
MATRIX-BASED MULTIGRID

Numerical Methods and Algorithms

VOLUME 2

Series Editor:

Claude Brezinski
Université des Sciences et Technologies de Lille, France

MATRIX-BASED MULTIGRID

Theory and Applications

Second Edition

YAIR SHAPIRA
Technion-Israel Institute of Technology

123

Yair Shapira
Technion – Israel Institute of Technology
Department of Computer Science
32000 Haifa, Israel
yairs@cs.technion.ac.il

ISBN: 978-0-387-49764-8 e-ISBN: 978-0-387-49765-5
DOI: 10.1007/978-0-387-49765-5

ISSN: 1571-5698

Library of Congress Control Number: 2007934905

AMS Subject Classifications: 65N55, 65F10

c© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

In memory of Prof. Moshe Israeli, my advisor and mentor

Contents

Preface . xxi

Part I Concepts and Preliminaries

1 The Multilevel-Multiscale Approach . 5
1.1 The Multilevel-Multiscale Concept . 5
1.2 The Integer Number . 6
1.3 Division of Integers . 8
1.4 The Greatest Common Divisor . 9
1.5 Multilevel Refinement . 10
1.6 Example in Computer Science . 10
1.7 Multilevel in Mathematical Logic . 11
1.8 Multilevel in Language . 11
1.9 Multilevel Programming . 12
1.10 Object-Oriented Programming . 12
1.11 Example in Data Structures . 13
1.12 The Sorting Problem . 13
1.13 Parallelism . 13
1.14 Self-Similarity . 14
1.15 The Wavelet Transform . 14
1.16 Mathematical Induction and Recursion . 14
1.17 The Tower Problem . 15
1.18 The Parallel Product Algorithm . 17
1.19 Multilevel in Statistics . 18
1.20 Multilevel in Music . 19
1.21 Exercises . 19

2 Preliminaries . 23
2.1 Preliminary Notation and Definitions . 23
2.2 Application in Pivoting . 31
2.3 Standard Lemmas about Symmetric Matrices 31
2.4 The Fourier Transform . 38
2.5 Exercises . 41

viii Contents

Part II Partial Differential Equations and Their Discretization

3 Finite Differences and Volumes . 49
3.1 Elliptic PDEs . 49
3.2 The Diffusion Equation . 50
3.3 The Finite-Difference Discretization Method . 51
3.4 Error Estimate . 53
3.5 Finite Differences for the Poisson Equation . 54
3.6 Error Estimate for Diffusion Problems . 55
3.7 The Indefinite Helmholtz Equation . 55
3.8 Adequate Discretization of the Helmholtz Equation 57
3.9 Adequate Discretization of Highly Anisotropic Equations 59
3.10 Oblique Anisotropy . 60
3.11 Finite Differences for the Convection-Diffusion Equation 61
3.12 The Finite-Volume Discretization Method . 63
3.13 Exercises . 65

4 Finite Elements . 67
4.1 The Finite-Element Discretization Method . 67
4.2 The Weak Formulation . 67
4.3 The Discrete Weak Formulation . 69
4.4 Bilinear Finite Elements . 71
4.5 Triangulation . 72
4.6 Diagonal Dominance in the Isotropic Case . 74
4.7 Diagonal Dominance in the Anisotropic Case . 76
4.8 Locally Refined Meshes . 77
4.9 The Refinement Step . 78
4.10 Adaptive Mesh Refinement . 80
4.11 Exercises . 82

Part III The Numerical Solution of Large Sparse Linear Systems

5 Iterative Linear System Solvers . 89
5.1 Iterative Sparse Linear System Solvers . 89
5.2 Relaxation Methods . 90
5.3 The Jacobi Relaxation Method . 90
5.4 The Damped Jacobi Relaxation Method . 91
5.5 The Block Jacobi Relaxation Method . 91
5.6 The Gauss–Seidel Relaxation Method . 91
5.7 The Block-Gauss–Seidel Relaxation Method . 92
5.8 Reordering by Colors . 92
5.9 Four-Color Reordering . 95
5.10 Cache-Oriented Reordering . 96
5.11 Symmetric Gauss–Seidel Relaxation . 99
5.12 The Preconditioned Conjugate Gradient Method 100
5.13 Incomplete LU Factorization (ILU) . 102

Contents ix

5.14 Parallelizable ILU Version . 102
5.15 Nonsymmetric and Indefinite Problems . 104
5.16 Numerical Comparison . 105
5.17 The Normal Equations . 106
5.18 Exercises . 106

6 The Multigrid Iteration . 109
6.1 The Two-Grid Method . 109
6.2 Transfer and Coarse-Grid Operators . 112
6.3 The Multigrid Method . 112
6.4 Geometric Multigrid . 114
6.5 Variational Multigrid . 115
6.6 Domain Decomposition and Variational Multigrid 116
6.7 Domain Decomposition and Black-Box Multigrid 118
6.8 Domain Decomposition and Algebraic Multigrid 120
6.9 The Algebraic Multilevel Method . 122
6.10 Algebraic Multigrid . 124
6.11 Semicoarsening . 126
6.12 Exercises . 128

Part IV Multigrid for Structured Grids

7 Automatic Multigrid . 135
7.1 Properties of the AutoMUG Method . 135
7.2 Cyclic Reduction . 136
7.3 The Two-Dimensional Case . 137
7.4 Definition of the AutoMUG Method . 138
7.5 The AutoMUG(q) Version . 141
7.6 Exercises . 143

8 Applications in Image Processing . 145
8.1 The Denoising Problem . 145
8.2 The Denoising Algorithm for Grayscale Images 146
8.3 The Denoising Algorithm for Color Images . 147
8.4 Numerical Examples . 149
8.5 Exercises . 152

9 Black-Box Multigrid . 155
9.1 Definition of Black-Box Multigrid . 155
9.2 Improvements in Diffusion Problems . 156
9.3 Using the Right Hand Side . 159
9.4 Improvement for Problems with Discontinuous Coefficients 160
9.5 Exercise . 164

x Contents

10 The Indefinite Helmholtz Equation . 165
10.1 Multigrid for the Indefinite Helmholtz Equation 165
10.2 Improved Prolongation . 166
10.3 Improved Black-Box Multigrid . 167
10.4 Computational Two-Level Analysis . 168
10.5 Multiple Coarse-Grid Corrections . 171
10.6 The Size of the Coarsest Grid . 174
10.7 Numerical Examples . 175
10.8 Exercises . 178

11 Matrix-Based Semicoarsening . 183
11.1 The Semicoarsening Approach . 183
11.2 Flow of Information in Elliptic PDEs . 184
11.3 Multilevel Line Reordering . 185
11.4 Block-ILU Factorization . 187
11.5 The Domain-Decomposition Direct Solver . 189
11.6 Reordered Block-ILU Factorization. 192
11.7 Matrix-Based Semicoarsening . 193
11.8 A Deblurring Problem . 195
11.9 Exercises . 197

Part V Multigrid for Semistructured Grids

12 Multigrid for Locally Refined Meshes . 203
12.1 Multigrid and Hierarchical-Basis Linear System Solvers 203
12.2 The Two-Level Method . 204
12.3 Matrix-Induced Inner Products and Norms . 210
12.4 Properties of the Two-Level Method . 211
12.5 Isotropic Diffusion Problems . 214
12.6 Instability and Local Anisotropy . 216
12.7 The Multilevel Method . 216
12.8 Upper Bound for the Condition Number . 218
12.9 Exercises . 221

13 Application to Semistructured Grids . 223
13.1 Semistructured Grids . 223
13.2 The V-Cycle . 224
13.3 The AFAC and AFACx Cycles . 224
13.4 The Numerical Examples . 226
13.5 Scaling the Coefficient Matrix . 230
13.6 A Black-Box Multigrid Version . 232
13.7 Exercises . 233

Contents xi

Part VI Multigrid for Unstructured Grids

14 Domain Decomposition . 239
14.1 The Domain-Decomposition Approach . 239
14.2 The Domain-Decomposition Multigrid Method 240
14.3 Upper-Bound for the Condition Number . 244
14.4 High-Order Finite Elements and Spectral Elements 245
14.5 Exercises . 247

15 The Algebraic Multilevel Method . 249
15.1 The Need for Algebraic Multilevel Methods . 249
15.2 The Algebraic Multilevel Method . 250
15.3 The Coarsening Procedure . 251
15.4 The Transfer and Coarse-Level Matrices . 252
15.5 The Relaxation Method . 254
15.6 Properties of the Two-Level Method . 255
15.7 Properties of the Multilevel Method . 256
15.8 Upper-Bound for the Condition Number . 256
15.9 The Approximate Schur Complement Method 258
15.10 Exercises . 258

16 Applications . 261
16.1 Highly Anisotropic Equations . 261
16.2 Two-Step Jacobi Relaxation . 262
16.3 The Maxwell Equations . 263
16.4 The Convection-Diffusion Equation . 264
16.5 ILU Relaxation . 267
16.6 Towards Algebraic Semicoarsening . 268
16.7 A Diffusion Problem in a Complicated Domain 268
16.8 Exercises . 271

17 Semialgebraic Multilevel for Systems of PDEs 273
17.1 Semialgebraic Multilevel Methods . 273
17.2 Standard Differential Operators . 274
17.3 The Linear Elasticity Equations . 275
17.4 The Weak Formulation . 275
17.5 The Finite-Element Discretization . 276
17.6 The Semialgebraic Multilevel Preconditioner . 277
17.7 Preconditioner for the Stokes Equations . 278
17.8 The Reduced Linear Elasticity Equations . 280
17.9 Towards Problems with Constraints . 281
17.10 Towards Semialgebraic Block Lumping . 282
17.11 A Domain-Decomposition Two-Level Method 283
17.12 Exercises . 285

xii Contents

Part VII Appendices

18 Time-Dependent Parabolic PDEs . 293
18.1 Parabolic PDEs . 293
18.2 The Parabolic Diffusion Equation . 293
18.3 The Weak Formulation . 294
18.4 The Semi-Implicit Time Discretization . 294
18.5 The Finite-Element Discretization . 295
18.6 Stability Analysis . 296
18.7 Accuracy of the Numerical Scheme . 299
18.8 The Algebraic Multilevel Preconditioner . 299

19 Nonlinear Equations . 301
19.1 Nonlinear PDEs . 301
19.2 The Residual Equation . 301
19.3 Defect Correction . 302
19.4 Geometric Multigrid . 303
19.5 The Newton Iteration . 304

References . 305

Index . 313

List of Figures

1.1 The so-called F-cycle for division of integers: the present example is
192/8. 9

1.2 The binary tree is also based on the multilevel concept. 13
1.3 The recursive (or inductive) algorithm to solve the tower problem.

The entire task is placed in the upper level. This task is carried out
by two subtasks in the second level. Each of these subtasks is carried
out recursively, as can be seen in the third level, and so on. 16

1.4 The parallel product algorithm from a domain-decomposition point
of view. Each circle or bullet represents an element from the group.
The algebraic “subdomains” consist of the circles, and are separated
by the bullets. 18

3.1 The uniform n × n grid for the finite-difference discretization
method. 52

3.2 Frequencies (k, l) for which sin(πkx) sin(πly) is a nearly singular
eigenfunction of the indefinite Helmholtz equation in the unit square
with Dirichlet boundary conditions. 56

3.3 The uniform n × n grid for the finite-volume discretization method.
It is assumed that Dirichlet boundary conditions are imposed on the
right and upper edges, and Neumann or mixed boundary conditions
are imposed on the left and lower edges. 63

3.4 The finite volume e surrounding the interior gridpoint (i, j) that may
lie on a discontinuity line in the diffusion coefficients D1 or D@. 64

3.5 The half finite volume e at the boundary point (i, 1) that lies on
the boundary segment on which Neumann or mixed boundary
conditions are imposed. 65

4.1 The bilinear finite-element mesh. 71
4.2 The bilinear finite element. 72
4.3 A triangle e in the triangulation T . 73
4.4 The reference triangle r that is mapped onto each triangle e in T by

the affine mapping Me = Se + i, where i is a vertex in e. 73
4.5 Vertices and angles of a triangle. 75
4.6 The diffusion coefficients D1 and D2 for the anisotropic diffusion

problem. 76

xiv List of Figures

4.7 The stretched finite-element mesh for the anisotropic diffusion
equation. 77

4.8 The refined triangulation T resulting from the original triangulation
S using Refinement Step 4.1. 79

4.9 The refined triangulation T resulting from the original triangulation
S using Refinement Step 4.2. (It is assumed that the edge leading
from n1 to n2 is refined before the edge leading from n2 to n3.) 79

4.10 An example of a domain Ω with boundary that is convex on the
right and concave on the left. 81

4.11 The original mesh S that provides a poor approximation to Ω. 81
4.12 The refined mesh T produced by Refinement Step 4.3. (It is

assumed for simplicity that the refinement criterion holds for all the
edges in S.) . 82

4.13 Uniform triangulation of the square. 82
5.1 The “zebra” coloring: odd-numbered lines are colored white, and

even-numbered lines are colored black. 92
5.2 The red-black coloring: the circles are relaxed first, and the bullets

are relaxed last. 93
5.3 Four-color relaxation. The asterisks are relaxed in the first stage,

the bullets are relaxed in the second stage, the diamonds are relaxed
in the third stage, and the circles are relaxed in the fourth stage. 96

5.4 The first step in the cache-oriented relaxation. In each of the four
subsquares, the points are relaxed layer by layer. Each layer is
smaller than the one underneath it, so four pyramids are built in
the four subsquares. The arrows show the order in which layers are
put. The height of a layer corresponds to the iteration number: the
lowest layer corresponds to the initial guess, the next layer above it
corresponds to the first iteration, and so on. 97

5.5 The second step in the cache-oriented relaxation that fills the
“holes” between adjacent pyramids. In each of the four subsquares,
the points are relaxed layer by layer, where the lines indicate the
boundary of the layer. (In the right and upper subsquares, only the
horizontal boundaries are indicated.) The lowest layer corresponds
to the initial guess, the next layer above it corresponds to the first
iteration, and so on. 98

5.6 The third and final step in the cache-oriented relaxation. An
upside-down pyramid is built in the middle of the square. The layers
are put in the order shown by the arrows. Each layer is larger than
the one underneath it. This completes m/2 point-GS iterations,
where m2 is the number of points in a subsquare. 98

6.1 The two-grid iteration has the shape of the Latin letter V: first,
relaxation is used at the fine grid; then, the residual is transferred
to the coarse grid to produce a correction term, which is transferred
back to the fine grid; finally, relaxation is used again at the fine grid. 110

6.2 The coarse grid: the subgrid of points that lie on even-numbered
lines and even-numbered columns. 110

List of Figures xv

6.3 The multigrid iteration has the shape of the Latin letter V: first,
relaxation is used at the fine grid; then, the residual is transferred
to the next, coarser grid, where a smaller V-cycle is used recursively
to produce a correction term, which is transferred back to the fine
grid; finally, relaxation is used again at the fine grid. 113

6.4 The domain decomposition: the original domain is divided into
disjoint subdomains. 116

6.5 The coarse grid c obtained from the domain decomposition contains
the vertices (corners) of the subdomains (denoted by bullets). 117

6.6 The first prolongation step, in which the known values at the bullets
are prolonged to the line connecting them by solving a homogeneous
Dirichlet–Neumann subproblem in the strip surrounding it. 117

6.7 The second prolongation step, in which the known values at
the internal boundary of a subdomain (bullets and edges) are
prolonged also to its interior by solving a homogeneous Dirichlet
subproblem. 117

6.8 Vertical lumping: the discrete homogeneous Neumann boundary
conditions are used to assume that the numerical solution of
the subsystem in the strip is constant along vertical lines, so
the unknowns on the top and bottom edges of the strip can be
eliminated. 119

6.9 Vertical lumping in black-box multigrid: the discrete homogeneous
Neumann boundary conditions are used to assume that the
numerical solution of the subsystem is constant along vertical lines,
so the unknowns on the top and bottom edges can be eliminated. 119

6.10 Oblique and vertical lumping: the discrete homogeneous Neumann
boundary conditions are used to assume that the numerical solution
of the subsystem at the points on the top and bottom edges is the
same as at the middle point, hence can be eliminated. 120

6.11 Prolonging to node i by solving a homogeneous Dirichlet–Neumann
subproblem in the “molecule” of finite elements that surround it. 121

7.1 The coarse grid d: the subgrid of points that lie in odd-numbered
lines and odd-numbered columns. 142

8.1 The noisy grayscale (noncolor) image that is the input to the
present denoising algorithm. 150

8.2 The denoised grayscale (noncolor) image that is the output of the
present denoising algorithm. 150

8.3 The noisy RGB color image that is the input to the present
denoising algorithm. 151

8.4 The denoised RGB color image that is the output of the present
denoising algorithm. 151

8.5 The result of the Wiener filter with a 10-by-10 stencil applied to the
noisy RGB color image. 152

9.1 The diffusion coefficient D̃ in the present example. The distance
between the regions of strong diffusion at the middle of the domain
is

√
2. 161

xvi List of Figures

9.2 Strong coupling between strong diffusion regions at the junction point
(ξ, ξ) = (31, 31) for Black-Box multigrid in (a) the first (finest) level,
(b) the second level, and (c) the third level in standard BBMG.
Clearly, the third level produces an inappropriate approximation to
the original problem due to the interaction between strong diffusion
regions. 162

10.1 The wave numbers (k.l) of the nearly singular eigenfunctions
v(k,l) that are handled in the first, second, and third coarse-grid
corrections. 172

11.1 Flow of information in the solution process of an elliptic PDE. 184
11.2 Flow of information in the line forward elimination and line

back-substitution in the line-ILU iteration. 185
11.3 Flow of information from the subdomain interiors to the interfaces

in the first phase of the domain-decomposition method. 186
11.4 Flow of information from the interfaces back to the subdomain

interiors in the third phase of the domain-decomposition method. 186
11.5 The matrix-based semicoarsening multigrid method is a combination

of three components: (a) geometry/topology as in domain
decomposition to define the semicoarsening, (b) algebra as in
line-ILU to define P and R, and (c) functional analysis as in
variational multigrid to define Q = RAP . 187

11.6 The domain decomposition that uses four strips denoted by 1, 2, 3,
and 4. 190

12.1 The edge midpoints i, j, and k that are candidates for inclusion in
fa in the matrix-based multigrid method. 206

13.1 The diffusion coefficient D̃. D̃ = D̃subsquare in the small black
subsquare. 226

13.2 The semistructured grid created by one step of local refinement.
The coarse grid f1 contains the points denoted by ∗, ◦, and �.
The set of points added in the localrefinement step, f0, contains
the points denoted by ·. The refined region contains the points
denoted by · and �. Its internal boundary contains the points
denoted by ◦. 227

13.3 The locally refined finite-element mesh. The mesh in the upper-right
blank subsquare is further refined recursively in the same manner
until the finest level is reached, where the usual right-angled
triangulation is used. 227

13.4 The diffusion coefficient D̃ in the irregular domain example.
D̃ = 1000 in the small black subsquares. The size of each of these
subsquares is 10−8 × 10−8. 229

13.5 The diffusion coefficient D̃ for the finite-volume local refinement
discretization. D̃ = 10−4 in the subsquare. 230

13.6 The semistructured grid created from one local refinement step.
(The finite-volume discretization method is applied to such a grid.)
The coarse grid f1 contains the points denoted by ∗ and �. The set
of points added in the local-refinement step, f0, contains the points

List of Figures xvii

denoted by ·. The refined region contains the points denoted by ·
and �. Only these points are relaxed at the fine level. 231

13.7 The locally refined finite-volume mesh. 231

14.1 The unstructured grid and the domain decomposition. 240

14.2 The coarse-gridpoints are denoted by ‘•.’ . 240

14.3 First prolongation step: from the endpoints of the edge (denoted by
‘•’) to the entire edge. 243

14.4 First prolongation step: from the coarse grid (c) to the edges (fa). . . . 243

14.5 Second prolongation step: from the edges (c ∪ fa) to the interior of
each subdomain (fb). 244

14.6 A mesh of 16 spectral elements (defined by the thick lines), each of
which uses polynomials of degree at most 8. 246

16.1 The convection field in the convection-diffusion example (the field
of characteristic directions). 265

16.2 The domain for the diffusion example. The diffusion coefficients D1

and D2 are discontinuous and anisotropic. The boundary conditions
are of Dirichlet type near the asterisk, homogeneous Neumann type
at the horizontal boundary segments, and mixed elsewhere (with
n = (n1, n2) being the outer normal vector). 269

16.3 The initial (coarse) mesh that contains eleven nodes and nine
triangles only, and is refined further in the adaptive-refinement
algorithm both in the interior of the domain and at the circular
boundary. 269

16.4 Distribution of nodes in the fifth level of refinement in the diffusion
example. The strong diffusion in the lower-left quarter of the domain
prevents large variation, so no extra refinement is needed there. 270

17.1 The circular domain in which the linear elasticity and Stokes
equations are solved in the present examples. 279

17.2 Distribution of nodes in the fifth level of refinement in the linear
elasticity and Stokes equations. 279

17.3 The coarse-grid function to be prolonged. The values of
u = (u(1), u(2)) are specified at the subdomain corners. The values
of p are specified to be constant in each subdomain; for example,
the constant p(t) in the top subdomain, and the constant p(b) in the
bottom subdomain. 284

17.4 The first prolongation step, designed to determine the prolonged u
values in the subdomain edges, using the u values at the subdomain
corners and the constant p values at the subdomains, available from
the given coarse-grid function. Each subdomain edge is surrounded
by a thin strip, as illustrated in the figure. A Dirichlet–Neumann
subproblem is then solved in the strip, as indicated in the figure.
This determines uniquely the u values in the subdomain edge, as
required. 284

xviii List of Figures

17.5 The second prolongation step, designed to determine the prolonged
u and p values in the subdomain interiors, using both the original
coarse-grid function and the u values calculated in the first
prolongation step. In each subdomain, a Dirichlet subproblem
is solved, using the u values calculated in the edges in the first
prolongation step. The constant p(b) available from the coarse-grid
function is used to determine the additive constant for p. 285

List of Tables

5.1 Number of ILU iterations used within CGS applied to nonsymmetric
examples from the Harwell–Boeing collection of sparse matrices.
The parameter “nonzeroes” denotes the number of nonzero elements
in the coefficient matrix A. The parallelizable ILU method is
implemented with p = 20 and O = 25. 105

10.1 Convergence factors (cf) for four-level V(1,1)-cycles for the slightly
indefinite Helmholtz equation in the unit square with β = −20 and
Dirichlet boundary conditions. 175

10.2 Preconditioned convergence factors (pcf) for V(0,1)-cycles
accelerated by CGS for the highly indefinite Helmholtz equation
in the unit square with β = −790 and Neumann mixed boundary
conditions. 177

10.3 Preconditioned convergence factors (pcf) for V(0,1)-cycles
accelerated by CGS for the highly indefinite Helmholtz equation
in the unit square with β = −790 and Neumann mixed boundary
conditions. The coarsest-grid problem is solved approximately by
ten-point Kacmarz relaxations. 177

13.1 Convergence factors (cf) for V(1,1), AFAC, and AFACx cycles with
the present matrix-based multigrid method for diffusion problems
with discontinuous coefficients discretized on the locally refined
finite-element mesh. 228

13.2 Convergence factors (cf) for the matrix-based multigrid method
applied to the finite-volume discretization (with local refinement) of
the diffusion problem with Dsubsquare = 10−4. The linear system is
scaled in advance from the left to avoid numerical roundoff errors in
the coarse-grid matrices. 232

16.1 Preconditioned convergence factors (pcf) for the algebraic multilevel
method applied to the highly anisotropic equation with oblique
diffusion directions. The meshsize is 1/512 in both the x and y
spatial directions. Outer PCG acceleration is also used. 263

16.2 Number of PCG iterations used in each refinement level in the
adaptive-refinement algorithm applied to the diffusion example.
The computation time of a multilevel iteration is like that of three
symmetric Gauss–Seidel iterations. (The set-up time is negligible.) . . . 270

xx List of Tables

17.1 Number of PCG iterations required in each linear system solve
in the adaptive-refinement algorithm applied to the linear
elasticity equations in the circle (with Poisson ratio ν = 1/3).
The semialgebraic multilevel preconditioner (and the semialgebraic
multigrid preconditioner) costs the same as three symmetric
Gauss–Seidel iterations. (The set-up time is negligible.) 281

18.1 Number of PCG iterations used in each refinement level in the
adaptive-refinement algorithm (with threshold of 0.01) applied to a
particular time step in the semi-implicit scheme for the parabolic
diffusion problem in the complicated domain in Figure 16.2. (It is
assumed that �t = 2, so the coefficient matrix is K + A, where A is
the stiffness matrix and K is the mass matrix.) 300

Preface

Many important problems in applied science and engineering, such as the Navier–
Stokes equations in fluid dynamics, the primitive equations in global climate mod-
eling, the strain-stress equations in mechanical and material engineering, and the
neutron diffusion equation in nuclear engineering contain complicated systems of
nonlinear partial differential equations (PDEs). When approximated numerically
on a discrete grid or mesh, such problems produce large systems of algebraic non-
linear equations, whose numerical solution may be prohibitively expensive in terms
of time and storage. High-performance (parallel) computers and efficient (paralleliz-
able) algorithms are clearly necessary.

Three classical approaches to the solution of such systems are: Newton’s method,
preconditioned conjugate gradients (and related Krylov-subspace acceleration tech-
niques), and multigrid. The first two approaches require the solution of large sparse
linear systems at each iteration, which are themselves often solved by multigrid.
Developing robust and efficient multigrid algorithms is thus of great importance.

The original multigrid algorithm was developed for the Poisson equation in a
square, discretized by finite differences on a uniform grid. For this model problem,
multigrid converges rapidly, and actually solves the problem in the minimal possible
time (Poisson rate).

The original multigrid algorithm uses rediscretization of the original PDE on
each grid in the hierarchy of coarse grids (geometric multigrid). Unfortunately, this
approach doesn’t work well for more complicated problems with nonrectangular
domains, nonuniform grids, variable coefficients, or nonsymmetric or indefinite co-
efficient matrices. In these cases, matrix-based multigrid methods are required.

Matrix-based (or matrix-dependent) multigrid is a family of methods that use
the information contained in the discrete system of equations (rather than the origi-
nal PDE) to construct the operators used in the multigrid linear system solver. This
way, a computer code can be written such that it accepts the coefficient matrix and
right-hand side of the discrete system as input and produces the numerical solution
as output. The method is automatic in the sense that the above code is independent
of the particular application under consideration.

Because the elements in the coefficient matrix contain all the information about
the properties of the boundary-value problem and its discretization, matrix-based
multigrid methods are efficient even for PDEs with variable coefficients and com-
plicated domains. In fact, matrix-based multigrid methods are the only multigrid
methods that converge well even for diffusion problems with discontinuous coeffi-
cients, even when the discontinuity lines do not align with the coarse mesh.

xxii Preface

This book offers a new approach towards the introduction and analysis of multi-
grid methods from an algebraic point of view. This approach is independent of the
traditional, geometric approach, which is based on rediscretizing the original PDE.
Instead, it uses only the algebraic properties of the original linear system to define,
analyze, and apply the multigrid iterative method. This way, multigrid methods are
well embedded in the family of iterative methods for the numerical solution of large,
sparse linear systems. Indeed, as is shown below, multigrid methods can actually
be viewed as special cases of domain-decomposition methods.

The present edition of this book introduces the multigrid methods from a uni-
fied domain-decomposition point of view. In particular, advanced multigrid versions
(such as black-box multigrid, algebraic multigrid, and semicoarsening) can all be in-
terpreted as domain-decomposition methods. Furthermore, it introduces a new semi
algebraic approach for systems of PDEs. Each chapter ends with relevant exercises.

The first three parts are introductory. The first part introduces the concept
of multilevel/multiscale in many different branches in mathematics and computer
science. The second part gives the required background in discretization methods,
including finite differences, finite volumes, and finite elements. The third part de-
scribes iterative methods for solving the linear system resulting from this discretiza-
tion. In particular, it introduces multigrid methods from a domain-decomposition
point of view.

The next three parts contain the heart of the book. The discussion starts from
the simplified but common case of uniform grids, proceeds to the more compli-
cated case of locally refined grids, and concludes with the most general and difficult
case of completely unstructured grids. In each of these three parts, we concentrate
on a particular multigrid version that fits our framework and method of analysis,
and study it in detail. We believe that this study may shed light not only on this
particular version but also on other multigrid versions as well.

These three parts are ordered from simple to complex: from the simple case
of rectangular uniform grids, where spectral analysis may be used to predict the
convergence factors (Part IV), through the more complex case of locally refined
(and, in particular, semistructured) grids, where upper bounds for the condition
number are available (Part V), to the most general case of completely unstructured
grids, where the notions of stability and local anisotropy motivate and guide the
actual design of algebraic multilevel methods (Part VI).

The second edition also contains the mathematical background required to make
the book self-contained and suitable not only for experienced researchers but also
for beginners in applied science and engineering. Thanks to the introductory parts,
no background in numerical analysis or multigrid methods is needed. The only
prerequisites are linear algebra and calculus. The book can thus serve as a textbook
in courses in numerical analysis, numerical linear algebra, scientific computing, and
numerical solution of PDEs at the advanced undergraduate and graduate levels.

Acknowledgments

I wish to thank the referees for their thorough and helpful reports, and the Wingate
foundation for their kind support. I wish to thank Prof. Moshe Israeli and Prof.
Avram Sidi for their valuable advice in the development of the AutoMUG method,

Preface xxiii

and Prof. Irad Yavneh for his valuable comments. I also wish to thank Dr. Joel
Dendy and Dr. Dan Quinlan for useful discussions about semistructured grids, and
Dr. Mac Hyman for his valuable support. I wish to thank Dr. Dhavide Aruliah and
Prof. Uri Ascher for supplying the coefficient matrix for the Maxwell equations.
Finally, I wish to thank my sons Roy and Amir for their constant patience and
support.

Yair Shapira
August 2006

Part I

Concepts and Preliminaries

3

Multigrid is a numerical method to solve large linear systems of algebraic equations
arising from mathematical modeling of physical phenomena. Multiscale is a more
general concept that helps to distinguish between different scales in a given math-
ematical or physical problem. Multilevel is a yet more general concept, which helps
to define and understand abstract mathematical hierarchies and use them to solve
practical problems in different branches in mathematics and applied mathematics.

In the first chapter, we introduce the concepts of multiscale and multilevel and
illustrate them in different sorts of problems. In the second chapter, we list some
basic definitions and prove some standard lemmas, which are used later throughout
the book. In particular, we use these lemmas in the multilevel hierarchy known as
the Fourier transform.

Note that the Table of Contents sometimes uses short versions of the titles of
chapters and sections, as used at the head of the pages.

1

The Multilevel-Multiscale Approach

In this chapter, we describe the concept of multilevel and multiscale, and use them
in several elementary examples: from basic algorithms in arithmetics of integer
numbers, through mathematical induction and recursion, to data structures and
parallel algorithms.

1.1 The Multilevel-Multiscale Concept

Multilevel is an abstract concept that stands for a hierarchy of objects. Most often,
the objects in the hierarchy are just different forms of the same object. In this case,
the object may take a more developed form in the high levels in the hierarchy than
in the low levels. The high levels may be more delicate and fine, and contain more
details and information about the object.

The objects that form the levels in the multilevel hierarchy are usually abstract
rather than physical. In fact, they may well be just ideas, processes, operations, or
points of view. Therefore, the multilevel concept may be very helpful not only as a
tool for organizing thoughts, but also as a framework for gaining insight, developing
ideas, and solving problems.

In some cases, the fine details that are contained in the high levels in the mul-
tilevel hierarchy can be viewed as fine scales that can measure or notice delicate
features, whereas the low levels deal with the large-scale and global nature of the
phenomenon or object under consideration. The multilevel hierarchy may then be
viewed as a multiscale hierarchy, with fine scales corresponding to high levels and
coarse scales corresponding to low levels. The concept of multiscale is thus a little
more concrete than the concept of multilevel, as it specifically considers the grow-
ing number of details that can be observed in finer and finer scales. Still, the fine
features in the fine scales are not necessarily physical; they may well be abstract.
Nevertheless, for simplicity we start with examples that concern physical features.

Almost every measurement made in day-to-day life is based on scales. Con-
sider, for example, the measurement of distances. Although short distances can be
measured in meters or feet, these are not very useful for distances between cities,
where kilometers or miles are more suitable. The latter units are nevertheless use-
less when distances between stars are considered, where light years become handy.

6 1 The Multilevel-Multiscale Approach

On the other hand, in the microprocessor industry, a unit greater than a micron is
never to be mentioned.

Thus, measurements can be made in many different scales, each of which is
useful in its own context. A less obvious observation is that the very representation
of numbers is also based on multiscale. By number we mean the abstract concept of
number, not the way it is represented or written. In fact, we will see below that there
may be many legitimate ways to represent, or write, one and the same number. We
will see below that all these representations are actually based on multiscale.

1.2 The Integer Number

From the dawn of civilization, people have had the need to count objects; most often,
property objects. Trade was based on counting goods such as cattle, sheep, and, of
course, valuables such as gold and silver coins. The need to have an economical
counting method that would use a small number of symbols to represent arbitrar-
ily large numbers became most important. The decimal method that is based on
hierarchy and regrouping fulfills this need.

In the decimal counting method, groups of ten are used, presumably because
people have ten fingers. Thus, only ten different symbols, or digits, are needed;
these symbols are used to represent numbers from zero to nine. The next number,
ten, is no longer represented by a new symbol, but rather as one group of ten units.
The counting goes on in groups of ten, plus a residual number (remainder) that is
smaller than ten. The number of groups of ten is represented by the more significant,
decimal digit, whereas the residual is represented by the less significant, unit digit.
When ten groups of ten have been collected, they are regrouped in a group of ten
groups of ten, or a group of one hundred, and so on. The hierarchy of more and more
significant digits allows the representation of arbitrarily large integer numbers. For
example,

1000 + 500 + 20 + 3 = 103 + 5 · 102 + 2 · 101 + 3 · 100 = 1523.

The coefficient of the next larger power of ten is represented by the next more signif-
icant digit in the decimal representation. The next more significant digit represents
the next larger scale or the next higher level in the representation of the number.

When digital computers were introduced, the binary method for representing
integer numbers became more important. The computer has only two “fingers,”
“on” and “off.” Therefore, it prefers to count integer numbers in groups of two
rather than ten, and then regroup them in groups of 2 · 2 = 4 rather than 100, and
so on. The result is the following algorithm for transforming a number represented
in the decimal method to the same number in the binary method.

Algorithm 1.1

1. Input the number k that is written in the decimal method.
2. Let s denote the current power of 2 in the binary representation. Initialize s by

s ← 0.
3. If k = 1, then the digit at scale s in the binary representation is also 1, and the

algorithm is complete. If k > 1, then proceed as follows.

1.2 The Integer Number 7

4. Divide k by 2 with integer residual:

k = 2m + r,

where r = 0 if k is even, and r = 1 if k is odd.
5. The residual r calculated in the previous step is the digit in scale s in the binary

representation.
6. Replace k by m:

k ← m.

7. Replace the scale s by the next larger scale:

s ← 2s.

8. If k �= 0, then go to step 3.

Let us illustrate this simple algorithm for the input number 77 (in the decimal
method). The last digit in the binary representation is 1, because

77 = 2 · 38 + 1.

The next, more significant digit is 0, because

38 = 2 · 19 + 0.

The next two more significant digits are 1’s, because

19 = 2 · 9 + 1

and

9 = 2 · 4 + 1.

The next two more significant digits are 0’s, because

4 = 2 · 2 + 0

and

2 = 2 · 1 + 0.

Finally, the most significant digit is, as always, 1. The output of the algorithm is,
thus,

1001101,

which indeed is the binary representation of

77 = 26 + 23 + 22 + 20.

The multiscale approach is also helpful in simplifying lengthy algorithms by
using recursion. This is because multiscale is based on repetition: what is good
for a certain scale, must be equally good for the next, larger scale. Therefore, an
algorithm can often be written in a short and compact way by initializing it for the
first scale and applying it recursively to the next, larger scale as well. In our case,

8 1 The Multilevel-Multiscale Approach

the above binary-representation algorithm takes the form:

Algorithm 1.2 Binary(k):

1. Input the number k that is written in the decimal method.
2. If k = 1, then the output is also 1. If k > 1, then proceed as follows.
3. Divide k by 2 with integer residual:

k = 2m + r,

where r = 0 if k is even, and r = 1 if k is odd.
4. The output is the following sequence of digits:

Binary(m)r.

The recursive call in the last step produces the binary representation of the “coarse-
scale” approximation to k, namely, m. By adding r to it as a last digit, the algorithm
produces the entire binary representation of k.

The multiscale approach is thus useful not only in representing mathematical
objects such as the above integer numbers, but also in manipulating them as in the
above algorithm. This is illustrated next in another elementary algorithm.

1.3 Division of Integers

Most often, the user is unaware of using different scales or levels in the algorithm.
Consider, for example, the standard algorithm for division of integers. Let us look
at the following example: find an integer x that satisfies the equation

8x = 192.

The basic algorithm splits the problem into different scales: 1’s, 10’s, 100’s, and so on.
The solution is then obtained by summing the contributions from the different scales.

The first step in the algorithm is to confine or restrict the right-hand side 192 to
a coarse scale, namely, the scale of 10’s. The restriction operation is just to divide
the integer by 10 (with residual), resulting in the number 19. (Indeed, the original
right-hand side 192 contains 19 10’s.) Then, the problem is solved at the coarse
scale of 10’s, giving the result 19/8 = 2 (division of integers with residual). This
contribution from the coarse level is then prolonged back to the fine level by simply
multiplying it by 10, resulting in the number 20. The residual (remainder) at the
approximate solution x̃ = 20 is

192 − 8x̃ = 192 − 8 · 20 = 32.

This residual is then used to obtain the contribution from the fine scale of 1’s,
namely, 32/8 = 4. The solution is, thus, the sum of contributions from coarse and
fine levels, namely,

x = 20 + 4 = 24.

This algorithm is described schematically in Figure 1.1. The illustration in this
figure is similar to the Latin letter F, hence the name “F-cycle.” (Compare to the
V-cycle in Figure 6.1 below.)

In the next section, we show how multiscale can be used in a more complicated
algorithm.

1.4 The Greatest Common Divisor 9

� �
�
�
�
�
�
�
�
�
��

fine level (units)

original equation: 8x = 192

coarse level (decades)

y = 2

approximate

in decades:

8y = 19
transfer to units: y → 10y = 20

residual (remainder): 192 − 8 · 10y = 32

solve: 8z = 32

add: x = 10y + z = 24

Fig. 1.1. The so-called F-cycle for division of integers: the present example is 192/8.

1.4 The Greatest Common Divisor

In the above algorithm, the different scales are predetermined independently of the
particular problem: they are always the decimal scales of units, tens, hundreds, and
so on. Other multiscale algorithms may be nonlinear in the sense that the scales
depend on the data supplied in the particular instance to be solved. Consider,
for example, Euclid’s algorithm for computing the greatest common divisor of two
integers. Let us compute, for instance, the greatest common divisor of the numbers
100 and 36. First, we divide (with residual):

100/36 = 2 with residual 28.

This division may be interpreted as using the scale obtained from multiples of 36 as
the “coarsest” scale for locating the number 100 in the number line. The residual
(remainder) in the above division, 28, will serve as the next finer scale. Indeed, in
the next step we divide with residual:

36/28 = 1 with residual 8.

The residual 8 will serve as a divisor to calculate the next finer scale:

28/8 = 3 with residual 4.

Since 8 is divided by 4 with no residual, there is no need to use a further finer scale.
The scale consisting of multiples of 4 is sufficiently fine to locate both 100 and 36
on the number line. Thus, 4 is the greatest common divisor of 100 and 36.

Thus, Euclid’s algorithm uses variable scales: 36, 28, 8, and so on. These scales
are obtained from the algorithm itself, and depend on the particular application. The
algorithm that divides integer numbers in Section 1.3, on the other hand, uses fixed
scales: 100, 10, 1, and so on, which are independent of the particular application.

10 1 The Multilevel-Multiscale Approach

This distinction is analogous to the distinction made later in this book between
structured and unstructured grids: in structured (uniform) grids the coarse grids are
always constructed in the same way (independently of the particular application),
whereas in unstructured grids the coarse grids may be defined during the multigrid
algorithm, using information from the particular problem that is currently being
solved.

1.5 Multilevel Refinement

In the early days of the science of applied mathematics in the 19th century and
the first part of the 20th century, boundary-value problems were recognized as a
powerful tool in modeling many physical phenomena. In a boundary-value problem,
one needs to find a function that is defined in a given spatial domain, satisfies a
given differential equation in the interior of the domain, and agrees with some given
function on its boundary. Unfortunately, only few model boundary-value problems
can be solved analytically in closed form.

The invention of the digital computer in the middle of the 20th century changed
the science of applied mathematics completely. Complicated boundary-value prob-
lems that model complex physical phenomena such as weather and compressible
flow suddenly became solvable. The solution process uses fine grids that are em-
bedded in the domain. The discretization of the original problem on these grids
produces large systems of difference equations that approximate the original differ-
ential equations. The science of numerical analysis that studies the quality of these
approximations and the science of scientific computing that studies the performance
of computational methods to solve these discrete models have been born.

In many realistic boundary-value problems, the domain is so complicated that
it cannot be approximated well by a standard rectangular grid. The original grid
should, therefore, be further refined near the boundary of the domain and also at
locations where the solution is expected to have large variation. This process can
be repeated to provide further and further high-resolution refinement where it is
needed. The final grid that is obtained from this process of multilevel refinement
has a better chance to approximate well the complicated domain and the delicate
features in the solution function.

1.6 Example in Computer Science

The notion of multilevel is also useful in computer architectures and, in particular,
storage strategies. The cache memory hierarchy is based on the idea that often
accessed data should be stored in the primary memory, where access is fast and
efficient, whereas rarely accessed data should be stored in the secondary memory,
where access is slow and expensive [47]. This principle is used in the entire cache
hierarchy, which may contain many levels: the highest level that is accessed most
easily contains data that are accessed most often, and lower and lower levels that are
accessed less and less easily contain data that are accessed less and less often. This
way, frequently accessed data are stored in the easily accessed top of the hierarchy,
and rarely accessed data are stored at the hard-to-access bottom of the hierarchy.

1.8 Multilevel in Language 11

1.7 Multilevel in Mathematical Logics

A mathematical system contains objects and relations between them. For example,
the system of Euclidean geometry contains points, lines, angles, and so on, with the
possible relations that a particular point may lie on a particular line, a particular
line may pass through a particular point, a particular line may be parallel to some
other line, and so on.

The mathematical system also contains some assumptions, known as axioms. For
example, two axioms in Euclidean geometry state that through two distinct points
passes one and only one line, and that through a given point passes one and only one
line that is parallel to another given line that doesn’t pass through the point, etc.

A theorem in the mathematical system says that, under some given assumptions,
a particular statement (or assertion) is true. The proof of the theorem uses the con-
cept of multilevel in the context of mathematical logic. Indeed, the proof starts from
the assumptions in the theorem and some of the axioms in the mathematical system
in the lowest (or finest) level. Then, some items from the lowest level are combined
to conclude some properties, facts, or assertions in the next higher level. Similarly,
the items in these two levels are combined again to conclude more advanced prop-
erties, facts, or assertions in the next higher level. By repeating this process, the
proof “climbs” from level to level, resulting in more and more advanced assertions,
concluded from the assertions that have been proved before in the lower levels. Fi-
nally, in the top level there should be only one item: the assertion of the original
theorem. This item has thus been proved successfully by the entire multilevel proof.

1.8 Multilevel in Language

Multilevel is also a powerful tool in human language, in both text and speech.
Indeed, the letters, which are the most elementary bricks that form the lowest level,
are combined with each other to produce syllables, which are in turn combined to
produce words in the next higher level. Words, in turn, are combined to produce
subsentences, which are then combined according to the laws of grammar to produce
sentences. Finally, sentences are combined to form paragraphs, each of which sheds
light on one of the aspects of the subject discussed in the text.

We refer to the above multilevel hierarchy as the syntactic structure, because
it concerns the formal structure of the text. The original plan of the contents of
the text, however, as well as its interpretation by the reader, must use a different
structure: the analytic structure.

Like the syntactic structure, the analytic structure also uses a multilevel hierar-
chical logics. However, this multilevel logics may be totally different from the one
used in the syntactic structure.

Indeed, in the analytic multilevel logics, the main idea in the text lies in the high-
est level. The motives, reasons, aspects, or consequences of this idea lie in the next
lower level. The facts, factors, and processes behind these motives, reasons, aspects,
and consequences form the next lower level. Finally, the details of these facts, fac-
tors, and processes form the lowest level.

When one wants to make a short summary of the text, it is advisable to parse
(open) the above analytic hierarchy. First, the main (often abstract) idea in the text

12 1 The Multilevel-Multiscale Approach

should be introduced. Then, the main motives, reasons, aspects, and consequences
of this idea should be listed, each with its main factors. The details can be omitted.

Although the analytic structure is essential in planning the text, the syntactic
structure is no less important in the process of writing it in a good and readable style.
In fact, the syntactic structure is relevant not only in natural (human) languages but
also in formal languages, such as computer languages. Indeed, in good and elegant
programming, one uses the elementary variables and arithmetic operations as low-
level bricks to write elementary functions in the next higher level. These functions
are then used to write yet more complex functions in the next higher level. This
process eventually produces the hierarchy of functions required to write elegant,
modular, and easily debugged computer programs.

1.9 Multilevel Programming

Multilevel is a useful concept also in computer programming. Indeed, the computer
actually uses the most elementary programming language: the machine language.
This low-level language tells the computer in detail how to fetch a datum from
a particular address in the memory, update it by some arithmetic operation, and
then return it to its original address in the memory. Fortunately, the programmer
is free from bothering with these technical details: he/she is writing in a high-
level programming language such as Fortran, C, or C++, where fetching data from
the memory and updating it is done implicitly by the assignment operator, and
arithmetic operations are supported by the standard arithmetic symbols. This way,
the programmer can focus on implementing the mathematical algorithm to solve
his/her particular application.

The high-level programming language may thus be viewed as an interface for
the programmer to access the computer. The programmer can use this interface
to write various functions, and let other people use them by giving them access
to his/her well-documented code. This way, the programmer actually creates a yet
higher-level interface for users who don’t really need to program but only want to
use the functions that he/she has written.

1.10 Object-Oriented Programming

Object-oriented programming is a programming approach, in which the program-
mer can design and introduce new objects along with the functions that characterize
them. This way, the programmer practically extends the standard high-level pro-
gramming language by introducing new words which refer to the new objects and
functions.

In fact, the programmer can place his/her code in a library, so anyone who
has access to this library can include it in his/her code and use the names of
the new objects and functions as if they were standard keywords in the high-level
programming language.

Object-oriented programming can be viewed as a kind of multilevel program-
ming. Indeed, the above objects may be viewed as elementary or low-level objects.
Now, the users of the above library can design more complicated “higher-level”
objects, which may contain or use the low-level objects. Again, these higher-level

1.13 Parallelism 13

objects can be placed in a higher-level library for further use in yet more compli-
cated objects. By repeating this process, a hierarchy of more and more complicated
objects is created, each of which uses the more elementary objects in the “lower”
levels below it.

The above approach actually enriches the high-level programming language sub-
stantially by introducing into it new words which refer to the new objects and the
functions that characterize them. In [103], it is shown how this approach can be
used successfully in the numerical solution of PDEs.

1.11 Example in Data Structures

The concept of a “tree” in data structures is another example of a multilevel struc-
ture that is most useful in graph theory, data structures, and algorithms. The “tree”
structure is suitable for recursion, and is thus often used to implement data struc-
tures such as connected lists and algebras. Mathematical objects such as two-sided
connected lists and arithmetical expressions are best implemented in binary trees
(Figure 1.2).

1.12 The Sorting Problem

Some mathematical problems also find their best solution by using virtual trees. For
example, the problem of sorting an unsorted list of elements according to a given or-
der is best solved by recursion. The original list is divided into two sublists. On each
sublist, the sorting procedure is applied recursively. Once the two sublists are sorted,
they are merged into one sorted list. The complexity, or cost, of this method is linear,
that is, it is linearly proportional to the number of elements in the original list.

1.13 Parallelism

The notion of multilevel is also helpful in parallel computing, where one often uses a
“divide-and-conquer” strategy. When a problem is encountered, one first identifies
certain problem components that can be solved independently of each other. These

�
�
�
���

�
�
����

�
�
���

	
	
		

�
�
�
���

	
	
		

�
�
�
��� �

�
�
�
��� �

�
	
	
		
�

�
	
	
		
�� � � � � � � �

Fig. 1.2. The binary tree is also based on the multilevel concept.

14 1 The Multilevel-Multiscale Approach

components, which may be thought of as the “fine level” of the problem, are solved
simultaneously in parallel. Other problem components that cannot be divided be-
cause they are inherently sequential and deal with “global” features of the problem,
must be solved sequentially in a “coarse level” phase and, thus, may create a bot-
tleneck in the process that slows it down.

1.14 Self-Similarity

The notion of self-similarity used in the science of chaos is another example for
the usefulness of the multiscale approach. In this notion, certain physical and other
kinds of phenomena, albeit chaotic, may still be characterized by the property that
small elements in the system behave in much the same way as the system itself.
In this way, tiny pieces of a leaf may be similar to the leaf itself, small portions of
the seashore may have the same pattern as the global seashore, and the weather
in a small area may have similar properties to the global weather. The individual
elements in the system may be viewed as a fine scale, whereas the global system
forms the coarse scale. Because of the self-similarity, these elements contain further
smaller elements, which form a yet finer scale in the multiscale hierarchy, and so on.

The mathematical concept known as “fractal” is characterized by the self-
similarity property, and can thus model such phenomena. The self-similarity prop-
erty may also be used in numerical simulations, where different scales are handled
separately in the solution process.

1.15 The Wavelet Transform

The wavelet transform of one-dimensional functions is another example of a useful
multilevel hierarchy. In the wavelet transform, the function is repeatedly “averaged”
at each point, using values at adjacent points whose distance from the current point
is successively doubled when moving from level to level. The “averaging” process
can use both positive and negative weights, and the regularity of the transformed
function (the number of continuous derivatives) grows linearly with the number
of adjacent points used in the “average.” The wavelet transform is useful in the
discretization and numerical solution of integro-differential equations in rectangular
domains. The discrete analogue of the wavelet transform is often used in image
processing and, in particular, in coding-decoding and compression.

1.16 Mathematical Induction and Recursion

A most important mathematical concept that can also be viewed as a multilevel
process is the concept of mathematical induction. In logic, induction means the
extension of an argument, which is already known for certain individual objects,
to the entire family of objects. Mathematical induction also attempts to extend a
property, which is already known for a particular mathematical object, to an in-
finite, well-ordered set of such objects. In order to have such an extension, one
must prove the induction step, that is, that the fact that the property holds for a

1.17 The Tower Problem 15

particular object implies that it also holds for the next object. Once we know that
the property holds for the first object and the induction step is valid, we actually
know that the property also holds for every object in the entire set, because we can
always start from the first object and step (or “climb”) from object to object using
the induction step until the desired object is reached.

Mathematical induction is also useful in the definition of infinite sequences of
mathematical objects. In fact, the very definition of integer numbers is done in
Peano theory by mathematical induction. Indeed, assume that ‘1’ denotes the first
integer, and the fact that n is an integer implies that n+1 is an integer as well (the
induction step). Then, we immediately have the entire infinite sequence of positive
integer numbers that have just been defined by mathematical induction. Indeed,
every positive integer m can now be constructed by starting from 1 and applying
the induction step m − 1 times.

Mathematical induction is also useful in solving more complicated problems.
Assume that the problem is characterized by a positive integer n, i.e., it concerns
n distinct elements. Assume that the solution of smaller problems that are associ-
ated with 1, 2, . . . , n − 1 implies the solution of the problem associated with n (the
induction step). Assume also that we know how to solve the simplest problem that
is associated with the integer 1. Then the problem is solved by solving the problem
associated with 1, then using it in the induction step to solve the problem associ-
ated with 2, then using the solution of both these problems in the induction step to
solve the problem associated with 3, and so on, until the problem associated with
n is solved.

The above process is also known as recursion. In recursion, however, the pro-
cess is viewed the other way around. The induction step is viewed as a reduction
step, in which the problem associated with n is reduced to subproblems associated
with integers smaller than n. These subproblems are in turn reduced further into
subproblems associated with yet smaller integers, until every subproblem has been
reduced to the simplest subproblems associated with 1, which are easy to solve.

1.17 The Tower Problem

A good example for using mathematical induction and recursion is the tower prob-
lem. Consider three columns denoted by “A”, “B”, and “C”. Assume that a tower
of n rings is built around column A, in which the rings are ordered from the largest
at the bottom of the tower to the smallest at the top of the tower. In other words,
the largest ring (the ring of largest radius) lies at the bottom of the tower, the next
smaller ring sits on top of it, and so on, until the smallest, nth ring that sits on top
of all the n−1 larger rings at the top of the tower. The task is to transfer the entire
tower of n rings from column A to column C (possibly by using also column B if
necessary), while preserving the following rules.

1. A sequence of moves should be used.
2. In each move, one ring is moved from one column to the top of either of the

other two columns.
3. A ring cannot be moved if another ring lies on top of it.
4. A ring cannot be placed on a smaller ring.

16 1 The Multilevel-Multiscale Approach

The solution of this complex problem by mathematical induction is straightfor-
ward. Clearly, the solution of the problem associated with n = 1 is trivial, because it
only requires the transfer of one ring from column A to column C. Let us now show
how the problem is solved for n > 1. For this purpose, we need to construct the
induction step. Assume that we already know how to transfer towers of n− 1 rings
from column to column, while preserving the above rules. Let us use this knowledge
also to transfer a tower of n rings from column A to column C. First, let us transfer
the top n − 1 rings from column A to column B, using our assumed knowledge.
Then, let us move the remaining, largest ring from column A to column C. Finally,
let us use our assumed knowledge once again to transfer the entire tower of n − 1
rings from column B to column C and put it on top of the largest ring that already
lies there. This completes the transfer of the entire tower of n rings from column A
to column C, as required.

In practice, the problem is solved by recursion (Figure 1.3). The original problem
to transfer a tower of n rings is reduced to the problem of transferring a tower of
n− 1 rings. The reduced problem should be solved twice in the algorithm. In order
to solve it, the reduced problem is further reduced to the problems of transferring
a yet smaller tower of n − 2 rings. This problem should be solved four times in the
algorithm: twice in each “solve” (solution process) of the previous problem. The
reduction is repeated in the same way, until only trivial problems of transferring
towers of one ring need to be solved. In fact, the above recursion produces a virtual
binary tree of reduced problems that are to be solved. Each leaf at the bottom of
this tree contains a trivial problem. Mathematical induction can then be used to
prove that the algorithm indeed solves the original problem.

Because each reduction doubles the number of times that a subproblem has
to be solved, the total number of moves that are required in the entire algorithm

�
�
�

�
�
�

�
�
�

�
�
�

pass the tower
of n rings

from A to C

pass a subtower
of n − 1 rings
from A to B

pass a subtower
of n − 2 rings
from A to C

pass the subtower
of n − 2 rings
from C to B

pass the subtower
of n − 1 rings
from B to C

pass a subtower
of n − 2 rings
from B to A

pass the subtower
of n − 2 rings
from A to C

Fig. 1.3. The recursive (or inductive) algorithm to solve the tower problem. The entire
task is placed in the upper level. This task is carried out by two subtasks in the second
level. Each of these subtasks is carried out recursively, as can be seen in the third level,
and so on.

1.18 The Parallel Product Algorithm 17

is 2n − 1. If each move requires a time unit, then the solution of the problem
requires exponentially large time. Even when implemented efficiently on a strong
computer, the above algorithm requires a prohibitively large amount of time for
large n. Unfortunately, this amount of time cannot be reduced; the problem cannot
be solved more rapidly by any algorithm.

In this book, we are more interested in problems that can be solved in polynomial
time, that is, in np time units, for some constant p that is independent of n. In the
next section, we consider such a problem, and show how it can be solved efficiently
on a parallel computer.

1.18 The Parallel Product Algorithm

In this section, we describe a parallel algorithm for computing the products of
elements in a group. We show that it can actually be viewed as a multilevel algorithm
and also as a domain-decomposition algorithm.

Let k > 1 and p > 1 be given integers. Consider the following problem. Use p−1
processors to calculate efficiently the kp − 1 products

g1g2

g1g2g3

g1g2g3g4

· · ·
g1g2g3 · · · gkp,

where g1, g2, g3, . . . , gkp are elements in some group or semi-group.
The algorithm starts with a “fine scale,” parallel step that computes the p − 1

products

G1 = g1g2g3 · · · gk

G2 = gk+1gk+2gk+3 · · · g2k

G3 = g2k+1g2k+2g2k+3 · · · g3k

· · ·

Then, a “coarse scale,” sequential step is used to calculate the p − 1 products

H1 = G1

H2 = G1G2

H3 = G1G2G3

· · ·

Finally, another “fine scale,” parallel step is used to compute the products

Hrgrk+1

Hrgrk+1grk+2

Hrgrk+1grk+2grk+3

· · ·
Hrgrk+1grk+2 · · · g(r+1)k.

where r, 1 ≤ r ≤ p − 1, is the index of the task assigned to the rth processor. This
algorithm illustrates the usefulness of the multilevel approach in parallel comput-
ing. As a matter of fact, the “coarse level” part in the algorithm may be further

18 1 The Multilevel-Multiscale Approach

� � � � � � � � � � � � � � � � � � �

Fig. 1.4. The parallel product algorithm from a domain-decomposition point of view.
Each circle or bullet represents an element from the group. The algebraic “subdomains”
consist of the circles, and are separated by the bullets.

parallelized by using the same algorithm itself recursively, although not all the pro-
cessors can be used in the recursion.

The parallel product algorithm can also be viewed as a domain-decomposition
algorithm. The kp elements that form the product are ordered in a long line as in
Figure 1.4. In this figure, the bullets stand for gk, g2k, g3k, and so on, and divide the
line into algebraic “subdomains.” In the first step in the above algorithm, local tasks
are carried out in the individual subdomains. In the second step, a global task is
carried out over the bullets. In the third and final step, more local tasks are carried
out in the individual subdomains. This relation between domain decomposition and
multilevel is highlighted throughout the book.

1.19 Multilevel in Statistics

Multilevel is also used often in quantitative research in medicine and social sciences.
Suppose that we have a phenomenon in, for example, economy, sociology, or psychol-
ogy that we want to analyze. Of course, we cannot study the entire population, so we
consider a sufficiently large sample (say, 1000 people) and ask them about the phe-
nomenon. Then, we place their answers in a 1000-dimensional vector. For example,
in economy, the phenomenon might be their annual salary. In this case, the annual
salaries of the 1000 people are the components in the 1000-dimensional vector.

Now, suppose that we want to study the effect of gender on the salary. For ex-
ample, we may suspect that there may be discrimination in our society in terms of
gender, and we want to know if this is indeed true. To do this, however, it is not
enough to check whether there is any correlation between gender and salary; after
all, there may be inherent differences between the genders. For example, women
may work fewer hours than men, so they may earn less not because they are women
but merely because they work less. We must therefore design our research carefully
to avoid misleading results.

The above vector is called the dependent vector, because it is assumed that
salary depends on some other phenomena that are more obvious to us, say gender
and amount of work per day. To quantify this dependence, we form three 1000-
dimensional independent vectors. The first vector is the constant vector, all of whose
components are equal to 1. This vector explains (approximates) the average salary
in the entire sample. The second vector is a binary vector, whose components are
either 1 (if the corresponding interviewee is a woman) or 0 (if the corresponding
interviewee is a man) This independent vector may be viewed as a “coarse-level”
vector, whose purpose is to explain the variance between the salaries of women as a
group and the salaries of men as a group. The third 1000-dimensional independent
vector contains the number of hours that one works per day. This “fine-level” vector
is supposed to explain the fine-scale variance among the individuals in the sample
in terms of the amount of time they work per day.

1.21 Exercises 19

Now, we approximate the dependent vector by a linear combination of the three
independent vectors in the best way we can (say, in the l2-norm). The coefficients
of the independent vectors in the linear combination then tell us the results. In
fact, the first and third independent vectors are only used for control purposes.
What really interests us is the coefficient of the second independent vector, the
“coarse-level” vector. Indeed, this coefficient tells us whether gender really affects
salary: if the coefficient is negative, then it would mean that the salary of a woman
may indeed decrease only because she is a woman. If, on the other hand, it is not
statistically significant, then it would mean that we are unable to conclude any
gender discrimination from our experiment.

Of course, more realistic research must include many more “fine-level” indepen-
dent vectors to account for many more kinds of variance in the level of individuals.
For example, one must also control variance in terms of education, marital status,
number of children, and so on. Only when every relevant “fine-level” independent
vector is included in the model (namely, it is controlled), can one use the coeffi-
cient of the “coarse-level” independent vector to draw any indication about any
discrimination against any particular group in the society.

This procedure is called linear regression or analysis of variance. Indeed, it
attempts to study the effect of the “coarse-level” variance between different groups,
after the effect of the “fine-level” variance among individuals has been filtered out.

In more thorough research, one might want to introduce also “intermediate-
level” independent variables to control variance among subgroups in the population.
For example, one might want to control the profession of the interviewee, as it might
have a significant effect on his/her salary. To do this, one should introduce many
more binary independent vectors with the value 1 if one is in a particular profession
and 0 otherwise. These independent vectors will filter out the effect of profession on
the salary, leaving the pure effect of gender in the coefficient of the gender vector.

1.20 Multilevel in Music

Multilevel is also often used in music. The fine level in the musical piece is deter-
mined by the basic motif, which consists of a small number of notes that contain the
basic musical idea. In the coarser level, this motif is repeated with slight variations,
while preserving its original spirit, to form the complete musical piece.

In other words, the motif in the fine level is the heart of the musical piece. In the
coarse level, it is varied by adding to it extra notes and harmonies. Thus, the coarse
level is where the musical piece is actually designed and tied from the elementary
motif.

1.21 Exercises

1. Consider the (naive) inherently sequential algorithm to solve the problem in
Section 1.18:

L1 = g1

Li+1 = Ligi+1, i = 1, 2, 3, . . . , kp − 1.

20 1 The Multilevel-Multiscale Approach

Compute the operation count (number of multiplications) required in this algo-
rithm. (The answer is a function of kp.)

2. Assume that a multiplication requires α seconds, where α is a small positive
parameter. Calculate the computation time required in the above algorithm.
(This is called the serial time.)

3. Calculate the number of multiplications required in the parallel algorithm in
Section 1.18. Is it larger than the number of multiplications in the above naive
algorithm? By what factor?

4. Assume that a parallel computer with p processors is available. Assume that
a multiplication in each processor requires α seconds. Calculate the parallel
computation time: the time required to perform the multiplications required in
the parallel algorithm on the parallel computer with p processors. (You may
assume that the coarse-level step in the parallel algorithm is carried out on one
of the processors.)

5. Assume also that delivering data from one processor to another requires γ + δB
seconds, where γ and δ are small positive parameters, and B is the number
of bytes delivered in the message. Calculate the communication time: the time
required to deliver the messages required in the above parallel algorithm on
the above parallel computer. Note that communication is required mainly in
the coarse-level step in the parallel algorithm in Section 1.18. (You may assume
that this step is performed by first sending all the required data from all the
processors to a single processor, and then carrying out the calculation in this
processor only.)

6. Calculate the parallel time: the parallel computation time plus the communica-
tion time.

7. Calculate the speedup: the serial time divided by the parallel time.
8. Calculate the average speedup: the speedup divided by p.
9. Assume the typical values α = 10−6, γ = 10−3, δ = 10−7, and kp = 109. How

do the speedup and average speedup behave as functions of p?
10. Repeat the above exercises, only this time assume that the coarse-level step in

the parallel algorithm in Section 1.18 is carried out recursively in parallel by
the same parallel algorithm itself. How does this affect the speedup and average
speedup?

11. Write the computer code required for the recursive algorithm in the previous
exercise. You may assume that k = 2. (You must use a programming language
that supports recursion, such as C or C++.)

12. Write the computer code that implements the algorithm in Section 1.3 that
divides two integer numbers (without using the ‘/’ operation available in the
computer language.)

13. Repeat the above exercise, only this time use recursion.
14. Write the computer function that implements the algorithm in Section 1.4 to

find the greatest common divisor of two positive integer numbers m and n
(m > n).

15. Repeat the previous exercise, only this time use recursion. For example:

Algorithm 1.3 GCD(m,n): if m is divisible by n, then return n; otherwise,
return GCD(n,m mod n).

16. Use induction on m to show that the above code indeed works.

1.21 Exercises 21

17. Show that the least common multiple of two integer numbers i and j is ij/m,
where m is the greatest common divisor of i and j.

18. Use your answers to the previous two exercises to write a code that adds two
simple fractions (without using the arithmetic operations available in the pro-
gramming language) by finding the least common multiple of the two denomi-
nators and using it as a common denominator.

19. Write the computer code that implements the algorithm in Section 1.2 that
provides the binary representation of an integer number. The solution can be
found in Section 1.18 in [103].

20. Repeat the previous exercise, only this time use recursion. The solution can be
found in Section 1.18 in [103].

21. Write the computer code that implements the algorithm in Section 1.12 to sort a
list of elements according to a given order (e.g., a list of unordered integers that
should be ordered in increasing order). The solution can be found in Chapter 3
in [103].

22. Write the computer code that implements the algorithm in Section 1.17 to solve
the tower problem. Implement the three towers of rings in a list of three well-
ordered connected lists of integer numbers, as in Chapter 3 in [103]. (Use an
extra fictitious item to make sure that each connected list is never completely
empty.)

2

Preliminaries

In this chapter, we list some basic definitions and prove some standard lemmas
used throughout the book. In particular, the lemmas are used to obtain some useful
properties of the one- and two-dimensional Fourier (sine) transform, which are used
often in the book.

2.1 Preliminary Notation and Definitions

Here we present some elementary notation and definitions from linear algebra that
are useful throughout the book.

For every integer i, define

i mod 2 =
{

0 if i is even
1 if i is odd.

Also, for every two integers i and j, we say that

i ≡ j mod 2

if i − j is even.
Let A = (ai,j)1≤i,j≤K be a square matrix. Then K is called the order of A. The

reverse direction is also true: saying that A is of order K implies that A is a square
matrix.

The lower- (respectively, strictly lower-) triangular part of A is a matrix L =
(li,j)1≤i,j≤K with the elements

li,j =

{
ai,j if i ≥ j (respectively, i > j)
0 if i < j (respectively, i ≤ j).

Similarly, the upper- (respectively, strictly upper-) triangular part of A is a matrix
U = (ui,j)1≤i,j≤K with the elements

ui,j =

{
ai,j if j ≥ i (respectively, j > i)
0 if j < i (respectively, j ≤ i).

24 2 Preliminaries

We say that A is lower- (respectively, strictly lower-) triangular if it is equal to
its lower- (respectively, strictly lower-) triangular part. Similarly, we say that A is
upper- (respectively, strictly upper-) triangular if it is equal to its upper- (respec-
tively, strictly upper-) triangular part.

Let R denote the real field, and let C denote the complex field. For every z ∈ C,
(z) denotes the real part of z, �(z) denotes the imaginary part of z, and z̄ denotes
the complex conjugate of z. We also denote the k-dimensional vector space over C by

Ck ≡ {(z1, z2, . . . , zk) | zi ∈ C, 1 ≤ i ≤ k} .

Similarly, we denote the 2-D Euclidean plane by

R2 ≡ {(x, y) | x and y are real numbers} ,

and the 2-D infinite grid of pairs of integer numbers by

Z2 ≡ {(k, l) | k and l are integer numbers} .

If a nonzero vector v ∈ CK and a complex or real number λ satisfy

Av = λv,

then we say that v is an eigenvector of A and λ is an eigenvalue of A that corresponds
to v. The set of all eigenvalues of A is called the spectrum of A. The maximal
magnitude of a point in the spectrum of A is called the spectral radius of A and is
denoted by ρ(A).

The following theorem is the celebrated Gersgorin’s Theorem.

Theorem 2.1 The spectrum of A is contained in the following set.

K⋃
i=1

⎧⎨
⎩z is a complex number

∣∣∣∣ |z − ai,i| ≤
∑

1≤j≤K, j �=i

|ai,j |

⎫⎬
⎭ .

Proof. Let v be an eigenvector of A with the corresponding eigenvalue λ. In other
words,

v �= 0 and Av = λv. (2.1)

Let i be the index of the component in v of maximum modulus; that is,

|vi| ≥ |vj |, 1 ≤ j ≤ K, j �= i. (2.2)

Consider the ith equation in (2.1):

K∑
j=1

ai,jvj = λvi,

or

(ai,i − λ)vi = −
∑

1≤j≤K, j �=i

ai,jvj .

2.1 Preliminary Notation and Definitions 25

By taking absolute values in both sides of the above equation and using also (2.2),
one obtains

|ai,i − λ| |vi| =

∣∣∣∣∣∣
∑

1≤j≤K, j �=i

ai,jvj

∣∣∣∣∣∣
≤

∑
1≤j≤K, j �=i

|ai,j | |vj |

≤
∑

1≤j≤K, j �=i

|ai,j | |vi|.

From (2.1) and (2.2), we also have that |vi| > 0. Therefore, one can divide both
sides of the above inequality by |vi|, from which the theorem follows.

Furthermore, we say that A is positive definite if all its eigenvalues are positive.
We say that A is positive semidefinite if all its eigenvalues are positive or zero.
We say that A is indefinite if it has both eigenvalues with positive real parts and
eigenvalues with negative real parts.

The square root of a positive-semidefinite matrix is a matrix with the same
eigenvectors as the original matrix but with corresponding eigenvalues that are the
square roots of the corresponding eigenvalues of the original matrix.

We say that A is diagonal if ai,j �= 0 implies i = j, that is, only main-diagonal
elements can be nonzero, and all off-diagonal elements vanish.

Let I denote the identity matrix of order K, that is, the diagonal matrix whose
main-diagonal elements are all equal to 1. Define the standard unit vector e(i) by

e
(i)
j =

{
1 if j = i
0 if j �= i.

In other words, e(i) is the ith column in the identity matrix I.
We say that A is tridiagonal if ai,j �= 0 implies |i− j| ≤ 1. That is, A is a matrix

with only three nonzero diagonals: the main diagonal and the two diagonals that
are adjacent to it. All other diagonals vanish. In this case, we write

A = tridiag(bi, ci, di);

that is, the only nonzero elements in the ith row are bi, ci, and di, in this order.
Of course, the first row contains only two nonzero elements c1 and d1, and the last
row contains only two nonzero elements bK and cK .

The diagonal part of A, diag(A), is the diagonal matrix with the same main-
diagonal elements as A:

diag(A) = diag(ai,i)1≤i≤K = diag(a1,1, a2,2, . . . , aK,K).

Similarly, bidiag(A), tridiag(A), pentadiag(A), and blockdiag(A) contain, respec-
tively, two diagonals, three diagonals, five diagonals, and a diagonal of blocks with
the same elements as in A, and zeroes elsewhere.

We say that A is nonnegative if all its elements are positive or zero. We say that
A is an L-matrix if all its off-diagonal elements are either negative or zero. We say
that A is an M-matrix if it is an L-matrix with positive main-diagonal elements and
a nonnegative inverse A−1 [118].

26 2 Preliminaries

The M-matrix property is particularly important in discrete approximations to
differential operators: because the Green function that represents the inverse of the
differential operator is usually nonnegative, so should also be the inverse of the
matrix that contains the discrete approximation to that differential operator.

Finally, A is diagonally dominant if, for every 1 ≤ i ≤ K,

ai,i ≥
∑

1≤j≤K, j �=i

|ai,j |.

The following standard lemma is useful in the analysis in Parts III and IV below.

Lemma 2.1 If A is diagonally dominant, then its spectrum is contained in the set
K⋃

i=1

{z is a complex number | |z − ai,i| ≤ ai,i} .

As a result,

ρ(A) ≤ 2ρ(diag(A)).

If, in addition, A has a real spectrum, then it is also positive semidefinite.

Proof. The lemma follows from Theorem 2.1.

The transpose of A, At, is defined by(
At
)
i,j

= aj,i.

We say that A is symmetric if A is real and A = At. If A is symmetric and positive
definite, then we say that A is symmetric positive definite or SPD.

The adjoint to A is defined by

(A∗)i,j = āj,i.

In other words,

A∗ = Āt.

We say that A is hermitian if A = A∗.
In this book, however, we deal with real matrices only, so one can assume

A∗ = At. The only place where complex matrices are used is in the numerical
examples with indefinite matrices. Therefore, we use “∗” only when we would like
to emphasize that, for complex matrices, the adjoint should be used rather than the
transpose. In fact, it would be possible to replace “t” by “∗” and “symmetric” by
“hermitian” throughout the book, with only few additional adjustments.

The inner product of two vectors u, v ∈ CK is defined by

(u, v)2 ≡ u · v̄ ≡
K∑

i=1

uiv̄i.

The l2 norm of a vector v ∈ CK is defined by

‖v‖2 ≡
√

(v, v)2.

The l1 norm of a vector v ∈ CK is

|v|1 =
K∑

i=1

|vi|.

2.1 Preliminary Notation and Definitions 27

The l∞ norm of a vector v ∈ CK is

|v|∞ = max
1≤i≤K

|vi|.

The l2 norm of the matrix A is defined by

‖A‖2 = max
v∈CK , v �=0

‖Av‖2

‖v‖2
= max

v∈CK , ‖v‖2=1
‖Av‖2.

The l1 norm of the matrix A is defined by

‖A‖1 = max
v∈CK , v �=0

‖Av‖1

‖v‖1
= max

v∈CK , ‖v‖1=1
‖Av‖1.

The l∞ norm of the matrix A is defined by

‖A‖∞ = max
v∈CK , v �=0

‖Av‖∞
‖v‖∞

= max
v∈CK , ‖v‖∞=1

‖Av‖∞.

The following lemma states useful matrix-norm inequalities, including the triangle
inequality.

Lemma 2.2 Let ‖ · ‖ denote the l1, l2, or l∞ norm. Then we have

ρ(A) ≤ ‖A‖.

Moreover,

‖Av‖ ≤ ‖A‖ · ‖v‖

for every K-dimensional vector v. Furthermore, if B is another matrix of order K,
then

‖AB‖ ≤ ‖A‖ · ‖B‖

and

‖A + B‖ ≤ ‖A‖ + ‖B‖.

Proof. Let λ be the maximal eigenvalue of A (in terms of magnitude), and let u
be the corresponding eigenvector. Then we have

‖A‖ = max
v∈CK , v �=0

‖Av‖
‖v‖ ≥ ‖Au‖

‖u‖ = |λ| = ρ(A).

Next, for every nonzero vector v ∈ CK ,

‖Av‖ = ‖A(v/‖v‖)‖ · ‖v‖ ≤ max
w∈CK , ‖w‖=1

‖Aw‖ · ‖v‖ = ‖A‖ · ‖v‖.

As a result, we have

‖ABv‖ ≤ ‖A‖ · ‖Bv‖ ≤ ‖A‖ · ‖B‖ · ‖v‖,

28 2 Preliminaries

which implies that

‖AB‖ max
v∈CK , v �=0

‖ABv‖
‖v‖ ≤ ‖A‖ · ‖B‖.

Finally, we have

‖A + B‖ = max
v∈CK , v �=0

‖(A + B)v‖
‖v‖

≤ max
v∈CK , v �=0

‖Av‖ + ‖Bv‖
‖v‖

≤ max
v∈CK , v �=0

‖Av‖
‖v‖ + max

v∈CK , v �=0

‖Bv‖
‖v‖

= ‖A‖ + ‖B‖.
This completes the proof of the lemma.

The following lemma expresses ‖A‖1 in terms of the elements in A.

Lemma 2.3

‖A‖1 = max
1≤j≤K

K∑
i=1

|ai,j |.

Proof. Clearly, the l1 vector norm is convex. Indeed, for any two K-dimensional
vectors u and v and a parameter 0 < α < 1,

‖αu + (1 − α)v‖1 ≤ ‖αu‖1 + ‖(1 − α)v‖1 = α‖u‖1 + (1 − α)‖v‖1.

Thus, the vector v that satisfies ‖v‖1 = 1 and maximizes ‖Av‖1 is the standard
unit vector e(j) for which the jth column in A has a maximum l1 norm, which is
also ‖A‖1. This completes the proof of the lemma.

The following lemma expresses ‖A‖∞ in terms of the elements in A.

Lemma 2.4

‖A‖∞ = max
1≤i≤K

K∑
j=1

|ai,j |.

Proof. Clearly, the vector v that satisfies ‖v‖∞ = 1 and maximizes ‖Av‖∞ is the
vector defined by

vi = āi,j/|ai,j |
for that i for which

∑
j |ai,j | is maximal (and therefore also equal to ‖A‖∞). This

completes the proof of the lemma.

Corollary 2.1

‖At‖∞ = ‖A‖1.

Proof. The corollary follows from Lemmas 2.3 and 2.4.

Let D be an SPD matrix of order K. The inner product induced by D is
defined by

(u, v)D = (u,Dv)2.

2.1 Preliminary Notation and Definitions 29

The vector norm induced by D is defined by

‖v‖D =
√

(v, v)D.

The norm of A with respect to (·, ·)D is defined by

‖A‖D = max
v∈CK , v �=0

‖Av‖D

‖v‖D
= max

v∈CK , ‖v‖D=1
‖Av‖D.

The following lemma is analogous to Lemma 2.2.

Lemma 2.5 Let D be an SPD matrix. Then

ρ(A) ≤ ‖A‖D.

Moreover, for any vector v ∈ CK ,

‖Av‖D ≤ ‖A‖D‖v‖D.

Furthermore, for any matrix B of order K,

‖AB‖D ≤ ‖A‖D‖B‖D

and

‖A + B‖D ≤ ‖A‖D + ‖B‖D.

Proof. The proof is similar to that of Lemma 2.2.

We say that the matrix At
D is the adjoint of A with respect to (·, ·)D if

(u,Atv
D)D = (Au, v)D

for every two vectors u, v ∈ CK . The following lemma states that the adjoint of the
adjoint is the original matrix.

Lemma 2.6 Let D be an SPD matrix. Then(
At

D

)t
D

= A.

Proof. The lemma follows from the fact that

(At
Dv, u)D = (v,Au)D

for every two vectors u, v ∈ CK .
We say that A is symmetric with respect to (·, ·)D if

At
D = A.

Lemma 2.7 Let D be an SPD matrix. Then At
DA is symmetric with respect

to (·, ·)D.

Proof. The lemma follows from the fact that, for every two vectors u, v ∈ CK ,

(u,At
DAv)D = (Au,Av)D = (At

DAu, v)D.

We say that A is orthogonal if

A∗A = I,

30 2 Preliminaries

or, in other words, all the columns of A are orthonormal with respect to the usual
inner product (·, ·)2.

Let A be a square or rectangular matrix, A = (ai,j)1≤i≤K1,1≤j≤K2 . The trans-
pose of A, At, is defined by(

At
)
j,i

= ai,j , 1 ≤ i ≤ K1, 1 ≤ j ≤ K2.

The following standard lemma gives an alternative definition to the notion of
the transpose of a matrix.

Lemma 2.8 Let Z = (zi,j)1≤i≤K2,1≤j≤K1 be a square or rectangular matrix. Then
Z is the transpose of A if and only if

(Au, v)2 = (u,Zv)2 (2.3)

for every two vectors u ∈ CK2 and v ∈ CK1 .

Proof. Let us first prove the “only if” part. Assume that Z = At. Then,

(Au, v)2 =
K1∑
i=1

K2∑
j=1

ai,juj v̄i =
K2∑
j=1

K1∑
i=1

ujzj,iv̄i = (u,Zv)2.

Let us now prove the “if” part. Assume that (2.3) holds. Then, the assertion
that zj,i = ai,j follows by picking a vector u whose all components vanish except
its jth component, uj , which is equal to 1, and a vector v whose all components
vanish except its ith component, vi, which is equal to 1. This completes the proof
of the lemma.

We say that the matrices A and Z are the transpose of each other with respect
to (·, ·)D if

(Au, v)D = (u,Zv)D

for every two vectors u ∈ CK2 and v ∈ CK1 .
More standard linear algebra lemmas can be found in Section 2.3.
Define the absolute value of A by

|A|i,j = |ai,j |, 1 ≤ i ≤ K1, 1 ≤ j ≤ K2. (2.4)

Define the diagonal matrix of row sums of A by

rs(A) = diag

⎛
⎝K2∑

j=1

ai,j

⎞
⎠

1≤i≤K1

. (2.5)

By “grid” we mean a finite set of points in R2. Let g be a grid; for example,
the grid in (3.6) below. Let s be a subset of g (a subgrid). Let l2(s) be the set of
complex-valued functions defined on s. In particular, l2(g) is the set of complex-
valued functions defined on g, also referred to as “grid functions.”

Define the injection operator Js : l2(g) → l2(s) by

(Jsv)(k) ≡ v(k), v ∈ l2(g), k ∈ s. (2.6)

In particular, Jc is the injection onto the coarse grid c defined in (6.1) below.

2.3 Standard Lemmas about Symmetric Matrices 31

2.2 Application in Pivoting

Here we present an application of the algorithm in Section 1.18 to the pivoting of
tridiagonal matrix. Let

A = tridiag(bi, 1, di)

be a tridiagonal matrix of order N . The pivoting process is defined by p1 = 1 and,
for i = 2, 3, . . . , N ,

pi = 1 − bidi−1

pi−1
. (2.7)

The pivots pi are useful in the factorization of A as the product of triangular
matrices. Indeed, define the diagonal matrix

X = diag(p1, p2, . . . , pN).

Let L be the strictly lower triangular part of A, and U be the strictly upper trian-
gular part of A. Then we have

A = (L + X)X−1(X + U).

This factorization is useful in solving linear systems with A as a coefficient matrix.
Now, the pivoting process in (2.7) can be reformulated as a continued fraction.

Indeed, define

qi = pi − 1.

The pivoting process in (2.7) is thus equivalent to the process defined by q1 = 0
and, for i = 2, 3, . . . , N ,

qi =
−bidi−1

1 + qi−1
. (2.8)

It is well known (see, e.g., [93]) that the convergents in a continued fraction
may be interpreted as a sequence of products of 2× 2 matrices. In fact, the current
convergent is obtained from the previous one by multiplying it on the right by some
2× 2 matrix. Here, however, the qis are the “mirror image” of a continued fraction,
in which qi corresponds to the 2 × 2 matrix obtained from multiplying the matrix
corresponding to qi−1 by some 2 × 2 matrix on the left rather than on the right.
Still, this structure is well suited for the parallel algorithm in Section 1.18. The pis
are then obtained from the qis, and the pivoting is completed.

The solution of the tridiagonal linear system also requires forward elimination
in L + X and back substitution in X + U . These processes can by themselves be
formulated as products of affine transformations, and thus are also suitable for the
parallel algorithm in Section 1.18. (See Section 2.2 in [96] for the details.)

2.3 Standard Lemmas about Symmetric Matrices

This section contains standard lemmas that are useful in the sequel. Basically, these
lemmas show that matrices that are symmetric with respect to an inner product

32 2 Preliminaries

of the form (·, ·)D for some SPD matrix D enjoy the same properties as standard
symmetric matrices. The first lemma shows that the inverse of a symmetric matrix
is also symmetric.

