2 and the deviation does not exist for ρ ≤ 3. If the first
and the second central moments of a random variable are bounded and n � 1, the
exact values can be related to the measured ones within some statistical confidence
interval (see Sect. 5.1.3).

When we are dealing with histogrammed and non-normalized data, as in Fig. 5.1
(left), the estimates x and s2

x in the sense of the definition (5.3) can be computed by
the weighted averages

x =
∑n−1

i=0 xip(xi)∑n−1
i=0 p(xi)

, s2
x = n

n − 1

∑n−1
i=0 (xi − x)2p(xi)∑n−1

i=0 p(xi)
. (5.4)

5.1.3 Uncertainties of Moments of Distributions

In most cases we do not know the statistical nature of the individual measurements’
uncertainties. We do assume that the errors behave randomly, so that each measure-
ment consists of a true value 〈x〉 and a random error �xi ,

xi = 〈x〉 + �xi, (5.5)

but we do not know the random process that generates the error �xi . Physicists
usually assume that �xi are normally distributed (“Gaussian”), so that the random
variables of measurements xi possess the probability density

p(x) = 1√
2πσ 2

exp

(
− (x − 〈x〉)2

2σ 2

)
, (5.6)

which is defined by its moments 〈x〉 and σ 2 = 〈(x − 〈x〉)2〉. Then, for n � 1, x is
also normally distributed, and for the estimates (5.2) we have the uncertainties

�x = sx√
n
, �s2

x = s2
x

√
2

n − 1
, �sx = sx√

2(n − 1)
. (5.7)

210 5 Statistical Analysis and Modeling of Data

We give the measurement results in the form 〈x〉 = x ± �x, σ 2 = s2
x ± �s2

x ,
σ = sx ±�sx , where the uncertainties correspond to confidence intervals (more will
be said in Sect. 5.3 at Fig. 5.5). Note, however, that any sufficiently smooth observ-
able f of the quantity x is distributed approximately normally, with the confidence
interval

f
(〈x〉)±

∣∣∣∣df

dx

(〈x〉)
∣∣∣∣�x.

Only the local behavior of f near 〈x〉 is relevant for this estimate. The case of two
noisy and statistically independent quantities x ± �x and y ± �y can be described
by a function of two variables f (x, y), and the variance computed as

(�f)2 =
(

∂f (x, y)

∂x

)2

(�x)2 +
(

∂f (x, y)

∂y

)2

(�y)2.

The estimates (5.2) and their uncertainties (5.7) apply to n independent mea-
surements with equal measurement errors, from which we wish to infer the un-
known quantities 〈x〉 and σx . If the values xi have different but known errors σi , the
weighted averaging (5.4) results in the non-biased estimate for 〈x〉 and its uncer-
tainty

x = 1

w

n−1∑
i=0

wixi, wi = 1

σ 2
i

, w =
n−1∑
i=0

wi, �x = 1√
w

. (5.8)

5.2 Robust Statistics

Sometimes the population sample contains values that clearly deviate from the ma-
jority of other values. They are known as outliers [2]. The outliers may represent
errors in the measurement or genuine data that indeed strongly deviate from the rest.
(Early data from the Nimbus 7 satellite hinted at the hole in the ozone layer above
Antarctica, but the researchers discarded them as instrumental errors [3].) Robust
statistics is a methodology to determine the parameters that characterize well the
samples with relatively few outliers [4]. “Robustness” implies a small sensitivity of
the estimated mean and variance to the inclusion or exclusion of some or all outliers
from the sample.

Example The classical case leading us to consider the use of robust methods are the
24 measurements of copper content in bread flour [5, 6],

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 3.03 3.03 3.10 3.37
3.40 3.40 3.40 3.50 3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95,

shown in Fig. 5.2. The arithmetic mean of the whole sample is x = 4.28 and the
standard deviation is sx = 5.30. If the value 28.95 is excluded from the sample, we

5.2 Robust Statistics 211

Fig. 5.2 The sample (24 values) of copper content in flour in µg/g. The value x23 = 28.95 (and
potentially x22 = 5.28) represent outliers. The median (med) is much less sensitive to the exclusion
of the extreme outlier than the arithmetic mean (ave)

get x = 3.21 and sx = 0.69. A single outlier therefore substantially modifies both
x and sx , so clearly these two quantities do not give us robust estimates for the
properties of the complete population.

A much more robust measure for the “center” of the sample x = {xi}n−1
i=0 is the

median. It is defined as the value that divides the ordered sample (xi ≤ xi+1) in two,
such that its left and right portions contain half of the data each,

median(x) =
{

x(n−1)/2; n odd,
1
2 (xn/2−1 + xn/2); n even.

If the probability density has the form p(x − μ), where μ = x = median(x), the
variance of the sample median tends to 1/[4np(0)2] if p(0) > 0 and n � 1. The
spread of the data around the median can be estimated by the median absolute devi-
ation (MAD)

MAD(x) = median
(∣∣x − 1nmedian(x)

∣∣), (5.9)

where 1n = {1,1, . . . ,1} is the sequence of values 1 with length n. It makes sense
to define a quantity that can be directly compared to the standard deviation,

MADN(x) = 1.4826 MAD(x).

Namely, the factor 1.4826 is determined such that for the normal distribution
N(μ,σ 2), MADN = σ holds. The values for all data in the flour sample are
median = 3.385 and MADN = 0.526, while they are 3.37 and 0.504 if the outlier at
28.95 is excluded. Both values change only insignificantly (see Fig. 5.2).

It is clear from the uncertainties (5.7) that the arithmetic mean for n � 1 is dis-
tributed normally as N(μ,σ 2/n) if the measurement errors in (5.5) are distributed
normally as N(0, σ 2). With the same assumption for the errors, the median is dis-
tributed normally as N(μ, (π/2)σ 2/n), so the variance of the median for the normal
distribution is π/2 ≈ 1.571-times larger than the variance of the arithmetic mean.
We say that the median in the case of the normal distribution has low asymptotic
efficiency eff ≈ 1/1.571 ≈ 64 %.

Estimating the “center” and “spread” of data by using the median and MADN
only weakly depends on the values in the distribution tails, but the computation of

212 5 Statistical Analysis and Modeling of Data

Fig. 5.3 The box diagram for a visual identification of outliers. The outliers can be expected
outside of the interval [X−,X+] = [Q1 − 3

2 IQR,Q3 + 3
2 IQR]

both estimates is numerically more costly than the computation of x and s2
x , since

sorting the data requires O(n logn) operations and O(n) of memory.

5.2.1 Hunting for Outliers

Chasing outliers in one dimension is but a tiny subgroup of activities related to the
search for subsets of data that do not behave according to expectations or deviate
from the bulk of the data set. In literature, these activities are known under the names
anomaly detection, outlier detection, novelty detection, or exception mining (see the
review articles [7–10]), and represent one of the tools of data mining.

The school-book way of eliminating outliers is the “3σ -rule”. It suggests us to
eliminate all data deviating from the sample mean x by more than ±3sx , or to as-
sign all such data the values x ± 3sx . This method has numerous deficiencies. For
example, it forces us to needlessly remove approximately three data points from
an impeccable normally distributed sample of size n = 1000, since the interval
[x − 3sx, x + 3sx] for large n includes 99.7 % of data. Moreover, the computa-
tion of the mean and the variance themselves is sensitive to outliers. Instead, it is
preferable to use the criterion

xi outlier ⇐⇒
∣∣∣∣xi − median(x)

MADN(x)

∣∣∣∣> 3.5. (5.10)

A simple way to visually identify the outlier candidates is to draw a box diagram.
First we compute the median of the sample and the first and third quartiles Q1 and
Q3: this splits the sample into four compartments with a fourth of the data in each
of them. Then the inter-quartile range (IQR) is formed, along with the boundaries
X− and X+ beyond which outliers can be expected,

IQR = Q3 − Q1, X− = Q1 − 3

2
IQR, X+ = Q3 + 3

2
IQR.

This method identifies the values x22 and x23 from the flour sample as outliers (see
Fig. 5.3). The interval [X−,X+] for large n contains 99.3 % of all data, and for the
normal distribution, the method is approximately equivalent to the “3σ -rule”.

5.2 Robust Statistics 213

In general, all statistical methods for the identification of outliers in the sample x

already assume a certain probability distribution for the whole population (in most
cases, normal). The outliers are sought in the range

{
x : |x − μ̂n| > σ̂ng(n,αn)

}
, (5.11)

where μ̂n is an estimate for the population average, σ̂n is the estimate for its disper-
sion, and the function g(n,αn) depends on the sample size n. With certain approxi-
mations, all values x lying within (5.11) are considered as outliers with a probability
of 1−αn. The criterion (5.10) is just (5.11) with μ̂n = median(x), σ̂n = MADN(x),
and g(n,αn) = 3.5, and is known as the Hampel identifier. A more precise definition
of these quantities is given in [11, 12] from which we take (with minor simplifica-
tions) the formulas valid for n ≥ 10:

g(n,0.05) ≈ 2.9+12.5(n−5.5)−0.572, g(n,0.01) ≈ 3.8+25.3(n−7.0)−0.601.

The criterion (5.11) also performs well if μ̂n is set to the center of the data, while
σ̂n is set to the length of the shortest half-sample of the size [n/2] + 1 (Rousseeuw
identifier). The older methods which are still in broad use—partly due to ignorance
of better options—are described in [13] and [14, 15].

5.2.2 M-Estimates of Location

Eliminating outliers is not the best idea since this procedure inevitably implies a loss
of information [16]. In modern approaches we tend to keep the outliers but take them
into account with a smaller weight. One such approach is followed by M-estimates
[17]: these methods attempt to estimate the properties of data sets {xi}n−1

i=0 by satis-
factorily and stably characterizing the majority of the data in the sample, regardless
of the presence or absence of outliers. In general, the M-estimate of location μ̂ that
tells us something about the location of the bulk of the data, is defined as

μ̂ = arg min
μ

n−1∑
i=0

ρ(xi − μ). (5.12)

This notation means that the parameter μ̂ is equal to μ which minimizes the sum on
the right-hand side. Here ρ(x) = − logp(x), p(x) = P ′(x), and P(x) is the cumu-
lative distribution function, according to which the error �xi in (5.5) is distributed.
The definition (5.12) follows from the requirement that the estimate μ̂ maximizes
the likelihood function; for details see [17]. If ρ is differentiable and ψ(x) = ρ′(x),
we can differentiate (5.12) and obtain

0 =
n−1∑
i=0

ψ(xi − μ̂). (5.13)

214 5 Statistical Analysis and Modeling of Data

Example In the measurement error �xi is normally distributed, as it is usually as-
sumed, then p(x) = exp(−x2/2)/

√
2π , ρ(x) = x2/2, and ψ(x) = x, so (5.12) and

(5.13) simplify to

μ̂ = arg min
μ

n−1∑
i=0

(xi − μ)2,

n−1∑
i=0

(xi − μ̂) = 0.

Both equations relate well-known stories: the latter is obviously solved by the mean,
μ̂ = x, while the former tells us that this x also minimizes the sum of the squares of
the differences between the measured data and x. Similarly, one can show that the
median minimizes the sum

∑n−1
i=0 |xi − μ|. The arithmetic mean and the median are

just special cases of M-estimates.

M-estimates are devised as weighted averages and as such they are also com-
puted [17]. For most realistic distributions ψ(0) = 0 and ψ ′(0) exists, so that ψ is
approximately linear near the origin. Equation (5.13) can then be written as

n−1∑
i=0

(xi − μ̂)W(xi − μ̂) = 0

or

μ̂ =
∑n−1

i=0 wixi∑n−1
i=0 wi

, wi = W(xi − μ̂), (5.14)

where W is the weight function. The essence of a good M-estimate is the choice of
a weight function that sufficiently damps the outliers at large |x|. Many functions
are in use, based on the presumed distributions of the measurement errors. In terms
of robustness, good representatives are the Tukey function

ψ(t) =
{

t (1 − t2/τ 2)2; |t | ≤ τ,

0; |t | > τ,
W(t) =

{
ψ(t)/t; |t | ≤ τ,

0; |t | > τ
(5.15)

and the Cauchy function

ψ(t) = t

1 + 1
2 t2

, W(t) = ψ(t)/t, (5.16)

shown in Fig. 5.4. When τ is increased in the Tukey function, more distant outliers
are admitted while the robustness of the M-estimate is reduced; on the other hand,
its asymptotic efficiency increases (and vice versa). The values τ = 3.44, 3.88, and
4.68 correspond to asymptotic efficiencies eff = 85, 90, and 95 % (asymptotic effi-
ciency has been defined on p. 211).

Equation (5.14) is implicit since the desired parameter μ̂ occurs at left and in the
weights wi , but it can be solved iteratively [17]. The convergence is guaranteed by
favorable properties of the function W . If we wish to compute the M-estimate of

5.2 Robust Statistics 215

Fig. 5.4 Weight functions for M-estimates of location. [Left] Tukey function (5.15). The parame-
ter τ determines the asymptotic efficiency. [Right] Cauchy function (5.16)

location in the case when the dispersion of the data σ̂ is already known, we define
the weights

w
(k)
i = W

(
xi − μ̂(k)

σ̂

)
, i = 0,1, . . . , n − 1, (5.17)

and rewrite (5.14) as an iteration

μ̂(k+1) =
∑n−1

i=0 w
(k)
i xi∑n−1

i=0 w
(k)
i

, (5.18)

where k is the iteration index.
The algorithm to compute the M-estimate of location is then

Input: Values x = {xi}n−1
i=0 and the relative precision of M-estimate ε

k = 0; μ̂(k) = median(x); σ̂ = MADN(x);
while (|μ̂(k+1) − μ̂(k)| > εσ̂ |) do

Compute the weights (5.17) with W from (5.15) or (5.16);
Compute the estimate (5.18);
k = k + 1;

end
Output: M-estimate of location μ̂

For the data in Fig. 5.2 and the Tukey function (parameter τ = 4.68, asymptotic
efficiency eff = 95 %) we get μ̂ = 3.144 for all data, μ̂ = 3.143 by omitting the ex-
treme value 28.95, and μ̂ = 3.127 by omitting the value 5.28. (Check these numbers
and monitor the usual mean x during this procedure!)

216 5 Statistical Analysis and Modeling of Data

5.2.3 M-Estimates of Scale

Robust estimates of data dispersion are called M-estimates of scale. Analogously
to M-estimates of location they are introduced through maximum likelihood func-
tions [17]. In contrast to (5.5) one imagines that the measurements xi are distributed
around zero with some error σ�xi and that �xi are distributed according to some
probability density p, while σ is an unknown parameter measuring the scale of this
error. The M-estimate of scale σ̂ is defined as

σ̂ = arg max
σ

1

σn

n−1∏
i=0

p

(
xi

σ

)
. (5.19)

The parameter σ̂ is equal to σ maximizing the product at the right, while ρ(x) =
xψ(x) and ψ(x) = −p(x)′/p(x). If the error is normally distributed (as (5.6) with
〈x〉 = 0 and σ = 1), we have ρ(x) = x2 and (5.19) is solved by the root mean
square σ̂ = RMS(x) = (〈x2〉)1/2. The measure of dispersion RMS(x) is therefore
just a special case of M-estimates of scale.

In practice, we usually do not know the true probability density p for the distribu-
tion of errors. Still, we would like to ensure that the estimate of dispersion is robust
with respect to potential outliers in the sample. M-estimates of scale are devised
analogously to M-estimates of location, as weighted averages,

σ̂ =
√√√√ c

n

n−1∑
i=0

wix
2
i , wi = W

(
xi

σ̂

)
, (5.20)

where the function W and the constant c depend on the model that we use to under-
stand the source or the probability density of the errors �xi . If little is known about
it, the following empirical formulas can be recommended [17]:

W(t) = min
{
1/t2, t4 − 3t2 + 3

}
, c = 2. (5.21)

The parameter σ̂ in (5.20) again occurs at the left and in the weights wi , so the
equation is solved iteratively,

σ̂ (k+1) =
√√√√ c

n

n−1∑
i=0

w
(k)
i x2

i , w
(k)
i = W

(
xi

σ̂ (k)

)
,

where k is the iteration index. We start the iteration with σ̂ (0) = MADN(x) and
terminate it when |̂σ (k+1) − σ̂ (k)| < εσ̂ (k). For normally distributed errors �xi , the
estimate σ̂ becomes the standard deviation if we divide it by 1.56 [17].

5.3 Statistical Tests 217

5.3 Statistical Tests

In this section we describe basic statistical tests useful in quantifying the proper-
ties of various data samples or comparing the samples to each other. Some of the
questions posed in Fig. 5.1 (left) will find their answers here. These standard pro-
cedures are founded and explained in greater detail in all good statistics textbooks;
see e.g. [18].

5.3.1 Computing the Confidence Interval for the Sample Mean

For a set of uncorrelated data {xi}n−1
i=0 we have used (5.2) to compute the mean x

and variance s2
x . Assume that the measured data are normally distributed. We are

seeking a quantitative measure to determine the quality of the approximation x for
the true average 〈x〉. To do this, we use x and s2

x to form the statistic

t = x − 〈x〉√
s2
x

√
n.

If xi are normally distributed according to N(〈x〉, σ 2), the statistic t is distributed
according to S(t;n − 1) [19], where

S(t;ν) = dP

dt
(t;ν) = 1√

νB(ν
2 , 1

2)

(
1 + t2

ν

)−(ν+1)/2

(5.22)

is the Student’s distribution for ν degrees of freedom and B(a, b) is the usual beta
function. The number ν is not necessarily integer and it depends on the number of
measurements and of the type of the statistical test. Examples are given later on.
The integral of the probability density (5.22) enables us to determine the intervals
on which, with some probability 1 − α chosen in advance, we may expect to find
the values of t or 〈x〉, while with probability α the value 〈x〉 will be outside the
corresponding interval. The Student’s probability density function is even in t , so
we define symmetric limits t− and t+ such that

∫ t+

t−

dP

dt
dt = 1 − α, −t− = t+ = t∗. (5.23)

This means that we may believe, at confidence level 1 − α, that |t | ≤ t∗, or that we
may expect |t | > t with probability (risk level) α. The statistic t has therefore been
bounded by the conditions

t− ≤ x − 〈x〉
sx

√
n ≤ t+.

218 5 Statistical Analysis and Modeling of Data

Fig. 5.5 Determining the confidence interval. The value t∗ in (5.24) as a function of the number
of degrees of freedom ν for various α. The values t∗ in the limit ν � 1 are shown at the extreme
right. The risk level 31.7 % (confidence level 68.3 %) corresponds to t∗ ≈ 1 and the confidence
interval (5.24) is [x − sx/

√
n,x + sx/

√
n], as told by (5.7)

In other words, the true average of a large population, from which the sample
{xi}n−1

i=0 has been acquired, can be estimated by 〈x〉 = x, and 〈x〉 will be found
with probability 1 − α on the confidence interval

[
x − t∗sx√

n
,x + t∗sx√

n

]
. (5.24)

Figure 5.5 shows t∗ in dependence of the number of degrees of freedom ν, for
various values of α.

5.3.2 Comparing the Means of Two Samples with Equal Variances

The Student’s t-test frequently appears in a different disguise. Assume we have two
sets of data with equal variances, as would perhaps occur when using the same
apparatus to measure a quantity which, we suspect, has changed between the two

5.3 Statistical Tests 219

sets of measurements. From the samples

x = {xi}nx−1
i=0 , y = {yi}ny−1

i=0 ,

we first form the means x and y, then the statistics sd and td,

sd =
[∑nx−1

i=0 (xi − x)2 +∑ny−1
i=0 (yi − y)2

nx + ny − 2

(
1

nx

+ 1

ny

)]1/2

, td = x − y

sd
.

With td we compute the value 0 ≤ α ≤ 1 by using the formula

α = 1 −
∫ |td|

−|td|
dP

dt
(t;ν)dt = Bx(ν/2,1/2)

B(ν/2,1/2)
, x = ν

ν + t2
d

, (5.25)

where B(a, b) is the beta and Bx(a, b) the incomplete beta function (accessible in
standard numerical libraries) and we set ν = nx + ny − 2. The value α (0 ≤ α ≤ 1)
measures the probability that for samples x and y, the situation |t | ≥ |td| occurs by
chance. The smaller the value of α, the more statistically significant is the estimated
difference of the means x − y. Computing α by (5.25) is simpler than the inverse
task (5.23) of computing the integration limits t∗ for a given α.

5.3.3 Comparing the Means of Two Samples with Different
Variances

The Student’s t-test can also be used on two samples with different variances. We
face this situation when a quantity is measured by different devices (for example,
one more and one less precise) and we wish to know whether the average of this
quantity has changed between the two experiments. From the samples

x = {xi}nx−1
i=0 , y = {yi}ny−1

i=0 ,

we form the means x and y, the variances s2
x and s2

y , and the statistic

t = x − y√
s2
x/nx + s2

y/ny

.

The statistic t is distributed approximately according to the Student’s distribu-
tion (5.22) with the number of degrees of freedom

ν =
[

s2
x

nx

+ s2
y

ny

]2[1

nx − 1

(
s2
x

nx

)2

+ 1

ny − 1

(
s2
y

ny

)2]−1

.

220 5 Statistical Analysis and Modeling of Data

5.3.4 Determining the Confidence Interval for the Sample
Variance

This unit complements Sect. 5.3.1 where we have determined the confidence interval
for the mean of presumably normally distributed uncorrelated data {xi}n−1

i=0 . Again
we compute the sample mean and variance, x and s2

x , and form the statistic

χ2 = (n − 1)s2
x

�2
.

Here �2 is the sought parameter for which the confidence interval should be found,
and thus allow us to gauge the reliability of the dispersion estimate s2

x . The statistic
χ2 is distributed with the density dP/dχ2(χ2;n − 1), where

dP

dχ2

(
χ2;ν)= 1

2ν/2�(ν/2)

(
χ2)ν/2−1e−χ2/2, χ2 ≥ 0, (5.26)

and where ν is the number of degrees of freedom. For large ν the χ2 distribution
resembles the Gaussian distribution with the mean ν and variance 2ν. We define the
limits χ2− and χ2+ such that the integrals of the extreme lower and the extreme upper
tail of the distribution are equal,

∫ χ2−

0

dP

dχ2
dχ2 =

∫ ∞

χ2+

dP

dχ2
dχ2 = α

2
. (5.27)

Here α is the chosen risk level quantifying the expectation that χ2 will by chance lie
outside of the confidence interval, that is, below χ2− or above χ2+. (Compare (5.27)
to (5.23).) The variance estimate is �2 = s2

x and we anticipate, at 1 − α confidence
level, that the true variance σ 2

x is within the confidence interval

(n − 1)s2
x

χ2+
≤ σ 2

x ≤ (n − 1)s2
x

χ2−
.

The values χ2− and χ2+ solving (5.27) can be computed by standard numerical pack-
ages, while for everyday use they can be read off from Figs. 5.6 or 5.12.

Example Assume that we have used (5.2) to estimate the variance s2
x of a sample

{xi} of n = 11 values. We would like to determine the interval to which, at 90 %
confidence level, the true variance σ 2

x can be constrained. We use Fig. 5.6 to locate
the curve corresponding to ν = n − 1 = 10 degrees of freedom. The χ2− and χ2+ are
found as values of χ2 on the abscissa where the horizontal lines at α = 0.05 and
α = 0.95 intersect this curve: in this case ≈18.3 and ≈3.94. The risk level of 10 %
thus corresponds to the confidence interval

10s2
x

18.3
≤ σ 2

x ≤ 10s2
x

3.94
. (5.28)

5.3 Statistical Tests 221

Fig. 5.6 The solution of P (χ2 > χ2+) = α and P (χ2 < χ2−) = α. The symbols • denote the points
(χ2−,1 − α) = (3.94,0.95) and (χ2+, α) = (18.3,0.05) from Example (5.28)

See also Fig. 5.12.

5.3.5 Comparing Two Sample Variances

Another standard task is the comparison of variances of two data samples

x = {xi}nx−1
i=0 , y = {yi}ny−1

i=0 .

We compute their sample variances s2
x and s2

y , and form the ratio

F = s2
x/s2

y . (5.29)

The larger variance should be put in the numerator and the smaller in the denomi-
nator. (If needed, rename the data x ↔ y.) The ratio F is distributed according to
dP/dF(nx − 1, ny − 1), where

dP

dF
(ν1, ν2) =

(
ν1

ν2

)ν1/2
�((ν1 + ν2)/2)

�(ν1/2)�(ν2/2)
F ν1/2−1

(
1 + ν1

ν2
F

)−(ν1+ν2)/2

.

222 5 Statistical Analysis and Modeling of Data

Fig. 5.7 The solutions of (5.30) for α = 10 % for various degrees of freedom ν1 and ν2. The
symbol • denotes the value F∗ = 3.37 (ν1 = 6, ν2 = 9) for Example (5.31)

Similar to the previous tests, we define the limit F∗ for which

∫ F∗

0

dP

dF
(ν1, ν2)dF = 1 − α

2
, (5.30)

and where α is the confidence level or significance. The values F∗ at α = 10 %
in dependence of ν1 and ν2 are shown in Fig. 5.7. The assumption that the true
variances σ 2

x and σ 2
y are equal should be rejected at confidence level α if the value

F from (5.29) is larger than F∗.

Example (Taken from [19], p. 217) We have two samples of sizes nx = 10 and
ny = 7,

x = {100,101,103,98,97,98,102,101,99,101},
y = {97,102,103,96,100,101,100}, (5.31)

with the means x = 100.0 and y = 99.8, and the sample variances s2
x = 3.78 and

s2
y = 6.50, respectively. Is the deviation of the variance ratio F = s2

y/s2
x = 1.72 from

unity statistically significant, at significance α = 10 %? From Fig. 5.7 we read off
the value F∗ along the curve ν2 = νx = nx − 1 = 9 at the abscissa ν1 = νy = ny −

5.3 Statistical Tests 223

Fig. 5.8 Consistency of histogrammed data and a known distribution. [Left] Comparison to the
uniform distribution. [Right] Comparison to the normal distribution

1 = 6. We get F∗ = 3.37. Since F > F∗ does not hold, the hypothesis σ 2
x = σ 2

y

cannot be discarded.

5.3.6 Comparing Histogrammed Data to a Known Distribution

Assume that we can measure the distribution of a physical quantity with respect to
x that may have values from [−2.75,2.75]. Suppose that the experimental appara-
tus restricts us in a way that only allows us to acquire data on a narrower interval
[−1.35,1.35]. We display the results on this interval as a histogram with N = 27
bins, as shown in Fig. 5.8. Is the measured distribution consistent with the theoreti-
cally predicted uniform distribution?

We use Ni to denote the number of measured events in the ith bin, while ni

denotes the corresponding theoretically anticipated number. We form the statistic

χ2 =
N∑
i=1

(Ni − ni)
2

ni

,

where the sum runs over all bins N . The number of all events is N =∑N
i=1 Ni . In

the limit N � 1, χ2 is distributed according to dP/dχ2(χ2;N − 1) (see (5.26)).
We choose a risk level α at which the assumed distribution is discarded even though
it is correct. With the chosen α we determine χ2+ in the cumulative distribution

∫ ∞

χ2+

dP

dχ2

(
χ2;N − 1

)
dχ2 = α.

If the assumed distribution with the values ni is consistent with the measured data
Ni , we may expect χ2 < χ2+ at confidence level 1 − α, while the outcome χ2 >

224 5 Statistical Analysis and Modeling of Data

χ2+ leads to the conclusion that the theoretical distribution is inconsistent with the
experimental one. The reduced value χ2+/(N − 1) for some typical values of α can
be read off from Fig. 5.12.

Example Let us discuss the data in Fig. 5.8. The total number of events in all bins
is N = 838. Is the measured distribution consistent with the uniform distribution,
according to which we would expect ni = N/N = 31.04? We compute χ2 = 59.38
or, for N −1 = 26 degrees of freedom, χ2/(N −1) = 2.28. At α = 5 % we read off
χ2+/(N − 1) ≈ 1.5 from Fig. 5.12, while for α = 1 % we find χ2+/(N − 1) ≈ 1.8.
In any case we obtain χ2 > χ2+ which points to the conclusion that the uniform
distribution is inconsistent with the measured distribution.

We have narrowed the range in Fig. 5.8 on purpose: this is what one often finds
in practice, forcing us to see the data as nothing but “a constant”. What do we
get with the values ni corresponding to the normal distribution N(0,1)? Now we
compute χ2 = 35.66 or χ2/(N − 1) = 1.37, which is less than χ2+(α = 5 %) and
χ2+(α = 1 %). At confidence level of at least 99 % we may therefore claim that the
measured and the assumed theoretical distribution are consistent.

The value of χ2 depends on the number of bins N . The classic choice [20] for
the number of bins Nopt that makes the χ2-test optimally sensitive is Nopt ≈ 4 N2/5

(at α = 1 %), but see [21, 22] for modern alternatives.

5.3.7 Comparing Two Sets of Histogrammed Data

The χ2-test described above can also be used to question the mutual consistency of
two sets of histogrammed data Ni and Mi in bins i = 1,2, . . . ,N . In this case, the
statistic χ2 should be defined as

χ2 =
N∑
i=1

(
√

M/NNi − √
N/MMi)

2

Ni + Mi

, N =
N∑
i=1

Ni, M =
N∑
i=1

Mi.

In general N �= M . The χ2-test with the chosen risk level α is performed as before,
with the number of degrees of freedom N − 1. The values χ2 > χ2+ indicate that
the measured data Ni and Mi originate in different distributions.

5.3.8 Comparing Non-histogrammed Data to a Continuous
Distribution

If we wish to compare non-histogrammed data to a continuous distribution on the
domain that is identical to the data range, we resort to the Kolmogorov–Smirnov

5.4 Correlation 225

Fig. 5.9 Typical images of almost complete correlation (ρ ≈ 1), almost complete anti-correlation
(ρ ≈ −1), and almost uncorrelated data (ρ ≈ 0) in the (xi , yi) plane

test. As the statistic, this test uses the maximum distance between the cumulative
distributions of the data and the assumed continuous distribution. (Both the data
and the distribution to which they are being compared can always be histogrammed,
so the previously described χ2-test can also be applied, but direct comparison has
certain advantages. For details, see [23].)

5.4 Correlation

Here we discuss measures of correlation between data sets. The correlation strength
is measured by correlation coefficients, while we use suitable statistics to confirm
whether the observed correlation is statistically significant or not.

5.4.1 Linear Correlation

The basic measure for the degree of correlation between two data sets is the lin-
ear correlation coefficient ρ. The correlatedness of two-dimensional data some-
times simply “pops out”: typical images in the (xi, yi) plane for correlation co-
efficients ρ ≈ 1 (almost complete positive correlation), ρ ≈ −1 (almost complete
anti-correlation), or ρ ≈ 0 (uncorrelated data) are shown in Fig. 5.9.

The estimate for the linear correlation between the data {xi}n−1
i=0 and {yi}n−1

i=0 is

ρ̂ =
∑n−1

i=0 (xi − x)(yi − y)√∑n−1
i=0 (xi − x)2

√∑n−1
i=0 (yi − y)2

, −1 ≤ ρ̂ ≤ 1. (5.32)

The coefficient (5.32) is appropriate for the estimate of the degree of correlation
once we have already confirmed that the correlation exists and that it has a certain
statistical significance. Just like for the sample mean and variance, we can determine
the confidence interval for the sample correlation coefficient ρ̂. In order to do this,

226 5 Statistical Analysis and Modeling of Data

we use the statistic

z = 1

2
ln

1 + ρ̂

1 − ρ̂
= Atanh ρ̂

and assume that the measured data xi and yi are distributed according to the binor-
mal (two-dimensional normal) distribution. For sample sizes n of more than a few
times 10, the statistic z is then approximately normally distributed, with

N
(
z, σ 2

z

)= N

(
1

2

[
ln

1 + ρ

1 − ρ
+ ρ

n − 1

]
,

1

n − 3

)
,

where ρ is the true correlation coefficient. The best estimate for the correlation
coefficient is simply ρ = ρ̂, while the significance level at which we may claim that
the measured ρ̂ differs from ρ, is given by

α = 1 − erf

(|z − z|√n − 3√
2

)
.

In determining whether the measurements of the quantities xi and yi from two time
periods (“1” and “2”) are correlated differently, we compare the correlation coef-
ficients ρ̂1 and ρ̂2. The statistical significance of the difference between ρ̂1 and ρ̂2

is

α = 1 − erf

(|z1 − z2|√
2

√
(n1 − 3)(n2 − 3)

n1 + n2 − 6

)
.

We may also ask the inverse question: to what confidence interval [ρ−, ρ+] will the
correlation coefficient be restricted at confidence level 1 − α? For 1 − α ≈ 96 %,
which is appropriate for everyday use, the values ρ− and ρ+ can be computed as

ρ− = tanh

(
Atanh ρ̂ − 2√

n

)
, ρ+ = tanh

(
Atanh ρ̂ + 2√

n

)
.

5.4.2 Non-parametric Correlation

The formula for the linear correlation coefficient (5.32) involves the sample means
x and y which are strongly sensitive to the presence of outliers (see Sect. 5.2). We
need a more robust tool. One option is to define the correlation by referring only to
the positions (ranks) ri and si that a certain xi and some yi occupy in the ordered
samples x and y. When more (for instance, m) equal values share m positions, we
assign to all these values an average rank that they would have, had they been only
slightly different. In addition, we compute the mean ranks r = (

∑n
i=1 ri)/n and

s = (
∑n

i=1 si)/n (the ranks are indexed from 1 upwards).

5.5 Linear and Non-linear Regression 227

Example Determine the mean rank of the sample {xi}7
i=0 = {2,3,9,3,4,9,7,3}!

We first order the sample and obtain the array {x0, x1, x3, x7, x4, x6, x2, x5}. The val-
ues x1 = x3 = x7 = 3 share the ranks 2 to 4, so their mean rank is (2 + 3 + 4)/3 = 3.
The values x2 = x5 = 9 share the ranks 7 and 8, so their rank is 7.5. Finally we ob-
tain {ri}8

i=1 = {1,3,3,3,5,6,7.5,7.5} and r = 4.5.

We use the ranks ri and si as well as the mean ranks r and s to define the rank
correlation coefficient

ρ̂p =
∑n

i=1(ri − r)(si − s)√∑n
i=1(ri − r)2

√∑n
i=1(si − s)2

. (5.33)

In computing ρ̂p we are only referring to the mutual placement of the data, hence
this type of correlation estimate is called non-parametric. The distribution of the
ranked data is uniform, and if the sample contains relatively few repeat values, the
estimate (5.33) is much more robust than (5.32). The statistical significance of a
measured correlation coefficient ρ̂p �= 0 can be established by the t-test. We form
the statistic

tp = ρ̂p

√
n − 2

1 − ρ̂ 2
p

,

which is distributed approximately according to the Student’s distribution (5.22)
with n − 2 degrees of freedom. The confidence level at which the assumption that
the measured correlation coefficient ρ̂p is equal to the true coefficient ρp can be
discarded, is computed by (5.25) in which we use tp instead of td and set ν = n − 2.

5.5 Linear and Non-linear Regression

On an almost daily basis, we encounter the problem of fitting a smooth curve to a
set of values

(xi, yi), i = 0,1, . . . , n − 1. (5.34)

The curve fitted to the data is specified by its analytic form that contains a certain
set of model parameters. The fitting procedure as well as the final values of these
parameters should somehow reflect the precision (the uncertainties) of the data. The
search for the appropriate model curve is known as regression. According to the
linear or non-linear dependence of the fitting curve with respect to the model pa-
rameters, we distinguish linear and non-linear regression.

228 5 Statistical Analysis and Modeling of Data

5.5.1 Linear Regression

In linear regression, the fitting curve (model) linearly depends on the parameters
characterizing it. We use this type of regression when we wish to find a polynomial

f (x) = amxm + am−1x
m−1 + · · · + a1x + a0,

that fits the data (5.34) as well as possible. One assumes that the points yi are re-
alizations of a random variable that is distributed around the unknown exact value
with an absolute error σi . We wish to perform the fitting such that the sum of the
squares of the errors (yi − f (xi))

2 with respect to the uncertainties σi will be as
small as possible. If the fitting function is linear (ai = 0 for i ≥ 2), we are dealing
with “straight-line” linear regression, while if it is a general polynomial, we are re-
ferring to polynomial (or general linear) regression, as the dependence on the model
parameter is still linear.

The posed problem does not have a unique solution, since many measures of de-
viation can be devised. However, the least-squares method mentioned above is by
far the most popular. In this case, we are seeking the parameters aj (j = 0,1, . . . ,m)
that minimize the weighted sum of the squares of differences between the polyno-
mial f (xi) and the values yi ,

χ2 =
n−1∑
i=0

(yi − f (xi))
2

σ 2
i

. (5.35)

The deviation is “punished” in proportion to the inverse of the absolute error in yi ,
i.e. σi . The measure of deviation χ2 is minimized by fulfilling the requirements

∂χ2

∂aj

= 0, j = 0,1, . . . ,m. (5.36)

This translates into a system of linear equations for the parameters aj ,

m∑
j=0

�kjaj = bk, �kj =
n−1∑
i=0

x
k+j
i

σ 2
i

, bk =
n−1∑
i=0

xk
i yi

σ 2
i

.

We introduce the vectors of parameters a = (aj)
m
j=0 and coefficients b = (bj)

m
j=0,

as well as the matrix � = [�kj]mk,j=0, so the system can be written in matrix form,

�a = b or a = �−1b. (5.37)

By using the Vandermonde matrix V = [Vij], where Vij = x
j
i (0 ≤ i ≤ n − 1, 0 ≤

j ≤ m), and the weight matrix D = diag(σ−2
i)n−1

i=0 , the system is written as

V TDV a = V TDy, � = V TDV, b = V TDy,

5.5 Linear and Non-linear Regression 229

where y = (yi)
n−1
i=0 . The parameters aj depend on the values yi which are statisti-

cally distributed around the exact values. Assuming that yi are good approximations
of the exact values, the variance of aj can be estimated as

σ 2(aj) = (
�−1)

jj
. (5.38)

The matrix � tends to be very poorly conditioned, since its condition number
grows exponentially with its dimension, κ(�) = C exp(O(n)) (Sect. 3.2.5). If we
assume κ(�) = C exp(αn), the desired relative precision of the coefficients aj

is ε, and the arithmetic precision is εM, we may include polynomials of degrees
n ≤ (1/α) log(εM/Cε). In double-precision floating-point arithmetic this typically
means n ≤ 10.

5.5.2 Regression with Orthogonal Polynomials

At least some stability problems can be avoided if the points {xi}n−1
i=0 coincide with

the definition domain of some system of orthogonal polynomials. The most useful
in regression are orthogonal polynomials of a discrete variable. These are polyno-
mials {pk(x) : k = degree(pk)}mk=0 that are linearly independent and orthogonal on
a discrete set of points {xi} in the sense

n−1∑
i=0

1

σ 2
i

pk(xi)pl(xi) = Akδk,l

with some weight 1/σ 2
i . The model function fitted to the data can be designed as the

linear combination f (x) =∑m
k=0 akpk(x). We determine the expansion coefficients

ak by minimizing the measure of deviation (5.35). We obtain

χ2 =
m∑

k=0

a2
kAk − 2

m∑
k=0

akBk + C, Bk =
n−1∑
i=0

pk(xi)yi

σ 2
i

, C =
n−1∑
i=0

y2
i

σ 2
i

.

From the condition for the minimum ∂χ2/∂ak = 0 we get 2akAk − 2Bk = 0 or

ak = Bk

Ak

and χ2 = C −
m∑

k=0

B2
k

Ak

= min.

Example A most popular system of orthogonal polynomials of a discrete vari-
able are the Chebyshev polynomials (4.36) that exhibit orthogonality by points
(see (4.38)). A linear combination f (x) =∑m

k=0 akTk(x) of these polynomials min-
imizes the measure of deviation χ2 =∑n−1

i=0 (yi − f (xi))
2 with the coefficients

a0 = 1

n

n−1∑
i=0

y(xi), ak = 2

n

n−1∑
i=0

y(xi)Tk(xi), 1 ≤ k ≤ m,

230 5 Statistical Analysis and Modeling of Data

which is known as the Chebyshev approximation formula. (The problem is well
defined for m + 1 ≤ n. When m + 1 = n the function f interpolates the data yi

and therefore χ2 = 0.) Chebyshev polynomials have good approximation properties
(Sect. 1.2.1) and can be efficiently computed by (4.37), and are therefore frequently
used for the solution of least-squares problems [24].

5.5.3 Linear Regression (Fitting a Straight Line)

In the case of linear regression we are seeking the straight line f (x) = a1x +a0 that
best fits the data (xi, yi) with known uncertainties (errors) σi . When χ2 (see (5.35))
is minimized with respect to the parameters a0 and a1, we obtain an analytically
solvable system of equations

a0S + a1Sx = Sy,

a0Sx + a1Sxx = Sxy,

where we have denoted

S =
n−1∑
i=0

1

σ 2
i

, Sx =
n−1∑
i=0

xi

σ 2
i

, Sxx =
n−1∑
i=0

x2
i

σ 2
i

,

Sxy =
n−1∑
i=0

xiyi

σ 2
i

, Sy =
n−1∑
i=0

yi

σ 2
i

.

In this system, we immediately recognize the matrix � from (5.37) and its inverse,

� =
(

S Sx

Sx Sxx

)
, �−1 = 1

det(�)

(
Sxx −Sx

−Sx S

)
,

where we have assumed det(�) = SxxS − S2
x �= 0. From (5.37) it follows that the

coefficients a0 and a1 minimizing the measure of deviation χ2 are

a0 = SxxSy − SxSxy

SxxS − S2
x

, a1 = SSxy − SxSy

SxxS − S2
x

.

An example of fitting is shown in Fig. 5.10 (left).
If the errors are constant (σi = σ), the parameters of the straight line are a1 =

cov(x, y)/s2
x , a0 = y − a1x, where x = (

∑n−1
i=0 xi)/n and y = (

∑n−1
i=0 yi)/n are the

arithmetic means of the data, while

s2
x = 1

n − 1

n−1∑
i=0

(xi − x)2 and cov(x, y) = 1

n − 1

n−1∑
i=0

(xi − x)(yi − y)

5.5 Linear and Non-linear Regression 231

Fig. 5.10 Fitting a straight line to the data xi = {0,1,2,3}, yi = {1.4,1.5,3.7,4.1} with the errors
σi = {0.5,0.2,1.0,0.5} by using the least-squares method (example adapted from [19]). [Left] The
function f (x) = a1x + a0 minimizing χ2 (a0 = 0.635849, a1 = 1.06618). [Center] The covari-
ance ellipse centered at (a0, a1) with the errors ±σ(a0) = ±0.307 and ±σ(a1) = ±0.222. The
straight lines corresponding to the points on the ellipse are equally probable. The symbols ◦ de-
note a few points corresponding to the bundle of straight lines in the [Right] panel: the straight
line corresponding to the “true” parameters a0 and a1 lies within this bundle with the probability
1 − e−1/2

are their variance and covariance. We see that the straight line runs through the
“center-of-mass” of the data (x, y).

From (5.38) we obtain the variances of a0 and a1 (the diagonal elements of �−1)
that do not depend on the position of the points along the y-axis:

σ 2(a0) = (
�−1)

11 = Sxx

SxxS − S2
x

, σ 2(a1) = (
�−1)

22 = S

SxxS − S2
x

. (5.39)

The off-diagonal elements of the covariance matrix �−1 for the parameters a0 and
a1 are

cov(a0, a1) = (
�−1)

12 = (
�−1)

21 = −Sx

SxxS − S2
x

,

thus the coefficient of linear correlation between a0 and a1 is

ρ = cov(a0, a1)

σ (a0)σ (a1)
.

The parameters a0 and a1, their uncertainties σ(a0) ≡ σ0 and σ(a1) ≡ σ1, and the
coefficient ρ define the covariance ellipse centered at (a0, a1) with the semi-axes r0

and r1, rotated by α in the (a0, a1)-plane [19]. The parameters are

tan 2α = 2ρσ0σ1/
(
σ 2

0 − σ 2
1

)
,

r2
0 = σ 2

0 σ 2
1

(
1 − ρ2)/[σ 2

1 cos2 α − ρσ0σ1 sin 2α + σ 2
0 sin2 α

]
, (5.40)

r2
1 = σ 2

0 σ 2
1

(
1 − ρ2)/[σ 2

1 sin2 α + ρσ0σ1 sin 2α + σ 2
0 cos2 α

]
.

An example is shown in Fig. 5.10 (center). All points on the ellipse are equally
probable and represent the “1σ ” confidence interval for the parameters a0 and a1.

232 5 Statistical Analysis and Modeling of Data

This interval corresponds to an infinite set of possible straight lines. For the indicated
points on the ellipse they are shown in Fig. 5.10 (right).

How do the uncertainties of the model parameters, σ 2(a0) and σ 2(a1), change
when the number of points n is increased? Assume that the points {xi}n−1

i=0 on some
interval [α,β] are distributed uniformly, so xi = α + i�x with �x = (β − α)/(n −
1), and that the measurement error is σi = σ . We compute S = n/σ 2, Sx = n(α +
β)/(2σ 2) and Sxx = n[(α2 + αβ + β2)(2n − 1) − 3αβ]/[6(n − 1)σ 2]. From (5.39)
we read off the asymptotic behavior in the limit n → ∞,

σ 2(a0) ∼ 4(α2 + αβ + β2)σ 2

n(α − β)2
+O

(
1

n2

)
, σ 2(a1) ∼ 12σ 2

n(α − β)2
+O

(
1

n2

)
.

With increasing n, the regression coefficients a0 and a1 gain in precision similarly
as the statistical averages, at the rate σ(a0), σ (a1) ∼ O(n−1/2).

Unknown Errors If the errors σi of individual yi are not known, the uncertainties
of a0 and a1 can be estimated by using the procedure fully elaborated in [25]. We
first set σi = 1 for ∀i and compute a0 and a1 and their variances σ 2(a0) and σ 2(a1)

by using (5.39). We use these a0 and a1 to compute the value of χ2 from (5.35),
and multiply both variances by χ2/(n − 2). The estimates for the uncertainties of
the parameters a0 and a1 are therefore rescaled as

σ(a0) → σ(a0)

√
χ2/(n − 2), σ (a1) → σ(a1)

√
χ2/(n − 2).

5.5.4 Linear Regression (Fitting a Straight Line) with Errors in
Both Coordinates

In straight-line regression with the function f (x) = a1x +a0, where the errors occur
in both variables (yi as well as xi), we try to minimize

χ2 =
n−1∑
i=0

(yi − a1xi − a0)
2

a2
1σ 2

xi + σ 2
yi

.

To determine a0 and a1 we have to fulfill ∂χ2/∂a0 = 0 and ∂χ2/∂a1 = 0, but a1

appears non-linearly, so the problem is not trivial; for a review, see [26]. From [27]
we adopt a reliable algorithm to compute the parameters a0 and a1 and their uncer-

5.5 Linear and Non-linear Regression 233

tainties, σ(a0) and σ(a1). It typically converges in ≈10 iterations.

Input: Values (xi, yi)
n−1
i=0 , errors (σxi, σyi)

n−1
i=0 , correlations |r| ≤ 1 between

the errors, initial approximation for a1, tolerance ε

for i = 0 to n − 1 do
wxi = 1/σ 2

xi ;
wyi = 1/σ 2

yi ;

end
while (|difference between consecutive a1| > ε) do

for i = 0 to n − 1 do
Wi = wxiwyi/[wxi + a2

1wyi − 2a1r
√

wxiwyi];
end
x =∑

i Wixi/
∑

i Wi ;
y =∑

i Wiyi/
∑

i Wi ;
for i = 0 to n − 1 do

ui = xi − x;
vi = yi − y;
βi = Wi[ui/wyi + a1vi/wxi − (a1ui + vi)r/

√
wxiwyi];

end
a1 =∑

i Wiβivi/
∑

i Wiβiui ; // new estimate for a1

end
a0 = y − a1x;
for i = 0 to n − 1 do

ξi = x + βi ;
end
ξ =∑

i Wiξi/
∑

i Wi ;
for i = 0 to n − 1 do

ηi = ξi − ξ ;
end
σ 2(a1) = 1/

∑
i Wiη

2
i ;

σ 2(a0) = 1/
∑

i Wi + ξ
2
σ 2(a1);

Output: a0, a1, σ(a0), σ(a1)

5.5.5 Fitting a Constant

In zeroth-order regression a constant function is fitted to the values yi . We mini-
mize (5.35) with f (xi) = a. From the condition dχ2/da = 0 we get

a = 1

S

n−1∑
i=0

yi

σ 2
i

, S =
n−1∑
i=0

1

σ 2
i

, σ (a) = 1√
S

, (5.41)

234 5 Statistical Analysis and Modeling of Data

Fig. 5.11 Fitting a constant to the data (xi , yi)
9
i=0 (adapted from [19]). [Left] The weighted av-

erage in the presence of two outliers and without them. [Right] The weighted average of the data
with an unexplained systematic error. The fit procedure yields the parameter a with a very small
uncertainty inconsistent with the actual scatter of data. Rescaling of the errors according to (5.42)
gives a more sensible result

which is precisely the weighted average (5.8). We use this method instead of the
arithmetic mean whenever the measured values of the same quantity have different
errors. For n → ∞ the uncertainty of a scales as σ(a) ∼ O(n−1/2).

After obtaining a, we may compute χ2 = ∑n−1
i=0 (yi − a)2/σ 2

i to ascertain
whether the premise of the normally distributed errors σi is justified or not. At the
chosen risk level α (e.g. α = 5 %) we determine χ2+ from the equation

∫ ∞

χ2+

dP

dχ2

(
χ2;n − 1

)
dχ2 = α,

where dP/dχ2 is given in (5.26), and compare χ2+ to the χ2 computed from the
data. If χ2 > χ2+, the premise is questionable; in the opposite case, we may fit the
constant a and its uncertainty is considered as consistent with the data.

Example Numerous dangers lurk behind all this simplicity. Figure 5.11 (left) shows
n = 10 data points (xi, yi) to which we fit a constant a. Following the procedure
described above we get a = 2.42 ± 0.08 and χ2/(n − 1) = 38.65. At α = 5 % for
ν = n − 1 = 9 we read off χ2+(α = 5 %)/9 = 1.88 from Fig. 5.12. Since χ2/(n −
1) > χ2+/(n − 1), the assumption about the normal distribution of errors should be
discarded. (In other words, with a probability much greater than α, the constant
probability density is inconsistent with the data sample.) But if we omit the outliers
y3 and y5, we get a = 1.66 ± 0.09 and χ2/7 = 1.03, while χ2+(α = 5 %)/7 = 2.01.
Now the fit is consistent with the data. Here we again run into the problems of
robustness. More on this will be told in Sect. 5.5.7.

Another pitfall is illustrated by Fig. 5.11 (right). Applying the method from
Sect. 5.3.1 we determine that some data points fall outside of the confidence in-

5.5 Linear and Non-linear Regression 235

Fig. 5.12 The reduced value χ2/ν used in the χ2-test as a function of the number of degrees of
freedom, at some typical risk levels α. The symbols • denote the points (ν,χ2−/ν) = (10,0.394)

and (ν,χ2+/ν) = (10,1.83) from Example (5.28)

terval for the sample mean. By using the χ2-test we obtain χ2/9 = 13.27 and again
χ2+(α = 5 %)/9 = 1.88. But individual outliers should not be blamed for the large
value of χ2, as obviously the data have an underestimated systematic error. In such
cases the measurement error should be rescaled [28]

σ ′
i = σi

√
χ2

n − 1
, i = 0,1, . . . , n − 1. (5.42)

We still form the weighted average for the computation of the fit parameter a by
using (5.41), but its uncertainty becomes

σ ′(a) =
√

χ2

n − 1

(
n−1∑
i=0

1

σ 2
i

)−1/2

.

Thus we get a more sensible result corresponding to χ2/(n − 1) = 1 (this example
is shown in Fig. 5.11 (right)).

236 5 Statistical Analysis and Modeling of Data

5.5.6 Generalized Linear Regression by Using SVD

In generalized linear regression

y(x) =
m−1∑
j=0

ajφj (x),

where φj are the basis functions, we attempt to use a small number of parameters
aj to fit the model function y to a large amount of data. Such problems are over-
determined. Yet in many instances the data are not rich enough to allow for an
unambiguous and physically sensible determination of the linear combination of the
basis functions: often we can obtain several solutions of the problem that minimize

χ2 =
n−1∑
i=0

[
yi −∑m−1

j=0 ajφj (xi)

σi

]2

almost equally well. (From the strict mathematical point of view, the solution of the
over-determined system by the least-squares methods is, of course, unique.)

We can obtain a much better handle over the meaningfulness of the parame-
ters a = (a0, a1, . . . , am−1)

T by the use of singular-value decomposition (SVD, see
Sects. 3.3.2 and 3.3.3). Solving the least-squares problem by the SVD makes sense
in the case of over-determined systems where we are trying to describe the mea-
sured data with a set of model parameters that is unnecessarily large. The singular
values obtained by the SVD help us eliminate the superfluous combinations of the
basis functions. We denote

Aij = φj (xi)

σi

, bi = yi

σi

,

and perform the “thin” SVD of the matrix A = U�V T ∈ R
n×m (p. 123) where

n ≥ m. The matrix U = (u0,u1, . . . ,um−1) has columns ui of dimension n, the
matrix V = (v0,v1, . . . ,vm−1) has columns vi of dimension m, and the diagonal
matrix � = diag(λ0, λ1, . . . , λm−1) contains the singular values λi . We obtain the
vector of parameters a by summing

a =
m−1∑
i=0

uT
i b

λi

vi .

The covariance matrix of the parameters a is cov(aj , ak) = ∑m−1
i=0 VjiVki/λ

2
i and

its diagonal elements represent the individual variances

σ 2(aj) =
m−1∑
i=0

V 2
ji

λ2
i

. (5.43)

5.5 Linear and Non-linear Regression 237

Fig. 5.13 Robust linear regression. (Example adapted from [17].) [Left] The regression straight
line by the method of least squares (LS), by omitting three outliers (LS−013), and by the itera-
tive reweighting method (IRWLS). [Right] The residuals ri and the estimate of dispersion by the
IRWLS method

We should pay attention to all singular values λi for which the ratio λi/λmax is
smaller than ≈nεM. Such values increase the error (5.43) and indicate that the in-
clusion of new model parameters is meaningless. Moreover, they do not contribute
significantly to the minimization of χ2, so we exclude them. We do this by setting
1/λi = 0 (for a detailed explanation, see the comment to the Fitsvd algorithm
in [25]). We may exclude also those singular values for which the ratio λi/λmax is
larger than ≈nεM, until χ2 starts to increase visibly.

5.5.7 Robust Methods for One-Dimensional Regression

Like all estimates of location and dispersion, regression methods are sensitive to
outliers (Sect. 5.2.1). The straight line LS in Fig. 5.13 (left) corresponds to the stan-
dard regression on the data {(xi, yi)}15

i=0 with unknown errors: here we minimize
the sum of the squares of the residuals ri = yi − (a1xi + a0), so the straight line LS
fails to describe the bulk of the data because of the outliers at x0, x1, and x3. If we
remove these three outliers, we obtain the straight line denoted by LS−013. Robust
regression methods [29] yield a good description of the majority of the data without
the need to remove individual outliers by hand.

The literature on robust regression techniques is abundant: for the identification
of outliers (regression diagnostics) see [30]; for a review of methods see [31]. Nu-
merous methods exist, all having some advantages and deficiencies; many of them
are awkward to implement or entail high numerical costs. One of such methods is
the regression in which not the sum

∑
i r

2
i that is minimized, but the sum

∑
i |ri |

(an L1-type estimator; see e.g. [32] and [33]). Here we describe two procedures with
proven good properties for everyday use.

238 5 Statistical Analysis and Modeling of Data

IRWLS The iterative reweighted least-squares method (IRWLS) closely follows
the logic of M-estimates of location (Sect. 5.2.2 and algorithm on p. 215). The iter-
ation to the final values of the parameters a0 and a1 of the regression straight line
typically converges in ≈30 steps. The determination of their uncertainties, the esti-
mate for the dispersion, and other details are discussed in [17], p. 105. An example
is shown in Fig. 5.13 (left, IRWLS line). Figure 5.13 (right) shows the residuals ri
in the LS and IRWLS methods.

Input: Values (xi, yi)
n−1
i=0 , initial approximations for a0 and a1 from standard

linear regression, relative precision ε

for i = 0 to n − 1 do
r
(0)
i = yi − (a0 + a1xi);

end

σ̂ = 1.4826 · median(|r(0)
i |, r(0)

i �= 0);
k = 0;
while (maxi |r(k+1)

i − r
(k)
i | > εσ̂) do

for i = 0 to n − 1 do
wi = W(r

(k)
i /σ̂); // W(t) given by (5.21)

end
Compute new estimates for a0 and a1 by solving the linear system

a0

∑
i

wi + a1

∑
i

wixi =
∑

i

wiyi

a0

∑
i

wixi + a1

∑
i

wix
2
i =

∑
i

wixiyi

for i = 0 to n − 1 do
r
(k+1)
i = yi − (a0 + a1xi);

end
k = k + 1;

end
Output: a0, a1 by the IRWLS method

LMS The second method resembles standard linear regression, except that the
median of the squares of the residuals ri = yi − (a1xi + a0) is minimized, hence its
name, least median of squares (LMS). We seek a0 and a1 such that

median(yi − a1xi − a0)
2 = min. (5.44)

The LMS method [34] is very robust and behaves well even in the rare circumstances
in which IRWLS fails. An example is shown in Fig. 5.14 (left). We have a sample
of n1 = 30 data yi = axi + b + ui , where a = 1, b = 2, xi ∼ U(1,4), and ui ∼
N(0,0.2), and a set of n2 = 20 points assumed to be outliers, xi ∼ N(7,0.5), yi ∼
N(2,0.5). We would like to fit a straight line to the data such that the result will
be oblivious to the outlier portion of this compound set. Neither the LS nor the

5.5 Linear and Non-linear Regression 239

Fig. 5.14 Robust linear regression on the data with many outliers. [Left] Only the LMS method
correctly describes the majority of the data. [Right] The function being minimized in the LMS
method. The symbol • denotes the global minimum

IRWLS method yield meaningful results: both simply run the line through both data
portions. In contrast, the LMS line fits the non-outlier group well.

The main nuisance of the LMS method is precisely the numerical minimiza-
tion (5.44). The function we wish to minimize with respect to the parameters aj

has O(nm+1) local minima, where n is the number of data points (xi, yi) and m is
the degree of the regression polynomial. In the example from the figure we have
n = n1 + n2 = 50 and m + 1 = 2 (straight line), so there are ≈2500 local minima,
among which the global minimum needs to be located, as shown in Fig. 5.14 (right).
This is best accomplished—there are dangers since the function is continuous, but
not continuously differentiable—by forming the function

M(a1) = min
a0

{
median(yi − a1xi − a0)

2},
where for each a1 we determine a0, and then minimize M(a1) with respect to a1.
This implementation becomes very costly at large n. Fast computations of the re-
gression parameters by LMS methods are non-trivial: see [35, 36].

5.5.8 Non-linear Regression

In non-linear regression the fitting functions depend non-linearly on the parame-
ters ai . The minimization of (5.35) by (5.36) therefore requires a multi-dimensional
minimum search. The well-tested tool (implemented in standard libraries) is the
Levenberg–Marquardt method. Non-linear regression with strongly non-linear func-
tions involving numerous regression parameters should be the last exit: if possible,
convert the problem to linear regression. See [37–40].

240 5 Statistical Analysis and Modeling of Data

5.6 Multiple Linear Regression

The remaining sections of this chapter, heavily indebted to the wonderfully clear ex-
position and carefully chosen examples of [41], introduce some of the most appeal-
ing methods of multivariate analysis, which is the simultaneous statistical analysis
of a collection of variables. For example, we would like to understand the influence
of several independent variables to a single dependent variable, or to study the mu-
tual dependence of several variables. Such methods can be applied in innumerable
areas of natural and social sciences.

5.6.1 The Basic Method

Section 5.5 was devoted to simple one-dimensional regression where each indepen-
dent (input) quantity xi corresponded to a single dependent (output) quantity yi .
An obvious generalization is multiple linear regression, by which we identify the
influence of many input variables on a single output variable.

Assume that we have n measurements or other sources of a set of m independent
variables x. We would like to ascertain whether a linear relation can be established
between the values of x and the n dependent variables y. In other words, can the
whole data set be described by the model

yi = f (xi) + �yi = a0 +
m∑

j=1

ajXij + �yi, i = 0,1, . . . , n − 1 (5.45)

(see Problem 5.12.1)? Here Xij stands for the ith measurement of the j th indepen-
dent variable, �yi are the unknown errors, and aj are the regression parameters to
be determined. We collect a single (ith) measurement of m independent variables
into the vector xi = (xi1, xi2, . . . , xim)T, so that all n measurements can be assem-
bled in the matrix X = (x0,x1, . . . ,xn−1)

T. (Note the index ranges i = 0,1,2, . . .

and j = 1,2,3, . . .) We compute the mean vector (of dimension m)

x = 1

n

∑n−1

i=0
xi , (5.46)

and form the matrix of data from which their average has been subtracted,

X = (x,x, . . . ,x)T, Xc = X − X. (5.47)

The matrices X, X, and Xc have size n × m. The dependent variables are handled
similarly. We compute the mean of n measured values

y = 1

n

∑n−1

i=0
yi,

5.6 Multiple Linear Regression 241

and use it to form the vector of dependent variables from which the mean has been
subtracted,

y = (y, y, . . . , y)T, yc = y − y.

The vectors y, y, and yc have dimension n. Again, our basic requirement is to min-
imize the squares of the deviations (residuals) yi −f (xi) with respect to the param-
eters aj . The measure of deviation is given in (5.35) which we generalize to more
than one dimension and set σi = 1. For a more compact notation, we add a column
of values 1 to the data matrix, yielding a n × (m + 1) matrix, while the regression
coefficients (including the zeroth one) are arranged in a vector of dimension (m+1),

� = (1n,X), â = (̂
a0, â

T
(m)

)T
.

We obtain the vector of regression parameters â by solving the normal sys-
tem (3.10),

â = (
�T�

)−1
�Ty.

The first component of the vector â (the zeroth regression parameter or the intercept)
and the m slopes of the regression “straight lines” are then given by

â0 = y − xTâ(m), â(m) = (a1, a2, . . . , am)T = (
XT

c Xc
)−1

XT
c yc (5.48)

(see Sect. 5.2 in [41]). Of course we would also like to know the uncertainties of the
estimated parameters and the quality of the model description (5.45). The measure
for the dispersion of the dependent variables is the total sum of squares

Sy = yT
c yc.

The total dispersion has two contributions. The first contribution can be explained
by linear regression in the independent variables x, and is equal to

Sreg = âT(�T�
)̂
a.

The remaining portion of the dispersion that is not encompassed by the presumed
linear model, is called the residual sum of squares and amounts to

Sres = Sy − Sreg = (y − �â)T(y − �â).

Finally, we compute the residual variance σ̂ 2 which also determines the variance of
the individual regression parameters:

σ̂ 2 = Sres

n − m − 1
, var(̂a) = σ̂ 2(�T�

)−1
. (5.49)

The fraction of the total dispersion in y that can be explained by linear regression in
m independent variables x, is given by the correlation coefficient

R2 = Sreg

Sy

= Sy − Sres

Sy

= 1 − Sres

Sy

.

242 5 Statistical Analysis and Modeling of Data

Fig. 5.15 Raman absorption spectrum of PET yarns as a typical experiment in which the num-
ber of measurements n is much smaller than the number of independent variables m in the in-
dividual measurement. (Example from [41] based on original data from [42].) [Left] The n = 21
measurements at m = 268 frequencies. [Right] Values of dependent variables (yarn density) in n

measurements

The value R2 lies between 0 and 1. Values close to 1 roughly indicate that the linear
model (5.45) is an adequate description of data.

If we wish to judge the relevance of the individual parameters aj , we must as-
sume that some distribution law governs the errors �yi in the model (5.45). In most
cases n � 1 and the errors are normally distributed, �yi ∼ N(0, σ 2). For each esti-
mated regression parameter âj we form the statistic

tj = âj

σ̂
√

ξj

, ξj = [(
�T�

)−1]
jj

,

where σ̂ is given by (5.49). A value |tj | > 2 indicates that the corresponding pa-
rameter is relevant (aj �= 0). A value |tj | ≤ 2 (and even more so |tj | ≈ 0) hints at
aj ≈ 0.

5.6.2 Principal-Component Multiple Regression

The computation of the coefficients a and their variances in multiple regression
involves the matrix XT

c Xc, where Xc is the centered data matrix (5.47). If Xc is ill-
conditioned or contains weakly linearly dependent columns, or when the number of
measurements in smaller than the number of independent variables (n < m or even
n � m), XT

c Xc becomes singular or nearly singular (see Fig. 5.15 and the following
text). In such cases the regression parameters a cannot be uniquely determined or
may have unphysical values and dispersions.

If the matrix XT
c Xc is singular or nearly singular, we can use its pseudo-inverse

(see Sect. 3.3.3). Assume that XT
c Xc has known rank r (1 ≤ r ≤ m). It can be diag-

onalized as

XT
c Xc = V �V T, � = diag(λ1, λ2, . . . , λr), V TV = Ir ,

5.6 Multiple Linear Regression 243

while the smallest m − r eigenvalues are zero. The columns of the m × r matrix
V are eigenvectors vj corresponding to the individual eigenvalues λj . The pseudo-
inverse of XT

c Xc is then

(
XT

c Xc
)+ = V �−1V T =

r∑
j=1

vjv
T
j

λj

.

Instead of the true inverse (XT
c Xc)

−1 (which does not exist in this case) we use the
pseudo-inverse in (5.48). Thus we obtain a unique vector of m regression coeffi-
cients by the method of generalized or pseudo-inverse regression (denoted by “pi”
in the following):

â
pi
(r) = (

XT
c Xc

)+
XT

c yc =
r∑

j=1

(vjv
T
j)XT

c yc

λj

. (5.50)

The values of dependent variables y (vector of dimension n) corresponding to the
regression parameters (5.50) are

ŷpi = y + Xcâ
pi
(r).

The estimate for the regression coefficients can also be obtained by decompos-
ing the matrix Xc or the product XT

c Xc to principal components (see Sect. 5.7).
The basic idea is to form the matrices Zr = XcV that contain the first r principal
components of Xc and correspond to those directions in r-dimensional space along
which the data Xc have the largest variance, while the remaining m− r components
are neglected. As input variables in the regression we use the matrix Zr , while the
output variable is yc. The regression coefficients for the principal components Zr

(not for the variables Xc) are [41]

ζ (r) = (ζ1, ζ2, . . . , ζr)
T = (

ZT
r Zr

)−1
ZT

r yc = �−1V TXT
c yc.

We compute the regression coefficients for the original independent variables (the
data in the matrix Xc) by first forming the m-dimensional vectors

ãj = ζjvj , j = 1,2, . . . , r,

as V ∈ R
m×r . Then we compute the partial sums (here “pc” denotes principal com-

ponents)

a
pc
(ρ) =

ρ∑
j=1

ãj =
ρ∑

j=1

ζjvj , ρ = 1,2, . . . , r. (5.51)

The vector of regression coefficients a
pc
(ρ) has m components (equal to the number

of independent variables in a single measurement). The ρth partial sum gathers ρ

244 5 Statistical Analysis and Modeling of Data

Fig. 5.16 Principal-component regression. [Left] Vectors of coefficients (5.51). The first four par-
tial sums are shown. [Right] Values of dependent variables (empty circles). By including just three
major principal components (three curves for 1, 2, and 3 components) the data can be described
sufficiently well. See also caption to Fig. 5.15

principal components in it. The values of the dependent variables y corresponding
to the regression parameters (5.50) are the same as in the pseudo-inverse method,

ŷpc = y + XcV ζ̂ (r) = y + Xca
pc
(r) = ŷpi.

The procedure outlined here is known as principal-component regression (PCR).
Above all, it is applicable in the cases where the number of variables m is much
larger than the number of measurements n. In the PCR method, it is precisely the
restriction to a limited number of principal components that helps us avoid the prob-
lems due to the near-singularity of the data matrix.

Example Principal-component regression is a good tool to seek the connections be-
tween the infrared Raman spectrum of the polyethylene-terephthalate (PET) yarns
and their density. Figure 5.15 (left) shows the n = 21 measurements of the spectrum
at m = 268 frequencies, which are stored in the data matrix X (or Xc after center-
ing). In each of the n measurements we also measure the density of the yarn, and
store the results in the vector of dependent variables y (or yc after centering). The
dependent variables are shown in Fig. 5.15 (right).

The final result of the regression is the coefficient vector (5.51) which we gradu-
ally augment by additional principal components. Figure 5.16 (left) shows the partial
sums up to the fourth. Typically we include only a few principal components; further
admixtures merely tend to increase the noise. Figure 5.16 (right) clearly shows how
well the measured dependent variables can be described by taking just one, two, or
three principal components.

5.7 Principal-Component Analysis

Principal-component analysis (PCA) is one of the most important tools to reduce
the dimensionality of correlated multivariate data. The basic idea can be illus-

5.7 Principal-Component Analysis 245

Fig. 5.17 [Left] Bivariate data with the rescaled eigenvectors of the covariance matrix 2σ1v1 and
2σ2v2 (the lengths of the vectors are twice the standard deviations along their directions). [Right]
Transformed data. The symbol • represents the data point slightly detached from the central group,
which cannot be identified from the analysis of the distribution of the variables x1 or x2 alone, yet
it is easily caught as an outlier in the y2 variable

trated by the example of a data set xi = (xi1, xi2) distributed according to the two-
dimensional normal distribution N(x;μ,�) (see (5.60)) with the average μ = (0,0)

and covariance matrix � = ((1, ρ), (ρ,1)), where ρ = 0.85 is the correlation coef-
ficient. The data points are shown in Fig. 5.17 (left). The eigenvectors of the co-
variance matrix � are v1 = (1,1)/

√
2 in v2 = (−1,1)/

√
2, and correspond to the

eigenvalues λ1 = 1 + ρ = 1.85 and λ2 = 1 − ρ = 0.15.
The components xi1 and xi2 are strongly correlated, so it is obvious that in or-

der to describe the data in Fig. 5.17 (left), a single dimension is almost sufficient:
that along the eigenvector v1. It carries most of the dispersion while the variance
along the vector v2 is relatively small. The basic idea of PCA is to determine the
orthogonal linear transformation which projects the data x to a space with smaller
dimension. For the example discussed above, we can use the transformation

yi = V Txi , V = (v1,v2) = 1√
2

(
1 −1
1 1

)
,

to map all data into the vicinity of the y1 axis, while just a minor part of their disper-
sion remains along the y2 axis. Namely, the variances of the transformed variables
y1 and y2 are

var(y1,2) = var

(
x2 ± x1√

2

)
= 1

2
var(x2 ± x1)

= 1

2

(
var(x1) + var(x2) ± 2cov(x1, x2)

)= 1

2
(1 + 1 ± 2ρ) = λ1,2.

The eigenvalues of the covariance matrix, λ1 and λ2, are therefore equal to the
variances of the transformed variables y1 and y2.

246 5 Statistical Analysis and Modeling of Data

These two-dimensional thoughts can be generalized to the reduction of dimen-
sionality of a set of n correlated multivariate data xi = (xi1, xi2, . . . , xim)T, where
i = 0,1, . . . , n − 1. The leading example in this section are the data obtained in
measuring radar reflections in the ionosphere (Problem 5.12.3, Fig. 5.28), where
n = 351 measurements of m = 33 variables have been acquired. We wish to find
such a linear combination of the data components xi ,

yji = vj1xi1 + vj2xi2 + · · · + vjmxim = vT
j xi , j = 1,2, . . . , r, r ≤ m,

that this transformation preserves the information about the dispersion of the orig-
inal data as truthfully as possible, and that the variables yji become uncorrelated.
We call the product vT

j x the j th principal component, and the value of this product
yji for a specific data component xi the principal-component score. In summary,
we are seeking a coefficient vector v1 that maximizes the variance

1

n − 1

n−1∑
i=0

(y1i − y1)
2,

then the vector v2 that maximizes
∑

i (y2i − y2)
2 and simultaneously ensures that

y1i is uncorrelated to y2i , then the vector v3 that maximizes
∑

i (y3i − y3)
2 and

ensures that y3i is uncorrelated to both y2i and y1i , and so on. Due to this chain
construction with intermediate requirements on the uncorrelatedness of the scores
yji , PCA is also known as decorrelation of variables. This goal can be achieved by
following either of the two paths: by diagonalizing the covariance matrix, or by the
singular-value decomposition of the data matrix [43].

5.7.1 Principal Components by Diagonalizing the Covariance
Matrix

To obtain the principal components from the covariance matrix, we first subtract
the average (5.46) from each xi , and construct the n × m centered data matrix Xc
according to (5.47). The estimate for the covariance matrix is

�̂xx = 1

n − 1

n−1∑
i=0

(xi − x)(xi − x)T = 1

n − 1
XT

c Xc. (5.52)

Then we compute the eigenvalues and eigenvectors of �̂xx . This matrix is symmet-
ric and its singular-value decomposition has the form

�̂xx = V �V T, � = diag(λ1, λ2, . . . , λm), V TV = Im, (5.53)

where λj are the eigenvalues of �̂xx ordered in decreasing magnitude, and the
columns of V are its eigenvectors. The first r principal components of x are

yj = vT
j x, j = 1,2, . . . , r, r ≤ m.

5.7 Principal-Component Analysis 247

Fig. 5.18 Data from Problem 5.12.3 studied by PCA. [Left] Eigenvalues of the covariance matrix
(left y-axis) and the percentage of the data variance (5.54) (right y-axis). The first eigenvalue λ1
covers ≈27 % of the variance, while the sum up to including λ18 covers ≈90 %. [Right] Recon-
struction of the data x0 (i = 0) by the sum of principal components up to ranks 3 and 18

The eigenvalues λj are the estimates for the variance of the j th principal component.
What we wish to achieve by PCA is to use just a couple of the lowest principal
components to account for nearly all variation of the original data.

The characteristic drop-off of the eigenvalues is shown in Fig. 5.18 (left, left
y-axis). We define the percentage of the explained variance as

ηr =
∑r

j=1 λj∑m
j=1 λj

= 1 −
∑m

j=r+1 λj∑m
j=1 λj

. (5.54)

With increasing rank r of the principal-component approximation, ηr also increases
(Fig. 5.18 (left, right y-axis)). For a crude description of the data at least those
principal components should be retained that correspond to the eigenvalues from the
steepest portion of the λj curve. By this guideline, we may accept eigenvalues from
λ1 to λ6. Typically, we take enough components that ≈90 % of the data variance is
accounted for (up to including λ18 in the figure).

The rank-r approximation for each original data point xi is

x
(r)
i = x +

(
r∑

j=1

vjv
T
j

)
(xi − x), i = 0,1, . . . , n − 1, r ≤ m.

With increasing rank r , x
(r)
i becomes an increasingly good approximation of xi ;

when r = m, we should, of course, retrieve x
(m)
i ≡ xi . Figure 5.18 (right) shows

the difference between the rank-r approximation and the actual data x0 for r = 3
and r = 18. Indeed, the approximation of a higher rank describes the data better
(a smaller difference and a larger percentage of the described variance).

248 5 Statistical Analysis and Modeling of Data

Fig. 5.19 The PCA scores for the data of Problem 5.12.3. [Left] Component 1 vs. component 3.
[Right] Component 2 vs. component 3

PCA is not just a data reduction method. By evaluating the scores of the j th
principal component for an individual (ith) data point,

yji = vT
j xi , i = 0,1, . . . , n − 1, (5.55)

we use the two-dimensional distribution of yji vs. yj ′i (j ′ �= j) to reveal pecu-
liarities in the structure of the data, e.g. locate outliers (see Fig. 5.17) or identify
clustering. Figure 5.19 shows the scores y3i vs. y1i and y3i vs. y2i for the data of
Problem 5.12.3. In this case, two-dimensional images of the first few principal com-
ponents help us clearly separate the good reflections from the bad ones.

5.7.2 Standardization of Data for PCA

When the estimated variances of the individual data elements xi are comparable,
PCA should be initialized with the data averaged by (5.46) and (5.47). But if the
variances differ widely, or if the data elements are incomparable, the data should be
standardized. This is a crucial step if quantities are given in different measurement
units. Otherwise, the first few principal components will be totally dominated by
the influence of the data components xi with the largest numerical spread. The data
should therefore always be centered and divided by the estimates of their standard
deviations:

xi ←− xi − x

sxi

(5.56)

(the division of vectors is meant to be component-wise). The standardization of data
means that the PCA procedure, de facto, is carried out with the correlation (and not
the covariance) matrix. Further arguments in favor of the standardization or against
it can be found in [43], Chap. 2.3.

5.8 Cluster Analysis 249

5.7.3 Principal Components from the SVD of the Data Matrix

The second option to compute the principal components of a set of multivariate data
leads through the singular-value decomposition (SVD) of the data matrix Xc. The
SVD process has been described in Sect. 3.3.2. We use SVD to decompose the n×m

matrix Xc as

Xc = U�V T, U ∈R
n×n, � ∈ R

n×m, V ∈ R
m×m, (5.57)

where the columns of V are the eigenvectors vj of �xx . In full SVD the matrix
� has size n × m and the square m × m submatrix at its upper edge contains the
square roots of the eigenvalues of the covariance matrix, multiplied by (n − 1).
In other words, the eigenvalues λj from the decomposition (5.53) are equal to the
values λ2

j /(n− 1) from the decomposition (5.57). In addition, SVD rewards us with
bonus principal-component scores: in scaled form they are hidden in the columns of
U . We compute the scores (5.55) for the j th principal component as

yji = Uij

√
λj , i = 0,1, . . . , n − 1.

PCA is usually carried out with the SVD of the centered data matrix Xc, not by
diagonalizing the covariance matrix �xx . The terms PCA and SVD are therefore
often considered to be synonymous.

5.7.4 Improvements of PCA: Non-linearity, Robustness

PCA is a linear method that we can use to determine whether the data from R
m,

to a good approximation, actually “reside” in a smaller space R
r , r < m. Yet the

method fails, for example, in the simple case when the data in R
2 is distributed

approximately uniformly along the perimeter of the unit circle. Obviously such data
has only one degree of freedom—the angle φ ∈ [0,2π)—while linear PCA will
allow us to span these data on two practically arbitrary orthogonal directions (any
two orthogonal unit vectors can describe the variance of such data). Linear PCA is
also sensitive to outliers: even though the method is supposed to help us find the
directions with the largest variation, it is unacceptable that a single outlier should
radically alter the direction of any of the eigenvectors. Non-linear improvements to
the PCA are described in [41] in Sects. 16.2 and 16.5. The initial reading on robust
PCA can be found in Chap. 10 of [43] and Sect. 6.10 in [17]; see also [44].

5.8 Cluster Analysis �

Cluster analysis is one of the basic methods of unsupervised learning. Its primary
task is to classify sets of multivariate data into clusters, groups, or classes (all syn-
onyms in common use). The number of classes is not necessarily known in ad-
vance. This is the key distinction with respect to discriminant analysis (discussed

250 5 Statistical Analysis and Modeling of Data

Fig. 5.20 Eruptions of the Old Faithful geyser (Yellowstone National Park). We have 107 mea-
surements of the eruption duration (x1) and the times between two consecutive eruptions (x2), both
in minutes. [Left] Unclassified data. [Right] Data classified in two clusters by using agglomerative
clustering with complete linkage. See also Fig. 5.21

in Sect. 5.9) where we initially declare the number of classes and where previously
processed data may be used to classify new data for which class membership is yet
to be determined. A famous case is shown in Fig. 5.20 (left). We would like to know
whether in the distribution of geyser eruptions in terms of their duration and pauses
between the eruptions any natural ordering or classification can be established, re-
flecting an underlying physical mechanism [45].

A cluster can loosely be defined as a group of objects (points in the plane or in
space) in which the objects are “close” to each other, while the objects within one
group are “far away” from the objects in other groups. The way the distance between
the objects and between the clusters is measured depends on the individual method.
Often, the results can be in conflict with our subjective judgment: in Fig. 5.20 (left)
we may recognize two or three clusters, depending on how we interpret the data 55,
48, 101, 62, 18, and 52.

Data clustering methods come in two broad varieties: hierarchical and non-
hierarchical (or partitioning). Here we discuss the most typical representatives of
each type. Further reading can be found in [46], in Chap. 11 of [47], in Chap. 12 of
[41], and in specialized monographs [48–51].

5.8.1 Hierarchical Clustering

In hierarchical clustering the data are split in clusters of different sizes, among which
some hierarchy is established. We initiate the process at the bottom of the hierarchy
and interpret each data point as a cluster of its own. We locate the nearest two
clusters, merge them, and repeat this until the last two clusters merge to a single
cluster containing all data. This is the basic idea of agglomerative clustering. In the

5.8 Cluster Analysis 251

second approach, known as divisive clustering, all data are understood as a single
cluster which is gradually broken down into smaller clusters until we are left with
as many clusters as there are data entries. Agglomerative clustering appears to have
more adherents, and we discuss it in the following.

We represent each object (multivariate data item with m values) by the vector
xi = (xi1, xi2, . . . , xim)T, where i = 0,1, . . . , n − 1. When the ranges of numeri-
cal values of the individual components differ widely, they should be standardized,
xij ← (xij − xj)/sxj

, where xj = n−1∑
i xij and sxj

= (n − 1)−1∑
i (xij − xj)

2.
To measure the distance between the objects we use

d(xi ,xj) =
[

m∑
k=1

|xik − xjk|p
]1/p

,

in particular the cases p = 2 (Euclidean distance) and p = 1 (so-called Manhattan
street distance). We use the n data entries to construct the symmetric n×n proximity
matrix with the elements

Di,j =
{

d(xi ,xj); i �= j,

0; i = j,
(5.58)

where i, j = 0,1, . . . , n − 1, and follow the algorithm [41]

Input: Multivariate data {xi}n−1
i=0 , each one is its own cluster

Compute the matrix D(0) by using (5.58).
for s = 0 to n − 1 do

Find the shortest distance DI,J in the matrix D(s).
Merge clusters I and J into cluster IJ . // (*)
Compute the distance DIJ,K between the new cluster IJ and all
remaining clusters K �= IJ by using

DIJ,K = max{DI,K,DJ,K } (complete linkage)

Construct a new (n − s + 1) × (n − s + 1) matrix D(s+1) by deleting the
rows and columns I and J from D(s) and adding the row and column IJ

with distances DIJ,K . At the end of the loop D(n−1) = 0.
end
Output: The list of clusters merged at step (*); the list of distances DIJ,K at

the individual merge

Example Let us revisit the Old Faithful (Fig. 5.20). The final results of the algo-
rithm above are the list of clusters that were merged into a larger cluster, and the list
of distances DIJ,K at this merge. We illustrate this hierarchy graphically by a den-
drogram (Fig. 5.21) in which the distances DIJ,K are represented by the different
spacings between the sites where two clusters merge. A larger distance implies that
the corresponding clusters are more disjunct. Vertical cuts through the branches of

252 5 Statistical Analysis and Modeling of Data

Fig. 5.21 Dendrogram for hierarchical clustering of the data from Fig. 5.20 by complete linkage.
The intersections of vertical lines with the branches of the dendrogram define the number of classes
(clusters). All elements to the right of the cut belong to the corresponding sub-cluster. The element
52 is misclassified in two-class clustering

5.8 Cluster Analysis 253

the dendrogram reveal the number of clusters. According to the first possible cut (to
the right of the value D ≈ 3, two clusters) the elements from 62 to 20 belong to one
cluster, while the elements from 91 to 65 belong to the other. According to the next
possible cut (to the right of D ≈ 2.36, three clusters) the elements from 62 to 48 fit
into one, the elements from 83 to 20 into another, and those from 91 to 65 into the
third cluster.

This algorithm has allowed us to perform clustering by complete linkage
where we have determined the distance DIJ,K by finding the maximum value
max{DI,K,DJ,K}. A typical outcome of such linkage is a large number of small,
compact clusters. Another option could be to use single linkage where DIJ,K would
be determined by finding the minimum values min{DI,K,DJ,K}. This tends to result
in long chains of clusters made of just single data elements. The details on different
types of linkage can be found in [49].

To compute and draw the dendrogram, we may resort to dedicated software. For
example, in MATHEMATICA, we store the data xij in the matrix x and type

Needs["HierarchicalClustering‘"]
x={{x_11,x_12,...,x_1m},...,{x_n1,x_n2,...,x_nm}};
DendrogramPlot[x,DistanceFunction->EuclideanDistance,

LeafLabels->(#&)];

(Note that this command does not just draw the dendrogram but hides the complete
clustering algorithm!) The same can be accomplished in the R environment [52, 53]
which is a powerful suite of tools for statistical data analysis. In this environment the
data should first be converted to the proximity matrix, then the clusters are formed,
and finally the dendrogram is plotted:

require(graphics)
require(utils)
DATA <- matrix(scan("data.dat",0),ncol=2,byrow=TRUE)
hc <- hclust(dist(DATA),"complete")
dend <- as.dendrogram(hc)
plot(dend,horiz=TRUE)

If the input data already form relatively well delineated clusters, the final out-
comes of hierarchical methods do not depend strongly on the specifics of linkage
and the details of the algorithms. The main deficiency of the hierarchical methods
is their unpredictability. Since the clustering proceeds by a stiff recipe which can-
not be modified or adapted at any of the intermediate steps, the final distribution
of the data into clusters can be arbitrarily bad. Moreover, hierarchical algorithms
are numerically expensive: in naive implementations they require O(n2) of memory
and O(n3) of processor time.

5.8.2 Partitioning Methods: k-Means

Many deficiencies of hierarchical methods can be avoided by using partitioning
methods. Their main characteristic is that clustering is initiated with a predefined

254 5 Statistical Analysis and Modeling of Data

number of clusters K , and that the classification into K clusters is not necessarily
hierarchically related to a classification into another number of clusters: partition-
ing methods are therefore non-hierarchical. The number of clusters K is an input
parameter that in many instances may be readily available. For example, in the bi-
variate data in Fig. 5.20 we will obviously attempt either K = 2 or K = 3; with
multivariate data, the decision might be much harder.

A very popular approach is the method of k-means. In the standard implementa-
tion we randomly distribute the multivariate data set {xi}n−1

i=0 over the chosen num-
ber of clusters K , and use the data within each group to determine their centers-of-
mass (centroids). In the next step, each element is assigned to the centroid nearest to
it, and we use this reordered configuration to compute the new centroids. We repeat
this until the configuration no longer changes:

• Standardize the data as xij ← (xij − xj)/sxj
, choose number of clusters K .

• Randomly distribute the data xi into K clusters and compute the centroids
(means) xk of each cluster k = 1,2, . . . ,K .

• Compute the sum of squares of distances of each data point to its centroid,

D =
K∑

k=1

∑
c(i)=k

‖xi − xk‖2
2, (5.59)

where c(i) is the cluster containing the element xi .
• Locate the nearest centroid xk of the element xi and reassign xi to cluster k.

After the reassignments, compute the new centroids xk .
• Repeat from step (5.59) until no further readjustments of the elements are needed.

Then D reaches its minimum. The final result is the list of elements within the
clusters c(i).

There is no need to randomize the initial assignments of the elements if we know
better. For each presumed cluster the centroids can be computed in advance; for
example, by looking at Fig. 5.20 and assuming K = 2 we might decide for x1 =
(2,50) and x2 = (4,80), while with the assumption K = 3 we might start with
(2,50), (3,60), and (4,80) (or corresponding standardized values).

Regardless of the initial configuration the algorithm converges very quickly: the
numerical cost is just O(nKν), where ν is the number of iterations needed for con-
vergence (typically ν ≈ 3). Because of its speed—and because it is so wonderfully
simple to program—it is a popular tool to classify large data sets. It can also be
used to roughly locate the cluster centroids, thereby providing the initial step for
processing with other, more sophisticated algorithms. Figure 5.22 shows the initial
configuration and the situation after the first iteration of the k-means algorithm for
the geyser data from Fig. 5.20.

The method of k-means fails in classifying clusters with very different characters
(e.g. with K = 2, in the case of one large and one small cluster, or of one compact
and one elongated cluster, or of two approximately parallel elongated clusters as
shown in Fig. 5.23). The method fails because it relies solely on the sum of dis-
tances (5.59) between the elements and the centroids, and is therefore insensitive to

5.8 Cluster Analysis 255

Fig. 5.22 Clustering bivariate data from Fig. 5.20 by using the method of k-means. [Left] At the
beginning of the iteration the data are randomly distributed among both clusters. The centroids
(large symbols • and ◦) are therefore at completely wrong locations and the sum of distances
D = 208.5 (see (5.59)) is large. [Right] Situation after the first iteration. The data are already
almost correctly classified, the centroids are at almost their final positions, and D = 46.9 is near its
final value 40.6. The iteration stops in the next step, in which the elements 17, 42, and 52 become
rearranged

Fig. 5.23 The method of k-means sometimes fails. In such cases the algorithm typically locates
just the local minimum of the sum of the squares of distances D (see (5.59)). [Left] Unclassified
data. [Center] A wrong final configuration in a classification into two clusters (local minimum
D = 123.4). [Right] The correct final configuration (global minimum D = 105.0)

the relative sizes or shapes of the clusters. One may therefore run the algorithm with
several random initial configurations and ultimately accept the solution for which D
reaches its global minimum (Fig. 5.23 (right)).

256 5 Statistical Analysis and Modeling of Data

5.8.3 Gaussian Mixture Clustering and the EM Algorithm

The principle of the Gaussian mixture method is the search for a limited set of
multivariate normal distributions that best reproduce the whole data set as a con-
glomerate of clusters (which may or may not overlap). In other words, we would
like to frame the data xi = (xi1, xi2, . . . , xim)T, where i = 0,1, . . . , n − 1, into K

(k = 1,2, . . . ,K) multi-dimensional Gaussian distributions

N(x;μk,�k) = (2π)−m/2(det�k)
−1/2 exp

{
−1

2
(x − μk)

T�−1
k (x − μk)

}
. (5.60)

Here μk is the distribution mean (a vector of dimension m) and �k the correspond-
ing m × m covariance matrix. We determine the parameters μk and �k by using an
iterative procedure called the EM (expectation-maximization) algorithm. With the
EM algorithm we maximize the quantity

L =
n−1∏
i=0

P(xi), (5.61)

where P(xi) is the probability that some point is found at xi . This probability is

P(xi) =
K∑

k=1

P(k)N(xi;μk,�k),

where P(k) is the probability that a randomly chosen data point belongs to the
cluster k. At the same time, P(k) measures the fraction of all n data that belong to
the cluster k. The corresponding probability for the kth component of the ith data
point is then

Pik = P(k)N(xi;μk,�k)∑
k P (k)N(xi;μk,�k)

= P(k)N(xi;μk,�k)

P (xi)
.

The computation of L and Pik with the estimates μ̂k , �̂k , and P̂ (k), represents the
expectation step (E) of the EM algorithm. We estimate the averages (centroids) of
the K distributions, their covariance matrices, and probabilities P(k), by

μ̂k =
∑

i Pikxi∑
i Pik

, �̂k =
∑

i Pik(xi − μ̂k)(xi − μ̂k)
T∑

i Pik

, P̂ (k) = 1

n

∑
i

Pik.

These three estimates represent the second step (maximization step, M).

Example The algorithm is implemented iteratively. At the beginning we approx-
imately determine the parameters μ̂k , �̂k , and P̂ (k). Figure 5.24 (left) shows

5.8 Cluster Analysis 257

Fig. 5.24 Classification of n = 300 bivariate data into K = 3 clusters by the EM algorithm. [Left]
Translation and rotation of the “2σ ” covariance ellipses during the iteration. The semi-axes of the
ellipses are 2r0 and 2r1 long (see (5.40)). [Right] The situation at the end of the iteration

n = 300 bivariate data (m = 2) which we would like to classify into three clus-
ters (K = 3). We initialize the iteration with the estimates for the three centroids
and three covariance matrices, for example,

μ̂1 = (−1,0), μ̂2 = (0,0), μ̂3 = (1,0), �̂1,2,3 =
(

0.25 0.00
0.00 0.05

)

and P̂ (1) = P̂ (2) = P̂ (3) = 1/3, and use them to compute L and Pik (step E). Then
we compute the new estimates μ̂k , �̂k , and P̂ (k) (step M). We repeat this procedure
until L stops increasing. (Multiple tries with different initial configurations may
convince us that we have indeed reached the global, not a local, maximum.) During
the iteration the covariance ellipses entangle the individual data clusters ever more
closely, and after typically ≈10 rounds the procedure converges to the final Gaussian
mixture that optimally fits the data and delineates K clusters. The final configuration
for this case is shown in Fig. 5.24 (right).

For large n, many small probabilities are multiplied in (5.61); as a result, range
underflows in finite-precision arithmetic may occur. The whole procedure should
therefore be implemented solely by taking the logarithms of all quantities: instead
of L =∏

i P (xi) we should use logL =∑
i P (xi) and

logN(x; μ̂k, �̂k) = −1

2
(x − μ̂k)

T�̂−1
k (x − μ̂k) − m

2
log 2π − 1

2
log det �̂k.

Additional numerical details can be found in [25]; see also [44].

258 5 Statistical Analysis and Modeling of Data

Fig. 5.25 Typical examples of bivariate data for which standard clustering methods fail. They can
be handled effortlessly by spectral clustering

5.8.4 Spectral Methods

It is not hard to imagine a layout of bivariate data for which all approaches discussed
so far (the hierarchical agglomerative method, the method of k-means, and the EM
algorithm) will fail. Typical examples are shown in Fig. 5.25 hinting at problematic
types of clusters like concentric regions or clusters that bite into one another. One
of the most powerful modern methods of unsupervised learning from such data is
spectral clustering.

The foundation of the method is, again, a kind of proximity matrix. But by ap-
plying a few simple transformations of this matrix the problematic data regions can
be converted into more compact groups which are easier to cluster by simpler algo-
rithms. A good introduction to these spectacularly effective methods is offered by
the paper [54]. From [55] we adopt the algorithm for spectral clustering of multi-
variate data xi (i = 0,1, . . . , n − 1) into K clusters:

• Use the data {xi}n−1
i=0 to construct the affinity matrix

Aij =
{

exp[−‖xi − xj‖2/(2σ 2)]; i �= j,

0; i = j.

The way to determine the parameter σ is described below. The matrix A contains
all information about the distances between the data. By using A, compute

L = D−1/2AD−1/2, D = diag(d0, d1, . . . , dn−1), di =
n−1∑
j=0

Aij .

• Find the K eigenvectors vk corresponding to the largest eigenvalues of L, and
arrange them in the columns of the matrix V = (v1,v2, . . . ,vK) ∈ R

n×K . Nor-
malize the rows of V to unit length,

Wij = Vij

[
K∑

k=1

V 2
ik

]−1/2

.

5.9 Linear Discriminant Analysis 259

• Each row of the matrix W ∈ R
n×K is a new point wi (multivariate data entry)

in space R
K . By the method of k-means (Sect. 5.8.2) classify the points wi into

K clusters. Choose the parameter σ such that the points accumulate in compact,
well separated groups (sometimes easily discernible). These groups are easy to
handle by the k-means algorithm.

• Assign the original data points xi to the cluster j precisely in the case that the ith
row of the matrix W has been assigned to cluster j .

5.9 Linear Discriminant Analysis �

Assume that an experiment gives us n measurements of m variables. Suppose we
anticipate that the results of each of the n measurements will originate in one of
the two possible classes Rr , r ∈ {1,2}. A well-known example is the analysis of n

microscopic samples of needle biopsies of potentially cancerous tissues, where each
sample allows us to determine m properties of the tissue cells [56]. For example, one
can monitor the shape, the symmetry, the size, and other cell properties, and arrange
the ith measurement of all m variables in the vector

xri = (
x

(r)
1 , x

(r)
2 , . . . , x(r)

m

)T
i
, i = 0,1, . . . , n − 1, r ∈ {1,2}. (5.62)

If, by surgical methods, we realize that a microscopic sample corresponds to a be-
nign tissue, we assign it to the class r = 1; if it is malignant, we assign it to the class
r = 2.

Discriminant analysis allows us to solve two sequential problems. Firstly, we
wish to devise a tool for classification into classes R1 and R2 on the basis of unam-
biguously identified n1 benign and n2 = n−n1 malignant tissue samples. Secondly,
we would like to apply this very classification tool to determine the class of a new,
as yet unclassified observation (sample). This is one of the aspects distinguishing
discriminant analysis from clustering analysis (Sect. 5.8): in the former the num-
ber of classes is known in advance, while in the latter both the number of classes
(clusters) and the class assignments are unknown beforehand.

5.9.1 Binary Classification

Here we discuss the simplest case of binary classification, where only two classes
are involved. We refer to the Bayes theorem of conditional probabilities. We assume
that the prior probabilities

P(ξ ∈ Rr) = Pr , r = 1,2,

are already known, i.e. we know the probabilities that a randomly chosen measure-
ment ξ = x belongs to either class R1 or class R2. If we do not know them, we can

260 5 Statistical Analysis and Modeling of Data

estimate them from the population sample at hand: in the cancerous tissue example
above, we can simply set P1 = n1/n and P2 = n2/n. Suppose that the conditional
probability density for class r is

p(ξ = x|ξ ∈ Rr) = pr(x). (5.63)

By using Bayes theorem P(A|B) = p(B|A)P(A)/p(B), where P denote the prob-
abilities and p the probability densities, we obtain the posterior probabilities

P̃r (x) = P(ξ ∈ Rr |ξ = x) = pr(x)Pr

p1(x)P1 + p2(x)P2
, (5.64)

which are the probabilities that the observed x belongs to the class R1 or R2.
In binary classification we choose R1 to be the class corresponding to the larger
prior probability P1. This means that the observed ξ should be assigned to R1
if P̃1(x)/P̃2(x) > 1, or to R2 otherwise. We can use (5.64) to assign x to R1 if
p1(x)/p2(x) > P2/P1, or to R2 otherwise. For practical use we prefer to define

L(x) = log
p1(x)P1

p2(x)P2
(5.65)

and classify

L(x) > 0 ⇐⇒ x ∈ R1, L(x) < 0 ⇐⇒ x ∈ R2. (5.66)

Usually we assume that the probability densities p1(x) and p2(x) correspond to the
normal distributions, and that in general they have different means μ1 and μ2, yet
equal covariance matrices �1 = �2 = �xx , thus

pr(x) = (2π)−m/2|�xx |−1/2 exp

[
−1

2
(x − μr)

T�−1
xx (x − μr)

]
.

(The procedure for �1 �= �2 is described in [41], Sect. 8.3.7.) When this is plugged
in (5.65) the function L can be written as L(x) = a0 + aTx, where

a0 = −1

2

{
μT

1 �−1
xx μ1 − μT

2 �−1
xx μ2

}− log
P2

P1
, a = �−1

xx (μ1 − μ2).

In practice we are only dealing with finite population samples, so we do not know
the exact μ1, μ2, and �xx . But we can estimate them: we compute the vectors μ̂1
in μ̂2 (both of dimension m) by averaging over all n1 and n2 measurements,

μ̂r = xr = 1

nr

nr−1∑
i=0

xri , r = 1,2

(see definition (5.62)). We estimate the m × m covariance matrix by

�̂xx = 1

n1 + n2

[
S(1)

xx + S(2)
xx

]
,

5.9 Linear Discriminant Analysis 261

where

S(r)
xx =

nr−1∑
i=0

(xri − xr)(xri − xr)
T, r = 1,2.

The discriminant function is then

L̂(x) = â0 + âTx, (5.67)

where

â0 = 1

2

{
xT

2 �̂−1
xx x2 − xT

1 �̂−1
xx x1

}+ log
n1

n2
, â = �̂−1

xx (x1 − x2).

We have described the most basic procedure of binary classification with the
discrimination function (5.67). This function is linear in the variables x and we
have therefore performed a linear discriminant analysis (LDA). When some sample
from a two-class population (n measurements of m variables belonging either to
class R1 or to class R2) has been used to determine the m + 1 parameters a0 and a
of the function L, the criterion (5.66) allows us to classify all further measurements
x. We simply compute the value of L(x) for each newly acquired x and check its
sign: if it is negative, x belongs to R1, otherwise to R2.

The quality of the classification can be tested as follows. From the complete set
of n measurements we omit a single measurement (one vector of dimension m) and
estimate the parameters a0 and a of L from the remaining n − 1 data entries. Then
the omitted entry is classified according to this modified estimate for L. We repeat
this procedure for all n measurements and obtain the values

n11—data that belong to R1 and were indeed assigned to R1;
n12—data that belong to R2 but were assigned to R1;
n21—data that belong to R1 but were assigned to R2;
n22—data that belong to R2 and were indeed assigned to R2.

Of course n11 + n12 + n21 + n22 = n1 + n2 = n. Ideally we would like to achieve
n11 = n1 and n22 = n2, but in practice we almost invariably find n12 �= 0 and/or
n21 �= 0. The measure for the inefficiency of binary classification (the misclassifica-
tion rate) is the ratio (n12 + n21)/n. In the histogrammed measurements the classi-
fication inefficiency is apparent in the areas where the distribution for L > 0 leaks
across the L = 0 boundary to the side with L < 0 and vice versa (see Fig. 5.26).

5.9.2 Logistic Discriminant Analysis

The usual linear discrimination analysis relies on a linear discriminant func-
tion (5.67) and is therefore strongly sensitive to outliers. Obviously, we may en-
counter problems of the same type by analyzing data that are not distributed nor-
mally or data from two classes with strongly differing covariance matrices. To a

262 5 Statistical Analysis and Modeling of Data

Fig. 5.26 Distribution of the measurements with respect to the linear discriminant function L(x).
[Left] Cancerous tissue (misclassification rate 4.2 %). [Right] Reflections of radar signals in the
ionosphere (Problem 5.12.3; misclassification rate 13.7 %)

large extent, these obstacles can be overcome by logistic discriminant analysis. The
assignment of an individual measurement x to one of the classes is recorded by
keeping track of the dependent variable

y =
{

1; x ∈ R1,

0; x ∈ R2.

Then we collect the data into pairs (x, y)i and finally compute the parameters â0

and â directly by maximizing the conditional probability

L(a0,a) =
n−1∏
i=0

[
p1(xi;a0,a)

]yi
[
1 − p1(xi;a0,a)

]1−yi ,

where p1(x) = p(ξ = x|ξ ∈ R1) (see (5.63)). Of course, the method has its de-
ficiencies. Among others, it requires substantially larger data samples than linear
discrimination for the same asymptotic efficiency. An efficient iterative scheme for
the maximization of L with respect to a0 and a and other details can be found in
[41], Sect. 8.3.5.

5.9.3 Assignment to Multiple Classes

Multi-class discriminant analysis is a generalization of two-class analysis to multi-
ple classes. Initial reading is offered by [41], Sect. 8.5, and [47], Chap. 12.

5.10 Canonical Correlation Analysis 263

5.10 Canonical Correlation Analysis �

In addition to the principal-component analysis (Sect. 5.7), one of the most wide-
spread and generally useful methods of multivariate analysis is the canonical cor-
relation analysis (CCA). The CCA method allows us to handle sets of data of the
form

xi = (xi1, xi2, . . . , xip)T, yi = (yi1, yi2, . . . , yiq)T, i = 0,1, . . . , n − 1,

where p �= q in general. The basic premise is that the correlation between xi and
yi is the most relevant carrier of information for this data set. By CCA we wish
to reduce the dimensionality of the data by projecting xi and yi to a smaller set
of canonical variables, among which we attempt to impose maximum correlation.
From this viewpoint, the task of CCA is precisely opposite to the task of PCA, where
data should become decorrelated.

An example are the n = 3462 multivariate data on measured properties of galax-
ies (Problem 5.12.4, adapted from [41] based on data [57–59]). Each of the n mea-
surements represents a data point xi (0 ≤ i ≤ n − 1) with p = 23 values describing
the brightnesses and luminosities of galaxies in various spectral ranges, while each
yi stores q = 6 variables describing other physical properties. We are interested in
correlations between the individual components of these data.

From the data we estimate the means x = (
∑n−1

i=0 xi)/n and y = (
∑n−1

i=0 yi)/n,
and use them to estimate the covariance matrices

�xx = 1

n − 1

n−1∑
i=0

(xi − x)(xi − x)T, �yy = 1

n − 1

n−1∑
i=0

(yi − y)(yi − y)T,

and

�xy = �T
yx = 1

n − 1

n−1∑
i=0

(xi − x)(yi − y)T.

For general x and y we construct the linear combinations

ξj = a1j x1 + a2j x2 + · · · + apjxp = aT
j x,

ζj = b1j y1 + b2j y2 + · · · + bqj yq = bT
j y,

(5.68)

where j = 1,2, . . . , r and r ≤ min(p, q). The coefficient vectors

aj = (a1j , a2j , . . . , apj)
T, bj = (b1j , b2j , . . . , bqj)

T,

are determined—this is the key step of CCA—such that the pairs (ξj , ζj) are ar-
ranged in decreasing degree of linear correlation

ρj = corr(ξj , ζj) = aT
j �xybj√

aT
j �xxaj

√
bT

j �yybj

, j = 1,2, . . . , r, (5.69)

264 5 Statistical Analysis and Modeling of Data

so that ρ1 ≥ ρ2 ≥ · · · ≥ ρr . Moreover, ξj should be uncorrelated to all ξk with lower
indices,

cov(ξj , ξk) = aT
j �xxak = 0, k < j,

and analogously for all ζj ,

cov(ζj , ζk) = bT
j �yybk = 0, k < j.

In plain words, arbitrary correlations between the original variables x and y are thus
systematically relocated to an ordered sequence of decreasing correlations between
the pairs (ξj , ζj) which are known as canonical variates, while the corresponding
degrees of correlations between them (5.69) are the canonical correlation coeffi-
cients.

The coefficients vectors aj and bj are obtained after a short calculation in which
the correlation corr(ξ, ζ) = aT�xyb is maximized. The full derivation can be found
in [41], here we just quote the final result. We compute the products

�a = �
−1/2
xx �xy�

−1
yy �yx�

−1/2
xx , �b = �

−1/2
yy �yx�

−1
xx �xy�

−1/2
yy ,

and determine the eigenvectors and eigenvalues λj of the symmetric matrices �a ∈
R

p×p and �b ∈R
q×q . We order the eigenvalues in decreasing order and arrange the

corresponding eigenvectors accordingly. We get

aT
j =√

λju
T
j �

−1/2
xx , bT

j = vT
j �

−1/2
yy , (5.70)

where uj is the eigenvector of the matrix �a corresponding to the eigenvalue λj ,
and vj is the eigenvector of �b (the first r = min(p, q) eigenvalues of �a and �b

are identical). In the above expressions we need the “square roots” of the matrices
�xx and �yy . Appendix A.7 teaches you how to do this.

The coefficient vectors (5.70) are all we need in the last analysis step. We use
them to compute (5.68) for an arbitrary pair of data xi and yi (i = 0,1, . . . , n − 1).
This gives us the canonical variate scores

ξij = aT
j xi , ζij = bT

j yi , j = 1,2, . . . , r, (5.71)

where for each j we also compute the corresponding correlation coefficient (5.69).
If some significant correlation is present in the original data, it should express itself
most acutely in a two-dimensional rendering of the set of pairs (ξi1, ζi1). The next
set of pairs (ξi2, ζi2) will most likely exhibit a smaller correlation, the third set
(ξi3, ζi3) an even smaller one, and so on.

The images of canonical variate scores often reveal unexpected structures in the
data or highlight outliers which would remain hidden in the original variables. A ba-
sic feel for the method is conveyed by Problem 5.12.4. Further reading on CCA can
be found in Chap. 14 of [47] and Sect. 7.3 of [41].

5.11 Factor Analysis 265

Fig. 5.27 A schematic representation of factor analysis. We construct a linear combination of a
small number of factors (two in this example, f 1 and f 2) and remainders ei in order to represent
a larger body of data xi . The weights are stored in the matrix A such that for each data entry we
have xT = Af T + eT, where x, f , and e are the corresponding rows of the matrices X, F , and E

5.11 Factor Analysis �

Factor analysis is a multivariate statistical method in which we strive to explain a
set of measured data by a much smaller number of variables known as factors. The
factors do not necessarily correspond to physically measurable quantities and should
therefore be considered as latent variables used only for a formal parameterization
of the data. Classical factor analysis therefore belongs to the class of latent variable
models; see Sects. 15.4 and 15.5 in [41]. In the context of time series we encounter
one such model in Sect. 6.8. Numerous fields of application of factor analysis in
natural sciences are discussed in [60].

Depending on how the data and the factors are connected, several types of factor
analysis exist. By far the most common is a linear relation,

X = FAT + E. (5.72)

The n × m matrix X contains n multivariate data xi = (xi1, xi2, . . . , xim)T, one per
row. The n × k matrix F contains the factor scores for the ith data. The number
of factors k which, as a rule, is much smaller than the number of data components
m, is chosen in advance. The m × k matrix A contains the factor loadings which
determine the role of a given factor in the data xi (see Fig. 5.27). The n × m matrix
E contains the remainders which represent data errors.

In (5.72) only the data matrix X is known, while we are completely ignorant
of all matrices at the right-hand side of the equation. A unique solution without
additional assumptions does not exist. From many possible ways [60] we follow, as
an illustration, the path of principal-component factor analysis. In this approach the
factors are obtained by the additional requirement that the factors should describe
the maximum variance of all measured data X.

The data should first be centered as in (5.47). The factors and the weights are then
determined by fitting the matrix product FAT to the data Xc in the least-squares
sense. This means that for the chosen number of factors k < m we must determine
F and AT such that the sum of squares of the elements of

E = Xc − FAT

266 5 Statistical Analysis and Modeling of Data

will be minimal. We know the solution of this problem from Sect. 3.3. The optimal
approximation of the rank-r matrix X ∈ R

n×m by the matrix W ∈ R
n×m of a lower

rank k < r in the least-squares sense is given by the singular-value decomposition
X = U�V T, such that

FAT = γ1u1v
T
1 + γ2u2v

T
2 + · · · + γkukv

T
k = Uk�kV

T
k , (5.73)

where ui (1 ≤ i ≤ k) are the first k columns of U , and vi (1 ≤ i ≤ k) are the
first k columns of V . The vectors ui (dimension n) and vi (dimension m) are
arranged in decreasing order of the corresponding singular values in the matrix
�k = diag(γ1, γ2, . . . , γk). In this approach we neglect the measurement errors (re-
mainders) e, that is, we assume ‖E‖ � ‖Xc‖ in some matrix norm.

5.11.1 Determining the Factors and Weights from the Covariance
Matrix

Since the singular values of X are closely related to the eigenvalues of the product
XTX (see Appendix A.6), we prefer to use the covariance matrix

�̂xx = 1

n − 1
XT

c Xc (5.74)

instead of the centered data matrix Xc. At first sight, the decomposition (5.73) offers
two solutions. The first possibility is

F = Uk, AT = �kV
T
k . (5.75)

The singular values γi from the decomposition of the data matrix Xc are the square
roots of the singular values λi from the decomposition of the covariance matrix
�̂xx = Uk�kV

T
k , thus we obtain

A = (
�kV

T
k

)T = Vk�k = Vk�
1/2
k (5.76)

and

F = Uk = XcVk�
−1
k = XcA�−1

k �−1
k = XcA�−1

k . (5.77)

By following this procedure we obtain factors that are uncorrelated and have unit
variance. The columns of the weight matrix A are directly comparable to each other.
The matrix of correlations between the data and the factors is

C = S−1A = S−1Vk�
1/2
k , (5.78)

where S ∈ R
m×m is diagonal: its diagonal elements are the standard deviations of

the data components,

S = diag(

√
�̂11,

√
�̂22, . . . ,

√
�̂mm).

5.11 Factor Analysis 267

The first method of determining the factors is then:

1. Compute the covariance matrix (5.74) and its singular-value decomposition
Uk�kV

T
k .

2. Compute the weight matrix A by (5.76) and the factor matrix F by (5.77).
3. The data-factors correlation is then given by (5.78).

The second possibility that can be guessed from the decomposition (5.73) is

F = Uk�k, AT = V T
k . (5.79)

Again we compute the singular values of the covariance matrix instead of the sin-
gular values of the data matrix, and use Uk = XcVk�

−1
k . We obtain

A = Vk, F = XcVk�
−1
k �k = XcVk = XcA. (5.80)

This option also gives us mutually uncorrelated factors, but they have different vari-
ances, and the columns of the weight matrix A are therefore not directly comparable.
Nonetheless, the matrix of correlations between the data and the factors is still given
by (5.78). We apply the following procedure.

1. Compute the covariance matrix (5.74) and its singular-value decomposition
Uk�kV

T
k .

2. Compute the weight matrix A and the factor matrix F by (5.80).
3. The data-factors correlation is given by (5.78).

Example (Adapted from [60]) In some measurement we have acquired a set of n =
10 multivariate data with m = 5 components each, xi = (xi1, xi2, . . . , xi5)

T. We
assume that the whole data set can be described by only two factors, which we
would like to determine such that individual data components are well correlated to
either one of the factors. We arrange the data in the matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.0 25.0 15.0 5.0 5.0
10.0 30.0 17.0 17.0 8.0
3.0 6.0 10.0 13.0 25.0
7.5 27.2 16.0 11.0 6.5
4.6 21.9 14.0 6.6 9.0
3.8 13.6 12.0 9.8 17.0
8.3 26.6 15.9 14.2 9.1
6.1 22.7 14.6 10.2 9.9
7.6 24.2 15.2 13.8 10.8
3.9 10.3 11.2 12.6 21.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.81)

From each row of X we subtract the mean vector

x = 1

n

n−1∑
i=0

xi = (5.98,20.75,14.09,11.32,12.16)T,

268 5 Statistical Analysis and Modeling of Data

and get the centered data matrix Xc by which we compute the covariance matrix

�̂xx =

⎛
⎜⎜⎜⎜⎝

5.257 15.768 4.739 4.585 −10.150
15.768 63.818 18.209 1.569 −50.618

4.739 18.209 5.241 1.177 −14.044
4.585 1.569 1.177 13.006 6.068

−10.150 −50.618 −14.044 6.068 44.305

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues of �̂xx are λ1 = 114.039, λ2 = 17.5673, λ3 = 0.0216273, and λ4 ≈
λ5 ≈ 0. We wish to describe the data by using just two factors (k = 2), so we keep
only the two largest eigenvalues λ1 and λ2 which are stored in �2 = diag(λ1, λ2).
They correspond to the first two columns of V ,

V2 =

⎛
⎜⎜⎜⎜⎝

−0.173 0.323
−0.744 0.187
−0.211 0.101

0.015 0.860
0.609 0.334

⎞
⎟⎟⎟⎟⎠ .

We choose the first variant of determining the factor weights and factor scores. By
using (5.76) and (5.77) we get

A = V2�
1/2
2 =

⎛
⎜⎜⎜⎜⎝

−1.851 1.353
−7.949 0.783
−2.249 0.424

0.157 3.603
6.506 1.401

⎞
⎟⎟⎟⎟⎠ , F = XcA�−1

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.716 −1.731
−0.997 1.625

1.892 0.383
−0.835 −0.066
−0.243 −1.277

0.849 −0.463
−0.652 0.830
−0.278 −0.301
−0.363 0.705

1.342 0.296

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By using (5.78) and the matrix S = diag(2.293,7.989,2.289,3.606,6.656) we fi-
nally obtain the data-factor correlation matrix:

C = S−1Vk�
1/2
k =

⎛
⎜⎜⎜⎜⎝

−0.807 0.590
−0.995 0.098
−0.983 0.185

0.044 0.999
0.977 0.211

⎞
⎟⎟⎟⎟⎠ . (5.82)

The first column of (5.82) establishes a correlation of the first factor to the first,
second, third, and fifth component of xi . The second column reveals a strong corre-
lation between the second factor and the fourth data component.

5.11 Factor Analysis 269

The solution for the matrices F and AT by using (5.73) is obviously not unique,
as we may perform the transformations F ′ = FT and A′ = AT −1 with any non-
singular matrix T and still fulfill the equation. The solutions (5.75) and (5.79) pre-
sented here are just the most obvious ones: no transformation is applied to the fac-
tors. Still, even though the matrix (5.82) distinctly reveals the basic connections
between the data and the factors, we would ideally wish to obtain a matrix with an
even simpler structure,

C ≈

⎛
⎜⎜⎜⎜⎝

−1 0
−1 0
−1 0

0 1
1 0

⎞
⎟⎟⎟⎟⎠ ,

which would pronounce the correlation yet more clearly. This can be achieved by
carefully chosen transformations of the factors; the most commonly used in practice
are the so-called varimax rotations. Details can be found in [60].

5.11.2 Standardization of Data and Robust Factor Analysis

In Sect. 5.11.1 and in the Example on p. 267 we have used the centered data matrix
Xc. Principal-component factor analysis is not suitable for data with exceedingly
different variances, for example, for data with components in different measure-
ment units. (This problem is common to all approaches exploiting the principal-
component method; see Sect. 5.7.2.)

If the variances of the data components are very different, the data should be
standardized: we should subtract the means and divide out the appropriate standard
deviations as in (5.56). This turns the covariance matrix into the correlation matrix.
To determine the factors and weights we still follow the procedure of Sect. 5.11.1,
but slightly different matrices A, F , and C are obtained. For the data (5.81) from
the Example on p. 267 we get

C =

⎛
⎜⎜⎜⎜⎝

−0.917 0.398
−0.992 −0.124
−0.999 −0.035
−0.178 0.984

0.907 0.421

⎞
⎟⎟⎟⎟⎠ ,

which we may compare to the result (5.82).
The approaches to factor analysis outlined here are, again, very sensitive to out-

liers. A single runaway data component can strongly modify the covariance matrix
and may result in completely different factor and weight matrices F and A, as well
as the correlation matrix C. Robust factor analysis which is not hampered by these
obstacles is discussed in the papers [61] and [62]; see also Sect. 15.4 in [41] and the
often-quoted geo-chemical research work [63].

270 5 Statistical Analysis and Modeling of Data

5.12 Problems

5.12.1 Multiple Regression

The lean body mass (the difference between the mass of the whole body and the
mass of the fatty tissue) is an indicator of an individual’s predisposition for certain
types of disease. It can be measured by underwater weighting [64] but that proce-
dure is cumbersome and expensive. In this Problem (adapted from [41]) we try to
establish whether by much simpler measurements of the body mass, the circumfer-
ence of certain body parts, and by knowing the person’s age, multiple regression
may be a tool to reach the comparable estimate of the lean body mass.

We collect n measurements of m = 13 independent variables x1 (age), x2 (body
mass), x3 (body height) and the circumferences x4 (neck), x5 (chest), x6 (abdomen),
x7 (hip), x8 (thigh), x9 (knee), x10 (ankle), x11 (biceps), x12 (forearm), x13 (wrist).
Assume that the dependent variable, the mass of the fatty tissue, can be described
by the model

y = a0 +
m∑

j=1

ajxj + �y,

which applies for each of the n measurements (see (5.45)) and where �y is the
unknown error. The aj are the regression parameters to be determined.⊙

On the website [64] one can find the data for n = 252 measurements of
m = 13 input variables xj and one output variable y. Use the method of multiple
regression described in Sect. 5.6.1 to determine the regression parameters aj (and
establish the corresponding independent variables) that are statistically significant
for the determination of the lean body mass.⊕

If there are fewer measurements than there are independent variables
in each individual measurement (n � m), the data matrix XT

c Xc becomes non-
invertible. In such cases we may apply the principal-component multiple regression
(see, for example, the absorption spectrum for the PET yarns in Sect. 5.6.2). Try to
reproduce Fig. 5.16. The data can be found at [65].

5.12.2 Nutritional Value of Food

We are used to specifying the nutritional value of individual food items by quoting
their protein content (x1), carbohydrates (x2), fats (x3) and saturated fats (x4), as
well as cholesterol (x5), the total energy value (x6), and the mass (x7). Suppose we
measure these m = 7 variables for each of the n food items, where n � m. Can
we reduce the dimensionality of this set of data by using the principal-component
analysis (PCA)?⊙

The website [66] lists the data for n = 691 different food items. The values
were measured for items with very different masses x7, so let us first normalize all

5.12 Problems 271

data as

xj ← xj /x7, 1 ≤ j ≤ 6.

Since the measured values are expressed in different measurement units, you should
also standardize the data by using (5.56), and construct the standardized data matrix
Xc. Apply the PCA method from Sect. 5.7 in either of its two forms: by diagonal-
izing the covariance (or the correlation) matrix, or by singular-value decomposition
of the data matrix.

Regardless of the way you compute the principal components, show how the per-
centage of the variance explained by inclusion of r principal-components changes
with increasing r . For a few chosen xi , check how well r principal components re-
produce the original data point. Plot the scores (5.55) for all n data at the same time,
for a few of the leading principal components PC (in particular, PC1 vs. PC2, PC1
vs. PC3, and PC2 vs. PC3). Use these plots to determine whether some food items
tend to form clusters and whether there are any outliers.

5.12.3 Discrimination of Radar Signals from Ionospheric
Reflections

A system of sixteen antennas in Goose Bay (Labrador) has been used to measure
the reflection of radar waves from free electrons in the ionosphere. (Example from
[41] based on original data of [67].) Those reflected signals that hinted at a structure
in the ionosphere, have been assigned to the class of “good” signals (class R1). The
remaining reflections were labeled as “bad” (class R2). They have determined the
character of n = 351 signals, each of which was represented by m = 34 indepen-
dent variables xi = (Rexi, Imxi), 1 ≤ i ≤ 17, corresponding to 17 pairs of complex
values (the imaginary part of the first signal is always zero, so the actual number of
independent variables is just m = 33).⊙

Figure 5.28 makes it abundantly clear why a simple bivariate (for example,
correlation) analysis does not suffice. By comparing the pairs of individual compo-
nents of the signal alone, the classes cannot be cleanly separated, as “good” reflec-
tions are interspersed with the “bad” ones. Perform a linear discriminant analysis
of the radar signals from these measurements by using the procedure described in
Sect. 5.9. Try to reproduce Fig. 5.26 (right) and compute the misclassification rate.⊕

Classify the same radar reflection data by the method of logistic discrimi-
nant analysis (Sect. 5.9.2). Compute the misclassification rate.

5.12.4 Canonical Correlation Analysis of Objects in the CDFS
Area

Chandra Deep Field South (CDFS) is one of the most frequently studied areas in
the sky. In a comprehensive study [57, 58] the astronomers have collected astromet-

272 5 Statistical Analysis and Modeling of Data

Fig. 5.28 Reflection of radar signals in the ionosphere. Shown are “good” (symbols •) and “bad”
reflections (symbols ◦). [Left] Variable x11. [Right] Variable x14

ric, photometric, and morphological data on 63501 astrophysical objects (for ex-
ample, galaxies, stars, and quasars). The measurements of the spectro-photometric
data have been performed in 17 wavelength bands spanning the range between
350 and 930 nm. The whole COMBO-17 (Classifying Objects by Medium-Band
Observations—A spectro-photometric 17-filter survey) data set is accessible at [59].

This Problem deals only with the data which the researchers believe belongs
to galaxies. We have n = 3462 multivariate data entries. From the complete set of
variables in each measurement we select p = 23 variables of the data xi and q = 6
variables of the data yi (see Sect. 5.10). The first ten elements of xi are the absolute
magnitudes of individual galaxies in ten different spectral bands:

UjMag,BjMag,VjMag,usMag,gsMag,rsMag,UbMag,BbMag,VbMag,S280Mag.

The remaining elements are the observed brightnesses in thirteen spectral bands:

W420F_E,W462F_E,W485F_D,W518F_E,W571F_S,W604F_E,W646F_D,
F_E,W753F_E,W815F_S,W856F_D,W914F_D,W914F_E.

The elements of yi are

Rmag,ApD_Rmag,mu_max,MC_z,MC_z_ml,chi2red

(total R-band magnitude, aperture difference of Rmag, central surface brightness in
Rmag, mean shift in the distribution of the observed sources with respect to the red
shift z, the peak of the red shift distribution, and the quality of the fit).⊙

Use the canonical correlation analysis to compute the pairs of canonical
variables (ξj , ζj) for 1 ≤ j ≤ 6 with the coefficients (5.70) and their scores (5.71)
for the data from the COMBO-17 database. Keep only those data from the database
in which none of the 23 elements of xi and none of the six elements of yi are miss-
ing. For each j plot the pairs of scores and compute the corresponding canonical
correlation coefficient.

References 273

References

1. J.E. Gentle, W. Härdle, Y. Mori (eds.), Handbook of Computational Statistics. Concepts and
Methods (Springer, Berlin, 2004)

2. V. Barnett, T. Lewis, Outliers in Statistical Data, 3rd edn. (Wiley, New York, 1994)
3. R. Kandel, Our Changing Climate (McGraw-Hill, New York, 1991), p. 110
4. L. Davies, U. Gather, Robust statistics, in Handbook of Computational Statistics. Concepts

and Methods (Springer, Berlin, 2004) pp. 655–695
5. Analytical Methods Committee, Robust statistics—how not to reject outliers, part 1: basic

concepts. Analyst 114, 1693 (1989)
6. Analytical Methods Committee, Robust statistics—how not to reject outliers, part 2: inter-

laboratory trials. Analyst 114, 1699 (1989)
7. V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey. ACM Comput. Surv. 41,

15 (2009)
8. A. Patcha, J.-M. Park, An overview of anomaly detection techniques: existing solutions and

latest technological trends. Comput. Netw. 51, 3448 (2007)
9. M. Agyemang, K. Barker, R. Alhajj, A comprehensive survey of numeric and symbolic outlier

mining techniques. Intell. Data Anal. 10, 521 (2006)
10. V.J. Hodge, J. Austin, A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 85

(2004)
11. L. Davies, U. Gather, The identification of multiple outliers. J. Am. Stat. Assoc. 88, 782

(1993)
12. B. Iglewicz, J. Martinez, Outlier detection using robust measures of scale. J. Stat. Comput.

Simul. 15, 285 (1982)
13. F.E. Grubbs, Procedures for detecting outlying observations in samples. Technometrics 11, 1

(1969)
14. W.J. Dixon, Ratios involving extreme values. Ann. Math. Stat. 22, 68 (1951)
15. W.J. Dixon, Analysis of extreme values. Ann. Math. Stat. 21, 488 (1950)
16. R.J. Beckman, R.D. Cook, Outlier..........s. Technometrics 25, 119 (1983)
17. R.A. Maronna, R.D. Martin, V.J. Yohai, Robust Statistics. Theory and Methods (Wiley, Chich-

ester, 2006)
18. M.R. Spiegel, Schaum’s Outline of Theory and Problems of Probability and Statistics

(McGraw-Hill, New York, 1975)
19. S. Brandt, Data Analysis, 3rd edn. (Springer, New York, 1999)
20. H.B. Mann, A. Wald, On the choice of the number of class intervals in the application of the

chi square test. Ann. Math. Stat. 13, 306 (1942)
21. W.C.M. Kallenberg, J. Oosterhoff, B.F. Schriever, The number of classes in chi-squared

goodness-of-fit tests. J. Am. Stat. Assoc. 80, 959 (1985), and references therein
22. W.C. Kallenberg, On moderate and large deviations in multinomial distributions. Ann. Stat.

13, 1554 (1985)
23. M.A. Stephens, Use of the Kolmogorov–Smirnov, Cramer–Von Mises and related statistics

without extensive tables. J. R. Stat. Soc. B 32, 115 (1970)
24. A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete

Variable. Springer Series in Computational Physics (Springer, Berlin, 1991)
25. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

26. C.A. Cantrell, Technical note: Review of methods for linear least-squares fitting of data and
application to atmospheric chemistry problems. Atmos. Chem. Phys. 8, 5477 (2008)

27. D. York et al., Unified equations for the slope, intercept, and standard errors of the best straight
line. Am. J. Phys. 72, 367 (2004)

28. K. Nakamura et al. (Particle Data Group), Review of particle physics. J. Phys. G 37, 075021
(2010). See Sect. 5 of the Introduction

274 5 Statistical Analysis and Modeling of Data

29. M.C. Ortiz, L.A. Sarabia, A. Herrero, Robust regression techniques. A useful alternative for
the detection of outlier data in chemical analysis. Talanta 70, 499 (2006)

30. J. Ferré, Regression diagnostics, in Comprehensive Chemometrics: Chemical and Biochemical
Data Analysis, Vol. 3, ed. by S.D. Brown, R. Tauler, B. Walczak (2009), p. 33

31. P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outlier Detection (Wiley, Hoboken,
2003)

32. I. Barrodale, F.D.K. Roberts, An improved algorithm for discrete l1 linear approximation.
SIAM J. Numer. Anal. 10, 839 (1973)

33. S. Portnoy, R. Koenker, The Gaussian hare and the Laplacian tortoise: computability of
squared-error versus absolute-error estimators. Stat. Sci. 12, 279 (1997)

34. P.J. Rousseeuw, Least median of squares regression. J. Am. Stat. Assoc. 79, 871 (1984)
35. T. Bernholt, Computing the least median of squares estimator in time O(nd), in Lecture Notes

in Computer Science, vol. 3480, ed. by O. Gervasi et al. (Springer, Berlin, 2005), p. 697
36. A. Stromberg, Computing the exact least median of squares estimate and stability diagnostics

in multiple linear regression. SIAM J. Sci. Comput. 14, 1289 (1993)
37. B.W. Rust, Fitting nature’s basic functions, part I: polynomials and linear least squares. Com-

put. Sci. Eng. Sep/Oct, 84 (2001)
38. B.W. Rust, Fitting nature’s basic functions, part II: estimating uncertainties and testing hy-

potheses, Comput. Sci. Nov/Dec, 60 (2001)
39. B.W. Rust, Fitting nature’s basic functions, part III: exponentials, sinusoids, and nonlinear

least squares, Comput. Sci. Jul/Aug, 72 (2002)
40. B.W. Rust, Fitting nature’s basic functions, part IV: the variable projection algorithm, Comput.

Sci. Mar/Apr, 74 (2003)
41. A.J. Izenman, Modern Multivariate Statistical Techniques (Springer, Berlin, 2008)
42. H. Swierenga, A.P. de Weijer, R.J. van Wijk, L.M.C. Buydens, Strategy for constructing robust

multivariate calibration models. Chemom. Intell. Lab. Syst. 49, 1 (1999)
43. I.T. Jolliffe, Principal Component Analysis, 2nd edn. (Springer, Berlin, 2002)
44. S. Roweis, Z. Ghahramani, A unifying review of linear Gaussian models. Neural Comput. 11,

305 (1999)
45. A. Azzalini, A.W. Bowman, A look at some data on the Old Faithful geyser. J. R. Stat. Soc. C

39, 357 (1990)
46. A.K. Jain, M.N. Murty, Data clustering: a review. ACM Comput. Surv. 31, 264 (1999)
47. W. Härdle, L. Simar, Applied Multivariate Statistical Analysis (Springer, Berlin, 2007)
48. R. Xu, D.C. Wunsch II, Clustering (Wiley, Hoboken, 2009)
49. G. Gan, C. Ma, J. Wu, Data Clustering. Theory, Algorithms, and Applications (Philadelphia,

SIAM, 2007)
50. J. Kogan, Introduction to Clustering Large and High-Dimensional Data (Cambridge Univer-

sity Press, Cambridge, 2007)
51. J. Valente de Oliveira, W. Pedrycz (eds.), Advances in Fuzzy Clustering and Its Applications

(Wiley, Chichester, 2007)
52. The R Project for Statistical Computing. http://www.r-project.org/. Attention: the R reference

manual has approximately 3000 pages!
53. J. Maindonald, J. Braun, Data Analysis and Graphics Using R, 2nd edn. (Cambridge Uni-

versity Press, Cambridge, 2006). A good introductory text for R, which is an open-source
alternative to the S/S+ systems (“R is to S what OCTAVE is to MATLAB”)

54. U. von Luxburg, A tutorial on spectral clustering. Technical Report No. Tr-149, Max-Planck-
Institut für biologische Kybernetik, 2006

55. A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm. Adv. Neural
Inf. Process. Syst. 14, 849 (2001). See also Ref. [13] in this paper

56. O.L. Mangasarian, W.N. Street, W.H. Wolberg, Breast cancer diagnosis and prognosis via
linear programming. Oper. Res. 43, 570 (1995)

57. C. Wolf et al., A catalogue of the Chandra deep field south with multi-colour classification
and photometric redshifts from COMBO-17. Astron. Astrophys. 421, 913 (2004)

References 275

58. C. Wolf et al., Calibration update of the COMBO-17 CDFS catalogue. Astron. Astrophys.
492, 933 (2008)

59. http://www.mpia.de/COMBO/combo_CDFSpublic.html. The data can be found at http://
astrostatistics.psu.edu/datasets/COMBO17.html

60. R.A. Reyment, K.G. Jöreskog, L.F. Marcus, Applied Factor Analysis in the Natural Sciences
(Cambridge University Press, Cambridge, 1993)

61. G. Pison, P.J. Rousseeuw, P. Filzmoser, C. Croux, Robust factor analysis. J. Multivar. Anal.
84, 145 (2003)

62. P. Filzmoser, K. Hron, C. Reimann, R. Garrett, Robust factor analysis for compositional data.
Comput. Geosci. 35, 1854 (2009)

63. C. Reimann, P. Filzmoser, R.G. Garrett, Factor analysis applied to regional geochemical data:
problems and possibilities. Appl. Geochem. 17, 185 (2002)

64. http://lib.stat.cmu.edu/datasets/bodyfat, where all data is collected and the corresponding orig-
inal literature is cited

65. http://astro.temple.edu/~alan/MMST/datasets.html
66. http://www.ntwrks.com/~mikev/chart1.html
67. V.G. Sigillito, S.P. Wing, L.V. Hutton, K.B. Baker, Classification of radar returns from the

ionosphere using neural networks. Johns Hopkins APL Tech. Dig. 10, 262 (1989). The corre-
sponding data file can be found at http://archive.ics.uci.edu/ml/datasets.html

Chapter 6
Modeling and Analysis of Time Series

A time series or signal s(t) ∈ � should be understood as a sequential measurement
of some quantity. The time variable and the corresponding signal may be discrete or
continuous. The signals may be real, complex, or integer. In the analysis of time se-
ries we use mathematical tools to extract their basic characteristics and learn about
the properties of their sources. The sources of signals are also called processes and
are commonly identified with the signals that these processes generate. We divide
the processes according to their statistical properties, as shown in Fig. 6.1. Funda-
mentally, we distinguish deterministic and random processes.