Lemma 2.9 Let D be an SPD matrix, and assume that A is symmetric with respect
to (·, ·)D. Then A−1 is also symmetric with respect to (·, ·)D.

Proof. For every two vectors x and y,

(x,A−1y)D = (AA−1x,A−1y)D = (A−1x,AA−1y)D = (A−1x, y)D.

This completes the proof of the lemma.

The next lemma shows that matrices that are symmetric with respect to an
induced inner product have real spectra.

Lemma 2.10 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D. Then A has a real spectrum.

Proof. If

Av = λv

for a nonzero vector z and a scalar λ, then

λ(v, v)D = (Av , v)D = (v,Av)D = λ̄(v, v)D.

This completes the proof of the lemma.

The next lemma says that a matrix is symmetric with respect to some inner
product if and only if there exists a basis of orthonormal eigenvectors (with respect
to this inner product) that correspond to real eigenvalues.

Lemma 2.11 Let D be an SPD matrix. Then A is symmetric with respect to (·, ·)D

if and only if there exists a basis of eigenvectors of A that correspond to real eigen-
values and are orthonormal with respect to (·, ·)D (i.e., they are orthogonal to each
other with respect to (·, ·)D and their D-induced norm is equal to 1).

Proof. Let us first prove the “only if” part. Assume that A is symmetric with
respect to (·, ·)D. Assume also that

Av = λv and Au = µu

for some nonzero vectors v and u and scalars λ �= µ. Using Lemma 2.10, we then have

λ(v, u)D = (Av , u)D = (v,Au)D = µ̄(v, u)D = µ(v, u)D,

which implies

(v, u)D = 0.

Consider now the Jordan block of A corresponding to the eigenvalue λ, and as-
sume that the corresponding Jordan subspace is spanned by the vectors w1, w2, . . . ,
wn+1 in the Jordan basis. By induction, assume also that every invariant subspace
of A of dimension at most n can be spanned by n eigenvectors of A that are
orthonormal with respect to (·, ·)D. In particular, the span of w1, w2, . . . , wn can

2.3 Standard Lemmas about Symmetric Matrices 33

be spanned by such orthonormal eigenvectors v1, v2, . . . , vn corresponding to the
eigenvalue λ. For some scalars α1, α2, . . . , αn, we have

Awn+1 = λwn+1 +
n∑

i=1

αivi.

Therefore, for every 1 ≤ j ≤ n, we have

λ(wn+1, vj)D = (wn+1,Av j)D = (Awn+1, vj)D = λ(wn+1, vj)D + αj ,

implying that

αj = 0.

Thus, wn+1 is also an eigenvector of A corresponding to the eigenvalue λ. By ap-
plying a Gramm–Schmidt process to wn+1 with respect to (·, ·)D, one obtains an
eigenvector vn+1 that corresponds to the eigenvalue λ and is also orthogonal to
v1, v2, . . . , vn with respect to (·, ·)D and satisfies ‖vn+1‖D = 1. This completes the
induction step and the proof of the “only if” part.

Let us now prove the “if” part. Assume that there exists a basis of eigenvectors
of A that correspond to real eigenvalues and are orthonormal with respect to (·, ·)D.
Let V be the matrix whose columns are these eigenvectors and Λ the diagonal matrix
whose diagonal elements are the corresponding real eigenvalues. In other words,

AV = V Λ,

and, hence,

A = V ΛV −1, (2.9)

with

V ∗DV = I. (2.10)

From (2.10) we have

V −1 = V ∗D. (2.11)

By using (2.11) in (2.9), we get

A = V ΛV ∗D. (2.12)

As a result, for every two vectors x and y we have

(Ax , y)D = (V ΛV ∗Dx , y)D

= (DV ΛV ∗Dx , y)2
= (x,DV ΛV ∗Dy)2
= (Dx , V ΛV ∗Dy)2
= (x, V ΛV ∗Dy)D

= (x,Ay)D .

This completes the proof of the “if” part and the whole lemma.

The next lemma gives alternative definitions to the terms “positive definite”
and “positive semidefinite” defined in Section 2.1 above. When the condition in the
lemma is satisfied, we may say that A is SPD with respect to (·, ·)D.

34 2 Preliminaries

Lemma 2.12 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D. Then A is positive definite (respectively, positive semidefinite) if
and only if for every nonzero vector x (Ax , x)D is positive (respectively, positive or
zero).

Proof. Let us first prove the “only if” part. Let x be a nonzero vector. From
Lemma 2.11, we have

x =
∑

αivi,

where the αis are some scalars and the vis are the orthonormal eigenvectors of A
with corresponding eigenvalues λi. Thus, we have

(Ax , x)D =
∑

λi|αi|2.

Because x is nonzero, at least one of the αis is also nonzero. Therefore, if A is
positive definite (respectively, positive semidefinite), then all the λis are positive
(respectively, positive or zero), implying that (Ax , x)D is positive (respectively,
positive or zero). This completes the proof of the “only if” part.

Let us now prove the “if” part. Indeed, if (Ax , x)D is positive (respectively,
positive or zero) for every nonzero vector x, then this is particularly true for an
eigenvector of A, implying that the corresponding eigenvalue is positive (respec-
tively, positive or zero). This completes the proof of the lemma.

The next lemma is a version of the “minimax” theorem.

Lemma 2.13 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D. Then

ρ(A) = max
x�=0

∣∣∣∣ (Ax , x)D

(x, x)D

∣∣∣∣ . (2.13)

Proof. Let us solve a problem that is equivalent to the right-hand side in (2.13).

maximize |(Ax , x)D| subject to (x, x)D = 1. (2.14)

From Lemma 2.11, we can represent every vector x as

x =
∑

αivi,

where the αis are some scalars and the vis are the orthonormal eigenvectors of A
with corresponding eigenvalues λi. Furthermore, we have

(Ax , x)D =
∑

λi|αi|2.

Thus, the problem in (2.14) can be reformulated as

maximize
∣∣∣∑λi|αi|2

∣∣∣ subject to
∑

|αi|2 = 1, (2.15)

where the λis are the eigenvalues of A and the αis are the unknowns to be found.
From Lagrange theory, we have that the extreme vectors (α1, α2, . . .)t for the func-
tion to be maximized in (2.15) are the ones for which the gradient of that function
is a scalar multiple of the gradient of the constraint; that is, (λ1α1, λ2α2, . . .)t is
a scalar multiple of (α1, α2, . . .)t. This could happen only when all the αis vanish

2.3 Standard Lemmas about Symmetric Matrices 35

except those that correspond to one of the eigenvalues, say λj . At this extreme
vector we have ∑

λi|αi|2 = λj

∑
|αi|2 = λj .

This implies that the solution to (2.14) is the eigenvector of A with the eigenvalue
of the largest possible magnitude, namely, ρ(A). This completes the proof of the
lemma.

Lemma 2.14 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D. Then

‖A‖D = ρ(A).

Proof. The proof is similar to the proof of Lemma 2.13, except that here one should
solve the problems

maximize (Ax ,Ax)D subject to (x, x)D = 1 (2.16)

and

maximize
∑

λ2
i |αi|2 subject to

∑
|αi|2 = 1 (2.17)

rather than (2.14) and (2.15), respectively. The solution of (2.16) and (2.17) leads to

‖A‖2
D = ρ(A)2,

which completes the proof of the lemma.

The next lemma shows that the energy norm induced by a positive definite
matrix is bounded in terms of the energy norm induced by a yet “more positive
definite” matrix:

Lemma 2.15 Let D be an SPD matrix, and assume that A, Á and A − Á are
symmetric with respect to (·, ·)D and positive semidefinite. Then for every vector x
we have

(x, Áx)D ≤ (x,Ax)D (2.18)

Furthermore,

‖Á‖D ≤ ‖A‖D. (2.19)

Proof. Equation (2.18) follows from Lemma 2.12 and

(x,Ax)D = (x, Áx)D + (x, (A − Á)x)D ≥ (x, Áx)D.

Then, (2.19) follows from (2.18) and Lemmas 2.12 through 2.14. This completes the
proof of the lemma.

The next lemma provides some properties for the square root of an SPD matrix.

Lemma 2.16 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D and positive semidefinite. Then

(A1/2)2 = A, (2.20)

36 2 Preliminaries

A1/2 is also symmetric with respect to (·, ·)D, and

‖A1/2‖2
D = ‖A‖D. (2.21)

Proof. From the “only if” part in Lemma 2.11, we have that (2.9) holds (with
the notation used there). From the definition of the square root of a matrix in
Section 2.1, we have

A1/2 = V Λ1/2V −1,

which implies (2.20). From the “if” part in Lemma 2.11, we have that A1/2 is also
symmetric with respect to (·, ·)D. Finally, from Lemma 2.14, we have

‖A1/2‖2
D = ρ(A1/2)2 = ρ(A) = ‖A‖D,

which completes the proof of the lemma.

The following lemma gives an alternative definition to the norm of a matrix.

Lemma 2.17 Let D be an SPD matrix. Then

‖A‖D = ‖D1/2AD−1/2‖2.

Proof. Using Lemma 2.16 (with D there being the identity matrix I and A there
being the SPD matrix D from this lemma), we have

‖A‖D = max
v �=0

‖Av‖D

‖v‖D

= max
D1/2v �=0

‖D1/2AD−1/2(D1/2v)‖2

‖D1/2v‖2

= ‖D1/2AD−1/2‖2.

This completes the proof of the lemma.

We conclude with two lemmas regarding more general matrices, which are not
necessarily symmetric with respect to any inner product. The following lemma states
that the norm of the adjoint is the same as the norm of the original matrix:

Lemma 2.18 Let D be an SPD matrix, and let At
D be the adjoint of A with respect

to (·, ·)D. Then

‖At
D‖D = ‖A‖D.

Proof. On one hand, we have from Lemmas 2.5, 2.7, and 2.13 that

‖A‖2
D = max

v∈CK , v �=0

‖Av‖2
D

‖v‖2
D

= max
v∈CK , v �=0

(Av ,Av)D

(v, v)D

= max
v∈CK , v �=0

(At
DAv, v)D

(v, v)D

= ρ(At
DA)

≤ ‖At
DA‖D

≤ ‖At
D‖D‖A‖D,

2.3 Standard Lemmas about Symmetric Matrices 37

which implies

‖A‖D ≤ ‖At
D‖D.

On the other hand, using Lemma 2.6, we also have

‖At
D‖2

D = max
v∈CK , v �=0

‖Atv
D‖2

D

‖v‖2
D

= max
v∈CK , v �=0

(Atv
D , Atv

D)D

(v, v)D

= max
v∈CK , v �=0

(AAtv
D , v)D

(v, v)D

= ρ(AAt
D)

≤ ‖AAt
D‖D

≤ ‖A‖D‖At
D‖D,

which implies

‖At
D‖D ≤ ‖A‖D.

This completes the proof of the lemma.

Finally, the following lemma bounds the norm induced by an SPD matrix D.

Lemma 2.19 Let D be an SPD matrix, and let At
D be the adjoint of A with respect

to (·, ·)D. Then

‖A‖D ≤
√

‖At
D‖∞‖A‖∞.

Proof. From Lemmas 2.2, 2.7, and 2.13, we have that

‖A‖2
D = max

v∈CK , v �=0

‖Av‖2
D

‖v‖2
D

= max
v∈CK , v �=0

(Av ,Av)D

(v, v)D

= max
v∈CK , v �=0

(At
DAv, v)D

(v, v)D

= ρ(At
DA)

≤ ‖At
DA‖∞

≤ ‖At
D‖∞‖A‖∞.

This completes the proof of the lemma.

Corollary 2.2 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D. Then

‖A‖D ≤ ‖A‖∞.

Proof. The corollary follows from Lemma 2.19 by setting At
D = A.

38 2 Preliminaries

Corollary 2.3 Assume that A = (ai,j) is symmetric and diagonally dominant with
positive main-diagonal elements. Define D = diag(A). Then

‖D−1/2AD−1/2‖2 = ‖D−1A‖D ≤ 2.

Proof. Because A is symmetric, D−1A is symmetric with respect to (·, ·)D. The
corollary follows from Lemma 2.17, Corollary 2.2, and Lemma 2.4, when applied
to D−1A.

2.4 The Fourier Transform

In many problems in pure and applied science, the notion of “scales” or “levels”
is helpful not only in the solution process but also in a deep understanding of the
problem and its complexity. Most often, each scale has its own contribution to and
influence on the mathematical or physical phenomenon. A most useful tool in distin-
guishing between different scales is the Fourier transform. This transform interprets
a given function in terms of frequencies or waves rather than numerical nodal values.
Low frequencies or long waves describe the variation of the function in coarse scales,
whereas high frequencies or short waves correspond to fine-scale, delicate changes
in the function. The Fourier transform has many applications in pure and applied
mathematics, from classical, analytic fields such as functional analysis to modern,
practical fields such as digital signal processing.

The hierarchy of Fourier functions can be introduced as eigenfunctions of a
boundary-value problem. Consider the ordinary differential equation

−u′′(x) = F(x), 0 < x < 1, (2.22)

where F is a given function on (0, 1) and u is the unknown function on [0, 1]. Assume
also that Dirichlet boundary conditions that specify the values of u at the endpoints
are given:

u(0) = u(1) = 0. (2.23)

The boundary-value problem (2.22) and (2.23) is called a Sturm–Liouville problem.
This problem has the set of eigenfunctions

{sin(πkx)}∞k=1 (2.24)

with the corresponding eigenvalues π2k2. In other words, the functions in (2.24)
satisfy the boundary conditions in (2.23) and are also eigenfunctions of the second-
derivative operator in (2.22):

− sin′′(πkx) = π2k2 sin(πkx).

It is well known that the eigenfunctions of a Sturm–Liouville problem are orthogonal
to each other with respect to integration. Indeed, for every distinct k ≥ 1 and l ≥ 1,∫ 1

0

sin(πkx) sin(πlx)dx =
1
2

∫ 1

0

(cos(π(k − l)x) − cos(π(k + l)x))dx

=
1

2π(k − l)
[sin(π(k − l)x)]10 −

1
2π(k + l)

[sin(π(k + l)x)]10

= 0 − 0 = 0.

2.4 The Fourier Transform 39

Let us now describe the discrete Fourier (sine) transform in an N -dimensional
vector space. Let N be a positive integer, and define h = 1/(N +1). The kth Fourier
vector, or mode, is obtained by sampling the kth eigenfunction in (2.24) at the points

h, 2h, 3h, . . . ,Nh

In other words, for every 1 ≤ k ≤ N , the Fourier mode (discrete wave) v(k) is
defined by

v(k) ≡ (2h)1/2(sin(πkh), sin(2πkh), . . . , sin(Nπkh))t. (2.25)

Define the symmetric, tridiagonal matrix of order N

A = tridiag(−1, 2,−1). (2.26)

In fact, the matrix A is obtained from the finite-difference discretization method
applied to the boundary-value problem (2.22) and (2.23) [see Section 3.5 below].
The Fourier modes v(k) are eigenvectors of A:

Av (k) = 4 sin2(πkh/2)v(k). (2.27)

From the symmetry of A, we have that the v(k)s form an orthogonal basis in CN

(Lemma 2.11).
Let V be the matrix whose columns are the v(k)s. That is,

V =
(
v(1) | v(2) | · · · | v(N)

)
. (2.28)

The matrix V represents an operator in CN defined by V : CN → CN defined by

u → Vu, u ∈ CN . (2.29)

This operator is referred to as the sine transform in one dimension. The following
standard lemma shows that V is symmetric and orthogonal, thus equal to its inverse.

Lemma 2.20 V is an orthogonal symmetric matrix. That is,

V−1 = Vt = V.

Proof. The symmetry of V follows from

Vj,k = (2h)1/2 sin(πjkh) = (2h)1/2 sin(πkjh) = Vk,j .

To show that V is also orthogonal, one needs to show that the v(k)s are orthonormal,
that is,

(v(k), v(l))2 =
{

0 if k �= l
1 if k = l.

Now, the orthogonality of the v(k)s follows from the discussion that follows (2.26)
and (2.27) above. It is only left to show that these vectors are also normal, that is,

(v(k), v(k))2 = 1

40 2 Preliminaries

for every 1 ≤ k ≤ N . Indeed,

(v(k), v(k))2 = 2h

N∑
j=1

sin2(πkjh)

= h

N∑
j=1

(
1 −

(
exp(2

√
−1πkjh)

))

= hN + h − h

N∑
j=0

(
exp(2

√
−1πkjh)

)

= 1 − h

⎛
⎝ N∑

j=0

exp(2
√
−1πkjh)

⎞
⎠

= 1 − h
(

1 − exp(2
√
−1πk)

1 − exp(2
√
−1kh)

)
= 1 − 0 = 1.

This completes the proof of the lemma.

Lemma 2.20 shows that the sine transform in (2.29) may be thought of as a
change of coordinates or basis. Instead of specifying the nodal values in the orig-
inal vector u in (2.29), one obtains the various frequencies contained in u in the
vector Vu. Each coordinate in Vu provides the amplitude of a certain wave con-
tained in u.

The Fourier transform defined above can also be slightly modified to handle
boundary conditions different from those in (2.23). Consider, for example, the
Dirichlet–Neumann boundary conditions

u(0) = u′(1) = 0 (2.30)

that specify the value of u at one end point and the value of its derivative at the
other end point. The eigenfunctions of the corresponding Sturm–Liouville problem
(2.22), (2.30) are

{sin(π(k − 1/2)x)}∞k=1. (2.31)

If h is redefined as h = 1/(N +1/2), then the Fourier modes v(k) are obtained from
sampling the kth function in (2.31) at the points

h, 2h, 3h, . . . ,Nh.

These modes are the eigenvectors of the matrix whose elements are the same as
in A, except of its lower-right element, which is equal to 1, rather than AN,N = 2.
Because this matrix is still symmetric, its eigenvectors are still orthogonal to each
other as before.

The sine transform provides the representation of a vector in CN in terms of its
oscillations rather than its components or nodal values. In many cases, however, one
is interested in oscillations in more than one spatial direction. Consider for example,
a rectangular, uniform N ×N grid and vectors in CN2

that are defined on this grid,
hence also referred to as grid functions. For 1 ≤ k, l ≤ N , define the (k, l)-wave or

2.5 Exercises 41

mode to be the grid function that is the tensor product of v(k) and v(l):

v
(k,l)
j,m = v

(k)
j v(l)

m , 1 ≤ j,m ≤ N.

Let V denote now the matrix of order N2 whose columns are the v(k,l)s, 1 ≤ k, l ≤ N .
The transform

u → Vu, u ∈ CN2
(2.32)

is the 2-D (two-dimensional) sine transform. The following standard lemma estab-
lishes that the 2-D sine-transform matrix V is also orthogonal, so the 2-D sine
transform in (2.32) may also be thought of as a change of basis in CN2

from the
usual nodal basis to the Fourier basis of waves or modes.

Lemma 2.21 The 2-D sine-transform matrix V is an orthogonal symmetric matrix.
That is,

V−1 = Vt = V.

Proof. The symmetryofV follows fromthe symmetryofV established inLemma2.20.

v(k,l)
m,n = v(k)

m v(l)
n = v

(m)
k v

(n)
l = v

(m,n)
k,l .

The orthonormality of the v(k,l)s also stems from Lemma 2.20. Indeed, consider
the (k, l)- and (m,n)-waves:(

v(k,l), v(m,n)
)

2
=

∑
1≤i,j≤N

v
(k,l)
i,j v

(m,n)
i,j

=
N∑

i=1

v
(k)
i v

(m)
i

N∑
j=1

v
(l)
j v

(n)
j

=
(
v(k), v(m)

)
2

(
v(l), v(n)

)
2

=
{

1 if k = m and l = n
0 otherwise.

This completes the proof of the lemma.

2.5 Exercises

1. Repeat the exercises at the end of Chapter 1, only this time replace the abstract
problem in Section 1.18 by the more concrete pivoting problem in Section 2.2.
(If your code from these exercises is written as a template function in C++,
then all you have to do is to use it in conjunction with the “matrix2” class in
Section 2.20 in [103].)

2. Define the Fourier vectors w(k) (0 ≤ k < N) by

w
(k)
j = N−1/2 exp(2π

√
−1jkh), 1 ≤ j ≤ N,

42 2 Preliminaries

where h = 1/N . Show that the w(k)s are the eigenvectors of the symmetric
N × N matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2
. . .

. −1
−1 2 −1

−1 2 −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with distinct positive (or zero) eigenvalues. Conclude that A is positive semidef-
inite, and that the w(k)s form an orthonormal basis of CN .

3. Define the Fourier (cosine) vectors w(k) (0 ≤ k < N) by

w
(k)
j = sin(π/2 + π(j − 1/2)kh), 1 ≤ j ≤ N,

where h = 1/N . Show that the w(k)s are the eigenvectors of the symmetric
tridiagonal N × N matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 −1

−1 2
. . .

. −1
−1 2 −1

−1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with distinct positive (or zero) eigenvalues. Conclude that A is positive semidef-
inite, and that the w(k)s form an orthogonal basis of RN . Normalize the w(k)s
so that they are also orthonormal.

4. Define the 2-D Fourier vectors w(k,l) (0 ≤ k, l < N) by

w
(k,l)
j,m = w

(k)
j w(l)

m , 1 ≤ j,m ≤ N.

Define the operators X : RN2 → RN2
and Y : RN2 → RN2

by

(Xv)i,j = vi,j − vi,j+1 if j = 0
(Xv)i,j = 2vi,j − vi,j−1 − vi,j+1 if 0 < j < N

(Xv)i,j = vi,j − vi,j−1 if j = N

(Yv)i,j = vi,j − vi+1,j if i = 0
(Yv)i,j = 2vi,j − vi−1,j − vi+1,j if 0 < i < N

(Yv)i,j = vi,j − vi−1,j if i = N,

for every 2-D vector v ∈ RN2
. Show that the w(k,l)s are the eigenvectors of the

symmetric operator X+Y with distinct positive (or zero) eigenvalues. Conclude
that X + Y is positive semidefinite, and that the w(k,l)s form an orthonormal
basis of RN2

(provided that the w(k)s have been normalized in the previous
exercise).

2.5 Exercises 43

5. Define the Fourier (sine) vectors w(k) (0 ≤ k < N) by

w
(k)
j = sin(π(k + 1/2)jh), 1 ≤ j ≤ N,

where h = 1/(N + 1/2). Show that the w(k)s are the eigenvectors of the sym-
metric tridiagonal N × N matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2
. . .

. −1
−1 2 −1

−1 2 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with distinct positive eigenvalues. Conclude that A is SPD, and that the w(k)s
form an orthogonal basis of RN . Normalize the w(k)s so that they are also
orthonormal.

6. Define the 2-D Fourier vectors w(k,l) (0 ≤ k, l < N) by

w
(k,l)
j,m = w

(k)
j w(l)

m , 1 ≤ j,m ≤ N.

Define the operators X : RN2 → RN2
and Y : RN2 → RN2

by

(Xv)i,j = 2vi,j − vi,j+1 if j = 0
(Xv)i,j = 2vi,j − vi,j−1 − vi,j+1 if 0 < j < N

(Xv)i,j = vi,j − vi,j−1 if j = N

(Yv)i,j = 2vi,j − vi+1,j if i = 0
(Yv)i,j = 2vi,j − vi−1,j − vi+1,j if 0 < i < N

(Yv)i,j = vi,j − vi−1,j if i = N,

for every 2-D vector v ∈ RN2
. Show that the w(k,l)s are the eigenvectors of the

symmetric operator X + Y with distinct positive eigenvalues. Conclude that
X +Y is SPD, and that the w(k,l)s form an orthonormal basis of RN2

(provided
that the w(k)s have been normalized in the previous exercise).

Part II

Partial Differential Equations
and Their Discretization

47

So far, we’ve discussed the multilevel (or multiscale) approach, and illustrated its
usefulness in several branches of mathematics. In the rest of this book, we’ll focus
on the main purpose of the multilevel concept: the numerical solution of partial
differential equations (PDEs).

In this part, we focus on scalar elliptic PDEs such as the Poisson equation and
the diffusion equation in two spatial dimensions. We consider several discretization
methods for approximating the original PDE on a discrete grid. This discretization
produces a large system of algebraic equations that can be solved numerically. The
solution to this system is then accepted as the numerical solution to the original
PDE at the gridpoints.

Thus, the original physical phenomenon that has been reduced to a mathematical
model in the form of a PDE is now reduced further to a system of linear algebraic
equations. This algebraic system can then be solved by iterative methods such as
multigrid later on in this book.

In this part, we describe three discretization methods. In the first chapter in
it (Chapter 3), we describe the finite-difference and finite-volume discretization
methods, and discuss their accuracy and adequacy. In the second one (Chapter 4),
we describe the finite-element discretization method for elliptic PDEs, including
local and adaptive mesh refinement.

3

Finite Differences and Volumes

In this chapter, we describe the finite-difference and finite-volume discretization
methods for scalar second-order elliptic PDEs such as the Poisson equation, highly
anisotropic diffusion equations, the indefinite Helmholtz equation, and the convec-
tion diffusion equation in two spatial dimensions. We study not only the accuracy
of the discretization method (the rate by which the discretization error approaches
zero together with the meshsize) but also its adequacy (the rate by which the dis-
cretization error approaches zero together with the meshsize and the parameter
used in the PDE). Finally, we present the finite-volume discretization method for
diffusion problems with variable or even discontinuous coefficients.

3.1 Elliptic PDEs

Many important problems in applied science and engineering are modeled in the
form of partial differential equations (PDEs). Realistic phenomena are often mod-
eled by systems of (time-dependent, nonlinear) PDEs. Here, however, we restrict
the discussion to scalar, second-order, linear PDEs of the form (3.1) below.

The discussion in this chapter uses some of the standard lemmas in Section 2.3
(with D there being just the identity matrix I). The Nabla operator “∇” used below
stands for either the divergence operator or the gradient operator, as appropriate.
More concretely, if s(x, y) is a scalar function and v(x, y) = (v1(x, y), v2(x, y)) is a
vector function, then we have

∇s = (sx(x, y), sy(x, y))t

∇ · v = v1 x(x, y) + v2 y(x, y)

∇v = (∇v1 ∇v2).

In particular, the first ∇-symbol in (3.1) stands for the divergence operator, whereas
the second and third ones stand for the gradient operator. Let Ω ⊂ R2 be a domain
in the 2-D (two-dimensional) Cartesian plane. The PDE is defined in Ω by

−∇ · D∇u + (a1, a2) · ∇u + βu = F . (3.1)

Here D is a symmetric 2×2 matrix whose elements are scalar real functions defined
in Ω; a1, a2, β, and F are also real scalar functions defined in Ω; and u is the real,
unknown scalar function in Ω that solves (3.1).

50 3 Finite Differences and Volumes

Recall that the determinant of a matrix is equal to the product of its eigenvalues.
Because D is symmetric, it has two real eigenvalues (Lemma 2.10). We say that the
equation in (3.1) is elliptic, hyperbolic, or parabolic depending on whether the
determinant of D is positive, negative, or zero, respectively. In other words, (3.1) is
elliptic if the eigenvalues of D are both positive or both negative, hyperbolic if one
of them is positive and the other is negative, and parabolic if one of them is zero.
Because D depends on the independent variables x and y, the above conditions must
hold uniformly throughout Ω. For example, for (3.1) to be elliptic, the determinant
of D must be positive and bounded away from zero throughout Ω:

det(D) ≥ η,

where η is some positive constant.
In the sequel, we focus on elliptic boundary-value problems. Such problems are

obtained when (3.1) is accompanied with boundary conditions, which must be sat-
isfied by the solution u(x, y) at boundary points (x, y) ∈ ∂Ω.

3.2 The Diffusion Equation

Recall that, because D is symmetric, it has two orthonormal eigenvectors
(Lemma 2.11). Therefore, one could apply an orthogonal transformation to Ω, with
which the 2×2 matrix in the first term in (3.1) is diagonal. Furthermore, we are par-
ticularly interested in symmetric PDEs in the sense in Section 4.1 below. Therefore,
we consider particularly the symmetric elliptic diffusion equation that is obtained
from (3.1) by setting a1 ≡ a2 ≡ β ≡ 0 and assuming that D is diagonal. This
equation arises in many applications, and is thus especially important:

−∇D∇u ≡ −(D1ux)x − (D2uy)y = F (3.2)

in Ω, where D = diag(D1, D2) is a diagonal matrix of order 2, and D1 and D2 are
uniformly positive functions in Ω.

When D1 ≡ D2, we say that the problem is isotropic. When, on the other hand,
the diffusion coefficients D1 and D2 in (3.2) are different from each other, we say
that the problem is anisotropic. In particular, when D1 � D2 or D1 � D2, we say
that the problem is highly anisotropic.

In order to complete the PDE into a boundary-value problem, we must also
specify conditions for the behavior of the solution u(x, y) at boundary points (x, y) ∈
∂Ω. Let ΓD ⊂ ∂Ω be a subset of the boundary of Ω, and define

Γ = ∂Ω \ ΓD.

The boundary conditions are as follows.

u = F1 (3.3)

on ΓD, and

(D∇u) · n + G1u = G2 (3.4)

3.3 The Finite-Difference Discretization Method 51

on Γ , where F1 is a real function in ΓD, G1 and G2 are real functions in Γ (with
G1 being also nonnegative), and n is the unit vector that is the outer normal vector
to Ω in Γ .

The boundary conditions in ΓD, where u is specified, are called Dirichlet bound-
ary conditions or boundary conditions of the first kind. The boundary conditions
in Γ can be of two possible kinds: where G1 vanishes, the boundary conditions are
called Neumann boundary conditions or boundary conditions of the second kind,
and where G1 does not vanish the boundary conditions are called mixed boundary
conditions or boundary conditions of the third kind.

In the next section we go ahead and discretize the boundary-value problem, so
that it can be solved numerically on the computer.

3.3 The Finite-Difference Discretization Method

A discretization method approximates the boundary-value problem as in (3.2)–(3.4)
by a discrete system of algebraic equations of the form

Ax = b, (3.5)

where A = (ai,j) is the coefficient matrix, b is the known right-hand side, and x is
the vector of unknowns.

In the sequel, we derive the algebraic system in (3.5) from the original boundary-
value problem. This process is called discretization, because it approximates the
original problem, defined in the continuous domain Ω, on a finite discrete grid, with
a finite number of degrees of freedom or unknowns.

In this chapter, we discuss only the construction of the algebraic system (3.5).
The actual numerical solution of (3.5) is discussed later on in this book. This task
is also called “inversion” of A. Of course, A is never inverted explicitly, because this
is prohibitively expensive. The term “inversion” only means finding the algebraic
solution x in (3.5).

In the sequel, we show how (3.5) is obtained from (3.2)–(3.4) by the finite-
difference discretization method. Assume, for simplicity, that Ω is the unit square
[0, 1] × [0, 1]. Let g be the uniform n × n grid that approximates Ω:

g = {(i, j) | 1 ≤ i, j ≤ n} (3.6)

(Figure 3.1).
The gridpoints in g are ordered row by row from bottom to top and from left

to right. The algebraic equation that corresponds to the (i, j)th gridpoint in g is
contained in the ((i−1)n+j)th row in A. Similarly, the value of the ((i−1)n+j)th
component in x is the numerical approximation to u(jh, ih), and the ((i−1)n+j)th
component in b is F(jh, ih). Here, the coefficient matrix A is of order n2, and the
given right-hand side vector b and the unknown vector x are of dimension n2.

The discretization method should preserve symmetry: when the PDE is symmet-
ric in the sense in Section 4.1 below, the coefficient matrix A should be symmetric as
well. This property indeed holds for the finite-difference discretization method [118].
In fact, in this method, a derivative in (3.2) is approximated by a symmetric finite
difference in the relevant spatial direction, divided by the mesh size h = 1/(n + 1).

52 3 Finite Differences and Volumes

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 3.1. The uniform n × n grid for the finite-difference discretization method.

Let us construct the kth equation in the linear system (3.5), or the kth row in A.
Assume that k = (i−1)n+j, where (i, j) is an interior point in the grid g. In symmet-
ric finite differencing, the divided difference between the values of two adjacent grid-
points is used to approximate the derivative at the midpoint in between them. This
divided difference is then multiplied by the corresponding diffusion coefficient D1

or D2 at that midpoint. Finally, the divided difference between two such midpoints
is used to approximate (D1ux)x [or (D2uy)y] at the gridpoint in between them. For
example, −(D1ux)x is approximated at an interior gridpoint (i, j) ∈ g as follows.

(D1ux)((j + 1/2)h, ih) .= h−1D1((j + 1/2)h, ih)(xk+1 − xk)

(D1ux)((j − 1/2)h, ih) .= h−1D1((j − 1/2)h, ih)(xk − xk−1)

((D1ux)x)(jh, ih) .= h−1((D1ux)((j + 1/2)h, ih) − (D1ux)((j − 1/2)h, ih))
.= h−2(D1((j + 1/2)h, ih)xk+1 − (D1((j + 1/2)h, ih)

+ D1((j − 1/2)h, ih))xk + D1((j − 1/2)h, ih)xk−1).

The kth equation in (3.5) (or the kth row in A) is, thus,

Nxk+n + Exk+1 + Cxk + Wxk−1 + Sxk−n = bk, (3.7)

where N (North), W (West), C (Center), E (East), S (South), and bk are scalars
depending on i and j and are defined as follows:

N = −h−2D2(jh, (i + 1/2)h)

S = −h−2D2(jh, (i − 1/2)h)

E = −h−2D1((j + 1/2)h, ih)

W = −h−2D1((j − 1/2)h, ih)
C = −(N + S + E + W)
bk = F(jh, ih).

(Don’t confuse the scalar N that stands for the Northern coefficient with the integer
N that is sometimes used to denote the order of A.)

3.4 Error Estimate 53

When (i, j) is a boundary point of g, the above equation must be modified using
discrete boundary conditions. For example, when mixed or Neumann boundary
conditions are imposed on the left edge in Figure 3.1, then for gridpoints of the
form (i, 1) we have

N = −h−2D2(h, (i + 1/2)h)

S = −h−2D2(h, (i − 1/2)h)

E = −h−2D1((3/2)h, ih)
W = 0

C = −(N + S + E) + h−1G1(h/2, ih)

bk = F(h, ih) + h−1G2(h/2, ih).

Clearly, A is a symmetric, diagonally dominant L-matrix. Furthermore, it is irre-
ducible in the sense in [118], hence also nonsingular and M-matrix. From Lemmas 2.1
and 2.10, it follows that it is also SPD.

The M-matrix property of A means that A−1 is nonnegative in the sense that
all its elements are positive or zero. This property indicates that A is indeed a
good approximation to the differential operator in the original boundary-value prob-
lem (3.2)–(3.4). Indeed, the Green function (the inverse of the differential operator)
is nonnegative as well.

The structure of coupling between gridpoints in the finite-difference discretiza-
tion method is that of immediate-neighbor coupling only. We refer to this struc-
ture as the 5-coefficient stencil (or 5-point stencil) and denote it by the bracketed
3 × 3 matrix ⎡

⎣ N
W C E

S

⎤
⎦ . (3.8)

3.4 Error Estimate

Here we estimate the discretization error, that is, the difference between the numer-
ical solution x and the solution u of the original boundary-value problem in the grid.

Let u be the vector obtained from the restriction of u to the grid g. In other
words, u is the vector (or grid function) that agrees with u on the grid:

uk = u(jh, ih), k = (i − 1)n + j.

The truncation error vector t is the residual of the discrete system (3.5) at u:

t ≡ b − Au. (3.9)

The discretization error is now defined by

x − u,

where x is the solution in (3.5). (We also refer to the discretization error as simply
the error.) The discretization error can be estimated by the truncation error as
follows.

‖x − u‖2 = ‖A−1(b − Au)‖2 = ‖A−1t‖2 ≤ ‖A−1‖2‖t‖2. (3.10)

54 3 Finite Differences and Volumes

It is well known that, when u is differentiable to order 4 and h → 0, the components
of t are as small as O(h2) (or h2 times a constant independent of h). More precisely,
the truncation error is of order

h2(uxxxx + uyyyy),

where these fourth derivatives are taken at intermediate points in each cell. The
differentiability of u guarantees that these derivatives are indeed bounded, so the
components of t are indeed of order h2 as h → 0. As a consequence, we have

‖x − u‖2 ≤ ‖A−1‖2‖t‖2 = O(h‖A−1‖2). (3.11)

In the next section, we show that, for the Poisson equation, ‖A−1‖2 = O(1) as
h → 0. This will guarantee that the discretization error is of order h2, which means
that the finite-difference scheme is of second-order accuracy.

3.5 Finite Differences for the Poisson Equation

A particularly important PDE that arises often in applications is the Poisson
equation:

−�u ≡ −∇ · ∇u = −uxx − uyy = F , (x, y) ∈ Ω. (3.12)

Assume that Ω is the unit square, and the finite-difference discretization method
uses the uniform grid in (3.6). The resulting 5-point stencil is:

h−2

⎡
⎣ −1
−1 4 −1

−1

⎤
⎦ . (3.13)

Assume also that Dirichlet boundary conditions are imposed. In this case, the
above stencil is valid at the interior gridpoints only, whereas at the boundary grid-
points it must be modified in such a way that the coefficient that corresponds to
coupling with a point that lies outside the grid is set to zero.

The Poisson equation is actually a special case of the diffusion equation (3.2),
and the resulting linear system (3.5) with the stencil in (3.13) is also a special model
problem, in which the stencil is constant and independent of the particular gridpoint
under consideration. Still, this problem is particularly important from both practical
and theoretical points of view. Indeed, it is of second-order accuracy, which indicates
that the finite-difference scheme in the more general case (3.7) should be accurate
as well.

The eigenvectors of the matrix A that corresponds to the stencil in (3.13) are
the 2-D sine modes v(k,l) in Section 2.4:

Av (k,l) = 2h−2(1 − cos(πkh) + 1 − cos(πlh))v(k,l)

= 4h−2(sin2(πkh/2) + sin2(πlh/2))v(k,l).

Note that A is actually diagonalized by the sine transform, which implies that
the sine transform can actually be used as a direct algebraic solver for (3.5). Unfor-
tunately, this solver is limited to the present model problem only: using a slightly

3.7 The Indefinite Helmholtz Equation 55

different domain, boundary conditions, or diffusion coefficient, would make it inap-
plicable. This is why the Fourier transform is used here for theoretical purposes only.

The smallest eigenvalue of A is obtained for the eigenvector v(1,1). This is why
we call v(1,1) the nearly-singular eigenvector of A. This vector is most important not
only in the present error estimates but also in the construction of multigrid linear-
system solvers in Chapter 6 below. Indeed, a good coarse-grid approximation must
also have a similar nearly singular eigenvector (with practically the same eigenvalue)
to be able to supply a good correction term to the original linear system (3.5).

As h → 0, the smallest eigenvalue of A approaches 2π2. Because A is symmetric,
A−1 is symmetric as well (Lemma 2.9). Using also Lemma 2.14, we have

‖A−1‖2 = ρ(A−1) ∼ 1/(2π2)

as h → 0. Using this result in (3.11), we have that the finite-difference discretiza-
tion method is second-order accurate for the Poisson equation, provided that u is
differentiable to order 4 in Ω.

3.6 Error Estimate for Diffusion Problems

The finite-difference discretization method is also accurate for more general diffusion
problems as in (3.2), provided that D1 and D2 are differentiable to order 3. Indeed,
assume that Dirichlet boundary conditions are imposed, A is the corresponding
coefficient matrix, and Á is the coefficient matrix for the Poisson equation (3.13).
Because D1 and D2 are uniformly positive in Ω, there is a constant η > 0 such that
D1 ≥ η and D2 ≥ η throughout Ω. Because A, ηÁ, and A− ηÁ are symmetric and
diagonally dominant, they are also positive semidefinite (Lemmas 2.10 and 2.1).
Using also Lemma 2.15 and the proof of Lemma 2.13, we have that the minimal
eigenvalue of A is equal to

min
‖v‖2=1

(Av , v)2 ≥ min
‖v‖2=1

(ηÁv, v)2 = 8ηh−2 sin2(πh/2).

As a consequence, we have that, as h → 0, the minimal eigenvalue of A is
asymptotically larger than or equal to 2ηπ2, and, hence, ‖A−1‖2 is asymptotically
at most 1/(2ηπ2). Using this result in (3.11), we have that the finite-difference
scheme is of second-order accuracy, provided that u is differentiable to order 4 and
D1 and D2 are differentiable to order 3 in Ω.

Unfortunately, these differentiability assumptions do not always hold. Therefore,
the finite-difference discretization method may no longer be accurate for diffusion
problems with nondifferentiable, let alone discontinuous, coefficients. For such diffi-
cult cases, one should use discretization methods based on integration (Section 3.12
and Chapter 4 below).

3.7 The Indefinite Helmholtz Equation

Here consider the Helmholtz equation

−uxx − uyy + βu = F (x, y) ∈ Ω, (3.14)

56 3 Finite Differences and Volumes

with suitable boundary conditions. We are particularly interested in the case β < 0,
to which we refer as the indefinite Helmholtz equation.

When Ω is the unit square and Dirichlet boundary conditions are imposed, the
eigenfunctions of the boundary-value problem are

{sin(πkx) sin(πly)}1≤k,l<∞. (3.15)

The eigenvalue of an eigenfunction in (3.15) with respect to the differential operator
in (3.14) is

π2(k2 + l2) + β. (3.16)

We assume that the boundary-value problem in (3.14) is well-posed in the sense
that it has a unique solution. In other words, the differential operator has a
bounded inverse. Since the differential operator in (3.14) is symmetric in the sense in
Section 4.1, the above assumption is equivalent to assuming that all its eigenvalues
are bounded away from zero (in magnitude):

|π2(k2 + l2) + β| ≥ m0, k ∈ Z, l ∈ Z, k > 0, l > 0, (3.17)

where m0 is a positive constant. In other words, the circle denoted by the bullets in
Figure 3.2 is bounded away from (Z+)2, independently of β. This assumption holds
for all nonnegative β’s and most negative ones.

When (3.14) is discretized by the finite-difference discretization method in
Section 3.3 (or the finite-volume discretization method in Section 3.12 below) on a
uniform n × n grid as in (3.6), one obtains the stencil

h−2

⎡
⎣ 0 −1 0
−1 4 + βh2 −1
0 −1 0

⎤
⎦ . (3.18)

The eigenvectors of the coefficient matrix A that uses this stencil are the discrete
counter parts of the functions in (3.15), namely, the two-dimensional Fourier sine
modes v(k,l) defined in Section 2.4. In fact, we have

Av (k,l) = (4h−2(sin2(πkh/2) + sin2(πlh/2)) + β)v(k,l). (3.19)

l

k
√−β/π

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

Fig. 3.2. Frequencies (k, l) for which sin(πkx) sin(πly) is a nearly singular eigenfunction of
the indefinite Helmholtz equation in the unit square with Dirichlet boundary conditions.

3.8 Adequate Discretization of the Helmholtz Equation 57

As mentioned above, we are particularly interested in the more difficult case
β < 0. In this case, A can be indefinite: it may have both positive and negative
eigenvalues. In the sequel, we study not only the accuracy but also the adequacy of
the finite-difference discretization in (3.18) for this kind of problem.

3.8 Adequate Discretization of the Helmholtz Equation

The “accuracy” of a discretization method is evaluated in terms of the asymptotic
behavior of the discretization error as h → 0. In order to obtain an estimate of the
average error at the points in the grid, we use the average norm, which is just the ‖·‖2

norm divided by the square root of the number of points in the grid. The average
norm of the discretization error (also referred to as the average discretization error)
can be estimated by multiplying (3.10) throughout by h, which gives the estimate

h‖x − u‖2 ≤ ‖A−1‖2h‖t‖2, (3.20)

where u is the solution of the original boundary-value problem confined to the grid,
x is the solution to the discrete system (3.5), and t is the truncation error vector
defined in (3.9). For the Poisson equation and the definite Helmholtz equation [β ≥ 0
in (3.14)], the right-hand side in (3.20) is indeed of order h2 as h → 0, implying
that the discretization error on the left-hand side in (3.20) approaches zero rapidly
(see Section 3.5). Although this asymptotic result is true also in the indefinite case
β < 0, it may be of little practical significance when very large βs are considered.

In many practical problems, the PDE may use a very small parameter, which
may well take values that are far smaller than the meshsize h. In this case, the
standard limit process h → 0 no longer tells the whole story, and may well be
misleading. In fact, discretization methods can then exhibit large errors in practice
even when they are accurate in theory [27]. A much more informative limit process
is the process in which both the parameter in the PDE and the meshsize h approach
zero at the same time, and x, u, A, and t in (3.20) depend not only on h but also on
that parameter [102]. When the average discretization error on the left-hand side
of (3.20) approaches zero for a particular limit case of the above kind, we say that
the discretization is adequate in this particular limit case.

In the indefinite Helmholtz equation, a most interesting and relevant limit case
is the one in which h → 0 and β → −∞ at the same time. In this limit process,
however, β can’t change continuously; it must take discrete values in such a way
that m0 in (3.17) is independent of β, so (3.17) holds then uniformly in the entire
limit process. The limit process β → −∞ is thus actually a sequence of βs for
which (3.17) holds uniformly for some predetermined m0.

The asymptotic notations “∼”, “�”, “O()”, and “o()” used below are thus
interpreted in the limit case

(β, h) → (−∞, 0), (3.21)

with discrete βs that satisfy (3.17) for some predetermined m0 independent of the
limit process.

A particularly relevant sequence of βs is

{βj = −π2j2}j∈Z, j≥1.

58 3 Finite Differences and Volumes

In this case, the pair of integers that minimizes the left-hand side in (3.17) is clearly
(k, l) = (j, 1) (k, l) = (j, 1) or (k, l) = (1, j), so m0 can be as large as

m0 = π2.

In order to obtain a meaningful estimate in (3.20), we first estimate the
truncation-error vector t. To this end, assume that the solution u in (3.14) is a
nearly-singular eigenfunction, namely, an eigenfunction as in (3.15) with

|π2(k2 + l2) + β| � |β|. (3.22)

This is indeed a fair assumption: because the right-hand side F in (3.14) is inde-
pendent of β, so u must indeed contain such eigenfunctions in its Fourier expansion.
Assume further that the limit process in (3.21) is done in such a way that

|β|h2 = O(1). (3.23)

With these assumptions, the Taylor expansion of u in a circle of (at least) radius h
around each gridpoint converges. Furthermore, when this expansion is used in the
stencil in (3.18), the resulting truncation error is

|t| =
∣∣∣∣uxxxx + uyyyy

12

∣∣∣∣h2 ≤ β2h2

12
, (3.24)

pointwise in the grid.
Let us now estimate the factor ‖A−1‖2 in the right-hand side in (3.20). Since A

is symmetric, it is sufficient to bound the magnitude of its eigenvalues from below
by a positive constant.

Let us first show that the eigenvalues of A are asymptotically the same as their
continuous counterparts in (3.16). For this purpose, let us first assume that the limit
process in (3.21) is done in such a way that

|β|h2 � 1. (3.25)

Consider a nearly singular eigenvector of A, namely, an eigenvector of A with an
eigenvalue of order o(|β|). From the assumption in (3.25), we must have in the right-
hand side in (3.19) that sin2(πkh/2) � 1 and sin2(πlh/2) � 1. Therefore, we must
also have πkh/2 � 1 and πlh/2 � 1, which imply that the eigenvalue of the nearly
singular eigenvector of A in the right-hand side in (3.19) is asymptotically the same
as its continuous counter part in (3.16).

Using also (3.17), the minimal magnitude of an eigenvalue of A is (asymptoti-
cally) at least m0. From this and (3.24), it follows that (3.20) takes the form

h‖x − u‖2 ≤ β2h2

12m0
. (3.26)

Thus, if an average discretization error of 10−1 is required, then |β| ≤ m
1/2
0 h−1

should be used.
In the tests in Chapter 10 below, we use |β| as large as 790. (This value is

chosen intentionally to produce a nearly singular coefficient matrix A, which is
most difficult and challenging.) Although the meshsize used in these tests is too

3.9 Adequate Discretization of Highly Anisotropic Equations 59

large in terms of (3.26), it is also shown there that using a smaller meshsize doesn’t
affect the convergence of the multigrid linear system solver tested there. Further
numerical tests with variable β in two and three spatial dimensions can be found
in [92] and [94].

In Chapter 22 in [103] it is shown that the bilinear finite element discretization
method is as adequate as the finite-difference discretization method used here. A
more adequate discretization method is proposed in [67]. However, it is tested only
for |β| as small as |β| ≤ 64, and with boundary conditions of the third kind only.

3.9 Adequate Discretization of Highly Anisotropic Equations

In this section, we study the adequacy of the finite-difference scheme for highly
anisotropic diffusion equations. Such equations arise often in diffusion problems in
severely stretched domains and grids. Our model equation is of the form

−εuxx − uyy = F (3.27)

in the unit square (with, say, Dirichlet boundary conditions), where ε is a small
positive parameter. Here, the x spatial direction is the direction of weak diffusion,
whereas the y spatial direction is the direction of strong diffusion.

Let hx be the meshsize in the x spatial direction, and hy the meshsize in the y
spatial direction. The finite-difference discretization method for this equation gives
the 5-point stencil ⎡

⎣ 0 −h−2
y 0

−εh−2
x 2h−2

y + 2εh−2
x −εh−2

x

0 −h−2
y 0

⎤
⎦ . (3.28)

It is easy to show that the finite-difference discretization method is accurate in
the sense that the discretization error approaches zero when the meshsizes hx and
hy do (see Section 3.5). Unfortunately, the limit process (hx, hy) → (0, 0) used in
this analysis assumes that ε is kept fixed; this assumption may be unrealistic in
highly anisotropic equations, where the parameter ε may easily be as small as hx

and hy. A more relevant limit process is, therefore, the process introduced in [102],
in which ε, hx, and hy approach zero at the same time:

(ε, hx, hy) → (0, 0, 0). (3.29)

Our aim is thus to give conditions on ε, hx, and hy to guarantee an asymptoti-
cally small discretization error in the limit process in (3.29).

In the sequel, the notations “∼”, “�”, “o()”, and “O()” are with respect to the
limit process in (3.29). In order to estimate the average norm of the discretization
error, we use the estimate [also used in (3.20) above]

h‖x − u‖2 ≤ ‖A−1‖2h‖t‖2, (3.30)

where x, u, A, and t depend also on ε. From (3.30), it is clear that we actually need
to estimate ‖A−1‖2 and the truncation error only. This is done below.

60 3 Finite Differences and Volumes

As in Sections 3.5 and 3.6, it is easy to see that

‖A−1‖2 ∼ π−2.

In order to estimate the truncation error vector t, let us assume that the solution u
in (3.27) is a nearly singular eigenfunction of the differential operator in (3.27). This
is indeed a fair assumption: because the right-hand side F in (3.27) is independent
of ε, hx, or hy, u must indeed contain such eigenfunctions in its Fourier expansion.
Now, such an eigenfunction must have the form sinπkx sin(πly), with l = O(1) and
k = O(ε−1/2). Assuming further that

ε−1/2hx = O(1),

we have that the Taylor expansion of u in a circle of (at least) radius h around each
gridpoint converges. Using this expansion in the stencil in (3.28), we can estimate
the truncation error by

|t| =

∣∣∣∣∣εuxxxxh2
x + uyyyyh2

y

12

∣∣∣∣∣ = O(ε−1h2
x + h2

y)

pointwise in the grid. Using this estimate in (3.30), we have the estimate

h‖x − u‖2 = O(ε−1h2
x + h2

y), (3.31)

so the discretization in (3.28) is adequate as long as

ε � h2
x. (3.32)

It can also be seen from (3.31) that hy can be much larger than hx, resulting in
a more efficient discretization that uses a smaller grid. In fact, hy can be as large as

hy = O(hxε−1/2),

with the estimate in (3.31) still remaining the same. This observation is further
used in Section 4.7 in problems with anisotropic and discontinuous coefficients.

3.10 Oblique Anisotropy

The above analysis uses the fact that the strong and weak diffusion direction in
(3.27) are just the standard x and y spatial directions, These directions are also used
to form the uniform grid; in other words, the strong and weak diffusion directions
align with the grid.

Unfortunately, this is not always the case. Consider, for example, the equation

−εuξξ − uηη = F (3.33)

in the unit square 0 < x, y < 1 (with, say, Dirichlet boundary conditions), where
ξ and η are some orthonormal directions in the Cartesian plane that do not coin-
cide with the standard x and y directions. Here, because F is independent of ε, the
solution u of (3.33) must be smooth in the η spatial direction, but could oscillate

3.11 Finite Differences for the Convection-Diffusion Equation 61

rapidly (with frequency up to ε−1/2) in the ξ spatial direction. This rapid oscilla-
tion is noticeable in both the x and y spatial direction, which changes the adequacy
analysis considerably.

In order to be discretized on a uniform grid that aligns with the x-y coordinates,
the equation (3.33) is reformulated as

−∇ · D∇u = F , (3.34)

where the 2 × 2 diffusion matrix D is given by

D = Ot

(
ε 0
0 1

)
O,

where O is the 2×2 orthogonal matrix that transforms the standard x-y coordinates
into the ξ-η coordinates. Now, the left-hand side in (3.34) is just a linear combination
of uxx , uyy , and uxy . In the finite-difference scheme, uxx and uyy are discretized as
before, whereas the mixed derivative uxy is discretized by the stencil

(4hxhy)−1

⎡
⎣−1 0 1

0 0 0
1 0 −1

⎤
⎦ .

Thus, the truncation error is a homogeneous polynomial in hx and hy, with coeffi-
cients that contain derivatives of order 4 of u. Because u may oscillate rapidly [with
frequency of O(ε−1/2)] in the ξ spatial direction, these derivatives can be as large
as ε−2. In summary, because the truncation error is of order O(ε−2(hx + hy)2), the
adequacy condition is

ε � hx + hy. (3.35)

This condition is much more restrictive than the one in (3.32). In fact, it requires
very small meshsizes hx and hy, to help capture the subtle variation of u in the
oblique direction ξ.

3.11 Finite Differences for the Convection-Diffusion Equation

The convection-diffusion equation is obtained from the elliptic PDE (3.1) by setting
β ≡ 0 and choosing the 2 × 2 matrix D to be the identity matrix multiplied by a
small positive parameter ε:

−ε(uxx + uyy) + a1ux + a2uy = F (3.36)

in Ω ⊂ R2, with the boundary conditions (3.3) and (3.4). The two-dimensional field
(a1, a2) is referred to as the field of the characteristic directions.

Assume that Ω is the unit square 0 < x, y < 1. The convection-diffusion equa-
tion can then be discretized on the uniform n × n grid g in (3.6) by finite differ-
ences. Clearly, the diffusion term [the first term in (3.36)] is discretized by ε times
the stencil in (3.13). The only remaining task is to discretize the convection term
a1ux +a2uy. Consider, for example, an interior point (i, j) ∈ g, and let us construct

62 3 Finite Differences and Volumes

the kth equation in (3.5), where k = (i − 1)n + j. In other words, let us construct
the kth row in A. Let us first consider a naive, symmetric discretization for the first
convection term:

(a1ux)(jh, ih) .= (2h)−1a1(jh, ih)(xk+1 − xk−1). (3.37)

Unfortunately, this approach fails for small ε, because it introduces high-frequency
nonphysical oscillations in the numerical solution. Indeed, consider the vector with
the values (1,−1, 1,−1, . . .) along each x-line in the grid. This vector is completely
unnoticed by the discrete system representing the discrete convection term in (3.37),
and may lead to O(1) discretization error.

In order to cure this problem, it is necessary to add to (3.37) also an artificial
diffusion term in the amount of

(2h)−1|a1(jh, ih)|(2xk − xk+1 − xk−1)

to help stabilize the coefficient matrix and make it a diagonally dominant M-matrix.
A similar cure is used in the discretization of the convection term in the y spatial
direction. The resulting 5-point stencil (3.8) contains the coefficients

N = −h−2ε + (2h)−1(a2(jh, ih) − |a2(jh, ih)|)
S = −h−2ε + (2h)−1(−a2(jh, ih) − |a2(jh, ih)|)
E = −h−2ε + (2h)−1(a1(jh, ih) − |a1(jh, ih)|)
W = −h−2ε + (2h)−1(−a1(jh, ih) − |a1(jh, ih)|)
C = −(N + S + E + W).

The artificial diffusion term reduces the accuracy of the discretization to O(h),
meaning that the truncation error is of O(h) pointwise in the grid, provided that
the solution u is differentiable to order 2. (See [102] and the references therein for
error analysis.) This is why the above discretization is known as the first-order
upwind scheme. We also refer to it simply as the upwind scheme.

In singularly perturbed problems, the diffusion coefficient ε is very small. In
fact, on most practical grids, it can be as small as the meshsize h. In this kind
of problem, adequacy is a more relevant property than accuracy. This means that
the discretization error should be estimated in the limit case in which both h and ε
approach zero at the same time (see Section 3.8). Fortunately, the upwind scheme for
(3.36) is indeed adequate, provided that no closed characteristics are present [102].
This is because, unlike the problem in Section 3.9 whose solution may oscillate
frequently in the weak diffusion direction, here the solution u ≡ u(ε) in (3.36) must
be smooth not only in the characteristic direction but also in the cross-characteristic
direction (thanks to the piecewise smooth boundary conditions that are carried to
the entire domain through the characteristic curves). In fact, the solution may vary
sharply only in boundary layers at the far end of the characteristic curves. Indeed,
the right-hand side and boundary conditions in (3.36) must be independent of ε to
allow a meaningful solution also in the incompressible limit ε → 0. The analysis in
[102] shows that the upwind scheme is indeed adequate for the convection-diffusion
equation as long as ε−1h2 � 1 as both ε and h approach zero at the same time.

3.12 The Finite-Volume Discretization Method 63

3.12 The Finite-Volume Discretization Method

As is evident from the above definition, the finite-difference discretization method
uses pointwise values of the functions in the PDE. In particular, in the diffusion
problem in Section 3.3, it uses values of the diffusion coefficients D1 and D2 at
midpoints of the form ((j+1/2)h, ih), ((j−1/2)h, ih), (jh, (i+1/2)h), and so on. and
(jh, (i−1/2)h). This definition makes sense as long as D1 and D2 are rather smooth.
In fact, it leads to second-order accuracy as long as D1 and D2 are differentiable to
order 3 (Section 3.6). Unfortunately, when D1 or D2 is not sufficiently differentiable
(and, in particular, when it is discontinuous), the finite-difference discretization
method is no longer accurate. In such cases, one should better turn to discretization
methods based on integration rather than differentiation, such as the finite-volume
and finite-element discretization methods.

In the following, we describe the finite-volume discretization method (see, e.g., [2]
and the references therein). In this discretization method, the grid is as in Figure 3.3:
the grid is uniform, and the gridpoints may also lie on boundary segments on which
Neumann or mixed boundary conditions are imposed.

Let us first discretize the PDE at gridpoints that don’t lie on the boundary. For
this purpose, let (i, j) denote such a gridpoint, and let e denote the small h × h
square (or volume) around it (Figure 3.4). The boundary of e, ∂e, may be written
as the union of the north, south, east, and west edges of e:

∂e = (∂e)N ∪ (∂e)S ∪ (∂e)E ∪ (∂e)W .

By integrating the diffusion equation (3.2) over e and using Green’s formula,
we have

−
(∫

(∂e)N

D2uydx −
∫

(∂e)S

D2uydx +
∫

(∂e)E

D1uxdy −
∫

(∂e)W

D1uxdy

)

= −
∫

∂e

(D1ux, D2uy) · nds

= −
∫

e

((D1ux)x + (D2uy)y) dxdy =
∫

e

Fdxdy,

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 3.3. The uniform n × n grid for the finite-volume discretization method. It is as-
sumed that Dirichlet boundary conditions are imposed on the right and upper edges, and
Neumann or mixed boundary conditions are imposed on the left and lower edges.

64 3 Finite Differences and Volumes

�� �

�

�

D1 = 1

D2 = 2

D1 = 1000

D2 = 2000

j

i

Fig. 3.4. The finite volume e surrounding the interior gridpoint (i, j) that may lie on a
discontinuity line in the diffusion coefficients D1 or D@.

where n is the outer normal vector and ds is the length element in ∂e. By replacing
the derivatives by corresponding finite differences, we obtain a 5-point stencil as in
(3.7) and (3.8), with the following coefficients,

N = − h−1

∫
(∂e)N

D2dx

S = − h−1

∫
(∂e)S

D2dx

E = − h−1

∫
(∂e)E

D1dy

W = − h−1

∫
(∂e)W

D1dy

C = − (N + S + E + W) = h−1

∫
∂e

(D1, D2) · nds

bk =
∫

e

Fdxdy,

where k = (i − 1)n + j. Note that when D1 and D2 are constant in each edge of
e, this stencil coincides with the stencil used in the finite-difference discretization
method in Section 3.3. This happens, for example, when D1 and D2 are piecewise
constant, with discontinuity lines that align with the grid. Later on in this book we
show several examples of this kind.

Of course, if (i, j) lies next to a Dirichlet boundary, then no coupling to this
boundary is needed. For example, if j = 1, then W is dropped from the 5-point
stencil, and the amount −WF1(0, ih) is added to bk.

A more complicated case arises when a gridpoint in Figure 3.3 lies on a boundary
segment on which Neumann or mixed boundary conditions are imposed (e.g., the
left edge in Figure 3.3, where j = 0). In this case, a “half volume” of size (h/2)× h
is used in the above integration rather than the usual h×h volume (see Figure 3.5).
Thus, the north and south edges of e are of length h/2 rather than h. The resulting

3.13 Exercises 65

� �

�

�

D1 = 1

D2 = 2

D1 = 1000

D2 = 2000

i

Fig. 3.5. The half finite volume e at the boundary point (i, 1) that lies on the boundary
segment on which Neumann or mixed boundary conditions are imposed.

5-point stencil at the boundary point (i, 1) is

N = −h−1

∫
(∂e)N

D2dx

S = −h−1

∫
(∂e)S

D2dx

E = −h−1

∫
(∂e)E

D1dy

W = 0

C = −(N + S + E) +
∫

(∂e)W

G1dy

bk =
∫

e

Fdxdy +
∫

(∂e)W

G2dy.

As with finite differences, here also the coefficient matrix A is a symmetric,
diagonally dominant L-matrix, hence also an SPD M-matrix. These desirable prop-
erties show that the finite-volume discretization method indeed makes sense. This
discretization method is used later in this book to form challenging linear systems
to test the present multigrid linear system solvers.

3.13 Exercises

1. Show that the matrix A resulting from the finite-difference or finite-volume
discretization method is a diagonally dominant L-matrix.

2. We say that the N × N matrix A is reducible if there is a nontrivial proper
subset of unknowns

s ⊂ {1, 2, . . . , N}

that are decoupled from the rest of the unknowns in the sense that

ai,j = 0 for every i ∈ s and j �∈ s.

66 3 Finite Differences and Volumes

Show that the matrix A resulting from the finite-difference or finite-volume
discretization method is irreducible (not reducible).

3. We say that the N × N matrix A is irreducibly diagonally dominant if it is
irreducible, diagonally dominant, and at least in one row in A the diagonal
dominance is strict; that is, there exists an index 1 ≤ k ≤ N for which

ak,k >
∑

1≤j≤N, j �=k

|ak,j |.

Show that the matrix A resulting from the finite-difference or finite-volume
discretization of a well-posed boundary-value problem is indeed irreducibly di-
agonally dominant.

4. It follows from the theory in [118] that an irreducibly diagonally dominant
matrix is nonsingular. Conclude that A in the previous exercise is indeed non-
singular.

5. It follows from the theory in [118] that an irreducibly diagonally dominant
L-matrix is also an M-matrix. Conclude that the matrix A obtained from the
finite difference or finite volume discretization of a well-posed boundary-value
problem is indeed an M-matrix.

6. Conclude from the theory in [118] that the matrix A in the previous exercise,
being an M-matrix, has a unique eigenvector with positive components and
positive eigenvalue, which is the minimal eigenvalue of A in terms of magnitude.
This eigenvector is called the nearly singular eigenvector of A.

7. Assume that A is also symmetric. Conclude from Lemma 2.1 that it is also SPD.
Conclude that the eigenvalue of A with respect to its nearly singular eigenvector
is its minimal eigenvalue.

8. Show that the matrix A obtained from finite-difference or finite-volume dis-
cretization of (3.2) (with any kind of boundary conditions that make the
boundary-value problem well-posed) is indeed symmetric. Conclude from the
previous exercise that it is also SPD, and that the eigenvalue corresponding to
its nearly singular eigenvector is its minimal eigenvalue.

9. Show that the nearly singular eigenvector of the matrix A resulting from the
finite-difference discretization of the Poisson equation with Dirichlet boundary
conditions [as in (3.13)] is v(1,1) in Section 2.4.

10. Repeat the above exercise, only this time use an IMSL1 routine to compute
the nearly singular eigenvector and the corresponding eigenvalue numerically.
Verify that the results are indeed the same as in the previous exercise.

11. Use the above IMSL routine to compute the nearly singular eigenvector and
its corresponding eigenvalue for the matrix A obtained from the finite-volume
discretization of a PDE as in (3.2) with discontinuous diffusion coefficients and
various kinds of boundary conditions. Verify that the eigenvalue and the com-
ponents of the nearly singular eigenvector are indeed positive.

1 http://www.vni.com/search/index.html.

4

Finite Elements

In this chapter, we present the weak formulation of the boundary-value problem and
the finite-element discretization method derived from it. We start from structured
bilinear finite-element meshes, and proceed to highly unstructured linear finite-
element triangulations, which use local and adaptive refinement to approximate
complicated domains and irregular solutions efficiently.

4.1 The Finite Element Discretization Method

As we’ve seen above, the finite-difference discretization method is accurate only
when the diffusion coefficients (and the solution) are sufficiently smooth. Unfor-
tunately, this is not always the case. Many relevant models in applied science and
engineering are formulated as PDEs with not only nondifferentiable but also discon-
tinuous coefficients. For these problems, the finite-difference discretization method
may be inaccurate or even inapplicable.

The finite-volume discretization method is well defined also for problems with
nondifferentiable or even discontinuous diffusion coefficients. Still, it uses uniform
grids, which are suitable for rectangular domains but not for more complicated
domains arising frequently in practical applications. Furthermore, these grids don’t
support local refinement, which is an essential tool in the efficient approximation of
irregular domains and solutions.

Fortunately, the finite-element discretization method [112] [31] can handle not
only discontinuous coefficients but also complicated domains and irregular solutions.

4.2 The Weak Formulation

The main problem with the finite-difference and finite-volume discretization meth-
ods is that they are based on the so-called “strong” formulation of the boundary-
value problem in (3.2) through (3.4). This formulation requires that the flux vector

(D1ux, D2uy)

be not only continuous but also differentiable everywhere in Ω. This requirement is
so strong that the problem in its strong formulation may have no solution at all.

68 4 Finite Elements

The finite-element discretization method, on the other hand, is based on the so-
called “weak” formulation rather than the strong one. In this formulation, Green’s
formula is used to integrate (3.2) over Ω and obtain a new problem, which accepts
also a nondifferentiable flux, provided it is square-integrable (namely, it is in L2(Ω)).

The weak formulation is as follows. Let H be a Hilbert space, with the corre-
sponding inner product (·, ·). Let a(u, v) be a bilinear form in H ×H. Assume that
a(·, ·) is bounded; that is, there exists a positive constant ηa such that

|a(v, w)| ≤ ηa

√
(v, v)(w,w)

for every v, w ∈ H. Assume also that the quadratic form a(·, ·) is coercive in the
sense that there exists a positive constant ηa such that

a(v, v) ≥ ηa(v, v) (4.1)

for every v ∈ H. Let f(·) be a bounded functional in H, i.e., there exists a positive
constant ηf such that

|f(v)| ≤ ηf

√
(v, v)

for every v ∈ H.
The weak formulation is the following problem. Let H0 ⊂ H be a subspace, and

let H1 ⊂ H be a shift of H0 (namely, H1 + H0 = H1);

find u ∈ H1 such that a(u, v) = f(v) for every v ∈ H0. (4.2)

Let us make this problem a little more concrete. Let Ω ⊂ R2 be a bounded
domain. Let D ≡ D(x, y) be a 2 × 2 matrix [with elements in L∞(Ω)] that is
symmetric and uniformly positive definite in Ω. Let ΓD ⊂ ∂Ω be a subset of the
boundary of Ω, and define

Γ = ∂Ω \ ΓD.

Let F , β ∈ L2(Ω), F1 in the Sobolev space of order 1/2 on ΓD (see [18]), G1 ∈
L∞(Γ), and G2 ∈ L2(Γ) (β and G1 are also nonnegative). Let H be the Sobolev
space of order 1 in Ω [the space of functions with derivatives in L2(Ω)]. Let H0 be
the space of functions in H that vanish in ΓD. Let H1 be the set of functions in H
that agree with F1 in ΓD.

Let us now show the connection between the above weak formulation and the
strong formulation

−∇(D∇u) + βu = F (4.3)

in Ω,

u = F1 (4.4)

in ΓD, and

(D∇u) · n + G1u = G2 (4.5)

in Γ (where n is the outer normal vector). In fact, using Green’s formula, a solution
u of (4.3) through (4.5) also solves (4.2), with the definitions

a(u, v) =
∫

Ω

(D∇u) · ∇vdΩ +
∫

Ω

βuvdΩ +
∫

Γ

G1uvdΓ (4.6)

4.3 The Discrete Weak Formulation 69

and

f(v) =
∫

Ω

FvdΩ +
∫

Γ

G2vdΓ. (4.7)

Let us now make sure that the quadratic form a(·, ·) is indeed coercive, that is,
that (4.1) indeed holds. For this purpose, we also assume that

• either the support of β has a positive measure in Ω:∫
Ω

βdΩ > 0,

• or the support of G1 has a positive measure in Γ :∫
Γ

G1dΓ > 0,

• or ΓD has a positive measure in ∂Ω:∫
ΓD

dΓD > 0.

Under this assumption, the quadratic form a(·, ·) is indeed coercive, and, therefore,
the weak formulation is indeed well-posed in the sense that it has a unique solution.
(See, e.g., Chapter 11 in [103] for the detailed proof.) As a conclusion, the weak
formulation is indeed better suited to model the original physical phenomenon,
which must also have a unique solution. The strong formulation, on the other hand,
is not as suitable, because it may have no solution at all. If, however, it does have
a solution, then it also solves the weak formulation, and hence must coincide with
the unique solution of the weak formulation.

In the following, we describe a discrete version of the weak formulation, which
leads to the finite-element discretization.

4.3 The Discrete Weak Formulation

The finite-element discretization method is based on the following discrete approx-
imation of (4.2).

find ũ ∈ V1 such that a(ũ, v) = f(v) for every v ∈ V0, (4.8)

where V0 is a finite-dimensional subspace of H that approximates H0 in some sense,
and V1 is a shift of V0 (V1 + V0 = V1) that approximates H1 in some sense.

Let us now show how V0 and V1 can be defined. Let T be a mesh, or a collection
of finite elements, that approximates Ω. In this book, we consider only two kinds
of meshes: mesh of squares (in which each finite element is a square) and mesh of
triangles (in which each finite element is a triangle.)

Assume that T is also conformal in the sense that if two finite elements in it
share an edge, then they must share it in its entirety, including its endpoints, which
serve as vertices in both finite elements. With this additional assumption, we are
ready to define the subspace V0.

70 4 Finite Elements

When T is a mesh of squares, V0 is the space of functions that are continuous
in T and bilinear in each square t ∈ T and vanish at nodes in T that also lie in ΓD.
By “bilinear” we mean that, in each square, the function can be written uniquely as

a0 + a1x + a2y + a3xy ,

where the coefficients a0, a1, a2, and a3 depend on the particular square under
consideration. Because the function is determined uniquely in each square by four
degrees of freedom, it can also be determined uniquely by its values at the vertices
of the square. Thus, the function is determined uniquely by its values at the nodes
in T . Because it is linear along each edge, it is also continuous throughout the mesh,
as required.

When T is a mesh of triangles, V0 is the space of functions that are continuous
in T and linear in each triangle t ∈ T and vanish at nodes in T that also lie in ΓD.
In other words, in each triangle the function can be written uniquely as

a0 + a1x + a2y,

where the coefficients a0, a1, and a2 depend on the particular triangle under con-
sideration. Because the function is determined uniquely in each triangle by three
degrees of freedom, it can also be determined uniquely by its values at the vertices
of the triangle. Thus, the function is determined uniquely by its values at the nodes
in T . Because it is linear along each edge, it is also continuous throughout the mesh,
as required.

Let us now define V1. In fact, V1 is defined in a similar way to V0, except that
the functions in V1 no longer vanish in T ∩ΓD but rather agree with F1 there. More
precisely, let v1 be a particular function that is continuous in T , linear (or bilinear)
in each finite element, and satisfies v1(i) = F1(i) for each node i in T that also lies
in ΓD. Then we define

V1 = v1 + V0 = {v1 + v0 | v0 ∈ V0}.

This completes the definition of the finite-element discretization method.
Let us now construct the linear system (3.5) for the finite-element discretiza-

tion method. For each node i in T , let φi be the so-called nodal basis function
that is continuous in T , linear (or bilinear) in each individual finite element, and
satisfies

φi(j) =
{

1 if j = i
0 if j ∈ T, j �= i.

(4.9)

Let N be the number of nodes in T \ΓD. Let A be the N ×N matrix with elements
defined by

ai,j = a(φj , φi), i, j ∈ T \ ΓD. (4.10)

Moreover, for every node i ∈ T \ ΓD, define

bi = f(φi) −
∑

j∈T∩ΓD

a(φj , φi)F1(j). (4.11)

4.4 Bilinear Finite Elements 71

With these definitions, the solution ũ of (4.8) can be written as

ũ =
∑

j∈T\ΓD

xjφj +
∑

j∈T∩ΓD

F1φj , (4.12)

where the xjs are the components in the solution x of (3.5), in which the matrix A is
as in (4.10), and the components in the right-hand side b are as in (4.11). Actually,
we have from (4.9) and (4.12) that

xj = ũ(j), j ∈ T \ ΓD.

Because of the assumptions used in the formulation in (4.6), A is SPD and,
hence, has positive main-diagonal elements. This property allows the definition of
the multigrid linear system solvers later in this book.

4.4 Bilinear Finite Elements

Let us first consider the case in which T is a mesh of squares as in Figure 4.1. Let
us consider one of these squares as in Figure 4.2. Without loss of generality, assume
that this square is the unit square [0, 1]× [0, 1]. (Otherwise, the finite element could
be mapped onto the unit square.) The four nodal basis functions are defined by:

φ0,0(x, y) = (1 − x)(1 − y)
φ0,1(x, y) = (1 − x)y
φ1,0(x, y) = x(1 − y)
φ1,1(x, y) = xy .

Each of these four nodal basis functions has the value 1 at one of the vertices of
the square and 0 at the other three vertices. Because the nodal basis function is
linear along each edge of the square, it can be extended continuously to the adja-
cent squares in the mesh T . This completes the definition of the nodal basis of V0

in this case.

Fig. 4.1. The bilinear finite-element mesh.

72 4 Finite Elements

0 1
0

1

Fig. 4.2. The bilinear finite element.

When bilinear finite elements are used in (4.8), (4.6), (4.7), the linear system in
(3.5) has the 9-coefficient stencil (or 9-point stencil)⎡

⎣NW N NE
W C E
SW S SE

⎤
⎦ . (4.13)

(Do not confuse N that stands here for the Northern coefficient in the stencil with
the integer N used often to denote the order of A.) Assuming that an n × n mesh
is used, the kth equation in the linear system is written as

NExk+n+1 + Nxk+n + NWxk+n−1 + Exk+1

+ Cxk + Wxk−1 + SExk−n+1 + Sxk−n + SWxk−n−1 = bk, (4.14)

where the coefficients NW , N , NE , W , C, E, SW , S, and SE depend on the
particular node (i, j) in the mesh, and are contained in the kth row in A.

4.5 Triangulation

Uniform meshes are insufficient for most practical applications, where the do-
main may be nonrectangular and irregular. Although the bilinear finite-element
mesh could actually use general quadrilaterals rather than squares, it is still not
sufficiently flexible to approximate well a complicated domain. In particular, it is
unsuitable for automatic refinement procedures that use local and adaptive refine-
ment. This is why we turn our attention to mesh of triangles, or triangulation.

Let us show how the coefficient matrix A is constructed for a triangulation T .
For this purpose, we need first to define the nodal basis functions φi for every node
i in T . Let us consider first a right-angle triangle as in Figure 4.4. Clearly, for this
triangle, the nodal basis functions are

φ1,0 = x

φ0,1 = y

φ0,0 = 1 − x − y.

Indeed, each of these functions is indeed linear in the triangle and has the value 1
at one vertex and 0 at the other two vertices. This special triangle is called the
reference triangle r, because it is used further to define the nodal basis functions in
the entire mesh.

4.5 Triangulation 73

��������������

�����������

�
�

�
�

�
�

�

ek

i

j

Fig. 4.3. A triangle e in the triangulation T .

�
�
�
�
�
�

0 1
0

1

r

Fig. 4.4. The reference triangle r that is mapped onto each triangle e in T by the affine
mapping Me = Se + i, where i is a vertex in e.

Consider a general triangle e in T as in Figure 4.3, with the vertices i, j, and k.
Let Me be the affine mapping that maps r onto e. In fact, one can write

Me(x, y) = Se

(
x
y

)
+ i,

where Se is the 2 × 2 matrix that is the Jacobian of Me. In fact, the first column
in Se is the two-dimensional vector j − i, and the second column is just k − i. This
way, the vertices of r are indeed mapped to the vertices of e:

Me(0, 0) = i

Me(1, 0) = j

Me(0, 1) = k.

The nodal basis functions are now defined in e by

φi(x, y) = φ0,0(M−1
e (x, y))

φj(x, y) = φ1,0(M−1
e (x, y))

φk(x, y) = φ0,1(M−1
e (x, y)).

Let us now use the above definitions to calculate the contribution from e to the
element Aj,k in A that couples the jth and kth nodes to each other. For this purpose,
recall that, from the chain rule, we have

∇φj(x, y) = S−t
e ∇φ1,0(M−1

e (x, y))

∇φk(x, y) = S−t
e ∇φ0,1(M−1

e (x, y)).

74 4 Finite Elements

Using (4.6) and (4.10), we have that the contribution from e to aj,k is∫
e

(D(x, y)∇φk) · ∇φjdxdy +
∫

e

β(x, y)φkφjdxdy

=
∫

r

(
D(Me(x, y))S−t

e ∇φ0,1

)
S−t

e ∇φ1,0dMe(x, y)

+
∫

r

β(Me(x, y))φ0,1φ1,0dMe(x, y)

=
∫

r

(
D(Me(x, y))S−t

e

(
0
1

))
S−t

e

(
1
0

)
|det(Se)|dxdy

+
∫

r

β(Me(x, y))φ0,1φ1,0|det(Se)|dxdy.

The contribution to aj,k from the triangle that lies on the other side of the edge
leading from j to k is calculated in a similar way. If both j and k lie on Γ , though,
then there is no such triangle; instead, one needs to add also the contribution
from the boundary term in (4.6). The construction of A is also called assembling,
because the contributions from the various triangles are assembled to construct each
individual matrix element.

In the next section, we study the isotropic case, in which D is the identity matrix
times a scalar function. For a sufficiently regular mesh, it is shown that A has some
attractive properties, that are also used later in the book.

4.6 Diagonal Dominance in the Isotropic Case

Here we consider the isotropic case, in which the diffusion coefficients are the same
in the x and y spatial directions. We show that, for a sufficiently regular mesh, the
coefficient matrix A is a diagonally dominant M-matrix. These properties indicate
that the discretization makes sense. Indeed, the M-matrix property means that A−1

has only nonnegative elements, and hence is suitable for approximating the posi-
tive Green function, the inverse of the original differential operator. Furthermore,
the diagonal-dominance property indicates that the multigrid linear system solver
should work well, as shown later in the book.

Assume that (4.6) is isotropic in the sense that

D =
(

D̃ 0
0 D̃

)
,

where D̃ ≡ D̃(x, y) is a bounded function in Ω [D̃ ∈ L∞(Ω)] satisfying D̃ ≥ D̃min

for some positive constant D̃min > 0. For simplicity, assume also that β ≡ 0 in (4.6),
and that Dirichlet boundary conditions only are used (ΓD = ∂Ω, Γ = ∅). In this
case, (4.6) takes the form

a(u, v) =
∫

Ω

D̃∇u · ∇vdΩ. (4.15)

The coefficient matrix A obtained from a finite-element discretization of (4.15)
is called the stiffness matrix. Let us calculate the value of a particular element in A.

4.6 Diagonal Dominance in the Isotropic Case 75

��������������

�����������

�
�

�
�

�
�

�

� kk

� i

i

� j

j

Fig. 4.5. Vertices and angles of a triangle.

Let e be some triangle in the triangulation T as in Figure 4.5, with vertices i, j,
and k, and corresponding positive angles � i, � j, and � k. Assume also that the mesh
is regular in the sense that the angles in the triangles are not too small or large.
More specifically, assume that the angles are either acute or right:

max(� i, � j, � k) ≤ π/2. (4.16)

Let �(e) denote the area of e. Let φi, φj , and φk be the nodal basis functions in e
corresponding to i, j, and k, respectively. Let

ξ = (k − i)/‖k − i‖2

η = ξ⊥

be a pair of orthonormal vectors in the Cartesian plane R2. Let O be the 2 × 2
orthogonal matrix, with the first column ξ and the second column η. Clearly, O maps
the standard vector (1, 0) (the x co-ordinate) to ξ and (0, 1) (the y co-ordinate) to
η. Furthermore, every function f(x, y) can also be written as a function of ξ and η:
f(x(ξ, η), y(ξ, η)). Using the chain rule, we have that the gradient with respect to ξ
and η satisfies

∇ξ,η =
(

∂/∂ξ
∂/∂η

)
= O−t

(
∂/∂x
∂/∂y

)
= O∇.

Using the above, we have that the contribution from e to the element aj,i in A is

∫
e

D̃∇φi · ∇φjdxdy =
∫

e

D̃O∇φi · O∇φjdxdy

=
∫

e

D̃∇ξ,ηφi · ∇ξ,ηφjdxdy

=
∫

e

D̃(φi)η(φj)ηdxdy

= − cot(� k)
‖k − i‖2

· ‖k − i‖2

2�e

∫
e

D̃dxdy

= −cot(� k)
2�e

∫
e

D̃dxdy ≤ −cot(� k)D̃min/2. (4.17)

76 4 Finite Elements

This shows that A is an L-matrix. Now, the sum of the ith row in A (corresponding
to a node i ∈ T \ ΓD) is

∑
j∈T\ΓD

a(φj , φi) = a(1, φi) −
∑

j∈T∩ΓD

a(φj , φi) = −
∑

j∈T∩ΓD

a(φj , φi) ≥ 0,

where 1 is the function of constant value 1 in T . This shows that A is also diagonally
dominant. Thus, it follows from [118] that A is also an M-matrix.

In the following, we’ll see that having a regular mesh with moderate angles is
a great advantage not only for isotropic problems but also for anisotropic ones to
guide and motivate the construction of suitable meshes.

4.7 Diagonal Dominance in the Anisotropic Case

In Section 3.9, we’ve seen that the mesh size in the strong-diffusion direction could
actually be much larger than that in the weak-diffusion direction, with practically
no effect on the discretization error. Here we use this principle also in the context of
finite-element triangulation to stretch the triangles in the strong-diffusion direction
and come up with a diagonally dominant M-matrix A.

Consider the PDE in (3.2) with the diffusion coefficients D1 and D2 as in
Figure 4.6. The discretization method proposed in [38] (which is also supported
by results from approximation theory) uses finite elements that are stretched in the
strong-diffusion direction. Unfortunately, as discussed there, in order to preserve
conformity also across lines of discontinuity in the diffusion coefficients, one must
compromise regularity, that is, use degenerate triangles with very small angles. In
Figure 4.7, we display a mesh that is both conformal and reasonably regular. More
specifically, we use log2 8 = 3 layers of longer and longer triangles (along the discon-
tinuity lines in the diffusion coefficients) to have a gradual pass from the isotropic
area, where unstretched triangles are used, to the anisotropic area, where the tri-
angles are stretched in the strong-diffusion direction. Once mapped to the isotropic
coordinates [i.e., (x, ỹ) in the lower-left subsquare and (x̃, y) in the upper-right

0
0

1

1

D1 = 1

D2 = 64

D1 = 64

D2 = 1

D1 = 1

D2 = 1

D1 = 1

D2 = 1

Fig. 4.6. The diffusion coefficients D1 and D2 for the anisotropic diffusion problem.

4.8 Locally Refined Meshes 77

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�
�
�
�

�
�

	
	

�
�

	
	

�
�
�
�
�
�
�
�
��������
���� ����
���

�
���

��� �� �� ���� �� �� ���� �� �� ���� �� �� ���� �� �� ��

��
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

0
0

1

1

Fig. 4.7. The stretched finite-element mesh for the anisotropic diffusion equation.

subsquare, where x̃ = x/8 and ỹ = y/8], these triangles satisfy the conditions in
Section 4.6, so the coefficient matrix A is indeed a diagonally dominant M-matrix.

The finite elements can be stretched in the strong-diffusion direction because the
solution can change only slightly in this direction, so no high resolution is needed
in this direction. This principle is also used in local refinement, as discussed below.

4.8 Locally Refined Meshes

The main advantage of the finite-element discretization method is in the opportunity
to use finite elements of different shapes and sizes to approximate complicated
domains. For this purpose, triangulations are most suitable. Indeed, one can use
small triangles near the complicated and irregular boundary, where high resolution
is necessary, and larger triangles elsewhere. Furthermore, if some idea about the
behavior of the solution is known in advance, then the mesh can be constructed
accordingly, using particularly small triangles where the solution is expected to vary
sharply, and larger triangles elsewhere. This local refinement approach may save
valuable computational resources by using high resolution only where necessary.

In some cases, the behavior of the solution can be deduced from the original
boundary-value problem. In diffusion problems, for example, the solution may be
irregular (i.e., nondifferentiable and with large variation) at corners in either the
boundary of the domain or the discontinuity lines of the diffusion coefficients [112].
Local refinement in the neighborhood of these corners only can capture this irregular
behavior, while keeping the number of nodes (and, hence, the computational cost)
moderate.

The process of local refinement must be carried out automatically on the com-
puter. For this purpose, a coarse mesh that provides a poor approximation is used to
start. This mesh is then refined further in a refinement step or level, in which tri-
angles are split and more edges and nodes are introduced at the neighborhoods of
the places where irregularities are expected. This procedure is repeated in further

78 4 Finite Elements

refinement steps, each of which introduces more nodes, edges, and small triangles in
smaller and smaller neighborhoods of the points of irregularity. The final (finest) mesh
obtained from the final refinement step is then used as the required finite-element
mesh that provides a good approximation to the original boundary-value problem.

4.9 The Refinement Step

Here we describe in detail a single refinement step applied to a given triangulation
to improve it at some prescribed locations. Let S be a triangulation of Ω (a set
of triangles whose interiors are disjoint from each other, whose union is a good
approximation to Ω, and that are conformal in the sense that every two edge-sharing
triangles share also the endpoints of this edge as their joint vertices). Assume that
there exists some criterion that determines whether a triangle s ∈ S, should be
refined (e.g., s should be refined if and only if the diffusion coefficient D̃ jumps in
it in both the x and y spatial directions). The refinement step that produces the
refined triangulation T from the current triangulation S is as follows:

Refinement Step 4.1

1. Initialize T by T = S.
2. For every triangle s ∈ S that should be refined according to the refinement

criterion, connect the midpoints of its edges to each other, and include the four
resulting triangles in T instead of s. (We then say that s has been fully refined.)

3. Repeat the following until it adds no more triangles to T .
• Every triangle s ∈ S that is also a triangle in T and currently has five or

more nodes from T on its edges (its three vertices and two or more extra
nodes that have been introduced in this or the former refinement steps on its
edges) is refined fully as well.

4. If T is already sufficiently fine in terms of the refinement criterion and no more
resolution is needed, then, for every triangle s ∈ S that is also a triangle in T
and currently has exactly four nodes from T on its edges (its three vertices and
one extra node that has been introduced in this or the former refinement steps
on one of its edges), connect this extra node to the opposite vertex in s, and
include the two resulting triangles in T instead of s. (We then say that s has
been half refined.) This guarantees that T is indeed conformal.

This refinement step is illustrated in Figure 4.8. In practice, the refinement step
is applied iteratively (with the substitution S ← T after each iteration), until the
desired resolution is achieved, and T is accepted as the required finite-element mesh.

There are also other possible refinement methods, such as those in [8] and [76].
Here is the refinement step used in a refinement method that uses only half
refinement:

Refinement Step 4.2

1. Initialize T by T = S.
2. For every triangle s ∈ S that is also a triangle in T and should be refined

according to the refinement criterion, do the following.

4.9 The Refinement Step 79

�
��

�
��

��������

�
�

�
�

�

�
�

�
�

��
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Fig. 4.8. The refined triangulation T resulting from the original triangulation S using
Refinement Step 4.1.

�
��

��������

�
�

�
�

�

�
�

�
�

�

n2 m n1

n3
n4

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Fig. 4.9. The refined triangulation T resulting from the original triangulation S using
Refinement Step 4.2. (It is assumed that the edge leading from n1 to n2 is refined before
the edge leading from n2 to n3.)

a) Connect the newest vertex of s (the vertex that has been created most recently
in the refinement process) to the midpoint of the opposite edge in s.

b) Include the two resulting triangles in T instead of s. (We then say that s
has been half refined.)

c) If there is a triangle t ∈ T that also uses the edge that has just been split
when s was half-refined, then it is half-refined as well in the same way: the
midpoint of the edge that has just been split is connected to the opposite
vertex in t, and the two resulting triangles are included in T instead of t.

This refinement step is illustrated in Figure 4.9.
The above half-refinement of the triangle s ∈ S uses the most newly created

vertex in s. This choice increases regularity by avoiding a situation in which the
same vertex is used over and over again in subsequent half refinements in subsequent
refinement steps. Another possible choice that may also produce high regularity is
using the vertex i in s with the maximal positive angle � i in s. In fact, the refinement
criterion can demand that a triangle s ∈ S with an angle larger than π/2 should be
refined as well to increase regularity.

As before, the Refinement Step 4.2 is repeated iteratively (with the substitution
S ← T after each iteration), and the mesh T at the end of the iteration is accepted
as the sufficiently accurate finite-element mesh.

80 4 Finite Elements

4.10 Adaptive Mesh Refinement

So far, we’ve assumed that a refinement criterion to determine whether a particular
triangle s ∈ S should be refined is available. Naturally, this criterion depends on
properties of the particular application, such as the domain or the coefficients in
the PDE. Clearly, this is a drawback: one would much prefer to have a general,
robust, and automatic discretization method, that can be implemented once and
for all. Furthermore, good refinement criteria are not always easy to deduce only
from looking at the properties of the domain or PDE. A computational process that
decides where to refine is clearly better.

Fortunately, such a computational process is available, and is called adaptive
refinement. In this approach, the refinement step uses the numerical solution on
the current mesh S to detect particular edges along which this numerical solution
varies sharply. These edges are then split and the triangles in S that use them are
half-refined, leading to the adaptively refined mesh T .

Thus, the refinement step scans not the triangles in S but rather the edges in
it, to decide whether they should be split. The advantage of this approach is in the
opportunity to treat boundary edges in a special way, to improve the approximation
of complicated boundary segments.

The refinement step defined below uses some predetermined threshold, say 0.01.

Refinement Step 4.3

1. Initialize T by T = S.
2. Use the triangulation S to define the coefficient matrix A from (4.10) and the

right-hand side b from (4.11).
3. Solve (3.5) with the above A and b, and obtain the numerical solution ũ(i) = xi

for every node i in S.
4. Let E be the set of edges in S.
5. Scan the edges in E one by one in some order. For every edge e ∈ E encountered

in this scanning, do the following.
• Denote the endpoints of e by i and j.
• If

|ũ(i) − ũ(j)| ≥ threshold, (4.18)

then do the following.
a) If there exist two triangles ti, t2 ∈ T that share e as their joint edge in T ,

then do the following.
– Half-refine t1 by connecting the midpoint of e, (i+ j)/2, to the oppo-

site vertex in t1 and including the two resulting triangles in T instead
of t1.

– Half-refine t2 by connecting the midpoint of e, (i+ j)/2, to the oppo-
site vertex in t2 and including the two resulting triangles in T instead
of t2.

b) If, on the other hand, there is only one triangle t ∈ T that uses e as an
edge in T , then we say that e is a boundary edge and do the following.
– Denote the third vertex in t by k, so t = �(i, j, k).

4.10 Adaptive Mesh Refinement 81

– If (i + j)/2 is in Ω, then connect k to (i + j)/2 and continue this
line until it meets ∂Ω at a point m. Include in T the four triangles
�(k, (i + j)/2), i, �(k, (i + j)/2), j, �(m, (i + j)/2), i, and �(m,
(i + j)/2), j instead of t

– If, on the other hand, (i + j)/2 lies outside Ω, then connect k to
(i+ j)/2 and denote by l the point where this line meets ∂Ω. Include
in T the two triangles �(k, l, i) and �(k, l, j) instead of t.

This refinement step is illustrated in Figures 4.10 through 4.12 for a nonrect-
angular domain. As before, the refinement step is repeated iteratively (with the
substitution S ← T after each iteration), and the mesh T at the end of the iteration
is accepted as the sufficiently accurate finite-element mesh.

The above adaptive-refinement algorithm requires the solution of a large, sparse,
unstructured linear system of the form (3.5) in each refinement step. Efficient al-
gorithms for the numerical solution of (3.5) are thus most important. This is the
subject of the next part.

���
���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
� ���

���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
�Ω

Fig. 4.10. An example of a domain Ω with boundary that is convex on the right and
concave on the left.

�
�
�
�
�
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�
�
�
�
�
�
�

� �
�
�
�
�
�
�

�
�
�
�
�
�
����

���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
� ���

���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
�

Fig. 4.11. The original mesh S that provides a poor approximation to Ω.

82 4 Finite Elements

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�����

��
��
�

	
	
	
		

�
�
�
��

�����

��
��
�

	
	
	
		

�
�
�
��

�
��

�
���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
� ���

���
���
���
���
���
���

����
����

�����
������

�����������

� � � � � � � � � � � � �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
�

Fig. 4.12. The refined mesh T produced by Refinement Step 4.3. (It is assumed for
simplicity that the refinement criterion holds for all the edges in S.)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

Fig. 4.13. Uniform triangulation of the square.

4.11 Exercises

1. Show that the bilinear form in (4.6) is symmetric.
2. Conclude that the coefficient matrix A resulting from the finite-difference dis-

cretization of the above bilinear form is symmetric.
3. Under the assumptions in Section 4.6, show that A is an irreducibly diagonally

dominant L-matrix. (For the meaning of irreducibly diagonal dominance, see
the exercises at the end of Chapter 3.)

4. Conclude from the theory in [118] that A is also nonsingular.
5. Conclude from Lemma 2.1 that A is also SPD.
6. Conclude from the theory in [118] that A is also an M-matrix.
7. Conclude from the theory in [118] that A has a unique eigenvector with positive

components and positive eigenvalue, which is the minimal eigenvalue of A.

4.11 Exercises 83

8. Compute the stiffness matrix A for the Poisson equation in a square on a uniform
triangulation as in Figure 4.13. Consider various possible kinds of boundary
conditions. Show that the stencil obtained is a 5-point stencil, and that it is
the same as in the finite-difference and finite-volume schemes, at least at the
interior of the grid.

9. Use an IMSL routine to compute the nearly singular eigenvector and its corre-
sponding eigenvalue for the above matrix. Verify that the eigenvalue and com-
ponents of the nearly singular eigenvector are indeed positive. Verify that, with
Dirichlet boundary conditions, the nearly-singular eigenvector is just v(1,1) of
Chapter 2.4.

10. Compute the stiffness matrix A for the Poisson equation in a square with
Dirichlet boundary conditions on a uniform bilinear finite-element mesh as in
Section 4.4. Show that the nearly singular eigenvector of A is the 2-D Fourier
(sine) vector v(1,1) in Section 2.4. Use also an IMSL routine to verify this result
numerically.

11. Show that the weak formulation of the diffusion problem in (4.6) is well-posed in
the sense that it has a unique solution with derivatives in L2(Ω). The solution
can be found in Chapter 11 in [103].

12. Write a general code that computes the stiffness matrix A for a general trian-
gulation. The solution can be found in Chapter 13 in [103].

Part III

The Numerical Solution
of Large Sparse Linear Systems

of Algebraic Equations

87

The discretization method produces large linear systems of algebraic equations that
couple the values at the gridpoints (or mesh nodes) to each other. The numerical
solution of the linear systems also provides the numerical solution to the original
boundary-value problem. It is thus most important to have efficient algorithms to
solve these algebraic systems, that is, efficient linear system solvers.

The coefficient matrix A in the linear system (3.5) is in general sparse in the
sense that most of the elements in it are zero. An efficient linear system solver should
exploit this property and avoid introducing too many new nonzero elements (fill-in).
Unfortunately, the traditional Gauss elimination (LU factorization) for solving (3.5)
introduces massive fill-in, and is thus highly inefficient in terms of both time and
storage. Furthermore, Gauss elimination is essentially sequential, and cannot be
implemented efficiently on parallel computers.

Iterative linear system solvers, on the other hand, introduce no or little fill-in,
and may also be parallelized efficiently. In the first chapter in this part (Chapter 5),
we start from relaxation methods, in which the unknowns are updated one by one. In
each such relaxation sweep, the algebraic error is slightly reduced. When the sweeps
are repeated iteratively, the algebraic error is reduced significantly, and the current
values at the unknowns can be accepted as the required values in the vector of
unknowns x in (3.5).

Relaxation methods are particularly efficient in removing the high-frequency
modes in the algebraic error, but not in removing the low-frequency ones, which
vary only slightly from one gridpoint to the next one. In order to annihilate the
low-frequency error modes as well, the equation should be transferred to a coarser
grid, on which the low-frequency error modes are still well approximated and can
be removed more efficiently. To this end, however, one must have a good coarse-grid
approximation to the original system and also good transfer operators to transfer
information between the various grids. These components are supplied in the multi-
grid linear system solvers described in the second chapter in this part (Chapter 6).

The multigrid method can thus be interpreted as an iterative method that uses
relaxation on the fine grid until it is no longer efficient because the high-frequency
error modes have already been annihilated; then, the equation is transferred to the
next coarser grid, where relaxation is still efficient in reducing the lower frequencies
that can still be observed on this grid. Thus, multigrid can also be thought of as
an acceleration technique for the basic relaxation method. In this point of view,
once the relaxation has been exhausted on the fine grid, it is reused on a coarser
grid, where it is still useful. (The relaxation on the coarse grid is applied to the
residual equation, in order to avoid enhancing error modes that have already been
reduced on the fine grid.) Furthermore, once the relaxation has been exhausted on
the coarse grid, it is reused on a yet coarser grid, and so on. Once the relaxation
has been used on the entire hierarchy of the coarser and coarser grids, we say that
one multigrid iteration (or V-cycle) has been completed. Since every algebraic error
mode has been reduced substantially on some grid, the multigrid iteration should
converge rapidly to the algebraic solution x of (3.5).

5

Iterative Linear System Solvers

In this chapter, we present several iterative methods for the solution of large sparse
linear systems of algebraic equations. We start with relaxation methods such as
point and block Jacobi and Gauss–Seidel (GS) and Kacmarz versions, proceed to
conjugate-gradient type acceleration methods, and conclude with incomplete LU
(ILU) versions.

5.1 Iterative Sparse Linear System Solvers

As we have seen above, large sparse linear systems of equations arise often from
the discretization of PDEs. Having efficient and robust algorithms for solving these
systems is thus most important.

Unfortunately, direct methods such as the traditional Gauss elimination method
are inefficient for large sparse linear systems because of the large amount of fill-in
that is introduced in the LU factorization. In fact, for both (3.7) and (4.14) this
method requires O(n4) time and O(n3) storage units. Iterative methods, on the
other hand, usually require only O(n2) storage units, and are thus much more
attractive. Furthermore, they are usually much more efficient also in terms of time,
particularly when parallel implementation is considered.

In iterative methods, one first makes an initial guess x̃ to approximate the solu-
tion x of the linear system (3.5); then, this initial guess is successively improved in
the iteration, until it (one hopes) converges to the true solution x. Each iteration
can be formulated as

x̃ ← x̃ + P−1(b − Ax̃), (5.1)

where “←” stands for substitution, and P, the preconditioning matrix or precon-
ditioner, is an easily invertible matrix that approximates A in a spectral sense, as
discussed later. By “invertible” we mean here that it is rather easy to solve a system
of the form

Pe = r

(where r is a given vector and e is the vector of unknowns); of course, P−1 is never
calculated explicitly, because this may be more expensive than the entire solution
of the original system (3.5).

90 5 Iterative Linear System Solvers

In iterative methods, it is important to estimate the error x̃−x. In this respect,
the iteration matrix

M = I − P−1A

(where I is the identity matrix of the same order as A) is particularly useful.
This matrix governs the reduction of error in each iteration. Indeed, from (5.1)
we have

x̃ − x ← M(x̃ − x).

Thus, the l2-norm of the iteration matrix may provide a good indication for the rate
of convergence. When the number of iterations is large, the rate of convergence can
actually be estimated asymptotically by the spectral radius ρ(M) of the iteration
matrix M.

In the following, we describe several iterative methods in more concrete terms.

5.2 Relaxation Methods

An important class of iterative methods is the class of relaxation methods. In a
relaxation, the vector x̃ that approximates the solution x is improved by scanning
its components one by one and updating each of them to reduce the residual at the
corresponding equation in the linear system. Some common relaxation methods are
described next.

5.3 The Jacobi Relaxation Method

In the point-Jacobi relaxation method, all the components in x̃ are updated simul-
taneously by

x̃ ← x̃ + diag(A)−1(b − Ax̃).

In other words, the point-Jacobi iteration is obtained by setting the preconditioner
P to be

P = diag(A).

It is well known that the Jacobi iteration converges whenever A is an M-matrix or
a diagonally dominant matrix [118]. However, the convergence may be extremely
slow. For the Poisson equation, for example, the spectral radius of the iteration
matrix is as large as

ρ(I − diag(A)−1A) = 1 − 2 sin2(πh/2),

where h = 1/(n+1) is the meshsize. Therefore, the number of iterations required to
reduce the l2 norm of the error by a constant factor is O(h−2), which is prohibitively
large. Still, the Jacobi iteration can be useful thanks to its efficient parallel imple-
mentation.

5.6 The Gauss–Seidel Relaxation Method 91

5.4 The Damped Jacobi Relaxation Method

In some cases, however, one might want to use a damping factor 0 < σ ≤ 1 to
prevent divergence:

x̃ ← x̃ + σ · diag(A)−1(b − Ax̃),

or

P = σ−1diag(A).

This is called the damped Jacobi iteration.

5.5 The Block Jacobi Relaxation Method

The Jacobi iteration has also a “block” version:

x̃ ← x̃ + σ · blockdiag(A)−1(b − Ax̃),

or

P = σ−1blockdiag(A).

Here “blockdiag(A)” is the matrix that has the same elements as A inside a chain of
blocks located along its main diagonal and zeroes elsewhere. This iterative method
usually converges slightly better than the above point Jacobi iteration, at the ex-
pense of inverting the individual blocks in “blockdiag(A)” in each iteration.

5.6 The Gauss–Seidel Relaxation Method

In the point-Jacobi relaxation, all unknowns are relaxed simultaneously. Somewhat
better convergence rates can be obtained by the point-Gauss–Seidel (GS) relaxation
method described next.

In the point-GS relaxation, the components of x̃ are updated one by one: for
k = 1, 2, 3, . . . , n2, the unknown component x̃k is updated by

x̃k ← x̃k + (Ak,k)−1 (b − Ax̃)k. (5.2)

The subscript “k” in (5.2) corresponds to the kth unknown in the vector of un-
knowns. Once all the unknowns are updated in this way, we say that the GS relax-
ation (or sweep, or iteration) is complete.

Since the unknowns are relaxed in the usual order, the point-GS iteration can
be also formulated with the preconditioner being the lower triangular part of A,
denoted by L̃:

P = L̃ and M = I − L̃−1A. (5.3)

It is well known that the point-GS iteration converges to x whenever A is diagonally
dominant or SPD [118]. However, the convergence is still rather slow, and O(h−2)
iterations are required even for the Poisson equation.

92 5 Iterative Linear System Solvers

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 5.1. The “zebra” coloring: odd-numbered lines are colored white, and even-numbered
lines are colored black.

5.7 The Block-Gauss–Seidel Relaxation Method

In the block-GS version, the subscript “k” in (5.2) corresponds to the kth block of
unknowns in x̃. The preconditioner for this iteration is

P = L̃,

where L̃ is now interpreted as the lower block triangular part of A. The rate of
convergence is usually better than in the point-GS iteration, at the expense of
inverting the block submatrices on the diagonal of L̃ in each iteration.

The blocks in the block-GS iteration can be chosen in different ways. For exam-
ple, when the above blocks correspond to lines of gridpoints, we obtain the line-GS
relaxation method. When odd-numbered lines are relaxed before even-numbered
lines, we obtain the “zebra” line-GS relaxation method (Figure 5.1).

The lines in the line-GS relaxation can be either in the x- or in the y-direction
in the Euclidean plane where the grid is embedded. The x-line relaxation uses lines
in the x spatial direction, whereas the y-line relaxation uses lines in the y spatial
direction. The alternating line relaxation is combined of two relaxation sweeps: an
x-line relaxation followed by a y-line relaxation.

Similarly, the “zebra” line relaxation can also use lines in either the x or the
y spatial direction. The alternating “zebra” line relaxation is composed of two re-
laxation sweeps: first a “zebra” relaxation with lines in the x spatial direction, and
then a “zebra” relaxation with lines in the y spatial direction.

Note that the point-GS relaxation can actually be viewed as a special case of
the block relaxation, with trivial blocks of order 1.

5.8 Reordering by Colors

In the point-Gauss–Seidel iteration (5.2), the unknowns must be relaxed in the
standard order. The relaxation of a particular unknown depends on the updated
values of unknowns that have been relaxed before. The algorithm is thus essentially
sequential, and cannot be implemented efficiently in parallel.

5.8 Reordering by Colors 93

In the first edition of this book, there is an attempt to define a parallelizable
point-GS version. Unfortunately, it turns out that this version may be parallelizable
only for banded matrices, but not in general.

Fortunately, parallelizable point-GS versions can be designed by using a special
order of unknowns. In fact, the most attractive order is the order by colors, which
allows parallel relaxation in subsets of unknowns. This kind of relaxation is referred
to as “colored” relaxation; here a “color” is a maximal subset of unknowns that are
decoupled from each other in A and, hence, can be relaxed simultaneously in parallel.

Here is how the colored relaxation is carried out. The original set of unknowns is
split into disjoint subsets (“colors”) and then relaxed color by color. Each color can
be relaxed simultaneously in parallel, because the unknowns in it are decoupled from
each other in A. For example, for the 5-point stencil (3.7), the red-black coloring
that uses two colors as in a checkerboard provides a well-parallelizable relaxation
method. The red color r is the index subset

r = {(i, j) ∈ g | i + j ≡ 0 mod 2} , (5.4)

and the black color b [not to be confused with the right-hand side in (3.5)] is the
index subset

b = {(i, j) ∈ g | i + j ≡ 1 mod 2} (5.5)

(Figure 5.2). For 9-point stencils as in (4.13), 4-color methods as in [1] [95] are
suitable. For example, these four colors can be the four index subsets in (5.8) below.

The following theorem shows that the colored relaxation is as good as the original
one in terms of asymptotic convergence rate.

Theorem 5.1 Let M be the iteration matrix for the point-GS method applied to a
particular linear system with the coefficient matrix A. Then there exists a reordering
by colors for which the iteration matrix has the same spectrum as M. More specifi-
cally, when A is tridiagonal and the original order is the standard order, this coloring
is just the odd-even splitting. Furthermore, when A corresponds to the 5-point sten-
cil and the original order is the usual lexicographical order, this coloring is just the
red-black (checkerboard) coloring.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 5.2. The red-black coloring: the circles are relaxed first, and the bullets are relaxed
last.

94 5 Iterative Linear System Solvers

For the proof, see [1] and [95].
Let us now apply Theorem 5.1 to an example, which is also useful in Section 10.4

below. Recall that, for the point-GS iteration, the preconditioner is just the lower
triangular part of A [see (5.3)]. Consider the 5-point stencil in (3.8). For this stencil,
the coloring in Theorem 5.1 is just the above red-black coloring. Let r denote the
set of red points and b [not to be confused with the right-hand side in (3.5)] the set
of black points. With this partitioning, A has the block form

A =
(

Arr Arb

Abr Abb

)
.

Note that because the unknowns in r are decoupled from each other in A, Arr is
diagonal. The same is true also for the black color b, so Abb is diagonal as well. These
properties allow simultaneous relaxation within each color, as discussed below.

Let us first consider the first “leg” of the red-black relaxation, in which only the
red points are relaxed. The inverse of the preconditioner for this leg is thus

(Pr)−1 =
(

(Arr)−1 0
0 0

)
.

Therefore, the iteration matrix for the first leg is

Sr = I − (Pr)−1A =
(

0 −(Arr)−1Arb

0 I

)
. (5.6)

Similarly, in the second “leg” of the red-black relaxation only black points are
relaxed. The inverse of the preconditioner for this leg is, thus,

(Pb)−1 =
(

0 0
0 (Abb)−1

)
,

and, hence, the iteration matrix for the second leg is

Sb = I − (Pb)−1A =
(

I 0
−(Abb)−1Abr 0

)
. (5.7)

The iteration matrix for the entire red-black relaxation is, thus,

S = SbSr

=
(

I 0
−(Abb)−1Abr 0

)(
0 −(Arr)−1Arb

0 I

)

=
(

0 −(Arr)−1Arb

0 (Abb)−1Abr (Arr)−1Arb

)
.

Alternatively, the iteration matrix for the red-black relaxation can be computed also
as a whole, without partitioning into red and black “legs.” Indeed, the preconditioner
for the red-black relaxation is

P =
(

Arr 0
Abr Abb

)
,

5.9 Four-Color Reordering 95

so its inverse is

P−1 =
(

(Arr)−1 0
−(Abb)−1Abr (Arr)−1 (Abb)−1

)
.

Therefore, the iteration matrix for the red-black relaxation is

S = I − P−1A

= I − P−1

(
P +

(
0 Arb

0 0

))

= −P−1

(
0 Arb

0 0

)

=
(

0 −(Arr)−1Arb

0 (Abb)−1Abr (Arr)−1Arb

)
,

which is exactly the same as calculated before.
Assume now that A is lower triangular, for example, A represents the upwind

discretization (see Section 3.11) of a convection equation as in (3.36) with no dif-
fusion (ε = 0) and constant coefficients a1 and a2 there (straight entering flow).
We assume that the unknowns in the linear system have been ordered in advance
in such a way that A is indeed lower triangular. (We refer to this order as the
downwind or downstream order, whereas the reversed order for which A is upper
triangular is referred to as the upwind or upstream order.) From (5.3), the iter-
ation matrix for the point-GS method is just the zero matrix. In this case, we
say that the relaxation is done in the “downstream” direction, so convergence is
achieved in one iteration only. From Theorem 5.1, the red-black relaxation must also
have the zero spectrum. From the representation of the iteration matrix S above,
one can see that it indeed has a zero spectrum, as its lower-right block is strictly
lower triangular. Thus, the theorem indeed predicts what the above calculations
reveal.

One may ask: why bother with the red-black ordering, when the standard or-
dering produces relaxation that converges immediately? The answer is that this
only happens here by chance, because the unknowns have fortunately been ordered
properly. In general, one needs to write an algorithm that will work well for any
given matrix A, may it be triangular or not. Although the standard order works well
for the above example, it would be rather inefficient for most other cases, including
cases in which A is upper triangular or is not triangular at all. Thus, in general, the
red-black ordering is preferable thanks to its efficient parallel implementation.

5.9 Four-Color Reordering

The red-black reordering is suitable for a 5-point stencil: since the points in the first
subgrid r, are decoupled from each other, they can be relaxed simultaneously in
parallel. The same is also true for the second subgrid, b. However, when a 9-point
stencil as in (4.13) is encountered, this reordering is no longer sufficient; one should
switch to a four-color reordering.

96 5 Iterative Linear System Solvers

∗

�

∗

�

∗

�

�

�

�

�

�

�

∗

�

∗

�

∗

�

�

�

�

�

�

�

∗

�

∗

�

∗

�

�

�

�

�

�

�

Fig. 5.3. Four-color relaxation. The asterisks are relaxed in the first stage, the bullets are
relaxed in the second stage, the diamonds are relaxed in the third stage, and the circles
are relaxed in the fourth stage.

The four-color partitioning uses the following four subgrids:

c0,0 = {(i, j) ∈ g | i ≡ j ≡ 0 mod 2}
c0,1 = {(i, j) ∈ g | i ≡ j + 1 ≡ 0 mod 2}
c1,0 = {(i, j) ∈ g | i + 1 ≡ j ≡ 0 mod 2}
c1,1 = {(i, j) ∈ g | i ≡ j ≡ 1 mod 2}

(5.8)

(Figure 5.3). Each of these subgrids can be thought of as colored by a different
color; thus, each subgrid is also referred to as “color.” Furthermore, the points in
each subgrid are decoupled from each other in the 9-point stencil, and hence can be
relaxed simultaneously in parallel.

Thus, the four-color reordering is defined by placing the first color (c0,0) first,
then the second color (c1,0), then the third color (c0,1), and finally the fourth color
(c1,1). The four-color point relaxation is actually a point-GS relaxation that uses
this order. From [95], it follows that the iteration matrix of this relaxation method
has the same spectrum as the one that uses the Cauchy (diagonal-by-diagonal) order
in g. Thanks to its high degree of parallelism, the four-color relaxation is commonly
used for 9-point stencils. In this book, it is often used within the multigrid cycle.

5.10 Cache-Oriented Reordering

In modern computers, the processors may be so strong that computation is no longer
the most time-consuming part in the solution process. Accessing the memory may
be much more time consuming, and minimizing it may be more immediate in the
design of algorithms and implementations. In this respect, the cache memory is
particularly useful. The access to it is relatively inexpensive, therefore one can put
in it a certain amount of data (usually, a 32 × 32 or 64 × 64 array of floating-point
numbers) and make the most of it as long as it is available in the cache. Domain
decomposition algorithms that solve local subproblems are particularly suitable for
cache-oriented implementation because the data about a particular subdomain that

5.10 Cache-Oriented Reordering 97

are placed in the cache are used fully to solve the subproblem in that subdomain.
Block-relaxation methods that solve block subproblems are also attractive in terms
of cache use.

Point-relaxation methods, on the other hand, are not so attractive in terms of
cache access because a datum that is brought from the memory to the cache can be
used only for the current relaxation before it is returned to the memory. It seems
rather inefficient to bring a datum from the memory only for one relaxation. A
better idea would be to use the datum that is already in the cache for as many
relaxations as possible. This, however, would require a slight reordering [47].

In Figures 5.4–5.6 we illustrate the cache-oriented point relaxation. We assume
a rectangular uniform grid, and decompose it into subsquares or subdomains. We
also imagine a z-axis perpendicular to the domain, with z being the iteration num-
ber. One can imagine layers that are put on the grid one by one, each representing
an approximate solution obtained from a point-relaxation applied to the previous
approximation represented by the layer underneath it. In cache-oriented relaxation,
once the data corresponding to a particular subdomain are brought from the mem-
ory to the cache, they are not only used for the current relaxation but also for
subsequent relaxations, at least at those gridpoints where the information required
to carry out more relaxations is available. In the present example, we assume that
A is from 9-point stencil as in (4.13). The data required for relaxing a particular
grid-point are, thus, the data from the previous iteration at the eight points sur-
rounding it. The relaxation process can be thought of as building with Lego bricks
with the rule that a brick must be supported by at least nine bricks underneath it.

Our aim is to build as many layers as possible in a particular subdomain without
violating the above rule; this would make the most of the data about this subdomain
already available in the cache. The first step is illustrated in Figure 5.4: a pyramid
is built in each subdomain, based solely on the data in the lowest layer in this

� �

� �

� �

� �

�

�

�

�

�

�

�

�

Fig. 5.4. The first step in the cache-oriented relaxation. In each of the four subsquares, the
points are relaxed layer by layer. Each layer is smaller than the one underneath it, so four
pyramids are built in the four subsquares. The arrows show the order in which layers are
put. The height of a layer corresponds to the iteration number: the lowest layer corresponds
to the initial guess, the next layer above it corresponds to the first iteration, and so on.

98 5 Iterative Linear System Solvers

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Fig. 5.5. The second step in the cache-oriented relaxation that fills the “holes” between
adjacent pyramids. In each of the four subsquares, the points are relaxed layer by layer,
where the lines indicate the boundary of the layer. (In the right and upper subsquares,
only the horizontal boundaries are indicated.) The lowest layer corresponds to the initial
guess, the next layer above it corresponds to the first iteration, and so on.

�

�

� �

Fig. 5.6. The third and final step in the cache-oriented relaxation. An upside-down pyra-
mid is built in the middle of the square. The layers are put in the order shown by the
arrows. Each layer is larger than the one underneath it. This completes m/2 point-GS
iterations, where m2 is the number of points in a subsquare.

subdomain. The second step is illustrated in Figure 5.5: the “holes” in between
adjacent pyramids are filled. The final step is illustrated in Figure 5.6: the “upside-
down pyramid” left in the middle of the domain is also filled. Thus, at the end of
the process, m/2 layers are constructed (where m2 is the number of points in a
subdomain). In other words, m/2 consecutive relaxations are done, using only few
memory accesses. The extension of the algorithm in Figures 5.4 through 5.6 to more
subsquares is straightforward. The cache-oriented relaxation is particularly suitable

5.11 Symmetric Gauss–Seidel Relaxation 99

to parallel implementations, where the subdomains can be processed simultaneously
in parallel.

5.11 Symmetric Gauss–Seidel Relaxation

Basic iterative methods could be prohibitively slow in terms of iteration count.
Fortunately, they can often be accelerated by acceleration techniques such as the
preconditioned conjugate gradient method. However, this method requires that both
the coefficient matrix A and preconditioner P are SPD. It is thus important to con-
struct iterative methods with a preconditioner that is SPD whenever the coefficient
matrix is.

Such an iterative method is the symmetric point- (or block-) GS iteration. One
iteration of this method consists of two consecutive relaxations: a standard GS
relaxation, followed by another GS relaxation in the reverse order. In the following,
we prove that the preconditioner for this iteration is indeed SPD whenever A is.

Let us denote the lower- (block-) triangular part of A by L̃, the upper- (block-)
triangular part of A by Ũ , and the (block-) diagonal part of A by D̃. With this
notation, we have

A = L̃ + Ũ − D̃.

The preconditioner and iteration matrix for the GS iteration are, thus,

P = L̃ and M = I − L̃−1A.

When the unknowns (or blocks) are relaxed in the reverse order, we obtain the
reverse GS relaxation, whose preconditioner and iteration matrix are:

P = Ũ and M = I − Ũ−1A.

One symmetric GS iteration consists of a standard GS iteration followed by a reverse
GS iteration. The iteration matrix for the symmetric GS method is thus

M =
(
I − Ũ−1A

)(
I − L̃−1A

)
.

The inverse of the preconditioner of the symmetric GS method can thus be written
as follows.

P−1 = (I −M)A−1

=
(
Ũ−1A + L̃−1A − Ũ−1AL̃−1A

)
A−1

= Ũ−1 + L̃−1 − Ũ−1AL̃−1

= Ũ−1 + L̃−1 − Ũ−1(Ũ + L̃ − D̃)L̃−1

= Ũ−1D̃L̃−1. (5.9)

This representation yields the following standard lemma, which allows the use of
the preconditioned conjugate gradient method in Section 5.12 below.

100 5 Iterative Linear System Solvers

Lemma 5.1 If A is symmetric (respectively, SPD), then the preconditioner for the
symmetric GS method is symmetric (respectively, SPD) as well.

Proof. Since A is symmetric, we have that

L = U t.

Since A is symmetric (respectively, SPD), D̃ is symmetric (respectively, SPD) as
well. The lemma follows now from (5.9). This completes the proof of the lemma.

5.12 The Preconditioned Conjugate Gradient Method

In this section, we describe the preconditioned conjugate gradient (PCG) method,
which may accelerate the convergence of the basic iterative method. When acceler-
ated by PCG, the basic iterative method actually serves as a preconditioner that
reduces the amount of singularity in the original coefficient matrix and makes it
more suitable for the conjugate gradient iteration.

Unfortunately, the PCG acceleration is limited to cases in which both the co-
efficient matrix A and the preconditioner P are SPD. In more general cases, other
Lanczos-type acceleration methods should be used instead.

The amount of singularity in A is measured by its condition number. The smaller
the condition number, the more regular A is, and the faster the PCG iteration
converges to x.

For a matrix M that is SPD with respect to some inner product, define its
condition number by

κ(M) = ρ(M)ρ(M−1). (5.10)

It is well known that the convergence rate of the Conjugate Gradient (CG)
method in [62] for SPD problems is inversely proportional to κ(A). For problems
with large κ(A), the convergence may thus be prohibitively slow. Fortunately, the
convergence may improve considerably by using PCG with a suitable SPD precon-
ditioner P. Actually, PCG is obtained by applying the CG method to the precon-
ditioned equation

P−1Ax = P−1b, (5.11)

with the only change that the usual inner product (·, ·)2 used in CG is replaced by
the induced inner product (·, ·)P . With respect to this inner product, both P−1A
and A−1P are SPD (see Lemma 2.9); therefore, we have (see also Lemma 12.7 below)

κ(P−1A) = ‖P−1A‖P‖A−1P‖P . (5.12)

The preconditioner P should thus be both easily invertible and close to A in
terms of spectral analysis, especially with regard to the nearly singular eigenvec-
tors (eigenvectors that correspond to nearly zero eigenvalues). This property would
guarantee that κ(P−1A) is indeed considerably smaller than κ(A), and, hence, PCG
converges much more rapidly than CG.

Let us now describe the PCG iteration in some more detail. The iteration is set
to converge to six orders of magnitude accuracy.

5.12 The Preconditioned Conjugate Gradient Method 101

Algorithm 5.1

1. Let x̃ be the initial-guess vector.
2. Let x́ be the result of an application of the iterative method to x̃:

x́ = x̃ + P−1(b − Ax̃).

3. Define also the residual vector

r = b − Ax̃.

4. Define also the preconditioned residual vector

r̃ = x́ − x̃ = P−1(b − Ax̃).

5. Initialize also the vectors p = r and p̃ = r̃. (p̃ will serve as a direction vector to
improve the guess x̃.)

6. Define also the scalars γ0 = γ = (r, r̃)2.
7. Apply the iterative method to p̃ with zero right-hand side:

ṕ = p̃ − P−1Ap̃.

8. Compute the vector

w̃ = p̃ − ṕ = P−1Ap̃.

Compute also the vector

w = Ap̃.

Compute also the scalar

α = γ/(p̃, w)2.

9. Update the approximate solution x̃ by

x̃ ← x̃ + αp̃.

10. Update also the residual by

r ← r − αw.

11. Update also the preconditioned residual by

r̃ ← r̃ − αw̃.

12. Compute also the scalar

β = (r, r̃)2/γ.

13. Update γ by

γ ← βγ.

14. Update the direction vector p̃ by

p̃ ← r̃ + βp̃.

15. If γ/γ0 > 10−12, then go to Step 7.

102 5 Iterative Linear System Solvers

5.13 Incomplete LU Factorization (ILU)

An iterative method that is both general and well-accelerated by PCG-like methods
is the incomplete LU factorization method (ILU) [56] [75] [119], which is based on
the approximate decomposition of A as the product LU of the two sparse triangular
matrices L and U . In an ILU iteration, the approximate solution x̃ is improved by

x̃ ← x̃ + U−1L−1(b − Ax̃). (5.13)

Another ILU version, the block-ILU (or line-ILU) method [50], is described in
Section 11.4 below.

Next, we describe in detail a version of the ILU factorization. This version uses
no fill-in at all: the triangular matrices L and U used in the ILU method (5.13) have
the same sparsity pattern as the original matrix A, i.e., they can have a nonzero
element only if the corresponding element in A is nonzero.

Algorithm 5.2

1. Initialize L = (li,j)1≤i,j≤N to be the identity matrix.
2. Initialize U = (ui,j)1≤i,j≤N by U = A.
3. For i = 2, 3, . . . , N , do the following:

• For j = 1, 2, . . . , i − 1, do the following:
a) define factor = ui,j/uj,j;
b) for k = j, j + 1, . . . , N , if ui,k �= 0, then set

ui,k ← ui,k − factor · uj,k.

c) set li,j ←factor.

The resulting matrices L and U are now used in the ILU iteration (5.13).

5.14 Parallelizable ILU Version

Because each ILU iteration requires forward elimination in L followed by back-
substitution in U , it is essentially sequential and cannot be implemented efficiently
on parallel computers. Fortunately, one may modify the standard ILU method in
such a way that it can be well parallelized. Here we introduce a parallelizable ILU
version based on [96].

In the parallelizable version, L and U and the preconditioning method are de-
fined in a slightly different way from before. For simplicity, we assume that the
parallel computer contains only two processors: the first processor constructs the
first N/2 rows in L and U , and the second processor constructs the last N/2 rows
in L and U . The extension to p ≥ 2 processors is straightforward; in this case, each
processor constructs N/p consecutive rows in L and U .

The parallelizable ILU version is based on restarting the recursions used in ILU
so that different parts of the recursions can be completed simultaneously in parallel.
Let O be a positive integer denoting the amount of overlap between the parts, that
is, number of matrix rows that are shared by both processors (“O” stands for
“overlap”). A reasonable choice for O for 2-D problems is O = �

√
N�; another

possibility is to set O to be a small number independent of N . The triangular
matrices L and U are defined as follows.

5.14 Parallelizable ILU Version 103

Algorithm 5.3

1. Initialize L = (li,j)1≤i,j≤N to be the identity matrix.
2. Initialize U = (ui,j)1≤i,j≤N by U = A.
3. For i = N/2 − O + 1, N/2 − O + 2, . . . , N , do the following.

• For j = N/2 − O,N/2 − O + 1, . . . , i − 1, do the following.
a) Define factor = ui,j/uj,j;
b) For k = j, j + 1, . . . , N , if ui,k �= 0, then set

ui,k ← ui,k − factor · uj,k.

c) set li,j ←factor.
4. For i = 2, 3, . . . , N/2, do the following:

• If i > N/2 − O, then for j = N/2 − O,N/2 − O + 1, . . . , N , set ui,j back to
its initial value by ui,j ← ai,j.

• For j = 1, 2, . . . , i − 1, do the following:
a) Define factor = ui,j/uj,j;
b) For k = j, j + 1, . . . , N , if ui,k �= 0, then set

ui,k ← ui,k − factor · uj,k.

c) Set li,j ←factor.

The parameter O represents the amount of overlap between the two subsets of
unknowns

{1, 2, . . . , N/2} and {N/2 − O,N/2 − O + 1, . . . , N}.

In each of these subsets, the incomplete factorization can take place independently
of the other. Thus, each subset is assigned to a different processor. Of course, when
O = N/2 − 1, the algorithm is equivalent to the standard ILU factorization in
Section 5.13 above. In practice, however, O is much smaller. Indeed, the theory
in [96] shows that O could be rather small. Although this theory is no longer appli-
cable to the present version, it can still be interpreted to indicate that the present
version should work well in terms of iteration count, particularly when used as a
relaxation method within the multigrid V-cycle discussed later in this book.

On a parallel computer with two processors, steps 3 and 4 can be executed
simultaneously in parallel. It is assumed that O is small relatively to N , so it can be
safely assumed that by the time step 4 reaches row i (for some N/2−O < i ≤ N/2),
the ith unknown is no longer in use in step 3, so its update in step 4 does not have
a bad effect on step 3.

In practice, the rows in A are grouped in p groups that are assigned to p proces-
sors. Each group contains about N/p+O rows in A, which are processed by one of the
processors. Steps 3 and 4 above are replaced by p steps to process these groups and
construct the corresponding rows in L and U . When implemented on a parallel com-
puter, these steps can be executed simultaneously and independently of each other.

So far, we have shown how the matrices L and U should be constructed in a
parallelizable algorithm. Next, we show that the iteration (5.13) can also be modified
in the same spirit to suit parallel computers. More specifically, in (5.13) one needs
to solve an equation of the form

Lv = r, (5.14)

104 5 Iterative Linear System Solvers

where r is a given N -dimensional vector and v is the N -dimensional vector of un-
knowns. The solution of (5.14), referred to as forward elimination, is approximated
here by a parallelizable approximate forward elimination:

Algorithm 5.4

1. Initialize v by v = r.
2. For i = N/2 − O + 1, N/2 − O + 2, . . . , N , update vi by:

vi ← ri −
i−1∑

j=N/2−O

li,jvj .

3. For i = 2, 3, . . . , N/2, update vi by:

vi ← ri −
i−1∑
j=1

li,jvj .

Similarly, in (5.13) one also has to solve an equation of the form

Uv = r, (5.15)

The solution of (5.15), referred to as back-substitution, is also approximated by a
parallelizable approximate back-substitution:

Algorithm 5.5

1. Initialize v by v = diag(U)−1r.
2. For i = N/2, N/2 − 1, . . . , 1, update vi by:

vi ←

⎛
⎝ri −

N∑
j=i+1

ui,jvj

⎞
⎠/ui,i.

3. For i = N − 1, N − 2, . . . , N/2 − O + 1, update vi by:

vi ←

⎛
⎝ri −

N∑
j=i+1

ui,jvj

⎞
⎠/ui,i.

Again, when implementation on a parallel computer with p processors is consid-
ered, step 2 (and 3) above is replaced by p different steps to process the p portions
of restarted recursion. These steps can then be executed simultaneously and inde-
pendently of each other using the p processors.

5.15 Nonsymmetric and Indefinite Problems

As in the Jacobi and symmetric GS relaxation methods, the preconditioner of ILU is
SPD whenever A is. Therefore, it is suitable to serve as a preconditioner also in the
PCG iteration. However, it turns out that the ILU preconditioner may be inferior to
the symmetric GS preconditioner for SPD problems. The advantage of ILU is more

5.16 Numerical Comparison 105

apparent for problems in which A is not SPD, such as the convection-diffusion equa-
tion, where it is nonsymmetric, and the Helmholtz equation, where it is indefinite.
Although PCG is no longer applicable, the preconditioned system

P−1Ax = P−1b

can still be solved by more general Lanczos-type acceleration methods, such as the
Generalized Minimal Residual (GMRES) method [88], the Quasi Minimal Resid-
ual (QMR) method [53], the Transpose-Free Quasi Minimal Residual (TFQMR)
method [54], or the Conjugate Gradient Squared (CGS) method [110].

The above acceleration methods require frequent application of P−1A to a vec-
tor. Fortunately, this can be done with no explicit calculation of P or P−1. Indeed,
the basic iterative method calculates

xnew = xold + P−1(b − Axold),

so we have
xold − xnew = P−1(Axold − b).

Therefore, by applying the basic iteration to a given vector xold (with the right-
hand side b being set to the zero vector), one automatically gets the application of
P−1A to the vector xold , with no need to know P or P−1 explicitly. Furthermore,
one can also easily calculate the application of P−1 to the initial residual, which
gives the preconditioned residual, used in the start of the acceleration process.

5.16 Numerical Comparison

We have tested the above ILU and parallelizable ILU versions for several nonsym-
metric matrices from the Harwell–Boeing collection of sparse matrices. For these
examples, the point-GS preconditioner isn’t robust, and fails to converge for the
“sherman2” and “pores” examples.

In Table 5.1 we report the number of ILU iterations used within CGS to reduce
the l2-norm of the preconditioned residual by 12 orders of magnitude. (In other
words, the ILU version is used as a preconditioner in the CGS iteration, and the

Table 5.1. Number of ILU iterations used within CGS applied to nonsymmetric examples
from the Harwell–Boeing collection of sparse matrices. The parameter “nonzeroes” denotes
the number of nonzero elements in the coefficient matrix A. The parallelizable ILU method
is implemented with p = 20 and O = 25.

Example N Nonzeroes ILU Parallelizable ILU
sherman2.rua 1080 23094 23 297

sherman3.rua 5005 20033 193 443

sherman4.rua 1104 3786 65 107

sherman5.rua 3312 20793 65 129

pores2.rua 1224 9613 81 1591

pores3.rua 532 3474 79 561

106 5 Iterative Linear System Solvers

number of preconditioning steps is reported in the table.) It is apparent that par-
allelizable ILU (implemented with p = 20 and O = 25) is not as robust as standard
ILU, and requires more iterations to converge. Still, the cost of each parallelizable
ILU iteration may be reduced by parallelism. Furthermore, the iteration count in
the table may be reduced considerably by increasing O and/or decreasing p.

The power of (parallelizable) ILU is more apparent when used within the multi-
grid V-cycle. This is discussed later in the book (see Section 16.5).

5.17 The Normal Equations

When A is not SPD, PCG cannot be applied to the original system (3.5). However,
it can still be applied to the system of normal equations, obtained by multiplying
(3.5) throughout by A∗:

A∗Ax = A∗b.

The Kacmarz iteration [115] is just the Gauss–Seidel iteration applied to this system.
Because A∗A is always SPD, this iteration always converges to x [118]. Unfortu-
nately, the convergence is usually prohibitively slow. Even when symmetric GS
iteration is used on the above normal equations and PCG acceleration is also used,
the convergence is still often too slow. This is because the condition number κ(A∗A)
[defined in (5.10)] is much larger than κ(A). One must therefore develop precondi-
tioning methods more powerful than symmetric GS, such as multigrid.

The above normal equations have also a slightly different version. When an SPD
preconditioner P is available for the non-SPD matrix A, one could multiply (3.5)
throughout by A∗P−1, to obtain:

A∗P−1Ax = A∗P−1b.

Because the coefficient matrix in this system is SPD, one could apply PCG to it
with the preconditioner P [15].

5.18 Exercises

1. We say that the matrix A is of property-A if, in some order of unknowns, it has
the block form (

A(1,1) A(1,2)

A(2,1) A(2,2)

)
,

where A(1,1) and A(2,2) are diagonal submatrices. Show that, if a matrix A has
a 5-point stencil as in (3.8), then it is of property-A, and the above block form
is obtained from the red-black reordering.

2. Write a computer code that implements the point-Jacobi iteration for tridiago-
nal linear systems.

3. Write the computer code that implements the point-Jacobi iteration for 5-point
stencils.

5.18 Exercises 107

4. Write the computer code that implements the point-Jacobi iteration for 9-point
stencils.

5. Write a computer code that implements the point-GS iteration for tridiagonal
linear systems.

6. Write the computer code that implements the point-GS iteration for 5-point
stencils.

7. Modify the above code to use red-black ordering.
8. Write the computer code that implements the point-GS iteration for 9-point

stencils.
9. Modify the above code to use four-color ordering.

10. Write the computer code that implements the line-GS iteration for 9-point
stencils.

11. Modify the above code to use the “zebra” ordering.
12. Modify the above code to use the symmetric “zebra” line relaxation.
13. Write a computer code that uses the above relaxation method as a precondi-

tioner in PCG.
14. Test your codes for the Poisson equation in a square, discretized on a uni-

form bilinear finite-element mesh as in Section 4.4. Which iterative method is
the best?

15. Write the computer codes that implement the point-Jacobi, point-GS, and sym-
metric point-GS for general sparse linear systems. Furthermore, write a code
that uses the latter relaxation method as a preconditioner in PCG. The solution
can be found in Chapter 17 in [103].

16. Assume that A has a 9-point stencil. Show that AtA has a 25-point stencil
(a 5 × 5-stencil).

17. Color the uniform grid in (3.6) with respect to a 25-point stencil. Use nine
colors, each of which contains gridpoints that are (multiples of) three points
away from each other in both the x and y spatial directions. Show that the
point-GS relaxation can be done in each color in parallel; that is, all the points
in a color can be relaxed simultaneously. Conclude that the 9-color point-GS
relaxation can be completed in parallel in nine time units only, regardless of the
size of the grid.

6

The Multigrid Iteration

In this chapter, we describe the various kinds of multigrid methods for the solution
of large sparse linear systems arising from the discretization of elliptic PDEs. We
highlight an interesting connection between multigrid and domain decomposition,
and explain the various kinds of multigrid versions (including black-box multigrid
and algebraic multigrid) in terms of domain decomposition.

6.1 The Two-Grid Method

The multigrid iterative method is a powerful tool for the numerical solution of
large sparse linear systems arising from the discretization of elliptic PDEs. In a
multigrid iteration (also known as multigrid cycle), the equation is first relaxed on
the original (fine) grid by some relaxation method to smooth the error and make
it ready to be solved for on a coarser grid. Because calculations on this grid are
cheaper, a correction term can be computed there, and then transferred back to the
fine grid and added to the approximate solution. Finally, the equation is relaxed
again on the fine grid (usually by the same relaxation method), to smooth out any
oscillatory error modes that may have contaminated the coarse-grid correction. The
entire procedure can be described schematically in a diagram with the shape of the
Latin letter V, hence the name “V-cycle” (Figure 6.1).

Actually, the coarse-grid problem can by itself be solved approximately recur-
sively by one multigrid iteration, using subsequent coarser grids. This is the multi-
grid V-cycle (Figure 6.3). For model elliptic problems such as the Poisson equation
discretized by finite differences on a uniform rectangular grid, the multigrid itera-
tion converges to the algebraic solution x in the so-called Poisson convergence rate,
in which the accuracy improves by one digit (the l2-norm of the residual is reduced
by factor 10) in each iteration [24]. This convergence rate is independent of the num-
ber of degrees of freedom (gridpoints) N , and is optimal for an iterative method
that requires only O(N) storage units and O(N) arithmetic operations per itera-
tion [7]. Good convergence rates have also been obtained for more difficult PDEs,
such as highly anisotropic model equations [23] and equations with variable (discon-
tinuous) coefficients [39]. The attempt to obtain good convergence rates for more
difficult problems in complicated domains and nonuniform grids and nonsymmetric
and indefinite problems is the subject of ongoing research.

110 6 The Multigrid Iteration

�
�
�
�
�
�
�� �

�
�
�
�
�
��

relax

relax
coarse level

relaxfine level

Fig. 6.1. The two-grid iteration has the shape of the Latin letter V: first, relaxation is
used at the fine grid; then, the residual is transferred to the coarse grid to produce a
correction term, which is transferred back to the fine grid; finally, relaxation is used again
at the fine grid.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 6.2. The coarse grid: the subgrid of points that lie on even-numbered lines and
even-numbered columns.

Both the two-grid and multigrid methods use a coarse grid to solve the problem
(approximately) and supply a correction term. In a uniform grid, the coarse grid is
constructed by taking every other point in both the x and y spatial directions in
the original fine grid (Figure 6.2), so the number of coarse-gridpoints is about four
times as small as the number of fine-gridpoints. More explicitly, if the original grid
is the uniform grid g in (3.6), then the coarse grid is the subgrid c ⊂ g consisting
of the even-numbered points in both the x and y spatial directions:

c = {(i, j) ∈ g | i ≡ j ≡ 0 mod 2} . (6.1)

The process of constructing the coarse grid c from the original fine grid g is referred
to as full coarsening. (In the sequel, we also consider semicoarsening, in which the
coarse grid consists of every other line of fine-gridpoints.)

The number of coarse grids used in the multigrid V-cycle is up to the user. Let
us first consider the simplest case, in which only two grids are used: the original
fine grid and one coarse grid. This two-grid iteration consists of three steps. First,
the approximate solution x̃ is improved by some relaxation method:

x̃ ← x̃ + P−1(b − Ax̃)

6.1 The Two-Grid Method 111

(where P is the preconditioner of this relaxation method). After this step, it can be
assumed that the subtle errors that can be viewed only on the fine grid have already
been annihilated, so the error is sufficiently smooth, and ready to be solved for on
the coarse grid. For this purpose, we assume that we have a restriction operator R,
which transfers vectors defined on the fine grid to vectors defined on the coarse
grid [R : l2(g) → l2(c)], and prolongation operator P , which transfers coarse-grid
vectors into corresponding fine-grid vectors [P : l2(c) → l2(g)]. We also assume that
we have a matrix Q that operates on coarse-grid vector [Q : l2(c) → l2(c)] in the
same way that A operates on corresponding fine-grid vectors. The actual definitions
of R, P , and Q are specified later.

In order to use the coarse grid properly, one wouldn’t like to simply transfer x̃
and b from the fine grid to the coarse grid, because then the benefit of the above
relaxation would be lost. Instead, one should transfer the residual b − Ax̃ from the
fine grid to the coarse grid, solve for a correction term there, and prolong it back
to the fine grid and add it to x̃:

x̃ ← x̃ + PQ−1R(b − Ax̃)

(where Q is a coarse-grid approximation to the coefficient matrix A, to be specified
later). The third and final step in the two-grid iteration is another relaxation of
the form

x̃ ← x̃ + P−1(b − Ax̃)

to annihilate any subtle errors that may have been reintroduced by the coarse-grid
correction. This completes the definition of the two-grid iteration, up to the specific
definitions of R, P , and Q, to be discussed later in the book.

Because the coarse-grid matrix Q is of order about four times as small as the
order of A, the complexity of solving the coarse-grid problem

Qe = R(b − Ax̃) (6.2)

(where e is the coarse-grid vector of unknowns) is much smaller than that of solving
the original linear system (3.5).

The relaxation that is done before the coarse-grid correction is called pre-
relaxation, and the relaxation that is done after the coarse-grid correction is called
postrelaxation. In practice, one could use more than one prerelaxation and one
postrelaxation in a V–cycle.

Here is a more general definition of the two-grid method. Let ν1 and ν2 be
positive integers denoting the number of prerelaxations and postrelaxations, re-
spectively. The two-level (TL) algorithm is defined as follows.

Algorithm 6.1 TL(xin , A, b, xout):

1. Apply to the equation (3.5) ν1 relaxations (with xin as initial guess that is
updated during the relaxations).

2. Set xout = xin + PQ−1R(b − Ax in).
3. Apply to the equation (3.5) ν2 relaxations (with xout as initial guess that is

updated during the relaxations).

112 6 The Multigrid Iteration

6.2 Transfer and Coarse-Grid Operators

The guidelines for how the transfer operators R and P and the coarse-grid matrix Q
should be constructed follow from spectral considerations. In particular, we explain
below why the transfer operators should transfer vectors that lie (almost) in the
null-space of A to vectors that lie (almost) in the null-space of Q, and vice versa.

The spectrum of A (the set of eigenvalues of A) can be split into two parts:
eigenvalues that are relatively large in magnitude, and eigenvalues that are relatively
small in magnitude. The error in the current approximate solution x̃, x̃ − x, can
be decomposed according to this spectral splitting as the sum of two parts. The
first part of the error, which contains eigenvectors with large eigenvalues, can be
well handled by the relaxations in steps 1 and 3 in the TL method. Indeed, the
preconditioner P of the relaxation method has probably the same effect on this
part as A does, so the iteration matrix M = I − P−1A almost annihilates it. The
second part, on the other hand, cannot be relaxed effectively, because M has almost
no effect on it. Hence, it must be handled in the coarse-level correction in step 2 in
the TL method.

The TL method may thus be viewed as an alternating projection method: first
the error is projected onto the subspace that is almost orthogonal to the subspace
spanned by eigenvectors with large eigenvalues, and then it is projected onto the
subspace that is almost orthogonal to the subspace spanned by eigenvectors with
small eigenvalues (in magnitude) [71],

We refer to an eigenvector with a very small eigenvalue (in magnitude) as nearly
singular eigenvector. The restriction operator R should thus simulate well nearly
singular eigenvectors of A, and transfer them (roughly) to nearly singular eigenvec-
tors of Q. The prolongation operator P should then transfer these vectors (roughly)
back to the nearly singular eigenvectors of A. Furthermore, the eigenvalue of Q for
a particular eigenvector should be the same as the eigenvalue of A for the (roughly)
prolonged vector. This way, the coarse-grid iteration matrix I−PQ−1RA will indeed
annihilate the nearly singular error modes, as required.

The nearly singular eigenvectors often have rather low variation, so they can
indeed be well-represented on the coarse grid. For example, when A is an M-matrix,
the most nearly singular eigenvector has only positive components [118]. Further-
more, for linear systems arising from the discretization of elliptic PDEs, the nearly
singular eigenvectors are the discrete approximation of the smooth nearly singular
Sturm–Liouville eigenfunctions of the original differential operator. The transfer
operators should thus transfer a coarse-grid discrete smooth Sturm–Liouville eigen-
function (almost) to a fine-grid discrete smooth Sturm–Liouville eigenfunction, and
vice versa. In particular, the coarse-grid constant vector should be transferred (at
least roughly) to the fine-grid constant vector, and vice versa. As a conclusion,
P should prolong coarse-grid vectors as “smoothly” as possible, using (weighted)
average to define values at fine-gridpoints that lie in between coarse-gridpoints.

6.3 The Multigrid Method

The above two-grid method requires the exact solution of the coarse-grid problem
(6.2), which could be rather expensive. In practical multigrid, (6.2) is solved only

6.3 The Multigrid Method 113

��

��

�� ��

��

��

relax

relax

relax

relax
coarsest level

relax

relax

relaxfine level

coarser level

Fig. 6.3. The multigrid iteration has the shape of the Latin letter V: first, relaxation is
used at the fine grid; then, the residual is transferred to the next, coarser grid, where a
smaller V-cycle is used recursively to produce a correction term, which is transferred back
to the fine grid; finally, relaxation is used again at the fine grid.

approximately by one multigrid iteration, using subsequent coarser grids. This way,
only the problem on the coarsest grid is solved exactly. This problem is so coarse
and its order so small that the cost of solving it is negligible. The only work actually
required is relaxation on the grids, as is shown in Figure 6.3. Because the amount
of arithmetic operations in relaxation is proportional to the number of gridpoints,
the total amount of arithmetic operations in the entire multigrid V-cycle is O(N).

Let us now define the multigrid iteration in detail. Let L be the positive integer
denoting the number of levels used. Let νc be the positive integer denoting the
number of relaxations used to solve approximately the coarsest-grid problem. The
multilevel iteration is defined as follows.

Algorithm 6.2 ML(xin , A, b, L, xout):

1. If L ≤ 1, then apply to the equation (3.5) νc relaxations (with xin as an initial
guess that is updated during the relaxations), and then set xout = xin . Otherwise,
proceed as follows.

2. Apply to the equation (3.5) ν1 relaxations (with xin as an initial guess that is
updated during the relaxations).

3. Apply the multilevel method recursively to the coarse-grid problem by

ML(0, Q,R(b − Ax in), L − 1, e),

where 0 is the zero vector defined on the coarse grid and e is the output vector
defined on the coarse grid.

4. Initialize xout by

xout = xin + Pe. (6.3)

5. Apply to the equation (3.5) ν2 relaxations (with xout as an initial guess that is
updated during the relaxations).

We also refer to this algorithm as the V(ν1,ν2)-cycle (see Figure 6.3). Note that
when no pre-relaxations are used (ν1 = 0), the solution process actually starts from
the coarsest grid, before going up to the finer grids to perform the ν2 post-relaxations

114 6 The Multigrid Iteration

there. Because of its special shape, this cycle is called the sawtooth or F-cycle. (This
cycle is actually used in the integer-division algorithm in Section 1.3 above.)

In most cases, νc is sufficiently large to solve the coarsest-grid problem to 6-order
accuracy. The relaxation method used to solve the coarsest-grid problem is usually
the same as that used for pre- and post relaxation on the finer grids. In some applica-
tions, however, we choose to use only a moderate number of Kacmarz relaxations on
the coarsest grid. In the indefinite Helmholtz equation, for example, this approach
may help to reduce instability due to the highly indefinite coarsest-grid problem.

6.4 Geometric Multigrid

There are two possible approaches towards the definition of the transfer and coarse-
grid operators. The first one, called geometric multigrid, uses the original PDE
and the original domain where it is defined. The second one, called matrix-based
multigrid, uses the coefficients in A only.

In geometric multigrid, the transfer and coarse-grid operators are defined using
the geometric properties of the fine and coarse grids. Most often, R and P are
obtained from linear averaging. More specifically, let v be a coarse-grid vector in
l2(c). By vi,j , we denote the value of v at the point (i, j) ∈ c. Then, the prolong
vector Pv ∈ l2(g) at a point (i, j) ∈ g is defined by

(Pv)i,j ≡

⎧⎪⎪⎨
⎪⎪⎩

vi,j if (i, j) ∈ c
(vi−1,j + vi+1,j)/2 if i + 1 ≡ j ≡ 0 mod 2
(vi,j−1 + vi,j+1)/2 if i ≡ j + 1 ≡ 0 mod 2

(vi−1,j−1 + vi−1,j+1 + vi+1,j−1 + vi+1,j+1)/4 if i ≡ j ≡ 1 mod 2.

It is assumed here that n in (3.6) is odd, so the values required in the above definition
are available; otherwise, the definition should be modified slightly at the discrete
boundary.

With the above definition, P indeed transfers the constant coarse-grid vector to
the constant fine-grid vector, as in the guidelines in Section 6.2. Note also that P
can actually be represented as a rectangular matrix, with columns that contain one
entry of value 1, four entries of value 1/2, and four entries of value 1/4 each.

The restriction operator R can be defined either as simple injection

R = Jc

or (better yet) as linear averaging; that is, at each coarse-gridpoint (i, j) ∈ c, the
restricted vector Rv is defined by

(Rv)i,j =
1
4

(
1
4
vi+1,j+1 +

1
2
vi+1,j +

1
4
vi+1,j−1 +

1
2
vi,j+1 (6.4)

+ vi,j +
1
2
vi,j−1 +

1
4
vi−1,j+1 +

1
2
vi−1,j +

1
4
vi−1,j−1

)
.

More compactly, R can be represented by the stencil

1
4

⎡
⎣1/4 1/2 1/4

1/2 1 1/2
1/4 1/2 1/4

⎤
⎦ ,

6.5 Variational Multigrid 115

or, in other words,

R =
1
4
P t.

Note that the row-sums of R are all equal to 1. Therefore, R indeed transfers
the constant fine-grid vector into the constant coarse-grid vector, as advised in
Section 6.2 above.

Finally, the coarse-grid matrix Q is obtained by rediscretizing the original PDE
on the coarse grid c. Usually, the red-black point-GS method is used as a relaxation
method. This completes the definition of geometric multigrid for uniform grids. In
the next section, geometric multigrid is extended also to the more complicated case
of unstructured meshes.

6.5 Variational Multigrid

In the following sections, we show how geometric multigrid develops naturally to-
wards variational, matrix-based, and eventually algebraic multigrid. The first step
is to extend it to more general (nonuniform) meshes.

Extending geometric multigrid to unstructured meshes requires three rather
nontrivial tasks: choosing a subset of nodes to serve as a coarse grid, connecting
them to form the coarse finite-element mesh, and defining the transfer operators
between fine and coarse grids. Once these tasks are complete, the original PDE can
be rediscretized on the coarse finite-element mesh to form the coarse-grid coefficient
matrix Q.

The above algorithm can be made more concrete in the special case in which
the finite-element mesh is obtained from a process of successive (local) refinement.
In this case, it is natural to use the coarse mesh in the refinement process also as
the coarse meshes in the multigrid algorithm for solving the linear system on the
fine mesh. The coarse grid is then just the set of nodes in the coarse mesh. The
prolongation operator P is defined by simple averaging:

(Pv)(i+j)/2 ≡ (vi + vj)/2,

where i and j are any two coarse-gridpoints on the same edge in the coarse mesh.
This way, the prolongation operator is just the identity operator on continuous and
piecewise-linear functions in the coarse finite-element function space. Indeed, the
function resulting from the prolongation is linear not only in each fine finite element
but also in each coarse finite element. This property can be obtained thanks to the
fact that the function spaces are nested: each continuous function that is linear
in every coarse finite element is also linear in every fine finite element, and thus
belongs also to the function space defined on the fine mesh.

The restriction operator is now defined by

R ≡ P t,

and the coarse-grid matrix is defined by

Q ≡ RAP .

116 6 The Multigrid Iteration

Because R and P are just the identity operators on the corresponding function
spaces, Q is actually the same as the matrix obtained from rediscretizing the original
PDE on the coarse mesh. Therefore, variational multigrid can be interpreted as
a special case of geometric multigrid. In the following, we show that variational
multigrid can also be interpreted as a special case of the domain-decomposition
approach.

6.6 Domain Decomposition and Variational Multigrid

The key factor in the multigrid algorithm is the transfer of information from fine
to coarse grid and vice versa. In particular, the prolongation operator P should
transform a vector v (defined on the coarse grid c) into an extended vector Pv
(defined on the original grid) with energy norm as small as possible. In other words,
Pv must be close to a nearly singular eigenvector of the coefficient matrix A.

Here we consider a domain-decomposition approach towards the definition of the
coarse grid c and prolongation operator P . The restriction and coarse-grid operators
are then defined as in variational multigrid by R = P t and Q = RAP . With this
approach, variational multigrid can actually be viewed as a domain decomposition
algorithm.

In the domain-decomposition approach, the original domain is decomposed into
disjoint subdomains (Figure 6.4). The vertices (corners) of these subdomains (the
bullets in Figure 6.5) are then used to form the coarse grid c. (Although this figure
illustrates a case of structured grid, this is only an example; the same approach
can be used also in unstructured grids.) The prolongation consists of two steps:
the first step extends the values given on c also to the nodes that lie on the edges
of subdomains, and the second step extends them further also to the interiors of
subdomains.

For a given coarse-grid vector v, the first prolongation step produces the values
of the extended vector Pv at nodes that lie on edges of subdomains (in between
coarse-grid nodes). The second prolongation step uses these values to solve a discrete
homogeneous Dirichlet problem in each individual subdomain (Figure 6.7). The
numerical solutions of these subproblems produce Pv in the interiors of subdomains

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

��

Fig. 6.4. The domain decomposition: the original domain is divided into disjoint sub-
domains.

6.6 Domain Decomposition and Variational Multigrid 117

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

��� �

�

�

� �

�

�

Fig. 6.5. The coarse grid c obtained from the domain decomposition contains the vertices
(corners) of the subdomains (denoted by bullets).

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

��

� �

uy = 0

uy = 0

Fig. 6.6. The first prolongation step, in which the known values at the bullets are pro-
longed to the line connecting them by solving a homogeneous Dirichlet–Neumann sub-
problem in the strip surrounding it.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
��

�
�
�

��

� �

� �

Fig. 6.7. The second prolongation step, in which the known values at the internal bound-
ary of a subdomain (bullets and edges) are prolonged also to its interior by solving a
homogeneous Dirichlet subproblem.

118 6 The Multigrid Iteration

as well. Because these subproblems are independent of each other, they can be solved
simultaneously in parallel.

The first prolongation step, which extends v to the edges in Figure 6.4, is trickier
than the second step described above. Clearly, the first step should use the original
values of v at the endpoints of each individual edge to solve a 1-D homogeneous
Dirichlet problem in this edge. Unfortunately, it is not clear how this ODE should
be defined.

In [18], it is assumed that the diffusion coefficient is constant in each individual
subdomain. The ODE solved on each individual edge uses a diffusion coefficient
that is the average of the original diffusion coefficients on both sides of this edge.
Thus, the ODE is just the 1-D Poisson equation. This approach can be extended
also to the Helmholtz equation

−uxx − uyy + βu = F,

where β is a negative parameter. In this case, the ODE along the edge is the 1-D
Helmholtz equation

−uqq + βu/2 = 0, (6.5)

where q is the unit vector tangent to the edge. This idea is formulated algebraically
in Chapter 10 below.

In the next section, the above approach is improved in such a way that there
is no need to assume that the diffusion coefficient is constant in each individual
subdomain. In the special case of structured grids, the resulting algorithm can be
reformulated in algebraic terms only, leading to a “black-box” method that takes a
matrix and a right-hand side vector as input and produces the vector of unknowns
as output.

6.7 Domain Decomposition and Black-Box Multigrid

In the above, we have decomposed the prolongation operation into two steps. In
the first step, values are prolonged from the vertices of subdomains to the edges of
subdomains. In the second step, these values are prolonged further to the interiors
of subdomains. The restriction and coarse-grid operators are then defined by the
Galerkin approach: R = P t and Q = RAP . This completes the definition of the
basic components in the multigrid iteration.

The second step of prolongation is easy to define: it solves the original PDE in
the interior of subdomains, with the values calculated before serving as Dirichlet
data on the edges of subdomains. The first prolongation step, on the other hand,
is trickier to define: it requires the definition of a suitable ODE on each individual
edge. Above, we’ve seen how such an ODE can be defined in some special cases.
Here we turn to a more general approach for carrying out the first prolongation step.
This approach has the important advantage that one no longer needs to assume that
the diffusion coefficient is constant in each individual subdomain. Furthermore, in
the special case of structured grids, it can be formulated algebraically, yielding a
“black-box” linear-system solver that requires no human intervention whatsoever.

6.7 Domain Decomposition and Black-Box Multigrid 119

The more general definition of the first prolongation step is illustrated in
Figure 6.6. First, the original (homogeneous) PDE is solved in a thin strip containing
the edge under consideration. The boundary conditions for this subproblem are of
Dirichlet type at the endpoints of the edge, where the values of the original (coarse-
grid) vector v are available, and of homogeneous Neumann type elsewhere. The
numerical solution of this subproblem provides the required values of Pv in the edge.

Actually, the subproblem in the strip could be reduced further into a tridiagonal
system on the edge only. Consider, for example, the strip in Figure 6.8. The discrete
homogeneous Neumann conditions on the top and bottom edges of this strip could
be used to assume that the numerical solution of the subproblem is constant on
each vertical line in the strip. The unknowns on the top and bottom edges of the
strip can thus be eliminated, resulting in a reduced subproblem on the edge alone.
In other words, the linear subsystem on the nodes in the strip is “lumped” into a
tridiagonal system on the nodes in the edge only. The solution to this tridiagonal
system produces the prolonged values of Pv in the edge (see also Chapter 14).

When structured grids as in (3.6) are considered and the coarse grid is as in
(6.1), the above algorithm coincides with the black-box multigrid method in [39].
Consider, for instance, a fine gridpoint that lies in between two coarse-gridpoints on
its left and its right (Figure 6.9). The above vertical lumping reduces the subsystem

� � � � �

� � � � �

	 	

uy = 0 uy = 0

uy = 0 uy = 0

Fig. 6.8. Vertical lumping: the discrete homogeneous Neumann boundary conditions are
used to assume that the numerical solution of the subsystem in the strip is constant along
vertical lines, so the unknowns on the top and bottom edges of the strip can be eliminated.

� � �

� � �

	 	

uy = 0

uy = 0

Fig. 6.9. Vertical lumping in black-box multigrid: the discrete homogeneous Neumann
boundary conditions are used to assume that the numerical solution of the subsystem is
constant along vertical lines, so the unknowns on the top and bottom edges can be
eliminated.

120 6 The Multigrid Iteration

��� � ���

��� � ���

	 	

ux − uy = 0 uy = 0 ux + uy = 0

ux + uy = 0 uy = 0 ux − uy = 0

Fig. 6.10. Oblique and vertical lumping: the discrete homogeneous Neumann boundary
conditions are used to assume that the numerical solution of the subsystem at the points
on the top and bottom edges is the same as at the middle point, hence can be eliminated.

on the strip into a single algebraic equation for the middle point in this figure. The
solution of this equation gives the required prolonged value at this middle point.

The main advantage of black-box multigrid is that, for problems that use struc-
tured grids, it indeed serves as black box: that is, it takes as input the coefficient
matrix and right-hand-side vector, and automatically produces the required numer-
ical solution. No human intervention is required at all. This property is particularly
attractive when ones wants to write a general computer code that will solve any
given problem with no presumptions or conditions.

As we’ll see later in this book, black-box multigrid works well for many diffusion
problems, including problems with discontinuous coefficients with discontinuity lines
that do not necessarily align with the coarse grids. Still, there are some examples
for which black-box multigrid fails (Section 9.4). This is probably because black-box
multigrid is backed by no theory.

The multigrid version in [64], on the other hand, although inferior to black-box
multigrid in most practical cases, is more robust and is also backed by theory, as we
show later in this book. In this version, the lumping used to eliminate the unknowns
on the top and bottom edges of the strip is not only vertical but also oblique at the
corners of the strip (Figure 6.10). In fact, it can be viewed as a special case of the
algorithm in Chapter 14 below, when applied to structured grids. In the following,
we show how this version can be extended to unstructured grids as well.

6.8 Domain Decomposition and Algebraic Multigrid

So far, we’ve assumed that some domain decomposition is available, and used it to
design the prolongation operator. This, however, is not always the case. In many
applications, the system of algebraic equations is given with no information on the
underlying grid whatsoever. In such cases, one must define the coarse grid c (which
is just a subset of indices of unknowns) and the prolongation operator P (which is
just a rectangular matrix with no apparent geometrical meaning) in terms of the
coefficients in A alone. The restriction and coarse-grid matrices are then defined as
in variational multigrid by R = P t and Q = RAP , which completes the definition
of the basic components in the multigrid algorithm.

The original multigrid algorithm that uses no geometric information whatsoever
is the Algebraic Multigrid (AMG) method in [25] and [86]. In this method, both the

6.8 Domain Decomposition and Algebraic Multigrid 121

coarse grid c and the prolongation operator P are constructed using the elements in
the coefficient matrix A alone. In [116], it is shown that the convergence factor for
a particular AMG version depends only polynomially on the number of levels used.

Algebraic multigrid versions are thus characterized by the lack of any notion of
PDE, domain, grid, or mesh in their definition. In fact, PDEs and grids are never
mentioned or used in the construction of transfer and coarse-level matrices, let alone
the coarse levels, which are in fact just subsets of unknowns, with no geometric
interpretation whatsoever.

The main advantage of algebraic multigrid versions is in the opportunity to
write a general computer code to solve general linear systems of equations. Because
the algorithm depends on no specific property of the original PDE or discretiza-
tion method, the computer code does not have to be rewritten for each particular
application. Furthermore, AMG is robust for diffusion problems with discontinuous
and anisotropic coefficients, at least on structured grids.

Although algebraic multigrid versions use no domain or grid, they can still ben-
efit from the present domain-decomposition formulation to come up with a good
prolongation scheme. Once the prolongation is well defined in terms of domain
decomposition, it can usually be reformulated algebraically, leading to an efficient
algebraic multigrid version. This is done in this section.

The idea of solving a discrete homogeneous Dirichlet–Neumann subproblem in
the strip and then using the numerical solution of this subproblem to provide the
required values of Pv in the edge contained in this strip is formulated in a more
general way in the AMGe method in [36]. In this method, it is assumed that only
the original finite-element mesh is given, with no domain decomposition. The coarse
grid c is constructed algebraically, using the coefficients in the matrix A only. The
set f is then defined as the set that contains all the nodes (or unknowns) that are
not in c. The prolongation operator P is then defined as follows. At each node i ∈ f ,
(Pv)i is defined by solving the homogeneous PDE numerically in the “molecule”
of finite elements that surround the node i (Figure 6.11). The boundary conditions
for this subproblem are of Dirichlet type at nodes in c (where v is available) and of
homogeneous Neumann type elsewhere. The numerical solution of this subproblem
at i is then accepted as the prolonged value (Pv)i. This defines (Pv)i at every i ∈ f ,
so no second prolongation step is needed.

In the AMGm method in [66], the above approach is reformulated in pure alge-
braic terms. The “molecules” are defined algebraically, so they can also be used in
the recursive calls in the multigrid V-cycle.

The present domain-decomposition approach can also lead to a purely algebraic
definition of P . Indeed, let’s define the prolonged value (Pv)i at some i ∈ f . For this

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

uy = 0

uy = 0

i

Fig. 6.11. Prolonging to node i by solving a homogeneous Dirichlet–Neumann subproblem
in the “molecule” of finite elements that surround it.

122 6 The Multigrid Iteration

purpose, instead of solving a subproblem in the molecule, we assume (momentarily)
that the prolonged vector Pv should satisfy the ith equation in the homogeneous
linear system: ∑

j∈c

Ai,jvj +
∑
j∈f

Ai,j(Pv)j = 0.

Our algebraic molecule is, thus, the set of unknowns j for which Ai,j �= 0. Of these
unknowns, vj is available for each j ∈ c, which is the algebraic analogue to Dirichlet
boundary conditions. Furthermore, we use the algebraic analogue of homogeneous
Neumann boundary conditions to assume that (Pv)j is the same for every j ∈ f in
the algebraic molecule, which leads to the definition

(Pv)i ≡
−
∑

j∈c Ai,jvj∑
j∈f Ai,j

. (6.6)

The above definition applies to every i ∈ f , so it actually completes the definition
of P . Still, one could use the resulting values of Pv to improve the prolongation
with a second step. In this step, algebraic Dirichlet conditions are used at all the
unknowns j �= i, using the original values vj at unknowns j ∈ c and the values
(Pv)j calculated in the first prolongation step at unknowns j ∈ f (j �= i):

(Pv)i ≡ −
∑

j∈c Ai,jvj +
∑

j∈f, j �=i Ai,j(Pv)j

Ai,i
. (6.7)

This second prolongation step is actually an extra Jacobi relaxation, limited to
unknowns in f only. It can thus be described more compactly as follows. Define the
diagonal matrix D by

Di,i ≡
{

1 if i ∈ f
0 if i ∈ c.

Modify the original prolongation matrix P (which uses the first step only) by the
substitution

P ← (I − diag(A)−1DA)P

(where I is the identity matrix of the same order as A).
Using a second prolongation step in algebraic multigrid versions can reduce the

number of iterations required for convergence in the numerical experiments at the
end of this book by up to 50%. Unfortunately, it also requires much more set-up time
due to the expensive matrix-times-matrix operation in the construction of P . This
is why we stick to the original definition of P , and don’t use the second prolongation
step any more here. (The second prolongation step may be worthwhile only when a
powerful parallel computer is available to carry out matrix-times-matrix operations
efficiently.)

6.9 The Algebraic Multilevel Method

Because algebraic multigrid versions use no physical grids, the name algebraic
multilevel is more adequate, and is therefore used for versions introduced here.

6.9 The Algebraic Multilevel Method 123

In the following, we introduce a prototype algebraic multilevel method in detail
(Section 17.8 in [103]).

The first stage is to define the subset of indices c (the coarse level). This subset
should contain indices of unknowns that are decoupled (or at most weakly coupled)
in the coefficient matrix A. The subset c should also contain as many indices as pos-
sible, namely, it should be maximal in the sense that no more indices can be added
to it. This way, every unknown with index that is left outside c (or, equivalently,
remains in f) is strongly coupled in A to some other unknown with index in c, and
therefore can have its prolonged value taken from this unknown.