Deterministic Processes In deterministic processes, each value of the signal is
precisely determined by a mathematical or physical law, a rule, or a table of values.
If we understand the process dynamics well, such processes are known as dynamical
systems [1, 2]. The state of a dynamical system in space � can be uniquely described
by the mapping of the system from state x(t0) at time t0 to state x(t) at time t , i.e.

x(t) = φ
(
t, t0, x(t0)

)
.

The observed signal s is the result of a function F : � → � acting on the system
evolving in time, s(t) = F(x(t)). Signals from deterministic processes are simply
reproducible and we know how the signal behaved in the past and what it is going
to look like in the future.

Random Processes In random processes the generated signal is not determined
in advance by the process parameters; it comes about by chance. Before the mea-
surement it is impossible to precisely foresee its value. The signal originating in
a random process is known as a random signal and represents one possible real-
ization of that process. In spite of the misleading nomenclature, the random signal
is not necessarily random in time; just the choice of its realization is random (see
Example on p. 283). Details are discussed in Sect. 6.2.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_6, © Springer-Verlag Berlin Heidelberg 2012

277

278 6 Modeling and Analysis of Time Series

Fig. 6.1 Classification of processes. In deterministic processes the values of the signals are deter-
mined by rules or laws. In random processes the signals are formed based on chance. The SSS and
WSS notation is defined on p. 282

6.1 Random Variables

A random or stochastic variable is a variable whose value is not determined in ad-
vance and which, at each measurement of an observable, assumes a value with a
certain probability. The measurement of a quantity is known as the realization of a
random variable or drawing. The values of a random variable are drawn randomly
and independently. We denote random variables by Roman capitals, e.g. X, and the
corresponding values with small letters, e.g. x. In this section we use the conven-
tional notation of theories of measure [3, 4] and probability [5, 6].

6.1.1 Basic Definitions

A random variable X is characterized by its sample space � and its probability
measure P : A → [0,1] defining the probability that X is in some subset A ⊂ �,
which we write as P(A) = Prob(X ∈ A). If the sample space is continuous, we may
use the differential volume element dV (x) at x ∈ � to write the differential of the
probability measure as

dP(x) = p(x)dV (x).

We use it to define the probability density p of the variable X. If � is countable,
P(x) represents the probability that the value x is drawn.

The most important operation on random variables is statistical averaging. We
define the statistical average of a function (observable) f of a random variable X

according to the type of the sample space �:

discrete � : 〈f 〉 =
∑

x∈�

f (x)P (x), continuous �: 〈f 〉 =
∫

�

f (x)dP(x).

In the literature we also find the notation E[f] = 〈f 〉, helping us to define the
variance or dispersion var[f] = 〈(f − E[f])2〉, as well as the standard deviation
σ [f] = (var[f])1/2.

An important quantity for a random variable X with the sample space � that is a
subset of R or Z, is the characteristic function

φX(t) = 〈eitX〉, φX(0) = 1,
∣∣φX(t)

∣∣< 1 ∀t �= 0. (6.1)

6.1 Random Variables 279

The characteristic function allows us to construct the statistical moments 〈Xn〉, n =
0,1,2, . . . since if φX is n-times continuously differentiable at the origin,

lim
t→0

dn

dtn
φX(t) = in

〈
Xn
〉
.

The characteristic function and the probability density are related by Fourier trans-
formation,

p(x) = 1

2π

∫ ∞

−∞
φX(t)e−itx dt

in the continuous case (� ⊂R), or

P(x) = 1

N

N−1∑

k=0

φX(k)e−i(2πk/N)x

in the discrete case (� ⊂ ZN). The probability density and the characteristic func-
tion are equivalent descriptions of statistical properties of a random variable.

6.1.2 Generation of Random Numbers

In numerical calculations of statistical averages and in simulations involving random
numbers we use random number generators (Appendix C). These are algorithms
that deterministically produce numbers with desired probability distributions giving
an impression of randomness. Such generators may therefore be seen as sources
of realizations of random variables. For each generated sequence of numbers {xi}
and arbitrary smooth observable f , a good random number generator should ensure
ergodicity,

〈
f (xt)

〉
t
= lim

T →∞
〈
f (xt)

〉
t,T

= 〈f 〉, 〈
f (xt)

〉
t,T

= 1

T

T −1∑

t ′=0

f
(
x′
t

)
,

that is, the equality of statistical and time averages, as well as the property of mixing,
for which we require that the quantity

lim
T →∞

〈(
f (xt) − 〈f 〉)(f (xt+j) − 〈f 〉)〉

t,T
(6.2)

vanishes when j → ∞. (In Sect. 6.6 we shall see that (6.2) represents the auto-
correlation of f at shift j .) Ergodicity and mixing are concepts from the theory
of dynamical systems [7], where the latter implies the former, but not the other
way around. Mixing is equivalent to the requirement that the drawn numbers are
as independent as possible. For smooth enough f , the exponential convergence of
the auto-correlation (6.2) ensures the statistically fastest possible convergence of the
average 〈f (xt)〉t,T to the limit 〈f 〉, so 〈f (xt)〉t,T − 〈f 〉 = O(T −1/2). Fast mixing
is a desirable (but not essential) property of random number generators.

280 6 Modeling and Analysis of Time Series

Fig. 6.2 A random process X(t) and its three possible realizations

6.2 Random Processes

Random processes are omnipresent in physics. Quantum mechanics and statistical
physics, for example, are founded on assumptions about the randomness of Nature
at certain distance or energy scales [8]. In the following four sections we present
the fundamentals of the theory of random processes and describe three typical rep-
resentatives: random walks, Markov chains, and noise.

6.2.1 Basic Definitions

The random process is a generalization of the concept of random variables where,
instead of a value, we randomly choose a time signal which we name the realization
of a random process or the sample path. Random processes can be defined in two
ways, illustrated in Fig. 6.2.

In the first approach we imagine a random variable S with values s distributed
over the set �. We define an ensemble of functions {x(t; s) ∈ �}s∈� with sample
space �, where the time t runs over the set T. The random process X(t) represents
a random function from the ensemble which we select by drawing the value s. At
a given particular t we can understand X(t) as a random variable X(t) = x(t;S).
In other words, if we make a vertical cut through Fig. 6.2 at a chosen t , the ob-
tained values behave as a random variable. On the other hand, we can interpret the
random process as drawing a set of random variables {X(t) ∈ �}t∈T which may be
correlated.

If T = R, we are referring to continuous-time processes, while with T = N or Z
we are dealing with discrete-time processes. In analogy to random variables, random
processes are also denoted by capital Roman letters, e.g. X, while we use small ones,
like x, for their realizations. Sample spaces of random processes are commonly
labeled by capital Greek letters, e.g. �. The statistical average over the realizations
of the random process is denoted by 〈·〉 or E[·].

6.2 Random Processes 281

Random processes are almost never defined by the probability distributions of the
elements of their signals; rather, we use the time dependence of the statistical mo-
ments of the signals, for example, the average μX(t) = 〈X(t)〉, the two-point auto-
correlation RXX(t1, t2) = 〈X(t1)X(t2)〉, and so on. A rare exception is the discrete-
time real Gaussian random process. For n points of the signal at times t1, t2, . . . , tn
it can be described by the probability density

pX(t1),X(t2),...,X(tn)(x) = 1√
(2π)n det(R)

exp

[
−1

2
(x − μ)TR−1(x − μ)

]
,

where x = (x1, x2, . . . , xn)
T. The probability density pX(t1),X(t2),...,X(tn)(x) is de-

fined by the vector of averages μ = (μX(t1),μX(t2), . . . ,μX(tn))
T and the auto-

correlation matrix R = [RXX(ti , tj)]ij , which we will get to know in an instant.
Most often we encounter Gaussian processes with the property RXX(t1, t2) =
RXX(t1 − t2).

Non-stationarity and Stationarity Random processes are distinguished by their
statistical properties (we follow [9]). The process may be stationary or non-
stationary. Roughly speaking, the statistics of stationary processes do not change
with time; a more precise definition of stationarity of a random process X with
sample space � requires us to use the joint probability measure for n points of the
process at times t1, t2, . . . , tn,

PX(t1),X(t2),...,X(tn)(A) = Prob
(
X(t1),X(t2), . . . ,X(tn) ∈ A

)
,

where A ⊂ �n. A random process X is stationary of order n if this measure for
arbitrary n points is invariant with respect to translations along the time axis,

PX(t1),X(t2),...,X(tn) = PX(t1+t),X(t2+t),...,X(tn+t) ∀t.

Note that a process that is stationary of order n + 1 is also stationary of order n,
while the reverse is not necessarily true. In the following we assume that the sam-
ple space of the random process is � ⊂ R. In the first-order stationary process the
measure PX(t) is constant, and therefore also all single-point averages are constant,
like the moments: 〈X(t)m〉 = const. for m = 1,2, For the second-order station-
ary process, the two-point measure PX(t1),X(t2) is translationally invariant. It follows
that all two-point averages depend only on time differences. One such quantity is the
two-point correlation of the observables f and g of the random process X:

〈
f
(
X(t1)

)
g
(
X(t2)

)〉= 〈f (X(0)
)
g
(
X(t2 − t1)

)〉= 〈f (X(t1 − t2)
)
g
(
X(0)

)〉
.

A very interesting average is the auto-correlation

RXX(t1, t2) = 〈X(t1)X(t2)
〉= RXX(t1 − t2),

for which
∣∣RXX(τ)

∣∣≤ RXX(0) = 〈X(t)2〉, RXX(−τ) = RXX(τ). (6.3)

282 6 Modeling and Analysis of Time Series

If the process is stationary of arbitrary order, it is said to be strict-sense sta-
tionary (SSS). In contrast, a random process X is wide-sense stationary (WSS) if
the following holds: that the average is constant, 〈X(t)〉 = const.; that the auto-
correlation depends on time difference only, thus RXX(t1, t2) = RXX(t1 − t2); and
that the variance is bounded for all times, 〈(X(t) − 〈X(t)〉)2〉 < ∞. Every second-
order stationary process in wide-sense stationary, while the reverse is not necessarily
true.

Ergodicity Define the time average of the function f in the continuous case,

〈
f (t)

〉
t
= lim

T →∞
1

2T

∫ T

−T

f
(
t ′
)

dt ′, (6.4)

where T = R, or in the discrete case,

〈
f (t)

〉
t
= lim

T →∞
1

2T + 1

T∑

t ′=−T

f
(
t ′
)
, (6.5)

where T = Z (be alert to the notation 〈·〉t). Assume that almost every realization x

of the process X fulfills the conditions that the time average is equal to the statistical
average,

〈
x(t)

〉
t
= 〈X(t)

〉
,

and that the time auto-correlation is equal to the statistical one, i.e.
〈
x(t)x(t + τ)

〉
t
= RXX(τ).

Then we say that the random process X is ergodic. We commonly refer to the first
condition as ergodicity on average, while the second condition is known as ergod-
icity in auto-correlation. The first condition is fulfilled precisely when the average
of the auto-covariance,

CXX(τ) = 〈(X(t) − μX

)(
X(t + τ) − μX

)〉
, μX = 〈X(t)

〉
,

is equal to zero, so 〈CXX(t)〉t = 0. The sufficient condition for ergodicity on average
is limt→∞ CXX(t) = 0 [10].

In practice we are dealing only with realizations of random processes. To com-
pute the statistical properties of processes from which these realizations originate,
we commonly assume ergodicity and wide-sense stationarity: this allows us to use
the signal to make inferences about the underlying process.

Assume that in a discrete-time random process X(t), t ∈ Z, we obtained a finite
sample {x(t)}N−1

t=0 from its infinitely long realization x(t). If the process is ergodic,
the average and the auto-correlation can be approximated by the sums

〈
X(t)

〉≈ 1

T

N−1∑

t ′=0

x
(
t ′
)
, RXX(τ) ≈ 1

N − τ

N−1−τ∑

t ′=0

x
(
t ′
)
x
(
t ′ + τ

)
,

where the symmetry RXX(−τ) = RXX(τ) has been exploited (see (6.3)).

6.3 Stable Distributions and Random Walks 283

Example Imagine a random process represented by the sum

X(t) =
n∑

i=1

wi cos(ωit + Yi), (6.6)

where the weights wi and the frequencies ωi are constant, and the independent ran-
dom variables Yi are distributed normally on the interval [0,2π). We immediately
realize that 〈X(t)〉 = 0, while the auto-correlation is

RXX(t1, t2) = 〈X(t1)X(t2)
〉= 1

2

n∑

i=1

w2
i cos

(
ωi(t1 − t2)

)= RXX(t1 − t2).

The process X is therefore wide-sense stationary. It is easy to show that the time
average of an individual realization is also zero, 〈x(t)〉t = 0, while its time auto-
correlation is equal to the statistical one, 〈x(t)x(t + τ)〉t = RXX(τ). We conclude
that the random process X is also ergodic.

Equation (6.6) also elucidates the initial definitions of random processes and their
realizations (p. 277), claiming that “the individual random signal is not necessarily
random along the time axis; what is random is just the choice of its realization”.
Namely, the dependence of the signal originating in the process (6.6) on the time
variable t is known explicitly! It is by drawing the variable Yi that randomness or
unpredictability is built into the process.

6.3 Stable Distributions and Random Walks

6.3.1 Central Limit Theorem

Let X1,X2, . . . ,Xn be real independent and identically distributed random vari-
ables with the probability density pX , whose average μX = 〈Xi〉 and variance
σ 2

X = 〈(Xi −μX)2〉 are bounded. Define the sum of random variables Yn =∑n
i=1 Xi

with the average 〈Yn〉 = nμX and variance σ 2
Yn

= nσ 2
X . The probability density pY

of the summed variable Yn is given by the n-fold convolution of the densities of the
variables Xi , i.e.

pYn = pX ∗ pX ∗ · · · ∗ pX︸ ︷︷ ︸
n

.

Let us define the rescaled variable Zn = (Yn − nμX)/(
√

nσX). Then, in the limit
n → ∞, the cumulative distribution function of the variable Zn converges to the
cumulative distribution function of the normal distribution N(0,1),

lim
n→∞ Prob(Zn < z) = �(z) = 1√

2π

∫ z

−∞
e− 1

2 t2
dt.

284 6 Modeling and Analysis of Time Series

In other words, the probability density pYn in the limit n → ∞ converges to the nor-
mal (Gaussian) probability density N(μYn, σ

2
Yn

), the statement known as the central
limit theorem (CLT). The speed of convergence to the normal distribution is the sub-
stance of the Berry–Esséen theorem [6]. If the third moment of |X−μX| is bounded,
i.e. ρ = 〈|X − μX|3〉 < ∞, we have

∣∣Prob(Zn < z) − �(z)
∣∣≤ Cρ√

nσ 3
X

,

where C ≥ 0.4097 [11]. The central limit theorem and the mathematical form of
the estimate remain valid even when we sum the variables Xi distributed according
to different probability distributions, but only if the dispersion of the values is not
excessive (Lindeberg criterion, see [6]).

6.3.2 Stable Distributions

The Gaussian distribution as the limit distribution in summation of independent ran-
dom variables can be generalized by introducing the concept of stable distributions
[12–14]. Assume that we have independent random variables X1, X2, and X3 with
the same distribution with respect to the sample space �. We say that this distribu-
tion is stable if for each pair of numbers a and b, a pair c and d exists such that the
distribution of the linear combination aX1 + bX2 is the same as the distribution of
cX3 + d , i.e. if we have

Prob(aX1 + bX2 ∈ A) = Prob(cX3 + d ∈ A) ∀A ⊂ �.

Such random numbers are also called stable; a superposition of stable random num-
bers is a linear function of the stable random number with the same distribution.

In general, stable distributions are most easily described by their characteristic
functions. Among the many possible notations we follow that of [12]. We say that
a random variable X has a stable distribution pstab(x;α,β, γ, δ) if the logarithm of
its characteristic function (6.1) has the form

logφX(t) = iδt − γ α|t |α[1 − iβ�α(t)
]
,

where

�α(t) =
{

sign(t) tan(πα/2); α �= 1,

− 2
π

sign(t) log |t |; α = 1.

The parameter α ∈ (0,2] is the stability index or the characteristic exponent, while
the parameter β ∈ [−1,1] defines the skewness of the distribution. There is also the
scaling parameter γ > 0 and the position parameter δ ∈R. For α ∈ (1,2] the average
exists and is equal to 〈X〉 = δ. For general α ∈ (0,2] the statistical moments 〈|X|p〉
exist, where p ∈ [0, α).

6.3 Stable Distributions and Random Walks 285

For practical computations it is useful to replace the random variable X by an-
other random variable Z,

X =
{

γZ + δ; α �= 1,

γ (Z + 2
π
β logγ) + δ; α = 1,

because the characteristic function for Z is slightly simpler,

logφZ(t) = −|t |α[1 − iβ�α(t)
]
,

as it depends only on two parameters, α and β . The probability density pZ of the
variable Z is computed by inverse Fourier transformation of the characteristic func-
tion φZ . We obtain

pZ(z;α,β) = 1

π

∫ ∞

0
exp
(−tα

)
cos
(
zt − tαβ�α(t)

)
dt.

We have pZ(−z;α,β) = pZ(z;α,−β). The values of the functions pZ and pX can
be computed by using integrators specially adapted to rapidly oscillating functions
(see Appendix E.2; a modest programming support for stable distributions can also
be found in [15]). With respect to α and β , the function pZ with the argument z has
the definition ranges

z ∈
⎧
⎨

⎩

(−∞,0]; α < 1, β = −1,

[0,∞); α < 1, β = 1,

R; otherwise.

The dependence of the stable distribution pstab (pX or pZ with appropriate scaling)
on the parameter α is shown in Fig. 6.3 (top left and right), while the dependence
on β is shown in the same figure at bottom left and right.

A formulation as flexible as this allows us to generate all possible stable distri-
butions. The most familiar ones are

normal: α = 2, β ∈R, pX(t) = 1√
2π

exp

(
−1

2
t2
)

, t ∈ R;

Cauchy: α = 1, β = 0, pX(t) = 1

π

1

1 + t2
, t ∈R;

Lévy: α = 1
2 , β = 1, pX(t) = 1√

2π
exp

(
− 1

2t

)
t−

3
2 , t ∈ R+.

A well-known property of stable distributions with α ∈ (0,2) is the characteristic
asymptotic behavior of their probability densities, known as power or fat tails. For

286 6 Modeling and Analysis of Time Series

Fig. 6.3 Stable distributions pstab(x;α,β, γ, δ). [Top left and right] Dependence on α for β = 0.5
and 1.0. [Bottom left and right] Dependence on β for α = 0.5 and 1.0. At α �= 1 the independent
variable is shifted by cα,β = β tan(πα/2)

the cumulative probabilities the following holds:

β ∈ (−1,1]:
∫ ∞

x

pZ(z;α,β)dz ∼ 1

2
cα(1 + β)x−α, x → ∞,

β ∈ [−1,1):
∫ x

−∞
pZ(z;α,β)dz ∼ 1

2
cα(1 − β)(−x)−α, x → −∞,

(6.7)

where cα = 2 sin(πα/2)�(α)/π . For β ∈ (−1,1) such asymptotic behavior can be
established in both limits, x → ±∞. Recall that a probability density has the asymp-
totics O(|x|−α−1) if the corresponding cumulative probability has the asymptotics
O(|x|−α).

6.3 Stable Distributions and Random Walks 287

6.3.3 Generalized Central Limit Theorem

By using our knowledge of the stable distributions (Sect. 6.3.2) we can write a
generalized central limit theorem (or Lévy’s limit theorem) elaborated in detail by
[6, 14]. Here we attempt to convey only its essence.

Assume that we have a sequence of independent and identically distributed ran-
dom numbers {Xi}i∈N from which we form the partial sum Yn =∑n

i=1 Xi . Assume
that their distribution has power tails, so that for α ∈ (0,2] the limits

lim
x→±∞|x|α Prob(±X > x) = d±

exist and d = d+ + d− > 0. Then real coefficients an > 0 and bn exist such that
the rescaled partial sum Zn = (Yn − nbn)/an in the limit n → ∞ is stable and
distributed according to pstab(x;α,β,1,0). The skewness of the stable distribution
is β = (d+ − d−)/(d+ + d−), and the coefficients an and bn are [12, 16]

an =
{

(dn/cα)1/α; α ∈ (0,2),
√

(dn logn)/2; α = 2,

bn =
{

〈Xi〉; α ∈ (1,2],
〈Xiθ(|Xi | − an)〉; otherwise,

where θ is the Heaviside (step) function. The constant cα is defined in (6.7). The
coefficient an for α < 2 diverges as O(n1/α) when n increases.

The generalized CLT is applicable to random-walk processes (discussed in the
following), which are analogous to extending the partial sums of random numbers
Yn. From practical experience we know that the convergence to the stable distribu-
tion at n → ∞ becomes ever slower and “fussier” when α decreases.

6.3.4 Discrete-Time Random Walks

Random walks are non-stationary random processes used in modeling of numerous
physical and engineering phenomena. In this subsection, we present discrete-time
random walks [6, 17, 18], while continuous-time random walks [17–20] are dis-
cussed in the next. Note that the meaning of α and β in the following is different
from that in Sects. 6.3.2 and 6.3.3.

Imagine a discrete-time random process X that we observe as a sequence of
random variables {X(t)}t∈N. The partial sums of this sequence are

Y(t) = Y(0) +
t∑

i=1

X(i) = Y(t − 1) + X(t). (6.8)

288 6 Modeling and Analysis of Time Series

They represent a new discrete-time random process Y and a sequence of random
variables {Y(t)}n∈N0 . The process Y is a random walk, a single step of which is the
process X(t). Let the sample space � of the processes X and Y be continuous. We
are interested in the time evolution of the probability density pY(t) of the random
variable Y with a known initial density pY(0).

If we assume that Y is a process in which the state of each point depends only on
the state of the previous point, the time evolution of pY(t) is given by

pY(t)(y) =
∫

�

p
(
Y(t) = y

∣∣Y(t − 1) = x
)
pY(t−1)(x)dx,

where p(Y (t) = y|Y(t − 1) = x) is the conditional probability density that Y

evolves from the value x at time t − 1 to the value y at time t . We also as-
sume that the process X is completely independent of its previous states, so that
p(X(t) = x|Y(t − 1) = y − x) = pX(t)(x) holds. It then follows that

pY(t)(y) =
∫

�

pX(t)(x)pY(t−1)(y − x)dx = (pX(t) ∗ pY(t−1))(y),

where ∗ denotes the convolution. By using this formula, we can express pY(t) as a
convolution of the initial distribution pY(0) with the distribution of the sum of the
steps until t , p∗t

X :

pY(t) = pY(0) ∗ p∗t
X , p∗t

X = pX(1) ∗ pX(2) ∗ · · · ∗ pX(t). (6.9)

The evolution of pY(t)(y) is best computed in Fourier space, as it is given by the
product of the Fourier transforms F of the probability densities,

F[pY(t)] = F[pY(0)]
t∏

i=1

F[pX(i)].

One frequently assumes that the value of the process Y at time zero is known and
that pY(0)(y) = δ(y). This assumption is particularly useful when we are interested
in the qualitative behavior of pY(t) after long times.

Asymptotics The time asymptotics of the distributions pY(t) is most easily estab-
lished in the case of one-dimensional real random walks. Assume that all steps have
the same distribution with the probability density pX(t) = pX , and that Y(0) = 0.
The distribution that corresponds to the process Y is given by

pY(t) = F−1[(F[pX])t]

for all times t . The behavior of pY(t) in the limit t → ∞ is determined by the central
limit theorem (Sect. 6.3.1) and its generalization (Sect. 6.3.3). These theorems tell
us that for increasing t , pY(t) converges to the limit distribution which is expressible
by one of the stable distributions pstab, such that

pY(t)(y) ∼ L(t)pstab
(
L(t)y + tμ(t)

)

6.3 Stable Distributions and Random Walks 289

Fig. 6.4 The dependence of the characteristic spatial scale L on time t . [Left] Discrete-time ran-
dom walk. [Right] Continuous-time random walk

for suitably chosen functions L and μ. The function L represents the effective width
of the central part of the distribution pY(t), where the majority of the probability is
located, and is known as the characteristic spatial scale. The function μ has the role
of the distribution average.

For the distribution of the steps pX with a bounded variance (σ 2
X < ∞) we also

know, based on the CLT, that pY(t) tends to the Gaussian with the width L = σY(t) ∼
t1/2. This particular asymptotic dependence of the spatial scale on time is typical for
normal diffusion and the same nomenclature pertains to the corresponding regime
of the random walk (Fig. 6.4 (left)).

If the distribution pX has the asymptotic behavior

pX(x) ∼ C±
|x|α+1

, x → ±∞,

where C± are constants, the distribution is said to have a power or fat tail (see
Sect. 6.3.2). For α ∈ (0,2) the second moment of the distribution no longer exists
and pY(t) at long times tends to the distribution with L ∼ t1/α . Because in this case
the characteristic scale changes faster than in normal diffusion, we are referring to
super-diffusion. The dynamics of the process Y in this regime are known as Lévy
flights. The diffusion with α = 1 is said to be ballistic: particles propagate without
constraints with given velocities, so L ∼ t . Near α = 2 we have L(t) ∼ (n logn)1/2

and name the corresponding regime log-normal diffusion.
Properties of one-dimensional random walks described above are easily gener-

alized to more dimensions. We observe the projection of a multi-dimensional walk
n̂TY(t) along the unit vector n̂, and its probability density pn̂TY(t). For an individ-
ual n̂ we apply the CLT or its generalization and determine the scale Ln̂. In such
a random walk, a particular direction n̂∗ exists along which the scale is maximum
or increases most rapidly with t : the characteristic scale of the distribution is then
Ln̂∗ . Examples of two-dimensional random walks where the distributions in x and
y directions are independent, are shown in Fig. 6.5.

If the densities pX(t) have power tails, the pY(t) also has power tails. This applies
regardless of the CLT or its generalization. Assume that in the limit t → ∞ we
have pX(t)(x) ∼ C±,t |x|−α−1. During the process of forming the distribution pY(t),

290 6 Modeling and Analysis of Time Series

Fig. 6.5 Examples of random walks (xt , yt) with 104 steps, generated by the formulas
xt+1 = xt +sign(X)|X|−μ and yt+1 = yt +sign(Y)|Y |−μ, where X and Y are independent random
variables distributed uniformly on the interval [−1,1]

the amplitudes of the tails add up, so that pY(t)(x) ∼ (
∑t

i=1 C±,i)|x|−α−1 in the
limit x → ±∞. This means that with increasing time, chances will increase that an
observation of Y(t) will yield an extreme event, since

Prob
(∣∣Y(t)

∣∣> y
)∼

t∑

i=1

Prob
(∣∣X(i)

∣∣> y
)
, y → ∞.

The dispersion of the values generated in such processes can be estimated by ro-
bust methods (Sect. 5.2). For example, in sub-diffusive random walks we prefer to
compute the MAD (5.9) instead of the standard deviation σY(t).

6.3.5 Continuous-Time Random Walks

In continuous-time random walks [17–20] the number of steps N(t) performed until
time t becomes a random variable. We reformulate the definition for the discrete-
time random walk (6.8) as

Y(t) = Y(0) +
N(t)∑

i=1

X(i).

Obviously Y(t) cannot be written in the iterative form Y(t) = Y(t − 1) + · · · as
in (6.8). The number of steps N(t) has the probability distribution PN(t). Assume
that N(t) and X(t) are independent processes, which is not always true, as in a given
time it is not possible to perform arbitrarily many steps [21, 22]. If X(i) at different
times are independent and correspond to probability densities pX(i), the probability

6.3 Stable Distributions and Random Walks 291

density of the random variable Y(t) is

pY(t)(y) =
∞∑

n=0

PN(t)(n)
(
pY(0) ∗ p∗n

X

)
(y),

where p∗n
X is defined in (6.9).

We adopt the manner of interpretation of such a random walk and the choice of
the distribution PN(t) from [19]. A random walk can be envisioned as a sequence of
steps with randomly chosen lengths X(i) and waiting times T (i) between the steps.
After N steps from the departure at the origin, the walk has brought us to the point
X (N). Until then, time T (N) has elapsed, so that

X (N) =
N∑

i=1

X(i), T (N) =
N∑

i=1

T (i), X (0) = T (0) = 0.

Within the allotted time, a certain point can be reached in various numbers of
steps N . If the step lengths X(i) and waiting times T (i) are independent, the num-
ber of steps N(t) until time t is determined by the process of drawing the waiting
times. We introduce the probability that the ith step does not occur before time t ,

PT (i)(t) =
∫ ∞

t

pT (i)(t
′)dt ′,

where pT (i) is the probability density of the waiting times. The probability that n

steps are performed in a time frame [0, t] is then

PN(t)(n) =
∫ t

0
p∗n

T

(
t ′
)
PT (n+1)

(
t − t ′

)
dt ′ = (p∗n

T ∗ PT (n+1)

)
(t),

where p∗n
T = pT (1) ∗ pT (2) ∗ · · · ∗ pT (n).

We compute the probability density PN(t) by using the Laplace transformation
in the time variable and the Fourier transformation in the spatial variable. This al-
lows us to work comfortably with function products in transform spaces instead of
with convolutions. The procedure leads to the Montroll–Weiss equation (see [19]
for details). This equation allows us to identify four regions of parameters defining
the distributions pX and pT with different dependencies of the scale L on time t ,
which in turn determine the diffusion properties of the random walk. These regions
are specified in the following and are shown in Fig. 6.4 (right). We assume that
the distributions of steps and waiting times do not change during the walk, so that
pX(i) = pX and pT (i) = pT .

Normal Diffusion with the scale L ∼ t1/2 occurs when 〈T 〉 < ∞, σX < ∞.

Sub-Diffusion with the scale L ∼ tβ/2 occurs with 〈T 〉 = ∞, σX < ∞, and the
distribution of waiting times

pT (t) ∼ 1

t1+β
, β ∈ (0,1).

292 6 Modeling and Analysis of Time Series

Super-Diffusion with the scale L ∼ t1/α occurs for 〈T 〉 < ∞, σX = ∞, and the
distribution of the steps

pX(t) ∼ 1

t1+α
, α ∈ (0,2).

When 〈T 〉 = ∞ and σX = ∞, and

pX(t) ∼ 1

t1+α
, pT (t) ∼ 1

t1+β
, α ∈ (0,2), β ∈ (0,1),

applies, the scale is L ∼ tβ/α . The walks are super-diffusive if 2β > α, and sub-
diffusive otherwise. Processes with 〈T 〉 = ∞ are deeply non-Markovian: this means
that the values of the process at some time depend on its complete history, not solely
on the state just before that time. Further reading can be found in [18, 20].

6.4 Markov Chains �

In seeking the solutions of the dynamics of complex systems one is often forced
to resort to probabilistic description. The true dynamics is simplified to jumping
between states with probabilities that, at each jump, depend only on the initial state
(before the jump) and the final state (immediately afterwards). In this section we
discuss one type of such random processes, the Markov chain [5, 23, 24].

6.4.1 Discrete-Time or Classical Markov Chains

Think of a random process X in the countable sample space � and discrete time
t = 0,1, Define the conditional probability for a transition from the state x at
time t to the state y at time t + 1,

Prob
(
X(t + 1) = y

∣∣X(t) = x
)= [P(t)

]
x,y

.

We arrange these probabilities in a Markov or stochastic matrix P(t) = [P(t)]x,y ,
where x, y ∈ �. Conservation of probability requires

∑
y∈�[P(t)]x,y = 1. A ran-

dom process X is called a Markov chain with the initial probability distribution μ

in � and the transition matrix P(t), if the following conditions are fulfilled:

Prob
(
X(0) = x0

)= μ(x0)

and

Prob
(
X(t + 1) = xt+1

∣∣X(0) = x0, . . . ,X(t) = xt

)= [P(t)
]
xt ,xt+1

.

6.4 Markov Chains � 293

The second condition says that the probability for the present state to occur depends
only on the state immediately preceding it. In other words, the probability to reach
the point xt+1 at time t + 1 depends on none of the previous points except xt . We
say that such a Markov chains describes a random process without memory. For a
system with memory consisting of m steps we could imagine a larger sample space
�m and define the random process

Y(t) = (X(t),X(t − 1),X(t − 2), . . . ,X(t − m + 1)
) ∈ �m,

which again is a Markov chain. If the Markov matrix P does not depend on time,
we are referring to a time-homogeneous Markov chain.

A Markov chain represents a description of the time evolution of a probabil-
ity distribution in the sample space. If p(t) = {px(t) = Prob(X(t) = x)}x∈� is the
probability distribution at time t , the distribution at later times t ′ > t is given by

pT(t)P (t)P (t + 1) · · ·P (t ′)= pT(t ′
)
.

Markov chains are linear discrete dynamical systems of time evolution of the prob-
ability distribution [25]. The probability for the transition from the state x0 at time
t0 to the state x1 at time t1 is given by the matrix element (x0, x1) of the product of
Markov matrices P(t) with the times t on the interval [t0, t1],

Prob
(
X(t1) = x1

∣∣X(t0) = x0
)= [P(t0)P (t0 + 1) · · ·P(t1)

]
x0,x1

, (6.10)

which is one of the forms of the Chapman–Kolmogorov equation [26]. If the Markov
chain is time-homogeneous (P(t) = P), the expression above simplifies to

Prob
(
X(t1) = x1

∣∣X(t0) = x0
)= [P t1−t0

]
x0,x1

.

This relation is often used to test whether the observed process is a Markov chain or
not.

Detailed Balance In physically motivated Markov chains one frequently encoun-
ters the condition of detailed balance which states that in equilibrium the occupation
probability of all states is equal, so

πx Prob
(
X(t + 1) = y

∣∣X(t) = x
)= πy Prob

(
X(t + 1) = x

∣∣X(t) = y
)
,

or

πx

[
P(t)

]
x,y

= πy

[
P(t)

]
y,x

,

where π = {πx}x∈� is a stationary distribution. If a distribution π exists for which
the condition of detailed balance applies, the corresponding Markov chain is called
reversible.

Reducibility If a non-zero probability exists that from any state in the chain we
can arrive at any other state, we say that the states communicate and the correspond-
ing chain is said to be irreducible. In the opposite case, we can form subsets of states
with respect to which the chain is irreducible.

294 6 Modeling and Analysis of Time Series

Periodicity, Reproducibility, Ergodicity In Markov chains it is important
whether we are able to return to the original state from the sample space � and
how. A state is periodic if we can return to it along the paths with the number of
steps whose common multiples are different from 1. In the opposite case the state
is non-periodic. A state is reproducible if we can return to it in finite time. If the
Markov chain is irreducible on the whole sample space � and all states are non-
periodic and reproducible, the chain is said to be ergodic.

Stationary Distributions If the Markov chain is time-homogeneous, the Perron–
Frobenius theorem [27] guarantees that for each irreducible part of the chain at least
one set of points (vector) π = {πx > 0}x∈� exists such that

πTP = πT,

with the normalization
∑

x πx = 1. The vector π is a left eigenvector of the matrix
P with the maximum possible eigenvalue of 1. We call such vectors stationary (or
invariant, or equilibrium) distributions of the Markov chain. Stationary distributions
play the role of probability distributions that are preserved within the dynamics of
the Markov chain. If a Markov chain is ergodic, exactly one stationary distribution
π exists to which any initial probability distribution p converges as

πT − pTP t = O
(|ν|t),

where ν is the second largest eigenvalue of P . A stationary distribution π may also
exist in time-inhomogeneous chains, where we require

πTP(t) = πT ∀t,

but its existence is not guaranteed.

Entropy One way to think about a Markov chain is to establish a probabilistic
description of a random motion of a particle or a more general system between
the states in the space �. Assume that the Markov chain is time-homogeneous and
that the transition probabilities are given by the matrix P . We are interested in the
probability that, given some initial discrete probability distribution μ, the particle
follows the trajectory {xi}ti=0 beginning at the state x0, from whence it jumps to x1,
to x2, . . . and arrives at xt after time t . This discrete probability distribution is

p(x0, x1, . . . , xt) = μ(x0)Px0,x1Px1,x2 · · ·Pxt−1,xt .

The entropy of such a random process until time t is defined as

H(t) = −
∑

(x0,x1,...,xt)∈�t+1

p(x0, x1, . . . , xt) logp(x0, x1, . . . , xt)

and tells us something about the richness (complexity) of the possible trajecto-
ries of the process in the sample space [28]. We expect physics-inspired Markov

6.4 Markov Chains � 295

Fig. 6.6 Traveling within the EU as a discrete-time Markov chain. [Left] The graph of road and
rail connections. [Right] The matrix elements of the Markov matrix P

chains to be ergodic, and in such chains the entropy increases linearly with time. Of
course, this does not apply to periodic states where the complexity of the dynam-
ics is strongly diminished. The rate of entropy growth in an ergodic chain with the
Markov matrix P and stationary distribution π is given by

h = lim
t→∞

1

t
H(t) = −

∑

x,y∈�

πxPx,y logPx,y.

If a Markov chain describes the dynamics of a sufficiently complex system, h is an
approximation of the information entropy for that system, and is proportional to its
statistical (Boltzmann) entropy [29, 30]. The connection between the rate of entropy
growth and eigenvalues of Markov matrices is discussed in [31].

Example A tourist travels within the EU (n = 27 states). She decides about the
entry into the next state upon looking at its relative size with respect to the sizes of
all states accessible at that moment. The transitions between the states are a random
process that can be described as a discrete-time Markov chain on the set of indices
{i}ni=1 denoting individual states. The possibilities for the transitions are shown by
the graph in Fig.6.6 (left) and are summarized by the function

c(i, j) =
{

1; state i connected to state j by road or rail,
0; otherwise.

Clearly, each state is connected to itself, hence c(i, i) = 1. The tourist departs the
ith state heading for the j th state with the conditional probability

Prob(j |i) = c(i, j)Sj∑
k Sk

, c(k, i) �= 0,

296 6 Modeling and Analysis of Time Series

Fig. 6.7 The time evolution of the tourist’s probability distribution for a trip started in Austria
(i = 1). The distribution at t = 100 is an excellent approximation for the stationary distribution.
Note that the shown bar sizes are not proportional to the sizes of the states! A good example is
Finland (i = 8) that is reachable only through Sweden. The average probability of meeting the
tourist in Finland is therefore only the seventh largest (4.9 %) although Finland is the fifth largest
state. Three dotted vertical lines correspond to Cyprus, Malta, and Ireland, which the tourist never
enters

where Si is the size of the ith state. We arrange all conditional probabilities in the
Markov matrix P = [Prob(j |i)]ni,j=1 shown in Fig. 6.6 (right).

The probability distribution of the tourist is represented by the array p(t)=
{pi(t)}ni=1. This array can be treated as a vector of dimension n that evolves as

pT(t) = pT(0)P t ,

where t ∈ N0 counts the decisions on further travel (“time”). We are interested in
the probability that the tourist will appear in the state i after time t if she started
her travel in the state s, so pi(0) = δi,s . An example of a trip commenced in Austria
is shown in Fig. 6.7. Gradually she wanders everywhere except Cyprus, Malta, and
Ireland, which are not connected to the remaining states. All n states can thus be split
in four connected subsets on which the Markov chain is irreducible. On each of these
subsets we could devise a chain with reproducible states, but only on the largest
subset of 24 states the chain is non-periodic and therefore also ergodic. Any initial
position of the tourist ends up in a unique stationary distribution, the approximation
of which is shown in Fig. 6.7 at t = 100.

6.4 Markov Chains � 297

6.4.2 Continuous-Time Markov Chains

It is not hard to generalize discrete-time Markov chains to continuous-time chains.
Assume that a random process X with a countable sample space � is observed in
continuous time t ∈ R. In such a process, the probability for a transition from state
x at time t to state y at a later time t + �t is

Prob
(
X(t + �t) = y

∣∣X(t) = x
)
.

If the conditional probabilities satisfy the continuous analogue of (6.10), such a
process represents a continuous-time Markov chain. In the limit �t → 0 we then
have

Prob
(
X(t + �t) = y

∣∣X(t) = x
)= δx,y + [Q(t)

]
x,y

�t + O(�t),

where Q(t) is the transition rate matrix. Its matrix elements are [Q(t)]x,y ≥ 0
for x �= y and [Q(t)]x,x ≤ 0. From conservation of probability

∑
y∈� Prob(X(t +

�t) = y|X(t) = x) = 1 we obtain
∑

y[Q(t)]x,y = 0 for each x ∈ �, hence the de-
cay rate of the individual state is

[
Q(t)

]
x,x

= −
∑

y �=x

[
Q(t)

]
x,y

.

Just like in the case of discrete chains (Sect. 6.4.1) the continuous-time Markov
chains may be seen as a probabilistic description of the dynamics of some system
in the set of states �. Let p(t) = {px(t) = Prob(X(t) = x)}x∈� be the probability
distribution of the system with respect to the states at time t . The time evolution
of this distribution (as a vector) is then given by a system of ordinary differential
equations

d

dt
pT(t) = pT(t)Q(t). (6.11)

The solution of this system is

pT(t ′
)= pT(t)P

(
t, t ′
)
,

where the form of the matrix P depends on whether the Markov matrix Q is time-
dependent or not. For a homogeneous chain (Q(t) = Q) we get

P
(
t, t ′
)= exp

((
t ′ − t

)
Q
)
.

In the case of a non-homogeneous chain (Q depends on time) the formal solution is

P
(
t, t ′
)= T̂ exp

(∫ t ′

t

Q(τ)dτ

)
, (6.12)

298 6 Modeling and Analysis of Time Series

where the time-ordering operator T̂ [32] creates the correct time ordering of the
integration limits once the exponential function of matrices is power-expanded. Due
to its complicated structure the solution (6.12) is generally useful at short times only;
in other cases, we need to tackle the system (6.11) directly.

A continuous-time Markov chain is converted to a discrete-time chain by choos-
ing the step size �t and setting P(t) = P(t, t +�t). If one assumes that the random
process X at time t is in the state x, the probability that the process remains in this
state until time t + �t is

Prob
(
X(r) = x

∣∣X(t) = x
)= exp

(
�t[Q]x,x

) ∀r ∈ (t, t + �t]

in the case of a homogeneous chain, while it is

Prob
(
X(r) = x

∣∣X(t) = x
)= T̂ exp

(∫ �t

0

[
Q(t + τ)

]
x,x

dτ

)
∀r ∈ (t, t + �t]

in the case of a non-homogeneous one. Reducibility, periodicity, reproducibility, and
ergodicity of states for continuous-time Markov chains are introduced by complete
analogy to discrete-time chains (Sect. 6.4.1).

Example Imagine an array of n sites with labels from 1 to n. Particles may jump be-
tween neighboring sites. We describe the dynamics of the particles by a continuous-
time-homogeneous Markov chain, where the sample space are the sites on the chain,
� = {i}ni=1. The particle at site i can jump to the neighboring site to the left (label
i − 1) or to the right (label i + 1) with the rate r , if this site exists. This rule can be
condensed into the transition rate matrix

Q =

⎛

⎜⎜
⎜⎜⎜
⎝

−r r 0
r −2r r

. . .
. . .

. . .

r −2r r

0 r −r

⎞

⎟⎟
⎟⎟⎟
⎠

.

The distribution of the particles along the chain at time t is given by the array
p(t) = {pi(t)}ni=1, which we interpret as a vector (p1(t),p2(t), . . . , pn(t))

T. Its time
evolution is given by the system of differential equations

d

dt
pT(t) = pT(t)Q.

At t = 0 all particles are at the chosen site s, thus pi(0) = δi,s . The time evolution
of the distribution for r = 0.1 and s = 11 in the case of a chain of length n = 21 is
shown in Fig. 6.8 (left). Early on, the distribution acquires a Gauss-like shape, but
after long times it reaches the boundaries and flattens out. Ultimately we reach the
limit limt→∞ pi(t) = 1/n representing the stationary distribution, pi = πi .

6.5 Noise 299

Fig. 6.8 Motion of particles between the states of a one-dimensional array of length n = 21 as a
continuous-time Markov chain. [Left] Time evolution of the distribution p with particles initially at
s = 11, with r = 0.1. After long times we obtain a constant distribution pi(t) = 1/21 ≈ 0.04762.
[Right] Time evolution of the distribution variance

The average of an observable f with respect to the distribution p is 〈f (i)〉i,t =∑n
i=1 f (i)pi(t). The dynamics of the system is such that the distribution average

does not change with time, 〈i〉i,t = s. What does change is the variance,

σ 2(t) = 〈(i − s)2〉
i,t

,

shown in Fig. 6.8 (right). We see that σ 2(t) ≈ 2rt until the distribution spreads out
to the boundaries of the chain which it is unable to cross. The direct proportionality
of the variance and time indicates that the diffusion of particles in this system is
normal, with the diffusion constant D = r .

6.5 Noise

Noise (for continuous or discrete time) is defined as a real random process Z which
is wide-sense stationary and ergodic (see p. 282), and has zero average,

〈
Z(t)

〉= 0,

a rapidly decreasing time auto-correlation RZZ ,

RZZ(t1, t2) = 〈Z(t1)Z(t2)
〉= RZZ(t1 − t2),

and probability density

pZ(x) = 〈δ(x − Z(t)
)〉

.

300 6 Modeling and Analysis of Time Series

Here 〈·〉 denotes the statistical average over various realizations of the random pro-
cess. Because noise is ergodic, the statistical average is equal to the time average.
Noise as an abstract entity and, above all, in its individual realizations, is frequently
used in stochastic simulations in physics, electric engineering, and acoustics.

6.5.1 Types of Noise

Noise is classified according to the functional forms of its probability density pZ

and auto-correlation RZZ . Auto-correlation is the most important property of noise
defining its characteristics. It is usually presented in Fourier space by computing the
average power spectral density (PSD). The power density SZ is equal to the square
of the Fourier transform of the signal’s auto-correlation (see (4.1) and (4.18), as well
as Sect. 4.2.7). For continuous-time noise we obtain (up to a factor)

SZ(ω) ∝F[RZZ](ω),

while for discrete-time noise

SZ,k ∝ (FN [RZZ])
k
.

Noises with a spectral density of the form

SZ(ω) ∝ ω−a, a > 0,

are said to possess colors, which are assigned according to the values of a. The most
well-known noises are white (a = 0), pink (a = 1), and red (a = 2). Examples are
shown in the left panels of Fig. 6.9. The corresponding distributions of the values of
the noise are shown in the right panels.

In the strict sense, colored noises with parameters a ≥ 1 are non-stationary ran-
dom processes [33], since SZ ∝ ω−a has a singularity at the origin. In practical
calculations we require that SZ differs from zero only for frequencies ω larger than
some minimal frequency ω0, e.g. ω0 ≈O(N−1), where N is the sample size.

White Noise The Fourier spectrum of white noise is “flat”, SZ(ω) = const. The
noise signal is therefore δ-auto-correlated in the statistical sense. For continuous-
time noise this implies

RZZ(τ) = 〈Z(t)2〉δ(τ),

while for discrete-time noise

RZZ(τ) = 〈Z(t)2〉δτ,0.

White noise is strict-sense stationary and resembles the noise caused by thermal
fluctuations of charge carriers at finite temperatures. We are commonly referring to
Gaussian white noise since its probability density pZ is the Gauss function.

6.5 Noise 301

Fig. 6.9 Examples of realizations of various types of noise (left panels) and the corresponding
distributions of values in these realizations (right panels). The color of the noise is defined by the
parameter a in the power spectral density SZ(ω) ∝ ω−a . [Top] White noise (a = 0). [Center] Pink
noise (a = 1). [Bottom] Red (or Brownian) noise (a = 2). The figures at the right also show the
normal distribution N(0,1)

Pink Noise Pink or flicker noise has the power spectral density SZ(ω) ∝ ω−1. It
occurs, for example, in circuits with semiconductor elements.

Red (Brownian) Noise Red or Brownian noise has the power spectral density
SZ(ω) ∝ ω−2 and is typically encountered in random-walk processes. Realizations
z(t) of red noise can be obtained from white noise w(t) by means of the Wiener
process [34] defined by

z(t) = z(0) +
∫ t

0
w(τ)dτ.

302 6 Modeling and Analysis of Time Series

Once this equation is rewritten as dz(t)/dt = w(t), the Fourier transformation can
be applied to both sides, and we get

SZ(ω) = 〈w(t)2〉
ω2

.

6.5.2 Generation of Noise

Generation of noise with appropriate statistical and spectral properties is of crucial
importance in certain applications. A system with pronounced sensitivity to high-
frequency content of signals will respond differently if white or red noise is intro-
duced at its input. Two classes of noise generation methods exist: online and offline.
In online mode we generate the signal values {zi} of noise Z sequentially, for ex-
ample, while the simulation is running; the values should therefore be generated as
quickly as possible. In offline mode, the complete realization of the noise {zi}N−1

i=0
with an arbitrary spectral density SZ is generated in a single shot. Both methods are
described in the following.

Online Mode White noise with a desired probability density pZ can be generated
directly by using a generator of random numbers that are distributed according to
pZ (see Appendix C).

A review of pink-noise generators can be found at [35]. The improved cor-
related generator [36] based on random weighted summation of n white-noise
signals is particularly simple and effective. To generate a signal with the spec-
trum SZ(ω) ∝ ω−1 we have to choose the appropriate weights w = {wi}ni=1 for
the contributions of white noise, the bounding probabilities p = {pi}ni=1 for ran-
dom summation of individual contributions, and the vector describing the state
of the generator, c = {ci}ni=1. The components of this vector should be ini-
tialized with random numbers distributed according to U(−1,1) (uniformly on
[−1,1]). The algorithm to obtain the next value of the signal of pink noise is

Data: arrays of weights w = {wi}ni=1 and probabilities p = {pi}ni=1.
Input: state vector of the generator c = {ci}ni=1.
Draw a random x from U(0,1);
for i = 1,2, . . . , n do

if x ≤ pi then
Draw a random y from U(−1,1);
ci = wiy;
Break the loop;

end
end
z =∑n

i=1 ci ;
Output: next value of the signal z and the state vector c.

6.5 Noise 303

The uniform generator used to generate x and y in this algorithm may be very
simple, as its properties do not influence significantly the quality of the generated
pink noise. In [36] they recommend n = 5 and

w = {0.9506,0.74235,0.64925,0.77175,0.85015},
p = {0.00198,0.01478,0.06378,0.23378,0.91578}.

The generated signals have values on the interval [−W,W], where W =∑n
i=1 wi .

The values are distributed approximately according to N(0,1).
Red or Brownian noise can be generated by using a one-dimensional random

walk from which the average of the last n steps is continuously subtracted. Imagine
a random walk defined by the recurrence

at+1 = at + εwt ,

where wt is a random number distributed according to N(0,1), and ε is the length of
the step. The sequence of values of approximately red noise z = {zt }∞t=0 is obtained
by applying a linear filter on the sequence a = {at }∞t=0,

zt = at − 1

m

m−1∑

i=0

at−i .

The shape of the spectrum is controlled by the filter length m. Assume that we
have computed the signal z = {zi}N−1

i=0 of length N and its single-sided spectrum

S = {Si}N/2
i=0 = PSD[z]. For i > K = N/(2m) we obtain S ∼ O(i−2), while for

i < K the spectrum S does not change significantly. To generate a signal resembling
red noise, we therefore need N = O(m). If we choose ε = 2/

√
m and K � 1, the

generated values are distributed according to N(0,1).

Offline Mode The simplest algorithm to generate a complete sample of noise
with an arbitrary spectral density SZ is based on the Fourier transformation. Here
we adopt, with minor modifications, the algorithm from [37]. Generate the array
c = {ci}N−1

i=0 (with N odd) by using

c0 = 0, c∗
N−j = cj =

√

SZ

(
jω′
N

)
(aj + ibj), j = 1,2, . . . , (N − 1)/2,

where aj and bj are random numbers distributed according to N(0,1), and ω′ is a
characteristic frequency that we set according to the desired frequency range of the
generated spectrum. By computing the inverse Fourier transform of c,

zk = 1

‖c‖2

N−1∑

j=0

ei2πjk/Ncj ,

304 6 Modeling and Analysis of Time Series

we obtain the desired realization of noise. If SZ is a bounded function of ω, the
average probability density of the values zk converges to N(0,1) with increasing
N . The same applies to colored noises with the parameter a ∈ [0,1]. In contrast,
for a larger than 1 the probability density of the values in individual signals (and
on average) deviates far from the normal distribution. Figure 6.9 shows the signals
of white (a = 0), pink (a = 1), and red noise (a = 2), as well as the probability
densities of values in these signals obtained by this method.

6.6 Time Correlation and Auto-Correlation

Correlations measure statistical dependence or similarity of quantities. The mathe-
matical formulation of correlation varies according to the type of the quantities, but
its meaning remains the same. Imagine two continuous-time random processes F

and G. We define their time correlation as the statistical average of the product of
the processes, one of which is shifted with respect to the other by τ [9]:

RFG(τ) = 〈F(t)∗G(t + τ)
〉
.

The time shift τ is the parameter of the correlation. If the processes F and G are
ergodic and their correlation is equal to the time correlation of their realizations f

and g, such processes are known as jointly ergodic, and we have

RFG(τ) = Rfg(τ) = 〈f (t)∗g(t + τ)
〉
t
= lim

T →∞
1

2T

∫ T

−T

f
(
t ′
)∗

g
(
t ′ + τ

)
dt ′,

where the average 〈·〉t is defined in (6.4). For discrete times the integral in the ex-
pression above should be rewritten as a sum, in accordance with the discrete defini-
tion of the time average, (6.5).

More formally, correlation can be understood as a binary operation that assigns
the correlation function Rfg to the functions f and g. The precise form of the as-
signment depends on the definition domains X of the functions, e.g.

Rfg(τ) =
∫

X

f (t)∗g(t + τ)dnt, X = R
n,Cn,

or

Rfg(τ) =
∑

t∈X

f (t)∗g(t + τ), X = Z
n,Zn

N .

Correlation therefore represents an overlap integral in the domain of the shifted
functions, where the shift is the argument of the correlation. The correlation of
functions in the domain Z

2
N , where N = 20, is illustrated by the Example below

(see Fig. 6.10). An overview of the use of time correlations in theoretical physics is
given by [38].

6.6 Time Correlation and Auto-Correlation 305

Fig. 6.10 The basic operational idea of an optical mouse. [Left] First acquired image: a two-di-
mensional sample (scalar field) F of size 20 × 20 with values Fi,j ∈ [0,1] and periodic boundary
conditions. [Center] The shifted version of the image F̃i,j = Fi−5,j−4. [Right] The correlation of
the original and shifted fields Ci,j = (1/N2)

∑
α,β F̃i+α,j+βFα,β indicates the shift of the mouse

from the current position at (0,0) to (5,4)

Basic Properties and Relation to Convolution Regardless of the character of the
objects f and g (realizations of random processes, discrete or continuous functions),
their correlation has some common properties. A correlation is symmetric,

Rgf (−τ) = Rfg(τ)∗, (6.13)

and bounded in the sense

∣∣Rfg(τ)
∣∣2 ≤ Rff (0)Rgg(0),

∣∣Rfg(τ)
∣∣≤ 1

2

(
Rff (0) + Rgg(0)

)
.

A correlation between different random processes or their realizations (functions)
f and g is also called cross-correlation, while for f = g we are referring to an
auto-correlation function (ACF). Auto-correlation is the sum of auto-correlations
of non-correlated parts: let f =∑i si and Rsisj = 0 for i �= j . Then

Rff =
∑

i

Rsisi .

The correlation Rfg can be expressed by the convolution, ∗ : (f, g) �→ f ∗ g, as

Rfg(τ) = [f ∗(−t) ∗ g(t)
]
(τ).

When the existence of the correlation or of the convolution itself is questioned,
we rely on the property that f,g ∈ Lp(X) implies Rfg ∈ Lp(X). In computations
of correlations and convolutions where Fourier transformations are involved, we
frequently assume that f and g are rapidly decreasing smooth functions [39]. For
details see [40, 41].

Example An optical mouse is a standard external device for modern computers. By
moving the mouse we communicate to a certain program our desire to move the
graphical pointer. The mouse senses the motion by a small CCD camera capturing

306 6 Modeling and Analysis of Time Series

the reflection of light from the surface illuminated by a light-emitting diode. (The
image acquisition rate is usually about 1 kHz.) The program compares the subse-
quent images and uses correlations between them to determine the direction and
length of the move. An example of such a computation is shown in Fig. 6.10. The
more random the acquired samples are, the more precise the determination of the
shift can be. This is why optical mice perform poorly on polished reflective surfaces
or surfaces with fine periodic textures.

6.6.1 Sample Correlations of Signals

In practice we are not dealing with infinitely long signals but with their finite chunks
or samples. We would like to use the sample to learn as much as possible about the
whole signal, for example, by computing the approximation of its time average or
a correlation between two signals. Let an infinitely long signal f be defined on the
whole real or discrete time axis. Assume we only know its sample f̂ in the time
interval [t0, t0 + T) of length T , thus

f̂ (t) =
{

f (t0 + t); t ∈ [0, T) ⊂ R (continuous signal),

f (t0 + t); t ∈ [0, T − 1] ⊂ Z (discrete signal).

For continuous time, a correlation of two such samples f̂ and ĝ is defined as

R
f̂ ĝ

(τ) = w(τ,T)

∫ T −|τ |

0
dt

{
f̂ (t)∗ĝ(t + τ); τ ∈ [0, T),

f̂ (t + |τ |)∗ĝ(t); τ ∈ (−T ,0),

while for discrete time we use

R
f̂ ĝ

(τ) = w(τ,T)

T −|τ |−1∑

t=0

{
f̂ (t)∗ĝ(t + τ); τ ∈ [0, T − 1],
f̂ (t + |τ |)∗ĝ(t); τ ∈ [−T + 1,0].

The weight w will be determined later; for the moment we require that it behaves
asymptotically as w(τ,T) ∼ T −1 when T → ∞, so that we have the limit

lim
T →∞

t0→−∞
R

f̂ ĝ
= Rfg.

Sample correlations defined in this manner have the symmetry R
f̂ ĝ

(−τ) =
R

ĝf̂
(τ)∗, just as in (6.13), but they do not necessarily possess other previously enu-

merated properties of correlations. Which properties are shared among the infinite-
signal and sample correlations strongly depends on the choice of the weight.

6.6 Time Correlation and Auto-Correlation 307

Choice of the Weight In choosing the weight to compute the sample correlation
we are usually forced to make a compromise between mathematical correctness
and technical usefulness. We exploit the following facts. If the signals f and g

are realizations of jointly ergodic random processes F and G that are wide-sense
stationary (WSS, p. 282), we have

〈
R

f̂ ĝ
(τ)
〉= (T − |τ |)w(τ,T)RFG(τ). (6.14)

If F is a discrete-time Gaussian random process and f is its realization, the variance
of the auto-correlation is

var
[
R

f̂ f̂
(τ)
]≈ T w(τ,T)2

∑

t∈Z

{
RFF (t)2 + RFF (t + τ)RFF (t − τ)

}
, (6.15)

and this dependence on T and τ roughly applies also to other processes from the
WSS class [42]. We conclude that it is sensible to use the weight

w(τ,T) = 1

T − |τ | ,

since by (6.14) the sample correlation then yields the correct estimate of the cor-
relation of random processes 〈R

f̂ ĝ
(τ)〉 = RFG(τ). Such sample correlations are

unbiased. Their main weakness is that for fixed T and increasing τ the amount of
the signal used in the computation of the sample correlation decreases, causing the
statistical error to behave as O((T − |τ |)−1/2) according to (6.15). Therefore, for
τ = O(T) the sample correlation becomes completely unpredictable. Besides, the
sample correlation does not necessarily fulfill the inequality

∣∣R
f̂ f̂

(τ)
∣∣≤ ∣∣R

f̂ f̂
(0)
∣∣, (6.16)

which is crucial in some applications. Therefore, one often prefers the weight

w(τ,T) = 1

T
,

which generates biased correlation estimates. In this case the sample correlation
does not accurately estimate the correlation of the processes

〈
R

f̂ ĝ
(τ)
〉=
(

1 − |τ |
T

)
RFG(τ),

but the statistical error is reduced: it becomes almost independent of the shift τ and
is of the order O(T −1/2), and at the same time inequality (6.16) is valid.

308 6 Modeling and Analysis of Time Series

6.6.2 Representation of Time Correlations

Assume that for signals f and g we computed the time averages μ = 〈f (t)〉t and
ν = 〈g(t)〉t . In terms of these averages and the remainders we can write

f (t) = μ + x(t), g(t) = ν + y(t).

The time correlation of f and g is then

Rx+μ,y+ν(τ) = μν + Rxy(τ).

Therefore, the correlation with the product of the averages subtracted is

R
(1)
fg (τ) = Rfg(τ) − μν = Rf −μ,g−ν(τ).

Alternatively, the averages are subtracted from the signal prior to the calculation
of the correlation. We see that at shift τ = 0, the correlation R

(1)
fg is equal to the

covariance with respect to the time average,

R
(1)
fg (0) = 〈(f (t) − μ

)(
g(t) − ν

)〉
t
.

In auto-correlation we have f = g and the covariance is equal to the variance of
the signal with respect to the time average, R

(1)
ff (0) = 〈(f (t) − μ)2〉t . Because the

variance of f is known, we divide this auto-correlation by the variance, and display

R
(2)
ff (τ) = R

(1)
ff (τ)

R
(1)
ff (0)

.

6.6.3 Fast Computation of Discrete Sample Correlations

The correlation of finite sequences a = {ai}N−1
i=0 and b = {bi}N−1

i=0 with periodic
boundary conditions ai+N = ai and bi+N = bi is a new periodic sequence c =
{ci}Ni=0 with the terms ci =∑N−1

j=0 a∗
j bj+i . This direct summation requires O(N2)

operations. A faster way of computing the correlation is possible by using the dis-
crete Fourier transformation (DFT, see (4.11) and [43]). Namely, the Fourier trans-
forms of the arrays a, b, and c are related by

(
FN [c])

i
= N

(
FN [a])∗

i

(
FN [b])

i
, i = 0,1, . . . ,N − 1,

so that the inverse DFT gives us the correlation of periodic arrays

c =F−1
N [d], d = N

((
FN [a])∗

i

(
FN [b])

i

)N−1
i=0 . (6.17)

6.6 Time Correlation and Auto-Correlation 309

By using the fast DFT (FFT, Sect. 4.2.5) the correlation c according to the formula
above can be computed in O(N log2 N) operations.

In computing the sample correlation of samples {ai} and {bi} we wish to effec-
tively compute the sum of the form

ci =
N−i−1∑

j=0

a∗
j bj+i , i = 0,1, . . . ,N − 1.

This is done by extending the arrays {ai} and {bi} to double their length and filling
the attached part with zeros. Thus we obtain two new arrays,

ã = {a0, a1, . . . , aN−1,0, . . . ,0}, b̃ = {b0, b1, . . . , bN−1,0, . . . ,0},
for which we assume periodic boundary conditions ãi+2N = ãi and b̃i+2N = b̃i . We
rewrite the sample correlation as a correlation of periodic arrays

ci =
2N−1∑

j=0

ã∗
j b̃j+i , (6.18)

where only the first N terms of c are used in the computation of the sample correla-
tion. A sum of the form (6.18) can be computed via (6.17) by using the FFT, except
that the transforms appearing in it act on arrays of length 2N . (The procedure de-
scribed here closely resembles the multiplication of polynomials by using the FFT;
see Sect. 4.2.6.)

In the case of two non-periodic signals whose correlation length is much smaller
than the size of the samples picked from these signals, we may assume, without ma-
jor loss of precision, that the samples are periodic. This allows us to again use (6.17)
to compute the sample correlation.

Example We often perform measurements
by perturbing the system by a real periodic
signal

s(t) = S cos(ωt)

with known amplitude S and angular fre-
quency ω, and observe the response of the
system r(t). An example of such analysis is the determination of the resonance
spectrum of an acoustic resonator shown in the figure. On the resonator wall we use
a loudspeaker to generate the perturbation s(t) with the frequency ν = ω/(2π), and
measure the response r(t) by a microphone. This spectroscopic method of testing
objects or materials is known as the continuous wave technique. In all systems with
a linear response to external perturbations the response can be written in the form

r(t) = R cos(ωt + φ),

310 6 Modeling and Analysis of Time Series

Fig. 6.11 The frequency dependence of the amplitude |Z| and phase φ = arg(Z) of the ratio be-
tween the complex response and complex perturbation during the excitation of a shoe-box acoustic
resonator with sides A = 56.7 cm, B = 38.5 cm, and C = 24 cm. Near the resonances the phase
changes rapidly and is approximately ±π/2

where the amplitude of the response R ∝ S and the phase φ can be functions of ω. In
complex notation, the response r̃(t) = Rei(ωt+φ) is just the perturbation s̃(t) = Seiωt

multiplied by the factor Z = (R/S)eiφ , which we wish to determine. Because we
generate the perturbation and know it exactly, Z can be computed by correlating the
response and the complex perturbation,

〈
s̃(t)∗r(t)

〉
t
= 1

2
SReiφ = 1

2
ZS2.

An example of the determination of the amplitude |Z| and the phase φ = arg(Z) as
functions of the frequency ν is shown in Fig. 6.11.

6.7 Auto-Regression Analysis of Discrete-Time Signals �

In the field of digital signal analysis [10, 33] the auto-regression model (ARM) is a
method that is also known as the infinite impulse response filter (IIR) or the all-pole
filter, while in physical applications it goes under the name of maximum-entropy
model (MEM). Here we discuss a very specific use of the theory, the prediction of
signals and the estimate of their spectra.

Auto-regression modeling is closely related to linear prediction, and often in lit-
erature no distinction is made between them. A concise overview of linear prediction
can be found in the classic paper [44], and a broader description of well-established
methods and technicalities in [42]. General theory of linear prediction is presented
in [45, 46], and the connection to linear models in [47, 48].

Preparing the Data for AR Analysis Let us discuss only discrete-time sig-
nals defined at times t ∈ Z. If the signal s(τ) is continuous, we discretize it as
sdiscrete(t) = scontinuous(τ0 + t�t), where �t is the time step and τ0 the chosen ori-
gin. By discretizing the signal its spectrum is artificially constrained to the frequency

6.7 Auto-Regression Analysis of Discrete-Time Signals � 311

range [−νc, νc], where νc = 1/(2�t) is the Nyquist frequency (see (4.6)). From the
signal we then try to remove all constant contributions or obvious dependencies, for
example,

x(t) = s(t) − power dependency of the signal.

The signal x obtained in this way becomes approximately wide-sense stationary
(WSS) and comparable to a realization of some ergodic random process, and its
average is practically zero. Occasionally we attempt to use power transformations
to modify the distribution of data so that it becomes more similar to one of the
standardized distributions (for example, normal distribution) [49].

6.7.1 Auto-Regression (AR) Model

An auto-regression model for a discrete-time signal x is defined as the recurrence

x(t) = −
p∑

i=1

aix(t − i) + ε(t), (6.19)

where ε(t) is the remainder (or deviation, or error), while p is the order of the AR
model. We wish to find the order p and coefficients {ai}pi=1 such that the remainder
ε is minimal and possibly similar to a realization of white noise.

Assume that x and ε are realizations of independent random processes X and E

that are wide-sense stationary. Equation (6.19) then represents a relation between
these processes. We multiply it by X(t ′)∗ from the left and right, and average over
time. We obtain a recurrence relation for the auto-correlation

RXX

(
t ′ − t

)= −
p∑

i=1

aiRXX

(
t ′ − t − i

)+ δt,t ′
〈
E(t)2〉. (6.20)

By introducing the vector of coefficients a = (a1, a2, . . . , ap)T and denoting ρ =
〈E(t)2〉, the equation above can be rewritten in the Yule–Walker matrix form

R

(
1
a

)
=
(

ρ

0

)
, (6.21)

where R is the auto-correlation matrix

R =

⎛

⎜⎜⎜
⎝

RXX(0) RXX(1)∗ RXX(2)∗ · · · RXX(p)∗
RXX(1) RXX(0) RXX(1)∗ · · · RXX(p − 1)∗
...

...
...

...

RXX(p) RXX(p − 1) RXX(p − 2) · · · RXX(0)

⎞

⎟⎟⎟
⎠

.

The properties of auto-correlation (p. 305) ensure that R is positive definite.

312 6 Modeling and Analysis of Time Series

The Yule–Walker system (6.21) relates the coefficients ai of the AR model, the
average square of the remainder, ρ, and the auto-correlation of the process, RXX .
If we know RXX , we can determine ai and ρ, or vice versa. The matrix R has a
Toeplitz structure and the system can be effectively solved by the Levinson–Durbin
method [50] in O(p2) steps or one of the fast methods (see Sect. 3.2.4). With the
solution we also obtain the coefficients ai . Moreover, the solution at order p can be
recursively used to seek the solution at order p + 1. Levinson–Durbin recurrence
lies at the heart of digital signal analysis [42, 46].

If the processes X and E are ergodic, statistical averages in (6.21) may be re-
placed by time averages, RXX = Rxx = 〈x(t ′)∗x(t)〉t and 〈E(t)2〉 = 〈ε(t)2〉t . Be-
cause the model (6.19) is so general, and the constraints on the remainder ε so
loose, the coefficients {ai}pi=1 at chosen p can be calculated in several ways [42].
The most well-known are the method of least squares in its auto-correlation or co-
variance version, and the Burg’s algorithm.

Determining the Parameters by the Auto-Correlation Method Let us select a
sample of length T from the signal x (signal x different from zero on the interval
t ∈ [0, T − 1] and zero outside). The remainder at time t is

ε(t) = x(t) +
p∑

i=1

aix(t − i). (6.22)

Define the vector of remainders ε[α,β] = (ε(α), ε(α+1), . . . , ε(β))T for an arbitrary
time interval [α,β]. Each equation of this type can be rewritten as

ε[α,β] = X[α,β]
(

1
a

)
,

where

X[α,β] =

⎛

⎜⎜
⎜⎜⎜
⎝

x(α) x(α − 1) · · · x(α − p)

x(α + 1) x(α) · · · x(α − p + 1)
...

...
...

x(β − 1) x(β − 2) · · · x(β − p − 1)

x(β) x(β − 1) · · · x(β − p)

⎞

⎟⎟
⎟⎟⎟
⎠

.

We determine the coefficients ai by minimizing the sum of the squares of the re-
mainders ρ(a) for the given sample, which can be written as

ρ(a) =
T +p−1∑

t=0

∣∣ε(t)
∣∣2 = (1,a†)R(a)

(
1
a

)
, R(a) = X

†
[0,T +p−1]X[0,T +p−1].

The sum also contains the values of the signal outside the interval [0, T −1] accord-
ing to the assumptions. The (p + 1) × (p + 1) matrix R(a) is Hermitian, with the

6.7 Auto-Regression Analysis of Discrete-Time Signals � 313

elements

R
(a)
ij =

T −(i−j)−1∑

t=0

x∗(t + (i − j)
)
x(t) (6.23)

that depend only on the differences of indices i and j . The sum of the squares of the
remainders is minimized by ∂ρ(a)/∂a = 0, which can be written as

R(a)
(

1
a

)
=
(

ρ(a)

0

)
. (6.24)

Note that R(a) is a Toeplitz matrix, so the system of equations is of the Yule–Walker
type (6.21) and can be solved by the methods described on p. 312.

For short signal samples the biased auto-correlation estimate is not necessarily
a good approximation of the auto-correlation of the process. In such cases we di-
vide (6.24) on the left and on the right by T and replace the matrix elements of
R(a)/T by the unbiased auto-correlation estimates.

Determining the Parameters by the Covariance Method Instead of minimizing
the remainders, computed by (6.22), we can also opt to minimize the corresponding
sum that involves only the values of the signal within the sample,

ρ(c) =
T −1∑

t=p

∣∣ε(t)
∣∣2 = (1,a†)R(c)

(
1
a

)
, R(c) = X

†
[p,T −1]X[p,T −1].

The equation for the minimum, ∂ρ(c)/∂a = 0, can again be cast in the form (6.24),

R(c)
(

1
a

)
=
(

ρ(c)

0

)
, R

(c)
ij =

T −1∑

t=p

x∗(t − i)x(t − j). (6.25)

The (p+1)×(p+1) matrix R(c) is still Hermitian, but its elements are not functions
of differences of indices and it does not have a Toeplitz structure. The system (6.25)
is therefore not of the Yule–Walker type, but it can still be solved in O(p2) steps by
using the CORVAR method described in [42]. A necessary (but not sufficient) con-
dition for the non-singularity of R(c) is p < T/2. For details and other approaches
to the minimization of remainders see [42, 44, 51].

Burg’s Algorithm Burg’s algorithm, known also as the maximum-entropy algo-
rithm, can be used to compute the coefficients of a stable AR model, and is therefore
primarily used in signal prediction (Sect. 6.7.2). If implemented correctly, it requires

314 6 Modeling and Analysis of Time Series

O(3Tp) + O(p2) operations and O(3T + p) of memory [42, 45]. It can be found
in the NUMERICAL RECIPES library [52] and in MATLAB [53].

Optimal Order There is no general rule to choose the order p at which the data in
a signal sample would be described optimally. When p is increased, we are reducing
the size of the remainder, which is measured by the average square 〈ε2〉t = ρ/(T +
O(1)), or by the corresponding normalized quantity 〈ε2〉t /RXX(0). In general, 〈ε2〉t
initially decreases rapidly when p is increased, but at some p this decrease slows
down. The value of p at which the transition between these two regimes occurs can
be taken as optimal. For details see [44].

6.7.2 Use of AR Models

Auto-regression models are used in many ways, but the most well-known are model-
ing and prediction. In modeling, we use a known signal to compute the coefficients
{ai} from which we infer the properties of the process that generated this signal.
An example of modeling is the search for an approximation of the spectral density
of a signal. We describe this in Sect. 6.7.3. In linear prediction, we determine the
coefficients from the history of the signal {x(t −p), x(t −p + 1), . . . , x(t − 1)} and
use them to predict its current value x(t) and the forthcoming values x(t + 1), x(t +
2), . . . by using (6.19).

The Resonance Spectrum of the AR Model The dynamics of the auto-
correlation RXX defined by (6.20) can be calculated analytically. Let us define the
characteristic polynomial of the AR model,

pAR(x) = xp +
p∑

i=1

aix
p−i =

p∏

i=1

(x − zi). (6.26)

If we know the zeros {zi}pi=1 of the polynomial pAR, which we call the resonances of
the AR model, the time evolution of the auto-correlation can be written as Rxx(t) =∑p

i=1 Aiz
t
i , where Ai are constants. We determine the values of Ai from the initial

conditions given by the derivatives R
(i)
XX(0) with i = 0,1, . . . , p − 1, or from p

points of the auto-correlation at different times. If all zeros lie on the unit circle, we
are referring to a line spectral process in which auto-correlations merely oscillate
in time [46]. Similarly, the time evolution of the signal in the noiseless limit can be
written as

x(t) =
p∑

i=1

Biz
t
i ,

where Bi are constants. This equation represents an auto-regressive approximation
of the signal. When we use AR models, we often try to find a decomposition of
precisely this kind, hoping that the signal-to-noise ratio is large.

6.7 Auto-Regression Analysis of Discrete-Time Signals � 315

Fig. 6.12 The signal generated by the AR model (6.19) with the coefficients (6.27) and an admix-
ture of Gaussian white noise ε with dispersion σε = 0.1

If the coefficients ai are real, the resonances zi of the AR model occur in
complex-conjugate pairs, if they reside away from the real axis in the complex plane.
It happens that the zeros zi fall outside of the unit circle (see Example below and
Fig. 6.13 (right)). The signal that was generated by such an AR model then diverges
as O((maxi |zi |)t). Quite often, the zeros lying outside of the unit circle are just
artifacts due to the presence of noise, which we strive to eliminate anyway, in par-
ticular when we wish to generate or predict long signal samples. In such cases we
“fix” the problematic zeros by replacing zi by ẑi = zi/|zi | (which does not alter the
phase) and computing the coefficients âi of a slightly modified AR model with the
characteristic polynomial

p∏

i=1

(x − ẑi) = xp +
p∑

i=1

âix
p−i .

Example Assume that a process is described by the AR model with coefficients

{ai}pi=1 = {0.1,0.2,−0.3,0.4,0.5,0.1,0.2,−0.2,0.5,−0.1} (6.27)

and that ε(t) is white noise with σε = 0.1. We use (6.19) to generate a signal sample
{x(t)}T −1

t=0 of length T = 1000, where the first p = 10 values are used as the initial
condition of the iteration. A possible realization of the signal is shown in Fig. 6.12.
The average square of the remainder in the model is shown in Fig. 6.13 (left). The
spectrum of the resonances shown in Fig. 6.13 (right) reveals that this AR model is
unstable, as three out of ten resonances lie outside of the unit circle.

As an exercise, let us study the generated signal by the AR model with the coef-
ficients {ãi}p̃i=1 for different orders p̃ and by applying the covariance method. With
increasing p̃ the average square of the remainder 〈ε2〉t decreases until it stabilizes
at O(σ 2

ε). This occurs at p̃ = 10, which is the order of the AR model used. For
p̃ > p, ε resembles the noise that was used in the generation of the signal. With

316 6 Modeling and Analysis of Time Series

Fig. 6.13 [Left] The average square of the remainder in the AR model with respect to the sample
values, as a function of order p. [Right] The resonance spectrum of the model used to generate the
signal in Fig. 6.12. Three resonances lie outside of the unit circle, thus the model is unstable

increasing p̃ the coefficients ãi approach ai of the original model:

p̃ ã1 ã2 ã3 ã4 ã5 ã6 ã7 ã8 ã9 ã10

1 0.343
2 0.453 0.321
3 0.310 0.120 −0.442
6 0.312 0.225 −0.443 0.374 0.288 0.400
8 0.326 0.132 −0.472 0.179 0.462 0.374 0.095 −0.340

10 0.095 0.202 −0.310 0.386 0.477 0.089 0.199 −0.202 0.470 −0.131

The approach of ãi to the original coefficients ai depends on the sample size
and the noise intensity. Convergence is guaranteed only for infinite WSS signals.
The coefficients ãi for i ≥ p̃ > p are not zero (for p̃ = 11 we get {ãi}10

i=1 = {0.097,

0.194,−0.306,0.383,0.475,0.080,0.192,−0.197,0.467,−0.133}, then ã11 =
−0.018) but they are random and on the order of O(σε).

6.7.3 Estimate of the Fourier Spectrum

The power spectral density of a discrete-time signal x(t), t ∈ Z, is defined as

Px(ω) = lim
T →∞

1

2T + 1

∣∣∣∣∣

T∑

t=−T

x(t)e−iωt

∣∣∣∣∣

2

, −π ≤ ω < π.

(See [51, 54].) If x was obtained by discretizing a continuous signal with the step
�t , ω is related to frequency ν as ω = 2πν�t . The relation between the time auto-

6.7 Auto-Regression Analysis of Discrete-Time Signals � 317

correlation of the signal Rxx and the spectral density is

Px(ω) =
∞∑

t=−∞
Rxx(t)e

−iωt .

For samples of length T we only know the sample auto-correlation Rx̂x̂ (t) and then
the formula above can be rewritten as a correlogram

Px̂(ω) =
L∑

t=−L

Rx̂x̂ (t)e
−iωt = Rx̂x̂ (0) + 2

L∑

t=1

Rx̂x̂ (t) cosωt, (6.28)

where the sample auto-correlation is used up to the maximum shift L ≤ T − 1.
A correlogram is an approximation of the spectral density of the complete signal. If
we assume that the signal is a realization of a WSS process, we can find the averages
of the sample spectral densities for both defined approximations [42]:

unbiased: 〈
Px̂(ω)

〉= Px(ω) ∗ DL(ω), (6.29)

biased: 〈
Px̂(ω)

〉= Px(ω) ∗ 2

L
D2

L(ω/2), (6.30)

where ∗ denotes convolution and DL(ω) = e−i2πω(L−1) sin(πωL)/ sin(πω) is the
Dirichlet kernel. The sample spectral densities are biased approximations of the
true spectral density Px(ω), since the averages 〈Px̂(ω)〉 are its convolutions with the
kernel. With increasing L the kernel widens and it is sensible to use L � T (at most
L ≈ T/10). For L = T − 1 the correlogram is equal to the power spectral density of
the discrete signal as computed by the DFT,

P̃x(ω) = 1

T

∣∣
∣∣∣

T −1∑

t=0

x(t)e−iωt

∣∣
∣∣∣

2

, (6.31)

but this is statistically unstable. The correlogram with the maximum shift of L <

T/2 for a sample of size T can be computed at the points {ωk =2πk/T }T −1
k=0 by

using the DFT. We arrange the values of the sample auto-correlation Rx̂x̂ in an
array of length T , R = {Rx̂x̂ (0), . . . ,Rx̂x̂ (L),0, . . . ,0,Rx̂x̂ (−L), . . . ,Rx̂x̂ (−1)}.
When we apply DFT to it, we obtain the spectral density

{
Px̂(ωk)

}T −1
k=0 = TFT [R].

For the computation we should chose L such that Px̂(ω) ≥ 0, which is fulfilled in the
case of auto-correlations, but does not necessarily apply to sample auto-correlations.
A comparison of the sample spectral density (computed by DFT) and the correlo-
gram is shown in Fig. 6.14. We see that the correlogram is less sensitive to the
presence of noise. Details on estimates of spectral densities of signals are given
in [42].

318 6 Modeling and Analysis of Time Series

Fig. 6.14 Three approximations of the spectral density of the signal x from the Example on p. 315.
The sample has a length of T = 104. Shown are the curves of the sample spectral density (DFT,
(6.31)), the correlogram (COR, (6.28)) with L = T/10, and the maximum-entropy approximation
at order p = 10 (MEM, (6.32))

Assume that we know the AR model of order p with the coefficients {ai}pi=1 for
a signal x. Let us look at this computation in the reverse direction: we use a linear
transformation of the signal to generate the remainder ε(t),

ε(t) = x(t) +
p∑

i=1

aix(t − i).

We apply the Fourier transformation F[f](ω) =∑t∈Z f (t)e−iωt to both sides of
the equation and get F[ε](ω) = F[x](ω) exp(−iωp)pAR(exp(iω)), where pAR is
the characteristic polynomial (6.26). The power spectral density of the signal is

Px(ω) = Pε(ω)

|pAR(exp(iω))|2 , (6.32)

where Pε(ω) is the power spectral density of the remainder ε. We almost invari-
ably assume that the remainder is white noise with variance σ 2

ε , so that Pε(ω) = σ 2
ε .

This assumption implies that this process has the maximum possible entropy among
all processes with the same auto-correlation (the maximum-entropy principle). The
estimate (6.32) is therefore known as the maximum-entropy spectrum estimator
(MESE), while the method to find this approximation is called the maximum-entropy
method (MEM) [46, 55].

Figure 6.14 makes it clear that the MEM estimate for orders p � T is smoother
than either the sample spectral density or the correlogram. The MEM estimate is
also resilient to noise, until p is much smaller than T and below the limit at which
the remainder starts to resemble noise. When p is increased further, aliasing effects
sneak into the MEM estimate, recognizable as contributions oscillating with a period
of 2π/p around the expected spectral density (Fig. 6.15).

We see from this figure that by increasing p we are revealing individual reso-
nances in the signal. When all essential resonances have been accounted for, the
remainder in the AR model resembles noise. If we know that the spectrum of the

6.8 Independent Component Analysis � 319

Fig. 6.15 Maximum-entropy spectrum approximations for different orders p of the AR mod-
els. The coefficients of the models were computed by the least-squares method for the data from
Fig. 6.12. The curve of the exact spectral density (which corresponds to the model used to generate
the sample) is almost identical to the curve at p = 10

signal should contain k prominent frequencies, it makes sense to choose the order
p = 2k, since resonances occur in complex-conjugate pairs.

We recommend the use of the MEM spectral approximation when the signal can
be described by an AR model of order p that is much smaller than the size of the
sample. Moreover, p should be small enough that the methods we use to compute
the coefficients remain stable. In most cases p < 40 suffices.

6.8 Independent Component Analysis �

Independent component analysis (ICA) is a multivariate analysis technique from
the class of latent-variable methods (another representative is the factor analysis
discussed in Sect. 5.11). The classical problem that can be solved by ICA is the
decomposition of an unknown mixture of signals to its independent components.
For example, we measure the signals x1(t), x2(t), and x3(t) of three microphones
recording the speech of two persons (sources) s1(t) and s2(t). We assume that the
signals are linear combinations of the sources,

⎛

⎝
x1(t)

x2(t)

x3(t)

⎞

⎠=
⎛

⎝
A11 A12
A21 A22
A31 A32

⎞

⎠
(

s1(t)

s2(t)

)
,

where neither the sources si nor the matrix elements Aij are known. A general-
ization of this example is the famous cocktail-party problem, in which we wish to
reconstruct the signals of r speakers based on n measurements of signals from m

microphones arranged in a room. The components of the vector representing the
sources are the latent variables mentioned above.

A very similar problem is illustrated in Fig. 6.16 (see also Problem 6.9.4 and
Fig. 6.22). The figure shows eight traces of an electro-cardiogram (ECG) of a preg-
nant woman recorded at various places on the thorax and the abdomen. In some

320 6 Modeling and Analysis of Time Series

Fig. 6.16 Electro-cardiogram of a pregnant woman. The relatively weak and noisy signal of the
child’s heartbeat, visible in signals x1, x2, and x3, mixes with the signal of the mother’s heartbeat
(Example adapted from [56] based on data from [57])

signals (x3, x2 and, above all, x1) we can also see the child’s heartbeat which has
a higher frequency than the mother’s heartbeat, but its amplitudes are smaller and
very noisy. The task of ICA is to extract the original signal sources and to explain
the mixing of these sources into the measured signals. The procedure should be done
such that the computed sources are mutually as independent as possible.

Here we discuss only static linear independent component analysis, for which
we assume that each vector of correlated measurements x = (x1, x2, . . . , xm)T is
generated by linear mixing of independent sources s = (s1, s2, . . . , sr)

T, thus

x = As, (6.33)

where A ∈ R
m×r is the mixing matrix which does not depend on time. Usually the

number of sources is smaller than the number of measured signals, r ≤ m. We ne-
glect measurement errors that, in principle, could be added to the right side of (6.33).
We assume that noise is already contained in the sources s: we are performing a
noiseless ICA.

The independence of the sources is expressed by the statement that their joint
probability density factorizes as p(s1, s2, . . . , sr) = p1(s1)p2(s2) · · ·pr(sr) and
therefore also 〈f (si)g(sj)〉 = 〈f (si)〉〈g(sj)〉 for arbitrary functions f and g. A pair
of statistically independent variables (si , sj �=i) is uncorrelated and has the covari-
ance cov(si , sj) = 0; the inverse is not necessarily true. This distinguishes ICA from
the decorrelation of variables by PCA (Sect. 5.7), in which principal components
of multivariate data are determined by maximizing their variances and minimizing
their mutual correlations.

6.8 Independent Component Analysis � 321

In the following we assume that the average of an individual vector of sources
is zero, 〈s〉 = 0, and that the corresponding covariance matrix is diagonal, �ss =
cov(s, s) = ssT = I . Other than that, the components si may have any probability
distribution except Gaussian. The requirement for a non-Gaussian character of the
distributions is essential, otherwise the ICA method allows for the determination of
the independent components only up to an orthogonal transformation. At most one
component of the signal is allowed to be Gaussian: for a detailed explanation see
Sect. 15.3 in [56] and [58, 59].

6.8.1 Estimate of the Separation Matrix and the FastICA
Algorithm

According to the model (6.33) with the matrix A of full rank, a separation or un-
mixing matrix W exists by which the sources s can be exactly reconstructed from
the measured signals x:

s = Wx, W = (ATA
)−1

AT = (w1,w2, . . . ,wr)
T (6.34)

(see (3.10)). But in practice, neither the matrix A nor the vector of the sources s in
the model (6.33) are known. In order to reconstruct s, we therefore attempt to find
an estimate of the separation matrix W . We resort to several additional requirements
that should be fulfilled by the one-dimensional projections of the measured signals,

yi = wT
i x, i = 1,2, . . . , r.

If the vector wi is equal to some row of the generalized inverse W of A (see (6.34)),
the projection yi is already one of the independent components, yi = si . Since A (or
W) is unknown, we try to find the vectors wi such that the probability distribution
of the projection yi will be as non-Gaussian as possible. Seeking such vectors is the
key part of the independent component analysis.

The deviation of the distribution of a continuous random variable y from the
Gaussian distribution can be measured by the entropy

H(y) = −
∫

p(y) logp(y)dy,

where p(y) is the probability density of y. Of all random variables with the same
variance the Gaussian random variable has the maximum entropy [26]. The value of
the entropy can therefore be used as a tool to gauge the similarity of some unknown
distribution to the Gaussian distribution. Computationally it is more convenient to
work with negentropy

I (y) = H(yGauss) − H(y), yGauss ∼ N(0,1),

322 6 Modeling and Analysis of Time Series

Table 6.1 Typical choices for the function G and its derivatives appearing in the approximation
of negentropy (6.35) and in the FastICA algorithm to determine the independent components. For
general use we recommend the functions (1) with the parameter α = 1. For signals with pronounced
outliers or super-Gaussian probability distributions, we recommend the functions (2)

G(y) G′(y) G′′(y) Remark

(1) 1
α

log coshαy tanhαy α(1 − tanh2 αy) 1 ≤ α ≤ 2

(2) −e−y2/2 ye−y2/2 (1 − y2)e−y2/2

which is a non-negative quantity and is equal to zero only in the case that both yGauss
and y are distributed normally with zero average and unit variance.

For an exact calculation of I (y) we need the probability density p(y), which we
almost never know in practice. We therefore use approximations of the negentropy,
most often [58]

I (y) ≈ [〈G(y)
〉− 〈G(yGauss)

〉]2
, (6.35)

where G(y) is a non-quadratic function of y (two popular choices are given in Ta-
ble 6.1). We compute the estimate yi for a single independent component si by find-
ing a vector wi such that the projection yi = wT

i x will have maximum negentropy
I (yi) (then its probability density will least resemble the Gaussian). We achieve the
decomposition to independent components when we ultimately find all vectors wi

(1 ≤ i ≤ r) corresponding to local maxima of I (yi). Since the independent com-
ponents si (or the estimates yi for them) are uncorrelated, they can be computed
individually. Finally, the vectors wi are arranged in the matrix W and we use (6.34)
to compute the independent components s.

6.8.2 The FastICA Algorithm

The independent components of the signals xi = (x1, x2, . . . , xm)T
i , which are mea-

sured at n consecutive times (0 ≤ i ≤ n − 1), can be determined by the FastICA
algorithm described in the following. The measured signals are first arranged in the
matrix

X = (x0,x1, . . . ,xn−1)
T ∈ R

n×m,

in which each of the n rows represents one m-variate data entry (for example, volt-
ages on m microphones at time t = i�t). We compute the mean x by (5.46) and
the covariance matrix �xx by (5.52). We diagonalize �xx as �xx = U�UT and
thus obtain the orthogonal matrix U and the diagonal matrix �. The data are then
transformed as

xi ←− �−1/2UT(xi − x), i = 0,1, . . . , n − 1. (6.36)

The transformation (6.36) is known as data whitening and is equivalent to a de-
composition of the standardized data to their principal components (see Sects. 5.7.2

6.8 Independent Component Analysis � 323

and 5.7.3). Whitening removes any trace of scale or correlation from the data. We
then follow the algorithm [60]:

1. Choose the number of independent components r you wish to determine.
2. Randomly initialize the vectors w1,w2, . . . ,wr (wk ∈ R

m) normalized to
‖wk‖2 = 1, and arrange them in the matrix W = (w1,w2, . . . ,wr)

T ∈ R
r×m.

3. Perform a symmetric orthogonalization of W ,

W ←− (WWT)−1/2
W.

This step ensures that all previously found wk are mutually orthogonal. The
square root of the matrix is computed as described in Appendix A.7.

4. For each k = 1,2, . . . , r compute new vectors

wk ←− 1

n

{
n−1∑

i=0

xiG
′(wT

k xi

)− wk

n−1∑

i=0

G′′(wT
k xi

)
}

, (6.37)

where the function pair G′(y) and G′′(y) can be chosen from Table 6.1. This
step is the crucial part of the algorithm ensuring that the iteration leads to the
fixed point corresponding to the maximum of negentropy (6.35). Normalize the
obtained vectors to unit length, wk ←− wk/‖wk‖2.

5. Repeat items 3 and 4 until convergence is achieved in all components of the
vectors wk . A good measure of convergence is the configuration in which the
direction of the vector wk in consecutive iterations (ν) and (ν − 1) no longer
changes, i.e. when the absolute value of the scalar product |w(ν)T

k w
(ν−1)
k | is close

to unity. Typically a few times ten iterations are needed (see Fig. 6.17).
6. The independent components are the rows of the matrix S = WXT ∈ R

r×n.

The FastICA algorithm allows us to compute the matrix of independent compo-
nents (sources) S in which the sources appear to be arranged arbitrarily. Namely, any
permutation P of the source components s in (6.33) implies just a different mixing
matrix, x = (AP −1)P s. From the viewpoint of the ICA method, the vectors s and
P s are indistinguishable.

Moreover, the signals S determined by ICA are given up to a multiplicative con-
stant: we may choose any constant cj to divide the source sj and multiply the j th
row of the mixing matrix A without modifying the product As. Even vectors of op-
posite directions (wk and −wk as the rows of W), which frequently occur during
the iterations of the FastICA algorithm, are therefore equivalent.

6.8.3 Stabilization of the FastICA Algorithm

The iteration step (6.37) follows from the Newton’s method to search for the max-
imum of negentropy, so occasionally we may encounter convergence problems. In

324 6 Modeling and Analysis of Time Series

Fig. 6.17 Typical convergence in the FastICA algorithm applied to the relatively complex signals
from Fig. 6.16. [Left] The difference of the scalar product |w(ν)T

k w
(ν−1)
k | from 1 in subsequent iter-

ations (ν) in the case of eight independent components (k = 1,2, . . . ,8). [Right] The convergence
of eight components of the vector w1 in consecutive iterations (ν)

such cases the authors [60] recommend a stabilized version of the step (6.37), which
is

wk ←− wk − μ

[
1

n

n−1∑

i=0

xiG
′(wT

k xi

)− βwk

][
1

n

n−1∑

i=0

G′′(wT
k xi

)− β

]−1

,

where

β = 1

n

n−1∑

i=0

(
wT

k xi

)
G′′(wT

k xi

)
,

and μ is a parameter controlling the stability of the iteration. The iteration can be
stabilized by using the values of μ much smaller than one, for example, μ ≈ 0.1
or μ ≈ 0.01. Details of other possible improvements of the algorithm can be found
in [60].

6.9 Problems

6.9.1 Logistic Map

In autonomous dynamical systems the time evolution of the points in phase space
is defined by the map φ : R × R → R, where the function x(t) = φ(t − t0, x(t0))

describes the trajectory of the system and represents its time evolution from a known
initial state x(0). The paradigmatic example of a discrete system is the logistic map

6.9 Problems 325

Fig. 6.18 Logistic map. [Left] Bifurcation diagram (dependence of the value from recur-
rence (6.38) on the parameter a after sufficient transition time). [Right] Lyapunov exponent in
dependence of a

[25], for which one time step is given by the recurrence

x(t + 1) = ax(t)
(
1 − x(t)

)
, a ∈ [1,4], (6.38)

and the phase space is [0,1]. A periodic orbit with period T is a set of points with the
property x(t + T) = x(t). By observing the trajectories in phase space we can only
find stable periodic orbits, as these attract the trajectories from their neighborhood.
The occurrence of stable periodic orbits in the logistic map has a rich dependence
on the parameter a, as demonstrated by the diagram in Fig. 6.18 (left). At given a

we take an arbitrary initial point in phase space and observe the trajectory after a
sufficiently long transition time. If one period is destroyed and another is formed
when the value of a changes, we are referring to a bifurcation of the dynamics.
The sequences of distances between the points at which bifurcations occur possess
intriguing universal properties [61, 62].

Dynamical systems whose trajectories with almost equal initial points exponen-
tially diverge with time, are called chaotic. The chaoticity of the system or its sensi-
tivity to the precision of initial conditions can be measured by the Lyapunov expo-
nent λ defined as

λ = lim
t→∞
ε→0

1

t
log

|φ(t, x(0) + ε) − φ(t, x(0))|
|ε| .

The Lyapunov exponent is closely related to entropy formation in the dynamical
system. The chaoticity of the logistic map rapidly changes with the parameter a

and the coefficient λ is equal to zero when stable periodic orbits occur, as shown in
Fig. 6.18 (right). At a = 4 even the exact value is known: λ = log 2.⊙

For different values of a in the vicinity of 3.702, 3.74, 3.961, and 3.9778
compute N = 1024 values of the sequence {x(t)}N−1

t=0 from the logistic map (6.38)
with the chosen initial point x(0) ∈ [0,1]. This sequence is your signal. Compare the

326 6 Modeling and Analysis of Time Series

single-sided power spectral densities (PSD) of this signal computed by the Fourier
transformation and by the method of maximum entropy. In the ranges of a corre-
sponding to chaotic dynamics the spectrum has no prominent peaks and is practi-
cally continuous, which is one of the landmarks of chaos.

For individual values of a, compute the auto-correlations

Rxx(τ) = 〈x(t)x(τ + t)
〉
t
− (〈x(t)

〉
t

)2

of the sequences {x(t)}N−1
i=0 and determine an approximation of the correlation

length ξ as a function of a. Choose N large enough that Rxx(τ)/Rxx(0) will be
precise to three digits. Assume that the auto-correlation has the form

Rxx(τ) = Ae−|τ |/ξ .

It can be shown that

ξ = log

(|S2
1 − S2|

S2
1 + S2

)−1

, Sn =
∞∑

t=0

Rxx(t)
n.

Systems in which all correlations between quantities converge to zero at long times,
are said to mix the space, which is one of the key properties permitting a statistical
analysis of dynamics.

6.9.2 Diffusion and Chaos in the Standard Map

In some Hamiltonian systems, continuous dynamics can be translated to discrete
dynamics. This applies in particular to systems on which we act with a periodic
external force in the form of short pulses. The point (p, q) of the trajectory of the
system (position and momentum) at time t + 1 is related to the point at time t when
the system receives the pulse, by the equations

p(t + 1) = p(t) + F
(
q(t),p(t)

)
,

q(t + 1) = q(t) + G
(
p(t + 1)

)
,

where F is the force pulse and G represents the dynamics between the pulses. In
such systems a very clear connection between diffusion and auto-correlation exists.
The diffusion coefficient is defined as

D = lim
t→∞

1

2t

〈[
q(t) − q(0)

]2〉
,

where 〈·〉 denotes the phase average (average over initial points (q(0),p(0)) dis-
tributed uniformly in the region of phase space which is invariant with respect to the
dynamics). The time auto-correlation function G is defined as

RGG(τ) = 〈G(p(τ)
)
G
(
p(0)

)〉− 〈G(p(0)
〉2

.

6.9 Problems 327

Fig. 6.19 Phase portraits of the standard map for different values of the parameter K . [Left]
K = 0.5. [Right] K = 1.0

By assuming that this system sufficiently quickly mixes the phase space, a relation
between the diffusion coefficient and auto-correlation can be derived:

D = RGG(0) + 2
∞∑

k=1

RGG(k). (6.39)

⊙
Analyze the dynamical system of the standard (Chirik’s) map

p(t + 1) = p(t) + K

2π
sin
(
2πq(t)

)
mod 1,

q(t + 1) = q(t) + p(t + 1) mod 1,

which is defined on the torus (q(t),p(t)) ∈ [0,1)2. This map played a major role
in the development of the theory of classical and quantum chaos [63]. Examples of
phase portraits obtained by propagating a number of uniformly distributed points in
the case of K = 0.5 and K = 1.0 are shown in Fig. 6.19. By increasing K above
≈0.97 the chaotic region of the phase space, where the points are distributed uni-
formly, becomes ever larger, until diffusion occurs throughout.

Compute the time auto-correlation Rpp(τ) = 〈p(τ + t)p(t)〉t − 〈p(t)〉2
t of the

momentum samples {p(t)}N−1
t=0 for the values K = 1, 2, 5, and 10, with the initial

point (q(0),p(0)) in the chaotic region of the phase space. The expected absolute
error of Rpp(τ) should be less than 10−3. If the auto-correlation decays rapidly,
show it in the rescaled form Rpp(τ)/Rpp(0) in logarithmic scale. If you observe an
exponential fall-off of the auto-correlation,

∣∣Rpp(τ)
∣∣∼ e−τ/ξ ,

estimate the correlation length ξ which represents the time after which the trajecto-
ries become statistically independent. To compute the auto-correlation use the FFT
algorithm (Sect. 4.2.5).

328 6 Modeling and Analysis of Time Series

⊕
Observe the dependence of the diffusion coefficient D on the parameter K

from the interval [2,20]. Compute D by summing the auto-correlations of momen-
tum (i.e. by using (6.39) in which RGG is replaced by Rpp). The initial points of
the map should be located in the chaotic region of the phase space. An analytic
approximation for the diffusion coefficient can be found in [63].

6.9.3 Phase Transitions in the Two-Dimensional Ising Model

Some properties of systems consisting of magnetic dipoles with local interactions
can be nicely explained by the Ising model. This model assumes that the dipoles
are arranged in the nodes of a two-dimensional mesh and that the spins si are either
“up” (si = 1) or “down” (si = −1). The Hamiltonian (the energy) of such a system
in the presence of an external magnetic field H can be written in the form

E = −J
∑

〈i,j〉
sisj − H

∑

i

si , (6.40)

where the indices i and j represent the coordinates of the spins on the mesh (in two
dimensions i ∈ N

2
0). The first sum in (6.40) runs over neighboring points only. The

parameter J determines how the spins interact. For J > 0 the adjacent dipoles tend
to point in the same direction, while for J < 0 they tend in the opposite directions.
In the following we set J > 0. The total magnetization of the system is

M =
∑

i

si .

At different temperatures the system may reside in ferromagnetic or paramagnetic
phase. The temperature Tc of the phase transition between these phases in the ab-
sence of external field (H = 0) is given by the equation sinh(2J/(kBTc)) = 1, which
has the solution Tc ≈ 2.269185 J/kB.⊙

At the book’s website you can find the data for the thermodynamic equi-
librium state of spins in the two-dimensional Ising model at various temperatures.
A few examples are shown in Fig. 6.20. Compute the auto-correlation function of
the orientation of spins on a N × N mesh,

Rss(i, j) = 1

N2

∑

k,l

sk+i,l+j sk,l,

where we assume periodic boundary conditions. Average the auto-correlation over
the neighborhood of the points with approximately the same radius r . Assume that
the auto-correlation has the form

∣∣Rss(i, j)
∣∣∼ Ce−r/L, r =

√
i2 + j2,

and estimate the correlation length L. Show L as a function of temperature: you
should observe a strong increase in L near the critical temperature Tc.

6.9 Problems 329

Fig. 6.20 A two-dimensional spin array of size 4096 × 4096 in the Ising model with J = 1 at
equilibrium at various temperatures T . Black and white dots denote spins si = 1 and si = −1, re-
spectively. Shown from left to right are images of the ferromagnetic phase at temperatures T = 1.9
and 2.1, followed by the paramagnetic phase at T = 2.3 and 2.4, all in units of J/kB

6.9.4 Independent Component Analysis

Independent component analysis (ICA) is a method that can be applied to a set of
measured signals xj (t) in order to determine independent components (sources)
sj (t) that caused these signals, as well as the nature of the mixing of sources. We
assume that the measured signals and their sources are linearly related,

x(t) = As(t),

where A is the mixing matrix (see Sect. 6.8). At each instant t the sources s (for
example, speakers in a room) and the measured signals x (for example, voltages on
the microphones) have several components.⊙

In the first part of the Problem we assume that the mixing matrix is known.
Suppose that we have four sources:

s1i = sin(10πi/n),

s2i = exp
[−10(i − n/2)2/n2

]+ 0.2
[
R(0,1) − 0.5

]
,

s3i = sin3(40πi/n)exp(−1.5i/n),

s4i = sin
(
100i2/n2

)
,

(6.41)

shown in Fig. 6.21 (left). The index i measures the time, t = i�t (i = 0,1, . . . ,

n − 1) and n = 1000. We use R(0,1) to denote a uniformly distributed random
number from the interval [0,1]. The matrix A mixes the sources into the measured
signals,

⎛

⎜⎜
⎝

x1(t)

x2(t)

x3(t)

x4(t)

⎞

⎟⎟
⎠= 1

5

⎛

⎜⎜
⎝

−1 2 −1 1
2 1 3 −2

−2 2 −1 1
1 −2 3 −3

⎞

⎟⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜⎜
⎝

s1(t)

s2(t)

s3(t)

s4(t)

⎞

⎟⎟
⎠ , (6.42)

which are shown in Fig. 6.21 (right). Use the FastICA algorithm described in
Sect. 6.8.1 to determine the independent components (sources) s from the signals x.
Compare the computed sources to the original ones (6.41).

330 6 Modeling and Analysis of Time Series

Fig. 6.21 [Left] The original signals (sources) from (6.41). [Right] The measured signals which
are known mixtures of the sources (6.42)

Fig. 6.22 Independent components (sources) of the signals shown in Fig. 6.16. The child’s fast
heartbeat is clearly identifiable in the independent components IC2 and IC4. Other components
display the mother’s heartbeat, except IC8, which has probably been generated by breathing during
the measurement

In the case described here the number of sources is equal to the number of mea-
sured signals, so the model x = As is exactly invertible, s = Wx = A−1x. The
computed and exact sources can therefore be accurately compared. Discuss the case
with fewer sources than signals (invent your own mixing matrix).⊕

Perform the independent component analysis of eight electro-cardiogram
(ECG) traces of a pregnant woman shown in Fig. 6.16 [57]. There are 2500 voltage
readouts with a sampling frequency of 500 Hz. The final result of the analysis are

References 331

the eight independent components which should closely resemble those of Fig. 6.22.
Observe the convergence of the algorithm by monitoring the direction of the vec-
tors wk and the values of their components during the iteration (use Fig. 6.17 as
an illustration). Use the stabilized version of the FastICA algorithm as described
on p. 323. How do your conclusions change if raw data are first processed by the
principal component analysis (PCA) and only the scores of a few leading principal
components are retained for the analysis with the FastICA algorithm?

References

1. C. Robinson, Dynamical Systems, 2nd edn. (CRC Press, Boca Raton, 1999)
2. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chem-

istry, and Engineering (Perseus Books, Reading, 1994)
3. P. Billingsley, Probability and Measure, 3rd edn. (Wiley-Interscience, New York, 1995)
4. R.M. Gray, Probability, Random Processes and Ergodic Properties, 2nd edn. (Springer, New

York, 2009)
5. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edn. (Wiley,

New York, 1967)
6. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd edn. (Wiley,

New York, 1971)
7. V.I. Arnold, A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968)
8. L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)
9. P.Z. Peebles, Probability, Random Variables and Random Signal Principles (McGraw-Hill,

New York, 1980)
10. J.D. Hamilton, Time Series Analysis (Princeton University Press, Princeton, 1994)
11. I.S. Tyurin, On the accuracy of the Gaussian approximation. Dokl. Math. 80, 840 (2009)
12. J.P. Nolan, Stable Distributions—Models for Heavy Tailed Data (Birkhäuser, Boston, 2010)
13. S. Borak, W. Härdle, R. Weron, Stable Distributions (Humboldt University Berlin, Berlin,

2005)
14. A. Janicki, A. Weron, Can one see α-stable variables and processes? Stat. Sci. 9, 109 (1994)
15. GSL (GNU Scientific Library). http://www.gnu.org/software/gsl
16. R. LePage, M. Woodroofe, J. Zinn, Convergence to a stable distribution via order statistics.

Ann. Probab. 9, 624 (1981)
17. B.D. Hughes, Random Walks and Random Environments: Vol. 1: Random Walks (Oxford Uni-

versity Press, New York, 1995)
18. M. Bazant, Random walks and diffusion. MIT OpenCourseWare, Course 18.366. http://ocw.

mit.edu/courses/mathematics/
19. E.W. Montroll, G.H. Weiss, Random walks on lattices, II. J. Math. Phys. 6, 167 (1965)
20. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics

approach. Phys. Rep. 339, 1 (2000)
21. M.F. Shlesinger, B.J. West, J. Klafter, Lévy dynamics of enhanced diffusion: application to

turbulence. Phys. Rev. Lett. 58, 1100 (1987)
22. V. Tejedor, R. Metzler, Anomalous diffusion in correlated continuous time random walks.

J. Phys. A, Math. Theor. 43, 082002 (2010)
23. S. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability (Springer, Berlin, 1995)
24. E. Parzer, Stochastic Processes (Holden-Day, San Francisco, 1962)
25. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge,

2002)
26. A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd edn. (McGraw-Hill,

New York, 1991)

332 6 Modeling and Analysis of Time Series

27. C. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, 2000)
28. T. Cover, J. Thomas, Elements of Information Theory, 2nd edn. (Wiley, New York, 2006)
29. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)
30. E.T. Jaynes, Information theory and statistical mechanics, II. Phys. Rev. 108, 171 (1957)
31. M. Horvat, The ensemble of random Markov matrices. J. Stat. Mech. 2009, P07005 (2009).

For further reading see references therein
32. F. Schwabl, Advanced Quantum Mechanics, 4th edn. (Springer, Berlin, 2008)
33. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice-Hall, Englewood Cliffs,

1975)
34. C.W. Gardiner, Handbook of Stochastic Methods, 2nd edn. (Springer, Berlin, 1997)
35. R. Whittle, DSP generation of pink (1/f) noise. http://www.firstpr.com.au/dsp/pink-noise/
36. L. Trammell, Pink noise generator; Improvements in the correlated pink noise generator eval-

uation; Hardware-friendly implementation of the correlated pink noise generator. http://home.
earthlink.net/~ltrammell

37. P. Bourke, Generating noise with different power spectra laws. http://local.wasp.uwa.edu.au/
~pbourke/fractals/noise

38. R. Zwanzig, Time-correlation functions and transport coefficients in statistical mechanics.
Annu. Rev. Phys. Chem. 16, 67 (1965)

39. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis,
2nd edn. (Academic Press, San Diego, 1980)

40. J.B. Conway, A Course in Functional Analysis (Springer, New York, 1985)
41. W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973)
42. S.L. Marple Jr., Digital Spectral Analysis (Prentice-Hall, Englewood Cliffs, 1987)
43. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT

Press, Cambridge, 2001)
44. J.M. Makhoul, Linear prediction: a tutorial review. Proc. IEEE 63, 561 (1975)
45. S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 4th edn. (Wiley, New

York, 2008)
46. P. Vaidyanathan, The Theory of Linear Prediction. Synthesis Lectures on Signal Processing

(Morgan & Claypool, San Rafael, 2008)
47. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting (Springer, New York,

2002)
48. G.E.P. Box, G.M. Jenkins, G. Reinsel, Time Series Analysis: Forecasting & Control, 4th edn.

(Wiley, New York, 2008)
49. G.E.P. Box, D.R. Cox, An analysis of transformations. J. R. Stat. Soc. B 26, 211 (1964)
50. G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (The Johns Hopkins University

Press, Baltimore, 1996)
51. S.M. Kay, S.L. Marple, Spectrum analysis—a modern perspective. Proc. IEEE 69, 1380

(1981)
52. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

53. Matlab, The MathWorks. http://www.mathworks.com
54. P. Stoica, R. Moses, Spectral Analysis of Signals (Prentice-Hall, Englewood Cliffs, 2005)
55. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice-Hall, Englewood Cliffs, 2001)
56. A.J. Izenman, Modern Multivariate Statistical Techniques (Springer, Berlin, 2008)
57. L. De Lathauwer, B. De Moor, J. Vandewalle, Fetal electrocardiogram extraction by blind

source subspace separation. IEEE Trans. Biomed. Eng. 47, 567 (2000). The signals are ac-
cessible at the website of KU Leuwen, http://www.esat.kuleuven.ac.be/~smc/daisy/daisydata.
html

58. A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications. Neural
Netw. 13, 411 (2000)

59. A. Hyvärinen, Survey on independent component analysis. Neural Comput. Surv. 2, 94 (1999)

References 333

60. A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis.
IEEE Trans. Neural Netw. 10, 626 (1999)

61. M.J. Feigenbaum, Quantitative universality for a class of non-linear transformations. J. Stat.
Phys. 19, 25 (1978)

62. M.J. Feigenbaum, The universal metric properties of nonlinear transformations. J. Stat. Phys.
21, 669 (1979)

63. J. Lichtenberg, M.A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983)

Chapter 7
Initial-Value Problems for ODE

Often we try to understand the evolution of a system from a known initial to an
unknown later state by observing the temporal variation (dynamics) of quantities
that we use to describe the system. There are endless examples. Physicists study
oscillations of non-linear mechanical pendula and electric circuits, monitor the mo-
tion of charged particles in electro-magnetic fields, and predict orbits of satellites
in the presence of other celestial bodies. Chemists investigate properties and reac-
tion mechanisms of compounds. Biologists use models to describe the population
dynamics of plant or animal species. Modern economics, among other, uses dynam-
ical models to predict stock market exchange rates.

7.1 Evolution Equations

In simpler cases the dynamics of the system is determined by ordinary (not nec-
essarily linear) differential equations (ODE) with time derivatives and prescribed
initial conditions. (Problems with specified boundary conditions, which are harder
than initial-value problems, are discussed in Chap. 8. Partial differential equations
that are even more difficult to solve due to the appearance of derivatives in variables
other than time, are treated in Chaps. 9, 10, and 11.) Though the dynamical (evolu-
tion) equation for a physical problem is known, it is often not analytically solvable
and we have to resort to numerical methods. We first discuss first-order ordinary
differential equations of the form

y′ = f (x, y), y(x0) = y0, (7.1)

where f is a known function. In the language of dynamical analysis this equation
defines a non-autonomous system. If the system does not depend on x,

y′ = f (y),

it is called autonomous. The variable x most often means time.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_7, © Springer-Verlag Berlin Heidelberg 2012

335

336 7 Initial-Value Problems for ODE

Converting a Mth Order Equation to M First-Order Equations Problems
with ordinary differential equations of higher order M can be rewritten as systems
of M first-order differential equations by using auxiliary variables. We write the
system as in (7.1), except that the solution y and the right-hand side of the equation
f have more components and we treat them as vectors:

y′(x) =

⎛
⎜⎜⎜⎝

y′
1(x)

y′
2(x)
...

y′
M(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1(x, y1, y2, . . . , yM)

f2(x, y1, y2, . . . , yM)
...

fM(x, y1, y2, . . . , yM)

⎞
⎟⎟⎟⎠ = f (x,y), (7.2)

where y ∈ R
M and {fi}Mi=1 are scalar functions, the components of f : RM+1 →

R
M . We choose the new variables such that each intermediate variable is the deriva-

tive of the previous one. For a second-order equation mẍ = F (Newton’s law) this
intermediate variable is the velocity v, and the equation can be written as a system
of two vector (six scalar) first-order equations

ẋ = v

mv̇ = F (t,x,v)
⇐⇒

⎛
⎜⎜⎜⎜⎜⎜⎝

y′
1

y′
2

y′
3

y′
4

y′
5

y′
6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

y4
y5
y6

F1(x, y1, y2, y3, y4, y5, y6)/m

F2(x, y1, y2, y3, y4, y5, y6)/m

F3(x, y1, y2, y3, y4, y5, y6)/m

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If sufficiently many derivatives of the functions fi with respect to x and yj exist, f
can be Taylor-expanded around any point (x∗,y∗):

f (x,y) = f (x∗,y∗) + ∂f

∂x

∣∣∣∣∗
(x − x∗) + ∂f

∂y

∣∣∣∣∗
· (y − y∗) + · · · .

We shall see in the discussion of the stability of numerical methods that the local
behavior of the solution strongly depends on the last term which contains the Jacobi
matrix of the partial derivatives of the functions fi with respect to the variables yj ,

J = ∂f

∂y
=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂yM

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂yM

...
...

...

∂fM

∂y1

∂fM

∂y2
· · · ∂fM

∂yM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7.3)

The stability analysis (explained in Sect. 7.5 and Appendix F) is closely related to
the solution of the system of differential equations y′ = Jy and the search for (in
general complex) eigenvalues of the matrix J .

When does (7.1) have a unique solution? Suppose we are seeking the solution in
the closed region D ≡ {(x, y) : x0 − α ≤ x ≤ x0 + α,y0 − β ≤ y ≤ y0 + β}. If f is

7.2 Explicit Euler’s Methods 337

continuous in D, bounded by |f (x, y)| < B , and if for each x, y1, and y2 from D
we can find a constant � such that the Lipschitz inequality

∣∣f (x, y2) − f (x, y1)
∣∣ ≤ �|y2 − y1| (7.4)

is fulfilled, then on the interval centered at x0 with width �x = min{α,β/B,γ /�},
where 0 < γ < 1, precisely one solution of (7.1) exists [1]. The parameter � in (7.4)
plays an important role in the error estimates of numerical methods for differential
equations. The generalization of the existence theorem to systems of equations can
be found in [1].

Road-Signs To solve equations of the type (7.1), we use numerical methods in
which the interval [a, b] on the continuous x-axis is discretized by a mesh

x0 = a < x1 < x2 < · · · < xN = b

of generally non-equidistant points, while the differential equation is transcribed as
a difference scheme. The following sections are devoted to the analysis of precision,
stability, convergence properties, and computational efficiency of individual differ-
ence schemes. We use yn to denote the approximate values of the solution at the
points xn and y(xn) to denote the exact values.

Initial-value problems for ordinary differential equations can be solved by single-
step methods in which we need just the previous values yn in order to obtain the next
ones, yn+1, as well as multi-step methods, in which yn+1 is computed from several
previous values yn, yn−1,

The methods also differ by how an individual time step is executed: in explicit
methods the old values are used to compute the new ones by using a known explicit
formula; in implicit methods (Sect. 7.9) the values in the next time step occur in
two or more places at both sides of the equation and need to be computed at each
step by solving a system of non-linear (and not necessarily algebraic) equations. In
all methods we obtain discrete approximations for the values y(xn) determined by
the equation that specifies the derivatives y′: these methods are therefore commonly
known as integrators.

7.2 Explicit Euler’s Methods

Euler’s methods are the simplest representatives of difference schemes in which the
approximate solution of the differential equation at the point xn is used to compute
the approximate solution at the next point, xn+1. We restrict the discussion to the
equidistant mesh,

h = (b − a)/N = xn+1 − xn, n = 0,1, . . . ,N − 1.

338 7 Initial-Value Problems for ODE

Explicit (basic) Euler’s method is just a reshuffled difference approximation of
the first derivative: y′ ≈ (y(x +h)−y(x))/h. The approximate value of the solution
yn+1 at the next mesh point is obtained from the previous one, yn, by using

yn+1 = yn + hy′
n = yn + hf (xn,yn). (7.5)

In other words, at each point xn the curve of the exact solution is approximated by
the tangent at that point, with the slope determined by the differential equation. We
advance along this tangent to the next approximate solution value.

Local Discretization Error and the Method Order In one step from xn to xn+1
we make a discretization or truncation error, which is defined as the difference
between the numerical and exact solution in one step, assuming that these two solu-
tions agree in all previous steps. (More on errors follows in Sect. 7.4.) By comparing
the expression (7.5) for yn+1 with the Taylor expansion

y(xn + h) = y(xn) + hy′(xn) + 1

2
h2y′′(ξn), ξn ∈ [xn, xn+1],

we see that the local error of the Euler method is y(xn+1)−yn+1 ∼ O(h2). A differ-
ence scheme with a local error of the order hp+1 is said to be a method of order p:
the basic Euler method is first order in h.

In the improved Euler method the curve of the true solution is approximated by
the tangent at the midpoint of the current interval [xn, xn+1] and not at the initial
point,

y
n+ 1

2
= yn + 1

2
hy′

n,

y′
n+ 1

2
= f

(
x
n+ 1

2
,y

n+ 1
2

)
, (7.6)

yn+1 = yn + hy′
n+ 1

2
.

The local error of this method is O(h3) (i.e. the method is second order) if the third
derivative of the solution is bounded in the vicinity of xn, but the method may be
unstable in certain cases.

There is also the symmetrized Euler method, which follows from the symmetric
difference approximation of the derivative, y′ ≈ (y(x + h) − y(x − h))/2h. We use
the difference scheme

yn+1 = yn−1 + 2hy′
n, (7.7)

so we have to known two previous solution values at each step: we are dealing with
a two-step method forcing us to use uniform mesh spacings. The initial condition
y0 = y(x0) is known, while the approximation of the solution y1 can be, for exam-
ple, computed by the basic Euler method. The symmetrized Euler method is also
second order.

7.3 Explicit Methods of the Runge–Kutta Type 339

7.3 Explicit Methods of the Runge–Kutta Type

Methods of the Runge–Kutta (RK) type are the best known representatives of single-
step methods. The solution is advanced in a sequence of short steps h like in the
Euler methods, but the right-hand side of the differential equation (7.1) is evaluated
at particular intermediate points within each time step; by a suitable combination
of these auxiliary quantities we wish the method to attain higher precision. The
solution value at the next point of a step is computed as

yn+1 = yn + hF (h, xn,yn;f), (7.8)

where

F (h, xn,yn;f) =
m∑

i=1

biki .

We express the quantities ki by the right sides of (7.2),

ki = f

(
xn + cih,yn + h

m∑
j=1

aijkj

)
, i = 1,2, . . . ,m. (7.9)

The procedure (7.8) is known as a m-stage Runge–Kutta (RK) method. We try to
determine the parameters aij , bi , and ci such that the order of the method p is as
high as possible. We Taylor-expand the numerical solution y1 and the exact solution
y(x + h) around x and compare the coefficients in both expansions [2]. This results
in a system of non-linear equations for the parameters that in general does not have
a unique solution. Each solution corresponds to a different RK method. If we set
c1 = 0 and aij = 0 for j ≥ i (the sum in (7.9) then runs only over 1 ≤ j ≤ i − 1),
at each step xn → xn+1 all ki can be computed: the method is explicit since in the
computation of ki only the previous values k1,k2, . . . ,ki−1 are used. In other cases
the method is implicit and the system (7.9) needs to be solved for ki at each step:
such methods are discussed in Sect. 7.9.

In some cases the system for the parameters is easily solvable and leads to m-
stage formulas requiring one evaluation of f (x,y) per stage. The only solution for
the coefficients in the case p = m = 1 is b1 = 1, bi = 0 (i > 1), ci = 0, aij = 0, and
gives the basic Euler method (7.5). One of the solutions for p = m = 4 corresponds
to the popular Runge–Kutta method of fourth order (RK4):

k1 = f (xn,yn),

k2 = f

(
xn + 1

2
h,yn + h

2
k1

)
,

k3 = f

(
xn + 1

2
h,yn + h

2
k2

)
,

k4 = f (xn + h,yn + hk3),

yn+1 = yn + h

6
(k1 + 2k2 + 2k3 + k4) +O

(
h5).

(7.10)

340 7 Initial-Value Problems for ODE

We arrange the coefficients aij , bi , and ci of any RK method in a Butcher tableau.
A general explicit scheme is shown at the left, the RK4 method at the right:

0
c2 a21
c3 a31 a32
...

...
...

. . .

cm am1 am2 · · · amm−1

b1 b2 · · · bm−1 bm

0
1/2 1/2
1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

The order p cannot be attained with less than p stages. The explicit RK4 method
is of highest order at which we still have p = m, and this is one of the reasons for
its popularity. For RK methods of orders p > 4 we need m > p stages, and each
additional stage implies another evaluation of f (x,y), a consideration of prime im-
portance if the functions f are computationally expensive. The world record in local
precision is held by the 10th order RK methods requiring 18 [3] or 17 stages [4].

Dense Output for the RK4 Method Expressions (7.10) allow us to obtain the
solution at the mesh points xn. But often the point x	 at which the solution is sought
is not known in advance, as it may implicitly depend on the computed solution
and may be determined by some equation g(x	,y(x)) = 0, for example, when
seeking the Poincaré sections of the solution. The results at intermediate points x	 ∈
[xn, xn+1] can be obtained by using dense output [2] which requires further (m	 −
m) stages to be added to the scheme. The approximate solution at an arbitrary point
on the interval [xn, xn+1] is given by

yn+θ = yn + h

m	∑
i=1

bi(θ)ki , 0 ≤ θ ≤ 1. (7.11)

The polynomials bi are determined by requiring yn+θ − y(xn + θh) = O(hp	+1).
The dense output for the RK4 method can be formulated already with m	 = m (i.e.
without computing additional ki). We use

b1(θ) = θ − 3θ2

2
+ 2θ3

3
, b2(θ) = b3(θ) = θ2 − 2θ3

3
, b4(θ) = −θ2

2
+ 2θ3

3
.

A price has to paid for this convenient interpolation: while the basic method has
order p = 4, the solution given by the dense output has only order p	 = 3.

7.4 Errors of Explicit Methods

When an explicit method is implemented in a program, two kinds of error occur: dis-
cretization (also known as truncation) errors and round-off errors. The errors can be

7.4 Errors of Explicit Methods 341

local (occurring in one step) or global (accumulated throughout the integration in-
terval). In the following we also introduce the concepts of consistency, convergence,
and stability of explicit methods.

7.4.1 Discretization and Round-Off Errors

The discretization error originates in the nature of the method and it appears because
the sum (7.8) or the Taylor expansion of the true solution to which we compare it, is
finite. This error occurs regardless of the arithmetic precision of the implementation.
It depends on the step size h, on the order of the method, and on the function f itself.
The local discretization error τn+1 in the nth step of an explicit method is defined as

τn+1 = ∥∥y(xn+1) − y(xn) − hF
(
h,xn,y(xn);f

)∥∥. (7.12)

Assuming that the numerical and exact solution match perfectly until the nth step,
we have y(xn) = yn and y(xn) + hF (h, xn,y(xn);f) = yn+1, and then

τn+1 = ∥∥yn+1 − y(xn+1)
∥∥.

In general, for an explicit method of order p we have

τn+1 = �
(
y(xn)

)
hp+1 +O

(
hp+2). (7.13)

The first term at the right side of (7.12) is called the principal local discretization
error in which the function � depends on the elementary differentials up to order
p + 1, evaluated at y(xn) [5].

Round-off errors occur because instead of the exact solution yn of the difference
scheme we compute a numerically approximate value Y n, with the difference ρn ≡
‖Y n − yn‖. These errors arise due to the finite precision of floating-point arithmetic
and depend on the type of arithmetic operations performed and their quantity. The
round-off errors increase with the number of steps, and this is certainly one reason
not to decrease the step size h excessively.

The equation for τn and the analogous expression for ρn define the contributions
to the local discretization and round-off errors at the level of the difference scheme.
But the success of an integrator is preferably judged by the global error EN ≡
‖YN − y(xN)‖ that measures the cumulative difference between the true value and
its computed approximation at the last integration point (n = N). The error that
accumulates until some intermediate point xn, En ≡ ‖Y n − y(xn)‖, can also be
understood as global up to that point. The global error is not equal to the sum of the
local errors between x0 = a and xN = b. It results from a propagation of local errors
along the whole integration interval.

Most often, we can determine only an upper limit for the global error. In general,
the order of the global error is one less than the order of the local error. If the local
error satisfies

τn+1 ≤ Chp+1

342 7 Initial-Value Problems for ODE

(see (7.13)) and F is Lipschitz-continuous, ‖F (h, x,y;f) − F (h, x,z;f)‖ ≤
�‖y − z‖, the global discretization error can be estimated as

‖EN‖ ≤ Chp 1

�

[
e�(b−a) − 1

]+ e�(b−a)
∥∥y0 − y(x0)

∥∥.

(The last term at the right vanishes if the initial condition is numerically exact.)
In general the step h along [a, b] can be non-uniform. In that case h in the above
equation stands for h = maxn{hn}.

Example Useful global error estimates exist for simpler difference schemes. The
local error can be propagated to the global error either by resorting to known or
assumed properties of the exact solution, or by exploiting the properties of the dif-
ference scheme (see [6] and [2], Chap. II). The global errors of the scalar basic
and symmetrized Euler methods with equidistant steps h ((7.5) and (7.7)) can be
estimated as

Eq. (7.5): |EN | ≤ e�(b−a)

[
|ρ0| + 1

�

(
hM2

2
+ ρ

h

)]
, (7.14)

Eq. (7.7): |EN | ≤ e�(b−a)

[
max

{|ρ0|, |ρ1|
}+ 1

�

(
h2M3

3
+ ρ

h

)]
, (7.15)

where ρ0 and ρ1 are the round-off errors at x0 = a and x1, while the largest round-
off error along the whole integration interval is ρ ≡ max1≤n≤N |ρn|. The Lipschitz
constant � is equal to the upper limit for |∂f/∂y|. The estimates for the upper limits
of M2 = max |y′′| and M3 = max |y′′′| (both on a ≤ x ≤ b) are harder to obtain,
as at least something needs to be known about the true solution y(x)! Still, (7.14)
and (7.15) clearly reveal the interplay of the discretization and round-off errors. An
optimal h exists at which the global error is minimal (Fig. 7.1 for the basic Euler
method.)

7.4.2 Consistency, Convergence, Stability

The differential equation and the difference scheme for it are consistent when

limh→0 F (h, xn,yn;f) = f (xn,yn)

(the difference scheme approximates the differential equation arbitrarily well in the
limit h → 0). A difference scheme is convergent if the approximate solution con-
verges to the exact solution when the step size h is decreased,

limh→0
∥∥yn − y(xn)

∥∥ = 0, nh = xn − x0.

7.4 Errors of Explicit Methods 343

Fig. 7.1 The h-dependent
part of the total global error
(7.14) for the basic Euler
method on an equidistant
mesh for ρ = 10−6 and for
three values M2 = 5, 50, and
500. Separately shown for
M2 = 5 are the linearly
increasing discretization
component of the error and
the inversely proportional
round-off part

A difference scheme is stable if numerical errors do not accumulate, i.e. when for
numerical solutions yn and ỹn, with initial conditions y0 and ỹ0, we have

‖yn − ỹn‖ ≤ C‖y0 − ỹ0‖,

where C does not depend on h. More on stability will follow in Sect. 7.5. For con-
vergence of a difference scheme, both consistency and stability are needed:

consistency + stability ⇐⇒ convergence.

All explicit RK methods are convergent within their stability regions [7]. The rela-
tion between the discretization error of the scheme, its stability, and the convergence
of its solution to that of the differential equation also applies to difference schemes
for partial differential equations (Sects. 9.3 and 9.5).

7.4.3 Richardson Extrapolation

Global error estimates usually provide crude, over-estimated upper bounds. This
motivates us to control the step size h in explicit RK methods carefully, and use the
error estimates to adjust that size accordingly. The local error in an explicit scheme
of order p can be estimated if we assume that the factor of the hp+1 term in the
remainder of the Taylor series does not change too quickly on the current interval
of length h (or is constant, to order hp+1). We rely on the fact that the principal
discretization error in (7.12) is much larger than the remainder, which is not always
the case (see Sect. 7.9). This is the idea behind Richardson extrapolation which can
be used to improve the accuracy of the solution by one order at each step of the
difference scheme.

344 7 Initial-Value Problems for ODE

Fig. 7.2 Estimation of the local discretization error for the RK4 method by halving the step size h.
The symbols • denote the evaluations of the function f (x,y) (there is no need to repeat the evalu-
ation at the point ◦)

We use the solution yn−1 to compute its next value yn, once in a single step of h,
then in two steps of h/2 each (Fig. 7.2). If the method is of order p, we have

1 · h: yn = y(xn) + Chp+1 +O
(
hp+2

)
,

2 · 1

2
h: ỹn = y(xn) + 2C

(
1

2
h

)p+1

+O
(
hp+2

)
.

We eliminate C from these equations and obtain

y(xn) = ỹn + ỹn − yn

2p − 1
+O

(
hp+2), (7.16)

which is an improved approximation of the true solution y(xn).
The norm ‖ỹn − yn‖ is a good measure of the local discretization error that

can be built into the computer program for any chosen method in order to assess
whether the chosen step size h is too small or too large with respect to the prescribed
precision. If the error in a given step is above the desired value, we decrease h and
repeat the procedure.