It is assumed that the main-diagonal elements in A are not too small in magni-
tude. The algorithm to define c uses some small predetermined parameter (say 0.05)
to help distinguish between strongly coupled and weakly coupled unknowns in A:

Algorithm 6.3

1. Initialize c to contain all the unknowns:

c = {1, 2, 3, . . . , N}.

2. For i = 1, 2, 3, . . . , N , do the following.
• If i ∈ c, then, for every 1 ≤ j ≤ N for which j �= i and

|Ai,j | ≥ threshold · |Ai,i|,

drop j from c.
3. For i = 1, 2, 3, . . . , N , do the following.

• If i �∈ c and for every j ∈ c

Ai,j

Ai,i
≥ −threshold,

then add i back to c.

Next, we introduce the algorithm to define the (rectangular) prolongation ma-
trix P . This algorithm makes sure that the elements in P are nonnegative, so the
prolongation to an unknown i ∈ f actually uses a weighted average of values of
unknowns in c. For those i ∈ f for which Ai,i > 0, Ai,j ≤ 0 for every j �= i, and∑

j Ai,j = 0, the definition is actually the same as in (6.6). (These conditions indeed
hold for interior nodes in diffusion problems.)

The algorithm uses some small predetermined parameter (say, 0.05) to help drop
matrix elements that are too small in magnitude and exclude them from P :

Algorithm 6.4

1. Initialize P by P = A.
2. For every i ∈ f and j ∈ c, if

Pi,j

Pi,i
> −threshold,

then drop Pi,j from P and replace it by zero:

Pi,j ← 0.

124 6 The Multigrid Iteration

3. For every index i ∈ c, replace the ith row

(Pi,1, Pi,2, . . . , Pi,N)

in P by the standard unit row e(i), of which all components vanish except of the
ith one, which is equal to 1.

4. For every j ∈ f , drop the corresponding column from P . (In this step, P becomes
rectangular.)

5. For every i ∈ f , divide the ith row in P by its row-sum. (After this step, the
row-sums in P are all equal to 1.)

As in variational multigrid, the restriction and coarse-level matrices are defined
by R = P t and Q = RAP . This completes the definition of the basic components
in the algebraic multilevel method.

6.10 Algebraic Multigrid

In the algebraic multilevel method above, c is the maximal set of unknowns that are
either completely decoupled from each other or at most coupled by positive or very
small elements in A. More precisely, if i and j are in c, then either Ai,j/Ai,i > 0
or |Ai,j/Ai,i| ≤ threshold. In AMG, on the other hand, c is defined in a slightly
different way. In a first stage, it is defined as a maximal set of unknowns that are
only weakly coupled to each other in A. Then, in the second stage, it is modified
in such a way that if i and j are two indices in f that are strongly coupled to each
other in A, then there must exist a third index k ∈ c to whom both i and j are
strongly coupled as well. Otherwise, either i or j cannot remain in f , and must be
added to c.

As can be seen in Algorithm 6.3, we don’t bother here with the latter condition.
After all, Algorithm 6.3 guarantees that both i and j are strongly coupled to some
unknowns in c, so what difference does it make whether they are strongly coupled to
a single unknown k ∈ c or to two distinct unknowns in c? This is why Algorithm 6.3
is used to define c in the numerical experiments at the end of this book also
for AMG.

A more important difference between AMG and the above multilevel method is
in the definition of P . In the following, we give algebraic motivation to the definition
of P in Algorithm 6.4 and to the modification used in AMG.

Once c is defined and its complementary subset f is defined by

f = {1, 2, 3, . . . , N} \ c,

the coefficient matrix A can be written in the block form

A =
(

Aff Afc

Acf Acc

)
. (6.8)

Let S(A; c) be the Schur complement of A with respect to this partitioning:

S(A; c) = Acc − Acf (Aff)−1
Afc .

6.10 Algebraic Multigrid 125

With this definition, A can be decomposed in a block-LU decomposition as

A =
(

I 0
Acf (Aff)−1

I

)(
Aff 0
0 S(A; c)

)(
I (Aff)−1

Afc

0 I

)
.

In other words,(
Aff 0
0 S(A; c)

)
=
(

I 0
−Acf (Aff)−1

I

)
A

(
I − (Aff)−1

Afc

0 I

)
.

Thus, if we had defined

R =
(
−Acf (Aff)−1

I
)

(6.9)

and

P =
(
− (Aff)−1

Afc

I

)
, (6.10)

then we would have

Q = RAP = S(A; c). (6.11)

Of course, this is not a practical approach, because (Aff)−1 is prohibitively
expensive to compute. Furthermore, it is dense, so R, P , and Q would be dense as
well. The cure must be to approximate (A−1

ff) along the guidelines in Section 6.2.
Let us define a matrix in which Aff is replaced by its row-sum:

Ã =
(

rs (Aff) Afc

Acf Acc

)
. (6.12)

Because this matrix has the same effect as A on the constant N -dimensional vector,
it can be used to produce sparse, easily computable matrices R, P , and Q:

R =
(
−Acf rs (Aff)−1

I
)

(6.13)

P =
(
−rs (Aff)−1

Afc

I

)
(6.14)

Q = RAP .

In fact, the P defined here is the same as in (6.6). This makes clear the close relation
between the spectral analysis in Section 6.2, the domain decomposition approach
in Section 6.8, and the present algebraic formulation.

When A is symmetric, the R defined above indeed satisfies R = P t, as in varia-
tional multigrid. When A is nonsymmetric, on the other hand, the above definition
of R makes more sense than the standard variational definition. Indeed, once P is re-
defined using (A+At)/2 instead of A, one obtains the algorithm used in Section 16.4
below, which is also in the spirit of [40].

The above definitions of R and P are based on the approximation to A in Ã.
In Ã, the off-diagonal elements in Aff are “lumped” (or “thrown,” or added) to the
main diagonal. (This is in the spirit of the Modified ILU (MILU) method in [56].) In
AMG, on the other hand, the off-diagonal elements in Aff are added not to the main
diagonal but rather to other off-diagonal elements in Afc . (This is in the spirit of

126 6 The Multigrid Iteration

other ILU versions in [51].) Here is the detailed algorithm to construct P in AMG:

Algorithm 6.5

1. Initialize P by P = A.
2. For every i ∈ f and 1 ≤ j ≤ N , if i �= j and

Pi,j

Pi,i
> −threshold,

then drop Pi,j from P and replace it by zero:

Pi,j ← 0.

3. Define the matrix B by B = P .
4. For every index i ∈ c, replace the ith row

(Pi,1, Pi,2, . . . , Pi,N)

in P by the standard unit row e(i), of which all components vanish except of the
ith one, which is equal to 1.

5. For every i and j that are both in f and satisfy i �= j and Pi,j �= 0, define

Wi,j ≡
∑

k∈c, Pi,k �=0

Bj,k.

6. For every i and j that are both in f and satisfy i �= j and Pi,j �= 0, add a
fraction of Pi,j to every nonzero element Pi,k that lies in the same row and in
column k ∈ c as follows:

Pi,k ← Pi,k +
Bj,k

Wi,j
Pi,j .

7. For every j ∈ f , drop the corresponding column from P . (In this step, P becomes
rectangular.)

8. For every i ∈ f , divide the ith row in P by its row-sum. (After this step, the
row-sums in P are all equal to 1.)

The rest of the definition is as in variational multigrid: R = P t and Q = RAP . In
the numerical experiments at the end of this book, we show that AMG as defined
here (with Algorithms 6.3 and 6.5) has practically the same performance as the
above multilevel method (that uses Algorithms 6.3 and 6.4).

6.11 Semicoarsening

The geometric multigrid algorithm in Section 6.4 (with the point red-black GS
relaxation) is efficient for the Poisson equation, but not for highly anisotropic equa-
tions as in (3.27). In order to work for this type of problem as well, the geometric
multigrid algorithm must use alternating line relaxation or alternating “zebra” line
relaxation. This way, the Poisson convergence rate can be achieved whether ε � 1,
ε = 1, or ε � 1 in (3.27) [23].

6.11 Semicoarsening 127

Unfortunately, alternating relaxation is rather difficult to implement, especially
in 3-D problems. Another possible geometric multigrid algorithm that works well
for any ε in (3.27) uses semicoarsening. In this approach, the coarse grid consists of
every other line of gridpoints:

c = {(i, j) ∈ g | i ≡ 0 mod 2} (6.15)

(see Figure 5.1). With this semicoarsening, one can use line relaxation in the un-
coarsened direction only [block relaxation, with a block being an i-line in the original
grid in (3.6): the set of points (i, j) for some fixed i and all 1 ≤ j ≤ n] to have a
good solver also for highly anisotropic equations [23]. (Geometric multigrid with
semicoarsening has also been extended to unstructured grids in [70].)

As discussed above, geometric multigrid has the crucial drawback that it cannot
solve problems with discontinuous coefficients, unless the discontinuity lines align
with all the coarse grids, which is highly unlikely in general problems. It is thus most
important to have a matrix-based semicoarsening algorithm, which is efficient for
general problems with both anisotropic and discontinuous coefficients.

The matrix-based semicoarsening algorithm [43] [108] is based on the block
partitioning in (6.8), where c is now defined as in (6.15). With this partitioning, Aff

is block-diagonal, with n × n blocks that correspond to the i-lines in f (for odd i).
More specifically, we have

Aff = blockdiag(A(1,1), A(3,3), A(5,5), . . .). (6.16)

The block-rows in Afc , on the other hand, each contain two nonzero n×n blocks. For
example, the third block-row contains the blocks A(3,2) and A(3,4) that couple the
third line with the second and fourth lines, respectively, in the original grid in (3.6).

In (6.12), A is approximated by a matrix Ã, which has the same effect on the
constant vector as A. The matrix Ã is then used to construct R and P , along
the guidelines in Section 6.2. This produces the algebraic multilevel method in
Section 6.8, which is applicable to general grids.

For structured grids as in (3.6), though, one can use the present semicoarsen-
ing in (6.15) to come up with a yet better approach. Instead of approximating A
spectrally by Ã and then using this approximation to construct R and P , why
not develop spectral approximations directly to (6.9) and (6.10), which will agree
with them at least for the constant vector? Indeed, because Aff is block diago-
nal as in (6.16), (Aff)−1Afc contains (in its third block row) blocks of the form
A(3,3) −1A(3,2) and A(3,3) −1A(3,4). These blocks are dense, so they cannot be used
in practice. However, they can be approximated by their corresponding row-sums,
to provide a practical definition to P . For example, if 1 denotes the n-dimensional
vector with all components being equal to 1, then one only needs to solve

A(3,3)e = A(3,2)1

for an n-dimensional vector of unknowns e to have the desired approximation

rs
(
A(3,3) −1A(3,2)

)
= diag(e),

that is, the diagonal matrix of order n with the components of e on its main diagonal.
Similarly, one solves

A(3,3)e = A(3,4)1

128 6 The Multigrid Iteration

to have

rs
(
A(3,3) −1A(3,4)

)
= diag(e).

This completes the definition of the third block-row in P . Doing the same for the rest
of the odd-numbered block-rows completes the definition of P for the matrix-based
semicoarsening algorithm. The restriction matrix can now be defined by R = P t (for
symmetric problems) or in a more general way as in Section 11.7, which is suitable
also for nonsymmetric problems [with P redefined using (A+At)/2 rather than A].
The coarse-grid matrix is then defined by Q = RAP . The relaxation method used
in the V-cycle is usually “zebra” line-relaxation [in the uncoarsened direction in the
original grid (3.6)]. This completes the definition of the matrix-based semicoarsening
algorithm.

In Chapter 11 we describe the matrix-based semicoarsening algorithm in more
detail, with relations to the domain-decomposition and block-ILU methods. Unfor-
tunately, the matrix-based semicoarsening method is limited to structured grids as
in (3.6), and cannot be easily extended to more general, unstructured grids. This
is because the above construction of the blocks in P relies heavily on the property
that all the blocks in Aff and Afc are square submatrices of order n. This property
cannot be guaranteed in unstructured grids. Extending the matrix-based semicoars-
ening algorithm to more general grids must therefore be left to future research.

6.12 Exercises

1. Show that, for a 5-point stencil as in (3.8), the prolongation indicated in Fig-
ure 6.10 is the same as the prolongation used in black-box multigrid, indicated
in Figure 6.9.

2. Conclude that, for a 5-point stencil, the TL method that uses the prolongation
in Figure 6.10 is the same as the TL method that uses black-box multigrid.

3. Show that, in the previous exercise, the coarse-grid matrix Q no longer has a
5-point stencil but rather a 9-point stencil in c.

4. Conclude that, for 5-point stencils, the ML method (with more than two levels)
that uses the prolongation in Figure 6.10 is not the same as the one that uses
black-box multigrid.

5. Show that the prolongation indicated in Figure 6.11 is a natural extension of the
prolongation indicated in Figure 6.8 to the case of completely unstructured
grids.

6. Why is this prolongation likely to transfer a nearly singular eigenvector of Q
into a nearly singular vector of A?

7. Let v be a coarse-grid function defined on the bullets in Figure 6.5. Let P be
the prolongation indicated in Figures 6.6 and 6.7. Show that Pv is rather small
in terms of the norm induced by A (energy norm). Conclude that the matrix
PJ c is moderate in terms of the A-induced norm. (This property is essential in
the analysis in Sections 12.8 and 15.8 below.)

8. Write a computer code that implements the geometric multigrid method for
the Poisson equation with Dirichlet boundary conditions, discretized by finite

6.12 Exercises 129

differences as in (3.13) on a uniform grid. Use the red-black point-GS relaxation
in the V(1,1)-cycle. Do you obtain the Poisson convergence factor of 0.1?

9. Modify your code to solve problems with different kinds of boundary conditions,
such as Neumann and mixed boundary conditions. Does the convergence rate
deteriorate?

10. Modify your code to solve highly anisotropic problems as in Section 3.9. Does
the convergence rate deteriorate?

11. Modify your code to use alternating “zebra” line-GS relaxation instead of red-
black point-GS relaxation. Does the convergence rate improve?

12. Modify your code to use a coarse-grid matrix of the form Q = RAP , as in
variational multigrid. Use it to solve isotropic diffusion problems as in (4.15)
with discontinuous diffusion coefficient D̃ (discretized on a uniform mesh as
in Figure 4.13). Test cases in which the discontinuity lines in D̃ align with the
coarse meshes, and cases in which they don’t. Are the convergence rates different
in the different cases?

13. Write a computer code that implements the algebraic multilevel method in
Section 6.9 for general sparse linear systems. The solution can be found in
Section 17.10 in [103].

Part IV

Matrix-Based Multigrid
for Structured Grids

133

In the rest of this book, we consider matrix-based (or matrix-dependent) multigrid
linear system solvers such as those in [39] [43] [84] [86] [105] [108] and [128]). In
this family of multigrid methods, the components in the multigrid algorithm such
as transfer operators and coarse-grid matrix depend only on the coefficient matrix
A that couples the points in the original grid g in (3.6), but are completely inde-
pendent of the particular application and its properties. Thus, they are applicable
to any linear system arising from finite-difference, finite-volume, or finite-element
discretization on a uniform grid, independent of the original boundary-value prob-
lem. The great advantage is that they may be implemented on the computer once
and for all to be ready for future use.

Matrix-based multigrid algorithms are more general than geometric multigrid,
because they also work well for linear systems arising from the discretization of
PDEs with variable and even discontinuous coefficients (even when the discontinu-
ity lines do not align with the coarse grid). Moreover, they are known to work well
even for severely stretched grids. Furthermore, they are also efficient for problems
in nonrectangular domains, as is illustrated in [105]. Still, they assume that the grid
is uniform as in (3.6), so nonrectangular domains must be completed artificially
to rectangular ones, using extra fictitious points and corresponding trivial equa-
tions. The matrix-based multigrid method may use full coarsening as in (6.1) or
semicoarsening as in (6.15).

A subfamily of matrix-dependent multigrid algorithms that is not limited to
uniform (or structured) grids is the family of algebraic multigrid versions [86]. In
algebraic multigrid, the coefficient matrix A is used to define not only the transfer
and coarse-grid operators but also the subset of unknowns to serve as a virtual
(nonphysical) coarse grid. This is why we prefer to refer to this subfamily as alge-
braic multilevel methods rather than algebraic multigrid methods. In this part, how-
ever, we limit our attention to the rest of the matrix-based multigrid methods, which
do assume that the grid is structured as in (3.6), with a 9-point stencil as in (4.13).

This part contains five chapters. In Chapter 7, we describe the Automatic Multi-
grid (AutoMUG) method that solves problems with 5-point stencils using coarse-
grid matrices with 5-point stencils only. This method is then used in Chapter 8 to
denoise digital images. In Chapter 9, we describe the black-box multigrid (BBMG)
method, which is applicable also to problems with 9-point stencil. We use ideas
from AutoMUG to design a BBMG version for a most difficult problem with dis-
continuous coefficients. In Chapter 10, we further use ideas from AutoMUG to
design a BBMG version for highly indefinite Helmholtz equations. We use compu-
tational two-level spectral analysis to estimate the convergence of both BBMG and
AutoMUG for this kind of problem. Finally, in Chapter 11, we describe a matrix-
dependent semicoarsening method, which is efficient even for problems with highly
anisotropic and discontinuous coefficients. We interpret this method as an interest-
ing combination of domain decomposition, line ILU factorization, and variational
multigrid.

7

The Automatic Multigrid Method

In this chapter, we describe the Automatic Multigrid (AutoMUG) iterative method
for the solution of linear systems that use a 5-point stencil as in (3.8) on a uniform
grid as in (3.6). The special advantage of this method is that it uses inexpen-
sive 5-point stencils also on the coarse grids, which allows the use of the red-black
point-GS relaxation in the entire V-cycle. AutoMUG has good convergence rates
for problems with variable and even discontinuous coefficients, even when the dis-
continuity lines do not align with the coarse grid.

7.1 Properties of the AutoMUG Method

The Automatic Multigrid (AutoMUG) method for the solution of problems with
5-point stencils as in (3.8) in a structured rectangular grid is introduced in [92] [104]
[104] [105], and extended also to problems with 7-point stencils in the analogous
three-dimensional cubic grid in [94]. AutoMUG works well for diffusion problems
with variable and even discontinuous coefficients, even when the discontinuity lines
do not align with the coarse grid.

The main advantage of AutoMUG is in its straightforward and inexpensive set-
ting. In fact, for problems with 5-point stencil as in (3.7), AutoMUG uses 5-point
stencils only at all the coarse grids as well, allowing the use of efficient relaxation
methods such as the red-black point-Gauss–Seidel relaxation method. The cost
of the set-up stage (the computation of the transfer and coarse-grid matrices in
the entire multigrid hierarchy) is, thus, particularly low: it is just one work unit
(the computational work required in a point-GS relaxation). An inexpensive set-up
stage is particularly attractive in time-dependent and nonlinear problems in two and
three spatial dimensions, where the set-up must be repeated in every linear system
encountered in the implicit time marching or Newton iteration (see Chapter 8).

There are two other multigrid methods that also use 5-point stencils at all the
grids. The algorithm of this kind that is proposed in [2] uses harmonic average as in
electrical engineering to produce flux-preserving 5-point stencils on the coarse grids.
This algorithm, however, is limited to diffusion problems, and hasn’t been extended
to more difficult problems such as indefinite Helmholtz equations considered later
in this book. The Cyclic-Reduction Multigrid (CR-MG) method in [30] also uses
5-point stencils only, but is inferior to AutoMUG for highly indefinite Helmholtz

136 7 Automatic Multigrid

equations with mixed complex boundary conditions, as is apparent from the tests
in [92]. For these reasons and for its straightforward and clear algebraic formulation,
AutoMUG is the method with which we wish to start the detailed description of
multigrid algorithms. Later on, we also use ideas from AutoMUG to improve the
more general black-box multigrid method.

7.2 Cyclic Reduction

We start by describing the cyclic reduction method for the solution of linear systems
with tridiagonal coefficient matrices. For this purpose, we use the multigrid frame-
work that is also used later in more general problems with 5-point stencils.

Assume that the coefficient matrix A in (3.5) is an n×n tridiagonal matrix with
only three nonzero diagonals: the main diagonal, the diagonal just above it, and
the diagonal just below it (all the other diagonals vanish). For this kind of linear
system, the cyclic reduction method can be formulated as a multigrid method.

Let us partition the set of indices of unknowns {1, 2, 3, . . . , n} into two blocks:
the block of odd numbers {1, 3, 5, . . . , 2�n/2� − 1} (denoted by “o”), and the block
of even numbers {2, 4, 6, . . . , 2�n/2�} (denoted by “e”). With this partitioning, the
block form

A =
(

Aoo Aoe

Aeo Aee

)
,

where Aoo and Aee are diagonal submatrices (or blocks), and Aoe and Aeo are
bidiagonal blocks (blocks with only two nonzero diagonals). This block form will
lead to the definition of the matrices required in the TL method in Section 6.1:

P =
(
−A−1

oo Aoe

I

)
R =

(
−AeoA−1

oo I
)

Q = Aee − AeoA−1
oo Aoe

(where I is the identity matrix of suitable order). Actually, these definitions are
equivalent to those in (6.9)–(6.11) in Section 6.10 (with the subsets f and c used
there interpreted as the subsets e and o used here, respectively). Fortunately, unlike
the general Aff in Section 6.10, here Aoo is diagonal so A−1

oo is also available. This
leads to a practical method in the present tridiagonal case.

Note also that

RA =
(
0 Q

)
, (7.1)

so we have

RAP = Q = RA
(

0
I

)
= RAJ t

e. (7.2)

This observation is used later on.
The TL method in Section 6.1 is now implemented with the above defined

matrices. No prerelaxation is used, and only one postrelaxation is used (ν1 = 0

7.3 The Two-Dimensional Case 137

and ν2 = 1). The relaxation method in the TL method is a half sweep in the point-
GS method, in which only the odd-numbered unknowns are updated. The iteration
matrix for this prerelaxation is [see (5.6)]

So =
(

0 −(Aoo)−1Aoe

0 I

)
.

On the other hand, from (7.1) we have that the iteration matrix of the coarse-grid
correction is

I − PQ−1RA = I − P
(
0 I

)
=
(

I A−1
oo Aoe

0 0

)
.

The iteration matrix of the TL method is just the product of these two iteration
matrices:

So

(
I − PQ−1RA

)
= (0)

(the zero matrix). In other words, the algebraic error is annihilated in only one
iteration: the error in e is annihilated by the coarse-grid correction, and the error in
o is annihilated in the post-relaxation. (Actually, one could have the same effect also
with the alternative definition P = J t

e, but this definition would be more difficult to
extend to the 2-D case below.) Thus, the TL method with the present definitions is
actually a direct tridiagonal-system solver. Furthermore, because Q is tridiagonal as
well, the same method itself can also be used recursively to apply Q−1 to R(b−Axin)
in the TL algorithm, which actually leads to the ML method in Section 6.3. This
completes the definition of the Cyclic Reduction method.

As a matter of fact, tridiagonal systems can be also solved efficiently by Gaussian
elimination (see Section 2.2), because no fill-in is produced. However, the cyclic
reduction method is much easier to implement on parallel and vector computers [79].
Furthermore, it can be extended to problems with 5-point stencils, arising, for ex-
ample, from the discretization of two-dimensional diffusion equations.

7.3 The Two-Dimensional Case

The main point in the cyclic reduction method is that the coarse-grid matrix Q is
tridiagonal as well as A, which allows recursion in the multigrid V-cycle. Unfortu-
nately, for 5-point stencils as in the finite-difference and finite-volume discretization
of 2-D diffusion problems, the situation is more complicated: in order to have the
same stencil as in A, Q must be modified, as discussed below.

Assume that A has the 5-point stencil arising from the finite-difference or
finite-volume discretization of a 2-D diffusion equation on a uniform grid as in (3.6).
In this case, A can be written as the sum

A = X + Y, (7.3)

where X is a tridiagonal matrix representing the discrete approximation to the
derivatives in the x spatial direction (including the discrete boundary conditions
associated with this direction), and Y contains the discrete derivatives in the

138 7 Automatic Multigrid

y spatial direction (including the discrete boundary conditions associated with this
spatial direction). As in Section 7.2 above, one can define matrices PX and RX

from X, and PY and RY from Y . More precisely, PX and RX are block-diagonal
matrices, with blocks that are defined as in Section 7.2 in the relevant x-lines in the
grid in (3.6), and PY and RY are obtained in a similar way from Y in the relevant
y-lines. Since the prolongation operator is naturally the product of PX and PY and
the restriction operator is the product of RX and RY , a natural definition of the
coarse-grid matrix would be

RY RXXPXPY + RXRY Y PY PX . (7.4)

Unfortunately, this matrix is no longer of a 5-point stencil but rather of a 9-point
stencil in the coarse grid c in (6.1). In order to preserve the 5-point structure also
in the coarse grid matrix, one should recall from Section 6.2 that a good coarse-grid
matrix should act in much the same way as the original matrix A on the constant
vector. Thus, the matrices RY and PY in the first term in (7.4) could be replaced
by their row-sum. More precisely, because the coarse-grid matrix is later restricted
to c, and because the prolongation in the y spatial direction leaves the values in
c unchanged, PY could actually be replaced by the identity matrix rather than
rs(PY). [This can also be seen from (7.2).] Thus, the first term in (7.4) can be well
approximated by rs(RY)RXX (for gridpoints in c). When the second term in (7.4)
is approximated in a similar way, one gets

rs(RY)RXX + rs(RX)RY Y.

When this matrix is restricted to c, one gets the coarse-grid matrix

Q = Jc (rs(RY)RXX + rs(RX)RY Y) J t
c , (7.5)

which has a 5-point stencil in c, as required. Yet better, because prolongation
matrices should naturally also be used in the definition of Q, one could modify
the above definition by replacing rs(RY) by rs(PY) and rs(RX) by rs(PX):

Q = Jc (rs(PY)RXX + rs(PX)RY Y) J t
c . (7.6)

For the Poisson equation, this definition is different from the previous one only at
boundary points in c. Later on, we show more clearly why (7.6) is better than (7.5).
In the next section, we give a more complete definition of the AutoMUG method.

7.4 Definition of the AutoMUG Method

Consider the PDE

−(D1ux)x − (D2uy)y + βu = F (7.7)

in the unit square, with suitable boundary conditions. Assume that A is obtained
from the finite-difference or finite-volume discretization of (7.7) on the uniform grid
g in (3.6), so it has the 5-point stencil in (3.7). Furthermore, it can be written in
the form (7.3), where the matrix X contains the discrete first term and half of the

7.4 Definition of the AutoMUG Method 139

last term in (7.7) and has the 3-point stencil⎡
⎣ 0 0 0
W Cx E
0 0 0

⎤
⎦ , (7.8)

and the matrix Y contains the discrete second term and half of the third term
in (7.7) and has the 3-point stencil⎡

⎣0 N 0
0 Cy 0
0 S 0

⎤
⎦ (7.9)

[where Cx + Cy = C is the middle element in the stencil of A, and the Northern
element N in (7.9) is not to be confused with the integer N used often to denote
the order of A]. Note that X also incorporates the boundary conditions at the left
and right edges, and Y also incorporates the boundary conditions at the lower and
upper edges.

We first define the partial (1-D) prolongation and restriction matrices that
are used later to define the transfer matrices P and R. The definitions are as in
Section 7.2, except that here the matrices are square rather than rectangular:

PX = 2I − diag(X)−1X

PY = 2I − diag(Y)−1Y

RX = 2I − Xdiag(X)−1

RY = 2I − Ydiag(Y)−1.

The prolongation operator P is now defined by

P = PY PXJ t
c .

This means that the prolongation is done in two steps: first in the x spatial direction,
and then in the y spatial direction. Consider, for instance, a coarse-grid vector
v ∈ l2(c). The prolonged vector Pv ∈ l2(g) is defined in two steps: first, it is defined
in every other x-line in g, or, more specifically, at each point (i, j) ∈ g for which i
is even. This is done using the 3-point stencil (7.8) at (i, j) as follows.

(Pv)i,j ≡

⎧⎨
⎩

vi,j if j is even

−Wv i,j−1 + Ev i,j+1

Cx
if j is odd.

(7.10)

Next, Pv is prolonged further to each point (i, j) ∈ g with odd i. This is done using
the 3-point stencil (7.9) at (i, j) as follows.

(Pv)i,j ≡ −S(Pv)i−1,j + N(Pv)i+1,j

Cy
. (7.11)

This completes the definition of Pv in the entire grid g.
Next, the restriction matrix in the AutoMUG method is defined by

R = JcRXRY .

140 7 Automatic Multigrid

This means that the restriction is also done in two steps: first in the y spatial direc-
tion, and then in the x spatial direction. To make things clearer, consider a fine-grid
vector v ∈ l2(g). The restricted vector Rv ∈ l2(c) is defined in two steps. First, it is
defined in every other x-line in the original grid g [or at each point (i, j) ∈ g with
even i]. This is done by three different 3-point stencils: the stencil (7.9) at (i, j), the
corresponding stencil ⎡

⎣0 NS 0
0 Cy,S 0
0 SS 0

⎤
⎦ (7.12)

at (i − 1, j) (indicated by the subscript “S”), and the corresponding stencil⎡
⎣0 NN 0

0 Cy,N 0
0 SN 0

⎤
⎦ (7.13)

at (i+1, j) (indicated by the subscript “N”). Here is how these three 3-point stencils
are used to define RY v at points (i, j) with even i:

(RYv)i,j ≡ −Sv i−1,j

Cy,S
+ vi,j −

Nv i+1,j

Cy,N
.

Then, the final value of Rv at each point (i, j) ∈ c is defined by three other 3-point
stencils: the stencil (7.8) at (i, j), the corresponding stencil⎡

⎣ 0 0 0
WW Cx,W EW

0 0 0

⎤
⎦ (7.14)

at (i, j − 1) (denoted by the subscript “W”), and the corresponding stencil⎡
⎣ 0 0 0

WE Cx,E EE

0 0 0

⎤
⎦ (7.15)

at (i, j +1) (denoted by the subscript “E”). Here is how these three 3-point stencils
are used to define Rv in c:

(Rv)i,j ≡ −W (RYv)i,j−1

Cx,W
+ (RYv)i,j −

E(RYv)i,j+1

Cx,E
.

This completes the definition of Rv in c.
Note that R is the transpose of a prolongation matrix derived from At rather

than A.
The definition of the coarse-grid matrix Q uses the observation made in (7.2) that

JcRXXJ t
c = JcRXXPXJ t

c and JcRY Y J t
c = JcRY Y PY J t

c .

Furthermore, it uses the principle in Section 6.2 that Q should have about the
same effect as A on the constant vector. This means that positive matrices may be

7.5 The AutoMUG(q) Version 141

replaced by their row-sum. This leads to the definition in (7.5), or, better yet, the
definition in (7.6):

Q = Jc (rs(PY)RXX + rs(PX)RY Y) J t
c . (7.16)

This means that Q has the following stencil at the point (i, j) ∈ c:

−S + Cy − N

Cy

⎡
⎢⎢⎣

0 0 0

−WW W

Cx,W
Cx − EW W

Cx,W
− WEE

Cx,E
−EEE

Cx,E

0 0 0

⎤
⎥⎥⎦

+
−W + Cx − E

Cx

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −NNN

Cy,N
0

0 Cy − SNN

Cy,N
− NSS

Cy,S
0

0 −SSS

Cy,S
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.17)

[where the subscripts S, N , W , and E indicate stencils that are evaluated at the
points (i − 1, j), (i + 1, j), (i, j − 1), and (i, j + 1) in g, respectively].

The stencil of Q in (7.17) is the sum of two 3-point stencils: a 3-point stencil that
couples the points in c in the x spatial direction, and another 3-point stencil that
couples the points in c in the y spatial direction. The coefficient of the first term
comes from rs(PY) and uses elements from (7.9), and the coefficient of the second
term comes from rs(PX) and contains elements from (7.8). It is now clear why (7.6)
is better than (7.5): it guarantees that the coefficients in (7.17) use elements from
the original stencil of A at the relevant point (i, j) ∈ c, which makes sense.

The stencil of Q in (7.17) is a 5-point stencil in c, so recursion can be used as in
the ML algorithm in Section 6.3. The relaxation method used in the V-cycle is usu-
ally the red-black point-GS method. This completes the definition of the AutoMUG
iterative method.

The AutoMUG method can also be easily extended to 3-D elliptic PDEs, dis-
cretized by finite differences or finite volumes on a uniform cubic grid [94]. In
the next section, we also define a simplified AutoMUG version, which is easier to
implement and analyze.

7.5 The AutoMUG(q) Version

The 5-point stencil in (7.17) that couples the coarse-gridpoints contains two terms:
a 3-point stencil in the x spatial direction, and a 3-point stencil in the y spatial
direction in c. Thanks to the fact that (7.6) is used rather than (7.5), the coefficients
of these terms can be simplified and slightly modified, to produce another AutoMUG
version that is easier to implement and analyze. This is done below.

Let us focus on the first term in (7.17). Before the 3-point stencil that couples
the coarse-gridpoints in the x spatial direction, there is the scalar coefficient

−S + Cy − N

Cy
= 2 − S + Cy + N

Cy
. (7.18)

142 7 Automatic Multigrid

For matrices as in (7.3) with Y with nearly zero row-sum, this coefficient is only
slightly different from 2. Such matrices indeed arise often in the finite-difference
and finite-volume discretization of diffusion problems and PDEs as in (7.7). Thus,
it makes sense to simplify the original AutoMUG version by replacing the coefficient
in (7.18) by the scalar

2 + q,

where q is a small parameter that approximates the row-sum of −diag(Y)−1Y . For
diffusion equations, for example, in which the row-sums of Y are almost always zero,
it makes sense to use q = 0. Similarly, the coefficient of the second term in (7.17)
(the 3-point stencil that couples the coarse-gridpoints in the y spatial direction) is
replaced by 2 + q as well. In summary, instead of (7.16), we have

Q = (2 + q)Jc(RXX + RY Y)J t
c .

The same parameter q is also used in the recursion in the ML algorithm. This is the
AutoMUG(q) version, which is easier not only to implement but also to analyze. In
particular, the AutoMUG(0) method is used in the applications in Chapter 8 below.

A prototype version of AutoMUG(q) that uses multiple coarse grids rather than
the standard V-cycle is analyzed in some model cases [92] and [94]. Unfortunately,
this theory is inapplicable to the present AutoMUG and AutoMUG(q), which use
the common V-cycle. Indeed, the corollaries in [92] and [94] that attempt to prove
convergence of AutoMUG(0) assume that the iteration matrix of the post-relaxation
is PJc. This assumption makes sense only when two different coarse grids are used,
c as in Figure 6.2 in the first coarse-grid correction, and

d = {(i, j) ∈ g | i ≡ j ≡ 1 mod 2} (7.19)

as in Figure 7.1 in the second coarse-grid correction, but not in the present V-cycle,
which uses only c to produce a single coarse-grid correction term.

Still, AutoMUG works well for various kinds of examples with 5-point sten-
cils [105], including diffusion problems with discontinuous coefficients, even when
the discontinuity lines do not align with the coarse grid. In the next chapter,
AutoMUG(0) is used to solve such problems in the field of image processing.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 7.1. The coarse grid d: the subgrid of points that lie in odd-numbered lines and
odd-numbered columns.

7.6 Exercises 143

7.6 Exercises

1. Count the number of arithmetic operations required to solve a tridiagonal linear
system of order N by constructing the LU decomposition (Gauss elimination).
Note that both L and U are bidiagonal (no fill-in), so the forward elimination
and back-substitution is efficient. (The answer is a function of N .)

2. Assume that an arithmetic operation requires α seconds, where α is a small
positive parameter. Calculate the sequential time required to solve the above
problem. (See the definitions in the exercises at the end of Chapter 1.)

3. Count the number of arithmetic operations required in the cyclic-reduction
method for solving the above problem.

4. Consider a parallel computer of p processors as in the exercises at the end of
Chapter 1. Use your answer from the previous exercise to calculate the parallel
computation time.

5. Calculate also the communication time on that computer.
6. Calculate also the parallel time on that computer.
7. Calculate also the speedup and average speedup on that computer.
8. As in the exercises at the end of Chapter 1, assume now that the concrete

parameters α = 10−6, γ = 10−3, δ = 10−7, and N = 109 are used. How do the
speedup and average speedup behave as functions of p (number of processors)?

9. Show that, if A is of 5-point stencil as in (3.8), then the coarse-grid matrix Q
in AutoMUG is of 5-point stencil as well.

10. Show by induction that, if A is of 5-point stencil, then so are all the coarse-grid
matrices used in the ML algorithm with AutoMUG.

11. Conclude that the red-black point-GS relaxation can be used in all the levels in
the V-cycle in AutoMUG.

12. Consider the Poisson equation (3.12), discretized as in (3.13) on the uniform
grid g in (3.6). Show that the stencil of Q in (7.6) (at least at inner points in the
coarse grid c) is the same as that of A (at inner points in the original grid g),
and is different from that of the geometric coarse-grid matrix in Section 6.4 by
factor 4 only.

13. Show that the above factor is canceled with the factor 1/4 in (6.4) (which is
missing in the restriction matrix JcRXRY used in AutoMUG), so in this case
AutoMUG is the same as geometric multigrid at inner gridpoints.

14. Show that if the matrices X and Y in (7.3) are nonsingular, then the corre-
sponding matrices that approximate them on the coarse grid in AutoMUG are
nonsingular as well.

15. Show that if the matrices X and Y in (7.3) are diagonally dominant L-matrices,
then the corresponding matrices that approximate them on the coarse grid in
AutoMUG are diagonally dominant L-matrices as well.

16. Show that if the matrices X and Y in (7.3) are M-matrices, then the corre-
sponding matrices that approximate them on the coarse grid in AutoMUG are
M-matrices as well. The solution can be found in [105].

17. Write the computer code that implements the AutoMUG(0) method.
18. Define an isotropic diffusion problem [as in (4.15)] and discretize it on a uni-

form grid using a 5-point stencil (using finite volumes or uniform finite-element

144 7 Automatic Multigrid

mesh as in Figure 4.13). Apply your AutoMUG(0) code to it. Test also discon-
tinuous diffusion coefficients with discontinuity lines that don’t align with the
coarse grid.

19. Verify that the coarse-grid matrices obtained in the previous exercise are sym-
metric and diagonally dominant. Conclude from Lemma 2.1 that they are also
SPD. Conclude from the theory in [118] that they are also M-matrices. Use
an IMSL routine to compute their nearly singular eigenvectors, and verify that
their eigenvalues and components are all positive.

8

Applications in Image Processing

In this chapter, we use the multigrid method in the field of image processing. In
particular, automatic multigrid is used to remove noise from grayscale and color
digital images.

8.1 The Denoising Problem

Two important problems in image processing that are closely related to each other
are denoising and object segmentation. In the denoising problem, one needs to
clarify a given digital image that is contaminated with random noise by removing
the noise without spoiling the true features in the image. In the object segmentation
problem, on the other hand, one has to find particular objects in the given digital
image. In both cases, one has to filter out irrelevant features in the image while
leaving the relevant features unharmed.

The algorithms that solve these problems are based on nonlinear PDEs, dis-
cretized on the uniform grid that represents the digital image and solved by some
iterative method. The original denoising algorithm for grayscale images has been
introduced in [81]. Improved versions of this algorithm have been also introduced in
[10] and [11]. Extensions to color images in red-green-blue (RGB) form have been
also proposed in [89] and [109]. Similarly, algorithms for object segmentation have
been proposed in [33] (for grayscale images) and [55] (for RGB color images).

The above extensions to RGB color images suffer from the drawback that the
PDE also contains mixed derivatives, so the coefficient matrices resulting from the
linearization and discretization are no longer M-matrices. The present extension to
color images, on the other hand, uses M-matrices with efficient 5-point stencils only.

In existing works in denoising and object segmentation, little attention is paid
to computational costs. When large digital images are considered, the amount of
calculations required in the above algorithms may be prohibitively large, because it
may increase superlinearly with the problem size (the number of pixels in the image).
Indeed, hundreds of iterations are needed in the above denoising algorithms [89],
and hundreds of CPU seconds are consumed by the object-segmentation algorithm
in [55] (even for small 64 × 64 images).

The main advantage of the present algorithm is its efficiency: it requires only
ten iterations to denoise rather large 512 × 512 grayscale and color images. The

146 8 Applications in Image Processing

algorithm uses M-matrices with 5-point stencils for both grayscale and color images,
allowing the use of the efficient AutoMUG linear system solver. The algorithm to
denoise RGB color images can be viewed as a natural extension of the algorithm
to denoise grayscale images. Both algorithms can probably be modified to solve
the object-segmentation problem as well, by adding to the PDE the extra terms
introduced in the PDE in [33].

8.2 The Denoising Algorithm for Grayscale Images

We first consider grayscale digital images, which are actually 2-D arrays of pixels
that take numerical values to indicate the gray level (amount of light) at the indi-
vidual points in the image. Let z be the grid function (vector) that is defined on the
above array and contains the gray levels in the given noisy image. The denoising
algorithm that removes the noise is a variant of the algorithm in [81], and is defined
by the sequence of linear PDEs listed below. To this end, we assume for simplicity
that the digital image is square, so it can be embedded in the unit square like the
grid in (3.6). First, let z̃ and u(0) be functions (defined in the unit square) that agree
with z on the gridpoints corresponding to the pixels in the digital image. Then, for
i = 1, 2, . . ., solve

u(i) − α∇

⎛
⎝ ∇u(i)

1 + |u(i−1)
x |2+|u(i−1)

y |2
ki

⎞
⎠ = z̃ (8.1)

in the unit square (0, 1)× (0, 1), with homogeneous Neumann boundary conditions.
As before, the first appearance of the Nabla operator “∇” stands for the divergence
operator, and the second one stands for the gradient operator. Also, α and ki are
positive parameters to be specified later.

Each linear PDE in (8.1) is discretized by finite volumes (Section 3.12) on a uni-
form n×n grid of meshsize h = 1/n, where n is the size of the image. (We assume for
simplicity a square image of n×n pixels.) The derivatives u

(i−1)
x and u

(i−1)
y in (8.1)

are discretized by second-order central differencing of u(i−1) at midpoints that lie
in between gridpoints. For example, for some function f , the derivatives fx and fy

are approximated by

(fy)i+1/2,j
.= (fi+1,j − fi,j) /h

(fx)i+1/2,j
.= 0

(fy)i,j+1/2
.= 0

(fx)i,j+1/2
.= (fi,j+1 − fi,j) /h.

With this discretization, the coefficient matrices are diagonally dominant M-matrices
with a 5-point stencil, so the AutoMUG method can be used to solve the linear sys-
tems. Each linear system obtained from the discretization of (8.1) is solved approxi-
mately by one V(1,1)-cycle of the AutoMUG(0) version. Thanks to the inexpensive
set-up in AutoMUG(0), the total cost of this solve (solution process) is only 4–5
work units (where a work unit is the work required in a point relaxations on a
5-point stencil). The initial guess in the AutoMUG(0) cycle in the ith iteration in

8.3 The Denoising Algorithm for Color Images 147

(8.1) is taken from the previous iteration, u(i−1). The output of the algorithm, the
final iteration [say, u(10)] in the discrete grid, contains the required denoised image.

The parameters α and ki in (8.1) have not yet been specified. Usually, they
depend on the size of the image and the amount of noise. In particular, α should be
small enough to avoid introducing extra blur, but not too small, to allow effective
denoising. In the present example with uniformly-distributed random noise (with
magnitude of at most 25% of the maximal gray level) at each and every pixel, a
good choice seems to be α = .000025 for a 512 × 512 image.

The parameters ki are rough estimates to the average value of |u(i−1)
x |2+|u(i−1)

y |2
over the gridpoints. Thus, the kis should decrease, to reflect the decrease in the noise
during the iteration. In the present examples, we have used ki = 10000 for i ≤ 2,
ki = 1000 for 3 ≤ i ≤ 5, and ki = 100 for 6 ≤ i ≤ 10.

8.3 The Denoising Algorithm for Color Images

In this section, we extend the above denoising algorithm also to RGB color images.
Let z be a noisy color image in the RGB form: z ≡ (z(r), z(g), z(b)) contains the three
color vectors that contain the intensities of the red, green, and blue colors in the
pixels in the entire noisy image. The denoising algorithm requires the solution of the
following system of nonlinear PDEs in the unit square with homogeneous Neumann
boundary conditions. The unknown functions in this system, R(x, y), G(x, y), and
B(x, y), combine to form the unknown vector function u ≡ (R, G,B). The square
grid associated with the pixels in the image is embedded in the unit square. (The
meshsize in the grid is h = 1/n, and the number of gridpoints, n2, is the same as
the number of pixels in the digital image.) The right-hand sides in the equations
are interpreted as continuous functions that agree with the color vectors z(r), z(g),
and z(b) in the grid. Here is the system of PDEs:

R− α∇ (F (T (u))∇R) = z(r) (8.2)

G − α∇ (F (T (u, h))∇G) = z(g) (8.3)

B − α∇ (F (T (u, h))∇B) = z(b), (8.4)

where

k2(u) ≡
∫ 1

0

∫ 1

0

(
R2

x + R2
y + G2

x + G2
y + B2

x + B2
y

)
dxdy, (8.5)

T (u) ≡

⎛
⎜⎜⎜⎝

1 +
R2

x + G2
x + B2

x

k2(u)
RxRy + GxGy + BxBy

k2(u)

RxRy + GxGy + BxBy

k2(u)
1 +

R2
y + G2

y + B2
y

k2(u)

⎞
⎟⎟⎟⎠ , (8.6)

and F () is a function defined on the set of 2 × 2 matrices. (The precise definition
of F () is specified below.)

Note that T (u) ≡ T (u(x, y)) and F (T (u)) ≡ F (T (u(x, y))) are actually functions
of the spatial variables x and y. Thus, (8.2)–(8.4) is a system of three coupled PDEs
with variable nonlinear coefficients. This system is now linearized in the Newton
iterative method, in which each iteration is the solution of a linearized system, in

148 8 Applications in Image Processing

which T (u) uses the u value from the previous iteration:

u(0) ≡ (R(0), G(0), B(0)) = z

R(i) − α∇
(
F (T (u(i−1)))∇R(i)

)
= z(r) (8.7)

G(i) − α∇
(
F (T (u(i−1)))∇G(i)

)
= z(g) (i = 1, 2, 3, . . .) (8.8)

B(i) − α∇
(
F (T (u(i−1)))∇B(i)

)
= z(b). (8.9)

Let us now specify the function F () used above. In fact, this function can be
defined in two possible ways. The first way, in the spirit of [109], uses F (K) = K−1

(where K is a 2 × 2 nonsingular matrix). With this approach, it is natural to
discretize (8.7)–(8.9) on a uniform finite-element mesh. Unfortunately, with either
square finite elements as in Section 4.4 or triangular finite elements as in Section 4.5,
there is no guarantee that the coefficient matrices are M-matrices. Indeed, because
the eigenvalues of T (u) could be distinct (at least at some points in the domain), the
problem may well be anisotropic, so the conditions in Section 4.6 are not satisfied
in general.

The second way, on the other hand, produces coefficient matrices that are
diagonally-dominant M-matrices and use a 5-point stencil only. In the spirit of [55],
F (K) is defined to be the inverse of the determinant of K:

F (K) = det(K)−1 (8.10)

(where K is a 2×2 nonsingular matrix). Note that, with this choice, F () is no longer
a matrix but rather a scalar. Using finite volumes as in Section 3.12 or uniform
finite-element triangulation would thus produce diagonally dominant M-matrices
(see Section 4.6). This is why the definition in (8.10) is used here.

Using discrete homogeneous Neumann boundary conditions, the function k2(u)
in (8.5) is discretized on the uniform grid in (3.6) by forward finite differencing as
follows:

k2(u) .=
n∑

i=1

n−1∑
j=1

(Ri,j+1 −Ri,j)2 + (Gi,j+1 − Gi,j)2 + (Bi,j+1 − Bi,j)2

+
n−1∑
i=1

n∑
j=1

(Ri+1,j −Ri,j)2 + (Gi+1,j − Gi,j)2 + (Bi+1,j − Bi,j)2. (8.11)

Each of the three linear PDEs in (8.7)–(8.9) is discretized by the finite-volume
discretization method in Section 3.12 on the uniform grid in (3.6). The derivatives
in T (u) in (8.6) are discretized by second-order central differencing at midpoints of
the form (i + 1/2, j) and (i, j + 1/2) as follows:

(GY)i+1/2,j
.= (Gi+1,j − Gi,j) /h (8.12)

(Gx)i+1/2,j
.= (Gi+1,j+1 + Gi,j+1 − Gi+1,j−1 − Gi,j−1) /(4h) (8.13)

(Gy)i,j+1/2
.= (Gi+1,j+1 + Gi+1,j − Gi−1,j+1 − Gi−1,j) /(4h) (8.14)

(Gx)i,j+1/2
.= (Gi,j+1 − Gi,j) /h, (8.15)

and similarly for R and B.

8.4 Numerical Examples 149

Note that when (i, j) in (8.12) through (8.15) is a boundary point, some points
in the right-hand sides in (8.12) through (8.15) may lie outside the grid, which is
of course impossible. Fortunately, thanks to the discrete homogeneous Neumann
boundary conditions, the right-hand sides in (8.12) through (8.15) can be modified
by replacing the nonexisting point by the nearest point that lies within the grid.

With the present discretization, (8.7) through (8.9) are actually three indepen-
dent linear systems, each of which has a coefficient matrix which is a diagonally
dominant M-matrix and uses a 5-point stencil. Thus, the AutoMUG method can
be used to solve each of these algebraic systems separately. Actually, each algebraic
system is solved approximately by one V(1,1)-cycle of the AutoMUG(0) method.
The initial guess for this V-cycle is taken from the previous iteration in Newton’s
method [u(i−1) in (8.7)–(8.9)].

The choice of the parameter α depends on the size of the digital image and the
amount of noise. In the present experiments, we have used uniformly-distributed
random noise (with magnitude of at most 25% of the maximal color intensity) at
every pixel and every color. In this case, the optimal choices seem to be α = .000025
for a 512×512 image and α = .0000025 for a 864×1152 image. Ten Newton iterations
are used, and the output u(10) seems to be well denoised.

8.4 Numerical Examples

In the numerical examples, we use digital images of the model Lena, used often in
tests in image processing. The special features in these images make them particu-
larly challenging and suitable for scientific comparison, which is the only reason for
using them here [77].

We first take a 512 × 512 grayscale image of Lena and add to each pixel in it
uniformly distributed random noise with magnitude of at most 25% of the maximum
light intensity in the image. The present denoising algorithm in Section 8.2 uses
α = .000025, ki = 10000 for i ≤ 2, ki = 1000 for 3 ≤ i ≤ 5, and ki = 100 for
6 ≤ i. Ten iterations are used in (8.1), each of which is solved approximately by a
single AutoMUG(0) iteration. The AutoMUG(0) method uses a V(1,1)-cycle (with
ten levels) with the red-black point-GS relaxation method.

Although the AutoMUG method fails to solve the linear system in Section 7.1.3
in [97], this is because the problem there uses ki = 1, which leads not only to high
local anisotropy but also to poor denoising. By refusing to solve the problem, the
AutoMUG method actually indicates that something is wrong with the system of
equations and it may be too irregular. Indeed, the large kis used here guarantee not
only good denoising but also good performance of the multigrid method.

The noisy image is shown below in the file “noisy.pgm” in Figure 8.1. The image
that is the output of the denoising algorithm is shown in the file “denoised.pgm”
in Figure 8.2. The result exhibits good denoising with almost no blur or any other
side effects.

Next, we turn to RGB color images. We take a 512×512 color image of Lena and
add to each pixel and each color in the RGB form of it uniformly distributed random
noise with magnitude of at most 25% of the maximum color intensity. The present
denoising algorithm in Section 8.3 uses α = .000025. Ten Newton (fixed-point)
iterations in (8.7) through (8.9) are used. Each of the three individual linear systems

150 8 Applications in Image Processing

Fig. 8.1. The noisy grayscale (noncolor) image that is the input to the present denoising
algorithm.

Fig. 8.2. The denoised grayscale (noncolor) image that is the output of the present
denoising algorithm.

8.4 Numerical Examples 151

Fig. 8.3. The noisy RGB color image that is the input to the present denoising algorithm.

Fig. 8.4. The denoised RGB color image that is the output of the present denoising
algorithm.

152 8 Applications in Image Processing

Fig. 8.5. The result of the Wiener filter with a 10-by-10 stencil applied to the noisy RGB
color image.

in each Newton iteration is solved approximately by one AutoMUG(0) iteration. The
AutoMUG(0) method uses a V(1,1)-cycle (with ten levels) with the red-black point-
GS relaxation method. (The AutoMUG method may give slightly better results.)

The noisy image is shown in the file “noisy.tif” in Figure 8.3. The image that is
the output of the denoising algorithm is shown in the file “denoised.tif” in Figure 8.4.
The result exhibits good denoising with almost no blur or other side effects.

For comparison, we also show the result of the Wiener filter in the Matlab
library applied separately to each noisy color in the RGB form of the original image
in “noisy.tif.” This filter is based on statistical characteristics of the input image. At
each pixel, the value is calculated as a weighted average of values in a subsquare of
size 10× 10 pixels surrounding it. (This size is the minimal size required to remove
some noise in this example.) The output of this Wiener filter is shown in the file
“Wiener10.tif” in Figure 8.5. It turns out that this filter introduces a considerable
amount of blur. A comparison between Figures 8.4 and 8.5 shows the advantage of
the present denoising algorithm in terms of sharpness of the output image.

8.5 Exercises

1. Assume that the real function f and its derivative f ′ are available. Assume also
that f has a root x̃, for which f(x̃) = 0. The Newton (or Newton–Raphson)
iteration to find x̃ is as follows. Let x(0) be an initial approximation (initial
guess), which is not too far from x̃. For i = 0, 1, 2, . . ., define

x(i+1) = x(i) − f(x(i))/f ′(x(i)).

8.5 Exercises 153

For sufficiently large i, |x(i+1)−x̃| is sufficiently small, and x(i+1) is accepted as a
sufficiently good approximation to x̃. Write the computer code that implements
the Newton iteration.

2. The fixed-point problem is as follows: given a function g(x), find a point x̃ for
which

g(x̃) = x̃.

The Picard (fixed-point) iteration for this problem is defined by

x(i+1) = g(x(i)).

Write the computer code that implements this iteration.
3. Show that the Newton iteration can be formulated as a Picard iteration for the

function
g(x) = x − f(x)/f ′(x).

4. Show that (8.2)–(8.4) can be written in the form

T (u) = F, (8.16)

where F is a given function, u is the unknown function, and T is a nonlinear
differential operator.

5. Extend the above Newton iteration to solve (8.16), or to find the “root” u that
solves the equation

T (u) − F = 0. (8.17)

6. For every function v, let Lv be the linearization of T at v. Use the above exercises
to show that Newton’s iteration for the solution of (8.17) can be written in the
form

u(i+1) = u(i) − L−1
u(i)

(
T (u(i)) − F

)
= u(i) −

(
u(i) − L−1

u(i)F
)

= L−1
u(i)F.

7. Conclude that (8.7) through (8.9) indeed form the Newton iteration for the
solution of (8.2) through (8.4).

8. Show that the coefficient matrix in each Newton iteration in the denoising al-
gorithms is a symmetric, strictly diagonally dominant L-matrix.

9. Conclude from Lemma 2.1 that it is also SPD.
10. Conclude from the theory in [118] that it is also an M-matrix.
11. Use an IMSL routine to compute its nearly singular eigenvector. Verify that its

eigenvalue and components are all positive.
12. Use your AutoMUG(0) code from the exercise at the end of the previous chapter

in a denoising code. Apply it to grayscale and color images, and assess its
performance in terms of noise and blur.

13. Pick one of the linear systems at some Newton iteration. Verify that the coarse-
grid matrices used in the AutoMUG(0) method for this system are all symmetric
and strictly diagonally dominant. Conclude that they are also SPD M-matrices.

9

The Black-Box Multigrid Method

In this chapter, we describe the black-box multigrid (BBMG) method for the
numerical solution of structured linear systems with a 9-point stencil. This matrix-
based multigrid method is suitable for diffusion problems with variable and even
discontinuous coefficients, even when the discontinuity lines don’t align with the
coarse grid. Furthermore, we show how it can be modified to solve efficiently diffu-
sion problems with strong-diffusion areas that interact with each other.

9.1 Definition of Black-Box Multigrid

Here we describe the black-box multigrid (BBMG) method [39]. This method is
more general and robust than AutoMUG, because it is applicable not only to 5-point
stencils but also to 9-point stencils. Still, one can use ideas from AutoMUG to come
up with an optimal version of BBMG [97].

Assume that the linear system (3.5) is from 9-point stencil as in (4.13) on the
uniform n × n grid g in (3.6). The main part in the definition of BBMG is the
definition of the prolongation operator P : l2(c) → l2(g), where the coarse grid c
is as in (6.1). For this purpose, we first introduce the so-called “lumped” stencil;
here lumping means summing the coefficients in the original stencil (4.13) in the
spatial direction that is perpendicular to the direction along which prolongation is
carried out. More precisely, for a vector v ∈ l2(c), Pv ∈ l2(g) is defined as follows.
For every coarse-gridpoint (i, j) ∈ c, the value of Pv is, of course, the same as the
corresponding value of v:

(Pv)i,j ≡ vi,j .

Consider now a gridpoint (i, j) ∈ f = g \ c. Assume first that i is even and j is odd,
so (i, j) lies in between the two coarse-gridpoints (i, j − 1) and (i, j + 1). In this
case, the prolongation is in the x spatial direction, so the lumped stencil is obtained
from lumping (summing) in the y spatial direction in the original stencil at (i, j):⎡

⎣ 0 0 0
NW + W + SW N + C + S NE + E + SE

0 0 0

⎤
⎦ (9.1)

156 9 Black-Box Multigrid

(see Figure 6.9). This leads to the definition

(Pv)i,j ≡ − (NW + W + SW)vi,j−1 + (NE + E + SE)vi,j+1

N + C + S
(9.2)

(as in Section 6.7).
When i is odd and j is even, (i, j) lies in between the coarse-gridpoints (i− 1, j)

and (i + 1, j). In this case, the lumping is done in the x spatial direction, and the
lumped stencil is ⎡

⎣0 NW + N + NE 0
0 W + C + E 0
0 SW + S + SE 0

⎤
⎦ .

Thus, the prolonged value is

(Pv)i,j ≡ − (NW + N + NE)vi+1,j + (SW + S + SE)vi−1,j

W + C + E
. (9.3)

This completes the first prolongation step in Section 6.7.
Finally, when both i and j are odd, the value of Pv is defined simply from the

original stencil:

(Pv)i,j ≡ − (NWv i+1,j−1 + NEv i+1,j+1 + SWv i−1,j−1

+ SEv i−1,j+1 + N(Pv)i+1,j + S(Pv)i−1,j

+ W (Pv)i,j−1 + E(Pv)i,j+1)/C (9.4)

[as in (6.7)]. Of course, when (i, j) is a boundary point, some of the coefficients in
the original stencil vanish, so no fictitious points are needed. This completes the
definition of the prolongation operator P . As in variational multigrid, R and Q
are defined by R = P t and Q = RAP . (For nonsymmetric systems, an improved
definition is proposed in [40], see Section 16.4.)

For highly anisotropic problems, alternating (“zebra”) line relaxation
(Section 5.7) should be used within the V-cycle [41]. For problems with variable
strong-diffusion direction, however, the convergence may deteriorate. Alternating
line-relaxation cannot help in this case, because the difficulty is with the coarse-
grid correction (see Section 15.1), not the relaxation method. In such problems,
one should probably turn to matrix-based semicoarsening (Chapter 11) or alge-
braic multilevel method (Chapter 15). In the present applications, however, we are
mostly interested in isotropic problems, so we use BBMG with the 4-color point-GS
relaxation (Section 5.9).

In the next section, the above definition of the prolongation matrix P is studied
and improved, in the spirit of AutoMUG.

9.2 Improvements in Diffusion Problems

In the special case in which A is of 5-point stencil, one would naturally like the
prolongation operator P defined above to agree with the prolongation operator
used in the AutoMUG method. Fortunately, this is indeed the case for diffusion

9.2 Improvements in Diffusion Problems 157

problems as in (3.2) discretized by finite differences or finite volumes, at least at in-
terior gridpoints that lie in between two coarse-gridpoints. Indeed, because a 5-point
stencil is used, we have

NW = NE = SW = SE = 0.

Therefore, (9.2) and (9.3) are simplified to read

(Pv)i,j ≡

⎧⎪⎨
⎪⎩
−Wv i,j−1 + Ev i,j+1

N + C + S
if i ≡ j + 1 ≡ 0 mod 2

−Nv i+1,j + Sv i−1,j

W + C + E
if i + 1 ≡ j ≡ 0 mod 2.

The row-sums of both X and Y at the interior point (i, j) are zero, thus we also have

Cx = C − Cy = C + N + S

Cy = C − Cx = C + W + E.

Therefore, we have from (7.10) and (7.11) that the prolongation for AutoMUG is
the same as for BBMG for interior points (i, j) with i + j ≡ 1 mod 2.

Let us now extend the above also to boundary gridpoints in (3.6). For this,
however, we need to assume that n in (3.6) is odd, so no boundary point lies in
between two coarse-gridpoints. Consider, for example, a boundary point (i, j) that
lies on the rightmost column of gridpoints, that is, j = n and i is even. For this
point, we have E = 0; however, thanks to the fact that the contribution from the
discrete boundary condition is incorporated in Cx, we still have

Cx = C − Cy = C + N + S,

which again implies that the prolongation in BBMG is the same as in AutoMUG.
Similarly, consider a gridpoint at the upper row in the grid; that is, i = n and j is
even. For this point, N = 0 and the discrete boundary conditions are incorporated
in Cy. Thus, we again have

Cy = C − Cx = C + W + E,

which implies that the prolongation in BBMG is the same as in AutoMUG. The
same result is also true for boundary gridpoints at the lower row (where i = 1 and
j is even) and the leftmost column of points in the grid (where j = 1 and i is even).

It only remains to show that the prolongation in BBMG is the same as in
AutoMUG also for points (i, j) of which both i and j are odd. For this, however,
we need an additional assumption.

Lemma 9.1 Assume that A in (3.5) is obtained from finite-difference or finite-
volume discretization of the diffusion equation (3.2), so it can be written as in (7.3).
Assume also that n in (3.6) is odd, and that diag(X)−1X and diag(Y)−1Y commute
with each other. Then the prolongation matrix for BBMG is the same as the pro-
longation matrix for AutoMUG.

Proof. From the latter assumption, we have that PX and PY defined in Section 7.4
commute with each other as well. Using also the assumption that n is odd, we

158 9 Black-Box Multigrid

have from the above discussion that the prolongation in BBMG is the same as in
AutoMUG for every gridpoint (i, j) with i + j ≡ 1 mod 2. Thus, we have that the
prolongation matrix P in BBMG satisfies

P = diag(A)−1 (diag(X)PXPY + diag(Y)PY PX) J t
c

= diag(A)−1 (diag(X) + diag(Y)) PY PXJ t
c

= PY PXJ t
c .

This completes the proof of the lemma.

Let us now consider an implementation that uses the coarse grid d in (7.19)
(containing the odd-numbered gridpoints) rather than c in (6.1). In order to have
the above property that the prolongation in BBMG is the same as in AutoMUG
even at boundary points that lie in between two coarse-grid boundary points, we
must replace C in (9.2) and (9.3) by

C̃ ≡ −(NW + N + NE + W + E + SW + S + SE). (9.5)

(Note that some of the terms on the right-hand side might be zero.) In other words,
C̃ is obtained from C by subtracting the row-sum, or the contribution from the
discrete boundary conditions. As a result, we have for a boundary point on the
rightmost column of gridpoints (j = n, i is even, E = 0, and the discrete boundary
conditions are incorporated in Cx) that

Cy = −(N + S) = C̃ + W,

so the prolongation in BBMG is the same as in AutoMUG. Similarly, for a gridpoint
on the upper row in the grid (i = n, j is even, N = 0, and the discrete boundary
conditions are incorporated in Cy), we have

Cx = −(W + E) = C̃ + S,

so the prolongation in BBMG is again the same as in AutoMUG. The same result
holds for gridpoints on the lower row (where i = 1 and j is even) and the leftmost
column of gridpoints (where j = 1 and i is even). In summary, we have

Lemma 9.2 Assume that A in (3.5) is obtained from finite-difference or finite-
volume discretization of the diffusion equation (3.2), so it can be written as in (7.3).
Assume also that n in (3.6) is odd, and that the coarse grid d in (7.19) is used rather
than c in (6.1). Assume also that

Jcdiag(X)−1Xdiag(Y)−1YJ t
d = Jcdiag(Y)−1Ydiag(X)−1XJ t

d. (9.6)

Assume also that C in (9.2)–(9.3) is replaced by C̃ defined in (9.5) at boundary
gridpoints that lie in between two boundary coarse-gridpoints (i = 1 and j even,
i = n and j even, j = 1 and i even, or j = n and i even). Then the prolongation
matrix for BBMG is the same as the prolongation matrix for AutoMUG.

Proof. Let P be the prolongation matrix for BBMG. Thanks to the above modi-
fication that uses C̃ rather than C at boundary points, we have

JbP = JbPY PXJ t
d,

9.3 Using the Right-Hand Side 159

where b is as in (5.5). Furthermore, from (9.6), we have

JcPXPY J t
d = JcPY PXJ t

d,

which implies that

JcP = Jcdiag(A)−1 (diag(X)PXPY + diag(Y)PY PX) J t
d

= Jcdiag(A)−1 (diag(X) + diag(Y)) PY PXJ t
d

= JcPY PXJ t
d.

Clearly, we also have

JdP = JdPY PXJ t
d = I.

In summary, we have

P = PY PXJ t
d,

as required. This completes the proof of the lemma.

It is thus advisable to replace C in (9.2) and (9.3) by C̃ in (9.5) also in the
recursive calls to BBMG and in general 9-point stencils, at least at boundary points
that lie in between two coarse-grid boundary points. In Table 9 in [97], it is indeed
shown that this can improve the convergence rate for a diffusion example with
discontinuous coefficients.

9.3 Using the Right-Hand Side

In Section 6.7, the first and second prolongation steps are defined by solving suitable
homogeneous subproblems. A slightly better approach is to solve inhomogeneous
subproblems instead, where the right-hand side is taken from the residual. This
way, the prolonged coarse-grid term (Pe in the ML method in Section 6.3) may
approximately satisfy the residual equation, hence provide a good correction term
to add to xin.

This improvement is made by adding to the three right-hand sides in (9.2)–(9.4),
the extra term

(b − Ax in)k

C
, (9.7)

where k = (i − 1)n + j is the index of the row in A corresponding to the (i, j)th
gridpoint. With this improvement, P is actually no longer a rectangular matrix but
rather a square matrix, as is formulated algebraically in Section 12.2 below.

The cost of the modification is negligible because the residual b−Axin is already
available. It may reduce slightly the number of multigrid iterations required for
convergence in diffusion problems, although not in indefinite Helmholtz equations.

BBMG works well for many diffusion problems with variable and even dis-
continuous coefficients, even with discontinuity lines that don’t align with the
coarse grid. Furthermore, it can also be extended to 3-D diffusion problems,
discretized on uniform cubic grids with 27-point stencil [41]. In the next section,
we study a particularly difficult example, for which BBMG works well after further
modification.

160 9 Black-Box Multigrid

9.4 Improvement for Problems with Discontinuous
Coefficients

Geometric and variational multigrid work well for diffusion problems with discon-
tinuous coefficients, provided that the discontinuity lines align with all the coarse
grids. Unfortunately, this significant limitation excludes most realistic cases.

Matrix-based multigrid methods such as BBMG and AutoMUG, on the other
hand, work well even when the discontinuity lines don’t align with the coarse
grid. This allows one to write a general computer code that is independent of the
particular application.

Usually, BBMG is superior to AutoMUG thanks to its variational properties
(Section 6.7). Still, one could learn from AutoMUG to develop further improvements
for BBMG as well. Here we describe such an improvement in a particularly difficult
case, in which standard BBMG fails to converge.

Consider the isotropic diffusion equation

−(D̃ux)x − (D̃uy)y = F , 0 < x, y < 62. (9.8)

Here the diffusion coefficient D̃ is defined as in Figure 9.1:

D̃(x, y) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1000 + 1
2

· 1
1000

if (x, y) ∈ Θ ≡ {(x, y) | |x − ξ| + |y − ξ| ≤ 1}

1000 if (x, y) ∈ ((0, ξ) × (0, ξ)) ∪ ((ξ, 62) × (ξ, 62)) \ Θ

1 if (x, y) ∈ ((0, ξ) × (ξ, 62)) ∪ ((ξ, 62) × (0, ξ)) \ Θ

0 if (x, y) �∈ (0, 62) × (0, 62),
(9.9)

where 0 < ξ < 62 is a parameter denoting the location of the discontinuity in D̃.
Thus, the strong-diffusion regions at the lower-left and upper-right subsquares are
separated by a thin strip of width

√
2, denoted by Θ. This strip prevents any strong

diffusion between these subsquares, so they can interact only weakly; this property
should also be observed in the discrete system and its coarse-grid approximation.

The above problem can be viewed as an approximation of the so-called checker-
board problem, which is almost the same, except that Θ is set to be the empty
set ∅, so D̃(x, y) takes the value

1000 (x, y) ∈ ((0, ξ) × (0, ξ)) ∪ ((ξ, 62) × (ξ, 62))

1 (x, y) ∈ ((0, ξ) × (ξ, 62)) ∪ ((ξ, 62) × (0, ξ))

0 (x, y) �∈ (0, 62) × (0, 62).

(9.10)

Unfortunately, both the finite-difference and finite-volume discretization methods
are inadequate for the original checkerboard problem. Indeed, they produce strong
interaction between the lower-left and upper-right subsquares, and thus cannot
possibly yield a good approximation to the original PDE, in which the interaction

9.4 Improvement for Problems with Discontinuous Coefficients 161

����

0
0

ξ

62

ξ 62

D̃ = 1000

D̃ = 1

D̃ = 1

D̃ = 1000

Fig. 9.1. The diffusion coefficient D̃ in the present example. The distance between the
regions of strong diffusion at the middle of the domain is

√
2.

is only weak. This inadequacy is even more pronounced on the coarse grids, where
the meshsize is larger; this is why AutoMUG diverges and BBMG converges with
the rather nonoptimal convergence rate of 0.5. Fortunately, the present PDE that
uses (9.9) rather than (9.10) is more suitable for the finite-volume discretization,
which produces adequate discretization with no strong interaction between the
lower-left and upper-right subsquares, as required [2]. Furthermore, with AutoMUG,
this property is preserved also on the coarse grids, leading to an excellent (Poisson)
convergence rate, even when the discontinuity lines don’t align with the coarse grid.
Below we learn from AutoMUG also how BBMG should be modified to produce
such a good convergence rate as well.

Let us first complete the boundary-value problem by specifying also the bound-
ary conditions to be of the third kind:

un = 0 x = 0 or y = 0
D̃un + 0.5u = 0 x = 62 or y = 62,

where n denotes the outer normal vector. The equation is discretized on a uniform
63 × 63 grid, using the finite-volume discretization method (Section 3.12) with the
meshsize h = 1.

We test two cases: (a) ξ = 31, in which the discontinuity line aligns with all
the coarse grids, and (b) ξ = 30, in which the discontinuity line does not align

162 9 Black-Box Multigrid

with any of the coarse grids. It turns out that both AutoMUG and the multigrid
method displayed in Figure 6.10 (which uses lumping towards the center only)
converge rapidly for both ξ = 30 and ξ = 31. This is in agreement with the theory
in Chapter 12, which implies that the method displayed in Figure 6.10 should be
robust, no matter whether the discontinuity lines align with the coarse grid or not.

Other matrix-based multigrid algorithms, such as the matrix-based semicoarsen-
ing method in Section 6.11 and BBMG, may fail for a certain type of ξ, probably due
to lack of theory. For BBMG, in particular, the situation is as follows. With ξ = 30, it
converges nicely with the Poisson convergence rate. With ξ = 31, on the other hand,
it still converges rapidly as long as only two levels are used. This is indeed expected,
since the finite-volume scheme uses a 5-point stencil on the original (fine) grid, so
there is actually no difference between the lumping in Figures 6.9 and 6.10, and the
theory in Chapter 12 applies. Unfortunately, when more than two levels are used, a
9-point stencil must be used on the coarse grids, and BBMG practically stagnates.

The reason for this stagnation is seen in Figure 9.2, which displays the strong
coupling between gridpoints near the junction point (31, 31) in the coefficient

0
0

ξ

62

ξ 62(a)
0
0

�
�

�
�

������

��
����

����

�
�

�
�

������

��
����

����
ξ

62

ξ 62(b)

0
0

��

����
���

��

�
�

�
�

��

��

���
�

� ��

��

ξ

62

ξ 62(c)

Fig. 9.2. Strong coupling between strong diffusion regions at the junction point (ξ, ξ) =
(31, 31) for black-box multigrid in (a) the first (finest) level, (b) the second level, and (c) the
third level in standard BBMG. Clearly, the third level produces an inappropriate approx-
imation to the original problem due to the interaction between strong diffusion regions.

9.4 Improvement for Problems with Discontinuous Coefficients 163

matrices in the first, second, and third levels in BBMG. In the first level (a), the
finite-volume scheme uses a 5-point stencil with nearest-neighbor coupling only.
Thanks to the strip Θ in (9.9), there is no strong interaction between the lower-left
and upper-right subsquares, as required. This property is preserved also in the sec-
ond level (b), although the coarse-grid matrix Q = RAP already uses a 9-point sten-
cil with oblique coupling between coarse-gridpoints. Unfortunately, the coefficient
matrix on the third level (c) involves strong coupling also between the lower-left and
upper-right subsquares, hence approximates poorly the original system, and leads
to stagnation of the BBMG iteration.

Because BBMG is superior to both AutoMUG and the method in Figure 6.10 in
many other problems, it is particularly important to fix it for the present example
as well. In fact, improper strong interaction between regions of strong diffusion
may appear on some coarse grid in BBMG and slow down its convergence in many
examples. In order to fix BBMG, however, we need first to understand better the
source of the trouble.

As can be seen in Figure 9.2(b), the coarse-grid matrix Q = RAP involves strong
oblique coupling between coarse-gridpoints to the North-East (or South-West) of the
junction point (31, 31). Due to the vertical and horizontal lumping used in BBMG,
these oblique strong couplings produce horizontal and vertical strong couplings in
the prolongation from the junction point in the third level. This produces an im-
proper strong coupling between the lower-left and upper-right subsquares through
the junction point in the third level. In order to prevent this, one must modify the
lumping in BBMG, and lump not only vertically or horizontally (as in Figure 6.9)
but also obliquely (as in Figure 6.10), at least when the lumped elements are un-
usually large in magnitude.

Suppose that, for some point (i, j) ∈ f with even i and odd j, the North-Eastern
element in the stencil, NE , is relatively very large in magnitude:

|NE | > 10|E|.

In this case, it makes no sense to use vertical lumping, because the Eastern element
is too small in magnitude to take the extra magnitude of NE . It makes more sense
to use oblique lumping towards the main element in the stencil, C. This is done by
replacing C and NE in (9.2) by

C̃ ≡ C + NE and ÑE ≡ 0,

respectively. Similarly, assume that

|NE | > 10|N |

at a point (i, j) ∈ f with odd i and even j. In this case, NE is too large (in
magnitude) to be lumped horizontally, and must be lumped obliquely onto the
central element in the stencil, C. This is done by replacing C and NE in (9.3) by

C̃ ≡ C + NE and ÑE ≡ 0,

respectively. The same approach is also used for the other corner elements in the
9-point stencil. This improved version of BBMG doesn’t suffer from the above-
mentioned stagnation, and actually converges with the Poisson convergence rate.

164 9 Black-Box Multigrid

9.5 Exercise

1. Show that the prolongation used in BBMG is indeed as indicated in Figure 6.9.
2. Show that, for a 5-point stencil as in (3.8), this prolongation is equivalent to

the one indicated in Figure 6.10.
3. Show that, even for a 5-point stencil, the coarse-grid matrix Q is no longer of

5-point stencil but rather of 9-point stencil.
4. Show that, if A is of 9-point stencil, then the prolongation used in BBMG is no

longer equivalent to the prolongation indicated in Figure 6.10.
5. Show that, if A is of 9-point stencil, then Q is of 9-point stencil as well.
6. Show by induction that, if A is of 9-point stencil, then all the coarse-grid

matrices used in the ML algorithm are of 9-point stencil as well.
7. Conclude that the 4-color point-GS relaxation can be used at all the levels in

the V-cycle.
8. Show that the ith column in the coarse-grid matrix Q can be calculated by

Qe(i) = R
(
A
(
Pe(i)

))
,

where e(i) is the ith column in the identity matrix of the same order as Q.
9. Color the coarse grid c with nine colors as in the last exercise at the end of

Chapter 5. Let C(j) (1 ≤ j ≤ 9) be the coarse-grid vector with the value 1 at
coarse-gridpoints in the jth color and 0 elsewhere. Show that

QC (j) = R
(
A
(
PC (j)

))
gives immediately all the columns Qe(i) with i corresponding to any gridpoint
in the jth color. Conclude that Q can be calculated by 3 · 9 = 27 matrix-vector
operations, regardless of the size of the grid.

10. Write the computer code that implements the BBMG method for problems
of 9-point stencil on a uniform grid. Use the 4-color relaxation method in the
V-cycle.

11. Apply your code to the Poisson equation, discretized by bilinear finite elements
as in Section 4.4. Do you obtain the Poisson convergence factor of 0.1?

12. Apply your code to highly anisotropic equations as in Section 3.9. Does the
convergence rate deteriorate?

13. Modify your code by using the alternating “zebra” line-GS relaxation instead
of the 4-color relaxation. Does the convergence rate improve?

14. Apply your code to the diffusion problem with discontinuous coefficient as
in (9.9) with ξ = 31. Print the coarse-grid matrices and the graphs of strong
coupling around the middle point (ξ, ξ). Verify that you indeed obtain the same
pictures as in Figure 9.2: the lower-left and upper-right subsquares are only
weakly coupled in the first and second level, but strongly coupled in the third
level.

15. Repeat the above exercise, only this time use the fix in Section 9.4. Verify that
this time the lower-left and upper-right subsquares are only weakly coupled in
the third level as well.

16. What is the convergence factor in your code in the previous exercise? Is it as
small as the Poisson convergence factor?

10

The Indefinite Helmholtz Equation

In this chapter, we apply BBMG and AutoMUG versions to the indefinite Helmholtz
equation, discretized on a uniform rectangular grid. Using ideas from AutoMUG,
the transfer operators in the BBMG version are also designed to agree with the
nearly singular eigenfunction of the original PDE. We also show how to compute
the spectrum of the iteration matrix in some model cases. This analysis helps in the
design of the multigrid method.

10.1 Multigrid for the Indefinite Helmholtz Equation

Here we consider the indefinite Helmholtz equation (3.14) (with β < 0), discretized
by finite differences as in Section 3.8 on a uniform grid as in (3.6). This chapter
contains results from [90], [91], and [97].

It is well-known that geometric and variational multigrid methods (Sections 6.4
and 6.5) do not work well for indefinite Helmholtz equations. This is because the
nearly singular eigenfunctions are no longer smooth as in diffusion problems, so they
are not preserved well by standard prolongation operators. Furthermore, the coarse-
grid matrices obtained from rediscretizing the differential operator in (3.14) may
be completely different from A with respect to these nearly singular eigenfunctions.
Indeed, from (3.19) we have that the eigenvalue of A with respect to a nearly singular
eigenvector is

4h−2
(
sin2(πkh/2) + sin2(πlh/2)

)
+ β ∼ π2(k2 + l2) + β,

provided that

πkh ≤
√

|β|h � 1.

Consider now some coarse grid of meshsize H > h, and assume that (3.14) is
discretized on it using (3.18) with h replaced by H. The resulting coefficient matrix
also has the same eigenvalue

4H−2
(
sin2(πkH/2) + sin2(πlH/2)

)
+ β ∼ π2(k2 + l2) + β,

166 10 The Indefinite Helmholtz Equation

provided that

πkH ≤
√

|β|H � 1. (10.1)

Unfortunately, this places a severe limitation on how large H could be when geo-
metric or variational multigrid is used. In other words, very few coarse grids can
actually be used in the V-cycle.

Note that this limitation is related to the coarse-grid correction, which is re-
sponsible for reducing the nearly singular error modes, and has nothing to do with
the particular relaxation method used within the V-cycle, which is responsible for
reducing the rest of the error modes. Thus, no relaxation method could help here;
the only way to increase the number of coarse grids that can be used is by a clever
design of the transfer and coarse-grid matrices.

In [26], a projection method that “filters out” nearly singular error components is
proposed. Although this method has no limit on the number of coarse grids that can
be used, it is limited to the slightly indefinite 1-D equation with constant coefficients.
A related oblique-projection method is also proposed in [15]. This method requires
an exact solve on a coarse grid of meshsize H satisfying

H ≤ |β|−1/2, (10.2)

at least for the |β| ≤ 150 tested there. For larger |β|, (10.2) may be insufficient, and
yet smaller H may be required.

Here we are particularly interested in matrix-based methods, which require no
special treatment as in the above filtering or projection, and hence avoid significant
changes to the original algorithm and its implementation. In fact, we will see below
that a minor change to the original algorithm could produce transfer and coarse-
grid operators that agree with the nearly singular eigenfunction of the original PDE.
Because this change is given in algebraic terms, it applies to all sorts of boundary
conditions and to problems with variable coefficients as well.

10.2 Improved Prolongation

In [67], the prolongation operator is designed to agree with the nearly singular
eigenfunctions of the original differential operator. However, it is assumed there that
it is known in advance that the eigenfunctions are of the form exp(ikx). Although
this is a fair assumption for model cases, it no longer holds for more general cases
with different kinds of boundary conditions and variable coefficients. This is why we
propose here a matrix-based approach to define P . As is indicated in Section 6.6,
P is designed to agree with the nearly singular eigenfunction with k = l; indeed,
for this function we have π2k2 = π2l2 = −β/2, so (6.5) holds with the direction q
being interpreted as either x or y. Once the restriction and coarse-grid operators
are defined by R = P t and Q = RAP , Q preserves the effect of A on this nearly
singular eigenfunction, leading to an appropriate coarse-grid approximation.

In order to be general with respect to different kinds of boundary conditions and
variable coefficients, this approach must be given an algebraic formulation, in which
P is defined in terms of the elements in A alone. This way, the same procedure can be
used recursively to construct the transfer operators to and from the next (coarser)
grid, and so on, until the entire grid hierarchy used in the V-cycle is created.

10.3 Improved Black-Box Multigrid 167

10.3 Improved Black-Box Multigrid

Here we consider matrix-based multigrid methods for the solution of the indefinite
Helmholtz equation. We assume that the 5-point stencil (3.18) is used on the uniform
grid in (3.6), and that full coarsening as in (6.1) or (7.19) is used.

The method in [30] has the advantage that it uses a 5-point stencil also on the
coarse grids. However, it turns out that this method is inferior to AutoMUG, partic-
ularly for highly indefinite equations with Neumann or mixed boundary conditions
[92]. In the sequel, we use ideas from AutoMUG to develop an improved BBMG
version, which is more general and efficient indefinite Helmholtz equations. To this
end, we need to improve the definition of the prolongation matrix P in BBMG.

Consider a point (i, j) with even i and odd j or odd i and even j. In the sequel,
use the stencil at (i, j) to define C̃. This C̃ is then used instead of C in (9.2) and (9.3).

Consider the interior gridpoint that is nearest to (i, j). [If (i, j) is an interior grid-
point, then this gridpoint is (i, j) itself.] Let K be the row-sum of A at the row cor-
responding to this gridpoint. More precisely, if the stencil at this point is denoted by⎡

⎣NW ′ N ′ NE ′

W ′ C ′ E′

SW ′ S′ SE ′

⎤
⎦ ,

then K is defined by

K = NW ′ + N ′ + NE ′ + W ′ + C ′ + E′ + SW ′ + S′ + SE ′.

In the stencil in (3.18), for example, we have just K = β.
Furthermore, define the relative diffusion in the x and y spatial directions by

Dx =
W ′ + E′

W ′ + E′ + N ′ + S′

Dy =
N ′ + S′

W ′ + E′ + N ′ + S′ .

We are now ready to define the required C̃. First, define C̃ by

C̃ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(NW + N + NE + W + E + SW + S + SE) if (i, j) is a
boundary point
that lies in between
two coarse-gridpoints

C − K otherwise,

At this stage, C̃ can be thought of as the central element in the stencil resulting from
a different problem, in which β is set to zero and Neumann boundary conditions are
imposed on each boundary point that lies in between two coarse-gridpoints, Now,
C̃ is modified further by adding to it a fraction of K:

C̃ ←
{

C̃ + DxK the prolongation to (i, j) is horizontal
C̃ + DyK the prolongation to (i, j) is vertical.

(10.3)

This new C̃ is now used instead of C in (9.2) and (9.3).
Assuming that the term β in (3.18) is divided proportionally between the terms

X and Y in (7.3) [Dxβ is added to Cx in (7.8) and Dyβ is added to Cy in (7.9)],
the prolongation in BBMG [at the point (i, j)] is the same as in AutoMUG. Indeed,

168 10 The Indefinite Helmholtz Equation

1. If (i, j) is a boundary gridpoint that lies in between two coarse-gridpoints, then
• If the prolongation to (i, j) is horizontal, then

C̃ + N + S = −(W + E) + DxK = CX ,

• And, if the prolongation to (i, j) is vertical, then

C̃ + W + E = −(N + S) + DyK = Cy;

2. And if, on the other hand, (i, j) is an interior gridpoint or a boundary point
that doesn’t lie in between two coarse-gridpoints, then
• If the prolongation to (i, j) is horizontal, then

C̃ + N + S = C − DyK + N + S = C − Cy = CX ,

• And, if the prolongation to (i, j) is vertical, then

C̃ + W + E = C − DxK + W + E = C − Cx = CY .

Therefore, Lemmas 9.1 and 9.2 still hold.
Note that the above results hold only for the 5-point stencil in (3.18), and not

necessarily for more general stencils. Still, it is useful in computing the spectrum
of the iteration matrix of BBMG in some model cases, which leads to an a priori
estimate of the convergence properties of the BBMG iteration.

10.4 Computational Two-Level Analysis

Here we show how the spectrum of the iteration matrix in AutoMUG and BBMG
can be computed in advance in some cases. For this purpose, we need to assume
that only two levels are used (as in the TL algorithm in Section 6.1): the fine grid g
in (3.6) (with odd n) and the coarse grid c in (6.1). This is why this analysis is
called computational two-level analysis.

We also assume that a 5-point stencil is used as in (3.18), and that the matrices
X and Y in (7.3) commute with each other and have constant main diagonals:

diag(X) = xI and diag(Y) = yI,

for some constants x and y. Thanks to the above modification of BBMG, we have
from Lemma 9.1 that the prolongation matrix in BBMG is the same as that in
AutoMUG. Because both X and Y are symmetric, this is also true for the restriction
matrix R = P t. These properties are helpful in the analysis below.

Two-level analysis has been introduced in [113] for a geometric two-grid method
for diffusion problems with constant coefficients and periodic boundary conditions.
Here, it is extended also to matrix-based two-grid methods for definite and indefinite
problems (with either Dirichlet or periodic boundary conditions). In this context, it
can provide valuable information about the suitable design and convergence prop-
erties of multigrid methods also in more general cases.

The spectrum of the iteration matrix computed in the two-level analysis gives a
useful indication about the convergence properties of the iterative method. Clearly, if
all the eigenvalues are considerably smaller than one in magnitude, then the iterative

10.4 Computational Two-Level Analysis 169

method converges rapidly. Furthermore, even when there are few eigenvalues with
large magnitude, an outer acceleration method can be used to annihilate them and
yield rapid convergence.

The present assumptions are required only for the sake of the analysis. Both
AutoMUG and the present BBMG version are applicable also in more general cases,
including variable coefficients and multilevel implementation of the ML algorithm
in Section 6.3. This is indeed apparent from the numerical experiments.

The computational two-level analysis method uses the partitioning of the original
grid g in (3.6) into the four subgrids in (5.8). Let v be a common eigenvector of X
and Y with the eigenvalues xv and yv, respectively. Define the rectangular matrix

V = 2
(
J t

c0,0
Jc0,0v | J t

c0,1
Jc0,1v | J t

c1,0
Jc1,0v | J t

c1,1
Jc1,1v

)
.

Define the orthogonal symmetric Haar matrix by

Ĥ =
1
2

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠ .

Define also the rectangular matrix

U ≡ (u1 | u2 | u3 | u4) = V Ĥ.

Clearly, u1 = v/2 is a common eigenvector of X and Y . Because X and Y are of
property-A, it follows from Section 7.1 in [125] that u2, u3, and u4 are also common
eigenvectors of X and Y . In fact,

Xu1 = xvu1 Yu1 = yvu1

Xu2 = (2x − xv)u2 Yu2 = yvu2

Xu3 = xvu3 Yu3 = (2y − yv)u3

Xu4 = (2x − xv)u4 Yu4 = (2y − yv)u4.

Furthermore, u1, u2, u3, and u4 alias with each other on each of the subgrids in (5.8).
In other words, these four eigenvectors coincide on each of the subgrids in (5.8) up to
multiplication by −1. For example, if Dirichlet boundary conditions are used and β
in (3.18) is constant, then, for any pair of integer numbers 1 ≤ k, l ≤ �(n+1)/2�, the
above eigenvectors could be just the four aliasing two-dimensional Fourier modes
defined in Section 2.4:

u1 = vk,l

u2 = vn+1−k,l

u3 = vk,n+1−l

u4 = vn+1−k,n+1−l.

Note that, because Ĥ is orthogonal and symmetric, we also have

V = UĤ.

The symbols used below are small matrices that represent the action of larger
matrices in the invariant subspace spanned by the columns of V . Below we derive

170 10 The Indefinite Helmholtz Equation

the symbols of the matrices used in the two-level iteration matrix, including the
symbols of the iteration matrices Sr and Sb of the first and second parts in the
red-black point-GS relaxation (Section 5.8):

X̂ = Ĥ

⎛
⎜⎜⎝

xv

2x − xv

xv

2x − xv

⎞
⎟⎟⎠ Ĥ

Ŷ = Ĥ

⎛
⎜⎜⎝

yv

yv

2y − yv

2y − yv

⎞
⎟⎟⎠ Ĥ

Â = X̂ + Ŷ

P̂ =

⎛
⎜⎜⎝

1
1 − x−1xv

1 − y−1yv

(1 − x−1xv)(1 − y−1yv)

⎞
⎟⎟⎠

R̂ = (P̂)t

Q̂ = R̂ÂP̂

Ŝb =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
x − xv

x + y
0 0

y − yv

x + y
y − yv

x + y
0 0

x − xv

x + y
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Ŝr =

⎛
⎜⎜⎜⎜⎜⎝

0
x − xv

x + y
y − yv

x + y
0

0 1 0 0
0 0 1 0

0
y − yv

x + y
x − xv

x + y
0

⎞
⎟⎟⎟⎟⎟⎠

Ŝ = ŜbŜr.

Let MB be the iteration matrix of the present BBMG version, with two levels (as in
Section 6.1) and the point red-black GS relaxation. Because the above symbols rep-
resent the action of the corresponding operators in the column space of V , we have

MBV = V M̂B , (10.4)

where

M̂B ≡ (Ŝ)ν2(I − P̂ (Q̂)−1R̂Â)(Ŝ)ν1 . (10.5)

The spectra of the 4 × 4 matrices in (10.5) can be computed numerically, us-
ing, for example, an IMSL routine. This can be done for every pair of integers
1 ≤ k, l ≤ �n/2� in (3.19), yielding the entire spectrum of the iteration matrix MB .
It is also verified numerically that the spectral radius of MB indeed agrees with the
convergence rate in the code that implements the two-level iteration, as required.

10.5 Multiple Coarse-Grid Corrections 171

The AutoMUG(q) method can also be analyzed in a similar way. The only
difference is that Q̂ should be redefined by

Q̂ = (2 + q)Ĵc(R̂XX̂ + R̂Y Ŷ)Ĵ t
c , (10.6)

where

Ĵc = (1, 0, 0, 0)

R̂X = 2I − x−1Ĉ

R̂Y = 2I − y−1Ŷ .

Fortunately, when n in (3.6) is odd, the coarse grid c in (6.1) contains no bound-
ary points, so the original AutoMUG method is equivalent to AutoMUG(q) for a
carefully chosen parameter q. For (3.18), in particular,

q = 1 − 2
2 + βh2/2

should be used. Indeed, the spectral radius of the iteration matrix of AutoMUG(q),
calculated by the two-level analysis, coincides with the convergence factor of the
corresponding AutoMUG iteration.

The computational two-level analysis can also be adapted for implementations
that use coarse grid different from c. In fact, each subgrid in (5.8) could actually
serve as a coarse grid, with only slight changes in the above analysis. The oppor-
tunity to use the two-level analysis also in these cases is particularly important in
algorithms that use more than one coarse-grid correction. In fact, the computational
two-level analysis shows that each coarse-grid correction should be based on a dif-
ferent coarse grid, namely, a different subgrid in (5.8). For example, the multigrid
algorithm in [58] for highly anisotropic equations should indeed use two different
coarse grids from (5.8) to compute the two correction terms. Similarly, the algo-
rithm in [44] that uses four correction terms should indeed calculate each term from
a different coarse grid in (5.8). The results of the computational two-level analysis
in these cases can be found in [91].

For the indefinite Helmholtz equation, it is also possible to use more than one
coarse-grid correction term. In this case, however, the different correction terms
don’t have to be calculated on different coarse grids; in fact, they can all use the
same coarse grid c in (6.1). Still, the computational two-level analysis is helpful in
predicting the convergence properties of the various possible algorithms and design-
ing the optimal algorithm.

10.5 Multiple Coarse-Grid Corrections

The nearly singular eigenfunctions of the Helmholtz equation (3.14) (in the unit
square with Dirichlet boundary conditions) are the functions

sin(πkx) sin(πly)

with integers k and l satisfying

π2(k2 + l2) .= −β.

172 10 The Indefinite Helmholtz Equation

(These eigenfunctions are the continuous counterparts of the 2-D Fourier modes
vk.l in Section 2.4.) The pairs (k, l) ∈ Z2 satisfying this condition are displayed in
Figure 3.2. The prolongation matrix P in the present BBMG version agrees with
the nearly singular eigenfunction for which

|k| = |l| .=

√
|β|√
2π

.

Indeed, thanks to (10.3) and the fact that Dx = Dy = 1/2 in (3.18), the prolongation
is the discrete analogue to (6.5), with the direction q being interpreted as either
x or y.

It is also possible to modify P to agree with other nearly singular eigenfunctions.
This can be done by replacing (10.3) by

C̃ ←
{

C̃ + 2αmDxK the prolongation to (i, j) is horizontal
C̃ + 2(1 − αm)DyK the prolongation to (i, j) is vertical,

(10.7)

where αm is a parameter specified later.
Clearly, when αm = 1/2, the original method in (10.3) is obtained. However, one

could elect to use also other kinds of αm, to produce prolongation operators that
agree with other kinds of nearly singular eigenfunctions. For example, one could use
three different coarse-grid corrections, each of which uses a different αm in (10.7):
the first one uses α1 = sin2(π/12) to produce a prolongation operator that agrees
with nearly singular eigenfunctions with

|k|/|l| .= tan2(π/12),

the second one uses α2 = sin2(π/4) = 1/2 [which is equivalent to (10.3)], and the
third one uses α3 = sin2(5π/12) to produce a prolongation operator that agrees
with nearly singular eigenfunctions with

|k|/|l| .= tan2(5π/12)

(see Figure 10.1). Thus, each coarse-grid correction uses different prolongation
matrix P , restriction matrix R = P t, and coarse-grid matrix Q = RAP , and

�
��

�
��
�
��

�
��
�
�
���

�

�

�
�
���

���
��

���
��

�����
�����

third

third

third

third

second

second

second

second

first

first

first

first

l

k
√−β/π

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

Fig. 10.1. The wave numbers (k.l) of the nearly singular eigenfunctions v(k,l) that are
handled in the first, second, and third coarse-grid corrections.

10.5 Multiple Coarse-Grid Corrections 173

continues to use the same αm also in further recursive calls that use coarser and
coarser grids. Together, the three coarse-grid corrections may reduce significantly
the error modes corresponding to a number of nearly singular eigenfunctions, hence
may lead to a multigrid algorithm that converges more rapidly (in terms of iteration
count) than the original algorithm that uses (10.3) alone.

There are three possible ways to combine the above three coarse-grid correction
terms. In the additive approach, these terms are added one by one to xin in the TL
method in Section 6.1 (or the ML method in Section 6.3), without recalculating the
residual in between. In other words, all three coarse-grid correction terms are calcu-
lated from the same residual. This leads to the following two-level iteration matrix:

(Ŝ)ν2

(
I −

3∑
m=1

P̂m(Q̂m)−1R̂mÂ

)
(Ŝ)ν1 , (10.8)

where the subscript m = 1, 2, 3 indicates the first, second, or third coarse-grid
correction.

Unfortunately, the computational two-level analysis shows that the spectrum of
this iteration matrix is even worse than that of MB in (10.4). Therefore, we turn to
the multiplicative approach, in which the residual is recomputed after adding each
coarse-grid correction term to xin. With this approach, the iteration matrix has the
symbol

(Ŝ)ν2Π3
m=1(I − P̂m(Q̂m)−1R̂mÂ)(Ŝ)ν1 . (10.9)

Here the sum
∑

in (10.8) is replaced by the product Π. Unfortunately, the spectrum
is still worse than that of MB . The reason for this failure is probably threefold.

1. The nearly-singular eigenvectors of the three different coarse-grid matrices may
combine to produce a large number of large eigenvalues in the iteration matrix.

2. Each coarse-grid correction term may contain error components from nearly-
singular eigenfunctions that had already been annihilated by a previous
coarse-grid correction, thus spoiling the work that has just been done on that
coarse grid.

3. Each coarse-grid correction may also enhance error modes that correspond to
eigenvectors of A that are not nearly singular at all. These error modes may
lead to divergence of the entire two-grid iteration, unless reduced by an extra
relaxation after each coarse-grid correction.

We must therefore turn to a third approach, in which relaxations are also performed
in between the different coarse-grid corrections. This is actually equivalent to using
three consecutive V-cycles: the first uses α1 to define the transfer and coarse-grid
matrices, the second uses α2, and the third uses α3. The symbol of the iteration
matrix is then

Π3
m=1[(Ŝ)ν2(I − P̂m(Q̂m)−1R̂mÂ)(Ŝ)ν1]. (10.10)

According to the computational two-level analysis, this iteration matrix has indeed
a better spectrum than MB in (10.4).

Actually, the spectrum of the iteration matrix can be improved further by using
more than three coarse-grid corrections. The number ‘3’ used in (10.10) could then

174 10 The Indefinite Helmholtz Equation

increase to, say, 5, with parameters α1, α2, . . . , α5 chosen in such a way that the
circle in Figure 10.1 is covered with a yet better resolution. This way, the nearly
singular eigenfunctions are handled better, and the spectral radius of the iteration
matrix is smaller than with only three coarse-grid corrections.

Consider, for example, the highly indefinite equation (3.14) in the unit square
with Dirichlet boundary conditions, β = −790, and the discretization in (3.18).
on a uniform grid with meshsize h = 1/64. In this case, the spectral radius of
the iteration matrix that uses five different coarse-grid corrections [whose symbol
is as in (10.10), only with ‘3’ replaced by ‘5’ and ν1 = ν2 = 1] is as small as 10−3.
Indeed, it is also confirmed numerically that the five consecutive two-grid iterations
that use the parameters α1, α2, . . . , α5 to form the different transfer and coarse-
grid matrices reduce the residual by a factor of 10−3, which indicates that all error
modes, including those corresponding to nearly-singular eigenvectors, have indeed
been annihilated, as required.

When the meshsize in the fine grid is doubled to h = 1/32, the system is more
indefinite and difficult. In this case, 17 coarse-grid corrections are required to have
the same convergence rate as before. Indeed, the iteration matrix that uses 17
coarse-grid corrections with 17 different parameters α1, α2, . . . , α17 (that provide a
uniform coverage of the circle in Figure 10.1) has spectral radius as small as 10−3.
Again, this result is verified numerically: 17 consecutive two-grid iterations that use
the parameters α1, α2, . . . , α17 indeed reduce the residual by factor 10−3 as well.

The above results are most interesting from a theoretical point of view, because
they show that we are indeed on the right track in our efforts to have a uniform cov-
erage to the circle in Figure 10.1. Unfortunately, they have little practical value: the
above algorithm that uses multiple coarse-grid corrections (or multiple V-cycles) is
too expensive, hence inferior to the original algorithm that uses only one coarse-grid
correction as in (10.3) in terms of overall operation count. Furthermore, one should
also bear in mind the extra set-up cost involved in constructing the different trans-
fer and coarse-grid matrices for each coarse-grid correction. Moreover, the above
numerical results are limited to problems with Dirichlet boundary conditions and
two-grid iterative methods only; with more general boundary conditions (such as
mixed complex boundary conditions that are often used in practice) or more than
two levels, the convergence rate is no longer as good as before. This is why we stick
here to our original BBMG version that uses one coarse-grid correction only, with
(10.3) rather than (10.7).

10.6 The Size of the Coarsest Grid

Geometric multigrid is rather unsuitable for indefinite Helmholtz equations. Indeed,
the requirement in (10.1) limits significantly the number of coarse grids that could
be used. Furthermore, geometric multigrid is inapplicable to problems with discon-
tinuous coefficients, unless the discontinuity lines align with all the coarse grids.

The AutoMUG and BBMG versions described above, on the other hand, are
much more suitable for the indefinite Helmholtz equation, with either constant or
variable and even discontinuous coefficients, even when the discontinuity lines do
not align with the coarse grid. Furthermore, since the coarse-grid matrices are no
longer defined by rediscretizing the original PDE, the strong requirement in (10.1)

10.7 Numerical Examples 175

is no longer necessary. Still, there is a limit on the meshsize in the coarsest grid, as
discussed below.

The main point in the above AutoMUG and BBMG versions is that the prolon-
gation operator P preserves the nearly singular eigenfunction, as do also the restric-
tion operator R = P t and the coarse-grid matrix Q = RAP . However, the nearly
singular eigenfunction can be well approximated on a coarse grid only if it contains
sufficiently many points. More specifically, it must contain at least two points per
oscillation. Since a nearly singular eigenfunction can oscillate at most k

.= |β|1/2/π
times in the unit interval, the meshsize in the coarsest grid must satisfy

H ≤ k−1/2 .= π|β−1/2|/2. (10.11)

Indeed, for β = −790, the maximal meshsizes for which the computational two-level
analysis still gives good results are h = 1/32 and H = 1/16. In fact, for these val-
ues, most of the spectrum of the iteration matrix is considerably smaller than one
in magnitude; only few, moderate, isolated eigenvalues exceed one in magnitude,
which implies that outer acceleration can be used to annihilate the corresponding
error modes, as is indeed evident from the numerical experiments below.

10.7 Numerical Examples

Here we test the present AutoMUG and BBMG versions for the indefinite Helmholtz
equation in the unit square, discretized on the n× n uniform grid in (3.6) by finite
differences, as in (3.18). We start with a slightly indefinite equation with β = −20
and Dirichlet boundary conditions.

The details of the multigrid iteration are as follows. Four levels are used in
a V(1, 1)-cycle (ν1 = ν2 = νc = 1 and L= 4 in the ML algorithm in Section 6.3).
The red-black point-GS relaxation method (Section 5.8) is used within AutoMUG,
and the 4-color point-GS relaxation method (Section 5.9) is used within BBMG.
The initial error in the iteration is random, so it contains components from all
eigenvectors of A.

As expected, AutoMUG and the present BBMG version [that uses (10.3)] turn
out to be superior to the standard BBMG method in Chapter 9. The results in
Table 10.1 are given in terms of the convergence factor “cf”, defined by

cf =
‖Ax (last) − b‖2

‖Ax (last−1) − b‖2

, (10.12)

where x(i) denote the ith multigrid iteration, and “last” (the index of the last
iteration) is so large that the l2 norm of the residual is reduced by about six orders

Table 10.1. Convergence factors (cf) for four-level V(1,1)-cycles for the slightly indefinite
Helmholtz equation in the unit square with β = −20 and Dirichlet boundary conditions.

n Standard BBMG Present BBMG AutoMUG

31 > 1 0.063 0.131

63 0.431 0.064 0.096

176 10 The Indefinite Helmholtz Equation

of magnitude. Because the equation is only slightly indefinite, no acceleration is
needed; therefore, the convergence is linear, and cf indeed represents the rate of
convergence. In this book in general, cf is reported only when no acceleration is used.

Next, we test the highly indefinite Helmholtz equation (3.14) in the unit square
with β = −790. Neumann boundary conditions are imposed on three edges, and
mixed complex boundary conditions of the form

un + 10
√
−1u = 0

(where n is the outer normal vector) are imposed on the fourth edge. The finite-
volume discretization method (Section 3.12) is used, so the stencil is as in (3.18) at
interior gridpoints of the n×n uniform grid. The initial error is again random. The
V(0, 1)-cycle is used (ν1 = 0 and ν2 = 1 in the ML algorithm in Section 6.3). Because
the equation is highly indefinite, the iteration matrix has a few moderate and iso-
lated eigenvalues that exceed one in magnitude, as is indicated by the computational
two-level analysis. To annihilate error modes corresponding to these eigenvalues, the
multigrid iteration is accelerated by the Conjugate Gradient Squared (CGS) method
in [110]. (We have found CGS to be as efficient as TFQMR in [54] for the present
example, and more efficient than several versions of GMRES.)

Because CGS is applied to the preconditioned system (5.11) rather than the
original system (3.5), it makes sense to estimate the convergence rate in terms of
the preconditioned residuals rather than the original ones. Furthermore, since CGS
is a nonlinear process, the convergence rate is also nonlinear, and should be aver-
aged. For these reasons, we use here not the convergence factor cf but rather the
preconditioned convergence factor pcf, defined by

pcf =

(
‖P−1(Ax (last) − b)‖2

‖P−1(Ax (0) − b)‖2

)1/last

, (10.13)

where P is the multigrid preconditioner and “last” is the number of multigrid itera-
tions used within CGS to reduce the l2 norm of the preconditioned residual by about
six orders of magnitude. (The l2-norm of the preconditioned residual is available in
CGS for no extra cost.)

There is also another advantage to using pcf here rather than cf. Because the
preconditioned system is better conditioned than the original system, the precon-
ditioned residual may approximate the error better than the residual itself. Hence,
the norm of the preconditioned residual is a better convergence estimate than the
norm of the residual itself. Indeed, it is also verified that the l2 and l∞ norms of
the error decrease by at least four orders of magnitude during the CGS iteration.

Although the finest grid in the present numerical experiments is not sufficiently
fine in terms of the adequacy criterion in Section 3.8, there is no problem to add
more fine grids to the multigrid hierarchy, provided that the coarsest grid remains
the same, as is indeed apparent from Tables 10.2 and 10.3. Furthermore, one could
actually use a higher-order discretization method on the finest grid, as in [106]. At
the end of this chapter, we will also solve the Helmholtz equation adequately.

In Table 10.2, the coarsest grid is of size 31 × 31, which is in agreement with
(10.11). With this implementation, the present BBMG version exhibits good con-
vergence, and AutoMUG also seems attractive thanks to its inexpensive time and
storage requirements.

10.7 Numerical Examples 177

Table 10.2. Preconditioned convergence factors (pcf) for V(0,1)-cycles accelerated by
CGS for the highly indefinite Helmholtz equation in the unit square with β = −790 and
Neumann mixed boundary conditions.

n Levels Standard BBMG Present BBMG AutoMUG

63 2 .614 .509 .610

127 3 .588 .482 .592

255 4 .594 .488 .648

Table 10.3. Preconditioned convergence factors (pcf) for V(0,1)-cycles accelerated by
CGS for the highly indefinite Helmholtz equation in the unit square with β = −790 and
Neumann mixed boundary conditions. The coarsest-grid problem is solved approximately
by 10-point Kacmarz relaxations.

n Levels Standard BBMG Present BBMG AutoMUG

31 2 .900 .862 .901

63 3 .947 .865 .949

127 4 >.99 .863 .963

In practical applications, in which a very large grid may be required, it is par-
ticularly important to use as many coarse grids as possible. This is why we attempt
to use one more coarse grid. In Table 10.3, the coarsest grid is of size 15×15 rather
than 31 × 31. This is still OK according to (10.11); however, the problem on the
coarsest grid is so indefinite that solving it exactly would lead to divergence, due to
nearly singular eigenvectors of the coarsest-grid matrix, which produce extremely
large eigenvalues in the iteration matrix, which can never be annihilated by outer
acceleration. For this reason, the coarsest-grid problem is only solved approximately
by ten point Kacmarz relaxations (νc = 10 in the ML algorithm in Section 6.3).
The advantage of the present BBMG version is apparent from Table 10.3.

Finally, we also use the present BBMG version in the 9-point stencil resulting
from the bilinear finite-element discretization (Section 4.4). We use β = −1000,
Dirichlet boundary conditions on the right edge, homogeneous Neumann boundary
conditions on the lower and upper edges, and mixed complex boundary conditions on
the left edge. The boundary conditions are set in such a way that the exact solution
is exp(−

√
|β|

√
−1x). Since the exact solution is available, one can choose a grid on

which the discretization is indeed adequate. It turns out that, on a 100 × 100 grid,
the discretization error is at most 0.02, which is rather good. The discrete system is
solved by the present BBMG version, implemented in a V(1, 1)-cycle that uses three
levels. The coarsest grid is of size 25×25, which is in agreement with (10.11). Twenty
Kacmarz relaxations are used to solve the coarsest-grid problem approximately.
Outer CGS acceleration is also used. The preconditioned convergence factor for the
present BBMG version is about 0.085.

Furthermore, we turn to a yet more indefinite equation with β = −4000. In this
case, the fine grid must be increased to a size of 400× 400 to keep the maximal dis-
cretization error as small as 0.06. (This is in agreement with the adequacy criterion
in Section 3.8.) The present BBMG version uses four levels, so the coarsest grid is of
size 50×50, which is OK in terms of (10.11). Forty Kacmarz relaxations are used to
solve the coarsest-grid problem approximately. As before, CGS outer acceleration

178 10 The Indefinite Helmholtz Equation

is used as well. With this implementation, the preconditioned convergence factor
is 0.9. Although this rate is far worse than the Poisson convergence rate, it is still
acceptable for such a large and highly indefinite problem.

10.8 Exercises

1. Show that the improved prolongation in Section 10.3 can be interpreted from
a domain-decomposition point of view, using the 1-D Helmholtz equation (6.5)
on the edges of subdomains to carry out the first prolongation step.

2. Which nearly singular eigenfunction of the indefinite Helmholtz equation is best
approximated by this prolongation?

3. Show that each prolongation in Section 10.5 can also be interpreted from a
domain-decomposition point of view. How should the 1-D indefinite Helmholtz
equation (6.5) be modified to determine the prolonged values at the edges of
the subdomains? (Distinguish between edges that are in the x spatial direction
and edges that are in the y spatial direction.)

4. Which nearly singular eigenfunction of the indefinite Helmholtz equation is
approximated well by each coarse-grid correction in Section 10.5?

5. Why is the multiple coarse-grid algorithm impractical? How does one coarse-
grid correction spoil the work done by the previous one?

6. What is the lower bound for the number of points that can be used in the
coarsest grid in the indefinite Helmholtz equation? Does this bound depend on
the number of points used in the finest grid?

7. Write the computer code that implements the computational two-level analysis
for the Poisson equation with Dirichlet boundary conditions, discretized as in
(3.13). Note that the eigenvectors of A are just the 2-D Fourier (Sine) modes
vk,l in Section 2.4. Verify that the spectral radius of the iteration matrix is
indeed as small as the Poisson convergence factor.

8. Apply your code also to the indefinite Helmholtz equation with Dirichlet
boundary conditions, discretized as in (3.18). Verify that most of the eigen-
values of the iteration matrix are much smaller than one in magnitude and
only few isolated eigenvalues are larger, so long as the condition in (10.1)
is met. Conclude that, with outer acceleration, the multigrid method should
work well.

9. Extend the computational two-level analysis also to a coefficient matrix A with
a 9-point stencil as in (4.14) on a uniform n×n grid with odd n, provided that
the stencil is constant in the grid (independent of the gridpoint). This is done
as follows.
a) Assume that A can be written as

A = X + Y + UZ

rather than (7.3), where U has the stencil⎡
⎣ 0 0 0

WU 0 EU

0 0 0

⎤
⎦

10.8 Exercises 179

and Z has the stencil ⎡
⎣0 NZ 0

0 0 0
0 SZ 0

⎤
⎦ .

Note that the central element in the stencil in (4.14) is still

C = x + y,

where x is the constant main-diagonal element in X and y is the constant
main-diagonal element in Y .

b) Assume that X, Y , U , and Z commute with each other (e.g., they have
constant stencils).

c) Let uv and zv be the eigenvalues of U and Z with respect to the common
eigenvector v.

d) The symbol of U is

Û = Ĥ

⎛
⎜⎜⎝

uv

−uv

uv

−uv

⎞
⎟⎟⎠ Ĥ.

e) The symbol of Z, Ẑ, is defined in a similar way.
f) Â is defined by

Â = X̂ + Ŷ + Û Ẑ.

g) The symbol of the iteration matrix of the first “leg” in the 4-color point-GS
relaxation is defined by

Ŝ0,0 =

⎛
⎜⎜⎜⎝

0
x − xv

x + y
y − yv

x + y
−uvzv

x + y
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ .

h) The symbols of the other three “legs” in the 4-color point-GS relaxation,
Ŝ1,0, Ŝ0,1, and Ŝ1,1, are defined in a similar way.

i) The symbol of the entire 4-color relaxation is defined by

Ŝ = Ŝ1,1Ŝ0,1Ŝ1,0Ŝ0,0.

j) Because of the lumping used in BBMG, PX is defined by

PX = I − (C̃ + S + N)−1(X − xI + rs(Z)U),

where S and N are as in (4.14), C̃ is as in (10.3), and rs(Z) is the constant
row-sum of Z.

k) The symbol of PX is defined by

P̂X = I − (C̃ + S + N)−1(X̂ − xI + rs(Z)Û)

(where I here is the identity matrix of order 4).

180 10 The Indefinite Helmholtz Equation

l) P̂Y is defined in a similar way.
m) The prolongation matrix P is defined by

P = S0,0(PX + PY − I)J t
c .

n) The symbol of P is defined by

P̂ = Ŝ0,0(P̂X + P̂Y − I)Ĵ t
x.

o) The restriction matrix R and its symbol are defined in a similar way.
10. Show that the symbol of the first “leg” in the 4-color relaxation can also be

written as

Ŝ0,0 =

⎛
⎜⎜⎝

0 −Â1,2/Â1,1 −Â1,3/Â1,1 −Â1,4/Â1,1

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

where Â1,1, Â1,2, Â1,3, and Â1,4 are the elements in the first row in Â.
11. Apply your two-level analysis code to the Poisson equation with Dirichlet bound-

ary conditions, discretized as in Section 4.4. (Note that the eigenvectors of A are
just the 2-D Fourier modes vk,l in Section 2.4.) Verify that the spectral radius
of the two-level iteration matrix is indeed as small as the Poisson convergence
factor.

12. Apply your two-level analysis code also to the indefinite Helmholtz equation
with Dirichlet boundary conditions, discretized as in Section 4.4. Verify that
most of the eigenvalues of the iteration matrix of the two-level method are in-
deed small in magnitude and only few isolated eigenvalues are larger, provided
that the condition in (10.1) is met. Conclude that, with outer acceleration, the
method should work well.

13. Apply your two-level analysis code also to highly anisotropic equations as in
Section 3.9. What happens to the spectrum of the two-level iteration matrix?

14. Modify your two-level analysis code to use “zebra” line-GS rather than 4-color
relaxation. For this purpose, write Â in the block form

Â =
(

Âbb Âbw

Âwb Âww

)
,

where Âbb , Âbw , Âwb , and Âww are 2 × 2 submatrices of Â, b stands for the
black horizontal lines (c0,0 ∪ c1,0), and w stands for the white horizontal lines
(c0,1 ∪ c1,1). Now, define

Ŝb =
(

(0) −ÂbbÂbw

(0) I

)

Ŝw =
(

I (0)
−A−1

ww Âwb (0)

)
Ŝ = ŜwŜb,

where (0) is the zero matrix and I is the identity matrix of order 2.

10.8 Exercises 181

15. Modify your two-level analysis code to use alternating “zebra” line-GS relaxation.
16. Apply your modified two-level analysis code to the above highly anisotropic

equations. Does the convergence rate improve?
17. Apply your BBMG code from the exercises at the end of Chapter 9 (imple-

mented with two levels) to the above problems, and verify that the convergence
factor is indeed the same as the spectral radius of the corresponding two-level
iteration matrix, computed by the corresponding two-level analysis code.

11

Matrix-Based Semicoarsening Method

In this chapter, we describe in detail the matrix-based multigrid method that uses
semicoarsening (Section 6.11). In particular, we show how this method can be
obtained as an interesting combination of domain decomposition, line-ILU, and
variational multigrid.

11.1 The Semicoarsening Approach

So far, we have used full coarsening, in which the coarse grid c in (6.1) is coarser
than the original grid g in (3.6) in both the x and y spatial directions. In this
chapter, we consider semicoarsening, in which the coarse grid c is coarser than g
only in one spatial direction, say, the y spatial direction as in (6.15).

The matrix-based semicoarsening method works well for many practical diffusion
problems with anisotropic and discontinuous coefficients, discretized on a uniform
grid (e.g., by finite volumes or bilinear finite elements). Furthermore, the method
can be extended to 3-D problems with a 27-point stencil as well. Unfortunately, the
method is limited to structured grids only, and is unlikely to be extended to more
general grids.

Here we introduce the matrix-based semicoarsening method as a combination
of domain decomposition, line- (or plane in 3-D) ILU, and variational multigrid.
Each component contributes to one aspect in the method: domain decomposition is
the basis of the geometry (or topology) used in the method, line-ILU provides the
algebraic framework to define the prolongation matrix P , and variational multigrid
provides the usual definitions of restriction and coarse-grid matrices via the usual
Galerkin approach R = P t and Q = RAP . The combination of these three compo-
nents gives the matrix-based semicoarsening method, which benefits from each of
them and works better than each of them alone.

We start by describing the geometric background that leads to the semicoars-
ened grid.

184 11 Matrix-Based Semicoarsening

11.2 Flow of Information in Elliptic PDEs

Hyperbolic PDEs are characterized by characteristic directions, along which the
boundary conditions flow into the domain. This is why discontinuities in the bound-
ary conditions are preserved along the characteristic lines.

Elliptic PDEs, on the other hand, are characterized by the lack of any such char-
acteristic direction. In fact, the solution of the elliptic PDE at each interior point
depends not only on the characteristic line leading from the boundary to it, as in
the hyperbolic case, but also on the entire boundary. In other words, the bound-
ary conditions spread instantly into the entire domain to determine the solution
in it uniquely, with no need to travel along characteristic lines. (This is also why
any discontinuity in the boundary conditions smoothes out in the interior of the
domain.) The solution process involves mutual interaction between each two points
in the domain; the problem is global in nature, and cannot divide into independent
subproblems.

The elliptic PDE could actually be viewed as the limit case of the corresponding
time-dependent parabolic PDE, obtained by adding the extra term ut (where t
is the time variable). The discrete analogue of this time-dependent process is the
iterative solution of the algebraic system obtained from the discretization of the
original elliptic PDE. Indeed, during the iteration, the discrete boundary conditions
“travel” with the index of the iteration (the discrete “time”), until they reach the
entire grid to determine the numerical solution in it uniquely.

It is also interesting to see how information flows from the boundary to the
interior of the grid when a direct (rather than an iterative) linear system solver is
used. Assuming that the gridpoints are ordered row by row from bottom to top,
the forward elimination in the lower-triangular matrix L (the first factor in the LU
factorization of A) carries information from the bottom row upwards, whereas the
back-substitution in the upper-triangular matrix U (the second factor in the LU
factorization of A) carries information backward, from the top row downwards. The
massive fill-in introduced in L and U indicates the interaction is indeed global: each
row influences the solution at all the other rows. Figure 11.1 displays the mutual
interaction among the rows (gridlines) in the solution process.

� � �

� � �

Fig. 11.1. Flow of information in the solution process of an elliptic PDE.

11.3 Multilevel Line Reordering 185

� � �

� � �

Fig. 11.2. Flow of information in the line forward elimination and line back-substitution
in the line-ILU iteration.

Because of their global nature, elliptic PDEs are not easy to solve in parallel. One
must use creative thinking to identify those parts of the problem (local subproblems)
that can benefit from parallelism, and distinguish them from those parts (global
subproblem) that must be solved in one processor only. Unfortunately, the flow of
information in Figure 11.2 is inherently sequential, and cannot be implemented in
parallel. Fortunately, the situation can be improved by using domain decomposition,
and applying the LU decomposition to a reordered system.

11.3 Multilevel Line Reordering

In the domain-decomposition approach, the domain is divided into narrow strips
(subdomains). The strips are separated from each other by the so-called interface:
each strip has its own internal boundary to separate it from its neighbor strips
above and below. The linear system is reordered in such a way that the interface
unknowns (the unknowns corresponding to gridpoints on the interface) are ordered
last, and the interior unknowns (the unknowns corresponding to gridpoints in the
interiors of subdomains) are ordered first. The transfer of information from bottom
to top is done in three stages. In the first stage, information is sent from the interior
of each subdomain to its internal boundaries (Figure 11.3). This is done by forward
elimination of the interior unknowns. This “local” transfer of data can be done in
all the subdomains simultaneously in parallel. In the second stage, the interface
lines share their information among themselves. This is done by solving a low-order
system (the Schur complement) for the interface unknowns. This stage is global
in nature, and cannot be well parallelized. In the third stage, information is sent
from the interfaces back to the subdomain interiors (Figure 11.4). This is done by
back substitution to the interior unknowns. This “local” stage can again be done in
all the subdomains simultaneously in parallel. The second stage above, which is of
“global” nature, can also be solved recursively by the same method itself, allowing
some more parallelism. This completes the solution process; the details are described
in Section 11.5 below.

186 11 Matrix-Based Semicoarsening

� � � �

� � � �

� � � �

� � �

� � �

� � �

Fig. 11.3. Flow of information from the subdomain interiors to the interfaces in the first
phase of the domain-decomposition method.

� � � �

� � � �

� � � �

� � �

� � �

� � �

Fig. 11.4. Flow of information from the interfaces back to the subdomain interiors in the
third phase of the domain-decomposition method.

In the special case in which A is block-tridiagonal and each strip in Figures 11.3
and 11.4 contains a single horizontal line of gridpoints, the domain decomposition
actually forms a “zebra” coloring as in Figure 5.1, in which the subdomain interiors
are colored by, say, white, and the interface lines are colored by, say, black. The black
gridlines are further reordered recursively in the solution of the Schur complement
in the second stage above. Thus, the above domain decomposition is actually a
multilevel reordering of gridlines. In fact, it is equivalent to the Cyclic Reduction
method in Section 7.2 (with matrix elements replaced by blocks corresponding to
individual gridlines).

The transfer of information about the individual gridlines is also done in a mul-
tilevel scheme, rather than by marching across gridlines as in Figure 11.2. Indeed,
the information from two white lines (say, the first and third lines from the bottom)

11.4 Block-ILU Factorization 187

�

�
�
�
�
�
��

�
�

�
�
�
��

matrix-based
semicoarsening

multigrid

block-ILU

domain decomposition

variational multigrid

Galerkin approximationinformation transfer

“zebra”

Fig. 11.5. The matrix-based semicoarsening multigrid method is a combination of three
components: (a) geometry/topology as in domain decomposition to define the semicoars-
ening, (b) algebra as in line-ILU to define P and R, and (c) functional analysis as in
variational multigrid to define Q = RAP .

is first transferred to the black line that lies in between them (the second line from
the bottom). Then, it is transferred further recursively to the next black line (the
fourth line from the bottom). Once the information about all the gridlines reaches
the middle line, it is unpacked and redistributed to them. This way, the interaction
among all the gridlines is completed in log2 n steps (where n is the number of lines),
rather than n steps as in Figure 11.2.

So far, we have used direct linear system solvers based on the LU factorization
of A. Unfortunately, these solvers don’t preserve the sparsity of A. Indeed, the Schur
complement corresponding to the interface unknowns may be far less sparse than
the original matrix A. Therefore, it makes sense to replace the Schur complement
with some sparse matrix that approximates it in a spectral sense. This change may
provide a good iterative method for the solution of the original linear system.

One option is to replace the Schur complement with a matrix obtained from
rediscretizing the original PDE on the black lines only. This would yield a geometric
multigrid with semicoarsening (Section 6.11). Here we are more interested in the
more powerful multigrid, method that uses the low-order matrix Q = RAP , where
R is the operator that transfers information from the white to the black lines and
P is the operator that transfers information from the black lines back to the white
lines. The precise way to define R and P in such a way that they remain sparse
follows from the line-ILU iterative method described next.

11.4 Block-ILU Factorization

The block-ILU iterative method [50] uses the same pattern of transfer of informa-
tion as in Figure 11.2, However, unlike in the standard LU factorization, here the
triangular factors L and U are incomplete, so A �= LU . The main advantage in
block-ILU is that L and U are as sparse as the original matrix A.

188 11 Matrix-Based Semicoarsening

In the sequel, we assume that the coefficient matrix A has a 9-point stencil as
in (4.13) on a uniform grid as in (3.6). In other words, A is block-tridiagonal, with
tridiagonal blocks (submatrices of order n).

The block-ILU (or line-ILU) method is motivated by the theory by Meurant
about banded matrices (matrices with only few nonzero diagonals just above and
below the main diagonal). This theory shows that the elements in the inverse of a
banded matrix decay rapidly as their distance from the main diagonal increases. As
a consequence, the inverse of a banded matrix, although dense in general, can be
well approximated by a banded matrix that agrees with it on, say, three principal
vectors (denoted by z1, z2, and z3), defined below.

The block-ILU method scans the gridline by line from bottom to top, and per-
forms an approximate block-LU decomposition (or approximate block Gauss elimi-
nation). Clearly, the exact (complete) block-LU decomposition produces dense block
pivots (submatrices that lie on the main diagonal) and, hence, also dense factors L
and U . This direct algorithm is, therefore, prohibitively expensive in terms of both
time and storage. This is why the block-ILU method replaces these block pivots by
sparse blocks, which produce sparse incomplete factors L and U , leading to a more
efficient iterative algorithm. More precisely, the block-ILU method avoids the dense
pivot blocks by replacing them with pentadiagonal submatrices (submatrices with
at most five nonzero diagonals: the main diagonal, the two diagonals just above it,
and the two diagonals just below it).

Let us now describe the block-ILU factorization in detail. First, we write the
coefficient matrix A as

A = block-tridiag(Yi,i−1, Yi,i, Yi,i+1)1≤i≤n,

where the Yi,js are tridiagonal matrices of order n that correspond to horizontal
lines in the n×n grid g. In the following, the Zis are the pentadiagonal approximate
block pivots, and the Fis are the tridiagonal blocks in the incomplete factor U .

The Zi’s and Fi’s are defined by induction. First, Z1 is defined by Z1 = Y1,1.
Then, for i = 2, 3, 4, . . . , n, the tridiagonal matrix Fi−1 of order n is defined by

Fi−1z1 = (Zi−1)−1Yi−1,iz1

Fi−1z2 = (Zi−1)−1Yi−1,iz2

Fi−1z3 = (Zi−1)−1Yi−1,iz3,

where

z1 = (1, 0, 0, 1, 0, 0, 1, 0, 0, . . .) (11.1)
z2 = (0, 1, 0, 0, 1, 0, 0, 1, 0, 0, . . .) (11.2)
z3 = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, . . .) (11.3)

are the n-dimensional principal vectors. Actually, Fi−1 is not exactly tridiagonal,
because it may contain two extra nonzero elements, (Fi−1)1,3 and (Fi−1)n,n−2. Thus,
Fi−1 contains exactly 3n elements, which are determined uniquely by the 3n equa-
tions in (11.1)–(11.3). As a result, Fi−1 may be viewed as a spectral approximation
to Z−1

i−1Yi−1,i in the sense that it agrees with it on the three principal vectors z1,
z2, and z3.

The calculation of the right-hand sides in (11.1)–(11.3) requires applications of
Z−1

i−1 to vectors. Fortunately, as can be shown by induction, Zi−1 is banded, so its

11.5 The Domain-Decomposition Direct Solver 189

LU decomposition can be calculated with no extra fill-in, and used in the required
calculations.

The matrix Fi−1 is now used to define the pentadiagonal approximate block
pivot Zi:

Zi ≡ Yi,i − Yi,i−1Fi−1.

More precisely, because Fi−1 is not exactly tridiagonal, Zi is not exactly pentadi-
agonal. In fact, it may contain two extra nonzero elements, (Zi)1,4 and (Zi)n,n−3.
Fortunately, these elements produce no extra fill-in in the LU decomposition of Zi.

The incomplete factors L and U are defined now by

L = block-bidiag(Yi,i−1, Zi, (0))
U = block-bidiag((0), I, Fi),

where (0) is the zero matrix of order n. Finally, the easily invertible preconditioner
in the block-ILU method is defined by

P = LU .

This preconditioner is now used in the iteration (5.1), which can be further accel-
erated by a Lanczos-type acceleration method as in Section 5.12.

We now turn back to the direct solver that uses Gauss elimination and complete
LU decomposition of A. We describe in detail the domain-decomposition reordering
in Section 11.3, which is used later also in block-ILU and, ultimately, in the matrix-
based semicoarsening method.

11.5 The Domain-Decomposition Direct Solver

Here we describe in detail the domain-decomposition solver in Section 11.3. This
solver is based on Gauss elimination (or LU decomposition) on a reordered system.
Although this is a direct solver, the idea of reordering is relevant in iterative methods
such as block-ILU and semicoarsening, as is discussed below.

The domain-decomposition approach may be viewed as a “divide-and-conquer”
approach. The problem is divided into two parts: a “fine” part, which contains
“local” subproblems that are independent of each other and can be solved in the
individual subdomains simultaneously, and a “coarse” part, consisting of a low-order
“global” system that couples the interfaces between the subdomains to each other
(see also Section 1.18).

The main advantage of the domain-decomposition approach lies in the opportu-
nity to implement the first part efficiently in parallel. Unfortunately, The second part
is global in nature, hence more difficult to parallelize. Nevertheless, in some cases,
it can be divided recursively into fine and coarse parts, allowing more parallelism.

In this section, we describe a domain-decomposition solver introduced in [35],
which uses strips as in Figure 11.6 as subdomains. In Sections 11.6–11.7 below,
we show how the present semicoarsening method emerges from the domain-
decomposition method as a special case.

In the sequel, we assume that the coefficient matrix A has a 9-point stencil as
in (4.13) on a uniform grid as in (3.6). We also assume that the grid is divided

190 11 Matrix-Based Semicoarsening

4

3

2

1

Fig. 11.6. The domain decomposition that uses four strips denoted by 1, 2, 3, and 4.

into strips as in Figure 11.6, with the interfaces between subdomains aligning with
the grid. This decomposition induces the following partitioning of unknowns in the
linear system (3.5), in which the unknowns are divided into two subsets: c, the
subset of unknowns that lie on the interface between subdomains, and f , the rest of
the unknowns. The unknowns are reordered so that the unknowns in f come before
the unknowns in c. This partitioning induces the following block form of A,

A =
(

Aff Afc

Acf Acc

)

and similarly for other matrices of the same order.
Within c and f , the unknowns are ordered in the usual order, that is, line by line,

with the gridpoints in each line ordered left to right. For the example in Figure 11.6,
the order is thus as follows.

1. Unknowns in the interior of subdomain 1
2. Unknowns in the interior of subdomain 2
3. Unknowns in the interior of subdomain 3
4. Unknowns in the interior of subdomain 4
5. Unknowns on the interface between subdomains 1 and 2
6. Unknowns on the interface between subdomains 2 and 3
7. Unknowns on the interface between subdomains 3 and 4

This 7-block partitioning induces the following block form,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1,1 A1,5

A2,2 A2,5 A2,6

A3,3 A3,6 A3,7

A4,4 A4,7

A5,1 A5,2 A5,5

A6,2 A6,3 A6,6

A7,3 A7,4 A7,7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.4)

and similarly for other matrices of the same order.

11.5 The Domain-Decomposition Direct Solver 191

Define the matrices P , R, and Q as follows [compare with (6.9)–(6.11)].

P =
(

I −(Aff)−1Afc

0 I

)
(11.5)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I −(A1,1)−1A1,5

I −(A2,2)−1A2,5 −(A2,2)−1A2,6

I −(A3,3)−1A3,6 −(A3,3)−1A3,7

I −(A4,4)−1A4,7

I
I

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R =
(

I 0
−Acf (Aff)−1 I

)
(11.6)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
I

I
I

−A5,1A
−1
1,1 −A5,2A

−1
2,2 I

−A6,2A
−1
2,2 −A6,3A

−1
3,3 I

−A7,3A
−1
3,3 −A7,4A

−1
4,4 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Q =
(

Aff 0
0 Acc − Acf (Aff)−1Afc

)
. (11.7)

Note that Q contains in its lower-right block the Schur complement of A with respect
to the partitioning f ∪ c. Therefore,

A = R−1QP−1

is nothing but the block-LU decomposition of A with respect to this partitioning.
As a result, the TL method in Section 6.1 is actually a direct solver that converges
in one iteration, even when no relaxations are used (ν1 = ν2 = 0).

The matrices (A1,1)−1, (A2,2)−1, (A3,3)−1, and (A4,4)−1 that are used in the
definitions of P in (11.5) and R in (11.6) are never computed explicitly; all that is
needed is to apply them to vectors when P or R is applied to a vector, which can
be done by forward elimination and back substitution in their LU decompositions.
Thus, the applications of P and R to vectors in the TL method can be done in
the individual subdomains simultaneously in parallel. The same is true also for the
application of Q−1

ff in the middle of the TL method. The application of Q−1
cc , on

the other hand, is more complicated. In [35], it is done by an inner PCG iteration,
with a preconditioner derived from a Fourier analysis of Qcc . This iteration requires
only applications of Qcc to vectors, which can be done in parallel as above. Unfor-
tunately, the preconditioner in this inner iteration is limited to problems in which
the coefficients are constant within each strip. Therefore, we turn our attention to
the line-ILU iteration, and use it in conjunction with the present line reordering to
gain more parallelism.

192 11 Matrix-Based Semicoarsening

11.6 Reordered Block-ILU Factorization

In this section, we combine the block-ILU method in Section 11.4 with the domain-
decomposition approach in Sections 11.3 and 11.5. As above, we assume that the
coefficient matrix A is of 9-point stencil on the uniform grid g in (3.6). We assume
that each strip in Section 11.5 contains only one horizontal gridline in its interior.
As at the end of Section 11.3, we also assume that the strips in Figure 11.6 each
contain a single horizontal line of gridpoints, so that the blocks Ai,i in (11.4) are
tridiagonal matrices of order n. With this assumption, the partitioning c ∪ f is
actually the “zebra” coloring as in Figure 5.1:

c = {(i, j) ∈ g | i ≡ 0 mod 2} .

The line-ILU factorization in Section 11.4 is inherently sequential in the sense
that the approximate pivoting of each particular line depends on the pivoting of
previous lines. Thus, the approximate pivoting must be done line by line, and can-
not be parallelized efficiently. The same is true for the processes of block forward
elimination and block back-substitution: they must be done line by line sequentially.
It is thus most important to modify the line-ILU method into a more parallelizable
version.

In this version, the approximate block pivoting is applied to the reordered matrix
in (11.4) rather than the original matrix A in (3.5). In other words, the gridlines
are colored in a “zebra” coloring, and the “white” lines (f in Section 11.5) are
ordered before the “black” lines (c in Section 11.5). Thus, the approximate pivot-
ing of the white lines can be done simultaneously in parallel. In this process, the
matrices Fi are diagonal rather than tridiagonal as in Section 11.4, so the approx-
imate block pivots Zi are tridiagonal. This way, the low-order system that couples
the black lines is of 9-point stencil as well, and can benefit from the same method
recursively.

More precisely, for every relevant pair of integers i and j, we use diagonal
matrices Pi,j of order n to approximate the corresponding blocks in (11.5) spec-
trally, so they have the same effect on the n-dimensional constant vector:

Pi,jz = −(Ai,i)−1Ai,jz, (11.8)

where

z = (1, 1, 1, 1, . . .) (11.9)

is the n-dimensional vector all of whose components are equal to one. The diagonal
matrix Fi,j contains exactly n nonzero elements, which are determined uniquely by
the n equations in (11.8).

Similarly, the diagonal matrices Ri,j of order n approximate spectrally the cor-
responding blocks in (11.6). These diagonal matrices are defined by

ztRi,j = −ztAi,j(Aj,j)−1. (11.10)

11.7 Matrix-Based Semicoarsening 193

The sparse matrix P that approximates (11.5) is now defined by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I P1,5

I P2,5 P2,6

I P3,6 P3,7

I P4,7

I
I

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.11)

Similarly, the sparse matrix R that approximates (11.6) is defined by

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
I

I
I

R5,1 R5,2 I
R6,2 R6,3 I

R7,3 R7,4 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.12)

Finally, the sparse matrix Q that approximates (11.7) is defined by

Q =
(

Aff 0
0 Acc − Rcf Aff Pfc

)
. (11.13)

Note that R is actually the transpose of a matrix P that would result from
applying the above procedure to At rather than A. The matrices P , R, and Q are
now used in the ML iteration in Section 6.3 (with ν1 = ν2 = 0). In the recursive
call to the ML method, Q−1

ff is applied in parallel in the individual strips, and Q−1
cc

is applied approximately using one iteration of the same method itself. Since Qcc

is of 9-point stencil, this is indeed possible. Finally, the above ML iteration can be
further accelerated by an outer acceleration technique.

Because Qcc above is an approximate Schur complement on the semicoarse grid c,
it is scaled differently from an appropriate semicoarse-grid matrix. This is why the
convergence rate of the above method is not optimal, and may deteriorate as n
increases. This is why we introduce next an additional improvement, which produces
a properly scaled semicoarse-grid matrix.

11.7 Matrix-Based Semicoarsening

The matrix-based semicoarsening method uses a modified version of the reordered
block-ILU method in (11.11) and (11.12), in which P and R are rectangular rather
than square matrices. Furthermore, the semicoarse-grid matrix Q is defined from the
Galerkin approach Q = RAP (as in variational multigrid) rather than the approxi-
mate Schur complement in (11.13). With this approach, the semicoarse-grid problem
is indeed a proper approximation of the original problem. Furthermore, thanks to
the fact that Q uses a 9-point stencil, recursion can be used as in the ML algorithm

194 11 Matrix-Based Semicoarsening

in Section 6.3. When relaxation is also used in the V-cycle (ν1+ν2 > 0), the Poisson
convergence rate is achieved for practical diffusion problems with discontinuous coef-
ficients, even when the discontinuity lines don’t align with the coarse grid. Moreover,
when line relaxation (either line-GS relaxation or line-ILU) is used in the V-cycle,
the Poisson convergence rate is also achieved for highly anisotropic equations.

Let us now describe the matrix-based semicoarsening method in some more
detail. Assume that each strip contains only one horizontal gridline in its interior
(so the semicoarsening is as in Figure 5.1). Using the notation in Section 11.6, the
rectangular matrices P and R are defined by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1,5

P2,5 P2,6

P3,6 P3,7

P4,7

I
I

I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11.14)

and

R =

⎛
⎝R5,1 R5,2 I

R6,2 R6,3 I
R7,3 R7,4 I

⎞
⎠ . (11.15)

Thanks to (11.8)–(11.10), P preserves the constant vector, as required in Section 6.2.
Note also that R is the transpose of a prolongation matrix defined from At rather
than A.

Finally, Q is defined by

Q ≡ RAP .

These matrices are now used in the ML algorithm in Section 6.3. Thanks to the
fact that Q also uses a 9-point stencil, the recursive call in the ML method can
indeed be carried out. The relaxation method used within the V-cycle is usually
the “zebra” line relaxation that relaxes the individual horizontal gridlines as a
whole. (Actually, this relaxation method is a special case of the Schwarz iteration
that uses the domain decomposition in Figure 11.6.) For lines i that are contained
in f , the LU decomposition of Ai,i is already available from the solution of (11.8).
This decomposition can also be used in the line relaxation. The reordered line-ILU
method in Section 11.6 can also make a good relaxation method within the V-cycle.

For nonsymmetric problems, one should probably define P by applying the above
algorithm not to A but rather to its symmetric part, (A+At)/2, in the spirit of [40].

The present matrix-based semicoarsening multigrid algorithm was first discov-
ered by Steve Schaffer. It was also rediscovered independently by Joel Dendy and
applied successfully to many diffusion problems with anisotropic and discontinuous
coefficients [43]. However, Dendy also reports that the method may still diverge for
problems like (9.8) and (9.9). This is because the theory developed later in this
book is not applicable to the matrix-based semicoarsening method.

Schaffer and Dendy have also applied the present semicoarsening method to 3-D
problems. In this case, the blocks Ai,i correspond to planes in a cubic grid rather

11.8 A Deblurring Problem 195

than lines in a square grid. These blocks are inverted implicitly in (11.8)–(11.10) by
the 2-D version of the same algorithm itself, and the “zebra” plane relaxation is used
in the V-cycle. With this implementation, convergence rates almost as good as the
Poisson convergence rate are achieved for 3-D diffusion problems with anisotropic
and discontinuous coefficients.

Finally, the matrix-based semicoarsening method was also applied to systems of
PDEs in [42].

The main drawback in the matrix-based semicoarsening method is that it is not
easily extended to semistructured and unstructured grids. In the following chapters,
we turn our attention to a simpler multigrid framework that can be extended to
semistructured and unstructured grids and also enjoys a mathematical background.
Before going into this, however, we conclude the subject of semicoarsening with an
interesting example.

11.8 A Deblurring Problem

A common problem in image processing is the problem of deblurring: a digital
grayscale image that had been blurred by a linear low-pass filter is given, and the
problem is to produce the original deblurred image. Actually, the low-pass filtering
is equivalent to multiplying by a nonnegative matrix. In general, this matrix is not
available; here, however, we assume that this matrix is available, so the original
image is actually the solution of a system as in (3.5), with A being the low-pass
filtering matrix and b being the given blurred image.

Let us now consider a more concrete example. Let A be the symmetric nonneg-
ative matrix with the constant 9-point stencil⎡

⎣1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

⎤
⎦ (11.16)

on the uniform n×n grid in (3.6). The equation (3.5) with this matrix is particularly
easy to solve because A is separable in the sense that

A = XY . = YX ,

where X is a matrix with the 3-point stencil⎡
⎣ 0 0 0

1/2 1 1/2
0 0 0

⎤
⎦

(coupling in the x spatial direction), and Y is a matrix with the 3-point stencil⎡
⎣0 1/2 0

0 1 0
0 1/2 0

⎤
⎦

(coupling in the y spatial direction). Now, since both X and Y are tridiagonal
in some order of gridpoints, they have sparse LU decompositions with no fill-in
whatsoever:

X = LXUX and Y = LYUY ,

196 11 Matrix-Based Semicoarsening

where LX and LY are bidiagonal lower triangular matrices and UX and UY are
bidiagonal upper triangular matrices. Therefore, the LU decomposition of A is

A = XY = LXUXLYUY = LXLYUXUY .

Thus, A has an LU decomposition with no fill-in at all. Therefore, its ILU factor-
ization coincides with its LU factorization, and actually produces a direct method
that converges in one iteration, as is indeed observed numerically.

Furthermore, A remains separable also when multiplied on the left (or right)
by a diagonal matrix. However, when even a tiny change is made in (11.16), A is
no longer separable, and its ILU factorization is completely different from its LU
factorization. In this case, both ILU and GS iterations become extremely inefficient,
even when accelerated by PCG or any other acceleration method.

This failure is probably because the algebraic conditions required in the theory
in [96] no longer hold. Indeed, in our numerical experiments, the perturbation of
(11.16) can be solved by ILU or GS as long as these conditions are met, but not
when they are violated. (See also another explanation in [129], pp. 348–349.) This
is why we turn our attention here to multigrid algorithms, in the hope to have more
robust linear system solvers.

Unfortunately, it is reported in [44] that several versions of BBMG are inef-
ficient for the above deblurring example. Fortunately, one version of the present
matrix-based semicoarsening method yields a fairly acceptable convergence rates.
This version is based on the observation that the nearly singular eigenvectors of A
are no longer nearly constant as in diffusion problems but rather highly oscillating.
In fact, if A is applied to the (k, l)th 2-D Fourier (sine) mode as in Section 2.4, then
we have [with h = 1/(n + 1)]

Av(k,l) = XYv(k,l)

= (1 + cos(πkh))(1 + cos(πlh))v(k,l)

= 4 cos2(πkh/2) cos2(πlh/2)v(k,l).

This means that A can actually be diagonalized by the 2-D sine transform. As
a matter of fact, the sine transform could be used as a solver to the deblurring
problem in (11.16). However, this solver would be limited to problems with constant
stencil as in (11.16), and would fail to solve more general problems with variable
coefficients. In fact, it would fail even for the product of the matrix in (11.16) with
some diagonal matrix. This is why the sine transform is used here not as a solver
but merely as a mathematical tool to analyze multigrid methods.

From the above spectral analysis, it is evident that small eigenvalues of A are
obtained for eigenvectors with k = n or l = n, which oscillate frequently in either
the x or the y spatial direction. Therefore, the constant vector z in (11.9) should
be replaced by the highly oscillating vector

z = (1,−1, 1,−1, . . .) (11.17)

to simulate a vector that oscillates frequently in the x spatial direction. Furthermore,
the prolongation should be negative in the sense that the prolonged values in f
should be multiplied by −1 to simulate a vector that oscillates frequently in the

11.9 Exercises 197

y spatial direction. Similarly, values from f should be first multiplied by −1 before
being used in the restriction. In summary, (11.8)–(11.10) should be modified to read

Pi,jz = (Ai,i)−1Ai,jz, (11.18)

where

z = (1,−1, 1,−1, . . .), (11.19)

and

ztRi,j = ztAi,j(Aj,j)−1. (11.20)

As a matter of fact, in order to simulate well nearly singular vectors of all possible
kinds, one should use multiple semicoarse-grid corrections: one to simulate vectors
that oscillate in the x direction (k = n, l = 1), one to simulate vectors that oscillate
in the y direction (k = 1, l = n), one to simulate vectors that oscillate in both
the x and y directions (k = l = n), and one to simulate well the constant vector
(k = l = 1). The required four semicoarse-grid corrections are thus as follows.

1. Use (11.8) and (11.10), but with (11.19) rather than (11.9).
2. Use (11.18) and (11.20), but with (11.9) rather than (11.19).
3. Use (11.18)–(11.20).
4. Use (11.8)–(11.10).

This algorithm is introduced in [44] for parallel computers, where the four indi-
vidual semicoarse-grid corrections could be calculated independently of each other in
parallel. Note that here the situation is more optimistic than in Section 10.5, because
here the nearly singular error modes that are annihilated in some semicoarse-grid
correction are either nearly-constant or highly oscillating in each spatial direction,
so they belong (approximately) to the null spaces of the restriction operators of
the other semicoarse-grid corrections, and should not be re-enhanced by them. It is
indeed reported in [44] that, for a problem as in (11.16), it achieves the convergence
factor of 0.8 (with no acceleration).

11.9 Exercises

1. Show that the application of the lower-triangular matrix R in the domain-
decomposition solver in Section 11.5 is equivalent to forward elimination of the
interior unknowns (the unknowns corresponding to gridpoints that lie in the
interior of the strips).

2. Show that it can be done in all the strips simultaneously in parallel.
3. Show that it actually amounts to solving the original PDE in the individual

strips, with homogeneous Dirichlet internal boundary conditions on the inter-
faces between subdomains (i.e., on the interface unknowns that form the semi-
coarse grid c).

4. Show that the application of the upper-triangular matrix P in the domain-
decomposition solver in Section 11.5 is equivalent to back-substitution in the
interior unknowns in f (after solving for the interface unknowns in c).

198 11 Matrix-Based Semicoarsening

5. Show that it can be done in all the strips simultaneously in parallel.
6. Show that it actually amounts to solving a homogeneous PDE in the individual

subdomains, with internal Dirichlet boundary conditions on the interfaces
between the subdomains taken from the previous step, in which the Schur-
complement system has been solved for the interface unknowns in c.

7. Show that this domain-decomposition solver is analogous to the parallel algo-
rithm in Section 1.18.

8. Show that, when this domain-decomposition solver is applied recursively to solve
the Schur-complement system on the interface unknowns in c, it can be viewed
as a block version of the cyclic-reduction method in Section 7.2.

9. What is the difference between P in Section 11.7 and P in Section 11.5? What
are the advantages and disadvantages of each approach?

10. What is the difference between R in Section 11.7 and R in Section 11.5?
What are the advantages and disadvantages of each approach?

11. What is the difference between Q in Section 11.7 and Q in Section 11.5? What
are the advantages and disadvantages of each approach?

12. Show that Q in the “zebra” block-ILU method in Section 11.6 has a 9-point
stencil (like the original matrix A).

13. Show that the semicoarse-grid matrix Q in Section 11.7 has a 9-point stencil
(like the original matrix A).

14. Show that the matrix-based semicoarsening method in Section 11.7 is actually
equivalent to the matrix-based semicoarsening method described concisely in
Section 6.11.

Part V

Matrix-Based Multigrid
for Semistructured Grids

201

So far, we have studied multigrid methods in the context of structured (uniform)
grids. This model case is particularly suitable to show the power of multigrid meth-
ods. Indeed, the spectral analysis available in this case may provide a priori estimates
for the convergence rate of multigrid, as either iterative method or preconditioner
in the Krylov-subspace acceleration method.

Unfortunately, structured grids are unsuitable for most realistic problems aris-
ing in applied science and engineering. Indeed, most applications are defined on a
nonrectangular domain with curved boundary, which must be approximated on a
highly unstructured finite-element mesh. Even in applications that use rectangular
domains, the physical phenomenon may exhibit different behavior in different parts
of the domain, which requires nonuniform grids with variable resolution.

Completely unstructured grids may provide the required high resolution wher-
ever necessary. However, they are particularly difficult to implement and manipu-
late. We therefore seek a grid that is more flexible than structured grids and yet
not as expensive in terms of computer resources as general unstructured grids.

A fair compromise between uniform grids and completely unstructured grids
can be obtained by local refinement. The required grid is obtained from an initial
(coarse) grid by repeated local refinement at those areas where high resolution is
needed. The criterion for refinement can be based on the original PDE itself. For
example, extra refinement can be used around corners (and other segments of large
curvature) in the boundary of the domain and in discontinuity curves in the diffusion
coefficients. A more automatic approach, which requires no knowledge of properties
of the original PDE, is adaptive refinement. In this approach, extra refinement is
used wherever the coarse-grid numerical solution exhibits large variation. In this
process, a hierarchy of finer and finer grids is constructed, each of which has extra
refinement only in those areas where the previous one is not sufficiently fine to
capture subtle variation in the solution. The finest grid is then accepted as the final
grid, on which the original PDE should be discretized.

The coarse grids constructed in the above local-refinement process are also used
in the multigrid algorithm that solves the linear system produced from the dis-
cretization method on the finest grid. Thus, no coarsening is required; the coarse
grids that supply correction terms to the finest-grid system are already available
from the refinement process that had created this finest grid. The multigrid algo-
rithm that uses these coarse grids to solve the finest-grid system is described and
analyzed in Chapter 12 below. This chapter is based on [99] and [100].

A special case of locally refined grids that is particularly convenient to implement
is the case of the so-called semistructured grid. This grid is constructed from an
initial uniform grid by embedding in it a smaller uniform grid with smaller meshsize
in the region where higher accuracy is needed. The process is repeated recursively
by further embedding smaller and smaller uniform grids with smaller and smaller
meshsizes where extra accuracy is required. We refer to the combined grid consisting
of the entire hierarchy of uniform grids as the semistructured grid. The PDE is then
discretized on the semistructured grid (using finite elements or volumes) to produce
the linear system of equations (3.5). The multigrid algorithm to solve (3.5) uses the
coarse grids available from the above local-refinement process to supply correction
terms in the V-cycle. This multigrid linear system solver is tested in Chapter 13
below, which is based on [99].

12

Matrix-Based Multigrid for Locally
Refined Meshes

In this chapter, we describe a matrix-based multigrid method suitable for com-
plicated nonuniform meshes obtained from local refinement. Under some algebraic
assumptions such as diagonal dominance of the coefficient matrices, we derive an
aposteriori upper bound for the condition number of the V(0,0)-cycle. This result
applies also to diffusion problems with variable and even discontinuous coefficients,
even when the discontinuity lines don’t align with the coarse mesh. Furthermore,
the upper bound is independent of the meshsize and the jump in the diffusion coef-
ficient. Of course, the actual application of the multigrid method uses more efficient
cycles such as the V(1,1)-cycle. Still, the theoretical result indicates that the nearly
singular eigenvectors of A are indeed well approximated on the coarse grids, so the
remaining error modes can be well handled by the relaxation.

12.1 Multigrid and Hierarchical-Basis Linear System Solvers

The subject of this chapter is matrix-based multigrid methods for the solution of
elliptic PDEs discretized on locally-refined meshes. The method can be viewed as
an extension of the method described in Figure 6.10. The present analysis gives an
(a posteriori) upper bound for the condition number of the V(0,0)-cycle. Although
this cycle is rarely used in practice, this result can still be interpreted to indicate that
the nearly singular eigenvectors of A are well handled by the coarse-grid correction,
and that the V(1,1)-cycle that uses relaxation to reduce the rest of the error modes
should converge rapidly.

The V(0,0)-cycle can be actually viewed as a hierarchical-basis method. In stan-
dard hierarchical-basis methods, the problem is rewritten in terms of basis functions
supported on linear finite elements of growing size: from small triangles on the fine
mesh, to larger and larger triangles on the coarser and coarser meshes. This way, the
original linear system obtained from the finite-element discretization is no longer
represented in the usual nodal basis but rather in a hierarchical basis formed by a
hierarchy of nested subspaces associated with coarser and coarser triangulations.

In matrix-based multigrid, on the other hand, the subspaces in the coarse levels
in the hierarchy contain functions that are no longer linear in each coarse element
but rather only piecewise linear, in such a way that flux continuity is preserved.

204 12 Multigrid for Locally Refined Meshes

Of course, when the discontinuity lines in the diffusion coefficients align with the
coarse meshes this would lead to the same standard hierarchical basis as in geometric
and variational multigrid. However, when the discontinuity lines don’t align with the
coarse mesh, these flux-preserving subspaces are the only ones that can approximate
the original problem well and supply good correction terms.

Of course, the transformation to the hierarchical basis is never carried out
explicitly. Instead, the restriction operators that restrict the original system to the
coarse grids and the prolongation operators that transform the coarse-grid systems
back to the original system are carefully designed to be flux-preserving, using the
algebraic information stored in the matrix elements.

Hierarchical-basis methods associated with variational multigrid are studied
in [7] to [21] and [126] and [127]). The Algebraic Multilevel Iteration (AMLI) method
in [4] also uses the hierarchy of nested finite-element spaces that are available in
locally (and globally) refined meshes. These methods are not matrix-based methods,
because the transforms from the nodal basis to the hierarchical basis and vice versa
are defined in terms of the mesh rather than the coefficient matrix A. Although
upper bounds for the condition numbers are available for some of these methods,
they are derived under the assumption that the discontinuity lines in the diffusion
coefficients align with the coarse meshes. This assumption limits considerably the
number of coarse levels that can be used in realistic applications, in which the dis-
continuity lines could be of rather complicated shapes. Furthermore, it prevents one
from writing a computer code that is applicable to any kind of discontinuity in the
diffusion coefficients. This is why we are careful to avoid this assumption in the
present analysis.

12.2 The Two-Level Method

We start with the two-level method, which is later extended into a multilevel
method. The coarse grid used in the two-grid linear system solver is already avail-
able from the previous refinement level in the local refinement algorithm. More
specifically, the coarse grid c consists of the nodes in the mesh S in Section 4.8,
from which the fine mesh T has been produced.

The first step is to define a prolongation operator in the spirit of (9.2)–(9.4). For
this purpose, consider a coarse-grid function v ∈ l2(c) defined on the coarse grid c.
In particular, v takes the values v(n1) and v(n2) on the two coarse-gridpoints n1

and n2 in Figure 4.9. A prolongation operator must define the fine-grid function
Pv. Clearly, Pv takes the same values as v at n1 and n2:

(Pv)(n1) = v(n1) and (Pv)(n2) = v(n2).

A more challenging task is to define Pv properly also at the midpoint m = (n1 +
n2)/2 that doesn’t belong to c. In the present matrix-based approach, this is obta-
ined from a weighted average, with weights taken from the relevant elements in A:

(Pv)(m) ≡ am,n1v(n1) + am,n2v(n2)
am,n1 + am,n2

.

This is in the spirit of the definition in (12.14) below.

12.2 The Two-Level Method 205

Let us now define the two-grid method in some more detail. We assume that A
is nonsingular and has nonzero main-diagonal elements. In the sequel, we also use
the notation in Section 4.8 above.

As mentioned above, the coarse grid c consists of the nodes in the coarse mesh
S in the previous refinement level. The fine-gridpoints that are left outside c are
contained in f . In other words, f contains the nodes in the mesh T in the current
refinement level that do not serve as nodes in S. (We use this partitioning of nodes
also for the partitioning of the corresponding nodal-basis functions.) This notation
induces a block partitioning of A:

A =
(

Aff Afc

Acf Acc

)

and similarly for other matrices of the same order.
For every subgrid s ⊂ c ∪ f , let Js : l2(c ∪ f) → l2(s) denote the injection

operator defined by

(Jsv)j = vj , v ∈ l2(c ∪ f), j ∈ s.

Recall also the definition of the row-sum matrix in (2.5) and the absolute value of
a matrix in (2.4). This notation is used next to define the transfer operators.

Below we define the matrix Ã, from which the transfer operators R and P are
later derived. First, we define the matrix A(0), which contains only the off-diagonal
elements ai,j for which the nodes i and j are either completely disconnected in T or
at most “poorly connected” in the sense that they are connected by an edge that
has been introduced from half-refinement in the previous refinement step or by an
edge with a positive weight:

A
(0)
i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 i = j
0 i and j are vertices of the same triangle in T

that are connected by an edge that has not been
created by half refinement of a triangle s ∈ S,
and ai,jai,i ≤ 0

ai,j otherwise.

The matrix Ã is now obtained by “lumping” in A those elements that are also in
A(0). This way, Ã contains only those elements ai,j for which i and j are indeed
“well-connected” in T :

Ã = A − A(0) − rs(|A(0)|). (12.1)

In other words, Ã is obtained from A by “throwing” onto the main diagonal elements
ai,j for which the nodes i and j are not well connected in T in the above sense. The
elements that remain in Ã are later used to define the transfer matrices R and P .

The above method of lumping in (12.1) that “throws” certain off-diagonal matrix
elements onto the main diagonal (as in Figure 6.10) has the advantage of being
more stable than the method of lumping used in BBMG, which also throws certain
off-diagonal matrix elements from Aff onto off-diagonal elements from Afc (as in
Figure 6.9). Although the present method is slightly inferior to BBMG in terms of
convergence rate for some examples, it is more robust (see Section 9.4) and enjoys
the theory in Theorem 12.1 below.

206 12 Multigrid for Locally Refined Meshes

�
��

�
���

�
�

�
�

�
�

�
�

�

i

jk

Fig. 12.1. The edge midpoints i, j, and k that are candidates for inclusion in fa in the
matrix-based multigrid method.

A desirable property of a multigrid algorithm is the boundedness of the prolon-
gation operator P . This property is also essential in the analysis in Theorem 12.1
below. In order to improve this boundedness, we split f into two subsets: fa (nodes
that are strongly coupled with c) and fb (nodes that are only weakly coupled with c).
This splitting is done as follows. Let i, j, and k be edge midpoints of a refined tri-
angle s ∈ S (see Figure 12.1). The splitting is done as follows. Let τ be a parameter
defined later. Let (rs(Ãfc))i,i, (rs(Ãfc))j,j , and (rs(Ãfc))k,k be the diagonal elements
of rs(Ãfc) corresponding to i, j, and k, respectively. If∣∣∣∣∣ (rs(Ãfc))i,i

ai,i

∣∣∣∣∣ > τ max
l∈{i,j,k}

∣∣∣∣∣ (rs(Ãfc))l,l

al,l

∣∣∣∣∣ , (12.2)

then include i in fa. The same procedure is employed for j and k. After completing
this procedure for all refined triangles s ∈ S, define fb = f \ fa.

After fa and fb have been initialized as above, they are further modified to guar-
antee stability, as discussed below. First, scan fb; if a node i ∈ fb is found for which∣∣∣∣∣∣

∑
j∈c∪fa

Ãi,j/ai,i

∣∣∣∣∣∣ ≤ threshold, (12.3)

then drop i from fb and add it to c.
Then, scan fa; if a node i ∈ fa is found for which∣∣∣∣∣∣

∑
j∈c

Ãi,j/ai,i

∣∣∣∣∣∣ ≤ threshold, (12.4)

then drop i from fa and add it to c.
As we will see below, the above fix guarantees boundedness of the prolongation

operator, which is essential in the analysis. The fix also accounts for anisotropy in
the diffusion coefficient in the PDE. Indeed, if points in f lie on a line of weak diffu-
sion, then they are weakly coupled with c, and, hence, thrown back to c by the above
fix. The result is that the fine grid is locally semicoarsened in the strong-diffusion
direction, as is indeed required for highly anisotropic equations (see Section 4.7).
(If no multigrid iteration converges, then one may suspect that the boundary-value
problem is ill-posed (has no solution or has more than one solution) or the dis-
cretization method is inadequate.)

Clearly, c, fa, and fb are disjoint. We now redefine

f = fa ∪ fb.

12.2 The Two-Level Method 207

Most often, the fix that follows (12.3) and (12.4) produces only a few changes to fb

and fa, so the number of points in c remains much less than the number of points
in the original grid f ∪ c. In fact, in the numerical experiments in Chapter 13 this
fix is not used at all.

The above new definitions induce the following block partitioning of A:

A =
(

Aff Afc

Acf Acc

)
=

⎛
⎝Afbfb

Afbfa
Afbc

Afafb
Afafa

Afac

Acfb
Acfa

Acc

⎞
⎠ (12.5)

and similarly for other matrices of the same order.
Define the diagonal matrices Ga and Gb by

Ga = rs(|Ãfac|) and Gb = rs(|Ãfbc|) + rs(|Ãfbfa
|). (12.6)

From the fix that follows (12.3) and (12.4), Ga and Gb are nonsingular. In
Section 12.5 below, we show that, for isotropic diffusion problems, [even without
using the fix that follows (12.3) and (12.4)] the main-diagonal elements of Ga and
Gb have a positive lower bound that is independent of the meshsize and the dif-
fusion coefficient, which implies that the prolongation operator P defined below is
bounded independently of the meshsize and the possible jump in the diffusion co-
efficient. This important property is essential in the condition number estimate in
Section 12.8 below.

The matrices R,P , and Q defined below are all square matrices of the same
order as A. (This property is helpful in the analysis in Section 12.8 below.) Fortu-
nately, the complexity of inverting Q is much smaller than that of inverting A and
is practically the same as in standard multigrid algorithms, which use rectangular
matrices R and P .

For simplicity, P and R are first defined implicitly by defining P−1 and R−1,
respectively. In this way, it is easy to see that the application of P and R to a vector
can be done by block back-substitution in P−1 and block forward elimination in
R−1, respectively.

P−1 =

⎛
⎝Gb Ãfbfa

Ãfbc

0 Ga Ãfac

0 0 I

⎞
⎠ =

⎛
⎝I 0 0

0 Ga Ãfac

0 0 I

⎞
⎠
⎛
⎝ Gb Ãfbfa

Ãfbc

0 I 0
0 0 I

⎞
⎠ (12.7)

and

R−1 =

⎛
⎝ Gb 0 0

Ãfafb
Ga 0

Ãcfb
Ãcfa

I

⎞
⎠ =

⎛
⎝ Gb 0 0

Ãfafb
I 0

Ãcfb
0 I

⎞
⎠
⎛
⎝ I 0 0

0 Ga 0
0 Ãcfa

I

⎞
⎠ , (12.8)

where I denotes the identity matrix of a suitable order.
The operator P−1 may be thought of as a transform from the nodal basis to

a hierarchical basis that spans a hierarchy of nested finite-element spaces. Unlike
standard hierarchical-basis methods, however, the basis functions defined on coarse
elements are no longer linear but rather piecewise linear in each individual coarse
element, so that flux continuity is preserved [D∇ũ is continuous, where D is the
diffusion coefficient in (3.2) and ũ is the approximate solution on a coarse mesh].

208 12 Multigrid for Locally Refined Meshes

[From another point of view, P−1 may also be thought of as a two-dimensional
extension of the wavelet transform described in Section 1.15. However, unlike the
standard wavelet transform that preserves continuity of derivatives, this transform
preserves the continuity of the flux D∇ũ, which is a necessary condition for a
solution of (3.2). In the particular case where the Poisson equation is considered
and the usual 9-point stencil is used, P−1 is reduced to the natural 2-D extension
of the wavelet transform.]

In the actual algorithm, P−1 is never applied, and the above transforms are
thus never carried out explicitly. The coarse finite-element spaces that are nested
in the hierarchical basis are used only implicitly to provide correction terms for the
fine-grid problem.