7.4.4 Embedded Methods

To estimate the error with a single halving of the step, 11 evaluations of the function
f (x,y) are needed (Fig. 7.2), which may be too costly numerically. This served as
a motivation for embedded Runge–Kutta methods [2] in which the local error can
be estimated differently. They are m-stage RK methods which contain one linear
combination of the intermediate quantities ki to attain an approximation of order p,

yn+1 = yn + h(b1k1 + b2k2 + · · · + bmkm) +O
(
hp+1),

and another combination yielding an approximation of order p̂ �= p,

ŷn+1 = yn + h(̂b1k1 + b̂2k2 + · · · + b̂mkm) +O
(
hp̂+1).

An embedded method is denoted by p(p̂); usually p̂ = p ± 1. The coefficients bi

and b̂i are determined as to minimize the leading error constant of either the low-

7.4 Errors of Explicit Methods 345

order or the high-order solution approximation. This consideration dictates whether
the estimate yn+1 or ŷn+1 should be taken as the initial value in the next step of
the integration. Among the most practical is the Dormand–Prince 5(4) method, in
which the initial value for the next step is yn+1, while the local error estimate is

� = yn+1 − ŷn+1 =
m∑

i=1

(bi − b̂i)ki .

By decreasing h we can bring the value ‖�‖ below the prescribed tolerance and thus
control the magnitude of the local error. The coefficients of the Dormand–Prince
5(4) method are listed in this table:

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 − 56

15
32
9

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729

1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 − 2187

6784
11
84

yn+1
35
384 0 500

1113
125
192 − 2187

6784
11
84 0

ŷn+1
5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

An abundance of similar methods with such handy error estimates can be found
in the literature, for example, the formerly popular fourth-order Fehlberg method
with Cash–Karp parameters and six stages [8]. Until recently it was implemented
in [9] where it has now been replaced by the Dormand–Prince 5(4) method [10].
The order 8(5,3) method [11] is also widely used.

Dense Output for the Dormand–Prince 5(4) Method Dense output of the
form (7.11) for the Dormand–Prince 5(4) method, for which no additional evalu-
ations of the function f are needed [2], is obtained by

b1(θ) = θ2(3 − 2θ)b1 + θ(θ − 1)2

− 5θ2(θ − 1)2(2558722523 − 31403016 θ)/11282082432,

b2(θ) = 0,

b3(θ) = θ2(3 − 2θ)b3 + 100 θ2(θ − 1)2(882725551 − 15701508 θ)/32700410799,

b4(θ) = θ2(3 − 2θ)b4 − 25 θ2(θ − 1)2(443332067 − 31403016 θ)/1880347072,

b5(θ) = θ2(3 − 2θ)b5

+ 32805 θ2(θ − 1)2(23143187 − 3489224 θ)/199316789632,

b6(θ) = θ2(3 − 2θ)b6 − 55 θ2(θ − 1)2(29972135 − 7076736 θ)/822651844,

346 7 Initial-Value Problems for ODE

b7(θ) = θ2(θ − 1) + 10 θ2(θ − 1)2(7414447 − 829305 θ)/29380423.

The expressions for the individual bi(θ) follow from an interpolation of function
values by Hermite polynomials, which yields a fourth-order dense output. We have
written the coefficients carefully in terms of fractions: the strict precision require-
ments of Problem 7.14.6 teach us why.

7.4.5 Automatic Step-Size Control

The spacings between the points h = xn+1 − xn used in difference schemes for
ordinary differential equations need not be uniform and can be made smaller or
larger according to the required local precision. To ensure their efficiency, differ-
ence schemes should be implemented by applying adaptive step-size control: the
algorithm should constantly “sense” when the right-hand side (7.2) dictates a wild
change in the solution or when it is tracing a humble functional dependence, and
adjust the step size accordingly. The usual criterion for a change in the step size is
the local discretization error.

In extrapolation or embedded RK methods, two solution estimates are available
at each step, yn+1 (of order p) and ŷn+1 (of order p̂). We would like to constrain
the local error yn+1 − ŷn+1 by components, as

|yn+1,i − ŷn+1,i | ≤ Si, Si = Ai + Ri max
{|yn,i |, |yn+1,i |

}
,

where Ai are the prescribed absolute local errors of the ith solution component, and
Ri are the relative local errors. As a joint measure of the computed error one may
take

E =
√√√√ 1

M

M∑
i=1

(
yn+1,i − ŷn+1,i

Si

)2

,

where M is the number of solution components. A well-established advice [2] for
the choice of the optimal step size is

hopt = h(1/E)1/(q+1), q = min(p, p̂),

but more polished programs include another “safety factor”, which ensures that the
error estimate in the next step is acceptable and that h neither increases nor decreases
too quickly. For this safety factor V , various authors propose empirically determined
values

V = 0.8,0.9, (0.25)1/(q+1) or (0.38)1/(q+1),

where V has a lower bound of Vmin ≈ 0.2 and an upper bound of Vmax ≈ 5. For the
new value of the step size we ultimately take

hnew = h · min
{
Vmax,max

{
Vmin,V · (1/E)1/(q+1)

}}
.

7.5 Stability of One-Step Methods 347

If at some step E ≤ 1, we accept the computed step size and continue the solution
yn with the new initial value yn+1 and step hnew. If E > 1, we reject the step size
and try again with the initial value yn and step hnew. If a step has been rejected, it
is recommendable to set Vmax = 1. Details on the choice of the initial step size and
step size control can be found in [2] as well as in [9, 12].

7.5 Stability of One-Step Methods

Stability of explicit methods (for example, from the Runge–Kutta family) is judged
by their absolute or asymptotic stability which is defined in Appendix F. The stabil-
ity of a differential equation is not equivalent to the stability of the corresponding
difference scheme, although they are closely related.

Stability of the Differential Equation The essence of stability can be elucidated
with the one-dimensional linear initial-value problem y′ = λy, y(x0) = y0, x ≥ x0,
λ ∈ C. The analytic solution is y(x) = y0eλ(x−x0). The problem has a stable fixed
point y = 0 if λ lies in the left complex half-plane (Reλ < 0). A homogeneous
system of linear differential equations is just a generalization of the above problem
to

y′ = Ay, y(x0) = y0, x ≥ x0, (7.17)

where A is a matrix with eigenvalues λi that all lie in the left complex half-plane.
Namely, when A is diagonalized, we decouple the system (7.17) to independent
one-dimensional problems of the form y′ = λiy, where λi ∈ C are the eigenvalues
of the Jacobi matrix J = A. This has a physical background: the local behavior
of some component of the solution depends on the character of the corresponding
eigenvalue (increasing solutions for positive real eigenvalues, decreasing for nega-
tive real eigenvalues, and oscillatory for imaginary eigenvalues).

The stability of the most general problem

y′ = f (x,y), y(x0) = y0, x ≥ x0, (7.18)

depends on the eigenvalues λi of the Jacobi matrix J with the elements Jij =
∂f i/∂yj that we compute locally, at current x and y. We use them to compute

rmax = maxi

{
Reλi(J)

}
.

If rmax < 0, the system of equations is locally stable, while for rmax > 0 it is locally
unstable. See also Example on p. 669 in Appendix F.

Stability of the Numerical Method for a Differential Equation Consider (7.17)
again. The individual components of the exact solution y tend to zero for x → ∞
if the corresponding eigenvalues of A satisfy Reλi < 0. For a numerical method

348 7 Initial-Value Problems for ODE

Fig. 7.3 [Left] Regions of stability of explicit pth order, p-stage methods 1 ≤ p ≤ 4. The basic
Euler method corresponds to the interior of the circle denoted by p = 1, while the interior of the
shape 4 corresponds to the RK4 method. [Right] Regions of stability of Dormand–Prince methods
of orders five and eight (note the change of scales). The regions become larger with increasing
order p, but they remain bounded for all explicit schemes

this is not necessarily true. In a method of the form (7.8) the subsequent numerical
solutions are computed as

yn+1 = S(hλ)yn,

where S is the growth factor or stability function [13]. We define the region of
absolute stability of such a method as the set of complex numbers hλ (h real positive
number, λ ∈ C), for which limn→∞ ‖yn‖ = 0 (fixed point at origin is stable). The
method is stable with values hλ for which |S(hλ)| ≤ 1.

Example With the basic Euler method (7.5) for the scalar problem y′ = λy = f (y)

we obtain yn+1 = yn + hf (yn) = (1 + hλ)yn or

S(hλ) = dyn+1

dyn

= 1 + hλ.

The region with |S| = |1 + hλ| ≤ 1 defines a shifted circle in the complex plane
(Rehλ, Imhλ) (shaded area p = 1 in Fig. 7.3). The basic Euler method remains
stable only with a step size h for which hλ lies within that area.

Similar calculations can be done for other methods. For an arbitrary scalar ex-
plicit method of order p with q > p stages, the stability function becomes

S = dyn+1

dyn

= 1 + hλ + (hλ)2

2! + · · · + (hλ)p

p! +
q∑

i=p+1

γi(hλ)i,

where the coefficients γi depend on the given scheme, and the region of stability
is defined by |S| ≤ 1. Figure 7.3 shows the region of stability in the complex plane
(Rehλ, Imhλ) for explicit Runge–Kutta methods of order p.

7.6 Extrapolation Methods 	 349

Stability in vector problems is related to the spectral radius of the Jacobi matrix.
If we use the basic Euler method to solve the system (7.17), we obtain yn+1 =
yn + hAyn = (I + hA)yn. In this case the spectral radius ρ(I + hA) should not
exceed unity. In solving (7.18) by the general method (7.8), the spectral radius ρ(I +
h[∂F (h, xn,yn;f)/∂yn]) should be less than 1. The procedures to compute the
Jacobi matrix during the integration are described in [14].

7.6 Extrapolation Methods �

Extrapolation methods, first suggested by Bulirsch and Stoer [15], exploit a gener-
alization of Richardson extrapolation to a sequence of crumblings of the integration
interval. By using some pth order method, e.g. the basic Euler method, we com-
pute the solution on an interval [xn, xn + H] with ever shorter steps hi = H/ni

(i = 1,2, . . . , k), where ni are positive integers

n1 < n2 < · · · < nk.

For example, we compute the solution at xn + H in two steps of H/2, four steps of
H/4, six steps of H/6, and so on. We obtain the quantities

T i,1 = yhi
(x0 + H), i = 1,2, . . . , k.

The global error of the basic method of order p is of order p (p. 341) and has the
asymptotic expansion y(x)−yh(x) = ep(x)hp + ep+1(x)hp+1 +· · ·+ eN(x)hN +
O(hN+1). In the extrapolation method we eliminate the higher terms in this expan-
sion by constructing an interpolation polynomial P (h) = ŷ − ephp − ep+1h

p+1 −
· · · − ep+k−2h

p+k−2, for which we require

P (hi) = T i,1, i = j, j − 1, . . . , j − k + 1. (7.19)

We then “extrapolate to h → 0” by using as the final result

P (0) = ŷ = T j,k.

Each value T j,k is an approximation of y(xn + H) of order p + k − 1. Equa-
tions (7.19) constitute a system of k equations for k unknowns ŷ, ep, . . . , ep+k−2
(which can even be solved analytically for p = 1). We generate the consecutive
elements by

T j,k+1 = T j,k + T j,k − T j−1,k

nj /nj−k − 1
. (7.20)

For example, with n1 = 1 and n2 = 2 we obtain T 22 = T 21 + (T 21 −T 11)/(21 −1),
which is precisely Richardson’s formula (7.16) for p = 1. By repeating the proce-
dure for j = 1,2, . . . and k = 1,2, . . . , j we obtain a whole fan of estimates for the

350 7 Initial-Value Problems for ODE

Fig. 7.4 Solving the differential equation y′ = (−y sinx + 2 tanx)y with the initial condition
y(π/6) = 2/

√
3 by extrapolation methods on an interval of length H = 0.2. The basic method is

the Euler explicit scheme (7.5). Shown is the numerical cost (“work”) versus the solution error
for three different sequences {ni}. Some lines connecting the points Tj,k overlap due to round-off
errors appearing in the recurrence (7.20)

final value (each T j,k is labeled by the corresponding order of the result):

j ↓, k → T 1,1(p)

T 2,1(p) T 2,2(p + 1)

T 3,1(p) T 3,2(p + 1) T 3,3(p + 2)

· · · · · · · · · · · ·
Various sequences of factors ni by which the integration interval is fragmented,
are available, e.g. the Romberg 1,2,4,8,16,32, . . . or the optimized Bulirsch
sequence 1,2,3,4,6,8,12,16,24,32, . . . (powers 2k and 1.5 · 2k); the latter is
more economical in higher orders of the method. Recently the harmonic sequence
1,2,3,4,5,6, . . . has gained popularity (see Fig. 7.4).

At low precisions the extrapolation integrators are just as efficient as Runge–
Kutta methods. But they truly prosper in the regime of precision computations: by
sequential construction of the elements T j,k we can, in principle, attain arbitrarily
high orders, which means that they can also be arbitrarily faster than fixed-order
methods. However, extrapolation methods are not suited for solving equations with
singularities on the integration interval.

Extrapolation methods also permit the control of step size H . Moreover, they
allow us to change the order p of the basic scheme along the integration interval.
A simultaneous choice of the optimal step size H and of the order p is cumbersome,
but it can be done [2]. Adaptive extrapolation methods may “jump” in very long
steps, which obviously calls for a reliable interpolation of the solution. If the basic
method is the explicit or implicit Euler scheme, one can derive closed formulas
for dense output in analogy to (7.11); see [16]. As an impression, Fig. 7.5 shows
the comparison of one-step integrators: a few equidistant explicit methods of the

7.7 Multi-Step Methods 	 351

Fig. 7.5 Relative global error of integrators for y′′ = ex sinx − y − y′ = f (x, y, y′) with initial
conditions y(0) = 1, y′(0) = 0. [Left] The error of the basic Euler (p = 1), improved Euler (p = 2),
Kutta (p = 3), Runge–Kutta (p = 4), Butcher (p = 6), and Hairer explicit methods with p = 8 and
p = 10, without step size control on a mesh of 100 points. The errors can be further reduced at
all orders if we allow for more evaluations of the function f . [Right] The error of the adaptive
RK4 (Cash–Karp) method and the Bulirsch–Stoer extrapolation method for two tolerances. Here
comparable errors are attained with far fewer evaluations of f and at fewer mesh points

RK type, the adaptive embedded RK4 method (Cash–Karp), and the Bulirsch–Stoer
extrapolation method.

7.7 Multi-Step Methods �

This section is devoted to the basics of multi-step methods, in particular the
predictor–corrector (PC) methods and the backward differentiation methods for
equations of the type y′ = f (x,y). Together with symplectic integrators (Sect. 7.12)
they play an important role in the integration of orbits in astronomy.

352 7 Initial-Value Problems for ODE

One characteristic of a multi-step method is that in order to initialize it, solutions
y0,y1, . . . at x0, x1, . . . need to be known already. They can be computed by one of
the single-step methods, but its order should at least match the order of the multi-
step method they feed. We integrate (7.2) on [xn, xn+1],

yn+1 = yn +
∫ xn+1

xn

f
(
ξ,y(ξ)

)
dξ, (7.21)

and approximate f by the Newton interpolation polynomial through the points at
which we already know the solution values, up to including xn. We get [2]

yn+1 = yn + h

k−1∑
j=0

[
(−1)j

∫ 1

0

(−s

j

)
ds

]
∇jf n. (7.22)

We have used the usual backward differences ∇j+1f n = ∇jf n − ∇jf n−1, where
∇0f n = f n and f n = f (xn,yn). It follows that

yn+1 = yn + h

[
1 + 1

2
∇ + 5

12
∇2 + 3

8
∇3 + 251

720
∇4 + 95

288
∇5 + · · ·

]
f n.

If we express the backward differences by function values, we obtain explicit Adams
methods of various orders. The order depends on the number of points spanned by
the interpolation polynomial. From the third order upwards we have

yn+1 = yn + h

12
(23f n − 16f n−1 + 5f n−2) +O

(
h4),

yn+1 = yn + h

24
(55f n − 59f n−1 + 37f n−2 − 9f n−3) +O

(
h5),

yn+1 = yn + h

720
(1901f n − 2774f n−1 + 2616f n−2

− 1274f n−3 + 251f n−4) +O
(
h6),

yn+1 = yn + h

1440
(4277f n − 7923f n−1 + 9982f n−2

− 7298f n−3 + 2877f n−4 − 475f n−5) +O
(
h7).

(7.23)

If the interpolation polynomial f also includes the point xn+1 at which the solution
yn+1 is not yet known, we obtain

yn+1 = yn + h

[
1 − 1

2
∇ − 1

12
∇2 − 1

24
∇3 − 19

720
∇4 − 3

160
∇5 + · · ·

]
f n+1.

7.7 Multi-Step Methods 	 353

This leads to a class of implicit Adams methods, for example,

yn+1 = yn + h

12
(5f n+1 + 8f n − f n−1) +O

(
h4),

yn+1 = yn + h

24
(9f n+1 + 19f n − 5f n−1 + f n−2) +O

(
h5),

yn+1 = yn + h

720

(
251f n+1 + 646f n − 264f n−1

+ 106f n−2 − 19f n−3
)+O

(
h6),

yn+1 = yn + h

1440

(
475f n+1 + 1427f n − 798f n−1

+ 482f n−2 − 173f n−3 + 27f n−4
)+O

(
h7).

(7.24)

The equations are implicit since the unknown solution yn+1 occurs on the left as
well as on the right, in f n+1 = f (xn+1,yn+1). We solve them iteratively.

7.7.1 Predictor–Corrector Methods

Explicit and implicit Adams methods can be merged into efficient procedures of
various orders, known as predictor–corrector methods due to the characteristic
sequence of approximations. In predicting yn+1 by one of the explicit formulas,
e.g. (7.23), we rely on the extrapolation of the Newton polynomial to the point xn+1
which lies outside of the interpolation interval. We denote this prediction by

P: y
(P)
n+1,

and call it the predictor (P). Correspondingly, the predicted derivative

E1: y
′(P)
n+1 = f

(
xn+1,y

(P)
n+1

)
(7.25)

is also questionable. We denote this step by E1 (evaluation). In the next step we
use one of the implicit methods, e.g. (7.24), which we solve by iteration. Especially
for small h the iteration converges rapidly, so that instead of the unknown functions
f n+1 we take the extrapolated derivatives (7.25). In this step we obtain the improved
approximation for the solution, the corrector (C),

C: y
(C)
n+1.

Finally, we improve the derivative,

E2: y
′(C)
n+1 = f

(
xn+1,y

(C)
n+1

)
.

The usual operation cycle in one complete step from xn to xn+1 is then PE1CE2 or
PE1(CE2)

m if the corrector step is executed in m iterations in the implicit part.

354 7 Initial-Value Problems for ODE

Local Error Estimate From the Taylor expansions of yn+1 around xn and yn

around xn+1 simple local error estimates can be derived [17]. For the fourth-order
pair of the Adams predictor and corrector (see (7.23) and (7.24)) we obtain

y(xn) − y(P)
n ≈ 251

270

(
y(C)

n − y(P)
n

)
, y(xn) − y(C)

n ≈ 19

270

(
y(P)

n − y(C)
n

)
,

if we assume that the fifth derivative of f is constant on [xn, xn+1]. This gives us
the popular Adams–Bashforth–Moulton explicit method

y
(P)
n+1 = yn + h

24
(55f n − 59f n−1 + 37f n−2 − 9f n−3),

y∗
n+1 = y

(P)
n+1 + 251

270

(
y(C)

n − y(P)
n

)
,

y
(C)
n+1 = yn + h

24

(
9f ∗

n+1 + 19f n − 5f n−1 + f n−2
)
,

yn+1 = y
(C)
n+1 + 19

270

(
y

(P)
n+1 − y

(C)
n+1

)
,

where we have denoted f ∗
n+1 = f (xn+1,y

∗
n+1).

Such simple error estimates that depend only on the function values in individual
steps, are one of the charms of predictor–corrector methods. Similar formulas can
be derived in the case when xn−1 and yn−1 are used in (7.21) instead of xn and
yn, which leads to explicit Nyström predictors and implicit Milne–Simpson correc-
tors [2].

Predictor–corrector methods perform best in tracing smooth solutions, when pre-
cision requirements are relatively severe, and when the evaluation of the functions
f is numerically expensive. In one predictor or corrector step the function f needs
to be evaluated only once!

7.7.2 Stability of Multi-Step Methods

For simplicity we discuss here only scalar equations. A general k-step method has
the form of a difference equation

∑k

i=0
αiyn+i = h

∑k

i=0
βifn+i . (7.26)

Stability is related to the generating polynomials for the coefficients of the method,

ρ(ζ) =
∑k

i=0
αiζ

i, σ (ζ) =
∑k

i=0
βiζ

i .

When the differential equation y′ = 0 is being solved and the solution of the corre-
sponding difference equation (7.26) remains bounded, the multi-step method is said

7.7 Multi-Step Methods 	 355

to be zero-stable. This is equivalent to the requirement that all zeros of ρ lie within
the unit circle or on it; in the latter case the zeros should be simple. Zero stability
therefore concerns only the coefficients αi , not βi .

Example Explicit and implicit k-step Adams methods have the generating poly-
nomial ρ(ζ) = ζ k − ζ k−1 = ζ k−1(ζ − 1) with a simple zero ζ = 1 and a zero
ζ = 0 of multiplicity (k − 1), so they are zero-stable. The explicit Nyström and
Milne–Simpson methods are also zero-stable, since for them ρ(ζ) = ζ k − ζ k−2 =
ζ k−2(ζ −1)(ζ +1). Nevertheless, the simple zero ζ = −1 may cause problems with
certain classes of differential equations [2].

For stiff differential problems of the form y′ = f (y) (Sect. 7.10) stability cannot
be defined only in terms of the coefficients αi , but βi become relevant as well. In
such problems we study the stability of a difference scheme for the problem y′ = λy

that can be understood as a linearization of y′ = f (y) in the vicinity of a fixed point.
If the equation y′ = λy is solved by (7.26), we get

∑k

i=0
(αi − hλβi)yn+i = 0.

In this case, stability depends on the roots of the equation ρ(ζ)−μσ(ζ) = 0, where
μ = hλ. The stability region of the method (7.26) is the set of complex values μ for
which all zeros of the polynomial ρ − μσ lie within the unit circle or on it, and in
the latter case the zeros should be simple.

Example For the explicit Adams method (see (7.23), k = 4) we obtain

ρ(ζ) − μσ(ζ) = ζ 4 − ζ 3 − μ

(
55

24
ζ 3 − 59

24
ζ 2 + 37

24
ζ − 9

24

)
= 0,

from which we compute μ as a function of ζ . Let us write ζ = eiφ so that ζ goes
around the whole unit circle for 0 ≤ φ ≤ 2π . When it does that, the variable μ out-
lines the edge of the stability region in the complex plane (Rehλ, Imhλ) denoted
by the index 4 in Fig. 7.6 (left). The figure also shows the stability regions of ex-
plicit methods of orders 1, 2, and 3. Figure 7.6 (right) shows the stability regions of
implicit Adams methods.

Example Note that a higher order of the local error of the scheme does not neces-
sarily imply better stability. As an example [2] we solve y′ = y, y(0) = 1 (analytic
solution y(x) = ex) by using a third-order difference method

yn+2 + 4yn+1 − 5yn = h
[
4f (xn+1, yn+1) + 2f (xn, yn)

]+O
(
h4),

which is in the form (7.26). The corresponding characteristic equation is

p(ζ) − hσ(ζ) = ζ 2 + 4(1 − h)ζ − (5 + 2h) = 0,

356 7 Initial-Value Problems for ODE

Fig. 7.6 Regions of linear stability of k-step explicit [Left] and implicit [Right] Adams meth-
ods. (Note the different axis ranges.) The order of the explicit and implicit methods is p = k and
p = k + 1, respectively. With increasing order the regions of stability (of both explicit and implicit
methods) shrink

with the solutions ζ1 = 1 + h +O(h2) and ζ2 = −5 +O(h). With the values at the
first two points, y0 = 1 and y1 = eh, we obtain the solution yn = (1 + h)n + (−5)n,
which is obviously unstable at n → ∞. As an exercise, plot the numerical solution
computed with steps h = 0.1, 0.05, and 0.025!

7.7.3 Backward Differentiation Methods

Adams, Nyström, and Milne–Simpson methods are all based on the integration of
the right side of the differential equation, as in (7.21). Instead, we could differenti-
ate the left side of the equation and this is what we do in backward differentiation
formulas (BDF), again by spanning an interpolation polynomial through a couple of
known points. The most useful are implicit formulas generated by the series

k∑
j=1

1

j
∇jyn+1 = hf n+1

(compare to (7.22)). As an example we give the third- and fourth-order difference
schemes:

11

6
yn+1 − 3yn + 3

2
yn−1 − 1

3
yn−2 = hf n+1 +O

(
h4),

25

12
yn+1 − 4yn + 3yn−1 − 4

3
yn−2 + 1

4
yn−3 = hf n+1 +O

(
h5),

(7.27)

while the formulas for orders p = 1, 2, 5, and 6 are listed in [2]. Backward dif-
ferentiation formulas of orders p > 6 are not stable, while the methods of order

7.8 Conservative Second-Order Equations 357

Fig. 7.7 [Left] Stability regions of implicit backward differentiation methods of order p = k. With
increasing order the regions shrink: the stability region for the method of order p is the exterior of
the geometric shape denoted by p. [Right] Zoom-in of the left panel near the origin. Only the first-
and second-order methods are stable throughout the left complex half-plane (Sect. 7.9)

1 ≤ p ≤ 6 boast large, outwardly unbounded regions of linear stability (see Fig. 7.7
and compare the axis range to that in Fig. 7.6). The integrators of this subsection
can also be implemented with a variable step size [2].

7.8 Conservative Second-Order Equations

Second-order vector differential equations of the form y′′ = f (x,y,y′) are ubiq-
uitous in physics: they embody every single instance of Newton’s law mẍ =
F (t,x, ẋ). It is interesting enough if only t and x occur at the right, or even only x,
as in

mẍ = F(x),

where m is constant and F is an arbitrary integrable function. Such equations appear
when forces are independent of the velocities, as in undamped oscillators (where
F(x) = −kx) or in the motion of bodies in the classical gravitational field. If m

has units of mass and x units of length, the two terms of the first integral of this
equation,

1

2
mẋ2 −

∫
F(x)dx = const,

represent the kinetic energy T (ẋ) and the potential energy U(x) (up to an addi-
tive constant) with the conservation law T + U = E0 characteristic for conservative
systems. It follows that ẋ = ±[2(E0 − U(x))/m]1/2, and by integration we imme-

358 7 Initial-Value Problems for ODE

diately obtain the dependence of the spatial coordinate on time,

t = t0 +
∫ x

x0

dξ

ẋ(ξ)
= t0 ±

∫ x

x0

dξ√
2
m

(E0 − U(ξ))

.

The integral can be computed analytically if U is a polynomial of at most fourth
degree (and even then we are dealing with elliptic integrals). For other cases of such
conservative equations we use numerical integration.

7.8.1 Runge–Kutta–Nyström Methods

Equations of the form y′′ = f (x,y,y′) can be rewritten as systems of two first-order
equations

(
y

y′
)′

=
(

y′
f (x,y,y′)

)
,

with initial conditions y(x0) = y0, y′(x0) = y′
0. Such systems can be solved by

using any method from previous sections. But a substantial simplification can be
achieved for equations without first derivatives y′′ = f (x,y) (Newton’s law with
velocity-independent forces). A special class of Runge–Kutta schemes exists for
them [2], the Runge–Kutta–Nyström methods (RKN):

k′
i = f

(
xn + cih,yn + cihy ′

n + h2
m∑

j=1

aijk
′
j

)
,

yn+1 = yn + hy′
n + h2

m∑
i=1

bik
′
i ,

y′
n+1 = y′

n + h

m∑
i=1

bik
′
i ,

where m is the number of stages. We determine the parameters aij , bi , bi , and ci

such that the order of the method is as high as possible, analogously to the methods
of the core RK family. The very useful RKN method of the fifth order,

ci 0 aij

1
5

1
50

2
3 − 1

27
7
27

1 3
10 − 2

35
9

35

bi
14
336

100
366

54
336 0

bi
14
336

125
366

162
336

35
336

7.9 Implicit Single-Step Methods 359

requires only four evaluations of the function f , while in the standard RK methods
at least six are needed for the same order. The RKN methods also allow for local
error control by adjusting the step size: this can be done either by extrapolation or
within an embedded scheme (Sect. 7.4.4). The RKN method of order seven can be
found in [18], and the methods of orders from 8 to 11 in [19].

7.8.2 Multi-Step Methods

Multi-step methods of Sect. 7.7 can also be generalized to second-order conservative
equations. We integrate the equation y′′ = f (x,y) twice [2] and obtain

y(x + h) − 2y(x) + y(x − h)

= h2
∫ 1

0
(1 − s)

[
f
(
x + sh,y(x + sh)

) + f
(
x − sh,y(x − sh)

)]
ds.

Then we replace the function f by an interpolation polynomial. If (xn,yn) is the last
point touched by the polynomial, we obtain the Störmer family of explicit methods

yn+1 − 2yn + yn−1 = h2
[

1 + 1

12
∇2 + 1

12
∇3 + 19

240
∇4 + 3

40
∇5 + · · ·

]
f n,

while if also the point (xn+1,yn+1) is included, we obtain the Cowell family

yn+1 − 2yn + yn−1 = h2
[

1 − ∇ + 1

12
∇2 − 1

240
∇4 − 1

240
∇5 + · · ·

]
f n+1.

Note that the third backward difference is absent in this expression, which results in
a very useful fifth-order implicit Numerov method

yn+1 − 2yn + yn−1 = h2

12

[
f n+1 + 10f n + f n−1

]+O
(
h6).

The stability criteria for the methods mentioned above are described in [2].

7.9 Implicit Single-Step Methods

For stiff problems discussed in Sect. 7.10 we need difference schemes where scalar
equations y′ = λy (λ ∈ C) would enjoy stability (bounded numerical solutions) at
least in the whole left complex half-plane, i.e. for Re(hλ) ≤ 0 with h > 0. Such
methods are called A-stable (Fig. 7.8).

The A-stability criterion is satisfied by the methods of the Runge–Kutta type.
Implicit methods are given by (7.8) and (7.9) in which aij �= 0 for j ≥ i. Let us

360 7 Initial-Value Problems for ODE

Fig. 7.8 Definitions of linear stability regions (scalar problem y′ = λy) for implicit methods,
where z = hλ. [Left] A-stability for single-step methods. [Center] A(α)-stability for single-step
methods. [Right] “Stiff stability” for multi-step methods

replace the quantities ki by the argument gi such that ki = f (xi,gi) [20, 21]! The
implicit Runge–Kutta methods can then be written in the form

gi = yn + h

m∑
j=1

aijf (xn + cjh,gj), (7.28)

yn+1 = yn + h

m∑
j=1

bjf (xn + cjh,gj), (7.29)

where m is the number of stages and 1 ≤ i ≤ m. Equation (7.28) immediately dis-
closes the price we have to pay for stability: at each step we need to solve a system
of m (in general, non-linear, vector) equations for the quantities gi .

The simplest one-step method is the implicit Euler method of the first order. As
its foundation we take the explicit Euler formula (7.5), but now we evaluate the right
side of the equation at the next point, thus

yn+1 = yn + hf (xn+1,yn+1). (7.30)

With the implicit method for the equation y′ = λy we got yn+1 = (1 + hλ)yn; with
the implicit one we obtain yn+1 = (1 − hλ)−1yn. Now the region of absolute linear
stability has become the exterior of the circle in the complex plane in Fig. 7.9 (left)
and is outwardly unbounded: the implicit Euler method is therefore more than A-
stable, since its stability region encompasses the whole left and almost the whole
right complex half-plane. The second-order implicit midpoint method

yn+1 = yn + hf

(
xn + xn+1

2
,
yn + yn+1

2

)
(7.31)

and the implicit trapezoidal method

yn+1 = yn + h

2

(
f (xn,yn) + f (xn+1,yn+1)

)

are also A-stable: their stability region is precisely the half-plane Rehλ < 0.

7.9 Implicit Single-Step Methods 361

Fig. 7.9 Linear stability regions of implicit RK methods. [Left] Implicit Euler method corresponds
to the whole exterior of the circle centered at hλ = 1 with radius 1 (compare to Fig. 7.3). [Right]
The shaded exterior of the oval is the stability region of the fifth-order “Radau 5” method from the
Radau II A class [22]. The stability region of the implicit midpoint, trapezoidal, and the sixth-order
“Gauss 6” method is the whole half-plane Rehλ < 0. All these methods are A-stable

Radau 5 and Gauss 6 Methods The orders of the three implicit schemes men-
tioned above are too low for the integration of stiff problems. For serious use we
recommend the implicit fifth-order Radau 5 method [22] from the Radau II A fam-
ily (for details see [20]). Its coefficients are given by the Butcher tableau

4−√
6

10
88−7

√
6

360
296−169

√
6

1800
−2+3

√
6

225

4+√
6

10
296+169

√
6

1800
88+7

√
6

360
−2−3

√
6

225

1 16−√
6

36
16+√

6
36

1
9

16−√
6

36
16+√

6
36

1
9

This method is also A-stable (Fig. 7.9 (right)). We complete the collection by
the sixth-order Gauss 6 method from the Gauss family (details in [20]). Apart from
A-stability this method possesses other important properties relevant for geometric
integration discussed in Sect. 7.12. Its coefficients are given in the tableau

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5

36 −
√

15
30

1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24

1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5

36

5
18

4
9

5
18

Extensive stability regions are one of the main attractions of implicit methods.
Yet all implicit methods are not suitable for stiff problems, nor for geometric inte-
gration. The coefficients of other popular schemes are listed in [20]. For non-linear

362 7 Initial-Value Problems for ODE

equations the theory of linear A-stability needs to be generalized to B-stability (see
Appendix F).

7.9.1 Solution by Newton’s Iteration

Implicit Runge–Kutta methods are more demanding than the explicit ones, as in
general they call for solution of systems of non-linear equations. The main numeri-
cal obstacle is the system (7.28) that can be treated by Newton’s iteration [20]. We
introduce

zi = gi − yn,

which alleviates the influence of round-off errors. Then (7.28) becomes

zi = h

m∑
j=1

aijf (xn + cjh,yn + zj).

The Jacobi matrix used in the iteration is approximated by

J = ∂f

∂y
(xn + cjh,yn + zj) ≈ ∂f

∂y
(xn,yn),

and assemble the solution in the kth step in the vector

Z(k) = (
z
(k)T
1 ,z

(k)T
2 , . . . ,z(k)T

m

)T
.

Newton’s iteration has the form

(I − hA ⊗ J)�Z(k) = −Z(k) + h(A ⊗ I)F
(
Z(k)

)
,

Z(k+1) = Z(k) + �Z(k),
(7.32)

where

I − hA ⊗ J =
⎛
⎜⎝

I − ha11J · · · −ha1mJ
...

...

−ham1J · · · I − hammJ

⎞
⎟⎠ ,

A ⊗ I =
⎛
⎜⎝

a11I · · · a1mI
...

...

am1I · · · ammI

⎞
⎟⎠ ,

and where we have denoted

F
(
Z(k)

) = (
f T(xn + c1h,yn + z

(k)
1

)
, . . . ,f T(xn + cmh,yn + z(k)

m

))T
.

7.9 Implicit Single-Step Methods 363

In each iteration the function f needs to be computed m times, and a linear system
with a Mm × Mm matrix solved, where M is the number of equations in the sys-
tem. The simplest, but also the worst, initial approximation for Newton’s iteration
is Z(0) = 0. We control the convergence by monitoring the ratio

ζ (k) = ∥∥�Z(k)
∥∥/

∥∥�Z(k−1)
∥∥.

With the prescribed local error TOL we terminate the iteration when

ζ (k)

1 − ζ (k)

∥∥�Z(k)
∥∥ ≤ κ · TOL,

and accept the values Z(k+1) as the final outcome. Experience shows that sensible
values κ are approximately between 0.01 and 0.1. Numerous further instructions on
effective solution of the system (7.32) can be found in [20].

When all zi have been obtained by Newton’s iteration, we need to compute the
next solution yn+1 by using (7.29). At first sight it appears as if f needs to be
evaluated yet m more times, but this can be avoided. Namely, (7.29) can be rewritten
as

yn+1 = yn +
m∑

i=1

dizi ,

where (d1, d2, . . . , dm) = (b1, b2, . . . , bm)A−1. For example, for the Radau 5
method (p. 360) we have simply d1 = d2 = 0 and d3 = 1.

7.9.2 Rosenbrock Linearization

If an autonomous differential equation y′ = f (y) is non-linear, even implicit
schemes may become unstable, even if they are stable with respect to the linear
problem y′ = Ay. Moreover, implicit equations can generally be solved only iter-
atively, so convergence problems may appear. With Rosenbrock methods we try to
circumvent these problems by linearization. First we linearize the auxiliary quanti-
ties ki in the m-stage implicit RK method,

ki = hf

(
yn +

i−1∑
j=1

aijkj

︸ ︷︷ ︸
gi

+aiiki

)
≈ hf (gi) + haii

∂f

∂y
(gi)

︸ ︷︷ ︸
Jy(gi)

ki ,

where 1 ≤ i ≤ m. The computing cost at the right can be reduced if the true Jacobi
matrix Jy(gi) is replaced by the approximate one, J (n)

y = Jy(yn), which needs to be
computed only once at each step. On the other hand, the ansatz can be enriched by

364 7 Initial-Value Problems for ODE

adding a few linear combinations of Jy(yn)ki at the right. With this small additional
expense a m-stage Rosenbrock method takes the form

[
I − hγiiJ

(n)
y

]
ki = hf

(
yn +

i−1∑
j=1

αijkj

)
+ hJ (n)

y

i−1∑
j=1

γijkj , (7.33)

yn+1 = yn +
s∑

j=1

bjkj , (7.34)

where i = 1,2, . . . ,m. Again the coefficients αij , γij , and ci are tuned such that the
maximum order of the method is attained. Just like in the non-linearized implicit RK
methods, here too at each stage of the nth step we have to solve a system of m equa-
tions for the unknowns ki , with the matrix I − hγiiJ

(n)
y = I − hγii[∂f /∂y](yn),

except that now the system is linear.

Non-autonomous Equations Rosenbrock methods were devised for autonomous
problems y′ = f (y). Like in other approaches they can be generalized to non-
autonomous problems y′ = f (x,y) by adding the equation x′ = 1 to the system.
In practical implementations (NUMERICAL RECIPES, NAG) this has already been
taken care of. We can explicitly solve (7.33) for x and thus obtain a system of linear
equations for the quantities ki :

ki = hf

(
xn + αih,yn +

i−1∑
j=1

αijkj

)
+ hJ (n)

y

i∑
j=1

γijkj + h2γiJ
(n)
x .

The concluding part of each time step—(7.34)—remains the same. Above we have
used the abbreviations

αi =
i−1∑
j=1

αij , γi =
i∑

j=1

γij , J (n)
x = ∂f

∂x
(xn,yn), J (n)

y = ∂f

∂y
(xn,yn).

Implicit Differential Equations Implicit equations of the form My′ = f (x,y)

with constant non-singular matrices M can be rewritten in the equivalent form y′ =
M−1f (x,y), resulting in

Mki = hf

(
xn + αih,yn +

i−1∑
j=1

αijkj

)
+ hJ (n)

y

i∑
j=1

γijkj + h2γiJ
(n)
x .

By simple transformations among the variables and by exploiting the banded struc-
ture of the matrices M and Jy , the numerical efficiency of Rosenbrock methods can
be strongly enhanced [20]. In similar ways, problems with non-constant matrices
M(x) can be harnessed [23].

7.10 Stiff Problems 365

7.10 Stiff Problems

We are referring to stiff problems with ordinary differential equations when two
very different scales are involved in the solution, for example, two characteristic
times. As an illustration, think of a robotic arm that moves with angular velocities
of ≈1 Hz and we strike the arm by a small hammer, exciting oscillations with a
frequency of ≈100 Hz. We wish to simulate the movement of this arm by numerical
integration of the equations of motion. A variable step-size integrator will be forced
to reduce the step size in order to faithfully trace the physically totally irrelevant
high-frequency component that dies out almost immediately; at the same time, it
will apply almost imperceptible corrections to the slowly changing low-frequency
solution.

Stiffness for linear systems can be quantified by a criterion for the eigenvalues λi

of the Jacobi matrix corresponding to the model problem y′ = Ay from the defini-
tion (7.17). A problem is stiff when

max
1≤i≤n

|Reλi | � min
1≤i≤n

|Reλi |. (7.35)

The ratio R between the left and right side of this inequality is mostly a good mea-
sure of stiffness. If some eigenvalue is zero, we obtain an infinite R: in such cases
the problem is not stiff if other eigenvalues are small. The definition of stiffness
by (7.35) is inappropriate for non-linear systems. We therefore define stiffness from
a practical computational standpoint. A problem is stiff on an interval if the integra-
tor is forced to use a step size h which is incommensurately small with respect to
the slow change of the solution on that interval.

Example The famous Robertson chemical kinetics problem involves compounds A,
B , and C linked by a chain of reactions with very different reaction rates,

A −→ B proceeds slowly (0.04),

B + B −→ B + C very fast (3 · 107),

B + C −→ A + C fast (104).

The processes are described by a system of differential equations

A: y′
1 = −0.04y1 + 104y2y3, y1(0) = 1,

B: y′
2 = 0.04y1 − 104y2y3 − 3 · 107y2

2 , y2(0) = 0,

C: y′
3 = 3 · 107y2

2 , y3(0) = 0.

(7.36)

It turns out that the solution y2 achieves its maximum y2(x) ≈ 0.0000365 at x ≈
0.0045, while y3 still rapidly increases there, and y1 ≈ 1. The Jacobi matrix of
partial derivatives (7.3) for the system (7.36) around that point is

⎛
⎝

−0.04 104y3 104y2

0.04 −104y3 − 6 · 107y2 −104y2

0 6 · 107y2 0

⎞
⎠ ≈

⎛
⎝

−0.04 1.434 0.365
0.04 −2191 −0.365
0 2189 0

⎞
⎠ ,

366 7 Initial-Value Problems for ODE

Fig. 7.10 Solving the stiff differential equation y′ = −50(y − cosx) with the initial condition
y(0) = 0. [Left] Families of solutions with initial approximations along y = 2 and y = −1 (dotted
curves) and the solution by the implicit Euler method with step h = 0.0395. [Right] Solution by
the explicit Euler method with step h = 0.0395

with eigenvalues λ1 ≈ 0, λ2 ≈ −0.405, λ3 ≈ −2190.3. Explicit methods fail here.
Why? We find the answer in Fig. 7.3 (right) for the Dormand–Prince 5(4) method.
Its stability region for Rehλ < 0 reaches to Rehλ ≈ −3.3. Stability is guaranteed
for −3.3 ≤ −2190h or h ≤ 0.0015. The problem (7.36) is therefore stiff because of
the eigenvalue λ3 which is much larger than the rest. An explicit integrator will have
to use a step this small in order to trace the solution that is very humble on almost
the whole integration interval.

Figure 7.10 shows the numerical solution of the stiff problem [24]

y′ = −50(y − cosx), y(0) = 0,

by using the explicit and implicit Euler method. The solution is the smooth curve
shown in the center of the left panel. After transitory increases or decreases all other
solutions with different initial conditions converge to this solution. Such transients
are typical for stiff problems. The implicit method nicely follows the solution; the
explicit method (right panel) with the same step size hesitatingly dances around it.
As a rule, stiff problems should therefore be integrated by implicit schemes; implic-
itness provides the stabilization.

Example (7.36) is not very terrifying. For numerical modeling of the concentra-
tion of long-lived compounds in the Earth’s atmosphere the integrators must handle
intervals on the order of centuries, while the time scales of some chemical processes
are up to 17 orders of magnitude smaller. The integrator must therefore reliably de-
tect stiffness, and the choice of the appropriate step size becomes critical. Precise
instructions can be found in [20], pp. 123–127.

7.11 Implicit Multi-Step Methods 	 367

Fig. 7.11 Stability of the fourth-order BDF method (see (7.27)). [Left] A(α)-stability with angle
α = 73.35◦. [Right] Stiff stability with D = 0.667. See also Fig. 7.7

7.11 Implicit Multi-Step Methods �

So far we have encountered only single-step implicit methods. Stiff problems can
also be efficiently solved by using multi-step methods, whose stability was discussed
in Sect. 7.7. Stability regions of multi-step methods are large, but any A-stable im-
plicit multi-step method can have at most order p = 2 [25]. This constraint, known
as the Dahlquist barrier, is clearly shown by Fig. 7.6 (right) for implicit Adams
methods and Fig. 7.7 (right) for BDF methods.

The low order of A-stable implicit multi-step methods diminishes their numer-
ical precision. Yet not all stiff problems require stability on the whole half-plane
Rehλ < 0. Moreover, solutions of stiff equations with eigenvalues near the imagi-
nary axis strongly oscillate and the step size needs to be reduced anyway in order
to reproduce the high-frequency solution components. We therefore relax the re-
quirements of strict A-stability and settle for A(α)-stable methods which are stable
at least on the slices defined by |arg(−z)| ≤ α with α ≤ π/2 (Fig. 7.8 (center)).
A “completely” A-stable method is therefore A(π/2)-stable. We also define “stiff
stability” for which we require the stability region Re z < −D for some D > 0
and a “sufficient precision” of the method within the rectangle −D ≤ Re z ≤ a,
−θ ≤ Im z ≤ θ for some a > 0 and θ ∼ π/5 (Fig. 7.8 (right)).

BDF methods of orders 3 ≤ p ≤ 6 (Fig. 7.7) correspond to α = 86.03◦, D =
0.083 (k = 3), α = 73.35◦, D = 0.667 (k = 4), α = 51.84◦, D = 2.327 (k = 5),
α = 17.84◦, D = 6.075 (k = 6). Figure 7.11 shows the region of A(α)-stability and
stiff stability for the fourth-order method (7.27). A(α)-stable multi-step methods of
higher orders with α � π/2 do exist, but they possess large leading error constants
and they are only of limited use. In order to cross the Dahlquist barrier more general
multi-step methods can be devised: see [20].

368 7 Initial-Value Problems for ODE

7.12 Geometric Integration �

In the following we use the variable pair (t,y) instead of (x,y), in the spirit of dy-
namical analysis pervading this section. We are interested in the solutions of equa-
tions ẏ = f (y) where ˙ denotes the time derivative, especially in the context of
autonomous Hamiltonian systems [26]. Such systems are described by the Hamil-
tonians H(p,q), where

ẏ = f (y) = J−1∇H(y), y =
(

p

q

)
, J =

(
0 1

−1 0

)
, (7.37)

p ∈ R
d , q ∈ R

d and ∇ = (∇p,∇q)T = (∂p1 , ∂p2 , . . . , ∂pd
, ∂q1 , ∂q2 , . . . , ∂qd

)T. The
dynamical equations for the canonical variables p and q are

ṗ = −∇qH(p,q), q̇ = ∇pH(p,q) (7.38)

(see also Appendix G). How successful are the methods of previous sections in such
problems? We provide the answer from several viewpoints. All single-step methods
discussed so far can be understood as mappings of the solution from “time” nh to
“time” (n + 1)h,

yn+1 = φh(yn). (7.39)

Does the numerical solution preserve the invariants of the continuous problem, for
example, the Hamiltonian H(p,q)? Does numerical integration of the Hamiltonian
system (the solution of the initial-value problem) preserve the symplectic structure
of the phase space? We may also ask whether the integrator is symmetric and re-
versible. A numerical method that satisfies at least one of these requirements is
known as a geometric integrator.

7.12.1 Preservation of Invariants

A non-constant function I (y) is called the first integral (or invariant, or constant of
motion) of (7.37) if

∇I (y) · f (y) = 0 ∀y. (7.40)

This means that at any point of the phase space (along any solution y) the gra-
dient ∇I (y) is orthogonal to the vector field f (y). A nice scalar example is the
mathematical pendulum with the Hamiltonian H(p,q) = 1

2p2 − cosq . The equa-
tions of motion (Newton’s law) are ṗ = − sinq and q̇ = p, which can be writ-
ten in the form (7.37) with f (y) = (− sinq,p)T. Obviously ∇H(y) · f (y) =
(p, sinq)(− sinq,p)T = 0. A further example are the three invariants of the clas-
sical Kepler problem, discussed in Problem 7.14.13.

7.12 Geometric Integration 	 369

Let us test some integrators on an even simpler case of the one-dimensional har-
monic oscillator (linear pendulum) with the spring constant k2, described by the
Hamiltonian

H(p,q) = 1

2

(
p2 + k2q2), (7.41)

with the analytic solution
(

p̃(h)

q̃(h)

)
=

(
cosh −k2 sinh

sinh cosh

)(
p(0)

q(0)

)
(7.42)

at time t = h. The basic explicit Euler method (7.5) is first order, so it also approxi-
mates the solution (7.42) only to first order. This implies

(
p̃(h)

q̃(h)

)

Euler
=

(
1 −k2h

h 1

)(
p(0)

q(0)

)
, (7.43)

which can be seen if one explicit Euler step is done for (7.38). Instead of the correct
value of the energy (7.41) we get

1

2

(
p̃2 + k2q̃2) = 1

2

(
1 + k2h2)(p2 + k2q2),

which is unbounded when the number of steps goes to infinity, regardless of the step
size h. The RK4 method does not fare much better, as it results in damping

1

2

(
p̃2 + k2q̃2) = 1

2

(
1 − k6h6/72

)(
p2 + k2q2).

We also obtain damping with the implicit Euler method. Figure 7.12 (left) shows
the solution (p, q) by the explicit Euler (7.5), implicit Euler (7.30), and implicit
midpoint method (7.31) in the form for an autonomous Hamiltonian system:

yn+1 = yn + hJ−1∇H

(
1

2
(yn + yn+1)

)
. (7.44)

In general, explicit and implicit RK methods preserve only linear invariants. As
an example [20], consider the conservation of mass in the process (7.36): from the
system of equations we see ẏ1 + ẏ2 + ẏ3 = 0, so I (y) = y1 + y2 + y3 is a linear
invariant of the system. If the coefficients of an m-stage RK method (see (7.8) and
Sect. 7.9) satisfy

biaij + bjaji − bibj = 0, i, j = 1,2, . . . ,m, (7.45)

the method also preserves quadratic invariants of the form

Q(y) = yTCy, (7.46)

where C is a symmetric square matrix. An example of such an invariant is the kinetic
energy of a N -body system, T (p) = 1

2

∑N
i=1 pT

i pi/mi . By definition (7.40), Q(y)

370 7 Initial-Value Problems for ODE

Fig. 7.12 [Left] The solution of the harmonic oscillator problem ṗ = −k2q , q̇ = p with ini-
tial condition (p, q) = (1,0) (large symbol •) and k = 1 by explicit Euler’s (EE), implicit Eu-
ler’s (IE), and implicit midpoint method (IM) in 50 steps of h = 0.2. [Right] The values of
H(p,q) = 1

2 (p2 + k2q2) at current p and q for these three methods

is the invariant of the system (7.37) when yTCf (y) = 0 for all y. The second-order
implicit midpoint method (7.44), the two-stage scheme

k1 = f

(
yn + h

[
1

4
k1 +

(
1

4
−

√
3

6

)
k2

])
,

k2 = f

(
yn + h

[(
1

4
+

√
3

6

)
k1 + 1

4
k2

])
,

yn+1 = yn + h

2
(k1 + k2)

of fourth-order, as well as the sixth-order, three-stage Gauss 6 method (defined on
p. 361) all satisfy the condition (7.45) and therefore preserve quadratic invariants of
the form (7.46).

The energy of the linear harmonic oscillator H(p,q) is a quadratic invariant in
the variables p and q . Figure 7.12 (right) shows the dependence of H(p,q) on
the number of steps in the explicit Euler, implicit Euler, and the implicit midpoint
method. Only the latter preserves the energy.

Partitioned RK Methods When the equations of motion of dynamical systems
can be written in separated form

ẏ = f (y,z), ż = g(y,z),

special methods are available for their solution that do not belong to the classical
Runge–Kutta family. They are known as partitioned Runge–Kutta methods [20] and

7.12 Geometric Integration 	 371

have the form

ki = f

(
yn + h

m∑
j=1

aijkj ,zn + h

m∑
j=1

âij lj

)
,

li = g

(
yn + h

m∑
j=1

aijkj ,zn + h

m∑
j=1

âij lj

)
,

yn+1 = yn + h

m∑
i=1

biki , zn+1 = zn + h

m∑
i=1

b̂ili .

In one step n → n + 1, two different classical RK methods are merged: we seek the
solutions y by a method with coefficients aij and bi , and the solutions z by another
method with coefficients âij and b̂i (or vice versa). The partitioned RK method of
the lowest order joins two first-order Euler methods: the implicit one in y and the
explicit one in z (or vice versa):

yn+1 = yn + hf (yn,zn+1),

zn+1 = zn + hg(yn,zn+1),
or

yn+1 = yn + hf (yn+1,zn),

zn+1 = zn + hg(yn+1,zn).

Another relevant partitioned method is the Störmer–Verlet scheme useful in solving
the important class of problems q̈ = f (q) which can be expressed as

ṗ = f (q), q̇ = p.

This scheme is second order and is explicit:

pn+1/2 = pn + h

2
f (qn),

qn+1 = qn + hpn+1/2, (7.47)

pn+1 = pn+1/2 + h

2
f (qn+1).

By interchanging the roles of p and q as in the Euler pair, the adjoint Störmer–Verlet
method can be derived (see next subsection).

In general the partitioned RK methods do not preserve quadratic invariants of the
form Q(y) = yTCy. If the coefficients of the partitioned method satisfy

bi âij + b̂j aji − bi b̂j = 0, i, j = 1,2, . . . ,m,

bi − b̂i = 0, i = 1,2, . . . ,m,

the methods preserve the quadratic invariants

Q(y,z) = yTDz (7.48)

372 7 Initial-Value Problems for ODE

(or Q(p,q) = pTDq), where D is a constant matrix. An example of such an
invariant are the components of angular momentum of an N -body system, L =∑N

i=1 qi × pi . The partitioned Euler method and the Störmer–Verlet method pre-
serve the invariants of the form (7.48).

7.12.2 Preservation of the Symplectic Structure

In Hamiltonian systems the continuous mapping of (p,q) at time t = 0 to (p̃, q̃) at
time t = h along the solution preserves the symplectic structure, or the phase space
volume, ∑

dp̃ ∧ d̃q =
∑

dp ∧ dq.

The numerical method (7.39) preserves this structure if it satisfies

[
φh(p,q)

]T
Jφh(p,q) = J,

which also implies detφh(p,q) = 1 or the preservation of volume in the phase
space. Partitioned Euler’s methods from the previous subsection are symplectic.
(Check this as an exercise.) For Hamiltonian systems they have the form

pn+1 = pn − h∇qH(pn+1,qn),

qn+1 = qn + h∇pH(pn+1,qn),
and

pn+1 = pn − h∇qH(pn,qn+1),

qn+1 = qn + h∇pH(pn,qn+1).

(7.49)
The Störmer–Verlet schemes,

pn+1/2 = pn − h

2
∇qH(pn+1/2,qn),

qn+1 = qn + h

2

(∇pH(pn+1/2,qn) + ∇pH(pn+1/2,qn+1)
)
, (7.50)

pn+1 = pn+1/2 − h

2
∇qH(pn+1/2,qn+1),

or

qn+1/2 = qn + h

2
∇qH(pn,qn+1/2),

pn+1 = pn − h

2

(∇pH(pn,qn+1/2) + ∇pH(pn+1,qn+1/2)
)
, (7.51)

qn+1 = qn+1/2 + h

2
∇qH(pn+1,qn+1/2),

are also symplectic, and so is the implicit midpoint method (7.44). Figure 7.13
shows the effect of three low-order integrators on the size and shape of Arnold’s
cat [27].

7.12 Geometric Integration 	 373

Fig. 7.13 Evolution of the
Arnold cat in the (p, q) plane
for the harmonic oscillator
problem with k = 1.6. The
explicit Euler method (EE)
enlarges the area while the
implicit (IE) reduces it. The
implicit midpoint method
(IM) preserves the area but
not its shape

The symplectic Euler schemes (7.49) and the Störmer–Verlet schemes (7.50)
and (7.51) for general Hamiltonians H(p,q) are implicit. For separable Hamilto-
nians, H(p,q) = T (p) + V (q), all these methods become explicit. For partitioned
RK methods the condition (7.45) also implies symplecticity (not only preservation
of quadratic invariants). Classical explicit RK methods are not symplectic.

7.12.3 Reversibility and Symmetry

Conservative Hamiltonian systems are reversible. If at some point of the flow corre-
sponding to the equation ẏ = f (y) we change the direction of velocity, the form of
the trajectory does not change; we just reverse the motion. An invertible linear trans-
formation ρ helps us define a more general notion of ρ-reversibility. A differential
equation ẏ = f (y) and the vector field f (y) are ρ-reversible if

ρf (y) = −f (ρy) ∀y. (7.52)

An analogous concept can be defined for single-step numerical methods (7.39). The
method φh is symmetric (with respect to time reversal) if φh◦φ−h = 1. If the method
φh, applied to a ρ-reversible differential equation, satisfies

ρ ◦ φh = φ−h ◦ ρ, (7.53)

then φh is a ρ-reversible mapping precisely when φh is symmetric. (Symmetry and
ρ-reversibility of a discrete map are equivalent properties.) All explicit and implicit
methods of the RK type satisfy (7.53) if (7.52) is valid. Partitioned RK methods
satisfy the condition (7.53) if ρ can be written in the form ρ(u,v) = (ρ1(u), ρ2(v)),
where ρ1 and ρ2 are invertible mappings. The symplectic Euler methods (7.49) are
not symmetric (or ρ-reversible). The Störmer–Verlet methods (7.50) and (7.51) are
symmetric and therefore also ρ-reversible [28].

374 7 Initial-Value Problems for ODE

7.12.4 Modified Hamiltonians and Equations of Motion

Unfortunately it is difficult to find an integration method for general (also non-
integrable) Hamiltonian systems that would preserve the symmetry properties of
the system and its invariants, and at the same time fulfill the symplectic condi-
tion [29, 30]. We therefore often opt for methods satisfying at least one of these
requirements: for the integration of astronomical orbits we might prefer to ensure
the periodicity and preservation of energy, while in the study of charged-particle
motion in storage rings, where radiation losses can be compensated for, the behav-
ior of the volume in phase space (spatial and momentum dispersion) may be more
relevant. In the following we discuss only explicit methods for which we insist on
symplecticity but sacrifice exact energy conservation. A surprise is in store.

In the basic Euler method a small modification of the matrix in (7.43),
(

p̃(h)

q̃(h)

)

symp. Euler
=

(
1 − h2k2 −hk2

h 1

)(
p(0)

q(0)

)
, (7.54)

renders the mapping exactly symplectic (detφh = 1). The modified mapping does
not preserve the energy, since after many repetitions of (7.54) we obtain p̃2 +k2q̃2 =
p2 + k2q2 + O(h2): the value of the energy is only first-order accurate. On the
example of the linear harmonic oscillator this can be explained by the conserved
quantity (constant of motion)

H̃ (p, q) = 1

2

(
p2 + k2q2)+ h

2
k2pq = const. (7.55)

In other words, after many repetitions of (7.54) with initial conditions (p, q) =
(1,0) and some small h, the points in phase space lie on the ellipse p2 + k2q2 +
hk2pq = 1, which always differs from the analytic solution p2 + k2q2 = 1 at most
to order h. The error in the energy due to the local discretization error does not
increase. The scheme (7.54) therefore preserves the symplectic and Hamiltonian
structure, but the system evolves in accordance with a modified (or “perturbed”)
Hamiltonian (7.55). These observations are illustrated in Fig. 7.14.

This interesting realization is not confined to linear systems: an example is al-
ready the non-linearized pendulum with the Hamiltonian H(p,q) = 1

2p2 − cosq .
The true, “unperturbed” Hamiltonian equations of motion are ṗ = − sinq , q̇ = p.
By using the symplectic Euler method (explicit in q and implicit in p) with step h

we are in fact solving the equations

(
ṗ

q̇

)
=

(− sinq

p

)
+ h

2

(
p cosq

− sinq

)
+ h2

12

(
(p2 − 2 cosq) sinq

2p cosq

)
+ · · · ,

which correspond to the modified Hamiltonian

H̃ (p, q) = 1

2
p2 − cosq − h

2
p sinq + h2

12

(
p2 − cosq

)
cosq + · · · .

7.13 Lie-Series Integration 	 375

Fig. 7.14 Time evolution of
the Hamiltonian for the linear
harmonic oscillator with
k = 1.6. Shown is the
energy (7.41) for the explicit
Euler method (EE) with step
h = 0.01 and the
energies (7.41) and (7.55) for
the symplectic Euler method
(SE) with step h = 0.1. This
method exactly preserves the
invariant (7.55)

The analysis of modified Hamiltonians and the corresponding equations of motion
applies to a more general class of symplectic integrators. The sequence of mappings

q ′ = q + hc

(
∂T

∂p

)

p

, p′ = p − hd

(
∂V

∂q

)

q=q ′
, (7.56)

each of which is symplectic by itself, faithfully describes the time evolution of the
system in accordance with a modified Hamiltonian H̃ = H + hH1 + h2H2 + · · · .
Higher-order symplectic integrators can be constructed by repeated applications of
the tandem (7.56), where the parameters c and d are different at each step. An
integrator of order p can be assigned the modified Hamiltonian

H̃p = H + hpHp +O
(
hp+1).

By reducing h we can therefore come (almost) arbitrarily close to exact energy
conservation. However, we note that for non-linear systems the convergence in the
term hpHp has not yet been strictly proven.

The mathematical background and the construction of explicit high-order sym-
plectic integrators are given in Appendix G. An excellent reference on geometric
integration is offered by the monograph [28] and the review article [31]. Geometric
integration is a crucial tool for the study of charged-particle trajectories in accel-
erators; a comprehensive discussion in this context is [32]. For partial differential
equations (PDE), geometric methods are less well developed. The PDE solution ap-
proaches based on difference methods that ignore geometric aspects are discussed
in Chaps. 9 and 10. An introduction to conservative discretizations of Hamiltonian
PDEs can be found in [33].

7.13 Lie-Series Integration �

Lie-series integrators represent a class of explicit methods to solve ordinary dif-
ferential equations. They are conceptually simple, but difficult to apply to general

376 7 Initial-Value Problems for ODE

cases, as the equations of motion need to be differentiated explicitly. However, when
the equations are given in terms of algebraic functions that can be manipulated effi-
ciently, and when high precision is required, Lie-series integrators reveal their true
power. Their typical area of use is dynamical astronomy [34–36]. Note that Lie-
series integrators in their basic forms are not symplectic and their energy and angu-
lar momentum errors are unbounded [37].

Here we discuss autonomous dynamical systems φ : R × R
n → R

n and denote
the independent and dependent variables by t ∈ R and x ∈ R

n, respectively. A tra-
jectory starting at x(0) is given by x(t) = φ(t, x(0)) and is determined by the system
of ODEs

ẋ(t) = F
(
x(t)

)
.

7.13.1 Taylor Expansion of the Trajectory

By assuming that the trajectories are smooth functions, they can be Taylor-expanded
as

x(t + �t) =
n∑

k=0

x(k)(t)

k! (�t)k + Rn(t),

where (·)(k) denotes the kth time derivative, and the remainder is

Rn(t) = 1

n!
∫ t+�t

t

x(n+1)(τ)(τ − t)n dτ.

Defining the rescaled derivatives Fk(x(t)) = x(k)(t)/k! the Lie-series integrator of
order n with time step �t > 0 can be written explicitly as

x(t + �t) = x(t) +
n∑

k=1

Fk

(
x(t)

)
(�t)k + Rn(t).

The remainder |Rn(t)| represents the local error of the integrator.
Note that for given equations of motion, a Lie-series integrator of order p can be

constructed if F is continuously differentiable up to p + 1 times. The applicability
of the integrator depends on whether the rescaled derivatives Fk can be efficiently
generated from the right-hand side of the equations of motion, F(x) = F1(x). They
can be obtained by using the recurrence relation

Fk(x) = 1

k
F ′

k−1(x)F (x). (7.57)

For algebraic Fi this recurrence can be exploited efficiently to very high orders by
using programs for symbolic computations.

7.13 Lie-Series Integration 	 377

Note that the local error has a very simple form, thus the global error can be well
controlled. By the mean-value theorem, a ξ ∈ [t, t + �t] exists such that Rn(t) =
Fn+1(ξ)(�t)n+1; if Fn+1(x(t)) �= 0 and �t � 1, the remainder becomes Rn(t) ≈
Fn+1(x(t))(�t)n+1. Hence Rn(t) scales as O((�t)n+1), and for a given x(t), it can
be estimated by finding a convergence radius ρ of the series defined as |Fk(x(t))| �
ρ−k when k → ∞. A fast convergence of the series is achieved if �t � ρ. In this
limit, Rn(t) for large orders n can be approximated as

∣∣Rn(t)
∣∣ �

∞∑
k=n+1

(
�t

ρ

)k

=
(

�t

ρ

)n+1(
1 − �t

ρ

)−1

.

Example The Lorenz system (see [38, 39] and Problem 7.14.7) is a dynamical sys-
tem with a three-dimensional phase space: the trajectory of the system is described
by the vector x(t) = (x1(t), x2(t), x3(t))

T ∈R
3, and is determined by the system of

equations (7.62); in the notation of this section,

ẋ1 = σ(x2 − x1) = F1(x1, x2, x3),

ẋ2 = x1(r − x3) − x2 = F2(x1, x2, x3),

ẋ3 = x1x2 − bx3 = F3(x1, x2, x3).

(7.58)

Here we use σ = 10, r = 28, and b = 8/3, for which the system is chaotic and
possesses a finite strange attractor.

We would like to calculate the trajectory of the system over long times as pre-
cisely as possible by Lie-series integration. In order to minimize the round-off er-
rors, we work in floating-point arithmetic with precision εM = 10−1024 by using the
GMP library [40]. The Lie integrator of order p has the form

xi(t + �t) = xi(t) +
p∑

k=1

Fi,k

(
x(t)

)
(�t)k,

where Fi,k denotes the rescaled derivative x
(k)
i (t)/k!. Any such derivative can be

expressed as a polynomial of variables xi in the form

Fi,k(x) =
∑

α∈Ii,k

Ai,k
α x

α1
1 x

α2
2 x

α3
3 , α = {α1, α2, α3},

where Ii,k is the set of possible powers corresponding to Fi,k(x). The explicit form
of Fi,k(x) can be obtained systematically by the recurrence (7.57), a task most
swiftly performed by MATHEMATICA in exact arithmetic. (Note that since x and
F are vectors, F ′ is a matrix.) The size of Ii,k (the number of terms in Fi,k) for all i

increases sub-exponentially with increasing k, as shown in Fig. 7.15 (left).
Because the attractor is finite and the dynamics is ergodic, a single trajectory

visits the complete phase space on long time scales. Each trajectory experiences the
same local errors, only at different times. Consequently, the maximum local error at

378 7 Initial-Value Problems for ODE

Fig. 7.15 [Left] The number of monomial terms in Fi,k up to k = p in the Taylor series expansion,
as a function of order p. [Right] The maximal local error Lmax as a function of order p at time step
�t = 10−3 and precision εM = 10−1024 (symbols •)

given order p and time step �t is Lmax(p,�t) = maxk∈N |Rp(k�t)| and is equal for
all coordinates. In finite floating-point arithmetic with precision εM, the maximum
local error scales with εM and �t as

Lmax(p,�t) = O
(

εM max
i

p∑
k=1

(�t)kSi,kPi,k�
Pi,k

)
+O

(
(�t)p+1),

where Si,k = ∑
α∈Ii,k

α is the sum of powers in Ii,k , Pi,k = max Ii,k is the maximum
power in Ii,k , and � is the typical length scale of the attractor.

The first term of Lmax corresponds to round-off errors, while the second term
appears because the integrator has a finite order. In our numerical calculation the
arithmetic precision is so large that round-off errors have a negligible effect on the
dynamics, hence the second term dominates. From Fig. 7.15 (right) we see that
Lmax depends exponentially on p like Lmax(p,�t) � (�t/ρeff)

p , where ρeff is the
effective Taylor series convergence radius for the attractor.

The deviation of the numerical trajectory x̂(t) obtained by the Lie-series inte-
grator with step �t , from the exact one, x(t), which both start at the same point,
x(0) = x̂(0), is represented by the global error Gn = ‖x̂(n�t) − x(n�t)‖2. In the
limit Gn � 1 the upper bound of the global error can be estimated as

Gn ≤ Gmax ∼ Lmax(p,�t)
exp(λmaxn�t) − 1

exp(λmax�t) − 1
, n → ∞. (7.59)

Here we have assumed that Gmax grows maximally with n on average, i.e. it in-
creases by a factor exp(λmax�t) in one iteration, where λmax is the maximum Lya-
punov exponent. Consequently, Gmax grows exponentially as O(exp(λmaxn�t)). In
the limit of small perturbations, ε → 0, the maximum Lyapunov exponent λmax can

7.13 Lie-Series Integration 	 379

Fig. 7.16 [Left] The divergence of trajectories starting at neighboring points x0 and x0 + ε for
x0 = (1,1,1)T and ε = (10−200,0,0)T. [Right] The time t0 until which the global error remains
below a given threshold value ε, as a function of order p, for ε = 0.1 and a trajectory starting at
x(0) = (1,1,1)T (symbols •)

be determined by using the asymptotic relation
∥∥φ(t, x + ε) − φ(t, x)

∥∥
2 ∼ ‖ε‖2 exp(λmaxt), t → ∞.

In practice, this is approximately valid for times t = n�t and perturbations such that
λmaxt � − log‖ε‖2. From the results presented in Fig. 7.16 (left) we find λmax =
0.90054 ± 10−5, which agrees well with the value found in [41].

The upper bound of Gn given in (7.59) is quite loose, because the increase of the
error is usually not maximal as assumed. A tighter bound can be found empirically
by calculating the envelope of Gn along n ∈N, which is modeled by

Gmax ≈ Lmax exp(μn�t).

Here μ ≤ λmax is the effective Lyapunov exponent that can be computed from the
threshold time t0(ε) until which the global error remains below a specified threshold
value ε. The threshold time as a function of the order of the integrator is shown in
Fig. 7.16 (right), and μ = log(ε/Lmax)/t0(ε). By applying this formula to the data
in the figure, we find μ ≈ 0.79: the global error increases significantly slower than
is maximally possible on average.

For μt � 1 and μ�t � 1, these results can be condensed in an empirical formula
log10 Gmax ≈ −2.125p + 0.343t + log10 Lmax(p = 0), which allows us to estimate
the resources needed to compute the trajectory until t = 103 to an accuracy of one
digit. By setting Gmax ≈ 1 at t = 103, we find the minimal order of the integrator
p = 160, while Gmax at this p and t = 0 gives the upper bound on the precision
of the derivatives, which is εder ≈ 10−340. In order to compute the derivatives to
precision εder, we obviously need to work with arithmetic much finer than that,
i.e. εM � εder.

380 7 Initial-Value Problems for ODE

7.14 Problems

7.14.1 Time Dependence of Filament Temperature

An example of a scalar first-order initial-value problem is the time dependence of
the temperature of a filament (e.g. in a light bulb) [42]. At time zero we expose
the filament with resistance R to a current pulse from a charged capacitor with
capacitance C. The differential equation for the temperature is

mcp
dT

dt
= RI 2

0 exp

(
− 2t

RC

)
− σST 4.

By introducing dimensionless variables we obtain an equation with a single param-
eter a,

dy

dx
= ae−2x − y4. (7.60)

We neglect the radiation received by the filament from the environment, so the tem-
perature will ultimately approach zero. Moreover, we assume that the current pulse
is strong enough that the initial internal energy of the filament may be ignored as
well. The initial condition for (7.60) is therefore y(0) = 0.⊙

Solve this problem by using several Euler methods discussed in Sect. 7.2,
as well as by select methods of Sects. 7.3 and 7.4. Determine the required step size
for the solution to remain stable. Choose the method (and the corresponding step
sizes) to compute the families of solutions for a = 2(4)18! What would be your
method of choice for a precise determination of the maximum temperature and the
times at which these maxima occur? If the radiation from the environment is not
neglected, (7.60) involves two parameters:

dy

dx
= ae−2x − b

(
y4 − 1

)
.

Find the families of solutions of these equations for a = 5 and b = 0(0.5)2! Explain
the physical meaning of parameters a and b.

7.14.2 Oblique Projectile Motion with Drag Force and Wind

In this problem (adapted from [43]) we would like to compute the trajectory of an
object launched under an angle with a specific initial velocity, and experiencing a
quadratic drag force and the presence of wind. The equations of motion are

ẋ = v cos θ,

ż = v sin θ,

7.14 Problems 381

θ̇ = −g

v
cos θ,

v̇ = −Fd

m
− g sin θ,

where the drag force is Fd = 1
2cρS((ẋ − w(t))2 + ż2).⊙

Solve this problem by using methods for the solution of systems of ordi-
nary differential equations. We shoot the cannon-ball with mass m = 15 kg and
velocity v0 = 50 m/s from the origin (x, z) = (0,0) at an angle θ0 with respect to
the positive x-axis. Change the initial angle θ0 in steps of 5◦. Other parameters are
c = 0.2 (drag coefficient), ρ = 1.29 kg/m3 (density of air), S = 0.25 m2 (projectile
cross-sectional area). The winds are blowing in the x-direction: no wind (w(t) = 0);
constant-velocity headwind (w(t) = −10 m/s); non-uniform tailwind (blowing with
w(t) = +10 m/s every odd second and with w(t) = 0 every even second); and gusty
wind (Gaussian distributed w(t) with zero mean and 10 m/s standard deviation).
Think of another aspect of the problem and discuss it accordingly.⊕

Solve the problem in the case that the winds blow in arbitrary directions in
the (x, y) plane.

7.14.3 Influence of Fossil Fuels on Atmospheric CO2 Content

The study of the influence of fossil fuel burning on the atmospheric CO2 content is
an important geochemical problem. The fraction of CO2 in the present atmosphere
is ≈3.5 × 10−4, but a small change in this fraction may have strong repercussions
on the global climate. A relatively simple model [44] can be used to simulate the in-
teraction of carbon compounds in the atmosphere, shallow waters, and deep oceans.
The main variables in the model are the partial pressure of CO2 in the atmosphere,
p, the concentrations of carbonates (dissolved C) in shallow and deep oceans, σs
and σd, and the alkalinities in shallow and deep oceans, αs and αd. The auxiliary
variables in shallow oceans, where chemical processes between the gaseous CO2
and dissolved carbonates occur, are the concentrations of hydrogen carbonates and
carbonates, hs and cs, and the partial pressure of CO2 in water, ps. The burning of
fossil fuels from the beginning of the industrial age is the source of CO2 entering as
the function f . The corresponding system of differential equations is

dp

dt
= ps − p

d
+ f (t)

μ1
,

dσs

dt
= 1

vs

[
w(σd − σs) − k1 − μ2

ps − p

d

]
,

dσd

dt
= 1

vd

[
k1 − w(σd − σs)

]
,

dαs

dt
= 1

vs

[
w(αd − αs) − k2

]
,

382 7 Initial-Value Problems for ODE

Fig. 7.17 [Left] The function f describing the emissions of CO2 into the atmosphere from year
1000 to 5000. [Right] Concentrations of CO2 in the atmosphere (p), shallow (σs), and deep ocean
(σd) as functions of time (solution by the adaptive RK4 method)

dαd

dt
= 1

vd

[
k2 − w(αd − αs)

]
.

It is complemented by the shallow-ocean equilibrium equations:

hs = σs − (σ 2
s − k3αs(2σs − αs))

1/2

k3
, cs = αs − hs

2
, ps = k4

h2
s

cs
.

The numerical constants are d = 8.64, μ1 = 4.95 × 102, μ2 = 4.95 × 10−2, vs =
0.12, vd = 1.23, w = 0.001, k1 = 2.19 × 10−4, k2 = 6.12 × 10−5, k3 = 0.997148,
k4 = 6.79 × 10−2.⊙

Solve the system of equations with the initial conditions p = 1.00, σs =
2.01, σd = 2.23, αs = 2.20 and αd = 2.26 in year t = 1000. The emission of CO2

between the years 1000 and 5000 (Fig. 7.17 (left)) is approximated by the function

f (t) =
3∑

i=1

ci exp

(
− (t − ti)

2

s2
i

)
,

c1 = 2.0, t1 = 1988, s1 = 21,

c2 = 10.5, t2 = 2100, s2 = 96,

c3 = 2.7, t3 = 2265, s3 = 57.

Determine the carbon concentrations in the atmosphere, shallow, and deep oceans
from year 1000 to 5000 by select integrators and reproduce Fig. 7.17 (right). Which
method is the most appropriate? Compare the initial and final concentrations. When
does the atmospheric concentration of CO2 reach its maximum? The chemical pro-
cesses have quite different reaction rates, so the problem outlined above is mildly
stiff : stiffness was introduced in Sect. 7.10.

7.14 Problems 383

7.14.4 Synchronization of Globally Coupled Oscillators

Kuramoto’s model [45, 46] describes a large set of weakly (but non-linearly) cou-
pled oscillators whose natural frequencies have a certain probability distribution.
Due to the non-linearity of the coupling, a fraction of the oscillators may oscil-
late in phase (“collective synchronization”) in specific conditions. This effect can
be observed in networks of pacemaker cells in the brain and heart, in synchronous
flashing of firefly swarms, with crickets chirping in unison, or even in electronic
circuits based on Josephson junctions.

In this problem we discuss a finite number (N � 1) of coupled oscillators. Their
dynamics is governed by the system of non-linear differential equations

dθi

dt
= ωi + K

N

N∑
j=1

sin(θj − θi), i = 1,2, . . . ,N, (7.61)

where θi is the phase of the ith oscillator, ωi is its natural (proper, non-coupled) fre-
quency, and K is the coupling constant. Let the natural frequencies ωi be distributed
according to some probability density g(ω) which is even and monotonously de-
creasing on either side of the mean value �, so g(� + ω) = g(� − ω). Rotational
symmetry allows us to set � = 0 and redefine θi → θi + �t for each t (we change
to a system rotating uniformly with the frequency �): the equations of motion do
not change, only the position of the peak of g(ω) shifts and we have g(ω) = g(−ω).

The behavior of the set of oscillators is described by
the complex order parameter that can be computed
from the dynamical equations at any time t and mea-
sures the collective “rhythm” of the whole population
of oscillators. We define it as

r(t)eiψ(t) = 1

N

∑
j

eiθj (t).

The modulus of the parameter, r(t), measures the level of coherence, while its
phase, ψ(t), measures the average phase (see figure). If K is smaller than the criti-
cal value K∗ = 2/πg(0), the oscillators oscillate incoherently (each with a different
frequency and mutually uncorrelated in phase). After long times r(t) oscillates out,
with fluctuations on the order of 1/

√
N , as anticipated for θj distributed uniformly

on the interval [0,2π]. When K is increased above K∗, an ever larger fraction of
oscillators oscillate coherently: their phases tend to congregate around the average
phase ψ , while the modulus of the order parameter asymptotically approaches a
non-zero value limt→∞ r(t) = r∞. The fraction of the oscillators oscillating coher-
ently after long times is

∫ +Kr∞

−Kr∞
g(ω)dω.

384 7 Initial-Value Problems for ODE

Fig. 7.18 [Left] The modulus of the order parameter as a function of t . The dotted line at the
bottom is the average of r(t) in [0,400], which is 0.052 ≈ 1/

√
400. [Right] The value of r after

long times as a function of K for N = 100 and N = 400

For certain distributions g(ω), both K∗ and r∞ can be calculated analytically [47].
For the Lorentz distribution of natural frequencies,

g(ω) = �

π

1

ω2 + �2
,

we obtain K∗ = 2� and the dependence r∞ = [1 − (K∗/K)2]1/2 at K > K∗.⊙
Discuss the Kuramoto set of oscillators with Lorentz or Gauss distributions

of natural frequencies. Map the chosen continuous distribution to a sufficiently large
discrete set of oscillators (at least N ≈ 100), and solve the system (7.61). At time
zero the phases θj should be distributed uniformly on [0,2π]. Use the solution θj (t)

to compute the complex order parameter and monitor the behavior of r(t) (Fig. 7.18
(left)) for the chosen value K < K∗ and for some value K > K∗. The critical value
K∗ is between 1.0 and 2.0. Compute r(t) at long times (r∞) for different values of
the coupling parameter K in the vicinity of K∗. You ought to notice a phase tran-
sition with an approximately square-root dependence (Fig. 7.18 (right)). Draw the
time dependence of the phase ψ(t). Increase the number of oscillators to a reason-
able limit (in terms of CPU time) and compare the results to the previous ones. Do
not run the integrator with too strict precision tolerances.

7.14.5 Excitation of Muscle Fibers

Non-linear evolution equations with highly interesting solutions appear in modeling
of muscle fiber excitations by external voltage pulses [48]. The relevant quantities
are the cell membrane potential V (t) that measures the current deviation of the po-
tential difference on two sides of the membrane from a reference value (for example,

7.14 Problems 385

in the unexcited state), and the set of variables wi(t) describing the fraction of the
ion channel that, at time t and specific potential difference, are in the conducting,
non-conducting, or some other state. Already the relatively simple Morris–Lecar
model [49] with two ion channels (Ca2+ and K+) yields an extremely colorful phys-
ical picture. The dynamics of the voltage perturbation along the fiber is described
by the coupled equations

C
dV

dt
= I − gCam∞(V)(V − VCa) − gKw(V − VK) − gL(V − VL) + s(t),

dw

dt
= φ

w∞(V) − w

τw(V)
,

where C is the membrane capacitance per unit surface, gCa, gK, and gL are the
specific conductivities for the ion channels Ca2+, K+, and leakage, I is the static
component of the surface current density through the fiber, and s(t) is the exter-
nal perturbation. The quantity w is the fraction of the open channels K+. We have
denoted

m∞(V) = 1

2

[
1 + tanh

(
V − V1

V2

)]
,

w∞(V) = 1

2

[
1 + tanh

(
V − V3

V4

)]
,

τw(V) =
[

1 + cosh

(
V − V3

2V4

)]−1

,

where m∞(V) and w∞(V) are the fractions of open channels Ca2+ and K+ in the
stationary state (t → ∞). In the model, the characteristic time τw for the K+ channel
to open depends on the current value of V . (For the Ca2+ channel we assume instan-
taneous activation by V , otherwise we would have two equations, dw1/dt = · · · ,
dw2/dt = · · · and two characteristic times τw1 = · · · , τw2 = · · · .)⊙

Solve the Morris–Lecar system by two or three integration methods with
various step sizes. Reproduce Fig. 7.19 (left) with the initial conditions listed in
the first four rows of Table 7.1. Use the parameters V1 = −1.2, V2 = 18.0, V3 =
2.0, V4 = 30.0, gCa = 4.4, gK = 8.0, gL = 2.0, VCa = 120.0, VK = −84.0, VL =
−60.0, φ = 0.04, and C = 20.0. (On purpose, we have not converted the equations
to dimensionless form, as all quantities have a clear physical meaning. For units of
all quantities see [49].)

Find the maximum and minimum values of the potential, Vmax and Vmin, at large
times and determine the stationary-state curves (nullclines) that connect all points
with the properties dV/dt = 0 or dw/dt = 0 in the phase diagram (V versus w), see
Fig. 7.19 (right). The intersection of these curves is the asymptotic stationary state,
if such a state exists.

Observe the time dependence of V on a wider interval [0,800] when you act on
the system by an external pulse s(t) of the form

s(t) = 30H(t − 100)H(105 − t) + 30H(t − 470)H(475 − t),

386 7 Initial-Value Problems for ODE

Fig. 7.19 Solutions of the Morris–Lecar model. [Left] The membrane potential V as a function of
time for different initial conditions. [Right] Phase diagram (w(t) versus V (t)) for the same initial
conditions (symbols ◦) as in the left figure. Also shown are the stationary-state curves connecting
the points with dV/dt = 0 and dw/dt = 0. They intersect at (V ,w) ≈ (−60.9,0.015) correspond-
ing to the stationary state (symbol •)

Table 7.1 Initial conditions for V and w, the current density I , the integration interval length T ,
and the list of tasks for solving the Morris–Lecar model. The curves of the stationary state (s.s.)
and the shape of the pulse s(t) are defined in the text

V (0) w(0) I T Observe

−16.0 0.014915 0 150 V (t), w(t), V (w), s.s. curves

−14.0 0.014915 0 150

−13.9 0.014915 0 150

−10.0 0.014915 0 150

−10.0 0.014915 0(1)300 800 Vmax(I), Vmin(I)

−26.59 0.129 90 800 V (t) with double pulse s(t)

where H(t) is the Heaviside (step) function. In an actual experiment this truly rep-
resents a 5 ms long step pulse with the peak current density 30 µA/cm2 at time
100 ms and another such pulse at time 470 ms.

7.14.6 Restricted Three-Body Problem (Arenstorf Orbits)

A basic problem in astronomy is to find the trajectory of a light object (for exam-
ple, a satellite) in the presence of two much heavier bodies whose motion is not
influenced by the light object. The heavy bodies with a mass ratio μ : (1 − μ) circle
in the (x, y) plane with frequency 1 around their common center of gravity, which
is at the origin: the ratio of their orbital radii is then (1 − μ) : μ. In general the

7.14 Problems 387

light object may move outside the plane defined by the orbits of heavy bodies. The
dimensionless equations of motion for the light body are

ẍ = x + 2ẏ − (1 − μ)(x + μ)

r3
− μ(x − 1 + μ)

s3
,

ÿ = y − 2ẋ − (1 − μ)y

r3
− μy

s3
,

z̈ = − (1 − μ)z

r3
− μz

s3
,

where

r =
√

(x + μ)2 + y2 + z2, s =
√

(x − 1 + μ)2 + y2 + z2.

A detailed analysis of planar solutions of the special case μ = 0.5 (frequently used
as a benchmark test for symplectic methods) can be found in [50].⊙

Solve the restricted three-body problem corresponding to the Earth and
Moon as the heavy objects, hence μ = MMoon/MEarth = 0.012277471. Consider
the planar case (z = 0) with the initial conditions (example parameters from [28])

(
x(0), y(0)

) = (0.994,0),
(
ẋ(0), ẏ(0)

) = (0,−2.0015851063790825224053786224),

for which the solution is periodic with the period

T = 17.0652165601579625588917206249.

Use the Euler explicit method with step h = T/24000 and the RK4 method with
h = T/6000. Plot the dependence of x, ẋ, y, and ẏ on time, as well as the phase dia-
grams (x, ẋ) and (y, ẏ), as in Fig. 7.20 (left). Can you obtain a periodic solution by
reducing the step size in either the Euler or RK4 method? (Pretend that the solution
is periodic if the deviation of x(10T), ẋ(10T), y(10T), and ẏ(10T) from the initial
conditions after ten returns does not exceed 1 %.)⊕

Use the Dormand–Prince method 5(4) with adaptive step size. Select a few
tolerances on the local error and determine the number of steps needed for one
cycle in the phase diagram at this precision (Fig. 7.20 (right)). Enrich the problem
by allowing non-planar orbits of the third body (z �= 0).

The problem outlined here is an example of motion of satellites along the “horse-
shoe” orbits in the gravitational field of the Sun–Earth system. Recently two nearby
Earth asteroids have been discovered, 3753 Cruithne [51] and 2002 AA29 [52],
whose orbits have similar properties. Even before that, the restricted three-body
problem was analyzed theoretically for the Sun–Jupiter system [53]. You can find a
rich set of initial conditions for it in [54] or [55].

388 7 Initial-Value Problems for ODE

Fig. 7.20 Orbits of the light object in the restricted three-body problem. [Left] Solution by
the explicit Euler method (7.5) with step h = T/24000 and by the RK4 method (7.10) and
Dormand–Prince 5(4) method (p. 345) with steps h = T/6000. [Right] Solution by the Dor-
mand–Prince 5(4) method with adaptive step size. At 0.001 tolerance on the local error a mere
134 steps are needed

7.14.7 Lorenz System

A classical problem of atmospheric physics is the convection of a fluid with kine-
matic viscosity ν, volume expansion coefficient β , and heat diffusion coefficient
D, in a layer of thickness H in which a constant temperature difference �T0 =
T (0) − T (H) > 0 persists between the top and bottom. Simpler cases were treated
by Lord Rayleigh already in 1916, but in certain regimes of Prandtl (σ = ν/β) and
Rayleigh (R = gβH 3�T0/Dν) numbers the convection dynamics (velocity of mo-
tion, heat transfer) becomes very complex [56].

The Lorenz system [38]

Ẋ = −σX + σY,

Ẏ = −XZ + rX − Y, (7.62)

Ż = XY − bZ,

offers a simplified picture of such convection. The variable X represents the velocity
of the convection current. The variable Y is proportional to the temperature differ-
ence between the ascending and descending convection currents (warmer fluid goes
up, colder goes down), while Z is the deviation of the vertical temperature profile
from the linear height dependence (a positive value implies strong gradients in the
vicinity of the top or bottom edge). The derivatives in (7.62) are with respect to
dimensionless time τ = π2(1 + a2)κt/H 2, where a is a parameter. The coefficient
r = R/Rc is the Rayleigh number in units of the critical value Rc = π4(1 +a2)3/a2

(with a minimum at 27π4/4), while b = 4/(1 + a2).⊙
Solve the Lorenz system with parameters σ = 10, b = 8/3, r = 28, and

initial conditions X(0) = 0, Y(0) = 1, Z(0) = 0, which are slightly “off” the

7.14 Problems 389

Fig. 7.21 The Lorenz problem. [Left] The solution on the time interval [0,50] in the phase space
of variables X, Y , and Z. [Right] Dependence of the solution Y (τ) on the initial conditions. Shown
are two solutions with the initial condition Y (0) = 1 (dotted curve) and with Y (0) = 1+10−12 (full
curve)

convection-free state at (0,0,0). Use the RK4 method. Plot the three-dimensional
phase space (Fig. 7.21 (left)) and some typical two-dimensional slices through this
space in all three planes. Quasi-stationary convection states correspond to the points
(6

√
2,6

√
2,27) and (−6

√
2,−6

√
2,27). Solve the system with slightly perturbed

initial conditions. For example, take Y(0) = 1 + ε instead of Y(0) = 1, where
|ε| � 1 and observe the spread of the solutions as in Fig. 7.21 (right).

7.14.8 Sine Pendulum

In Newton’s law mẍ = F(x) for a non-linearized (sine) pendulum the restoring force
is F(x) = − sinx. Since F does not depend on the velocity, the system mẋ = p,
ṗ = F(x), can be solved by a special trapezoidal-like scheme [42]

x(t + h) = x(t) + hu

(
t + 1

2
h

)
,

u

(
t + 1

2
h

)
= u

(
t − 1

2
h

)
+ h

F(t, x(t))

m
.

The auxiliary variable u best approximates the velocity ẋ at the midpoints of
[t, t + h] and we assign it to those points.⊙

Solve the differential equation

d2x

dt2
+ sinx = 0, x(0) = 1, ẋ(0) = 0,

390 7 Initial-Value Problems for ODE

by the scheme given above and by the RK4 method, and compare the results. Find
the step size h to achieve six-digit precision. Investigate the periodic stability of
the methods: let the computation proceed over a large number (100, 1000, 10000)
of oscillations and observe the change in the oscillation amplitudes. Compute the
energy

E = V + T = 1 − cosx + 1

2

(
dx

dt

)2

and see whether it remains constant. The analytic solution can be expressed in terms
of the Jacobi elliptic functions sn() and cn() implemented in the GSL library in
the gsl_sf_elljac_e() routine. The period of oscillation of the analytic solu-
tion is 4K(sin 1

2x(0)), where K(u) is the complete elliptic integral of the first kind:
K(sin 0.5) ≈ 1.83703.⊕

Study the resonance curve of the driven damped pendulum

d2x

dt2
+ β

dx

dt
+ sinx = A sinω0t,

where β is the damping coefficient, while A and ω0 are the driving amplitude and
frequency. When ω0 is increased or decreased, the amplitudes at the same ω0 differ:
you can clearly observe hysteresis effects [57].

7.14.9 Charged Particles in Electric and Magnetic Fields

Motion of charged particles in complicated configurations of electric and magnetic
fields abounds in experimental particle physics, for example, in electro-magnetic
traps used to study the properties of individual particles or plasma, Wien filters with
crossed electric and magnetic fields acting as velocity selectors in beam-lines, and
in magnetic spectrometers. In all these cases the particle with mass m and charge e

experiences the Lorentz force

F = d(γmv)

dt
= e(E + v × B). (7.63)

In practical situations the hardest problem is the precise knowledge of the vector
fields E and B at all places; the numerical integration of the equations of motion is
the easier task.⊙

Numerically integrate
the equations of motion of a posi-
tively charged particle in the Pen-
ning trap shown in the figure.
Longitudinal confinement is pro-
vided by the electric potential,

7.14 Problems 391

while the axially symmetric magnetic field confines the particles in the transverse
directions. The system (7.63) can be solved as a system of six first-order equations,

ṙ = v, r(0) = r0,

v̇ = κ(E + v × B), v(0) = v0,

where κ = e/γm. (Note that the Lorentz factor γ depends on the magnitude of the
velocity!) The electric and magnetic fields have the form

Ez(±z) = ±E0 exp
(−5(z ± 3)2),

Bz(±z) = B0
(
0.5 + 0.2 exp

(−z2)),

E0 = B0 = 1, and we neglect the transverse components of the magnetic field.⊕
Study the precession of the average spin vector of a polarized beam of spin-

1/2 particles in non-constant magnetic fields. The dynamics of the spatial part of
the spin four-vector is determined by the Thomas equation

dS

dt
= κS ×

[
g

2
B‖ +

(
1 + g − 2

2
γ

)
B⊥

]
, S(0) = S0,

where g is the gyro-magnetic ratio, and we split the magnetic field to its components
parallel and perpendicular to the particle velocity vector, B‖ ≡ (v̂ · B)v̂ and B⊥ ≡
B − B‖. Consider this vector equation as three new coupled scalar equations in the
system, and run the integrator again. Observe the spin precession of protons with
various momenta and incident angles in magnetic systems like a dipole magnet, a
system of two quadrupole magnets rotated by 90◦, a sextupole magnet, or some
other field configuration!

7.14.10 Chaotic Scattering

Classical planar scattering of a point particle with mass M on a potential V (r) is
described by the four-dimensional system of equations of motion

M
dv

dt
= −∇V (r),

dr

dt
= v,

where r = (x, y) and v = (vx, vy). Because the energy E = 1
2Mv2 + V (r) is con-

served, the phase space is only three-dimensional. Therefore the state of the particle
is uniquely defined by the variables x, y, and the angle θ between the vector v and
the positive x-axis, since the magnitude of the velocity can be calculated from the
energy,

|v| =
√

2
(
E − V (r)

)
/M.

392 7 Initial-Value Problems for ODE

⊙
Study the planar scattering of a particle of mass M on the potential

V (r) = x2y2 exp
[−(

x2 + y2)],

which has four maxima at (x, y) = (1,±1) and (−1,±1) with values Em =
1/e2 [58]. Let the particle with mass M = 1 and energy E impinge towards the
central part of the potential from large distances with impact parameter b (parallel
to the x-axis and at constant distance b from it).

Plot some typical particle trajectories in the (x, y) plane as a function of the
parameter b (Fig. 7.22 (top right)). Compute the scattering angles φ for a large set
of values of b, −3 ≤ b ≤ 3, at E/Em = 1.626 (regular scattering) and at E/Em =
0.260 (chaotic scattering). Look closer at the obtained results in the ever narrower
regions of b, e.g. for −0.6 < b < −0.1, −0.400 < b < −0.270, and −0.3920 < b <

−0.3770 (Fig. 7.22 (bottom left and right)). Compute the time delay (time spent by
the particle in the central part of the potential) as a function of b. By using a constant
step-size integrator the delay is simply proportional to the number of steps taken.

7.14.11 Hydrogen Burning in the pp I Chain

Fusion of hydrogen nuclei occurs in stars with masses less than ≈1.3M� in three
branches of the pp chain. The first stage (pp I branch) involves the processes [59]

1H + 1H −→ 2H + e+ + νe (λpp),

1H + 1H + e− −→ 2H + νe (λ′
pp),

2H + 1H −→ 3He + γ (λpd),

3He + 3He −→ 4He + 1H + 1H (λ33),

where λi are the reaction rates. The pp I branch contributes 85 % to the solar lumi-
nosity, but the process rates in it are very different due to a large span of reaction
cross-sections and Coulomb barriers [60, 61]. We express λi in units of reactions
per unit time per (mol/cm3)N−1, where N is the number of interacting particles
excluding photons. At temperatures in the solar interior (≈15 × 106 K) they are
λpp = 8.2 × 10−20, λ′

pp = 2.9 × 10−24, λpd = 1.3 × 10−2, λ33 = 2.3 × 10−10.
For the listed processes λ′

pp � λpp � λ33 � λpd. The first two processes are
by far the slowest ones, as they are governed by the weak interaction. Here we

7.14 Problems 393

Fig. 7.22 Chaotic scattering on the potential V (x, y) = x2y2 exp[−(x2 + y2)]. [Top left] The po-
tential V (x, y). [Top right] Dependence of the solution on initial conditions x(0) = 3, y(0) = b,
ẋ(0) = 0, and ẏ(0) = −√

2.0(E − V (x(0), y(0)))/M with parameters M = 1, E = 0.260Em.
Shown are the solutions at three different impact parameters b = −0.3915, 0.3905, and 0.3895.
[Bottom left] Dependence of the scattering angle φ on b with −0.60 ≤ b ≤ −0.13. [Bottom right]
The zoom-in in the region −0.392 ≤ b ≤ −0.377 (denoted by dashed vertical lines in the figure at
left). We are witnessing classical chaos: we observe a large sensitivity of the system to the initial
conditions, and self-similarity (equal or similar structures appear at different scales)

approximate λ′
pp = 0. The equations for the pp I branch then become

dnp

dt
= − λppn

2
p − λpdnpnd + λ33n

2
3,

dnd

dt
= λpp

n2
p

2
− λpdnpnd,

dn3

dt
= λpdnpnd − λ33n

2
3,

dn4

dt
= λ33

n2
3

2
,

(7.64)

394 7 Initial-Value Problems for ODE

Fig. 7.23 Examples of stiff differential equations. [Left] Hydrogen burning in the pp I chain
(see (7.64)). The solution for nd lies below the shown area. [Right] Limit cycles of the Orego-
nator (see (7.65)). The symbols ◦ and • denote the initial conditions

where we have denoted the isotope concentrations by np = n(1H), nd = n(2H), n3 =
n(3He), and n4 = n(4He).⊙

Solve the system (7.64) on the time interval 1010 s ≤ t ≤ 1022 s. The initial
condition for np can be computed from the estimate (λppnp)

−1 ≈ 1010 years which
is valid at the conditions in the solar interior, and we set nd = n3 = n4 = 0. At first
you may restrict the computation to large times, when 2H and 3He are in equilibrium
(dnd/dt = dn3/dt = 0). In that case the stiff system of four equations reduces to a
non-stiff system of two equations. To consider all times except the shortest, assume
that 2H is in equilibrium: then the equation for 3He can be solved analytically by
assuming that the concentrations of 1H and 4He do not change substantially, and by
using the solution for n3 in the equations for np and n4. For finding the solution at
arbitrary times, use an integrator tailored to stiff systems (see Fig. 7.23 (left)).⊕

Augment the basic system of equations for the pp I branch with contribu-
tions of heavier isotopes, and compare the results. Use the reactions given in [59–
62], which list the reaction rates also for temperatures that are different from those
in the solar interior.

7.14.12 Oregonator

Oregonator is a domesticated name for the chemical reaction of HBrO2, Br−, and
Ce(IV). The dynamics is described by a stiff set of equations [63]

y′
1 = κ1

(
y2 + y1(1 − αy1 − y2)

)
,

y′
2 = κ2

(
y3 − y2(1 + y1)

)
,

y′
3 = κ3(y1 − y3),

(7.65)

7.14 Problems 395

where κ1 = 1/κ2 = 77.27, κ3 = 0.161, and α = 8.375 × 10−6. As expected from
a stiff system, the solutions change over many orders of magnitude (Fig. 7.23 (left
and right)).⊙

Solve the system (7.65) with initial conditions y1(0) = 3, y2(0) = 1,
y3(0) = 2. Use an explicit integrator of your own choice and the implicit fifth-order
integrator Radau 5 described on p. 360. If possible, resort to adaptive step size con-
trol in both cases. Plot the solutions y1(x), y2(x), and y3(x) for 0 ≤ x ≤ 360. The
solutions on this interval form interesting three-dimensional limit cycles. Display
them by plotting pairs of coordinates (y2, y1) and (y2, y3) as shown in Fig. 7.23
(right). What are the required step sizes in the computation with the explicit and
implicit schemes, respectively?

7.14.13 Kepler’s Problem

The solution of the Kepler problem is one of the very first homework exercises of
any astronomer. We treat the planar motion of two gravitationally attracting bod-
ies by placing one body at the origin and describing the other body by spatial co-
ordinates (q1, q2) and momenta (p1,p2). The dimensionless equations of motion
(Newton’s law) are

q̈1 = − q1

(q2
1 + q2

2)3/2
, q̈2 = − q2

(q2
1 + q2

2)3/2
.

These equations describe the time evolution of a Hamiltonian system with three
conserved quantities. The first one is the Hamiltonian (the total energy)

H(p1,p2, q1, q2) = 1

2

(
p2

1 + p2
2

)− 1√
q2

1 + q2
2

, pi = q̇i .

The other quadratic invariant is the angular momentum L(p1,p2, q1, q2) = q1p2 −
q2p1.⊙

Solve Kepler’s problem with eccentricity e = 0.6 and initial conditions

q1(0) = 1 − e, q̇1(0) = 0, q2(0) = 0, q̇2(0) =
√

1 + e

1 − e
.

The orbital period is 2π , and the exact values of the energy and angular momentum
are H0 = −1/2 and L0 = √

1 − e2. First use the explicit Euler method (7.5) with
a step size h that still ensures stability, say h = 0.0005, then use the same h in
the implicit midpoint method (7.31). Observe the solution over at least 10 periods.
Repeat the calculation by using the Störmer–Verlet method (7.47) with 10/100 times
larger h (and, accordingly, 10/100 times fewer steps).

Plot the orbits (q2(t) versus q1(t)), the energy, and the angular momentum.
Check whether the integrators conserve the third invariant of Kepler’s problem, the

396 7 Initial-Value Problems for ODE

Laplace–Runge–Lenz vector A = p × L − r/r , written by components as

⎛
⎝

A1
A2
0

⎞
⎠ =

⎛
⎝

p1
p2
0

⎞
⎠×

⎛
⎝

0
0

q1p2 − q2p1

⎞
⎠− 1√

q2
1 + q2

2

⎛
⎝

q1
q2
0

⎞
⎠ .

⊕
Solve the problem by using fourth- and sixth-order symplectic integrators

with coefficients given in Appendix G.

7.14.14 Northern Lights

When charged particles emitted from the Sun (solar wind) encounter the Earth’s
magnetic field, they cause Northern lights. Assuming that the magnetic field is axi-
ally symmetric along the z-axis, the particle trajectories (x(s), y(s), z(s)) are deter-
mined by the equations (quoted in [2] based on work of [64]):

x′′ = 1

r5

(
3yzz′ − (

3z2 − r2)y′),

y′′ = 1

r5

((
3z2 − r2)x′ − 3xzz′),

z′′ = 1

r5

(
3xzy′ − 3yzx′),

where r2 = x2 +y2 +z2 and ′ denotes the derivative with respect to the parameter s.
In polar coordinates, x = R cosφ and y = R sinφ, we rewrite the system as

R′′ =
(

2γ

R
+ R

r3

)(
2γ

R2
+ 3R2

r5
− 1

r3

)
, (7.66)

z′′ =
(

2γ

R
+ R

r3

)
3Rz

r5
, (7.67)

φ′ =
(

2γ

R
+ R

r3

)
1

R
, (7.68)

where r2 = R2 + z2, and the parameter γ is the integration constant when the equa-
tion for φ′′ is integrated once.⊙

Solve (7.66) and (7.67) on the interval 0 ≤ s ≤ 0.3 by one of the explicit
Störmer methods for equations y ′′ = f (x,y) from Sect. 7.8, e.g.

yn+1 − 2yn + yn−1 = h2f n,

yn+1 − 2yn + yn−1 = h2
(

13

12
f n − 1

6
f n−1 + 1

12
f n−2

)
,

7.14 Problems 397

yn+1 − 2yn + yn−1 = h2
(

7

6
f n − 5

12
f n−1 + 1

3
f n−2 − 1

12
f n−3

)
,

and determine φ by integrating (7.68). The initial conditions are R0 = 0.257453,
R′

0 = √
Q0 cosu, z0 = 0.314687, and z′

0 = √
Q0 sinu, where

r0 =
√

R2
0 + z2

0, Q0 = 1 − (
2γ /R0 + R0/r3

0

)2
, γ = −0.5, u = 5π/4.

7.14.15 Galactic Dynamics

Galaxies are assemblies of N � 1 stars in mutual gravitational attraction. One way
of studying galactic dynamics is to compute the orbit of a single star in the gravita-
tional potential generated by the remaining N − 1 stars. Assume that this potential
is

V (x, y, z) = A log

(
C + x2

a2
+ y2

b2
+ z2

c2

)
,

and that it rotates around the galactic axis with uniform velocity, while its functional
form does not change with time [65]. The Lagrangian for the system rotating with
constant angular velocity � is

L = 1

2

(
(ẋ − �y)2 + (ẏ + �x)2 + ż2)− V (x, y, z).

With the coordinates q1 = x, q2 = y, q3 = z, and

p1 = ∂L

∂ẋ
= ẋ − �y, p2 = ∂L

∂ẏ
= ẏ + �x, p3 = ∂L

∂ż
= ż,

we obtain the Hamiltonian H = p1q̇1 + p2q̇2 + p3q̇3 − L or

H = 1

2

(
p2

1 + p2
2 + p2

3

)+ �(p1q2 − p2q1) + A log

(
C + q2

1

a2
+ q2

2

b2
+ q2

3

c2

)
.

⊙
From this Hamiltonian, derive the equations of motion, q̇i = ∂H/∂pi and

ṗi = −∂H/∂qi . Solve them by using the initial values (taken from [2]):

q1(0) = 2.5, q2(0) = 0, q3(0) = 0, p1(0) = 0, p3(0) = 0,

while p2(0) is the larger of the solutions of the equation H = 2. Use the parameters
A = C = 1, � = 0.25, a = 1.25, b = 1, and c = 0.75. Compute the solution on the
interval 0 ≤ t ≤ 1000000 by the RK4 method (7.10) with steps h = 0.1 and 0.025.
Plot the orbits (connect the coordinates q1, q2, and q3 as in Fig. 7.24 (top)). Plot the
Poincaré sections of the solution (coordinates q1 and q3) with the half-plane q1 > 0,
q2 = 0, q̇2 > 0 (Fig. 7.24 (bottom)). Plot the time evolution of the energy H .

398 7 Initial-Value Problems for ODE

Fig. 7.24 Galactic dynamics. [Top] Trajectory until t = 10000. [Bottom] Poincaré sections of the
trajectory for 0 ≤ t ≤ 1000000 (coordinates q1 and q3) with the half-plane q1 > 0, q2 = 0, q̇2 > 0.
[Bottom left] RK4 method, h = 0.1 (46230 intersections). [Bottom right] RK4 method, h = 0.025
(47022 intersections)

⊕
Solve the problem by using the fifth-order implicit method Radau 5 and the

sixth-order Gauss method defined in Sect. 7.9. Use the step sizes h = 0.1, 0.2, and
0.4. Again, plot the time evolution of the energy H .

References

1. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (Krieger, Malabar,
1984)

2. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I; Nonstiff Prob-
lems. Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin, 2000)

3. A.R. Curtis, High-order explicit Runge Kutta formulae, their uses and limitations. J. Inst.
Math. Appl. 16, 35 (1975)

4. E. Hairer, A Runge–Kutta method of order 10. J. Inst. Math. Appl. 21, 47 (1978)
5. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edn. (Wiley, Chich-

ester, 2008)
6. E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966)
7. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York,

1962)
8. J.R. Cash, A.H. Karp, A variable order Runge–Kutta method for initial value problems with

rapidly varying right-hand sides. ACM Trans. Math. Softw. 16, 201 (1990)
9. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

References 399

10. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl.
Math. 6, 19 (1980)

11. P.J. Prince, J.R. Dormand, High order embedded Runge–Kutta formulae. J. Comput. Appl.
Math. 7, 67 (1981)

12. Numerical Algorithms Group, http://www.nag.co.uk
13. J.H.E. Cartwright, O. Piro, The dynamics of Runge–Kutta methods. Int. J. Bifurc. Chaos 2,

427 (1992)
14. J.D. Day, Run time estimation of the spectral radius of Jacobians. J. Comput. Appl. Math. 11,

315 (1984)
15. R. Bulirsch, J. Stoer, Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei

Verfahren vom Richardson-Typus. Numer. Math. 6, 413 (1964)
16. E. Hairer, A. Ostermann, Dense output for extrapolation methods. Numer. Math. 58, 419

(1990)
17. J.D. Hoffman, Numerical Methods for Engineers and Scientists, 2nd edn. (Marcel Dekker,

New York, 2001)
18. J.R. Dormand, P.J. Prince, New Runge–Kutta algorithms for numerical simulation in dynami-

cal astronomy. Celest. Mech. 18, 223 (1978)
19. S. Filippi, J. Gräf, New Runge–Kutta–Nyström formula-pairs of order 8(7), 9(8), 10(9) and

11(10) for differential equations of the form y ′′ = f (t, y). J. Comput. Appl. Math. 14, 361
(1986)

20. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II; Stiff and Differential-
Algebraic Problems. Springer Series in Computational Mathematics, vol. 14 (Springer, Berlin,
2004)

21. J.C. Butcher, Implicit Runge–Kutta processes. Math. Comput. 18, 50 (1964)
22. B.L. Ehle, High order A-stable methods for the numerical solution of systems of D.E.’s. BIT

Numer. Math. 8, 276 (1968)
23. L.F. Shampine, M.W. Reichelt, The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1 (1997)
24. C.F. Curtiss, J.O. Hirschfelder, Integration of stiff equations. Proc. Natl. Acad. Sci. 38, 235

(1952)
25. G. Dahlquist, A special stability problem for linear multistep methods. BIT Numer. Math. 3,

27 (1963)
26. H. Goldstein, Classical Mechanics, 2nd edn. (Addison-Wesley, Reading, 1981)
27. V.I. Arnol’d, Mathematische Methoden der klassischen Mechanik (VEB Deutscher Verlag der

Wissenschaften, Berlin, 1988)
28. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Al-

gorithms for Ordinary Differential Equations, 2nd edn. (Springer, Berlin, 2006)
29. Z. Ge, J.E. Marsden, Lie–Poisson integrators and Lie–Poisson Hamilton–Jacobi theory. Phys.

Lett. A 133, 134 (1988)
30. J.M. Sanz-Serna, Runge–Kutta schemes for Hamiltonian systems. BIT Numer. Math. 28, 877

(1988)
31. R.I. McLachlan, G.R.W. Quispel, Geometric integrators for ODEs. J. Phys. A, Math. Gen. 39,

5251 (2006)
32. É. Forest, Geometric integration for particle accelerators. J. Phys. A, Math. Gen. 39, 5321

(2006)
33. T. Bridges, S. Reich, Numerical methods for Hamiltonian PDEs. J. Phys. A, Math. Gen. 39,

5287 (2006)
34. A. Hanslmeier, R. Dvorak, Numerical integration with Lie series. Astron. Astrophys. 132, 203

(1984)
35. M. Delva, Integration of the elliptic restricted three-body problem with Lie series. Celest.

Mech. 34, 145 (1984)
36. H. Lichtenegger, The dynamics of bodies with variable masses. Celest. Mech. 34, 357 (1984)
37. S. Eggl, R. Dvorak, An Introduction to Common Numerical Integration Codes Used in Dy-

namical Astronomy. Lecture Notes in Physics, vol. 790 (Springer, Berlin, 2010), p. 431
38. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)

400 7 Initial-Value Problems for ODE

39. A. Trevisan, F. Pancotti, Periodic orbits, Lyapunov vectors, and singular vectors in the Lorenz
System. J. Atmos. Sci. 55, 390 (1998)

40. GNU Multi Precision (GMP), Free Library for Arbitrary Precision Arithmetic. http://gmplib.
org

41. J.C. Sprott, Chaos and Time-Series Analysis (Oxford University Press, Oxford, 2003). See
also http://sprott.physics.wisc.edu/chaostsa

42. I. Kuščer, A. Kodre, H. Neunzert, Mathematik in Physik und Technik (Springer, Berlin, 1993)
43. C. Moler, Numerical Computing with MATLAB (SIAM, Philadelphia, 2008)
44. J.C.G. Walker, Numerical Adventures with Geochemical Cycles (Oxford University Press,

Oxford, 1991)
45. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)
46. S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in popu-

lations of coupled oscillators. Physica D 143, 1 (2000)
47. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge,

2002)
48. G.B. Ermentrout, J. Rinzel, Analysis of neural excitability and oscillations, in Methods in

Neuronal Modelling: From Synapses to Networks”, ed. by C. Koch, I. Segev (MIT Press,
Cambridge, 1989)

49. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35,
193 (1981)

50. S.A. Chin, C.R. Chen, Forward symplectic integrators for solving gravitational few-body
problems. Celest. Mech. Dyn. Astron. 91, 301 (2005)

51. P.A. Wiegert, K.A. Innanen, An asteroidal companion to the Earth. Nature 387, 685 (1997)
52. M. Connors, P. Chodas, S. Mikkola, Discovery of an asteroid and quasi-satellite in an Earth-

like horseshoe orbit. Meteorit. Planet. Sci. 37, 1435 (2002)
53. D.B. Taylor, Horseshoe periodic orbits in the restricted problem of three bodies for a Sun–

Jupiter mass ratio. Astron. Astrophys. 103, 288 (1981)
54. P.W. Sharp, Comparisons of integrators on a diverse collection of restricted three-body test

problems. IMA J. Numer. Anal. 24, 557 (2004)
55. E. Barrabés, S. Mikkola, Families of periodic horseshoe orbits in the restricted three-body

problem. Astron. Astrophys. 432, 1115 (2005)
56. B. Saltzman, Finite amplitude free convection as an initial value problem, I. J. Atmos. Sci. 19,

329 (1962)
57. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics, 3rd edn.

(Butterworth-Heinemann, Oxford, 2003)
58. S. Bleher, E. Ott, C. Grebogi, Routes to chaotic scattering. Phys. Rev. Lett. 63, 919 (1990)
59. M. Stix, The Sun. An Introduction, 2nd edn. (Springer, Berlin, 2002)
60. G.R. Caughlan, W.A. Fowler, Thermonuclear reaction rates V. At. Data Nucl. Data Tables

40, 283 (1988). The data collection is also accessible at the website http://www.phy.ornl.gov/
astrophysics/data/cf88/

61. C. Angulo et al., A compilation of charged-particle induced thermonuclear reaction rates.
Nucl. Phys. A 656, 3 (1999). See also the website of the NACRE Collaboration. http://
pntpm.ulb.ac.be/nacre.htm

62. E.L. Schatzman, F. Praderie, The Stars (Springer, Berlin, 1993)
63. J.R. Field, R.M. Noyes, Oscillations in chemical systems, IV: limit cycle behavior in a model

of a real chemical reaction. J. Chem. Phys. 60, 1877 (1974)
64. C. Störmer, Sur les trajectoires des corpuscules électrisés. Arch. Sci. Phys. Nat., Genève 24,

5–18 (1907). 113–158, 221–247
65. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

Chapter 8
Boundary-Value Problems for ODE

In this chapter we discuss methods for the solution of problems with ordinary dif-
ferential equations, where we require the solution to satisfy the equation within the
definition domain, and boundary conditions at its edges. We seek, for example, the
function y that solves the equation

y′′ = f
(
x, y, y′)

for x ∈ R = [a, b], with mixed boundary conditions

α0y(a) − α1y
′(a) = α, |α0| + |α1| �= 0,

β0y(b) + β1y
′(b) = β, |β0| + |β1| �= 0,

where the coefficients satisfy α0α1 ≥ 0, β0β1 ≥ 0, and |α0| + |β0| �= 0. When does
the corresponding solution exist at all? If f is continuous and continuously differ-
entiable on R, and if it satisfies the Lipschitz condition (7.4) on R for both y and
y′, and if for some M > 0 we have ∂f/∂y > 0 and |∂f/∂y′| ≤ M , and, finally, if
α0α1 ≥ 0 and β0β1 ≥ 0, such a boundary-value problem has a unique solution [1].
In the simplified case when f is linear in y and y′,

−y′′ + p(x)y′ + q(x)y = r(x),

where p, q , and r are continuous on R, for each α and β a unique solution exists pre-
cisely when q(x) > 0 for each x ∈ R. Sometimes we impose additional conditions
that the solution should fulfill within the domain R. The corresponding existence
theorems can be found in [2, 3].

Uniqueness of solutions of non-linear problems is much harder to fathom than
in linear problems: a seemingly simple problem y′′ = −δey with conditions y(0) =
y(1) = 0 (Gelfand–Bratu equation of diffusion-reaction kinetics in a layer) has two
solutions for 0 < δ < δc ≈ 3.51 while the solution does not exist for δ > δc. For the
spherical diffusion-reaction problem y′′ + (2/x)y′ = φ2y + exp[γβ(1 − y)/(1 +
β(1 − γ))] with conditions y ′(0) = 0, y(1) = 1 at least 15 solutions are known to
exist. How do we numerically compute all of them?

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_8, © Springer-Verlag Berlin Heidelberg 2012

401

402 8 Boundary-Value Problems for ODE

8.1 Difference Methods for Scalar Boundary-Value Problems

In developing difference schemes for boundary-value problems we utilize our
knowledge from the methods used for initial-value problems (Chap. 7). Our cor-
nerstone will be the linear problem with Dirichlet boundary conditions,

Ly = −y′′ + p(x)y ′ + q(x)y = r(x), y(a) = α, y(b) = β, (8.1)

where L is a linear second-order differential operator and where p, q , and r are con-
tinuous on [a, b]. This is a classical two-point boundary-value problem in which the
boundary conditions are expressed at two points (x = a and x = b). More general
multi-point problems with “boundary” conditions in the form

∑Nb
j=1 αjy(ξj) = α at

a = ξ1 < ξ2 < · · · < ξNb = b, are discussed in [2, 3]. To the interval [a, b] we assign
an equidistant mesh a = x0, x1, . . . , xN = b, where

xj = a + jh, j = 0,1, . . . ,N, h = (b − a)/N. (8.2)

Next, we discretize the derivatives and function values in the operator L, and de-
note y(xj) = yj . For example, the first derivative can be discretized by the non-
symmetric (one-sided) differences with the discretization error O(h),

y′
j = yj+1 − yj

h
− h

2
y′′(ξ), (8.3)

y′
j = yj − yj−1

h
+ h

2
y′′(ξ), (8.4)

where ξ is some point positioned between the extreme points appearing in the for-
mula. The order of the error can be improved by using symmetric (central) or non-
symmetric differences that include more mesh points, for example:

y′
j = yj+1 − yj−1

2h
− h2

6
y′′′(ξ), (8.5)

y′
j = −yj+2 + 8yj+1 − 8yj−1 + yj−2

12h
+ h4

30
y(5)(ξ), (8.6)

y′
j = −yj+2 + 4yj+1 − 3yj

2h
+ h2

3
y′′′(ξ), (8.7)

y′
j = 3yj − 4yj−1 + yj−2

2h
+ h2

3
y′′′(ξ). (8.8)

Expressions (8.5) and (8.6) are symmetric, but at the boundary points x0 and xN

they require us to access the points x−1 and xN+1 (or even x−2 and xN+2) beyond
the mesh, and write additional difference equations for them. Expressions (8.7)
and (8.8) are non-symmetric, but at the boundaries they can be applied directly.
One-sided differences may have more natural physical backgrounds: we prefer to
differentiate in the “upwind” direction from which the information is arriving, for

8.1 Difference Methods for Scalar Boundary-Value Problems 403

example, facing the incoming wave. We shall encounter similar choices in the dis-
cretization of hyperbolic partial differential equations in Chap. 9.

The second derivative may be approximated by the central difference

y′′
j = yj+1 − 2yj + yj−1

h2
− h2

12
y(4)(ξ).

We use uj to denote the approximate solution at xj . By using the central difference
for the first derivative we obtain the difference scheme

Lhuj = −uj+1 − 2uj + uj−1

h2
+ p(xj)

uj+1 − uj−1

2h
+ q(xj)uj = r(xj), (8.9)

where Lh is a second-order difference operator. The scheme is applicable for j =
1,2, . . . ,N − 1, and the Dirichlet boundary conditions fix the remaining two values
u0 = α and uN = β . We collect the solution components u1, u2, . . . , uN−1 in the
vector u = (u1, u2, . . . , uN−1)

T, and rewrite the difference equation in the matrix
form Au = r , where

A =

⎛

⎜⎜⎜⎜⎜
⎝

b1 c1 0
a2 b2 c2 0

. . .
. . .

. . .

0 aN−2 bN−2 cN−2
0 aN−1 bN−1

⎞

⎟⎟⎟⎟⎟
⎠

, r =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1
2h2r(x1) − a1α

1
2h2r(x2)
...
1
2h2r(xN−2)

1
2h2r(xN−1) − cN−1β

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

The matrix A is tridiagonal, with the matrix elements

aj = −1

2

[
1 + h

2
p(xj)

]
, bj = 1 + h2

2
q(xj), cj = −1

2

[
1 − h

2
p(xj)

]
.

In the case of mixed boundary conditions, α0y(a) − α1y
′(a) = α, we can take the

one-sided difference (8.7) and use it to approximate the boundary condition as

α0u0 − α1
−u2 + 4u1 − 3u0

2h
= α.

This gives us the expression

u0 = α1

2hα0 + 3α1
(4u1 − u2) + 2hα

2hα0 + 3α1
,

which we insert in (8.9) at j = 1. When the coefficients in front of u1 and u2 are
collected and the remainder is put to the right side of the equation, we again find
a matrix equation for u with a tridiagonal matrix A, in which only the first row is
modified:

b1 → b1 + 4α1a1

2hα0 + 3α1
,

404 8 Boundary-Value Problems for ODE

c1 → c1 − α1a1

2hα0 + 3α1
,

1

2
h2r(x1) − a1α → 1

2
h2r(x1) − 2ha1α

2hα0 + 3α1
,

where the denominators should satisfy 2hα0 + 3α1 �= 0.

8.1.1 Consistency, Stability, and Convergence

The order of the numerical error of difference schemes for boundary-value problems
is defined by analogy to initial-value problems (Sect. 7.4). The discretization error
at xj is τj = Lhy(xj) − Ly(xj). For the scheme (8.9) this means

τj = −
[
uj+1 − 2uj + uj−1

h2
− y′′(xj)

]
+ p(xj)

[
uj+1 − uj−1

2h
− y′(xj)

]

= −h2

12

[
y(4)(ξ) − 2p(xj)y

′′′(η)
]=O

(
h2), (8.10)

where ξ and η are points from the interval [xj−1, xj+1]. The scheme (8.9) is consis-
tent with the differential equation (8.1): for all functions y with a continuous second
derivative y′′ we observe τj → 0 when h → 0. For functions y with a continuous
fourth derivative on [a, b] the difference operator Lh approximates the differential
operator L to second order.

The notion of stability, however, needs to be introduced in a different manner
than for initial-value problems. We say that the difference operator Lh is stable for
some small enough h if a positive constant � can be found such that

|uj | ≤ �
[
max

{|u0|, |uN |}+ max
1≤j≤N−1

|Lhuj |
]
. (8.11)

If on the interval [a, b] the functions p and q can be bounded by |p(x)| ≤ P+
and 0 < Q− ≤ q(x) ≤ Q+, it can be shown that the scheme (8.9) is stable if we
set h ≤ 2/P+. Then (8.11) holds with the constant � = max{1,1/Q−} [1]. If, in
addition, y is four times continuously differentiable on [a, b], the stability theorem
also provides a useful error estimate (0 ≤ j ≤ N):

∣
∣uj − y(xj)

∣
∣≤ �

h2

12

[
max

a≤x≤b

∣
∣y(4)(x)

∣
∣+ 2P+ max

a≤x≤b

∣
∣y′′′(x)

∣
∣
]
. (8.12)

As in initial-value problems, we define convergence of difference schemes for
boundary-value problems: a stable difference scheme that is consistent with the dif-
ferential equation to order hp , is convergent at the same order, thus

h → 0 ⇒ max
0≤j≤N

∣
∣uj − y(xj)

∣∣→ 0.

8.1 Difference Methods for Scalar Boundary-Value Problems 405

Increasing the Order by Extrapolation There is a lovely way to use the second-
order difference scheme (8.9) and obtain the result which has fourth-order precision.
We first solve the boundary-value problem on a mesh with spacings h = (b − a)/N ,
yielding the approximate solution u(h). Then we use the scheme again, but on a
mesh with spacings half as large, h/2 = (b − a)/(2N), and get the values u(h/2).
The improved approximation for the values y(x) on the mesh with spacings h is
then

u
(h/2,h)
j = 4

3
u

(h/2)

2j − 1

3
u

(h)
j , j = 0,1, . . . ,N. (8.13)

The approximation (8.13) is of order four,

∥∥u(h/2,h) − y
∥∥= O

(
h4).

By further halvings even higher orders can be attained (see Sect. 8.2).

8.1.2 Non-linear Scalar Boundary-Value Problems

Solving non-linear boundary-value problems is more demanding than solving linear
ones. The discretization of the differential equation itself is usually easy: the main
work to be done is the solution of the system of non-linear equations that follows
from this discretization. We discuss boundary-value problems of the form

Ly = −y′′ + f
(
x, y, y′)= 0 (8.14)

on the interval [a, b] with boundary conditions y(a) = α and y(b) = β . Assume that
f is (once) continuously differentiable with respect to y and y′, and that

0 < Q− ≤ ∂f

∂y
≤ Q+,

∣∣∣∣
∂f

∂y′

∣∣∣∣≤ P+,

for some positive constants Q−, Q+, and P+. The difference approximation of the
boundary-value problem (8.14) is

Lhuj = −uj+1 − 2uj + uj−1

h2
+ f

(
xj , uj ,

uj+1 − uj−1

2h

)
= 0, (8.15)

and it applies for j = 1,2, . . . ,N − 1, while the boundary conditions again dictate
u0 = α and uN = β . With the above assumptions for ∂f/∂y and ∂f/∂y′, and by
choosing h ≤ 2/P+ the difference scheme (8.15) is stable, is consistent with the
differential equation to order O(h2), and has the error estimate (8.12) as for the
linear scalar problem.

Equation (8.15) in matrix form represents a system of non-linear equations. We
solve it by explicit iteration [1] or by using Newton’s method in which at each step

406 8 Boundary-Value Problems for ODE

a matrix equation needs to be solved. The explicit iteration is

u
(n+1)
j = 1

1 + ω

[
1

2

(
u

(n)
j+1 + u

(n)
j−1

)+ ωu
(n)
j − h2

2
f

(
xj , u

(n)
j ,

u
(n)
j+1 − u

(n)
j−1

2h

)]
,

where j = 1,2, . . . ,N − 1, and the boundary values are u0 = α and uN = β . We
start the iteration with some initial approximation u(0), and the speed of convergence
is determined by the parameter ω. By choosing ω ≥ 1

2h2Q+ the iteration converges
for any initial approximation [1].

In order to use the Newton method, we rewrite (8.15) as F (u) = 0, where
F = (F1(u),F2(u), . . . ,FN−1(u))T with Fj (u) = 1

2h2(Lhuj). For the system of
equations F (u) = 0, Newton’s method is an iteration to the fixed point

u(n+1) = G
(
u(n)

)
,

where

G(u) = u − [J (u)
]−1

F (u)

is the iteration function. Here J (u) is the Jacobi matrix which is tridiagonal,

J (u) = ∂F (u)

∂u
=

⎛

⎜⎜⎜⎜⎜
⎝

B1(u) C1(u)

A2(u) B2(u) C2(u)

. . .
. . .

. . .

AN−2(u) BN−2(u) CN−2(u)

AN−1(u) BN−1(u)

⎞

⎟⎟⎟⎟⎟
⎠

,

with the matrix elements

Aj(u) = −1

2

[
1 + h

2

∂f

∂y′

(
xj , uj ,

uj+1 − uj−1

2h

)]
,

Bj (u) = 1 + h2

2

∂f

∂y

(
xj , uj ,

uj+1 − uj−1

2h

)
,

Cj (u) = −1

2

[
1 − h

2

∂f

∂y′

(
xj , uj ,

uj+1 − uj−1

2h

)]
.

(The boundary conditions u0 = α and uN = β also enter through the quantities
B1(u), C1(u), AN−1(u), BN−1(u), F1(u), and FN−1(u).) In each step of the New-
ton iteration we are solving a system of linear equations

J
(
u(n)

)
u(n) = −F

(
u(n)

)
, (8.16)

and the solution u(n) of this system gives us the next approximation of the solution

u(n+1) = u(n) + u(n), n = 0,1,2, (8.17)

8.1 Difference Methods for Scalar Boundary-Value Problems 407

We repeat the iteration until the difference between subsequent approximations (as
measured in some norm) drops below the specified tolerance.

Especially in the cases where the boundary-value problem is expected to have
multiple solutions, one should choose the initial approximation u(0) carefully. We
try to exploit a known symmetry property of the equation or boundary conditions,
or perhaps the asymptotic behavior of a similar equation. The initial approximation
should at least satisfy the boundary conditions. It also makes sense to precede the
Newton method by a few cycles of the explicit iteration.

Example A problem of the form (8.14) is the Gelfand–Bratu equation

y′′ = −δey, 0 < x < 1, 0 < δ < 3.51, (8.18)

with boundary conditions y(0) = y(1) = 0. To solve it, we use Newton’s method
and the approximation (8.15), where f (x, y, y′) = −δey . The function f depends
only on y, so the off-diagonal elements of the Jacobi matrix are trivial:

Aj(u) = −1

2
, Bj (u) = 1 + h2

2

(−δeuj
)
, Cj (u) = −1

2
.

The components of the right side of (8.16) for j = 1,2, . . . ,N − 1 are

Fj (u) = 1

2
h2(Lhuj) = h2

2

[
−uj+1 − 2uj + uj−1

h2
− δeuj

]
.

The boundary conditions, which do not change in (8.16–8.17), are u0 = uN = 0. We
start the iteration with the initial approximation y(x) = μx(1 − x),

uj = μxj (1 − xj), j = 0,1, . . . ,N,

where μ is a positive real constant. For 0 < δ < 3.51 the Bratu–Gelfand problem has
two solutions (Problem 8.9.1) and by using different values of μ Newton’s iteration
may bounce between these two solutions, or it may not converge at all (Fig. 8.1
(left)). The dependence of the norm of the last update in the iteration and the differ-
ence between the numerical and analytic solution on the length of the subintervals
is shown in Fig. 8.1 (right) in the case of δ = 1.

When we solve non-linear boundary-value problems by simple iteration, New-
ton’s method, or some other iterative method, we always obtain the numerical solu-
tion after a series of steps. During the iteration, the solution changes throughout the
domain and relaxes to the true solution (the sequence of curves 1, 2, 3, 4 in Fig. 8.4
(left)); only the boundary conditions remain the same, e.g. as in the Dirichlet case
y(a) = α and y(b) = β in that figure. Section 8.3 on shooting methods will show us
how to obtain the solution in an altogether different manner.

408 8 Boundary-Value Problems for ODE

Fig. 8.1 Convergence of the Newton method for the Gelfand–Bratu problem. [Left] The itera-
tion for different values of μ in the initial approximation for y(x) and δ converges to the first
(gray areas) or second solution (black areas). In white areas the iteration does not converge or
the solution type cannot be ascertained within the specified tolerance. [Right] The norm of the last
solution update u and the differences between the numerical and analytic solution as a function
of subinterval length h, for δ = 1

8.2 Difference Methods for Systems of Boundary-Value
Problems

A large class of boundary-value problems can be written in the form of a system of
M (not necessarily linear) first-order differential equations

y′ = f (x,y), a < x < b, (8.19)

where y ∈ R
M and {fi}Mi=1 are scalar functions (components of f : RM+1 → R

M)
just as in (7.2). The general form of the boundary condition is

g
(
y(a),y(b)

)= 0.

As in the scalar boundary-value problems we discretize the interval [a, b] on a mesh
with points a = x0, x1, . . . , xN = b. We collect the approximate solutions in the
M(N + 1)-dimensional vector u = (uT

0 ,uT
1 , . . . ,uT

N)T, in which each component
uj (j = 0,1, . . . ,N) is a M-dimensional vector.

There are many ways [1] to discretize the derivatives and the arguments of the
function f . The difference approximation of (8.19) with the trapezoidal formula for
f is

Lhuj = uj+1 − uj

h
− 1

2

[
f (xj+1,uj+1) + f (xj ,uj)

]= 0,

where j = 0,1, . . . ,N − 1, and the boundary condition has the form

g(u0,uN) = 0.

8.2 Difference Methods for Systems of Boundary-Value Problems 409

We write the discretized equation and boundary condition as a system of non-linear
equations F (u) = 0, where F = (F T

0 (u),F T
1 (u), . . . ,F T

N−1(u),gT(u0,uN))T. The
first N components of F are given by F j (u) = −h(Lhuj). The system can again
be solved by Newton’s iteration. At each step of (8.16) we solve

J
(
u(n)

)
u(n) =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

S0 R0

S1 R1

S2 R2

. . .
. . .

SN−1 RN−1

Ba Bb

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

u
(n)
0

u
(n)
1

u
(n)
2

...

u
(n)
N−1

u
(n)
N

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

q
(n)
0

q
(n)
1

q
(n)
2

...

q
(n)
N−1

β(n)

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

for u(n) and use it to compute the next approximation u(n+1) by (8.17). The Ja-
cobi matrix has dimensions M(N + 1) × M(N + 1) and has a characteristic block
structure. It consists of M × M matrices determined by the difference scheme and
the boundary condition:

Sj = I + h

2

∂f

∂y

(
xj ,u

(n)
j

)
, (8.20)

Rj = −I + h

2

∂f

∂y

(
xj+1,u

(n)
j+1

)
, (8.21)

Ba = ∂g(u,v)

∂u
, Bb = ∂g(u,v)

∂v
with u = u

(n)
0 , v = u

(n)
N , (8.22)

while the right side of the equation is given by

q
(n)
j = (u(n)

j+1 − u
(n)
j

)− h

2

[
f
(
xj+1,u

(n)
j+1

)+ f
(
xj ,u

(n)
j

)]
, (8.23)

β(n) = −g
(
u

(n)
0 ,u

(n)
N

)
.

(As an exercise, repeat the derivation above with a trapezoidal scheme in which y′
and f are computed at xj−1 and xj instead of xj and xj+1.)

Example The second-order Gelfand–Bratu problem (see (8.18)) can be solved by
the above method when it is written as a system of M = 2 first-order equations:

y′ = f (x,y), y =
(

u0
u1

)
, f (x,y) =

(
u1

−δeu0

)
.

We use u0,j and u1,j to denote the values of the first and second component, re-
spectively, of the numerical solution uj at xj . The M × M = 2 × 2 matrices (8.20)

410 8 Boundary-Value Problems for ODE

Fig. 8.2 The structure of the Jacobi matrix for systems of non-linear boundary-value problems
for M = 2, N = 6. The symbols ◦ denote the elements originating in the difference scheme, while
the symbols × denote the elements fixed by the boundary conditions. Matrices of the form (a)
occur with unseparated boundary conditions g(u0,uN) = 0. For improved numerical efficiency,
one could attempt to separate the boundary conditions as g1(y(a)) = 0 and g2(y(b)) = 0, leading
to the banded structure (b)

and (8.21) appearing in the Jacobi matrix are

Sj =
(

1 h
2

−h
2 δ exp(u

(n)
0,j) 1

)

, Rj =
(

−1 h
2

−h
2 δ exp(u

(n)
0,j+1) −1

)

.

The right side of the Newton system is given by (8.23),

q
(n)
j =

⎛

⎝
u0,j+1 − u0,j − h

2 [u1,j+1 + u1,j]
u1,j+1 − u1,j + h

2 [δ exp(u
(n)
0,j+1) + δ exp(u

(n)
0,j)]

⎞

⎠ .

Equation (8.22) tells us that the boundary condition g(u0,uN) = 0 is

Ba =
(

1 0
0 0

)
, Bb =

(
0 0
1 0

)
, β(n) = −g

(
u

(n)
0 ,u

(n)
N

)=
(

0
0

)
.

We choose an initial approximation u(0) and run the iteration (8.16)–(8.17).

The Jacobi matrix has a deficiency which implies a higher numerical cost of solv-
ing the system of equations: the matrix Ba corresponding to the boundary condition
at x = a appears in the bottom left corner (Fig. 8.2(a)). This form occurs because
the boundary conditions are not separated, g(u0,uN) = 0 (or Bay(a)+Bby(b) = β

in the linear case). Problems with unseparated conditions can be rephrased as prob-
lems with separated conditions g1(y(a)) = 0 and g2(y(b)) = 0 (or B1y(a) = β1
and B2y(b) = β2 in the linear case), yielding a nicer form of the Jacobi matrix
(Fig. 8.2(b)). The price for this is the increase in the number of differential equa-
tions. Details on the separation of boundary conditions can be found in [2, 3].

8.2 Difference Methods for Systems of Boundary-Value Problems 411

8.2.1 Linear Systems

We made an exception and treated the more general class of non-linear systems first.
Linear boundary-value problems with M first-order equations

y′ = A(x)y + q(x), a < x < b, (8.24)

and boundary conditions

Bay(a) + Bby(b) = β,

are just their special cases. Two simple difference schemes to solve linear systems
of the form (8.24) [2, 3] are the trapezoidal scheme

uj+1 − uj = h

2

[
A(xj+1)uj+1 + A(xj)uj

]+ h

2
[qj+1 + qj]

and the midpoint scheme

uj+1 − uj = h

2
A(xj+1/2)(uj+1 + uj) + hqj+1/2,

applicable at j = 1,2, . . . ,N − 1, while the boundary conditions in both cases are
Bau0 + BbuN = β . When the schemes are written in matrix form, we obtain a
matrix with the same structure as in the Jacobi matrix for the non-linear case,

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

S0 R0
S1 R1

S2 R2
. . .

. . .

SN−1 RN−1
Ba 0 Bb

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

u0
u1
u2
...

uN−1
uN

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

q0
q1
q2
...

qN−1
β

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

, (8.25)

where the M × M matrices Rj and Sj and vectors qj (dimension M) are listed in
Table 8.1. The solution vector u and the vector (qT,βT)T have dimensions M ×
(N + 1). Thus, the solutions of linear boundary-value problems can be found by
solving systems of linear equations: there is no need for iterative methods.

8.2.2 Schemes of Higher Orders

In order to improve the convergence for systems of boundary-value problems we try
to increase the order of the difference scheme. For systems of the form

y′ = f (x,y),

412 8 Boundary-Value Problems for ODE

Table 8.1 The elements of the matrix A and the vector at the right of (8.25) for the trapezoidal
and midpoint scheme for the solution of the linear system y ′ = Ay + q . The M × M matrices Ba

and Bb are given by the boundary condition Bay(a) + Bby(b) = β

Trapezoidal scheme Midpoint scheme

Sj = I + h
2 A(xj) Sj = I + h

2 A(xj+1/2)

Rj = −I + h
2 A(xj+1) Rj = −I + h

2 A(xj+1/2)

qj = − h
2 [q(xj+1) + q(xj)] qj = −hq(xj+1/2)

where f is easy to differentiate, a higher-order scheme can be found by replacing
f on each subinterval [xj , xj+1] by its Hermite interpolant of order p = 2k, and
integrating the system y′ = f (x,y) on this subinterval. We get a scheme of order
p, for which the function f and its derivatives up to order k − 1 at xj and xj+1 are
needed (for details see [2, 3]). For example, at k = 2 we obtain

uj+1 − uj

h
= 1

2

[
f (xj ,uj) + f (xj+1,uj+1)

]+ h

12

[
f ′(xj ,uj) − f ′(xj+1,uj+1)

]
,

which is of fourth-order and requires the computation of the total derivative

f ′(xj ,uj) =
[
∂f

∂x
+ ∂f

∂y
f

]

(xj ,uj)

.

Higher orders can also be attained by extrapolating the mesh spacing h, in anal-
ogy to the scalar case (8.13). The approximation of a higher order is obtained
by solving the boundary-value problem on a sequence of ever finer meshes (ever
smaller spacings h) and constructing linear combinations of solutions from the in-
dividual meshes such that the discretization errors cancel out to an extent as large as
possible. For example, we solve the boundary-value problem on two meshes with
spacings h and h/2, and form the combination of the solutions

u
(h/2,h)
j = 4

3
u

(h/2)

2j − 1

3
u

(h)
j . (8.26)

The finer mesh can also have a spacing of h/3, and we form

u
(h/3,h)
j = 9

8
u

(h/3)

3j − 1

8
u

(h)
j . (8.27)

Either combination is fourth-order, ‖u(h/2,h) −y‖ ∼ ‖u(h/3,h) −y‖ = O(h4). More-
over, the approximations u(h/2,h) and u(h/3,h) can be merged in

u
(h/3,h/2)
j = 9

5
u

(h/3,h)
j − 4

5
u

(h/2,h)
j , (8.28)

8.3 Shooting Methods 413

Fig. 8.3 [Left] Convergence of the numerical approximation to the exact solution of
y′′ − α(2x − 1)y′ − 2αy = 0 with boundary conditions y(0) = y(1) = 1 when the mesh spac-
ing is decreased and higher-order methods are used. The basic method (8.9) is of order O(h2), the
approximations (8.26) and (8.27) are O(h4), and (8.28) is O(h6). We should not be oblivious to
the possibility of round-off errors at large N (region to the right of the arrow)! [Right] Numerical
cost of the approximations

resulting in a sixth-order approximation, ‖u(h/3,h/2) − y‖ = O(h6). Of course, for-
mulas (8.26), (8.27), and (8.28) are also applicable to scalar problems.

A gradual fragmentation of the interval in order to increase the numerical pre-
cision (Fig. 8.3) obviously requires additional computation time. But it also allows
us to obtain reliable local error estimates which aid us in determining the conver-
gence criteria or in choosing the mesh size in regions where the numerical error is
expected to increase. Details can be found in [2, 3].

8.3 Shooting Methods

The essence of shooting methods can be illustrated by the scalar linear problem

y′′ + p(x)y′ + q(x)y = r(x), a ≤ x ≤ b,

with Dirichlet boundary conditions

y(a) = α, y(b) = β.

Assume that this problem has a unique solution y(x), which we try to find by inte-
grating the initial-value problem with some values y(a) and y′(a) towards the right
boundary of the interval [a, b]. The value y(a) = α is given by the boundary condi-
tion, while the slope y′(a) is unknown. Let us guess this slope, the “shooting angle”,
y′(a) = s1, and compute the solution of the differential equation up to x = b. We
obtain the solution y1(x) (for example, curve 1 in Fig. 8.4 (right)) which in general

414 8 Boundary-Value Problems for ODE

Fig. 8.4 [Left] The principle of a relaxation difference method. The numerical solution with an
initial approximation satisfying the boundary conditions converges to the exact solution after some
number of steps, maintaining y(a) = α and y(b) = β at all times. [Right] The basic idea of the
shooting method. We integrate the differential equation with the initial value y(a) = α and slope
y′(a), and keep on changing this slope until the second boundary condition y(b) = β is satisfied
to some precision

differs from the exact solution y(x), since it does not satisfy the second boundary
condition, y1(b) �= y(b) = β . Let us guess another angle, say, y′(a) = s2, which
corresponds to the solution y2(x) that in general also differs from the exact one, as
y2(b) �= y(b) and also y2(b) �= y1(b). Since the problem is linear, the true solution
is the linear combination

y(x) = (1 − θ)y1(x) + θy2(x),

where

θ = β − y1(b)

y2(b) − y1(b)
.

(Mathematicians call this a convex combination of y1 and y2.) A linear boundary-
value problem can thus be solved in just two steps. Figure 8.4 (right) shows two
approximate solutions “1” and “2” from which the final one (“4”) is computed.

8.3.1 Second-Order Linear Equations

Let us approach the solution of linear boundary-value problems by shooting meth-
ods in more generally. We follow [1] and discuss equations of the form

Ly = −y′′ + p(x)y′ + q(x)y = r(x), a ≤ x ≤ b, (8.29)

with the boundary conditions

a0y(a) − a1y
′(a) = α, a0a1 ≥ 0, |a0| + |a1| �= 0,

b0y(b) + b1y
′(b) = β, b0b1 ≥ 0, |b0| + |b1| �= 0,

as well as |a0| + |b0| �= 0. In addition to the continuity of the functions p, q , and
r on [a, b] we require that the corresponding homogeneous problem Ly = 0 with
boundary conditions a0y(a) − a1y

′(a) = 0 and b0y(b) + b1y
′(b) = 0 has only a

8.3 Shooting Methods 415

trivial solution, y(x) = 0. Then the problem (8.29) has a unique solution [1]. Define
the auxiliary function y(1) that solves the initial-value problem

Ly(1) = r(x), y(1)(a) = −αc1, y(1)′(a) = −αc0,

and the function y(2) that solves the corresponding homogeneous problem

Ly(2) = 0, y(2)(a) = a1, y(2)′(a) = a0,

where c0 and c1 are any such constants that a1c0 − a0c1 = 1. The function

y(x) = y(x; s) = y(1)(x) + sy(2)(x) (8.30)

obviously satisfies the left boundary condition a0y(a)−a1y
′(a) = α(a1c0 −a0c1) =

α and also solves (8.29) if some s can be found—a sort of generalized “shooting
angle”—such that the boundary condition at the right,

φ(s) = b0y(b; s) + b1y
′(b; s) − β = 0,

is also satisfied. We insert (8.30) at x = b in this expression and realize that the
equation for φ(s) is linear in the parameter s, with the solution

s = β − b0y
(1)(b) − b1y

(1)′(b)

b0y(2)(b) + b1y(2)′(b)
. (8.31)

(This expression has a meaning if the denominator differs from zero. If it were
zero, y(2) would be a non-trivial solution of the homogeneous problem Ly = 0,
which is excluded by assumption.) Numerically we solve the initial-value problems
Ly(1) = r(x) and Ly(2) = 0 as two decoupled systems of two first-order differential
equations,

(
y(1)

v(1)

)′
=
(

v(1)

pv(1) + qy(1) − r

)
,

y(1)(a) = −αc1,

v(1)(a) = −αc0,
(8.32)

(
y(2)

v(2)

)′
=
(

v(2)

pv(2) + qy(2)

)
,

y(2)(a) = a1,

v(2)(a) = a0.
(8.33)

These systems can be solved by any method for the solution of initial-value prob-
lems on the chosen mesh, e.g. (8.2). We denote the numerical solutions of (8.32)
and (8.33) at xj (mesh functions) by ỹ

(1)
j , ṽ

(1)
j , ỹ

(2)
j in ṽ

(2)
j . At x = a we apply the

initial conditions

ỹ
(1)
0 = −αc1, ṽ

(1)
0 = −αc0, ỹ

(2)
0 = a1, ṽ

(2)
0 = a0,

and obtain the solution and its derivative at arbitrary xj by the combinations

ỹj = ỹ
(1)
j + sỹ

(2)
j , (8.34)

416 8 Boundary-Value Problems for ODE

ṽj = ṽ
(1)
j + sṽ

(2)
j , (8.35)

where

s = β − b0ỹ
(1)
N − b1ṽ

(1)
N

b0ỹ
(2)
N + b1ṽ

(2)
N

. (8.36)

Note that the approximate solution of the boundary-value problem is obtained only
after both initial-value problems have been solved on the whole domain: in con-
structing (8.34) and (8.35) we need the parameter (8.36) that can be computed only
when the mesh functions at j = N become known.

For linear problems of the form (8.29) with smooth functions p, q , and r the
procedure described above should work well: if a stable integration method with
an error of order O(hp) is used to solve the initial-value problem, the errors of the
solution ỹ and its derivative ṽ are also of order O(hp), thus

∣∣̃yj − y(xj)
∣∣= O

(
hp
)
,

∣∣̃vj − y′(xj)
∣∣= O

(
hp
)
.

Still, this “naive” shooting method may lead to large numerical errors: why they
occur and how we try to avoid them is discussed in Sect. 8.3.5.

8.3.2 Systems of Linear Second-Order Equations

Let us generalize this approach to systems of M linear second-order equations

Ly = −y′′ + P(x)y ′ + Q(x)y = r(x), a ≤ x ≤ b, (8.37)

where P and Q are M × M matrices whose elements are continuous in x on [a, b],
while y and r are M-dimensional vectors. Let the boundary conditions be

A0y(a) − A1y
′(a) = α, detA0 �= 0,

B0y(b) + B1y
′(b) = β,

where A0, A1, B0, and B1 are constant matrices, and α and β are constant vectors.
We follow the steps from the scalar case (Sect. 8.3.1) and introduce a M-component
vector function y(0) that solves the initial-value problem

Ly(0) = r(x), A0y
(0)(a) − A1y

(0)′(a) = α, y(0)′(a) = 0. (8.38)

Define the M-component vector functions y(m)(x), m = 1,2, . . . ,M , that solve the
system of M homogeneous initial-value problems

Ly(m) = 0, A0y
(m)(a) − A1y

(m)′(a) = 0, y(m)′(a) = I (m), (8.39)

8.3 Shooting Methods 417

where I (m) is the unit vector with the value 1 at the mth position. We arrange the
solutions of the system (8.39) in a M × M matrix,

Y(x) = (y(1)(x),y(2)(x), . . . ,y(M)(x)
)
.

The solution of the original boundary-value problem (8.37) is then

y(x) = y(x; s) = y(0)(x) + Y(x)s = y(0)(x) +
M∑

m=1

smy(m)(x),

where the vector s = (s1, s2, . . . , sM)T is the root of the equation

φ(s) = B0y(b; s) + B1y
′(b; s) − β = 0.

This equation is linear in the parameter s that can be computed by solving

[
B0Y (b) + B1Y

′(b)
]
s = β − B0y

(0)(b) − B1y
(0)′(b)

(compare this to (8.31) and the corresponding commentary).
We compute the solution of (8.37) analogously to the scalar case. On the uniform

mesh (8.2) we integrate the initial-value problems (8.38) and (8.39), and obtain the
mesh functions ỹ

(0)
j , ṽ

(0)
j , ỹ

(m)
j , and ṽ

(m)
j , m = 1,2, . . . ,M , at xj . The approxima-

tions for the function y(x) and its derivative y′(x) are

ỹj (s) = ỹ
(0)
j +

M∑

m=1

smỹ
(m)
j , (8.40)

ṽj (s) = ṽ
(0)
j +

M∑

m=1

smṽ
(m)
j , (8.41)

where s is the root of the equation

φ(s) = B0ỹN(s) + B1̃vN(s) − β = 0.

We should stress again that one needs to solve the (vector) initial-value prob-
lem (8.38) and the system of M (vector) initial-value problems (8.39): this gives us
the (vector) parameter s that we use to construct the final solution of the boundary-
value problem (8.37) by using (8.40) and (8.41). If the initial-value problems are
integrated by a method with the error of order O(hp), the error of the solution (or
its derivative) of the boundary-value problem will be

∥∥ỹj (s) − y(xj)
∥∥= O

(
hp
)
,

∥∥̃vj (s) − y′(xj)
∥∥= O

(
hp
)
.

418 8 Boundary-Value Problems for ODE

8.3.3 Non-linear Second-Order Equations

Solving non-linear scalar boundary-value problems of the form

y′′ = f
(
x, y, y′), a ≤ x ≤ b,

with the boundary conditions

a0y(a) − a1y
′(a) = α, a0, a1 ≥ 0,

b0y(b) + b1y
′(b) = β, b0, b1 ≥ 0, a0 + b0 > 0,

allows us to apply the tools we learned in studying linear problems. With minor
modifications, this subsection also closely follows [1]. Assume that the function
f (x,u, v) is continuous in x on the interval [a, b] and is uniformly Lipschitz in u

and v. If we further assume that

∂f

∂u
> 0,

∣
∣
∣
∣
∂f

∂v

∣
∣
∣
∣≤ C, C > 0,

such a boundary-value problem has a unique solution. As before, we seek its solu-
tion by solving the corresponding initial-value problem

y′′ = f
(
x, y, y′), a ≤ x ≤ b,

y(a) = a1s − c1α,

y′(a) = a0s − c0α,

where c0 and c1 are constants such that a1c0 − a0c1 = 1. The solution u = u(x; s)
of this initial-value problem is the solution of the original boundary-value problem
precisely when the parameter s is the root of the equation

φ(s) = b0y(b; s) + b1y
′(b; s) − β = 0.

Let us denote y = u and y′ = v, and transform the initial-value problem to the
system of two first-order equations,

(
u

v

)′
=
(

v

f (x,u, v)

)
,

u(a) = a1s − c1α,

v(a) = a0s − c0α,
(8.42)

which can be numerically solved by some method discussed in Chap. 7. The solu-
tions of the system at x = b are u(b; s) and v(b; s), which we use to form

φ(s) = b0u(b; s) + b1v(b; s) − β (8.43)

and check whether at the present parameter s we attain φ(s) = 0. We repeat this
procedure until this requirement is met to specified precision, or until the parameter
s settles to its final value s�. For the computation of s�, Newton’s method can be
used, as described in the following.

8.3 Shooting Methods 419

Solving by Newton’s Method We choose an initial approximation s(0) and iterate

s(ν+1) = s(ν) − φ(s(ν))

φ′(s(ν))
, ν = 0,1,2, . . . , (8.44)

where ′ denotes the derivative with respect to s. The function φ(s) from (8.43) is
already known; we obtain the function φ′(s) by first defining the functions

ξ(x) = ∂u(x; s)
∂s

, η(x) = ∂v(x; s)
∂s

,

where u = y and v = y′ are the solutions of (8.42). We differentiate the sys-
tem (8.42) with respect to s and get an additional system of first-order equations

(
ξ

η

)′
=
(

η

p(x; s)η + q(x; s)ξ
)

,
ξ(a) = a1
η(a) = a0

, (8.45)

where

p(x; s) = ∂f (x,u(x; s), v(x; s))
∂v

, q(x; s) = ∂f (x,u(x; s), v(x; s))
∂u

.

We use the solutions of (8.45) at x = b to construct

φ′(s) = b0ξ(b; s) + b1η(b; s).
The initial-value problems (8.45) and (8.42) represent a system of four first-order
differential equations which we solve for each s simultaneously on the same mesh:
at the current s we use the solutions u(b; s) and v(b; s), as well as the corresponding
value φ(s) at the extreme point of the interval, to compute the new value of ξ(b; s)
and η(b; s), as well as the corresponding values φ′(s), and finally use φ(s) and φ′(s)
in the iteration (8.44) until convergence is achieved. The additional time needed to
solve (8.45) is compensated by the rapid convergence of the Newton method.

8.3.4 Systems of Non-linear Equations

Boundary-value problems for systems of non-linear differential equations are solved
by first transforming them to an equivalent system of M (in general non-linear) first-
order equations

y′ = f (x,y), a < x < b, (8.46)

where y ∈R
M , f : R×R

M →R
M . We discuss boundary conditions of the form

Ay(a) + By(b) = α. (8.47)

420 8 Boundary-Value Problems for ODE

Here A and B are constant M ×M matrices and α is a constant M-dimensional vec-
tor. To the boundary-value problem (8.46)–(8.47) we assign the initial-value prob-
lem

u′ = f (x,u), u(a) = s. (8.48)

If f is uniformly Lipschitz, and the Jacobi matrix ∂f /∂u exists, a unique solution
u(x; s) of this initial-value problem exists that smoothly depends on the compo-
nents of s. We seek a vector of parameters s� for which the solution of the initial-
value problem u(x; s) is also the solution of the boundary-value problem (8.46)
and (8.47). This occurs precisely when for s = s� we have

φ(s) = As + Bu(b; s) − α = 0. (8.49)

The initial-value problem is best solved on the usual uniform mesh (8.2) by using
some stable method for the solution of initial-value problems. At the given s, each
point xj carries the numerical solution ũj . If a method with the error of order O(hp)

is used, then ‖ũj (s) − u(xj ; s)‖ ≤ O(hp). The solution s� can be found by simple
iteration or by using Newton’s method.

Solution by Simple Iteration We are seeking the fixed point of the mapping

s = G(s) = s − (A + B)−1[As + BũN(s) − α
]
,

where we have assumed that the matrix Q = A + B is non-singular. (For more
general boundary conditions (8.47) this is not necessarily true: then a different Q is
needed to achieve convergence [1].) With an arbitrary initial approximation s(0) we
iterate

s(ν+1) = G
(
s(ν)
)
, ν = 0,1,

The convergence in the parameters s is mirrored in the convergence of the solutions
at the individual points xj (j = 0,1, . . . ,N), for which

∥∥ũj

(
s(ν)
)− u

(
xj ; s�

)∥∥≤ O
(
hp
)+ ων

∥∥s� − s(0)
∥∥, ν = 0,1, . . . ,

where u(x; s�) ≡ y(x) is the desired solution of the boundary-value problem (8.46)
and (8.47). The parameter ω (0 < ω < 1) satisfies the inequality

∫ b

a

J (x)dx ≤ log

(
1 + ω

P

)
,

where P = ‖(A + B)−1B‖∞ and J is a function that satisfies J (x) ≥ ‖∂f (x,u)/

∂u‖∞.

8.3 Shooting Methods 421

Solving by Newton’s Method If the parameter ω in the simple iteration is close
to one, the convergence is slow. A much faster approach is again offered by the
Newton method, which we start with the initial approximation s(0) and iterate

s(ν+1) = s(ν) + s(ν), ν = 0,1,2, . . . , (8.50)

where s(ν) is the solution of the system of linear equations

∂φ(s(ν))

∂s
s(ν) = −φ

(
s(ν)
)
. (8.51)

We decompose the Jacobi matrix ∂φ(s)/∂s, which is non-singular for all s [4], as

∂φ(s)

∂s
= A + BW(b; s), (8.52)

where the matrix W(x; s) = ∂u(x; s)/∂s is the solution of the system

W ′ = ∂f (x,u(x; s))
∂u

W, W(0) = I. (8.53)

For Newton’s method we repeat the following procedure (details are in [1]): in the
νth iteration step (i.e. at current values s(ν)) on the mesh (8.2) we numerically solve
the non-linear initial-value problem (8.48) with s = s(ν), yielding the M compo-
nents of the solution ũ(s(ν)). Simultaneously, and on the same mesh, we solve M

systems of linear differential equations (8.53), where we use the currently available
ũ(s(ν)) to compute the matrix ∂f (x,u)/∂u. This gives us the approximate solution
vector ũ(s(ν)) and the corresponding M × M matrix W(x; s(ν)). We use them to
compute the new vector φ(s) according to (8.49) and the new matrix ∂φ(s)/∂s ac-
cording to (8.52). These are used to solve the matrix system for s(ν) (see (8.51))
and, finally, we use (8.50) to compute the next approximate vector of the shoot-
ing parameters s(ν+1). We repeat the whole procedure until convergence to the final
values s� is achieved.

8.3.5 Multiple (Parallel) Shooting

The basic version of scalar shooting from the beginning of Sect. 8.3 may be plagued
by round-off errors. Such errors are generated, for example, when the combina-
tion (8.34) is formed and the contributions ỹ

(1)
j and sỹ

(2)
j are almost equal in mag-

nitude and oppositely signed, or when the denominator of (8.36) is very small. Such
errors, due to which the solution of the corresponding initial-value problem blows
up, are difficult to localize on an arbitrary mesh (8.2) and are almost unpreventable.
We may face the same problems with systems of equations. Sometimes the most
naive solution helps: increase arithmetic precision. If this does not work, one may
opt for multiple shooting.

422 8 Boundary-Value Problems for ODE

Fig. 8.5 Multiple (parallel) shooting. [Top] Shooting from x = a towards x = b. We use the so-
lutions uj (ξ) from all subintervals [xj−1, xj] to assemble the final solution on the whole interval
[a, b]. [Bottom] Shooting from a critical point xc (with a singularity, a known intermediate value,
or another prescribed intermediate “boundary” condition) towards x = a and x = b. We do not
discuss such cases here; for further reading see [2, 3]

Here we describe multiple shooting for systems of non-linear equations (8.46)
with boundary conditions (8.47), as approached by [2, 3]. We rescale the problem
with the variable x ∈ [a, b] on the mesh (8.2) by introducing a new variable ξ that
takes the values ξ ∈ [0,1] on each subinterval [xj−1, xj],

ξ = x − xj

xj − xj−1
= x − xj

h

(see Fig. 8.5). On these subintervals one solves decoupled initial-value problems,
where initial conditions are imposed for each subinterval such that finally the main
boundary conditions at x = a and x = b are fulfilled. (If in the interior of [a, b]
further requirements need to be met, a non-uniform mesh may be utilized, so that
certain conditions can be realized precisely at the required critical points. For details
see [2, 3].) We also transform the vectors y and f ,

yj (ξ) = y(xj−1 + ξh),

f j (ξ,z) = hf (xj−1 + ξh,z).

Thus, on each (j th) subinterval we are solving the system

dyj

dξ
= f j

(
ξ,yj (ξ)

)
, 0 < ξ < 1, j = 1,2, . . . ,N,

while the boundary conditions become

Ay1(0) + ByN(1) = α.

Moreover, we need to glue together continuously the solutions at each internal point
of the mesh: we do this by requiring yj (0) − yj−1(1) = 0 (be warned again: the
argument of these vector functions is the new variable ξ). The system of equations,
the boundary conditions, and the local continuity conditions are condensed in the

8.3 Shooting Methods 423

equations

dY

dξ
= F (ξ,Y), ÃY (0) + B̃Y (1) = α̃, (8.54)

where the vector

Y (ξ) = (yT
1 (ξ),yT

2 (ξ), . . . ,yT
N(ξ)

)T ∈R
MN

contains the complete solution, and the N vector functions f i : [0,1] ×R
M →R

M

can be understood as a vector function F : [0,1] ×R
MN → R

MN ,

F (ξ,Y) = (f T
1 (ξ,y1),f

T
2 (ξ,y2), . . . ,f

T
N(ξ,yN)

)T
.

The vector α̂ = (αT,0T, . . . ,0T)T ∈ R
MN contains the boundary and continuity

conditions. The MN × MN matrices Ã and B̃ have the block structure

Ã =

⎛

⎜⎜⎜⎜⎜
⎝

A

I

I

. . .

I

⎞

⎟⎟⎟⎟⎟
⎠

, B̃ =

⎛

⎜⎜⎜⎜⎜
⎝

0 B

−I 0
−I 0

. . .
. . .

−I 0

⎞

⎟⎟⎟⎟⎟
⎠

.

The matrices A and B from the underlying boundary-value problem, the identity I

and the zero matrix 0 have size M × M .
The system (8.54) corresponds to the vector initial-value problem consisting of

MN first-order equations and the initial condition:

dU

dξ
= F (ξ,U), 0 < ξ ≤ 1, U(0) = s, (8.55)

where the solution vector U has the same structure as the vector Y . We solve this
problem on the interval ξ ∈ [0,1] by simple shooting. With respect to individual
subintervals [xj−1, xj], the system of equations (8.55) is decoupled and completely
equivalent to N vector systems of dimension M ,

duj (ξ)

dξ
= f j (ξ,uj), uj (0) = sj , j = 1,2, . . . ,N,

which can be solved independently (the vectors sj of length M are the elements
of the vector s = (sT

1 , sT
2 , . . . , sT

N)T). As it has been explained in the previous two
subsections, we must solve, in addition to the system (8.55), the matrix initial-value
problem

dW

dξ
= ∂F (ξ,U(ξ ; s))

∂Y
W, W(0) = I. (8.56)

424 8 Boundary-Value Problems for ODE

The matrix W is block-diagonal, W = diag{W1(ξ, s1),W2(ξ, s2), . . . ,WN(ξ, sN)},
so this system is decoupled as well, and can be written in the form

dWj

dξ
= ∂f j (ξ,uj (ξ ; sj))

∂uj

Wj , Wj (0) = I, j = 1,2, . . . ,N.

Its solution can be again found by Newton’s iteration with an appropriate initial
approximation of the shooting parameters s(0). With the current approximation s =
s(ν) we solve the vector system (8.55), and use its solution to compute the matrix
∂F /∂Y at the right-hand side of (8.56). We use the resulting vector U(1; s(ν)) and
matrix W(1; s(ν)) (at the maximum value ξ = 1) to compute

φ
(
s(ν)
)= Ãs(ν) + B̃U

(
1; s(ν)

)− α̃

and solve the matrix system for the update to the vector of shooting parameters,
[
Ã + B̃W

(
1; s(ν)

)]
s(ν) = −φ

(
s(ν)
)
.

Finally, we compute the new shooting parameters,

s(ν+1) = s(ν) + s(ν),

and repeat the procedure until it converges.

Advantage of Multiple Shooting We had to wait until the end to learn why the
strenuous solving of the system (8.48) on narrower subintervals with ξ ∈ [0,1] is
preferable to solving the system (8.55) on the original interval with x ∈ [a, b]. If
the systems are solved by using a stable method with the error of order O(hp), the
errors at the points on the subintervals can be estimated by

∥∥u(xj) − uj

∥∥ ≤ hpM1 exp
(
�1|x0 − xj |

)
,

∥∥U(ξj) − U j

∥∥ ≤ hpM2 exp
(
�2|ξ0 − ξj |

)
,

where the constants M1,2 and �1,2 can be bounded by the values of the functions
f and F , and their derivatives [5, 6]. Because the original mesh (8.2) is split into
N subintervals, we have �2 ≈ �1(b − a)/N , so the upper bound for the error in
the case of multiple shooting decreases exponentially or becomes proportional to
[exp(�1|b − a|)]1/N instead of to [exp(�1|b − a|)].

8.4 Asymptotic Discretization Schemes �

In discussions of ordinary and partial differential equations we are often concerned
about the limits in which some physical mechanism expressed by these equations
dominates over other mechanisms. The limit (asymptotic) equation is an approxi-
mation of the complete physical picture, but it is usually much simpler than the full

8.4 Asymptotic Discretization Schemes � 425

Fig. 8.6 Particle transport. All particles travel with equal magnitudes of velocity v in directions
given by the cosines μ = cos θ = vx/v. Each parameter μ defines a cone of directions: even though
the transport equation is one-dimensional, the density function in fact describes a three-dimen-
sional region of an infinite layer

equation, and easier to use. We should be particularly alert in problems that allow
one part of the domain to be treated asymptotically, while the rest requires a non-
asymptotic approach. In such cases the continuous equation has to be discretized
such that the solutions of the discrete equation converge to the true solution in both
regimes when the mesh spacing is reduced.

Difference schemes with correct convergence properties in the asymptotic regime
are called asymptotic-preserving discretization schemes. Inadequate discretization
may yield an inefficient scheme, which actually leads to the correct asymptotic so-
lution, but only by using mesh spacings that are much smaller than the spatial scale
characteristic of the asymptotic solution.

Following closely [7, 8], we illustrate the idea of asymptotic discretization by the
transport equation for particles in matter with absorption (absorption cross-section
σa, absorptions per unit length) and scattering (scattering cross-section σs, scatter-
ings per unit length). This equation originates in the stationary limit of the corre-
sponding partial differential equation, but in its continuous and discrete form it is
very instructive and possesses all the properties of the boundary-value problem, so
we discuss it in this chapter. The equation has the form

μ
∂(vN(x,μ))

∂x
+ (σa + σs)vN(x,μ) = σs

2

∫ 1

−1
vN
(
x,μ′)dμ′ + Q(x,μ). (8.57)

Its solution is the particle density function N(x,μ) depending on the coordinate
(variable x ∈ [0,1]) and angle (μ = cos θ = vx/v ∈ [−1,1]), see Fig. 8.6. The num-
ber of particles on the interval [x, x + dx] traveling in the directions [μ,μ + dμ] is
N(x,μ)dx dμ. The particle absorption rate on these intervals is σavN(x,μ)dx dμ,
while the scattering rate is σsvN(x,μ)dx dμ. The average distance between par-
ticle interactions (the mean free path) is λ = 1/σt, where σt = σa + σs is the total
cross-section. The generation of new particles is described by the term Q(x,μ):
the number of particles per unit time created at [x, x + dx] with initial directions
[μ,μ + dμ] is Q(x,μ)dx dμ. The solution of (8.57) is uniquely determined by the
boundary conditions at x = 0 for μ > 0 and at x = 1 for μ < 0.

Equation (8.57) can be rewritten in a more compact form

μ
∂ψ

∂x
+ σtψ = (σt − σa)φ + Q,

426 8 Boundary-Value Problems for ODE

where ψ = vN is the angular flux, while its average over all directions,

φ = 1

2

∫ 1

−1
ψ
(
x,μ′)dμ′, (8.58)

is the scalar flux. The key physics consideration follows now. We use a scaling pa-
rameter ε to extract the asymptotic behavior from the equation. Assume that we are
studying a diffusion problem in a one-dimensional layer with thickness much larger
than λ, in which scattering processes dominate (the absorption is weak). Suppose
that the angular flux, the absorption and scattering cross-sections, and the source
term Q are continuous and that they change insignificantly on distances comparable
to the mean free path. This asymptotic diffusion limit is described by the equation

μ
∂ψ

∂x
+ σt

ε
ψ =

(
σt

ε
− εσa

)
φ + εQ (8.59)

in the limit ε → 0, since then εσa → 0, σt/ε → ∞ (or λ/ε → 0) and εQ → 0.
We obtain the continuous version of the transport equation valid in the asymptotic
regime by expanding the solution in terms of the scaling parameter:

ψ =
∞∑

n=0

εnψ(n).

When this is inserted in (8.59) and the coefficients of the same powers of ε on both
sides of the equation are matched, we get, to first three orders:

ψ(0) = φ(0),

ψ(1) = φ(1) − μ

σt

∂φ(0)

∂x
, (8.60)

ψ(2) = φ(2) − σa

σt
φ(0) + μ

σt

∂

∂x

[
φ(1) − μ

σt

∂φ(0)

∂x

]
+ Q

σt
.

By integrating (8.60) over the directions μ, we obtain the diffusion equation

− ∂

∂x

[
1

3σt

∂φ(0)

∂x

]
+ σaφ

(0) = Q. (8.61)

The asymptotic behavior of the transport equation with the assumptions specified
above is therefore captured adequately by a simpler equation of the diffusion type,
with a characteristic length L = 1/

√
3σtσa that does not depend on ε.

8.4.1 Discretization

In the asymptotic limit, the solution of the full transport equation satisfies the diffu-
sion equation. Does the analogous conclusion follow in the discrete case? The basic

8.4 Asymptotic Discretization Schemes � 427

message of this section is the warning that the discrete solution of the transport equa-
tion satisfies the discrete diffusion equation only in a discretization that preserves the
physical content of such an asymptotic limit. In the following we show one asymp-
totic and one non-asymptotic discretization of the transport equation on a uniform
mesh with cells (subintervals) [xj−1/2, xj+1/2] of length h = xj+1/2 − xj−1/2.

We discretize (8.59) in coordinates (xj , j = 1,2, . . . ,N , such that x1/2 = 0 and
xN+1/2 = 1) and angles (μm, m = 1,2, . . . ,M). For clarity we assume constant σt,
σa, and Q. We obtain

μm(ψ
m,j+ 1

2
− ψ

m,j− 1
2
) + hσt

ε
ψm,j = h

(
σt

ε
− εσa

)
φj + hεQ.

The discrete solutions ψm,j±1/2 (computed at the cell edges) and φm,j (averaged
over one cell) are functions of two indices. In a computer implementation we arrange
the solution in a M × (N + 1)-dimensional array:

ψ = (ψ1,1/2,ψ1,3/2, . . . ,ψ1,N+1/2, . . . ,ψM,1/2,ψM,3/2, . . . ,ψM,N+1/2)
T.

Let us assume Dirichlet boundary conditions. They are expressed as

ψm,1/2 = fm (μm > 0), ψm,N+1/2 = gm (μm < 0).

“Upwind” Discretization The discrete angular flux has N + 1 spatial compo-
nents. The discrete transport equation connects N pairs of cell boundaries. The one
missing equation that relates the angular flux at the cell edge to the angular flux
within the cell, will determine the asymptotic or non-asymptotic character of the
whole scheme. We first attempt an “upwind” (U) discretization

ψm,j =
{

ψm,j+1/2; μm > 0,

ψm,j−1/2; μm < 0,

and apply the same asymptotic analysis in terms of powers of ε as in the continuous
case. We find that the asymptotic solution satisfies the difference equation

1

4h

[
φ

(0)
j − φ

(0)
j−1

]+ 1

4h

[
φ

(0)
j − φ

(0)
j+1

]= 0, (8.62)

which is the discrete form of a “bare” diffusion equation ∂2φ(0)/∂x2 = 0 from which
scattering and absorption cross-sections have vanished! Therefore, the upwind dis-
cretization asymptotically generates a difference scheme which does not reflect the
corresponding limit in the continuous equation.

“Diamond” Discretization We arrive at a quite different asymptotic equation by
the so-called diamond (D) discretization in the nomenclature of [7],

ψm,j = 1

2
(ψm,j+1/2 + ψm,j−1/2).

428 8 Boundary-Value Problems for ODE

Fig. 8.7 The scalar flux from the solution of the discretized transport equation on a mesh
of N = 10 cells for various scaling parameters ε. [Left] The upwind scheme has no particle
sources Q present in (8.62), so the solution converges to zero when ε → 0. [Right] The diamond
scheme (8.63) has the correct asymptotic behavior

By applying the analysis in orders of the scaling parameter ε we realize that the
diamond solution in the asymptotic diffusion limit satisfies the equation

− 1

3σt

1

h2

[
φ

(0)
j+3/2 − 2φ

(0)
j+1/2 + φ

(0)
j−1/2

]

+ σa

4

[
φ

(0)
j+3/2 + 2φ

(0)
j+1/2 + φ

(0)
j−1/2

]= 1

2
(Qj+1 + Qj), (8.63)

which is a valid discretization of (8.61) and involves both cross-sections and the
source term. The diamond discretization thus yields a difference scheme that pre-
serves the character of the original equation in the asymptotic limit.

Example (Adapted from [10]) We check how the upwind and diamond schemes
work in practice by computing the numerical solution on a mesh with N = 10 cells
and parameters Q = 1 cm−1s−1, σt = 10 cm−1, σa = 0.1 cm−1, and ε = 0.1. We
need to solve a system of linear equations with a M(N + 1) × M(N + 1) matrix,
so excessive M and N may quickly exhaust our memory resources! The scalar flux
φj , which we compute from the angular fluxes ψm,j by integrating over angles in
analogy to (8.58), is therefore best evaluated by Gauss quadrature

φj =
M∑

m=1

wmψm,j ,

which is exceptionally precise even with few points (M = 4, 8, or 16). Here wm are
the quadrature weights and μm the corresponding nodes (see Table 25.4 in [9] and
Appendix E). Figure 8.7 (left) shows the computed scalar flux for various parameters
ε by using the upwind scheme. In the asymptotic limit ε → 0 the solution converges

8.5 Collocation Methods � 429

Fig. 8.8 Convergence of the scalar flux in the non-asymptotic difference scheme in upwind dis-
cretization with N = 10, 100, and 1000 cells, to the exact solution. The values of the parameters
are Q = 1 cm−1s−1, σt = 10 cm−1, σa = 0.1 cm−1, and ε = 0.1. For a precise solution we need
an extremely fine mesh: for N = 1000 the cell length is equal to 1/100 of the mean free path

to zero, as (8.62) does not contain the source term Q. Figure 8.7 (right) shows
the flux computed by using the diamond scheme. In the limit ε → 0 the numerical
solution converges to the exact solution.

Figure 8.8 tells us that the upwind scheme does in fact converge to the exact
solution, but only with a very large number of cells (a very fine spatial mesh). For
a precise solution one needs to employ a mesh in which the cell length is several
orders of magnitude smaller than the mean free path [8].

8.5 Collocation Methods �

In Sect. 8.1 we discussed the solution of scalar boundary-value problems by dif-
ference methods. We obtained the solution by approximating the derivatives in the
differential equations and boundary conditions, and solving the resulting difference
equations. In collocation methods we expand the (as yet unknown) solution y as

y(x) ≈ u(x) =
∑

n
anφn(x), a ≤ x ≤ b,

and satisfy the requirements of the problem with appropriate coefficients an. The
basis functions φn may be trigonometric functions, cubic B-splines, or polyno-
mials. In the following we discuss the basic properties of collocation methods
for three classes of scalar boundary-value problems: linear second-order problems
by using B-spline collocation in Sect. 8.5.1, and linear and non-linear problems
of higher orders by using Legendre polynomials in Sects. 8.5.2 and 8.5.3, trail-
ing closely the presentation in [2, 3]. For greater clarity we use a uniform mesh,
xj+1 − xj = hj = h, throughout this section.

430 8 Boundary-Value Problems for ODE

8.5.1 Scalar Linear Second-Order Boundary-Value Problems

The basic idea of the collocation method for solving scalar boundary-value problems
can be demonstrated by the linear problem of the form

y′′ + p(x)y′ + q(x)y = r(x), 0 ≤ x ≤ 1,

with boundary conditions

y(0) = α, y(1) = β.

The lowest degree of the polynomials for a continuous and continuously differen-
tiable interpolation of the solution over all subintervals, is three. We can use piece-
wise continuous cubic polynomials known as cubic B-splines. The basis B-spline
Bj is defined as

Bj (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0; x ≤ xj−2,

(x−xj−2)
3

6x3 ; xj−2 ≤ x ≤ xj−1,

1
6 + (x−xj−1)

2x
+ (x−xj−1)

2

2x2 − (x−xj−1)
3

2x3 ; xj−1 ≤ x ≤ xj ,

1
6 − (x−xj+1)

2x
+ (x−xj+1)

2

2x2 + (x−xj+1)
3

2x3 ; xj ≤ x ≤ xj+1,

− (x−xj+2)
3

6x3 ; xj+1 ≤ x ≤ xj+2,

0; xj+2 ≤ x.

The function Bj is composed by “gluing” together cubic functions between xj−2

and xj−1, between xj−1 and xj , between xj and xj+1, and between xj+1 and
xj+2. The support of the spline Bj is the interval [xj−2, xj+2], on which Bj is
twice continuously differentiable. The resulting spline has values Bj (xj) = 2/3
and Bj (xj±1) = 1/6 at the central points, the first derivatives are B ′

j (xj) = 0

and B ′
j (xj±1) = ∓1/(2h), and the second derivatives are B ′′

j (xj) = −2/h2 and

B ′′
j (xj±1) = 1/h2. At the remaining points xj±k , k ≥ 2, the values Bj (xj) are zero.

Figure 8.9 shows the spline B5 and its nearest neighbors B4 and B6 on a uniform
mesh on x ∈ [0,1].

We write the solution of the boundary-value problem as

y(x) ≈ u(x) =
N+1∑

j=−1

ajBj (x). (8.64)

The leftmost spline B−1 and the rightmost spline BN+1 are included in the sum
because both have non-zero contributions on [a, b]: the former at a = x0, the latter at
b = xN . The values of u and its first and second derivative at xj are thus determined

8.5 Collocation Methods � 431

Fig. 8.9 The cubic spline B5 and its nearest neighbors B4 and B6 on a uniform mesh x ∈ [0,1]
with (N + 1) = 11 points (including the boundaries)

by the linear combinations of three adjacent coefficients aj :

u(xj) = 1

6
(aj+1 + 4aj + aj−1),

u′(xj) = 1

2h
(aj+1 − aj−1),

u′′(xj) = 1

h2
(aj+1 − 2aj + aj−1).

The key requirement of collocation is imposed at this stage. The remainder

y′′(x) + p(x)y′ + q(x)y − r(x)

should be zero at the collocation points. Here collocation and mesh points are the
same, but in the following subsections we also discuss “true” collocation where
collocation points can be chosen differently. We denote the function values at xj by
p(xj) = pj , q(xj) = qj , and r(xj) = rj . When we account for boundary conditions,
we obtain a system of equations for the coefficients aj ,

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

g0 h0
d1 g1 h1

d2 g2 h2
. . .

. . .
. . .

dN−1 gN−1 hN−1
dN gN

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

a0
a1
a2
...

aN−1
aN

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

R0
R1
R2
...

RN−1
RN

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.65)

432 8 Boundary-Value Problems for ODE

The matrix elements and the right side of the equation are given by

gj =
⎧
⎨

⎩

−6 + 2hp0; j = 0,

4(−3 + h2qj); j = 1,2, . . . ,N − 1,

−6 − 2hpN ; j = N,

dj =
{

6 − 3hpj + h2qj ; j = 1,2, . . . ,N − 1,

−hpN ; j = N,

hj =
{

hp0; j = 0,

6 + 3hpj + h2qj ; j = 1,2, . . . ,N − 1,

Rj =
⎧
⎨

⎩

h2r0 − α(6 − 3hp0 + h2q0); j = 0,

6h2rj ; j = 1,2, . . . ,N − 1,

h2rN − β(6 + 3hpN + h2qN); j = N.

We use this method (and compare it to the difference method) in Problem 8.9.5.

8.5.2 Scalar Linear Boundary-Value Problems of Higher Orders

We discuss linear scalar boundary-value problems of the form

Ly = y(M) −
M∑

m=1

cm(x)y(m−1) = q(x), a < x < b, (8.66)

where M is the order of the highest derivative. As the basic mesh we take (8.2) but
pay attention to the indices: the subintervals [xj , xj+1] are labeled by j , while j and
the additional subscript k define the collocation points within these subintervals,

xjk = xj + hρk, 0 ≤ j ≤ N − 1, 1 ≤ k ≤ K. (8.67)

The points on the subintervals are uniquely defined by the canonical parameters

0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρK ≤ 1

that depend on the method. We usually choose them such that at some order K we
obtain a quadrature formula of maximum possible precision on the subinterval. In
Gauss collocation, ρk are the zeros of Legendre polynomials, where ρ1 > 0 and
ρK < 1, so none of the collocation points coincide with the mesh points. In Radau
collocation we have ρ1 > 0 and ρK = 1, so the last collocation point on the subin-
terval always coincides with a mesh point (except at x = a). In Lobatto collocation
we have ρ1 = 0 and ρK = 1. Figure 8.10 shows the basic uniform mesh xj with
the collocation points of the Gauss scheme of orders two and three. The canonical
points for collocations of orders from K = 2 to K = 5 are listed in Table 8.2.

8.5 Collocation Methods � 433

Fig. 8.10 Collocation points xjk = xj + hρk (symbols ◦) for Gauss collocation of order two with
canonical points ρ1,2 = 1/2∓√

3/6, and for Gauss collocation of order three with canonical points
ρ1,3 = 1/2 ∓√

15/10, and ρ2 = 1/2 embedded in the basic uniform mesh xj (symbols •). In other
collocations (Radau or Lobatto) some collocation points coincide with the mesh points

Table 8.2 Canonical parameters ρk of Gauss collocation points from order K = 2 to order K = 5,
which are zeros of the Legendre polynomials PK(2x − 1) rescaled to the interval [0,1]. The col-
location points are given by (8.67)

ρk K = 2 K = 3 K = 4 K = 5

ρ1
1
2 −

√
3

6
1
2 −

√
15

10
1
2 −

√
35(15+2

√
30)

70
1
2 −

√
7(35+2

√
70)

42

ρ2
1
2 +

√
3

6
1
2

1
2 −

√
35(15−2

√
30)

70
1
2 −

√
7(35−2

√
70)

42

ρ3
1
2 +

√
15

10
1
2 +

√
35(15−2

√
30)

70
1
2

ρ4
1
2 +

√
35(15+2

√
30)

70
1
2 +

√
7(35−2

√
70)

42

ρ5
1
2 +

√
7(35+2

√
70)

42

In the collocation method we require the numerical solution u to satisfy the dif-
ferential equation at the collocation points, so that for each subinterval indexed by
0 ≤ j ≤ N − 1 and for all collocation points defined by the canonical parameters ρk

(1 ≤ k ≤ K), we have

u(M)(xjk) −
M∑

m=1

cm(xjk)u
(m−1)(xjk) − q(xjk) = 0. (8.68)

The simple method with cubic splines from the preceding subsection corresponds
to a kind of “degenerate” collocation, since the mesh and collocation points coin-
cide. In the following we show the structure of “true” collocation [2, 3] that is valid
regardless of the type of the chosen basis functions. Let the degree of the polyno-
mials on individual subintervals be K + M for some K ≥ M . On the subinterval
[xj , xj+1] we Taylor-expand the polynomial u around xj ,

u(x) =
K+M∑

n=1

u(n−1)(xj)
(x − xj)

n−1

(n − 1)!

434 8 Boundary-Value Problems for ODE

=
M∑

m=1

ujm

(x − xj)
m−1

(m − 1)! + hM

K∑

k=1

zjkψk

(
x − xj

h

)
, (8.69)

where we have defined

zjk = hk−1u(M+k−1)(xj), ψk(t) = tM+k−1

(M + k − 1)! , 0 ≤ t ≤ 1,

and where we have collected the components of the solution and its (M − 1) deriva-
tives at the j th mesh point into the vector uj with components ujm:

uj = (uj1, uj2, . . . , ujM)T = (u(xj), u
′(xj), . . . , u

(M−1)(xj)
)T

. (8.70)

When the collocation solution is used in (8.66), we obtain

Lu(x) = hM
K∑

k=1

zjkL

[
ψk

(
x − xj

h

)]
−

M∑

m=1

cm(x)

M∑

n=m

ujn

(x − xj)
n−m

(n − m)! .

We further define zj = (zj1, zj2, . . . , zjK)T and qj = (q(xj1), q(xj2), . . . ,

q(xjK))T. The collocation requirement (8.68) results in a linear system

Vjuj + Wjzj = qj , 0 ≤ j ≤ N − 1, (8.71)

where the elements of the K × M matrix Vj and of the K × K matrix Wj are

(Vj)km = −
m∑

l=1

cl(xjk)
(hρk)

m−l

(m − l)! , 1 ≤ k ≤ K, 1 ≤ m ≤ M,

(Wj)km = ψ(M)
m (ρk) −

M∑

l=1

cl(xjk)h
M−l+1ψ(l−1)

m (ρk), 1 ≤ k ≤ K, 1 ≤ m ≤ K.

Moreover, we require that the interpolation polynomial u and its (M −1) derivatives
are continuous at all internal boundary points of the subintervals. This introduces an
additional system of equations

uj+1 = Cuj + Dzj , 0 ≤ j ≤ N − 1, (8.72)

with an upper-triangular M ×M matrix C and a M ×K matrix D, with the elements

Ckm = hm−k

(m − k)! , k ≤ m,

Dkm = hM−k+1ψ(k−1)
m (1), 1 ≤ k ≤ M, 1 ≤ m ≤ K.

Finally, we consider the boundary conditions in the usual form Bau0 + BbuN = β .
The last step is the elimination of zj from (8.71) and (8.72). We obtain

uj+1 = �juj + rj , 0 ≤ j ≤ N − 1,

8.5 Collocation Methods � 435

where �j = C −DW−1
j Vj and rj = DW−1

j qj . In summary, the problem (8.66) has
boiled down to solving the matrix system of the form

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

−�0 I

−�1 I

−�2 I

. . .
. . .

−�N−1 I

Ba Bb

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

u0
u1
u2
...

uN−1
uN

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

r0
r1
r2
...

rN−1
β

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.73)

Note that each vector uj has dimension M and contains the solution uj = u(xj)

at the mesh point xj as well as its (M − 1) derivatives at this point (see defini-
tion (8.70)). The size of the matrix in (8.73) is M(N + 1) × M(N + 1). In the prac-
tical implementation we can compute in advance the quantities that do not depend
on the choice of the mesh, like ψ

(l)
m (ρk) and ψ

(l)
m (1). We can also compute the vec-

tor of local variables zj = W−1
j (qj − Vjuj) that was eliminated in the derivation,

and when we insert the values zjk into (8.69), we obtain the complete collocation
solution (not just at the mesh points). The method described here is illustrated by a
linear fourth-order problem in the following Example (adapted from [2, 3]), and in
Problem 8.9.4.

Example We use the collocation method on the interval [a, b] = [0,1] to solve the
linear second-order boundary-value problem

y′′ = − 1

x
y′ +

(
8

8 − x2

)2

, 0 < x < 1, (8.74)

with the boundary conditions y′(0) = y(1) = 0, and the analytic solution

y(x) = 2 log

(
7

8 − x2

)
.

We rewrite the equation as

Ly = y′′ + 1

x
y′ =

(
8

8 − x2

)2

,

whence, by comparing it to (8.66) we infer M = 2 (a second-order problem) and

c1(x) = 0, c2(x) = − 1

x
, q(x) =

(
8

8 − x2

)2

.

We solve the problem on the uniform mesh a = x0, x1, . . . , xN = b and opt for
Gauss collocation with four canonical points (column K = 4 of Table 8.2) on each
subinterval [xj , xj+1]. The collocation points are xjk = xj + hρk , where 0 ≤ j ≤

436 8 Boundary-Value Problems for ODE

N − 1 and 1 ≤ k ≤ K . We put the solution at each point xj in the vector

uj = (u(xj), u
′(xj)

)T
. (8.75)

In computing the matrices Vj from (8.71) we use c1(xjk) = 0 and c2(xjk) =
−1/xjk , while to compute the matrices Wj we also need the derivatives of ψk(t),

ψk(ρk) = ρM+k−1
k

(M + k − 1)! = ρk+1
k

(k + 1)! , ψ ′
k(ρk) = ρk

k

k! , ψ ′′
k (ρk) = ρk−1

k

(k − 1)! .

The constant matrices C and D appearing in (8.72) are

C =
(

1 h

0 1

)
, D =

(
h2ψ1(1) h2ψ2(1) h2ψ3(1) h2ψ4(1)

hψ ′
1(1) hψ ′

2(1) hψ ′
3(1) hψ ′

4(1)

)
.

We write the boundary conditions y′(0) = y(1) = 0 in the form Bau0 + BbuN = β ,
whence we read off

Ba =
(

0 1
0 0

)
, Bb =

(
0 0
1 0

)
, β =

(
0
0

)
.

From the right-hand side of the differential equation, described by the function q ,
we compute (at each collocation point) the vector

qj = (q(xj1), q(xj2), q(xj3), q(xj4)
)T

.

Finally, we compute the matrices �j = C − DW−1
j Vj and vectors rj = DW−1

j qj ,
and solve the system (8.73) which gives us the values of the solution and its deriva-
tive (see (8.75)) at each mesh point xj . Figure 8.11 (left) shows the absolute error
of the numerical solution, and Fig. 8.11 (right) the error of the derivative for N = 8
(nine points x0, x1, . . . , x8 or eight subintervals).

8.5.3 Scalar Non-linear Boundary-Value Problems of Higher
Orders

In the preceding subsection we learned how to deal with linear scalar problems of
higher orders. Now let us discuss non-linear problems of the form

Ny = y(M) − f
(
x, y, y′, . . . , y(M−1)

)= y(M) − f (x,y) = 0, a < x < b,

where the vector

y(x) = (y(x), y′(x), y′′(x), . . . , y(M−1)
)T

8.5 Collocation Methods � 437

Fig. 8.11 Numerical errors in solving the problem (8.74) on a mesh with nine points (N = 8) by
Gauss collocation of orders K = 2, K = 4, and K = 6 (two, four, and six canonical points on each
subinterval). [Left] Error of the solution. Due to the boundary condition y(1) = 0 the logarithm
of the error at xN is undefined. [Right] Error of the derivative. Due to the condition y′(0) = 0 the
logarithm of the error at x0 is undefined

again contains the values of the solution and its (M − 1) derivatives at x (or the
corresponding mesh or collocation points). The function f is non-linear in the ar-
guments y, and the boundary condition is

g
(
y(a),y(b)

)= 0.

One possible way towards the solution of such problems leads through linearization.
The basic idea is to linearize the non-linear problem and use some iterative method
(like Newton’s) to solve the corresponding linear boundary-value problems. If lin-
earization is performed correctly, we may hope that the sequence of solutions of the
linearized problem will converge to the solution of the non-linear one. The basic
form of the method can be obtained from the expansion around the exact solution,

y(M)(x) = f
(
x,y(x)

)

≈ f
(
x, ỹ(x)

)+
M∑

m=1

∂f

∂ym

(
x, ỹ(x)

)(
y(m−1)(x) − ỹ(m−1)(x)

)
,

where the ordering of the components of the vector ỹ is the same as in y (function,
first derivative, second derivative, and so on). The difference between the current
and the final numerical solution can be measured by the function

z(x) = y(x) − ỹ(x),

and, by analogy to the vectors y and ỹ, a similar relation applies to the whole vec-
tor z, e.g. z(M)(x) = y(M)(x) − ỹ(M)(x). The expansion results in a linear differen-

438 8 Boundary-Value Problems for ODE

tial equation

z(M) −
M∑

m=1

∂f (x, ỹ(x))

∂ym︸ ︷︷ ︸
cm(x,̃y)

z(m−1)(x) = −[ỹ(M) − f (x, ỹ)
]

(8.76)

for the correction of the solution, z. We solve (8.76) iteratively by some initial ap-
proximation ỹ. The expression on its right-hand side plays the role of the source
term q(x) (compare (8.76) and (8.66)) and we compute it in each iteration step by
using the current solution ỹ. The coefficients cm(x, ỹ) are also computed from the
values of the current solution and its derivatives. We write the boundary condition
g(y(a),y(b)) = 0 in linearized form

Bay(a) + Bby(b) = 0,

where

Ba = ∂g(u,v)

∂u
, Bb = ∂g(u,v)

∂v
, at u = y(a), v = y(b).

In terms of the vector z this means

Baz(a) + Bbz(b) = −g
(
ỹ(a), ỹ(b)

)
. (8.77)

Solving non-linear scalar boundary-value problems of higher orders thus essentially
translates to the use of Newton’s method: the iteration is set off by some initial
approximation for ỹ, which is used to solve the linear differential equation (8.76)
with the boundary condition (8.77) by collocation. Then we update

ỹ ← ỹ + z,

and repeat the procedure until ‖z‖ drops below the desired precision. If the func-
tions f and g have continuous second partial derivatives (plus a few additional mild
assumptions), the method is quadratically convergent [2, 3].

8.5.4 Systems of Boundary-Value Problems

Collocation methods are also widely used for systems of non-linear boundary-value
problems of higher orders, but their discussion is beyond the scope of this book.
Among the best-known collocation tools are COLSYS [11, 12] and TWPBVP [13].
More recent is the (non-collocation) code MIRKDC [14], which is at the heart of the
bvp4c routines built into the MATLAB environment. The latest development is the
very fast BVP_SOLVER package [15] which is an enhanced version of the bvp4c
package.

8.6 Weighted-Residual Methods � 439

8.6 Weighted-Residual Methods �

Weighted-residual methods are potent tools for the solution of boundary-value prob-
lems with ordinary and partial differential equations, and are at the core of numerous
versions of the finite element method explained in Sect. 10.6. Their basic character-
istic is the transformation of a boundary-value problem to a variational one. We
restrict the discussion to boundary-value problems of the form

Lv = − d

dx

(
p(x)

dv

dx

)
+ q(x)v = f (x) (8.78)

on a < x < b with boundary conditions x(a) = x(b) = 0, where p(x) > 0 and
q(x) ≥ 0. Assume that the function p is continuously differentiable on [a, b], while
q and f are continuous on [a, b]. We multiply the differential equation (8.78) by
some function w in the scalar-product sense (A.2), and obtain 〈w,Lv −f 〉 = 0. The
solution of this problem is also the solution of the boundary-value problem (8.78)
for all functions w for which this scalar product exists. By using

〈w,Lv − f 〉 = 0 ∀w ∈ L2(a, b) (8.79)

we have thus turned the boundary-value problems in its variational form: we find the
solution v of the boundary-value problem (8.78) precisely when (8.79) applies for
any square-integrable function w. The name of the method comes from the manner
in which the residual Lv − f (measuring the deviation from the exact fulfillment of
the differential equation) is weighted by the function w in the integral (8.79).

In a concrete method we can only find a numerical solution u which is an approx-
imation of the true solution v. We write u as a linear combination of some simpler
functions,

v(x) ≈ u(x) =
J∑

j=1

cjφj (x), (8.80)

and call it the trial function. The functions φj are the basis functions of a finite-
dimensional space of trial functions T J . We usually think of φj ∈ T J ⊂ L2(a, b).
The weight (or test) function is also set up as the sum

w(x) ≈ w̃(x) =
J∑

j=1

djψj (x), (8.81)

where, in general, ψj are different from φj and span the space of weight functions,
WJ . These functions are frequently taken from ψj ∈ WJ ⊂ L2(a, b), but not neces-
sarily so: for example, the Dirac delta-“functions” may also act as weight functions.

The primary goal is to determine the unknown coefficients cj with chosen φj

and ψj such that u is a sufficiently good approximation of v. In their basic outline
the weighted-residual methods are no different from, say, Fourier or collocation
methods. What distinguishes all these methods from one another is the manner in

440 8 Boundary-Value Problems for ODE

which the residual is defined and its magnitude quantified. In weighted-residual
methods we attempt to fulfill the equation 〈w̃,Lv −f 〉 = 0 for each function w̃: the
residual Lv − f should be orthogonal to all w̃ from the space of weight functions.
This means

∑

j

dj 〈ψj ,Lv − f 〉 = 0.

Since this condition should be valid for any choice of the coefficients dj , we must
also have

〈ψj ,Lv − f 〉 = 0 ∀j.

Weighted-residual methods are classified according to the choice of function
spaces for the trial functions φj and weight functions ψj . In the Galerkin method
we take φj and ψj from the same space and φj = ψj . If we choose ψj to be delta-
“functions” at the collocation points zj , so that 〈ψj ,f 〉 = f (zj), the residual sat-
isfies the condition 〈ψj ,Luc − f 〉 = 0, where uc is the collocation solution (see
Sect. 8.5). When φj and ψj are taken from closely related but different function
spaces (for example, from two spaces of polynomial splines of different orders), we
are referring to Petrov–Galerkin methods.

Galerkin Method In the following we discuss the Galerkin method which is the
most common. We can achieve a more symmetric and numerically practicable form
of the variational formulation if we integrate (8.79) by parts and thereby eliminate
the terms involving second derivatives. (This turns out to be helpful in implementa-
tions of the two- and three-dimensional finite element method where it is difficult to
construct continuously differentiable function approximations. This is why it makes
sense to stick to very simple basis functions.) We get

∫ b

a

w
[−(pv′)′ + qv − f

]
dx = −wpv′|ba +

∫ b

a

[
w′pv′ + wqv − wf

]
dx.

If w fulfills the same boundary conditions as v, the integrated part is zero, and the
Galerkin condition assumes a nice symmetric form:

A(w,v) − 〈w,f 〉 = 0,

where

A(w,v) =
∫ b

a

[
w′pv′ + wqv

]
dx. (8.82)

In boundary-value problems describing mechanical systems, the bilinear form
A(u,v) represents the internal or strain energy. The functions v and w must sat-
isfy the condition [16]

∫ b

a

[(
z′)2 + z2]dx < ∞, z(a) = z(b) = 0, z ∈ {v,w},

8.7 Boundary-Value Problems with Eigenvalues 441

and we are solving the variational problem A(w,v) = 〈w,f 〉 for ∀w. In the actual
implementation we replace v by u, and w by w̃. According to Galerkin, we span
u and w̃ in the same function space (u, w̃ ∈ T J) with the basis functions φj . We
therefore compute the approximation u by solving the variational problem

A(w̃,u) = 〈w̃, f 〉 ∀w̃ ∈ T J . (8.83)

When we insert the expansions (8.80) and (8.81) for u and w̃, we obtain a system
of linear equations for the expansion coefficients ck of the approximate solution,

J∑

k=1

ckA(φj ,φk) = 〈φj ,f 〉, j = 1,2, . . . , J.

How difficult it is to compute the integrals (8.82) depends on the choice of the basis
functions φj (and, of course, on the functions p and q in the differential equation).
If the basis functions are polynomials, it is sensible to choose low degrees. The
fruits of the discussion in this section are collected in Sect. 10.6 describing the finite
element method in one and two dimensions. We will encounter weighted-residual
methods again in numerical approaches to partial differential equations in Chap. 11.

8.7 Boundary-Value Problems with Eigenvalues

In a boundary-value problems with eigenvalues (in short, eigenvalue problems) we
seek not only the function satisfying the differential equation and boundary condi-
tions, but also the scalars appearing in the formulation of the problem. To a physicist,
the most relevant are the one-dimensional Sturm–Liouville problems

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = λw(x)y, a < x < b, (8.84)

where we wish to compute the functions y and the scalars λ. The coefficient func-
tions p, q , and w are known real functions. We assume that p and w are strictly
positive on (a, b). Moreover, we assume that p, q , and w are defined on the closed
interval [a, b] and are at least piecewise continuous on it. Here we discuss only regu-
lar Sturm–Liouville problems, where a and b are finite, and the boundary conditions
at both endpoints can be expressed as

a1y(a) − a2p(a)y′(a) = 0,

b1y(b) − b2p(b)y′(b) = 0.
(8.85)

The value of the parameter λ for which we are able to find a non-trivial solution
of (8.84) with boundary conditions (8.85) is called the eigenvalue and the corre-
sponding solution y is the eigenfunction.

442 8 Boundary-Value Problems for ODE

Transformation to the Liouville Normal Form By using the transformation

ξ(x) =
∫ x

a

√
w(s)

p(s)
ds, Y (ξ) = y(x)

[
w(x)p(x)

]1/4
,

(8.84) can be turned into its Liouville normal form

−d2Y

dξ2
+ Q(ξ)Y = λY, ξ ∈ [0,B], B =

∫ b

a

√
w(s)

p(s)
ds, (8.86)

where

Q(ξ) = q(x(ξ))

w(x(ξ))
+ 1

m

d2m

dξ2
, m(ξ) = [w(x(ξ)

)
p
(
x(ξ)

)]1/4
.

The boundary conditions (8.85) change accordingly. They become

α1Y(0) − α2Y
′(0) = 0,

β1Y(B) − β2Y
′(B) = 0.

The constants α1,2 and β1,2 can be expressed by the constants a1,2 and b1,2 listed
in [17]. In (8.86) we recognize the Schrödinger equation for the bound states of a
quantum particle in the potential Q(ξ). The parameter λ determines the value of
the eigenenergy, and the solution y is the corresponding eigenfunction. Any regular
Sturm–Liouville problem can be turned into an equation of this type by using the
transformation described above.

Two Useful Theorems The eigenvalues of regular Sturm–Liouville problems are
real, and the eigenfunctions belonging to the individual eigenvalues are orthogonal
with respect to the scalar product (A.1). The eigenvalues λk are distinct (there are
no pairs of linearly independent eigenfunctions with equal eigenvalues) and can
be arranged in an increasing sequence λ0 < λ1 < λ2 < · · · . The corresponding
eigenfunctions yk have precisely k zeros on the open interval (a, b). The functions
yk form a complete orthogonal system on (a, b). The following theorems, given
without proof, are useful in practical work for the book-keeping of solution zeros.

The Sturm comparison theorem relates the positions of solution zeros of different
boundary-value problems. Assume that the function y1 on the interval (a, b) is a
non-trivial solution of the equation (p1(x)y′)′ + q1(x)y = 0, and y2 a non-trivial
solution of (p2(x)y′)′ + q2(x)y = 0, where 0 < p2 ≤ p1 and q1 ≤ q2 for x ∈ (a, b).
Then between any two zeros of y1 there is at least one zero of y2, except when y2 is
just a constant multiple of y1.

The consequence is the theorem on the interlacing of zeros which relates the
positions of zeros of functions that solve the same differential equation. If y1 and y2
are linearly independent solutions of (p(x)y′)′ + q(x)y = 0 on (a, b), and p > 0 on
(a, b), then between any two zeros of one function there is precisely one zero of the
other function (see example in Fig. 8.12).

8.7 Boundary-Value Problems with Eigenvalues 443

Fig. 8.12 Bessel’s equation in Liouville form −y′′(x) + (ν2 − 1/4)x−2y(x) = λy(x) for
x ∈ (0,∞) has two linearly independent solutions:

√
xJν(

√
λx), regular everywhere, and√

xYν(
√

λx), which has a singularity at the origin. The twofold character of the solutions is of
key significance in the description of physical phenomena involving these functions. Shown are
the solutions with ν = 1.5 and the eigenvalue λ = 4.8161 that is determined by the boundary con-
ditions. The zeros of one eigenfunction interlace with the zeros of the other. See also Fig. 1.13

The dependence of the eigenvalues on the endpoints, the boundary conditions,
and the coefficients of the function w is discussed in [18]. The asymptotic expan-
sions of the eigenvalues and eigenfunctions for λ → ∞ are given in [17].

8.7.1 Difference Methods

The building blocks of the difference method for solving eigenvalue problems of the
form (8.86) with Dirichlet boundary conditions y(a) = 0 and y(b) = 0 can be taken
from the difference scheme (8.9) for problems (8.1) that do not involve eigenvalues.
As usual we discretize all quantities on the uniform mesh (8.2). We denote the ap-
proximate value of the exact solution y(xj) by uj , and the value q(xj) by qj . By
using the central difference for the second derivative we obtain a system of (N − 1)

equations,

−uj−1 − 2uj + uj+1

h2
+ qjuj = �uj , j = 1,2, . . . ,N − 1, (8.87)

where � is an approximation of the exact eigenvalue λ. The boundary conditions
translate to u0 = 0 and uN = 0. It is clear that at given N , solving this system
will give us only (N − 1) approximate eigenvalues {�k}N−1

k=1 , while the continuous
problem has infinitely many. The difference scheme can then be packaged as

Au = �u, (8.88)

444 8 Boundary-Value Problems for ODE

where u = (u1, u2, . . . , uN−1)
T is the vector of solution components, except for the

trivial ones at the endpoints, and the matrix is

A = 1

h2
D + Q,

where

D =

⎛

⎜⎜⎜⎜
⎜
⎝

2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟
⎟
⎠

, Q =

⎛

⎜⎜⎜⎜
⎜
⎝

q1
q2

. . .

qN−2
qN−1

⎞

⎟⎟⎟⎟
⎟
⎠

.

The error of the method is O(k4h2), more precisely,

|λk − �k| ≤ Ck4h2, k = 1,2, . . . ,N − 1,

where C depends only on the function q . The O(h2) dependence should not come as
a surprise once we recall the discretization error estimate (8.10). But in the context
of eigenvalues, the O(k4) dependence is much more relevant: we anticipate large
errors of approximate eigenvalues with high indices k.

More general boundary conditions of the form (8.85) represent only a minor
complication. Let us take just p(a) = p(b) = 1, and define α = a2/a1 �= 0 and β =
b2/b1 �= 0. The boundary conditions then access points beyond the mesh,

u1 − u−1

2h
≈ u0

α
,

uN+1 − uN−1

2h
≈ uN

β
.

Equation (8.87) can also be considered at x = a (j = 0) and x = b (j = N), so u−1
and uN+1 can be eliminated. This results in a (N + 1) × (N + 1) matrix system of
the form A′u = �Mu, where M is a positive diagonal matrix.

Increasing the Order of Error By using a simple correction due to Numerov
and Cowell, the discretization error can be improved by two orders: the scheme

− uj−1 − 2uj + uj+1

h2
+ (qj − �)uj

= − 1

12

[
(qj−1 − �)uj−1 − 2(qj − �)uj + (qj+1 − �)uj+1

]

with boundary conditions u0 = 0 and uN = 0 leads to the matrix equation

Au = �Mu, (8.89)

where

A = 1

h2
D + MQ, M = I − 1

12
D.

8.7 Boundary-Value Problems with Eigenvalues 445

In general A, is not symmetric, but D and M commute, while Q is diagonal, so we
can rewrite the generalized matrix eigenvalue problem (8.89) in the form M−1Au =
�u, where M−1A is symmetric (but sparse). The order of the Numerov–Cowell
method is O(k6h4).

The trick (8.13) that we used to extrapolate the solutions to an ever finer mesh
can be applied to boundary-problems with eigenvalues as well. We first compute the
eigenvalues on a mesh with spacing h, then do it again on a mesh with spacing h/2.
The improved estimate for the kth eigenvalue is then

�
(h/2,h)
k = 4

3
�

(h/2)
k − 1

3
�

(h)
k .

If the “standard” difference scheme of order O(k4h2) is used in the extrapolation,
the order of the eigenvalue error becomes O(k6h4), and if the Numerov–Cowell
scheme of order O(k6h4) is used, the resulting error of the eigenvalues is O(k8h6).
We realize that an improved spatial discretization implies an even larger error in the
determination of high-lying eigenvalues. Simple difference schemes without further
improvements are therefore suitable only for the computation of low-lying eigen-
values (λk at small k).

A very efficient way to overcome this obstacle is the correction [19] that reduces
the error of the standard difference scheme to O(k0h2) (the error becomes indepen-
dent of k), and the error of the Numerov–Cowell scheme to O(k2h4). The improved
approximation for λk is given by

�̃k = �k + δ�k, (8.90)

where, for either method, the correction δ�k is a simple function of the argument
that depends only on the type of the boundary conditions:

δ�k =
⎧
⎨

⎩

(k); y(a) = y(b) = 0,

(k − 1
2); y(a) = y′(b) = 0,

(k − 1); y′(a) = y′(b) = 0.

In the case of the “standard” scheme (8.87) we use

(k) = π2

(b − a)2

[
k2 − 4N2

π2
sin2

(
kπ

2N

)]
,

while for the Numerov–Cowell scheme (8.89) we use

(k) = π2

(b − a)2

[
k2 − 4N2

π2
sin2

(
kπ

2N

)(
1 − 1

3
sin2

(
kπ

2N

))−1]
.

For Sturm–Liouville problems in the more general form (8.84) we can write a
difference scheme

− 1

h

(
pj+1/2

uj+1 − uj

h
− pj−1/2

uj − uj−1

h

)
+ qjuj = �wjuj ,

446 8 Boundary-Value Problems for ODE

which is of order O(k4h2) if the functions p′′′, q ′′, and w′′ are continuous. For this
scheme a correction of the form (8.90) is not available.

8.7.2 Shooting Methods with Prüfer Transformation

Boundary-value problems with eigenvalues can also be solved by shooting
(Sect. 8.3): we need to solve initial-value problems by integration from x = a

to x = b (or “backwards” from x = b to x = a, or “two-way” from x = a to
x = c ∈ [a, b] from the left, and from x = b to x = c from the right). The role
of the shooting parameter, unknown in advance, is played by the value of λ. If the
boundary conditions are satisfied at the integration endpoint for some λ, that λ is the
eigenvalue, and the corresponding solution is the eigenfunction. For example, when
shooting from x = a to x = b, we start with the values that satisfy the boundary
conditions at x = a,

(
pu′)(a) = a1, u(a) = a2.

We solve the initial-value problem and denote the solution at x = b by uL(x,λ).
A meaningful function that measures the deviation from the exact fulfillment of the
boundary conditions at x = b, is

D(λ) = b1uL(b,λ) − b2
(
pu′

L

)
(b,λ).

The sought eigenvalues λ are the zeros of D(λ), which can be found by using the
methods from Chap. 2. An analogous procedure can obviously be derived for “back-
ward” shooting from x = b to x = a.

Exponentially growing components of the solution in simple one-way shoot-
ing may cause instabilities that one can again try to fend off by shooting in two
directions (Fig. 8.5 (bottom)). We shoot from x = a with the initial conditions
(pu′)(a) = a1 and u(a) = a2, yielding the “left part” of the solution, uL(x,λ).
By shooting backwards from x = b with the initial conditions (pu′)(b) = b1 and
u(b) = b2, we obtain the “right part” of the solution, uR(x,λ). A suitable quan-
tity that measures the difference between the solution parts at the point c, where
a < c < b, is the determinant of Wronski,

D(λ) =
∣
∣∣∣∣
(pu′

L)(c, λ) (pu′
R)(c, λ)

(uL)(c, λ) (uR)(c, λ)

∣
∣∣∣∣
. (8.91)

This expression vanishes precisely when the solutions uL(x,λ) and uR(x,λ) are
smoothly joined at x = c. Then uL and uR, taken together, represent the eigenfunc-
tion across the whole interval, and λ is the corresponding eigenvalue.

In problems where eigenvalues are found in clusters, the functions D(λ) defined
as in (8.91) may exhibit wild oscillations around zero, with large changes in the
amplitudes and distances between the nodes. Such behavior can be alleviated by

8.7 Boundary-Value Problems with Eigenvalues 447

Prüfer transformation [19] that is used to transform the functions in the Sturm–
Liouville problem to polar coordinates in the (pu′, u) plane. The basic (unscaled)
form of the transformation is

pu′ = r cos θ,

u = r sin θ.

The functions r and θ satisfy the differential equations

r ′

r
=
[

1

p
− (λw − q)

]
sin θ cos θ,

θ ′ = 1

p
cos2 θ + (λw − q) sin2 θ.

(8.92)

In new variables, the boundary conditions (8.85) become

θ(a) = α, tanα = a2/a1,

θ(b) = β, tanβ = b2/b1.

The Prüfer transformation now reveals its two great charms. If we wish to deter-
mine just the eigenvalues (and not the eigenfunctions), we need to solve just one
first-order equation (8.92). Besides, their determination is very direct: for a regular
Sturm–Liouville problem, where the coefficient functions p, q , and w are piecewise
continuous with p,q > 0, and where the parameters α and β are normalized such
that

α ∈ [0,π), β ∈ (0,π
]
,

the eigenvalue λk is the value of λ that solves (8.92) and satisfies

θ(a,λ) = α, θ(b,λ) = β + kπ.

In solving the eigenvalue problem with Dirichlet boundary conditions y(a) = 0 and
y(b) = 0, we have to fulfill θ(a) = 0 and θ(b) = π + kπ (both determined up to an
integer multiple of π). Thus, when shooting from x = a to x = b, the eigenvalues
λk are the roots of the equation D(λ) = θ(b,λ) − (k + 1)π = 0.

Example (Rescaled Prüfer Transformation; Adapted from [19]) There are pitfalls
in seeking the eigenvalues by Prüfer-transformed shooting. The dotted curve in
Fig. 8.13 (left) shows D(λ) for solving the Mathieu equation

−y′′ + (2ρ cos 2x)y = λy, y(−π/2) = y(π/2) = 0, ρ = 15, (8.93)

by shooting from a = −π/2 to b = π/2. Note the staircase-like character of D(λ),
where the abscissas of the intercepts of the curve with the ordinates kπ determine
the eigenvalues λk . In places where eigenvalues form clusters (e.g. the pairs λ0,1 or

448 8 Boundary-Value Problems for ODE

Fig. 8.13 [Left] The function D(λ)/π in solving (8.93) with ρ = 15 and boundary conditions
y(−π/2) = y(π/2) = 0 by Prüfer-transformed shooting from x = −π/2 to x = π/2. The dot-
ted curve shows the unscaled version, S(x,λ) = 1, while the full curve shows the rescaled one,
S(x,λ) = √

max{1, λ − q(x)}. Both curves go through the points (λk, k). [Right] The step size in
integration of the Prüfer equation (8.94) for the initial-value problem u′′ + xu = 0, u(1) = 0, by
the adaptive RK4 method (tolerance 10−5): without scaling (S = 1), with scaling (S = √

x), by
solving the modified equation θ ′ = √

x(1 + 5 sin2 θ/(16x3)). The numbers in brackets denote the
number of integration steps for integration up to x = 100 with precision ε = 10−5

λ2,3), the problem of finding the intercept is poorly conditioned, because the curve
there is almost vertical: no matter how hard we try, when locating the intercept, we
tumble into one of the two eigenvalues—it is next to impossible to locate both, in
particular if ρ is large. For higher eigenvalues, the problem is poorly conditioned
because the curve there is almost horizontal.

One can resort to two tricks: rescaling the Prüfer transformation and changing
the way we shoot. The rescaled Prüfer transformation has the form

pu′ = √
Sr cos θ,

u = 1√
S

r sin θ,

where the function S(x,λ) should be such that the staircase behavior of D(λ) in a
broad range of eigenvalues will become smoother. The differential equations for r

and θ are

r ′

r
=
[

S

p
− λw − q

S

]
sin θ cos θ − 1

2

S′

S
cos 2θ,

θ ′ = S

p
cos2 θ + λw − q

S
sin2 θ + S′

S
sin θ cos θ,

(8.94)

and the boundary conditions become

θ(a) = α, tanα = S(a)a2/a1,

8.7 Boundary-Value Problems with Eigenvalues 449

θ(b) = β, tanβ = S(b)b2/b1.

In “two-way” shooting with any parameter λ, we obtain the “left” solution θL(x,λ)

and the “right” solution θR(x,λ) that both solve (8.94) in their respective domains,
and satisfy

θL(a) = α, θR(b) = β.

The departure from the boundary condition is best measured by the Prüfer miss-
distance function D(λ),

D(λ) = θL(c, λ) − θR(c, λ).

The eigenvalues λk are then uniquely determined by the equation

D(λk) = kπ, k = 0,1,2,

The full curve in Fig. 8.13 (left) shows the function D(λ)/π for the Prüfer shoot-
ing solution of the Mathieu equation (8.93) with the scaling function

S(x,λ) =
{

1; λ − 2ρ cos 2x ≤ 1,√
λ − 2ρ cos 2x; λ − 2ρ cos 2x > 1.

Above λ ≈ 20 the scaling function has smoothened the jumpy D(λ) to a humble
curve, along which it is much easier to frame the intercepts (λk, k) and locate the
eigenvalues λk . Two-way shooting requires additional care, as the continuity of the
solution at the joining point c ∈ [a, b] has to be ensured. Special attention in rescal-
ing the solution is also called for if the function S(x) has a discontinuity at x = c.

The choice of an efficient function S(x,λ) and the optimal joining point c

sometimes requires a stroke of luck, as illustrated in Fig. 8.13 (right). The fig-
ure shows the step size in solving the Prüfer equation (8.94) for the initial-value
problem u′′ + xu = 0 by adaptive RK4 integration without scaling, by using the
scaling function S = √

x, and by calculating with the modified equation (JWKB)
θ ′ = √

x(1 + 5 sin2 θ/(16x3))—see [19], where you can find further instructions on
the choice of the joining point, the scaling function, and on ways of controlling the
eigenvalue errors.

8.7.3 Pruess Method

The Pruess method is based on the approximation of the coefficient functions of the
differential equation with simpler, piecewise continuous functions. We approximate
the continuous problem (8.84) and (8.85) by the regular problem

− d

dx

(
P(x)

dY

dx

)
+ Q(x)Y = �W(x)Y, a < x < b, (8.95)

450 8 Boundary-Value Problems for ODE

Fig. 8.14 Piecewise constant approximation of the function f , approximating the values f (x) on
subintervals (xj−1, xj) by the midpoint values f ((xj−1 + xj)/2)

with boundary conditions

a1Y(a) − a2P(a)Y ′(a) = 0,

b1Y(b) − b2P(b)Y ′(b) = 0,

where P , Q, and W are approximations of p, q , and w [20]. One could, for example,
choose them to be piecewise polynomial functions of degree m that are continuous
at the joining points of the subintervals (xj−1, xj). Because we are approximating
the equation rather than its solution, the resulting boundary-value problem preserves
the set of eigenvalues (spectrum) of the original problem, which can also be infinite.
Certainly we should not expect this property from difference methods with finite-
dimensional matrices.

The convergence of the approximate eigenvalues �k to the exact values λk of
course depends on the polynomial degree m. If P , Q, and W are polynomials that
interpolate p, q , and w on each subinterval at the Gauss collocation points (see
Fig. 8.10 and Table 8.2), we have |λk − �k| ≤ C(k)h2m+2. The simplest approxi-
mating functions are constant functions, m = 0, and they are used in most practical
implementations of the Pruess approximation. We approximate the values f (x) on
the subintervals (xj−1, xj) by the values at the central points f ((xj−1 + xj)/2),
resulting in a piecewise continuous midpoint approximation. Figure 8.14 shows an
example on a uniform mesh. For m = 0 the piecewise constant approximation is
equivalent to Gauss interpolation, and we have

|λk − �k| ≤ Ck3h2.

In [19] a more restrictive estimate |λk − �k| ≤ Ckh2 max{1, |λk|} can be found that
holds for large k. For Sturm–Liouville problems in normal form (8.86), we also have
the estimate |λk − �k| ≤ Ch2√max{1, λk}.

Assume that we have approximated the functions p, q , and w on intervals
(xj−1, xj) by the constant values P = pj , Q = qj , and W = wj . The solution

8.7 Boundary-Value Problems with Eigenvalues 451

of (8.95) on the interval [xj−1, xj] then has the general form [19]

Y(x) = fjFj (x) + gjGj (x),

where Fj and Gj are independent solutions of −Y ′′ = kjY , and where

kj = �wj − qj

pj

.

The explicit solution is

Y(x) = Y(xj−1)�j (x − xj−1) + (PY ′)(xj−1)�j (x − xj−1)/pj , (8.96)

where

�j(s) =
⎧
⎨

⎩

cosωjs; kj > 0,

1; kj = 0,

coshωjs; kj < 0,

�j (s) =
⎧
⎨

⎩

sin(ωj s)/ωj ; kj > 0,

s; kj = 0,

sinh(ωj s)/ωj ; kj < 0,

and ωj = √|kj |. By using (8.96) and its derivative it is easy to show (check it as
an exercise) that the solution on one interval can be joined by the solution on the
adjacent interval by the matrices

(
PY ′
Y

)

j

= Tj

(
PY ′
Y

)

j−1
, Tj =

⎧
⎪⎨

⎪⎩

T
(+)
j ; kj > 0,

T
(0)
j ; kj = 0,

T
(−)
j ; kj < 0,

(8.97)

where

T
(+)
j =

(
cos(ωjhj) −pjωj sin(ωjhj)

sin(ωjhj)/(pjωj) cos(ωjhj)

)
,

T
(0)
j =

(
1 0

hj/pj 1

)
,

T
(−)
j =

(
cosh(ωjhj) pjωj sinh(ωjhj)

sinh(ωjhj)/(pjωj) cosh(ωjhj)

)
.

We have denoted hj = xj − xj−1 and have armed ourselves—an exception in this
book—for the optional non-uniform mesh. Each inverse matrix T −1 can be obtained
by simply replacing h by (−h) in T . A good implementation of the Pruess approx-
imation utilizes two-way shooting, in which one uses the mesh (8.2) to shoot from
x = a and x = b towards the joining point c ∈ [a, b]. We let the joining point co-
incide with one of the mesh points, so that c = xs , 0 < s < N . The sketch of the

452 8 Boundary-Value Problems for ODE

algorithm [19] is

Input: Index s of point c = xs , initial values (PY ′)0 and Y0 from the boundary
condition at x0 = a, and initial values (PY ′)N and YN from the
boundary condition at xN = b, tolerance ε

repeat
Choose (or change) the value λ;
for j = 1 step 1 to s do

Compute (PY ′, Y)j from (PY ′, Y)j−1 by (8.97)
end
(PY ′)L(c) = (PY ′)s ;
YL(c) = Ys ;
for j = N step −1 to s + 1 do

Compute (PY ′, Y)j−1 from (PY ′, Y)j by (8.97)
and take into account that T −1

j (hj) = Tj (−hj)

end
(PY ′)R(c) = (PY ′)s ;
YR(c) = Ys ;
Form the Wronski determinant D(λ) by (8.91);

until D(λ) ≤ ε;
Output: Eigenvalue λ

In commercial codes (see Appendix I) this algorithm is of course enhanced by
Prüfer transformation and a prudent choice of the scaling function, by a generator
of non-uniform meshes, and numerical error control. Further details can be found
in [19].

8.7.4 Singular Sturm–Liouville Problems

So far we have only discussed regular Sturm–Liouville problems of the form (8.84).
A problem becomes singular if one or both endpoints become singular. The endpoint
a is singular if in its neighborhood any of the coefficient functions 1/p, q , or w is
non-integrable, so if

∫

a

[
1

p(x)
+ ∣∣q(x)

∣∣+ w(x)

]
dx = +∞.

(An endpoint may also be at infinity.) A well-known example of a singular eigen-
value problem is the radial part of the Schrödinger equation for the hydrogen atom,

−R′′(r) +
[
−1

r
+ l(l + 1)

r2

]
R(r) = λR(r), r ∈ (0,∞),

with eigenvalues λk = −1/(2k + 4)2 for l = 1. Naively we might wish to solve
this task as if it were a regular problem: we establish regular boundary conditions

8.7 Boundary-Value Problems with Eigenvalues 453

R(ε) = R(R) = 0 for some small ε and large R, and solve the problem with any
previously described method on the interval [ε,R]. If we choose ε = 0.0001 and
R = 1000, the relative error of the first few eigenvalues with respect to the exact
values is ≈10−12. But for higher k, we will be forced to increase R strongly in
order to keep the same relative error. For example, with R = 1000, already λ17 is
very imprecise, while λ18 even becomes positive. How the differential equation, the
boundary conditions, and the expected spectrum drive our choice of ε and R, is
beyond our scope.

Indeed, atomic physicists approach the Schrödinger equation with Coulomb po-
tential differently, but universal packages for boundary-value problems (Appendix I,
p. 689) do not recognize the physical background of the equations and the most nat-
ural solution options. We have taken the above example from [19], which offers
excellent reading on singular Sturm–Liouville problems.

8.7.5 Eigenvalue-Dependent Boundary Conditions

Now and then, one encounters Sturm–Liouville problems in which the eigenvalues
appear as parameters in the boundary conditions, for example, as in

−(py′)′ + q(x)y = λw(x)y, x ∈ [a, b],
with boundary conditions

α1y(a) − α2
(
py′)(a) = λ

[
α′

1y(a) − α′
2

(
py′)(a)

]
,

β1y(b) + β2
(
py′)(b) = 0,

or

α1(λ)y(a) − α2(λ)p(a)y′(a) = 0,

β1(λ)y(b) + β2(λ)p(b)y′(b) = 0.

The standard difference schemes like (8.88) or (8.89) are inappropriate for such
problems, since the corresponding matrix equations become too complicated. In
general we obtain equations of the type K(�)u = �u or K(�)u = �M(�)u. Prob-
lems of this type are therefore best attacked by shooting.

Boundary-value problems containing eigenvalues in the boundary conditions can
be transformed such that various approaches or approximations can be used to de-
termine the asymptotic behavior of eigenvalues and to compute the eigenfunctions
(see [21–25]). So far methods have been developed only for very specific analytic
forms of the boundary conditions. Here we mention just a few of the most physically
interesting ones, for boundary-value problems in Sturm–Liouville normal form

−y′′ + qy = λy, x ∈ [0,1].

454 8 Boundary-Value Problems for ODE

The paper [26] discusses transformations between the problems in which both
boundary conditions are of “constant” (C) form,

y′

y
(0) = α,

y′

y
(1) = β,

and problems in which the eigenvalue appears in an “affine” (A),

y′

y
(1) = αλ + β,

or “bilinear” (B) manner,

y′

y
(1) = αλ + β

γλ + δ
.

Between the forms A, B, and C simple explicit mappings B → A and A → C (thus
also B → C) exist, and their spectra are equivalent. Therefore, with appropriate
transformations, the boundary-value problem can be brought into the form C, which
can also be solved by non-shooting methods. Physically relevant are also problems
with the boundary conditions in the form

y′

y
(0) = cotφ,

y′

y
(1) = αλ + β −

∑

n

γn

λ − δn

= f (λ), (8.98)

where φ ∈ [0,π). A transformation exists for such problems that generates a
boundary-value problem with different functions q(x) → q̂(x) and f (λ) → f̂ (λ),
such that f̂ (λ) either contains less terms than f (λ), or these terms contain fewer sin-
gularities [27, 28]. By repeated use of this transformation, the problem can be con-
verted to the standard Sturm–Liouville problem whose eigenvalues are almost iden-
tical to those of the problem with the condition (8.98). Similar transformations [29]
exist for boundary conditions in the form

y′

y
(1) = αλ2 + βλ + γ.

8.8 Isospectral Problems �

As a curiosity in boundary-value problems, we mention the field of inverse prob-
lems. In the famous paper [30] Mark Kac asked whether one can “hear the shape of
a drum”. In other words, can we uniquely determine the shape of a drum membrane
if we know (measure) its eigenfrequencies?

We solve the wave equation ∇2v = vtt on the domain (drum) R by the ansatz
v(x, t) = φ(x, y)T (t), whence ∇2φ/φ = Ttt /T = const = λ. The displacement of

8.9 Problems 455

Fig. 8.15 Two geometrically
different drum membranes
(isospectral domains) with
identical discrete sets of
eigenfrequencies

the drum membrane from equilibrium is v(x, t) = φ(x, y) sin
√

λt , where φ(x, y)

is the solution of the two-dimensional eigenvalue problem

−∇2φ = λφ on membrane R,

φ = 0 on membrane boundary ∂R,

and where the eigenvalues λi are the squares of the drum’s eigenfrequencies.
We are therefore asking whether the geometry of the domain R is uniquely deter-

mined by the discrete set of eigenvalues (the spectrum). The interesting answer is:
it is not. One can show that the observed eigenvalues do determine some properties
of R, like its surface area, circumference, and connectivity [30], but geometrically
different domains can be found with precisely the same spectrum, including possi-
ble degeneracies [31, 32]. We call such domains isospectral. Figure 8.15 shows the
example of two membranes with equal spectra. More on isospectral problems and
in general on inverse (ill-posed) problems can be found in [33–36]. Inverse Sturm–
Liouville problems, in which the eigenvalue is contained in the boundary conditions,
are discussed in [37].

8.9 Problems

8.9.1 Gelfand–Bratu Equation

One of the problems encountered in chemical kinetics involving diffusion with
exothermic reactions is the Gelfand–Bratu boundary-value problem

y′′ = −δey, 0 < x < 1,

with boundary conditions y(0) = y(1) = 0. For 0 < δ < δc ≈ 3.51 this problem has
two solutions, while for δ > δc there are no real solutions. In the physically relevant
domain the two analytic solutions are given by

y(x) = −2 ln

[
cosh ξ(1 − 2x)

cosh ξ

]
,

where ξ is one of the two solutions of cosh ξ = √
8/δξ .⊙

Solve the problem by using difference methods described in Sect. 8.1. Start
with δ = 1: in this case the two analytic solutions are defined by the parameters

456 8 Boundary-Value Problems for ODE

Fig. 8.16 Gelfand–Bratu equation. [Left] Two possible analytic solutions at δ = 1. [Right] The
dependence of the value y(0.5) on the parameter δ (bifurcation diagram)

ξ1 ≈ 0.379291149762689 and ξ2 ≈ 2.734675693030527 (Fig. 8.16 (left)). Use the
explicit iterative method with an appropriate convergence parameter ω. The equa-
tion tells us that the solution should be concave on [0,1], so choose the initial ap-
proximation accordingly, e.g. y(x) = μx(1 − x), where μ = 1 or μ = 16. Change
the parameter δ and note the value of the smaller and larger of the two solutions
at x = 0.5. By increasing δ you should observe two curves that ultimately meet at
δ = δc (bifurcation diagram, Fig. 8.16 (right)).⊕

Solve the problem by using the Newton method (8.16) and (8.17).

8.9.2 Measles Epidemic

In a simple epidemiological model [2, 3] of a measles epidemic spreading in a pop-
ulation of size P we assume that any person in the population belongs to one of
four groups: at time t there are S(t) susceptible persons; F(t) infectives; L(t) latent
persons (infected but with clinical signs as yet unpronounced); and I (t) immunes.
So at any time t ∈ [0,1] we have

S(t) + F(t) + L(t) + I (t) = P.

We use dimensionless quantities y1 = S/P , y2 = L/P , y3 = F/P . The dynamics
of the infection is described by a system of non-linear differential equations,

ẏ1 = μ − β(t)y1y3 = f1(t,y),

ẏ2 = β(t)y1y3 − y2/λ = f2(t,y),

ẏ3 = y2/λ − y3/η = f3(t,y),

where y = (y1, y2, y3)
T and β(t) = β0(1 + cos 2πt). The spreading infection is

periodic: the boundary condition is

y(1) = y(0).

8.9 Problems 457

⊙
This non-linear problem has the form (8.19) and you can solve it on t ∈

[0,1] by using Newton’s method described in Sect. 8.2. Use y1(t) = 0.1, y2(t) =
y3(t) = 0.005(1 − cos 2πt) as the initial approximation for the iteration. Choose a
reasonably large mesh size N , as the division to N intervals implies a 3(N + 1) ×
3(N + 1) Jacobi matrix. Use the parameters μ = 0.02, λ = 0.0279, η = 0.01, and
β0 = 1575.

8.9.3 Diffusion-Reaction Kinetics in a Catalytic Pellet

An important problem in chemical engineering is the computation of diffusion and
reaction kinetics in a small porous sphere (a pellet). Assume that within the pellet
with radius R a substance (platinum) is distributed in order to catalyze the dehy-
drogenation of cyclohexane [38]. The kinetics in spherical geometry in the region
0 ≤ r ≤ R is given by the boundary-value problem

D

[
1

r2

d

dr

(
r2 dc

dr

)]
= kR(c),

dc

dr

∣∣∣∣
r=0

= 0, c|r=R = c0,

where c is the concentration of cyclohexane, D is the diffusion constant, k is the
reaction rate (all at given temperature), while the function R(c) defines the depen-
dence on concentration. By substituting r/R → r and c(r)/c(R) → c(r) we write
the problem in dimensionless form

d2c

dr2
= �2R(c)

c0
− 2

r

dc

dr
= f

(
r, c, c′), dc

dr

∣∣∣∣
r=0

= 0, c|r=1 = 1,

where �2 = kR2/D.⊙
If R(c) = c the equation is linear. At temperature 700 K the realistic param-

eter values are k = 4/s−1 and D = 0.05 cm2/s, so that for R = 2.5 mm we obtain
� ≈ 2.236. The analytic solution is

c(r) = sinh�r

r sinh�

(see Fig. 8.17 (left)). Solve the problem by using Newton’s method from Sect. 8.3.3
(even though the problem is linear). You are solving the initial-value problems

(
u

v

)′
=
(

v

�2u − 2
r
v

)
,

(
ξ

η

)′
=
(

η

�2ξ − 2
r
η

)
,

with boundary conditions u(0) = s, v(0) = 0, ξ(0) = 1, and η(0) = 0. Newton’s
iteration (8.44) involves functions φ(s) = u(1; s) − 1 and φ′(s) = ξ(1; s).

458 8 Boundary-Value Problems for ODE

Fig. 8.17 Solutions of Problems 8.9.3 and 8.9.5. [Left] Concentration of cyclohexane in the cat-
alytic pellet as a function of radius, for two different functions R(c) determining the kinetics rate.
[Right] The boundary-layer problem (see (8.99)) for three values of the parameter ε

We are also interested in the average reaction rate within the pellet and the aver-
age rate computed at the surface:

E =
[∫ R

0
R
(
c(r)

)
r2 dr

][∫ R

0
R(c0)r

2 dr

]−1

.

The quantity E is a measure for the efficiency of the catalytic process: if mass
transfer does not restrict the reaction rate, the average rate is the same in the interior
of the pellet and at the surface, and then E = 1; if diffusion is significant, the mass
transfer reduces the reaction rate within the pellet, indicated by E < 1. We integrate
the differential equation by parts and obtain

D

∫ R

0

[
1

r2

d

dr

(
r2 dc

dr

)]
r2 dr = k

∫ R

0
R(c)r2 dr = DR2 dc

dr

∣∣∣
∣
r=R

,

so that

E = 3R2D dc
dr

∣∣
r=R

kR(c0)R3
.

In dimensionless quantities you are therefore seeking E = (3/�2)(dc/dr)|r=1,
while the value from the analytic solution is

E = 3

�

[
1

tanh�
− 1

�

]
≈ 0.7727.

⊕
Solve the pellet problem with R(c) = c2 by using Newton’s method for

non-linear problems described in Sect. 8.3.3 With the same boundary conditions as
before, you are now solving the coupled initial-value problems

(
u

v

)′
=
(

v

�2u2 − 2
r
v

)
,

(
ξ

η

)′
=
(

η

2�2uξ − 2
r
η

)
.

8.9 Problems 459

8.9.4 Deflection of a Beam with Inhomogeneous Elastic Modulus

Under certain assumptions, small vertical deflections of a beam that is simply sup-
ported at both endpoints, can be described by the fourth-order boundary-value prob-
lem [2, 3]

(
x3u′′)′′ = 1,

u(1) = u′′(1) = u(2) = u′′(2) = 0,

on the interval x ∈ [1,2]. The analytic solution is

u(x) = 10 log 2 − 3

4
(1 − x) + 1

2

[
1

x
+ (3 + x) logx − x

]
.

⊙
Solve this problem by using the collocation method for scalar boundary-

value problems of higher orders, as described in Sect. 8.5.2. Use the uniform
mesh (8.2) and Gauss collocation of orders K = 4 (see Table 8.2) and K = 6 (com-
pute the corresponding canonical parameters ρk on your own). How crude a mesh
(what N) can you afford that the error of the numerical solution is still acceptable?⊕

Transform this problem to a set of first-order equations and solve it by
shooting or by using the difference method.

8.9.5 A Boundary-Layer Problem

Here we discuss the boundary-value problem (adapted from [39]):

εy′′ − x2y′ − y = 0, 0 < x < 1, (8.99)

with boundary conditions y(0) = y(1) = 1 and parameter ε = 0.01. An analytic
solution exists that involves hypergeometric functions, but it cannot be written in
a simple closed form. The main feature of this problem is the rapid change of the
solution in the vicinity of the right endpoint x = 1 (see Fig. 8.17 (right)). Such a
region is known as the boundary layer and it requires particular care in order to
avoid the potential instabilities in the numerical solution.⊙

Solve the problem by using the usual difference method described in
Sect. 8.1 (see (8.9)), where you can also find the stability criterion for the size of the
mesh spacing h. You may also blindly divide the interval [0,1] to N = 10, 20, 50,
or 100 subintervals, and observe the corresponding solutions.

Use the same method to study the boundary-layer behavior in the problem

εy′′ − y′ + 1 = 0, 0 < x < 1, (8.100)

with boundary conditions y(0) = 1 and y(1) = 3. The analytic solution is y(x) =
1 + x + (ex/ε − 1)/(e1/ε − 1). Solve the same problem by keeping the central dif-
ference for the second derivative, but using the one-sided formula (8.4) for the first

460 8 Boundary-Value Problems for ODE

derivative. Write the difference equations in matrix form and solve the resulting
equation for N = 10, 20, and 40. Discuss the solutions with ε = 0.1 and 0.01. Com-
pare all solutions. How does the error change when N increases? Which method is
preferable if ε is reduced still further?⊕

Solve the problems (8.99) and (8.100) by using the collocation method with
cubic B-splines, ending in (8.65). How do the solutions depend on the number of
points (or the number of basis functions) on the interval?

Recall that the key step of the collocation method is the requirement that the
remainder R(x) = y′′ + p(x)y′ + q(x)y − r(x) is zero at the collocation points.
There is another way of finding the zero of the remainder: we construct the least-
square error function

E =
∫ b

a

[
R(x)

]2 dx,

which, of course, depends on the coefficients aj that enter the expression through
the expansion (8.64). We find the zero of R when we minimize E with respect to
aj , i.e. by requiring ∂E/∂aj = 0. We obtain the matrix system

N∑

j=0

αij aj = βi,

where

αij =
∫ b

a

χi(x)χj (x)dx, βi =
∫ b

a

χi(x)r(x)dx,

and χi(x) = φ′′
i (x)+p(x)φi(x)′′ +q(x)φi(x). This method is more stable since the

error function E in some sense averages the integrand over the interval, while stan-
dard collocation “checks” only the agreement at the collocation points. The price
we pay for this is an increase in the matrix bandwidth.

8.9.6 Small Oscillations of an Inhomogeneous String

Small transverse deflections U(x, t) of a string with linear mass density ρ are de-
scribed by the equation

ρ(x)
∂2U

∂t2
(x, t) = ∂

∂x

(
T (x)

∂U

∂x
(x, t)

)
+ F(x, t),

where T is the longitudinal internal tension and F is the external force per unit
length. At the endpoints of [0,L] the string is fixed, so U(0, t) = U(L, t) = 0. We
are interested in the oscillations of an inhomogeneous string, which we seek by the
ansatz U(x, t) = u(x) exp(iωt). The eigenmodes are given by the equation

−ω2ρ(x)u(x) = ∂

∂x

(
T (x)

∂u

∂x
(x)

)
. (8.101)

8.9 Problems 461

⊙
Determine a few lowest eigenfunctions and eigenvalues of the string with

the density

ρ(x) =
{

ρ0; x ∈ [0,L/2],
ρ1; x ∈ (L/2,L].

Solve the problem by using the difference method: divide the interval [0,L] to
N subintervals with endpoints xj = jh, h = L/N , and use this mesh to dis-
cretize the string deflections u = (u1, u2, . . . , uN−1)

T, the first and second derivative
in (8.101), as well as ρ and T . You obtain a system of difference equations

−(hω)2ρjuj = Tj (uj+1 − 2uj + uj−1) + 1

4
(Tj+1 − Tj−1)(uj+1 − uj−1),

valid for 1 ≤ j ≤ N − 1. Initially assume constant string tension, T = const. By
including the boundary conditions u0 = uN = 0, the system can be written in matrix
form Au = (hω)2ρu, where A is symmetric, or

ρ−1/2Aρ−1/2v = (hω)2v,

where v = ρ−1/2u and ρ is the diagonal density matrix ρ = diag{ρj }N−1
j=1 . Use meth-

ods from Sect. 3.4 to solve the resulting matrix eigenvalue problem.
Solve this problem by shooting: choose an energy E = ω2 and solve (8.101) as

an initial-value problem by using an integrator of your choice (for example, RK4),
starting at x = 0 with initial conditions u(0) = 0 and u′(0) = 1 towards x = L.
Change E until the boundary condition u(L) = 0 is satisfied to desired precision.
This gives you just one solution, but further eigenmodes can be found in the same
manner by realizing that the sequence of eigenvalues follows the number of nodes
of u on the interval.

Discuss the solutions obtained by the difference and shooting methods, and com-
pare both to the analytic solution (two modes corresponding to the segments with ρ0
and ρ1 joined smoothly at the junction). Plot the computed eigenvalues as a function
of the ratio ρ1/ρ0.⊕

Use the difference method to study the oscillation of the string under con-
stant tension, T = const, but with a random density distribution,

ρj = awj

[
1

N

N−1∑

n=1

wn

]−1

, wn = χn + 1,

for a = 0, 1, 10, and 100. Here χn is a random variable uniformly distributed on
[0,1]. Analyze the form of the eigenmodes for different N and plot the most ap-
pealing ones. At chosen a and N , compute the center-of-mass of the eigenmode,
M(u), and its dispersion, S(u),

M(u) =
N−1∑

j=1

juj , S(u) =

√√
√√√

N−1∑

j=1

j2u2
j − M(u)2.

462 8 Boundary-Value Problems for ODE

8.9.7 One-Dimensional Schrödinger Equation

In this Problem we are solving the stationary Schrödinger equation

− �
2

2m

d2ψ

dx2
+ V (x)ψ = Eψ

in an infinite potential well of width a, with the potential

V =
{

0; |x| < a/2,

∞; |x| ≥ a/2,

and in a finite well (V (|x| ≥ a/2) = V0). The analytic solutions for both cases can
be found in any textbook on quantum mechanics. Here we wish to compute the
eigenfunctions ψ and eigenenergies E numerically.⊙

First use the difference method to solve the infinite well problem. Divide
the interval [−a/2, a/2] with N points (xj = −a/2 + j (a/N)) and discretize the
differential equation accordingly. In dimensionless form you get

ψi−1 − 2ψi + ψi+1

h2
+ Eψi = 0

or ψi−1 − (2−λ)ψi +ψi+1 = 0, where λ = Eh2 = k2h2. You should also discretize
the boundary conditions at x = −a/2 and x = a/2 which, in general (and for the
finite well) are of the mixed type,

c1ψ0 + c2
ψ1 − ψ−1

2h
= 0,

d1ψN + d2
ψN+1 − ψN−1

2h
= 0,

while for the infinite well we clearly have ψ0 = ψN = 0. Both cases lead to tridiag-
onal systems of equations

Aψ = λψ

for the eigenvectors ψ = (ψ0,ψ1, . . . ,ψN)T and eigenvalues λ, which can be solved
by using methods from Sect. 3.4. Determine a few lowest eigenfunctions and eigen-
values! What plays a larger role in the error: the approximation of the second deriva-
tive by the central difference or the graininess of the interval (the finite dimension
of the matrix being diagonalized)?

Solve the problem by shooting: start with a “cosine” (ψ(0) = 1, ψ ′(0) = 0) or
“sine” (ψ(0) = 0, ψ ′(0) = 1) initial condition at the origin, select a value of E, and
solve the initial-value problem by integrating the differential equation to x = a/2.
Check the validity of the boundary condition ψ(a/2) = 0. Change E (and/or ψ ′)
until the boundary condition is fulfilled to required precision. This procedure gives
you both the odd and even eigenfunctions with the corresponding eigenvalues.

8.9 Problems 463

⊕
Use shooting to solve the finite well problem. Note: the spectrum is finite!

Only the boundary conditions change; the condition at x = a/2 is given by the
requirement that the wave-function is smooth at the boundary, and has the form

c1ψ(a/2) + c2ψ
′(a/2) = 0.

8.9.8 A Fourth-Order Eigenvalue Problem

Difference and shooting methods are also suitable for the solution of higher-order
eigenvalue problems: think of them as Sturm–Liouville problems but involving
higher derivatives. An example of such a problem is

d4y

dx4
− [λq(x) − r(x)

]
y(x) = 0, x ∈ [a, b], (8.102)

with boundary conditions

y(a) = y(b) = y′(a) = y′(b) = 0.

We approximate the differential equation by the difference scheme on a discrete
mesh (8.2). As usual we use uj to denote the approximation of y(xj), as well as qj =
q(xj) and rj = r(xj). We approximate the fourth derivative at xj , j = 2,3, . . . ,

N − 2, by using (25.3.28) from [9],

d4y

dx4

∣∣∣∣
x=xj

≈ uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2

h4
.

We write the boundary conditions as u(a) = u0 = 0, u(b) = uN = 0, and

u′(a) ≈ u1 − u−1

2h
= 0, u′(b) ≈ uN+1 − uN−1

2h
= 0.

At the left endpoint (x = x0 = a) we use

d4y

dx4

∣∣
∣∣
x=x1

≈ −4u0 + 7u1 − 4u2 + u3 − 2hu′(a)

h4
,

and analogously at x = xN = b. By using the difference equations at j = 1 and
j = N − 1 and the boundary conditions for the first derivative, we eliminate
u−1 and uN+1, ending up with a system of equations for the solution vector
u = (u1, u2, . . . , uN−1)

T which has the form of a generalized matrix eigenvalue
problem,

(
A + h4R

)
u = �h4Qu. (8.103)

464 8 Boundary-Value Problems for ODE

Here R = diag(r1, r2, . . . , rN−1) and Q = diag(q1, q2, . . . , qN−1), while A is pen-
tadiagonal, with the structure

A1,1 = AN−1,N−1 = 7,

Ai,i = 6, i = 2,3, . . . ,N − 2,

Ai,i±1 = −4, i = 1,2, . . . ,N − 2 or i = 2,3, . . . ,N − 1,

Ai,i±2 = 1, i = 1,2, . . . ,N − 3 or i = 3,4, . . . ,N − 1.

⊙
Solve the problem (8.102) by using the difference method described above:

solve (8.103) on [a, b] = [1, e], with the coefficient functions r(x) = 0 and q(x) =
1/x4. Find some of the lowest eigenvalues. The exact values of the first five are λ1 =
531.836459064, λ2 = 3919.16273370, λ3 = 14865.4293298, λ4 = 40373.3097672,
λ5 = 89795.9545147 (precise to 12 decimal places). The method is second order,
but it can be turned into a fourth-order method if a seven-point difference is used for
the fourth derivative. When the boundary conditions are accounted for, we obtain a
heptadiagonal matrix given in [40].⊕

Solve this problem by shooting, and compare the results to those obtained
in the first part. Use the paper [41] for further reference.

References

1. H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems (Blaisdell,
Waltham, 1968)

2. U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations (SIAM, Philadelphia, 1995)

3. U. Ascher, R.D. Russell, Reformulation of boundary value problems into “standard form”.
SIAM Rev. 23, 238 (1981)

4. E. Isaacson, H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966)
5. P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York,

1962)
6. P. Henrici, Error Propagation for Difference Methods (Wiley, New York, 1963)
7. E.W. Larsen, J.E. Morel, W.F. Miller, Asymptotic solutions of numerical transport problems

in optically thick, diffusive regimes. J. Comput. Phys. 69, 283 (1987)
8. E.W. Larsen, J.E. Morel, Asymptotic solutions of numerical transport problems in optically

thick, diffusive regimes, II. J. Comput. Phys. 83, 212 (1989)
9. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mine-

ola, 1972)
10. D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods.

Los Alamos Sci. 29, 188 (2005)
11. U. Ascher, J. Christiansen, R.D. Russell, Collocation software for boundary-value ODEs.

ACM Trans. Math. Softw. 7, 209 (1981)
12. G. Bader, U. Ascher, A new basis implementation for a mixed order boundary value ODE

solver. SIAM J. Sci. Stat. Comput. 8, 483 (1987)
13. J.R. Cash, M.H. Wright, A deferred correction method for nonlinear two-point boundary

value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12,
971 (1991)

14. W.H. Enright, P.H. Muir, Runge–Kutta software with defect control for boundary value ODEs.
SIAM J. Sci. Comput. 17, 479 (1996)

References 465

15. L.F. Shampine, P.H. Muir, H. Xu, A user-friendly Fortran BVP solver. J. Numer. Anal. Ind.
Appl. Math. 1, 201 (2006)

16. J.E. Flaherty, Finite element analysis. CSCI, MATH 6860 Lecture Notes, Rensselaer Poly-
technic Institute, Troy, 2000

17. C.T. Fulton, S.A. Pruess, Eigenvalue and eigenfunction asymptotics for regular Sturm–
Liouville problems. J. Math. Anal. Appl. 188, 297 (1994)

18. Q. Kong, A. Zettl, Eigenvalues of regular Sturm–Liouville problems. J. Differ. Equ. 131, 1
(1996)

19. J.D. Pryce, Numerical Solution of Sturm–Liouville Problems (Clarendon, Oxford, 1993)
20. S. Pruess, Estimating the eigenvalues of Sturm–Liouville problems by approximating the dif-

ferential equation. SIAM J. Numer. Anal. 10, 55 (1973)
21. J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary condition.

Math. Z. 133, 301 (1973)
22. C.T. Fulton, Two-point boundary value problems with eigenparameter contained in the bound-

ary conditions. Proc. R. Soc. Edinb. 77A, 293 (1977)
23. C.T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the bound-

ary conditions. Proc. R. Soc. Edinb. 87A, 1 (1980)
24. D. Hinton, An expansion theorem for an eigenvalue problem with eigenvalue parameter in the

boundary condition. Q. J. Math. Oxf. 2, 33 (1979)
25. D. Hinton, Eigenfunction expansions for a singular eigenvalue problem with eigenparameter

in the boundary condition. SIAM J. Math. Anal. 12, 572 (1981)
26. P.A. Binding, P.J. Browne, B.A. Watson, Transformations between Sturm–Liouville problems

with eigenvalue dependent and independent boundary conditions. Bull. Lond. Math. Soc. 33,
749 (2001)

27. P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions
rationally dependent on the eigenparameter, I. Proc. Edinb. Math. Soc. 45, 631 (2002)

28. P.A. Binding, P.J. Browne, B.A. Watson, Sturm–Liouville problems with boundary conditions
rationally dependent on the eigenparameter, II. J. Comput. Appl. Math. 148, 147 (2002) (in-
verse problem)

29. W.J. Code, P.J. Browne, Sturm–Liouville problems with boundary conditions depending
quadratically on the eigenparameter. J. Math. Anal. Appl. 309, 729 (2005)

30. M. Kac, Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1 (1966)
31. C. Gordon, D. Webb, S. Wolpert, One cannot hear the shape of the drum. Bull. Am. Math.

Soc. 27(1), 134 (1992)
32. S.J. Chapman, Drums that sound the same. Am. Math. Mon. 102(2), 124 (1995)
33. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems (Springer, New

York, 1996)
34. A.N. Tikhonov, V. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977)
35. A.N. Tikhonov, A.S. Leonov, A.G. Yagola, Nonlinear Ill-Posed Problems, Vols. I and II

(Chapman and Hall, London, 1998)
36. C.R. Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002)
37. C.M. McCarthy, W. Rundell, Eigenparameter dependent inverse Sturm–Liouville problems.

Numer. Funct. Anal. Optim. 24, 85 (2003)
38. M.E. Davis, Numerical Methods and Modeling for Chemical Engineers (Wiley, New York,

1984)
39. M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New

York, 2007)
40. G. Vanden Berghe, M. Van Daele, H. De Meyer, A five-diagonal finite difference method

based on mixed-type interpolation for computing eigenvalues of fourth-order two-point
boundary-value problems. J. Comput. Appl. Math. 41, 359 (1992)

41. D.J. Jones, Use of a shooting method to compute eigenvalues of fourth-order two-point bound-
ary value problems. J. Comput. Appl. Math. 47, 395 (1993)

Chapter 9
Difference Methods for One-Dimensional PDE

Solving partial differential equations (PDE) is so crucial to mathematical physics
that we devote three chapters to it. The solution methods largely depend on the type
of PDE. The type of a general system of linear first-order equations

Avx + Bvy = c,

where v = (v1, v2, . . . , vM)T is the solution vector, c = (c1, c2, . . . , cM)T is the vec-
tor of inhomogeneous terms, and A and B are M × M matrices, is determined by
the zeros of the characteristic polynomial ρ(λ) = det(A − λB). The system is hy-
perbolic if ρ(λ) has precisely M distinct zeros, or if it has M real zeros and the
system (A − λB)u = 0 possesses precisely M linearly independent solutions. The
system is parabolic if ρ(λ) has M real zeros but (A − λB)u = 0 does not have
M linearly independent solutions. The system without real zeros of ρ(λ) is elliptic.
(The classification of systems with mixed real and complex zeros of ρ(λ) is more
involved.) For second-order linear PDE of the general form

Lv = avxx + bvxy + cvyy + dvx + evy + f v = Q, (9.1)

where we seek the scalar solution v(x, y) on some domain on the (x, y)-plane at
given initial and boundary conditions, the classification is simpler: it is determined
already by the discriminant D = b2 − 4ac.

Hyperbolic Equations PDE of the hyperbolic type (D > 0) describe time-de-
pendent conservative processes that do not evolve towards a stationary state, for
example, the propagation of waves. We will learn the basic numerical approaches
on the case of the first-order advection equation

vt ± cvx = 0

and the second-order wave equation

vtt = c2vxx.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_9, © Springer-Verlag Berlin Heidelberg 2012

467

468 9 Difference Methods for One-Dimensional PDE

We will be interested in the dissipation of the numerical solution (diminishing mag-
nitude of the solution or its Fourier components) and its dispersion (different prop-
agation velocity of Fourier components with different wave vectors). Among other,
we use high-order non-linear hyperbolic equations to model atmospheric phenom-
ena and solve complex aerodynamic problems.

Parabolic Equations The equations of the parabolic type (D = 0) describe time-
dependent dissipative processes that evolve to the stationary final state. We will
study the fundamentals on the case of the diffusion equation

vt = D∇2v

in one, two, and three spatial dimensions, which we use to model the diffusion of
substances or heat in matter. We shall pay some attention to peculiarities that occur
in the presence of non-linearities.

Elliptic Equations The equations of the elliptic type (D < 0) describe systems
in equilibrium or stationary states, and their solutions (in the context of variational
calculus) usually maximize or minimize the integrals representing the energy of the
system. Among the best known is the Poisson equation

∇2v = ρ,

which lends itself for the study of stationary heat currents or slow curl-free currents
of inviscid and incompressible fluids. Of course, we encounter it time and again in
the studies of electrostatics and gravitation.

The classification of PDE is not merely academic. Frequently we meet equations
that have different types in different parts of the definition domain. An example is
the Euler–Tricomi equation

vxx = xvyy,

which is relevant for the study of motion of bodies in matter with velocities that
approach the speed of sound in that matter. This equation is hyperbolic at x > 0,
parabolic at x = 0, and elliptic at x < 0. For mixed-type equations, the numerical
methods often need to be tailored uniquely. Further problems appear in non-linear
PDE, as in the Burgers equation used to describe the propagation of shock waves,

vt + vvx = Dvxx,

where the dominant regime (hyperbolic or parabolic) is determined by the param-
eter D. On the other hand, the numerical method itself may leave its footprint in
the character of the solution: this danger lurks in difference schemes for hyperbolic
equations, where parabolic components often steal their way into the solution (see
Sect. 9.8).

In this chapter we discuss difference methods for one-dimensional PDE (one
space coordinate). Retracing the footsteps of [1], we learn the basics by studying

9.1 Discretization of the Differential Equation 469

Fig. 9.1 The uniform mesh for the solution of initial-boundary-value problems for evolution
(parabolic and hyperbolic) PDE in one temporal and one spatial dimension on the interval [x0, xN].
The discretization �t and �x = (xN − x0)/N determines the mesh points (xj , tn) = (j�x,n�t),
and at each of them the true solution vn

j and its approximation un
j . We arrange the solutions in the

vector un = (un
0, un

1, . . . , un
N)T

the parabolic problem vt −Dvxx = Q in Sects. 9.1–9.5. As for ordinary differential
equations, solving PDE by difference schemes requires us to grasp three basic con-
cepts: the consistency of the difference scheme with the differential equation, the
stability of the scheme, and the convergence of the numerical solution to the true
solution. Later we discuss hyperbolic and elliptic PDE.

9.1 Discretization of the Differential Equation

Here we set up difference methods for parabolic PDE involving two independent
variables t and x that most often represent the time and space coordinates. Our
prototype problem is the linear diffusion equation

vt − Dvxx = Q. (9.2)

We shall distinguish pure initial-value problems, e.g. on x ∈ R with the initial con-
dition v(x,0) = f (x), and initial-boundary-value problems, e.g. on x ∈ [0,1] with
the same initial condition and additional boundary conditions. An example of the
former is the time dependence of the temperature of a thin, infinitely long wire; an
example of the latter is a thin rod of finite length with both ends held at constant
temperature.

Initial-boundary-value problems are more relevant. We discretize each of the
continuous variables separately (see Fig. 9.1) by forming a two-dimensional mesh
along which we trace the time evolution of the initial condition. We also have to dis-
cretize the initial and boundary conditions (see Sect. 9.2). A unique solution of (9.2)
exists for pure Dirichlet or mixed Dirichlet–Neumann boundary conditions. For pure
Neumann conditions the solution is determined only up to an additive constant: if
v(x, y) solves the equation, so does v(x, y) + C.

470 9 Difference Methods for One-Dimensional PDE

On this mesh we construct various finite differences, for example

∂v

∂x

∣
∣
∣
∣
(j�x,n�t)

= vn
j+1 − vn

j

�x
+O(�x),

∂v

∂x

∣
∣
∣
∣
(j�x,n�t)

= vn
j − vn

j−1

�x
+O(�x),

∂v

∂x

∣
∣
∣
∣
(j�x,n�t)

= vn
j+1 − vn

j−1

2�x
+O
(

�x2), (9.3)

∂v

∂t

∣
∣
∣
∣
(j�x,n�t)

= vn+1
j − vn

j

�t
+O(�t), (9.4)

∂v

∂t

∣
∣
∣
∣
(j�x,n�t)

= vn+1
j − vn−1

j

2�t
+O
(

�t2), (9.5)

∂2v

∂x2

∣
∣
∣
∣
(j�x,n�t)

= vn
j+1 − 2vn

j + vn
j−1

�x2
+O
(

�x2), (9.6)

∂2v

∂t2

∣
∣
∣
∣
(j�x,n�t)

= vn+1
j − 2vn

j + vn−1
j

�t2
+O
(

�t2). (9.7)

(Note that expressions (9.4)–(9.7) tell us how well the individual parts of the differ-
ence schemes approximate the exact partial derivatives in the differential equation,
but this has only an indirect relation to how well the solution u of the difference
scheme approximates the true solution v of the differential equation.) In writing
down the differences we use the shorthand notation

�
(x)
+ uj = un

j+1 − un
j , (9.8)

�
(x)
− uj = un

j − un
j−1, (9.9)

�
(x)
0 uj = un

j+1 − un
j−1, (9.10)

�
(x)
2 uj = un

j+1 − 2uj + un
j−1, (9.11)

occasionally also

�
(x)
4 uj = − 1

12
un

j+2 + 4

3
un

j+1 − 5

2
un

j + 4

3
un

j−1 − 1

12
un

j−2. (9.12)

We can therefore discretize the one-dimensional linear diffusion equation (9.2) as

un+1
j = un

j + r
(

un
j+1 − 2un

j + un
j−1

)+ �tqn
j , (9.13)

where we have denoted r = D�t/�x2 and qn
j = Q(j�x,n�t). This gives us an

explicit method of order O(�t)+O(�x2) which advances one step in time by using

9.2 Discretization of Initial and Boundary Conditions 471

Fig. 9.2 [Left] The FTCS scheme with the spatial difference �
(x)
2 defined by (9.11). [Right] The

FTCS scheme with the difference �
(x)
4 (see (9.12)) for which two additional (numerical) boundary

conditions at the points x−1 and xN+1 are needed

the symmetric spatial difference �
(x)
2 , thus we name it Forward-Time, Centered-

Space (FTCS, Fig. 9.2 (left)). The scheme is stable for 0 < r ≤ 1/2 (we will say
more on stability in Sect. 9.5). This method is just one of the possible explicit two-
level difference methods of the form un+1 = Fun + �tqn.

9.2 Discretization of Initial and Boundary Conditions

A consistent discretization of the initial and boundary conditions is essential for
a correct numerical solution of PDE. If either of these conditions are discretized
to an order lower than the order of the difference scheme, the solution also has a
lower order. (In general, the order of the numerical solution does not exceed the
lowest order of any discrete approximation in the formulation of the problem.) The
importance of boundary conditions for the solution in the interior of the definition
domain is illustrated in the following and in Fig. 9.3.

In the scheme for the one-dimensional diffusion equation, the easiest boundary
conditions to implement are Dirichlet: imagine a rod with a prescribed tempera-
ture dependence at its endpoints (x0 = 0 and xN = 1), for example, due to heating
and cooling, independent of the inhomogeneous term Q. We discretize the initial
condition v(x,0) = f (x) as

u0
j = f (j�x), j = 0,1, . . . ,N, (9.14)

and the boundary conditions v(0, t) = a(t) and v(1, t) = b(t) as

un+1
0 = a

(

(n + 1)�t
)= an+1, n = 0,1, . . . ,N, (9.15)

un+1
N = b

(

(n + 1)�t
)= bn+1, n = 0,1, . . . ,N. (9.16)

Homogeneous Dirichlet conditions (un
0 = un

N = 0) are a special case: they describe
a rod whose ends are in contact with a heat reservoir at zero temperature.

For one complete time step in the FTCS scheme both (9.15) and (9.16) are essen-
tial. Namely, we use (9.13) at n = 0 to compute the values u1

j for j = 1,2, . . . ,N −1
from the initial condition (9.14), but not for j = 0 and j = N , since in this case the
second difference at the right of (9.13) would reach for indices outside of the defini-
tion domain (j = −1 and j = N + 1, Fig. 9.2 (left)). In one time step we therefore

472 9 Difference Methods for One-Dimensional PDE

Fig. 9.3 The error of the numerical solution of vt = Dvxx by the FTCS scheme on x ∈ [0,1] for
t > 0 with the initial condition v(x,0) = sin2 πx and boundary conditions vx(0, t) = vx(1, t) = 0,
and D = 0.01. Shown is the error at x = 0.5 in dependence of the discretization (�x = 1/N) for
two different treatments of the boundary conditions: to first order (9.17) or to second order (9.18),
at two different times t = n�t

map N +1 values in the space coordinate to the next N +1 values: the scheme (9.13)
contains N − 1 equations, and the missing equations are (9.15) and (9.16).

We face a different situation with Neumann boundary conditions which fix the
derivative at the endpoints, like vx(0, t) = c(t), vx(1, t) = d(t). Such conditions
prescribe the heat current density from the rod or into it. (The homogeneous condi-
tion c(t) = 0 means that the rod is thermally isolated at the left end.) At x = x0 = 0
we get, to first order,

un+1
1 − un+1

0

�x
= cn+1, (9.17)

thus un+1
0 = un+1

1 − �xcn+1 (and analogously at x = xN = 1). Since the FTCS
scheme is second-order in the space coordinate, such a crude approximation may
spoil the complete numerical solution (see Fig. 9.3). It is preferable to use the sym-
metric difference

un+1
1 − un+1

−1

2�x
= cn+1,

but this formula reaches to a ghost point x−1 = x0 − �x outside of the mesh. This
additional point implies that we are dealing with N +2 unknowns, while having only
N + 1 equations at our disposal. But we can write the FTCS scheme at (0, n + 1)

by including the symmetric difference in the form un
−1 = un

1 − 2�xcn, and thereby
eliminate the point x−1. At x = 0 we get

un+1
0 = un

0 + r
(

un
1 − 2un

0 + un
−1

)

= un
0 + 2r

(

un
1 − un

0

)− 2r�xcn (9.18)

9.3 Consistency � 473

(and similarly at x = 1). Equation (9.13) and two boundary conditions therefore
again constitute N +1 equations for N +1 variables, and all discrete approximations
remain consistently of second order in the space coordinate. The advantage of the
symmetric difference becomes clear from the example in Fig. 9.3.