The operators that are applied in the multigrid algorithm are P and R rather
than P−1 and R−1. Here are the explicit definitions of these matrices:

P =

⎛
⎝(Gb)−1 −(Gb)−1Ãfbfa

−(Gb)−1Ãfbc

0 I 0
0 0 I

⎞
⎠
⎛
⎝I 0 0

0 (Ga)−1 −(Ga)−1Ãfac

0 0 I

⎞
⎠

(12.9)

and

R =

⎛
⎝I 0 0

0 (Ga)−1 0
0 −Ãcfa

(Ga)−1 I

⎞
⎠
⎛
⎜⎝

(Gb)−1 0 0
−Ãfafb

(Gb)−1 I 0
−Ãcfb

(Gb)−1 0 I

⎞
⎟⎠ . (12.10)

Finally, we define

Q =
(

W 0
0 B

)
, (12.11)

where

B = JcRAPJ t
c , (12.12)

and

W = Rff diag(Aff)Pff . (12.13)

Next, we show that the multigrid method that uses the square matrices P , R,
and Q in (12.9)–(12.11) can be also formulated with rectangular matrices, yield-
ing a more straightforward implementation. Denote the right block column in P in
(12.9) by

P̃ ≡ PJ t
c =

⎛
⎝−(Gb)−1Ãfbfa

−(Gb)−1Ãfbc

I 0
0 I

⎞
⎠(−(Ga)−1Ãfac

I

)
. (12.14)

Denote also the lower-block row in R in (12.10) by

R̃ ≡ JcR =
(
−Ãcfa(Ga)−1 I

)(−Ãfafb
(Gb)−1 I 0

−Ãcfb
(Gb)−1 0 I

)
. (12.15)

Finally, denote the coarse-grid matrix by

Q̃ ≡ R̃AP̃ = B. (12.16)

12.2 The Two-Level Method 209

With this notation, the ML method in Section 6.3 that uses the square matrices P,R,
and Q of (12.9)–(12.11) above is equivalent to the same method with P,R, and Q
replaced by P̃ , R̃, and Q̃, respectively, provided that the coarse-grid correction (6.3)
is also replaced by

xout = xin + P̃ e + J t
fJfdiag(A)−1(b − Ax in). (12.17)

This equivalent implementation is used in practice in Chapter 13, whereas the orig-
inal formulation that uses (6.3) with the R, P , and Q defined in (12.9)–(12.11) is
useful in the analysis below.

Clearly, (12.17) adds to (6.3) only a single term that can be obtained from a
point-Jacobi iteration, restricted to fine-gridpoints that are not coarse-gridpoints.
This addition has little effect on the rate of convergence, particularly when post-
relaxation is used. In general, the residual b − Ax in = A(x − xin) does not contain
nearly singular error modes, hence does not contribute much to the convergence.
Thus, the coarse-grid correction term P̃ e in (12.17) is much more important than the
last term in (12.17). For this reason, in most of the applications in this book the last
term in (12.17) is actually dropped and not used in practice. However, the imple-
mentation in (12.17) is important from a theoretical point of view. Because it is
equivalent to using (6.3) with the square matrices R, P , and Q defined in (12.9)–
(12.11), it gives a nonsingular preconditioner, with which upper bounds for the
condition number of the preconditioned matrix are available.

In practice, we have found that the definition

W = Rff diag(Aff)diag(Pff) (12.18)

[in the spirit of (9.7)] performs slightly better than (12.13). Here, however, we stick
to (12.13) because it preserves symmetry, thus allowing the derivation of upper
bounds for the condition number of the preconditioned matrix.

The parameter τ in (12.2) can be chosen in several ways, leading to different
algorithms. For example, τ > 1 would lead to the trivial partitioning fa = ∅ and
fb = f . This choice is attractive because it leads to simple definitions of R, P ,
and Q. Furthermore, the coarse-grid coefficient matrix B = JcQJ t

c has the same
stencil as the corresponding stiffness matrix on S. This important property is also
preserved in further coarsening steps: the coarse-grid coefficient matrices Bi defined
in Section 12.7 below have the same stencil as the corresponding stiffness matrices
on the corresponding coarse meshes.

A disadvantage of the choice τ > 1, however, is that it produces rather large
coarse grids. For example, with Refinement Method 4.2 in a uniform grid as in
Figure 4.13, the coarse grids can be as large as in the repeated red-black coarsening
in [22]. These coarse grids arise also with Refinement Method 4.1, provided that the
fix that follows (12.3) and (12.4) is used to guarantee stability.

A more stable choice seems to be τ = 1/2. With Refinement Method 4.1 and uni-
form grids as in Figure 4.13, this choice leads to the standard coarse grid (6.1) and
the usual 9-point stencil at all coarse grids [see (13.2) below]. For more general trian-
gle meshes, however, the stencil may be much larger than that. Indeed, the stencils
of the coarse-grid matrices Bi defined in Section 12.7 below may exceed the stencils
of the corresponding stiffness matrices and may contain coupling between nodes
that belong to finite elements that do not share any joint node, provided that there
exists a third finite element that shares a node with each of them. Fortunately,

210 12 Multigrid for Locally Refined Meshes

the coarse-grid stencils cannot be wider than that, so the coarse-grid matrices are
still sparse. It is up to the user to choose τ that suits a particular application.
In the numerical examples in Chapter 13 we use τ = 1/2; since in these examples
semistructured grids are used, the stencil at all the coarse grids is always the 9-point
stencil [see (13.2) below].

12.3 Matrix-Induced Inner Products and Norms

Here we define some inner products and norms that are useful in the analysis. Let
(·, ·)2 denote the usual inner product in l2(c∪ f) [or l2(c) or l2(f), when appropriate];
that is,

(u, v)2 =
∑

i

uiv̄i,

where the sum is over c ∪ f , c, or f , as appropriate. Unless stated otherwise, the
term “symmetry” refers to this inner product. Let ‖ · ‖2 denote the corresponding
vector and matrix norms as in Section 2.1. For some SPD matrix D, let

• (·, ·)D = (D·, ·)2 denote the inner product induced by D
• ‖ · ‖D =

√
(D·, ·)2 denote the corresponding vector norm

• ‖ · ‖D = ‖D1/2 · D−1/2‖2 denote the matrix norm induced by D.

Note that the above definitions coincide with those in Section 2.1 above (see
Lemma 2.17).

We also say that A is symmetric with respect to the inner product (·, ·)D if

(Ax , y)D = (x,Ay)D

for every two vectors x and y in l2(c ∪ f). When A is also positive definite, we say
that it is SPD with respect to (·, ·)D. In this case, we also refer to (x,Ax)D as “the
energy norm induced by A.”

The aim of this notation is to enable the analysis of left-scaled systems of
the form

D−1Ax = D−1b, (D = diag(A)). (12.19)

If A is SPD, then D−1A is symmetric with respect to (·, ·)D. Furthermore, both
L-matrix property and diagonal dominance are preserved under this scaling. From
Corollary 2.3, it follows that the D-induced norm of D−1A is smaller than or equal
to two which is particularly helpful in the bounds derived in the present theory.

In Lemma 12.3 below we show that the two-level method applied to the left-
scaled linear system (12.19) is mathematically equivalent to that applied to the
original system (3.5). Therefore, Theorem 12.1 below may be applied to the left-
scaled system (12.19), which yields not only mesh- but also jump-independent upper
bound in (12.28) below, whereas the multigrid method is actually applied to the
original system (3.5).

The following lemma will be useful in the proof of Lemma 12.5 below.

Lemma 12.1 Let D be an SPD matrix, and assume that A is symmetric with
respect to (·, ·)D and positive semidefinite. Then for every vector x we have

‖Ax‖2
D ≤ ‖A‖D(x,Ax)D.

12.4 Properties of the Two-Level Method 211

Proof. From Lemma 2.16, we have

‖Ax‖2
D = ‖A1/2(A1/2x)‖2

D

≤ ‖A1/2‖2
D‖A1/2x‖2

D

= ‖A‖D(x, (A1/2)2x)D

= ‖A‖D(x,Ax)D,

which completes the proof of the lemma.

The purpose of the next lemma is to estimate the energy norm induced by A in
terms of the energy norm induced by blockdiag(A). This property will be useful in
the proof of Theorem 12.1 below.

Lemma 12.2 Let

D =
(

Dff 0
0 Dcc

)

be a block-diagonal SPD matrix. Assume that A is symmetric with respect to (·, ·)D.
and positive semidefinite. Then, for every vector x ∈ l2(c ∪ f),

(x,Ax)D ≤ 2
(
x,
(
J t

fJfAJ t
fJf + J t

cJcAJ t
cJc

)
x
)
D

.

Proof. Let x́ = J t
fJfx − J t

cJcx. Using Lemma 2.12, we have

0 ≤ (x́, Ax́)D

=
(
x,
(
J t

fJfAJ t
fJf + J t

cJcAJ t
cJc

)
x
)
D

−
(
x,
(
J t

fJfAJ t
cJc + J t

cJcAJ t
fJf

)
x
)
D

.

The lemma follows from

(x,Ax)D =
(
x,
(
J t

fJfAJ t
fJf + J t

cJcAJ t
cJc

)
x
)
D

+
(
x,
(
J t

fJfAJ t
cJc + J t

cJcAJ t
fJf

)
x
)
D

≤ 2
(
x,
(
J t

fJfAJ t
fJf + J t

cJcAJ t
cJc

)
x
)
D

.

This completes the proof of the lemma.

12.4 Properties of the Two-Level Method

Here we present some properties of the two-grid method that will be useful in the
sequel.

The following lemma shows that left scaling of A has no impact on the two-level
method. This property is essential in obtaining a jump-independent upper bound
in Theorem 12.1 below.

Lemma 12.3 Let D be a nonsingular diagonal matrix of the same order as A.
Define Á = D−1A, and Ẃ , Ṕ , Ŕ, and Q́ to be the operators obtained by applying
the two-level method to the scaled linear system Áx = D−1b. Then

Ṕ Q́−1ŔÁ = PQ−1RA. (12.20)

212 12 Multigrid for Locally Refined Meshes

Proof. Note that

Ṕ−1 =
(

D−1
ff 0
0 I

)
P−1

and

Ŕ−1 = D−1R−1

(
I 0
0 Dcc

)
.

Hence,

JcŔÁṔ J t
c = D−1

cc JcRAPJ t
c and Ẃ = WDff .

Consequently,

Q́ =
(

I 0
0 D−1

cc

)
Q

(
Dff 0
0 I

)
,

and (12.20) follows. This completes the proof of the lemma.

The following two lemmas are necessary in the proof of Theorem 12.1 below.
First, we show that the coarse-grid matrix preserves symmetry and positive defi-
niteness of the coefficient matrix.

Lemma 12.4 Let D be a diagonal SPD matrix of the same order as A. Assume
that A is symmetric with respect to (·, ·)D. Then R and P are adjoint to each other
with respect to (·, ·)D, and Q is also symmetric with respect to (·, ·)D. If, in addition,
A is positive (semi) definite, then so is also Q.

Proof. From the symmetry of A with respect to (·, ·)D we have that, for every two
vectors x and y,

(DAx , y)2 = (Ax , y)D = (x,Ay)D = (Dx ,Ay)2 = (x,DAy)2,

implying that

DA = (DA)t = AtD (12.21)

[where ‘t’ denotes the usual adjoint with respect to (·, ·)2]. Bearing in mind that D
is diagonal and looking at the lower-triangular part of both sides of the equality
sign in (12.21), we have from (12.6)–(12.8) that

DR−1 = P−tD.

Therefore, for every two vectors x and y,(
R−1x, y

)
D

=
(
DR−1x, y

)
2

=
(
P−tDx , y

)
2

=
(
Dx , P−1y

)
2

=
(
x, P−1y

)
D

.

This implies that R−1 and P−1 are adjoint to each other with respect to (·, ·)D,
which in turn implies that R and P are also adjoint to each other with respect to
(·, ·)D. The symmetry of Q with respect to (·, ·)D follows now from the symmetry
of A with respect to (·, ·)D and (12.11)–(12.13). Similarly, the assertion about pos-
itive (semi) definiteness of Q follows from (12.11)–(12.13) and Lemma 2.12. This
completes the proof of the lemma.

12.4 Properties of the Two-Level Method 213

The next lemma estimates the norm induced by the “ff ” and “fc” blocks in P−1

in terms of the energy norm induced by A. This estimate will be useful in the proof
of Theorem 12.1 below.

Lemma 12.5 Let D be a diagonal SPD matrix of the same order as A. Assume
that A is symmetric with respect to (·, ·)D and diagonally dominant. Let x ∈ l2(c∪f)
be a nonzero vector. Then

‖J t
fJfP−1x‖2

D ≤ (
√

2 + 1)2‖A‖D(x,Ax)D. (12.22)

Proof. Because A is symmetric with respect to (·, ·)D and diagonally dominant,
it follows from Lemmas 2.1 and 2.10 that it is also positive semidefinite. From
Lemma 12.1,

‖Ax‖2
D ≤ ‖A‖D(x,Ax)D.

Because D is diagonal, Ã and A − Ã are also symmetric with respect to (·, ·)D.
Because A is diagonally dominant, Ã and A − Ã are also diagonally dominant. It
follows from Lemmas 2.1 and 2.10 that they are also positive semidefinite. Using
also Lemmas 12.1 and 2.15, we have

‖Ãx‖2
D ≤ ‖Ã‖D(x, Ãx)D ≤ ‖A‖D(x,Ax)D.

Define

Aa =

⎛
⎝rs(|Ãfbfa

|) Ãfbfa
0

Ãfafb
Ãfafa

− Ga 0
0 0 0

⎞
⎠

and

Ab =

⎛
⎝Ãfbfb

− Gb 0 0
0 0 0
0 0 0

⎞
⎠ .

Because Ã, Aa, Ab, Ã − Aa, and Ã − Ab are symmetric with respect to (·, ·)D and
diagonally dominant, it follows from Lemmas 2.1 and 2.10 that they are also positive
semidefinite. Using also Lemmas 12.1 and 2.15, we have

‖Aax‖2
D ≤ ‖Aa‖D(x,Aax)D ≤ ‖Ã‖D(x, Ãx)D ≤ ‖A‖D(x,Ax)D

‖Abx‖2
D ≤ ‖Ab‖D(x,Abx)D ≤ ‖Ã‖D(x, Ãx)D ≤ ‖A‖D(x,Ax)D.

Note that

Jfa
Aa = Jfa

(Ã − P−1)

Jfb
Ab = Jfb

(Ã − P−1).

Consequently,

| ‖J t
fJf Ãx‖D − ‖J t

fJfP−1x‖D |2 ≤ ‖J t
fJf (Ã − P−1)x‖2

D

= ‖J t
fa

Jfa
Aax‖2

D + ‖J t
fb

Jfb
Abx‖2

D

≤ ‖Aax‖2
D + ‖Abx‖2

D ≤ 2‖A‖D(x,Ax)D.

214 12 Multigrid for Locally Refined Meshes

Therefore,

‖J t
fJfP−1x‖D ≤

√
2‖A‖D(x,Ax)D +

√
‖A‖D(x,Ax)D.

This completes the proof of the lemma.

12.5 Isotropic Diffusion Problems

A key factor in the success of a multigrid method is the boundedness of the prolon-
gation operator P . Indeed, since P should preserve the nearly singular eigenfunc-
tions of the original differential operator, it must avoid division by small numbers
in the weighted averaging used in it. In the present method, this means that the
main-diagonal elements in Ga and Gb defined in (12.6) should have a positive lower
bound that is independent of the meshsize and the possible jump in the diffusion
coefficient. In this section, we show that this requirement is indeed satisfied for a
class of isotropic diffusion problems.

Consider the isotropic diffusion problem in Section 4.6. Recall that, under the
assumptions made there, the result (4.17) holds. Therefore, with either Refinement
Method 4.1 [with τ = 1/2 in (12.2) to guarantee stability] or Refinement Method 4.2,
the diagonal elements in Ga and Gb have a positive lower bound that is independent
of the meshsize.

Assume further that the two-level method is applied to the left-scaled system
(12.19) rather than the original system (3.5). This way, Ã, Ga, and Gb are defined
from D−1A (with D = diag(A)) rather than A. Since D, Ga, and Gb are diagonal,
we have in view of Lemma 2.17 that

‖G−1
a ‖Dfafa

= ‖G−1
a ‖2 and ‖G−1

b ‖Dfbfb
= ‖G−1

b ‖2.

Furthermore, these quantities are bounded independently of not only the meshsize
but also the diffusion coefficient D̃ and the possible jump in it. This property can
now be used to bound ‖Pff ‖Dff

as follows. Since Ã is symmetric, D−1A is symmetric
with respect to (·, ·)D. In particular, the upper-left block in Ã, Ãff , is symmetric with
respect to (·, ·)Dff

. From Corollary 2.2, we therefore have that ‖Ãff ‖Dff
is bounded

independently of the meshsize and the possible jump in the diffusion coefficient D̃.
From (12.9), we therefore have that

‖Pff ‖Dff
=
∥∥∥∥
(

G−1
b −G−1

b Ãfbfa
G−1

a

0 G−1
a

)∥∥∥∥
Dff

=
∥∥∥∥
(

G−1
b 0
0 G−1

a

)
−
(

G−1
b 0
0 0

)
Ãff

(
0 0
0 G−1

a

)∥∥∥∥
Dff

≤
∥∥∥∥
(

G−1
b 0
0 G−1

a

)∥∥∥∥
Dff

+
∥∥∥∥
(

G−1
b 0
0 0

)∥∥∥∥
Dff

∥∥∥Ãff

∥∥∥
Dff

∥∥∥∥
(

0 0
0 G−1

a

)∥∥∥∥
Dff

= max(‖G−1
a ‖Dfafa

, ‖G−1
b ‖Dfbfb

) + ‖G−1
a ‖Dfafa

‖Ãff ‖Dff
‖G−1

b ‖Dfbfb

= max(‖G−1
a ‖2, ‖G−1

b ‖2) + ‖G−1
a ‖2‖Ãff ‖Dff

‖G−1
b ‖2,

12.5 Isotropic Diffusion Problems 215

so ‖Pff ‖Dff
is also bounded independently of both the meshsize and the diffusion

coefficient D̃ and the possible jump in it. This property will be particularly useful
in Theorem 12.1 below.

The above bound for ‖Pff ‖Dff
can actually improve to be linear in ‖G−1

a ‖2 and
‖G−1

b ‖2 rather than quadratic. This is done as follows. Since Ãff is symmetric with
respect to (·, ·)Dff

, we have (using the notation introduced in Lemma 2.18) that

(
0 0

Ãfafb
0

)t

Dff

=
(

0 Ãfbfa

0 0

)
.

Furthermore, since (
G−1

b 0
0 G−1

a

)

is diagonal, it commutes with Dff , and, hence, is also symmetric with respect to
(·, ·)Dff

. Therefore, (
G−1

b 0
0 G−1

a

)
Ãff

(
G−1

b 0
0 G−1

a

)

is also symmetric with respect to (·, ·)Dff
, which implies that

(
0 0

G−1
a Ãfafb

G−1
b 0

)t

Dff

=
(

0 G−1
b Ãfbfa

G−1
a

0 0

)
.

Using (12.9), Lemma 2.19, and the definitions of Ga and Gb, we have

‖Pff ‖Dff
=
∥∥∥∥
(

G−1
b −G−1

b Ãfbfa
G−1

a

0 G−1
a

)∥∥∥∥
Dff

≤
∥∥∥∥
(

G−1
b 0
0 G−1

a

)∥∥∥∥
Dff

+
∥∥∥∥
(

0 G−1
b Ãfbfa

G−1
a

0 0

)∥∥∥∥
Dff

≤ max(‖G−1
a ‖Dfafa

, ‖G−1
b ‖Dfbfb

)

+

√∥∥∥∥
(

0 0
G−1

a Ãfafb
G−1

b 0

)∥∥∥∥
∞

∥∥∥∥
(

0 G−1
b Ãfbfa

G−1
a

0 0

)∥∥∥∥
∞

≤ max(‖G−1
a ‖2, ‖G−1

b ‖2)

+
√
‖G−1

a Ãfafb
‖∞‖G−1

b ‖∞‖G−1
b Ãfbfa

‖∞‖G−1
a ‖∞

≤ max(‖G−1
a ‖2, ‖G−1

b ‖2) +
√

threshold−1‖G−1
b ‖∞‖G−1

a ‖∞,

where “threshold” is as in (12.4). This improved bound shows again that ‖Pff ‖Dff

is bounded independently of the meshsize and the possible jump in the diffusion
coefficient D̃. This result will be useful in Theorem 12.1 to bound the condition
number of the V(0,0)-cycle.

The above assumption that the multigrid method is applied to the left-scaled
system (12.19) rather than (3.5) is not really necessary. Indeed, it follows from

216 12 Multigrid for Locally Refined Meshes

Lemma 12.3 that this left-scaling has absolutely no effect on the preconditioned
matrix. Thus, in practice one can apply the multigrid method to the original system
(3.5), while the upper bound for the condition number is derived for (12.19), to make
it independent of not only the meshsize but also the diffusion coefficient D̃ and the
possible jump in it.

12.6 Instability and Local Anisotropy

As we’ve seen above, in isotropic diffusion problems, the prolongation operator is
stable in the sense that Pff is moderate in terms of the norm induced by Dff . This
property will be used below to obtain an upper bound for the condition number of
the linear system preconditioned by multigrid.

This stability of P follows from the property that the main-diagonal elements in
P−1

ff are bounded away from zero. Otherwise, an application of P to a vector would
involve division by (almost) zero, resulting in instability of the multigrid algorithm.

When would such an instability occur? When there exists a fine-gridpoint i ∈ f
that is only weakly coupled with its coarse-grid neighbors in c, but strongly with
some other neighbors in f . Indeed, in such a case (P−1

ff)i,i would be too small in
magnitude, because it is the sum of small matrix elements in A. As a result, ‖Pff ‖Dff

would be too large, and the condition number of the multigrid method might be
too large as well.

Such instability can indeed follow from local anisotropy. This means that i ∈ f
lies in between two coarse-gridpoints in c in some spatial direction and is only
weakly coupled to them, yet is strongly coupled to other neighbors in f in some
other spatial direction. We refer to this as local anisotropy because the diffusion
is small (weak coupling) in the line connecting i to its coarse-grid neighbors in c,
whereas the diffusion is large (strong coupling) along the line connecting i to its
fine-grid neighbors in f .

Fortunately, the coarse grid c is designed carefully to avoid such instability. In
fact, it is modified in such a way that whenever such a point i ∈ f is discovered, it
is immediately dropped from f and added to c. This stabilizing process guarantees
that the upper bound derived below is indeed meaningful, and that the multigrid
method should indeed work well.

12.7 The Multilevel Method

So far, we have considered a single refinement step, that is, the refined triangulation
T obtained from the original triangulation S as in Section 4.8. Define T0 = S and
T1 = T . Let us now consider the more general case of L refinement steps, where L
is a positive integer. In the ith refinement step, 1 ≤ i ≤ L, the refined triangulation
Ti is created from the current triangulation Ti−1 using a refinement step as in
Refinement Method 4.1 or 4.2. Let us define a partitioning of the nodes in the final
triangulation TL. Let f0 be the set of nodes in TL that are not in TL−1. Similarly,
for i = 1, 2, . . . , L, let fi be the set of nodes in TL−i that are not in TL−i−1. Finally,
let fL be the set of nodes in T0 = S. The reason that the fi’s are indexed in reverse

12.7 The Multilevel Method 217

order is that in the analysis of multigrid we are interested in the coarsening process
more than in the refinement process.

Furthermore, for 0 ≤ k ≤ i ≤ L, define fk
i =

⋃i
j=k fj . With these definitions,

the partitioning c ∪ f in the two-level method can be written as f1
L ∪ f0.

Denote A0 =A,B0 = A,G0 = A,P1 =P,R1 =R,B1 = B,W1 = W , and A1 =Q.
For i = 2, 3, . . . , L, construct the matrices Ř, P̌ , Bi, and Wi from Bi−1 (with
f i

L serving as the coarse grid) in the same way that R, P , B, and W (respectively)
are constructed from A in the two-level method; then, define

Ri =
(

I 0
0 Ř

)
,

Pi =
(

I 0
0 P̌

)
,

and

Ai = blockdiag(W1,W2, . . . , Wi, Bi),

so that Ri, Pi, and Ai are of the same order as A. The V(0,0)-cycle then takes the
form

xout = xin + PL,1A
−1
L RL,1(b − Ax in), (12.23)

where for (a) i > k, Pk,i = Rk,i = I; for (b) i = k, Pk,i = Pi, and Rk,i = Ri; and
for (c) i < k, Pk,i = PiPi+1 · · ·Pk is the prolongation from level k to level i− 1 and
Rk,i = RkRk−1 · · ·Ri is the restriction from level i − 1 to level k. As discussed in
Sections 12.1 and 12.2 above, the V(0,0)-cycle may be viewed as a hierarchical-basis
method, and P−1

L,1 may be viewed as a transform to a hierarchical basis that uses
piecewise linear finite elements on the coarse meshes and also as a flux-preserving
extension of the wavelet transform.

Using induction on L in Lemma 12.3 above, one can show that it makes no
difference if the V(0,0)-cycle in the ML algorithm is applied to the original system
(3.5) or the left-scaled system (12.19). Thus, (12.19) can be used for obtaining
mesh- and jump-independent bounds for the condition number, while the actual
application is done to (3.5).

Lemma 12.6 Let D be a diagonal SPD matrix of the same order as A. Assume
that A is symmetric with respect to (·, ·)D. Then, for 1 ≤ i ≤ L, Ri and Pi are
adjoint with respect to (·, ·)D, and Ai is symmetric with respect to (·, ·)D. If, in
addition, A is positive (semi) definite, then so is also Ai (1 ≤ i ≤ L).

Proof. The lemma follows from induction on i = 1, 2, . . . , L and Lemma 12.4.
Define G0 = A, and, for 1 ≤ i ≤ L, define the matrices

Gi = J t
fi

L
BiJfi

L
.

Thus, for 0 ≤ i ≤ L, we also have

Gi = J t
fi

L
Jfi

L
AiJ

t
fi

L
Jfi

L
.

Define also the scalars

a = max
0≤k<L

ρ
(
Jfk

diag(Ak)−1GkJ t
fk

)

218 12 Multigrid for Locally Refined Meshes

and, for 0 ≤ i < L,

gi = ‖Gi‖D,

pi = ‖J t
fi

Jfi
Pi+1J

t
fi

Jfi
‖D, and

wi = ‖J t
fi

Wi+1Jfi
‖D.

Clearly,

wi ≤ gip
2
i . (12.24)

In some cases, a is bounded, and D can be chosen in such a way that the gis are
bounded. For example, assume that A is symmetric and diagonally dominant, and
that the matrices Bi (1 ≤ i < L) that are constructed during the application of the
multigrid method to (3.5) are also diagonally dominant. From Lemma 2.1 we have
that, in this case,

a ≤ 2. (12.25)

Define D0 = diag(A), and, for i = 1, 2, . . . , L − 1, define the diagonal matrices Di

(of the same order as A) by

(Di)k,k =

{
min(1, (Ai)k,k

(
Πi−1

j=0(Dj)−1
k,k

)
k ∈ f i

L

1 otherwise.

Hence, by applying the multigrid method to

D−1Ax = D−1b, D = ΠL−1
i=0 Di,

one obtains diagonally dominant matrices Gi whose main-diagonal elements are less
than or equal to 1 whenever 0 ≤ i < L. Using Lemmas 2.1 and 12.6, one has

gi = ‖Gi‖D = ρ(Gi) ≤ 2, 0 ≤ i < L.

Assume that A is SPD with respect to (·, ·)D for a diagonal SPD matrix D.
For 0 ≤ i < k ≤ L, let the scalars Ck,i denote the squared norms of the matrices
Pk,i+1J

t
fk

L
Jfk

L
with respect to the energy norm induced by Gi:

Ck,i = max
x∈l2(f0

L), J
fk

L
x�=0

(Pk,i+1J
t
fk

L
Jfk

L
x,GiPk,i+1J

t
fk

L
Jfk

L
x)D/(x,Gix)D

= max
x∈l2(f0

L), J
fk

L
x�=0

(x,Gkx)D/(x,Gix)D. (12.26)

12.8 Upper Bound for the Condition Number

We are now ready to give the upper bound for the condition number of the V(0,0)-
cycle (12.23). The diagonal dominance assumptions made in Theorem 12.1 are
rather strong; however, they hold in the diffusion problems with sharply discon-
tinuous coefficients that are tested in the numerical examples.

In order to estimate the convergence rate of the multigrid method, one needs to
estimate the condition number defined in (5.10) and (5.12). The following lemma is
a common tool in condition-number estimates.

12.8 Upper Bound for the Condition Number 219

Lemma 12.7 Let D be an SPD matrix, and assume that both A and P are SPD
with respect to (·, ·)D. Then

‖P−1A‖P‖A−1P‖P = κ(P−1A) =
(

max
x�=0

(Ax , x)D

(Px, x)D

)(
max
x�=0

(Px, x)D

(Ax , x)D

)
. (12.27)

Proof. The first equality in (12.27) follows from Lemmas 2.9 and 2.13. For the
proof of the second equality in (12.27), note that P−1A is symmetric with respect
to (·, ·)DP . From Lemma 2.13, we have

ρ(P−1A) = max
x�=0

(P−1Ax , x)DP
(x, x)DP

= max
x�=0

(Ax , x)D

(Px, x)D
.

Similarly, A−1P is symmetric with respect to (·, ·)DA. From Lemma 2.13, we have

ρ(A−1P) = max
x�=0

(A−1Px, x)DA

(x, x)DA
= max

x�=0

(Px, x)D

(Ax , x)D
.

This completes the proof of the lemma.

We are now ready for the main theorem in this chapter.

Theorem 12.1 Let D be a diagonal SPD matrix of the same order as A. Assume
that A is diagonally dominant and symmetric with respect to (·, ·)D. Assume also
that the coarse-grid matrices Bi (0 ≤ i < L) are diagonally dominant as well. Then

κ
(
PL,1A

−1
L RL,1A

)
≤
(

CL,0 +
(√

2 + 1
)2 L−1∑

k=0

wkgkCk,0

)
2aL. (12.28)

Proof. As in Lemma 12.7, we need first to estimate the energy norm induced by the
preconditioner R−1

L,1ALP−1
L,1 in terms of the energy norm induced by the coefficient

matrix A. To this end, we need a few observations.
Note that, for 2 ≤ i ≤ L,

Jf0
i−2

PiJ
t
f0

i−2
= Jf0

i−2
RiJ

t
f0

i−2
= I. (12.29)

Note also that, for 0 ≤ k ≤ j ≤ i < L,

J t
fj

Jfj
P−1

j+1 = J t
fj

Jfj
P−1

i+1,k+1. (12.30)

From Lemmas 12.5 and 12.6, it follows that for every nonzero vector x ∈ l2(f0
L) and

0 ≤ i < L,

‖J t
fi

Jfi
P−1

i+1x‖2
D ≤ (

√
2 + 1)2‖Gi‖D(x,Gix)D. (12.31)

220 12 Multigrid for Locally Refined Meshes

Using (12.30) and (12.31), we have(
x,R−1

L,1ALP−1
L,1x

)
D

=
(
P−1

L,1x,ALP−1
L,1x

)
D

= (x,GLx)D +
L−1∑
k=0

(
J t

fk
Jfk

P−1
k+1x, J t

fk
Wk+1Jfk

P−1
k+1x

)
D

≤ (x,GLx)D +
L−1∑
k=0

(
√

2 + 1)2wk‖Gk‖D(x,Gkx)D

≤
(

CL,0 + (
√

2 + 1)2
L−1∑
k=0

wkgkCk,0

)
(x,Ax)D.

Next, we need to estimate the energy norm induced by A in terms of the energy
norm induced by the preconditioner R−1

L,1ALP−1
L,1. This is done as follows.

Define the union of sets fk with even index k by

e0,2 = ∪k≡0 mod 2 fk = f0 ∪ f2 ∪ f4 · · · .

Similarly, define the union of sets fk with odd index k by

e1,2 = ∪k≡1 mod 2 fk = f1 ∪ f3 ∪ f5 · · · .

Similarly, define the union of sets fk with index k that is equivalent to j mod 4 by

ej,4 = ∪k≡j mod 4 fk = fj ∪ fj+4 ∪ fj+8 · · · .

Similarly, define ej,8, ej,16, and so on.
Consider a nonzero vector x ∈ l2(f0

L), and define y = P−1
L,1x. Recall (12.29) and

the fact that a ≥ 1. By repeated application of Lemma 12.2, we have

(x,Ax)D = (y,RL,1APL,1y)D

≤ 2

⎛
⎝y,

⎛
⎝ 1∑

j=0

J t
ej,2

Jej,2RL,1APL,1J
t
ej,2

Jej,2

⎞
⎠ y

⎞
⎠

D

≤ 4

⎛
⎝y,

⎛
⎝ 3∑

j=0

J t
ej,4

Jej,4RL,1APL,1J
t
ej,4

Jej,4

⎞
⎠ y

⎞
⎠

D

≤ · · · ≤ 2L

(
y,

(
L∑

k=0

J t
fk

Jfk
RL,1APL,1J

t
fk

Jfk

)
y

)
D

= 2L

(
y,

(
GL +

L−1∑
k=0

J t
fk

Jfk
Rk+1GkPk+1J

t
fk

Jfk

)
y

)
D

≤ 2aL(y,ALy)D = 2aL(x,R−1
L,1ALP−1

L,1x)D.

The theorem follows now from Lemma 12.7. This completes the proof of the theorem.

The bound in (12.28) is an a posteriori bound in the sense that the scalars
involved in it are evaluated after constructing the coarse-level matrices. For diffu-
sion problems of the form (3.2), however, these scalars are moderate, as is shown

12.9 Exercises 221

in Section 12.5 and in the numerical examples in [100]. In the present numerical
examples, the coefficient matrix A is a diagonally dominant L-matrix, and so are
the coarse-grid coefficient matrices Bi, 0 ≤ i < L.

We try now to bound the scalars Ck,0 (0 < k ≤ L). We have

Ck,0 ≤ Πk−1
i=0 Ci+1,i. (12.32)

Ci+1,i can be bounded (using Lemma 12.5) as follows:

(x,Gi+1x)D =
((

P−1
i+1 − J t

fi
Jfi

P−1
i+1

)
x,Ri+1GiPi+1

(
P−1

i+1 − J t
fi

Jfi
P−1

i+1

)
x
)
D

=
((

I − J t
fi

Jfi
Pi+1J

t
fi

Jfi
P−1

i+1

)
x,Gi

(
I − J t

fi
Jfi

Pi+1J
t
fi

Jfi
P−1

i+1

)
x
)
D

≤ (x,Gix)D + 2pi‖J t
fi

Jfi
P−1

i+1x‖D‖Gix‖D + p2
i ‖Gi‖D‖J t

fi
Jfi

P−1
i+1x‖2

D

≤ (1 + (
√

2 + 1)pigi)2(x,Gix)D. (12.33)

However, this would imply that the bound in (12.28) might grow exponentially
with L, which is unacceptable.

A better approach is used in [100], where it is indicated that the Ck,0’s are
bounded polynomially in k for a uniform-grid discretization of diffusion problems
with variable coefficients. Perhaps it is possible to use the approach introduced
in [126] and [127] to bound the Ck,0’s by a constant times k. Indeed, such a bound
is indicated in Section 15.8 below for the simplified implementation that uses fa = ∅
and f = fb. [The analysis in Section 15.8 works equally well also here, provided that
τ > 1 is used in (12.2)].

Using the estimate in Section 15.8 below, it follows that the condition number
of the V(0,0)-cycle grows at most polynomially (rather than exponentially) with L.
This property indicates that the nearly singular eigenvectors of A are handled well
by the coarse-grid correction. The V(1,1)-cycle that uses relaxation to take care of
the other eigenvectors as well should thus have good convergence rates, as is indeed
illustrated below.

12.9 Exercises

1. Explain the term “instability” in the prolongation operator P (Section 12.6).
2. Explain the term “local anisotropy.”
3. How can instability follow from local anisotropy?
4. How does the careful design of c and f avoid instability?
5. Why is stability important in making the upper bound for the condition number

meaningful?
6. Consider the Poisson equation (3.12), discretized by finite differences as in (3.13)

on the uniform grid g in (3.6). Consider the multigrid method that uses full
coarsening as in (6.1), and the prolongation indicated in Figure 6.10. Show that
Theorem 12.1 is relevant in this case as well, and implies that the condition
number of the V(0,0)-cycle is moderate. Conclude that the V(1,1)-cycle should
converge rapidly.

7. Can the above result be extended also to the highly anisotropic equation (3.27)?
Show that, in this case, ‖Pfafa

‖2 increases rapidly as ε approaches zero, so the

222 12 Multigrid for Locally Refined Meshes

bound in Theorem 12.1 is no longer useful. Conclude that full coarsening leads
to impractical multigrid iteration for highly anisotropic equations.

8. Consider a diffusion equation with discontinuous coefficients, which are highly
anisotropic as in (3.27) in four cells around some gridpoint (i, j) ∈ g with even i
and odd j, and isotropic as in (3.12) elsewhere. Assume that the finite-volume or
the bilinear finite-element discretization method is used. Show that the results
in the previous exercise still hold. Conclude that even local anisotropy makes full
coarsening impractical, and requires local semicoarsening in the strong-diffusion
direction only.

9. Use the discussion in Section 12.5 to show that, for isotropic diffusion prob-
lems discretized on a finite-element triangulation (with angles that do not
exceed π/2), ‖Pff ‖ is moderate. Use this result in Theorem 12.1 to indicate that
the condition number of the V(0,0)-cycle is moderate and, hence, the V(1,1)-
cycle should converge rapidly.

10. Write the computer code that implements the above multigrid method for locally
refined meshes. (Assume that Refinement Method 4.1 is used.)

11. Assume that the multigrid method is applied to an isotropic diffusion problem
on the uniform mesh in Figure 4.13 (refined globally by Refinement Method 4.1).
Use the estimates in Section 12.5 to bound ‖Pff ‖Dff

.
12. Compute the coefficient matrix on the next (coarser) grid. Is it diagonally dom-

inant as well? Compute the prolongation operator resulting from it. Repeat the
above exercise for this prolongation operator as well.

13. Use your multigrid code to solve the individual linear systems in the adaptive-
mesh-refinement algorithm in Section 4.10. The solution can be found in Chap-
ter 14 in [103].

13

Application to Semistructured Grids

Although the diagonal-dominance assumptions used in the analysis in the previous
chapter are rather strong, they are nevertheless satisfied in the present numerical
examples that use semistructured grids. Below we test the standard V-cycle and
more parallelizable cycles such as AFAC and AFACx.

13.1 Semistructured Grids

A special case of locally refined grids that is particularly convenient to implement is
the case of the so-called semistructured grid. This grid is constructed from an initial
uniform grid by embedding in it a smaller uniform grid with smaller meshsize in
the region where higher accuracy is needed. The process is repeated recursively
by further embedding smaller and smaller uniform grids with smaller and smaller
meshsizes where extra accuracy is required. We refer to the combined grid consisting
of the entire hierarchy of uniform grids as the semistructured grid. The PDE is then
discretized on the semistructured grid (using finite elements or volumes) to produce
the linear system of equations (3.5).

The coefficient matrix A contains, thus, not only coupling between neighboring
points within uniform grid portions (using standard stencils), but also coupling
between regions of high resolution and regions of low resolution at the interface
between refined and unrefined regions, using nonstandard stencils.

The discretization methods on semistructured grids are no longer as simple
as in the uniform-grid case. Although one can still use the standard 5-point and
9-point stencils in the interiors of the regions where the grid is locally uniform,
special stencils are required at the interfaces between regions of different meshsizes.
For symmetric differential operators, the coefficient matrix for the discrete system
should also be symmetric [118]. One should thus make sure that the dependence of
the gridpoints in the refined region on their neighbors in the unrefined region is the
same as the dependence of the latter on the former.

The main step in constructing the matrix-based multigrid solver for this linear
system is to define the restriction and prolongation operators that transfer infor-
mation between fine and coarse grids. In the interior of unrefined regions, where
the coarse grid coincides with the fine grid, these operators can naturally coincide

224 13 Application to Semistructured Grids

with the identity operator. In refined regions, however, it is necessary to define these
operators in terms of weighted average, in the spirit of the BBMG method.

The final step in the construction of the multigrid solver is the definition of the
coarse-grid coefficient matrix. This is done by the Galerkin approximation, as in
BBMG.

13.2 The V-Cycle

Here we test the multigrid method for several isotropic diffusion problems with
discontinuous coefficients, discretized on semistructured grids that result from local
refinement (Refinement Method 4.1). The discrete system of equations is solved
iteratively by the matrix-based multigrid algorithm in Chapter 12. No acceleration
method is used here.

The computer code is written in C++, using the A++ class library developed by
Dan Quinlan of the Los Alamos National Laboratory, which provides a convenient
framework for handling arrays of double-precision numbers. In order to simplify the
programming, we use the implementation in (12.14)–(12.17). Since fine-gridpoints
that are not coarse-gridpoints are all located in the refined region, and since the
prolongation and restriction operators are just the identity at the unrefined region,
Q̃ agrees with the coarse-grid operator obtained from the Galerkin approach that
uses the transfer operator in Figure 6.10 at the interior of the refined region and
agrees with A at the interior of the unrefined region. At the interface between
the refined and unrefined regions, R̃ and P̃ are no longer the identity because they
involve also coupling with neighboring fine-gridpoints from the refined region; hence,
the equations in Q̃ no longer agree with the corresponding equations in A because
they also incorporate an additional sum of triple products of elements in R̃, A, and
P̃ at neighboring fine-gridpoints. As a result, if Q̃ is stored in an array of double-
precision numbers, then only the equations in A that correspond to the refined
region and its internal boundary need to be stored. By the internal boundary of
the refined region we mean the lines of gridpoints in the unrefined region that are
near the refined region (complemented by dummy fine points). However, since the
equations in A at the interior of the unrefined region are not stored, they cannot
be relaxed as required in the multigrid algorithm in Section 6.3. In order to relax
these equations as required, we assume without loss of generality that xin = 0.
(If xin �= 0, then one turns to the residual equation Ae = b − Ax in and uses the
V-cycle to solve for e.) Now, since A coincides with Q̃ at rows corresponding to
points in the interiors of the unrefined regions, there is no need to relax the fine-level
system there, because this can be done equally well in the coarse-level relaxation of
the correction term that will be added later to the fine-level approximate solution.
For this reason, there is also no need to store these matrix rows in A; it is sufficient
to store them in Q̃ only, and store physically in A only those matrix rows that
correspond to points in the refined regions and their internal boundaries.

13.3 The AFAC and AFACx Cycles

Besides the standard V(1,1)-cycle, we also test versions of the AFAC [60] and [72]
and AFACx [73] cycles. These approaches are particularly attractive for parallel

13.3 The AFAC and AFACx Cycles 225

computers because they allow simultaneous processing of levels and, hence, using
efficient global load-balancing techniques such as that in [72].

The standard V-cycle described in Section 6.3 is based on an essentially sequen-
tial recursion. The processing at a certain level cannot proceed until the recursive
call to the ML function is completed and a correction term is supplied from the
next coarser level. The AFAC algorithm is based on the observation that, for lo-
cally refined meshes, it may be worthwhile to solve a coarse-grid problem that is
confined to the refined region in order to obtain a “local” correction term that will
enable continuing the process rather than waiting for the global coarse-grid correc-
tion term. The AFACx cycle further improves this idea by observing that the above
local correction term does not have to be accurate; it is good enough if it is smooth,
because then fine-level relaxation would annihilate the high-frequency error modes
that are invisible on the next coarser level. The detailed formulation is as follows.
Without loss of generality, it is assumed that the initial approximate solution is
xin = 0. For 1 ≤ i ≤ L, define R̃i = Jfi

L
Ri and P̃i = PiJ

t
fi

L
,

AFACx(0, A, b, L, xout):

1. Initialize xout by xout = 0.
2. Initialize r0 by r0 = b.
3. For i = 1, 2, . . . , L, define ri = R̃iri−1.
4. For 0 ≤ i < L, relax the equations in Bi+1 that correspond to coarse-

gridpoints in the refined region of the next coarser level, that is, points in
f i+1 and points in f i+2

L that are surrounded by points from f i+1. This re-
laxation uses zero initial guess and right-hand side values that are taken from
the corresponding components in ri+1. The result of this relaxation is pro-
longed using P̃i+1 to a vector qi that is supported only in the refined region
and its internal boundary, namely, f i and the points in f i+1

L that are near
points from f i. Define zi ≡ qi. Relax the equations in Bi that correspond to
points in the refined region (namely, fi and the points in f i+1

L that are sur-
rounded by points from fi) using the initial guess qi and the corresponding
right-hand side values taken from ri. Put the difference between the result of
this relaxation and zi in the vector ei that is supported only in the refined
region.

5. Define eL ≡ J t
fL

B−1
L rL.

6. For i = L,L − 1, . . . , 1, do: update xout by

xout ← P̃i(xout + ei) + J t
fi−1

Jfi−1J
t
fi−1

L

diag(Bi−1)−1ri−1.

7. Update xout by

xout ← xout + e0.

The main advantage of this cycle in comparison to the usual V-cycle is that
the computation of the correction terms ei above can be done simultaneously in
parallel.

The only difference between AFAC and AFACx is that with AFACx the relax-
ation is a point relaxation (in our examples on semistructured grids we use the
4-color point-GS relaxation), whereas in AFAC both point and block relaxation
methods are used: the latter relaxation that uses Bi is point relaxation, but the for-
mer relaxation that uses the coarser matrix Bi+1 is a block relaxation that solves for

226 13 Application to Semistructured Grids

all the coarse gridpoints in the refined region of the next coarser grid simultaneously.
In other words, the relaxation that uses Bi+1 is replaced by an exact solve for the
unknowns in the refined region of the next coarser grid using homogeneous Dirichlet
internal boundary conditions. In the numerical examples, however, we will see that
this exact solve is not very helpful, which means that AFACx is more efficient than
AFAC.

13.4 The Numerical Examples

We test the isotropic diffusion problem

−(D̃ux)x − (D̃uy)y = F (13.1)

in a square with Neumann mixed boundary conditions. The scalar function D̃
is equal to D̃subsquare in a small subsquare at the upper-right corner of the do-
main (see Figure 13.1) and to 1 in the rest of the domain. The mixed boundary
conditions

D̃un + 0.5u = G2

(where n is the outer normal vector and G2 is a given function) are imposed on
the left and bottom edges, and Neumann boundary conditions are imposed on the
right and upper edges. The coarsest grid is a uniform 5 × 5 grid of cell size 1. The
refinement is done in the upper-right quarter of the domain as in Figure 13.2. This
procedure is repeated recursively, so that only the upper-right quarter of a refined
region is refined again. A linear finite-element discretization method is used on the
locally refined mesh as in Figure 13.3. The number of levels is determined in such a
way that the discontinuity lines of D̃ lie within the region of highest resolution in the
mesh and align with the finest mesh (but not with the coarse grids). The coefficient
matrix for this discretization method is an irreducibly diagonally dominant L-matrix
(in the sense explained in the exercises at the end of Chapter 3), as are also the
coarse-grid coefficient matrices.

D = 1

Fig. 13.1. The diffusion coefficient D̃. D̃ = D̃subsquare in the small black subsquare.

13.4 The Numerical Examples 227

∗ ∗ ◦ · � · �
· · · ·

∗ ∗ ◦ · � · �
· · · ·

∗ ∗ ◦ ◦ ◦

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

Fig. 13.2. The semistructured grid created by one step of local refinement. The coarse
grid f1 contains the points denoted by ∗, ◦, and �. The set of points added in the
localrefinement step, f0, contains the points denoted by ·. The refined region contains the
points denoted by · and �. Its internal boundary contains the points denoted by ◦.

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
��

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�
�
�

�
�

��

�
�

0
0

4

4

Fig. 13.3. The locally refined finite-element mesh. The mesh in the upper-right blank
subsquare is further refined recursively in the same manner until the finest level is reached,
where the usual right-angled triangulation is used.

From (12.2) and (4.17), it follows that fine-gridpoints that lie in between
two coarse-gridpoints belong to fa, and the rest of the fine-gridpoints that are
not coarse-gridpoints belong to fb. This yields the following grid partitioning:

fb · fa · fb · fa · fb ·
fa · c ∗ fa · c ∗ fa ·
fb · fa · fb · fa · fb ·
fa · c ∗ fa · c ∗ fa ·
fb · fa · fb · fa · fb ·

, (13.2)

where points in c, fa, and fb are denoted by ‘c ∗’, ‘fa ·’, and ‘fb ·’, respectively.
The number of levels in the multigrid linear system solver is the same as the

number of levels of refinement used for creating the semistructured grid. The 4 color
point Gauss–Seidel relaxation is used in the V-cycle. Only 16 unknowns are relaxed

228 13 Application to Semistructured Grids

Table 13.1. Convergence factors (cf) for V(1,1), AFAC, and AFACx cycles with the
present matrix-based multigrid method for diffusion problems with discontinuous coeffi-
cients discretized on the locally refined finite-element mesh.

Description of Examples

Example Size of Domain Size of Subsquare D̃subsquare Levels Points per Level

(1) 4 × 4 2−8 × 2−8 103 10 4 × 4

(2) 16 × 16 2−16 × 2−16 106 20 16 × 16

(3) 6 × 6 (65/32) × (65/32) 103 6 finest: 68 × 68

Numerical Results

Example V(1,1) AFAC AFACx

(1) .250 .263 .25

(2) .249 .253 .33

(3) .249 .257 .306

at each level, that is, only the unknowns corresponding to gridpoints in the refined
region (see Figure 13.2). We refer to this example as Example (1) in Table 13.1.
The convergence factors (cf) defined in (10.12) are reported in this table.

The convergence factors in Table 13.1 indicate that the V(1,1)-cycle converges
rapidly. Furthermore, the convergence factors for AFAC and AFACx are also good.
In fact, the V(1,1)-cycle converges at most twice as rapidly as AFAC and AFACx,
in agreement with results in [60] and [72].

Example (2) is different from Example (1) in that the size of the subsquare is
smaller, the diffusion coefficient there is larger, and more levels of refinement and
more gridpoints per level are used. The convergence factors are about the same as
those for Example (1). In Example (3), the subsquare is much larger than in the
previous examples: its area is about 1/9th of the area of the entire domain. All levels,
including the finest one, still cover the subsquare. Each coarse grid contains the
even-numbered points of the next finer grid. The index of the point of discontinuity
is deliberately taken to be odd because we are interested in the most difficult case
for which the discontinuities are invisible on the coarse grids.

Note that, unlike in the previous examples, the number of points per grid is
not constant, but rather decreases from one grid to a coarser grid. The unrefined
region at each grid is still two gridpoints wide as in Figure 13.3, but the numbers of
points per level and the numbers of gridpoints along the interfaces between refined
and unrefined regions are much larger than those in Figure 13.3. The convergence
factors for this example are also about the same as those for the previous examples.

Similar convergence rates are also obtained for a finite-volume discretization,
provided that it is defined at the interfaces between refined and unrefined regions in
such a way that the coefficient matrix A is symmetric. This is a desirable and im-
portant property for discretization methods for symmetric PDEs [118]. Indeed, the
discretization error (i.e., the difference between the solution to the boundary-value
problem and the solution to the discrete system on the grid) is A−1 times the trun-
cation error [see (3.10)]. Therefore, an accurate discretization method should have

13.4 The Numerical Examples 229

not only small truncation error but also small ‖A−1‖2. For symmetric matrices A,
we have ‖A−1‖2 = ρ(A−1) (Lemmas 2.9 and 2.14); but for nonsymmetric matrices,
‖A−1‖2 could be much larger than that, resulting in poor approximation even when
the truncation error is small.

The convergence of the present multigrid method deteriorates whenever dis-
cretization methods with nonsymmetric coefficient matrices are used for symmetric
PDEs; even the cure in [40] does not help in this case. Careful definition of the
equations at points at the interfaces between refined and unrefined regions is thus
necessary in the finite-volume discretization to make sure that A is symmetric.
The success or failure of multigrid linear system solvers can thus serve also as an
indicator about the adequacy of the discretization method used. When good multi-
grid solvers fail to converge, the user may suspect that the PDE is ill-posed or the
discretization method is inadequate.

Finally, we consider a problem that is the symmetric extension across the upper-
right corner of Example (1) in Table 13.1 (see Figure 13.4). This problem is equiv-
alent to two problems as in Example (1) in Table 13.1 with continuity enforced
at their joint corner. (Although the boundary-value problem is ill-posed, the alge-
braic problem may well serve as a test problem.) The refinement and discretization
methods are as before, except that they are also extended symmetrically across the

−4−4

0

4

0 4

D = 1

D = 1

Fig. 13.4. The diffusion coefficient D̃ in the irregular domain example. D̃ = 1000 in the
small black subsquares. The size of each of these subsquares is 10−8 × 10−8.

230 13 Application to Semistructured Grids

corner, and the multigrid method is also implemented as before. The convergence
factor for the V(1,1)-cycle in this case is cf = 0.45. Similar results were also obtained
for the Poisson equation on this domain, implying that the difficulty in this example
lies in the irregular shape of the domain.

We suspect that the reason for this somewhat slow convergence is in the ill-
posedness of the PDE. Indeed, the same convergence rate is also obtained also for
the ill-posed example in (9.10) using global refinement and BBMG. The conclusion
is, thus, that multigrid methods may be helpful not only in solving large linear
systems of equations but also in detecting ill-posedness of PDEs. By converging
slowly, the multigrid method indicates that something is wrong in the linear system,
and the user should check the well-posedness of the PDE and the adequacy of the
discretization method.

13.5 Scaling the Coefficient Matrix

As expected from Lemma 12.3, the above convergence rates are not influenced by
scaling of the linear system from the left in advance. However, there is an example
for which the multigrid method applied to the original system (3.5) stagnates, but
it does converge when applied to the left-scaled system (12.19). The reason for this
lies in numerical roundoff errors that appear when the diffusion coefficient takes
very small values, as discussed below.

The example in which scaling has an important effect is similar to Example (3)
in Table 13.1; in the square the only changes are that the domain is of size 10× 10,
and D = 1 in all of it except in a 2 × 2 subsquare in the middle of it, where D̃ =
D̃subsquare = 10−4 (see Figure 13.5). The refinement is done towards the middle of
the domain as follows. The finest level is a 71×71 grid covering the subsquare. (The
subsquare is of size 64×64 fine-gridpoints.) Each coarse level uses the even-numbered
points of the next finer level plus a margin of another extra three gridpoints in the
unrefined region (see Figure 13.6). As in Section 13.4, the discontinuities align with
points in the region of highest resolution only, and not with points in the coarser

10−4

−5

−1

1

−5 −1 1

5

5

D = 1

Fig. 13.5. The diffusion coefficient D̃ for the finite-volume local refinement discretization.
D̃ = 10−4 in the subsquare.

13.5 Scaling the Coefficient Matrix 231

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
· · · · ·

∗ ∗ · � · � · ∗ ∗
· · · · ·

∗ ∗ · � · � · ∗ ∗
· · · · ·

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

Fig. 13.6. The semistructured grid created from one local refinement step. (The finite-
volume discretization method is applied to such a grid.) The coarse grid f1 contains the
points denoted by ∗ and �. The set of points added in the local-refinement step, f0, contains
the points denoted by ·. The refined region contains the points denoted by · and �. Only
these points are relaxed at the fine level.

��
� � � � �

� � � � �

� � � � �

� � � � �

� � � � �
�

�

�

�

�

�

�

�

� � � � � �

� � � � � �

� � � � � �

� � � � � ���

Fig. 13.7. The locally refined finite-volume mesh.

grids; the fine-gridpoints where the discontinuity is present are odd-numbered, so
they do not appear on the coarse grids. This approach is taken in order to make the
problem more difficult and challenging; indeed, using even-numbered discontinuity
points improves the convergence factors a little, as expected. The finite-volume
discretization method (Section 3.12) is used as follows. The integral of the left-hand
side in (13.1) over a volume in Figure 13.7 is replaced by a line integral over the
boundary of this volume using Green’s theorem. Then, the normal derivatives in
this line integral are replaced by finite differences using the points in Figure 13.7.
These approximations are of second-order accuracy in the interior of refined regions
and of first-order accuracy at the interfaces between refined and unrefined regions.
The discretization is designed so that the coefficient matrix is symmetric also at
these interfaces; otherwise, the rate of convergence of the multigrid linear system
solver deteriorates.)

232 13 Application to Semistructured Grids

Table 13.2. Convergence factors (cf) for the matrix-based multigrid method applied
to the finite-volume discretization (with local refinement) of the diffusion problem with
Dsubsquare = 10−4. The linear system is scaled in advance from the left to avoid numerical
roundoff errors in the coarse-grid matrices.

Levels V(1,1) AFAC AFACx

6 .250 .416 .421

Note that a small oblique shift of the refined region in the grid in Figure 13.7
in the southwest direction yields the grid of Figure 13.6. Therefore, the unknowns
may be stored as in Figure 13.6, and the coarse grid is logically rectangular as
well as the fine grid. With this implementation, the stencil contains at most nine
coefficients, and the present coarsening method is applicable. The full coarsening
used in the refined regions as in (13.2) guarantees that the coarse-grid matrices
are also of 9-point stencil at most. Six levels of refinement are used to produce
the semistructured grid for the discretization, and six-level multigrid cycles are
used to solve the resulting linear system of equations. The rest of the details of
implementation are as in Section 13.4.

It turns out that the multigrid method stagnates for the above example when
applied to (3.5), but converges nicely when applied to the left-scaled system (12.19)
(see Table 13.2). We have observed that, because of roundoff errors, the coarse-
grid matrices for the original system (3.5) have positive row-sums for equations
corresponding to the subsquare, implying that the coarse-grid approximation is
inappropriate. In fact, the coarse-grid equations at the subsquare tend towards
trivial equations as the grid becomes coarser and coarser. These equations cannot
possibly yield suitable correction terms for the original problem. Fortunately, this
difficulty disappears when the linear system is left-scaled before constructing the
transfer and coarse-grid operators.

To guarantee numerical stability, the coarse-grid matrices are constructed in a
way that is both stable and efficient; that is, first JcRA is calculated, and then,
using it, (JcRA)PJ t

c is calculated. The results in Table 13.2 show that left-scaling
can indeed help in avoiding numerical instability. A similar observation is made in
the examples in Section 13.4 when D̃subsquare is made very small rather than very
large: left-scaling is useful in preventing stagnation of the multigrid linear-system
solver due to numerical roundoff errors.

13.6 A Black-Box Multigrid Version

In the spirit of the above implementation, we have also extended BBMG for prob-
lems on semistructured grids as follows. The prolongation operator

P̃i : l2(f i
L) → l2(f i−1

L)

is constructed as in Section 9.1 in the refined region, and is the identity in the
unrefined region, where all the gridpoints remain in the coarse grid as well. (This
approach is in the spirit in [45], where the unknowns that correspond to no gridpoint

13.7 Exercises 233

remain in all the coarse levels.) The restriction operator

R̃i : l2(f i−1
L) → l2(f i

L)

is the transpose of P̃i with respect to the inner product for which the coefficient
matrix at the (i−1)st level, Bi−1, is symmetric. Then, we define the next coarse-grid
coefficient matrix Bi by

Bi ≡ R̃iBi−1P̃i.

As before, the 4-color point Gauss–Seidel relaxation is used in the refined region,
and the relaxation in the unrefined region is deferred to the next coarser level.
This version yields practically the same convergence rates as those reported in
Sections 13.4 and 13.5. For the left-scaled problem in Section 13.5, it is absolutely
essential to use the above-mentioned inner product (with respect to which the Bi−1’s
are symmetric) to have good convergence. Indeed, with the standard definition
R̃ ≡ P̃ t, BBMG exhibits slow convergence (even with the fix in [40]).

There is only one example for which the extension of BBMG converges more
rapidly than our main multigrid version in Section 12.7. This example is like that in
Section 13.5, but with D̃subsquare = 103 rather than 10−4. With the V(1,1)-cycle, no
matter whether scaling is used, the extension of BBMG yields a convergence factor
cf = 0.19, whereas the main method in Section 12.7 yields cf = 0.35.

So, although the upper bound for the condition number in Theorem 12.1 above
applies to the multigrid method in Section 12.7 only, one can still learn from it how
to extend BBMG to semistructured grids as well. Still, the method in Section 12.7 is
more general than the extension of BBMG, because it applies not only to semistruc-
tured grids but also to more general locally refined meshes.

13.7 Exercises

1. Assume that A has a 9-point stencil on the grid in (13.2). Show that Q has a
9-point stencil as well.

2. Consider the serial computer in the exercises at the end of Chapter 1. Compute
the sequential time of the V(1,1)-cycle in Section 13.2 applied to a uniform mesh
as in Figure 4.13, refined globally by Refinement Method 4.1.

3. Consider the parallel computer in the exercises at the end of Chapter 1. Compute
the parallel time for AFACx cycle in Section 13.3 for the above linear system.
(Assume that AFACx requires twice as many iterations as the V(1,1)-cycle.)

4. Compute the speedup and average speedup as functions of the number of pro-
cessors P and the number of unknowns N .

5. As explained in [72], the main advantage of AFAC and AFACx is the opportu-
nity to use an efficient load-balancing scheme to distribute the entire workload
in advance rather evenly among the processors. Modify your above speedup
estimates by incorporating this point as well.

6. Apply your code from the exercises at the end of Chapter 12 to problems on
semistructured grids as in Section 13.4.

7. Are the coarse-grid matrices diagonally dominant as well?
8. Is ‖Pff ‖Dff

reasonably bounded?
9. Does AFACx indeed require twice as many iterations as the V(1,1)-cycle?

Part VI

Matrix-Based Multigrid
for Unstructured Grids

237

Locally refined meshes and, in particular, semistructured grids provide accurate
approximation to irregular solution functions. The process of repeated local refine-
ment yields a grid that is fine wherever the solution has large variation (large gradi-
ent), and coarser wherever the solution is relatively smooth. However, locally refined
meshes are not always suitable for complicated domains, for which the initial coarse
mesh may be inappropriate. To approximate well such domains, one must often use
completely unstructured grids that cannot be obtained from local refinement but
rather by a careful study of the properties of the particular domain under consid-
eration. Unlike locally refined grids, such grids have no natural hierarchy of coarser
and coarser grids that may be used in a multigrid linear system solver. Further-
more, completely unstructured finite-element meshes have no hierarchy of nested
finite-element function spaces to approximate the original problem on coarse levels.
The coarse grids in the multigrid linear system solver must therefore be defined
algebraically, using the information in the original algebraic system. In fact, the
coarse grids are just nested subsets of unknowns, each of which is referred to as
“level.” Because these subsets no longer relate to any physical grids, it is more
appropriate to refer to the linear system solver that uses them as a multilevel rather
than multigrid method.

The family of algebraic multilevel methods is, thus, yet more “algebraic” than
the family of matrix-based multigrid methods studied in the previous parts in this
book. Indeed, in algebraic multilevel methods the original coefficient matrix is used
to form not only the transfer and coarse-level operators but also the coarse levels
themselves, namely, the subsets of unknowns chosen to be used to supply correction
terms. Because the method is independent of any property of the particular appli-
cation, it has to be implemented once and for all, yielding a computer program that
can in principle be used for general linear systems.

In this part of the book, we describe two multigrid approaches to solve large
sparse linear systems arising from the discretization of elliptic PDEs on completely
unstructured grids. The first approach uses domain decomposition to design the
coarse grid and the transfer operators to and from it. This approach is not entirely
algebraic, because the definition of coarse grid comes from the geometric properties
of the domain and its decomposition. This is why it is still referred to as “multigrid”
rather than “multilevel.” The second approach, on the other hand, introduces an
entirely algebraic multilevel method that uses only information from the coefficient
matrix to design both the coarse level (the subset of unknowns with no geomet-
ric interpretation whatsoever, on which a low-order system is solved to supply a
correction term) and the transfer operators to and from it. Because no geometry
is used in its definition, this method is called algebraic multilevel rather than alge-
braic multigrid. (The name “algebraic multigrid” is preserved for the original AMG
method, see Section 6.10.) This way, the method can be implemented once and for
all, yielding a computer code ready to be used for different kinds of applications,
including the locally refined meshes discussed in the previous part and completely
unstructured meshes. Indeed, the method is tested here numerically for many diffi-
cult examples, including highly anisotropic problems, complicated domains, highly
nonsymmetric problems, and systems of coupled PDEs.

14

The Domain-Decomposition Multigrid Method

In this chapter, we introduce a domain decomposition two-grid iterative method for
solving large sparse linear systems that arise from the discretization of elliptic PDEs
on general unstructured grids that do not necessarily arise from local refinement.
In this method, the coarse grid consists of the vertices of the subdomains in the
domain decomposition. Assuming that the coefficient matrix is SPD and diagonally
dominant, we supply an upper bound for the condition number of the V(0,0) cycle.

We call the present method the Domain-Decomposition Multigrid (DDMG)
method [98]. This method can be viewed as an extension of BBMG to the most
complicated case of unstructured grids. Indeed, it extends the approach illustrated
in Figure 6.8 to nonuniform grids.

14.1 The Domain-Decomposition Approach

In this chapter, we use domain decomposition to design a two-grid iterative linear
system solver. We assume that a general (unstructured) finite-element mesh is given;
it is not assumed that the mesh has been obtained from local refinement or any other
inductive process that can guide the definition of coarse grids. Instead, we assume
that a domain decomposition is available, which can be used in the construction
of the coarse grid. The transfer and coarse-grid matrices are then derived from the
coefficient matrix alone.

Domain decomposition is a well-known mathematical methodology for the
numerical solution of elliptic boundary-value problems. It can be used (a) in the
original mathematical model to reformulate the original PDE, (b) in the discretiza-
tion stage to form parallelizable numerical schemes or (c) in the discrete system of
algebraic equations to introduce iterative linear system solvers. Here we use it for
purpose (c) above; in fact, we use it to produce a multigrid algorithm.

Domain decomposition is particularly attractive in parallel computing, because
the individual subtasks in the individual subdomains can be carried out simultane-
ously in parallel. It is also attractive in the context of cache-oriented programming,
provided that the data required to carry out a particular subtask in a particu-
lar subdomain fit in the cache (see Section 5.10). Another advantage of domain
decomposition is the opportunity to use available algorithms (such as multigrid)

240 14 Domain Decomposition

and software (such as finite-element packages) to solve the individual subproblems
in the individual subdomains.

Here we use domain decomposition not as a discretization method but rather
as a multigrid algorithm to solve the discrete system obtained from a given finite-
element discretization of an elliptic boundary-value problem such as the diffusion
equation (3.2). The diffusion coefficients may be variable and even discontinuous,
and the discontinuity lines don’t have to align with the edges of the subdomains,
neither in the analysis below nor in the actual application of the method.

14.2 The Domain-Decomposition Multigrid Method

Consider the finite-element mesh for the solution of an elliptic boundary-value prob-
lem as in (3.2) and the domain decomposition in Figure 14.1. Assume that the
linear finite-element discretization is used to produce the linear system (3.5) with
the coefficient (stiffness) matrix A. We define the Domain-Decomposition Multigrid
(DDMG) method for solving this system as follows. Let the coarse grid c be the
set of corners or vertices of subdomains (interior nodes that are shared by at least
three subdomains, boundary points that are shared by at least two subdomains,
corner boundary points, and possibly some other suitable nodes on the edges of
subdomains); (see Figure 14.2).

�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�

	
	
	
	
	

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

Fig. 14.1. The unstructured grid and the domain decomposition.

�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�

	
	
	
	
	

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

•�

•�
•�

•�•�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Fig. 14.2. The coarse-gridpoints are denoted by ‘•.’

14.2 The Domain-Decomposition Multigrid Method 241

In the following, by “edge of a subdomain” we refer to the set of nodes in
a segment of the (internal) boundary of the subdomain that connects one point
from c (at one end of the segment) to the next point from c (at the other end of
the segment). (The endpoints of the segment are included in the edge as well.)

The key factor in the DDMG method is the prolongation operator P , which
prolongs a function v defined only at nodes in c into a function Pv defined in every
node in the mesh. This is done in two steps: first Pv is defined in each edge of each
subdomain by solving a tridiagonal subsystem; then, the resulting values of Pv in
the edges of each subdomain are used to define Pv also in its interior by solving a
a local (Dirichlet) subproblem in it. The complete definition is detailed next.

Define the matrix A(0) by:

A
(0)
i,j =

⎧⎪⎨
⎪⎩

ai,j if i and j do not lie on the same edge
but do lie on two different edges

0 otherwise

and the matrix Ã by

Ã = A − A(0) + rs(A(0)).

In other words, Ã is obtained from A by “throwing” onto the main diagonal those
elements ai,j that couple nodes from different edges.

We are now ready to define two disjoint subsets of nodes, on which the two
prolongation steps will be defined. We start with fa, the subset of nodes where
the first prolongation step is defined. Initialize fa to be the set of nodes outside c
that lie on some edge of some subdomain. Once fa has been initialized, it is further
modified to guarantee stability as follows. For every i ∈ fa, if

−
∑

j∈c∪fa, j �=i

Ãi,j/ai,i ≤ threshold, (14.1)

then i is dropped from fa and added to c.
Once this procedure has been completed, we are ready to define fb, the subset of

nodes on which the second prolongation step will be defined. This subset contains
the nodes that are neither in c nor in fa. In other words, fb is the set of nodes in
the interiors of the subdomains.

Clearly, c, fa, and fb are disjoint. Define f = fa ∪ fb. Define the matrix Ga as
follows.

1. Initialize Ga by

Ga = Ãfafa
+ rs(Ãfafb

).

2. If, for some i ∈ fa,

(Ga)i,i/ai,i < threshold,

then update (Ga)i,i by

(Ga)i,i ← Ãi,i − rs(Ãfafa
)i,i − rs(Ãfac)i,i.

242 14 Domain Decomposition

From the fix that follows (14.1), the new value of (Ga)i,i is bounded away from zero.
This property guarantees stability of the prolongation operator defined later.

Note also that Ga is a block-diagonal matrix, with tridiagonal blocks that corre-
spond to the different edges. Thus, its inversion requires the solution of independent
tridiagonal systems, which can be done efficiently in parallel.

Define Gb by

Gb = Ãfbfb
.

Note that Gb is block-diagonal, with blocks that correspond to the subdomain
interiors. Thus, its inversion requires the solution of independent problems in the
individual subdomains, which can be done efficiently in parallel.

The restriction and prolongation matrices are analogous to those in Section 12.2.
Note that these are square matrices of the same order as A, thus they are slightly
different from the rectangular restriction and prolongation matrices used tradition-
ally in multigrid algorithms. Still, this difference has little practical effect, because
the submatrices that are added to make the restriction and prolongation matrices
square are easily invertible, thanks to their block-diagonal structure. The main rea-
son for using square restriction and prolongation matrices here is to have the upper
bound for the condition number derived below. (In practice, one could use the rect-
angular prolongation and restriction matrices obtained by omitting the upper-left
blocks Rff and Pff from the present matrices.)

Here are the definitions of the prolongation matrix P and the restriction
matrix R:

P =

⎛
⎝(Gb)−1 −(Gb)−1Ãfbfa

−(Gb)−1Ãfbc

0 I 0
0 0 I

⎞
⎠
⎛
⎝I 0 0

0 (Ga)−1 −(Ga)−1Ãfac

0 0 I

⎞
⎠

(14.2)

R =

⎛
⎝I 0 0

0 (Ga)−1 0
0 −Ãcfa

(Ga)−1 I

⎞
⎠
⎛
⎜⎝

(Gb)−1 0 0
−Ãfafb

(Gb)−1 I 0
−Ãcfb

(Gb)−1 0 I

⎞
⎟⎠ . (14.3)

Finally, the coarse-grid matrix Q is defined by

Q =
(

W 0
0 B

)
, (14.4)

where

B = JcRAPJ t
c , (14.5)

and

W = Rff diag(Aff)Pff . (14.6)

The coarse-grid matrix Q is different from standard coarse-grid matrices by the
submatrix W , which is added at the upper-left block to make sure that Q is of the
same order as A. This definition is used here for the sake of the analysis below.
The submatrix W is easily invertible, and adds little to the cost of the multigrid
algorithm.

14.2 The Domain-Decomposition Multigrid Method 243

�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�

	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�

�
�

�
�

�

•�

•�

�
�

�
�

�

�
�

�
�

�

Fig. 14.3. First prolongation step: from the endpoints of the edge (denoted by ‘•’) to the
entire edge.

�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�

	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
•�

•� ��

Fig. 14.4. First prolongation step: from the coarse grid (c) to the edges (fa).

The application of the prolongation operator is actually done in two steps:

1. First, determine the values of the prolonged function in the edges by solving a
homogeneous 1-D problem (tridiagonal system) on each edge with the Dirichlet
boundary conditions at the endpoints of this edge taken from the known values
in c (Figures 14.3 and 14.4).

2. Next, determine the values of the prolonged function in the subdomain interiors
as well by solving homogeneous subproblems in the individual subdomains, with
the Dirichlet boundary conditions on the edges taken from the first prolongation
step (Figure 14.5).

This is in the spirit of the algorithm in Section 6.6.
Thus, applications of the operators R or P require the solution of the local

1-D problems in the tridiagonal blocks in Ga in the individual edges and the
local subproblems in the blocks in Gb in the individual subdomains. Because these
local problems are independent of each other, they can be solved simultaneously
in parallel. Similarly, the definition of Q requires applications of JcRAPJ t

c to the
standard unit vectors in l2(c) (which have the value 1 at one of the nodes in c and
0 elsewhere). This can also be done in parallel, as discussed above. Furthermore,
when the data required to solve each local subproblem fit in the cache, one could
use cache-oriented programming to minimize access to the secondary memory (see
Section 5.10).

244 14 Domain Decomposition

�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	

�
�
�
�
�

	
	
	
	
	

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

Fig. 14.5. Second prolongation step: from the edges (c ∪ fa) to the interior of each sub-
domain (fb).

The above local subproblems (corresponding to the blocks in Ga and Gb) can be
solved by an inner multigrid iteration. This iteration, however, could still be rather
time consuming. To avoid it, one could approximate the blocks in Pfc by suitable
row-sum blocks, in the spirit of Section 6.11 above. This approach has never been
tested, and is left to future research. Here we prefer to stick to the original approach,
which enjoys the theory below.

The relaxation method used in the DDMG method can be a version of the
alternating Schwarz method. In this relaxation, the original equations are relaxed
in c in a first stage, then relaxed simultaneously in fa in a block-Jacobi stage,
and finally relaxed simultaneously in fb in another block-Jacobi stage. (See also
Section 16.4, where a special case of this approach is formulated algebraically.) In
the analysis below, however, we assume that no relaxation is used, and derive an
upper bound for the condition number of the V(0,0)-cycle.

14.3 Upper-Bound for the Condition Number

The following theorem gives an upper-bound for the condition number of DDMG,
implemented in a V(0,0)-cycle (with no relaxations). This implies that the nearly
singular eigenvectors of A are handled well by the coarse-grid correction. This
indicates that the V(1,1)-cycle, in which relaxation is used to handle the rest of
the error modes as well, should converge rapidly, at least for diagonally dominant
SPD problems.

Theorem 14.1 Let D be a diagonal SPD matrix of the same order as A. Assume
that A is a diagonally dominant L-matrix that is symmetric with respect to (·, ·)D.
Then, we have for DDMG

κ(PQ−1RA) ≤ 4
(
(1 + 2‖Pff ‖Dff

‖A‖D)2 + 4‖Pff ‖2
Dff

‖A‖2
D

)
.

Proof. The theorem is actually a special case of Theorem 12.1 with L = 1. [Note
that Lemma 12.5 applies also for DDMG in a stronger version, in which the factor√

2 in (12.22) is replaced by 1. Indeed, the proof of this lemma is valid also for
DDMG with Ab = (0). Thus, we have

‖J t
fJfP−1x‖2

D ≤ 4‖A‖D(x,Ax)D.

14.4 High-Order Finite Elements and Spectral Elements 245

The theorem then follows from (12.28), (12.24), (12.25), and (12.33), with L = 1
and

√
2 replaced by 1.] This completes the proof of the theorem.

Note that, when D is as in (12.19) and A is left-scaled in advance as in (12.19),
we have from Corollary 2.3 that ‖A‖D ≤ 2. Furthermore, Theorem 14.1 takes in
this case a more concrete interpretation, as stated in the following corollary.

Corollary 14.1 Assume that the isotropic diffusion equation (13.1) is discretized
on a linear finite-element mesh using triangles with angles of at most π/2. Then, for
DDMG, κ(PQ−1RA) is bounded independently of the meshsize and the possible jump
in the diffusion coefficient D̃, provided that the number of elements per subdomain
is bounded.

Proof. From (4.17), A is a diagonally dominant L-matrix. The boundedness of
the number of elements per subdomain and the fix that follows (14.1) guarantee
that ‖Pff ‖Dff

is bounded independently of the meshsize. In view of (12.19) and the
discussion in Section 12.5, ‖Pff ‖Dff

is bounded also independently of the possible
jump in the diffusion coefficient D̃. The corollary follows from Theorem 14.1 and
Lemma 12.3.

Note that there is no need to assume that the possible discontinuities in the dif-
fusion coefficient D̃ align with the edges of the subdomains. Thus, once DDMG has
been implemented for a particular domain and a particular domain decomposition,
the computer code can be used for different kinds of diffusion coefficients.

The above corollary indicates that, when the meshsize tends to zero, the number
of subdomains should also increase to guarantee the boundedness of ‖P‖2 and
the condition number. When the number of subdomains is very large, c is large
as well, and the coarse-grid problem is hard to solve directly. Instead, it can be
solved approximately recursively by one DDMG iteration, using a secondary domain
decomposition with larger subdomains. In this case, DDMG is implemented as a
multigrid rather than two-grid method.

14.4 High-Order Finite Elements and Spectral Elements

In high-order finite-element and spectral-element discretization methods [80], each
element in the mesh may contain a large number of nodes to increase the accuracy of
the numerical approximation. Because all the nodes in a particular finite or spectral
element are coupled to each other, the coefficient matrix A is less sparse than when
finite differences or linear finite elements are used. The definition of a multigrid
linear system solver is therefore more difficult. Indeed, even for structured grids as
in Figure 14.6, it is not clear how to define the coarse grids and the transfer and
coarse-grid matrices.

One possible approach is to use a low-order scheme that uses the same nodes as
the original high-order scheme. Once the resulting matrix is scaled as the original
one (say, left-scaled), it can be used as a preconditioner in a PCG or any other
Krylov-subspace acceleration method [83].

In [106], this approach is used for structured grids as in Figure 14.6. Two pre-
conditioners are tested: one uses finite differences on the nodes in Figure 14.6, and

246 14 Domain Decomposition

0

1

0 1

Fig. 14.6. A mesh of 16 spectral elements (defined by the thick lines), each of which uses
polynomials of degree at most 8.

the other uses bilinear finite elements on the cells in Figure 14.6. Both the original
matrix and the preconditioning matrices are left-scaled in advance, so they have the
same scaling. The preconditioning step is done approximately using a single Auto-
MUG or BBMG V(1,1)-cycle. (Because of the left-scaling, the transpose in BBMG
should be interpreted as in Sections 13.5 and 13.6.)

Another possible approach tested in [106] is to use the above low-order scheme
only to construct the multigrid hierarchy, then drop it and replace it by the original
high-order scheme on the original fine grid. The resulting V(1,1)-cycle that uses the
original high-order scheme on the finest grid in Figure 14.6 (with two-step Jacobi
relaxation based on the red-black coloring, see Section 16.2 below) and the transfer
and coarse-grid operators derived from the low-order scheme yields a more stable
iterative solver than in the previous approach.

14.5 Exercises 247

Here we propose a third approach in the spirit of domain decomposition. In this
approach, each finite or spectral element is viewed as a subdomain. The DDMG
method may now be applied to the original high-order scheme, with no need to use
any low-order scheme.

As a matter of fact, the multigrid algorithm in Chapter 12 can also be thought
of as a DDMG algorithm, with the finite elements in the coarse mesh viewed as
small subdomains. This observation establishes a close relation between multigrid
and domain-decomposition methods, as discussed in Chapter 6.

14.5 Exercises

1. Use the discussion in Section 12.5 to show that, for isotropic diffusion problems
discretized on a finite-element triangulation (with angles that do not exceed
π/2), ‖Pff ‖ is moderate, provided that the number of nodes per subdomain is
moderate.

2. Use the above result in Theorem 14.1 to show that the condition number of the
DDMG V(0,0)-cycle is moderate.

3. Use the above result to show that the DDMG V(1,1)-cycle should converge
rapidly.

4. Explain the advantage of DDMG in terms of cache access.
5. Show that DDMG can be viewed as a version of the multigrid method whose

prolongation is indicated in Figure 6.8.
6. Show that the ith column in Q can be calculated by

Qe(i) = R(A(Pe(i))),

where e(i) is the ith column of the identity matrix of the same order as Q.
7. Show that all the columns of Q can be calculated simultaneously in parallel.
8. Show that Q is sparse in the sense that two coarse-gridpoints are coupled in

Q if and only if they are corners of the same subdomain. Conclude that the
dimension of e(i) above could actually be much smaller than the order of Q. In
fact, e(i) should be defined only at the coarse-gridpoint corresponding to i and
at the coarse-gridpoints surrounding it, in which Qe(i) is supported.

9. Write the computer code that implements the DDMG method for diffusion
problems in the L-shaped domain in Figure 6.4. Use the cyclic-reduction method
in Section 7.2 to solve the individual tridiagonal systems in the individual edges
between subdomains and your BBMG code from the exercises at the end of
Chapter 9 to solve the individual subsystems in the individual subdomains in
the applications of R and P and the construction of Q.

10. Test your code for the Poisson equation with Dirichlet boundary conditions. Do
you obtain the Poisson convergence factor of 0.1?

11. Test your code for problems with various kinds of boundary conditions. Is the
convergence rate still good?

12. Test your code for isotropic diffusion problems with discontinuous coefficient
with discontinuity lines that don’t align with the edges of the subdomain. Is the
convergence rate still good?

248 14 Domain Decomposition

13. Test your code for highly anisotropic equations as in Section 3.9. Does the
convergence rate deteriorate?

14. Modify your code to use the block-GS relaxation, with the blocks being the
subdomains themselves. Does the convergence rate improve?

15. Modify your code to use the alternating “zebra” line-GS relaxation. Does the
convergence rate improve?

15

The Algebraic Multilevel Method

The multilevel method introduced here is algebraic in the sense that it is defined in
terms of the coefficient matrix only. In particular, the coarse level is just a subset
of unknowns with no geometric interpretation, hence the name “multilevel” rather
than “multigrid.” For diagonally dominant SPD problems, we derive an a posteriori
upper-bound for the condition number of the V(0,0)-cycle. For diffusion problems,
this upper-bound indicates that the condition number grows only polynomially
with the number of levels, independent of the meshsize and the possible discontinu-
ities in the diffusion coefficient. This indicates that the nearly singular eigenvectors
of A are handled well by the coarse-level correction, so the V(1,1)-cycle that uses
relaxation to handle the rest of the error modes as well should converge rapidly.

15.1 The Need for Algebraic Multilevel Methods

An algebraic multilevel method is a multilevel method that is defined in terms of
the coefficient matrix A only, with no mention of the underlying PDE or discretiza-
tion method from which the linear system has been produced. Because the coarse
levels are just nested subsets of unknowns with no geometric meaning, the name
“multilevel” is more suitable than “multigrid.” (The name “algebraic multigrid”
(AMG) is preserved for the original algebraic multilevel method in [25] and [86]; see
Section 6.10.)

Algebraic multilevel methods are particularly attractive for unstructured-grid
problems, where no geometric method is available to construct the coarse grids.
The elements in the coefficient matrix A are used to define the coarse level, namely,
the subset of unknowns on which the original system can be approximated to supply
a correction term to the original error.