9.3 Consistency �

We define the consistency of the differential equation and the corresponding dif-
ference scheme in analogy to the ordinary differential equations (Chap. 7). The
equation Lv = Q and the scheme Ln

ju
n
j = qn

j are point-wise consistent if for each
function φ(x, t) (even for the true solution v) at the point (x, t) we have

(Lφ − Q)nj − [Ln
jφ(j�x,n�t) − qn

j

]→ 0,

when �x → 0, �t → 0, and (j�x, (n + 1)�t) → (x, t). Instead of the point-wise
consistency, we sometimes define a more strict consistency in norm: the equation
that is first-order in time and the explicit two-level scheme

un+1 = Fun + �tqn (9.19)

are consistent when the true solution of the equation v satisfies

vn+1 = Fvn + �tqn + �tτn,

where the discretization error ‖τn‖ → 0 when �x → 0, �t → 0 (the vector un is
defined in the caption to Fig. 9.1, and vn has the components v(j�x,n�t)). We say
that the difference scheme is of order (p, q) when ‖τn‖ = O(�xp) +O(�tq).

Up to which order in time and space coordinate is the FTCS scheme consistent
with the diffusion equation? We Taylor-expand the expressions

vn+1
j = vn

j + �t(vt)
n
j + �t2

2
(vtt)

n
j +O

(

�t3),

vn
j±1 = vn

j ± �x(vx)
n
j + �x2

2
(vxx)

n
j ± �x3

6
(vxxx)

n
j

+ �x4

24
(vxxxx)

n
j ± �x5

120
(vxxxxx)

n
j +O

(

�x6),

and compute the difference between the differential equation and its difference ap-
proximation (9.13). We have vt = Dvxx and vtt = D(vxx)t = D2vxxxx , whence

[vt − Dvxx]nj −
[
�

(t)
+

�t
− D

�
(x)
2

�x2

]

vn
j

= D

2

[
�x2

6
− D�t

]

(vxxxx)
n
j +O

(

�t2)+O
(

�x4).

474 9 Difference Methods for One-Dimensional PDE

Fig. 9.4 The order of consistency (and convergence) in the ‖ ·‖2,�x norm, of the FTCS scheme for
the diffusion equation vt = Dvxx on [0,1] with the initial condition v(x,0) = sinπx and Dirichlet
boundary conditions v(0, t) = v(1, t) = 0. Shown are two pairs of curves for r = 2/5 (asymptotic
order O(�t)+O(�x2)) and r = 1/6 (asymptotic order O(�t2)+O(�x4)). The figure for ‖ · ‖∞
closely resembles this one

We see that with a general r = D�t/�x2, the equation and its difference approx-
imation are point-wise consistent to order O(�t) + O(�x2), while in the special
case r = 1/6 they are consistent even to O(�t2)+O(�x4) (see Fig. 9.4). The local
discretization error in the FTCS scheme can therefore be strongly reduced if we fix
�t = �x2/(6D) once the spatial discretization �x has been decided for. Alas, with
such short steps �t , the solution evolves very slowly: it takes 6N2 steps for it to
diffuse from one end of the interval to another.

Consistency in norm requires us to distinguish between initial-value and initial-
boundary-value problems. In the “sup”-norm (Appendix A) the initial-value prob-
lem for the diffusion equation on x ∈ R for t > 0 and the FTCS scheme are
consistent to order O(�t) + O(�x2), if vtt and vxxxx are uniformly bounded
on R × [0, t0] for some t0 > t . If we can restrict (‖vn

tt‖2,�x)
2 < A < ∞ and

(‖vn
xxxx‖2,�x)

2 < B < ∞, they are also consistent in the l2,�x norm [1].
In initial-boundary-value problems, the order of consistency depends on the dis-

cretization of the boundary conditions. For homogeneous Dirichlet conditions, the
FTCS scheme on [0,1] is point-wise consistent to order O(�t)+O(�x2) as well as
in the “sup” and l2,�x norms (Fig. 9.4). Things are different if we have, say, a homo-
geneous Dirichlet condition un+1

N = 0 at x = 1, and a homogeneous Neumann con-
dition at x = 1. If the latter is discretized to second order (as in (9.18) with cn = 0),
the scheme and the equation are consistent only to order O(�t) +O(�x) in “sup”
and l2,�x norms: one order less in spite of the effort! Worse still, discretizing it to
first order (as in (9.17) with cn = 0), we fail to attain even first-order consistency,
since the local discretization error becomes [1]

τn
1 = −D

2
(vxx)

n
1 +O(�t) +O(�x).

9.4 Implicit Schemes 475

We can avoid this problem by shifting the mesh for �x/2 (offset grid): we discretize
the spatial coordinate as

xj = (j − 1)�x + �x/2, j = 0,1, . . . ,N,

hence x0 = −�x/2 and x1 = �x/2. This gives us a more natural mesh for the
homogeneous Neumann boundary condition un+1

0 = un+1
1 at x = 0, and makes the

scheme consistent with the equation to order O(�t) +O(�x).

9.4 Implicit Schemes

Similarly as in ordinary differential equations (Chap. 7), the stability properties of
difference schemes for PDE improve when we resort to implicit methods. Instead of
computing the second difference in the space coordinate and the source term at time
n�t (as in FTCS), we compute it at time (n + 1)�t , yielding the implicit two-level
Backward-Time, Centered-Space (BTCS) scheme of order O(�t) +O(�x2),

un+1
j = un

j + r
(

un+1
j+1 − 2un+1

j + un+1
j−1

)+ �tqn+1
j , (9.20)

which is absolutely stable for any r . Similarly, by using the averages of the BTCS
and FCTS expressions at the right-hand side of the equation,

un+1
j = un

j + r

2
�

(x)
2

(

un+1
j + un

j

)+ �t

2

(

qn+1
j + qn

j

)

, (9.21)

we have formed the Crank–Nicolson method of order O(�t2) +O(�x2), which is
absolutely stable. The notion of “absolute stability” should be taken with a grain of
salt: see Sect. 9.5, then the discussion in Appendix H, (H.4).

What is the most sensible way to implement the temporal discretization of the
differential equation? We should be particularly cautious in the study of reaction-
diffusion processes described by the equations of the form

vt = Dvxx + bv,

especially in cases where the characteristic time scale of the diffusion part of the
process, τd = L2/D, and the scale of the reaction part, τr = |1/b|, are very different.
(Here L is the distance on which the solution gradient changes substantially.) Three
obvious ways to perform an implicit discretization of this equation are

u�
j − un

j

�t
= bu�

j ,
un+1

j − u�
j

�t
− D�

(x)
2 un+1

j = 0,

un+1
j − un

j

�t
− D�

(x)
2 un+1

j = bun+1
j ,

un+1
j − un

j

�t
− D�

(x)
2

1

2

[

un+1
j + un

j

]= b
1

2

[

un+1
j + un

j

]

.

476 9 Difference Methods for One-Dimensional PDE

Here we do not discuss the nuances of these schemes, but the reader should be aware
that there are important distinctions between their solutions [2].

9.5 Stability and Convergence �

The consistency of the difference scheme Ln
ju

n
j = qn

j with the differential equation
Lv = Q by itself does not guarantee that the solution of the difference equation
converges to the solution of the differential equation in the sense

∥
∥un+1 − vn+1

∥
∥= O

(

�xp
)+O

(

�tq
)

.

For convergence, the scheme also needs to be stable. As in the initial-value prob-
lems for ordinary differential equations, this means that small errors in the initial
condition map to small errors in the solution.

The concepts of consistency, stability, and convergence are linked by the Lax
theorem [1]. It tells us that the two-level scheme (9.19) which is consistent with the
differential equation to order O(�tq)+O(�xp) (in some norm) and is stable in this
norm, is also convergent in the same order. We should understand this as a warning.
We can envision many discretizations and apparently promising difference schemes
for any given PDE, but only some of them are stable.

The difference scheme (9.19) is stable in the norm ‖ · ‖ when such constants
�x0 > 0, �t0 > 0,
 ≥ 0, and β ≥ 0 exist that

∥
∥un+1

∥
∥≤
eβt

∥
∥u0
∥
∥ (9.22)

for 0 < �x ≤ �x0, 0 < �t ≤ �t0, and 0 ≤ (n + 1)�t = t . (The inhomogeneous
term �tqn contributes only to the discretization error �tτn, so the definition used
here applies both to homogeneous and inhomogeneous schemes. For the remainder
of this section we set q = 0.) Therefore, the solutions are allowed to grow, but not
faster than exponentially. Let us stress the message of (9.22): a stable solution may
grow with time, but not with the number of time steps.

9.5.1 Initial-Value Problems

For the stability analysis of difference schemes for initial-value problems with PDE
we rely on the discrete Fourier transformation. (By using this tool we already wade
into spectral methods for PDE discussed in Chap. 11.) Following [1] we merge the
explicit scheme (FTCS), the implicit scheme (BTCS), and the Crank–Nicolson (CN)
implicit scheme for the diffusion equation to a single expression

−arun+1
j−1 + (1 + 2ar)un+1

j − arun+1
j+1

= (1 − a)run
j−1 + [1 − 2(1 − a)r

]

un
j + (1 − a)run

j+1. (9.23)

9.5 Stability and Convergence � 477

The value a = 0 corresponds to FTCS, the value a = 1 to BTCS, while a = 1/2
gives the Crank–Nicolson scheme. By using the discrete Fourier transformation
ũn(ξ) =∑j e−ijξ un

j we get

−are−iξ ũn+1(ξ) + (1 + 2ar)̃un+1(ξ) − areiξ ũn+1(ξ)

= (1 − a)re−iξ ũn(ξ)
[

1 − 2(1 − a)r
]

ũn(ξ)(1 − a)reiξ ũn(ξ)

or
(

1 + 4ar sin2 ξ

2

)

ũn+1(ξ) =
(

1 − 4(1 − a)r sin2 ξ

2

)

ũn(ξ).

We write this as ũn+1(ξ) = ρ(ξ)̃un(ξ), whence we read off the ratio between the
transform at time (n + 1)�t and the transform at n�t . The ratio

ρ(ξ) = 1 − 4(1 − a)r sin2 ξ
2

1 + 4ar sin2 ξ
2

(9.24)

is called the symbol of the difference scheme. We can repeat this step for all subse-
quent times, hence ũn+1(ξ) = [ρ(ξ)]n+1ũ0(ξ). Obviously the scheme is stable by
definition (9.22) if its symbol is bounded at least as

∣
∣ρ(ξ)

∣
∣≤ 1 + C�t ≤ eC�t (9.25)

(Neumann criterion). The one single numerical value of the symbol elegantly
“warns” us that during the time evolution one of the Fourier components is spinning
out of control. For the FTCS, BTCS, and CN schemes we establish the stability cri-
terion by seeking the maxima of ∂ρ(ξ)/∂ξ = 0. For a ≥ 1/2 the scheme (9.23) is
unconditionally stable, while for a < 1/2 it is conditionally stable, with the condi-
tion

r = D
�t

�x2
≤ 1

2(1 − 2a)
. (9.26)

The stability regions of the FTCS and Crank–Nicolson schemes in dependence of
the Fourier parameter ξ for different values of r are shown in Fig. 9.5. We will
shed a different light on the limiting case of r = 1/2 for the FTCS scheme in the
discussion of dispersion and dissipation (Sect. 9.10).

Does the FTCS method remain stable if a convection term is added to the dif-
fusion equation, vt + cvx = Dvxx with the parameter c < 0? The corresponding
scheme is

un+1
j = un

j + r�
(x)
2 un

j − R

2
�

(x)
0 un

j ,

where r = D�t/�x2 and R = c�t/�x. If r2 ≥ R2/4, the parabolic character of
the equation is more pronounced; in the opposite case, its hyperbolic nature prevails.

478 9 Difference Methods for One-Dimensional PDE

Fig. 9.5 [Left] The absolute value of the symbol ρ(ξ) of the conditionally stable FTCS scheme and
[Right] of the absolutely stable Crank–Nicolson scheme for the diffusion equation, as a function
of the Fourier parameter ξ at different r = D�t/�x2. The stability limit and the symbols in the
unstable region are denoted by dotted lines

The symbol of the scheme ρ(ξ) = (1 − 2r) + 2r cos ξ − iR sin ξ is complex, with
the absolute value

∣
∣ρ(ξ)

∣
∣
2 = (1 − 2r)2 + R2 + 4r(1 − 2r) cos ξ + (4r2 − R2) cos2 ξ.

A short calculation [1] shows that we may again choose
 = 1, β = C = 0, and thus
bound |ρ(ξ)| ≤ 1 and achieve conditional stability, with the condition

R2/2 ≤ r ≤ 1/2 (9.27)

(check it). What about the diffusion equation in the form vt = Dvxx + bv with the
parameter b > 0? The FTCS scheme with all terms included is

un+1
j = un

j + r�
(x)
2 un

j + b�tun
j ,

and has the symbol

ρ(ξ) =
(

1 − 4r sin2 ξ

2

)

+ b�t.

Now we must choose β = C 	= 0 and allow the solution to grow with time, although
slower than exponentially. Whenever terms with zeroth derivatives are added, one
may expect similar behavior. The stability criterion with β 	= 0 only ensures that the
numerical solution converges to the analytic solution when �t → 0 and �x → 0. It
does not guarantee that this occurs for any �t and �x.

9.5 Stability and Convergence � 479

9.5.2 Initial-Boundary-Value Problems

The stability of schemes for initial-boundary-value problems can be approached by
using two tools: operator norms and Fourier transformation. Any two-level scheme
for the homogeneous equation (q = 0) can be written in the form (9.19). This
also implies to implicit schemes F1u

n+1 = F2u
n with invertible matrices F1, since

then un+1 = (F−1
1 F2)u

n = Fun. The criterion (9.22) implies that we must have
‖Fn+1‖ ≤
eβt for stability. The spectral radius of an arbitrary matrix A is bounded
as ρ(A) ≤ ‖A‖ (Appendix A.4), so we must ensure that ρ(F) ≤ 1 + C�t , in anal-
ogy to the initial-value problem (9.25).

We insert an illustration that serves as an example for the Problems in Sect. 9.13.
Let us write the FTCS scheme by using a spatial discretization at N +1 points for the
homogeneous equation vt = Dvxx with the initial condition v(x,0) = f (x) (9.14)
and Dirichlet boundary conditions v(0, t) = 0 (9.15) and v(1, t) = 0 (9.16). In ma-
trix form the scheme becomes un+1 = Fun where u = (u1, u2, . . . , uN−1)

T is the
solution vector and F is a symmetric tridiagonal matrix of the form T (a, b, c) (A.6)
with a = r , b = 1 − 2r , c = r . (Check it! Why this equation does not include values
at j = 0 and j = N?) The eigenvalues of F are λj = 1 − 2r + 2r cos(jπ/N) =
1 − 4r sin2(jπ/2N). We will attain stability if the spectral radius (the maximum
eigenvalue) can be bounded as

max

∣
∣
∣
∣
1 − 4r sin2 jπ

2N

∣
∣
∣
∣
≤ 1,

which translates to

0 ≤ r ≤
[

2 sin2 (N − 1)π

2N

]−1

. (9.28)

(Convince yourself that to compute the spectral radius you need the eigenvalue at
j = N − 1, not j = 1!) What happens if we replace the Dirichlet boundary con-
dition at x = 0 by a Neumann condition vx(0, t) = 0 in the form (9.17)? Only the
extreme upper left matrix element changes from 1 − 2r to 1 − r . The matrix of the
scheme then becomes I − rTN1D , where TN1D has the form (A.9). The eigenval-
ues of the matrix I − rTN1D are λj = 1 − r[2 − 2 cos((2j − 1)π/(2N − 1))] =
1 − 4r sin2((2j − 1)π/2(2N − 1)), and we have stability under the condition

0 ≤ r ≤
[

2 sin2 (2N − 3)π

2(2N − 1)

]−1

.

With an ever finer spatial discretization (increasing N) the upper limit of r for sta-
bility in both cases approaches the value of 1/2 from above. In both cases we may
therefore simply require 0 ≤ r ≤ 1/2. Nevertheless, these bounds should not lull
the reader into the mistaken belief that this is the only stability criterion that ever
appears in relation to the diffusion equation.

480 9 Difference Methods for One-Dimensional PDE

In the second approach we apply the Fourier transformation and assign to the
approximate solution at each mesh point a discrete Fourier mode

un
j = ξneijpπ�x, (9.29)

where the superscript n in ξn indeed means the nth power. We seek the solution of
the difference equations in the form

un(x) =
∑

p

cn
peipπx.

Let us derive the criterion for the stability of the FTCS scheme for the equation
vt = Dvxx . We insert the terms (9.29) in (9.23) with a = 0, yielding

ξn+1eipjπ�x = ξneipjπ�x
(

re−ipπ�x + (1 − 2r) + reipπ�x
)

or ξ = 1 − 4r sin2(pπ�x/2). We have stability if no Fourier mode (in magnitude)
exceeds unity, i.e.

|ξ | =
∣
∣
∣
∣
1 − 4r sin2 pπ�x

2

∣
∣
∣
∣
≤ 1.

The ξ is the amplification factor and the corresponding inequality is the discrete
Neumann criterion. (As an exercise, compute ξ for the general scheme (9.23).) We
have derived a requirement that is the same as (9.28) if we set �x = 1/N , even
though we have not mentioned the boundary conditions. Namely, the stability of the
scheme for an initial-value problem is just a necessary condition for the stability of
the scheme for an initial-boundary-value problem.

There is yet a third way to approach stability that treats the boundary conditions
properly and relies on Gershgorin’s theorem (see e.g. [1]). This path can be chosen
in the cases when the Fourier approach is difficult, for example, when dealing with
mixed boundary conditions

v(0, t) − g0vx(0, t) = f0,

v(1, t) + g1vx(1, t) = f1,

with constant fj and gj ≥ 0. We just give the final result: the necessary condition
for stability is

r ≤ min

{
1

2 + �x/g0
,

1

2 + �x/g1

}

<
1

2
.

A consistent inclusion of boundary conditions therefore narrows the range of r for
which the scheme for an initial-boundary-value problem is stable.

9.6 Energy Estimates and Theorems on Maxima � 481

9.6 Energy Estimates and Theorems on Maxima �

When certain partial differential equations are solved numerically, use can be made
of two tools that help us determine the properties of the solution before it is known
in detail: energy estimates and theorems on maxima. They are also applicable to
non-linear problems, for which analytic solutions or analytic representations of their
properties do not exist.

9.6.1 Energy Estimates

The basic example is the Dirichlet problem for the diffusion equation vt = vxx on
(x, t) ∈ [0,1] × [0,∞) with the initial condition v(x,0) = f (x) and boundary con-
ditions v(0, t) = v(1, t) = 0. Assume that v, vt , and vxx on x ∈ [0,1] for t ≥ 0 are
continuous in x and t . We define a scalar function, the “energy”

E(t) =
∫ 1

0
v2(x, t)dx,

the time evolution of which tells us something about the current solution. The time
derivative is

dE

dt
= d

dt

∫ 1

0
v2(x, t)dx =

∫ 1

0

∂

∂t
v2(x, t)dx = 2

∫ 1

0
v(x, t) vt (x, t)

︸ ︷︷ ︸

vxx(x,t)

dx

= 2
[

v(x, t)vx(x, t)
]1

0 − 2
∫ 1

0

[

vx(x, t)
]2 dx = −2

∫ 1

0

[

vx(x, t)
]2 dx ≤ 0.

Since v is smooth, one is allowed to exchange the order of integration and differ-
entiation in the first step. In the second step we used integration by parts to swap
the spatial derivatives; the integrated portion vanishes due to boundary conditions.
Hence, E(t) does not increase with time,

E(t) ≤ E(0) =⇒
∫ 1

0
v2(x, t)dx ≤

∫ 1

0
f 2(x)dx, (9.30)

i.e. the norm of the solution, measured by the integral E(t), is bounded from above
by the norm of the initial data f . This leads to a kind of stability estimate: small
perturbations of the initial condition lead to small perturbations of the solution: for
two different solutions v1 and v2 with initial conditions f1 and f2 we have

∫ 1

0
(v1 − v2)

2(x, t)dx ≤
∫ 1

0
(f1 − f2)

2(x, t)dx.

Charmingly, this criterion is also applicable to non-linear problems, since it does
not depend on the representation of the solution. (Check that an estimate of the
form (9.30) can also be obtained for the non-linear problem vt = vxx − v3.)

482 9 Difference Methods for One-Dimensional PDE

Difference Schemes Energy estimates can just as well be formulated for solutions
of difference schemes which are used to approximate the differential equation. In
one space dimension, the discrete “energy” at time tn = n�t is defined as

En = �x

N
∑

j=0

(

un
j

)2
, (9.31)

where un
j is the numerical solution at xj = x0 + j�x at time tn. (Of course, if we

have homogeneous Dirichlet boundary conditions, the outermost terms u0 = uN = 0
do not contribute.) Further steps depend on the form of the difference scheme. For
the explicit scheme (9.13) with r = �t/�x2 we get [3]

(1 − r)
(

En+1 − En
)≤ 0.

With the stability condition r ≤ 1/2 (see (9.26) at α = 0) this means

En+1 ≤ En.

In other words, for two different solutions vn and wn of the difference scheme with
the initial conditions v0 and w0, the following estimate holds true:

�x

N
∑

j=0

(

vn
j − wn

j

)2 ≤ �x

N
∑

j=0

(

v0
j − w0

j

)2 ∀n ≥ 0.

In the sense of Appendix F, the difference scheme (9.13) is a stable discrete dy-
namical system. The error in the solution is bounded from above by the error in the
initial conditions.

9.6.2 Theorems on Maxima

Theorems on maxima are another tool used to become familiar with the continuum
(PDE) problem and its difference representation (difference scheme) without know-
ing the exact solutions. These theorems are non-trivial, but require only the basic
knowledge of mathematical analysis; we adopt them from [3].

Consider the one-dimensional diffusion equation vt = vxx and its non-linear
generalization vt = (D(v)vx)x (Problem 9.13.1). Define the initial-boundary-value
problems on the rectangle R = {(x, t) : x ∈ [0,1], t ∈ [0, T]} with the boundary en-
compassing three sides of R (the one at t = T is missing):

∂R = {(x, t) : x = 0, 0 ≤ t ≤ T
}∪ {(x, t) : t = 0, 0 ≤ x ≤ 1

}

∪ {(x, t) : x = 1, 0 ≤ t ≤ T
}

. (9.32)

9.6 Energy Estimates and Theorems on Maxima � 483

Then the following theorem holds. Assume that v is continuous on R and solves
the problem vt = vxx with the initial condition v(x,0) = f (x) and boundary con-
ditions v(0, t) = vL(t) and v(1, t) = vR(t). Further assume that vt , vx , and vxx are
continuous on (0,1) × (0, T]. Then

inf
(x,t)∈∂R

{

f (x), vL(t), vR(t)
}≤ v(x, t) ≤ sup

(x,t)∈∂R

{

f (x), vL(t), vR(t)
}

(9.33)

for all (x, t) ∈ R. The theorem carries a physical content: the solution cannot reach
the maximum in the interior of the definition domain; it can only reach it at the
beginning (at time t = 0) or on one of the space boundaries (x = 0 or x = 1). An ex-
ample of the former case is a thin rod at constant temperature that we put in contact
with a heat reservoir at lower temperature at its ends: the temperature maximum
occurs at t = 0, at all later times the temperature in the rod decreases. An exam-
ple of the latter case is the rod at temperature zero that we start heating at one end
to a higher temperature: the temperature maximum is always attained only at this
boundary.

The theorem for the linear problem vt = vxx has another interesting consequence
for stability in the sense of sensitivity to initial and boundary conditions. It can be
shown that the perturbation in the solution is bounded by the perturbations in the
initial or boundary conditions. If the initial conditions are perturbed as f (x) →
f̃ (x), vL(t) → ṽL(t), and vR(t) → ṽR(t), we have the estimate

sup
(x,t)∈R

∣
∣v(x, t) − ṽ(x, t)

∣
∣≤ sup

(x,t)∈∂R

{∣
∣�f (x)

∣
∣,
∣
∣�vL(t)

∣
∣,
∣
∣�vR(t)

∣
∣
}

,

where �f (x) = f (x)− f̃ (x), �vL(t) = vL(t)− ṽL(t), and �vR(t) = vR(t)− ṽR(t).
The linearity of the equation is crucial for the connection to stability: if v(x, t) and
ṽ(x, t) are its solutions, then so is v(x, t) − ṽ(x, t).

Difference Schemes Similar theorems can be derived for difference schemes. The
domain R and its partial boundary ∂R (definition (9.32)) should of course be under-
stood in the discrete sense, i.e. at the corresponding points (xj , tn). For the approx-
imate solution un

j generated by the FTCS scheme (9.13), the following holds:

min
(xj ,tn)∈∂R

{

f (xj), uL(tn), uR(tn)
}≤ un

j ≤ max
(xj ,tn)∈∂R

{

f (xj), uL(tn), uR(tn)
}

(9.34)

for any (xj , tn) ∈ R, as long as the stability requirement r = �t/�x2 ≤ 1/2 is met.
For the implicit scheme (9.20) this estimate applies for any �x > 0, �t > 0.

Non-linear PDE Even for non-linear equations, theorems on maxima tell us
something about the nature of their solutions. For the solution of (9.52), discussed
in Problem 9.13.1, the result in the continuous case is precisely the same as for
the linear equation: (9.33) applies although we cannot derive the additional crite-
rion for stability to perturbations in the initial condition as we have done with the
linear equation. On the other hand, the solution of the explicit difference scheme,

484 9 Difference Methods for One-Dimensional PDE

Fig. 9.6 Two-level (FTCS, BTCS, CN) and three-level (Leapfrog, DF) difference schemes for the
diffusion equation vt − Dvxx = Q. (Compare to Fig. 9.2.) The properties of the depicted schemes
are listed in Table 9.1. In the DF scheme the value of u at (j�x,n�t) does not appear (empty
square)

e.g. (9.53)–(9.54), can be bounded by the maximum and minimum value pre-
cisely by using (9.34), as long as the function D(v) is smooth and strictly positive,
0 < Dmin ≤ D(v) ≤ Dmax, and as long as Dmax�t/�x2 ≤ 1/2 applies [3].

9.7 Higher-Order Schemes

One might imagine that the order of the FTCS scheme for (9.2) in the time variable
could be improved by using the symmetric difference (9.5) instead of (9.4). Indeed,
this gives us the explicit leapfrog method of order O(�t2) +O(�x2),

un+1
j = un−1

j + 2r
(

un
j+1 − 2un

j + un
j−1

)+ �tqn
j . (9.35)

This is a three-level scheme (Fig. 9.6): we compute the values at time (n + 1)�t

from those at times n�t and (n − 1)�t . But unfortunately this scheme is unstable
regardless of r (Sect. 9.5).

The leapfrog method can be stabilized by replacing un
j by its time average

1
2 (un+1

j + un−1
j). This gives us the explicit three-level Dufort–Frankel (DF) scheme

un+1
j = 2r

1 + 2r

(

un
j+1 + un

j−1

)+ 1 − 2r

1 + 2r
un−1

j + 1

1 + 2r
�tqn

j , (9.36)

which is unconditionally stable, but only conditionally consistent (and thus only
conditionally convergent). Convergence is ensured if r is constant [1].

On the other hand, we can increase the order of the FTCS scheme in the space
variable by replacing the three-point difference by a five-point formula,

un+1
j = un

j + r

(

− 1

12
un

j+2 + 4

3
un

j+1 − 5

2
un

j + 4

3
un

j−1 − 1

12
un

j−2

)

+ �tqn
j . (9.37)

The resulting scheme is of order O(�t) + O(�x4) and remains stable, but addi-
tional boundary conditions must be specified at the points x−1 and xN+1 that lie
outside of the definition domain (Fig. 9.2 (right)). In this case we prescribe nu-
merical boundary conditions. We solve the diffusion equation with homogeneous
Dirichlet condition to this order if we use u−1 = uN+1 = 0 (solution vanishes at the

9.8 Hyperbolic Equations 485

Table 9.1 Select explicit (E)
and implicit (I) difference
schemes for the solution of
the one-dimensional diffusion
equation vt − Dvxx = Q,
where r = D�t/�x2

Scheme Type Order of error Stability

FTCS (9.13) E O(�t) +O(�x2) 0 < r ≤ 1/2

Leapfrog (9.35) E O(�t2) +O(�x2) unstable

Dufort–Frankel (9.36) E O(�t2) +O(�x2) stable

FTCS5 (9.37) E O(�t) +O(�x4) 0 < r ≤ 3/8

BTCS (9.20) I O(�t) +O(�x2) ∀r > 0

Crank–Nicolson (9.21) I O(�t2) +O(�x2) ∀r > 0

ghost points) or un
−1 − 2un

0 +un
1 = un

N+1 − 2un
N +un

N−1 = 0 (the second derivatives
at the endpoints of the rod are zero).

We have described just a few representative explicit schemes for the solution of
the one-dimensional diffusion equation. By Taylor expansions and the method of
undetermined coefficients it is possible to construct many other schemes [1]. As in
ordinary differential equations (Chap. 7), an alternative is offered by the implicit
schemes (Table 9.1).

It is difficult to formulate a general advice when to use a high-order scheme.
Now and then high-order schemes are a good choice, but if the numerical cost al-
lows it, a finer discretization might be preferable to increasing the order. Table 9.1
summarizes the basic properties of the methods for the solution of (9.2).

9.8 Hyperbolic Equations

In this section we discuss hyperbolic equations of first order,

avx + bvy = c,

where a, b, and c may in general be functions of x, y, and v (but not vx or vy), and
of second order,

avxx + bvxy + cvyy + d = 0,

where a, b, c, and d may be functions of x, y, v, vx , and vy (but not vxx , vxy , or
vyy). (The reader will reassign x → t and y → x if needed.) Note that the character
of the equation may change on the domain: for example, the equation

yvxx + xvxy + yvyy = F(x, y, v, vx, vy),

is hyperbolic for |x| > 2|y|, parabolic for |x| = 2|y|, and elliptic for |x| < 2|y|.

Characteristics A familiar property of the mentioned quasi-linear hyperbolic
equations are the characteristic curves or characteristics: they represent directions
defined at each point of the domain, along which the solution is independent of the
partial derivatives in other directions. The method of solving hyperbolic equations

486 9 Difference Methods for One-Dimensional PDE

by characteristics excels in the propagation of discontinuities: the sequence of char-
acteristics is a natural mesh for them. But this method becomes cumbersome when
the equations become more complex [4]. In the following we therefore seek the so-
lutions by difference methods. We shall return to the problem of discontinuities in
Sect. 9.12.

Properties of Solutions In this section and later in Sect. 9.11 we show that the
scalar hyperbolic equation

vt + cvx = 0 (9.38)

with a constant value of c is an appropriate model equation for the study of one-
dimensional hyperbolic problems. Namely, the related matrix problem

vt = Avx

can be decoupled to a set of equations of the form (9.38) by diagonalizing A. Its
analytic solution v(x, t) = f (x − ct) is known: for an arbitrary function f the equa-
tion describes the quantity v (for example, a compression in the wave) “carried” by
the flow without change in shape (no dissipation) along the x-axis with velocity c.
In parabolic PDE (diffusion equation) dissipation is contained already in the equa-
tion, and that beneficially influences the stability of the corresponding difference
schemes. For hyperbolic equations we also desire numerical solutions that maintain
an undamped propagation of waves and remain stable. In addition, dispersion can
be induced by a carelessly designed difference scheme: this occurs when different
Fourier components of the solution propagate with different velocities, causing the
solution to decay or become distorted.

9.8.1 Explicit Schemes

We start with a naive approximation of the initial-value problem for (9.38). At low-
est order O(�t) + O(�x) we discretize the equation by approximating the spa-
tial derivative by vx ≈ (�

(x)
+ uj)/�x (Forward-Time, Forward-Space, FTFS) or by

vx ≈ (�
(x)
− uj)/�x (Forward-Time, Backward-Space, FTBS), resulting in

un+1
j = un

j − R
(

un
j+1 − un

j

)

, (9.39)

or un+1
j = un

j − R
(

un
j − un

j−1

)

, (9.40)

where R = c�t/�x. The FTFS scheme for c < 0 is conditionally stable, with the
condition |R| ≤ 1 (and unstable for c > 0), while the FTBS scheme is conditionally
stable for c > 0, with the condition 0 ≤ R ≤ 1 (and unstable for c < 0, see also
Sect. 9.5). This symmetry between the direction of spatial differencing and stability
is related to the behavior of the solution near the characteristics: in the FTFS scheme
with c < 0 (or FTBS with c > 0) the solution for |R| ≤ 1 (or 0 ≤ R ≤ 1) moves

9.8 Hyperbolic Equations 487

Fig. 9.7 Analytic and numerical domain of dependence of the point (x, t) for the hyperbolic
equation vt + cvx = 0 with the initial condition v(x,0) = f (x). The analytic domain is the point
x0 (where the characteristic intersects the t = 0 axis) and is contained in the numerical domain of
the FTBS scheme (9.40), which is [(k − n − 1)�x, k�x]

along the characteristics towards the stable solution; in the opposite cases it moves
away from them.

Courant–Friedrichs–Lewy Criterion We have discussed the stability of differ-
ence schemes for parabolic PDE in Sect. 9.5. The stability conditions pertaining to
schemes for hyperbolic PDE are not as easy to formulate. When parabolic schemes,
either explicit or implicit, are written in matrix form, we obtain symmetric matrices
that allow us to derive necessary and sufficient conditions for stability in terms of
spectral radii. The corresponding matrices for hyperbolic PDE are often asymmet-
ric, and we can obtain only necessary conditions. In the cases where we are unable
to find necessary and sufficient conditions by means of Neumann (discrete Fourier)
analysis, we can rely on the Courant–Friedrichs–Lewy (CFL) criterion which serves
as a good orientation [1].

The CFL criterion relates the analytic and numerical domains of dependence.
The analytic domain of dependence of the point (x, t) for the equation vt + cvx = 0
with the initial condition v(x,0) = f (x) is the set of points on which the solu-
tion of the equation at (x, t) depends. This set includes a single point x0 = x − ct :
the solution at (x, t) depends exclusively on the value of the function f at x0.
The numerical domain of dependence is the set of points on the x-axis from
which the difference scheme transports the initial condition to the final value at
(x, t) = (k�x, (n + 1)�t). Figure 9.7 shows the numerical domain of dependence
for the FTBS scheme (9.40): it is the interval [(k − n − 1)�x, k�x] at t = 0. All
past time steps are contained in the triangle defined by this interval and the apex at
(x, t).

The partial differential equation and the explicit difference scheme for it satisfy
the CFL criterion when the analytic domain for this equation is contained in the
numerical domain of the corresponding scheme. But fulfilling the CFL requirement
is just a necessary condition for stability. If we use the FTBS scheme for vt + cvx =
0, the analytic domain is x0 = x − ct = k�x − c(n + 1)�t = [k − R(n + 1)]�x,
and it is contained in the numerical domain precisely when

(k − n − 1)�x ≤ [k − R(n + 1)
]

�x ≤ k�x.

488 9 Difference Methods for One-Dimensional PDE

Table 9.2 Consistency and
stability properties of the
explicit (E) and implicit (I)
difference schemes for
solving the one-dimensional
hyperbolic problem
vt + cvx = 0 with the
parameter R = c�t/�x

Scheme Type Order of error Stability

FTFS (9.39) E O(�t) +O(�x) −1 ≤ R ≤ 0

FTBS (9.40) E O(�t) +O(�x) 0 ≤ R ≤ 1

FTCS (9.41) E O(�t) +O(�x2) unstable

Lax–Wendroff (9.42) E O(�t2) +O(�x2) |R| ≤ 1

Lax–Friedrichs (9.43) E O(�t) +O(�x2/�t) |R| ≤ 1

BTFS (9.44) I O(�t) +O(�x) R ≤ 0

BTBS (9.45) I O(�t) +O(�x) R ≥ 0

BTCS (9.46) I O(�t) +O(�x2) ∀R

Lax–Wendroff (9.47) I O(�t2) +O(�x2) ∀R

Crank–Nicolson (9.48) I O(�t2) +O(�x2) ∀R

The inequalities hold true if 0 ≤ R ≤ 1. In a similar way the necessary conditions for
stability of other schemes for hyperbolic PDE can be derived. The results are sum-
marized in Table 9.2. Implicit schemes are absolutely stable and the CFL criterion
is not useful for them.

Increasing the Order As in the leapfrog method for the diffusion equation, we
can use the centered difference �

(x)
0 (FTCS) instead of the one-side differences �

(x)
+

or �
(x)
− to gain one order in the space coordinate,

un+1
j = un

j − R

2

(

un
j+1 − un

j−1

)

. (9.41)

But recall that the stability condition of the scheme for vt + cvx = Dvxx was (9.27),
while here we have r = 0: the scheme (9.41) is therefore unstable.

How do we attain a higher order and yet maintain stability? Since vt = −cvx and
vtt = (−cvx)t = −(cvt)x = c2vxx , we resort to the Taylor expansion

vn+1
j = vn

j + (vt)
n
j�t + (vtt)

n
j

�t2

2
+O
(

�t3)

= vn
j + (−cvx)

n
j�t + (c2vxx

)n

j

�t2

2
+O
(

�t3).

The approximations vx ≈ (�
(x)
0 un

j)/�x and vxx ≈ (�
(x)
2 un

j)/�x2 give us the linear
Lax–Wendroff scheme

un+1
j = un

j − R

2
�

(x)
0 un

j + R2

2
�

(x)
2 un

j , (9.42)

with the error of order O(�t2)+O(�x2). (Beware that in this book and in literature
there are other schemes that carry the same name.) From the symbol |ρ(ξ)|2 =

9.8 Hyperbolic Equations 489

1 − 4R2 sin2(ξ/2) + 4R4 sin4(ξ/2) we infer the stability criterion |R| ≤ 1. We have
sinned a bit. If we read the scheme backwards, the equation

vt + cvx = c2�t

2
vxx

emerges: a diffusive (dissipative) term has appeared at the right-hand side of the
equation that damps the solution for all t > 0. The consequences will be discussed
in Sect. 9.10. Let us also mention the Lax–Friedrichs scheme,

un+1
j = 1

2

(

un
j+1 + un

j−1

)− R

2
�

(x)
0 un

j , (9.43)

which is conditionally stable (|R| ≤ 1) and consistent to O(�t) + O(�x2/�t).
Both schemes will become more familiar in Problem 9.13.2 and will be useful for
the solution of PDE that can be expressed in conservative form (Sect. 9.12).

9.8.2 Implicit Schemes

If hyperbolic PDE in some specific regimes (e.g. aerodynamic computations involv-
ing high Reynolds numbers) were solved by explicit schemes, prohibitively short
time steps would be required to ensure stability. Implicit schemes have much better
stability properties and become a viable option in such cases. Here we only mention
the simplest ones [1]. It is easy to derive the implicit versions of the FTFS (9.39),
FTBS (9.40), FTCS (9.41), and Lax–Wendroff schemes (9.42): all one has to do is
to evaluate the spatial derivative at time (n + 1) instead of n. The corresponding
quartet of implicit schemes is

(1 − R)un+1
j + Run+1

j+1 = un
j , (9.44)

−Run+1
j−1 + (1 + R)un+1

j = un
j , (9.45)

−R

2
un+1

j−1 + un+1
j + R

2
un+1

j+1 = un
j , (9.46)

(

−R2

2
− R

2

)

un+1
j−1 + (1 + R2)un+1

j +
(

−R2

2
+ R

2

)

un+1
j+1 = un

j . (9.47)

If we approximate the term cvx by the central difference �
(x)
0 averaged between

n�t and (n + 1)�t , we obtain the Crank–Nicolson scheme,

−R

4
un+1

j−1 + un+1
j + R

4
un+1

j+1 = R

4
un

j−1 + un
j − R

4
un

j+1, (9.48)

with the symbol ρ(ξ) = (1 − (iR/2) sin ξ)/(1 + (iR/2) sin ξ), for which obviously
|ρ(ξ)| ≡ 1. The BTCS, implicit Lax–Wendroff, and Crank–Nicolson schemes are

490 9 Difference Methods for One-Dimensional PDE

stable regardless of the sign of c, which makes us comfortable in the cases where
c is a function of independent variables (when c changes throughout the defini-
tion domain). The main properties of the explicit and implicit schemes for the one-
dimensional hyperbolic equation vt + cvx = 0 are summarized in Table 9.2.

9.8.3 Wave Equation

The one-dimensional second-order wave equation

vtt = c2vxx, x ∈ [0,1], c > 0, (9.49)

with the initial conditions v(x,0) = f (x) and vt (x,0) = g(x) is important enough
to merit its own subsection. It is easy to derive a simple explicit difference scheme
for it: we approximate the time derivative at the left as (9.7) and the spatial derivative
at the right as (9.6), and obtain

un+1
j = R2(un

j+1 + un
j−1

)+ 2
(

1 − R2)un
j − un−1

j , (9.50)

where R = c�t/�x. The scheme (9.50) is stable for R ≤ 1 and has three levels:
we need the solutions at (n − 1)�t and n�t to compute the solution at (n + 1)�t .
At t = 0 the solution is given by the initial condition, u0

j = f (j�x) = fj . But the
solution in the first time step t = �t—the so-called initialization scheme—depends
on the discretization of the remaining initial and boundary conditions. For Dirichlet
boundary conditions v(0, t) = a(t) and v(1, t) = b(t) we use the approximation
vt (x,0) = g(j�x) = gj ≈ (u1

j − u0
j)/�t at j = 0,1, . . . ,N to express

u1
j = u0

j + �tg(j�x) = fj + �tgj .

One can show that with such initialization the scheme (9.50) is convergent only to
order O(�t) + O(�x2) [1]. The symmetric approximation for the time derivative
gj ≈ (u1

j − u−1
j)/(2�t) offers a better initialization

u1
j = R2

2
(fj+1 + fj−1) + (1 − R2)fj + �tgj

(derive this as an exercise). This improvement in the initialization makes the
scheme (9.50) convergent at order O(�t2) +O(�x2), as expected from it.

For the wave equation, we could also use the three-level implicit scheme

1

�t2
�

(t)
2 un

j = 1

�x2

[
1

4
�

(x)
2 un+1

j + 1

2
�

(x)
2 un

j + 1

4
�

(x)
2 un−1

j

]

, (9.51)

which is of order O(�t2) +O(�x2) and is absolutely stable for all �t/�x > 0. It
requires us to solve a tridiagonal system of equations at each time step.

9.9 Non-linear Equations and Equations of Mixed Type � 491

In Sect. 9.11 and Problem 9.13.4 we show yet another attractive option, namely
how we can use the substitutions v1 = cvx and v2 = vt to translate the solution
of (9.49) to the solution of the system of two first-order hyperbolic equations

(

v1
v2

)

t

=
(

0 c

c 0

)(

v1
v2

)

x

.

Diagonalizing this system reveals the eigenvalues ±c corresponding to the decou-
pled scalar equations (V1)t + c(V1)x = 0 and (V2)t − c(V2)x = 0.

9.9 Non-linear Equations and Equations of Mixed Type �

So far we have studied the solution methods for PDE and the criteria for consistency,
stability, and convergence of difference schemes only in the case of linear equations.
But real life abounds in non-linear equations involving time and space derivatives
of higher orders. Here we illustrate some typical approaches to such problems.

Non-linear Diffusion Equation Let us discuss the non-linear equation

vt = (D(v)vx

)

x
, D(v) = 1 + av2

1 + bv2
, a > b > 0, (9.52)

which is used to describe diffusion in porous substances or heat transfer in mat-
ter with a temperature-dependent coefficient of thermal conductivity. (This equa-
tion is the topic of Problem 9.13.1. An even more interesting case, the two-
dimensional growth of biofilms on substrates, is treated in Problem 10.9.2.) We
denote V = D(v)vx and approximate the time derivative to first order, vt (x, t) ≈
(un+1

j − un
j)/�t , and the spatial derivative Vx by the symmetric difference

Vx(x, t) ≈ (Vn
j+1/2 − Vn

j−1/2

)

/�x,

where we use the average of the function D(v) in both terms of the numerator and
the one-sided difference for the time derivative. We obtain

Vn
j+1/2 ≈ 1

2

[

D
(

un
j+1

)+ D
(

un
j

)]u
n
j+1 − un

j

�x
, (9.53)

Vn
j−1/2 ≈ 1

2

[

D
(

un
j

)+ D
(

un
j−1

)]u
n
j − un

j−1

�x
, (9.54)

which ultimately gives us the scheme

un+1
j − un

j

�t
= Vn

j+1/2 − Vn
j−1/2

�x
.

The discretization itself was easy, but when we wish to establish whether this
scheme is stable, we must make the key—and risky—step. If we assume that the

492 9 Difference Methods for One-Dimensional PDE

solution v is smooth, D(v) near some point (x�, t�) may be replaced by the constant
value D� = D(u(x�, t�)). The solution near that point is then determined by the lin-
ear diffusion equation vt = D�vxx or the FTCS scheme (9.13), which is stable if
D��t/�x2 ≤ 1/2 (see (9.26)). The function D(v) is bounded, D(v) ≤ a/b, so the
linearized scheme is conditionally stable, with the condition �t ≤ (b/a)(�x2/2).

Burgers Equation Linearization by local “freezing” of the numerical solution
works surprisingly well even in problems with stronger non-linearities. But the
choice of the appropriate difference scheme is always followed by the difficult ques-
tion of its stability. Further problems may appear in equations of mixed types, where
several properties of the solution interlace. A typical example is the Burgers equa-
tion

vt + vvx = Dvxx, D = const,

that is used in models of gas dynamics, acoustic phenomena like shock waves, and
turbulence. The equation occupies and important place in the hierarchy of the ap-
proximations of the Navier–Stokes equation, in particular because it is one of the
few non-linear PDE with known analytic solutions (at various boundary conditions).
It is therefore a benchmark problem for numerical methods for non-linear PDE. The
Burgers equation is of mixed parabolic-hyperbolic type. For small values of D (neg-
ligible diffusive term Dvxx) the equation is strongly hyperbolic and the solutions
tend to evolve to propagating discontinuities that are hard to resolve numerically.
For large D (relatively small non-linear advection term vvx) its parabolic character
is more pronounced.

The non-linearities in the Burgers equation are seemingly easy to handle by an
explicit scheme: we attempt

un+1
j = un

j − R

2
un

j�
(x)
0 un

j + r�
(x)
2 un

j , (9.55)

where R = �t/�x and r = D�t/�x2. But for small D the scheme is unstable even
if we choose r ≤ 1/2 as instructed by (9.26). Stability is restored if we resort to the
implicit scheme (BTCS), which we obtain by evaluating the last two terms on the
right-hand side of (9.55) at time (n + 1)�t instead of at n�t ,

un+1
j = un

j − R

2
un+1

j �
(x)
0 un+1

j + r�
(x)
2 un+1

j , (9.56)

but this gives birth to a new problem: at each time step we need to solve a sys-
tem of non-linear equations! The most direct approach, also frequently used in
practice, is solving (9.56) by Newton’s method. Let us assume Dirichlet bound-
ary conditions u0 = uN = 0 so that the complete solution fits into the vector
u = (u1, u2, . . . , uN−1)

T = (un+1
1 , un+1

2 , . . . , un+1
N−1)

T. We write the system (9.56)
in the form f (u), where f :RN−1 → R

N−1, with the components

fj (u) = uj + R

2
uj (uj+1 − uj−1) − r(uj+1 − 2uj + uj−1) − un

j ,

9.9 Non-linear Equations and Equations of Mixed Type � 493

where j = 1,2, . . . ,N − 1. The Jacobi matrix [J (u)]jk = ∂fj /∂uk is tridiagonal,

J (u) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b1 c1
a2 b2 c2

a3 b3 c3
. . .

. . .
. . .

aN−1 bN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

with the matrix elements

aj = −R

2
uj − r, bj = 1 + R

2
(uj+1 − uj−1) + 2r, cj = R

2
uj − r.

Starting with an appropriate initial approximation (e.g. un+1 = un) we iterate

J (u)�u = −f (u),

u = u + �u,

until �u in some norm, e.g. (A.4), drops below the specified tolerance. When the
iteration has converged, we have only accomplished a single time step and mapped
the solution un to un+1.

If solving the non-linear system appears to be too big of a nuisance, we may
again try some linearization. We can do this by lagging one part of the non-linear
term, for example, the zeroth derivative (function value),

un+1
j = un

j − R

2
un

j�
(x)
0 un+1

j + r�
(x)
2 un+1

j . (9.57)

This leads to a system of linear equations of the form Fun+1 = un for the solution
un+1, with a tridiagonal coefficient matrix F .

The non-linearity in the scheme can also be circumvented by expanding the fac-
tors in the non-linear term to first order,

un+1
j = un

j + δj . (9.58)

When we insert this in (9.56) and neglect all terms quadratic in δ, we again obtain a
system of linear equations for the correction δ = (δ1, δ2, . . . , δN−1)

T,

(
R

2
un

j − r

)

δj+1 +
(

1 + 2r + R

2
�

(x)
0 un

j

)

δj +
(

−R

2
un

j − r

)

δj−1

= −R

2
un

j�
(x)
0 un

j + r�
(x)
2 un

j . (9.59)

We solve this tridiagonal system for δ by using the current solution un, which ap-
pears at both sides of the equation, and compute un+1 by (9.58).

494 9 Difference Methods for One-Dimensional PDE

The numerical solution of non-linear PDE is so full of pitfalls that it is nearly im-
possible to formulate a set of common instructions. In most cases, the stability cri-
teria developed for linear problems are not applicable; we have only limited control
over dispersion and dissipation (Sect. 9.10); without approximations, we are forced
to solve systems of non-linear equations. With almost every new equation we learn
from the start. Problem 9.13.5 helps us realize how the simple methods described
above work (or fail) in practice in the case of the Burgers equation. Problem 9.13.7
is devoted to the related Korteweg–de Vries equation, and Problem 9.13.9 to the
cubic Schrödinger equation.

9.10 Dispersion and Dissipation �

Analytic solutions of hyperbolic and parabolic one-dimensional PDE can be writ-
ten as the sum of the terms v(x, t) = v̂ exp[i(ωt + kx)]. Such functions satisfy the
chosen PDE only if a particular analytic connection—a dispersion relation—exists
between the frequency of the wave ω and the wave vector k = 2π/λ.

Example (Rephrased from [1] whose definitions and notation we adopt in this sec-
tion) In the advective equation, vt ± cvx = 0, the dispersion relation holds only if
ω = ∓kc, with the solution components v(x, t) = v̂ exp[i(kx − ωt)]: such a wave
propagates with the velocity ∓c = ω/k that does not depend on the frequency, and
with a constant amplitude.

The equation vt ± cvxxx = 0 corresponds to the dispersion relation ω = k3c and
the solution is v(x, t) = v̂ exp[i(kx + k3ct)]: waves travel without dissipation with
velocities ±k2c in directions opposite to those of the first-order equation, but we
witness dispersion: components with different wave vectors propagate with different
velocities.

The dispersion relation for the diffusion equation vt = Dvxx is ω = iDk2, and
the solution components are v(x, t) = v̂ exp(−Dk2t) exp(ikx): such “waves” do not
propagate and their amplitude diminishes with time.

What about dispersion and dissipation in the difference schemes for PDE? In the
usual discretization x = j�x and t = n�t , the solution components are

un
j = ûei(kj�x+ωn�t). (9.60)

The component with the highest frequency in the solution corresponds to the term
exp[2π i(N/2)j�x], thus the interval 0 ≤ k�x ≤ π contains the information on all
components in the Fourier representation of the solution. We separate the real and
imaginary parts of the dispersion relation ω = ω(k),

ω = α(k) + iβ(k),

thus eiωt = eiαte−βt , and

un
j = û
(

e−β�t
)neik[j�x−(−α/k)n�t]

9.10 Dispersion and Dissipation � 495

(k is the wave vector, while j is the space index). The discrete dispersion rela-
tion is intimately related to the symbol of the difference scheme, eiω�t = ρ(k�x)

(Sect. 9.5). The real part,

α�t = arctan

[
Imρ(k�x)

Reρ(k�x)

]

,

determines the propagation and dispersion, while the imaginary part,

β�t = − log
∣
∣ρ(k�x)

∣
∣,

determines the dissipation of the solution. This immediately allows us to classify
the solutions of a given difference scheme:

α = 0 for all k =⇒ solution does not propagate,
α 	= 0 for some k =⇒ solution propagates with velocity −α/k,
d2α/dk2 	= 0 =⇒ scheme is dispersive,
β > 0 for some k =⇒ scheme is dissipative,
β < 0 for some k =⇒ solution diverges (scheme unstable),
β = 0 for all k =⇒ scheme is non-dissipative.

Example Let us inspect the dispersion and dissipation properties of the FTCS
scheme (9.13) for the diffusion equation. The symbol of the scheme is given
by (9.24) where a = 0 and ξ = k�x, thus exp(iω�t) = 1 − 4r sin2(k�x/2), and
hence

α = 0, ω = iβ = − i

�t
ln

∣
∣
∣
∣
1 − 4r sin2 k�x

2

∣
∣
∣
∣
.

The solution un
j therefore does not propagate (α = 0). We now see (9.26) in a dif-

ferent light from the viewpoint of the parameter β: if r > 1/2, then β < 0, so the
factor (exp(−β�t))n diverges and the scheme is unstable. But if r ≤ 1/2, we have
β ≥ 0, and (exp(−β�t))n reduces the amplitude of the solution. All Fourier com-
ponents fade out, only the one with β = 0 survives, and this one determines the
asymptotics. The dissipation of the solution of the difference scheme follows the
physical dissipation dictated by the diffusion equation.

Example We repeat the exercise for the FTFS scheme (9.39) for the hyperbolic
advective equation vt + cvx = 0 with c < 0 and R = c�t/�x. When we in-
sert the Fourier expansion (9.60) in the scheme, we obtain the dispersion relation
exp(iω�t) = 1 + R − R cosk�x − iR sin k�x, whence we read off

α = − 1

�t
arctan

[
R sin k�x

1 + 2R sin2 k�x
2

]

, (9.61)

β = − 1

2�t
log
[

(1 + R)2 − 2R(1 + R) cosk�x + R2]. (9.62)

496 9 Difference Methods for One-Dimensional PDE

Fig. 9.8 Power spectral
density of the function
v0
j = sin40 πj�x (as an initial

condition for the equation
vt + cvx = 0) with spatial
discretizations �x = 0.05,
�x = 0.01, and �x = 0.002.
Only the lowest Fourier
components are relevant at
small �x

Since α is non-linear in k, we have d2α/dk2 	= 0 and the scheme (9.39) is therefore
always dispersive. If β < 0, the scheme is unstable. If β > 0, the scheme is stable
for |R| ≤ 1 and then all solution components with k 	= 0 decay, while the k = 0
component neither grows nor decays. The scheme is dissipative, except for R = −1,
when β = 0 for all k. It is impossible to completely remove dissipation from (9.39),
but it can be limited by choosing a sufficiently small �x. Namely, by reducing �x

we shift the solution components to lower frequencies, where dissipation is less
pronounced (see Fig. 9.8 and [1]).

From the dispersion relations (9.61) and (9.62) we see that high-frequency com-
ponents of the numerical solution (small λ or k�x near π) propagate with velocity
−α/k = 0 if R > −1/2, or with velocity −α/k = c/R if R < −1/2. Low-frequency
components (large λ or k�x � 1) are more interesting: if |R| < 1/2, they propagate
slower than the components of the analytic solution, and faster if 1/2 < |R| < 1. But
sometimes there is a relief [1]: the components with the most “wrong” velocities are
also the most strongly damped. If the underlying problem (differential equation) or
the corresponding difference scheme contain dissipation, it often hides the effects of
dispersion. Figure 9.9 (left) shows the error of the propagation velocity c − (−α/k)

in dependence of R for the FTFS scheme. The error is smallest near the stability
limit (R = −1).

A similar analysis can be performed for the Crank–Nicolson scheme. Its symbol
is |ρ(k�x)| = 1, so it is non-dissipative, but is has strong dispersion: as shown
in Fig. 9.9 (right), the phase error can be reduced somewhat by decreasing �x,
but even this works only for low-frequency components. This means that solutions
with broad Fourier spectra are hard to represent on the mesh. In general, �x must
be sufficiently small for high-frequency components to become irrelevant for the
solution. See also Problem 9.13.2.

9.11 Systems of Hyperbolic and Parabolic PDE � 497

Fig. 9.9 [Left] Error of propagation velocity c − (−α/k) as a function of R in the FTFS scheme.
The error is smallest near the stability limit (R = −1). [Right] Error of propagation velocity in the
Crank–Nicolson scheme. By further decrease of R the curves become barely distinguishable from
the curve corresponding to R = 0.04

9.11 Systems of Hyperbolic and Parabolic PDE �

In this section we discuss difference schemes for some classes of systems of one-
dimensional hyperbolic and parabolic PDE. We adopt the definitions of consistency,
stability, and convergence with obvious generalizations from our treatment of the
scalar cases (Sects. 9.3 and 9.5). By the Lax theorem, consistent stable schemes
are also convergent. Stability is again probed by the discrete Fourier transformation
(p. 476): the role of the symbol of the scheme is now taken by the amplification
matrix G(ξ) measuring the growth of the solution’s Fourier components in a given
time step, ũn+1(ξ) = G(ξ)̃un = Gn+1(ξ)̃u0. In the following we give the stability
criteria of the basic schemes without proof.

A general system of one-dimensional linear hyperbolic PDE with constant coef-
ficients can be written as

vt = Avx, v(x,0) = v0(x), x ∈R, t > 0, (9.63)

where v = (v1, v2, . . . , vM)T is the vector of unknowns and A is a M × M ma-
trix. Let us assume that A is diagonalizable, so that a matrix S exists such that
the similarity transformation D = SAS−1 diagonalizes A, hence Svt = SAvx =
SAS−1Svx = DSvx , and S−1 is the matrix containing the eigenvectors of A. The
new vector V = Sv can be used to translate the original system of coupled equations
for the primitive variables v to the diagonal system V t = DV x , i.e.

(Vm)t − λm(Vm)x = 0, m = 1,2, . . . ,M, (9.64)

for the characteristic variables V , where λm are the eigenvalues of A. The indi-
vidual solutions of the decoupled system obviously solve the scalar problem (9.38),
Vm(x, t) = V0m(x + λmt), where V 0 = (V01,V02, . . . , V0M)T = Sv0 is the initial

498 9 Difference Methods for One-Dimensional PDE

condition for (9.64). This looks like a set of M waves propagating with phase veloc-
ities λm along the positive or negative x-axis, depending on the sign of the eigen-
values λm. The solution of the original problem (9.63) is

v(x, t) = S−1V = S−1

⎛

⎜
⎜
⎜
⎝

V01(x + λ1t)

V02(x + λ2t)
...

V0M(x + λMt)

⎞

⎟
⎟
⎟
⎠

.

Hyperbolic Systems For hyperbolic systems of the form

vt = Avx + B0v, x ∈ R, t > 0, (9.65)

where A and B0 are real constant M × M matrices, and A is diagonalizable (with
eigenvalues λm), two explicit schemes are immediately at hand:

un+1
j = RAun

j+1 + (I − RA)un
j + �tB0u

n
j , (9.66)

un+1
j = (I + RA)un

j − RAun
j−1 + �tB0u

n
j , (9.67)

where R = �t/�x. The scheme (9.66) is stable in the l2,�x -norm if λm ≥ 0 and
λmR ≤ 1 for each m ∈ {1,2, . . . ,M}. In the same sense the scheme (9.67) is sta-
ble exactly when all λm ≤ 0 and |λm|R ≤ 1. For the system (9.65) in which the
eigenvalues of A have different signs, we would like to use some “mixture” of the
methods (9.66) and (9.67). We achieve this by flux splitting which is a popular trick
in systems of non-linear PDE. We arrange the eigenvalues along the diagonal of the
diagonal matrix D = SAS−1 in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λM and construct
matrices D+ and D− containing only the part of D with positive or negative eigen-
values, respectively. Then we use the matrices A+ = S−1D+S and A− = S−1D−S

to form the split scheme

un+1
j = un

j + RA+�
(x)
+ un

j + RA−�
(x)
− un

j + �tB0u
n
j , (9.68)

where �
(x)
+ and �

(x)
− are defined by (9.8) and (9.9). There are also schemes in which

we do not need to pay attention to the sign of the eigenvalues of A, for example, the
Lax–Wendroff scheme,

un+1
j = un

j + R

2
A�

(x)
0 un

j + R2

2
A2�

(x)
2 un

j + �tB0u
n
j , (9.69)

which is of order O(�t2) +O(�x2). It is stable if |λm|R ≤ 1. The matrix A should
be evaluated at time n�t , so A = A(un), A2 = [A(un)]2.

Parabolic Systems For parabolic systems of the form

vt = B2vxx + B0v, x ∈ R, t > 0,

9.11 Systems of Hyperbolic and Parabolic PDE � 499

we could suggest the explicit scheme

un+1
j = un

j + rB2�
(x)
2 un

j + �tB0u
n
j ,

where r = �t/�x2 (the diffusion constant D, which we kept throughout the scalar
case, can be absorbed in the matrix B2). If B2 is a real, symmetric, and positive
definite M ×M matrix (with eigenvalues λm), and B0 is bounded, the above scheme
is stable precisely when rλm ≤ 1/2 for each m.

Mixed-Type Systems We obtain a much more general class of systems of PDE if
the diffusion (parabolic) and advection (hyperbolic) terms are included simultane-
ously,

vt = B2vxx + B1vx + B0v, x ∈ R, t > 0,

where B0, B1, and B2 are real constant matrices and B2 is positive definite. In such
cases we should devise a sensible difference scheme on the basis of the relative mag-
nitudes of the eigenvalues of B1 and B2. If the eigenvalues of B2 are substantially
larger than the eigenvalues of B1, the parabolic nature of the equations will prevail
over the hyperbolic, and the scheme of the form

un+1
j = un

j + rB2�
(x)
2 un

j + R

2
B1�

(x)
0 un

j + �tB0u
n
j (9.70)

will behave decently (will be stable). In the opposite case, the hyperbolic charac-
ter dominates and the scheme will become unstable, just as (9.41) was unstable for
scalar equations. We face an even greater confusion if some eigenvalues of B2 are
smaller than those of B1, while some are larger: in such instances the whole system
must be carefully decoupled and components with the same regime rejoined. Sys-
tems of this type are too complicated to be discussed in this book. Yet a simplified
variant of the parabolic-hyperbolic system,

vt = vxx + B1vx + B0v, x ∈ R, t > 0,

where B1 and B0 are real constant matrices, and where B1 has M non-degenerate
eigenvalues, is manageable and still interesting enough: a good scheme for it
is (9.70) where one sets B2 = I . It is stable if for all eigenvalues λm of B1 we have
λ2

mR2/2 ≤ r ≤ 1/2. If for some m the opposite inequality r < λ2
mR2/2 is fulfilled

(dominating hyperbolic term), it is better to differentiate the term B1vx “hyperboli-
cally” (Table 9.2).

We do not discuss implicit schemes for systems of PDE. (Their main advantage
are the improved stability properties: many of them are absolutely stable.) We also
disregard systems of PDE with more than one spatial dimension. However, the prob-
lems in solving such systems are not immense; further reading can be found in [1].

500 9 Difference Methods for One-Dimensional PDE

Fig. 9.10 The numerical solution of the hyperbolic problem vt − vx = 0 with periodic boundary
conditions v(0, t) = v(1, t) and the “step” initial condition (dotted line). Shown are the solutions
by the FTFS scheme [Left], Lax–Wendroff scheme [Center] and Lax–Friedrichs scheme [Right] at
time t = 1.0

9.12 Conservation Laws and High-Resolution Schemes �

Section 9.10 taught us that seemingly well-designed difference schemes that are
both consistent and stable, do not perform satisfactorily for certain classes of PDE:
the deficiencies can usually be spotted in the suspicious behavior of the solution
near discontinuities. Figure 9.10 shows the time evolution of the solution of vt −
vx = 0 by using three difference schemes: regardless of the method, dispersion and
dissipation distort the solutions already within a single period.

Nevertheless, by using a special approach to solve PDE expressed in conservative
forms, it is possible to resolve and monitor the discontinuities evolving from the
initial conditions, as well as their propagation velocities. In this section we discuss
the solution of initial-boundary-value problems for PDE that can be written in the
form of a conservation law for some quantity (e.g. mass, momentum, or energy).
For such equations one can devise consistent, stable schemes with low dissipation
and dispersion [5].

Initially we discuss conservation laws in the form

vt + [F (v)
]

x
= 0, (9.71)

where we assume that the function F : RN → R
N is convex (∂2Fj/∂v2

k ≥ 0).
A scalar example of such a law with F(v) = v2/2 is the Burgers equation with-
out diffusion,

vt + vvx = vt +
(

1

2
v2
)

x

= 0.

9.12 Conservation Laws and High-Resolution Schemes � 501

The corresponding scheme is at hand: we integrate (9.71) from xj−1/2 to xj+1/2
over x and from tn = n�t to tn+1 = (n + 1)�t over t , resulting in

�x
(

vn+1
j − vn

j

)+
[∫ tn+1

tn

F
(

v(xj+1/2, t)
)

dt −
∫ tn+1

tn

F
(

v(xj−1/2, t)
)

dt

]

= 0,

which has an obvious physical interpretation: the difference in the amount of “mat-
ter” entering the volume [tn, tn+1] × [xj−1/2, xj+1/2] or exiting it (through the
boundary t = tn or t = tn+1) is balanced by the amount of “matter” entering or
exiting through x = xj−1/2 or x = xj+1/2. Such an equation can be approximated
by the difference scheme

un+1
j = un

j − R
[

hn
j+1/2 − hn

j−1/2

]

, (9.72)

where R = �t/�x. In this approach, the discrete approximations for the fluxes are
given in terms of the numerical flux functions

hn
j+1/2 = h

(

un
k−p, . . . ,un

k+q

)

, (9.73)

hn
j−1/2 = h

(

un
k−p−1, . . . ,u

n
k+q−1

)

, (9.74)

which in general depend on values at p + q + 1 points. The scheme (9.72) is con-
sistent with the conservation law (9.71) when h(v, . . . ,v) = F (v).

Difference schemes that can be written as (9.72) with the flux functions (9.73)
and (9.74) are called conservative. But this transcription by itself does not guar-
antee any of the appealing properties advertised in the introduction! A non-linear
generalization of the linear Lax–Wendroff scheme (9.42),

un+1
j = un

j − R

2
�

(x)
0 F n

j + R2

2

[

J
(

un
j+1/2

)

�
(x)
+ F n

j − J
(

un
j−1/2

)

�
(x)
− F n

j

]

, (9.75)

where [J (u)]ab = ∂Fa/∂ub , can be written in conservative form if we write

hn
j+1/2 = 1

2

[

F n
j+1 + F n

j

]− R

2
J
(

un
j+1/2

)

�
(x)
+ F n

j .

Similarly we write the expression for hn
j−1/2, we just replace j by j −1 everywhere.

Since we do not know the solution at xj+1/2 and xj−1/2 we approximate

J
(

un
j+1/2

)≈ J

(
1

2

(

un
j+1 + un

j

)
)

, J
(

un
j−1/2

)≈ J

(
1

2

(

un
j + un

j−1

)
)

.

Thus, the scheme is conservative and consistent with the conservation law (9.71),
since h(u,u) = F (u), but its solution are still influenced by dispersion. The Lax–
Friedrichs scheme

un+1
j = 1

2

(

un
j+1 + un

j−1

)− R

2
�

(x)
0 F n

j ,

502 9 Difference Methods for One-Dimensional PDE

which corresponds to the flux functions

hn
j+1/2 = 1

2

(

F n
j+1 + F n

j

)− 1

2R

(

un
j+1 − un

j

)

, hn
j−1/2 = hn

j+1/2[j ↔ j − 1],

is also conservative and consistent, but strong dissipation is present in its solutions.

9.12.1 High-Resolution Schemes

Dispersion and dissipation of the solutions of difference schemes used to approx-
imate PDE in the form of conservation laws can be harnessed by using high-
resolution schemes. From here on we discuss only scalar problems

vt + [F(v)
]

x
= 0. (9.76)

High-resolution schemes can also be formulated for systems of linear or non-linear
equations in the general form (9.71), but this is beyond our scope. Further reading
can be found in [6, 7].

The first requirement that we impose on the scheme is that the solution in subse-
quent time steps changes less and less, in the sense

∞
∑

j=−∞

∣
∣�

(x)
+ un+1

j

∣
∣≤

∞
∑

j=−∞

∣
∣�

(x)
+ un

j

∣
∣ ∀n ≥ 0. (9.77)

Schemes that fulfill (9.77) are known as total variation diminishing (TVD), and
their typical representatives are the flux-limiter methods. In these methods we in-
clude a special “smoothing” function in the scheme in order to introduce artificial
dissipation that prevents non-physical oscillations of the solutions near discontinu-
ities. Their upgrade are the slope-limiter methods in which one attempts to prevent
too large solution slopes. Another option are the modified-flux methods where one
does not modify the numerical flux function h but rather the function F appearing
in the conservation law. Here we get to know only the first type of schemes.

High-Resolution Flux-Limiter Schemes The numerical flux functions of high-
resolution flux-limiter schemes are constructed [5] as a combination of the flux
function Lh belonging to a low-order scheme, and the function Hh belonging to
a high-order scheme:

hn
j+1/2 = Lhn

j+1/2 + φn
j

[Hhn
j+1/2 − Lhn

j+1/2

]

.

This allows us to enjoy the best of the two worlds: the admixture of the low-order
scheme introduces dissipation into the composite scheme, helping us reduce un-
wanted oscillations, while the admixture of the high-order scheme improves the

9.12 Conservation Laws and High-Resolution Schemes � 503

Fig. 9.11 [Left] The TVD region of the flux limiter φ(θ) in a high-resolution scheme for the scalar
conservation law vt +[F(v)]x = 0. [Right] Optimal region with the van Leer limiter drawn in. The
schemes that utilize flux limiters that pass the point (1,1) are consistent with the conservation law
to second order

accuracy. The ultimate success depends on the choice of the flux-limiter function
φn

j , which is the weight of the anti-diffusive part of the flux,

Hhn
j+1/2 − Lhn

j+1/2.

The limiter function to which we entrust the “smoothing” of the solution, is usually
written as

φn
j = φ

(

θn
j

)

,

where θn
j is the smoothing parameter that can be computed from various compo-

nents of the current solution.
It can be shown that a high-resolution scheme fulfills the TVD criterion (9.77)

and is consistent with the conservation law to second order if the function φ(θ) for
positive θ satisfies the conditions

0 ≤ φ(θ)

θ
≤ 2, 0 ≤ φ(θ) ≤ 2.

Figure 9.11 (left) shows the allowed region for the function φ(θ). This basic re-
quirement is met by many functions. The most frequently used are

Superbee φ(θ) = max
{

0,min{1,2θ},min{θ,2}}, (9.78)

vanLeer φ(θ) = (|θ | + θ
)

/
(|θ | + 1

)

, (9.79)

C/O φ(θ) = max
{

0,min{θ,ψ}}, (9.80)

BW/LW φ(θ) = max
{

0,min{θ,1}}. (9.81)

In the C/O function, 1 ≤ ψ ≤ 2. The BW/LW limiter is a special case of C/O with
ψ = 1. Functions whose graphs remain in the shaded area shown in Fig. 9.11 (right)

504 9 Difference Methods for One-Dimensional PDE

are preferable [8]. All forms enumerated above go through this region and also have
the property φ(1) = 1 which is crucial for second-order consistency [5]. The Super-
bee and van Leer flux limiters possess the additional symmetry

φ(θ)

θ
= φ

(
1

θ

)

,

which is physically relevant: a high-resolution scheme with a symmetric flux-limiter
function handles increasing and decreasing spatial gradients equivalently.

9.12.2 Linear Problem vt + cvx = 0

To form Lh for the scalar problem vt +cvx = 0, one uses a scheme that is insensitive
to the sign of c, while to form Hh, one takes the Lax–Wendroff scheme:

Lhn
j+1/2 = 1

2
c
(

un
j + un

j+1

)− 1

2
|c|(un

j+1 − un
j

)

,

Hhn
j+1/2 = cun

j + 1

2
c(1 − cR)�

(x)
+ un

j .

(9.82)

(The method with the flux function (9.82) is known as the upwind scheme since it
always differentiates in the direction opposite to the sense of advection: for c < 0
it turns into the FTFS scheme, and for c > 0 into the FTBS scheme.) The complete
flux function is then

hn
j+1/2 = Lhn

j+1/2 + 1

2
φn

j c
(

sign(c) − cR
)

�
(x)
+ un

j ,

and the corresponding high-resolution scheme becomes

un+1
j = un

j − 1

2
cR�

(x)
0 un

j + 1

2
|c|R�

(x)
2 un

j

− 1

2
cR
(

sign(c) − cR
)(

φn
j �

(x)
+ un

j − φn
j−1�

(x)
− un

j

)

. (9.83)

The smoothing parameters are computed as

θn
j =
{

�
(x)
− un

j /�
(x)
+ un

j ; c > 0,

�
(x)
+ un

j+1/�
(x)
+ un

j ; c < 0.

Note that the differences in these formulas access points outside of the definition do-
main, and need to be handled separately. Trivial flux-limiter function φ do not bring
anything new: φ = 0 means just the FTFS or FTBS schemes, while φ = 1 repro-
duces the Lax–Wendroff scheme. We therefore use a function from the set (9.78)–
(9.81). How this works in practice is illustrated by Problem 9.13.2.

9.13 Problems 505

9.12.3 Non-linear Conservation Laws of the Form
vt + [F(v)]x = 0

A non-linear conservation law obviously requires a non-linear high-resolution
scheme. By analogy with the linear problem we use the upwind scheme for Lh

and the non-linear Lax–Wendroff scheme to construct Hh,

Lhn
j+1/2 = 1

2

(

Fn
j + Fn

j+1

)− 1

2

∣
∣an

j+1/2

∣
∣�

(x)
+ un

j ,

Hhn
j+1/2 = 1

2

(

Fn
j + Fn

j+1

)− R

2

(

an
j+1/2

)2
�

(x)
+ un

j .

(9.84)

The justification for this particular choice and many additional details on their prop-
erties can be found in [5]. We end up with the numerical flux function

hn
j+1/2 = Lhn

j+1/2 + φn
j

∣
∣an

j+1/2

∣
∣
1

2

[

1 − R
∣
∣an

j+1/2

∣
∣
]

�
(x)
+ un

j , (9.85)

where φn
j = φ(θn

j),

an
j+1/2 =

{

�
(x)
+ Fn

j /�
(x)
+ un

j ; �
(x)
+ un

j 	= 0,

F ′(un
j); �

(x)
+ un

j = 0,
(9.86)

and

θn
j =
{

�
(x)
− un

j /�
(x)
+ un

j ; an
j+1/2 > 0,

�
(x)
+ un

j+1/�
(x)
+ un

j ; an
j+1/2 < 0.

9.13 Problems

9.13.1 Diffusion Equation

Use several difference methods to solve the linear diffusion equation

vt = Dvxx, x ∈ [0, a], t > 0, D > 0,

with specified initial and boundary conditions. The equation describes the heat trans-
fer in an infinite slab of thickness a (or along a thin insulated wire).
⊙

Discretize the diffusion equation on the time-space mesh as described in
Sect. 9.1. Solve the equation by using the explicit scheme (9.13) and pay attention
to stability: keep 0 < r = D�t/�x2 < 1/2. Compare the solution at r = 1/6 to
solutions at different r . The initial condition is: temperature zero everywhere except
between x = 0.2a and x = 0.4a, where the slab is at constant non-zero temperature

506 9 Difference Methods for One-Dimensional PDE

T0. At time t = 0 we switch on additional heating between x = 0.5a and x = 0.75a,
with a heat release rate of 5T0λ/a2. Plot the temperature profile T (x, t) = v(x, t) at
dimensionless times Dt/a2 = 0(0.3)3!

Solve the diffusion equation by the implicit scheme (9.20) or the Crank–Nicolson
scheme (9.21). Do you observe more freedom in choosing r? How does the choice
of r influence the precision? What happens to the discrete “energy” (9.31) when you
use the difference schemes (in stable and unstable regimes)?
⊕

Use the explicit scheme with local “freezing” of the function D(v) de-
scribed in Sect. 9.9 to solve the non-linear diffusion equation

vt = (D(v)vx

)

x
, D(v) = 1 + 3v2

1 + v2
, x ∈ [0,1],

with the initial condition v(x,0) = sin 3πx and boundary conditions v(0, t) =
v(1, t) = 0. Use the discretization N = 50 (�x = 0.02) and �t = 0.00005, and
monitor the solution until T = 0.1. By changing �x and �t confirm the stability
criterion. Does the stability criterion remain valid for a different initial condition,
e.g. v(x,0) = 100x(1 − x)|x − 0.5|? Write down and solve the corresponding im-
plicit scheme. In all cases check whether (9.34) holds true.

9.13.2 Initial-Boundary Value Problem for vt + cvx = 0

We would like to solve numerically the first-order (hyperbolic) advection equation

vt + cvx = 0, c = ±1,

on x ∈ [0,1] with the initial condition v(x,0) = sin80 πx and periodic boundary
condition v(0, t) = v(1, t).
⊙

Solve the equation vt + vx = 0 by using the FTBS scheme (9.40) and the
Lax–Wendroff scheme (9.42) with the discretization N = 20 and time step �t =
0.01. Plot the solutions at t = 0.0, 0.1, 0.2, 0.4, and 1.0. Repeat the exercise with
N = 100 and time step �t = 0.002. Solve the equation vt − vx = 0 with the same
discretization, but use the FTFS scheme (9.39) instead of FTBS. What happens to
the amplitudes and phases of the solutions? (Compare them to analytic solutions at
chosen times.) Discuss the solutions in the cases when the parameter R is near the
stability limit (Table 9.2).

Repeat the exercise by using the Crank–Nicolson scheme (9.48). Pay attention to
the correct treatment of the boundary conditions (periodicity) when you rewrite the
system of difference equations in matrix form F1u

n+1 = rn. (The matrix is cyclic
tridiagonal.) Do you observe any peculiarities or limitations regarding the parameter
R? (See Fig. 9.9.) Compare the amplitudes and phases of the solutions to those from
the first part of the Problem. What happens when discretization is refined to, say,
�x = 0.001, �t = 0.0002?

9.13 Problems 507

⊕
We put the difference schemes for hyperbolic PDE to a harsher test by in-

cluding discontinuous initial conditions. We discuss the case vt − vx = 0 with a
periodic boundary condition v(0, t) = v(1, t) and a “step” initial condition

v(x,0) =
{

1; 0.4 ≤ x ≤ 0.6,

0; otherwise.

Use the same discretization as in the first part of the Problem and compute the
solution by using the schemes: FTFS (9.39), Lax–Wendroff (9.42), Lax–Friedrichs
(9.43), and Crank–Nicolson (9.48): the results should look like Fig. 9.10.

Finally, use the high-resolution scheme (9.83) with the flux-limiter function
(9.79) and (9.78). If the formulas access the points x−1 or xN+1, apply correctly
the periodic boundary condition. If the expression for θ has a zero in the denomina-
tor, set θ = 0. Use (�x,�t) = (100,0.002) and (1000,0.0002).

9.13.3 Dirichlet Problem for a System of Non-linear Hyperbolic
PDE

We are interested in the solutions of a hyperbolic system (example from [1])

vt = Avx, x ∈ [0,1], t > 0,

with the matrix

A = 1

3

⎛

⎝

5 3 5
−1 −3 −7
1 −3 1

⎞

⎠ .

⊙
Compute the matrices S and S−1 occurring in the similarity transformation

D = SAS−1 that diagonalizes A. Then solve the system by using the Lax–Wendroff
scheme (9.69), with the initial condition

v(x,0) = (cos 4πx, (1 − x) cosπx, e−x
)T

and discretization N = 100 (�x = 0.01). From the eigenvalues of A it is clear that
three boundary conditions may be assigned to this system, two at x = 1 and one
at x = 0. We choose v1(1, t) = 1, v2(1, t) = sin 2t , and v3(0, t) = cos 2t . Else-
where, we prescribe numerical boundary conditions un

10 = un
11, un

20 = un
21, and

un
3N = un

3N−1. Compute the solutions up to t = 1.0. Repeat the computation with
the schemes (9.66) and (9.67) in the regime where they are expected to be stable.

Redo the calculation by using the initial condition

v(x,0) =
(

sin
π

2
x, cosπx,xe1−x

)T

508 9 Difference Methods for One-Dimensional PDE

and boundary conditions v1(0, t) = sin 2t , v1(1, t) = 1, and v3(1, t) = cos 2t . Take
un

20 = un
21, un

2N = un
2N−1, and un

30 = un
31 as numerical boundary conditions.

⊕
Repeat the exercise by using the flux-splitting scheme (9.68) without chang-

ing the spatial discretization or the length of the time step. Compare the results to
those obtained in the first part of the Problem.

9.13.4 Second-Order and Fourth-Order Wave Equations

This Problem [4] deals with the one-dimensional second-order wave equation

vtt = c2vxx, x ∈ [0,L], t > 0, c > 0,

describing the oscillations of a thin light string of length L with specified initial and
boundary conditions. By substitution x/L → x, v/L → v, and cT /L → t we bring
the equation to dimensionless form. The initial conditions are

v(x,0) = 1

2
x(1 − x), vt (x,0) = 0,

and the boundary solutions are v(0, t) = v(1, t) = 0. The analytic solution is

v(x, t) = 2

π3

∞
∑

k=1

1

k3
(1 − coskπ) cos kπt sinkπx.

⊙
Solve the wave equation by using the explicit difference scheme (9.50).

Compute the deflections un
j after five oscillation periods. Pay attention to stability,

which is ensured if R = c�t/�x ≤ 1. How do the results depend on the initializa-
tion scheme (Sect. 9.8.3)? Compare the numerical and analytic solutions, and find a
good criterion for stopping the summation in the analytic solution. Test the implicit
method (9.51) too.

Solve the Problem by treating the equation vtt = vxx as a system of first-order
hyperbolic equations. By denoting p = ux and q = ut , it assumes a simple form
px − qt = 0, qx − pt = 0. To solve it, first use the difference scheme

pn
j+1 − pn

j−1

2�x
= qn+1

j − 1
2 (qn

j+1 + qn
j−1)

�t
,

qn
j+1 − qn

j−1

2�x
= pn+1

j − 1
2 (pn

j+1 + pn
j−1)

�t
.

Along t = 0 we have p = ux = 1
2 (1−2x) and q = ut = 0. Along x = 0 we have u =

0, thus q = 0 and qt = px = 0. This provides the constraints for points outside of
the mesh: pn

−1 = pn
1 , pn

N+1 = pn
N−1, qn

−1 = −qn
1 , and qn

N+1 = −qn
N−1. The solution

at arbitrary time are the vectors p and q . The deflections can then be computed

9.13 Problems 509

by simple quadrature, e.g. �u ≈ 1
2 (pj + pj+1)�x. Also solve the problem by the

Lax–Wendroff method (9.42) in the form

pn+1
j = pn

j + R

2

[

qn
j+1 − qn

j−1

]+ R2

2

[

pn
j+1 − 2pn

j + pn
j−1

]

,

qn+1
j = qn

j + R

2

[

pn
j+1 − pn

j−1

]+ R2

2

[

qn
j+1 − 2qn

j + qn
j−1

]

.

Carefully determine the requirements at the boundary points x0 and xN as dictated
by the scheme and the boundary conditions! What differences between the methods
do you observe?
⊕

How would you approach the solution of the fourth-order wave equation

(

c2
1

∂2

∂x2
− ∂2

∂t2

)(

c2
2

∂2

∂x2
− ∂2

∂t2

)

v = 0

with specified initial conditions for v(x,0), vt (x,0), vtt (x,0), and vttt (x,0) on
−∞ < x < ∞? Such an equation describes the propagation of long shallow waves
in an infinite channel with two fluids that do not mix [9]. In equilibrium (and at large
distances from the waves) the fluid with density ρ2 and height h2 is at the bottom,
and the fluid with density ρ1 < ρ2 and height h1 on the top. The parameters are re-
lated by c2

1 + c2
2 = g(h1 + h2) and c2

1c
2
2 = g2h1h2(1 − ρ1/ρ2). The solution v(x, t)

measures the deviation from the equilibrium height h1 + h2.

9.13.5 Burgers Equation

The one-dimensional Burgers equation

vt + vvx = Dvxx

is widely used in modeling gas dynamics, acoustic phenomena, and turbulence. This
is a mixed-type equation: for small values of D it is hyperbolic, while for large D

its parabolic nature dominates. In this Problem we get to know the basic approaches
to solving non-linear partial differential equations.
⊙

Solve the Burgers equation on x ∈ [0,1] with the initial condition v(x,0) =
sin 2πx and boundary conditions v(0, t) = v(1, t) = 0. Use several methods, e.g. the
explicit one (see (9.55)), lagging the non-linear term (see (9.57)), or by expanding
the current solution around the solution at the previous time step (see (9.59)). Use
the discretization N = 100, �t = 0.007, and the parameter D = 0.1. Compute the
solution up to T ≈ 0.2. Gradually decrease D. What do you observe? Try the dis-
cretization N = 1000, �t = 0.0007 and reduce D down to D ≈ 0.0001. Compute
the solution at each time step of the implicit scheme (9.56) directly (without lin-
earization) by using the multi-dimensional Newton method described in Sect. 9.9.

510 9 Difference Methods for One-Dimensional PDE

Fig. 9.12 Solutions of the Burgers equation. [Left] Initial condition (ic) and the solution by New-
ton’s method with D = 0.1 and D = 0.0001 on a mesh with 100 subintervals. At small D a discon-
tinuity forms that the scheme is unable to resolve. [Right] Solution by Newton’s method and the
mixed scheme (9.87) with D = 0.0001 by using a 10-times finer mesh and 10-times shorter time
step (zoom-in on the discontinuity)

Use the generalization of the scheme for the linear problem vt + cvx = Dvxx ,
with the usual notations R = �t/�x and r = D�t/�x2,

un+1
j = un

j − R

2
un

j�
(x)
0 un

j +
(

r + R2

2

(

un
j

)2
)

�
(x)
2 un

j .

In addition, try out the “mixed” scheme

un+1
j = un

j − Run
j

(

Dnun
j

)+ r�
(x)
2 un

j , (9.87)

in which the diffusion term Dvxx is approximated by the central difference, while
the first difference in the non-linear term depends on the sign of the solution,

(

Dnun
j

)=
{

un
j+1 − un

j ; un
j < 0,

un
j − un

j−1; un
j ≥ 0.

⊕
Solve the simplified equation vt + vvx = 0 (i.e. D = 0) for the same initial

and boundary conditions by using the high-resolution scheme (9.85) with the flux
limiters (9.79) and (9.78). Compare the solutions. The analytic solution is

v(x, t) = −2
∞
∑

k=1

Jk(−2πkt)

2πkt
sin(2πkx),

but it is only valid until 1/(2π) when the shock wave “breaks” (Fig. 9.12). Repeat
the exercise on x ∈ [−1,1] with a discontinuous initial condition

v(x,0) =
{

1.0; x ≤ 0,

0.5; x > 0.

9.13 Problems 511

9.13.6 The Shock-Tube Problem

Here we study the dynamics of a gas in an infinite tube, where a barrier at x = 0
initially separates two regions with different pressures and densities. We remove the
barrier and study the time dependence of the density, pressure, and velocity of the
gas. The system is described by three coupled non-linear PDE [1]:

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p
)

x
= 0,

Et + [v(E + p)
]

x
= 0,

where ρ is the density, p is the pressure, v is the velocity of the gas, and E its
total energy. The pressure and energy are related by the equation of state p = (κ −
1)(E −ρv2/2), where κ = cp/cv = 1.4 is the specific heat ratio. For the solution we
use the variables ρ, the momentum density m = ρv, and E. The system can then be
written in matrix form vt = Avx , where v = (ρ,m,E)T and

A =
⎛

⎜
⎝

0 −1 0

− κ−3
2

m2

ρ2 (κ − 3)m
ρ

−(κ − 1)

m

ρ2

(

κE − (κ − 1)m2

ρ

) − 1
ρ

(

κE − 3(κ−1)
2

m2

ρ

) −κ m
ρ

⎞

⎟
⎠ .

⊙
Solve the shock-tube problem on x ∈ [−2,2] with the boundary conditions

ρ0 = ρ1, m0 = m1 and E0 = E1 at x = −2, ρN = ρN−1, mN = mN−1 and EN =
EN−1 at x = 2, and the initial conditions

v(x,0) = 0, ρ(x,0) = p(x,0) =
{

2; −2 ≤ x < 0,

1; 0 ≤ x ≤ 2.

Compute the initial condition for E from those for p, ρ, and v, while the initial
condition for m = ρv is m(x,0) = 0 (since v(x,0) = 0). Use the linearized Lax–
Wendroff method (9.69) with the discretization N = 400 (�x = 0.01) and compute
the solution in steps of �t = 0.0025 until t = 1.0.
⊕

Use the non-linear variant of the Lax–Wendroff scheme (9.75) with the
same discretization and compute the solution to t = 1.0. Pay attention to the signs
in the term proportional to R: while (9.69) is written for systems of the form
vt = Avx , (9.75) applies to vt + [F (v)]x = F ′(v)vx = 0. Here you should there-
fore use A = F ′(v) and F = (ρv,ρv2 + p,v(E + p))T. Compare the propagation
velocities of the shock waves. Do the results change if you extend the domain to
x ∈ [−8,8] and trace the solution to t = 4.0? What about if you refine the dis-
cretization to �x = 0.001, �t = 0.00025? See also Fig. 9.13.

512 9 Difference Methods for One-Dimensional PDE

Fig. 9.13 Solution of the shock-tube problem by the non-linear Lax–Wendroff scheme with
�t = 0.00125 on a mesh with N = 800 subintervals. [Left] Spatial dependence of E, ρ, and m

at t = 0.75. [Right] Spatial dependence of p and v at t = 0.75

9.13.7 Korteweg–de Vries Equation

Korteweg–de Vries equation [10] is a non-linear evolution equation useful in study-
ing solitary waves (solitons). Solitons are waves that propagate with constant ve-
locity and without change in form. In its original version, vt + cvvx + μvxxx = 0,
the equation is appropriate for the description of one-dimensional waves with small
amplitudes in dispersive systems, like waves in shallow water or spilling over a
submerged obstacle. The generalized Korteweg–de Vries equation

vt + β

α + 1

(

vα+1)

x
+ μvxxx = 0

with constant α, β , and μ has a much broader applicability [11]. Physically most
relevant are the cases α = 1 and α = 2. In this Problem we analyze the simplest
possibilities for the numerical solution of the generalized equation [12, 13].
⊙

We discretize the non-linear term (vα+1)x and the dispersive term vxxx at
time (n + 1)�t as

(

vα+1)

x

∣
∣
x=xj

≈ 1

2�x

[(

un+1
j+1

)α
un+1

j+1 − (un+1
j−1

)α
un+1

j−1

]

,

vxxx |x=xj
≈ 1

2�x3

[−un+1
j−2 + 2un+1

j−1 − 2un+1
j+1 + un+1

j+2

]

.

The equation is then linearized by using the approximation (un+1
j±1)

α ≈ (un
j±1)

α . This
discretization yields a (diagonally dominant) system of linear equations

9.13 Problems 513

− μ�t

2�x3
un+1

j−2 +
(

μ�t

�x3
− β�t

(

un
j−1

)α

2�x(α + 1)

)

un+1
j−1 + un+1

j

+
(

−μ�t

�x3
+ β�t

(

un
j+1

)α

2�x(α + 1)

)

un+1
j+1 + μ�t

2�x3
un+1

j+2 = un
j ,

which has to be solved at each time step. (LAPACK/BLAS libraries contain opti-
mized routines SGBSV (single) and DGBSV (double precision) for the solution of
linear systems with banded matrices.) Use α = 1, β = −6, μ = 1, �x = 0.1, and
�t = 0.001 with the initial condition v(x,0) = −2k2

x sech2 kxx, where kx = 0.7.
The corresponding analytic solution is

v(x, t) =
(

2k2
x(α + 1)(α + 2)

βα2

)1/α

sech2/α kx

(

x − 4k2
x

α
t

)

.

Solve the equation numerically on the interval x ∈ [−8,10] with the boundary con-
ditions u(−8, t) = u(10, t) = 0. Monitor the time evolution of the solution from the
initial condition up to t = 1.0. Also discuss the cases α = 2, α = 3, and α = 4. What
is the influence of the (approximate) boundary conditions on the numerical error?
⊕

A slightly different discretization can be obtained by averaging the non-
linear and dispersion terms at times n�t and (n + 1)�t ,

ut + β

α + 1

1

2

[(

un+1
j

)α+1 + (un
j

)α+1]

x
+ μ

1

2

[

un+1
j + un

j

]

xxx
= 0.

The equation can now be linearized by Taylor-expanding the expressions (un+1
j±1)

α+1

up to first order in time. This results in an implicit scheme which requires us to solve
a pentadiagonal matrix system at each time step. Compare its solutions to those from
the first part of the Problem.

9.13.8 Non-stationary Schrödinger Equation

The one-dimensional non-stationary Schrödinger equation
(

i�
∂

∂t
− H

)

ψ(x, t) = 0, ψ(x, t0) = φ(x),

is the basic tool for a non-relativistic description of the time evolution of quan-
tum states or wave packets in different potentials. Here we only discuss time-
independent Hamiltonian operators

H = − �
2

2m

∂2

∂x2
+ V (x).

(Time evolution involving time-dependent Hamiltonians is discussed in [14, 15].)
The evolution of the state ψ(x, t) to ψ(x, t +�t) is described by the approximation

514 9 Difference Methods for One-Dimensional PDE

ψ(x, t + �t) = e−iH�t/�ψ(x, t) ≈ 1 − 1
2 iH�t/�

1 + 1
2 iH�t/�

ψ(x, t) +O
(

�t3),

which is unitary. We compute the time evolution on the mesh xj = x0 + j�x

(j = 0,1, . . . ,Nx) at times tn = n�t (n = 0,1, . . . ,Nt), approximating the spatial
derivative by ψ ′′(x) ≈ (ψ(x + �x) − 2ψ(x) + ψ(x − �x))/�x2. The values of
the wave-function and the potential at the mesh points at time tn are denoted by
ψ(xj , tn) = ψn

j and V (xj) = Vj , respectively, resulting in the equations

ψn+1
j − i��t

4m�x2

[

ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

]+ i�t

2�
Vjψ

n+1
j

= ψn
j + i��t

4m�x2

[

ψn
j+1 − 2ψn

j + ψn
j−1

]− i�t

2�
Vjψ

n
j .

We arrange the values of the wave-function at xj in the vector �n = (ψn
0 , . . . ,ψn

Nx
)T

and rewrite the system in matrix form

A�n+1 = A∗�n, A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d0 a

a d1 a

a d2 a

. . .
. . .

. . .

a dNx−1 a

a dNx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

b = i��t

2m�x2
, a = −b

2
, dj = 1 + b + i�t

2�
Vj .

The matrix A and vector � are complex, so the computation is best done in complex
floating-point arithmetic. With the above approximation of the second derivative
(which is of order O(�x2)) we obtain a tridiagonal matrix. Had we used a differ-
ence of higher order, we would have obtained a banded matrix, but this would also
improve the spatial precision: see [16, 17].
⊙

Compute the time evolution of the initial state

ψ(x,0) =
√

α√
π

e−α2(x−λ)2/2

in the harmonic potential V (x) = 1
2kx2, where α = (mk/�2)1/4, ω = √

k/m. Set
� = m = 1 and use ω = 0.2, λ = 10. Place the spatial mesh on the interval
[x0, xNx] = [−40,40] with Nx = 300. The analytic solution is the coherent state

ψ(x, t) =
√

α√
π

exp

[

−1

2
(ξ − ξλ cosωt)2 − i

(
ωt

2
+ ξξλ sinωt − 1

4
ξ2
λ sin 2ωt

)]

,

where ξ = αx, ξλ = αλ. In the chosen units the period is T = 10π .

9.13 Problems 515

⊕
Compute the time evolution of the Gaussian wave packet

ψ(x,0) = (2πσ 2
0

)−1/4eik0(x−λ)e−(x−λ)2/(2σ0)
2

in potential-free space (V (x) = 0). Set � = 1, m = 1/2, σ0 = 1/20, k0 = 50π , λ =
0.25. The spatial interval is [x0, xNx] = [−0.5,1.5] with Nx = 2000, and we choose
�t = 2�x2. Compute the solution until the center of the packet reaches x ≈ 0.75.
The analytic solution is

ψ(x, t) = (2πσ 2
0)−1/4

√

1 + i�t/(2mσ 2
0)

exp

[−(x − λ)2/(2σ0)
2 + ik0(x − λ) − i�k2

0 t/(2m)

1 + i�t/(2mσ 2
0)

]

.

Section 1.2.2 tells you how the precision in the time variable can be improved.

9.13.9 Non-stationary Cubic Schrödinger Equation

The non-linear Schrödinger equation with a cubic non-linearity,

i
∂ψ

∂t
+ ∂2ψ

∂x2
+ q|ψ |2ψ = 0,

where q is a parameter [18], is used to describe numerous physical processes, like
propagation of solitons in optical fibers, propagation of plasma waves, and even
Bose–Einstein condensates. Splitting ψ(x, t) = u(x, t)+ iv(x, t) turns the equation
in a system of coupled non-linear PDE:

∂u

∂t
+ ∂2v

∂x2
+ q
(

u2 + v2)v = 0, (9.88)

∂v

∂t
− ∂2u

∂x2
− q
(

u2 + v2)u = 0. (9.89)

We are interested in the solutions of this system on x ∈ [0,2π] with the peri-
odic boundary condition ψ(x) = ψ(x + 2π). The spatial derivatives are approx-
imated by differences of the form (9.6) with the discretization xj = j�x, j =
0,1, . . . ,N , where �x = 2π/N . The solution vectors are u = (u1, u2, . . . , uN)T,
v = (v1, v2, . . . , vN)T. When the boundary condition is accounted for, (9.88) and
(9.89) can be written in canonical Hamiltonian form

d

dt

(

u

v

)

=
(

0 −1
1 0

)(

∂H/∂u

∂H/∂v

)

= J−1
(

∂H/∂u

∂H/∂v

)

,

516 9 Difference Methods for One-Dimensional PDE

Fig. 9.14 Phase diagrams in solving the cubic Schrödinger equation where the solution at two
values of the non-linearity parameter q is computed until time T . Shown is the amplitude
A(π, t) = |ψ(π, t)| − 1 versus its time derivative dA(π, t)/dt . [Left] q = 0.565, T = 400. [Right]
q = 0.9945, T = 1000

where ∂H/∂u = (∂H/∂u1, ∂H/∂u2, . . . , ∂H/∂uN)T (analogously for ∂H/∂v),
and

H(u,v) = 1

2

(

uT,vT)
(

F 0
0 F

)(

u

v

)

+ q

4

N
∑

j=1

(

u2
j + v2

j

)2
,

where

F = 1

�x2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

One therefore needs to solve the system of equations ż = J−1∇H = J−1(∂H/∂z),
where z = (uT,vT)T. This is best accomplished by the implicit symplectic Euler
integrator

zn+1 = zn + �tJ−1(∇H)z= 1
2 (zn+1+zn)

, (9.90)

where the solution at each time step is computed iteratively.
⊙

By using (9.90) solve the non-linear Schrödinger equation with the ini-
tial condition ψ(x,0) = 1 + εeiθ cosx, where ε = 0.1 and θ = 45.18◦. Use the
time step �t = 0.001 and compute the solutions at a given parameter q until time
T . Use the pairs of parameters (q, T) = (0.01,400), (0.325,400), (0.565,400),
(0.9825,400), (0.9945,1000), (1.0115,1000), (1.315,1000), and (1.630,1000).
Plot A(π, t) = |ψ(π, t)| − 1 and At(π, t) = dA(π, t)/dt as functions of t , and the
phase diagram At(π, t) versus A(π, t) (see examples in Fig. 9.14). You can use a
simple approximation to compute the derivative At , e.g. At ≈ (An+1 − An)/�t .

References 517

Plot the spectrum of the signals A and At (since you will be dealing with samples
of several 100,000 points, use FFT). For the integration (9.90) set the tolerance for
the difference of the current and previous iteration to less than ≈ 10−13. Otherwise
the numerical errors in A and At will be too large.
⊕

Plot the regions |ψ(x, t)|2 = const. When computing with parameters q at
which you have observed irregular behavior, you may restrict the plots to the part of
the interval [0, T] with the most interesting structure.

References

1. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Springer
Texts in Applied Mathematics, vol. 22 (Springer, Berlin, 1998)

2. D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods.
Los Alamos Sci. 29, 188 (2005)

3. A. Tveito, R. Winther, Introduction to Partial Differential Equations. Springer Texts in Ap-
plied Mathematics, vol. 29 (Springer, Berlin, 2005)

4. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press,
Oxford, 2003)

5. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic
Equations. Springer Texts in Applied Mathematics, vol. 33 (Springer, Berlin, 1999)

6. E. Godlewski, P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conserva-
tion Laws (Springer, Berlin, 1996)

7. R.J. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1990)
8. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws.

SIAM J. Numer. Anal. 21, 995 (1984)
9. D. Eisen, On the numerical analysis of a fourth order wave equation. SIAM J. Numer. Anal.

4, 457 (1967)
10. D.J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular

channel and on a new type of long stationary wave. Philos. Mag. Ser. 5 39, 422 (1895)
11. B. Fornberg, G.B. Whitham, A numerical and theoretical study of certain nonlinear wave

phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373 (1978)
12. X. Lai, Q. Cao, Some finite difference methods for a kind of GKdV equations. Commun.

Numer. Methods Eng. 23, 179 (2007)
13. Q. Cao, K. Djidjeli, W.G. Price, E.H. Twizell, Computational methods for some non-linear

wave equations. J. Eng. Math. 35, 323 (1999)
14. K. Kormann, S. Holmgren, O. Karlsson, Accurate time propagation for the Schrödinger equa-

tion with an explicitly time-dependent Hamiltonian. J. Chem. Phys. 128, 184101 (2008)
15. C. Lubich, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algo-

rithms, ed. by J. Grotendorst, D. Marx, A. Muramatsu. NIC Series, vol. 10 (John von Neumann
Institute for Computing, Jülich, 2002), p. 459

16. W. van Dijk, F.M. Toyama, Accurate numerical solutions of the time-dependent Schrödinger
equation. Phys. Rev. E 75, 036707 (2007)

17. T.N. Truong et al., A comparative study of time dependent quantum mechanical wave packet
evolution methods. J. Chem. Phys. 96, 2077 (1992)

18. X. Liu, P. Ding, Dynamic properties of cubic nonlinear Schrödinger equation with varying
nonlinear parameter. J. Phys. A, Math. Gen. 37, 1589 (2004)

Chapter 10
Difference Methods for PDE in Several
Dimensions

10.1 Parabolic and Hyperbolic PDE

The basic concepts of difference methods for PDE in several dimensions are readily
adopted from the discussion of one-dimensional initial-boundary-value problems
(Chap. 9). We are seeking consistent, stable difference schemes, and corresponding
discretizations of the initial and boundary conditions by which we obtain conver-
gence of the numerical solution to the exact solution of the differential equation.
Except in (10.21) and (10.22) we restrict the discussion to PDE with time depen-
dence in two spatial coordinates.

10.1.1 Parabolic Equations

The basic model problem for two-dimensional parabolic PDE is the initial-
boundary-value problem for the diffusion equation with an inhomogeneous term,

vt = D∇2v + Q = D(vxx + vyy) + Q(x,y, t),

v(x, y,0) = f (x, y),

which we solve for t > 0 in a region with a simple geometry, e.g. on a square
(x, y) ∈ [0,1] × [0,1]. More complicated geometries are mentioned in Sect. 10.4.
Let us ignore the issue of boundary conditions for the moment. By analogy with the
one-dimensional case (Fig. 9.1) we discretize the time axis and both spatial axes.

The exact solution v(xj , yk, tn) = vn
jk at (j�x, k�y) and time n�t corre-

sponds to the numerical solution un
jk , where j = 0,1, . . . ,Nx and k = 0,1, . . . ,Ny

(Fig. 10.1 (left), the time axis is perpendicular to the page). The most obvious book-
keeping choice for the vector of approximate solutions u is

un = (un
00, u

n
10, . . . , u

n
Nx0, u

n
01, u

n
11, . . . , u

n
Nx1, . . . , u

n
0Ny

,un
1Ny

, . . . , un
NxNy

)T
.

(10.1)

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_10, © Springer-Verlag Berlin Heidelberg 2012

519

520 10 Difference Methods for PDE in Several Dimensions

Fig. 10.1 [Left] The uniform mesh for the solution of the initial-boundary-value problem for a
PDE with one time and two space dimensions on [x0, xNx] × [y0, yNy] = [0,1] × [0,1]. The dis-
cretization �t , �x = 1/Nx , �y = 1/Ny defines the mesh points (xj , yk, tn) = (j�x, k�y,n�t)

and in each of them the exact solution vn
jk and its approximate value un

jk . [Right] The stencil of
mesh points for the evaluation of (vxx + vyy)jk

Next, we adapt the formulas for the differences to two dimensions. The obvious
generalizations of the approximation for the second derivative (9.6) are

∂2v

∂x2

∣∣∣
∣
(j�x,k�y,n�t)

= vn
j+1k − 2vn

jk + vn
j−1k

�x2
+O

(
�x2), (10.2)

∂2v

∂y2

∣∣∣∣
(j�x,k�y,n�t)

= vn
jk+1 − 2vn

jk + vn
jk−1

�y2
+O

(
�y2), (10.3)

which need to be evaluated in the characteristic stencil of mesh points (Fig. 10.1
(right)). Instead of one auxiliary notation (9.11) we now have two,

�
(x)
2 = un

j+1k − 2ujk + un
j−1k, �

(y)

2 = un
jk+1 − 2ujk + un

jk−1. (10.4)

10.1.2 Explicit Scheme

The two-dimensional generalization of the explicit FTCS scheme (see (9.13)) is

un+1
jk = un

jk + (rx�(x)
2 + ry�

(y)

2

)
un

jk + �tqn
jk, (10.5)

where rx = D�t/�x2, ry = D�t/�y2, and Q(xj , yk, tn) = qn
jk . By analogy to the

one-dimensional variant we conclude that the discretization error of the scheme is
O(�t) +O(�x2) +O(�y2), and that the scheme can be written in matrix form

un+1 = Fun + rn + �tqn.

10.1 Parabolic and Hyperbolic PDE 521

Fig. 10.2 Common structures of matrices appearing in explicit (un+1 = Fun) and implicit
schemes (F1u

n+1 = Fun) for the solution of two-dimensional diffusion equation. The values of
the elements denoted by • / ◦ / � depend on the difference method (see text). Shown are matrices
for the case Nx = Ny = 5

The inhomogeneous term (the last two terms at the right) has two contributions.
The vector rn contains the requirements at the boundary: for example, for homoge-
neous Dirichlet boundary conditions, the value ujk on all boundaries of the region
[x0, xNx] × [y0, yNy] is zero, and then rn = 0. The second part, the vector �tqn,
describes the sources. In practical problems the reader will have to figure out the
structure of these terms for the chosen scheme and boundary conditions.

Let us inspect the typical cases. Dirichlet boundary conditions (the values of the
function v specified on all four sides of the square) are expressed as

un
0k = f (0, k�y,n�t), (10.6)

un
Nxk = f (1, k�y,n�t), (10.7)

un
j0 = f (j�x,0, n�t), (10.8)

un
jNy

= f (j�x,1, n�t). (10.9)

In this case the solution can be represented by a shorter vector u, since all values at
j = 0, j = Nx , k = 0, and k = Ny are fixed by the boundary conditions. Instead of
with (10.1) we work with a (Nx − 1)(Ny − 1)-dimensional vector

un = (un
11, u

n
21, . . . , u

n
Nx−11, . . . , u

n
1Ny−1, u

n
2Ny−1, . . . , u

n
Nx−1Ny−1

)T
. (10.10)

The matrix F therefore has the size (Nx − 1)(Ny − 1) × (Nx − 1)(Ny − 1). If
Nx = Ny (which is not obligatory) it has the form shown in Fig. 10.2 (case (a)), with
the elements • = 1 − 2rx − 2ry , ◦ = rx , and � = ry . Here we realize the practical
constraints brought about by the additional space dimension: even a modest spatial
discretization in Nx = Ny = 100 points in each coordinate implies manipulations of
(Nx − 1)(Ny − 1) × (Nx − 1)(Ny − 1) ≈ 10000 × 10000 matrices without simple
structure (e.g. not tridiagonal). This becomes relevant in implicit schemes where we
need to solve matrix systems of such sizes.

For Dirichlet boundary conditions we use the discrete Fourier transformation (by
analogy to the one-dimensional case) to derive the sufficient condition for stability

522 10 Difference Methods for PDE in Several Dimensions

of (10.5). We extend the discrete Fourier mode (9.29) to two dimensions,

un
jk = ξneijpπ�xeikqπ�y,

insert it into the homogeneous part of the difference equation (10.5), and divide the
resulting equation by ξn+1, whence

ξ = 1 − 4rx sin2 pπ�x

2
− 4ry sin2 qπ�y

2
.

The discrete Neumann criterion |ξ | ≤ 1 means

rx + ry ≤ 1/2.

The stability condition for the two-dimensional scheme (10.5) is therefore more
restrictive than in the one-dimensional case (first row of Table 9.1). If we use the
uniform mesh, �x = �y, such a condition requires rx = ry ≤ 1/4 and forces us to
take a twice smaller �t (or

√
2-times larger �x) to ensure stability.

Neumann conditions, as usual, require special care. If we have three Dirich-
let conditions, e.g. v(1, y, t) = v(x,0, t) = v(x,1, t) = 0, and one Neumann,
vx(0, y, t) = g(y, t), the joint order of the difference scheme depends on the or-
der of the approximation for the Neumann condition. If the latter is discretized to
first order, as in (9.17),

un
1k = un

0k + �xg(k�y,n�t), (10.11)

the FTCS scheme is only of order O(�x). We retrieve the order O(�x2) if the
Neumann condition is discretized to second order. Confirm that in this case

un+1
0k = un

0k + 2rx
(
un

1k − un
0k

)− 2rx�xg(k�y,n�t) + ry�
(y)

2 un
0k, (10.12)

by analogy to (9.18)! The stability condition for the scheme with Neumann condi-
tions is just a necessary one, since the mapping matrix is not symmetric and we need
to evaluate its spectral radius by Gershgorin’s theorem [1].

10.1.3 Crank–Nicolson Scheme

The two-dimensional generalization of the Crank–Nicolson scheme (see (9.21)) is

(
1 − rx

2
�

(x)
2 − ry

2
�

(y)

2

)
un+1

jk

=
(

1 + rx

2
�

(x)
2 + ry

2
�

(y)

2

)
un

jk + �t

2

(
qn
jk + qn+1

jk

)
. (10.13)

10.1 Parabolic and Hyperbolic PDE 523

The scheme has order O(�t2) +O(�x2) +O(�y2), and can be written as

F1u
n+1 = Fun + rn + �t

2

(
qn + qn+1),

where (for Dirichlet conditions (10.6)–(10.9)) the matrix F1 has the form as in
Fig. 10.2 (case (a)), with the elements • = 1 + rx + ry , ◦ = −rx/2, and � = −ry/2,
while F has the same form except that all signs of rx and ry are flipped. The term rn

includes the boundary conditions at j = 0, j = Nx , k = 0, and k = Ny that are not
included in F1 or F . The discrete Neumann criterion for stability is again derived
by Fourier analysis as for the explicit scheme. For the symbol

ξ = 1 − 2rx sin2 pπ�x/2 − 2ry sin2 qπ�y/2

1 + 2rx sin2 pπ�x/2 + 2ry sin2 qπ�y/2

we obviously get |ξ | ≤ 1 for all non-negative rx and ry , so the two-dimensional
Crank–Nicolson scheme is absolutely stable (the conclusion applies to Dirich-
let and Neumann boundary conditions). As an exercise, generalize the implicit
scheme (9.20) to two dimensions and check that its amplification factor is

ξ = 1

1 + 4rx sin2 pπ�x/2 + 4ry sin2 qπ�y/2
.

The two-dimensional scheme is absolutely stable since |ξ | ≤ 1.

10.1.4 Alternating Direction Implicit Schemes

When implicit schemes discussed above (either in two or three space dimensions)
are written in a matrix representation, the matrices become sparse. If the matrices
are very large, the numerical solution of the corresponding matrix system may be-
come too costly, even if one resorts to iterative methods (e.g. Gauss–Seidel, Jacobi,
SOR, or multi-grid; see Sects. 10.2 and 10.4). The troublesome solution of such
systems can be circumvented by Alternating Direction Implicit (ADI) schemes. In
a two-dimensional ADI scheme we compute the spatial derivatives in one dimen-
sion explicitly, and implicitly in the other (or vice versa). This enables us to benefit
from the good stability properties of implicit schemes, while keeping the tridiagonal
structure of the matrix system.

Peaceman–Rachford Scheme A typical ADI method is the Peaceman–Rachford
scheme: in the first half of the time step �t we compute the spatial derivative im-
plicitly in coordinate x and explicitly in coordinate y, and vice versa in the second
half of �t . This can be expressed as a two-level scheme

(
1 − rx

2
�

(x)
2

)
u

n+ 1
2

jk =
(

1 + ry

2
�

(y)

2

)
un

jk + �t

2
qn
jk, (10.14)

524 10 Difference Methods for PDE in Several Dimensions

(
1 − ry

2
�

(y)

2

)
un+1

jk =
(

1 + rx

2
�

(x)
2

)
u

n+ 1
2

jk + �t

2
qn+1
jk (10.15)

which is absolutely stable. (Optionally, the qjk terms in the inhomogeneous part
may be evaluated at the same time, (n + 1/2)�t .) Moreover, the order of spatial
derivatives in (10.14) and (10.15) can also be reversed: in this case we simply rewrite
x ←→ y. The scheme is of order O(�t2) +O(�x2) +O(�y2), but only if bound-
ary conditions are treated consistently. For example, if we have a Dirichlet condi-
tion v(0, y, t) = f (y, t) at x = 0 (j = 0), we do not spoil the nominal order of the
scheme if the boundary condition at the intermediate time (n + 1

2)�t is computed
as

u
n+ 1

2
0k = 1

2

(
1 − ry

2
�

(y)

2

)
f
(
0, k�y, (n + 1)�t

)

+ 1

2

(
1 + ry

2
�

(y)

2

)
f (0, k�y,n�t). (10.16)

If the condition is time-independent, it clearly simplifies to u
n+ 1

2
0k = f (0, k�y). For

the corresponding condition at x = 1 (j = Nx) we compute f (1, k�y, . . .) instead
of f (0, k�y, . . .); the discretization of the analogous conditions at y = 0 (k = 0) and
y = 1 (k = Ny) should be done by the reader as an exercise. (See Problem 10.9.1
which also involves Neumann boundary conditions.)

The steps (10.14) and (10.15) can be written in matrix form

F1u
n+ 1

2 = Fun + rn
(y) + r

n+ 1
2

(x) + �t

2
qn, (10.17)

F ′
1u

n+1 = F ′un+ 1
2 + r

n+ 1
2

(x) + rn+1
(y) + �t

2
qn+1. (10.18)

The terms r(x) and r(y) contain the boundary conditions along x and y at times n�t

and (n + 1/2)�t . The matrix F1 is tridiagonal, as in Fig. 10.2 (case (b)), with the
elements • = 1+ rx , ◦ = −rx/2, while the matrix F has the form shown in Fig. 10.2
(case c)), with the elements • = 1 − ry , ◦ = ry/2. We get F ′

1 from F by replacing
ry → −ry , and F ′ from F1 by replacing rx → −rx .

In each time step (10.17)–(10.18) we need to solve an (Nx −1)(Ny −1)× (Nx −
1)(Ny − 1) matrix system in which F ′

1 is not tridiagonal. But by reordering the
solution components as ujk → ukj , the system (10.18) becomes tridiagonal. The
whole procedure then decouples to the solution of Ny − 1 systems of size (Nx −
1)× (Nx − 1) in the first time step, and Nx − 1 systems of size (Ny − 1)× (Ny − 1)

in the second step:

Fxu
n+ 1

2
k = rk + �t

2
qn

k , k = 1,2, . . . ,Ny − 1, (10.19)

Fyu
n+1
j = rj + �t

2
qn+1

j , j = 1,2, . . . ,Nx − 1, (10.20)

10.1 Parabolic and Hyperbolic PDE 525

where the matrix Fx (or Fy) is tridiagonal, with the values 1 + rx (or 1 + ry) on the
main diagonal and −rx/2 (or −ry/2) on the subdiagonals. In the solution vectors
u of dimension (Nx − 1) (or (Ny − 1)) we should pay attention to the ordering of
components,

uk = (u1k, u2k, . . . , uNx−1k)
T,

uj = (uj1, uj2, . . . , ujNy−1)
T,

and analogously for qk and qj . The vectors containing the boundary conditions are

rk =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 + ry
2 �

(y)

2)un
1k + rx

2 u
n+ 1

2
0k

(1 + ry
2 �

(y)

2)un
2k

...

(1 + ry
2 �

(y)

2)un
Nx−2k

(1 + ry
2 �

(y)

2)un
Nx−1k + rx

2 u
n+ 1

2
Nxk

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

rj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

(1 + rx
2 �

(x)
2)u

n+ 1
2

j1 + ry
2 un+1

j0

(1 + rx
2 �

(x)
2)u

n+ 1
2

j2
...

(1 + rx
2 �

(x)
2)u

n+ 1
2

jNy−2

(1 + rx
2 �

(x)
2)u

n+ 1
2

jNy−1 + ry
2 un+1

jNy

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

The columns rk (dimension Nx −1) and rj (dimension Ny −1) contain expressions
evaluated at times n�t , (n + 1/2)�t , and (n + 1)�t : they are either boundary con-
ditions u0k and uNxk , computed at intermediate time (n + 1/2)�t by using (10.16),
boundary conditions uj0 and ujNy at time (n+ 1)�t , or the solution values ujk that
we know from the previous step.

The key advantage of the decomposition of large matrix systems (10.17) and
(10.18) to a multitude of smaller ones becomes clear at large Nx and Ny (solving
systems with large matrices F1 and F ′

1). The subsystems of equations in (10.19) and
(10.20) are independent: the solution of (10.19) is valid at yk = k�y and it does not
depend on values with other indices k, except those on the right-hand side of the
equation, which is known from the previous time step. (Analogously for (10.20) at
xj = j�x.) This decomposition can be exploited in vector and parallel-processing
implementations.

526 10 Difference Methods for PDE in Several Dimensions

D’yakonov Form The Peaceman–Rachford scheme can be expressed in a form
that leads to a more efficient numerical implementation [1],

[
1 − rx

2
�

(x)
2

]
u�

jk =
[

1 + rx

2
�

(x)
2

][
1 + ry

2
�

(y)

2

]
un

jk + �t

2

(
qn
jk + qn+1

jk

)
,

[
1 − ry

2
�

(y)

2

]
un+1

jk = u�
jk.

Its main feature is that the second step does not involve the inhomogeneous term
q . Of course we still have to compute the boundary conditions corresponding to the
equation for the intermediate value u�

jk , but we must be careful not to spoil the order
of the methods by discretizing these conditions inappropriately. For example, if we
have a Dirichlet boundary condition at x = 0, the overall order of the scheme will
remain O(�t2) +O(�x2) +O(�y2) if we evaluate the boundary condition as

u�
0k = − ry

2
f
(
0, (k + 1)�y, (n + 1)�t

)+ (1 + ry)f
(
0, k�y, (n + 1)�t

)

− ry

2
f
(
0, (k − 1)�y, (n + 1)�t

)

(and similarly for other domain boundaries). In Problem 10.9.1 you can find the
expressions for Neumann boundary conditions to first and second order.

10.1.5 Three Space Dimensions

Dealing with PDE in one time and three space dimensions is beyond our scope,
but by using our knowledge accumulated so far it is easy to write at least the
simplest schemes. An explicit scheme for the three-dimensional diffusion equa-
tion in Cartesian coordinates, vt = D∇2v + Q(x,y, z, t), is at hand: when we or-
ganize the numerical approximations un

jkl of the exact solution v(xj , yk, zl, tn) =
v(j�x, k�y, l�z,n�t) in a vector un of dimension (Nx +1)×(Ny +1)×(Nz+1),
a simple analogy to one dimension (9.13) and two dimensions (10.5) gives

un+1
jkl = un

jkl + (rx�(x)
2 + ry�

(y)

2 + rz�
(z)
2

)
un

jkl + �tQn
jkl, (10.21)

with the error of order O(�t) + O(�x2) + O(�y2) + O(�z2). This scheme is
conditionally stable, with the condition rx + ry + rz ≤ 1/2. Similarly, we general-
ize (10.13) to the absolutely stable three-dimensional Crank–Nicolson scheme

(
1 − rx

2
�

(x)
2 − ry

2
�

(y)

2 − rz

2
�

(z)
2

)
un+1

jkl

=
(

1 + rx

2
�

(x)
2 + ry

2
�

(y)

2 + rz

2
�

(z)
2

)
un

jkl + �t

2

(
qn
jkl + qn+1

jkl

)
, (10.22)

10.1 Parabolic and Hyperbolic PDE 527

which is of order O(�t2) + O(�x2) + O(�y2) + O(�z2). At each time step this
scheme requires us to solve a matrix equation of the form F1u

n+1 = Fun + · · ·
with (Nx − 1)(Ny − 1)(Nz − 1) × (Nx − 1)(Ny − 1)(Nz − 1) matrices F1 and F .
Obviously, even a coarse discretization may lead to practical (memory) obstacles. If
we insist on difference methods for parabolic PDE, we also resort to ADI schemes
in three dimensions, as the corresponding matrices have a simpler structure.

10.1.6 Hyperbolic Equations

We start our study of two-dimensional hyperbolic PDE by the initial-value problem

vt + cvx + dvy = 0,

v(x, y,0) = f (x, y).
(10.23)

This problem has the analytic solution v(x, y, t) = f (x − ct, y − dt) which tells us
that at t > 0 the initial condition propagates without change of amplitude or phase
with velocity c along the x-axis and velocity d along the y-axis. In the following
we describe three classes of corresponding difference schemes.

10.1.7 Explicit Schemes

Again, the analogy to one-dimensional discussion allows us to augment the schemes
(9.39), (9.40), and (9.41) by the additional dimension:

un+1
jk = (1 − Rx�

(x)
+ − Ry�

(y)
+
)
un

jk, (10.24)

un+1
jk = (1 − Rx�

(x)
− − Ry�

(y)
−
)
un

jk, (10.25)

un+1
jk =

(
1 − Rx

2
�

(x)
0 − Ry

2
�

(y)

0

)
un

jk, (10.26)

where Rx = c�t/�x and Ry = d�t/�y. The FTFS scheme (10.24) is consistent
to order O(�t) +O(�x) +O(�y), and its symbol is ρ(ξ, η) = 1 − Rx[exp(iξ) −
1] − Ry[exp(iη) − 1]. From the conditions |ρ(±π,0)| ≤ 1 and |ρ(0,±π)| ≤ 1 (at
the points where |ρ|2 has the extrema) we obtain the conditions −1 ≤ Rx ≤ 0 and
−1 ≤ Ry ≤ 0, while the condition |ρ(±π,±π)| ≤ 1 yields the final stability crite-
rion −1 ≤ Rx + Ry ≤ 0. The FTBS scheme (10.25) has the same order as FTFS,
and its symbol ρ(ξ, η) = 1−Rx[1− exp(−iξ)]−Ry[1− exp(−iη)] implies the sta-
bility criterion 0 ≤ Rx +Ry ≤ 1 with 0 ≤ Rx ≤ 1 and 0 ≤ Ry ≤ 1. (Check this as an
exercise and use the discussion accompanying (9.23)!) The FTCS scheme (10.26)
is absolutely unstable, just as (9.41) has been.

528 10 Difference Methods for PDE in Several Dimensions

10.1.8 Schemes for Equations in the Form of Conservation Laws

The analogy to the one-dimensional case (9.76) also leads directly to two-dimensio-
nal difference schemes for hyperbolic differential equations that are written in the
form of a conservation law

vt + [F(v)
]
x

+ [G(v)
]
y

= 0. (10.27)

But recall the discussion in Sect. 9.12! The conservation law formulation by itself
does not protect us from the unwanted effects of the difference scheme like dissi-
pation and dispersion (Fig. 9.10), but it is a natural step on the path towards high-
resolution schemes. In spite of this warning, we use the template (9.72) to construct
the scheme

un+1
jk = un

jk − Rx

[
h

(x)n
j+1/2k − h

(x)n
j−1/2k

]− Ry

[
h

(y)n

jk+1/2 − h
(y)n

jk−1/2

]
, (10.28)

where Rx = �t/�x and Ry = �t/�y, and where h(x) and h(y) are numerical flux
functions in the x and y directions. For the linear conservative problem of the form
vt + cvx + dvy = 0 the flux functions may be simply

h
(x)n
j+1/2k = cun

jk, h
(y)n

jk+1/2 = dun
jk. (10.29)

For a general non-linear conservative problem (10.27) the upwind scheme (9.84) is
generalized by introducing the flux functions

h
(x)n
j+1/2k = 1

2

[
Fn

jk + Fn
j+1k

]− 1

2

∣∣an
j+1/2k

∣∣�(x)
+ un

jk,

h
(y)n

jk+1/2 = 1

2

[
Gn

jk + Gn
jk+1

]− 1

2

∣∣an
jk+1/2

∣∣�(y)
+ un

jk,

except that the expressions an
j+1/2k and an

jk+1/2 have to be computed such that in
the former case we use the x coordinate (index j) as in (9.86), while in the latter
we use the y coordinate (index k) analogously. The split (two-step) Lax–Wendroff
scheme

u
n+1/2
jk = un

jk − Rx�
(x)
−
[
h

(x)n
j+1/2k

]
, (10.30)

un+1
jk = u

n+1/2
jk − Ry�

(y)
−
[
h

(y)n+1/2
jk+1/2

]
, (10.31)

is also very useful. It exploits the flux functions

h
(x)n
j+1/2k = cun

jk + 1

2
c(1 − cRx)�

(x)
+ un

jk, (10.32)

h
(y)n+1/2
jk+1/2 = du

n+1/2
jk + 1

2
d(1 − dRy)�

(y)
+ u

n+1/2
jk . (10.33)

10.1 Parabolic and Hyperbolic PDE 529

Fig. 10.3 The numerical solution of the hyperbolic problem vt + vx + vy = 0 on
(x, y) ∈ [0,1] × [0,1] with the initial condition v(x, y,0) = 1 for (x, y) ∈ [1

4 , 3
4] × [1

4 , 3
4] at time

t = 0.2. [Left] Dissipation of the solution in the upwind scheme. [Right] Strong dispersion of the
solution in the split Lax–Wendroff scheme. The discretization in both cases is Nx = Ny = 48 and
�t = 0.002. Compare to Fig. 10.5

Dissipation and dispersion effects in difference schemes become apparent al-
ready in linear problems with discontinuous initial conditions: see Fig. 10.3
and compare it to Fig. 9.10! This comparison clearly demonstrates the need to
build methods capable of resolving discontinuities. You will encounter the two-
dimensional upwind scheme and the split Lax–Wendroff scheme in Problem 10.9.4,
accompanied by high-resolution schemes from Sect. 10.3.

10.1.9 Implicit and ADI Schemes

Good stability properties of implicit methods represent a significant advantage that
should certainly be exploited in schemes for two-dimensional hyperbolic PDE.
For example, the two most obvious absolutely stable schemes for problems of the
form (10.23), where we define Rx = c�t/�x and Ry = d�t/�y, are the BTCS
scheme

(
1 + Rx

2
�

(x)
0 + Ry

2
�

(y)

0

)
un+1

jk = un
jk,

which is convergent to order O(�t)+O(�x2)+O(�y2), and the Crank–Nicolson
scheme

(
1 + Rx

4
�

(x)
0 + Ry

4
�

(y)

0

)
un+1

jk =
(

1 − Rx

4
�

(x)
0 − Ry

4
�

(y)

0

)
un

jk,

which is of order O(�t2) +O(�x2) +O(�y2).

530 10 Difference Methods for PDE in Several Dimensions

Similarly to their application to parabolic equations (p. 523), alternating di-
rection implicit (ADI) methods allow us to avoid sparse matrices on the left-
hand sides of the matrix equations that express the scheme in matrix notation.
A typical representative is the absolutely stable Beam-Warming scheme of order
O(�t2) +O(�x2) +O(�y2),

(
1 + Rx

4
�

(x)
0

)
u�

jk =
(

1 − Rx

4
�

(x)
0

)(
1 − Ry

4
�

(y)

0

)
un

jk,

(
1 + Ry

4
�

(y)

0

)
un+1

jk = u�
jk.

10.2 Elliptic PDE

Numerical solution of elliptic PDE is fundamentally different from the solution of
parabolic and hyperbolic equations. While in the latter two cases we seek the time
dependence of the solution on some spatial definition domain, the solution of elliptic
problems is a time-independent function that solves the given PDE on its domain
with specified boundary conditions. By far the most well-known elliptic PDE is the
Poisson equation −∇2v = Q.

10.2.1 Dirichlet Boundary Conditions

The basic model problem with Dirichlet boundary conditions is the two-dimensional
Poisson equation “on the square”:

−∇2v = Q(x,y), (x, y) ∈ R = [0,1] × [0,1],
v(x, y) = f (x, y), (x, y) ∈ ∂R.

(10.34)

We discretize the equation along both space axes as shown in Fig. 10.1—we just
ignore the time axis (index n). When we approximate the Laplace operator by the
finite differences (10.2) and (10.3), the problem (10.34) becomes

− 1

�x2
�

(x)
2 ujk − 1

�y2
�

(y)

2 ujk = qjk, (10.35)

with the boundary conditions on four sides of the square

u0k = q0k, uNxk = qNxk, k = 0,1, . . . ,Ny,

uj0 = qj0, ujNy = qjNy , j = 0,1, . . . ,Nx.
(10.36)

10.2 Elliptic PDE 531

In all Problems we will maintain Nx = Ny = N (�x = �y) for simplicity; this will
not deprive us of any essential ingredient.

We shall also encounter a much more general elliptic PDE,

avxx + cvyy + dvx + evy + f v = Q, (10.37)

where a, c, d , e, f , and Q may be functions of x and y (we require only a < 0,
c < 0, and f > 0). We discretize it as

a

�x2
�

(x)
2 ujk + c

�y2
�

(y)

2 ujk + d

2�x
�

(x)
0 ujk + e

2�y
�

(y)

0 ujk + f ujk = qjk.

From the programming viewpoint—following the advice of [2]—it is worthwhile to
prepare the ground for such a general scheme, and write it in the form

α1
jkuj+1k + α2

jkuj−1k + α3
jkujk+1 + α4

jkujk−1 − α0
jkujk = qjk, (10.38)

where the coefficients depend on the location (indices j and k).
We arrange the solution in a (Nx + 1)(Ny + 1)-dimensional vector of the

form (10.1), we just drop the time index n. But due to the Dirichlet boundary condi-
tions a shorter, (Nx − 1)(Ny − 1)-dimensional, vector (10.10) that does not include
the components (10.36), suffices. The problems (10.34) and (10.37) can then be
written as

Au = q,

where A is a (Nx − 1)(Ny − 1) × (Nx − 1)(Ny − 1) matrix. By comparing the
coefficients in (10.35) and (10.38) we find

α0
jk = −2

(
1

�x2
+ 1

�y2

)
, α1

jk = α2
jk = − 1

�x2
, α3

jk = α4
jk = − 1

�y2
.

(10.39)

The matrix A corresponding to problem (10.34) therefore has the form as in
Fig. 10.2 (case (a)) with the elements • = 2(1/�x2 + 1/�y2), ◦ = −1/�x2, and
� = −1/�y2. The symmetric matrix A is strictly positive definite, thus invert-
ible, and the problem (10.35) has a unique solution. On the other hand, the ma-
trix A corresponding to problem (10.37) is not symmetric in general. It is invertible
only if it is strictly diagonally dominant, i.e. when |ajj | >

∑N−1
k=1,k �=j |ajk| for each

j = 1,2, . . . ,N − 1. This requirement is met by fulfilling the conditions

0 < �x < − 2ajk

|djk| , 0 < �y < − 2cjk

|ejk| .

The discrete scheme (10.35) is consistent with the differential equation (10.34) to
order O(�x2) +O(�y2). If we assume that the solution of the equation, v, is four

532 10 Difference Methods for PDE in Several Dimensions

times continuously differentiable with respect to x and y on R0 = R\∂R (the defi-
nition domain minus the boundary), it can be shown that the scheme is convergent
to the same order,

‖v − u‖∞ ≤ C
(
�x2 + �y2)∥∥∂4v

∥∥∞0. (10.40)

Here ‖∂4v‖∞0 = sup{|∂4v(x, y)/∂xp∂yq | : p + q = 4;0 ≤ p,q ≤ 4; (x, y) ∈ R0}.
The scheme for problem (10.37) described above has the same order of convergence.

10.2.2 Neumann Boundary Conditions

The basic elliptic model problem involving Neumann boundary conditions is the
two-dimensional Poisson equation “on the square”:

−∇2v = Q(x,y), (x, y) ∈ R = [0,1] × [0,1],
∂v

∂n
(x, y) = g(x, y), (x, y) ∈ ∂R.

We discretize the operator side of the equation as in the case of Dirichlet boundary
conditions, and the boundary conditions to first or second order (compare to (10.11)
or (10.12) for the two-dimensional diffusion equation.) Most of the numerical meth-
ods described below for Dirichlet problems can be applied to Neumann problems
equally well. A solution example is given in Problem 10.9.3.

10.2.3 Mixed Boundary Conditions

Difference schemes for two-dimensional elliptic PDE with mixed boundary con-
ditions αv + β(∂v/∂n) = h(x, y) for (x, y) ∈ ∂R become somewhat cumbersome
even in simple geometries. Such problems do not offer major new insights and we
do not discuss them here. Details can be found in [2], Sect. 10.8.

10.2.4 Relaxation Methods

Several classes of methods are available to solve the system Au = q . In direct meth-
ods we solve the system directly, by “inverting” A. Naive direct approaches (for
example, variants of the Cholesky method) are time- and memory-consuming (see
Table 10.1) and we do not discuss them here. Fast direct methods are based on the
Fourier transformation or cyclic reduction (see Chap. 11). In iterative methods we
reach the final answer in a sequence of steps in which the current approximate so-
lution w (by some criterion) becomes increasingly similar to the final numerical

10.2 Elliptic PDE 533

Table 10.1 Direct (D) and iterative (I) methods for solving the matrix problem Au = q following
from the discretization of the Poisson equation on a N × N mesh. The numerical cost (number of
arithmetic operations and amount of memory) is given in terms of the order of magnitude in the
power n = N2: the actual cost in iterative methods depends on the criterion used to terminate the
iteration

Method Type Number of operations Memory

Jacobi I n2 n

Gauss–Seidel I n2 n

Conjugate gradients I n3/2 n

SOR (SSOR+Chebyshev) I n3/2 (n5/4) n

FFT D n logn n

Block cyclic reduction D n logn n

Multi-grid I n n

Table 10.2 Forms of the
matrix B in residual
correction methods for
iterative solution of the
system Au = q . The iteration
matrix is I − BA, where
A = L + D + U , and ω is a
free parameter

Method Matrix B

Jacobi D−1

Gauss–Seidel (L + D)−1

SOR ω(D + ωL)−1

SSOR ω(2 − ω)(D + ωU)−1D(D + ωL)−1

solution u. We discuss relaxation methods in which we strive, in each step, to re-
duce the algebraic error e = u − w and the residual error r = q − Aw. We also
mention conjugate gradient methods.

In residual correction methods we approximate the matrix A−1 and define the
iteration

wn+1 = wn + Brn, n = 0,1, . . . ,

where rn = q − Awn and B is some approximation of A−1. On purpose, we have
chosen n to denote the iteration index, just as in methods for parabolic and hy-
perbolic PDE that indeed contain the dependence on time. The errors en and rn

are related by the equation Aen = A(u − wn) = q − Awn = rn, so in “time” we
iterate the solution as wn+1 = wn + BAen. The changing of the algebraic error
en+1 = (I − BA)en is determined by the iteration matrix (also called the error
propagation matrix) R = I − BA. We split the matrix A to the lower-triangular,
diagonal, and upper-triangular part, A = L + D + U . Various relaxation schemes
differ by the choice of the matrix B (Table 10.2).

534 10 Difference Methods for PDE in Several Dimensions

Jacobi Method In the Jacobi method we iterate wn+1 = D−1(q − (L + U)wn).
For the Dirichlet problem (10.35) this means

un+1
jk = − 1

α0
jk

[
qjk − α1

jku
n
j+1k − α2

jku
n
j−1k − α3

jku
n
jk+1 − α4

jku
n
jk−1

]

= 1

d

[
qjk + 1

�x2

(
un

j+1k + un
j−1k

)+ 1

�y2

(
un

jk+1 + un
jk−1

)]
, (10.41)

where αjk are given by (10.39) and d = −α0
jk = 2(1/�x2 + 1/�y2). Equa-

tion (10.41) applies at j = 1,2, . . . ,Nx − 1 and k = 1,2, . . . ,Ny − 1, while the
remaining values are specified by the boundary conditions. At each iteration step,
we therefore replace the solution at (j, k) by the average of the solutions at four
neighboring points (Fig. 10.1 (right)), and admix the source term q .

A common recommendation for implementing the method [2] is to code it along
the first, not the second line of (10.41), even though such luxury appears to be redun-
dant in such a simple method. This arms us for the attack on more general equations
with space-dependent coefficients, as in (10.37), and on other types of boundary
conditions. The coefficients α0,1,2,3,4 may be matrices (in this case relocate α0

jk to

the left of the equation, in front of un+1
jk). The same advice applies to other relaxation

methods.

Gauss–Seidel Method In the Gauss–Seidel method we acquire consecutive ap-
proximations of the solution by the iteration wn+1 = (L+D)−1(q −Uwn). For the
problem (10.35) this can be written as

un+1
jk = − 1

α0
jk

[
qjk − α1

jku
n
j+1k − α2

jku
n+1
j−1k − α3

jku
n
jk+1 − α4

jku
n+1
jk−1

]

= 1

d

[
qjk + 1

�x2

(
un

j+1k + un+1
j−1k

)+ 1

�y2

(
un

jk+1 + un+1
jk−1

)]
. (10.42)

This iteration differs from the Jacobi only in the underlined terms. Even though the
iteration index n+1 appears on both sides of the equation, the scheme is explicit: the
values un+1

j−1k and un+1
jk−1 in the loops with increasing j and k are always computed

just before they are actually needed. The averaging over the neighbors of the point
(j, k) takes place in the current iteration step.

SOR and SSOR Methods A tremendous improvement of the convergence speed
can be obtained by the successive over-relaxation (SOR) scheme. In the first part of
the iteration we perform one Gauss–Seidel step, and then form the average of the
values from this step and the previously computed values:

u�
jk = − 1

α0
jk

[
qjk − α1

jku
n
j+1k − α2

jku
n+1
j−1k − α3

jku
n
jk+1 − α4

jku
n+1
jk−1

]
,

un+1
jk = un

jk + ω
(
u�

jk − un
jk

)
,

10.2 Elliptic PDE 535

Fig. 10.4 [Left] The spectral radius σ of Jacobi, Gauss–Seidel, and SOR iteration matrices for the
solution of the problem (10.35) on Nx = Ny = 16 and Nx = Ny = 256 meshes. Shown is the num-
ber of iteration steps needed to improve the precision of the result by one digit (the ordinate cor-
responds to (10.43) with ζ = 0.1). The vertical arrows denote the optimal values of the parameter
ω = ωb for the SOR method (1.67351 and 1.97575), where the number of steps drops dramatically.
[Right] The number of steps m needed to achieve the chosen precision, measured by (10.46). In
both figures we see the typical double convergence speed of the Gauss–Seidel method compared
to the Jacobi method, and the much faster convergence of the SOR method when ωb is optimal

where

0 < ω < 2

is a free parameter; outside of this range the method does not converge. If ω is cho-
sen carefully, the number of necessary iteration steps drops dramatically (Fig. 10.4).
At ω = 1 the SOR scheme is equivalent to the Gauss–Seidel scheme. The choice of
the optimal ω is described in the following. The SOR scheme can also be written in
symmetrized form (SSOR), which combs the discrete mesh in two directions, and
is less sensitive to the choice of optimal ω. It can be further accelerated by a trick
due to Chebyshev; we eschew these finesses [2, 3].

Example A residual correction method converges for any initial approximation w0

precisely when the spectral radius of its iteration matrix R is strictly less than one,
σ(R) < 1 [4]. Yet we wish the method not only to converge, but to converge quickly!
The speed of convergence is roughly determined by the largest eigenvalue λ1 of the
iteration matrix R: to reduce the algebraic error e by a factor ζ = ‖en+m‖/‖en‖, we
must iterate

m ≈ log ζ

logσ(R)
= log ζ

log |λ1| (10.43)

times. The number of iterations m may be very large if |λ1| ≈ 1, or if there are sev-
eral eigenvalues for which |λj/λ1| < 1 while |λj/λ1| ≈ 1. For example, the spectral
radius σ(RJ) of the Jacobi iteration matrix RJ = I − D−1A for the scheme (10.35)

536 10 Difference Methods for PDE in Several Dimensions

can be computed exactly:

σ(RJ) = 2

d

(
1

�x2
cos

π

Nx

+ 1

�y2
cos

π

Ny

)
< 1. (10.44)

For Nx = Ny = 1000 (�x = �y = 1/1000) we get σ(RJ) = 0.999995, which
means that in order to improve the precision of the result by one digit we should
make −1/ logσ(RJ) ≈ 466000 iterations! The Gauss–Seidel iteration does not fare
much better: its speed of convergence is namely just double that of Jacobi (since
σ(RGS) = σ(RJ)

2).

Choosing the Parameter ω in the SOR Method By appropriately choosing the
parameter ω in the SOR method we try to minimize the spectral radius of the corre-
sponding iteration matrix (Table 10.2). Determining the optimal value ωb is crucial
for improving the speed of convergence (Fig. 10.4). In rare cases the spectral radius
of the Jacobi iteration matrix can be computed analytically, e.g. as in (10.44). Then
the optimal ω can be computed as

ωb = 2

1 +
√

1 − λ
2
J

, (10.45)

where λJ = σ(RJ). If σ(RJ) cannot be computed, one may resort to the procedure
given below (and justified in detail in Sect. 10.5.12 of [2]).

We start by choosing a value of ω to initialize the SOR scheme. After a large
number of iteration steps the ratio of differences of consecutive approximations be-
comes almost equal to the largest eigenvalue of the SOR iteration matrix:

n � 1 =⇒ wn+1
j − wn

j

wn
j − wn−1

j

≈ λ1,ω.

(The expression applies to the j th component of the approximate solution vector w
at three consecutive iteration steps n − 1, n, and n + 1; in practice we may indeed
monitor just one component j or a set of different components.) We use this value to
compute the approximation of the largest eigenvalue of the Jacobi iteration matrix,

λJ ≈ 1 − ω − λ1,ω

ω
√

λ1,ω

,

which can finally be used in (10.45). If we happen to choose ω > ωb (which, unfor-
tunately, we only realize once we try), the procedure does not work. One must keep
on trying until ω ≤ ωb.

The convergence of iterative methods should be monitored in order to achieve the
desired precision. The iteration may be terminated when the norm of the difference
between the subsequent approximations,

∥∥wn+1 − wn
∥∥, (10.46)

10.3 High-Resolution Schemes � 537

or the norm of the current residual error,
∥∥q − Awn

∥∥, (10.47)

drop below the specified tolerance. For safety, we often check both convergences
in various norms, e.g. l2, l2,�x , or sup-norm. It makes no sense to choose a tol-
erance smaller than the discretization error (10.40) since this is just wasting CPU
time. Because the error constants C of ‖∂4v‖∞0 in (10.40) are not known, we may
estimate the appropriate tolerance by trial-and-error, e.g. with analytically solvable
cases. Further advice is offered by [2] in Sect. 10.5.4.

Finally, what is it that actually “relaxes” in relaxation methods? We may see
the solution of −∇2v = Q as the solution of vt = ∇2v + Q at very long times:
the initial temperature distribution v(x, y,0) relaxes to the equilibrium solution at
t → ∞ where vt = 0. In other words, relaxation methods are, at least in princi-
ple, also applicable to non-stationary parabolic problems, since two-step difference
schemes can be expressed in the form F1u

n+1 = Fun + �tq . At each time step
we are therefore again solving the matrix equation Au = q . Yet simple iterative
relaxation methods are much slower than alternating gradient implicit methods.
Moreover, iterative methods are not suitable for the solution of hyperbolic equa-
tions vt + avx + bvx = vxx + vyy , as the structure of the corresponding matrices
becomes too complicated.

10.2.5 Conjugate Gradient Methods

Relaxation methods, like the SOR and its improved versions (symmetrized SOR
with Chebyshev acceleration) are useful only if near-optimal convergence param-
eters can be determined accurately and effectively. This problem can be avoided
by using conjugate gradient methods that belong to a broader class of Krilov sub-
spaces methods [5]. In these methods we do not solve the equation Au = q but
rather seek the minimum of the scalar function F(u) = (Au)Tu − qTu or the zero
of F ′(u) = Au − q by using algorithms of steepest descent (to a minimum). Krilov
subspaces methods are also useful for the computation of eigenvalues of sparse ma-
trices. Naive formulations of conjugate gradient methods are not significantly better
than the classical relaxation methods (see Table 10.1), while the preconditioned con-
jugate gradient methods truly out-perform them: in these methods, we regroup the
eigenvalues of A prior to solving the system in order to improve the speed of conver-
gence. Further reading can be found in the pedagogically polished review article [6]
and in the book [7], while basic programming hints are given in [2].

10.3 High-Resolution Schemes �

At the end of Sect. 10.1 we stopped mid-way in difference schemes for two-
dimensional hyperbolic problems that can be written in the form of a conserva-
tion law vt + [F(v)]x + [G(v)]y = 0. In two dimensions we encounter difficulties

538 10 Difference Methods for PDE in Several Dimensions

closely resembling those from one space dimension (Fig. 9.10): especially for dis-
continuous initial conditions we observe dissipation and strong dispersion in the
time evolution of the solutions. We tame them (for example) by using flux limiter
methods from Sect. 9.12.1. In two dimensions we discuss only the linear problem
vt +cvx +dvy = 0 with c > 0 and d > 0, for which we describe two high-resolution
schemes.

Two Basic Schemes A simple high-resolution scheme can be constructed if
(10.28) is equipped by the numerical flux functions

h
(x)n
j+1/2k = cun

jk + φ
(x)n
jk

1

2
c(1 − cRx)�

(x)
+ un

jk, (10.48)

h
(y)n

jk+1/2 = dun
jk + φ

(y)n
jk

1

2
d(1 − dRy)�

(y)
+ un

jk, (10.49)

where

φ
(x)n
jk = φ(x)

(
θ

(x)n
jk

)
, θ

(x)n
jk = (�(x)

− un
jk

)
/
(
�

(x)
+ un

jk

)
,

φ
(y)n
jk = φ(y)

(
θ

(y)n
jk

)
, θ

(y)n
jk = (�(y)

− un
jk

)
/
(
�

(y)
+ un

jk

)
.

These are obvious generalizations of (10.32) and (10.33) with the limiter functions
φ(x) and φ(y), which we choose for each direction separately (x or y), and according
to the physical character of the problem, from the set (9.78)–(9.81). We should pay
attention to zeros of the denominators in θjk and to cases when j or k reach outside
of the definition domain (boundary condition). An example of the solution of a
hyperbolic problem vt + vx + vy = 0 on (x, y) ∈ [0,1] × [0,1] with this scheme is
shown in Fig. 10.5.

We obtain a high-resolution split scheme of the Lax–Wendroff type by including
the flux functions (10.48)–(10.49) with the chosen flux limiter functions into the
expressions (10.30)–(10.31).

Zalesak–Smolarkiewicz Scheme In Problem 10.9.4 we test several difference
methods to solve vt + cvx + dvy = 0 with constant c and d , and discontinuous
initial conditions. In this test we notice that both high-resolution schemes for linear
problems discussed above fail with only a modest change in the coefficients c and
d , for example, by allowing them to depend on x and y,

vt + c(x, y)vx + d(x, y)vy = 0. (10.50)

One of the reasons for this failure is the one-dimensional character of the limiter
functions built into the two-dimensional scheme: the limiting of flux in one di-
rection is decoupled from the limiting in the other. For transport problems of the
form (10.50) one should therefore seek high-resolution schemes that limit the flux
two-dimensionally. Here we describe the Zalesak–Smolarkiewicz method [8, 9] in
the notation of [2]. The landmark feature of this method are its two components: a

10.3 High-Resolution Schemes � 539

Fig. 10.5 Numerical solution of the linear hyperbolic problem vt + vx + vy = 0 on
(x, y) ∈ [0,1]× [0,1] with same conditions as in Fig. 10.3. [Left] Solution by (10.48) and (10.49).
[Right] Solution isolines. The initial condition (dashed square) moves to the top right corner after
t = 0.2 (a fifth of the period). In comparison to Fig. 10.3 (left and right) we observe significantly
less dissipation and dispersion

low-order scheme (L) and a high-order (H) scheme. Its second feature is that at each
point (j, k) we try to introduce enough anti-diffusive flux into the solution ujk such
that un+1

jk is still bounded by some values umin
jk and umax

jk to be determined on the fly.
The low-order component,

Lun
jk = un

jk − Rx�
(x)
−
[Lh

(x)n
j+1/2k

]− Ry�
(y)
−
[Lh

(y)n

jk+1/2

]
,

contains the upwind scheme

Lh
(x)n
j+1/2k = 1

2
c
(
un

jk + un
j+1k

)− 1

2
|c|�(x)

+ un
jk,

Lh
(y)n

jk+1/2 = 1

2
d
(
un

jk + un
jk+1

)− 1

2
|d|�(y)

+ un
jk.

At all j and k, only the values ujk at time n�t are needed for the computation. The
high-order component is constructed in two steps. In the first step, we adopt the flux
functions of the non-split Lax–Wendroff scheme,

Hh
(x)n
j+1/2k = cun

jk + 1

2
c(1 − cRx)�

(x)
+ un

jk,

Hh
(y)n

jk+1/2 = dun
jk + 1

2
d(1 − dRy)�

(y)
+ un

jk,

while in the second step, we use the differences

Dh
(x)n
j+1/2k = Hh

(x)n
j+1/2k − Lh

(x)n
j+1/2k,

Dh
(y)n

jk+1/2 = Hh
(y)n

jk+1/2 − Lh
(y)n

jk+1/2,

540 10 Difference Methods for PDE in Several Dimensions

to form the solution at time (n + 1)�t :

un+1
jk = Lun

jk − Rx�
(x)
−
[
φ

(x)n
jk

Dh
(x)n
j+1/2k

]− Ry�
(y)
−
[
φ

(y)n
jk

Dh
(y)n

jk+1/2

]
.

We define the limiter functions φ in the form

φ
(x)n
jk =

{
min{b+

j+1k, b
−
jk}; Dh

(x)n
j+1/2k ≥ 0,

min{b+
jk, b

−
j+1k}; Dh

(x)n
j+1/2k < 0,

φ
(y)n
jk =

{
min{b+

jk+1, b
−
jk}; Dh

(y)n

jk+1/2 ≥ 0,

min{b+
jk, b

−
jk+1}; Dh

(y)n

jk+1/2 < 0,

where b+
jk is the smallest upper limit for the factor multiplying the anti-diffusive

flux a+
jk entering the mesh point (j, k), while b−

jk is the largest upper limit for the

factor multiplying the corresponding exiting flux a−
jk :

b+
jk =

{
min{1, (umax

jk − uL
jk)/a

+
jk}; a+

jk > 0,

0; a+
jk = 0,

b−
jk =

{
min{1, (uL

jk − umin
jk)/a−

jk}; a−
jk > 0,

0; a−
jk = 0.

The anti-diffusive fluxes are defined by

a+
jk = max

{
0, Dh

(x)n
j−1/2k

}− min
{
0, Dh

(x)n
j+1/2k

}

+ max
{
0, Dh

(y)n

jk−1/2

}− min
{
0, Dh

(y)n

jk+1/2

}
,

a−
jk = max

{
0, Dh

(x)n
j+1/2k

}− min
{
0, Dh

(x)n
j−1/2k

}

+ max
{
0, Dh

(y)n

jk+1/2

}− min
{
0, Dh

(y)n

jk−1/2

}
.

Only umin
jk and umax

jk were left to be determined. We choose

umin
jk = min

{
uj+1k, ujk+1, ujk, uj−1k, ujk−1, u

L
j+1k, u

L
jk+1, u

L
jk, u

L
j−1k, u

L
jk−1

}
,

umax
jk = max

{
uj+1k, ujk+1, ujk, uj−1k, ujk−1, u

L
j+1k, u

L
jk+1, u

L
jk, u

L
j−1k, u

L
jk−1

}
.

This choice embodies the two-dimensional nature of the method, as umin
jk and umax

jk
at each point (j, k) couple the values from the four neighboring points.

10.4 Physically Motivated Discretizations

In each difference scheme for PDE or systems of PDE, regardless of the dimension-
ality, we use some procedure to discretize the space coordinates (and the time axis in

10.4 Physically Motivated Discretizations 541

Fig. 10.6 [Left] Computing the approximations of ux and uxx in the vicinity of the domain bound-
ary bypassing the mesh points. In the first order of the mesh spacings we use (10.51) and (10.52).
[Right] Making the discrete mesh denser

evolution problems). Of course, for numerous realistic (two- and three-dimensional)
physics problems, the basic Cartesian layout with square or rectangular domains is
not the natural environment. In exceptional cases we may apply coordinate trans-
formations to convert the problems with PDE in non-Cartesian frames to Cartesian
ones, but most often the suitable transformation is very difficult to find. Computa-
tions in planar polar coordinates, for example, also introduce peculiarities not seen
in Cartesian coordinates.

Another option is to solve the equation on the existing (geometrically irregular)
domain: in this case the main obstacle is the proper implementation of the boundary
conditions in parts of the domain boundary bypassing the mesh points, as shown in
Fig. 10.6 (left). For example, if we wish to compute the derivatives ux and uxx at
C, we may use a non-uniform mesh with �xj = xj − xj−1 and �xj+1 = xj+1 −
xj near the boundary, and use the differences evaluated at the points L, C, and R′
(instead of at L, C, and R):

(ux)j = uj+1 − uj−1

�xj+1 + �xj

+O
(

�x2
j+1

�xj+1 + �xj

)

+O
(

�x2
j

�xj+1 + �xj

)
, (10.51)

(uxx)j = 2
�xjuj+1 − (�xj+1 + �xj)uj + �xj+1uj−1

�xj+1�xj (�xj+1 + �xj)
+O

(
�x2

j+1

�xj+1 + �xj

)

+O
(

�x2
j

�xj+1 + �xj

)
. (10.52)

We may also make the mesh denser locally, or superpose a finer mesh on a coarser
mesh, as in Fig. 10.6 (right), but such a procedure is hard to automate; dedicated
programs exist for this task. Details on constructing overlapping discrete meshes can
be found in [10] and [11] in the context of multi-grid methods (see also Sect. 10.8).

542 10 Difference Methods for PDE in Several Dimensions

Fig. 10.7 [Left] The mesh for the solution of diffusion and Poisson equations in polar coordinates
on [r0, rNr] × [θ0, θNθ

] = [0,1] × [0,2π]. The discretization �θ = 2π/Nθ , �r = (rNr − r0)/Nr ,
and �t defines the mesh points (rj , θk, tn) = (r0 + j�r, k�θ,n�t), and at each of them the true
solution vn

jk = v(rj , θk, tn) and its approximation un
jk . [Right] The mesh for the Poisson problem

on [a,1] × [0,2π]

10.4.1 Two-Dimensional Diffusion Equation in Polar Coordinates

Let us translate the difference scheme for the two-dimensional diffusion equation in
Cartesian coordinates to polar coordinates. We are solving the equation

vt = D

(
1

r
(rvr)r + 1

r2
vθθ

)
+ Q(r, θ, t) (10.53)

on (r, θ) ∈ [0,1] × [0,2π] for t > 0, with the initial and boundary conditions

v(r, θ,0) = f (r, θ), 0 ≤ θ < 2π, 0 ≤ r ≤ 1,

v(1, θ, t) = g(θ, t), 0 ≤ θ < 2π, t > 0.

These conditions are supplemented by the periodicity requirement

v(r,0, t) = v(r,2π, t).

As in Sect. 10.1 we count the time steps as t = n�t , and segment the radial and
angular coordinates uniformly:

rj = j�r, j = 0,1, . . . ,Nr,

so we have r0 = 0 and rNr = 1, as well as

θk = k�θ, k = 0,1, . . . ,Nθ ,

so that θ0 = 0 and θNθ = 2π (Fig. 10.7 (left)). Since the values at j = 0 do not
depend on k, we abbreviate un

0k = un
0, and the continuity in θ implies un

jNθ
= un

j0.

10.4 Physically Motivated Discretizations 543

We replace the partial derivatives by the corresponding differences:

(vt)
n
jk ≈ un+1

jk − un
jk

�t
,

(
1

r2
vθθ

)n

jk

≈ 1

r2
j

1

�θ2
�

(θ)
2 un

jk,

(
1

r
(rvr)r

)n

jk

≈ 1

rj

1

�r2

[
r
j+ 1

2

(
un

j+1k − un
jk

)− r
j− 1

2

(
un

jk − un
j−1k

)]
,

and �
(θ)
2 is defined by (10.4), where the role of y is now played by θ . We should

be aware of the approximation of (rvr)r/r , in which the radial coordinate appears
outside of the mesh points (where it is known): it turns out that such a difference is
more precise than the discretization of the equivalent expression vr/r + vrr . When
all terms are joined, an explicit difference scheme emerges,

un+1
jk = un

jk + 1

rj

D�t

�r2

[
r
j+ 1

2

(
un

j+1k − un
jk

)− r
j− 1

2

(
un

jk − un
j−1k

)]

+ 1

r2
j

D�t

�θ2

[
un

jk+1 − 2un
jk − un

jk−1

]+ �tqn
jk, (10.54)

which applies at j = 1,2, . . . ,Nr − 1 and k = 1,2, . . . ,Nθ − 1. For k = 0 the un-
derlined term should be understood as un

jNθ−1 (periodicity). We obtain the missing
difference equation at j = 0 by integrating the differential equation (10.53),

∫

r

∫

θ

∫

t

vt d� = D

∫∫∫ (
1

r
(rvr)r + 1

r2
vθθ

)
d� +

∫∫∫
Q(r, θ, t)d�,

on the time interval t ∈ [tn, tn+1] and space intervals (“control volume”) r ∈
[0,�r/2] and θ ∈ [0,2π]. (We have denoted d� = r dr dθ dt .) In the term con-
taining the spatial derivatives we use the divergence theorem

∫ �r/2

0

(
1

r
(rvr)r + 1

r2
vθθ

)
r dr = �r

2
vr

(
�r

2
, θ, t

)
,

and use the trapezoidal formula for the remaining integrals, whence

π
�r2

4

(
un+1

0 − un
0

)≈ D
�r

2
�t

Nθ−1∑

k=0

un
1k − un

0

�r
�θ + π

�r2�t

4
qn

0 .

We then use
∑

k un
0 = Nθu

n
0 = (2π/�θ)un

0 , which ultimately results in

un+1
0 =

(
1 − 4D�t

�r2

)
un

0 + 2D�θ�t

π�r2

Nθ−1∑

k=0

un
1k + �tqn

0 . (10.55)

544 10 Difference Methods for PDE in Several Dimensions

The complete scheme is given by (10.54) and (10.55). Polar coordinates are no
hindrance for implicit difference schemes, like the pure implicit or Crank–Nicolson
by analogy to (10.13). The resulting matrix systems for solution vectors feature
matrices with relatively ugly structures. However, these matrices can be transformed
to triangular forms; details are given in [1].

10.4.2 Two-Dimensional Poisson Equation in Polar Coordinates

When two-dimensional elliptic PDE are solved in polar coordinates, further pecu-
liarities appear. We discuss two model problems [2]: in the first, we solve the Poisson
equation on the annulus,

−∇2v = Q(r, θ),

where a < r < 1 and 0 ≤ θ ≤ 2π (Fig. 10.7 (right)), with Dirichlet boundary condi-
tions

v(a, θ) = f1(θ), 0 ≤ θ < 2π, a < r < 1,

v(1, θ) = f2(θ), 0 ≤ θ < 2π; (10.56)

in the second, we include the origin (thus a = 0), so that the first initial condi-
tion (10.56) does not apply. In both problems, the spatial part of the difference oper-
ator is the same as for the diffusion equation (10.53), so precisely that discretization
can be adopted. We span the mesh (rj , θk) on the annulus such that r0 = a, rNr = 1,
θ0 = 0, θNθ = 2π , �r = (1 − a)/Nr , and �θ = 2π/Nθ ; if the origin is included, we
have r0 = 0 and �r = 1/Nr . For either of the problems, this boils down to

− 1

�r2

1

rj

[
rj+1/2(uj+1k − ujk) − rj−1/2(ujk − uj−1k)

]− 1

�θ2

1

r2
j

�
(θ)
2 ujk = qjk,

where qjk = Q(rj , θk) for j = 1,2, . . . ,Nr − 1 and k = 1,2, . . . ,Nθ − 1. When
k = 0, the scheme accesses the point uj−1 in the underlined term; periodicity in
θ comes to rescue by setting uj−1 = ujNθ−1. The remaining components of the
solution are given by the boundary conditions. In the annulus problem we have

ujNθ = uj0, j = 0,1, . . . ,Nr,

u0k = f1(θk), k = 0,1, . . . ,Nθ ,

uNrk = f2(θk), k = 0,1, . . . ,Nθ .

In the problem that includes the origin we must be careful about—the origin: the
values u0k and q0k actually cannot depend on k, thus we abbreviate u0k = u0 and
q0k = q0. The boundary conditions then become

10.5 Boundary Element Method � 545

ujNθ = uj0, j = 0,1, . . . ,Nr,

uNrk = f2(θk), k = 0,1, . . . ,Nθ ,

and

4

�r2
u0 − 2�θ

π�r2

Nθ−1∑

k=0

u1k = q0.

10.5 Boundary Element Method �

The boundary element method (BEM) allows us to solve PDE in non-trivial geome-
tries in which the discretization of the interior of the definition domain is difficult,
while it is relatively easy to express (at least in some approximation) the boundary
conditions on the boundaries of this domain. This is what makes the BEM method so
appealing: just by using the information from the boundaries we solve the problem
on the whole domain.

Here the basic outline of BEM is presented, following closely Ref. [12]. As an
example we discuss the two-dimensional Laplace equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0, (10.57)

which we try to solve in the xy-plane in the domain R bounded by the piecewise
smooth closed curve C. Along the individual segments Ci of C, either Dirichlet or
Neumann boundary conditions are specified:

φ(x, y) = fi(x, y), (x, y) ∈ Ci,

∂φ(x, y)

∂n
= fj (x, y), (x, y) ∈ Cj ,

as shown in Fig. 10.8 (left). The normal derivative ∂φ/∂n = nx(∂φ/∂x) +
ny(∂φ/∂y) is defined by the components of the unit normal vector n = (nx, ny)

T,
which points away from the domain R. A physical example of such a problem is
the stationary state of heat conduction in isotropic matter. The solution φ(x, y) de-
scribes the distribution of temperature in the domain R with the boundary C, some
pieces of which are held at constant temperature, while the others experience a
constant heat flux −λ(∂φ/∂n).

The particular solution of (10.57) is φ(x, y) = A ln
√

x2 + y2 + B for (x, y) �=
(0,0). We choose A = 1/(2π), B = 0, and move the origin from (0,0) to (ξ, η).
This results in the fundamental solution of the Laplace equation,

�(x,y; ξ, η) = 1

4π
ln
[
(x − ξ)2 + (y − η)2],

546 10 Difference Methods for PDE in Several Dimensions

Fig. 10.8 [Left] The domain R with the smooth boundary C on which we solve the two-dimen-
sional Poisson equation. As an example, we have Dirichlet boundary conditions on segment C3
and Neumann boundary conditions on C1. [Right] The approximation of the boundary C by the
inscribed polygon with sides C(n)

which is defined everywhere except at (ξ, η). Gauss theorem for vector functions,∫
C

V ·nds(x, y) = ∫
R

∇ ·V dx dy, can be applied to show that for any two solutions
φ1 and φ2 of (10.57), we have

∫

C

[
φ2(∂φ1/∂n) − φ1(∂φ2/∂n)

]
ds(x, y) = 0.

We choose φ1 = �(x,y; ξ, η) and φ2 = φ(x, y), where φ(x, y) is the desired solu-
tion of (10.57). A few basic tricks of complex analysis are then needed to connect
the desired solution and the fundamental solution by the boundary integral equation

λ(ξ, η)φ(ξ, η) =
∫

C

[
φ(x, y)

∂

∂n
�(x, y; ξ, η) − �(x,y; ξ, η)

∂

∂n
φ(x, y)

]
ds,

(10.58)
where λ(ξ, η) = 1/2. In the boundary element method, the solution of the basic
problem in the interior of the domain R is obtained by solving this integral equation
on the boundary C. The form of the integral equation remains the same in all parts
of the domain of (10.57), only the parameter λ(ξ, η) changes:

λ(ξ, η) =
⎧
⎨

⎩

0; (ξ, η) /∈ R ∪ C,
1
2 ; (ξ, η) on smooth part of C,

1; (ξ, η) ∈ R.

We approximate the boundary C by a polygon with N sides, as shown in Fig. 10.8
(right), such that

C ≈ C(1) ∪ C(2) ∪ · · · ∪ C(N).

Each side C(n) is a segment between the points (x(n), y(n)) and (x(n+1), y(n+1)).
We assume that the values of the functions and their derivatives are constant along

10.5 Boundary Element Method � 547

individual sides C(n), i.e.

φ(x, y) ≈ v(n),
∂φ(x, y)

∂n
≈ d(n), (x, y) ∈ C(n), n = 1,2, . . . ,N,

where v(n) is the value of φ and d(n) is the value of ∂φ/∂n in the middle of C(n).
Now the integral equation (10.58) can be approximately written as

λ(ξ, η)φ(ξ, η) ≈
N∑

n=1

[
v(n)D(n)(ξ, η) − d(n)V(n)(ξ, η)

]
, (10.59)

where

V(n)(ξ, η) =
∫

C(n)

�(x, y; ξ, η)ds(x, y), (10.60)

D(n)(ξ, η) =
∫

C(n)

∂�

∂n
(x, y; ξ, η)ds(x, y). (10.61)

For some index n, the boundary condition defines either the value v(n) or the deriva-
tive d(n) (but not both), so there are N unknowns at the right-hand side of (10.59).
We choose (ξ, η) to lie in the middle of the sides C(n) and obtain

1

2
v(m) =

N∑

n=1

[
v(n)D(n)

(
x(m), y(m)

)− d(n)V(n)
(
x(m), y(m)

)]
, m = 1,2, . . . ,N,

where (x(m), y(m)) is the midpoint of C(m). In (10.59) we have used λ = 1/2, since
all midpoints lie on the smooth parts of the approximate boundary C. This is a
system of N linear equation, which can be written as

N∑

n=1

amnzn =
N∑

n=1

bmn, m = 1,2, . . . ,N, (10.62)

where

amn = −V(n)
(
x(m), y(m)

)
,

bmn = v(n)

[
−D(n)

(
x(m), y(m)

)+ 1

2
δm,n

]
,

zn = d(n),

if the boundary condition on C(n) prescribes the value φ, or

amn = D(n)
(
x(m), y(m)

)− 1

2
δm,n,

bmn = d(n)V(n)
(
x(m), y(m)

)
,

zn = v(n),

548 10 Difference Methods for PDE in Several Dimensions

if the boundary condition on C(n) prescribes the derivative ∂φ/∂n. When this system
is solved, each component zn contains precisely the missing information from C(n)

that was not expressed by the boundary condition: if the derivative was specified,
(10.62) provides the value of the function, and vice versa. We end up with N values
of φ and N values of ∂φ/∂n on N segments of C. Finally, the solution in the interior
of R is obtained by (10.59), in which we set λ = 1,

φ(ξ, η) ≈
N∑

n=1

[
v(n)D(n)(ξ, η) − d(n)V(n)(ξ, η)

]
, (ξ, η) ∈ R.

The elegance of the method has thus been clearly revealed: we obtain the solu-
tion on the whole domain R by manipulating information from its boundary C. In
constructing V(ξ, η) and D(ξ, η), the line integrals (10.60) and (10.61) need to be
computed along individual segments C(n). The segments are parameterized as

x(t) = x(n) − t l(n)n(n)
y , y(t) = y(n) + t l(n)n(n)

x , 0 ≤ t ≤ 1. (10.63)

Here l(n) is the length of C(n), while the unit vector n(n) = (n
(n)
x , n

(n)
y)T perpendic-

ular to this segment and pointing away from R has the components

n(n)
x = 1

l(n)

(
y(n+1) − y(n)

)
, n(n)

y = 1

l(n)

(
x(n) − x(n+1)

)
.

We define

A(n) = (l(n)
)2

,

B(n)(ξ, η) = 2l(n)
(−n(n)

y

(
x(n) − ξ

)+ n(n)
x

(
y(n) − η

))
,

C(n)(ξ, η) = (x(n) − ξ
)2 + (y(n) − η

)2
.

In the parameterization (10.63), the quantity 4A(n)C(n) − (B(n))2 is non-negative,

F (n) ≡ 4A(n)C(n)(ξ, η) − [B(n)(ξ, η)
]2 ≥ 0, ∀(ξ, η).

Elementary integration [12] brings us to the final expressions for the line integrals
V(n) and D(n), which are distinguished according to the value of F (n). If F (n) > 0,
we evaluate

V(n) = l(n)

4π

{
2
(
ln l(n) − 1

)− B(n)

2A(n)
ln

∣∣∣∣
C(n)

A(n)

∣∣∣∣+
[

1 + B(n)

2A(n)

]
ln

∣∣∣∣1 + B(n)

A(n)
+ C(n)

A(n)

∣∣∣∣

+
√

F (n)

A(n)

[
arctan

2A(n) + B(n)

√
F (n)

− arctan
B(n)

√
F (n)

]}
,

10.6 Finite-Element Method � 549

D(n) = l(n)
[
n

(n)
x

(
x(n) − ξ

)+ n
(n)
y

(
y(n) − η

)]

π
√

F (n)

×
[

arctan
2A(n) + B(n)

√
F (n)

− arctan
B(n)

√
F (n)

]
.

On the other hand, if F (n) = 0, we need to compute

V(n) = l(n)

2π

{
ln l(n) +

[
1 + B(n)

2A(n)

]
ln

∣∣∣∣1 + B(n)

2A(n)

∣∣∣∣−
B(n)

2A(n)
ln

∣∣∣∣
B(n)

2A(n)

∣∣∣∣− 1

}
,

D(n) = 0.

The boundary element method is also applicable to non-stationary problems:
time integration is performed separately. A superb introduction is given in [12].

10.6 Finite-Element Method �

Finite-element methods (FEM) are five decades old, yet they remain the basic tool of
engineers and natural scientists, especially for problems in elastomechanics, hydro-
and aero-dynamics in complex geometries. In difference methods we use finite dif-
ferences to approximate the differential equation, i.e. its space and time derivatives,
and impose boundary conditions appropriately. But in complex geometries this is
very hard to accomplish.

In the finite-element approach, we find the integral of the differential equation on
its definition domain, and thereby express the equation in its variational form. The
domain is then divided into smaller units (finite elements) on which the solution
of the equation is approximated by a linear combination of some basis functions.
The individual elements may be positioned over the domain quite freely (Fig. 10.9),
and this liberty represents the main charm and strength of the method. Finally, the
variational integral is computed by summing the contributions from all elements;
we end up with a system of algebraic equations for the coefficients multiplying the
basis functions in the solution expansion.

Here we present the essence of FEM. For greater clarity, the basic concepts are
introduced in one space dimension, while in applications the method is overwhelm-
ingly used in two and three dimensions. Further reading can be found in the text-
books [13] and [14] which we follow closely. See also [15].

10.6.1 One Space Dimension

The finite-element method started to bloom in construction problems, so it is fair
to introduce it by a civil-engineering example: we are interested in the transverse

550 10 Difference Methods for PDE in Several Dimensions

Fig. 10.9 Positioning the
finite elements for the
problem of propagating
acoustic waves in the
geometry of a “snail”. Such
complex geometries are
virtually unmanageable by
classical difference methods.
Figure courtesy of M. Melenk
and S. Langdon

Fig. 10.10 The classical boundary-value problem illustrating the one-dimensional finite-element
method: transverse deflections of a cable under non-uniform load

deflections v(x) of a support cable pulled at its ends by the force p. There is another
force (per unit length) acting in the transverse direction, f (x), and the cable is held
in equilibrium by springs with elastic modulus q(x) (Fig. 10.10).

The deflection v(x) from the horizontal is the solution of the boundary-value
problem

−p(x)v′′(x) + q(x)v(x) = f (x), x ∈ [0,1], (10.64)

with boundary conditions v(0) = v(1) = 0. For simplicity we assume constant p >

0 and q ≥ 0. We have shown in Sect. 8.6 (see (8.82)) that seeking the solution of
this problem is equivalent to determining the function v satisfying the equation

A(w,v) =
∫ 1

0

[
w′pv′ + wqv

]
dx =

∫ 1

0
wf dx = 〈w,f 〉

for any weight function w.
We divide the interval [0,1] to N (not necessarily uniform) subintervals such that

0 = x0 < x1 < x2 < · · · < xN−1 < xN = 1. Each subinterval [xj−1, xj] with length
hj = xj − xj−1 is called the finite element. Over the adjacent elements [xj−1, xj]
and [xj , xj+1] we span the basis function φj with a peak at xj and the nodes (ze-
ros) at xj−1 and xj+1 (Fig. 10.11). We use piecewise linear basis functions here;
quadratic and cubic functions are also widely used.

10.6 Finite-Element Method � 551

φj (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−xj−1
xj −xj−1

; xj−1 ≤ x < xj ,

xj+1−x

xj+1−xj
; xj ≤ x < xj+1,

0; otherwise.

Fig. 10.11 Basis functions for the one-dimensional finite-element method. The function φj is
non-zero only on the interval (xj−1, xj] ∪ [xj , xj+1), and φj (xk) = δj,k

The approximate solution is expanded in terms of the basis functions φj :

u(x) =
N−1∑

j=1

cjφj (x). (10.65)

Since φj (xk) = δj,k , we get u(xk) =∑j cj δj,k = ck . The coefficients ck are there-
fore equal to the values of u at the interior nodes. For Dirichlet boundary conditions,
u(x0) = c0 and u(xN) = cN , so we may include the contributions at the boundary
nodes in (10.65) if we set c0 = cN = 0. The weight function is expanded similarly,

w̃(x) =
N−1∑

j=1

djψj (x).

We stay in the Galerkin framework, where the basis functions φj for the solution u

are the same as the basis functions ψj for the weight function w̃.
The coefficients ck in the expansion (10.65) are computed by solving the varia-

tional equation (8.83), where the sum runs over all finite elements. The equation to
be solved is

N∑

j=1

[
Aj(w̃,u) − 〈w̃, f 〉j

]= 0 ∀w̃, (10.66)

where u is the approximate solution (10.65), w̃ is the weight function, and f is the
right-hand side of (10.64). The subscript j denotes the element [xj−1, xj] and runs
from 1 to N , since all finite elements from [x0, x1] through [xN−1, xN] have to be
considered. We split the expression for Aj in two parts,

Aj(w̃, u) = AS
j (w̃, u) + AM

j (w̃, u) =
∫ xj

xj−1

pw̃′u′ dx +
∫ xj

xj−1

qw̃udx. (10.67)

Stiffness Matrix, Mass Matrix, and Load Vector In engineering problems the
first term of (10.67) corresponds to the internal energy of the body (due to com-
pression or expansion), and the second term to external influences (e.g. due to the

552 10 Difference Methods for PDE in Several Dimensions

change of potential energy under load). Over the element [xj−1, xj], the approxi-
mate solution and the weight function have the forms

u(x) = cj−1φj−1(x) + cjφj (x) = (cj−1, cj)

(
φj−1(x)

φj (x)

)
,

w̃(x) = dj−1φj−1(x) + djφj (x) = (dj−1, dj)

(
φj−1(x)

φj (x)

)
,

with the derivatives

u′(x) = (cj−1, cj)

(−1/hj

1/hj

)
, w̃′(x) = (dj−1, dj)

(−1/hj

1/hj

)
,

where hj = xj − xj−1. From these expressions one finds

AS
j (w̃, u) = (dj−1, dj)

[∫ xj

xj−1

(
1/h2

j −1/h2
j

−1/h2
j 1/h2

j

)

p(x)dx

](
cj−1
cj

)
,

AM
j (w̃, u) = (dj−1, dj)

[∫ xj

xj−1

(
φ2

j−1 φj−1φj

φj−1φj φ2
j

)

q(x)dx

](
cj−1
cj

)
.

For constant p and q , as assumed for (10.64), only elementary integrals are involved
(trivial integration in AS

j and integration of quadratic functions in AM
j). In this case

we get

AS
j (w̃, u) = (dj−1, dj)Sj

(
cj−1
cj

)
, Sj = p

hj

(
1 −1

−1 1

)
, (10.68)

AM
j (w̃, u) = (dj−1, dj)Mj

(
cj−1
cj

)
, Mj = qhj

6

(
2 1
1 2

)
. (10.69)

The matrix Sj is known as the element (local) stiffness matrix, and the matrix Mj is
the element (local) mass matrix.

In general, the integral 〈w̃, f 〉j in (10.66) (the scalar product of functions w̃ and
f on the j th finite element) is computed numerically. But a good approximation can
be obtained if f on [xj−1, xj] is replaced by a piecewise linear function, f (x) ≈
fj−1φj−1(x) + fjφj (x). Then

〈w̃, f 〉j ≈ (dj−1, dj)gj , gj = hj

6

(
2fj−1 + fj

fj−1 + 2fj

)
. (10.70)

The vector gj is the element (local) load vector, as it describes the external force or
loading upon the system.

Assembly The next step is the assembly of the element matrices into the global
stiffness matrix by summing the contributions of all elements, and adding all ele-
ment load vectors into the global load vector. To simplify, we consider a uniform

10.6 Finite-Element Method � 553

mesh, hj = h = 1/N . We sum the contributions (10.68), (10.69), and (10.70) over
all elements 1,2, . . . ,N , where we consider the boundary condition c0 = d0 = 0 in
the terms involving the element j = 0, and cN = dN = 0 in those involving j = N .
We collect the coefficients cj and dj for the interior points of [x0, xN] in the vectors
c = (c1, c2, . . . , cN−1)

T and d = (d1, d2, . . . , dN−1)
T, and put the components gj in

the global load vector g = (g1, g2, . . . , gN−1)
T. The equation with the sum over the

elements,

N∑

j=1

[
AS

j (w̃, u) + AM
j (w̃, u)

]=
N∑

j=1

〈w̃, f 〉j ,

can then be written in matrix form dT[(S + M)c − g] = 0, where

S = p

h

⎛

⎜⎜⎜⎜⎜
⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟⎟
⎠

, M = qh

6

⎛

⎜⎜⎜⎜⎜
⎝

4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

⎞

⎟⎟⎟⎟⎟
⎠

,

are the (N − 1) × (N − 1) global stiffness and mass matrices, and

g = h

6

⎛

⎜⎜⎜
⎝

f0 + 4f1 + f2
f1 + 4f2 + f3

...

fN−2 + 4fN−1 + fN

⎞

⎟⎟⎟
⎠

is the global load vector of dimension N − 1 (in the linear approximation on each
element). This equation must hold true for any d , so the coefficients cj of the ex-
pansion (10.65) for j = 1,2, . . . ,N − 1 are obtained by solving the system

(S + M)c = g.

10.6.2 Two Space Dimensions

In two dimensions the problem (10.64) is generalized to a planar region R,

− ∂

∂x

(
p(x, y)

∂v

∂x

)
− ∂

∂y

(
p(x, y)

∂v

∂y

)
+ q(x, y)v = f (x, y), (x, y) ∈ R,

with the boundary condition v(x, y) = α(x, y) for (x, y) ∈ ∂R. (A problem with
a non-homogeneous condition α �= 0 can be turned into the problem with α = 0
by shifting v̂ = v − α.) The variational formulation of the problem is analogous to
the one-dimensional case; things start to become complicated when we attempt to
divide (partition) the region R to finite elements.

554 10 Difference Methods for PDE in Several Dimensions

Fig. 10.12 Triangulation for
the finite-element method in
the geometry of a square with
a cut-out circle. Top left: a
coarse mesh of triangular
elements with the
enumeration of nodes and
elements. Bottom right: in a
part of the region we are
allowed to use other shapes
(e.g. squares) or refine the
mesh in physically more
interesting regions

In one dimension the finite elements are intervals; in a planar region the role
of the elements is taken by various geometric shapes. Most frequently one uses
(not necessarily equilateral or isosceles) triangles, rarely quadrilaterals (Fig. 10.12).
The partitioning of the region is known as triangulation (or quadrangulation). For
complex geometries (see Fig. 10.9) it almost amounts to art. Effective triangulation
is accomplished by dedicated commercial programs (see e.g. [16]). Among the most
well known is the Delaunay triangulation [17, 18]. A good triangulation guarantees
that none of the interior angles in the triangles is too small (it maximizes the smallest
used angles), thereby ensuring numerical stability.

On the chosen triangulation the corresponding basis functions are defined. Here
we restrict the discussion to piecewise linear functions of x and y. The basis function
on the nodes of the triangle xj = (xj , yj)

T, xj+1 = (xj+1, yj+1)
T, and xj+2 =

(xj+2, yj+2)
T, with an apex at xj (Fig. 10.13(a)) has the form

φj (x, y) =
⎡

⎣det

⎛

⎝
1 xj yj

1 xj+1 yj+1
1 xj+2 yj+2

⎞

⎠

⎤

⎦

−1

· det

⎛

⎝
1 x y

1 xj+1 yj+1
1 xj+2 yj+2

⎞

⎠ . (10.71)

The function φj is non-zero only over the triangle defined by the nodes xj , xj+1,
and xj+2. It also holds that

φj (xk, yk) = δj,k.

Note that (10.71) expresses only the intersection of the planes defining the three side
surfaces of the pyramid. For each pair of x and y one needs to check whether they
lie inside the triangle defined by the three nodes.

Assembly When assembling the elements of local stiffness and mass matrices in
the corresponding global matrices, one must distinguish between the local indices

10.6 Finite-Element Method � 555

Fig. 10.13 Three-node element functions for the finite-element method on the plane: (a) the basic
function above the triangular element with the value 1 at the node x1 and values 0 at the side nodes
x2 and x3; (b) the basis function above six elements; (c) the neighborhood of the node xi as used
in Problem 10.9.7

of nodes m,n ∈ {1,2,3}, and the global indices of nodes j, k ∈ {1,2, . . . ,NN } and
elements t ∈ {1,2, . . . ,NT }. Global indices label the whole triangulation with NN
nodes and NT elements (triangles). In the variational requirement we sum over all
triangles,

NT∑

t=1

A(t)(w̃, u) =
NT∑

t=1

〈w̃, f 〉(t),

where t is the label of the triangle Tt . The surface integrals

A(t)(w̃, u) =
∫

Tt

[
p(∇ŵ)T · ∇u + qw̃u

]
dx dy, 〈w̃, f 〉(t) =

∫

Tt

w̃f dx dy,

are computed on each triangle Tt separately. This is relatively easily done in the
Galerkin form of the method with piecewise linear basis functions, where φj = ψj ,
as we need only the expressions for the functions φj (10.71) and their derivatives

∇φj (x, y) = 1

2|T |
(

yj+1 − yj+2
xj+2 − xj+1

)
,

where |T | = 1
2 |(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)| is the surface area of the

triangle. The local contributions of triplets of nodes to the stiffness matrix and the
corresponding components of the local load vector are then

A(t)
mn(w̃, u) =

∫

Tt

[
p(∇φm)T∇φn + qφmφn

]
dx dy,

〈w̃, f 〉(t)m =
∫

Tt

φmf dx dy.

Example How local matrices and vectors are assembled in the global matrix and
global vector is best explained by an example. To make the discussion easier, we set
p = 1 and q = 0 (we are solving the Poisson equation −∇2v = f). In this case the

556 10 Difference Methods for PDE in Several Dimensions

surface integrals over the triangles Tt are simple,

A(t)
mn = 1

4|T | (ym+1 − ym+2, xm+2 − xm+1)

(
yn+1 − yn+2
xn+2 − xn+1

)
,

〈w̃, f 〉(t)m ≈ 1

6
det

(
xm+1 − xm xm+2 − xm

ym+1 − ym ym+2 − ym

)
f (xT, yT),

where (xT, yT) are the coordinates of the center of mass of the triangle Tt .
As an illustration of the method, the top left portion of Fig. 10.12 shows a coarse

triangulation of a square region with a cut-out circle. This problem (adopted from
[14]) is still manageable by classical difference methods, but we use it here to serve
as a typical example. We arrange the nodes in the matrix

N =
⎛

⎝
1 2 3 4 5 · · · 11 12 13 14 15
0 1 1.59 2 3 · · · 0 0 1 1 2
0 0 0 1 1.41 · · · 2 1 1 2 2

⎞

⎠

T

that includes the triplets {label of node, x, y}: here we specify the actual locations
of the nodes in the planar region. The matrix

T =

⎛

⎜⎜
⎝

1 2 3 4 5 · · · 12 13 14 15 16
0 1 10 10 9 · · · 7 3 4 5 5
1 12 11 12 10 · · · 8 4 5 7 6

11 11 12 13 13 · · · 14 14 14 14 7

⎞

⎟⎟
⎠

T

contains the quadruplets {label of element, label of node 1, label 2, label 3} relating
the elements to the global indices of their nodes. The connection between the space
of physical coordinates and the space of elements must be provided in our own code
by some mapping between the sets N and T . It is recommendable that the main
loop in the code runs over the triangles t = 1,2, . . . ,NT , not over the nodes, which
would also be possible. Namely, it turns out that fewer surface integrals (evaluated
numerically in general) need to be computed by using the element loop than by
looping over the nodes [14]. The components of the global stiffness matrix S and
the global load vector g are obtained by summing

loop over t = 1,2, . . . ,NT

ST (t,m),T (t,n) + = A(t)
mn (m,n = 1,2,3)

gT (t,m) + = 〈w̃, f 〉(t)m (m = 1,2,3)

end loop

By solving Sc = g (as in the one-dimensional case) we finally obtain the vector c

containing the expansion coefficients of the solution, u(x, y) =∑j cjφj (x, y).
Try not to confuse the labellings of the nodes and the elements, since in gen-

eral the number of nodes NN is different from the number of elements NT . While

10.7 Mimetic Discretizations � 557

the program loops over the elements t , the values are inserted in the global ma-
trix, and the corresponding load vector according to the labeling of nodes. Compare
Fig. 10.13(c) to Fig. 10.17: around the node xi (in global enumeration) six triangles
are arranged, and they form the support for the basis function shown in Fig. 10.13(b).
Check your understanding in Problem 10.9.7!

We have merely traced the very first steps of FEM. A genuine expert use of the
method only just starts here: non-uniform planar or spatial meshes are devised; basis
functions are realized as splines of different degrees so that specific requirements at
the boundaries between the elements are met; the mesh can be made denser during
the computation if an increase in local precision is called for; discontinuities may
be incorporated; non-stationary problems can be implemented; a road opens towards
non-linear problems with a multitude of initial and boundary conditions. The finite-
element method is already a part of modern numerical packages like MATLAB: nice
pedagogical examples that can serve as a good vantage point for further study are
given in [19, 20]. A myriad of commercial program packages is available for a more
demanding use of the finite-element method [21]. For an excitingly propulsive free
version, see [22].

10.7 Mimetic Discretizations �

A powerful tool for solving PDE in complex geometries are the mimetic (or com-
patible) discretizations [23] that attempt to mimic the properties of the physical
problem as closely as possible. A nice example is the diffusion in strongly hetero-
geneous and non-isotropic media described by the equation vt = ∇ · D(v)∇v + Q.
The space is divided in “logically rectangular” convex cells onto which scalar and
vector fields are attached (Fig. 10.14 (left)).

But the key step is the discretization of differential operators, like the diffusion
operator ∇ · D(v)∇ for the problem mentioned above [27, 28]. The discretization
should, at least to some order, respect the symmetry and conservative properties
of the underlying equation, for example, the conservation of mass, momentum, or
energy (in studies of fluid flows) or Maxwell’s equations (in electro-magnetic prob-
lems). Ultimately, the problems are translated to systems of algebraic equations and
solved by preconditioned matrix relaxation methods.

A detailed presentation is beyond the scope of this book, but we let them lurk at
the horizon due to their flexibility and development in the recent years. An intro-
duction is given in [23] and the mathematical background in [29].

10.8 Multi-Grid and Mesh-Free Methods �

Two further unique approaches to solving PDE in complex geometries should be
mentioned. In the multi-grid approach the differential problem is discretized on

558 10 Difference Methods for PDE in Several Dimensions

Fig. 10.14 [Left] A “logically rectangular” cell in a planar mimetic discretization. The scalar
fields ujk are defined at the cell centers, and the vector fields u are given by the components of
vectors perpendicular to the cell sides. [Right] An example of solving the problem of a fluid flowing
through a random arrangement of shale blocks in sand. The shale occupies 20 % of the total surface
area (figures adapted from [24–26])

grids (meshes) of varying coarseness. The method is applied on ever finer meshes,
and the resulting sequence of solutions converges very rapidly: even in complex
geometries and with non-trivial boundary conditions, the multi-grid methods are
among the fastest on the market, but each application of the method needs to be tai-
lored carefully to the demands of the individual problem. Multi-grid methods were
originally developed for boundary problems involving elliptic PDE, but they can be
used to solve other types for PDE as well. An excellent introduction is given by
[30]; further reading is offered by [31, 32].

The mesh-free methods liberate us from the shackles of discretization: we express
the approximate solution as a function spanned over a set of nodes in the definition
domain of the differential problem; there is no need for these nodes to be systemat-
ically related in any manner (as e.g. in the finite-element method). A certain algo-
rithm leads to a system of equations relating the solution to the information at the
nodes and on the domain boundaries. Mesh-free methods excel in problems calling
for a large degree of flexibility, for example, in situations with non-fixed boundaries
between regions with different physical properties. Examples include phase changes
(boundaries between fluid and solid phases of alloys) or mechanical defects (cracks
in materials). Especially in three space dimensions, mesh-free methods compete
successfully with finite-element methods where adaptive triangulation may become
too costly. We recommend [33] and [34] for further reading. In the following we
describe the popular mesh-free method based on radial basis functions.

10.8 Multi-Grid and Mesh-Free Methods � 559

10.8.1 A Mesh-Free Method Based on Radial Basis Functions

Here we explain the basic idea of the radial basis functions (RBF) method by solving
the Poisson equation on a square with Dirichlet boundary conditions,

∇2v = Q(x,y), (x, y) ∈ R = [0,1] × [0,1],
v(x, y) = f (x, y), (x, y) ∈ ∂R.

On the definition domain we choose N points {(xi, yi)}Ni=1, of which N1 are in the
interior of the domain, while the remaining N2 = N − N1 are on its boundary. We
seek the approximate solution u in the form

u(x, y) =
N∑

j=1

ajφj (x, y), (10.72)

where φj are the basis functions. A possible choice for the form of the basis func-
tions is

φj (x, y) =
√

(x − xj)2 + (y − yj)2 + c2 =
√

r2
j + c2, (10.73)

where c is an adjustable parameter [35, 36]. For such functions we have

∂2φj

∂x2
= (y − yj)

2 + c2

(
r2
j + c2

)3/2
,

∂2φj

∂y2
= (x − xj)

2 + c2

(
r2
j + c2

)3/2
.

At the interior points we insert the ansatz for the solution u in the differential equa-
tion, while at the boundary points we insert it into the boundary conditions. This re-
sults in a system of linear equations for the coefficients aj , represented by a N × N

matrix:

N∑

j=1

(
∂2φj

∂x2
+ ∂2φj

∂y2

)
(xi, yi)aj = Q(xi, yi), i = 1,2, . . . ,N1,

N∑

j=1

φj (xi, yi)aj = f (xi, yi), i = N1 + 1,N1 + 2, . . . ,N.

In the variables x and y, the basis functions (10.73) have a radial symmetry
around the collocation points (xj , yj) which gave the method its name; but a large
set of functions possessing this property is in wide use, for example,

√
r2
j + c2,

1
√

r2
j + c2

,
1

r2
j + c2

, e−(crj)2
.

560 10 Difference Methods for PDE in Several Dimensions

Radial basis function methods [37] are suitable for both time-dependent and time-
independent problems. Instructive case studies of parabolic problems (diffusion
equation) can be found in [38] and for hyperbolic problems (wave equation, Burg-
ers equation) in [39]. Examples of solving elliptic problems (Poisson equation) are
discussed in [40].

Example By using the mesh-free method utilizing radial basis functions [35, 36] we
solve the Poisson equation on the unit square,

−∇2v = Q, (x, y) ∈ [0,1] × [0,1],
where Q(x,y) = −13e−2x+3y , with Dirichlet boundary conditions

v(0, y) = e3y, v(1, y) = e−2+3y, v(x,0) = e−2x, v(x,1) = e−2x+3.

The analytic solution is

v(x, y) = e−2x+3y.

On the definition domain we randomly choose N1 = 16 collocation points on the
boundary of the square (four on each side), and N2 = 24 points in its interior
(Fig. 10.15 (left)). In total, we have N1 + N2 = 40 collocation points, each cor-
responding to a basis function of the form (10.73), where we choose c = 0.5. When
the ansatz (10.72) at the collocation points is inserted in the differential equation
and in the equations specifying the boundary conditions, we obtain a system of
equations for the expansion coefficients aj , as described on p. 559. We define the
absolute error of the numerical solution as

ERR =
[

N∑

i=1

(
u(xi, yi) − v(xi, yi)

)2
]1/2

.

For c = 0.5 this error amounts to ERR ≈ 0.91 (Fig. 10.15 (right)).
The parameter c defines the scale of the radial basis function, determining

whether the function is more spike-like or rather smooth. Obviously, the precision
of the solution can be strongly influenced by changing c. Figure 10.15 (right) shows
the error ERR in dependence of c: at certain values of c, the error may even explode!
Some general instructions about the choice of the optimal c are given in [41].

10.9 Problems

10.9.1 Two-Dimensional Diffusion Equation

The initial-boundary-value problem for the inhomogeneous diffusion equation

vt = D(vxx + vyy) + Q

10.9 Problems 561

Fig. 10.15 Solving the Poisson equation on the square by using a mesh-free method based on
radial basis functions. [Left] A random distribution of 16 points on the boundaries of the square
(symbols •) and 24 points in its interior (symbols ◦). [Right] The error of the solution in dependence
of the parameter c

on (x, y) ∈ [0,1] × [0,1] is the prototype parabolic problem in two dimensions that
can be most easily solved by difference methods (Sect. 10.1). Particular attention
should be paid to the consistent treatment of the boundary conditions, so that the
order of the difference scheme is not spoiled.⊙

By using the explicit (FTCS) scheme in two dimensions (10.5), solve the
following problems with Dirichlet boundary conditions (examples from [1]):

(1) v(x, y,0) = sin(πx) sin(2πy),

v(0, y, t) = v(1, y, t) = v(x,0, t) = v(x,1, t) = Q(x,y, t) = 0;

compute the solutions at times 0 ≤ t ≤ 1 (choose a few representative instants) with
step �t = 0.0005 (0.001), spatial discretization Nx = Ny = 20 and D = 1.0. What
happens if the discretization in the x coordinate is twice as coarse?

(2) v(x, y,0) = 0,

v(0, y, t) = v(1, y, t) = v(x,0, t) = v(x,1, t) = 0,

Q(x, y, t) = sin(2πx) sin(4πy) sin t;

compute the solution at times 0 ≤ t ≤ 2 with the discretization Nx = Ny = 20, time
step �t = 0.0005 (or Nx = Ny = 100 and �t = 0.00002), and parameter D = 0.5.

(3) v(x, y,0) = 0,

v(0, y, t) = sin(πy) sin t, v(x,0, t) = sin(πx) sin t,

v(1, y, t) = v(x,1, t) = Q(x,y, t) = 0;

562 10 Difference Methods for PDE in Several Dimensions

use Nx = Ny = 20, �t = 0.001, D = 1.0, and compute the solution at 0 ≤ t ≤
10. Compare the numerical result to the analytic one. What can you say about the
stability of the schemes? Solve the three problems listed above by using the Crank–
Nicolson scheme (10.13).⊕

We are also interested in the solutions of the homogeneous equation
(Q(x,y, t) = 0), with a Neumann boundary condition on one side of the square
and Dirichlet conditions on the remaining three sides. A consistent inclusion of the
boundary conditions is of key importance for the convergence of the chosen differ-
ence scheme. Discuss the problem

v(x, y,0) = sin(πx) sin(2πy),

v(0, y, t) = v(x,0, t) = v(x,1, t) = 0,

vx(1, y, t) = gN(y, t) = −π sin(2πy)e−5Dπ2t .

We implement the Neumann conditions at x = 1 for the explicit scheme by analogy
to (10.11) or (10.12) that apply at x = 0. At time (n + 1)�t we get, to first order
in the space variable, un+1

Nxk = un+1
Nx−1k + �xgN(k�y, (n + 1)�t), which is already

the missing equation for the value at j = Nx . To second order, we write the Neu-
mann condition at time n�t as un

Nx+1k = un
Nx−1k + 2�xgN(k�y,n�t). We insert

the value un
Nx+1k in the difference scheme at j = Nx , whence we again obtain the

missing equation at j = Nx ,

un+1
Nxk = (1 − 2rx)u

n
Nxk + 2rxu

n
Nx−1k + ry�

(y)

2 un
Nxk + 2rx�xgN(k�y,n�t).

For the Peaceman–Rachford scheme, the first-order Neumann condition is imposed
in the same manner. The second-order condition is easier to compute if the order of
spatial derivatives in the scheme is interchanged, i.e. by just substituting x ←→ y

in (10.14) and (10.15). As in the implicit case, the condition is inserted in the scheme
at j = Nx , but at time (n + 1)�t . We obtain

un+1
Nxk = rx

1 + rx
un+1

Nx−1k + 1

1 + rx

(
1 + ry

2
�

(y)

2

)
u

n+ 1
2

Nxk

+ rx

1 + rx
�xgN(k�y, (n + 1)�t

)
.

In the D’yakonov variant of the scheme, the Neumann condition needs to be trans-
lated into a condition for u�. Check that for the first-order Neumann condition this
means

u�
Nxk = u�

Nx−1k + �x

(
1 − rx

2
�

(x)
2

)
gN(k�y, (n + 1)�t

)
,

10.9 Problems 563

while for the second-order Neumann condition one should use

u�
Nxk = ry

1 + ry
u�

Nx−1k + 1

1 + ry

(
1 + ry

2
�

(y)

2

)(
1 + rx

2
�

(x)
2

)
un

Nxk

+ ry

1 + ry
�xgN(k�y, (n + 1)�t

)
.

Compute the solution by using the explicit scheme (10.5) at times 0 ≤ t ≤ 1 with the
step size �t = 0.001 and discretization Nx = Ny = 10, and then with �t = 0.0005,
Nx = Ny = 20 and �t = 0.0001, Nx = Ny = 40. Use D = 1.0. Repeat the exercise
with the Peaceman–Rachford and D’yakonov scheme with �t = 0.01. In all cases
use first- and second-order approximations for the Neumann boundary condition.
Compare the analytic and numerical solutions.

10.9.2 Non-linear Diffusion Equation

This problem acquaints us with a method of solving a diffusion-reaction problem
from the field of biotechnology: we are interested in the formation and growth
of bacterial biofilms on a nutritious substrate [42, 43]. The density of the created
biomass v(x, y, t) is determined by the partial differential equation

vt = ∇[D(v)∇v
]+ κv, (x, y) ∈ [0,1] × [0,0.3],

where

D(v) = δ
vb

(1 − v)a
, 0 < δ � 1 ≤ a, b.

The quantity κ drives the rate of biofilm formation: a constant κ > 0 implies unlim-
ited nutrients. In this case the bacterial culture spreads until it attains a homogeneous
distribution (Fig. 10.16).

We monitor the approximate density of the biofilm u(j�x, k�y,n�t) on the
uniform mesh with �x = 1/Nx and �y = 0.3/Ny . We discretize the time derivative
to second order, vt ≈ (un+1

jk − un
jk)/�t , while the reaction term κv is evaluated at

time (n + 1)�t . For the diffusion term we apply the difference formula

∇[D(v)∇v
] ≈ 1

2�x2

{[
D
(
un

jk

)+ D
(
un

j+1k

)][
un+1

j+1k − un+1
jk

]

× [D(un
jk

)+ D
(
un

j−1k

)][
un+1

j−1k − un+1
jk

]}

+ 1

2�y2

{[
D
(
un

jk

)+ D
(
un

jk+1

)][
un+1

jk+1 − un+1
jk

]

× [D(un
jk

)+ D
(
un

jk−1

)][
un+1

jk−1 − un+1
jk

]}
.

564 10 Difference Methods for PDE in Several Dimensions

Fig. 10.16 Formation of the bacterial layer from an initial random distribution at y = 0. An un-
limited supply of nutrients is available in the model, so the blotches grow, merge, and gradually
expand to a homogeneous distribution of maximum density

If D is constant, this formula turns into the usual discretization of ∇2v in Cartesian
coordinates (see (10.2) and (10.3)). Beware that the diffusion coefficients depend
on the current values of u at times n�t , while the values of the functions at the
right-hand side are given at (n + 1)�t . The difference scheme is therefore implicit
and does not suffer from stability problems.⊙

Carefully join the terms vt , ∇[D(v)∇v], and κv to form an implicit differ-
ence scheme that can be written in matrix form as

Aun+1 = un.

Here un is the solution vector at time n�t with the coordinates indexed as in (10.1).
Solve the problem by using the parameters a = b = 4, κ = 0.1, and δ = 0.1. Start
with the spatial discretization Nx = Ny = 60 and the time step �t = 1. Attention:
even with such a coarse discretization, the matrix A has the size (Nx + 1)(Ny +
1) × (Nx + 1)(Ny + 1) = 3721 × 3721. Fortunately it is banded: only the diagonal,
the first sub- and super-diagonal, and the (Nx + 1)th sub- and super-diagonals have
non-zero entries, so the computation is much faster if one resorts to methods for
banded matrices, e.g. DGBSV from the LAPACK library (see Sect. 3.2.3).

The initial condition is Ni randomly distributed values of the density between 0
and 1 that appear at time t = 0 along y = 0 in Ni ≈ Nx/2 intervals of the mesh;
everywhere else the density should be zero. Impose Neumann boundary conditions
vx(x = 0) = vx(x = 1) = vy(y = 0) = 0 on three boundaries of the domain, and a
Dirichlet condition v(y = 0.3) = 0 on the fourth boundary. Compute the solution

10.9 Problems 565

until t ≈ 50. If the speed of your computer (or the algorithm to solve the banded
system) allows it, gradually increase Nx and Ny .

10.9.3 Two-Dimensional Poisson Equation

We discuss the elliptic boundary problem (adapted from [2])

∇2v = 2π2(sin(πx) cos(πy) + cos(πx) sin(πy)
)
eπ(x+y)

on (x, y) ∈ R = [0,1] × [0,1] with Dirichlet boundary condition

v = 0, (x, y) ∈ ∂R,

that has the analytic solution v(x, y) = sin(πx) sin(πy)eπ(x+y).⊙
Discretize the problem on the unit square (x, y) ∈ [0,1] × [0,1] with

a uniform mesh Nx = Ny = 128 and solve it by using the Jacobi (10.41) and
Gauss–Seidel (10.42) iteration. Terminate the iteration when the value of the sup-
norm (A.3) or the energy norm (A.5) of the difference between subsequent solution
vectors (10.46) or the residual error (10.47) drops below a certain value, say, 10−6.
How does the number of iteration steps in both methods change when you refine the
discretization (increase Nx = Ny = N)?⊕

On the domain (x, y) ∈ R = [0,1] × [0,1], solve the following boundary
problem:

∇2v = ex+y = Q(x,y)

with Neumann boundary conditions (∂v/∂n)(x, y) = g(x, y), in detail:

∂v

∂x
(0, y) = 1

2
ey,

∂v

∂y
(x,0) = 1

2
ex,

∂v

∂x
(1, y) = 1

2
e1+y,

∂v

∂y
(x,1) = 1

2
ex+1.

The operator side of the equation is discretized as in (10.35), while the boundary
conditions are approximated at first order,

u1k = u0k + �xg0k, uj1 = uj0 + �ygj0,

uNxk = uNx−1k + �xgNxk, ujNy = ujNy−1 + �ygjNy ,

where j = 1,2, . . . ,Nx − 1 and k = 1,2, . . . ,Ny − 1. We rewrite the complete sys-
tem of equations (including the boundary conditions) as Au = q , where u is the
solution vector of the form (10.1) that does not contain components j = 0, j = Nx ,

566 10 Difference Methods for PDE in Several Dimensions

k = 0, and k = Ny (its dimension is (Nx − 1)(Ny − 1)). The matrix of the system,

A =

⎛

⎜
⎜⎜⎜⎜
⎝

T1 −Y 0
−Y T −Y 0

. . .
. . .

. . .

0 −Y T −Y

0 −Y T1

⎞

⎟
⎟⎟⎟⎟
⎠

,

is symmetric block-tridiagonal with (Ny −1)× (Ny −1) blocks, where the non-zero
blocks lie only along the diagonal and the first sub- and super-diagonal. The matrices
T1, T , and Y have dimension (Nx − 1)× (Nx − 1). By abbreviating a = 1/�x2 and
b = 1/�y2, the matrices T1 and T are

T1 =

⎛

⎜⎜
⎜⎜⎜
⎝

a + b −a 0
−a 2a + b −a 0

. . .
. . .

. . .

0 −a 2a + b −a

0 −a a + b

⎞

⎟⎟
⎟⎟⎟
⎠

and

T =

⎛

⎜⎜⎜⎜
⎜
⎝

a + 2b −a 0
−a 2a + 2b −a 0

. . .
. . .

. . .

0 −a 2a + 2b −a

0 −a a + 2b

⎞

⎟⎟⎟⎟
⎟
⎠

,

while Y = (1/�y2)I . The right-hand side of the equation is a vector of dimension
(Nx − 1) × (Ny − 1),

q = Q + bx + by,

with three contributions: the source term and two terms picking up those parts of
the expressions for boundary conditions that have not been absorbed in the matrix
A. The components are arranged in the usual “j − k” ordering:

Q = (Q11,Q21, . . . ,QNx−11,Q12,Q22, . . . ,Q1Ny−1,Q2Ny−1, . . . ,QNx−1Ny−1)
T,

bx = 1

�x
(g01,0, . . . ,0, gNx1, g02,0, . . . , g0Ny−1,0, . . . ,0, gNxNy−1)

T,

by = 1

�y
(g10, g20, . . . ,0, gNx−10,0,0, . . . , g1Ny , g2Ny , . . . ,0, gNx−1Ny)

T.

Discretize the problem on a reasonably fine uniform mesh with Nx,Ny ≈ 100. Solve
the matrix equation by the Gauss–Seidel and SOR method. Because the boundary
conditions have been discretized only to first order, the convergence of the solution
will also be just of order O(�x)+O(�y). Use the convergence tolerance of ≈ 10−6

10.9 Problems 567

in both schemes. The problem can be simplified by setting Nx = Ny = N , since in
this case the value of the optimal relaxation parameter ω for the SOR scheme can
be determined by

ωb = 2

1 +
√

1 − 1
4

(
1 + cos π

N

)2
.

10.9.4 High-Resolution Schemes for the Advection Equation

This Problem (taken from [2]) involves the two-dimensional advection equation

vt + c(x, y)vx + d(x, y)vy = 0, (x, y) ∈ [0,1] × [0,1],

with the initial condition

v(x, y,0) = f (x, y) =
{

1; (x, y) ∈ [1
4 , 3

4] × [1
4 , 3

4],
0; otherwise.

The analytic solution v(x, y, t) = f (x − ct, y − dt) at constant c and d does not
bother about the discontinuity in the initial condition: it just advances the initial
“jump” in time. In contrast, propagation of discontinuities in difference schemes is
plagued by typical annoyances discussed in this Problem.⊙

Set c = d = 1 and impose periodic boundary conditions v(0, y, t) =
v(1, y, t) for y ∈ [0,1] and v(x,0, t) = v(x,1, t) for x ∈ [0,1]. Use the scheme
(10.28) with the flux functions (10.29) and discretization Nx = Ny = 100 (�x =
0.01). Compute the solution until t = 1.0 in time steps of �t = 0.002. In same con-
ditions, apply the split Lax–Wendroff method (see (10.30) and (10.31)) with the flux
functions (10.32) and (10.33). Compute the solution until t = 0.2. Finally, solve the
problem by using the flux functions (10.48) and (10.49); once in the scheme (10.28),
and once in the split Lax–Wendroff scheme. Compare the solutions and describe
their behavior.⊕

For all schemes mentioned above, non-constant coefficients c and d are a
much harder nut to crack. You can see that by running the programs from the first
part of this Problem with a pair of seemingly harmless coefficient functions

c(x, y) = √
2

(
y − 1

2

)
, d(x, y) = √

2

(
x − 1

2

)
.

This part of the Problem can be solved well by the high-resolution Zalesak–
Smolarkiewicz method described in Sect. 10.3.

568 10 Difference Methods for PDE in Several Dimensions

10.9.5 Two-Dimensional Diffusion Equation in Polar Coordinates

Here we try to solve the diffusion equation [2]

vt = 1

r
(rvr)r + 1

r2
vθθ , v = v(r, θ, t),

on (r, θ) ∈ [0,1] × [0,2π] with pairs of initial and boundary conditions

v(r, θ,0) = 0, v(1, θ, t) = sin(4θ) sin t,

or

v(r, θ,0) = (1 − r2) sin(2θ), v(1, θ, t) = 0.

⊙
Use the explicit scheme (10.54) and (10.55) with Nr = 20, Nθ = 32, �t =

0.001. For the first condition pair, compute the solution at t = 0.1, 0.5, 1.5, 3.0, and
6.0; for the other pair, compute it at t = 0.1, 0.5, and 1.0.

10.9.6 Two-Dimensional Poisson Equation in Polar Coordinates

We would like to solve the Poisson equation in planar polar coordinates

−∇2v = Q,

by considering in two geometries (an annulus and a disk including the origin) and
different boundary conditions. (This problem is adapted from [2].)⊙

In the annular geometry (Fig. 10.7 (right)), let a = 0.1 and Q(r, θ) = 0,
and impose boundary conditions f1(θ) = sin 2θ and f2(θ) = sin 3θ for θ ∈ [0,2π].
Solve the problem by using the difference scheme described in Sect. 10.4.2. Use
the discretization Nr = Nθ = 20 and solve the resulting matrix system by using
the Gauss–Seidel method. Repeat the exercise by using a finer discretization Nr =
Nθ = 100 with the Gauss–Seidel and the optimal SOR method. In addition, use SOR
with Nr = Nθ = 100, a = 0.5, Q(r, θ) = exp(r) sin 2πθ , and boundary conditions
f1(θ) = sin 4θ , f2(θ) = sin 3θ for θ ∈ [0,2π]. Examine the difference between the
subsequent solutions (10.46) or the residual (10.47) to ascertain convergence.⊕

Solve the Poisson equation in the disk geometry (Fig. 10.7 (left)). Discuss
the case Q(r, θ) = 0 with the boundary condition f2(θ) = sin 2θ for θ ∈ [0,2π].
Use the Jacobi and SOR schemes with Nr = Nθ = 20. Additionally, use the SOR
method to solve the problem with Q(r, θ) = cos(πr) cos(2πθ) and the boundary
condition f2(θ) = sin 4θ on the mesh Nr = Nθ = 100. Use the quantities (10.46)
and (10.47) when determining when to stop the iteration.

10.9 Problems 569

Fig. 10.17 Regular
triangulation for solving the
Poisson equation on the
square by the finite-element
method. The indices of the
elements are underlined; the
indices of the nodes are not
(only one of the many options
is drawn)

10.9.7 Finite-Element Method

We would like to use the finite-element method to solve the Poisson equation

−∇2v = ∂2v

∂x2
+ ∂2v

∂y2
= f (x, y), (x, y) ∈ R = [0,1] × [0,1],

with f (x, y) = 8π2 sin(2πx) sin(2πy) and homogeneous Dirichlet boundary con-
ditions on all sides of R. The analytic solution is v(x, y) = sin(2πx) sin(2πy). (Ex-
ample adapted from [14].)⊙

First, use uniform triangulation with the lengths of intervals h on each axis
(Fig. 10.17), in which you span piecewise continuous basis functions on the individ-
ual elements, as described in Sect. 10.6. Set h = 0.1, 0.01, and 0.001. In all cases,
compute the error

[∫

R

|∇v − ∇u|2 dx

]1/2

.

⊕
Solve the problem by using a different enumeration of nodes and/or ele-

ments. By doing this, you obtain a different stiffness matrix and a different load
vector. Is the matrix sparse? How does this influence the speed at which the matrix
system can be solved?

570 10 Difference Methods for PDE in Several Dimensions

Fig. 10.18 [Left] Square geometry for the solution of the planar Laplace equation. The letters at
the boundaries denote the type of the boundary condition: (D) Dirichlet, (N) Neumann. [Right]
The geometry of a section of an annulus

10.9.8 Boundary Element Method for the Two-Dimensional
Laplace Equation

In this example (adapted from [12]) we are solving the two-dimensional Laplace
equation

∂2φ

∂x2
+ ∂2φ

∂y2
= 0

in the geometry of a square (see Fig. 10.18 (left)).
Along x = 0 and x = 1, impose Dirichlet boundary conditions, while along y = 0

and y = 1, impose Neumann conditions:

φ = 0 on boundary x = 0 for 0 < y < 1,

φ = cos(πy) on boundary x = 1 for 0 < y < 1,

∂φ

∂n
= 0 on boundaries y = 0 and y = 1 for 0 < x < 1.

The analytic solution is

φ(x, y) = sinh(πx) cos(πy)

sinhπ
.

⊙
Use the boundary element method to solve the Laplace equation on the

square with the conditions specified above. Divide each side of the square into N1

boundary elements, so that the boundary points are at

(
x(n), y(n)

)= ((n − 1)l,0
)

(bottom boundary),

(
x(N1+n), y(N1+n)

)= (1, (n − 1)l
)

(right boundary),

References 571

(
x(2N1+n), y(2N1+n)

)= (1 − (n − 1)l,1
)

(top boundary),

(
x(3N1+n), y(3N1+n)

)= (0,1 − (n − 1)l
)

(left boundary),

for n = 1,2, . . . ,N1, where l = 1/N1 is the length of each element. We have a total
of N = 4N1 boundary elements, and clearly

(
x(N+1), y(N+1)

)= (x(1), y(1)
)
.

⊕
Use the boundary element method to solve the Laplace equation in the ge-

ometry shown in Fig. 10.18 (right). Impose Neumann conditions on the straight
boundaries of the domain, and Dirichlet conditions on the circular arcs:

∂φ

∂n
= 0 on boundary x = 0 for 1 < y < 2,

∂φ

∂n
= 0 on boundary y = 0 for 1 < x < 2,

φ = cos

(
4 arctan

y

x

)
on arc x2 + y2 = 1 for x, y > 0,

φ = 3 cos

(
4 arctan

y

x

)
on arc x2 + y2 = 4 for x, y > 0.

The analytic solution is

φ(x, y) =
{

16

85

[
r4 − 1

r4

]
− 16

255

[
r4

16
− 16

r4

]}
cos

(
4 arctan

y

x

)
,

where r2 = x2 + y2. Divide the straight sections of the boundary into N1, the exte-
rior arc into 8N1, and the interior arc into 2N1 elements, so that the total number of
the boundary elements is N = 12N1:

(
x(n), y(n)

)=
(

1 + n − 1

N1
,0

)
, n = 1,2, . . . ,N1,

(
x(N1+n), y(N1+n)

)=
(

2 cos
(n − 1)π

16N1
,2 sin

(n − 1)π

16N1

)
, n = 1,2, . . . ,8N1,

(
x(9N1+n), y(9N1+n)

)=
(

0,2 − n − 1

N1

)
, n = 1,2, . . . ,N1,

(
x(10N1+n), y(10N1+n)

)=
(

sin
(n − 1)π

4N1
, cos

(n − 1)π

4N1

)
, n = 1,2, . . . ,2N1.

References

1. J.W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods. Springer
Texts in Applied Mathematics, vol. 22 (Springer, Berlin, 1998)

572 10 Difference Methods for PDE in Several Dimensions

2. J.W. Thomas, Numerical Partial Differential Equations: Conservation Laws and Elliptic
Equations. Springer Texts in Applied Mathematics, vol. 33 (Springer, Berlin, 1999)

3. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of
Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

4. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)
5. J.W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997)
6. J.R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain (Carnegie Mellon University, Pittsburgh, 1994) (unpublished, but accessible through nu-
merous websites)

7. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press,
Baltimore, 1996)

8. S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput.
Phys. 31, 335 (1979)

9. P.K. Smolarkiewicz, A fully multidimensional positive definite advection transport algorithm
with small implicit diffusion. J. Comput. Phys. 54, 325 (1984)

10. N.A. Peterson, An algorithm for assembling overlapping grid systems. SIAM J. Sci. Comput.
20, 1995 (1999)

11. W.D. Henshaw, On multigrid for overlapping grids. SIAM J. Sci. Comput. 26, 1547 (2005)
12. W.T. Ang, A Beginner’s Course in Boundary Element Methods (Universal, Boca Raton, 2007)
13. J.E. Flaherty, Finite Element Analysis. CSCI, MATH Lecture Notes, vol. 6860 (Rensselaer

Polytechnic Institute, Troy, 2000)
14. Z. Chen, Finite Element Methods and Their Applications (Springer, Berlin, 2005)
15. M.S. Gockenbach, Understanding and Implementing the Finite Element Method (SIAM,

Philadelphia, 2006)
16. Computational Geometry Algorithms Library. http://www.cgal.org. The algorithms from this

library are also built into MATLAB

17. M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms
and Applications, 3rd edn. (Springer, Berlin, 2008)

18. J.R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation. Comput.
Geom. 22, 21 (2002)

19. J. Alberty, C. Carstensen, S.A. Funken, Remarks around 50 lines of Matlab: short finite ele-
ment implementation. Numer. Algorithms 20, 117 (1999)

20. J. Alberty, C. Carstensen, S.A. Funken, R. Klose, Matlab implementation of the finite element
method in elasticity. Computing 69, 239 (2002)

21. http://en.wikipedia.org/wiki/List_of_finite_element_software_packages
22. F. Hecht, O. Pironneau, J. Morice, A. Le Hyaric, K. Ohtsuka, FreeFem++. http://

www.freefem.org/ff++
23. D. Knoll, J. Morel, L. Margolin, M. Shashkov, Physically motivated discretization methods.

Los Alamos Sci. 29, 188 (2005)
24. M. Shashkov, S. Steinberg, Solving diffusion equations with rough coefficients on rough grids.

J. Comput. Phys. 129, 383 (1996)
25. J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffusion problems in

strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132, 130 (1997)
26. J. Hyman, M. Shashkov, Mimetic discretizations for Maxwell’s equations. J. Comput. Phys.

151, 881 (1999)
27. J. Hyman, J. Morel, M. Shashkov, S. Steinberg, Mimetic finite difference methods for diffu-

sion equations. Comput. Geosci. 6, 333 (2002)
28. Y. Kuznetsov, K. Lipnikov, M. Shashkov, The mimetic finite difference method on polygonal

meshes for diffusion-type problems. Comput. Geosci. 8, 301 (2004)
29. P. Bochev, J. Hyman, Principles of mimetic discretizations of differential operators, in Com-

patible Spatial Discretizations, ed. by D.N. Arnold, P.B. Bochev, R.B. Lehoucq, R.A. Nico-
laides, M. Shashkov. The IMA Volumes in Mathematics and Its Applications, vol. 142
(Springer, Berlin, 2006), p. 89

References 573

30. Multiple authors, Special issue of Comput. Sci. Eng. Nov/Dec (2006)
31. P. Wesseling, An Introduction to Multigrid Methods (Edwards, Philadelphia, 2004)
32. W.L. Briggs, H. van Emden, S.F. McCormick, A Multigrid Tutorial, 2nd edn. (SIAM, Philadel-

phia, 2000)
33. S. Li, W.K. Liu, Mesh-Free Particle Methods (Springer, Berlin, 2004)
34. G.R. Liu, Mesh-Free Methods: Moving Beyond the Finite-Element Method (CRC Press, Boca

Raton, 2003)
35. E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to com-

putational fluid dynamics, I: surface approximations and partial derivative estimates. Comput.
Math. Appl. 19, 127 (1990)

36. E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to com-
putational fluid dynamics, II: solutions of parabolic, hyperbolic and elliptic partial differential
equations. Comput. Math. Appl. 19, 147 (1990)

37. N. Flyer, B. Fornberg, Radial basis functions: developments and applications to planetary
scale flows. Comput. Fluids 46, 23 (2011)

38. M. Tatari, M. Dehghan, A method for solving partial differential equations via radial basis
functions: application to the heat equation. Eng. Anal. Bound. Elem. 34, 206 (2010)

39. E.J. Kansa, Exact explicit time integration of hyperbolic partial differential equations with
mesh free radial basis functions. Eng. Anal. Bound. Elem. 31, 577 (2007)

40. E. Larsson, B. Fornberg, A numerical study of some radial basis function based solution meth-
ods for elliptic PDEs. Comput. Math. Appl. 46, 891 (2003)

41. C.-S. Huang, H.-D. Yen, A.H.-D. Cheng, On the increasingly flat radial basis function and
optimal shape parameter for the solution of elliptic PDEs. Eng. Anal. Bound. Elem. 34, 802
(2010)

42. H.J. Eberl, L. Demaret, A finite difference scheme for a degenerated diffusion equation arising
in microbial biology. Electron. J. Differ. Equ. 15, 77 (2007)

43. I. Klapper, J. Dockery, Mathematical description of microbial biofilms. SIAM Rev. 52, 221
(2010)

Chapter 11
Spectral Methods for PDE

In finite-difference methods the exact solution v of the differential equation is ap-
proximated by low-order polynomials interpolating v at several nearby mesh points.
For example, (9.3) is an approximation of the derivative at xj obtained by parabolic
interpolation between xj−1, xj , and xj+1. The solution on the whole interval is con-
structed by superposing many such overlapping polynomials as the weighted sum
of the function values at the interpolation points.

In spectral methods [1] we approximate the solution on the whole interval by
a single high-degree polynomial and establish conditions at which this polynomial
approximates the exact solution as closely as possible. Different methods exploit
different classes of polynomials and ways of realizing these conditions.

Linear Stationary Problems Spectral methods represent a subclass of the meth-
ods of weighted residuals. Initially we discuss linear PDE (e.g. of the form (9.1)) on
the domain �, with the boundary condition specified at the domain boundary ∂�,

Lv = Q in �, (11.1)

Bv = 0 on ∂�, (11.2)

where L and B are linear operators. It is easier to grasp the basic ideas of spectral
methods by placing them in the context of mappings between vector spaces. The
operator L in (11.1) acts in the Hilbert space X, which is the space of real or com-
plex functions defined on �. These functions are square-integrable with respect to a
continuous positive weight function. We present the operator L in its discrete form
LN , which is defined on XN ⊂ X and maps to X.

At the heart of all spectral methods is the condition for the spectral approxima-
tion uN ∈ XN or for the residual R = LNuN − Q. We require that the linear pro-
jection with the projector PN of the residual from the space Z ⊆ X to the subspace
YN ⊂ Z is zero,

PN

(
LNuN − Q

) = 0. (11.3)

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9_11, © Springer-Verlag Berlin Heidelberg 2012

575

576 11 Spectral Methods for PDE

The operator PN is an orthogonal projector. With the scalar product 〈u,v〉N in the
space YN this means 〈z − PNz, v〉N = 0 for ∀v ∈ YN . Under this assumption the
basic spectral requirement can be written in its variational form

〈
LNuN − Q,v

〉
N

= 0 ∀v ∈ YN . (11.4)

The way in which the residual R is minimized depends on the choice of spaces XN ,
YN , and the form of the projector PN . Clearly XN and YN should have equal dimen-
sions for the solution of (11.3) to be unique, but in general these spaces need not
be identical. In Galerkin and collocation methods for problems involving Dirichlet
boundary conditions, usually XN = YN , while in tau methods XN �= YN . The choice
of the vector spaces and the definition of the scalar product (i.e. the projection of the
differential equation to the corresponding subspace) depends on the nature of the
problem and on the individual method.

In one dimension the spectral solution is sought in the form of a finite sum

uN(x) =
∑

n

unφn(x), (11.5)

where φn are the trial (or expansion, or approximating) functions that form the ba-
sis of XN . The range of the index n depends on N and on the type of the method.
In addition to the trial functions, we also utilize test or weight functions ψn, which
are used to minimize the residual R = LNuN − Q in the sense of the scalar prod-
uct (11.4), thus

〈ψn,R〉 = 0 ∀n. (11.6)

In Galerkin and tau methods, the trial and test functions are equal (ψn = φn), but
in the Galerkin approach we choose them such that they fulfill boundary conditions
by themselves; in tau methods, boundary conditions are imposed by supplemental
equations. In collocation methods, the test functions are the delta-“functions” ψn =
δ(x − xn) applied at the collocation points xn.

Linear Evolution Problems In the analysis of linear evolution problems

vt + Lv = Q in � × (0,∞),

Bv = 0 on ∂� × (0,∞),

v = v0 in � at t = 0,

(11.7)

the spectral approximation is usually realized in the spatial part only. We treat time
as a separate variable and compute the time evolution by using the methods for
initial-value problems (Chap. 7).

The spectral approximation uN for all t ≥ 0 is a continuously differentiable func-
tion with the values in XN . At t = 0 it satisfies the initial condition, while at t > 0
it satisfies

PN

(
duN

dt
+ LNuN − Q

)
= 0,

11.1 Spectral Representation of Spatial Derivatives 577

or, in variational form,

〈
duN

dt
+ LNuN − Q,v

〉

N

= 0 ∀v ∈ YN, (11.8)

which is analogous to (11.4) for stationary problems. We will see that the condi-
tions (11.6) translate to systems of algebraic equations, and conditions (11.8) to
systems of differential equations.

Comparison of Difference and Spectral Methods Trial functions distinguish
difference and finite element methods (Chaps. 9 and 10) from spectral methods. In
the former two classes of methods, they are overlapping low-degree local polyno-
mials, thus they are more suitable for irregular geometries. In spectral methods, they
are infinitely differentiable global functions (trigonometric functions, Chebyshev or
Legendre polynomials), so their applicability is limited to regular geometries with-
out discontinuities. Still, spectral methods have also invaded the field of complex
geometries [2].

11.1 Spectral Representation of Spatial Derivatives

In spectral methods for PDE the spatial derivatives can be evaluated in several ways,
in configuration (physical) or transformed space. In transformed space the compu-
tation of the derivatives becomes very simple.

11.1.1 Fourier Spectral Derivatives

The Fourier series (4.8) corresponds to the Fourier series for the derivative of u,

Su′ =
∞∑

k=−∞
ikûkφk,

which is known as the spectral (Fourier–Galerkin) derivative. Deriving with respect
to x in configuration space is equivalent to multiplying each Fourier coefficient by
ik in transform space. (Recall the momentum operator p = �k = −i�∇ in non-
relativistic quantum mechanics.) The derivation and the truncation of the series
(Su → SNu) commute, thus (SNu)′ = SNu′. We obtain ever higher derivatives by
multiplying the coefficients repeatedly by ik,

dmu(x)

dxm
←→ (ik)mûk. (11.9)

578 11 Spectral Methods for PDE

In the discrete case, the derivative is computed by using the function values uj =
u(xj) given at the Fourier collocation points

xj = 2πj/N, j = 0,1, . . . ,N − 1, N even.

First, we compute the discrete coefficients ũk , multiply them by ik, and transform
back to configuration space by using (4.12). The approximation for the derivative at
xj is then

(DNu)j =
N/2−1∑

k=−N/2

ũ
(1)
k e2ijkπ/N , j = 0,1, . . . ,N − 1,

where

ũ
(1)
k = ikũk = ik

N

N−1∑

j=0

u(xj)e
−2ijkπ/N , k = −N/2,−N/2 + 1, . . . ,N/2 − 1.

The (DNu) is called the Fourier collocation (or interpolation) derivative, as the val-
ues (DNu)j are equal to the derivatives of the discrete Fourier transform at the mesh
points. By changing the order of summation over k and j , the Fourier derivative can
be expressed as a matrix multiplication:

(DNu)l =
N/2−1∑

k=−N/2

(
ik

N

N−1∑

j=0

u(xj)e
−2π ijk/N

)

e2π ikl/N =
N−1∑

j=0

(
D

(1)
N

)
lj
uj , (11.10)

where

(
D

(1)
N

)
lj

= 1

N

N/2−1∑

k=−N/2

ike2ik(l−j)π/N . (11.11)

If u is a real function, the term with k = −N/2 makes a purely imaginary contri-
bution to the sum. In other words, if the Fourier coefficient û−N/2 has a non-zero
imaginary component, uN is not a real function. As a rule, we therefore drop the
term with k = −N/2, i.e. we set û−N/2 ≡ 0. This asymmetry between the lower
and upper limit for k and the mentioned artifact originate in numerous implementa-
tions of the FFT calling for meshes with even numbers of points. The sum in (11.11)
can then be computed analytically, yielding [3]

(
D

(1)
N

)
lj

=
{

0; l = j,
1
2 (−1)l+j ctg (l−j)π

N
; l �= j.

(11.12)

An analogous procedure gives the matrix corresponding to the second derivative,

(
D

(2)
N

)
lj

=
{− 1

12 (N − 1)(N − 2); l = j,

1
4 (−1)l+jN + 1

2 (−1)l+j+1 sin−2 (l−j)π
N

; l �= j.
(11.13)

11.1 Spectral Representation of Spatial Derivatives 579

Fig. 11.1 [Left] The precision of the derivative of the function u(x) = exp(sinx) on [0,2π].
Finite-difference methods converge as O(N−m), where m is the order of the method (here m = 4).
The spectral derivative converges faster than any power N−m. [Right] The spectral derivatives of
sin(x/2) compared to the analytical derivative. Due to the discontinuities at the boundaries of the
interval [0,2π] Gibbs oscillations appear. Here IN denotes the interpolants at N points (see (4.13))

This matrix can be used to compute the values of the second derivative at the collo-
cation points by simple multiplication,

(
D2

Nu
)
l
=

N−1∑

j=0

(
D

(2)
N

)
lj
uj . (11.14)

Example One can get a feel for the beauty of spectral derivation in the case of a
simple function u(x) = exp(sinx) which is periodic on x ∈ [0,2π]. We compute
its derivative first by using finite differences, then by using (11.10). The fourth-
order finite difference u′(xj) ≈ [u(xj−2)− 8u(xj−1)+ 8u(xj+1)−u(xj+2)]/(12h)

corresponds to the five-diagonal circulant matrix (write it down). The error with
respect to the analytical solution ‖u′

N − u′‖ decreases as O(N−4) (Fig. 11.1 (left)).

All elements of the matrix D
(1)
N in (11.12) except the diagonal ones are non-zero, but

the error drops to round-off level already at very small N . For sufficiently smooth
functions the error decreases as O(N−m) for any m. This dramatic fall-off that gave
the methods of this chapter their name is known as spectral convergence. Do not
expect it for functions with discontinuities! For such functions—regardless of N—
typical oscillations occur throughout the domain, in particular at its edges (Gibbs
phenomenon). An example for the function u(x) = sin(x/2) with the discontinuity
in the derivative u′(x) = 1

2 cos(x/2) is shown in Fig. 11.1 (right).

The collocation derivative (or second derivative) can be computed naively, by
multiplying the N ×N matrix and the N -dimensional vector uj according to (11.10)
and (11.14), which takes 2N2 operations. There is a much faster way. First we use
the inverse FFT to compute the interior sums, multiply the computed Fourier coeffi-

580 11 Spectral Methods for PDE

cients by ik (or (ik)2 for the second derivative), and finally use FFT to compute the
exterior sum. For a real function u the total cost is N(5 log2 N − 5) operations if the
classic FFT is used (see pp. 168–169 and Fig. 4.7 (right)).

We have written the matrix representations of Fourier derivatives for an even
number of mesh points N . The formulas for odd N are given in [4].

11.1.2 Legendre Spectral Derivatives

The spectral derivatives of functions that can be expanded in orthogonal polynomi-
als can also be computed in configuration (physical) space or transform space. In
transform space, the first and the second derivative of a function with the Legendre
expansion (4.29) are

u′(x) =
∞∑

k=0

û
(1)
k Pk(x), û

(1)
k = (2k + 1)

∞∑

p=k+1
p+modd

ûp,

u′′(x) =
∞∑

k=0

û
(2)
k Pk(x), û

(2)
k =

(
k + 1

2

) ∞∑

p=k+2
p+k even

[
p(p + 1) − k(k + 1)

]
ûp.

(11.15)

These formulas follow from the recurrence relations for Legendre polynomials
[5]. The finite sum (PNu)′ corresponding to the first derivative is known as the
Legendre–Galerkin derivative. In contrast to the Fourier expansion, this derivative
and the truncation of the sum do not converge, thus (PNu)′ �= PN−1u

′. Asymptoti-
cally PN−1u

′ is a better approximation of u′ than (PNu)′ [3].
If the values of a function are given at the Gauss, Gauss–Radau, or Gauss–

Lobatto quadrature nodes (see (4.30), (4.31), and (4.33)), it can be differentiated
in physical space by differentiating the interpolation polynomial INu of degree N

and evaluating it at these points. The Legendre collocation derivative is defined as
the derivative of the discrete finite series for the function u,

DNu = (INu)′, (11.16)

and is a polynomial of degree N − 1. We compute the collocation derivative
(DNu)l = (DNu)(xl) at x0, x1, . . . , xN from the values u(xj) as

(DNu)l =
N∑

j=0

(
D

(1)
N

)
lj
u(xj), l = 0,1, . . . ,N. (11.17)

11.1 Spectral Representation of Spatial Derivatives 581

The matrix elements (D
(1)
N)lj can be computed explicitly for all three types of

quadrature [3]. Most frequently, the Gauss–Lobatto variant (4.33) is used, for which

(
D

(1)
N

)
lj

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−N(N+1)
4 ; j = l = 0,

0; 1 ≤ j = l ≤ N − 1,
N(N+1)

4 ; j = l = N,

PN(xl)
PN (xj)

1
xl−xj

; j �= l.

The matrix corresponding to the second derivative is

(
D

(2)
N

)
lj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(N+1)(N2+N−2)
24 ; j = l = 0, j = l = N,

(−1)N

PN (xj)

N(N+1)(1+xj)−4
2(1+xj)2 ; l = 0, 1 ≤ j ≤ N,

1
PN(xj)

N(N+1)(1−xj)−4
2(1−xj)2 ; l = N, 0 ≤ j ≤ N − 1,

1
3

P ′′
N (xj)

PN (xj)
; 1 ≤ j = l ≤ N − 1,

− PN(xl)
PN (xj)

2
(xl−xj)2 ; 1 ≤ l ≤ N − 1,

0 ≤ j ≤ N, j �= l.

A fast Legendre transform is not known, so in order to compute the Legendre spec-
tral derivative, one should use the matrix multiplication (11.17).

11.1.3 Chebyshev Spectral Derivatives

In transform space, the first and second Chebyshev–Galerkin derivative of the func-
tion with the expansion (4.39) can be computed by using the formulas

u′(x) =
∞∑

k=0

û
(1)
k Tk(x), û

(1)
k = 2

ck

∞∑

p=k+1
p+k odd

pûp, (11.18)

u′′(x) =
∞∑

k=0

û
(2)
k Tk(x), û

(2)
k = 1

ck

∞∑

p=k+2
p+k even

p
(
p2 − k2)ûp. (11.19)

(The formulas for the third and fourth derivative are listed in [4].) The expansion
coefficients of the derivative u′ and of the function u are related by

ckû
(1)
k = û

(1)
k+2 + 2(k + 1)̂uk+1, k = 0,1, . . . ,N − 1. (11.20)

This allows us to effectively differentiate a degree-N polynomial in Chebyshev
transform space: since û

(1)
k = 0 for all k ≥ N , the expansion coefficients of u′ can

582 11 Spectral Methods for PDE

be computed from the expansion of u by using (11.20). The generalization of this
relation is

ckû
(q)
k = û

(q)

k+2 + 2(k + 1)̂u
(q−1)

k+1 , k ≥ 0.

The Chebyshev interpolation derivative in the sense of (11.16) can be represented
in matrix form (11.17) just as in the case of Legendre polynomials. Here we list only
the matrices corresponding to the first and second derivative for the Gauss–Lobatto
nodes [3]. The matrix for the first derivative is

(
D

(1)
N

)
lj

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
6 (2N2 + 1); j = l = 0,

− 1
2

xj

1−x2
j

; 1 ≤ j = l ≤ N − 1,

− 1
6 (2N2 + 1); j = l = N,

cl

cj

(−1)l+j

xl−xj
; j �= l.

(11.21)

The matrix corresponding to the second derivative is

(
D

(2)
N

)
lj

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
15 (N4 − 1); j = l = 0, j = l = N,

2
3

(−1)j

cj

(2N2+1)(1−xj)−6
(1−xj)2 ; l = 0, 1 ≤ j ≤ N,

2
3

(−1)j+N

cj

(2N2+1)(1+xj)−6
(1+xj)2 ; l = N, 0 ≤ j ≤ N − 1,

− (N2−1)(1−x2
l)+3

3(1−x2
l)2 ; 1 ≤ j = l ≤ N − 1,

(−1)j+l

cj

x2
l +xj xl−2

(1−x2
l)(xj −xl)

2 ; 1 ≤ l ≤ N − 1,

0 ≤ j ≤ N, j �= l.

(The coefficients ci are defined below (4.41).) In computing the denominators xl −
xj and 1 − x2

j for large N round-off errors may occur due to subtraction of almost
equal values. The following expressions that can be derived from the definition of
Chebyshev nodes, xj = cos(πj/N), are more stable:

1

1 − x2
j

−→ 1

sin2(jπ/N)
,

1

xl − xj

−→ −1

2

1

sin[(l + j)π/(2N)] sin[(l − j)π/(2N)] .

For further hints on improving the precision of matrix differentiation see [6].
As with Legendre polynomials, the Chebyshev series truncation and interpolation

do not commute with differentiation. This implies that asymptotically PN−1u
′ and

IN−1u
′ are better approximations of u′ than (PNu)′ or (INu)′.

11.1 Spectral Representation of Spatial Derivatives 583

Fig. 11.2 The cosine
function cosnθ and the
Chebyshev polynomial Tn

for n = 14

11.1.4 Computing the Chebyshev Spectral Derivative by Fourier
Transformation

The Chebyshev collocation spectral derivative can be computed efficiently by using
the fast Fourier transformation. We see this from the structure of the interpolation
polynomial in dependence on x or θ , where x = cos θ . In the following we restrict
the discussion to the Chebyshev–Gauss–Lobatto collocation (4.40). The polynomial

p(x) =
N∑

n=0

anTn(x), x ∈ [−1,1], (11.22)

interpolates an arbitrary function f on the interval x ∈ [−1,1] at Chebyshev col-
location points xj = cos(πj/N), where j = 0,1, . . . ,N . On the other hand, the
polynomial

P(θ) =
N∑

n=0

an cosnθ, θ ∈R, (11.23)

interpolates an arbitrary even and 2π -periodic function F at equidistant points
θj = πj/N . With the transformation x = cos θ we have F(θ) = f (x) = f (cos θ),
which implies P(θ) = p(x) = p(cos θ). The Chebyshev transform (11.22) in x is
therefore nothing but the Fourier (cosine) transform (11.23) in θ . In other words, if
one “wraps” the cosine function cosnθ around a half-cylinder with unit radius and
look at it from the side, the Chebyshev polynomial Tn emerges (Fig. 11.2).

The procedure is [7]: compute the derivative of the Chebyshev interpolation poly-
nomial p of the function f by first finding the trigonometric interpolation polyno-
mial P of the corresponding function F ; compute the derivative in Fourier space;
compute the inverse Fourier transform on the uniform mesh; finally, display the ob-
tained values on the mesh of Chebyshev collocation points.

We write the values uj at the Chebyshev collocation points xj = cos(πj/N),
j = 0,1, . . . ,N , as an array U = {U1,U2, . . . ,U2N } of dimension 2N ,

Uj+1 = uj , j = 0,1, . . . ,N,

U2N−j+1 = uj , j = 1,2, . . . ,N − 1.

584 11 Spectral Methods for PDE

By fast Fourier transformation we calculate

Ûk = π

N

2N∑

j=1

e−ikθj Uj , k = −N + 1,−N + 2, . . . ,N.

The polynomial P depends on the transformed values Ûk and has the form

P(θ) = 1

2π

N∑

k=−N+1

eikθ Ûk =
N∑

n=0

an cosnθ.

At this point we actually execute the differentiation by using (11.9) at m = 1, thus

V̂k =
{

ikÛk; k = −N + 1,−N + 2, . . . ,N − 1,

0; k = N,
(11.24)

and compute the inverse Fourier transform

Wj = 1

2π

N∑

k=−N+1

eikθj V̂k, j = 1,2, . . . ,2N.

This yields the derivative of the trigonometric interpolation polynomial P on the
equidistant mesh θj . In the last step the derivative of the interpolation polynomial p

is computed on the mesh xj . This is accomplished by using the chain rule

p′(x) = dp

dx
= dP

dθ

dθ

dx
= −P ′(θ)

sin θ
=

∑N
n=0 ann sinnθ√

1 − x2
.

Denote p′(xj) = wj and P ′(θj) = Wj . At the interior collocation points we get

wj = − Wj√
1 − x2

j

, j = 1,2, . . . ,N − 1. (11.25)

Note that at x0 = 1 (θ = 0) and xN = −1 (θ = π), the expressions for w0 and wN

are of the form 0/0 and must be harnessed by the l’Hôpital rule, resulting in

w0 = 1

π

[
N−1∑

n=1

n2Ûn + N2

2
ÛN

]

, wN = 1

π

[
N−1∑

n=1

(−1)n+1n2Ûn − N2

2
ÛN

]

.

Example Compute the Chebyshev spectral derivative of the function

u(x) = (
x2 − 1

)
exp

(
x3),

given at the Chebyshev nodes xj = cos(πj/N), j = 0,1, . . . ,N where its values
are determined by the interpolation polynomial (11.22); see Fig. 11.3 (left). The

11.1 Spectral Representation of Spatial Derivatives 585

Fig. 11.3 [Left] The graphs of u(x) = (x2 −1) exp(x3) and its derivative u′(x). The symbols ◦ and
• denote their values at the Chebyshev points xj = cos(πj/N), j = 0,1, . . . ,N , where N = 32.
[Right] The absolute error of the derivative, computed via multiplication by the matrix (11.21) and
according to (11.25) via FFT

derivatives at xj can be computed simply by multiplying uj by the matrix D
(1)
N of

(11.21), but a more elegant way to the derivatives p′(xj) = wj leads through (11.25)
and two additional equations for w0 and wN by using FFT. Figure 11.3 (right) shows
the absolute error of both methods.

Higher derivatives can be computed similarly. To compute the mth derivative
in Fourier space, step (11.24) should be repeated m-times, as shown in (11.9). We
define

V̂
(m)
k = (ik)mÛk

and set V̂−N = 0, if m is odd. Let us compute the second derivative:

p′′(x) = dP

dθ

d2θ

dx2
+ d2P

dθ2

(
dθ

dx

)2

= − x

(1 − x2)3/2
P ′(θ) + 1

1 − x2
P ′′(θ).

By denoting p′′(xj) = w
(2)
j and P ′′(θj) = W

(2)
j we obtain at the interior points

w
(2)
j = − xj

(1 − x2
j)3/2

Wj + 1

1 − x2
j

W
(2)
j , j = 1,2, . . . ,N − 1,

while at the boundary points (check this as an exercise) we get

w
(2)
0 = 1

3π

[
N−1∑

n=1

(
n4 − n2)Ûn + N4 − N2

2
ÛN

]

,

586 11 Spectral Methods for PDE

w
(2)
N = 1

3π

[
N−1∑

n=1

(−1)n
(
n4 − n2)Ûn + N4 − N2

2
ÛN

]

.

11.2 Galerkin Methods

In Galerkin methods for stationary problems of the form (11.1) with boundary con-
ditions (11.2), the residual R is minimized by requiring (11.6). This means

〈
ψn,LNuN − Q

〉 =
〈
ψn,LN

∑

k

ukφk − Q

〉
=

∑

k

uk〈ψn,LNφk〉 − 〈ψn,Q〉 = 0.

In the classical Galerkin methods, the trial and test functions are the same, so ψn =
φn, and the equations above become

∑

k

Lnkuk = 〈φn,Q〉, n = 0,1, . . . ,N,

Lnk = 〈φn,LNφk〉.
By solving this linear system we get N + 1 coefficients uk of the spectral expan-
sion (11.5) of the function uN . We have not specified in detail the range of the index
k. For example, depending on the test function, it may run from −N/2 to N/2 − 1
(trigonometric polynomials) or from 0 to N (orthogonal polynomials).

11.2.1 Fourier–Galerkin

The classic model stationary problem is the one-dimensional Helmholtz equation

−d2v

dx2
+ λv = Q, x ∈ (0,2π), (11.26)

where λ ≥ 0. We seek solutions that are periodic on the interval [0,2π]. The equa-
tion is of the form Lv = Q, where L = −d2/dx2 +λ is a linear differential operator.
This is not a “genuine” partial differential equation as it only contains the spatial
derivative, but we use it to learn the basics of Galerkin methods. Later on we add
another spatial dimension and time dependence.

First let us construct the spectral solution in the space of trigonometric polyno-
mials. The trial space XN is spanned on a set of such polynomials (basis functions)
φk of degree ≤ N/2,

{
φk(x) = eikx;−N/2 ≤ k ≤ N/2 − 1

}
.

11.2 Galerkin Methods 587

The spectral solution u = uN will then have the form of a finite Fourier series,

u(x) = uN(x) =
N/2−1∑

k=−N/2

ûkφk(x) =
N/2−1∑

k=−N/2

ûkeikx. (11.27)

We interpret L as LN , and insert the solution ansatz in the Galerkin condition,
〈
ψn,LNuN

〉 = 〈ψn,Q〉, (11.28)

where

ψn(x) = 1

2π
e−inx (11.29)

are the test functions. The trial and the test functions are orthogonal,

〈ψn,φk〉 =
∫ 2π

0
ψn(x)φ∗

k (x)dx = δk,n. (11.30)

From the system (11.28) one therefore reaps only the simple relation

ûk = Q̂k

k2 + λ
, −N

2
≤ k ≤ N

2
− 1, (11.31)

where the coefficients Q̂k are

Q̂k = 1

2π

∫ 2π

0
Q(x)e−ikx . (11.32)

The value of the coefficient û0 is arbitrary when λ = 0 (a non-zero value means
just a translation of the solution along the dependent axis). In order to exploit the
standard Fourier transformation with even N , we set Q̂−N/2 = 0 and thus damp only
the highest Fourier component that has no match in Q̂N/2 (as argued on p. 578).

We have described the Fourier–Galerkin method. It is a “Fourier” method
because the trial and test functions are trigonometric polynomials; it is also a
“Galerkin” method because the minimization of the residual occurs in the character-
istic manner (11.28). For certain functions Q the Fourier coefficients (11.32) can be
computed analytically; otherwise numerical integration must be used. An example
is discussed in Problem 11.9.1.

11.2.2 Legendre–Galerkin

The Fourier–Galerkin method is applicable to the problem (11.26) with periodic
solutions. For the same problem with homogeneous Dirichlet conditions,

−d2v

dx2
+ λv = Q, x ∈ (−1,1), v(−1) = v(1) = 0, (11.33)

588 11 Spectral Methods for PDE

Fig. 11.4 [Left, Center] The basis functions (11.35) for the Legendre–Galerkin method with
k ∈ {2,4,6} and k ∈ {3,5,7}. [Right] The basis functions (11.40) for the Chebyshev–Galerkin
methods with k ∈ {0,1,2}

the Legendre polynomials also offer a very natural basis. (More general guidelines
on choosing the basis functions can be found in Sect. 11.7.) Following [3] one can
seek the spectral solution on the interval [−1,1] in the form

u(x) =
N∑

k=2

ŭkφk(x), (11.34)

where the basis functions are

φk(x) =
{

P0(x) − Pk(x); k even and ≥2,

P1(x) − Pk(x); k odd and ≥3
(11.35)

(see Fig. 11.4 (left and center)).
Legendre polynomials have the property Pk(±1) = (±1)k , so the particular

choice of the basis functions (11.35) automatically fulfills the boundary conditions
u(−1) = u(1) = 0, even though φk are not orthogonal. Because the spectral solution
is expanded in terms of the functions φk instead of the polynomials Pk , we use the
notation ŭk for the expansion coefficients instead of the usual ûk as in (4.29). We set
the test functions to be identical to the trial functions, thus ψk = φk . The Galerkin
condition then becomes

−
〈

d2u

dx2
, φl

〉
+ λ〈u,φl〉 = 〈Q,φl〉 = bl, l = 2,3, . . . ,N, (11.36)

where the scalar products should be understood as

〈u,v〉 =
∫ 1

−1
u(x)v(x)dx

11.2 Galerkin Methods 589

(see (A.1) with the Legendre weight w(x) = 1). After integrating by parts and taking
into account the boundary conditions, one obtains

−
〈

d2u

dx2
, φl

〉
= −

[
φl(x)

du

dx

]∣∣∣∣

1

−1︸ ︷︷ ︸
0

+
〈

du

dx
,

dφl

dx

〉
.

We write the expansion coefficients ŭk and the expressions for bl as vectors ŭ =
(ŭ2, ŭ3, . . . , ŭN)T and b = (b2, b3, . . . , bN)T. When the solution ansatz is inserted
in (11.36), the system can be written as a matrix equation for ŭ:

(K + λM)ŭ = b, (11.37)

where the matrix elements of K and M are

Klk =
〈

dφk

dx
,

dφl

dx

〉
=

⎧
⎨

⎩

min(k, l)[min(k, l) + 1]; k, l even and ≥2,

min(k, l)[min(k, l) + 1] − 2; k, l odd and ≥3,

0; otherwise,

Mlk = 〈φk,φl〉 =
⎧
⎨

⎩

2 + 2
2k+1δk,l; k, l even and ≥2,

2
3 + 2

2k+1δk,l; k, l odd and ≥3,

0; otherwise.

(Compute the elements Kkl and Mkl as an exercise. You only need the basic proper-
ties of Legendre polynomials.) Through solving (11.37) we obtain the “Legendre–
Galerkin” spectral approximation of u by (11.34).

The matrix K + λM is sparse (empty subdiagonals interchange with the full), so
the solution of the system (11.37) may be time-consuming and prone to round-off
errors. With a different choice of the basis functions,

φk(x) = 1√
4k + 6

[
Pk(x) − Pk+2(x)

]
, k ≥ 0, (11.38)

that fulfill the boundary conditions, and the solution ansatz

u(x) =
N−2∑

k=0

ŭkφk(x) (11.39)

we obtain a tridiagonal system. Details can be found in [2], and a concrete example
is given in Problem 11.9.1.

11.2.3 Chebyshev–Galerkin

Legendre polynomials are not the only option to solve problems of the form (11.33).
They can be also attacked by Chebyshev polynomials. The spectral approximation

590 11 Spectral Methods for PDE

is written in the form (11.39), with the basis functions

φk(x) = Tk(x) − Tk+2(x), k = 0,1, . . . ,N − 2, (11.40)

which again are not orthogonal, but they do fulfill the boundary conditions u(−1) =
u(1) = 0 due to the property Tk(±1) = (±1)k (Fig. 11.4 (right)). The Galerkin con-
dition now reads

−
〈

d2u

dx2
, φl

〉

w

+ λ〈u,φl〉w = 〈Q,φl〉w = bl, l = 0,1, . . . ,N − 2,

where the scalar products involve the Chebyshev weight:

〈u,v〉w =
∫ 1

−1
u(x)v(x)w(x)dx, w(x) = 1√

1 − x2
.

When the expansion coefficients ŭk and the expressions for bl at the right-hand
side of the Galerkin equation are arranged as vectors ŭ = (ŭ0, ŭ1, . . . , ŭN−2)

T and
b = (b0, b1, . . . , bN−2)

T, we again obtain a matrix system of the form (11.37), where

Klk =
⎧
⎨

⎩

2π(l + 1)(l + 2); k = l,

4π(l + 1); k = l + 2, l + 4, l + 6, . . . ,

0; k < l or k + l = odd,

Mlk =
⎧
⎨

⎩

π
2 (cl + 1); k = l,

−π
2 ; k = l ± 2,

0; otherwise,

where c0 = 2 and ck = 1 for k ≥ 1. In this case the matrix system is asymmetric
(K is upper triangular and M is tridiagonal). The bl can be computed numerically,
and they can be expressed in terms of the usual Chebyshev coefficients,

bl = π

2

(
clQ̂l − cl+2Q̂l+2

)
, l = 0,1, . . . ,N − 2.

Once the coefficients ŭk are known, the solution is given by the sum (11.39), or else
we transform the coefficients,

ûk =
{

ŭk; k = 0,1,

ŭk − ŭk−2; k = 2,3, . . . ,N − 2,

and apply the expansion in terms of the Chebyshev polynomials,

u(x) =
N−2∑

k=0

ûkTk(x).

Figure 11.6 shows the error of the Chebyshev–Galerkin method for the problem
with the function Q(x) = (16π2 + λ) sin(4πx) in comparison to other methods.

11.2 Galerkin Methods 591

11.2.4 Two Space Dimensions

Extending the Galerkin method for our chosen model problem to two space dimen-
sions is straightforward. The Helmholtz equation (11.26) becomes

−∇2v + λv = Q, x ∈ � = (0,2π) × (0,2π),

and instead of (11.27) the spectral solution is sought in the form

u(x, y) =
∑

kl

ûkle
i(kx+ly).

The test functions, the scalar product (11.30), and the Galerkin condition (11.28)
should be generalized to two dimensions as well. Instead of (11.31) we get

ûkl = Q̂kl

k2 + l2 + λ
, k, l = −N/2,−N/2 + 1, . . . ,N/2 − 1,

with the coefficients

Q̂kl =
∫

�

Q(x, y)e−i(kx+ly) dx dy.

To solve the equation −∇2v + λv = Q with Dirichlet boundary conditions (two-
dimensional generalization of (11.33)) by Legendre–Galerkin or Chebyshev–
Galerkin method, the basis functions (11.35) and (11.40) are used in product,

φkl(x, y) = φk(x)φl(y).

Only the book-keeping becomes slightly more complicated: the expansion coeffi-
cients are organized as ≈ N × N -dimensional vectors, and the matrices K and M

of the corresponding matrix systems blow up to sizes ≈ N2 × N2. (Recall the vec-
tor (10.1) that holds the two-dimensional finite-difference solution.)

11.2.5 Non-stationary Problems

The spectral approach changes substantially when time dependence is included. Fol-
lowing [3], the basic model problem is the linear hyperbolic equation

∂v

∂t
− ∂v

∂x
= 0, x ∈ (0,2π), t > 0,

with a periodic boundary condition v(0, t) = v(2π, t) for each t , and the initial
condition v(x,0) = f (x). The ansatz for the solution is

u(x, t) =
N/2−1∑

k=−N/2

ûk(t)φk(x), (11.41)

592 11 Spectral Methods for PDE

where the basis functions φk(x) = eikx depend on the space coordinate while the
expansion coefficients depend on time. We keep (11.29) as test functions.

In evolution problems of the form (11.7) the residual R is minimized by the
variational condition (11.8). The Galerkin condition gives

1

2π

∫ 2π

0

[(
∂

∂t
− ∂

∂x

) N/2−1∑

k=−N/2

ûk(t)e
ikx

]

e−inx dx = 0.

When the terms ûk(t)eikx are differentiated with respect to t and x, this becomes

1

2π

∫ 2π

0

[
N/2−1∑

k=−N/2

(
dûk

dt
− ikûk

)
eikx

]

e−inx dx = 0.

The left-hand side of the equation can be integrated analytically. In fact, due to
the orthogonality (11.30), the integration is trivial, yielding a system of differential
equations for the coefficients ûk(t),

dûk

dt
= ikûk, −N/2 ≤ k ≤ N/2 − 1, (11.42)

with the initial conditions

ûk(0) = 1

2π

∫ 2π

0
f (x)e−ikx dx. (11.43)

The system (11.42) can be solved by some method for initial-value problems de-
scribed in Chap. 7. The complete solution at time t is given by the sum (11.41).

How the Fourier–Galerkin method works in practice can be experienced in Prob-
lem 11.9.2. In the case of a Dirichlet boundary condition (the equation is only al-
lowed one boundary condition) the expansion in terms of Chebyshev polynomials
can be used (the Chebyshev–Galerkin method).

Example In this example of solving time-dependent problems by the Fourier
method, an important advantage of spectral approaches over the finite-difference
methods emerges. We seek the solution of the equation

vt − vx = 0, x ∈ (0,2π), t > 0,

with the boundary condition v(0, t) = v(2π, t) and the initial condition v(x,0) =
exp(sinx), after long times. The analytic solution is v(x, t) = exp(sin(x + t)). In a
finite-difference approach, one writes the equation in terms of local differences,

un+1
j − un

j

t
= un

j+1 − un
j−1

2
x
,

as in (9.7) and (9.3), and then finds the solution at consecutive times n
t by, say,
the explicit Euler method (7.5). The solution at time 400π on a mesh with N = 200

11.2 Galerkin Methods 593

Fig. 11.5 The numerical solution of the equation vt = vx with the initial condition
v(x,0) = exp(sinx) and periodic boundary conditions. Shown is the solution at t = 400π ob-
tained by the explicit Euler method. [Left] The finite-difference solution develops typical phase
errors. [Right] The solution by the Fourier spectral method

points with time step
t = 10−5 is shown in Fig. 11.5 (left). The solution develops
an error in both amplitude and phase.

A computation on a very coarse mesh with N = 10 using the Fourier collocation
derivative (11.10), which approximates the derivative by a global sum of basis func-
tions, gives the result shown in Fig. 11.5 (right), all other parameters unchanged.
(With N = 200 the differences between the numerical and analytic solution would
no longer be noticeable on this scale.)

If the differential equations are linear, adding terms or increasing the order
of derivatives causes only minor complications. For example, the solution of the
convection-diffusion problem

∂v

∂t
= c

∂v

∂x
+ D

∂2v

∂x2
, x ∈ (0,2π), t > 0,

with a smooth initial condition v(x,0) = f (x) and periodic boundary condition, can
again be sought in the form (11.41). Instead of the system (11.42) we get

dûk

dt
= (

ikc − k2D
)
ûk, −N/2 ≤ k ≤ N/2 − 1, (11.44)

with the initial condition (11.43). The c = 0 case is discussed in Problem 11.9.3.
Fourier–Galerkin methods work best for linear evolution problems or prob-

lems with constant coefficients. They are less suitable for non-linear or variable-
coefficient problems, as the resulting systems of differential equations for the evo-
lution coefficients become too complicated, if they can be written down compactly
at all. (If you doubt that, write the corresponding systems for the equations vt = vvx

and vt = evvx , see also Sect. 11.5 and [4].)

594 11 Spectral Methods for PDE

Problem 11.9.3 also teaches us about the usefulness of Galerkin method using
orthogonal polynomials. Solving evolution problems by the Legendre–Galerkin or
Chebyshev–Galerkin method leads to a matrix system of ordinary differential equa-
tions for the evolution coefficients a of the form

M
da(t)

dt
= Sa(t),

where the matrix M depends on the chosen basis (and is easy to compute), while S

depends on the nature of the differential problem. All basis functions must satisfy
the boundary conditions, time-dependent or not. A more flexible treatment of the
boundary conditions is offered by tau methods (Sect. 11.3).

11.3 Tau Methods

Tau methods are representatives of weighted residual methods, in which solving the
differential equation leads to the minimization (11.6) as in Galerkin methods. But
in contrast to Galerkin methods, the test functions in tau methods do not satisfy the
boundary conditions of the differential problem; additional equations are needed to
impose boundary conditions. (Slightly different interpretations of tau methods can
be found in literature; see e.g. Chap. 21 in [8].)

The relatively simple implementation of the boundary conditions—even time-
dependent ones—is a major advantage of tau methods. Still, each problem re-
quires us to derive a distinct system of equations for the expansion coefficients
of the spectral solution. Tau methods are optimally suited for linear elliptic prob-
lems with Chebyshev or Legendre polynomials as test functions. In the former case,
the corresponding scalar product is in the sense of (4.20) with the weight function
w(x) = 1/

√
1 − x2, while in the latter, w(x) = 1.

11.3.1 Stationary Problems

To explain the method we stick to the model problem (11.33) and use Cheby-
shev polynomials. The expansion of an arbitrary function u on x ∈ [−1,1] has the
form (4.39). When we insert this expansion at finite N in (11.6), consider the ex-
pression for u′′ (see (11.19)) and orthogonality (4.21), we get

−û
(2)
k + λûk = Q̂k, k = 0,1, . . . ,N − 2. (11.45)

11.3 Tau Methods 595

The boundary conditions are expressed by the additional equations

u(−1) = 0 =⇒
N∑

k=0

ûkTk(−1) =
N∑

k=0

ûk(−1)k = 0,

u(1) = 0 =⇒
N∑

k=0

ûkTk(1) =
N∑

k=0

ûk(1)k = 0,

where we have used Tk(±1) = (±1)k . These equations can also be written as

N∑

k=0
k even

ûk = 0,

N∑

k=1
k odd

ûk = 0. (11.46)

This is typical of tau methods: when the minimization condition is imposed, the
residual Lu − Q is projected on a (N − Nb)-dimensional space, where Nb is the
number of boundary conditions (here Nb = 2). The polynomial approximation u

has degree N , but Nb degrees of freedom are reserved for the boundary conditions.
The coefficients û

(2)
k in (11.45) can be expressed by (11.19), yielding

− 1

ck

N∑

p=k+2
p+k even

p
(
p2 − k2)ûp + λûk = Q̂k, k = 0,1, . . . ,N − 2, (11.47)

where c0 = 2 and ck = 1 for k ≥ 1, and

Q̂k = 2

πck

∫ 1

−1
Q(x)Tk(x)

1√
1 − x2

dx.

Equations (11.47) and (11.46) constitute a matrix system for the coefficients ûk . The
matrix is upper triangular (with additional rows for the boundary condition) and can
be ill-conditioned if λ is small. The method to convert the system to a more robust
quasi-tridiagonal form can be found in [3]. The error of the Chebyshev tau method
for the Helmholtz problem with Q(x) = (16π2 + λ) sin(4πx) and analytic solution
v(x) = sin(4πx) is shown in Fig. 11.6.

More general (mixed) boundary conditions

α1v(−1) + β1vx(−1) = c−,

α2v(1) + β2vx(1) = c+

can be incorporated in the tau method quite unobtrusively: the system of equations
for the expansion coefficients ûk for k = 0,1, . . . ,N − 2 is still given by (11.47),
only the last two rows of the matrix change: since

Tk(±1) = (±1)k, T ′
k(±1) = (±1)k+1k2,

596 11 Spectral Methods for PDE

Fig. 11.6 The error of the numerical solution of the Helmholtz problem (11.33) in dependence of
the number of basis functions in Chebyshev–Galerkin and Chebyshev tau methods, and in depen-
dence of the number of collocation points in Chebyshev collocation. The function Q corresponds to
the analytic solution v(x) = sin(4πx). [Left] λ = 0 (Poisson equation). [Right] λ = 105 (a typical
value encountered in computations of incompressible flows)

(11.46) are replaced by

N∑

k=0

ûk

(
α1(−1)k + β1(−1)k+1k2) = c−,

N∑

k=0

ûk

(
α2 + β2k

2) = c+.

11.3.2 Non-stationary Problems

Tau methods easily accommodate non-stationary problem as well: time dependence
is assigned to the expansion coefficients. As an example we discuss the Chebyshev
tau method for the diffusion equation

vt = vxx, x ∈ (−1,1), t > 0,

with mixed boundary conditions

α1v(−1, t) + β1vx(−1, t) = c−(t), (11.48)

α2v(1, t) + β2vx(1, t) = c+(t), (11.49)

11.4 Collocation Methods 597

and the initial condition v(x,0) = f (x). We seek the solution in the form

u(x, t) =
N∑

k=0

ûk(t)Tk(x). (11.50)

By (11.8) we require that the residual R = ut − uxx is orthogonal to all functions
from the space of Chebyshev polynomials of degree N − 2, so

2

πck

∫ 1

−1

(
ut (x, t) − uxx(x, t)

)
Tk(x)

1√
1 − x2

dx = 0, k = 0,1, . . . ,N − 2.

The coefficients of the second space derivative are again given by (11.19), whence
a system of linear differential equations for the expansion coefficients emerges,

dûk

dt
= 1

ck

N∑

p=k+2
p+k even

p
(
p2 − k2)ûp(t), k = 0,1, . . . ,N − 2. (11.51)

The initial conditions are

ûk(0) = 2

πck

∫ 1

−1
f (x)Tk(x)

1√
1 − x2

dx.