The present algebraic multilevel method is carefully designed to suit also prob-
lems with highly anisotropic variable coefficients on unstructured meshes as in
Figure 4.7. For this purpose, the present analysis proves most useful. Indeed, in or-
der to have a good upper-bound in Theorem 12.1, the prolongation matrix P must
be reasonably bounded. To guarantee this, the main-diagonal elements in Ga and Gb

should be not too small in magnitude. In other words, there should be no point in fb

that is only weakly coupled to c∪fa in A. If the algebraic multilevel method detects
such a point, then it immediately drops it from fb and adds it to c, avoiding any

250 15 The Algebraic Multilevel Method

instability in the prolongation operator P . This can actually be viewed as local semi-
coarsening in the (local) strong-diffusion direction only, in the spirit of [70] and [86].

Thanks to its algebraic formulation, the algebraic multilevel method can be
implemented in a computer code that uses matrix manipulations only, and doesn’t
have to be modified for each particular application. On the other hand, algebraic
multilevel methods cannot exploit the information contained in the original PDE
or discretization method, which may lead to nonoptimal convergence rates. This,
however, is a price worth paying for having a purely algebraic linear system solver.

15.2 The Algebraic Multilevel Method

In this section, we describe the algebraic multilevel method for the solution of large
sparse linear systems. The method is defined in terms of the coefficient matrix only;
the underlying PDE and discretization method are never used. In this sense, the
method is indeed algebraic: it is an iterative method for the solution of the algebraic
system (3.5).

In the multigrid algorithms that have been used so far in this book, the coarse
grids are constructed from the original, fine grid, using its geometric properties. In
structured grids, the coarse grid is obtained from the fine grid by dropping every
other gridline in both the x and y spatial directions (6.1) or only in the y spatial
direction (6.15). In locally refined grids, the coarse grid is obtained from the coarse
mesh in the previous refinement level in the local-refinement algorithm that has
been originally used to create the fine grid. Finally, in unstructured grids on which
a domain decomposition is imposed, the coarse grid is obtained from the vertices
(corners) of the subdomains. For this reason, these three types of algorithms are
not strictly algebraic, as they are not defined in terms of the algebraic system (3.5)
alone. In the algebraic multilevel method, on the other hand, the coarse “grid” (or,
more precisely, the coarse level) is defined purely algebraically from (3.5) as a subset
of unknowns with no apparent geometric meaning whatsoever. This is why it is well
defined not only for the above grids but also for completely unstructured grids.

In the algebraic multilevel method, the coarse level is a maximal subset of un-
knowns that are at most weakly coupled in A. Here is how it is defined. Let N be
the order of the coefficient matrix A [the number of unknowns in (3.5)]. Let α, γ,
τ , δ, ζ, and ε be real nonnegative parameters that will be used below as thresholds
(actually, τ , δ, and ζ are positive). The smaller these parameters are, the smaller is
the coarse level defined below.

We first describe the two-level implementation, in which only one coarse level is
used. The multilevel version that uses more levels is implemented recursively in the
same way. One can use the above parameters also in this recursion, or use slightly
smaller parameters to further reduce the number of unknowns in the coarser levels.

The matrix A(γ) defined below contains off-diagonal elements in A that are
small in magnitude or have a real part with the same sign as the corresponding
main-diagonal element in A:

(A(γ))i,j =

⎧⎪⎪⎨
⎪⎪⎩

ai,j if i �= j and |ai,j | < γ · min(|ai,i|, |aj,j |)
ai,j if i �= j and (ai,j))(ai,i) > 0
ai,j if i �= j, A = A∗, and (ai,j))(aj,j) > 0
0 otherwise.

(15.1)

15.3 The Coarsening Procedure 251

The above matrix A(γ) is now used to define Ã(γ), which is obtained from the original
matrix A by “throwing” the elements in A(γ) onto the main diagonal: Define also
the matrix

Ã(γ) = A − A(γ) + rs(A(γ)). (15.2)

In other words, Ã(γ) is obtained from A by “throwing” onto the main diagonal
those off-diagonal elements that are small in magnitude in comparison with the
corresponding main-diagonal element or have the same sign as its real part. The
matrices A(α) and Ã(α) are defined in the same way, except that γ in (15.1), (15.2)
is replaced by α [Ã(α) will be used in the coarsening procedure below]. Note that
these matrices are symmetric (or hermitian) whenever A is. Furthermore, if A is an
L-matrix with positive main-diagonal elements and γ = 0, then Ã(γ) = A.

15.3 The Coarsening Procedure

We are now ready to define the coarsening procedure (the definition of the coarse
level), which is just a variant of Algorithm 6.3.

1. First, the coarse level c is initialized to contain all the unknowns:

c = {1, 2, 3, . . . , N}.

2. Then, for i = 1, 2, 3, . . . , N do the following:
• If i ∈ c, then, for every 1 ≤ j ≤ N for which

j �= i and |ai,j | ≥ α · min(|ai,i|, |aj,j |),

drop j from c; that is, update c by

c ← c \ {j}. (15.3)

At this point, c is a maximal set of unknowns that are at most weakly coupled
in A. We now add some more unknowns to c as follows. Let fa be the set of indices
1 ≤ i ≤ N for which i �∈ c and ∣∣∣∣∣∣

∑
j∈c

Ã
(α)
i,j

∣∣∣∣∣∣ ≥ τ |ai,i|. (15.4)

That is, fa is the set of unknowns that are strongly coupled to c through elements in
A with real-part sign that is different from that of the corresponding main-diagonal
element. (Note that when A is an L-matrix with positive main-diagonal elements,
fa contains all the unknowns that are strongly coupled to c.) We are now ready to
define fb, the set of indices of unknowns that are only weakly coupled to c (through
elements of A with the appropriate sign) but strongly coupled to c ∪ fa (through
elements of A with the appropriate sign).

1. Initialize fb to be the empty set: fb = ∅.
2. For i = 1, 2, 3, . . . , N , do the following.

• If i �∈ c ∪ fa, then do one of the following.

252 15 The Algebraic Multilevel Method

a) If i is strongly coupled to c ∪ fa in the sense that∣∣∣∣∣∣
∑

j∈c∪fa

Ã
(α)
i,j

∣∣∣∣∣∣ ≥ δ|ai,i|, (15.5)

then add i to fb by

fb ← fb ∪ {i},

b) And if, on the other hand, i is only weakly coupled to c ∪ fa in the
sense that ∣∣∣∣∣∣

∑
j∈c∪fa

Ã
(α)
i,j

∣∣∣∣∣∣ < δ|ai,i|, (15.6)

then add i to c by

c ← c ∪ {i}.

Thus, fb is the set of unknowns that are weakly coupled to c in the above sense,
but strongly coupled to c ∪ fa. Finally, define f = fa ∪ fb. This completes the
coarsening procedure.

Most often, (15.6) holds only for a few unknowns, so the number of unknowns
in c is much smaller than the original number of unknowns in f ∪ c. Indeed, in the
numerical experiments in [100], (15.6) never holds in the first three levels, and holds
only for six to eight unknowns in the fourth level. In the numerical experiments in
the next chapter, the number of unknowns in a coarse level is at most half the
number of unknowns in the previous finer level.

In its final form, c is a maximal set of unknowns that are only weakly coupled
to each other through elements in A with real parts of the appropriate sign. As
we will see below, this property guarantees that the prolongation operator P is
well bounded, which is most important in bounding the condition number of the
V(0,0)-cycle.

When parallel implementation is considered, one can modify the above coarsen-
ing procedure into a parallelizable procedure. This can be done by using a domain
decomposition and applying the above coarsening procedure in each subdomain
separately. The coarse level is then defined as the union of the local coarse levels
in the individual subdomains. This approach may lead to a slightly larger coarse
levels than in the main version introduced above.

15.4 The Transfer and Coarse-Level Matrices

The matrix Ã(γ) is now used to define the prolongation and restriction operators P
and R. The above definition of Ã(γ) guarantees that the main-diagonal elements in
P−1 and R−1 are not too small in magnitude, which guarantees that P and R are
well bounded (see Section 12.5).

For simplicity, we omit the superscript and use hereafter the notation Ã ≡ Ã(γ).

15.4 The Transfer and Coarse-Level Matrices 253

We start by defining the diagonal matrices that will eventually be used to form
the main blocks in P−1 and R−1. The diagonal matrix Ga is defined as follows.

1. Initialize Ga by
Ga = rs(Ãfafa

) + rs(Ãfafb
). (15.7)

2. If, for some i ∈ fa,

((Ga)i,i)(ai,i) ≤ 0 or |(Ga)i,i| < ζ|ai,i|,

then update (Ga)i,i by
(Ga)i,i ← −rs(Ãfac)i,i.

From (15.4), the diagonal elements in Ga are bounded away from zero.
The diagonal matrix Gb is defined as follows.

1. Initialize Gb by

Gb = rs(Ãfbfb
). (15.8)

2. If, for some i ∈ fb,

((Gb)i,i)(ai,i) ≤ 0 or |(Gb)i,i| < ζ|ai,i|,

then update (Gb)i,i by

(Gb)i,i ← −rs(Ãfbfa
)i,i − rs(Ãfbc)i,i.

From (15.5) and (15.6), the diagonal elements in Gb are bounded away from zero.
The matrices R and P are now defined in the spirit of Section 12.2:

P =

⎛
⎝(Gb)−1 −(Gb)−1Ãfbfa

−(Gb)−1Ãfbc

0 I 0
0 0 I

⎞
⎠

·

⎛
⎝I 0 0

0 (Ga)−1 −(Ga)−1Ãfac

0 0 I

⎞
⎠ , (15.9)

R =

⎛
⎝I 0 0

0 (Ga)−1 0
0 −Ãcfa

(Ga)−1 I

⎞
⎠
⎛
⎜⎝

(Gb)−1 0 0
−Ãfafb

(Gb)−1 I 0
−Ãcfb

(Gb)−1 0 I

⎞
⎟⎠ , (15.10)

These matrices will be used in the analysis below. In practice, we often use the
rectangular prolongation and restriction matrices P̃ and R̃, defined by

P̃ ≡ PJ t
c =

⎛
⎝−(Gb)−1Ãfbfa

−(Gb)−1Ãfbc

I 0
0 I

⎞
⎠(−(Ga)−1Ãfac

I

)
, (15.11)

and

R̃ ≡ JcR =
(
−Ãcfa(Ga)−1 I

)(−Ãfafb
(Gb)−1 I 0

−Ãcfb
(Gb)−1 0 I

)
. (15.12)

254 15 The Algebraic Multilevel Method

In fact, P̃ in (15.11) is closely related to the prolongation matrix defined in Algo-
rithm 6.4. Finally, the coarse-level matrix Q̃ is defined as follows.

1. First, Q̃ is initialized by

Q̃ = R̃AP̃ = B. (15.13)

2. Then, elements in Q̃ that are small in magnitude in comparison with the corre-
sponding main-diagonal element are “thrown” onto the main diagonal as follows.
a) Define the matrix Q̃(ε) (which has the same order as Q̃) by

Q̃
(ε)
i,j =

{
Q̃i,j if i �= j and |Q̃i,j | < ε · min(|Q̃i,i|, |Q̃j,j |)
0 otherwise.

(15.14)

b) Update Q̃ by

Q̃ ← Q̃ − Q̃(ε) + rs(Q̃(ε)). (15.15)

This modification of Q̃ guarantees that it is sufficiently sparse, so the coarse-level
system is not too hard to solve.

The coarse-level matrix Q̃ is often used in practice. In the analysis, though, we
use the coarse-level matrix Q, which is of the same order as the original matrix A:

Q =
(

W 0
0 B

)
, (15.16)

where

B = Q̃ (15.17)

and

W = Rff diag(Aff)Pff . (15.18)

15.5 The Relaxation Method

In order to complete the definition of the V-cycle, one must also specify the relax-
ation method. On serial computers, usually the (symmetric) point Gauss-Seidel
relaxation method or ILU (with no fill-in) is used for this purpose. On paral-
lel computers, on the other hand, it is advisable to turn to more parallelizable
relaxation methods such as colored relaxation (Section 5.8), parallelizable ILU
(Section 5.14), two-step Jacobi relaxation (Section 16.2), block-GS relaxation [70],
or the approximate-inverse iteration [48].

As a matter of fact, the coarsening procedure in Section 15.3 can be also used
to define a colored relaxation as follows. Let c serve as the first color. Then, apply
the coarsening procedure once again to f and let the resulting coarse level serve
as the second color. By repeating this process, one obtains an algebraic coloring of
the original set of unknowns. Although the unknowns in each color may be weakly
coupled to each other, they may still be relaxed simultaneously in a Jacobi sweep on
this particular color. This is the two-step Jacobi relaxation, defined in more detail
in Section 16.2 below.

15.6 Properties of the Two-Level Method 255

15.6 Properties of the Two-Level Method

In this section, the coarse-level matrix Q̃ defined above is represented in a way that
will be useful in the analysis below. In the sequel, we assume τ = ∞, so fa = ∅,
fb = f , and Ga disappears. This choice simplifies both the analysis and implemen-
tation. Indeed, the square matrices R and P take the form

R =
(

G−1
b 0

−Ãcf G
−1
b I

)
(15.19)

and

P =
(

G−1
b −G−1

b Ãfc

0 I

)
. (15.20)

Furthermore, the rectangular matrices R̃ and P̃ take the form

R̃ = JcR =
(
−Ãcf G

−1
b I

)
(15.21)

and

P̃ = PJ t
c =

(
−G−1

b Ãfc

I

)
. (15.22)

Denote the Schur complement of A (with respect to the partitioning {1,
2, . . . , N} = f ∪ c) by

S(A; c) = Acc − Acf (Aff)−1Afc , (15.23)

and similarly for other matrices of the same order.
Define also the matrix

X(A) = Acf

(
G−1

b − (Aff)−1
)
Aff

(
G−1

b − (Aff)−1
)
Afc . (15.24)

Lemma 15.1 Assume that τ = ∞ and ε = γ = 0 are used in the algebraic
multilevel method. Assume also that A is an L-matrix with positive main-diagonal
elements. Then

Q̃ = S(A; c) + X(A).

Proof. From the assumptions in the lemma, it follows that R̃ is as in (15.21), P̃ is
as in (15.22), Q̃ is as in (15.13), Ãcf = Acf , and Ãfc = Afc . Thus, we have

Q̃ = Acc − 2Acf G
−1
b Afc + Acf G

−1
b Aff G−1

b Afc

= S(A; c) − (S(A; c) − S(Ã; c)) − Acf G
−1
b Afc + Acf G

−1
b Aff G−1

b Afc

= S(A; c) − Acf

(
G−1

b − (Aff)−1
)
Aff (Aff)−1Afc

− Acf (Aff)−1Aff G−1
b Afc + Acf G

−1
b Aff G−1

b Afc

= S(A; c) + X(A).

This completes the proof of the lemma.

256 15 The Algebraic Multilevel Method

15.7 Properties of the Multilevel Method

The multilevel method is implemented in the same spirit as in Section 12.7 above,
except that here the operators are defined as in Section 15.4. We therefore use the
same notation as in Section 12.7, except that here f0 contains the unknowns that
are excluded from the coarse level c, f1 contains the unknowns in c that are excluded
from the next coarser level, and so on, until fL, which contains the unknowns in
the coarsest level. The fL,is in Section 12.7 are also interpreted here according to
these definitions.

The following lemma is helpful in estimating the scalars Ck,0 used in the upper
bound for the condition number of the V(0,0)-cycle. For 0 ≤ i < L, define the Schur
complement of Gi (with respect to the partitioning f i

L = f i+1
L ∪ fi) by

Si = J t
fi+1

L

S
(
Bi; f i+1

L

)
Jfi+1

L
,

For 0 ≤ i < L, also define the matrices

Xi = J t
fi

(
Jfi

Pi+1J
t
fi
−
(
Jfi

GiJ
t
fi

)−1
)

Jfi
GiJ

t
fi+1

L

Jfi+1
L

.

Lemma 15.2 Assume that τ = ∞ and ε = γ = 0 are used in the algebraic mul-
tilevel method. Let D be a diagonal SPD matrix of the same order as A. Assume
that A is symmetric with respect to (·, ·)D and positive definite. Let 0 ≤ i < k ≤ L
be fixed. Assume that the matrices Bj (i ≤ j < k) are L-matrices. Let x ∈ l2(f0

L).
Then,

(x,Gkx)D ≤ (x,Gix)D +
k−1∑
j=i

‖Xjx‖2
DAj

. (15.25)

Proof. From Lemma 12.6, it follows that the matrices DAj (j ≥ 0) are SPD, so the
right-hand side in (15.25) is well defined. By repeated application of Lemma 15.1,
we have

(x,Gkx)D = (x, Sk−1x)D + ‖Xk−1x‖2
DAk−1

≤ (x,Gk−1x)D + ‖Xk−1x‖2
DAk−1

= (x, Sk−2x)D + ‖Xk−2x‖2
DAk−2

+ ‖Xk−1x‖2
DAk−1

≤ (x,Gk−2x)D + ‖Xk−2x‖2
DAk−2

+ ‖Xk−1x‖2
DAk−1

≤ · · · ≤ (x,Gix)D +
k−1∑
j=i

‖Xjx‖2
DAj

.

This completes the proof of the lemma.

15.8 Upper-Bound for the Condition Number

Here we derive an (a posteriori) upper-bound for the condition number of the V(0,0)-
cycle in much the same way as in Theorem 12.1 above. Then, we use Lemma 15.2 to
interpret this upper-bound in 2-D diffusion problems. We keep using the notation in
Section 12.7 (in its present algebraic interpretation) and the notation in Section 15.7
above.

15.8 Upper-Bound for the Condition Number 257

Theorem 15.1 Assume that the algebraic multilevel method is implemented with
ε = γ = 0. Let D be a diagonal SPD matrix of the same order as A. Assume that A
is a diagonally dominant L-matrix that is symmetric with respect to (·, ·)D. Assume
also that the matrices Bi (0 ≤ i < L) are diagonally dominant L-matrices. Then

κ
(
PL,1A

−1
L RL,1A

)
≤
(

CL,0 +
(√

2 + 1
)2 L−1∑

k=0

wkgkCk,0

)
2aL. (15.26)

Proof. The proof is the same as the proof of Theorem 12.1.

The scalars wk, gk, and a can be estimated as in Section 12.7. In fact, (15.5)
and (15.6) imply that the pks are bounded, which, using (12.24), implies that the
wks are bounded as well. For discretizations of diffusion problems like (3.2), by
assuming that the V(0,0)-cycle is applied to the left-scaled system (12.19) rather
than the original system (3.5), one obtains a not only mesh-independent but also
jump-independent upper-bound in (15.26). An induction on L in Lemma 12.3 shows
that this assumption should be made only in the theory; the actual implementation
can use the original system (3.5), since the preconditioned matrix is the same in
both cases.

Using Lemma 15.2, the scalars Ck,0 can also be estimated for diffusion problems
as in (3.2) as follows. The asymptotic estimate is derived under the assumptions
that the meshsize h → 0 and L → ∞. Note that Ck,0 is obtained at the solution
x ∈ l2(f0

L) of the problem

minimize (x,Ax)D subject to (x,Gkx)D = 1.

From the Lagrange theory, this minimum is obtained at a vector x ∈ l2(f0
L) for

which 2DAx (the gradient of (x,Ax)D) is a scalar times 2DGkx (the gradient of
(x,Gkx)D). This implies that Jf0

k−1
DAx = 0, and Jfk

L
x is the solution of the gener-

alized eigenproblem

S
(
DA; fk

L

)
v = λDfk

Lfk
L
Bkv

[where S() is defined in (15.23)] with minimal generalized eigenvalue λ. Since D is
diagonal, this problem is actually equivalent to the eigenproblem

S
(
A; fk

L

)
v = λBkv

with minimal generalized eigenvalue λ. To estimate Ck,0, we just need to estimate
how small λ can be. Since both S

(
DA; fk

L

)
and Dfk

Lfk
L
Bk represent variational

discretizations of (3.2), small λ implies small values of the components of DAx also
at the points in fk

L.
Furthermore, since x has sharp variation at points in fk

L, the components of DAx
are at least of order h2

k at points in fk
L (where hi is the typical meshsize in f i

L). Since
the number of points in fk

L is at least of order h−2
k , we have that (x,Ax)D is at least

of order 1. On the other hand, since the eigenfunctions of (3.2) are continuous, the
factor

(
G−1

b − (Aff)−1
)
Afcx in (15.24) is small. More precisely, for 0 ≤ i < k, since

the Dfi
Lfi

L
Bis represent variational discretizations of (3.2) in f i

L, the components of
Xix are of O(hk) at the O(h−2

k) points in f i
L that lie near points from fk

L and O(hi)

258 15 The Algebraic Multilevel Method

at the rest of the O(h−2
i) points in f i

L. Assuming that ‖Gi‖D = O(1), we have that

‖Xix‖DAi
= O((x,Ax)D) (0 ≤ i < k).

Using the above arguments and Lemma 15.2, we have that

Ck,0 = O(k).

The bound in (15.26) is thus of order L3 as L → ∞. This moderate growth
indicates that the nearly singular eigenvectors of A are approximated well on the
coarse levels. Hence, it is expected that the V(1,1)-cycle that also uses relaxation
to take care of the high-frequency error modes should converge rapidly. Indeed, the
numerical examples in [100] show that the algebraic multilevel method achieves the
Poisson convergence rate not only for the Poisson equation but also for diffusion
problems with discontinuous coefficients, regardless of whether the discontinuity
lines align with the coarse grids. It is also verified numerically in [100] that the
matrices Bi (0 ≤ i < L) are diagonally dominant L-matrices and that the gis, pis,
and wis (0 ≤ i < L) are bounded by moderate bounds.

15.9 The Approximate Schur Complement Method

Instead of the Galerkin approach that initializes Q̃ as in (15.13), one could use a
Schur-complement approach as follows:

Q̃ = Acc − Rcf

(
Gb 0
0 Ga

)
Pfc . (15.27)

[Compare this definition with (11.13).]
With this approach, Q̃ may be sparser than with the main version in (15.13).

However, it is found in [100] that the coarse-level matrix in (15.27) does not scale
right (at least for diffusion equations), and hence is not as appropriate and stable
as the original Galerkin matrix in (15.13). Thus, the Schur-complement approach
converges only when supplemented with outer acceleration. Therefore, in the present
applications, we stick to the main version in (15.13).

15.10 Exercises

1. Show that the scalars Ck,0 can be interpreted as the squared DA-induced norm
(the so-called energy norm) of the operator that is composed of two steps: first,
injecting from the finest level onto the kth level; then, prolonging from the kth
level back to the finest level.

2. Use the discussion at the end of Section 15.8 to indicate that these scalars
are indeed moderate, at least for 2-D diffusion problems. Use Theorem 15.1 to
indicate that the V(1,1)-cycle of the algebraic multilevel method should converge
rapidly.

3. Use the first exercise above to show that the boundedness of the scalars Ck,0

means that the prolongation operators preserve the nearly singular eigenfunc-
tions of the original differential operator, as is indeed required in Section 6.2.

15.10 Exercises 259

4. Show that the boundedness of the scalars Ck,0 also means that the prolongation
operators preserve the continuity of the flux vector

(D1ux, D2uy)

of the original differential operator.
5. Write the computer code that implements the algebraic multilevel method. The

solution can be found in Section 17.10 in [103].
6. Apply your code to the Poisson equation with Dirichlet boundary conditions on

the uniform mesh in Figure 4.13. Do you obtain the Poisson convergence factor
of 0.1?

7. Is ‖Pff ‖Dff
reasonably bounded?

8. Use an IMSL routine to solve the generalized eigenproblem

S(A; c)v = λQccv

with v ∈ l2(c) and minimal λ.
9. Repeat the previous two exercises for the next (coarser) level as well.

10. Is the coarse-level matrix diagonally dominant as well?
11. Modify your code for problems with various kinds of boundary conditions. Is

the convergence rate still good?
12. Apply your code to isotropic diffusion problems with discontinuous coefficients.

Are the convergence rates still good?
13. Is ‖Pff ‖Dff

reasonably bounded?
14. Use an IMSL routine to solve the generalized eigenproblem

S(A; c)v = λQccv

with v ∈ l2(c) and minimal λ.
15. Repeat the previous two exercises for the next (coarser) level as well.
16. Is the coarse-level matrix diagonally dominant as well?
17. Apply your code to highly anisotropic equations as in Section 3.9. Is the conver-

gence rate still good? If not, then also use a PCG outer acceleration to accelerate
the basic multilevel iteration. (Use symmetric GS relaxation in the V-cycle to
guarantee that the multilevel preconditioner is indeed SPD.)

18. Is ‖Pff ‖Dff
reasonably bounded?

19. Use an IMSL routine to solve the generalized eigenproblem

S(A; c)v = λQccv

with v ∈ l2(c) and minimal λ.
20. Repeat the previous two exercises for the next (coarser) level as well.
21. Is the coarse-level matrix diagonally dominant as well?

16

Applications

Although the above analysis of the algebraic multilevel method is limited to the
diagonally dominant SPD case, the method is actually applicable to a much wider
class of problems. Indeed, it is applied below to off-diagonally dominant problems
such as diffusion problems with oblique anisotropy, the Maxwell equations, and the
highly nonsymmetric convection diffusion equation.

16.1 Highly Anisotropic Equations

In this section, we apply the algebraic multilevel method to highly anisotropic equa-
tions with oblique anisotropy, discretized by finite differences as in Section 3.9.
Although the grid is uniform, so standard multigrid methods (with semicoarsening
or line relaxation) could also be used, these methods cannot be extended to prob-
lems with discontinuous coefficients, complicated domains, or unstructured grids.
Thus, it is particularly interesting to test the algebraic multilevel method for this
kind of problem.

As argued above, the multigrid approach should work well for well-posed el-
liptic PDEs discretized by adequate discretization methods. As we will see below,
the present algebraic multilevel method indeed converges rapidly (with the Poisson
convergence rate) for highly anisotropic problems of the form in (3.28). These good
results, however, are limited to the case in which the grid aligns with the diffusion
directions. When it does not, the discretization may become inadequate, and the
performance of the algebraic multilevel method may indeed deteriorate.

Consider the highly anisotropic diffusion equation (3.33) in the unit square
0 < x, y < 1 with Dirichlet boundary conditions. In this equation, the diffusion
directions are oblique: ξ = 2−1/2(x − y) is the weak-diffusion direction, and η =
2−1/2(x+y) is the strong-diffusion direction. Unfortunately, these directions do not
align with the grid in (3.6), which is used in the discretization as in Section 3.10.
This makes the problem far more difficult; indeed, the resulting coefficient matrix
is no longer diagonally dominant, which poses a particularly interesting challenge
for the algebraic multilevel solver.

The adequacy condition in (3.35) implies that ε should be much larger than the
meshsize hx and hy. This is also why the performance of the algebraic multilevel
linear system solver deteriorates as ε decreases.

262 16 Applications

Note that the coefficient matrix for the finite-difference discretization method in
Section 3.10, although SPD, is neither diagonally dominant nor an L-matrix. This is
in agreement with our aim here: to test the algebraic multilevel method for difficult
examples that do not have these good properties.

16.2 Two-Step Jacobi Relaxation

For relaxation, we use the two-step Jacobi method indicated in Section 15.5. This
relaxation method consists of two stages. First, the unknowns in c are relaxed
simultaneously in a “half Jacobi relaxation.” The inverse of the preconditioner for
this step is

P−1 =
(

0 0
0 diag(Acc)−1

)
.

In the second step, the unknowns in f are relaxed simultaneously in another “half”
Jacobi relaxation. The inverse of the preconditioner for this step is

P−1 =
(

diag(Aff)−1 0
0 0

)
.

(See also the end of Section 6.8, where such a step is used to improve the prolonga-
tion matrix P .) The entire relaxation sweep consists of the first step followed by the
second step. This relaxation sweep is referred to as the two-step Jacobi relaxation.

Actually, we use here a symmetric version of the two-step Jacobi relaxation,
which may be considered as a three-step Jacobi relaxation. In this version, the
unknowns in c are relaxed simultaneously once again in a third “half” relaxation.
In other words, the third step is the same as the first step. With this version,
the multilevel preconditioner is SPD whenever A is, which allows the use of the
Preconditioned Conjugate Gradient (PCG) method to accelerate the convergence
of the basic multilevel iteration. (It is well known that PCG is about twice as
efficient as CGS for SPD systems with an SPD preconditioner, as is indeed verified
numerically here.)

The algebraic multilevel iteration is implemented as follows. Eight levels are
used, from 5122 unknowns in the finest level to about 200 unknowns in the coarsest
level. The coarse-level matrices Bi are almost as sparse as A; in fact, they contain
at most nine nonzero elements per row. The V(1,1)-cycle is used (ν1 = ν2 = νc = 1
in the ML algorithm in Section 6.3). The matrices R, P , and Q in the ML algorithm
are replaced by the present matrices R̃, P̃ , and Q̃, respectively.

The parameters used in the algebraic multilevel method are α = γ = ε = 0.02,
δ = ζ = 0.1, and τ = ∞. The initial guess is random, and its preconditioned residual
serves as the first direction vector in PCG.

The preconditioned convergence factor [see (10.13)] for the above iteration is re-
ported in Table 16.1. It can be seen that, especially for very small ε, the performance
of the algebraic multilevel method is worse than in the problem in (3.28), where the
Poisson convergence rate is achieved even with no acceleration. The reason for this
lies probably in the inadequacy of the discretization method, which produces large
discretization errors.

16.3 The Maxwell Equations 263

Table 16.1. Preconditioned convergence factors (pcf) for the algebraic multilevel method
applied to the highly anisotropic equation with oblique diffusion directions. The meshsize
is 1/512 in both the x and y spatial directions. Outer PCG acceleration is also used.

ε pcf

10−1 0.3

10−2 0.4

10−3 0.5

10−4 0.53

10−5 0.55

16.3 The Maxwell Equations

Although the algebraic multilevel method can be analyzed in the SPD diagonally
dominant case only, it can still be applied to much more general cases. Here we
show its power for a most difficult system of PDEs: the Maxwell equations.

We consider the Maxwell equations discretized as in [3] on a three-dimensional
30 × 30 × 30 staggered grid. The parameters of the equations used in [3] are ω =
1000 Hz and σc = 100 S/m.

Again, we find it sufficient to use R̃, P̃ , and Q̃ rather than R, P , and Q (respec-
tively) in the ML algorithm in Section 6.3. Only three levels are used, with 103, 500
unknowns in the first level, 52, 640 unknowns in the second level, and 7, 379 un-
knowns in the third level. We use the parameter ε = 0.02 in (15.14) to guarantee
that Q̃ is sparse. Indeed, the maximal number of nonzero elements per row in the
coarse-level matrices is only eighteen (compared to nine in A). The rest of the pa-
rameters used in the method are γ = α = ζ = δ = .02 and τ = ∞ [which means
that (15.21) and (15.22) are used]. We use the V(1,5)-cycle with point Gauss–Seidel
relaxation; that is, ν1 = 1, ν2 = 5, and νc = 20 in the ML algorithm in Section 6.3.
Because of the near singularity of A, five postrelaxations are needed to annihilate
the unstable high-energy error modes resulting from the nearly-singular coarse-level
problems.

A zero initial guess is used, and its preconditioned residual serves as the initial
direction vector in CGS. Twenty-three algebraic multilevel V-cycles are required
within the outer CGS iteration to reduce both the l2-norm of the residual and l2-
norm of the preconditioned residual by ten orders of magnitude. The preconditioned
convergence factor is thus pcf = 0.4.

This example is not highly indefinite: there are about thirty gridpoints per wave
length (see Section 10.6). Thus, an approximate Poisson solver may also serve as
a good preconditioner. Indeed, a single BBMG V-cycle with alternating plane
relaxation is used in [3] as an approximate Poisson solving preconditioner for the
present Maxwell equations, and yields a convergence factor of about 0.3. However,
this nonalgebraic preconditioner is limited to structured grids only. Furthermore,
when problems with highly oscillating solutions are considered, a Poisson solver can
no longer capture the singularity in the original system, and is thus unlikely to serve
as a good preconditioner.

264 16 Applications

16.4 The Convection-Diffusion Equation

In this section, we apply the algebraic multilevel method to the convection-diffusion
equation, discretized by the upwind scheme as in Section 3.11. Although the grid
is uniform, it is still interesting to test the algebraic multilevel method for these
highly nonsymmetric problems.

the analysis in Section 15.8 above doesn’t apply to the present nonsymmetric
problem. Therefore, it makes sense to modify the algebraic multilevel method in the
spirit of the method in [40]. (This approach is also tested in Section 7.3 in [97] and
yields acceptable convergence rates for a most difficult convection-diffusion example
with closed characteristics.)

The modified algorithm is as follows. First, R and R̃ are defined as in Section 15.4.
Then, the Ã defined in (15.2) is replaced by its symmetric part:

Ã ← (Ã + Ãt)/2.

Then, Ga, Gb, P , and P̃ are redefined using this new Ã. The coarse-level matrix is
then defined as in Section 15.4.

In the beginning, we had considered using a convection-diffusion example with
closed characteristics. This kind of problem is particularly challenging, because no
downstream relaxation is available to eliminate convection errors. However, it turns
out [27] [102] that first-order discretization methods such as the upwind scheme in
Section 3.11 are inadequate in the sense that, when both the meshsize h and the
diffusion coefficient ε approach zero at the same time, the numerical solution may
exhibit O(1) errors that are bounded away from zero. In [29], the first-order upwind
scheme is modified by introducing an isotropic artificial diffusion term; however,
it is shown in [102] that this produces an adequate scheme only for the particular
example studied in [27], but not in general.

Inadequacy is also the reason why the present algebraic multilevel method, as
well as other multigrid methods, stagnates for this example. Indeed, since the co-
efficient matrix A is no longer related to an underlying PDE, its nearly singular
eigenvectors may have large variation that cannot be captured on the coarse levels.

Although it is reported in [124] that BBMG works well for convection-diffusion
equations (even with closed characteristics) discretized by the upwind scheme, this
convergence is limited to special cases. Indeed, we have applied BBMG to the model
convection equation

2ux + uy = F

in the unit square with periodic boundary conditions (or in a torus), where F has
zero integral over each individual closed characteristic that spirals around the torus.
As shown in [102], first-order schemes are accurate for this particular example (and
adequate for its singular perturbation) only when F ≡ 0, but not in general. The
discretization uses the first-order upwind scheme (Section 3.11) on the uniform n×n
grid in (3.6). We chose n to be a power of 2, so that periodic boundary conditions
can also be used on the coarse grids. We have used BBMG with point-GS relaxation
in the downstream direction, which is considered the strongest possible relaxation
method for this kind of problem. Indeed, after one sweep of this relaxation, the
residual vanishes throughout the grid, except at the left and bottom gridlines. The
same is true also in the coarse grids.

16.4 The Convection-Diffusion Equation 265

As in [124], we have observed that the BBMG V(1,1)-cycle converges rapidly.
However, this is limited to an implementation with coarse grids that consist of the
even-numbered points of the previous finer grid, as in (6.1). When the coarse grid
consists of the odd-numbered points, that is,

c = {1, 3, 5, . . . , n − 1} × {1, 3, 5, . . . , n − 1},

the BBMG method actually stagnates. The reason for this may lie in the ill-
posedness of the original problem: it should have been posed as an initial boundary-
value problem rather than a boundary-value problem.

In view of the above discussion, we chose to test the algebraic multilevel method
for a more conventional problem with no closed characteristics (as in [128]). We
use the first-order upwind scheme to discretize the following convection-diffusion
equation,

−ε(uxx + uyy) + sin(π(y − 0.5)) cos(πx/2)ux − cos(π(y − 0.5)) sin(πx/2)uy = F
(16.1)

in the unit square, with Dirichlet boundary conditions and diffusion parameter ε =
10−3. In this example, the characteristics are no longer closed; in fact, the convection
enters the square through the upper part of its left edge, reverses direction as in a
horseshoe, and leaves the square through the lower part of its left edge. (The field
of characteristic directions is displayed in Figure 16.1.)

0
0

1

1

� � � � � � � � � � � ! ! ! ���

� � � � � � � ! ! ! ! ""# ��� $
$%

&
&'

� � � � � ! ! ! ""# ""# ��� $
$%

&
&
&
&'

&
&
&
&'

� �

� � � ! ! ! ""# ""# ��� $
$%

$
$%

&
&
&
&'

&
&
&
&'

� � �

� � ! ! ! ""# ��� $
$%

$
$%

&
&
&
&'

&
&
&
&'

&
&
&
&'

� � � �

� ��(��(���
""# $
$%

&
&
&
&'

&
&
&
&'

&
&
&
&'

&
&
&
&'

� � � � � �

� ! ""# $
$%

&
&
&
&'

&
&
&
&'

&
&
&
&'

� � � � � � � � �

""# &
&
&
&'

� � � � � � � � � � � � � �

))* +
+
+
+,

� � � � � � � � � � � � � �

���-))*.
./
+
+
+
+,

+
+
+
+,

+
+
+
+,

� � � � � � � � �

���0��0��
))*.

./
+
+
+
+,

+
+
+
+,

+
+
+
+,

+
+
+
+,

� � � � � �

� ���-��-��-))*.
./
.
./
.
./
+
+
+
+,

+
+
+
+,

+
+
+
+,

� � � �

� � ���-��-��-))*))*.
./
.
./
.
./
+
+
+
+,

+
+
+
+,

� � �

� � � � ���-��-��-))*))*��.
./
+
+
+
+,

+
+
+
+,

� �

� � � � � � ���-��-��-��-))*��.
./
+
+
+
+,

�

� � � � � � � � � � ���-��-��-�� +
+
+
+,

Fig. 16.1. The convection field in the convection-diffusion example (the field of charac-
teristic directions).

266 16 Applications

The first-order upwind scheme is used on a 512 × 512 (and also 1000 × 1000)
uniform grid. The resulting linear system is solved by the present algebraic multilevel
method with the parameters τ = ∞, ε = γ = α = 0.02, and δ = ζ = 0.1. The V(1,1)-
cycle is implemented as in Section 6.3, but with R, P , and Q replaced by R̃, P̃ ,
and Q̃, respectively.

The V(1,1)-cycle is used (ν1 = ν2 = νc = 1). No acceleration is used in this
section. In order to show the power of the coarse levels, we choose a nonoptimal
GS relaxation, in which the gridpoints are ordered in the upstream order in most
of the domain.

It turns out that the coarse-level matrices are almost as sparse as A. Unfortu-
nately, it also turns out that, in order to have good convergence for large problems
as well, the number of levels must be limited. In particular, when the original grid
is of size 512 × 512, at most five levels can be used. On the other hand, when the
original grid is of size 1000 × 1000, up to six levels can be used. In both cases,
the number of unknowns in the coarsest level is between 4000 and 6000, and the
convergence factor is about 0.3 (with no acceleration).

The limit on the number of levels is in line with the results in [102], where the ad-
equacy of the first-order upwind scheme is shown as long as no closed characteristics
are present and ε−1h2 � 1 as both ε and h approach zero at the same time. In geo-
metric multigrid, where the PDE is rediscretized also on the coarse grids, adequacy
must be observed in the coarse-grid problems as well, which requires that the coars-
est grid is not too coarse. In the algebraic multilevel method, on the other hand,
the situation is somewhat better: when the original discretization on the fine grid
is adequate, and the transfer operators preserve the nearly singular eigenfunctions
of the original differential operator (which are smooth along characteristics), the
Galerkin approximation used on the coarse levels should automatically preserve
adequacy. Unfortunately, the present implementation that uses τ = ∞ produces
rather unstable transfer operators that do not necessarily agree with most of the
nearly singular eigenfunctions. This may slow down the convergence of the algebraic
multilevel method as the number of levels increases.

A more stable method is obtained when a moderate parameter τ is used, for
which both fa and fb are nontrivial. With this implementation, the rectangular
matrices P̃ and R̃ are constructed from matrix products as in (15.11) and (15.12),
respectively. With τ = 0.1, for example, one can use two more levels, at the expense
of somewhat worse convergence factors of 0.5 < cf < 0.6. Although this implemen-
tation is inferior to the previous one that uses τ = ∞, it may be useful in more
singular problems with smaller diffusion coefficient ε. Indeed, with the diffusion co-
efficient set to ε = 10−4, the implementation that uses τ = ∞ diverges, whereas the
implementation that uses τ = 0.1 converges with convergence factor cf = 0.8. (five
levels are used, with 5122 unknowns in the finest level and about 8000 unknowns in
the coarsest level; the rest of the details of implementation are as before.)

When a yet more singular equation with ε = 10−5 is encountered, one must use
a yet more stable implementation with ζ = δ = τ = 0.25 to have convergence factor
cf = 0.92. (Six levels are used, with 5122 unknowns in the finest level and about
10, 000 unknowns in the coarsest level.) This is a rather slow convergence.

The convergence factor in the last example can be improved by using the two-
step Jacobi relaxation method in Section 16.2. With this relaxation method, the
convergence factor improves to cf = 0.85 even for a most singular problem with
ε = 10−5.

16.5 ILU Relaxation 267

The two-step Jacobi relaxation method has the advantage of being highly paral-
lelizable. Unfortunately, the algebraic multilevel V-cycle that uses it as a relaxation
method converges rather slowly. One should thus consider using other relaxation
methods within the multilevel algorithm. Possible candidates for this task are the
approximate inverse method (used in [48]), the alternating Schwarz iteration, and
ILU versions ([111] and Sections 5.13 and 5.14).

16.5 ILU Relaxation

It seems that the difficulty in supplying a good coarse-grid correction to convection-
diffusion equations lies in the boundary layers. Indeed, it is explained in [102] that,
when both the diffusion coefficient ε and meshsize h approach zero at the same time,
the upwind scheme is accurate outside the boundary layers, but not necessarily
inside them. As a result, the coarse-grid correction term may be insufficient inside
boundary layers. Furthermore, the sharp variation observed in boundary layers can
be completely invisible on the coarse grids.

In order to reduce error modes inside boundary layers as well, one should rely
on relaxation methods like ILU (and its parallelizable version), which march (at
least locally) along gridpoints to reduce errors due to the convection terms. This
approach is indeed used next.

When the ILU method of Section 5.13 (with no fill-in) is used as a relaxation
method in the V(1,1)-cycle applied to the convection-diffusion equation (16.1) dis-
cretized by the upwind scheme on a uniform 512× 512 grid, the convergence factor
improves to cf ≤ 0.4, independent of the diffusion coefficient ε > 0. (No acceleration
is used in this section.)

We have also used the parallelizable ILU version in Section 5.14 (with p = 100
and O = 50) as a relaxation method in the algebraic multilevel V(1,1)-cycle.
The convergence factor improves to cf ≤ 0.5, independent of the diffusion coeffi-
cient ε > 0.

For comparison, we have also tested the ILU and parallelizable ILU iterative
methods on their own, with no multilevel setting at all. It turns out that, for arbi-
trarily small ε > 0, the convergence factors are cf = 0.85 for ILU and cf = 0.9 for
the parallelizable ILU, These are acceptable convergence rates for such a difficult
example; however, both ILU and the parallelizable ILU (with or without accelera-
tion) deteriorate considerably for ε � 1, which is just a slight perturbation of the
Poisson equation. Thus, the ILU versions are less robust than the multilevel method
that uses them as relaxation.

In Section 5.14, we have also applied ILU and parallelizable ILU to several sparse
linear systems from the Harwell–Boeing collection (Table 5.1). It seems, though,
that these examples are too small to benefit from the algebraic multilevel method.
Indeed, it is only for the relatively large “sherman3” example that the algebraic
multilevel method may be of some use. For this example, if the parallelizable ILU
method in Table 5.1 is replaced by a V(1,1)-cycle that uses it as a relaxation method,
then the number of CGS iterations is reduced by about 70% (with two levels, the
order of the coarse-level matrix being about four times as small as the order of the
original matrix, and ν1 = ν2 = νc = 1). This reduction in iteration number may be
of use on message-passing parallel architectures, where the inner products required
in CGS form the bottleneck in the process.

268 16 Applications

We have also tried to write f as the union of three subsets and decompose
R̃ and P̃ as products of three rectangular matrices rather than two as in (15.11)
and (15.12). Unfortunately, this change does not improve the convergence for these
difficult problems. Perhaps stronger relaxation methods such as the algebraic line
relaxation used in [70] could help here. It seems that one must have some information
about the nature of the underlying PDE to have a good multigrid algorithm. This
thought leads to the semialgebraic approach in Chapter 17 below.

16.6 Towards Algebraic Semicoarsening

The singularly perturbed convection-diffusion equation (3.36) may also benefit from
“algebraic” semicoarsening. Since the nearly-singular eigenfunctions of the original
differential operator are smooth in the characteristic direction, the semicoarsening
could be done in this direction only. In other words, the coarse grid could consist
of every other point in the characteristic direction.

Unfortunately, it is not easy to follow the characteristic direction, which does
not necessarily align with the grid. (An attempt to do this algebraically, using the
anti-symmetric part of A is proposed in [100].)

With the above semicoarsening, the prolongation is done in the characteristic
direction only. Therefore, the prolongation is stable and agrees with the nearly
singular eigenfunctions of the original differential operator. (Such an approach is
proved useful in the context of highly anisotropic equations in [70], where semi-
coarsening in the strong-diffusion direction is used.) This approach, however, is not
tested here, and left to future research.

16.7 A Diffusion Problem in a Complicated Domain

Here we use the algebraic multilevel method as a preconditioner for the individual
linear systems in the adaptive-refinement algorithm in Section 4.10 for a difficult
diffusion problem with anisotropic and discontinuous coefficients in a complicated
domain.

We consider the diffusion equation (3.2) in the domain in Figure 16.2, with
the indicated boundary conditions: Dirichlet conditions at the boundary segment
near the asterisk in the figure, homogeneous Neumann conditions on the horizontal
boundary segments on the left, and mixed conditions on the circular part of the
boundary. The diffusion coefficients are also as indicated in the figure: they are
large and anisotropic in the lower-left part of the domain.

The boundary-value problem is discretized by linear finite elements. The initial
(coarsest) mesh contains nine triangles and eleven nodes only (Figure 16.3). This
mesh is refined further by the adaptive-refinement algorithm in Section 4.10. For
example, the mesh resulting from the fifth level of refinement in this algorithm is
displayed in Figure 16.4.

In Table 16.2, we report the number of PCG iterations required to solve (to
sixth-order accuracy) the individual linear systems in the various levels of refinement
in the adaptive-refinement algorithm. These results provide a comparison between
different possible preconditioners: symmetric point-GS (denoted by PCG-SGS), ILU

16.7 A Diffusion Problem in a Complicated Domain 269

(1, 0)∗

D1 = D2 = 1

D2 = 1000

D1 = 100

uy = 0

uy = 0

D1uxn1 + D2uyn2 + u = 0

un + u = 0

un + u = 0

���
���
���
���
���
���
���

����
����

�����
������

���

����������� �
� � � � � �

� � � �
� � � �
� � � �
���
���
���
���
���
���
�

Fig. 16.2. The domain for the diffusion example. The diffusion coefficients D1 and D2

are discontinuous and anisotropic. The boundary conditions are of Dirichlet type near the
asterisk, homogeneous Neumann type at the horizontal boundary segments, and mixed
elsewhere (with n = (n1, n2) being the outer normal vector).

)
)
)
)
)))

)
)
)
))

)
)

)
)

))

�
�
�
�
�
�
�
�
�
�
�
�
��

"
"
"
"
"
"
"
"
"
""

"
"
"

"
"

"
"

"
"

""

�
�
�
�
�
�
�
�
�
�
�
�
��

����������
��

��
�

��� ��
� ��

��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
���

���
����

���

� �
� � � �

� � �
� � �

� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
��
��
��
��
�

Fig. 16.3. The initial (coarse) mesh that contains eleven nodes and nine triangles only,
and is refined further in the adaptive-refinement algorithm both in the interior of the
domain and at the circular boundary.

270 16 Applications

�

�

�

�

�

�
�
�

�

�
�

� ��

�

�

��

�
�

��
�

�

��
�� �
�
�

� ��
� �

�� �� � �
�� �� � �

�
� ��
� �

��
�� �
�
��

�
� �
��

� �
�

� �

�
� �
�
� �

�
�

�

�
� �
�
� �

�
�

�

��

�

�
�

�

�
�

�
�

�
��
��
�
��

��
�

� �
�

�
� �
�
� �
�

� �
�

� �
�
�

�

�
� �
�
� �

��
�

� �
�

��
�

� �
�

�
� �
�
� �

�
� ��
� �

��
�� �
�
��

�
� �

�� �
�

��
�� �
�
�
��
��

�� �
�
��
�

��
�

� �
�� �

�
� �

� ��
�

�
� �

� �
�

��
�

� �
�

�
��

��
�� �
�

��
�� �
�
�
��� �

�
��
� ��
�

�
�� ��
�� �
�

�
� �

�
� � ��

�
� �
�

��
�� �
�
��
�

�
� �
�
� �
� �

�
��

�� �
�

�
��

�
��

��
�� �
�
�

� ��
� �

�
�

� �
�

�

�

� �

�
�

�

�
� �
�
� �
�
�� �
�� �

�
�

�

�
�

�
� �
�
� ��

��

�
�

��
�

�

�
�

�

�
� �
�
� �
�
�� ��
�� �
�

�
� �
�
� �

�
�

�

�
� ��
� �

�
�

�
��
�

� �
�

��
�� �
�
�
��
��

�� �
�
��
�

�
�

�

�
� �
�
� �
�
�

� �
�

��
�
�

�
�
�

�
� �� �
� ��
�

�
� �
�
� �
� �

�
��

�

�

�
�

�

�
�
�

�

�

�
�

�

�
�

�

�
�

�

�
�
��
�
�

�
�
�

�
�
� �

�
�

�
�

�

�
�
��
�
�

�
�

��
�

�

��

�

�
�

�

�
�

���
�

� �
�
�

� �
�

� �

�
� �� �
� ��
�
� �

�
��

�
�
� �
�
� �

�
� �
�
� �

��
�

� �
�

��

�

�
�

�

�
�

�

��
�

� �
�

�
� �
�
� �
�
�

� �
�

�� �

�

�

�

�

�

�

�

�
�

�

�
�

��

�
�

�
�

�
�

�

�
�
�

�

�
�

�

�
�

�

��
�

� �
�
�
�

�

�
�
�� �
�
��
�

�
�

�

�
�

��
�
�

�
�
� ��

�

� �

�

�
�

�

�
�

�� �

�

�
�

� �
�

�

�

� �

� �

�

�
�

�

�
�

�

�

��

�
�

��
�

�

�

� �

�
�

� �
�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�
� �
�
�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�� �

�

�

� �

�
�

� �
�

�

�
�

��
�

�

�

��

�
�
�

�
�
��

�
��

�
�

�

��

�
�
�

�
�
�

��
�

� �
�
�

� �
�

� �
�

� �
�

� �
��

�
� �

�

�
� �

�
� �

��
�

� �
�
��

�
� �
�

�
� �

�
� �

�
� �

�
� �
��

�
� �

�
�

�
�

�
�

��
�

�

�
�

�

��
�

� �
�

�
� �

�
� �

�
��

�
��

� �
�

��
�

�
�

� ��
�

� �
�
�

�
�

�
�

�� �

�

�
�

� ��
�

� �
�
�

�
�� �
�
��
�

��
�
� �
�

�
� �

�
� �

� �

��
�
� �
�
�

��
�
� �
�

�
� �

�
� �

��

�

�
�
�

�
�
�

�
�
�� �
�
��
�

� �

�

��

�� �
�
��
�

�
�
� ��

�

� �

�

�
�

�

�
�

�

�
�

�
�

�
��
�
� ��

��
�

� ��
�

� �
�

�
��

�
��

�
�
�

�
�

� �
�

�

�
�
�

�
��

�
��

�
�

��
�

�

�
�

�

�
�

��
�

�

�
�

� ��

�

� �

�

� �

�

��

�

�
��
�
��

� �
�

��
�

�
�
�

�
�
� ��

�� �

��
�

� ��
�

� �
�

�

�

�

�
�
��
�
�

�

��

��

��

�

��

�

�

� �

��

�

� ��
�

� �
�

�
�

�� �

�

� �

�

��

�

�
�
�

�
�
��

�
�

�

�
�

�
�

�

�

�

��

��

�
�
��
�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�
��

�
��

� �
�

��
�
�

�
�

�
�

� �
�

�

�
�

�

� �

�

�
�
�

�
�
� �
� �

�
� �

��
�
� �
��
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�
� �

�

�

�

�

�

�

�
�

�
�

�
�
��

�
�

�
�

��
�

� �
�

�

�
�
� �
�
�

�
��
�
��

� �
�

��
�

�
� �

�
� �

� �
�

��
�

�
� �

�
� �

��
�
� �
�� �

�
��

�
�

��
�

���
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�

�
�

�

�
�

�

�
�

� �
�

�

�
�

� �
�

��
�

�

�
�

��
�

�

�
�

� �
�

�

�
�

� �
�

�

��
�
� �
�
�

� �
�

� �
�

�
� �

�
�

�
�

� �
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

� ��
�

� �
�

�
�

�

�
�

��
�

�

�
�

�

� �

�

�
�
�

�
�
� �
� �

�
� �

��
�
� �
��
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�
��

�
��

� �
�

��
�
�

�
�

�
�

� �
�

�

�
�

��
��

�
��

� �
�

��
�
�

� �
�

� �
��

�
� �
�

�
� �

�
� �

��
�
� �
�

��
�

� �
�

�
��
�
��
�

� �
�

� �
��

�
� �
�� �

�
��

�
�

��
�

��

�
� �

�
� �

��
�
� �
�

��
�

� �
�

�
��
�
��
�

� �
�

� �
��

�
� �
�� �

�
��

�
�

��
�

��

�
�
�

�
�
��

�
�

�
�

�
� �

�
��

�
�
��
�
��

�
��
�
��

� �
�

��
�

�
��
�
��

� �
�

��
�

� �� ���
� �� ���

�
� ��
� �� �

�
��

�

�
��

�
� ��
� �� �

�
��

� �
��
�
��

���� �� ��� �� �
� ��� �� ���� �� ��� �� � ���� ��� �� �� �� �� ��� ���� ��� ��� �� ��� �� ����� ���� ��� ��� ��� � ���� ��

�� ��� � ���� �� ���� ���� ��� � � �� ���� ������ �� �� �
�� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ����� ��� � ��� � �� �� � ��� �� � ��� �� � ��� �� � ��� �� � � �� �� � � ���� ��� � ��� � �� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ����� ��� � ��� � ���� ��� � ��� ��� ��� �� �� ������� ��� � ��� � �� �� � ��� �� � �
���� ���� ��� ��� �� � ��� �� � �� �� ���� ��� �� ��� �� � ���� ��� �� �� �� �� ���

�� �� �� ����� ��� � ���� �� ���� ��� ���� �� �� ����� ��� � ���� �� ���� ���� ��� � � �� ���� ������ �� �� �
���� ���� ��� ���� ���� �� ���� �� ���� ��� �� ��� �� � ���� ��� �� ��

����� �� ���� ��� ��� �� ��� �� ��� ��� � ���� ���� ��� � ���� ��
�� ��� � ���� �� ���� ���� ��� � ���� ��� ������ �� �� �

�� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ��� ���� ���� ��� ��� �� � ��� �� � ��� ��� � ���� �� ���� ���� ��� �
���� ���� ��� ��� �� � ��� �� � �� �� ���� �� ���� ��� ���� �� �� ���� �� ��� �� ���� ���� �� ��� �� ��� � ���� �� ���� ���� ��� ��� �� � ��� �� � ����� ��� �� ���� ���� ��� ��� �� �� ����� �

� � � �� �
� � � �� �� � ��� �� � ����� ��� � ��� �
�� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ��� ���� ���� ��� �� �� ��� ��� ��� ���� ���� ��� ��� ��� � ���� ��

��
�
� �� �����

�

� � ��� � ���� ��
�� �� � ��� �� � ��� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ���

�� ��� � ���� �� ���� ���� ��� �
���� ���� ��� ����� �� ��� ����� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ����� ��� � ��� �

��� ���� �� ���� � ��� ��� �� � ����� ���� ��� ���� ���� �� ������ ���� �� ���� �� ��� ��� ���� �� ��� �� �� �� ���� �� ���� ���� ��� ��� �� � ��� �� � ����� ���� ��� � ���� �� ���� ��
���� � ��� �� �� ���� �� ��� �� � ���� ��� �� �� ����� ��

�� ��� � ���� �� ���� ���� ��� � ���� ��� ���� �� �� ����� ��� � ���� �� ���� ���� ��� � ���� ��� ������ �� �� �
� �� ��� �� � ���� ��� �� �� �� �� ��� �� �� �� ��� � �� ���� �� � ��

���� ��
���� �� ���� �� �� �� � � ���� ��

� �� ��� � �� ��� � � ��� �� � ��� ��� �� � ��� �� � �
� � ��� � ���� �� ��� ���� �� ���� � ��� ��� �� � ����� ���� ��� ���� ���� �� ���

���� ��� ��� �� ��� �� ����� ��� ��� �� ���� ���� �� �� ����� �� � � �� �� � � �� �� �� ���� �� ���� � ��� �
�� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ��� ���� ���� ��� �� �� ��� ��� ��� ���� ���� ��� ��� ��� � ���� ��
� �
� ���
� �� ���� ���� ��� ���� ���� �� ��� � �� ���� �� ���� ��� �� ���� ��� ������ �� �� ��� �� �� ��� �� �� �� ��� ���� ��� ��� �� ��� �� �
�� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ����� ��� � ��� � �� �� � ��� �� � ��� �� � ��� �� � ��� �� � � �� �� � � ���� ��� � ��� �
�� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ����� ��� � ��� � ���� ��� � ��� ��� ��� �� �� ������� ��� � ��� � �� �� � ��� �� � � �� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � � ���� ��� � ��� � �� �� � ��� �� � ��� �� � ��� �� � ��� �� � � �� �� � � ���� ��� � ��� � �� �� � � �� �� � � �� �� � ��� �� � � �� �� � ��� �� � ���� � ��� � � �� � ���� ��� � ��� �� � ��� �� �� ������� ��� � ��� � �� �� � � �� �� � �

��
�

� ��
���� �� ��� �� �� ��
���� ��� �� ��� �� � ���� ��� �� �� �� �� ��� � �� ���� �� ���� ��� ���� �� �� ����� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ��� ���� ��� � ��� ��� ��� �� �� ������ ���� �� ���� �� ���� � ��� ����� ��� � ��� ��� ��� � ���� ��� � ��� � ���� �� �� �� � ��� �� � � �� �� � ��� �� � ��� �� � ��� �� � � �� �� � ��� �� � ���� � �� ���� ��
���� ��� ��� �� ��� �� �� ��� �� ���� �� ��� �� � ���� ��� �� �� �� �� ���

� �
�

���� �
� ���� �� ��
�� ��� �� ���� �� ��� �� � ���� ��� �� �� �� �� ��� ���� ��� ��� �� ��� �� �� �� ���� �� ��

�
� ��

����� �� �� ��� � ��
���� ��

�� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ���� ���� �� ��� ���� ���� ��� ��� �� � ��� �� � ��� ��� � ���� �� ���� ���� ��� � ���� ���� ��� ��� �� � ��� �� � ����� ���� ��� � ���� ���� ��� ���� ���� �� ��� �� �� � �� � ��� ���� ���� �� ��� ���� ���� ��� �
� �
�

���
� �� � �� ���� ���� �
� �� ��� � �� ���� �� ���� ��� ���� ����� ������ ��� ��� �� ��� �� � �� ����� �� �

�

�
�

�

�

�
�

�

��
�

� �
�
�

�
�

�
�

�
� �

�
��
�

�
�

�

�
�

��

�
�

�

�
��

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�

�
� �
�

�

�
�

� �
�

��
�

�

�

�
��

�
�� �

�

��
�

�
��

�
��
�

��

�

��
� �

�

��

�

�
�

�
��
�

� �
�

��
�

� �
�

�
��
�

��

�
� �

�
� �

��
�

� �
�

�
��

�
��

��
�
� �

�

�

�
�

�
� �

�
� �

�
�

�

�
��

�
��

�
�� �
��
�

� �
�

��
�

��

�
� �

�
�� �
��

�
� �

�
� �

�
��

�
��

�
�

�

�
��

�
��

�
��

�
���

� �
�

�� � ��

� �
� ��
�

�
�� �
��

�
� ��
� � ��

�

�
�� �
��
�

� �
�

��
�

��

�
� �

�
�� � ��

�
� �

�
� �

�
��

�
��

�
�

�
�

� �
�

� �

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�� �� � �
�

��
�

�
�

�

��

�

�

�

�

��

�
��

�
��
� �

� ���
� �
�

��
� �

��
�

���
�

� ��
�

�
�� �
��

�
��

�
��� �

�
�

��
�

��
�

� �� �
�

��
�

�
��

�
��

�
��

�
��
�

� �
�

��
�

��� �
�

�
� ���
�

� �
�

��

�

�
�

�

�
�

�
�

� �
�

� � ��
�

�
��

�
���

�
�

�
�

�

�

�
�

�

�
�

�
�

�

�
��

�
��

�

�
�

�
��
�

��

�

��

�

��
�
�

�

�

��
�

��

�

�
�

�
�

��

�
�
�

�
�

�
��

�
��

� �
�

��
�

�

�
�

�

�
� �
�

�

�
�

�

� �
�

��
�

�
��

�
��
�

� �
�
� �

��
�

� �
�� �

�
��

�

�
��
�

��
�

�
�

�
�
�

�
�

��
�

�

�
��
�

��

�

�
�

�
��

�
��

�
�

�

�

��

�

��
�
�

�

�

��
�

��

�

�
�

�
�

�

�

��

�

��

�

�
�

�

� �
�

� �
�

�
�

�
��

�
��

�
�

��
�

�

�
�

�

�
��

�
��

�
�

� �
�

�

�
� ��
� �

�
��

�
� ��
� �

�
�

�

�
��

�
��

�
��

�
��

�
�

��
�

�

�
��

�
��

��
��

�
�� � � �� �� �

�
��

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�
�

���� ��
� ��� � �

�
��

�

�
� � �� ���

�
� �

���� ��� �
�

���� ��
�

� �

�
��

�
���
�

�

�
��

�
��

�
�

�
�

�

��
��

�
��

�

��

�

��
�
�

�

�

��
�

��

�

�
�

�

��
�

��
�
�

�

�
��

�
��
�

�
�

�
��

�
��

�
�

�

�
�

��
��

�
��

�

��

�

��

�

�

�

�

��

�

��

�

�

�

�
��

�
��
�

�
�

�
��

�
��

�
�

�

�
��

���� ��

�
��

�
��

�
�

�

�
��

�
��

�
�

�

���� ��� ��� ��

���� ��� ��� �� � �� ��� �� �
���� ��� �

�

�
��

�
��

�
�

�

�
��

�
��

�
�

�

�

��

�

��

�

�

�

�

��

�

��

�

�

�

�
��

�
��
�

�
�

�
��

�
��

�
�

�

�

��

�

��

�

��

�

��

�
��

�
��

�
��

�
��

���� ��

�
��

�
��

�
��

�
��

���� ��

���� �� � �� ���

���� ��

�
��

�
��

�
��

�
��

�

��

�

��

�

��

�

��

�
��

�
��

�
��

�
��

level 5

Fig. 16.4. Distribution of nodes in the fifth level of refinement in the diffusion example.
The strong diffusion in the lower-left quarter of the domain prevents large variation, so
no extra refinement is needed there.

Table 16.2. Number of PCG iterations used in each refinement level in the adaptive-
refinement algorithm applied to the diffusion example. The computation time of a multi-
level iteration is like that of three symmetric Gauss–Seidel iterations. (The set-up time is
negligible.)

Level Nodes PCG-AML PCG-AMG PCG-ILU PCG-SGS

1 11 5 5 3 5

2 34 5 5 6 11

3 106 8 9 9 23

4 340 12 12 17 41

5 1069 18 18 33 71

6 3050 22 22 63 121

7 8242 36 35 121 217

8 18337 54 51 340 382

16.8 Exercises 271

(denoted by PCG-ILU), the algebraic multilevel method in Section 6.9 (denoted by
PCG-AML), and the algebraic multigrid method in Section 6.10 (denoted by PCG-
AMG).

The ILU preconditioner uses partial fill-in: only matrix elements that are as large
(in magnitude) as 0.05 times the corresponding main-diagonal element are allowed
in the incomplete triangular factors L and U , whereas smaller ones are dropped.
The algebraic multilevel and algebraic multigrid preconditioners use the symmetric
point-GS relaxation within the V(1,1)-cycle (with threshold = 0.01 in Section 6.9).

It is apparent from the table that the multilevel preconditioners are more efficient
than the ILU and symmetric point-GS preconditioners. Although a single iteration
of the multilevel method costs the same as three symmetric point-GS iterations,
this is worthwhile to reduce the overall number of PCG iterations required for
convergence. In fact, the advantage of the multilevel methods is even greater when
yet larger problems are considered.

16.8 Exercises

1. Use your code from the exercises at the end of Chapter 15 as a preconditioner in
the PCG iteration to solve the individual linear systems arising in the adaptive-
refinement algorithm in Section 4.10 for the diffusion problem in Section 16.7.
The solution can be found in Chapter 19 in [103].

2. Consider the linear system in the fifth level of refinement in the adaptive-
refinement algorithm in the previous exercise. In the multilevel preconditioner
for this system, is ‖Pff ‖Dff

reasonably bounded?
3. For the linear system considered in the previous exercise, use an IMSL routine

to solve the generalized eigenproblem

S(A; c)v = λQccv

with v ∈ l2(c) and minimal λ.
4. Repeat the previous two exercises also for the next (coarser) level in the algebraic

multilevel method.

17

Semialgebraic Multilevel Method
for Systems of Partial Differential Equations

In this chapter, we introduce a semialgebraic multilevel method for systems of PDEs.
In this approach, the information in the original PDE is used to distinguish between
different unknown functions, and transfer them separately to and from the coarse
levels. Apart from this modification, the algorithm is as in the algebraic multilevel
method. The advantage of the semialgebraic approach is illustrated for the linear
elasticity and Stokes systems of PDEs.

17.1 Semialgebraic Multilevel Methods

Algebraic multilevel methods use information exclusively from the coefficient matrix
A to form the coarse “grid” c and the transfer operators R and P . In some cases,
however, it makes sense to use also information from the original PDE. For example,
the original PDE could help to distinguish between different kinds of unknown
functions and avoid mixing them with each other when information is transferred
from fine to coarse grid and vice versa. Still, the definition of the multilevel algorithm
is mostly based on the linear system (3.5) rather than the geometric properties of
the underlying grid or mesh. This is why we refer to this family of methods as
semialgebraic multilevel methods.

Consider, for example, the case of a vector PDE, or system of PDEs that couple
several unknown functions to each other. In this case, it makes sense to let A(γ) in
(15.1) also contain all the elements in A that couple different unknown functions
with each other. This way, Ã no longer couples different unknown functions with
each other. As a result, each unknown function is transferred separately between the
coarse and fine grids, independent of the other unknown functions. (This approach
is proposed in [42] in the context of uniform grids and black-box multigrid.) With
the above approach, the diagonal matrices Ga and Gb are defined by

Ga = rs(|Ãfac|) and Gb = rs(|Ãfbc|) + rs(|Ãfbfa
|) (17.1)

rather than (15.7) and (15.8). The precise definition is given below.
In the sequel, we show how this approach is actually used in two important

systems of PDEs: the linear elasticity equations and the Stokes equations.

274 17 Semialgebraic Multilevel for Systems of PDEs

17.2 Standard Differential Operators

In order to formulate systems of PDEs, we need some common notation for differ-
ential operators that operate upon scalar and (two-dimensional) vector functions.
The divergence operator that operates upon vector functions is denoted by

∇· = (∂/∂x, ∂/∂y) .

The gradient operator that operates upon scalar functions is denoted by

∇ =
(

∂/∂x
∂/∂y

)
.

The Laplacian operator that operates upon scalar functions is denoted by

� = ∇ · ∇.

The following differential operators are actually 2 × 2 matrices of scalar differ-
ential operators. The gradient of the divergence is denoted by

∇∇· =
(

∂/∂x
∂/∂y

)
(∂/∂x, ∂/∂y) =

⎛
⎜⎜⎝

∂2

∂x2

∂2

∂x∂y

∂2

∂y∂x

∂2

∂y2

⎞
⎟⎟⎠ .

For example, for the vector function u(x, y) = (u(1)(x, y), u(2)(x, y)),

∇∇ · u =

(
u

(1)
xx + u

(2)
yx

u
(1)
xy + u

(2)
yy

)
.

For functions with discontinuous derivatives, this operator is not necessarily the
same as its transpose:

(∇∇·)tu =

(
u

(1)
xx + u

(2)
xy

u
(1)
yx + u

(2)
yy

)
.

This can also be written more compactly as

(∇∇·)tu =
(
∇ · ux

∇ · uy

)
,

where

ux =

(
u

(1)
x

u
(2)
x

)
and uy =

(
u

(1)
y

u
(2)
y

)
.

The vector Laplacian operator that operates upon vector functions is denoted by

� =
(

�
�

)

17.4 The Weak Formulation 275

(where ‘�’ on the right-hand side is interpreted as the scalar Laplacian, which oper-
ates in this case on the individual components of the vector function). For example,

�u =
(
�u(1)

�u(2)

)
.

The vector gradient operator that operates upon vector functions is denoted by

∇ = (∇ | ∇)

(where the ‘∇’ in the right-hand side is interpreted as the standard gradient opera-
tor, which operates in this case on the individual components of the vector function).
For example,

∇u =
(
∇u(1) | ∇u(2)

)
.

17.3 The Linear Elasticity Equations

We start with the system of PDEs known as the linear elasticity equations. In
this system, there are three scalar unknown functions: p(x, y) (the scalar pressure
function) and the two-dimensional vector u(x, y) ≡ (u(1)(x, y), u(2)(x, y)). These
unknown functions are coupled in the following system of PDEs:(

−λ−1 −∇·
∇ −µ (� + (∇∇·)t)

)(
p
u

)
=
(
G
F

)
(17.2)

in the given domain Ω ⊂ R2, where 0 < λ ≤ ∞ and 0 < µ < ∞ are given parameters
and G and F = (F (1),F (2)) are given functions in Ω.

In order to have a well-posed boundary-value problem, the above system of
PDEs must be accompanied with boundary conditions. Let ΓD ⊂ ∂Ω be the subset
of the boundary of Ω on which Dirichlet boundary conditions are imposed:

u(x, y) = α(x, y) (x, y) ∈ ΓD (17.3)

where α = (α(1),α(2)) is a given vector function in ΓD. Let Γ = ∂Ω \ ΓD be the
subset on which mixed boundary conditions are imposed:

−pn + µ
(
(∇u)t + ∇u

)
n + β̂u = γ, (x, y) ∈ Γ, (17.4)

where β̂ is a given 2×2 symmetric and positive semidefinite matrix function in Γ , γ
is a given vector function in Γ , and n is the outer normal vector in Γ .

In the above, the boundary-value problem is given in its strong formulation. In
the next section, we also derive the weak formulation, which is the basis for the
finite-element discretization method.

17.4 The Weak Formulation

The weak formulation is obtained by multiplying the three equations in (17.2) by
some three functions: the first equation is multiplied by a function q(x, y) ∈ L2(Ω),

276 17 Semialgebraic Multilevel for Systems of PDEs

and the second and third equations are multiplied (respectively) by the functions
v(1)(x, y), and v(2)(x, y) that belong to the Sobolev space of order 1 [their derivatives
are in L2(Ω)] and vanish on ΓD. The three equations are then integrated over Ω,
using Green’s formula and the boundary conditions in (17.4) in the second and third
equations. This gives

−
∫

Ω

(
λ−1p + ∇ · u

)
qdxdy

=
∫

Ω

Gqdxdy

∫
Ω

(
−pv(1)

x + µ
(
∇u(1) + ux

)
· ∇v(1)

)
dxdy +

∫
Γ

(β̂u)(1)v(1)dΓ

=
∫

Ω

F (1)v(1)dxdy +
∫

Γ

γ(1)v(1)

∫
Ω

(
−pv(2)

y + µ
(
∇u(2) + uy

)
· ∇v(2)

)
dxdy

+
∫

Γ

(β̂u)(2)v(2)dΓ

=
∫

Ω

F (2)v(2)dxdy +
∫

Γ

γ(2)v(2)dΓ.

In the next section, the weak formulation is used to obtain the finite-element
discretization.

17.5 The Finite-Element Discretization

The finite-element discretization uses a triangulation of Ω with t triangles and n
nodes in Ω\ΓD (where t and n are positive integers). This discretization is obtained
from the above weak formulation by assuming that:

1. The numerical solution functions u(1) and u(2) are linear in each triangle, con-
tinuous in the entire mesh, and agree with α(1) and α(2) (respectively) in the
nodes that lie in ΓD.

2. The test functions v(1) and v(2) are linear in each triangle, continuous in the
entire mesh, and vanish in the nodes that lie in ΓD

3. The numerical solution function p(x, y) and the test function q(x, y) are constant
in each individual triangle in the mesh.

Clearly, u(1), u(2), v(1), and v(2) have n degrees of freedom each, whereas p and q
have t degrees of freedom each. More specifically, u(1), u(2), v(1), and v(2) can be
written uniquely as linear combinations of n nodal basis functions each, whereas p
and q can be written uniquely as linear combinations of t “elemental” basis func-
tions each, where an elemental basis function has the value 1 in some triangle and 0
elsewhere. This leads to a linear system of the form (3.5), with coefficient (stiffness)
matrix of the form

A =
(

App Apu

Aup Auu

)
, (17.5)

where App is the submatrix of order t that corresponds to the unknown values of the
numerical solution p in the individual triangles, and Auu is the submatrix of order
2n that corresponds to the unknown values of the numerical solution functions u(1)

and u(2) at the n nodes in Ω \ ΓD.

17.6 The Semialgebraic Multilevel Preconditioner 277

Clearly, App is diagonal; this property will be used below. Furthermore, A is
symmetric; however, as we will see below, it is neither positive definite nor negative
definite. In fact, it is indefinite: it has both positive and negative eigenvalues.

In the next section, we define the semi-algebraic multilevel preconditioner for A.

17.6 The Semialgebraic Multilevel Preconditioner

Let us first define the semialgebraic multilevel method for the solution of a linear
system of the form

Se = r, (17.6)

where S is a matrix of order 2n, r is a given 2n-dimensional vector, and e is the
2n-dimensional vector of unknowns. Let us write S in the block form

S =
(

S1,1 S1,2

S2,1 S2,2

)
,

where S1,1 and S2,2 are submatrices of order n. The semialgebraic multilevel method
for (17.6) is almost the same as the algebraic multilevel method in Section 6.9; the
only difference is that Algorithm 6.4 to derive P is applied to the block-diagonal
part of S, (

S1,1

S2,2

)
,

rather than S. This way, P prolongs the unknowns corresponding to u(1) separately
from the unknowns corresponding to u(2), along the guidelines in Section 17.1.
Then, R and Q are defined as usual by R = P t and Q = RSP (since in the present
application S is symmetric), as usual.

In our applications, we use the semialgebraic multilevel method in a V(1,1)-cycle
with the symmetric point-GS relaxation. This way, whenever S is SPD, an outer
PCG acceleration can be used. This completes the definition of the semialgebraic
multilevel preconditioner for the solution of (17.6).

The same idea as above can also be applied to the algebraic multigrid method
in Section 6.10, to produce the semialgebraic multigrid method. More specifically,
the semi-algebraic multigrid method is obtained by applying Algorithm 6.5 to the
block-diagonal part of S, (

S1,1

S2,2

)

rather than S, and then defining R = P t (at least for symmetric S) and Q = RSP .
Let us now use the above semialgebraic multilevel method to solve a larger

linear system as in (3.5) with the coefficient matrix A (of order t + 2n) constructed
in Section 17.5. For this purpose, let us write A in the block-LU decomposition
induced by the partitioning in (17.5):

A =
(

I
AupA−1

pp I

)(
App

S(A;u)

)(
I A−1

pp Apu

I

)
(17.7)

278 17 Semialgebraic Multilevel for Systems of PDEs

where
S(A;u) = Auu − AupA−1

pp Apu (17.8)

is the Schur complement of A with respect to the partitioning in (17.5).
Clearly, App is diagonal with negative main-diagonal elements. As a consequence,

S(A;u) is SPD. It therefore follows from (17.7) that A is indefinite.
From (17.7), we have

A−1 =
(

I −A−1
pp Apu

I

)(
A−1

pp

S(A;u)−1

)(
I

−AupA−1
pp I

)
. (17.9)

In the following, we use the above A as a preconditioner in a GMRES iteration for
the solution of the Stokes equations. For this purpose, one needs frequently to apply
A−1 to a (t + 2n)-dimensional vector. The main part in this task is the application
of S(A;u)−1 to a 2n-dimensional subvector. This is done by an inner PCG iteration
(with initial guess 0) with the semialgebraic multilevel preconditioner. Actually, it
is usually not necessary to solve the Schur-complement subsystem exactly. In the
numerical application below, it is solved to second-order accuracy only, using 20–50
PCG iterations.

17.7 Preconditioner for the Stokes Equations

The Stokes equations are obtained from (17.2) by setting λ = ∞, so the upper-left
term in the 2× 2 coefficient matrix in (17.2) vanishes. The boundary conditions on
Γ guarantee that the problem is still well-posed. If Γ = ∅, then p is determined only
up to an additive constant; an extra condition of the form∫

Ω

pdxdy = C (17.10)

(for some known constant C) must be imposed to determine p uniquely and guar-
antee well-posedness.

The weak formulation is as in Section 17.4, and the stiffness matrix A is con-
structed as in Section 17.5 (with λ−1 = 0).

With sufficiently large λ, the stiffness matrix for the linear elasticity equations
in (17.7) can serve as a preconditioner for the Stokes equations. Indeed, we have
considered the Stokes equations with µ = 1 in a domain as in Figure 17.1, dis-
cretized on a triangulation of 2713 nodes resulting from adaptive refinement (as in
Figure 17.2). As a preconditioner for this problem, we have used the corresponding
matrix in (17.7) with µ = 1 and λ = 20. Because λ is not too large, the application
of the inverse of the preconditioner is not too hard: indeed, the solution of the Schur-
complement subsystem in each application of (17.9) can be done approximately (to
second-order accuracy) by 20–50 PCG iterations (with the semialgebraic multilevel
preconditioner in Section 17.6) only.

PCG is applicable to the SPD Schur-complement subsystem with the SPD
semialgebraic multilevel preconditioner, but not to the original (indefinite) stiff-
ness matrix of the Stokes equations. For this original system, one must use a more
general acceleration method such as GMRES. In our numerical experiments, we
have used the more stable GMRES(20,10) cycle in [107]. Ten such cycles (a total of

17.7 Preconditioner for the Stokes Equations 279

ΓD Γ�
��
��
��
��
��
��
���

���
���

���
���

����
����

������
������������������������

	
	�� � � � � � � � � � � � � � � � � � ��
�

� �
� � � � �

� � � �
� � �
� � �
� � �
� � �
� � �
���
��
��
��
��
��
��

Fig. 17.1. The circular domain in which the linear elasticity and Stokes equations are
solved in the present examples.