The system (11.51) yields the first N − 1 solution coefficients at time t , while the
remaining coefficients ûN−1(t) and ûN (t) are given by two supplementary equa-
tions for the boundary conditions (11.48) and (11.49), in which again the properties
Tk(±1) = (±1)k and T ′

k(±1) = k2(±1)k+1 are exploited:

N∑

k=0

ûk(t)
(
α1(−1)k + β1(−1)k+1k2) = c−(t),

N∑

k=0

ûk(t)
(
α2 + β2k

2) = c+(t).

The boundary conditions therefore remain detached from the representation of the
differential problem. Apart from the time evolution of the coefficients, the method
is no harder than in the stationary case.

11.4 Collocation Methods

In collocation (also called pseudospectral) methods [9] the solution u is represented
by the values u(xj) = uj at specific collocation points or nodes. In Fourier colloca-
tion methods for periodic problems on the interval [0,2π], the nodes are the Fourier

598 11 Spectral Methods for PDE

Fig. 11.7 Chebyshev–Gauss–Lobatto nodes (4.40) on the interval [xN ,x0] = [−1,1] for N = 8,
16, and 32 (See also Fig. 4.10)

points (4.10). In methods with orthogonal polynomials, the location of nodes on the
interval [−1,1] depends on the type of collocation. For example, the points (4.32)
are the nodes of Legendre–Gauss–Lobatto collocation, while the points (4.40) are
the nodes of Chebyshev–Gauss–Lobatto collocation (see Fig. 11.7). Between the
nodes we span the interpolation polynomial INu, and represent the derivatives of u

by analytic derivatives of this polynomial.

11.4.1 Stationary Problems

Let us keep the Helmholtz periodic problem (11.26) as our baseline example, closely
following [9]. The Fourier collocation solution is given by the equations

[
−d2u

dx2
+ λu − Q

]∣∣∣∣
x=xj

= 0, j = 0,1, . . . ,N − 1, (11.52)

where N is even and xj are the Fourier collocation points (4.10). This is equiv-
alent to the requirement for the minimization of the residual (11.6) with LN =
L = −d2/dx2 + λ, test functions ψn(x) = δ(x − xn), and the usual scalar product
on [0,2π]. When the discrete Fourier transform (4.12) is inserted in the equations
above, we get

k2ũk + λũk = Q̃k, −N

2
≤ k ≤ N

2
− 1,

and

Q̂k = 1

N

N−1∑

j=0

Q(xj)e
−ikxj ,

which closely resembles (but is not identical) to (11.31) and (11.32). In practice, we
evaluate Q at the Fourier collocation points xj and use the transformation (4.11),
in FFT form, to compute the coefficients Q̃k , whence we obtain ũk = Q̃k/(k

2 + λ).
Finally, the transformation (4.12) is applied, again as FFT, to turn ũk into the func-
tion values u(xj) which represent our final solution. If we wish to know the values
u(x) on the subintervals between the collocation points, the complete Lagrange in-
terpolation polynomial can be plotted.

The problem with Dirichlet boundary conditions can be handled just as effi-
ciently. Consider the case of Chebyshev collocation with Gauss–Lobatto nodes. The

11.4 Collocation Methods 599

form of the collocation condition (11.52) remains unchanged, but xj are now given
by (4.40), resulting in the system of equations

N∑

k=0

[−(
D

(2)
N

)
kj

+ λδk,j

]
u(xj) = Q(xj),

where the matrix D
(2)
N represents the Chebyshev collocation second derivative (see

p. 582). If the solution u and the right-hand sides of the equation Q at the collocation
points are arranged in the vectors

u = (
u(x0), u(x1), . . . , u(xN)

)T
, Q = (

Q(x0),Q(x1), . . . ,Q(xN)
)T

,

we obtain, in short,

ZN

[−D
(2)
N + λI

]
u = Q.

Dirichlet boundary conditions are imposed by setting the first and last column of
the system matrix to zero: this is accomplished by the matrix ZN . We solve the
system by classical methods (the system matrix is sparse). An alternative to matrix
multiplication leads through Chebyshev transformation and FFT (Sect. 11.1.3). The
error of the Chebyshev collocation method for the Helmholtz problem with Q(x) =
(16π2 + λ) sin(4πx) is shown in Fig. 11.6.

11.4.2 Non-stationary Problems

A typical non-stationary periodic problem is the advection-diffusion equation

vt = c(x)vx + D(x)vxx, x ∈ (0,2π), t > 0,

with the initial condition v(x,0) = f (x) and the boundary condition v(0, t) =
v(2π, t). The Fourier collocation solution can be sought in the form [4]

u(x, t) =
N−1∑

j=0

u(xj , t)gj (x), (11.53)

where gj is the Lagrange interpolation polynomial with the property gj (xi) = δi,j

(see (4.15) and Fig. 4.2). As in the stationary case we require that the residual ut −
cux − Duxx is zero at the Fourier collocation points (4.10). This requirement leads
to the system of differential equations

du(xj , t)

dt
= c(xj)IN

∂

∂x

[
INu(xj , t)

] + D(xj)IN

∂2

∂x2

[
INu(xj , t)

]

=
N−1∑

k=0

[
c(xj)

(
D

(1)
N

)
jk

+ D(xj)
(
D

(2)
N

)
jk

]
u(xk, t),

600 11 Spectral Methods for PDE

describing the time evolution of u(xj , t). The first row of the equation fulfills the
promises of the introduction to this section: the derivatives of a function are rep-
resented by analytic derivatives of its interpolation polynomial. The second row
contains the instructions on how to solve the system. The derivatives at the right can
be evaluated by direct multiplication of matrices (11.12) and (11.13) by the vector
u(t), but one is better off by using the discrete Fourier transformation: we first trans-
form the values u(xj , t) to Fourier space, multiply the obtained coefficients ũk(t)

by ik and (ik)2 (for first and second derivative, respectively), and map the com-
puted products back to configuration space, where we ultimately multiply them by
c(xj) or D(xj), and the right-hand side is ready to go. Finally, we follow the time
evolution of the values u(xj , t) with the initial condition

u(xj ,0) = f (xj)

by using methods for initial-value problems for systems of ordinary differential
equations. The examples of solving the diffusion equation (the above problem with
c = 0) can be found in Problems 11.9.6 and 11.9.7. Collocation methods are ideally
suited for the solution of non-linear problems: this is discussed in Sect. 11.5.

11.4.3 Spectral Elements: Collocation with B-Splines

In the ansatz for the collocation solution one is not limited to trigonometric functions
or orthogonal polynomials. A special class of methods is based on approximating
the solution by a sum of localized low-degree polynomials. Instead of global, local
functions can be used that are defined only on specific parts of the domain, and
zero elsewhere. We are referring to spectral element methods [10]. For the lowest
polynomial degrees (linear functions) they are identical to finite element methods
described in Sect. 10.6.

In the following we present a method in which the spectral elements are cubic
B-splines. Because the solution approximation is expressed by values at character-
istic points (maxima) of these polynomial splines, we in fact still witness “colloca-
tion”. As an example, again take the diffusion equation vt = Dvxx on the interval
x ∈ [0,L] with Dirichlet boundary conditions v(0, t) = v(L, t) = 0 (see also Prob-
lem 11.9.6). The solution is sought in the form [11]

u(x, t) =
N+1∑

k=−1

ak(t)Bk(x), (11.54)

where Bj is the cubic spline centered at x = xj on the mesh xj = j
x (j =
0,1, . . . ,N and
x = L/N). This special class of basis functions already appeared
in Chap. 8 on scalar boundary-value problems with ordinary differential equations
(see (8.64), Fig. 8.9, and Sect. 8.5 in general). We require that the expansion (11.54)

11.5 Non-linear Equations 601

satisfies the differential equation and the boundary conditions. Inserting the expan-
sion (11.54) in the differential equation and evaluating the result at x = xj , we get

N+1∑

k=−1

dak(t)

dt
Bk(xj) = D

N+1∑

k=−1

ak(t)B
′′
k (xj), j = 0,1, . . . ,N,

where ′ denotes the derivative with respect to x. When properties of B-splines are
accounted for, one ends up with a system of differential equations for the coefficients
aj (t):

d

dt

[
aj−1(t) + 4aj (t) + aj+1(t)

] = 6D

x2

(
aj−1(t) − 2aj (t) + aj+1(t)

)
,

where j = 0,1, . . . ,N . From the boundary condition at x = 0 we determine a−1 =
−4a0 − a1. When the above equation is used at j = 0, it also follows that a0 = 0
and a−1 = −a1. Similarly, at x = L we see that aN = 0 and aN+1 = −aN−1, and
end up with a system of linear equations

A
da

dt
= Ba,

where a(t) = (a1(t), a2(t), . . . , aN−1(t))
T and

A =

⎛

⎜⎜
⎜⎜⎜
⎝

4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

⎞

⎟⎟
⎟⎟⎟
⎠

, B = 6D

x2

⎛

⎜⎜
⎜⎜⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟⎟
⎟⎟⎟
⎠

.

The initial condition for the differential equation is u(xj ,0) = g(xj), so the initial
approximation for the collocation approximation is

Aa(0) = 6g,

where g = (g(x1), g(x2), . . . , g(xN−1))
T. The coefficients ak(t) can then be evolved

in time by using some method discussed in Chap. 7. The solution at arbitrary time
and location is given by the sum (11.54).

11.5 Non-linear Equations

The spectral expansion coefficients in Galerkin and tau methods result from solv-
ing systems of algebraic equations and systems of differential equations, respec-
tively. For differential equations with general boundary conditions, non-constant
coefficients, and in particular for non-linear equations, these systems become cum-
bersome or even impossible to write down (e.g. Fourier–Galerkin treatment of

602 11 Spectral Methods for PDE

vt = evvx). Non-linear problems are therefore most frequently solved by colloca-
tion (pseudospectral) methods. Galerkin and tau methods do turn out to be effective
for certain non-linear problems, although complications appear that are not present
when solving linear problems.

Burgers Equation In the following we describe the typical approaches to non-
linear problems in the case of the Burgers equation,

Lv = ∂v

∂t
+ v

∂v

∂x
− D

∂2v

∂x2
= 0, x ∈ �, t > 0,

where D is a positive constant and v(x,0) = f (x) is the initial condition. We
are interested in periodic solutions on � = [0,2π] and in non-periodic solutions
with Dirichlet boundary conditions on � = [−1,1]. For the periodic problem both
Fourier–Galerkin and Fourier collocation methods are suitable; for the Dirichlet
problem we will use the Chebyshev tau and collocation methods.

Fourier–Galerkin Method In this method the approximation u of the exact so-
lution v has the form (11.41). When the Galerkin condition 〈Lu, e−ikx〉 = 0 is en-
forced and the equation for the Fourier coefficients (4.7) is used, we obtain a system
of differential equations for the coefficients ûk(t):

dûk

dt
+

(̂
u

∂u

∂x

)

k

+ Dk2ûk = 0, −N/2 ≤ k ≤ N/2 − 1. (11.55)

The corresponding initial conditions are

ûk(0) = 1

2π

∫ 2π

0
f (x)e−ikx dx. (11.56)

The diffusion term −Dvxx is linear and turns to Dk2ûk in transform space, as ex-
pected from (11.9), while the non-linear advection term vvx generates the charac-
teristic “compound coefficient”

(̂
u

∂u

∂x

)

k

= 1

2π

∫ 2π

0
u

∂u

∂x
e−ikx dx. (11.57)

This is a special case of the more general coefficient

(ûv)k = 1

2π

∫ 2π

0
u(x)v(x)e−ikx dx,

where u and v are trigonometric polynomials. By using discrete Fourier expansion
and the orthogonality of basis functions, one immediately realizes

(ûv)k = 1

2π

∫ 2π

0

∑

l

ûle
ilx

∑

m

ûmeimxe−ikx =
∑

l,m

ûl ûmδl+m,k =
∑

l+m=k

ûl v̂m,

11.5 Non-linear Equations 603

which is nothing but a convolution of discrete functions. A naive evaluation of this
formula requires O(N2) operations, while a computation exploiting FFT requires
only O(N log2 N) (see Sect. 6.6 and Sect. 3.4 in [3]). This logarithmic discount is
particularly relevant in two- and three-dimensional problems.

Another trap is hidden in the terms with non-constant coefficients in the differ-
ential equation (e.g. a(x)vx) or in the non-linear terms (e.g. vvx). If high Fourier
modes are present in the expansions of the functions a and v, the terms a(x)vx

and vvx correspond to even higher modes, which may result in aliasing effects
(Sect. 4.2.3). For example, if v(x) = sin kx, the non-linear term becomes vvx =
(k/2) sin 2kx: we witness frequency doubling. Aliasing can be removed by two rel-
atively simple tricks described in Sect. 3.4 of [3].

Chebyshev Tau Method The tau method involving Chebyshev polynomials can
be applied to the Burgers equation with Dirichlet boundary conditions v(−1, t) =
v−(t) and v(1, t) = v+(t), and the initial condition v(x,0) = f (x). The solution
is sought in the form (11.50). We require that the expression ut + uux − Duxx is
orthogonal to all test functions Tk , thus

∫ 1

−1

(
∂u

∂t
+ u

∂u

∂x
− D

∂2u

∂x2

)
Tk(x)

1√
1 − x2

dx = 0, k = 0,1, . . . ,N − 2.

Think: why does the index k run only up to N − 2? We obtain a system of linear
differential equations for the expansion coefficients,

dûk

dt
+

(̂
u

∂u

∂x

)

k

− Dû
(2)
k = 0, k = 0,1, . . . ,N − 2,

where û
(2)
k is given by (11.19). This system for N − 1 coefficients is supplemented

by the relations expressing the boundary conditions

N∑

k=0

ûk(t) = v−(t),

N∑

k=0

(−1)kûk(t) = v+(t),

as well as by the initial condition for all N + 1 coefficients,

ûk(0) = 2

πck

∫ 1

−1
f (x)Tk(x)

1√
1 − x2

dx, k = 0,1, . . . ,N.

The contribution of the non-linear term,

(̂
u

∂u

∂x

)

k

= 2

πck

∫ 1

−1

(
u

∂u

∂x

)
Tk(x)

1√
1 − x2

dx,

is again a special case of an expression that is evaluated as the convolution sum,

(ûv)k = 2

πck

∫ 1

−1
u(x)v(x)Tk(x)

1√
1 − x2

dx = 1

2

∑

l+m=k

ûl v̂m +
∑

|l−m|=k

ûl v̂m.

604 11 Spectral Methods for PDE

Effective means to compute this sum and protect against aliasing are discussed
by [3] in Sect. 3.4. With some effort (and by resorting to recurrence relations for
Chebyshev polynomials) even the non-linear term can be expressed with the coef-
ficients û

(1)
k from (11.18), and thus the evaluation of convolutions can be avoided:

see Sect. 7.2 in [4].

Fourier Collocation The collocation solution of the Burgers equation with the
initial condition v(x,0) = f (x) and periodic boundary conditions is represented by
the values at the collocation points xj = 2πj/N , where j = 0,1, . . . ,N − 1, and by
its interpolation (11.53) if needed. The collocation requirement is

[
∂u

∂t
+ u

∂u

∂x
− D

∂2u

∂x2

]∣
∣
∣
∣
x=xj

= 0, j = 0,1, . . . ,N − 1,

while the initial conditions are u(xj ,0) = f (x). If the solution components are
arranged in the vector u = (u0(t), u1(t), . . . , uN−1(t))

T, the collocation condition
translates to a system of equations

du

dt
+ u ⊗ D

(1)
N u − DD

(2)
N u = 0,

where D
(1)
N and D

(2)
N are the Fourier collocation derivative matrices (see (11.12) and

(11.13)). The corresponding contributions can be computed directly by matrix mul-
tiplication, or by transformation to Fourier space, multiplication by (ik) or (−k2),
followed by the inverse transformation (see Sect. 11.1.1).

Chebyshev Collocation In a similar manner one can tackle the Burgers equation
with Dirichlet boundary conditions by Chebyshev collocation. We represent the so-
lution by the values at the Gauss–Lobatto collocation points (4.40) and require that
the differential equation is fulfilled at those points,

[
∂u

∂t
+ u

∂u

∂x
− D

∂2u

∂x2

]∣∣
∣∣
x=xj

= 0, j = 1,2, . . . ,N − 1.

This requirement is supplemented by the boundary conditions u(x0, t) = u+(t) and
u(xN, t) = u−(t), and the initial condition

u(xj ,0) = f (xj), j = 0,1, . . . ,N.

When the solution is arranged in the vector u = (u0(t), u1(t), . . . , uN(t))T, the col-
location condition gives the system of equations

ZN

(
du

dt
+ u ⊗ D

(1)
N u − DD

(2)
N u

)
= 0,

where D
(1)
N and D

(2)
N are the first and second Chebyshev collocation derivative ma-

trices (see equations on p. 582). Here ZN is the matrix that, upon multiplication
with a vector, sets its first and last component to zero.

11.6 Time Integration 605

11.6 Time Integration �

In spectral methods for PDE we invariably use a spectral representation of the spatial
part of the differential operator, while the time evolution is traced by using finite
differences. (The spectral expansion can also be performed in the time coordinate:
see [4].) All systems of differential equations for the evolution coefficients in this
chapter are of the form du/dt = Lu, where L is a differential operator. The choice
of the time step size
t used in the integration schemes for such systems is closely
related to the spectrum (the set of eigenvalues) of matrices that represent spectral
derivatives in L. The necessary condition for the stability of such schemes is that
the product of the spectral radius (maximum eigenvalue) and
t is bounded,

tρ(L) ≤ C.

The explicit form of L and its spectrum depend on the type of the spectral
method. The spectrum of the matrix (11.12) for the Fourier collocation derivative is

{
i(−N/2 + 1), . . . ,−i,0, i, . . . , i(N/2 − 1)

}
,

while the spectrum of the matrix (11.13) for the second derivative is
{
(−N/2 + 1)2, . . . ,−1,0,1, . . . , (N/2 − 1)2}.

The spectral radius for the mth derivative is

ρ
(
D

(m)
N

) = max
∣∣λ(m)

∣∣ =
(

N

2
− 1

)m

=O
(
Nm

)
.

This means that the step
t needed for a stable time integration of Fourier approx-
imations of advection problems (terms with vx) scales as
t ∼ 1/N , and for diffu-
sion problems (terms with vxx) as
t ∼ 1/N2: if we double the number of Fourier
basis functions (or collocation points) N , we must correspondingly decrease
t .

The limitations in spectral methods based on orthogonal polynomials are even
more severe: for explicit integration of Chebyshev or Legendre approximation of
advection problems we have
t ∼ 1/N2, while for diffusion problems
t ∼ 1/N4.
This behavior can be seen in Fig. 11.8 (left). It shows the spectrum of the differential
operator d/dx, i.e. the set of eigenvalues of the matrix D

(1)
N for the Chebyshev col-

location derivative with Gauss–Lobatto nodes (see (11.21)) and boundary condition
u(x0) = 0 (the first row and first column in the matrix are zero). The eigenvalues
are rescaled such that the maximum eigenvalue of D

(1)
N remains in the absolute sta-

bility region of the RK4 method (see also Fig. 7.3). These runaway eigenvalues that
asymptotically behave as λ ∼ O(N2) force us to advance in very short time steps

t . Spectral methods therefore call for implicit integrators with unlimited stability
regions.

Figure 11.8 (right) shows the eigenvalues of the differential operator −d2/dx2

represented by the Chebyshev collocation second derivative matrix −D
(2)
N . Its eigen-

values are real and positive. They are bounded by 0 < c1 ≤ λ ≤ c2N
4, so they

asymptotically increase as λ ∼O(N4).

606 11 Spectral Methods for PDE

Fig. 11.8 [Left] The rescaled spectrum of the differential operator d/dx in Chebyshev–Gauss–Lo-
batto collocation, embedded in the absolute stability region of the RK4 method. [Right] Minimal
and maximal eigenvalues of the operator −d2/dx2

One is also allowed to use different time discretizations for different spatial parts
of the differential operator. Instructive graphical representations of the spectral prop-
erties of differential operators can be found in Sect. 4.3 of [3], while the details on
time discretization are discussed in [8] in Chaps. 9, 12, 13, and 14. A true point of
contact between discrete and continuous differential operators is established by the
concept of pseudospectra [12].

11.7 Semi-Infinite and Infinite Definition Domains �

If spectral methods are used to solve problems with periodic solutions on [0,2π] or
non-periodic solutions on [−1,1], the choice of basis functions is simple. Boyd [8]
(see Chap. 1 in that book) advises:

1. When in doubt, use Chebyshev polynomials unless the solution is spatially peri-
odic, in which case an ordinary Fourier series is better.

2. Unless you are sure another set of basis functions is better, use Chebyshev poly-
nomials.

3. Unless you are really, really sure that another set of basis functions is better, use
Chebyshev polynomials.

Spectral methods can also be used with problems on semi-infinite and infinite do-
mains, but neither trigonometric not orthogonal polynomials are suitable basis func-
tions. Variable transformations can be applied to map such problems to a finite in-
terval on which Jacobi polynomials can be used [8], but it is much wiser to choose
basis functions that are natural for the given definition domain.

On the interval [−∞,∞] we can use the sin(nx)/x functions discussed in the
review article [13]. A lovely set of model problems in more space dimensions has

11.8 Complex Geometries 607

been collected in [14]. Another option are the Hermite functions [15], as they are the
eigenfunctions of the linear harmonic oscillator appearing in innumerable disguises
in all fields of physics. Instructive examples of their use are the solution of the
Burgers equation [16, 17] and the Dirac equation [18]. According to [19] the best
choice could be the rational Chebyshev polynomials T Bk .

The natural choice for a basis on [0,∞] are the Laguerre functions [20]. These
functions solve the radial part of the Schrödinger equation with the Coulomb poten-
tial: they are the staple diet in quantum physics and chemistry. Rational Chebyshev
polynomials T Lk also lend themselves ideally to semi-infinite intervals [21]. A nice
comparison of numerical treatments of the hydrogen atom in the Laguerre and T Lk

polynomial bases has been made by [22]; see also [23].

11.8 Complex Geometries �

In this chapter we discussed almost exclusively one-dimensional problems. We
encountered two space dimensions only with the Fourier–Galerkin method in
Sect. 11.2.4, where the extension to multiple dimensions (from the interval to the
square or cube) was conceptually simple. In Problem 11.9.5 one can obtain a good
two-dimensional impression while solving the Poisson equation by the Legendre
tau method.

Cylindrical and spherical geometries, as well as all non-trivial geometries ap-
pearing in advanced physics problems require, of course, much greater involve-
ment. Computations in cylindrical and spherical geometries are introduced by [8]
in Chap. 18 and [9] in Chap. 6, but our Problem 11.9.4 may also serve as an appe-
tizer. The book [7] gives appealing two-dimensional examples solved by MATLAB.
As a very complete textbook on spectral methods in complex geometries we recom-
mend [2].

11.9 Problems

11.9.1 Galerkin Methods for the Helmholtz Equation

This Problem is devoted to solving the one-dimensional Helmholtz equation

−d2v

dx2
+ λv = Q, λ ≥ 0,

by Galerkin spectral methods. The solution of the problem on x ∈ [0,2π] with the
periodic boundary condition v(0, t) = v(2π, t) can be expanded in terms of trigono-
metric polynomials, while the solution of the problem on x ∈ [−1,1] with homo-
geneous Dirichlet conditions v(−1, t) = v(1, t) = 0 can be constructed as a linear
combination of Legendre or Chebyshev polynomials.

608 11 Spectral Methods for PDE

⊙
Solve the periodic problem by using the Fourier–Galerkin method described

in Sect. 11.2.1, with the function

Q(x) = 4(π − x) cosx + [
(1 + λ)(π − x)2 − 2

]
sinx.

The analytic solution is v(x) = (π − x)2 sinx and does not depend on λ. Determine
the Fourier coefficients (11.32) by analytic or numerical integration. Is the method
of integration relevant for the precision of the final result if N is relatively small, for
example, N = 8 or N = 16?⊙

Solve the Dirichlet version of the problem with Q(x) = x sin(πx) by us-
ing the Legendre–Galerkin method from Sect. 11.2.2 and the Chebyshev–Galerkin
method from Sect. 11.2.3. Try to solve the Legendre–Galerkin part by using the
optimized basis functions (11.38).

11.9.2 Galerkin Methods for the Advection Equation

The one-dimensional linear hyperbolic equation

∂v

∂t
− ∂v

∂x
= 0, x ∈ (0,2π),

with the periodic boundary condition v(0, t) = v(2π, t) and specified initial con-
dition v(x,0) is a benchmark problem for spectral methods (e.g. Fourier–Galerkin)
for non-stationary problems. The Galerkin condition with the approximation (11.41)
leads to an uncoupled system of ordinary differential equations (11.42) that can be
solved by methods for initial-value problems.⊙

Apply the Fourier–Galerkin method to solve the problem outlined above,
with the initial condition v(x,0) = sin(π cosx). The analytic solution [3] is

v(x, t) = sin
[
π cos(x + t)

]
,

and it corresponds to the Fourier expansion

v(x, t) =
∞∑

k=−∞
v̂k(t)e

ikx, v̂k(t) = sin

(
kπ

2

)
Jk(π)eikt .

Of course, the spectral approximation will have a finite N , e.g. N = 16. Compare
the numerical and analytic solutions at long times (large multiple of 2π). Determine
the speed of convergence of the numerical solution to the analytic one when N

increases. How important is the choice of the integration method? What role does
the time step size play? Solve the problem by using some difference method and
establish a comparison similar to that in Fig. 11.5!⊙

Use the Chebyshev–Galerkin method to solve the problem

∂v

∂t
− ∂v

∂x
= 0, x ∈ (−1,1),

11.9 Problems 609

with the boundary condition v(1, t) = 0 and initial condition v(x,0) = sinπx. This
time the spectral solution can be cast in the form [4]

u(x, t) =
N∑

k=1

ak(t)φk(x),

where the basis functions are φk(x) = Tk(x) − 1 (since φ0(x) = 0, the summation
starts at k = 1). According to Galerkin we require the residual R = ut − ux to be
orthogonal to φn in the sense of the scalar product

〈R,φn〉w = 2

π

∫ 1

−1
(ut − ux)φn(x)

1√
1 − x2

dx = 0, n = 1,2, . . . ,N.

When orthogonality relations are applied, the following system of differential equa-
tions emerges:

N∑

k=1

Mnk

dak(t)

dt
=

N∑

k=1

Snkak(t), n = 1,2, . . . ,N,

where the coefficient matrices are

Mnk = 2

π

∫ 1

−1
φn(x)φk(x)

1√
1 − x2

dx = 2 + δn,k,

Snk = 2

π

∫ 1

−1
φn(x)φ′

k(x)
1√

1 − x2
dx = 2k

k−1∑

p=0
p+k odd

(δn,p − δ0,p).

When the expansion coefficients are arranged in the vector a = (a1, a2, . . . , aN)T

the system of differential equations can be written in matrix form

da(t)

dt
= M−1Sa(t), ak(0) = 2

π

∫ 1

−1
f (x)φk(x)

1√
1 − x2

dx.

Solve it by using standard methods for initial-value problems.

11.9.3 Galerkin Method for the Diffusion Equation

Check your understanding of Galerkin methods by solving the diffusion equation

vt = Dvxx, x ∈ (0,2π),

with boundary condition v(0, t) = v(2π, t) and initial condition v(x,0) = f (x).

610 11 Spectral Methods for PDE

⊙
Using the ansatz (11.41) in the Galerkin condition leads to the system

(11.44) (with the simplification c = 0) that should be solved with the initial condi-
tion (11.43). Solve it by using the initial condition f (x) = x2(2π −x)2 and D = 1.0.
Plot the solution at selected times t ∈ [0,10].⊙

To solve the diffusion equation on x ∈ (−1,1) with Dirichlet boundary con-
ditions v(−1, t) = v(1, t) = 0, we choose the Legendre–Galerkin approach. The
solution ansatz is

u(x, t) =
N−1∑

n=1

an(t)φn(x), (11.58)

with the basis functions φn(x) = Pn+1(x) − Pn−1(x), where n ≥ 1. We require the
residual ut − uxx to be orthogonal to all functions φk , hence

2k + 1

2

∫ 1

−1

(
dan

dt
φn(x) − an

d2φn(x)

dx2

)
φk(x)dx = 0, k = 1,2, . . . ,N − 1.

By considering the orthogonality of Legendre polynomials, we get the system

N−1∑

n=1

Mkn

dan(t)

dt
=

N−1∑

n=1

Sknan(t), k = 1,2, . . . ,N − 1,

with the matrices

Mkn = 2k + 1

2

∫ 1

−1
φk(x)φn(x)dx,

Skn = 2k + 1

2

∫ 1

−1
φk(x)

d2φn(x)

dx2
dx.

When the expansion coefficients are arranged in the vector a = (a1, a2, . . . , aN−1)
T,

this system of differential equations can be written in matrix form

da(t)

dt
= M−1Sa(t),

and solved by standard methods for initial-value problems. The initial condition vec-
tor can be computed from the expansion of u(x,0) = f (x) in terms of the functions
φn as in (11.58), which leads to the recurrence

an+1(0) = an−1(0) − 2n + 1

2

∫ 1

−1
f (x)Pn(x)dx, a−1(0) = a0(0) = 0.

Solve this part of the Problem by using f (x) = (1 − x)2 cos4(πx/2).

11.9 Problems 611

Fig. 11.9 Examples of eigenfunctions (11.59) for the Poisson equation in semi-circular geometry.
[Left] The function g01(x,ϕ). [Right] The function g12(x,ϕ)

11.9.4 Galerkin Method for the Poisson Equation: Poiseuille Law

The flow of a viscous fluid in a long straight pipe driven by a pressure gradient
p′ is described by the Poisson equation ∇2v = −p′/η, where v is the longitudinal
velocity component that depends only on the coordinates in the plane of the pipe’s
cross-section, and η is the viscosity. The fluid velocity at the pipe’s walls is zero.
The flux is given by the Poiseuille law

� =
∫

v dS = C

8π

S2

η
p′,

where the coefficient C depends on the shape of the cross-section. For a circular
pipe, C = 1; but what is the coefficient for a semi-circular pipe with the radius R?
Changing to variables x = r/R and u = vη/(p′R2), the problem becomes

∇2u(x,ϕ) = −1, u(1, ϕ) = u(x,0) = u(x,π) = 0,

and the flux coefficient is given by

C = 8π

∫ 1

0

∫ π

0

u(x,ϕ)x dx dϕ

(π/2)2
.

The eigenfunctions of the Poisson equation for the semi-circular geometry are

gms(x,ϕ) = J2m+1(ymsx) sin(2m + 1)ϕ, (11.59)

where yms is the sth zero of the (2m + 1)th Bessel function. The functions g01 and
g12 are shown as examples in Fig. 11.9.

612 11 Spectral Methods for PDE

By using these functions the solution can be written as [24]

u(x,ϕ) =
∑

ms

Amsgms(x,ϕ)

y2
ms

, m = 0,1,2, . . . , s = 1,2, . . . ,

where

Ams = 〈1, gms〉
〈gms, gms〉 ,

and the scalar product is 〈u,v〉 = ∫∫
u(x,ϕ)v(x,ϕ)x dx dϕ. The flux coefficient is

then

C = 8
∑

ms

[
8

π

Ims

(2m + 1)ymsJ2m+2(yms)

]2

.

To compute the integral Ims = 2m+1
2 〈1, gms〉, use the relation

Ims =
∫ 1

0
xJ2m+1(ymsx)dx = 4(2m + 1)

yms

∞∑

k=m+1

kJ2k(yms)

(4k2 − 1)
.

⊙
Had we not known Bessel functions (and had we been ignorant of their

eigenfunction property), we could appeal to Galerkin to find an approximate solu-
tion. We write the solution as a linear combination of trial functions

u(x,ϕ) =
∑

k

akφk. (11.60)

The functions φk need not be orthogonal, but they should satisfy the boundary con-
ditions so that they are also satisfied by the sum (11.60). We keep the exact functions
sin(2m + 1)ϕ for the angular part, while we take x2m+1(1 − x)n for the radial part.
According to Galerkin, the residual

R(x,ϕ) = ∇2u(x,ϕ) + 1

should be orthogonal to all test functions ψj = φj , hence 〈R,ψj 〉 = 0. This leads to
the system of equations for the coefficients ai ,

∑

j

Aij aj = bi, Aij = 〈
ψi,∇2ψj

〉
, bi = 〈−1,ψi〉,

and the flux coefficient is

C = −32

π

∑

i

∑

j

biA
−1
ij bj .

The indices i and j are “double”: both run through the complete set of m and n. Due
to orthogonality in m the matrix A has a block structure. How does the precision of
C depend on the number of included angular and radial terms?⊙

Try to compute the coefficient C for a rectangular pipe.

11.9 Problems 613

11.9.5 Legendre Tau Method for the Poisson Equation

Tau methods are well suited for solving the two-dimensional Poisson equation

−∇2v = Q

on the square (x, y) ∈ [−1,1] × [−1,1] with Dirichlet boundary conditions

v(x,−1) = B1(x), v(x,1) = B2(x),

v(−1, y) = B3(y), v(1, y) = B4(y).

Both Chebyshev and Legendre polynomials can be used as trial functions, even if
they do not satisfy the boundary conditions: in tau methods they are established by
separate equations. In this Problem the two-dimensional trial functions are products
of Legendre polynomials

φjk(x, y) = Pj (x)Pk(y), j, k = 0,1, . . . ,N,

and we seek the solution in the form

u(x, y) =
N∑

j=0

N∑

k=0

ajkφjk(x, y). (11.61)

In this case we need one set of test functions for the representation of the differential
equation, and another set to impose the boundary conditions. The test functions for
the equation are

ψjk(x, y) = P̃j (x)P̃k(y), j, k = 0,1, . . . ,N − 2,

where

P̃k(x) =
(

k + 1

2

)
Pk(x),

(the factor k + 1/2 originates in the relation (k + 1
2)

∫ 1
−1 Pj (x)Pk(x)dx = δj,k). The

test functions for the boundary conditions depend only on one variable,

ψ
(1)
j (x) = ψ

(2)
j (x) = P̃j (x), j = 0,1, . . . ,N,

ψ
(3)
k (y) = ψ

(4)
k (y) = P̃k(y), k = 0,1, . . . ,N.

From the minimization condition for the residual we obtain
∫ −1

−1

∫ −1

−1

(
∂2u

∂x2
+ ∂2u

∂y2
+ Q(x,y)

)
ψjk(x, y)dx dy = 0, j, k = 0,1, . . . ,N − 2,

∫ −1

−1
B1(x)ψ

(1)
j (x)dx =

∫ −1

−1
B2(x)ψ

(2)
j (x)dx = 0, j = 0,1, . . . ,N,

614 11 Spectral Methods for PDE

∫ −1

−1
B3(y)ψ

(3)
k (x)dy =

∫ −1

−1
B4(y)ψ

(4)
k (x)dy = 0, k = 0,1, . . . ,N.

With the chosen expansion of u the integrals can be computed analytically [2]. For
the part pertaining to the differential equation one gets

−[
a

[2,0]
jk + a

[0,2]
jk

] = Qjk, j, k = 0,1, . . . ,N − 2, (11.62)

where

a
[2,0]
jk =

(
j + 1

2

) N∑

p=j+2
p+j even

[
p(p + 1) − j (j + 1)

]
apk, (11.63)

a
[0,2]
jk =

(
k + 1

2

) N∑

q=k+2
q+k even

[
q(q + 1) − k(k + 1)

]
ajq, (11.64)

Qjk =
∫ −1

−1

∫ −1

−1
Q(x,y)ψjk(x, y)dx dy.

This is a generalization of the coefficients û
(2)
k from (11.15) to two dimensions:

the second derivative in x (and zeroth in y) corresponds to the coefficients (11.63);
the second derivative in y (and zeroth in x) corresponds to (11.64). Both include
linear combinations of coefficients in (11.61), and (11.62) is the system for these
coefficients. Boundary conditions generate constraints supplementing the system of
equations, rendering the final solution unique:

N∑

k=0

ajk =
N∑

k=0

(−1)kajk = 0, j = 0,1, . . . ,N,

N∑

j=0

ajk =
N∑

j=0

(−1)j ajk = 0, k = 0,1, . . . ,N.

⊙
Solve the Dirichlet problem for the Poisson equation with the Legendre

tau method described above, by using Q(x,y) = 2π2 sin(πx) sin(πy). The analytic
solution is u(x, y) = sin(πx) sin(πy).

11.9.6 Collocation Methods for the Diffusion Equation I

In this Problem we are solving the one-dimensional diffusion equation that describes
the temperature profile T (x, t) in a homogeneous infinite slab of thickness L:

∂T

∂t
= D

∂2T

∂x2
+ Q

ρc
, 0 < x < L, D = λ

ρc
.

11.9 Problems 615

For the time being we do not consider additional heat sources, Q(x, t) = 0. The
temperature at an arbitrary point x at time t is given by the Fourier series

T (x, t) ≈
N−1∑

k=0

T̂k(t)e
2π ifkx,

where fk = k/L. When this ansatz is inserted in the Galerkin requirement, we get
the evolution equation for the Fourier coefficients:

dT̂k(t)

dt
= D

(−4π2f 2
k

)
T̂k(t).

The explicit Euler method is used to advance in time,

T̂k(t +
t) = T̂k(t) +
tD
(−4π2f 2

k

)
T̂k(t).

The temperature profile T (x, t) at an arbitrary time can be computed by using the
inverse Fourier transformation.⊙

Use the Fourier method to compute the time evolution of the temperature
profile with the initial condition T (x,0) = sin2(πx/L). By using the Fourier trans-
formation you get the initial condition for the evolution equation. Pay attention to
the stability of the Euler difference scheme: at any time step maintain

∣∣∣∣
T̂k(t +
t)

T̂k(t)

∣∣∣∣ = ∣∣1 +
tD
(−4π2f 2

k

)∣∣ < 1.

The discretization also requires some care: in FFT one should keep fk < fNyquist for
each k (see (4.6)).

In addition, solve the Dirichlet problem: the boundary conditions are T (0, t) =
T (L, t) = 0, while at time zero the slab should have the ambient temperature T0

everywhere, except between 0.2L and 0.4L where it has been heated up to tem-
perature T1 > T0. Moreover, at time zero we switch on a heater between 0.5L and
0.75L with the power density of 5T0λ/L2. The suitable eigenfunctions are the sine
functions with multiples of half-waves on the interval. FFT implies an expansion in
terms of sines and cosines, but it can still be used with Dirichlet boundary condi-
tions if the function to be transformed is extended to an odd function on the interval
[−L,L].⊙

Solve the problem by using the collocation method with B-splines dis-
cussed in Sect. 11.4.3. Use the initial condition T (x,0) = g(x) = sin(πx/L) and
homogeneous Dirichlet boundary conditions T (0, t) = T (L, t) = 0. Evolve the ex-
pansion coefficients aj (t) in time by using the explicit Euler method: the initial
condition for the vector of coefficients a is Aa0 = 6g. At subsequent times n
t we
get

an+1 = an +
tA−1Ban = (
I +
tA−1B

)
an.

616 11 Spectral Methods for PDE

The time profile at any later time can be computed by evaluating the sum (11.54).
The implicit method is more stable, but at every step it requires you to solve

(
A −
t

2
B

)
an+1 =

(
A +
t

2
B

)
an.

11.9.7 Collocation Methods for the Diffusion Equation II

The homogeneous Dirichlet problem for the diffusion equation on x ∈ [−1,1],
∂v

∂t
= ∂2v

∂x2
, v(−1, t) = v(1, t) = 0,

and initial condition v(x,0) = f (x) can be efficiently solved by collocation meth-
ods with orthogonal polynomials. The first choice for the trial functions are the
Chebyshev polynomials, φk = Tk , and the collocation solution acquires the form

u(x, t) =
N∑

k=0

ak(t)Tk(x) =
N∑

j=0

uj (t)lj (x), (11.65)

where lj (x) are the polynomials (4.42) interpolating at the Chebyshev–Gauss–
Lobatto collocation points xj = cos(jπ/N) (see (4.40)). Their property is lj (xk) =
δj,k . Since the complete solution is represented as the weighted sum of the values at
the nodes, we have denoted uj (t) = u(xj , t).

One requires that the differential equation ut − uxx = 0 is fulfilled exactly at the
collocation points [4],

[
∂u

∂t
− ∂2u

∂x2

]∣∣∣
∣
x=xj

= 0, j = 1,2, . . . ,N − 1,

while the boundary conditions are u(x0, t) = u(xN, t) = 0. By using the expressions
for the (second) Chebyshev collocation derivative (see p. 582) one obtains a system
of differential equations for the values uj (t) at the nodes,

duj (t)

dt
=

N∑

l=0

(
D

(2)
N

)
j l

ul(t), j = 1,2, . . . ,N − 1, (11.66)

that should be solved with the initial conditions

uk(0) = u(xk,0) = f (xk), k = 0,1, . . . ,N.

⊙
Solve the Dirichlet problem for the diffusion equation by using the

Chebyshev collocation method with Gauss–Lobatto nodes. The initial condition

11.9 Problems 617

is v(x,0) = f (x) = sinπx. The analytic solution is v(x, t) = e−π2t sinπx and it
corresponds to the expansion

v(x, t) =
∞∑

k=0

bk(t)Tk(x), bk(t) = 2

ck

sin

(
kπ

2

)
Jk(π)e−π2t ,

where c0 = 2 and ck = 1 for k ≥ 1.⊙
Collocation is not restricted to Dirichlet boundary conditions. This part of

the Problem deals with the solution of the diffusion equation with more general
boundary conditions

α1v(−1, t) − β1vx(−1, t) = g(t),

α2v(1, t) + β2vx(1, t) = h(t).

The solution again has the form (11.65), but Chebyshev polynomials should be sub-
stituted by Legendre polynomials, so for the Gauss–Lobatto nodes the correspond-
ing interpolation polynomials are (4.35). By requiring that the differential equation
is fulfilled at the collocation points, we obtain an equation like (11.66), except that
the collocation derivative matrix is given by the expression on p. 581. The boundary
conditions are embodied by two additional equations:

α1u0(t) − β1

N∑

j=0

(
D

(1)
N

)
0j

uj (t) = g(t),

α2uN(t) + β2

N∑

j=0

(
D

(1)
N

)
Nj

uj (t) = h(t).

A system of two equations for the remaining unknowns u0(t) and uN(t) follows:

[
α1 − β1

(
D

(1)
N

)
00

]
u0(t) − β1

(
D

(1)
N

)
0N

uN(t) = g(t) + β1

N−1∑

j=1

(
D

(1)
N

)
0j

uj (t),

β2
(
D

(1)
N

)
N0u0(t) + [

α2 + β2
(
D

(1)
N

)
NN

]
uN(t) = h(t) − β2

N−1∑

j=1

(
D

(1)
N

)
Nj

uj (t).

11.9.8 Burgers Equation

An nice example of a non-linear advection-diffusion problem that can be solved by
almost all spectral methods in this chapter is the Burgers equation

vt + vvx − Dvxx = 0

618 11 Spectral Methods for PDE

Fig. 11.10 Solution of the Burgers equation with periodic boundary conditions by the Fourier—
Galerkin method. [Left] The initial condition and the comparison of numerical (N = 16) and an-
alytic solution at T = 0.2. [Right] The error of the numerical solution along [0,2π] for different
approximation levels (different number of basis functions N)

with the parameter D > 0 and initial condition v(x,0) = f (x). We are interested in
the periodic solutions on the interval [0,2π] and non-periodic solutions on [−1,1]
computed by using the methods discussed in Sect. 11.5.⊙

Use the Fourier–Galerkin method described on p. 602 to solve the Burgers
equation with periodic solutions on [0,2π]. In computing the “compound coeffi-
cient” (11.57), recall the simple relation (11.9): the system of differential equations
for the expansion coefficients ûk(t) (11.55) then becomes

dûk

dt
+ i

∑

m+l=k

mûmûl + Dk2ûk = 0, −N/2 ≤ k ≤ N/2 − 1,

with the initial conditions (11.56). The analytic solution is given by

v(x, t) = c + vb(x − ct, t + t0),

where

vb(x, t) = −2D
1

φb

∂φb

∂x
, φb(x, t) = 1√

4πDt

∞∑

n=−∞
e−(x−2πn)2/(4Dt).

Use N = 16, 32, and 64 with D = 0.2, c = 4, and t0 = 1. The initial condition is
the analytic solution at t = 0. Compute the solution until t = π/8 (Fig. 11.10 might
serve as an example). Solve the problem by Fourier collocation as well.⊙

Use the Chebyshev tau and Chebyshev collocation methods to solve the
Burgers equation on [−1,1] with homogeneous Dirichlet boundary conditions

References 619

v(−1, t) = v(1, t) = 0. The analytic solution in this case is

v(x, t) = 4πD

[∞∑

n=1

nane−n2π2Dt sinnπx

][

a0 + 2
∞∑

n=1

ane−n2π2Dt cosnπx

]−1

,

where the coefficients an are given by the modified Bessel functions of the first kind
as an = (−1)nIn(1/(2πD)). The initial condition is the analytic solution at t = 0.
Use D = 0.1 and compute with N = 16, 32, and 64 in both Chebyshev tau and
collocation methods. Compute the solutions until t = 1.

References

1. D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications
(SIAM, Philadelphia, 1987)

2. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Evolution to Complex
Geometries and Applications to Fluid Mechanics (Springer, Berlin, 2007)

3. C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Fundamentals in Sin-
gle Domains (Springer, Berlin, 2006)

4. J. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems (Cam-
bridge University Press, Cambridge, 2007)

5. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mine-
ola, 1972)

6. R. Baltensperger, M.R. Trummer, Spectral differencing with a twist. SIAM J. Sci. Comput.
24, 1465 (2002)

7. L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000)
8. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover, Mineola, 2000); the

web edition and supplemental materials are available at http://www-personal.engin.umich.
edu/~jpboyd

9. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press,
Cambridge, 1998). The concepts of “collocation” and “pseudospectral” methods are iden-
tical in our context, while a part of the expert community distinguishes between them and
states that the only true pseudospectral methods are those involving global basis functions;
see Sect. 3.5 in [3] and Sect. 3.1 in [8]

10. D. Funaro, Spectral Elements for Transport-Dominated Equations. Lecture Notes in Compu-
tational Science and Engineering, vol. 1 (Springer, Heidelberg, 1997)

11. M.H. Holmes, Introduction to Numerical Methods in Differential Equations (Springer, New
York, 2007)

12. L.N. Trefethen, M. Embree, Spectra and Pseudospectra (Princeton University Press, Prince-
ton, 2005)

13. F. Stenger, Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23,
165 (1981)

14. K.M. McArthur, K.L. Bowers, J. Lund, The sinc method in multiple space dimensions: model
problems. Numer. Math. 56, 789 (1990)

15. D. Funaro, O. Kavian, Approximation of some diffusion evolution equations in unbounded
domains by Hermite functions. Math. Comput. 57, 597 (1991)

16. B.-Y. Guo, C.-L. Xu Math, Hermite pseudospectral method for nonlinear partial differential
equations. Model. Numer. Anal. 34, 859 (2000)

17. B.-Y. Guo, Error estimation of Hermite spectral method for nonlinear partial differential equa-
tions. Math. Comput. 68, 1067 (1999)

620 11 Spectral Methods for PDE

18. B.-Y. Guo, J. Shen, C.-L. Xu, Spectral and pseudospectral approximations using Hermite func-
tions: application to the Dirac equation. Adv. Comput. Math. 19, 35 (2003)

19. J.P. Boyd, Spectral methods using rational basis functions on an infinite interval. J. Comput.
Phys. 69, 112 (1987)

20. J. Shen, Stable and efficient spectral methods in unbounded domains using Laguerre functions.
SIAM J. Numer. Anal. 38, 1113 (2000)

21. J.P. Boyd, Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70, 63
(1987)

22. J.P. Boyd, C. Rangan, P.H. Bucksbaum, Pseudospectral methods on a semi-infinite interval
with application to the hydrogen atom. J. Comput. Phys. 188, 56 (2003)

23. V. Iranzo, A. Falqués, Some spectral approximations for differential equations in unbounded
domains. Comput. Methods Appl. Mech. Eng. 98, 105 (1992)

24. I. Kuščer, A. Kodre, H. Neunzert, Mathematik in Physik und Technik (Springer, Berlin, 1993)

Appendix A
Mathematical Tools

A.1 Asymptotic Notation

In asymptotic analysis we use several sets of functions that acquire their special
meaning in the limit of a real parameter x→ a, where a is finite or infinite.

Symbol O(·) The O(f) symbol denotes the set of functions g ∈O(f) which, in
the limit x→ a, are bounded from above in magnitude as |g(x)| ≤ C|f (x)|, with a
finite positive constant C. For a function g we thus have

lim
x→a

|g(x)|
|f (x)| ∈ (0,C].

We say that the function g is asymptotically bounded from above by the function f

up to a constant factor.

Symbol O(·) The O(f) symbol denotes the set of functions g ∈ O(f), where f

dominates over g such that |g(x)|< C|f (x)| for each C > 0, when x→ a. So for a
function g ∈ O(f) we have

lim
x→a

|g(x)|
|f (x)| = 0.

We say that the function f is asymptotically dominant with respect to g. The fol-
lowing also holds:

O(f)+ O(f)⊆ O(f), O(f)O(g)⊆ O(fg),

O
(
O(f)

)⊆ O(f), O(f)⊂O(f).

Symbol �(·) The �(f) symbol denotes the set of functions g ∈ �(f) which,
in the limit x→ a, are bounded as C1|f (x)| ≤ |g(x)| ≤ C2|f (x)| for two positive
constants C1 and C2. Then for g ∈�(f) we have

lim
x→a

|g(x)|
|f (x)| ∈ [C1,C2],

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

621

622 A Mathematical Tools

i.e. f asymptotically tightly bounds g, which we also denote by g � f .

Symbol (· ∼ ·) The ∼ f (x) symbol denotes the set of functions g ∼ f that are
asymptotically equivalent to the function f , so

lim
x→a

f (x)

g(x)
= 1.

The symbols defined above represent sets of functions, but in practice they are
often used to express the relations among their elements. For example, we interpret
g ∈O(f) as g =O(f).

A.2 The Norms in Spaces Lp(�) and L
p
w(�), 1 ≤ p ≤ ∞

Over a bounded open domain � ∈ Rd (d = 1,2,3) we define the space L
p
w(�) of

measurable functions u :�→R which are Lebesgue-integrable on �, i.e. for which∫
�
|u(x)|p w(x)dx <∞, where w is a continuous, strictly positive and integrable

weight function on �. The space L
p
w(�) for 1≤ p <∞, furnished with the norm

‖u‖Lp
w(�) =

(∫

�

∣∣u(x)
∣∣pw(x)dx

)1/p

,

is a Banach space. (Most often we encounter one-dimensional cases � = [a, b],
e.g. �= [0,2π] in Fourier analysis, or �= [−1,1] when working with orthogonal
polynomials. The simplifications �→ [a, b] and x→ x are trivial.) Among these,
the space L2

w(�) is virtually ubiquitous: it is also a Hilbert space with the scalar
product

〈u,v〉w =
∫

�

u(x)v(x)w(x)dx (A.1)

and the induced weighted norm

‖u‖L2
w(�) =

(∫

�

∣∣u(x)
∣∣2w(x)dx

)1/2

.

The corresponding expressions for the spaces Lp(�) can be obtained simply by
dropping all occurrences of the weight function w. We also encounter spaces of
complex measurable functions u : �→ C. In this case, the expressions remain as
they are, except that | · | stands for the modulus of the complex number instead of
the usual absolute value; for example, in the case of L2(a, b), the scalar product and
the norm are

〈u,v〉2 =
∫ b

a

u(x)v∗(x)dx, ‖u‖2 =
∫ b

a

∣∣u(x)
∣∣2 dx. (A.2)

A.3 Discrete Vector Norms 623

(We drop the index 2 when there is no danger of confusion with another norm.) In
the family of spaces Lp(�), the extreme case p =∞ represents a Banach space
of measurable functions u : �→ R such that |u| is bounded outside of a set with
measure zero, and is furnished with the norm

‖u‖L∞(�) = sup
x∈�

∣∣u(x)
∣∣=M.

In other words, M is the smallest real number for which |u(x)| ≤ M holds true
outside of a set with measure zero.

A.3 Discrete Vector Norms

We are mostly working with n-dimensional vectors u ∈ R
n and square matrices

A ∈Rn×n. Several vector, matrix, and operator norms can be defined (see Sect. A.4).
The most important class of vector norms are the p-norms

‖u‖p =
(

n∑

j=1

|uj |p
)1/p

, 1≤ p <∞.

The unit balls (“circles”) with n= 2 for the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖p for some
large p are the first three shapes in this figure:

A commonly used norm is the “max”-norm ‖u‖∞ =max1≤j≤n |uj |, for which the
unit “circle” is shown by the fourth shape. In the numerical methods for partial
differential equations, where the space axes are discretized in N + 1 points (for
example, xj with indices from j = 0 to j = N), the “max”-norm appears in two
disguises. One of them includes all points, while the other excludes the boundary
points:

‖u‖∞ = max
0≤j≤N

|uj |, ‖u‖∞0 = max
1≤j≤N−1

|uj |. (A.3)

Various inequalities exist among the vector norms. They can be used in establishing
the hierarchy of the estimates of differences, errors, and remainders in virtually all
numerical problems. Among others, the following relations hold:

‖u‖2 ≤ ‖u‖1 ≤√n‖u‖2, ‖u‖∞ ≤ ‖u‖2 ≤√n‖u‖∞,

‖u‖∞ ≤ ‖u‖1 ≤ n‖u‖∞.

624 A Mathematical Tools

Of all p-norms, by far the most widely used is the Euclidean (l2):

‖u‖2 =
√√
√√

n∑

j=1

|uj |2. (A.4)

(If the subscript 2 is missing, it is usually precisely 2 that is meant.) If we compute
the norm by naively coding the expression (A.4) in a computer program, about a half
of all representable numbers in floating-point arithmetic will cause an overflow or an
underflow. This is how LAPACK’s experts circumvent this problem (the DNRM2
routine from the level-1 BLAS library) [1]:

Input: Values {uj }nj=1
t = 0; s = 1;
for i = 1 step 1 to n do

if uj �= 0 then
if |uj |> t then

s = 1+ s(t/uj)
2;

t = |uj |;
else

s = s + (uj /t)2;
end

end
end
Output: ‖u‖2 = t

√
s

In the chapters on differential equations, we sometimes use the so-called “en-
ergy” (l2,�x) norm, which takes into account the discretization �x in one of the
coordinates,

‖u‖2,�x =
√√√√

n∑

j=1

|uj |2�x. (A.5)

Namely, by using the basic l2-norm it is quite awkward to distinguish among differ-
ent discretization of the function values. Why? An infinitely long vector describing
the discrete approximation of a function defined on the whole real axis,

u�x =
(
. . . , u(−�x),u(0), u(�x), . . .

)T
,

has the l2-norm of ‖u�x‖2. The approximation u�x/2 on a mesh twice as dense
(with a spacing of �x/2) has twice as many components as u�x , and its l2-norm
is ‖u�x/2‖2 ≈

√
2‖u�x‖2. For any smooth function therefore ‖u�x‖2 →∞ if

�x→ 0. In such cases we prefer to use the l2,�x -norm, which possesses all for-
mal properties of the l2-norm, and which approximates the norm (A.2) for square-
integrable functions.

A.4 Matrix and Operator Norms 625

The generalization to vectors from spaces Rn⊕R
n⊕ · · · is straightforward. For

example, for u ∈Rn ⊕R
n we have

‖u‖2,�x =
√√√√

n∑

j=1

n∑

k=1

|ujk|2�x�y.

In infinitely dimensional spaces the sums run from −∞ to +∞. Such examples can
be found in discussing initial problems for ordinary and partial differential equa-
tions, where u= (. . . , u−1, u0, u1, . . .)

T. In such cases the norm (A.5) is computed
as

‖u‖2,�x =
(∞∑

j=−∞
‖uj‖2�x

)1/2

.

A.4 Matrix and Operator Norms

Matrix norms can be introduced by analogy with the vector norms. We are primarily
dealing with real square n×n matrices. A commonly used norm is the “max”-norm

‖A‖max =max
ij
|Aij |,

but this “norm” does not satisfy one of the mathematical requirements for the matrix
norm: namely, the inequality ‖AB‖max ≤ ‖A‖max‖B‖max is not always fulfilled.
The Euclidean norm

‖A‖F =
√∑

ij

|Aij |2,

also known as the Frobenius or Hilbert–Schmidt norm, is a “genuine” matrix norm.
We also use the norm ‖A‖1, which measures the largest column sum of the absolute
values of the matrix elements, and the norm ‖A‖∞, which measures the largest row
sum of the absolute values:

‖A‖1 =max
j

∑

i

|Aij |, ‖A‖∞ =max
i

∑

j

|Aij |.

Note that ‖A‖1 = ‖AT‖∞. The operator norms

‖A‖p =max
u�=0

‖Au‖p
‖u‖p

(which are also matrix norms) are defined according to the underlying vector norm,
and are thus also known as the subordinate or induced norms. In general, operator

626 A Mathematical Tools

norms are difficult to compute. The operator norm corresponding to the Euclidean
vector norm is

‖A‖2 =max
u�=0

‖Au‖2

‖u‖2
=√

λmax,

where λmax is the largest eigenvalue of the matrix ATA. Various relations exist
among different matrix norms, for example

‖A‖2 ≤ ‖A‖F ≤√n‖A‖2 ≤ ‖A‖∞,
1

n
‖A‖∞ ≤ ‖A‖1 ≤ n‖A‖∞ ≤ n3/2‖A‖2.

The spectral radius of the matrix A with the eigenvalues λ1, λ2, . . . , λs is defined as

ρ(A)= max
1≤k≤s

{∣∣λk(A)
∣∣ }.

For Hermitian matrices the Euclidean matrix norm is equal to the spectral radius
of the matrix, ρ(A) = ‖A‖2, while in general ρ(A) ≤ ‖A‖2. These considerations
apply equally well to vectors in C

n and matrices in C
n×n: the absolute value signs

denote the magnitudes of the complex numbers, while for matrices AT (transposi-
tion) should be substituted by A† (transposition and complex conjugation).

A.5 Eigenvalues of Tridiagonal Matrices

Here we list the eigenvalues λs and eigenvectors vs = (v1, v2, . . . , vk, . . . , vN)T
s of

some special N ×N matrices appearing in problems with partial differential equa-
tions. The eigenvalues of a tridiagonal matrix

T (a, b, c)=

⎛

⎜
⎜⎜⎜⎜
⎝

b c 0
a b c 0

. . .
. . .

. . .

0 a b c

0 a b

⎞

⎟
⎟⎟⎟⎟
⎠

(A.6)

are

λs = b+ 2c

√
a

c
cos

sπ

N + 1
, s = 1,2, . . . ,N, (A.7)

while the corresponding components of the eigenvectors are

(vs)k = 2

(√
a

c

)k

sin
ksπ

N + 1
, k = 1,2, . . . ,N. (A.8)

A.6 Singular Values of X and Eigenvalues of XTX and XXT 627

On p. 479 we also refer to the tridiagonal symmetric matrix

TN1D =

⎛

⎜⎜⎜⎜⎜
⎝

1 −1 0
−1 2 −1 0

. . .
. . .

. . .

0 −1 2 −1
0 −1 2

⎞

⎟⎟⎟⎟⎟
⎠

, (A.9)

with eigenvalues

λs = 2− 2 cos
(2s − 1)π

2N + 1
, s = 1,2, . . . ,N,

and eigenvector components

(vs)k = cos
(2k− 1)(2s − 1)π

2(2N + 1)
, k = 1,2, . . . ,N.

A.6 Singular Values of X and Eigenvalues of XTX and XXT

The singular values and the corresponding singular vectors of the n×m matrix X of
rank r are closely related to the eigenvalues of the products XTX and XXT. Within
this textbook, this connection is exploited in multivariate statistical methods, where
it is sometimes preferable to use the covariance matrix XTX rather than the data
matrix X (Sects. 5.6, 5.7, 5.10, and 5.11). Let

X =U�V T, U ∈Rn×r , � = diag(σ1, σ2, . . . , σr) ∈Rr×r , V ∈Rm×r ,

be the singular decomposition of the matrix X. Then the following holds:

1. The matrix XTX ∈ Rm×m is symmetric and has r positive eigenvalues {σ 2
1 , σ 2

2 ,

. . . , σ 2
r }, with the corresponding eigenvectors {v1,v2, . . . ,vr}, and m − r zero

eigenvalues. The singular values {σ1, σ2, . . . , σr} of X are therefore just the pos-
itive square roots of the positive eigenvalues of XTX, and the columns of V are
the corresponding eigenvectors.

2. The matrix XXT ∈ R
n×n is symmetric and has r positive eigenvalues {σ 2

1 , σ 2
2 ,

. . . , σ 2
r }, with the corresponding eigenvectors {u1,u2, . . . ,ur}, and n − r zero

eigenvalues. The singular values {σ1, σ2, . . . , σr} of X are therefore just the pos-
itive square roots of the positive eigenvalues of XXT, and the columns of U are
the corresponding eigenvectors.

This implies that the positive eigenvalues of the matrices XTX or XXT are equal,
and the eigenvectors of these matrix products are related by

ui = 1

σi

Xvi , vi = 1

σi

XTui , i = 1,2, . . . , r,

628 A Mathematical Tools

or, in matrix form,

U =XV �−1, V =XTU�−1.

A.7 The “Square Root” of a Matrix

The “square root” of a symmetric positive semi-definite matrix A ∈ Rn×n is com-
puted by first finding its Cholesky decomposition A = GGT, then computing the
singular decomposition G=U�V T of the matrix G, and finally form X =U�UT.
For the matrix X obtained in this way we have X2 = A, and thus A1/2 = X or
A−1/2 =X−1 [2].

References

1. LAPACK, The Linear Algebra PACKage. http://www.netlib.org/lapack
2. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press,

Baltimore, 1996)

Appendix B
Standard Numerical Data Types

In serious computer programming, memory manipulations are needed (e.g. in dy-
namic allocation). Moreover, the characteristics of data structures should be well
matched to the compiler in order to optimize execution speed (e.g. by aligning the
structures to the boundaries of 32-bit regions on 32-bit architectures). To be able to
do this, we should know how real and integer numbers are stored.

B.1 Real Numbers in Floating-Point Arithmetic

The IEEE 754-2008 standard for floating-point arithmetic was devised by the IEEE
[1]. This set of rules prescribes the computer representation of numbers in single
(32 bits) and double precision (64 bits) as well as the rules for arithmetic operations
upon these types of numbers (algorithmic prescriptions for addition, subtraction,
multiplication, division, and taking the square root). In the following we discuss the
numbers in the little-endian notation (see Sect. B.2).

Single Precision (C/C++ float) The single-precision floating-point represen-
tation allows us to represent normal numbers in the range of ≈10±38. According to
the IEEE standard, a 32-bit word (4 bytes) is sufficient for the complete representa-
tion: it can be written as a sequence of 32 bits from 31 to 0 from left to right. The
bit S at the extreme left determines the sign of the whole number (the sign bit). It
is followed by 8 exponent bits E specifying the exponent of the number, and finally
by 23 bits representing the mantissa or the fraction F :

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

629

630 B Standard Numerical Data Types

The numerical value of V can be determined by using the scheme

E = 255 and F �= 0 =⇒ V =NaN (Not a Number),
E = 255 and F = 0 and S = 1 V =−∞,
E = 255 and F = 0 and S = 0 V =+∞,
0 < E < 255 V = (−1)S 2E−127 1.F10,
E = 0 and F �= 0 V = (−1)S 2−126 0.F10,
E = 0 and F = 0 and S = 1 V =−0,
E = 0 and F = 0 and S = 0 V =+0.

The values 0.F10 and 1.F10 are obtained by taking the negative powers of 2 cor-
responding to each bit of F to the right of the decimal point, and summing them
to form the decimal value, e.g. 1.01110 = 1+ 0 · 2−1 + 1 · 2−2 + 1 · 2−3 = 1.875
(obviously always 0 ≤ 0.F10 < 1 and 1 ≤ 1.F10 < 2). Two examples are shown
in the figure: in the first case S = 0, E = 124, and F = 01 (thus 1.F10 = 1.25)
and we obtain V = (−1)02124−1271.25 = 0.15625; in the second case S = 1,
E = 133, and F = 110110101 (thus 1.F10 = 1.85351562) and therefore V =
(−1)12133−1271.85351562=−118.625. The zeroth (rightmost) bit is known as the
least significant bit (LSB), in contrast to the most significant bit (MSB) at the ex-
treme left: if the LSB changes, the whole value V changes least. The notation S = 0,
E = 0, and just LSB = 1 therefore corresponds to the smallest representable posi-
tive number in single-precision, V = 2−1262−23 = 2−149 ≈ 1.4 · 10−45.

Double Precision (C/C++ double) The representation of a double-precision
floating-point number by the IEEE standard requires a 64-bit word (8 bytes) which
can be written as a sequence of 64 bits from 63 to 0 from left to right. This packaging
allows us to represent normal numbers in the range of ≈10±308. By analogy to the
single-precision representation, the leftmost bit S determines the sign of the whole
number, followed by 11 exponent bits and 52 bits for the mantissa:

The numerical value of V is determined as before,

E = 2047 and F �= 0 =⇒ V =NaN (Not a Number),
E = 2047 and F = 0 and S = 1 V =−∞,
E = 2047 and F = 0 and S = 0 V =+∞,
0 < E < 2047 V = (−1)S 2E−1023 1.F10,
E = 0 and F �= 0 V = (−1)S 2−1022 0.F10,
E = 0 and F = 0 and S = 1 V =−0,
E = 0 and F = 0 and S = 0 V =+0.

Quadruple Precision (C/C++ long double) In exceptional cases we need
quadruple-precision numbers requiring 96 bits of memory (1 sign bit, 31 exponent

B.1 Real Numbers in Floating-Point Arithmetic 631

bits, and 64 bits for the mantissa). This data type enables us to represent normal
numbers in the range of ≈10±4932. If our algorithm does not work in single or dou-
ble precision, we should not resort blindly to quadruple precision: rather, discover
the deficiency of the algorithm or find the error in the code.

Exceptions in Floating-Point Arithmetic A computer code performing opera-
tions in floating-point arithmetic may generate certain types of critical errors which
should be made known to the user. Locating such errors is made easier by tracing ex-
ceptions. The IEEE 745 standard defines several critical errors and the correspond-
ing exceptions that these errors should trigger. The most commonly encountered
exceptions occurring in computations by a real number R, are

• FE_DIVBYZERO: division by zero (R/0),
• FE_INVALID: invalid conversion of data to R (its floating-point form),
• FE_OVERFLOW: |R| exceeds the maximum value (range overflow),
• FE_UNDERFLOW: |R| is smaller than the smallest non-zero value (range under-

flow),
• FE_INEXACT: inexact conversion of data to R.

For most errors, triggering an exception is not automatic. In a program writ-
ten in C/C++, exceptions must be enabled explicitly: for example, the exceptions
FE_DIVBYZERO, FE_INVALID, or FE_OVERFLOW) are activated by the com-
mand

#include <fenv.h>
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);

and are deactivated by the command fedisableexcept(). If an exception is
triggered, the operating system terminates the program with the SIGFPE signal
(floating-point exception).

Normal and Subnormal Numbers and Their Limits The numbers V corre-
sponding to “non-extreme” E (in the ranges 0 < E < 255 or 0 < E < 2047) are
known as normal or normalized, since their mantissa has the form 1.F10. In the case
E = 0 and F �= 0 (mantissa in the form 0.F10) we are dealing with subnormal or
denormalized numbers. Both types of numbers appear in a variety of applications.
A simple program (listed below in C++) may be used to establish their upper and
lower limits:

using namespace std;
#include <stdlib.h>
#include <iostream>
#include <limits>
#include <sstream>

template <typename T> string S(string name) {
ostringstream os;
os << "Data type: " << name << endl

<< " mantissa: " << numeric_limits<T>::digits << endl
<< "Normal: " << endl

632 B Standard Numerical Data Types

<< " min: " << numeric_limits<T>::min() << endl
<< " max: " << numeric_limits<T>::max() << endl
<< " exponent in ["
<< numeric_limits<T>::min_exponent << ","
<< numeric_limits<T>::max_exponent << "]"
<< endl
<< "Subnormal: \n"
<< " min: " << numeric_limits<T>::denorm_min() << endl;

return os.str();
}

int main() {
cout << S<float>("float") << endl

<< S<double>("double") << endl
<< S<long double>("long double") << endl;

return EXIT_SUCCESS;
}

B.1.1 Combining Types with Different Precisions

On all computer architectures, computation with more precise data types is more
time- and memory-consuming than computing with less precise ones. By knowing
their inherent limitations, however, various data types can be sometimes combined
such that the precision of the final result is dictated by the more precise type, yet the
computation proceeds relatively faster.

Let us discuss such a case in which float and double data types are com-
bined. Suppose we have a real number x of type double and we wish to compute
the value of a function f at x. We represent x as a sum of the nearest number s of
type float and the remainder ε of type double:

x(double)= s(float)+ ε(double).

In double-precision floating-point arithmetic we have 1 ⊕ ε3 = 1, so that certain
functions can be evaluated faster and sometimes even more precisely. In the case
of the exponential function, f (x)= exp(x)= exp(s) exp(ε), we can use the power
expansion exp(ε) ≈ 1 + ε + ε2/2, since ε is small and the third order of the ex-
pansion does not contribute anything at the specified precision. In the case of
f (x) = exp(x2), we use the expansion x2 = s2 + ε(x + s). Similar conclusions
follow in the evaluation of polynomials of low degrees or smooth functions f that
can be approximated by f (x) ≈ f (s) + f ′(s)ε + f ′′(s)ε2/2, if one can ascertain
that f (s) is computed to sufficient precision.

The speed of the operations with different numerical types strongly depends on
the computer architecture and the programming language. In the order of increasing
numerical cost, addition is followed by subtraction (about the same cost as addition),
multiplication, and division (about the same cost as multiplication). The speed of
the algorithm is determined mostly by the number of multiplications and divisions.

B.2 Integer Numbers 633

Multiplication and division of double types are about twice as time-consuming as
multiplication and division of float types.

B.2 Integer Numbers

The representation of integer numbers is more transparent than the representation of
floating-point numbers. The most frequently used types in programming languages
related to C/C++ are char (8 bits in memory), short int (at least 16 bits), and
int, where “int” is an abbreviation for “integer”. According to the C language
standard, the type int has the same size as a typical processor register and hence
occupies 32 (64, 128, . . .) bits on 32 (64, 128, . . .) bit architectures. The binary
representation of an integer with p bits bi ∈ {0,1} further depends on an additional
declaration qualifier. If the variable is unsigned, it describes a non-negative num-
ber of the form

bp2p + bp−12p−1 + · · · + b121 + b020 = (bp, bp−1, . . . , b0)2,

which is represented by the vector of bits (bp, bp−1, . . . , b0). If it is declared as
signed, it can stand for either positive or negative numbers of the form

±(bp−1, bp−2, . . . , b0)2.

A positive integer can be represented by the vector of bits (0, bp−1, . . . , b0), i.e. by
a non-negative number x = (0, bp−1, . . . , b0)2, while a negative integer can be rep-
resented by (1,¬bp−1, . . . ,¬b0)2 + 1, also known as the two’s binary complement
of x. The leftmost bit (MSB) is the sign bit. This rather unusual notation for negative
integers allows for a faster summation of positive and negative numbers. The 32-bit
computer architecture permits the following integer ranges:

unsigned signed
char 0 . . .255 −128 . . .127
short int 0 . . .65535 −32768 . . .32767
int 0 . . .4294967295 −2147483648 . . .2147483647

Two further types, long int and long long int, are also in use. Their imple-
mentation depends on the compiler, computer architecture, and even the operating
system: on UNIX and Linux systems, see system variable __WORDSIZE) and other
declarations in the file /usr/include/limits.h.

An even more important characteristic of the representation of integers is the
ordering of bits within a byte or word. In big-endian ordering the most signifi-
cant bit (MSB) is stored at the lowest memory address. In little-endian ordering
the least significant bit (LSB) is stored first. The distinction between big-endian
and little-endian may apply even at the level of words, not just at the level of
bits: the number 1025 in integer type of length 4 bytes can be represented as
00000000|00000000|00000100|00000001, but this sequence of bits will be stored
differently in the two orderings:

634 B Standard Numerical Data Types

address big-endian little-endian
00 00000000 00000001
01 00000000 00000100
10 00000100 00000000
11 00000001 00000000

Most modern computers use little-endian ordering, while big-endian ordering is
popular on (super)computers. The PowerPC architecture is bi-endian as it under-
stands both systems. Problems may appear when one attempts to port the programs
between architectures with different orderings. This is known as the “NUXI prob-
lem”: the word “UNIX”, written in two two-byte words, is stored in memory as
“UNIX” on big-endian systems (in the sense of ordering bytes within a word), or as
“NUXI” on little-endian systems. Note that within an individual byte, even the bits
can be stored in one ordering or another. Moreover, on some systems the order of
significance of bits in a byte can be opposite to the order of significance of bytes in
a word!

Until we live in the safety of integer arithmetic at the level of a programming
language, we need not fear these peculiarities. But when we directly manipulate bits,
e.g. in cyclic permutations of bits or executing logical operations between sequences
of bits, a detailed understanding of the “NUXI problem” is essential. The following
program allows us to determine the way in which integer and floating-point numbers
are stored on our computer:

#include <stdlib.h>
#include <iostream>
using namespace std;

template <typename T> string binary(const T v) {
typedef unsigned char Ti;
string s;
for (Ti *d = (Ti *)&v; d != sizeof(v) + (Ti *)&v; ++d)
for (Ti mask = 1; mask; mask <<= 1)

if ((*d) & mask) s += ’1’; else s += ’0’;
return s;

}

int main() {
int i = 1025;
double d = 1025;
cout << "int " << i << ", binary " << binary(i) << endl

<< "double " << d << ", binary " << binary(d) << endl;
return EXIT_SUCCESS;

}

B.3 (Almost) Arbitrary Precision

Computations in number theory and numerous physical application sometimes re-
quire arbitrary precision in integer or floating-point arithmetic. Standard libraries

References 635

exist for this purpose. Important libraries for integer arithmetic are BigDigits [2],
where the interval [Lmin,Lmax] of integers is practically unbounded. Of course,
with increasing interval length L = Lmax − Lmin + 1, memory consumption also
increases, and amounts to �log2 L� bits in the optimal case. In order to ensure
good portability, well-defined use of memory, and transparency of computations, we
sometimes also use the character representation of numbers. In this representation,
numbers in some base B (e.g. decimal, B = 10) are stored as arrays of characters,
e.g. the number 123 is stored as the array “123”. Such storage requires 8�logB L�
bits (which is a lot). Another important library for integer arithmetic in arbitrary
precision is NTL [3].

Arbitrary integer and floating-point arithmetic are implemented in the GMP li-
brary (Gnu Multi-Precision, “The fastest bignum library on the planet”) [4, 5].
Implementations in various precisions (double-double precision, quad-
double precision, and arbitrary precision) for Fortran77, Fortran90, and C++
are listed in [6].

References

1. IEEE Standard 754-2008 for Binary Floating-Point Arithmetic (IEEE, 2008); see also http://
grouper.ieee.org/groups/754/

2. BigDigits multiple-precision arithmetic. http://www.di-mgt.com.au/bigdigits.html
3. NTL: a library for doing number theory. http://shoup.net/ntl
4. GNU multi precision (GMP), free library for arbitrary precision arithmetic. http://gmplib.org
5. L. Fosse et al., MPFR: a multiple-precision binary floating-point library with correct rounding.

ACM Trans. Math. Softw. 33, 13 (2007)
6. http://crd.lbl.gov/~dhbailey/mpdist

Appendix C
Generation of Pseudorandom Numbers

Generation of pseudorandom (or quasirandom) numbers is a deterministic process
of computing sequences appearing to be random. The degree of their randomness
is established by special statistical tests. Random number generators (RNG) are
used in a variety of computations, and each individual application may require these
generators to possess specific statistical properties. In the following, generation of
pseudorandom numbers is called simply drawing, and the generated numbers are
called random numbers. The mathematical basis of random numbers is presented
in [1], the analysis of generators from the mathematical perspective is given by
[2, 3], and from the viewpoint of theoretical computing by [4]. Details on the use of
generators can be found in [5, 6, 7].

C.1 Uniform Generators: From Integers to Reals

To generate random numbers with a uniform probability distribution, we use uni-
form generators. A discrete integer random variable X ∈ Zm = [0,m− 1] ⊂ N0 is
distributed uniformly if it assumes any value on the interval with equal probabil-
ity P , thus

P(X = i)= 1

m
, i = 0,1, . . . ,m− 1.

A continuous real random variable X ∈ [a, b] ⊂ R is distributed uniformly if its
probability density is

p(x)=
{

(b− a)−1; x ∈ [a, b],
0; otherwise.

We denote the uniform distribution on the real or integer axis by U(a,b).
A good uniform generator that yields the sequence of numbers {xi} is expected

to generate uncorrelated sequences: this means that the vectors of subsequences
(xi, xi+1, . . . , xk+i) are as weakly correlated as possible, for any k. The sequence

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

637

638 C Generation of Pseudorandom Numbers

{xi} should also have a long period (it should not repeat itself for as long as possible)
and should be uniform and unbiased (equal number of points should fall into spaces
of equal sizes). In other words, we require a uniform distribution of points v

(k)
i =

(xi, xi+1, . . . , xk+i−1) in a hypercube with dimension k as large as possible; this
is known as serial uniformity of the sequence. Moreover, the generator should be
numerically efficient [8].

Most modern uniform random generators are based on integer arithmetic. Such
generators typically return numbers with equal probabilities on the interval [0,m−
1], where m = 232 or 264. Uniform generators are standard components of gen-
eral libraries and tools, e.g. the command rand() in MATLAB and C/C++,
gsl_rng_rand in GSL, or Random[] in MATHEMATICA. Random integers
xk ∈ Zm returned by the generator can be converted to uniformly distributed ran-
dom real numbers yk from U(0,1) by using the transformations [2, 3]:

yk = xk/m approximately uniform in [0,1),

yk = xk/(m− 1) [0,1],
yk = (xk + 1)/m (0,1],
yk = (xk + 1/2)/m (0,1).

The real numbers obtained in this manner have b= log2 m random most significant
bits. Frequently this is not enough (and, at any rate, less than what is supported by
the mantissa of the real data type). But there is another way of converting xk to
yk . In real arithmetic with a n-bit mantissa, the precision of a number is 2−n with
n > b. An approximation of a random real number y on the interval [0,1) with all
bits random can be obtained by independently drawing the integers {xk ∈ Zm}hk=1
and using the formula

y = x1m
−1 + x2m

−2 + · · · + xhm
−h,

where h is chosen such that (h−1)b < n < (h+1)b. In the case of the 32-bit integer
random generator int32() and the real data type double, the right-hand side of
this formula is (see Chap. 7 in [5]):

2.32830643653869629E-10 * (int32() + 2.32830643653869629E-10

* int32())

C.2 Transformations Between Distributions

A generator of random numbers with an arbitrary discrete or continuous distribution
can be obtained by transforming the numbers returned by a uniform generator. Here
we present the most frequently encountered transformations.

C.2 Transformations Between Distributions 639

C.2.1 Discrete Distribution

Let X be a random variable that can assume n distinct values. An example is the
interval of integers I = [1, n], where X assumes each value with a probability pi =
P(X = i) for i ∈ I and

∑
i∈I pi = 1 holds true. The probabilities pi represent a

discrete probability distribution with the cumulative distribution

Pi =P(X ≤ i)=
∑

j≤i

pj for i ∈ I ∪ {0}.

A discrete random variable X can be expressed by a continuous random variable
U from U(0,1) by inverting the cumulative distribution, by using the formula X =
P−1(U): this means that X = i precisely when Pi−1 ≤U < Pi .

This statement can be turned into a method of generating numbers, where for
each drawn number u from U(0,1) we find an interval Ri = [Pi,Pi+1) such that
u ∈ Ri , and then i is the sought value of the random variable X. Finding the corre-
sponding interval can be accomplished linearly in O(n) operations at worst, or in
O(logn) by using search trees [9].

In [7] and [10] other methods of generation of random numbers according to a
discrete distribution are presented. Here we mention the Walker alias method [11]
with the computational cost of O(1) (independent of n) and memory requirement
of just O(n) [12]. In this method, any discrete random variable X ∈ [1, n] with the
probability distribution {pi}ni=1 can be expressed as a random variable Y ∈ [1, n] by
n two-point probability densities

P(Y = yij)= qij , i = 1,2, . . . , n, j = 1,2,

where qi1 + qi2 = 1, and we denote

yi1 = i, yi2 = Li, qi1 = Fi, qi2 = 1− Fi.

This transformation of random variables is not unique. We draw the value of the
random variable X by using the algorithm

Input: Constants Fi and Li for i = 1,2, . . . , n.
Draw u from U(0, n);
i = �u�;
v = i − u;
if (v > Fi) then

i = Li ;
Output: i is one realization of the discrete random variable X with the

distribution pi .

The constants Fi and Li depend on the distribution pi and are determined below.
The constant Fi represents the limit value to which we compare the randomly cho-
sen value u from U(0,1), while Li is the alias into which i is transformed if the

640 C Generation of Pseudorandom Numbers

Fig. C.1 The sequence of vectors of constants L and F , and the sets G and S during the Walker
algorithm for the discrete distribution p = (pi)

4
i=1 = (0.4,0.3,0.2,0.1) of numbers {1,2,3,4}.

Step 1 represents the status of (L,F,G,S) prior to entering the loop

comparison fails. The Fi and Li can be determined by using the procedure

Input: Discrete distribution given by vector p = (pi)
n
i=1.

Define vectors F = (Fi)
n
i=1 and L= (Li)

n
i=1.

for i = 1,2, . . . , n do
Fi = npi ;
Li = 0;

Define sets G= {i : Fi > 1} and S = {i : Fi < 1}.
if (|S| = 0) then

All pi are equal to 1/n, so terminate the routine, since the values of the
random variable X can be drawn from the uniform distribution.

repeat
Choose an element from G (denoted by k) and an element from S

(denoted by j).
Lj = k; // alias assigned to element j

S = S\{j};
Fk = Fk − (1− Fj); // change kth limit value
if (Fk < 1) then

G=G\{k};
S = S ∪ {k};

until (|S|> 0);
Output: Vectors of limit values F and aliases L for distribution p.

Here | · | denotes cardinality (the number of elements in the set). An illustration of
the Walker algorithm in operation is given in Fig. C.1. Walker’s method is imple-
mented in the GSL library (commands gsl_ran_discrete*) and the R project
(commands sample[·]).

C.2.2 Continuous Distribution

If a real random variable X is distributed according to the continuous probability
density p, the probability of an event X ∈A= [a, b] is given by the integral

C.2 Transformations Between Distributions 641

Fig. C.2 Drawing [Left] by the inverse method; [Right] by the rejection method

P(X ∈A)=
∫

A

p(t)dt,

The function p is integrable and usually at least piecewise continuous. The cumula-
tive distribution function is

P(x)=
∫ x

−∞
p(t)dt, 0≤ P(x)≤ 1.

Random values of the variable X can be obtained by using uniform generators
and transformations between distributions of various variables. In the following we
present the most commonly used methods.

The Inverse Method Assume that X is a random variable with the probability
density p(x) and U is a variable distributed uniformly according to U(0,1). Then
X can be expressed as

X = P−1(U)

(Fig. C.2 (left)). This method of generating the values of X is useful if the inverse
of the cumulative distribution function P−1(y) is easy to compute.

If a random variable X ∈ � has the probability density pX and h is a differen-
tiable function with the inverse g = h−1, the random variable Y = h(X) has the
probability density

pY (y)=
∫

�

δ
(
h(t)− y

)
pX(t)dt = pX

(
g(y)

)∣∣g′(y)
∣
∣.

If independent random variables X and Y are distributed according to the den-
sities pX and pY , the probability density of the sum Z = X + Y is given by the

642 C Generation of Pseudorandom Numbers

convolution of pX and pY ,

pZ(z)=
∫

R

pX(t − z)pY (t)dt.

A few examples follow.

• A variable X distributed according to the Weibull probability density

p(t)= ktk−1 exp
(−tk

)
, t > 0,

can be obtained by the transformation X = (− logU)1/k . We except the value 0
from the domain of U , so that X is always bounded. A special case of the Weibull
density is the exponential density p(t)= exp(−t).
• If U1 and U2 are independent random variables distributed according to U(0,1),
the Box–Muller transformation [13]

X1 =
√−2 logU1 cos(2πU2), X2 =

√−2 logU1 sin(2πU2),

yields independent random variables X1 and X2 distributed according to the normal
distribution N(0,1). The variables U1 and U2 define the length R = √−2 logU1

and angle θ = 2πU2 of the two-dimensional vector (X1,X2)
T. The costly computa-

tion of trigonometric functions can be avoided in the Marsaglia implementation of
the Box–Muller method (see [4], Chap. 7, Algorithm P):

repeat
Independently draw u1 and u2 from U(0,1).
v = 2(u1, u2)

T − (1,1)T;
s = |v|2;

until (s ≥ 1∨ s �= 0);
(x1, x2)

T =√−2 log(s)/s v;
Output: Realization of two independent random variables (x1, x2) distributed

according to N(0,1).

On the average, the drawn vector v covers the unit circle, while approximately
1− π/4≈ 21.5 % of generated points are discarded: for one pair (x1, x2) we draw
2/(π/4) ≈ 2.54 uniformly distributed numbers. This algorithm is suitable for the
generation of complex Gaussian-distributed numbers x1 + ix2 for the construction
of random matrices from the GUE (Sect. 3.5.2).
• The values x of a random vector X ∈Rd distributed according to the multivariate
normal probability density

p(x)= 1

(2π)d/2(det�)1/2
exp

(
−1

2
(x −μ)T�−1(x −μ)T

)

C.2 Transformations Between Distributions 643

with the mean μ and correlation matrix � can be generated by independently draw-
ing d components of the vector y = (y1, y2, . . . , yd)T according to the standard
normal distribution N(0,1), and computing

x = Ly +μ,

where L is the lower-triangular d × d matrix from the Cholesky decomposition of
the correlation matrix, � = LLT.
• The values of a random variable X with the probability density in the form of a
symmetric trapezoid

p(x)= 1

ab

⎧
⎪⎨

⎪⎩

(a + b)/2− |t |; 2|t | ∈ [|a − b|, (a + b)],
min(a, b); 2|t | ∈ [0, |a − b|],
0; otherwise,

can be obtained by combining the values of two random variables U1 and U2 uni-
formly distributed on the unit interval [0,1], by using the formula

X = a

(
U1 − 1

2

)
+ b

(
U2 − 1

2

)
.

• The points x = (x1, x2, . . . , xd)T ∈ R
d that are uniformly distributed over the

(d − 1)-dimensional real sphere Sd−1 ∈ Rd can be generated [4] by independently
drawing the components of the vector y = (y1, y2, . . . , yd)T with probability density
N(0,1), and normalizing it: xi = yi/‖y‖2, where ‖y‖2

2 =
∑d

i=1 y2
i .

• The points x = (x1, x2, . . . , xd)T, xi > 0, which are uniformly distributed over the
plane defined by

∑d
i=1 aixi = b with positive real constants ai and b, are generated

by independently drawing d components of the vector y = (y1, y2, . . . , yd)T with
exponential probability density p(y)= exp(−y), and computing [14]

S =
d∑

i=1

aiyi, xi = b

S
aiyi .

Rejection Method Suppose a function m exists that bounds the probability den-
sity function p from above as tightly as possible (Fig. C.2 (right)), and that the
integral of m is M = ∫

R
m(x)dx. If we possess an efficient method to generate ran-

dom numbers distributed according to 1
M

m and the computation of p is too costly,
we introduce a function s ≥ 0 that bounds p as tightly as possible from below, and
follow the algorithm

644 C Generation of Pseudorandom Numbers

Input: Probability density p, functions m and s.
repeat

Draw x with probability density 1
M

m(x) and u with density U(0,1).
if (s(x) > um(x)) then

Terminate the loop.

until (p(x) < um(x))
Output: x is the value of one realization of the random variable X.

The function s increases the rate at which the values are accepted, which is known
as squeezing. If we do not know the function s, we simply remove the if conditional
statement from the loop. We discard≈1− 1

M
drawn pairs (x, v), so the algorithm be-

comes the most efficient when M is close to 1. If m is a piecewise constant function,
the Walker method described previously can be used to draw the values according
to 1

M
m. Some examples follow.

• The Cauchy–Lorentz (Breit–Wigner) distribution

p(x)= 1

π(1+ x2)
(C.1)

is a frequent occurrence: it describes shapes of spectral lines and nuclear resonances
in quantum physics, or resonance curves in classical forced oscillations. The corre-
sponding cumulative distribution function P and its inverse P−1 are

P(x)= 1

π
arctanx + 1

2
, P−1(t)= tan

[
π

(
t − 1

2

)]
. (C.2)

The values of the variable X distributed according to (C.1) could be generated by
the inverse method where in (C.2) one would use a random variable U distributed
uniformly on [−π/2,π/2], and compute X = tanU . Instead of the costly evaluation
of tanU = sinU/ cosU , we prefer to see the value of X as the ratio of the projec-
tions of a point within a circle onto the x- and y-axis. These points are uniformly
distributed over the angles. We use the algorithm

repeat
Draw u1 from U(−1,1) and u2 from U(0,1).

until (u2
1 + u2

2 > 1∨ u2 = 0);
x = u1/u2;
Output: x is a realization of a random variable distributed according to

Cauchy.

• Assume that a random variable X has the probability density p defined on the
interval [s, s + h] such that

∫ s+h

s

p(x)dx =
∫ h

0
p(x + s)dx = 1,

C.2 Transformations Between Distributions 645

Fig. C.3 [Left] An almost linear portion of the probability density p(x) on the interval [s, s + h],
which is bounded from above and below by straight lines (C.3). [Right] The region Cp where
points are accepted in the method of uniform deviates, for the standard normal distribution
p(x)= (2π)−1/2 exp(−x2/2). The boundary of the region is defined by v =±2u

√− logu

and that it is bounded from above and below by the straight lines

l1(x)= a − b

h
(x − s), l2(x)= b− b

h
(x − s), (C.3)

as shown in Fig. C.3 (left). The values of the variable X can be drawn by using the
following algorithm [4] based on the rejection method:

Input: Distribution p, interval [s, s + h], constants a and b.
repeat

Independently draw u and v from U(0,1).
if (u > v) then

Swap u and v. // implies u≤ v.
x = s + hu;
if (v ≤ a/b) then

Terminate the loop.

until (v > u+ p(x)/b);
Output: x ∈ [s, s + h] is a realization of a random variable distributed

according to p.

Method of the Ratio of Uniform Deviates Assume that the random variable X

has the probability density p, to which we assign the region

Cp =
{
(u, v) : 0≤ u≤√

p(v/u)
}
.

If (U,V) is a random variable uniformly distributed over Cp , we have X = V/U

[15]. This transformation is embodied in the algorithm

646 C Generation of Pseudorandom Numbers

Input: Distribution p, constants a = supx

√
p(x), b= infx x

√
p(x), and

c= supx x
√

p(x).
repeat

Independently draw u and v from U(0,1).
u1 = au;
u2 = b+ (c− b)v;
x = v/u;

until (u2 ≤ p(x));
Output: x is the value of one realization of the random variable distributed

according to p.

This algorithm is a variation of the rejection method, and can be optimized sim-
ilarly. An example of optimized generation of random numbers from N(0,1) is
described in [16]: the region Cp where the points are accepted is shown in Fig. C.3
(right). This method requires ≈2.74 draws from U(0,1) to generate one number
from N(0,1) [5], which is worse than in the Box–Muller method.

C.3 Random Number Generators and Tests of Their Reliability

Generators of random numbers xi ∈ Zm = [0,m − 1] where i ∈ N0 = {0,1, . . .}
[4, 5] are defined by the transition function F and the relation

xi = F(xi−1, . . . , xi−k) mod m.

The function F is thus restricted to Zm by the congruence relation [2, 3]. The initial
state {x0, x1, . . . , xk−1} of the generator is a unique function of a number known as
the seed which completely determines the generated sequence: a generator initial-
ized with the same seed always yields the same sequence of numbers. The properties
of F define two classes of generators. If F is linear in its parameters, the generator
is linear; in other cases, it is non-linear.

Random number generators are implemented in all major numerical packages
(MATLAB, MATHEMATICA, MAPLE, the R project) and in libraries (NUMERICAL

RECIPES, GSL, BOOST). Interesting thoughts on the implementations of generators
are preserved in [17] and in Appendices A–C of [18]. A pedagogically systematic
overview of random generator classes is offered by [7] and [2, 3].

C.3.1 Linear Generators

Typical linear generators are the linear congruential generators (LCG):

xn+1 = axn + c mod m,

C.3 Random Number Generators and Tests of Their Reliability 647

Fig. C.4 [Left] Zoom-in of the phase space [0,1]3 of the points 2−31(xi , xi+1, xi+2) picked from
the sequence {xi} generated by the standard 32-bit glibc generator with x0 = 12345. [Right] The
bits b of numbers xi (black = 1, white = 0)

where xn ∈ Zm. The result {x0, x1, . . .} is called the Lehmer sequence. The multi-
plier a and the carry c ∈ Zm are adjustable constants, while the initial value x0 is
the seed. A LCG generator for c �= 0 attains full periods of length m precisely when
c and m have no common factors except 1, when (a − 1) is divisible by all prime
factors m, and when (a− 1) is a multiple of 4, if m is a multiple of 4 [4]. In the case
c= 0 we attain the longest period of length m− 1 if m is prime. On the average, the
period of the LCG-type generator is increased by using a non-zero c.

If c = 0, the points v
(k)
i = 1

m
{xi, . . . , xi+k−1} for given k and x0 do not fill the

whole k-dimensional hypercube but lie on at most (mk!)1/k hyperplanes (similarly
for c �= 0 [19]). A good generator should generate numbers over many hyperplanes
[20]. It also turns out that the least significant bits are less random than the more
significant ones [5, 21]: Fig. C.4 shows the numbers generated by the default gener-
ator in the 32-bit glibc library. It belongs to the LCG family with the parameters
m= 232, a = 1103515245, and c= 123454. The figure clearly shows that the points
are distributed in planes and that the less significant bits are not random.

The LCG generators are therefore not suitable for certain applications. In those
cases where the deficiencies discussed above are irrelevant, we nevertheless use
them extensively, since they are supported by all programming languages and be-
cause they are simple and fast.

Further members of the LCG family are the generators Add-with-Carry (AWC),
Subtract-with-Borrow (SWB), and Multiply-with-Carry (MWC) [22–24]:

AWC: xn = xn−r + xn−k + cn−1 mod m, cn = �(xn−r + xn−k + cn−1)/m�,
SWB: xn = xn−r − xn−k − cn−1 mod m, cn = �(xn−r − xn−k − cn−1)/m�,

MWC: xn = axn−r + cn−1 mod m, cn = �(axn−r + cn−1)/m�.
The SWB algorithm is at the heart of the RANLUX generator [25,26] implemented
in the GSL library. Almost just as popular are the multiple recursive generators

648 C Generation of Pseudorandom Numbers

(MRG):

xn = a1xn−1 + · · · + akxn−k + cn mod m,

with constants ak ∈ Zm. The carry cn may or may not depend on the step, or may
be even zero, all of which strongly influences the properties of the generator. This
family consists of the well-known lagged Fibonacci generators (LFG) [4] of the
form

xn = xn−r ◦ xn−k mod m,

where ◦ denotes the operations of addition, subtraction, multiplication, or the exclu-
sive OR (XOR) within Zm. A typical representative is the popular ran3 generator
from the NUMERICAL RECIPES library (up to its third edition).

C.3.2 Non-linear Generators

In general, non-linear generators are less predictable (more random) than linear, but
they are also slower. In specific application, e.g. in Monte-Carlo integrations, the
generator speed may be the decisive factor. The main representatives of non-linear
generators are the inversive congruential generators (ICG) defined by the recurrence

xn = axn−1 + b mod m,

where (xx = 1 mod m), and the explicit inversive congruential generators (EICG)
[27] based on the relation

xn = a n+ b mod m.

For prime m, the generators from the ICG and EICG families generate points that
avoid clustering in planes typical of the LCG generators. However, modular inver-
sion is time consuming, and the filling of space is less uniform [7, 28]. Further
members of the non-linear group are the LFSR, NLFSR, and GFSR generators (lin-
ear, non-linear, and generalized feedback shift register). A typical LFSR generator
is XorShift [29–31]. Details can be found in [2, 3, 5, 7, 32].

The Authors’ preference is the Mersenne twister [33] (algorithm MT19937) from
the family of “twisted” GFSR algorithms. It is implemented in 32-bit integer arith-
metic, theoretically well understood, and accessible in standard libraries. Its period
is 219937−1 and has been proven to be serially uniform for dimensions k ∈ [1,623].
Its main deficiency is the somewhat lower randomness of the consecutive bits be-
tween subsequently generated numbers.

C.3.3 Using and Testing Generators

There are many random number generators branded as “good” or “best” by special-
ists. But every generator has its own deficiencies, some of them very specific. If we

References 649

(as non-specialists) must invoke a generator very frequently in our code, we may be
guided by the following advice [4, 6, 34, 35].

Choose only generators that were created and tested by the experts in the field.
The code should be terse and preferably based on integer arithmetic in favor of
greater speed. Choose a generator with the largest period and best serial uniformity
for as many dimensions as possible. Preferably use generators that are accessible
in source code, since modern compilers allow us to link short code fragments in
the main program by using “inline” functions. Prior to its use, study the statistical
property of a generator and determine whether any of its known deficiencies may
endanger the correctness of your results. Individual rounds of computation should
be performed by using different generators and seeds.

The quality of random number generators can be checked by statistically founded
batteries of empirical tests. The best-known batteries—the tests contained within
coincide in many cases—can be found in the classical collection due to Knuth [4], in
the slightly more restrictive set DIEHARD by Marsaglia [36], in the NIST Statistical
Test Suite [37, 38], and in the large set TESTU01 due to L’Ecuyer [28]. See also
Appendices A–C in [18].

References

1. L. Devroye, Non-uniform Random Variate Generation (Springer, Berlin, 1986)
2. P. L’Ecuyer, Random number generation, in The Handbook of Computational Statistics, ed. by

J.E. Gentle, W. Haerdle, Y. Mori (Springer, Berlin, 2004), p. 35
3. P. L’Ecuyer, Uniform random number generators and non-uniform random variate generation,

in International Encyclopedia of Statistical Science, ed. by M. Lovric (Springer, Berlin, 2011)
4. D. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd edn.

(Addison-Wesley, Reading, 1998)
5. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

6. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods (SIAM,
Philadelphia, 1992)

7. J. E. Gentle, Random Number Generation and Monte Carlo Methods (Springer, Berlin, 2003)
8. P. L’Ecuyer, Uniform random number generation. Ann. Oper. Res. 53, 77 (1994)
9. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn. (MIT

Press, Cambridge, 2009)
10. A.V. Peterson Jr., R.A. Kronmal, On mixture methods for the computer generation of random

variables. Am. Stat. 36, 184 (1982)
11. A.J. Walker, An efficient method for generating discrete random variables with general distri-

butions. ACM Trans. Math. Softw. 3, 253 (1977)
12. R.A. Kronmal, A.V. Peterson, On the alias method for generating random variables from a

discrete distribution. Am. Stat. 33, 214 (1979)
13. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math.

Stat. 29, 610 (1958)
14. M. Horvat, The ensemble of random Markov matrices. J. Stat. Mech. 2009, P07005 (2009)
15. A.J. Kinderman, J.F. Monahan, Computer generation of random variables using the ratio of

uniform deviates. ACM Trans. Math. Softw. 3, 257 (1977)

650 C Generation of Pseudorandom Numbers

16. J.L. Leva, A fast normal random number generator. ACM Trans. Math. Softw. 18, 449 (1992)
17. G. Marsaglia, Usenet newsgroup sci.stat.math, contributions dated 12 January 1999

and 1 August 1994
18. J.C. Collins, Testing, selection, and implementation of random number generators. Army Re-

search Laboratory, Report ARL-TR-4498, 2008
19. G. Marsaglia, Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. 61, 25 (1968)
20. U. Dieter, How to calculate shortest vectors in a lattice. Math. Comput. 29, 827 (1975)
21. S.K. Park, K.W. Miller, Random number generators: good ones are hard to find. Commun.

ACM 31, 1192 (1988)
22. G. Marsaglia, A. Zaman, A new class of random number generators. Ann. Appl. Probab. 1,

462 (1991)
23. R. Couture, P. L’Ecuyer, Distribution properties of MWC random number generators. Math.

Comput. 66, 591 (1997)
24. G. Marsaglia, Random number generators. J. Mod. Appl. Stat. Methods 2, 2 (2003)
25. M. Lüscher, A portable high-quality random number generator for lattice field theory simula-

tions. Comput. Phys. Commun. 79, 100 (1994)
26. F. James, RANLUX: a Fortran implementation of the high-quality pseudorandom number gen-

erator of Lüscher. Comput. Phys. Commun. 79, 111 (1994)
27. J. Eichenauer-Herrmann, K. Ickstadt, Explicit inversive congruential pseudorandom numbers

with power of two modulus. Math. Comput. 62, 787 (1994)
28. P. L’Ecuyer, R. Simard, TestU01: a C library for empirical testing of random number genera-

tors. ACM Trans. Math. Softw. 33, 22 (2007), see also http://www.iro.umontreal.ca/~simardr/
testu01/tu01.html

29. G. Marsaglia, Xorshift RNGs. J. Stat. Softw. 8, 1 (2003)
30. F. Panneton, P. L’Ecuyer, R. P. Brent, Note on Marsaglia’s Xorshift random number generators.

J. Stat. Softw. 11, 1 (2004)
31. F. Panneton, P. L’Ecuyer, On the Xorshift random number generators. ACM Trans. Model.

Comput. Simul. 15, 346 (2005)
32. T. G. Lewis, W. H. Payne, Generalized feedback shift register pseudorandom number algo-

rithms. J. ACM 20, 456 (1973)
33. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform

pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3 (1998)
34. S. Tezuka, Uniform Random Numbers: Theory and Practice (Kluwer Academic, Norwell,

1995)
35. O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-Randomness (Springer,

Berlin, 1999)
36. G. Marsaglia, DIEHARD battery of tests of randomness. http://www.stat.fsu.edu/pub/diehard/
37. A. L. Rukhin, Testing randomness: a suite of statistical procedures. Theor. Probab. Appl. 45,

111 (2001)
38. A. Rukhin et al., NIST—a statistical test suite for random and pseudorandom number genera-

tors for cryptographical applications. http://csrc.nist.gov/groups/ST/toolkit/rng/index.html

Appendix D
Convergence Theorems for Iterative Methods

This appendix contains the basic theorems on convergence properties of iterative
methods of the form

xk+1 = φ(xk) (D.1)

used to solve non-linear equations

f (x)= 0, x,f (x) ∈X, (D.2)

where X is a vector space (Rn or Cn). The convergence of the sequence of approxi-
mations {xk}k∈N0 to the exact solution ξ of (D.2) depends on the local properties of
the iteration function φ defined by f and its derivatives (see Chap. 2). The sequence
of vectors {xk} converges to ξ if for any ε > 0, a N(ε) exists such that

‖xk − ξ‖< ε ∀k ≥N(ε), (D.3)

or limk→∞ xk = ξ . Cauchy’s definition of convergence is slightly different: the se-
quence of vectors {xk} is convergent precisely when for any ε > 0 a N(ε) exists
such that

‖xk − xl‖< ε ∀k, l ≥N(ε).

The definition (D.3) is independent of the choice of norm and is equivalent to the
Cauchy formulation in complete metric spaces like Rn and C

n. (In a complete space
any Cauchy sequence is convergent.)

D.1 General Theorems

Theorem Assume that φ : X→ X has a fixed point ξ , i.e. φ(ξ) = ξ , and that its
neighborhood U(ξ), p > 1, and C ≥ 0 exist (or p = 1 and C ∈ [0,1)), such that for
all x ∈U(ξ) we have ‖φ(x)−ξ‖ ≤ C‖x−ξ‖p . Then a neighborhood V (ξ)⊂U(ξ)

exists such that for each initial x0 ∈ V (ξ), the points xk obtained by the iteration
xk+1 = φ(xk) converge to ξ at least with order p.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

651

652 D Convergence Theorems for Iterative Methods

The process in which V (ξ)⊂ R
n is locally convergent, while if V (ξ)= R

n it is
globally convergent. For the sequence to converge, φ must fulfill certain conditions.
The sufficient condition for the convergence of the iteration process (D.1) is given
by the following theorem.

Theorem Assume that ξ is the fixed point of φ. Let S = {x : ‖x − ξ‖ < r} be the
open neighborhood of ξ , on which φ is contractive: this means that a K < 1 exists
such that

∥∥φ(x)− φ(y)
∥∥≤K‖x − y‖ ∀x,y ∈ S (D.4)

(Lipschitz inequality). Then we can use any initial approximation x0 ∈ S in the
iteration xk+1 = φ(xk) to generate the sequence {xk}, k > 0, for which xk ∈ S

holds true for k = 1,2, . . . , and

‖xk+1 − ξ‖ ≤K‖xk − ξ‖ ≤Kk+1‖x0 − ξ‖.

This means that the sequence {xk} converges to ξ at least linearly. In one dimen-
sion the open neighborhood in (D.4) is replaced by the open interval I = (a, b), and
the Lipschitz condition can be written as

∣∣φ(x)− φ(y)
∣∣≤ α|x − y|, x, y ∈ I, 0≤ α < 1.

This theorem summarizes the necessary conditions for convergence, but it does not
ensure that the limit exists. The sufficient condition for its existence is specified by
the following theorem.

Theorem Suppose we have the mapping φ :X→X and the initial point x0 of the
sequence {xk : xk+1 = φ(xk)}, k ∈ N0. If a neighborhood Sr = {x : ‖x − x0‖< r}
and a constant K ∈ (0,1) exist such that

∥∥φ(x)− φ(y)
∥∥≤K‖x − y‖ ∀x,y ∈ Sr,

‖x1 − x0‖ =
∥∥φ(x0)− x0

∥∥≤ (1−K)r,

then φ has precisely one fixed point (ξ = φ(ξ)) in Sr , to which the sequence {xk}
converges monotonously (and is contained in Sr).

For differentiable mappings φ the theorem simplifies to the Banach contraction prin-
ciple:

Theorem Assume that for the mapping φ :X→X a region �⊂X exists that maps
onto itself upon this mapping (φ(�) ⊆ �), and on which the derivative J (x) =
φ′(x) exists with the property

∥∥J (x)
∥∥

2 < 1 ∀x ∈�.

D.2 Theorems for the Newton–Raphson Method 653

Then in � there is exactly one fixed point ξ of φ. For an arbitrary initial point x0 ∈�

the corresponding sequence {xk : xk+1 = φ(xk)} remains in � and converges to the
fixed point ξ .

D.2 Theorems for the Newton–Raphson Method

Theorem Let f be a real function. Choose x0 ∈ R such that f (x0)f
′(x0) �= 0 and

define h0 = f (x0)/f
′(x0). Assume that f ′′(x) exists on the interval I0 = [x0, x0 +

2h0], and that M = supx∈I0
|f ′′(x)| and 2M|h0| ≤ |f ′(x0)|. Then the elements of

the sequence {xk}k∈N0 generated by the Newton–Raphson iteration,

xk+1 = xk − f (xk)

f ′(xk)
, (D.5)

satisfy xk ∈ I0, and ξ = limk→∞ xk is the only zero of f in I0. The method is of first
order except if ξ = x0 + 2h0. In that case, f is a quadratic function and ξ is its
double root. For consecutive approximations we have

|xk+1 − xk| and |ξ − xk+1| ≤ M

2|f ′(xk)| |xk − xk−1|2, k ∈N0,

signifying a quadratic convergence of the sequence.

The following theorem describes the requirements on the function f that ensure
absolute convergence of the Newton method. It teaches us that the initial approxi-
mation should always be picked from that side of the interval on which the function
and its second derivative have equal signs.

Theorem Assume that f is twice continuously differentiable on [a, b], that
f (a)f (b) < 0 (a zero on the interval), and f ′′(x) �= 0 for any x ∈ [a, b]. If we
choose the initial approximation such that x0 ∈ {a, b} and f (x0)f

′′(x0) > 0, the
sequence of approximations {xk} in iteration (D.5) converges monotonously to ξ ,
which is the only zero of f on (a, b). The convergence is quadratic.

In connection to the Maehly–Newton–Raphson method (Sect. 2.4.11) we also
use the following theorem:

Theorem Let p be a polynomial of degree n≥ 2 with exclusively real zeros. Order
the zeros in magnitude, ξ1 ≥ ξ2 ≥ · · · ≥ ξn. Let α1 be the largest zero of the derivative
p′: ξ1 ≥ α1 ≥ ξ2. If n = 2, we assume ξ1 ≥ ξ2. Then for all z > ξ1, the quantities
defined by

z′ = z− p(z)

p′(z)
, y = z− 2

p(z)

p′(z)
, y′ = y − p(y)

p(y)
,

654 D Convergence Theorems for Iterative Methods

satisfy the inequalities

α1 < y, ξ1 ≤ y′ ≤ z′. (D.6)

In the case n= 2 and ξ1 = ξ2, we have y = ξ1 for all z > ξ1 [1].

References

1. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Appl. Math., vol. 12
(Springer, Berlin, 2002)

Appendix E
Numerical Integration

When integrands are tame functions of a single variable and the error of the numer-
ical integral is not our main concern, basic quadrature formulas from any textbook
of numerical methods can be used. In serious work one should pay attention to the
errors: in particular when we build integration routines into larger program units, we
should be aware of the required error tolerance and the error that is in fact attained.
At the specified tolerance, one would like to perform as few arithmetic operations
as possible, in particular the evaluations of the function being integrated.

We should therefore always use methods with error estimates, for example, the
Simpson’s formula to integrate a function f given on the interval [a, b] at (N + 1)

equidistant points (where N is even) spaced h= (b− a)/N apart,

∫ b

a

f (x)dx = IN +RN,

where

IN = h

3

[

f (a)+ 4
N/2∑

j=1

f
(
a + (2j − 1)h

)+ 2
N/2−1∑

j=1

f (a + 2jh)+ f (b)

]

.

The remainder has the form RN =∑∞
n=2 bnh

2n. Its leading term is

RN ≈−b− a

180
h4f (4)(ξ), ξ ∈ [a, b],

which can be used to calculate a better estimate for the value of the integral and the
error. The integral is first computed with (N + 1) and then with (2N + 1) points, so
that we can write I = IN +RN = I2N +R2N , where

|RN | = b− a

180
h4
∣∣f (4)(ξ1)

∣∣, |R2N | = b− a

180

(
h

2

)4∣∣f (4)(ξ2)
∣∣.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

655

656 E Numerical Integration

Fig. E.1 Numerical integration of the function f (x)= x2(x2 − 2) sinx on [0,π/2] by using the
basic Simpson’s method and by using routines qsimp, qromb and qgaus from the NUMERICAL

RECIPES library [1]. [Left] The number NF of integrand evaluations as a function of the required
relative error ERR of the integral. [Right] The achieved relative error compared to the required
tolerance TOL in subsequent halving of the subinterval. Due to rounding errors, the value of ERR
can be even larger than TOL if we require TOL to be very small (qsimp, lower left corner)

If we assume |f (4)(ξ1)| ≈ |f (4)(ξ2)|, the ratio of the remainders is

∣∣∣
∣
R2N

RN

∣∣∣
∣≈

1

16
.

It follows that

|I2N − IN | = |R2N −RN | ≈ 15

16
|RN |.

The quantity I2N is therefore an improved numerical estimate for the integral, while
a naive (and conservative) estimate for the error of the integral IN is

16

15
|I2N − IN |.

Simpson’s method requires many function evaluations (see Fig. E.1 (left)). By
recursive halving of the subintervals, which is repeated until the relative error drops
below a specified value, the error of the final result can be reduced by many orders
of magnitude (see Fig. E.1 (right) corresponding to qsimp from [1]). Extrapolation
methods (like the Romberg algorithm, see qromb in the figure) are even faster. But
quadrature formulas (like the Gauss quadrature, qgaus in the figure), are equally
tempting: they require few evaluations of f (x) and achieve breathtaking precision
for smooth functions.

E.1 Gauss Quadrature 657

Table E.1 Nodes xj and weights wj in quadrature formulas for different weight functions W .
The Gauss–Legendre quadrature corresponds to the polynomials Pn, while the Gauss–Chebyshev
quadrature of the first and second kind to the polynomials Tn and Un. The nodes and weights for
the Gauss–Legendre quadrature are listed in Table 25.4 of [2]

Interval W(x) Polynomial xj wj

[−1,1] 1 Pn solution of Pn(xj)= 0 2
(1−x2

j)(P ′n(xj))2

(−1,1) 1√
1−x2

Tn cos (2j−1)π
2n

π
n

[−1,1] √
1− x2 Un cos jπ

n+1
π

n+1 sin2 jπ
n+1

E.1 Gauss Quadrature

Quadrature formulas are used to compute definite integrals
∫ b

a
W(x)f (x)dx, where

f is a given function and W a non-negative weight. The integral is approximated by
the sum

∫ b

a

W(x)f (x)dx ≈
n∑

j=1

wjf (xj).

For certain weight functions W , such nodes xj and weights wj can be found that the
quadrature formula is exact for polynomial functions f up to the polynomial degrees
of 2n− 1. Each of these unique weight functions W belongs to a particular class of
orthogonal polynomials, and the nodes xj are the zeros of these polynomials. The
most important ones are shown in Table E.1.

Let us focus on the Gauss–Legendre quadrature of order n on [−1,1],
∫ 1

−1
f (x)dx ≈Gn =

n∑

j=1

wjf (xj). (E.1)

The numerical values for the nodes and weights of order n= 7 are listed to a pre-
cision of 15 digits in the upper part of Table E.2. If the function f is integrated on
[a, b] instead of on [−1,1], the argument of f needs to be modified, and the sum
weighted by the length of the interval:

∫ b

a

f (x)dx = b− a

2

n∑

j=1

wjf

(
b− a

2
xj + a + b

2

)
+Rn. (E.2)

The error Rn in expression (E.2) is (see [3]):

Rn = (b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3 f (2n)(ξ), a < ξ < b. (E.3)

658 E Numerical Integration

Table E.2 Nodes and
weights for the
Gauss–Kronrod quadrature
(G7,K15) on [−1,1]

Nodes for G7 Weights for G7

±0.949107912342759 0.129484966168870

±0.741531185599394 0.279705391489277

±0.405845151377397 0.381830050505119

0.000000000000000 0.417959183673469

Nodes for K15 Weights for K15

±0.991455371120813 0.022935322010529

±0.949107912342759 0.063092092629979

±0.864864423359769 0.104790010322250

±0.741531185599394 0.140653259715525

±0.586087235467691 0.169004726639267

±0.405845151377397 0.190350578064785

±0.207784955007898 0.204432940075298

0.000000000000000 0.209482141084728

E.1.1 Gauss–Kronrod Quadrature

The estimate (E.3) is not very useful. It requires us to compute the 2nth derivative
of f and tends to grossly over-estimate the error. The error can be reduced in a con-
trolled manner such that the quadrature weights are adaptively condensed or rear-
ranged: new nodes are inserted between nodes of the previous division, and the inte-
gration rules are used on these sub-meshes. The integration precision is increased by
covering the problematic regions of the integrand by ever denser quadrature formu-
las of lower orders. But such “adaptivity” greatly diminishes the symmetric beauty
of Gauss formulas.

For a minimum number of evaluations of f we prefer to consider the “optimal
case”: we make the existing mesh denser by embedding one mesh into another. Such
optimal embedding is realized in the Gauss–Kronrod quadrature. First, we compute
the Gauss quadrature Gn of order n by using (E.1). Second, we add n+1 new nodes
such that the corresponding quadrature formula has a higher order. We compute the
sums

Gn =
n∑

j=1

wjf (xj), (E.4)

K2n+1 =
n∑

j=1

ajf (xj)+
n+1∑

k=1

αkf (ξk). (E.5)

The quadratures Gn and K2n+1 share the n nodes xj , but differ in the weights
corresponding to these nodes: in the first sum of (E.5) we have aj instead of wj

E.1 Gauss Quadrature 659

from (E.4). The second sum in (E.5) requires n+ 1 additional nodes ξk and weights
αk . In total, we need 2n+ 1 evaluations of the function f , but the resulting quadra-
ture formula K2n+1 has order 3n+1! The value of K2n+1 is therefore a spectacularly
improved estimate of the integral. For the error estimate of the integral Gn, Ref. [4]
recommends

(
200|Gn −K2n+1|

)3/2
.

The numerical values of the additional nodes and weights for n = 7 (the standard
Gauss–Kronrod pair (G7,K15)) are listed to 15-digit precision in the lower part of
Table E.2. The method to compute the nodes and the weights is described in [5,6].
An interesting alternative to Gauss quadrature with certain numerical advantages
are the Fejér and Clenshaw–Curtis formulas [7,8].

E.1.2 Quadrature in Two Dimensions

A generalization of the one-dimensional formulas to two dimensions is not trivial.
In square geometry (x, y) ∈ [−1,1] × [−1,1], Gauss quadrature (of equal orders in
x and y directions) has the form

∫ 1

−1

∫ 1

−1
f (x, y)dx dy ≈

n∑

k=1

wkf (xk, yk),

where the nodes and the weights satisfy a system of non-linear equations

n∑

k=1

wkx
i
ky

j
k =

1+ (−1)i

i + 1
· 1+ (−1)j

j + 1
, (E.6)

for i = 0,1, . . . ,m, j = 0,1, . . . ,m− i, and n= 1
6 (m2+3m+2). Some popular sets

of nodes and weights for quadrature in two and three dimensions are collected in [2]
(pp. 891–895), but those formulas are not optimal. The system (E.6) is hard to solve,
in particular for high orders, and we tend to use a simple Cartesian product of one-
dimensional formulas. For example, the integral on the square (x, y) ∈ [−1,1] ×
[−1,1] can be computed by using the formula

∫ 1

−1

∫ 1

−1
f (x, y)dx dy ≈

n∑

j=1

m∑

k=1

w
(n)
j w

(m)
k f (xj , yk),

where quadratures in x and y directions may be of different orders. This simple
product formula has mn nodes and requires just as many evaluations of f (x, y). The
weight corresponding to the node (xj , yk) is simply a product of the weights from
individual one-dimensional quadratures. Optionally, one can even apply different
integration rules in different directions, for example, if functions are tame in one
independent variable but wild in another.

660 E Numerical Integration

E.2 Integration of Rapidly Oscillating Functions

Introductory textbooks on numerical methods rarely discuss recipes for integration
of rapidly oscillating functions although they are widely used in physics, chemistry,
and engineering. Even in well-known libraries, such algorithms are scarce. Here, we
present some basic approaches. We are mostly interested in the integrals of the form

I [f] =
∫ b

a

f (x) eiωg(x) dx, −∞< a < b <∞, (E.7)

where f and g are smooth functions and |ω| is large. A well-known example is
the Fourier integral, in which the oscillation function or the oscillator is g(x)= x.
For such integrals, the quadrature and extrapolation methods of the previous sec-
tion are woefully inadequate: when 1/|ω| becomes much smaller than the number
of nodes, quadrature formulas fail. To compute the integrals of the form (E.7) we
use the asymptotic method, the Filon method, or their numerous improvements and
generalizations. See also Sect. 1.3.

E.2.1 Asymptotic Method

Let us first discuss the case where g′(x) �= 0 for x ∈ [a, b]. Then one can demon-
strate [9,10] that asymptotically the integral behaves as I [f] = O(1/ω) when
|ω| → ∞, and that the value of the integral can be expanded in powers of 1/ω

as

I [f] ∼ −
∞∑

m=0

1

(−iω)m+1

[
eiωg(x)

g′(x)
fm(x)

]b

a

, ω→∞, (E.8)

where for the functions fm we have the recurrence

f0(x) = f (x),

fm+1(x) = d

dx

(
fm(x)

g′(x)

)
, m= 0,1,

Even though this recurrence is analytically simple, it generates a clumsy sequence of
functions which is hard to implement in computer code for non-trivial functions g,
unless one exploits symbolic computation. In the special case of the Fourier oscilla-
tor, g(x)= x, i.e. in computing the integrals of the form

∫ b

a

f (x)eiωx dx, (E.9)

E.2 Integration of Rapidly Oscillating Functions 661

Fig. E.2 Numerical calculation of the integral I [f] = ∫ 1
0 cos2 x eiωx dx by the asymptotic method.

[Left] Exact value of I [f] with the asymptotics |I [f]| ∼O(1/ω). [Right] Error of the asymptotic
method for s = 1,2,3,4 with the behavior |E(s)

A [f]| ∼O(ω−s−1)

this recurrence simplifies considerably. We have g′(x) = 1 and g(r)(x) = 0 for
r > 1, thus fm(x)= f (m)(x), and the integral has the asymptotic expansion

I [f] ∼ −
∞∑

m=0

[eiωxf (m)(x)]ba
(−iω)m+1

=
∞∑

m=0

eiωaf (m)(a)− eiωbf (m)(b)

(−iω)m+1
.

We should stress again that this expansion in general does not converge when
m→∞, while it certainly converges when |ω| →∞ (see Sect. 1.3.2).

We generate an asymptotic quadrature formula of order s if we keep only s terms
in (E.8). For a general function g this means

I [f] ≈Q
(s)
A [f] =

eiωg(a)

g′(a)

s−1∑

m=0

fm(a)

(−iω)m+1
− eiωg(b)

g′(b)

s−1∑

m=0

fm(b)

(−iω)m+1
. (E.10)

For the Fourier oscillator g(x)=x we set fm(a) = f (m)(a), fm(b) = f (m)(b) and
g′(a)= g′(b)= 1. The error of the asymptotic quadrature is

E
(s)
A [f] =Q

(s)
A [f] − I [f] = − I [fs]

(−iω)s
∼ ω−s−1. (E.11)

Figure E.2 shows the numerical calculation of the integral
∫ 1

0 cos2 x eiωx dx by
the asymptotic method (E.10). The left side shows the exact value of the integral
as a function of ω, while the right side shows the dependence of the error with the
characteristic ∼ω−s−1 trend. The reader might be particularly impressed by two
observations. The precision of the quadrature improves when ω in increased, which
is counter-intuitive. The second surprise is the decent precision we obtain, for large

662 E Numerical Integration

enough ω, already at first order (s = 1): for ω≈ 1000, the trivial formula

Q
(1)
A [f] =

i

ω

[
eiωaf (a)− eiωbf (b)

]

is precise to about six digits!
The asymptotic method becomes only moderately more complicated when

g′(x)= 0 on x ∈ (a, b), or when g′(a)= 0 and/or g′(b)= 0: the formulas for such
cases can be found in [11]. The largest obstacle in these methods is the annoying re-
cursive computation of the functions fm which is hard to automate for non-trivial g.
The approach due to Filon [12, 13] offers an appealing alternative.

E.2.2 Filon’s Method

The basic idea of the Filon’s method is to remove the oscillatory part of the integral
eiωg(x) from the integrand in (E.7), and to translate the problem to simpler integrals
that play the role of weights in a quadrature formula. The function f is replaced
by a polynomial approximation p(x) =∑n

k=0 ckx
k interpolating f at the points

x0, x1, . . . , xn. The quadrature formula then becomes

I [f] ≈QF[f] = I [p] =
∫ b

a

(
n∑

k=0

ckx
k

)

eiωg(x) dx =
∑

k=0

ck μk(ω).

To evaluate it, we need the coefficients ck and (n+ 1) values of the integrals of the
form

μk(ω)=
∫ b

a

xk eiωg(x) dx, (E.12)

which are called moments. We compute the coefficients ck by solving the cor-
responding Vandermonde system: see Sect. 3.2.5 and [14–16]. (In MATHEMAT-
ICA this is accomplished by the commands InterpolatingPolynomial and
CoefficientList.)

The error of the Filon’s formula EF[f] can be determined by using the difference
function E(x)= f (x)−p(x) that measures the deviation of f from its interpolation
polynomial p. We have EF[f] = I [f]−QF[f] = I [f]− I [p] = I [f −p] = I [E].
By analogy with (E.8), one immediately sees that

EF[f] = I [E] ∼ −
∞∑

m=0

1

(−iω)m+1

[
eiωg(x)

g′(x)
E(x)

]b

a

,

where we have assumed g′(x) �= 0 for x ∈ [a, b]. Different asymptotic orders s can
be achieved by using the Filon quadrature. If we use an interpolation polynomial p

for which

p(m)(a)= f (m)(a), p(m)(b)= f (m)(b), m= 0,1, . . . , s − 1, (E.13)

E.2 Integration of Rapidly Oscillating Functions 663

Fig. E.3 The points used to interpolate f in the Filon’s method. (a) Equidistant mesh
with 5 points. (b) Mesh with 9 points. (c) Inversely spaced mesh {a, a + 1/ω,b − 1/ω,b}.
(d) Inverse mesh {a, a + 1/ω,a + 2/ω,b − 2/ω,b − 1/ω,b}. (e) Inverse mesh {a, a + 1/ω,

a + 2/ω,a + 3/ω,b− 3/ω,b− 2/ω,b− 1/ω,b}. See also Fig. E.4

i.e. if p interpolates all function’s values and derivatives up to order (s − 1) at the
boundary points of the interval [a, b], the error is EF[f] =O(ω−s−1), just like the
error (E.11) of the asymptotic quadrature (see Fig. E.4 (right)). In this case, Filon’s
quadrature Q

(s)
F of order s is exact for all polynomials of degree ≤2s − 1.

The integrals μk contain rapidly oscillating functions and are hard to compute for
general g; to compute them, we can use the asymptotic method described earlier. In
the following, we again restrict the discussion to the Fourier integrals (E.9) with
g(x) = x. In this case, the moments (E.12) can be easily computed, and they are
related by the recurrence

μ0 = eiωb − eiωa

iω
, μk = eiωbbk − eiωaak − kμk−1

iω
, k = 1,2, . . . , n.

Figure E.4 shows the error of the numerical calculation of the integral∫ 1
0 ex eiωx dx by using the Filon’s method. Higher quadrature orders can be attained

by trying to fulfill the requirements (E.13) at a chosen s as closely as possible. We
add further ω-dependent points (Fig. E.3, cases c–e) in the vicinity of the boundary
points. By doing this, not only do we capture the correct function’s values f (a) and
f (b), but also the derivatives f ′(a), f ′(b), f ′′(a), f ′′(b), and so on.

Typically, we encounter only a limited set of oscillator functions g(x), like x,
x2, s0 + s1x + s2x

2, xp , or
∑p

j=0 sj x
j . Extensive derivations, a collection of for-

mulas for the moments μk , and several numerical tricks to speed up the quadrature
with such sets of functions can be found in [11]. A slightly different quadrature
method to compute integrals of the form (E.7), utilizing collocation and the usual
two-point Gauss–Legendre formula, is presented in [17]. The integrals containing
Bessel functions of the type

∫ b

a

f (x)Jm(sx)dx and
∫ b

a

f (x) cos(rx)Jm(sx)dx

are described in [18]. An efficient approach to compute integrals of the form (E.7)
with b=∞ is discussed in the papers [19, 20]. Robust subroutines for the numerical
integration of oscillating functions on finite or infinite intervals can be found in the
QUADPACK package [21] which is also implemented in the GSL library.

664 E Numerical Integration

Fig. E.4 Numerical calculation of the integral I [f] = ∫ 1
0 ex eiωx dx by the Filon’s method. The

quadrature nodes are defined in Fig. E.3. [Left] Error of the first-order quadrature |E(1)
F [f]| with

five and nine equidistant points on [a, b]. By adding further interpolation points for f we can
reduce the leading constant of the error, but the order of convergence remains the same. [Right]
Error of the quadrature |E(s)

F [f]| with three inverse quadrature meshes. By adding nodes in the
vicinity of the boundaries (x = a and x = b) we approximate higher derivatives of f , thus the
order of convergence increases

E.3 Integration of Singular Functions

In everyday work one frequently encounters integrals of singular functions, which
need to be understood as principal values

I (λ)= P

∫ b

a

f (x)

x − λ
dx = lim

ε→0

[∫ λ−ε

a

f (x)

x − λ
dx +

∫ b

λ+ε

f (x)

x − λ
dx

]
.

We split such integrals into three parts,

I (λ)=
∫ λ−�

a

f (x)

x − λ
dx + P

∫ λ+�

λ−�

f (x)

x − λ
dx

︸ ︷︷ ︸
I�(λ)

+
∫ b

λ+�

f (x)

x − λ
dx,

so that the singular part of the integrand is framed by a symmetric interval [λ −
�,λ + �]. By substituting x − λ = X and x = X/�, the integral I�(λ) can be
rewritten in a form that can be handled by a suitable quadrature formula,

I�(λ) = P

∫ �

−�

f (X+ λ)− f (λ)

X
dX = P

∫ 1

−1

f (x�+ λ)− f (λ)

x
dx

≈
∑

j

wj

xj

[
f (xj�+ λ)− f (λ)

]
.

It makes sense to take a quadrature formula with an order as high as possible, and
with an even number of points in order to avoid the calculation of the derivative

References 665

of f [22, 23]. See also [24] and Sect. 4.5. Other reliable numerical methods for the
integration of singular functions are implemented in QUADPACK [21].

References

1. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of
Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

2. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, Mine-
ola, 1972)

3. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Appl. Math., vol. 12
(Springer, Berlin, 2002)

4. D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood
Cliffs, 1989)

5. D. Calvetti, G. H. Golub, W. B. Gragg, L. Reichel, Computation of Gauss–Kronrod quadrature
rules. Math. Comput. 69, 1035 (2000)

6. D.P. Laurie, Calculation of Gauss–Kronrod quadrature rules. Math. Comput. 66, 1133 (1997)
7. J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules. BIT Nu-

mer. Math. 46, 195 (2006)
8. L.N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67 (2008)
9. A. Iserles, S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their im-

plementation. BIT Numer. Math. 44, 755 (2004)
10. A. Iserles, S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives.

Proc. R. Soc. A 461, 1383 (2005)
11. J. Vanbiervliet, Numerical methods for highly oscillatory integrals and integral equations. MSc

thesis, KU Leuven, Leuven, 2005
12. A. Iserles, On the numerical quadrature of highly-oscillating integrals, I: Fourier transforms.

IMA J. Numer. Anal. 24, 365 (2004)
13. A. Iserles, On the numerical quadrature of highly-oscillating integrals, II: Irregular oscillators.

IMA J. Numer. Anal. 25, 25 (2005)
14. N.J. Higham, Fast solution of Vandermonde-like systems involving orthogonal polynomials.

IMA J. Numer. Anal. 8, 473 (1988)
15. Å. Björck, V. Pereyra, Solution of Vandermonde systems of equations. Math. Comput. 24, 893

(1970)
16. D. Calvetti, L. Reichel, Fast inversion of Vandermonde-like matrices involving orthogonal

polynomials. BIT Numer. Math. 33, 473 (1993)
17. S. Xiang, Efficient quadrature for highly oscillatory integrals involving critical points. J. Com-

put. Appl. Math. 206, 688 (2007)
18. S. Xiang, Numerical analysis of a fast integration method for highly oscillatory functions. BIT

Numer. Math. 47, 469 (2007)
19. T. Sauter, Computation of irregularly oscillating integrals. Appl. Numer. Math. 35, 245 (2000)
20. T. Sauter, Integration of highly oscillatory functions. Comp. Phys. Commun. 125, 119 (2000)
21. R. Piessens, E. De Doncker-Kapenga, C.W. Überhuber, QUADPACK: A Subroutine Package

for Automatic Integration (Springer, Berlin, 1983). See also http://www.netlib.org/quadpack/
22. J.V. Noble, Gauss–Legendre principal value integration. Comput. Sci. Eng. Jan/Feb, 92

(2000)
23. W.J. Thompson, Principal-value integrals by a simple and accurate finite-interval method.

Comput. Phys. 12, 94 (1998)
24. P. Rabinowitz, Gauss–Kronrod integration rules for Cauchy principal value integrals. Math.

Comput. 41, 63 (1983)

Appendix F
Fixed Points and Stability �

F.1 Linear Stability

In Chap. 7 we discuss autonomous systems of ordinary differential equations with
specified initial conditions:

y′ = f (y), y(0)= y0 ∈RM, x ≥ x0. (F.1)

In explicit one-step difference methods we approximate the system (F.1) by the
discrete mapping

yn+1 = F (yn), (F.2)

where F is a known function (e.g. F (y)= y+hf (y) in the explicit Euler scheme).
When analyzing the stability of the solutions of (F.1) one would like to know
whether two solutions of the equation that are nearby at some time, remain nearby
at later times, or perhaps even asymptotically approach each other. We define two
types of stability visualized in Fig. F.1. (The reader can easily generalize these defi-
nitions to the mapping (F.2).)

Definition The solution y∗ corresponding to (F.1) is locally attractive (linearly sta-
ble) in Lyapunov sense if for some ε > 0 such δ > 0 exists that for any other solution
z of (F.1) that satisfies ‖y∗(x0)− z(x0)‖ < δ, also ‖y∗(x)− z(x)‖ < ε holds true
for x > x0.

Definition The solution y∗ corresponding to (F.1) is asymptotically stable if it
is Lyapunov stable and for any other solution z of (F.1) such β > 0 exists that
limx→∞‖y∗(x)− z(x)‖ = 0 when ‖y∗(x0)− z(x0)‖< β .

Suppose that the true solution (flow) y approaches a constant value y∗ when
x →∞. Then clearly f (y∗) = 0, and y∗ is called the fixed point of the flow y
corresponding to (F.1). In the case of a mapping the fixed point is the point y∗ for
which F (y∗) = y∗. The study of stability of differential equations and difference
schemes focuses primarily on the stability near the fixed points.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

667

668 F Fixed Points and Stability �

Fig. F.1 Geometric
illustration of stability in the
Lyapunov sense [Top] and
asymptotic stability [Bottom]

In the vicinity of the fixed point y∗ we denote y = y∗ + δ when dealing with a
differential equation, or yn = y∗+δn when we think in terms of a discrete mapping.
Then (F.1) can be linearized,

δ′ = y′ = f (y)≈ f
(
y∗
)

︸ ︷︷ ︸
0

+∂f

∂y

∣∣∣∣
y=y∗

δ,

and similarly for the mapping (F.2),

y∗ + δn+1 = F (yn)≈ F
(
y∗
)

︸ ︷︷ ︸
y∗

+∂F

∂y

∣∣∣∣
y=y∗

δn.

In the following we shift the fixed point to the origin, so δ→ y for equations and
δn→ yn for mappings. Then we have, to first order,

y′ =Ay, Aij =
[
∂f

∂y

∣∣
∣∣
y=0

]

ij

, (F.3)

yn+1 =Ayn, Aij =
[
∂F

∂y

∣∣∣∣
y=0

]

ij

. (F.4)

The behavior at large x for equations (or large n for mappings) is determined by the
eigenvalues of the Jacobi matrix ∂f /∂y (or ∂F /∂y). The system (F.3) is stable in
the Lyapunov sense precisely when all roots of the equation

det(λI −A)= a0λ
n + a1λ

n−1 + · · · + an−1λ+ an = 0

satisfy Reλi ≤ 0, and all multiple roots satisfy Reλi < 0. A similar argument ap-
plies to the asymptotic stability of the linearized system (F.4): the sufficient condi-
tion for it is that the spectral radius of the Jacobi matrix for the mapping (F.2) is
bounded,

ρ

(
∂F

∂y

∣∣∣∣
y=y∗

)
< 1.

F.2 Spurious Fixed Points 669

The Routh–Hurwitz criterion [1] allows us to determine whether the eigenvalues
satisfy the stability condition from the coefficients ai alone, i.e. without actually
solving the characteristic equation. Since the computation of the characteristic poly-
nomial for large matrices is difficult and the search for zeros is plagued by round-off
errors, it is recommendable to use dedicated, numerically stable algorithms to find
the eigenvalues.

If the matrix elements of A are not constant (non-autonomous systems), as in

y′ =A(x)y,

and we wish to examine their asymptotic stability, it does not suffice to check the
criteria Reλi ≤ 0 for simple roots or Reλi < 0 for multiple roots of the charac-
teristic equation. But specific cases exist [1] for which these checks are sufficient.
Asymptotic stability is ensured if Aii(x) < 0 and A(x) is diagonally dominant; or if
a decomposition A(x)= B + C(x) exists, where B is a constant matrix and all its
eigenvalues satisfy Reλi < 0 and ‖C(x)‖< ε.

Example Examine the stability of the system of differential equations

y′1 =
1

3
(y1 − y2)(1− y1 − y2), (F.5)

y′2 = y1(2− y2). (F.6)

Linearize the system, compute the eigenvalues and eigenvectors for the problem
y′ = Ay, and confirm that the system has four fixed points in the (y1, y2) plane:
an unstable focus (0,0), a saddle (0,1), an unstable knot (2,2), and an unstable
point (−1,2) with the eigenspace spanned by the vectors whose y2-components are
zero. Based on (F.3), classify the linear stability (or instability) in the vicinity of
fixed points. Figure F.2 shows the numerical solution of the system. Reproduce it by
randomly selecting initial conditions (y1(0), y2(0)) near the fixed points (±1,±1),
and run the integration to x ≈ 0.5. Use the same case to check the stability of the
explicit Euler difference scheme. Such studies aid us, on a case-by-case basis, in
deciding to what extent linear measures of stability can be trusted in non-linear
systems.

F.2 Spurious Fixed Points

Are the fixed points of the chosen difference scheme the same as the fixed points
of the differential equation it approximates? We examine the stability of the (non-
linear) logistic equation

y′ = λy(1− y), y(0)= y0,

670 F Fixed Points and Stability �

Fig. F.2 The numerical
solution (flow) of the
non-linear system (F.5)–(F.6),
with 500 randomly chosen
initial conditions (small filled
circles), integrated to x = 0.7
by the adaptive RK4 method.
The fixed points are denoted
by filled squares

with λ ∈ C and of the corresponding difference approximations for it by using the
criteria of linear stability [2]. The analytic solution of the equation is

y(x)= y0

y0 + (1− y0)e−λx
,

and the stable fixed points are obviously y∗ = 0 for Reλ < 0 and y∗ = 1 for
Reλ > 0. The Jacobi matrix in one dimension is just the derivative ∂f/∂y = λ−2λy,
so at the fixed points [∂f/∂y](0) = λ or [∂f/∂y](1) =−λ. The fixed point y∗ = 0
is linearly stable when Reλ < 0, and the fixed point y∗ = 1 is linearly stable if
Reλ > 0.

The corresponding explicit Euler scheme is

yn+1 = yn + hλyn(1− yn)= F(yn),

with the same fixed points as before, y∗ = 0 and y∗ = 1. But now the Jacobi deriva-
tive is ∂F/∂y = 1 + hλ − 2hλy, thus [∂F/∂y](0) = 1 + hλ and [∂F/∂y](1) =
1− hλ. The fixed point y∗ = 0 corresponds to the absolute stability region which is
exactly the same as in the linear case (the interior of the circle denoted by p = 1 in
Fig. 7.3). The point y∗ = 1 corresponds to this circle mirrored across the imaginary
axis. Let us look one order higher, to the improved Euler method (7.6). When we
write the difference scheme

yn+1 = yn + hf
(
yn + (h/2)f (yn)

)
,

for the logistic equation, we get

yn+1 = yn + hλ

[
yn + hλ

2
yn(1− yn)

][
1− yn − hλ

2
yn(1− yn)

]

= yn + hλyn(1− yn)

[
1+ hλ

2
− hλ

2
yn

][
1− hλ

2
yn

]
.

F.3 Non-linear Stability 671

Fig. F.3 Stability regions
with respect to genuine and
spurious fixed points for the
improved Euler method
(second-order explicit RK
method). See also Fig. 7.3

This expression reveals four fixed points: the familiar y∗ = 0 and y∗ = 1, as well
as two new ones, 2/hλ and 1 + 2/hλ! The fixed points that are not seen in the
differential equation, but appear in the corresponding difference scheme, are called
spurious or ghost points. Characteristically, spurious fixed points depend on the step
size h. When one computes ∂F/∂y, finding the stability region of different fixed
points translates to a search of the set of points hλ in the complex plane satisfying

∣∣∣∣1± hλ± (hλ)2

2

∣∣∣∣< 1,

similar to what we have done in Sect. 7.5. The fixed point y∗ = 0 corresponds to the
interior of the shape denoted by p = 2 in Fig. 7.3 (and its mirror image corresponds
to y∗ = 1). To each of the spurious fixed point corresponds a pair of smaller stability
regions: the complete pattern of stability regions for all four fixed points is shown
in Fig. F.3.

F.3 Non-linear Stability

When we studied a non-linear system by using methods of linear stability we learned
that one should not apply linear measures to non-linear systems. The stability region
of a linear discrete mapping used to approximate a linear problem is not necessarily
the same as the stability region of the same scheme applied to a non-linear problem.
The theory of stability for non-linear systems requires us to understand the concepts
of contractivity and convergence.

Definition If ỹ and y are any solutions of the system y′ = f (x,y) corresponding
to different initial conditions, the system is contractive if

∥∥ỹ(x2)− y(x2)
∥∥≤ ∥∥ỹ(x1)− y(x1)

∥∥

672 F Fixed Points and Stability �

for any pair (x1, x2) from the interval a ≤ x1 ≤ x2 ≤ b. The corresponding differ-
ence scheme is contractive if

‖ỹn+1 − yn+1‖ ≤ ‖ỹn − yn‖.

Linear Problems Contractivity is easy to understand for the linear problem

y′ =Ay.

What is the norm of the numerical solution yn+1 = S(hA)yn if S is the stability
function of the applied difference method? Since ‖yn+1‖ ≤ ‖S(hA)‖‖yn‖, we have
contractivity if ‖S(hA)‖ ≤ 1. For functions S(z) that ensure stability throughout
the complex half-plane (A-stability, Sect. 7.9), we have contractivity when, in the
Euclidean norm, Re 〈y,Ay〉 ≤ 0 for each y [3].

Semi-linear Problems For semi-linear systems of the form

y′ =Ay + g(x,y),

where g(x,y) is a small non-linear perturbation, we can resort to similar measures
as in the linear case. If all eigenvalues of A satisfy Reλi < 0, and if for any ε > 0
a δ > 0 exists such that ‖g(x,y)‖ ≤ ε‖y‖ for ‖y‖ < δ and x ≥ x0, then the ori-
gin is asymptotically stable in the Lyapunov sense. But the parameter ε must be
sufficiently small. This means that in non-linear systems, one may expect absolute
stability to occur only in the vicinity of stable fixed points. Contractivity is achieved
when

〈y,Ay〉 ≤ μ‖y‖2,
∥∥g(x,y)− g(x,z)

∥∥≤�‖y − z‖,
where μ and � are constants that must satisfy μ + � ≤ 0 (with � small). Simi-
lar conditions apply to numerical solutions of difference schemes, e.g. the implicit
Runge–Kutta methods [3].

Non-linear Problems The study of stability of “genuine” non-linear systems

y′ = f (x,y)

rests upon one-sided Lipschitz conditions of the form

Re
〈
f (x,y)− f (x,z),y − z

〉≤ ν‖y − z‖2, (F.7)

where ν is the one-sided Lipschitz constant of f (compare (F.7) to (7.4)). When
ν ≤ 0, the distance between any two solutions of the equation y′ = f (x,y) is a
non-increasing function of x. We wish the numerical solution to possess the same
property, e.g. when using implicit Runge–Kutta methods. For this purpose we define
B-stability and B-convergence, which we refer to in Sect. 7.9.

References 673

Definition A method of the Runge–Kutta type is B-stable if from the contractivity
condition Re〈f (x,y)− f (x,z), y − z〉 ≤ 0 for all h≥ 0, we can conclude

‖ỹn+1 − yn+1‖ ≤ ‖ỹn − yn‖,
where yn+1 (or ỹn+1) are the numerical solutions obtained from yn (or ỹn) in one
step. (B-stability implies A-stability, see [3].)

Definition A method of the Runge–Kutta type is B-convergent of order r for the
non-linear problem y′ = f (x,y) satisfying the one-sided Lipschitz condition (F.7),
if the global error can be estimated as

∥
∥yn − y(xn)

∥
∥≤ hrγ (xn − x0, ν)max

j
max

x

∥
∥y(j)(x)

∥
∥

for hν ≤ α, where h = maxi hi , 1 ≤ j ≤ jmax, and a ≤ x ≤ b. The function γ and
the parameter α depend only on the method.

For stiff problems, the measures of convergence have to be adapted. Namely, if
we use A-stable methods to solve large systems of stiff non-linear differential equa-
tions, some may yield unstable results. Besides, it may happen that the precision
of the solution has no connection to the order of the method used. A decrease of
the order of convergence occurs [4], i.e. the order of the method for a stiff problem
with large λ becomes much smaller than the order for a non-stiff problem. Through
B-convergence one can also introduce global error estimates that do not depend on
the degree of stiffness [5]. The implicit method Radau 5 (p. 360) is B-stable and
B-convergent of order 3 [3].

References

1. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I; Nonstiff Prob-
lems. Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin, 2000)

2. J.H.E. Cartwright, O. Piro, The dynamics of Runge–Kutta methods. Int. J. Bifur. Chaos 2, 427
(1992)

3. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II; Stiff and Differential-
Algebraic Problems. Springer Series in Computational Mathematics, vol. 14 (Springer, Berlin,
2004)

4. A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff
systems of ordinary differential equations. Math. Comput. 28, 145 (1974)

5. R. Frank, J. Schneid, C.W. Ueberhuber, The concept of B-convergence. SIAM J. Numer. Anal.
18, 753 (1981)

Appendix G
Construction of Symplectic Integrators �

To study time evolution of dynamical systems, an operator formalism can be devel-
oped [1] that leads to a special family of integrators. We have seen in Chap. 7 that
the evolution amounts to solving the system of differential equations

ẏ = f (y)

over some phase space χ , where y is a vector in this space, and f is a vector of
scalar functions.1 The solutions of this equations are the trajectories traced by y in
time t , and described by the mapping Mt(y). In general, we would like to learn
about the dynamics of some variable (observable) of the system φ(y), which can be
very simple (for example, the “position” φ(y)= y). The time dynamics is defined
by the map M , φt (y)= φ(Mt(y)), thus

φ̇ = (f · ∇)φ.

The linear differential operator f · ∇ = D is called the dynamics generator and
represents the derivative in the direction tangential to the trajectory at the point y
(Fig. G.1). The equation above can be formally integrated, yielding

φt (y)= exp(tD)φ(y)= φ
(
Mt(y)

)
, (G.1)

where the exponential acts in the operator sense. This equation embodies the evolu-
tion operator or integrator describing the time evolution of φ.

Hamiltonian Systems Let us apply the procedure outlined above to Hamilto-
nian systems with the Hamiltonian function H(p,q), where (p,q) ∈ χ =R

2n. The
dynamics (and the trajectory) is governed by the Hamiltonian equations

ẏ = J−1∇H(y), J =
(

0 1
−1 0

)
, ∇ =

(∇p

∇q

)
,

1In this appendix and in Sect. 7.12 we use the pair of variables (t,y) instead of (x,y), while we
express y by the Hamiltonian canonical variables p and q .

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

675

676 G Construction of Symplectic Integrators �

Fig. G.1 The trajectory of a dynamical system is described by the mapping Mt(y) which corre-
sponds to the solution of a system of differential equations ẏ = f (y)

while the time evolution of an arbitrary observable φ is given by the Liouville equa-
tion

φ̇ = {φ,H },
where {A,B} = (∂qA)(∂pB)− (∂qB)(∂pA) is the Poisson bracket. We use the nota-
tion DH = {·,H } to write the equation in the form φ̇ =DH φ and formally integrate
it over an infinitesimally short time t = τ :

φτ (y)= exp(τDH)φ(y)= exp
(−τ(∇H J)∇)φ(y)= φ

(
Mτ(y)

)
.

The exponential operator in this equation is unitary in the function space φ : χ →
C

n, thus the norm
∫
χ
|φ|2 dy along the solution of the system remains constant. In

the case φ(y) = y = (p,q) this means that the mapping from the point (p,q) in
phase space at t = 0 to the point (p̃, q̃) at a later time along the solution preserves
the volume in phase space, i.e. the form

∑
dp ∧ dq =∑

dp̃ ∧ d̃q: the mapping is
symplectic [2]. Moreover, it preserves the energy, H(p,q)=H(p̃, q̃).

In practice we rarely sum more than just a few terms in the exponential series

φτ (y)=
N∑

n=0

τn

n!D
n
H φ(y)+O

(
τN+1),

where Dn
H φ = {{. . . {φ,H }, . . . ,H },H }. The truncated series still preserves the

energy and possible other constants (integrals) of motion Ik(p,q), for which
{H,Ik} = 0 applies, but the truncated operator is no longer unitary and violates the
symplectic nature of the dynamics. Nevertheless, for short times τ even the finite
series provides a good description.

Symplectic Integrators As we have shown in Sect. 7.12, the traditional integra-
tors (for example, Euler or Runge–Kutta methods) in general do not preserve the
symplectic structure, nor the energy. In the following we chart a path to a special
class of explicit symplectic integrators with which we attempt to fulfill at least one
of these requirements. We focus on solving the equations of motion for Hamiltonian
systems,

q̇ = ∂H

∂p
, ṗ =−∂H

∂q
,

G Construction of Symplectic Integrators � 677

where the Hamiltonian is separable (the kinetic energy depending only on p and the
potential only on q), thus

H(p,q)= T (p)+ V (q).

(For greater clarity, we discuss only the scalar case and write ∂p , ∂q instead of
∇p , ∇q .) When the equations of motion are rewritten in the form ẏ = {y,H }, the
dynamics of the system is described by

y(τ)= exp(τDH)y(0)= exp
(
τ(DT +DV)

)
y(0). (G.2)

The exponential operators composed of partial generators DT = (∂pT)∂q and
DV =−(∂qV)∂p , which in general do not commute, have a particularly appealing
property: they generate shifts in the canonical variables,

exp(τDT)φ(q,p) = φ
(
q + τ(∂pT),p

)= φ
(
Sτ (y)

)
,

exp(τDV)φ(q,p) = φ
(
q,p− τ(∂qV)

)= φ
(
Cτ (y)

)
,

which we denote as new mappings Sτ ,Cτ : χ → χ . (This should be familiar from
quantum mechanics: the linear momentum operator p =−i�∇x is the generator of
infinitesimal translations, while the orbital angular momentum operator L= r × p

is the generator of infinitesimal rotations.) We approximate the exact time evolution
operator by the product of the exponential operators

exp
(
τ(DT +DV)

)=
k∏

i=1

exp(ciτDT) exp(diτDV)+O
(
τ r+1), (G.3)

where ci and di are real numbers, and r is an integer determining the quality of
the approximation and the order of the integrator. We have thus replaced the full
evolution operator by a compositum of shifts in the phase space:

eτDH φ(y) = ec1τDT ed1τDV · · · eckτDT edkτDV φ(y)+O
(
τ r+1)

= φ
(
Cdkτ ◦ Sckτ ◦ · · · ◦Cd1τ ◦ Sc1τ (y)

)+O
(
τ r+1).

By comparison to (G.1), we infer that we have thus also obtained an approximation
for the true mapping Mt(y) of the dynamical system,

Mτ = Cdkτ ◦ Sckτ ◦ · · · ◦Cd1τ ◦ Sc1τ +O
(
τ r+1).

The scheme for the integrator is now at hand [3, 4]. When expression (G.3) is in-
serted in (G.2), we obtain a sequence of simpler mappings

qi = qi−1 + τci

(
∂T

∂p

)

p=pi−1

, pi = pi−1 − τdi

(
∂V

∂q

)

q=qi

, (G.4)

678 G Construction of Symplectic Integrators �

which map the initial configuration y(0)= (p0, q0) in k steps into the final config-
uration y(τ)= (pk, qk). This sequence of mappings is symplectic, since it is com-
posed of smaller steps which are all symplectic by themselves. We now know how
to integrate the equation of motion; the main challenge is how to find k as small as
possible (as few operations as possible) with the order of the integrator r as large as
possible.

In principle, the procedure is straightforward: we expand the left-hand side
of (G.3) in powers of τ and compare the coefficients of the corresponding pow-
ers of τ at the right (up to including order k). We end up with a system of non-linear
algebraic equations for the unknowns ci and di , which is easily solvable only for
small k. In the simplest non-trivial case we obtain k = 1, c1 = d1 = 1, therefore

exp(τDT) exp(τDV)= exp(τDH̃1
). (G.5)

For small τ , the left-hand side of the equation represents a simple iterative scheme
which requires a single reference to q and p for one step in time τ according
to (G.4). The right-hand side can be computed by using the Baker–Campbell–
Hausdorff (BCH) formula describing the decomposition of a product of exponential
functions of two non-commuting operators A and B ,

exp(A) exp(B)= exp(C),

where

C =A+B+ 1

2
[A,B]+ 1

12

([
A, [A,B]]+[B, [B,A]])+ 1

24

[
A,

[
B, [B,A]]]+· · ·

and [A,B] =AB −BA. At the right of (G.5) we then obtain

DH̃1
= DT +DV + τ

2
[DT ,DV] + τ 2

12

([
DT , [DT ,DV]

]+ [
DV , [DV ,DT]

])

+ τ 3

24

[
DT ,

[
DV , [DV ,DT]

]]+ · · · ,

and it follows that

H̃1 = T + V + τ

2
{V,T } + τ 2

12

({{T ,V },V }+ {{V,T }, T })

+ τ 3

12

({{{T ,V },V }
, T

})+ · · · . (G.6)

(Note that a change in the signs occurs when passing from the usual commutators to
Poisson brackets of odd orders, [DT ,DV] → −{T ,V }, [DT , [DV , [DT ,DV]]] →
−{{{T ,V }, T },V }, and so on. For details see [5].) We see that the expansion (G.6)
has given us a first-order symplectic integrator preserving the Hamiltonian struc-
ture of the system, but which evolves according to a slightly different Hamiltonian
operator H̃1. Only when τ → 0 do we recover the original Hamiltonian dynamics
governed by H = T + V .

G Construction of Symplectic Integrators � 679

A Second-Order Integrator We obtain an explicit symplectic integrator of the
second order involving two stages (k = 2) by using the constants

c1 = c2 = 1

2
, d1 = 1, d2 = 0.

Let us write down the formulas for this integrator explicitly and use the notation
of Chap. 7: instead of τ we write h, and replace the index i by n. The solutions at
time tn are pn and qn. The solution at the next time tn+1 = tn + h is obtained by
computing

q∗ = qn + hc1

(
∂T

∂p

)

p=pn

,

p∗ = pn − hd1

(
∂V

∂q

)

q=q∗
,

qn+1 = q∗ + hc2

(
∂T

∂p

)

p=p∗
,

pn+1 = p∗ − hd2

(
∂V

∂q

)

q=qn+1

,

where q∗ and p∗ are auxiliary variables. In integrators of higher orders, there are
even more such variables which form a chain-like progression to consecutive parts
of an individual time step. Because d2 = 0, only a single evaluation of the force
F =−∂qV is needed. This integrator corresponds to the decomposition

exp

(
1

2
hDT

)
exp(hDV) exp

(
1

2
hDT

)
= exp(hDH̃2

),

whence it follows that

H̃2 = T + V + h2

12

({{T ,V },V }− 1

2

{{V,T }, T }
)
+O

(
h4).

A Fourth-Order Integrator A very popular fourth-order symplectic integrator
[6] requiring four stages (k = 4) has the parameters

c1 = c4 = 1

2(2− 21/3)
, c2 = c3 = 1− 21/3

2(2− 21/3)
, (G.7)

d1 = d3 = 1

2− 21/3
, d2 =− 21/3

2− 21/3
, d4 = 0, (G.8)

and has the highest order for which the coefficients could still be determined analyt-
ically. Again, the last coefficient is d4 = 0: at each time step h only three evaluations
of the force F =−∂qV are needed, one less than, for example, in the standard RK4

680 G Construction of Symplectic Integrators �

method calling for four evaluations. The coefficients (G.7) and (G.8) do not solve
the system of equations for ci and di at fourth order uniquely: they can be further
optimized with respect to a certain aspect of the numerical problem, for example,
for optimal conservation of energy [7].

A Sixth-Order Integrator The path to practically useful symplectic integrators
also leads through the BCH formula, but the procedure of determining the coeffi-
cients ci and di becomes more complicated and they can no longer be given analyt-
ically. The coefficients (in double precision) for the sixth-order integrator with eight
stages (k = 8) are

c1 = c8 = 0.392256805238780,

c2 = c7 = 0.510043411918458,

c3 = c6 = −0.471053385409758,

c4 = c5 = 0.0687531682525198,

d1 = d7 = 0.784513610477560,

d2 = d6 = 0.235573213359357,

d3 = d5 = −1.17767998417887,

d4 = 1.31518632068391,

d8 = 0.

An eighth-order integrator requiring 16 stages is described in [8].

References

1. A.J. Dragt, J.M. Finn, Lie series and invariant functions for analytic symplectic maps. J. Math.
Phys. 17, 2215 (1976)

2. V.I. Arnol’d, Mathematische Methoden der klassischen Mechanik (VEB Deutscher Verlag der
Wissenschaften, Berlin, 1988)

3. H. Yoshida, Recent progress in the theory and application of symplectic integrators. Celest.
Mech. Dyn. Astron. 56, 27 (1993)

4. H. Kinoshita, H. Yoshida, H. Nakai, Symplectic integrators and their application to dynamical
astronomy. Celest. Mech. Dyn. Astron. 50, 59 (1991)

5. S.R. Scuro, S.A. Chin, Forward symplectic integrators and the long-time phase error in periodic
motions. Phys. Rev. E 71, 056703 (2005)

6. E. Forest, R.D. Ruth, Fourth-order symplectic integration. Physica D 43, 105 (1990)
7. D. Donnelly, E. Rogers, Symplectic integrators: an introduction. Am. J. Phys. 73, 938 (2005)
8. H. Yoshida, Construction of higher order symplectic integrators. Phys. Lett. A 150, 262 (1990)

Appendix H
Transforming PDE to Systems of ODE:
Two Warnings

Partial differential equations can be transformed to a system of ordinary differential
equations. This conversion reveals some new possibilities to construct difference
schemes with—in principle—arbitrary precision that can be implemented in modern
symbolic computing programs. We follow [1] to show that in this process there are
some unforeseen obstacles.

H.1 Diffusion Equation

The first example is the one-dimensional linear diffusion equation vt =Dvxx with
the initial condition v(x,0) = f (x) and homogeneous Dirichlet boundary condi-
tions at x = 0 and x = 1. We approximate the time derivative at time t by the central
difference,

dv(x, t)

dt
= D

�x2

(
v(x −�x, t)− 2v(x, t)+ v(x +�x, t)

)+O
(
�x2),

and do this at each xj = j�x. We obtain a system of ordinary differential equations,
which can be written in matrix form

du(t)

dt
=Au(t)+ b(t). (H.1)

Here u(t) = (u1, u2, . . . , uN−1)
T is the solution vector, while the boundary con-

ditions are contained in the vector b(t) = (D/�x2)(u0(t),0, . . . ,0, uN(t))T. The
matrix of the system is

A= D

�x2

⎛

⎜⎜⎜⎜⎜
⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞

⎟⎟⎟⎟⎟
⎠

.

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

681

682 H Transforming PDE to Systems of ODE: Two Warnings

Table H.1 Padé
approximations [L/M] of
order (L,M) of the function
exp(X), and their leading
error terms. If X is a matrix,
the denominators of
expressions [L/M] should be
understood in the sense of
matrix inverses: we write
u(t +�t)= (A/B)u(t),
while we actually solve the
system Bu(t +�t)=Au(t)

(L,M) [L/M](X) Error

(0,1) 1/(1−X) − 1
2 X2

(1,0) 1+X 1
2 X2

(0,2) 1/(1−X+ 1
2 X2) 1

6 X3

(1,1) (1+ 1
2 X)/(1− 1

2 X) − 1
12 X3

(2,0) 1+X+ 1
2 X2 1

6 X3

(1,2) (1+ 1
3 X)/(1− 2

3 X+ 1
6 X2) 1

72 X4

(2,1) (1+ 2
3 X+ 1

6 X2)/(1− 1
3 X) − 1

72 X4

(2,2) (1+ 1
2 X+ 1

12 X2)/(1− 1
2 X+ 1

12 X2) 1
720 X5

If the boundary conditions b do not depend on time, the solution of the sys-
tem (H.1) with the initial condition u(0) = (f1, f2, . . . , fN−1)

T = f has the form
u(t)=−A−1b+ exp(tA)(f +A−1b). The solutions at times t and t +�t are then
related by the evolution equation

u(t +�t)=−A−1b+ exp(�tA)
(
u(t)+A−1b

)
,

which becomes even simpler in the case of homogeneous Dirichlet boundary con-
ditions (b= 0).

We can expand the exponential function with a matrix argument in the Taylor
series exp(�tA) = I + �tA + 1

2�t2A2 + · · · or use a Padé approximation. The
latter can be used to approximate the exponential as a ratio of two polynomials
(rational approximation)

exp(X)= 1+ p1X+ p2X
2 + · · · + pLXL

1+ q1X+ q2X2 + · · · + qMXM

︸ ︷︷ ︸
[L/M](X)

+ cL+M+1X
L+M+1 +O

(
XL+M+2),

where pl , qm, and c are real coefficients that can be determined uniquely. The func-
tion [L/M](X) is the Padé approximation of order (L,M) of the function exp(X)

with the leading error term cL+M+1X
L+M+1 (see also Sect. 1.2.2). Table H.1 shows

a few lowest orders of the Padé approximations.
In difference schemes for partial differential equations, X are matrices: how one

should interpret “matrix division” in the expression for exp(X), will become clear
instantly. The Padé approximation [1/0] means

u(t +�t)= (I +�tA)u(t), (H.2)

which is nothing but the well-known explicit FTCS scheme. In the case of implicit
schemes where M ≥ 1, the denominators in Table H.1 should be understood in the
sense of matrix inverses. The [0/1] approximation is the implicit BTCS scheme,

(I −�tA)u(t +�t)= u(t),

H.1 Diffusion Equation 683

Fig. H.1 Numerical solution of the diffusion equation vt = Dvxx on 0 ≤ x ≤ 1 with the ini-
tial condition v(x,0) = 1 and boundary conditions v(0, t) = v(1, t) = 0. (Example adapted
from [1].) Shown are the analytic solution (full curve), the numerical solution (D = 1,
�x = �t = 0.025, r = 40) by the Padé approximation of order (1,0) (see (H.2)), and the solu-
tion of order (1,1) (Crank–Nicolson, (H.3)), in which typical oscillations appear in the vicinity of
the discontinuity between the initial and boundary condition. For the example shown in this figure
we have set �t = 0.025 > �x/π = 0.008, in disagreement with the requirement (H.4)

while the [1/1] approximation is the Crank–Nicolson scheme,
(

I − 1

2
�tA

)
u(t +�t)=

(
I + 1

2
�tA

)
u(t). (H.3)

The compact notation hides a trap shaking our conviction that from the view-
point of stability (the value of the parameter r = D�t/�x2), we may rely on
the Crank–Nicolson scheme without second thoughts. The difference scheme with
the approximation of order (L,M) maps the initial condition u(0) to u(tn) =
([L/M](�tA))nu(0) at time tn. The non-degenerate eigenvalues λs of the matrix A

(A.7) correspond to the linearly independent eigenvectors vs (A.8), which we can
use to expand the initial approximation as u(0) =∑

s csvs . Since Avs = λsvs , we
also have F(A)vs = F(λs)vs , thus

u(tn)=
N−1∑

s=1

cs

([L/M](�tλs)
)n

vs .

The solution remains stable, limn→∞ u(tn) = 0, if |[L/M](�tλs)| < 1 for each s.
This is clearly true for the Crank–Nicolson scheme, since λs < 0 for all s and the
growth factor is μs = [1/1](�tλs)= (1+�tλs)/(1−�tλs) < 1. Yet [1/1](�tλs)

may come close to the value −1 for large �tλs =−4r sin2(sπ/2N), i.e. when r is
large and sπ/2N ≈ π/2 (both N and s large). This can occur when there are discon-
tinuities in the initial condition or between the initial and the boundary condition,
and may cause oscillations of the solution in the vicinity of such discontinuities.
Figure H.1 shows an example.

684 H Transforming PDE to Systems of ODE: Two Warnings

Oscillations originate in the “high-frequency” terms cN−1vN−1, cN−2vN−2, . . . ,
which become cN−1μ

n
N−1vN−1, cN−2μ

n
N−2vN−2, . . . in the nth time step. These

terms alternate in sign when n increases, and are only slowly damped. Still, it can
be shown [1] that such instabilities can be harnessed with a sufficiently small time
step

�t � �x/π. (H.4)

H.2 Advection Equation

As an example of hyperbolic equations, we discuss vt + cvx = 0 with the param-
eter c > 0 at x ≥ 0, the initial condition v(x,0) = f (x), and the boundary condi-
tion v(0, t)= b(t). According to the sign of c it is sensible to discretize the spatial
derivative as vx(x, t)≈ (v(x, t)− v(x −�x, t))/�x. As in the preceding section,
we establish an ordinary differential equation at each point xj = j�x,

dv(x, t)

dt
=− c

�x

(
v(x, t)− v(x −�x, t)

)+O(�x),

so that the whole domain can be covered by the matrix system of the form

du(t)

dt
=−cBu(t)+ cb(t),

where u(t) = (u1, u2, . . . , uN)T is the solution vector, the boundary condition is
contained in the vector b(t)= (1/�x)(b(t),0, . . . ,0)T, and B is bidiagonal,

B = 1

�x

⎛

⎜⎜⎜
⎜⎜
⎝

1 0
−1 1 0

. . .
. . .

. . .

−1 1 0
−1 1

⎞

⎟⎟⎟
⎟⎟
⎠

.

The solution of this system is u(t) = B−1b(t) + exp(−c�tB)(f − B−1b(t)). In
subsequent time steps we therefore obtain

u(t +�t)= B−1b(t)+ exp(−c�tB)
(
u(t)−B−1b(t)

)
.

The exponential function exp(−c�tB) can now be replaced by a Padé approxima-
tion. For example, the order (0,1) approximation represents the implicit scheme
(I + c�tB)u(t + �t) = u(t) + c�tb(t), which can be transformed into explicit
form. At the points xj , j = 1,2, . . . ,N , the solution is

un+1
j = 1

1+ cR

(
cRun+1

j−1 + un
j

)
,

H.2 Advection Equation 685

where R =�t/�x (check this as an exercise). At order (1,1), one again retrieves
the Crank–Nicolson scheme. We may also increase the precision of the schemes by
using a three-point difference approximation for the spatial derivative,

dv(x, t)

dt
=− c

2�x

(
3v(x, t)− 4v(x −�x, t)+ v(x − 2�x, t)

)+O
(
�x2).

In this case, the matrix system becomes

du(t)

dt
=−1

2
cBu(t)+ 1

2
cb(t), (H.5)

the boundary condition is contained in b(t)= (1/�x)(2b(t),−b(t),0, . . . ,0)T, and
the matrix B is

B = 1

�x

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
−4 3
1 −4 3

1 −4 3
. . .

. . .
. . .

1 −4 3
1 −4 3

1 −4 3

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The solution of this system is u(t)= B−1b(t)+ exp(− 1
2c�tB)(f − B−1b(t)). In

subsequent time steps we obtain

u(t +�t)= B−1b(t)+ exp

(
−1

2
c�tB

)(
u(t)−B−1b(t)

)
.

The (0,1) Padé approximation results in the stable implicit scheme

(
I + 1

2
c�tB

)
u(t +�t)− 1

2
c�tb(t +�t)= u(t),

which can also be rewritten in explicit form.
An unpleasant surprise is in store at the very end [1]. If we use the symmetric

difference for the spatial derivative,

∂v(x, t)

∂x
≈ v(x +�x, t)− v(x −�x, t)

2�x
, (H.6)

686 H Transforming PDE to Systems of ODE: Two Warnings

Fig. H.2 Solution of
vt + cvx = 0 (c= 1) on
0≤ x ≤ 1 with the initial
condition v(x,0)= sin 4πx,
at t = 0.5. Shown are the
analytic solution
v(x, t)= sin 4π(x − t) and
the numerical solution
(�x = 0.0125, �t = 0.025)
in the (1,0) Padé
approximation. The
symmetric approximation for
vx (see (H.6)) causes strong
oscillations

we obtain the matrix system of the same form as before (see (H.5)), with the matrix

B = 1

�x

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1 0 1

−1 0

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

and vector b(t)= (1/�x)(b(t),0,0, . . . ,−uN+1(t))
T containing the boundary con-

dition. Due to the symmetric difference the eigenvalues of B are complex. The so-
lution u(t) therefore includes oscillatory terms that completely spoil the solution
(Fig. H.2).

References

1. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press,
Oxford, 2003)

Appendix I
Numerical Libraries, Auxiliary Tools,
and Languages

I.1 Important Numerical Libraries

A detailed explanation of individual methods and algorithms is neither the only nor
the main purpose of this textbook: we are primarily interested in the mathemati-
cal and physical background of a problem rather than the details of the numerical
method used to solve it. In such cases we build the skeleton of the program code,
but to efficiently and reliably manage the core of the computations, we resort to
specialized collection of numerical routines called libraries.

Linear Algebra Packages The routines for the manipulation of vectors and ma-
trices (for example, to compute scalar product of vectors, multiply matrices, solve
systems of equations, Ax = b, or eigenvalue problems, Ax = λx) should never be
coded by ourselves. Almost without exception our program, even if literally adopted
from a textbook on numerical methods, will be inferior to a carefully optimized al-
gorithm from a dedicated library.

The BLAS (Basic Linear Algebra Subprograms) library [1, 2] contains basic
routines for vector and matrix operations used by more general libraries. At level 1
of BLAS we find routines for scalar, vector, and vector-vector operations; level 2
contains routines for matrix-vector operations; level 3 allows for matrix-matrix ma-
nipulations.

The basic building blocks of BLAS are used by higher-level libraries, the most
famous of which is LAPACK (Linear Algebra PACKage) [3]. It contains a col-
lection of subprograms to solve systems of linear equations, eigenvalue problems,
and problems involving singular value decomposition. Most of the routines have
been prepared in real and complex versions (vectors and matrices), in single- and
double-precision floating-point arithmetic. The library is well tuned to dense and
banded matrices, while it is less appropriate for use with general sparse matrices
of high ranks. To solve matrix problems with dense and banded matrices on multi-
processor systems (clusters) with distributed memory, a scalable version SCALA-
PACK is available [4]. The same family of libraries also encompasses packages for
the solution of eigenvalue problems with very large sparse matrices ARPACK [5],

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

687

688 I Numerical Libraries, Auxiliary Tools, and Languages

for direct solution of sparse systems (CAPSS, MFACT), as well as preconditioning
routines used in iterative methods for large sparse systems (ParPre). See also [6].

Libraries for Specific Processor Architectures The basic versions of LAPACK
and BLAS libraries are intended for use with the Fortran77 programming language,
but versions for Fortran95, C/C++, and Java also exist. They are incorporated in
numerous distributions of Linux/UNIX systems. If we wish faster libraries, they
need to be tuned to the individual processor architecture. For the BLAS library
and a subset of routines from the LAPACK library, this can be done by the ATLAS
(Automatically Tuned Linear Algebra Software) package [7]. This tool compiles the
libraries and adapts them to the chosen computer platform. Precompiled optimized
codes are readily available for most processors.

Perhaps the most widely spread and powerful among them is the Intel package
MKL (Intel Math Kernel Library) [8] offering highly optimized mathematical rou-
tines for a broad spectrum of scientific, engineering, and financial applications with
an interface to Fortran and C. It contains BLAS/LAPACK, SCALAPACK, and
LINPACK, as well as the routines for direct and iterative solution of systems with
sparse matrices. It performs particularly well in algorithms for direct solution of
systems with large symmetric sparse matrices (of sizes 10000 × 10000 or more)
[9]. MKL also includes a set of (up to seven-dimensional) Fourier transformations
for digital signal analysis, image processing, and solving partial differential equa-
tions. Moreover, the MKL package contains well tuned vector implementations of
computationally intensive elementary mathematical functions (above all, trigono-
metric and hyperbolic, where MKL boasts several times larger speeds than those
attained in standard versions). The MKL package is available for Windows, Linux,
and Mac OS operating systems.

For AMD processors we use ACML (AMD Core Math Library) [10]. In addi-
tion to the optimized BLAS/LAPACK routines, this package offers a set of routines
for fast Fourier transformations and random number generation. On alpha systems
(portable to other platforms) by HP (Compaq) the following packages are available:
MLIB (HP Mathematical Software Library) [11], CPML (Compaq Portable Math
Library), and CXML (Compaq Extended Math Library). Users of Apple comput-
ers may reach for the Velocity Engine libraries [12] that contain tools for digital
processing of signals and images, in addition to LAPACK and BLAS.

Special Packages for Fourier Transformation The “working horse” for the dis-
crete Fourier transformation (especially for very long data arrays) is the fast Fourier
transform FFTW [13] (Fastest Fourier Transform in the West). It is written in C
and is well portable between different architectures and operating systems. (In one
form or another, FFTW is implemented in most libraries for specific architectures
mentioned above.) One of the advantages of FFTW is the capability to adapt to the
hardware used, allowing for improvement in speed (see Fig. 4.7). The method is of
order O(N logN) for any N , in contrast to numerous other implementations that
are restricted to a subset of sizes N (e.g. to powers of two, N = 2n) or that become

I.1 Important Numerical Libraries 689

of order O(N2) for specific values of N (e.g. when N is prime). While the ma-
jority of competitive FFT libraries is limited to one-, two-, and three-dimensional
transformations, FFTW can be applied in arbitrary dimensions.

Packages for Boundary-Value Problems Two modern advanced packages for
solving Sturm–Liouville boundary-value problems for ordinary differential equa-
tions involving eigenvalues and eigenfunctions are SLEIGN2 [14] and the clus-
ter of subroutines D02KAF, D02KDF, and D02KEF from the extensive and much
more general library NAG (see description below). These packages use the shoot-
ing method based on the Prüfer transformation (see Sect. 8.7.2) and can be applied
to regular and singular Sturm–Liouville problems with separated or unseparated
boundary conditions, as well as for the approximation of the continuous spectrum
in the case of singular problems. The core ideas are described in [15]. Also available
are the SLEDGE [16] and SL02F [17] packages based on the Pruess method (see
Sect. 8.7.3).

Large General Libraries The collections of routines mentioned above are spe-
cialized and highly optimized for a particular kind of numerical problems or algo-
rithms. We therefore use them with a very specific purpose or goal. For everyday
use, much more general and extensive libraries are available that can be applied to
a variety of problems.

The longest tradition among them is claimed by the NAG (Numerical Analysis
Group) corpus [18]. The NAG C version is currently the largest existing commer-
cial collection of mathematical and statistical algorithms and corresponding routines
(more than 1000) for programming in C/C++ languages. In the mathematical part, it
includes subprograms from the area of optimization and minimization; ordinary and
partial differential equations; finding zeros of non-linear equations; solving dense,
banded, and sparse matrix systems and corresponding eigenvalue problems; spe-
cial functions; and approximation and interpolation. In the statistical part, it offers
routines for random number generation; correlation and regression analysis; mul-
tivariate methods; variance analysis; as well as time series analysis. Versions for
Fortran77 and Fortran95 also exist. Special branches of the collection, NAG SMP
(Symmetric Multi-Processor) and NAG PARALLEL, predominantly contain routines
for matrix-vector algebra and FFT optimized for multi-processor and distributed-
memory platforms. These libraries are available for all relevant processor archi-
tectures and operating systems; an interface to MATLAB is also available (NAG
TOOLBOX for MATLAB).

A similar collection, NUMERICAL RECIPES (NR) [19], is a practical tool for ev-
eryday numerical computations that is not extremely intensive. For decades, physi-
cists considered the NR library (in versions for Pascal, Fortran77, Fortran90, and C)
to be the first choice for numerical work, while the current (third) edition for
C++ (NR3E) became commercial, with relatively severe copyright restrictions in
academia. This may be one of the reasons that especially users of Linux/UNIX sys-
tems prefer the open-code GSL (GNU Scientific Library) [20]. We recommend it
for general use in the context of this textbook. The NR3E collection also offers an
interface to MATLAB.

690 I Numerical Libraries, Auxiliary Tools, and Languages

A project rapidly ascending to its zenith is BOOST [21], which is a kind of a
library of libraries. It contains a large collection of algorithms and tools for gen-
eral structured and object-oriented programming, numerous data types, structures,
classes, mathematical routines, and input-output tools. Some components of BOOST

are gradually being integrated in standard C++ libraries.

I.2 Basics of Program Compilation

On standard Linux systems, programs are compiled by GCC (the GNU Compiler
Collection) encompassing the compilers for the languages C, C++, Java, and For-
tran. The languages in C are compiled by gcc, while for C++ we use c++ or g++.
The compiler for Java is javac, and for Fortran it is gfortran (also f95, on
older systems fort77 or f77). For example, a simple program in C++ without
using libraries can be compiled and executed like this:

c++ PROG.cc -o PROG
./PROG

Libraries are linked to the main code during compilation. A library that exists on the
system in the file libALGEBRA.a (static version) or libALGEBRA.so (dynamic
version) residing in /lib or /usr/lib directories (these are always looked up
first by the compiler) can be incorporated like this:

c++ [options] PROG.cc -lALGEBRA -o PROG

The compiler accepts numerous [options]. The most useful are:

-o output file (otherwise a.out)
-O basic speed optimization (higher levels are -O2, -O3)
-g allows a debugger to be used (e.g. gdb)
-pg generates profile information code for gprof (Appendix J)
-Wall include all warnings (that are not syntax errors)
-pedantic more pedantic warnings
-ansi enforce ANSI standard for C
-I include *.h files not in the standard search path,

for example: -I/home/users/my/path header.h
-L include *.a or *.so libraries not in the standard search path,

for example: -L/home/users/my/path -llibrary

To get an impression, have a glance at the help pages (man gcc or info gcc)!
This multi-thousand line documentation is not just a set of instructions on how to
use the compiler: it also contains rich information on C and C++ programming
languages, operating systems, and computer architectures. As was the case with nu-
merical libraries, compilers exist that are tuned to a particular architecture. Excel-
lent Intel compilers for C++ and Fortran [22] are available for the operating systems
Windows, Linux (free for non-commercial use), and Mac OS.

I.3 Using Libraries in C/C++ and Fortran 691

I.3 Using Libraries in C/C++ and Fortran

Our code can make use of almost any library, regardless of the language in which it
has been written. As an example, we describe a typical use of libraries to solve the
system of equations Ax = b by LU decomposition. First we show the solution with
the GSL library in C or C++, then we do the same by including a Fortran library
LAPACK in a program written in C or C++. Finally we give a possible solution with
a Fortran library included in a program written in Fortran95 (which is the current
standard version).

I.3.1 Solving Systems of Equations Ax = b by Using the GSL
Library

#include <gsl/gsl_linalg.h>

const int N = 256;
gsl_vector *x, *b;
gsl_matrix *A;
gsl_permutation *p;
A = gsl_matrix_alloc(N, N);
x = gsl_vector_alloc(N);
b = gsl_vector_alloc(N);

for (int i = 0; i < N; i++) {
gsl_vector_set(b, i, ...);
for (int j = 0; j < N; j++) gsl_matrix_set(A, i, j, ...);

}
int s;
p = gsl_permutation_alloc(N);
gsl_linalg_LU_decomp(A, p, &s);
gsl_linalg_LU_solve(A, p, b, x);
for (i = 0; i < N; i++)
cout << gsl_vector_get(x, i) << endl;

gsl_permutation_free(p);
gsl_matrix_free(A); gsl_vector_free(x); gsl_vector_free(b);

This program (Axb_GSL.cc) is compiled and executed as follows:

c++ Axb_GSL.cc -lgsl -lblas -o Axb_GSL
./Axb_GSL

692 I Numerical Libraries, Auxiliary Tools, and Languages

Fig. I.1 Storage of a 3×3 matrix in computer memory in the case of C/C++ languages (row-major
mode) and Fortran (column-major mode)

I.3.2 Solving the System Ax = b in C/C++ Language and Fortran
Libraries

When we call routines written in Fortran from programs written in C/C++, we must
realize that multi-dimensional data arrays are organized differently in memory. For
example, a 3× 3 matrix,

⎛

⎝
a b c

d e f

g h i

⎞

⎠ ,

is stored in column-major mode (i.e. as adg-beh-cf i) in Fortran, while it is stored
in row-major mode (i.e. in rows abc-def -ghi) in C/C++, as shown in Fig. I.1. When
calling a library routine, the matrix therefore needs to be transposed. Moreover, there
is a difference in indexing: Fortran indices of one-dimensional arrays (and individual
components of multi-dimensional arrays) start at 1, while indices in C/C++ start
at 0.

Before the beginning of the main program in C++ the subroutine from the For-
tran library needs to be announced by the extern "C" declaration. The name of
the subroutine in the declaration should be written in lower-case letters and an un-
derscore (_) attached to it, so instead of DGESV(...) we write dgesv_(...)

extern "C" {
void dgesv_(int *, int *, double *, int *, int *, double *,

int *, int *);
}

(In the C language the declaration extern "C" is not necessary.) The lower-case
name with the underscore is the one we use to actually invoke the subroutine:

const int N = 256;

int i, j, k, CN, NRHS, LDAF, INFO;
int *IPIV = new int[N];
double *B = new double[N];
double **A = new double* [N];
for (i = 0; i < N; i++) A[i] = new double[N];

double *AF = new double[N*N];
for (i = 0; i < N; i++) {

for(j = 0; j < N; j++) {
A[i][j] = ... // matrix A[i][j] ("row-major")
AF[j+N*i] = A[j][i]; // transposition ("column-major")

}
}

I.3 Using Libraries in C/C++ and Fortran 693

Fig. I.2 [Left] Typical form of a M×M banded matrix (where M =N2) encountered e.g. in solv-
ing two-dimensional partial differential equations or boundary-value problems. Non-zero elements
are present on the main diagonal and N subdiagonals, or there may be gaps with zeros between
the most distant subdiagonals. [Right] Execution times for the solution of a banded system Ax = b

involving A and b with random elements. We have used the routines DGESV (classical LU de-
composition) and DGBSV (algorithm optimized for banded matrices) from the LAPACK library.
The computation time was measured by the gettimeofday() method from Appendix J

for (i = 0; i < N; i++) B[i] = ...
// right-hand side of Ax = b

CN = LDAF = N;
NRHS = 1;
dgesv_(&CN, &NRHS, AF, &LDAF, IPIV, B, &CN, &INFO);

// result is B
for (i = 0; i < N; i++) delete [] A[i];
delete [] AF;
delete [] B;

This program (Axb_dgesv.cc) is compiled and executed as follows:

c++ Axb_dgesv.cc -llapack -lblas -lg2c -o Axb_dgesv
./Axb_dgesv

On some systems -lblas and -lg2c are not necessary since they are already
included in -llapack, or else various (dynamically allocated) libraries call each
other automatically during the execution of the compiled and linked program.

The routines that are the most appropriate for a given task (for example, solving
the system Ax = b) should always be chosen carefully. We must weigh and confront
the analytic structure of the problem, the required precision of the results, and an-
ticipated execution times (numerical costs). Figure I.2 (left) shows a typical banded
matrix for a system of equations that frequently occurs in numerical solution of or-
dinary and partial differential equations. Such systems, especially those with large
matrices, should always be solved by algorithms optimized for banded matrices.
A careless choice of an unspecialized algorithm may imply execution times which
are orders of magnitude longer (see Fig. I.2 (right)); in addition, it may lead to larger
numerical errors.

694 I Numerical Libraries, Auxiliary Tools, and Languages

I.3.3 Solving the System Ax = b in Fortran95 by Using
a Fortran77 Library

integer N, i, j, CN, NRHS, LDAF, INFO
integer, dimension(:), allocatable :: IPIV
real*8, dimension(:), allocatable :: B
real*8, dimension(:,:), allocatable :: A

N = 256
allocate(A(N,N), B(N), IPIV(N))

do i = 1, N
B(i) = ...
do j = 1, N

A(i, j) = ...
enddo

enddo

CN = N
LDAF = N
NRHS = 1
call DGESV(CN, NRHS, A, LDAF, IPIV, B, CN, INFO)

deallocate(A, B, IPIV)

This program (Axb_dgesv.f) can be compiled and executed as follows:

f95 Axb_dgesv.f -llapack -o Axb_dgesv
./Axb_dgesv

I.4 Auxiliary Tools

MATLAB and Octave The core of the commercial program package MATLAB

(MATrix LABoratory) [23] is the high-level programming language adapted to tech-
nical use, and a powerful interactive environment for numerical computations, anal-
ysis and visualization of data, and algorithm development. MATLAB is used by sci-
entists and engineers in innumerable applications, e.g. in designing static construc-
tions, solving problems with partial differential equations, control systems, signal
and image processing, and solving biochemical problems. With the supplemen-
tary add-on toolboxes the MATLAB environment can be adapted to more specific
classes of problems. Due to its high-level language interface, MATLAB allows us
to solve numerous problems faster than by programming in classical programming
languages. It is also possible to merge the code written in MATLAB with the code
written in some other language. The MATLAB Compiler can issue an executable
code or library that can be included in an external program as explained in Sect. I.3.
The reverse direction is also possible: external libraries may be used in MATLAB.

I.4 Auxiliary Tools 695

A skinnier free version of MATLAB (lacking the additional power of the toolboxes)
is OCTAVE [24].

Mathematica A commercial tool with a two-decade tradition, MATHEMATICA

[25], is comparable to MATLAB in terms of utility and flexibility. Yet these tools
tend to emphasize various mathematical physics or numerical aspects very differ-
ently, and choosing among them is largely a matter of taste. MATLAB is more suited
to numerical computations, especially matrix-vector algebra (for which it was orig-
inally devised), as well as for manipulation and insightful visualization of complex
data sets. MATHEMATICA is more powerful in symbolic computing, in solving all
kinds of linear and non-linear equations, as well as symbolic differentiation and in-
tegration. An interesting comparison of MATLAB, MATHEMATICA, and MAPLE is
given in [26–28].

Graphics Tools General packages like MATLAB, OCTAVE, or MATHEMATICA

already come with graphical tools built in. But good pictures should be created by
using dedicated plotting programs. For fast everyday use one may recommend GNU-
PLOT [29]. The ROOT package [30] is much more than just a plotting program:
it is a powerful interactive environment for object-oriented data analysis. ROOT
is rooted in the C++ language and is a descendant of the famous Fortran-based
tool PAW [31], which retains some popularity. Lovely graphics can be formed by
the program grace (or xmgrace) [32]. All packages mentioned above are freely
accessible. A powerful commercial tool for data analysis and plotting is ORI-
GIN [33].

Pedagogical Remark The major software packages mentioned in this section
(some of them with similar functionalities are listed in1) can hardly be called
“auxiliary tools”. We are dealing with such an extensive and complete collec-
tions of algorithms, methods, and visualization options that an average user can-
not possibly fully understand and exploit them. Their purpose is the quick solu-
tion of daily scientific and engineering problems, and as such we heartily recom-
mend them! On the other hand, physicists encounter numerous non-daily tasks
that require particular attention on how to formulate the problem, choose among
the solution options, and control the quality of the computation (stability, conver-
gence). Therefore, we should always ponder between the obvious appeal of the
ready-to-use tool, and the prospect of perhaps learning more by a more dedicated
engagement.

1MAPLE (http://www.maplesoft.com) is a powerful tool for mathematical modeling;
SAGE (http://www.sagemath.org) is a free alternative to commercial packages; SCILAB

(http://www.scilab.org) is another powerful free environment for scientific work and technical
applications; MAGMA (http://magma.maths.usyd.edu.au/magma) is a package for symbolic
solution of problems from algebra, number theory, geometry, and combinatorics. The tools
enumerated here are available for Windows, Mac OS, and Linux.

696 I Numerical Libraries, Auxiliary Tools, and Languages

I.5 Choosing the Programming Language

Fortran More than half a century has passed since its first steps, but the FOR-
TRAN (The IBM FORmula TRAnslating System) language in its newer versions
Fortran77 and Fortran95 remains by far the most widely spread and used language
for numerically intensive computing applications, such as: study of fluid dynamics;
weather predictions; finite element method analyses in civil engineering; theoretical
physical chemistry (ab initio calculations of molecular orbitals); and simulations of
nuclear explosions.

In Fortran, basic scientific and engineering ideas can be expressed very naturally
and directly. Excellent compilers exist, coupled to an exceptionally rich assortment
of libraries and packages. In Fortran95, the latest standard version, most of the con-
structs offered by C++ and Java can be realized, including pointers, dynamical mem-
ory allocation, and classes, with the exception of inheritance (relating general and
particular properties of classes) and dynamical polymorphism (using equal names
for abstract referencing to families of data types or routines). Further explanations
can be found in [34, 35].

Apart from the Intel compiler mentioned above [22], the standard Linux/UNIX
compilers are gfortran [36], which is a component of the GNU Compiler Col-
lection gcc, and g95 [37]. Important commercial versions of compilers for high-
performance numerical computing (also for Windows and Mac OS) are offered by
Absoft, Lahey, and NAG. More information can be found on the web.

C/C++ The C and C++ languages are closely related. The syntactically and se-
mantically relatively simple language C [38] was developed in 1972 to cater to the
needs of low-level programming, allowing for direct access to memory and other
hardware components. A code written in C is easily portable among different archi-
tectures and operating systems, so C can be found everywhere, from supercomputers
to drivers steering the lowest levels of electronic circuits.

The C++ language [39–41] was designed as a broad, object-oriented extension
of the C language whose nature is markedly procedural, with the added option of
exception handling during program execution. Another important enrichment is the
possibility of dynamical resource control (allocation and de-allocation of memory,
opening and closing files, establishing connections to databases and libraries de-
pending on the context (scoped resource management). The C++ language derives
part of its strength from generic programming: algorithms can be written in a form
that does not depend on the type of objects occurring in the algorithm. It also bene-
fits from a relatively rich standard library facilitating the work with arrays, iterators,
input-output operations, algorithms of general and numerical types, and diagnos-
tic tools. With few exceptions, the C language is a subset of C++, so a valid code
written in C is valid in C++ as well (but not the other way around). The standard
open-code compiler for C/C++ on Linux/UNIX systems is gcc [42], while an ex-
cellent commercial compiler that can be used freely in the academic environment is
offered by Intel [22].

References 697

Java Similar to C++, Java [43] was developed for object-oriented programming,
originally in the context of network computing and the desire for easy portability.
Yet syntactically it is compatible with neither C++ or C (although it resembles them
in many ways). Perhaps the most essential benefit of using Java is the Java Runtime
Environment (JRE), an environment in which user application or libraries actually
run. An application in Java “communicates” with the physical computer or the actual
operating system by means of the Java Virtual Machine (JVM). The virtual machine
represents a certain abstraction of the actual system. The program in Java therefore
need not be written for each architecture or operating system separately, since to do
this, one would have to know their numerous details and peculiarities: we write the
program only once, and then it can be embedded in any platform on which JRE is
running.

Two types of Java compilers exist. The first type allows us to compile the source
code (the .java files) to bit code (the .class files) that is interpreted by the JVM.
The best-known compiler from this family is javac packaged in any distribution
of the Java Development Kit (JDK). The second type of compilers directly trans-
lates the source code to machine code for the corresponding architecture. Modern
implementations of the JVM can transform the source code to machine code during
execution. The GNU compiler gcj can do the same [44].

References

1. L.S. Blackford et al., BLAS, basic linear algebra subprograms. ACM Trans. Math. Softw. 28,
135 (2002)

2. J. Dongarra, Basic linear algebra subprograms technical forum standard. Int. J. High Per-
form. Comput. Appl. 16, 1 (2002). The reference (unoptimized) library is available at http://
www.netlib.org/blas

3. LAPACK, The Linear Algebra PACKage. http://www.netlib.org/lapack (version for For-
tran77), ../lapack95 (version for Fortran95), ../clapack (version for C),
../lapack++ (version for C++), ../java/f2j (version for Java)

4. SCALAPACK, http://www.netlib.org/scalapack
5. ARPACK, http://www.caam.rice.edu/software/ARPACK. The P_ARPACK version also ex-

ists: it is appropriate for use in parallel computers. There is also the ARPACK++ interface to
C++

6. J.J. Dongarra, V. Eijkhout, Numerical linear algebra algorithms and software. J. Comput. Appl.
Math. 123, 489 (2000)

7. R.C. Whaley, A. Petitet, J.J. Dongarra (ATLAS Collaboration), Automated empirical op-
timization of software and the ATLAS project. Parallel Comput. 27, 3 (2001); see also
http://math-atlas.sourceforge.net

8. Intel Math Kernel Library, http://www.intel.com/software/products/mkl
9. N.I.M. Gould, J.A. Scott, Y. Hu, A numerical evaluation of sparse direct solvers for the solution

of large sparse symmetric linear systems of equations. ACM Trans. Math. Softw. 33, 10 (2007)
10. AMD Core Math Library, http://developer.amd.com/cpu/Libraries/acml
11. MLIB, HP’s Mathematical Software Library, http://www.hp.com/go/mlib
12. Apple Velocity Engine, http://developer.apple.com/hardware/ve
13. M. Frigo, S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93, 216

(2005); see also http://www.fftw.org

698 I Numerical Libraries, Auxiliary Tools, and Languages

14. P.B. Bailey, W.N. Everitt, A. Zettl, Algorithm 810: the SLEIGN2 Sturm–Liouville code. ACM
Trans. Math. Softw. 27, 143 (2001); see also http://www.math.niu.edu/SL2

15. P.B. Bailey, M.K. Gordon, L.F. Shampine, Automatic solution of the Sturm–Liouville prob-
lem. ACM Trans. Math. Softw. 3, 193 (1978)

16. S. Pruess, C. Fulton, Mathematical software for Sturm–Liouville problems. ACM Trans. Math.
Softw. 19, 360 (1993)

17. M. Marletta, J.D. Pryce, Automatic solution of Sturm–Liouville problems using the Pruess
method. J. Comput. Appl. Math. 39, 57 (1992)

18. NAG (Numerical Algorithms Group), http://www.nag.co.uk
19. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007). See also the
equivalent handbooks in Fortran, Pascal and C, as well as http://www.nr.com

20. GSL (GNU Scientific Library), http://www.gnu.org/software/gsl
21. BOOST C++ Libraries, http://www.boost.org
22. Intel Compilers (versions for Fortran and C++), http://www.intel.com/software/products/

compilers
23. MATLAB, The MathWorks, http://www.mathworks.com
24. OCTAVE, http://www.octave.org
25. S. Wolfram, WOLFRAM MATHEMATICA, http://www.wolfram.com
26. N. Chonacky, D. Winch, 3Ms for instruction. Reviews of Maple, Mathematica, and Matlab.

Comput. Sci. Eng. May/Jun, 7 (2005)
27. N. Chonacky, D. Winch, 3Ms for instruction, part 2. Comput. Sci. Eng. Jul/Aug, 14 (2005)
28. N. Chonacky, D. Winch, 3Ms: a response. Comput. Sci. and Eng. Sep/Oct, 7 (2005)
29. GNUPLOT, http://www.gnuplot.info
30. ROOT, http://root.cern.ch
31. PAW, http://wwwasd.web.cern.ch/wwwasd/paw
32. GRACE (xmgrace), http://plasma-gate.weizmann.ac.il/Grace
33. ORIGINLAB, http://www.originlab.com
34. J. Reid, The future of Fortran. Comput. Sci. Eng. Jul/Aug, 59 (2003)
35. V.K. Decyk, C.D. Norton, H.J. Gardner, Why Fortran? Comput. Sci. Eng. Jul/Aug, 68 (2007)
36. GNU Fortran Compiler, http://gcc.gnu.org/wiki/GFortran
37. G95, http://www.g95.org
38. B.W. Kernighan, D.M. Ritchie, C Programming Language (ANSI C), 2nd edn. (Prentice Hall,

Englewood Cliffs, 1988); the current official language standard is ISO/IEC 9899:1999, also
adopted by ANSI; see also http://www.open-std.org/jtc1/sc22/wg14

39. B. Stroustrup, The C++ Programming Language, 3rd edn. (Addison-Wesley, Reading, 2000)
40. N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference (Addison-Wesley, Read-

ing, 1999)
41. S. Prata, C++ Primer Plus, 5th edn. (Sams/Pearson Education, Indianapolis, 2004); the cur-

rent official language standard is ISO/IEC 14882:2003, see also http://www.open-std.org/jtc1/
sc22/wg21

42. GNU Project C/C++ Compiler, http://gcc.gnu.org
43. Java Platform (Standard edition), http://java.sun.com/javase
44. GNU Java Compiler, http://gcc.gnu.org/java

Appendix J
Measuring Program Execution Times on Linux
Systems

Here we describe the methods to measure program execution times on Linux and
UNIX systems. We use them to identify bottlenecks in the code which helps us
optimize its speed. The methods can be used on the command line or within the
C++ programming language. Coding in C requires only minor modifications.

time The command time for a program prog is issued on the command line:

$ time prog
real 0m4.52s
user 0m4.15s
sys 0m0.04s

The command time measures the execution time of the whole program. The real
value gives the total elapsed time from the beginning of the execution to its end.
The processor (CPU) time has two components, user and sys. The user value
is the time needed by the program for its own execution and for library calls. The
sys value is the time spent on system calls. The difference between the total and
CPU times, real − (user+sys), is caused by several factors slowing down the
program, such as I/O operations, memory accesses, and the time spent by other
programs and the operating system.

clock() is a low-resolution timer function that can be used within the program it-
self. The processor time has type clock_t and counts the number of oscillations of
the CPU clock relative to an arbitrary starting time which does not change within the
program. The first call of clock() should immediately precede the timed program
fragment, while the second call should be just after it:

#include <ctime>
clock_t start, end;
start = clock();
/* --- measured code fragment --- */
end = clock();
double elapsed = ((double) (end - start)) / CLOCKS_PER_SEC;

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

699

700 J Measuring Program Execution Times on Linux Systems

The factor CLOCKS_PER_SEC (CPU clock ticks per second) converts the differ-
ence between end and start to the total elapsed time in seconds. The way of
recording the CPU time is not the same on all architectures and operating systems.
Typical resolutions of CPU clocks are between hundredths and millionths of a sec-
ond. The POSIX standard defines CLOCKS_PER_SEC = 1000000 regardless of
the actual resolution. The value returned by clock() rolls over after a certain
time: on 32-bit POSIX systems this occurs approximately once every 72 minutes.
On GNU systems the type clock_t is equivalent to long int, and the type of
CLOCKS_PER_SEC is equivalent to int; on other systems both might be of type
float. We recommend an explicit conversion to type double (see man clock).

gettimeofday() The timeval structure has two components, both of type int.
The first one is tv_sec and measures the time in seconds since January 1, 1970
(the same as time()). The second one is tv_usec and returns the number of mi-
croseconds elapsed within the last second measured by tv_sec. On many systems
the number of microseconds is accurate to a few decimal places less than the ele-
ment timeval.tv_usec indicates, so we may expect resolutions of ≈1/100 s.
An example of use in the program:

#include <sys/time.h>
timeval tim; // in C++
//struct timeval tim; // in C
double t1, t2;

gettimeofday(&tim, NULL);
t1 = tim.tv_sec + (tim.tv_usec/1000000.0);
/* --- measured code fragment --- */
gettimeofday(&tim, NULL);
t2 = tim.tv_sec + (tim.tv_usec/1000000.0);
double elapsed = t2 - t1;

For additional information, see man gettimeofday.

rdtsc() For x86-family processors (Pentium and newer), the number of CPU cy-
cles from the last reboot is obtained by the rdtsc() system call, which offers a
very precise stop-watch. This is an example of how it can be used in the program:

// for 32-bit architecture
unsigned long long int rdtsc() {
unsigned long long int x;
asm volatile("rdtsc": "=A" (x));
return x; }

// for 64-bit architecture
unsigned long long int rdtscll() {
unsigned int __a, __d;
asm volatile("rdtsc": "=a" (__a), "=d" (__d));
return ((unsigned long long)__a)

|(((unsigned long long)__d)<<32); }

J Measuring Program Execution Times on Linux Systems 701

unsigned long int start, end, elapsed;
start = rdtsc();
/* --- measured code fragment --- */
end = rdtsc();
elapsed = end - start;

For additional information, see [1].

getrusage() The getrusage() function returns the data on the use of system
resources of the running process. The rusage.ru_utime structure measures the
elapsed user time for the process, while the rusage.ru_stime structure mea-
sures the elapsed system time. The elements of the structure corresponding to sec-
onds and microseconds needs to be added up, as in the following example:

#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

double seconds_usr() {
static struct rusage temp;
getrusage(RUSAGE_SELF, &temp);
return temp.ru_utime.tv_sec + temp.ru_utime.tv_usec

/1000000.0; }
double seconds_sys() {
static struct rusage temp;
getrusage(RUSAGE_SELF, &temp);
return temp.ru_stime.tv_sec + temp.ru_stime.tv_usec

/1000000.0; }

double start_usr, start_sys, elapsed_usr, elapsed_sys;
start_usr = seconds_usr();
start_sys = seconds_sys();
/* --- measured code fragment --- */
elapsed_usr = seconds_usr() - start_usr;
elapsed_sys = seconds_sys() - start_sys;

This function works on most Linux/UNIX systems. For further information, see
man getrusage.

gprof is an extremely useful command-line tool enabling us to precisely analyze
the whole program. The program should be compiled with the −pg option and exe-
cuted; this stores the profile information in the object file and creates the gmon.out
file. When the program terminates, we run gprof over the gmon.out file. We ob-
tain a comprehensive display of the computational costs of individual routines. The
gprof program (in conjunction with the GNU Compiler Collection gcc on Linux
systems) works with C, C++, Pascal, and Fortran. Example of use:

$ c++ -pg prog.cc -o prog && ./prog
$ gprof prog gmon.out > gmon.log

702 J Measuring Program Execution Times on Linux Systems

This produces the file gmon.log, which looks approximately like this:

% cumulative self self total
time seconds seconds calls s/call s/call name
23.49 48.86 48.86 806392282 0.00 0.00 aj1_
21.34 93.24 44.38 65 0.68 1.30 make_kae2c2__
11.93 118.07 24.82 10607923 0.00 0.00 swint_
10.97 140.89 22.82 65 0.35 0.54 make_kam1pi__
10.93 163.63 22.74 65 0.35 1.01 make_ae2c2__
8.60 181.51 17.89 537095882 0.00 0.00 aj0_
5.00 191.92 10.41 30406567 0.00 0.00 xint_
4.01 200.25 8.33 65 0.13 0.24 make_am1pi__

The % column gives the fraction of total execution time spent in the function (rou-
tine) name listed at the extreme right. The cumulative seconds value is the
cumulative time spent in all functions (routines) down to this point in the list. The
self seconds value measures the time for all executions of the individual rou-
tine: this value reveals the most time-consuming routine, and allows us to potentially
optimize the program at this point. The calls entry specifies the number of calls of
a routine, while the self s/call and total s/call give the corresponding
times spent for each call. This table is followed by an even more detailed hierarchy
of function calls. For further options see man gprof.

In the sample output listed above almost a quarter of time is spent on com-
puting the spherical Bessel function j1(z), where z = kx = 2πx/λ, by using the
routine double aj1(double z) {return (sin(z)/z-cos(z))/z;}.
Physical circumstances might allow for a long-wavelength approximation,

j1(z)= 1

z

(
sin z

z
− cos z

)
= z

3

(
1− z2

10

)
+O

(
z5),

when λ x and thus z " 1: if this approximation were allowed, the time-
consuming computation of two trigonometric functions could be replaced by just
a handful of elementary operations.

References

1. http://en.wikipedia.org/wiki/Time_Stamp_Counter

Index

A
A-stability, 359
A(α)-stability, 367
Abel summation, 45
Absolute convergence, 32
Absolute stability, 347–349
Acceleration of convergence, 36–38, 72
ACML, 688
Action function, 27
Adams method, 352
Adams–Bashforth–Moulton method, 354
Adaptive step size, 343, 346
Admissibility condition, 196
Advection equation, 567, 684
Affine invariance, 68
Affinity matrix, 258
Airy functions, 48
Aitken’s �2 method, 37, 72
Algebraic multiplicity, 127
Algebraic variety, 91
Algorithm

Buchberger’s, 92
Burg’s, 313
Cooley–Tukey, 169
Coppersmith-Winograd, 110
distillation, 36
divide-and-conquer, 169
EM, 256
Euclid’s, 78
Faugère’s (F5), 92
FFT, 169
for M-estimate of location, 215
for M-estimate of scale, 216
hierarchical clustering, 251
Horner’s, 74
Kahan’s, 34
Linz’s, 35

QR, 128
QZ, 134
Remes, 6
Ruffini’s, 74
Strassen, 110
Wynn, 12

Aliasing, 166
Almost optimal approximation, 8
Alternating series, 38, 51
Amplification factor, 480
Amplification matrix, 497
Amplitude function, 27
Analysis

asymptotic, 16–31
auto-regression, 310–319
canonical correlation, 263, 264
cluster, 249–259
factor, 265–269
linear discriminant, 259–261
logistic discriminant, 261
of errors in solving Ax = b, 111
principal component, 244–249

Analytic domain of dependence, 487
Analytic function, 17
Analytic signal, 186
Anderson localization, 150
Angular flux, 426
Approximation

almost polynomial, 8
mean-field, 96
minimax, 6
of stationary phase, 24
optimal polynomial, 6
rational (Padé), 9–15
spectral, 575
with Chebyshev polynomials, 8

Arbitrary precision, 4, 377, 634

S. Širca, M. Horvat, Computational Methods for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-642-32478-9, © Springer-Verlag Berlin Heidelberg 2012

703

704 Index

Area of triangle, 5
Arenstorf orbits, 386
Arithmetic mean, 208
Arnold’s cat, 372
Asymptotic

analysis, 16–31, 621, 622
diffusion limit, 426
discretization scheme, 424–429
expansion, 16, 17

of Fourier integral, 21
quadrature, 660
series, 18
stability, 347–349

ATLAS, 688
Auto-correlation, 305
Auto-covariance, 282
Auto-regression analysis, 310–319
Autonomous system, 335, 364, 667

Hamiltonian, 368
Avoidance of level crossing, 142, 153

B
B-convergence, 673
B-splines, 430–432, 600
B-stability, 362, 672
Backward difference, 352
Bairstow’s method, 84
Balancing, 118
Ballistic diffusion, 289
Banach contraction principle, 652
Banded matrices, 115
Base two, 2
Bayes theorem, 259
BCH formula, 678
Beam-Warming scheme, 530
BEM, 545–549, 570
Bernoulli’s

equation, 100
method, 82

Berry–Esséen theorem, 284
Bessel functions, 50
Bifurcation, 325
Big-endian ordering, 633
Binary base, 629–633
Binary classification, 259

efficiency, 261
Binary operations, 2
Biofilms, 563
Bisection, 59
BLAS, 687
BOOST, 689
Borel (re)summation, 44, 52
Boundary condition, 401

discretization, 402–404, 408, 427, 431, 444

eigenvalue-dependent, 453, 454
numerical, 484

Boundary elements, 545–549, 570
Boundary layer, 459
Boundary-value problems, 455

boundary layer, 459
scalar, 402–407, 413–416, 418, 419,

430–438, 441–454
systems, 408–413, 416, 417, 419–421, 438
with eigenvalues, 441–454

fourth-order, 463
Box diagram, 212
Box–Muller transformation, 642
Branch statements, 4
Breit–Wigner distribution, 644
Brownian noise, 301
Broyden’s method, 69
BTBS, 489
BTCS, 475, 476, 489, 683

2-dim, 529
BTFS, 489
Burgers equation, 492, 493, 500, 509–511,

602–604, 606, 617
Burg’s algorithm, 313
Butcher tableau, 340

C
C/C++, 696
Canonical

correlation analysis, 263, 264
parameters, 432
variable, 264
variate score, 264

Carry, 646–648
Cauchy

definition of convergence, 651
estimate of r , 75
function, 214
polynomial, 75
principal value, 184
square-root test, 32

Cauchy–Lorentz distribution, 644
Central limit theorem, 283

generalized, 287
Chaotic scattering, 391
Chapman–Kolmogorov equation, 293
Characteristic

function, 278
polynomial, 127

of AR model, 314
variables, 497

Characteristics, 485
Chebyshev polynomial, 8
Chebyshev–Galerkin method, 589, 594, 608

Index 705

Chirik’s map, 326
Cholesky method, 114
Chord method, 64
Circular law, 136
Clenshaw–Curtis formulas, 659
Cluster analysis, 249–259

Gaussian mixture, 256, 257
hierarchical, 250, 251
k-means, 253–255
non-hierarchical, 253–259
spectral, 258

CN (Crank–Nicolson), 475, 476, 489, 683
2-dim, 522, 529

CO2 in atmosphere, 381
Cocktail-party problem, 319
Colebrook–White equation, 101
Collocation

for boundary-value problems, 429–438
Gauss, 175, 179
Gauss–Lobatto, 175, 179
Gauss–Radau, 175, 179
method, 576, 597–601, 604
points, 173, 432, 578, 597

Comparison test, 32
Compatible discretizations, 557
Complete linkage, 253
Complete pivoting, 114
Condition number

for eigenproblem, 128
for least-squares problem, 119
for matrix inverse, 111, 118, 123

Hager’s estimator, 118
Confidence interval

for correlation coefficient, 226
for sample mean, 218
for sample variance, 220

Confidence level, 217
Conjugate gradients, 537
Conservation

of invariants, 368–372
of symplectic structure, 372, 373

Conservation law
vt =−[F(v)]x , 500, 502, 505
vt =−[F(v)]x − [G(v)]y , 528, 537

Consistency
of difference scheme, 404, 473

Constant of motion, 374
Contractivity, 672
Convergence

absolute, 32
acceleration, 72
almost sure, 138
linear, 58
of a series, 31

of difference scheme, 404, 476–480
of sequence, 651
quadratic, 58
radius, 17, 33

Convolution, 171, 184, 193, 195
Cooley–Tukey algorithm, 169
Coppersmith-Winograd algorithm, 110
Corrector, 353

Milne–Simpson, 354
Correlation

coefficient, 225, 241
canonical, 264
rank, 227

linear, 225, 263
non-parametric, 226
time, 304–310

sample, 306
Correlogram, 317
Coulomb scattering amplitude, 52
Courant–Friedrichs–Lewy criterion, 487
Covariance

ellipse, 231
matrix, 236, 246, 263
of sample, 230

Cowell’s method, 359
Crank–Nicolson scheme, 475, 476, 489, 683

2-dim, 522, 529
Cubic splines, 430–432, 600
Cumulative distribution, 207

D
Dahlquist barrier, 367
Darcy–Weisbach equation, 101
Decomposition

LU , 114
QR, 120

Decorrelation of variables, 246
Defective eigenvalue, 127
Defective matrix, 127
Deficient rank, 119, 125
Deflection of a beam, 459
Degrees of freedom, 217
Delaunay triangulation, 554
Dendrogram, 251
Dense output, 340, 345
Descartes’ rule, 77
Detailed balance, 293
Determinant

of matrix, 111
Wronski, 446

Deterministic process, 277
DFT, 163, 168
Diagonalizable matrix, 127
Diagonalization of a matrix, 127–136

706 Index

Difference schemes
eigenvalue problems, 443–446

increasing order, 445
for advection equation, 486–490, 527–530,

537–540
for Burgers equation, 492, 493
for diffusion equation, 469–480, 484, 485,

519–527, 542–544
for Poisson equation, 530–537, 544
for wave equation, 508, 509
PDE

alternating direction implicit, 523–526
Beam-Warming, 530
BTBS, 489
BTCS, 475, 476, 489, 683
BTCS (2-dim), 529
BTFS, 489
conservative, 501
Crank–Nicolson, 475, 476, 489, 683
Crank–Nicolson (2-dim), 522, 529
Dufort–Frankel, 484
flux-limiter, 502–505
for wave equation, 490, 491
FTBS, 486
FTBS (2-dim), 527
FTCS, 471, 476, 683
FTCS, O(�x4), 484
FTCS (2-dim), 520, 527
FTFS, 486
FTFS (2-dim), 527
high-resolution, 500–505, 537–540
implicit, 489
initialization, 490
Lax–Friedrichs, 489
Lax–Friedrichs (non-linear), 501
Lax–Wendroff, 488
Lax–Wendroff (2-dim), 528
Lax–Wendroff (implicit), 489
Lax–Wendroff (non-linear), 501
leapfrog, 484
modified-flux, 502
Peaceman–Rachford, 523–526
slope-limiter, 502
upwind, 504
upwind (2-dim), 528
Zalesak–Smolarkiewicz, 538

scalar boundary-value problems, 402–407
increasing order, 405

systems of boundary-value problems,
408–413

increasing order, 411–413
systems of PDE, 497–499

Diffusion equation, 426, 427, 469, 505, 593,
596, 599, 609, 614, 616, 681

2-dim (Cartesian coord), 519, 560
2-dim (polar coord), 542–544, 568
energy estimates, 481, 482
non-linear, 482, 563
theorems on maxima, 482–484

Diffusion-reaction kinetics, 457
Discrete

Fourier expansion (DFT), 163, 168
Neumann criterion, 480, 522
polynomial transformation, 173

Discretization
asymptotic, 424–429
compatible, 557
diamond, 427
error, 341, 402, 404, 473–475
mimetic, 557
of boundary conditions, 402–404, 408,

422, 427, 431, 444, 462, 463
for PDE, 471–473, 521, 522, 530–532,

542, 544
of boundary-value problem, 402, 405, 408,

411, 412, 427–429, 462, 463
of derivatives, 402, 403, 462, 463

for PDE, 470, 471, 520, 530–532, 543,
544

of eigenvalue problem, 443
of initial conditions

for PDE, 471–473
physically motivated, 540–560
upwind, 403, 427

Discriminant analysis
linear, 259–261
logistic, 261
multi-class, 262

Discriminant function, 261
Dispersion, 486, 494–496

relation, 494–496
Displacement structure, 115
Dissipation, 486, 494–496
Distillation algorithm, 36
Distribution

Breit–Wigner, 644
Cauchy–Lorentz, 644
χ2, 220
exponential, 642
F , 221
function, 207
Gauss, 209

multivariate, 642
Maxwell, 207
normal, 209

multivariate, 256
stable, 284–286
Student, 217

Index 707

Distribution (cont.)
uniform, 637
Weibull, 642
Wigner, 142

Divergence of a series, 31
Domain of dependence, 487
Doppler effect, 200
Dufort–Frankel scheme, 484
Dynamical system, 277
Dynamics generator, 675

E
εM (machine precision), 2–4
Eigenfunctions

of Sturm–Liouville problems, 442
Eigenvalues, 127

of Sturm–Liouville problems, 442
repulsion, 142, 153

Eigenvectors, 127
Embedded method, 344
Ensemble

cyclic orthogonal, 142
cyclic unitary, 142
Gaussian orthogonal, 139, 152
Gaussian unitary, 139, 152

Epidemic of measles, 456
Equi-oscillation theorem, 6
Ergodicity, 279, 282

in auto-correlation, 282
on average, 282

Error
aliasing, 166
discretization, 341, 402, 404
of difference scheme

global, 341
local, 341

relative backward, 113
relative component backward, 118
round-off, 341

Essential singularity, 17
Estimates of condition number, 118
Euclidean distance, 251
Euclid’s algorithm, 78
Euler’s methods, 337, 338, 360
Euler’s transformation, 39
Evolution operator, 675
Expansion

asymptotic, 16, 17
of Fourier integral, 21

discrete Fourier (DFT), 163, 168
in Chebyshev polynomials, 8, 179
in Legendre polynomials, 175
Laurent, 17

power, 16
SVD, 124
Taylor, 17, 336

Exponent of a real number, 629
Exponential operators, 677
Extrapolation methods, 349–351

F
Factor analysis, 265–269

score, 265
weight, 265

Fast Fourier transformation (FFT), 169
Fat tails, 286
Fejér formulas, 659
FEM, 549–557, 569
FFT, 169

FFTW library, 688
Filon quadrature, 662
Finite elements, 549–557, 569
Fitting a constant, 233
Fixed decimal point, 1
Fixed point, 667

ghost (spurious), 671
Flicker noise, 301
Floating decimal point, 1, 629–633
Flux splitting, 498
Flux-limiter function, 503
Fortran, 696
Fourier

collocation derivative, 578–580
series, 162, 587, 615

discrete, 164
for derivative, 577

theorem, 159
transformation, 159

discrete (DFT), 163, 168
fast (FFT), 169

uncertainty, 160
Fourier–Galerkin derivative, 577
Fourier–Galerkin method, 586, 587, 592, 602,

607–609
Fractional part of a real number, 1
Frobenius norm, 625
FTBS, 486

2-dim, 527
FTCS, 471, 476, 683

2-dim, 520, 527
FTCS, O(�x4), 484
FTFS, 486

2-dim, 527
Fujiwara’s estimate, 75

708 Index

G
Galactic dynamics, 397
Galerkin condition, 576, 586–588, 590, 592,

602, 609, 610, 612
Galerkin methods, 586–594
Gauss

distribution, 46, 209
integral, 46

elimination, 113
quadrature, 657

Gauss–Kronrod quadrature, 658, 659
2-dim, 659

Gauss–Seidel method, 119, 534
Gelfand–Bratu equation, 455
Generalized

eigenvalue problem, 133
inverse of a matrix, 126
linear regression, 236

Generator
of dynamics, 675
of random numbers, 279, 637–649

linear, 646–648
non-linear, 648

Geometric integration, 368
Geometric multiplicity, 127
Gershgorin’s theorem, 480
Ghost point, 472
Gibbs phenomenon, 579
Girko’s law, 136
Givens transformation, 122
Global error of difference scheme, 341
GNUPLOT, 695
Gram–Schmidt orthogonalization, 120
Greatest common divisor, 80
Gröbner basis, 89–94, 106
Growth factor, 348
GSL (GNU scientific library), 689

H
Haar

function, 196
measure, 143

Hager’s estimator, 118
Hamiltonian system, 368, 675, 676
Hampel identifier, 213
Harmonic oscillator, 148, 369
Hearing the shape of the drum, 454
Heisenberg’s model, 96
Helmholtz equation, 586–591, 594, 598, 607
Hermite functions, 606
Hermitian eigenproblem, 131
Heron’s formula, 5
Hessian matrix, 105
High-resolution schemes, 500–505, 537–540

Hilbert transformation, 184, 190
discrete, 192

Hilbert–Schmidt norm, 625
Hofstadter’s butterfly, 133
Horner’s algorithm, 74
Horner’s method

linear, 83
quadratic, 84

Householder transformation, 122, 131

I
IEEE 754 standard, 2, 4, 629–633
Impact parameter, 392
Initial-value problems, 375
Initialization scheme, 490
Instantaneous

angular frequency, 187
complex frequency, 187
complex phase, 187
radial frequency, 187
signal power, 187

Integer numbers, 633, 634
Integral of motion, 358
Integral test, 32
Integrator, 337

geometric, 368
Lie-series, 375–379
reversibility, 373
symmetry, 373

Inter-quartile range (IQR), 212
Interaction of electric dipoles, 16, 24
Interest rates, 6
Interpolation polynomial, 174
Invariants, 368–372
Inverse problems, 454
Ising model, 328
Isospectral problems, 454
Iteration

QL, 131
QR, 128, 131

Iteration matrix, 533

J
Jacobi

matrix, 68, 85, 336, 362, 406, 409, 421, 668
method, 130

iterative, 534
polynomials, 606

Java, 696
Jenkins–Traub method, 82
Jordan canonical form, 135
Jordan decomposition, 135

Index 709

K
k-means, 253–255
Kahan’s algorithm, 34
Kepler’s problem, 57, 395
Korteweg–de Vries equation, 512, 513
Kramers–Kronig relations, 187
Kummer’s acceleration, 38
Kummer’s test, 32
Kuramoto model, 383

L
Lagging the non-linear term, 493
Lagrange

interpolation polynomial, 177, 180
trigonometric polynomial, 164

Laguerre functions, 607
Laguerre’s method, 87
Lambert’s function, 57, 95
LAPACK, 687
Laplace

approximation, 21
equation (2-dim), 570
method, 21
transformation, 181

inverse, 183
Laplace–Runge–Lenz vector, 396
Laurent expansion, 17
Lax theorem, 476
Lax–Friedrichs scheme, 489

non-linear, 501
Lax–Wendroff scheme, 488

2-dim, 528
implicit, 489
non-linear, 501

LCG, 646
LDA, 259–261
Leakage, 167
Leapfrog, 484
Least median of squares (LMS), 238
Least significant bit (LSB), 630
Least-squares method, 228
Least-squares problem, 9
Legendre

collocation derivative, 580
polynomial, 174

Legendre–Galerkin derivative, 580
Legendre–Galerkin method, 587–589, 594,

608, 610
Lehmer sequence, 646
Leibniz’s test, 33
Level repulsion, 142
Levin’s transformations, 42
Lévy flights, 289
Lexicographic order, 90

Libraries
ACML, 688
ATLAS, 688
BLAS, 687
BOOST, 689
FFTW, 688
for Sturm–Liouville problems, 689
GMP, 4, 377
GSL (GNU Scientific Library), 689
LAPACK, 687
LINPACK, 688
MKL, 688
NAG, 689
NUMERICAL RECIPES, 689
SCALAPACK, 688

Lie-series integrator, 375–379
Limit comparison test, 33
Line search, 71
Linear congruence generator, 646
Linear correlation, 225, 263
Linear discriminant analysis, 259–261
Linear prediction, 314
Linear regression, 228–239

errors in both coordinates, 232
LINPACK, 688
Linz’s algorithm, 35
Liouville

equation, 676
normal form, 442
transformation, 442

Lipschitz
constant, 337, 342, 672
inequality, 337, 652, 672

one-sided, 673
Little-endian ordering, 633
Load vector, 552–557
Local error of difference scheme, 341
Log-normal diffusion, 289
Logistic map, 325
Lorentz force, 390
Lorenz system, 377, 388

Lie-series solution, 377
Loss of significance, 4
LSB, 630
Lyapunov exponent, 325, 378

M
M-estimates

of location, 213–215
of scale, 216

Machine precision (εM), 2–4
MAD, MADN, 211
Maehly–Newton–Raphson’s method, 88
Magnitude of complex number, 5

710 Index

Manhattan street distance, 251
Mantissa, 1, 629
Marčenko–Pastur theorem, 137
Markov

chain, 292–299
matrix, 292

Mass matrix, 552–557
MATHEMATICA, 695
Mathieu equation, 447
MATLAB, 694
Matrix

affinity, 258
amplification, 497
banded, 115
covariance, 236, 246, 263
defective, 127
diagonalizable, 127
Hessian, 105
iteration, 533
Jacobi, 68, 85, 336, 362, 406, 409, 421, 668
Markov, 292
mass, 552–557
multiplication, 109
non-defective, 127
non-diagonalizable, 127
normal, 128
proximity, 251
random, 136
sparse, 118, 136
stiffness, 552–557
stochastic, 292
symmetric, 130
taking “square root” of, 628
Toeplitz, 115, 311
Vandermonde, 116

Maximum entropy principle, 318
Maxwell’s distribution, 207
Measles, 456
Median, 211

absolute deviation (MAD), 211
of sample, 211
of squares of residuals (LMS), 238

Meromorphic function, 17
Mersenne twister, 648
Mesh-free methods, 557
Method

Adams, 351, 352
stability, 355

Adams–Bashforth–Moulton, 354
backward differentiation, 356

stability, 357
Bairstow’s, 84
Bernoulli’s, 82
boundary element, 545–549, 570

Broyden’s, 69
Chebyshev–Galerkin, 589, 594, 608
Cholesky, 114
chord, 64
collocation, 576, 597–601
conjugate gradients, 537
CORVAR, 313
Cowell’s, 359
divide and conquer, 131
Dormand–Prince, 345

stability, 348
embedded, 344
Euler’s explicit, 369, 670

non-symplecticity, 372–375
stability, 348

Euler’s implicit, 360
non-symplecticity, 372

explicit, 337
stability, 348

explicit Euler’s, 337
extrapolation, 349–351
Fehlberg (Cash–Karp), 345
finite element, 549–557, 569
Fourier–Galerkin, 586, 587, 592, 602,

607–609
Galerkin, 440, 441, 576, 586
Gauss–Seidel, 119, 534
Horner’s

linear, 83
quadratic, 84

implicit, 337, 359
Euler’s, 360
midpoint, 360
multi-step, 367
trapezoidal, 360

improved Euler’s, 338
inverse, 641
Jacobi, 130

iterative, 534
Jenkins–Traub, 82
k-means, 253–255
Laguerre’s, 87
Laplace, 21
least-squares, 228

auto-correlation, 312
covariance, 313
iteratively reweighted (IRWLS), 238

Legendre–Galerkin, 587–589, 594, 608,
610

Maehly–Newton–Raphson’s, 88
maximum entropy, 318
mesh-free, 557
midpoint, 360
Müller’s, 65

Index 711

Method (cont.)
multi-grid, 557
multi-step, 337, 351
Newton–Raphson’s, 60

for vector equations, 67
Newton’s double-step, 88
Numerov–Cowell, 444
Numerov’s, 359
of bisection, 59
of characteristics, 485
of false position, 64
of steepest descent, 27
one-point, 64
Petrov–Galerkin, 440
predictor–corrector, 351, 353
Pruess, 449–452
pseudospectral, 597–601
ratio of uniform deviates, 645
regula falsi, 64
rejection, 643
relaxation, 532–537
reversible, 373
Rosenbrock, 363
Runge–Kutta, 339–349, 359–364

explicit, 339
implicit, 339, 360
order 4 (RK4), 339, 369
order 4 (RK4), stability, 348
partitioned, 371

Runge–Kutta–Nyström, 358
saddle-point, 27
secant, 64

for vector equations, 69
shooting, 413–424, 446–449
single-step, 337, 359
SOR/SSOR, 119, 534–537
spectral, 577

time integration, 605, 606
Störmer–Verlet, 371–373
Störmer’s, 359
Sturm’s, 77
symmetric, 373
symmetrized Euler’s, 338
tangent, 61
tau, 576, 594–597, 603, 613
trapezoidal, 360
Walker, 639
weighted residuals, 439–441, 575–577
with memory, 65
WKB, 29

Mexican hat, 150
Mimetic discretizations, 557
Minimal polynomials, 128

Minimax approximation, 6
Mixing, 279
MKL, 688
Modified Hamiltonians, 374, 375
Monomial, 90
Moody diagram, 101
Moore–Penrose inverse, 126
Morlet wavelet, 197
Morris–Lecar model, 384, 385
Most significant bit (MSB), 630
MSB, 630
Müller’s method, 65
Multi-grid methods, 557
Multiple (parallel) shooting, 421–424
Multiple regression, 240–244
Multiplication

of matrices, 109
of polynomials by FFT, 170

Multiplicity of a root, 58

N
NAG, 689
Natural logarithm, 6
Neumann criterion, 477

discrete, 480, 522
Newton–Raphson’s method, 60, 653

for vector equations, 67
Newton’s

double-step method, 88
law, 336, 357, 368, 389, 395
sum, 79

Nodes, 173, 432, 597
Noise, 299–304

Brownian, 301
flicker, 301
generation, 302
pink, 301
red, 301
white, 300

Non-autonomous system, 335, 364, 669
Non-defective matrix, 127
Non-diagonalizable matrix, 127
Non-linear extrapolation, 37
Non-linear regression, 239
Non-parametric correlation, 226
Norm

Frobenius, 625
Hilbert–Schmidt, 625
in spaces Lp(�) and L

p
w(�), 622

induced, 622
l2 (Euclidean), 624
l2,�x (“energy”), 624
matrix, 625
max, 623, 625

712 Index

Norm (cont.)
operator, 625
vector, 623

Normal diffusion, 289
Normal distribution, 209
Normal matrix, 128
Normal numbers, 2, 629
Normal system, 119
Northern lights, 396
Nuclear reactions in the Sun, 392–394
Numerical domain of dependence, 487
Numerical flux function, 501
Numerical integration, 655–665

by Gauss quadrature, 657–659
of rapidly oscillating functions, 660–663
of singular functions, 664

NUMERICAL RECIPES, 689
Numerov–Cowell method, 444
Nyquist frequency, 161

O
OCTAVE, 694
Offset grid, 475
One-point method, 64
Optical mouse, 305
Optimal polynomial approximation, 6
Order

lexicographic, 90
of a root, 58
of convergence, 58
total, 90

Oregonator, 394
ORIGIN, 695
Orthogonal polynomials, 172
Orthogonalization of a matrix, 119–126
Oscillations of inhomogeneous string, 460
Outliers, 210, 212
Over-determined system, 119

P
Padé approximation, 9–15

diagonal, 10, 14
duality, 11
existence, 11
of ez , 11, 14
of matrix function eX , 682
unitarity, 12

Padé–Borel resummation, 45
Parseval’s equality, 160, 172
Partial differential equations

elliptic, 468, 530–537
hyperbolic, 467, 485–491, 527–530,

684–686
mixed type, 468, 491–494

non-linear, 491–494, 601–604
parabolic, 468–485, 519–527, 681–684

Partial pivoting, 114
Partial sum, 31
PAW, 695
PCA, 244–249
Peaceman–Rachford scheme, 523–526
Penning trap, 391
Percentage of explained variance, 247
Percolation, 144
Periodic orbit, 325
Phase space, 372

volume, 372, 676
Pink noise, 301
Pivot growth factor, 114
Pivoting, 114
Planck’s law, 94
Poiseuille law, 611
Poisson

bracket, 676, 678
equation

2-dim (Cartesian coord), 530–537, 565,
613

2-dim (polar coord), 544, 545, 568
sum, 159
summation, 44

Polynomial
Cauchy, 75
Chebyshev, 42, 178, 606

orthogonality by points, 178
rational, 607

conditioning of zeros, 81
greatest common divisor, 80
interpolation, 174, 180
Jacobi, 606
Lagrange

interpolation, 177, 180
trigonometric, 164

Legendre, 174
optimal, 7
orthogonal, 172
real, 73
Wilkinson’s, 81

Polynomial ideal, 91
Polynomial ring, 90
Polynomial term, 90
Power expansion, 16
Power spectral density, 171, 300

double-sided (PSD), 171
single-sided, 171

Power tails, 286
Predictor, 353

Nyström, 354
Predictor–corrector, 351

Index 713

Preservation
of invariants, 368–372
of symplectic structure, 372, 373

Primitive variables, 497
Principal component analysis, 244–249

score, 246
Principal value, 184, 664
Probability density function, 207
Problem

Ax = b, 111–119
eigenvalue, 127–136

for sparse matrices, 136
generalized, 133
inhomogeneous, 134

NUXI, 634
of least squares, 9, 119–126

minimal solution, 126
three-body, 386

Proximity matrix, 251
Pruess method, 449–452
Prüfer transformation, 447, 448
PSD, 171, 300
Pseudoinverse, 126, 243
Pseudorandom numbers, 279, 637–649
Pseudospectral method, 597–601

Q
QR decomposition, 120
Quadrature, 173, 657–659

Gauss, 173
Gauss–Kronrod, 657–659
Gauss–Lobatto, 173
Gauss–Radau, 173
weights, 173, 657–659

Quarter-circular law, 138
Quasi-linearization, 437
Quotient of convergence, 58
Quotient test, 32

R
ρ-reversibility, 373
Raabe’s test, 32
Radial basis functions, 558
Random lattice, 144
Random matrices, 136–144
Random numbers, 279, 637–649
Random processes, 277–304

stationarity, 281
without memory, 293

Random signal, 277
Random variables, 278
Random walks, 287–292

continuous-time, 290
discrete-time, 287

Ratio of complex numbers, 5
Rational approximation, 9–15
Recursive summation of series, 33
Red noise, 301
Region of absolute stability, 347
Regression

linear, 228–239
errors in both coordinates, 232
generalized, 236

multiple, 240–244
principal component, 243
pseudo-inverse, 243

non-linear, 239
robust, 237
with orthogonal polynomials, 229

Regularization, 126
Relative backward error, 113

component, 118
Relatively robust representation, 131
Relaxation methods, 532–537
Remes algorithm, 6
Repulsion of eigenvalues, 142, 153
Residual sum of squares, 241
Residual variance, 241
Reversibility, 373
Richardson extrapolation, 36
Risk level, 217
Robust statistics, 210–216
ROOT, 695
Roots of quadratic equation, 5
Rosenbrock linearization, 363
Round-off error, 3, 34, 36
Rousseeuw identifier, 213
Routh–Hurwitz criterion, 669
Ruffini’s algorithm, 74
Runge phenomenon, 180
Runge–Kutta–Nyström method, 358

S
Sample

correlation, 306
covariance, 230
mean, 208
median, 211
path, 280
standard deviation, 208
variance, 208

SCALAPACK, 688
Scalar boundary-value problems, 402–407,

413–416, 418, 419, 430–438,
441–454

non-linear, 405–407
Scalar flux, 426

714 Index

Schrödinger equation, 29, 98, 148, 152, 442,
452, 462, 513, 515, 606

Secant method, 64
for vector equations, 69

Seed, 646
Semi-circular law, 140, 153
Semi-classical approach, 29
Semi-linear extrapolation, 37
Sequence

Bulirsch, 350
harmonic, 350
Lehmer, 646
Romberg, 350

Serial uniformity of sequence, 638
Shock wave in a tube, 511
Shooting methods, 413–424, 446–449
Sign bit, 633
Signal power, 171
Significant, 1
Simpson’s formula, 655, 656
Sine pendulum, 389
Single linkage, 253
Singular value decomposition (SVD), 122
Singular values, 123, 627
Singular vectors, 123
Smoothing parameter, 503
SOR/SSOR, 119, 533–537
Space mixing, 326
Sparse matrix, 118, 136
Spectral

approximation, 575
convergence, 579
derivative, 577

Chebyshev, 581–586
Chebyshev, computation by FFT,

583–586
Fourier–Galerkin, 577
Legendre–Galerkin, 580

elements, 600
method, 577

infinite domains, 606
semi-infinite domains, 606

representation of derivatives
Chebyshev, 581–586
Fourier, 577–580
Legendre, 580, 581

Spectrum of a matrix, 127
unfolding, 140

Stability
absolute (asymptotic), 347–349
function, 348
linear, 667
Lyapunov, 667–669, 672
non-linear, 671

of difference scheme, 404, 476–480
of multi-step methods, 354
of one-step methods, 347–349
semi-linear system, 672

Stable distributions, 284–286
Standard

deviation of sample, 208
IEEE 754, 629–633
map, 326

Standardization of data, 248, 251
Stationary distribution, 294
Stationary phase, 24
Stationary random process, 281
Statistic

χ2, 220, 223, 224
χ2, reduced, 224
F , 221
sd, td, 219
t , 217, 219

Statistical average, 278
Statistical tests, 217–225
Stencil of mesh points, 520
Step size control, 343, 346
Stieltjes transformation, 137
Stiff problems, 365, 366
Stiffness matrix, 552–557
Stirling approximation, 53
Stochastic matrix, 292
Stochastic variable, 278
Störmer–Verlet method, 371–373
Störmer’s method, 359
Strassen algorithm, 110
Student’s distribution, 217
Sturm–Liouville problem, 174, 178, 441, 453

eigenfunctions, 442
eigenvalues, 442
program packages, 689
singular, 452

Sturm’s
comparison theorem, 442
method, 77
sequence of polynomials, 78

Subnormal numbers, 2, 631
Super-diffusion, 289
SVD expansion, 124
SVD (singular value decomposition), 122
Symbol of difference scheme, 477
Symmetric matrices, 130
Symplectic integration, 675–680
Symplectic structure, 372, 373, 676
Synchronization of coupled oscillators, 383
Synthetic division, 73
Systems of boundary-value problems,

408–413, 416, 417, 419–421, 438

Index 715

T
Tangent method, 61
Taylor expansion, 17, 336, 339, 376
Test

Cauchy square-root, 32
χ2, 220, 223
comparison, 32
F , 222
integral, 32
Kolmogorov–Smirnov, 225
Kummer’s, 32
Leibniz’s, 33
limit comparison, 33
of convergence, 32, 33
quotient, 32
Raabe’s, 32
statistical, 217–225
t , 217

Test function, 439, 576
Theorem

Bayes, 259
Berry–Esséen, 284
equi-oscillation, 6
Fourier, 159
Gershgorin’s, 480
implicit-function, 60
interlacing of zeros, 442
Lax, 476
Marčenko–Pastur, 137
mean-value, 17
on maxima, 482–484
sampling, 161
Sturm’s comparison, 442

Thomas equation, 391
Three-body problem, 386
Time correlation, 304–310
Time series, 277
Titchmarsh theorem, 184
Toeplitz matrix, 115, 311
Total order, 90
Total sum of squares, 241
Transformation

Box–Muller, 642
Euler’s, 39
Fourier, 159

discrete (DFT), 163, 168
fast (FFT), 169

Hilbert, 184, 190
discrete, 192

Laplace, 181
Levin’s, 42
Liouville, 442
polynomial discrete, 173
Prüfer, 447, 448
Stieltjes, 137
wavelet, 195

continuous, 195
discrete, 199

Transition function, 646
Transition point, 30
Transport equation, 425
Trial function, 439, 576
Triangulation, 554
Trigonometric interpolation, 164
Tukey function, 214
Turning point, 30

U
Unfolding of spectrum, 140

V
Van Wijngaarden’s trick, 39
Vandermonde matrix, 116
Variance of sample, 208
Vièto’s formulas, 79
Volume in phase space, 372, 676

W
Walker’s alias method, 639
Wave equation, 490, 491, 508, 509

fourth-order, 508, 509
Wavelet transformation, 195
Weibull probability density, 642
Weight function, 172, 439, 576
Weighted mean, 209, 210
Weighted standard deviation, 209
White noise, 300
Wien’s law, 94
Wigner’s distribution, 142
Wigner’s semi-circular law, 140, 153
Wilkinson’s polynomial, 81
Wynn’s ε-algorithm, 12

Y
Yule–Walker equation, 115, 311

Z
Zalesak–Smolarkiewicz scheme, 538

	Cover
	Computational Methods for Physicists
	Preface
	Contents

	Chapter 1: Basics of Numerical Analysis
	1.1 Introduction
	1.1.1 Finite-Precision Arithmetic
	Branch Statements
	Roots of the Quadratic Equation
	Area of Triangle
	Magnitude of Complex Number, Ratio of Complex Numbers
	Natural Logarithm
	Average of Two Numbers

	1.2 Approximation of Expressions
	1.2.1 Optimal (Minimax) and Almost Optimal Approximations
	1.2.2 Rational (Padé) Approximation
	1.2.3 Summation of Series by Using Padé Approximations (Wynn's epsilon-Algorithm)
	1.2.4 Approximation of the Evolution Operator for a Hamiltonian System

	1.3 Power and Asymptotic Expansion, Asymptotic Analysis
	1.3.1 Power Expansion
	1.3.2 Asymptotic Expansion
	1.3.3 Asymptotic Analysis of Integrals by Integration by Parts
	1.3.4 Asymptotic Analysis of Integrals by the Laplace Method
	1.3.5 Stationary-Phase Approximation
	1.3.6 Differential Equations with Large Parameters
	The First Type of the Solution
	The Second Type of the Solution

	1.4 Summation of Finite and Inﬁnite Series
	1.4.1 Tests of Convergence
	Comparison Test
	Quotient and Cauchy Square-Root Test
	Integral Test
	Kummer's and Raabe's Test
	Limit Comparison Test
	Leibniz's Test for Alternating Series

	1.4.2 Summation of Series in Floating-Point Arithmetic
	Simple Recursive Summation
	Kahan's Algorithm
	Recursive Summation of Pairs

	1.4.3 Acceleration of Convergence
	Richardson Extrapolation
	Aitken's Method
	Kummer's Acceleration

	1.4.4 Alternating Series
	Making a Monotonous Series Alternate
	Euler's Transformation
	Generalizing the Euler's Method

	1.4.5 Levin's Transformations
	1.4.6 Poisson Summation
	1.4.7 Borel Summation
	1.4.8 Abel Summation

	1.5 Problems
	1.5.1 Integral of the Gauss Distribution
	1.5.2 Airy Functions
	1.5.3 Bessel Functions
	1.5.4 Alternating Series
	1.5.5 Coulomb Scattering Amplitude and Borel Resummation

	References

	Chapter 2: Solving Non-linear Equations
	Order of Convergence
	Order of the Root
	Sensitivity of the Roots to Perturbations
	2.1 Scalar Equations
	2.1.1 Bisection
	2.1.2 The Family of Newton's Methods and the Newton-Raphson Method
	2.1.3 The Secant Method and Its Relatives
	Secant Method
	Regula Falsi
	Chord Method

	2.1.4 Müller's Method
	Further Reading

	2.2 Vector Equations
	2.2.1 Newton-Raphson's Method
	2.2.2 Broyden's (Secant) Method

	2.3 Convergence Acceleration
	2.4 Polynomial Equations of a Single Variable
	Division of Polynomials
	Computing the Value of the Polynomial
	2.4.1 Locating the Regions Containing Zeros
	Determining the Interval with Real Zeros
	Determining the Interval Containing at Least One Zero

	2.4.2 Descartes' Rule and the Sturm Method
	2.4.3 Newton's Sums and in Vièto's Formulas
	2.4.4 Eliminating Multiple Zeros of the Polynomial
	2.4.5 Conditioning of the Computation of Zeros
	2.4.6 General Hints for the Computation of Zeros
	2.4.7 Bernoulli's Method
	2.4.8 Horner's Linear Method
	2.4.9 Bairstow's (Horner's Quadratic) Method
	2.4.10 Laguerre's Method
	2.4.11 Maehly-Newton-Raphson's Method

	2.5 Algebraic Equations of Several Variables
	Monomials and Polynomial Terms
	Ordering of Monomials
	Varieties and Ideals
	Reduced Gröbner Basis
	Solving Equations

	2.6 Problems
	2.6.1 Wien's Law and Lambert's Function
	2.6.2 Heisenberg's Model in the Mean-Field Approximation
	2.6.3 Energy Levels of Simple One-Dimensional Quantum Systems
	2.6.4 Propane Combustion in Air
	2.6.5 Fluid Flow Through Systems of Pipes
	2.6.6 Automated Assembly of Structures

	References

	Chapter 3: Matrix Methods
	3.1 Basic Operations
	3.1.1 Matrix Multiplication
	3.1.2 Computing the Determinant

	3.2 Systems of Linear Equations Ax=b
	3.2.1 Analysis of Errors
	3.2.2 Gauss Elimination
	3.2.3 Systems with Banded Matrices
	3.2.4 Toeplitz Systems
	3.2.5 Vandermonde Systems
	3.2.6 Condition Estimates for Matrix Inversion
	Balancing

	3.2.7 Sparse Matrices

	3.3 Linear Least-Square Problem and Orthogonalization
	3.3.1 The QR Decomposition
	3.3.2 Singular Value Decomposition (SVD)
	3.3.3 The Minimal Solution of the Least-Squares Problem

	3.4 Matrix Eigenvalue Problems
	3.4.1 Non-symmetric Problems
	3.4.2 Symmetric Problems
	3.4.3 Generalized Eigenvalue Problems
	3.4.4 Converting a Matrix to Its Jordan Form
	3.4.5 Eigenvalue Problems for Sparse Matrices

	3.5 Random Matrices
	3.5.1 General Random Matrices
	Marcenko-Pastur Theorem

	3.5.2 Gaussian Orthogonal or Unitary Ensemble
	Unfolding of Matrix Spectra

	3.5.3 Cyclic Orthogonal and Unitary Ensemble
	Haar Measure
	Generating Matrices from COE
	Generating Matrices from CUE

	3.6 Problems
	3.6.1 Percolation in a Random-Lattice Model
	3.6.2 Electric Circuits of Linear Elements
	3.6.3 Systems of Oscillators
	3.6.4 Image Compression by Singular Value Decomposition
	3.6.5 Eigenstates of Particles in the Anharmonic Potential
	3.6.6 Anderson Localization
	3.6.7 Spectra of Random Symmetric Matrices

	References

	Chapter 4: Transformations of Functions and Signals
	4.1 Fourier Transformation
	Fourier Theorem
	Parseval's Equality
	Fourier Uncertainty
	Sampling Theorem

	4.2 Fourier Series
	4.2.1 Continuous Fourier Expansion
	Remark on Notation

	4.2.2 Discrete Fourier Expansion
	Another Remark on Notation

	4.2.3 Aliasing
	4.2.4 Leakage
	4.2.5 Fast Discrete Fourier Transformation (FFT)
	4.2.6 Multiplication of Polynomials by Using the FFT
	4.2.7 Power Spectral Density

	4.3 Transformations with Orthogonal Polynomials
	Relation to Quadrature Formulas
	Discrete Transformation
	4.3.1 Legendre Polynomials
	Gauss
	Gauss-Radau
	Gauss-Lobatto

	4.3.2 Chebyshev Polynomials
	Gauss
	Gauss-Radau
	Gauss-Lobatto

	4.4 Laplace Transformation
	4.4.1 Use of Laplace Transformation with Differential Equations

	4.5 Hilbert Transformation
	Relation to the Fourier Transform
	Warning
	4.5.1 Analytic Signal
	4.5.2 Kramers-Kronig Relations
	4.5.3 Numerical Computation of the Continuous Hilbert Transform
	Transforming the Integrand to a Sum of Orthogonal Polynomials
	Quadrature Formulas
	Collocation Method

	4.5.4 Discrete Hilbert Transformation
	Time-Domain Approach
	Fourier-Domain Approach

	4.6 Wavelet Transformation
	4.6.1 Numerical Computation of the Wavelet Transform
	Wavelets Given as Continuous Functions
	Wavelets Given at Discrete Points

	4.6.2 Discrete Wavelet Transform

	4.7 Problems
	4.7.1 Fourier Spectrum of Signals
	4.7.2 Fourier Analysis of the Doppler Effect
	4.7.3 Use of Laplace Transformation and Its Inverse
	4.7.4 Use of the Wavelet Transformation

	References

	Chapter 5: Statistical Analysis and Modeling of Data
	5.1 Basic Data Analysis
	5.1.1 Probability Distributions
	5.1.2 Moments of Distributions
	5.1.3 Uncertainties of Moments of Distributions

	5.2 Robust Statistics
	5.2.1 Hunting for Outliers
	5.2.2 M-Estimates of Location
	5.2.3 M-Estimates of Scale

	5.3 Statistical Tests
	5.3.1 Computing the Conﬁdence Interval for the Sample Mean
	5.3.2 Comparing the Means of Two Samples with Equal Variances
	5.3.3 Comparing the Means of Two Samples with Different Variances
	5.3.4 Determining the Conﬁdence Interval for the Sample Variance
	5.3.5 Comparing Two Sample Variances
	5.3.6 Comparing Histogrammed Data to a Known Distribution
	5.3.7 Comparing Two Sets of Histogrammed Data
	5.3.8 Comparing Non-histogrammed Data to a Continuous Distribution

	5.4 Correlation
	5.4.1 Linear Correlation
	5.4.2 Non-parametric Correlation

	5.5 Linear and Non-linear Regression
	5.5.1 Linear Regression
	5.5.2 Regression with Orthogonal Polynomials
	5.5.3 Linear Regression (Fitting a Straight Line)
	Unknown Errors

	5.5.4 Linear Regression (Fitting a Straight Line) with Errors in Both Coordinates
	5.5.5 Fitting a Constant
	5.5.6 Generalized Linear Regression by Using SVD
	5.5.7 Robust Methods for One-Dimensional Regression
	IRWLS
	LMS

	5.5.8 Non-linear Regression

	5.6 Multiple Linear Regression
	5.6.1 The Basic Method
	5.6.2 Principal-Component Multiple Regression

	5.7 Principal-Component Analysis
	5.7.1 Principal Components by Diagonalizing the Covariance Matrix
	5.7.2 Standardization of Data for PCA
	5.7.3 Principal Components from the SVD of the Data Matrix
	5.7.4 Improvements of PCA: Non-linearity, Robustness

	5.8 Cluster Analysis
	5.8.1 Hierarchical Clustering
	5.8.2 Partitioning Methods: k-Means
	5.8.3 Gaussian Mixture Clustering and the EM Algorithm
	5.8.4 Spectral Methods

	5.9 Linear Discriminant Analysis
	5.9.1 Binary Classiﬁcation
	5.9.2 Logistic Discriminant Analysis
	5.9.3 Assignment to Multiple Classes

	5.10 Canonical Correlation Analysis
	5.11 Factor Analysis
	5.11.1 Determining the Factors and Weights from the Covariance Matrix
	5.11.2 Standardization of Data and Robust Factor Analysis

	5.12 Problems
	5.12.1 Multiple Regression
	5.12.2 Nutritional Value of Food
	5.12.3 Discrimination of Radar Signals from Ionospheric Reﬂections
	5.12.4 Canonical Correlation Analysis of Objects in the CDFS Area

	References

	Chapter 6: Modeling and Analysis of Time Series
	Deterministic Processes
	Random Processes
	6.1 Random Variables
	6.1.1 Basic Deﬁnitions
	6.1.2 Generation of Random Numbers

	6.2 Random Processes
	6.2.1 Basic Deﬁnitions
	Non-stationarity and Stationarity
	Ergodicity

	6.3 Stable Distributions and Random Walks
	6.3.1 Central Limit Theorem
	6.3.2 Stable Distributions
	6.3.3 Generalized Central Limit Theorem
	6.3.4 Discrete-Time Random Walks
	Asymptotics

	6.3.5 Continuous-Time Random Walks
	Normal Diffusion
	Sub-Diffusion
	Super-Diffusion

	6.4 Markov Chains
	6.4.1 Discrete-Time or Classical Markov Chains
	Detailed Balance
	Reducibility
	Periodicity, Reproducibility, Ergodicity
	Stationary Distributions
	Entropy

	6.4.2 Continuous-Time Markov Chains

	6.5 Noise
	6.5.1 Types of Noise
	White Noise
	Pink Noise
	Red (Brownian) Noise

	6.5.2 Generation of Noise
	Online Mode
	Ofﬂine Mode

	6.6 Time Correlation and Auto-Correlation
	Basic Properties and Relation to Convolution
	6.6.1 Sample Correlations of Signals
	Choice of the Weight

	6.6.2 Representation of Time Correlations
	6.6.3 Fast Computation of Discrete Sample Correlations

	6.7 Auto-Regression Analysis of Discrete-Time Signals
	Preparing the Data for AR Analysis
	6.7.1 Auto-Regression (AR) Model
	Determining the Parameters by the Auto-Correlation Method
	Determining the Parameters by the Covariance Method
	Burg's Algorithm
	Optimal Order

	6.7.2 Use of AR Models
	The Resonance Spectrum of the AR Model

	6.7.3 Estimate of the Fourier Spectrum

	6.8 Independent Component Analysis
	6.8.1 Estimate of the Separation Matrix and the FastICA Algorithm
	6.8.2 The FastICA Algorithm
	6.8.3 Stabilization of the FastICA Algorithm

	6.9 Problems
	6.9.1 Logistic Map
	6.9.2 Diffusion and Chaos in the Standard Map
	6.9.3 Phase Transitions in the Two-Dimensional Ising Model
	6.9.4 Independent Component Analysis

	References

	Chapter 7: Initial-Value Problems for ODE
	7.1 Evolution Equations
	Converting a Mth Order Equation to M First-Order Equations
	Road-Signs

	7.2 Explicit Euler's Methods
	Local Discretization Error and the Method Order

	7.3 Explicit Methods of the Runge-Kutta Type
	Dense Output for the RK4 Method

	7.4 Errors of Explicit Methods
	7.4.1 Discretization and Round-Off Errors
	7.4.2 Consistency, Convergence, Stability
	7.4.3 Richardson Extrapolation
	7.4.4 Embedded Methods
	Dense Output for the Dormand-Prince 5(4) Method

	7.4.5 Automatic Step-Size Control

	7.5 Stability of One-Step Methods
	Stability of the Differential Equation
	Stability of the Numerical Method for a Differential Equation

	7.6 Extrapolation Methods
	7.7 Multi-Step Methods
	7.7.1 Predictor-Corrector Methods
	Local Error Estimate

	7.7.2 Stability of Multi-Step Methods
	7.7.3 Backward Differentiation Methods

	7.8 Conservative Second-Order Equations
	7.8.1 Runge-Kutta-Nyström Methods
	7.8.2 Multi-Step Methods

	7.9 Implicit Single-Step Methods
	Radau 5 and Gauss 6 Methods
	7.9.1 Solution by Newton's Iteration
	7.9.2 Rosenbrock Linearization
	Non-autonomous Equations
	Implicit Differential Equations

	7.10 Stiff Problems
	7.11 Implicit Multi-Step Methods
	7.12 Geometric Integration
	7.12.1 Preservation of Invariants
	Partitioned RK Methods

	7.12.2 Preservation of the Symplectic Structure
	7.12.3 Reversibility and Symmetry
	7.12.4 Modiﬁed Hamiltonians and Equations of Motion

	7.13 Lie-Series Integration
	7.13.1 Taylor Expansion of the Trajectory

	7.14 Problems
	7.14.1 Time Dependence of Filament Temperature
	7.14.2 Oblique Projectile Motion with Drag Force and Wind
	7.14.3 Inﬂuence of Fossil Fuels on Atmospheric CO2 Content
	7.14.4 Synchronization of Globally Coupled Oscillators
	7.14.5 Excitation of Muscle Fibers
	7.14.6 Restricted Three-Body Problem (Arenstorf Orbits)
	7.14.7 Lorenz System
	7.14.8 Sine Pendulum
	7.14.9 Charged Particles in Electric and Magnetic Fields
	7.14.10 Chaotic Scattering
	7.14.11 Hydrogen Burning in the pp I Chain
	7.14.12 Oregonator
	7.14.13 Kepler's Problem
	7.14.14 Northern Lights
	7.14.15 Galactic Dynamics

	References

	Chapter 8: Boundary-Value Problems for ODE
	8.1 Difference Methods for Scalar Boundary-Value Problems
	8.1.1 Consistency, Stability, and Convergence
	Increasing the Order by Extrapolation

	8.1.2 Non-linear Scalar Boundary-Value Problems

	8.2 Difference Methods for Systems of Boundary-Value Problems
	8.2.1 Linear Systems
	8.2.2 Schemes of Higher Orders

	8.3 Shooting Methods
	8.3.1 Second-Order Linear Equations
	8.3.2 Systems of Linear Second-Order Equations
	8.3.3 Non-linear Second-Order Equations
	Solving by Newton's Method

	8.3.4 Systems of Non-linear Equations
	Solution by Simple Iteration
	Solving by Newton's Method

	8.3.5 Multiple (Parallel) Shooting
	Advantage of Multiple Shooting

	8.4 Asymptotic Discretization Schemes
	8.4.1 Discretization
	"Upwind" Discretization
	"Diamond" Discretization

	8.5 Collocation Methods
	8.5.1 Scalar Linear Second-Order Boundary-Value Problems
	8.5.2 Scalar Linear Boundary-Value Problems of Higher Orders
	8.5.3 Scalar Non-linear Boundary-Value Problems of Higher Orders
	8.5.4 Systems of Boundary-Value Problems

	8.6 Weighted-Residual Methods
	Galerkin Method

	8.7 Boundary-Value Problems with Eigenvalues
	Transformation to the Liouville Normal Form
	Two Useful Theorems
	8.7.1 Difference Methods
	Increasing the Order of Error

	8.7.2 Shooting Methods with Prüfer Transformation
	8.7.3 Pruess Method
	8.7.4 Singular Sturm-Liouville Problems
	8.7.5 Eigenvalue-Dependent Boundary Conditions

	8.8 Isospectral Problems
	8.9 Problems
	8.9.1 Gelfand-Bratu Equation
	8.9.2 Measles Epidemic
	8.9.3 Diffusion-Reaction Kinetics in a Catalytic Pellet
	8.9.4 Deﬂection of a Beam with Inhomogeneous Elastic Modulus
	8.9.5 A Boundary-Layer Problem
	8.9.6 Small Oscillations of an Inhomogeneous String
	8.9.7 One-Dimensional Schrödinger Equation
	8.9.8 A Fourth-Order Eigenvalue Problem

	References

	Chapter 9: Difference Methods for One-Dimensional PDE
	Hyperbolic Equations
	Parabolic Equations
	Elliptic Equations
	9.1 Discretization of the Differential Equation
	9.2 Discretization of Initial and Boundary Conditions
	9.3 Consistency
	9.4 Implicit Schemes
	9.5 Stability and Convergence
	9.5.1 Initial-Value Problems
	9.5.2 Initial-Boundary-Value Problems

	9.6 Energy Estimates and Theorems on Maxima
	9.6.1 Energy Estimates
	Difference Schemes

	9.6.2 Theorems on Maxima
	Difference Schemes
	Non-linear PDE

	9.7 Higher-Order Schemes
	9.8 Hyperbolic Equations
	Characteristics
	Properties of Solutions
	9.8.1 Explicit Schemes
	Courant-Friedrichs-Lewy Criterion
	Increasing the Order

	9.8.2 Implicit Schemes
	9.8.3 Wave Equation

	9.9 Non-linear Equations and Equations of Mixed Type
	Non-linear Diffusion Equation
	Burgers Equation

	9.10 Dispersion and Dissipation
	9.11 Systems of Hyperbolic and Parabolic PDE
	Hyperbolic Systems
	Parabolic Systems
	Mixed-Type Systems

	9.12 Conservation Laws and High-Resolution Schemes
	9.12.1 High-Resolution Schemes
	High-Resolution Flux-Limiter Schemes

	9.12.2 Linear Problem vt + cvx = 0
	9.12.3 Non-linear Conservation Laws of the Form vt + [F(v)]x = 0

	9.13 Problems
	9.13.1 Diffusion Equation
	9.13.2 Initial-Boundary Value Problem for vt+cvx=0
	9.13.3 Dirichlet Problem for a System of Non-linear Hyperbolic PDE
	9.13.4 Second-Order and Fourth-Order Wave Equations
	9.13.5 Burgers Equation
	9.13.6 The Shock-Tube Problem
	9.13.7 Korteweg-de Vries Equation
	9.13.8 Non-stationary Schrödinger Equation
	9.13.9 Non-stationary Cubic Schrödinger Equation

	References

	Chapter 10: Difference Methods for PDE in Several Dimensions
	10.1 Parabolic and Hyperbolic PDE
	10.1.1 Parabolic Equations
	10.1.2 Explicit Scheme
	10.1.3 Crank-Nicolson Scheme
	10.1.4 Alternating Direction Implicit Schemes
	Peaceman-Rachford Scheme
	D'yakonov Form

	10.1.5 Three Space Dimensions
	10.1.6 Hyperbolic Equations
	10.1.7 Explicit Schemes
	10.1.8 Schemes for Equations in the Form of Conservation Laws
	10.1.9 Implicit and ADI Schemes

	10.2 Elliptic PDE
	10.2.1 Dirichlet Boundary Conditions
	10.2.2 Neumann Boundary Conditions
	10.2.3 Mixed Boundary Conditions
	10.2.4 Relaxation Methods
	Jacobi Method
	Gauss-Seidel Method
	SOR and SSOR Methods
	Choosing the Parameter omega in the SOR Method

	10.2.5 Conjugate Gradient Methods

	10.3 High-Resolution Schemes
	Two Basic Schemes
	Zalesak-Smolarkiewicz Scheme

	10.4 Physically Motivated Discretizations
	10.4.1 Two-Dimensional Diffusion Equation in Polar Coordinates
	10.4.2 Two-Dimensional Poisson Equation in Polar Coordinates

	10.5 Boundary Element Method
	10.6 Finite-Element Method
	10.6.1 One Space Dimension
	Stiffness Matrix, Mass Matrix, and Load Vector
	Assembly

	10.6.2 Two Space Dimensions
	Assembly

	10.7 Mimetic Discretizations
	10.8 Multi-Grid and Mesh-Free Methods
	10.8.1 A Mesh-Free Method Based on Radial Basis Functions

	10.9 Problems
	10.9.1 Two-Dimensional Diffusion Equation
	10.9.2 Non-linear Diffusion Equation
	10.9.3 Two-Dimensional Poisson Equation
	10.9.4 High-Resolution Schemes for the Advection Equation
	10.9.5 Two-Dimensional Diffusion Equation in Polar Coordinates
	10.9.6 Two-Dimensional Poisson Equation in Polar Coordinates
	10.9.7 Finite-Element Method
	10.9.8 Boundary Element Method for the Two-Dimensional Laplace Equation

	References

	Chapter 11: Spectral Methods for PDE
	Linear Stationary Problems
	Linear Evolution Problems
	Comparison of Difference and Spectral Methods
	11.1 Spectral Representation of Spatial Derivatives
	11.1.1 Fourier Spectral Derivatives
	11.1.2 Legendre Spectral Derivatives
	11.1.3 Chebyshev Spectral Derivatives
	11.1.4 Computing the Chebyshev Spectral Derivative by Fourier Transformation

	11.2 Galerkin Methods
	11.2.1 Fourier-Galerkin
	11.2.2 Legendre-Galerkin
	11.2.3 Chebyshev-Galerkin
	11.2.4 Two Space Dimensions
	11.2.5 Non-stationary Problems

	11.3 Tau Methods
	11.3.1 Stationary Problems
	11.3.2 Non-stationary Problems

	11.4 Collocation Methods
	11.4.1 Stationary Problems
	11.4.2 Non-stationary Problems
	11.4.3 Spectral Elements: Collocation with B-Splines

	11.5 Non-linear Equations
	Burgers Equation
	Fourier-Galerkin Method
	Chebyshev Tau Method
	Fourier Collocation
	Chebyshev Collocation

	11.6 Time Integration
	11.7 Semi-Inﬁnite and Inﬁnite Deﬁnition Domains
	11.8 Complex Geometries
	11.9 Problems
	11.9.1 Galerkin Methods for the Helmholtz Equation
	11.9.2 Galerkin Methods for the Advection Equation
	11.9.3 Galerkin Method for the Diffusion Equation
	11.9.4 Galerkin Method for the Poisson Equation: Poiseuille Law
	11.9.5 Legendre Tau Method for the Poisson Equation
	11.9.6 Collocation Methods for the Diffusion Equation I
	11.9.7 Collocation Methods for the Diffusion Equation II
	11.9.8 Burgers Equation

	References

	Appendix A: Mathematical Tools
	A.1 Asymptotic Notation
	Symbol O(·)
	Symbol O(·)
	Symbol Theta(·)
	Symbol (··)

	A.2 The Norms in Spaces Lp(Omega) and Lwp(Omega), 1<=p<=infty
	A.3 Discrete Vector Norms
	A.4 Matrix and Operator Norms
	A.5 Eigenvalues of Tridiagonal Matrices
	A.6 Singular Values of X and Eigenvalues of XTX and XXT
	A.7 The "Square Root" of a Matrix
	References

	Appendix B: Standard Numerical Data Types
	B.1 Real Numbers in Floating-Point Arithmetic
	Single Precision (C/C++ ﬂoat)
	Double Precision (C/C++ double)
	Quadruple Precision (C/C++ long double)
	Exceptions in Floating-Point Arithmetic
	Normal and Subnormal Numbers and Their Limits
	B.1.1 Combining Types with Different Precisions

	B.2 Integer Numbers
	B.3 (Almost) Arbitrary Precision
	References

	Appendix C: Generation of Pseudorandom Numbers
	C.1 Uniform Generators: From Integers to Reals
	C.2 Transformations Between Distributions
	C.2.1 Discrete Distribution
	C.2.2 Continuous Distribution
	The Inverse Method
	Rejection Method
	Method of the Ratio of Uniform Deviates

	C.3 Random Number Generators and Tests of Their Reliability
	C.3.1 Linear Generators
	C.3.2 Non-linear Generators
	C.3.3 Using and Testing Generators

	References

	Appendix D: Convergence Theorems for Iterative Methods
	D.1 General Theorems
	D.2 Theorems for the Newton-Raphson Method
	References

	Appendix E: Numerical Integration
	E.1 Gauss Quadrature
	E.1.1 Gauss-Kronrod Quadrature
	E.1.2 Quadrature in Two Dimensions

	E.2 Integration of Rapidly Oscillating Functions
	E.2.1 Asymptotic Method
	E.2.2 Filon's Method

	E.3 Integration of Singular Functions
	References

	Appendix F: Fixed Points and Stability
	F.1 Linear Stability
	F.2 Spurious Fixed Points
	F.3 Non-linear Stability
	Linear Problems
	Semi-linear Problems
	Non-linear Problems

	References

	Appendix G: Construction of Symplectic Integrators
	Hamiltonian Systems
	Symplectic Integrators
	A Second-Order Integrator
	A Fourth-Order Integrator
	A Sixth-Order Integrator
	References

	Appendix H: Transforming PDE to Systems of ODE: Two Warnings
	H.1 Diffusion Equation
	H.2 Advection Equation
	References

	Appendix I: Numerical Libraries, Auxiliary Tools, and Languages
	I.1 Important Numerical Libraries
	Linear Algebra Packages
	Libraries for Speciﬁc Processor Architectures
	Special Packages for Fourier Transformation
	Packages for Boundary-Value Problems
	Large General Libraries

	I.2 Basics of Program Compilation
	I.3 Using Libraries in C/C++ and Fortran
	I.3.1 Solving Systems of Equations Ax=b by Using the GSL Library
	I.3.2 Solving the System Ax=b in C/C++ Language and Fortran Libraries
	I.3.3 Solving the System Ax=b in Fortran95 by Using a Fortran77 Library

	I.4 Auxiliary Tools
	MATLAB and Octave
	Mathematica
	Graphics Tools
	Pedagogical Remark

	I.5 Choosing the Programming Language
	Fortran
	C/C++
	Java

	References

	Appendix J: Measuring Program Execution Times on Linux Systems
	time
	clock()
	gettimeofday()
	rdtsc()
	getrusage()
	gprof
	References

	Index