�
�

�

�
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

� �
�

��
�

�

�
�

��
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�
�

��
�

�

�
�

��
�

�

� �
�

��
�

�
��

�
��

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

� �
�

�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

��
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

� �

�

�
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

� �
�

��
�

�

�
�

��
�

�

�
�

� �
�

�

�
�

� �
�

�

��
�

� �
�

�
� �

�
� �

�
�

� �
�

�

�
�

� �
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

��
�

�

�
�

��
�

�

�
��

�
��

� �
�

��
�

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

� �
�

�

�
�

�

� �
�

��
�

�
��

�
��

�
��

�
��

� �
�

��
�

�
� �

�
� �

��
�

� �
�

�
��

�
��

��
�

� �
�

�
�

��
�

�

�
�

��
�

�

��
�

� �
�

�
� �

�
� �

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

��
�

�
�

�

�

�

�
�

�

�
�

�
�

�

�
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

� �
�

��
�

�

�
�

��
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�
�

��
�

�

�
�

��
�

�

� �
�

��
�

�
��

�
��

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

� �
�

�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

��
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

��
�

� �
�

�

�
�

� �
�

�

�

�
�

�

�
�

�
�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
�

�
�

�

�
�

�

�
�

�

�
�

�
�

�
�

�

�

�
�

�

�
�

��
�

�

�
�

��

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

� �
�

��
�

�

�
�

��
�

�

�
�

� �
�

�

�
�

� �
�

�

��
�

� �
�

�
� �

�
� �

�
�

� �
�

�

�
�

� �
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

��
�

�

�
�

��
�

�

�
��

�
��

� �
�

��
�

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

� �
�

�

�
�

�

� �
�

��
�

�
��

�
��

�
��

�
��

� �
�

��
�

�
� �

�
� �

��
�

� �
�

�
��

�
��

��
�

� �
�

�
�

��
�

�

�
�

��
�

�

��
�

� �
�

�
� �

�
� �

�
�

��
�

�

�
�

��
�

�

�
�

�

�
�

��
�

�

�
�

�

�
�

�

�
�

� �
�

�

�
�

� �

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

� �
�

�

�
�

��
�

�
�

�

�

�

�
�

�

�
�

�

��

�

��
� �

�

��

�
�

�

�

�

�

� �

�

�

�

�

��

��

�

��
� �

�

��

�
�

� �
�

� �

��

�
� �

��

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

��

�

� �

�

�

�

�

� �

�

�

�

��

�

��
� �

�

��

�
�

�

�

�

�

� �

�

�

�

�

�

� �

�

��

�
�

��

�

��
�

� �
�

� �

��

�
� �

�

�

� �
�

� �

��

�
� �

�

��
�

� �
�

�
��

�
��

�

� �
�

� �

��

�
� �

�� �

�

��

�
�

��

�

��
� �

� ��
�

�
�� �
��

��
�

� �
�

�
� ��
� �

� �
� ��
�

�
�� �
��

�
��

�
��� � �

��
�

��
�

� �
��

� �
�

� ��
� �

�
� �
��

�
� �

�
�

��
�

��
� �

�
��

�

�
� �

�
� �

� �
� �

�
�

�
�� �
��
� �

� ��
�

� �
�

��
� � ��

�
��

� �
� ��
�

�
�� �
��

�
� �

�
� � ��
�

� �
�

�
��

�
��� � �

��
��

�
�

�
�

� �
�

�

�
�

��
��

�
��� � �

��
� �

�
� �

�
�

�
�

��
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

� �

�

� �
��

�

� �

�
�

�

�

�

�

��

�

�

�

�

�

��

�

� �

�
�

� �

�

� �
�

��
�

��

� �

�
��

�

�

��
�

��

� �

�
��

�

� �
�

��
�

�
� �

�
� �

�

��
�

��

� �

�
��

� ��

�

� �

�
�

� �

�

� �

�
� ��
� �

��
�� �
�

��
�

� �
��� �

�
� �

��
�� �
�

�
� ��
� �

�
��

�
��� �

�
��

�

��
�

� �
��� �

�
� ��� �

�
� �
��

�
� �

�

�
� �

�
� � ��

�
� �

� ��
��

�
�

�
� ��� �

��
�� �
�

�
� ��
� �

� �
�

��
�

�
�� �
��

��
�� �
�

�
� ��
� �

�
� �

�
� � ���

� �
�

�
�

�
�

�
��

�
�

�
�

���
��

�
�

�
�� �
��

�
� �

�
� �
��

�
� �

�

�
��

�
��

��
��

�
�

�

��

�

��
� �

�

��

�
�

�

�

�

�

� �

�

�

�

�

��

��

�

��
� �

�

��

�
�

� �
�

� �

��

�
� �

��

�

�

�

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

��

�

� �

�

�

�

�

� �

�

�

�

��

�

��
� �

�

��

�
�

�

�

�

�

� �

�

�

�

�

�

� �

�

��

�
�

��

�

��
�

� �
�

� �

��

�
� �

�

�

� �
�

� �

��

�
� �

�

��
�

� �
�

�
��

�
��

�

� �
�

� �

��

�
� �

�� �

�

��

�
�

��

�

��
� �

� ���
�

��
�

�� ��
�

� �
�

�
� ��� �

� �
� ���

�
��

�
��

�
��

�
��� �

�
��

�

��
�

� �
��� �

�
� ��� �

�
� �
��

�
� �

�
�

��
�

��
� �

�
��

�

�
� �

�
� �

� �
� ��
�

�
��

�
��
� �

� ���
� �
�

��
� �

��
�

��

� �
� ���

�
��

�
��

�
� �

�
� � ���

� �
�

�
��

�
��� �

�
��

��
�

�

�
�

� �
�

�

�
�

����
�

��� �
�

��
� �

�
� �

�
�

�
�

��
�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

� �

�

� �
��

�

� �

�
�

�

�

�

�

��

�

�

�

�

�

��

�

� �

�
�

� �

�

� �
�

��
�

��

� �

�
��

�

�

��
�

��

� �

�
��

�

� �
�

��
�

�
� �

�
� �

� �

�
��

�

�

��
�

�� ��

�

� �

�
�

� �

�

� �

�
� �

�
� �

��
�� � �

��
�

� �
��

� �
�

� �

��
�� � �

�
� �

�
� �

�
��

�
��� � �

��
�

��
�

� �
��

� �
�

� ��
� �

�
� �
��

�
� �

�

�
� �

�
� � �
�

�
� �

� �
�

�� �
�

�
� ��
� �

��
�� � �

�
� �

�
� �� �

�
��

�
�

�� � ��
��

�� � �
�

� �
�

� �
�

� �
�

� � ��
�

� �
�

�
�

�
�

�
��

�
�

�
�

���
�� �
�

�
�� � ��

�
� �

�
� �
��

�
� �

�

�
��

�
��

��
�� �
�

�

��

�

��

� �

�

��

�

�

�

�

�

�

� �

�

�

�

�

��

��

�

��

� �

�

��

�

�

� �

�

� �

��

�

� �

�
� �

�
��

�

�
��

�
��

�
�

�

�
�

�

�
�

��
�

�

�
��

�
��

� �
�

��
�

�
��

�
��

� �
�

��
�

� �� ���
��

� ���
� �� ���� �� ���� �� ���

��
� ���

� �� ��� ���
��

�

�
��

�
��

��
�

��
�

�
�

�

�
�

��
�

�

�
�

��
��

�
��

��
�

��
�

�
�

��
�

�

�
�

��
�

�

���� ��
��

��� �
�� �� � ��� �� � ����� ��

��
��� �

���� ���� �
��

�
��

�
��

�
�

��
�

��

�
�

�

�
�

�

�
�

��
�

�

�
��

�
��

��
�

��
�

�
��

�
��

��
�

��
�

�

��

�

��

� �

�

��

�

�

�

�

�

�

� �

�

�

�

�

��

��

�

��

� �

�

��

�

�

� �

�

� �

��

�

� �

�
� �

�
��

�

�
��

�
��

�
�

�

�
�

�

�
�

��
�

�

�
��

�
��

� �
�

��
�

�
��

�
��

� �
�

��
�

� �� ���
��� ���
� �� ���� �� ����

�� ���
��� ���

� ��
��� ���
���

�
��

�
����
�

��
�

�
�

�

�
�

��
�

�

�
�

��
��

�
����
�

��
�

�
�

��
�

�

�
�

��
�

�

���� ��
�� ��� �
�� �� � ��� �� � ��

��� ��
�� ��� �

���
� ���� �
�� �
��

�
��

�
�

��
�

��

�
�

�

�
�

�

�
�

��
�

�

�
��

�
�� ��
�

��
�

�
��

�
��

��
�

��
�

�

��

�

��

� �

�

��

�

� �

�

��

�

�

��

�

��

�
��

�
��

��
�

��
�

�
��

�
��

��
�

��
�

� �� ��� ��� ��� �� �
�� � ���
� ��

�
��

�
��

��
�

��
�

��
�

��
�

�
��

�
��

���� ���� ��� ����
���� ��
���

�
�

� ��
�

��
�

�
��

�
��

��
�

��
�

�

��

�

��

� �

�

��

�

� �

�

��

�

�

��

�

��

�
��

�
��

��
�

��
�

�
��

�
��

��
�

��
�

� �� ��� ��� ��� �� �
��

� ���� ��

�
��

�
��

��
�

��
�

��
�

��
�

�
��

�
��

���� ���� ��� ����
��

�� �� ���

�
�

� ��
�

��
�

�
��

�
��

��
�

��
�

�

��

�

��

�

��

�

��

�
��

�
��

�
��

�
��

� �� ���
���� ��

�
��

�
��

�
��

�
��

���� ��
� �� ����

��
�

��

�

��

�

��

�

��

�

��

�
��

�
��

�
��

�
��

� �� ���
���� ��

�
��

�
��

�
��

�
��

���� ��
� �� ����

��
�

��

Fig. 17.2. Distribution of nodes in the fifth level of refinement in the linear elasticity and
Stokes equations.

280 17 Semialgebraic Multilevel for Systems of PDEs

310 iterations) with the linear elasticity preconditioner described above are required
to reduce the l2 norm of the preconditioned residual by six orders of magnitude.

17.8 The Reduced Linear Elasticity Equations

The first equation in (17.2) can be written as

p = −λ(∇ · u + G). (17.11)

When this equation is substituted in the second equation in (17.2), we obtain

−ν∇∇ · u − 1 − ν

2

(
� + (∇∇·)t

)
u =

ν

λ
F + ν∇G,

where

ν =
λ

2µ + λ

is the so-called Poisson ratio. For most materials, 0.3 ≤ ν ≤ 0.35; the only exception
is rubber, for which ν = 0.5.

The above is the strong formulation of the reduced linear elasticity equations.
The weak formulation of these equations can be obtained in a similar way by sub-
stituting (17.11) in the weak formulation in Section 17.4:∫

Ω

(
νv(1)

x ∇ · u +
1 − ν

2

(
∇u(1) + ux

)
· ∇v(1)

)
dxdy +

ν

λ

∫
Γ

(β̂u)(1)v(1)dΓ

=
∫

Ω

(ν

λ
F (1) + νG

)
v(1)dxdy +

ν

λ

∫
Γ

γ(1)v(1)dΓ∫
Ω

(
νv(2)

y ∇ · u +
1 − ν

2

(
∇u(2) + uy

)
· ∇v(2)

)
dxdy +

ν

λ

∫
Γ

(β̂u)(2)v(2)dΓ

=
∫

Ω

(ν

λ
F (2) + νG

)
v(2)dxdy +

ν

λ

∫
Γ

γ(2)v(2)dΓ.

In its weak formulation, the problem is to find functions u(1) and u(2) [with deriva-
tives in L2(Ω)] that agree with α(1) and α(2) (respectively) in ΓD and satisfy the
above equations for any two functions v(1) and v(2) [with derivatives in L2(Ω)] that
vanish in ΓD. It is well known that, in this weak formulation, the problem is indeed
well-posed in the sense that it indeed has a unique solution (see, e.g., Chapter 20
in [103]).

The above weak formulation is now discretized on a finite-element triangulation
by assuming that the functions u(1), u(2), v(1), and v(2) are continuous in the mesh
and linear in each triangle in it.

The adaptive-refinement algorithm in Section 4.10 can also be used to con-
struct a suitable triangulation. In this algorithm, however, (4.18) should be modified
to read

min
(
|ũ(1)(i) − ũ(1)(j)|, |ũ(2)(i) − ũ(2)(j)|

)
≥ threshold, (17.12)

17.9 Towards Problems with Constraints 281

Table 17.1. Number of PCG iterations required in each linear system solve in the
adaptive-refinement algorithm applied to the linear elasticity equations in the circle (with
Poisson ratio ν = 1/3). The semialgebraic multilevel preconditioner (and the semialgebraic
multigrid preconditioner) costs the same as three symmetric Gauss–Seidel iterations. (The
set-up time is negligible.)

Level Nodes PCG-AML PCG-AMG PCG-SGS

1 4 13 13 54

2 13 9 9 13

3 45 12 14 32

4 173 17 16 73

5 679 33 32 177

6 2690 57 52 398

7 10329 93 85 895

where i and j are nodes in the coarse mesh, and ũ(1) and ũ(2) are numerical approx-
imations to u(1) and u(2) (respectively) on the coarse mesh. This way, the midpoint
(i + j)/2 is added to the fine mesh constructed in this refinement level if (and only
if) either u(1) or u(2) changes considerably from i to j.

The numerical approximation ũ(1), ũ(2) must be calculated on the coarse mesh
of each refinement level, and also on the final (finest) mesh obtained from the last
refinement level. This is done by solving the linear system (3.5), with the coefficient
matrix A being the stiffness matrix on the relevant triangulation. This is done by
the semialgebraic multilevel method in Section 17.6 above (with S replaced by A).
The V(1,1)-cycle uses the symmetric point-GS relaxation. Since this preconditioner
(as well as the stiffness matrix A, see Chapter 20 in [103]) is SPD, the basic semi-
algebraic multilevel iteration can be further accelerated by PCG.

We apply the above adaptive-refinement algorithm to a problem with ν = 1/3
in the circular domain in Figure 17.1. The mesh obtained from this algorithm at
the fifth level of refinement is illustrated in Figure 17.2.

The numbers of iterations required to converge (to reduce the l2 norm of the
preconditioned residual by six orders of magnitude) are reported in Table 17.1. We
test three preconditioners: symmetric point-GS (denoted by PCG-SGS), the semi-
algebraic multilevel preconditioner (denoted by PCG-AML), and the semialgebraic
multigrid preconditioner (denoted by PCG-AMG). (Results with the ILU precondi-
tioner are not reported, because it is much inferior even to SGS.) The semialgebraic
multilevel and semialgebraic multigrid preconditioners use V(1,1)-cycles with sym-
metric point-GS relaxation.

It is apparent from the table that the semialgebraic multilevel preconditioner
(and the semialgebraic multigrid preconditioner) is superior to the symmetric point-
GS preconditioner. This advantage becomes more and more apparent as the number
of nodes grows.

17.9 Towards Problems with Constraints

As we see above, the algorithms to construct the prolongation and restriction matri-
ces (Algorithms 6.4 and 6.5) should be modified in problems arising from systems

282 17 Semialgebraic Multilevel for Systems of PDEs

of PDEs in such a way that different unknown functions are prolonged and re-
stricted separately from each other. Here we discuss problems in which it makes
sense to modify the coarsening procedure in Algorithm 6.3 and Section 15.3 as well,
using preliminary information about the original PDE. This is just another exam-
ple of using the algebraic approach not religiously but rather with sense and with
open mindness towards using extra information from the original PDE whenever
available.

Consider, for example, the case of an optimization problem, formulated as a
system of PDEs with constraints. Because the constraints usually involve global
coupling of the entire set of unknowns, they are unsuitable for the coarsening pro-
cedure; they should probably be dropped from the matrix to which this procedure
is applied. In other words, the coarsening procedure should probably be applied not
to the original matrix but rather to the submatrix obtained from the discretization
of the PDEs alone, not the constraints. If Lagrange-multiplier functions are used,
they should probably be redefined and reformulated on the coarse mesh, in the spirit
of geometric multigrid. Similarly, the constraint equations should also be dropped
from the matrix from which the prolongation and restriction matrices are derived,
in the spirit of the semialgebraic multilevel method.

17.10 Towards Semialgebraic Block Lumping

In the Schur complement S(A;u) of the linear elasticity equations and the linear
system obtained from the discretization of the reduced linear elasticity equations,
we assumed that the unknowns are ordered function by function: first unknowns
corresponding to u(1) and then unknowns corresponding to u(2). This, however,
is not the only way. We could also order the unknowns node by node: first the
unknowns representing the values of u(1) and u(2) at the first node, then the un-
knowns representing the values of u(1) and u(2) at the second node, and so on, until
the last node is reached. In other words, the vector of unknowns is divided into n
two-dimensional subvectors (where n is the number of nodes in Ω \ ΓD), each of
which corresponds to a particular node in the mesh. This ordering induces a block
form for the coefficient matrix A, in which each block is a submatrix of order 2,
which couples a particular node to some other node in terms of both u(1) and u(2).

This form can be used in a block version of the algebraic multilevel method, in
which 2 × 2 blocks and their arithmetics are used instead of the standard matrix
elements and their arithmetics. For example, the matrices Ga and Gb are now
block-diagonal rather than diagonal, and their inversion requires the inversion of
the individual 2 × 2 blocks on their main block-diagonals. In the following, we
explain why this approach is indeed appropriate.

The lumping used in matrix-based multigrid [see (9.2) and (9.3)] is motivated
by the assumption that the prolongation operator should be rather accurate for the
constant function. This is a fair assumption for scalar PDEs, where the solution is
continuous and, therefore, can be approximated locally by the constant function, but
not necessarily for systems of PDEs, where there is no continuity relation between
different unknown functions, not even at the same point. Thus, it makes no sense
to lump matrix elements that couple different unknown functions onto the main
diagonal. It makes much more sense to lump (or add) them to the corresponding

17.11 A Domain-Decomposition Two-Level Method 283

matrix element in the block main-diagonal, so they still continue to couple the same
functions as before, although no longer at different points. In other words, the row-
sum operation in (17.1) is interpreted no longer elementwise but rather blockwise,
where a block is a 2×2 submatrix that couples two (distinct or not) nodes in terms
of both u(1) and u(2). The resulting algorithm is semialgebraic in the sense that it
uses not only the original matrix but also the fact that it arises from a system of
two coupled PDEs.

The above approach is also semialgebraic in the sense that it uses not only the
elements in the original matrix A but also the underlying mesh. Indeed, each two-
dimensional subvector in the above splitting corresponds to a particular node in the
mesh. (On further coarser levels, the nodes are no longer physical but rather alge-
braic and virtual.) This approach can also combine with the approach in Section 16.6
to produce a semialgebraic (block) coarsening procedure that may be suitable for
nonsymmetric systems of PDEs.

17.11 A Domain-Decomposition Two-Level Method

The semialgebraic multilevel method in Section 17.6 above uses mostly information
from the coefficient matrix A. It uses the original system of PDEs only to distinguish
between different kinds of functions, such as u(1), u(2), and p. Here we propose a more
geometric approach, based on domain decomposition and variational multigrid.

The present approach for solving the Stokes (and linear elasticity) equations
uses domain decomposition in a two-level setting, as in Section 6.6 above. The key
to this method is to define the prolongation operator. For scalar PDEs such as the
diffusion problem, this is illustrated in Figures 6.6 and 6.7. For systems of PDEs
such as the Stokes and linear elasticity equations, the definition of the prolongation
operator is slightly more complicated.

Consider a coarse-grid vector function u = (u(1), u(2)) to be prolonged to the
entire fine grid. The values of the vector function are specified at the corners of the
subdomains (the junction points in Figure 17.3). The p values, on the other hand,
are specified to have some constant value in each subdomain (see Figure 17.3).
Let us first design the first prolongation step, in which u values are defined also
in the line that connects two corners of a subdomain. This is done by solving a
homogeneous Dirichlet–Neumann subproblem in the strip that contains this line
(Figure 17.4). In this subproblem, Dirichlet conditions (as in ΓD) are used on the
left and right edges of the strip, and Neumann conditions (as in Γ) are used on the
top and bottom edges of the strip. The u Dirichlet values at the left and right edges
are taken from the original values at the subdomain corners, and are constant in
each edge.

On the top and bottom edges of the strip, Neumann conditions as in (17.4)
(with β̂ = 0) are used. The right-hand sides in these conditions are calculated by
using the corresponding constant p values in the top and bottom subdomains in
Figure 17.3 and assuming the homogeneous values ∇u = (0) at the top and bottom
edges of the strip. For example, at the bottom edge, the boundary conditions are

−pn + µ
(
(∇u)t + ∇u

)
n = −p(b)n,

284 17 Semialgebraic Multilevel for Systems of PDEs

u

u

u

u

u

u

p(b)

p(t)

Fig. 17.3. The coarse-grid function to be prolonged. The values of u = (u(1), u(2)) are
specified at the subdomain corners. The values of p are specified to be constant in each
subdomain; for example, the constant p(t) in the top subdomain, and the constant p(b) in
the bottom subdomain.

u u

−pn + µ((∇u)t + ∇u)n = −p(t)

−pn + µ((∇u)t + ∇u)n = −p(b)

Fig. 17.4. The first prolongation step, designed to determine the prolonged u values in the
subdomain edges, using the u values at the subdomain corners and the constant p values
at the subdomains, available from the given coarse-grid function. Each subdomain edge is
surrounded by a thin strip, as illustrated in the figure. A Dirichlet–Neumann subproblem
is then solved in the strip, as indicated in the figure. This determines uniquely the u values
in the subdomain edge, as required.

where n = (0,−1)t is the outer normal vector, p(b) at the right-hand side is the
constant value available from the coarse-grid function at the bottom subdomain,
and u and p at the left-hand side are the unknown functions inside the strip. This
procedure determines uniquely the u values in the line contained in the strip.

The same procedure is used for each line that connects two corners of a subdo-
main. The entire procedure determines the prolonged u values in the entire internal
boundary. These values are now used to calculate the prolonged u and p values
throughout the fine grid.

(The first prolongation step can be improved further by “lumping” u as in
Figure 6.8. This produces a 1-D problem in each subdomain edge to solve for the
prolonged u values.)

In the second prolongation step, the prolonged u and p values are calculated
also in the interior of each subdomain. This is done by solving a homogeneous
Dirichlet subproblem, using the u values calculated in the first prolongation step as
Dirichlet data. Consider, for instance, the subdomain in Figure 17.5. The u values

17.12 Exercises 285

u u

u

u

∫
p =

∫
p(b)

Fig. 17.5. The second prolongation step, designed to determine the prolonged u and p
values in the subdomain interiors, using both the original coarse-grid function and the u
values calculated in the first prolongation step. In each subdomain, a Dirichlet subproblem
is solved, using the u values calculated in the edges in the first prolongation step. The
constant p(b) available from the coarse-grid function is used to determine the additive
constant for p.

in its internal boundary are known: at the corners, they are available from the
original coarse-grid function; and at the edges of the subdomain, they have just
been calculated in the first prolongation step. Thus, they can be used as Dirichlet
data to solve a homogeneous subproblem in the subdomain, and obtain the required
u and p values throughout it.

The p values, however, are determined only up to an additive constant. Still,
this constant is easily obtained, because the integral of the prolonged p values over
the subdomain must be the same as the integral of the original (constant) p value
in the coarse-grid function [see (17.10)]. More specifically, the prolonged p values in
the subdomain must satisfy ∫

pdxdy =
∫

p(b)dxdy ,

where the integral is over the subdomain, p(b) in the right-hand side is the constant
value available from the coarse-grid function, and p in the left-hand side is the (yet
unknown) prolonged function in the subdomain.

Thus, the prolonged u and p values have been calculated in the entire fine grid,
as required. This completes the definition of the prolongation operator P .

As usually done in symmetric problems, the restriction operator is now defined
by R = P t. As in variational multigrid, the coarse-grid matrix is now defined by Q =
RAP . This completes the definition of the domain-decomposition two-level method.

17.12 Exercises

1. Show that the submatrix App in (17.5) is diagonal.
2. Show that the submatrix Auu in (17.5) is symmetric.
3. Show that Aup = At

pu in (17.5).
4. Conclude that the stiffness matrix for the linear elasticity (and Stokes) equations

is symmetric.
5. Show that, for λ < ∞, the diagonal submatrix App in (17.5) has negative main-

diagonal elements.
6. Conclude that −AupA−1

pp Apu is SPD.

286 17 Semialgebraic Multilevel for Systems of PDEs

7. Show that the submatrix Auu is positive semidefinite.
8. Conclude that the Schur complement submatrix S(A;u) in (17.8) is SPD as well.
9. Use (17.7) to show that the stiffness matrix for the linear elasticity equations

(λ < ∞) is indefinite.
10. Show that the reduced linear elasticity system has a well-posed weak formula-

tion, in the sense that it has a unique solution with derivatives in L2(Ω). The
solution can be found in Chapters 11 and 20 in [103].

11. Show that the stiffness matrix for the reduced linear elasticity equations in
Section 17.8 is symmetric.

12. Show that it is also positive semidefinite.
13. Show that it is also nonsingular.
14. Conclude that it is also SPD.
15. Write the computer code that implements the semialgebraic multilevel method

for the reduced linear elasticity equations in Section 17.8. The solution can be
found in Chapter 20 in [103].

16. Show that the submatrix Auu in (17.5) is nonsingular.
17. Conclude that it is SPD.
18. Conclude that the Schur complement corresponding to p, defined by

S(A; p) = App − ApuA−1
uu Aup

is symmetric and negative definite.
19. Use the reversed block-LU decomposition

A =
(

I ApuA−1
uu

I

)(
S(A; p)

Auu

)(
I

A−1
uu Aup I

)
(17.13)

to show that A is indefinite not only for the linear elasticity equations but also
for the Stokes equations.

20. Use your above code (with ν = 0) to solve problems of the form

Auue = r, (17.14)

where r is a given 2n-dimensional vector and e is a 2n-dimensional vector of
unknowns.

21. Use your above code in (17.13) to obtain a direct solver for the Stokes equa-
tions. [Solve the Schur-complement subsystem in (17.13) by a conjugate gra-
dient iteration, with an inner PCG iteration with the semialgebraic multilevel
preconditioner to solve (17.14)].

22. In the model case in which the Stokes equations are defined in a square with pe-
riodic boundary conditions and discretized on a uniform mesh as in Figure 4.13,
expand the discrete pressure function p using the 2-D Fourier transform as in
the exercise at the end of Chapter 2:

p
(k,l)
j,m = exp

(
2π

√
−1(kj + lm)h

)
,

bound the corresponding eigenvalues of S(A; p) from above and below, and
conclude that

κ(S(A; p)) = O(1)

as h → 0. Conclude that the above conjugate gradient iteration for solving the
Schur-complement subsystem in (17.13) should converge rapidly.

17.12 Exercises 287

23. Write the computer code that uses (17.7) as a preconditioner for the Stokes
equations. The solution can be found in Chapter 21 in [103].

24. Which of the above two solvers for the Stokes equations is more efficient?
25. Let w be a coarse-grid function with u-values defined at the subdomain corners

and constant p-values defined in the subdomains in Figure 17.3. Let P be the
prolongation operator indicated in Figures 17.4 and 17.5. Show that Pw is
indeed rather small in terms of the norm induced by A (energy norm). Conclude
that the A-induced norm of the operator PJc is moderate.

26. Show that the ith column in Q in the algorithm in Section 17.11 can be calcu-
lated by

Qe(i) = R(A(Pe(i))),

where e(i) is the ith column of the identity matrix of the same order as Q.
27. Show that all the columns of Q can be calculated simultaneously in parallel.
28. Show that Q in Section 17.11 is indeed sparse in the sense that coarse-grid u

and p values are coupled in Q only with other coarse-grid values at subdomains
that are at most two subdomains away (neighbor of neighbor subdomains). Con-
clude that the dimension of e(i) above could actually be much smaller than the
order of Q.

29. Explain the advantage of the domain decomposition two-level method in
Section 17.11 in terms of cache access.

Part VII

Appendices

291

In the following appendices, we consider two kinds of problems: time-dependent
problems and nonlinear problems. Each problem of either of these kinds requires
the solution of many linear systems of algebraic equations. Each of these linear sys-
tems can be solved efficiently by multigrid. Furthermore, when complicated domains
and variable coefficients are also used, the advantage of matrix-based multigrid is
apparent.

18

Time-Dependent Parabolic PDEs

The (semi-) implicit discretization of a time-dependent parabolic PDE produces a
long sequence of linear systems of algebraic equations. Each linear system can by
itself be solved efficiently by matrix-based multigrid.

18.1 Parabolic PDEs

So far in this book, we have considered elliptic PDEs in a spatial domain Ω, with
boundary conditions given on ∂Ω. Here we consider parabolic PDEs, with an extra
dimension t, which represents the time. In this kind of problem, boundary conditions
are given on ∂Ω and initial conditions are given at the initial time t = 0. For this
reason, the problem is referred to as an initial boundary-value problem.

As we will see below, the numerical solution of this problem is obtained from a
sequence of elliptic boundary-value problems at discrete time steps. Each of these
elliptic problems can be solved iteratively by multigrid.

18.2 The Parabolic Diffusion Equation

The parabolic diffusion equation is obtained from the diffusion equation in (3.2) by
also adding the time derivative

ut −∇ · (D∇u) = F

in Ω×[0,T], where T is a positive number indicating the maximal time, 0 ≤ t ≤ T is
the time variable, the ‘∇’ operator is as in Section 17.2, D is a given 2×2 symmetric
and uniformly positive definite matrix function in Ω (as in Section 3.2), and the
unknown solution u and the right-hand side F are functions in Ω × [0,T].

The boundary conditions are of Dirichlet type in the subset ΓD ⊂ Ω:

u(x, y, t) = F1(x, y, t) (x, y) ∈ ΓD, 0 ≤ t ≤ T,

where F1 is a given function in ΓD×[0,T]. On the rest of ∂Ω, that is, on Γ = ∂Ω\ΓD,
the boundary conditions are of the mixed type:

(D∇u) · n + G1u = G2

294 18 Time-Dependent Parabolic PDEs

in Γ × [0,T], where n = (n1(x, y), n2(x, y)) is the outer normal vector to Γ in R2, G1

is a given nonnegative function in Γ , and G2 is a given function in Γ × [0,T].
In order to complete the definition of the problem, one must also impose initial

conditions at the initial time t = 0:

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

where u0 is a given function in Ω that is compatible with the boundary conditions.
This completes the strong formulation of the initial boundary-value problem.

18.3 The Weak Formulation

In the above, the parabolic PDE is given in its strong formulation. A better-posed
formulation, however, is the weak formulation, which is obtained from the strong
formulation by multiplying the above PDE by a function v(x, y) that vanishes in
ΓD, integrating over Ω, and using Green’s formula and the mixed boundary condi-
tions in Γ : ∫

Ω

utvdxdy + a(u, v) =
∫

Ω

Fvdxdy +
∫

Γ

G2vdΓ,

where

a(u, v) = (D∇u) · ∇vdxdy +
∫

Γ

G1uvdΓ.

This weak formulation will be used in the finite-element discretization below.

18.4 The Semi-Implicit Time Discretization

Let us first discretize the above equation in the time direction t. For this purpose,
we use the semi-implicit scheme, which is of second-order accuracy in both space
and time.

Let M be an integer number denoting the number of discrete time steps used to
discretize the time interval [0,T]. This way, if �t = T/M , then the discrete time
points are:

t = 0,�t, 2�t, 3�t, . . . ,M�t.

For 1 ≤ k ≤ M , let F (k) be the function in Ω that coincides with F at the half
time step t = (k − 1/2)�t:

F (k)(x, y) = F(x, y, (k − 1/2)�t), (x, y) ∈ Ω.

Similarly, we also define

G(k)
2 (x, y) = G2(x, y, (k − 1/2)�t), (x, y) ∈ Γ

F (k)
1 (x, y) = F1(x, y, (k − 1/2)�t), (x, y) ∈ ΓD

F (k)
1 t (x, y) = F1 t(x, y, (k − 1/2)�t), (x, y) ∈ ΓD

(derivative of F1 with respect to t at the half time step).

18.5 The Finite-Element Discretization 295

Furthermore, for 0 ≤ k ≤ M , let u(k) be the function in Ω that approximates
the solution at the kth time steps:

u(k)(x, y) .= u(x, y, k�t), (x, y) ∈ Ω.

In particular, u(0) is obtained from the initial conditions:

u(0)(x, y) = u0(x, y), (x, y) ∈ Ω.

The semi-implicit time discretization of the above weak formulation is ob-
tained by approximating the term ut by symmetric finite difference around the
half time step:

(�t)−1

∫
Ω

(
u(k) − u(k−1)

)
vdxdy +

1
2
a
(
u(k) + u(k−1), v

)

=
∫

Ω

F (k)vdxdy +
∫

Γ

G(k)
2 vdΓ.

This completes the semi-implicit time discretization. In the next section, we also
discretize in space, using a finite-element triangulation of Ω.

18.5 The Finite-Element Discretization

Here we discretize the above equation in space as well. For this purpose, we use a
finite-element triangulation T of Ω. We assume that there are n nodes in T \ ΓD.

Let φj be the nodal basis function that is continuous in T , linear in each indi-
vidual triangle, and takes the value 1 at node j and 0 at all the other nodes in T .
For every two nodes i and j, define

Ki,j =
∫

T

φjφidxdy and ai,j = a(φj , φi).

These definitions induce the definitions of the so-called mass matrix

K = (Ki,j)i,j∈T\ΓD

and stiffness matrix

A = (ai,j)i,j∈T\ΓD
,

both of which are SPD matrices of order n.
Now, let us use the finite-element mesh to approximate the functions u(k) in

Section 18.4 above by

u(k) .=
∑

j∈T\ΓD

x
(k)
j φJ +

∑
j∈ΓD

F1(j)φj ,

where the x
(k)
j are the unknown components in the vector

x(k) =
(
x

(k)
1 , x

(k)
2 , . . . , x(k)

n

)t

.

296 18 Time-Dependent Parabolic PDEs

[Note that at the initial time step k = 0 these components are known: x
(0)
j = u0(j).]

Finally, define the components

b
(k)
i =

∫
T

F (k)φidxdy +
∫

Γ

G(k)
2 φidΓ −

∑
j∈ΓD

Ki,jF (k)
1 (j) + ai,jF (k)

1 t (j)

(1 ≤ i ≤ n) of the vector

b(k) =
(
b
(k)
1 , b

(k)
2 , . . . , b(k)

n

)
.

By making the substitutions

u(k) ←
∑

j∈T\ΓD

x
(k)
j φJ +

∑
j∈ΓD

F1(j)φj

and

v ← φi

in the equation at the end of Section 18.4 above, we have the numerical scheme

(�t)−1K
(
x(k) − x(k−1)

)
+

1
2
A
(
x(k) + x(k−1)

)
= b(k).

By marching across the time steps indexed by k = 1, 2, 3, . . . ,M and calculating
the unknown vectors x(k), we obtain the numerical solution to the original initial
boundary-value problem. In the next section, we show that this scheme is indeed
stable and, hence, accurate.

18.6 Stability Analysis

The above equations can be written more compactly as

Ax = b,

where x is the nM -dimensional vector of unknowns whose first n-dimensional sub-
vector is x(1), its second subvector is x(2), and so on, until the Mth subvector
x(M), b is the nM -dimensional vector whose first n-dimensional subvector is b(1) +
(�t)−1Kx (0) − Ax (0)/2, its second subvector is b(2), its third subvector is b(3), and
so on, until the Mth subvector b(M), and A is the nM ×nM block-bidiagonal matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K

�t
+

A

2
A

2
− K

�t

K

�t
+

A

2
A

2
− K

�t

K

�t
+

A

2
.

A

2
− K

�t

K

�t
+

A

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

18.6 Stability Analysis 297

Actually, A can be written as the product

A = B(I −Q),

where B is the block-diagonal matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K

�t
+

A

2
K

�t
+

A

2
K

�t
+

A

2
. . .

K

�t
+

A

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q is the matrix with a single nonzero block diagonal:

Q =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0)(
K

t
+

A

2

)−1(K

t
− A

2

)
(0)(

K

t
+

A

2

)−1(K

t
− A

2

)
(0)

. . .
. . .(

K

t
+

A

2

)−1(K

t
− A

2

)
(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because both K and A are SPD, B is SPD as well. We say that the numerical
scheme is stable if A−1 is well bounded in terms of the norm induced by B. In this
context, the above decomposition of A proves to be useful. Indeed, from Lemma 2.5,
we have

‖A−1‖B = ‖(I −Q)−1B−1‖B ≤ ‖(I −Q)−1‖B‖B−1‖B.

In order to use this estimate, let us first bound Q in terms of the norm induced
by B. For this purpose, note that the maximum used in the norm of Q is obtained at
an nM -dimensional vector v whose mth time step v(M) vanishes and whose former
time steps are the same, namely, v(1) = v(2) = · · · = v(M−1):

‖Q‖2
B

= max
v∈RnM ,v �=0

‖Qv‖2
B

‖v‖2
B

= max
v(1),v(2),...,v(M−1)∈Rn

∑M−1
k=1

∥∥∥((t)−1K + A/2
)−1 (

(t)−1K − A/2
)

v(k)
∥∥∥2

(�t)−1K+A/2∑M−1
k=1 ‖v(k)‖2

(�t)−1K+A/2

= max
v∈Rn,v �=0

(M − 1)
∥∥∥((t)−1K + A/2

)−1 (
(t)−1K − A/2

)
v
∥∥∥2

(�t)−1K+A/2

(M − 1)‖v‖2
(�t)−1K+A/2

=

∥∥∥∥((t)
−1

K + A/2
)−1 (

(t)
−1

K − A/2
)∥∥∥∥2

(�t)−1K+A/2
.

298 18 Time-Dependent Parabolic PDEs

Furthermore, since ((�t)−1K + A/2)−1((�t)−1K − A/2) is symmetric with re-
spect to the inner product induced by (�t)−1K + A/2, we have from Lemmas 2.13
and 2.14 that ∥∥∥((�t)−1K + A/2

)−1 (
(�t)−1K − A/2

)∥∥∥
(t)−1K+A/2

= max
v∈Rn,v �=0

∣∣(v,
(
(�t)−1K − A/2

)
v
)
2

∣∣
(v, ((�t)−1K + A/2) v)2

= max
v∈Rn,v �=0

∣∣(v, (�t)−1Kv
)
2
− (v,Av/2)2

∣∣
(v, (�t)−1Kv)2 + (v,Av/2)2

≤ 1.

In summary, we have

‖Q‖B ≤ 1.

Using this result and Lemma 2.5, we have

‖(I −Q)−1‖B = ‖
M−1∑
k=0

Qk‖B

≤
M−1∑
k=0

‖Q‖k
B

≤
M−1∑
k=0

1

= M.

Let us now estimate B−1 in terms of the norm induced by B. From Lemma 2.17,
we have

‖B−1‖B = ‖B−1‖2.

Let h be the typical meshsize in the triangulation T . Because both K and A con-
tain the factor h2 that follows from the integration over each individual triangle,
we have that

‖B−1‖B = ‖B−1‖2 = O(�th−2)

as both h and �t approach zero at the same time. As a conclusion, we have

‖A−1‖B ≤ ‖(I −Q)−1‖B‖B−1‖B = O(M�th−2) = O(Th−2).

Because A−1 is bounded independently of the number of time steps M , the
numerical scheme is considered as stable. Below we will see that the above estimate
implies that the scheme is also accurate.

18.8 The Algebraic Multilevel Preconditioner 299

18.7 Accuracy of the Numerical Scheme

The above stability analysis is helpful in estimating the discretization error in terms
of the norm induced by B. This is done as follows. Let ũ be the nM -dimensional
vector obtained from restricting the solution u(x, y, t) to the discrete time-space
grid. The discretization error can then be written as

ũ − x = A−1 (Aũ − b) .

Using the norm induced by B, we have

‖ũ − x‖B = ‖A−1 (Aũ − b) ‖B ≤ ‖A−1‖B ‖Aũ − b‖B = O
(
Th−2 ‖Aũ − b‖B

)
.

All that is left to do is to estimate the truncation error Aũ − b in terms of the
norm induced by B. For this purpose, one should bear in mind that the spatial
discretization is in the undivided form; that is, both A and K contain an extra
factor of O(h2).

Let us carry out this estimate in the model PDE

ut − (D1ux)x − (D2uy)y = F , 0 < t < T, 0 < x, y < 1,

discretized on the uniform finite-element mesh in Figure 4.13, where D1 and D2 are
piecewise constant functions in the unit square, with discontinuity lines that align
with the mesh. In this case, we have

Aũ − b = O(h2((�t)2 + h2))

pointwise in the time-space grid. Since the entire time-space grid contains O(M/h2)
points, and since ‖B‖2 = O(h2/�t),

‖Aũ − b‖2
B = (Aũ − b,B(Aũ − b))2 = O

(
M

h2
· h2

�t
h4
(
(�t)2 + h2

)2)
,

or

‖Aũ − b‖B = O

(√
T

�t
h2
(
(�t)2 + h2

))
.

Using also the stability estimate from the previous section, we have the following
accuracy estimate:

‖ũ − x‖B = O
(
T3/2(�t + h2/�t)

)
.

The best accuracy is therefore obtained when �t is of the same order as h.

18.8 The Algebraic Multilevel Preconditioner

The above numerical scheme requires the solution of a linear system with the coef-
ficient matrix (�t)−1K + A/2 at each time step. It is thus most important to have

300 18 Time-Dependent Parabolic PDEs

Table 18.1. Number of PCG iterations used in each refinement level in the adaptive-
refinement algorithm (with threshold of 0.01) applied to a particular time step in the
semi-implicit scheme for the parabolic diffusion problem in the complicated domain in
Figure 16.2. (It is assumed that �t = 2, so the coefficient matrix is K + A, where A is the
stiffness matrix and K is the mass matrix.)

Level Nodes PCG-AML PCG-AMG PCG-ILU PCG-SGS

1 11 5 5 3 5

2 34 4 4 5 11

3 107 8 8 8 21

4 342 12 12 17 40

5 1069 18 18 30 61

6 3095 22 23 63 120

7 8331 36 34 122 216

8 18608 54 52 420 386

an efficient iterative solver for this system. For this purpose, it is recommended to
use PCG with the algebraic multilevel preconditioner.

To illustrate how efficient this preconditioner is, we carry out the numerical
experiments in Section 16.7 above, only this time we use the coefficient matrix
K + A rather than A, where A is the stiffness matrix in Section 16.7 and K is the
mass matrix corresponding to the same finite-element mesh.

The details of the algorithms are as in Section 16.7. The iteration counts reported
in Table 18.1 illustrate the advantage of the algebraic multilevel methods.

19

Nonlinear Equations

Here we discuss another kind of problem in which matrix-based multigrid proves
to be most useful. Indeed, the Newton iteration for solving a nonlinear boundary-
value problem requires the solution of a long sequence of linear systems of algebraic
equations. Each linear system can by itself be solved efficiently by an inner iteration
of matrix-based multigrid.

19.1 Nonlinear PDEs

So far in this book, we have considered only linear PDEs, whose discretization pro-
duces the algebraic system (3.5). Here, however, we consider also the more difficult
case of a nonlinear PDE that produces a nonlinear algebraic system of the form

A(x) = b, (19.1)

where b is a given N -dimensional vector, x is the N -dimensional vector of unknowns,
and A() : RN → RN is a nonlinear vector function. In this case, the usual residual
equation is no longer relevant, as discussed below. A more general formulation is
necessary.

19.2 The Residual Equation

Let x(0) be an approximation for the solution x. Let e = x − x(0) denote the error.
Then e can be viewed as the correction that should be added to x(0) to have the
solution x = x(0) + e. In other words, since x(0) is mapped by A() to A(x(0)) rather
than b, it should be corrected by adding e to it, which produces a vector that is
indeed mapped onto b, as required. In fact, in terms of mapped vectors, e satisfies
the residual equation

A(x(0) + e) − A(x(0)) = b − A(x(0)), (19.2)

which tells us what vector e should be added to x(0) in order to add b − A(x(0)) to
the mapped value, and change it from A(x(0)) to the required vector b.

Indeed, when (19.2) is added to the trivial equation

A(x(0)) = A(x(0)),

302 19 Nonlinear Equations

the sum of these two equations produces the required equation

A(x(0) + e) = b,

which shows that x(0) + e is indeed the required solution.
Thus, (19.2) is the correct form of the residual equation, which determines the

required correction e.
Of course, when A() is linear, (19.2) takes the simpler and more usual form

A(e) = b − A(x(0)).

In the present nonlinear case, however, A() may produce an interaction between
x(0) and e, so such a simplification is not allowed. One must stick to (19.2), and use
it also in the multigrid algorithm [24].

19.3 Defect Correction

The operator that approximates A() on a coarser grid can be viewed as a special case
of the following formulation. Let A1() be an approximation to A(). For example, if
A() is a second-order approximation to the original nonlinear differential operator
T () (see the exercises at the end of Chapter 8):

A() = (1 + O(h2))T (),

then A1() could be a first-order approximation to the same operator:

A1() = (1 + O(h))T ().

Usually, A1() is much easier to invert than A(). Therefore, one would like to
solve (19.1) without inverting A(). This is indeed done in the defect-correction
method as follows. First, replace A() in the left-hand side in (19.2) by A1():

A1(x(0) + e(0)) − A1(x(0)) = b − A(x(0)). (19.3)

Clearly, e(0) is not necessarily the same as the exact error e = x−x(0) used in (19.2).
Still, it can approximate it rather well, and produce an improved approximation to
x, denoted by x(1):

x(1) = x(0) + e(0).

This procedure can repeat iteratively, producing the sequence of vectors x(i),
satisfying

A1(x(i+1)) − A(x(i)) = b − A(x(i)). (19.4)

If the sequence x(i) converges in some norm, then the right-hand side of (19.4),
must tend to zero, so x(i) must converge to x. Thus, (19.1) has been solved using
inversions of A1() only.

19.4 Geometric Multigrid 303

In the special case in which A1() is linear, one can apply A−1
1 () to both sides

of (19.4) to obtain the iteration

x(i+1) = x(i) + A−1
1

(
b − A(x(i))

)
,

which means that A1 actually serves as a preconditioner for the iterative solution
of (19.1).

In the following, we will see how (19.3) can be used in a multigrid setting, with
A1() being interpreted as a coarse-grid approximation to A().

19.4 Geometric Multigrid

The multigrid algorithm in [24] for the nonlinear equation (19.1) indeed uses (19.3)
with A1() being a coarse-grid approximation to A(). More specifically, in the geo-
metric multigrid approach, A1() is obtained from a rediscretization of the original
differential operator [T () in the exercises at the end of Chapter 8] on the coarse
grid. In the following, the multigrid iteration is described in more detail.

Let P be the prolongation operator from the coarse grid, R the restriction oper-
ator to the coarse grid, and Q() a coarse-grid nonlinear vector function that approx-
imates A() in some sense [e.g., both A() and Q() are obtained from discretization
of the same nonlinear differential operator T ()]. Then (19.2) can be approximated
on the coarse grid by

Q(Rx (0) + E) − Q(Rx (0)) = R
(
b − A(x(0))

)
e = PE .

Here E is a coarse-grid approximation of the fine-grid error e. First, E is calculated
by solving the coarse-grid version of (19.2); then, it is prolonged back to the fine
grid to produce an approximation to e.

In order to be approximated well on the coarse grid, both x(0) and e must be
sufficiently “smooth” (have low variation). This can be achieved by performing pre
and postrelaxations before and after the coarse-grid correction, provided that the
underlying PDE has a continuous solution. For PDEs with discontinuous (shock-
wave) solutions, on the other hand, the situation may be more complicated: even
though one may assume that e has been smoothed by the prerelaxations, there is
no guarantee that x(0) is smooth as well, so its coarse-grid restriction Rx (0) may be
completely smeared and spoiled.

Another drawback in the above algorithm is the poor suitability of Q(). As dis-
cussed earlier in the book, when the underlying PDE has discontinuous coefficients,
rediscretization no longer produces a suitable coarse-grid approximation for A(). In
such cases, matrix-based multigrid should be used rather than geometric multigrid;
unfortunately, here no matrix is available, because A() is a nonlinear function. The
only cure is linearization.

304 19 Nonlinear Equations

19.5 The Newton Iteration

The Newton iteration (see the exercises at the end of Chapter 8) is based on
linearization. For i = 0, 1, 2, . . . , it produces better and better approximations x(i)

for x, the solution of (19.1).
In order to compute the next iteration x(i+1), the Newton method uses the

Jacobian of A() at x(i), denoted by Ax(i) :

x(i+1) = x(i) + A−1
x(i)

(
b − A(x(i))

)
.

(Compare with the exercises at the end of Chapter 8, in which a slightly different
linearization, based on the underlying differential operator, is used.)

Each implicit inversion of Ax(i) in this iteration can be done efficiently by matrix-
based multigrid.

References

1. Adams, L. M.; and Jordan, H. F.: Is SOR Color-Blind? SIAM J. Sci. Stat. Comput. 7
(1986), pp. 490–506.

2. Alcouffe, R.; Brandt, A.; Dendy, J. E.; and Painter J.: The multigrid method for
the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Statist.
Comput. 2 (1981), pp. 430–454.

3. Aruliah, D. A.; and Ascher, U. M.: Multigrid preconditioning for time-harmonic
Maxwell’s equations in 3D. On www.mgnet.org/mgnet/papers/Aruliah-Ascher/
mgmax.ps.gz.

4. Axelsson, O.; and Padiy, A.: On the additive version of the algebraic multilevel
iteration method for anisotropic elliptic problems. SIAM J. Sci. Comput. 20 (1999),
pp. 1807–1830.

5. Bank, R. E.: A comparison of two multilevel iterative methods for nonsymmetric and
indefinite finite element equations. SIAM J. Num. Anal. 18 (1981), pp. 724–743.

6. Bank, R. E.; and Douglas, C. C.: Sharp estimates for multigrid rates of conver-
gence with general smoothing and acceleration. SIAM J. Numer. Anal. 22 (1985),
pp. 617–633.

7. Bank, R. E.; and Dupont, T. F.: An optimal order process for solving elliptic finite
element equations. Math. Comp. 36 (1981), pp 35–51.

8. Bank, R. E.; Dupont, T. F.; and Yserentant, Y.: The hierarchical basis multigrid
method. Numer. Math. 52 (1988), pp. 427–458.

9. Bank, R. E.; and Gutsch, S.: Hierarchical basis for the convection-diffusion equation
on unstructured meshes. In Ninth International Conference on Domain Decomposi-
tion Methods, Bjorstad, P., Espedal, M., and Keyes, D. (eds.), Bergen Univ. Press,
Norway (1998).

10. Black, M. J.; Sapiro, G.; Marimont, D.; and Heeger, D.: Robust anisotropic diffusion:
Connections between robust statistics, line processing, and anisotropic diffusion. In
Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science 1252,
Springer, New York, pp. 323–326 (1997).

11. Black, M. J.; Sapiro, G.; Marimont, D. H.; and Heeger, D.: Robust anisotropic diffu-
sion. IEEE T. Image Process. 7 (1998), pp. 421–432.

12. Botta, E. E. F.; and van der Ploeg, A.: Preconditioning techniques for matrices
with arbitrary sparsity patterns. In Proceedings of the 9th International Confer-
ence on Finite Elements in Fluid Dynamics, New Trends and Applications (1995),
pp. 989–998.

13. Braess, D.: Towards algebraic multigrid for elliptic problems of second order.
Computing 55 (1995), pp. 379–393.

306 References

14. Bramble, J. H.; Ewing, R. E.; Pasciak, J. E.; and Schatz, A. H.: A preconditioning
technique for the efficient solution of problems with local grid refinement. Comput.
Methods Appl. Mech. Engrg. 67 (1988), pp. 149–159.

15. Bramble, J. H.; Leyk, Z.; and Pasciak, J. E.: Iterative schemes for non-symmetric
and indefinite elliptic boundary value problems. Math. Comp. 60 (1993), pp. 1–22.

16. Bramble, J. H.; and Pasciak, J. E.: New convergence estimates for multigrid algo-
rithms. Math. Comp. 49 (1987), pp. 311–329.

17. Bramble, J. H.; and Pasciak, J. E.: New estimates for multigrid algorithms including
the V-cycle. Math. Comp. 60 (1993), pp. 447–471.

18. Bramble, J. H.; Pasciak, J. E.; and Schatz, A. H.: The constructuring of precondi-
tioners for elliptic problems on regions partitioned into substructures I. Math. Comp.
46 (1986), pp. 361–369.

19. Bramble, J. H.; Pasciak, J. E.; and Schatz, A. H.: The constructuring of precondition-
ers for elliptic problems on regions partitioned into substructures II. Math. Comp. 47
(1986), pp. 103–134.

20. Bramble, J. H.; Pasciak, J. E.; Wang, J.; and Xu, J.: Convergence estimates
for multigrid algorithms without regularity assumptions. Math. Comp. 57, 1991,
pp. 23–45.

21. Bramble, J. H.; Pasciak, J. E.; and Xu, J.: Parallel multilevel preconditioners. Math.
Comp. 55 (1990), pp. 1–22.

22. Brand, C. W.: An incomplete factorization preconditioning using repeated red black
ordering. Numer. Math. 61 (1992), pp. 433–454.

23. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comp.
31 (1977), pp. 333–390.

24. Brandt, A.: Guide to multigrid development. In Multigrid Methods, Hackbusch, W.
and Trottenberg, U. (eds.), Lecture Notes in Mathematics 960, Springer-Verlag,
Berlin, Heidelberg (1982).

25. Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math. Comp. 19
(1986), pp. 23–56.

26. Brandt, A.; and Ta’asan, S.: Multigrid Methods for Nearly Singular and Slightly
Indefinite Problems. In Multigrid Methods II, Hackbusch, W. and Trottenberg, U.
(eds.), Lecture Notes in Mathematics 1228, Springer-Verlag, New York (1985),
pp. 100–122.

27. Brandt, A.; and Yavneh, I.: Inadequacy of first-order upwind difference schemes for
some recirculating flows. J. Comp. Phys. 93 (1991), pp. 128–143.

28. Brandt, A.; and Yavneh, I.: On multigrid solution of high reynolds incompressible
entering flows. J. Comp. Phys. 101 (1992), pp. 151–164.

29. Brandt, A.; and Yavneh, I.: Accelerated multigrid convergence and high reynolds
recirculating flows. SIAM J. Sci. Statist. Comput. 14 (1993), pp. 607–626.

30. Brackenridge, K.: Multigrid and cyclic reduction applied to the helmholtz equa-
tion. In Sixth Copper Mountain Conference on Multigrid Methods, Melson, N. D.,
McCormick, S. F., and Manteuffel, T. A. (eds.), NASA, Langley Research Center,
Hampton, VA (1993), pp. 31–42.

31. Brenner, S. C.; and Scott, L. R.: The Mathematical Theory of Finite Element Meth-
ods. Texts in Applied Mathematics 15, Springer-Verlag, New York, (2002).

32. Cai, X. C.; and Widlund, O. B.: Domain decomposition algorithms for indefinite
elliptic problems. SIAM J. Sci. Statist. Comput. 13 (1992), pp. 243–258.

33. Caselles, V.; Kimmel, R.; and Sapiro, G.: Geodesic Active Contours. IJCV 22 (1997),
pp. 61–79.

34. Chan, T. F.; and Goovaert, D.: A note on the efficiency of domain decomposed
incomplete factorizations. SIAM J. Sci. Statist. Comput. 11 (1990), pp. 794–803.

35. Chan, T. F.; and Resasco, C.: A domain decompositioned fast poisson solver. SIAM
J. Sci. Statist. Comput. 8 (1987), 514–527.

References 307

36. Chan, T. F.; and Vanek, P.: Detection of strong coupling in algebraic multigrid
solvers. In Multigrid Methods VI, Vol. 14, Springer-Verlag, Berlin (2000), pp. 11–23.

37. Chang, O.; and Huang, Z.: Efficient algebraic multigrid algorithms and their
convergence. SIAM J. Sci. Comput. 24 (2002), pp. 597–618.

38. D’Azevedo, E. F.; Romine, C. H.; and Donato, J. H.: Coefficient adaptive triangula-
tion for strongly anisotropic problems. In Preproceedings of the 5th Copper Mountain
Conference on Iterative Methods, Manteuffel, T. A. and McCormick, S. F. (eds.)
(1998).

39. Dendy, J. E.: Black box multigrid. J. Comp. Phys. 48 (1982), pp. 366–386.
40. Dendy, J. E.: Black box multigrid for nonsymmetric problems. Appl. Math. Comp.,

13 (1983), pp. 261–283.
41. Dendy, J. E.: Two multigrid methods for the three-dimensional problems with

discontinuous and anisotropic coefficients. SIAM J. Sci. Statist. Comput. 8 (1987),
pp. 673–685.

42. Dendy, J. E.: Semicoarsening multigrid for systems. ETNA 6 (1997), pp. 97–105.
43. Dendy, J. E.; Ida, M. P.; and Rutledge, J. M.: A semicoarsening multigrid algorithm

for SIMD machines. SIAM J. Sci. Statist. Comput. 13 (1992), pp. 1460–1469.
44. Dendy, J. E.; and Tazartes C. C.: Grandchild of the frequency decomposition

multigrid method. SIAM J. Sci. Comput. 16 (1995), pp. 307–319.
45. Dendy, J. E.; and Tchelepi, H.: Multigrid applied to implicit wells problems. Report

n98/6, Institut fuer Computeranwendungen der Universitaet Stuttgart (1988),
pp. 18–34.

46. Diskin, B.: M.Sc. Thesis, Weismann Institute of Science, Rehovot, Israel (1993).
47. Douglas, C. C.: Cache based multigrid algorithms. In MGnet Virtual Proceedings of

the 7th Copper Mountain Conference on Multigrid Methods (1997).
48. Dutto, L. C.; Habashi, W. G.; and Fortin, M.: An algebraic multilevel parallelizable

preconditioner for large-scale CFD problems. In MGnet Virtual Proceedings of the
7th Copper Mountain Conference on Multigrid Methods (1997).

49. Elman, H. C.; Ernst, O. G.; and O’Leary, D. P.: A multigrid method enhanced by
Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput.
23 (2001), pp. 1291–1315.

50. Elman, H. C.; and Golub, G. H.: Line iterative methods for cyclically reduced discrete
convection-diffusion problems. SIAM J. Sci. Statist. Comput. 13 (1992), pp. 339–363.

51. Evans, D. J.: Preconditioning Methods. Gordon and Breach, New York (1983).
52. Frederickson, P. O.; and McBryan, O. A.: Parallel superconvergent multigrid. In

Multigrid Methods, McCormick, S.F. (ed.), Lecture Notes in Pure and Applied
Mathematics 110, Marcel Dekker, New York (1988).

53. Freund, R. W.: Conjugate gradients type methods for linear systems with complex
symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13 (1992), pp. 425–448.

54. Freund, R. W.: Transpose free quasi-minimal residual algorithm for non-Hermitian
linear systems. SIAM J. Sci. Statist. Comput. 14 (1993), pp. 470–482.

55. Goldenberg, R.; Kimmel, R.; Rivlin, E.; and Rudzsky, M.: Fast geodesic active
contours. In Scale-Space Theories in Computer Vision, Nielsen, H., Johansen, P.,
Olsen, O. F., and Weickert, J. (eds.), Lecture Notes in Computer Science 1682,
Springer, Berlin (1999).

56. Gustafsson, S.: On modified incomplete factorization methods. In Numerical
Intergration of Differential Equations and Large Linear Systems. Hinze, J., (ed.),
Lecture Notes in Mathematics 968, Springer, Berlin (1982) pp. 334–351.

57. Hackbusch, W.: Multigrid Methods and Applications. Springer-Verlag, Berlin,
Heidelberg (1985).

58. Hackbusch, W.: The frequency decomposition multigrid algorithm. In Robust
Multigrid Methods, Hackbusch, W. (ed.), Proceedings of the fourth GAMM seminar,
Kiel (1988).

308 References

59. Hackbusch, W.: The frequency decomposition multigrid method, Part 1: Application
to anisotropic equations. Numer. Math. 56 (1989), pp. 229–245.

60. Hart, L.; and McCormick, S. F.: Asynchronous multilevel adaptive methods for
solving partial differential equations: Basic ideas. Parallel Comput. 12 (1990),
pp. 131–144.

61. Henson, V. H.: Towards a fully-parallelizable algebraic multigrid. Presented in the
7th Copper Mountain Conference on Multigrid Methods, April 6–11, 1997.

62. Hestenes, M.; and Stiefel, E.: Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bar. Stand. 49 (1952), pp. 409–425.

63. Kettler, R.: Analysis and comparison of relaxation schemes in robust multigrid and
preconditioned conjugate gradients methods. In Multigrid Methods, Hackbusch, W.
and Trottenberg, U. (eds.), Lecture Notes in Mathematics 960, Springer-Verlag,
Berlin, Heidelberg (1982).

64. Kettler, R.; and Meijerink, J. A.: A multigrid method and a combined multigrid-
conjugate gradient method for elliptic problems with strongly discontinuous coeffi-
cients in general domains. Shell Publ. 604, KSELP, Rijswijk, The Netherlands (1981).

65. Kou, C. C. J.; and Levy, B. C.: Two-color fourier analysis of the multigrid method
with red-black Gauss-Seidel smoothing. Appl. Math. Comp. 29 (1989), pp. 69–87.

66. Kraus, J. K.; and Schicho, J.: Algebraic multigrid based on computational molecules,
1: Scalar elliptic problems. RICAM report, March 2005.

67. Lee, B.; Manteuffel, T. A.; McCormick, S. F.; and Ruge, J.: First order system least
squares for the Helmholtz equation. SIAM J. Sci. Comput. 21 (2000), pp. 1927–1949.

68. Maitre, J. F.; and Musy, F.: Multigrid methods: Convergence theory in a variational
framework. SIAM J. Numer. Anal. 21 (1984), pp. 657–671.

69. Maitre, J. F.; and Musy, F.: Algebraic formulation of the multigrid method in the
symmetric and positive definite case—A convergence estimation for the V-Cycle.
In Multigrid Methods for Integral and Differential Equations, Paddon, D.J. and
Holstein, H. (eds.), Clarendon Press, Oxford (1985).

70. Mavriplis, D. J.: Directional coarsening and smoothing for anisotropic Navier-Stokes
problems. In MGnet Virtual Proceedings of the 7th Copper Mountain Conference on
Multigrid Methods (1997).

71. McCormick, S. F.: An algebraic interpretation of multigrid methods. SIAM. J.
Numer. Anal. 19 (1982), pp. 548–560.

72. McCormick, S. F.; and Quinlan, D.: Asynchronous multilevel adaptive methods for
solving partial differential equations: Performance results. Parallel Computing 12
(1090), pp. 145–156.

73. McCormick, S. F.; and Quinlan, D.: Idealized analysis of asynchronous multilevel
methods. Internal memo, University of Colorado at Denver.

74. Meijerink, J. A.; and Van der Vorst, H. A.: An iterative solution method for linear
systems of which the coefficients matrix is a symmetric M-matrix. Math. Comp. 31
(1977), pp. 148–162.

75. Meijerink, J. A.; and Van der Vorst, H. A.: Guidelines for the usage of incomplete
decompositions in solving sets of linear equations as they occur in practical problems.
J. Comp. Phys. 44 (1981), pp. 134–155.

76. Mitchell, W. F.: Optimal multilevel iterative methods for adaptive grids. SIAM J.
Sci. Statist. Comput. 13 (1992), pp. 146–167.

77. Munson, D. C.: A note on Lena. IEEE T Image Process. 5, (1996).
78. Oman, M. E.: Fast multigrid techniques in total variation-based image reconstruc-

tion. In Seventh Copper Mountain Conference on Multigrid Methods, Melson, N.D.,
Manteuffel, T.A., McCormick, S.F., and Douglas, C.C. (eds.), NASA CP 3339,
Hampton, VA (1996), pp. 649–660.

79. Ortega, J. M.: Introduction to Parallel and Vector Solutions of Linear Systems.
Plenum Press, New York (1988).

References 309

80. Patera, A. T.: A spectral element method for fluid dynamics; laminar flow in a
channel expansion. J. Comp. Phys. 54 (1984).

81. Perona, P.; and Malik, J.: Scale space and edge detection using anisotropic diffusion.
IEEE T. Pattern Anal. 12 (1990), pp. 629–639.

82. van-der-Ploeg, A.; Botta, E. F. F.; and Wubs, F. W.: Nested grids ILU-decomposition
(NGILU). J. Comput. Appl. Math. 66 (1996), pp. 515–526.

83. Quarteroni, A.; and Zampieri, E.: Finite element preconditionering for legendre
spectral collocation approximations to elliptic equation and systems. SIAM J.
Numer. Anal. 29 (1992), pp. 917–936.

84. Reusken, A.: A multigrid method based on incomplete gaussian elimination. Numer.
Linear Algebra Appl. 3 (1996), pp. 369–390.

85. Ruge, J. W.; and Stuben, K.: Efficient solution of finite difference and finite element
equations by algebraic multigrid. In Multigrid Methods for Integral and Differential
Equations, Paddon, D. J. and Holstein, H. (eds.), Oxford Univ. Press, New York
(1985), pp. 169–212.

86. Ruge, J. W.; and Stuben, K.: Algebraic multigrid. In Multigrid Methods, Mc-
Cormick, S. F. (ed.), SIAM, Philadelphia (1987).

87. Saad, Y.: ILUM, a multi-elimination ILU preconditioner for general sparse matrices.
SIAM J. Sci. Comput. 17 (1996), pp. 830–847.

88. Saad, Y.; and Schultz, M.H.: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986), pp. 856–869.

89. Sapiro, G.; and Ringach, D.L.: Anisotropic diffusion of multivalued images with
applications to color filtering. IEEE T Image Process. 5 (1996), pp. 1582–1586.

90. Shapira, Y.: Two-level analysis and multigrid methods for SPD, non-normal and
indefinite problems. Technical Report #824 (revised version), Computer Science
Department, Technion, Haifa, Israel (1994).

91. Shapira, Y.: Black-box multigrid solver for definite and indefinite problems. In Alge-
braic Multi-Level Iteration Methods with Applications, Axelsson, O. and Polman, B.
(eds.), Nijmegen, The Netherlands, (1996), pp. 235–250.

92. Shapira, Y.: Multigrid techniques for highly indefinite equations. In Seventh Copper
Mountain Conference on Multigrid Methods, Melson, N.D., Manteuffel, T.A.,
McCormick, S.F., and Douglas, C.C. (eds.), NASA CP 3339, Hampton, VA (1996),
pp. 689–705.

93. Shapira, Y.: Algebraic interpretation of continued fractions. J. Comput. Appl. Math.
78 (1997), pp. 3–8.

94. Shapira, Y.: Multigrid methods for 3-D definite and indefinite problems. Appl.
Numer. Math. 26 (1998), pp. 377–398.

95. Shapira, Y.: Coloring update methods. BIT 38 (1998), pp. 180–188.
96. Shapira, Y.: Parallelizable approximate solvers for recursions arising in precondi-

tioning. Linear Algebra Appl. 274 (1998), pp. 211–237.
97. Shapira, Y.: Analysis of matrix-dependent multigrid algorithms. Numer. Linear

Algebra Appl. 5 (1998), pp. 165–201.
98. Shapira, Y.: Algebraic domain decomposition method for unstructured grids. In

9th International Conference on Domain Decomposition Methods, Bjorstad, P.,
Espedal, M., and Keyes, D. (eds.), Bergen Univ. Press, Norway (1998), pp. 205–214.

99. Shapira, Y.: Multigrid for locally refined meshes. SIAM J. Sci. Comput. 21 (1999),
pp. 1168–1190.

100. Shapira, Y.: Model-case analysis of an algebraic multilevel method, Numer. Linear
Algebra Appl. 6 (1999), pp. 655–685.

101. Shapira, Y.: Algebraic multilevel method with application to the Maxwell equations.
J. Comp. Appl. Math. 137 (2001), pp. 207–211.

102. Shapira, Y.: Adequacy of finite difference schemes for convection-diffusion equations.
Numer. Methods Partial Differential Equations 18 (2002), pp. 280–295.

310 References

103. Shapira, Y.: Solving PDEs in C++. SIAM, Philadelphia, 2006.
104. Shapira, Y.; Israeli, M.; and Sidi, A.: An automatic multigrid method for the

solution of sparse linear systems. In Sixth Copper Mountain Conference on Multigrid
Methods, Melson, N.D., McCormick, S.F. Manteuffel, T.A., and Douglas, C.C. (eds.),
NASA, Langley Research Center, Hampton, VA (1993), pp. 567–582.

105. Shapira, Y.; Israeli, M.; and Sidi, A.: Towards automatic multigrid algorithms for
SPD, nonsymmetric and indefinite problems. SIAM J. Sci. Comput. 17 (1996),
pp. 439–453.

106. Shapira, Y.; Israeli, M.; Sidi, A.; and Zrahia, U.: Preconditioning spectral element
schemes for definite and indefinite problems. Numer. Methods Partial Differential
Equations 15 (1999), pp. 535–543.

107. Sidi, A.; and Shapira, Y.: Upper bounds for convergence rates of acceleration
methods with initial iterations. Numer. Algorithms 18 (1998), pp. 113–132.

108. Smith, R. A.; and Weiser, A.: Semicoarsening multigrid on a hypercube. SIAM J.
Sci. Statist. Comput. 13 (1992), pp. 1314–1329.

109. Sochen, N.; Kimmel, R.; and Malladi, R.: A general framework for low level vision.
IEEE T Image Process. 7 (1998), pp. 310–318.

110. Sonneveld, P.: CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Statist. Comput. 10 (1989), pp. 36–52.

111. Sonneveld, P.; Wesseling, P.; and de Zeeuw, P.M.: Multigrid and conjugate gradient
methods as convergence acceleration techniques. In Multigrid Methods for Integral
and Differential Equations, Paddon, D.J. and Holstein, H. (eds.), Oxford University
Press, Oxford (1985), pp. 117–168.

112. Strang, G.; and Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs, NJ (1973).

113. Stuben, K.; and Trottenberg, U.: Multigrid methods: Fundamental algorithms,
model problem analysis and applications. In Multigrid Methods, Hackbusch, W., and
Trottenberg, U. (eds.), Lecture Notes in Mathematics 960, Springer-Verlag, Berlin,
Heidelberg (1982), pp. 1–176.

114. Ta’asan, S.: Multigrid methods for highly oscillatory problems. Ph.D. Thesis,
Weismann Institute of Science, Rehovot, Israel (1984).

115. Tanabe, K.: Projection methods for solving a singular system of linear equations
and its applications. Numer. Math. 17 (1971), pp. 203–214.

116. Vanek, P.; Brezina, M.; and Mandel, J.: Convergence of algebraic multigrid based
on smoothed aggregation. Numer. Math. 88 (2001), pp. 559–579.

117. Vanek, P.; Mandel, J.; and Brezina, M.: Algebraic multigrid by smooth aggregation
for second and fourth order elliptic problems. Computing 56 (1996), pp. 179–196.

118. Varga, R.: Matrix Iterative Analysis. Prentice-Hall, NJ (1962).
119. van der Vorst, H. A.: Iterative solution methods for certain sparse linear systems

with a non-symmetric matrix arising from PDE-problems. J. Comp. Phys. 49 (1982),
pp. 1–19.

120. Wesseling, P.: A robust and efficient multigrid solver. In Multigrid Methods,
Hackbusch, W. and Trottenberg, U. (eds.), Lecture Notes in Mathematics 960,
Springer-Verlag, Berlin, Heidelberg (1982), pp. 614–630.

121. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, Chichester, UK (1992).
122. Yavneh, I.: Multigrid smoothing factors for red black Gauss-Seidel applied to a class

of elliptic operators. SIAM J. Numer. Anal. 32 (1995), pp. 1126–1138.
123. Yavneh, I.: On red black SOR smoothing in multigrid. SIAM J. Sci. Comput. 17

(1996).
124. Yavneh, I.: Coarse grid correction for nonelliptic and singular perturbation problems.

SIAM J. Sci. Comput. 19 (1998), pp. 1692–1699.
125. Young, D.: Iterative Solution of Large Linear Systems. Academic Press, New York

(1971).

References 311

126. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math.
49 (1986), pp. 379–412.

127. Yserentant, H.: Two preconditioners based on the multi-level splitting of finite
element spaces. Numer. Math. 58 (1990), pp. 163–184.

128. de Zeeuw, P. M.: Matrix-dependent prolongations and restrictions in a blackbox
multigrid solver. J. Comput. Appl. Math. 33 (1990), pp. 1–27.

129. de Zeeuw, P. M.: Multigrid and advection. In Numerical Methods for Advection-
Diffusion Problems, Vreugdenhil, C. B. and Koren, B. (eds.), Notes on Numerical
Fluid Mechanics 45, Vieweg Verlag, Braunschweig (1993), pp. 335–351.

Index

accuracy
in diffusion problem, 55
in Helmholtz equation, 57
in parabolic PDE, 299
in Poisson equation, 54

adaptive refinement, 80
with algebraic multilevel, 268

adequacy, 266
in anisotropic diffusion, 59
in boundary layer, 267
in closed characteristics, 264
in Helmholtz equation, 57

adjoint of matrix, 26
AFAC, 223, 224
AFACx, 223, 224
algebraic multigrid (see multigrid), 124
algebraic multilevel (see multilevel), 250
AMG (see multigrid), 120, 125
AMGe, 121
AMGm, 121
anisotropic (see diffusion), 261
anisotropic diffusion (see diffusion), 76,

126, 183
automatic, xxi
automatic multigrid (see multigrid), 135
AutoMUG (see multigrid), 135

back-substitution, 31, 102
block-, 207

banded matrix, 188
BBMG (see multigrid), 133
bidiagonal matrix, 25
bilinear form, 68

symmetric, 82
binary representation, 6
binary tree, 13
black-box multigrid (see multigrid), 119,

167

block-bidiagonal matrix, 189, 296
block-ILU (see ILU), 187
block-tridiagonal matrix, 186, 188
boundary condition

Dirichlet, 38, 51, 116, 284
Dirichlet–Neumann, 40, 117, 284
discrete, 53
mixed, 53, 65
Neumann, 53, 65

boundary-value problem, 50
ill-posed, 206, 229
well-posed, 56, 69

cache, 10, 96, 287
in domain decomposition, 239, 243

CGS, 105
chaos, 14
characteristics, 266, 268

closed, 264
coarse grid, 110, 204

multiple, 171
operator, 112

in AutoMUG, 141
in black-box multigrid, 156
in DDMG, 242
in semicoarsening, 193
in variational multigrid, 115

coarse level, 14, 123, 249
operator, 124, 252, 266

in Stokes, 285
coarsening procedure, 251
color image, 147
complicated domain, 67
condition number, 100, 247, 249, 256

in Stokes, 286
upper bound, 218, 244, 256

conjugate gradient, 286

314 Index

conjugate gradient squared, 105
continued fraction, 31
convection-diffusion equation, 61

algebraic multilevel, 264
coupling (see diffusion), 53, 216, 249, 251
CR (see cyclic reduction), 135
cyclic reduction, 136

DDMG (see domain decomposition), 239
deblurring, 195
defect correction, 302
denoising, 145

color image, 147
grayscale image, 146

diagonally dominant matrix, 26, 53, 74
in anisotropic diffusion, 76
in denoising, 153
in isotropic diffusion, 74

diffusion, 55
anisotropic, 59, 76, 126, 183

algebraic multilevel, 261
discontinuous coefficient, 160, 226
discontinuous coefficients, xxii, 67
equation, 47, 50
isotropic, 74, 214
oblique anisotropy, 60, 261

algebraic multilevel, 261
parabolic, 293
strong, 59, 160, 216, 270
weak, 59, 206, 216
with black-box multigrid, 156, 160

diffusion problem (see diffusion), 50
digital image, 145
direct linear system solver, 89
Dirichlet boundary condition, 38, 51, 116,

284
Dirichlet–Neumann

boundary condition, 40
subproblem, 117, 284

discontinuous coefficients, xxii, 67
discrete boundary condition, 53
discretization (see finite ...)

finite difference, 51
finite element, 67
finite volume, 63
semi-implicit, 294

divergence operator, 274
domain

complicated, 67
domain decomposition, 116, 118, 120, 239

cache, 239, 243
direct solver, 189

parallelism, 189

multigrid, 240
parallelism, 185, 239, 242
two-level

in Stokes, 283
downstream relaxation, 95, 264

eigenfunction, 56
nearly singular, 112, 166, 171

eigenproblem
generalized, 257, 271

eigenvalue, 24, 56
negative, 25
positive, 25

eigenvector, 24
nearly singular, 112, 174
orthonormal, 32

elasticity, 275, 280
elliptic PDE (see PDE), 49
energy norm, 35, 210, 219, 287
equation

diffusion (see diffusion), 47
elasticity, 275, 280
Helmholtz (see Helmholtz), 55
Maxwell, 263
Poisson (see Poisson), xxi
Stokes (see Stokes), 278

F-cycle, 8, 9, 114
fill-in, 89
fine grid, 110, 206
fine level, 14, 231
finite difference, 51

error estimate, 53, 55
for anisotropic diffusion

adequacy, 59
for convection-diffusion, 61
for Helmholtz equation, 56

adequacy, 57
semi-implicit, 294

finite element, 67
bilinear, 71
high-order, 245
in linear elasticity, 276
in parabolic PDE, 295
triangulation, 72

finite volume, 63
fixed-point iteration, 153
fixed-point problem, 153
flux, 67

continuity, 204, 207, 259
nondifferentiability, 68
preservation, 135, 204, 217

forward elimination, 31, 102
block-, 207

Index 315

Fourier transform, 38, 41, 55
two-dimensional, 42

fractal, 14

Galerkin, 224
in algebraic multilevel, 266
in black-box multigrid, 118
in semicoarsening, 183, 193

Gauss elimination, 87, 89
Gauss–Seidel relaxation, 91, 170

block-, 92
point-, 91
symmetric, 99

GCD, 9, 20
general minimal residual, 105
geometric multigrid (see multigrid), 114
Gersgorin theorem, 24
GMRES, 105
gradient operator, 274
Gramm–Schmidt process, 33
grayscale image, 146
greatest common divisor, 9, 20
Green

formula, 63, 68, 276, 294
function, 26, 53, 74
theorem, 231

Haar transform, 169
Helmholtz equation

coarsest grid, 174
indefinite, 55, 165
multigrid, 165

hierarchical basis, 203

ill-posed, 206, 229
ILU, 102, 105, 267

block-, 102, 187
reordered, 192

line-, 102, 133, 183
modified, 125
no fill-in, 102, 267
parallelizable, 102, 105, 267
preconditioner, 105, 271
zebra, 192

implicit scheme, 294
inadequate discretization, 206
incomplete LU (see ILU), 102
indefinite matrix, 25, 286
indefinite problem, 104

multigrid, 165
induced inner product, 28, 210
induced norm, 29, 210
initial boundary-value problem, 265, 293,

296

instability, 216
isotropic diffusion, 74, 214
iteration (see relaxation), 109
iterative method (see relaxation), 89

Jacobi relaxation, 90
block-, 91
damped, 91
point-, 91
two-step, 262

Kacmarz iteration, 106
Krylov subspace, xxi, 201, 245

L-matrix, 25
Lagrange

multiplier, 282
theory, 34, 257

Lanczos-type acceleration, 100, 105, 189
Laplacian operator, 274

vector, 274
line-ILU (see ILU), 102
linear elasticity, 275

reduced, 280
linear system, 52

sparse, xxi, 89, 250
linearization, 303
local anisotropy, xxii, 149, 216, 222
local refinement, 10, 77

multigrid, 203, 224, 227
LU factorization, 87
lumping, 205

block-, 282
in black-box multigrid, 155
oblique, 120
vertical, 119

M-matrix, 25, 53
in anisotropic diffusion, 76
in denoising, 153
in isotropic diffusion, 74

marching in time, 296
mass matrix, 295

in parabolic PDE, 295
mathematical induction, 14
matrix-based multigrid, xxi, 114, 133
matrix-based semicoarsening, 127, 183, 193
matrix-dependent (see matrix-based), xxi
Maxwell equations

with algebraic multilevel, 263
Meurant theory, 188
MILU, 125
mixed boundary condition, 53, 65
ML (see multilevel), 113

316 Index

modified ILU, 125
molecule, 121
multigrid, 112, 116, 203

algebraic, 120, 124
for nonsymmetric problem, 125

automatic, 135, 138, 141
in denoising, 146, 149
in Helmholtz equation, 171, 175

black-box, 119, 120, 155, 232
in diffusion problem, 160
in Helmholtz equation, 167, 175
in local refinement, 232

geometric, xxi, 114, 115, 126, 128, 174,
187, 266, 282, 303

in nonlinear equation, 303
in nonlinear equation, 303
matrix-based, xxi, 114, 133
variational, 115, 116, 120, 124, 129, 183,

204, 283
multilevel, 5

algebraic, 250, 256, 263
for nonsymmetric problem, 264
in parabolic PDE, 299

line reordering, 185
method, 216
programming, 12
refinement, 10
semi-algebraic, 273, 277, 286

multiple
coarse grids, 171
semicoarse grids, 197

multiscale, 5, 9

nearly singular
eigenfunction, 112, 166, 171
eigenvector, 112, 174

Neumann boundary condition, 53, 65
Newton iteration, 147, 152, 304
Newton–Raphson (see Newton iteration),

152
nonlinear equation, 301
nonlinear PDE, 153
nonsymmetric matrix (see nonsymmetric

problem), 125
nonsymmetric problem, 104

with algebraic multilevel, 264
with AMG, 125
with ILU, 105
with semicoarsening, 194

normal equations, 106
numerical scheme (see discretization),

239

object segmentation, 145, 146

off-diagonally dominant, 261

orthogonal matrix, 29

orthonormal basis, 32

parabolic PDE, 293

parallel algorithm, 17

parallelism, 13

by coloring, 92, 95

in algebraic multilevel, 252

in block-ILU, 192

in direct domain decomposition, 189

in domain decomposition, 185, 239, 242

in ILU, 102, 267

in line reordering, 185

in multigrid, 225

in relaxation, 90, 254

partial differential equation (see PDE), 49

PCG, 100, 286

PDE, xxi

elliptic, 49, 184

nonlinear, 145, 147, 153, 301

parabolic, 293

system of, 273

time-dependent, 293

Peano theory, 15

pentadiagonal matrix, 25, 188

Picard iteration, 153

pivoting, 31

Poisson equation, xxi, 47

finite differences, 54

Poisson rate, xxi, 109

positive definite matrix (see SPD), 25

positive matrix, 25, 140

positive semidefinite matrix, 25

postrelaxation, 111

prerelaxation, 111

preconditioned conjugate gradient (see
PCG), 100

preconditioner, 262, 286

algebraic multilevel, 263

in parabolic PDE, 299

semialgebraic multilevel, 277

SPD, 106

problem

boundary-value, 50

diffusion, 55

diffusion (see diffusion), 50

initial boundary-value, 265, 293, 296

nonlinear, 291

time-dependent, 291

Index 317

programming
high-level, 12
low-level, 12
multilevel, 12
object-oriented, 12

prolongation, 116, 204
in algebraic multilevel, 123, 252
in AutoMUG, 139
in black-box multigrid, 155
in DDMG, 241
in Helmholtz equation, 166
in semicoarsening, 194
in Stokes, 283, 284
in variational multigrid, 115

prolongation operator, 111, 112
property-A, 106

QMR, 105
quasi minimal residual, 105

recursion, 14, 137
red-black relaxation, 95
reduced linear elasticity, 280
refinement, 10

adaptive, 80
local, 77
step, 78

relaxation, 90
4-color, 95
block-, 92
by colors, 92
cache-oriented, 96
downstream, 95, 264
Gauss–Seidel, 91

block-, 92
point-, 91
symmetric, 99
zebra, 92

in algebraic multilevel, 254
Jacobi, 90

block-, 91
damped, 91
point-, 91

line-, 92
point-, 91, 146, 225
post-, 111
pre-, 111
red-black, 95, 170
upstream, 95, 266
zebra, 92

in semicoarsening, 126, 194
residual equation, 302

in nonlinear equation, 301

restriction operator, 111, 112, 217

in algebraic multilevel, 124, 252

in AutoMUG, 139

in black-box multigrid, 166

in DDMG, 242

in Stokes, 285

in variational multigrid, 115

RGB image, 151

row sum, 30, 115, 140

sawtooth cycle, 114

scheme (see discretization), 239

Schur complement

approximate, 258

in Stokes, 278, 286

self-similarity, 14

semi-algebraic multilevel (see multilevel),
273

semi-implicit scheme, 294

semicoarsening, 126, 183

algebraic, 268

for nonsymmetric problem, 194

matrix-based, 127, 183, 193

semistructured grid, 201, 223

9-point stencil, 232

sine transform, 40

two-dimensional, 41

Sobolev space, 68, 276

sorting problem, 13

sparse linear system, xxi, 89, 250

sparse matrix, 187

SPD matrix, 26, 82, 100, 285

SPD preconditioner, 106

spectral element, 245

stability

in implicit time marching, 296

in multigrid, 216

stencil

25-point, 107

3-point, 139, 141

5-point, 53, 64

in AutoMUG, 135

9-point, 72, 93

in black-box multigrid, 164

in block-ILU, 192

in semicoarsening, 193

in semistructured grids, 232

stiffness matrix, 74, 286

in parabolic PDE, 295

318 Index

Stokes equations

preconditioner, 278

stretched finite element, 77

strong diffusion, 59, 160, 216, 270

strongly coupled, 123, 124, 206, 251

structured grid, 10, 118–120, 133

Sturm–Liouville

eigenfunction, 112

problem, 38, 40

symmetric matrix, 26, 31, 32, 82,
285

system of PDEs (see PDE), 273

TFQMR, 105

time marching, 296

time-dependent PDE, 293

TL (see two-level), 111

tower problem, 15

transfer operator, 112

in algebraic multilevel, 252

transpose of matrix, 26, 285

transpose-free QMR, 105

triangulation, 72

tridiagonal, 25

tridiagonal matrix, 25, 136, 188

truncation error, 53

two-grid, 109, 204

two-level, 111, 204, 211
algebraic, 255
computational analysis, 168
domain decomposition

in Stokes, 283
method, 204, 211

unstructured grid, xxii, 10, 67, 116, 120,
237

unstructured linear system, 81
unstructured mesh, 115
upstream relaxation, 95, 266
upwind scheme, 62, 264

V-cycle, 8, 109, 113, 224
variational multigrid (see multigrid), 115

wavelet, 14
weak diffusion, 59, 206, 216
weak formulation, 67

discrete, 69
in linear elasticity, 275
in parabolic PDE, 294

weakly coupled, 123, 124, 206, 251
well-posed, 56, 69
Wiener filter, 152

zebra ILU, 192
zebra relaxation, 92

in semicoarsening, 126, 194

	Matrix-Based Multigrid
	Part 1. Concepts and Preliminaries
	1. The Multilevel Multiscale Approach
	2. Preliminaries

	Part 2. Partial Differential Equations and Their Discretization
	3. Finite Differences and Volumes
	4. Finite Elements

	Part 3. The Numerical Solution of Large Sparse Linear Systems of Algebraic Equations
	5. Iterative Linear System Solvers
	6. The Multigrid Iteration

	Part 4. Matrix-Based Multigrid for Structured Grids
	7. The Automatic Multigrid Method
	8. Applications in Image Processing
	9. The Black-Box Multigrid Method
	10. The Indefinite Helmholtz Equation
	11. Matrix-Based Semicoarsening Method

	Part 5. Matrix-Based Multigrid for Semistructured Grids
	12. Matrix-Based Multigrid for Locally Refined Meshes
	13. Application to Semistructured Grids

	Part 6. Matrix-Based Multigrid for Unstructured Grids
	14. The Domain-Decomposition Multigrid Method
	15. The Algebraic Multilevel Method
	16. Applications
	17. Semialgebraic Multilevel Method for Systems of Partial Differential Equations

	Part 7. Appendices
	18. Time-Dependent Parabolic PDEs
	19. Nonlinear Equations

	References

